
Teradata Factory

Course # 9038

Version 14.00.4

Student Guide

Notes

Course Introduction Page 0-3

Module 0

Teradata Proprietary and Confidential

Course Overview

Teradata Factory
Teradata Concepts

MPP System Architectures
Physical Design and Implementation

Application Utilities
Database Administration

 Course Introduction Page 0-4

Tenth Edition
April, 2012

Trademarks
The following names are registered names or trademarks and are used throughout this
manual.

The product or products described in this book are licensed products of Teradata Corporation or its
affiliates.

Teradata, BYNET, DBC/1012, DecisionCast, DecisionFlow, DecisionPoint, Eye logo design, InfoWise,
Meta Warehouse, MyCommerce, SeeChain, SeeCommerce, SeeRisk, Teradata Decision Experts, Teradata
Source Experts, WebAnalyst, and You’ve Never Seen Your Business Like This Before, and Raising
Intelligence are trademarks or registered trademarks of Teradata Corporation or its affiliates.

Adaptec and SCSISelect are trademarks or registered trademarks of Adaptec, Inc.
AMD Opteron and Opteron are trademarks of Advanced Micro Devices, Inc.
BakBone and NetVault are trademarks or registered trademarks of BakBone Software, Inc.
EMC2, PowerPath, SRDF, and Symmetrix are registered trademarks of EMC2 Corporation.
GoldenGate is a trademark of GoldenGate Software, a division of Oracle Corporation.
Hewlett-Packard and HP are registered trademarks of Hewlett-Packard Company.
Intel, Pentium, and XEON are registered trademarks of Intel Corporation.
IBM, CICS, RACF, Tivoli, z/OS, and z/VM are registered trademarks of International Business Machines

Corporation.
Linux is a registered trademark of Linus Torvalds.
Engenio is a registered trademarks of NetApp Corporation.
Microsoft, Active Directory, Windows, Windows NT, and Windows Server are registered trademarks of

Microsoft Corporation in the United States and other countries.
Novell and SUSE are registered trademarks of Novell, Inc., in the United States and other countries.
QLogic and SANbox trademarks or registered trademarks of QLogic Corporation.
SAS and SAS/C are trademarks or registered trademarks of SAS Institute Inc.
SPARC is a registered trademark of SPARC International, Inc.
Symantec, NetBackup, and VERITAS are trademarks or registered trademarks of Symantec Corporation or
its affiliates in the United States and other countries.
Unicode is a collective membership mark and a service mark of Unicode, Inc.
UNIX is a registered trademark of The Open Group in the United States and other countries.

Other product and company names mentioned herein may be the trademarks of their respective owners.

The materials included in this book are a licensed product of Teradata Corporation.

Copyright Teradata Corporation ©2010-2012
Miamisburg, Ohio, U.S.A.

All Rights Reserved.

Material developed by:
Teradata Learning

Course Introduction Page 0-5

Table of Contents

Trademarks ... 0-4
Course Materials .. 0-6
Options for Displaying PDF Files .. 0-8
Example of Left Page – Right Page Display .. 0-10

View and search a PDF .. 0-10
PDF Comment and Markup Tools ... 0-12
Example of Highlighter and Sticky Note Tools ... 0-14
Example of Typewriter Tool .. 0-16
Course Description ... 0-18
Who Should Attend .. 0-20
Prerequisites ... 0-20
Class Format .. 0-22
Classroom Rules .. 0-22
Outline of the Two Weeks ... 0-24
Teradata Certification Tests ... 0-26

 Course Introduction Page 0-6

Course Materials
The Teradata Factory course materials that are provided on a USB flash drive are listed on
the facing page. These materials are provided at the beginning of the class.

The Teradata Factory Student Manual and the Lab Workbook have been created as PDF
files which can be viewed using Adobe® Reader®.

These PDF files were created using Adobe Acrobat® and commenting has been enabled for
both files. This allows you to use Adobe® Reader® Comment and Markup tools to place
your own notes and comments within the files.

Course Introduction Page 0-7

Course Materials

Teradata Factory course materials include:

• Paper copy of TF Lab Workbook
• Electronic copy (PDF files) of Student Manual and Lab Workbook

Contents of the flash drive include:

• Teradata Factory Class Files

– Class Files (these PDF files allow use of Comment and Markup tools)

• TF v1400.4 Lab Workbook.pdf
• TF v1400.4 Student Manual.pdf

– Miscellaneous Software

• Acrobat Reader
• Microsoft .NET Packages
• Putty – use for secure shell Linux connections
• Secure FTP – use for secure FTP to Linux servers

– TD 14.0 Reference Manuals

– TD 14.0 TTU – Subset of tools and utilities (numbered in order of installation)

• 01_piom__windows_i386.14.00.00.06.zip
• 02_TeraGSS__windows_i386.14.00.00.01.zip
• :

– TD Demo Lab Setup (numbered in order of installation)

 Course Introduction Page 0-8

Options for Displaying PDF Files
Adobe® Reader® is a tool that you can use to open and view the Teradata Factory PDF
course files. You can also use the Adobe Reader to make comments or notes and save your
PDF file.

Since the Teradata Factory course materials have been created in a book format (left page -
right page), you may want to set options in Adobe Reader to view the materials in a book
format.

 The left page contains additional information about the right or slide page.
 The right page is copy of the PPT slide that is used during the presentation.

To view the Teradata Factory Student Manual in a book format using Adobe Reader 9.2 or
before, use the View Menu > Page Display and set the following options.

 Two-Up Continuous
 Show Gaps Between Pages (normally checked or set by default)
 Show Cover Page During Two-up

Course Introduction Page 0-9

Options for Displaying PDF Files

The Teradata Factory course materials are created in a left page – right page format.

• Left page – contains additional information about the slide page

• Right page – copy of the PPT slide that is used during the presentation

To display PDF files in a book type (left page – right page) format, Adobe Reader options need to be set.

In Adobe Reader 9.2 and earlier versions, the
options are named:

• Two-Up Continuous
• Show Gaps Between Pages
• Show Cover Page During Two-Up

 Course Introduction Page 0-10

Example of Left Page – Right Page Display
The facing page illustrates an example of displaying the Teradata Factory Student Manual in
a left page – right page format.

View and search a PDF
In the Adobe Reader toolbar, use the Zoom tools and the Magnification menu to enlarge or
reduce the page. Use the options on the View menu to change the page display. There are
various options in the Tools menu to provide you with more ways to adjust the page for
better viewing (Tools > Select & Zoom).

This is an example of menus using Adobe Reader 9.2.

These Adobe Reader toolbars open by default:

 A. File toolbar
 B. Page Navigation toolbar
 C. Select & Zoom toolbar
 D. Page Display toolbar
 E. Find toolbar

Course Introduction Page 0-11

Example of Left Page – Right Page Display

After setting the Page Display options, the PDF file is displayed as below.

This PDF file has been created to allow the use of comment and markup tools.

 Course Introduction Page 0-12

PDF Comment and Markup Tools
The Teradata Factory course materials have "commenting" enabled. Therefore, you can
make comments in these files using the commenting and markup tools. Of the many
commenting and markup tools that are available, you may find it easier to use the following
tools (highlighted on the facing page).

 Add Sticky Note
 Highlight Text Tool
 Typewriter

Comments can include both notes and drawings (if you have the time during class). You
can enter a text message using the Sticky Note tool. You can use a drawing tool to add a
line, circle, or other shape and then type a note in the associated pop-up note.

You can enable the Comment & Markup Toolbar or you can simply select the tools using
the pull-down menus. The example below is for Adobe Reader 9.2.

 Enable the Comment & Markup Toolbar and select the tool to use

 Menus (View > Toolbars > Comment & Markup) to add notes or comments.

Options on the Comment & Markup toolbar:

 A. Sticky Note tool
 B. Text Edits tool
 C. Stamp tool and menu
 D. Highlight Text tool
 E. Callout tool
 F. Text Box tool
 G. Cloud tool
 H. Arrow tool
 I. Line tool
 J. Rectangle tool
 K. Oval tool
 L. Pencil tool
 M. Show menu

After you add a note or comment, it stays selected until you click elsewhere on the page. A
selected comment is highlighted by a blue halo to help you find the markup on the page.

Course Introduction Page 0-13

PDF Comment and Markup Tools

Comment and markup tools that may be useful include:

• Sticky Note (Comment)
• Highlight Text Tool (Comment)
• Add a Text Box (Extended) or Typewriter

In Adobe Reader 9.2 and earlier versions, the
options are in the Tools Menu:

• Comment & Markup > Sticky Note
• Comment & Markup > Highlight Text Tool
• Typewriter

Sticky Note

Highlight Text Tool

 Course Introduction Page 0-14

Example of Highlighter and Sticky Note Tools
The facing page illustrates an example of using the Highlighter and Sticky Note tools.

Select a commenting or markup tool.

 Choose Tools > Comment & Markup > Highlighter or Sticky Note (or another tool)

Note: After you make an initial comment, the tool changes back to the Select tool so that
you can move, resize, or edit your comment. (The Pencil, Highlight Text, and Line tools
stay selected.)

To keep a commenting tool selected so you can add multiple comments without reselecting
the tool, do the following:

 Select the tool you want to use (but don’t use it yet).
 Choose View > Toolbars > Properties Bar.
 Select Keep Tool Selected.

You can change the font of a text in a sticky note. Open the sticky note, choose View >
Toolbars > Properties Bar, select the text in a note, and then change the font size in the
Properties Bar.

Course Introduction Page 0-15

Example of Highlighter and Sticky Note Tools

The left page illustrates the Highlighter tool and the right page illustrates the Sticky Note tool.

 Course Introduction Page 0-16

Example of Typewriter Tool
The facing page illustrates an example of using the Typewriter tool. This example also
illustrates that the Typewriter Toolbar is enabled.

The Typewriter Toolbar may be useful when completing review questions as shown on the
facing page. You already have the answer to one of hundreds of questions in this course.

After making notes and comments, save your changes. You may want to save your changes
to a different PDF file name in order to preserve the original PDF file.

Course Introduction Page 0-17

Example of Typewriter Tool

The Typewriter tool can be used to add text at any location in the PDF file.

To enable the Typewriter Toolbar in Adobe 9.2 or before:

• Tools > Typewriter > Show Typewriter Toolbar

 Course Introduction Page 0-18

Course Description
This course provides information on the following major topics:

 Teradata Concepts
 System Architectures (e.g., 2650, 2690, 6650, and 6690 Systems)
 Teradata Physical Database Design
 Teradata SQL ANSI Differences for Version 2
 Teradata Application Utilities
 Teradata Database Administration

Course Introduction Page 0-19

Course Description

Description

The primary focus of this ten day course is to teach you about the design,
implementation, and administration of the Teradata Database.

The major topics in this course include:

• Teradata Database features and functions

• The parallelism of the Teradata Database

• How Teradata is implemented on MPP systems (e.g., 6690 systems)

• How to perform physical database design for Teradata Database

• Teradata SQL ANSI Differences

• How to load and export data using the Teradata application utilities

• How to perform common administrative functions for the Teradata Database

 Course Introduction Page 0-20

Who Should Attend
This class is a learning event for relational database experienced individuals who need to
learn the Teradata Database. This course is designed for Teradata practitioners who need to
get hands-on practice with the Teradata Database in a learning environment.

 Professional Services Consultants
 Channel Partners

Prerequisites
An understanding of relational databases, SQL, and the logical data model is necessary
before attending this course.

Experience with large systems, relational databases and SQL, and an understanding of the
UNIX operating system is useful, but not required before attending this course.

There are Web Based Training classes that provide information about Teradata concepts and
SQL.

 Overview of Teradata
 Teradata SQL

Course Introduction Page 0-21

Who Should Attend and Prerequisites

Who Should Attend

This course is designed for ...

• Teradata Professional Services Consultants

• Channel Partners

Prerequisites

Required:

• An understanding of the logical data model, relational, SQL, and data processing
concepts.

Useful, but not required:

• Experience with relational databases and SQL

• Experience with large systems used with Teradata

 Course Introduction Page 0-22

Class Format
This ten-day class will be conducted as a series of lectures with classroom discussions,
review questions, and workshops.

Classroom Rules
The classroom rules are listed on the facing page.

Course Introduction Page 0-23

Class Format and Rules

Class Format

This ten day class consists of ...

• Instructor presentations

• Class discussions

• Workshop exercises

Classroom Rules

The classroom rules are …

• Turn off your cellular phones.

• During lecture, only use your laptop to follow the class materials.

• Come to class on time in the morning and after breaks.

• Enjoy the two weeks.

 Course Introduction Page 0-24

Outline of the Two Weeks
An outline of the two weeks is described on the following page. Major topic examples are
listed for each week.

Course Introduction Page 0-25

Outline of the Two Weeks

1. Teradata Concepts
Teradata features and functions
Parallelism and Teradata

MPP System Architectures
Characteristics of MPP (e.g., 6690) systems – typical configurations
Disk Array subsystems and how Teradata utilizes disk arrays

Teradata Physical Database Design (continued in week #2)
Primary and secondary index selection; partitioned, NoPI, and columnar tables
How the Teradata database works
Collecting Statistics and Explains
SQL ANSI syntax & features; Teradata and ANSI transaction modes
Temporary tables, System Calendar, and Teradata System Limits

2. Teradata Application Utilities
Load utilities (e.g., BTEQ, FastLoad, MultiLoad, and TPump)
Export utilities (e.g., BTEQ and FastExport)

Teradata Database Administration
Dictionary tables and views; system hierarchy and space management
Users, Databases, Access Rights, Roles, and Profiles
Administrator and System Utilities – Teradata Administrator, Viewpoint, DBSControl
How to use the archive facility to do Archive, Restore, and Recovery procedures

 Course Introduction Page 0-26

Teradata Certification Tests
The facing page lists the various Teradata certification tests. Depending upon the tests that
are completed, you can earn various Teradata Certified designations such as Teradata
Certified Professional.

The Teradata 12 Certification tests require knowledge plus experience with Teradata. This
manual will help you prepare for these Teradata 12 tests, but many of the test questions are
scenario-based and Teradata experience is needed to answer these types of questions.

The Teradata V2R5 Certification tests were retired on March 31, 2010.

Course Introduction Page 0-27

Teradata Certification Tests

Teradata 12.0 Certification Tests

 1 – Teradata 12 Basics
2 – Teradata 12 SQL

 3 – Teradata 12 Physical Design and Implementation
 4 – Teradata 12 Database Administration

5 – Teradata 12 Solutions Development
6 – Teradata 12 Enterprise Architecture

7 – Teradata 12 Comprehensive Mastery

By passing all seven Teradata 12 certification tests, you become a Teradata 12 Certified Master.

 This course (along with Teradata experience) will prepare you for these tests.

Options for Teradata V2R5 Certified Masters:

• The Teradata 12 Qualifying Exam is available as an alternative to taking tests 1 – 6.

• To achieve the Teradata 12 Master certification …

1. Pass the Teradata 12 Qualifying Exam OR pass each of the 6 tests

2. Pass the Teradata 12 Comprehensive Mastery exam

ds186034
Sticky Note
Factory will cover the ones that are checked

 Course Introduction Page 0-28

Notes

Teradata Overview Page 1-1

Module 1

Teradata Proprietary and Confidential

Teradata Overview

After completing this module, you will be able to:

 Describe the purpose of the Teradata product

 Understand the history of the Teradata Corporation

 List major architectural features of the product

 Teradata Overview Page 1-2

Notes

Teradata Overview Page 1-3

Table of Contents

What is Teradata? ... 1-4

How large is a Trillion and a Quadrillion? .. 1-4
Teradata – A Brief History ... 1-6
What is a Data Warehouse? ... 1-8

Data Marts .. 1-8
Independent Data Marts ... 1-8
Logical Data Marts ... 1-8
Dependent Data Marts.. 1-8

What is Active Data Warehousing? ... 1-10
What is a Relational Database? .. 1-12

Primary Key ... 1-12
Answering Questions with a Relational Database ... 1-14

Foreign Key .. 1-14
Teradata Database Competitive Advantages ... 1-16
Module 1: Review Questions ... 1-18

 Teradata Overview Page 1-4

What is Teradata?
Teradata is a Relational Database Management System (RDBMS) for the world’s largest
commercial databases. It is possible to have databases with over 100 terabytes (of data) in
size. This characteristic makes Teradata an obvious choice for large data warehousing
applications; however the Teradata system may also be as small as 100 gigabytes. With its
parallelism and scalability, Teradata allows you to start small with a single node and grow
large with many nodes through linear expandability.

Teradata is comparable to a large database server, with multiple client application making
inquiries against it concurrently.

Teradata 14.0 was released on February 14, 2012.

The acronym SUSE comes from the German name "Software und System Entwicklung"
which means Software and Systems Development.

The ability to manage terabytes of data is accomplished using the concept of parallelism,
wherein many individual processors perform smaller tasks concurrently to accomplish an
operation against a huge repository of data. To date, only parallel architectures can handle
databases of this size.

Acronyms: SLES – SUSE Linux Enterprise Server

SUSE – Software und System Entwicklung (German name which means
Software and Systems Development)

How large is a Trillion and a Quadrillion?
The Teradata Database was the first commercial database system to support a trillion bytes
of data. It is hard to imagine the size of a trillion. To put it in perspective, the life span of
the average person is 2.5 gigaseconds (or said differently 2,500,000,000 seconds). A trillion
seconds is 31,688 years!

Teradata has customers with multiple petabytes of data. One petabyte is one quadrillion
bytes of data. A petabyte is effectively 1000 terabyes.

1 Kilobyte (KB) = 1024 bytes
1 Megabyte (MB) = 10242 >= 1,000,000 bytes
1 Gigabyte (GB) = 10243 >= 1,000,000,000 bytes
1 Terabyte (TB) = 10244 >= 1,000,000,000,000 bytes
1 Petabyte (PB) = 10245 >= 1,000,000,000,000,000 bytes
1 Exabyte = 10246 >= 1,000,000,000,000,000,000 bytes
1 Zetabyte = 10247 >= 1,000,000,000,000,000,000,000 bytes
1 Yottabyte = 10248 >= 1,000,000,000,000,000,000,000,000 bytes

Teradata Overview Page 1-5

What is Teradata?

The Teradata Database is a Relational Database Management System.

Designed to run the world’s largest commercial databases.
• Preferred solution for enterprise data warehousing

• Acts as a "database server" to client applications throughout the enterprise

• Uses parallelism to manage terabytes or petabytes of data

– A terabyte is a trillion bytes of data – 1012.

– A petabyte is a quadrillion bytes of data – 1015, effectively 1000 terabytes.

• Capable of supporting many concurrent users from various client platforms (over
TCP/IP or IBM channel connections).

• The latest Teradata release is 14.0 and executes as a SUSE Linux application.

Linux
Client

Mainframe
Client

Teradata
Database

Windows XP Windows 7

ds186034
Sticky Note
largest customer:EBAY80pB (4608 amps / 512 nodes)pb=1000TB(1-15zero=PB)

ds186034
Sticky Note
Latest version on Linux -

ds186034
Sticky Note
-	no more than 10PE on Lan connection (cause gateway software restrictions)

 Teradata Overview Page 1-6

Teradata – A Brief History
The Teradata Corporation was founded in 1979 in Los Angeles, California. The corporate
goal was the creation of a “database computer” which could handle billions of rows of data,
up to and beyond a terabyte of data storage. It took five years of development before a
product was shipped to a first customer in 1984. In 1982, the YNET technology was
patented as the enabling technology for the parallelism that was at the heart of the
architecture. The YNET was the interconnect which allowed hundreds of individual
processors to share the same bandwidth.

In 1987, Teradata went public with its first stock offering. In 1988, Teradata partnered with
the NCR Corporation to build the next generation of database computers (e.g., 3700).
Before either company could market its next generation product, NCR was purchased by
AT&T Corporation at the end of 1991. AT&T purchased Teradata and folded Teradata into
the NCR structure in January of 1992. The new division was named AT&T GIS (Global
Information Solutions).

In 1996, AT&T spun off three separate companies, one of which was NCR which then
returned to its old name. Teradata was a division of NCR from 1997 until 2001. In 1997,
Teradata (as part of NCR) had become the world leader in scalable data warehouse
solutions.

In 2007, NCR and Teradata separated as two corporations.

Teradata Overview Page 1-7

Teradata – A Brief History

1979 – Teradata Corp founded in Los Angeles, California
– Development begins on a massively parallel computer

1982 – YNET technology is patented.

1984 – Teradata markets the first database computer DBC/1012
– First system purchased by Wells Fargo Bank of California

1989 – Teradata and NCR partner on next generation of DBC.

1992 – NCR Corporation is acquired by AT&T and Teradata is merged into NCR within
AT&T and named AT&T GIS (Global Information Solutions).

1996 – AT&T spins off NCR Corporation with Teradata; Teradata Version 2 is released.

1997 – The Teradata Database becomes the industry leader in data warehousing.

2000 – The first 100+ Terabyte system is put into production.

2002 – Teradata V2R5 released 12/2002; major release including features such as PPI,
roles and profiles, multi-value compression, and more.

2007 – NCR and Teradata become two separate corporations. Teradata 12.0 is released.

2010 – Teradata 13.10 is released as well as 2650/4600/5600/5650 systems.

2011 – Teradata releases 6650/6680/6690 systems.
– More than 20 customers with 1 PB or larger systems

2012 – Teradata 14.0 is released on February 14, 2012.

ds186034
Underline

ds186034
Comment on Text
1012=TB

ds186034
Underline

ds186034
Underline

ds186034
Underline

 Teradata Overview Page 1-8

What is a Data Warehouse?
A data warehouse is a central, enterprise-wide database that contains information extracted
from the operational data stores. Data warehouses have become more common in
corporations where enterprise-wide detail data may be used in on-line analytical processing
to make strategic and tactical business decisions. Warehouses often carry many years worth
of detail data so that historical trends may be analyzed using the full power of the data.

Many data warehouses get their data directly from operational systems so that the data is
timely and accurate. While data warehouses may begin somewhat small in scope and
purpose, they often grow quite large as their utility becomes more fully exploited by the
enterprise.

Data Warehousing is a process, not a product. It is a technique to properly assemble and
manage data from various sources to answer business questions not previously possible or
known.

Data Marts
A data mart is a special purpose subset of enterprise data used by a particular department,
function or application. Data marts may have both summary and detail data, however,
usually the data has been pre-aggregated or transformed in some way to better handle the
particular type of requests of a specific user community.

Independent Data Marts
Independent data marts are created directly from operational systems, just as is a data
warehouse. In the data mart, the data is usually transformed as part of the load process.
Data might be aggregated, dimensionalized or summarized historically, as the requirements
of the data mart dictate.

Logical Data Marts
Logical data marts are not separate physical structures but rather are an existing part of the
data warehouse. Because in theory the data warehouse contains the detail data of the entire
enterprise, a logical view of the warehouse might provide the specific information for a
given user community, much as a physical data mart would. Without the proper technology,
a logical data mart can be a slow and frustrating experience for end users. With the proper
technology, it removes the need for massive data loading and transforming, making a single
data store available for all user needs.

Dependent Data Marts
Dependent data marts are created from the detail data in the data warehouse. While having
many of the advantages of the logical data mart, this approach still requires the movement
and transformation of data but may provide a better vehicle for performance-critical user
queries.

ds186034
Typewritten Text

ds186034
Typewritten Text

ds186034
Underline

ds186034
Underline

ds186034
Underline

ds186034
Underline

ds186034
Underline

ds186034
Underline

Teradata Overview Page 1-9

What is a Data Warehouse?

A Data Warehouse is a central, enterprise-wide database that contains information
extracted from Operational Data Stores (ODS).

• Based on enterprise-wide model

• Can begin small but may grow large rapidly

• Populated by extraction/loading data from operational systems

• Responds to end-user "what if" queries

• Can store detailed as well as summary data

Operational
Data

Data Warehouse

Examples of
Access Tools

End Users

ATM PeopleSoft ® Point of Service
(POS)

Teradata Database

Teradata
Warehouse Miner Cognos ® MicroStrategy ®

ds186034
Highlight

 Teradata Overview Page 1-10

What is Active Data Warehousing?
The facing page provides a simple definition of Active Data Warehousing (ADW).
Examples of why ADW is important (possibly mission critical applications) to different
industries include:

 Airlines want an accurate view of customer value contribution so as to provide
optimum customer service to the appropriate customer, whether or not they are
frequent flyers.

 Health care organizations need to control costs, but not at the expense of

jeopardizing quality of care. Proactive intervention programs where high-risk
patients are identified and steered into case-management programs accomplish
both.

 Financial institutions must fully understand a customer’s profitability

characteristics to automate appropriate and timely communications for increased
revenue opportunity and/or better customer service.

 Retailers need to have a single, integrated view of each customer across multiple

channels of opportunity - web, in-store, and catalog - to provide the right offer
through the right vehicle.

 Communications companies must manage a constantly changing competitive

environment and offer products and services to reduce customer churn rates.

One of the capabilities of ADW is to execute tactical queries in a timely fashion. Tactical
queries are not the same as OLTP queries. Characteristics of a tactical query include:

 More read-oriented
 Focused on decision making
 More casual arrival rate than OLTP queries

Examples of tactical queries include determining the best offer for a customer or altering an
advertising campaign based on current demand and results.

Another example of utilizing Active Data Warehousing is in the “Rental Car Business”.
Assume a service provider has a limited (relatively) fixed inventory of cars. The goal is to
rent the maximum number of vehicles at the maximum price possible under the constraint
that all prices offered exceed variable cost of the rental.

 Pricing can be determined by forecasting demand and price elasticity as it relates to
demand

 Differentiated pricing is the ultimate yield management strategy

In order to do this, the business requires up to date, complete, and detailed data across the
entire company.

Teradata Overview Page 1-11

What is Active Data Warehousing?

Data Warehousing … is the timely, integrated, logically consistent store of
detailed data available for analytic business decision making.

• Primarily batch feeds and updates
• Ad hoc (or decision support) queries to support strategic decisions that return in

minutes and maybe hours

Active Data Warehousing … is the timely, integrated, logically consistent store
of detailed data available for strategic, tactical driven business decisions.

• Timely updates – close to real time
• Short, tactical queries that return in seconds
• Event driven activity plus strategic queries

Business requirements for an ADW (Active Data Warehouse)?

• Performance – response within seconds
• Scalability – support for large data volumes, mixed workloads, and concurrent users
• Availability – 7 x 24 x 365
• Data Freshness – Accurate, up to the minute, data

ds186034
Sticky Note
Event driven

ds186034
Underline

ds186034
Underline

ds186034
Underline

 Teradata Overview Page 1-12

What is a Relational Database?
A database is a collection of permanently stored data that is used by an application or
enterprise. A database contains logically related data. Basically, that means that the
database was created with a purpose in mind. A database supports shared access by many
users. A database also is protected to control access and managed to retain its value and
integrity.

The key to understanding relational databases is the concept of the table made up of rows
and columns.

A column always contains like data. In the example on the following page, the column
named LAST NAME contains last name, and never anything else. The position of the
column in the table is arbitrary.

A row is one instance of all the columns of a table. In our example, all of the information
about a single employee is in one row. The sequence of the rows in a table is arbitrary.

Specifically, in a Relational Database, tables are defined as a named collection of one or
more named columns by zero or more rows of related information.

Notice that each row of the table is about a person. There are no rows with data on two
people, nor are there rows with information on anything other than people. This may seem
obvious, but the concept underlying it is very important.

Each row represents an occurrence of an entity defined by the table. An entity is defined as
a person, place or thing about which the table contains information. In this case the entity is
the employee.

Primary Key
Tables, made up of rows and columns, represent entities or relationships. Entities are the
people, places, things, or events that the Entity Tables Model. Each table holds only one
kind of row, and each row is uniquely identified within a table by a Primary Key (PK).

A Primary Key is required. A Primary Key can be more than one column. A Primary
Key uniquely identifies each row in a table. No duplicate values are allowed. Only one
Primary Key is allowed per table. The Primary Key for the EMPLOYEE table is the
Employee number. No two employees can have the same number.

Because it is used to identify, the Primary Key cannot be NULL. There must be something
in that field to uniquely identify each occurrence. Primary Key values cannot be changed.
Historical information as well as relationships with other entities may be lost if a PK value is
changed or re-used.

ds186034
Underline

ds186034
Underline

ds186034
Underline

ds186034
Underline

ds186034
Underline

ds186034
Underline

ds186034
Underline

Teradata Overview Page 1-13

What is a Relational Database?

• A Relational Database consists of a set of logically related tables.

• A table is a two dimensional representation of data consisting of rows and columns.

• Each row is in the table uniquely identified by a Primary Key (PK) – 1 or more columns.
– A PK cannot have duplicate values and cannot be NULL; only one per table.

– A PK are considered “non-changing” values.

• A table may optionally have 1 or more Foreign Keys (FK).
– A FK can be 1 or more columns, can have duplicate values, and allows NULLs

– Each FK value must exist somewhere as a PK value

This Employee table has 9 columns and 4 rows of sample data – one row per employee.
There is no prescribed order for the rows of the table.

There is only one row “format” for the entire table.
Missing data values are represented by “NULLs”.

1006 1019 301 312101 Stein John 861015 631015 3945000
1008 1019 301 312102 Kanieski Carol 870201 680517 3925000
1007 1005 ? 432101 Villegas Arnando 870102 470131 5970000
1003 0801 401 411100 Trader James 860731 570619 4785000

Employee
Table

Column

MANAGER
EMPLOYEE EMPLOYEE DEPT JOB LAST FIRST HIRE BIRTH SALARY
NUMBER NUMBER NUMBER CODE NAME NAME DATE DATE AMOUNT

Row

PK FK FKFK

ds186034
Underline

 Teradata Overview Page 1-14

Answering Questions with a Relational Database
A relational database is a collection of relational tables stored in a single installation of a
relational database management system (RDBMS). The words “management system”
indicate that not only is this a relational database but also there is underlying software to
provide additional functions that the industry expects. This includes transaction integrity,
security, journaling, and other features that are expected of databases in general. The
Teradata Database is a Relational Database Management System.

Relational databases do not use access paths to locate data, rather data connections are made
by data values. In other words, data connections are made by matching values in one
column with the values in a corresponding column in another table. This connection is
referred to as a JOIN in relational terminology.

The diagram on the facing page show how the values in one table may be matched to values
in another. Both tables have a column named “Department Number”. That connection
allows the database to answer questions like, “What is the name of the department in which
an employee works?”

One reason relational databases are so powerful is that, unlike other databases, they are
based on a mathematical model developed by Dr. Edgar Codd and implement a query
language solidly founded in set theory.

To summarize, a relational database is a collection of tables. The data contained in the
tables can be associated using data values, specifically, columns with matching data
values.

Foreign Key
Relational Databases permit associations by data value across more than one table. Foreign
Keys (FKs) model the relationships between entities.

On the facing page you will see that the employee table has 3 FK columns, one of which
models the relationship between employees and their departments. A second one models the
relationship between employees and their job codes.

A third FK column is used to model the relationship between employees and each other.
This is called a “recursive” relationship.

Rules of Foreign Keys include:

 Duplicate values are allowed in a FK column.
 Missing values are allowed in a FK column.
 Values may be changed in a FK column.
 Each FK value must exist as a Primary Key.

Note that Dept_Number is the Primary Key for the DEPARTMENT table.

ds186034
Underline

ds186034
Underline

ds186034
Highlight

ds186034
Underline

ds186034
Underline

ds186034
Underline

ds186034
Highlight

ds186034
Underline

Teradata Overview Page 1-15

Answering Questions with a Relational Database

1006 1019 301 312101 Stein John 861015 631015 3945000
1008 1019 301 312102 Kanieski Carol 870201 680517 3925000
1005 0801 403 431100 Ryan Loretta 861015 650910 4120000
1004 1003 401 412101 Johnson Darlene 861015 560423 4630000
1007 1005 403 432101 Villegas Arnando 870102 470131 5970000
1003 0801 401 411100 Trader James 860731 570619 4785000

Employee (partial listing)

MANAGER
EMPLOYEE EMPLOYEE DEPT JOB LAST FIRST HIRE BIRTH SALARY
NUMBER NUMBER NUMBER CODE NAME NAME DATE DATE AMOUNT

PK FK FK FK

MANAGER
DEPT DEPARTMENT BUDGET EMPLOYEE
NUMBER NAME AMOUNT NUMBER

501 marketing sales 80050000 1017
301 research and development 46560000 1019
403 education 93200000 1005
402 software support 30800000 1011
401 customer support 98230000 1003

PK FK

Department

Questions:

1. Name the department in which James Trader works.

2. Who manages the Education Department?

3. Identify by name an employee who works for James Trader.

ds186034
Oval

ds186034
Oval

 Teradata Overview Page 1-16

Teradata Database Competitive Advantages
As technology has improved, a number of aspects of the decision support environment have
changed (improved). DSS systems are expected to:

 Store and efficiently process detailed data (reduces the need for summarized data).
 Process ad hoc queries in a timely fashion.
 Contain current (up-to-date) data.

Teradata meets these requirements. The facing page lists a number of the key competitive
advantages that Teradata provides. This course will look at these features in detail and
explain why these are competitive advantages.

Teradata provides a central, enterprise-wide database that contains information extracted
from operational data stores. It provides for a single version of the business (or truth).
Characteristics include:

 Based on enterprise-wide model – this type of model provides the ability to

look/work across functional processes.
 Customers can begin small (right size), but may grow large rapidly
 Populated by extraction/loading of data from operational systems
 Allows end-users to submit “what if” queries

Examples of applications that Teradata enables include:

 Customer Relationship Management (CRM)
 Campaign Management
 Yield Management
 Supply Chain Management

Some of the reasons that Teradata is the leader in data warehousing include:

 Scalable – supports a small (10 GB) to a massive (Petabytes) database.

 Provides a query optimizer with approximately 30+ years of experience in large-

table query planning.

 Does not require complex indexing schemes, complex data partitioning or time-
consuming reorganizations (re-orgs).

 Supports ad hoc querying against the detail data in the warehouse, not just

summary data in the data mart.

 Designed and built with parallelism from day one (not a parallel retrofit).

ds186034
Underline

Teradata Overview Page 1-17

Teradata Database Competitive Advantages

• Unlimited, Proven Scalability – amount of data and number of users; allows
for an enterprise wide model of the data.

• Unlimited Parallelism – parallel access, sorts, and aggregations.

• Mature Optimizer – handles complex queries, up to 128 joins per query, ad-
hoc processing.

• Models the Business – normalized data (usually in 3NF), robust view
processing, & provides star schema capabilities.

• Provides a “single version of the business”.

• Low TCO (Total Cost of Ownership) – ease of setup, maintenance, &
administration; no re-orgs, lowest disk to data ratio, and robust expansion
utility (reconfig).

• High Availability – no single point of failure.

• Parallel Load and Unload utilities – robust, parallel, and scalable load and
unload utilities such as FastLoad, MultiLoad, TPump, and FastExport.

 Teradata Overview Page 1-18

Module 1: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Teradata Overview Page 1-19

Module 1: Review Questions

1. Which feature allows the Teradata Database to process enormous volumes of data quickly? ____

a. High availability software and hardware components
b. High performance servers from Intel
c. Proven Scalability
d. Parallelism

2. The Teradata Database is primarily a ____ .

a. Client
b. Server

3. Which choice represents a quadrillion bytes or a Petabyte (PB) of data? ____

a. 109

b. 1012

c. 1015

d. 1018

4. In a relational table, the set of columns that uniquely identifies a row is the _________ _________.

ds186034
Underline

ds186034
Underline

ds186034
Underline

ds186034
Underline

ds186034
Underline

 Teradata Overview Page 1-20

Notes

Teradata Basics Page 2-1

Module 2

Teradata Proprietary and Confidential

Teradata Basics

After completing this module, you will be able to:

 List and describe the major components of the Teradata
architecture.

 Describe how the components interact to manage incoming
and outgoing data.

 List 5 types of Teradata database objects.

 Teradata Basics Page 2-2

Notes

Teradata Basics Page 2-3

Table of Contents

Major Components of Teradata ... 2-4
Teradata Storage Architecture.. 2-6
Teradata Retrieval Architecture ... 2-8
Multiple Tables on Multiple AMPs ... 2-10

Here's how it works: ... 2-10
Linear Growth and Expandability .. 2-12
Teradata Objects... 2-14

Tables ... 2-14
Views ... 2-14
Macros .. 2-14
Triggers .. 2-14
Stored Procedures .. 2-14

The Data Dictionary Directory (DD/D) ... 2-16
Structure Query Language (SQL) .. 2-18

Data Definition Language (DDL) .. 2-18
Data Manipulation Language (DML) .. 2-18
Data Control Language (DCL) .. 2-18
User Assistance .. 2-18

CREATE TABLE – Example of DDL .. 2-20
Views ... 2-22

Single-table View ... 2-22
Multi-Table Views ... 2-24
Macros .. 2-26

Features of Macros ... 2-26
Benefits of Macros ... 2-26

HELP Commands .. 2-28
SHOW Command .. 2-30
EXPLAIN Facility ... 2-32
Summary .. 2-34
Module 2: Review Questions ... 2-36

 Teradata Basics Page 2-4

Major Components of Teradata
Up until now we have discussed relational databases in terms of how the user perceives
them – as a collection of tables that relate to one another. Now it's time to describe the
components of the system.

The major software components are the Parsing Engine (PE) and the Access Module
Processor (AMP).

The Parsing Engine is a component that interprets SQL requests, receives input records and
passes data. To do that it sends the messages through the Message Passing Layer to the
AMPs.

The Message Passing Layer (MPL) handles the internal communication of the Teradata
Database. The MPL is a combination of hardware and software (BYNET and PDE as we
will see later). All communication between PEs and AMPs is done via the Message Passing
Layer.

The Access Module Processor (AMP) is responsible for managing a portion of the
database. An AMP will control some portion of each table on the system. AMPs do all of
the physical work associated with generating an answer set including, sorting, aggregating,
formatting and converting.

A Virtual Disk is disk space associated with an AMP. Tables/data rows are stored in this
space. A virtual disk is usually assigned to two or more disk drives in a disk array. This
concept will be discussed in detail later in the course.

ds186034
Underline

Teradata Basics Page 2-5

Major Components of Teradata

Answer Set
Response

Parsing Engine

SQL
Request

Message Passing Layer

AMPs store and retrieve rows to and from disk.

Parsing Engines (PE)
• Manage sessions for users
• Parse, optimize, and send your request to

the AMPs as execution steps
• Returns answer set response back to client

Message Passing Layer (MPL)
• Allows PEs and AMPs to communicate with

each other

Access Module Processors (AMP)
• Owns and manages its storage
• Performs the steps sent by the PEs

Virtual Disks (Vdisk)
• Space owned by the AMP and is used to

hold user data (rows within tables).
• Maps to physical space in a disk array.

Parsing Engine…

…

…

AMP

Vdisk

AMP

Vdisk

AMP

Vdisk

AMP

Vdisk

ds186034
Underline

ds186034
Underline

 Teradata Basics Page 2-6

Teradata Storage Architecture
On the facing page you will see a simplified view of how the physical components of a
Teradata database work to insert a row of data.

The PEs and AMPs are actually implemented as virtual processors (vprocs) in the system.
A vproc is effectively a group of processes that represents a Teradata software component.

The Parsing Engine interprets the SQL command and converts the data record from the
host into an AMP message.

 The Parsing Engine is a component that interprets SQL requests, receives input
records and passes data. To do that it sends the messages through the Message
Passing Layer to the AMPs.

The Message Passing Layer distributes the row to the appropriate Access Module
Processor (AMP).

 The Message Passing Layer is implemented as hardware and/or software,
depending on the platform used. It determines which vprocs should receive a
message.

The AMP formats the row and writes it to its associated disks (Vdisks) which are assigned
to physical disks in a disk array. The physical disk holds the row for subsequent access.

The Host or Client system supplies the records. These records are the raw data from which
the database will be constructed.

Think of the AMP (Access Module Processor) as a independent computer designed for and
dedicated to managing a portion of the entire database. It performs all the database
management functions – such as sorting, aggregating, and formatting the data. It receives
data from the PE, formats the rows, and distributes the rows to the disk storage units it
controls. It also retrieves the rows requested by the parsing engine.

ds186034
Underline

ds186034
Underline

ds186034
Underline

ds186034
Highlight

Teradata Basics Page 2-7

Teradata Storage Architecture

The Parsing Engine dispatches
request to insert a row.

The Message Passing Layer
insures that a row gets to the
appropriate AMP (Access Module
Processor).

The AMP stores the row on its
associated (logical) disk.

An AMP manages a logical or
virtual disk which is mapped to
multiple physical disks in a disk
array.

Teradata

AMP 4AMP 3AMP 1 AMP 2

Parsing
Engine(s)

Message Passing Layer

18

2
54

41

12
90

75

80

32 6
67

25

Records From Client (in random sequence)

2 32 67 12 90 6 54 75 18 25 80 41

ds186034
Highlight

ds186034
Highlight

 Teradata Basics Page 2-8

Teradata Retrieval Architecture
Retrieving data from the Teradata Database simply reverses the process of the storage
model. A request is made for data and is passed on to a Parsing Engine (PE). The PE
optimizes the request for efficient processing and creates tasks for the AMPs to perform,
which will result in the request being satisfied. These tasks are then dispatched to the AMPs
via the Message Passing Layer. Often times all AMPs must participate in creating the
answer set, such as in returning all rows of a table. Other times, only one or a few AMPs
need participate, depending on the nature of the request. The PE will insure that only the
AMPs that are needed will be assigned tasks on behalf of this request.

Once the AMPs have been given their assignments, they will retrieve the desired rows from
their respective disks. If sorting, aggregating or formatting of any kind is needed, the AMPs
will also take care of that. The rows are then returned to the requesting PE via the Message
Passing Layer. The PE takes the returned answer set and returns it to the requesting client
application.

ds186034
Underline

ds186034
Highlight

Teradata Basics Page 2-9

Teradata Retrieval Architecture

The Parsing Engine dispatches a
request to retrieve one or more
rows.

The Message Passing Layer
insures that the appropriate
AMP(s) are activated.

The AMP(s) locate and retrieve
desired row(s) in parallel access.

Message Passing Layer returns
the retrieved rows to PE.

The PE returns row(s) to
requesting client application.

Teradata

AMP 4AMP 3AMP 1 AMP 2

Parsing
Engine(s)

Message Passing Layer

18

2
54

41

12
90

75

80

32 6
67

25

Rows retrieved from table

2 32 67 12 90 6 54 75 18 25 80 41

 Teradata Basics Page 2-10

Multiple Tables on Multiple AMPs
Logically, you might think that the Teradata Database would assign each table to a particular
AMP, and that the AMP would put that table on a single disk. However, as you see on the
diagram on the facing page, that’s not what will happen. The system takes the rows that
composes a table and divides those rows up among all available AMPs.

Here's how it works:
Tables are distributed across all AMPs. This distribution of rows should be even across all
AMPs. This way, a request to get the rows of a given table will result in the workload being
evenly distributed across the AMPs.

 Each table has some rows distributed to each AMP.

 Each AMP controls one logical storage unit which may consist of several physical

disks

 Each AMP places, maintains, and manages the rows on its own disks.

 Large configurations may have hundreds of AMPs.

 Full table scans, operations that require looking at all the rows of a table, access all
AMPs in parallel. That parallelism is what makes possible the accessing of
enormous amounts of data.

Consider the following three tables: EMPLOYEE, DEPARTMENT, and JOB.

The Teradata Database takes the rows from each of the tables and divides them up among all
the AMPs. The AMPs divide the rows up among their disks. Notice that each AMP gets
part of each table. Dividing up the tables this way means that all the AMPs and their
associated disks will be activated in a full table scan, thus speeding up requests against these
tables.

In our example, if you assume four AMPs, each AMP would get approximately 25% of
each table. If, however, AMP #1 were to get 90% of the rows from the EMPLOYEE table
that would be called "lumpy" data distribution. Lumpy data distribution would slow the
system down because any request that required scanning all the rows of EMPLOYEE would
have three AMPs sitting idle while AMP #1 finished its work. It is better to divide all the
tables up evenly among all the available AMPs. You will see how this distribution is
controlled in a later chapter.

ds186034
Highlight

ds186034
Typewritten Text

ds186034
Typewritten Text
TO MAKE IT PARALLEL!!!!!!!

ds186034
Typewritten Text

ds186034
Underline

ds186034
Highlight

ds186034
Underline

ds186034
Underline

ds186034
Typewritten Text

ds186034
Typewritten Text
VDISK

ds186034
Typewritten Text

ds186034
Typewritten Text

ds186034
Typewritten Text

ds186034
Typewritten Text
faster

ds186034
Typewritten Text

Teradata Basics Page 2-11

Multiple Tables on Multiple AMPs

EMPLOYEE Rows
DEPARTMENT Rows
JOB Rows

EMPLOYEE Table DEPARTMENT Table JOB Table

Parsing Engine

AMP 1 AMP 2 AMP 3 AMP 4

Message Passing Layer

Row from each table will usually
be stored on each AMP.

Each AMP may have rows from all
tables.

Ideally, each AMP will hold
roughly the same amount of data.

EMPLOYEE Rows
DEPARTMENT Rows
JOB Rows

EMPLOYEE Rows
DEPARTMENT Rows
JOB Rows

EMPLOYEE Rows
DEPARTMENT Rows
JOB Rows

ds186034
Typewritten Text

 Teradata Basics Page 2-12

Linear Growth and Expandability
The Teradata DBS is the first commercial database system to offer true parallelism and the
performance increase that goes with it.

Think back to the example of how rows are divided up among AMPs that we just discussed.
Assume that our three tables, EMPLOYEE, DEPARTMENT, and JOB total 100,000 rows,
with a certain number of users, say 50.

What happens if you double the number of AMPs and the number of users stays the same?
Performance doubles. Each AMP can only work on half as many rows as they used to.

Now think of that system in a situation where the number of users is doubled, as well as the
number of AMPs. We now have 100 users, but we also have twice as many AMPs. What
happens to performance? It stays the same. There is no drop-off in the speed with which
requests are executed.

That's because the system is modular and the workload is easily partitioned into
independent pieces. In the last example, each AMP is still doing the same amount of work.

This feature – that the amount of time (or money) required to do a task is directly
proportional to the size of the system – is unique to the Teradata Database. Traditional
databases show a sharp drop in performance when the system approaches a critical size.

Look at the diagram on the facing page. As the number of Parsing Engines increases, the
number of SQL requests that can be supported increases.

As you add AMPs, data is spread out more even as you add processing power to handle the
data.

As you add disks, you add space for each AMP to store and process more information. All
AMPs must have the same amount of disk storage space.

There are numerous advantages to having a system that has linear scalability. Two
advantages include:

 Linear scalability allows for increased workload without decreased throughput.
 Investment protection for application development

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

Teradata Basics Page 2-13

Linear Growth and Expandability

AMP

SESSIONS

PARALLEL PROCESSING

DATA

Disk

Parsing
Engine

• Teradata is a linearly
expandable RDBMS.

• Components may be added as
requirements grow.

• Linear scalability allows for
increased workload without
decreased throughput.

• Performance impact of adding
components is shown below.

USERS AMPs DATA Performance
Same Same Same Same
Double Double Same Same
Same Double Double Same
Same Double Same Double

Parsing
Engine

Parsing
Engine

Disk

Disk

AMP
AMP

 Teradata Basics Page 2-14

Teradata Objects
A “database” or “user” in Teradata database systems is a collection of objects such as
tables, views, macros, triggers, stored procedures, user-defined functions, or indexes
(join and hash). Database objects are created and accessed using standard Structured
Query Language or SQL.

All database object definitions are stored in a system database called the Data
Dictionary/Directory (DD/D).

Databases provide a logical grouping for information. They are also the foundation for
space allocation and access control. A description of some of the objects follows.

Tables
A table is the logical structure of data in a relational database. It is a two-dimensional
structure made up of columns and rows. A user defines a table by giving it a table name
that refers to the type of data that will be stored in the table. A column represents attributes
of the table. Column names are given to each column of the table. All the information in a
column is the same type, for example, date of birth. Each occurrence of an entity is stored in
the table as a row. Entities are the people, things, or events that the table is about. Thus a
row would represent a particular person, thing, or event.

Views
A view is a pre-defined subset of one of more tables or other views. It does not exist as a
real table, but serves as a reference to existing tables or views. One way to think of a view
is as a virtual table. Views have definitions in the data dictionary, but do not contain any
physical rows. The database administrator can use views to control access to the underlying
tables. Views can be used to hide columns from users, to insulate applications from
database changes, and to simplify or standardize access techniques.

Macros

A macro is a predefined, stored set of one or more SQL commands and optionally, report
formatting commands. Macros are used to simplify the execution of frequently used SQL
commands.

Triggers
A trigger is a set of SQL statements usually associated with a column or a table and when
that column changes, the trigger is fired – effectively executing the SQL statements.

Stored Procedures
A stored procedure is a program that is stored within Teradata and executes within the
Teradata Database. A stored procedure uses permanent disk space.

A stored procedure is a pre-defined set of statements invoked through a single SQL CALL
statement. Stored procedures may contain both Teradata SQL statements and procedural
statements (in Teradata, referred to as Stored Procedure Language, or SPL).

Teradata Basics Page 2-15

Teradata Objects

Examples of objects within a Teradata database or user include:

Tables – rows and columns of data
Views – predefined subsets of existing tables
Macros – predefined, stored SQL statements
Triggers – SQL statements associated with a table
Stored Procedures – program stored within Teradata
User-Defined Function – function (C or Java program) to provide additional SQL functionality
Join and Hash Indexes – separate index structures stored as objects within a database
Permanent Journals – table used to store before and/or after images for recovery

These objects are created,
maintained, and deleted using SQL.

Object definitions are stored in the
DD/D.

DATABASE or USER can have a mix
of various objects.

* - require Permanent Space

TABLE 2 * TABLE 3 *TABLE 1 *

VIEW 2VIEW 1

MACRO 1

TRIGGER 1

Stored Procedure 1 *

Join/Hash Index 1 *

Permanent Journal *
These aren't directly accessed by users.

UDF 1 *

VIEW 3

ds186034
Underline

ds186034
Sticky Note
sits in data dictionary does not take any perm place

ds186034
Sticky Note
Marco - pre defined sql -gets stored in data dictionary

 Teradata Basics Page 2-16

The Data Dictionary Directory (DD/D)
The Data Dictionary/Directory is an integrated set of system tables which store database
object definitions and accumulate information about users, databases, resource usage,
data demographics, and security rules. It records specifications about tables, views, and
macros. It also contains information about ownership, space allocation, accounting, and
access rights (privileges) for these objects.

Data Dictionary/Directory information is updated automatically during the processing of
Teradata SQL data definition (DDL) statements. It is used by the Parser to obtain
information needed to process all Teradata SQL statements.

Users may access the DD/D through Teradata-supplied views, if permitted by the system
administrator.

ds186034
Underline

Teradata Basics Page 2-17

The Data Dictionary Directory (DD/D)

The DD/D ...

– is an integrated set of system tables

– contains definitions of and information about all objects in the system

– is entirely maintained by the Teradata Database

– is “data about the data” or “metadata”

– is distributed across all AMPs like all tables

– may be queried by administrators or support staff

– is normally accessed via Teradata supplied views

Examples of DD/D views:

DBC.TablesV – information about all tables

DBC.UsersV – information about all users

DBC.AllRightsV – information about access rights

DBC.AllSpaceV – information about space utilization

ds186034
Sticky Note
it has 100+tables in DD

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

 Teradata Basics Page 2-18

Structure Query Language (SQL)
Structured Query Language (SQL) is the language of relational databases. It is sometimes
referred to as a "Fourth Generation Language (4GL)" to differentiate it from "Third
Generation Languages" such as FORTRAN and COBOL, though it is quite different from
other 4GL’s. It acts as an intermediary between the user and the database.

SQL is different in some very important ways from other computer languages. Its
statements resemble English-like structures. It provides powerful, set-oriented database
manipulation including structural modification, data retrieval, modification, and security
functions.

SQL is a non-procedural language. Because of its set orientation it does not require IF,
GOTO, DO, FOR NEXT or PERFORM statements.

We'll describe three important subsets of SQL – the Data Definition Language, the Data
Manipulation Language, and the Data Control Language.

Data Definition Language (DDL)
The DDL allows a user to define the database objects and the relationships that exist
among them. Examples of DDL uses are creating or modifying tables and views.

Data Manipulation Language (DML)
The DML consists of the statements that manipulate, change or retrieve the data rows
of the database. If the DDL defines the database, the DML lets the user change the
information contained in the database. The DML is the most commonly used subset of
SQL. It is used to select, update, delete, and insert rows.

Data Control Language (DCL)
The Data Control Language is used to restrict or permit a user's access in various ways. It
can selectively limit a user's ability to retrieve, add, or modify data. It is used to grant and
revoke access privileges on tables and views. An example is granting update privileges on a
table, or read privileges on a view to specified users.

User Assistance
These commands allow you to list the objects in a database, or the characteristics of a table,
see how a query will execute, or show you the details of your system. They vary widely
from vendor to vendor.

Teradata Basics Page 2-19

Structured Query Language (SQL)

SQL is a query language for Relational Database Systems and is used to access Teradata.
– A fourth-generation language
– A set-oriented language
– A non-procedural language (e.g., doesn’t have IF, DO, FOR NEXT, etc.)

SQL consists of:

Data Definition Language (DDL)
– Defines database structures (tables, users, views, macros, triggers, etc.)

CREATE DROP ALTER

Data Manipulation Language (DML)
– Manipulates rows and data values

SELECT INSERT UPDATE DELETE

Data Control Language (DCL)
– Grants and revokes access rights

GRANT REVOKE

Teradata SQL also includes Teradata Extensions to SQL

HELP SHOW EXPLAIN CREATE MACRO

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

 Teradata Basics Page 2-20

CREATE TABLE – Example of DDL
To create and store the table structure definition in the DD/D, you can execute the CREATE
TABLE DDL statement as shown on the facing page.

An example of the output from a SHOW TABLE command follows:

 SHOW TABLE Employee;

CREATE SET TABLE Per_DB.Employee, FALLBACK,
 NO BEFORE JOURNAL,
 NO AFTER JOURNAL,
 CHECKSUM = DEFAULT,
 DEFAULT MERGEBLOCKRATIO
 (
 employee_number INTEGER NOT NULL,
 manager_emp_number INTEGER NOT NULL,
 dept_number INTEGER COMPRESS,
 job_code INTEGER COMPRESS ,
 last_name CHAR(20) NOT CASESPECIFIC NOT NULL,
 first_name VARCHAR(20) NOT CASESPECIFIC,
 hire_date DATE FORMAT 'YYYY-MM-DD'
 birth_date DATE FORMAT 'YYYY-MM-DD',
 salary_amount DECIMAL(10,2) COMPRESS 0
)

UNIQUE PRIMARY INDEX (employee_number)
INDEX (dept_number);

You can create secondary indexes after a table has been created by executing the CREATE
INDEX command. An example of creating an index for the job_code column is shown on
the facing page.

Examples of the DROP INDEX and DROP TABLE commands are also shown on the facing
page.

Teradata Basics Page 2-21

CREATE TABLE – Example of DDL

CREATE TABLE Employee
(employee_number INTEGER NOT NULL
,manager_emp_number INTEGER COMPRESS
,dept_number INTEGER COMPRESS
,job_code INTEGER COMPRESS
,last_name CHAR(20) NOT NULL
,first_name VARCHAR (20)
,hire_date DATE FORMAT 'YYYY-MM-DD'
,birth_date DATE FORMAT 'YYYY-MM-DD'
,salary_amount DECIMAL (10,2) COMPRESS 0
)

UNIQUE PRIMARY INDEX (employee_number)
INDEX (dept_number);

Other DDL Examples

CREATE INDEX (job_code) ON Employee ;

DROP INDEX (job_code) ON Employee ;

DROP TABLE Employee ;

 Teradata Basics Page 2-22

Views
A view is a pre-defined subset or filter of one or more tables. Views are used to control
access to the underlying tables and simplify access to data. Authorized users may use views
to read data specified in the view and/or to update data specified in the view.

Views are used to simplify query requests, to limit access to data, and to allow different
users to look at the same data from different perspectives.

A view is a window that accesses selected portions of a database. Views can show parts of
one table (single-table view), more than one table (multi-table view), or a combination of
tables and other views. To the user, views look just like tables.

Views are an alternate way of organizing and presenting information. A view, like a
table, has rows and columns. However, the rows and columns of a view are not stored
directly but are derived from the rows and columns of tables whenever the view is
referenced. A view looks like a table, but has no data of its own, and therefore takes up no
storage space except for its definition. One way to think of a view is as if it was a window
through which you can look at selected portions of a table or tables.

Single-table View
A single-table view takes specified columns and/or rows from a table and makes them
available in a fashion that looks like a table. An example might be an employee table from
which you select only certain columns for employees in a particular department number, for
example, department 403, and present them in a view.

Example of a CREATE VIEW statement:

CREATE VIEW Emp403_v AS
 SELECT employee_number
 ,department_number
 ,last_name
 ,first_name
 ,hire_date
 FROM Employee
 WHERE department_number = 403;

It is also possible to execute SHOW VIEW viewname;

ds186034
Highlight

Teradata Basics Page 2-23

Views

Views are pre-defined filters of existing tables consisting of specified columns
and/or rows from the table(s).

A single table view:
– is a window into an underlying table

– allows users to read and update a subset of the underlying table

– has no data of its own

MANAGER
EMPLOYEE EMP DEPT JOB LAST FIRST HIRE BIRTH SALARY
NUMBER NUMBER NUMBER CODE NAME NAME DATE DATE AMOUNT

1006 1019 301 312101 Stein John 861015 631015 3945000
1008 1019 301 312102 Kanieski Carol 870201 680517 3925000
1005 0801 403 431100 Ryan Loretta 861015 650910 4120000
1004 1003 401 412101 Johnson Darlene 861015 560423 4630000
1007 1005 403 432101 Villegas Arnando 870102 470131 5970000
1003 0801 401 411100 Trader James 860731 570619 4785000

EMPLOYEE (Table)

PK FK FK FK

EMP NO DEPT NO LAST NAME FIRST NAME HIRE DATE

1005 403 Villegas Arnando 870102
801 403 Ryan Loretta 861015

Emp403_v (View)

 Teradata Basics Page 2-24

Multi-Table Views
A multi-table view combines data from more than one table into one pre-defined view.
These views are also called “join views” because more than one table is involved.

An example might be a view that shows employees and the name of their department,
information that comes from two different tables.

Note: Multi-table Views are read only. The user cannot update the data via the view.

One might wish to create a view containing the last name and department name for all
employees.

A Join operation joins rows of multiple tables and creates rows in work space or spool.
These are rows that contain data from more than one table but are not maintained anywhere
in permanent storage. These rows in spool are created dynamically as part of a join
operation. Rows are matched up based on Primary and Foreign Key relationships.

Example of SQL to create a join view:

CREATE VIEW EmpDept_v AS
 SELECT Last_Name
 ,Department_Name
 FROM Employee E INNER JOIN Department D
 ON E.dept_number = D.dept_number ;

An example of reading via this view is:

SELECT Last_Name
 ,Department_Name
FROM EmpDept_v;

This example utilizes an alias name of E for the Employee table and D for the Department
table.

ds186034
Highlight

ds186034
Underline

ds186034
Underline

Teradata Basics Page 2-25

Multi-Table Views

A multi-table view allows users to access data from multiple tables as if it were in a single
table. Multi-table views (i.e., join views) are used for reading only, not updating.

1006 1019 301 312101 Stein John
1008 1019 301 312102 Kanieski Carol
1005 0801 403 431100 Ryan Loretta
1004 1003 401 412101 Johnson Darlene
1007 1005 403 432101 Villegas Arnando
1003 0801 401 411100 Trader James

EMPLOYEE (Table)

MANAGER
EMPLOYEE EMP DEPT JOB LAST FIRST
NUMBER NUMBER NUMBER CODE NAME NAME

PK FK FK FK

MANAGER
DEPT DEPARTMENT BUDGET EMP
NUMBER NAME AMOUNT NUMBER

501 Marketing Sales 80050000 1017
301 Research & Development 46560000 1019
302 Product Planning 22600000 1016
403 Education 93200000 1005
402 Software Support 30800000 1011
401 Customer Support 98230000 1003

PK FK

DEPARTMENT (Table)

Last_Name Department_Name

Stein Research & Development
Kanieski Research & Development
Ryan Education
Johnson Customer Support
Villegas Education
Trader Customer Support

EmpDept_v (View)

Joined Together

Example of SQL to create a join view:

CREATE VIEW EmpDept_v AS
SELECT Last_Name

,Department_Name
FROM Employee E
INNER JOIN Department D
ON E.dept_number = D.dept_number;

 Teradata Basics Page 2-26

Macros
The Macro facility allows you to define a sequence of Teradata SQL statements (and
optionally Teradata report formatting statements) so that they execute as a single transaction.
Macros reduce the number of keystrokes needed to perform a complex task. This saves you
time, reduces the chance of errors, reduces the communication volume to Teradata, and
allows efficiencies internal to Teradata. Macros are a Teradata SQL extension.

Features of Macros
 Macros are source code stored on the DBC.
 They can be modified and executed at will.
 They are re-optimized at execution time.
 They can be executed by interactive or batch applications.
 They are executed by one EXECUTE command.
 They can accept user-provided parameter values.

Benefits of Macros
 Macros simplify and control access to the system.
 They enhance system security.
 They provide an easy way of installing referential integrity.
 They reduce the amount of source code transmitted from the client application.
 They are stored in the Teradata DD/D and are available to all connected hosts.

To create a macro:

CREATE MACRO Customer_List AS
(SELECT customer_name FROM Customer;);

To execute a macro:

EXEC Customer_List;

To replace a macro:

REPLACE MACRO Customer_List AS
(SELECT customer_name, customer_number FROM Customer;);

To drop a macro:

DROP MACRO Customer_List;

ds186034
Underline

ds186034
Underline

ds186034
Underline

ds186034
Underline

Teradata Basics Page 2-27

Macros

A MACRO is a predefined set of SQL statements which is logically stored in a database.

Macros may be created for frequently occurring queries of sets of operations.

Macros have many features and benefits:

• Simplify end-user access
• Control which operations may be performed by users
• May accept user-provided parameter values
• Are stored in the Teradata Database, thus available to all clients
• Reduces query size, thus reduces LAN/channel traffic
• Are optimized at execution time
• May contain multiple SQL statements

To create a macro:

CREATE MACRO Customer_List AS (SELECT customer_name FROM Customer;);

To execute a macro:

EXEC Customer_List;

To replace a macro:

REPLACE MACRO Customer_List AS

(SELECT customer_name, customer_number FROM Customer;);

 Teradata Basics Page 2-28

HELP Commands
HELP commands (a Teradata SQL extension) are available to display information on
database objects:

 Databases and Users
 Tables
 Views
 Macros
 Triggers
 Join Indexes
 Hash Indexes
 Stored Procedures
 User-Defined Functions

The facing page contains an example of a HELP DATABASE command. This command
lists the tables, views, macros, triggers, etc. in the specified database.

The Kind (TableKind) column codes represent the following:

T – Table
O – Table without a Primary Index
V – View
M – Macro
G – Trigger
P – Stored Procedure
F – User-defined Function
I – Join Index
N – Hash Index
J – Permanent Journal
A – Aggregate Function
B – Combined aggregate and ordered analytical function
D – JAR
E – External Stored Procedure
H – Instance or Constructor Method
Q – Queue Table
U – User-defined data type
X – Authorization

Teradata Basics Page 2-29

HELP Commands

Databases and Users

HELP DATABASE Customer_Service;

HELP USER Dave_Jones;

Tables, Views, Macros, etc.

HELP TABLE Employee;

HELP VIEW Emp_v;

HELP MACRO Payroll_3;

HELP COLUMN Employee.*;

Employee.last_name;

HELP INDEX Employee;

HELP TRIGGER Raise_Trigger;

HELP STATISTICS Employee;
HELP CONSTRAINT Employee.over_21;

HELP JOIN INDEX Cust_Order_JI;

HELP SESSION;

This is not an inclusive list of HELP
commands.

Example:

HELP DATABASE Customer_Service;

*** Help information returned. 15 rows.

*** Total elapsed time was 1 second.

Table/View/Macro name Kind Comment
Contact T ?
Customer T ?
Cust_Comp_Orders V ?
Cust_Order_JI I ?
Department T ?

: : :
Orders T ?
Orders_Temp O ?
Orders_HI N ?
Raise_Trigger G ?
Set_Ansidate_on M ?

ds186034
Sticky Note
N = hash Index

ds186034
Comment on Text
Trigger

 Teradata Basics Page 2-30

SHOW Command
HELP commands display information about database objects (users/databases, tables, views,
macros, triggers, and stored procedures) and session characteristics.

SHOW commands (another Teradata extension) display the data definition (DDL)
associated with database objects (tables, views, macros, triggers, or stored procedures).

BTEQ contains a SHOW command, in addition to and separate from the SQL SHOW
command. The BTEQ SHOW provides information on the formatting and display settings
for the current BTEQ session, if applicable.

Teradata Basics Page 2-31

SHOW Command

SHOW commands display how an object was created. Examples include:

Command Returns statement
SHOW TABLE table_name; CREATE TABLE statement …
SHOW VIEW view_name; CREATE VIEW ...
SHOW MACRO macro_name; CREATE MACRO ...
SHOW TRIGGER trigger_name; CREATE TRIGGER …
SHOW PROCEDURE procedure_name; CREATE PROCEDURE …
SHOW JOIN INDEX join_index_name; CREATE JOIN INDEX …

SHOW TABLE Employee;
CREATE SET TABLE PD.Employee, FALLBACK,

NO BEFORE JOURNAL,
NO AFTER JOURNAL,
CHECKSUM = DEFAULT,
DEFAULT MERGEBLOCKRATIO
(
Employee_Number INTEGER NOT NULL,
Emp_Mgr_Number INTEGER COMPRESS,
Dept_Number INTEGER COMPRESS,
Job_Code INTEGER COMPRESS,
Last_Name CHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC,
First_Name VARCHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC,
Salary_Amount DECIMAL(10,2) COMPRESS 0)

UNIQUE PRIMARY INDEX (Employee_Number)
INDEX (Dept_Number);

 Teradata Basics Page 2-32

EXPLAIN Facility
The EXPLAIN facility (a very useful and robust Teradata extension) allows you to preview
how Teradata will execute a query you have requested. It returns a summary of the steps the
Teradata Database would perform to execute the request. EXPLAIN also discloses the
strategy and access method to be used, how many rows will be involved, and its “cost” in
minutes and seconds. You can use EXPLAIN to evaluate a query performance and to
develop an alternative processing strategy that may be more efficient. EXPLAIN works on
any SQL request. The request is fully parsed and optimized, but it is not run. Instead, the
complete plan is returned to the user in readable English statements.

EXPLAIN also provides information about locking, sorting, row selection criteria, join
strategy and conditions, access method, and parallel step processing.

There are a lot of reasons for using EXPLAIN. The main ones we’ve already pointed out –
it lets you know how the system will do the job, what kind of results you will get back, and
the relative cost of the query. EXPLAIN is also useful for performance tuning, debugging,
pre-validation of requests, and for technical training.

The following is an example of an EXPLAIN on a very simple query doing a FTS (Full
Table Scan).

EXPLAIN SELECT * FROM Employee WHERE Dept_Number = 1018;

 Explanation (full)

1) First, we lock a distinct PD."pseudo table" for read on a RowHash to prevent global

deadlock for PD.Employee.
2) Next, we lock PD.Employee for read.
3) We do an all-AMPs RETRIEVE step from PD.Employee by way of an all-rows

scan with a condition of ("PD.Employee.Dept_Number = 1018") into Spool 1
(group_amps), which is built locally on the AMPs. The size of Spool 1 is estimated
with high confidence to be 10 rows (730 bytes). The estimated time for this step is
0.14 seconds.

4) Finally, we send out an END TRANSACTION step to all AMPs involved in
processing the request.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The
total estimated time is 0.14 seconds.

ds186034
Underline

ds186034
Underline

ds186034
Highlight

Teradata Basics Page 2-33

EXPLAIN Facility

The EXPLAIN modifier in front of any SQL statement generates an English translation of
the Parser’s plan.

The request is fully parsed and optimized, but not actually executed.

EXPLAIN returns:
• Text showing how a statement will be processed (a plan)
• An estimate of how many rows will be involved
• A relative cost of the request (in units of time)

This information is useful for:
• predicting row counts
• predicting performance
• testing queries before production
• analyzing various approaches to a problem

EXPLAIN SELECT * FROM Employee WHERE Dept_Number = 1018;
:

3) We do an all-AMPs RETRIEVE step from PD.Employee by way of an all-rows scan with a condition of
("PD.Employee.Dept_Number = 1018") into Spool 1 (group_amps), which is built locally on the AMPs. The
size of Spool 1 is estimated with high confidence to be 10 rows (730 bytes). The estimated time for this
step is 0.14 seconds.

4) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the request.
-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total estimated time is

0.14 seconds.

ds186034
Sticky Note
Visual Explain takes it to the next level

ds186034
Underline

 Teradata Basics Page 2-34

Summary
The Teradata system is a high-performance database system that permits the processing of
enormous quantities of detail data, quantities which are beyond the capability of
conventional systems.

The system is specifically designed for large relational databases. From the beginning
the Teradata system was created to do one thing: manage enormous amounts of data.

Over one thousand terabytes of on-line storage capacity is currently available making it
an ideal solution for enterprise data warehouses or even smaller data marts.

Uniform data distribution across multiple processors facilitates parallel processing. The
system is designed in such a way that the component parts divides the work up into
approximately equal pieces. This keeps all the parts busy all the time; this enables the
system to accommodate a larger number of users and/or more data.

Open architecture adapts readily to new technology. As higher-performance industry
standard computer chips and disk drives are made available, they are easily incorporated
into the architecture.

As the configuration grows, performance increase is linear.

Structured Query Language (SQL) is the industry standard for communicating with
relational databases.

The Teradata Database currently runs as a database server on a variety of Linux, UNIX,
and Windows based hardware platforms.

ds186034
Underline

ds186034
Underline

ds186034
Highlight

ds186034
Highlight

ds186034
Underline

Teradata Basics Page 2-35

Summary

The major components of the Teradata Database are:

Parsing Engines (PE)
• Manage sessions for users

• Parse, optimize, and send your request to the AMPs as execution steps

• Returns answer set response back to client

Message Passing Layer (MPL)
• Allows PEs and AMPs to communicate with each other

Access Module Processors (AMP)
• Owns and manages its storage

• Performs the steps sent by the PEs

Virtual Disks (Vdisk)
• Space owned by the AMP and is used to hold user data (rows within tables).

• Maps to physical space in a disk array.

ds186034
Highlight

 Teradata Basics Page 2-36

Module 2: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Teradata Basics Page 2-37

Module 2: Review Questions

1. What language is used to access a Teradata table?

2. What are five Teradata database objects?

3. What are four major components of the Teradata architecture?

4. What are views?

5. What are macros?

 Teradata Basics Page 2-38

Notes

Teradata Database Architecture Page 3-1

Module 3

Teradata Proprietary and Confidential

Teradata Database Architecture

After completing this module, you will be able to:

 Describe the purpose of the PE and the AMP.

 Describe the overall Teradata Database parallel architecture.

 Describe the relationship of the Teradata Database to its
client side applications.

 Teradata Database Architecture Page 3-2

Notes

Teradata Database Architecture Page 3-3

Table of Contents

Teradata and MPP Systems .. 3-4
Teradata Functional Overview ... 3-6
Channel-Attached Client Software Overview .. 3-8
Network-Attached Client Software Overview ... 3-10
The Parsing Engine .. 3-12
Message Passing Layer .. 3-14
The Access Module Processor (AMP) ... 3-16
Teradata Parallelism ... 3-18
Module 3: Review Questions ... 3-20

 Teradata Database Architecture Page 3-4

Teradata and MPP Systems
Teradata is the software that makes a MPP system appear to be a single system to users and
administrators.

The BYNET (BanYan NETwork) is the software and hardware interconnect that provides
high performance networking capabilities to Teradata MPP (Massively Parallel Processing)
systems.

Using communication switching techniques, the BYNET allows for point-to-point, multi-
cast, and broadcast communications among the nodes, thus supporting a monumental
increase in throughput in very large databases. This technology allows Teradata users to
grow massively parallel databases without fear of a communications bottleneck for any
database operations.

Although the BYNET software also supports the multicast protocol, Teradata software uses
the point-to-point protocol whenever possible. When an all-AMP operation is needed,
Teradata software uses the broadcast protocol to broadcast the request to the AMPs.

The BYNET is linearly scalable for point-to-point communications. For each new node
added to the system, an additional 960 MB (with BYNET Version 4) of bandwidth is added,
thus providing scalability as the system grows. Scalability comes from the fact that multiple
point-to-point circuits can be established concurrently. With the addition of another node,
more circuits can be established concurrently.

Teradata Database Architecture Page 3-5

Teradata and MPP Systems

Teradata is the software that makes a MPP system appear to be a single system
to users and administrators.

BYNET 0 BYNET 1

Node 0

PEPE

AMP AMP

AMP AMP

: :

AMP AMP

PDE
O.S.

PEPE

AMP AMP

AMP AMP

: :

AMP AMP

PDE
O.S.

PEPE

AMP AMP

AMP AMP

: :

AMP AMP

PDE
O.S.

PEPE

AMP AMP

AMP AMP

: :

AMP AMP

PDE
O.S.

Node 1 Node 2 Node 3

The major components of
the Teradata Database are
implemented as virtual
processors (vproc).

• Parsing Engine (PE)

• Access Module
Processor (AMP)

The Communication Layer
or Message Passing Layer
(MPL) consists of PDE and
BYNET SW/HW and
connects multiple nodes
together.

ds186034
Sticky Note
4 nodes
2 u nodes (unit - space in a rack)
PDE-OS = linux
PDE=parallel db extension =interface betwn AMPS,PE, and OS
--Manages cache
--manages message parsing layer
--(PDE=

2BYNET = redundancy and throughput
bynet - highspeed local network

 Teradata Database Architecture Page 3-6

Teradata Functional Overview
The client may be a mainframe system (e.g., IBM) in which case it is channel-attached to
the Teradata Database. Also, a client may be a PC or UNIX-based system that is LAN or
network-attached.

The client application submits an SQL request to the Teradata Database, receives the
response, and submits the response to the user.

The Call Level Interface (CLI) is a library of routines that resides on the client side. Client
application programs use these routines to perform operations such as logging on and off,
submitting SQL queries and receiving responses which contain the answer set. These
routines are 98% the same in a network-attached environment as they are in a channel-
attached.

Teradata Database Architecture Page 3-7

Teradata Functional Overview

Teradata Database

Message Passing Layer

Channel-Attached System

LAN

Network-Attached System

Parsing
Engine

Parsing
Engine

AMP

Client
Application

ODBC, JDBC, or .NET
CLI

MTDP

MOSI

Client
Application

CLI

TDP

AMP AMP AMP

Channel

ds186034
Sticky Note
Mainframe

ds186034
Sticky Note
Laptop

 Teradata Database Architecture Page 3-8

Channel-Attached Client Software Overview
In channel-attached systems, there are three major software components, which play
important roles in getting the requests to and from the Teradata Database.

The client application is either written by a programmer or is one of Teradata’s provided
utility programs. Many client applications are written as “front ends” for SQL submission,
but they also are written for file maintenance and report generation. Any client-supported
language may be used provided it can interface to the Call Level Interface (CLI).

For example, a user could write a COBOL application with “embedded SQL”. The
application developer would have to use the Teradata COBOL Preprocessor and COBOL
compiler programs to generate an object module and link this object module with the CLI.
The CLI application interface provides maximum control over Teradata connectivity and
access.

The Call Level Interface (CLI) is the lowest level interface to the Teradata Database. It
consists of system calls which create sessions, allocate request and response buffers, create
and de-block “parcels” of information, and fetch response information to the requesting
client.

The Teradata Director Program (TDP) is a Teradata-supplied program that must run on
any client system that will be channel-attached to the Teradata Database. The TDP manages
the session traffic between the Call-Level Interface and the Database. Its functions include
session initiation and termination, logging, verification, recovery, and restart, as well as
physical input to and output from the PEs, (including session balancing) and the
maintenance of queues. The TDP may also handle system security.

The Host Channel Adapter is a mainframe hardware component that allows the mainframe
to connect to an ESCON or Bus/Tag channel.

The PBSA (PCI Bus ESCON Adapter) is a PCI adapter card that allows a Teradata server to
connect to an ESCON channel.

The PBCA (PCI Bus Channel Adapter) is a PCI adapter card that allows a Teradata server to
connect to a Bus/Tag channel.

Teradata Database Architecture Page 3-9

Channel-Attached Client Software Overview

Client Application
– Your own application(s)
– Teradata utilities (BTEQ, etc.)

CLI (Call-Level Interface) Service Routines
– Request and Response Control
– Parcel creation and blocking/unblocking
– Buffer allocation and initialization

TDP (Teradata Director Program)
– Session balancing across multiple PEs
– Insures proper message routing to/from the Teradata Database
– Failure notification (application failure, Teradata restart)

Channel (ESCON or FICON)

Channel-Attached System

TDP

Client
Application

CLI

Client
Application

CLI

Parsing
Engine

Parsing
Engine

Host Channel
Adapter PBSA

ds186034
Sticky Note
PCI Card - Fiber type connection

ds186034
Sticky Note
Client = TPTFast LoadBTEQclient application is a library...essentially a client talking to TD

ds186034
Sticky Note
seperate TDP job...assign to the job tDP id....logon (TDP id) passwd etcTDP id - designating the TDP system you want to connect to..

ds186034
Sticky Note
If cust has 50 nodes...big cust...only 5 such connectionschannel attached nodea small no of node for this type of connection

ds186034
Sticky Note
Teradata SYSTEM

ds186034
Sticky Note
Client - mainframe

 Teradata Database Architecture Page 3-10

`

Network-Attached Client Software Overview
In a network-attached environment, the SMPs running Teradata will typically have 1 or
more Ethernet adapters that are used to connect to Teradata via a LAN connection. One of
the key reasons for having multiple Ethernet adapters in a node is redundancy.

In network-attached systems, there are four major software components that play
important roles in getting the requests to and from the Teradata Database.

The client application is written by the programmer using a client-supported language such
as “C”. The purpose of the application is usually to submit SQL statements to the Teradata
Database and perform processing on the result sets. The application developer can “embed”
SQL statements in the application and use the Teradata Preprocessor to interpret the
embedded SQL statements.

 In a networked environment, the application developer can use either the CLI interface or
the ODBC driver to access Teradata.

The Teradata CLI application interface provides maximum control over Teradata
connectivity and access. The ODBC and JDBC drivers are a much more open standard and
are widely used with client applications.

The Teradata ODBC™ (Open Database Connectivity) or JDBC (Java) drivers use open
standards-based ODBC or JDBC interfaces to provide client applications access to Teradata
across LAN-based environments.

Note: ODBC 3.02.0 is the minimum certified version for Teradata V2R5.

The Micro Teradata Director Program (MTDP) is a Teradata-supplied program that must
be linked to any application that will be network-attached to the Teradata Database. The
MTDP performs many of the functions of the channel based TDP including session
management. The MTDP does not control session balancing across PEs. Connect and
Assign Servers that run on the Teradata system handle this activity.

The Micro Operating System Interface (MOSI) is a library of routines providing
operating system independence for clients accessing the Teradata Database. By using
MOSI, we only need one version of the MTDP to run on all network-attached platforms.

Teradata Gateway software executes on every node. Gateway software runs as a number
of tasks. Two of the key tasks are called "ycgastsk" (assign task) and "ycgcntsk" (connect
task). On a 4-node system with one gateway, only one node has the assign task (ycgastsk)
running on it and every node will have the connect task (ycgcntsk) running on it. Initial
session assignment is done by the assign task and will assign a user session to a PE and to
the connect task in the same node as the PE. The connect task on a node will handle
connections to the PEs on that node.

Teradata Database Architecture Page 3-11

Network-Attached Client Software Overview

CLI (Call Level Interface)
– Library of routines for blocking/unblocking requests and responses to/from the Teradata

Database

ODBC™ (Open Database Connectivity), JDBC™ (Java), or .NET Drivers
– Use open standards-based ODBC, JDBC, or .NET interfaces to provide client applications

access to Teradata.

MTDP (Micro Teradata Director Program)
– Library of session management routines

MOSI (Micro Operating System Interface)
– Library of routines providing OS independent interface

LAN-Attached Servers

LAN (TCP/IP)
Client

Application
(ex., FastLoad)

CLI

MTDP

MOSI

Client
Application
(ex., SQL
Assistant)

ODBC (CLI)

MTDP

MOSI

Parsing
Engine

Parsing
Engine

Gateway Software (tgtw)

Client
Application
(ex., BTEQ)

CLI

MTDP

MOSI

Ethernet Adapter

ds186034
Sticky Note
Fast load uses CLIMicro Teradata director program (MTDP)TDP for multiple users/MTDP only for 1 user

ds186034
Sticky Note
MOSI - dos...windows..(diff packages)..
but installing 1 package as a user..(but underlying diff packages for diff OS)

ds186034
Sticky Note
tgtw - does session balancing (not..)10 users...32 users..and if only 2 PE then it does the balancingprovides PCI/IP connectivitiyjust network has to be TCP-IP compatible

ds186034
Sticky Note
SQL assistant number of ways to connect to TD...ODBC..cld be .NET...studio express(that uses JDBC)...ODBC is a layer under CLICLI has to be somewhere to connect to TD database

ds186034
Sticky Note
dont run application (CPU cycle, memory) on TDit slows down 1 node...all system slow down..so on other nodes..external nodes...

 Teradata Database Architecture Page 3-12

The Parsing Engine
Parsing Engines (PEs) are made up of the following software components: session control,
the Parser, the Optimizer, and the Dispatcher.

Once a valid session has been established, the PE is the component that manages the
dialogue between the client application and the Teradata Database.

The major functions performed by session control are logon and logoff. Logon takes a
textual request for session authorization, verifies it, and returns a yes or no answer. Logoff
terminates any ongoing activity and deletes the session’s context. When connected to an
EBCDIC host the PE converts incoming data to the internal 8-bit ASCII used by the
Teradata Database, thus allowing input values to be properly evaluated against the database
data.

When a PE receives an SQL request from a client application, the Parser interprets the
statement, checks it for proper SQL syntax and evaluates it semantically. The PE also must
consult the Data Dictionary/Directory to ensure that all objects and columns exist and that
the user has authority to access these objects.

The Optimizer’s role is to develop the least expensive plan to return the requested response
set. Processing alternatives are evaluated and the fastest alternative is chosen. This
alternative is converted to executable steps, to be performed by the AMPs, which are then
passed to the dispatcher.

The Dispatcher controls the sequence in which the steps are executed and passes the steps
on to the Message Passing Layer. It is composed of execution control and response control
tasks. Execution control receives the step definitions from the Parser, transmits the step
definitions to the appropriate AMP or AMPs for processing, receives status reports from the
AMPs as they process the steps, and passes the results on to response control once the AMPs
have completed processing. Response control returns the results to the user. The Dispatcher
sees that all AMPs have finished a step before the next step is dispatched.

Depending on the nature of the SQL request, the step will be sent to one AMP, a few AMPs,
or all AMPs.

Note: Teradata Gateway software can support up to 1200 sessions per processing node.
Therefore a maximum of 10 Parsing Engines can be defined for a node using the Gateway.

ds186034
Highlight

ds186034
Sticky Note
PE is like a manager- builds a plan- distributes a plan to the AMPs- it is also the interface to the outside world

Teradata Database Architecture Page 3-13

The Parsing Engine

The Parsing Engine is responsible for:

• Managing individual sessions (up to
120)

• Parsing and Optimizing your SQL
requests

• Dispatching the optimized plan to the
AMPs

• Input conversion (EBCDIC / ASCII) - if
necessary

• Sending the answer set response back
to the requesting client

Answer Set Response

Parsing
Engine

SQL Request

Parser

Optimizer

Dispatcher

Message Passing Layer

AMP AMP AMP AMP

ds186034
Sticky Note
Parser:1. resolve a view of a view of a view to a table id2. check its security id3. if u are allowed we hand it to optimizerOpti:1, all reasonable path..do we use index?2. join order3. redistribite? duplicatebased on cost(management)send out the plan to the amps, who is going to do the actual workif u want more sessions, more PE

ds186034
Sticky Note
Input conversion is done at PE levelthe PE does input converstion (mf=epsic....we use ascii..so it does the converstion)

 Teradata Database Architecture Page 3-14

Message Passing Layer
The Message Passing Layer (MPL) or Communications Layer handles the internal
communication of the Teradata Database. All communication between PEs and AMPs is
done via the Message Passing Layer.

When the PE dispatches the steps for the AMPs to perform, they are dispatched onto the
MPL. The messages are routed to the appropriate AMP(s) where results sets and status
information are generated. This response information is also routed back to the requesting
PE via the MPL.

The Message Passing Layer is a combination of the Teradata PDE software, the BYNET
software, and the BYNET interconnect itself.

PDE and BYNET software - used for multi-node MPP systems and single-node SMP
systems. With a single-node SMP, the BYNET device driver is used in conjunction with the
PDE even though a physical BYNET network is not present.

Depending on the nature of the dispatch request, the communication may be a:

Broadcast - message is routed to all AMPs and PEs on the system
Multi-Cast - message is routed to a group of AMPs
Point-to-Point - message is routed to one specific AMP or PE on the system

The technology of the MPL is a key piece in the system part that makes possible the
parallelism of the Teradata Database.

Teradata Database Architecture Page 3-15

Message Passing Layer

Answer Set Response

Parsing
Engine

SQL Request

Message Passing Layer

(PDE and BYNET)

AMP AMP AMP AMP

The Message Passing Layer or
Communications Layer is responsible for:

• Carrying messages between the AMPs
and PEs

• Point-to-Point, Multi-Cast, and
Broadcast communications

• Merging answer sets back to the PE

• Making Teradata parallelism possible

The Message Passing Layer or
Communications Layer is a combination of:

• Parallel Database Extensions (PDE)
Software

• BYNET Software

• BYNET Hardware for MPP systems

ds186034
Sticky Note
PDE software = queing happens herecalls BYNET software (does msg delivery)a single node system (SMP) will not have the BYNET component

ds186034
Sticky Note
BYNET:*Merging of sorted set is done by bynet*sum = global aggregation in bynet(its just not communication code)

 Teradata Database Architecture Page 3-16

The Access Module Processor (AMP)
The Access Module Processor (AMP) is responsible for managing a portion of the
database. An AMP will control some portion of each table on the system. AMPs do all of
the physical work associated with generating an answer set including, sorting, aggregating,
formatting and converting.

An AMP responds to Parser/Optimizer steps transmitted across the MPL by selecting data
from or storing data to its disks. For some requests the AMPs may also redistribute a copy
of the data to other AMPs.

The Database Manager subsystem resides on each AMP. It receives the steps from the
Dispatcher and processes the steps. To do that it has the ability to lock databases and tables,
to create, modify, or delete definitions of tables, to insert, delete, or modify rows within
the tables, and to retrieve information from definitions and tables. It collects accounting
statistics, recording accesses by session so those users can be billed appropriately. Finally,
the Database manager returns responses to the Dispatcher.

Earlier in this course we discussed the logical organization of data into tables. The
Database Manager provides a bridge between that logical organization and the physical
organization of the data on disks. The Database Manager performs a space management
function that controls the use and allocation of space.

AMPs also perform output data conversion, checking the session and changing the
internal, 8-bit ASCII used by Teradata to the format of the requester. This is the reverse of
the process performed by the PE when it converts the incoming data into internal ASCII.

ds186034
Underline

ds186034
Highlight

ds186034
Sticky Note
- our unit of parallelism- 120 session

Teradata Database Architecture Page 3-17

The Access Module Processor (AMP)

Answer Set Response

Parsing
Engine

SQL Request

Message Passing Layer

AMP AMP AMP AMP

AMPs store and retrieve rows to and from disk.

The AMPs are responsible for:
• Accesses storage using Teradata's File

System Software
• Lock management
• Sorting rows
• Aggregating columns
• Join processing
• Output conversion and formatting
• Creating answer set for client
• Disk space management
• Accounting
• Special utility protocols
• Recovery processing

Teradata File System Software:
• Translates DatabaseID/TableID/RowID

into location on storage
• Controls a portion of physical storage
• Allocates storage space by “Cylinders”

ds186034
Sticky Note
AMPs = a lot of AMP, alot of parallelism

ds186034
Sticky Note
Co existence:verizon...3 diff...314 nodes...3000+amps-1.2TB of space behind each AMP

ds186034
Sticky Note
Allocation is at a cylinder level

 Teradata Database Architecture Page 3-18

Teradata Parallelism
Parallelism is at the very heart of the Teradata Database. There is virtually no part of the
system where parallelism has not been built in. Without the parallelism of the system,
managing enormous amounts of data would either not be possible or, best case, would be
prohibitively expensive and inefficient.

Each PE can support up to 120 user sessions in parallel. This could be 120 distinct users, or
a single user harnessing the power of all 120 sessions for a single application.

Each session may handle multiple requests concurrently. While only one request at a time
may be active on behalf of a session, the session itself can manage the activities of 16
requests and their associated answer sets.

The Message Passing Layer was designed such that it can never be a bottleneck for the
system. Because the MPL is implemented differently for different platforms, this means that
it will always be well within the needed bandwidth for each particular platform’s maximum
throughput.

Each AMP can perform up to 80 tasks in parallel. This means that AMPs are not dedicated
at any moment in time to the servicing of only one request, but rather are multi-threading
multiple requests concurrently. The value 80 represents the number of AMP Worker Tasks
and may be changed on some systems.

Because AMPs are designed to operate on only one portion of the database, they must
operate in parallel to accomplish their intended results.

In addition to this, the optimizer may direct the AMPs to perform certain steps in parallel if
there are no contingencies between the steps. This means that an AMP might be
concurrently performing more than one step on behalf of the same request.

A recently added feature called Parallel CLI allows for parallelizing the client application,
particularly useful for multi-session applications. This is accomplished by setting a few
environmental variables and requires no changes to the application code.

In truth, parallelism is built into the Teradata Database from the ground up!

ds186034
Underline

ds186034
Underline

ds186034
Underline

ds186034
Underline

ds186034
Underline

Teradata Database Architecture Page 3-19

Teradata Parallelism

Notes:

• Each PE can handle up to 120 sessions in parallel.

• Each Session can handle multiple REQUESTS.

• The Message Passing Layer can handle all message activity in parallel.

• Each AMP can perform up to 80 tasks in parallel.

• All AMPs can work together in parallel to service any request.

• Each AMP can work on several requests in parallel.

Parallelism is built into
Teradata from the

ground up!

Session A

Session B

Session C

Session D

Session E

Session F

PE PEPE

Task 1
Task 2
Task 3

Task 7
Task 8
Task 9

Task 4
Task 5
Task 6

Task 10
Task 11
Task 12

AMP 0 AMP 3AMP 2AMP 1

Message Passing Layer

 Teradata Database Architecture Page 3-20

Module 3: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Teradata Database Architecture Page 3-21

Module 3: Review Questions

1. What are the two software elements that accompany an application on all client side environments?

2. What is the purpose of the PE?

3. What is the purpose of the AMP?

4. How many sessions can a PE support?

Match Quiz

____ 1. CLI

____ 2. MTDP

____ 3. MOSI

____ 4. Parser

____ 5. AMP

____ 6. Message Passing Layer

____ 7. TDP

____ 8. Optimizer

____ 9. Dispatcher

____10. Parallelism

a. Does Aggregating and Locking

b. Validates SQL syntax

c. Connects AMPs and PEs

d. Balances sessions across PEs

e. Provides Client side OS independence

f. Library of Session Management Routines

g. PE S/W turns SQL into AMP steps

h. PE S/W sends plan steps to AMP

i. Library of Teradata Service Routines

j. Foundation of Teradata architecture

ds186034
Sticky Note
CLI and TDP

 Teradata Database Architecture Page 3-22

Notes

Creating a Teradata Database Page 4-1

Module 4

Teradata Proprietary and Confidential

Teradata Databases and Users

After completing this module, you will be able to:

• Distinguish between a Teradata Database and Teradata User.

• Define Perm Space and explain how it is used.

• Define Spool Space and its use.

• Visualize the hierarchy of objects in a Teradata system.

 Creating a Teradata Database Page 4-2

Notes

Creating a Teradata Database Page 4-3

Table of Contents

A Teradata Database .. 4-4

Tables ... 4-4
Views ... 4-4
Macros .. 4-4
Triggers .. 4-4

A Teradata User ... 4-6
Database – User Comparison ... 4-8
The Hierarchy of Databases and Users .. 4-10
Example of a System Hierarchy ... 4-12
Permanent Space .. 4-14
Spool Space .. 4-16
Temporary Space ... 4-18
Creating Tables .. 4-20
Data Types ... 4-22
Access Rights and Privileges ... 4-24
Module 4: Review Questions ... 4-26

 Creating a Teradata Database Page 4-4

A Teradata Database
A Teradata database is a collection of tables, views, macros, triggers, stored procedures, join
indexes, hash indexes, UDFs, access rights and space limits used for administration and
security. All databases have a defined upper limit of permanent space. Permanent space is
used for storing the data rows of tables. Perm space is not pre-allocated. It represents a
maximum limit. All databases also have an upper limit of spool space. Spool space is
temporary space used to hold intermediate query results or formatted answer sets to queries.

Databases provide a logical grouping for information. They are also the foundation for
space allocation and access control. We'll review the definitions of tables, views, and
macros.

Tables
A table is the logical structure of data in a database. It is a two-dimensional structure
made up of columns and rows. A user defines a table by giving it a table name that refers
to the type of data that will be stored in the table.

A column represents attributes of the table. Attributes identify, describe, or qualify the
table. Column names are given to each column of the table. All the information in a
column is the same type, for example, data of birth.

Each occurrence of an entity is stored in the table as a row. Entities are the people, things,
or events that the table is about. Thus a row would represent a particular person, thing, or
event.

Views
A view is a pre-defined subset of one of more tables or other views. It does not exist as a
real table, but serves as a reference to existing tables or views. One way to think of a view
is as a virtual table. Views have definitions in the data dictionary, but do not contain any
physical rows. Views can be used by the database administrator to control access to the
underlying tables. Views can be used to hide columns from users, to insulate applications
from database changes, and to simplify or standardize access techniques.

Macros
A macro is a definition containing one or more SQL commands and report formatting
commands that is stored in the Data Dictionary/Directory. Macros are used to simplify the
execution of frequently-used SQL commands.

Triggers
A trigger consists of one or more SQL statements that are associated with a table and
are executed when the trigger is “fired”.

Creating a Teradata Database Page 4-5

A Teradata Database

A Teradata database is a defined logical repository for:
• Tables • Join Indexes

• Views • Hash Indexes

• Macros • Permanent Journals

• Triggers • User-defined Functions (UDF)

• Stored Procedures

Attributes that may be specified for a database:
• Perm Space – max amount of space available for tables, stored procedures, and UDFs
• Spool Space – max amount of work space available for requests
• Temp Space – max amount of temporary table space

A Teradata database is created with the CREATE DATABASE command.

Example CREATE DATABASE Database_2 FROM Sysdba

AS PERMANENT = 20E9, SPOOL = 500E6;

Notes:

"Database_2" is owned by "Sysdba".
A database is empty until objects are created within it.

ds186034
Sticky Note
Zero Perm SpaceView Database:- views, macros, and triggerscan create a db with just this

ds186034
Sticky Note
Work space - spool place (when users run query)DB does not use spool space, users do!temp space - volatile table uses this..once session is off...space is freed

ds186034
Sticky Note
Temp space - global temp space

ds186034
Sticky Note
E6, E920E9 = 1GB

 Creating a Teradata Database Page 4-6

A Teradata User
A user can also be thought of as a collection of tables, views, macros, triggers, stored
procedures, join indexes, hash indexes, UDFs, and access rights.

A user is almost the same as a database except that a user can actually log on to the DBS.
To accomplish this, a user must have a password. A user may or may not have perm space.

 Even with no perm space, a user can access other databases depending on the privileges the
user has been granted.

Users are created with the SQL statement CREATE USER.

Creating a Teradata Database Page 4-7

A Teradata User

A Teradata user is a database with an assigned password.

A Teradata user may logon to Teradata and access objects within:
• itself
• other databases for which it has access rights

Examples of attributes that may be specified for a user:
• Perm Space – max amount of space available for tables, stored procedures, and UDFs
• Spool Space – max amount of work space available for requests
• Temp Space – max amount of temporary table space

A user is an active repository while a database is a passive repository.

A user is created with the CREATE USER command.

CREATE USER User_C FROM User_A
AS PERMANENT = 100E6

,SPOOL = 500E6
,TEMPORARY = 150E6
,PASSWORD = lucky_day ;

Example

"User_C" is owned by "User_A".
A user is empty until objects are created within it.

ds186034
Sticky Note
In reality a lot of users have 0 perm space

ds186034
Sticky Note
db = u cannot logon ; you cannot..

ds186034
Sticky Note
create user...needs access right...

 Creating a Teradata Database Page 4-8

Database – User Comparison
In Teradata, a Database and a User are essentially the same. Database/User names must be
unique within the entire system and represent the highest level of qualification in an SQL
statement.

A User represents a logon point within the hierarchy and Access Rights apply only to Users.
In many systems, end users do not have Perm space given to them. They are granted rights
to access database(s) containing views and macros, which in turn are granted rights to access
the corporate production tables.

At any time, another authorized User can change the Spool (workspace) limit assigned to a
User.

Databases may be empty. They may or may not have any tables, views, macros, triggers, or
stored procedures. They may or may not have Perm Space allocated. The same is true for
Users. The only absolute requirement is that a User must have a password.

Once Perm Space is assigned, then and only then can tables be put into the database. Views,
macros, and triggers may be added at any time, with or without Perm Space.

Remember that databases and users are both repositories for database objects. The main
difference is the user ability to logon and acquire a session with the Teradata Database.

A row exists in DBC.Dbase for each User and Database.

Creating a Teradata Database Page 4-9

Database – User Comparison

User Database
Unique Name Unique Name
Password = Value
Define and use Perm space Define and use Perm space
Define and use Spool space Define Spool space
Define and use Temporary space Define Temporary space
Set Fallback protection default Set Fallback protection default
Set Permanent Journal defaults Set Permanent Journal defaults
Multiple Account strings One Account string
Logon and establish a session with a priority
May have a startup string
Default database, dateform, timezone,

and default character set
Collation Sequence

• You can only LOGON as a known User to establish a session with Teradata.

• Tables, Join/Hash Indexes, Stored Procedures, and UDFs require Perm Space.

• Views, Macros, and Triggers are definitions in the DD/D and require NO Perm Space.

• A database (or user) with zero Perm Space may have views, macros, and triggers, but
cannot have tables, join/hash indexes, stored procedures, or user-defined functions.

ds186034
Sticky Note
not using it..

 Creating a Teradata Database Page 4-10

The Hierarchy of Databases and Users
As you define users and databases, a hierarchical relationship among them will evolve.

When you create new objects, you subtract permanent space from the assigned limit of an
existing database or user. A database or user that subtracts space from its own permanent
space to create a new object becomes the immediate owner of that new object.

An “owner” or “parent” is any object above you in the hierarchy. (Note that you can use the
terms owner and parent interchangeably.) A “child” is any object below you in the
hierarchy. An owner or parent can have many children.

The term “immediate parent” is sometimes used to describe a database or user just above
you in the hierarchy.

Creating a Teradata Database Page 4-11

Hierarchy of Databases and Users

User DBC

User SYSDBA

Database_1
User_A User_D

Database_3

User_C User_B

Database_2

Maximum Perm Space – maximum
available space for a user or
database.

Current Perm Space – space that is
currently allocated – contains
tables, stored procedures, UDFs.

No Perm SpaceNo Box

• A new database or user must be created from an existing database or user.
• All Perm space specifications are subtracted from the immediate owner or parent.
• Perm space is a zero sum game – the total of all Perm Space for all databases and users

equals the total amount of disk space available to Teradata.
• Perm space is only used for tables, join/hash indexes, stored procedures, and UDFs.
• Perm space currently unused is available to be used as Spool or Temp space.

 Creating a Teradata Database Page 4-12

Example of a System Hierarchy
An example of a system structure for the Teradata database is shown on the facing page.

Creating a Teradata Database Page 4-13

Example of a System Hierarchy

A User and/or a
Database may be given
PERM space.

In this example, Mark
and Tom have no
PERM space, but
Susan does.

Users may use views and macros
to access the actual tables.

Mark

Customer_Service

SysDBA

DBC

CrashDumps SysAdmin SystemFE

CS_VM

View_1
View_2

Macro_1
Macro_2

CS_Tables

Table_1
Table_2
Table_3
Table_4

Sys_Calendar

Susan

QCD

CS_Users

Tom

 Creating a Teradata Database Page 4-14

Permanent Space
Permanent Space (Perm space) is the maximum amount of storage assigned to a user or
database for holding table rows, Fallback tables, secondary index subtables, stored
procedures, UDFs, and permanent journals.

Perm space is specified in the CREATE statement as illustrated below. Perm space is not
pre-allocated which means that it is available on demand, as entities are created not reserved
ahead of time. Perm space is deducted from the owner’s specified Perm space and is
divided equally among the AMPs. Perm space can be dynamically modified.

The total amount of Perm space assigned divided by the number of AMPs equals the per-
AMP limit. Whenever the per AMP limit is exceeded on any AMP, a Database Full
message is generated.

 CREATE DATABASE CS_Tables FROM Customer_Service AS
 PERMANENT = 100000000000 BYTES … ;

Creating a Teradata Database Page 4-15

Permanent Space

CREATE DATABASE CS_Tables FROM Customer_Service
AS PERMANENT = 100E9 BYTES, ... ;

Perm
Space
Limit per
AMP

• Table rows, index subtable rows, join indexes, hash indexes, stored procedures, and
UDFs use Perm space.

• Fallback protection uses twice the Perm space of No Fallback.

• Perm space is deducted from the owner’s database space.

• Disk space is not reserved ahead of time, but is available on demand.

• Perm space is defined globally for a database.

• Perm space can be dynamically modified.

• The global limit divided by the number of AMPs is the per/AMP limit.

• The per/AMP limit cannot be exceeded.

• Good data distribution is crucial to space management.

10 GB

AMP

10 GB

AMP

10 GB

AMP

10 GB

AMP

10 GB

AMP

10 GB

AMP

10 GB

AMP

10 GB

AMP

10 GB

AMP

10 GB

AMP

ds186034
Sticky Note
if perm space is 0, cannot even create a table

 Creating a Teradata Database Page 4-16

Spool Space
Spool Space is work space acquired automatically by the system and used for work space
and answer sets for intermediate and final results of Teradata SQL statements (e.g.,
SELECT statements generally use Spool space to store the SELECTed data). When the
spool space is no longer needed by a query, it is released back to the system.

A Spool limit is specified in the CREATE statement shown below. This limit cannot
exceed the Spool limit of the owner. However, a single user can create multiple databases
or users, and each can have a Spool limit as large as the Spool limit of that owner.

The total amount of Spool space assigned divided by the number of AMPs equals the per
AMP limit. Whenever the per-AMP limit is exceeded on any AMP, an Insufficient Spool
message is generated to that client.

CREATE USER Susan FROM CS_Users AS
PERMANENT = 100000000 BYTES,

SPOOL = 500000000 BYTES,
PASSWORD = secret ... ;

Creating a Teradata Database Page 4-17

Spool Space

CREATE USER Susan FROM CS_Users AS PERMANENT = 100E6 BYTES,
SPOOL = 500E6 BYTES, PASSWORD = secret … ;

• Spool space is work space acquired automatically by the system for
intermediate query results or answer sets.

– SELECT statements generally use Spool space.

– Only INSERT, UPDATE, and DELETE statements affect table contents.

• The Spool limit cannot exceed the Spool limit of the original owner.

• The Spool limit is divided by the number of AMPS in the system, giving a per-
AMP limit that cannot be exceeded.

– "Insufficient Spool" errors often result from poorly distributed data or joins on
columns with large numbers of non-unique values.

– Keeping Spool rows small and few in number reduces Spool I/O.

Spool
Space
Limit per
AMP

50 MB

AMP

50 MB

AMP

50 MB

AMP

50 MB

AMP

50 MB

AMP

50 MB

AMP

50 MB

AMP

50 MB

AMP

50 MB

AMP

50 MB

AMP

ds186034
Sticky Note
Same as perm space...it has a per AMP limit!

 Creating a Teradata Database Page 4-18

Temporary Space
Temporary (Temp) Space is temporary space acquired automatically by the system when
Global Temporary tables are materialized and used.

A Temporary limit is specified in the CREATE statement shown below. This limit cannot
exceed the Temporary limit of the owner. However, a single user can create multiple
databases or users, and each can have a Temporary limit as large as the Temporary limit of
that owner.

The total amount of Temporary space assigned divided by the number of AMPs equals the
per AMP limit. Whenever the per-AMP limit is exceeded on any AMP, an Insufficient
Temporary message is generated to that client.

CREATE USER Susan FROM CS_Users AS
PERMANENT = 100000000 BYTES,

SPOOL = 500000000 BYTES,
TEMPORARY = 150000000 BYTES,

PASSWORD = secret ...

Creating a Teradata Database Page 4-19

Temporary Space

CREATE USER Susan FROM CS_Users AS PERMANENT = 100E6 BYTES,
SPOOL = 500E6 BYTES, TEMPORARY = 150E6 BYTES, PASSWORD = secret … ;

Temporary
Space
Limit per
AMP

• Temporary space is space acquired automatically by the system when a
"Global Temporary" table is used and materialized.

• The Temporary limit cannot exceed the Temporary limit of the original owner.

• The Temporary limit is divided by the number of AMPS in the system, giving a
per-AMP limit that cannot be exceeded.

– "Insufficient Temporary" errors often result from poorly distributed data or joins
on columns with large numbers of non-unique values.

• Note: Volatile Temporary tables and derived tables utilize Spool space.

15 MB

AMP

15 MB

AMP

15 MB

AMP

15 MB

AMP

15 MB

AMP

15 MB

AMP

15 MB

AMP

15 MB

AMP

15 MB

AMP

15 MB

AMP

ds186034
Sticky Note
Global temp table: it takes a little bit of temp space for the header

 Creating a Teradata Database Page 4-20

Creating Tables
Creation of tables is done via the DDL portion of the SQL command vocabulary. The table
definition, once accepted, is stored in the DD/D.

Prior to Teradata 13.0, creating tables required the definition of at least one column and the
assignment of a Primary Index. With Teradata 13.0, it is possible to create tables without a
primary index. Columns are assigned data types, attributes and optionally may be assigned
constraints, such as a range constraint.

Tables, like views and macros, may be dropped when they are no longer needed. Dropping
a table both deletes the data from the table and removes the definition of the table from the
DD/D.

Secondary indexes may also optionally be assigned at table creation, or may be deferred
until after the table has been built. Secondary indexes may also be dropped, if they are no
longer needed. It is not uncommon to create secondary indexes to assist in the processing of
a specific job sequence, then to delete the index, and its associated overhead, once the job is
complete.

We will have more to say on indexes in general in future modules.

Creating a Teradata Database Page 4-21

Creating Tables

Creating a table requires ...
– defining columns
– a primary index (Teradata 13.0 provides an option of a No Primary Index table)
– optional assignment of secondary indexes

CREATE TABLE Employee

(Employee_Number INTEGER NOT NULL
,Last_Name CHAR(20) NOT NULL
,First_Name VARCHAR(20)
,Salary_Amount DECIMAL(10,2)
,Department_Number SMALLINT
,Job_Code CHAR(3))

UNIQUE PRIMARY INDEX (Employee_Number)
INDEX (Last_Name) ;

Primary
Secondary

Database objects may be created or
dropped as needed.

Tables
Views
Macros
Triggers
Procedures

CREATE

DROP

Secondary indexes may be
– created at table creation
– created after table creation
– dropped after table creation

CREATE

DROP
INDEX (secondary only)

 Creating a Teradata Database Page 4-22

Data Types
When a table is created, a data type is specified for each column. Data types are divided
into three classes – numeric, byte, and character. The facing page shows data types.

DATE is a 32-bit integer that represents the date as YYYYMMDD. It supports century and
year 2000 and is implemented with calendar-based intelligence.

TIME WITH ZONE and TIMESTAMP WITH ZONE are ANSI standard data types that
allow support of clock and time zone based intelligence.

DECIMAL (n, m) is a number of n digits, with m digits to the right of the decimal point.

BYTEINT is an 8-bit signed binary whole number that may vary in range from -128 to
+127.

SMALLINT is a 16-bit signed binary whole number that may vary in range from -32,768 to
+32,767.

INTEGER is a 32-bit signed binary whole number that may vary in size from
-2,147,483,648 to +2,147,483,647.

BIGINT is a 64-bit (8 bytes) signed binary whole number that may vary in size
from -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807 or as (-263 to 263 - 1).

FLOAT, REAL, and DOUBLE PRECISION is a 64-bit IEEE floating point number.

BYTE (n) is a fixed-length binary string of n bytes. BYTE and VARBYTE are never
converted to a different internal format. They can also be used for digitized objects.

VARBYTE (n) is a variable-length binary string of n bytes.

BINARY LARGE OBJECT (n) is similar to a VARBYTE; however it may be as large as
2 GB. A BLOB may be used to store graphics, video clips and binary files.

CHAR (n) is a fixed-length character string of n characters.

VARCHAR (n) is a variable-length character string of n characters.

LONG VARCHAR is the longest variable-length character string. It is equivalent to
VARCHAR (64000).

GRAPHIC, VARGRAPHIC and LONG VARGRAPHIC are the equivalent character
types for multi-byte character sets such as Kanji.

CHARACTER LARGE OBJECT (n) is similar to a VARCHAR; however it may be as
large as 2 GB. A CLOB may be used to store simple text, HTML, or XML documents.

Creating a Teradata Database Page 4-23

Data Types

TYPE Name Bytes Description

Date/Time DATE 4 YYYYMMDD
TIME (WITH ZONE) 6 / 8 HHMMSSZZ
TIMESTAMP (WITH ZONE) 10 / 12 YYYYMMDDHHMMSSZZ

Numeric DECIMAL or NUMERIC (n, m) 2, 4, 8 + OR – (up to 18 digits V2R6.1 and prior)
or 16 (up to 38 digits is V2R6.2 feature)

BYTEINT 1 -128 to +127
SMALLINT 2 -32,768 to +32,767
INTEGER 4 -2,147,483,648 to +2,147,483,647
BIGINT 8 -263 to +263 - 1 (+9,223,372,036,854,775,807)
FLOAT, REAL, DOUBLE PRECISION 8 IEEE floating pt

Byte BYTE(n) 0 – 64,000
VARBYTE (n) 0 – 64,000
BLOB 0 – 2 GB Binary Large Object (V2R5.1)

Character CHAR (n) 0 – 64,000
VARCHAR (n) 0 – 64,000
LONG VARCHAR same as VARCHAR(64,000)
GRAPHIC 0 – 32,000
VARGRAPHIC 0 – 32,000
LONG VARGRAPHIC same as VARGRAPHIC(32,000)
CLOB 0 – 2 GB Character Large Object (V2R5.1)

ds186034
Sticky Note
Only the common data types (many more)

ds186034
Sticky Note
date is a 4b numeric or 4b integer

 Creating a Teradata Database Page 4-24

Access Rights and Privileges
The diagram on the facing page shows access rights and privileges as they might be defined
for the database administrator, a programmer, a user, a system operator, and an
administrative user.

The database administrator has right to use all of the commands in the data definition
privileges, the data manipulation privileges, and the data control privileges.

The programmer has all of those except the ability to GRANT privileges to others.

A typical user is limited to data manipulation privileges, while the operator is limited to
data control privileges.

Finally, the administrative user is limited to a subset of data manipulation privileges,
SELECT and EXECUTE.

Each site should carefully consider the access rules that best meet their needs.

Creating a Teradata Database Page 4-25

Access Rights and Privileges

Data Definition Privileges
Command Object

Database and/or User
CREATE Table and/or View
DROP Macro and/or Trigger

Stored Procedure
Role and/or Profile

Data Manipulation Privileges
SELECT
INSERT Table
UPDATE View
DELETE

EXECUTE Macro and/or Stored Procedure

Data Control Privileges
DUMP Database
RESTORE Table
CHECKPOINT Journal

Privileges on
GRANT Databases
REVOKE Users

Objects

A Sample Scenario

O
P
E
R

ADMIN

U
S
E
R

P
R
O
G
R
A
M
M
E
R
S

D
B
A

 Creating a Teradata Database Page 4-26

Module 4: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Creating a Teradata Database Page 4-27

Module 4: Review Questions

True or False

______ 1. A database will always have tables.

______ 2. A user will always have a password.

______ 3. A user creating a subordinate user must give up some of his/her Perm Space.

______ 4. Creating tables requires the definition of at least 1 column and a Primary Index.

______ 5. The sum of all user and database Perm Space will equal the total space on the system.

______ 6. The sum of all user and database Spool Space will equal the total space on the system.

______ 7. Before a user can read a table, a database or table SELECT privilege must exist in the DD/D
for that user.

______ 8. Deleting a macro from a database reclaims Perm Space for the database.

9. Which statement is TRUE about PERM space? ____

a. PERM space cannot be dynamically modified.
b. The per/AMP limit of PERM space can be exceeded.
c. Tables, index subtables, and stored procedures use PERM space.
d. Maximum PERM space can be defined at the database or table level.

10. Which statement is TRUE about SPOOL space? ____

a. SPOOL space cannot be dynamically modified.
b. Maximum SPOOL space can be defined at the database or user level.
c. The SPOOL limit is dependent on the database limit where the table is located.
d. Maximum SPOOL space can be defined at a value greater than the immediate parent's value.

 Creating a Teradata Database Page 4-28

Notes

Storing and Accessing Data Rows Page 5-1

Module 5

Teradata Proprietary and Confidential

PI Access and Mechanics

After completing this module, you will be able to:

 Explain the purpose of the Primary Index

• Distinguish between Primary Index and Primary Key

• Explain the role of the hashing algorithm and the hash map in
locating a row.

• Explain the makeup of the Row ID and its role in row storage.

• Describe the sequence of events for locating a row given its PI
value.

 Storing and Accessing Data Rows Page 5-2

Notes

Storing and Accessing Data Rows Page 5-3

Table of Contents

Primary Keys and Primary Indexes ... 5-4
Distribution of Rows .. 5-6
Specifying a Primary Index .. 5-8
Primary Index Values ... 5-10
Accessing Via a Unique Primary Index ... 5-12
Accessing Via a Non-Unique Primary Index ... 5-14
Row Distribution Using a Unique Primary Index (UPI) – Case 1 ... 5-16
Row Distribution Using a Non-Unique Primary Index (NUPI) – Case 2 5-18
Row Distribution Using a Highly Non-Unique Primary Index (NUPI) – Case 3 5-20
Which AMP has the Row? ... 5-22
Hashing Down to the AMPs .. 5-24
A Hashing Example ... 5-26
The Hash Map .. 5-28
Hash Maps for Different Systems .. 5-30
Identifying Rows .. 5-32
The Row ID .. 5-34
Storing Rows (1 of 2) ... 5-36

Storing Rows (2 of 2) ... 5-38
Locating a Row on an AMP Using a PI ... 5-40
Module 5: Review Questions ... 5-42

 Storing and Accessing Data Rows Page 5-4

Primary Keys and Primary Indexes
While it is true that many tables use the same columns for both Primary Indexes and
Primary Keys, Indexes are conceptually different from Keys. The table on the facing
page summarizes those differences.

A Primary Key is relational data modeling term that defines, in the logical model, the
columns that uniquely identify a row. A Primary Index is a physical database
implementation term that defines the actual columns used to distribute and access rows in a
table.

It is also true that a significant percentage of the tables in any database will use the same
column(s) for both the PI and the PK. However, one should expect that in any real-world
scenario there would be some tables that will not conform to this simplistic rule. Only
through a careful analysis of the type of processing that will take place can the tables be
properly evaluated for PI candidates. Remember, changing your mind about the columns
that comprise the PI means recreating (and reloading) the table.

Storing and Accessing Data Rows Page 5-5

Primary Keys and Primary Indexes

• Indexes are conceptually different from keys.

• A PK is a relational modeling convention which allows each row to be uniquely identified.

• A PI is a Teradata convention which determines how the row will be stored and accessed.

• A significant percentage of tables may use the same columns for both the PK and the PI.

• A well-designed database will use a PI that is different from the PK for some tables.

Primary Key Primary Index

Logical concept of data modeling Physical mechanism for access and storage

Teradata doesn’t need to recognize Each table can have (at most) one primary index

No limit on number of columns 64 column limit

Documented in data model Defined in CREATE TABLE statement

(Optional in CREATE TABLE)

Must be unique May be unique or non-unique

Identifies each row Identifies 1 (UPI) or multiple rows (NUPI)

Values should not change Values may be changed (Delete + Insert)

May not be NULL – requires a value May be NULL

Does not imply an access path Defines most efficient access path

Chosen for logical correctness Chosen for physical performance

ds186034
Underline

ds186034
Underline

ds186034
Highlight

 Storing and Accessing Data Rows Page 5-6

Distribution of Rows
Ideally, the rows of every table will be distributed among all of the AMPs. There may be
some circumstances where this is not true. What if there are fewer rows than AMPs?
Clearly in this case, at least some AMPs will hold no rows from that table. This should be
considered the exceptional situation, and not the rule. Each AMP is designed to hold a
portion of the rows of each table. The AMP is responsible for the storage, maintenance and
retrieval of the data under its control.

More ideally, the rows of each table will be evenly distributed across all of the AMPs. This
is desirable because in operations involving all rows of the table (such as a full table scan);
each AMP will have an equal portion of the work to do. When workloads are not evenly
distributed, the desired response will only be as fast as the slowest AMP.

Controlling the distribution of the rows of a table is done by the selection of the Primary
Index. The relative uniqueness of the Primary Index will determine the uniformity of
distribution of the rows of this table among the AMPs.

Storing and Accessing Data Rows Page 5-7

Distribution of Rows

Table A rows
Table B rows

AMP AMP AMP AMP

• The rows of every table are distributed among all AMPs

• Each AMP is responsible for a subset of the rows of each table.

– Ideally, each table will be evenly distributed among all AMPs.

– Evenly distributed tables result in evenly distributed workloads.

• For tables with a Primary Index (majority of the tables), the uniformity of distribution of
the rows of a table depends on the choice of the Primary Index. The actual distribution
is determined by the hash value of the Primary Index.

• For tables without a Primary Index (Teradata 13.0 feature), the rows of a table are still
distributed between the AMPs based on random generator code within the PE or AMP.

– A small number of tables will typically be created as NoPI tables. Common uses for NoPI
tables are as staging/intermediate tables used in load operations or as column partitioned
tables.

 Storing and Accessing Data Rows Page 5-8

Specifying a Primary Index
Choosing a Primary Index for a table is perhaps the most critical decision a database
designer makes. The choice will affect the distribution of the rows of the table and,
consequently, the performance of the table in a production environment. Although many
tables used combined columns as the Primary Index choice, the examples used here are
single column indexes, mostly for the sake of simplicity.

Unique Primary Indexes (UPI’s) are desirable because they guarantee the uniform
distribution of the rows of that table.

Because it is not always feasible to pick a Unique Primary Index, it is sometimes necessary
to pick a column (or columns) which have non-unique values; that is there are duplicate
values. This type of index is called a Non-Unique Primary Index or NUPI. While not a
guarantor of uniform row distribution, the degree of uniqueness of the index will determine
the degree of uniformity of the distribution. Because all rows with the same PI value end up
on the same AMP, columns with a small number of distinct values which are repeated
frequently typically do not make good PI candidates.

The choosing of a Primary Index is not an exact science. It requires analysis and
thoughtfulness for some tables and will be completely self-evident on other tables.

The Primary Index is always designated as part of the CREATE TABLE statement. Once a
Primary Index choice has been designated for a table, it cannot be changed to something
else. If an alternate choice of column(s) is desired for the PI, it is necessary to drop and
recreate the table.

Teradata, adhering to the ANSI standard, permits duplicate rows by specifying that you wish
to create a MULTISET table. In Teradata transaction mode, the default, however, is a SET
table that does not permit duplicate rows.

Also, if MULTISET is enabled, it will be overridden by choosing a UPI as the Primary
Index or by having a unique index (e.g., unique secondary) on another column(s) on the
table. Doing this effectively disables the MULTISET.

Multiset tables will be covered in more detail later in the course.

Starting with Teradata 13.0, the option of NO PRIMARY INDEX is also available.

Storing and Accessing Data Rows Page 5-9

Specifying a Primary Index

• A Primary Index is defined at table creation.

• It may consist of a single column, or a combination of columns (up to 64 columns)
– With Teradata 13.0, an option of NO PRIMARY INDEX is available.

CREATE TABLE sample_1
(col_a INTEGER
,col_b CHAR(10)
,col_c DATE)

UNIQUE PRIMARY INDEX (col_b);

UPI If the index choice of column(s) is unique, then this is
referred to as a UPI (Unique Primary Index).

A UPI choice will result in even distribution of the
rows of the table across all AMPs.

CREATE TABLE sample_2
(col_m INTEGER
,col_n CHAR(10)
,col_o DATE)

PRIMARY INDEX (col_m);

NUPI If the index choice of column(s) isn’t unique, then this
is referred to as a NUPI (Non-Unique Primary Index).

The distribution of the rows of the table is proportional
to the degree of uniqueness of the index.

Note: Changing the choice of Primary Index requires dropping and recreating the table.

CREATE TABLE sample_3
(col_x INTEGER
,col_y CHAR(10)
,col_z DATE)

NO PRIMARY INDEX;

NoPI A NoPI choice will result in distribution of the data
between AMPs based on random generator code.

 Storing and Accessing Data Rows Page 5-10

Primary Index Values
Indexes are used to access rows from a table without having to search the entire table.

On Teradata, the Primary Index is the mechanism for assigning a data row to an AMP and
a location on the AMP’s disks. Prior to Teradata 13.0, when a table is created, a table must
have a Primary Index specified (either user-assigned or Teradata assigned). This cannot be
changed without dropping and creating the table.

Primary Indexes are very important because they have a powerful effect on the performance
of the database. The most important thing to remember is that a Primary Index is the
mechanism used to assign each row to an AMP and may be used to retrieve that row from
the AMP. Thus retrievals, updates and deletes that specify the Primary Index value will be
much faster than those queries that do not specify the PI value. Primary Index selection is
probably the most important factor in the efficiency of join processing.

Earlier we learned that the Primary Key was always unique and unchanging. This is based
on the logical model of the data. The Primary Index may (and frequently is) be different
than the Primary Key and may be non-unique; it is chosen for the physical performance of
the database.

There are three types of primary index selection – unique (UPI), non-unique (NUPI), or
NO PRIMARY INDEX.

Storing and Accessing Data Rows Page 5-11

Primary Index Values

• The value of the Primary Index for a specific row determines the AMP assignment for
that row.

• This is done using a hashing algorithm.

PE

Row assignment
Row access

Hashing
Algorithm

AMP AMP AMP

PI Value

• Accessing the row by its Primary Index value is:

– always a one-AMP operation

– the most efficient way to access a row

Other table access techniques:

• Secondary index access
• Full table scans

ds186034
Sticky Note
32bit number...it uses that to decide where the data is going to be inserted.PI is always a 1 amp operation (hmnnn?)

ds186034
Underline

 Storing and Accessing Data Rows Page 5-12

Accessing Via a Unique Primary Index
A Primary Index operation is always a one-AMP operation. In the case of a UPI, the one-
AMP access can return, at most, one row. In the facing example, we are looking for the row
whose primary index value is 345. By specifying the PI value as part of our selection
criteria, we are guaranteed that only the AMP containing the specified row will need to be
searched.

The correct AMP is located by taking the PI value and passing it through a hashing
algorithm. The hashing takes place in the Parsing Engine. The output of the hashing
algorithm contains information that will point the request to a specific AMP. Once it has
isolated the appropriate AMP, finding the row is quick and efficient. How this happens we
will see in a future module.

Storing and Accessing Data Rows Page 5-13

Accessing Via a Unique Primary Index

A UPI access is a one-AMP operation which may access at most a single row.

CREATE TABLE sample_1
(col_a INTEGER
,col_b INTEGER
,col_c CHAR(4))

UNIQUE PRIMARY INDEX (col_b);

SELECT col_a
,col_b
,col_c

FROM sample_1
WHERE col_b = 345;

PE

Hashing
Algorithm

AMP

UPI = 345

AMP AMP

col_a col_b col_c

123

234

col_a col_b col_c

345

456

col_a col_b col_c

567

678

 Storing and Accessing Data Rows Page 5-14

Accessing Via a Non-Unique Primary Index
A Non-Unique Primary Index operation is also a one-AMP operation. In the case of a
NUPI, the one-AMP access can return zero to many rows. In the facing example, we are
looking for the rows whose primary index value is 25. By specifying the PI value as part of
our selection criteria, we are once again guaranteeing that only the AMP containing the
required rows will need to be searched.

As before, the correct AMP is located by taking the PI value and passing it through a
hashing algorithm executing in the Parsing Engine. The output of the hashing algorithm will
once again point to a specific AMP. Once it has isolated the appropriate AMP, it must now
find all rows that have the specified value. In this example, the AMP returns two rows.

Storing and Accessing Data Rows Page 5-15

Accessing Via a Non-Unique Primary Index

A NUPI access is a one-AMP operation which may access multiple rows.

CREATE TABLE sample_2
(col_x INTEGER
,col_y INTEGER
,col_z CHAR(4))

PRIMARY INDEX (col_x);

SELECT col_x
,col_y
,col_z

FROM sample_2
WHERE col_x = 25;

PE

Hashing
Algorithm

AMP

NUPI = 25

AMP AMP

col_x col_y col_z

10 30 A

10 30 B

35 40 B

col_x col_y col_z

20 50 A

25 55 A

25 60 B

col_x col_y col_z

5 70 B

30 80 B

30 80 A

Both UPI and NUPI accesses
are one AMP operations.

 Storing and Accessing Data Rows Page 5-16

Row Distribution Using a Unique Primary Index (UPI) –
Case 1

At the heart of the Teradata database is a way of predictably distributing and retrieving rows
across AMPs. The same value stored in the same data type will always produce the same
hash value. If the Primary Index is unique, Teradata can distribute the rows evenly. If the
Primary Index is slightly non-unique, that is, there are only four or five rows per index
value; the table will still distribute evenly. But if there are hundreds or thousands of rows
for some index values the distribution will probably be lumpy.

In this example, the Order_Number is used as a unique primary index. Since the primary
index value for Order_Number is unique, the distribution of rows among AMPs is very
uniform. This assures maximum efficiency because each AMP is doing approximately the
same amount of work. No AMPs sit idle waiting for another AMP to finish a task.

This way of storing the data provides for maximum efficiency and makes the best use of the
parallel features of the Teradata system.

Storing and Accessing Data Rows Page 5-17

Row Distribution Using a UPI – Case 1

Notes:

• Often, but not always, the PK column(s)
will be used as a UPI.

– Order_Number can be a UPI since all the
values are unique.

• Teradata will distribute different UPI
values evenly across all AMPs.

– Resulting row distribution among AMPs is
very uniform.

– Assures maximum efficiency for parallel
operations.

AMP AMP AMP AMP

o_# c_# o_dt o_st

7202 2 4/09 C

7415 1 4/13 C

o_# c_# o_dt o_st

7325 2 4/13 O

7103 1 4/10 O

7402 3 4/16 C

o_# c_# o_dt o_st

7188 1 4/13 C

7225 2 4/15 C

o_# c_# o_dt o_st

7324 3 4/13 O

7384 1 4/12 C

O rd e r

N u m b er

C u s to m e r

N u m b e r

O rd er

D a te

O rd er

S ta tu s

P K

U P I

7325
7324
7415
7103
7225
7384
7402
7188
7202

2
3
1
1
2
1
3
1
2

4 /13
4 /13
4 /13
4 /10
4 /15
4 /12
4 /16
4 /13
4 /09

O
O
C
O
C
C
C
C
C

Orders

ds186034
Highlight

 Storing and Accessing Data Rows Page 5-18

Row Distribution Using a Non-Unique Primary Index
(NUPI) – Case 2

In the example on the facing page Customer_Number has been used as a non-unique
Primary Index (NUPI). Note row distribution among AMPs is uneven. All rows with the
same primary index value (in other words, with the same customer number) are stored on
the same AMP.

Customer_Number has three possible values, so all the rows are hashed to three AMPs,
leaving the fourth AMP without rows from this table. While this distribution will work, it is
not as efficient as spreading all the rows among all the AMPs.

AMP 2 has a disproportionate number of rows and AMP 3 has none. In an all-AMP
operation AMP 2 will take longer than the other AMPs. The operation cannot complete until
AMP 2 completes its tasks. The overall operation time is increased and some of the AMPs
are under-utilized.

NUPI’s can create irregular distributions, called “skewed distributions”. AMPs that have
more than an average number or rows will take longer for full table operations than the other
AMPs will. Because an operation is not complete until all AMPs have finished, this will
cause the operation to finish less quickly due to being underutilized.

Storing and Accessing Data Rows Page 5-19

Row Distribution Using a NUPI – Case 2

Notes:

• Customer_Number may be the preferred
access column for this table, thus a good
index candidate.

– Since a customer can have multiple
orders, Customer_Number will be a NUPI.

• Rows with the same PI value distribute to
the same AMP.

– Row distribution is less uniform or
skewed.

o_# c_# o_dt o_st

7325 2 4/13 O

7202 2 4/09 C

7225 2 4/15 C

o_# c_# o_dt o_st

7384 1 4/12 C

7103 1 4/10 O

7415 1 4/13 C

7188 1 4/13 C

o_# c_# o_dt o_st

7402 3 4/16 C

7324 3 4/13 O

AMP AMP AMP AMP

O rd e r

N u m b er

C u s to m e r

N u m b e r

O rd er

D a te

O rd er

S ta tu s

P K

N U P I

7325
7324
7415
7103
7225
7384
7402
7188
7202

2
3
1
1
2
1
3
1
2

4 /13
4 /13
4 /13
4 /10
4 /15
4 /12
4 /16
4 /13
4 /09

O
O
C
O
C
C
C
C
C

Orders

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

 Storing and Accessing Data Rows Page 5-20

Row Distribution Using a Highly Non-Unique Primary
Index (NUPI) – Case 3

This example uses Order_Status as a NUPI. Order_Status is a poor choice, because it
yields the most uneven distribution. Because there are only two possible values for
Order_Status, all of the rows are placed on two AMPs.
STATUS is an example of a highly non-unique Primary Index.

When choosing a Primary Index, you should never choose a column with such a severely
limited value set. The degree of uniqueness is critical to efficiency. Choose NUPI’s that
allow all AMPs to participate fairly equally.

The degree of uniqueness of a NUPI is critical to efficiency.

Storing and Accessing Data Rows Page 5-21

Row Distribution Using a Highly Non-Unique
Primary Index (NUPI) – Case 3

O rd e r

N u m b er

C u s to m e r

N u m b e r

O rd er

D a te

O rd er

S ta tu s

P K

N U P I

7325
7324
7415
7103
7225
7384
7402
7188
7202

2
3
1
1
2
1
3
1
2

4 /13
4 /13
4 /13
4 /10
4 /15
4 /12
4 /16
4 /13
4 /09

O
O
C
O
C
C
C
C
C

Orders Notes:

• Values for Order_Status are “highly” non-
unique.

– Order_Status would be a NUPI.

– If only two values exist, then only two
AMPs will be used for this table.

• Highly non-unique columns are generally
poor PI choices.

– The degree of uniqueness is critical to
efficiency.

AMP AMP AMP AMP

o_# c_# o_dt o_st

7402 3 4/16 C

7202 2 4/09 C

7225 2 4/15 C

7415 1 4/13 C

7188 1 4/13 C

7384 1 4/12 C

o_# c_# o_dt o_st

7103 1 4/10 O

7324 3 4/13 O

7325 2 4/13 O

ds186034
Sticky Note
this amp is full...no good

 Storing and Accessing Data Rows Page 5-22

Which AMP has the Row?
This discussion (rest of this module) will assume that a table has a primary index assigned
and is not using the NO PRIMARY INDEX option.

A hashing algorithm is a standard data processing technique that takes in a data value, like
last name or order number, and systematically mixes it up so that the incoming values are
converted to a number in a range from zero to the specified maximum value. A successful
hashing scheme scatters the input evenly over the range of possible output values.

It is predictable in that Smith will always hash to the same value and Jones will always hash
to another (and they do) different value. With a good hashing algorithm any patterns in the
input data should disappear in the output data. If many names begin with “S”, they should
and will not all hash to the same group of hash values. If order numbers all have “00” in the
hundreds and tens place or if all names are four letters long we should still see the hash
values spread fairly evenly over the whole range.

Textbooks still say that this requires manually designing and tuning a hash algorithm for
each new type of data values. However, the Teradata algorithm works predictably well over
any data, typically loading each AMP with variations in the range of .1% to .5% between
AMPs. For extremely large systems, the variation can be as low as .001% between AMPs.

Teradata also uses hashing quite differently than other data storage systems. Other hashed
data storage systems equate a bucket with a physical location on disk. In Teradata, a bucket
is simply an entry in a hash map. Each hash map entry points to a single AMP. Therefore,
changing the number of AMPs does not require any adjustment to the hashing algorithm.
Teradata simply adjusts the hash maps and redistributes any affected rows.

The hash maps must always be available to the Message Passing Layer. For systems using a
16-bit hash bucket number, the hash map has 65,536 entries. For systems using a 20-bit
hash bucket number, the hash map has 1,048,576 entries (approximately 1 million entries).
20-bit hash bucket numbers are available starting with Teradata 12.0.

When the hash bucket has determined the destination AMP, the full 32-bit row hash plus the
Table-ID is used to assign the row to a cylinder and a data block on the AMPs disk storage.
The 32-bit row hash can produce over 4 billion row hash values.

Storing and Accessing Data Rows Page 5-23

Which AMP has the Row?

Hashing
Algorithm

RH Data

Table ID Row Hash PI values
HBN and data

PARSER

Data Table

Message Passing Layer (Hash Maps)

AMP 1 AMP n - 1AMP x... ...AMP 0 AMP n

PI value = 197190

Hashing
Algorithm

000A1F4A

SQL with primary index values
and data.

For example:
Assume PI value is 197190

Summary

The MPL accesses the Hash Map using
Hash Bucket Number (HBN) of 000A1.

Bucket # 000A1 contains the AMP
number that has this hash value –
effectively the AMP with this row.

HBN – Hash Bucket Number

HBN

Hash Maps

AMP #

Row ID Row Data
Row Hash Uniq Value

x '00000000'

x'000A1F4A' 0000 0001 38

x 'FFFFFFFF'

ds186034
Sticky Note
its gonna come up with a 32 bit hashfrom the first 20 bits, it figured it out...

 Storing and Accessing Data Rows Page 5-24

Hashing Down to the AMPs
The rows of all tables are distributed across the AMPs according to their Primary Index
value. The Primary Index value goes into the hashing algorithm and the output is a 32-bit
Row Hash. The high order bits (16 or 20) are referred to as the “bucket number” and are
used to identify a hash map entry. This entry, in turn, is used to identify the AMP that will
be targeted. The remaining 12 or 16 bits are not used to locate the AMP.

The entire 32-bit Row Hash is used by the selected AMP to locate the row within its disk
space.

Hash maps are uniquely configured for each size of system, thus a 96 AMP system will
have a hash map different from a 64 AMP system, but another 64 AMP system will have the
same map (if the have the same number of bits in their HBN).

Each hash map is simply an array that associates Hash Bucket Number (HBN) values or
bucket numbers with specific AMPs.

The Hash Bucket Number (prior to Teradata 12.0) has also been referred to as the DSW or
Destination Selection Word.

When a system grows, new AMPs are typically added. This requires a change to the hash
map to reflect the new total number of possible target AMPs.

Storing and Accessing Data Rows Page 5-25

Hashing Down to the AMPs

Index value(s)

Hashing Algorithm

Hash Map

AMP #

The hashing algorithm is designed to insure even distribution of
unique values across all AMPs.

Different hashing algorithms are used for different international
character sets.

A Row Hash is the 32-bit result of applying a hashing algorithm to
an index value.

The Hash Bucket Number is represented by the high order bits
(usually 20 on newer systems) of the Row Hash.

A Hash Map is uniquely configured for each system.

It is a array of entries (buckets) which associates bucket
numbers with specific AMPs.

Two systems with the same number of AMPs will have the same
Hash Map (if both have the same number of bits in their HBN).

Changing the number of AMPs in a system requires a change to
the Hash Map.

{
{
{
{

Hash Bucket
Number

Row Hash

ds186034
Sticky Note
its 32 bit

 Storing and Accessing Data Rows Page 5-26

A Hashing Example
The facing page shows an example of how the hashing algorithm would produce a 32-bit
row hash value on the primary index value of 197190.

The hash value is divided into two parts. The first 20 bits in this example are the Hash
Bucket Number. These bits are also simply referred to as the Hash Bucket. The hash
bucket points to a particular hash map entry, which in turn points to one AMP. The entire
Row Hash along with the Table ID references a particular logical location on that AMP.

Storing and Accessing Data Rows Page 5-27

A Hashing Example

Orders

Order
Number

PK

UPI

Customer
Number

Order
Date

Order
Status

197185 2005 2012-04-10 C
197186 3018 2012-04-10 O
197187 1035 2012-04-11 O
197188 1035 2012-04-11 C
197189 1001 2012-04-11 O
197190 2087 2012-04-11 C
197191 1012 2012-04-12 C
197192 3600 2012-04-12 C
197193 5650 2012-04-13 O
197194 1009 2012-04-13 O

SELECT * FROM Orders
WHERE order_number = 197190;

197190

Hashing Algorithm

000A1 F4A

* Assumes 20-bit hash bucket numbers.

32 bit Row Hash

Remaining 12 bitsHash Bucket Number *

0000 0000 0000 1010 0001 1111 0100 1010

0 0 0 A 1

 Storing and Accessing Data Rows Page 5-28

The Hash Map
A hash map is simply an array of entries where each entry is two bytes long. The hash map
is loaded into memory and is used by Teradata software. Each entry contains an AMP
number for the system on which Teradata is implemented. The hash bucket number (or
bucket number) is an offset into the hash map to locate a specific entry (or AMP).

For systems using a 16-bit hash bucket number, the hash map has 65,536 entries. For
systems using a 20-bit hash bucket number, the hash map has 1,048,576 entries
(approximately 1 million entries).

To determine the destination AMP for a Primary Index operation, the hash map is checked
by BYNET software using the row hash information. A message is placed on the BYNET
to be sent to the target AMP using point-to-point communication.

In the example, the HBN entry 000A1 (hexadecimal) contains an entry that identified AMP
13. AMP 13 will be the recipient of the message from the Message Passing Layer.

The facing page identifies a portion of an actual primary hash map for a 26 AMP system.

An example of hash functions that can be used in SQL follows:

SELECT
 HASHROW (197190) AS "Hash Value"
,HASHBUCKET (HASHROW (197190)) AS "Bucket Num"
,HASHAMP (HASHBUCKET (HASHROW (197190))) AS "AMP Num"
,HASHBAKAMP (HASHBUCKET (HASHROW (197190))) AS "AMP Fallback Num"
;

 *** Query completed. One row found. 4 columns returned.
 *** Total elapsed time was 1 second.

Hash Value Bucket Num AMP Num AMP Fallback Num
000A1F4A 161 13 0

Storing and Accessing Data Rows Page 5-29

The Hash Map

197190 Hashing Algorithm 000A1F4A

HASH MAP

0 1 2 3 4 5 6 7 8 9 A B C D E F

0007
0008
0009
000A
000B
000C

AMP 13

197190 2087 2012-04-11 C

Portion of actual hash map (20-bit hash bucket numbers) for a 26
AMP system. AMPs are shown in decimal format.

* With 20-bit hash bucket
numbers, the hash map has
1,048,576 entries.

With 16-bit hash bucket
numbers, the hash map only
has 65,536 entries.

32 bit Row Hash

Remaining 12 bitsHash Bucket Number *

0000 0000 0000 1010 0001 1111 0100 1010

0 0 0 A 1

24 25 19 12 19 19 25 23 20 20 23 20 21 24 13 20
21 22 20 20 22 23 25 21 11 23 10 22 13 10 24 12
21 21 22 14 21 21 22 23 22 22 24 12 25 25 11 11
08 13 23 14 24 09 11 11 23 23 15 25 23 23 13 07
25 06 15 08 24 24 12 24 12 09 10 24 25 05 24 24
16 12 09 25 12 16 14 04 09 09 13 14 25 25 03 13

ds186034
Sticky Note
000A1=13

 Storing and Accessing Data Rows Page 5-30

Hash Maps for Different Systems
The diagrams on the facing page show a graphical representation of a Primary Hash Map for
an 8 AMP system and a Primary Hash Map for a 16 AMP system.

A data value which hashes to “000028CF” will be directed to different AMPs on different
systems. For example, this hash value will be associated with AMP 7 on an 8 AMP system
and AMP 15 on a 16 AMP system.

Note: These are the actual partial hash maps for 8 and 16 AMP systems.

Storing and Accessing Data Rows Page 5-31

Hash Maps for Different Systems

Hash Bucket Number Remaining bits

Row Hash (32 bits)

The integer value 337772
hashes to:

00002 8CF

8 AMP system – AMP 07
16 AMP system – AMP 15

PRIMARY HASH MAP – 8 AMP System

07 06 07 06 07 04 05 06 05 05 06 06 07 07 03 04
07 07 02 04 01 00 05 04 03 02 03 05 01 00 02 06
01 00 05 05 03 02 04 03 01 00 06 02 04 04 01 00
07 06 03 03 06 06 02 02 01 00 01 00 07 07 05 07
04 04 05 07 05 06 07 07 03 02 03 04 01 00 02 06
01 00 05 04 03 02 06 05 01 00 06 05 07 06 05 07

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000
0001
0002
0003
0004
0005

PRIMARY HASH MAP – 16 AMP System

15 14 15 15 13 14 12 14 13 15 15 12 11 12 13 14
13 14 14 10 15 08 11 11 15 09 10 12 09 09 10 13
10 10 13 14 11 11 12 12 11 11 14 12 13 14 12 12
15 15 13 14 06 08 13 14 13 13 14 14 07 08 15 07
15 04 05 07 09 06 09 07 15 15 03 08 15 15 02 06
01 00 05 04 08 10 10 05 08 08 06 09 07 06 05 11

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000
0001
0002
0003
0004
0005Portions of actual hash maps

with 1,048,576 hash buckets.

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

 Storing and Accessing Data Rows Page 5-32

Identifying Rows
Can two different PI values come out of the hashing algorithm with the same row hash
value? The answer is “Yes”. There are two ways that can happen.

First, two different primary index values may happen to hash identically. This is called a
hash synonym.

Secondly, if a non-unique primary index is used; duplicate NUPI values will produce the
same row hash.

Storing and Accessing Data Rows Page 5-33

Identifying Rows

Consideration #1

A Row Hash = 32 bits = 4.2 billion possible
values

Because there is an infinite number of
possible data values, some data values will
have to share the same row hash.

Hash Algorithm

1254 7769

40A70 3BE 40A70 3BE Hash Synonyms

Data values input

Consideration #2

A Primary Index may be non-unique (NUPI).

Different rows will have the same PI value
and thus the same row hash.

A row hash is not adequate to uniquely identify a row.

Conclusion

A row hash is not adequate to uniquely identify a row.

Hash Algorithm

(John)
'Smith'

2482A D73

(Dave)
'Smith' NUPI Duplicates

Rows have
same hash

2482A D73

 Storing and Accessing Data Rows Page 5-34

The Row ID
In order to differentiate each row in a table, every row is assigned a unique Row ID. The
Row ID is a combination of the row hash value plus a uniqueness value. The AMP
appends the uniqueness value to the row hash when it is inserted. The Uniqueness Value is
used to differentiate between PI values that generate identical row hashes.

The first row inserted with a particular row hash value is assigned a uniqueness value of 1.
Each new row with the same row hash is assigned an integer value one greater than the
current largest uniqueness value for this Row ID.

If a row is deleted or the primary index is modified, the uniqueness value can be reused.

Only the Row Hash portion is used in Primary Index operations. The entire Row ID is used
for Secondary Index support that is discussed in a later module.

In summary, Row Hash is a 32-bit value. Up to and including Teradata V2R6.2, the
Message Passing Layer looks at the high-order 16 bits (previously called “DSW” -
Destination Selection Word). This is used to index into the Hash Map to determine which
AMP gets the row or is used to retrieve a row. Once the AMP has been determined, the
entire 32-bits of the Row Hash are passed to the AMP. The AMP uses the entire 32-bit Row
Hash to store/retrieve the row.

Since there are only 4 billion permutations of Row Hash, you can get duplicates. NUPI
Duplicates also cause duplicate Row Hashes, therefore the Row Hash is not sufficient to
uniquely identify a row in a table. Therefore, the AMP adds another 32-bit number (called a
uniqueness value) to the Row Hash. This total 64-bit number (32-bit Row Hash + 32-bit
Uniqueness Value) is called the Row ID. This number uniquely identifies a row in a table.

Storing and Accessing Data Rows Page 5-35

The Row ID

To uniquely identify a row, we add a 32-bit uniqueness value.

The combined row hash and uniqueness value is called a Row ID.

Row Hash
(32 bits)

Uniqueness Id
(32 bits)

Row ID

Each stored row has
a Row ID as a prefix.

Rows are logically
maintained in Row ID
sequence.

Row ID Row Data

3B11 5032 0000 0001 1018 Reynolds Jane
3B11 5032 0000 0002 1020 Davidson Evan
3B11 5032 0000 0003 1031 Green Jason
3B11 5033 0000 0001 1014 Jacobs Paul
3B11 5034 0000 0001 1012 Chevas Jose
3B11 5034 0000 0002 1021 Carnet Jean

: : : : :

Row Hash Unique ID Emp_No Last_Name First_Name

Row ID Row Data

 Storing and Accessing Data Rows Page 5-36

Storing Rows (1 of 2)
Rows are stored in a data block in Row ID sequence. As rows are added to a table with the
same row hash, the uniqueness value is incremented by one in order to provide a unique
Row ID.

Assume Last_Name is a NUPI and that all rows in this example hash to the same AMP.

The ‘John Smith’ row is assigned to AMP 3 based on the bucket number portion of the row
hash. Because it is the first row with this row hash, a uniqueness id of 1 is assigned.

The ‘Sam Adams’ row has a different row hash and thus is also assigned a uniqueness value
of 1. The bucket number, although different, also points to AMP 3 in the hash map.

Storing and Accessing Data Rows Page 5-37

Storing Rows (1 of 2)

Assumptions:
Last_Name is defined as a NUPI.
All rows in this example hash to the same AMP.

Add a row for 'John Smith'

Add a row for 'Sam Adams'

Row ID Row Data

Row Hash Unique ID Last_Name First_Name Etc.

2482A D73 0000 0001 Smith John

Row ID Row Data

Row Hash Unique ID Last_Name First_Name Etc.

2482A D73 0000 0001 Smith John
782B7 E4D 0000 0001 Adams Sam

'Adams' Hash Algorithm 782B7 E4D Hash Map AMP #3

'Smith' Hash Algorithm 2482A D73 Hash Map AMP #3

 Storing and Accessing Data Rows Page 5-38

Storing Rows (2 of 2)
The ‘Fred Smith’ row hashes to the same row hash as ‘John Smith’ because it is a NUPI
duplicate. It is therefore assigned a uniqueness id of 2.

The ‘Dan Jones’ row also hashes to the same row hash because it is a hash synonym. It is
thus assigned a uniqueness id of 3.

Note: In reality, the last names of Smith and Jones DO NOT hash to the same value. This is
simply an example that illustrates how the uniqueness ID is used when a hash synonym does
occur.

Storing and Accessing Data Rows Page 5-39

Storing Rows (2 of 2)

Add a row for 'Fred Smith' - (NUPI Duplicate)

Row ID Row Data

Row Hash Unique ID Last_Name First_Name Etc.

2482A D73 0000 0001 Smith John
2482A D73 0000 0002 Smith Fred
782B7 E4D 0000 0001 Adams Sam

'Smith' Hash Algorithm 2482A D73 Hash Map AMP #3

Add a row for 'Dan Jones' - (Hash Synonym)

'Jones' Hash Algorithm 2482A D73 Hash Map AMP #3

Row ID Row Data

Row Hash Unique ID Last_Name First_Name Etc.

2482A D73 0000 0001 Smith John
2482A D73 0000 0002 Smith Fred
2482A D73 0000 0003 Jones Dan
782B7 E4D 0000 0001 Adams Sam

Given the row hash, what other information would be needed to find the 'Dan Jones' row?
… The 'Fred Smith' row?

 Storing and Accessing Data Rows Page 5-40

Locating a Row on an AMP Using a PI
To locate a row, the AMP file system searches through a memory-resident structure called
the Master Index. An entry in the Master Index will indicate that if a row with this Table ID
and row hash exists, then it must be on a specific disk cylinder.

The file system will use the cylinder number to locate the Cylinder Index and search through
the designated Cylinder Index. There it will find an entry that indicates that if a row with
this Table ID and row hash exists, it must be in one specific data block on that cylinder.

The file system then searches the data block until it locates the row(s) or returns a No Rows
Found condition code.

Table-id
Row-hash

Row-hash
PI Value

Master
Index

Cylinder
Index

Data
Block Data Row

Table-id
Row-hash

Storing and Accessing Data Rows Page 5-41

Locating a Row On An AMP Using a PI

Locating a row on an AMP
requires three input elements:

1. The Table ID
2. The Row Hash of the PI
3. The PI value itself

Cyl 1
Index

Cyl 2
Index

Cyl 3
Index

Cyl 4
Index

Cyl 5
Index

Cyl 6
Index

Cyl 7
Index

M
a
s
t
e
r

I
n
d
e
x

Data RowData Row

DATA
BLOCK

AMP #3

PI Value

Master
Index

Cylinder
Index

Data
Block

Table Id
Row Hash

Cylinder #
Table Id
Row Hash

Row Hash
PI Value

Cylinder #

Data Block Address

Data Row

START WITH: FIND:APPLY TO:

Table ID

Row Hash

 Storing and Accessing Data Rows Page 5-42

Module 5: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Storing and Accessing Data Rows Page 5-43

Module 5: Review Questions

Answer the following either as True or False as these apply to Primary Indexes:

True or False 1. UPI and NUPI equality value accesses are always a one-AMP operation.

True or False 2. UPI and NUPI indexes allow NULL in a primary index column.

True or False 3. UPI, NUPI, and NOPI tables allow duplicate rows in the table.

True or False 4. Only UPI can be used as a Primary Key implementation.

Fill in the Blanks

5. The output of the hashing algorithm is called the _____ _____.

6. To determine the target AMP, the Message Passing Layer must lookup an entry in the Hash Map
based on the _______ _______ _______.

7. A Row ID consists of a row hash plus a ____________ value.

8. A uniqueness value is required to produce a unique Row ID because of ______ ___________ and
________ ___________.

9. Once the target AMP has been determined for a PI search, the _______ ________ for that AMP is
accessed to determine the cylinder that may hold the row.

10. The Cylinder Index points us to the address and length of the data ________.

 Storing and Accessing Data Rows Page 5-44

Notes

Secondary Indexes and Table Scans Page 6-1

Module 6

Teradata Proprietary and Confidential

Secondary Indexes and Table Scans

After completing this module, you will be able to:

 Define Secondary Indexes.

 Distinguish between the implementation of unique and
non-unique secondary indexes.

 Define Full Table Scans and what causes them.

 Describe the operation of a Full Table Scan in a parallel
environment.

 Secondary Indexes and Table Scans Page 6-2

Notes

Secondary Indexes and Table Scans Page 6-3

Table of Contents

Secondary Indexes ... 6-4
Choosing a Secondary Index .. 6-6
Unique Secondary Index (USI) Access.. 6-8
Non-Unique Secondary Index (NUSI) Access .. 6-10
Comparison of Primary and Secondary Indexes .. 6-12
Full Table Scans ... 6-14
Module 6: Review Questions ... 6-16

 Secondary Indexes and Table Scans Page 6-4

Secondary Indexes
A secondary index is an alternate path to the data. Secondary Indexes are used to improve
performance by allowing the user to avoid scanning the entire table. A Secondary Index is
like a Primary Index in that it allows the user to locate rows. It is unlike a Primary Index in
that it has no influence on the way rows are distributed among AMPs. A database designer
typically chooses a secondary index because it provides faster set selection.

Primary Index requests require the services of only one AMP to access rows, while
secondary indexes require at least two and possibly all AMPs, depending on the index and
the type of operation. A secondary index search will typically be less expensive than a full
table scan.

Secondary indexes add overhead to the table, both in terms of disk space and maintenance;
however they may be dropped when not needed, and recreated whenever they would be
helpful.

Secondary Indexes and Table Scans Page 6-5

Secondary Indexes

• A secondary index provides an alternate path to the rows of a table.

• A secondary index can be used to maintain uniqueness within a column or set of
columns.

• A table can have from 0 to 32 secondary indexes.

• Secondary Indexes:

– Do not effect table distribution.

– Add overhead, both in terms of disk space and maintenance.

– May be added or dropped dynamically as needed.

– Are chosen to improve table performance.

There are 3 general ways to access a table:

Primary Index access (one AMP access)

Secondary Index access (two or all AMP access)

Full Table Scan (all AMP access)

ds186034
Sticky Note
for performance reasons

 Secondary Indexes and Table Scans Page 6-6

Choosing a Secondary Index
Just as with primary indexes, there are two types of secondary indexes – unique (USI) and
non-unique (NUSI).

Secondary Indexes may be specified at table creation or at any time during the life of the
table. It may consist of up to 64 columns, however to get the benefit of the index, the query
would have to specify a value for all 64 values.

Unique Secondary Indexes (USI) have two possible purposes. They can speed up access
to a row which otherwise might require a full table scan without having to rely on the
primary index. Additionally, they can be used to enforce uniqueness on a column or set of
columns. This is sometimes the case with a Primary Key which is not designated as the
Primary Index. Making it a USI has the effect of enforcing the uniqueness of the PK.

Non-Unique Secondary Indexes (NUSI) are usually specified in order to prevent full table
scans. However, a NUSI does activate all AMPs – after all, the value being sought might
well exist on many different AMPs (only Primary Indexes have same values on same
AMPs). If the optimizer decides that the cost of using the secondary index is greater than a
full table scan would be, it opts for the table scan.

All secondary indexes cause an AMP local subtable to be built and maintained as column
values change. Secondary index subtables consist of rows which associate the secondary
index value with one or more rows in the base table. When the index is dropped, the
subtable is physically removed.

Secondary Indexes and Table Scans Page 6-7

Choosing a Secondary Index

A Secondary Index may be defined ...
– at table creation (CREATE TABLE)

– following table creation (CREATE INDEX)

– may be up to 64 columns

If the index choice of column(s) is
unique, it is called a USI.

Unique Secondary Index

Accessing a row via a USI is a 2 AMP
operation.

USI

If the index choice of column(s) is non-
unique, it is called a NUSI.

Non-Unique Secondary Index

Accessing row(s) via a NUSI is an all AMP
operation.

NUSI

CREATE UNIQUE INDEX

(Employee_Number) ON Employee;

CREATE INDEX

(Last_Name) ON Employee;

Notes:

• Creating a Secondary Index cause an internal sub-table to be built.

• Dropping a Secondary Index causes the sub-table to be deleted.

ds186034
Sticky Note
typically only 2 or 3not 64cause if all 64 are not used in select statement, SI will not be used

 Secondary Indexes and Table Scans Page 6-8

Unique Secondary Index (USI) Access
The facing page shows the two AMP accesses necessary to retrieve a row via a Unique
Secondary Index access.

After the row hash of the secondary index value is calculated, the hash map points us to
AMP 1 as containing the subtable row for this USI value. After locating the subtable row in
AMP 1, we find the row-id of the base row we are seeking. This base row id (which
includes the row hash) again allows the hash map to point us to AMP 3 which contains the
base row.

Secondary index access uses the complete row-id to locate the row, unlike primary index
access, which only uses the row hash portion.

The Customer table below is the table used in the example. It is only a partial listing of the
rows.

 Customer Table

Cust Name Phone

USI NUPI

37
98
74
95
27
56
45

White
Brown
Smith
Peters
Jones
Smith
Adams

555-4444
333-9999
555-6666
555-7777
222-8888
555-7777
444-6666

Secondary Indexes and Table Scans Page 6-9

Unique Secondary Index (USI) Access

CREATE UNIQUE INDEX
(Cust) ON Customer;

SELECT *
FROM Customer
WHERE Cust = 56;

Create USI

Access via USI

Hashing
Algorithm

USI Value = 56

PE

Table ID

100

Row Hash

778

Unique Val

7

AMP 0 AMP 1 AMP 2 AMP 3

Base Table Base Table Base Table Base Table

RowID Cust Name Phone

USI NUPI
471, 1 45 Adams 444-6666

555, 6 98 Brown 333-9999
717, 2 72 Adams 666-7777

884, 1 74 Smith 555-6666

RowID Cust Name Phone

USI NUPI

147, 1 49 Smith 111-6666

147, 2 12 Young 777-4444
388, 1 27 Jones 222-8888

822, 1 62 Black 444-5555

RowID Cust Name Phone

USI NUPI

107, 1 37 White 555-4444

536, 5 84 Rice 666-5555
638, 1 31 Adams 111-2222

640, 1 40 Smith 222-3333

RowID Cust Name Phone

USI NUPI

639, 1 77 Jones 777-6666
778, 3 95 Peters 555-7777

778, 7 56 Smith 555-7777

915, 9 51 Marsh 888-2222

USI Subtable USI Subtable USI Subtable USI Subtable

RowID Cust RowID
244, 1 74 884, 1
505, 1 77 639, 1
744, 4 51 915, 9
757, 1 27 388, 1

RowID Cust RowID
135, 1 98 555, 6
296, 1 84 536, 5
602, 1 56 778, 7
969, 1 49 147, 1

RowID Cust RowID
288, 1 31 638, 1
339, 1 40 640, 1
372, 2 45 471, 1
588, 1 95 778, 3

RowID Cust RowID
175, 1 37 107, 1
489, 1 72 717, 2
838, 4 12 147, 2
919, 1 62 822, 1

Message Passing Layer

AMP 0 AMP 1 AMP 2 AMP 3

Message Passing Layer
Customer

Table ID = 100

Table ID Row Hash USI Value

100 602 56

to MPL

 Secondary Indexes and Table Scans Page 6-10

Non-Unique Secondary Index (NUSI) Access
The facing page shows an all-AMP access necessary to retrieve a row via a Non-Unique
Secondary Index access.

After the row hash of the secondary index value is calculated, the Message Passing Layer
will automatically activate all AMPs per instructions of the Parsing Engine. Each AMP
locates the subtable rows containing the qualifying value and row hash. These subtable
rows contain the row-id(s) for the base rows, which are guaranteed to be on the same AMP
as the subtable row. This reduces activity in the MPL and essentially makes the query an
AMP-local operation.

Because each AMP may have more than one qualifying row, it is possible for the subtable
row to have multiple row-ids for the base table rows.

The Customer table below is the table used in the example. It is only a partial listing of the
rows.

 Customer Table

Cust Name Phone

 NUSI NUPI

37
98
74
95
27
56
45

White
Brown
Smith
Peters
Jones
Smith
Adams

555-4444
333-9999
555-6666
555-7777
222-8888
555-7777
444-6666

Secondary Indexes and Table Scans Page 6-11

Non-Unique Secondary Index (NUSI) Access

CREATE INDEX (Name)
ON Customer;

SELECT *
FROM Customer
WHERE Name = 'Adams';

Create NUSI

Access via NUSI

Hashing
Algorithm

NUSI Value =
'Adams'

PE

AMP 0 AMP 1 AMP 2 AMP 3

Table ID =
100

Table ID Row Hash Value

100 567 Adams

to MPL

NUSI Subtable NUSI Subtable NUSI Subtable NUSI Subtable

RowID Name RowID
432,8 Smith 640,1
448,1 White 107,1
567,3 Adams 638,1
656,1 Rice 536,5

RowID Name RowID
432,1 Smith 147,1
448,4 Black 822,1
567,6 Jones 338,1
770,1 Young 147,2

RowID Name RowID
155,1 Marsh 915, 9
396,1 Peters 778, 3
432,5 Smith 778, 7
567,1 Jones 639, 1

RowID Name RowID
432,3 Smith 884,1
567,2 Adams 471,1 717,2
852,1 Brown 555,6

Base Table Base Table Base Table Base Table

RowID Cust Name Phone

NUSI NUPI

471,1 45 Adams 444-6666

555,6 98 Brown 333-9999
717,2 72 Adams 666-7777

884,1 74 Smith 555-6666

RowID Cust Name Phone

NUSI NUPI

147,1 49 Smith 111-6666
147,2 12 Young 777-4444

388,1 27 Jones 222-8888
822,1 62 Black 444-5555

RowID Cust Name Phone

NUSI NUPI

107,1 37 White 555-4444

536,5 84 Rice 666-5555
638,1 31 Adams 111-2222

640,1 40 Smith 222-3333

RowID Cust Name Phone

NUSI NUPI

639,1 77 Jones 777-6666
778,3 95 Peters 555-7777

778,7 56 Smith 555-7777
915,9 51 Marsh 888-2222

Message Passing Layer

AMP 0 AMP 1 AMP 2 AMP 3

Customer Table

 Secondary Indexes and Table Scans Page 6-12

Comparison of Primary and Secondary Indexes
The table on the facing page compares and contrasts primary and secondary indexes:

Primary indexes are required; secondary indexes are optional. All tables must have a
method of distributing rows among AMPs -- the Primary Index.

A table can only have one primary index, but it can have up to 32 secondary indexes.

Both primary and secondary indexes can have up to 64 columns.

Secondary indexes, like primary indexes, can be either unique (USI) or non-unique (NUSI).

The secondary index does not affect the distribution of rows. Rows are only distributed
according to the Primary Index values.

Secondary indexes can be created and dropped dynamically. In other words, Secondary
Indexes can be added as needed. In fact, in some cases it is a good idea to wait and see how
the database is used and then add Secondary Indexes to facilitate that usage.

Both primary and secondary indexes affect system performance. However, Primary and
Secondary Indexes affect performance for different reasons. A poorly-chosen PI results in
“lumpy” data distribution which makes some AMPs do more work than others and slows the
system.

Secondary Indexes affect performance because they require subtables. Both indexes allow
rapid retrieval of specific rows.

Both primary and secondary indexes can be created using multiple data types.

Secondary indexes are stored in separate subtables; primary indexes are not.

Because secondary indexes require separate subtables, extra I/O is needed to maintain those
subtables.

Secondary Indexes and Table Scans Page 6-13

Comparison of Primary and Secondary Indexes

Index Feature Primary Secondary

Required? Yes* No

Number per Table 1 0 - 32

Max Number of Columns 64 64

Unique or Non-unique Both Both

Affects Row Distribution Yes No

Created/Dropped Dynamically No Yes

Improves Access Yes Yes

Multiple Data Types Yes Yes

Separate Physical Structure No Sub-table

Extra Processing Overhead No Yes

May be ordered by value No Yes (NUSI)

May be Partitioned Yes No

* Not required with NoPI table in Teradata 13.0

ds186034
Highlight

ds186034
Highlight

 Secondary Indexes and Table Scans Page 6-14

Full Table Scans
A full table scan is another way to access data without using any Primary or Secondary
Indexes.

In evaluating an SQL request, the Parser examines all possible access methods and chooses
the one it believes to be the most efficient. The coding of the SQL request along with the
demographics of the table and the availability of indexes all play a role in the decision of the
Parser. Some coding constructs, listed on the facing page, always cause a full table scan. In
other cases, it might be chosen because it is the most efficient method. In general, if the
number of physical reads exceeds the number of data blocks then the optimizer may decide
that a full-table scan is faster.

With a full table scan, each data block is found using the Master and Cylinder Indexes and
each data row is accessed only once.

As long as the choice of Primary Index has caused the table rows to distribute evenly across
all of the AMPs, the parallel processing of the AMPs can do the full table scan quickly. The
file system keeps each table on as few cylinders as practical to help reduce the cost full table
scans.

While full table scans are impractical and even disallowed on some systems, the Teradata
Database routinely executes ad hoc queries with full table scans.

Secondary Indexes and Table Scans Page 6-15

Full Table Scans

Every row of the table must be read.

All AMPs scan their portion of the table in parallel.
• Fast and efficient on Teradata due to parallelism.

Full table scans typically occur when either:

• An index is not used in the query

• An index is used in a non-equality test

Customer

Cust_ID Cust_Name Cust_Phone

USI NUPI

SELECT * FROM Customer WHERE Cust_Phone LIKE '858-485-_ _ _ _ ';

SELECT * FROM Customer WHERE Cust_Name = 'Koehler';

SELECT * FROM Customer WHERE Cust_ID > 1000;

Examples of Full Table Scans:

 Secondary Indexes and Table Scans Page 6-16

Module 6: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Secondary Indexes and Table Scans Page 6-17

Module 6: Review Questions

USI
Access FTS

AMPs

rows

Parallel Operation

Uses Hash Maps

Uses Separate Sub-table

Reads all data blocks of table

Fill each box with either Yes, No, or the appropriate number.

NUSI
Access

 Secondary Indexes and Table Scans Page 6-18

Notes

Teradata System Architecture Page 7-1

Module 7

Teradata Proprietary and Confidential

Teradata System Architecture

After completing this module, you will be able to:

 Identify characteristics of various components.

 Specify the difference between a TPA and non-TPA node.

 Teradata System Architecture Page 7-2

Notes

Teradata System Architecture Page 7-3

Table of Contents

Teradata Database Releases ... 7-4

Teradata Version 1 ... 7-4
Teradata Version 2 ... 7-4

Teradata Database Architecture ... 7-6
Teradata Database – Multiple Nodes ... 7-8
MPP Systems ... 7-10
Example of 3 Node Teradata Database System ... 7-12

Example: 5650 and 6844 Disk Arrays ... 7-12
Teradata Cliques .. 7-14
BYNET .. 7-16
BYNET Communication Protocols ... 7-18
Vproc Inter-process Communication ... 7-20
Examples of Teradata Database Systems ... 7-22
Example of 5650 Cabinets ... 7-24
What makes Teradata’s MPP Platforms Special? .. 7-26
Summary .. 7-28
Module 7: Review Exercises .. 7-30

 Teradata System Architecture Page 7-4

Teradata Database Releases
The facing page identifies various Teradata releases that have been available since 1984.
This page identifies some historical information about Teradata Version 1 systems.

Teradata Version 1
Teradata Database Version 1 platforms were first available to customers in 1984. This
first platform was the original Database Computer, DBC/1012 from Teradata. In 1991, the
NCR Corporation introduced the 3600. Both of these systems are older technologies and
both of these systems used a proprietary 16-bit operating system known as TOS (Teradata
Operating System). All AMPs and PEs were dedicated hardware processors that were
connected together using a message-passing layer known as the Ynet.

Both platforms supported channel-attached (Bus and Tag) and LAN-attached host systems.

DBC/1012 Architecture – this system was a dedicated relational database management
system. Two specific components of the DBC/1012 were the IFP and the COP, both of
which were effectively hardware Parsing Engines. The acronyms IFP and COP still appear
in the Data Dictionary even today.

Interface Processor (IFP) – the IFP was the Parsing Engine of the DBC/1012 for
channel-attached systems. For current systems (e.g., 5550), PEs that are assigned
to a channel are identified in the Data Dictionary with a type of IFP.

Communications Processor (COP) – the COP is the Parsing Engine of the DBC/1012

for network-attached systems. For current systems (e.g., 5550), PEs that are
assigned to a LAN (or network) are identified in the Data Dictionary with a type of
COP.

3600 Architecture – this system included hardware AMPs and PEs as well as multipurpose
Application Processors executing UNIX MP-RAS. Application Processors (APs) also
provided the channel and LAN connectivity. UNIX applications were executed on APs
while Teradata was executed on PEs and AMPs. All processing units were connected via
the Ynet.

Teradata Version 2
Starting with Teradata Database Version 2 Release 1 (available in January 1996), the
Teradata Database became an open database system. No longer was Teradata software
dependent on a proprietary Operating System (TOS) and proprietary hardware. Rather, it
was an application that initially executed ran under UNIX.

By porting the Teradata Database to a general-purpose operating system platform, a variety
of processing options against the Teradata database became possible, all within a single
system. OLTP (as well as OLCP and OLAP) applications became processing options in
addition to standard DSS.

Teradata System Architecture Page 7-5

Teradata Database Releases

Teradata Releases

Version 1 Release 1

Release 2

Release 3

Release 4

Release 5

Version 2 Release 1

Release 2

Release 3

Release 4

Release 5

Release 6

Teradata 12.0
Teradata 13.0
Teradata 13.10
Teradata 14.0

Version 1 was a combination of hardware and software.

For example, if a customer needed additional AMPs, the hardware
and software components for an AMP had to be purchased,
installed, and configured.

V1 Platforms Year Available
DBC/1012 1984
3600 1991

Version 2 is an implementation of Teradata PEs and AMPs as
software vprocs (virtual processors).

Teradata is effectively a database application that
executes under an operating system.

Platforms Year Available
5100 1996 (UNIX MP-RAS only)

5650 (requires 12.0 or later) 2010
6650, 6680 2011

6690 2012

ds186034
Sticky Note
Both ran TOS (Teradata Operating System)but had a big limitation - 16bit onlyit could address no more than 16mb of memory (which was huge in 80s)we lived with this until 1996-->then we went to TDCv2...we ran with unix (32b)we can address up to 4gig-->we went to linux - 64bit

ds186034
Sticky Note
1996 - all software based

ds186034
Sticky Note
1. intel - multi-core technology in the same (processing technology has gone up)2. 64bit processing 3. 8gb dim (some nodes have 300gig of memory)--> disks!!! 15,000 spins...same old, same oldspinning disk storage=> SOLID STATE DRIVES! significant change but expensiveIO is still slowCOMPRESSION!!! so we pack all data into block...bring it to memory(some cycles but still good)SOLID STATE and COMPRESSION

 Teradata System Architecture Page 7-6

Teradata Database Architecture
Teradata is effectively an application that runs under an operating system (SUSE Linux,
UNIX MP-RAS, or Windows Server 2003).

PDE software provides Teradata Database software the capability to under a specific
operating system. Parallel Database Extensions (PDE) software is an interface layer on top
of the operating system (Linux, UNIX MP-RAS, or Windows Server 2003). PDE provides
the Teradata Database with the ability to:

 Run the Teradata Database in a parallel environment
 Execute vprocs
 Apply a flexible priority scheduler to Teradata Database sessions
 Debug the operating system kernel and the Teradata Database using resident

debugging facilities

AMPs and PEs are implemented as “virtual processors - vprocs”. They run under the
control of PDE and their number is software configurable.

AMPs are associated with “virtual disks – vdisks” which are associated with logical units
(LUNs) within a disk array.

The versatility of Teradata Database is based on virtual processors (vprocs) that eliminate
dependency on specialized physical processors. Vprocs are a set of software processes that
run on a node under Teradata Parallel Database Extensions (PDE) within the multitasking
environment of the operating system.

Teradata System Architecture Page 7-7

Teradata Database Architecture

• Teradata executes on a 64-bit operating system (e.g., SUSE Linux).
– Utilizes general purpose SMP/MPP hardware.

– Parallel Database Extensions (PDE) is unique per OS that Teradata is supported on.

• AMPs and PEs are implemented as virtual processors (Vprocs).

• “Shared Nothing” Architecture – each AMP has its own memory, manages its own disk
space, and executes independently of other AMPs.

AMP
vproc

PE vproc

AMP
vproc

AMP
vproc

AMP
vproc

AMP
vproc

AMP
vproc

AMP
vproc

AMP
vproc

PDE and BYNET S/W (MPL)

Operating System (e.g., SUSE Linux)

. . .

. . .

Teradata Gateway Software (LANs)

PE vproc

Vdisk Vdisk Vdisk Vdisk Vdisk Vdisk Vdisk Vdisk

Teradata Processing Node (e.g., 6650 node)

. . .

ds186034
Highlight

ds186034
Sticky Note
25 amps/node52 amps/node

 Teradata System Architecture Page 7-8

Teradata Database – Multiple Nodes
A customer may choose to implement Teradata on a small, single node SMP system for
smaller database requirements and to eventually grow incrementally to a multiple terabyte
system. A single-node SMP platform may also be used as low cost development systems.

Under the single-node (SMP) version of Teradata, PE and AMP vproc still communicate
with each other via PDE and BYNET software. All vprocs share the resources of CPUs and
memory within the SMP node.

As a customer’s Teradata database needs grow, additional nodes will probably be needed. A
multi-node system running the Teradata Database is referred to as an MPP (Massive Parallel
Processing) system.

The Teradata Database application is considered a Trusted Parallel Application (TPA).
The Teradata Database is the only TPA application available at this time.

Nodes in a system configuration may or may not be connected to the BYNET. Examples of
nodes and their purpose include:

 TPA (Trusted Parallel Application) node – executes Teradata Database software.

 HSN (Hot Standby Node) – is a spare node in the clique (not running Teradata)

used in event of a node failure.

 Non-TPA (NOTPA) node – is an application node that does not executes Teradata

Database software.

Hot standby nodes allow spare nodes to be incorporated into the production environment.
The Teradata Database can use spare nodes to improve availability and maintain
performance levels in the event of a node failure. A hot standby node is a node that:

 is a member of a clique
 does not normally participate in Teradata Database operations
 can be brought in to participate in Teradata Database operations to compensate for

the loss of a node in the clique

Configuring a hot standby node can eliminate the system-wide performance degradation
associated with the loss of a node. A hot standby node is added to each clique in the system.
When a node fails, all AMPs and all LAN-attached PEs on the failed node migrate to the
node designated as the hot standby node. The hot standby node becomes a production node.
When the failed node returns to service, it becomes the new hot standby node.

Configuring hot standby nodes eliminates:

 Restarts that are required to bring a failed node back into service.
 Degraded service when vprocs have migrated to other nodes in a clique.

Teradata System Architecture Page 7-9

Teradata Database – Multiple Nodes

Teradata is a linearly expandable database – as your database grows, additional nodes
may be added – effectively becoming an MPP (Massive Parallel Processing) systems.

PDE and BYNET

Operating System (e.g., Linux)

Gateway Software

TPA Node 1

AMP
vproc

PE vproc

.

. . .PE vproc

AMP
vproc

AMP
vproc

AMP
vproc

Vdisk Vdisk Vdisk Vdisk

PDE and BYNET

Operating System (e.g., Linux)

Gateway Software

TPA Node 2

AMP
vproc

PE vproc

.

. . .PE vproc

AMP
vproc

AMP
vproc

AMP
vproc

Vdisk Vdisk Vdisk Vdisk

BYNET

Examples of types of nodes that connect to the BYNET.

• TPA (Trusted Parallel Application) node – executes Teradata Database software.

• HSN (Hot Standby Node) – spare node in the clique (not running Teradata) used in event of a node
failure.

• Non-TPA (NOTPA) node – application node that does not executes Teradata Database software.

• Teradata software makes a multi-node system look like a single-Teradata system.

ds186034
Sticky Note
In ETL Types node

 Teradata System Architecture Page 7-10

MPP Systems
When multiple SMP nodes (simply referred to as nodes) are connected together to form a
larger configuration, we refer to this as an MPP (Massively Parallel Processing) system.

The connecting layer (or system interconnect) is called the BYNET. The BYNET is a
combination of hardware and software that allows multiple vprocs on multiple nodes to
communicate with each other.

Because Teradata is a linearly expandable database system, as additional nodes and vprocs
are added to the system, the system capacity scales in a linear fashion.

The BYNET Version 1 can support up to 128 SMP nodes. The BYNET Version 2 can
support up to 512 nodes. The BYNET Version 3 can support up to 1024 nodes and BYNET
Version 4 can support up to 4096 nodes.

Acronyms that may appear in diagrams throughout this course:

 PCI – Peripheral Component Interconnect
 EISA – Extended Industry Standard Architecture
 PBCA – PCI Bus Channel Adapter
 PBSA – PCI Bus ESCON Adapter
 EBCA – EISA Bus Channel Adapter

Teradata System Architecture Page 7-11

MPP Systems

Multiple nodes make up
Massively Parallel Processing
(MPP) system.

A clique is a group of nodes
connected to and sharing the
same storage.

The BYNET consists of
redundant switches that
interconnect multiple
nodes.

BYNET Switch BYNET Switch

HSN NodeTPA NodeTPA Node

: : : : : : : :

 Teradata System Architecture Page 7-12

Example of 2+1 Node Teradata System
The facing page contains an illustration of a simple three-node (2+1) Teradata Database
system. Each node has its own Vprocs to manage, while communication among the Vprocs
takes place via the BYNETs. The PEs are not shown in this example.

Each node is an SMP from a configuration standpoint. Each node has its own CPUs,
memory, UNIX and PDE software, Teradata Database software, BYNET software, and
access to one or more disk arrays.

Nodes are the building blocks of MPP systems. A system size is typically expressed in
terms of number of nodes.

AMPs provide access to user data stored within tables that are physically stored on disk
arrays.

Each AMP is associated with a Vdisk. Each AMP sees its Vdisk as a single disk. Teradata
(AMP software) organizes its data on its disk space (Vdisk) using a Teradata “File System”
structure.

A Vdisk may be actually composed of multiple Pdisks - Physical disk. A Pdisk is assigned
to physical drives in a disk array.

Example: 6650 and Internal 6844 Disk Arrays
The facing page contains an example of a 3-node (2+1) clique sharing two 6844 disk arrays.

Each node has Fibre Channel adapters and Fibre Channel cables (point-to-point connections)
to connect to the disk arrays.

Teradata System Architecture Page 7-13

Example of 2+1 Node Teradata System

2+1 node clique sharing 240 drives; 30 AMPs/node; Linux System

Vdisk 0

Pdisk 0

Pdisk 1

600 GB

MaxPerm = 1.08 TB*

* Actual space is app. 90%.

AMP 0

600 GB

600 GB

600 GB

120 disks 120 disks

0 1 29…….

SMP001-7 AMPs

30 31 59…….

SMP002-6 AMPs SMP002-7

Hot Standby Node

: : : : : : : :

ds186034
Sticky Note
30TB

ds186034
Sticky Note
30TB

 Teradata System Architecture Page 7-14

Teradata Cliques
A clique is a set of Teradata nodes that share a common set of disk arrays. In the event of
node failure, all vprocs can migrate to another available node in the clique. All nodes in the
clique must have access to the same disk arrays.

The illustration on the facing page shows a 6-node system consisting of two cliques, each
containing three nodes. Because all disk arrays are available to all nodes in the clique, the
AMP vprocs will still have access to the rows they are responsible for.

Teradata System Architecture Page 7-15

Teradata Cliques

• A clique is a defined set of nodes that share a common set of disk arrays.

• All nodes in a clique must be able to access all Vdisks for all AMPs in the clique.

• A clique provides protection from a node failure.

• If a node fails, all vprocs will migrate to the remaining nodes in the clique (Vproc
Migration) or to a Hot Standby Node (HSN).

BYNET Switch BYNET Switch

HSNTPA Node

: : : :

TPA Node

: : : :

HSNTPA Node

: : : :

TPA Node

: : : :

ds186034
Sticky Note
so we dont add amps or nodeswe typically add cliques

ds186034
Sticky Note
120TB now

ds186034
Sticky Note
cliques give us protection from node failure

 Teradata System Architecture Page 7-16

BYNET
There are two physical BYNETs, BYNET 0 and BYNET 1. Both are fully operational and
provide fault tolerance in the event of a BYNET failure. The BYNETs automatically handle
load balancing and message routing. BYNET reconfiguration and message rerouting in the
event of a component failure is also handled transparently to the application.

Teradata System Architecture Page 7-17

BYNET

The BYNET is a dual redundant, bi-directional interconnect network.

• All nodes are connected to both BYNETs. This example shows three (2+1) cliques.

BYNET Features:

• Enables multiple nodes to communicate with each other.

• Automatic load balancing of message traffic.

• Automatic reconfiguration after fault detection.

• Fully operational dual BYNETs provide fault tolerance.

• Scalable bandwidth as nodes are added.

• Even though there are two physical BYNETs to provide redundancy and bandwidth,
the Teradata Database and TCP/IP software only see a single network.

BYNET 0 BYNET 1

Node Node HSN Node Node HSN Node Node HSN

 Teradata System Architecture Page 7-18

BYNET Communication Protocols
Using communication-switching techniques, the BYNET allows for point-to-point,
multicast, and broadcast communications among the nodes, thus supporting a monumental
increase in throughput in very large databases. This technology allows Teradata users to
grow massively parallel databases without fear of a communications bottleneck for any
database operations.

Although the BYNET software supports the multi-cast protocol, Teradata only uses this
protocol with Group AMPs operations. This is a Teradata feature starting with release
V2R5. Teradata software will use the point-to-point protocol whenever possible. When an
all-AMP operation is needed, Teradata software uses the broadcast protocol to send
messages to the different SMPs.

The BYNET is linearly scalable for point-to-point communications. For each new node
added to a system with BYNET V4, an additional 960 MB of additional bandwidth is added
to each BYNET, thus providing scalability as the system grows. Scalability comes from the
fact that multiple point-to-point circuits can be established concurrently. With the addition
of another node, more circuits can be established concurrently.

For broadcast and multicast operations with BYNET V4, the bandwidth is 960 MB per
second per BYNET.

BYNET V1 (old implementation) had a bandwidth of 10 MB per second per direction per
BYNET for a node.

Teradata System Architecture Page 7-19

BYNET Communication Protocols

BYNET 0 BYNET 1

PE

AMP ... AMP

PE PE

AMP ... AMP

PE

Hot Standby Node

Point-to-Point (one-to-one)
One vproc communicates with one vproc (e.g., 1 PE to 1 AMP). Scalable bandwidth:

• BYNET v2 – 60 MB x 2 (bi-directional) x 2 BYNETs = 240 MB per node
• BYNET v3 – 93.75 MB x 2 (bi-directional) x 2 BYNETs = 375 MB per node
• BYNET v4 – 240 MB x 2 (bi-directional) x 2 BYNETs = 960 MB per node

Multi-Cast (one-to-many)
One vproc communicates to a subset of vprocs (e.g., Group AMP operations).

Broadcast (one-to-all)
One vproc communicates to all vprocs (e.g., 1 PE to all AMPs). Not scalable.

ds186034
Sticky Note
=10Gig ethernet....)its a node bandwidth....not a system bandwidth(Ethernet is no the same)whilch makes bynet special..scalalble

ds186034
Sticky Note
32 Ports -- we can connect to 32 Nodes

 Teradata System Architecture Page 7-20

Vproc Inter-process Communication
The “message passing layer” is a combination of two pieces of software and hardware– the
PDE and the BYNET device drivers and software and the BYNET hardware.

Communication among vprocs in an MPP system may be either inter-node or intra-node.
When vprocs within the same node communicate they do not require the physical transport
services of the BYNET. However, they do use the highest levels of the BYNET software
even though the messages themselves do not leave the node.

When vprocs must communicate across nodes, they must use the physical transport services
of the BYNET requiring movement of the data. Any broadcast messages, for example, will
go out to the BYNET, even for the AMPs and PEs that are in the same node.

Communication among vprocs in a single SMP system occurs with the PDE and BYNET
software, even though a physical BYNET does not exist in a single-node system.

Teradata System Architecture Page 7-21

Vproc Inter-process Communication

Single-Node System

Teradata Database

PDE and BYNET s/w

vproc vproc vproc

vproc vproc vproc

BYNET

Node 2

Teradata Database

PDE and BYNET s/w

Node 1

Teradata Database

PDE and BYNET s/w

vproc vproc

vproc vproc

vproc vproc vproc

vproc vproc vproc

vproc

vproc

MPP Systems

 Teradata System Architecture Page 7-22

Examples of Teradata Database Systems
The facing page identifies various SMP servers and MPP systems that are supported for the
Teradata Database.

The following dates indicate when these systems were generally available to customers
(GCA – General Customer Availability).

– 5100M January, 1996 (not described in this course)
– 4700/5150 January, 1998 (not described in this course)
– 4800/5200 April, 1999
– 4850/5250 June, 2000
– 4851/4855/5251/5255 July, 2001
– 4900/5300 March, 2002
– 4950/5350 December, 2002
– 4980/5380 August, 2003
– 5400E/5400H March, 2005
– 5450E/5450H April, 2006
– 5500E/5500C/5500H March, 2007
– 2500/5550H January, 2008
– 2550 October, 2008
– 1550 December, 2008
– 2555/5555C/H March, 2009
– 1600/5600C/H February, 2010
– 2650/5650C/H July, 2010 (Internal release; Official release Oct 2010)
– 6650C/H, 6680 2011

The Teradata Database is also available on non-Teradata platforms. The Teradata Database
is available on the Intel-based mid-range platforms running Microsoft Windows 2003 or
Linux. For example, Dell provides processing nodes that are used in some of the Teradata
appliance systems.

Teradata System Architecture Page 7-23

Examples of Teradata Database Systems

Examples of systems used with the Teradata Database include:

Active Enterprise Data Warehouse Systems

5200/525x – up to 2 nodes/cabinet
5300/5350/5380 – up to 4 nodes/cabinet
5400/5450 – up to 10 nodes/cabinet
5500/555x/56xx – up to 9 nodes/cabinet
6650/6680/6690 – up to 4 nodes/cabinet with associated storage

The basic building block is the SMP (Symmetric Multi-Processing) node.

Common characteristics of these systems:

• MPP systems that use the BYNET interconnect
• Single point of operational control – AWS or SWS
• Rack-based systems – each technology is encapsulated in its own chassis

Key differences:

• Speed and capacity of SMP nodes and systems
• Cabinet architecture
• BYNET interface cards, switches and speeds *BYNET V4 – up to 4096 nodes

ds186034
Sticky Note
Administration Work StationService Work Station(Customer Service Desk uses this)used by Teradata customer service

 Teradata System Architecture Page 7-24

6650 Cabinets
The facing page contains two pictures of rack-based cabinets. This represents a two cabinet
3+1 6650 clique.

54xx, 55xx, and 56xx systems also used a rack-based cabinet. The rack was initially
designed for the 54xx systems and has been improved on with later systems such as 55xx
and 56xx systems.

This redesign allows for better cooling and maintenance and has a black and gray
appearance. This design is also used with the LSI disk array cabinets. The 56xx cabinet is a
different cabinet and is approximately 4” deeper than the 55xx cabinets.

An older style rack or cabinet is used for the 4700, 4800, 4850, 4851, 4855, 4900, 4950,
4980, 5200, 5250, 5251, 5255, 5300, 5350, and 5380 systems. This cabinet was similar in
size and almond in color.

The approximate external dimensions of this rack or cabinet are:

Height – 77”
Width – 24” (inside rails are 19” apart and this is often referred to as a 19” wide rack)
Depth – 40” (the 56xx/66xx cabinet is 44” deep)

This industry-standard rack is referred to as a 40U rack where a U is a unit of measure of
height of 1.75” or 4.445 cm.

The system or processor cabinet includes a Server Management (SM) chassis which is often
referred to as the CMIC (Chassis Management Interface Controller). This component is part
of the server management subsystem and interfaces with the AWS or SWS.

Teradata System Architecture Page 7-25

6650 Cabinets

Teradata uses industry standard
rack-based cabinets.

HSN – Hot Standby Node

Teradata TPA Node

AMP. . PE

3+1 6650 Clique

. . . AMP

6650

Secondary SM Switch

Drive Trays (16 HD)

6844 Array
Controllers

TPA Node

TPA Node

TMS Node (opt.)
BYA32S-1
BYA32S-0

SM – CMIC (1U)
Primary SM Switch
AC Box AC Box

6650

Secondary SM Switch

Drive Trays (16 HD)

6844 Array
Controllers

HSN

TPA Node

TMS Node (opt.)

TMS Node (opt.)

SM – CMIC (1U)
Primary SM Switch
AC Box AC Box

ds186034
Sticky Note
U = 3/4 of an inch (4.554cms)

ds186034
Sticky Note
SM - CMIC is proprietaryandBYNETand....?

 Teradata System Architecture Page 7-26

What makes Teradata’s MPP Platforms Special?
The facing page lists the major features of Teradata’s MPP systems.

Acronyms:

PUT – Parallel Upgrade Tool
AWS – Administration Workstation
SWS – Service Workstation – utilizes Server Management Web Services (SMWeb) for

the 56xx.

Teradata System Architecture Page 7-27

What Makes Teradata’s MPP Platforms Special?

Key features of Teradata’s MPP systems include:

• Teradata Database software – allows the Teradata Database to execute on multiple
nodes and act as a single instance.

• Scalable BYNET Interconnect – as you add nodes, you add bandwidth.

• Operating system software (e.g., Linux) for a node is only aware of the resources
within the node and only has to manage those resources.

• AWS/SWS – single point of operational control and scalable server management.

• PUT (Parallel Upgrade Tool) – simplifies installation/upgrade of software across many
nodes.

• Redundant (availability) components. Examples include:

– Hot Standby Nodes
– Two BYNETs
– Two Disk Array Controllers within a Disk Array
– Dual AC capability for increased availability
– N+1 Power Supplies within a processing node and disk arrays

 Teradata System Architecture Page 7-28

Summary
The facing page summarizes the key points and concepts discussed in this module.

Teradata System Architecture Page 7-29

Summary

• Teradata Database is a software implementation of Teradata.

– AMPs and PEs are implemented as virtual processors (Vprocs).

• The Teradata Database utilizes a “Shared Nothing” Architecture – each AMP
has its own memory and manages its own disk space.

– Teradata is called a Trusted Parallel Application (TPA).

• Multiple nodes may be configured to provide a Massively Parallel Processing
(MPP) system.

• A clique is a defined set of nodes that share a common set of disk arrays.

• The Teradata Database is a linearly expandable RDBMS – as your database
grows, additional nodes may be added.

 Teradata System Architecture Page 7-30

Module 7: Review Exercises
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Teradata System Architecture Page 7-31

Module 7: Review Questions

Complete the following.

1. Each AMP has its own memory and manages its own disk space and executes independently of
other AMPs. This is referred to as a _________ _________ architecture.

2. The software component that allows the Teradata Database to execute in different operating system
environments is the __________.

3. A physical message passing interconnect is called the _____________.

4. A clique provides protection from a _________ failure.

5. If a node fails, all vprocs will migrate to the remaining nodes in the clique. This feature is referred to
as ___________ _____________.

6. The _______ or _______ provides a single point of operational control for Teradata MPP systems.

7. A _________ node is part of a system configuration, is connected to the BYNET, and executes the
Teradata Database software.

8. A _________ node is part of a system configuration, connects to the BYNET, and is used to execute
application software other than Teradata Database software.

9. A _________ node is part of a system configuration, connects to the BYNET, and is used as a spare
node in the event of a node failure.

ds186034
Sticky Note
vproc migration

ds186034
Sticky Note
TPA

ds186034
Sticky Note
non or node TPA

ds186034
Sticky Note
HSN - hot standy node

 Teradata System Architecture Page 7-32

Notes

Data Protection Page 8-1

Module 8

Teradata Proprietary and Confidential

Data Protection

After completing this module, you will be able to:

 Explain the concept of FALLBACK tables.

 List the types and levels of locking provided by Teradata.

 Describe the Recovery, Transient and Permanent Journals
and their function.

 List the utilities available for archive and recovery.

 Data Protection Page 8-2

Notes

Data Protection Page 8-3

Table of Contents

Data Protection Features .. 8-4
Disk Arrays .. 8-6
RAID Technologies ... 8-8
RAID 1 – Mirroring ... 8-10

RAID 10 – Striped Mirroring ... 8-10
RAID 1 Summary .. 8-12
Cliques ... 8-14

Large Cliques ... 8-14
Teradata Vproc Migration .. 8-16
Hot Standby Nodes (HSN) ... 8-18

Large Cliques ... 8-18
Performance Degradation with Node Failure .. 8-20

Restarts ... 8-20
Fallback .. 8-22
Fallback Clusters .. 8-24
Fallback and RAID Protection ... 8-26
Fallback and RAID 1 Example .. 8-28

Fallback and RAID 1 Example (cont.) ... 8-30
Fallback and RAID 1 Example (cont.) ... 8-32
Fallback and RAID 1 Example (cont.) ... 8-34
Fallback and RAID 1 Example (cont.) ... 8-36

Fallback vs. non-Fallback Tables Summary .. 8-38
Clusters and Cliques ... 8-40
Locks .. 8-42
Locking Modifier ... 8-44

ACCESS ... 8-44
NOWAIT ... 8-44

Rules of Locking .. 8-46
Access Locks .. 8-48
Transient Journal .. 8-50
Recovery Journal for Down AMPs .. 8-52
Permanent Journal .. 8-54
Archiving and Recovering Data ... 8-56
Module 8: Review Questions ... 8-58

 Data Protection Page 8-4

Data Protection Features
Disk Arrays – Disk arrays provide RAID 1, RAID 5, or RAID S data protection. If a disk
drive fails, the array subsystem provides continuous access to the data. Systems with disk
arrays are configured with redundant Fibre adapters, buses, and array controllers to provide
highly available access to the data.

Clique – a set of Teradata nodes that share a common set of disk arrays. In the event of
node failure, all vprocs can migrate to another available node in the clique. All nodes in the
clique must have access to the same disk arrays.

Locks – Locking prevents multiple users who are trying to change the same data at the same
time from violating the data's integrity. This concurrency control is implemented by locking
the desired data. Locks are automatically acquired during the processing of a request and
released at the termination of the request. In addition, users can specify locks. There are
four types of locks: Exclusive, Write, Read, and Access.

Fallback – protects your data by storing a second copy of each row of a table on an
alternative “fallback AMP”. If an AMP fails, the system accesses the fallback rows to meet
requests. Fallback provides AMP fault tolerance at the table level. With Fallback tables, if
one AMP fails, all of the table data is still available. Users may continue to use Fallback
tables without any loss of available data.

Down-AMP Recovery Journal – started automatically when the system has a failed or
down AMP. Its purpose is to log any changes to rows which reside on the down AMP.

Transient Journal – exists to permit the successful rollback of a failed transaction.
Transactions are not committed to the database until an End Transaction request has been
received by the AMPs, either implicitly or explicitly. Until that time, there is always the
possibility that the transaction may fail in which case the participating table(s) must be
restored to their pre-transaction state.

Permanent Journal – provides selective or full database recovery to a specified point in
time by keeping either before-image or after-images of rows in a journal. It permits
recovery from unexpected hardware or software disasters.

ARC and NetVault/NetBackup – ARC command scripts provide the capability to backup
and restore the Teradata database. The NetVault and NetBackup utilities provide a GUI
based front-end for creation and execution of ARC command scripts.

Data Protection Page 8-5

Data Protection Features

Facilities that provide system-level protection

Disk Arrays
– RAID data protection (e.g., RAID 1)
– Redundant SCSI and/or Fibre Channel buses and array controllers

Cliques and Vproc Migration
– SMP or O.S. failures - Vprocs can migrate to other nodes within the clique.

Facilities that provide Teradata DB protection

Fallback – provides data access with a “down” AMP

Locks – provides data integrity

Transient Journal – automatic rollback of aborted transactions

Down AMP Recovery Journal – fast recovery of fallback rows for AMPs

Permanent Journal – optional before and after-image journaling

ARC – Archive/Restore facility

NetVault and NetBackup – provide tape management and ARC script creation
and scheduling capabilities

 Data Protection Page 8-6

Disk Arrays
Disk arrays utilize a technology called RAID (Redundant Array of Independent Disks)
Spanning the entire spectrum from personal computers to mainframes, disk arrays (utilizing
RAID technology) offer significant improvements in availability, reliability and
maintainability of information storage, along with higher performance. Yet the concept
behind disk arrays is relatively simple.

A disk array subsystem consists of controller(s) which drive a set of disks. Typically, a disk
array is configured to represent a number of logical volumes (or disks), each of which
appears to be a physical disk to the user. A logical volume can be configured to reside on
multiple physical disks. The fact that a logical volume is located on 1 or more disks is
transparent to the user.

There is one immediate advantage of having the data spread across a number of individual
separate disks which arises from the redundant manner in which the data can be stored in the
disk array. The remarkable benefit of this feature is that if any single disk in the array fails,
the unit continues to function without loss of data. This is possible because redundancy
information is stored separate from the data. The redundancy information, as will be
explained, can be a copy of the data or other information that can be used to reconstruct any
data that was stored on a failed disk.

Secondly, performance increases for specific applications are possible as the effective seek
time for finding records on a given disk can potentially be reduced by allowing multiple
simultaneous accesses of different blocks on different disks. Alternatively, with a different
architecture, the rate at which data is transferred to and from the disk array can be increased
significantly over that of a single disk utilizing parallel reads and writes of the data spread
across the disks in the array. This function is referred to as “striping the data”.

Finally, disk array subsystem maintenance is typically simplified because it is possible to
replace (“hot swap”) individual disks and other components while the system continues to
function. You no longer have to bring down the system to replace a disk.

Data Protection Page 8-7

Disk Arrays

Why Disk Arrays?

• High availability through data mirroring or data parity protection.

• Better I/O performance through implementation of RAID technology at the hardware
level.

• Convenience – automatic disk recovery and data reconstruction when mirroring or
data parity protection is used.

DAC

DAC

Host Operating System

Utilities Applications

ds186034
Sticky Note
NetApp

ds186034
Sticky Note
DAC (controllers)Processors within OS...TWO raid technologies:raid 1 mirror, which is wat we typically have.raid 5 (not that much now..some archival,,,test systems,,,dats it)(pop and slot, reconstruction happens automatically)

 Data Protection Page 8-8

RAID Technologies
RAID is an acronym for Redundant Array of Independent Disks. The term was coined in
1988 in a paper describing array configuration and application by researchers and authors
Patterson, Gibson and Katz of the University of California at Berkeley. The word redundant
implies that data, functions and/or components have been duplicated in the array’s
architecture. Duplication of data, functions, and hardware ensures that even in the event of a
failed drive or other components, data is not lost and is continuously available.

The industry currently has agreed upon six RAID configuration levels and designated them
as RAID 0 through RAID 5. The physical configuration is dictated to some extent by the
choice of RAID level; however, RAID conventions specify more precisely how data is
stored on disk.

RAID 0 Data striping
RAID 1 Disk mirroring
RAID 2 Parallel array, hamming code
RAID 3 Parallel array with parity
RAID 4 Data parity protection, dedicated parity drive
RAID 5 Data parity protection, interleaved parity

With Teradata, the RAID 1 is most commonly used. RAID 5 (data parity protection) is also
available with some arrays.

There are other RAID technologies that are defined by specific vendors or are accepted in
the data processing industry. For example, RAID 10 or RAID 1+0 (or RAID 0+1) is
considered to be “striped mirroring”. RAID level classifications do not imply superiority of
one mode over another. Each mode has its rightful application. In fact, these modes of
operation can be combined within a single system configuration, within product limitations,
to obtain maximum flexibility and performance.

The advantages of RAID 1 (compared to RAID 5) include:

Superior Performance

 Mirroring provides the best read and write throughput.
 Maximizes the performance capabilities of controllers and disk drives.
 Best performance when a drive has failed.
 Less reconstruction impact when a drive has failed.

Superior Availability

 Less susceptible to a double disk failure in a RAID drive group.
 Faster reconstruction of a failed drive - shorter vulnerability period during

reconstruction.

Superior Price/Performance - the performance advantage of RAID 1 outweighs the
additional cost for typical Teradata warehouses.

ds186034
Highlight

ds186034
Underline

Data Protection Page 8-9

RAID Technologies

RAID – Redundant Array of Independent Disks

RAID technology provides data protection at the disk drive level. With RAID 1 and RAID
5 technologies, access to the data is continuous even if a disk drive fails.

RAID technologies available with Teradata:

RAID 1 Disk mirroring, used with NetApp (LSI Logic) and EMC2 Disk Arrays.

RAID 5 Data parity protection, interleaved parity, RAID 5 provides more
capacity, but less performance than RAID 1.

For Teradata:

RAID 1 Most useful with typical Teradata data warehouses (e.g., Active Data
Warehouses). Most frequently used RAID technology.

RAID 5 Most useful when creating archival data warehouses that require less
expensive storage and where performance is not as important.

Not frequently used with Teradata systems (not covered in this class).

 Data Protection Page 8-10

RAID 1 – Mirroring
RAID 1 is data mirroring protection. The RAID 1 technology requires each primary data
disk to have a companion disk or mirror. The contents of the primary disk and the mirror
disk are identical.

When data is written on the primary disk, a write also occurs on the mirror disk. The
mirroring process is invisible to the user. For this reason, RAID 1 is also called transparent
mirroring.

With RAID solutions, mirroring is managed by the controller, which provides a higher level
of performance. Performance is improved because data can be read from either the primary
(data) drive or the mirror. The controller decides which read/write assembly (drive actuator)
is closest to the requested data.

If the primary data disk fails, the mirror disk can be accessed without data loss. There is a
minor performance penalty if a drive fails because the array controller can read from either
drive if both drives are available. If either disk fails, the disk array controller can copy the
data from the remaining drive to a replacement drive while normal operations continue.

RAID 10 – Striped Mirroring
When user data is to be written to the array, the controller instructs the array to write a block
of data to one drive pair to the defined stripe depth. Subsequent data blocks are written
concurrently to contiguous sectors in the next drive pair to the defined stripe depth. In this
manner, data are striped across the array of drives, utilizing multiple drives and actuators.

With LSI Logic arrays, striped mirroring is automatic when you create a drive group (with
RAID 1 technology) that has multiple mirrored pairs of disks.

If an application (e.g., Teradata Database) uniformly distributes data, striped mirroring
(RAID 10 or 1+0) and mirroring (RAID 1) will have similar performance.

If an application (database) partitions data, striped mirroring (RAID 10) can lead to
performance gains over mirroring (RAID 1) because array controllers equally spread I/O’s
between channels in the array.

 Striped Mirroring is NOT necessary with Teradata.

Data Protection Page 8-11

RAID 1 – Mirroring

LUN 1LUN 0

Block A0

Block A1

Block A2

Block A3

Block A0

Block A1

Block A2

Block A3

Disk Array Controller

Block B0

Block B1

Block B2

Block B3

Block B0

Block B1

Block B2

Block B3

Mirror 3Disk 3Mirror 1Disk 1

• 2 Drive Groups each with 1 mirrored pair of disks

• Operating system sees 2 logical disks (LUNs) or volumes

• If LUN 0 has more activity, more disk I/Os occur on the first two drives in the array.

2 Drive Groups -
each with 1 pair of
mirrored disks

Notes:

• If the physical drives are 600 GB each, then each LUN or volume is effectively 600 GB.

• If both logical units (or volumes) are assigned to an AMP, then the AMP will have approximately
1.2* TB assigned to it.

* Actual MaxPerm space will be a little less.

ds186034
Sticky Note
Drive GroupLUN(queue depth...etc...intelligence)everything happens thru LUNreconstruction starts?(spare drives are defined..hot spare drive then reconstruction starts right awayif not, the field engineer replaces it and then ARRAY CONTOLLER starts rebuilding..)Can also assign it to 3AMPs...by partitioning it!!

 Data Protection Page 8-12

RAID 1 Summary
RAID 1 characteristics include:

 Data is fully replicated
 Easy to understand technology
 Follows a traditional approach
 Transparent to the operating system
 Redundant drive is affected only by write operations

RAID 1 advantages include:

 High I/O rate (small logical block size)
 Maximum data availability
 Minor performance penalty with single drive failure
 No performance penalty in write intensive environments

RAID 1 disadvantage is:

 Only 50% of total disk space is available for user data. Therefore, RAID 1 has
50% overhead in disk space usage.

Summary

 RAID 1 provides high data availability and performance, but storage costs are high.
 Striped mirroring is not necessary with Teradata.

RAID 1 for Teradata - most useful with typical Teradata data warehouses (e.g., Active
Data Warehouses).

RAID 5 for Teradata - most useful when creating archival data warehouses that
require less expensive storage and where performance is not as important.

Data Protection Page 8-13

RAID 1 Summary

Characteristics
• data is fully replicated

• striped mirroring is possible with multiple pairs of disks in a drive group

• transparent to operating system

Advantages (compared to RAID 5)
• Provides maximum data availability

• Mirroring provides the best read and write throughput

• Maximizes the performance capabilities of controllers and disk drives

• Minimal performance issues when a drive has failed

• Less reconstruction impact when a drive has failed

Disadvantage

• 50% of disk space is used for mirrored data

Summary

• RAID 1 provides best data availability and performance, but storage costs are higher.

•• Striped Mirroring is NOT necessary with TeradataStriped Mirroring is NOT necessary with Teradata..

 Data Protection Page 8-14

Cliques
A clique is a set of Teradata nodes that share a common set of disk arrays. In the event of
node failure, all vprocs can migrate to available nodes in the clique. All nodes in the clique
must have access to the same disk arrays.

The illustration on the facing page shows a three-node clique. In this example, each AMP
has 24 AMP vprocs.

In the event of node failing, the remaining nodes will attempt to absorb all vprocs from the
failed node.

Large Cliques
A large clique is usually a set of 8 Teradata nodes that share a common set of disk arrays
via a set of Fibre Channel switches. In the event of a node failure, AMP vprocs can migrate
to the other available nodes in the clique. In this case, work is distributed among 7 nodes
and the performance degradation is approximately 14%.

After the failed node is recovered/repaired and rebooted, a second restart of Teradata is
needed to reuse the node that had failed. The restart will redistribute the AMPs to the
recovered node.

Acronyms:

 DAC – Disk Array Controller

Data Protection Page 8-15

Cliques

Clique – a set of SMPs that share a common set of disk arrays.

0 1 23….

SMP001-2

24 25 47….

SMP001-3

48 49 71….

SMP001-4

DAC-A DAC-B DAC-A DAC-B DAC-A DAC-B

Example of a 2650 clique (3 nodes, no HSN) – 24 AMPs/node.

ds186034
Sticky Note
Group of nodes that share common storage.with HS node or no HS node4 ampsAppliances - canned configuration ie no flexibility - set configuration24-24-24TD restartsVPROC migration

 Data Protection Page 8-16

Teradata Vproc Migration
If a TPA node (running Teradata) fails, Teradata restarts and the AMP vprocs that were
executing on the failed node are started on other nodes within the clique.

PE vprocs that are assigned to channel connections do not migrate to another node. PE
vprocs that are assigned to gateway connections may or may not (depending on
configuration) migrate to another node within the clique.

If a node fails, the vprocs from the failed node are distributed between the remaining nodes
in the clique. The vconfig.out file determines the node on which vprocs will start if all of
the nodes in the clique are available.

The following is from a “Get Config” command following the failure of SMP001-4.

 DBS LOGICAL CONFIGURATION

Vproc Rel. Node Crash Vproc Config Config Cluster/ RcvJrnl/
Number Vproc# ID Movable Count State Status Type Host No. Host Type
------ ------ ------ ------- ----- ------- -------- ------ -------- ---------
 0* 1 1-02 Yes 0 ONLINE Online AMP 0 On
 1 2 1-02 Yes 0 ONLINE Online AMP 1 On
 2 3 1-02 Yes 0 ONLINE Online AMP 2 On
 3 4 1-02 Yes 0 ONLINE Online AMP 3 On
 : : : : : : : : : :
 22 23 1-02 Yes 0 ONLINE Online AMP 22 On
 23 24 1-02 Yes 0 ONLINE Online AMP 23 On
 24 1 1-03 Yes 0 ONLINE Online AMP 24 On
 25 2 1-03 Yes 0 ONLINE Online AMP 25 On
 26 3 1-03 Yes 0 ONLINE Online AMP 26 On
 : : : : : : : : : :
 46 23 1-03 Yes 0 ONLINE Online AMP 46 On
 47 24 1-03 Yes 0 ONLINE Online AMP 47 On
 48 25 1-02 Yes 0 ONLINE Online AMP 48 On
 49 26 1-02 Yes 0 ONLINE Online AMP 49 On
 50 27 1-02 Yes 0 ONLINE Online AMP 50 On
 : : : : : : : : : :
 59 36 1-02 Yes 0 ONLINE Online AMP 59 On
 60 25 1-03 Yes 0 ONLINE Online AMP 60 On
 61 26 1-03 Yes 0 ONLINE Online AMP 61 On
 62 27 1-03 Yes 0 ONLINE Online AMP 62 On
 : : : : : : : : : :
 71 36 1-03 Yes 0 ONLINE Online AMP 71 On

Data Protection Page 8-17

Teradata Vproc Migration

Clique – a set of SMPs that share a common set of disk arrays.

0 1 23….

SMP001-2

24 25 47….

SMP001-3

48 60 71….

SMP001-4

DAC-A DAC-B DAC-A DAC-B DAC-A DAC-B

After vproc migration, the two remaining nodes each have 36 AMPs.

• After failed node is repaired, a second restart is needed for failed node to rejoin the
configuration.

…. 59

Node Fails

This example illustrates
vproc migration without
the use of Hot Standby

Nodes.

ds186034
Sticky Note
now only 36 - 36there can be performance degradation(if running at 90% before then there will beif running low% then it will be less impact)

ds186034
Sticky Note
say Mem dim failedMem replacedTD has to be restarted!

 Data Protection Page 8-18

Hot Standby Nodes (HSN)
A Hot Standby Node (HSN) is a node that is part of a clique and the hot standby node is
not configured (initially) to execute any Teradata vprocs. If a node in the clique fails, the
AMPs from the failed node move to the hot standby node. The performance degradation is
0%.

When the failed node is recovered/repaired and restarted, it becomes the new hot standby
node. A second restart of Teradata is not needed.

Characteristics of a hot standby node are:

 A node that is a member of a clique.
 Does not normally participate in the trusted parallel application (TPA).
 Can be brought into the TPA to compensate for the loss of a node in the clique.

Hot Standby Nodes are positioned as a performance continuity feature.

Large Cliques
A large clique can also utilize a Hot Standby Node (Node).

For example, an 8-node large clique with a Hot Standby Node would consist of 7 nodes
running Teradata and 1 Hot Standby Node. The performance degradation would be 0% for
an all-AMP operation when a node fails in the clique. This configuration is often referred to
as a 7+1 configuration.

Large Clique configurations have not been supported since the introduction of the 5500.

Data Protection Page 8-19

Hot Standby Nodes (HSN)

Disk Array Disk Array Disk Array Disk Array Disk Array

A A A

A A A

: : :

A A A

A A A

A A A

: : :

A A A

Node 2 Node 3 Node 4Node 1

A A A

A A A

A A A

A A A

1. Performance Degradation is 0% as AMPs
are moved to the Hot Standby Node.

HSN

Node 1

2. When Node 1 is recovered, it becomes the
new Hot Standy Node.

Disk Array Disk Array Disk Array Disk Array Disk Array

A A A

A A A

: : :

A A A

A A A

A A A

: : :

A A A

Node 6 Node 7 Node 8Node 5

A A A

A A A

: : :

A A A

HSN

This example illustrates vproc migration
using a Hot Standby Node.

Node 4

X
A A A

A A A

A A A

A A A

A A A

A A A

: : :

A A A

ds186034
Sticky Note
No perf degradationonce fixed Node 1 becomes the new HSN

 Data Protection Page 8-20

Performance Degradation with Node Failure
The facing page displays 2 examples of the performance degradation with all-AMP
operations that occur when a node fails. Note: WL - Workload

The top example illustrates two 3-node cliques and the performance degradation of 50% for
an all-AMP operation when a node fails in one of the cliques.

From a simple perspective, if you have 3 nodes in a clique and you lose a node, you would
logically think 33% performance degradation. In reality, the performance cost or
degradation is 50%. Assume 3 nodes, 72 AMPs, and you execute an all-AMPs query. This
query uses 240 CPU seconds per node to complete the query. The 3 nodes use a total of 720
CPU seconds to do the work. Another way to look at is that each AMP needs 10 CPU
seconds or 72 AMPs x 10 CPU seconds equals 720 CPU seconds of work to be done.

 A node fails and now there are 2 nodes to complete the query. There are still 72 AMPs and
the query still needs 720 CPUs seconds to complete the query, but now there are only 2
nodes. Each node will need about 360 CPUs seconds to complete the query. Each node has
about 50% more work to do. This is why it is considered a 50% performance cost.

Another way of looking at a query is from the response time back to the user. From a user
perspective, let’s assume that response time back to the user with all 4 nodes normally active
is 1 minute (60 seconds) of wall clock time. The wall clock response time with only 2 active
nodes is 90 seconds. (Since there are fewer nodes, the query is going to take longer to
complete.) From the user perspective, the response time is 50% longer (30/60).

It is true that if you take 67% of 90, you will get 60 and you may think that the degradation
is 33%. However, 90 seconds is not the normal response time. This normal response time is
60 seconds and the exception is 90 seconds, therefore the performance is worse by
50%. The percentage is calculated from the “normal”.

The bottom example illustrates two 3-node cliques, each with a hot standby node (2 TPA
nodes) and the performance degradation of 0% for an all-AMP operation when a node fails
in the clique. This configuration is often referred to as a 2+1 configuration.

Restarts
In the first (top) example, after the failed node is recovered/repaired and rebooted, a second
restart of Teradata is needed to reuse the node that had failed. The restart will redistribute
the AMPs to the recovered node.

With a hot standby node, when the failed node is recovered/repaired and restarted, it
becomes the new hot standby node within the clique. A second restart of Teradata is not
needed.

Data Protection Page 8-21

Performance Degradation with Node Failure

Workload = 6.0
Clique WL = 3.0
Node WL = 1.00

Workload = 6.0
Clique WL = 3.0
Node WL = 1.5

2 Cliques without HSN nodes (3 nodes) – performance degradation of 50% with node failure.

Clique 1
Node 1

1.0

Clique 1
Node 2

1.0

Clique 1
Node 3

1.0

Clique 2
Node 4

1.0

Clique 2
Node 5

1.0

Clique 2
Node 6

1.0

Workload = 6.0
Clique WL = 3.0
Node WL = 1.00

Workload = 6.0
Clique WL = 3.0
Node WL = 1.0

2 Cliques each with a HSN (3+1 nodes) – performance degradation of 0% with node failure.

Clique 1
Node 1

1.0

Clique 1
Node 2

1.0

Clique 1
Node 3

1.0

Clique 2
Node 4

1.0

Clique 2
Node 5

1.0

Clique 2
Node 6

1.0

Clique 1

HSN

Clique 2

HSN

When a node fails, Teradata restarts.

After the node is repaired, it becomes the new Hot Standby Node. A second
restart of Teradata is not required.

Clique 1
Node 2

1.0

Clique 1
Node 3

1.0

Clique 2
Node 4

1.0

Clique 2
Node 5

1.0

Clique 2
Node 6

1.0
X

Clique 1
(Node 1)

1.0

Clique 2

HSN

When a node fails, Teradata restarts.

After the node is repaired, a second restart of Teradata is required to allow the
node to rejoin the configuration.

Clique 1
Node 2

1.5

Clique 1
Node 3

1.5

Clique 2
Node 4

1.0

Clique 2
Node 5

1.0

Clique 2
Node 6

1.0
X

 Data Protection Page 8-22

Fallback
Fallback protects your data by storing a second copy of each row of a table on an alternative
“fallback AMP”. If an AMP fails, the system accesses the fallback rows to meet requests.
Fallback provides AMP fault tolerance at the table level. With Fallback tables, if one AMP
fails, all of the table data is still available. Users may continue to use Fallback tables
without any loss of available data.

When a table is created, or any time after its creation, the user may specify whether or not
the system should keep a fallback copy. If Fallback is specified, it is automatic and
transparent to the user.

Fallback guarantees that the two copies of a row will always be on different AMPs.
Therefore, if either AMP fails, the alternate row copy is still available on the other AMP.

Certainly there is a benefit to protecting your data. However, there are costs associated with
that benefit. They are: twice the disk space for storage and twice the I/O for Inserts,
Updates, and Deletes. (However, the Fallback option does not require any extra I/O for
SELECT operations and the fallback I/O will be performed in parallel with the primary I/O.)

The benefits of Fallback include protecting your data from hardware (disk) failure,
protecting your data from software (node) failure, automatic recovery and minimum
recovery time after repairs or fixes are complete.

A hardware (disk) or software (vproc) failure causes an AMP to be taken off-line
until the problem is corrected.

During this period, Fallback tables are fully available to users.

When the AMP is brought back on-line, the associated Vdisk is refreshed to
reflect any changes during the off-line period.

Data Protection Page 8-23

Fallback

A Fallback table is fully available in the event of an unavailable AMP.

A Fallback row is a copy of a “Primary row” which is stored on a different AMP.

Benefits of Fallback

• Permits access to table data during
AMP off-line period.

• Adds a level of data protection
beyond disk array RAID.

• Automatic restore of data changed
during AMP off-line.

• Critical for high availability
applications.

Cost of Fallback
• Twice the disk space for table storage.

• Twice the I/O for Inserts, Updates and
Deletes.

Loss of any two AMPs in a cluster causes RDBMS to halt!

Primary
rows

Fallback
rows

AMP 0

2 6

5 12
7

11
3

5 1

AMP 1

5 712

2 6

AMP 2

5
1

11 3

AMP 3

Cluster Cluster

ds186034
Sticky Note
SW protection featurecluster - grp of AMPsonly 2 amp cluster0 and 2 - 2amp clusterrow gets inserted in 0 and 2if an AMP is out of service...then FB!

ds186034
Sticky Note
the DD table are fall back protected

 Data Protection Page 8-24

Fallback Clusters
A cluster is a group of AMPs that act as a single fallback unit. Clustering has no effect on
the distribution of the Primary rows of a table. The Fallback row copy however, will always
go to a different AMP in the same cluster.

The cluster size is set when Teradata is configured and the only choice for new systems is 2-
AMP clusters. Years ago, AMP clusters ranged from 2 to 16 AMPs per cluster and were
commonly set as groups of 4 AMPs. Starting with 5450 systems, all clusters are defined as
2 AMP clusters.

Should an AMP fail, the primary and fallback row copies stored on that AMP cannot be
accessed. However, their alternate copies are available through the other AMPs in the same
cluster.

The loss of an AMP in a cluster has no effect upon other clusters. It is possible to lose one
AMP in each cluster and still have full access to all Fallback-protected table data. If both
AMPs fail in a cluster, then Teradata halts.

While an AMP is down, the remaining AMPs in the cluster must do their own work plus the
work of the down AMP.

A small cluster size (e.g., 2 AMP cluster) reduces the chances of have 2 down AMPs in a
single cluster which would cause a non-operational configuration. With today’s new
systems, a typical cluster size of 2 AMPs provides the best option to maximize availability.

Data Protection Page 8-25

Fallback Clusters

• A Fallback cluster is a defined set of 2 AMPs across which fallback is implemented.

• Loss of one AMP in the cluster permits continued table access.

• Loss of two AMPs in the cluster causes the RDBMS to halt.

Primary
rows

Fallback
rows

AMP 0

62 8

41 66 7

AMP 1 AMP 2 AMP 3

Cluster 0

34 5022 5 1978 14 381

58 93 20 88 2 45 17 37 72

Primary
rows

Fallback
rows

AMP 4 AMP 5 AMP 6 AMP 7

Cluster 1

41 766

62 8

58 2093 88 452 17 7237

34 22 50 5 78 19 14 1 38

Cluster 2 Cluster 3

4

4

ds186034
Sticky Note
because of hash map!

 Data Protection Page 8-26

Fallback and RAID Protection
RAID 1 mirroring and RAID 5 data parity protection provide protection in the event of a
disk drive failure.

Fallback provides another level of data protection beyond disk mirroring or data parity
protection.

Examples of other failures that Fallback provides protection against include:

 Multiple drive failures in the same drive group
 An array is not available (e.g., both disk array controllers fail in the disk array)
 An AMP is not available (e.g., a software problem)

Data Protection Page 8-27

Fallback and RAID Protection

• RAID 1 Mirroring or RAID 5 Data Parity Protection provides protection in the
event of disk drive failure.

– Provides protection at a hardware level

– Teradata is unaware of the RAID technology used

• Fallback provides an additional level of data protection and provides access
to data when an AMP is not available (not online).

• Additional types of failures that Fallback protects against include:

– Multiple drives fail in the same drive group,

– Disk array is not available

• Both disk array controllers fail in a disk array

• Two of the three power supplies fail in a disk array

– AMP is not available (e.g., software or data error)

• The combination of RAID 1 and Fallback provides the highest level of
availability.

 Data Protection Page 8-28

Fallback and RAID 1 Example
The next set of pages contains an example of how Fallback and RAID 1 Mirroring work
together.

Data Protection Page 8-29

Fallback and RAID 1 Example

Primary
rows

Fallback
rows

AMP 0

62 278

15 78 99

AMP 1 AMP 2 AMP 3

Vdisk

34 5022 15 9978 19 2839

19 39 28 862 27 34 22 50

RAID 1 -
Mirrored
Pair of
Physical
Disk
Drives

Primary 34
22
50

Fallback 19
38
28

Primary 34
22
50

Fallback 19
38
28

Primary 19
39
28

Fallback 34
22
50

Primary 19
39
28

Fallback 34
22
50

Primary 62
8

27
Fallback 15

78
99

Primary 62
8

27
Fallback 15

78
99

Primary 15
78
99

Fallback 62
8

27

Primary 15
78
99

Fallback 62
8

27

This example assumes that RAID 1 Mirroring is used and the table is fallback protected.

 Data Protection Page 8-30

Fallback and RAID 1 Example (cont.)
The example of how Fallback and RAID 1 Mirroring work together is continued.

In this example, one disk drive has failed in the first drive group. Is Fallback needed? No.
As a matter of fact, Teradata doesn’t even realize that the drive has failed. The disk array
continues to provide access to the data directly from the second disk drive in the drive
group. The disk array controller will send a “fault” or error message to the AWS.

Data Protection Page 8-31

Fallback and RAID 1 Example (cont.)

Primary
rows

Fallback
rows

AMP 0

62 278

15 78 99

AMP 1 AMP 2 AMP 3

Vdisk

34 5022 15 9978 19 2839

19 39 28 862 27 34 22 50

RAID 1 -
Mirrored
Pair of
Physical
Disk
Drives

Primary 34
22
50

Fallback 19
38
28

Primary 34
22
50

Fallback 19
38
28

Primary 19
39
28

Fallback 34
22
50

Primary 19
39
28

Fallback 34
22
50

Primary 62
8

27
Fallback 15

78
99

Primary 62
8

27
Fallback 15

78
99

Primary 15
78
99

Fallback 62
8

27

Primary 15
78
99

Fallback 62
8

27

Assume one disk drive fails. Is Fallback needed in this example?

ds186034
Sticky Note
drive faileddrive failure is not recognizedOS, SWS, supp center--> all gets notified

 Data Protection Page 8-32

Fallback and RAID 1 Example (cont.)
The example of how Fallback and RAID 1 Mirroring work together is continued.

In this example, assume two disk drives have failed – one in the first drive group and one in
the third drive group. Is Fallback needed? No. Like before, Teradata doesn’t even realize
that the drives have failed. The disk array continues to provide access to the data directly
from the second disk drive each of the drive groups. The disk array controller will send
“fault” or error messages to the AWS.

Data Protection Page 8-33

Fallback and RAID 1 Example (cont.)

Primary
rows

Fallback
rows

AMP 0

62 278

15 78 99

AMP 1 AMP 2 AMP 3

Vdisk

34 5022 15 9978 19 2839

19 39 28 862 27 34 22 50

RAID 1 -
Mirrored
Pair of
Physical
Disk
Drives

Primary 34
22
50

Fallback 19
38
28

Primary 34
22
50

Fallback 19
38
28

Primary 19
39
28

Fallback 34
22
50

Primary 19
39
28

Fallback 34
22
50

Primary 62
8

27
Fallback 15

78
99

Primary 62
8

27
Fallback 15

78
99

Primary 15
78
99

Fallback 62
8

27

Primary 15
78
99

Fallback 62
8

27

Assume two disk drives have failed. Is Fallback needed in this example?

 Data Protection Page 8-34

Fallback and RAID 1 Example (cont.)
The example of how Fallback and RAID 1 Mirroring work together is continued.

In this example, assume two disk drives have failed – both failed drives are in the first drive
group. Is Fallback needed? Yes, if you need to access the data in this table. When multiple
disk drives fail in a drive group, the data (Vdisk) is not available and the AMP goes into a
FATAL state. At this point, Teradata does realize that an AMP is not available and Teradata
restarts. The disk array controller will send “fault” or error messages to the AWS.

The AWS will also get “fault” messages indicating that Teradata has restarted.

Data Protection Page 8-35

Fallback and RAID 1 Example (cont.)

Primary
rows

Fallback
rows

AMP 0

62 278

15 78 99

AMP 1 AMP 2 AMP 3

Vdisk

34 5022 15 9978 19 2839

19 39 28 862 27 34 22 50

RAID 1 -
Mirrored
Pair of
Physical
Disk
Drives

Primary 34
22
50

Fallback 19
38
28

Primary 34
22
50

Fallback 19
38
28

Primary 19
39
28

Fallback 34
22
50

Primary 19
39
28

Fallback 34
22
50

Primary 62
8

27
Fallback 15

78
99

Primary 62
8

27
Fallback 15

78
99

Primary 15
78
99

Fallback 62
8

27

Primary 15
78
99

Fallback 62
8

27

Assume two disk drives have failed in the same drive group. Is Fallback needed?

 Data Protection Page 8-36

Fallback and RAID 1 Example (cont.)
The example of how Fallback and RAID 1 Mirroring work together is continued.

In this example, assume three disk drives have failed – two failed drives are in the first drive
group and one failed drive is in the third drive group. Is Fallback needed? Yes, if you need
to access the data in this table. When multiple disk drives fail in a drive group, the data
(Vdisk) is not available and the AMP goes into a FATAL state. However, the third AMP is
still operational and online.

Data Protection Page 8-37

Fallback and RAID 1 Example (cont.)

Primary
rows

Fallback
rows

AMP 0

62 278

15 78 99

AMP 1 AMP 2 AMP 3

Vdisk

34 5022 15 9978 19 2839

19 39 28 862 27 34 22 50

RAID 1 -
Mirrored
Pair of
Physical
Disk
Drives

Primary 34
22
50

Fallback 19
38
28

Primary 34
22
50

Fallback 19
38
28

Primary 19
39
28

Fallback 34
22
50

Primary 19
39
28

Fallback 34
22
50

Primary 62
8

27
Fallback 15

78
99

Primary 62
8

27
Fallback 15

78
99

Primary 15
78
99

Fallback 62
8

27

Primary 15
78
99

Fallback 62
8

27

Assume three disk drive failures. Is Fallback needed? Is the data still available?

ds186034
Sticky Note
0 and 2 - FALLBACK pair

 Data Protection Page 8-38

Fallback vs. non-Fallback Tables Summary
Fallback tables have a major advantage in terms of availability and recoverability. They
can withstand an AMP failure in each cluster and maintain full data availability. A second
AMP failure in any cluster results in a system halt. A manual restart of the system is
required in this circumstance.

Non-Fallback tables are affected by the loss of any one AMP. The table continues to be
accessible, but only for those AMPs that are still on-line. A one-AMP Primary Index access
is possible, but a full table scan is not.

Fallback tables are easily recovered after a failure due to the availability of Fallback rows.
Non-Fallback tables may only be restored from external medium in the event of a disaster.

Data Protection Page 8-39

Fallback vs. non-Fallback Tables Summary

FALLBACK TABLES

One AMP Down - Data fully available

Two or more AMPs Down

AMP AMP AMP AMP

- If different cluster,
data fully available

- If same cluster,
Teradata halts

AMP AMP AMP AMP

Non-FALLBACK TABLES

One AMP Down - Data partially available;
queries that avoid
down AMP succeed.

Two or more AMPs Down

AMP AMP AMP AMP

- If different cluster,
data partially available;
queries that avoid
down AMP succeed.

- If same cluster,
Teradata halts

AMP AMP AMP AMP

 Data Protection Page 8-40

Clusters and Cliques
As you know, a cluster is a group of AMPs that act as a single fallback unit. A clique is a
set of Teradata nodes that share a common set of disk arrays. Clusters provide data access
protection in the event of an AMP failure (usually because of a Vdisk failure). Cliques
provide protection from SMP node failures.

The best availability for Teradata is to spread clusters across different cliques. The “Default
Cluster” function of the CONFIG utility does this automatically.

The example on the facing page illustrates a 4+2 node system. Each clique consists of 3
nodes (2 TPA plus one Hot Standby Node – HSN) connected to a set of disk arrays with 240
disks. This example assumes each node is configured with 30 AMPs.

Data Protection Page 8-41

Clusters and Cliques

Cluster 1 – AMPs 1 and 61

Cluster 0 – AMPs 0 and 60

240 Disks in Disk Arrays
for Clique 0

Clique
0 0 1 29…

SMP001-7

Hot-Standby Node

SMP002-6 SMP002-7

30 31 59…

240 Disks in Disk Arrays
for Clique 1

Clique
1 60 61 89…

SMP003-7

Hot-Standby Node

SMP004-6 SMP004-7

90 91 119…

To provide the highest availability, the goal is to interleave clusters across cliques and
cabinets.

ds186034
Sticky Note
Node

ds186034
Sticky Note
AMPs

 Data Protection Page 8-42

Locks
Locking prevents multiple users who are trying to change the same data at the same time
from violating the data's integrity. This concurrency control is implemented by locking the
desired data. Locks are automatically acquired during the processing of a request and
released at the termination of the request. In addition, users can specify locks.

There are four types of locks: Exclusive, Write, Read, and Access.

Exclusive locks are only applied to databases or tables, never to rows. They are the most
restrictive type of lock; all other users are locked out. Exclusive locks are used rarely, most
often when structural changes are being made to the database.

Write locks enable users to modify data while locking out all other users except readers not
concerned about data consistency (Access lock readers). Until a Write lock is released, no
new read or write locks are allowed.

Read locks are used to ensure consistency during read operations. Several users may hold
concurrent read locks on the same data, during which no modification of the data is
permitted.

Access locks can be specified by users who are not concerned about data consistency. The
use of an access lock allows for reading data while modifications are in process. Access
locks are designed for decision support on large tables that are updated only by small single-
row changes. Access locks are sometimes called “stale read” locks, i.e. you may get ‘stale
data’ that hasn’t been updated.

Three levels of database locking are provided:

 Database - locks all objects in the database
 Table - locks all rows in the table or view
 Row Hash - locks all rows with the same row hash

The type and level of locks are automatically chosen based on the type of SQL command
issued. The user has, in some cases, the ability to upgrade or downgrade the lock.

For example, if an SQL UPDATE command is executed without a WHERE clause, a
WRITE lock is placed on the table. If an SQL UPDATE command is executed with a
WHERE clause that specifies a Primary Index value, then a row hash lock is used.

Data Protection Page 8-43

Locks

Exclusive – prevents any other type of concurrent access

Write – prevents other reads, writes, exclusives

Read – prevents writes and exclusives

Access – prevents exclusive only

There are four types of locks:

Database – applies to all tables/views in the database

Table/View – applies to all rows in the table/views

Row Hash – applies to all rows with same row hash

Locks may be applied at three levels:

Lock types are automatically applied based on the SQL command:

SELECT – applies a Read lock

UPDATE – applies a Write lock

CREATE TABLE – applies an Exclusive lock

ds186034
Sticky Note
using arc utility

ds186034
Sticky Note
dirty read

 Data Protection Page 8-44

Locking Modifier

This option precedes an SQL statement and locks a database, table, view, or row hash. The
locking modifier overrides the default usage lock that Teradata places on a database, table,
view, or row hash in response to a request.

Note: The DROP TABLE access right is required on the table in order to upgrade a
READ or WRITE LOCK to an EXCLUSIVE LOCK.

ACCESS
Access locks have many advantages. This allows quick access to data, even if other
requests are updating the data. They also have minimal effect on locking out others – when
you use an access lock; virtually all requests are compatible with your lock except exclusive
locks

NOWAIT
If a resource is locked and an application does not want to wait for that lock to be released,
the Locking Modifier NOWAIT option can be used. The NOWAIT option indicates that if
the lock cannot be obtained, then the statement will be aborted.

This option is used in situations where it is not desirable to have a statement wait for
resources, possibly also tying up resources in the process of waiting.

Example:

 LOCKING TABLE tablename FOR WRITE NOWAIT UPDATE ….. ;

 *** Failure 7423 Object already locked and NOWAIT.
 Transaction Aborted. Statement# 1, Info =0

The user is informed with a 7423 error status code that indicates the lock could not be placed
due to an existing, conflicting lock.

Data Protection Page 8-45

Locking Modifier

LOCKING ROW FOR ACCESS SELECT * FROM Table_A;

An “Access Lock” allows the user to access (read) an object that has a READ or
WRITE lock associated with it.

In this example, even though an access row lock was requested, a table level
access lock will be issued because the SELECT causes a full table scan.

Note: A "Locking Row" request must be followed by a SELECT.

LOCKING TABLE Table_B FOR EXCLUSIVE UPDATE Table_B SET A = 2011;

This request asks for an exclusive lock, effectively upgrading the lock.

LOCKING TABLE Table_C FOR WRITE NOWAIT UPDATE Table_C SET A = 2012;

The NOWAIT option is used if you do not want your transaction to wait in a queue.

NOWAIT effectively says to abort the the transaction if the locking manager cannot
immediately place the necessary lock. Error code 7423 is returned if the lock
request is not granted.

The locking modifier overrides the default usage lock that Teradata places on a
database, table, view, or row hash in response to a request.

Certain locks can be upgraded or downgraded:

 Data Protection Page 8-46

Rules of Locking
As the facing page illustrates, a new lock request must wait (queue) behind other
incompatible locks that are either in queue or in effect. The new Read lock must wait until
the write lock ahead of it is released before it goes into effect.

In the second example, the second Read lock request may occupy the same position in the
queue as the Read lock that was already there. When the current Write lock is released, both
requests may be given access concurrently. This only happens when locks are compatible.

When an SQL statement provides row hash information, a row hash lock will be used. If
multiple row hashes within the table are affected, a table lock is used.

Data Protection Page 8-47

Rules of Locking

Lock requests are queued
behind all outstanding
incompatible lock requests
for the same object.

Rule

Example 1 – New READ lock request goes to the end of queue.

READ WRITE READ READ WRITE READ

New request New lock queueLock queue Current lock Current lock

Example 2 – New READ lock request shares slot in the queue.

READ READ

New request New lock queueLock queue Current lock Current lock

READ WRITE WRITE

READ

LOCK LEVEL HELD
LOCK
REQUEST

ACCESS

READ

WRITE

EXCLUSIVE

NONE ACCESS READ WRITE EXCLUSIVE

Granted

Granted Granted

GrantedGranted

Granted

Granted

Granted

Granted Granted Queued

QueuedQueued

Queued

Queued

Queued

Queued

QueuedQueued

Queued

 Data Protection Page 8-48

Access Locks
Access locks have many advantages. They allow quick access to data, even if other requests
are updating the data. They also have minimal effect on locking out others - when you use
an access lock; virtually all requests are compatible with yours.

When doing large aggregations of numbers, it may be inconsequential if certain rows are
being updated during the summation, particularly if one is only looking for approximate
totals. Access locks are ideal for this situation.

Looking at Example 3, what happens to the Write lock request when the Read lock goes
away? Looking at the chart, it will be “Granted” since Write and Access are considered
compatible.

Another example not shown on the facing page:

Assume user1 is in ANSI mode and has updated a row, but hasn't entered COMMIT
yet. The actual row in the table is updated on disk; the before-image is located in the TJ
of the WAL log in case user1 decides to ROLLBACK.

If user2 accesses this row with an access lock, the updated row on disk is returned -
even though it is locked and not committed yet. Assume user1 issues a ROLLBACK,
then the before-image in the TJ is used to rollback the row on disk. If user2 selects the
row a second time, user2 will get the row (original) that is now on disk.

Data Protection Page 8-49

Access Locks

Lock requests are queued
behind all outstanding
incompatible lock requests
for the same object.

Rule

Example 3 – New ACCESS lock request granted immediately.

ACCESS WRITE WRITE READ

New request New lock queueLock queue Current lock Current locks

ACCESS

READ

Advantages of Access Locks
Permit quicker access to table in multi-user environment.
Have minimal ‘blocking’ effect on other queries.
Very useful for aggregating large numbers of rows.

Disadvantages of Access Locks
May produce erroneous results if during table maintenance.

LOCK LEVEL HELD
LOCK
REQUEST

ACCESS

READ

WRITE

EXCLUSIVE

NONE ACCESS READ WRITE EXCLUSIVE

Granted

Granted Granted

GrantedGranted

Granted

Granted

Granted

Granted Granted Queued

QueuedQueued

Queued

Queued

Queued

Queued

QueuedQueued

Queued

ds186034
Sticky Note
Access locks can move thru a queue as long as its not blocked by an exclusive lock...its compatible for the most part..

 Data Protection Page 8-50

Transient Journal
The Transient Journal exists to permit the successful rollback of a failed transaction.
Transactions are not committed to the database until an End Transaction request has been
received by the AMPs, either implicitly or explicitly. Until that time, there is always the
possibility that the transaction may fail in which case the participating table(s) must be
restored to their pre-transaction state.

The Transient Journal maintains a copy of all before images of all rows affected by the
transaction. If the event of transaction failure, the before images are reapplied to the
affected tables, the images are deleted from the journal and a rollback operation is
completed. In the event of transaction success, at the point of transaction commit, the before
images for the transaction are discarded from the journal.

In Summary, if a Transaction fails (for whatever reason), the before images in the transient
journal are used to return the data (in the tables involved in the transaction) to its original
state.

Data Protection Page 8-51

Transient Journal

Transient Journal – provides transaction integrity

• A journal of transaction “before images” (UNDO rows) maintained within WAL.
• Provides for automatic rollback in the event of TXN failure.
• Is automatic and transparent.
• “Before images” are reapplied to table if a transaction fails.
• “Before images” are discarded upon transaction completion.

BEGIN TRANSACTION
UPDATE Row A – Before image Row A recorded (Add $100 to checking)
UPDATE Row B – Before image Row B recorded (Subtract $100 from savings)

END TRANSACTION – Discard before images

Successful TXN

BEGIN TRANSACTION
UPDATE Row A – Before image Row A recorded
UPDATE Row B – Before image Row B recorded

(Failure occurs)
(Rollback occurs) – Reapply before images
(Terminate TXN) – Discard before images

Failed TXN

ds186034
Sticky Note
Write Ahead LOGIC (like a syb write ahead log)

ds186034
Sticky Note
Its automatic - we dont turn it on!

 Data Protection Page 8-52

Recovery Journal for Down AMPs
After the loss of any AMP, a Down-AMP Recovery Journal is started automatically. Its
purpose is to log any changes to rows which reside on the down AMP. Any inserts, updates,
or deletes affecting rows on the down AMP, are applied to the Fallback copy within the
cluster. The AMP that holds the Fallback copy logs the Row ID in its Recovery Journal.

This process continues until such time as the down AMP is brought back on-line. As part of
restart activity, the Recovery Journal is read and changed rows are applied to the recovered
AMP. When the journal has been exhausted, it is discarded and those tables that are
fallback-protected are fully recovered.

Data Protection Page 8-53

Recovery Journal for Down AMPs

Automatically activated when an AMP is taken off-line.
Maintained by the other AMPs in a cluster.
Totally transparent to users of the system.

Recovery Journal is:

While AMP is off-line Journal is active.
Table updates continue as normal.
Journal logs Row IDs of changed rows for down-AMP.

When AMP is back on-line Restores rows on recovered AMP to current status.
Journal discarded when recovery complete.

Primary
rows

Fallback
rows

AMP 0

62 278

5 78 19

AMP 1 AMP 2 AMP 3

Vdisk

34 5022 5 1978 14 381

19 38 8 2762 8 50 27 78

Recovery
Journal

TableID/RowID – 62
TableID/RowID – 5

ds186034
Sticky Note
no 2 journal - DOWN AMP JOURNAL

ds186034
Sticky Note
MAYBE CAUSE DISK ARRAY POWER IS DOWN

ds186034
Sticky Note
- fallback is there so everything continues- nothing stops- track is kept of all activity- Engg comes - fixes the array - now back online- amp will say i was asleep..the other amp on the cluster will say while u were away this is what happened (via RECOVERY JOURNAL)- MOST OF THE TIMES THIS JOURNAL IS EMPTY CAUSE ALL AMPS ARE UPITS ONLY ACTIVE WHEN AN AMP IS DOWN!

 Data Protection Page 8-54

Permanent Journal
The purpose of the Permanent Journal is to provide selective or full database recovery to a
specified point in time. It permits recovery from unexpected hardware or software disasters.
The Permanent Journal also has the effect of reducing the need for full table backups which
can be costly both in time and resources.

The Permanent Journal is an optional journal and its features must be customized to the
specific needs of the installation. The journal may capture before images (for rollback),
after images (for rollforward), or both. Additionally, the user must specify if single images
(default) or dual images (for fault-tolerance) are to be captured.

A Permanent Journal may be shared by multiple tables or multiple databases.
The journal captures images concurrently with standard table maintenance and query
activity. The cost in additional required disk space may be calculated in advance to ensure
adequate disk reserve.

The journal is periodically dumped to external media, thus reducing the need for full table
backups – in effect, only the changes are backed up.

Data Protection Page 8-55

Permanent Journal

The Permanent Journal is an optional, user-specified, system-maintained journal
which is used for recovery of a database to a specified point in time.

The Permanent Journal:

• Is used for recovery from unexpected hardware or software disasters.

• May be specified for ...

– One or more tables

– One or more databases

• Permits capture of Before Images for database rollback.

• Permits capture of After Images for database rollforward.

• Permits archiving change images during table maintenance.

• Reduces need for full table backups.

• Provides a means of recovering NO FALLBACK tables.

• Requires additional disk space for change images.

• Requires user intervention for archive and recovery activity.

ds186034
Sticky Note
1. TRANSIENT JOURNAL2. DOWN AMP RECOVERY JOURNAL3. USER DEFINED JOURNAL= PERMANENT JOURNALCUST SAYS - I DONT WANT FALLBACK.I WILL CAPTURE THE DELTAs - WHATEVER THE INCREMENTAL CHANGES WERE THERE...WHATEVER WAS DONE...PERM JOURNAL HAS IT.CHECKPOINT - ITS NOT SIMPLE, THE PROCESS HAS TO BE BUILT FOR IT TO BE WORKED PROPERLY.

 Data Protection Page 8-56

Archiving and Recovering Data
The purpose of the ARC utility is to allow for the archiving and restoring of database
objects which may have been damaged or lost. There are several scenarios where restoring
objects from external media may be necessary.

 Restoring of non-Fallback tables after a disk failure.

 Restoring of tables which have been corrupted by batch processes which may have

left the data in an ‘uncertain’ state.

 Restoring of tables, views or macros which have been accidentally dropped by the

user.

 Miscellaneous user errors resulting in damaged or lost database objects.

Teradata’s Backup and Recovery (BAR) architecture provides solutions from Teradata
Partners. Two examples are:

 NetVault – from BakBone software
 NetBackup – from Symantec (Veritas NetBackup by Symantec)

The ASF2 utility is an older utility that provides an X Windows based front-end for creation
and execution of ARC command scripts. It is designed to run on UNIX MP-RAS.

Data Protection Page 8-57

Archiving and Recovering Data

ARC

• The Archive/Restore utility (arcmain)

• Runs on IBM, UNIX MP-RAS, Windows 2003, and Linux systems

• Archives and restores data from/to Teradata Database

• Restores or copies data from archive media

• Permits data recovery to a specified checkpoint using Permanent Journals

Backup and Recovery (BAR)

• Example of BAR choices from different Teradata Partners

– NetBackup - Veritas NetBackup by Symantec

– Tivoli Storage Manager – utilizes TARA

• Provides Windows front end for ARC

• Easy creation of scripts for archive/recovery

• Provides job scheduling and tape management functions

• BAR was previously referred to as Open Teradata Backup (OTB)

ds186034
Sticky Note
application from other vendorsbehind the scene, it builds scriptsNetBackup and Tivoli - Front end

ds186034
Sticky Note
general purpose facility

 Data Protection Page 8-58

Module 8: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Data Protection Page 8-59

Module 8: Review Questions

Match the item to a lettered description.

a. Provides for TXN rollback in case of failure

b. Teradata Backup and Recovery applications

c. Protects all rows of a table

d. Logs changed rows for down AMP

e. Provides for recovery to a point in time

f. Applies to all tables and views within

g. Multi-platform archive utility

h. Lowest level of protection granularity

i. Protects tables from AMP failure

j. Protects database from a physical drive failure

k. Group of AMPs used by Fallback

____ 1. Database locks

____ 2. Table locks

____ 3. Row Hash locks

____ 4. FALLBACK

____ 5. Cluster

____ 6. Recovery journal

____ 7. Transient journal

____ 8. ARC

____ 9. NetBackup/Tivoli

____ 10. Permanent journal

____ 11. Disk Array

 Data Protection Page 8-60

Notes

Introduction to MPP Systems Page 9-1

Module 9

Teradata Proprietary and Confidential

Introduction to MPP Systems

After completing this module, you will be able to:

 Specify a major difference between a 6650 and a 6690 system.

 Specify a major difference between a 2650 and a 2690 system.

 Define the purpose of the major subsystems that are part of an
MPP system.

 Specify the names of the Teradata (TPA) nodes in a 6690 cabinet.

 Introduction to MPP Systems Page 9-2

Notes

Introduction to MPP Systems Page 9-3

Table of Contents

Teradata Systems ... 9-4
SMP Architecture ... 9-6
Hyper-Threading and Multi-Core CPUs .. 9-8
Comparing Performance of Servers ... 9-10
Cabinet or Rack Pictures .. 9-12
Teradata 6650 Systems .. 9-14
Teradata 6650 Cabinets .. 9-16
Adding SSD to a 6650 (Future) ... 9-18
Teradata 6650 Configuration Examples ... 9-20
Teradata 6690 Systems .. 9-22
Teradata 6690 Cabinets .. 9-24
Teradata Extended Nodes .. 9-26
Making Sense of the Different Platforms... 9-28
Linux Coexistence Combinations .. 9-30
Teradata Appliance Introduction.. 9-32
Teradata 2650/2690 Appliances ... 9-34
Teradata 2650/2690 Cabinets ... 9-36
Appliance Configuration Examples ... 9-38
What is the BYNET™? ... 9-40
BYNET 32 Switches .. 9-42
BYNET 64 Switches .. 9-44
BYNET Expansion Switches ... 9-46
BYNET Expansion to 1024 Nodes .. 9-46
Server Management with SWS .. 9-48
Node Naming Conventions .. 9-50
Summary .. 9-52
Module 9: Review Questions ... 9-54

 Introduction to MPP Systems Page 9-4

Teradata Systems
As the competitive needs of businesses change, the system architecture changes over time.
To be best-in-class, an information processing system in today's environment will typically
have the following characteristics.

 Utilization of multiple processors in multiple nodes to achieve acceptable
performance. Easily scalable in both processing power and data storage capacity
with adherence to all industry-standard interfaces.

 Be capable of handling a very large databases, rapidly process complex queries,

maintain data security, and be accessible to the total enterprise. Support on-line
transaction processing as well as decision support applications.

 In today’s global and highly competitive markets, computing systems (especially

enterprise servers) need to be available to the world 24 hours a day.

TPerf (Traditional Performance) is a power metric that has been used in a rigorous and
consistent manner for each generation of the Teradata platform since the model 5100. It is a
metric for how fast a node can process data. TPerf is maximized when there is a balance
between CPU and I/O bandwidth. When used to compare different Teradata configurations,
the TPerf metric is similar to other throughput metrics, such as rows/second or
transactions/second that a node processes where actual data volumes in terms of bytes are
not reflected in the metric. Data capacity is not a function of a general or design center
TPerf used by sales and engineering to compare Teradata systems, that is, this metric
assumes there is a constant database volume in place when comparing one system to
another.

TPerf is a power metric that measures the throughput performance of the TPerf workload. It
is not a response time metric for specific queries and operations. Response time depends on
a number of factors in the Teradata architecture in addition to the ones that TPerf gauges,
i.e., CPU power and I/O performance. Other factors influencing response time include, but are
not limited to:

1. Parallelism provided by the number of AMPs
2. Concurrency (competition among queries)
3. Workload mix
4. Workload management

TPerf is analogous to the pulling Power of a train locomotive. The “Load” is the work the
Node operates on. The data space is analogous to the freight cars in a train. You would
need twice as big a locomotive to pull twice as many cars. You would need a

To have the same performance with twice as much data and load on a system, you would
need a system with a TPerf that is twice (2x) as large.

Introduction to MPP Systems Page 9-5

Teradata Systems

Examples of systems used with the Teradata Database include:

Teradata Systems

5400/5450 – up to 10 nodes/cabinet
5500/555x/56xx – up to 9 nodes/cabinet
6650/6680/6690 – up to 4 nodes/cabinet with associated storage
15xx/16xx/25xx/26xx – various Appliance systems

The basic building block is the SMP (Symmetric Multi-Processing) node.

The power of these nodes will be measured by TPerf – Traditional Performance.

• The Teradata metric for total power of a node or system.

• Determined by measuring system elements and calculating the performance with a
representative set of workloads.

Key differences:

• Speed and capacity of SMP nodes and systems
• Cabinet architecture
• BYNET interface cards, switches and speeds *BYNET V4 – up to 4096 nodes

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Sticky Note
TPERF numbercomparison value

 Introduction to MPP Systems Page 9-6

SMP Architecture
The SMP or “processing node” is the basic building block for Teradata systems. The
processing node contains the primary processor logic (CPUs), memory, and I/O
functionality.

Teradata is supported on non-Teradata SMP servers with 4 or fewer physical CPU sockets.
A Teradata license can only be purchased for an SMP server with up to 4 physical CPUs.
The server might have 4 hyper-threading CPUs which look like 8 logical CPUs to the
operating system. The server may have two quad-core CPUs which appears to the operating
system as 8 CPUs.

Basic definitions of the CPUs used with Teradata servers:

 Hyper-Threading CPUs – one physical CPU (chip) socket, but with 2 control
(context) areas – makes 1 CPU look like 2 logical CPUs.

 Dual-core CPUs – one physical CPU (chip) socket, but with two control (context)

areas and 2 execution cores – makes 1 CPU look like 2 physical CPUs.

 Quad-core CPUs – one physical CPU (chip) socket, but with four control (context)
areas and 4 execution cores – makes 1 CPU look like 4 physical CPUs.

 Quad-core CPUs with Hyper-Threading – one physical CPU (chip) socket, but with

8 control (context) areas and 4 execution cores – makes 1 CPU look like 4 physical
CPUs or 9 logical CPUs.

 Six-core CPUs with Hyper-Threading – one physical CPU (chip) socket, but with

12 control (context) areas and 6 execution cores – makes 1 CPU look like 6
physical CPUs or 12 logical CPUs.

5400/5450 nodes have 2 physical chips using Hyper-Threading, effectively 4 logical CPUs.

5500H nodes have 2 dual-core chips, effectively 4 CPUs.

5555C nodes have 1 quad-core chips, effectively 4 CPUs

5550H and 5555H nodes have 2 quad-core chips, effectively 8 CPUs.

5600H nodes have 2 quad-core chips using hyper-threading, effectively 16 CPUs per node.

2650, 2690, 5650H, 6650H, 6680, and 6690 nodes have 2 six-core chips using hyper-
threading, effectively 24 CPUs per node.

Introduction to MPP Systems Page 9-7

SMP Architecture

SMP (Symmetrical Multi-Processing) Node – basic building block of MPP systems.
• Hyper-Threading CPUs – one CPU socket (chip) with 1 execution core and 2 control (context) areas

– makes 1 CPU chip look like 2 logical CPUs.
• Dual-core CPUs – one CPU socket with 2 execution cores – makes 1 chip look like 2 physical

CPUs.
• Quad-core CPUs – one CPU socket with 4 execution cores – makes 1 chip look like 4 physical

CPUs.
• Quad-core CPUs with Hyper-Threading – one chip socket with 4 execution cores each with 2

control areas – makes 1 CPU chip socket look like 8 logical CPUs
• Six-core CPUs with Hyper-Threading – one chip socket with 6 execution cores each with 2 control

areas – makes 1 CPU chip socket look like 12 logical CPUs

Other names include node, compute node, processing node, 24-way node, etc.

Key hardware components of a node include:
• CPUs and cache memory
• Memory
• System Bus
• I/O Subsystem

System Bus

CPU

CPU

CPU

CPU

Memory

Memory

Memory

Fibre
Channel
Adapter

F
ib

re
 C

h
a

n
n

el

I/O SubsystemProcessor(s)

ds186034
Sticky Note
Westmere CPU

ds186034
Highlight

 Introduction to MPP Systems Page 9-8

Hyper-Threading and Multi-Core CPUs
The facing page illustrates the concept of Hyper-Threading and Multi-Core CPUs.

With Hyper-Threading, 2 physical CPUs appear to the Operating System as 4 logical or
virtual CPUs. With Dual-Core, 2 physical CPUs appear to the Operating System as 4
physical CPUs. The SMP’s BIOS automatically tells the Operating System that there are 4
CPUs. The Operating System will schedule work as though there are actually 4 CPUs in
either case.

The reason for a performance gain with Hyper-Threading is as follows. When one of the
logical processors (control unit) is setting up its data and instruction registers from cache or
memory, the execution unit can be executing instructions from the other logical processor.
In this way, the execution unit doesn’t have to wait for one of the control units to set up its
data and instruction registers – it is effectively kept busy a larger percentage of the time.

Some of the benefits of Hyper-Threading include:

 No software changes required
 Symmetric
 Improved CPU Efficiency

The reason for a performance gain with Dual-Core CPUs is that there are two control areas
and two execution units. One CPU socket is really two physical CPUs. Quad-Core CPUs
provide even more processing power with one CPU socket providing four physical CPUs.

With Quad-Core, 2 physical CPUs appear to the Operating System as 8 physical CPUs. The
SMP’s BIOS effectively tells the Operating System that there are 8 CPUs.

With Quad-Core and Hyper-Threading, 2 physical CPUs appear to the Operating System as
16 CPUs. The SMP’s BIOS effectively tells the Operating System that there are 16 CPUs.

Notes:

 The Operating System schedules work across logical or physical CPUs.
 The Windows Task Manager or UNIX “pinfo” command actually identifies the

CPUs (e.g., 8 with quad-core) for which work can be scheduled.

Introduction to MPP Systems Page 9-9

Hyper-Threading and Multi-Core CPUs

1 2

Without Hyper-Threading

Operating System

31 42

With Hyper-Threading

Operating System

31 42

With Dual-Core CPUs

Operating System

Control Unit (context area) – Data
Registers and Instruction Registersx

With Quad-Core CPUs and H-T

Operating System

Execution Unit – physical
execution of instructions

With Six-Core CPUs and H-T

Operating System

ds186034
Sticky Note
COREbusy 60% times is goodIntel - 5/6 yrs ago..came up with hyper threading

ds186034
Sticky Note
2 separate sockets on the motherboard

ds186034
Sticky Note
now by having 2 control unitssonow i can get more work out of it- u can get 15-35% performance gain (INTEL)- but in TD gave us 15% more performancebut we are keeping them busier nowmultiple control units (registers etc)same socket same chip - multi-core (eg of 5500 system)thenquad corethensix core(12 cores - 24 control units - 24 run queues - logical 24 cpu's but 12)

ds186034
Sticky Note
this is what we use now - currently - on any new platform

 Introduction to MPP Systems Page 9-10

Comparing Performance of Servers
TPerf is a metric for total Power of a Node or system

 TPerf = Traditional Performance
 Analogous to the pulling Power of a train locomotive.

The “Load” is the work the Node operates on. The data space is analogous to the freight
cars in a train. You would need twice as big a locomotive to pull twice as many cars.

To have the same performance with twice as much data and load on a system, you would
need a system with a TPerf that is twice (2x) as large.

Acronym: H-T is Hyper-Threading

Teradata’s Design Center establishes typical system configurations for different Teradata
system models. For example, one design center configuration for a 6650 system is cliques
of 3+1 nodes, 42 AMPs per node, and two 600 GB mirrored disks for each node. The
design center power rating is called TPerf-dc.

The process for deriving design center TPerf for a Teradata platform consists of five steps:

1) A diverse se of performance tests is executed on the platform design center
configuration for a Teradata platform model.

2) The CPU and IO resource usage and throughput are measured.
3) An analytical model is used to calculate the CPU and IO resource usage of a

weighted blend of workloads.
4) The blended workload is compared against the resource capabilities provided by

the design center platform configuration.
5) The TPerf metric is then calculated.

This design center TPerf (TPerf-dc) represents system throughput potential, in other words,
how much work could be done in a given amount of time given a high concurrency
workload for that design center hardware configuration. Any system with the same
configuration and the same workload mix used in the model will deliver overall performance
that matches the level indicated by the TPerf-dc metric.

TPerf-dc usually does not describe the throughput potential for deployed configurations of
Teradata systems. The reality is that business demands require a wide variety of Teradata
system configurations to meet specific performance and pricing needs and no customer
workload is the same as that for the TPerf-dc model.

TPerf-dc plays only a small part in any attempt to estimate response time expectations for the
design center configuration and TPerf workload – all the other factors listed above must be
considered.

Introduction to MPP Systems Page 9-11

Comparing Performance of Servers

5.04 5.79 4.68 6.13 8.45 10.14 12.84

31.7

5250 5255 5300 5350 5380 5400 5450 5555H 5600H 6650H 6690
32 GB 96 GB 96 GB 96GB

1.00

5500H5100

130

120

110

100

90

80

70

60

50

40

30

20

10

0

4 Cores
4 Sockets

2 Cores 4 Cores 8 Cores

52.1

Linux

83.4

Linux Linux

H-T (Hyper-Threading)

H-TH-T
H-T

H-T

119.0

Linux

H-T

12 Cores8 Cores

130.0

Linux

H-T

ds186034
Sticky Note
(Jan 01, 1996)it has perf metrics of 1until 2000/20011. multi core tech2. 64bit3. large memory processinglast year or two changed dramatically

ds186034
Sticky Note
1 cpu or 2(1 socket or 2)6690 - hybrid (spinning disk and solid state drives associated with it)PROCESSOR PERFORMANCE HAS EXPLODED IN THE LAST FEW YEARSSO A LOT LESS NODES NOW..CAUSE FASTER CPU...MAYBE MORE AMPS AND STORAGE HAS GONE UP..IT HASio HAS NOT SO SOLID STATE DRIVE AND COMPRESSION IS WHAT WE USE TO MITIGATE THAT.

 Introduction to MPP Systems Page 9-12

Cabinet or Rack Pictures
The Rack Cabinet is an industry standard, 40U rack frame used to house Teradata
processing nodes and/or disk arrays.

Measurements

 The “U” in the 40U rack term represents a unit of vertical measurement for
placement of chassis in the rack. [1U = 4.445 cm (1.75 in.)] This diagram
illustrates the depth of older cabinet which was 40”.

Teradata systems use an industry standard rack mount architecture and individual chassis
that conform to industry standards. Each chassis occupies a specific number of U spaces in
the rack. Examples of types of chassis that can be placed in a rack or cabinet include.

 Processing Node (54xx , 55xx, 56xx, and 66xx nodes – 2U
 BYNET Switch (BYA32S) – 1U
 Server Management Chassis (CMIC) – 1U

The 55xx and 66xx systems use a rack that is 44” deep (4” deeper than previous rack).

Older systems (e.g., 5650) used a separate Teradata SWS (Service Workstation) for
operational maintenance of the system. The last SWS was a Dell PowerEdge T710 Server
and was available as deskside or rack mount server.

Newer systems (e.g., 6690) utilize a VMS (Virtualized Management Server) which
consolidates CMIC, SWS, and Teradata Viewpoint functions into a single chassis.

Introduction to MPP Systems Page 9-13

Cabinet or Rack Pictures

Node Chassis

Processor /Storage Cabinet

Notes:

• Cabinet Size = 24" W X 77"H X
44" D without doors and side
panels

• Improved cable management

– Larger exit hole in base

– Supports inter-rack cabling

ds186034
Sticky Note
ITS A COMPUTERFEW DRIVES IN ITos - LIVESTD SW - LIVES(NOT A VDISK SPACE LIVES)

 Introduction to MPP Systems Page 9-14

Teradata 6650 Systems
The Teradata Active Enterprise Data Warehouse 6650 platform is scalable from one to
4,096 Teradata nodes, and can handle more than 15 petabytes of data to support the complex
workloads in an active warehouse environment.

The 6650 processing nodes are the newest release of Teradata Servers which supports the
Teradata Warehouse solution. These nodes are similar to the 5650 processing nodes,
utilizing the Intel Westmere™ six-core CPUs with hyper-threading enabled.

The Teradata Active Enterprise Data Warehouse platform is made up of a combination of
cabinet types, depending on the system configuration:

 Processing/storage cabinet
 BYNET cabinet
 Teradata Managed Server (TMS) cabinet

The 6650 provides high availability via the following features:

 Hot standby nodes (HSN): One node in a clique can be configured as a hot standby
node. Eliminates the degradation of database performance in the event of a node
failure in the clique. Tasks assigned to the failed node are completely redirected to
the hot standby node.

 Hot spare disks: One or more disks per array can be configured as hot spare disks.

In the event of a disk failure on a RAID mirrored pair, the contents of the failed
disk are copied into a hot spare disk from the mirrored surviving disk to repair the
RAID pair. When the failed drive is replaced, a copy back operation occurs to
restore data to the replaced drive.

 Fallback: Data protection can be provided at the table level by automatically storing

a copy of each permanent data row of a table on a different or “fallback” AMP. If
an AMP fails, the Teradata Database can access the fallback copy and continue
operation.

The design center recommendations has a different number of AMPs and associated storage
per AMP varies depending on the configuration.

 1+1 clique – 48 AMPs/node; 192 disks per node
 2+1 clique – 30 AMPs/node; 120 disks per node
 3+1 clique – 42 AMP/node; 84 disks per node

Introduction to MPP Systems Page 9-15

Teradata 6650 Systems

Features of the 6650 system include:

• The Teradata 6650 platform is the first release of unified Node/Storage within a single
cabinet in the Active Enterprise Data Warehouse space.

• The 6650 is designed to reduce floor space utilization.

– The UPS/batteries are not used with the 6650

– In the event of site wide power loss, data integrity is provided by WAL.

• The 6650 utilizes up to two Intel® 2.93 GHz six-core CPUs

– Two models – 6650C and 6650H

• 6650C nodes utilize 1 socket with one six-core CPU and 48 GB of memory

• 6650H nodes utilize 2 sockets with two six-core CPUs and 96 GB of memory

• 6650C can be used to co-exist with previous generations and 6650H will co-exist with
future Active EDW Platform mixed storage offerings

• The 6650 can be configured in 1+1, 2+1, and 3+1 cliques.

– A 6650 clique consists of either one or two processing/storage cabinets. Each cabinet
contains processing nodes and a disk array.

• The 6650 can be upgraded to use SSD drives.

– 6650 is an SSD Ready platform and prepares for the introduction of Solid State Drives (SSD)
in the Active EDW space.

ds186034
Sticky Note
westmere cpu

ds186034
Sticky Note
Need TVS licence to take advantage of the solid state drive (if upgraded)

 Introduction to MPP Systems Page 9-16

Teradata 6650 Cabinets
The facing page illustrates various 6650 cabinet configurations.

The 66xx and later systems utilize an industry standard rack mount cabinet which provide
for excellent air flow and cooling. Similar to previous rack-based systems, this rack
contains individual subsystem chassis that are housed in standard rack frames. Subsystems
are self-contained, and their configurations — either internal or within a system — are
redundant. The design ensures overall system reliability, enhances its serviceability, and
enables time and cost efficient upgrades.

The key chassis in the rack/cabinet is the node chassis. The SMP node chassis is 2U in
height.

A Hot Standby Node is required with 6650 systems.

 For 6650 systems, a clique has a maximum of three TPA nodes with one HSN
node.

Cabinet Build Conventions
The placement of the hardware components in a cabinet follows these general cabinet build
conventions:

 A 6650 clique consists of either one or two processing/storage cabinets. Each
cabinet contains processing nodes and a disk array. The following clique
configurations are available:

– A two-cabinet 3+1 clique. The first cabinet contains two processing nodes and

one disk array. The second cabinet contains one processing node, one hot
standby node, and one disk array.

– A two-cabinet 2+1 clique. The first cabinet contains one processing node and

one disk array. The second cabinet contains one hot standby node, one
processing node, and one disk array.

– A two-cabinet 1+1 clique. The first cabinet contains one processing node and

one disk array. The second cabinet contains one hot standby node and one disk
array.

– A one-cabinet 1+1 clique. The cabinet contains one processing node, one hot

standby node, and one disk array.

 There is 1 CMIC in first cabinet of each two-cabinet clique. If a system only has
one clique, then there is a CMIC in the second cabinet.

Introduction to MPP Systems Page 9-17

Teradata 6650 Cabinets

6650H

Secondary SM Switch

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

6844 Array
Controllers (4U)

TPA Node

TPA Node

TMS Node

BYA32S-1
BYA32S-0

SM – CMIC (1U)
Primary SM Switch

PDU PDU

6650H

Secondary SM Switch

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

6844 Array
Controllers (4U)

HSN

TPA Node

TMS Node

TMS Node

SM – CMIC (1U)
Primary SM Switch

PDU PDU

3+1 Clique
across 2 cabinets

6650 Characteristics

• Integrated Cabinet with
nodes and arrays in same
cabinet.

• NetApp array with 2
controllers and 8 drive
trays.

– 300, 450, or 600 GB drives

• With 2+1 clique, each AMP
is typically assigned to 4
disks (2 mirrored pairs).

– Usually 30 AMPs/node

• With 3+1 clique, each AMP
is typically assigned to 2
disks (1 mirrored pair).

– Usually 42 AMPs/node

• No UPSs in cabinet.

ds186034
Sticky Note
TERADATA MANAGED SERVER (tms)SOME CUST PUT IN SEPERATE BOXTMS:SPECIFIC APPLICATINBAR, UNITY,DATAMOVER, VIEWPOINTOPTIONAL NODE = tms...BUT...

 Introduction to MPP Systems Page 9-18

Adding SSD to a 6650 (Future)
The facing page illustrates a future option to add Solid State Disks (SSD) to a 6650 cabinet.

Introduction to MPP Systems Page 9-19

Adding SSD to a 6650 (Future)

SSD Array

SSD Array

TMS Node

BYA32S-1
BYA32S-0

SSD Upgrade Steps

• Place SSD arrays in
positions 3, 4, and 5).

• Upgrade to 13.10 if not on
13.10.

• Enable TVS.

• Reconfig (no backup/restore
required).

6650H

Secondary SM Switch

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

6844 Array
Controllers (4U)

TPA Node

TPA Node

TMS Node

BYA32S-1
BYA32S-0

SM – CMIC (1U)
Primary SM Switch

PDU PDU

If TMS, Channel Servers and/or
BYNET switches are installed,
they can be moved to a another
cabinet to make room for the
SSD storage.

SSD Arrays use SAS based
controllers and 400 GB SSD.

Each tray has its own controllers
and SSD drives.

ds186034
Sticky Note
ssd ready

ds186034
Sticky Note
fee not free

 Introduction to MPP Systems Page 9-20

Teradata 6650 Configuration Examples
The facing page includes two examples of 6650 cliques. Typically, a 6650 node in a 3+1
clique will be configured with 42 AMPs, 2 disks per AMP, and 96 GB of memory.

Current configurations of the 6650 include:

6650H – Design Center
 Configuration Allows upgrade to

AMPs per
Node Clique

Drive
Options

HDDs
per

Node

HDDs
per

Clique

CPU COD
Available

SSD per
Node

Disks
per AMP

3+1 H 300GB 84 252 Yes 28 2 42
450GB 84 252 Yes 28 2 42
600GB 84 252 Yes 28 2 42

2+1 H 300GB 120 240 Yes 28 2 30
450GB 120 240 Yes 28 2 30
600GB 120 240 Yes 28 2 30

1+1 H 300GB 192 192 Yes 28 2 48
450GB 192 192 Yes 28 2 48
600GB 192 192 Yes 28 2 48

These configurations provide an effective future SSD upgrade path while maintaining
optimum AMPs per node for a 6650H.

6650C – Design Center
 Configuration Allows upgrade to

AMPs per
Node Clique

Drive
Options

HDDs
per

Node

HDDs
per

Clique

CPU COD
Available

SSD per
Node

Disks
per AMP

3+1 C 300GB 42 126 Yes 14 2 21
450GB 42 126 Yes 14 2 21
600GB 42 126 Yes 14 2 21

2+1 C 300GB 60 120 Yes 14 2 15
450GB 60 120 Yes 14 2 15
600GB 60 120 Yes 14 2 15

1+1 C 300GB 96 96 Yes 14 2 24
450GB 96 96 Yes 14 2 24
600GB 96 96 Yes 14 2 24

These configurations provide an effective future SSD upgrade path while maintaining
optimum AMPs per node for a 6650C.

For both 6650H and 6650C, if CPU Only Capacity on Demand is active, it should be
removed to take full advantage of the increased I/O now available. Following the Optimum
Performance Configurations will allow the customer to avoid a data reload and maintain
their systems AMPs per node ratio thereby reducing the impact of an upgrade.

Introduction to MPP Systems Page 9-21

Teradata 6650 Configuration Examples

* Actual MaxPerm
space is app. 90%.

Note:
Each disk array
will typically
have additional
global hot
spare drives.

6650H (2+1 Clique)

6650H (2+1 nodes/clique)

30 AMPs / Node
60 AMPs / Clique

120 Disks per Node
240 Disks per Clique

Each Vdisk – 4 Disks (RAID 1)
Each Vdisk – 1.08 TB*

Clique – 60 AMPs x 1.08 TB = 65 TB*

Node 1

TMS

TMS

120
Disks

600 GB

HSN

Node 2

TMS

120
Disks

600 GB

6650H (3+1 Clique)

6650H (3+1 nodes/clique)

42 AMPs / Node
126 AMPs / Clique

84 Disks per Node
252 Disks per Clique

Each Vdisk – 2 Disks (RAID 1)
Each Vdisk – 540 GB*

Clique – 126 AMPs x 540 GB = 68 TB*

Node 2

Node 1

TMS

126
Disks

600 GB

HSN

Node 3

TMS

126
Disks

600 GB

ds186034
Sticky Note
1+1 is also avail

ds186034
Sticky Note
4x60=240

ds186034
Sticky Note
each amp with 4 nodes behind it

ds186034
Sticky Note
42 amp in each nodewe keep 1 pair of disk behind this

ds186034
Sticky Note
more cpumore IOand so it is a better performer

 Introduction to MPP Systems Page 9-22

Teradata 6690 Systems
The Teradata 6690 platforms utilize Solid State Drives (SSD) and Hard Disk Drives (HDD)
within a single cabinet in the Active Enterprise Data Warehouse space.

 Requires Teradata Virtual Storage (TVS).
 SSD and HDD Storage is maintained within the same drive tray.

The Teradata Active Enterprise Data Warehouse platform is made up of a combination of
cabinet types, depending on the system configuration:

 Processing/storage cabinet
 BYNET cabinet
 Teradata Managed Server (TMS) cabinet

Note: A Service Workstation (SWS) is installed in one TMS cabinet. A system may have
additional TMS cabinets.

6690 nodes are based on the 6650 processing nodes. Characteristics include:

 Up to two Intel Westmere six-core CPU’s
– 12 MB L2 cache with Hyper-threading
– Small performance increase over 5650; 6680H (126 TPerf)

 450 GB OS drives support 96GB memory

 300 GB dump drive for restart performance

Introduction to MPP Systems Page 9-23

Teradata 6690 Systems

Features of the 6690 system include:

• The Teradata 6690 platforms utilize Solid State Drives (SSD) and Hard Disk Drives
(HDD) within a single cabinet in the Active Enterprise Data Warehouse space.

– Requires Teradata Virtual Storage (TVS).

– SSD and HDD Storage is maintained within the same drive tray.

• The 6690 is designed to reduce floor space utilization (similar to 6650).

– The UPS/batteries are not used with the 6690 cabinet.

– Data integrity in event of site wide power loss is provided by WAL.

• A 6690 nodes uses the Intel six-core Westmere CPUs with hyper-threading enabled.
The 6690 has a faster CPU (2.93 GHz. versus 3.06 GHz) than the previous 6680 node.

– These systems can be configured in 1+1 or 2+1cliques.

– A 6690 clique is contained within 1 processing/storage cabinet.

• No co-existence with Active Warehouse 5xxx and not planned for with 6650 systems.

– The 6690 is ideal for new customers and/or floor sweeps.

– The 6690 will co-exist with future Active EDW Platform mixed storage offerings.

ds186034
Sticky Note
1 diff = faster cpu(still 6 core but at faster speed)same mem1 diff = SSD built in!!!system going fwdit has a hybrid storage technology1+1or2+1but within 1 cabinet and not 2 cabinet

 Introduction to MPP Systems Page 9-24

Teradata 6690 Cabinets
Each Teradata 6690 cabinet can be configured in a 1+1 or 2+1 clique configuration.

 A processing/storage cabinet contains one clique.

 A cabinet with a 2+1 clique contains two processing nodes, one hot standby node,

and four disk arrays.

 A cabinet with a 1+1 clique contains one processing node, one hot standby node,

and four disk arrays.

Virtualized Management Server (VMS)

The VMS is available with the 2690 Appliance and the 6690 Enterprise Warehouse Server.

Characteristics of the VMS include:

• 1U Server that VIRTUALIZES system and cabinet management software onto a single

server

• Teradata System VMS – provides complete system management functionality

– Cabinet Management Interface Controller (CMIC)
– Service Workstation (SWS)
– Teradata Viewpoint (single system only)
– Automatically installed on base/first cabinet

• The VMS allows full rack solutions without an additional cabinet for traditional

Viewpoint and SWS

• Eliminates need for expansion racks reducing customers’ floor space and energy costs

• For multi-system monitoring and management traditional Teradata Viewpoint is
required.

Introduction to MPP Systems Page 9-25

Teradata 6690 Cabinets

6690

2+1
Clique in
a single
cabinet

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

VMS (1U)

HSN

TPA Node

TPA Node

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

PDU PDU

6690 Characteristics

• Integrated Cabinet with nodes and SSD and HDD
arrays in same cabinet.

• Each NetApp drive tray can hold up to 24 SSD
and/or HDD drives.

– SSD drives are 400 GB.

– HDD drives (10K RPM) are 600 GB.

– Possible maximum of 360 disks in the cabinet.

• One NetApp tray has 2 controllers and supports 2
additional expansion trays.

• 6690 feature – Virtualized Management Server (VMS)
– Consolidated CMIC, SWS, Teradata Viewpoint

• No UPSs in cabinet.

• There is no room for BYNET switches in this
cabinet. Therefore, BYNET switches are located in a
separate cabinet.

Expansion Tray

Expansion Tray

Controllers

Expansion Tray

Expansion Tray

Controllers

Expansion Tray

Expansion Tray

Controllers

Expansion Tray

Expansion Tray

Controllers

* Not present in
a 1+1

Configuration

*

*

ds186034
Sticky Note
Within the same cabinet disk arraya total of 72 drives in a single arraya lot of disk in the cabinet2.5 inch - smallerwe can put 24 disk in a tray(SSD or spinning disk)commonly SSD is first

ds186034
Sticky Note
SSD fasterSD slowerHOT DATA = SSDCOLD DATA(historical) = SDTVS does that!!!

ds186034
Sticky Note
over the course of a day...1 to 1.5% it will move..slow process as well

ds186034
Sticky Note
VMS = it will take 1u spaceconsolidated virtual managed serverit connects back to ethernet so we can loginmontior keyboard

 Introduction to MPP Systems Page 9-26

Teradata Extended Nodes
Additional specialized nodes are available to Teradata 55xx, 56xx, and 66xx systems. The
various type and possible uses are listed on the facing page.

General Notes:

 All TPA nodes (Teradata Nodes running the Teradata Database) must execute the
same Operating System.

 Non-TPA Nodes and/or Managed Servers, can execute the same or a different

Operating System; this is the "mixed OS support".

 A Non-TPA Node is a Teradata Server (Node) that is BYNET connected, but does
not run the Teradata Database. A Non-TPA Node can communicate to the Teradata
Database through TCP/IP emulation across the BYNET.

 A Managed Server is a Teradata Server (Node) that resides in the Teradata System

Cabinet (rack mounted) and is connected through a dedicated Ethernet network to
the Teradata Database Instance.

 The purpose of both Non-TPA Nodes and Managed Server Nodes is flexibility.

These nodes can be used similar to external application servers for BAR,
ETL/ELT, BI, etc. Some of the advantages of Non-TPA or Managed Server nodes
include a single point of management/maintenance, "pre-built" dedicated network
to Teradata Database, and they can often be installed into existing Cabinets,
minimizing additional footprint in the data center.

Introduction to MPP Systems Page 9-27

Teradata Extended Nodes

Examples of extended node types:

• Hot Standby Nodes (HSN)
– BYNET connected

– spare node that is part of a clique and is used in the event of a node failure.

– Located in same cabinet as other nodes; managed by SWS

• Channel Server (used as interface between Teradata and mainframe (e.g., IBM)
– BYNET connected

– Maximum of 3 ESCON and/or FICON adapters – allows host channel connections

– Node with 1 Quad-core CPU and 24 GB of memory – improves Teradata performance by
offloading the channel workload

– Located in same cabinet as other nodes; managed by SWS

• Teradata Managed Server (TMS) Nodes
– Not BYNET connected

– Dell server integrated in processor cabinet for use with Teradata applications
• Can be utilized as a Viewpoint, SAS, BAR, Ethernet, TMSM, Data Mover, etc. node

– Located in same cabinet as other nodes; managed by SWS

• Non-TPA Nodes
– BYNET connected

– Can be used to execute application software (e.g., ETL)

– Located in same cabinet as other nodes; managed by SWS

ds186034
Sticky Note
dell servernot bynet connectedless expensivecan be in cabinet or sep

ds186034
Sticky Note

 Introduction to MPP Systems Page 9-28

Making Sense of the Different Platforms
The facing page attempts to provide some perspective of the different platforms.

The 4400, 4800, 4850, 5200, and 5250 nodes are based on the Intel Eclipse chassis and
Aspen baseboard technology. These nodes are often referred to as Eclipse nodes.

The 4455, 4851, 4855, 5251, and 5255 nodes are based on the Intel Koa baseboard
technology. These nodes may be referred to as Koa nodes.

The 4470, 4900 and 5300 nodes are based on the INTEL Dodson baseboard technology and
may be referred to as Dodson nodes.

The 4475, 4950 and 5350 nodes are based on the INTEL Hodges baseboard technology and
may be referred to as Hodges nodes.

The 4480, 4980, and 5380 nodes are based on the INTEL Harlingen baseboard technology
and may be referred to as Harlingen nodes.

The 5400 and 5450 nodes are based on the INTEL Jarrell baseboard technology and may be
referred to as Jarrell nodes.

The 155x, 25xx, and 55xx nodes are based on the INTEL Alcolu baseboard technology and
may be referred to as Alcolu nodes.

The following dates indicate when these systems were generally available to customers
(GCA – General Customer Availability).

– 5100M January, 1996 (not described in this course)
– 4700/5150 January, 1998 (not described in this course)
– 4800/5200 April, 1999
– 4850/5250 June, 2000
– 4851/4855/5251/5255 July, 2001
– 4900/5300 March, 2002
– 4950/5350 December, 2002
– 4980/5380 August, 2003
– 5400E/5400H March, 2005
– 5450E/5450H April, 2006
– 5500E/5500C/5500H March, 2007
– 2500/5550H January, 2008
– 2550/2555/5555C/H October, 2008 (2550) and March, 2009 (2555/5555)
– 1550 December, 2008
– 1600/2580/5600C/H March, 2010
– 5650C/H July, 2010
– 6650C/H and 6680 April, 2011
– 2690 October, 2011
– 6690 February, 2012

Introduction to MPP Systems Page 9-29

Making Sense of the Different Platforms

Model CPU BYNET

2003
2004

2005
2006

2007

2008
2009

2010

2011

5350/5380 (2 – 512 nodes) Intel Xeon 2.8/3.06 GHz BYNET V2.1

5400/5450H (1–1024 nodes) Intel Xeon 3.6/3.8 GHz BYNET V3.0

5500H Intel Dual-core BYNET V3.1
(1–1024 nodes) Xeon CPUs 2.66 GHz

5550/5555H Two Intel Quad-core BYNET V3.1/V3.2
(1–1024 nodes) Xeon CPUs 2.33 GHz

5600/5650H Two Intel quad or six-core BYNET V4.0
(1–4096 nodes) CPUs 2.66/2.93 GHz

6650H/6680/6690 Two Intel six-core CPUs BYNET V4.0
(1–4096 nodes) 2.93/3.06 GHz

 Introduction to MPP Systems Page 9-30

Linux Coexistence Combinations
The facing page illustrates possible Linux coexistence combinations.

Introduction to MPP Systems Page 9-31

Linux Coexistence Combinations

5450E/5450H – Xeon 3.8 GHz

Coexistence systems contain a mixture of node and storage generations that operate as a
single MPP system running the same software.

Goal is to have
Parallel Efficiency:

Utilization of one set of
cliques at 100% and the
other sets of cliques as
close to 100% as
possible.

This is done by
balancing the workload
between the nodes.

Conversion to 64-bit
Linux is required if the
nodes are not already
running 64-bit Linux.

5500C/H – 2/4 core Xeon 2.66 GHz

5550H – 8 core Xeon 2.66 GHz

5400E/5400H – Xeon 3.6 GHz

May need to leverage
larger Linux memory.

5555C/H – 4/8 core Xeon 2.33 GHz

6650C/H – 6/12 core Westmere 2.93 GHz

6680/6690 – 12 core Westmere 2.93/3.06 GHz

5600C/H – 4/8 core Nehalem 2.66 GHz

5650C/H – 6/12 core Westmere 2.93 GHz

66xx systems can
coexist with future
systems.

ds186034
Sticky Note
C model is 1 corecan co-exist betterH model may not

 Introduction to MPP Systems Page 9-32

Teradata Appliance Introduction
A Teradata appliance is a Teradata server which is optimized specifically for high DSS
performance. The first Teradata appliance was the 2500 introduced in 1Q2008.
Characteristics of the Teradata appliances include:

 Delivered Ready to Run
– Integrated system fully staged and tested
– Includes a robust set of tools and utilities

 Rapid Time to Value
– System live within hours

 Competitive Price Point
– Capacity on Demand available if needed

 Easy Data and Application Migration to a Teradata EDW/ADW

What is an Appliance?
An appliance is an instrument or device designed for a particular use. The typical
characteristics of an appliance are:

 Combination of hardware and software designed for a specific function – for
example, the 25xx hardware/software is optimized for fast table scans & “Deep
Dive” Analytics.

 Fixed/limited function – designed specifically for Decision Support workloads,
the hardware is not configured or optimized for ADW.

 Fixed capacity/configuration - have a fixed configuration and limited upgrade
paths.

 Ease of installation – fully staged and the integrated design greatly reduces the
number of cabinet interconnect cables.

 Simple to operate – appliances are Teradata system! They have all the Server
Management and capabilities used in the MPP systems.

Teradata Load ‘N Go Services make is easy to quickly implement a new system

 Load data from operational systems
 Five easy steps completed in about one month

– Step 1 - Build the base database structure
– Step 2 - Easy Set-Up Options
– Step 3 - Build and test the load scripts using the TPT Wizard
– Step 4 - Conduct the initial load
– Step 5 - Document and turn load/reload process over to customer

 No transformations or consolidation into an enterprise data model
 Users have access to data quickly
 Enabling new business insights

The firmware in the disk array controllers for 25xx systems has been specifically optimized
for scan-based workloads. The disk array controller pre-fetches entire cylinder to cache
when a cylinder index is accessed by Teradata.

Introduction to MPP Systems Page 9-33

Introduction to Teradata Appliances

Teradata 2500

• What is an Appliance?
– An appliance is an device designed for a specific function.

– Fixed/limited function and fixed capacity/configuration.
– Easy to install and simple to operate.

• Data Warehouse Appliance
– Teradata nodes and storage is integrated into a single cabinet.
– Delivered ready to run with rapid time to value.
– System live within hours, fully staged and tested.

• Powerful
– Purpose-built for high analytical performance.

– Optimized for fast file scans and heavy “deep dive” analytics.

• Cost-Effective
– Competitive price point.
– Easy data and application migration to a Teradata Enterprise

Data Warehouse.

• Ideal for Entry Level Data Warehouses, Analytical
Sand Boxes, and Test and Development Systems.

ds186034
Sticky Note
cause of netezza

ds186034
Sticky Note
less expensive than fiber channel drive (SATA)bynet over ethernetcost reduced bynetcost reduced storagelimited workload management not full TASM functionalitySW limitationNO HOT STANDBY avail

 Introduction to MPP Systems Page 9-34

Teradata 2650/2690 Appliances

Teradata 2650 Appliance
The Data Warehouse Appliance 2650 can have up to 9 nodes in a cabinet. The nodes utilize
the Intel Westmere six-core CPU with hyper-threading and 96 GB of memory per node.
The Data Warehouse Appliance 2650 comes standard with the BYNET over Ethernet
switch. For scalability requirements beyond 275TB you can configure BYNET V4, but
special approval is required.

Teradata 2690 Appliance
The Data Warehouse Appliance 2690 can have up to 8 nodes in a cabinet. The nodes utilize
the Intel Westmere six-core CPU (3.06 GHz) with hyper-threading and 96 GB of memory
per node. Cliques consist of 2 nodes and no HSN. The Data Warehouse Appliance 2690
comes standard with the BYNET over Ethernet switch.

Introduction to MPP Systems Page 9-35

Teradata 2650/2690 Appliances

Teradata appliances utilize a fully integrated cabinet design with nodes and disk
arrays in the same cabinet. Two examples of appliances are:

Teradata 2650 Systems

• Nodes use 2 Intel Six-core Westmere CPUs at 2.93 GHz; 96 GB of memory per node

• 24 AMPs per node

– 24 SAS 300 or 600 GB drives, or 12 SAS 2 TB drives per node

• A 2650 cabinet can house up to 9 nodes.

– Cliques are in 3 node configurations (no HSN); Cabinets can have 1, 2, or 3 cliques.

Teradata 2690 Systems

• Nodes use 2 Intel Six-core Westmere CPUs at 3.06 GHz; 96 GB of memory per node

• Each node has 2 hardware compression boards

• 24 AMPs per node

– 24 SAS 300, 600, or 900 GB drives per node (2.5" drives @ 10K RPM)

• A 2690 cabinet can house up to 8 nodes.

– Cliques are in 2 node configurations (not HSN); a cabinet can have between 1 and 4 cliques.

• Utilizes VMS (Virtualized Management Server)

– Consolidated CMIC, SWS, Teradata Viewpoint

ds186034
Sticky Note
we dont sell this new as such

ds186034
Highlight

 Introduction to MPP Systems Page 9-36

Teradata 2650/2690 Cabinets
With the 2650, you can have 3 cabinet type configurations: a 1/3 cabinet, 2/3 cabinet and
full cabinet. With a full cabinet you have 9 nodes. The disk drives that are supported are
300GB or 600GB drives or 108 2 TB 3.5” drives. To also help improve loading you can
configure the system with 10GB Ethernet copper or fiber ports. Cliques are configured with
3 nodes and no HSN.

A 1/3 cabinet is designed for lower CPU/Node density per cabinet. A 2/3 cabinet is
designed for medium CPU/Node density per cabinet. It is a good solution for mid-size
capacity options and provides flexible solutions for adding an integrated SWS or TMS. A
fully populated 2650 cabinet is designed for high CPU/Node density per cabinet. It is a
good solution for a high capacity system driving high CPU utilization.

With the 2690, a cabinet can be configured with up to 4 cliques in 2 node clique
configurations (no HSN). A full cabinet will have 8 nodes. The disk drives that are
supported are 300GB, 600GB, or 900GB drives.

One important new feature of the 2690 is hardware compression.

• With automatic block level compression, customers can get as much as 3x the
customer data space, so the amount of available storage has tripled.

• System level scan rate (what’s also known as effective scan rate), has increased 3x
as well because with compression because 3x more data is scanned.

• Also, hot cache memory, which is where frequently used results are stored until not
needed, has tripled as well because the data/results being stored are compressed.

With compression, the system can be pushed higher because compression CPU work has
been moved out of the nodes, and that CPU is available for Teradata work.

The Teradata Virtualized Management Server is a standard feature on the Data Warehouse
Appliance 2690. This 1U managed server rack mounts in the appliance node cabinet and
essentially consolidates all Teradata management functionality into one server. The VMS
contains the following functionality:

• Teradata Viewpoint, single system: Teradata Viewpoint is the robust web portal that

manages workloads, queries, and systems.
• SWS: The Teradata SWS is the software that monitors the physical cabinet. This

includes the nodes, disks, and connectivity.
• CMIC: The CMIC monitors all the disk controllers and cabling

The VMS is a key reason why full racks can be shipped without having to have a separate
expansion cabinet for this functionality. Some considerations include:

• Traditional Viewpoint is still available, but it is priced and licensed differently.
Please see the Teradata Viewpoint OCI for more information. Also note that VMS
Viewpoint can only monitor one system, not multiple

• If more than one node cabinet is required, the expansion cabinet will also have a
VMS but will only contain the CMIC software as the others aren’t needed.

Introduction to MPP Systems Page 9-37

Teradata 2650/2690 Cabinets

Fully loaded 2650
Cabinet

2650 Node

2650 Node

2650 Node

2650 Node

2650 Node

2650 Node

2650 Node

2650 Node

2650 Node

Dual AC Box

Disk Array

Disk Array

Disk Array

3 Node
Clique

Disk Array
(Dual Array
Controllers;
72 Drives)

3 Node
Clique

3 Node
Clique

Nodes are
numbered

2 -10.

Fully loaded 2690
Cabinet

Disk Array

2690 Node

2690 Node

2690 Node

2650 Node

2690 Node

2690 Node

2690 Node

2690 Node
Dual AC Box

Disk Array

Disk Array

2 Node
Clique

Disk Array

2 Node
Clique

2 Node
Clique
2 Node
Clique

Disk Array
(Dual Array
Controllers;
48 Drives)

Nodes are
numbered

2 -9.

 Introduction to MPP Systems Page 9-38

Appliance Configuration Examples
The examples on the facing page show a typical AMP and Disk configurations for 2650 and
2690 systems.

Notes:

 2650 systems utilize SAS disks (Serial Attached SCSI) – 300 GB and 600 GB disk
drives

 2650 systems can utilize 2 TB SATA disks (Serial Advanced Technology

Attachment)

 2690 systems can utilize 300, 600, or 900 GB SAS disk drives.

Introduction to MPP Systems Page 9-39

Appliance Configuration Examples

2650

2650 Clique

• 3 Node Cliques share 3
drive trays

• 96 GB Memory / Node
• 24 AMPs / Node
• 72 AMPs /Clique

• 24 Disks / Node (RAID 1)
• 72 Disks / Clique

2650 Cabinet with 9 nodes

• 216 AMPs
• 864 GB memory in cabinet

24 Disks – 600 GB

24 Disks – 600 GB

24 Disks – 600 GB

24 Disks – 600 GB

24 Disks – 600 GB

24 Disks – 600 GB

24 Disks – 600 GB

24 Disks – 600 GB

24 Disks – 600 GB

Node – Westmere CPUs

Node – Westmere CPUs

Node – Westmere CPUs

Node – Westmere CPUs

Node – Westmere CPUs

Node – Westmere CPUs

Node – Westmere CPUs

Node – Westmere CPUs

Node – Westmere CPUs

2650 Disk Options

• 300 or 600 GB SAS Disks
2.5" – 216 in cabinet

• 2 TB Disks
3.5" – 108 in cabinet

(Up to 9 Nodes
in a cabinet)

2690

2690 Clique

• 2 Node Cliques share 2
drive trays

• 96 GB Memory / Node
• 24 AMPs / Node
• 48 AMPs /Clique

• Includes hardware
compression.

• 24 Disks / Node (RAID 1)
• 48 Disks / Clique

2690 Cabinet with 8 nodes

• 192 AMPs
• 768 GB memory in cabinet

24 Disks – 600 GB

24 Disks – 600 GB

24 Disks – 600 GB

24 Disks – 600 GB

24 Disks – 600 GB

24 Disks – 600 GB

24 Disks – 600 GB

24 Disks – 600 GB

Node – Westmere CPUs

Node – Westmere CPUs

Node – Westmere CPUs

Node – Westmere CPUs

Node – Westmere CPUs

Node – Westmere CPUs

Node – Westmere CPUs

Node – Westmere CPUs

2690 Disk Options

• 300, 600, or 900 GB SAS
Disks
2.5" – 192 in cabinet

(Up to 8 Nodes
in a cabinet)

 Introduction to MPP Systems Page 9-40

What is the BYNET™?
The BYNET (BanYan Network) provides high performance networking capabilities for
MPP systems. The BYNET is a dual-redundant, bi-directional, multi-staged network based
on a Banyan network topology. The BYNET enables multiple processing nodes (SMP
nodes) to communicate in a high speed, loosely-coupled fashion.

BYNET communication occurs in a point-to-point, multi-cast, or broadcast fashion. A
connection request contains an address or routing tag for the intended receiving node or
group of nodes. Once the connection is made, a circuit is established for the duration of the
connection. The BYNET works much like a telephone network where many callers can
establish connections, including conference calls.

The BYNET interconnect provides a peak bandwidth of x Megabytes (MB) per second for
each node per direction connected to a network.

 V1 – 10 MB
 V2 – 60 MB
 V3 – 93.75 MB
 V4 – 240 MB

For example, a BYNET v4 network provides 240 MB x 2 (bi-directional) x 2 (BYNETs) =
960 MB/sec per node. A 10-node 5600 system with a dual BYNET network has the
potential raw capability of 9600 MB (or 9.6 GB) per second total bandwidth for point–to–
point connection. However, the total available broadcast bandwidth is 960 MB per second
for a dual network system of any size.

Other features of the BYNET network include:

 Guaranteed delivery - a message from a node is guaranteed to be delivered without
error to the receiving node(s); multiple levels of error checking and
acknowledgment are used to ensure this.

 Fault tolerant - multiple connection paths are available in each network; dual
network feature provides an active backup network should one network be lost.

 Flexible network usage - nodes communicate in point-to-point or broadcast fashion.

 Self-configuring - the BYNET automatically determines network topology at start-
up; enables ease of installation.

 Self-diagnosis and automatic fault recovery - automatically detects and reports
errors; reconfigures routing of connections to avoid inoperable processing nodes.

 Load balancing - traffic is automatically and dynamically distributed throughout
the networks.

Introduction to MPP Systems Page 9-41

What is the BYNET?

BYNET Switch Examples

• BYNET 4 switch (v2.1 – 240 MB/sec)
• BYNET 32 switch (BYA32S)

– Can execute at v3 or v4 speed
• BYNET 64 switch (v3.0 – 12U switches)
• BYNET 64 switch (v4.0 – 5U switches)

BIC (BYNET Interface Card) Examples
(these can run at v3 or v4 speeds)

• BIC2SX – used with 54xx nodes
• BIC2SE – used with 5500 nodes and later

What is the BYNET (BanYan NETwork)?
• High speed interconnect (network) for processing nodes in MPP systems. The BYNET

is a dual redundant network.

• BYNET works much like a telephone network where many callers (nodes) can
establish connections, including conference calls.

• BYNET Version 3 Switches – 375 MB/Sec per node

• BYNET Version 4 Switches – 960 MB/Sec per node

. . .

BIC

SMP

Open
BYNET SW

SMP

Open
BYNET SW

BIC

BYNET Switch
(v1, v2, v3, or v4)

BYNET Switch
(v1, v2, v3, or v4)

 Introduction to MPP Systems Page 9-42

BYNET 32 Switches
The facing page contains of an example of a BYNET 32 switches. Examples of other
BYNET switches are listed below. This is not an inclusive list.

BYNET 4 Switch Version 2 (BYA4G) – a PCI card designed to interconnect up to 4 SMPs.
This switch is a BYNET v2 switch (60 MB/sec.) designed for 485x systems. The BYA4G is
a PCI card that is placed into a PCI slot of an SMP.

BYNET 4 Version 2.1 Switch (BYA4M) – PCI card designed to interconnect up to 4
SMPs. This switch is a BYNET v2.1 switch (60 MB/sec.) designed for 4900 systems. The
BYA4M is a PCI card that is placed into a PCI slot of an SMP.

BYNET 4 Switch Version 2.1 (BYA4MS) – PCI card designed to interconnect up to 4
SMPs. This BYNET V2.1 switch (60 MB/sec.) was designed for 4980 systems. The
BYA4MS has a shorter form factor – S is for shorter.

BYNET 32 Switch (BYA32S) – this switch can run at v3 or v4 speeds depending on the
system and type of BICs. Up to 16 TPA nodes and 16 NOTPA nodes can be connected to
this switch. This 1U chassis switch resides in a Base or System Cabinet.

 Includes an Ethernet Interface for BYNET status & error reporting and chassis

management.

Note on BYNET cables:

 There is a physical difference between BYNET v2 and BYNET v3/v4 cables. The
BYNET v3/v4 cables have a “Quick Disconnect” connector whereas the BYNET
v2 cables have a “Micro D” connector with 2 screws. The number of wires inside
the cables is the same.

Introduction to MPP Systems Page 9-43

BYNET 32 Switches

BYNET 0 BYNET 1

BYA32S Switch BYA32S Switch

. . .TPA
1

TPA
2

TPA
16

NOTPA
17

NOTPA
18

NOTPA
32

. . .

BYNET 32 switch (BYA32S) is a 1U chassis used in an processor rack.

• This 32-port switch can execute at v3 or v4 speeds.

• Up to 16 TPA nodes can be connected.

• An additional 16 HSN, Channel, or non-TPA nodes can be connected.

ds186034
Sticky Note
32 port on it32 nodes can be connectedupto 16 teradata node (TPA)

 Introduction to MPP Systems Page 9-44

BYNET 64 Switches
For configurations greater that 16 TPA/HSN nodes, BYNET 64 switches must be used.

BYNET 64 Node Switch Version 2 (BYA64GX chassis) – this switch is actually
composed of 8 BYA8X switch boards in the BYA64GX chassis. Each BYA8X switch
board allows up to 8 SMPs to interconnect (i.e., 8 switches x 8 SMPs each = 64 SMPs). The
BYA64GX is actually a backpanel that allows the 8 BYA8X switch boards to interconnect.

This 12U chassis resides in either the BYNET V2 64 Node Switch cabinet or the BYNET
V2 64/512 Node Expansion Cabinet.

Note: BYA8X switch board (in BYA64GX chassis): This is Stage A base switch board.

Each board supports 8 links to nodes. The BYA64GX chassis can contain a
maximum of 8 BYA8X switches, allowing for 64 links to nodes. In systems
greater than 64 nodes, the BYA8X switch boards also connect the BYA64GX
chassis to BYB64G chassis through X-port connectors, one on each BYA8X board.

BYNET Switch Cabinets
Even though the BYNET switch cabinets are different for BYNET v2, v3, and v4.
However, the basic purpose is the same - the purpose is to house BYNET 64 switches.

The BYNET 64 Node Switch Cabinet (shown on facing page) can be used for
configurations from 2 through 64 nodes and must be used for configurations greater than 16
nodes. All nodes in the configuration are interconnected from the BYNET (V2 or V3) node
interface to the BYNET (V2 or V3) 64 Node Switch chassis (BYA64GX). Two BYNET
(V2 or V3) 64 Node Switch Cabinets are required for the base dual redundant BYNET V2
networks.

The BYNET 512 Node Expansion Cabinet Version 2 (or 3) (not shown) is for used for
configurations that begin with 64 nodes or less and has expanded beyond 64 node maximum
configuration supported by the BYNET BYA64GX chassis (in the BYNET 64 Node Switch
Cabinet). Above 64 nodes, the BYNET BYB64G chassis (effectively a 512 node switch
chassis) is used to interconnect multiple BYNET 64 node switch chassis. The simple
configuration rules are:

 Each group of 2 to 64 nodes requires two BYNET V2 64 node switch chassis; a
minimum of two is required for dual redundancy.

 For configurations with greater than 64 nodes, each BYNET V2 64 node switch

chassis must have a complimentary BYNET V2 512 node switch chassis.

Introduction to MPP Systems Page 9-45

BYNET 64 Switches

A BYNET 64 Switch is a separate chassis located
inside a BYNET rack or cabinet.

• BYNET v3 64 Switches (BYA64GX) – 12U in height
– 375 MB/sec per node for both BYNET channels

• BYNET v4 64 Switches (BYA64S) – 5U in height
– 960 MB/sec per node for both BYNET channels

Two BYNET switch racks are needed to house these
two BYNET 64 switches.

BYNET 1

BYA64S Switch
(v4)

Nodes connect to BYA switches.

Node
1

Node
2

Node
64

. . .

BYA64S Switch
(v4)

BYNET 0

BYNET Switch
Rack

BYNET Switch
Rack

BYNET 64
Node

Switch
Chassis – 5U

BYA64S
(v4)

BYNET 64
Node

Switch
Chassis – 5U

BYA64S
(v4)

ds186034
Sticky Note
64 to expand to large config- 2 sep for redundancy

 Introduction to MPP Systems Page 9-46

BYNET Expansion Switches
With BYNET v3, the BYA64GX and BYC64G switches are physically identical. What
makes them different is the firmware that is loaded onto the BYNET switch and how they
are cabled together.

 The base chassis is the same as the BYNET version 2 base chassis. This includes
including sheet metal and backpanel, power supplies, power control board, and
fans.

 The v3 BYA8QX switch is new within the BYA64GX and BYC64G switches.

BYNET V3 64-node Switch Chassis
The BYNET V3 64-node Switch Chassis are used in 5400H systems with greater than 16
nodes. Each switch chassis resides in its own cabinet or co-reside with a BYNET V3 1024-
node Expansion Switch Chassis. Each BYNET V3 64-node Switch Chassis provides the
BYNET switching for its own BYNET V3 fabric. Therefore, for redundancy; two 64-node
Switch Chassis are needed. In systems with greater than 64 nodes, two BYNET 64-node
switches are needed for every 64 nodes.

BYNET V3 1024-node Expansion Switch Chassis
The BYNET V3 1024-node Expansion Switch Chassis (marketing name) is used in 5400H
systems with greater than 64 nodes. The 1024-node switch resides in its own cabinet or co-
resides with a BYNET 64-node switch.

The total number of 1024-node switch chassis needed in a system is a power of 2 based on
the number of nodes.

 For systems with 65 - 128 nodes, two 1024-node switches are needed per BYNET
fabric (total of 4).

 For systems with 129 – 256 nodes, four 1024-node switches are needed per

BYNET fabric (total of 8).

 For systems with 257 – 512 nodes eight 1024-node switches are needed per

BYNET fabric (total of 16).

BYNET Expansion to 1024 Nodes
BYNET v3/v4 support configurations up to 1024 nodes. For BYNET v3, in order to
interconnect more than 512 nodes additional BYOX and BYCLK hardware is needed.

Introduction to MPP Systems Page 9-47

BYNET Expansion Switches

This example shows both BYNETs and connects 128 nodes.

• The BYNET v4 Expansion switch (BYC) is a separate 5U
chassis located inside the BYNET rack or cabinet.

• The BYNET v3 Expansion switch (BYC – not shown) is a
12U chassis. To support 128 nodes with BYNET v3
switches, 4 BYNET switch BYNET racks are needed.

BYNET 0

. . .
Node

65
Node

66
Node
128

BYNET 1

BYA
Switch

. . .
Node

1
Node

2
Node

64

BYA
Switch

BYA64S
(v4)

BYA64S
(v4)

BYC
Switch

BYC
Switch

BYC64S
(v4)

BYC64S
(v4)

BYA
Switch

BYA
Switch

BYA64S
(v4)

BYNET Switch
Rack

BYNET Switch
Rack

BYA64S
(v4)

BYC
Switch

BYC
Switch

BYC64S
(v4)

BYC64S
(v4)

 Introduction to MPP Systems Page 9-48

Server Management with SWS
The SWS (Service Workstation) provides a single operational view for Teradata MPP
Systems and the environment to configure, monitor, and manage the system. The SWS
effectively is the central console for MPP systems.

The SWS is one part of the Server Management subsystem that provides monitoring and
management capabilities of MPP systems. Prior to the SWS, other server management
environments were:

 1st Generation Server Management (3600) – Server Management (SM) processing,

storage and display occurred on AWS.

 2nd Generation Server Management (5100, 48xx/52xx, 49xxx/53xx) – most SM

processing occurs on CMICs and Management Boards. The AWS still provides all the
storage and display.

 3rd Generation Server Management (54xx systems and beyond) – most SM

processing occurs on CMICs and Management Boards. The SWS still provides all the
storage and display. The Server Management subsystem uses industry standard parts, a
Server Management Node and Ethernet switches to implement an Ethernet based
Server Management solution. This new Server Management is referred to a Third
Generation Server Management (SM3G).

One of the reasons for the new Server Management subsystem is to better adhere to industry
standards. Ethernet-based management is now the industry standard for chassis vendors.

Virtualized Management Server (VMS)

The Teradata Virtualized Management Server is a standard feature on the Data Warehouse
Appliance 2690 and the 6690. This 1U managed server rack mounts in the appliance node
cabinet and essentially consolidates all Teradata management functionality into one server.
The VMS contains the following functionality:

• Teradata Viewpoint, single system: Teradata Viewpoint is the robust web portal that

manages workloads, queries, and systems.
• SWS: The Teradata SWS is the software that monitors the physical cabinet. This

includes the nodes, disks, and connectivity.
• CMIC: The CMIC monitors all the disk controllers and cabling

The VMS is a key reason why full racks can be shipped without having to have a separate
expansion cabinet for this functionality. Some considerations include:

• Traditional Viewpoint is still available, but it is priced and licensed differently.
Please see the Teradata Viewpoint OCI for more information. Also note that VMS
Viewpoint can only monitor one system, not multiple

• If more than one node cabinet is required, the expansion cabinet will also have a
VMS but will only contain the CMIC software as the others aren’t needed.

Introduction to MPP Systems Page 9-49

Server Management with SWS

For 1600, 56xx, and 66xx systems:

• The SWS (Service Workstation) is a Linux workstation that is
dedicated to system servicing and maintenance.

– May be deskside or rack mounted

• Server Management WEB (SMWeb) services provides
operational & maintenance control via Internet access.

Option for 1650, 2690, and 6690 systems:

• VMS (Virtualized Management Server) – consolidated CMIC,
SWS, Teradata Viewpoint

SMWeb services
provide the ability to:

• connect to AWS
type display

• connect to nodes

• power on/off/reset

• manage alerts

• obtains h/w or s/w
status information

Collective #1 Collective #2

BYNET
BYNET

HSN
SMP 15
SMP 14

HSN
SMP 12
SMP 11

HSN
SMP 9
SMP 8

SM (CMIC)

Array
Controllers

Array
Controllers

HSN
SMP 15
SMP 14

HSN
SMP 12
SMP 11

HSN
SMP 9
SMP 8

SM (CMIC)

Array
Controllers

Array
Controllers

Dual Ethernet LANs

 Introduction to MPP Systems Page 9-50

Node Naming Conventions
The examples on the facing page show AWS naming conventions for cabinets or racks.
Each chassis consists of a number of internal components (processors, fans, power supplies,
management boards, etc.). The chassis numbering for 52xx/53xx cabinets starts at 1 from
the top of the cabinet to bottom of the cabinet. The chassis numbering for 54xx and 55xx
cabinets starts at 1 from the bottom of the cabinet to the top of the cabinet.

54xx/55xx Chassis Numbering Conventions
A standard chassis numbering convention is used for the 54xxE, 54xxH/LC, 55xxC/H,
Storage, and BYNET cabinets. The chassis numbers are not defined by hardware, but only
by convention and numbering defined in the CMIC configuration file. Chassis numbers
begin with one and go up to 22. Chassis numbers are assigned to the position; chassis
numbers begin for each type of chassis as defined below and are not skipped if a chassis is
not installed.

All Cabinets
 In all cabinets, chassis 1 is the bottom UPS, the numbering continues upward until all

UPS(s) are assigned. Up to 5 UPS(s) can exist in the cabinet.
Node Cabinets
 Chassis 6 - CMIC in the Node cabinets
 Chassis 7 through 16 – Nodes; the bottom node chassis starts 7 and continues up to 16.

The chassis number is assigned to the position, if no node is installed the chassis
number is skipped. If only 8 TPA nodes in a rack, then nodes are numbered 9 to 16.

 Chassis 17 and 18 – BYA32Gs
 Chassis 19 through 22 – FC switches (if present)
Storage Cabinets
 Chassis 4 – SM Chassis (CMIC) in a Storage cabinet (if present)
 Chassis 5 and 6 – Disk Array Controller chassis; lower disk array is 5, the upper is 6.

Disk Array names are DAMCxxx-y-z where xxx is collective number, y is cabinet
number, and z is chassis number.

BYNET Cabinets
 Chassis 4 and 5 – BYNET 64 switches (Chassis 4 - BYC64, Chassis 5 - BYA64)

54xx/55xx Collective Conventions
A collective is made up of the node and disk array cabinets that are part of the same server
management group (usually the same clique).

 Include the first BYNET Cabinet to the first Node Cabinet Collective
 Include the second BYNET Cabinet to the second Node Cabinet Collective
 Include the third BYNET Cabinet to the third Node Cabinet Collective, etc
 Remember, only one BYNET Cabinet may be configured in any 54xx Collective

The SM3G Collectives are defined in software using the CMIC Configuration Utility. The
CMIC Configuration Records (CMICConfig.xml) contain configuration information for all
the chassis in a CMIC’s collective. All SM3G chassis must reside on the same Primary and
Secondary management networks.

Introduction to MPP Systems Page 9-51

Node Naming Conventions

1st E'net Switch – P
1st E'net Switch – S

1U BYNET Switch
1U BYNET Switch

HSN

SMP001-15

SMP001-14

HSN

SMP001-12

SMP001-11

HSN

SMP001-9

SMP001-8

SM – CMIC

UPS

UPS

UPS

UPS

UPS

5650

16
15
14
13
12
11
10
9
8

10

9

8

6690

Secondary SM Switch

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

6844 Array
Controllers (4U)

SMP002-7

SMP002-6

TMS Node

BYA32S-1
BYA32S-0

SM – CMIC (1U)
Primary SM Switch

PDU PDU

6650

7

6

5

6650

Secondary SM Switch

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

Drive Tray (16 HD)

6844 Array
Controllers (4U)

HSN

SMP003-6

TMS Node

TMS Node

SM – CMIC (1U)
Primary SM Switch

PDU PDU

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

VMS (1U)

HSN

SMP004-9

SMP004-8

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

PDU PDU

ds186034
Sticky Note
6560 = 9 nodeshow do we number themposition 8....in Data Dictionary many tables...some are performance tablesresusageperf analysis = system performance..these nos appear on RESUSAGE tablethe only ones are these (8-16) cause they appear on resusage6650:nodes: 5-6-7to extract information from data dictionarythese names appear on data dictionary

 Introduction to MPP Systems Page 9-52

Summary
 The facing page summarizes the key points and concepts discussed in this module.

Introduction to MPP Systems Page 9-53

Summary

Data Mart
Appliance

Extreme Data
Appliance

Data Warehouse
Appliance

Extreme
Performance

Appliance

Active Enterprise
Data Warehouse

Purpose

Test/
Development

or Smaller
Data Marts

Analytics on
Extreme Data
Volumes from

New Data Types

Data Warehouse
or Departmental

Data Marts

Extreme
Performance for

Operational Analytics

Enterprise Scale
for both

Strategic and
Operational
Intelligence
EDW/ADW

Possible
Uses

Departmental
Analytics,
Entry level

EDW

Analytical
Archive, Deep
Dive Analytics

Strategic
Intelligence,

Decision Support,
Fast Scan

Operational
Intelligence, Lower

Volume, High
Performance

Active Workloads,
Real Time Update,

Tactical and
Strategic response

times

ds186034
Sticky Note
single node

ds186034
Sticky Note
ebay uses

ds186034
Sticky Note
2690

ds186034
Sticky Note
SSD driveexpensivewas called 4600 system

ds186034
Sticky Note
6690 EDW

 Introduction to MPP Systems Page 9-54

Module 9: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Introduction to MPP Systems Page 9-55

Module 9: Review Questions

1. What is a major difference between a 6650 system as compared to a 6690 system?

2. What is a major difference between a 2650 node and a 2690 node?

3. What does the acronym represent and briefly define the purpose of the following subsystems?

BYNET ___

SWS ___

4. Specify the names of the two TPA nodes in 6690 cabinet #2.

__________ ____________

Play the numbers games – match the number to a definition.

1. 3 a. Typical # of AMPs per node in a 6650 3+1 clique

2. 8 b. Maximum number of nodes that can be in a 2690 cabinet

3. 24 c. Maximum number of drives in one NetApp 6844 disk array

4. 42 d. Number of nodes in a 2650 clique

5. 128 e. Large disk drive size (GB) for a 2690 disk array

6. 900 f. Typical # of AMPs in a 2690 node

ds186034
Sticky Note
high speed interconnect for data/message passing between nodes

ds186034
Sticky Note
Operations,. system servicing and maintenance

ds186034
Sticky Note
SMP 002 - 8

ds186034
Sticky Note
SMP 002 - 9

 Introduction to MPP Systems Page 9-56

Notes

How Teradata uses MPP Systems Page 10-1

Module 10

Teradata Proprietary and Confidential

How Teradata uses MPP Systems

After completing this module, you will be able to:

 Identify items that are placed into FSG cache.

 Identify a purpose for the WAL Depot and the WAL Log.

 Describe the fundamental relationship between Linux, logical
units, and disk array controllers.

 Describe the fundamental relationship between Vdisks, Pdisks,
LUNs, and partitions.

 How Teradata uses MPP Systems Page 10-2

Notes

How Teradata uses MPP Systems Page 10-3

Table of Contents

Teradata and the Processing Node ... 10-4

FSG Cache ... 10-4
Memory and the Teradata Database ... 10-6

5555H Example .. 10-6
SMP Memory – Summary ... 10-8

Determining FSG Cache .. 10-8
O.S. Managed Memory and FSG Cache .. 10-10
WAL – Write Ahead Logic .. 10-12
WAL Concepts ... 10-14
Linux Vproc Number Assignment ... 10-16
Disk Arrays from a O.S. Perspective ... 10-18
Logical Units and Partitions ... 10-20

EMC2 Notes ... 10-20
Teradata and Disk Arrays... 10-22
Teradata 6650 (2+1) Logical View .. 10-24
Teradata 6650 (3+1) Logical View .. 10-26
Example of 1.2 TB Vdisk (pre-TVS) ... 10-28
Teradata File System Concepts .. 10-30
Teradata Vdisk Size Limits .. 10-30
Teradata 13.10 Large Cylinder Support ... 10-32

When to Use This Feature .. 10-32
Full Cylinder Read ... 10-34
Summary .. 10-36
Module 10: Review Questions ... 10-38

 How Teradata uses MPP Systems Page 10-4

Teradata and the Processing Node
The example on the facing page illustrates a 5650H processing node running Linux and
Teradata.

Memory will initially be allocated for the operating system and Teradata vprocs. PDE will
calculate how much memory to allocate to itself for FSG (File Segment Cache) based on
memory not being used by the operating system and the Teradata vprocs. PDE software will
manage the FSG memory space.

Practical experience (for most environments) indicates that the operating system (e.g.,
Linux) may need more than this initial allocation during startup. For these reasons, PDE is
not assigned all of the remaining memory for FSG cache, but a percentage (e.g., 90%) of the
remaining memory.

Also note that LAN and Channel adapters (PBSA) also require memory for network and
channel activity. For example, each channel adapter uses memory buffers up to 500 MB in
size. For 56xx systems, LAN and Channel Adapters not utilized within a TPA node. These
are implemented in “Extended Node Types”.

FSG Cache
FSG Cache is primarily used by the AMPs to access memory resident database segments.

When the Teradata Database needs to read a database block, it checks FSG Cache first.

How Teradata uses MPP Systems Page 10-5

Teradata and the Processing Node

Linux

PDE Vproc
(Parallel Database Extensions)

Teradata TPA S/W

Process Control Memory Mgmt. I/O Mgmt. (Device Drivers)

MemoryCPUs BIC2SE QFC Eth.

BYNET Disk
Arrays

LANs

Pentium Westmere
Six-Core – 3.06 GHz

QFC - Quad Fibre Channel

PE vproc PE vproc

FSG (File Segment Cache) – managed by PDE

AMP
vproc

AMP
vproc

AMP
vproc

AMP
vproc

AMP
vproc

AMP
vproc

AMP
vproc

GTW Vproc
(Gateway)

TVS Vproc
(Teradata Virtual Storage)

RSG Vproc - optional
(Relay Services Gateway)

Pentium Westmere
Six-Core – 3.06 GHz

ds186034
Sticky Note
first thing that kicks offPDEhow many amps we are going to runits gonna run rest of the swhow much avail mem is there and is going to use80mb each vproc is going to useFSG large chunk of mem (data block and cylinder index into memory)linux boots->PDE boots

 How Teradata uses MPP Systems Page 10-6

Memory and the Teradata Database
The example on the facing page assumes a 5650H node with 96 GB of memory executing
the Teradata Database. This example assumes 42 AMPs, 2 PEs, PDE, GTW, RSG, and TVS
vprocs for a total of 48 vprocs in this node. This means that memory will have to be
allocated for the 48 vprocs.

The operating system, device drivers, and Teradata vprocs for a 6650H Linux node with 96
GB of memory will use approximately 18 GB of memory. PDE will use a FSG Cache
Percent (CTL parameter) to calculate how much memory to allocate to itself for FSG (File
Segment Cache) based on the available memory (96 GB – 18 GB).

Practical experience (for most environments) indicates that the operating system (e.g.,
Linux) may need more than this initial allocation during startup. Parsing Engines and AMPs
will typically use more than their initial allocation of memory (80 MB). For example,
redistribution buffers for an AMP may use an additional 130 MB of memory for a total of
210 MB of memory per AMP.

For these reasons, PDE is not assigned all of the remaining memory for FSG cache, but a
percentage of the remaining memory. The default of 90% for FSG Cache Percent works for
most 66xx systems. 90% of 78 GB (96-18) = 70.2 GB of FSG cache.

This can be verified by using the ctl utility hardware function, it can be determined that 42
AMPs have an average of 1.669 GB of memory. 42 x 1.669 = 70.1 GB of FSG cache.

5555H Example

Assume a 5555H node with 32 GB of memory executing the Teradata Database.

Assume that a typical 5555H node will have 25 AMPs, 2 PEs, PDE, GTW, RSG, and TVS
vprocs for a total of 31 vprocs. This means that memory will have to be allocated for the 31
vprocs.

The operating system, device drivers, and Teradata vprocs for a 5555H Linux node with 32
GB of memory may use as much as 5.8 GB of memory. PDE will use a FSG Cache Percent
(CTL parameter) to calculate how much memory to allocate to itself for FSG (File Segment
Cache) based on the available memory (32 GB – 5.8 GB).

The 5.8 GB is based on the Design Center recommendation for a 5555H node with 32 GB of
memory.

For these reasons, PDE is not assigned all of the remaining memory for FSG cache, but a
percentage of the remaining memory. The default of 80% for FSG Cache Percent works for
most 5555 systems.

How Teradata uses MPP Systems Page 10-7

Memory and the Teradata Database

10% of remaining space – 8 GB available as free space

FSG (File Segment Cache)

(Examples of use – Data Blocks & Cylinder Indexes)

Managed by PDE Software

90% of remaining space – 70 GB available for FSG

PDE
Hash Maps

Configuration Maps

PE
Vproc

RTS
D/D

Cache

AMP
Vproc

Master
Index

AMP
Vproc

Master
Index

.

Operating System and Device Drivers

Ex. 96 GB Memory

Examples of objects that are
memory resident:

Hash Maps
Configuration Maps
Master Indexes
RTS – Request-to-Steps Cache
D/D – Data Dictionary Cache

Example of 6650 (Linux) node
with 2 PEs and 42 AMPs and
96 GB of memory:

Memory
O.S., Device Drivers, and
space for vprocs ≈ 18 GB

96 GB
– 18 GB

78 GB

FSG Cache 90%
FSG Cache ≈ 70 GB

Free Memory ≈ 8 GB

GTW VSS RSG

. . .

ds186034
Highlight

ds186034
Highlight

ds186034
Sticky Note
AMP starts 8MB to 200MBadditional mem that AMP will needif 42AMP (80to 220=140)so 140*42 = 6gbdo i have that spacehere i have 8gb so i am finewhat if its only 4gbthen it will do SWAPwe dont want that!so we make sure we have engh FSG!!!PE nothing to worry but AMP can grow!

ds186034
Sticky Note
4 hash mapprimary and fallback - 2 mainly use1mill entry (2mb) - loaded into memory automaticallly - every node4mb - hash maps

ds186034
Sticky Note
PDEHMap and CMaploaded into mem automatically

ds186034
Sticky Note
cylinder - 2mb contigious space24kPI value -> master index (mem resident, each entry 22MB long)-> cyl index->data blockunique per nodeMaster index is always memory resident

ds186034
Sticky Note
we read in data block

 How Teradata uses MPP Systems Page 10-8

SMP Memory – Summary
Practical experience (for most environments) indicates that Linux and Teradata vprocs need
more memory than initially allocated during normal processing periods. Prior to V2R5, it
was recommended that at least 20 MB to 40MB of additional free memory be available for
each AMP. With 32-bit systems, it is recommended that a node have at least 60 – 80 MB of
free memory available for each AMP. With 64-bit systems, each AMP may use up to 210
MB of memory. This would be an additional 130 MB of memory per AMP.

This is accomplished by not giving 100% of the remaining memory to FSG. It is always
recommended that the FSG Cache Percent be set to a value less than 100%. The default of
90% for FSG Cache Percent works well for most 56xx and 66xx configurations. 80%
usually works well for 5555 configurations.

Determining FSG Cache
The “ctl” utility can be used to determine how much FSG cache memory is actually
available to a node.

Using the “ctl” utility, the hardware command will report the amount of FSG cache for each
AMP. The values below represent the average amount of FSG memory per AMP.
Examples are shown below.

For a 5555H node with 25 AMPs, the report will indicate 838,016 KB/per AMP.

 838,016 KB/AMP x 25 = 20,950,500 KB or approximately 21 GB of FSG cache.

For a 2555H node with 36 AMPs, the report will indicate 582,016 KB/per AMP.

 582,016 KB/AMP x 36 = 20,952,576 KB or approximately 21 GB of FSG cache.

For a 5600H node with 40 AMPs, the report will indicate 1,753,856 KB/per AMP.

 1,753,856 KB/AMP x 40 = 70,154,240 KB or approximately 70 GB of FSG cache.

For a 5650H node with 47 AMPs, the report will indicate 1,472,000 KB/per AMP.

 1,472,000 KB/AMP x 47 = 69,184,000 KB or approximately 69.2 GB of FSG
cache.

For a 6650H node with 42 AMPs, the report will indicate 1,669,120 KB/per AMP.

 1,669,120,000 KB/AMP x 42 = 70,103,040 KB or approximately 70.1 GB of FSG
cache.

How Teradata uses MPP Systems Page 10-9

SMP Memory – Summary

FSG – pool of memory managed by PDE and each AMP uses what it needs.

ctl Parameter – FSG Cache Percent – for 66xx, the design center recommendation is 90%
and this works for most configurations.

Managed by
PDE FSG
software.

Memory
managed by

O.S.

Based on the configuration and FSG
Cache Percent value, PDE will
determine the amount of memory to
allocate for FSG cache.

However, vprocs (especially AMPs) will
use more than their initial memory
allocations during normal processing
(e.g., redistribution buffers,
aggregations buffers, hash join buffers,
etc.).

Some basic guidelines for AMPs are:

64-bit systems – assume 210 MB per AMP

Ex. 96 GB Memory

O.S., Device drivers,
and Teradata Vprocs

18.0 GB

FSG Cache

90% – 70.2 GB

80% – 62.4 GB

Memory managed
by O.S.

7.8 GB

ds186034
Highlight

ds186034
Highlight

ds186034
Sticky Note
FSG:opening up free mem so AMP can grow into itjust to avoid SWAP cause otherwise AMP performance will go down

ds186034
Sticky Note
memory within the node - global settings

 How Teradata uses MPP Systems Page 10-10

O.S. Managed Memory and FSG Cache
The facing page lists examples of how Operating System managed memory (free memory)
and FSG cache is used.

Memory managed and used by the operating system and the vprocs is sometimes called
“free memory”. The main code (on a TPA node) that uses free memory is the operating
system and Teradata vprocs

A brief description of Teradata Vprocs:

 AMP Access module processors perform database functions, such as executing
database queries. Each AMP owns a portion of the overall database storage.

 GTW Gateway vprocs provide a socket interface to Teradata Database on Windows

and Linux systems. On MP-RAS systems, the same functionality is provided by
gateway software running directly on the system nodes within the PDE vproc.

 Node (or Base) PDE vproc - the node vproc handles PDE and operating system

functions not directly related to AMP and PE work. Node vprocs cannot be
externally manipulated, and do not appear in the output of the Vproc Manager
utility.

 PE Parsing engines perform session control, query parsing, security validation,

query optimization, and query dispatch.

 RSG Relay Services Gateway provides a socket interface for the replication agent,
and for relaying dictionary changes to the Teradata Meta Data Services (MDS)
utility.

 TVS Manages Teradata Database storage. AMPs acquire their portions of database

storage through the TVS (previous releases named this VSS) vproc.

When Teradata needs to read a database block, it checks FSG Cache first.

Examples of how FSG Cache is used

 Permanent data blocks
 Cylinder Indexes
 Spool data blocks
 Transient Journals
 Permanent Journals
 Synchronized scan (sync scan) data blocks

How Teradata uses MPP Systems Page 10-11

O.S. Managed Memory and FSG Cache

Memory managed by the O.S. is referred to as “free memory”.

• Teradata Vprocs
– AMP – includes AMP worker tasks
– PE – Session control, Parser, Optimizer, Dispatcher
– PDE (Parallel Database Extensions) – messaging, FSG space management, etc.
– GTW (Gateway) – Logon Security, Session Context, Connection to Client
– RSG (Relay Services Gateway) – Optional; Replication Gateway, MDS auto-update
– TVS (Teradata Virtual Storage) – manages Teradata Virtual Storage

• Administrative and/or user programs such as:
– kernel resources and administrative program text and data
– message buffers (ex., TCP/IP)

Memory managed by PDE is called FSG cache. FSG cache is primarily used by
the AMPs to access memory resident database segments.

• When Teradata needs to read a database block, it checks FSG Cache first.
– Permanent data blocks
– Cylinder Indexes
– Spool data blocks
– Journal blocks; Transient Journal and/or Permanent Journals
– Synchronized scan (sync scan) data blocks

 How Teradata uses MPP Systems Page 10-12

WAL – Write Ahead Logic
WAL (Write Ahead Logic) is a recoverability/reliability feature that can possibly provide
performance improvements in the area of database writes. In general, I/O increases with
WAL and, therefore, it may reduce throughput for I/O bound workloads. However, the
overall performance is expected to be better with WAL since the benefit of CPU
improvement outweighs the I/O cost. There is some additional CPU cost for maintaining the
WAL log so WAL may reduce throughput for CPU-bound workloads, but is minimal.

Simple example: Assume Teradata Mode, an implicit transaction, and you are doing an
UPDATE of a single row in a block that has 300 rows in it.

1. Data block is read into FSG Cache.
2. UNDO row is written to WAL Log (effectively a before-image or TJ type row)
3. The data block in memory is changed and is marked as changed (not immediately written

to disk - called deferred write).
4. REDO row is written to the WAL Log (effectively an after-image) - writing a single

REDO row is faster than writing a complete block
5. The lock is released and the user gets a transaction completed message. Note the updated

block is still in memory and hasn't been written to disk yet.

 Note: Other users might be doing updates on rows in the same block and there might be

multiple updates to the same block in memory.

6. At some point (maybe a half-second second later), the block needs to be written to

disk. This is a deferred write and is done in the background.

6A. If the updated block has not changed size, then it can be written back-in-place. Before

physically writing the block back-in-place, the updated block is first written to the WAL
depot. After the datablock is successfully written to the WAL Depot, it is then physically
written back-in-place.

 Why is the block effectively written twice back to disk? A write operation can fail (called

interrupted write) and this can corrupt a block on disk and potentially corrupt all 300
rows. This is a very rare occurrence, but can happen. The WAL Log only has 1 row
(REDO row) of the row that has changed. Therefore, by writing the block first to the WAL
Depot before writing back-in-place, Teradata ensures that a good copy of the entire
datablock is written back-to-disk. The WAL Depot is ONLY used for blocks that haven't
changed size - effectively write back-in-place operations. This is an extra internal I/O, but
it provides data integrity and protection from interrupted write operations.

6B. If the block has changed size in memory (e.g., block expands to an additional sector), then

the updated block is written to a new location on disk - it is not written to the WAL
Depot. If there is an interrupted write, the original block has not been touched and the
REDO rows along with the original data block can be used for recovery.

WAL can batch up modifications from multiple transactions and apply them with a single
disk I/O, thereby saving I/O operations. WAL will help improve throughput for I/O-bound
workloads. Obviously, Load utilities such as FastLoad and MultiLoad don't need to use
WAL. Other functions such as FastPath operations use the WAL subsystem differently.

How Teradata uses MPP Systems Page 10-13

WAL – Write Ahead Logic

WAL – Write Ahead Logic

• Available with all Teradata systems – PDE (UNIX MP-RAS) and OpenPDE (Windows
and Linux)

• Replaced Buddy Backup in PDE (UNIX MP-RAS) Teradata systems

WAL is a primarily an internal recoverability/reliability feature that also provides
performance improvements in the area of database writes.

• All modifications are represented in a log and the log is forced to disk at key times.

• Data Blocks updated in Memory, but not written immediately to disk

• In place of the data block written to disk, the before image (UNDO row) and after
image (REDO row) are written to a WAL buffer which is written to the WAL log on disk.

• WAL can batch up modifications from multiple transactions and apply them with a
single disk I/O, thereby saving I/O operations. WAL will help improve throughput for
I/O-bound workloads.

• Updated data blocks will be eventually aged out and written to disk.

Note: There are numerous DBS Control parameters to specify space allocations
for WAL.

ds186034
Highlight

ds186034
Sticky Note
deferred writewritten to WAL log but not to disk yet

ds186034
Sticky Note
depending on if the transaction has been written or notredo or undo....

 How Teradata uses MPP Systems Page 10-14

WAL Concepts
WAL has its own file system software and uses a fixed number of cylinders for the WAL
Depot (varies by vdisk size and DBSControl parameters) and a dynamic number of cylinders
for the WAL Log itself.

The WAL Depot consists of two types of slots:

 Large Depot slots
 Small Depot slots

The Large Depot slots are used by aging routines to write multiple blocks to the Depot area
with a single I/O. The Small Depot slots are used when individual blocks that require Depot
protection are written to the Depot area by foreground tasks.

The number of cylinders allocated to the Depot area is fixed at startup based on the settings
of several internal DBS Control flags.

The number of Depot area cylinders allocated is per pdisk, so their total number depends on
the number of Pdisks in your system. Sets of Pdisks belong to a subpool, and the system
assigns individual AMPs to those subpools.

Because it does not assign Pdisks to AMPs, the system calculates the average number of
Pdisks per AMP in the entire subpool from the vconfig GDO when it allocates Depot
cylinders, rounding up the calculated value if necessary. The result is then multiplied by the
specified values to obtain the total number of depot cylinders for each AMP. Using this
method, each AMP is assigned the same number of Depot cylinders.

The concept is to disperse the Depot cylinders fairly evenly across the system. This prevents
one pdisk from becoming overwhelmed by all the Depot writes for your system.

WAL (Write Ahead Logic) is a transaction logging scheme maintained by the File System
in which a write cache for disk writes of permanent data is maintained using log records
instead of writing the actual data blocks at the time a transaction is processed. Multiple log
records representing transaction updates can then be batched together and written to disk
with a single I/O thus achieving a large savings in I/O operations and enhancing system
performance as a result.

The amount of space used for the WAL Log is dynamic. WAL contains before-images (TJ)
and after-images (Redo) for transactions. For example, the number of TJ images is very
dependent on the type of transaction. Updating every row in a large table places a lot of TJ
images into WAL.

Note: Prior to the V2R6.2 release, Teradata systems running under UNIX MP-RAS systems
utilized a facility referred to as “buddy backup”.

How Teradata uses MPP Systems Page 10-15

WAL Concepts

WAL Depot
• Fixed number of cylinders allocated

to each AMP.

• Used for Write-in-Place operations.

• Teradata first writes data to WAL
Depot and if successful, then writes
to disk.

• WAL Logic will attempt to group a
number of blocks to write to WAL
Depot.

WAL Log
• Dynamic number of cylinders used by

each AMP.

• Used for new block allocations on
disk.

• Contains before-images (UNDO) and
after-images (REDO) for transactions
– used with both Write-in-Place or
new block allocations.

• Updated data blocks will be
eventually aged out and written to
disk. Allocation of cylinders is not contiguous.

WAL Depot

WAL Log

Data
Cylinders

(Perm, Spool,
Temporary,
Permanent
Journals)

AMP Cylinders

ds186034
Sticky Note
a virtual disk is going to be divided into cylinders (2mb chunk)

ds186034
Sticky Note
no of cyl assignedfrom any free cylinder in the system)

ds186034
Sticky Note
Spool and perm data - not in same cylwhat else not in the same..?

ds186034
Sticky Note
ins/upd/del200sector-100we write first to the depot (2 writes happens)first at a good place into the diskit protects us agaings interrupted writes

 How Teradata uses MPP Systems Page 10-16

Linux Vproc Number Assignment
The facing page describes how Vprocs are assigned numbers.

With OpenPDE systems, gateway software is implemented in as separate vproc (named
GTW) from the PDE vproc. With MP-RAS systems (PDE), gateway software is
incorporated into the PDE vproc.

Within a multi-node single clique system, it is possible for one of the nodes to have a second
TVS vproc. This may seem like an anomaly, but this is normal.

For example, assume a 3+1 single clique system:

 In order for fallback to be most effective, a single clique is divided into two
subpools of storage and AMPs which reference that storage. Fallback is then setup
as a cluster size of two between the two subpools of AMPs. An Allocator (part of
TVS vproc) only deals with a single sub-pool of storage. Since in this case we are
dividing up two subpools into three nodes, one of the nodes has about half of its
storage in one subpool and half of its storage in the other subpool. Therefore, that
node needs to have two Allocator vprocs, one for each sub-pool of storage. Any
system with more than one clique has only one sub-pool per clique and this
anomaly goes away.

 A single node system (which is of course a single clique) also has two sub-pools for

the same reason.

With Teradata 13.10 (and previous releases), vproc number ranges are:

 AMPs – 0, 1, 2, …
 PEs – 16383, 16382, 16381, …
 GTW – 8192, 8193, 8194, …
 VSS – 10238, 10237, 10236, …
 PDE – 16384, 16385, 16386, …
 RSG – 9215, 9216, 9217, … (Optional)

When a system is configured with PUT, the installer is presented with an option to choose
large vproc numbers if configuring a system with more than 8,192 AMPs. Therefore,
starting with Teradata 14.0, optional vproc number ranges are:

 AMPs – 0, 1, 2, …
 PEs – 30719, 30718, 30717, …
 GTW – 22528, 22529, 22530, …
 TVS – 28671, 28670, 28669, …
 PDE – 30720, 30721, 30722, …
 RSG – 26623, 26622, 26621, … (Optional)

How Teradata uses MPP Systems Page 10-17

Linux Vproc Number Assignment

Each Teradata Vproc is assigned a unique Vproc number in the system. For example:

Typical Vproc assignments:

AMP Vproc #s (start at 0 and increment by 1)

• First AMP 0
• Second AMP 1
• Third AMP 2

PE Vproc #s (start at 16383 and decrement by 1)

• First PE 16383
• Second PE 16382
• Third PE 16381

Optional Vproc assignments starting with Teradata 14.0:

AMP Vproc #s (start at 0 and increment by 1)

• First AMP 0
• Second AMP 1
• Third AMP 2

PE Vproc #s (start at 30719 and decrement by 1)

• First PE 30719
• Second PE 30718
• Third PE 30717

Appear in DD/D and
utilities such as Teradata
Administrator, Viewpoint
etc.

ds186034
Sticky Note
every VPROC has a unique no

ds186034
Sticky Note
large numbering scheme (cause of EBAY)ebay wants to go to 9216 AMPsebay is not running 14 firstbut they have this when they go for the large numbering scheme

 How Teradata uses MPP Systems Page 10-18

Disk Arrays from a O.S. Perspective
The Operating System is used to read and/or write data to/from an individual disk. Disk
arrays trick the operating system into thinking it is writing to a single disk. A disk array
LUN looks to the operating system like a single disk. When the operating system gets ready
to do a read or a write, the disk array controller steps in and says, “I’ll handle that for you”.
The operating system says, “I am writing to a single disk and its address is c10t0d0s1”.

The operating system does not directly read or write to a disk in a disk array environment.
The operating system communicates with the disk array controller. The operating system
actually reads or writes the data from a logical unit (often referred to as a LUN or a
Volume). A logical unit (LUN) or Volume is a logical disk and not a physical disk.

The operating system does not know (or care) if a LUN or Volume is RAID 0, RAID 1, or
RAID 5. The operating system does not know if the drive group is one disk, two disk, or
four disks. The operating system does not know if the data is spread across one disk or four
disks. The operating system simply sees the logical unit as a single disk.

The standard operating system utilities that are used to manage, configure, and utilize a
physical disk are also used to manage, configure, and utilize a logical disk or LUN. With
the Teradata Database, the PUT utility is used to configure the disk array.

The array controller performs the actual input/output operations to its disks. The array
controller is responsible for handling the different RAID technologies.

How Teradata uses MPP Systems Page 10-19

Disk Arrays from an O.S. Perspective

A logical unit (LUN) or Volume is a single disk to the operating system.
– The operating system does not know or care about the specific RAID technology

being used for a LUN or Volume.

– The operating system uses LUNs to communicate with disk array controllers.

– It is possible to divide a LUN into one or more partitions (or slices for MP-RAS).

Operating System

The operating system (e.g., Linux) thinks it is reading and writing to 60 logical disks.

LUN 0

Disk 1
in Array

Disk 2
in Array

LUN 1

Disk 3
in Array

Disk 4
in Array

LUN 59

Disk 119
in Array

Disk 120
in Array

……

……

ds186034
Sticky Note
120 drives in it

ds186034
Sticky Note
60 LUN will be configuredOS and array sub-systemthis can be assigned to 60,30,20 amps

 How Teradata uses MPP Systems Page 10-20

Logical Units and Partitions
A logical unit (just like a physical disk) can be divided into multiple partitions (or slices
with MP-RAS). A partition is a portion of a logical unit. A partition is typically used in one
of two ways.

 Used to hold the Linux file system on SMP node internal disks.
 Provides a raw data storage area (raw disk partition) that is used by Teradata.

EMC2 Notes
EMC2 DMX disk arrays are configured with 4-way Hyper (disk slice) Meta volumes which
are seen as LUNs at the host or SMP level.

Each drive is divided into 4 equal size pieces (effectively slices within the array). 4 slices
(across 4 disks) make a LUN that is presented to the operating system.

Meta volumes are used to reduce the number of LUNs and minimize registry entries in a
Windows system.

Acronym: FS – File System

How Teradata uses MPP Systems Page 10-21

Logical Units and Partitions

With Linux, a logical unit (LUN) or Volume can be divided into one or more
partitions.

• With MP-RAS systems, the portions of a LUN are referred to as slices.

How are partitions typically used by Teradata?

• Provides raw data storage area (raw disk partition) for Teradata.

• A Pdisk (Teradata) is a name that is assigned to a partition (slice) within a LUN.

Single Partition
- raw disk space

One Pdisk

LUN LUN

Multiple Partitions
- each is raw disk

space
- each is assigned to

a different Pdisk

Multiple Pdisks

ds186034
Highlight

ds186034
Sticky Note
each partition is assgined a partitiion noits assigned to an ampnot distributedto vdisk

 How Teradata uses MPP Systems Page 10-22

Teradata and Disk Arrays
The Teradata Database has long been recognized as one of the most effective database
platforms for the storage and management of very large relational databases.

The Teradata Database implementation executes as an application under the operating
system. The two key pieces of software that make up the Teradata Database are the PE
software and the AMP software.

Users access the Teradata Database by issuing SQL commands - usually from channel-
attached hosts or LAN attached workstations. The user request is handled by Channel
Driver or Gateway software and is passed to a Parsing Engine (PE) which processes the
SQL request. PE software manages the user session, interprets (parses) the SQL request,
creates an execution plan, and dispatches the steps of that plan to the AMP(s).

AMPs provide access to user data stored within tables that are physically stored on disk
arrays.

Each AMP is associated with a Vdisk. Each AMP sees its Vdisk as a single disk. Teradata
Database (AMP software) organizes its data on its disk space (Vdisk) using a Teradata
Database “File System” structure. A “master index” is used to locate “cylinder indexes”
which are used to locate data blocks that contain data rows.

A Vdisk is actually composed of multiple slices (also called Pdisks - Physical disk) that are
part of a LUN (Logical Unit) in a disk array. The operating system (e.g., Linux) and the
array controllers work at the LUN level.

A logical unit (just like a physical disk) can be divided into multiple slices. A slice is a
portion of a logical unit.

An AMP is assigned to a Vdisk. A Vdisk is composed of one or more Pdisks. In Linux, a
Pdisk is assigned to a partition within a LUN.

The PUT utility is used to define a Teradata Database configuration.

How Teradata uses MPP Systems Page 10-23

Teradata and Disk Arrays

Disk Array Controller

Single Disk

PE

O.S. Logical
Disks

User

Teradata Pdisk = Linux/Windows Partition

AMP

Pdisk 0

LUN 0

Pdisk 1

LUN 1

Pdisk 0

Pdisk 1

Vdisk

File
System

Software

TVS

PDE

ds186034
Sticky Note
quick look id - PI basedif unique PI - then only 1the first 20bit of the hash, look into hash map and get the hash idi want to find the block where the id ismaster index (which is amp memory)table id and row hashand MI points to cylinder 3752(CI is a memory index...and tells us the specific block where the row is)PDE returns memory address(in a milli second or two - or in a micro sec)if the block happens to be in mem cause someone else used itand if its not in memIOCB is built (by PDE)talks to linux...so OS talks to controllerblock is returned to PDEPDE shoves in to memoryand return the address (milli sec or so)PDE manages FSCacheit returns rowwat if USIUSI subtable rowand data portionrow id of hte base table rowbut its a 2amp operationOptimization of PE---------------------orders table customer id...NSI on cust_id1000 order...typical customer has 2 ordersbut 1 customer has 20,000 orders*PDE manages FSG cache*AMP logicall sees Vdiskreal is Pdisk 0 and Pdisk 1

ds186034
Sticky Note
bring all into pool if too large cause no mem to holdtake it to spool sort into an ordered list...

ds186034
Sticky Note
AMP gives it to PDEPDE returns memory address

ds186034
Highlight

ds186034
Highlight

 How Teradata uses MPP Systems Page 10-24

Teradata 6650 (2+1) Logical View
The facing page illustrates a logical view of the Teradata Database using a 6650 3+1 clique.

The design center configuration for a 6650H (Linux) 2+1 clique is as follows:

 4 Drives per AMP
 30 AMPs per Node

Each virtual AMP is assigned to a virtual disk (Vdisk). AMP 0 is assigned to Vdisk 0 which
consists of 2 mirrored pairs of disks.

Each AMP has a Vdisk with 592,020 cylinders.

Note: The actual MaxPerm space that is available to an AMP is slightly less than the
physical disk space because of file system overhead. Approximately 90 - 91% of the
physical disk space is actually available as MaxPerm space.

How Teradata uses MPP Systems Page 10-25

Teradata 6650 (2+1) Logical View

Two Disk Arrays with 240 Disks – Logical View
Typical configuration is to assign each AMP with two mirrored pairs of disks.

6650H Node

AMPs 2 – 28
AMP

0

Vdisk
0

AMP

1

Vdisk
1

AMP

29

Vdisk
29

120 Disks

6650H Node

AMPs 32 – 58
AMP

30

Vdisk
30

AMP

31

Vdisk
31

AMP

59

Vdisk
59

120 Disks

ds186034
Sticky Note
2+1 (hot standby is not shown)60 AMPSAMD-VDISK (1to1)

 How Teradata uses MPP Systems Page 10-26

Teradata 6650 (3+1) Logical View
The facing page illustrates a logical view of the Teradata Database using a 6650 3+1 clique.

The design center configuration for a 6650H (Linux) 3+1 clique is as follows:

 2 Drives per AMP
 42 AMPs per Node

Each virtual AMP is assigned to a virtual disk (Vdisk). AMP 0 is assigned to Vdisk 0 which
consists of 1 mirrored pair of disks.

Each AMP has a Vdisk with 295,922 cylinders.

Note: The actual MaxPerm space that is available to an AMP is slightly less than the
physical disk space because of file system overhead. Approximately 90 - 91% of the
physical disk space is actually available as MaxPerm space.

How Teradata uses MPP Systems Page 10-27

Teradata 6650 (3+1) Logical View

Two Disk Arrays with 252 Disks – Logical View
Typical configuration is to assign each AMP with one mirrored pair of disks.

6650H Node

AMPs 2 – 40
AMP

0

Vdisk
0

AMP

1

Vdisk
1

AMP

41

Vdisk
41

126 Disks

6650H Node

AMPs 44 – 82
AMP

42

Vdisk
42

AMP

43

Vdisk
43

AMP

83

Vdisk
83

6650H Node

AMPs 86 – 124
AMP

84

Vdisk
84

AMP

85

Vdisk
85

AMP

125

Vdisk
125

126 Disks

ds186034
Sticky Note
42*3 = 126 AMPs

 How Teradata uses MPP Systems Page 10-28

Example of 1.2 TB Vdisk (pre-TVS)
A Vdisk effectively represents a set of disks in a disk array. In this example, a Vdisk
represents a rank of 4 disks in a disk array that is configured to use RAID 1 technology.

If the disk array has 600 GB disks and RAID 1 protection is used, then one rank of disks (4
disks) has 1.2 TB of available disk space.

 4 disks x 600 GB x .50 (parity is 50%) = 1.2 TB*

If the Vdisk is configured (assigned) with four 600 GB disks (RAID 1), then the associated
AMP has 1.2 TB of perm disk space available to it.

The facing page contains a typical example of a 1.2 TB Vdisk. It would contain 592,021
cylinders; each cylinder is 3872 sectors in size. A cylinder is approximately 1.9 MB in size
(3872 x 512 bytes).

With 600 GB disk drives, 592,021 cylinders are numbered from 0 to 592,020. Cylinder 0
contains control information used by the AMP and does not contain user data.

If 73 GB disk drives are used, the AMP's Vdisk will be as follows:

 Total number of cylinders – 71,853
 First Pdisk – 35,924 cylinders (numbered 0 through 35,923)
 Second Pdisk – 35,929 cylinders (numbered 35,924 through 71,852)

If 146 GB drives are used, then the Vdisk will be as following:

 Total number of cylinders – 144,482
 First Pdisk – 72,237 cylinders (numbered 0 through 72,236)
 Second Pdisk – 72,245 cylinders (numbered 72,237 through 144,481)

If 300 GB drives are used, then the Vdisk will be as following:

 Total number of cylinders – 290,072
 First Pdisk – 145,037 cylinders (numbered 0 through 145,036)
 Second Pdisk – 145,035 cylinders (numbered 145,037 through 290,071)

The configuration of LUNs/partitions and the assignment Pdisks/Vdisks to AMPs is done
through the PUT utility.

As mentioned previously, the actual space that is available to an AMP is slightly less that the
numbers used above because of file system overhead. The actual MaxPerm space is
approximately 90-91% of the physical disk space. In the example on the facing page, each
AMP will have approximately 1080 GB of MaxPerm space, not 1200GB.

How Teradata uses MPP Systems Page 10-29

Example of 1.2 TB Vdisk (pre-TVS)

RAID 1 Mirroring

Vdisk

Cylinder 0

1

592,020

1.2 TB

600 GB

600 GB

600 GB

600 GB

AMP

Physical Disks
Teradata’s File System
software divides the Vdisk
into logical cylinders.
Typically, each cylinder is
3872 sectors in size.

LUN

600 GB

LUN

600 GB

Pdisk 0

Cylinder 0

296,011

600 GB

Pdisk 1

296,012

592,020

600 GB

ds186034
Sticky Note
Pdisk is divded into cylinders2MB=592,0201.2TBAMP is assigned to VDISKa VDISK consists of 1 or more PDISKPDISK is mapped to a partition within a logical unit (LUN)

 How Teradata uses MPP Systems Page 10-30

Teradata File System Concepts
Each AMP has its own disk space managed by the Teradata Database file system software.
The file system software groups physical blocks into logical cylinders.

One AMP can address/manage up to 700,000 cylinders. Each cylinder has a cylinder index
(CI). Although an AMP can address this large number of cylinders, typically an AMP will
only be responsible for a much smaller number of cylinders. For example, an AMP that
manages 292 GB of disk space will have 144,482 cylinders.

When an AMP is initialized (booted), it reads the Cylinder Indexes and creates an in-
memory Master Index to the Cylinder Indexes.

Notes:

 Teradata Database V2R5 to 13.0 – each Cylinder Index is 12 KB in size. The
cylinder size is still 3872 sectors.

 Teradata uses both of the cylinder indexes as alternating cylinder indexes for write

(INSERT, UPDATE, and DELETE) operations for all of the supported operating
systems.

Teradata Vdisk Size Limits
For Teradata releases up to Teradata 13.0, the maximum amount of space that one AMP can
access is based on the following calculation:

 700,000 logical cylinders x 3872 sectors/cylinder x 512 bytes/sector

 This equals 1,387,724,800,000 bytes or approximately 1.26 TB where a TB is 10244.

How Teradata uses MPP Systems Page 10-31

Teradata File System Concepts

The cylinder size is 3872
sectors.

For a 1.2 TB Vdisk, there
are 592,021 cylinders.

Note: However, the amount
of actual MaxPerm space is
approximately 90% of the
actual disk space because
of overhead (cylinder
indexes, etc.).

MaxPerm per AMP
1.2 TB x .90 ≈ 1.08 TB

Note:
The maximum disk space
an AMP can address is:

700,000 cylinders
x 3872 sectors/cylinder
x 512 bytes/sector
= 1.26 Terabytes

Cylinder Index

Cylinder Index

Max # of
Cylinders
is approx.
700,000

Data Block with rows

Data Block with rows

Data Block with rows

Data Block with rows

Cylinder
1

Cylinder
2

AMP Memory

Master Index

Entry for CI #1
Entry for CI #2

Entry for CI #700,000

Data Cylinders

Cylinder Index

Size of Cylinder Index space: 24K

ds186034
Sticky Note
=approx 2MB

ds186034
Sticky Note
12k

ds186034
Sticky Note
12k

ds186034
Sticky Note
90 to 100K range200 sector = 110K(div in half)CI entry for each block1)table id (lowest table id/highest table id)2)sector offset3)4)lowest hash and highest hash in block

ds186034
Sticky Note
CI = FSG

ds186034
Sticky Note
1 data block will 1 table info on it

ds186034
Sticky Note
MI->CI-> BLOCKtable id

ds186034
Sticky Note
enhanced binary search (multi-level)

ds186034
Sticky Note
Max addressable space an AMP has = 1.26 TB)

 How Teradata uses MPP Systems Page 10-32

Teradata 13.10 Large Cylinder Support
Prior to Teradata 13.10, the maximum space available to an AMP is approximately 1.2 TB.
This feature increases the maximum space available to an AMP to approximately 7 TB.
Benefits of this feature are listed on the facing page.

Only systems that are newly initialized (sysinit) with Teradata 13.10 will have large
cylinders enabled. Existing systems that are upgraded to 13.10 will have to be initialized
(sysinit) in order to utilize large cylinders.

A cylinder contains Perm, Spool, Temporary, Permanent Journal, or WAL data, but NOT a
combination. For an existing system, large cylinders results in fewer cylinders that are
available for different types of data. Fewer cylinders can result in low cylinder conditions
occurring more quickly and possibly more Mini-CylPacks.

If the larger cylinder size is used on an existing system where each AMP has much less
space than 1.2 TB, then the number of available cylinders will be much less. For example:

 Assume a 5650 system with disk arrays populated with 600 GB drives. An AMP
will typically have 4 drives assigned to it (2 sets of mirrored disks). Therefore, the
AMP will have approximately 1200 GB of available space. This space is divided
into approximately 592,000 cylinders.

– Note: The actual MAXPERM space available to an AMP in this example is

approximately 1080 GB (90% of 1200 GB).

 If this system is configured with large cylinders, then the system will only have

approximately 99,000 cylinders. Large cylinders consume more physical space,
resulting in fewer overall cylinders.

When to Use This Feature
A customer should consider enabling Large Cylinders if:

 Initial system will be sized above the current 1.2 TB per AMP limit
 It is possible that future expansion would cause the per AMP limit of 1.2 TB to be

exceeded.
 If the customer anticipates the need to utilize larger row sizes (e.g., 1 MB rows) in

a future release.

A customer should NOT enable Large Cylinders if:

 AMPs on the system are sized considerably less than 1.2 TB with no plans to
expand beyond that limit. Large cylinders consume more physical space, resulting
in fewer overall cylinders.

How Teradata uses MPP Systems Page 10-33

Teradata Large Cylinder Support

Starting with Teradata 13.10, this feature increases the maximum space available to an
AMP to approximately 7.2 TB.

Benefits of this feature are:

• To utilize larger disk drives, AMPs must be to address more storage space.

– Example, 2650 systems utilizing 2 TB disk drives

• Customers that require a large capacity of storage space have the option of increasing their
storage per AMP, rather than increasing the number of AMPs.

• The maximum row size will most likely increase in future releases. Larger cylinders are more
space efficient for storing large rows.

– The maximum row size (~64 KB) is unchanged in 14.0

If large cylinders are enabled for a Teradata 13.10 or 14.0 system, then the maximum space
that an AMP can access is 6 times greater or approximately 7.2 TB.

Max # of cylinders x #sectors in cylinder x sector size
~700,000 x 23,232 x 512 bytes = 7.2 TB

• Each cylinder index has increased to 64 KB to accommodate more blocks in a large cylinder.

Only newly initialized (sysinit) systems can have large cylinders enabled.

• Existing systems upgraded to 13.10 have to be initialized (sysinit) in order to utilize large cylinders.

ds186034
Sticky Note
LCS --> can be addressed up to 7.2TB space

ds186034
Highlight

 How Teradata uses MPP Systems Page 10-34

Full Cylinder Read
Full Cylinder Read allows retrieval operations to run more efficiently by reading a list of
cylinder-resident data blocks with a single I/O operation. This reduces I/O overhead from
once per data block to once per cylinder.

A data block is a disk-resident structure that contains one or more rows from the same table
and is the smallest I/O unit for the Teradata Database file system. Data blocks are stored in
physical disk sectors or segments, which are grouped in cylinders.

Full Cylinder Read improves the performance of systems with both fine-grained operations
and decision support workload. It eliminates the tradeoffs for short queries and concurrent
updates versus strategic queries.

Performance may benefit from Full Cylinder Read during operations such as:

 Full-table scan operations under conditions such as:
 Large select
 Merge insert/select and Merge delete
 Aggregation: Sum, Average, Minimum/Maximum, Count
 Join operations that involve many data blocks, such as merge joins, product joins,

and inner/outer joins

Starting with Teradata 13.10, this feature no longer needs to be tuned using a Cylinder
Slots/AMP setting. This allows for more extensive use of cylinder read without the need to
reserve portions of the FSG cache for Cylinder Read when Cylinder Read is not being used.

Prior to Teradata 13.10, it was necessary to specify the number of cylinder slots per AMP
that would be available. The default number of cylinder slots per AMP is:

 6 on 32-bit systems with model numbers lower than 5380.
 6 on 32-bit coexistence systems with “older nodes.” An “older node” is a node for a

system with a model number lower than 5380.
 8 on the 32-bit systems with model numbers at 5380 or higher.
 8 on 64-bit systems.

Teradata Database Customer Support sets the CR flag to ON and uses the ctl (control) utility
to modify the number of cylslots.

Memory allocated to cylinder slots can only be used for cylinder reads. The benefit of
cylinder reads is likely to outweigh the reduction in generic FSG cache.

How Teradata uses MPP Systems Page 10-35

Full Cylinder Read

The Full Cylinder Read feature allows data to be retrieved with a single cylinder
(large) read, rather than individual reads of blocks.

~1.9 MBData
Block

DB DB DB DB DB

CYLINDER

Enables efficient use of disk & CPU performance resources for the following table scan
operations under specific conditions. Examples include:

– large selects and aggregates: sum, avg, min, max, count
– joins: merge joins, product joins, inner/outer joins
– merge delete merge insert/select into empty or populated tables
– full table update/deletes

With Teradata 13.10, it is no longer necessary to specify a number of cylinder slots to
make available for this feature.

– This 13.10 enhancement allows for more extensive use of cylinder reads without the need to
reserve portions of the FSG cache for the Cylinder Read feature.

– Prior to 13.10, the number of cylinder slots was set using the ctl utility. The default was 8 for 64-
bit operating systems.

ds186034
Sticky Note
CYLINDER IO OPERATIONMOSTLY IT IS AT BLOCK LEVEL

ds186034
Sticky Note
tD MAPS TO MEMTO STORAGEWALLVPROC NO SYSTEM

 How Teradata uses MPP Systems Page 10-36

Summary
The facing page summarizes the key points and concepts discussed in this module.

How Teradata uses MPP Systems Page 10-37

Summary

• Memory managed and used by the operating system and the vprocs is sometimes
called “free memory”.

• PDE software manages FSG Cache.

– FSG Cache is primarily used by the AMPs to access memory resident database
segments.

• The operating system and Teradata does not know or care about the RAID technology
being used.

• A LUN or Volume looks like a single disk to the operating system.

– With Linux or Windows, a LUN or Volume is considered a partition and the raw
partition is assigned to a Teradata Pdisk.

 How Teradata uses MPP Systems Page 10-38

Module 10: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

How Teradata uses MPP Systems Page 10-39

Module 10: Review Questions

1. Which two are placed into FSG cache?
a. Hash maps
b. Master Index
c. Cylinder Indexes
d. Permanent data blocks

2. What is the WAL Depot used for?
a. UNDO Rows
b. New data blocks
c. Master Index updates
d. Write-in-place data blocks

3. Which two are placed into the WAL Log?
a. REDO Rows
b. UNDO Rows
c. New data blocks
d. Master Index updates
e. Write-in-place data blocks

4. Describe the fundamental relationship between Linux, logical units, and disk array controllers.

__

5. Describe the fundamental relationship between AMPs, Vdisks, Pdisks, Partitions, and LUNs.

__

__

ds186034
Sticky Note
mi IS DYNAMICALLY

ds186034
Sticky Note
cylinder indexandPerm data blocks(hash maps - PE)

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Sticky Note
uses logical unit names to communicate with disk array controllers

ds186034
Sticky Note
AMP 1VDISK can be 1 or more PDISKPDISK is single partition within a LUN

ds186034
Sticky Note
3872 sector...contigious sector... = cylinderits a LOGICAL cylinder

 How Teradata uses MPP Systems Page 10-40

Notes

Teradata Virtual Storage Page 11-1

Module 11

Teradata Proprietary and Confidential

Teradata Virtual Storage

After completing this module, you will be able to:

 List two benefits of Teradata Virtual Storage.

 List the two operational modes of TVS.

 Identify the difference between temperature and performance.

 Identify typical data that is identified as hot data.

 Teradata Virtual Storage Page 11-2

Notes

Teradata Virtual Storage Page 11-3

Table of Contents

Teradata Virtual Storage .. 11-4
Teradata Virtual Storage Concepts .. 11-6

Allocation Map and Statistics Overhead .. 11-6
TVAM .. 11-6

Teradata Virtual Storage Terminology .. 11-8
Teradata Virtual Storage Components ... 11-8

TVS Operational Modes .. 11-10
Expanding Data Storage Concepts ... 11-12
Multi-Temperature Concepts ... 11-14
Storage Performance vs. Data Temperature ... 11-16
Teradata with Hybrid Storage .. 11-18
What Goes Where? .. 11-20
Multi-Temperature Data Example ... 11-22
Teradata 6690 Cabinets .. 11-24

Virtualized Management Server (VMS) .. 11-24
HHD to SSD Drive Configurations.. 11-26
Summary .. 11-28
Module 11: Review Questions ... 11-30

 Teradata Virtual Storage Page 11-4

Teradata Virtual Storage
Teradata Virtual Storage (TVS) is designed to allow the Teradata Database to make use of new
storage technologies. It will allow you to store data that is accessed more frequently on faster devices
and data that is accessed less frequently on slower devices. It will also allow Teradata to make use
of solid state drives (SSD), for example, whenever the technology is available at a competitive price.
Solid state refers to the use of semiconductor devices.

Teradata Virtual Storage is responsible for:

 pooling clique storage and allocating cylinders from the storage pool to individual
AMPs

 tracking where data is stored on the physical media

 maintaining statistics on the frequency of data access and on the performance of

physical storage media

These capabilities allow Teradata Virtual Storage to provide the following benefits:

 Storage optimization, data migration, and data evacuation

Teradata Virtual Storage maintains statistics on frequency of data access (“data
temperature”) and on the performance (“grade”) of physical media. This allows the
Teradata Virtual Storage product to intelligently place more frequently accessed
data on faster physical storage. As data access patterns change, Teradata Virtual
Storage can move (“migrate”) storage cylinders to faster or slower physical media
within each clique. This can improve system performance over time.

Teradata Virtual Storage can migrate data away from a physical storage device in
order to prepare for removal or replacement of the device. This process is called
“evacuation.”. Complete data evacuation requires a system restart, but Teradata
Virtual Storage supports a “soft evacuation” feature that allows much of the data to
be moved while the system remains online. This can minimize system down time
when evacuations are necessary.

 Lower Barriers to System Growth

Device management features of Teradata Virtual Storage provide the ability to pool
storage within each clique. Each storage device (pdisk) can be shared, if necessary,
by all AMPs in the clique. If the number of storage devices is not a multiple of the
number of AMPs in the clique, the extra storage will be shared. Consequently,
storage can be added to the system in smaller increments, as needs and
opportunities arise.

Teradata Virtual Storage Page 11-5

Teradata Virtual Storage

What is Teradata Virtual Storage (TVS)?

• TVS (Teradata 13.0) is a change to the way in which Teradata accesses storage.

• Purpose is to manage a Multi-Temperature Warehouse.

• Pools all of the cylinders within a clique's disk space and allocates cylinders from this
storage pool to individual AMPs.

Advantages include:

• Simplifies adding storage to existing cliques.

– Improved control over storage growth. You can add storage to the clique-storage-pool
versus to every AMP.

– Allows sharing of storage devices among AMPs.

• Enables mixing drive sizes / speeds / technologies

– Enables the “mixing” of storage devices (e.g., spinning disks, Solid-State Disks – SSD).

• Enables non-intrusive migration of data.

– The most frequently accessed data (hot data cylinders) can migrate to the high
performing cylinders and infrequently accessed data (cold data cylinders) can migrate to
the lower performing cylinders.

ds186034
Sticky Note
TVS is softwareto manage multi-temperature

ds186034
Sticky Note
based on access patternsnon intrusive migration of dataunit of migration is cylinderentire cylinder is migrated

 Teradata Virtual Storage Page 11-6

Teradata Virtual Storage Concepts
The facing page illustrates the conceptual differences with and without Teradata Virtual
Storage

One of benefits of Teradata Virtual Storage is the ease of adding storage to an existing
system.

Before Teradata Virtual Storage,

 Existing systems have integral number of drives / AMP
 Today adding storage requires an additional drive per AMP – means 50% or 100%

increase in capacity

With Teradata Virtual Storage, you can add any number of drives.

 Added drives are shared by all AMPs
 These new disks may have different capacities and / or performance than those

disks which already reside in the system.

Cylinders IDs (with TVS) are unique in the system and are 8 bytes in length as compared to
4 bytes in length before TVS (Teradata 12.0 and before).

Allocation Map and Statistics Overhead
The file system requires space on each pdisk for its allocation map and statistics areas. The
number of cylinders required depends on the pdisk size as specified in the vconfig GDO.

TVAM
TVAM is a support utility to control and monitor Teradata Virtual Storage. TVAM …

 Includes “-optimize” command to cause forced migration
 Includes “evacuate” and “un-join” command to enable removing a drive

Teradata Virtual Storage Page 11-7

Teradata Virtual Storage Concepts

AMP

Pdisk

Pre-TVS – AMPs own storage

Pdisk

AMP

Pdisk Pdisk

TVS owns storage
AMPs don't know physical location
of a cylinder and it can change.

TVS Extent (Cylinder) Driver

Pdisk Pdisk

AMP AMP

All of the cylinders in clique are effectively in
a pool that is managed by that TVS vproc.

Cylinders are assigned a unique cylinder id
(virtual id) across all of the pdisks.

Pdisk Pdisk

Cylinders were addressed by drive # and cylinder #.

ds186034
Sticky Note
cylo

ds186034
Sticky Note
cyl1

ds186034
Sticky Note
cyl3

 Teradata Virtual Storage Page 11-8

Teradata Virtual Storage Terminology
The facing page lists and defines some of the key terms used with Teradata Virtual Storage
(TVS).

A subpool is a set of pdisks. There is typically one subpool per clique. Single clique
systems have 2 subpools, so we can spread the AMP clusters across the subpools to achieve
fallback. It is very important to understand that TVS is configured on a clique by clique
basis. For a multi-clique system each clique typically has one subpool. This is where we
configure the AMP clusters across the cliques. No two AMPs in the same cluster should be
configured in the same clique.

TVS will take all the cylinders it finds in the clique (actually the subpool), and will divide
that by the number of AMPs in the clique. This is the maximum that each AMP can allocate
and is communicated back to the AMP so that it can size its master index. Each AMP can
allocate cylinders as it needs cylinders up to that maximum. If some AMPs allocate more or
less than other AMPs at any given time, it does not cause a problem because the space is not
over-subscribed and no AMP can allocate more than its maximum.

Teradata Virtual Storage Components
1. The DBS to File System interface is unchanged.

2. The file system calls SAM (Storage Allocation Manager) at startup to obtain the list of

allocated extents which can be used to rebuild or verify the MI (Master Index) and
WMI (WAL Master Index). SAM also reports the maximum size of the vdisk for this
AMP.

3. The file system makes calls on the SAM library interface in order to allocate and free

the extents (cylinders) of storage. SAM provides an opaque handle for each allocated
extent virtualizing the storage from the file system’s point of view.

4. SAM sends messages to this AMP’s Allocator to allocate/free the extents requested.

Usually this will be on the same node as the AMP, but may require a node hop if the
AMP and Allocator (part of VSS Vproc) have migrated due to a node failure.

5. The Allocator keeps the Extent Driver apprised of all virtual to physical extent

mappings. Sometimes this requires a message to the node agent on another node in case
of vproc migration. The Allocator keeps a copy of its translation maps on physical
storage in case of node crash. It performs these I/Os directly.

6. The file system uses extent handles when communicating FSGids to FSG.

7. FSG passes the extent handle as the disk address for disk I/O to the Extent Driver.

8. The Extent Driver translates the handle to a physical extent address before passing the

request to the disk driver.

Teradata Virtual Storage Page 11-9

Teradata Virtual Storage Terminology

TVS Software
• Consists of TVS (previously named VSS) vproc which includes Allocator and Migrator code
• Includes Extent Driver (in kernel) which interfaces between PDE and operating system

Cylinder (or Extent)
• Allocation unit of disk space (currently 3872 sectors) from TVS to an AMP

Pdisk
• Partition/slice of a physical disk; associated with a TVS vproc

Subpool
• Group of disks (effectively a set of pdisks) assigned to a TVS vproc
• Fallback clustering is across subpools; a single AMP is associated with a specific subpool
• 1 subpool/clique except for single-clique systems which have 2 subpools

Storage Performance
• TVS profiles the performance of all the disk drives (e.g., spinning disks versus SSD)
• With spinning disks, outer zones have a faster transfer rate than inner zones on a disk.

Temperature
• Frequency of access of a cylinder (Hot – Cold). TVS gathers metrics on data access

frequency.

Migration
• Movement of cylinders between disks or between locations within a disk.

 Teradata Virtual Storage Page 11-10

TVS Operational Modes
Teradata Virtual Storage operates in one of two modes:

 Teradata Traditional

– Mimics prior Teradata releases
 Intelligent Placement (a.k.a., 1D)

– Data temperature based placement

Teradata Traditional (TT) mode Characteristics:

When using configurations modeled with the standard interface, the TVS software is used in
Teradata Traditional (TT) Mode. TT mode is available for all operating systems.

In TT mode, TVS software uses similar placement algorithms as pre-TVS Teradata
software. There is no migration of hot data to fast locations in TT mode

Use Teradata Traditional mode when

 No mixing of array models in a clique AND
 No mixing of disk sizes in an array AND
 All Pdisks are the same size (homogeneous storage) AND
 Performance capability of all Pdisks is equal (within 5%) AND
 Migration is not desired AND
 The number of Pdisks is an integer multiple of the AMPs in the clique. This is not

a strict requirement. In this case, any fractional Pdisks will go unused in TT mode.

Intelligent Placement (1D – 1 Dimensional) mode Characteristics

Intelligent Placement is only available for Linux 64-bit operating systems.

This mode is used when any of the following are true:

 Mixing of array models in a clique
 Mixing of disk sizes in an array
 Pdisks in a clique are different sizes

When TVS software is used in Intelligent Placement (1D) Mode:

 TVS software uses advanced data placement algorithms
 Migration of hot data to fast locations and cold data to slower locations can be

enabled in 1D mode.
 Use Intelligent Placement (1D) when

– Pdisks are multiple sizes OR
– Performance capability of any Pdisks is different (> 5%) OR
– The number of Pdisks of each size in the clique is not a multiple of the number

of amps in the clique OR
– Migration is desired

Teradata Virtual Storage Page 11-11

TVS Operational Modes

Teradata Virtual Storage (Storage Allocation) operates in one of two modes:

• Teradata Traditional – works like prior Teradata releases

• Intelligent Placement (a.k.a., 1D) – data temperature based placement

Note:
Evacuation is used to migrate all allocated extents (cylinders) from the selected storage to different
devices. This may be done when a disk goes bad or if a disk is to be removed from the storage pool.

Operational Mode

Teradata Traditional Intelligent Placement

Operating System Support All Linux

Mixed Disk and/or Mixed Array No Yes

Small Growth Increments No Yes

Data Migration No Yes

Disk Evacuation No Yes

 Teradata Virtual Storage Page 11-12

Expanding Data Storage Concepts
When adding non-shared storage to a clique on a system with Teradata Virtual Storage Services
(TVS), the number of devices (Pdisks) added should be a multiple of the number of AMPs in the
clique. The allocation method can be either 1D migration or Teradata Traditional (TT).

When adding shared storage to a clique on a system with Teradata Virtual Storage Services
(TVS), the storage added will be shared among all AMPs. The allocation method is 1D
migration only.

In addition to utilizing the existing storage capacity more efficiently with temperature based
placement, TVS simplifies the ability to alter the storage capacity of a Teradata system. As
previously mentioned, database generations prior to Teradata Database 13.0 typically
allocated the entire capacity of each drive in the system to a single AMP. That design
parameter, coupled with the need for each AMP to have identical amounts of available
storage meant that system-wide storage capacity could only be increased by adding enough
new disks (of the same size) to provide each AMP in the system with an entire new drive.
Thus, a system with 100 AMPs would typically have a minimum increment of growth of
100 drives (actually 200 drives using RAID-1) which have identical performance and
capacities to the existing drives.

With TVS, storage capacity can be added in a much more flexible manner. Instead of
requiring each drive to be dedicated to a single AMP, TVS can subdivide a device into
equivalent groups of cylinders which can then be allocated to each AMP, allowing even
single drive pairs to be equally shared by all of the AMPs in a clique. This “fine grained
virtualization” enables the growth of storage capacity using devices with differing capacities
and speeds. For multi-clique or co-existence systems, new storage capacity would still have
to be added to each clique in an amount that is proportional to the number of AMPs in each
clique.

Teradata Virtual Storage Page 11-13

Expanding Data Storage Concepts

Pdisk
50

Physical
Disk

Mirrored
Disk

Pdisk
51

Physical
Disk

Mirrored
Disk

Added storage to the clique

Storage can be added to a clique and is shared between all the AMPs within the clique.

Expanded storage within a clique is treated as "cold storage".

Pdisk
0

TVS Extent (Cylinder) Driver

AMP 0 AMP 1 AMP 24

Physical
Disk

Mirrored
Disk

Pdisk
1

Physical
Disk

Mirrored
Disk

Pdisk
2

Physical
Disk

Mirrored
Disk

Pdisk
3

Physical
Disk

Mirrored
Disk

Pdisk
48

Physical
Disk

Mirrored
Disk

Pdisk
49

Physical
Disk

Mirrored
Disk

……

……

……

ds186034
Sticky Note
each amp gets 40g more

 Teradata Virtual Storage Page 11-14

Multi-Temperature Concepts
The facing page identifies two key areas associated with Multi-Temperature environments.

With today’s disk technology, the user experiences faster data transfer with data that is
located on the outer zones of a disk drive. This is because there is more data accessed per
disk revolution. Data located on the inner zones experience slower data transfer because
more disk revolutions are needed to access the same amount of data.

Teradata Virtual Storage can track data temperature over time and can move data to
appropriate region.

A Multi-Temperature Warehouse has the ability to prioritize the use of system resources
based on business rules while maximizing utilization of storage with ever increasing
capacity

Teradata Virtual Storage enhances performance with multi-temperature data
placement.

Teradata Virtual Storage Page 11-15

Multi-Temperature Concepts

Two related concepts for Multi-Temperature Data:

Performance of Storage

• Differences between different drives on different controllers (spinning disk vs. SSD)

• Differences between different areas within a drive
– Outer zones on a disk have fastest transfer rates.

Data Access Pattern (Frequency) or Temperature is determined by:

• Frequency of access
• Frequency of updates
• Data maintenance
• Depth of history

Slower Data Transfer
(less data per revolution)

Faster Data Transfer
(more data per revolution)

ds186034
Sticky Note
WAL LOG is frequently accessed dataand WAL DEPOT is used a lot (transient journal is embedded within)SPOOL is frequently accessed data

ds186034
Sticky Note
SPOOL is-work space-internally its implemented as tablecust-cust_idsome orders and some cust(inner join to cust table on order.cust_id = cust.cust_id)re-distribute based on cust_id(orders)work table/spool tablethen join cust_id

 Teradata Virtual Storage Page 11-16

Storage Performance vs. Data Temperature
For the purposes of describing the performance characteristics of storage devices, we’ll use
terms like “fast”, “medium” and “slow” to describe the relative response times (grade) of the
physical cylinders that comprise each device. The important thing to keep in mind is that
temperatures (hot, warm, and cold) refer to data access and grade (fast, medium, slow) refer
to the speed of physical devices.

PUT executes the TVS Profiler on one node per clique. This is done during initial install
while the system is essentially idle. The TVS Profiler measures and records the cylinder
response times of one disk of each size (i.e., 146 GB, 300 GB, 450 GB, 600 GB, etc.) and
type (i.e., Cheetah-5). These metrics are then used for all disks of the same size and type in
the clique throughout the life of the system. This can also be done using the TVAM utility.

Data temperature values are maintained by the TVS Allocator vproc. They are viewable at
an extent level via the new TVAM (Teradata Virtual Administration Menu) command and at
a system, AMP, and table level via the Ferret utility SHOW command.

The data temperatures are calculated as a function of both frequency of access and
“recency” of access and are measured relative to the temperatures of the rest of the user data
stored in the warehouse.

This concept of “recency” is important because it allows the data temperatures to cool off as
time passes so that even if a table or partition has a lot of historical access, the temperature
of that data appears lower than data that has the same amount of access during a more recent
time period. This trait of data becoming cooler over time is commonly referred to as data
aging. But just because data is older doesn’t imply that it will only continue to get cooler. In
fact, cooler data can become warm/hot again as access increases. For example, sales data
from this quarter may remain hot until several months in the future as current
quarter/previous quarter comparisons are run in different areas of the business. After 6
months, that sales data may cool off until nearly a year later when it becomes increasingly
queried (i.e. becomes hotter) by comparison against the new current quarter’s sales data.

Teradata Virtual Storage enhances performance with multi-temperature data
placement.

Teradata Virtual Storage Page 11-17

Storage Performance vs. Data Temperature

Storage Performance relative response times – (e.g., fast, medium, slow).

• Profiles the performance of all the disk drives (e.g., SSD versus spinning disks)

• Identifies performance zones (usually 10) on each spinning disk drive

Data Access Frequency – referred to as "Data Temperature" (e.g., hot, warm, cold).

• TVS records information about data access (called Profiling and Metric Collection)

– How long it takes to access data (I/O response times)

– How often data is accessed (effectively the data temperature)

TVS places data for optimal access based upon storage performance, type of data (WAL,
Depot, Spool, etc.) and the results of metric collection.

• Initial Data Placement

• Migration of data based upon data temperature

Three types of Data Migration:

• Background Process During Queries – moves 10% of data in about a one week

• Optimize Storage Command (Database Off-Hours) - moves 10% of data in about eight hours

– Ignores other work – just runs “flat out”

• Anticipatory Migration to Make Room in Fast Reserve, Fast or Warm Storage for Hotter Data
(when needed)

 Teradata Virtual Storage Page 11-18

Teradata with Hybrid Storage
The facing page illustrates an example of a Teradata system with both HDD and SDD
drives.

Teradata Virtual Storage Page 11-19

Teradata with Hybrid Storage

HDD (Spinning)

15 MB/Sec

SSD

> 300 MB/Sec

Mix of Fast SSD and HDD Spinning Drives

AMPs

Node HSN

AMPs

Node

AMPs

Node HSN

AMPs

Node

AMPs

Node HSN

AMPs

Node

 Teradata Virtual Storage Page 11-20

What Goes Where?
Virtualization is the Key to Managing Multi-Temperature Data.

 TVS “knows” the performance characteristics of the different storage devices
 TVS virtualizes location information for the database and stores the translation

information in its meta-data
 TVS collects usage information and adds it to the meta-data
 TVS uses these metrics to assign a temperature to each cylinder (extent) of data

– Each time cylinder is accessed it heats up
– Over time all cylinders cool off

 TVS migrates data from one performance zone to another as appropriate to match
temperature to storage performance

Initial Data Placement

 Based on several factors and controls
 File System indicates to TVS expected temperature of the data, and its use

(permanent tables, spool, WAL, other temp tables)
 TVS allocates from appropriate performance device

– SSDs for hot data
– Inside cylinders of HDD for cold data
– All the rest of HDD for all else (warm)

Initial Data Temperature for Permanent Data

 All new cylinders are assigned an initial temperature
 Defaults for each type are specified in DBSControl
 When loading into empty tables, if don’t want the default then temperature can be

specified by the user via Querybanding the Session doing the loading
 When adding data to existing tables, new data assumes the temperature of the data

already in the table at the location it is inserted.
– Possible to forcibly change temperature of existing table or part of table via

Ferret – this is not a recommended management tool
– Changing temperature does not move data, just make it subject to normal

migration
– Over time, temperature will return to ambient

Teradata Virtual Storage Page 11-21

What Goes Where?

Migration is done at the Cylinder level.

Depot, WAL, and Spool cylinders are allocated as HOT

• 20% of Fast storage (SSD) is reserved for this Depot, WAL, and Spool.

• This region is called the Fast Reserve.

– This does not limit the total amount of WAL or Spool.

• When Fast Reserve is full, use Fast or even Medium for WAL and Spool allocations.

• These cylinders types are not subject to “cooling off”, their temperature is static.

Loading perm data into an empty table defaults to HOT

• This is assumed to be a short-lived staging table.

• If not, this default can be changed with DBSControl.

• Another option is to specify Initial Data Temperature with Query Band.

– SET QUERY_BAND = 'TVSTemperature=COLD;' UPDATE FOR SESSION;

Note: The UPDATE option is used so that this query band statement will not completely replace,
but rather supplement, any other query band name:value pairs already specified for the session.

 Teradata Virtual Storage Page 11-22

Multi-Temperature Data Example
The facing page illustrates an example of using a Multi-Temperature Warehouse.

Example of Multi-Temperature with a PPI Table:

 If this is time based (e.g., DATE), then rows of the table are physically grouped by
DATE and the groups ordered by DATE, even though hash ordered within the
partition for each DATE value.

 Because the rows are logically grouped together, they reside in a set of cylinders
 Based on usage patterns, all the cylinders of a partition will have same temperature.
 As usage drops, partition cools off, eventually its cylinders get migrated out of

FAST to MEDIUM, then eventually to SLOW storage.
 Newly loaded partition will assume temperature of previous latest (probably HOT).

While TVS can monitor data temperatures, it can’t change or manipulate the temperature of
your data because data temperatures are primarily dictated by the workloads that are run on
the warehouse. That is, the more queries that are run against a particular table (or tables) the
higher its temperature(s). The only way to change a table’s temperature is to alter the
number of queries that are run against it.

For technical accuracy, TVS temperature is measured at a cylinder level not a data level.

The facing page illustrates the result of data migration with Teradata Virtual Storage.

Teradata Virtual Storage enables you to more easily, more cost effectively, mix data with
different levels of importance on the same system

Advantages of Teradata Virtual Storage:

 Allows incremental growth of storage

 Provides lower cost method for adding “Cold” data to Enterprise Warehouse w/o

Performance Penalty to Bread and Butter Workload

 Enhances multi-generation co-existence

Teradata Virtual Storage Page 11-23

Multi-Temperature Data Example

Heavily Accessed
Operational Intelligence
Shallow History

Regulatory Compliance
Trending Analysis

Deep History

Hot CoolWarm

Tactical

DSS
Current

DSS
History

Hybrid Storage Data Usage Model

The closer this model fits your data, the more useful the Hybrid system will be.

 Teradata Virtual Storage Page 11-24

Teradata 6690 Cabinets
Each Teradata 6690 cabinets can be configured in a 1+1 or 2+1 clique configuration.

 A processing/storage cabinet contains one clique.

 A cabinet with a 2+1 clique contains two processing nodes, one hot standby node,

and four disk arrays.

 A cabinet with a 1+1 clique contains one processing node, one hot standby node,

and four disk arrays.

Virtualized Management Server (VMS)
The VMS is available with the 6690 Enterprise Warehouse Server.

Characteristics of the VMS include:

• 1U Server that VIRTUALIZES system and cabinet management software onto a single

server

• Teradata System VMS – provides complete system management functionality

– Cabinet Management Interface Controller (CMIC)
– Service Workstation (SWS)
– Teradata Viewpoint (single system only)
– Automatically installed on base/first cabinet

• The VMS allows full rack solutions without an additional cabinet for traditional

Viewpoint and SWS

• Eliminates need for expansion racks reducing customers’ floor space and energy costs

• For multi-system monitoring and management traditional Teradata Viewpoint is
required.

Teradata Virtual Storage Page 11-25

Teradata 6690 Cabinets

6690

2+1
Clique in
a single
cabinet

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

VMS (1U)

HSN

TPA Node

TPA Node

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

Up to 24 SAS Drives

PDU PDU

6690 Characteristics

• Integrated Cabinet with nodes and SSD and HDD arrays
in same cabinet.

• Each NetApp Drive Tray can hold up to 24 SSD and/or
HDD drives.

– SSD drives are 400 GB.

– HDD drives (10K RPM) are 600 GB.

– Possible maximum of 360 disks in the cabinet.

• The primary requirement for planning a 6690 system is
the completion of the Data Temperature assessment.

• There is a range of configurations to meet the
requirements of most customers’ data temperature
assessments.

ds186034
Sticky Note
drive trayupto 24 drives per tray

 Teradata Virtual Storage Page 11-26

HHD to SSD Drive Configurations
The facing page lists possible hybrid system configurations.

Teradata Virtual Storage Page 11-27

HHD to SSD Drive Configurations

• There are four preset HDD to SSD configurations (ratios of SSD:HDD per node)
which vary slightly between 1+1 and 2+1 cliques.

Solid State Devices (SSD) Hard Disk Drives (HDD)

of SSD per Clique/per Node # of HDD per Clique/per Node

1+1 Configuration

16* 60

16* 120

18* 160

20 80

2+1 Configuration

30/15 120/60

30/15 240/120

30/15 320/160

40/20 160/80

15:60

15:120

15:160

20:80

• PUT requires specific and even SSD numbers in a clique, thus the difference between a 1+1
and 2+1 disks per node (16 or 18 vs. 15). 18 includes GHS drives.

• 6690 nodes are typically configured with 30 AMPs per node.

 Teradata Virtual Storage Page 11-28

Summary
The facing page summarizes the key points and concepts discussed in this module.

Teradata Virtual Storage Page 11-29

Summary

• TVS is a change to the way in which Teradata accesses storage.

• Advantages include:

– Simplifies adding storage to existing cliques

– Enables mixing drive sizes / speeds / technologies

– Enables non-intrusive migration of data

• Purpose is to manage a Multi-Temperature Warehouse.

• Two related concepts for Multi-Temperature Data

– Performance of Storage

– Data Access Pattern – Frequency

• Pools all of the cylinders within a clique's disk space and allocates cylinders from this
storage pool to individual AMPs.

 Teradata Virtual Storage Page 11-30

Module 11: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Teradata Virtual Storage Page 11-31

Module 11: Review Questions

1. List two capabilities of using Teradata Virtual Storage.

__

__

2. List the two operational modes of Teradata Virtual Storage.

_______________________________ _______________________________

3. Which choice is associated with data temperature?

a. Skewed data
b. Frequency of access
c. Solid State Disk Drives
d. Inner tracks versus outer tracks on a spinning disk

4. Which data level is migrated from hot to cold storage?

a. Row
b. Block
c. Cylinder
d. Subtable

5. Which two types of data are typically considered to be HOT data?

a. WAL
b. DBC tables
c. Spool data
d. History data

ds186034
Sticky Note
1. Manage multi-temperature warehouse(mixed drive technology)2. Add incremental growth

ds186034
Sticky Note
teradata traditional and intelligent placement

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

 Teradata Virtual Storage Page 11-32

Notes

Physical Database Design Overview Page 12-1

Module 12

Teradata Proprietary and Confidential

Physical Database Design Overview

After completing this module, you should be able to:

 Understand the stages of database design.

 List and describe the input requirements for database design.

 List and describe the outputs and objectives for database
design.

 Describe the differences between a Logical, Extended, and
Physical Data Model.

 Physical Database Design Overview Page 12-2

Notes

Physical Database Design Overview Page 12-3

Table of Contents

The Stages of Database Development.. 12-4
Example of Data Model – ER Diagram ... 12-6
Customer Service Logical Model... 12-8
Relational Terms Review ... 12-10
Domains ... 12-12
Attributes .. 12-14
Entities and Relationships .. 12-16
Decomposable Data ... 12-18
Normal Forms .. 12-20
Normalization ... 12-22
Normalization Example ... 12-24
Denormalizations ... 12-34
Derived Data .. 12-36
Pre-Joins ... 12-38
Exercise 1: Choose Indexes ... 12-40
Tables Index Selection ... 12-42
Database Design Components.. 12-44
Extended Logical Data Model ... 12-46
Physical Data Model .. 12-48
The Principles of Index Selection .. 12-50
Transactions and Parallel Processing ... 12-52
Module 12: Review Questions ... 12-54

 Physical Database Design Overview Page 12-4

The Stages of Database Development
Four core stages are identified as being relevant to any database design task. They are:

 Requirement Analysis involves eliciting the initial set of information and
processing requirements from users.

 Logical Modeling determines the contents of a database independent of a

particular physical implementation’s exigencies.

– Conceptual Modeling transforms the user requirements into a number of
individual user views normally expressed as entity-relationship diagrams.

– View Integration combines these individual user views into a single global

schema expressed as key tables. The logical model is implemented by taking
the conceptual model as input and transforming it into the data model
supporting the target relational database management system (RDBMS). The
result is the relational data model.

 Activity Modeling determines the volume, usage, frequency, and integrity analysis

of a database. This process also consists of placing any constraints on domains and
entities in addition to addressing any legal and ethical issues including referential
integrity.

 Physical Modeling transforms the logical model into a definition of the physical

model suitable for a specific software and hardware configuration. In relational
terms, this is usually some schema expressed in a dialect of the data definition
language of SQL.

Outputs from these stages are shown on the right of the facing page and are as follows:

 Business Information Model (BIM)
– shows major entities and their relationships
– also referred to as “Business Model”
– BIM acronym – also used for “Business Impact Model”

 Logical Data Model (LDM) - should be in Third Normal Form (3NF)

– BIM plus all tables, minor entities, PK – FK relationships
– constraints and attributes (columns)

 Extended Logical Data Model (ELDM)

– LDM plus demographics and frequencies

 Physical Data Model (PDM)

– ELDM plus index selections and any denormalizations

Physical Database Design Overview Page 12-5

The Stages of Database Development

Requirements
Analysis

Logical
Modeling

Activity
Modeling

Physical
Modeling

Project Initiation

Initial Training and Research

Project Analysis

Logical Database Design – Conceptual
Modeling and View Integration

Activity Modeling
– Volume
– Usage
– Frequency
– Integrity

Physical Database Design & Creation

Application Development and Testing

Production Release

Data Models
(typically output from a stage)

Business Information Model (BIM)
and/or Logical Data Model (LDM)

Extended Logical Data Model (ELDM)

Physical Data Model (PDM)

 Physical Database Design Overview Page 12-6

Example of Data Model – ER Diagram
The Customer Service database is designed to handle information pertaining to phone calls
by customers to Customer Service employees. The CALL table is the central table in this
database. On the facing page is the Entity-Relationship (E-R) diagram of the Customer
Service database. This type of model depicts entities and the relationships between them.
The E-R diagram provides you with a high-level perspective.

 ERD Convention Overview
The following conventions are generally used in ER diagramming. Symbols in this module
are consistent with the ERwin data modeling tool’s conventions.

Convention Example

Independent entity. An independent entity does not depend on another entity for its
identification. It should have a single-column PK. PK attribute appears above the
horizontal line.

Dependent entity. A dependent entity depends on one or more other entities for its
identification. It generally has multiple columns in its PK, one or more of which is also
an FK. All PK attributes appear above the horizontal line.

(FK) A Foreign Key. An attribute in the entity that is the PK in another, closely related
entity. FK columns are shown above or below the horizontal dividing line in all
entities, depending on the nature of the relationship. For 1:1 and 1:M relationships,
their FKs are below the horizontal line. For M:M relationships the FKs participating in
the PK are above the horizontal line.

One-to-Zero, One, or Many occurrences (1:0-1-M). Solid lines indicate a relationship
(join path) between two entities. The dot identifies the child end of a parent-child
relationship between two entities.

The dotted line indicates that the child does not depend on the parent for identification.

One-to-At least One or More occurrences (1:1-M)

One-to-Zero, or at most One occurrence (1:0-1)

 Zero or One-to-Zero, One, or Many occurrences (0-1:0-1-M). The diamond shape on
the originating end indicates the relationship is optional. Physically, this means that a
NULL value can exist for an occurrence of any row of the entity positioned at the
terminating end (filled dot) of the relationship.

Many-to-Many occurrences (M:M). A many-to-many relationship, also called a non-
specific relationship, represents a situation where an instance in one entity relates to
one or more instances in a second entity and an instance in the second entity also
relates to one or more instances in the first entity.

Indicates that each parent instance must participate in one and only one sub-type as
shown in the LDM.

Indicates that parent instances may or may not participate in one of the sub-types as
shown in the LDM.

Physical Database Design Overview Page 12-7

Example of Data Model – ER Diagram

CALL
CALL#

PLACED_BY_EMP# (FK)
PLACED_BY_CONT# (FK)
CALL_PRIORITY_CODE (FK)
TAKEN _BY_EMP#
CUST# (FK)
CALL_DATE
CALL_TIME
CALL_STATUS_CODE (FK)
CALL_TYPE_CODE (FK)
CALLER_AREA_CODE
CALLER_PHONE
CALLER_EXT
SYS# (FK)
PART_CAT (FK)
ORIG_CALL# (FK)

CALL_DETAIL
CALL# (FK)
ENTERED_BY_USERID
ENTERED_DATE
ENTERED_TIME
LINE#

COMMENT_LINE

CALL_PRIORITY
CALL_PRIORITY_CODE

DESCR

CALL_EMPLOYEE
EMP# (FK)
CALL# (FK)
CALL_STATUS_CODE (FK)
ASSIGNED_DATE
ASSIGNED_TIME
FINISHED_DATE
FINISHED_TIME
LABOR_HOURS

CALL_STATUS
CALL_STATUS_CODE

DESCR

CALL_TYPE
CALL_TYPE_CODE
DESCR

CONTACT
CONT#
CONT_NAME
AREA_CODE
PHONE
EXT
LAST_CALL_DATE
COMMENT

CUSTOMER
CUST#
SALES_EMP# (FK)
CUST_NAME
PARENT_CUST_#
PARENT_CUST# (FK)

EMPLOYEE
EMP#

DEPT# (FK)
JOB_CODE (FK)
LAST_NAME
FIRST_NAME
HIRE_DATE
SALARY_AMOUNT
SUPV_EMP# (FK)

JOB
JOB_CODE
DESCR
HOURLY_BILLING_RATE
HOURLY_COST_RATE

DEPARTMENT
DEPT#
MGR_EMP# (FK)
DEPT_NAME
BUDGET_AMOUNT

EMPLOYEE_PHONE
EMP# (FK)
AREA_CODE
PHONE
DESCR

LOCATION_EMPLOYEE
EMP# (FK)
LOC# (FK)

LOCATION
LOC#
LINE1_ADDR
LINE2_ADDR
LINE3_ADDR
CITY
STATE
ZIP_CODE
CNTRY

LOCATION_PHONE
LOC# (FK)
AREA_CODE
PHONE

DESCR

PART_CATEGORY
PART_CAT
DRAW#
PRICE_AMOUNT
DESCR

SYSTEM
SYS#
LOC# (FK)
INSTALL_DATE
RECONFIG_DATE
COMMENT

SYSTEM_LOG
SYS# (FK)
ENTERED_DATE
ENTERED_TIME
ENTERED_BY_USERID
LINE#
COMMENT_LINE

 Physical Database Design Overview Page 12-8

Customer Service Logical Model
While the E-R diagram (previous page) was very helpful, it lacked the detail necessary for
broad user acceptance. How many columns are in the CALL table? What is the Primary
Key (PK) of the CALL table?

The logical model of the Customer Service database is depicted on the facing page. It shows
many more table-level details than the E-R diagram does. You can see the individual
column names for every table. In addition, there are codes to indicate PKs and Foreign
Keys (FKs), as well as columns which are System Assigned (SA) or which allow No
NULLS (NN) or No Duplicates (ND). Sample data values are also depicted.

This is the type of model that comes about as a result of Relational Data Modeling. This
example most closely represents a “Logical Data Model” or LDM.

Physical Database Design Overview Page 12-9

Customer Service Logical Model
(ERA Methodology Diagram)

CALL

CALL#

PK,SA

1

EMP#

TAKEN
BY

FK,NN

CUST#

FK

4

CONT#

PLACED
BY

FK

EMP#

PLACED
BY

FK

CALL#
ORIG

FK

DATE
CALL

NN

030215

TIME
CALL

NN

CODE

CALL
STATUS

FK,NN

1

CODE

CALL
TYPE

FK,NN

CODE

CALL
PRIORITY

FK,NN

4

CODE

CALLER
AREA

PHONE
CALLER

EXT
CALLER

SYS#

FK

CAT

FK

PART

1002 1004 0905 H 1 5

CALL DETAIL

CALL#

FK

USERID

ENTERED
BY

PK

LINE#DATE
ENTERED

TIME
ENTERED

LINE
COMMENT

1 030215LJC 1625 1 When the

CALL EMPLOYEE

CALL#

FK

1

EMP#

CALL

PK

CODE
STATUS

TIME
ASSIGNED

HOURS
LABOR

FK

1004

FK,NN,NC

DATE
FINISHED

TIME
FINISHED

NN

DATE
ASSIGNED

NN

1 0905891215 891215 1625 8.5

CALL PRIORITY

PK

1

NN,ND

CALL

CODE
PRIORITY

TOP

DESCR

CALL STATUS

PK

1

NN,ND

CALL

CODE
STATUS

OPEN

DESCR

CALL TYPE

PK

H

NN,ND

CALL TYPE
CODE

HDWR

DESCR

CONTACT

CONT#

PK

8010

NAME
CONT

NN

CODE PHONE

NN

EXT

LAST

DATE
CALL

NN

COMMENT
AREA

CSB 7654321408 030321

CUSTOMER

CUST#

PK

4

NAME
CUST

NN,ND

CUST#

FK

EMP#
SALES

FK,NN

PARENT

TDAT 3 1023

DEPARTMENT

DEPT#

PK

403

NAME
DEPT

NN,ND

AMOUNT EMP#
MGR

FK,NN

BUDGET

EDUC 932000 1005

EMPLOYEE

EMP#
PK,SA

1001

EMP#
SUPV

FK

DEPT#

FK

CODE
JOB

FK

NAME
LAST

NN

NAME
FIRST

DATE
HIRE

AMOUNT
SALARY

401 412101

DATE
BIRTH

1003 NOMAR 890114 450824JOE 50000.00

EMPLOYEE PHONE

EMP#
PK

CODE
AREA

415

DESCR

FK

1001

PHONE

1234567

JOB

CODE

PK

412101

DESCR
JOB

NN,ND

RATE
BILLING

F.E.

HOURLY

RATE
COST
HOURLY

LOCATION

LOC#

PK,SA

ADDR

NN

LINE1
ADDR
LINE2

ADDR
LINE3

1 100 N.

CITY

NN

ATLANTA

CUST#

FK,NN

4

STATE

NN

GA

CODE
ZIP

NN

30096 USA

CNTRY

CAT

PK

DRAW#
PART

NN,ND

AMT
PRICE

DESCR

NN

PART CATEGORY

1 1.27 CLIPA7Z348

SYSTEM

SYS#

PK

LOC#

FK,NN

DATE COMMENT

INSTALL

DATE
RECONFIG

547 0302121

SYSTEM LOG

SYS#

FK

547

DATE
ENTERED

PK

LINE#TIME
ENTERED

030212

USERID
BY

LINE
COMMENT

ENTERED

1738 1 We addedLJC

LOC EMP

LOC#

FK

1

EMP#

PK

1001

FK

LOCATION PHONE

LOC#

PK

CODE
AREA

OFFICE

DESCR

FK

27

PHONE

NN

415 1234567

ds186034
Sticky Note
data valuessample data

ds186034
Sticky Note
ER analysis

 Physical Database Design Overview Page 12-10

Relational Terms Review
Relational theory uses the terms Relations, Tuples, and Attributes. Most people are more
comfortable with the terms Tables, Rows, and Columns.

Additional Relational terminology (such as Domains) will be discussed more completely on
the following pages.

Acronyms:

PK – Primary Key
FK – Foreign Key
SA – System Assigned
UA – User Assigned
NN – No NULLS
ND – No Duplicates
NC – No Changes

It is very important that you start with a well-documented relational model in Third Normal
Form. This model is used as the basis for an ELDM.

Knowledge of the hardware and software environment is crucial to doing physical database
design for Teradata. The final PDM should be optimized for site-specific implementation.
It is also crucial that you think in terms of the large volume of data that is usually stored in
Teradata databases. When working with such large-scale databases, extraneous I/Os can
have a great impact on performance.

By understanding how the Teradata Database System works, you can make constructive
physical design decisions that have a positive impact on your system’s performance.

Physical Database Design Overview Page 12-11

Relational Terms Review

Operational Relational Logical Models
File Systems Theory & RDBMS systems

File Relation Entity or Table

Record Tuple Row

Field Attribute Column

Table A two-dimensional representation of data composed of rows and columns.

Row One occurrence in a relational table – a record.

Column The smallest category of data in the model – a field or attribute.

Domain The definition of a pool of valid values from which column values are drawn.

EMP# LAST NAME FIRST NAME MI NETWORK ID

PK, SA NN NN FK, ND, NN

01029821 Smith John A JS129101

EMPLOYEE

 Physical Database Design Overview Page 12-12

Domains
The following statements are true for domains and their administration in relational database
management systems:

 A domain defines the SET of all possible valid values, which may appear in all
columns based within that domain.

 A domain value is a fundamental non-decomposable unit of data.

 A domain must have a domain name and a domain data type. Valid domain data

types are:

INTEGER Any integer value
DECIMAL Whole and fractional values
CHARACTER Alpha-numeric values
DATE Valid Gregorian calendar dates
TIME 24 hour notation
BIT STRING Digitized data (e.g. photos, x-rays)

Domain Values
A domain defines the conceptual SET, or range, of all valid values that may appear in any
column based upon that domain.

Sometimes domains are restricted to specific values. For example:

 Would you ever want negative employee numbers?

 Has there ever been, or will there ever be, an employee with the employee number

of ZERO?

Physical Database Design Overview Page 12-13

Domains

Domain – the definition of a pool of valid values from which column values are
drawn.

Employee_Number, INTEGER > 0

53912

43156

0

123
3718

123456
3.14159

Dept_Number, INTEGER > 1000

9127

1023

0

123

3718

123456
3.14159

-123

-12308

4095

Question: Does an Employee_Number of 3718 and a Dept_Number of 3718 represent
the same value?

 Physical Database Design Overview Page 12-14

Attributes
Types of Attributes

The types of attributes include:

 Primary Key (PK): Uniquely identifies each row in a table

 Foreign Key (FK): Identifies the relationship between tables

 Non-Key Attributes: All other attributes that are not part of any key. They are

descriptive only, and do not define uniqueness (PK) or relationship (FK).

 Derived Attributes: An attribute whose value can be calculated or otherwise

derived from other existing attributes. Example: NetPay is derived by calculating
GrossPay - TaxAmt.

Derived Attribute Issues

The attributes from which derived attributes are calculated are in the design, so carrying the
derived attribute in addition creates redundant data. Derived attributes may be identified and
defined in order to validate that the model can in fact deduce them, but they are not shown in
the ER Diagram, because carrying redundant data goes against relational design theory and
principles.

There are several good reasons to avoid carrying redundant data:

 The data must be maintained in two places, which involves extra work, time and
expense.

 There is a risk (likelihood) of the copies getting out of sync with each other,

causing data inconsistency.

 It takes more physical storage.

Physical Database Design Overview Page 12-15

Attributes

Types of Attributes

• Primary Key (PK): Uniquely identifies each row in a table

• Foreign Key (FK): Identifies the relationship between tables

• Non-Key Attributes: All other attributes that are not part of any key. They
are descriptive only, and do not define uniqueness (PK) or relationship (FK).

• Derived Attributes: An attribute whose value can be calculated or otherwise
derived from other existing attributes.

Example: Count of current employees in a department. A SUM of Employee table
meets this requirement.

Derived Attribute Issues

• Carrying a derived attribute creates redundant data.

• Reasons to avoid carrying redundant data:

– The data must be maintained in two places which possibly causes data
inconsistency.

– It takes more physical storage

 Physical Database Design Overview Page 12-16

Entities and Relationships
The entities and their relationships are shown in table form on the facing page. The naming
convention used for the tables and columns makes it easy to find the PK of any FK.

Acronyms:

PK – Primary Key
FK – Foreign Key
SA – System Assigned
UA – User Assigned
NN – No NULLS
ND – No Duplicates
NC – No Changes

Relationship Descriptions
Many-to-many relationships are usually implemented by an associative table (e.g.,
Order_Part table).

Examples of relationships are shown below.

1:1 and 1:M Relationships

(PK) (FK)
Country Has LOCATIONs
Customer Has LOCATIONs
Employee Generates ORDERs

Generates SHIPMENTs
Receives SHIPMENTs

Location Generates ORDERs
Generates SHIPMENTs
Receives SHIPMENTs
Has Individual PARTs

Order Requisitions individual PARTs

M : M Relationships

Order/Part Category Show kinds of PARTs on an ORDER before it is filled (Direct.)

Order/Shipment Shows which PARTs belong to which ORDERs and SHIPMENTs

after the ORDER is filled (INDIRECT).

Physical Database Design Overview Page 12-17

Entities and Relationships

There are three types of relationships: 1:1 1:M M:M

ORDER
ORDER ORDER CUST

DATE ID

PK, SA

FK, NN

1 2005-12-24 1001
2 2006-01-23 1002
3 2006-02-07 1001

CUSTOMER
CUST CUST CUST

ID NAME ADDRESS

PK, SA

1001 MALONEY 100 Brown St.
1002 JONES 12 Main St.

ORDER_ITEM
ORDER ITEM ITEM

ID QTY

PK

FK FK

1 6001 3
1 6200 1
2 6001 5

ITEM
ITEM ITEM RETAIL

ID DESC PRICE

PK

6001 Paper 15.00
6200 Printer 300.00

EMPLOYEE
EMPLOYEE EMPLOYEE NETWORK
NUMBER L_NAME ID

PK, SA FK, ND, NN

30547 SMITH BS100421
21289 NOMAR JN450824

NETWORK_USERS
NETWORK VIRTUAL SecurID

ID FLAG
PK, UA ND

BS100421 231885
JN450824 Y 348145

1:1 Relationships are rare.

Ex. One employee has only
one Network ID and a Network
ID is only assigned to one
Employee.

1:M and M:M Relationships are common.

Examples:

1:M – A Customer can place many orders.

M:M – An Order can have many parts on it. The same part
can be on many Orders. An “associative” table is used
to resolve M:M relationships.

 Physical Database Design Overview Page 12-18

Decomposable Data
Data may be either decomposable or atomic. Decomposable data can be broken down into
finer, smaller units while atomic data is already at its finest level.

There is a Relational Rule that “Domains must not be decomposable.” If you normalize
your relational design and create your tables based on domains, you will have columns that
do not contain decomposable data.

In practice, you may have columns that contain decomposable data. This will not cause
excessive problems if those columns are not used for access. You should create a column
for any individual character or number that is used for access.

A good example of decomposable data is a person’s name:

 Name can be broken down into last name and first name.

 Last name and first name are good examples of atomic data since they really can’t

be broken down into meaningful finer units.

There are several benefits to designing your system in this manner. You should get
increased performance because there will be fewer Full Table Scans due to partial value
index searches. Also, if the columns are NUSI’s, you will increase the chance of using
NUSI Bit Mapping. Finally, you will simplify the coding of your SQL queries.

Remember that storage and display are separate issues.

Physical Database Design Overview Page 12-19

Decomposable Data

RELATIONAL RULE: Domains must not be decomposable.

• Atomic level data should be defined.

• Continue to normalize through the lifetime of the system.

• Columns with multiple domains should be decomposed to the finest level of ANY
access.

• Create a column for an individual character or number if it is used for access.

• Storage and display are separate issues.

The GOAL:

• Eliminate FTS (Full Table Scans) on partial value index searches.

• Simplify SQL coding.

 Physical Database Design Overview Page 12-20

Normal Forms
Normalization is a set of rules and a methodology for making sure that the attributes in a
design are carried in the correct entity to map accurately to reality, eliminate data
redundancy and minimize update anomalies.

Stated simply: One Fact, One Place!

 1NF, 2NF and 3NF are progressively more refined and apply to non-key attributes
regarding their dependency on PK attributes.

 4NF and 5NF apply to dependencies between or among PK attributes.

For most models, normalizing to 3NF meets the business requirements.

Normalization provides a rigorous, relational theory based way to identify and eliminate
most data problems:

 Provides precise identification of unique data values

 Creates data structures which have no anomalies for access and maintenance

functions

Later in the module, we will discuss the impact of denormalizing a model and the effect it
may have (good or bad) on performance.

By implementing a model that is in Third Normal Form (3NF), you might gain the following
Teradata advantages.

 Usually more tables – therefore, more primary index choices

– Possibly fewer full table scans
– More Data control

 Fewer Columns per Row – usually smaller rows

– Better user isolation from the data
– Better application separation from the data
– Better blocking
– Less transient and permanent journaling space

These advantages will be discussed in Physical Design and Implementation portion of this
course.

Physical Database Design Overview Page 12-21

Normal Forms

Once you’ve identified the attributes, the question is which ones belong in which
entities?

• A non-key attribute should be placed in only one entity.

• This process of placing attributes in the correct entities is called normalization.

First Normal Form (1NF)

• Attributes must not repeat within a table. No repeating groups.

Second Normal Form (2NF)

• An attribute must relate to the entire Primary Key, not just a portion.

• Tables with a single column Primary Key (entities) are always in Second Normal form.

Third Normal Form (3NF)

• Attributes must relate to the Primary Key and not to each other.

• Cover up the PK and the remaining attributes must not describe each other.

ds186034
Highlight

ds186034
Highlight

 Physical Database Design Overview Page 12-22

Normalization
The facing page illustrates violations of First, Second and Third Normal Form.

First Normal Form (1NF)
The rule for 1NF is that attributes must not repeat within a table. 1NF also requires that
each row has a unique identifier (PK). In the violation example, there are six columns
representing sales amount.

Second Normal Form (2NF)
The rule for 2NF is that attributes must describe the entire Primary Key, not just a portion.
In the violation example, the ORDER DATE column describes only the ORDER portion of
the Primary Key.

Third Normal Form (3NF)
The rule for 3NF is that attributes must describe only the Primary Key and not each other.
In the violation example, the JOB DESCRIPTION column describes only the JOB CODE
column and not the EMPLOYEE NUMBER (Primary Key) column.

Fourth (4NF) and Fifth (5NF) Normal Forms
4NF and 5NF are covered here only for your information. The vast majority of models never
apply these levels. Essentially these Normal Forms are designed to impose the same level of
consistency within a PK composed of more than two columns as the first 3NFs impose on
attributes outside the PK.

Entities with more than two columns in the PK often contain no non-key attributes. If non-
key attributes do exist, 4NF and 5NF violations are unlikely because bringing the model into
3NF compliance precludes them.

Usually 4NF and 5NF violations occur when the definition of the information to be
represented is ambiguous (e.g. the user has either not really understood what they are asking
for, or they have failed to state it clearly enough for the designer to understand it). 4NF and
5NF really represent two flip sides of the same issue: The PK must contain the minimum
number of attributes that accurately describe all of the business rules.

Formal Definitions:
4NF: The entity’s PK represents a single multi-valued fact that requires all PK attributes be
present for proper representation. Attributes of a multi-valued dependency are functionally
dependent on each other.

5NF: The entity represents, in its key, a single multi-valued fact and has no unresolved
symmetric constraints. A 4NF entity is also in 5NF if no symmetric constraints exist.

Physical Database Design Overview Page 12-23

Normalization

First Normal Form (1NF)

attributes must not repeat
within a table.

SALES HISTORY
FIGURES FOR LAST SIX MONTHS

EMP
NUMBER SALES SALES SALES SALES SALES SALES
PK, SA
2518 32389 21405 18200 27590 29785 35710

Second Normal Form (2NF)

attributes must describe the entire
Primary Key, not just a portion.

ORDER PART
ORDER PART ORDER QUANTITY
NUMBER NUMBER DATE

PK

FK FK

100 1234 2005-02-15 200
100 2537 2005-02-15 100

Third Normal Form (3NF)

attributes must describe only the
Primary Key and not each other.

EMPLOYEE
EMPLOYEE EMPLOYEE JOB JOB
NUMBER NAME CODE DESCRIPTION

PK, SA FK

30547 SMITH 9038 INSTRUCTOR
21289 NOMAR 9038 INSTRUCTOR

Normalization is a technique for placing non-key attributes in tables in order to:
– Minimize redundancy
– Provide optimum flexibility
– Eliminate update anomalies

 Physical Database Design Overview Page 12-24

Normalization Example
The facing page contains an illustration of a simple order form that a customer may use.

It is possible to simply convert this data file into a relational table, but it would not be in
Third Normal Form.

Dr. Codd Mnemonic
Every non-key attribute in an entity must depend on:

 The KEY - 1st Normal Form (1NF)
 The WHOLE key - 2nd Normal Form (2NF)
 And NOTHING BUT the Key - 3rd Normal Form (3NF)
 -- E.F. Codd

Physical Database Design Overview Page 12-25

Normalization Example

One of the order forms a customer uses is shown below.

Order # _______ Order Date ______

Customer ID __________
Customer Name __________________________
Customer Address ____________________________________
Customer City ____________ State _______ Zip _______

Item Item Item Item Item(s)
ID Description Price Quantity Total Price
______ _____________________ _______ ______ ________
______ _____________________ _______ ______ ________
______ _____________________ _______ ______ ________
______ _____________________ _______ ______ ________

Order Total ________

Order # _______ Order Date ______

Customer ID __________
Customer Name __________________________
Customer Address ____________________________________
Customer City ____________ State _______ Zip _______

Item Item Item Item Item(s)
ID Description Price Quantity Total Price
______ _____________________ _______ ______ ________
______ _____________________ _______ ______ ________
______ _____________________ _______ ______ ________
______ _____________________ _______ ______ ________

Order Total ________

A listing of the fields is:

Order #
Order Date
Customer ID
Customer Name
Customer Address
Customer City
State
Zip
Item ID
Item Description
Item Price
Item Quantity
Item(s) Total Price
Order Total

Repeats

 Physical Database Design Overview Page 12-26

Normalization Example (cont.)
The tables on the facing page represent the normalization to 1NF for the previous order form
example.

Recall that the rule for 1NF is that attributes must not repeat within a table.

Negative effects of violating 1NF include:

 Places artificial limits on the number of repeating items (attributes)
 Sorting on the attribute becomes very difficult
 Searching for a particular value of the attribute is more complex

Physical Database Design Overview Page 12-27

Normalization Example (cont.)

A modeler chooses to remove the repeating groups and creates two tables as shown
below.

This places the data in first normal form.

Order Table

Order #
Order Date
Customer ID
Customer Name
Customer Address
Customer City
State
Zip
Order Total

Order-Item Table

Order #
Item ID
Item Description
Item Price
Item Quantity
Item(s) Total Price

 Physical Database Design Overview Page 12-28

Normalization Example (cont.)
The tables on the facing page represent the normalization to 2NF for the previous order form
example.

Recall that the rule for 2NF is that attributes must describe the entire Primary Key, not just a
portion.

Negative effects of violating 2NF include:

 More disk space may be used
 Redundancy is introduced
 Updating is more difficult
 Can also comprise the integrity of the data model

Physical Database Design Overview Page 12-29

Normalization Example (cont.)

A modeler checks that attributes describe the entire Primary Key.

This places the data in second normal form.

As an option, the item price may be kept at the Order-Item level in the event a discount or
different price is given for the order. The Item table may identify the retail price.

The Order Total and Item(s) Total Price are derived data and may or may not be included.

Order Table

Order #
Order Date
Customer ID
Customer Name
Customer Address
Customer City
State
Zip
Order Total

Order-Item Table

Order #
Item ID
Item Price (sale)
Item Quantity
Item(s) Total Price

Item Table

Item ID
Item Description
Item Price (retail)

 Physical Database Design Overview Page 12-30

Normalization Example (cont.)
The tables on the facing page represent the normalization to 3NF for the previous order form
example.

Recall that the rule for 3NF is that attributes must describe only the Primary Key and not
each other.

Negative effects of violating 3NF include:

 More disk space may be used
 Redundancy is introduced
 Updating is more costly

Physical Database Design Overview Page 12-31

Normalization Example (cont.)

These tables are now in third normal form. If the item sale price is always the same as the
retail price, then the item price only needs to be kept in the item table.

The Order Total and Item(s) Total Price are derived data and may or may not be included.

A modeler checks that attributes only describe the Primary Key.

Order Table

Order #
Order Date
Customer ID
Order Total

Order-Item Table

Order #
Item ID
Item Price (sale)
Item Quantity
Item(s) Total Price

Item Table

Item ID
Item Description
Item Price (retail)

Customer Table

Customer ID
Customer Name
Customer Address
Customer City
State
Zip

 Physical Database Design Overview Page 12-32

Normalization Example (cont.)
The facing page completes this example and illustrates the tables in a logical format
showing PK-FK relationships.

Physical Database Design Overview Page 12-33

Normalization Example (cont.)

ORDER
ORDER ORDER CUSTOMER

DATE ID

PK, SA

FK

1 2005-02-27 1001

2 2005-04-24 1002

CUSTOMER
CUST CUST CUST CUST CUST CUST

ID NAME ADDRESS CITY STATE ZIP

PK, SA

1001 MALONEY 100 Brown St. Dayton OH 45479
1002 JONES 12 Main St. San Diego CA 92127

Note that Items Total Price & Order_Total are not shown in this model.

How are Items Total Price & Order_Total handled?

ORDER_ITEM
ORDER ITEM SALE ITEM

ID PRICE QUANTITY
PK

FK FK

1 5001 15.00 2
1 5002 300.00 1
2 5001 15.00 1

ITEM
ITEM ITEM RETAIL

ID DESCRIPTION PRICE
PK

5001 PS20 Electric Pencil Sharpener 15.00
5002 MFC140 Multi-Function Printer 300.00

The tables are shown below in 3NF with PK-FK relationships.

 Physical Database Design Overview Page 12-34

Denormalizations
This course recommends that the corporate database tables that represent the company's
business be maintained in Third Normal Form (3NF). Due to the large volume of data
normally stored in a Teradata system, denormalization may be necessary to improve
performance. If you do denormalize, make sure that you are aware of all the trade-offs
involved.

It is also recommended that, whenever possible, you keep the normalized tables from the
Logical Model as an authoritative source and add additional denormalized tables to the
database. This module will cover the various types of denormalizations that you may
choose to use. They are:

 Derived Data
 Repeating Groups
 Pre-Joins
 Summary and/or Temporary Tables
 Partitioning (Horizontal or Vertical)

Complete the Logical Model before choosing to use these denormalizations.

There are a few costs in normalizing your data. Typically, the advantages of having a data
model in 3NF outweigh the costs of normalizing your data.

Costs of normalizing to 1NF include:

 you use more disk space
 you have to do more joins

Costs of normalizing to 2NF when already in 1NF include:

 you have to do more joins

Costs of normalizing to 3NF when already in 2NF include:

 you have to do more joins

A customer may choose to implement a semantic layer between the data tables and the end
users. The simplest definition of a semantic layer is as the view layer that uses business
terminology and does presentation.

The semantic layer can also be viewed as a logical construct to support a presentation layer
which may interface directly with some end-user access methodology. The "semantic layer"
may change column names, derive new column values, perform aggregation, or whatever
else the presentation layer needed to support the users.

Physical Database Design Overview Page 12-35

Denormalizations

Denormalize only when all of the trade-offs of the following are known. Examples of
denormalizations are:

• Derived data
• Pre-Joins
• Repeating groups
• Partitioning (Horizontal or Vertical)

• Summary and/or Temporary tables

Make these choices AFTER completing the Logical Model.

• Keep the Logical Model pure.
• Keep the documentation of the physical model up-to-date.

Denormalization may increase or decrease system costs.

• It may be positive for some applications and negative for others.
• It generally makes new applications harder to implement.
• Any denormalization automatically reduces data flexibility.
• It introduces the potential for data problems (anomalies).
• It usually increases programming cost and complexity.

Note: Only a few denormalization examples are included in this module. Other techniques will be
discussed throughout the course.

 Physical Database Design Overview Page 12-36

Derived Data
Attributes whose values can be determined or calculated from other data are known as
Derived Data. Derived Data can be either integral or stand-alone, examples of which are
shown on the facing page. You should notice that integral Derived Data requires no
additional I/O and no denormalization. Stand-alone Derived Data, on the other hand,
requires additional I/O and may require denormalization.

Creating temporary tables to hold Derived Data is a good strategy when the Derived Data
will be used frequently and is stable.

Handling Derived Data
Storing Derived Data is a normalization violation that breaks the rule against redundant data.
Whenever you have stand-alone Derived Data, you must decide whether to calculate it or
store it. This decision should be based on the following demographics:

 number of tables and rows involved
 access frequency
 column data value volatility and column data value change schedule

All above demographics are determined through Activity Modeling – also referred to as
Application and Transaction Modeling. The following table gives you guidelines on what
approach to take depending on the value of the demographics.

Guidelines apply when you have a large number of tables and rows. In cases where you
have a small number of tables and rows, calculate the Derived Data on demand.

Access
Frequency

Change
Rating

Update
Frequency

Recommended Approach

High High Dynamic Denormalize the model or use
Temporary Table

High High Scheduled Use Temporary Table or produce batch
report

High Low Dynamic Use Temporary Table
High Low Scheduled Use Temporary Table or produce batch

report
Low ? ? Calculate on demand

Note that, in general, using summary/temporary tables is preferable to denormalization.

The example on the facing page shows an example of using a derived data column
(Employee Count) to identify the number of employees in a department.

This count can be determined by doing a count of employees from the Employee table.

Physical Database Design Overview Page 12-37

Derived Data

EMPLOYEE
EMPLOYEE EMPLOYEE DEPT
NUMBER NAME NUM

PK, SA NN FK

UPI

22416 JONES 1002
30547 SMITH 1001
82455 NOMAR 1002
17435 NECHES 1001
23451 MILLER 1002

DEPARTMENT
DEPT DEPT
NUM NAME

PK, SA NN, ND

UPI

1001 ENGINEERING
1002 EDUCATION

Derived data is an attribute whose value can be determined or calculated from other
data. Storing a derived item is a denormalization (redundant data).

Carrying the count of the number of employees in a department is a normal forms violation. The
number of employees can be determined from the Employee table.

DEPARTMENT
DEPT DEPT EMPLOYEE
NUM NAME COUNT

PK, SA NN, ND Derived Data

UPI

1001 ENGINEERING 2
1002 EDUCATION 3

EMPLOYEE
EMPLOYEE EMPLOYEE DEPT
NUMBER NAME NUM

PK, SA NN FK

UPI

22416 JONES 1002
30547 SMITH 1001
82455 NOMAR 1002
17435 NECHES 1001
23451 MILLER 1002

Normalized

Denormalized

 Physical Database Design Overview Page 12-38

Pre-Joins
Pre-Joins can be created in order to eliminate Joins to small, static tables (Minor Entities).
The example on the facing page shows a Pre-Join table that contains columns from both the
JOB and EMPLOYEE tables above it.

Although this is a violation of Third Normal Form, there are several reasons that you may
want to use it:

 It is a good performance technique for the Teradata DBS especially when there are
known queries.

 It is a good way to handle situations where you have tables with fewer rows than
AMPs.

 You still have your original Minor Entity to maintain data consistency and avoid
anomalies.

Costs of pre-joins include:

 Additional space is required
 More maintenance and I/Os are required.

Physical Database Design Overview Page 12-39

Pre-Joins

To eliminate joins to a small table (possibly static), consider including their attribute(s) in
the parent table.

NORMALIZED
EMPLOYEE
EMPLOYEE EMPLOYEE JOB
NUMBER NAME CODE

PK, SA FK

UPI

22416 JONES 1023
30547 SMITH 1015

JOB
JOB JOB
CODE DESCRIPTION

PK, SA NN, ND

UPI

1015 PROGRAMMER
1023 ANALYST

DENORMALIZED EMPLOYEE
EMPLOYEE EMPLOYEE JOB JOB
NUMBER NAME CODE DESCRIPTION

PK, SA

UPI

22416 JONES 1023 ANALYST
30547 SMITH 1015 PROGRAMMER

Reasons you may want Pre-Joins:

• Performance technique when there are known queries.
• Option to handle situations where you have tables with fewer rows than AMPs.

A Join Index (Teradata feature covered later) provides a way of creating a “pre-join table”.
As the base tables are updated, the Join Index is updated automatically.

 Physical Database Design Overview Page 12-40

Exercise 1: Choose Indexes
At right is the EMPLOYEE table from the CUSTOMER_SERVICE database. The legend
below explains the abbreviations you see below the column names. The following pages
contain fifteen more PTS tables.

Choose the best indexes for these tables. Remember, you must choose exactly one Primary
Index per table, but you may choose up to 32 Secondary Indexes.

Primary Keys do not have to be declared. Any Primary Key which is declared must have all
columns of the PK defined as NOT NULL, and will be implemented by Teradata as a
Unique index (UPI or USI).

 REMEMBER

 The Primary Key is the logical reference for the Logical Data
Model. The Primary Index is the physical access mechanism for the
Physical Data Model. They may be but will not always be the same.

Physical Database Design Overview Page 12-41

Exercise 1: Choose Indexes

The next page contains a portion of the logical model of the PTS database.

Indicate the candidate index choices for all of the tables. An example is shown below.

The Teradata database supports four index types:

UPI (Unique Primary Index) NUPI (Non-Unique Primary Index)
USI (Unique Secondary Index) NUSI (Non-Unique Secondary Index)

PK/FK

PI/SI

50,000
Rows

EMPLOYEE

EMP#

PK,SA

SUPV
EMP#

FK

DEPT#

FK

JOB
CODE

FK

LAST
NAME

NN

FIRST
NAME

HIRE
DATE

BIRTH
DATE

SAL
AMT

NN NN NN NN

UPI NUSI NUSI NUSI NUSI

LEGEND

PK = Primary Key (implies NC, ND, NN) FK = Foreign Key
NC = No Change SA = System Assigned Value
ND = No Duplicates UA = User Assigned Value
NN = No Nulls

 Physical Database Design Overview Page 12-42

Tables Index Selection
On the facing page, you will find some of the tables in the PTS database.

Choose the best indexes for these tables. Remember that you must choose exactly one
Primary Index per table, but you may choose up to 32 Secondary Indexes.

Physical Database Design Overview Page 12-43

Tables Index Selection

LINE1 LINE2 LINE3
LOC# CUST# ADDR ADDR ADDR CITY STATE ZIP CNTRY

PK/FK PK,SA FK,NN NN NN

PI/SI

LOCATION

ORD CLOSE UPD UPD UPD
ORD# CUST# LOC# DATE DATE DATE TIME USER

PK/FK PK,SA FK,NN FK,NN NN SA,NN SA,NN FK,NN

PI/SI

ORDER

PART UPD
PART# CAT SER# LOC# SYS# SHIP# ORD# STAT DATE

PK/FK PK,SA FK,NN FK,NN FK,NN FK,NN FK,NN SA,NN

PI/SI

PART

 Physical Database Design Overview Page 12-44

Database Design Components
Each System Development Phase adds to the design. As we mentioned earlier, they are:

 Logical Data Modeling

 Extended Data Modeling (also known as Application and Transaction Modeling;

we will call it Activity Modeling).

 Physical Data Modeling

First and foremost, make sure the system is designed as a

function of business usage and not the reverse.

Let usage drive design.

Physical Database Design Overview Page 12-45

Database Design Components

• A good logical model reduces application workload.

• Thorough application knowledge produces dependable demographics.

• Proper demographics are needed to make sound index choices.

• Though you don’t know users’ access patterns, you will need that information in the
future. For example, management may want to know why there are two copies of data.

• For DSS, OLAP, and Data Warehouse systems, aim for even distribution and let
Teradata parallel architecture handle the changing access needs of the users.

Data
Demo-

graphics

Logical
Data
Model

(CURRENT) (FUTURE)

Application
Knowledge

 Physical Database Design Overview Page 12-46

Extended Logical Data Model
At right is the Extended Logical Data Model (ELDM), which includes data demographic
information pertaining to data distribution, sizing and access.

Information provided by the ELDM results from user input about transactions and
transaction rates.

The Delete Rules and Constraint Numbers (from a user-generated list) are provided as an aid
to application programmers, but have no effect on physical modeling.

The meaning and importance of the other ELDM data to physical database design will be
covered in coming modules of this course.

Physical Database Design Overview Page 12-47

Extended Logical Data Model

EXTENDED LOGICAL DATA
MODEL

• It provides demographics
of data distribution, sizing
and access.

• It maps applications and
transactions to the related
tables, columns and row
sets.

• It is the main information
source for creating the
physical data model

TABLE NAME: Employee

DESCRIPTION: Someone who works for our company and on payroll.

TABLE TYPE: EntityROW COUNT: 50,000

DISTINCT

MAXIMUM

TYPICAL

JOIN ACC

CHANGE

FREQ

JOIN ACC
ROWS

VALUES

ROWS/VAL

MAX ROWS
NULL

ROWS/VAL

RATING

SAMPLE
DATA

8326 647 2431 18 OZ WIZ

50K

1

0

1

0

17K

136K

50 12K

96K

6K

50K

0

0

0

0

0

0

0

0

0

0

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

10K

7K

30

1

2K

40

18

23

3K

4K

40

15

40K

2K

0

17

NA NA NA NA2 4 13

PK/FK

VALUE ACC
FREQ

DEL RULES

CONSTR#

EMPLOYEE

EMPLOYEE
NUMBER

SUPERVISOR
EMPLOYEE
NUMBER

DEPARTMENT
NUMBER

JOB
CODE

LAST
NAME

FIRST
NAME

HIRE
DATE

BIRTH
DATE

SALARY
AMOUNT

PK, SA FK FK FK NN

N N P

101 101

10K 0 8K 1K 200 0 0 0 0

 Physical Database Design Overview Page 12-48

Physical Data Model
The model at right is the Physical Data Model (PDM), which contains the same
information as the ELDM except that index selections and other physical design choices
such as data protection mechanisms (e.g., Fallback) have been added.

A complete PDM will define all tables, indexes and views to be implemented. Due to
physical design considerations, the PDM may differ from the logical model. In general, the
more the PDM differs from the logical model, the less flexible it is and the more
programming it requires.

Physical Database Design Overview Page 12-49

Physical Data Model

PHYSICAL DATA MODEL

• A collection of DBMS
constructs that define the
tables, indexes and views
to be implemented.

• The main tables represent
the entities of the business
function.

• It may differ from the
logical model due to
implementation issues.

• The more it differs, the
less flexible it is and the
more programming it
requires.

DISTINCT

MAXIMUM

TYPICAL

JOIN ACC

CHANGE

SAMPLE

FREQ

JOIN ACC
ROWS

VALUES

ROWS/VAL

MAX ROWS
NULL

ROWS/VAL

RATING

DATA

PI/SI NUSIUPI NUSI

8326 647 2431 18 OZ WIZ

50K

1

0

1

0

17K

136K

50 12K

96K

6K

50K

0

0

0

0

0

0

0

0

0

0

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

10K

7K

30

1

2K

40

18

23

3K

4K

40

15

40K

2K

0

17

NA NA NA NA2 4 13

PK/FK

VALUE ACC
FREQ

DEL RULES

CONSTR#

EMPLOYEE

EMPLOYEE
NUMBER

SUPERVISOR
EMPLOYEE
NUMBER

DEPARTMENT
NUMBER

JOB
CODE

LAST
NAME

FIRST
NAME

HIRE
DATE

BIRTH
DATE

SALARY
AMOUNT

PK, SA FK FK FK NN

N N P

101 101

10K 0 8K 1K 200 0 0 0 0

TABLE NAME: Employee

DESCRIPTION: Someone who works for our company and on payroll.

TABLE TYPE: EntityROW COUNT: 50,000

FALLBACK: YES PERM JRNL: NO IMPLEMENTATION: 3NF

 Physical Database Design Overview Page 12-50

The Principles of Index Selection
The right-hand page illustrates the many factors that impact Index selection. As you can
see, they represent all three of the Database Design Components (Logical Data Model, Data
Demographics and Application Knowledge).

Index selection can be summarized as follows:

 Start with a well-documented 3NF logical model.
 Develop demographics to create the ELDM.
 Make index selections based upon these demographics.

Physical Database Design Overview Page 12-51

The Principles of Index Selection

There are many factors which guide the designer in choosing indexes:

– The way the system uses the index.
– The space the index requires.
– The table type.
– The number of rows in the table.
– The type of data protection.
– The column(s) most frequently used to access rows in the table.
– The number of distinct column values.
– The maximum rows per value.
– Whether the rows are accessed by values or through a Join.
– The primary use of the table data (Decision support, Ad Hoc, Batch Reporting,

Batch Maintenance, OLTP).
– The number of INSERTS and when they occur.
– The number of DELETEs and when they occur.
– The number of UPDATEs and when they occur.
– The way transactions are written.
– The way the transactions are parceled.
– The level and type of locking a transaction requires.
– How long a transaction hold locks.
– How normalized the data model is.

Through lecture and exercises,
this course points out the
importance and use of all these
factors.

Through lecture and exercises,
this course points out the
importance and use of all these
factors.

 Physical Database Design Overview Page 12-52

Transactions and Parallel Processing
One additional goal of this course is to point out what causes all-AMP operations. In some
cases, they are accidental and can be changed into one-or two-AMP operations.

To have the maximum number of transactions that need only one-or two-AMPs, you require
a good logical model (Third Normal Form), a good physical model (what you will learn
about in this course), and good SQL coding (we will provide some examples).

Physical Database Design Overview Page 12-53

Transactions and Parallel Processing

Teradata does all-AMP processing very efficiently.

However, one-AMP and two-AMP processing is even more efficient. It allows
the existing configuration to support a greater workload.

TXN1

TXN2

TXN3

TXN4

AMP1 AMP2 AMP3 AMP4 AMP5 AMP6 AMP7 AMP8

Ideal for Decision Support
(DSS), Ad Hoc, Batch

Processing,
and some Batch Maintenance

operations.

TXN1

AMP1 AMP2 AMP3 AMP4 AMP5 AMP6 AMP7 AMP8

TXN2 TXN3 TXN4 TXN5 TXN6

TXN7 TXN8 TXN9 TXN10 TXN11

TXN12

TXN18

TXN13 TXN14 TXN15 TXN16 TXN17

TXN19 TXN20 TXN21 TXN22

Best for OLTP, tactical
transactions, and preferred

for many Batch Maintenance
operations. Created by a

good Logical Model AND a
good Physical Model AND

good SQL coding.

This course points out the methods of maximizing the use of one-AMP and two-AMP
transactions and when all-AMP operations are needed.

This course points out the methods of maximizing the use of one-AMP and two-AMP
transactions and when all-AMP operations are needed.

 Physical Database Design Overview Page 12-54

Module 12: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Physical Database Design Overview Page 12-55

Module 12: Review Questions

1. Which three are benefits to creating a data model in 3NF? ____ ____ ____

a. Minimize redundancy
b. To reduce update anomalies
c. To improve distribution of data
d. To improve flexibility of access
e. To reduce number of I/Os to access data

2. Which data model would include the definition of a partitioned primary index? ____

a. Logical data model
b. Physical data model
c. Business information model
d. Extended logical data model

3. Which two factors should be considered when deciding to denormalize a table? ____ ____

a. Volatility
b. Performance
c. Distribution of data
d. Connectivity of users

4. Which is a benefit of implementing data types at the domain level? ____

a. Reduce storage space
b. Avoid data conversion
c. Provides consistent display of data
d. Reduce need for secondary indexes

 Physical Database Design Overview Page 12-56

Notes

Data Distribution and Hashing Page 13-1

Module 13

Teradata Proprietary and Confidential

Data Distribution and Hashing

After completing this module, you will be able to:

 Describe the data distribution form and method.

 Describe Hashing.

 Describe Primary Index hash mapping.

 Describe the reconfiguration process.

 Describe a Block Layout.

 Describe File System Read Access.

 Data Distribution and Hashing Page 13-2

Notes

Data Distribution and Hashing Page 13-3

Table of Contents

Data Distribution .. 13-4
Hashing .. 13-6

Enhanced Hashing Algorithm Starting with Teradata 13.10 ... 13-6
Hash Related Expressions .. 13-8
Hashing – Numeric Data Types ... 13-10
Multi-Column Hashing .. 13-12

Multi-Column Hashing (cont.) ... 13-14
Additional Hash Examples ... 13-16
Using Hash Functions to View Distribution .. 13-18

Identifying the Hash Buckets ... 13-18
Identifying the Primary AMPs ... 13-18

Primary Index Hash Mapping .. 13-20
Hash Maps .. 13-22
Primary Hash Map ... 13-24
Hash Maps for Different Systems .. 13-26
Fallback Hash Map .. 13-28
Reconfiguration .. 13-30
Row Retrieval via PI Value – Overview .. 13-32
Names and Object IDs ... 13-34
Table ID ... 13-36

Spool File Table IDs .. 13-36
Row ID ... 13-38
AMP File System – Locating a Row via PI ... 13-40
Teradata File System Overview ... 13-42
Master Index Format .. 13-44
Cylinder Index Format ... 13-46
Data Block Layout ... 13-48
Example of Locating a Row – Master Index ... 13-50
Example of Locating a Row – Cylinder Index... 13-52
Example of Locating a Row – Data Block... 13-54
Accessing the Row within the Data Block ... 13-56
AMP Read I/O Summary ... 13-58
Module 13: Review Questions ... 13-60

 Data Distribution and Hashing Page 13-4

Data Distribution
Parsing Engines (PE) are assigned either to channel connections (e.g., IBM Mainframe) or
to LAN connections. Data is always stored by the AMPs in 8-bit ASCII. If the input is in
EBCDIC, the PE converts it to ASCII before any hashing and distribution takes place.

A USER may have a COLLATION = EBCDIC, ASCII, MULTINATIONAL, or HOST. If
the HOST is an EBCDIC host or COLLATION = EBCDIC, then the AMPs convert from
ASCII to EBCDIC before doing any comparisons or sorts. MULTINATIONAL allows sites
to create their own collation file. Otherwise, all comparisons and sorts use the ASCII
collating sequence.

Teradata has no concept of pre-allocated table space. The rows of all hashed tables are
distributed randomly across all AMPs and then randomly within the space available on the
selected AMP.

Data Distribution and Hashing Page 13-5

Data Distribution

Teradata

Records From Client (in random sequence)

2 32 67 12 90 6 54 75 18 25 80 41
From
Host

Converted
and

Hashed

Distributed

Formatted

Stored

AMP 3AMP 2AMP 0 AMP 1

Parsing
Engine(s)

Parsing
Engine(s)

EBCDIC ASCII

ASCII

Message Passing Layer

18

2
54

41

12

90 75

80

32 6

67 25

Data distribution is
dependent on the
hash value of the
primary index.

 Data Distribution and Hashing Page 13-6

Hashing
Hashing is the mechanism by which Teradata utilizes the Primary Index to distribute rows
of data. The Hashing Algorithm acts like a mathematical “blender”. It takes up to 64
columns of mixed data as input and generates a single 32-bit binary value called a Row
Hash.

 The Row Hash is the logical storage locator of the row. A part of this value is used
in determining the AMP to which the row is distributed.

 Teradata uses the Row Hash value for distribution, placement and retrieval of rows.

The Hashing Algorithm is random but consistent. Although consecutive PI values do not
normally produce consecutive hash values, identical Primary Index (PI) values always
generate the same Row Hash (assuming that the data types hash identically). Rows with the
same Row Hash are always distributed to the same AMP.

Different PI values rarely produce the same Row Hash. When this does occur, they are
known as Hash Synonyms or Hash Collisions.

Note: Upper and lower case values hash to the same hash value. For example, ‘Jones’ and
‘JONES’ generate the same hash value.

Enhanced Hashing Algorithm Starting with Teradata 13.10
This enhancement is targeted to reduce the number of hash collisions for character data
stored as either Latin or Unicode, notably strings that contain primarily numeric data.
Reduction in hash collisions reduces access time per AMP and produces a more balanced
row distribution which in-turn improves parallelism. Reduced access time and increased
parallelism translate directly to better performance.

This capability is only available starting in TD 13.10. This feature is available to new
systems and requires a System Initialization (sysinit) for existing systems. It is anticipated
that typically this activity would be performed during technology refresh opportunities.

Data Distribution and Hashing Page 13-7

Hashing

• The Hashing Algorithm creates a fixed length value from any length input string.

• Input to the algorithm is the Primary Index (PI) value of a row.

• The output from the algorithm is the Row Hash.
– A 32-bit binary value.

– Used to identify the AMP of the row and the logical storage location of the row in the AMP.

– Table ID + Row Hash is used to locate the Cylinder and Data Block.

• Row Hash uniqueness depends directly on PI uniqueness.

– Good data distribution depends directly on Row Hash uniqueness.

• The algorithm produces random, but consistent, Row Hashes.

– The same PI value and data type combination always hash identically.

– Rows with the same Row Hash will always go to the same AMP.

• Teradata has a new "Enhanced Hashing Algorithm" starting with Teradata 13.10 new
systems and fresh installs (sysinit).

– Solves the problem of too many hash synonyms when character columns contain numeric
data.

– Problem most commonly occurs with long strings of numeric data in CHAR or VARCHAR
columns as either Latin or Unicode.

ds186034
Sticky Note
A mathematical formulaeconverts to a 32bit value (binary) (decimal 0 to 4.2bill)1-to which amp goes to (20bit)butall 32 to keep in sequence within amp within tableHASH+Table idHashing Algorithm:----------------------which AMP the data goes to...problem: long string of data(we used to get some skewing - not good randomness)

 Data Distribution and Hashing Page 13-8

Hash Related Expressions
The Teradata Database includes extensions to Teradata SQL, known as hash functions,
which allow the user to extract statistical properties from the current index, evaluate those
properties for other columns to determine their suitability as a future primary index, or more
effectively design the primary index of rows. These statistics also help minimize hash
synonyms and enhance data distribution uniformity. Hash functions are valid within a
Teradata SQL statement where other functions (like SUBSTRING or INDEX) can occur.

HASHROW — this function returns the row hash value of a given sequence of expressions
in BYTE (4) data type. For example, the following statement returns the average number of
rows per row hash where C1 and C2 constitute an index (or potential index) of table TabX

 SELECT COUNT(*) (FLOAT) / COUNT (DISTINCT(HASHROW (C1,C2))
 FROM TabX;

HASHBUCKET — this function returns the bucket number that corresponds to a hashrow.
The bucket number is an integer type. The following example returns the number of rows in
each hash bucket where C1 and C2 are an index (or potential index) of table TabX:

 SELECT HASHBUCKET (HASHROW(C1,C2)), COUNT(*)
 FROM TabX
 GROUP BY 1 ORDER BY 1;

Query results can be treated as a histogram of table distribution among the hash buckets.

HASHAMP and HASHBACKAMP — this function returns the identification number of the
primary or fallback AMP corresponding to a hashbucket. With Teradata V2R6.2 (and
before), HASHAMP accepts only integer values between 0 and 65,535 as its argument. In
this example, HASHAMP is used to determine the number of primary rows on each AMP
where C1 and C2 are to be the primary index of table TabX:

 SELECT HASHAMP (HASHBUCKET (HASHROW (C1, C2))), COUNT(*)
 FROM TabX
 GROUP BY 1 ORDER BY 1;

Query results can be treated as a histogram of the table distribution among the AMPs.

Further information on these functions and their uses can be found in the Teradata RDBMS
SQL Reference.

Note the examples on the facing page. This example was captured on a 26 AMP system
using a hash map with 1,048,576 entries.

The row hash of the literal 'Teradata' is the same with 16-bit or 20-bit hash bucket numbers.
However, the target AMP numbers are different for a system with 65,536 hash buckets as
compared to the same system with 1,048,576 hash buckets.

Data Distribution and Hashing Page 13-9

Hash Related Expressions

Hash Value 1 Hash Value 2 Hash Value 3

F5C4BC93 F5C4BC93 01989D47

Hash Value Bucket Num AMP Num AMP Fallback Num

F5C4BC93 1006667 12 25

AMP Numbers based on 26-AMP system with 1,048,576 hash buckets.

• The SQL hash functions are:

HASHROW (column(s)) HASHBUCKET (hashrow)
HASHAMP (hashbucket) HASHBAKAMP (hashbucket)

• Example 1:

SELECT HASHROW ('Teradata') AS "Hash Value"
,HASHBUCKET (HASHROW ('Teradata')) AS "Bucket Num"
,HASHAMP (HASHBUCKET (HASHROW ('Teradata'))) AS "AMP Num"
,HASHBAKAMP (HASHBUCKET (HASHROW ('Teradata'))) AS "AMP Fallback Num" ;

• Example 2:

SELECT HASHROW ('Teradata') AS "Hash Value 1"
,HASHROW ('Teradata ') AS "Hash Value 2"
,HASHROW (' Teradata') AS "Hash Value 3" ;

Note: Literals are
converted to Unicode and
then hashed.

ds186034
Sticky Note
4 Functions

ds186034
Sticky Note
leading spaces blanks..hash is of diff value

 Data Distribution and Hashing Page 13-10

Hashing – Numeric Data Types
The hashing algorithm will hash the same numeric value in different data types to the same
value.

A DATE data type and an INTEGER data type hash to the same value. An example
follows:

 CREATE TABLE tableE
 (c1_int INTEGER
 ,c2_date DATE)
 UNIQUE PRIMARY INDEX (c1_int);

 INSERT INTO tableE (1010601, 1010601);
 INSERT INTO tableE (NULL, NULL);

 SELECT c1_int, HASHROW (c1_int), HASHROW (c2_date) from tableE;

 c1_int HASHROW (c1_int) HASHROW (c2_date)
 1010601 1213C458 1213C458
 ? 00000000 00000000

A second example follows:

 CREATE TABLE tableF
 (c1_int INTEGER
 ,c2_int INTEGER
 ,c3_char CHAR(4)
 ,c4_char CHAR(4))
 UNIQUE PRIMARY INDEX (c1_int, c2_int);

 INSERT INTO tableF (0, NULL,'0', NULL);

 SELECT HASHROW (c1_int) AS "Hash c1"
 ,HASHROW (c2_int) AS "Hash c2"
 ,HASHROW (c3_char) AS "Hash c3"
 ,HASHROW (c4_char) AS "Hash c4"
 FROM tableF;

 Hash c1 Hash c2 Hash c3 Hash c4
 00000000 00000000 2BB7F6D9 00000000

Note: The BTEQ commands .SET SIDETITLES and .SET FOLDLINE were used to display
the output on the bottom of the facing page.

Data Distribution and Hashing Page 13-11

Hashing – Numeric Data Types

Example:

CREATE TABLE tableA
(c1_bint BYTEINT
,c2_sint SMALLINT
,c3_int INTEGER
,c4_bigint BIGINT
,c5_dec DECIMAL(8,0)
,c6_dec2 DECIMAL(8,2)
,c7_float FLOAT
,c8_char CHAR(10))

UNIQUE PRIMARY INDEX
(c1_bint, c2_sint);

INSERT INTO tableA (5, 5, 5, 5, 5, 5, 5, '5');

SELECT HASHROW (c1_bint) AS "Hash Byteint"
,HASHROW (c2_sint) AS "Hash Smallint"
,HASHROW (c3_int) AS "Hash Integer"
,HASHROW (c4_bigint) AS "Hash BigInt"
,HASHROW (c5_dec) AS "Hash Dec80"
,HASHROW (c6_dec2) AS "Hash Dec82"
,HASHROW (c7_float) AS "Hash Float"
,HASHROW (c8_char) AS "Hash Char"

FROM tableA;

Hash Byteint 609D1715
Hash Smallint 609D1715
Hash Integer 609D1715
Hash BigInt 609D1715
Hash Dec80 609D1715
Hash Dec82 BD810459
Hash Float E40FE360
Hash Char 551DCFDCOutput from SELECT

• The Hashing Algorithm hashes the following numeric data types to the same hash
value:

– BYTEINT, SMALLINT, INTEGER, BIGINT, DECIMAL(x,0), DATE

ds186034
Sticky Note
they all have equivalent hash

ds186034
Sticky Note
last 3 have different hash(dont have unecessary data conversion

 Data Distribution and Hashing Page 13-12

Multi-Column Hashing
The hashing algorithm uses multiplication and addition as commutative operators for
handling a multi-column index.

If the data types hash the same, a multi-column index will hash the same for the same values
in different columns. Note the example on the facing page.

Note: The result would be the same if 3.0 and 5.0 were used as decimal values instead of 3
and 5.

 INSERT INTO tableB (5, 3.0);
 INSERT INTO tableB (3, 5.0);

 SELECT c1_int AS c1
 ,c2_dec AS c2
 ,HASHROW (c1_int) AS “Hash c1”
 ,HASHROW (c2_dec) AS “Hash c2”
 ,HASHROW (c1_int, c2_dec) as “Hash c1c2”
 FROM tableB;

 c1 c2 Hash c1 Hash c2 Hash c1c2
 5 3 609D1715 6D27DAA6 6C964A82
 3 5 6D27DAA6 609D1715 6C964A82

Data Distribution and Hashing Page 13-13

Multi-Column Hashing

• The Hashing Algorithm uses multiplication and addition to create the hash value for a multi-column
index.

• Assume PI = (A, B)

[Hash(A) * Hash(B)] + [Hash(A) + Hash(B)] = [Hash(B) * Hash(A)] + [Hash(B) + Hash(A)]

• Example: A PI of (3, 5) will hash the same as a PI of (5, 3) if both c1 & c2 are equivalent data types.

CREATE TABLE tableB
(c1_int INTEGER
,c2_dec DECIMAL(8,0))

UNIQUE PRIMARY INDEX (c1_int, c2_dec);

INSERT INTO tableB (5, 3);
INSERT INTO tableB (3, 5);

SELECT c1_int AS c1
,c2_dec AS c2
,HASHROW (c1_int) AS "Hash c1"
,HASHROW (c2_dec) AS "Hash c2"
,HASHROW (c1_int, c2_dec) as "Hash c1c2"

FROM tableB;

*** Query completed. 2 rows found. 5 columns returned.

c1 c2 Hash c1 Hash c2 Hash c1c2

5 3 609D1715 6D27DAA6 6C964A82
3 5 6D27DAA6 609D1715 6C964A82

These two rows will
hash the same and
will produce a hash
synonym.

ds186034
Sticky Note
multi column indexc1	c2	c3----	----	----50	10	4310	50	43they end up hashing the same - same hash value - same AMP!more skewing! more synonyms

 Data Distribution and Hashing Page 13-14

Multi-Column Hashing (cont.)
As mentioned before, the hashing algorithm uses multiplication and addition as
commutative operators for handling a multi-column index.

If the data types hash differently, then a multi-column index will hash differently for the
same values in different columns. Note the example on the facing page.

Data Distribution and Hashing Page 13-15

Multi-Column Hashing (cont.)

• A PI of (3, 5) will hash differently than a PI of (5, 3) if column1 and column2 are data
types that do not hash the same.

• Example:

CREATE TABLE tableC
(c1_int INTEGER
,c2_dec DECIMAL(8,2))

UNIQUE PRIMARY INDEX (c1_int, c2_dec);

INSERT INTO tableC (5, 3);
INSERT INTO tableC (3, 5);

SELECT c1_int AS c1
,c2_dec AS c2
,HASHROW (c1_int) AS "Hash c1"
,HASHROW (c2_dec) AS "Hash c2"
,HASHROW (c1_int, c2_dec) as "Hash c1c2"

FROM tableC;

*** Query completed. 2 rows found. 5 columns returned.

c1 c2 Hash c1 Hash c2 Hash c1c2

5 3.00 609D1715 A4E56902 0E452DAE
3 5.00 6D27DAA6 BD810459 336B8C96

These two rows will
not hash the same
and probably will not
produce a hash
synonym.

ds186034
Sticky Note
change data type

 Data Distribution and Hashing Page 13-16

Additional Hash Examples
A numeric value of 0 hashes the same as a NULL. A character data type with a value of all
spaces also hashes the same as a NULL. However, a character value of ‘0’ hashes to a value
different than the hash of a NULL.

Upper and lower case characters hash the same.

The following example shows that different numeric types with a value of 0 all hash to the
same hash value.

CREATE TABLE tableA
 (c1_bint BYTEINT,
 c2_sint SMALLINT,
 c3_int INTEGER,
 c4_dec DECIMAL(8,0),
 c5_dec2 DECIMAL(8,2),
 c6_float FLOAT,
 c7_char CHAR(10))
UNIQUE PRIMARY INDEX (c1_bint, c2_sint);

.SET FOLDLINE
.SET SIDETITLES

INSERT INTO tableA (0,0,0,0,0,0,'0');

SELECT
 HASHROW (c1_bint) AS "Hash Byteint"
 ,HASHROW (c2_sint) AS "Hash Smallint"
 ,HASHROW (c3_int) AS "Hash Integer"
 ,HASHROW (c4_dec) AS "Hash Dec0"
 ,HASHROW (c5_dec2) AS "Hash Dec2"
 ,HASHROW (c6_float) AS "Hash Float"
 ,HASHROW (c7_char) AS "Hash Char"
FROM tableA;

 Hash Byteint 00000000
 Hash Smallint 00000000
 Hash Integer 00000000
 Hash Dec0 00000000
 Hash Dec2 00000000
 Hash Float 00000000
 Hash Char 2BB7F6D9

Note: An INTEGER value of 500 and a DECIMAL (8, 2) value of 5.00 will both have the
same hash value.

Data Distribution and Hashing Page 13-17

Additional Hash Examples

• A NULL value for numeric data types is treated as 0.

• Upper and lower case characters hash the same.

CREATE TABLE tableD
(c1_int INTEGER
,c2_int INTEGER
,c3_char CHAR(4)
,c4_char CHAR(4))

UNIQUE PRIMARY INDEX (c1_int, c2_int);

INSERT INTO tableD (0, NULL, 'EDUC', 'Educ');

SELECT HASHROW (c1_int) AS "Hash c1"
,HASHROW (c2_int) AS "Hash c2"
,HASHROW (c3_char) AS "Hash c3"
,HASHROW (c4_char) AS "Hash c4"

FROM tableD;

Hash c1 Hash c2 Hash c3 Hash c4

00000000 00000000 6ED679D5 6ED679D5

Hash of 0 Hash of NULL Hash of 'EDUC' Hash of 'Educ'

Example:

Result:

ds186034
Sticky Note
to binary 0it hashes to 0

ds186034
Sticky Note
upper case and lower case hashes to the same hash0 and null both will go to 0

 Data Distribution and Hashing Page 13-18

Using Hash Functions to View Distribution
The Hash Functions can be used to view the distribution of rows for a chosen Primary Index.

Notes:

 HashRow – returns the row hash value for a given value(s)
 HashBucket – the grouping for a specific hash value
 HashAMP – the AMP that is associated with the hash bucket
 HashBakAMP – the fallback AMP that is associated with the hash bucket

Identifying the Hash Buckets
If you suspect data skewing due to hash synonyms or NUPI duplicates, you can use the
HashBucket function to identify the number of rows in each hash bucket. The HashBucket
function requires the HashRow of the columns that make up the Primary Index or the
columns being considered for a Primary Index.

Identifying the Primary AMPs
The HASHAMP function can be used to determine data skewing and which AMP(s) have
the most rows.

The Customer table on the facing page consists of 7017 rows.

Data Distribution and Hashing Page 13-19

Using Hash Functions to View Distribution

Hash Functions can be used to calculate the impact of NUPI duplicates
and synonyms for a PI.

SELECT HASHROW (Last_Name, First_Name)
AS "Hash Value"
,COUNT(*)

FROM customer
GROUP BY 1
ORDER BY 2 DESC;

SELECT HASHAMP (HASHBUCKET
(HASHROW (Last_Name, First_Name)))
AS "AMP #"
,COUNT(*)

FROM customer
GROUP BY 1
ORDER BY 2 DESC;

Hash Value Count(*)

2D7975A8 12
14840BD7 7

(Output cut due to length)

E7A4D910 1
AAD4DC80 1

The largest
number of NUPI
duplicates or
synonyms is 12.

AMP # Count(*)

7 929
6 916
4 899
5 891
2 864
3 864
1 833
0 821 AMP #7 has the

largest number of
rows.

ds186034
Highlight

ds186034
Sticky Note
we can use these functions if we want to ensure data spread

 Data Distribution and Hashing Page 13-20

Primary Index Hash Mapping
The diagram on the facing page gives you an overview of Primary Index Hash Mapping,
the process by which all data is distributed in the Teradata DBS.

The Primary Index value is fed into the Hashing Algorithm, which produces the Row Hash.
The row goes onto the Message Passing Layer. The Hash Maps in combination with the
Row Hash determines which AMP gets the row. The Hash Maps are part of the Message
Passing Layer interface.

Starting with Teradata Database 12.0, Teradata supports either 65,536 or 1,048,576 hash
buckets for a system. The larger number of buckets primarily benefits systems with
thousands of AMPs, but there is no disadvantage to using the larger number of buckets on
smaller systems.

The hash map is an array indexed by hash bucket number. Each entry of the array contains
the number of the AMP that processes the rows in the corresponding hash bucket.

The RowHash is a 32-bit result obtained by applying the hash function to the primary index
of the row. On systems with:

 65,536 hash buckets, the system uses 16 bits of the 32-bit RowHash to index into
the hash map.

 1,048,576 hash buckets, the system uses 20 bits of the 32-bit RowHash as the

index.

Data Distribution and Hashing Page 13-21

Primary Index Hash Mapping

Primary Index Value for a Row
Hashing

Algorithm

Hash Bucket Number
(20 bits)*

Remaining bits
(12 bits)

Row Hash (32 bits)

Hash Map – 1,048,576* entries
(memory resident)

Message Passing Layer (PDE and BYNET)

AMP
0

AMP
1

AMP
2

AMP
3

AMP
4

AMP
5

AMP
6

AMP
7

AMP
8

AMP
9

* Most newer systems have hash
bucket numbers that are
represented in the first 20 bits
of the row hash.

• With a 20-bit hash bucket
number, the hash map will have
1,048,576 hash buckets.

• The hash bucket number is
effectively used to index into the
hash map.

• Older systems (before TD 12.0)
use the first 16 bits of the row
hash for the hash bucket number.
These systems have hash maps
with 65,536 hash buckets.

• This course will assume 20 bits
for the hash bucket number
unless otherwise noted.

ds186034
Sticky Note
the 20 bits=offset into a hash map(define the amp we wanna place this row)

ds186034
Sticky Note
65,536/2000Amps=32 times in the hash mapother wld appear 33 hash mapsdistribution of data across system1,048,576 hash buckets = a larger no of hb will give me a ___variance (bigger or smaller?)

 Data Distribution and Hashing Page 13-22

Hash Maps
As you have seen, Hash Maps are the mechanisms that determine which AMP gets a row.
They are duplicated on every TPA node in the system. There are 4 Hash Maps:

 Current Configuration Primary (designates where rows are stored)

 Current Configuration Fallback (designates where copies of rows are stored)

 Reconfiguration Primary (designates where rows move during a system

reconfiguration)

 Reconfiguration Fallback (designates where copies of rows move during a

reconfiguration)

Hash Maps are also used whenever there is a PI or USI operation.

Hash maps are arrays of Hash Map entries. There are 65,536 or 1,048,576 Hash Map
entries. Each of these entries points to a single AMP in the system. The Row Hash
generated by the Hashing Algorithm contains information that designates a particular entry
on a particular Hash Map. This entry tells the system which AMP should be interrupted.

 Teradata Version 1 used a Hash Map with only 3643 hash buckets.

 Teradata Version 2 (prior to Teradata 12.0) used hash maps with 65,536 hash

buckets. Starting with Teradata 12.0, the number of hash buckets in a hash map
can be either 65,536 or 1,048,576. One of the important impacts of this change was
that this increase provides for a more even distribution of data with large numbers
of AMPs.

For systems upgraded to Teradata Database 12.0, the default number of hash buckets
remains unchanged at 65,536 buckets. For new systems or following a sysinit, the default is
1,048,676 buckets.

Note: The Hash Maps are stored in GDO (Globally Distributed Object) files on each SMP

and are loaded into the PDE memory space when PDE software is started – usually as
part of the UNIX MP-RAS, Windows 2003, or Linux startup process.

Data Distribution and Hashing Page 13-23

Hash Maps

Hash Maps are the mechanism for determining which AMP gets a row.

• There are four (4) Hash Maps on every TPA node.

• By default, the two Current Hash Maps are loaded into PDE memory space of each TPA node
when PDE software boots.

Hash Maps have either 65,536 or 1,048,576 entries. Each entry is 2 bytes in size.

• Starting with Teradata 12.0, new systems (or for systems that have a sysinit), the default number
of hash buckets is 1,048,576.

• The increased number of hash buckets provides for a more even distribution of data with large
numbers of AMPs.

• For systems upgraded to Teradata Database 12.0, the default number of hash buckets remains
unchanged at 65,536 buckets.

Reconfiguration Fallback

Current Configuration Primary Reconfiguration Primary

Message Passing Layer

Current Configuration Fallback

 Data Distribution and Hashing Page 13-24

Primary Hash Map
The diagram on the facing page is a graphical representation of a Primary Hash Map. (It
serves to illustrate the concept; they really don’t look like this.) The Hash Map utilized by
the system is the Current Configuration Primary Hash Map. The Fallback Hash Map IS
NOT an exact copy of the Primary Hash Map. The Primary Hash Map identifies which
AMP the first (Primary) copy of a row belongs to. The Fallback Hash Map is only used for
Fallback protected tables and identifies a different AMP in the same "cluster" for the second
(Fallback) row copy.

Note: On most systems (i.e., systems since the 5450), clusters typically consist of 2
AMPs.

That portion of the Row Hash that points to a particular Hash Map entry is called the Hash
Bucket Number (HBN). The hash bucket number is the first 16 or 20 bits of the Row Hash
depending on the size of the hash maps. The hash bucket number points to a single entry in
a Hash Map. As the diagram shows, the system looks at the particular Hash Map entry
specified by the hash bucket number to determine which AMP the row belongs to.

The Message Passing Layer (or Communications Layer) uses only the hash bucket number
portion of the Row Hash to determine which AMP gets the row when inserting a new row
into a table. The AMP uses the entire 32 bit Row Hash to determine logical disk storage
location of the row.

Teradata builds Hash Maps in a consistent fashion. The Primary Hash Map of systems with
the same number of AMP vprocs is identical assuming the same number of buckets in the
hash map (65,536 or 1,048,576 hash buckets). Fallback Hash Maps may differ due to
clustering differences at each site.

The hash bucket number (prior to Teradata 12.0) was commonly referred to as the
Destination Selection Word (DSW).

Data Distribution and Hashing Page 13-25

Primary Hash Map

Hash Bucket Number
(20 or 16 bits)

Remaining bits

Row Hash (32 bits)

• Assume the Hash Bucket Number is the first 20 bits of the Row Hash.

• The Hash Bucket Number points to one entry within the map.

• The referenced Hash Map entry identifies the AMP for the row hash.

Note:
This partial hash map
(1,048,576 buckets) is
associated with a 14
AMP System.

PRIMARY HASH MAP – 14 AMP System

13 12 13 12 13 11 12 10 13 10 11 12 11 12 13 09
13 07 08 10 08 08 11 11 09 09 10 12 09 09 10 13
10 10 13 05 11 11 12 12 11 11 06 12 13 04 12 12
07 06 13 03 06 08 13 02 13 13 01 00 07 08 05 07
04 04 05 07 09 06 09 07 03 02 03 08 01 00 02 06
01 00 05 04 08 10 10 05 08 08 06 09 07 06 05 11

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000
0001
0002
0003
0004
0005

ds186034
Sticky Note
buckets has AMP nos (highest is 13)14 amp system

 Data Distribution and Hashing Page 13-26

Hash Maps for Different Systems
The diagrams on the facing page show a graphical representation of a Primary Hash Map for
an 8 AMP system and a Primary Hash Map for a 16 AMP system. These examples assume
hash maps with 1,048,576 entries.

A data value which hashes to “00023 1AB” will be directed to different AMPs on different
systems. For example, this hash value will be associated with AMP 5 on an 8 AMP system
and AMP 14 on a 16 AMP system.

Data Distribution and Hashing Page 13-27

Hash Maps for Different Systems

Hash Bucket Number Remaining bits

Row Hash (32 bits)

Assume row hash of
00023 1AB

8 AMP system – AMP 05
16 AMP system – AMP 14

PRIMARY HASH MAP – 8 AMP System

07 06 07 06 07 04 05 06 05 05 06 06 07 07 03 04
07 07 02 04 01 00 05 04 03 02 03 05 01 00 02 06
01 00 05 05 03 02 04 03 01 00 06 02 04 04 01 00
07 06 03 03 06 06 02 02 01 00 01 00 07 07 05 07
04 04 05 07 05 06 07 07 03 02 03 04 01 00 02 06
01 00 05 04 03 02 06 05 01 00 06 05 07 06 05 07

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000
0001
0002
0003
0004
0005

PRIMARY HASH MAP – 16 AMP System

15 14 15 15 13 14 12 14 13 15 15 12 11 12 13 14
13 14 14 10 15 08 11 11 15 09 10 12 09 09 10 13
10 10 13 14 11 11 12 12 11 11 14 12 13 14 12 12
15 15 13 14 06 08 13 14 13 13 14 14 07 08 15 07
15 04 05 07 09 06 09 07 15 15 03 08 15 15 02 06
01 00 05 04 08 10 10 05 08 08 06 09 07 06 05 11

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000
0001
0002
0003
0004
0005Portions of actual hash maps

with 1,048,576 hash buckets.

ds186034
Sticky Note
its 32bit00023(8 amp system it will go to 05 no ampbutin a 16 amp system, it will go to 14 no amp)

 Data Distribution and Hashing Page 13-28

Fallback Hash Map
The diagram on the facing page is a graphical representation of a Primary Hash Map and a
Fallback Hash Map.

The Fallback Hash Map is only used for Fallback protected tables and identifies a different
AMP in the same “cluster” for the second (Fallback) row copy.

Note: These are the actual partial primary and fallback hash maps for a 14 AMP system
with 1,048,576 hash buckets.

Data Distribution and Hashing Page 13-29

Fallback Hash Map

Hash Bucket Number Remaining bits

Row Hash (32 bits)

Notes:
14 AMP System with 2 AMP
clusters; hash maps with
1,048,576 buckets.

Assume row hash of
00023 1AB

Primary AMP – 05
Fallback AMP – 12

PRIMARY HASH MAP – 14 AMP System

13 12 13 12 13 11 12 10 13 10 11 12 11 12 13 09
13 07 08 10 08 08 11 11 09 09 10 12 09 09 10 13
10 10 13 05 11 11 12 12 11 11 06 12 13 04 12 12
07 06 13 03 06 08 13 02 13 13 01 00 07 08 05 07
04 04 05 07 09 06 09 07 03 02 03 08 01 00 02 06
01 00 05 04 08 10 10 05 08 08 06 09 07 06 05 11

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000
0001
0002
0003
0004
0005

FALLBACK HASH MAP – 14 AMP System

06 05 06 05 06 04 05 03 06 03 04 05 04 05 06 02
06 00 01 03 01 01 04 04 02 02 03 05 02 02 03 06
03 03 06 12 04 04 05 05 04 04 13 05 06 11 05 05
00 13 06 10 13 01 06 09 06 06 08 07 00 01 12 00
11 11 12 00 02 13 02 00 10 09 10 01 08 07 09 13
08 07 12 11 01 03 03 12 01 01 13 02 00 13 12 04

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000
0001
0002
0003
0004
0005

ds186034
Sticky Note
5 and 12cause its on the same cluster

ds186034
Sticky Note
AMPs are all over the placeall 14 AMP system, the hash map looks the same

 Data Distribution and Hashing Page 13-30

Reconfiguration
Reconfiguration (Reconfig) is the process for changing the number of AMPs in a system
and is controlled by the Reconfiguration Hash Maps. The system constructs
Reconfiguration Hash Maps by reassigning Hash Map Entries to reflect a new configuration
of AMPs. This is done in a way that minimizes the number of rows (and Hash Map Entries)
reassigned to a new AMP. After rows are moved, the Reconfiguration Primary Hash Map
becomes the Current Configuration Primary Hash Map, and the Reconfiguration Fallback
Hash Map becomes the Current Fallback Hash Map.

The diagram on the right illustrates a 200 AMP to 300 AMP Reconfig for a system. The
1,048,576 Hash Map entries are distributed evenly across the 200 AMPs in the initial
configuration (top illustration), with approximately 5243 entries referencing each AMP.
Thus, there are 5243 Hash Map Entries pointing to AMP 1.

In a 300 AMP system, each AMP will have approximately 3496 referencing the AMP. It is
necessary to change 1748 (5243 - 3496) of those and divide them between the new AMPs
(AMP 200 through 299). The system does the same thing for the Hash Map Entries that
currently point to the other AMPs. This constitutes the Reconfiguration Primary Hash Map.
A similar process is done for the Reconfiguration Fallback Hash Map.

Once the new Hash Maps are ready, the system looks at every row on each AMP and checks
to see if the Hash Bucket Number points to one of the Hash Map Entries which was
changed. If so, then the row is moved to its new destination AMP.

The formula used to determine the percentage of rows migrating to new AMPs during a
Reconfig is shown at the bottom of the right-hand page. Divide the Number of New AMPs
by the Sum of the Old and New AMPs (the number of AMPs after the Reconfig). For
example, the above 200 to 300 AMP Reconfig causes 33.3% of the rows to migrate.

Data Distribution and Hashing Page 13-31

Reconfiguration

• The system creates new Hash Maps to accommodate the new configuration.

• Old and new maps are compared – each AMP reads its rows, and moves only those that
hash to a new AMP.

• It is not necessary to offload and reload data due to a reconfiguration.

• If the hash map size is changed (65,536 to 1,048,576), more data will be moved as part
of a reconfiguration.

1,048,576 Hash Map Entries

Number of New AMPs 100 1

SUM of Old + New AMPs 300 3
= = 33.3%=

Percentage of
Rows Moved =
to new AMPs

If a 12.0 system (with 1,048,576
Hash buckets) has 200 AMPs,
then each of the 200 AMPs will
have approx. 5243 entries in the
hash map.

If upgrading to 300 AMPs, then
each of the 300 AMPs will have a
similar number of entries
(approx. 3496) in the hash map.

Existing
AMPs

New
AMPs

Empty Empty5243

0

…..5243

1

5243

2

5242

199 200

…..

299

34953496

0

3496

1

3496

2

……………………………………..

299

ds186034
Sticky Note
I have a 1 amp systemHASH MAP would have = 0 (all zeroes)00000000000000001010101010101050% of data has to be moved(going to a 2amp system)if ur going to 3amp system:every 3rd zero to a 2every 3rd 1 changes to 2so only moving 1/3rd of dataAND now if i am adding a 3rd amp1/4th = 25%

 Data Distribution and Hashing Page 13-32

Row Retrieval via PI Value – Overview
The facing page illustrates the step-by-step process involved in Primary Index retrieval. The
SELECT statement (shown on facing page) retrieves the row or rows where the PI is equal
to a particular column value (or column values in the case of a multi-column PI).

The PE parser always puts out a three-part message composed of the Table ID, Row Hash
and Primary Index value. The 48 bit Table ID is looked up in the Data Dictionary, the 32 bit
Row Hash value is generated by the Hashing Algorithm and the Primary Index value comes
from the SQL request.

The Message Passing Layer (a.k.a., Communications Layer) Interface uses the Hash Bucket
Number (first 16 or 20 bits of the Row Hash) to determine which AMP to interrupt and pass
on the message.

The AMP uses the Table ID and Row Hash to identify and locate the proper data block, then
uses the Row Hash and PI value to locate the specific row(s). The PI value is required to
distinguish between Hash Synonyms.

Data Distribution and Hashing Page 13-33

Row Retrieval via PI Value – Overview

Parsing Engine
SQL Request

Parser
Hashing Algorithm

48 Bit TABLE ID 32 Bit Row Hash Index Value

Hash Bucket
Number

Logical Block Identifier

Vdisk

Logical Row Identifier

Data
Block

With a PI row retrieval, only
the AMP (whose number
appears in the referenced
Hash Map) is accessed by
the system.

Message Passing Layer

AMP File System

SELECT … FROM tablename
WHERE primaryindex = values(s);

ds186034
Sticky Note
gets from Data dictionary

ds186034
Sticky Note
from hashing algorithm

ds186034
Sticky Note
from the request

ds186034
Sticky Note
builds by PE

ds186034
Sticky Note
20bits

ds186034
Sticky Note
AMP no..

 Data Distribution and Hashing Page 13-34

Names and Object IDs
DBC.Next is a Data Dictionary table that consists of a single row with 9 columns as shown
below.

One of the counters is used to assign a globally unique numeric ID to every Database, User,
Role, and Profile. A different counter is used to assign a globally unique numeric ID to
every Table, View, Macro, Trigger, Stored Procedure, User-Defined Function, Join Index,
and Hash Index.

DBC.Next always contains the next value to be assigned to any of these. Think of these
columns as counters for ID values.

You may be interested in noting that DBC.Next only contains a single, short row but it
requires a Table Header on every AMP, as does any table.

Columns and Indexes are also assigned numeric IDs, which are unique within their
respective tables. However, column and index IDs are not assigned from DBC.Next.

DBC.Next columns Values Data Type

RowNum 1 CHAR(1)
DatabaseID numeric BYTE(4)
TableID numeric BYTE(4)
ProcsRowLock numeric BYTE(4)
EventNum numeric BYTE(4)
LogonSequenceNo numeric BYTE(4)
TempTableID numeric BYTE(4)
StatsQueryID number BYTE(4)
ReconfigID number INTEGER

Data Distribution and Hashing Page 13-35

Names and Object IDs

DBC.Next (1 row)

NEXT
DATABASE ID 6 Other Counters

NEXT
TVM ID

• Each Database/User/Profile/Role – is assigned a globally unique numeric ID.

• Each Table, View, Macro, Trigger, Stored Procedure, User-defined Function,
Join Index, and Hash Index – is assigned a globally unique numeric ID.

• Each Column – is assigned a numeric ID unique within its Table ID.

• Each Index – is assigned a numeric ID unique within its Table ID.

• The DD keeps track of all SQL names and their numeric IDs.

• The PE’s RESOLVER uses the DD to verify names and convert them to IDs.

• The AMPs use the numeric IDs supplied by the RESOLVER.

ds186034
Sticky Note
table = NExt

 Data Distribution and Hashing Page 13-36

Table ID
The Table ID is the first part of the three-part message. It is a 48-bit number supplied by
the parser. There are two major components of the Table ID:

 The first component of the Table ID is the Unique Value. Every table, view and
macro is assigned a 32-bit Unique Value, which is assigned by the system table
called DBC.Next. In addition to specifying a particular table, this value also
indicates whether the table is a normal data table, Permanent Journal table or Spool
file table.

 The second component of the Table ID is known as the Subtable ID. Teradata

stores various types of rows of a table in separate blocks. For example, Table
Header rows (described later) are stored in different blocks than primary data rows,
which are stored in different blocks than Fallback data rows, and so on (more
examples are shown on the facing page). Each separate set of blocks is known as a
subtable. The Subtable ID is a 16-bit value that tells the file system which type of
blocks to search for.

The facing page lists subtable IDs in decimal value for 2-AMP clusters. The

SHOWBLOCKS utility will display the block allocations by subtable and uses
decimal values to represent each subtable. If a Reference Index subtable was
created, it would have subtable IDs of 1536 and 2560.

For convenience, Table ID examples throughout this course only refer to the Unique Value
and omit the Subtable ID.

The Table ID, together with the Row ID, gives Teradata a way to uniquely identify every
single row in the entire system.

Spool File Table IDs
Spool files are temporary work tables which are created and dropped as queries are
executed. When a query is complete, all of the spool files that it used will be dropped
automatically.

Like all tables, a spool file (essentially a temporary work table) requires a Table ID (or
tableid). There is a range of tableids exclusively reserved for spool files (C000 0001
through FFFF FFFF) and the system cycles through them. Eventually, the system will cycle
through all the tableids for spool files and reassign spool tableids starting at C000 0001.

Data Distribution and Hashing Page 13-37

Table ID

The Table ID is a Unique Value for Tables, Views, Macros, Triggers, Stored Procedures,
Join Indexes, etc. that comes from DBC.Next dictionary table.

Unique Value also defines the type of table:

• Normal data table
• Permanent journal
• Global Temporary
• Spool file

Sub-table ID identifies the part of a table the system is looking at.

Sub-table type Primary ID Fallback ID (shown in decimal format)
Table Header 0
Data table 1024 2048
1st Secondary index 1028 2052
2nd Secondary index 1032 2056
1st Reference index 1536 2560
1st BLOB or CLOB 1792 2816
2nd BLOB or CLOB 1794 2818
Archive Online Subtable 18440 n/a

Table ID plus Row ID makes every row in the system unique.

Examples shown in this manual use the Unique Value to represent the entire Table ID.

UNIQUE VALUE SUB-TABLE ID+
32 Bits 16 Bits

ds186034
Sticky Note
748102 (system assigned it)but in reality decimal (or binary)...TABLE HEADER:748102	0000(table cld be 1k, 2k...couple of ks in size)base table 748102base table is always 1024andif its a fallback protected = 2048internally its 3 separate tables

ds186034
Sticky Note
TABLE ID+ROW IDWE CAN UNIQUELY DEFINE A ROW

ds186034
Sticky Note
For a non-parition table:================TID = 32 bitsub-TID=16bit (48bits)GAP= (0 to 64bits = partition number)Row Hash = 32 bitsuniqueness id = 32 bits

 Data Distribution and Hashing Page 13-38

Row ID
The Row Hash is not sufficient to identify a specific row in a table. Since it is based on a
Primary Index value, multiple rows can have the same Row Hash. This is due either to Hash
Synonyms or NUPI Duplicates.

The Row ID makes every row within a table uniquely identifiable. For a non-partitioned
table, the Row ID consists of the Row Hash plus a Uniqueness Value. The Uniqueness
Value is a 32-bit numeric value, designed to identify specific rows within a single Row Hash
value. When there are multiple rows with the same Row Hash within a table, the first row is
assigned a Uniqueness Value of 1. Additional rows with the same Row Hash are assigned
ascending Uniqueness Values.

For Primary Index retrievals, only the Row Hash and Primary Index values are needed to
find the qualifying row(s). The Uniqueness Value is needed for Secondary Index support.
Since a Row ID is a unique identifier of a row within a table, Teradata uses Row IDs as
Secondary Index pointers.

Although Row IDs do identify every row in a table uniquely, they do not guarantee that the
data itself is unique. In order to avoid the problem of duplicate rows (permitted in Multiset
tables), the complete set of data values for a row (in a Set table) must also be unique.

Summary

 For a non-partitioned table (NPPI), the Row ID consists of the Row Hash +
Uniqueness Value for a total of 8 bytes in length.

 For a partitioned table (PPI), the Row ID actually consists of the Partition Number

+ Row Hash + Uniqueness Value for a total of 10 or 16 bytes in length.

Data Distribution and Hashing Page 13-39

Row ID

On INSERT, Teradata stores both the data values and the Row ID.

ROW ID = ROW HASH and UNIQUENESS VALUE

Row Hash
• Row Hash is based on Primary Index value.
• Multiple rows in a table could have the same Row Hash.
• NUPI duplicates and hash synonyms have the same Row Hash.

Uniqueness Value
• The AMP creates a numeric 32-bit Uniqueness Value.
• The first row for a Row Hash has a Uniqueness Value of 1.
• Additional rows have ascending Uniqueness Values.
• Row IDs determine sort sequence within a Data Block.
• Row IDs support Secondary Index performance.
• The Row ID makes every row within a table uniquely identifiable.

Duplicate Rows

• Row ID uniqueness does not imply data uniqueness.

Note: The Row ID for a non-partitioned table is effectively 8 bytes long.

ds186034
Sticky Note
assigned by AMPPE does not know it

 Data Distribution and Hashing Page 13-40

AMP File System – Locating a Row via PI
The steps on the right-hand page outline the process that Teradata uses to locate a row. We
know that rows are distributed according to their Row Hash. More specifically, the Hash
Bucket Number points to a single entry in a Hash Map which designates a particular AMP.

 Once the correct AMP has been found, the Master Index for that AMP is used to
identify which Cylinder Index should be referenced.

 The Cylinder Index then identifies the correct Data Block.

 A search of the Data Block locates the row or rows specified by the original three-

part message.

 The system performs either linear or indexed searches.

The diagram at the bottom of the facing page illustrates these steps in a graphical fashion.

Data Distribution and Hashing Page 13-41

AMP File System – Locating a Row via PI

• The AMP accesses its Master Index (always memory-resident).

– An entry in the Master Index identifies a Cylinder # and the AMP accesses the Cylinder Index
(frequently memory-resident).

• An entry in the Cylinder Index identifies the Data Block.

– The Data Block is the physical I/O unit and may or may not be memory resident.

– A search of the Data Block locates the row(s).

Table ID Row Hash PI Value

Master Index

Cylinder Index
(accessed in FSG Cache)

Data Block
(accessed in FSG Cache)

The PE sends request to an AMP
via the Message Passing Layer
(PDE & BYNET).

AMP Memory

CI
Vdisk

Row

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

 Data Distribution and Hashing Page 13-42

Teradata File System Overview
The Teradata File System software has these characteristics:

 part of AMP address space
 unaware of other AMP or File System instances
 AMP Interface to disk services
 uses PDE FSG services

The Master Index contains an entry (CID) for each allocated cylinder. (CID – Cylinder
Index Descriptor)

On the facing page, SRD–A represents an SRD (Subtable Reference Descriptor) for table A.
DBD–A1 and DBD–A2 represent data blocks for table A. (DBD – Data Block Descriptor)

On the facing page, SRD–B represents an SRD for table B. DBD–B1, etc. represent data
blocks for table B.

There are actually two cylinder indexes allocated for each cylinder. Each cylinder index is
12 KB in size. Therefore, there is 24 KB (48 sectors) allocated for cylinder indexes at the
beginning of each cylinder.

Prior to Teradata 13.10 and Large Cylinder Support, cylinders are 3872 sectors.

Miscellaneous notes:

 Master index entries are 72 bytes long.

 A cylinder index is 12 KB in size for 2 MB cylinders and are 64 KB in size for 12

MB cylinders

 Data rows for PPI tables require an additional 2 bytes to identify the partition
number and the spare byte is set to x'80' to identify the row as a PPI row.
Secondary index subtable rows also have the Part # + Row Hash + Uniqueness ID)
to identify data rows.

Data Distribution and Hashing Page 13-43

Teradata File System Overview

Cylinder
3872 sectors

Data Block B2

SRD - A SRD - BDBD - A1 DBD - A2 DBD - B1 DBD - B2

Data Block B1 Data Block A1

Data Block A2

Cylinder Index

Data Block B4

SRD - B DBD - B3 DBD - B4

Data Block B3

Cylinder Index

DBD - B5

Data Block B5

Master Index CID CID CIDCID . . . AMP Memory

VDisk

CID – Cylinder Index Descriptor
SRD – Subtable Reference Descriptor
DBD – Data Block Descriptor

 Data Distribution and Hashing Page 13-44

Master Index Format
The first cylinder in each Vdisk contains a number of control structures used by the AMP’s
File System software. Segment 0 (512 bytes) contains the Vdisk status and a number of
structure pointers for the AMP. Following Segment 0 is the FIB (File System Information
Block). The FIB contains global file system information – a key component is a status array
that shows the status of cylinders (used, free, bad, etc.), and the sorted list of CIDs that are
the descriptors for the cylinders currently in use. The FIB effectively contains the list of free
or available cylinders. Unlike the Master Index (MI), the FIB is written to disk when
cylinders are allocated, and it is read from disk when Teradata boots or when the MI needs
to be rebuilt in memory. If necessary, software will allocate additional cylinders for these
structures.

The Master Index is a memory resident structure that contains an entry for every allocated
data cylinder on that AMP. Entries in the Master Index are sorted by the lowest Table ID
and Row ID that can be found on the associated cylinder. The Master Index is used to
identify which cylinder a specific row can be found in.

The key elements of the Master Index are:

 Master Index Header - 32 bytes (not shown)

 Cylinder Index Descriptors (CID) – one per allocated cylinder – 72 bytes in length

 Cylinder Index Descriptor Reference Array (not shown) – set of 4 byte pointers to

the CIDs; these entries are sorted in descending order.

 Note: This array is similar to the row reference array at the end of a data block.

Cylinders that contain no data are not listed in the Master Index. They appear in the Free
Cylinder List (which is part of the FIB – File System Information Block) for the associated
Vdisk. Entries in the Free Cylinder List are sorted by Cylinder Number.

Each Master Index entry (or CID) contains the following data:

 Lowest Table ID in the cylinder
 Lowest Part # / Row ID value in the cylinder (associated with the lowest Table ID)
 Highest Table ID in the cylinder
 Highest Part # / Row hash (not Row ID) value in the cylinder (associated with the

highest Table ID)
 Drive (Pdisk) and Cylinder Number
 Free sectors
 Flags

The maximum size of the Master Index is based on number of cylinders available to the
AMP.

Data Distribution and Hashing Page 13-45

Master Index Format

Characteristics

• Memory resident structure specific
to each AMP.

• Contains Cylinder Index Descriptors
(CID) – one for each allocated
Cylinder (72 bytes long).

• Each CID identifies the lowest Table
ID / Part# / Row ID and the highest
Table ID / Part# / Row Hash for a
cylinder.

• Range of Table ID / Part# / Row IDs
does not overlap with any other
cylinder.

• Sorted list of CIDs.

Notes:

• The Master index and Cylinder Index entries include the partition #’s to support partition
elimination for Partitioned Primary Index (PPI) tables.

• For non-partitioned tables, the partition number is 0 and the Master and Cylinder Index entries (for
NPPI tables) will use 0 as the partition number in the entry.

CID 1

.

.

CID 2

CID 3

CID n

Master Index
CI

CI

CI

CI

Cylinder

Cylinder

Cylinder

Cylinder

Vdisk

Cylinder 0
Seg. 0

FIB (contains
Free Cylinder

List)

ds186034
Sticky Note
cyl=2MB chunks

ds186034
Highlight

ds186034
Highlight

 Data Distribution and Hashing Page 13-46

Cylinder Index Format
Each cylinder has its own Cylinder Index (CI). The Cylinder Index contains a list of the
data blocks and free sectors that reside on the cylinder. The Cylinder Index is accessed to
determine which data block a row resides in.

The key elements of the Cylinder Index include:

 Cylinder Index Header (not shown)

 Subtable Reference Descriptors (SRD) contain

– Table ID
– Range of DBDs (1st and count)

 Data Block Descriptors (DBD)

– First Part # / Row ID
– Last Part # / Row Hash
– Sector number and size
– Flags
– Row count

 Free Sector Entries (FSE) – identifies free sectors in the cylinder. There is one FSE

(for each free sector range in the cylinder. The set of FSEs effectively make up the
“Free Block List” or also known as the “Free Sector List”.

 Subtable Reference Descriptor Array (not shown) – set of 2 byte pointers to the

SRDs; these entries are sorted in descending order. Note: This array is similar to
the row reference array at the end of a data block.

 Data Block Descriptor Array (not shown) – set of 2 byte pointers to the DBDs;

these entries are sorted in descending order. Note: This array is similar to the row
reference array at the end of a data block.

There are two cylinder indexes allocated for each cylinder. Each cylinder index is 12 KB in
size. Therefore, there is 24 KB (48 sectors) allocated for cylinder indexes at the beginning
of each cylinder.

The facing page illustrates a logical view of SRDs and DBDs and does not represent the
actual physical implementation. For example, the SRD and DBD reference arrays are not
shown.

Data Distribution and Hashing Page 13-47

Cylinder Index Format

Characteristics

• Located at beginning of each
Cylinder..

• There is one SRD (Subtable
Reference Descriptor) for each
subtable that has data blocks on the
cylinder.

• Each SRD references a set of
DBD(s). A DBD is a Data Block
Descriptor..

• One DBD per data block - identifies
location and lowest Part# / Row ID
and the highest Part # / Row Hash
within a block.

• FSE - Free Segment (or Sector)
Entry identifies free sectors.

• Note: Each Cylinder actually has
two 12K Cylinder Indexes and the
File System software alternates
between them.

SRD A

.

DBD A1

DBD A2

SRD B

DBD B1

DBD B2
.

FSE

FSE

Data Block B2

Data Block B1

Data Block A1

Data Block A2

VDisk

CylinderCylinder Index

Range of Free Sectors

Range of Free Sectors

 Data Distribution and Hashing Page 13-48

Data Block Layout
A Block is the physical I/O unit for Teradata. It contains one or more data rows, all of
which belong to the same table. They must fit entirely within the block.

The maximum block size is 255 sectors or 127.5 KB.

A Data Block consists of three major sections:

 The Data Block Header (DB Header)
 The Row Heap
 The Row Reference Array

Rows cannot be split between blocks. Each row in a DB is referenced by a separate index to
the row known as the Row Reference Array. The Row Reference Array is placed at the end
of the data block just before the Block Trailer.

With tables that are not partitioned (Non-Partitioned Primary Index – NPPI), each row has at
least 14 bytes of overhead in addition to the data values stored in that row. With tables that
are partitioned (PPI), each row has at least 16 bytes of overhead in addition to the data
values stored in that row. The partition number uses the additional two bytes.

There are also 2 bytes of space used in the Row Reference Array for a 2-byte Reference
Array Pointer. This 2-byte pointer identifies the offset of where the row starts within the
block. If a row is an odd number of bytes in length, the Row Length specifies its precise
length, but the system allocates whole words within the block for the row. Rows will start
on an even address boundary.

 Teradata truly supports variable length rows.

 The max amount of user data that you can define in a table row is 64,243 bytes

because there is a minimum of 12 bytes of overhead within the row. This gives a
total of 64,255 bytes for the data row plus an additional 2 bytes for the row offset
within the row reference array.

Data Distribution and Hashing Page 13-49

Data Block Layout

• A data block contains rows with same subtable ID.

– Contains rows within range of Row IDs of associated DBD entry and the range of
Row IDs does not overlap with any other data block.

– Logically sorted set of rows.

• The maximum block size is 255 sectors (127.5 KB).

– Blocks can vary in size from 1 sector to 255 sectors.

• A maximum row size is 64,255 bytes.

H
ea

d
er

 (
72

 b
yt

es
)

T
ra

ile
r

(2
 b

yt
e

s)

Row
Reference

Array

-3 -2 -1 0

Row 1

Row 2

Row 3

Row 4

ds186034
Sticky Note
data block could be upto 255 sectors

ds186034
Sticky Note
this is in hash sequence in reverse order

ds186034
Sticky Note
in a row hash(2 byte pointer)

 Data Distribution and Hashing Page 13-50

Example of Locating a Row – Master Index
In the example on the facing page, you can see how Teradata would use the Master Index to
locate the data requested by a SELECT statement. The three-part message is Table ID=100,
Row Hash=1000 and EMPNO=3755. After identifying the appropriate AMP, Teradata uses
that AMP’s Master Index to locate which cylinder contains this Table ID and Row Hash.
By examining the Master Index, you can see that Cylinder Number 169 contains the
appropriate row, if it exists in the system.

Teradata’s File System software does a binary search of the CIDs based on Table ID / Part #
/ Row Hash or Table ID / Part # / Row ID to locate the cylinder number that has the row(s).
The CI for that cylinder is accessed to locate the data block.

A user request for a row based on a Primary Index value will only have the Table ID / Part #
/ Row Hash.

A user request for a row based on a Secondary Index (SI) will have the Table ID / Row Hash
for the SI value. The SI subtable row contains the Row ID(s) of the base table row(s).
Teradata software uses the Table ID / Row ID(s) to locate the base table row(s). If a table is
partitioned, the SI subtable row will have the Part # and the Row ID.

Free cylinders appear in the Free Cylinder List which is part of the FIB (File System
Information Block) for the associated Vdisk.

Summary

 There is only one entry for each cylinder on the AMP.
 Cylinders with data appear on the Master Index.
 Cylinders without data appear on the free Cylinder List (which is located

within the FIB – File System Information Block).
 Each index entry identifies its cylinder’s lowest Table ID / Partition # / Row

ID.
 Index entries are sorted by Table ID, Partition #, and Lowest Row ID.
 Multiple tables may have rows on the same cylinder.
 A table may have rows on many cylinders on different Pdisks on an AMP.
 The Free Cylinder List is sorted by Cylinder Number.

Data Distribution and Hashing Page 13-51

Example of Locating a Row – Master Index

SELECT *
FROM employee
WHERE empno = 3755;

To CYLINDER INDEX

Master Index Free Free
Cylinder Cylinder

Lowest Highest Pdisk and List List

Table ID Part # Row ID Table ID Part # Row Hash Cylinder Number Pdisk 0 Pdisk 1

: : : : : : : : :
078 0 58234, 2 095 0 72194 204 124 761
098 0 00107, 1 100 0 00676 037 125 780
100 0 00773, 3 100 0 01361 169 168 895
100 0 01361, 2 100 0 02884 777 170 896
100 0 02937, 1 100 0 03602 802 183 914
100 0 03662, 1 100 0 03999 117 189 935
100 0 04123, 2 100 0 05888 888 201 941
100 0 05974, 1 100 0 07328 753 217 1012
100 0 07353, 1 120 0 00469 477 220 1234
123 1 00343, 2 123 2 01864 529 347 1375
123 2 06923, 1 123 3 00231 943 702 1520

: : : : : : : : :

What cylinder would have Table ID = 100, Row Hash = 00598?

Part # - Partition Number

Table ID Part # Row Hash empno

100 0 1000 3755

ds186034
Sticky Note
1024

ds186034
Sticky Note
which is in AMP memory

ds186034
Sticky Note
in mem, its physically kept in this sequence...table id...row id

ds186034
Sticky Note
table 100 spans across multiple cylinders

ds186034
Sticky Note
if table id 99 exists...small table...hast to be on 169

 Data Distribution and Hashing Page 13-52

Example of Locating a Row – Cylinder Index
Using the example on the facing page, the File System would determine that the data block
it needs is the six-sector block beginning at sector 0789. The Table ID and Row Hash we
are looking for (100 + 1000, n) falls between the lowest and highest entries of 100 + 00998,
1 and 100 + 01010.

The convention of 00998, 1 is as follows: 00998 is the Row Hash and 1 is the Uniqueness
Value.

Teradata’s File System software does a binary search of the SRDs based on Table ID and a
binary search of the DBDs Partition #, Row Hash or Row ID to identify the data block(s)
that has the row(s).

A user request for a row based on a Primary Index value will include the Table ID / Part # /
Row Hash.

A user request for a row based on a Secondary Index (SI) will have the Table ID / Part # /
Row Hash for the SI value. The SI subtable row contains the Row ID(s) of the base table
row(s). Teradata software uses the Table ID / Part # / Row ID(s) to locate the base table
row(s) for secondary index accesses. If a table is partitioned, the SI subtable row will have
the Part # and the Row ID.

The example on the facing page illustrates a cylinder that only has one SRD. All of the data
blocks in this cylinder are associated with the same subtable.

Summary

 There is an entry (DBD) for each data block on this cylinder.
 These entries are sorted ascending on Table ID, Partition #, and Lowest Row

ID.
 Only rows belonging to the same table and sub-table appear in a block.
 Blocks belonging to the same sub-table can vary in size.
 Blocks without data appear on the Free Sector List that is sorted ascending

on sector number.

Data Distribution and Hashing Page 13-53

Example of Locating a Row – Cylinder Index

SELECT *
FROM employee
WHERE empno = 3755;

Table ID Part # Row Hash empno

100 0 1000 3755

Cylinder Index - Cylinder #169

SRDs Table ID First DBD DBD
Offset Count Free Block List

SRD #1 100 FFFF 12 Free Sector Entries

DBDs Part # Lowest Part # Highest Start Sector Row Start Sector
Row ID RowHash Sector Count Count Sector Count

: : : : : : : : : :
DBD #4 0 00867, 2 0 00902 1010 4 5 0270 3
DBD #5 0 00938, 1 0 00996 0093 7 10 0301 5
DBD #6 0 00998, 1 0 01010 0789 6 8 0349 5
DBD #7 0 01010, 3 0 01177 0525 3 4 0470 4
DBD #8 0 01185, 2 0 01258 0056 5 6 0481 6
DBD #9 0 01290, 1 0 01333 1138 5 6 0550 5

: : : : : : : : : :

This example assumes that only 1 table ID has rows on this cylinder and the table is
not partitioned.

Part # - Partition Number

ds186034
Sticky Note
normally blocks are larger than 2ksector count = 4 = 2k

ds186034
Sticky Note
PDE has to bring the block into FSGH if it already does not have it

 Data Distribution and Hashing Page 13-54

Example of Locating a Row – Data Block
A Block is the physical I/O unit for Teradata. It contains one or more data rows, all of
which belong to the same table. They must fit entirely within the block.

The maximum block size is 255 sectors or 127.5 KB.

A Data Block consists of three major sections:

 The Data Block Header (DB Header)
 The Row Heap
 The Row Reference Array

Rows cannot be split between blocks. Each row in a DB is referenced by a separate “offset
or pointer” to the row. These offsets are kept in the Row Reference Array. The Row
Reference Array is placed near the end of the DB just before the Block Trailer.

The DB Header contains control information for both the Row Reference Array and the
Row Heap. The DB Header is 72* bytes of information which contains the Table ID (6
bytes). It shows which table and subtable the rows in the block are from.

The Row Heap is where the rows reside in the DB. The rows may be in any physical order,
are aligned on an even address boundary, and therefore have an even number of bytes
allocated for them.

The Reference Array Pointers (2 bytes each), which point to the first byte of a row (Row
Length), are maintained in reverse Row ID sequence. The Reference Array pointers are
used to do both binary and sequential searches.

The Block Trailer (2 bytes) consists of a block version number which must match the block
version number in the Data Block Header.

* Notes on amount of space used by DB Headers.

 If the DB is on a 32-bit system and has never been updated, then the DB Header is

only 36 bytes long.
 If the DB is on a 64-bit system and has never been updated, then the DB Header is

only 40 bytes long.
 If a data block is new or has been updated (either a 32-bit or 64-bit system), then

the DB Header is 72 bytes long.
 The length of the block header for a compressed block is 128 bytes. Note that, in a

compressed block, the header is not compressed and neither is the block trailer.
Only the row data within the block is compressed. The extended block header has
the normal block header at the start and then 56 extra bytes that contains
information specific to the compressed block plus some extra filler bytes to allow
for later additions without requiring data conversion.

Data Distribution and Hashing Page 13-55

Example of Locating a Row – Data Block

Row
Heap

Header (72) Row 1

Row 3 Row 2

Row 4 Row 6

Row 5 Row 7

Row 8

Row Reference Trailer (2)
Array

Sector

789

790

791

792

793

794

• A block is the physical I/O unit.

• The block header contains the Table ID (6 bytes).

• Only rows for the same table reside in the same data block.
– Rows are not split across block boundaries.

• Blocks within a table vary in size. The system adjusts block sizes dynamically.
– Blocks may be from 1 sector (512 bytes) to 255 sectors (127.5 KB).

• Data blocks are not chained together.

• Row Reference Array pointers are stored (sorted) in reverse sequence based on Row ID
within the block.

ds186034
Sticky Note
blocks are typically around 100k

 Data Distribution and Hashing Page 13-56

Accessing the Row within the Data Block
Teradata’s File System software does a binary search of the Row Reference Array to locate
the rows that have a matching Row Hash. Since the Row Reference Array is sorted in
reverse sequence based on Row ID, the system can do a binary or linear search.

The first row with a matching Row Hash has its Primary Index value compared with the
Primary Index value in the request. The PI value must be checked to eliminate Hash
Synonyms. The matching rows are then put into spool. If no matches are made, a message
is returned that no rows are found.

In the case of a Unique Primary Index (UPI), the search ends with the first row found
matching the criteria. The row is then returned.

In the case of a Non-Unique Primary Index (NUPI), the matching rows (same PI value and
Row Hash) are put into spool. With a NUPI, the matching rows in spool are returned.

The example on the right-hand page illustrates how Teradata utilizes the Primary Index data
value to eliminate synonyms. This is the conclusion of the example that we have been
following throughout this module.

In earlier steps the Master Index was used to find that the desired row was in Cylinder 169.
Then the Cylinder Index was used to find that the desired row was in the 6-sector block
beginning in Sector Number 789. The diagram shows that block.

The objective is to find that row with Row Hash=1000 and Index Value=3755. When the
block is searched, the first row with Row Hash 1000 does not meet these criteria. Its Index
Value is 1006, which means that it is a Hash Synonym. The system must continue its search
to the next row, the only row that meets both criteria.

The diagram on the facing page shows the logical order of rows in the block with a binary
search.

Data Distribution and Hashing Page 13-57

Accessing the Row within the Data Block

Data Block
Sectors

789

794

Value Hash
3755 1000

SELECT *
FROM employee
WHERE employee_number = 3755;

• Within the data block, the Row Reference Array is used to locate the first row with a
matching Row Hash value within the block.

• The Primary Index data value is used as a row qualifier to eliminate synonyms.

Index
Hash Uniq Value Data Columns

998 1 4219 Row data

999 1 2968 Row data

999 2 6324 Row data

1000 1 1006 Row data

1000 2 3755 Row data

1002 1 6838 Row data

1008 1 8825 Row data

1010 1 0250 Row data

ds186034
Sticky Note
these are hash synonyms

ds186034
Sticky Note
MI - CIrandom hashblockscanned the blockreturned the rowhash bucket no->amp no->master index->cylinder index->data block

 Data Distribution and Hashing Page 13-58

AMP Read I/O Summary
You have seen that a Primary Index Read requires that the Master Index, Cylinder Index and
Data Block all must be accessed. The number of I/Os involved in this process can vary.

The Master Index is always resident in memory. The Cylinder Index may or may not be
resident in memory and the Data Block may or may not be resident in memory.

Factors that affect the number of I/Os involved include AMP memory, cache size and
locality of reference. Often the Cylinder Index is memory resident so that a Unique Primary
Index retrieval requires only a single I/O.

Note that no matter how many rows are in the table and no matter how many inserts are
made, Primary Index access never gets any more complicated than Master Index to Cylinder
Index to Data Block.

Data Distribution and Hashing Page 13-59

AMP Read I/O Summary

Table ID Row Hash PI Value

Master Index

Cylinder Index
(accessed in FSG Cache)

Data Block
(accessed in FSG Cache)

Message Passing Layer

AMP Memory

CI
Vdisk

Row

The Master Index is always memory resident.

The AMP reads the Cylinder Index if not memory resident.

The AMP reads the Data Block if not memory resident.

• The amount of FSG cache size also has an impact if either of these steps require physical I/O.

• The data block may or may not be memory residence depending on recent accesses of this data
block.

• The Cylinder Index is usually memory resident and a Unique Primary Index retrieval requires only
one I/O.

 Data Distribution and Hashing Page 13-60

Module 13: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Data Distribution and Hashing Page 13-61

Module 13: Review Questions

1. The Row Hash for a PI value of 824 is the same for the data types of INTEGER and DECIMAL(18,0).
True or False. _______

2. The first 16 or 20 bits of the Row Hash is referred to as the _________ _________ _________ .

3. The Hash Map consists of entries or buckets which identify an _____ number for the Row Hash.

4. The Current Configuration ___________ Hash Map is used to locate the AMP to locate/store a row
based on PI value.

5. The ____________ utility is used to redistribute rows to a new system configuration with more
AMPs.

6. When creating a new table, the Unique Value of a Table ID comes from the dictionary table named
DBC.________ .

7. The Row ID consists of the _______ ________ and the __________ _____ .

8. The _______ _______ contains a Cylinder Index Descriptor (CID) for each allocated Cylinder.

9. The _______ _______ contains an entry for each data block in the cylinder.

10. The ____ __________ ________ consists of a set of 2 byte pointers to the data rows in data block.

11. The maximum block size is approximately _______ and the maximum row size is approximately
_______ .

12. The Primary Index data value is used as a row qualifier to eliminate hash _____________ .

ds186034
Sticky Note
hash bucket number

ds186034
Sticky Note
true

ds186034
Sticky Note
array of AMP nos

ds186034
Sticky Note
PRIMARY and FALLBACK hash map= primary

ds186034
Sticky Note
Reconfig

ds186034
Sticky Note
NEXT

ds186034
Sticky Note
row hashanduniqueness value

ds186034
Sticky Note
Master INDEX

ds186034
Sticky Note
cylinder index

ds186034
Sticky Note
row reference array

ds186034
Sticky Note
255 sectors OR 128K (127.5K) = biggest block size

ds186034
Sticky Note
64K is the max row size

ds186034
Sticky Note
synonyms

 Data Distribution and Hashing Page 13-62

Notes

File System Writes Page 14-1

Module 14

Teradata Proprietary and Confidential

File System Writes

After completing this module, you will be able to:

 Describe File System Write Access.

 Describe what happens when Teradata inserts a new row
into a table.

 Describe the impact of row inserts on block sizes.

 Describe how fragmentation affects performance.

 File System Writes Page 14-2

Notes

File System Writes Page 14-3

Table of Contents

AMP Write I/O ... 14-4
New Row INSERT – Part 1 ... 14-6
New Row INSERT – Part 2 ... 14-8
New Row INSERT – Part 2 (cont.) .. 14-10
New Row INSERT – Part 3 ... 14-12
New Row INSERT – Part 4 ... 14-14

Alternate Cylinder Index .. 14-14
Blocking in Teradata .. 14-16
Block Size and Filling Cylinders ... 14-18
Variable Block Sizes .. 14-20
Block Splits (INSERT and UPDATE) ... 14-22
Space Fragmentation .. 14-24
Cylinder Full .. 14-26
Mini-Cylpack ... 14-28
Space Utilization .. 14-30

Teradata 13.10 Auto Cylinder Pack Feature .. 14-30
Merge Datablocks (13.10 Feature) ... 14-32

Merge Datablocks (Teradata 13.10) cont. .. 14-34
How to use this Feature .. 14-34

File System Write Summary .. 14-36
Module 14: Review Questions ... 14-38

Module 14: Review Questions (cont.) ... 14-40

 File System Writes Page 14-4

AMP Write I/O
The facing page illustrates how Teradata performs write operations and it outlines steps
required to perform an AMP Write operation.

WAL (Write Ahead Logging) is a recoverability/reliability feature that also provides
performance improvements in the area of database writes. WAL is a Teradata V2R6.2 (and
later) feature. WAL can batch up modifications from multiple transactions and apply them
with a single disk I/O, thereby saving I/O operations. WAL will help improve throughput for
I/O-bound workloads.

WAL is a log-based file system recovery scheme in which modifications to permanent data
are written to a log file, the WAL log. The log file contains change records (Redo records)
which represent the updates. At key moments, such as transaction commit, the WAL log is
forced to disk. In the case of a reset or crash, Redo records can be used to transform the old
copy of a permanent data block on disk into the version that existed at the time of the reset.

By maintaining the WAL log, the permanent data blocks that were modified no longer have
to be written to disk as each block is modified. Only the Redo records in the WAL log must
be written to disk. This allows a write cache of permanent data blocks to be maintained.
WAL protects all permanent tables and all system tables but is not used to protect either the
Transient Journal (TJ), since TJ records are stored in the WAL log, or any type of spool
tables, including global temporary tables.

The WAL log is maintained as a separate logical file system from the normal table area.
Whole cylinders are allocated to the WAL log, and it has its own index structure. The WAL
log data is a sequence of WAL log records and includes the following:

 Redo records, used for updating disk blocks and insuring file system consistency
during restarts.

 TJ records used for transaction rollback.

There is some additional CPU cost for maintaining the WAL log so WAL may reduce
throughput for CPU-bound workloads. However, the overall performance is expected to be
better with WAL since the benefit of I/O improvement outweighs the much smaller
CPU cost.

If CHECKSUM = NONE and the New Block length = Old Block length, Teradata will
attempt to update-in-place for any INSERT, DELETE, or UPDATE operations.

If the CHECKSUM feature is enabled for a table, any INSERT, UPDATE, or DELETE
operation will cause a new data block to be allocated.

The FastLoad and MultiLoad utilities always allocate new data blocks for write operations.
TPump follows the same rules as an SQL INSERT, UPDATE, or DELETE.

File System Writes Page 14-5

AMP Write I/O

For SQL writes, Teradata uses WAL logic to manage disk write operations.

• Read the Data Block if not in memory (Master Index > Cylinder Index > Data Block).

• Place appropriate entries (e.g., before-images) into the Transient Journal buffer
(actually a WAL buffer) and write it to the WAL log on disk.

• Data blocks are updated in Memory, but not written immediately to disk.

• The after-image or changed image (REDO row) is written to a WAL buffer which is
written to the WAL log on disk.

– WAL can batch up modifications from multiple transactions and apply them with a single disk
I/O, thereby saving I/O operations.

– Updated data blocks in memory will be eventually aged out and written to disk.

• Make the changes to the Data Block in memory and determine the new block’s length.

– If the New Block has changed size, always allocate a new Data Block.

– If the New Block length = Old Block length, Teradata will attempt to update-in-
place for any INSERT, DELETE, or UPDATE operations.

These operations happen concurrently on the Fallback AMP.

ds186034
Sticky Note
deferred writes

ds186034
Sticky Note
in place write

ds186034
Sticky Note
allocate a new block->find space within the cylinder->

 File System Writes Page 14-6

New Row INSERT – Part 1
The facing page illustrates what happens when Teradata INSERTs a new row into a table.
The three part message is Table ID = 100, Partition # = 0, Row Hash = 1123 and PI Value =
7923.

 The AMP uses its Master Index to locate the proper cylinder for the new row. As
you can see, Cylinder #169 is where a row with Table ID = 100, Partition # = 0,
and Row Hash = 1123 should be inserted.

 The next step is to access the Cylinder Index for Cylinder #169, as illustrated on

the facing page.

Teradata’s File System software does a binary search of the CIDs based on Table ID /
Partition # / Row Hash to locate the cylinder number in which to insert the row. The CI for
that cylinder is accessed to locate the data block.

Note: The Partition # (shown in the examples) does not exist in Teradata systems prior to
V2R5.

File System Writes Page 14-7

New Row Insert – Part 1

INSERT INTO employee VALUES (7923,);

INSERT Table ID Part # Row Hash data column values

ROW 100 0 1123 7923

To CYLINDER INDEX

Master Index Free Free
Cylinder Cylinder

Lowest Highest Pdisk and List List

Table ID Part # Row ID Table ID Part # Row Hash Cylinder Number Pdisk 0 Pdisk 1

: : : : : : : : :
078 0 58234, 2 095 0 72194 204 124 761
098 0 00107, 1 100 0 00676 037 125 780
100 0 00773, 3 100 0 01361 169 168 895
100 0 01361, 2 100 0 02884 777 170 896
100 0 02937, 1 100 0 03602 802 183 914
100 0 03662, 1 100 0 03999 117 189 935
100 0 04123, 2 100 0 05888 888 201 941
100 0 05974, 1 100 0 07328 753 217 1012
100 0 07353, 1 120 0 00469 477 220 1234
123 1 00343, 2 123 2 01864 529 347 1375
123 2 06923, 1 123 3 00231 943 702 1520

: : : : : : : : :

Part # - Partition Number

ds186034
Highlight

ds186034
Sticky Note
cylinder index are always memory resident and so no I/O

 File System Writes Page 14-8

New Row INSERT – Part 2
The example on the facing page is a continuation from the previous page. Teradata has
determined that the new row must be INSERTed into Cylinder #169 in this example.

File System Writes Page 14-9

New Row Insert – Part 2

INSERT INTO employee VALUES (7923,);

INSERT Table ID Part # Row Hash data column values

ROW 100 0 1123 7923

Cylinder Index - Cylinder #169

SRDs Table ID First DBD DBD
Offset Count Free Block List

SRD #1 100 FFFF 12 Free Sector Entries

DBDs Part # Lowest Part # Highest Start Sector Row Start Sector
Row ID RowHash Sector Count Count Sector Count

: : : : : : : : : :
DBD #4 0 00867, 2 0 00902 1010 4 5 0270 3
DBD #5 0 00938, 1 0 00996 0093 7 10 0301 5
DBD #6 0 00998, 1 0 01010 0789 6 8 0349 5
DBD #7 0 01010, 3 0 01177 0525 3 4 0470 4
DBD #8 0 01185, 2 0 01258 0056 5 6 0481 6
DBD #9 0 01290, 1 0 01333 1138 5 6 0550 5

: : : : : : : : : :

To Data Block
Read the block into memory

(FSG cache).

 File System Writes Page 14-10

New Row INSERT – Part 2 (cont.)
The example on the facing page is a continuation from the previous page. Teradata has
determined that the new row hash value falls with the range of the data block that starts at
sector 525 and is 3 sectors long.

If the block that has been read into memory (FSG Cache) has enough contiguous free bytes,
then the row is inserted into this space within the block. The row reference array and the
Cylinder Index are updated.

If the block that has been read into memory (FSG Cache) does not have enough contiguous
free bytes, but it does have enough free bytes within the entire block, the software will
defragment the block and insert the row. The row reference array and the Cylinder Index
are updated.

Note: The block header contains a field that indicates the total number of free bytes
within the block.

Also note that the Row Reference Array expands by 2 bytes to reflect the added row. If the
block now has 5 rows, the Row Reference Array will increase from 8 bytes to 10 bytes in
length.

Acronyms:

FS – Free Space
RRA – Row Reference Array
BT – Block Trailer

File System Writes Page 14-11

New Row Insert – Part 2 (cont.)

1. If the block has enough free
contiguous bytes, then insert row
into block and update CI.

2. If the block has enough free bytes,
then defragment the block and insert
row into block and update CI.

Read the block into memory (FSG cache).

Block Header Row #1 Row #2

Row #4 RRA BT

525

526

527

New row to INSERT

Free Space

Free Space Row #3 Row #4

Block Header Row #1 Row #2

 Row #3 Row #4

 Free Space RRA BT

525

526

527

New row to INSERT

FS

Block Header Row #1 Row #2

 Row #3 Row #4

 RRA BT

525

526

527 New row FS

FS

Row is inserted into contiguous free
space.

Block is defragmented and row is
inserted into contiguous free space.

Block Header Row #1 Row #2

 Row #4

 RRA BTNew row

Row #3

FS

525

526

527

FS - Free Space; RRA - Row Reference Array; BT - Block Trailer

ds186034
Sticky Note
did the CI change?YESwe keep a row count within the cylinder index (back slide)we made a change (i can write back in place)

ds186034
Sticky Note
I can write back in place to the disk - no change

ds186034
Sticky Note
for a count(*) query.....MI to CI (which gives me the row count)if its a where condition then its different....cause info is pulled out of the CI

ds186034
Sticky Note
defragment the block

 File System Writes Page 14-12

New Row INSERT – Part 3
The File System then accesses the 3-sector block which starts at sector 525 and makes it
available in AMP memory.

The row is placed into the block, and the new block length is computed. In this example,
inserting the row has caused the block to expand from 3 sectors to 4 sectors.

Note that the Row Reference Array expands by 2 bytes to reflect the added row. If the block
now has 5 rows, the Row Reference Array will increase from 8 bytes to 10 bytes in length.

Acronyms:

FS – Free Space
RRA – Row Reference Array
BT – Block Trailer

File System Writes Page 14-13

New Row Insert – Part 3

3. If the new row is larger than the total free space within the block, then the
Insert expands the block by as many sectors as needed (in memory) to hold
the row.

In this example, the block is expanded by one sector in memory.

Block Header Row #1 Row #2

 Row #3 Row #4

 Free Space RRA BT

525

526

527

FS

New row to INSERTNew row to INSERT

Block Header Row #1 Row #2

 Row #4

BT

Row #3

RRA

New row

Free Space

In memory,
block is
expanded.

4. The next step is to locate the first block on the Free Block List equal to, or
greater than 4 sectors.

ds186034
Sticky Note
we grow the block by 1 or 2 sectoranytime we grow the block...we always allocate a new block

 File System Writes Page 14-14

New Row INSERT – Part 4
The File System searches the Free Sector (or Block) List looking for the first Free Block
whose size is equal to or greater than the new block’s requirement. It does not have to be an
exact match.

 Upon finding a 5-sector free block starting at sector 0301, the system allocates a
new 4-sector block (sectors 301, 302, 303, 304) for the new data block, leaving a
free block of one sector (305) remaining.

 The new data block is written to disk.

 The old, 3-sector data block is placed onto the Free Sector List (or Free Block List).

 The modified CI will be copied to the buddy node (FSG Cache) and the modified

CI will be written back to disk (eventually).

If a transaction failure occurs (or the transaction is aborted), the Transient Journal is used to
undo the changes to both the data blocks and the Cylinder Indexes. Before images of data
rows are written to the Transient Journal. Before images of Cylinder Indexes are not written
to the Transient Journal because Teradata uses the Alternate Cylinder Index for the changes.
If a transaction fails, the before image in the Transient Journal is used to return the data
row(s) back to the state before the transaction.

Alternate Cylinder Index
Starting with V2R6.2 and with WAL, space for 2 Cylinder Indexes (2 x 12 KB = 24 KB) is
allocated at the beginning of every cylinder. Characteristics include:

 Two Cylinder Indexes are used – Teradata alternates between the two Cylinder
Indexes.

 Changes are written to an “Alternate Cylinder Index”.
 When a CI is changed, it is not updated in place. This provides for better I/O

integrity.

File System Writes Page 14-15

New Row INSERT – Part 4

Cylinder Index - Cylinder #169
Free Block List

SRDs Table ID First DBD DBD Free Sector Entries
Offset Count

SRD #1 100 FFFF 12 Start Sector
Sector Count

DBDs Part # Lowest Part # Highest Start Sector Row : :

Row ID RowHash Sector Count Count 0270 3
: : : : : : : : 0301 5

DBD #5 0 00938, 1 0 00996 0093 7 10 0349 5
DBD #6 0 00998, 1 0 01010 0789 6 8 0470 4
DBD #7 0 01010, 3 0 01177 0525 3 4 0481 6
DBD #8 0 01185, 2 0 01258 0056 5 6 0550 5

: : : : : : : : : :

Alternate Cylinder Index - Cylinder #169
Free Block List

SRDs Table ID First DBD DBD Free Sector Entries
Offset Count

SRD #1 100 FFFF 12 Start Sector
Sector Count

DBDs Part # Lowest Part # Highest Start Sector Row : :

Row ID RowHash Sector Count Count 0270 3
: : : : : : : : 0305 1

DBD #5 0 00938, 1 0 00996 0093 7 10 0349 5
DBD #6 0 00998, 1 0 01010 0789 6 8 0470 4
DBD #7 0 01010, 3 0 01177 0301 4 5 0481 6
DBD #8 0 01185, 2 0 01258 0056 5 6 0525 3

: : : : : : : : 0550 5

1

32

2a

2b

ds186034
Sticky Note
portion of the cyl block index - free block list

ds186034
Sticky Note
0528 	5it would combine itand make it0525	8

ds186034
Sticky Note
block list

 File System Writes Page 14-16

Blocking in Teradata
Tables supporting Data Warehouse and Decision Support users generally have their block
size set very large to accommodate more rows per block and reduce the number of block
I/Os needed to do full table scans. Tables involved in online applications and heavy data
maintenance generally have smaller block sizes.

Extremely large rows, called Oversized Rows, are very costly. Each Oversized row requires
its own block and costs one I/O every time it is touched. Oversized rows are common in
non-relational data models and appear in poor relational data models.

File System Writes Page 14-17

Blocking in Teradata

Definitions

Largest Data Block Size

• The largest multi-row data block allowed. Impacts when a block split occurs.

• Determined by:
– Table level attribute DATABLOCKSIZE

– System default - PermDBSize parameter (DBS Control) – 5555 default is 254 sectors (127 KB)

Large (or typical) Row

• The largest fixed length row that allows multiple rows/block.

• Defined as ((Largest Block - 74) / 2);
– Block header is 72 bytes and trailer is 2 bytes.

Oversized Row

• A row that requires its own Data Block (one I/O per row):

• A fixed length row that is larger than Large Row.

Example:

• Assume DATABLOCKSIZE = 65,024 (127 sectors x 512 bytes)
– Largest Block = 65,024 bytes

– Large Row 32,475 bytes ((65,024 – 74) / 2)
– Oversize row > 32,476 bytes

 File System Writes Page 14-18

Block Size and Filling Cylinders
Teradata supports a maximum block size of 255 sectors. With newer, larger, and faster
systems, it typically makes sense to use a large block size for transactions that do full table
or partition scans. A large block may help to minimize the number of I/Os needed to access
a large amount of data.

Therefore, it may seem that using the largest possible block size of 255 sectors would be a
good choice. However, a maximum block size of 254 sectors is actually a better choice in
most situations. Why?

With 254 sector blocks, a cylinder can hold 15 blocks.
With 255 sector blocks, a cylinder can only hold 14 blocks.

Why?

A cylinder consists of 3872 sectors and 48 sectors are used for the cylinder indexes.
The available space for user data blocks is 3872 – 48 = 3824 sectors.

3824 ÷ 254 = 15.055 or 15 blocks
3824 ÷ 255 = 14.996 or 14 blocks

15 x 254 = 3810 sectors of a cylinder are utilized or 99.6%
14 x 255 = 3570 sectors of a cylinder are utilized or only 93.4%

Assume an empty staging table and using FastLoad to load data into the table. With 255
sector blocks, the table will use 6% more cylinders to hold the data.

By using a system default (PermDBSize) or data block size (DATABLOCKSIZE) of 254
sectors will effectively utilize the space in cylinders more efficiently than 255 sector blocks.

The same is true if you are considering 127 or 128 sector blocks.

127 sector blocks – cylinder can hold 30 blocks – utilize 99.6% of cylinder
128 sector blocks – cylinder can hold 29 blocks – utilize 97.1% of cylinder

Therefore, 127 or 254 sector blocks are typically better choices. A greater percentage of
cylinder space can be utilized with these choices.

File System Writes Page 14-19

Block Size & Filling Cylinders

What is the difference between choosing maximum data block size of 254 or 255 sectors?

• With 254 sector blocks, a cylinder can hold 15 blocks.
• With 255 sector blocks, a cylinder can only hold 14 blocks.

Why?

• A cylinder consists of 3872 sectors and 48 sectors are used for the cylinder indexes.

– 3824 254 = 15.055 or 15 blocks
– 3824 255 = 14.996 or 14 blocks

– 15 x 254 = 3810 sectors of a cylinder are utilized or 99.6%
– 14 x 255 = 3570 sectors of a cylinder are utilized or only 93.4%

• Assume an empty staging table and using FastLoad to load data into the table. With
255 sector blocks, the table will use 6% more cylinders.

What about 127 and 128 sector blocks?

• With 127 sector blocks, a cylinder can hold 30 blocks – utilize 99.6% of cylinder
• With 128 sector blocks, a cylinder can hold 29 blocks – utilize 97.1% of cylinder

Therefore, 127 or 254 sector blocks are typically better choices for PermDBSize and/or
data block sizes. A greater percentage of cylinder space can be utilized with these
choices.

ds186034
Sticky Note
Table using more cylinder space (FAST LOAD!)so short of space (cause of system default)

ds186034
Sticky Note
this didnt show up but when we went upto 255, it showed up

 File System Writes Page 14-20

Variable Block Sizes
The Teradata RDBMS supports true variable block sizes. The illustration on the facing page
shows how blocks can expand to accommodate additional rows as they are INSERTed. As
rows are INSERTed, the Reference Array Pointers are placed into Row ID sequence.

 REMEMBER

Large rows require more disk space for
Transient Journal, Permanent Journal, and Spool files.

File System Writes Page 14-21

Variable Block Sizes

Row

1 Sector
Block

Row

Row

2 Sector
Block

Row

Row

Row

Row

Row

2 Sector
Block

Row

Row

Row

Row

Row

2 Sector
Block

Row

Row

Row

Row

Row

Row

3 Sector
Block

1 Sector
Block
Row

Row

• When inserting rows (ad hoc SQL or TPump), the block expands as needed to
accommodate them.

• The system maintains rows within the block in logical ROW ID sequence.

• Large rows take more disk space for Transient Journal, Permanent Journal, and Spool
files.

• Blocks are expanded until they reach “Largest Block Size”. At this point, a Block Split
is attempted.

Note:

Rows do NOT have to be
contiguous in a data block.

 File System Writes Page 14-22

Block Splits (INSERT and UPDATE)
Block splits occur during INSERT and UPDATE operations. Normally, when a data block
expands beyond the maximum multi-row block size (Largest Block), it splits into two
approximately equal-sized blocks. This is shown in the upper illustration on the facing
page.

 If an Oversize Row is INSERTed into a data block, it causes a three-way block
split (as shown in the lower illustration). This type of block split may result in
uneven block sizes.

 With Teradata, block splits cost only one additional I/O per extra block created.

There is little impact on OLTP and OLCP performance.

 Block splits automatically reclaim any contiguous, unused space greater than 511

bytes.

File System Writes Page 14-23

Block Splits (INSERT and UPDATE)

Two-Way Block Splits
• When a Data Block expands beyond

Largest Block, it splits into two,
fairly-equal blocks.

• This is the normal case.

New Row New Row

Three-Way Block Splits
• An oversize row gets its own Data

Block. The existing Data Block
splits at the row’s logical point of
existence.

• This may result in uneven block
sizes.

Oversized
Row

Oversized
Row

Notes:
• Block splits automatically reclaim any unused space over 511 bytes.

• While it is not typical to increment blocks by one 512 sector, it is tunable
as to how many sectors are acquired at a time for the system.

ds186034
Sticky Note
from free block list

 File System Writes Page 14-24

Space Fragmentation
Space fragmentation is not an issue in the Teradata database because the system collects
free blocks as a normal part of routine table maintenance. If a block of sectors is freed up
and is adjacent to already free sectors in the cylinder, these are combined into one entry on
the free block list.

As previously described, when an actual data block has to grow, it does not grow into
adjacent free blocks – a new block is assigned from the free block list. The freed up data
block (set of sectors) is placed on the free block (or segment) list. If there is already an
entry on the free block list representing adjacent free blocks, then the freed up data block is
combined with adjacent free sectors and only one entry is placed on the free block list.

Using the example on the facing page, assume we are looking at a 40-sector portion of a
cylinder. These sectors are physically adjacent to each other. The free block list would
have 2 entries on it – one representing the 4 unused sectors and a second entry representing
the 6 unused sectors.

We will now consider 4 situations.

First case – If the first 10-sector data block is freed up, software will not place an entry on
the free block list for just these 10 sectors. Software will effectively combine these 10
sectors with the following adjacent free 4 sectors and place one entry representing the 14
free sectors on the free block list. For this 40-sector portion of a cylinder, there will be 2
entries on the free block list – one for the first 14 unused sectors and a second entry for the 6
unused sectors that are still there.

Second case – If the middle 12-sector data block is freed up, software will not place an entry
on the free block list for just these 12 sectors, but will effectively combine these 12 sectors
with the previous adjacent 4 free sectors and with the following 6 free adjacent sectors,
effectively represented by one entry for 22 free sectors. For this 40-sector portion of a
cylinder, there will be one entry on the free block list showing that 22 sectors that are free.

Third case – If the last 8-sector data block is freed up, software will not place an entry on the
free block list for just these 8 sectors, but will effectively combine these 8 sectors with the
previous adjacent 6 free sectors. One entry representing the 14 free sectors is placed on the
free block list. For this 40-sector portion of a cylinder, there will be 2 entries on the free
block list – one for the first 4 unused sectors and a second entry for the 14 unused sectors.

Fourth case – If there is no entry on the free block list large enough to meet a request for a
new block, Teradata’s file system software may choose to dynamically defragment the
cylinder. In this case, all free sectors are combined together at the end of a new cylinder and
one entry for the free space (sectors) is placed on the free block list. Defragmentation is
actually done in the new cylinder and the existing cylinder is placed in the free cylinder list.

File System Writes Page 14-25

Space Fragmentation

• The system collects free blocks as a normal part of table maintenance.

• Smaller Free Blocks become larger when adjacent blocks become free, or
when defragmentation is performed on the cylinder.

This becomes

After
Defragmentation

1st used block is
freed up

3rd used block is
freed up

OR OR OR10 Sector
Block

4 Unused
Sectors

12 Sector
Block

6 Unused
Sectors

8 Sector
Block

This example represents
a 40 sector portion of a
cylinder; 30 sectors have
data and 10 sectors are
unused.

2nd used block is
freed up

14 Unused
Sectors

12 Sector
Block

6 Unused
Sectors

8 Sector
Block

10 Sector
Block

22 Unused
Sectors

8 Sector
Block

10 Sector
Block

4 Unused
Sectors

12 Sector
Block

14 Unused
Sectors

10 Sector
Block

12 Sector
Block

8 Sector
Block

10 Unused
Sectors

OR

 File System Writes Page 14-26

Cylinder Full
A Cylinder Full condition occurs when there is no block on the Free Block List that has
enough sectors to accommodate additional data during an INSERT or UPDATE. If this
condition occurs, the File System goes through the steps outlined on the facing page which
results in a Cylinder Migrate to an existing adjacent cylinder or to a new cylinder. As part
of this process, the file system software may also choose to perform a Cylinder
Defragmentation or a Mini Cylinder Pack (Mini-Cylpack) operation.

 A Mini-Cylpack is a background process that occurs automatically when the
number of free (or available) cylinders falls below a threshold. The mini-Cylpack
process is the mechanism that Teradata uses to rearrange data blocks to free
cylinders. This process involves moving data blocks from a data cylinder to the
logically preceding data cylinder until a whole cylinder becomes empty.

 Mini-Cylpack is an indication that the system does not have enough free space to

handle its current workload.

In the example at the bottom of the facing page, if Cylinder 37 became full, the File System
would check Cylinder 204 and Cylinder 169 to see if they had enough room to perform a
Cylinder Migrate. These two cylinders are logically adjacent to Cylinder 37 in the Master
Index, but not necessarily physically adjacent on the disk.

During the Cylinder Migrate, if data blocks were moved to Cylinder 204, they would be
taken from the top of Cylinder 37. If they were moved to Cylinder 169, they would be taken
from the bottom of Cylinder 37.

Note:

Performance tests show that defragging can cause a significant performance hit.
Therefore, the default tuning parameters that control how often you do this are set to
only defragment cylinders if there are very few free cylinders left (<= 100) and the
cylinder has quite a bit of free space that isn’t usable (>= 25%). The latter indicates
that, although there is significant free space on the cylinder, the free space is apparently
so fragmented that a request for new sectors couldn’t be satisfied. Otherwise, it’s
assumed that the cylinder is full and the overhead of defragging it wouldn’t be worth it.

File System Writes Page 14-27

Cylinder Full

Master Index Free Free
Cylinder Cylinder

Lowest Highest Pdisk and List List

Table ID Part # Row ID Table ID Part # Row Hash Cylinder Number Pdisk 0 Pdisk 1

: : : : : : : : :
078 0 58234, 2 095 0 72194 204 124 761
098 0 00107, 1 100 0 00676 037 125 780
100 0 00773, 3 100 0 01361 169 168 895

: : : : : : : : :

Cylinder Full means there is no block big enough on the Free Block List. The File System
does either of the following:

• Cylinder Migrate to an adjacent cylinder — checks logically adjacent cylinders for fullness. If it
finds room, it moves a maximum of 10 data blocks from the full cylinder to an adjacent one.

• Cylinder Migrate to a new Cylinder — looks for a free cylinder, allocates one, and moves a
maximum of 10 data blocks from the congested cylinder to a new one.

While performing a Cylinder Migrate operation, the File System software may also do the
following operations in the background.

• Cylinder Defragmentation — if the total cylinder free space 25% of the cylinder size (25% is
default), then the cylinder is defragmented. Defragmentation collects all free sectors at the end of
a new cylinder by moving all the data blocks to the top of the new cylinder.

• Mini-Cylpack — if the number of free cylinders falls below a threshold (default is 10), then a "Mini-
Cylpack" is performed to pack data together to free up a cylinder and place it on the free cylinder
list.

 File System Writes Page 14-28

Mini-Cylpack
The Mini-Cylpack is the mechanism that Teradata uses to rearrange data blocks to free
cylinders. The process involves moving data blocks from a data cylinder to the logically
preceding data cylinder until a whole cylinder becomes empty.

 A Mini-Cylpack is an indication that the system does not have enough free space to
handle its current workload.

 Excessive numbers of Mini-Cylpacks indicate too little disk space is available

and/or too much spool is being utilized during data maintenance.

 Spool cylinders are never “Cylpacked”.

Teradata has a Free Space (a percentage) parameter that can be set to control how much
free space is left in a cylinder during loading and the use of the Ferret PackDisk utility. This
parameter is not used with mini-cylpacks.

 This parameter should be set low (close to 0%) for systems which are used solely
for Decision Support as there is no data maintenance involved.

 In cases where there is moderate data maintenance (batch or some OLTP), the Free

Space parameter should be set at approximately 25%.

 If heavy data maintenance is to be done (OLTP), the Free Space parameter may

have to be set at approximately 50% to prevent Cylpacks from affecting OLTP
response times.

The Free Space parameter can be set at the system level, at a table level, and when
executing the Ferret PackDisk utility.

 DBSControl – FREESPACEPERCENT (0% is the default)
 CREATE TABLE – FREESPACE = integer [PERCENT] (0 – 75)
 FERRET PACKDISK – FREESPACEPERCENT (or FSP) integer

The system administrator can specify a count of empty cylinders the system should attempt
to maintain. Whenever a Cylinder Migrate to a new cylinder occurs, the system checks to
see if the minimum number of empty cylinders still exists. If the system has dropped below
the minimum, it starts a background task that begins packing cylinders. The task stops when
either a cylinder is added to the Free Cylinder List or it has packed 10 cylinders. This
process continues with every Cylinder Migrate to a new cylinder until the minimum count of
empty cylinders is reached, or a full mini-cylpack is required.

File System Writes Page 14-29

Mini-Cylpack

A Mini-Cylpack moves data blocks from the data cylinder(s) to logically
preceding data cylinder(s) until a single cylinder is empty.

• Spool cylinders are never cylpacked.

• Mini-Cylpacks indicate that the system does not have space to handle its current
workload.

• Excessive Cylpacks indicate too little disk space and/or spool utilization during data
maintenance.

The Free Space parameter impacts how full a cylinder is filled with data loading
and PackDisk.

• DBSControl – FREESPACEPERCENT

• CREATE TABLE – FREESPACE

• FERRET PACKDISK – FREESPACEPERCENT (FSP)

BEFORE AFTER

 File System Writes Page 14-30

Space Utilization
The Teradata Database can use any particular cylinder to either store data or hold Spool
files. A cylinder cannot be used for both data and Spool simultaneously. In sizing a system,
you must make certain that you have enough cylinders to accommodate both requirements.

Limiting the number of rows and columns per query helps keep Spool requirements under
control, as does keeping the number of columns per row to a minimum. Both can result
from proper normalization.

Teradata 13.10 Auto Cylinder Pack Feature
One new background task in Teradata 13.10 is called AutoCylPack which attempts to
combine adjacent, sparsely filled cylinders. These cylinder packs are typically executed
when the system is idle.

AutoCylPack is particularly useful if a customer is using temperature-based BLC, because it
cleans up post-compression cylinders that are no longer holding as much data. However,
this feature works with compressed as well as uncompressed cylinders. Sometimes the
activity of AutoCylPack can result in seeing a little bit of wait I/O (less than 5%).

File System Field 17 (DisableAutoCylPack) has a default value of FALSE, which means
AutoCylPack is on and active all the time, unless you change this setting.

General notes:
 There are a number of background tasks running in the Teradata database and

AutoCylPack is another of these tasks. These tasks include deadlock detection, cylinder
defragmentation, transient journal purging, periodic cache flushes, etc.

 These tasks generally consume a small amount of system resources. However, you will

tend to notice them more when the system is idle.

File System Writes Page 14-31

Space Utilization

Master
Index

Free
Cylinder

Lists

Cylinder
Indexes

Free
Block
Lists

Space being used is managed via Master Index and Cylinder Indexes

Cylinders not being used are listed in Free Cylinder Lists

Free Sectors within cylinders are listed in Free Block Lists

Cylinders contain Perm, Spool, Temporary, Permanent Journal, or WAL data,
but NOT a combination.

BE SURE THAT YOU HAVE ENOUGH SPACE OF EACH.

Limiting the rows and columns per query reduces spool use.

ds186034
Sticky Note
free space is avail to this tablenot to spool , not to other table, not for anything else

ds186034
Sticky Note
these cyl are avail to any tables

 File System Writes Page 14-32

Merge Datablocks (13.10 Feature)
This Teradata Database 13.10 feature automatically searches for “small” data blocks within
a table and will combine (merge) these small datablocks into a single larger block. Over
time, modifications to a table (especially with DELETEs of data rows) can result in a table
having blocks that are less than 50% of the maximum datablock size. This File System
feature combines these small blocks into a larger block.

The benefit is simply that future full table operations (full table scans and/or full table
updates) will perform faster because fewer I/Os are performed. By having larger blocks in
the Teradata file system, the selection of target rows can also be more efficient.

 Blocks that are 50% or greater of the maximum multi-row datablock size (63.5 KB
in this example) are not considered to be small blocks. Small blocks are less than
50% of the maximum datablock size.

The merge of multiple small blocks into a larger block is limited by cylinder boundaries –
does not occur between cylinders. A maximum of 7 logically adjacent preceding blocks can
are merged together into a target block when the target block is updated. Therefore, a
maximum of 8 total blocks can be merged together.

Why are logical following blocks NOT merged together?

 The File System software does not know if following blocks are going to be
immediately updated.

 Reduces performance impact during dense sequential updates

How does a table get to the point of having many small blocks? DELETEs from this table
can cause blocks to permanently shrink to a much smaller size unless a large amount of data
is added again.

How have customers resolved this problem before Teradata 13.10?

 The ALTER TABLE command can be used to re-block a table. This technique can
be time consuming and requires an exclusive table lock. This technique is still
available with Teradata 13.10.

– ALTER TABLE DATABLOCKSIZE = <value> IMMEDIATE

If this featured is enabled, the merge of small data blocks into a larger block runs
automatically during full table SQL write operations. This feature can merge datablocks for
the primary/fallback subtables and all of the index subtables. This feature runs automatically
when the following SQL functions are executed.

 INSERT-SELECT, UPDATE-WHERE
 DELETE-WHERE (used on both permanent table and permanent journal

datablocks)
 During the DELETE phase of Reconfig utility on source amps

File System Writes Page 14-33

Merge Datablocks (Teradata 13.10)

This Teradata Database 13.10 feature automatically searches for “small” data
blocks within a table and will combine (merge) these small datablocks into a
single larger block.

• Over time, modifications to a table (especially with DELETEs of data rows) can result
in a table having blocks that are less than 50% of the maximum datablock size.

• Up to 8 datablocks can be merged together.

If enabled, the merge of small data blocks into a larger block runs automatically during full
table SQL write operations. This feature can merge datablocks for the primary/fallback
subtables and all of the index subtables.

• INSERT-SELECT
• UPDATE-WHERE
• DELETE-WHERE

How have customers resolved this problem before Teradata 13.10?

• The ALTER TABLE command can be used to re-block a table. This technique can be time
consuming and requires an exclusive table lock. This technique is still available with Teradata
13.10.

ALTER TABLE DATABLOCKSIZE = <value> IMMEDIATE;

 File System Writes Page 14-34

Merge Datablocks (Teradata 13.10) cont.

How to use this Feature
Defaults for this feature can be set at the system level via DBSControl settings and can be
overridden with table level attributes. The CREATE TABLE and ALTER TABLE
commands have options to enable or disable this feature for a specific table.

The key parameter that controls this feature is MergeBlockRatio. This parameter can be set
at the system level and also as a table level attribute.

MergeBlockRatio has the following characteristics:

 Limits the resulting size of a merged block.
 Reduces the chances that a merged block will split again soon after it is merged,

defeating the feature’s purpose.
 Computed as a percentage of the maximum multi-row datablock size for the

associated table.
 Candidate merged block must be smaller than this computed size after all target

row updates are completed.
 Source blocks are counted up as eligible until the size limit is reached (zero to 8

blocks can be merged together).
 The default system level percentage is 60% and can be changed.

CREATE TABLE or ALTER TABLE options

 DEFAULT MERGEBLOCKRATIO
– Default option on all CREATE TABLE statements

 MERGEBLOCKRATIO = integer [PERCENT]
– Fixed MergeBlockRatio used for full table modification operations
– Overrides the system default value

 NO MERGEBLOCKRATIO
– Disables merges completely for the table

DBSControl FILESYS Group parameters
25. DisableMergeBlocks (TRUE/FALSE, default FALSE)

– Disables feature completely across the system, even for tables with a defined
MergeBlockRatio as a table level attribute.

– Effective immediately – does not require a Teradata restart (tpareset)

26. MergeBlockRatio (1-100%, default 60%)
– Default setting for any table – this can be overridden at the table level.
– Ignored when DisableMergeBlocks is TRUE (FILESYS Flag #25)
– This is not stored in or copied to table header
– Effective immediately without a tpareset

File System Writes Page 14-35

Merge Datablocks (Teradata 13.10) cont.

This feature is automatically enabled for new Teradata 13.10 systems, but must be enabled
for existing systems upgraded to 13.10.

Defaults for this feature are set via DBSControl settings.

• System defaults will work well for most tables.

• The CREATE TABLE and ALTER TABLE commands have options to enable/disable this feature for
a specific table or change the default ratio.

• The key parameter is MergeBlockRatio.

MergeBlockRatio has the following characteristics:

• The default system level percentage is 60%.

• Computed as a percentage of the maximum multi-row datablock size for the associated table.

• Candidate merged block must be smaller than this computed size after all target row updates are
completed.

CREATE TABLE or ALTER TABLE options

• DEFAULT MERGEBLOCKRATIO

– Default option on all CREATE TABLE statements

• MERGEBLOCKRATIO = integer [PERCENT]

– Fixed MergeBlockRatio used for full table modification operations

• NO MERGEBLOCKRATIO

– Disables merges completely for the table

 File System Writes Page 14-36

File System Write Summary
Regardless of how large your tables get, or how many SQL-based INSERTs, UPDATEs or
DELETEs are executed, the process is the same. This module has discussed in some detail
the sequence of steps that Teradata’s file system software will attempt in order to complete
the write operation.

The facing page summarizes some of the key topics discussed in this module.

File System Writes Page 14-37

File System Write Summary

Teradata’s file system software automatically maintains the logical sequence of
data rows within an AMP.

• The logical sequence is based on tableid, partition #, and rowid.

For write (INSERT, UPDATE, or DELETE) operations:

• Read the Data Block if not present in memory.

• Place appropriate entries into the Transient Journal buffer (WAL buffer).

• Make the changes to the Data Block in memory and determine the new block’s length.

• If the new block has changed size, allocate a new Data Block.

Blocks will grow to the maximum data block size determined by the DATABLOCKSIZE
table attribute, and then be split into smaller blocks.

• Blocks will vary in size with Teradata.

• For a table that has been updated with "ad hoc" or TPump INSERTs, UPDATEs, or
DELETEs, a typical block size for the table will be approximately 75% of the maximum
data block size.

If the Write operation fails, the file system does a rollback using the Transient Journal.

ds186034
Sticky Note
48, 8bytefield=64bit,64bit=

 File System Writes Page 14-38

Module 14: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

File System Writes Page 14-39

Module 14: Review Questions

1. When Teradata INSERTs a new row into a table, it first goes to the _________ to locate the proper
cylinder for the new row.

a. Cylinder Index
b. Fallback AMP
c. Free Cylinder List
d. Master Index

2. When a new block is needed, the File System searches the Free Block List looking for the first Free
Block whose size is equal to, or greater than the new block’s requirement. It does not have to be an
exact match.

a. True
b. False

3. Name the condition which occurs when there is no block on the Free Block List with enough sectors
to accommodate the additional data during an INSERT or UPDATE.

a. Mini Cylinder Pack
b. Cylinder Migrate to a new cylinder
c. Cylinder Migrate to an adjacent cylinder
d. Cylinder Full

4. The ______________ parameter can be set to control how completely cylinders are filled during
loading and PackDisk.

a. Free Space Percent
b. DataBlockSize
c. PermDBSize
d. PermDBAllocUnit

ds186034
Sticky Note
Master Index - the very first step.

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

 File System Writes Page 14-40

Module 14: Review Questions (cont.)
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

File System Writes Page 14-41

Module 14: Review Questions (cont.)

5. Number the following steps in sequence from 1 to 6 that the File System software will attempt to
perform in order to insert a new row into an existing data block.

____ Perform a Cylinder Migrate operation to an adjacent cylinder

____ Simply insert the row into data block if enough contiguous free bytes in the block

____ Perform a Block split

____ Perform a Cylinder Migrate operation to a new cylinder

____ Defragment the block and insert the row

____ Expand or grow the block to hold the row

6. As part of a cylinder full condition, if the number of free sectors within a cylinder is greater than 25%,
what operation will Teradata perform in the background? ___________________

7. If the number of free cylinders falls below a minimum threshold, what operation will Teradata
perform in the background? ___________________

ds186034
Sticky Note
cylinder defrag

ds186034
Sticky Note
mini cylpackhow many cyl are freed up?= 1packdisk = maybe bunch of cyl

 File System Writes Page 14-42

Notes

Teradata SQL Assistant Page 15-1

Module 15

Teradata Proprietary and Confidential

Teradata SQL Assistant

After completing this module, you will be able to:

 Define an ODBC data source for Teradata.

 Submit SQL using SQL Assistant.

 Utilize Explorer Tree to simplify creation of queries.

 Use SQL Assistant to import/export a LOB.

 Teradata SQL Assistant Page 15-2

Notes

Teradata SQL Assistant Page 15-3

Table of Contents

SQL Assistant .. 15-4
Defining a Data Source .. 15-6

Compatibility ... 15-6
Defining a Teradata .Net data source ... 15-6

Defining a Data Source (cont.) .. 15-8
Defining an ODBC Data Source .. 15-8

Defining a Data Source (cont.) .. 15-10
ODBC Driver Setup for LOBs ... 15-10

Connecting to a Data Source .. 15-12
Main Window... 15-14
Database Explorer Tree .. 15-16
Creating and Executing a Query .. 15-18

Creating statements (single and multi-queries) .. 15-18
Dragging Object Names to the Query Window ... 15-20

Dragging Multiple Objects ... 15-20
Query Options .. 15-22

To submit any part of any query .. 15-22
Clearing the Query Window .. 15-22
Formatting a Query .. 15-22

Viewing Query Results .. 15-24
Sorting an Answerset Locally .. 15-24

Formatting Answersets .. 15-26
Using Query Builder .. 15-28

Description of the Options ... 15-28
History Window ... 15-30
General Options ... 15-32
Connecting to Multiple Data Sources .. 15-34
Additional Options ... 15-36
Importing/Exporting Large Object Files .. 15-38

Teradata SQL Assistant 12.0 Note ... 15-38
Importing/Exporting Large Object Files .. 15-40
To Import a LOB into Teradata ... 15-40
Selecting from a Table with a LOB ... 15-42
Displaying a JPG within SQL Assistant .. 15-44
Teradata SQL Assistant Summary ... 15-46
Module 15: Review Questions ... 15-48
Lab Exercise 15-1 .. 15-50

Lab Exercise 15-1 (cont.) ... 15-52
Lab Exercise 15-1 (cont.) ... 15-56

 Teradata SQL Assistant Page 15-4

SQL Assistant
Teradata SQL Assistant is an information discovery tool designed for the Windows
operating system (e.g., Windows 7). Teradata SQL Assistant retrieves data from any
ODBC-compliant database server. The data can then be manipulated and stored on the
desktop PC.

Teradata SQL Assistant is a query tool written for relational database developers. It is
intended for SQL-proficient developers who know how to formulate queries for processing
on Teradata or other ODBC-compliant Databases. Used as a discovery tool, Teradata SQL
Assistant catalogs submitted instructions to arrive at a derived answer. Teradata SQL
Assistant stores the history of your SQL in a local Microsoft Access database table. This
history is available in future executions of Teradata SQL Assistant.

Teradata SQL Assistant accepts standard Teradata SQL, DDL, and DML. In addition,
Teradata SQL Assistant sends native SQL to any other database that provides an ODBC
driver. If the driver supports the statements, they are processed correctly.

Key features of SQL Assistant include:

 Create reports from any Relational Database that provides an ODBC interface
 Export data from the database to a file on a PC
 Import data from a PC file directly to the database
 Use an import file to create many similar reports (query results or Answer sets).
 Send queries to any supported database or the same query to many different

databases
 Create a historical record of the submitted SQL with timings and status information

such as success or failure
 Use the Database Explorer Tree to easily view database objects
 Use a procedure builder that gives you a list of valid statements for building the

logic of a stored procedure
 Limit data returned to prevent runaway queries

Teradata SQL Assistant also benefits database administrators by allowing them to directly
issue SHOW statements to view text for CREATE or REPLACE commands. The DBA
copies the text to the Query window, uses the Replace function to change a database name,
and reissues the CREATE or REPLACE to define a new object with this new name. You
can also display the CREATE text by going to the shortcut menu of the Database Explorer
Tree and clicking Show Definition.

Teradata SQL Assistant Page 15-5

SQL Assistant Features

SQL Assistant has the following properties:

• Windows-based

• Two providers are available for Teradata connections:

– Teradata ODBC Driver

– Teradata .Net Data Provider

• Can be used to access other supported ODBC-compliant databases.

• Permits retrieval of previously used queries (History).

– Saves information about previous query result sets.

• Supports DDL, DML and DCL commands.

– Query Builder feature allows for easy creation of SQL statements.

• Provides both import and export capabilities to files on a PC.

• Provides a Database Explorer Tree to easily view database objects.

• Does not support non-ODBC compliant syntax such as WITH BY and FORMAT.

• Teradata Studio Express is a newer name for SQL Assistant Java Edition.

– Targeted to Java developers who are familiar with Eclipse

SQL Assistant is a Windows-based utility for submitting SQL to Teradata.

 Teradata SQL Assistant Page 15-6

Defining a Data Source
Before using Teradata SQL Assistant to access the Teradata database, you must first install
the Teradata ODBC driver on your PC and the .Net Data Provider for Teradata. When
connecting to a Teradata database, you can use either ODBC or the .Net Data Provider for
Teradata.

Connection to any other database must be made through an ODBC connection. In order to
use the ODBC connection, a vendor specific ODBC driver must be installed.

Before you can use Teradata SQL Assistant, you will need to define a “data source”, namely
the instance of the database you wish to work with.

Compatibility
Teradata SQL Assistant is certified to run with any Level 2 compliant 32-bit ODBC driver.
The product also works with Level 1 compliant drivers, but may not provide full
functionality. Consult the ODBC driver documentation to determine the driver's
conformance level. Most commercially available ODBC drivers conform to Level 2.

Defining a Teradata .Net data source
Use the Connection Information dialog to create, edit and delete data sources for .Net for
Teradata. This dialog box is also used to connect to a .Net data source.

To define a Teradata .Net data source

1. Open Teradata SQL Assistant.
2. Select Teradata .Net from the provider drop down list.
3. Click the Connect icon or go to Tools > Connect.
4. Use the Connection Information dialog to choose a .Net data source.
5. Create a new data source by entering the name and server and other applicable

information

Note: This module will illustrate the screens defining an ODBC data source. The specific
screens defining a Teradata .Net data source are not provided in this module, but are similar

Teradata SQL Assistant Page 15-7

Defining a Data Source

You can define an ODBC data source in these ways:
• SQL Assistant (select Connect icon)

• Select Tools > Define ODBC Data Source

or

• ODBC Data Source Administrator Program

SQL Assistant has 2 provider options:
• Teradata .Net Data Provider
• ODBC

Select the System DSN tab and
click on Add to create a new data
source.

If using ODBC Administrator (not
shown), select the Machine Data
Source tab and click on Add to
create a new data source.

 Teradata SQL Assistant Page 15-8

Defining a Data Source (cont.)
When connecting to the Teradata database, use either the ODBC or the Teradata .Net Data
Provider. Connection to any other database must be made through an ODBC connection.

Defining an ODBC Data Source
An ODBC-based application like Teradata SQL Assistant accesses the data in a database
through an ODBC data source.

After installing Teradata SQL Assistant on a workstation or PC, start Teradata SQL
Assistant. Next, define a data source for each database.

The Microsoft ODBC Data Source Administrator maintains ODBC data sources and drivers
and can be used to add, modify, or remove ODBC drivers and configure data sources. An
About Box for each installed ODBC driver provides author, version number, module size,
and release date.

To define an ODBC data source, do one of the following:

 From the Windows desktop, select …
 Start > Control Panel > Administrative Tools > Data Sources (ODBC)

 From the Windows desktop, select
 Start > Programs > Teradata SQL Assistant
 After SQL Assistant launches, select Tools > Define Data Source

 Use the Connect icon from SQL Assistant and complete the dialog boxes.

In the “Define Data Source” dialog, decide what type of data source you wish to create:

Data Source Description Explanation

A User Data Source can be
used only by the current
Windows user

An ODBC user data source stores information about how
to connect to the indicated data provider. A user data
source is only visible to you.

A System Data Source can be
used by any user defined on
your PC.

An ODBC system data source stores information about
how to connect to the indicated data provider. A system
data source is visible to all users on this machine,
including NT services.

Teradata SQL Assistant Page 15-9

Defining a Data Source (cont.)

If using ODBC Administrator, you will be
given the user/system data source screen as
shown to the left.

You will not get this display if defining your
ODBC data source via SQL Assistant.

Select Teradata as the driver

and click Finish on the
confirmation screen.

 Teradata SQL Assistant Page 15-10

Defining a Data Source (cont.)
A dialog box (specific to Teradata) is used to define the Teradata system you wish to access.

Select This
Field...

To...

Name Enter a name that identifies this data source. You can also enter the name of the
system or the logon you will be using.

Description Enter a description. This is solely a comment field to describe the data source
name you used.

Name(s) or IP
address(es)

Enter the name(s) or IP address(es) of the Teradata Server of your Teradata
system.
Identify the host by either name (alias) or IP address. The setup routine
automatically searches for other systems that have similar name aliases. Multiple
server names may be entered by pulling the entries on separate lines within this
box.

Do not resolve
alias name to IP
address

When this option is checked, setup routine does not attempt to resolve alias
names entered into the "Name(s) and IP address(es)" box at setup time.
Instead it will be resolved at connect time. When unchecked, the setup routine
automatically appends COPn (where n = 1, 2, 3, ..., 128) for each alias name you
enter.

Use Integrated
Security

Select this option if will be logging on using integrated security measures.

Mechanism Select from the list of mechanisms that automatically appear in this box. Leave
this field blank to use the default mechanism.

Parameter The authentication parameter is a password required by the selected mechanism.

Username Enter a user name.

Password Enter a password to be used for the connection if you intend to use Teradata SQL
Assistant in an unattended (batch) mode. Entering a password here is not very
secure and is normally not recommended.

Default Database Enter the default database you want this logon to use. If the Default Database is
not entered, the Username is used as the default.

Account String You can optionally enter one of the accounts that assigned to your Username.

Session Character
Set

Use the drop down menu to choose the character set. The default is ASCII.

ODBC Driver Setup for LOBs
When defining the ODBC Data Source, from the ODBC Driver Setup screen, use the
Options button to display the Teradata ODBC Driver Options screen and verify that the
option - Use Native Large Object Support – is checked.

Teradata SQL Assistant Page 15-11

Defining a Data Source (cont.)

To access LOBs with SQL Assistant, …
1) Click on the Options button.
2) Verify that "Use Native Large Object Support" option box is checked.

 Teradata SQL Assistant Page 15-12

Connecting to a Data Source
Connecting to a data source is the equivalent of “logging on” with SQL Assistant. You may
choose from any previously defined data source.

When the connection is complete, the Connect icon is disabled and the Disconnect icon, to
its right, is enabled.

To connect to multiple data sources:

1. Go to the Tools > Options > General tab.
2. Click Allow connections to multiple data sources (Query windows),
3. Follow the procedure for connecting to a data source.

Each new data source appears in the Database Explorer Tree and opens a new query window
with the data source name. To disconnect from one data source, click the Query window
that is connected to the data source and click the disconnect icon.

Teradata SQL Assistant Page 15-13

Connecting to a Data Source

1. Click on the Connection icon to connect to Teradata.

Provider options are Teradata .NET or ODBC.

2. Select a
data source.

3. Complete the logon dialog box.

 Teradata SQL Assistant Page 15-14

Main Window
The Query window is where you enter and execute a query. The results from your query are
placed into one or more Answerset windows.

The Answerset window is a table Teradata SQL Assistant uses to display the output of a
query.

The History window is a table that displays your past queries and related processing
attributes. The past queries and processing attributes are stored locally in a Microsoft Access
database. This gives you flexibility to work with previous SQL statements in the future.

The Database Explorer Tree displays on the left side of the main Teradata SQL Assistant
window. It displays an alphabetical listing of databases and objects in the connected
Teradata server. You can double-click on a database name to expand the tree display for
that database.

You can use the Database Explorer Tree to reduce the time required to build a query and
help reduce errors in object names. The Database Explorer Tree is optional so you can
display or hide this window.

Teradata SQL Assistant Page 15-15

Main Window

Query
Window

Answerset
Window

History
Window

Database
Explorer

Tree

 Teradata SQL Assistant Page 15-16

Database Explorer Tree
The Database Explorer Tree feature of Teradata SQL Assistant displays an alphabetical
listing of databases and objects of the connected user. It further permits drilldown on
individual objects to view, column names, indexes and parameters as they apply. This is
simply done by double-clicking on a database name to expand the tree display for that
database.

The Database Explorer Tree displays on the left side of the main Teradata SQL Assistant
window. You can use the Database Explorer Tree to reduce the time required to build a
query and help reduce errors in object names. The Database Explorer Tree is optional so
you can display or hide this window.

Initially, the following Teradata databases are loaded into the Database Explorer Tree:

 The User ID that was used to connect to the database
 The user’s default database
 The database "DBC"

To add additional databases:

1. Do one of the following:
– With the Database Explorer Tree active, press Insert.
– Right-click anywhere in the Database Explorer Tree, then select Add

Database.
2. Type the database name to be added.

3. If you want the database loaded only for the current session, clear the check box.

By default, the check box is selected so the database will appear in the Database
Explorer Tree in future sessions.

The Database Explorer Tree allows you to drill down to show:

 Columns and indexes of tables
 Columns of views
 Parameters of macros
 Parameters of stored procedures

Teradata SQL Assistant Page 15-17

Explorer Tree Option

• The Database Explorer Tree displays an alphabetical listing of databases and objects
of the connected user.

– It is not a database hierarchy, but a list of databases and objects that the user needs to access.

• To refresh a database, right-click on the database/user name and select "Refresh".

To add another
database to the
Explorer Tree,
right-click on the
Explorer Tree.

To expand an
item/object,
click on the +
sign or double-
click on the
object name.

 Teradata SQL Assistant Page 15-18

Creating and Executing a Query
Queries are created by simply typing in the query text into the query window. It is not
necessary to add a semi-colon at the end of a command, unless you are entering multiple
commands in a single window. The query may be executed by clicking on the ‘Execute’
icon in the toolbar. This icon looks like a pair of footprints.

“Execute” actually executes the statements in the query one statement after the other and
optionally stops if one of the statements returns an error. Function key F5 can also be used
to execute queries serially.

“Execute Parallel” executes all statements at the same time - and is only valid if all the
statements are Teradata SQL/DML statements. This submits the entire query as a single
request, allowing the database to execute all the statements in parallel. Multiple answer sets
are returned in the Answerset window. Function key F9 can also be used to execute queries
in parallel.

Creating statements (single and multi-queries)
To allow multiple queries:

1. Select Tools > Options.
2. Select the General option.
3. Select the option “Allow Multiple Queries”.

Once this option is selected, you may open additional tabs in the query window. Each tab
can contain a separate query, and any of these queries can be executed. However, only one
query can be executed at a time.

You can create queries consisting of one or more statements.

A semicolon is not required when you enter one statement at a time. However, a semicolon
between the statements is required for two or more statements.

Each statement in the query is submitted separately to the database; therefore, your query
may return more than one Answerset.

Teradata SQL Assistant Page 15-19

Creating and Executing a Query

1. Create a query in the Query Window.

2. To execute a query use either the “execute” or the “execute parallel” buttons.

The “execute” button (or F5) serially executes all statements in the query window.

The “execute parallel” button or (F9) executes all statements in the query window

in a single multi-statement request. These queries are effectively executed in parallel.

Create query or queries
in Query Window.

 Teradata SQL Assistant Page 15-20

Dragging Object Names to the Query Window
You can drag object names from the Database Explorer tree to the Query pane.

Click and drag the object from the Explorer tree to the Query pane. The name of the object
appears in the Query window.

Teradata SQL Assistant includes an option (Tools > Options) that allows objects to
automatically be qualified when dragging or pasting names from the Database Tree into the
Query Window.

For example, if this option is checked, dragging the object "MyColumn" adds the parent
object "MyTable", and appears as "MyTable.MyColumn" in the Query Window.

Use the Ctrl key to add a comma after the object name when it is dragged to the Query
Window.

Dragging Multiple Objects
Use the Shift and Ctrl keys to select more than one object from the Database Explorer Tree
that can be dragged to the Query window.

 Use the Ctrl key to select additional objects.
 Use the Shift key to select a range of objects.

Teradata SQL Assistant Page 15-21

Dragging Object Names to the Query Window

• Click and drag the object from the Database Explorer tree to the Query window. The
name of the object appears in the Query window.

– If the "Qualify names when dragged or pasted from the Database Tree" option (Tools >
Options) is checked, then the parent name is automatically included.

– Hold Ctrl key – causes a comma to be included after the object

• Selecting and dragging multiple objects
– The Shift and Ctrl keys can also be used to select multiple objects in the Database Explorer

tree for the purpose of dragging multiple objects to the Query Window.

Note: The order of selection becomes
the order of columns in the SELECT.

 Teradata SQL Assistant Page 15-22

Query Options

To submit any part of any query
1. Select Tools > Options.
2. Select the Query tab.
3. Check the option “Submit only the selected Query text, when highlighted”.
4. From the Query window, select the part of the query to submit by highlighting it.

Clearing the Query Window
The query window may be cleared using the “Clear Query” button on the tool bar.

Formatting a Query
The query formatting feature adds line breaks and indentation before certain keywords,
making SQL that comes from automatic code generators or other sources more readable.

To Format a Query
1. Ensure a statement exists in the Query window.
2. Do one of the following:

 From the Tool Bar, click the Format Query button.
 Right-click in the Query window, then click Format Query
 Press Ctrl+Q
 Select Edit > Format Query

 Note: Some keywords will cause a line break and possibly cause the new line to be

indented. If a keyword is found to already be the first word on a line and it is already
prefixed by a tab character, then its indentation level will not change.

Indentation
When you press the Enter key, the new line will automatically indent to the same level as
the line above.

If you highlight one or more lines in the query and press the Tab key, those lines are
indented one level. If you press Shift-Tab, the highlighted lines are un-indented by one
level.

This indentation of lines will only apply if the selected text includes a line feed character.
For example, you must either select at least part of two lines, or if selecting only one line,
then the cursor must be at the beginning of the next line. (Note that this is always the case
when you use the margin to select a line.) If no line end is included in the selected text, or
no text is selected, then a tab character will simply be inserted.

Teradata SQL Assistant Page 15-23

Query Options

To submit any part of a query:

1. Using Tools > Options > Query

Check the option “Submit only the selected Query text, when highlighted”.

2. Highlight the text in the query window and execute.

To clear the text in the query window, use the “Clear Query” button.

To format a query, click on the “Format Query” button.

Highlighted query in
Query Window.

 Teradata SQL Assistant Page 15-24

Viewing Query Results
The results of a query execution may be seen in the Answer Set window. Large answer sets
may be scrolled using the slide bars.

The Answerset window is a table that displays the results from a statement. You can sort the
output in a number of ways and print as bitmaps in spreadsheet format. Individual cells,
rows, columns, or blocks of columns may be formatted to change the background and
foreground color as well as the font style, name, and size. You can make other
modifications such as displaying or hiding gridlines and column headers.

The table may be resized by stretching the Answerset window using standard Windows
sizing techniques. Individual columns, groups of columns, rows, or groups of rows may
also be sized.

Output rows may be viewed as they are being retrieved from the database.

Sorting an Answerset Locally
There are two ways to sort an Answerset locally: quick sort or full sort. A quick sort sorts
on a single column; a full sort allows sorting by data in multiple columns.

To sort an Answerset using quick sort:

 Right-click any column heading to sort the data by that column only. The data is
initially sorted in ascending order. Right-click the same column header again
reverses the sort order.

Note: The output from certain statements (e.g., EXPLAIN) cannot be sorted this way.

To sort an Answerset using a full sort:

 Do one of the following: From the Tool Bar, click the sort button, right-click in
the Answerset window and select Sort, or use the Edit > Sort menu.

 In the Sort Answerset dialog box, all columns in the active window are presented in

the Available Columns list box.

 Select the column name in the Available Columns list box, or use the up or down

arrow keys to highlight the column name and press Enter.

 This moves the column name to the Sort keys list box. By default, the sort

direction for this new sort column is ascending (Asc). If you click a column in the
Sort Keys list box, or select the item using the arrow keys or mouse and press
Enter, it reverses to descending sort order (Dsc).

To remove a sort column from the list, double-click the column name, or use the arrow keys
to highlight the column and press Delete.

Teradata SQL Assistant Page 15-25

Viewing Query Results

• The Answerset window is a table that displays the results from a statement.

• The output can be sorted in different ways:
– Quick sort (single column) – right click on the column heading

– Full sort (1 or more columns) – use Edit > Sort menu or Sort button

• Data can be filtered using the funnel option at the column level.

Result set in
Answerset Window.

 Teradata SQL Assistant Page 15-26

Formatting Answersets
You can format the colors, font name, font style, and font size of a block of cells, individual
cells, rows, columns, or the entire spreadsheet. You can also specify the number of decimal
places displayed and if commas are displayed to mark thousand separators in numeric
columns.

You can control the Answerset and the Answerset window by setting options. To set
Answerset options, select Tools > Options > Answerset tab.

For example, to display Alternate Answerset Rows in Color, check and first option in the
Answerset tab, and use the Choose button.

 Selecting this option makes it easier to see Answerset rows. The option applies the
selected background color to alternating rows in the Answerset grid. The
remaining rows use the standard ‘Window Background’ color.

 The Choose button displays the selected color. Clicking the Choose button allows

you to change this color.

To format the colors, font name, font style, and font size of a block of specific cells
individual cells, rows, columns, you right-click on the answer set cells. Some options are
listed below.

To display commas:

1. Right-click in the Answerset cell you wish to change and select Format Cells.
2. Check Display 1000 separators.
3. Click OK.

To display decimal places:

1. Right-click in the Answerset cell you wish to change and select Decimal Places.
2. Select a number between 0 and 4.

To designate up to 14 decimal places:

a. Right-click to bring up the Shortcut menu.
b. Click Format Cells to bring up the Format Cells dialog.
c. Under Numerics, select the desired number of decimal places.

Teradata SQL Assistant Page 15-27

Formatting Answersets

To set defaults for Answersets,
use the Tools > Options > Answerset tab.

To format specific cells,
right-click on a cell or use the icon.

 Teradata SQL Assistant Page 15-28

Using Query Builder
Query Builder provides the user with the ability to use ‘templates’ for SQL commands,
which may then be modified by the user. This is a convenient way to create commands
whose syntax is complex or not easily remembered. Simply find the appropriate command,
then drag and drop it into the query window where it may then be customized.

The Query Builder window is a floating window you can leave open when you are working
within the main Teradata SQL Assistant window.

To access the Query Builder tool, do one of the following:

 Press F2.
 Select Help > Query Builder.
 Right-click in the Query window and select Query Builder from the shortcut

menu.

From the drop-down list in the upper left corner, choose one of the following options.

SQL
Statements

Select a command from the statement list in the left pane to display an
example of its syntax in the right pane.

Procedure
Builder

Select a stored procedure statement from the list in the left pane to
display an example of its syntax in the right pane.

<User
Defined>

If you create a custom.syn file, this option appears in the drop-down list.
The name will be the name you specified in the first line of the
custom.syn file. Select this option and the queries you defined in this file
will display.

Description of the Options
SQL Statements
 When you choose the SQL Statements option, the statement list in the left pane shows

each of the statement types available on the current data source. These syntax examples
reflect the SQL syntax of the data source you are currently connected. For example, the
Teradata syntax file is Teradata.syn.

Procedure Builder
 When you choose the Procedure Builder option, the left pane shows a list of statements

that are valid only when used in a CREATE or REPLACE procedure statement.

<User Defined>
 You can create a user-defined syntax file using any text editor such as Notepad or

Microsoft Word. The name of the file must be custom.syn. The format of this file is the
same as the other syntax files except it has an additional line at the start of the file
containing the name you wish to see in the dropdown list in the Query Builder dialog.

Teradata SQL Assistant Page 15-29

Query Builder

2. Double-click on
SQL statement to
place sample
query in Query
Window.

Query Builder provides the user
with the ability to use 'templates'
for SQL commands.

1. Select Query Builder from the
Help menu or use F2.

 Teradata SQL Assistant Page 15-30

History Window
The History window is a table that displays your past queries and related processing
attributes. The past queries and processing attributes are stored locally in a Microsoft Access
2000 database. This allows the flexibility to work with previous SQL statements in the
future.

Clicking any cell in the SQL Statement column in the History window copies the SQL to the
Query Window. It may then be optionally modified and then resubmitted.

You can display or hide the History window at any time.

With Teradata SQL Assistant 13, all history rows are now stored in a single History
database. The History Filter dialog allows you to specify a set of filters to be applied to the
history rows. The operators include >, <, =, and LIKE. The filter applies to the entire
history table. When you click in the fields or boxes in the Filter dialog, the possible
operators and proper format are displayed at the bottom of the dialog.

You can filter your history on the following options:

 Date
 Data source
 User Name
 Statement Type – for example, SELECT or CREATE TABLE
 Statement Count – show only those queries tat contain this many statements
 Row Count
 Elapsed Time
 Show successful queries only

By default, Teradata SQL Assistant records all queries that are submitted. You may change
this option so Teradata SQL Assistant records only those statements that are successful, or
turn off history recording altogether.

The most recently executed statement appears as the first row in the History window. The
data may be sorted locally after it has been loaded into the History window. New entries are
added as the first row of history no matter what sort order has been applied.

Teradata SQL Assistant Page 15-31

History Window

A history of recently submitted queries may be recalled by activating the ‘Show History’
feature. Key options available with the History window are:

• All history rows are now stored in a single History database. The History Filter dialog allows you
to specify a set of filters to be applied to the history rows.

• You can choose to display all queries (successful or not), use a history filter to only display
successful queries, or turn off history recording altogether.

Click on query in
History Window.

Query is copied into Query Window.

 Teradata SQL Assistant Page 15-32

General Options
To set general program preferences:

1. Select Tools > Options.
2. Click the General tab.
3. Choose from the following options:

 Allow multiple Queries - allows you to have multiple query windows open
simultaneously. With this option selected, the New Query command opens a new
tab in the Query window. The default for this setting is unchecked.

 Display this string for Null data fields - enter the string you want displayed in

place of Null data fields in your reports and imported/exported files. The default
for this setting is "?".

 Use a separate Answer window for

– Each Resultset - opens a new Answer window for each new result set
– Each Query - opens a new Answer window for each new query, but uses tabs

within this window if the query returns multiple result sets. This is the default
setting.

– Never - directs all query results to display in a single tabbed Answer window

Teradata SQL Assistant Page 15-33

General Options

General options (Tools > Options > General tab) that are available include:

• Allow connections to multiple data sources.

• Allow multiple queries per connection – allows you to have multiple query windows
open simultaneously. New Queries are opened in new tabs.

Data Format options include:

• Date format

• Display of NULL data values

• Decimal places to displace

 Teradata SQL Assistant Page 15-34

Connecting to Multiple Data Sources
You can connect to multiple data sources. The “Allow connections to multiple data
sources” option must be checked with the General Options.

Each new data source appears in the Database Tree and opens a new query window with the
data source name. To disconnect from one data source, click the Query window that is
connected to the data source and click the disconnect icon.

The example on the facing page show two connects to two different systems (tdt5-1 and
tdt6-1).

Teradata SQL Assistant Page 15-35

Connecting to Multiple Data Sources

A separate query window is opened for each data source connection.

Connections have
been made to two
systems:

• tdt5-1
• tdt6-1

Multiple queries
for tdt5-1 are
shown via tabs.

History includes
the Source name
for queries.

 Teradata SQL Assistant Page 15-36

Additional Options
Teradata SQL Assistant provides many other tools and options, some of which are briefly
noted on the facing page.

Teradata SQL Assistant Page 15-37

Additional Options

Additional Tools menu options include:

• Explain – runs an Explain function on the SQL
statements in the Query window and display the
results in the Answerset window.

• List Tables – displays the Table List dialog box where
you can enter the name of the database and the
resulting list of tables or view displays in an
Answerset window.

• List Columns – displays the Column List dialog box
where you can list the columns in a particular
table/view and the resulting list of columns displays
in an Answerset window.

• Disconnect – disconnects from the current data
source.

• Change Password – change your Teradata password.

• Compact History – reclaim space that may have been
lost when history rows were deleted.

• Options – establish various options for queries,
answersets, import/export operations, etc.

 Teradata SQL Assistant Page 15-38

Importing/Exporting Large Object Files
To import and/or export LOB (Large Object) files with SQL Assistant, you need to first
make sure the “Use Native Large Object Support” option is set when defining ODBC
driver for Teradata. This option was discussed earlier in this module.

This option is automatically selected starting with SQL Assistant 14.0.

Teradata SQL Assistant 12.0 Note
The following information is not needed with Teradata SQL Assistant 13 and later.

With Teradata SQL Assistant 12.0 and prior versions, to import a file larger than 10 MB into
a BLOB or CLOB column, you need to enable this capability within SQL Assistant.

To enable importing of files larger than 10 MB into BLOB or CLOB columns:

1. Select Tools > Options, then select the Export/Import tab.
2. Select the Import tab.
3. Click in the Maximum Size of an Imported data file field.
4. Press the Esc key, then set the value to the size of the largest file you wish to load,

up to a maximum of 9 digits.

 If you do not press the Esc key before entering the data, you will be limited to a

maximum of 7 digits in this field.
5. Click OK.

Note: This will be a temporary change. The next time you click OK on the Options screen
the value will be reset to the first 7 digits of the number you had last set - for example, 50
MB (50,000,000) will become 5 MB (5,000,000).

Teradata SQL Assistant Page 15-39

Importing/Exporting Large Object Files

SQL Assistant > Tools > Options

• To import a LOB, create a data file that
contains the names of the Large Objects.

• Use the Export/Import Options dialog to
specify the field delimiter.

• The example in this module assumes the
fields in the imported file are TAB
separated.

To import and/or export LOB (Large Object) files with SQL Assistant, you need to first
make sure the “Use Native Large Object Support” option is set with the data source.

Teradata SQL Assistant supports Large Objects. Large objects come in two types:

• Binary – these columns may contain Pictures, Music, Word documents, PDF files, etc.

• Text – these columns contain text data such as Text, HTML, XML or Rich Text (RTF).

 Teradata SQL Assistant Page 15-40

Importing/Exporting Large Object Files
To import and/or export LOB (Large Object) files with SQL Assistant, you need to first
make sure the “Use Native Large Object Support” option is set when defining ODBC
driver for Teradata. This option was discussed earlier in this module.

To Import a LOB into Teradata
First, create a data file that contains the names of the LOB(s) to be imported. By default, the
data file needs to be located in the same folder as the LOB.

Assume the data file to import from contains 4 fields that are <tab> separated.

Second, select the IMPORT DATA function and execute an Insert statement.

Example: INSERT INTO TF VALUES (?,?,?,?B);

The parameter markers in this example are:

? The data for this parameter is read from the Import file. It is always a character
string, and will be converted to a numeric value if necessary.

?B The data for this parameter resides in a file that is in the same directory as the

Import file. The import file contains only the name of the file to be imported. The
contents of the file are loaded as a binary image (e.g., BLOB). You can also use ??
in place of ?B.

?C The data for this parameter resides in a file that is in the same directory as the

import file. The import file contains only the name of the file to be imported. Use
this marker to load a text file into a CHAR or CLOB column.

Teradata SQL Assistant Page 15-41

Importing a LOB into Teradata

1 TF Student Manual PDF TF v1400 Student Manual.pdf
2 TF Lab Workbook PDF TF v1400 Lab Workbook.pdf

TF Manual LOB.txt

The various fields are separated by tabs.

1. Create a data file that contains the name(s) of the LOB(s). This data file needs to be
located in the same folder as the LOB.

2. Within SQL Assistant, from the File menu, select the "Import Data" option to turn on the
Import Data function.

3. Enter an INSERT statement within the Query window.

INSERT INTO TF VALUES (?, ?, ?, ?B);

4. In the dialog box that is displayed, choose the name of the file to import.

For example, enter or choose "TF Manual LOB.txt".

5. From the File menu, select the "Import Data" option to turn off the Import Data function.

 Teradata SQL Assistant Page 15-42

Selecting from a Table with a LOB
To select from a table with a LOB, simply execute a SELECT statement. If LOB column is
projected, then a dialog box is displayed to enter the file name for the LOB.

Note that multiple files that are exported will have sequential numbers added to the file
name.

In the example on the facing page, the file name was specified as TF_Manual. Therefore,
the two manuals that will be created are named:

 TF_PDF001.pdf
 TF_PDF002.pdf

Teradata SQL Assistant Page 15-43

Selecting from a Table with a LOB

With SQL Assistant, enter the following query:

SELECT * FROM TF ORDER BY 1;

The following dialog box is displayed to represent the data files to export the LOBs into.
Also specify the "File Type" as a known Microsoft file type extension.

The answer set window will include
a link to exported data files.

 Teradata SQL Assistant Page 15-44

Displaying a JPG within SQL Assistant
The “Display as picture …” can be selected to display a JPG file within the answer set.

Optionally, the “Also save picture to a file” can be selected.

Note that large JPG files with display very large within the answer set window.

Teradata SQL Assistant Page 15-45

Displaying a JPG within SQL Assistant

SELECT * FROM Photos ORDER BY 1;

Optionally, the "Display as picture …" can be
selected to display a JPG file within the answer set.

 Teradata SQL Assistant Page 15-46

Teradata SQL Assistant Summary
The Teradata SQL Assistant utility can be of great value to you. The facing page
summarizes some of the key features discussed in this module.

Teradata SQL Assistant Page 15-47

Teradata SQL Assistant Summary

Characteristics of Teradata SQL Assistant include:

• Windows-based utility that can be used to submit SQL queries to the Teradata
database.

• Provides the retrieval of previously used queries (History).

• Saves information about previous query result sets.

• Supports DDL, DML and DCL commands.

– Query Builder feature allows for easy creation of SQL statements.

• Provides both import and export capabilities to files on a PC.

• Provides a Database Explorer Tree to easily view database objects.

 Teradata SQL Assistant Page 15-48

Module 15: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Teradata SQL Assistant Page 15-49

Module 15: Review Questions

1. Which two data interfaces are available with Teradata SQL Assistant?

a. CLIv2

b. JDBC

c. ODBC

d. Teradata .Net

2. Separate history database files are needed to maintain queries for different data sources.

a. True

b. False

3. Which piece of query information is not available in the History Window?

a. User name

b. Query band

c. Elapsed time

d. Data source name

e. Number of rows returned

4. What are two techniques to execute multiple statements as a multi-statement request?

__________________________________ __________________________________

 Teradata SQL Assistant Page 15-50

Lab Exercise 15-1
Check your understanding of the concepts discussed in this module by completing the lab
exercise as directed by your instructor.

Teradata SQL Assistant Page 15-51

Lab Exercise 15-1

Lab Exercise 15-1

Purpose

In this lab, you will use Teradata SQL Assistant to define a data source and execute some simple
SQL commands.

What you need

Teradata SQL Assistant installed on the laptop or PC

Tasks

1. Define either an ODBC data source or a .NET data source using the following instructions.

Complete the dialog box with the following information:

Name – TFClass
Description – Teradata Training for your name
Name or IP Address – ________________________ (supplied by instructor)
Username – ________________________ (supplied by instructor)
Password – do not fill in your password (initially needed for a .NET connection)

Verify the following options are set properly.

Session Character Set – ASCII
Options – Session Mode – System Default
Use Native Large Object Support option is checked (not needed with a .NET connection)

 Teradata SQL Assistant Page 15-52

Lab Exercise 15-1 (cont.)
Check your understanding of the concepts discussed in this module by completing the lab
exercise as directed by your instructor.

Teradata SQL Assistant Page 15-53

Lab Exercise 15-1 (cont.)

2. Connect to the data source your just created (TFClass) and logon with your username and password.

3. Using the Tools > Options tabs, ensure the following options are set as indicated:

General – Check – Allow connections to multiple data sources
General – Check – Allow multiple queries per connection
Query – Check – Submit only the selected Query text, when highlighted
Answerset – Check – Display alternate Answerset rows in color – choose a color
Answerset – Check – Display Column Titles rather than Column Names
History – Check – Display SQL text on a single line
History – Check – Do not save duplicate queries in history

4. If the Explorer Tree pane is not visible, use the View > Explorer option to display the Explorer Tree.

Add the following databases to the Explorer Tree: AP, DS, PD, Collaterals

(Hint: Right-click on the Explorer Tree pane to use the "Add Database …" option.

5. Using the Explorer Tree, view the table objects in your database.

6. Using the Query Window, execute the following query.

CREATE TABLE Old_Orders AS Orders WITH NO DATA;

Does the new table object appear in the table object list? _____ If not, "refresh" the database.

 Teradata SQL Assistant Page 15-54

Lab Exercise 15-1 (cont.)
Check your understanding of the concepts discussed in this module by completing the lab
exercise as directed by your instructor.

Use the following SQL to determine a count of rows in a table.

 SELECT COUNT(*) FROM tablename;

Step 8 Hint: Your Old_Orders table should have 2400 rows. If not, check the dates you used
in your queries.

Teradata SQL Assistant Page 15-55

Lab Exercise 15-1 (cont.)

7. Using the Query window, execute the following query.

INSERT INTO Old_Orders SELECT * FROM DS.Orders
WHERE orderdate BETWEEN '2008-07-01' AND '2008-09-30';

Use the "Format Query" option to format the query.

How many rows are in the Old_Orders table? _______

8. Using the History window, recall the query from step #7 and modify it to add orders from '2008-10-01'
through '2008-12-31'.

How many rows are in the Old_Orders table? _______

9. Execute the following query by using the drag and drop object feature of SQL Assistant.

SELECT custid, SUM (totalprice)
FROM Old_Orders
GROUP BY 1
ORDER BY 1;

Use the "Add Totals" feature to automatically generate a total sum for all of the orders.

What is the sum of the orders using this feature? ______________

 Teradata SQL Assistant Page 15-56

Lab Exercise 15-1 (cont.)
Check your understanding of the concepts discussed in this module by completing the lab
exercise as directed by your instructor.

Use the following SQL to create a view.

 CREATE VIEW viewname
 AS
 SELECT column1, column2
 FROM table_or_view_name
 [WHERE condition];

Use the following SQL to create a simple macro.

 CREATE MACRO macroname
 AS (SELECT * FROM table_or_view_name ;) ;

Use the following SQL to execute a simple macro.

 EXEC macroname;

Teradata SQL Assistant Page 15-57

Lab Exercise 15-1 (cont.)

10. Format only the cells of sum of the ordertotal to be in italics and green.

11. Using the Query Builder feature, create a view named "Old_Orders_v" for the Old_Orders table that
includes the following columns and only includes orders for December, 2008.

orderid, custid, totalprice, orderdate

SELECT all of the rows from the view named "Old_Orders_v".

How many rows are displayed from this view? _______

12. Using the Query Builder feature, create a simple macro named "Old_Orders_m" which selects all of
the orders from the view named "Old_Orders_v".

Execute the macro "Old_Orders_m".

What is the sum of the orders for December using this "Add Totals" feature? ______________

13. (Optional) Use the Collaterals database to access the Photos table to display various JPG files.

Execute the following: SELECT * FROM Collaterals.Photos ORDER BY 1;

Note: Set the file type to JPG and check the option "Display as picture in Answerset".

 Teradata SQL Assistant Page 15-58

Notes

Analyze Primary Index Criteria Page 16-1

Module 16

Teradata Proprietary and Confidential

Analyze Primary Index Criteria

After completing this module, you will be able to:

 Identify Primary Index choice criteria.

 Describe uniqueness and how it affects space utilization.

 Explain row access, selection, and selectivity.

 Choose between single and multiple-column Primary Indexes.

 Describe why a table might be created without a primary index.

 Specify the syntax to create a table without a primary index.

 Analyze Primary Index Criteria Page 16-2

Notes

Analyze Primary Index Criteria Page 16-3

Table of Contents

Primary Index Choice Criteria ... 16-4
Primary Index Defaults .. 16-6
CREATE TABLE – Indexing Rules .. 16-8
Order of Preference Exercise ... 16-10
Primary Index Characteristics .. 16-12
Multi-Column Primary Indexes ... 16-14
Primary Index Considerations .. 16-16
PKs and Duplicate Rows .. 16-18
NUPI Duplicate Row Check .. 16-20
Primary Index Demographics .. 16-22
Column Distribution Demographics for a PI Candidate .. 16-24
SQL to View Data Demographics ... 16-26
Example of Using Data Demographic SQL ... 16-28
TableSize View .. 16-32
SQL to View Data Distribution ... 16-34
E-R Diagram for Exercises .. 16-36
Exercise 2 – Sample ... 16-38
Exercise 2 – Choosing PI Candidates .. 16-40
What is a NoPI Table? ... 16-52
Reasons to Consider Using NoPI Tables ... 16-54
Creating a Table without a PI .. 16-56
How is a NoPI Table Implemented? .. 16-58
NoPI Random Generator .. 16-60
The Row ID for a NoPI Table .. 16-62
Multiple NoPI Tables at the AMP Level ... 16-66
Loading Data into a NoPI Table .. 16-68
NoPI Options .. 16-70
Summary .. 16-72
Module 16: Review Questions ... 16-74
Module 16: Review Questions (cont.) ... 16-76
Lab Exercise 16-1 .. 16-78
Lab Exercise 16-2 .. 16-82

 Analyze Primary Index Criteria Page 16-4

Primary Index Choice Criteria
There are three Primary Index Choice Criteria: Access Demographics, Distribution
Demographics, and Volatility.

 Access demographics are the first of three Primary Index Choice Criteria. Access
columns are those that would appear (with a value) in a WHERE clause in an SQL
statement. Choose the column most frequently used for access to maximize the
number of one-AMP operations.

 Distribution demographics are the second of the Primary Index Choice Criteria.

The more unique the index, the better the distribution. Optimizing distribution
optimizes parallel processing.

 In choosing a Primary Index, there is a trade-off between the issues of access and

distribution. The most desirable situation is to find a PI candidate that has good
access and good distribution. Many times, however, index candidates offer great
access and poor distribution or vice versa. When this occurs, the physical designer
must balance these two qualities to make the best choice for the index.

 The third of the Primary Index Choice Criteria is volatility, or how often the data

values will change. The Primary Index should not be very volatile. Any changes to
Primary Index values may result in heavy I/O overhead, as the rows themselves
may have to be moved from one AMP to another. Choose a column with stable
data values.

Degree of Uniqueness and Space Utilization
The degree of uniqueness of a Primary Index has a direct influence on the space utilization.
The more unique the index, the better the space is used.

Fewer Distinct PI Values than Amps

For larger tables, it is not a good idea to choose a Primary Index with fewer distinct values
than the number of AMPs in the system when other columns are available. At best, one
index value would be hashed to each AMP and the remaining AMPs would carry no data.

Non-Unique PIs
Choosing a Non-Unique PI (NUPI) with some very non-unique values can cause “spikes” in
the distribution.

Unique (or Nearly-Unique) PIs
The designer should choose an index which is unique or nearly unique to optimize the use of
disk space. Remember that the PERM limit of a database (or user) is divided by the number
of AMPs in the system to yield a threshold that cannot be exceeded on any AMP.

Analyze Primary Index Criteria Page 16-5

Primary Index Choice Criteria

Note: Data distribution has to be balanced with Access usage in choosing a PI.

ACCESS Maximize one-AMP operations:
Choose the column(s) most frequently used for access.
Consider both join and value access.

DISTRIBUTION Optimize parallel processing:
Choose the column(s) that provides good distribution.

VOLATILITY Reduce maintenance resource overhead (I/O):
Choose the column(s) with stable data values.

General Notes:

• A good logical model identifies the Primary Key for each table or entity.

– Do not assume that the Primary Key will become the Primary Index.

– It is common for many tables in a database to have a Primary Index that is
different than the Primary Key.

– This module will first cover PI tables then cover details of the NO PRIMARY INDEX
option. The general assumption in this course is that tables will have a PI.

 Analyze Primary Index Criteria Page 16-6

Primary Index Defaults
1. If the NO PRIMARY INDEX clause is specified, then the table is created without a

primary index. If this clause is used, you cannot specify a primary index for the table.

 There are a number of limitations associated with a NoPI table that will be listed later.

2. If the PRIMARY INDEX, NO PRIMARY INDEX, PRIMARY KEY, or UNIQUE

options are NOT specified in the CREATE TABLE DDL, then:

 Table to be created with or without a primary index will be based on a new
DBSControl General flag Primay Index Default. The default setting is "D" which
effectively means the default is to create a table with the first column as a NUPI.

 D - This is the default setting. This setting works the same as the P setting.

 P - The first column in the table will be selected as the non-unique primary index.
This setting works the same as that in the past when PRIMARY INDEX was not
specified.

 N – The table will be created without a primary index (NoPI table).

3. With the NoPI Table feature, the system default setting essentially remains the same as

that in previous Teradata releases where the first column was selected as the non-unique
primary index when the user did not specify a PRIMARY INDEX or a PRIMARY KEY
or a UNIQUE Constraint.

 Users can change the default setting for PrimaryIndexDefault to P or N and not rely on

the system default setting which might be changed in a future release.

Analyze Primary Index Criteria Page 16-7

Primary Index Defaults

A Teradata 13.0 DBSControl flag determines if a PI or NoPI table is created when
a CREATE TABLE DDL does NOT have any of the following explicitly specified:

• PRIMARY INDEX clause
• NO PRIMARY INDEX clause
• PRIMARY KEY or UNIQUE constraints

Values for DBS Control General field #53 "Primary Index Default":

D – "Teradata Default" (effectively same as option P)
P – "First Column is NUPI" – create tables with first column as a NUPI
N – "No Primary Index" – create tables without a primary index (NoPI)

The PRIMARY INDEX and NO PRIMARY INDEX clauses have precedence over
PRIMARY KEY and UNIQUE constraints.

If the NO PRIMARY INDEX clause is specified AND if PRIMARY KEY or UNIQUE constraints
are also defined, these will be implemented as Unique Secondary Indexes.

• It may be unusual to create a NoPI table with these additional indexes.

 Analyze Primary Index Criteria Page 16-8

CREATE TABLE – Indexing Rules
The primary index may be explicitly specified at table create time. If not, a primary index
choice will be made based on other choices made. Primary key and uniqueness constraints
are always implemented by Teradata as unique indexes, either primary or secondary.

This chart assumes the system default is to create tables with a Primary Index.

The index implementation schedule is as follows:

Is a PI specified?

No

PK specified?

PK = UPI

PK specified and
UNIQUE constraints specified?

PK = UPI
UNIQUE constraints = USI(s)

UNIQUE column level constraints
only specified?

1st UNIQUE column level
constraint = UPI

Other UNIQUE constraints =
USI(s)

UNIQUE column level constraints and
table level UNIQUE constraints
specified?

1st UNIQUE column level
constraint = UPI

Other UNIQUE constraints =
USI(s)

UNIQUE table level constraints only
specified?

1st UNIQUE table level constraint
= UPI

Other table level UNIQUE
constraints = USI(s)

Neither specified? 1st column = NUPI

Yes

PK specified?

PK = USI

PK specified and UNIQUE constraints
specified?

PK = USI
UNIQUE constraints = USI(s)

UNIQUE constraints only specified? UNIQUE constraints = USI(s)

Analyze Primary Index Criteria Page 16-9

CREATE TABLE – Indexing Rules

If PRIMARY KEY specified PK = UPI

else 1st UNIQUE column level constraint specified column = UPI

else 1st UNIQUE table level constraint specified column(s) = UPI

else 1st column specified* column = NUPI

If PRIMARY KEY specified PK = UPI

else 1st UNIQUE column level constraint specified column = UPI

else 1st UNIQUE table level constraint specified column(s) = UPI

else 1st column specified* column = NUPI

Unspecified Primary Index option – assuming system default is "Primary Index"

If PRIMARY KEY is also specified PK = USI

and any UNIQUE constraint (column or table level) column(s) = USI

If PRIMARY KEY is also specified PK = USI

and any UNIQUE constraint (column or table level) column(s) = USI

Specified PRIMARY INDEX or NO PRIMARY INDEX

Every PK or UNIQUE constraint is always implemented as a
unique index.

* If system default is "No Primary Index" AND none of the
following have specified (Primary Index, PK, or UNIQUE),
then table is created as a NoPI table.

 Analyze Primary Index Criteria Page 16-10

Order of Preference Exercise
Complete the exercise on the facing page. Answers will be provided by your instructor.

Some additional examples include:

If table_5 was created as follows:

CREATE TABLE table_5
 (col1 INTEGER NOT NULL
 ,col2 INTEGER NOT NULL
 ,col3 INTEGER NOT NULL
 ,CONSTRAINT uniq1 UNIQUE (col1,col2)
 ,CONSTRAINT uniq2 UNIQUE (col3));

Then, the indexes are a UPI on (col1,col2) and a USI on (col3).

If table_5 was created as follows:

CREATE TABLE table_5
 (col1 INTEGER NOT NULL
 ,col2 INTEGER NOT NULL
 ,col3 INTEGER NOT NULL
 ,CONSTRAINT uniq1 UNIQUE (col3)
 ,CONSTRAINT uniq2 UNIQUE (col1,col2));

Then, the indexes are a UPI on (col3) and a USI on (col1,col2).

Notes:

 Recommendation: Specify Primary Index when creating a table.
 Table level constraints are typically used to specify a PK or UNIQUE constraint for

multiple columns.

Analyze Primary Index Criteria Page 16-11

Order of Preference Exercise

Assuming the system default is "Primary Index", show the indexes that are created as a result of the DDL.

CREATE TABLE table_1
(col1 INTEGER NOT NULL UNIQUE col1 =
,col2 INTEGER NOT NULL PRIMARY KEY); col2 =

CREATE TABLE table_2
(col1 INTEGER NOT NULL PRIMARY KEY col1 =
,col2 INTEGER) col2 =

PRIMARY INDEX (col2);

CREATE TABLE table_3
(col1 INTEGER col1 =
,col2 INTEGER NOT NULL); col2 =

CREATE TABLE table_4
(col1 INTEGER NOT NULL col1 =
,col2 INTEGER NOT NULL col2 =
,col3 INTEGER NOT NULL UNIQUE col3 =
,CONSTRAINT pk1 PRIMARY KEY (col1,col2)); (col1,col2) =

CREATE TABLE table_5
(col1 INTEGER NOT NULL col1 =
,col2 INTEGER NOT NULL col2 =
,col3 INTEGER NOT NULL UNIQUE col3 =
,CONSTRAINT uniq1 UNIQUE (col1,col2)); (col1,col2) =

UPI = Unique Primary Index
NUPI = Non Unique Primary Index
USI = Unique Secondary Index

ds186034
Sticky Note
UPI

ds186034
Sticky Note
USI

ds186034
Sticky Note
NUPI

ds186034
Sticky Note
USI

ds186034
Sticky Note
NUPI

ds186034
Sticky Note
UPI

ds186034
Sticky Note
USI

ds186034
Sticky Note
column contraint which comes first

ds186034
Sticky Note
table level constraint

ds186034
Sticky Note
UPI

ds186034
Sticky Note
USI

 Analyze Primary Index Criteria Page 16-12

Primary Index Characteristics
Each table has one and only one Primary Index. A Primary Index may be different than a
Primary Key.

UPI = Best Performance, Best Distribution

 UPIs offer the best performance possible for several reasons. They are:
 A Unique Primary Index involves a single base table row at most
 No Spool file is ever required
 Single value access via the Primary Index is a one-AMP operation and uses

only one I/O

NUPI = Good Performance, Good Distribution

 NUPI performance differs from UPI performance because:
 Non-Unique Primary Indexes may involve multiple table rows.
 Duplicate values go to the same AMP and the same data block, if possible.
 Multiple I/Os are required if the rows do not fit in a single data block.
 Spool files are used when necessary.
 A duplicate row check is required on INSERT and UPDATE for a SET table.

Analyze Primary Index Criteria Page 16-13

Primary Index Characteristics

Primary Indexes (UPI and NUPI)

• A Primary Index may be different than a Primary Key.

• Every table has only one Primary Index.

• A Primary Index may contain null(s).

• Single-value access uses ONE AMP and, typically, one I/O.

Unique Primary Index (UPI)

• Involves a single base table row at most.

• No spool file is ever required.

• The system automatically enforces uniqueness on the index value.

Non-Unique Primary Index (NUPI)

• May involve multiple base table rows.

• A spool file is created when needed.

• Duplicate values go to the same AMP and the same data block.

• Only one I/O is needed if all the rows fit in a single data block.

• Duplicate row check is required for a Set table.

 Analyze Primary Index Criteria Page 16-14

Multi-Column Primary Indexes
In practice, Primary Indexes are sometimes composed of several columns. Such composite
indexes are known as multi-column Primary Indexes. They are used quite commonly and
you can probably think of several existing applications that utilize them.

Increased Uniqueness
There are both advantages and disadvantages to using multi-column PIs. Perhaps the most
important advantage is that by combining several columns, you can produce an index that is
much more unique than any of the component columns. This increased uniqueness will
result in better data distribution, among other benefits.

For example:

 PI = Lastname
 PI = Lastname + Firstname
 PI = Lastname + Firstname + MI

The above example points out how better data distribution occurs. Notice that each
succeeding Primary Index is more unique than the one preceding it. That is, there are far
less individuals with identical last and first names then there are with the same last name,
and so on.

Increasing uniqueness means that as the number of columns increases:

 The number of distinct values increases.
 The number of rows per value decreases.
 The selectivity increases.

Trade-off
The disadvantage involved with multi-column indexes is that as the number of columns
increases, the index becomes less usable.

A multi-column index can only be accessed when values for all columns are specified in the
SQL statement. If a single value is omitted, the Primary Index cannot be used.

It is important for the physical designer to balance these factors and use multi-column
indexes that have just enough columns. This will result in optimum uniqueness while
reducing unnecessary full table scans.

Analyze Primary Index Criteria Page 16-15

Multi-Column Primary Indexes

Advantage

More columns = more uniqueness

• Number of distinct values increase.

• Rows/value decreases.

• Selectivity increases.

Disadvantage

More columns = less usability

• PI can only be used when values for all PI columns are provided in SQL
statement.

• Partial values cannot be hashed.

 Analyze Primary Index Criteria Page 16-16

Primary Index Considerations
The facing page summarizes the concepts you have seen throughout this module and
provides a list of the most important considerations when choosing a Primary Index.

The first three considerations summarize the three types of demographics: Access,
Distribution, and Volatility.

You should choose a column with good distribution to maximize parallel processing. A
good rule-of-thumb is to base your Primary Index on the column(s) most often used for
access (if you don't have too many rows per value) to maximize one-AMP operations.
Finally, Primary Index values should be stable to reduce maintenance resource overhead.

Make sure that the number of distinct values for a PI is greater than the number of AMPs in
the system, whenever possible, or some AMPs will have no rows.

Duplicate values hash to the same AMP and are stored in the same data block. If the index
is very non-unique, multiple data blocks are used and incur multiple I/Os.

Very non-unique PIs may skew space usage among AMPs and cause Database Full
conditions on AMPs where excessive numbers of rows are stored.

Analyze Primary Index Criteria Page 16-17

Primary Index Considerations

• Base PI on the column(s) most often used for access, provided that the values
are unique or nearly unique.

• Choose a column (or columns) with good distribution and no spikes.

– NULLs and zero (for numeric data types) hash to binary zeroes and to the same
AMP.

• Distinct values distribute evenly across all AMPs.

– For large tables, the number of Distinct Primary Index values should be much
greater (at least 10X; 50X may be better guideline) than the number of AMPs.

• Duplicate values hash to the same AMP and are stored in the same data block
when possible.

– Very non-unique values use multiple data blocks and incur multiple I/Os.

– Very non-unique values may skew space usage among AMPs and cause premature
Database Full conditions.

– A large number of NUPI duplicate values on a SET table can cause expensive
duplicate row checks.

• Primary Index values should not be highly volatile.

ds186034
Typewritten Text
This is how u write it here...

ds186034
Typewritten Text

ds186034
Typewritten Text

ds186034
Typewritten Text

ds186034
Typewritten Text

 Analyze Primary Index Criteria Page 16-18

PKs and Duplicate Rows
Each row in table or entity in a good logical model will be uniquely identified by the table's
primary key.

 Every table must have a Primary Key.
 Primary Keys (PKs) must be unique.
 Primary Keys cannot be changed.

In Set tables, the Teradata Database does not allow duplicate rows. When a table has a
Unique Primary Index (UPI), the UPI enforces uniqueness. When a table has a Non-Unique
Primary Index (NUPI), the matter can become more complicated.

In the case of a NUPI (without a USI defined), the file system must compare data values
byte-by-byte within a Row Hash in order to ensure uniqueness. Many NUPI duplicates
result in lots of duplicate row checks, which can be quite expensive in terms of system
resources.

The way to avoid such a situation is to define a USI on the table whenever you have a NUPI.
The USI does the job of enforcing uniqueness and thus save you the cost of doing duplicate
row checks. Often, the best column(s) to use when defining such a USI is the PK.

Specifying a UNIQUE constraint on a column(s) other than the Primary Index also causes
the creation of a Unique Secondary Index.

An exception to the above is found when using the load utilities, such as FastLoad and
MultiLoad. These utilities do not allow the use of Secondary Indexes to enforce uniqueness.
Therefore, a full row comparison is still necessary.

Analyze Primary Index Criteria Page 16-19

PKs and Duplicate Rows

Rule: Primary Keys Must be UNIQUE and NOT NULL.

• This rule of Relational Theory eliminates duplicate rows, which have
plagued the industry for decades.

• With Set tables (the default in Teradata transaction mode), the Teradata
database does not allow duplicate rows.

• With Multiset tables, the Teradata database allows duplicate rows.

– All indexes must be non-unique indexes (NUPI and NUSI) in order to allow
duplicate values.

– A unique index (UPI or USI) will prevent duplicate index values, and therefore,
duplicate rows (even if the table is created as Multiset).

• If no unique index exists for a SET table, the file system compares data
values byte by byte within a Row Hash to ensure row uniqueness in a table.

– Many NUPI duplicates result in expensive duplicate row checks.

– To avoid these duplicate row checks, use a Multiset table.

 Analyze Primary Index Criteria Page 16-20

NUPI Duplicate Row Check
Set tables (the default) do not allow duplicate rows. When a new row is inserted into a Set
table with a Non-Unique Primary Index, the system must perform a NUPI Duplicate Row
Check.

The table on the facing page illustrates the number of logical reads that must occur when
this happens. The middle column is the number of logical reads required before that one
row can be inserted. The right hand column shows how many cumulative logical reads
would be required to insert all the rows up to and including that one.

As you can see, when you have a NUPI with excessive rows per value, the number of logical
reads becomes prohibitively high. It is very important to limit the NUPI rows per value
whenever possible.

The best way to avoid NUPI Duplicate row checks is to create the table as a MULTISET
table.

Note: USIs should be used for access or uniqueness enforcement. They should not be
used just to avoid duplicate row checking, since sometimes they may be used and at
other times they will not be used. The overhead of a USI does not justify the cost of
trying to avoid the duplicate row check and they don't avoid the cost in most cases.

As a suggestion, keep the number of NUPI rows per value within the number of rows which
will fit into you largest block. This will allow the system to satisfy a single-value NUPI
access with one or two data block I/Os.

ds186034
Typewritten Text

Analyze Primary Index Criteria Page 16-21

NUPI Duplicate Row Check

1 0 0
2 1 1
3 2 3
4 3 6
5 4 10
6 5 15
7 6 21
8 7 28
9 8 36

10 9 45
20 19 190
50 49 1225

100 99 4950
200 199 19900
500 499 124750

1000 999 499500

Row Number
to be inserted

Number of Rows
that must be

logically read first
Cumulative Number
of logical row reads

Limit NUPI rows per value to rows per block whenever possible.

To avoid NUPI duplicate row checks, create the table as a MULTISET table.

This chart illustrates the
additional I/O overhead.

ds186034
Typewritten Text
this is how we can write it.......

ds186034
Typewritten Text

 Analyze Primary Index Criteria Page 16-22

Primary Index Demographics
As you have seen, the three types of demographics important to choosing a Primary Index
are: Access demographics, Distribution demographics and Volatility demographics. To
make proper PI selections, you must have accurate demographics. Accurate demographics
serve to quantify all three-index selection determinants.

Access Demographics
Access demographics identify index candidates that maximize one-AMP operations. Both
Value Access and Join Access are important to PI selection. The higher the value, the more
often the column is used for access.

Distribution Demographics
Distribution demographics identify index candidates that optimize parallel processing.
Choose the column(s) that provides the best distribution.

Volatility
Volatility demographics identify table columns that are UPDATEd. This item does not refer
to INSERT or DELETE operations.

Volatility demographics identify index candidates that reduce maintenance I/O. You want
to have columns with stable data values as your PI candidates.

In this module, you will see how to use Distribution demographics to select PI candidates.
Access and Volatility demographics will be presented in a later module.

Analyze Primary Index Criteria Page 16-23

Primary Index Demographics

Without accurate demographics, index choices are unsubstantiated.

Demographics quantify all 3 index selection determinants.

Access Demographics

• Identify index candidates that maximize one-AMP operations.

• Columns most frequently used for access (Value and Join).

Distribution Demographics

• Identify index candidates that optimize parallel processing.

• Columns that provide good distribution.

Volatility Demographics

• Identify index candidates with low maintenance I/O.

 Analyze Primary Index Criteria Page 16-24

Column Distribution Demographics for a PI Candidate
Column Distribution demographics are expressed in four ways: Distinct Values, Maximum
Rows per Value, Maximum Rows NULL and Typical Rows per Value. These items are
defined below:

 Distinct Values is the total number of different values a column contains. For PI
selection, the higher the Distinct Values (in comparison with the table row count),
the better. Distinct Values should be greater than the number of AMPs in the
system, whenever possible. We would prefer that all AMPs have rows from each
TABLE.

 Maximum Rows per Value is the number of rows in the most common value for

the column or columns. When selecting a PI, the lower this number is, the better
the candidate. For a column or columns to qualify as a UPI, Maximum Rows per
Value must be 1.

 Maximum Rows NULL should be treated the same as Maximum Rows Per Value

when being considered as a PI candidate.

 Typical Rows per Value gives you an idea of the overall distribution which the

column or columns would give you. The lower this number is, the better the
candidate. Like Maximum Rows per Value, Typical Rows per Value should be
small enough to fit on one data block.

The illustration at the bottom of the facing page shows a distribution graph for a column
whose values are states. Note in the graph that 30K = Maximum Rows NULL, and 15K =
Maximum Rows per Value (CA). Typical Rows per Value is approximately 30.

You should monitor all demographics periodically as they change over time.

Analyze Primary Index Criteria Page 16-25

Column Distribution Demographics for a PI Candidate

0

30K

15K

10070

10

ROWS
46K

Distinct Values
• The more the better (compared to table row count).
• Should have enough values to allow for distribution to all AMPs.

Maximum Row Per Value
• The fewer the better.

Maximum Rows Null
• The fewer the better.
• A very large number indicates a very large distribution spike.
• Large spikes can cause serious space consumption problems.

Typical Rows Per Value
• The fewer the better.
• Monitor periodically as it changes over time.

Values: NULL AZ CA GA HI MI MO NV NY OH OK TX VA VT WA

3030303030 30 30 30 30 30

ds186034
Typewritten Text
15K

ds186034
Typewritten Text

ds186034
Typewritten Text
30K

 Analyze Primary Index Criteria Page 16-26

SQL to View Data Demographics
The facing page contains simple examples of SQL that can be used to determine data
demographics for a column.

The Average Rows per value and Typical Rows per value can be thought of as the Mean and
Median of a data set.

Analyze Primary Index Criteria Page 16-27

SQL to View Data Demographics

of Distinct Values for a column:

SELECT COUNT(DISTINCT(column_name)) FROM tablename;

Max Rows per Value for all values in a column:

SELECT column_name, COUNT(*) FROM tablename
GROUP BY 1 ORDER BY 2 DESC;

Max Rows per Value for 5 most frequent values:
SELECT TOP 5 t_colvalue, t_count
FROM (SELECT column_name, COUNT(*)

FROM tablename GROUP BY 1)
t1 (t_colvalue, t_count)

ORDER BY t_count DESC;

Average Rows per Value for a column (mean value):

SELECT COUNT(*) / COUNT(DISTINCT(col_name)) FROM tablename;

Typical Rows per Value for a column (median value):

SELECT t_count AS "Typical Rows per Value"
FROM (SELECT col_name, COUNT(*) FROM tablename GROUP BY 1)

t1 (t_colvalue, t_count),
(SELECT COUNT(DISTINCT(col_name)) FROM tablename)

t2 (num_rows)
QUALIFY ROW_NUMBER () OVER (ORDER BY t1.t_colvalue) = t2.num_rows /2 ;

 Analyze Primary Index Criteria Page 16-28

Example of Using Data Demographic SQL
The facing page contains simple examples of SQL that can be used to determine data
demographics for a column.

Analyze Primary Index Criteria Page 16-29

Example of Using Data Demographic SQL

of Distinct Values for a column:

SELECT COUNT(DISTINCT(Last_name))
AS "# Values"

FROM Customer;

Max Rows per Value for all values:

SELECT Last_name, COUNT(*)
FROM Customer
GROUP BY 1
ORDER BY 2 DESC;

Max Rows per Value for 3 most frequent values:

SELECT t_colvalue, t_count
FROM (SELECT Last_name, COUNT(*)

FROM Customer GROUP BY 1)
t_table (t_colvalue, t_count)

QUALIFY RANK (t_count) <= 3;

Values

464

Last_name Count(*)

Smith 52
Jones 41
Wilson 38
White 36
Lee 36

: :

t_colvalue t_count(*)

Smith 52
Jones 41
Wilson 38

 Analyze Primary Index Criteria Page 16-30

Example of Data Demographic SQL (cont.)
The facing page contains simple examples of SQL that can be used to determine data
demographics for a column.

Analyze Primary Index Criteria Page 16-31

Example of Data Demographic SQL (cont.)

Average Rows per Value for a column (mean):

SELECT 'Last_name' AS "Column Name"
,COUNT(*) / COUNT(DISTINCT(Last_name))

AS ”Average Rows”
FROM Customer;

Typical Rows per Value for a column (median):

SELECT 'Last_name' AS "Column Name"
,t_count AS "Typical Rows"

FROM (SELECT Last_name, COUNT(*)
FROM Customer GROUP BY 1)

t_table (t_colvalue, t_count),
(SELECT COUNT(DISTINCT(Last_name))
FROM Customer)

t_table2 (t_distinct_count)
QUALIFY RANK (t_colvalue) = (t_distinct_count / 2);

Column Name Average Rows

Last_name 15

Column Name Typical Rows

Last_name 11

 Analyze Primary Index Criteria Page 16-32

TableSize View
The TableSize[V][X] views are Data Dictionary views that provides AMP Vproc
information about disk space usage at a table level, optionally for tables the current User
owns or has SELECT privileges on.

Example
The SELECT statement on the facing page looks for poorly distributed tables by displaying
the CurrentPerm figures for a single table on all AMP vprocs.

The result displays one table, table2, which is evenly distributed across all AMP vprocs in
the system. The CurrentPerm figure is nearly identical across all vprocs. The other table,
table2_nupi, is poorly distributed. The CurrentPerm figures range from 9,216 bytes to
71,680 bytes on different AMP vprocs.

Analyze Primary Index Criteria Page 16-33

TableSize View

Provides AMP Vproc disk space usage at table level.

DBC.TableSize[V][X] Vproc DatabaseName AccountName
TableName CurrentPerm PeakPerm

Example: Display table distribution
across AMPs.

SELECT Vproc
,CAST (TableName AS CHAR(20))
,CurrentPerm
,PeakPerm

FROM DBC.TableSizeV
WHERE DatabaseName = USER
ORDER BY TableName, Vproc ;

Vproc TableName CurrentPerm PeakPerm
0 table2 41,472 53,760
1 table2 41,472 53,760
2 table2 40,960 52,736
3 table2 40,960 52,736
4 table2 40,960 53,760
5 table2 40,960 53,760
6 table2 40,960 54,272
7 table2 40,960 54,272
0 table2_nupi 22,528 22,528
1 table2_nupi 22,528 22,528
2 table2_nupi 71,680 71,680
3 table2_nupi 71,680 71,680
4 table2_nupi 9,216 9,216
5 table2_nupi 9,216 9,216
6 table2_nupi 59,392 59,392
7 table2_nupi 59,392 59,392

Result:

 Analyze Primary Index Criteria Page 16-34

SQL to View Data Distribution
The facing page contains simple examples of SQL that can be used to determine actual data
distribution for a table.

Analyze Primary Index Criteria Page 16-35

SQL to View Data Distribution

Ex: Display the distribution of Customer by AMP space usage.

SELECT Vproc
,TableName (CHAR(15))
,CurrentPerm

FROM DBC.TableSizeV
WHERE DatabaseName = DATABASE
AND TableName = 'Customer'
ORDER BY 1 ;

Vproc TableName CurrentPerm
0 Customer 127488
1 Customer 127488
2 Customer 127488
3 Customer 127488
4 Customer 128000
5 Customer 128000
6 Customer 126976
7 Customer 126976

Ex: Display the distribution of Customer by AMP row counts.

SELECT HASHAMP (HASHBUCKET
(HASHROW (Customer_number))) AS "AMP #"
,COUNT(*)

FROM Customer
GROUP BY 1
ORDER BY 1 ;

The Row Hash functions can be used to predict the distribution
of data rows for any column in a table.

AMP # Count(*)
0 867
1 886
2 877
3 870
4 881
5 878
6 879
7 862

ds186034
Highlight

 Analyze Primary Index Criteria Page 16-36

E-R Diagram for Exercises
The E-R diagram on the facing page depicts the tables used in the exercises. Though the
names of the tables and their columns are generic, the model is properly normalized to Third
Normal Form (3NF).

Analyze Primary Index Criteria Page 16-37

E-R Diagram for Exercises

ENTITY 1

ASSOCIATIVE
2

ENTITY 2

HISTORY

DEPENDENT
ASSOCIATIVE

1

Note:

The exercise table and column names are generic so that index selections are not
influenced by names.

 Analyze Primary Index Criteria Page 16-38

Exercise 2 – Sample
The facing page has an example of how to use Distribution demographics to identify PI
candidates. On the following pages, you will be asked to identify PI candidates in a similar
manner.

Use the Primary Index Candidate Guidelines below to identify the PI candidates. Indicate
whether they are UPI or NUPI candidates. Indicate borderline candidates with a ?

In later exercises, you will make the final index choices for these tables.

Primary Index Candidate Guidelines:

 ALL Unique Columns are PI candidates. These columns will be identified with the
abbreviation ND for No Duplicates.

 The Primary Key (PK) is a UPI candidate.

 Any single column with high Distinct Values (maybe at least 10 times the number

of AMPs), low Maximum Rows NULL, and with a Typical Rows per Value that is
relatively close to the Maximum Rows per Value is a PI candidate.

Analyze Primary Index Criteria Page 16-39

Exercise 2 – Sample

UPI NUPI NUPI? UPI

On the following pages, there are sample tables with
distribution demographics.

• Indicate ALL possible Primary Index candidates
(UPI and NUPI).

• Later exercises will guide your final choices.

Primary Index Candidate Guidelines:
• PK and UNIQUE COLUMNS (ND)
• Any single column with:

– High Distinct values (at least 10X)
– Low Maximums for NULLs or a Value
– Typical Rows that is close to Max Rows

Example 60,000,000
Rows A B C D E F G H

PK/FK PK,SA FK,NN NN,ND

Value Access 5K 2.6K 0 500K 0 0 0 52
Range Access 12 0 0 0 0 0 4K

Join Access 1M 0 1K 0 0 0 0 0
Join Rows 50M 0 5K 0 0 0 0

Distinct Values 60M 7M 1.5M 60M 8 15M 15M 700
Max Rows/Value 1 12 500 1 8M 9 725K 90K
Max Rows/NULL 0 5 0 0 0 725K 5 10K

Typical Rows/Value 1 7 35 1 7M 3 3 80K
Change Rating 0 1 5 3 0 4 4 9

PI/SI

Collect Statistics (Y/N)

ds186034
Highlight

ds186034
Typewritten Text

ds186034
Typewritten Text
4N*100amps

ds186034
Typewritten Text

ds186034
Typewritten Text

ds186034
Sticky Note
only 8 or less amps will be used

ds186034
Sticky Note
some amps will have twice the data than others (725k)here its 60M and if 725K are null and not a good distributionif 60b table then this many NULLs can be okay

ds186034
Sticky Note
not enough distinct values

ds186034
Sticky Note

 Analyze Primary Index Criteria Page 16-40

Exercise 2 – Choosing PI Candidates
Use the Primary Index Candidate Guidelines to identify the PI candidates. Indicate whether
they are UPI or NUPI candidates. Indicate borderline candidates with a question mark (?).

Primary Index Candidate Guidelines:

 ALL Unique Columns are PI candidates and will be identified with the
abbreviation ND for No Duplicates.

 The Primary Key (PK) is a UPI candidate.

 Any single column with high Distinct Values (at least 100% greater than the

number of AMPs), low Maximum Rows NULL, and with a Typical Rows per
Value that is relatively close to the Maximum Rows per Value is a PI candidate.

Analyze Primary Index Criteria Page 16-41

Exercise 2 – Choosing PI Candidates

ENTITY 1

100,000,000
Rows A B C D E F

PK/FK PK,UA

Value Access 50K 0 0 0 0 0
Range Access 0 0 0 0 0 0

Join Access 10M 0 0 0 0 0
Join Rows 10M 0 0 0 0

Distinct Values 100M 95M 300K 250K 40M 1M
Max Rows/Value 1 2 400 350 3 110
Max Rows/NULL 0 0 0 0 1.5M 0

Typical Rows/Value 1 1 325 300 2 90
Change Rating 0 3 2 1 1 1

PI/SI

Collect Statistics (Y/N)

ds186034
Sticky Note

 Analyze Primary Index Criteria Page 16-42

Exercise 2 – Choosing PI Candidates (cont.)
Use the Primary Index Candidate Guidelines to identify the PI candidates. Indicate whether
they are UPI or NUPI candidates. Indicate borderline candidates with a question mark (?).

Primary Index Candidate Guidelines:

 ALL Unique Columns are PI candidates and will be identified with the
abbreviation ND for No Duplicates.

 The Primary Key (PK) is a UPI candidate.

 Any single column with high Distinct Values (at least 100% greater than the

number of AMPs), low Maximum Rows NULL, and with a Typical Rows per
Value that is relatively close to the Maximum Rows per Value is a PI candidate.

Analyze Primary Index Criteria Page 16-43

Exercise 2 – Choosing PI Candidates (cont.)

ENTITY 2

10,000,000
Rows G H I J K L

PK/FK PK,SA

Value Access 5K 365 12 12 0 0
Range Access 12 0 0 0 0 260

Join Access 100M 0 0 0 0 0
Join Rows 100M 0 0 0 0

Distinct Values 10M 100K 9M 12 50 180K
Max Rows/Value 1 200 2 1M 240K 60
Max Rows/NULL 0 0 100K 0 0 0

Typical Rows/Value 1 100 1 800K 190K 50
Change Rating 0 0 9 1 2 0

PI/SI

Collect Statistics (Y/N)

 Analyze Primary Index Criteria Page 16-44

Exercise 2 – Choosing PI Candidates (cont.)
Use the Primary Index Candidate Guidelines to identify the PI candidates. Indicate whether
they are UPI or NUPI candidates. Indicate borderline candidates with a question mark (?).

Primary Index Candidate Guidelines:

 ALL Unique Columns are PI candidates and will be identified with the
abbreviation ND for No Duplicates.

 The Primary Key (PK) is a UPI candidate.

 Any single column with high Distinct Values (at least 100% greater than the

number of AMPs), low Maximum Rows NULL, and with a Typical Rows per
Value that is relatively close to the Maximum Rows per Value is a PI candidate.

Analyze Primary Index Criteria Page 16-45

Exercise 2 – Choosing PI Candidates (cont.)

DEPENDENT

5,000,000
Rows A M N O P Q

PK/FK PK NN, ND
FK SA

Value Access 0 0 0 0 0 0
Range Access 0 0 0 0 0 0

Join Access 700K 0 0 0 0 0
Join Rows 1M 0 0 0 0 0

Distinct Values 2M 50 90K 3M 5M 2M
Max Rows/Value 4 200K 75 2 1 5
Max Rows/NULL 0 0 0 390K 0 1M

Typical Rows/Value 1 60K 50 1 1 1
Change Rating 0 0 3 1 0 1

PI/SI

Collect Statistics (Y/N)

 Analyze Primary Index Criteria Page 16-46

Exercise 2 – Choosing PI Candidates (cont.)
Use the Primary Index Candidate Guidelines to identify the PI candidates. Indicate whether
they are UPI or NUPI candidates. Indicate borderline candidates with a question mark (?).

Primary Index Candidate Guidelines:

 ALL Unique Columns are PI candidates and will be identified with the
abbreviation ND for No Duplicates.

 The Primary Key (PK) is a UPI candidate.

 Any single column with high Distinct Values (at least 100% greater than the

number of AMPs), low Maximum Rows NULL, and with a Typical Rows per
Value that is relatively close to the Maximum Rows per Value is a PI candidate.

Analyze Primary Index Criteria Page 16-47

Exercise 2 – Choosing PI Candidates (cont.)

ASSOCIATIVE 1

300,000,000
Rows A G R S

PK/FK PK
FK FK,SA

Value Access 260 0 0 0
Range Access 0 0 0 0

Join Access 0 8M 0 0
Join Rows 0 300M 0 0

Distinct Values 100M 10M 15K 800K
Max Rows/Value 5 50 21K 400
Max Rows/NULL 0 0 0 0

Typical Rows/Value 3 30 19K 350
Change Rating 0 0 0 0

PI/SI

Collect Statistics (Y/N)

 Analyze Primary Index Criteria Page 16-48

Exercise 2 – Choosing PI Candidates (cont.)
Use the Primary Index Candidate Guidelines to identify the PI candidates. Indicate whether
they are UPI or NUPI candidates. Indicate borderline candidates with a question mark (?).

Primary Index Candidate Guidelines:

 ALL Unique Columns are PI candidates and will be identified with the
abbreviation ND for No Duplicates.

 The Primary Key (PK) is a UPI candidate.

 Any single column with high Distinct Values (at least 100% greater than the

number of AMPs), low Maximum Rows NULL, and with a Typical Rows per
Value that is relatively close to the Maximum Rows per Value is a PI candidate.

Analyze Primary Index Criteria Page 16-49

Exercise 2 – Choosing PI Candidates (cont.)

ASSOCIATIVE 2

100,000,000
Rows A M G T U

PK/FK PK
FK FK

Value Access 0 0 0 0
Range Access 0 0 0 0

Join Access 7M 250K 0 0
Join Rows 800M 20M 0 0

Distinct Values 50M 10M 560K 750
Max Rows/Value 3 150 180 135K
Max Rows/NULL 0 0 0 0

Typical Rows/Value 1 8 170 100K
Change Rating 0 0 0 0

PI/SI

Collect Statistics (Y/N)

 Analyze Primary Index Criteria Page 16-50

Exercise 2 – Choosing PI Candidates (cont.)
Use the Primary Index Candidate Guidelines to identify the PI candidates. Indicate whether
they are UPI or NUPI candidates. Indicate borderline candidates with a question mark (?).

Primary Index Candidate Guidelines:

 ALL Unique Columns are PI candidates and will be identified with the
abbreviation ND for No Duplicates.

 The Primary Key (PK) is a UPI candidate.

 Any single column with high Distinct Values (at least 100% greater than the

number of AMPs), low Maximum Rows NULL, and with a Typical Rows per
Value that is relatively close to the Maximum Rows per Value is a PI candidate.

Analyze Primary Index Criteria Page 16-51

Exercise 2 – Choosing PI Candidates (cont.)

HISTORY

730,000,000
Rows A DATE D E F

PK/FK PK
FK SA

Value Access 10M 5K 0 0 0
Range Access 0 20K 0 0 0

Join Access 800M 0 0 0 0
Join Rows 2.4B 0 0 0 0

Distinct Values 100M 730 N/A N/A N/A
Max Rows/Value 18 1100K N/A N/A N/A
Max Rows/NULL 0 0 N/A N/A N/A

Typical Rows/Value 3 900K N/A N/A N/A
Change Rating 0 0 N/A N/A N/A

PI/SI

Collect Statistics (Y/N)

 Analyze Primary Index Criteria Page 16-52

What is a NoPI Table?
A NoPI Table is simply a table without a primary index.

Prior to Teradata Database 13.0, Teradata tables required a primary index. The primary
index was primarily used to hash and distribute rows to the AMPs according to hash
ownership. The objective was to divide data as evenly as possible among the AMPs to make
use of Teradata’s parallel processing. Each row stored in a table has a RowID which
includes the row hash that is generated by hashing the primary index value. For example,
the optimizer can choose an efficient single-AMP execution plan for SQL requests that
specify values for the columns of the primary index.

Starting with Teradata Database 13.0, a table can be defined without a primary index. This
feature is referred to as the NoPI Table feature. NoPI stands for No Primary Index.

Without a PI, the hash value as well as AMP ownership of a row is arbitrary. Within the
AMP, there are no row-ordering constraints and therefore rows can be appended to the end
of the table as if it were a spool table. Each row in a NoPI table has a hash bucket value that
is internally generated. A NoPI table is internally treated as a hashed table; it is just that
typically all the rows on one AMP will have the same hash bucket value.

Analyze Primary Index Criteria Page 16-53

What is a NoPI Table?

What is a No Primary Index (NoPI) Table?

• It is simply a table without a primary index – a Teradata 13.0 feature.

• As rows are inserted into a NoPI table, rows are always appended at the end of the
table and never inserted in a middle of a hash sequence.

– Organizing/sorting rows based on row hash is therefore avoided.

Basic Concepts

• Rows will still be distributed between AMPs. New code (Random Generator) will
determine which AMP will receive rows or blocks of rows.

• Within an AMP, rows are simply appended to the end of the table. Rows will have a
unique RowID – the Uniqueness Value is incremented.

Benefits

• A NoPI table will reduce skew in intermediate ETL tables which have no natural
Primary Index.

• Loads (FastLoad and TPump Array Insert) into a NoPI staging table are faster.

 Analyze Primary Index Criteria Page 16-54

Reasons to Consider Using NoPI Tables
The facing page identifies various reasons to consider using NoPI tables.

Why is a NoPI table useful?

 A NoPI can be very useful in those situations when the default primary index (first

column) causes skewing of data between AMPs and performance degradation.

 This type of table provides a performance advantage in that data can be loaded and

stored quickly into a NoPI table using FastLoad or TPump Array INSERT.

Analyze Primary Index Criteria Page 16-55

Reasons to Consider Using NoPI Tables

Reasons to consider using a NoPI Table

• Utilize NoPI tables instead of arbitrarily defaulting to first table column or creating an
unnatural Primary Index from many columns.

• Some ETL tools generate intermediate tables to store data without a known
distribution of values.

If the first column is used (defaults) as the primary index (NUPI), this may lead to
skewed data and performance issues.

– The system default can be set to create tables without a primary index.

• As a staging table to be used with the mini-batch loading technique.

• A NoPI table can be used as a Sandbox table (or any table) where data can be inserted
until an appropriate indexing method is determined.

• A NoPI table can be used as a Log file.

• As a Column Partitioned (columnar) table – Teradata 14.0 feature.

 Analyze Primary Index Criteria Page 16-56

Creating a Table without a PI
The facing page identifies the syntax to create a table without a primary index.

If you attempt to include the key word SET (set table) and NO PRIMARY INDEX in the
same CREATE TABLE statement, you will receive a syntax error.

Analyze Primary Index Criteria Page 16-57

Creating a Table without a PI

To create a NoPI table, specify the NO PRIMARY INDEX clause in the CREATE
TABLE statement.

CREATE TABLE <table_name> (<column1> <column1_datatype>,
<column2> <column2_datatype>,
…)

NO PRIMARY INDEX;

Considerations:

– When a table is created with no primary index, the TableKind column is set to 'O'
instead of 'T' and appears in the DBC.TVM table.

– If PRIMARY KEY or UNIQUE constraints are also defined, these will be implemented
as Unique Secondary Indexes.

– A NoPI table is automatically created as a MULTISET table.

 Analyze Primary Index Criteria Page 16-58

How is a NoPI Table Implemented?
The NoPI Table feature is another step toward extending or supporting Mini-Batch. By
allowing a table with no primary index acting as a staging table, data can be loaded into the
table a lot more efficiently and in turn faster. All of the rows in a data request, after being
received by Teradata and converted into proper internal format, can be appended to a NoPI
table without having to be redistributed to their hash-owning AMPs. Rows in a NoPI table
are not hashed based on the primary index because there isn’t one.

The hash values are all internally controlled and generated and therefore the rows can be
stored in any particular order and in any AMP. That means sorting of the rows is avoided.

The performance advantage, especially for FastLoad, from using a NoPI table is most
significant for applications that currently load data into a staging table to be transformed or
standardized before being stored into another staging table or the target table. For those
applications, using a NoPI table can avoid the unnecessary row redistribution and sorting
work. Another advantage for FastLoad is that users can quickly load data into a NoPI table
and be done with the acquisition phase freeing up Client resources for other work.

For TPump, the performance advantage can be much bigger especially for applications that
were not able to pack many rows into the same AMP step in a traditional PI table. On a
NoPI table, all rows in a data request are packed into the same AMP step independently
from the system configuration and the clustering of data. This will generally lead to big
reductions in CPU and IO usage.

Analyze Primary Index Criteria Page 16-59

How is a NoPI Table Implemented?

Rows are distributed between AMPs using a random generator. Within an AMP,
rows are simply added to a table in sequential order.

• The random generator is designed in such as way that data will be balanced out
between the AMPs.

• Although there is no primary index in a NoPI table, rows will still have a valid 64-bit
RowID.

The first part of the RowID is based on a hash bucket value (16 or 20 bits) that is
internally generated and controlled by the AMP.

• Typically, all the rows in a table on one AMP will have the same hash bucket value,
but will have different uniqueness values.

There are two separate steps used with a NoPI table.

1. A new internal function (e.g., random generator) is used to choose a hash bucket
which effectively determines which AMP the row(s) are sent to.

2. The AMP internally selects a hash bucket value that the AMP owns and uses it as the
first part (16 or 20 bits) of the RowID.

 Analyze Primary Index Criteria Page 16-60

NoPI Random Generator
For SQL-based functions, the PE uses the following technique for the random generator.

The DBQL Query ID is used by the random generator to select a random row hash. The
approach is to generate a random row hash in such a way that for a new request, data will
generally be sent to a different AMP from the one that the previous request sent data to. The
goal is to balance out the data as much as possible without the use of the primary index. The
DBQL Query ID is selected for this purpose because it uses the PE vproc ID in its high
digits and a counter-based value in its low digits.

There are two cases for INSERT; one is when only one single data row is processed and the
other is when multiple data rows are processed with an Array INSERT request. In the case
of an Array INSERT request, rows are sorted by their hash-owning AMPs so that the rows
going to the same AMP can easily be grouped together into the same step. This random row
hash will be generated once per request so that in the case of Array INSERT, the same
random row hash is used for all of the rows. This means they all will be sent to the same
AMP and usually in the same step.

FastLoad sends blocks of data to the AMPs. Each AMP (that receives blocks of data) uses
random generator code to distribute blocks of data between all of the AMPs in a round
robin fashion.

Analyze Primary Index Criteria Page 16-61

NoPI Random Generator

How is the AMP selected that will receive the row (or block of rows)?

• The random generator can be executed at the PE or at the AMP level depending on the
type of request (e.g., SQL versus FastLoad).

For SQL-based functions, the PE uses the random generator.

• The DBQL Query ID is used by the random generator to select a random hash value.

– The approach is to generate a random hash bucket value in such a way that for a
new request, data will generally be sent to a different AMP from the one that the
previous request sent data to.

– In the case of an Array INSERT request, this random hash bucket value will be
generated once per request so that in the case of Array INSERT, the same
random hash bucket value is used for all of the rows.

For FastLoad-based functions, the AMP uses random generator code to
distribute blocks of data between the AMPs in a round robin fashion.

 Analyze Primary Index Criteria Page 16-62

The Row ID for a NoPI Table
For a NoPI table, the AMP will assign a RowID (64 bits) for a row or a set of rows using a
hash bucket that the AMP owns. For a NoPI table, the RowID will consist of a 20-bit hash
bucket followed by 44 bits that are used for the uniqueness part of the RowID. Only the first
20 bits (hash bucket) are used.

As more rows are added to the table, the uniqueness value is sequentially incremented.

For systems using a 16-bit hash buckets, the RowID for a NoPI table will have 16 bits for
the hash bucket value and 48 bits for the uniqueness id.

Analyze Primary Index Criteria Page 16-63

The Row ID for a NoPI Table

Hash Bucket
20 (or 16) bits

Uniqueness Value
44 (or 48) bits

Row ID for NoPI table

Each row still has a
Row ID as a prefix.

Rows are logically
maintained in Row ID
sequence.

Row ID Row Data

Hash Bucket Uniqueness Cust_No Last_Name First_Name

000E7 00000000001 001018 Reynolds Jane

000E7 00000000002 001020 Davidson Evan

000E7 00000000003 001031 Green Jason

000E7 00000000004 001014 Jacobs Paul

000E7 00000000005 001012 Garcia Jose

000E7 00000000006 001021 Carnet Jean
: : : : :

The RowID will still be 64 bits, but it is utilized a little differently in a NoPI table.

• The first 20 bits represents the hash bucket that is internally selected by the AMP.

• Remaining 44 bits are used for the uniqueness value of rows in a NoPI table.

• Note: Systems may be configured to use 16 bits for the hash bucket numbers – if
so, then the uniqueness value will utilize 48 bits of the RowID.

ds186034
Sticky Note
= 17trillion rows (44 bits)

 Analyze Primary Index Criteria Page 16-64

The Row ID for a NoPI Table (cont.)
For a NoPI table, the AMP will assign a RowID (64 bits) for a row or a set of rows using a
hash bucket that the AMP owns. This 64-bit RowID can be used by secondary and join
indexes.

What is a different about the RowID for a NoPI table is that the uniqueness id is 44 bits long
instead of 32 bits. The additional 12 bits available in the row hash are added to the 32-bit
uniqueness. This gives a total of 44 bits to use for the uniqueness part of the RowID. For
each hash bucket, there can be up to 17 trillion rows per AMP (approximately).

For systems using a 16-bit hash buckets, the RowID for a NoPI table will have 16 bits for
the hash bucket value and 48 bits for the uniqueness id.

The RowID is still 64 bits long and a unique identifier of a row within a table.

Analyze Primary Index Criteria Page 16-65

The Row ID for a NoPI Table (cont.)

The RowID is 64 bits and can be referenced by secondary and join indexes.

• The first 20 (or 16) bits represent the hash bucket value which is internally chosen by
and controlled by the AMP.

• Remaining 44 (or 48) bits are used for the uniqueness value of rows in a NoPI table.
This module assumes that 20-bit hash bucket numbers are used.

– The uniqueness value starts from 1 and will be sequentially incremented.

– With 44 bits, there can be approximately 17 trillion rows on an AMP.

• Normally, all rows in a NoPI table on an AMP will have the same hash bucket value
(first 20 bits) and the 44-bit uniqueness value will start at 1 and be sequentially
incremented.

• Each row in a NoPI table will have a RowID with a hash bucket value that is actually
owned by the AMP storing the row.

Fallback and index maintenance work the same as if the table is a primary index
table.

As always, the RowID is transparent to the end-user.

 Analyze Primary Index Criteria Page 16-66

Multiple NoPI Tables at the AMP Level
The facing page illustrates an example of two NoPI tables in a 27-AMP system.

Other NoPI considerations include:

Archive/Recovery Issues
Archive/Restore will be supported for NoPI table. Archiving a table or a database and
restoring or copying that to the same system or a different system should work out fine with
the existing scheme for NoPI table when no data redistribution takes place (same number of
AMPs). Data redistribution takes place when there is a difference in configuration or hash
function between the source system and the target system. In the case of a difference in
configuration, each row in a table will be looked at and if its hash bucket belongs to some
other AMP using the new configuration, that row will be redistributed to its hash-owning
AMP.

Since one hash bucket is normally enough to use to assign RowID to all of the rows on each
AMP, when we restore or copy data to a different configuration with more AMPs, there will
be AMPs that will not have any data at all. This means that data in a NoPI table can be
skewed after a Restore or Copy.

This is because permanent space is divided equally among the AMPs whether or not any of
them get any data. As some AMPs not getting any data from a Restore or Copy, some other
AMPs will get more data compared to what it was in the source system and this will require
more space allocated overall.

However, as a staging table, NoPI table is not intended to stay around for too long so it is
not expected to have many NoPI tables being restored or copied.

Reconfig Issues
Reconfig will be supported for NoPI table. The issue with Reconfig is very similar to that of
Restore or Copy to a different configuration. Although rows in a NoPI table are not hashed
based on the primary index and the AMPs where they reside are arbitrary, but each row does
have a RowID with a hash bucket that is owned by the AMP storing that row. Redistributing
rows in a NoPI table via Reconfig can be done by sending each row to the AMP that owns
the hash bucket in that row based on the new configuration map. As with Restore and Copy,
Reconfig can make a NoPI table skewed by going to a configuration with more AMPs.

Analyze Primary Index Criteria Page 16-67

Multiple NoPI Tables at the AMP Level

TableID Row ID Row Data
Hash Uniq Value

00089A (Base) 000E7 00000000001
00089A (Base) 000E7 00000000002
00089A (Base) 000E7 00000000003
00089A (Base) 000E7 00000000004

00089B (Base) 000E7 00000000001
00089B (Base) 000E7 00000000002
00089B (Base) 000E7 00000000003
00089B (Base) 000E7 00000000004

Data within an AMP is logically stored in Table ID / Row ID sequence.

AMP 3AMP 0 AMP 26...

TableID Row ID Row Data
Hash Uniq Value

00089A (Base) 0003F 00000000001
00089A (Base) 0003F 00000000002
00089A (Base) 0003F 00000000003
00089A (Base) 0003F 00000000004

00089B (Base) 0003F 00000000001
00089B (Base) 0003F 00000000002
00089B (Base) 0003F 00000000003
00089B (Base) 0003F 00000000004

AMP 17

NoPI
Table1

NoPI
Table2

ds186034
Sticky Note
27 AMPS

ds186034
Sticky Note
1024andif fallback = 2048

 Analyze Primary Index Criteria Page 16-68

Loading Data into a NoPI Table
The facing page summarizes various techniques of getting data inserted into a NoPI table.

Analyze Primary Index Criteria Page 16-69

Loading Data into a NoPI Table

Simple INSERTs

• For a simple INSERT, the PE selects a random AMP where the row is sent to. That AMP
then turns the row into proper internal format and appends it to the end of the NoPI table.

INSERT–SELECT

• When inserting data from a source PI (or NoPI) table into a NoPI target table, data from the
source table will NOT be redistributed and will be locally appended into the target table.

INSERT-SELECT to a target NoPI table can result in a skewed NoPI table if the source table
is skewed.

FastLoad

• Blocks of data are sent to the AMP load sessions and the AMP random generator code
randomly distributes the blocks between the AMPs usually resulting in even distribution of
the data between AMPs.

TPump

• With TPump Array INSERT, rows are packed together in a request and distributed to an
AMP and then appended to the NoPI table on that AMP. Different requests are distributed to
different AMPs by the PE. This will usually result in even distribution of the data between the
AMPs.

ds186034
Sticky Note

ds186034
Sticky Note

ds186034
Sticky Note

ds186034
Sticky Note

 Analyze Primary Index Criteria Page 16-70

 NoPI Options
The following options are available to a NoPI table:

• FALLBACK
• Secondary indexes – USI and NUSI
• Join and reference indexes
• Primary Key and Foreign Key constraints are allowed on a NoPI table.
• LOBs are allowed on a NoPI table.
• INSERT and DELETE trigger actions are allowed on a NoPI table.

– UPDATE trigger actions will be allowed starting with Teradata
13.00.00.03.

• NoPI table can be a Global Temporary or Volatile table.
• COLLECT/DROP STATISTICS are allowed on a NoPI table.
• FastLoad – note that duplicate rows are loaded and not deleted with a NoPI table

The following limitations apply to a NoPI table:

• SET is not allowed. Default is MULTISET for both Teradata and ANSI mode.
• No columns are allowed to be specified for the primary index.
• Partitioned primary index is not allowed.
• Permanent journaling is not allowed.
• Identity column is not allowed.
• Cannot be created as a queue or as an error table.
• Hash index is not allowed on a NoPI table.
• MultiLoad cannot be used to load a NoPI table.
• UPDATE, UPSERT, and MERGE-INTO operations are using the NoPI table as the

target table.
– UPDATE will be available with Teradata 13.00.00.03

Analyze Primary Index Criteria Page 16-71

NoPI Table Options

Limitations of NoPI tables

• SET tables are not allowed.

• Partitioned primary index is not allowed.

• Permanent journaling is not allowed.

• Identity column is not allowed.

• Cannot be a queue or as an error table.

• Hash index is not allowed on a NoPI
table.

• MultiLoad cannot be used on a NoPI
table.

• UPDATE, UPSERT, and MERGE-INTO
operations using the NoPI table as the
target table are not allowed.

– UPDATE will be available with
Teradata 13.00.00.03

Options available with NoPI tables

• FALLBACK

• Secondary indexes – USI and NUSI

• Join and reference indexes

• Primary Key and Foreign Key
constraints are allowed.

• LOBs are allowed on a NoPI table.

• INSERT and DELETE trigger actions
are allowed on a NoPI table.

– UPDATE trigger actions will be
allowed starting with Teradata
13.00.00.03.

• Can be a Global Temporary or Volatile
table.

• COLLECT/DROP STATISTICS are
allowed.

• FastLoad – note that duplicate rows
are loaded and not deleted with a
NoPI table

 Analyze Primary Index Criteria Page 16-72

Summary
The facing page summarizes some of the key concepts covered in this module.

Analyze Primary Index Criteria Page 16-73

Summary

Tables with a Primary Index:

• Base PI on the column(s) most often used for access, provided that the values are
unique or nearly unique.

• Duplicate values hash to the same AMP and are stored in the same data block when
possible.

• PRIMARY KEY and/or UNIQUE constraints are always implemented as a unique index
(either a UPI or a USI.

Tables without a Primary Index:

• Although there is no primary index in a NoPI table, rows do have a valid row ID with
both hash and uniqueness.

– Hash value is internally selected in the AMP

• Rows in a NoPI table will be even distributed between the AMPs based upon a new
code (i.e., random generator).

 Analyze Primary Index Criteria Page 16-74

Module 16: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Analyze Primary Index Criteria Page 16-75

Module 16: Review Questions

1. Which trade-off must be balanced to make the best choice for a primary index? ____

a. Access and volatility
b. Access and block size
c. Block size and volatility
d. Access and distribution

2. When volatility is considered as one of the Primary Index choice criteria, what is analyzed? ____

a. Degree of uniqueness
b. How often the data values will change
c. How often the fixed length rows will change
d. How frequently the column is used for access

3. To optimize the use of disk space, the designer should choose a primary index that ________.

a. is non-unique
b. consists of one column
c. is unique or nearly unique
d. consists of multiple columns
e. has fewer distinct values than AMPs

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

 Analyze Primary Index Criteria Page 16-76

Module 16: Review Questions (cont.)
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Analyze Primary Index Criteria Page 16-77

Module 16: Review Questions (cont.)

4. For NoPI tables, what are 2 ways in which the Random Generator is executed?

a. At the AMP level with FastLoad
b. At the PE level for ad hoc SQL requests
c. At the TPump client level for array insert operations
d. At the AMP level for INSERT-SELECT into an empty NoPI table

5. Assume DBSControl flag #53 (Primary Index Default) is set to N (No Primary Index), which two
indexes are created for TableX given the following DDL command?

CREATE TABLE TableX
(col1 INTEGER NOT NULL UNIQUE
,col2 CHAR(10) NOT NULL PRIMARY KEY
,col3 CHAR(80));

a. col1 will be a UPI
b. col1 will be a USI
c. col2 will be a UPI
d. col2 will be a USI

6. Which two options are permitted for NoPI tables?

a. Fallback
b. MultiLoad
c. Hash Index
d. BLOBs and CLOBs

ds186034
Highlight

ds186034
Highlight
unique and primary key over rides it

ds186034
Sticky Note
PK is always unique

ds186034
Highlight

ds186034
Highlight

ds186034
Sticky Note
this flag is over riddenit only works when there is no unique nor primary key

 Analyze Primary Index Criteria Page 16-78

Lab Exercise 16-1
Check your understanding of the concepts discussed in this module by completing the lab
exercise as directed by your instructor.

Analyze Primary Index Criteria Page 16-79

Lab Exercise 16-1

Lab Exercise 16-1

Purpose

In this lab, you will use Teradata SQL Assistant to evaluate various columns of table as primary index
candidates.

What you need

Populated PD.Employee table; your empty Employee table

Tasks

1. INSERT/SELECT all rows from the populated PD.Employee table to your “Employee” table. Verify
the number of rows in your table.

INSERT INTO Employee SELECT * FROM PD.Employee;

SELECT COUNT(*) FROM Employee; Count = _________

 Analyze Primary Index Criteria Page 16-80

Lab Exercise 16-1 (cont.)
Use the following SQL to determine the column metrics for this Lab.

of Distinct Values for a column:

SELECT COUNT(DISTINCT(column_name))
FROM tablename;

Max Rows per Value for all values in a column:
SELECT column_name, COUNT(*)
FROM tablename GROUP BY 1
ORDER BY 2 DESC;

Max Rows with NULL in a column:

SELECT COUNT(*)
FROM tablename
WHERE column_name IS NULL;

Average Rows per Value for a column (mean value):

SELECT COUNT(*) / COUNT(DISTINCT(col_name))
FROM tablename;

Typical Rows per Value for a column (median value):
SELECT t_count AS "Typical Rows per Value"
FROM (SELECT col_name, COUNT(*)
 FROM tablename GROUP BY 1)
 t1 (t_colvalue, t_count),
 (SELECT COUNT(DISTINCT(col_name))
 FROM tablename)
 t2 (num_rows)
QUALIFY ROW_NUMBER () OVER
 (ORDER BY t1.t_colvalue) = t2.num_rows /2 ;

Analyze Primary Index Criteria Page 16-81

Lab Exercise 16-1 (cont.)

2. Collect column demographics for each of these columns in Employee and determine if the column
would be a primary index candidate or not.

By using the SHOW TABLE Employee command, you should be able to complete the
Employee_number information without executing any SQL.

Distinct Max Rows Max Rows Avg Rows Candidate
Values for a Value NULL per Value for PI (Y/N)

Employee_Number

Dept_Number

Job_Code

Last_name

 Analyze Primary Index Criteria Page 16-82

Lab Exercise 16-2

 Distribution of table space by AMP:

 SELECT Vproc, TableName (CHAR(15)), CurrentPerm
 FROM DBC.TableSizeV
 WHERE DatabaseName = DATABASE
 AND TableName = 'tablename'
 ORDER BY 1 ;

Analyze Primary Index Criteria Page 16-83

Lab Exercise 16-2

Lab Exercise 16-2

Purpose

In this lab, you will use the DBC.TableSizeV view to determine space distribution on a per AMP basis.

What you need

Your populated Employee table.

Tasks

1. Use SHOW TABLE command to determine which column is the Primary Index. PI = ______________

Determine the AMP space usage of your Employee table using DBC.TableSizeV.

AMP #_____ has the least amount of permanent space – amount __________
AMP #_____ has the greatest amount of permanent space – amount __________

2. Create a new table named Employee_2 with the same columns as Employee except specify
Last_name as the Primary Index.

Use INSERT/SELECT to populate Employee_2 from Employee.

Determine the AMP space usage of your Employee_2 table using DBC.TableSizeV.

AMP #_____ has the least amount of permanent space – amount __________
AMP #_____ has the greatest amount of permanent space – amount __________

 Analyze Primary Index Criteria Page 16-84

Notes

Partitioned Primary Indexes Page 17-1

Module 17

Teradata Proprietary and Confidential

Partitioned Primary Indexes

After completing this module, you will be able to:

 Describe the components that comprise a Row ID in a
partitioned table.

 List two advantages of partitioning a table.

 List two potential disadvantages of partitioning a table.

 Create single-level and multi-level partitioned tables.

 Use the PARTITION key word to display partition information.

 Partitioned Primary Indexes Page 17-2

Notes

Partitioned Primary Indexes Page 17-3

Table of Contents

Partitioning a Table .. 17-4
How is Partitioning Implemented?... 17-6
Logical Example of NPPI versus PPI .. 17-8
Primary Index Access (NPPI) .. 17-10
Primary Index Access (PPI) ... 17-12
Why Partition a Table? .. 17-14
Advantages/Disadvantages of Partitioning .. 17-16

Disadvantages of Partitioning .. 17-16
PPI Considerations ... 17-18

Access of Tables with a PPI ... 17-18
How to Define a PPI .. 17-20
Partitioning with CASE_N and RANGE_N .. 17-22
Partitioning with RANGE_N – Example 1 .. 17-24

Access using Partitioned Data – Example 1 (cont.) ... 17-26
Access Using Primary Index – Example 1 (cont.) ... 17-28
Place a USI on NUPI – Example 1 (cont.) ... 17-30
Place a NUSI on NUPI – Example 1 (cont.) .. 17-32

Partitioning with RANGE_N – Example 2 .. 17-34
Partitioning – Example 3 .. 17-36
Special Partitions with CASE_N and RANGE_N ... 17-38
Special Partition Examples .. 17-40
Partitioning with CASE_N – Example 4 ... 17-42

Additional examples: ... 17-42
SQL Use of PARTITION Key Word ... 17-44
SQL Use of CASE_N .. 17-46
Using ALTER TABLE with PPI Tables .. 17-48
ALTER TABLE – Example 5 .. 17-50
ALTER TABLE – Example 5 (cont.) .. 17-52
ALTER TABLE TO CURRENT ... 17-54
ALTER TABLE TO CURRENT – Example 6 .. 17-56
PPI Enhancements .. 17-58
Multi-level PPI Concepts ... 17-60
Multi-level PPI Concepts (cont.) ... 17-62
Multi-level Partitioning – Example 7 ... 17-64
Multi-level Partitioning – Example 7 (cont.) ... 17-66
How is the MLPPI Partition # Calculated? .. 17-68
Character PPI ... 17-70
Character PPI – Example 8 .. 17-72
Summary .. 17-74
Module 17: Review Questions ... 17-76
Lab Exercise 17-1 .. 17-80

 Partitioned Primary Indexes Page 17-4

Partitioning a Table
As part of implementing a physical design, Teradata provides numerous indexing options
that can improve performance for different types of queries and workloads. For example,
secondary indexes, join indexes, or hash indexes may be utilized to improve performance for
known queries. Teradata provides additional new indexing options to provide even more
flexibility in implementing a Teradata database. One of these new indexing options is the
Partitioned Primary Index (PPI). Key characteristics of Partitioned Primary Indexes are
listed on the facing page.

Primary indexes can be partitioned or non-partitioned. A non-partitioned primary index
(NPPI) is the traditional primary index by which rows are assigned to AMPs. Apart from
maintaining their storage in row hash order, no additional assignment processing of rows is
performed once they are hashed to an AMP.

A partitioned primary index (PPI) permits rows to be assigned to user-defined data partitions
on the AMPs, enabling enhanced performance for range queries that are predicated on
primary index values.

The Partitioned Primary Index (PPI) feature allows a class of queries to access a portion of a
large table, instead of the whole table. The traditional uses of the Primary Index (PI) for
data placement and rapid access of the data when the PI values are specified are retained.

Some common business queries generally require a full-table scan of a large table, even
though it’s predictable that a fairly small percentage of the rows will qualify. One example
of such a query is a trend analysis application that compares current month sales to the
previous month, or to the same month of the previous year, using a table with several years
of sales detail. Another example is an application that compares customer behavior in one
(fairly small) geographic region to another region.

Acronyms:
 PI – Primary Index
 PPI – Partitioned Primary Index
 NPPI – Non-Partitioned Primary Index

Partitioned Primary Indexes Page 17-5

Partitioning a Table

What is a “Partitioned Primary Index” or PPI?

• A indexing mechanism in Teradata for use in physical database design.

• Data rows are grouped into partitions at the AMP level – partitioning is simply an
ordering of the rows within a table on an AMP.

What advantages does partitioning provide?

• Increases the available options to improve the performance of certain types of queries
– specifically range-constrained queries.

• Only the rows of the qualified partitions in a query need to be accessed – avoid full
table scans.

How is a PPI created and managed?

• A PPI is easy to create and manage.
– The CREATE TABLE and ALTER TABLE statements contain options to create and/or alter

partitions.

• As always, data is distributed among AMPs and automatically placed within partitions.

 Partitioned Primary Indexes Page 17-6

How is Partitioning Implemented?
The PRIMARY INDEX clause (part of the CREATE TABLE statement) has been extended
to include a PARTITION BY clause. This new partition expression definition is the only
thing that needs to be done to create a partitioned table. Advantages to this approach are:

 No separate partition layout
 No disk layout for partitions
 No definition of location in the system for partition
 No need to define/manage separate tables per segment of the table that needs to be

accessed
 Even data distribution and even processing of a logical partition is automatic due to

the PI distribution of the rows

No query has to be modified to take advantage of a PPI table.

For tables with a PPI, Teradata utilizes a 3-level scheme to distribute and later locate the
data. The 3 levels are:

 Rows are distributed across all AMPs (and accessed via the Primary Index) based
upon HBN (Hash Bucket Number) portion of the Row Hash.

 At the AMP level, rows are first ordered by their partition number.

 Within the partition, data rows are logically stored in Row ID sequence.

A new term is associated with PPI tables. The Row Key is a combination of the Partition #
and the Row Hash. The term Row Key will appear in EXPLAIN reports.

Partitioned Primary Indexes Page 17-7

How is Partitioning Implemented?

Provides an additional level of data distribution and ordering.

• Rows are distributed across all AMPs (via Primary Index) based upon HBN portion of
the Row Hash.

• Rows are first ordered by their partition number within the AMP.

• Within the partition, data rows are logically stored in Row ID sequence.

If a table is partitioned, rows are placed into partitions.

• Teradata 13.10 (and before) – partitions are numbered 1 to 65,535.

• Teradata 14.0 – maximum combined partitions is increased to 9.223 Quintillion.

– If combined partitions is <= 65,535, then 2-byte partition numbers are used.

– If combined partitions is > 65,535, then 8-byte partition numbers are used.

In a partitioned table, each row is uniquely identified by the following:

• Row ID = Partition # + Row Hash + Uniqueness Value

• Row Key = Partition # + Row Hash (e.g., Row Key will appear in Explain plans)

– In a partitioned table, data rows will have the Partition # included as part of the data row.

To help understand how partitioning is implemented, this module will include examples of
data access using tables defined with NPPI and PPI.

 Partitioned Primary Indexes Page 17-8

Logical Example of NPPI versus PPI
The facing page provides a logical example of an Orders table implemented with a NPPI
(Non-Partitioned Primary Index) and the same table implemented with a PPI (Partitioned
Primary Index). Only the Order_Number and a portion (YY/MM) of the Order_Date are
shown in the example.

The column headings in this example represent the following:

RH – Row Hash – the two-digit row hash is used for simplification purposes. A true

table would contain a Row ID for each row (Row Hash + Uniqueness Value).
Note that as just in a real implementation, two different order numbers happen to
hash to the same row hash value. Order numbers 1012 and 1043 on AMP 2 both
hash to ‘36’.

O_# – Order Number – this example assumes that Order Number is the Primary Index

and the data rows are hash distributed based on this value.

O_Date – Order Date – another column in the table. This example only contains orders

for 4 months – from January, 2012 through April, 2012. For example, an order
date, such as 12/01, represents January of 2012 (or 2012/01).

Important points to understand from this example:

 All of the rows in the NPPI table are stored in logical Row ID sequence (row hash
+ uniqueness value) within each AMP.

 The rows in the PPI table are first ordered by Partition Number, and then by Row

Hash (actually Row ID) sequence within the Partition.

 This example illustrates 4 partitions – one for each of the 4 months shown in the

example.

 A query that requests “order information” (with a WHERE condition that specifies

a range of dates) will result in a full table scan of the NPPI table.

 The same query will only have to access the required partitions in the PPI table.

Partitioned Primary Indexes Page 17-9

Logical Example of NPPI versus PPI

4 AMPs with
Orders Table defined
with PPI on O_Date.

RH O_# O_Date RH O_# O_Date RH O_# O_Date RH O_# O_Date

'35' 1007 12/01 '26' 1002 12/01 '24' 1004 12/01 '20' 1005 12/01

'39' 1011 12/01 '36' 1012 12/01 '32' 1003 12/01 '43' 1010 12/01

'14' 1001 12/01 '06' 1009 12/01 '04' 1008 12/01 '08' 1006 12/01

'03' 1016 12/02

'17' 1013 12/02

'48' 1023 12/02

'07' 1017 12/02

'16' 1021 12/02

'45' 1015 12/02

'09' 1018 12/02

'27' 1014 12/02

'44' 1022 12/02

'02' 1024 12/02

'11' 1019 12/02

'22' 1020 12/02

'01' 1028 12/03

'12' 1031 12/03

'28' 1032 12/03

'10' 1034 12/03

'29' 1033 12/03

'34' 1029 12/03

'19' 1025 12/03

'40' 1035 12/03

'47' 1027 12/03

'25' 1036 12/03

'31' 1026 12/03

'46' 1030 12/03

'23' 1040 12/04

'30' 1038 12/04

'42' 1047 12/04

'13' 1037 12/04

'21' 1045 12/04

'36' 1043 12/04

'05' 1048 12/04

'15' 1042 12/04

'33' 1039 12/04

'18' 1041 12/04

'38' 1046 12/04

'41' 1044 12/04

SELECT …
WHERE O_Date

BETWEEN '2012-03-01'
AND

'2012-03-31';

4 AMPs with
Orders Table defined
with Non-Partitioned
Primary Index (NPPI).

'01' 1028 12/03

'12' 1031 12/03

'28' 1032 12/03

'10' 1034 12/03

'29' 1033 12/03

'34' 1029 12/03

'19' 1025 12/03

'40' 1035 12/03

'47' 1027 12/03

'25' 1036 12/03

'31' 1026 12/03

'46' 1030 12/03

'03' 1016 12/02

'17' 1013 12/02

'48' 1023 12/02

'07' 1017 12/02

'16' 1021 12/02

'45' 1015 12/02

'09' 1018 12/02

'27' 1014 12/02

'44' 1022 12/02

'02' 1024 12/02

'11' 1019 12/02

'22' 1020 12/02

'14' 1001 12/01

'35' 1007 12/01

'39' 1011 12/01

'06' 1009 12/01

'26' 1002 12/01

'36' 1012 12/01

'04' 1008 12/01

'24' 1004 12/01

'32' 1003 12/01

'08' 1006 12/01

'20' 1005 12/01

'43' 1010 12/01

'23' 1040 12/04

'30' 1038 12/04

'42' 1047 12/04

'13' 1037 12/04

'21' 1045 12/04

'36' 1043 12/04

'05' 1048 12/04

'15' 1042 12/04

'33' 1039 12/04

'18' 1041 12/04

'38' 1046 12/04

'41' 1044 12/04

RH O_# O_Date RH O_# O_Date RH O_# O_Date RH O_# O_Date

 Partitioned Primary Indexes Page 17-10

Primary Index Access (NPPI)
A non-partitioned table (NPPI) has a traditional primary index by which rows are assigned
to AMPs. Apart from maintaining their storage in row hash order, no additional assignment
processing of rows is performed once they are hashed to an AMP.

With a NPPI table, the PARSER will include Partition Number 0 in the request. For a table
with a NPPI, all of the rows are assumed to be part of one partition (Partition 0).

Assuming that an SQL statement (e.g., SELECT) provides equality value(s) to the column(s)
of a Primary Index, the TD Database software retrieves the row or rows from a single AMP
as described below.

The Parsing Engine (PE) creates a four-part message composed of the Table ID, Partition
#0, the Row Hash, and Primary Index value(s). The 48-bit Table ID is located via the Data
Dictionary, the 32 bit Row Hash value is generated by the Hashing Algorithm, and the
Primary Index value(s) come from the SQL request. The Parsing Engine (via the Data
Dictionary) knows if a table has a NPPI and sets the Partition Number to 0.

The Message Passing Layer uses a portion of the Row Hash to determine to which AMP to
send the request. The Message Passing Layer uses the HBN portion of the Row Hash (first
16 or 20 bits of the Row Hash) to locate a bucket in the Hash Map(s). This bucket identifies
to which AMP the PE will send the request. The Hash Maps are part of the Message
Passing Layer interface.

The AMP uses the Table ID and Row Hash to identify and locate the proper data block, then
uses the Row Hash and PI value to locate the specific row(s). The PI value is required to
distinguish between Hash Synonyms. The AMP implicitly assumes the rows are part of
partition #0.

Note: The Partition Number (effectively 0) is not stored within the data rows for a table

with a NPPI. The FLAG or SPARE byte (within the row overhead) has a bit set to zero
for a NPPI row and it is set to one for a PPI row.

Acronyms:
 HBN – Hash Bucket Number
 PPI – Partitioned Primary Index
 NPPI – Non-Partitioned Primary Index

Partitioned Primary Indexes Page 17-11

Primary Index Access (NPPI)

SQL with primary index values
and data.

Hashing
Algorithm

PARSER

Data Table

Row ID Row Data
Row Hash Uniq Value

x '00000000'

x'068117A0' 0000 0001
x'068117A0' 0000 0002
x'068117A0' 0000 0003

x 'FFFFFFFF'

P# 0 RH Data

Notes:
1. For tables with a NPPI, the rows

are implicitly associated with
Partition #0.

2. Partition #0 is not stored within
each of the rows.

3. Rows are logically stored in Row
ID sequence.

Message Passing Layer (Hash Maps)

AMP 1 AMP n - 1AMP x... ...AMP 0 AMP n

Base TableID Part. # Row Hash PI values
(48 bits) 0 Bucket # and data

 Partitioned Primary Indexes Page 17-12

Primary Index Access (PPI)
The process to locate a data row(s) via a PPI is similar to the process in retrieving data rows
with a table defined with a NPPI – a process described earlier. If the SQL request provides
data about columns associated with the partitions, then the PARSER will include specific
partition information in the request.

 The key to remember is that a specific Row Hash value can be found in different
partitions on the AMP. The Partition Number, Row Hash, and Uniqueness Value
are needed to uniquely identify a row in a PPI-based table.

 A Row Hash and Uniqueness Value combination is only unique within a partition

of a PPI table. The same Row Hash and Uniqueness Value combination can be
present in different partitions (e.g., x’068117A0’).

Assuming that an SQL statement (e.g., SELECT) provides equality value(s) to the Primary
Index, then Teradata software retrieves the row(s) from a single AMP.

 If the SQL request also provides data for partition columns, then the AMP will only
have to access the partition(s) identified in the request sent to it by the PE.

 If the SQL request only provides Primary Index values and the partitioning
columns are outside of the Primary Index (and partitioning information is not
included in the SQL request), the AMP will check each of the Partitions for the
associated Row Hash.

The Parsing Engine (PE) creates a four-part message composed of the Table ID, Partition
Information, the Row Hash, and Primary Index value(s). The 48-bit Table ID is located via
the Data Dictionary, the 32-bit Row Hash value is generated by the Hashing Algorithm, and
the Partition information and Primary Index value(s) come from the SQL request. The
Parsing Engine (via the Data Dictionary) knows if a table has a PPI and determines the
Partitions to include in the request based on the SQL request.

The Message Passing Layer uses a portion of the Row Hash to determine to which AMP to
send the request. The Message Passing Layer uses the DSW portion of the Row Hash (first
16 or 20 bits of the Row Hash) to locate a bucket in the Hash Map(s). This bucket
identifies to which AMP the PE will send the request.

The AMP uses the Table ID, Partition Number(s), and Row Hash to identify and locate the
proper data block(s). The AMP then uses the Row Hash and PI value to locate the specific
row(s). The PI value is required to distinguish between Hash Synonyms. Each data row
will have the Partition Number stored within it.

In the general case, there can be up to 65,535 partitions, numbered from one. As rows are
inserted into the table, the partitioning expression is evaluated to determine the proper
partition placement for that row. The two-byte partition number is embedded in the row, as
part of the row identifier, making PPI rows two bytes wider than they would be if the table
wasn’t partitioned.

Partitioned Primary Indexes Page 17-13

Primary Index Access (PPI)

Hashing
Algorithm

PARSER

Data Table

P# RH Data

Notes:

1. Within the AMP, rows are ordered
first by their partition number.

2. Within each partition, rows are
logically stored in row hash and
uniqueness value sequence.

SQL with primary index values
and data, or SQL expressions that
include partition related values.

Row ID Row Data
Part # Row Hash Uniq Value

1 x'00000000'
1
1 x'068117A0' 0000 0001
1 x'068117A0' 0000 0002
1
1 x’FFFFFFFF'

2 x'00000000'
2
2 x'068117A0' 0000 0001
2
2 x'FFFFFFFF'
3 x'00000000'
3
3 x'FFFFFFFF'

Message Passing Layer (Hash Maps)

AMP 1 AMP n - 1AMP x... ...AMP 0 AMP n

Base TableID Part. # Row Hash PI values
(48 bits) 1 or more Bucket # and data

 Partitioned Primary Indexes Page 17-14

Why Partition a Table?
The decision to define a Partitioned Primary Index (PPI) for a table depends on how its rows
are most frequently accessed. PPI tables are designed to optimize range queries while also
providing efficient primary index join strategies. For range queries, only rows of the
qualified partitions need to be accessed.

 One of the reasons to define a PPI on a table is to increase query efficiency by
avoiding full table scans without the overhead and maintenance costs of secondary
indexes.

The facing page provides one example using a sales data table that has 5 years of sales
history. A PPI is placed on this table which partitions the data into 60 partitions (one for
each month of the 5 years).

Queries that request a subset of the data (some number of months) only need to access the
required partitions instead of the entire table. For example, a query that requests two months
of sales data only needs to read 2 partitions of the data from each AMP. This is about 1/30
of the table. Without a PPI or any secondary indexes, this query has to perform a full table
scan. Even with a secondary index, a full table scan would probably be done for 1/30 or 3%
of the table.

The more partitions there are, the greater the potential benefit.

Some of the performance opportunities available by using the PPI feature include:

 Get more efficiency in querying against a subset of large volumes of transactional
detail data as well as to manage this data more effectively.

– Businesses have recognized the analytic value of detailed transactions and are

storing larger and larger volumes of this data.

– Increase query efficiency by avoiding full table scans without the overhead and

maintenance costs of secondary indexes.

– As the retention volume of detailed transactions increases, the percent of

transactions that an “average” query requires for execution decreases.

 Allow “instantaneous” dropping of “old” data and simple addition of “new” data.

– Support a “rolling n periods” methodology for transactional data.

The term “partition elimination” refers to an automatic optimization in which the optimizer
determines, based on query conditions, that some partitions can't contain qualifying rows,
and causes those partitions to be skipped. Partitions that are skipped for a particular query
are called excluded partitions. Generally, the greatest benefit of a PPI table is obtained from
partition elimination.

Partitioned Primary Indexes Page 17-15

Why Partition a Table?

• Increase query efficiency by avoiding full table scans without the overhead
and maintenance costs of secondary indexes.

– Partition Elimination – the key advantage to partitioning a table is that the
optimizer can eliminate partitions for queries.

• For example, assume a sales data table has 5 years of sales history.

– A PPI is placed on this table which partitions the data into 60 partitions (one for
each month of the 5 years).

– Assume a query only needs to read 2 months of the data from each AMP.
• Only 1/30 (2 partitions) of the table has to be read.

• With a NPPI, this query has to perform a full table scan.

– A Valued-Ordered NUSI may be used to help performance for this type of query.
• However, there is NUSI subtable permanent space and maintenance overhead.

• Deleting large volumes of rows in entire partitions can be extremely fast.

– ALTER TABLE … DROP RANGE … ;

– Disclaimer: Fast deletes assume that the table doesn't have a NO RANGE partition
defined and has no secondary indexes, join indexes, or hash indexes.

 Partitioned Primary Indexes Page 17-16

Advantages/Disadvantages of Partitioning
The main advantage of a PPI table is the automatic optimization that occurs for queries that
specify a restrictive condition on the partitioning column. For example, a query which
examines two months of sales data in a table with two years of sales history can read about
one-twelfth of the table, instead of the entire table. The more partitions there are, the greater
the potential benefit.

Disadvantages of Partitioning
The two main potential disadvantages of using a PPI table occur with PI access and direct
PI-based joins. The PI access potential disadvantage occurs only when the partitioning
column is not part of the PI. In this situation, a query specifying a PI value, but no value for
the partitioning column, must look in each partition for that value, instead of positioning
directly to the first row for the PI value.

The direct join potential disadvantage occurs when another table with the same PI is joined
with an equality condition on every PI column. For two non-PPI tables, the rows of the two
tables will be ordered the same, and the join can be performed directly. If one of the tables
is partitioned, the rows won’t be ordered the same, and the task, in effect, becomes a set of
sub-joins, one for each partition of the PPI table.

In both of these situations, the disadvantage is proportional to the number of partitions, with
fewer partitions being better than more partitions.

With the Aligned Row Format (Linux 64-bit), the two-byte partition number is embedded in
the row, as part of the row identifier, plus an additional 2 bytes for a total of 4 additional
bytes per data row. With the Packed64 Row Format (Linux 64-bit 13.10 new install), the
overhead within in row for a PPI table is only 2 bytes for the partition number. Secondary
Indexes referencing PPI tables use the 10-byte row identifier, making those subtable rows 2
bytes wider as well. Join Indexes always use a 10-byte row identifier regardless if the base
tables are partitioned or not.

When the primary index is unique (but can’t be defined as unique because of the
partitioning), a USI or NUSI can be defined on the same columns as the primary index.
Access via the secondary index won’t be as fast as non-partitioned access via the primary
index, but is fast enough for most applications.

Why can't a Primary Index be defined as Unique unless the partitioning expression
columns are part of the PI column(s)?

 It’s because of the difficulty of performing the duplicate PI check for inserts. If there

was already a row with that PI, it could be in any partition, so every partition would
have to be checked to determine whether the duplicate PI exists. There can be
thousands of partitions. An insert-select could take a very long time in such a situation.
It’s more efficient to check uniqueness (and it also provides an efficient access path) to
define a unique secondary index (USI) on the same columns as the PI in this case.

Partitioned Primary Indexes Page 17-17

Advantages/Disadvantages of Partitioning

Advantages:

• The partition expression definition is the only thing that needs to be done by the DBA
or the database designer. No separate partition layout – no disk layout for partitions.

– For example, the last row in one partition and the first row in the next partition will usually be
in the same data block.

– No definition of location in the system for partitions.

• Even data distribution and even processing of a logical partition is automatic.

– Due to the PI distribution of the rows

• No modifications of queries required.

Potential disadvantages:

• PPI rows are 2 or 8 bytes longer. Table uses more PERM space.

– Secondary index subtable rows are also increased in size.

• A PI access may be degraded if the partitioning column is not part of the PI.

– A query specifying only a PI value must look in each partition for that value.

• Joins to non-partitioned tables with the same PI may be degraded.

• The PI can’t be defined as unique when the partitioning column is not part of the PI.

 Partitioned Primary Indexes Page 17-18

PPI Considerations
Starting with Teradata V2R6.1, base tables, global temporary tables, and volatile temporary
tables can be partitioned. This restriction doesn’t mean that a PPI table can’t have
secondary indexes, or can’t be referenced in the definition of a Join Index or Hash Index. It
merely means that the PARTITION BY clause is not available on a CREATE JOIN INDEX
or CREATE HASH INDEX statement.

In Teradata Database V2R6.2, Partitioned Primary Indexes (PPIs) are supported for non-
compressed join indexes.

In the general case, there can be up to 65,535 partitions, numbered from one. The two-byte
partition number is embedded in the data row, as part of the row identifier. Secondary
Indexes and Join Indexes referencing PPI tables also use the wider row identifier. Except
for the embedded partition number, PPI rows have the same format as non-PPI rows. A data
block can contain rows from more than one partition. There are no new control structures
needed to implement the partitioning scheme.

Access of Tables with a PPI
Some of the issues associated with accessing a table that has a defined PPI are listed below:

 If the SELECT statement does not provide values for any of the partitioning
columns, then all of the partitions may be probed to find row(s) with the hash
value.

 If the SELECT statement provides values for some of the partitioning columns,

then partition elimination may reduce the number of the partitions that will be
probed to find row(s) with the hash value.

 A common situation is with SQL specifying a range of values for partitioning

columns. This allows some partitions to be excluded.

 If the SELECT statement provides values for all of the partitioning columns, then

partition elimination will cause a single partition to be probed to find row(s) with
the hash value.

In summary, a NUPI access of a PPI table will take longer when a query specifies the PI
column values, but doesn’t include the partitioning column(s). In this situation, each
partition must be probed for the appropriate PI value. In the worst case, the number of disk
reads could increase by a factor equal to the number of partitions. While probing a partition
is a fast operation, a table with thousands of partitions might not provide acceptable
performance for PI accesses for some applications.

Partitioned Primary Indexes Page 17-19

PPI Considerations

PPI considerations include …

• Base tables are partitioned, secondary indexes are not.

• However, a PPI table can have secondary indexes which reference rows in a PPI table
via a RowID in the SI subtable.

– Global and Volatile Temporary Tables can also be partitioned.

– Non-Compressed Join Indexes can also be partitioned.

• A join or hash index can also reference rows in a PPI table.

A table has a max of 65,535 (or 9.223 Quintillion) partitions.

• Partitioning columns do not have to be columns in the primary index.

• There are numerous options for partitioning.

As rows are inserted into the table, the partitioning expression is evaluated to
determine the proper partition placement for that row.

 Partitioned Primary Indexes Page 17-20

How to Define a PPI
Primary indexes can be partitioned or non-partitioned. A primary index is defined as part of
the CREATE TABLE statement. The PRIMARY INDEX definition has a new option to
create partitioned primary indexes.

 PARTITION BY <partitioning expression>

A partitioned primary index (PPI) permits rows to be assigned to user-defined data partitions
on the AMPs, enabling enhanced performance for range queries that are predicated on
partitioning columns(s) values. The <partitioning_expression> is evaluated and Teradata
determines the appropriate partition number or assignment.

The <partitioning-expression> is a general expression, allowing wide flexibility in tailoring
the partitioning scheme to the unique characteristics of the table. Two functions, CASE_N
and RANGE_N, are provided to simplify the creation of common partitioning schemes.
You can write any valid SQL expression as a partitioning expression with a few exceptions.
The reference manual has details on SQL expressions that are not permitted in the
<partitioning expression>.

Limitations on PARTITION BY option include:

 Partitioning expression must be a scalar expression that is INTEGER or can be cast
to INTEGER.

 Multiple columns from the table may be specified in the expression

– These are called the partitioning columns.

 Before Teradata 13.10, expression must not require character/graphic comparison

in order to be evaluated.
– Expression must not contain aggregate/ordered-analytic/statistical functions,

DATE/, TIME, ACCOUNT, RANDOM, HASH, etc. functions.

 PARTITION BY clause not allowed for global temporary tables, volatile tables,
join indexes, hash indexes, and secondary indexes in the first release of PPI.

 UNIQUE only allowed if all partitioning columns are included in the PI.

 Partitioning expression limited to approximately 8100 characters.

– Stored as an implicit check constraint in DBC.TableConstraints

One or more columns can make up the partitioning expression, although it is anticipated that
for most tables one column will be specified. The partitioning column(s) can be part of the
primary index, but are not required to be. The result of the partitioning expression must be a
scalar value that is INTEGER or can be cast to INTEGER. Most deterministic functions can
be used within the expression. The expression must not require character or graphic
comparisons, although character or graphic columns can be used in some circumstances.

Partitioned Primary Indexes Page 17-21

How to Define a PPI

The PRIMARY INDEX definition portion of a CREATE TABLE statement has a
optional PARTITION BY option.

CREATE TABLE …
[UNIQUE] PRIMARY INDEX (col1, col2, …)

PARTITION BY <partitioning-expression>

Options for the <partitioning-expression> include:

• Range partitioning

• Conditional partitioning, modulo partitioning, and general expression partitioning.

• Partitioning columns do not have to be columns in the primary index. If they aren't,
then the primary index cannot be unique.

Column(s) included in the partitioning expression are called the “partitioning
column(s)”.

• Two functions, CASE_N and RANGE_N, are provided to simplify the creation of
common partitioning schemes.

 Partitioned Primary Indexes Page 17-22

Partitioning with CASE_N and RANGE_N
For many tables, there is no suitable column that lends itself to direct usage as a partitioning
column. For these situations, the CASE_N and RANGE_N functions can be used to
concisely define partitioning expressions. When CASE_N or RANGE_N is used, two
partitions are reserved for specific uses, leaving a maximum of 65,533 user-defined
partitions. Note that the table still has a total of 65,535 available partitions.

The PARTITION BY phrase requires a partitioning expression that determines the partition
assignment of a row. You can use the CASE_N function to construct a partitioning
expression such that a row with any value or NULL for the partitioning column is assigned
to a partition.

The CASE_N function is patterned after the SQL CASE expression. It evaluates a list of
conditions and returns the position of the first condition that evaluates to TRUE, provided
that no prior condition in the list evaluates to UNKNOWN. The returned value will map
directly into a partition number.

Another option is to use the RANGE_N function to construct a partitioning expression with
a list of ranges such that a row with any value or NULL for the partitioning column is
assigned to a partition.

If CASE_N or RANGE_N is used in a partitioning expression in a CREATE TABLE or
ALTER TABLE statement, it:

 Must not involve character or graphic comparisons

 Can specify a maximum of 65,533 user-defined partitions. The table can have a

total of 65,535 partitions including the NO CASE (NO RANGE) and UNKNOWN
partitions.

Partitioned Primary Indexes Page 17-23

The <partitioning expression> may use one of the following functions to help
define partitions.

• CASE_N

• RANGE_N

Use of CASE_N results in the following:

• Evaluates a list of conditions and returns the position of the first condition that
evaluates to TRUE.

• Result is the data row being placed into a partition associated with that condition.

• Note: Patterned after SQL CASE expression.

Use of RANGE_N results in the following:

• The expression is evaluated and is mapped into one of a list of specified ranges.

• Ranges are listed in increasing order and must not overlap with each other.

• Result is the data row being placed into a partition associated with that range.

NO CASE, NO RANGE, and UNKNOWN options are also available.

Partitioning with CASE_N and RANGE_N

 Partitioned Primary Indexes Page 17-24

Partitioning with RANGE_N – Example 1
One of most common partitioning expression is to use RANGE_N partitioning to partition
the table based on a group of dates (e.g., month partitions). A range is defined by a starting
boundary and an optional ending boundary. If an ending boundary is not specified, the
range is defined by its starting boundary, inclusively, up to but not including the starting
boundary of the next range.

The list of ranges must specify ranges in increasing order, where the ending boundary of a
range is less than the starting boundary of the next range.

RANGE_N Limitations include:

 Multiple test values are not allowed in a RANGE_N function.
 Test value in RANGE_N function must be INTEGER, BYTEINT, SMALLINT, or

DATE.
 Range value and range size in a RANGE_N function must be constant.
 Ascending ranges only and ranges must not overlap with other.

For example, the following CREATE TABLE statement can be used to establish the
monthly partitioning. This example does not have the NO RANGE partition defined.

CREATE SET TABLE Claim
 (claim_id INTEGER NOT NULL
 ,cust_id INTEGER NOT NULL
 ,claim_date DATE NOT NULL
 :
PRIMARY INDEX (claim_id)
 PARTITION BY RANGE_N (claim_date BETWEEN
 DATE '2003-01-01' AND DATE '2012-12-31' EACH INTERVAL '1' MONTH);

To maintain uniqueness on the claim_id, you can include a USI on claim_id by including the
following option.

 UNIQUE INDEX (claim_id)

If the claim_date column for an attempted INSERT or UPDATE has a date outside of the
partitioning range or NULL, then an error will be returned and the row won’t be inserted or
updated.

Notes:

 UPI not allowed because partitioning column is not included in the PI.
 Unique Secondary Index is allowed on PI to enforce uniqueness.

The facing page contains examples of inserting data rows into a table partitioned by month
and how the date is evaluated into the appropriate partition.

Partitioned Primary Indexes Page 17-25

Partitioning with RANGE_N – Example 1

The following INSERTs place new rows into the Claim table. The date is evaluated and the
rows are placed into the appropriate partitions.

INSERT INTO Claim VALUES (100039,1009, '2003-01-13', …); placed in partition #1
INSERT INTO Claim VALUES (260221,1020, '2012-01-07', …); placed in partition #109
INSERT INTO Claim VALUES (350221,1020, '2013-01-01', …); placed in no range partition (#121)
INSERT INTO Claim VALUES (100039, 1009, NULL, …); Error 3811 – NOT NULL violation

If the table did not have the NO RANGE partition defined, then the following error occurs:

INSERT INTO Claim VALUES (100039, 1009, '2013-01-01', …); (5728 – Partitioning violation)

Note: claim_id must be defined as a NUPI because claim_date is not part of PI.

For example, partition the Claim table by "Claim Date".

CREATE TABLE Claim
(claim_id INTEGER NOT NULL
,cust_id INTEGER NOT NULL
,claim_date DATE NOT NULL
…)

PRIMARY INDEX (claim_id)
PARTITION BY RANGE_N

(claim_date BETWEEN DATE '2003-01-01' AND DATE '2012-12-31' EACH INTERVAL '1' MONTH,
NO RANGE);

 Partitioned Primary Indexes Page 17-26

Access using Partitioned Data – Example 1 (cont.)
The EXPLAIN text for these queries is shown below.

EXPLAIN SELECT *
 FROM Claim_PPI
 WHERE claim_date
 BETWEEN DATE '2012-01-01' AND DATE '2012-01-31';

1) First, we lock a distinct DS."pseudo table" for read on a RowHash to prevent global

deadlock for DS.Claim_PPI.
2) Next, we lock DS.Claim_PPI for read.
3) We do an all-AMPs RETRIEVE step from a single partition of DS.Claim_PPI with a

condition of ("(DS.Claim_PPI.claim_date <= DATE '2012-01-31') AND
(DS.Claim_PPI.claim_date >= DATE '2012-01-01')") into Spool 1 (group_amps),
which is built locally on the AMPs. The input table will not be cached in memory, but
it is eligible for synchronized scanning. The size of Spool 1 is estimated with high
confidence to be 21,100 rows (2,869,600 bytes). The estimated time for this step is 0.44
seconds.

4) Finally, we send out an END TRANSACTION step to all AMPs involved in processing
the request.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total
estimated time is 0.44 seconds.

The table named Claim_NPPI is similar to Claim_PPI except it does not have a Partitioned
Primary Index, but does have “claim_id” as a UPI.

EXPLAIN SELECT *
 FROM Claim_NPPI
 WHERE claim_date
 BETWEEN DATE '2011-01-01' AND DATE '2011-01-31';

1) First, we lock a distinct DS."pseudo table" for read on a RowHash to prevent global

deadlock for DS.Claim_NPPI.
2) Next, we lock DS.Claim_NPPI for read.
3) We do an all-AMPs RETRIEVE step from DS.Claim_NPPI by way of an all-rows

scan with a condition of ("(DS.Claim_NPPI.claim_date <= DATE '2012-01-31') AND
(DS.Claim_NPPI.claim_date >= DATE '2012-01-01')") into Spool 1 (group_amps),
which is built locally on the AMPs. The input table will not be cached in memory, but
it is eligible for synchronized scanning. The size of Spool 1 is estimated with high
confidence to be 21,100 rows (2,827,400 bytes). The estimated time for this step is
49.10 seconds.

4) Finally, we send out an END TRANSACTION step to all AMPs involved in processing
the request.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total
estimated time is 49.10 seconds.

Note: Statistics were collected on the claim_id, cust_id, and claim_date of both tables. The
Claim table has 1,440,000 rows.

Partitioned Primary Indexes Page 17-27

Access using Partitioned Data – Example 1

QUERY – PPI
SELECT *
FROM Claim_PPI
WHERE claim_date BETWEEN

DATE '2012-01-01' AND
DATE '2012-01-31' ;

PLAN – PPI
ALL-AMPs – Single Partition Scan
EXPLAIN estimated cost – 0.44 sec.

AMP

Part 1 – Jan, 03

Part 2

P# 109

Part n

.

.

.

AMP

Part 1 – Jan, 03

Part 2

P# 109

Part n

.

.

.

AMP

Part 1 – Jan, 03

Part 2

P# 109

Part n

.

.

.... …

AMP AMP AMP

... ...

QUERY – NPPI
SELECT *
FROM Claim_NPPI
WHERE claim_date BETWEEN

DATE '2012-01-01' AND
DATE '2012-01-31' ;

PLAN – NPPI
ALL-AMPs – Full Table Scan

EXPLAIN estimated cost – 49.10 sec.

 Partitioned Primary Indexes Page 17-28

Access Using Primary Index – Example 1 (cont.)
The EXPLAIN text for these queries is shown below.

EXPLAIN SELECT *
 FROM Claim_PPI
 WHERE claim_id = 260221;

1) First, we do a single-AMP RETRIEVE step from all partitions of DS.Claim_PPI by

way of the primary index "DS.Claim_PPI.claim_id = 260221" with a residual condition
of ("DS.Claim_PPI.claim_id = 260221") into Spool 1 (one-amp), which is built locally
on that AMP. The input table will not be cached in memory, but it is eligible for
synchronized scanning. The size of Spool 1 (136 bytes) is estimated with high
confidence to be 1 row. The estimated time for this step is 0.09 seconds.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total
estimated time is 0.09 seconds.

The table named Claim_NPPI is similar to Claim_PPI except it does not have a Partitioned
Primary Index, but does have “claim_id” as a UPI.

EXPLAIN SELECT *
 FROM Claim_NPPI
 WHERE claim_id = 260221;

1) First, we do a single-AMP RETRIEVE step from DS.Claim_NPPI by way of the

unique primary index "DS.Claim_NPPI.claim_id = 260221" with no residual
conditions. The estimated time for this step is 0.00 seconds.

-> The row is sent directly back to the user as the result of statement 1. The total
estimated time is 0.00 seconds.

Partitioned Primary Indexes Page 17-29

Access Using Primary Index – Example 1 (cont.)

QUERY – NPPI
SELECT *
FROM Claim_NPPI
WHERE claim_id = 260221;

PLAN – NPPI
One AMP – UPI Access
EXPLAIN estimated cost – 0.00 sec.

AMP AMP AMP

... ...

Only one block
has to be read to
locate the row.

QUERY – PPI
SELECT *
FROM Claim_PPI
WHERE claim_id = 260221;

PLAN – PPI
One AMP – All Partitions are probed
EXPLAIN estimated cost – 0.09 sec.

AMP

Part 1 – Jan, 03

Part 2

Part 109

Part n

.

.

.

AMP

Part 1 – Jan, 03

Part 2

Part 109

Part n

.

.

.

AMP

Part 1 – Jan, 03

Part 2

Part 109

Part n

.

.

.... …

 Partitioned Primary Indexes Page 17-30

Place a USI on NUPI – Example 1 (cont.)
If the partitioning columns are not part of the Primary Index, the Primary Index cannot be
unique (e.g., claim_date). To maintain uniqueness on the Primary Index, you can create a
USI on the PI (e.g., Claim ID or claim_id).

Reasons for this may include:

 USI access to specific rows may be faster than scanning multiple partitions on a
single AMP.

 Establish the USI as a referenced parent in Referential Integrity.

CREATE UNIQUE INDEX (claim_id) ON Claim_PPI;

EXPLAIN SELECT *
 FROM Claim_PPI
 WHERE claim_id = 260221;

1) First, we do a two-AMP RETRIEVE step from DS.Claim_PPI by way of unique

index # 4 "DS.Claim_PPI.claim_id = 260221" with no residual conditions. The
estimated time for this step is 0.00 seconds.

-> The row is sent directly back to the user as the result of statement 1. The total estimated
time is 0.00 seconds.

As an alternative, the SELECT can include the Primary Index values and the partitioning
information. This allows the PE to build a request that has the AMP scan a specific
partition. However, in this example, the user may not know the claim date in order to
include it in the query.

EXPLAIN SELECT *
 FROM Claim_PPI
 WHERE claim_id = 260221
 AND claim_date = DATE '2012-01-11';

1) First, we do a single-AMP RETRIEVE step from DS.Claim_PPI by way of the primary

index "DS.Claim_PPI.claim_id = 260221, DS.Claim_PPI.claim_date = DATE '2012-
01-11'" with a residual condition of ("(DS.Claim_PPI.claim_date = DATE '2012-01-11')
AND (DS.Claim_PPI.claim_id = 260221)") into Spool 1 (one-amp), which is built
locally on that AMP. The input table will not be cached in memory, but it is eligible for
synchronized scanning. The size of Spool 1 (136 bytes) is estimated with high
confidence to be 1 row. The estimated time for this step is 0.00 seconds.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total
estimated time is 0.00 seconds.

Partitioned Primary Indexes Page 17-31

Place a USI on NUPI – Example 1 (cont.)

Notes:

• If the partitioning column(s) are not part of the Primary Index, the Primary Index
cannot be unique (e.g., Claim Date is not part of the PI).

• To maintain uniqueness on the Primary Index, you can create a USI on the PI (e.g.,
Claim ID). This is a two-AMP operation.

CREATE UNIQUE INDEX
(claim_id) ON Claim_PPI ;

SELECT *
FROM Claim_PPI
WHERE claim_id = 260221;

USI Considerations:
• Eliminate partition probing
• Row-hash locks
• 2-AMP operation
• Can only be used if values in

PI column(s) are unique
• Will maintain uniqueness
• USI on NUPI only supported

on PPI tables

... ...

AMP

USI Subtable

AMP

USI Subtable

AMP

USI Subtable

Part 1

Part 2

Part 109

Part n

.

.

.

Part 1

Part 2

Part 109

Part n

.

.

.

Part 1

Part 2

Part 109

Part n

.

.

.

... ...

USI subtable row specifies part #,
row hash, & uniq. value of data row.

 Partitioned Primary Indexes Page 17-32

Place a NUSI on NUPI – Example 1 (cont.)
If the partitioning columns are not part of the Primary Index, the Primary Index cannot be
unique (e.g., Claim ID). You can use a NUSI on the same columns that make up the PI and
actually get a single-AMP access operation. This feature only applies to a NUSI created on
the same columns as a PI on PPI table. Additionally, instead of table level locks (typical
NUSI), row hash locks will be used.

Reasons to choose a NUSI for your PI may include:

 The primary index is non-unique (can’t use a USI) and you need faster access than
scanning or probing multiple partitions on a single AMP.

 MultiLoad can be used to load a table with a NUSI, not a USI.

 The access time for a USI and NUSI will be similar (each will access a subtable

block) – however, the USI is a 2-AMP operation and requires BYNET message
passing. The amount of space for a USI and NUSI subtable in this case will be
similar. A typical NUSI with duplicate values will have multiple row ids (keys) in
a subtable row and will save space per subtable row. However, a NUSI used as an
index for columns with unique values will use approximately the same amount of
subtable space as a USI. This is because each NUSI subtable row only contains 1
row id.

CREATE INDEX (claim_id) ON Claim_PPI;

EXPLAIN SELECT *
 FROM Claim_PPI
 WHERE claim_id = 260221;

1) First, we do a single-AMP RETRIEVE step from DS.Claim_PPI by way of index # 4

"DS.Claim_PPI.claim_id = 260221" with no residual conditions into Spool 1
(group_amps), which is built locally on that AMP. The input table will not be cached in
memory, but it is eligible for synchronized scanning. The size of Spool 1 (136 bytes) is
estimated with high confidence to be 1 row. The estimated time for this step is 0.00
seconds.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total
estimated time is 0.00 seconds.

Partitioned Primary Indexes Page 17-33

Place a NUSI on NUPI – Example 1 (cont.)

Notes:
• You can optionally create a NUSI on the same columns as the Primary Index (e.g.,

Claim ID). The PI may be unique or not.

• Optimizer generates a plan for a single-AMP NUSI access with row-hash locking
(instead of table-level locking).

... ...

AMP

NUSI Subtable

AMP

NUSI Subtable

AMP

NUSI Subtable

Part 1

Part 2

Part 109

Part n

.

.

.

Part 1

Part 2

Part 109

Part n

.

.

.

Part 1

Part 2

Part 109

Part n

.

.

.

... ...

CREATE INDEX (claim_id)
ON Claim_PPI;

SELECT *
FROM Claim_PPI
WHERE claim_id = 260221;

NUSI Considerations:
• Eliminate partition probing
• Row-hash locks
• 1-AMP operation
• Can be used with unique or

non-unique PI columns
• Must be equality condition
• NUSI Single-AMP operation

only supported on PPI tables
• Use MultiLoad to load table

NUSI subtable row specifies part#,
row hash, & uniq. value of data row.

 Partitioned Primary Indexes Page 17-34

Partitioning with RANGE_N – Example 2
This example illustrates that a table can be partitioned with different size intervals. The
current Sales data and Sales History data are placed in the same table. It typically is not
practical to create a partitioning expression as shown in example #2, but the example is
included to show the flexibility that you have with the partitioning expression.

For example, you may decide to partition the Sales History by month and the current sales
data by day. You may want to do this if users frequently access the Sales History data with
range constraints, resulting in full table scans. It may be that users access the current year
data frequently looking at data for a specific day. The example on the facing page partitions
the years 2002 to 2011 by month and the year 2011 by day.

One option may be to partition by week as follows:

PARTITION BY RANGE_N (sales_date
 BETWEEN DATE '2003-01-01' AND DATE '2003-12-31' EACH INTERVAL '7' DAY,
 DATE '2004-01-01' AND DATE '2004-12-31' EACH INTERVAL '7' DAY,
 : :
 DATE '2012-01-01' AND DATE '2012-12-31' EACH INTERVAL '7' DAY);

One may think that a simple partitioning scheme to partition by week would be as follows:

PARTITION BY RANGE_N (sales_date
 BETWEEN DATE '2003-01-01' AND DATE '2012-12-31' EACH INTERVAL '7' DAY);

This is a simpler PARTITION expression to initially code, but may require more work or
thought later. There is a minor drawback to partitioning by weeks because a 7-day partition
usually spans one year into the next. Assume that a year from now, you wish to ALTER this
table and DROP the partitions for the year 2003. The ALTER TABLE DROP RANGE
option has to specify a range of dates that actually represent a complete partition or
partitions in the table. A complete partition ends on 2003-12-19, not 2003-12-31. The
ALTER TABLE command will be described later in this module.

If daily partitions are desired for all of the years, the following partitioning expression can
be used to create a partitioned table with daily partitions.

 PARTITION BY RANGE_N (
 sales_date BETWEEN
 DATE '2003-01-01' AND DATE '2012-12-31' EACH INTERVAL '1' DAY);

Performance Note: Daily partitions for ten years creates 3653 partitions (10 x 365 plus three
leap days) and may not useful in many situations. Try to avoid daily partitions over a long
period of time.

Partitioned Primary Indexes Page 17-35

Partitioning with RANGE_N – Example 2

Notes:

• This example places current and history sales data into one table.

• Current year data is partitioned on a more granular basis (daily) while historical sales
data is placed into monthly partitions.

• Partitions of varying intervals can be created on the same PPI for a table.

CREATE TABLE Sales_and_SalesHistory
(store_id INTEGER NOT NULL,

item_id INTEGER NOT NULL,
sales_date DATE FORMAT 'YYYY-MM-DD',
total_revenue DECIMAL(9,2),
total_sold INTEGER,
note VARCHAR(256))

PRIMARY INDEX (store_id, item_id)
PARTITION BY RANGE_N (

sales_date BETWEEN
DATE '2003-01-01' AND DATE '2011-12-31' EACH INTERVAL '1' MONTH,
DATE '2012-01-01' AND DATE '2012-12-31' EACH INTERVAL '1' DAY);

To partition by week, the following partitioning can be used.

PARTITION BY RANGE_N (sales_date BETWEEN
DATE '2003-01-01' AND DATE '2003-12-31' EACH INTERVAL '7' DAY,
DATE '2004-01-01' AND DATE '2004-12-31' EACH INTERVAL '7' DAY,

: :

ds186034
Sticky Note
108+366 (leap year)=474partitions

 Partitioned Primary Indexes Page 17-36

Partitioning – Example 3
This example partitions by Store Id (store number). Prior to Teradata 14.0, a table has a
maximum limit of 65,535 partitions. Therefore, the partitioning expression value from Store
Id or an expression involving Store Id must be between 1 and 65,535.

If a company had a small number of stores, you could use the RANGE_N expression to limit
the number of possible partitions. The alternative partitioning (that is shown on facing page)
expression allows for ten partitions instead of 65,535. The optimizer may be able to more
accurately cost join plans when the maximum number of partitions is known and small,
making this a better choice than using the column directly.

Assume that a company has 1000 stores, and the store numbers (store_id) are from 100001
to 101001. To utilize 1000 partitions, the following partitioning expression could be
defined.

 ... PRIMARY INDEX (store_id, item_id, sales_date)
 PARTITION BY store_id – 100000;

If a company has a small number of stores and a small number of products, another option
may be to partition by a combination of Store Id and Item Id.

Assume the following:

 Store numbers – 100001 to 100065 - less than 65 stores
 Item numbers – 5000 to 5999 - less than 1000 item ids

Basically, the table has three-digit item_id codes and less than 65 stores.

This table could be partitioned as follows:

 ... PRIMARY INDEX (store_id, item_id, sales_date)
 PARTITION BY ((store_id – 100000) * 1000 + (item_id – 5000));

Assume that the store_id is 100009 and the item_id is 5025. This row would be placed in
partition # 9025.

If many queries specify both a Store Id and an Item Id, this might be a useful partitioning
scheme. Even if it wouldn’t be useful, it demonstrates that the physical designers and/or
database administrators have wide latitude in defining generalized partitioning schemes to
meet the needs of individual tables.

Partitioned Primary Indexes Page 17-37

Partitioning – Example 3

Notes:

• The simplest partitioning expression uses one column from the row without
modification. Before Teradata 14.0, the column values must be between 1 and 65,535.

• Assume the store_id is a value between 100001 and 101001. Therefore, a simple
calculation can be performed.

• This example will partition by data by store_id and effectively utilize 1000 partitions.

CREATE TABLE Store_Sales
(store_id INTEGER NOT NULL,

item_id INTEGER NOT NULL,
sales_date DATE FORMAT 'YYYY-MM-DD',
total_revenue DECIMAL(9,2),
total_sold INTEGER,
note VARCHAR(256))

UNIQUE PRIMARY INDEX (store_id, item_id, sales_date)
PARTITION BY store_id - 100000;

Alternative Definition:

• Assume the customer wishes to group these 1000 stores into 100 partitions.

• The RANGE_N expression can be used to identify the number of partitions and group
multiple stores into the same partition.

PARTITION BY RANGE_N ((store_id - 100000) BETWEEN 1 AND 1000 EACH 10);

 Partitioned Primary Indexes Page 17-38

Special Partitions with CASE_N and RANGE_N
The keywords, NO CASE (or NO RANGE) [OR UNKNOWN] and UNKNOWN are used
to define the specific-use partitions.

Even if these options are not specified with the CASE_N (or RANGE_N) expressions, these
two specific-use partitions are still reserved in the event the ALTER TABLE command is
later used to add these options.

If it is necessary to test a CASE_N condition directly as NULL, it needs to be the first
condition listed. This following example is correct. NULLs will be placed in partition #1.

PARTITION BY CASE_N
 (col3 IS NULL,
 col3 < 10,
 col3 < 100,
 NO CASE OR UNKNOWN)

INSERT INTO PPI_TabA VALUES (1, 'A', NULL, DATE);
INSERT INTO PPI_TabA VALUES (2, 'B', 5, DATE);
INSERT INTO PPI_TabA VALUES (3, 'C', 50, DATE);
INSERT INTO PPI_TabA VALUES (4, 'D', 500, DATE);
INSERT INTO PPI_TabA VALUES (5, 'E', NULL, DATE);

SELECT PARTITION AS "Part #", COUNT(*) FROM PPI_TabA
GROUP BY 1 ORDER BY 1;

 Part # Count(*)
 1 2
 2 1
 3 1
 4 1

Although you can code an example as follows, it should not be coded this way and will
provide inconsistent results. NULLs will be placed in partition #4.

PARTITION BY CASE_N
 (col3 < 10,
 col3 IS NULL,
 col3 < 100,
 NO CASE OR UNKNOWN)

SELECT PARTITION AS "Part #", COUNT(*) FROM PPI_TabA
GROUP BY 1 ORDER BY 1;

 Part # Count(*)
 1 1
 3 1
 4 3

Partitioned Primary Indexes Page 17-39

Special Partitions with CASE_N and RANGE_N

The CASE_N and RANGE_N can place rows into specific-use partitions when ...

• the expression doesn’t meet any of the CASE and RANGE expressions.

• the expression evaluates to UNKNOWN.

• two partition numbers are reserved even if the above options are not used.

The PPI keywords used to define two specific-use partitions are:

• NO CASE (or NO RANGE) [OR UNKNOWN]

– If this option is used, then a specific-use partition is used when the expression isn't true for
any case (or is out of range).

– If OR UNKNOWN is included with the NO CASE (or NO RANGE), then UNKNOWN expressions
are also placed in this partition.

• UNKNOWN

– If this option is specified, a different specific-use partition is used for unknowns.

• NO CASE (or NO RANGE), UNKNOWN

– If this option is used, then two separate specific-use partitions are used when the expression
isn't true for any case (or is out of range) and different special partition is used for NULLs.

 Partitioned Primary Indexes Page 17-40

Special Partition Examples
This example assumes the following CASE_N expression.

PARTITION BY CASE_N (
 col3 < 10 ,
 col3 < 100 ,
 col3 < 1000 ,
 NO CASE OR UNKNOWN)

This statement creates four partitions, conceptually numbered (*Note) from one to four in
the order they are defined. The first partition is when col3 is less than 10, the second
partition is when col3 is at least 10 but less than 100, and the third partition is when col3 is
at least 100 but less than 1,000.

The NO CASE OR UNKNOWN partition is for any value which isn't true for any previous
CASE_N expression. In this case, it would be when col3 is equal to or greater than 1,000 or
when col3 is NULL.

This partition is also used for values for which it isn't possible to determine the truth of the
previous CASE_N expressions. Usually, this is a case where col3 is NULL or unknown.

Internally, UNKNOWN (option by itself) rows are assigned to partition #1. NOCASE (NO
RANGE) OR UNKNOWN rows are physically assigned to partition #2. Internally, the first
user-defined partition is actually partition #3.

The physical implementation in the file system is:

 col3 < 10 – partition #1 (internally, rows placed in partition # 3)
 col3 < 100 – partition #2 (internally, rows placed in partition # 4)
 col3 < 1000 – partition #3 (internally, rows placed in partition # 5)
 NO CASE or UNKNOWN – partition #4 (internally, rows placed in partition # 2)

It is NOT syntactically possible to code a partitioning expression that has both NO CASE
OR UNKNOWN, and UNKNOWN in the same expression. UNKNOWN expressions will
either be placed in the partition with NO CASE or in a partition of their own. The following
SQL is NOT permitted.

PARTITION BY CASE_N (
 col3 < 10 ,
 :
 NO CASE OR UNKNOWN,
 UNKNOWN) - causes an error

Partitioned Primary Indexes Page 17-41

Special Partition Examples

The following examples illustrate the use of NO CASE and UNKNOWN options.

Ex. 1 PARTITION BY CASE_N (
col3 < 10 ,
col3 < 100 ,
col3 < 1000 ,
NO CASE OR UNKNOWN)

In summary, NO CASE and UNKNOWN rows are placed into the same partition.

Ex. 2 PARTITION BY CASE_N (
col3 < 10 ,
col3 < 100 ,
col3 < 1000 ,
NO CASE,
UNKNOWN)

In summary, NO CASE and UNKNOWN rows are placed into separate partitions.

Note: RANGE_N works in a similar manner.

If col3 = 5, row is placed in Partition #1.
If col3 = 50, row is placed in Partition #2.
If col3 = 500, row is placed in Partition #3.
If col3 = 5000, row is placed in Partition #4.
If col3 = NULL, row is placed in Partition #5.

If col3 = 5, row is assigned to Partition #1.
If col3 = 50, row is assigned to Partition #2.
If col3 = 500, row is assigned to Partition #3.
If col3 = 5000, row is assigned to Partition #4.
If col3 = NULL, row is assigned to Partition #4.

 Partitioned Primary Indexes Page 17-42

Partitioning with CASE_N – Example 4
This example illustrates the capability of partitioning based upon conditions (CASE_N).

For example, assume a table has a total revenue column, defined as decimal. The table
could be partitioned on that column, so that low revenue products are separated from high
revenue products. The partitioning expression could be written as shown on the facing page.
In this example, 8 partitions are defined for total revenue values up to 100,000. Two
additional partitions are defined – one for revenues greater than 100,000 and another for
unknown revenues (e.g., NULL).

Teradata 13.10 Note: Teradata 13.10 allows CURRENT_DATE and/or
CURRENT_TIMESTAMP with partitioning expressions. However, it is recommended to
NOT use these in a CASE expression for a partitioned primary index (PPI). Why? In this case,
all rows are scanned during reconciliation.

Additional examples:
The following examples illustrate the use of the NO CASE option by itself or the
UNKNOWN option by itself.

Ex.1 PARTITION BY CASE_N (
 col3 < 10 ,
 col3 < 100 ,
 col3 < 1000 ,
 NO CASE)

 If col3 = 5, row is assigned to Partition #1.
 If col3 = 50, row is assigned to Partition #2.
 If col3 = 500, row is assigned to Partition #3.
 If col3 = 5000, row is assigned to Partition #4.
 If col3 = NULL, Error 5728

 5728: Partitioning violation for table DBname.Tablename.

Ex. 2 PARTITION BY CASE_N (
 col3 < 10 ,
 col3 < 100 ,
 col3 < 1000 ,
 UNKNOWN)

 If col3 = 5, row is assigned to Partition #1.
 If col3 = 50, row is assigned to Partition #2.
 If col3 = 500, row is assigned to Partition #3.
 If col3 = 5000, Error 5728
 If col3 = NULL, row is assigned to Partition #4.

 5728: Partitioning violation for table DBname.Tablename.

Partitioned Primary Indexes Page 17-43

Partitioning with CASE_N – Example 4

Notes:

• Partition the data based on total revenue for the products.

• The NO CASE and UNKNOWN options allow for total_revenue >=100,000 or “unknown
revenue”.

• A UPI is NOT allowed because the partitioning columns are NOT part of the PI.

CREATE TABLE Sales_Revenue
(store_id INTEGER NOT NULL,

item_id INTEGER NOT NULL,
sales_date DATE FORMAT 'YYYY-MM-DD',
total_revenue DECIMAL(9,2),
total_sold INTEGER,
note VARCHAR(256))

PRIMARY INDEX (store_id, item_id, sales_date)
PARTITION BY CASE_N

(total_revenue < 2000 ,
total_revenue < 4000 ,
total_revenue < 6000 ,
total_revenue < 8000 ,
total_revenue < 10000 ,
total_revenue < 20000 ,
total_revenue < 50000 ,
total_revenue < 100000 ,
NO CASE ,
UNKNOWN);

 Partitioned Primary Indexes Page 17-44

SQL Use of PARTITION Key Word
The facing page contains an example of using the key word PARTITION to determine the
number of rows there are in physical partitions. This example is based on the
Sales_Revenue table is defined on the previous page.

The following table shows the same result as the facing page, but also identifies the internal
partition #’s as allocated.

 Part # Row Count
 1 169690 internally mapped to partition #3
 2 163810 internally mapped to partition #4
 3 68440 internally mapped to partition #5
 4 33490 internally mapped to partition #6
 5 18640 internally mapped to partition #7
 6 27520 internally mapped to partition #8
 7 1760 internally mapped to partition #9

Note that this table does not have any rows with a total_revenue value greater than 50,000
and less than 100,000. Partition #8 was not assigned. Also, there are no rows with a
total_revenue >=100,000 or NULL because the NO CASE and UNKNOWN partitions are
not used.

Assume the following three SQL INSERT commands are executed:

INSERT INTO Sales_Revenue
 VALUES (1003, 5051, CURRENT_DATE, 51000, 45, NULL);
INSERT INTO Sales_Revenue
 VALUES (1003, 5052, CURRENT_DATE, 102000, 113, NULL);
INSERT INTO Sales_Revenue
 VALUES (1003, 5053, CURRENT_DATE, NULL, NULL, NULL);

The result of executing the SQL statement again would now be as follows:

 Part # Row Count
 1 169690 internally mapped to partition #3
 2 163810 internally mapped to partition #4
 3 68440 internally mapped to partition #5
 4 33490 internally mapped to partition #6
 5 18640 internally mapped to partition #7
 6 27520 internally mapped to partition #8
 7 1760 internally mapped to partition #9
 8 1 internally mapped to partition # 10
 9 1 internally mapped to partition # 2 (NO CASE)
 10 1 internally mapped to partition # 1 (UNKNOWN)

Partitioned Primary Indexes Page 17-45

SQL Use of PARTITION Key Word

SQL - insert two rows:
INSERT INTO Sales_Revenue VALUES (1003, 5052, CURRENT_DATE, 102000, 113, NULL);
INSERT INTO Sales_Revenue VALUES (1003, 5053, CURRENT_DATE, NULL, NULL, NULL);

The PARTITION SQL key word can be used to return partition numbers that have rows and
a count of rows that are currently located in partitions of a table.

SQL:

SELECT PARTITION AS "Part #",
COUNT(*) AS "Row Count"

FROM Sales_Revenue
GROUP BY 1
ORDER BY 1;

Part # Row Count
1 169690 total_revenue < 2,000
2 163810 total_revenue < 4,000
3 68440 total_revenue < 6,000
4 33490 total_revenue < 8,000
5 18640 total_revenue < 10,000
6 27520 total_revenue < 20,000
7 1760 total_revenue < 50,000

Result:

SQL (same as above):

SELECT PARTITION AS "Part #",
COUNT(*) AS "Row Count"

FROM Sales_Revenue
GROUP BY 1
ORDER BY 1;

Part # Row Count
1 169690 total_revenue < 2,000
2 163810 total_revenue < 4,000
: : :
7 1760 total_revenue < 50,000
9 1 NO CASE

10 1 UNKNOWN

Result:

 Partitioned Primary Indexes Page 17-46

SQL Use of CASE_N
The facing page contains an example of using the CASE_N expression with SQL. You may
wish to use this function to determine/forecast how rows will be mapped to various
partitions in a table. The Sales_Revenue table was created as follows:

CREATE TABLE Sales_Revenue
 (store_id INTEGER NOT NULL,
 item_id INTEGER NOT NULL,
 sales_date DATE FORMAT 'YYYY-MM-DD',
 total_revenue DECIMAL(9,2),
 total_sold INTEGER,
 note VARCHAR(256))
PRIMARY INDEX (store_id, item_id, sales_date)
PARTITION BY CASE_N
 (total_revenue < 2000, total_revenue < 4000,
 total_revenue < 6000, total_revenue < 8000,
 total_revenue < 10000, total_revenue < 20000,
 total_revenue < 50000, total_revenue < 100000,
 NO CASE, UNKNOWN);

The CASE_N expression in the query on the facing page is simply an SQL statement that
shows how the rows would be partitioned.

SQL Use of RANGE_N
An example of using the RANGE_N expression with SQL is:

SELECT RANGE_N (Calendar_Date BETWEEN
 DATE '2004-11-28' AND DATE '2004-12-31' EACH INTERVAL '7' DAY,
 DATE '2005-01-01' AND DATE '2005-01-09' EACH INTERVAL '7' DAY)
 AS "Part #",
 MIN (Calendar_Date) AS "Minimum Date",
 MAX (Calendar_Date) AS "Maximum Date"
 FROM Sys_Calendar.Calendar
 WHERE Calendar_Date
 BETWEEN DATE '2004-11-28' AND DATE '2005-01-09'
 GROUP BY "Part #"
 ORDER BY "Part #";

Output from this SQL is:

 Part # Minimum Date Maximum Date
 1 2004-11-28 2004-12-04
 2 2004-12-05 2004-12-11
 3 2004-12-12 2004-12-18
 4 2004-12-19 2004-12-25
 5 2004-12-26 2004-12-31
 6 2005-01-01 2005-01-07
 7 2005-01-08 2005-01-09

Partitioned Primary Indexes Page 17-47

SQL Use of CASE_N

The CASE_N (and RANGE_N) expressions can be used with SQL to forecast the
number of rows that will be placed into partitions.

This example uses a different partitioning scheme than the table actually has to determine
how many rows would be placed into various partitions.

SELECT CASE_N (total_revenue < 1500 ,
total_revenue < 2000 ,
total_revenue < 3000 ,
total_revenue < 5000 ,
total_revenue < 8000 ,
total_revenue < 12000 ,
total_revenue < 20000 ,
total_revenue < 50000 ,
NO CASE,
UNKNOWN) AS "Case #",

count(*) AS "Row Count"
FROM Sales_Revenue
GROUP BY 1
ORDER BY 1;

Notes:

• Currently, in this table, there are no rows with total_revenue >= 50,000 or NULL.
• The Case # would become the Partition # if the table was partitioned in this way.

Case # Row Count
1 81540
2 88150
3 97640
4 103230
5 64870
6 31290
7 14870
8 1760

Result:

 Partitioned Primary Indexes Page 17-48

Using ALTER TABLE with PPI Tables
The ALTER TABLE statement has been extended in support of PPI. For empty tables, the
primary index and partitioning expression may be re-specified. For tables with rows, the
partitioning expression may be modified only in ways that don’t require existing rows to be
re-evaluated.

The permitted changes for populated tables are to drop ranges at the ends or to add ranges at
the ends. For example, a common use of this capability would be to drop ranges for the
oldest dates, and to prepare additional ranges for future dates, among other things.

Limitations with ALTER TABLE:

 Primary Index of a non-empty table may not be altered
 Partitioning of a non-empty table is generally limited to altering the “ends”.
 If a table has Delete triggers, they must be disabled if the WITH DELETE option

is specified.
 If a save table has Insert triggers, they must be disabled if the WITH INSERT

option is specified.

For empty tables with a PPI, the ALTER TABLE statement can be used to do the following:

 Remove partitioning for a partitioned table
 Establish partitions for a table (adds or replaces)
 Change the columns that comprise the primary index
 Change a unique primary index to non-unique.
 Change a non-unique primary index to unique.

For empty or non-empty tables, the ALTER TABLE statement can also be used to name an
unnamed primary index or drop the name of a named primary index.

 To name an unnamed primary index or change the existing name of a primary

index to something else, specify
 … MODIFY PRIMARY INDEX index_name;

 To drop the name of a named index, specify

… MODIFY PRIMARY INDEX NOT NAMED;

Assume you have a populated data table (and the table is quite large) defined with a “non-
unique partitioned primary index” and all of the partitioning columns are part of the PI. You
realize that the table should have been defined with a “unique partitioned primary index”,
but the table is already loaded with data. Here is a technique to convert this NUPI into a
UPI without copying or reloading the data.

 CREATE a USI on the columns making up the PI. ALTER the table, effectively
changing the NUPI to a UPI, and the software will automatically drop the USI.

Partitioned Primary Indexes Page 17-49

Using ALTER TABLE with PPI Tables

The ALTER TABLE statement has enhancements for a partitioned table to modify the
partitioning properties of the primary index for a table.

For populated tables, ...

• You are permitted to drop and/or add ranges at the “ends” of existing partitions on a
range-partitioned table.

– ALTER TABLE includes ADD / DROP RANGE options.

– You can also add or drop special partitions (NO RANGE or UNKNOWN).

– You cannot drop all the ranges.

• Possible use – drop ranges for the oldest dates and prepare additional ranges for
future dates.

• The set of primary index columns cannot be altered for a populated table.

Teradata 13.10 Feature

• ALTER TABLE has a new option to resolve partitioned table definitions with DATE,
CURRENT_DATE, and CURRENT_TIMESTAMP to their current values.

– This feature only applies to partitioned tables and join indexes.

To use ALTER TABLE for any purpose other than the above situations,
the table must be empty.

 Partitioned Primary Indexes Page 17-50

ALTER TABLE – Example 5
The DROP RANGE option is used to drop a range set from the RANGE_N function on
which the partitioning expression for the table is based. You can only drop ranges if the
partitioning expression for the table is derived only from a RANGE_N function. You can
drop empty partitions without specifying the WITH DELETE or WITH INSERT option.
Some of the ALTER TABLE statement options include:

DROP RANGE WHERE conditional_expression – a conditional partitioning expression used

to drop a range set from the RANGE_N function on which the partitioning expression
for the table is based.

 You can only drop ranges if the partitioning expression for the table is derived only

from a RANGE_N function.

 You must base conditional_partitioning_expression on the system-derived

PARTITION column.

DROP RANGE BETWEEN … [NO RANGE [OR UNKNOWN]] – used to drop a set of

ranges from the RANGE_N function on which the partitioning expression for the table
is based.

 You can also drop NO RANGE OR UNKNOWN and UNKNOWN specifications from

the definition for the RANGE_N function.

 You can only drop ranges if the partitioning expression for the table is derived

exclusively from a RANGE_N function.

 Ranges must be specified in ascending order.

ADD RANGE BETWEEN … [NO RANGE [OR UNKNOWN]] – used to add a set of ranges

to the RANGE_N function on which the partitioning expression for the table is based.

 You can also add NO RANGE OR UNKNOWN and UNKNOWN specifications to the

definition for the RANGE_N function.

 You can only add ranges if the partitioning expression for the table is derived

exclusively from a RANGE_N function.

DROP Does NOT Mean DELETE

If a table does not have the NO RANGE partition, then partitions are dropped from the table
without using the Transient Journal and the rows are either deleted or are copied (WITH
INSERT) into a user-specified table.

If a table has a NO RANGE partition, rows are copied from dropped partition into the NO
RANGE partition.

Partitioned Primary Indexes Page 17-51

ALTER TABLE – Example 5

ALTER TABLE Sales MODIFY PRIMARY INDEX
DROP RANGE BETWEEN DATE '2003-01-01' AND DATE '2003-12-31' EACH INTERVAL '1' MONTH
ADD RANGE BETWEEN DATE '2013-01-01' AND DATE '2013-12-31' EACH INTERVAL '1' MONTH
WITH INSERT INTO SalesHistory;

To drop/add partitions and COPY the old data to another table:

Notes:

• Ranges are dropped and/or added to the "ends".

• DROP does NOT necessarily mean DELETE!

– If a table has a NO RANGE partition, rows are moved from the dropped partitions into the NO
RANGE partition. This can be time consuming.

• The SalesHistory table must exist before using the WITH INSERT option.

• The Sales table was partitioned as follows:

PARTITION BY RANGE_N (sales_date BETWEEN
DATE '2003-01-01' AND DATE '2012-12-31' EACH INTERVAL '1' MONTH);

ALTER TABLE Sales MODIFY PRIMARY INDEX
DROP RANGE BETWEEN DATE '2003-01-01' AND DATE '2003-12-31' EACH INTERVAL '1' MONTH
ADD RANGE BETWEEN DATE '2013-01-01' AND DATE '2013-12-31' EACH INTERVAL '1' MONTH
WITH DELETE;

To drop/add partitions and NOT COPY the old data to another table:

 Partitioned Primary Indexes Page 17-52

ALTER TABLE – Example 5 (cont.)
This page contains notes on the internal implementation. The important point is to
understand that dropping or adding partitions (to the “ends” of an already partitioned table
with data) does not cause changes to the internal partitioning numbers that are currently
implemented. The logical partition numbers change, but the internal partition numbers do
not. For this reason, dropping or adding partitions does not cause an undue amount of work.

The following table shows the same result as the facing page, but also identifies the internal
partition #’s as allocated.

 PARTITION Count(*)
 1 10850 internally mapped to partition #3
 2 10150 internally mapped to partition #4
 : : :
 13 12400 internally mapped to partition #15
 14 11200 internally mapped to partition #16
 : : :
 119 14800 internally mapped to partition #121
 120 14950 internally mapped to partition #122

In the example on the facing page, 12 partitions were dropped for the year 2003 and 12
partitions were added for the year 2013. The partitions for 2013 don’t appear because they
are empty.

The following table shows the same result as the facing page, but also identifies the internal
partition #’s as allocated after the partitions for the year 2003 were dropped.

 PARTITION
 1 12400 internally mapped to partition #15
 2 11200 internally mapped to partition #16
 : : :
 107 14800 internally mapped to partition #121
 108 14950 internally mapped to partition #122

You can add the NO RANGE and/or UNKNOWN partitions to an already partitioned table.

ALTER TABLE Sales MODIFY PRIMARY INDEX
 ADD RANGE NO RANGE OR UNKNOWN;

If this table had NO RANGE partition defined and the 12 partitions were dropped (as in this
example), the data rows from the dropped partitions are moved to the NO RANGE partition.
To remove the special partitions and delete the data, use the following command:

ALTER TABLE Sales MODIFY PRIMARY INDEX
 DROP RANGE NO RANGE OR UNKNOWN
 WITH DELETE;

Partitioned Primary Indexes Page 17-53

ALTER TABLE – Example 5 (cont.)

Partitions may only be dropped or added from/to the “ends” of a populated table.

SQL:

SELECT PARTITION,
COUNT(*)

FROM Sales
GROUP BY 1
ORDER BY 1;

Result: PARTITION COUNT(*)

1 10850
2 10150
: :

119 14800
120 14950

Part #1 - January 2003

Part #120 - December 2012

Result: PARTITION COUNT(*)

1 12400
2 11200
: :

107 14800
108 14950

Part #1 - January 2004

Part #108 - December 2012

SQL:

SELECT PARTITION,
COUNT(*)

FROM Sales
GROUP BY 1
ORDER BY 1;

ALTER TABLE Sales MODIFY PRIMARY INDEX
DROP RANGE BETWEEN

DATE '2003-01-01' AND DATE '2003-12-31' EACH INTERVAL '1' MONTH

ADD RANGE BETWEEN
DATE '2013-01-01' AND DATE '2013-12-31' EACH INTERVAL '1' MONTH

WITH DELETE;

 Partitioned Primary Indexes Page 17-54

ALTER TABLE TO CURRENT
Staring with Teradata 13.10, you can now specify CURRENT_DATE and
CURRENT_TIMESTAMP functions in a partitioned primary index for base tables and join
indexes.

Also starting with Teradata 13.10, Teradata provides a new option with the ALTER TABLE
statement to modify a partitioned table that has been defined with a moving
CURRENT_DATE (or DATE) or moving CURRENT_TIMESTAMP. This new option is
called ALTER TABLE TO CURRENT.

When you specify CURRENT_DATE and CURRENT_TIMESTAMP as part of a
partitioning expression for a partitioned table, these functions resolve to the date and
timestamp when you define the PPI. To partition on a new CURRENT_DATE or
CURRENT_TIMESTAMP value, submit an ALTER TABLE TO CURRENT request.

The ALTER TABLE TO CURRENT syntax is shown on the facing page.

The WITH DELETE option is used to delete any row whose partition number evaluates to a
value outside the valid range of partitions.

The WITH INSERT [INTO] save_table option is used to insert any row whose partition
number evaluates to a value outside the valid range of partitions into the table specified by
save_table.

The WITH DELETE or INSERT INTO save_table clause is sometimes referred to as a null
partition handler. You cannot specify a null partition handler for a join index.

Save_table and the table being altered must be different tables with different names.

Partitioned Primary Indexes Page 17-55

ALTER TABLE TO CURRENT

This Teradata 13.10 option allows you to periodically resolve the CURRENT_DATE (or
DATE) and CURRENT_TIMESTAMP of a partitioned table to their current values.

Benefits include:

• You do not have to change the partitioning expression to update the value for
CURRENT_DATE or CURRENT_TIMESTAMP.

• To partition on a new CURRENT_DATE or CURRENT_TIMESTAMP value, simply
submit an ALTER TABLE TO CURRENT request.

Considerations:

• The ALTER TABLE TO CURRENT request causes the CURRENT_DATE and/or
CURRENT_TIMESTAMP to effectively repartition the rows in the table.

• If RANGE_N specifies CURRENT_DATE or CURRENT_TIMESTAMP in a partitioning
expression, you cannot use ALTER TABLE to add or drop ranges for the table. You
must use the ALTER TABLE TO CURRENT statement to achieve this function.

ALTER TABLE table_name TO CURRENT ;

join_index_name WITH DELETE

INSERT [INTO] save_table

 Partitioned Primary Indexes Page 17-56

ALTER TABLE TO CURRENT – Example 6
The ALTER TABLE TO CURRENT option allows you to periodically modify the
partitioning. This option resolves the CURRENT_DATE (or DATE) and
CURRENT_TIMESTAMP to their current values.

The example on the facing page assumes partitioning begins on a year boundary. Using this
example, consideration for the two options are:

 With hard-coded dates in the CREATE TABLE statement, you must compute the
new dates and specify them explicitly in the ADD RANGE clause of the request.
This requires manual intervention every year you submit the request.

 With CURRENT_DATE in the CREATE TABLE statement, you can schedule the

ALTER TABLE TO CURRENT request to be submitted annually or simply
execute the next year. This request rolls the partition window forward by
efficiently dropping and adding partitions.

 As a result of executing the ALTER TABLE TO CURRENT WITH DELETE,

Teradata deletes the rows from the table because they are no longer needed.

Considerations:

 You should evaluate how a DATE, CURRENT_DATE, or
CURRENT_TIMESTAMP function will require reconciliation in a partitioning
expression before you define such expressions on a table or join index.

 If you specify multiple ranges using a DATE or CURRENT_DATE function in one

of the ranges, and then later reconcile the partitioning the range specified using
CURRENT_DATE might overlap one of the existing ranges. If so, reconciliation
aborts the request and returns an error to the requestor. If this happens, you must
recreate the table with a new partitioning expression based on DATE or
CURRENT_DATE. Because of this, you should design a partitioning expression
that uses a DATE or CURRENT_DATE function in one of its ranges with care.

DATE, CURRENT_DATE, and CURRENT_TIMESTAMP functions in a partitioning
expression are most appropriate when the data must be partitioned as one or more Current
partitions and one or more History partitions, where the terms Current and History are
defined with respect to the resolved DATE, CURRENT_DATE, or
CURRENT_TIMESTAMP values in the partitioning expression.

This enables you to reconcile a table or join index periodically to move older data from the
current partition into one or more history partitions using an ALTER TABLE TO
CURRENT request instead of redefining the partitioning using explicit dates that must be
determined each time you alter a table using ALTER TABLE requests to ADD or DROP
ranges.

Partitioned Primary Indexes Page 17-57

ALTER TABLE TO CURRENT – Example 6

This example creates a partitioning expression to maintain the last 8 years of historical
data, data for the current year, and data for one future year for a total of 10 years.

Assuming the current year is 2012, an equivalent definition using CURRENT_DATE is:

CREATE TABLE Sales
(store_id INTEGER NOT NULL,

item_id INTEGER NOT NULL,
sales_date DATE FORMAT 'YYYY-MM-DD',
:

PRIMARY INDEX (store_id, item_id)
PARTITION BY RANGE_N
(sales_date BETWEEN DATE '2004-01-01' AND DATE '2013-12-31' EACH INTERVAL '1' MONTH);

PRIMARY INDEX (store_id, item_id)
PARTITION BY RANGE_N
(sales_date BETWEEN

CAST(((EXTRACT(YEAR FROM CURRENT_DATE) - 8 - 1900) * 10000 + 0101) AS DATE) AND
CAST(((EXTRACT(YEAR FROM CURRENT_DATE) +1 - 1900) * 10000 + 1231) AS DATE)
EACH INTERVAL '1' MONTH);

In 2013, execute ALTER TABLE Sales TO CURRENT WITH DELETE;
• Teradata deletes the rows from 2004 because they are no longer needed.

• To view the date when the table was last resolved, then DBC.IndexConstraintsV provides new
columns named "ResolvedCurrent_Date" and "ResolvedCurrent_TimeStamp".

 Partitioned Primary Indexes Page 17-58

PPI Enhancements
The facing page identifies various enhancements with different Teradata releases.

Partitioned Primary Indexes Page 17-59

PPI Enhancements

Teradata V2R6.0
• Selected Partition Archive, Restore, and Copy
• Dynamic partition elimination for merge join
• Single-AMP NUSI access when NUSI on same columns as NUPI;
• Partition elimination on RowIDs referenced by NUSI

Teradata V2R6.1
• PPI for global temporary tables and volatile tables
• Collect statistics on system-derived column PARTITION

Teradata V2R6.2
• PPI for non-compressed join indexes

Teradata 12.0
• Multi-level partitioning

Teradata 13.10
• Tables and non-compressed join indexes can now include partitioning on a character column.
• PPI tables allow a test value (e.g., RANGE_N) to have a TIMESTAMP(n) data type.
• ALTER TABLE tablename TO CURRENT …;

Teradata 14.0
• Increased partition limit to 9.223 quintillion
• New data types for RANGE_N – BIGINT and TIMESTAMP
• ADD option for a partitioning level

 Partitioned Primary Indexes Page 17-60

Multi-level PPI Concepts
The facing page identifies the basic concepts of using a multi-level PPI.

Multi-level partitioning allows each partition at a given level to be further partitioned into
sub-partitions. Each partition for a level is sub-partitioned the same per a partitioning
expression defined for the next lower level. The system hash orders the rows within the
lowest partition levels. A multilevel PPI (MLPPI) undertakes efficient searches by using
partition elimination at the various levels or combinations of levels.

Notes associated with multilevel partitioning:

 Note that the number of levels of partitioning cannot exceed 15. Each level must
define at least two partitions. The number of levels of partitioning may be further
restricted by other limits such as the maximum size of the table header, data
dictionary entry sizes, etc.

 The number of partitions in a table cannot exceed 65,535 partitions. The number of

partitions in an MLPPI is determined by multiplying the number of partitions at the
different levels (d1 * d2 * d3 * …).

 The specification order of partitioning expressions can be important for multi-level

partitioning. The system maps multi-level partitioning expressions into a single-
level combined partitioning expression. It then maps the resulting combined
partition number 1-to-1 to an internal partition number.

 A usage implication - you can alter only the highest partition level, which by

definition is always level 1, to change the number of partitions at that level when
the table is populated with rows.

Partitioned Primary Indexes Page 17-61

Multi-level PPI Concepts

• Allows multiple partitioning expressions instead of only one for a table or a non-
compressed join index.

• Multilevel partitioning allows each partition at a level to be sub-partitioned.

– Each partitioning level is defined independently using a RANGE_N or CASE_N
expression.

• A multi-level PPI allows efficient searches by using partition elimination at the various
levels or combination of levels.

• Allows more flexibility in which partitioning expression to use when there are multiple
choices for the partitioning expressions.

• Teradata 14 allows for a maximum of 9.223 quintillion partitions and 62 levels.

• Syntax:

PARTITION BY partitioning_expression

(partitioning_expression , partitioning_expression)

14*

14* – Teradata 13.10 limit.

 Partitioned Primary Indexes Page 17-62

Multi-level PPI Concepts (cont.)
The facing page contains an example showing the benefit of using a multi-level PPI.

You can use a multilevel PPI to improve query performance via partition elimination, either
at each of the partition levels or by combining all of them. An MLPPI provides multiple
access paths to the rows in the base table. As with other indexes, the Optimizer determines
if the index is usable for a query and, if usable, whether its use provides the estimated least
costly plan for executing the query.

The following list describes the various access methods that are available when a multilevel
PPI is defined for a table:

 If there is an equality constraint on the primary index and there are constraints on
the partitioning columns such that access is limited to a single partition at each
level, access is as efficient as with an NPPI.

 This is a single-AMP, single-hash access in a single sub-partition at the lowest
level of the partition hierarchy.

 With constraints defined on the partitioning columns, performance of a primary
index access can approach the performance of an NPPI depending on the extent of
partition elimination that can be achieved.

 This is a single-AMP, single-hash access in multiple (but not all) sub-partitions at
the lowest level of the partition hierarchy.

 Access by means of equality constraints on the primary index columns that does
not also include all the partitioning columns, and without constraints defined on the
partitioning columns, might not be as efficient as access with an NPPI. The
efficiency of the access depends on the number of non-empty sub-partitions at the
lowest level of the partition hierarchy.

 This is a single-AMP, single-hash access in all sub-partitions at the lowest level of
the partition hierarchy.

 With constraints on the partitioning columns of a partitioning expression such that
access is limited to a subset of, say n percent, of the partitions for that level, the
scan of the data is reduced to about n percent of the time required by a full-table
scan.

 This is an all-AMP scan of only the non-eliminated partitions for that level. This
allows multiple access paths to a subset of the data: one for each partitioning
expression. If constraints are defined on partitioning columns for more than one of
the partitioning expressions in the MLPPI definition, partition elimination can lead
to even less of the data needing to be scanned.

Partitioned Primary Indexes Page 17-63

Multi-level PPI Concepts (cont.)

Query – Compare District 25 revenue for Week 6 vs. same period last year?

Single Level
Partitioning

Week 6 Sales Only

Multi-Level
Partitioning

Week 6 Sales
for District 25 Only

No Partitioning

Full File Scan

Sales for 2 Years

 Partitioned Primary Indexes Page 17-64

Multi-level Partitioning – Example 7
You create an MLPPI by specifying two or more partitioning expressions, where each
expression must be defined using either a RANGE_N function or a CASE_N function
exclusively. The system combines the individual partitioning expressions internally into a
single partitioning expression that defines how the data is partitioned on an AMP.

The first partitioning expression is the highest level partitioning. Within each of those
partitions, the second partitioning expression defines how each of the highest-level partitions
is sub-partitioned. Within each of those second-level partitions, the third-level partitioning
expression defines how each of the second level partitions is sub-partitioned. Within each of
these lowest level partitions, rows are ordered by the row hash value of their primary index
and their assigned uniqueness value.

You define the ordering of the partitioning expressions in your CREATE TABLE SQL text,
and that ordering implies the logically ordering by RowID. Because the partitions at each
level are distributed among the partitions of the next higher level in the hierarchy, scanning
a partition at a certain level requires skipping some internal partitions.

Partition expression order does not affect the ability to eliminate partitions, but does affect
the efficiency of a partition scan. As a general rule, this should not be a concern if there are
many rows, which implies multiple data blocks, in each of the partitions.

The facing page contains an example of creating a multi-level PPI.

There are two levels of partitioning defined in this example. The first level defines 120
partitions and the second defines 75 partitions. Therefore, the total number of partitions for
the combined partitioning expression is the product of 120 * 75, or 9000.

Partitioned Primary Indexes Page 17-65

Multi-level Partitioning – Example 7

For example, partition Claim table by "Claim Date" and "State ID".

CREATE TABLE Claim
(claim_id INTEGER NOT NULL
,cust_id INTEGER NOT NULL
,claim_date DATE NOT NULL
,state_id BYTEINT NOT NULL
, …)

PRIMARY INDEX (claim_id)
PARTITION BY (
/* First level of partitioning */

RANGE_N (claim_date BETWEEN
DATE '2003-01-01' AND DATE '2012-12-31' EACH INTERVAL '1' MONTH),

/* Second level of partitioning */
RANGE_N (state_id BETWEEN 1 AND 75 EACH 1))

UNIQUE INDEX (claim_id);

Notes:
• For multi-level PPI, the set of partitioning expressions must be enclosed in

parentheses.
• Each level must define at least two partitions for a multi-level PPI.
• The number of defined partitions in this example is (120 * 75) or 9000.

 Partitioned Primary Indexes Page 17-66

Multi-level Partitioning – Example 7 (cont.)
The facing page continues the example of using a multi-level PPI. This example assumes
that the query has conditions where only claims for a specific month and for a specific state
need to be returned. Teradata only needs to scan the data blocks associated with the
specified criteria.

Partitioned Primary Indexes Page 17-67

Multi-level PPI Example 7 (cont.)

Assume

• Eliminating all but one month out of many years of claims history would facilitate
scanning less than 2% of the claims history.

• Similarly, eliminating all but the California claims out of the many states would
facilitate scanning less than 4% of the claims history.

Then, combining both of these predicates for partition elimination would facilitate
scanning less than 0.08% of the claims history for satisfying the following query.

SELECT …
FROM Claim C, States S
WHERE C.state_id = S.state_id
AND S.state_name = 'California'
AND C.claim_date BETWEEN DATE '2012-01-01' AND DATE '2012-01-31';

 Partitioned Primary Indexes Page 17-68

How is the MLPPI Partition # Calculated?
The facing page shows the calculation that is used to determine the partition number for a
MLPPI table.

Partitioned Primary Indexes Page 17-69

How is the MLPPI Partition # Calculated?

Multilevel partitioning is rewritten internally to single-level partitioning to generate a
combined partition number as follows:

(p1 - 1) * dd1 + (p2 - 1) * dd2 + ... + (pn-1 - 1) * ddn-1 + pn

where n is the number of partitioning expressions

pi is the value of the partitioning expression for level i

di is the number of partitions for level i

ddi is the product of di+1 through dn

dd = d1* d2 * ... * dn <= 65535

dd is the total number of combined partitions

Example:

Assume January, 2012 is the 109th first level partition and California is the 6th state
code for the second level partition. Also assume that the first level has 120 partitions
and the second level has 75 partitions.

(109 – 1) * 75 + 6 = 8106

is the logical partition number for claims in California for January of 2012.

 Partitioned Primary Indexes Page 17-70

Character PPI
This Teradata 13.10 feature extends the capabilities and options when defining a PPI for a
table or a non-compressed join index. Tables and non-compressed join indexes can now
include partitioning on a character column. This feature provides the improved query
performance benefits of partitioning when queries have conditions on columns with
character (alphanumeric) data.

 Before Teradata 13.10, customers were limited to creating partitioning on tables
that did not involve comparison of character data. Partitioning expressions were
limited to numeric or date type data.

The Partitioned Primary Index (PPI) feature of Teradata has always allowed a class of
queries to access a portion of a large table, instead of the entire table. This capability has
simply been extended to include character data. The traditional uses of the Primary Index
(PI) for data placement and rapid access of the data when the PI values are specified are still
retained.

When creating a table or a join index, the PARTITION BY clause (part of PRIMARY
INDEX) can now include partitioning on a character column. This allows the comparison of
character data.

This feature allows a partitioning expression to involve comparison of character data
(CHAR, VARCHAR, GRAPHIC, VARGRAPHIC) types. A comparison may involve a
predicate (=, >, <, >=, <=, <>, BETWEEN, LIKE) or a string function.

 The use of a character expression is a PPI table is referred to as CPPI (Character

PPI).

The most common partitioning expressions utilize RANGE_N or CASE_N expressions.

Prior to Teradata 13.10, both the CASE_N and RANGE_N functions did not allow the PPI
definition of character data. This limited the useful partitioning that could be done using
character columns as a standard ordering (collation) of the character data is not preserved.

Both the RANGE_N and CASE_N functions support the definition of character data in
Teradata 13.10. The term "character or char" will be used to represent CHAR, VARCHAR,
GRAPHIC, or VARGRAPHIC data types.

The test value of a RANGE_N function should be a simple column reference, involving no
other functions or expressions. For example, if SUBSTR is added, then static partition
elimination will not occur. Keep the partitioning expressions as simple as possible.

RANGE_N (SUBSTR (state_code, 1, 1) BETWEEN 'AK' and 'CA', …

This definition will not allow static partition elimination.

Partitioned Primary Indexes Page 17-71

Character PPI

Tables and non-compressed join indexes can now include partitioning on a character
column. This feature is referred to as CPPI (Character PPI).

• Prior to Teradata 13.10, partitioning expressions (RANGE_N and CASE_N) are limited
to numeric or date type data.

This feature allows a partitioning expression to involve comparison of character data
(CHAR, VARCHAR, GRAPHIC, VARGRAPHIC) types. A comparison may involve a predicate
(=, >, <, >=, <=, <>, BETWEEN, LIKE) or a string function.

Collation and case sensitivity considerations:

• The session collation in effect when the character PPI is created determines the
ordering of data used to evaluate the partitioning expression.

• The ascending order of ranges in a character PPI RANGE_N expression is defined by
the session collation in effect when the PPI is created or altered, as well as the case
sensitivity of the column or expression in the test value.

• The default case sensitivity of character data for the session transaction semantics in
effect when the PPI is created will also determine case sensitivity of comparison
unless overridden with an explicit CAST to a specific case sensitivity.

 Partitioned Primary Indexes Page 17-72

Character PPI – Example 8
In this example, the Claim table is first partitoned by claim_date (monthly intervals).
Claim_date is then sub-partitioned by state codes. State codes are then sub-partitioned by
the first two letters of a city name. The special partitions of NO RANGE and UNKNOWN
are defined at the claim_date, state_code, and city levels.

Why is the facing page partitioning example defined with intervals of 1 month for
claim_date?

 Teradata 13.10 has a maximum limit of 65,535 partitions in a table and defining 8
years of day partitioning with two levels of sub-partitioning cause this limit to be
exceeded.

The following queries will benefit from this type of partitioning.

SELECT * FROM Claim_MLPPI2

WHERE state_code = 'GA' AND city LIKE 'a%';

SELECT * FROM Claim_MLPPI2
WHERE claim_date = '2012-08-24' AND city LIKE 'a%';

The session mode when these tables were created and when these queries were executed was
Teradata mode (BTET). Teradata mode defaults to "not case specific". The session
collation in effect when the character PPI is created determines the ordering of data used to
evaluate the partitioning expression.

The ascending order of ranges in a character PPI RANGE_N expression is defined by the
session collation in effect when the PPI is created or altered, as well as the case sensitivity of
the column or expression in the test value. The default case sensitivity of character data for
the session transaction semantics in effect when the PPI is created will also determine case
sensitivity of comparison unless overridden with an explicit CAST to a specific case
sensitivity.

The default case sensitivity in effect when the character PPI is created will also affect the
ordering of character data for the PPI.

 Default case sensitivity of comparisons involving character constants is influenced

by the session mode. String literals have a different default CASESPECIFIC
attribute depending on the session mode.

– Teradata Mode (BTET) is NOT CASESPECIFIC
– ANSI mode is CASESPECIFIC

 If any expression in the comparison is case specific, then the comparison is case

sensitive.

Partitioned Primary Indexes Page 17-73

Character PPI – Example 8

In this example, 3 levels of partitioning are defined.

CREATE TABLE Claim_MLPPI2
(claim_id INTEGER NOT NULL,
cust_id INTEGER NOT NULL,
claim_date DATE NOT NULL,
city VARCHAR(30) NOT NULL,
state_code CHAR(2) NOT NULL,
claim_info VARCHAR (256))

PRIMARY INDEX (claim_id)

PARTITION BY
(RANGE_N

(claim_date BETWEEN DATE '2005-01-01' and DATE '2012-12-31'
EACH INTERVAL '1' MONTH, NO RANGE),

RANGE_N
(state_code BETWEEN 'A', 'D', 'I', 'N', 'T' AND 'ZZ', NO RANGE),

RANGE_N
(city BETWEEN 'A', 'C', 'E', 'G', 'I', 'K', 'M', 'O',

'Q', 'S', 'U', 'W' AND 'ZZ', NO RANGE))

UNIQUE INDEX (claim_id);

The following queries will benefit from this type of partitioning.
• SELECT * FROM Claim_MLPPI2 WHERE state_code = 'OH';

• SELECT * FROM Claim_MLPPI2 WHERE state_code = 'GA' AND city LIKE 'a%';

• SELECT * FROM Claim_MLPPI2 WHERE claim_date = DATE '2012-08-24' AND city LIKE 'a%';

 Partitioned Primary Indexes Page 17-74

Summary
The customer (e.g., DBA, Database Designer, etc.) has a flexible and powerful tool to
structure tables to allow automatic optimization of frequently used queries. This tool is the
Partitioned Primary Index (PPI) feature. This feature allows tables to be partitioned on
columns of interest, while retaining the traditional use of the primary index (PI) for data
distribution and efficient access when the PI values are specified in the query.

The facing page contains a summary of the key customer benefits that can be obtained by
using Partitioned Primary Indexes.

Whether and how to partition a table is a physical design choice.

A well-chosen partitioning scheme may be able to turn many frequently run queries into
partial-table scans instead of full-table scans, with much improved performance.

However, understand that there are trade-off considerations that must be understood and
carefully considered to get the most benefit from the PPI feature.

Partitioned Primary Indexes Page 17-75

Summary

• Improves the performance of queries that use range constraints on the range
partitioning column(s) by allowing for range/partition elimination.

– Allows primary index access and range access without a secondary index.

• General Recommendations

– Collect statistics on system-derived column PARTITION.

– Do not define or name a column PARTITION in a PPI table – you won’t be able to reference the
system-derived column PARTITION for the table.

– If possible, avoid use of NO RANGE, NO RANGE OR UNKNOWN, or UNKNOWN options with
RANGE_N partitioning for DATE columns.

– Consider only having as many date ranges as needed currently plus some for the future –
helps the optimizer cost plans better, especially when partitioning column is not included in
the Primary Index.

• Note (as with all partitioning/indexing schemes) there are tradeoffs due to performance
impacts on table access, joins, maintenance, and other operations.

 Partitioned Primary Indexes Page 17-76

Module 17: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Partitioned Primary Indexes Page 17-77

Module 17: Review Questions

1. In a PPI table, every row is uniquely identified by its ______ _____ + ______ ______ + _____ ______ .

2. The Row Key consists of the ________ ________ + _______ _______ .

3. In an NPPI table, the partition number defaults to ________ .

4. True or False. For a PPI table, the partition number and the Row Hash are both used by the
Message Passing Layer to determine which AMP(s) should receive the request.

5. Which two options apply to the RANGE_N expression in a partitioning expression? ____ ____

a. Ranges can be listed in descending order
b. Allows use of NO RANGE OR UNKNOWN option
c. Partitioning column must be part of the Primary Index
d. Has a maximum of 65,535 partitions with Teradata Release 13.10

6. With a populated table, select 2 actions that are allowed with the ALTER TABLE command. ____ ____

a. Drop all of the ranges
b. Add or drop ranges from the partition “ends”
c. Change the columns that comprise the primary index
d. Add or drop special partitions (NO RANGE, UNKNOWN)

7. Which 2 choices are advantages of partitioning a table? ____ ____

a. Fast delete of rows in partitions
b. Fewer AMPs are involved when accessing data
c. Faster access (than an NPPI table) if the table has a UPI
d. Range queries can be executed without a secondary index

ds186034
Typewritten Text
Partition #	Row Hash	Uniqueness Value

ds186034
Typewritten Text

ds186034
Typewritten Text
Partition #		Row Hash

ds186034
Typewritten Text
0

ds186034
Typewritten Text
FALSE (it only cares about the first part of the row hash)

ds186034
Typewritten Text

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

 Partitioned Primary Indexes Page 17-78

Module 17: Review Questions (cont.)
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Partitioned Primary Indexes Page 17-79

Module 17: Review Questions (cont.)

Given this CREATE TABLE statement, answer the following questions.

CREATE TABLE Orders
(Order_id INTEGER NOT NULL,
Cust_id INTEGER NOT NULL,
Order_status CHAR(1),
Total_price DECIMAL(9,2) NOT NULL,
Order_date DATE FORMAT 'YYYY-MM-DD' NOT NULL,
Order_priority SMALLINT,
Clerk CHAR(16),
Ship_priority SMALLINT,
Order_Comment VARCHAR(80))

PRIMARY INDEX (Order_id)
PARTITION BY RANGE_N (Order_date

BETWEEN DATE '2003-01-01' AND DATE '2012-12-31'
EACH INTERVAL '1' MONTH)

UNIQUE INDEX (Order_id);

8. What is the name of partitioning column? ______________

9. What is the time period for each partition? ______________

10. Why is there a Unique Secondary Index specified instead of defining Order_id as a UPI? _____

a. This is a coding style choice.
b. You cannot have a UPI when using a partitioned primary index.
c. You cannot have a UPI if the partitioning column is not part of the primary index.
d. This is a mistake. You cannot have a secondary and a primary index on the same column(s).

ds186034
Typewritten Text
Order_date

ds186034
Typewritten Text
1 Month

ds186034
Highlight

 Partitioned Primary Indexes Page 17-80

Lab Exercise 17-1
Check your understanding of the concepts discussed in this module by completing the lab
exercises as directed by your instructor.

SQL hints:

INSERT INTO table_1 SELECT * FROM table_2;

SELECT COUNT(*) FROM table_name;

SHOW TABLE table_name;

A count of rows in the Orders table is 31,200.
A count of rows in the Orders_2012 table is 12,000.

Partitioned Primary Indexes Page 17-81

Lab Exercise 17-1

Lab Exercise 17-1

Purpose
In this lab, use Teradata SQL Assistant to create tables with primary indexes partitioned in various
ways.

What you need
Populated DS tables and empty tables in your database

Tasks
1. Using INSERT/SELECT, populate your Orders and Orders_2012 tables from the DS.Orders and

DS.Orders_2012 tables, respectively. Your Orders table will have data for the years 2003 to 2011 and
the Orders_2012 table will have data for 2012. Verify the number of rows in your tables.

SELECT COUNT(*) FROM Orders; Count = _________ (should be 31,200)
SELECT COUNT(*) FROM Orders_2012; Count = _________ (should be 12,000)

2. Use the SHOW TABLE for Orders to help create a new, similar table (same column names and
definitions, etc.) named "Orders_PPI" that has a PPI based on the following:

Primary Index – orderid
Partitioning column – orderdate

– From '2003-01-01' through '2012-12-31', partition by month
– Include the NO RANGE option (the UNKNOWN option is not needed for orderdate)
– Do not create any secondary indexes for this table

How many partitions are logically defined for the Orders_PPI table? ______

 Partitioned Primary Indexes Page 17-82

Lab Exercise 17-1 (cont.)
Check your understanding of the concepts discussed in this module by completing the lab
exercises as directed by your instructor.

SQL hints:

INSERT INTO table_1 SELECT * FROM table_2;

SELECT COUNT(*)
FROM table_name;

SELECT PARTITION, COUNT(*)
FROM table_name
GROUP BY 1
ORDER BY 1;

SELECT PARTITION, COUNT(*)
FROM table_name
WHERE orderdate BETWEEN '2012-01-01' AND '2012-12-31'
GROUP BY 1
ORDER BY 1;

SELECT COUNT(DISTINCT(PARTITION)) FROM table_name;

Partitioned Primary Indexes Page 17-83

Lab Exercise 17-1 (cont.)

3. INSERT/SELECT all of the rows from your Orders table into the Orders_PPI table. Verify the
number of rows in your table. Count = ________

How many partitions would you estimate have data at this time? ________

4. Use the PARTITION key word to list the partitions and number of rows in various partitions.

How many partitions actually have data? ________

How many rows are in each partition for the year 2003? ________

How many rows are in each partition for the year 2011? ________

5. Use INSERT/SELECT to add the rows from the Orders_2012 table to your Orders_PPI table. Verify
the number of rows in your table. Count = ________

Use the PARTITION key word to determine the number of partitions used and the number of rows in
various partitions.

How many partitions actually have data? ________

How many rows are in each partition for the year 2012? ________

 Partitioned Primary Indexes Page 17-84

Lab Exercise 17-1 (cont.)
Check your understanding of the concepts discussed in this module by completing the lab
exercises as directed by your instructor.

SQL hints:

INSERT INTO table_1 SELECT * FROM table_2;

SELECT COUNT(*) FROM table_name;

SELECT COUNT(DISTINCT(PARTITION))
FROM table_name
WHERE orderdate … ;

SELECT MAX (PARTITION)
FROM table_name;

SELECT PARTITION, COUNT(*)
FROM table_name
GROUP BY 1
ORDER BY 1;

SELECT COUNT(DISTINCT(PARTITION)) FROM table_name;

The PARTITION key word only returns partition numbers of partitions that contain rows.
The following “canned” SQL can be used to return a list of partitions that are not used
between the first and last used partitions.

SELECT p + 1 AS "The missing partitions are:"
FROM
 (SELECT p1 - p2 AS p,
 PARTITION AS p1,
 MDIFF(PARTITION, 1, PARTITION) AS p2
 FROM table_name
 QUALIFY p2 > 1)
 AS temp;

Partitioned Primary Indexes Page 17-85

Lab Exercise 17-1 (cont.)

6. INSERT the following row (using these values) into the Orders_PPI table.

(100000, 1000, 'C', 1000, '2000-12-31', 10, 'your name', 5, 20, 'old order')

How many partitions are now in Orders_PPI? ____

What is the partition number (highest partition #) of the NO RANGE OR UNKNOWN partition? ____

7. (Optional) Create a new table named "Orders_PPI_ML" that has a Multi-level PPI based on the
following:

Primary Index – orderid
First Level of Partitioning column – orderdate (use month ranges for all 10 years)

Include the NO RANGE option for orderdate
Second Level of Partitioning column – location (10 different order locations (1 through 10)

Place the NO RANGE and UNKNOWN rows into the same special partition for location
Unique secondary index – orderid

8. (Optional) Populate the Orders_PPI_ML table from the Orders and Orders_2012 tables using
INSERT/SELECT. Verify the number of rows in Orders_PPI_ML. Count = ________

 Partitioned Primary Indexes Page 17-86

Lab Exercise 17-1 (cont.)
Check your understanding of the concepts discussed in this module by completing the lab
exercises as directed by your instructor.

SQL hints:

INSERT INTO table_1 VALUES (value1, value2, …);

INSERT INTO table_1 SELECT * FROM table_2;

SELECT COUNT(*) FROM table_name;

SELECT COUNT(DISTINCT(PARTITION)) FROM table_name;

Partitioned Primary Indexes Page 17-87

Lab Exercise 17-1 (cont.)

9. (Optional) For the Orders_PPI_ML table, use the PARTITION key word to answer the following
questions.

How many partitions actually have data? ________

What is the highest partition number? _________

What is the partition number for orders in January, 2012 and location 1? _____

What is the partition number for orders in February, 2012 and location 1? _____

Is there a difference of 11 partitions between these two months? _____

Why or why not? ___

10. (Optional) Before altering the table, verify the number of rows in Orders_PPI. Count = _______

Use the ALTER TABLE command on Orders_PPI to do the following.

– DROP RANGE (with DELETE) for year 2003
– ADD RANGE for orders that will be placed in year 2013 with an interval of 1 month

Use SHOW TABLE on Orders_PPI to view the altered partitioning.

Use the PARTITION key word to list the partitions and the number of rows in various partitions.

How many partitions currently have data rows? _______
How many rows now exist in the table? _______ Has the row count changed? ___

If the row count did not change, why not? __

 Partitioned Primary Indexes Page 17-88

Notes

Column Partitioning Page 18-1

Module 18

Teradata Proprietary and Confidential

Teradata Columnar

After completing this module, you will be able to:

 Describe the components that comprise a Row ID in a column partitioned
table.

 Identify two advantages of creating a column partitioned table.

 Identify two disadvantages of creating a column partitioned table.

 Identify the recommended way to populate a column partitioned table.

 Specify how rows are deleted in a column partitioned table.

 Column Partitioning Page 18-2

Notes

Column Partitioning Page 18-3

Table of Contents

Teradata Columnar ... 18-4
Teradata Columnar Benefits .. 18-6

Columnar Join Indexes ... 18-6
No Primary Index Table DDL ... 18-8
The No Primary Index Table.. 18-10
Column Partition Table DDL (without Auto-Compression) ... 18-12

Characteristics of a Columnar Table .. 18-12
Column Partition Container (No Automatic Compression) ... 18-14
The Column Partition Table (without Auto-Compression) ... 18-16
CP Table Query #1 (without Auto-Compression) ... 18-18
CP Table Query #1 (without Auto-Compression) ... 18-20
Column Partition Table DDL (with Auto-Compression) .. 18-22
Auto-Compression for CP Tables .. 18-24
Auto-Compression Techniques for CP Tables ... 18-26
User-Defined Compression Techniques .. 18-28
Column Partition Container (Automatic Compression) ... 18-30
The Column Partition Table (with Auto-Compression)... 18-32
CP Table Query #2 (with Auto-Compression) .. 18-34
CP Table with Row Partitioning DDL ... 18-36

Determining the Column Partition Level ... 18-36
The Column Partition Table (with Row Partitioning) ... 18-38
CP Table with Multi-Column Container DDL .. 18-40
The CP Table with Multi-Column Container... 18-42
CP Table Hybrid Row & Column Store DDL ... 18-44

COLUMN Format Considerations ... 18-44
ROW Format Considerations ... 18-44

The CP Table (with Hybrid Row & Column Store) .. 18-46
Populating a CP Table .. 18-48

INSERT-SELECT .. 18-48
Options ... 18-48

DELETE Considerations .. 18-50
The Delete Column Partition ... 18-50

UPDATE Considerations ... 18-52
USI Access ... 18-52
NUSI Access .. 18-52

CP Table Restrictions ... 18-54
Summary .. 18-56
Module 18: Review Questions ... 18-58
Lab Exercise 18-1 .. 18-60

 Column Partitioning Page 18-4

Teradata Columnar
Teradata Column or Column Partitioning (CP) is a new physical database design
implementation option (starting with Teradata 14.0) that allows single columns or sets of
columns of a NoPI table to be stored in separate partitions. Column partitioning can also be
applied to join indexes.

Columnar is simply a new approach for organizing the data of a user-defined table or join
index on disk.

Teradata Columnar offers the ability to partition a table or join index by column. Teradata
Columnar can be used alone or in combination with row partitioning in multilevel
partitioning definitions. Column partitions may be stored using traditional ‘ROW’ storage
or alternatively stored using the new ‘COLUMN’ storage option. In either case, columnar
can automatically compress physical rows where appropriate.

The key benefit in defining row-partitioned (PPI) tables is when queries access a subset of
rows based on constraints on one or more partitioning columns. The major advantage of
using column partitioning is to improve the performance of queries that access a subset of
the columns from a table, either for predicates (e.g., WHERE clause) or projections (i.e.,
SELECTed columns).

Because sets of one or more columns can be stored in separate column partitions, only the
column partitions that contain the columns needed by the query need to be accessed. Just as
row-partitioning can eliminate rows that need not be read, column partitioning eliminates
columns that are not needed.

The advantages of both can be combined, meaning even less data moved and thus reduced
I/O. Fewer data blocks need to be read since more data of interest is packed together into
fewer data blocks.

Columnar makes more sense in CPU-rich environments because CPU cycles are needed to
“glue” columns back together into rows, for compression and for different join strategies
(mainly hash joins).

Column Partitioning Page 18-5

Teradata Columnar

• Description

– Columnar (or Column Partitioning) is a new physical database design
implementation option that allows sets of columns (including just a single column)
of a table or join index to be stored in separate partitions.

– This is effectively an I/O reduction feature to improve performance for suitable
classes of workloads.

– This allows the capability for a table or join index to be column (vertically)
partitioned, row (horizontally) partitioned or both by using the already existing
multilevel partitioning capability.

• Considerations

– Note that column partitioning is a physical database design choice and may not be
suitable for all workloads using that table/join index.

– It is especially suitable if both a small number of rows are selected and a few
columns are projected.

– When individual rows are deleted, they are not physically deleted, but are marked
as deleted.

 Column Partitioning Page 18-6

Teradata Columnar Benefits
The facing page lists a number of Teradata Columnar benefits.

Columnar Join Indexes
A join index can also be created as column-partitioned for either a columnar table or a non-
columnar table. Conversely, a join index can be created as non-columnar for either type of
table as well.

Sometime within a mixed workload, some queries might perform better if data is not column
partitioned and some where it is column partitioned. Or, perhaps some queries perform
better with one type of partitioning on a table, whereas other queries do better with another
type of partitioning. Join indexes allow creation of alternate physical layouts for the data
with the optimizer automatically choosing whether to access the base table and/or one of its
join indexes.

A column-partitioned join index must be a single-table, non-aggregate, non-compressed,
join index with no primary index, and no value-ordering, and must include RowID of the
base table. A column-partitioned join index may optionally be row partitioned. It may also
be a sparse join index.

This module will only describe and include examples of base tables that utilize column
partitioning.

Column Partitioning Page 18-7

Teradata Columnar Benefits

Benefits of using the Teradata Columnar feature include:

• Improved query performance

Column partitioning can be used to improve query performance via column partition
elimination. Column partition elimination reduces the need to access all the data in a row
while row partition elimination reduces the need to access all the rows.

• Reduced disk space

The feature also allows for the possibility of using a new auto-compression capability which
allows data to be automatically (as applicable) compressed as physical rows are inserted
into a column-partitioned table or join index.

• Increased flexibility

Provides a new physical database design option to improve performance for suitable classes
of workloads.

• Reduced I/O

Allows fast and efficient access to selected data from column partitions, thus reducing query
I/O.

• Ease of use

Provides simple default syntax for the CREATE TABLE and CREATE JOIN INDEX
statements. No change is needed to queries.

 Column Partitioning Page 18-8

No Primary Index Table DDL
The facing page simply illustrates the DDL to create a NoPI table. This example will be as a
basis for multiple examples of creating tables with various column partitioning options.

Column Partitioning Page 18-9

No Primary Index Table DDL

CREATE TABLE Super_Bowl
(Winner CHAR(25) NOT NULL
,Loser CHAR(25) NOT NULL
,Game_Date DATE NOT NULL
,Game_Score CHAR(7) NOT NULL
,Attendance INTEGER)

NO PRIMARY INDEX;

In this module, we will use a example of Super Bowl history information to
simply demonstrate column partitioning.

 Column Partitioning Page 18-10

The No Primary Index Table
The No Primary Index table is shown on the facing page.

Column Partitioning Page 18-11

The No Primary Index Table

Partition:
For NOPI tables this number is 0

HB:
The lowest number hashbucket on this AMP

Row # (Uniqueness ID):
The row number of this row

P-Bits #:
Presence Bits for the nullable columns

Partition HB Row # P-Bits Winner Loser Game_Date Game_Score Attendance

0 n 1 0 Dallas Cowboys Denver Broncos 01-15-1978 27-10 (null)

0 n 2 1 Chicago Bears New England Patriots 01-26-1986 46-10 73,818

0 n 3 1 Pittsburgh Steelers Arizona Cardinals 02-01-2009 27-23 70,774

0 n 4 1 Pittsburgh Steelers Minnesota Vikings 01-12-1975 16-6 80,997

0 n 5 1 Pittsburgh Steelers Seattle Seahawks 02-05-2006 21-10 68,206

0 n 6 1 New York Jets Baltimore Colts 01-12-1969 16-7 75,389

0 n 7 0 Dallas Cowboys Buffalo Bills 01-31-1993 52-17 (null)

0 n 8 1 Oakland Raiders Philadelphia Eagles 01-25-1981 27-10 76,135

0 n 9 1 San Francisco 49ers Cincinnati Bengals 01-24-1982 26-21 81,270

Collectively known as the ROWID

 Column Partitioning Page 18-12

Column Partition Table DDL (without Auto-
Compression)

With column partitioning, each column or specified group of columns in the table can
become a partition containing the column partition values of that column partition. This is
the simplest partitioning approach since there is no need to define partitioning expressions,
as seen in the example on the facing page.

The clause PARTITION BY COLUMN specifies that the table has column partitioning.
Each column of this table will have its own partition and will be (by default) in column
storage since no explicit column grouping is specified.

Note that a primary index is not specified since this is NoPI table. A primary index may not
be specified if the table is column partitioned.

Characteristics of a Columnar Table
A table or join index that is partitioned by column has several key characteristics:

 It does not have a primary index.

 Each column partition can be composed of single or multiple columns.

 Each column partition usually consists of multiple physical rows.

 A new physical row format COLUMN may be utilized for a column partition. Such

a physical row is called a ‘container’ and it is used to implement columnar-storage
for a column partition.

 Alternatively, a column partition may also have traditional physical rows with

ROW format. Such a physical row for columnar partitions is called a subrow. This
is used to implement row-storage for a column partition.

 Note that in subsequent discussions, when ‘row storage’ or ‘row format’ is stated, it

is referring to columnar partitioning with the ROW storage option selected. This is
not to be confused with row-partitioning which we associate with a PPI table.

In a table with multiple levels of partitioning, only one level may be column partitioned. All
other levels must be row-partitioned (i.e., PPI).

Column Partitioning Page 18-13

Column Partition Table DDL
(without Auto-Compression)

CREATE TABLE Super_Bowl
(Winner CHAR(25) NOT NULL
,Loser CHAR(25) NOT NULL
,Game_Date DATE NOT NULL
,Game_Score CHAR(7) NOT NULL
,Attendance INTEGER)
NO PRIMARY INDEX
PARTITION BY COLUMN
(Winner NO AUTO COMPRESS
,Loser NO AUTO COMPRESS
,Game_Date NO AUTO COMPRESS
,Game_Score NO AUTO COMPRESS
,Attendance NO AUTO COMPRESS);

Defaults for a column partitioned table.

• Single-column partitions; options include multicolumn partitions.

• Auto compression is on; NO AUTO COMPRESS turns off auto-compression for the
column.

• System-determined column-store for above column partitions; options include
column-store (COLUMN) or row-store (ROW).

 Column Partitioning Page 18-14

Column Partition Container (No Automatic
Compression)

In order to support columnar-storage for a column partition, a new format, referred to as a
COLUMN format in the syntax, is available for a physical row.

A physical row with this format is referred to as a container and each container holds a
series of column partition values for a column partition.

Each container is assigned a specific partition number which identifies the column or group
of columns whose column partition values are held in the container. When a column
partition is stored on disk, one or more containers may be needed to hold all the column
partition values of the column partition. Since a container is a physical row, the size of a
container is limited by the maximum physical row size.

The example on the facing page assumes that NO AUTO COMPRESS has been specified
for the column.

Containers hold multiple values for the same column (or columns) of a table. For purposes
of this explanation, the assumption is being made that each partition contains only a single
column so a column partition value is the same as a column value. Recall that each column
value belongs to a specific row and that each row is identified by a RowID consisting of a
row-hash and uniqueness value. Since all of the rows on a single AMP of a NoPI table share
the same row hash, the uniqueness value becomes the real differentiator. So the connection
between a specific column value for a particular row on a given AMP and its uniqueness
value is the key in locating the corresponding column value.

Assume that a given container holds 1000 values. The RowID of each container carries a
hash bucket and uniqueness which represents the first column value entry in the container.
The first value’s hash bucket and uniqueness is explicit while the other values’ hash bucket
and uniqueness are implicit and are understood based on their position in their container.
The exact location of a column partition value is known based on its relative position within
the container. For example, if the uniqueness value in the container’s RowID is 201 and a
column partition value with a uniqueness value of 205 needs to be located, the 5th entry in
that container is the corresponding column partition value.

Column Partitioning Page 18-15

Column Partition Container
(No Automatic Compression)

Partition HB Row #

1’s & 0’s

Dallas Cowboys

Chicago Bears

Pittsburgh Steelers

Pittsburgh Steelers

Pittsburgh Steelers

New York Jets

Dallas Cowboys

Oakland Raiders

San Francisco 49ers

Column Data

Column Store RowID

Auto-Compression &
NULL Bits

Column Container is effectively a row in the partition.

Starting row number

 Column Partitioning Page 18-16

The Column Partition Table (without Auto-
Compression)

The result of creating a column partitioned table (as shown previously) is shown on the
facing page with some sample data.

The clause PARTITION BY COLUMN specifies that the table has column partitioning.
Each column of this table will have its own partition and will be (by default) in column
storage since no explicit column grouping is specified.

The default of auto-compression is overridden for each of the columns.

Column Partitioning Page 18-17

The Column Partition Table
(without Auto-Compression)

Winner

Part 1-HB-Row #1

1’s & 0’s

Dallas Cowboys

Chicago Bears

Pittsburgh Steelers

Pittsburgh Steelers

Pittsburgh Steelers

New York Jets

Dallas Cowboys

Oakland Raiders

San Francisco 49ers

Loser

Part 2-HB-Row #1

1’s & 0’s

Denver Broncos

New England Patriots

Arizona Cardinals

Minnesota Vikings

Seattle Seahawks

Baltimore Colts

Buffalo Bills

Philadelphia Eagles

Cincinnati Bengals

Game_Date

Part 3-HB-Row #1

1’s & 0’s

01-15-1978

01-26-1986

02-01-2009

01-12-1975

02-05-2006

01-12-1969

01-31-1993

01-25-1981

01-24-1982

Game_Score

Part 4-HB-Row #1

1’s & 0’s

27-10

46-10

27-23

16-6

21-10

16-7

52-17

27-10

26-21

Attendance

Part 5-HB-Row #1

1’s & 0’s

(null)

73,818

70,774

80,997

68,206

75,389

(null)

76,135

81,270

Column Containers

Column containers are effectively separate rows in a NoPI table.

 Column Partitioning Page 18-18

CP Table Query #1 (without Auto-Compression)
One of the key advantages of column partitioning is opportunity for reduced I/O. This can
be realized if only a subset of the columns in a table are read and if those column values are
held in separate column partitions. Data is stored on disk by partition, so when partition
elimination takes place, data blocks in the eliminated partitions are simply not read.

There are three ways to initiate read access to data within a column-partitioned table:

 A full column partition scan
 Indexed access (using a secondary, join index, or hash index),
 A RowID join.

Both unique and non-unique secondary indexes are allowed on column-partitioned tables, as
are join indexes and hash indexes.

Queries best suited for scanning a column-partitioned table are queries that:

 Contain one or a few predicates that are very selective in combination.
 Require a small enough number of columns to be accessed that the caches required

to support their consolidation can be held in memory.

Column Partitioning Page 18-19

Winner

Part 1-HB-Row #1

1’s & 0’s

Dallas Cowboys

Chicago Bears

Pittsburgh Steelers

Pittsburgh Steelers

Pittsburgh Steelers

New York Jets

Dallas Cowboys

Oakland Raiders

San Francisco 49ers

Loser

Part 2-HB-Row #1

1’s & 0’s

Denver Broncos

New England Patriots

Arizona Cardinals

Minnesota Vikings

Seattle Seahawks

Baltimore Colts

Buffalo Bills

Philadelphia Eagles

Cincinnati Bengals

Game_Date

Part 3-HB-Row #1

1’s & 0’s

01-15-1978

01-26-1986

02-01-2009

01-12-1975

02-05-2006

01-12-1969

01-31-1993

01-25-1981

01-24-1982

Game_Score

Part 4-HB-Row #1

1’s & 0’s

27-10

46-10

27-23

16-6

21-10

16-7

52-17

27-10

26-21

Attendance

Part 5-HB-Row #1

1’s & 0’s

(null)

73,818

70,774

80,997

68,206

75,389

(null)

76,135

81,270

Which teams have lost to the "Dallas Cowboys" in the Super Bowl?

Only the accessed columns are needed.

CP Table Query #1
(without Auto-Compression)

 Column Partitioning Page 18-20

CP Table Query #1 (without Auto-Compression)
If indexing is not available, Teradata can access data in a CP table by scanning a column
partition on all the AMPs in parallel.

In the example on the facing page, the “Winner” column containers are scanned for “Dallas
Cowboys”.

The following describes the scanning of CP data:

1. Columns within the table definition that aren’t referenced in the query are ignored
due to partition elimination.

2. If there is a predicate column in the query, its column partition is read.
3. Values within the predicate column partition are examined and compared against

the value passed in the query WHERE clause.
4. Each time a qualifying value is located, the next step is building up a row for the

output spool.
5. All the column partition values for a logical row have the same RowID except for

the column partition number. The RowID associated with each predicate column
value that matches the constraint in the query becomes the link to other column
partition values of the same logical row by simply modifying the column partition
number of the RowID to the column partition number for each of these other
column partition values.

If there is more than one predicate column in the query that can be used to disqualify rows,
the column for one of these predicates is chosen and its column partition is scanned.
Statistics, as well as other heuristics, are used by the optimizer to pick the most selective and
least costly predicate. Once that decision has been made, only that single column partition
needs to be scanned.

If there are no useful predicate columns in the query (for instance, OR’ed predicates), one
column partition is chosen to be scanned and for each of its column partition values
additional corresponding column partition values are accessed until either predicate
evaluation disqualifies the logical row or all the projected column values have been retrieved
and brought together to form rows for the output spool.

Column Partitioning Page 18-21

Which teams have lost to the "Dallas Cowboys" in the Super Bowl?

Winner

Part 1-HB-Row #1

1’s & 0’s

Dallas Cowboys

Chicago Bears

Pittsburgh Steelers

Pittsburgh Steelers

Pittsburgh Steelers

New York Jets

Dallas Cowboys

Oakland Raiders

San Francisco 49ers

Loser

Part 2-HB-Row #1

1’s & 0’s

Denver Broncos

New England Patriots

Arizona Cardinals

Minnesota Vikings

Seattle Seahawks

Baltimore Colts

Buffalo Bills

Philadelphia Eagles

Cincinnati Bengals

Dallas Cowboys

Dallas Cowboys

(1)

(7)

Denver Broncos(1)

(7) Buffalo Bills

The relative row number in each container is used to access the data.

CP Table Query #1
(without Auto-Compression)

 Column Partitioning Page 18-22

Column Partition Table DDL (with Auto-Compression)
The DDL to create a column partitioned table with auto-compression is shown on the facing
page. Each column will be maintained in a separate partition.

The clause PARTITION BY COLUMN specifies that the table has column partitioning.
Each column of this table will have its own partition and will be (by default) in column
storage since no explicit column grouping is specified.

Column Partitioning Page 18-23

CREATE TABLE Super_Bowl
(Winner CHAR(25) NOT NULL
,Loser CHAR(25) NOT NULL
,Game_Date DATE NOT NULL
,Game_Score CHAR(7) NOT NULL
,Attendance INTEGER)

NO PRIMARY INDEX
PARTITION BY COLUMN;

Note: Auto Compression is on by Default.

Column Partition Table DDL
(with Auto-Compression)

 Column Partitioning Page 18-24

Auto-Compression for CP Tables
Auto-compression is a completely transparent compression option for column partitions. It
is applied to a container when a container is full after appending some number of column
partition values without auto-compression by an INSERT or UPDATE statement. Each
container is assessed separately to see how, and if, it can be compressed.

Several available compression techniques are considered for compressing a container but,
unless there is some size reduction, no compression is performed. If a container is
compressed, the needed data is automatically uncompressed as it is read.

Auto-compression happens automatically and is most effective when the column partition is
based on a single column only, and less effectively as more columns are included in the
column partition.

User-defined compression, such as multi-value or algorithmic compression that is already
defined by the user is honored and carried forward if it helps compress the container. If
block level compression is specified, it applies for data blocks holding the physical rows of
the table independent of whether auto-compression is applied or not.

Column Partitioning Page 18-25

Auto-Compression for CP Tables

Auto Compression

• When a column partition is defined to have auto-compression (i.e., the NO AUTO
COMPRESS option is not specified), data is compressed by the system as physical
rows that are inserted into a column-partitioned table or join index.

• For some values, there is no applicable compression technique that reduces the size
of the physical row and the system will determine not to compress the values for that
physical row.

• The system decompresses any compressed column-partition values when they are
retrieved.

• Auto-compression is most effective for a column partition with a single column and
COLUMN format.

• There is overhead in determining whether or not a physical row is to be compressed
and, if it is to be compressed, what compression techniques are to be used.

• This overhead can be eliminated by specifying the NO AUTO COMPRESS option for
the column partition.

 Column Partitioning Page 18-26

Auto-Compression Techniques for CP Tables
The facing page lists and briefly describes each of the auto-compression techniques that
Teradata may utilize.

Column Partitioning Page 18-27

Auto-Compression Techniques for CP Tables

• Run-Length Encoding
Each series of one or more column-partition values that are the same are compressed by having the
column-partition value occur once with an associated count of the number of occurrences in the series.

• Local Dictionary Compression
This is similar to a user-specified value-list compression for a column. Often occurring column-partition
values within a physical row are placed in a value-list dictionary local to the physical row.

• Trim Compression
Trim high-order zero bytes of numeric values and trailing pad bytes of character and byte values with bits to
indicate how many bytes were trimmed or what the length is after trimming.

• Null Compression
Similar to null compression (COMPRESS NULL) for a column except applied to a column-partition value. A
single-column or multicolumn-partition value is a candidate for null compression if all the column values in
the column-partition value are null (this also means all these columns must be nullable).

• Delta on Mean Compression
Delta on Mean compression computes the mean/average of all the values in the column container. This
mean value is saved and stored in the container. After Delta on Mean compression, the value that is stored
for a row is the difference with the mean. So for instance, if the average is say 100 and the four values in
four different rows are 99, 98, 101, and 102. Then the values stored are -1, -2, 1, and 2.

• Unicode to UTF8 Compression
For a column defined with UNICODE character set but where the value consists of ASCII characters,
compress the Unicode representation (2 bytes per character) to UTF8 (1 byte per character).

 Column Partitioning Page 18-28

User-Defined Compression Techniques
User-defined compression, such as multi-value or algorithmic compression that is already
defined by the user is honored and carried forward if it helps compress the container.

If block level compression is specified, it applies for data blocks holding the physical rows
of the table independent of whether auto-compression is applied or not.

Note that auto-compression is applied locally to a container based on column partition
values (which may be multicolumn) while user-specified MVC and ALC are applied
globally for a column and are applicable to both containers and subrows.

Auto-compression is differentiated from block level compression in several key ways:

 Auto-compression requires no parameter setting, but rather is completely
transparent to the user while block level compression is a result of the appropriate
settings of parameters.

 Auto-compression acts on a container (a physical row) while block level
compression acts on a data block (which consists of one or more physical rows).

 Decompressing a column partition value in a container has little overhead while
software-based block level compression incurs noticeable decompression overhead.

 Only column partition values that are needed by the query are decompressed. BLC
has to decompress the entire data block even if only one or a few values are needed
from the data block.

 Determining the auto-compression to use for a container, compressing a container,
and compressing additional values to be inserted into the container can cause an
increase in the CPU needed for appending values to column partitions.

You can expect additional CPU to be required when inserting rows into a CP table that uses
auto-compression. This is similarly to the increase in CPU if MVC or ALC compression is
added to the columns.

Column Partitioning Page 18-29

User-Defined Compression Techniques

All the current compression techniques available in Teradata today, can be
leveraged and used for column partitioned tables.

• Dictionary-Based Compression:
Allows end-users to identify and target specific values that would be compressed
in a given column. Also known as, Multi-Value Compression.

• Algorithmic Compression:
Allows users the option of defining compression/decompression algorithms that
would be implemented as UDFs and that would be specified and applied to data at
the column level in a row. Teradata provides three compression/decompression
algorithms that offer compression for UNICODE and LATIN data columns.

• Block-Level Compression:
Feature provides the capability to perform compression on whole data blocks at
the file system level before the data blocks are actually written to storage.

 Column Partitioning Page 18-30

Column Partition Container (Automatic Compression)
In order to support columnar-storage for a column partition, a new format, referred to as a
COLUMN format in the syntax, is available for a physical row.

The example on the facing page assumes that automatic compression is on for the column.

Column Partitioning Page 18-31

Column Partition Container
(Automatic Compression)

Partition HB Row #

1’s & 0’s

Dallas Cowboys

Chicago Bears

Pittsburgh Steelers (3)

New York Jets

Dallas Cowboys

Oakland Raiders

San Francisco 49ers

Column Data

Column Store RowID

Auto-Compression &
NULL Bits

Column Container is effectively a row in the partition.

Starting row number

Column (Local)
Compression
Dictionary

 Column Partitioning Page 18-32

The Column Partition Table (with Auto-Compression)
The result of creating a column partitioned table with auto-compression is shown on the
facing page.

Column Partitioning Page 18-33

The Column Partition Table
(with Auto-Compression)

Game_Score

Part 4-HB-Row #1

1’s & 0’s

46-10

27-23

16-6

21-10

16-7

52-17

26-21

Winner

Part 1-HB-Row #1

1’s & 0’s

Dallas Cowboys

Chicago Bears

Pittsburgh Steelers (3)

New York Jets

Dallas Cowboys

Oakland Raiders

San Francisco 49ers

Loser

Part 2-HB-Row #1

1’s & 0’s

Denver Broncos

New England Patriots

Arizona Cardinals

Minnesota Vikings

Seattle Seahawks

Baltimore Colts

Buffalo Bills

Philadelphia Eagles

Cincinnati Bengals

Game_Score

Part 4-HB-Row #1

1’s & 0’s

27-10

46-10

27-23

16-6

21-10

16-7

52-17

27-10

26-21

Attendance

Part 5-HB-Row #1

1’s & 0’s

73,818

70,774

80,997

68,206

75,389

76,135

81,270

Trim Trailing
Spaces

Run-Length
Encoding

No Compression Local Dictionary
Compression

(27-10 is
compressed)

Null
Compression

Game_Date

Part 3-HB-Row #1

1’s & 0’s

01-15-1978

01-26-1986

02-01-2009

01-12-1975

02-05-2006

01-12-1969

01-31-1993

01-25-1981

01-24-1982

Attendance

Part 5-HB-Row #1

1’s & 0’s

(Null)

73,818

70,774

80,997

68,206

75,389

(Null)

76,135

81,270

Winner

Part 1-HB-Row #1

1’s & 0’s

Dallas Cowboys

Chicago Bears

Pittsburgh Steelers

Pittsburgh Steelers

Pittsburgh Steelers

New York Jets

Dallas Cowboys

Oakland Raiders

San Francisco 49ers

Loser

Part 2-HB-Row #1

1’s & 0’s

Denver Broncos

New England Patriots

Arizona Cardinals

Minnesota Vikings

Seattle Seahawks

Baltimore Colts

Buffalo Bills

Philadelphia Eagles

Cincinnati Bengals

Columnar compression is based on each Container. Therefore, each Container may
have different compression characteristics and even different compression methods.

 Column Partitioning Page 18-34

CP Table Query #2 (with Auto-Compression)
The Pittsburgh Steelers team was compressed, but effectively represented 3 values in the
container. These 3 values correspond to 3, 4, and 5 in the other container (Loser column).

Column Partitioning Page 18-35

CP Table Query #2
(with Auto-Compression)

Winner

Part 1-HB-Row #1

1’s & 0’s

Dallas Cowboys

Chicago Bears

Pittsburgh Steelers
(3)

New York Jets

Dallas Cowboys

Oakland Raiders

San Francisco 49ers

Loser

Part 2-HB-Row #1

1’s & 0’s

Denver Broncos

New England Patriots

Arizona Cardinals

Minnesota Vikings

Seattle Seahawks

Baltimore Colts

Buffalo Bills

Philadelphia Eagles

Cincinnati Bengals

Pittsburgh Steelers
(3)

(3, 4, 5) Arizona Cardinals(3)

(4)

(5) Seattle Seahawks

Minnesota Vikings

Which teams have lost to the "Pittsburgh Steelers" in the Super Bowl?

 Column Partitioning Page 18-36

CP Table with Row Partitioning DDL
Row partitioning can be combined with column partitioning on the same table. This allows
queries to read only non-eliminated combined partitions. Such partitions are defined by the
intersection of the columns referenced in the query and any partitioning column selection
criteria.

There is usually an advantage to putting the column partitioning at level one of the
combined partitioning scheme.

The DDL to create a column partitioned table with auto-compression and Row partitioning
is shown on the facing page.

Determining the Column Partition Level
It is initially recommended that column partitioning either be defined as the first level or, if
not as the first level, at least as the second level. When column partitioning is defined as the
first level it is easier for the file system to locate related data that is from the same logical
row of the table. When column partitioning is defined at a lower level, more boundary
checks have to be made, possibly causing an impact on performance.

If you are inserting a new table row, it takes more effort if the column partitioning is not the
first level. Values of columns from the newly-inserted table row need to be appended at the
end of each column partition. If column-partitioning is not first, it is necessary to read
through several combined partitions to find the correct container that represents the end
point.

On the other hand, if you have row partitioning at the second or a lower level partitioning
level so that column partitioning can be at the first level, this can be less efficient when row
partition elimination based on something like a date range is taking place.

Column Partitioning Page 18-37

CP Table with Row Partitioning DDL

CREATE TABLE Super_Bowl
(Winner CHAR(25) NOT NULL
,Loser CHAR(25) NOT NULL
,Game_Date DATE NOT NULL
,Game_Score CHAR(7) NOT NULL
,City CHAR(40))

NO PRIMARY INDEX
PARTITION BY
(COLUMN
,RANGE_N(Game_Date BETWEEN

DATE '1960-01-01' and DATE '2059-12-31'
EACH INTERVAL '10' YEAR));

Note: Auto Compression is on by Default.

 Column Partitioning Page 18-38

The Column Partition Table (with Row Partitioning)
The result of creating a column partitioned table with auto-compression and row partitioning
is shown on the facing page.

Column Partitioning Page 18-39

The Column Partition Table
(with Row Partitioning)

Winner

Part 1-HB-Row #1

1’s & 0’s

New York Jets

Loser

Part 2-HB-Row #1

1’s & 0’s

Baltimore Colts

Game_Date

Part 3-HB-Row #1

1’s & 0’s

01-12-1969

Game_Score

Part 4-HB-Row #1

1’s & 0’s

16-7

City

Part 5-HB-Row #1

1’s & 0’s

Miami, FL

• In the 1970s, which teams won Super Bowls, who were the losing teams ,
and what was the date the game was played?

Winner

Part 11-HB-Row #1

1’s & 0’s

Dallas Cowboys

Pittsburgh Steelers

Loser

Part 12-HB-Row #1

1’s & 0’s

Denver Broncos

Minnesota Vikings

Game_Date

Part 13-HB-Row #1

1’s & 0’s

01-15-1978

01-12-1975

Game_Score

Part 14-HB-Row #1

1’s & 0’s

27-10

16-6

Attendance

Part 15-HB-Row #1

1’s & 0’s

New Orleans, LA

Winner

Part 41-HB-Row #1

1’s & 0’s

Pittsburgh Steelers

Loser

Part 42-HB-Row #1

1’s & 0’s

Seattle Seahawks

Game_Date

Part 43-HB-Row #1

1’s & 0’s

02-05-2006

Game_Score

Part 44-HB-Row #1

1’s & 0’s

21-10

Attendance

Part 45-HB-Row #1

1’s & 0’s

68,206

 Column Partitioning Page 18-40

CP Table with Multi-Column Container DDL
When a table is defined with column partitioning, by default each column becomes its own
column partition. However, it is possible to group multiple columns into a single partition.

This has the result of fewer column partitions with more data held within each column
partition.

Grouping columns into fewer column partitions may be appropriate in these situations:

 When the table has a large number of columns (having fewer column partitions
may improve the performance of INSERT-SELECT and UPDATE statements).

 When access to the table often involves a large percentage of the columns and the
access is not very selective.

 When a common subset of columns are frequently accessed together.
 When a multicolumn NUSI is created on a group of columns.
 There are too few available column partition contexts to access all the needed

column partitions for queries.

Note that auto-compression will probably be less effective if columns are grouped together
instead of being in their own column partitions.

Column Partitioning Page 18-41

CP Table with Multi-Column Container DDL

CREATE TABLE Super_Bowl
(Winner CHAR(25) NOT NULL
,Loser CHAR(25) NOT NULL
,Game_Date DATE NOT NULL
,Game_Score CHAR(7) NOT NULL
,Attendance INTEGER)

NO PRIMARY INDEX
PARTITION BY COLUMN
(Winner NO AUTO COMPRESS
,Loser NO AUTO COMPRESS
,(Game_Date
,Game_Score
,Attendance) NO AUTO COMPRESS)

;
Note that this example is without Auto-Compression.

Watch the difference between 'Projection' and 'Predicate'.

If you are always projecting three columns, it may make sense to group these
columns into one Container. If, however, one of these columns is used in a WHERE
Predicate, then it may be better to place this column into its own Container.

Recommendation:
The group of multiple
columns should be less
than 256 bytes.

ds186034
Sticky Note
we dont get the same compression

ds186034
Sticky Note

 Column Partitioning Page 18-42

The CP Table with Multi-Column Container
The example on the facing page illustrates a CP table that has a multi-column container.

Column Partitioning Page 18-43

The CP Table with Multi-Column Container

Winner

Part 1-HB-Row #1

1’s & 0’s

Dallas Cowboys

Chicago Bears

Pittsburgh Steelers

Pittsburgh Steelers

Pittsburgh Steelers

New York Jets

Dallas Cowboys

Oakland Raiders

San Francisco 49ers

Loser

Part 2-HB-Row #1

1’s & 0’s

Denver Broncos

New England Patriots

Arizona Cardinals

Minnesota Vikings

Seattle Seahawks

Baltimore Colts

Buffalo Bills

Philadelphia Eagles

Cincinnati Bengals

Game_Date Game_Score Attendance

Part 3-HB-Row #1

1’s & 0’s

01-15-1978 27-10 (null)

01-26-1986 46-10 73,818

02-01-2009 27-23 70,774

01-12-1975 16-6 80,997

02-05-2006 21-10 68,206

01-12-1969 16-7 75,389

01-31-1993 52-17 (null)

01-25-1981 27-10 76,135

01-24-1982 26-21 81,270

Single Column Containers Multi-Column Container

General recommendations:
• If you have a lot of columns in a table, then multi-column containers may be needed.

• Multi-column containers will not compress as well as single-column containers.

• If you select any column in a multi-column container you will get all of the other columns.

 Column Partitioning Page 18-44

CP Table Hybrid Row & Column Store DDL
The example on the facing page illustrates the DDL to create a column partitioned table that
has a combination of row and column storage.

COLUMN Format Considerations
The COLUMN format packs column partition values into a physical row, referred to as a
container, up to a system-determined limit. Whether or not to change a column partition to
use ROW format depends on the whether the benefit of row header compression and auto-
compression can be realized or not.

A row header occurs once per container, with the RowID of the first column partition value
becoming the RowID of the container itself. In a column-partitioned table, each column
partition value is assigned its own RowID, but in a container these RowIDs are implicit
except for the first one specified in the header. The uniqueness value can be determined
from the position of a column partition value relative to the first column partition value.
Thus the row id for each value in the container is implicitly available and an explicit RowID
does not need be carried for each individual column value in the container.

If many column partition values can be packed into a container, this form of compression
(referred to as row header compression) can reduce the space needed for a column-
partitioned table compared to the table without column partitioning. If only a few column
partition values (because they are wide) can be placed in a container, there can actually be
an increase in the space needed for the table compared to the table without column
partitioning. In this case, ROW format may be more appropriate.

ROW Format Considerations
A subrow, on the other hand, has a format that is the same as traditional row (except it only
has the values of a subset of the columns). Subrows are appropriate when column partition
values are very wide and you expect only one or a few values to fit in a columnar container.

In this case, auto-compression and row header compression using COLUMN format might
not be very effective. ROW format provides quicker access to specific values because no
search through a physical row is required to find only one value. Each column partition
value is in it owns subrow with a row header. Subrows are not subject to auto-compression
but may be in the future.

Column Partitioning Page 18-45

CP Table Hybrid Row & Column Store DDL

CREATE TABLE Super_Bowl
(Winner CHAR(25) NOT NULL
,Loser CHAR(25) NOT NULL
,Game_Date DATE NOT NULL
,Game_Score CHAR(7) NOT NULL
,Attendance INTEGER
,City CHAR(40))

NO PRIMARY INDEX
PARTITION BY COLUMN
(Winner NO AUTO COMPRESS
,Loser NO AUTO COMPRESS
,ROW (Game_Date

,Game_Score
,Attendance
,City) NO AUTO COMPRESS);

General recommendation:
• A column (or set of columns) should be at least 256 bytes wide before considering ROW format.

• Row stores will take up more space, but act like a row in terms of retrieving data.

• Each row will have a row header and require more space.

This example illustrates the syntax
to create a row store, but in reality
you would only define the row
format if the set of columns was
greater than 256 bytes.

 Column Partitioning Page 18-46

The CP Table (with Hybrid Row & Column Store)
As an alternative to COLUMN format, column partition values may be held in a physical
row using what is known in Teradata syntax as ROW format. The type of physical row
supports row-storage for a column partition and is referred to as a subrow. Each subrow
holds one column partition value for a column partition. A subrow has the same format as
regular row except that it is generally a subset of the columns for a table row instead of all
the columns. Just like a container, each subrow is assigned to a specific partition. One or
more subrows may be needed to hold the entire column partition. Since a subrow is a
physical row, the size of a subrow is limited by the maximum physical row size.

A column partition may have COLUMN format or ROW format but not a mix of both.
However, different column partitions in column-partitioned table may have different
formats.

Column Partitioning Page 18-47

The CP Table
(with Hybrid Row & Column Store)

Partition HB Row # Game_Date Game_Score Attendance City

0 n 1 01-15-1978 27-10 (null) New Orleans, LA

0 n 2 01-26-1986 46-10 73,818 New Orleans, LA

0 n 3 02-01-2009 27-23 70,774 Tampa, FL

0 n 4 01-12-1975 16-6 80,997 New Orleans, LA

0 n 5 02-05-2006 21-10 68,206 Detroit, MI

0 n 6 01-12-1969 16-7 75,389 Miami, FL

0 n 7 01-31-1993 52-17 (null) Pasadena, CA

0 n 8 01-25-1981 27-10 76,135 New Orleans, LA

0 n 9 01-24-1982 26-21 81,270 Pontiac, MI

Winner

Part 1-HB-Row #1

1’s & 0’s

Dallas Cowboys

Chicago Bears

Pittsburgh Steelers

Pittsburgh Steelers

Pittsburgh Steelers

New York Jets

Dallas Cowboys

Oakland Raiders

San Francisco 49ers

Loser

Part 2-HB-Row #1

1’s & 0’s

Denver Broncos

New England Patriots

Arizona Cardinals

Minnesota Vikings

Seattle Seahawks

Baltimore Colts

Buffalo Bills

Philadelphia Eagles

Cincinnati Bengals

Row Store

Column Store Containers

Column and Row Store in "one" table.

 Column Partitioning Page 18-48

Populating a CP Table
INSERT-SELECT

INSERT-SELECT is the expected and most efficient method of loading data into a column-
partitioned table. If the data originates from an external source, FastLoad can be used to
load it into a staging table from which the INSERT-SELECT can take place.

If the source was a SELECT that included several joins and as a result skewed data was
produced, options can be added to the INSERT-SELECT statement to avoid a skewed
column-partitioned table and improve the effectiveness of auto-compression:

Options
HASH BY (RANDOM or hash_spec_list):
The selected rows are redistributed by the hash value of the expressions in the
hash_spec_list. Alternatively, HASH BY RANDOM can be specified to have data blocks
redistributed randomly. It is important that a column or columns be selected that distributes
well if the HASH BY option is used.

LOCAL ORDER BY:
A local sort is done on each AMP before physically storing the rows. This could help auto-
compression to be more effective by ensuring that like values of the sorting columns appear
together.

During an INSERT-SELECT process, each source row is read, and its columns individually
appended to the column partitions to which they belong. As many column partition values
as can fit are built up simultaneously in memory, and written out to disk when the buffer is
filled.

If the column-partitioned table being loaded has a large number of columns, additional
passes of the source table may be required to append all of the columns to their respective
column partitions.

Column Partitioning Page 18-49

Populating a CP Table

1. Load data into staging table.

2. INSERT INTO Super_Bowl ….. SELECT * FROM Super_Bowl_Staging …

CREATE TABLE Super_Bowl
(Winner CHAR(25) NOT NULL
,Loser CHAR(25) NOT NULL
,Game_Date DATE NOT NULL
,Game_Score CHAR(7) NOT NULL
,Attendance INTEGER)

NO PRIMARY INDEX
PARTITION BY COLUMN;

CREATE TABLE Super_Bowl_Staging
(Winner CHAR(25) NOT NULL
,Loser CHAR(25) NOT NULL
,Game_Date DATE NOT NULL
,Game_Score CHAR(7) NOT NULL
,Attendance INTEGER)

NO PRIMARY INDEX;

 Column Partitioning Page 18-50

DELETE Considerations
Rows can be deleted from a column-partitioned table using the DELETE ALL, or
selectively using DELETE. DELETE ALL uses the standard fast-path delete as would be
done on a primary-indexed table. If a column-partitioned table also happens to include row
partitioning, the same fast-path delete can be applied to one or more row partitions. Space is
immediately reclaimed.

The selective DELETE, in which only one or a few rows of the table are deleted, requires a
scan of a column partition or indexed access to the column-partitioned table. In this case,
the row being deleted is not physically removed, but only flagged as having been deleted.
The space taken by a row being deleted is scattered across multiple column partitions and is
not reclaimed at the time of the deletion. This form of delete should only be used to delete a
small percentage of rows.

During a delete operation, all large objects are immediately deleted, as are entries in
secondary indexes. Join indexes are updated to reflect the change as it happens.

The Delete Column Partition
Each column-partitioned table has one delete column partition, in addition to the user-
specified column partitions. It holds information about deleted rows so they do not get
included in an answer set. When a single row delete takes place in a column-partitioned
table, rather than removing each deleted value across all the column partitions, which would
involve multiple physical row updates, a single action is performed. One bit in the delete
column partition is set as an indication that the hash bucket and uniqueness associated with
the table row has been deleted.

This delete column partition is accessed any time a query is made against a column-
partitioned table without indexed access. At the time a column partition is scanned, the
delete column partition is checked to make sure a table row being requested by the query has
not been deleted (if it has, the value is skipped). This additional partition access can be
observed in the EXPLAIN text.

Column Partitioning Page 18-51

DELETE Considerations

• DELETE ALL uses the standard fast-path delete as would be done on a primary-indexed
table.

– If a CP table also happens to include row partitioning, the same fast-path delete
can be applied to one or more row partitions. Space is immediately reclaimed.

• The selective DELETE, in which only one or a few rows of the table are deleted, requires
a scan of a column partition or indexed access to the column-partitioned table.

– In this case, the row being deleted is not physically removed, but only flagged as
having been deleted.

– This form of delete should only be used to delete a small percentage of rows.

• The Delete Column Partition - each column-partitioned table has one delete column
partition, in addition to the user-specified column partitions. It holds information about
deleted rows so they do not get included in an answer set.

– One bit in the delete column partition is set as an indication that the hash bucket
and uniqueness associated with the table row has been deleted.

 Column Partitioning Page 18-52

UPDATE Considerations
Updating rows in column partitioned table requires a delete and an insert operation. It involves
marking the appropriate bit in the delete column partition, and then re-inserting columns for the new
updated version of the table row. The cost of this update is less severe than a Primary Index update
(also a delete plus insert) because in the column-partitioned table update, the deletion and re-
insertion takes place on the same AMP.

The part of the update that re-inserts a new table row is essentially a re-append. The highest
uniqueness value on that AMP is incremented by one, and all the column values for that updated row
are appended to their corresponding column partitions. Because multiple I/Os are performed in
doing this re-append, row-at-a-time updates on column-partitioned tables should be approached with
caution. The space that is being used by the old row is not reclaimed, but a delete bit is turned on in
the delete column partition, indicating that the old version of the row is obsolete.

An UPDATE statement should only be used to update a small percentage of rows.

USI Access
For example, consider a unique secondary index (USI) access. The USI subtable provides the
specific RowID of the base table row. In the columnar case, the base table row is located on a
specific AMP which can be stored in multiple containers. As it is for a PI or NoPI tables, the hash
bucket in the RowID carried in the USI is used to locate the AMP that contains the base table row.
The column values from the multiple containers are located the same as using a RowID retrieved
from a NUSI which is described below.

NUSI Access
With non-unique secondary indexes (NUSIs), a row-id list is retrieved from the NUSI subtable. In
the case of a column-partitioned table, the table row has been decomposed into columns that are
located in different column partitions on disk. Several different internal partition numbers come into
play in reconstructing the table row.

Rather than relying on the column partition number, it is only the hash bucket and uniqueness that is
of importance in the NUSI subtable RowID list. The hash bucket and uniqueness identifies the table
row on that AMP, while the column partition number plays no meaningful role.

Because column partition numbers in the NUSI subtable are not useful in the case of a column-
partitioned table, all RowIDs in a NUSI carry a column partition number of 1. The hash bucket and
uniqueness value are the important link between the NUSI subtable and the column values of interest
for the query. Once the hash bucket and uniqueness value is known, a RowID is formulated using
the internal partition number of the column of interest. This RowID is then used to read the
containing physical row/container. A relative position is determined using the uniqueness value
which is then used to access the appropriate column value. This process is repeated to locate the
column value of each of the remaining columns for this row. These individual column values are
brought together to formulate the row. This process occurs for each RowID in the NUSI subtable
entry.

Column Partitioning Page 18-53

UPDATE and USI/NUSI Considerations

UPDATE Considerations

• Updating rows in column partitioned table requires a delete and an insert operation.

• It involves marking the appropriate bit in the delete column partition, and then re-
inserting columns for the new updated version of the table row.

• An UPDATE statement should only be used to update a small percentage of rows.

USI/NUSI Considerations

• For a USI on a CP table, the base table row is located on a specific AMP which can be
stored in multiple containers. The hash bucket in the RowID carried in the USI is used
to locate the AMP that contains the base table row.

• For a NUSI on a CP table, the table row has been decomposed into columns that are
located in different column partitions on disk. Several different internal partition
numbers come into play in reconstructing the table row.

• Rather than relying on the column partition number, it is only the hash bucket and
uniqueness that is of importance in the NUSI subtable RowID list.

 Column Partitioning Page 18-54

CP Table Restrictions
The following limitations apply:

 Column partitioning for join indexes is restricted to single-table, non-aggregate,
non-compressed join indexes with no PI and no ORDER BY clause
– ROWID of base table must be included in a CP join index

 Column partitioning is not allowed for the following:

– Primary index (PI) base tables
– Global temporary, volatile, and queue tables
– Secondary indexes

 Column partitioning is not applicable for the following:

– Global temporary trace tables
– Error tables
– Compressed join indexes

 NoPI table with only row partitioning is not allowed

 A column cannot be specified to be in more than one column partition

 Column grouping cannot be specified in both the column definition list of

CREATE TABLE statement and in the COLUMN clause.

 Column grouping cannot be specified in both the select list of a CREATE JOIN

INDEX statement and in the COLUMN clause.

Column Partitioning Page 18-55

CP Table Restrictions

• Column Partitioning is predicated on the NoPI table structure and as such the following
restrictions apply:

– Set Tables
– Queue tables
– Global Temporary Tables
– Volatile Tables
– Derived Tables
– Multi-table or Aggregate Join Index
– Compressed Join Index
– Hash Index
– Secondary Index are not column partitioned

• Column Partitioned tables cannot be loaded with either the FastLoad or the MultiLoad
utilities.

• Merge-Into and UPSERT statements are not supported.

• Population of Column Partition tables will require an Insert-Select process after data has
been loaded into a staging table.

• No synchronized scanning with Columnar Tables.

• Since Columnar Tables are NoPI Tables, Teradata cannot use Full Cylinder Reads.

 Column Partitioning Page 18-56

Summary
The facing page contains a summary of key concepts from this module.

Column Partitioning Page 18-57

Summary

When is column partitioning useful?

• Queries access varying subsets of the columns of table
or

Queries of the table are selective (Best if both occur for queries)

• For example, ad hoc, data analytics

• Data can be loaded with large INSERT-SELECTs

• There is no or little update/delete maintenance between refreshes or appends of the
data for the table or for row partitions.

Do NOT use this feature when:

• Queries need to be run on current data that is changing (deletes and updates).

• Performing tactical queries or OLTP queries.

• Workload is CPU bound such that a trade-off of reduced I/O with increased CPU does
not improve the throughput.

– Column partitioning is not intended to be a CPU savings feature.

 Column Partitioning Page 18-58

Module 18: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Column Partitioning Page 18-59

Module 18: Review Questions

1. Which two choices apply to Column Partitioning?

a. SET table
b. NoPI table
c. Table with multi-level partitioning
d. Table with existing row partitioning

2. What are two benefits of Column Partitioning?

a. Reduced I/O
b. Reduced CPU
c. Reduced disk space usage
d. Reduced tactical query response times

3. True or False? Deleting a row in a column partitioned table will reclaim table space.

4. True or False? In a multi-level partitioned table, only one level may be column partitioned.

5. True or False? The preferred way to load a columnar table is using INSERT/SELECT.

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

 Column Partitioning Page 18-60

Lab Exercise 18-1
Check your understanding of the concepts discussed in this module by completing the lab
exercises as directed by your instructor.

SQL hints:

INSERT INTO table_1 SELECT * FROM table_2;

SELECT COUNT(*) FROM table_name;

SHOW TABLE table_name;

A count of rows in the Orders table is 31,200.
A count of rows in the Orders_2012 table is 12,000.

Column Partitioning Page 18-61

Lab Exercise 18-1

Lab Exercise 18-1

Purpose
In this lab, you will use Teradata SQL Assistant to create tables with column partitioning in various
ways.

What you need
Populated DS tables and Orders and Orders_2012 tables in your database

Tasks

1. Use the SHOW TABLE for Orders to help create a new, similar table (same column names and
definitions, etc.) that does NOT have a primary index and name this table "Orders_NoPI".

2. Populate the Orders_NoPI table (via INSERT/SELECT) with all of the rows from the DS.Orders and
DS.Orders_2012 tables.

Verify the number of rows in your table. Count = ________ (count should be 43,200)

3. Use the SHOW TABLE for Orders_NoPI to create a new column partitioned table named "Orders_CP"
based on the following:

– Each column is created as a separate partition
– Utilize auto compression for every column

Populate the Orders_CP table (via INSERT/SELECT) from the Orders_NoPI table.

 Column Partitioning Page 18-62

Lab Exercise 18-1 (cont.)
Check your understanding of the concepts discussed in this module by completing the lab
exercises as directed by your instructor.

SQL hints:

INSERT INTO table_1 SELECT * FROM table_2;

SELECT COUNT(*) FROM table_name;

SELECT COUNT(DISTINCT(PARTITION)) FROM table_name;

Column Partitioning Page 18-63

Lab Exercise 18-1 (cont.)

4. Verify the number of rows in your table. Count = ________ (count should be 43,200)

How many partitions actually have data? ________

Note: The table only has 1 logical partition.

5. Use the SHOW TABLE for Order_CP to create a new column partitioned table named
"Orders_CP_noAC" based on the following:

– Each column is created as a separate partition
– Turn off auto compression for every column

Populate the Orders_CP_noAC table (via INSERT/SELECT) from the Orders_NoPI table.

 Column Partitioning Page 18-64

Lab Exercise 18-1 (cont.)
Check your understanding of the concepts discussed in this module by completing the lab
exercises as directed by your instructor.

SQL hints:

INSERT INTO table_1 SELECT * FROM table_2;

SELECT COUNT(*) FROM table_name;

SELECT COUNT(DISTINCT(PARTITION)) FROM table_name;

SELECT TableName, SUM(CurrentPerm)
FROM DBC.TableSizeV
WHERE DatabaseName = DATABASE
AND TableName In ('tablename1', 'tablename2', …)
GROUP BY 1
ORDER BY 1;

Column Partitioning Page 18-65

Lab Exercise 18-1 (cont.)

6. (Optional) Use the SHOW TABLE for Order_CP to create a new column partitioned table named
"Orders_CP_TP based on the following:

– Each column is created as a separate partition (COLUMN partitioning is the first level)
– Utilize auto compression for every column
– Incorporate table partitioning with orderdate as the partitioning column

• From '2003-01-01' through '2012-12-31', partition by month
• Do not use the NO RANGE or UNKNOWN options.

Populate the Orders_CP_TP table (via INSERT/SELECT) from the Orders_NoPI table.

7. (Optional) Use the PARTITION key word to determine the number of partitions defined in the
Orders_CP_TP.

How many partitions actually have data? ________

8. (Optional) Determine the AMP space usage of the Orders_CP, Orders_CP_noAC, and
Orders_CP_TP tables using DBC.TableSizeV.

CurrentPerm of Orders_CP ________________

CurrentPerm of Orders_CP_noAC ________________

CurrentPerm of Orders_CP_TP ________________

 Column Partitioning Page 18-66

Notes

Secondary Index Usage Page 19-1

Module 19

Teradata Proprietary and Confidential

Secondary Index Usage

After completing this module, you will be able to:

 Describe USI and NUSI implementations.

 Describe dual NUSI access.

 Describe NUSI bit mapping.

 Explain NUSI and Aggregate processing.

 Compare NUSI vs. full table scan (FTS).

 Secondary Index Usage Page 19-2

Notes

Secondary Index Usage Page 19-3

Table of Contents

Secondary Indexes ... 19-4
Defining Secondary Indexes .. 19-6
Secondary Index Subtables .. 19-8

Primary Indexes (UPIs and NUPIs) ... 19-8
Unique Secondary Indexes (USIs) ... 19-8
Non-Unique Secondary Indexes (NUSIs) .. 19-8

USI Subtable General Row Layout .. 19-10
USI Change for PPI .. 19-10

USI Hash Mapping ... 19-12
NUSI Subtable General Row Layout ... 19-14

NUSI Change for PPI ... 19-14
NUSI Hash Mapping .. 19-16
Table Access – A Complete Example .. 19-18
Secondary Index Considerations .. 19-20
Single NUSI Access (Between, Less Than, or Greater Than) ... 19-22
Dual NUSI Access ... 19-24

AND with Equality Conditions .. 19-24
OR with Equality Conditions ... 19-24

NUSI Bit Mapping ... 19-26
Example ... 19-26

Value-Ordered NUSIs .. 19-28
Value-Ordered NUSIs (cont.) .. 19-30
Covering Indexes ... 19-32

Join Index Note: ... 19-32
Example ... 19-32

Covering Indexes (cont.) .. 19-34
NUSIs and Aggregate Processing .. 19-34
Example ... 19-34

NUSI vs. Full Table Scan (FTS) .. 19-36
Example ... 19-36

Full Table Scans – Sync Scans .. 19-38
Module 19: Review Questions ... 19-40

 Secondary Index Usage Page 19-4

Secondary Indexes
Secondary Indexes are generally defined to provide faster set selection. The Teradata
Database allows up to 32 Secondary Indexes per table. Teradata handles Unique Secondary
Indexes (USIs) and Non-Unique Secondary Indexes (NUSIs) very differently.

The diagram illustrates how Secondary Index values are stored in subtables. Secondary
Index values, like Primary Index values, are input to the Hashing Algorithm. As with
Primary Indexes, the Hashing Algorithm takes the Secondary Index value and outputs a
Row Hash. These Row Hash values point to a subtable which stores index rows containing
the base table SI column values and Row IDs which point to the row(s) in the base table
with the corresponding SI value.

The Teradata Database can determine the difference between a base table and a SI subtable
by checking the Subtable ID, which is part of the Table ID.

Secondary Index Usage Page 19-5

Secondary Indexes

Base Table

Primary
Index Value

Hashing
Algorithm

Table_X

A B C D E

PI SI

Secondary
Index Value

Hashing
Algorithm

SI Subtable

Row IDC

Secondary indexes provide faster set selection.

• They may be unique (USI) or non-unique (NUSI).

• A USI may be used to maintain uniqueness on a column.

• The system maintains a separate subtable for each secondary index.

• A secondary index can consist of 1 to 64 columns.

Subtables keep base table secondary index row hash, column values, and RowID (which
point to the row(s) in the base table with that value).

• The implementation of a USI is different than a NUSI.

• Users cannot access subtables directly.

 Secondary Index Usage Page 19-6

Defining Secondary Indexes
Use the CREATE INDEX statement to create a secondary index on an existing table or join
index. The index can be optionally named.

Notes on ORDER BY option:

 If the ORDER BY option is not used, the default is to order by hash.

 If the ORDER BY option is specified and neither of the keywords (HASH or

VALUES) is specified, then the default is to order by values.

Recommendation: If the ORDER BY option is used, specify one of the keywords –

HASH or VALUES.

Notes on the ALL option:

 The ALL option indicates that a NUSI should retain row ID pointers for each
logical row of a join index (as opposed to only the compressed physical rows).

 ALL also ignores the NOT CASESPECIFIC attribute of data types so a NUSI can

include case-specific values.

 ALL enables a NUSI to cover a join index, enhancing performance by eliminating

the need to access a join index when all values needed by a query are in the
secondary index. However, ALL might also require the use of additional index
storage space.

 Use this keyword when a NUSI is being defined for a join index and you want to

make it eligible for the Optimizer to select when covering reduces access plan cost.
ALL can also be used for an index on a table, however.

 You cannot specify multiple indexes that differ only by the presence or absence of

the ALL option.

 The use of the ALL option for a NUSI on a data table does not cause a syntax error.

Additional notes:

 column_name_2 specifies the sort order to be used. column_name_2 is a column
name that must appear in the column_name_1 list.

 You can put two NUSI secondary indexes on the same column (or set of columns)

if one of the indexes is ordered by hash and the other index is ordered by value.

 You cannot define a USI on a join index. Other secondary indexes are allowed.

Secondary Index Usage Page 19-7

Defining Secondary Indexes

Secondary indexes can be defined …

• when a table is created (CREATE TABLE).

• for an existing table (CREATE INDEX).

,
CREATE INDEX A

UNIQUE index_name ALL

,
A (col_name_1) B

ORDER BY (col_name_2)
VALUES
HASH

B ON table_name
TEMPORARY ;

join_index_name

Examples:

Unnamed USI:

CREATE UNIQUE INDEX
(item_id, store_id, sales_date)

ON Daily_Sales;

Named Value-Ordered NUSI:

CREATE INDEX ds_vo_nusi
(sales_date)

ORDER BY VALUES ON Daily_Sales;

 Secondary Index Usage Page 19-8

Secondary Index Subtables
The diagram on the facing page illustrates how the Teradata Database retrieves rows based
upon their index values. It compares and contrasts examples of Primary (UPIs and NUPIs),
Unique Secondary (USIs) and Non-Unique Secondary Indexes (NUSIs).

Primary Indexes (UPIs and NUPIs)
As you have seen previously, in the case of a Primary Index, the Teradata Database hashes
the value and uses the Row Hash to find the desired row. This is always a one-AMP
operation and is shown in the top diagram on the facing page.

Unique Secondary Indexes (USIs)
The middle diagram illustrates the process of a USI row retrieval. An index subtable
contains index rows, which in turn point to base table rows matching the supplied index
value. USI rows are globally hash- distributed across all AMPs, and are retrieved using the
same procedure for Primary Index data row retrieval. Since the USI row is hash-distributed
on different columns than the Primary Index of the base table, the USI row typically lands
on an AMP other than the one containing the data row. Once the USI row is located, it
“points” to the corresponding data row. This requires a second access and usually involves
a different AMP. In effect, a USI retrieval is like two PI retrievals:

Master Index - Cylinder Index - Index Block
Master Index - Cylinder Index - Data Block

Non-Unique Secondary Indexes (NUSIs)
NUSIs are implemented on an AMP-local basis. Each AMP is responsible for maintaining
only those NUSI subtable rows that correspond to base table rows located on that AMP.
Since NUSIs allow duplicate index values and are based on different columns than the PI,
data rows matching the supplied NUSI value could appear on any AMP.

In a NUSI retrieval (illustrated at the bottom of the facing page), a message is sent to all
AMPs to see if they have an index row for the supplied value. Those that do use the
“pointers” in the index row to access their corresponding base table rows. Any AMP that
does not have an index row for the NUSI value will not access the base table to extract rows.

Secondary Index Usage Page 19-9

Secondary Index Subtables

Hashing
Algorithm

Primary Index
Value

One AMP Operation

Base
Table

Hashing
Algorithm

Unique Secondary
Index Value

Two AMP Operation

Base
Table

USI
Subtable

Hashing
Algorithm

Non-Unique Secondary
Index Value

All AMP Operation

Base
Table

NUSI
Subtable

 Secondary Index Usage Page 19-10

USI Subtable General Row Layout
The layout of a USI subtable row is illustrated at the top of the facing page. It is composed
of several sections:

 The first two bytes designate the row length.

 The next 8 bytes contain the Row ID of the row. Within this Row ID, there are 4

bytes of Row Hash and 4 bytes of Uniqueness Value.

 The following 2 bytes are additional system bytes that will be explained later as

will be the 7 bytes for row offsets.

 The next section contains the SI value. This is the value that was used by the

Hashing Algorithm to generate the Row Hash for this row. This section varies in
length depending on the index.

 Following the SI value are 8 bytes containing the Row ID of the base table row.

The base table Row ID tells the system where the row corresponding to this
particular USI value is located.

If the table is partitioned, then the USI subtable row needs 10 or 16 bytes to identify the
Row ID of the base table row. The Row ID (of the base table row) is combination of
the Partition Number, Row Hash, and Uniqueness Value.

 The last two bytes contain the reference array pointer at the end of the block.

The Teradata Database creates one index subtable row for each base table row.

USI Change for PPI
For tables defined with a PPI, a two-byte or optionally eight-byte (TD 14.0) partition
number is embedded in the data row. Therefore, the unique row identifier is comprised of
the Partition Number, the Row Hash, and the Uniqueness Value.

The USI subtable rows use the wider row identifier to identify the base table row, making
these subtable rows wider as well. Except for the embedded partition number, USI subtable
rows (for a PPI table) have the same format as non-PPI rows.

The facing page shows the row layout for USI subtable rows.

Secondary Index Usage Page 19-11

USI Subtable General Row Layout

Notes:

• USI subtable rows are distributed by the Row Hash, like any other row.

• The Row Hash is based on the unique secondary index value.

• The subtable row includes the secondary index value and a second Row ID which
identifies a single base table row (usually on a different AMP).

• There is one index subtable row for each base table row.

• For PPI tables, a two-byte (or optionally eight-byte with Teradata 14.0) partition
number is embedded in the base table row identifier.

– Therefore, the base table row identifier is comprised of the Partition Number,
Row Hash, and the Uniqueness Value.

Ref.
Array

Pointer

USI Subtable
Row Layout

Row
Length

Row ID of USI

Row
Hash

4

Uniq.
Value

4

Secondary
Index
Value

Base Table Row
Identifier

Row
Hash

4

Uniq.
Value

4

Part.
#

2 or 8

ds186034
Sticky Note

 Secondary Index Usage Page 19-12

USI Hash Mapping
The example on the facing page shows the three-part message that is put onto the Message
Passing Layer for USI access.

 The only difference between this and the three-part message used in PI access
(previously discussed) is that the Subtable ID portion of the Table ID references the
USI subtable not the data table. Using the DSW for the Row Hash, the Message
Passing Layer (a.k.a., Communication Layer) directs the message to the correct
AMP which uses the Table ID and Row Hash as a logical index block identifier and
the Row Hash and USI value as the logical index row identifier. If the AMP
succeeds in locating the index row, it extracts the base table Row ID (“pointer”).
The Subtable ID portion of the Table ID is then modified to refer to the base table
and a new three-part message is put onto the Communications Layer.

 Once again, the Message Passing Layer uses the DSW to identify the correct AMP.

That AMP uses the Table ID and Row ID to locate the correct data block and then
uses the Row ID to locate the correct row.

Secondary Index Usage Page 19-13

USI Hash Mapping

SELECT *
FROM Table_Name
WHERE USI_col = 'siv';

PARSER

Hashing Algorithm

Message Passing Layer (Request is sent to a specific AMP)

USI TableID Row Hash siv

AMP 0 AMP 1

USI Subtable

AMP 2 . . .

USI Subtable

USI USI (Base Table)
RID Value Row ID

RH siv RIDx

USI Subtable

Base Table

Data Rows

RID (8-16) Data Columns

Base Table

Data Rows

RID (8-16) Data Columns

Base Table

Data Rows

RID (8-16) Data Columns

RIDx siv

Message Passing Layer (Request is sent to a specific AMP)

 Secondary Index Usage Page 19-14

NUSI Subtable General Row Layout
The layout of a NUSI subtable row is illustrated on the facing page. It is almost identical to
the layout of a USI subtable row. There are, however, two major differences:

 First, NUSI subtable rows are not distributed across the system via AMP number in
the Hash Map. NUSI subtable rows are built from the base table rows found on
that particular AMP and refer only to the base rows of that AMP.

 Second, NUSI rows may point to or reference more than one base table row. There

can be many base table Row IDs (8, 10, or 16 bytes) in a NUSI subtable row.
Because NUSIs are always AMP-local to the base table rows, it is possible to have
the same NUSI value represented on multiple AMPs.

A NUSI subtable is just another table from the perspective of the file system.

NUSI Change for PPI
For tables defined with a PPI, the two-byte partition number is embedded in the data row.
Therefore, the unique row identifier is comprised of the Partition Number, Row Hash, and
Uniqueness Value. PPI data rows are two bytes wider than they would be if the table was
not partitioned.

If the base table is partitioned, then the NUSI subtable row needs 10 or 16 bytes for each
RowID entry to identify the Row ID of the base table row. The Row ID (of the base table
row) is combination of the Partition Number, Row Hash, and Uniqueness Value.

The NUSI subtable rows use the wider row identifier to identify the base table row, making
these subtable rows wider as well. Except for the embedded partition number, NUSI
subtable rows (for a PPI table) have the same format as non-PPI rows.

The facing page shows the row layout for NUSI subtable rows.

Secondary Index Usage Page 19-15

NUSI Subtable General Row Layout

Notes:

• The Row Hash is based on the base table secondary index value.

• The NUSI subtable row contains Row IDs that identify the base table rows on this
AMP that carry the Secondary Index Value.

• The Row IDs reference (or "point") to base table rows on this AMP only.

• There are one (or more) subtable rows for each secondary index value on the AMP.

– One NUSI subtable row can hold approximately 4000 – 8000 Row IDs; assuming a NUSI data
type less than 200 characters (CHAR(200)).

– If an AMP has more than 4000 – 8000 rows with the same NUSI value, another NUSI subtable
row is created for the same NUSI value.

• The maximum size of a single NUSI row is 64 KB.

Ref.
Array

Pointer

NUSI Subtable
Row Layout

Row
Length

Row ID of NUSI

Row
Hash

4

Uniq.
Value

4

Secondary
Index
Value

Table Row ID List

P RH U

2/8 4 4

P RH U

2/8 4 4

 Secondary Index Usage Page 19-16

NUSI Hash Mapping
The example on the facing page shows the standard, three-part Message Passing Layer row-
access message. Because NUSIs are AMP-local indexes, this message gets broadcast to all
AMPs. Each AMP uses the values to search the appropriate index block for a corresponding
NUSI row. Only those AMPs with one or more of the desired rows use the base table Row
IDs to access the proper data blocks and data rows.

In the example, the SELECT statement is designed to find those rows with a NUSI value of
‘siv’. Examination of the NUSI subtables on each AMP shows that AMPs 0, 2 and 3 (not
shown) all have a subtable index row, and, therefore, base table rows satisfying this
condition. These AMPs then participate in the base table access. The NUSI subtable on
AMP 1, on the other hand, shows that there are no rows with a NUSI value of ‘siv’ located
on this AMP. AMP 1 does not participate in the base table access process.

If the table is not partitioned, the subtable rows will identify the 8-byte Row IDs of the base
table rows.

If the table is partitioned with less than (or equal) 65,535 partitions, the subtable rows will
identify the 10-byte Row IDs of the base table rows. This Row ID includes the Partition
Number.

If the table is partitioned with more than 65,535 partitions, the subtable rows will identify
the 16-byte Row IDs of the base table rows. This Row ID includes the Partition Number.

Secondary Index Usage Page 19-17

NUSI Hash Mapping

SELECT *
FROM Table_Name
WHERE NUSI_col = 'siv';

PARSER

Hashing Algorithm

Message Passing Layer (Broadcast to all AMPs)

NUSI TableID Row Hash siv

AMP 0 AMP 1

NUSI NUSI (Base Table)
RID Value Row IDs

NUSI Subtable

Base Table

Data Rows

RID (8-16) Data Columns

AMP 2 . . .

NUSI Subtable

NUSI NUSI (Base Table)
RID Value Row IDs

RH siv RID3

Base Table

Data Rows

RID (8-16) Data Columns

RID3 siv

Base Table

Data Rows

RID (8-16) Data Columns

RID1 siv

RID2 siv

NUSI NUSI (Base Table)
RID Value Row IDs

RH siv RID1 RID2

NUSI Subtable

 Secondary Index Usage Page 19-18

Table Access – A Complete Example
The example on the facing page shows a four-AMP configuration with Base Table Rows,
NUSI Subtable rows, and USI Subtable Rows. The table and index can be used to answer
the following queries without having to do a full table scan:

 SELECT * FROM Customer WHERE Phone = '666-5555' ;

 SELECT * FROM Customer WHERE Cust = 80;

 SELECT * FROM Customer WHERE Name = 'Rice' ;

Secondary Index Usage Page 19-19

Table Access – A Complete Example

Cust Name Phone

USI NUSI NUPI

37 White 555-4444
98 Brown 333-9999
74 Smith 555-6666
95 Peters 555-7777
27 Jones 222-8888
56 Smith 555-7777
45 Adams 444-6666
31 Adams 111-2222
40 Smith 222-3333
72 Adams 666-7777
80 Rice 666-5555
49 Smith 111-6666
12 Young 777-7777
62 Black 444-5555
77 Jones 777-6666
51 Rice 888-2222

CUSTOMER

74
77
51

27

884, 1
639, 1
915, 1

388, 1

244, 1
505, 1
744, 4

757, 1

RowID Cust RowID

80
98

56

49

536, 5
555, 6

778, 7

147, 1

296, 1
135, 1

602, 1

969, 1

RowID Cust RowID
31
40

45
95

638, 1
640, 1

471, 1
778, 3

288, 1
339, 1

372, 2
588, 1

RowID Cust RowID
37
72

12
62

107, 1
717, 2

147, 2
822, 1

175, 1
489, 1

838, 1
919, 1

RowID Cust RowID

USI Subtable USI Subtable USI SubtableUSI Subtable

Base Table

444-6666

666-7777
555-6666

Base Table

111-6666

222-8888
444-5555

777-4444

Base Table Base Table

Smith
Rice

Peters
Jones 777-6666

555-7777
888-2222

555-7777

56

77

51

95
639, 1
778, 3

778, 7
915, 1

RowID Cust Name Phone
NUPIUSI NUSI

Jones
Black

Young
Smith

27

49

62

12

147, 1
147, 2
388, 1
822, 1

RowIDCust Name Phone
NUPIUSI NUSI

Adams
Smith

Brown
Adams

333-9999
72

45

74

98
471, 1
555, 6

717, 2
884, 1

RowID Cust Name Phone
NUPIUSI NUSI

Adams
Smith

Rice
White 555-4444

111-2222
222-3333

666-5555
31

37

40

80

107, 1

536, 5
638, 1
640, 1

RowIDCust Name Phone

NUPIUSI NUSI

Smith
White
Adams
Rice

640, 1
107, 1
638, 1
536, 5

432, 8
448, 1
567, 3
656, 1

RowID Name RowID

NUSI Subtable NUSI Subtable

Smith
Black
Jones
Young

147, 1
822, 1
338, 1
147, 2

432, 1
448, 4
567, 6
770, 1

RowID Name RowID

NUSI Subtable

Rice

Jones
Peters
Smith

915, 1

639, 1
778, 3
778, 7

656, 1

262, 1
396, 1
432, 5

RowID Name RowID

NUSI Subtable

Adams

Smith

Brown
471,1 717,2

884, 1

555, 6
567, 2

432, 3

852, 1

RowID Name RowID

AMP 1 AMP 2 AMP 3 AMP 4

Example:

SELECT * FROM Customer WHERE Phone = '666-5555' ;
SELECT * FROM Customer WHERE Cust = 80;
SELECT * FROM Customer WHERE Name = 'Rice' ;

 Secondary Index Usage Page 19-20

Secondary Index Considerations
As mentioned at the beginning of this module, a table may have up to 32 Secondary Indexes
that can be created and dropped dynamically. It is probably not a good idea to create 32 SIs
for each table just to speed up set selection because SIs consume the following extra
resources:

 SIs require additional storage to hold their subtables. In the case of a Fallback
table, the SI subtables are Fallback also. Twice the additional storage space is
required.

 SIs require additional I/O to maintain these subtables.

When deciding whether or not to define a NUSI, there other considerations. The Optimizer
may choose to do a Full Table Scan rather than utilize the NUSI in two cases:

 When the NUSI is not selective enough.

 When no COLLECTed STATISTICS are available.

As a guideline, choose only those rows having frequent access as NUSI candidates. After
the table has been loaded, create the NUSI indexes, COLLECT STATISTICS on the
indexes, and then do an EXPLAIN referencing each NUSI. If the Parser chooses a Full
Table Scan over using the NUSI, drop the index.

Secondary Index Usage Page 19-21

Secondary Index Considerations

• A table may have up to 32 secondary indexes.

• Secondary indexes may be created and dropped dynamically.

– They require additional storage space for their subtables.

– They require additional I/Os to maintain their subtables.

• If the base table is Fallback, the secondary index subtable is Fallback as well.

• The Optimizer may, or may not, use a NUSI, depending on its selectivity.

• Without COLLECTed STATISTICS, the Optimizer often does a FTS.

• The following approach is recommended:

– Create the index.

– COLLECT STATISTICS on the index (or column).

– Use EXPLAIN to see if the index is being used.

 Secondary Index Usage Page 19-22

Single NUSI Access (Between, Less Than, or Greater
Than)

The Teradata Database accesses data from a NUSI-defined column in three ways:

 If the NUSI is not ordered by value, utilize the NUSI and do a Full Table Scan
(FTS) of the NUSI subtable. In this case, the Row IDs of the qualifying base table
rows would be retrieved into spool. The Teradata Database would use those Row
IDs in spool to access the base table rows themselves.

 If the NUSI is ordered by values, the NUSI subtable may be used to locate

matching base table rows.

 Ignore the NUSI and do an FTS of the base table itself.

In order to make this decision, the Optimizer requires COLLECTed STATISTICS.

 REMEMBER

The only way to determine for certain whether an index is being used
is to utilize the EXPLAIN facility.

Secondary Index Usage Page 19-23

Single NUSI Access
(Between, Less Than, or Greater Than)

If the NUSI is not value-ordered, the system may do a FTS of the NUSI subtable.

• Retrieve Row IDs of qualifying base table rows into spool.

• Access the base table rows from the spooled Row IDs.

The Optimizer requires COLLECTed STATISTICS to make this choice.

• CREATE INDEX (hire_date) ON Employee;

• SELECT last_name, first_name, hire_date
FROM Employee
WHERE hire_date BETWEEN DATE '2012-01-01' AND DATE '2012-12-31';

• SELECT last_name, first_name, hire_date
FROM Employee
WHERE hire_date < DATE '2012-01-01';

• SELECT last_name, first_name, hire_date
FROM Employee
WHERE hire_date > DATE '1999-12-31';

If the NUSI is ordered by values, the NUSI subtable is much more likely be used
to locate matching base table rows.

Use EXPLAIN to see if, and how, indexes are being used.

 Secondary Index Usage Page 19-24

Dual NUSI Access
In the example on the facing page, two NUSIs are CREATEd on separate columns of the
EMPLOYEE TABLE. The Teradata Database decides how to use these NUSIs based on
their selectivity.

AND with Equality Conditions
 If one of the two indexes is strongly selective, the system uses it alone for access.

 If both indexes are weakly selective, but together they are strongly selective, the

system does a bit-map intersection.

 If both indexes are weakly selective separately and together, the system does an

FTS.

In any case, any conditions in the SQL statement not used for access (residual conditions)
become row qualifiers.

OR with Equality Conditions
When accessing data with two NUSI equality conditions joined by the OR operator (as
shown in the last example on the facing page), the Teradata Database may do one of the
following:

 Do a FTS of the base table.

 If each of the NUSIs is strongly selective, it may use each of the NUSIs to return

the appropriate rows.

 Do an FTS of the two NUSI subtables and do the following steps.

– Retrieve Rows IDs of qualifying base table rows into two separate spools.
– Eliminate duplicates from the two spools of Row IDs.
– Access the base rows from the resulting spool of Row IDs.

If only one of the two columns joined by the OR is indexed, the Teradata Database always
does an FTS of the base tables.

Secondary Index Usage Page 19-25

Dual NUSI Access

Each column is a separate NUSI:

CREATE INDEX (department_number) ON Employee;
CREATE INDEX (job_code) ON Employee;

AND with Equality Conditions:

SELECT last_name, first_name, …
FROM Employee
WHERE department_number = 500
AND job_code = 2147;

OR with Equality Conditions:

SELECT last_name, first_name, ...
FROM Employee
WHERE department_number = 500
OR job_code = 2147;

Optimizer options with AND:

• Use one of the two indexes if it is strongly
selective.

• If the two indexes together are strongly selective,
optionally do a bit-map intersection.

• If both indexes are weakly selective separately
and together, the system does a FTS.

Optimizer options with OR:

• Do a FTS of the base table.

• If each of the NUSIs is strongly selective, it may
use each of the NUSIs to return the appropriate
rows.

• Do a FTS of the two NUSI subtables and retrieve
Rows IDs of qualifying rows into spool and
eliminate duplicate Row IDs from spool.

 Secondary Index Usage Page 19-26

NUSI Bit Mapping
NUSI Bit Mapping is a process that determines common Row IDs between multiple NUSI
values by a process of intersection:

 It is much faster than copying, sorting and comparing the Row ID lists.
 It dramatically reduces the number of base table I/Os.

NUSI bit mapping can be used with conditions other than equality if all of the following
conditions are satisfied:

 All conditions must be linked by the AND operator.
 At least two NUSI equality conditions must be specified.
 The Optimizer is more likely to consider if you have COLLECTed STATISTICS

on the NUSIs.

Even when the above conditions are satisfied, the only way to be absolutely certain that
NUSI bit mapping is occurring is to use the EXPLAIN facility.

Example
The SQL statement and diagram on the facing page show how NUSI bit-map intersections
can narrow down the number of rows even though each condition is weakly selective.

In this example, the designer wants to access rows from the employee table. There are three
NUSIs defined: salary_amount, country_code, and job_code. All three of these NUSIs are
weakly selective. You can see that 7% of the employees earn more than $75,000 per year
(>75000), 40% of the employees are located in the USA, and 12% of the employees have a
job code of IT.

In this case, the bit map intersection of these three NUSIs has an aggregate selectivity of
.3%. That is, only .3% of the employees satisfy all three conditions: earning over $75,000,
USA based, and work in IT.

Secondary Index Usage Page 19-27

NUSI Bit Mapping

• Determines common Row IDs between multiple NUSI values.

• Faster than copying, sorting, and comparing the Row ID lists.

• Dramatically reduces the number of base table I/Os.

• All NUSI conditions must be linked by the AND operator.

• The Optimizer is much more likely to consider bit mapping if you COLLECT
STATISTICS.

• Use EXPLAIN to see if bit mapping is being used.

• Requires at least 2 NUSI equality conditions.

SELECT *
FROM Employee
WHERE salary_amount > 75000

AND country_code = 'USA'

AND job_code = 'IT';

7%

40%

12%

.3%

 Secondary Index Usage Page 19-28

Value-Ordered NUSIs
NUSIs are maintained as separate subtables on each AMP. Their index entries point to base
table or Join Index rows residing on the same AMP as the index. The row hash for NUSI
rows is based on the secondary index column(s). Unlike row hash values for base table
rows, this row hash does not determine the distribution of subtable rows; only the local sort
order of each subtable.

Enhancements have been made to support the user-specified option of sorting the index rows
by data value rather than by hash code. This is referred to as "value ordered" indexes and is
presented to the user in the form of new syntax options in the CREATE INDEX statement.

By using the “value-ordered” indexes feature, this option can be specified to sort the index
rows by data value rather than by hash code.

The typical use of a hash-ordered NUSI is with an equality condition on the secondary
index column(s). The specified secondary index value is hashed and then each NUSI
subtable is probed for rows with the same row hash. For each matching NUSI entry, the
corresponding Row IDs are used to access the base rows on the same AMP. Because the
NUSI rows are stored in row hash order, searching the NUSI subtable for a particular row
hash is very efficient.

Value-ordered NUSIs, on the other hand, are useful for processing range conditions and
conditions with an inequality on the secondary index column set.

Although hash-ordered NUSIs can be selected by the Optimizer to access rows for range
conditions, a far more common response is to specify a full table scan of the NUSI subtable
to find the matching secondary key values. Therefore, depending on the size of the NUSI
subtable, this might not be very efficient.

By sorting the NUSI rows by data value, it is possible to search only a portion of the index
subtable for a given range of key values. The major advantage of a value-ordered NUSI is
in the performance of range queries.

Value-ordered NUSIs have the following limitations.

The sort key is limited to a single numeric column.
The sort key column must be four or fewer bytes.

The following query is an example of the sort of SELECT statement for which value-
ordered NUSIs were designed.

SELECT *
FROM Orders
WHERE orderdate
BETWEEN DATE '2012-02-01' AND DATE '2012-02-29';

Secondary Index Usage Page 19-29

Value-Ordered NUSIs

A Value-Ordered NUSI is limited to a single column numeric (4-byte) value.

Some benefits of using value-ordered NUSIs:

• Index subtable rows are sorted (sequenced) by data value rather than hash value.

• Optimizer can search only a portion of the index subtable for a given range of values.

• Can provide major advantages in performance of range queries.

• Even with PPI, the Value-Ordered NUSI is still a valuable index selection for other
columns in a table.

Example of creating a Value-Ordered NUSI:

CREATE INDEX (sales_date)
ORDER BY VALUES (sales_date)
ON Daily_Sales;

SELECT sales_date
,SUM (sales)

FROM Daily_Sales
WHERE sales_date
BETWEEN DATE '2012-02-09' AND DATE '2012-02-15'
GROUP BY 1
ORDER BY 1 ;

The optimizer may
choose to transverse
the NUSI using a
range constraint
rather than do a FTS.

 Secondary Index Usage Page 19-30

Value-Ordered NUSIs (cont.)

column_1_name The names of one or more columns whose field values are to be
indexed.

You can specify up to 64 columns for the new index. The index is
based on the combined values of each column. Unless you use the
ORDER BY clause, all columns are hash-ordered.

Multiple indexes can be defined on the same columns as long as each
index differs in its ordering option (VALUES versus HASH).

ORDER BY Row ordering on each AMP by a single NUSI column: either value-
ordered or hash-ordered.

Rules for using an ORDER BY clause are shown in the following
table.

VALUES Value-ordering for the ORDER BY column.

Select VALUES to optimize queries that return a contiguous range of
values, especially for a covered index or a nested join.

HASH Hash-ordering for the ORDER BY column.

Select HASH to limit hash-ordering to one column, rather than all
columns (the default).

Hash-ordering a multi-column NUSI on one of its columns allows the
NUSI to participate in a nested join where join conditions involve only
that ordering column.

Note: A Value-Ordered NUSI actually reserves two subtable IDs and this counts as 2
secondary indexes in the maximum count of 32 for a table.

Secondary Index Usage Page 19-31

Value-Ordered NUSIs (cont.)

• Option that increases the ability of a NUSI to “cover” SQL queries without
having to access the base table.

• Value-Ordered is sorted by the ‘ORDER BY VALUES’ clause and the sort
column is limited to a single numeric column that cannot exceed 4 bytes.

– Value-Ordered is useful for range constraint queries.

• The ‘ORDER BY HASH’ clause provides the ability to create a multi-valued
index, but have the NUSI hashed based on a single attribute within the index,
not the entire composite value.

– Hash-Ordered is useful for equality searches based on a single attribute.

– Example: A NUSI may contain 10 columns for covering purposes and a single
value 'ORDER BY HASH' for equality searches on that NUSI value.

• Optimizer is much more likely to use a value-ordered NUSI if you have
collected statistics on the value-ordered NUSI.

 Secondary Index Usage Page 19-32

Covering Indexes
If the query references only columns of that table that are fully contained within a given
index, the index is said to "cover" the table in the query. In these cases, it is often more
efficient to access only the index subtable and avoid accessing the base table rows
altogether.

Covering will be considered for any table in the query that references only columns defined
in a given NUSI. These columns can be specified anywhere in the query including the:

 SELECT list
 WHERE clause
 Aggregate functions
 GROUP BY expressions

The presence of a WHERE condition on each indexed column is not a prerequisite for using
the index to cover the query. The optimizer will consider the legality and cost of covering
versus other alternative access paths and choose the optimal plan. Many of the potential
performance gains from index covering require no user intervention and will be transparent
except for the execution plan returned by EXPLAIN.

Join Index Note:
This course hasn’t covered Join Indexes to this point, but it is possible to create a NUSI on
top of a Join Index. The CREATE INDEX has a special option of ALL which is required if
these columns will be potentially used for covering.

The class of indexed data that will require user intervention to take advantage of covering is
NUSIs, which may be defined on a Join Index. By default, a NUSI defined on a Join Index
will maintain RowID pointers to only physical rows. In order to use the NUSI to cover the
data stored in a Join Index, Row IDs must be kept for each associated logical row. As a
result, when defining a potential covering NUSI on top of a Join Index, users should specify
the ALL option to indicate the NUSI rows should point to logical rows.

Example
Defining a NUSI on top of a Join Index

CREATE JOIN INDEX OrdCustIdx as
SELECT (custkey, custname), (orderstatus, orderdate, ordercomment)
FROM Orders O LEFT JOIN Customer C ON O.custkey = C.custkey
ORDER BY custkey
PRIMARY INDEX (custname);

CREATE INDEX idx_name_stat ALL (custname, orderstatus) on OrdCustIdx;

Secondary Index Usage Page 19-33

Covering Indexes

• The optimizer considers using a NUSI subtable to “cover” any query that references
only columns defined in a given NUSI.

• These columns can be specified anywhere in the query including:
– SELECT list
– WHERE clause
– Aggregate functions
– GROUP BY clauses
– Expressions

• Presence of a WHERE condition on each indexed column is not a prerequisite for using
the index to cover the query.

• NUSIs (especially a covering NUSI) are considered by the optimizer in join plans and
can be joined to other tables in the system.

CREATE INDEX IdxOrd
(orderkey, orderdate, totalprice)

ON Orders ;

Query considered for index covering:

CREATE INDEX IdxOrd2
(orderkey, orderdate, totalprice)
ORDER BY VALUES (orderkey)

ON Orders ;

Query considered for index covering and ordering:

SELECT orderdate, AVG(totalprice)
FROM Orders
WHERE orderkey >1000
GROUP BY orderdate ;

Query to access the
table via the OrderKey.

 Secondary Index Usage Page 19-34

Covering Indexes (cont.)

NUSIs and Aggregate Processing
When aggregation is performed on a NUSI column, the Optimizer accesses the NUSI
subtable that offers much better performance than accessing the base table rows. Better
performance is achieved because there should be fewer index blocks and rows in the
subtable than data blocks and rows in the base table, thus requiring less I/O.

Example
In the example on the facing page, there is a NUSI defined on the state column of the
location table. Aggregate processing of this NUSI column produces much faster results for
the SELECT statement, which counts the number of rows for each state.

Secondary Index Usage Page 19-35

Covering Indexes (cont.)

• The Optimizer uses NUSI subtables for aggregation when possible.

• If the aggregated column is a NUSI, subtable access may be sufficient.

• The system counts Row ID List entries for each AMP for each value.

• Also referred to as a “Covered NUSI”.

SELECT COUNT (*), state
FROM Location
GROUP BY state;

= subtable Row ID

NY

OH

GA

CA

NY

OH

GA

CA

NY

OH

GA

CA

NY

OH

GA

CA

NUSI Subtable NUSI Subtable NUSI Subtable NUSI Subtable

 Secondary Index Usage Page 19-36

NUSI vs. Full Table Scan (FTS)
The Optimizer generally chooses an FTS over a NUSI when one of the following occurs:

 Rows per value is greater than data blocks per AMP.
 It does not have COLLECTed STATISTICS on the NUSI.
 The index is too weakly selective. The Optimizer determines this by using

COLLECTed STATISTICS.

Example
The table on the facing page shows how the access method chosen affects the number of
physical I/Os per AMP.

In the case of a NUSI, there is ONE I/O necessary to read the Index Block on each AMP
plus 0-ALL (where ALL = Number of Data Blocks) I/Os required to read the Data Blocks
for a possible total ranging from the Number of AMPs - (Number of AMPs + ALL) I/Os.

In the case of a Full Table Scan, there are no I/Os required to read any Index Blocks, but the
system reads ALL Data Blocks.

The only way to tell whether or not a NUSI is being used is by using EXPLAIN.

COLLECT STATISTICS on all NUSIs.

Use EXPLAIN to see whether a NUSI is being used.
Do not define NUSIs that will not be used.

Secondary Index Usage Page 19-37

NUSI vs. Full Table Scan (FTS)

The Optimizer generally chooses a FTS over a NUSI when:

• It does not have COLLECTed STATISTICS on the NUSI.

• The index is too weakly selective.

• Small tables.

Access Method Physical I/Os per AMP

NUSI 1 Index Subtable Block(s)
0 – Many Data Blocks

Full Table Scan 0 Index Subtable Blocks
ALL Data Blocks

General Rules:

• COLLECT STATISTICS on all NUSIs.

• USE EXPLAIN to see whether a NUSI is being used.

• Do not define NUSIs that will not be used.

 Secondary Index Usage Page 19-38

Full Table Scans – Sync Scans
In the case of multiple users that access the same table at the same time, the system can do a
synchronized scan (sync scan) on the table.

Secondary Index Usage Page 19-39

Full Table Scans – Sync Scans

In the case of multiple users that access the same table at the same time, the
system can do a synchronized scan (sync scan) on the table.

• Multiple simultaneous scans share reads – this is a sync scan at the block level.

• New query joins scan at the current scan point.

112747 1766 100766 3001 Frankel Allan
034982 2212 106363 3005 Bench John
310229 2231 108222 3100 Palmer Carson

209181 1235 108221 3001 Smith Buster
123881 2433 101433 3007 Walton Sam
223431 2500 105200 3101 Brooks Steve

221015 1019 108222 3199 Woods Tiger
121332 2281 101281 3007 Walton John
118314 2100 101100 3002 Ramon Anne

104631 1279 100279 3002 Roberts Julie
210110 1201 101222 3003 Douglas Michael
210001 1205 105432 3022 Morgan Joe

100076 1011 104321 3021 Anderson Sparky
100045 1012 101231 3087 Michelson Phil
319116 1219 121871 3025 Crawford Cindy

: : : : : :
: : : : : :

Query 1
Begins

Query 2
Begins

Query 3
Begins

Table Rows

 Secondary Index Usage Page 19-40

Module 19: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Secondary Index Usage Page 19-41

Module 19: Review Questions

1. Because the row is hash-distributed on different columns, the subtable row will typically land on an
AMP other than the one containing the data row. This index would be:

a. UPI or NUPI
b. USI
c. NUSI
d. None of the above

2. The Teradata DBS hashes the value and uses the Row Hash to find the desired rows. This is always
a one-AMP operation. This index would be:

a. UPI or NUPI
b. USI
c. NUSI
d. None of the above

3. ___________________ is a process that determines common Row IDs between multiple NUSI values
by a process of intersection.

a. NUSI Bit Mapping
b. Dual NUSI Access
c. Full Table Scan
d. NUSI Read

4. If aggregation is performed on a NUSI column, the Optimizer accesses the NUSI subtable and returns
the result without accessing the base table. This is referred to as:

a. NUSI bit mapping
b. Full table scan
c. Dual NUSI access
d. Covering Index

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

 Secondary Index Usage Page 19-42

Notes

Analyze Secondary Index Criteria Page 20-1

Module 20

Teradata Proprietary and Confidential

Analyze Secondary Index Criteria

After completing this module, you will be able to:

 Describe Composite Secondary Indexes.

 Choose columns as candidate Secondary Indexes.

 Analyze Change Rating, Value Access, and Range Access.

 Analyze Secondary Index Criteria Page 20-2

Notes

Analyze Secondary Index Criteria Page 20-3

Table of Contents

Accessing Rows ... 20-4
Row Selection .. 20-6
Secondary Index Considerations .. 20-8
Secondary Index Usage .. 20-10
Secondary Index Candidate Guidelines ... 20-12
Exercise 3 – Sample ... 20-14

Secondary Index Candidate Guidelines ... 20-14
Exercise 3 – Choosing SI Candidates .. 20-16

Exercise 3 – Choosing SI Candidates (cont.) ... 20-18
Exercise 3 – Choosing SI Candidates (cont.) ... 20-20
Exercise 3 – Choosing SI Candidates (cont.) ... 20-22
Exercise 3 – Choosing SI Candidates (cont.) ... 20-24
Exercise 3 – Choosing SI Candidates (cont.) ... 20-26

Change Rating .. 20-28
Value and Range Access .. 20-30
Exercise 4 – Sample ... 20-32
Exercise 4 – Eliminating Index Candidates ... 20-34

Exercise 4 – Eliminating Index Candidates (cont.) .. 20-36
Exercise 4 – Eliminating Index Candidates (cont.) .. 20-38
Exercise 4 – Eliminating Index Candidates (cont.) .. 20-40
Exercise 4 – Eliminating Index Candidates (cont.) .. 20-42
Exercise 4 – Eliminating Index Candidates (cont.) .. 20-44

Module 20: Review Questions ... 20-46

 Analyze Secondary Index Criteria Page 20-4

Accessing Rows
Three SQL commands require that rows be physically read. They are SELECT, UPDATE,
and DELETE. Their syntax and use are described below:

SELECT [expression] FROM tablename ...

UPDATE tablename SET col_name = [expression] ...
DELETE FROM tablename ...

 The SELECT command returns the value(s) from the table(s) for display or

processing. Many people confuse the SQL SELECT statement with a READ
command (e.g., COBOL). SELECT simply asks for the column values expressed
in the project list to be returned for display or processing. The rows which have
their values returned, deleted or updated are identified by the WHERE clause
(when present). It is the WHERE clause that controls File System reads.

 The UPDATE command changes one or more column values to new values.

 The DELETE command removes rows from a table.

Any of the three SQL statements can be modified with a WHERE clause. Values specified
in a WHERE clause tell Teradata which rows should be acted upon. Proper use of the
WHERE clause will improve throughput by limiting the number of rows that must be
handled.

Analyze Secondary Index Criteria Page 20-5

Accessing Rows

SELECT {expression} FROM tablename…

• Returns the value(s) from the table(s) for display or processing.

• The row(s) must be physically read first.

UPDATE tablename SET columns = {expression}…

• Changes one or more column values to new values.

• The rows(s) must be physically located (read) first.

DELETE FROM tablename…

• Removes rows from a table.

• The row(s) must be physically located (read) first.

Any of the above SQL statements can contain a WHERE clause.

• Values in the WHERE cause tell Teradata what set of rows to act on.

• Without a WHERE clause, all rows participate in the operation.

• Limiting the number of rows Teradata must handle improves throughput.

 Analyze Secondary Index Criteria Page 20-6

Row Selection
When TERADATA processes an SQL statement with a WHERE clause, it examines the
clause and builds an execution plan and access method to satisfy the clause conditions.

Certain conditions contained in the WHERE clause take advantage of indexing (assuming
that the appropriate index is in place). These conditions are shown in the upper box on the
facing page. Notice that these conditions all ask the RDBMS to locate a specific value or set
of values. Application programmers should use these conditions whenever possible as they
offer the best performance.

Other WHERE clause conditions are not able to take advantage of indexing and will always
cause a Full Table Scan of either the Base Table or a SI subtable. Though they benefit from
the Teradata distributed architecture, they are less desirable from a performance standpoint.
These kind of conditions are listed in the middle box on the opposite page and do not focus
on a specific value or set of values, thus forcing the system to do a Full Table Scan to find
all the values to satisfy them.

Note that poor relational models severely limit physical design choices and generally force
more Full Table Scans.

Maximum number of ORed conditions or IN list values per request can't exceed 1,048,576.
There really no fixed limit on the number of entries in an IN list; however, the maximum
SQL text size is 1MB and this places a request-specific upper bound on this number.

 NOTE

The small box at the bottom of the facing page lists commands that
operate on the answer sets generated by previous conditions, such as

those shown in the boxes above.

Analyze Secondary Index Criteria Page 20-7

Row Selection

WHERE clause conditions that may use indexing if available*:

* Access methods for the above depend on whether the column(s) are indexed, type of index,
and selectivity of the index.

condition1 AND condition2
condition1 OR condition2
colname = ANY, SOME or ALL

colname = value
colname IS NULL
colname IN (subquery)

colname IN (explicit list of values)
t1.col_x = t1.col_y
t1.col_x = t2.col_x

WHERE clause conditions that typically cause a Full Table Scan:

INDEX (colname)
SUBSTRING (colname)
SUM
MIN
MAX
AVG
COUNT

non-equality comparisons
colname IS NOT NULL
colname NOT IN (explicit list of values)
colname NOT IN (subquery)
colname BETWEEN ... AND …
Join condition1 OR Join condition2
t1.col_x [computation] = value
t1.col_x [computation] = t1.col_y

DISTINCT
ANY
ALL
NOT (condition1)
col1 || col2 = value
colname LIKE ...
missing a WHERE clause

The following functions affect output only, not base
row selection.

Poor relational models severely limit physical design
choices and generally force more Full Table Scans.

GROUP BY
HAVING
WITH
WITH … BY ...

ORDER BY
UNION
INTERSECT
EXCEPT

 Analyze Secondary Index Criteria Page 20-8

Secondary Index Considerations
The facing page describes key considerations involved in decisions regarding the use of
Secondary Indexes. It is important to weigh the costs of Secondary Indexes against the
benefits.

 Some of these costs are increased use of disk space and increased I/O.

 The main benefit of Secondary Indexes is faster set selection. Choose them on

frequently used set selections.

 REMEMBER

Data demographics change over time.

Revisit all index choices regularly to make sure that
they remain appropriate and serve you well.

Analyze Secondary Index Criteria Page 20-9

Secondary Index Considerations

• Secondary Indexes consume disk space for their subtables.

• INSERTs, DELETEs, and UPDATEs (sometimes) cost double the I/Os.

• Choose Secondary Indexes on frequently used set selections.
– Secondary Index use is typically based on an Equality search.

– A NUSI may have multiple rows per value.

• The Optimizer may not use a NUSI if it is too weakly selective.

• Avoid choosing Secondary Indexes with volatile data values.

• Weigh the impact on Batch Maintenance and OLTP applications.

• USI changes are Transient Journaled. NUSI changes are not.

• Remove or drop NUSIs that are not used.

Data demographics change over time. Revisit ALL index
(Primary and Secondary) choices regularly.

Make sure they are still serving you well.

 Analyze Secondary Index Criteria Page 20-10

Secondary Index Usage
The facing lists common usage for a USI and a NUSI.

Analyze Secondary Index Criteria Page 20-11

Secondary Index Usage

Unique Secondary Index (USI) Usage

• A USI is used to maintain uniqueness in a column or columns.

• Usage is determined by specifying the USI value in an equality condition in the
WHERE clause or ON clause.

• Unique Secondary Indexes support …
– Nested Joins

– Row-hash locking

Non-unique Secondary Index (NUSI) Usage

• Usage is determined by specifying the NUSI value in an equality condition in the
WHERE clause or ON clause.

• Non-Unique Secondary Indexes support Nested Joins and Merge Joins

• Optimizer can choose to use bit-mapping for weakly selective (>10%) NUSIs which
can alleviate limitations associated with composite NUSIs.

• In some cases, it may be better to use multiple single-column NUSIs (City, State)
instead a single composite NUSI.

– User has to balance the overhead of multiple NUSIs as compared to a single composite NUSI.

• Can be used to “cover” a query, avoiding base table access.

• Can significantly reduce base table I/O during value and join operations.

 Analyze Secondary Index Criteria Page 20-12

Secondary Index Candidate Guidelines
All Primary Index candidates are Secondary Index candidates.

Columns that are not Primary Index candidates have to also be considered as NUSI
candidates. A NUSI will be used by the Optimizer to select data if it is strongly selective. A
guideline to use in initially selecting NUSI candidates is the following:

The optimizer does not only look at selectively of a column to determine if a FTS or an
indexed access will be used in a given plan. The decision is made based after comparing the
total cost of both approaches, after considering multiple factors, including row size, block
size, number of rows in the table, and also the I/O and CPU cost (based on the current
hardware cost factors).

In this course, we are going to 5% as a guideline for NUSI selectivity.

Example 1: Assume a table has 100M rows and a column has 50 distinct values that are
evenly distributed (each value has the same number of rows). Therefore, each value has
2M rows and effectively represents 2% of the rows. The NUSI would be used.

Example 2: Assume a table has 100M rows and a column has 20 distinct values that are
evenly distributed (each value has the same number of rows). Therefore, each value has
5M rows and effectively represents 5% of the rows. The NUSI would be used.

Example 3: Assume a table has 100M rows and a column has 10 distinct values that are
evenly distributed (each value has the same number of rows). Therefore, each value has
10M rows and effectively represents 10% of the rows. The NUSI would not be used.

The greater the discrepancy between typical rows per value and max rows per value, the
higher the probability the NUSI would not be used based on the max value used to qualify
the rows.

Analyze Secondary Index Criteria Page 20-13

Secondary Index Candidate Guidelines

• All Primary Index (PI) candidates are Secondary Index candidates.

– A UPI is a USI candidate and a NUPI is a NUSI candidate.

• Columns that are not PI candidates should also be considered as NUSI candidates.

• A NUSI will be used depending on the percentage of table rows that will be accessed.
For example:

– If the number of rows accessed via a NUSI is ≤ 5%, the NUSI will be used.

– If the number of rows accessed via a NUSI is 5 – 10%, the NUSI may or may not be
used.

– If the number of rows accessed via a NUSI is > 10%, the NUSI will not be used.

• If 5% is used as the guideline, then any column with 20 or more distinct values is
considered as a NUSI candidate.

– The optimizer (based on statistics) will decide to use (or not) the NUSI for specific values.

– The greater the discrepancy between typical rows per value and max rows per value, the higher
the probability the NUSI would not be used based on the max value used to qualify the rows.

• These are only guidelines for candidate selection. Validate (via Explain and testing)
that the NUSI will be chosen AND that it will provide better performance.

 Analyze Secondary Index Criteria Page 20-14

Exercise 3 – Sample
In this exercise, you will work with the same tables you used to identify PI candidates in
Exercise 2 in Module 17.

Use the Secondary Index Candidate Guidelines below to identify all USI and NUSI
candidates. The table on the facing page provides you with an example of how to apply the
Secondary Index Candidate Guidelines.

You will make further index choices for these tables in following exercises.

Note: These exercises do not provide row sizes. Therefore, assume that the rows could be
as large as 960 bytes and assume a typical block size of 96 KB.

Secondary Index Candidate Guidelines
All Primary Index candidates are Secondary Index candidates.

Columns that are not Primary Index candidates have to also be considered as NUSI
candidates. A NUSI will be used by the Optimizer to select data if it is strongly selective. A
guideline to use in initially selecting NUSI candidates is the following:

 If the number of distinct values ≥ 20, then the column is a NUSI candidate.

Analyze Secondary Index Criteria Page 20-15

Exercise 3 – Sample

USI NUSI NUSI USI NUSI NUSI NUSI

On the following pages, there are sample tables with
typical rows per value demographics.

• Indicate ALL possible Secondary Index
candidates (USI and NUSI).

• Later exercises will guide your final choices.

Secondary Index Guidelines

• All PI candidates are Secondary Index candidates.

• Other columns are NUSI candidates if typical
rows/value is ≤ 5% or # of distinct values ≥ 20.

UPI

Example 60,000,000
Rows A B C D E F G H

PK/FK PK,SA FK,NN NN,ND

Value Access 5K 2.6K 0 500K 0 0 0 52
Range Access 12 0 0 0 0 0 0 4K

Join Access 1M 0 1K 0 0 0 0 0
Join Rows 50M 0 5K 0 0 0 0 0

Distinct Values 60M 7M 1.5M 60M 8 15M 15M 700
Max Rows/Value 1 12 500 1 8M 9 725K 90K
Max Rows/NULL 0 5 0 0 0 725K 5 10K

Typical Rows/Value 1 7 35 1 7M 3 3 80K
Change Rating 0 1 5 3 0 4 4 9

PI/SI

Collect Statistics (Y/N)

NUPI NUPI? UPI

 Analyze Secondary Index Criteria Page 20-16

Exercise 3 – Choosing SI Candidates
In this exercise, you will work with the same tables you used to identify PI candidates in
Exercise 2 in Module 17.

Use the Secondary Index Candidate Guidelines below to identify all USI and NUSI
candidates.

 All Primary Index candidates are Secondary Index candidates.

 Columns that are not Primary Index candidates have to also be considered as NUSI

candidates. A NUSI will be used by the Optimizer to select data if it is strongly
selective. A guideline to use in initially selecting NUSI candidates is the
following:

If the number of distinct values ≥ 20, then the column is a NUSI candidate.

Analyze Secondary Index Criteria Page 20-17

Exercise 3 – Choosing SI Candidates

ENTITY 1

100,000,000
Rows A B C D E F

PK/FK PK,UA

Value Access 50K 0 0 0 0 0
Range Access 0 0 0 0 0 0

Join Access 10M 0 0 0 0 0
Join Rows 10M 0 0 0 0 0

Distinct Values 100M 95M 300K 250K 40M 1M
Max Rows/Value 1 2 400 350 3 110
Max Rows/NULL 0 0 0 0 1.5M 0

Typical Rows/Value 1 1 325 300 2 90
Change Rating 0 3 2 1 1 1

PI/SI

Collect Statistics (Y/N)

UPI NUPI NUPI NUPI NUPI

 Analyze Secondary Index Criteria Page 20-18

Exercise 3 – Choosing SI Candidates (cont.)
Use the Secondary Index Candidate Guidelines below to identify all USI and NUSI
candidates.

 All Primary Index candidates are Secondary Index candidates.

 Columns that are not Primary Index candidates have to also be considered as NUSI

candidates. A NUSI will be used by the Optimizer to select data if it is strongly
selective. A guideline to use in initially selecting NUSI candidates is the
following:

If the number of distinct values ≥ 20, then the column is a NUSI candidate.

Analyze Secondary Index Criteria Page 20-19

Exercise 3 – Choosing SI Candidates (cont.)

ENTITY 2

10,000,000
Rows G H I J K L

PK/FK PK,SA

Value Access 5K 365 12 12 0 0
Range Access 12 0 0 0 0 260

Join Access 100M 0 0 0 0 0
Join Rows 100M 0 0 0 0 0

Distinct Values 10M 100K 9M 12 50 180K
Max Rows/Value 1 200 2 1M 240K 60
Max Rows/NULL 0 0 100K 0 0 0

Typical Rows/Value 1 100 1 800K 190K 50
Change Rating 0 0 9 1 2 0

PI/SI

Collect Statistics (Y/N)

NUPIUPI NUPI

 Analyze Secondary Index Criteria Page 20-20

Exercise 3 – Choosing SI Candidates (cont.)
Use the Secondary Index Candidate Guidelines below to identify all USI and NUSI
candidates.

 All Primary Index candidates are Secondary Index candidates.

 Columns that are not Primary Index candidates have to also be considered as NUSI

candidates. A NUSI will be used by the Optimizer to select data if it is strongly
selective. A guideline to use in initially selecting NUSI candidates is the
following:

If the number of distinct values ≥ 20, then the column is a NUSI candidate.

Analyze Secondary Index Criteria Page 20-21

Exercise 3 – Choosing SI Candidates (cont.)

UPI
NUPI NUPI

UPI

DEPENDENT

5,000,000
Rows A M N O P Q

PK/FK PK NN,ND
FK SA

Value Access 0 0 0 0 0 0
Range Access 0 0 0 0 0 0

Join Access 700K 0 0 0 0 0
Join Rows 1M 0 0 0 0 0

Distinct Values 2M 50 90K 3M 5M 2M
Max Rows/Value 4 200K 75 2 1 5
Max Rows/NULL 0 0 0 390K 0 1M

Typical Rows/Value 1 60K 50 1 1 1
Change Rating 0 0 3 1 0 1

PI/SI

Collect Statistics (Y/N)

 Analyze Secondary Index Criteria Page 20-22

Exercise 3 – Choosing SI Candidates (cont.)
Use the Secondary Index Candidate Guidelines below to identify all USI and NUSI
candidates.

 All Primary Index candidates are Secondary Index candidates.

 Columns that are not Primary Index candidates have to also be considered as NUSI

candidates. A NUSI will be used by the Optimizer to select data if it is strongly
selective. A guideline to use in initially selecting NUSI candidates is the
following:

If the number of distinct values ≥ 20, then the column is a NUSI candidate.

Analyze Secondary Index Criteria Page 20-23

Exercise 3 – Choosing SI Candidates (cont.)

UPI
NUPINUPI

ASSOCIATIVE 1

300,000,000
Rows A G R S

PK/FK PK
FK FK,SA

Value Access 260 0 0 0
Range Access 0 0 0 0

Join Access 0 8M 0 0
Join Rows 0 300M 0 0

Distinct Values 100M 10M 15K 800K
Max Rows/Value 5 50 21K 400
Max Rows/NULL 0 0 0 0

Typical Rows/Value 3 30 19K 350
Change Rating 0 0 0 0

PI/SI

Collect Statistics (Y/N)

NUPI NUPI?

 Analyze Secondary Index Criteria Page 20-24

Exercise 3 – Choosing SI Candidates (cont.)
Use the Secondary Index Candidate Guidelines below to identify all USI and NUSI
candidates.

 All Primary Index candidates are Secondary Index candidates.

 Columns that are not Primary Index candidates have to also be considered as NUSI

candidates. A NUSI will be used by the Optimizer to select data if it is strongly
selective. A guideline to use in initially selecting NUSI candidates is the
following:

If the number of distinct values ≥ 20, then the column is a NUSI candidate.

Analyze Secondary Index Criteria Page 20-25

Exercise 3 – Choosing SI Candidates (cont.)

UPI
NUPINUPI NUPI

ASSOCIATIVE 2

100,000,000
Rows A M G T U

PK/FK PK
FK FK

Value Access 0 0 0 0
Range Access 0 0 0 0

Join Access 7M 250K 0 0
Join Rows 800M 20M 0 0

Distinct Values 50M 10M 560K 750
Max Rows/Value 3 150 180 135K
Max Rows/NULL 0 0 0 0

Typical Rows/Value 1 8 170 100K
Change Rating 0 0 0 0

PI/SI

Collect Statistics (Y/N)

 Analyze Secondary Index Criteria Page 20-26

Exercise 3 – Choosing SI Candidates (cont.)
Use the Secondary Index Candidate Guidelines below to identify all USI and NUSI
candidates.

 All Primary Index candidates are Secondary Index candidates.

 Columns that are not Primary Index candidates have to also be considered as NUSI

candidates. A NUSI will be used by the Optimizer to select data if it is strongly
selective. A guideline to use in initially selecting NUSI candidates is the
following:

If the number of distinct values ≥ 20, then the column is a NUSI candidate.

Analyze Secondary Index Criteria Page 20-27

Exercise 3 – Choosing SI Candidates (cont.)

UPI
NUPI

HISTORY

730,000,000
Rows A DATE D E F

PK/FK PK
FK SA

Value Access 10M 5K 0 0 0
Range Access 0 20K 0 0 0

Join Access 800M 0 0 0 0
Join Rows 2.4B 0 0 0 0

Distinct Values 100M 730 N/A N/A N/A
Max Rows/Value 18 1100K N/A N/A N/A
Max Rows/NULL 0 0 N/A N/A N/A

Typical Rows/Value 3 900K N/A N/A N/A
Change Rating 0 0 N/A N/A N/A

PI/SI

Collect Statistics (Y/N)

 Analyze Secondary Index Criteria Page 20-28

Change Rating
Change Rating is a number that comes from Application & Transaction Modeling
(ATM).

 Change Rating indicates how often the values in a column, or columns, are
updated.

 It is a value from 0 to 10, with 0 describing those columns which never change and

10 describing those columns which change with every write operation.

 The Change Rating values of various types of columns are shown on the facing

page.

Change Rating has nothing to do with the SQL INSERT or DELETE statements. A table
may be subject to frequent INSERTs and/or DELETEs, but the Change Ratings of columns
will be low as long as the values within those columns remain stable throughout the lifetime
of the row.

Change Rating is dependent only on the SQL UPDATE statement. Change Rating is
affected when column values are UPDATEd.

Utilize Change Rating when choosing indexes. Primary Indexes must be based on columns
with very stable data values. PI columns should never have Change Ratings higher than 1.

Secondary Indexes should be based on columns with at least fairly stable data values. You
should not choose columns with Change Ratings higher than 3 for SIs.

Analyze Secondary Index Criteria Page 20-29

Change Rating

Change Rating indicates how often values in a column are UPDATEd:

• 0 = column values never change.
• 10 = column changes with every write operation.

PK columns are always 0.

Historical data columns are always 0.

Data that does not normally change = 1.

Update tracking columns = 10.

All other columns are rated 2 - 9.

Base Primary Index choices on columns with very stable data values:

• A change rating of 0 - 1 is reasonable.

Base Secondary Index choices on columns with fairly stable data values:

• A change rating of 0 - 3 is reasonable.

 Analyze Secondary Index Criteria Page 20-30

Value and Range Access
Value Access Frequency is a numeric rating which tells you how many times all known
transactions access the table in a given time interval (e.g., a one-year period). It measures
how frequently a column, or columns, is accessed by SQL statements containing an equality
value.

Range Access Frequency is a numeric rating which tells you how many times all known
transactions access the table in a given time interval (e.g., a one-year period). It measures
how frequently a column, or columns, is accessed by SQL statements that access a range of
values such as a DATE range. These types of queries may contain inequality or BETWEEN
expressions.

A Value Access or Range Access of 0 implies that there is no need to access the table
through that column. Since NUSIs require system resources to maintain them (INSERTs
and DELETEs require additional I/O to update the SI subtables), there is no point in having
a NUSI if it is not used for access. All NUSI candidates with very low Value Access or
Range Access Frequency should be eliminated.

Analyze Secondary Index Criteria Page 20-31

Value and Range Access

Value Access:
• How often a column appears with an equality value. For example:

WHERE column_name = hardcoded_value or substitutable_value

Range Access:
• How often a column is used to access a range of data values (e.g., range of dates).

For example:

WHERE column_name BETWEEN value AND value or WHERE column_name > value

Value Access or Range Access Frequency:
• How often in a given time interval (e.g., annually) all known transactions access rows

from the table through this column either with an equality value or with a range of
values.

Notes:
• The above demographics result from Activity Modeling.
• Low Value Access or Range Access Frequency:

– Secondary Index overhead may cost more than doing the FTS.
• NUSIs may be considered by the optimizer for joins. In the following exercises, we

are going to eliminate NUSIs with a value access of 0, but we may need to reconsider
the NUSI as an index choice depending on join access (when given join metrics).

• EXPLAINs indicate if the index choices are utilized or not.

 Analyze Secondary Index Criteria Page 20-32

Exercise 4 – Sample
In this exercise, you will again work with the same tables that you used in Exercises 2 and 3.

In this exercise, you will look at three additional demographics to eliminate potential index
candidates and to possibly choose Value-Ordered NUSI candidates. The three additional
data demographics that you will look at are:

 Change Rating
 Value Access
 Range Access

Use the following Change Rating demographics guidelines to eliminate those candidates that
do not fit the guidelines. The table on the right provides you with an example of how to
apply these guidelines.

 PI candidates should have Change Ratings from 0 - 1.
 SI candidates should have Change Ratings from 0 - 3.

Also, eliminate those NUSI candidates which have Value Access = 0 and Range Access = 0.

If a Range Access is greater than 0, then consider the column as a possible Value-Ordered
NUSI (VONUSI) candidate.

The table on the facing page provides you with an example of how to apply these guidelines.

You will make final index choices for these tables in Exercise 5 (later module).

ds186034
Highlight

Analyze Secondary Index Criteria Page 20-33

Exercise 4 – Sample

On the following pages, there are sample tables with change row and
value access demographics.

• Eliminate Index candidates based on change rating and value
access.

• Identify any VONUSI candidates with a Range Access > 0
• Later exercises will guide your final choices.

Change Rating Guidelines:

• PI – change rating 0 - 1.
• SI – change rating 0 - 3.

Value Access Guideline:

• NUSI Value Access > 0
• VONUSI Range Access > 0

USI NUSI NUSI USI NUSI NUSI NUSI
UPI

Example 60,000,000
Rows A B C D E F G H

PK/FK PK,SA FK,NN NN,ND

Value Access 5K 2.6K 0 500K 0 0 0 52
Range Access 12 0 0 0 0 0 0 4K

Join Access 1M 0 1K 0 0 0 0 0
Join Rows 50M 0 5K 0 0 0 0 0

Distinct Values 60M 7M 1.5M 60M 8 15M 15M 700
Max Rows/Value 1 12 500 1 8M 9 725K 90K
Max Rows/NULL 0 5 0 0 0 725K 5 10K

Typical Rows/Value 1 7 35 1 7M 3 3 80K
Change Rating 0 1 5 3 0 4 4 9

PI/SI

Collect Statistics (Y/N)

NUPI NUPI? UPI

 Analyze Secondary Index Criteria Page 20-34

Exercise 4 – Eliminating Index Candidates
In this exercise, you will look at three additional demographics to eliminate potential index
candidates and to possibly choose Value-Ordered NUSI candidates. The three additional
data demographics that you will look at are:

 Change Rating
 Value Access
 Range Access

Use the following Change Rating demographics guidelines to eliminate those candidates that
do not fit the guidelines.

 PI candidates should have Change Ratings from 0 - 1.
 SI candidates should have Change Ratings from 0 - 3.

Also, eliminate those NUSI candidates which have Value Access = 0 and Range Access = 0.

If a Range Access is greater than 0, then consider the column as a possible Value-Ordered
NUSI (VONUSI) candidate.

Analyze Secondary Index Criteria Page 20-35

Exercise 4 – Eliminating Index Candidates

USI NUSI NUSI NUSI NUSI

ENTITY 1

100,000,000
Rows A B C D E F

PK/FK PK,UA

Value Access 50K 0 0 0 0 0
Range Access 0 0 0 0 0 0

Join Access 10M 0 0 0 0 0
Join Rows 10M 0 0 0 0 0

Distinct Values 100M 95M 300K 250K 40M 1M
Max Rows/Value 1 2 400 350 3 110
Max Rows/NULL 0 0 0 0 1.5M 0

Typical Rows/Value 1 1 325 300 2 90
Change Rating 0 3 1 1 1 1

PI/SI

Collect Statistics (Y/N)

UPI NUPI NUPI NUPI NUPI
NUSI

 Analyze Secondary Index Criteria Page 20-36

Exercise 4 – Eliminating Index Candidates (cont.)
In this exercise, you will look at three additional demographics to eliminate potential index
candidates and to possibly choose Value-Ordered NUSI candidates. The three additional
data demographics that you will look at are:

 Change Rating
 Value Access
 Range Access

Use the following Change Rating demographics guidelines to eliminate those candidates that
do not fit the guidelines.

 PI candidates should have Change Ratings from 0 - 1.
 SI candidates should have Change Ratings from 0 - 3.

Also, eliminate those NUSI candidates which have Value Access = 0 and Range Access = 0.

If a Range Access is greater than 0, then consider the column as a possible Value-Ordered
NUSI (VONUSI) candidate.

Analyze Secondary Index Criteria Page 20-37

Exercise 4 – Eliminating Index Candidates (cont.)

NUSI

ENTITY 2

10,000,000
Rows G H I J K L

PK/FK PK,SA

Value Access 5K 365 12 12 0 0
Range Access 12 0 0 0 0 260

Join Access 100M 0 0 0 0 0
Join Rows 100M 0 0 0 0 0

Distinct Values 10M 100K 9M 12 50 180K
Max Rows/Value 1 200 2 1M 240K 60
Max Rows/NULL 0 0 100K 0 0 0

Typical Rows/Value 1 100 1 800K 190K 50
Change Rating 0 0 9 1 2 0

PI/SI

Collect Statistics (Y/N)

NUPIUPI NUPI
USI NUSI NUSI NUSI

 Analyze Secondary Index Criteria Page 20-38

Exercise 4 – Eliminating Index Candidates (cont.)
In this exercise, you will look at three additional demographics to eliminate potential index
candidates and to possibly choose Value-Ordered NUSI candidates. The three additional
data demographics that you will look at are:

 Change Rating
 Value Access
 Range Access

Use the following Change Rating demographics guidelines to eliminate those candidates that
do not fit the guidelines.

 PI candidates should have Change Ratings from 0 - 1.
 SI candidates should have Change Ratings from 0 - 3.

Also, eliminate those NUSI candidates which have Value Access = 0 and Range Access = 0.

If a Range Access is greater than 0, then consider the column as a possible Value-Ordered
NUSI (VONUSI) candidate.

Analyze Secondary Index Criteria Page 20-39

Exercise 4 – Eliminating Index Candidates (cont.)

DEPENDENT

5,000,000
Rows A M N O P Q

PK/FK PK NN,ND
FK SA

Value Access 0 0 0 0 0 0
Range Access 0 0 0 0 0 0

Join Access 700K 0 0 0 0 0
Join Rows 1M 0 0 0 0 0

Distinct Values 2M 50 90K 3M 5M 2M
Max Rows/Value 4 200K 75 2 1 5
Max Rows/NULL 0 0 0 390K 0 1M

Typical Rows/Value 1 60K 50 1 1 1
Change Rating 0 0 3 1 0 1

PI/SI

Collect Statistics (Y/N)
NUSINUSINUSI

USI
NUSI

USI
NUSI

UPI
NUPI NUPI

UPI

 Analyze Secondary Index Criteria Page 20-40

Exercise 4 – Eliminating Index Candidates (cont.)
In this exercise, you will look at three additional demographics to eliminate potential index
candidates and to possibly choose Value-Ordered NUSI candidates. The three additional
data demographics that you will look at are:

 Change Rating
 Value Access
 Range Access

Use the following Change Rating demographics guidelines to eliminate those candidates that
do not fit the guidelines.

 PI candidates should have Change Ratings from 0 - 1.
 SI candidates should have Change Ratings from 0 - 3.

Also, eliminate those NUSI candidates which have Value Access = 0 and Range Access = 0.

If a Range Access is greater than 0, then consider the column as a possible Value-Ordered
NUSI (VONUSI) candidate.

Analyze Secondary Index Criteria Page 20-41

Exercise 4 – Eliminating Index Candidates (cont.)

ASSOCIATIVE 1

300,000,000
Rows A G R S

PK/FK PK
FK FK,SA

Value Access 260 0 0 0
Range Access 0 0 0 0

Join Access 0 8M 0 0
Join Rows 0 300M 0 0

Distinct Values 100M 10M 15K 800K
Max Rows/Value 5 50 21K 400
Max Rows/NULL 0 0 0 0

Typical Rows/Value 3 30 19K 350
Change Rating 0 0 0 0

PI/SI

Collect Statistics (Y/N)

UPI
NUPINUPINUPI

USI
NUSINUSI NUSINUSI

NUPI?

 Analyze Secondary Index Criteria Page 20-42

Exercise 4 – Eliminating Index Candidates (cont.)
In this exercise, you will look at three additional demographics to eliminate potential index
candidates and to possibly choose Value-Ordered NUSI candidates. The three additional
data demographics that you will look at are:

 Change Rating
 Value Access
 Range Access

Use the following Change Rating demographics guidelines to eliminate those candidates that
do not fit the guidelines.

 PI candidates should have Change Ratings from 0 - 1.
 SI candidates should have Change Ratings from 0 - 3.

Also, eliminate those NUSI candidates which have Value Access = 0 and Range Access = 0.

If a Range Access is greater than 0, then consider the column as a possible Value-Ordered
NUSI (VONUSI) candidate.

Analyze Secondary Index Criteria Page 20-43

Exercise 4 – Eliminating Index Candidates (cont.)

NUSI NUSI
USI

NUSI NUSI

UPI
NUPINUPI NUPI

ASSOCIATIVE 2

100,000,000
Rows A M G T U

PK/FK PK
FK FK

Value Access 0 0 0 0
Range Access 0 0 0 0

Join Access 7M 250K 0 0
Join Rows 800M 20M 0 0

Distinct Values 50M 10M 560K 750
Max Rows/Value 3 150 180 135K
Max Rows/NULL 0 0 0 0

Typical Rows/Value 1 8 170 100K
Change Rating 0 0 0 0

PI/SI

Collect Statistics (Y/N)

 Analyze Secondary Index Criteria Page 20-44

Exercise 4 – Eliminating Index Candidates (cont.)
In this exercise, you will look at three additional demographics to eliminate potential index
candidates and to possibly choose Value-Ordered NUSI candidates. The three additional
data demographics that you will look at are:

 Change Rating
 Value Access
 Range Access

Use the following Change Rating demographics guidelines to eliminate those candidates that
do not fit the guidelines.

 PI candidates should have Change Ratings from 0 - 1.
 SI candidates should have Change Ratings from 0 - 3.

Also, eliminate those NUSI candidates which have Value Access = 0 and Range Access = 0.

If a Range Access is greater than 0, then consider the column as a possible Value-Ordered
NUSI (VONUSI) candidate.

Analyze Secondary Index Criteria Page 20-45

Exercise 4 – Eliminating Index Candidates (cont.)

UPI
NUPI

HISTORY

730,000,000
Rows A DATE D E F

PK/FK PK
FK SA

Value Access 10M 5K 0 0 0
Range Access 0 20K 0 0 0

Join Access 800M 0 0 0 0
Join Rows 2.4B 0 0 0 0

Distinct Values 100M 730 N/A N/A N/A
Max Rows/Value 18 1100K N/A N/A N/A
Max Rows/NULL 0 0 N/A N/A N/A

Typical Rows/Value 3 900K N/A N/A N/A
Change Rating 0 0 N/A N/A N/A

PI/SI

Collect Statistics (Y/N)
NUSI

USI
NUSI

 Analyze Secondary Index Criteria Page 20-46

Module 20: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Analyze Secondary Index Criteria Page 20-47

Module 20: Review Questions

1. With a NUPI, a technique to avoid a duplicate row check is to ________.

a. use set tables
b. use the NOT NULL constraint on the column
c. create the table as a MULTISET table
d. compare data values byte-by-byte within a Row Hash in order to ensure uniqueness

2. Which type of usage normally applies to a USI? ____

a. Range access
b. NOT condition
c. Equality value access
d. Inequality value access

3. Which two types of usage normally apply to a composite NUSI that is hash-ordered? ____ ____

a. Covering index
b. Equality value access
c. Inequality value access
d. Non-covering range access

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

 Analyze Secondary Index Criteria Page 20-48

Notes

Access Considerations and Constraints Page 21-1

Module 21

Teradata Proprietary and Confidential

Access Considerations and Constraints

After completing this module, you will be able to:

 Analyze Optimizer Access scenarios.

 Explain partial value searches and data conversions.

 Identify the effects of conflicting data types.

 Determine the cost of I/Os.

 Identify column level attributes and constraints.

 Identify table level attributes and constraints.

 Add, modify and drop constraints from tables.

 Explain how the Identity column allocates new numbers.

 Access Considerations and Constraints Page 21-2

Notes

Access Considerations and Constraints Page 21-3

Table of Contents

Access Method Comparison .. 21-4

Unique Primary Index (UPI) .. 21-4
Non-Unique Primary Index (NUPI) ... 21-4
Unique Secondary Index (USI) .. 21-4
Non-Unique Secondary Index (NUSI) ... 21-4
Full-Table Scan (FTS).. 21-4

Optimizer Access Scenarios ... 21-6
Data Conversions ... 21-8
Storing Numeric Data .. 21-10
Data Conversion Example.. 21-12
Matching Data Types ... 21-14
Counting I/O Operations .. 21-16

Additional I/O .. 21-16
Transient Journal I/O ... 21-18
INSERT and DELETE Operations .. 21-20
UPDATE Operations ... 21-22
Primary Index Value UPDATE ... 21-24
Table Level Attributes ... 21-26
Example of Column and Table Level Constraints ... 21-28

Table Level Constraints ... 21-28
Example (13.0) – SHOW Department Table ... 21-30
Example (13.10) – SHOW Department Table ... 21-32
Altering Table Constraints ... 21-34
Identity Column – Overview .. 21-36

Business Value ... 21-36
Business Usage .. 21-36

Identity Column – Implementation .. 21-38
Performance ... 21-38
Process for Generating Identity Column Numbers .. 21-38

Identity Column – Example 1 .. 21-40
Identity Column – Example 2 .. 21-42
Identity Column – Considerations ... 21-44

Limited to DECIMAL(18,0) .. 21-44
Restrictions ... 21-44

Module 21: Review Questions ... 21-46

 Access Considerations and Constraints Page 21-4

Access Method Comparison
We have seen in preceding modules that Teradata can access data (through indexes or
Partition, or Full Table Scans). The facing page illustrates these various access methods in
order of number of AMPs affected.

Unique Primary Index (UPI)
The UPI is the most efficient way to access data. Accessing data through a UPI is a one-
AMP operation that leads directly to the single row with the desired UPI value. The system
does not have to create a Spool file during a UPI access.

Non-Unique Primary Index (NUPI)
Accessing data through a NUPI is a one-AMP operation that may lead to multiple rows with
the desired NUPI value. The system creates a spool file during a NUPI access, if needed.
NUPI access is efficient if the number of physical block reads is small.

Unique Secondary Index (USI)
A USI is a very efficient way to access data. Data access through a USI is usually a two-
AMP operation, which leads directly to the single row with the desired USI value. The
system does not have to create a spool file during a USI access.

There are cases where a USI is actually more efficient than a NUPI. In these cases, the
optimizer decides on a case-by-case basis which method is more efficient. Remember: the
optimizer can only make informed decisions if it is provided with statistics.

Non-Unique Secondary Index (NUSI)
As we have seen, the non-unique secondary index (NUSI) is efficient only if the number of
rows accessed is a small percentage of the total data rows in the table. NUSI access is an
all-AMPs operation since the NUSI subtables must be scanned on each AMP. It is a
multiple rows operation since there can be many rows per NUSI value. A spool file will be
created if needed.

Full-Table Scan (FTS)
The Full-Table Scan is efficient in that each row is scanned only once. Although index
access is generally preferred to a FTS, there are cases where they are the best way to access
the data.

Like the situation with NUPIs and USIs, Full Table Scans can sometimes be more efficient
than a NUSI. The optimizer decides on a case-by-case basis which is more efficient
(assuming that it has been provided with statistics).

The Optimizer chooses what it thinks is the fastest access method.
COLLECT STATISTICS to help the Optimizer make good decisions.

Access Considerations and Constraints Page 21-5

Access Method Comparison

Unique Primary Index
• Very efficient

• One AMP, one row

• No spool file

Non-Unique Primary Index
• Efficient if the number of rows per value

is reasonable and there are no severe
spikes.

• One AMP, multiple rows

• Spool file if needed

No Primary Index
• Access is a full table scan without

secondary indexes.

Unique Secondary Index
• Very efficient

• Two AMPs, one row

• No spool file

Non-Unique Secondary Index
• Efficient only if the number of rows accessed

is a small percentage of the total data rows in
the table.

• All AMPs, multiple rows

• Spool file if needed

Partition Scan
• Efficient since because of partition

elimination.

• All AMPs; all rows in specific partitions

Full-Table Scan
• Efficient since each row is touched only once.

• All AMPs, all rows

• Spool file may equal the table in size

The Optimizer chooses the fastest access method.

COLLECT STATISTICS to help the Optimizer make
good decisions.

ds186034
Sticky Note
STAGING AND COL PARTITION

ds186034
Sticky Note
employee number (eg) = usimultiple null rows we cannot put usi (so not SS cause globally all not hav it)SS = NUSI ok

ds186034
Sticky Note
nusiwe can be used in a lot of ways200 colscommon 20-30 query 90% of times15-20 cols of frequently usedNUSI on those 20 columnslets jst scan the nusi sub tablebut if its a where condition even then scan only on nusi sub tablesecondary index sub table

ds186034
Sticky Note

 Access Considerations and Constraints Page 21-6

Optimizer Access Scenarios
Given the SQL WHERE clause on the facing page, the Optimizer decides which column it
will use to access the data. This decision is based upon what indexes have been defined on
the two columns (Col_1 and Col_2).

When you examine the table, you can see that the optimizer chooses the most efficient
access method depending on the situation. Interesting cases to note are as follows:

If Col_1 is a NUPI and Col_2 is a USI, the Optimizer chooses Col_1 (NUPI) if its
selectivity is close to a UPI (nearly unique). Otherwise, it accesses via Col_2
(USI) since only one row is involved, even though it is a two-AMP operation.

If both columns are NUSIs, the Optimizer must determine the how selective each of

them is. Depending on the relative selectivity, the Optimizer may choose to access
via Col_1, Col_2, NUSI Bit Mapping or a FTS.

If either one of the columns is a NUSI or the other column is not indexed, the Optimizer

determines the selectivity of the NUSI. Depending on this selectivity, it chooses
either to utilize the NUSI or to do a FTS.

Whenever one of the columns is used to access the data, the remaining condition is used as a
row qualifier. This is known as a residual condition.

Access Considerations and Constraints Page 21-7

Optimizer Access Scenarios

SINGLE TABLE CASE

WHERE Table_1.Col_1 = :value_1
AND Table_1.Col_2 = :value_2 ; Column the

Optimizer
uses for
access.

USI NUSI
NOT

INDEXEDCol_1

Col_2

USI USI USI USI

NUSI USI

NOT
INDEXED

FTS

NUPI NUPI NUPI

UPI UPI UPI UPI

NUPI or
USI

Either, Both,
or FTS

NUSI or FTS

USI NUSI or FTS

1

2 3

3

1. The Optimizer prefers Primary Indexes over Secondary Indexes. It chooses the NUPI if only one
I/O (block) is accessed.

The Optimizer prefers Unique indexes over non-unique indexes. Only one row is involved with
USI even though it is a two-AMP operation.

2. Depending on relative selectivity, the Optimizer may use either NUSI, may use both with NUSI Bit
Mapping, or may do a FTS.

3. It depends on the selectivity of the index.

Notes:

 Access Considerations and Constraints Page 21-8

Data Conversions
Operands in an SQL statement must be of the same data type to be compared. If operands
differ, internal data conversion is performed.

Data conversion is expensive in terms of system overhead and adversely affects
performance. The physical designer should make every effort to minimize the need for data
conversion. The best way to do this is to implement data types at the Domain level which
should eliminate comparisons across data type. If data values come from the same Domain,
they must be of the same data type and therefore, can be compared without conversion.

Columns used in addition, subtraction, comparison, and join operations should always be
from the same domain. Multiplication and division operations involve columns from two or
three domains.

In the Teradata Database the Byte data types can only be compared to a column with the
Byte data type or a character string of XB'_ _ _ _...'

For example, the system converts a CHARACTER value to a DATE value using the DATE
conversion. On the other hand, converting from BYTE to NUMERIC is not possible
(indicated by "ERROR").

Access Considerations and Constraints Page 21-9

Data Conversions

• Columns (or values) must be of the same data type to be compared without
necessary conversion.

• Character data is compared using the host’s collating sequence.

– Unequal-length character strings are converted by right-padding the shorter one
with blanks.

• If column (or values) types differ, internal conversion is performed.

– Numeric values are converted to the same underlying representation.

– Character to numeric comparison requires the character value to be converted to a
numeric value.

• Data conversion is expensive and generally unnecessary.

• Implement data types at the Domain level.

– Comparison across data types may indicate that Domain definitions are not clearly
understood.

 Access Considerations and Constraints Page 21-10

Storing Numeric Data
You should always store numeric data in numeric data types. Teradata will always convert
character data to numeric data prior to doing a comparison.

When Teradata is asked to do a comparison, it will always apply the following rules:

To compare 2 columns, they must be of the same data type.

 Character data types will always be converted to numeric.

The example on the slide page demonstrates the potential performance hit that could occur,
when you store numeric data as a character data type.

In Case 1 (Numeric values stored as Character Data Type):

Statement 1 uses a character literal – Teradata will do a PI access (no data
conversion required) to perform the comparison.

Statement 2 uses a numeric value – Teradata will do a Full Table Scan (FTS)

against the EMP1 table converting Emp_no to a numeric value and then do the
comparison.

In Case 2 (Numeric values stored as Numeric Data Type):

Statement 1 uses a numeric value – Teradata will do a PI access (no data
conversion required) to perform the comparison.

Statement 2 uses a character literal – Teradata will convert the character literal to a

numeric value, then do a PI access to perform the comparison.

Access Considerations and Constraints Page 21-11

Storing Numeric Data

When comparing character data to numeric, Teradata will always convert
character to numeric, then do the comparison.

Case 1

CREATE TABLE Emp1
(Emp_no CHAR(6),
Emp_name CHAR(20))

UNIQUE PRIMARY INDEX
(Emp_no);

Statement 1
SELECT *
FROM Emp1
WHERE Emp_no = '1234';

Statement 2
SELECT *
FROM Emp1
WHERE Emp_no = 1234;

Statement 1
SELECT *
FROM Emp2
WHERE Emp_no = 1234;

Statement 2
SELECT *
FROM Emp2
WHERE Emp_no = '1234';

Case 2Comparison Rules:

To compare columns, they
must be of the same Data
types.

Character data types will
always be converted to
numeric (when comparing
character to numeric).

Bottom Line:

Always store numeric data
in numeric data types to
avoid unnecessary and
costly data conversions.

Results in Full Table Scan Results in unnecessary
conversion

CREATE TABLE Emp2
(Emp_no INTEGER,
Emp_name CHAR(20))

UNIQUE PRIMARY INDEX
(Emp_no);

 Access Considerations and Constraints Page 21-12

Data Conversion Example
The example on the facing page illustrates how data conversion adversely affects system
performance.

You can see the results of the first EXPLAIN. Note that total estimated time to perform
this SELECT is minimal. The system can process this request quickly because the
data type of the literal value matches the column type. A character column value
(col1) is being compared to a character literal (‘8’) which allows TERADATA to
use the UPI defined on c1 for access and for maximum efficiency. The query
executes as a UPI SELECT.

In the second SELECT statement, the character column value (col1) is compared with a

numeric value (8). You should notice that the total “cost” for this SELECT is
nearly 30 times the estimate for the preceding SELECT. The system must do a
Full Table Scan and convert the character values in col1 to numeric to compare
them against the numeric literal (8).

If the column was numeric and the literal value was character,

the literal would convert to numeric and the result could be hashed,
allowing UPI access.

Access Considerations and Constraints Page 21-13

Data Conversion Example

CREATE SET TABLE TFACT01.Table1
(col1 CHAR(12) NOT NULL)

UNIQUE PRIMARY INDEX (col1);

EXPLAIN SELECT * FROM Table1 WHERE col1 = '8';

1) First, we do a single-AMP RETRIEVE step from TFACT01.Table1 by way of the unique primary index
"TFACT01.Table1.col1 = '8' " with no residual conditions. The estimated time for this step is 0.00
seconds.

-> The row is sent directly back to the user as the result of statement 1. The total estimated time is 0.00
seconds.

EXPLAIN SELECT * FROM Table1 WHERE col1 = 8;

1) First, we lock a distinct TFACT01."pseudo table" for read on a RowHash to prevent global deadlock
for TFACT01.Table1.

2) Next, we lock TFACT01.Table1 for read.
3) We do an all-AMPs RETRIEVE step from TFACT01.Table1 by way of an all-rows scan with a condition

of ("(TFACT01.Table1.col1 (FLOAT, FORMAT '-9.99999999999999E-999')UNICODE)=
8.00000000000000E 000") into Spool 1, which is built locally on the AMPs. The size of Spool 1 is
estimated with no confidence to be 1,001 rows. The estimated time for this step is 0.28 seconds.

4) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the request.
-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total estimated

time is 0.28 seconds.

 Access Considerations and Constraints Page 21-14

Matching Data Types
There are a few data types that the hashing algorithm treats identically.

The best way to make sure that you don't run into this problem is to administer the data type
assignments at the Domain level. Designing a system around domains helps ensure that you
give matching Primary Indexes across tables the same data type.

Access Considerations and Constraints Page 21-15

Matching Data Types

The following data types are identical to the hashing algorithm:

BYTEINT = SMALLINT = INTEGER = BIGINT = DATE = DECIMAL (x,0)

CHAR = VARCHAR = LONG VARCHAR

BYTE = VARBYTE

GRAPHIC = VARGRAPHIC

Administer data type assignments at the domain level.

Give matching Primary Indexes across tables the same data type.

 Access Considerations and Constraints Page 21-16

Counting I/O Operations
Understanding the cost of various Teradata transactions in terms of I/O will help you avoid
unnecessary I/O overhead when doing your physical design.

Many factors can influence the number of physical I/Os in a transaction. Some are listed on
the facing page.

The main concept of the next few pages is to help you understand the relative cost of doing
INSERT, DELETE, and UPDATE operations. This understanding enables you to detect
subsequent problems when doing performance analysis on a troublesome application. When
counting I/O, it is important to remember that all such calculations give you a relative – not
the absolute – cost of the transaction. Any given I/O operation may or may not cause any
actual physical I/O.

– Normally, when making a change to a table (INSERT, UPDATE, and DELETE), not
only does the actual table have to be updated, but before-images have to be written in the
Transient Journal to maintain transaction integrity. Transient Journal space is automatically
allocated and is integrated with the WAL (Write-Ahead-Logic) Log, which has its own
cylinders and file system.

Additional I/O
A table may also have Join Indexes, Hash indexes, or a Permanent Journal associated with
it. Join Indexes can also have secondary indexes.

In additional the number of I/Os for changes to a table, these options will result in additional
I/Os.

Whenever Permanent Journaling is used, additional I/O is incurred. The amount of this I/O
varies according to whether you are using Before Imaging, After Imaging, or both, and
whether the imaging is single or dual. The table on the facing page shows how many I/O
operations are involved in writing the Permanent Journal block and the Cylinder Index.

To calculate the Total Permanent Journal I/O for PJ INSERTs, DELETEs and UPDATEs,
you apply the appropriate formula shown on the facing page.

Permanent Journal I/O is in addition to any I/O incurred during the operation itself. In order
to calculate the TOTAL I/O for an operation, you must sum the I/Os from the operation with
the Total PJ I/O corresponding to that operation.

Access Considerations and Constraints Page 21-17

Counting I/O Operations

• Many factors influence the number of physical I/Os in a transaction:
– Cache hits
– Rows per block
– Cylinder migrates
– Mini-Cylpacks
– Number of spool files and spool file sizes

• I/Os may be done serially or in parallel.

• Data and index block I/O may or may not require Cylinder Index I/O.

• Changes to data rows and USI rows require before-images (undo rows) and
after-images (redo rows) to be written to the WAL log.

• Logical I/O counts indicate the relative cost of a transaction.

– A given I/O operation may not cause any actual physical I/O.

• A table may also have Secondary, Join/Hash indexes, or a Permanent Journal
associated with it. Join Indexes can also have secondary indexes.

– In additional to the number of I/Os for changes to a table, these options will result
in additional I/O.

 Access Considerations and Constraints Page 21-18

Transient Journal I/O
The Transient Journal (TJ) exists to permit the successful rollback of a failed transaction.
Transactions are not committed to the database until an End Transaction request has been
received by the AMPs, either implicitly or explicitly. Until that time, there is always the
possibility that the transaction may fail in which case the participating table(s) must be
restored to their pre-transaction state.

The Transient Journal maintains a copy of all before-images of all rows affected by the
transaction. If the event of transaction failure, the before images are reapplied to the
affected tables, the images are deleted from the journal and a rollback operation is
completed. When the transaction completes (assume successfully), at the point of
transaction commit, the before-images for the transaction are discarded from the journal.
Normally, when making a change to a table (INSERT, UPDATE, and DELETE), not only
does the actual table have to be updated, but before-images have to be written in the TJ to
maintain transaction integrity.

– The preservation of the before-change row images for a transaction is the task of the
Write Ahead Logic (WAL) component of the Teradata database management software. The
system maintains a separate TJ (undo records) entry in the WAL log for each individual
database transaction whether it runs in ANSI or Teradata session mode.
–
The WAL Log includes the following:
–

Before-image or undo records used for transaction rollback.
After-image or redo records for updating disk blocks and insuring file system

consistency during restarts, based on operations performed in cache during normal
operation.

–
– The WAL Log is conceptually similar to a table, but the log has a simpler structure than
a table. Log data is a sequence of WAL records, different from normal row structure and
not accessible via SQL.

When are transient journal rows actually written to the WAL log? This occurs BEFORE the
modification is made to the base table row.

Some situations where Transient Journal is not used when updating a table include:

INSERT / SELECT into an empty table
DELETE FROM tablename ALL;
Utilities such as FastLoad and MultiLoad

When a DELETE ALL is done, the master index and the cylinder indexes are updated. An
entry is actually placed in the Transient Journal indicating that a “DELETE ALL” has been
issued. Before-images of the individual deleted rows are not stored in the TJ. In the event a
node happens to fail in the middle of a DELETE ALL, the TJ is checked for the deferred
action that indicates a DELETE ALL was issued. The system checks to ensure that the
DELETE ALL has completed totally as part of the restart process.

Access Considerations and Constraints Page 21-19

Transient Journal I/O

The Transient Journal (TJ) is …

• A journal of transaction before-images (or undo records) maintained in the WAL log.

• Provides for automatic rollback in the event of TXN failure.

• Provides “Transaction Integrity”.

• Is automatic and transparent.

• TJ images are maintained in the WAL Log. The WAL Log includes the following:

– Before-images or undo records used for transaction rollback.

– After-images or redo records for updating disk blocks and insuring file system consistency
during restarts, based on operations performed in cache (FSG) during normal operation.

Therefore, when modifying a table, there are I/O's for the data table and the WAL log (undo
and redo records).

Some situations where Transient Journal is not used include:

• INSERT / SELECT into an empty table

• DELETE tablename; (Deletes all the rows in a table)

• Utilities such as FastLoad and MultiLoad

• ALTER TABLE

 Access Considerations and Constraints Page 21-20

INSERT and DELETE Operations
To calculate the number of I/Os required to INSERT a new data row or DELETE an existing
row, it is necessary to do three subsidiary calculations. They are:

Number of I/Os required to INSERT or DELETE the row itself = five.
Number of I/Os required for each Unique Secondary Index (USI) = five.
Number of I/Os required for each Non-Unique Secondary Index (NUSI) = three.

The overall formula for counting I/Os for INSERT and DELETE operations is shown at the
bottom of the facing page. The number of I/Os must be doubled if Fallback is used.

Access Considerations and Constraints Page 21-21

INSERT and DELETE Operations

INSERT INTO tablename . . . ; DELETE FROM tablename . . . ; (* is an I/O operation)

DATA ROW * READ Data Block
* WRITE Transient Journal record (UNDO row) to WAL Log
* INSERT or DELETE the data row, and WRITE REDO row (after-image) to WAL Log
* WRITE new Data Block
* WRITE Cylinder Index

For each USI * READ USI subtable block
* WRITE Transient Journal record (UNDO index row) to WAL Log
* INSERT or DELETE the new USI subtable row, and WRITE REDO row (after-image)

to WAL Log for the USI subtable row
* WRITE new USI subtable block
* WRITE Cylinder Index

For each NUSI * READ NUSI subtable block
ADD or DELETE the ROWID on the ROWID LIST or
ADD or DELETE the NUSI subtable row

* WRITE new NUSI subtable block
* WRITE Cylinder Index

I/O operations per row = 5 + [5 * (#USIs)] + [3 * (#NUSIs)]

Double for FALLBACK

 Access Considerations and Constraints Page 21-22

UPDATE Operations
To calculate the number of I/Os required when updating a data column, it is necessary to
perform three subsidiary calculations. They are:

The number of I/Os required to UPDATE the column in the data row itself = five.

The number of I/Os required to change any USI subtable containing the particular

column which was updated = ten (five to remove the old subtable row and five to
add the new subtable row).

The number of I/Os required to change the subtable of any NUSI containing the

particular column which was updated = six (three to remove the old Row ID or
subtable row and three to add the new Row ID or subtable row).

The overall formula for counting I/Os for UPDATE operations is shown at the bottom of the
facing page.

 REMEMBER
You are simply estimating the relative cost of a transaction.

Access Considerations and Constraints Page 21-23

UPDATE Operations

UPDATE tablename SET colname = exp . . . (other than PI column) (* = I/O Operations)

DATA ROW * READ Data Block
* WRITE Transient Journal record (UNDO row) to WAL Log
* UPDATE the data row, and WRITE REDO row (after-image) to WAL Log
* WRITE new Data Block
* WRITE Cylinder Index

If colname = USI column

* READ current USI subtable block
* WRITE TJ record (UNDO row) into WAL Log
* DELETE USI subtable row, and WRITE

REDO row (after-image) to WAL Log
* WRITE USI subtable block
* WRITE Cylinder Index
* READ new USI subtable block
* WRITE TJ record (UNDO row) into WAL Log
* INSERT new Index Subtable row, and WRITE

REDO row (after-image) to WAL Log
* WRITE new USI subtable block
* WRITE Cylinder Index

If colname = NUSI column

* READ current NUSI subtable block
REMOVE data row's RowID from RowID list or
REMOVE NUSI subtable row if last RowID

* WRITE NUSI subtable block
* WRITE Cylinder Index
* READ new NUSI subtable block

ADD data row's RowID to RowID list or ADD
new NUSI subtable row

* WRITE new NUSI subtable block
* WRITE Cylinder Index

I/O operations per row = 5 + [10 * (#USIs)] + [6 * (#NUSIs)]

Double for FALLBACK

 Access Considerations and Constraints Page 21-24

Primary Index Value UPDATE
Updating the Primary Index Value is the most I/O intensive operation of all. This is due to
the fact that any change to the PI invalidates all existing secondary index “pointers.”

To calculate the number of I/Os required to UPDATE a PI column, it is necessary to
perform three subsidiary calculations:

The number of I/Os required to UPDATE the PI column in the data row itself.
The number of I/Os required to change any USI subtable
The number of I/Os required to change any NUSI subtable

Study the steps on the facing page. Notice that updating a PI value is equivalent to first
deleting and then inserting a row. All the steps necessary to do a DELETE are performed,
and then all the steps necessary to do an INSERT are performed. Changing the PI value
involves actually moving the row to the location determined by the new hash value. Thus,
the number of steps involved in this process is exactly double the number of steps to
perform either an INSERT or a DELETE.

The formula for calculating the number of I/Os involved in a PI value update (shown at the
bottom of the facing page) can be derived by doubling the formula for INSERTing or
DELETing:

 Formula for PI Value Update = 10 + (5 * # USIs) + (6 * # NUSIs)

Remember to double the number if Fallback is used.

Note: If the USI changes, then the number of I/O’s for each changed USI is 8 in the
preceding formula.

Access Considerations and Constraints Page 21-25

Primary Index Value Update

UPDATE tablename SET PI_column = new_value . . . ; (* = I/O Operations)

Note: Assume only PI value is changed – all Secondary Index subtable rows are updated.

DATA ROW ** READ current Data Block, WRITE TJ record (UNDO row) to WAL Log
* DELETE the Data Row, and WRITE REDO row (after-image) to WAL Log
** WRITE new Data Block, WRITE Cylinder Index
** READ new Data Block, WRITE TJ record (UNDO row) to WAL Log
* INSERT the DATA ROW, and WRITE REDO row (after-image) to WAL Log
** WRITE new Data Block, WRITE Cylinder Index

For each USI * READ USI subtable block
* WRITE TJ record (UNDO row) into WAL Log
* UPDATE the USI subtable row with the new RowID, and WRITE REDO row (after-

image) to WAL Log
* WRITE new USI subtable block
* WRITE Cylinder index

For each NUSI * Read NUSI subtable block on AMP for current PI value
* Read NUSI subtable block on AMP for new value

UPDATE the RowID list for both of the subtable blocks
** WRITE new NUSI subtable blocks
** WRITE Cylinder Indexes

I/O operations per row = 10 + [5 * (#USIs)] + [6 * (#NUSIs)]

Double for FALLBACK`

 Access Considerations and Constraints Page 21-26

Table Level Attributes
Because ANSI permits the possibility of duplicate rows in a table, a table level attribute
(SET, MULTISET) specifies whether or not to allow duplicates. Maximum data block
sizes can now be specified as part of a table creation, thus allowing for smaller or larger
blocks depending on the needs of the processing environment. Typically, decision support
applications prefer larger block sizes while on-line transaction processing applications
generally use smaller block sizes.

Additionally, a parameter may be set to allow for a particular cylinder fill factor during table
loading (FREESPACE). This factor may be set high for high subsequent file maintenance
activity, or low for relatively static tables.

The Checksum parameter (table level attribute not listed on facing page) feature improves
Teradata’s ability to detect data corruption in user data at the earliest occurrence. The
higher levels of checksums cause more sampling of data and more performance impact. The
default system value is normally NONE which has no performance impact. The
CHECKSUM is a calculated value (XOR logic) and is stored separate from the data
segment. It is stored in the Cylinder Index. This option is not as necessary with latest Disk
Array Controller's DAP-3 protection.

When a CHECKSUM value other than NONE is used, the data rows (in blocks) are not
updated in place. These “safe” writes prevent the system from not being able to recover
from an interrupted write corruption error.

Options for this parameter are:

 DEFAULT Calculate (or not) checksums based on system defaults as specified with

the DBS Control utility and the Checksum fields.

 NONE Do not calculate checksums.

 LOW Calculate checksums by sampling a low percentage of the disk block.

Default is to sample 2% of the disk block, but this value is determined by
the value in the DBS Control Checksum definitions.

 MEDIUM Calculate checksums by sampling a medium percentage of the disk block.

Default is to sample 33% of the disk block, but this value is determined by
the value in the DBS Control Checksum definitions.

 HIGH Calculate checksums by sampling a high percentage of the disk block.

Default is to sample 67% of the disk block, but this value is determined by
the value in the DBS Control Checksum definitions.

 ALL Calculate checksums using the entire disk block (sample 100% of the disk

block to generate a checksum).

Access Considerations and Constraints Page 21-27

Table Level Attributes

CREATE MULTISET TABLE Table_1, FALLBACK, DATABLOCKSIZE = 64 KBYTES,
FREESPACE = 15, MERGEBLOCKRATIO = 60

(column1 INTEGER NOT NULL,
column2 CHAR(5) NOT NULL,
CONSTRAINT table_constraint CHECK (column1 > 0)
)
PRIMARY INDEX (column1)
INDEX (column2);

SET Don’t allow duplicate rows
MULTISET Allow duplicate rows (ANSI default)

DATABLOCKSIZE = BYTES or KBYTES Maximum multi-row block size for table in:

BYTES Rounded to nearest sector (512)
KILOBYTES (or KBYTES) Increments of 1024

MINIMUM DATABLOCKSIZE (7168)
MAXIMUM DATABLOCKSIZE (130,560)
IMMEDIATE May be used to immediately re-block the data with ALTER.

FREESPACE = integer [PERCENT] Percent of freespace to keep on cylinder during load
operations (0 - 75%).

DEFAULT MERGEBLOCKRATIO The merge block ratio to be used for this table when
MERGEBLOCKRATIO = integer [PERCENT] when Teradata combines smaller data blocks into a single
NO MERGEBLOCKRATIO larger data block (13.10). Typical system default is 60%.

 Access Considerations and Constraints Page 21-28

Example of Column and Table Level Constraints
Constraints can be placed at the column or the table level. Constraints may be named or
unnamed.

PRIMARY KEY May only be defined on NOT NULL columns; guarantees

uniqueness.

UNIQUE May only be defined on NOT NULL columns; guarantees

uniqueness.

CHECK Allows range or value constraints to be placed on the column.

REFERENCES Requires values to be referenced checked before being allowed.

Note: Columns with a REFERENCES constraint must refer to a column that has been
defined either with a PRIMARY KEY or UNIQUE constraint.

With Teradata, attributes and/or constraints can be assigned at the column when the table is
created (CREATE TABLE) or altered (ALTER TABLE). Some examples of
attributes/constraints that can be implemented include:

No Nulls – e.g., NOT NULL
No duplicates – e.g., UNIQUE
Data type – e.g., INTEGER
Size – e.g., VARCHAR(30)
Check – e.g., CHECK (col2 > 0)
Default – e.g., DEFAULT CURRENT_DATE
References – e.g., REFERENCES parent(col4)

Table Level Constraints
Constraints may also be specified at the table level. This is the only way to implement
constraints that involve more than one column. Table level constraints follow all column
level definitions. As previously, constraints may be either named or unnamed.

Access Considerations and Constraints Page 21-29

Example of Column and Table Level Constraints

CREATE TABLE Department
(dept_number INTEGER NOT NULLCONSTRAINT primary_1 PRIMARY KEY
,dept_name CHAR(20) NOT NULLUNIQUE
,dept_mgr_number INTEGER
,budget_amount DECIMAL (10,2) COMPRESS 0
,CONSTRAINT refer_1 FOREIGN KEY (dept_mgr_number)

REFERENCES Employee (employee_number)
,CONSTRAINT dn_gt_1000 CHECK (dept_number > 1000)
);

There are four types of constraints.

PRIMARY KEY No Nulls, No Duplicates

UNIQUE No Nulls, No Duplicates

CHECK Verify values or range

REFERENCES Relates to other columns

Constraints can be defined at the column or table level.

Notes for the following example:

• Some constraints are named, some are not.
• Some constraints are at column level, some are defined at the table level.
• The SHOW TABLE command will display this table differently for 13.0 and 13.10.

 Access Considerations and Constraints Page 21-30

Example (13.0) – SHOW Department Table
The SHOW TABLE command shows a definition that is slightly altered from the original
script.

Note:

The PRIMARY KEY is implemented as a unique primary index.
The UNIQUE constraint is implemented as a unique secondary index.
The REFERENCES constraint is implemented as a FOREIGN KEY at the table level.
The CHECK constraint is implemented at the table level.

Additional notes: Since this table was created in Teradata mode, the following also applies:

The table is created as a SET table.
The character field is implemented with a NOTCASESPECIFIC attribute.

It is advisable to keep original scripts for documentation, as the original coding will
otherwise be lost.

Access Considerations and Constraints Page 21-31

Example (13.0) – SHOW Department Table

SHOW TABLE Department;

CREATE SET TABLE PD.Department, FALLBACK,
NO BEFORE JOURNAL,
NO AFTER JOURNAL,
CHECKSUM = DEFAULT
(
dept_number INTEGER NOT NULL,
dept_name CHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC NOT NULL,
dept_mgr_number INTEGER,
budget_amount DECIMAL(10,2) COMPRESS 0,
CONSTRAINT dn_gt_1000 CHECK (dept_number > 1000),

CONSTRAINT refer_1 FOREIGN KEY (dept_mgr_number) REFERENCES
PD.EMPLOYEE (EMPLOYEE_NUMBER))

UNIQUE PRIMARY INDEX primary_1 (dept_number)
UNIQUE INDEX (dept_name);

This is an example of SHOW TABLE with Teradata 13.0.

Notes:

• In Teradata 13.0, the SHOW TABLE command does not show the Primary Key and Unique
constraints.

• Since Primary Key and Unique constraints are implemented as unique indexes, the Show
Table command shows these constraints as indexes.

• All constraints are specified at table level with SHOW TABLE.

 Access Considerations and Constraints Page 21-32

Example (13.10) – SHOW Department Table
An example of the same SHOW TABLE with Teradata 13.10 follows:

SHOW TABLE Department;

CREATE SET TABLE PD.Department , FALLBACK ,
 NO BEFORE JOURNAL,
 NO AFTER JOURNAL,
 CHECKSUM = DEFAULT,
 DEFAULT MERGEBLOCKRATIO
 (
 dept_number INTEGER NOT NULL,
 dept_name CHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC NOT NULL,
 dept_mgr_number INTEGER,
 budget_amount DECIMAL(10,2) COMPRESS 0,
 CONSTRAINT dn_1000_plus CHECK (dept_number > 999),
CONSTRAINT primary_1 PRIMARY KEY (dept_number),
UNIQUE (dept_name),
CONSTRAINT refer_1 FOREIGN KEY (dept_mgr_number)
 REFERENCES PD.EMPLOYEE (EMPLOYEE_NUMBER)) ;

The SHOW TABLE command again shows a definition that is slightly altered from the
original script; however the Teradata 13.10 version shows PRIMARY KEY and UNIQUE
constraints as originally specified.

Note:

The PRIMARY KEY is implemented as a unique primary index.
The UNIQUE constraint is implemented as a unique secondary index.
The REFERENCES constraint is implemented as a FOREIGN KEY at the table level.
The CHECK constraint is implemented at the table level.

Additional notes: Since this table was created in Teradata mode, the following also applies:

The table is created as a SET table.
The character field is implemented with a NOTCASESPECIFIC attribute.

As before, it is advisable to keep the original scripts for documentation, as the original
coding will otherwise be lost.

Access Considerations and Constraints Page 21-33

Example (13.10) – SHOW Department Table

SHOW TABLE Department;

CREATE SET TABLE PD.Department, FALLBACK,
NO BEFORE JOURNAL,
NO AFTER JOURNAL,
CHECKSUM = DEFAULT,
DEFAULT MERGEBLOCKRATIO
(
dept_number INTEGER NOT NULL,
dept_name CHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC NOT NULL,
dept_mgr_number INTEGER,
budget_amount DECIMAL(10,2) COMPRESS 0,
CONSTRAINT dn_gt_1000 CHECK (dept_number > 1000),

CONSTRAINT primary_1 PRIMARY KEY (dept_number),
UNIQUE (dept_name),
CONSTRAINT refer_1 FOREIGN KEY (dept_mgr_number)

REFERENCES PD.EMPLOYEE (EMPLOYEE_NUMBER)) ;

This is an example of SHOW TABLE with Teradata 13.10.

Notes:

• In Teradata 13.10, the SHOW TABLE command does show the Primary Key and Unique
constraints.

• As always, Primary Key and Unique constraints are implemented as unique indexes.

• All constraints are specified at table level with SHOW TABLE.

 Access Considerations and Constraints Page 21-34

Altering Table Constraints
Once a table has been created, constraints may be added, dropped and in some cases,
modified. The ALTER TABLE command can also be used to add new columns (up to
2048) to an existing table.

UNIQUE Constraints
Uniqueness constraints may also be added or dropped as needed. They may apply to one
or more columns. Columns must be defined as NOT NULL before a uniqueness constraint
may be applied to them. Uniqueness constraints are physically implemented by Teradata as
unique indexes, either primary or secondary. If the specified columns do not contain data
that is unique, the constraint will be rejected and an error will be returned.

Unique constraints may be dropped either by referencing their name, or by dropping the
index on the specified columns.

PRIMARY KEY Constraints
Adding a primary key constraint to a table via ALTER TABLE will always result in the
primary key being implemented as a unique secondary index (USI). This can only be done
if there has not already been a primary key defined on the table.

Dropping a primary key constraint may be done either by dropping the named constraint
or by dropping the associated index. It is not possible to drop a primary key constraint that
is implemented as a primary index.

FOREIGN KEY Constraints
Foreign key constraints may be named or unnamed, however the syntax for dealing with
them differs accordingly. Foreign keys may be added to a table assuming:

a.) The referenced column is defined as unique and not null
b.) The number and type of columns agree between referenced and referencing

columns
c.) There are no data values in the current referencing table that are not also found in

the referenced table.

Foreign keys may always be dropped with no concerns about inconsistencies. Foreign key
constraints may be named and if so may be dropped by name.

REFERENCES constraints are covered in detail in the next module.

CHECK Constraints
CHECK constraints may be added or dropped. A named CHECK constraint may also be
modified assuming that the existing data conforms to the new constraint, otherwise an error
is returned.

Access Considerations and Constraints Page 21-35

Altering Table Constraints

ALTER TABLE tablename
ADD CONSTRAINT constrname CHECK . . .
ADD CONSTRAINT constrname UNIQUE . . .
ADD CONSTRAINT constrname PRIMARY KEY . . .
ADD CONSTRAINT constrname FOREIGN KEY . . .

To add constraints to a table:

ALTER TABLE tablename
DROP CONSTRAINT constrname ;

ALTER TABLE tablename
MODIFY CONSTRAINT constrname . . . ;

To modify existing constraints:

To drop constraints:

Note:
Only constraint that can be modified
is a named CHECK constraint.

The ALTER TABLE command can also be used to add new columns (up to 2048) to an
existing table.

 Access Considerations and Constraints Page 21-36

Identity Column – Overview
This feature, also known as the DBS Generated Unique Primary Index causes the system to
generate a table-level unique number for the column for every inserted row, whether for
single or bulk inserts. The feature works for these types of inserts:

Single inserts
Multi-session concurrent single-statement insert requests; for example, BTEQ import
Multi-session concurrent multi-statement insert request; for example, TPump inserts
INSERT SELECT

Business Value
Identity Columns save overhead and maintenance costs because they:

Easily define an identity value that guarantees row uniqueness in a table
Avoid the performance overhead incurred by specifying a uniqueness constraint
Eliminate the need to generate unique IDs for applications outside of Teradata
If used as a Primary Index, they guarantee even data distribution which benefits

performance
May be used to generate unique Primary Key values such as employee numbers, order

numbers, item numbers, etc.
Comply with the ANSI Standard
Save DBA’s and/or Application Developers time by automating a function that

previously had to be hand coded and maintained

Business Usage
Use this feature to generate a unique number for each row as rows are added to a table. This
feature is most useful if the table has no intrinsically unique column or combination of
columns.

There are three reasons that you might want to use this feature:

To guarantee row uniqueness in a table
To guarantee even row distribution for a table
To optimize and simplify first port from other databases that utilize generated keys

Access Considerations and Constraints Page 21-37

Identity Column – Overview

Also known as a DBS Generated Unique Primary Index: A table-level unique
number system-generated for rows as the rows are inserted in the table.

Identity Columns may be used to ...
• Guarantee row uniqueness in a table

• Guarantee even row distribution for a table

• Optimize and simplify initial port from other databases that use generated keys

Identity columns values can be assigned by the PE or the AMP.
• PE and/or AMPs reserve a pool of values and assign numbers out of their pool.

• PE assigns identity column values for single inserts and TPump.

• AMP assigns identity column values for FastLoad, MultiLoad, and SQL
INSERT/SELECT operations.

Identity Columns Save Overhead/Maintenance Costs:
• Reduce need for uniqueness constraints

• Reduce manual coding tasks

• Generate unique PK values

• Comply with the ANSI Standard

 Access Considerations and Constraints Page 21-38

Identity Column – Implementation
DBS Control setting IdColBatchSize – indicates the size of the pool of numbers to be
reserved for generating numbers for a batch of rows to be bulk-inserted into a table with an
identity column. The valid range of values is 1 – 1000000. The default is 100000.

Identity Column data type may be any exact numeric type. For example, an Identity column
can be INTEGER, DECIMAL(18,0), BIGINT, etc.

Implicit uniqueness is guaranteed only for GENERATED ALWAYS + NO CYCLE Identity
Columns. CYCLE causes the numbering to restart from MINVALUE for positive
increments and MAXVALUE for negative increments after the maximum/minimum number
is generated.

Performance
Initial bulk-load of an Identity Column table may create an initial performance hit as every
VPROC that has rows reserves a range of numbers from DBC.IdCol and sets up its local
cache entry. Thereafter, as data skew spaces out the numbers reservation, the contention
should diminish. Generating Identity Column values takes a few seconds per couple of
thousand rows inserted.

Process for Generating Identity Column Numbers
The system allocates identity column numbers differently depending on whether an
operation is 1) a single row or USING clause-based insert or 2) an INSERT … SELECT
insert.

 For this type of insert operation … Identity column numbers are cached on the …
 Single row or USING clause PE
 INSERT … SELECT AMP

When the initial batch of rows for a bulk insert arrives on a VPROC (PE or AMP), a range
of numbers is first reserved before processing the rows. Each VPROC retrieves the next
available value for the identity column from the new DBC.IdCol dictionary table and
immediately updates this value with an amount equal to a new DBSControl setting. Once a
range of numbers is reserved, the first number in the range is stored in a VPROC local
Identity Column cache. Different tasks doing concurrent inserts on the same identity
column table allot a number for each row being inserted and increment it in the cache.
When the last reserved number is issued, the VPROC again reserves another range of
numbers and updates the identity column’s entry in DBC.IdCol. For example, each Parsing
Engine reserves a cache of numbers. That PE owns that range. It takes the next number
from the cache. When it runs out, it goes and gets another group.

Due to Teradata’s parallel architecture, numbers generated do not reflect the chronological
order of rows inserted. Numbering gaps can occur, exact incrementing is not guaranteed,
i.e., 1000 rows inserted into the table may not be numbered from 1 to 1000. Numbering
gaps can occur because the process favors scalability and performance over enforced
sequential numbering.

Access Considerations and Constraints Page 21-39

Identity Column – Implementation

Characteristics of the IDENTITY Column feature are ...

• Implemented at column level in a CREATE TABLE statement

– Data type may be any exact numeric type – INTEGER, DECIMAL (x,0)

– GENERATED ALWAYS always generates a value.

– GENERATED BY DEFAULT generates a value only when no value is specified.

• GENERATED ALWAYS + NO CYCLE implies uniqueness.

• CYCLE restarts numbering after the maximum/minimum number is generated.

• DBSControl setting indicates the number pool size to reserve for generating numbers.

– Each Vproc may reserve 1 – 1,000,000 numbers; default is 100000.

• Numbering gaps can occur.

– Generated numbers do not reflect row insertion sequence.

– Exact incrementing is not guaranteed.

• Scalability and performance are favored over enforced sequential numbering.

 Access Considerations and Constraints Page 21-40

Identity Column – Example 1
The facing page contains an example of using the GENERATED ALWAYS option.

When an Identify column is created, a row is placed into a dictionary table name
DBC.IdCol. Columns in this table include:

TableID
DatabaseID
AvailValue
StartValue
MinValue
MaxValue
Increment
Cyc (Cycle)

The values of these columns for this example are:

TableID 00004B090000
DatabaseID 0000AF04
AvailValue 801001
StartValue 100001
MinValue 100001
MaxValue 2147483647
Increment 1
Cyc N

Note: If MINVALUE is not specified, then the minimum value for an integer column
will be -214783647.

If the identify column is defined without a minimum and Decimal (18, 0), then the values in
DBC.IdCol are shown below.

CREATE TABLE Table_C
 (Cust_Number DECIMAL (18,0) GENERATED ALWAYS AS IDENTITY,
 LName VARCHAR(15),
 Zip_code INTEGER);

The values of these columns for Table_C are:

TableID 00004D090000
DatabaseID 0000AF04
AvailValue 1
StartValue 1
MinValue -1,000,000,000,000,000,000
MaxValue 1,000,000,000,000,000,000
Increment 1
Cyc N

Access Considerations and Constraints Page 21-41

Identity Column – Example 1

Example 1: GENERATED ALWAYS AS IDENTITY
This command always generates a value. It does not cycle and does not repeat prior
used values.

CREATE TABLE Table_A
(Cust_Number INTEGER GENERATED ALWAYS AS IDENTITY

(START WITH 100001 INCREMENT BY 1 MINVALUE 100001 NO CYCLE),
LName VARCHAR (15),
Zip_code INTEGER);

INSERT INTO Table_A SELECT c_custid, c_lname, c_zipcode FROM Customer;

• Customer has 5000 rows – new customer
numbers generated are not sequentially
numbered from 100001 to 105000.

• Numbering gaps can occur – exact
incrementing is not guaranteed.

• INTEGER provides a limited range of values –
maybe use DECIMAL(18,0)

• Default for next allocation pool is DBSControl
parameter value of 100,000.

SELECT * FROM Table_A ORDER BY 1;

Cust_Number LName Zip_Code

100001 Tatem 89714
100002 Kroger 98101
100003 Yang 77481
100004 Miller 45458

: : :
200001 Powell 57501
200002 Gordan 89714
200003 Smoothe 80002

: : :

 Access Considerations and Constraints Page 21-42

Identity Column – Example 2
The facing page contains an example of using the GENERATED BY DEFAULT option.

When an Identify column is created, a row is placed into a dictionary table name
DBC.IdCol. Columns in this table include:

TableID
DatabaseID
AvailValue
StartValue
MinValue
MaxValue
Increment
Cyc (Cycle)

The values of these columns for this example are:

TableID 00004C090000
DatabaseID 0000AF04
AvailValue 920000000
StartValue 1000000000
MinValue 0
MaxValue 2147483647
Increment -1
Cyc N

Note: If INCREMENT BY is positive and CYCLE is specified, renumbering begins from
MINVALUE when MAXVALUE is reached.

Access Considerations and Constraints Page 21-43

Identity Column – Example 2

Example 2: GENERATED BY DEFAULT AS IDENTITY
This option generates a value only when no value is specified for the column.

CREATE TABLE Table_B
(Cust_Number INTEGER GENERATED BY DEFAULT AS IDENTITY

(START WITH 1000000000 INCREMENT BY -1 MINVALUE 0),
LName VARCHAR(15),
Zip_code INTEGER);

INSERT INTO Table_B SELECT NULL, c_lname, c_zipcode FROM Customer;

• Customer has 5000 rows – new customer
numbers are generated because NULL was part of
SELECT.

• If MINVALUE is not used, the minimum value for
an INTEGER is -2,147,483,647.

• CYCLE option is not used – default is NO CYCLE.

• GENERATED BY DEFAULT – provides capability
of copying the contents of one table with an
Identity column into another.

SELECT * FROM Table_B ORDER BY 1 DESC;

Cust_Number LName Zip_Code

1000000000 Tatem 89714
999999999 Kroger 98101
999999998 Yang 77481
999999997 Miller 45458

: : :
999900000 Powell 57501
999899999 Gordan 89714
999899998 Smoothe 80002

: : :

 Access Considerations and Constraints Page 21-44

Identity Column – Considerations
Generated Always Identity Columns typically define the Primary Index. Define an Identity
Column as the Primary Index only if it is the primary path to the table. For instance, if
there is an Identity Column in the Product table but all the retrievals or joins are done on
SKU, then SKU should be the Primary Index. If the Identity Column is also used
occasionally as an access path, consider it as a Secondary Index.

Generated Default Identity Columns primarily facilitate copying data from one table with an
Identity Column into another without losing the system generated values in the source table.
Use a numeric type large enough to hold all the values that will ever be required. Never use
an Identity Column to import a schema/application from another DBMS as a substitute for a
good logical database design. Many schema choices that rely on generated Identity
Columns do not optimally utilize Teradata join and access capabilities. Think carefully
before using this feature as a primary schema foundation.

You can drop an identity column from an existing table, but you cannot drop just the identity
column attribute and retain the column.

Limited to DECIMAL(18,0)
The maximum numeric data type ranges are DECIMAL(18,0) and NUMERIC(18,0), or
approximately 1 x 1018 rows.

This is true even when the DBS Control flag MaxDecimal is set to 38 and you define an
identity column with more than 18 digits of precision. For example, you can create a table
with an identity column with BIGINT or DECIMAL(38,0) data types. The create table
command will not fail and you will not get a warning message. However, the values
generated by the identity column feature remain limited to the DECIMAL(18,0) type and
size.

Restrictions
Additional restrictions on Identity Columns are listed on the facing page.

Access Considerations and Constraints Page 21-45

Identity Column – Considerations

Generated Always Identity Columns
• Typically define the Primary Index.

• Define as the Primary Index only if it is the primary path.

• If it is also used as an access path, consider it as a Secondary Index.

Generated By Default Identity Columns
• Facilitate copying data from one table into another.

• Use a numeric type large enough to hold all the values that will ever be required.

• Never use as a substitute for a good logical database design.

• May not optimally utilize Teradata join and access capabilities.

Restrictions

• A table can only have 1 Identity column.

• ALTER TABLE statement can not add an Identity Column to an existing table.

• Cannot be part of a composite primary or a composite secondary index.

• Cannot be used with Global Temporary or Volatile tables.

• Cannot be used in a join index, hash index, PPI or value-ordered index.

• Atomic UPSERTs are not supported on a table with an Identity Column as its PI.

• GENERATED ALWAYS Identity Column value updates are not supported.

 Access Considerations and Constraints Page 21-46

Module 21: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Access Considerations and Constraints Page 21-47

Module 21: Review Questions

1. Which one of the following situations requires the use of the Transient Journal?

a. loading a table with FastLoad
b. DELETE all the rows in a table
c. UPDATE all the rows in a table
d. INSERT/SELECT into an empty table

2. What is a negative impact of updating a UPI value?

__

3. What are the 4 types of constraints?

_____________ _____________ _____________ _____________

4. True or False? A primary key constraint is always implemented as a primary index.

5. True or False? A primary key constraint is always implemented as a unique index.

6. True or False? Multi-column constraints must be coded as table level constraints.

7. True or False? Only named check constraints may be modified.

8. True or False? Named primary key constraints may always be dropped if they are no longer
needed.

9. True or False? Using the “START WITH 1” and “INCREMENT BY 1” options with an Identity
column will provide sequential numbering with no gaps for the column.

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight
it can be ur primary index and cannot be droppedits a table level definition -create tablePI cannot be droppedNoPI table needs to be created sep

ds186034
Highlight
no guarantygaps are common ene

 Access Considerations and Constraints Page 21-48

Notes

Referential Integrity Page 22-1

Module 22

Teradata Proprietary and Confidential

Referential Integrity

After completing this module, you will be able to:

 Specify how is the reference index subtable hash distributed?

 Specify how a reference index row can be marked as “invalid”.

 List the differences between standard referential integrity,
batch referential integrity, and soft referential integrity.

 Referential Integrity Page 22-2

Notes

Referential Integrity Page 22-3

Table of Contents

Referential Integrity ... 22-4
Parent-Child Relationships .. 22-4
Three Types of Referential Constraints ... 22-6

Standard Referential Integrity .. 22-6
Batch Referential Integrity ... 22-6
Referential Constraints (Soft RI) ... 22-6

Reference Index Subtables ... 22-8
Reference Index Example – Add REFERENCES ... 22-10

Reference Index Example – INSERTs ... 22-12
Reference Index Example – UPDATEs ... 22-14
Reference Index Example – DELETEs .. 22-16

Fixing Referential Integrity Problems .. 22-18
Unresolved Reference Constraints ... 22-18
Inconsistent References .. 22-18

Batch Referential Integrity ... 22-20
Soft Referential Integrity.. 22-22

Customer Benefits .. 22-22
Limitations ... 22-22

Referential Integrity Example .. 22-24
Referential Integrity Example (cont.) .. 22-26
Join Optimization with RI .. 22-28

Join Optimization with RI (cont.) .. 22-30
Summary .. 22-32
Module 22: Review Questions ... 22-34

 Referential Integrity Page 22-4

Referential Integrity
Referential Integrity (RI) is the term used to describe a database feature that ensures that
when a non-null value is placed in a FK column that the value exists in a PK within the
database. Teradata’s implementation of RI also allows a FK to reference a UNIQUE, NOT
NULL column(s).

Reasons to implement Referential Integrity include:

 Data integrity and consistency

 Increases development productivity – it is not necessary to code SQL statements to

enforce referential constraints

 Requires fewer application programs to be written – all update activities are

programmed to ensure that referential constraints are not violated.

 Improves performance – the Teradata Database chooses the most efficient method

to enforce the referential constraints.

 User applications may rely on Referential Integrity for their functionality.

Referential integrity is the concept of relationships between tables based on the definition of
a primary key and a foreign key. It provides for specification of columns within a
referencing table that are foreign keys for columns in some other referenced table.
Referenced columns must be defined as either:

 PRIMARY KEY or UNIQUE constraints
 UNIQUE indexes

Referential integrity is a reliable mechanism that prevents accidental database corruption
when users execute INSERT, UPDATE, and DELETE statements.

Referential integrity states that a row cannot exist in a table with a non-null value for a
referencing column if an equal value does not exist in a referenced column.

Parent-Child Relationships
The operative rule of parent-child relationships is that a child must have a parent. Any
maintenance done to the table must honor the integrity of this relationship as specified in the
constraint definition.

Child tables are called “referencing tables” and parent tables are called “referenced tables”.

Referential Integrity Page 22-5

Referential Integrity

Referential Integrity: A concept where a Foreign Key value (other than NULL)
must exist within the Primary Key.

• Referential Integrity is a feature which ensures data integrity and consistency
between primary and foreign key columns.

• In Teradata, a Foreign Key can reference a “parent key” which effectively is a unique
index (UPI or USI).

• The table containing the PK is referred to as the "referenced" table.

• The table containing the FK is referred to as the "referencing" table.

Primary Key (Teradata’s Implementation) Foreign Key

Must be unique.

Must be NOT NULL.

Can only be deleted or modified if
no Foreign Key values reference it.

May be unique or non-unique.

May be NULL.

Can be deleted at any time.
Can be updated to NULL or only to a
valid Primary Key value.

 Referential Integrity Page 22-6

Three Types of Referential Constraints

Standard Referential Integrity
Standard referential integrity is a form of referential integrity that incurs modest
performance overhead because it tests, on a row-by-row basis, the referential integrity of
each insert, delete, and update operation on a column with a defined referential integrity
constraint. Each such operation is checked individually by AMP software, and if a violation
of the specified referential integrity relationship occurs, the operation is rejected and an error
message is returned to the requestor.

You cannot use utilities like FastLoad, MultiLoad, and Teradata Parallel Transporter
(LOAD and UPDATE operators) on tables defined with standard referential integrity.

Batch Referential Integrity
Batch referential integrity is a form of referential integrity checking that is less expensive to
enforce in terms of system resources than standard referential integrity because it is enforced
as an all-or-nothing operation (the entire transaction must complete successfully) rather than
on a row-by-row basis, as standard referential integrity is checked.

Batch RI also conserves system resources by not using REFERENCE index subtables.

Batch referential integrity relationships are defined by specifying the WITH CHECK
OPTION phrase for a REFERENCES constraint. When you specify this phrase, the
database enforces the defined RI constraint at the granularity of a single transaction or SQL
statement.

You cannot use utilities like FastLoad, MultiLoad, and Teradata Parallel Transporter
(LOAD and UPDATE operators) on tables defined with batch referential integrity.

Referential Constraints (Soft RI)
In some circumstances, the Optimizer is able to create significantly better query plans if
certain referential relationships have been defined between tables specified in the request.

The Referential Constraint feature permits you to take advantage of these optimizations
without incurring the overhead of enforcing the suggested referential constraints.

Referential Constraint (soft RI) relationships are defined by specifying the WITH NO
CHECK OPTION phrase for a REFERENCES constraint. When you specify this phrase,
the database does not enforce the defined RI constraint.

You can use utilities like FastLoad, MultiLoad, and Teradata Parallel Transporter (LOAD
and UPDATE operators) on tables defined with soft referential integrity.

Referential Integrity Page 22-7

Three Types of Referential Constraints

There are three types of referential constraints that can be implemented with
Teradata.

• Referential Integrity Constraint – tests each row (inserted, deleted, or updated) for
referential integrity. Also referred to as Standard RI.

• Batch Referential Integrity Constraint (Batch RI) – tests a batch operation (implicit
SQL transaction) for referential integrity.

• Referential Constraint (Soft RI) – does not test for referential integrity.

In addition to providing data integrity constraints, use of a PF-FK constraint
enables optimization techniques such as Join Elimination.

• There is no need to join the child table to the parent table if you set up an FK-PK join,
unless you need some additional columns from the parent table.

This module will cover the standard RI constraint first.

 Referential Integrity Page 22-8

Reference Index Subtables
When a reference is created between a FK and a PK, Teradata software creates a Reference
Index subtable associated with the Foreign Key. To accommodate referential constraints, a
new field that describes the Foreign Key columns is added to the table header. Each
referential constraint defined on a table has a reference index descriptor added to the table
header that identifies the Reference Index Subtable.

The Reference Index subtable is hash distributed based on the Foreign Key value, which
means the subtable row will always reside on the same AMP as the corresponding Parent
UPI or USI row. Hence, all RI constraint checks can be done by the same AMP responsible
for the Foreign Key value.

For each RI constraint defined on a Child table, Teradata creates a reference index subtable.
This subtable is hashed distributed based on the FK value. Each row in this subtable
consists of the RowID, the FK value, a Boolean Flag, and a Row Count.

 RowID – included row hash of FK value and uniqueness value

 FK value – included with the subtable row for validation

 Boolean Flag – denotes a valid or invalid reference index row, which indicates that

there is no corresponding Foreign Key value in the Parent Table.

 Row Count – tracks the number of Child data rows containing that Foreign Key

value.

To preserve data integrity, a RI constraint violation usually rolls back the statement and
leaves a consistent database. There are two exceptions to this rule.

1) Adding a RI constraint to an a populated table
2) Revalidating a RI constraint after a table is restored

In these cases, a Reference Index subtable row for a foreign key that doesn’t have a
matching Parent Key (a.k.a., Primary Key) value is marked as “Invalid”. Inserts, updates,
and deletes are still legal operations on a table with invalid index reference rows.

When standard or batch RI is established on an already populated table, it is possible to have
rows in the child table with an invalid FK value (e.g., invalid department number). The
reference index subtable identifies these rows internally as invalid. Once RI is established,
it is not possible to insert new rows into the child table with that same invalid value.
Teradata software checks the Boolean flag reference index subtable, and if the flag is
“invalid”, Teradata will check the parent table to see if that value now exists in a PK row
(e.g., insert a new department row into the department table). If the value still does not
exist, the insert of the row with an invalid FK value will fail.

Referential Integrity Page 22-9

Reference Index Subtables

• With standard RI, for each RI constraint defined on a Child table, there exists a
Reference Index subtable.

– Each row in this subtable consists of the following:

RowID – row hash and assigned uniqueness value of FK value

FK value – used to verify row

Boolean Flag – denotes a valid or invalid reference index row. Invalid indicates that there is
no corresponding FK value in the PK column.

Row Count – tracks the number of Child data rows containing that Foreign Key value.

• The Reference Index subtable is hash distributed based on the FK value.

– The subtable row will always reside on the same AMP as the corresponding Parent
UPI or USI row.

• How is a reference index row marked as invalid?

1) Adding a RI constraint to an already populated table

2) Revalidating a RI constraint after a table is restored

In these cases, a Reference Index subtable row for a foreign key that doesn’t have
a matching PK value is marked as “Invalid”.

An error table (e.g., Employee_0) will also be created that can be accessed via SQL.

 Referential Integrity Page 22-10

Reference Index Example – Add REFERENCES
The facing page illustrates an example of adding a References constraint to a table. The
examples assume a 4 AMP system.

When creating a Child table Foreign Key reference, Teradata checks to verify that the Parent
key is defined as a UPI (NOT NULL) or a USI (NOT NULL). It also checks that the
Foreign Key has the same data type as the corresponding Parent Key, and that the maximum
number of RI constraints has not been exceeded.

For each row in the Child table that does not have a matching Parent Key (a.k.a., Primary
Key) value, the Reference Index subtable row for that Foreign Key is marked as “Invalid”.
Additionally, a row is placed into an “error table”. In this example, the error table will be
named EMPLOYEE_0.

Note: If the References constraint is created as part of the CREATE TABLE statement,
then the EMPLOYEE_0 table is not built.

If three references constraints are added to the Employee table (via ALTER TABLE), the
error tables are named as follows:

 Employee_0
 Employee_4
 Employee_8

Referential Integrity Page 22-11

Reference Index Example – Add REFERENCES

Dept Dept_Name

PK

UPI

150 PAYROLL
200 FINANCE
310 MFG.
400 EDUCATION
450 ADMIN

Department

Enum Name Dept

PK FK

UPI

1 BROWN 200
2 SMITH 310
3 JONES 310
4 CLAY 400
5 PETERS 150
6 FOSTER 200
7 GRAY 310
8 BAKER 310
9 TYLER 405

10 CARR 450

Employee ALTER TABLE Employee
ADD CONSTRAINT fk1 FOREIGN KEY (Dept)

REFERENCES Department (Dept);

Department rows hash distributed on Department.Dept (UPI)

400 EDUCATION200 FINANCE
450 ADMIN

310 MFG.150 PAYROLL

Employee rows hash distributed on Employee.Enum (UPI)

6 FOSTER 200
8 BAKER 310

4 CLAY 400
3 JONES 310
9 TYLER 405

1 BROWN 200
7 GRAY 310

5 PETERS 150
2 SMITH 310

10 CARR 450

Reference Index rows hash distributed on Employee.Dept (FK)

150 0 1
405 1 1

FK Boolean Count
Flag

310 0 4

FK Boolean Count
Flag

200 0 2
450 0 1

FK Boolean Count
Flag

400 0 1

FK Boolean Count
Flag

 Referential Integrity Page 22-12

Reference Index Example – INSERTs
An Insert into a Parent table (Primary Key) can never violate the referential constraint since
it is perfectly legal for a Primary Key value to have no Foreign Key references. There is no
need to update the reference index subtable, since it contains Foreign Key values, not
Primary Key values.

The example on the facing page illustrates an INSERT of a new row into the Department
table. Note there is no impact on the Reference Index subtable.

 Note: If a missing Primary Key is inserted into the Parent table, no attempt is made to
reset the reference index row flag to valid. An Insert or an Update of the Child table (FK)
validates an invalid reference index row.

A Referential constraint check is required when an Insert into a Child table with a Foreign
Key reference is done. Teradata software supports two types of Inserts.

1. A simple Insert without a sub-query is used to insert one row into the target table.

 If the FK value already exists in the Reference Index subtable and the reference
index row is “valid”, then the reference index row count is incremented and the data
row is inserted.

 If the FK value doesn’t exist in the Reference Index subtable or if it finds an invalid
reference index row, Teradata software checks the Parent table’s UPI or USI subtable
(PK is either a UPI or USI). If the row exists in the Parent table, a new reference index
row is created or an invalid reference row is marked as valid.

 A RI constraint violation results if the Parent table’s UPI or USI subtable is
searched and no matching Foreign Key value is found. A RI constraint violation will
roll back the offending statement and return an error to the user.

2. An Insert-Select is used to insert multiple rows from a sub-query. In this case, the
input rows generated by the sub-query are stored in a spool file. Instead of checking
one row at time, each AMP redistributes its local spool file based on the Foreign Key
values to the appropriate AMPs. When the redistribution process is completed, each
receiving AMP then sorts the rows based on the Foreign Key values and combines
duplicate Foreign Key values into one with a row count indicating the number of
duplicates. The rest of the RI constraint check logic is identical to that described for a
simple insert.

Referential Integrity Page 22-13

Reference Index Example – INSERTs

INSERT INTO Department VALUES (500, 'SALES');
INSERT INTO Employee VALUES (11, 'BENCH', 310);
INSERT INTO Employee VALUES (12, 'WARNER', 500);
INSERT INTO Department VALUES (405, 'MKTG.');

Enum Name Dept

PK FK

UPI

1 BROWN 200
2 SMITH 310
3 JONES 310
4 CLAY 400
5 PETERS 150
6 FOSTER 200
7 GRAY 310
8 BAKER 310
9 TYLER 405

10 CARR 450
11 BENCH 310
12 WARNER 500

Employee

Dept Dept_Name

PK

UPI

150 PAYROLL
200 FINANCE
310 MFG.
400 EDUCATION
405 MKTG.
450 ADMIN
500 SALES

Department

Department rows hash distributed on Department.Dept (UPI)

400 EDUCATION200 FINANCE
450 ADMIN

310 MFG.
500 SALES

150 PAYROLL
405 MKTG.

Employee rows hash distributed on Employee.Enum (UPI)

6 FOSTER 200
8 BAKER 310
11 BENCH 310

4 CLAY 400
3 JONES 310
9 TYLER 405

1 BROWN 200
7 GRAY 310
12 WARNER 500

5 PETERS 150
2 SMITH 310

10 CARR 450

Reference Index rows hash distributed on Employee.Dept (FK)

150 0 1
405 1 1

FK Boolean Count
Flag

310 0 4 5
500 0 1

FK Boolean Count
Flag

200 0 2
450 0 1

FK Boolean Count
Flag

400 0 1

FK Boolean Count
Flag

Note: The RI subtable row for 405 is not affected by the INSERT of Department 405.

 Referential Integrity Page 22-14

Reference Index Example – UPDATEs
A Referential constraint check is required when an Update is executed on a Child table
column with a Foreign Key reference. The facing page illustrates two examples of updating
a Foreign Key value. The first example shows fixing a RI constraint violation. The second
example shows changing a valid FK value to a different FK value.

If the column being updated is included in either a Foreign Key or a Parent Key, then RI
constraint checks are required. If the update is to a Child table, then updating the Foreign
Key value involves two Reference Index subtable operations. First, the row count in the
reference index row is updated to reflect one less row containing the old Foreign Key value.
Second, Teradata software searches the reference index subtable for the new Foreign Key
value. This process is similar to the Insert statement described earlier.

Note: In order to handle self-references (within the same table), updating a Parent Key
column requires that the RI constraint check is deferred until the end of the Update
statement.

If the updated FK value already exists in the Reference Index subtable and the reference
index row is “valid”, then the reference index row count is incremented and the data row is
inserted.

If the updated FK value doesn’t exist in the Reference Index subtable or if it finds an invalid
reference index row, Teradata software checks the Parent table’s UPI or USI subtable (PK is
either a UPI or USI). If the row exists in the Parent table, a new reference index row is
created or the invalid reference row is marked as valid.

A RI constraint violation results if the Parent table’s UPI or USI subtable is searched and no
matching Foreign Key value is found. A RI constraint violation will roll back the offending
statement and return an error to the user.

Referential Integrity Page 22-15

Reference Index Example – UPDATEs

UPDATE Employee SET Dept = 400 WHERE Enum = 9;
UPDATE Employee SET Dept = 500 WHERE Enum = 11;

Enum Name Dept

PK FK

UPI

1 BROWN 200
2 SMITH 310
3 JONES 310
4 CLAY 400
5 PETERS 150
6 FOSTER 200
7 GRAY 310
8 BAKER 310
9 TYLER 405

10 CARR 450
11 BENCH 310
12 WARNER 500

Employee

Department rows hash distributed on Department.Dept (UPI)

400 EDUCATION200 FINANCE
450 ADMIN

310 MFG.
500 SALES

150 PAYROLL
405 MKTG.

Employee rows hash distributed on Employee.Enum (UPI)

6 FOSTER 200
8 BAKER 310
11 BENCH 310

4 CLAY 400
3 JONES 310
9 TYLER 405

1 BROWN 200
7 GRAY 310
12 WARNER 500

5 PETERS 150
2 SMITH 310

10 CARR 450

Reference Index rows hash distributed on Employee.Dept (FK)

150 0 1
405 1 1

FK Boolean Count
Flag

310 0 5
500 0 1

FK Boolean Count
Flag

200 0 2
450 0 1

FK Boolean Count
Flag

400 0 1

FK Boolean Count
Flag

(deleted)

Dept Dept_Name

PK

UPI

150 PAYROLL
200 FINANCE
310 MFG.
400 EDUCATION
405 MKTG.
450 ADMIN
500 SALES

Department

 400

4 CLAY 400
3 JONES 310
9 TYLER 400

 500

400 0 1 2

FK Boolean Count
Flag

310 0 5 4
500 0 1 2

FK Boolean Count
Flag

6 FOSTER 200
8 BAKER 310
11 BENCH 500

 Referential Integrity Page 22-16

Reference Index Example – DELETEs
If the table being deleted is a Parent table and the Parent Key value(s) are referenced by a
Foreign Key, then the delete is not allowed. If the target is a Child table, the RI constraints
can never be violated. However, deleting Foreign Key values still requires that the
Reference Index subtable be updated.

If the target is a Child table, as each data row is deleted, the corresponding reference index
row is also updated. This requires the AMP (that has the data row to delete) to send a
message to the AMP with the reference index row so the AMP can decrement the reference
index row count. As long as the database state is consistent, the matching Foreign Key
value should always be found in the Reference Index subtable. The Boolean flag in the
reference index row has no significance in this case. If the row count becomes zero, the
reference index row is deleted.

A special case is deleting rows in a table that has self-references in it. For self- references,
the RI constraint check cannot be done as each row is being deleted. The self-reference
constraint check causes the AMP not to immediately respond to the user with a RI constraint
violation. Instead, during the first pass of RI checks, the AMP inserts the offending Parent
Key values into a spool file. When all of the AMPs complete deleting all the target data
rows, each AMP will then undertake a second pass of checks by traversing through the spool
file to make sure that none of the Parent Key values are still be referenced by any Foreign
Key values.

Deleting all of the data rows from a table is also a special delete case. If the target of a
delete is a Child table, all Teradata software has to do is delete the entire reference index
subtable and the rows in the Child table. If the target is a Parent table, the Parser generates a
synchronous abort test step. This is an all-AMPs step that is used to test whether or not the
subtable is empty. A RI constraint violation results if the reference index subtable is not
empty.

Referential Integrity Page 22-17

Reference Index Example – DELETEs

DELETE Employee WHERE Enum = 5;
DELETE Employee WHERE Enum = 6;
DELETE Department WHERE Dept = 310; (fails)

Enum Name Dept

PK FK

UPI

1 BROWN 200
2 SMITH 310
3 JONES 310
4 CLAY 400
5 PETERS 150
6 FOSTER 200
7 GRAY 310
8 BAKER 310
9 TYLER 400

10 CARR 450
11 BENCH 500
12 WARNER 500

Employee

(deleted)
(deleted)

Department rows hash distributed on Department.Dept (UPI)

400 EDUCATION200 FINANCE
450 ADMIN

310 MFG.
500 SALES

150 PAYROLL
405 MKTG.

Employee rows hash distributed on Employee.Enum (UPI)

6 FOSTER 200
8 BAKER 310
11 BENCH 500

4 CLAY 400
3 JONES 310
9 TYLER 400

1 BROWN 200
7 GRAY 310
12 WARNER 500

5 PETERS 150
2 SMITH 310

10 CARR 450

Reference Index rows hash distributed on Employee.Dept (FK)

150 0 1

FK Boolean Count
Flag

310 0 4
500 0 2

FK Boolean Count
Flag

200 0 2 1
450 0 1

FK Boolean Count
Flag

400 0 2

FK Boolean Count
Flag

(deleted) (deleted)

(deleted)

Dept Dept_Name

PK

UPI

150 PAYROLL
200 FINANCE
310 MFG.
400 EDUCATION
405 MKTG.
450 ADMIN
500 SALES

Department

 Referential Integrity Page 22-18

Fixing Referential Integrity Problems
Altering a table to add foreign key constraints will appear to be a successful operation even
if unreferenced values are found. The rows containing the unreferenced values will be
written to an error table; however the operation will appear to be successful. It is thus
important to check for the existence of the error table following the ALTER TABLE
command. Unreferenced values are also referred to as “invalid rows”.

There are multiple ways to “clean up” these kinds of inconsistencies, as described on the
facing page.

Additional states of reference constraints are listed below. These conditions are described in
more detail in the database administration portion of this course.

Unresolved Reference Constraints
Unresolved reference constraints occur when the FK exists, but the PK does not. The
DBC.Databases2 view provides a count of unresolved reference constraints for any tables
within the database. Situations when an unresolved reference constraint occurs are:

 Creating a table with a Foreign Key before creating the table with the Parent Key.

 Restoring a table with a Foreign Key and the Parent Key table does not exist or

hasn’t been restored.

Inconsistent References
When either the child or parent table is restored, the entire reference constraint for the child
table is marked as inconsistent. Both the FK and the PK exist, but the reference constraint is
marked as inconsistent. At this point, no inserts, updates, deletes or table changes are
allowed. The DBC.All_RI_Children view provides information about reference constraints.

This marking disallows all maintenance activity against the table. If it is desired to perform
maintenance on the table, the table may be marked useable by dropping the inconsistent
references flag. This is done by using the following command:

 ALTER TABLE <child_tablename> DROP INCONSISTENT REFERENCES;

It becomes the user’s responsibility to insure the validity of the referencing information until
such time as the Foreign Key constraint is reinstated.

The REFERENCES privilege is required to perform the DROP INCONSISTENT
REFERENCES command. It has no effect on existing data in the table.

Referential Integrity Page 22-19

Fixing Referential Integrity Problems

Assume an employee is assigned to department 405 which doesn't exist in Department.

ALTER TABLE Employee ADD CONSTRAINT fk1
FOREIGN KEY (Dept_Number) REFERENCES Department (Dept_Number);

Submit

ALTER TABLE is successful.
Table Employee_0 is created with the single row for 405.
User is responsible for fixing referencing table data.

Results

UPDATE Employee SET Dept_Number = 400 WHERE Employee_Number = 9;

Fix Option 1 – Assign a different department

UPDATE Employee SET Dept_Number = NULL
WHERE Employee_Number IN (SELECT Employee_Number FROM Employee_0);

Fix Option 2 – Assign a NULL department number

DELETE FROM Employee
WHERE Employee_Number IN (SELECT Employee_Number FROM Employee_0);

Fix Option 3 – Delete the problem Employee(s)

INSERT INTO Department VALUES (405, 'MKTG.');

Fix Option 4 – Create the required department

 Referential Integrity Page 22-20

Batch Referential Integrity
Batch referential integrity is a form of referential integrity checking that is less expensive to
enforce in terms of system resources than standard referential integrity because it is enforced
as an all-or-nothing operation (the entire transaction must complete successfully) rather than
on a row-by-row basis, as standard referential integrity is checked.

Batch RI also conserves system resources by not using REFERENCE index subtables.

Batch referential integrity relationships are defined by specifying the WITH CHECK
OPTION phrase for a REFERENCES constraint. When you specify this phrase, the database
enforces the defined RI constraint at the granularity of a single transaction or SQL
statement.

This form of RI is tested by joining the relevant parent and child table rows. If there is an
inconsistency in the result, then the system rolls back the entire transaction.

In some situations, there can be a tradeoff for this enhanced performance because when an
RI violation is detected, the entire transaction rolls back instead of one integrity-breaching
row.

In many instances, this is no different than the case for standard RI because for most
transactions, only one row is involved.

The difference for batch RI is situations in which multiple update operations are involved:
for example, an INSERT … SELECT operation involving thousands or even millions of
rows. This would be an expensive operation to have to roll back, cleanse, and then rerun.

Similar very large batch RI rollbacks can occur with ALTER TABLE and CREATE TABLE
statements whose referential integrity relationships do not verify.

Because of its all-or-none nature, batch RI is best used only for tables whose normal
workloads you can be very confident are not going to cause RI violations.

Notes:

 For populated tables, if the FK has NULLs or FK violations, the ALTER TABLE
will fail and no indication of which rows caused the error (Error 3513: RI
Violation).

 After the Batch RI constraint is validated (FK doesn’t have invalid values or

NULLs, you can insert rows into the child table with a FK of NULL.

 You cannot use bulk data loading utilities like FastLoad, MultiLoad, or Teradata

Parallel Transporter (LOAD and UPDATE operators) on tables defined with batch
referential integrity.

Referential Integrity Page 22-21

Batch Referential Integrity

ALTER TABLE Employee ADD CONSTRAINT fk1 FOREIGN KEY (Dept_Number)
REFERENCES WITH CHECK OPTION Department (Dept_Number);

Characteristics

• Tests entire insert, delete, or update operation (implicit transaction) for RI. If
violations are detected, the entire request is aborted and rolled back.

– This form of RI is tested internally by joining the relevant parent and child table rows.

– If there is an inconsistency in the result, then the system rolls back the entire transaction.
This rollback could potentially be time-consuming.

• User-specified Referential Integrity constraints that are enforced by Teradata.
– Enables optimization techniques such as Join Elimination.

• Batch RI is best used only for tables where you are confident there are not going to
be RI violations with the normal workloads.

Limitations

• For populated tables, if the FK has violations (e.g., invalid values), the ALTER TABLE
will fail and there is no indication of which rows caused the error (Error 3513: RI
Violation).

 Referential Integrity Page 22-22

Soft Referential Integrity
This feature (starting with Teradata Release V2R5) enables optimization techniques such as
Join Elimination. It provides a mechanism to allow user-specified Referential Integrity (RI)
constraints that are not enforced by the database.

The benefit of Soft RI is that there is no overhead of integrity-checking. The reason there is
no overhead with soft RI is that Teradata never attempts to validate the relationships when
data is updated. Soft RI means you trust the ETL to guarantee that the relationships always
have integrity. The optimizer simply accepts, trusts, that the integrity is there, but the
database never enforces it. The value of using Soft RI is that the optimizer can sometimes
make more efficient query plans, because it may, under some conditions, be possible to
NOT access one of the tables at all, based on the relationships in the database.

This is only something useful to sites that have an extremely high level of data integrity and
can guarantee that relationships between tables are always kept in sync.

Customer Benefits
Performance improvement for SQL from tools and applications that use join views, or
specify extra joins in the SQL. The Optimizer can use RI to eliminate unneeded joins.

Soft RI allows the constraint to be available to the optimizer without the cost of maintaining
and checking the RI in the database.

FastLoad and MultiLoad can be used to INSERT/UPDATE into tables specified with Soft
RI (unlike tables that have regular RI constraints defined on them).

You may not want to put RI on a FK-PK relationship because of the cost to check and
maintain; this would be just like maintaining an index. This is a mechanism to declare a RI
constraint and that it is true. Soft part is that it will not be checked by the system. The
optimizer will use knowledge of RI constraint when optimizing plans without the cost of
maintaining the information.

Use the REFERENCES WITH NO CHECK OPTION in the syntax to define Soft RI.

Limitations
If user promises RI is true and inserts data that is not true, there is potential that the query
could get the “wrong” result compared to a table with RI that is checked. If correctness is
promised to the system by using Soft RI, and you don’t get what you expected, the system is
working as designed.

Referential Integrity Page 22-23

Soft Referential Integrity

ALTER TABLE Employee ADD CONSTRAINT fk1 FOREIGN KEY (Dept_Number)
REFERENCES WITH NO CHECK OPTION Department (Dept_Number);

Characteristics

• Allows user-specified Referential Integrity constraints not enforced by Teradata.
– Enables optimization techniques such as Join Elimination.

– There is no need to join the child table to the parent table if you set up an FK-PK join, unless
you need some additional columns from the parent table.

• Tables with Soft RI defined can be loaded with FastLoad and MultiLoad.

Limitations

• It is possible to insert data that does not comply with the soft RI constraint.

• Queries could get the “wrong” result compared to a table with RI that is checked.

Notes
• No Reference Index subtable is created.

• No error table is created.

 Referential Integrity Page 22-24

Referential Integrity Example
The facing page contains the CREATE TABLE statements for the Employee and
Department tables that will be used in the various RI examples.

Referential Integrity Page 22-25

Referential Integrity Example

CREATE SET TABLE Employee
(Employee_Number INTEGER NOT NULL,

Location_Number INTEGER,
Dept_Number INTEGER,
Emp_Mgr_Number INTEGER,
Job_Code INTEGER,
Last_Name CHAR(20)
First_Name VARCHAR(20)
Salary_Amount DECIMAL(10,2))

UNIQUE PRIMARY INDEX
(Employee_Number);

26,000 Employees and 1403 departments; 25,998 Employees with valid departments.

2 employees with invalid department numbers (998 and 999 are invalid).

To establish Batch RI, the Employee rows with department numbers 998 and 999 have
the department numbers set to 1001 (a valid department number).

CREATE SET TABLE Department
(Dept_Number INTEGER NOT NULL,

Dept_Name CHAR(20) NOT NULL,
Dept_Mgr_Number INTEGER,
Budget_Amount DECIMAL(10,2))

UNIQUE PRIMARY INDEX
(Dept_Number);

Employee
(26,000)

Department
(1403)

25,9982

 Referential Integrity Page 22-26

Referential Integrity Example (cont.)
The facing page contains the CREATE VIEW statement for the EmpDept_V that joins the
Employee and Department tables. This view will be used in the various RI examples.

The ALTER TABLE commands to add the references constraints to the three Employee
tables are:

 ALTER TABLE Employee
 ADD CONSTRAINT fk1 FOREIGN KEY (Dept_Number)
 REFERENCES Department (Dept_Number);

 ALTER TABLE Employee
 ADD CONSTRAINT fk1 FOREIGN KEY (Dept_Number)
 REFERENCES WITH CHECK OPTION Department (Dept_Number);

 ALTER TABLE Employee
 ADD CONSTRAINT fk1 FOREIGN KEY (Dept_Number)
 REFERENCES WITH NO CHECK OPTION Department (Dept_Number);

Referential Integrity Page 22-27

Referential Integrity Example (cont.)

REPLACE VIEW EmpDept_V
AS SELECT Employee_Number, Last_Name, First_Name, E.Dept_Number, Dept_Name
FROM Employee E
INNER JOIN Department D
ON E.Dept_Number = D.Dept_Number;

EmpDept_V

Employee
(26,000)

Department
(1403)

25,9982

SELECT Employee_Number, Last_Name, Dept_Number
FROM EmpDept_V;

SELECT Employee_Number, Last_Name, Dept_Number, Dept_Name
FROM EmpDept_V;

The tables are NOT joined if a
reference constraint exists.

The tables are joined because columns
are requested from both tables.

 Referential Integrity Page 22-28

Join Optimization with RI
The facing page identifies the results of a SELECT from the EmpDept_V view based on
four different environments.

 No references constraint between the Employee and Department tables.
 Standard references constraint between the Employee and Department tables.
 References with check option (batch RI) between the Employee and Department

tables.
 References with no check option (soft RI) between the Employee and Department

tables.

In all cases, Employee rows with a valid department number are returned.
In all cases, Employee rows with a NULL department number are not returned.

Referential Integrity Page 22-29

Join Optimization with RI

SELECT Employee_Number, Last_Name, Dept_Number FROM EmpDept_V;

Without a references constraint, the two tables are joined together (INNER JOIN).

• Employees with invalid department numbers are not returned.

With a Standard RI constraint, the two tables are not joined together.

• When the RI constraint is created, the Employee_0 table contains rows for invalid
departments (998 and 999). It is the user responsibility to "fix" the Employee table.

– If the Employee table still contains Employees with invalid department numbers, then the
invalid Employee rows are returned.

– If the Employee table has been "fixed", then there will be no invalid Employee rows and the
SELECT will only return valid rows.

With a Soft RI constraint, the two tables are not joined together.

• Employee rows with invalid (e.g., 998 and 999) department numbers are returned.

With a Batch RI constraint, the two tables are not joined together.

• Since the Employee table will not contain any invalid department numbers (e.g., 999),
no invalid Employee rows will be returned.

 Referential Integrity Page 22-30

Join Optimization with RI (cont.)
Without Referential Integrity, the two tables will be joined together.

1) First, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent

global deadlock for TFACT.D.
2) Next, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent

global deadlock for TFACT.E.
3) We lock TFACT.D in view EmpDept_V for read, and we lock TFACT.E in view

EmpDept_V for read.
4) We do an all-AMPs RETRIEVE step from TFACT.D in view EmpDept_V by way of

an all-rows scan with no residual conditions into Spool 3 (all_amps), which is
duplicated on all AMPs. The size of Spool 3 is estimated with high confidence to be
19,642 rows (726,754 bytes). The estimated time for this step is 0.02 seconds.

5) We do an all-AMPs JOIN step from Spool 3 (Last Use) by way of an all-rows scan,
which is joined to TFACT.E in view EmpDept_V by way of an all-rows scan. Spool 3
and TFACT.E are joined using a single partition hash_ join, with a join condition of
("TFACT.E.Dept_Number = Dept_Number"). The result goes into Spool 2
(group_amps), which is built locally on the AMPs. The size of Spool 2 is estimated
with low confidence to be 26,000 rows (1,274,000 bytes). The estimated time for this
step is 0.11 seconds.

6) Finally, we send out an END TRANSACTION step to all AMPs involved in processing
the request.

-> The contents of Spool 2 are sent back to the user as the result of statement 1. The total
estimated time is 0.13 seconds.

When a reference constraint is defined between the two tables (standard RI, batch, or soft
RI), the join between the two tables is optimized (effectively eliminated) if all of the
columns referenced are in the Employee table.

1) First, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent global

deadlock for TFACT.E.
2) Next, we lock TFACT.E in view EmpDept_V for read.
3) We do an all-AMPs RETRIEVE step from TFACT.E in view EmpDept_V by way of an all-

rows scan with a condition of ("NOT (TFACT.E in view EmpDept_V.Dept_Number IS
NULL)") into Spool 2 (group_amps), which is built locally on the AMPs. The size of Spool 2
is estimated with high confidence to be 26,000 rows (1,274,000 bytes). The estimated time for
this step is 0.06 seconds.

4) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the
request.

-> The contents of Spool 2 are sent back to the user as the result of statement 1. The total
estimated time is 0.06 seconds.

Referential Integrity Page 22-31

Join Optimization with RI (cont.)

EXPLAIN SELECT Employee_Number, Last_Name, Dept_Number FROM EmpDept_V;

Without a references constraint, the two tables are joined together.

4) We do an all-AMPs RETRIEVE step from TFACT.D in view EmpDept_V by way of an all-rows scan
with no residual conditions into Spool 3 (all_amps), which is duplicated on all AMPs. The size of
Spool 3 is estimated with high confidence to be 19,642 rows (726,754 bytes). The estimated time for
this step is 0.02 seconds.

5) We do an all-AMPs JOIN step from Spool 3 (Last Use) by way of an all-rows scan, which is joined to
TFACT.E in view EmpDept_V by way of an all-rows scan. Spool 3 and TFACT.E are joined using a
single partition hash_ join, with a join condition of ("TFACT.E.Dept_Number = Dept_Number"). The
result goes into Spool 2 (group_amps), which is built locally on the AMPs. The size of Spool 2 is
estimated with low confidence to be 26,000 rows (1,274,000 bytes). The estimated time for this step
is 0.11 seconds.

With a references constraint (any of three types), the two tables are not joined together.

3) We do an all-AMPs RETRIEVE step from TFACT04.E in view EmpDept_V by way of an all-rows scan
with a condition of ("NOT (TFACT.E in view EmpDept_V.Dept_Number IS NULL)") into Spool 1
(group_amps), which is built locally on the AMPs. Then we do a SORT to order Spool 1 by the sort
key in spool field1. The input table will not be cached in memory, but it is eligible for synchronized
scanning. The size of Spool 1 is estimated with high confidence to be 26,000 (1,274,000 bytes)
rows. The estimated time for this step is 0.06 seconds.

 Referential Integrity Page 22-32

Summary
The facing page summarizes some important concepts regarding the three types of
Referential Integrity that can be implemented by Teradata.

Each of the three types of RI has its own application:

 For all types, some queries may be optimized - unnecessary joins eliminated.
 For Standard RI and Batch RI, the parent key and foreign key relationships are

validated when inserts, updates, and deletes are executed against the parent or
foreign key tables.

 For row-by-row (ad hoc) inserts, updates, and deletes into a child table, the
performance for standard RI and Batch RI is similar.

Standard Referential Integrity

 When established on already populated tables, Standard RI establishes RI and
generates an error table (e.g., table_0) for rows with invalid foreign key values.

 For updates and deletes against the parent key column(s), the performance for
standard RI will be better than Batch RI. Batch RI has to join to the foreign key
across all the AMPs.

 Standard RI creates and uses a reference index subtable which requires physical
disk space.

Batch Referential Integrity

 When established on already populated tables, if there are invalid FK values, Batch
RI fails and does not generate an error table.

 For INSERT/SELECT (e.g., staging table) into a child table, batch RI will be faster
than standard RI.

Soft Referential Integrity

 Does not test for RI. The software will assume that the user has somehow enforced
Referential Integrity.

 The primary reason for Soft RI is that some queries may be optimized (unnecessary
joins eliminated) without the overhead of maintaining referential integrity.

Referential Integrity Page 22-33

Summary

Notes:

• FastLoad and MultiLoad cannot load data into tables defined with standard or batch referential
integrity.

• For row-by-row (ad hoc) inserts, updates, and deletes into a child table, the performance for
standard RI and Batch RI is similar.

• For updates and deletes against the parent key column(s), the performance for standard RI will be
better than Batch RI. Batch RI has to join to the foreign key across all the AMPs.

• For INSERT/SELECT (e.g., staging table) into a child table, batch RI will be faster than standard RI.

REFERENTIAL DDL LEVEL OF USES CREATES
CONSTRAINT DEFINITION ENFORCES RI RI ERROR

TYPE REFERENCES RI ENFORCEMENT SUBTABLE TABLE

Referential Integrity REFERENCES Yes Row Yes Yes
Constraint (Standard RI)

Batch Referential REFERENCES WITH Yes Implicit No No
Integrity Constraint CHECK OPTION

Referential Constraint REFERENCES WITH No None No No
(Soft RI) NO CHECK OPTION

 Referential Integrity Page 22-34

Module 22: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Referential Integrity Page 22-35

Module 22: Review Questions

1. Which of the following rules is not one of the relational modeling rules for a Primary Key?

a. Must not contain NULL values
b. Must be unique
c. Must consist of a single column
d. Must not change

2. Which choice cannot be referenced by a Foreign Key?

a. Column defined as a USI with NOT NULL
b. Column defined as UNIQUE with NOT NULL
c. Column defined as a NUPI with NOT NULL
d. Column defined as a Primary Key with NOT NULL

3. True or False. A reference index subtable is only created for standard (or full) referential integrity.

4. How is the reference index subtable hash distributed?

__

5. How can a reference index row be marked as “invalid”?

__

__

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Sticky Note
on fK value

ds186034
Sticky Note
we establish std ri on already pop table with invalid row2) revalidate a RI constranit after a table is restoerd

 Referential Integrity Page 22-36

Notes

Sizing Page 23-1

Module 23

Teradata Proprietary and Confidential

Sizing

After completing this module, you will be able to:

 Determine column sizing requirements based on chosen
data type.

 Determine physical table row size.

 Determine table sizing requirements via estimates and
empirical evidence.

 Determine index sizing requirements via estimates and
empirical evidence

 Sizing Page 23-2

Notes

Sizing Page 23-3

Table of Contents

General Row Format .. 23-4
Presence Bits .. 23-6
NULL and COMPRESS .. 23-8
Multi-Value Compression .. 23-10
Implementing Multi-Value Compression .. 23-12
ALTER TABLE and Compression .. 23-14
Algorithmic Compression Example ... 23-18
Detailed Row Format ... 23-20
Multi-Value Compression vs. VARCHAR .. 23-22
Teradata Compression Comparison ... 23-24
Sizing a Data Row Considerations ... 23-26
Teradata Data Types .. 23-28
INTEGER Data Types ... 23-30
DECIMAL and FLOAT Data Types.. 23-32
NUMBER Data Type (14.0) .. 23-34
DATE and TIME Data Types .. 23-36
CHARACTER Data Types .. 23-38
Character Sets... 23-40
BYTE Data Types .. 23-42
Large Object Data Types ... 23-44
Variable Column Offsets ... 23-46
Row Size Calculation Form ... 23-48
Example: Sizing a Row .. 23-50
Row Size Exercise.. 23-54
Sizing Tables and Indexes .. 23-56
Table Headers... 23-58
Sizing a Data Table .. 23-60
Table Sizing Exercise ... 23-62
Estimating the Size of a USI Subtable ... 23-64
Estimating the Size of a NUSI Subtable .. 23-66
Estimating the Size of a Reference Index Subtable ... 23-68
Index Sizing Exercise ... 23-70
Other Sizing Techniques .. 23-72
Empirical Sizing ... 23-74
Collect Demographics Command .. 23-76
Collect Demographics Example ... 23-78
Spool Space .. 23-80
Release of Spool ... 23-82
System Sizing Exercise .. 23-84
Sizing Summary ... 23-86
Module 23: Review Questions ... 23-88
Lab Exercise 23-1 .. 23-90
Lab Exercise 23-2 .. 23-92
Lab Exercise 23-3 (optional) .. 23-96

 Sizing Page 23-4

General Row Format
The diagram on the facing page represents a typical row. A single row can be up to
approximately 64 KB in length. :

Prior to Teradata 13.10, the row structure for 64-bit systems differs from those of 32-bit
systems by having additional pad byte fields to ensure row alignment on an 8-byte
boundary. To ensure that no unaligned accesses occur with 64-bit systems, the system adds
pad bytes within each row to align sections of a row on 8-byte boundaries in both memory
and disk. This row format is called Aligned Row Format. For 64-bit systems upgraded to
Teradata 13.10 (no sysinit), rows are still aligned on 8-byte row boundaries.

Starting with 13.10, new reinitialized systems, the rows are aligned on 2 byte boundaries.
This new format is called Packed64 Format.

 The illustration on the facing page assumes the Packed64 Format and this course
will assume this format unless specifically noted.

 Rows for 32-bit systems are aligned on a 2-byte boundary.

There are three general categories of table columns, which are stored in the row in the order
listed:

1 – Fixed Length Columns – this section contains all the fixed length data columns
which are not compressible (it is variable in length). Teradata takes the liberty of
rearranging the order of data columns within a row. This has no effect on the order
in which those columns can be returned to the user. Storage and display are
separate issues.

2 – Uncompressed data for Compressible Columns – this section is composed of

those data columns that are compressible but are neither compressed nor NULL. It
is variable in length.

Includes both value-compressed and algorithmically-compressed data and can be
stored in any order.

3 – VARCHAR, VARBYTE, VARGRAPHIC, or NUMBER Columns that do not

have compression defined – this section contains all the variable length data
columns in the row. This section will only be present when variable length columns
are declared. The Column Offsets indicate exactly where in this section the
variable length columns start.

 Storage space is allocated in the row depending on the size of the column.

Sizing Page 23-5

General Row Format

SELECT * returns columns in the order
declared in the CREATE TABLE.

2
Uncompressed data for

Compressible Columns

(Not NULL)

R
o
w

L
e
n
g
t
h

Row ID

Row
Hash

Uniq.
Value

VAR
Column
Offsets

1

Fixed
Length

Columns

3

VAR
Length

Columns
(VARCHAR)

R
e
f.

A
r
r
a
y

P
t
r.

Data within a row generally falls in one of three categories:
1 – Fixed
2 – Compressible
3 – Variable Length columns

Optionally 1 - n Bytes

F
l
a
g

B
y
t
e

1st

P
r
e
s
e
n
c
e

B
y
t
e

Part.
#

Opt

P
r
e
s
e
n
c
e

B
y
t
e
s

2 4 4 1 1 2/8 2 2 2 0-n bytes 2

Note: Flag Byte = x'00' NPPI row
x'80' for PPI row

Only exists for a PPI Table

ds186034
Line

ds186034
Line

 Sizing Page 23-6

Presence Bits
Each row contains at least one Presence Byte. These are used to hold the Presence Bits that
indicate the status of nullable and/or compressible rows. Since nullable and compressible
columns are defined at the table level, each row in a table will have the same number of
Presence Bits.

The first bit of the initial Presence Byte in each row is always set to 1 (see the gray area in
the diagram on the facing page) which leaves 7 bits left to hold Presence Bit values (all
Presence Bytes other than the first one in a row can hold 8 Presence Bits). This is illustrated
on the facing page.

Every data column will have 0 to 10 presence bits.

 A column that is neither nullable nor compressible will have none.
 A column that is either nullable or compressible, but not both, will have 1.
 A column that is nullable and only nulls are compressed will have 1.
 A column that is both nullable and compressible on a value will have 2.
 As more values are compressed (up to 255), there may be as many as 9 presence

bits allocated for a column.
 An algorithmically compressed (ALC) column adds an extra bit to indicate whether

the column is algorithmically compressed or not, as follows:

When a table is created (CREATE TABLE), the default is that all columns are nullable.
Unless otherwise specified, there can be “missing” or “unknown” values in every column.
NULL is not the same as Blank, Zero, -1, High Value or other conventions used on host
systems to represent missing or unknown data.

There are many cases where this default is acceptable and you will want to allow NULL
values. For example, if you have a customer table with a column for an alternate phone
number, you need to allow NULLs. Since some customers would not have an alternate
phone number, making this an NN column would not be good design. The presence of
NULLs does not affect your ability to create an index since any index may contain NULLs.

However, there are occasions when you will want to specify that NULL values are not
allowed in certain columns. Do this by issuing the NOT NULL clause within the CREATE
TABLE command. Three cases where you would want to do this are:

 All Primary Key columns require NOT NULL.
 All UNIQUE columns require NOT NULL.
 All columns where a known data value is required (NN columns).

Nullable Columns
If a column is nullable, there will be one Presence Bit in each row to indicate this fact. This
bit will be 0 if the value in the column for that row is NULL and 1 if it is any other value.

Sizing Page 23-7

Presence Bits

Column Attribute # of Bits Description

NOT NULL 0 No NULLs; no values are compressed
Nullable 1 Allows NULLs; nothing is compressed
Nullable COMPRESS 1 Allows NULLs; only nulls are compressed
NOT NULL COMPRESS ('value') 1 No NULLs; compresses 1 value
Nullable COMPRESS ('value') 2 Allows NULLS; compresses nulls and 1 value

NOT NULL COMPRESS ('value1', 'value2', …) 2 – 8 No NULLs; compresses multiple values
Nullable COMPRESS ('value1', 'value2', …) 3 – 9 Allows NULLs; compresses nulls and values

The default for all columns is to allows NULLs (Nullable) and NOT have compression.
• NULLs are not automatically compressed. By default, space is allocated for NULL.

Presence Bits
• Based on the column attributes, Teradata may need 0 to 10 presence bits to represent a NULL

and/or compressed data storage (including ALC) for a column in a row.

• Up to 255 different data values (plus NULL) can be compressed for a single column – this type of
compression is referred to as Multi-Value Compression.

Presence Bytes to support NULL, Multi-Value Compression, and Algorithmic Compression

One or More Additional Whole Bytes1st Byte

1

~ ~
~ ~

 Sizing Page 23-8

NULL and COMPRESS
The default for all columns is nullable and not compressible which means that, unless
otherwise specified, NULL values are allowed and Teradata will not automatically compress
columns no matter what values are in them. You can override the default by using the
COMPRESS clause at the column level when creating (or altering) a table.

The COMPRESS clause works in two different ways:

 When issued by itself (without a value or values), COMPRESS causes all NULL
values for that column to be compressed to zero space.

 When issued with an argument (e.g., COMPRESS “constant”), the COMPRESS

clause will compress every occurrence of ”constant” in that column to zero space as
well as cause every NULL value to be compressed.

The CREATE TABLE example on the facing page causes the system to compress every
occurrence of the value “Australia” in the Country column to zero space as well as compress
every NULL value in the Country column to zero space. This will save 20 bytes of space
for every row where the employee had no country, or where the employee is associated with
the country Australia. Compression is case-sensitive. Australia will be compressed in this
example, but AUSTRALIA will not be compressed.

If you know in advance which columns will be accessed most frequently, you should declare
compressible columns in decreasing order for possibly a small performance improvement.

You CANNOT compress the following:

 Components of the primary index
 Identity columns
 Volatile table columns
 Derived table columns
 Referencing and referenced columns with Standard RI cannot be compressed.

Batch and Soft RI is allowed with compressed columns.
 Columns defined with a UDT, Period, Geospatial, BLOB, or CLOB data type.

Teradata 13.10 Enhancements
Starting with Teradata 13.10, there have been numerous compression enhancements.

 VARCHAR, VARBYTE, and VARGRAPHIC columns can also be compressed.
Before 13.10, only fixed width columns can be compressed.

 Compress up to 510 characters for a value. Before 13.10, limit is 255 characters.

Sizing Page 23-9

NULL and COMPRESS

• COMPRESS 'value(s)' compresses NULL and 'value(s)' to zero space.
– Compression is case-sensitive.

CREATE TABLE Employee
(emp_num INTEGER NOT NULL,
dept_num INTEGER COMPRESS,
country CHAR(20) COMPRESS 'Australia',

:

• COMPRESS all columns where at least 10% of the rows participate.

– COMPRESS creates smaller rows, therefore more rows/block and fewer blocks in table.

• You cannot COMPRESS Primary Index, referenced and referencing data columns (PK-
FK) with Standard RI, Identity columns, derived data columns, or volatile table columns.

How many bits are allocated?

 Sizing Page 23-10

Multi-Value Compression
Multi-Value Compression (a.k.a., Value List Compression) allows specification of more
than one compressed value on a column. This feature allows multiple values (up to 255
distinct values plus NULL to be compressed on a column (only fixed width columns before
13.10). This compression enhancement further reduces storage cost by storing more logical
data per unit of physical capacity. Performance is improved because there is less physical
data to retrieve during scan-oriented queries.

Multi-value compression is a technology that reduces the effective price of logical data
storage capacity, and improves query performance. Teradata can compress up to 255 values
per column.

Performance is improved because there is less physical data to retrieve for scan-oriented
queries. Usually compression requires much more CPU time to compress/uncompress, but
Teradata Multi-Value Compression does not have that limitation.

Examples of Presence Bits with Multi-Value Compression:

 Definition Value Presence Bits
 City CHAR(10) NOT NULL 'Atlanta' None

 City CHAR(10) NOT NULL COMPRESS ('Atlanta') 'Atlanta' 0
 'Boston' 1

 City CHAR(10) COMPRESS NULL 0
 'Atlanta' 1

 City CHAR(10) COMPRESS ('Atlanta') NULL 00
 'Atlanta' 01
 'Boston' 10
 'Chicago' 10
 Note: First Presence Bit is 0 if compressed or 1 if not compressed.

 City CHAR(10) COMPRESS ('Atlanta', 'Boston', 'Chicago’, 'Denver')

 NULL 0000
 'Atlanta' 0001
 'Boston' 0010
 'Chicago' 0011
 'Denver' 0100
 'Eureka' 1000
 Note: First Presence Bit is 0 if compressed or 1 if not compressed.

 City CHAR(10) NOT NULL COMPRESS 'Atlanta', 'Boston', 'Chicago’, 'Denver')

 'Atlanta' 001
 'Boston' 010
 'Chicago' 011
 'Denver’ 100
 'Eureka' 000

Sizing Page 23-11

Multi-Value Compression

What is Multi-Value Compression?

• A feature that allows up to 255 distinct values (plus NULL) to be compressed per
column – a.k.a., Value List Compression.

– Reduces storage cost and performance is improved because there is less physical data to
retrieve during scan-oriented queries.

• You can not add a compressed value to a column that if doing so, causes the table
header row to exceed its maximum length.

– The Table Header row contains an array of the compressed values.

• Algorithm compression (13.10) adds an additional presence bit to indicate if the
column is algorithmically compressed or not.

Number of Presence Bits needed for Multi-Value Compression:

Compressed Values # of Bits
1 1

2 - 3 2
4 - 7 3
8 - 15 4
16 - 31 5
32 - 63 6
64 - 127 7
128 - 255 8

Note:

If column is “nullable”, there will
be 1 additional presence bit.

 Sizing Page 23-12

Implementing Multi-Value Compression
This feature is implemented during table creation or modification. Customers must research
the data demographics in order to decide which values to compress. The list of compressed
values for each column must be defined in the CREATE TABLE statement.

As another example, the syntax for compressing several populous cities:

CREATE TABLE Properties
 (Street_Address VARCHAR(40),
 City CHAR(20) COMPRESS (′Chicago′, ′Los Angeles′, ′New York′),
 State_Code CHAR(2));

Rules for Compression
Compression does not require extra computer resources to uncompress the block or row.
Performance is enhanced since data remains compressed in memory so that the cache can
hold more logical rows. The compressed values are stored in the table header row.

Rules for Compression:

 Up to 255 values (plus NULL) can be compressed per column.
 The maximum size of a compress value is 510 bytes (13.10) or 255 (pre 13.10).
 Before Teradata, 13.10, only fixed width columns can be compressed.

You CANNOT compress the following:

 Components of the primary index
 Identity columns
 Volatile table columns
 Derived table columns
 Referencing and referenced columns with Standard RI cannot be compressed.

Miscellaneous notes about compression:

 You cannot add a compress value to a column if doing so would cause the table header row
to exceed its maximum length (64 KB – V2R5.1, 128 KB – V2R6.0, 1 MB – 13.0)).

 Compression is case-sensitive.

Since the compressed values are stored in table header row, the Create/Alter Table statement
will fail if adding the compress value to a column causes the table header row to exceed the
maximum size.

Columns with frequently occurring values may be highly compressed. Examples:

 NULLs Zeros Default Values Flags
 Spaces Binary Indicators (e.g., T/F) Age (in years)
 Gender Education Level # of Children
 Credit Card Type State County
 City Reason Automobile Make
 Status Category Codes

Sizing Page 23-13

Implementing Multi-Value Compression

CREATE TABLE accepts a list of values for field attribute 'COMPRESS'.

Compress 15 popular last names and the top 15 most populated countries.

CREATE TABLE People
(ID_number DECIMAL(18,0) NOT NULL
,Last_Name CHAR(30) NOT NULL

COMPRESS ('Smith', 'Johnson', 'Williams',
'Brown', 'Jones', 'Miller',
'Davis', 'Garcia', 'Rodriquez',
'Wilson', 'Martinez', 'Anderson',
'Taylor', 'Thomas', 'Lee')

,First_Name CHAR(20) COMPRESS
,Address VARCHAR(100)
,Country VARCHAR(40)

COMPRESS ('Australia', 'Bangladesh', 'Brazil',
'China', 'England', 'France',
'Germany', 'India', 'Indonesia',
'Japan', 'Mexico', 'Nigeria',
'Pakistan', 'Russian Federation',
'United States of America')

,Gender CHAR(1) NOT NULL
);

How many presence bits are needed for this table?

 Sizing Page 23-14

ALTER TABLE and Compression
You can modify the compression specification for an existing column. However, when
doing this, include all of the compressed values for the column.

Teradata uses a lossless compression method. This means that although the data is
compacted, there is no loss of information.

The granularity of Teradata compression is the individual field of a row. This is the finest
level of granularity possible and is superior for query processing, updates, and concurrency.
Field compression offers superior performance when compared to row level or block level
compression schemes. Furthermore, field compression allows compression to be
independently optimized for the data domain of each column.

Teradata performs database operations directly on the compressed fields – there is no need
to reconstruct a decompressed row or field for query processing. Of course, external
representations and answer sets include the fully uncompressed results.

Up to 255 distinct values in each column can be compressed out of the row body. If the
column is nullable, then NULLs are also compressed. The best candidates for compression
are the most frequently occurring values in each column. The compressed values are stored
in the table header. A bit field in every row header indicates whether the field is compressed
and whether or not the value is NULL.

Teradata compression is completely transparent to applications, ETL (extraction,
transforming, and loading of data), queries, and views. Compression is easily specified
when tables are created or columns are added to an existing table.

Expectations / Guidelines
On an existing system, Multi-Value Compression will free up storage space, but is unlikely
to free up a significant amount of compute resources since the database will still need to
execute the application on the logical data. However, on a system where CPU resource is
available, the space savings from compression may allow more applications to be added
prior to next system upgrade.

Sizing Page 23-15

ALTER TABLE and Compression

ALTER TABLE allows you to add a
new column with compressed values.

Add an “Education” column.

ALTER TABLE People
ADD Education CHAR(10)

UPPERCASE COMPRESS
('ELEMENTARY',

'MIDDLE',
'HIGH',
'COLLEGE',
'POST GRAD') ;

Note:
• Because UPPERCASE is specified, all

values are compressed regardless of
case.

You can use ALTER TABLE to add an additional
compressed value to a list of values.

Add the Czech Republic to the list of
compressed countries.

ALTER TABLE People ADD Country
COMPRESS

('Australia', 'Bangladesh',
'Brazil', 'China',
'England', 'France',
'Germany', 'India',
'Indonesia', 'Japan',
'Mexico', 'Nigeria',
'Pakistan', 'Russian Federation',
'United States of America', 'Czech Republic'
);

Notes:
• All of the compressed values must be listed.

• A SHOW TABLE will show the compressed values
in alphabetical sequence regardless of how they
are entered.

 Sizing Page 23-16

Teradata Compression Enhancements
Multi-Value Compression enhancements of VARCHAR compression and 510 bytes for
value starting with Teradata Release 13.10.

Algorithmic Level Compression
Provide the capability that will allow users the option of defining compression/decompression
algorithms that would be implemented as UDFs and that would be specified and applied to data at
the column level in a row. Initially, Teradata will provide three compression/decompression
algorithms that will offer compression for UNICODE and LATIN data columns

The act of compressing/decompressing column data will require CPU cycles to be consumed.
Consideration must be given to weighing the CPU cost of compression versus the potential space and
performance gains that may be realized from leveraging this feature.

 The algorithms must be defined as regular scalar UDFs. The UDFs need to be specified in

the column definition during the execution of a CREATE/ALTER TABLE statement.

 These algorithms will be invoked internally by the Teradata Database to

compress/decompress the column data when the data is moved into the tables or when data
is retrieved from the tables.

 An algorithmically compressed column adds an extra bit to indicate whether the column is

algorithmically compressed or not, as follows:
– 0; the column is not algorithmically compressed.
– 1; the column is algorithmically compressed

Block Level Compression
This feature provides the capability to perform compression on whole data blocks at the file system
level before the data blocks are actually written to storage.

 BLC will compress/decompress only data blocks but will not be used on any file system

structures such Master/Cylinder indexes, the WAL log and table headers.
 Only primary data subtable and fallback copies can be compressed. Both objects are either

compressed or neither is compressed.
 Secondary Indexes (USI/NUSI) cannot be compressed but Join Indexes can be compressed

since they are effectively user tables.
 Only the compressed form of the data block will be cached, each block access must

perform the data block decompression.
 On initial delivery, only one single compression algorithm will be supplied and used.
 Spool data blocks can be compressed via a system-wide tunable, as well as Temporary

(Volatile and Global Temporary), WORK (sort Work space) & permanent journal.
 Once BLC is enabled on a table, reversion back to an earlier release for compressed tables

is not allowed.

Utilize the FERRET utility to execute the new compression commands:

 COMPRESS: "database_name.table_name"
 UNCOMPRESS: "database_name.table_name"

Sizing Page 23-17

Teradata Compression Enhancements

Enhanced Multi-Value Compression (MVC) or Value-List Compression
• Compress VARCHAR, VARBYTE, or VARGRAPHIC columns

• Number of characters in a compressed value is increased to 510.

Algorithmic Compression (ALC) or Column Level Compression
• Allows users to apply a compression algorithm to data at the column level in a row.

– One example is to compress two-byte Unicode into one byte when the data is Latin (ASCII).

• Compression/decompression is done by specifying a UDF function.

– Teradata provides some UDFs to do compression for UNICODE and LATIN data columns.

– User can create and apply their own compression/decompression algorithms to columns.

Block Level Compression (BLC)
• Compression is performed by Teradata at the file system level on whole data blocks before the

data blocks are actually written to/read from storage devices.

• How is BLC set for a specific table?

• When loading data, SET QUERY_BAND = 'BLOCKCOMPRESSION=YES/NO;' FOR SESSION;

• Ferret utility has new commands – COMPRESS/UNCOMPRESS table

• DBSControl settings

• There is a CPU cost to compress/decompress on whole data blocks and is generally considered a
good trade since CPU cost is decreasing while I/O cost remains high.

 Sizing Page 23-18

Algorithmic Compression Example
In some cases, such as when column values are mostly unique, Algorithmic Compression
can provide better compression results than Multi-Value Compression. Algorithmic
Compression allows you to define your own compression and decompression algorithms and
apply them to data at the column level.

A user can create their own compression algorithms as external C/C++ scalar UDFs, and
then specify them in the column definition of a CREATE TABLE/ALTER TABLE
statement. Teradata Database invokes these algorithms to compress and decompress the
column data when the data is moved into the tables or when data is retrieved from the tables.

ALC allows you to implement the compression scheme that is most suitable for data in
particular column. The cost of compression and decompression depends on the algorithm
chosen.

You can specify ALC alone, or both MVC and ALC on the same column. If you define both
on the same column, ALC is applied only to those non-null values that are not specified in
the value compression list of the MVC specification.

You can use ALC to compress columns with the following data types:

 BYTE
 CHARACTER
 GRAPHIC
 VARBYTE
 VARCHAR
 VARGRAPHIC

Teradata provides domain-specific functions for compressing and compressing data. These
functions are stored in the TD_SYSFNLIB system database. Two of these algorithms are:

 Compress TransUnicodeToUTF8
Takes Unicode character input and stores it in UTF8 format.
This is useful when the input data is predominantly Latin because UTF8 uses one

byte to represent Latin characters and Unicode uses two bytes.

 Decompress TransUTF8ToUnicode

Takes the data previously compressed using the TransUnicodeToUTF8 function
and converts it back to Unicode.

Sizing Page 23-19

Algorithmic Compression Example

Given the following:

• The Description column is defined with a character set of Unicode.
– Every character uses 2 bytes of space.
– Use a Teradata-supplied function to save space for common ACSII Latin 7-bit (USA)

characters.

• The TransUnicodeToUTF8 function compresses all non-null values in the Description
column. Use this function when …

– Unicode column contains mostly ASCII Latin 7-bit (USA) characters – compress these to 1
byte.

• MVC is used to compress the values 'tools' and 'vacuums' in this Category column.

– Because UPPERCASE is specified, all values of 'tools' and 'vacuums' are compressed
regardless of case.

Example:

CREATE TABLE Products
(Product_id INTEGER NOT NULL,
Category CHAR(10) NOT NULL UPPERCASE COMPRESS ('tools', 'vacuums'),
Description VARCHAR (500) CHARACTER SET UNICODE

COMPRESS USING TD_SYSFNLIB.TransUnicodeToUTF8
DECOMPRESS USING TD_SYSFNLIB.TransUTF8ToUnicode);

 Sizing Page 23-20

Detailed Row Format
The diagram on the facing page represents a typical row. A single row can be up to approximately
64 KB in length. Each row has at least 14 bytes of overhead. The components of a row are:

Row Length, Ref Array – The first two bytes of the row specify the exact length of the row. There
are two bytes at the end of the data block, called the Reference Array pointer, which represents the
byte offset (1st byte) of the row in the block.

Row ID – these eight bytes contain the Row ID. The Row ID is determined by the Primary Index
Value. The Row ID is, in turn, composed of 4 bytes of Row Hash and 4 bytes of Uniqueness Value.
For PPI tables, 2 or 8 bytes are allocated for the partition #.

Flag – this section is one byte in length (x’00’ for NPPI tables, x’80’ for PPI tables).

Presence Bits (0 - 10 bits) per column – this section is variable in length and contains the Presence
Bits for NULLS and/or Values that are compressed for each of the columns.

If a variable or fixed length multi-value compressed column is compressed or is null, then its
value is not stored in the row. Instead, Teradata stores one instance of each compressed value
within a column in the table header and references it using the presence bits array for the row.

Column Offsets – this section is only present when variable length data columns are declared in the
table. This section is variable in length and contains the Column Offsets. There is one 2-byte
Column Offset indicator for each variable length data column.

Fixed Length Columns – this section contains all the fixed length data columns which are not
compressible. Teradata takes the liberty of rearranging the order of data columns within a row.

Uncompressed data for compressible columns – this variable length section is composed of those
data columns that are compressible but are neither compressed nor NULL.

When compression does not apply to a value in a column that specifies multi-value
compression, Teradata stores the column data in the row as a length and data value pair.

Three examples of this type data is shown on the facing page.

ALCv1 – column that has ALC and is variable in length (kept in “Len ALCv1”)
MVCv2 – column that uses MVC and is variable in length (kept in “Len MVCv2”)
MVCf3 – column that used MVC and is fixed in length (length bytes not needed)

Since ALCv1 or MVCv2 are variable in length and not compressed, Teradata needs to store this
data in a value pair (length:data). If the length of the column data is <= 255 bytes, then Teradata
stores the length in 1 byte; otherwise it stores the length in 2 bytes.

Since MVCf3 is a fixed length multi-value compressed column is not compressed, then
Teradata stores its values in the row as simple data, but without an accompanying length. No
length is needed because Teradata Database pads fixed length data values to the maximum
length defined for their containing column.

VARCHAR, VARBYTE, VARGRAPHIC, or NUMBER Columns that do not have
compression defined. The Column Offsets indicate exactly where in this section the variable length
columns start.

Sizing Page 23-21

Detailed Row Format

Any columns with compression
defined and are:

• Not null
• Not compressed or

algorithmically compressed

2 4 4 1 1 2/8 2 2 2 0-n bytes 2

Only present if Variable Length Columns
are declared with no compression.

Optionally
1 - n Bytes

Multi-value Compressed (MVC) variable length or algorithmic
compressed (ALC) columns are stored are length-value pairs.

• Length – 1 or 2 bytes (1 byte if data value ≤ 255 bytes)
• Data Value

Only exists for a
PPI Table

R
o
w

L
e
n
g
t
h

Row ID

Row
Hash

Uniq.
Value

F
l
a
g

B
y
t
e

1st

P
r
e
s
e
n
c
e

B
y
t
e

VAR
Column
Offsets

Fixed
Length

Columns

VAR
Length

Columns

R
e
f.

A
r
r
a
y

P
t
r.

Part.
#

Opt

P
r
e
s
e
n
c
e

B
y
t
e
s

L
e
n

A
L
C
v
1

A
L
C
v
1

L
e
n

M
V
C
v
2

M
V
C
v
2

M
V
C
f
3

ALCv1 – Compressed data value for variable length column
MVCv2 – Uncompressed data value for variable length column
MVCf3 – Uncompressed data value for a fixed length column

 Sizing Page 23-22

Multi-Value Compression vs. VARCHAR
For character-based data, an alternative to Teradata compression is the VARCHAR (N) data
type. The number of bytes used to store each field is the length of the data item plus 2 bytes.
Contrast this to a fixed-length CHAR (N) data type that takes N bytes per row, regardless of
the actual number of characters in each individual field. Combining Teradata compression
with fixed-length character data type can be a very effective space saver.

The data demographics can help determine whether variable-length character data type or
fixed length plus compression is more efficient. The most important factors are the
maximum field length, the average field length, and the compressibility of the data.

Which is best – Compression or VARCHAR?
Before Teradata 13.10, customers occasionally had to choose between fixed character
columns with multi-value compression or variable length columns.

 VARCHAR is more efficient when the difference of maximum and average field
length is high and compressibility is low.

 Compression and fixed-length CHAR is more efficient when the difference of

maximum and average field length is low and compressibility is high.

When neither is a clear winner, use VARCHAR since it uses slightly less CPU resource.

Compression in Spool Files
Value list compression is extended to intermediate spool files. Thus, when compressed
columns are selected, compression is propagated to resulting spool files. Without
compression for spool files, the intermediate join results for compressed tables can be very
large, causing the need for additional spool space.

Uncompressed VARCHAR data is also carried into spool.

Miscellaneous Considerations
You should not compress columns whose NULL values will be changing. When the value
changes, the column will expand and you may get block splits. In practice, there may be
exceptions to this rule. For example, it might be a good idea to compress the NULL values
in columns related to shipping an order until the order is actually shipped.

Additional sizing considerations:

 Adding a column that is not compressible expands all rows.
 Adding a column that is compressible and there are no spare presence bits expands

all rows.
 Dropping a column changes all row sizes where data is present.

Sizing Page 23-23

Multi-Value Compression vs. VARCHAR

Prior to Teradata 13.10, you cannot compress VARCHAR columns. You may have to
choose VARCHAR or compression with a fixed length column.

There is no general rule – evaluate the options.

• VARCHAR – generally better when data size has a large variance and a low percentage of fields are
compressible.

• Compression – generally better when data size has a small variance and a high percentage of
fields are compressible.

• When neither is a clear winner, then use VARCHAR since it uses slightly less CPU resource.

Starting with Teradata 13.10, you can also compress VARCHAR columns.

Miscellaneous considerations:

• Multi-value compression and VARCHAR are both carried into intermediate spool files.

• You cannot compress BLOB, CLOB, Period, Geospatial, UDT, or Identity columns.

• ALTER TABLE considerations:

– Additional compressed values can be added to a column (ALTER). Include the complete list
of compressed values with each ALTER command.

– Adding a column (to a table) that is not compressible expands all rows.

– Adding a column (to a table) that is compressible and there are no spare presence bits
expands all rows.

 Sizing Page 23-24

Teradata Compression Comparison
The chart on the facing page summarizes the three types of compression.

Sizing Page 23-25

Teradata Compression Comparison

Multi-Value
Compression

(MVC)

Algorithmic
Compression

(ALC)

Block Level
Compression

(BLC)

Ease of Use
Easy to apply to well

understood data
columns and values.

Easy to apply at column
with CREATE TABLE.

Set once and forget.

Analysis Required
Need to analyze data
for common values.

Use Teradata algorithms
or user-defined

compression algorithms
to match unique data

patterns.

Need to analyze CPU
overhead trade-off.

You can turn on for all data
on system or you can

apply on a per table basis.

Flexibility
Works for a wide

variety of data and
situations.

Automatically invoked for
values not replaced by

MVC.

Automatically combined with
other compression

mechanisms.

Performance Impact
No or minimal CPU

usage

Depends on
compression algorithm

used.

Reduced I/O due to
compressed data blocks.

CPU cycles are used to
compress/decompress.

Applicability
Replaces common

values
Industry data, UNICODE,

Latin data
All Data

A customer can choose any combination or all three on a column/table.

 Sizing Page 23-26

Sizing a Data Row Considerations
There are basically two row formats used by Teradata.

 Aligned Row Format (ARF)
 Packed64

The maximum row length is approximately 64 KB (the actual limit is 64,256 bytes), and this
limit is the same for both packed64 and aligned row formats.

Whether a system stores its data in packed64 or aligned row format depends on several
factors. Only new systems (or systems that have been sysinit) on Teradata 13.10 can use the
packed64 row format. Systems that are simply upgraded to 13.10 will continue to use the
aligned row format.

The size of tables on a system that stores data in packed64 format is generally about 7%
(range of 3 – 9%) smaller than the size of the same tables on a system that stores data in
aligned row format. Storing data in packed64 format reduces the number of I/O operations
required to access and write rows in addition to saving disk space.

Rows on Packed64 format systems are always aligned on even-byte boundaries. In other
words, rows are never stored with an odd number of bytes. As a result, if a row has an odd
byte length, the system adds a filler byte to the end of the row to make its length even.

Rows on Aligned Row Format 64-bit systems (most Teradata 12.0 and 13.0 systems) are
always aligned on an 8-byte boundary. Additionally, the following pad bytes were added
within the data row. The aligned row format is the only row format for these releases and
will also be true if the system is simply upgraded to Teradata 13.10.

Pad Byte Field Name Purpose
VARCHAR Offsets Array Alignment
Pad Bytes

Aligns VARCHAR offsets array at a 2-byte
boundary.

Fixed Length Column Alignment Pad
Bytes

Aligns fixed length columns within the row on
an 8-byte boundary.

Compressible Length Column
Alignment Pad Bytes

Aligns value compressible length columns.

VARCHAR Column Alignment Pad
Bytes

Aligns variable length columns within the row
on an 8-byte boundary

Trailing Pad Bytes Aligns entire row on an 8-byte boundary.

Also note that for PPI tables, rows in either format also have an additional 2 bytes of
overhead between the presence bytes and before the VARCHAR column offsets.

Sizing Page 23-27

Sizing a Data Row Considerations

Determining a typical row length can be difficult.

• Different column data types occupy different amounts of disk space.

• Row length is determined by 3 categories of table columns.

– Fixed length uncompressed data – this storage length is the easiest to calculate.
– Variable length – storage space is allocated in the row depending on the size of the column.
– Compressible data – includes both value-compressed and algorithmically-compressed data.

Row and data type alignment depends on type (format) of "row architecture".

• Rows are aligned on 8-byte boundaries – applies to 64-bit systems (before release
13.10) or systems upgraded to release 13.10.

– Specific row sections are also aligned on 2-byte or 8-byte boundaries within the row.
– Specific data types are also aligned on 2-byte or 4-byte boundaries within the row.
– This format is referred to as Aligned Row Format (ARF) architecture.

• Rows are aligned on 2-byte boundaries – only applies to new (fresh install – sysinit)
Teradata 13.10 systems.

– This row format does NOT have row section/data type alignment requirements.
– This row format uses less space (typically 7% smaller) for data tables.
– This format is referred to as Packed64 architecture.

Note: For sizing exercises, this course will assume the newer 2-byte boundary architecture.

 Sizing Page 23-28

Teradata Data Types
ANSI provides a smaller menu of data types than permitted by Teradata. REAL and
DOUBLE PRECISION are implemented as Teradata FLOAT. ANSI NUMERIC is
implemented as Teradata DECIMAL. ANSI does not support some of the specific Teradata
data type extensions (e.g., BYTEINT).

Examples of the number of bytes allocated to the different data types are:

BYTEINT 1
SMALLINT 2
INTEGER 4
BIGINT 8
DECIMAL 1-2 1
DECIMAL 3-4 2
DECIMAL 5-9 4
DECIMAL 10-18 8
DECIMAL 19-38 16
FLOAT 8
NUMBER (14.0 Feature) 0 – 18
DATE 4
TIME 6/8 6 for packed64; 8 for ARF
TIME WITH TIME ZONE 8
TIMESTAMP 10/12 10 for packed64; 12 for ARF
TIMESTAMP WITH TIME ZONE 12
INTERVAL YEAR 2
INTERVAL YEAR TO MONTH 4
INTERVAL MONTH 2
INTERVAL MONTH TO DAY 2
INTERVAL DAY 2
INTERVAL DAY TO MINUTE 8
INTERVAL DAY TO SECOND 10/12 10 for packed64; 12 for ALR
INTERVAL HOUR 2
INTERVAL HOUR TO MINUTE 4
INTERVAL HOUR TO SECOND 8
INTERVAL MINUTE 2
INTERVAL MINUTE TO SECOND 6/8 6 for packed64; 8 for ARF
INTERVAL SECOND 6/8 6 for packed64; 8 for ARF
Period (Date) 8
Period (Time) 12/16 12 for packed64; 16 for ARF
Period (Time With Time Zone) 16
Period (Timestamp) 20
Period (Timestamp With Time Zone) 24
Period (Timestamp) 11 When Ending Element Value is UNTIL_CHANGED
Period (Timestamp With Time Zone 13 When Ending Element Value is UNTIL_CHANGED

Packed64 – Also applies to 32-bit systems
ARF – Aligned Row Format for 64-bit systems

Sizing Page 23-29

Teradata Data Types

Data Type Size of data type
BYTEINT 1
SMALLINT 2
INTEGER 4
BIGINT 8
NUMBER (14.0) 0 – 18

DATE 4
TIME, TIME WITH TIME ZONE 6 or 8
TIMESTAMP, TIMESTAMP WITH TIME ZONE 10 or 12
INTERVAL YEAR, MONTH, DAY, HOUR, MINUTE, SECOND 2, 4, 6, 8, 10, or 12

PERIOD(DATE) 8
PERIOD(TIME), PERIOD(TIME) WITH TIME ZONE 12 or 16
PERIOD(TIMESTAMP), PERIOD(TIMESTAMP) WITH TIME ZONE 20 or 24

DECIMAL (n,m) (precision to 38 digits) or NUMERIC(n,m) 1 – 16

FLOAT or REAL, DOUBLE PRECISION 8

CHAR(n) 1 – 64,000
BYTE(n) 1 – 64,000
GRAPHIC(n) 1 – 32,000

VARCHAR(n), CHAR VARYING(n), LONG VARCHAR 1 – 64,000
VARBYTE(n) 1 – 64,000
VARGRAPHIC(n), LONG VARGRAPHIC 1 – 32,000

BLOB(n) or BINARY LARGE OBJECT(n) 1 – 2097088000
CLOB(n) or CHARACTER LARGE OBJECT(n) 1 – 2097088000

SYSUDTLIB.udt_name (User defined data type)

 Sizing Page 23-30

INTEGER Data Types
When sizing rows, you need to know how much space will be occupied by the data in the
rows. The first of the Teradata data constructs are the three types of Integer data types
(BYTEINT, SMALLINT, INTEGER), and date (DATE), which is covered on the next page.

BYTEINT
As the name implies, BYTEINT data requires only a single byte. The first bit of the byte is
the SIGN (+ or -) and the remaining seven bits allow the storage of numbers from -128 to
+127 (-27 to 27 - 1).

SMALLINT
SMALLINT data occupies 2 bytes. The first bit is the SIGN and the remaining 15 bits allow
the storage of numbers from -32,768 to +32,767(-215 to 215 - 1).

INTEGER
INTEGER data occupies 4 bytes. The first bit is the SIGN and the remaining 31 bits allow
the storage of numbers from -2,147,483,648 to +2,147,483,647 (-231 to 231 - 1).

BIGINT
BIGINT data occupies 8 bytes. The first bit is the SIGN and the remaining 63 bits allow the
storage of numbers from -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807 or as
(-263 to 263 - 1).

Sizing Page 23-31

INTEGER Data Types

BYTEINT One byte – range -128 to +127 Non-ANSI

SMALLINT Two bytes – range -32,768 to +32,767

S
I
G
N

INTEGER Four bytes – range -2,147,483,648 to +2,147,483,647

BIGINT Eight bytes – range -9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

S
I
G
N

S
I
G
N

S
I
G
N

 Sizing Page 23-32

DECIMAL and FLOAT Data Types

Decimal and Numeric
The DECIMAL and NUMERIC data types represent a decimal number of n digits, with m
of these digits to the right of the decimal point. The DECIMAL data type is synonymous
with NUMERIC and can be abbreviated as DEC.

The specification of a DECIMAL data type is: DECIMAL [(n[,m])]

The value of n prior to V2R6.2 has a maximum value of 18. With V2R6.2, value of n can
be as large as 38. Values of n between 19 and 38 require 16 bytes of storage.

The Decimal and Numeric data types can take up 1, 2, 4, 8, or 16 bytes of space. The space
required depends on the number of digits and is shown in the table on the facing page.
Decimal values are stored in scaled binary.

Decimal numbers are scaled by the power of ten equal to the number of fractional digits.
The number is stored as a two’s complement binary number in 1, 2, 4, 8, or 16 bytes. The
number of bytes used for a decimal value depends on the total number of digits in that value.

Float, Real, and Double Precision
The FLOAT, REAL, and DOUBLE PRECISION data types represent a value in
sign/magnitude form. These data types represents values that range from 2 x 10-308 to 2 x
10308.

The mantissa sign is in the most significant bit position; the exponent sign is a part of the
exponent field (excess-1024 notation, in which (1024 - exponent) = sign).

Floating point values are stored and manipulated internally in IEEE floating point format.
Floating point values are stored with the least significant byte first, with one bit for the
mantissa sign, 11 bits for the exponent, and 52 bits for the mantissa. Eight bytes are used to
hold a floating point value. Negative numbers differ from positive numbers of the same
magnitude only in the sign bit. Float, Real, and Double Precision data require 8 bytes of
storage space.

Sizing Page 23-33

DECIMAL and FLOAT Data Types

DECIMAL and NUMERIC

DECIMAL [(n[,m])]

n = 1 – 38
m = 0 - n
Default = (5,0)
Stored in scaled binary

Number of Number of
Digits Bytes

1 to 2 1 byte

3 to 4 2 bytes

5 to 9 4 bytes

10 to 18 8 bytes

19 to 38 16 bytes

FLOAT, REAL, and DOUBLE PRECISION

Notes:

• Range is 2 * 10 -308 to 2 * 10 +308

• 15 significant decimal digit precision.

• Manipulated in IEEE floating point format.

• Corresponds to, but is not identical to, IBM
normalized 64 bit floating point.

S
I
G
N

Exponent
11 Bits

Fraction/Mantissa
52 Bits

8 Bytes

 Sizing Page 23-34

NUMBER Data Type (14.0)
NUMBER is a floating point type and, therefore, an approximate data type on the Teradata
Database.

If you run a query that includes a NUMBER (or another floating point) value on a database
from other vendors and then run the same query on the Teradata Database, the result may be
different because the order in which each database evaluates the expression may be
different.

NUMBER(n) is equivalent to NUMBER(n,0).

Sizing Page 23-35

NUMBER Data Type (14.0)

NUMBER or NUMBER(*)
NUMBER(n) or NUMBER(n,m)

Characteristics

• Teradata 14.0 feature – this is effectively a variable length numeric data type.

– Greater efficiency in storing numeric data because the number of bytes to store the data can
vary from 0-18 bytes depending on the value stored.

– NUMBER is effectively stored as a variable length number. 2 bytes are used in the column
offset array to represent the starting location of this column in the internal data row.

• Range is ± 1E-130 to 9.99…9E125

• More flexibility, range, and precision for numeric data.

– More flexibility in defining numeric columns by providing the ability to change the precision
or scale of existing NUMBER columns in tables without modifying the data rows.

– More flexibility in computation compared with the DECIMAL data type because the result is
not limited by the precision or scale of the input.

– Greater range than the DECIMAL data type.

– Greater accuracy than the FLOAT data type because NUMBER has greater guaranteed
precision. NUMBER can represent common decimals exactly.

• Increased compatibility with other databases, which include a similar NUMBER data
type.

 Sizing Page 23-36

DATE and TIME Data Types
DATE, TIME, and TIMESTAMP are also SQL functions. CURRENT_DATE,
CURRENT_TIME, and CURRENT_TIMESTAMP represent values.

The following data types (not shown on facing page) also require a 2-byte boundary within
the row with the 64-bit Aligned Row Format.

 PERIOD (DATE)
 PERIOD (TIME(n))
 PERIOD (TIME(n) WITH TIME ZONE)
 PERIOD (TIMESTAMP(n))
 PERIOD (TIMESTAMP(n) WITH TIME ZONE)

TIME
The format for the TIME data type is: hh:mi:ss[.ssssss]. The internal storage format is a
string of bytes:

SECOND (DECIMAL(8,6))
MINUTE (BYTEINT)
HOUR (BYTEINT)

Example:

 CREATE SET TABLE table5
 (col1 DATE,
 col2 TIME(6),
 col3 TIME(6) WITH TIME ZONE,
 col4 TIMESTAMP(6),
 col5 TIMESTAMP(6) WITH TIME ZONE)
 PRIMARY INDEX (col1);

 INSERT INTO table5 VALUES
 (CURRENT_DATE,
 CURRENT_TIME,
 TIME '11:27:00-04:00',
 CURRENT_TIMESTAMP,
 TIMESTAMP '2011-05-18 11:27:00-04:00');

SELECT * FROM table5;

 *** Query completed. One row found. 5 columns returned.
 *** Total elapsed time was 1 second.

 col1 11/05/18
 col2 13:19:41.000000
 col3 11:27:00.000000-05:00
 col4 2011-05-18 13:19:41.730000
 col5 2011-05-18 11:27:00.000000-05:00

Sizing Page 23-37

DATE and TIME Data Types

((YYYY - 1900)) * 10000 + (MM * 100) + DDDATE (4 Bytes)

TIME (6 or 8 Bytes)

hh:mi:ss.ssssss
Packed64 format – 6 bytes
Aligned Row format – 8 bytes

TIME WITH
TIME ZONE (8 Bytes)

hh:mi:ss.ssssss +/- hh:mi
All formats – 8 bytes

TIMESTAMP
(10 or 12 Bytes)

TIMESTAMP WITH
TIME ZONE (12 Bytes)

All formats – 12 bytes

Note:

• 32-bit systems (e.g., MP-RAS) have the same row
format and data type lengths as the Packed64 format.

Packed64 format – 10 bytes
Aligned Row format – 12 bytes

DATE + TIME

DATE + TIME + ZONE

 Sizing Page 23-38

CHARACTER Data Types
There are three kinds of Character data types: CHAR, VARCHAR, and LONG
VARCHAR. Character data can require from 1 to 64000 bytes of space.

Character data (for the Latin character set) is stored in 8-bit ASCII format. Conversion to
and from other host formats is performed by the parsing engine on input and the AMPs upon
output. Sorting and comparisons are always done in the collating sequence of the user’s
host system.

 CHAR is fixed length Character data. CHAR (n) always takes n bytes unless it is

compressed.

 The VARCHAR (n) data type represents a variable length character string of length

n. The maximum value for n is 64000 characters. Synonyms for VARCHAR(n) are
CHAR VARYING [(n)], and CHARACTER VARYING [(n)]

 LONG VARCHAR is equivalent to VARCHAR (64000).

Note: The Unicode and Graphic character sets use 16-bit characters, thus allowing 32K
logical characters for 64K physical bytes.

An uncompressed VARCHAR column always has a two-byte offset associated with it,
whereas a multi-value compressed column can have its length stored in one or two bytes.

Teradata 13.10 Changes
When a VARCHAR column is compressed (either MVC or ALC), Teradata stores the
column data in the row as a length and data value pair.

 If the length of the column data is <= 255 bytes, then Teradata Database stores the
length in 1 byte; otherwise it stores the length in 2 bytes.

All variable length compressible columns are treated as an extension of fixed length
compressible columns except that uncompressed variable length columns store both a length
and the actual column data.

There is an additional presence bit for an algorithmically-compressed column to indicate
whether the column data is compressed or not. Teradata Database sets this bit only when
data in column is compressed using algorithmic compression. Teradata Database uses the
additional presence bit when the compress UDF returns data that is larger than the original
column data.

When column data is compressed algorithmically, Teradata Database stores it as length: data
pairs interleaved with the other compressible columns in the table. When data is not
compressed, or if column data is null, Teradata Database does not store a length, so there is
no overhead in this case.

Sizing Page 23-39

CHARACTER Data Types

• Typically 1 byte per character – stored in 8 bit ASCII.

• Other Character Sets (e.g., UNICODE) may use multiple bytes per character.

• Compressed VARCHAR (13.10) or any ALC columns have 1 or 2 bytes stored with data in
length-value pairs and do not use the 2 byte column offset.

• How do you store a Character data that is greater that 64,000 bytes?

Define a CLOB (Character Large Object)

CHARACTER

CHAR (n) n = 1 - 64000
Fixed length character string

2
LONG VARCHAR
Equivalent to VARCHAR (64000)

2 byte column offset identifies location in row

VARCHAR (n) n = 1 - 64000
Variable length character string

2 byte column offset identifies location in row

2

 Sizing Page 23-40

Character Sets
Teradata supports five different character sets for use with the CHARACTER data type.

 LATIN - 8-bit LATIN server character
 UNICODE - 16-bit characters from the Unicode 4.1 standard.
 GRAPHIC - 16-bit characters supported for DB2 compatibility.
 KANJISJIS - intended for Japanese applications that rely on the KANJISJIS

character set
 KANJI1 - this character set will be removed in a future release

The Unicode and Graphic character sets use 16-bit characters, thus allowing 32K logical
characters for 64K physical bytes. Examples of GRAPHIC character sets are not shown on
the facing page, but a brief description follows.

GRAPHIC[(n)] Data Type

The GRAPHIC data type represents a fixed-length, multi-byte character string of length n,
where n is the length in logical characters. The maximum value of n is 32000.

The GRAPHIC data type is valid only for Chinese double-byte Hanzi and Japanese double-
byte Hiragana character supported sites. If any other site attempts to use this data type, the
system generates an error message

VARGRAPHIC(n) Data Type

The VARGRAPHIC data type represents a variable length string of length n, where n is the
length in logical characters. The maximum value of n is 32000. There is no default; omitting
the length specification results in an error.

LONG VARGRAPHIC Data Type

The LONG VARGRAPHIC data type specifies the longest permissible variable length
graphic string. It is equivalent to specifying a data type of VARGRAPHIC(32000).

Graphic Data Validation and Storage

Graphic data must always contain an even number of bytes. Any attempt to insert data that
results in an odd number of bytes generates an error. Graphic data is stored without
translation; the multi-byte characters remain in the encoding of the session character set. The
Teradata RDBMS validates graphic data against the range of hexadecimal values considered
valid for the character set of the current session. Hexadecimal constants cannot be validated.

Sizing Page 23-41

Character Sets

Teradata SQL supports different character sets for use with CHARACTER SET. Examples
of character sets are:

LATIN - 8-bit LATIN server character
UNICODE - 16-bit characters from the Unicode 4.1 standard.
GRAPHIC - 16-bit characters supported for DB2 compatibility.

Typically, when 16-bit international character sets are needed, the recommendation is to
define these as UNICODE with a CHARACTER data type.

Example:

CREATE TABLE People
(Last_Name VARCHAR(30) CHARACTER SET UNICODE,
First_Name CHAR(20) CHARACTER SET UNICODE,

:
) ;

For Last_Name and First_Name, 16-bits (2 bytes) are allocated for each character. For
example, 40 bytes are allocated for First_Name.

ds186034
Sticky Note
40bytes

 Sizing Page 23-42

BYTE Data Types
There are two kinds of Byte data: BYTE and VARBYTE. They are suitable for various
types of data, including graphical data in the form of digitized image information. You
cannot compare Character data to Byte data.

Byte data is stored in host format and is never translated by Teradata. It is handled as if it
were n-byte, unsigned binary integers.

 BYTE is a fixed length binary string.

 VARBYTE is a variable length binary string. Both BYTE and VARBYTE can

have a maximum length (n) of from 1 to 64000 bytes.

Sizing Page 23-43

BYTE Data Types

BYTE

• Stored in host format – binary format.
• Never translated by the Teradata Database
• Handled as if they are n-byte, unsigned binary integers
• Suitable for digitized image information (small photo, signature, etc.) that is less than

64,000 bytes.
• Compressed VARBYTE (13.10) or any ALC columns have 1 or 2 bytes stored with data

in length-value pairs and do not use the 2 byte column offset.

• How do you store a Binary data that is greater that 64,000 bytes?

Define a BLOB (Binary Large Object)

VARBYTE (n) n = 1 - 64000
Variable length binary string

2 byte column offset identifies location in row

2

BYTE (n) n = 1 - 64000
Fixed length binary string

 Sizing Page 23-44

Large Object Data Types
For both Binary and Character Large Object (LOB) data types, the base table data row only
contains an OID (Object Identifier) to the subtable that actually contains the LOB data.

BLOB (n) Data Type
The BLOB data type represents a large binary string of raw bytes. A binary large object
(BLOB) column can store binary objects, such as graphics, video clips, files, and documents.

CLOB (n) Data Type
The CLOB data type represents a large character string. A character large object (CLOB)
column can store character data, such as simple text, HTML, or XML documents.

For both data types:

 n = the number of bytes to allocate for the LOB column. The maximum number of
bytes is 2097088000, which is the default if n is not specified.

 K = that n is specified in kilobytes (KB). When K is specified, n cannot exceed

2047937.

 M = that n is specified in megabytes (Mb). When M is specified, n cannot exceed 1999.

 G = that n is specified in gigabytes (GB). When G is specified, n must be 1.

Sizing Page 23-45

Large Object Data Types

Binary or Character Large Object (LOB)

BLOB (n) n = 1 – 2097088000 bytes (approx. 2 GB)
CLOB (n) n = 1 – 2097088000 bytes (approx. 2 GB)

BLOB – a large binary string of raw bytes. A BLOB column can store binary objects, such
as graphics, video clips, files, and documents.

CLOB – a large character string. A CLOB column can store character data, such as simple
text, HTML, or XML documents.

The data row contains a 2-byte column offset and a 37-byte OID (Object Identifier) for each
LOB. LOB data is stored in a separate subtable in a series of 63 KB rows.

• The LOB data is stored on the same AMP as the corresponding data row.

• Maximum of 32 Large Objects in a table. Each LOB is stored in its own subtable.

2
2 byte column offset identifies
location of OID in row.

37- byte OID
Base Subtable

(Subtable ID 1024)

Series of 63 KB
rows to hold the
LOB data.

LOB dataLOB Subtable
(Subtable ID 1792) LOB data

:

 Sizing Page 23-46

Variable Column Offsets
Variable column offset values indicate the starting location of a variable column as is shown
on the facing page. They are only present in rows of tables where variable length columns
have been defined.

Determine the length of a variable length column by subtracting its starting location from
the next column's starting location. In the example on the facing page, column c2 is empty
(of length 0) since column c3 starts in the same place (i.e., 75-75=0).

The definition of variable length columns requires an additional 2-byte offset needed by the
system to determine the length of the last variable column.

The last offset actually represents what would be the first byte of the next variable length
column if it existed.

Sizing Page 23-47

Variable Column Offsets

50 75 75 100 c1 data c3 data

c1 c2 c3 x 5 7 1
0 5 0

0

Offset Array Variable Length Data

• Only applies to variable length columns without compression defined (MVC or ALC).

• Offset values indicate the starting location of a variable column.

• Determine the column length by subtracting its starting location from the next column’s
starting location.

• The definition of variable length columns requires one additional 2-byte offset that
locates the end of the final variable column.

– Note: the last offset actually represents what would be the first byte of the next variable length
column if it existed.

– The OID (Object Identifier) for a large object is also stored as a variable column and uses two
bytes in the offset array.

 Sizing Page 23-48

Row Size Calculation Form
The example on the facing page shows a form that can be used to calculate the physical row
size for a typical table.

Row Byte Alignment for 32-bit systems

Rows on 32-bit systems (e.g., UNIX MP-RAS) are always aligned on even-byte boundaries.
In other words, rows are never stored with an odd number of bytes. As a result, if a row has
an odd byte length, the system adds a filler byte to the end of the row to make its length
even. This simply means that with 32-bit systems, a row starts on a 2-byte boundary relative
to the start of a data block.

Row Byte Alignment for Aligned Row Format systems
Rows on 64-bit systems prior to Teradata 13.10 (e.g., Linux) are always aligned on 8-byte
boundaries. To ensure that no unaligned accesses occur with 64-bit systems, the system
adds pad bytes to each row to align them on 8-byte boundaries in both memory and disk.
For the sake of uniformity, all row sizes are multiples of 8, starting on an 8-byte boundary
relative to the start of a data block. Additionally, padding bytes may be also be added within
the row or at the end of a row. For example, the VARCHAR column offsets always start at
on even boundary within a data row.

Padding bytes will be added before the following fields to ensure 8-byte boundary
alignments.

 VARCHAR offset array
 Fixed length columns
 Compressible columns
 Variable length columns

Padding bytes will be added at the end of a row to ensure a row is a multiple of 8 bytes in
length.

Row Byte Alignment for Packed64 Format systems

Rows on Packed64 format systems are always aligned on even-byte boundaries. In other
words, rows are never stored with an odd number of bytes. As a result, if a row has an odd
byte length, the system adds a filler byte to the end of the row to make its length even.

Only new systems (or systems that have been sysinit) on Teradata 13.10 can use the
packed64 row format. Systems that are simply upgraded to 13.10 will continue to use the
aligned row format.

Sizing Page 23-49

Row Size Calculation Form

Table Name ____________________

Column Name Type Max Average

SUM(a) =

Variable Column Data Detail

Data Type # of Columns Size TOTAL

BYTEINT * 1 =
SMALLINT * 2 =
INTEGER * 4 =
BIGINT * 8 =
DATE * 4 =
TIME * 6 or 8* =
TIME with ZONE * 8 =
TIMESTAMP * 10 or 12* =
TIMESTAMP/ ZONE * 12 =
DECIMAL 1-2 * 1 =

3-4 * 2 =
5-9 * 4 =

10-18 * 8 =
19-38 * 16 =

FLOAT * 8 =
Fixed SUM(n) =
Variable SUM(a) =

LOGICAL SIZE =

Overhead = 14
Partitioned Primary Index Overhead (2 or 8) =

Variable Column Offsets
(__ * 2) + 2 ; zero if no variable columns =

_____ Bits for Compressible Columns
_____ Nullable Columns
_____ / 8 (Quotient only) =

PHYSICAL ROW SIZE =

SUM(a) = SUM of the AVERAGE number of bytes
expected for the variable columns.

SUM(n) = SUM of the fixed CHAR and GRAPHIC
column bytes.

* Assume rows are on 2-byte boundaries.

* Assume 6 bytes for TIME and 10 bytes for
TIMESTAMP.

 Sizing Page 23-50

Example: Sizing a Row
The logical row layout example of the Employee table shown on the facing page will be
used in an example of sizing a row. We will examine a row size calculation for the
Employee table step-by-step on the following pages.

Sizing Page 23-51

Example: Sizing a Row

EMPLOYEE

Using this logical row layout, the next page will size a typical row of the Employee table.

Notes:

• This table is not partitioned.

• Data analysis indicates that the typical Last Name is 10 bytes in length and the typical
First Name is 8 bytes in length.

• Assume this a Teradata 14.0 Linux system and rows are on 2-byte boundaries.

SUPV JOB LAST FIRST MIDDLE HIRE BIRTH SALARY
EMP # EMP # DEPT # CODE NAME NAME INITIAL DATE DATE AMOUNT

PK,SA FK FK FK NN NN NN NN NN

INTEGER INTEGER INTEGER SMALL VARCHAR VARCHAR CHAR DATE DATE DECIMAL

INTEGER 30 30 Fixed 1 (10,2)

 Sizing Page 23-52

Example: Completing the Row Size Calculation Form
The example on the facing page shows the use of the “Row Size Calculation Form”. We
will use this form to determine the typical row size for the Employee table.

Variable Length Columns (Varchar, Varbyte, Vargraphic, etc.)
List all the variable columns on the left side of the form. For each column, determine the
average number of bytes expected. Then add these up (SUM(a)). In the Employee table,
there are two variable columns, LAST NAME and FIRST NAME. The average number of
bytes expected for both columns is 18. Therefore the SUM(a) = 18. Copy this value to the
right side of the form for SUM(a).

Fixed Length Columns
Determine how many of each data type there are in the table. In the Employee table, there
are 1 SMALLINT, 3 INTEGER, 2 DATE, and 1 DECIMAL (10-18 digits). Enter these
numbers to fill in the NUMBER OF COLS portion of the form. Multiply these counts
against the sizing factor for that data type. For CHAR(n), BYTE(n), and GRAPHIC(n), add
the total number of bytes they will require and list it on the right side of the form for
SUM(n). This sum will only be 1 for the MIDDLE INITIAL.

Logical Size
The logical size is the amount of space needed by the data for a typical row. The logical
size of an Employee row is 49 bytes.

Physical Size
You must add 14 bytes to allow for Row Length (2), Row Id (8), Spare Byte (1), mandatory
Presence Byte (1), and Reference Array Pointer (2).

You must allow for the necessary 2-byte variable column pointers. Since there are 2
variable columns in the Employee table, you must allow for three offsets at 2 bytes each. If
there are no variable columns in a table, this entry will be zero.

The system has use of seven bits of the mandatory Presence Byte. Every nullable column
and every compressible column requires a Presence bit. The net calculation determines
whether additional bytes will be needed for Presence bits. In the Employee table, only three
Presence bits are needed. They will be taken from the mandatory Presence byte. No
additional bytes are required.

Totaling the results, the size of an average Employee row is 70 or 72 bytes depending if the
system has rows in Aligned Row format or Packed64 format.

Sizing Page 23-53

Example: Completing the Row Size Calculation Form

Table Name EMPLOYEE

Column Name Type Max Average

Last Name VC 30 10

First Name VC 30 8

SUM(a) = 18

Variable Column Data Detail

Data Type # of Columns Size TOTAL

BYTEINT * 1 =
SMALLINT 1 * 2 = 2
INTEGER 3 * 4 = 12
BIGINT * 8 =
DATE 2 * 4 = 8
TIME * 6 or 8* =
TIME with ZONE * 8 =
TIMESTAMP * 10 or 12* =
TIMESTAMP/ ZONE * 12 =
DECIMAL 1-2 * 1 =

3-4 * 2 =
5-9 * 4 =

10-18 1 * 8 = 8
19-38 * 16 =

FLOAT * 8 =
Fixed 1 SUM(n) = 1
Variable SUM(a) = 18

LOGICAL SIZE = 49

Overhead = 14
Partitioned Primary Index Overhead (2 or 8) =

Variable Column Offsets
(2 * 2) + 2 ; zero if no variable columns = 6

__0_ Bits for Compressible Columns
__4__ Nullable Columns
__4__ / 8 (Quotient only) = 0

PHYSICAL ROW SIZE = 69 + 1 = 70

SUM(a) = SUM of the AVERAGE number of bytes
expected for the variable columns.

SUM(n) = SUM of the fixed CHAR and GRAPHIC
column bytes.

* Assume rows are on 2-byte boundaries.

* Assume 6 bytes for TIME and 10 bytes for
TIMESTAMP data types.

ds186034
Sticky Note
min14

ds186034
Sticky Note
no extra PB

ds186034
Sticky Note
1 = byte boundary system

ds186034
Sticky Note
you can use max instead of ave - better!

 Sizing Page 23-54

Row Size Exercise
Use the information below to fill in the worksheet on the facing page. This will give you the
physical size of a Call table row. None of the columns has the COMPRESS option
specified.

This table will be partitioned via RANGE_N on Call Date with Monthly intervals for 10
years.

This table is created on a Teradata 14.0 Linux system.

DOMAIN CHART DATA TYPE SIZE
AREA CODE SMALL INTEGER 2
CALL DATE DATE 4
CALL NUMBER INTEGER 4
CALL PRIORITY CODE SMALL INTEGER 2
CALL STATUS CODE SMALL INTEGER 2
CALL TIME TIME WITH ZONE 8
CALL TYPE CODE CHAR FIXED 2
CONTACT NUMBER INTEGER 4
CUSTOMER NUMBER INTEGER 4
EMPLOYEE NUMBER INTEGER 4
EXTENSION INTEGER 4
PART CATEGORY INTEGER 4
PART SERIAL NUMBER BIG INTEGER 8
PHONE NUMBER INTEGER 4
SYSTEM NUMBER INTEGER 4

Sizing Page 23-55

Row Size Calculation Form

Table Name ____________________

Column Name Type Max Average

SUM(a) =

Variable Column Data Detail

Data Type # of Columns Size TOTAL

BYTEINT * 1 =
SMALLINT * 2 =
INTEGER * 4 =
BIGINT * 8 =
DATE * 4 =
TIME * 6 or 8* =
TIME with ZONE * 8 =
TIMESTAMP * 10 or 12* =
TIMESTAMP/ ZONE * 12 =
DECIMAL 1-2 * 1 =

3-4 * 2 =
5-9 * 4 =

10-18 * 8 =
19-38 * 16 =

FLOAT * 8 =
Fixed SUM(n) =
Variable SUM(a) =

LOGICAL SIZE =

Overhead = 14
Partitioned Primary Index Overhead (2 or 8) =

Variable Column Offsets
(__ * 2) + 2 ; zero if no variable columns =

_____ Bits for Compressible Columns
_____ Nullable Columns
_____ / 8 (Quotient only) =

PHYSICAL ROW SIZE =

SUM(a) = SUM of the AVERAGE number of bytes
expected for the variable columns.

SUM(n) = SUM of the fixed CHAR and GRAPHIC
column bytes.

* Assume rows are on 2-byte boundaries.

* Assume 6 bytes for TIME and 10 bytes for
TIMESTAMP.

 Sizing Page 23-56

Sizing Tables and Indexes
Teradata supports variable length rows and variable length blocks within a table. These
features provide maximum flexibility and save many hours of balancing data types, row
sizes and block sizes. Other systems support different fixed length block sizes, but the
designer must choose a single block size for each file. Though these other systems may
allow variable length records, they can be wasteful of block space.

When sizing tables and indexes, the most important variables are the size of the rows and the
number of rows (and whether the table is Fallback or not).

Row size and number determine space requirements. Variable length rows and blocks make
it more difficult to accurately estimate the space required for tables and their indexes.

Sizing Page 23-57

Sizing Tables and Indexes

These features make accurate space estimates for tables and their indexes more
difficult.

• These options on the Teradata Database support variable length rows:
– COMPRESS
– VARCHAR and LONG VARCHAR
– VARBYTE and VARGRAPHIC

• Variable length blocks within a table are also supported.

• Teradata 13.10 compression features such as Algorithmic Level Compression (ALC)
or Block level Compression (BLC).

However, physical row size and table row count can be used to estimate space
requirements.

 Sizing Page 23-58

Table Headers
Teradata creates a table header for each table.

 Table headers are a special one or two row block on each AMP having a specific
Subtable ID. The header row contains all of the DD information about a table, its
columns and its indexes which saves the Parser from having to send this DD
information to the AMPs for every request.

 A table header is at least 512 bytes (1 sector). The number of columns and indexes

a table has will affect the header size. We will assume that all table headers are at
least 1024 bytes and we will assume for sizing exercises that table headers are 4
KB in size.

 Normally, table headers will be at least 1024 bytes in length. If you create a table

with 3 or more columns, then the table header will be 1024 bytes in length. If you
create a table with 2 columns and a NUSI, then the table header will be 1024 bytes.

An example of a table header is shown on the facing page.

Sizing Page 23-59

Table Headers

• A copy of the table header exists on every AMP.

– Table header is a separate subtable (subtable id 0).

• Minimum table header block size is 512 bytes (1
sector) per AMP.

– The number of columns, secondary indexes, and
compressed values impact table header size.

– For example, tables with 3 or more columns will have a
table header that is at least 1 KB in size.

• Typically, a table header will be at least 1024 bytes and
may commonly be 4 KB with compression.

• Compressed values are maintained in the table header.

– Compressed values are maintained in an array in the
table header.

– Example: 255 compressed values @ 20 bytes would
increase the table header by 5K.

• Teradata 12.0 – maximum size of 128K
Starting with Teradata 13.0 – maximum size of 1 MB

• The table header also covers all of its secondary index
subtables.

Example of Table Header
STANDARD ROW HEADER

LENGTH, ROW ID, PRESENCE/SPARE BYTES

EXTRA OFFSET

DATABASE AND TABLE NAMES

DATABASE ID
OTHER INTERNAL INFO

CREATION DATE, PROTECTION, TYPE OF
JOURNALING, JOURNAL ID, STRUCT VERSION, etc.

F
I
E
L
D

1

INDEX DESCRIPTORS
(36 BYTES * # INDEXES) PLUS 20 BYTES PER
INDEX COLUMN

FLD. 2

ALWAYS NULL FLD. 3

FASTLOAD & RESTORE INFORMATION
USUALLY NULL

FLD. 4

BASE COLUMN INFO
COUNT OF COLUMNS, LOCATION OF FIRST
FIXED FIELD, NUMBER OF PRESENCE BITS, etc.

COLUMN INFORMATION FOR
EACH COLUMN

20 BYTES PER COLUMN (+ COMPRESS VALUE),
DATA TYPE, OFFSET WITHIN ROW,
NULLABLE/NOT NULLABLE, COMPRESS/NO
COMPRESS, PRESENCE BIT LOCATION, etc.

F
I
E
L
D

5

RESTARTABLE SORT INFORMATION
USUALLY NULL

FLD. 6

ALWAYS NULL FLD. 9

REFERENTIAL INDEX INFORMATION
(REF. INDEX DESCRIPTORS)

FLD. 7

LARGE OBJECT INFORMATION
(LOB DESCRIPTORS)

ROW LENGTH or REFERENCE ARRAY POINTER

FLD. 8

FIELD OFFSET BYTES (Fields 2-9)

 Sizing Page 23-60

Sizing a Data Table
The formulas shown on the facing page enable you to estimate the size of a data table. The
formulas assume that every block is the same size. Though adequate for rough calculations,
it is preferable to do the calculations over a range of block sizes. Since rows cannot be split
over block boundaries, you must be certain to round down your first answer.

The size ranges for typical blocks are shown on the facing page. The typical block size will
vary with the tuning of the maximum block size. The formula for calculating typical block
size is also shown.

If the maximum block size is 64 KB, then a typical block size will be approximately 48 KB.

If the maximum block size is 127 KB, then a typical block size will be approximately 96
KB.

Notes:

You will commonly find table headers that are at least 1024 bytes long. This is
especially true if you have multiple secondary indexes defined.

Data Block Header is 72 bytes in length. The Data Block Trailer is 2 Bytes long.
Therefore, the block overhead is 72 + 2 or 74 bytes.

Sizing Page 23-61

Sizing a Data Table

Block sizes vary within a table, so compute a range.
• The typical maximum block size is 127 KB bytes (254 sector blocks), a typical block

size is 96 KB, and assume table headers that are 4 KB in size.

Formula:
(BlockSize - 74) / RowSize = RowsPerBlock (rounded down)
RowCount / RowsPerBlock = Blocks (rounded up)
NumAmps * 4096 = Header (assumes 4 KB table headers)
(Blocks * BlockSize) + Header = NO FALLBACK (BlockSize = Typical Block Size)
(Blocks * BlockSize) * 2 + Header = FALLBACK (BlockSize = Typical Block Size)

Parameters:
74 = Block Header + Block Trailer BlockSize = Typical block size in bytes

4096 = Typical table header size NumAmps = Number of AMPs in the system
RowCount = Number of table rows expected
RowSize = Physical row size

Note:

For large tables, table headers and block overhead (74 bytes) add a minimal amount of
size to the table. Therefore, multiply row size by number of rows and double for Fallback.

 Sizing Page 23-62

Table Sizing Exercise
Given the data on the facing page, estimate the size of this table; assume it is fallback
protected. The formulas have been repeated for you.

The formula calculation is as follows:

 98,304 – 74 = 98,230 ÷ 98 = 501 rows per block

 501,000,000 ÷ 501 = 1,000,000 blocks

 50 * 4096 = 204,800 bytes for block headers

 No Fallback = (1,000,000 * 98,304) + 204,800 = 98,304,204,800 bytes

 Fallback = (1,000,000 * 98,304) * 2 + 204,800 = 196,608,204,800 bytes

As you can see on the facing page, simple multiplying the number of rows by the row size
gives a value of 196,392,000,000 which is fairly close to this formula’s value.

Sizing Page 23-63

Table Sizing Exercise

Given this data, estimate the size of a table with Fallback and a typical block size of 96K.
• BlockSize = 98,304 bytes (96 KB) and table headers that are 4 KB (4096)
• NumAmps = 50
• RowCount = 501,000,000
• RowSize = 196 bytes (includes overhead)

Formula:
• (BlockSize - 74) / RowSize = RowsPerBlock (round down)
• RowCount / RowsPerBlock = Blocks (round up)
• NumAmps * 4096 = Header
• (Blocks * BlockSize) + Header = No Fallback
• (Blocks * BlockSize) * 2 + Header = Fallback

Calculation:
(98,304 - 74) / 196 = 501 rows per block
501,000,000 / 501 = 1,000,000 blocks
50 * 4096 = 204,800 for table headers
(1,000,000 * 98,304) + 204,800 = 98,304,204,800 (No Fallback)
(1,000,000 * 98,304) * 2 + 204,800 = 196,608,204,800 (Fallback)

An easier way to estimate this table size:

501,000,000 x 196 bytes x 2 (Fallback) = 196,392,000,000

ds186034
Sticky Note
short cutround upnearly the same answer...

 Sizing Page 23-64

Estimating the Size of a USI Subtable
The formula on the facing page provides you with a means of calculating the amount of
space required for a Unique Secondary Index.

Since there is one USI row for every base table row, the Row Count is the same as the
number of rows in the base table. The Index Value Size is the size of the column(s) that
comprise the index and varies depending on the USI. There is a minimum of 29 bytes of
overhead in each subtable row.

The following formula can be used to estimate size of a USI subtable.

p = Number of data rows in the base table – same as USI subtable

po = Presence bit overhead (ceiling): ((1 + number of nullable
 USI fields) / 8); if none, then 0.

vo = Variable length field overhead: (number of variable length USI fields + 1) * 2. If
none, then 0.

k = Length (in bytes) of a fixed length USI value (or the average
 length of a variable USI value)

Row length 2
USI Row ID 8
Spare0 1 (present for general row compatibility)
Presence 1 (present for general row compatibility)
Offsets 6 (three 2 byte offsets – see note below)
Index Row Continuation 1 (used with NUSI if Row IDs continue to
 another row; set to x’00’ for USI)
Presence/Null Bits (po) (0+) (exists only if USI columns are compressible
 or nullable)
Variable offsets (vo) (0+) (exists if SI columns are variable length)
USI value (k) (variable)
Base Table Row ID 8 – 16 (10 or 16 if base table has a PPI)
Reference Array 2

 at least 29 – 37 + USI value length (31/37 for PPI)

USI subtable (no fallback) size = p * (k + po + vo + 29 or 31)
USI subtable (fallback) size = 2p * (k + po + vo + 29 or 31)

Note: The offsets are used as following:

 Offset[0] is the offset of the first byte for the USI value.
 Offset[1] is the offset where the base table Row ID is found.
 Offset[2] is the offset after the base table Row ID.

Sizing Page 23-65

Estimating the Size of a USI Subtable

Spare &
Presence

Row
Length

Row ID of USI

Row
Hash

Uniq.
Value

Secondary
Index
Value

Base Table Row
Identifier Ref.

Array
Pointer

2 4 4 2 7 Variable 2/8 4 4 2
Bytes Opt.

Row Offsets
& Misc. (>=7)

Row
Hash

Uniq.
Value

Part.
#

There is one Index row for each Base Table row.

USI subtable row size = (Index value size + 29 or 31/37 for partitioned tables)

Where 29 = 4 (Row Header and Row Reference Array pointer)
+ 8 (This row's Row ID)
+ 9 (Spare, presence, and offset bytes – a multi-column index with compressed/null

columns may require additional presence bits)
+ 8 (Base table Row ID; or 10/16 for PPI tables; 16 if # partitions is > 65,535)

To estimate the amount of space needed for a USI subtable, you can use the
following formulas.

For tables with NPPI, USI Subtable Size = (Row count) * (index value size + 29)

For tables with PPI, USI Subtable Size = (Row count) * (index value size + 31 or 37)

Note: Double this figure for Fallback.

ds186034
Sticky Note
rowhash of the USI value(s)

ds186034
Sticky Note
RowID

 Sizing Page 23-66

Estimating the Size of a NUSI Subtable
The following information is needed to calculate the size of a NUSI subtable.

 For NPPI tables - (Row Count * 8) is derived from the 8 bytes of Row ID which
the subtable stores for each row in the base table. This gives us the total number of
bytes devoted to base table Row IDs.

 For PPI tables – (Row Count *10 or 16) is derived from the 8 bytes of Row ID plus

2 or 8 bytes for the partition #. The subtable stores 10/16 bytes for each row in the
base table with a PPI. This gives us the total number of bytes devoted to base table
Row Identifiers.

 (# distinct values) is an estimate of the number of NUSI subtable rows since a

NUSI subtable contains at least one index row per AMP for each distinct index
value in the base table on that AMP.

 The 21 bytes of overhead per subtable row are the same as the 29 bytes (minus 8

for Row ID) for a USI. The offsets are used as following:

Offset[0] is the offset of the first byte for the NUSI value.
Offset[1] is the offset where the first base table Row ID is found.
Offset[2] is the offset after the last base table Row ID is found.

 Note: The Index Row Continuation byte is used with NUSIs. If the NUSI
subtable row cannot hold all of the Row IDs for data rows on the AMP, this flag is
set to indicate that an additional subtable row is needed. The last (or only) subtable
row has this flag set to x’00’.

 MIN(NumAMPs, RowsPerValue) is the minimum of the two (see Case 1 and Case

2 below).

Case 1: NumAMPs < RowsPerValue
If there are fewer AMPs than RowsPerValue, at least one row from each NUSI value will
probably be distributed to each AMP. This means the subtable on each AMP will contain a
row for every NUSI value.

Case 2: NumAMPs > RowsPerValue
If there are more AMPs than RowsPerValue, at least some AMPs will be missing some
NUSI values. This means that some AMPs will not have a subtable row for every NUSI
value.

Sizing Page 23-67

Estimating the Size of a NUSI Subtable

P RH U

2/8 4 4

P RH U

2/8 4 4

Row Offsets
& Misc. (>=7)

Spare &
Presence

Row
Length

Row ID of NUSI

Row
Hash

Uniq.
Value

Secondary
Index
Value

Ref.
Array

Pointer

2 4 4 2 7 Variable 8/10/16 8/10/16 2
Bytes

Table Row ID List

There is at least one index row per AMP for each distinct index value that is in the base
table on that AMP.

To estimate the size of a NUSI subtable, …

Size = (Row count) * 8 (or 10/16 for PPI tables; 16 if # partitions is > 65,535)
+ ((#distinct values) * (Index value size + 21) * MIN (#AMPs, Rows per value))

MIN(___ , ___) — use the smaller of the two values.
Double this figure for Fallback.

More AMPs than typical rows/value:
(10 AMPS, 5 rows/value)

• NOT Every AMP has every value.
• NOT Every AMP has a subtable row for every value.
• More strongly selective.
• Fewer rows returned from an equality search.

Example:

More typical rows/value than AMPS:
(50 rows/value, 10 AMPS)

• Every AMP probably has every value.
• Every AMP has a subtable row for every value.
• More weakly selective.
• More rows returned from an equality search.

ds186034
Sticky Note
typical rows per value(smaller of the two)

 Sizing Page 23-68

Estimating the Size of a Reference Index Subtable
The formula on the facing page provides you with a means of calculating the amount of
space required for a Reference Index – created to support a References constraint.

A RI row is similar to an USI row except instead of recording a 8 byte data Row ID, a 4 byte
foreign key row count and a Valid flag is saved instead.

The following formula can be used to estimate size of a RI subtable.

p = Estimated number of distinct foreign key value excluding
 foreign key value which contains NULL.

po = Presence bit overhead (ceiling): ((1 + number of nullable
 foreign key fields) / 8); if none, then 0.

vo = Variable length field overhead: (number of variable length foreign
 key fields + 1) * 2; if none, then 0.

k = Length (in bytes) of a fixed length foreign key value (or the average
 length of a variable length foreign key value).

Row length 2
Refer. Index Row ID 8
Spare0 1 (present for general row compatibility)
Presence 1 (present for general row compatibility)
Offsets 6 (three 2 byte offsets)
Validity Flag 1 (x’00’ is valid; x’01’ is invalid)
Presence/Null Bits (po) (0+) (exists only if FK columns are nullable)
Variable offsets (vo) (0+) (exists if FK columns are variable length)
Foreign key value (k) (variable)
Foreign Key Count 4
Reference Array 2

 at least 25 + length of Foreign Key

RI subtable (no fallback) size = p * (k + po + vo + 25)
RI subtable (fallback) size = 2p * (k + po + vo + 25)

The offsets are used as following:

 Offset[0] is the offset of the validity flag byte.
 Offset[1] is the offset where the row count can be found.
 Offset[2] is the offset after the row count.

Sizing Page 23-69

Estimating the Size
of a Reference Index Subtable

Row OffsetsOverhead

Row
Length

Row ID of RI

Row
Hash

Uniq.
Value

Foreign
Key

Value

Ref.
Array

Pointer

2 4 4 2 6 1 0+ Variable 4 2
Bytes

Valid
Flag Count

Optional Presence and
variable length indicators

There is one reference index row for each distinct foreign key value.

RI subtable row size = (Index value size + 25)

Where 25 = 4 (Row Header and Row Ref. Array pointer)
+ 8 (This row's Row ID)
+ 8 (Overhead and row offset bytes)
+ 1 (Validity flag)
+ 4 (Count)

To estimate the size of a Reference Index (RI) subtable, you can use the following formula.

RI Subtable Size = (Distinct count) * (index size + 25)

Double this figure for Fallback.

 Sizing Page 23-70

Index Sizing Exercise
Use the formulas provided to solve the exercise on the facing page.

Sizing Page 23-71

Index Sizing Exercise

A customer has a Teradata 14.0 system with 168 AMPs.

• How much space will a USI and NUSI require for 1,000,000 row Fallback table?

• The USI is an Integer data type; the NUSI is a CHAR(18) data type and has 20 rows per
value with 50,000 distinct values.

• The table has multi-level partitioning (< 65,535 partitions). Estimate the space for
each secondary index.

Formulas:

USI Size = Row Count * (IndexValueSize + 31)

NUSI Size = (Row Count * 10) + (#distinct values) * (IndexValueSize + 21) * MIN (#AMPs , rows/value)

ds186034
Sticky Note
1mill row tableUSI and NUSIUSI: intNUSI char(18)

 Sizing Page 23-72

Other Sizing Techniques
The DBC.TableSizeV view provides actual table space information, but it is a total value for
the data table and all of its subtables (e.g., Fallback, Secondary Indexes, etc.).

Techniques that can be used to help determine the size of data rows and specific index
subtables include:

 For a new table, load a portion of the data (e.g., 1%) and use the DBC.TableSizeV
view and the "Empirical Sizing" technique to estimate the size of a table and each
index as it is created.

Subtract the size without the index from the size with the index.

 For an existing table, use the COLLECT DEMOGRAPHICS command to capture

demographic information into a QCD (Query Capture Database).

Query the data demographics view to access actual row lengths and row counts.
Multiply the average subtable row length x number of subtable rows to determine

the size of an index subtable.

 For an existing table, use the system utility Ferret with the ShowBlocks command

to determine the size of data and index subtables.

This requires access to system console utilities.
This technique is not discussed in this course.

Sizing Page 23-73

Other Sizing Techniques

The DBC.TablesizeV view provides permanent space information about a table
and all of its subtables.

• Sizing information is not provided for individual secondary index subtables.

Other techniques that can be used to help determine the size of data rows and
index subtables include:

• For a new table, use the DBC.TablesizeV view and the "Empirical Sizing" technique to
estimate the size of a table and each index as it is created.

– Subtract the size without the index from the size with the index.

• For an existing table, use the COLLECT DEMOGRAPHICS command to capture
demographic information into a QCD (Query Capture Database).

– These demographics provide actual row lengths and row counts.

– Multiply the average subtable row length x number of subtable rows to determine
the size of an index subtable.

 Sizing Page 23-74

Empirical Sizing
The most accurate way to size a production table and its indexes is Empirical Sizing. This
method consists of loading a portion of the table, measuring how much space it takes, and
extrapolating the total space required for the table from this information.

The steps involved in Empirical Sizing are shown at the top of the facing page.

The example shows the SQL necessary to query the DD.

 In Step 2, SUM(CurrentPerm) gives you the space, which is required to store the
portion of the table itself.

 In Step 4, SUM(CurrentPerm) gives you the amount of space required to store

those table rows plus the index which was defined in Step 3. Subtract the results to
compute the size of the index.

 Running the SQL statement in Step 2 without the AND clause will give you the

amount of space for the entire database, not just a single table.

CurrentPerm is always expressed in whole sectors, rounded up. If only a 10-byte row was in
Perm Space, CurrentPerm would be reported as 512 bytes (1 sector).

NOTE: DATABASE is a key word and represents your current database.

Sizing Page 23-75

Empirical Sizing

An excellent way to size a production table, including indexes is:
1. Load a known percentage of rows onto the system.
2. Query the DD through the view DBC.TableSizeV.
3. Create one index.
4. Query the DD through the view DBC.TableSizeV.
5. Repeat steps 3 and 4 as necessary.
6. Multiply the results to determine the production size.

Example:
Step 1 Load 1% of a table onto a system.

Step 2 SELECT SUM(CurrentPerm) FROM DBC.TablesizeV
WHERE DatabaseName = DATABASE
AND TableName = 'Sales';

Sum(CurrentPerm)
49,818,624

Step 3 CREATE INDEX (sales_date) ON Sales;

Step 4 SELECT SUM(CurrentPerm) FROM DBC.TablesizeV
WHERE DatabaseName = DATABASE
AND TableName = 'Sales';

Sum(CurrentPerm)
57,300,480

Therefore, index size is:

57,300,480

– 49,818,624

7,481,856

If the sample data was 1%, then
the index size would be 748 MB.

Note: The same query without
the SUM keyword returns

per/AMP figures which reveal
distribution efficiency.

Note: The same query without
the SUM keyword returns

per/AMP figures which reveal
distribution efficiency.

 Sizing Page 23-76

Collect Demographics Command
The COLLECT DEMOGRAPHICS command collects various table demographics and
writes the data to the DataDemographics table of a user-defined QCD database. These
demographics are primarily used for subsequent analysis tools such as the Teradata Index Wizard.

You can also query the DataDemographics table in the user-defined QCD via a view named
DataDemographicsView.

You must have the following privileges to execute COLLECT DEMOGRAPHICS:

 DELETE on the DataDemographics table in QCD_name.
 INSERT on the DataDemographics table in QCD_name or INSERT on the

QCD_name database.
 SELECT on the specified tables or containing databases.

Options: WITH NO INDEX is used to exclude index subtable demographics from the
collection and collect only primary data. ALL (data and index demographics is the default).

COLLECT DEMOGRAPHICS determines and writes the following information for each
specified table on an AMP-by-AMP basis into the DataDemographics table of the specified
QCD (Query Capture Database):

 DatabaseName and TableName
 Subtable type and Subtable ID
 Cardinality and Average row length
 System-related information (Machine Name, Collect Time, etc.)

Demographics captured by COLLECT DEMOGRAPHICS are not deleted when you
perform associated DROP actions on the subject table and must be deleted explicitly.

 COLLECT DEMOGRAPHICS does not capture information for the QCD table
TableStatistics. The COLLECT STATISTICS (QCD form) is needed to capture
statistics for the data analysis tools (e.g., Teradata Index Wizard).

 These are not the same statistics that are used by the optimizer. Statistics collected

by this statement are used for index analysis and validation tasks performed by data
analysis tools such as the Teradata Index Wizard: these statistics are not used by the
Optimizer to process queries.

 COLLECT STATISTICS FOR SAMPLE 100 PERCENT INTO QCD
 ON Orders_PPI COLUMN orderid;

If you collect data demographics with Visual Explain (INSERT EXPLAIN … WITH
DEMOGRAPHICS), when you delete the relevant query plans, then the data demographics
are also automatically deleted.

Sizing Page 23-77

COLLECT DEMOGRAPHICS Command

Notes:

• Collects various table demographics and writes the data to the DataDemographics
table of a user-defined QCD database.

• COLLECT DEMOGRAPHICS determines and writes the following information for each
specified table per AMP:

– Subtable ID
– Cardinality
– Average row length
– Subtable type
– System-related information (Machine name, collected time, etc.)

• If an entry already exists in the DataDemographics table for the specified table, then it
is updated with the currently collected data.

• This collection can also be invoked via the Visual Explain or Index Wizard utilities.

COLLECT DEMOGRAPHICS FOR table_name A
,

table_name

A INTO QCD_Name

ALL ;

WITH NO INDEX

 Sizing Page 23-78

Collect Demographics Example
The facing page contains an example of using the COLLECT DEMOGRAPHICS command
for a table named Orders_PPI.

The table definition is:

CREATE SET TABLE TFACT.Orders_PPI, FALLBACK,
 (orderid INTEGER NOT NULL,
 custid INTEGER NOT NULL,
 orderstatus CHAR(1),
 totalprice DECIMAL(9,2) NOT NULL,
 orderdate DATE FORMAT 'YYYY-MM-DD' NOT NULL,
 orderpriority SMALLINT,
 clerk CHAR(16),
 shippriority SMALLINT,
 ordercomment VARCHAR(79)
PRIMARY INDEX (orderid)
PARTITION BY RANGE_N(orderdate BETWEEN DATE '2003-01-01' AND DATE
'2012-12-31' EACH INTERVAL '1' MONTH)
UNIQUE INDEX orderid (orderid)
INDEX custid (custid);

Note: If you name your index, the index name is captured in the DataDemographics table,
but only for the first AMP (AMP 0). The index column names are not captured in this table.

If you haven’t named your index, you will have to use the subtable ids to reference the index
subtables.

Using the information from the DataDemographicsView, you can calculate the size of the
various subtables. Note that this view does not include the fallback subtables.

 Primary Data (1024) = 96000 x 66 x 2 (for fallback) = 12,672,000
 USI subtable (1028) = 96000 x 36 x 2 (for fallback) = 6,912,000
 NUSI subtable (1032) = 90200 x 38 x 2 (for fallback) = 6,855,200

Sizing Page 23-79

COLLECT DEMOGRAPHICS Example

Example: The Orders_PPI table is partitioned with the following demographics:

• Fallback protected; 96,000 rows; typical row size is 66 bytes (includes overhead)
• Integer NUPI that is partitioned by order date; distributed across a 20-AMP system
• Integer USI
• Integer NUSI – distinct values is 4810, typical rows per value is 24

COLLECT DEMOGRAPHICS FOR TFACT.Orders_PPI into QCD;

DatabaseName TableName SubTableType SubTableID Sum(RowCount) Average(AvgRowSize)

TFACT ORDERS_PPI Data 1024 96,000 66
TFACT ORDERS_PPI SecondaryIndex 1028 96,000 36
TFACT ORDERS_PPI SecondaryIndex 1032 90,200 38

Query the QCD.DataDemographicsView to determine average row length.

SELECT Databasename, Tablename, SubtableType, SubtableID, SUM(RowCount),
AVG(AvgRowSize)

FROM QCD.DataDemographicsView
ORDER BY SubtableID
GROUP BY Databasename, Tablename, SubtableType, SubtableID;

Calculation: The size of the NUSI subtable is 90,200 x 38 x 2 = 6,855,200 bytes.

Notes: The QCD.DataDemographics table does not include fallback subtables.
This table does include the names of named indexes, but not index column names.

ds186034
Sticky Note
USI

ds186034
Sticky Note
NUSI

 Sizing Page 23-80

Spool Space
When sizing databases, it is important to estimate the amount of Spool space required.
Maximum spool-space needs will vary with table size, use (type of application), and
frequency of use.

It is a misconception that all unused space can be used for spool - only free cylinders are
available for spool. The unused or fragmented space within permanent cylinders cannot be
used for spool. This space is used by the file system for updates/insert/deletes requiring
larger/new blocks. When blocks are expanded or split, the file system returns blocks to the
free block list and this space is available within the cylinder for future
updates/inserts/deletes.

Large systems use more spool space to duplicate tables on each AMP to perform Product
Joins.

Empty cylinders are used for Spool. Recall that the Spool limit for a User is specified in the
CREATE USER statement and may be changed dynamically. Avoid copying or
redistributing entire tables to Spool unless absolutely necessary (to keep from exceeding the
Spool limit).

A user may run out of Spool space because of an incorrectly coded query, etc. and will
receive a message that their SQL statement has been aborted. If the user exceeds their Spool
space limit, they will receive the following error message.

 2646 – No more spool space in username

If a user has an appropriate amount of spool space for their request and receives this
message (2646), usually the problem is that the spool file is poorly distributed among the
AMPs. This usually occurs in a join operation when the Optimizer redistributes the tables
on a column that is not very unique.

If the AMP runs out of Spool space (insufficient available cylinders for Spool), the
following message will be displayed. This message indicates that a request has exceeded the
physical storage limits imposed by a given configuration without exceeding the logical
limits imposed by the PERM or SPOOL space allocation for a given database/user.

 2507 - Out of spool space on disk

Sizing Page 23-81

Spool Space

• Maximum spool space needs vary with table size, use (type of application), and
frequency of use.

• Large systems use more spool to duplicate tables on each AMP.

• Cylinders not currently used for data may be used for spool.

– It is a misconception that all unused space can be used for spool – only free cylinders are
available for spool. The unused space within permanent cylinders cannot be used for spool.

• The user’s maximum spool space limit can be changed dynamically.

• Avoid unnecessary copying or redistribution of entire tables to spool.

As user concurrency and/or SQL complexity increases, add more SPOOL.

Running out of Spool Space

• If a user exceeds their Spool space limit, they will receive the following error message.

2646 – No more spool space in username

• If the AMP runs out of Spool space (insufficient available cylinders for Spool), the
following message will be displayed.

2507 - Out of spool space on disk

ds186034
Sticky Note
25% of total spacecan recommend 40% - depends

ds186034
Sticky Note

 Sizing Page 23-82

Release of Spool
Intermediate Spool results are held until they are no longer needed. The EXPLAIN facility
uses the term “Last Use” to designate the step after which the Spool is released.

Output (final) Spool results are held until one of the events listed on the facing page occurs.
System Restarts cause all Spool results to be released.

 Since Master Indexes are kept in memory and never written to disk, they must be
rebuilt from the Cylinder Indexes after every Restart.

Previously, this course stated that the Table ID contained information (Unique Value) which
defined the type of table or file (data table, Permanent Journal, or Spool file).

 In rebuilding the Master Index after a Restart, the File System examines every
Cylinder Index.

 If a Spool block is found on a cylinder, this means that the entire cylinder must

contain only Spool and Free Blocks (since you cannot have both data and Spool on
the same cylinder).

 All of the in-use space for that cylinder is put onto the Free Block List and the

Cylinder Index is rewritten to indicate that the cylinder is empty. That cylinder is
then put onto the Free Cylinder List in the Master Index.

Sizing Page 23-83

Release of Spool

Intermediate Spool

Intermediate Spool results are held until the (LastUse) Explain step.

Output Spool

Output Spool results are held until:
• Last spool Response – BTEQ
• CLOSE cursor – Preprocessor
• ERQ, Terminate function – CLI
• Session ends – Job Abort, timeout, logoff, etc.
• System is restarted

System Restart – each AMP rebuilds its Master Index from its Cylinder Indexes.

The AMPs delete all spool files by moving them to the Free Cylinder List.

This costs only one I/O per spool cylinder.

 Sizing Page 23-84

System Sizing Exercise
The exercise on the facing page provides an estimate only. The intent of this exercise is to
show that you have to account for more than just user data.

Obviously, customer requirements can vary greatly and the percentages for spool, work
space, indexes, permanent journals, etc. will vary as well.

Sizing Page 23-85

System Sizing Exercise

Some general guidelines for estimating system size:

40% of total space for Spool
10% of total space for DBC, WAL space (Transient Journal), Permanent Journals, etc.
20 - 50% of data size for indexes

• If not Fallback, multiply the amount of raw data by a factor of 3 or 4 (for 40% spool).
• If using Fallback, multiply the amount of raw data by a factor of 5 or 6 (for 40% spool).

• Note: These factors will be smaller if the amount of required spool is only 25% and if
aggressive compression is used (block level, etc.)

Example assuming Fallback:

User raw data 100 TB
Estimate of Vdisk space needed 500 to 600 TB

Proof:
Estimate of Vdisk space 500 to 600 TB

– Spool (40%) – 200 – 240 TB
– DBC, WAL Space, etc. (10%) – 50 – 60 TB

250 to 300 TB

User raw data 100 TB
20 - 50% for indexes 20 to 50 TB
Fallback (for data and indexes) 240 to 300 TB

A 28 node 6650 system with 42
AMPs/node and .54 TB of
MaxPerm space/AMP would meet
this requirement.

28 x 42 x .54 TB = 635 TB
MaxPerm space

Assumes 600 GB disks and 2
disks per AMP with RAID 1.

ds186034
Highlight

 Sizing Page 23-86

Sizing Summary
The facing page summarizes the primary points to remember when sizing databases.

 To get accurate space estimates, you must start with accurate row counts and row
sizes.

 When calculating the space necessary for a database, you must include all of the

components from the list.

Sizing Page 23-87

Sizing Summary

Accurate row counts and sizes are needed to get good space estimates.

Database sizing includes:

Tables + Fallback +

Secondary Indexes + Fallback +

Reference Indexes + Fallback +

Join Indexes + Fallback +

Hash Indexes + Fallback +

Permanent Journal (dual or single) +

Stored Procedure space +

Spool space +

Temporary space +

WAL Space (Transient Journal, etc.)

 Sizing Page 23-88

Module 23: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Sizing Page 23-89

Module 23: Review Questions

1. Which choice can be used with the COMPRESS option?

a. Identity column
b. Non-unique Primary Index
c. USI as PK with Standard RI
d. Non-unique Secondary Index

2. Which section of a row identifies the starting location of variable length column data and is present
only if variable length columns without compression are declared?

a. Presence Bits
b. Column Offsets
c. VARCHAR Columns
d. Uncompressed Columns

3. How can you override the default that a column with a NULL value will require row space?

a. Use the NOT NULL option on the column as part of the CREATE TABLE statement.
b. Set the user's default so columns will default to COMPRESS when creating a table.
c. Use the COMPRESS option on the column as part of the CREATE TABLE statement.
d. Use the DEFAULT NULL option on the column as part of the CREATE TABLE statement.

4. What is the minimum space the table headers will take for a 6-column table on a 10 AMP system?

a. 1024 bytes
b. 4096 bytes
c. 5120 bytes
d. 10240 bytes

5. What DD view is used to get sizing information about tables? ____________________________

ds186034
Sticky Note
No compression on PIno compression on RI either

ds186034
Highlight

ds186034
Highlight

ds186034
Highlight

ds186034
Sticky Note
10 times cause its on every amp of the system

ds186034
Highlight

ds186034
Sticky Note
DBC.tablesizeV

 Sizing Page 23-90

Lab Exercise 23-1
The following SQL can be used to determine the size of a table.

 SUM of Perm space using the DBC.TableSizeV view.

 SELECT TableName (CHAR(15)), SUM(CurrentPerm)
 FROM DBC.TableSizeV
 WHERE DatabaseName = DATABASE
 AND TableName = 'tablename'
 GROUP BY 1
 ORDER BY 1;

Remember that compression is case-sensitive. The city names have to be compressed as
shown on the facing page.

Sizing Page 23-91

Lab Exercise 23-1

Lab Exercise 23-1

Purpose
In this lab, you will compress multiple values for a column in order to reduce Perm space.

What you need
Populated AP.Accounts table and an empty table in your database

Tasks
1. Populate your Accounts table from the AP.Accounts table using the INSERT/SELECT statement:

INSERT INTO Accounts SELECT * FROM AP.Accounts;

Using the DBC.TableSizeV view, what is the amount of Perm space used. Accounts =___________

2. Create a new table, named "Accounts_MVC", based on the Accounts table except compress the
following city names:

Culver City, Hermosa Beach, Los Angeles, and Santa Monica

Populate your Accounts_MVC table from the AP.Accounts table using INSERT/SELECT.

Using DBC.TableSizeV, what is the amount of Perm space used. Accounts_MVC =_________

ds186034
Sticky Note
use tablesize view to see compressionwith or without the compression

 Sizing Page 23-92

Lab Exercise 23-2
Use DBC.TableSizeV to determine the number of bytes that a table is currently using.

 SUM of Perm space using the DBC.TableSizeV view.

 SELECT TableName (CHAR(15)), SUM(CurrentPerm)
 FROM DBC.TableSizeV
 WHERE DatabaseName = DATABASE
 AND TableName = 'tablename'
 GROUP BY 1
 ORDER BY 1;

Calculating table size
Since the Row Layout of the Trans table is simple, the row length can easily be calculated
as:

 Trans_Number INTEGER 4
 Trans_Date DATE 4
 Account_Number INTEGER 4
 Trans_ID CHAR(4) 4
 Trans_Amount DECIMAL(10,2) 8
 Row Overhead 14

 Row Length 38

To estimate table size, use the following formula which is to simply multiply the number of
rows x typical row length and double if the table is fallback protected.

 Row Length x 15,000 (# of rows) x 2 (Fallback) = Estimated Table Size

Sizing Page 23-93

Lab Exercise 23-2

Lab Exercise 23-2

Purpose
In this lab, you will populate tables, determine tables sizes, and create secondary indexes.

What you need
Populated AP.Trans table and an empty table in your database

Tasks
1. Determine the size of your empty Trans table using DBC.TableSizeV (SELECT with and without the

SUM aggregate function).

Size of empty Trans = _______________

What size are the table headers on each AMP? _______________

2. Since the typical row length is 38 bytes (see facing page), estimate the size of this table assuming it
will have 15,000 rows.

Estimated size of Trans = _______________

3. Populate your Trans table from the AP.Trans table using the following INSERT/SELECT statement:

INSERT INTO Trans SELECT * FROM AP.Trans;
Use the SELECT COUNT(*) function to verify the number of rows. ___________

 Sizing Page 23-94

Lab Exercise 23-2 (cont.)
Use DBC.TableSizeV to determine the number of bytes that a table is currently using.

 SUM of Perm space using the DBC.TableSizeV view.

 SELECT TableName (CHAR(15)), SUM(CurrentPerm)
 FROM DBC.TableSizeV
 WHERE DatabaseName = DATABASE
 AND TableName = 'tablename'
 GROUP BY 1
 ORDER BY 1;

Estimating USI Size

USI Subtable Size = ((Row count) * (index value size + 29))

Double this figure for Fallback.

Estimating NUSI Size

NUSI Subtable Size = (Row count) * 8
 + ((#distinct values)
 * (Index value size + 21)
 * MIN((#AMPs) , (Rows per value)))

Double this figure for Fallback.

To determine the number of “rows per value”, determine the distinct values in a table and
divide the total number of rows by the number of distinct values.

 SELECT COUNT(DISTINCT(col_name)) FROM tablename;

Calculation Hint: Remember that all rows (including index subtable rows start on an even
address (the subtable rows are an even number of bytes in length).

Result Note: The NUSI calculation will not as close because the NUSI has one value that
has a large number of duplicate values. When the NUSI is skewed, the estimation will
usually be more than the actual subtable size.

Sizing Page 23-95

Lab Exercise 23-2 (cont.)

4. Using the DBC.TableSizeV view, determine the actual size of the Trans table by using the SUM
aggregate function.

Size of populated Trans = _______________

5. Create a USI on the Trans_Number column.

Estimate the size of the USI = _______________
Actual size of the USI = _______________ (use the empirical sizing technique)

6. Create a NUSI on the Trans_ID column.

Estimate the size of the NUSI = ______________ (Hint: use DISTINCT function)
Actual size of the NUSI= ______________ (use the empirical sizing technique)

 Sizing Page 23-96

Lab Exercise 23-3 (optional)
Use DBC.TableSizeV to determine the number of bytes that a table is currently using.

 SUM of Perm space using the DBC.TableSizeV view.

 SELECT TableName (CHAR(15)), SUM(CurrentPerm)
 FROM DBC.TableSizeV
 WHERE DatabaseName = DATABASE
 AND TableName = 'tablename'
 GROUP BY 1
 ORDER BY 1;

Sizing Page 23-97

Lab Exercise 23-3 (optional)

Lab Exercise 23-3 (optional)

Purpose
In this lab, you will determine tables sizes and establish referential integrity between two tables.

What you need
Populated PD tables and empty tables in your database

Tasks
1. Populate your Employee and Emp_Phone tables from the PD.Employee and PD.Emp_Phone tables

using the following INSERT/SELECT statements.

INSERT INTO Employee SELECT * FROM PD.Employee;
INSERT INTO Emp_Phone SELECT * FROM PD.Emp_Phone;

2. Using the DBC.TableSizeV view, determine the actual size of the Emp_Phone table by using the SUM
aggregate function.

Size of populated Emp_Phone table = _______________

 Sizing Page 23-98

Lab Exercise 23-3 (optional – cont.)

To create a References constraint:

 ALTER TABLE child_tablename
 ADD CONSTRAINT constraint_name
 FOREIGN KEY (child_name)
 REFERENCES parent_tablename (parent_column);

To drop a named References constraint:

 ALTER TABLE child_tablename
 DROP CONSTRAINT constraint_name;

SUM of Perm space using the DBC.TableSizeV view.

 SELECT TableName (CHAR(15)), SUM(CurrentPerm)
 FROM DBC.TableSizeV
 WHERE DatabaseName = DATABASE
 AND TableName = 'tablename'
 GROUP BY 1
 ORDER BY 1;

Estimating Reference Index Size

Reference Index Subtable Size = ((Distinct # of values) * (index value size + 25))

Double this figure for Fallback.

To determine the number if distinct values in a table:

 SELECT COUNT(DISTINCT(col_name)) FROM tablename;

Calculation Hint: Remember that all rows (including index subtable rows) start on an even
address (the subtable rows are an even number of bytes in length).

Sizing Page 23-99

Lab Exercise 23-3 (optional – cont.)

3. The Foreign key is Employee_Number in PD.Emp_Phone and the Primary Key is the
Employee_Number in PD.Employee.

Create a References constraint on Employee_Number using the following SQL statements.

ALTER TABLE Emp_Phone ADD CONSTRAINT fk1
FOREIGN KEY (Employee_Number)
REFERENCES Employee (Employee_Number);

(use the HELP CONSTRAINT Emp_Phone.fk1; to view constraint information.

4. Using the DBC.TableSizeV view, determine the actual size of the Emp_Phone table by using the SUM
aggregate function.

Estimate the size of the Reference Index = _______________

Size of populated Emp_Phone with references index = _______________

Size of references index = _______________

5. Drop the Foreign Key constraint by executing the following SQL command.

ALTER TABLE Emp_Phone DROP CONSTRAINT fk1;

 Sizing Page 23-100

Notes

SQL Parser Page 24-1

Module 24

Teradata Proprietary and Confidential

SQL Parser

After completing this module, you will be able to:

 Describe internal, channel, and LAN parcels.

 Explain software cache functionality.

 List and identify the function of the main components
(phases) of the parser.

 Describe the functionality of Request-To-Steps cache.

 SQL Parser Page 24-2

Notes

SQL Parser Page 24-3

Table of Contents

Internal, Channel and LAN Parcels ... 24-4
Request Parcel .. 24-6
The Data Parcel .. 24-8
SQL Parser Overview .. 24-10
Software Cache .. 24-12
Request-To-Steps Cache .. 24-14

Request-to-Steps Cache Check .. 24-16
Request-To-Steps Cache Logic .. 24-18

Dictionary Cache .. 24-20
Syntaxer ... 24-22
Resolver ... 24-24
Security .. 24-26
Optimizer ... 24-28
Generator .. 24-30
Apply .. 24-32
Dispatcher .. 24-32
SQL Parser Review .. 24-34
Parser Summary ... 24-36
Module 24: Review Questions ... 24-38

Module 24: Review Questions (cont.) ... 24-40

 SQL Parser Page 24-4

Internal, Channel and LAN Parcels
The diagram on the facing page illustrates how an SQL Request is submitted to Teradata by
an SQL application (host). It also illustrates how Teradata replies to the SQL Request.

The SQL application sends out a Request parcel followed by a Data parcel (if necessary) and
a Respond parcel. In return, Teradata sends back a SUCCESS/FAIL parcel, which may be
followed by one or more Record parcels.

SQL requests and responses are “carried” to/from Teradata using the services of the CLI
(Call Level Interface). The CLI constructs (and deconstructs) the “parcels” which represent
the units of work that Teradata handles. One of the parcels, called a Request Parcel, carries
the actual SQL code. It is not “translated” until it gets to the Parser, where it becomes a set
of “steps” which will be sent to the AMPs. The AMPs create Response Parcels that contain
the information to be sent back to the user session. The CLI (on the client side) receives
these parcels, de-blocks them if necessary, and returns the requested information to the user.

Parcels are transparent to the user. The CLI keeps them transparent.

SQL Parser Page 24-5

Internal, Channel and LAN Parcels

• A REQUEST parcel is followed by zero or one DATA parcel plus one RESPOND parcel.

• The RESPOND parcel identifies response buffer size.

• A RESPOND parcel may be sent by itself as a continuation request for additional data.

• A SUCCESS parcel may be followed by RECORD parcels.

• Every REQUEST parcel generates a SUCCESS/FAIL parcel.

Teradata
Database

REQUEST
PARCEL

1

DATA
PARCEL

RESPOND
PARCEL

RECORD
PARCEL

RECORD
PARCEL

Success / Fail
PARCEL

HOST
or

SERVER

2 3

123

INTERNAL LAN or CHANNEL PARCELS

 SQL Parser Page 24-6

Request Parcel
A Request parcel contains one or more whole SQL statements. Normally, a Request parcel
represents a single transaction. Some transactions may require multiple Request parcels.

If you execute the same SQL statement 100 times, each Request for execution sends the
entire SQL statement to Teradata for parsing and execution.

As mentioned earlier, Request parcels are the units upon which the parser acts.

SQL Parser Page 24-7

Request Parcel

A Request Parcel:

• Must contain at least one SQL statement.

• May contain two or more SQL statements (multi-statement request).

• May be a transaction by itself (default).

• May be one parcel of a multi-request transaction.

A Request Parcel is the parsing unit.

 SQL Parser Page 24-8

The Data Parcel
If a Request parcel is reusable (contains variable parameters), a Data parcel must be sent
with it. The Data parcel contains the values to be inserted into the parameters in the SQL
Request.

Hard coded values appear within the Request parcel, while substitutable values appear
within a Data parcel. The illustration on the facing page shows how the values contained in
the Data parcel (100, ‘ABC’, 321) are inserted into the statements contained in the Request
parcel.

SQL Parser Page 24-9

The Data Parcel

• Explicitly declare a USING data parcel in BTEQ.

• FastLoad and MultiLoad do not use the SQL protocol, but use this concept through the
DEFINE or LAYOUT statements.

• The Preprocessor generates a USING data parcel from macro parameters or SQL
statements that reference host program variables.

• CLI programs must create and manage their own DATA parcels.

USING x INTEGER, y CHAR(5), z INTEGER
EXEC My_Macro (:x, :y, :z); 100, 'ABC', 321

CREATE MACRO My_Macro
(var1 INTEGER
,var2 CHAR(5)
,var3 INTEGER)

AS (INSERT INTO Table_1
VALUES (:var1, :var2, :var3);

UPDATE Table_2
SET Col_C = :var3 + 1
WHERE Col_A = :var1;) ;

User executes

Request Parcel USING x INTEGER, y CHAR(5), z INTEGER
EXEC My_Macro (:x, :y, :z);

Within Teradata

100, 'ABC', 321 Data Parcel

 SQL Parser Page 24-10

SQL Parser Overview
The flowchart on the facing page provides an overview of the SQL parser. As you can see,
it is composed of six main sections: Syntaxer, Resolver, Security, Optimizer, Generator
and Apply.

When the parser sees a Request parcel it checks to see if it has parsed and cached the
execution steps for it. If the answer is NO, then the Request must pass through all the
sections of the parser as follows:

 The Syntaxer checks the Request for valid syntax.

 The Resolver breaks down Views and Macros into their underlying table

references through use of DD information.

 Security determines whether the Requesting User ID has the necessary

permissions.

 The Optimizer chooses the execution plan.

 The Generator creates the steps for execution.

 Apply binds the data values into the steps. (This phase of the Parser is also known

as GncApply.)

Note: If the steps in the Request parcel are in cache, the Request passes directly to Apply
(after a check by Security). This is illustrated on the facing page by the YES path from the
CACHED? decision box.

SQL Parser Page 24-11

SQL Parser Overview

DATA parcel

STATISTICS

REQUEST Parcel CACHED?

No

Yes

DD

Dbase
AccessRights
RoleGrants
TVM
TVFields
Indexes

SYNTAXER

RESOLVER

SECURITY

OPTIMIZER

GENERATOR

APPLY

AMP STEPS

DISPATCHER AMP

 SQL Parser Page 24-12

Software Cache
All Teradata vprocs use some SMP memory as Software Cache to retain processing steps,
data, or both. Cache provides faster performance by eliminating excess disk access to
retrieve the needed information.

A PE utilizes software cache to store:

 Processing steps
 The Data Dictionary

When Teradata virtual processors are provided with larger memory, they can allocate more
software cache, thus reducing disk accesses.

SQL Parser Page 24-13

Software Cache

• ALL Teradata vprocs use some SMP memory as software cache.

• Software cache retains data dictionary information and/or processing
steps.

– Requests-To-Steps Cache - holds processing steps in memory

– Dictionary Cache - hold DD/D information in memory

• Cache eliminates regenerating and re-fetching needed information.

• Larger memory gives the processors more software cache and reduces
disk accesses.

 SQL Parser Page 24-14

Request-To-Steps Cache
The Request-To-Steps Cache (R-T-S Cache) is where SQL text and AMP steps generated
by the Parser are stored. AMP steps are stored without the data values that Apply will bind
in later. Both Interpretive Steps and Compiled Steps can be held in R-T-S Cache.

Each PE has its own cache memory area. Any steps stored in the R-T-S Cache are available
to any User accessing that same PE.

DDL Requests are not cached because they are not considered repeatable. For example, you
would not be able to repeat the same CREATE TABLE Request.

Teradata purges cache every four hours. At that time, any “unmarked” entries are removed
from the R-T-S Cache. Since demographics change over time, potentially “stale” AMP
steps are removed from the R-T-S cache. This cache purge is staggered across all PEs so
that no two PEs are purging their cache at the same time.

The system compiles evaluation steps whenever the Optimizer determines that the query
will return a large number of rows, resulting in increased performance.

SQL Parser Page 24-15

Request-to-Steps Cache

• Cache stores the SQL text and the AMP steps generated by the Parser
without binding in data from the Using DATA parcel.

– Plans do not have to be re-parsed by the user.

– Requests with hard-coded values are not immediately cached.

• For cached plans, the plan is retrieved and the SYNTAXER, RESOLVER,
OPTIMIZER and GENERATOR steps are bypassed.

• Cached steps may be shared by sessions/logons within a Parsing Engine.

• Cache is maintained in Least Recently Used sequence so that lower activity
plans swap out to disk.

• The system purges unmarked entries from cache every four hours.

– All PEs also purge affected cache entries on receipt of a DDL “Spoiling” message.

• Demographically independent plans (UPI, USI and some Nested Joins) are
marked when placed into cache.

• DDL requests are never cached.

 SQL Parser Page 24-16

Request-to-Steps Cache Check
In order for an SQL Request to match an entry in R-T-S cache, all of the following must be
identical:

 Application (Batch, Interactive)
 Response Mode (Field, Record, Indicator)
 Host, Workstation, or LAN type
 Default database name (if used in resolving the Request)
 National character set
 Request text length
 Request text

Notice that the Request text has to be identical in all respects. A single difference in syntax
(spacing, order of columns, etc.) will cause the Request to be treated as new.

There are two important reasons to use Macros whenever applicable:

 Macros reduce parcel size, thus dramatically improving performance.

 Macros will increase the likelihood of matching the R-T-S cache because users

won't have to re-enter their SQL.

The facing page identifies a number of characteristics of R-T-S cache. Additional
characteristics to this list include:

 Cache is automatic and transparent.

 Parser output cannot be stored by the user.

 Cache is maintained in Least Recently Used sequence so that lower activity plans

swap out to disk.

 Demographically independent plans (UPI, USI and some Nested Joins) are marked

when placed into cache.

 Teradata compiles executable evaluation steps if the Optimizer determines that a

large number of rows will be returned.

SQL Parser Page 24-17

Request-to-Steps Cache Check

REQUEST
Parcel

Request/Steps
CACHE

REQUEST
Parcel

Plastic
Steps

Cached?

To SYNTAXER To SECURITY and APPLY

No Yes

If an identical Request exists in Request-To-Steps cache:

• Call SECURITY and APPLY and pass them the memory address of the AMP steps.

• These steps do not have DATA parcel values bound into them; they are called Plastic
steps.

Otherwise, the Request Parcel passes the request to the SYNTAXER.

The larger the Request Parcel, the longer these steps take.

Macros reduce parcel size, dramatically improving performance.

 SQL Parser Page 24-18

Request-To-Steps Cache Logic
The flowchart on the facing page illustrates how Teradata determines what to do with an
SQL request. This flowchart only applies to repeatable DML requests.

INSERT INTO Table_1 VALUES (100, 25.95, 'abcde', 950131) ;

The above DML statement would not be considered repeatable for a Set table since the
second attempt would fail with either a duplicate row error or duplicate index error.

The entire Request Parcel is put through the hashing algorithm to produce a 32-bit hash of
the parcel. If there is an entry in R-T-S cache with the same hash value, the system must do
a byte-by-byte comparison between the incoming text and the stored text to determine if a
true a match exists. The larger the size of the Request Parcel, the longer these steps take.

SQL Parser Page 24-19

Request-To-Steps Cache Logic

CREATE
HASH of
PARCEL

HASH
in REQ.
AREA

?

TEXT
MATCH

?

PARCEL
CONTAIN

: var
?

HASH
in TEXT
AREA

?

Move HASH
and TEXT to

REQUEST AREA

Y

N

Y

N

Y

N

Y

N

PARSE
Request

STORE HASH
and TEXT in

REQUEST AREA

STORE HASH
in TEXT AREA

SECURITY

PARSE
Request

OPTIMIZE Request and GENERATE Steps

STORE
Steps

Apply data parcels and dispatch steps to AMP(s)

 SQL Parser Page 24-20

Dictionary Cache
The Data Dictionary (DD) Cache is part of the cache found on every PE. It stores the most
recently used DD information including SQL names, their related numeric IDs and
Statistics.

Data Dictionary/Directory cache entries include:

 SQL names and their related numeric IDs.

 Demographically dependent Request-To-Steps cache entries that do not have

collected statistics.

The DD Cache is purged every four hours by the same process that purges the R-T-S Cache.
Only those entries which do not have COLLECTed STATISTICS are purged, since the
system considers them demographically dependent. Certain SQL statements can also cause
DD contents to be dropped by “spoiling” them. Spoiling occurs when the DD is changed
and prevents “stale” DD information from being used.

The DD tables that provide the information necessary to parse DML requests are:

 DBase
 TVM
 AccessRights
 RoleGrants (V2R5)
 TVFields
 Indexes.

The amount of Data Dictionary Cache is determined by the DBSControl Performance
parameter named Dictionary/CacheSize. This parameter typically defaults to 1024 KB.

SQL Parser Page 24-21

Dictionary Cache

• The Parser needs data from the DD to convert SQL into AMP steps.

• DD cache holds the most recently used items in PE memory:
– SQL names and their related numeric IDs.

– Statistical information for the Optimizer.

• SQL statements that change the DD generate “spoiling” messages.

• PEs drop the “spoiled” entries from their cache.

• The system purges cache every four hours:
– Data demographics can change significantly within four hours.

– Purging cache forces the Parser to re-optimize all current requests.

• Processors purge their cache on a sequential basis.

• DD tables used by the resolver to parse a request:
– Dbase – TVM – AccessRights

– TVFields – Indexes – RoleGrants

 SQL Parser Page 24-22

Syntaxer
The Syntaxer checks the syntax of an incoming Request parcel for errors. If the syntax is
correct, the Syntaxer produces an initial Parse Tree, which is then sent to the Resolver.

The time required by the Syntaxer depends on the size of the Request parcel. Larger parcels
take more time. Using Macros will reduce the size of the parcels and thus reduce the time
required by the Syntaxer.

The use of Macros will reduce the number of syntax errors since Users will not have to re-
key the SQL code.

SQL Parser Page 24-23

Syntaxer

REQUEST
Parcel

Initial
PARSE TREE

To RESOLVER

SYNTAXER

• This module checks the syntax of an incoming Request Parcel.

• If no errors are found, it produces an Initial Parse Tree and calls the RESOLVER.

• The larger the Request Parcel, the longer these steps take.

• Macros reduce parcel size, dramatically improving performance.

 SQL Parser Page 24-24

Resolver
The Resolver takes the initial Parse Tree from the Syntaxer and replaces all Views and
Macros with their underlying text to produce the Annotated Parse Tree. It uses DD
information to “resolve” View and Macro references down to table references. The DD
tables shown in the diagram on the facing page (DBase, AccessRights, RoleGrants (V2R5),
TVM, TVFields and Indexes) are the tables that the Resolver utilizes for information when
resolving DML requests.

Nested Views and Macros can cause the Resolver to take substantially more time to do its
job.

The nesting of views (building views of views) can have a very negative impact on
performance. At one site, what a user thought was a two-table join was actually a join of
two views which were doing joins of other views, which were doing joins of other views,
which were doing joins of base tables. When resolved down to the table level, the two
“table” join was really doing a 12-table join. The data the user needed resided in a single
table.

SQL Parser Page 24-25

Resolver

Initial
PARSE TREE

Annotated
PARSE TREE

To SECURITY

RESOLVER
Views and Macros

From SYNTAXER

DD Cache
DD

Dbase
AccessRights
RoleGrants
TVM
TVFields
Indexes

• RESOLVER replaces all View and Macro names with their underlying text.

• Nesting of Views and macros could add substantial time to this process.

• Views and/or Macros can be nested up to 64 levels.

• The RESOLVER uses information from the DD cache when possible.

• It accesses the DD tables if additional information is needed.

 SQL Parser Page 24-26

Security
Security verifies that the User ID responsible for the SQL Request has the necessary
permissions on any objects referenced in the Request. Since permissions can be granted or
revoked dynamically, it is very important to have each and every SQL Request (even those
cached) pass through Security.

Security is more important the second and subsequent times a Request is processed because
the Resolver also checks for permissions during the initial parse. The initial parse and
statement execution checks all access rights. Execution from cache checks only user rights.

SQL Parser Page 24-27

Security

SECURITY verifies that the requesting User ID has the necessary permissions
on the referenced objects.

Permissions can be granted or revoked dynamically.

Each execution of a Request includes a SECURITY check.

• Initial parse and execute checks ALL access rights.

• Execution from cache checks only user rights (i.e., EXEC).

Annotated
PARSE Tree

Plastic
Steps

To OPTIMIZER To APPLY

Annotated
PARSE Tree

SECURITY

Plastic
Steps

 SQL Parser Page 24-28

Optimizer
The Optimizer analyzes the various ways an SQL Request can be executed and determines
which is the most efficient. It acts upon the Annotated Parse Tree after Security has verified
the permissions and generates an Optimized Parse Tree. (See illustration on the facing
page.)

Note that the output of the Optimizer can be passed to the EXPLAIN Facility.
EXPLAINing a request does not execute that request.

 Serial Steps must be executed in sequence and successfully completed by all
affected AMPs before the next step is sent out.

 Parallel Steps are multi-AMP processing steps that can be transmitted to the

AMPs and complete asynchronously. All Parallel Steps must successfully
complete before the next Serial Step is sent out. The Optimizer decides whether
steps are serial or parallel.

 Individual Steps and Common Steps are processing steps generated for a Multi-

Statement Request.

– Individual Steps are unique to a single SQL statement in the Request.

– Common Steps are steps that can be used by more than one statement in the

Request. A typical example is the creation of a Spool file whose contents can
be used more than once. You will learn more about Common Steps in the next
module.

Additional processing steps need to be generated in the presence of the following optional
features:

 Triggers
 Check Constraints
 References
 Foreign Keys
 Stored Procedures

SQL Parser Page 24-29

Optimizer

• DD/D operations replace DDL statements in the Parse tree.

• The OPTIMIZER evaluates DML statements for possible access paths:
– Available indexes referenced in the WHERE clause.
– Possible join plans from the WHERE clause.
– Full Table Scan possibility.

• It uses COLLECTed STATISTICS or dynamic samples to make a choice.

• It generates Serial, Parallel, Individual and Common steps.

• OPTIMIZER output is passed to either the Generator or the Explain facility.

Annotated
PARSE TREE

Optimized
PARSE TREE

To GENERATOR

OPTIMIZER

From SECURITY

Statistics

EXPLAIN

 SQL Parser Page 24-30

Generator
The Generator acts upon the Optimized Parse Tree from the Optimizer and produces the
Plastic Steps. Plastic Steps do not have data values from the DATA parcel bound in, but do
have hard-coded literal values embedded in them.

Plastic Steps produced by the Generator are stored in the R-T-S Cache unless a request is
not cacheable.

SQL Parser Page 24-31

Generator

• Plastic Steps are AMP steps without data values from the DATA parcel bound in.

• Hard-coded literal values are embedded in the Plastic Steps.

• Plastic Steps are stored in Request-to-Steps cache.

Optimized
PARSE TREE

Plastic
Steps

To APPLY

GENERATOR

From OPTIMIZER

R-T-S CACHE

 SQL Parser Page 24-32

Apply
Apply acts upon Plastic Steps from the Generator and produces Concrete Steps by binding
in data values from the DATA parcel. Apply adds data values one at a time.

The Concrete Steps then go to the Dispatcher, which sends them out to the AMPs.

The Apply phase is also known as GncApply in previous V2 releases. The Apply was
referred to as OptApply with Teradata Version 1 software.

Dispatcher
Dispatcher is responsible for sending the execution steps out to the AMPs.

The AMPs respond back to the Dispatcher which is responsible for sending the host
response with one exception.

The exception is because of one of the new V2R6 internal performance features called the
Prime-Key Operations Performance feature (actually a UPI/NUPI performance feature). For
short queries (PI equality value on a table without fallback or secondary indexes), primary
index operations are speeded up by having a shorter CPU length. This is done internally by
having an express request generated by the PE (instead of a concrete step request), reduced
PDE overhead because of an express request, no transaction group, and the AMP is able to
directly respond back to the host/user and bypass the Dispatcher. This feature only works if
the table doesn’t have fallback or any secondary indexes. If a table has fallback and/or
secondary indexes, an internal “transaction group” has to be generated to make sure the
fallback and/or secondary indexes are updated as well.

SQL Parser Page 24-33

Apply and Dispatcher

APPLY binds the DATA parcel values into the Plastic Steps.

• This produces Concrete Steps.

• Also known as OptApply.

The DISPATCHER sends the Concrete Steps to the AMPs.

• The DISPATCHER is also responsible for sending the response back to the client.

Plastic
Steps

Concrete
Steps

APPLY

From SECURITY or
GENERATOR

DATA
Parcel

DISPATCHER

AMPs

 SQL Parser Page 24-34

SQL Parser Review
The illustration on the facing page should look familiar since it is almost identical to the
diagram you saw in the SQL Parser Overview earlier. It summarizes the information
presented in this module.

 IMPORTANT
Teradata’s Late Binding Parser provides maximum flexibility.

This refers to the fact that data values are not bound

into the Plastic Steps until the Apply phase of the process.

SQL Parser Page 24-35

SQL Parser Review

DATA parcel

STATISTICS

REQUEST Parcel CACHED?

No

Yes

DD

Dbase
AccessRights
RoleGrants
TVM
TVFields
Indexes

SYNTAXER

RESOLVER

SECURITY

OPTIMIZER

GENERATOR

DISPATCHER AMP

DD Cache

Plastic STEPS

EXPLAIN

APPLY

R-T-S
Cache

Concrete STEPS

 SQL Parser Page 24-36

Parser Summary
Some important points to remember regarding parsing are shown on the facing page.

SQL Parser Page 24-37

Parser Summary

• Plastic Steps for Requests with DATA parcels are cached immediately.

• Views and Macros cannot be nested beyond 64 levels.

– Nested Views and macros take longer for initial parsing.

• Multi-statement requests (including macros) generate more Parallel and
Common steps.

• Execution plans remain current in cache for up to four hours.

• DDL “spoiling” messages may purge DD cache entries at any time.

• Requests against purged entries must be re-parsed and re-optimized.

 SQL Parser Page 24-38

Module 24: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

SQL Parser Page 24-39

Module 24: Review Questions

1. What must a REQUEST parcel contain? ________________________

2. Which two statements about the RESPOND parcel are true? ___

a. Identifies response buffer size.
b. Generates a SUCCESS/FAIL parcel.
c. Always followed by one or more DATA parcels.
d. May be sent by itself as a continuation request.

3. Match the six SQL Parser phases listed below with its correct description.

__ Syntaxer a. Determines whether the Requesting User ID has the necessary permissions
__ Resolver b. Create concrete steps
__ Security c. Checks the Request for valid syntax.
__ Optimizer d. Creates the steps for execution.
__ Generator e. Breaks down Views and Macros into their underlying table references
__ Apply f. Chooses the execution plan.

4. Which Parser phase benefits the most from the use of macros? ___

a. Generator
b. Resolver
c. Syntaxer
d. Apply

 SQL Parser Page 24-40

Module 24: Review Questions (cont.)
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

SQL Parser Page 24-41

Module 24: Review Questions (cont.)

5. What is the function of the Request-to-Steps (R-T-S) Cache? ____

a. Stores the SQL text and AMP steps generated by the Parser.
b. Resolves View and Macro references down to table references.
c. Stores the most recently used DD information including SQL names, their related numeric IDs

and Statistics.
d. Analyzes the various ways an SQL Request can be executed and determines which of these is

the most efficient.

6. Teradata’s Late Binding Parser refers to Apply, which acts upon the _____________ from the
Generator and produces __________ by binding in the data values from the DATA parcel.

a. Plastic Steps / Concrete Steps
b. Interpretive Steps / Compiled Steps
c. Processing Steps / Execution Steps

d. AMP steps / Request-to-Steps Cache

 SQL Parser Page 24-42

Notes

Optimizer and Collecting Statistics Page 25-1

Module 25

Teradata Proprietary and Confidential

Optimizer and Collecting Statistics

After completing this module, you will be able to:

 Explain how the Optimizer acquires statistics.

 Describe random AMP sampling.

 State a method for viewing statistics.

 Describe how the Teradata Statistics Wizard can be used to
collect or re-collect statistics.

 Optimizer and Collecting Statistics Page 25-2

Notes

Optimizer and Collecting Statistics Page 25-3

Table of Contents

Teradata Optimizer... 25-4
Optimizer – Cost Based vs. Rule Based .. 25-6
Optimizer Statistics .. 25-8
Optimizer’s Search for Statistics .. 25-10
Optimizer – Random AMP Samples .. 25-12
Random AMP Sampling – How it Works ... 25-14
Example of an Optimizer Estimate without Collected Statistics .. 25-16
Statistics ... 25-18
Statistics Data – What is Collected? .. 25-20
Statistics Data – What is Collected? (cont.) ... 25-22
Statistics Data – What is Collected? (cont.) ... 25-24
Statistics Example .. 25-26
Statistics Example (cont.) .. 25-28
COLLECT STATISTICS Command ... 25-30
Collecting Statistics .. 25-32
Refresh or Re-Collect Statistics ... 25-34
COLLECT STATISTICS Command ... 25-36
COLLECT STATISTICS on a Data Sample ... 25-38
Collecting Statistics (14.0 Examples) .. 25-40
Viewing Statistics .. 25-42
Optimizer’s use of Statistics with Uneven NUSI ... 25-44
Collecting Statistics on PARTITION... 25-46
Copying STATISTICS ... 25-48
Statistics Extrapolation... 25-50
Teradata 13.0 Enhancements ... 25-52
Teradata 14.0 Enhancements ... 25-54
Teradata Statistics Wizard.. 25-56
Teradata Statistics Wizard – Main Window .. 25-58
Teradata Statistics Wizard – Interval Statistics .. 25-60
Collect, Re-Collect, or Drop Statistics ... 25-62
Recommendations .. 25-64
Recommendations (cont.) .. 25-66
Statistics Summary ... 25-68
Module 25: Review Questions ... 25-70

 Optimizer and Collecting Statistics Page 25-4

Teradata Optimizer
Teradata’s optimizer will actually generate several plans and choose the best plan based on
analyzing the low end cost numbers. This type of optimizer is critical to performance in
supporting mixed workloads. A cost based optimizer requires statistical information about
the data as well as being aware of the machine resources (CPU, disk, memory, processors,
etc).

The other type of optimizer is rules based. This is good for transactional workloads where
the queries are well known and the data has been physically structured to support this known
workload. It is based on a set of rules that have been defined and only performs well in a
highly structured transactional environment.

Note for facing page: AMP local – rows from 2 tables are on the same AMP – typically
joining two tables on the same PI.

Optimizer and Collecting Statistics Page 25-5

Teradata Optimizer

Teradata uses a “cost-based optimizer”.

• The Optimizer evaluates the “costs” of all reasonable execution plans and
the best choice is used.

– Effectively finds the optimal plan

– Optimizes resource utilization - maximizes system throughput

• What does the “optimizer” optimize?

– Access Path (Use index, table scan, dynamic bitmap, etc.)

– Join Method (How tables are joined – merge join, product join, hash join, nested
join)

– Join Geography (How rows are relocated – redistribute, duplicate, AMP local, etc.)

– Join Order (Sequence of table joins)

• Parallelism is automatic

– Aware of table geography and data skew

• Parallelism is unconditional

– No operation turns off parallelism

 Optimizer and Collecting Statistics Page 25-6

Optimizer – Cost Based vs. Rule Based
The quality of the optimizer is critical in Data Warehouse environments. Data Warehouse
environments require a cost based optimizer to make good decisions regarding join plans for
complex DSS queries. Join techniques that are required for DSS are significantly more
sophisticated than what is required in an OLTP environment.

The join technique chosen for a query is a dominant factor in performance of the Data
Warehouse. Since DSS environments are designed to support ad hoc queries, we must rely
on a Cost Based Optimizer to determine the optimal plan.

 Note: Complex queries would be those containing sub-queries. Compound query
uses set operators to combine two or more simple or complex queries.

Query optimizers do not do either of the following things:

 Guarantee that the access and join plans generated are infallibly the best plans
possible. A query optimizer always generates several optimal plans based on the
population and environmental demographics it has to work with and the quality of
code for the query it receives, then selects the best of the generated plan set to use
to respond to the DML statement.

 You should not assume that any query optimizer ever produces absolutely the best

query plan possible to support a given DML statement.

Optimizer and Collecting Statistics Page 25-7

Optimizers – Cost Based vs. Rule Based

Cost Based Optimizer

• Best for complex DSS queries

• Requires statistics on tables and individual columns within tables

• Plans are independent of table ordering in FROM clause and predicate ordering in the
WHERE clause

• Should understand available resources within the architecture (e.g., CPU, Memory,
Disk, Processors, etc)

• Generates several plans and chooses best plan based on smallest cost factors

Rules Based Optimizer

• Used in OLTP environments with structured and known access paths

• Rules are defined for access paths and types of SQL statements (e.g., simple, join,
complex, compound, etc.)

• Plans are chosen based on access paths available, the ranks of these access paths
and type of query

• Not a good choice in DSS environments

• Users can provide hints to help influence a rules based optimizer.

 Optimizer and Collecting Statistics Page 25-8

Optimizer Statistics
As we have seen, the Optimizer plans an execution strategy for every SQL query submitted
to it. We have also seen that the execution strategy for any query may be subject to change
depending on various factors. For the Optimizer to consistently choose the optimum
strategy, it must be provided with reliable, complete, and current demographic information
regarding all of these factors.

The best way to assure that the Optimizer has all the information it needs to generate
optimum execution strategies is to COLLECT STATISTICS.

It is interesting to note that the Parser needs the same information to properly plan a query,
as you need in properly choosing indexes.

Optimizer and Block-Level Compression
The optimizer is not sensitive to block-level compression. Neither will you see any
additional steps added to the explain text when a query accesses a compressed table, as the
decompression processes are performed transparently at the file system level. The optimizer
does not take into account the extra time or CPU required for decompression when
estimated processing times are established. However, the average row size that is calculated
during random AMP sampling will be different for compressed tables. When random AMP
sampling is performed, one or more cylinder indexes are read. While the cylinder indexes
are never compressed, the information they carry is based on physical characteristics of the
underlying data.

Even if full statistics have been collected, random AMP sampling is relied upon for
determining the average row size as input to query optimization. Because the table's row
size is based on the compressed image of the data, estimated processing times, which are
influenced by row size, may be slightly less in queries accessing compressed tables. While
it is not expected that this discrepancy will be large enough to cause the optimizer to make
different decisions in most cases, the row size under-estimation with compression might lead
to some query plan changes when block level compression is implemented.

Optimizer and Collecting Statistics Page 25-9

Optimizer Statistics

The optimizer needs information to create the best execution plan for a query.

Environment information:
• Number of nodes

• Number of AMPs

• Number and type of CPUs

• Disk Array information

• Interconnect (BYNET) information

• Amount of memory available

Data Demographics:
• Number of rows in the table

• Row size

• Column demographics
– Range of values in the table for the column
– Number of rows per value
– Number of NULLs for the column

• Index demographics

Are Statistics Collected?

If Yes – use collected statistics

If No,

• For indexed columns – use
Random AMP Samples

• For non-indexed columns – use
Heuristics (formulas)

 Optimizer and Collecting Statistics Page 25-10

Optimizer’s Search for Statistics
When there are no statistics available to quantify the demographics of a table or an index,
the Optimizer selects (by default) a single AMP to sample for statistics using an algorithm
based on the table ID. By inference, these numbers are then assumed to represent the global
statistics for the column or index.

Note that the statistics collected by a random AMP sample only apply to indexed columns.
If you do not collect statistics on non-indexed columns, then the Optimizer uses various
situation-specific heuristics to provide arbitrary estimates of cardinalities.

The process of the optimizer searches for statistics in Teradata 12.0 is as follows:

 First, random AMP samples are kept in the table header that resides in memory in

dictionary cache. The optimizer first looks for the table header in the dictionary cache in
order to extract the random AMP samples. If the table header is not in the cache, it is
read from disk, where it can be found as a single row in subtable 0 of the base table. As
part of the process of reading the table header from disk, random AMP samples are
collected for that table and moved into a field in the table header when the table header
is placed in the cache.

 After the table header has been located and the random AMP samples have been

accessed, a routine that looks for collected statistics is called. This routine will be called
once for each index and/or column on a table for which the optimizer would like
statistics. As part of that routine, the dictionary cache is searched for the relevant
histogram.

 If statistics have been collected for the column/index of interest but the statistics are not

cached, an express request is issued that retrieves the collected statistics from the data
dictionary tables on disk. If statistics for that column or index are found in the data
dictionary, the histogram that contains the statistical information is placed in the
dictionary cache for use by other queries and is used by the optimizer for the current
query.

 If no collected statistics exist and the column is a primary or non-unique secondary

index (NUSI), then the random AMP samples that are stored in the table header will be
used. Non-indexed columns that have no statistics collected will not use random AMP
samples, but will rely on static formulas to determine selectivity estimates.

 Statistics are removed from the cache periodically to make sure that what is cached is

reasonably current.

Optimizer and Collecting Statistics Page 25-11

Optimizer’s Search for Statistics

Parsing Engine
O

p
ti

m
iz

er

Dictionary Cache

Table Header

Random AMP
Samples

1. Is Table Header cached?

2. Return Random AMP samples from
Table Header.

DD/D

Indexes

TVFields

StatsTbl (14.0)

1 & 2. Get the random AMP statistics from table header in DD
cache.

3. If statistics are collected for the index or column, get the
statistics from cache or DD.

4. Random AMP sample row counts and collected statistics row
counts are compared to determine if collected statistics are
stale or if extrapolation is needed.

Data/Index
Subtable

1 or 2
Cylinders of

Subtable

If Table Header is not in
cache, retrieve Table
Header AND do a random
AMP sample as part of
this process.

Collected
Statistics

Histogram

3. Are column/index statistics collected?

If No, use Random AMP samples for indexes.

4. If Yes (Statistics are collected),

A. Return collected statistics.

B. Compare Random AMP Samples with
Statistics to determine if Statistics are
stale or not.

If collected and not
in cache, get
statistics from DD.

 Optimizer and Collecting Statistics Page 25-12

Optimizer – Random AMP Samples
The Optimizer does Random AMP Sampling with information it gathers from a random
AMP. This AMP is selected based on the Table ID. Different tables will get their samples
from different AMPs. This assures that no single AMP will be overloaded with Random
AMP Sample requests.

Since this method uses only a single AMP for sampling purposes, it is sensitive to the
evenness of the data distribution. Badly distributed data gives skewed samples that impact
optimization by misleading the Optimizer into making improper choices.

The Optimizer will be more conservative in the choices it makes if it has to rely upon
Random AMP Sampling.

DBSControl Options (starting with Teradata 6.0)
When statistics have not been collected for an index, the Optimizer can obtain random
samples from more than one AMP when generating row counts for a query plan.

This enhancement improves the row count, row size, and rows per value estimates for a
given table. These are passed to the Optimizer, resulting in improved join plans, better
query execution times, and better elapsed times.

Tables with heavily skewed data will benefit most from the improvements to random AMP
sampling. One AMP sampling of a table with heavily skewed data may result in wrong
estimates of the row count and row size information being passed to the Optimizer. With
multiple AMP sampling, the Optimizer will receiver better estimates with which to generate
a query plan.

An internal parameter (#65) within DBSControl can be set by the Teradata Customer
Engineer to specify the type of Random AMP Sampling that will be used in V2R6.

65. RandomAmpSampling – this field determines the number of AMPs to be sampled
for getting the row estimates of a table. The valid values are D, L, M, N or A.

 D - The default is one AMP sampling (D is the default unless changed.)
 L - Maximum of two AMPs sampling
 M - Maximum of five AMPs sampling
 N - Node Level sampling - i.e., all the AMPs in a node would be sampled.
 A - System Level sampling - i.e., all the AMPs in a system would be sampled.

 Note that a higher number of AMPs sampled will provide better estimates, but can
cause short running queries to run slower and long running queries to run faster.

Optimizer and Collecting Statistics Page 25-13

Optimizer – Random AMP Samples

• A Random AMP sample only applies to indexed columns and table row counts.

– row counts for the table are needed and statistics are not collected on PI.

– indexed columns are used in the query and statistics do not exist for the indexes.

– Statistics have been collected, but are considered stale (e.g., 10% change).

• By default, a single AMP is chosen for random AMP data sampling.

– The AMP chosen is based on Table ID. Different tables will utilize different AMPs.

• Badly distributed data gives skewed samples that impact optimization.

– If a table (or index subtable) spans more than 1 cylinder, it will sample the first and
the last cylinder. If it fits into 1 cylinder, it will only sample that one cylinder.

• Option – the Optimizer can obtain random samples from more than one AMP when
generating row counts for a query plan.

– Improves the row count, row size, and rows per value estimates for a given table.

– Random AMP sampling is controlled via a DBS Control parameter.

D – Dynamic or one AMP sampling (D is the default unless changed)
L – Low - two AMPs are sampled
M – Maximum - five AMPs are sampled
N – Node Level sampling - i.e., all the AMPs in a node are sampled
A – All or system level sampling - i.e., all the AMPs in a system are sampled

 Optimizer and Collecting Statistics Page 25-14

Random AMP Sampling – How it Works
When the Optimizer is not provided with COLLECTed STATISTICS for a table or indexed
column, it will perform a Random AMP Sample in order to estimate table demographics.

The Optimizer uses the results of these calculations to provide it with the demographics it
needs to make its choices in optimizing the query. If the results are skewed, the Optimizer
may be misled and make the wrong choices; performance may not be optimal.

Random AMP samples are stored in the PE Data Dictionary (DD) cache for a maximum of
four hours until they are purged by the routine DD four-hour purge job. Each time a table
header is read from disk, the system collects a fresh random AMP sample of its statistics and
caches the random AMP sample along with the table header.

The Parser is more aggressive with COLLECTed STATISTICS. Features such as NUSI Bit
Mapping require COLLECTed STATISTICS.

Random AMP Sampling of USIs
Random AMP sampling assumes that the number of distinct values in a USI equals its
cardinality, so it does not read the index subtable for USI equality conditions. The number
of distinct values in the USI is assumed to identical to the table cardinality taken from the
random AMP sample on the primary index. Because equality conditions on a unique index
return only one row by definition, the Optimizer always chooses the direct USI path without
costing it or using statistics. However, if a USI will frequently be specified in non-equality
predicates, such as range constraints, then you should collect statistics on it.

Random AMP Sampling of NUSIs
Random AMP sampling for NUSIs is very efficient. The system reads the cylinder index
that supports the index subtable rows on the sampled AMP and determines the number of
rows on that cylinder. Except for situations where the NUSI is very non-unique, there is one
subtable row for each distinct value in the NUSI. Using that information, the sampling
process assumes that each subtable row it finds translates to one index value.

Sampling Efficiency for Non-indexed Predicate Columns

The heuristic is to estimate the cardinality to be 10% of the table rows. With two selection
criteria, the Optimizer assumes that about 7.5% (10% x .75) of the rows will be returned.

For additional equality criteria, each is 75% of the previous level. For example, for 3
columns, the Optimizer assumes 5.2% (7.5% x .75) of the rows will be returned.

For example, if there is one selection criteria column in the WHERE clause for a given table
and the column is in an equality condition, and no stats have been collected on it, the
optimizer will assume that it is selecting 10% of the table’s rows. If there are two columns
each in an equality condition, no stats, the optimizer will assume that 7.5% of the table's
rows will be selected by their combination. This can lead to poor plans.

Optimizer and Collecting Statistics Page 25-15

Random AMP Sampling – How it Works

• For a table row count estimate, read 1 or 2 cylinders from 1 (or more) AMPs.

– Calculate the approximate number of rows in the table:
Average Number of Rows per Block in the sampled Cylinder(s)

x Number of Data Blocks in the sampled Cylinder(s)
x Number of Cylinders with data for this table on this AMP(s)
x Number of AMPs in this configuration

• For NUSI estimates, read 1 or 2 cylinders from the NUSI subtable.

– Uses a similar technique by counting the number of NUSI values in the cylinder(s).
The table row count is divided by the extrapolated NUSI row count to get a
rows/NUSI value.

– Assumes the number of distinct values on one AMP = total distinct values.

• Any skewed component in the sample skews the demographics.

– Skewed demographics may mislead the optimizer into choosing a poor plan.

• For non-indexed columns without statistics, the optimizer uses heuristics or fixed
formulas to estimate the number of rows. For example,

– Assumes 10% for one column in an equality condition

– Assumes 7.5% for two columns, each in an equality condition, and ANDed together

 Optimizer and Collecting Statistics Page 25-16

Example of an Optimizer Estimate
without Collected Statistics

The facing page shows an example of Explain output for a SELECT from a table using an
equality condition on a non-indexed column.

The answer to the question is simply “The Optimizer will assume 10% for one non-
indexed equality selection criteria”.

If the query added additional non-indexed columns with equality conditions, the Optimizer
estimates are as follows. This assumes that no statistics are collected on any of the columns.

With two equality conditions, the approximate estimate is 7.5% (10% x .75).

 EXPLAIN SELECT * FROM Sales
 WHERE Store_id = 123
 AND Total_Sold = 1000;

 The size of Spool 1 is estimated with no confidence to be 66,544 rows.

With three equality conditions, the approximate estimate is 5.2% (10% x .75 x .75).

 EXPLAIN SELECT * FROM Sales
 WHERE Store_id = 123
 AND Total_Sold = 1000
 AND Note= ’Ordered’;

 The size of Spool 1 is estimated with no confidence to be 49,032 rows.

With four equality conditions, the approximate estimate is 4.2% (10% x .75 x .75 x .75).

 EXPLAIN SELECT * FROM Sales
 WHERE Store_id = 123
 AND Total_Sold = 1000
 AND Note= ’Ordered’
 AND Total_Revenue = 5000;

 The size of Spool 1 is estimated with no confidence to be 35,831 rows.

If one of the columns has collected statistics and other columns do not have collected
statistics, then Teradata will assume the number of values for the column with collected
statistics and 75% of that value for each of the other columns without collected statistics.

Example: Assume that statisitcs have been collected on store_id and store_id = 123
exists in 50,000 rows.

With four equality conditions, the approximate estimate is (50,000 x .75 x .75 x .75).

Optimizer and Collecting Statistics Page 25-17

Example of an Optimizer Estimate
without Collected Statistics

Table information:

• Sales table has 931,100 rows and the PI has collected statistics.
• Store_id is not indexed and does not have collected statistics.

Query
EXPLAIN SELECT * FROM Sales WHERE Store_id = 123;

Explanation 14.0 EXPLAIN
--

:
3) We do an all-AMPs RETRIEVE step from TFACT.Sales by way of an all-rows scan with a condition

of ("TFACT.Sales.store_id = 123") into Spool 1 (group_amps), which is built locally on the AMPs.
The input table will not be cached in memory, but it is eligible for synchronized scanning. The
result spool file will not be cached in memory. The size of Spool 1 is estimated with no confidence
to be 93,110 rows (11,918,080 bytes). The estimated time for this step is 1.22 seconds.

:

Question?
Why did the optimizer estimate 93,110 rows would be retrieved for a Store_id of 123?

ds186034
Sticky Note
the 10% rule = 93,110 rowsit may return somethin else..its just a guess...cause no stats...and so 10%

 Optimizer and Collecting Statistics Page 25-18

Statistics
The primary purpose for COLLECTing STATISTICS is to tell the Optimizer how many
rows/values there are. The Optimizer uses this information to plan the best way to access
the data. A few of the ways that STATISTICS can be beneficial:

 Helpful in accessing a column or index with uneven value distribution.

 The Optimizer uses statistics to decide whether it should generate a query plan that

use a secondary, hash, or join index instead of performing a full-table scan
.
 Improve the performance of complex queries and joins.

 The Optimizer uses statistics to estimate the cardinalities of intermediate spool files

based on the qualifying conditions specified by a query. The estimated cardinality
of intermediate results is critical for the determination of both optimal join orders
for tables and the kind of join method that should be used to make those joins.

 For example, assume 2 tables or spool files are redistributed and then merge joined,

or assume one of the tables or spool files is duplicated and then product joined with
the other. Depending on how accurate the statistics are, the generated join plan can
vary so greatly that the same query can take only seconds to complete using one
join plan, but take hours to complete using another.

 Enable the Optimizer to utilize NUSI Bit Mapping.

Additional Considerations
 DROP TABLE privilege is required to collect or drop statistics.

 COLLECT STATISTICS is a DDL statement and should be scheduled during off-

hours. It should not be done during production hours. The operation holds a row-hash
Write Lock on DBC.TVFields or DBC.Indexes which means that no new SQL requests
involving the affected table can be parsed.

 Remain valid if the system is reconfigured.

Storage of Statistics
 Teradata stores collected statistics only once – collecting statistics on a group of

columns that already have statistics collected at the index level (same set of columns)
only stores the statistics one time in the DBC.Indexes table.

 Issuing multiple COLLECT STATISTICS statements against the same group of

columns, stores only one set of statistics. Column order within the group is irrelevant.
For example, collecting on COLUMN (First_Name, Last_Name) and then later on
COLUMN (Last_Name, First_Name), results in only one set of statistics.

Optimizer and Collecting Statistics Page 25-19

Statistics

• Statistics basically tell the Optimizer how many rows/value there are.

• The Optimizer uses statistics to plan the best way to access data.

– Usually improves performance of complex queries and joins.

– The parser is more aggressive with collected statistics.

– Stale statistics may mislead the Optimizer into poor decisions.

• Helpful in accessing a column or index with uneven value distribution.

– NUSI Bit Mapping is much more likely to be considered if there are collected statistics.

• Statistics remain valid across a reconfiguration of the system.

• COLLECT STATISTICS and DROP STATISTICS commands are DDL statements and
typically are not executed during production hours.

• COLLECT/DROP STATISTICS places an access lock on the data table and a row-hash
write lock on one of the following tables.

– DBC.TVFields – holds statistics collected for single column or single column index

– DBC.Indexes – holds statistics collected for multi-column or multi-column index

– DBC.StatsTbl (14.0) – repository for statistics management data

ds186034
Sticky Note
only on DD

 Optimizer and Collecting Statistics Page 25-20

Statistics Data – What is Collected?
Prior to Teradata 12.0, the demographic information collected by each AMP is sent to one
AMP for merging into a frequency distribution of 100 intervals and a summary section.

Starting with Teradata 12.0, the maximum number of intervals for statistics on an index or
column was increased from 100 to 200. With a maximum of 200 intervals, each interval can
characterize 0.5 percent of the data, as opposed to the former maximum of 100 intervals,
which characterized one percent of the data per interval.

Also starting with TD 12.0, there was new value included in statistics for average rows per
AMP which is the only value in the statistics that is configuration dependent. This value is
not used if the configuration changes so the optimizer may lose a little bit of information.

Starting with Teradata 14.0, collecting statistics has been enhanced to capture more data
demographic information so that the Optimizer can generate more accurate plans than it
previously could. The maximum number of intervals for statistics on an index or column is
increased to 500. The system default is 250 which is also the default maximum. However,
you can specify up to 500 intervals with a specific collect statistics statement. With a new
default of 250 intervals, each interval can characterize 0.4 percent of the data.

The DBSControl utility has an internal parameter (#127 - MaxStatsInterval) which is set to
250 by default for Teradata 14.0 systems.

The increase in the number of statistics intervals:

 Improves single table cardinality estimates that are crucial for join planning.
Having more intervals gives a more granular view of the demographics.

 Increases the accuracy of skew adjustment because of the higher number of modal

frequencies that can be stored in a histogram.

 Does not change the procedure for collecting or dropping statistics, although it

affects the statistics collected.

The Summary Section has data as shown on the facing page.

Optimizer and Collecting Statistics Page 25-21

Statistics Data – What is Collected?

Statistics for a column or index reside in a frequency distribution of intervals
(internal histogram) plus a summary interval.

• Each interval represents about .4% of the table’s rows or high bias values.

• Teradata 14.0 – the default number of intervals is 250; 200 was previous default.

• Teradata 14.0 – the maxium number of intervals that can specified is 500.

Summary Section (Interval #0) – Table Level Information

• Represents domain across entire table

• Most frequent value for the column or index – modal value

• # of rows with the most frequent value

• # of values not equal to the most frequent value – non-modal values

• # of rows not equal to the most frequent value

• # of NULLs

• Minimum value

• Average number of rows per AMP – this is the only field that is configuration
dependent.

250 Statistical Intervals
(14.0 Default)

Summary Section
(Interval #0)

 Optimizer and Collecting Statistics Page 25-22

Statistics Data – What is Collected? (cont.)
The demographic information collected by each AMP is sent to one AMP for merging into a
frequency distribution of 250 (assuming Teradata 14.0 default) plus the summary interval
for a total of 251 intervals. This module will assume 251 intervals. There may be more
intervals if there are high-bias values.

The Teradata Database uses interval histograms to represent the cardinalities and certain
other statistical values and demographics of columns and indexes for all-AMPs sampled
statistics and for full-table statistics. The greater the number of intervals in a histogram, the
more accurately it can describe the distribution of data by characterizing a smaller
percentage of its composition. Each interval histogram in the Teradata Database is
composed of a maximum of 500 intervals, which in a 500 interval histogram permits each
interval to characterize roughly 0.2 percent of the data rows. The default is 250 intervals
which means that each interval represents about 0.4 percent of the data rows.

The number of intervals used to store statistics is a function of the number of distinct values
in the column set represented. For example, if there are only 10 unique values in a column
or index set, the system does not store the statistics for that column across 251 intervals, but
across 11 intervals. The summary (interval 0) plus 10 intervals yields a total of 11 intervals.

The number of rows represented by an interval will vary. For example, suppose there are
about one million rows in a table. Then there would be approximately 5,000 rows per
interval, assuming a 200 interval histogram. Suppose that for a given interval, the system
processes the values for 4,900 rows and the next value is present in 300 rows. Those rows
would be counted in this interval, and the cardinality for the interval would 5,200.
Alternatively, the rows could be counted in the next interval, so this interval would still only
represent 4,900 rows.

A COLLECT STATISTICS request divides the rows in ranges of values such that each
range has approximately the same number of rows, but it never splits rows with the same
value across intervals. To achieve constant interval cardinalities, the interval widths, or
value ranges, must vary.

Optimizer and Collecting Statistics Page 25-23

Statistics Data – What is Collected? (cont.)

If statistics are collected, the histogram will have 250 intervals by default
(Teradata 14.0).

• With 250 intervals, each interval represents about .4% of the table’s rows (minus
rows associated with the High Bias values).

Intervals – Range Level Information – represents ranges within the domain

• Each range has approximately the same number of rows

• Maximum or highest value

• Most frequent value – value that occurs mostly frequently in the range – modal value

• Number of rows with the most frequent value

• Number of other values not equal to the most frequent – non-modal values

• Number of rows not equal to the most frequent

250 Statistical IntervalsSummary Section
(Interval #0)

 Optimizer and Collecting Statistics Page 25-24

Statistics Data – What is Collected? (cont.)
If any values in a column accounted for more than .20% (1/500) of the rows, these values
are saved (with statistics) specifically in intervals known as a High Bias Interval. This
effectively helps to “even out” the variance of the 200 intervals. The group of High Bias
Intervals is referred to as the High Bias Section.

What is a “High Bias” Value?
A high bias (previously called a loner) value is an attribute value whose frequency in the
sampled population deviates significantly from a defined criterion; an unusually frequent
value indicating significant frequency skew.

Depending on the distribution of values (degree of skew) in a column, any one of three
possible histogram types is used to represent its cardinality and statistics.

1. Equal-height interval histogram

– In an equal-height interval histogram, each interval has the same
number of values. To achieve this, the interval widths must vary.

– When a histogram contains 250 equal-height intervals, each interval

effectively represents a single percentile score for the population of
attribute values it represents.

– The statistics for a column are expressed as an equal-height interval

histogram if the frequencies of its values are normally distributed (not
skewed).

2. High-biased interval histogram

– In a high-biased interval histogram, each interval has a high-bias value.
High-biased intervals are used only when there is significant skew in
the frequency distribution of values for the column.

3. Compressed histogram

– Compressed histograms contain a mix of 250 equal-height and high-

biased intervals. Reading from left-to-right, high-biased intervals
always precede equal-height intervals in the histogram.

– The facing page has graphically illustrates the concept of a compressed

histogram. An example with values will be provided later.

Optimizer and Collecting Statistics Page 25-25

Statistics Data – What is Collected? (cont.)

• In order to reduce the statistical impact of values that occur frequently,
values that occur frequently are treated specially.

– Assuming 250 intervals, if a specific value in a column occurs in more than .20% (1/500) rows,
that value is considered a “High Bias Value”.

– In Teradata 14.0, high bias intervals are separate from the statistics intervals and do not
subtract from the count of statistical intervals.

• A "High Bias" value and its frequency is kept in a High Bias interval.

– Internally, a high bias interval may contain 1 or 2 high bias values and their frequencies.

• This effectively helps to “even out” the variance of the remaining intervals.

• SHOW STATISTICS (14.0) and tools such as Teradata Statistics Wizard can
be used to display the statistical detailed information in the intervals.

High Bias Intervals (each interval can contain 1 or 2 values & frequencies)

250 Statistical IntervalsSummary Section
(Interval #0)

 Optimizer and Collecting Statistics Page 25-26

Statistics Example
If the user executes the following SQL statement,

SELECT * FROM tabx WHERE col1 = 1200;

 The optimizer will assume 400 duplicates exist for this value. 1200 is the high value
within the interval.

If the user executes the following SQL statement,

SELECT * FROM tabx WHERE col1 = 1075;

 The optimizer will assume 180 duplicates exist for this value. 1075 is the high value
within the interval.

If the user executes the following SQL statement,

SELECT * FROM tabx WHERE col1 = 1492;

 The optimizer will assume 7 duplicates exist for this value. There are 100 other values
and 700 other rows. 700 ÷ 100 = 7.

If the user executes the following SQL statement,

SELECT * FROM tabx WHERE col1 = 1300;

 The optimizer will assume 10 duplicates exist for this value. There are 60 other values
and 600 other rows. 600 ÷ 60 = 10.

Whenever a range is used for a portion of an interval, the optimizer makes the following
calculation:
 one-half of the other rows of the other values in the interval
 + highest value within the range
 + any values from the high bias section

If the user executes the following SQL statement,

 SELECT * FROM tabx WHERE col1 BETWEEN 1150 AND 1250;
 The optimizer will assume 700 duplicates exist for this value.

 300 one-half of the other rows of the other values in Interval #2 (600/2)
 + 400 number of duplicates for value 1200

If the user executes the following SQL statement,

 SELECT * FROM tabx WHERE col1 BETWEEN 1150 AND 1550;
 The optimizer will assume 1350 duplicates exist for this value.

 400 + 300 + 300 + 350 = 1350

Optimizer and Collecting Statistics Page 25-27

Statistics Example

Assume a table has 250,000 rows and statistics are collected on col1. Each interval will
represent about 1000 rows.

247 more
Intervals

Summary
Section

1125 1375

~ 1000 rows~ 1000 rows ~ 1000 rows

1605Max Value

SQL Statement Optimizer assumes

SELECT * FROM tabx WHERE col1 = 1200; 400
SELECT * FROM tabx WHERE col1 = 1075; 180
SELECT * FROM tabx WHERE col1 = 1492; 7
SELECT * FROM tabx WHERE col1 = 1300; _____
SELECT * FROM tabx WHERE col1 BETWEEN 1150 AND 1250; 700
SELECT * FROM tabx WHERE col1 BETWEEN 1150 AND 1550; _____

~

Stats Interval #1

Maximum Value - 1125
Most Frequent Value - 1075
Most Frequent Rows - 180
Other Values - 41
Other Rows - 820

Stats Interval #2

Maximum Value - 1375
Most Frequent Value - 1200
Most Frequent Rows - 400
Other Values - 60
Other Rows - 600

Stats Interval #3

Maximum Value - 1605
Most Frequent Value - 1490
Most Frequent Rows - 300
Other Values - 100
Other Rows - 700

~

Interval
#0

Summary
Section

 Optimizer and Collecting Statistics Page 25-28

Statistics Example (cont.)
If the user executes the following SQL statement,

SELECT * FROM tabx WHERE col1 = 1275;

 The optimizer will assume 2100 duplicates exist for this value. 1275 is a high value
within a high bias interval.

If the user executes the following SQL statement,

SELECT * FROM tabx WHERE col1 = 2480;

 The optimizer will assume 900 duplicates exist for this value. 2480 is a high value
within a high bias interval.

If the user executes the following SQL statement,

SELECT * FROM tabx WHERE col1 = 1300;

 The optimizer will assume 10 duplicates exist for this value. There are 58 other values
and 570 other rows. 570 ÷ 58 = 10.

Whenever a range is used for a portion of an interval, the optimizer makes the following
calculation:
 one-half of the other rows of the other values in the interval
 + highest value within the range
 + any values from the high bias section

If the user executes the following SQL statement,

 SELECT * FROM tabx WHERE col1 BETWEEN 1150 AND 1250;
 The optimizer will assume 685 duplicates exist for this value.

 285 one-half of the other rows of the other values in Interval #3 (570/2)
 + 400 number of duplicates for value 1200

If the user executes the following SQL statement,

 SELECT * FROM tabx WHERE col1 BETWEEN 1150 AND 1350;
 The optimizer will assume 2785 duplicates exist for this value.

 2100 + 285 + 400 = 2785

Optimizer and Collecting Statistics Page 25-29

Statistics Example (cont.)

2785

Assume a table has 250,000 rows and statistics are recollected on col1. Two values occur
more than .20% (1/500) on col1. (In this example, more than 500 duplicate values.)

SQL Statement Optimizer assumes

SELECT * FROM tabx WHERE col1 = 1275; 2100
SELECT * FROM tabx WHERE col1 = 2480; 900
SELECT * FROM tabx WHERE col1 = 1300; 10
SELECT * FROM tabx WHERE col1 BETWEEN 1150 AND 1250; 685
SELECT * FROM tabx WHERE col1 BETWEEN 1150 AND 1350; _____

248 more
Intervals

Summary
Section

1123 1370Max Value

~
~

Interval
#0

Summary
Section

~ 970 rows
High
Bias
Value

~ 970 rows

High Bias
Value #1

Value 1
1275

Frequency
2100

Stats Interval #2

Maximum Value - 1370
Most Frequent Value - 1200
Most Frequent Rows - 400
Other Values - 58
Other Rows - 570

Stats Interval #1

Maximum Value - 1123
Most Frequent Value - 1075
Most Frequent Rows - 180
Other Values - 40
Other Rows - 790

High
Bias
Value

High Bias
Value #2

Value 2
2480

Frequency
900

ds186034
Sticky Note
570/58=~10570/2 + 400last one:1150 and 1350:high bias and #2

 Optimizer and Collecting Statistics Page 25-30

COLLECT STATISTICS Command
The Optimizer format for the COLLECT STATISTICS statement is shown on the facing
page.

If you are collecting statistics for a table, specify a table name to indicate on which table you
want to COLLECT STATISTICS. There are options that allow you to collect for a single
column, a list of the columns, or a named index. These options are required to define and
collect statistics initially. They may also be used to specify an existing statistic you want
refreshed. They can be eliminated if you want the system to refresh all previously defined
statistics for the named table.

You can edit your CREATE INDEX statements to create your COLLECT STATISTICS
statements. Just replace “CREATE INDEX” with “COLLECT STATISTICS”.

Miscellaneous Considerations

The maximum number of columns on which you may collect statistics has is 512 for a table.
You can collect or recollect statistics on a combined maximum of 512 implicitly specified
columns and indexes. An error results if statistics are requested for more than 512 columns
and indexes in a table. This error condition could result during re-collection, when all
statistics that have been previously collected are re-generated. For example, if you collected
statistics six different times, each for a set of 100 columns, each of those collect statements
would work, because they would each be under the 512 limit. However, if you re-collected
the statistics the system would attempt to generate all 600 and would fail when it hit the 512
limit.

Increasing this limit allows users to issue larger re-collections involving more spool files.
While this may increase system resource usage, it also provides better, more accurate
information to the optimizer. Improved optimization results in more efficient execution
plans, which significantly reduce system resource usage during query processing. Efficient
system usage reduces overhead cost and time.

The bottom line on effective use of COLLECT STATISTICS is: Collect all and only what is
needed to help the Optimizer make the best possible execution plans. Collecting more
statistics than are needed or used wastes resources by putting extra processing and storage
burdens on the system.

When to Collect Multiple Column Statistics
 If a set of columns are frequently specified together as an equality condition or in a

join condition, then collect on the set of multiple columns.
 If a multiple column non-unique index is defined, then collect statistics on the index

or the set of columns that comprise the index.

Optimizer and Collecting Statistics Page 25-31

COLLECT STATISTICS Command

COLLECT STATISTICS A
SUMMARY USING SAMPLE

STATS
STAT

A ON table_name B
TEMPORARY FROM tablename

join_index_name TEMPORARY
hash_index_name join_index_name

hash_index_name

B ;

COLUMN column_name or PARTITION

COLUMN (column_name1, …)

INDEX (column_name1, …)

INDEX index_name

SUMMARY (14.0 option) – collects table-level summary statistics – cardinality (number of
rows), average # of rows per AMP, etc.

If collecting on a column or index, summary statistics are also collected automatically.

Optionally, you can collect just summary statistics on a table.

 Optimizer and Collecting Statistics Page 25-32

Collecting Statistics

Initial Definition and Collection
Each of the statements applies to a separate column of the table. The COLUMN or INDEX
parameters must be specified with COLLECT STATISTICS.

Here are some notes about the Explain on the facing page:

 The system acquires an ACCESS lock on the table that will not interfere with
existing transactions.

 The Row Hash WRITE lock on DBC.StatsTbl in Step #5 will not prevent new

transactions which reference the column Custid from parsing.

 Steps 9 and 10 send out a “Spoiling Message” to all PEs. This will spoil any

current execution plans that use the Custid column for access. It will also remove
the column and its existing demographic information from DD cache so that new
requests will cause the Parser to access DBC.StatsTbl for the new demographic
information.

Example

COLLECT STATISTICS ON Orders COLUMN Orderid;
COLLECT STATISTICS ON Orders COLUMN Custid;
COLLECT STATISTICS ON Orders COLUMN Orderdate;
EXPLAIN COLLECT STATISTICS ON Orders;

Locks and Concurrency
When you perform a COLLECT STATISTICS statement, the system places an ACCESS
lock on the table from which the demographic data is being collected. The system places
row-hash-level WRITE locks on the DBC.StatsTbl while collecting statistics at the column
and index levels.

In general, COLLECT STATISTICS statements can run concurrently with DML statements,
other COLLECT STATISTICS statements, DROP STATISTICS statements, and HELP
STATISTICS statements against the same table. COLLECT STATISTICS can also run
concurrently with a CREATE INDEX statement against the same table as long as they are
not for the same index.

Optimizer and Collecting Statistics Page 25-33

Collecting Statistics

Initial Definition and Collection

COLLECT STATISTICS ON Orders COLUMN Orderid;
COLLECT STATISTICS ON Orders COLUMN Custid;
COLLECT STATISTICS ON Orders COLUMN Orderdate;

EXPLAIN COLLECT STATISTICS ON Orders COLUMN Custid;

Explanation 14.0 EXPLAIN
--
1) First, we lock DS.Orders for access.
2) Next, we do an all-AMPs SUM step to aggregate from DS.Orders by way of a traversal of index # 4

without accessing the base table with no residual conditions, grouping by field1 (
DS.Orders.custid). Aggregate Intermediate Results are computed globally, then placed in Spool 8.
The size of Spool 8 is estimated with low confidence to be 418 rows (12,122 bytes). The estimated
time for this step is 0.06 seconds.

3) Then we save the UPDATED STATISTICS for ('custid') from Spool 8 (Last Use) into Spool 4, which is
built locally on a single AMP derived from the hash of the table id.

4) We compute the table-level summary statistics from spool 4 and save them into Spool 6, which is
built locally on a single AMP derived from the hash of the table id.

5) We lock DBC.StatsTbl for write on a RowHash.
6) We do a single-AMP ABORT test from DBC.StatsTbl by way of the primary index with a residual

condition of ("(DBC.StatsTbl.StatsId = 0) OR ((DBC.StatsTbl.ExpressionList ='custid') OR
(DBC.StatsTbl.StatsId = 1))").

7) We do a single-AMP MERGE into DBC.StatsTbl from Spool 4 (Last Use).
8) We do a single-AMP MERGE into DBC.StatsTbl from Spool 6 (Last Use).
9) We spoil the statistics cache for the table, view or query.

10) We spoil the parser's dictionary cache for the table.
11) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the request.
-> No rows are returned to the user as the result of statement 1.

 Optimizer and Collecting Statistics Page 25-34

Refresh or Re-Collect Statistics
Statistics should not be “collected” once and then forgotten. They tend to become stale as
the tables change, and can cause performance problems by misleading the Optimizer into
making poor decisions. Always keep your statistics current and valid by refreshing them on
a regular, production-schedule basis. To refresh or recollect statistics for all of the
previously collected columns, simply execute the COLLECT STATISTICS command for
the table. The following EXPLAIN show the execution plan when multiple columns are
recollected.

EXPLAIN COLLECT STATISTICS ON Orders;
 1) First, we lock TFACT.orders for access.
 2) Next, we do an all-AMPs SUM step to aggregate from TFACT.orders by way of an all-rows

scan with no residual conditions, grouping by field1 (TFACT.orders.orderdate). Aggregate
Intermediate Results are computed globally, then placed in Spool 18. The size of Spool 18 is
estimated with high confidence to be 3,622 rows (105,039 bytes). The estimated time for this
step is 0.08 seconds.

 3) Then we save the UPDATED STATISTICS for ('orderdate') from Spool 18 (Last Use) into
Spool 4, which is built locally on a single AMP derived from the hash of the table id.

 4) We do an all-AMPs SUM step to aggregate from TFACT.orders by way of a traversal of index
8 without accessing the base table with no residual conditions , grouping by field1 (
TFACT.orders.custid). Aggregate Intermediate Results are computed globally, then placed in
Spool 21. The size of Spool 21 is estimated with high confidence to be 526 rows (15,243
bytes). The estimated time for this step is 0.06 seconds.

 5) Then we save the UPDATED STATISTICS for ('custid') from Spool 21 (Last Use) into Spool
9, which is built locally on a single AMP derived from the hash of the table id.

 : :
15) We spoil the parser's dictionary cache for the table.
16) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the

request.
-> No rows are returned to the user as the result of statement 1.

Why are Collect Statistics done serially?

Executing individual collect statistics or a single collect on table will single thread the
collections – they will be done one at a time. This is good if you want to minimize impact
on other work. If you want to get it done in minimum time though, launch multiple sessions
and submit individual collects on each. Total elapsed time will be better for several running
concurrently than it will be for running them all one at a time. However, this will consume
more of the system resources – specifically more CPU cycles.

The Collect Statistics code has to pull the data independently for each stats definition. It
basically has to do a large aggregation grouping on the stats columns. Thus it will do a scan
and aggregate for each one. It turns out that the scan of data is the least expensive part of
the operation, the real cost is the aggregation/computation of the stats.

Normally, collect stats does not utilize sync scan; sync scans would only help if you were
running them in separate sessions. However, it does utilize cylinder read which has a big
positive impact on stats performance.

Optimizer and Collecting Statistics Page 25-35

Refresh or Re-Collect Statistics

To refresh or recollect statistics for all of the previously collected columns and/or indexes,
you can collect at the table level.

COLLECT STATISTICS ON Orders;

Refresh statistics whenever 5% - 10% of the rows have changed:

• As part of batch maintenance jobs.
• After significant periods of OLTP updating.
• After new low and/or high values have extended the range of values.

Note:

• When refreshing multiple statistics in a table, this is effectively multiple statistics
collections and these are NOT collected in a single pass of the data.

Why not?

• The main reason is that a statistics collection is very CPU intensive – aggregation and
computation of the statistical data.

– Multiple statistics collection at the same time can use a considerable amount of system CPU.

• Optionally, you can run separate statistics collections in different sessions, but you
will use a high % of the CPU.

 Optimizer and Collecting Statistics Page 25-36

COLLECT STATISTICS Command
(Index Format with 14.0 Options)

The Index format syntax for the COLLECT STATISTICS statement is shown on the facing
page. You can edit your CREATE INDEX statements to create your COLLECT
STATISTICS statements. Just replace “CREATE INDEX” with “COLLECT
STATISTICS”.

16 Byte Limit in Statistics Intervals
Prior to Teradata 14.0, only the first 16-bytes of a column(s) that have collected statistics are
stored in the statistic intervals. Lengthy multi-column stats will usually overflow the 16
byte limit of how much meaningful data can be carried within the statistics intervals.

For example, if the first column in a multi-column stats is CHAR(20), then no values from
the other columns will get recorded in the histogram intervals. Another example is where a
large number of the values in a CHAR column start with a common string, for example
“State Department of”. As a result, there is no differentiation for these particular values in
the histograms, because the differentiation comes after the 16 byte limit, so the optimizer
was not able to link the actual value to helpful estimates. Dropping statistics in this case
may improve query plans.

The rule of thumb with statistics, when you ask yourself whether to collect them or not on a
specific column or set of columns is whether they improve the query plans or not. If they
do, collect them, if they don’t drop them.

This is no longer an issue starting with Teradata 14.0. You can override the maximum value
length (based on column lengths by using the MAXVALUELENGTH n option.

Teradata Database never truncates numeric values for single-column statistics. The system
increases the interval size automatically if the specification is not sufficient to accommodate
the full value for single-column statistics on numeric columns.

For multicolumn statistics, if the maximum interval size truncates numeric statistical data,
Teradata Database automatically increases the maximum interval size to accommodate the
numeric column on the maximum size boundary. A larger maximum value size causes
Teradata Database to retain the value until the specified maximum is reached, which can
enable better single-table and join selectivity estimates for skewed columns. However, you
should be selective when increasing the size for the required columns because increasing the
maximum value size also increases the size of the histogram, which can increase query
optimization time. You can only specify this option if you also specify an explicit column
or index.

NO SAMPLE
NO SAMPLE specifies to use a full-table scan to collect the specified statistics. You can
only specify this option if you also specify an explicit index or column set.

Optimizer and Collecting Statistics Page 25-37

COLLECT STATISTICS Command
(Index Format with 14.0 Options)

COLLECT STATISTICS A
SUMMARY USING SAMPLE

STAT SYSTEM SAMPLE AND
STATS SAMPLE n PERCENT

NO SAMPLE
MAXINTERVALS n
SYSTEM MAXINTERVALS
MAXVALUELENGTH n
SYSTEM MAXVALUELENGTH

A INDEX (colname1, …) B

UNIQUE index_name ALL stats_name

COLUMN column_name or PARTITON AS

COLUMN (column_name1, …)

B ON table_name ;
TEMPORARY FROM tablename

join_index_name TEMPORARY
hash_index_name join_index_name

hash_index_name

Multiple USING options
are separated with AND.

 Optimizer and Collecting Statistics Page 25-38

COLLECT STATISTICS on a Data Sample
The new SAMPLING option significantly reduces the resources consumed by COLLECT
STATISTICS by collecting on only a percentage of the data. While it should not be used to
replace all existing statistics collection, it can be used as an effective query tuning option
where statistics are not being collected because of the required overhead. This feature saves
time and system resources by collecting statistics on only a percentage sampling of the data.

COLLECT STATISTICS can be very time consuming because it performs a full table scan
and its sorts the data to compute the number of occurrences of each distinct value. Most
users accept this performance because it can be run infrequently and it benefits query
optimization. Without statistics, query performance often suffers. The drawback to sampled
statistics is that they may not be as accurate, which in turn may affect the quality of
Optimizer plans. In most cases sampled statistics are better than no statistics.

Consider using sampling when:

 Collecting statistics on very large tables.
 Resource consumption from the collection process is a serious performance or cost

concern.

Do not use sampling:

 On small tables.
 To replace all existing full scan collections.

Sampling Considerations
The system automatically determines the appropriate sample size to generate accurate
statistics for good query plans and performance.

Once initial sampled statistics have been collected, recollections are also sampled. The
system does not store both sampled and complete statistics for the same index or column set.

Sampled statistics are generally more accurate for data that is uniformly distributed. For
example, columns or indexes that are unique or nearly unique are uniformly distributed.
Sampling should not be considered for data that is highly skewed because the Optimizer
needs to be fully aware of such skew. In addition to uniformly distributed data, sampling is
generally more appropriate for indexes than non-indexed column(s). For indexes, the
scanning techniques employed during sampling can take advantage of the hashed
organization of the data to improve the accuracy of the resulting statistics.

To summarize, sampled statistics are generally most appropriate for:

 1. Very large tables
 2. Data that is uniformly distributed
 3. Indexed column(s)

Optimizer and Collecting Statistics Page 25-39

COLLECT STATISTICS on a Data Sample

SAMPLING reduces resource usage by collecting on a percentage of the data.

• System determines appropriate sample size to generate accurate statistics.

– If you specify SAMPLE or SYSTEM SAMPLE, the first collection will usually be 100%.
Teradata will determine a percentage to use for recollections.

• To request a specific sample of rows on which to collect statistics, use this syntax:

COLLECT STATISTICS USING SAMPLE n PERCENT

• Re-collection collects statistics using the same mode (full scan or sampled) as
specified in the last specified collection.

– System does not store both sampled and complete statistics for the same index/column set.

– Only one set of statistics is stored for a given index or column.

• Sampled statistics are more accurate for data that is uniformly distributed.

– Sampling is useful for very large tables with reasonable distribution of data.

– Sampling should not be considered for highly skewed data as the Optimizer needs to be
aware of such skew.

– Sampling is more appropriate for indexes than non-indexed column(s).

 Optimizer and Collecting Statistics Page 25-40

Collecting Statistics (14.0 Examples)

USING OPTIONS
SAMPLE or SYSTEM SAMPLE
 This option specifies to scan a system-determined percentage of table rows to collect

the specified statistics. This option is not valid for single-table views. SAMPLE has
the same meaning as SYSTEM SAMPLE and is provided for backward compatibility.

 The SYSTEM SAMPLE option specifies to scan a system-determined percentage of

table rows to capture the statistical information. The Teradata Database might decide to
sample 100% for the first few times before downgrading the sample percent to a lower
level.

MAXINTERVALS n
 Specifies the maximum number of histogram intervals to be used for the collected

statistics. Teradata Database might adjust the specified maximum number of intervals
depending on the maximum histogram size. Valid range is 0 – 500.

SYSTEM MAXINTERVALS
 This option simply indicates to use the system default maximum number of histogram

intervals for the collected statistics. The system default is typically 250, but can be
adjusted using DBSControl.

MAXVALUELENGTH n
 This option specifies the maximum size to use for histogram values such as MinValue,

ModeValue, MaxValue, etc. This option is valid for both tables and single-table views.
The value for n must be an integer number.

 For single-character statistics on CHARACTER and VARCHAR columns, n specifies

the number of characters. For all other options, n specifies number of bytes.

 For single-character statistics on CHARACTER and VARCHAR columns, n specifies

the number of characters. For all other options, n specifies number of bytes.

 For multicolumn statistics, Teradata Database concatenates the values and truncates

them if necessary to fit into the specified maximum size.

 For single-column statistics, the valid range of n is 1 - maximum size of the
column.

 For multicolumn statistics, the valid range of n is 1 - combined maximum size of
all the columns.

SYSTEM MAXVALUELENGTH
 This option simply indicates that the system should use a system-determined value for

the length of histogram values such as MinValue, ModeValue, MaxValue, etc. This
value is dependent on the column data type, number of intervals, etc. This option is
valid for both tables and single-table views.

Optimizer and Collecting Statistics Page 25-41

Collecting Statistics (14.0 Examples)

Given: Orders table NUPI on orderid, partitioned on orderdate
USI on orderid
NUSI on custid

To collect sample statistics using the system default sample:

COLLECT STATISTICS USING SYSTEM SAMPLE COLUMN (orderdate) ON Orders;

To collect sample statistics by scanning 10 percent of the rows and use 100 intervals:

COLLECT STATISTICS USING SAMPLE 10 PERCENT AND MAXINTERVALS 100
COLUMN (custid) AS custid_stats ON Orders;

To change sample statistics to 20 percent (for custid) and use 250 intervals:

COLLECT STATISTICS USING SAMPLE 20 PERCENT AND MAXINTERVALS 250
COLUMN (custid) AS custid_stats ON Orders;

To display the COLLECT STATISTICS statements for a table:

SHOW STATISTICS ON Orders;

To display statistics details – summary section, high bias values, and intervals:

SHOW STATISTICS VALUES COLUMN orderdate ON Orders;

 Optimizer and Collecting Statistics Page 25-42

Viewing Statistics
Help Statistics

HELP STATISTICS returns the following information about each column or index for
which statistics have been COLLECTed in a single table:

 The Date the statistics were last COLLECTed or refreshed.
 The Time the statistics were last COLLECTed or refreshed.
 The number of unique values for the column or index.
 The name of the column or column(s) that the statistics were COLLECTed on.

Use Date and Time to help you determine if your statistics need to be refreshed or dropped.
The example on the facing page illustrates the HELP STATISTICS output for the Orders
table.

Note: Prior to Teradata 14.0, HELP STATS Orders COLUMN (Custid); will return the
details about the statistics histogram and display the 200 intervals. This command will not
work starting with Teradata 14.0.

Starting with Teradata 14.0, to view details about the statistics for an index/column, use the
SHOW STATISTICS VALUES option.

Help Index
HELP INDEX is an SQL statement which returns information for every index in the
specified table. An example of this command and the resulting BTEQ output is shown on
the facing page. As you can see, HELP INDEX returns the following information:

 Whether or not the index is unique
 Whether the index is a PI or an SI
 The name(s) of the column(s) which the index is based on
 The Index ID Number
 The approximate number of distinct index values
 Is the index hash-ordered, valued-ordered, or partitioned (H, V, P)

This information is very useful in reading EXPLAIN output. Since the EXPLAIN statement
only returns the Index ID number, you can use the HELP INDEX statement to determine the
structure of the index with that ID.

Answers to question: The counts are determined by a random AMP sample.

Optimizer and Collecting Statistics Page 25-43

Viewing Statistics

HELP STATISTICS tablename; Displays information about current statistics.

HELP STATISTICS Orders;

Date __ Time Unique Values Column Names
12/03/07 00:55:34 43,200 * (14.0 – The * is Summary Statistics.)
12/03/07 00:53:54 3,622 orderdate
12/03/07 00:54:01 385 custid_stats (Note the statistics name is used here.)
12/03/07 00:55:34 1 PARTITION

Note that the DATE and TIME show when statistics were last collected or refreshed.

HELP INDEX tablename: This statement returns information for every index on a table.

HELP INDEX Orders;

Primary
or Approximate Index Ordered or

Unique? Secondary? Column Names Index Id Count Name Partitioned?

N P orderid 1 32,741 ? P
Y S orderid 4 43,654 Orderid H
N S custid 8 449 Custid H

This command displays the index number and an approximate number of distinct values.

Question: How are the counts determined with HELP INDEX?

 Optimizer and Collecting Statistics Page 25-44

Optimizer’s use of Statistics with Uneven NUSI
COLLECTing STATISTICS on NUSIs makes it possible for the Optimizer to decide when
to use the NUSI for access and when to do a Full Table Scan. The facing page shows how
the Optimizer will handle two different uneven NUSIs.

The NUSI on column F has a large distribution spike where F is NULL. The Optimizer will
choose to do a Full Table Scan for NULL values and will utilize the NUSI for other values.

The NUSI on column G has a large distribution at a single value. The Optimizer will choose
to utilize the NUSI for NULL values, and may or may not utilize the NUSI for other values.

Data Dictionary Views
There are a number of data dictionary views that can be used to determine if statistics have
been collected on indexes and/or columns. The following chart illustrates which views will
display the various statistics.

These views have been significantly changed in Teradata 14.0 with all new columns.

This chart represents how these views can be used with Teradata 12 through Teradata 13.10.

 Are Statistics provided in the View?
Stats Collected on … DBC.IndexStats DBC.ColumnStats DBC.MultiColumnStats
Single Column No Yes No
Single Column Index No Yes No

Index with Multi-
Columns

Yes No No

Multi-Columns * Yes No No

Multi-Column (no
index on columns)

No No Yes

* An index is on multiple columns, but stats were collected on columns, not the index.

Optimizer and Collecting Statistics Page 25-45

Optimizer’s use of Statistics with Uneven NUSI

EXAMPLE

6,000,000
Rows A F G

PK/FK PK,SA

Distinct Values 6M 1.5M 1.5M
Max Rows/Value 1 9 725K
Max Rows/NULL 0 725K 5

Typical Rows/Value 1 3 3
UPI

PI/SI USI NUSI? NUSI?

Example: Optimizer will ...

COLLECT STATISTICS ON Example COLUMN F;
SELECT * FROM Example WHERE F = 'value'; use the NUSI to return 3 - 9 rows
SELECT * FROM Example WHERE F IS NULL; do a FTS to return 725K rows

COLLECT STATISTICS ON Example COLUMN G;
SELECT * FROM Example WHERE G = 'value'; use the NUSI if the value NE 0
SELECT * FROM Example WHERE G IS NULL; use the NUSI to return 5 rows

DROP INDEX (G) ON Example; DROP STATISTICS ON Example COLUMN G;
SELECT * FROM Example WHERE G = 'value'; assumes 10% or 600,000

Notes:

For column G, assume:
• 725K rows have a value

of 0.

• All other values in G
return 0 to 30 rows.

 Optimizer and Collecting Statistics Page 25-46

Collecting Statistics on PARTITION
This feature allows you to collect statistics on the system-derived PARTITION column of a
table with a Partitioned Primary Index (PPI).

Statistics on the PARTITION column allow the Optimizer to generate an aggressive plan
with respect to PPI tables. Specifically, the Optimizer can use PARTITION statistics to
estimate the cost of various operations very accurately, including:

 Static partition elimination
 Dynamic partition elimination

When the Optimizer can use partition elimination more frequently, query efficiency and
performance improves. In addition, the collection process itself for single-column
PARTITION statistics is highly optimized, which significantly reduces their collection time
and overhead.

Prior to Teradata Warehouse V2R6.1, statistics collected on partitioning columns were used
only for estimating cardinality (the number of qualifying rows resulting from access to the
table). With the new PARTITION statistics feature, the additional statistics can be used to
estimate costing (the number of rows, data blocks, and partitions that must be scanned to
produce the query result). Statistics can be collected for the system-derived PARTITION
column only (single-column PARTITION statistics) or on the PARTITION column and
other table columns (multi-column PARTITION statistics). These statistics provide the
Optimizer with information on its state when statistics were last collected, such as:

 The number of empty partitions
 How rows are distributed in each partition

The Optimizer can use this information to better estimate the query cost when there are a
significant number of empty partitions. If PARTITION statistics are not collected, empty
partitions may cause the Optimizer to underestimate the number of rows in a partition.

When the Optimizer uses PARTITION statistics in creating its plan, the EXPLAIN will
show the estimate with high confidence.

Notes on Collecting Sample Statistics on the Partitioning column:

 You can specify a USING SAMPLE clause to collect single-column PARTITION

statistics, but the specification is ignored. Instead, the system automatically resets the
internal sampling percentage to 100.

 Note that the USING SAMPLE clause is honored for multicolumn PARTITION

statistics. The system begins the collection process using a 2 percent sampling
percentage and then increases the percentage dynamically if it determines that the
values are skewed more than a system-defined threshold value.

Optimizer and Collecting Statistics Page 25-47

Collecting Statistics on PARTITION

You can (and should) collect statistics on the system-derived PARTITION column of all
tables, especially PPI tables.

• Statistics on the PARTITION column provide information about partitions and allow
the Optimizer to generate a more aggressive plan with respect to PPI tables.

• Specifically, the Optimizer can use PARTITION statistics to estimate the cost of
various operations more accurately, including:

– Static partition elimination
– Dynamic partition elimination

• The Optimizer can use this information to better estimate the query cost when there
are a significant number of empty partitions.

• This is a very fast collection as only the Cylinder Indexes need to be analyzed.

• It is recommended to collect statistics on PARTITION for every table (including non-
partitioned tables).

Example:

COLLECT STATISTICS ON TFACT.Sales_PPI COLUMN PARTITION;

 Optimizer and Collecting Statistics Page 25-48

Copying STATISTICS
You can also append an AND STATISTICS option to a WITH [NO] DATA clause to copy
any collected source table statistics or empty histograms to a target table. If you specify
WITH NO DATA AND STATISTICS, the system sets up the appropriate statistical
histograms in the dictionary, but does not populate them with source table statistics. This is
referred to as zeroed statistics.

General Rules For CREATE TABLE AS … WITH DATA AND STATISTICS. The
following list of rules applies only to an AS … WITH DATA AND STATISTICS clause.

 This feature is available starting with Teradata V2R6.2.
 If there are no columns or indexes in the target table for which statistics are eligible to be

copied, the system returns a warning message to the requestor.
 If you specify an explicit index definition for the target table, then the system does not

copy PARTITION statistics from the source table to the target table.
 This is true for both single-column PARTITION statistics and for composite statistics on a

column set that includes the system-derived PARTITION column.
 You cannot copy statistics for a volatile table because you cannot collect statistics on a

volatile table.
 If you specify WITH DATA AND STATISTICS for a volatile source table, the request

aborts and the system returns an error.
 If no statistics have been collected on the specified source table column or index sets, the

system ignores the AND STATISTICS option and returns a warning message to the
requestor.

 If only a subset of the statistics from the source table are eligible to be copied to the
columns and indexes of the target table, the system returns a warning message to the
requestor.

 If the number of multicolumn statistics you specify to be copied to the target table exceeds
the maximum number of multicolumn statistics allowed, then the system copies
multicolumn statistics only up to the limit, does not copy the remainder of the multicolumn
statistics to the target table, and reports a warning message to the requestor.

 If all columns in a MULTISET source table are non-unique, and if the target table is a SET
table, then the system does not copy statistics to the target table. This is because of the
possible violation of the rule of equal cardinalities in the source and target tables: if there
are duplicate rows in the source table, the system eliminates them before copying to the
target table, resulting in unequal cardinalities between the two tables.

 If the source table has at least one non-unique column and the target table is a SET table,
then the system copies the statistics from the source table to the target table if all other
rules are also obeyed.

 If you specify the NOT CASESPECIFIC attribute for any column in the target table
definition, and it does not match the corresponding source table column attribute
specification, the system does not copy the statistics for that column or index set because
of the possible violation of the rule about not modifying the data in the target table.

 If all the columns in the source table are non-unique and you specify the NOT
CASESPECIFIC attribute for any column in the target table definition that does not match
the corresponding source table column attribute definition, then the system does not copy
the statistics for that column or index because of the possible violation of the rule of equal
cardinalities in the source and target tables.

Optimizer and Collecting Statistics Page 25-49

Copying STATISTICS

The COLLECT STATISTICS command includes a FROM option to copy statistics from one
table to an identical target table (14.0 option).

COLLECT STATISTICS ON Orders_new FROM Orders;

The CREATE TABLE AS command includes an option to copy statistics from one table to
another by including the "AND STATISTICS" option.

• The CREATE TABLE … AS … WITH DATA AND STATISTICS;

– In this case, a new table is created via a copy definition (DDL) of an existing table, data is
copied from the source table to the target table, and the applicable statistics are replaced
with the same statistics (histograms) from the target table.

CREATE TABLE Customer_Test2 AS CUSTOMER WITH DATA AND STATISTICS;

• The CREATE TABLE … AS … WITH NO DATA AND STATISTICS;

– In this case, a new table is created via a copy definition (DDL) of an existing table, no data is
copied from the source table to the target table, and the applicable statistics are replaced
with zeroed statistics (histograms).

CREATE TABLE Customer_Test1 AS CUSTOMER WITH NO DATA AND STATISTICS;

 Optimizer and Collecting Statistics Page 25-50

Statistics Extrapolation
The optimizer can use extrapolation or derived statistics when it detects stale statistics. Stale
statistics is based on 10% or 10,000 row count growth. For very small tables (less than 25
rows per AMP), or for tables with a skewed data distribution, no extrapolation will done. A
technique to force extrapolation is to switch to an all AMP random AMP sampling.

If the difference exceeds either of these values, the Optimizer assumes that the histogram
statistics are stale and overrides them with the estimates returned by a random AMP sample.

Even if the difference exceeds the value for the absolute deviation (10,000), the Optimizer
still uses histogram statistics for its selectivity estimates, and those estimates are
extrapolated.

Stale Statistics Detection
Currently, the table row count is estimated from the random AMP sampling or the statistics
on the primary index (PI) of the table.

Starting with Teradata 12.0, instead of always trusting Primary Index histogram row count,
the row count from Random AMP Sampling and the histogram are compared and a decision
is made based on certain normalization heuristics.

 The histogram row count is compared with the table row count and if the deviation is more
than the defined threshold, the histogram is determined as stale.

 Stale histograms are specially tagged in the optimizer and value count/row extrapolations

are done when they are used for cardinality estimations.

 Stale Statistics Detection also applies to tables that have zero statistics as well and allows

for table row count extrapolation.

Extrapolating Statistics Outside Range
This 12.0 enhancement allows the Teradata Optimizer to include a new extrapolation
technique specifically designed to more accurately provide for a statistical estimate for date
range-based queries that specify a “future” date.

The Optimizer extrapolation technique for date range-based queries that supply “future”
dates will result in better query plans due to the fact that cardinality estimation will be much
more accurate. Because of the new extrapolation formula it is also possible that statistics for
the associated date columns would not have to be re-collected as often.

Some considerations include:

 However, the information displayed within a query Explain plan will change because of
the new numbers for estimated rows.

 Specific consideration should be given to collecting statistics less frequently on columns

which will now be extrapolated.

Optimizer and Collecting Statistics Page 25-51

Statistics Extrapolation

The optimizer can use extrapolation or derived statistics (random AMP sample) when it
detects stale statistics.

Stale Statistics Detection

• The row count from random AMP sampling and the histogram are compared and a
decision is made based on certain normalization heuristics.

– The histogram row count is compared with the table row count and if the
deviation is more than a defined threshold, the histogram is determined as stale.

• The stale statistics threshold is based on 10% or 10,000 (small tables) row count growth.

– Stale histograms are specially tagged in the optimizer and value count/row
extrapolations are done when they are used for cardinality estimations.

Extrapolate Statistics Outside of Range

• This extrapolation technique is designed to more accurately provide for a statistical
estimate for date range-based queries that specify a “future” date that is outside the
bounds of the collected statistics.

• For date range-based queries that supply “future” dates, the optimizer can create
better plans because the cardinality estimation will be more accurate.

• A benefit is that statistics may not have to be re-collected as often.

 Optimizer and Collecting Statistics Page 25-52

Teradata 13.0 Enhancements
The facing page lists a number of statistics enhancements in Teradata 13.0.

Optimizer and Collecting Statistics Page 25-53

Teradata 13.0 Enhancements

The following enhancements on Collect Statistics statements are available in Teradata
13.0.

• Multicolumn statistics are available for Hash indexes and Join Indexes.

• Statistics on system-derived column PARTITION can be collected on Partitioned Join
Indexes.

• PARTITION statistics can be collected on Global Temporary tables.

• Single, Multicolumn, and PARTITION statistics are available for Volatile tables.

• Sampled Statistics can be collected on all the above as well as Partitioning columns.

• Collect Statistics can be granted as an access right or privilege.

 Optimizer and Collecting Statistics Page 25-54

Teradata 14.0 Enhancements
The facing page lists a number of statistics enhancements in Teradata 14.0. Benefits of
these enhancements include:

 These enhancements allow you to specify whether you or the system should determine a
sampling percentage for sampled statistics.

 Enables you to collect or recollect either summary statistics only or both full and summary

statistics.

 Removes the restriction on collecting statistics on global temporary tables.

 Enables you to provide a name for statistics collected on a base table or global temporary

table.
 These enhancements allow you to explicitly specify the column ordering for multicolumn

statistics.

 Improves query optimization time through a new dedicated statistics cache.

 Simplifies privileges:

– To collect or report statistics on a row-level security (RLS) table, you must have the
OVERRIDE SELECT CONSTRAINT privilege.

– To collect or drop statistics on non-RLS tables, you need only have the STATISTICS
privilege.

– To copy statistics from one table to a duplicate source table, you must have the

SELECT privilege on the source table.

Optimizer and Collecting Statistics Page 25-55

Teradata 14.0 Enhancements

The following Teradata 14.0 Collect Statistics enhancements include:

• SUMMARY option to collect table-level statistics.

• SYSTEM SAMPLE option allows the system to determine the sampling percentage for
sampled statistics.

– Sampling options have been enhanced (e.g., SAMPLE n PERCENT)

• Statistics are stored in a new system table named DBC.StatsTbl.

– This reduces access contention and improves performance.

– New system views (or significantly changed views) include DBC.StatsV, DBC.ColumnStatsV,
DBC.MultiColumnStatsV, and IndexStatsV.

• SHOW STATISTICS statement reports detailed statistics in either plain text or XML
formatting.

– SHOW STATISTICS has separate Optimizer and Query Capture Database (QCD) versions.

• Miscellaneous internal enhancements to the Optimizer with respect to histogram
structure and use, including:

– Storing statistics data in their native Teradata data types without losing precision

– Enhanced extrapolation methods for stale statistics

– Maintaining statistics history

 Optimizer and Collecting Statistics Page 25-56

Teradata Statistics Wizard
The Teradata Statistics Wizard is a graphical tool that has been designed to automate the
collection and re-collection of statistics, resulting in better query plans and helping the DBA
to efficiently manage statistics.

The Statistics Wizard enables the DBA to:

 Specify a workload to be analyzed for recommendations specific to improving the
performance of the queries in a workload.

 Select an arbitrary database or selection of tables, indexes, or columns for analysis,
collection, or re-collection of statistics.

 Make recommendations, based on a specific workload.
 Make recommendations, based on table demographics and general heuristics.
 Defer execution of and schedule the arbitrary collection/re-collections for later.
 Display and modify the interval statistics for a column or index.

Recommendations
Recommendations can be provided by the Teradata Statistics Wizard utility for either a
defined workload (set of SQL statements) or for a general set of non-workload settings.

The overall process of collecting statistics for a workload is:

 Define and specify the workload to The Teradata Statistics Wizard.
 The Teradata Statistics Wizard analyzes the workload (SQL statements).
 Once the statistics are chosen by the system, the Teradata Statistics Wizard makes

recommendations and provides reports to help the user analyze the
recommendations for collection purposes.

 Additionally, the Statistics Wizard permits users to validate the proposed statistics
on a production system. This feature enables the user to verify the performance of
the proposed statistics before applying the recommendations.

If you choose to specify statistics recommendations rather than capture representative
samples of collected statistics within a defined workload, you set user preferences by using
the Options choice within the Tools menu.

Optimizer and Collecting Statistics Page 25-57

Teradata Statistics Wizard

Features of the “Teradata Statistics Wizard” include:

• Provides a graphical Windows interface to easily view, collect, recollect, or drop
statistics on selected tables.

• Provides non-workload recommendations to collect statistics on tables based on …

– Table skew

– General heuristics (based on general rules of thumb)

• Provides non-workload recommendations to re-collect statistics on tables based on …

– Age of collection

– Table growth - change in demographics

• Based on a specific workload, provides workload recommendations on columns to re-
collect statistics.

– Integrated with Teradata Analyst tool set – Index Wizard, Statistics Wizard, and
Teradata SET (System Emulation Tool).

– Can utilize a workload defined in QCD (Query Capture Database)

• Display and modify the interval statistics for a column or index.

• Provides numerous reports on statistics recommendations, update cost analysis,
table usage, etc.

 Optimizer and Collecting Statistics Page 25-58

Teradata Statistics Wizard – Main Window
The Menu bar is located at the top of the Teradata Statistics Wizard window. It contains the
pull-down menus displaying the commands that you use to operate the program.

In addition to accessing the commands from the menu bar, the Teradata Statistics Wizard
provides shortcuts to many of the commands via the tool buttons along the top and left side
of the window.

The Teradata Statistics Wizard window displays Teradata Database statistics in three panes:

 The Database pane is a listing of all the databases on the system. Double-click on

a database icon to see the children of that database and to retrieve the associated
tables.

 The Table pane lists the tables contained in the selected database. Double-click a
table name to see the statistics for that table.

 Column/Index Pane - the Column pane shows statistics for the selected
database/table. Double-click a column name to see the interval statistics for that
column.

Defining and Using Workloads with Statistics Wizard
If you choose to use a workload to help provide statistics recommendations, you want
representative samples of live SQL statements. A workload is defined as an SQL statement
or a set of SQL statements. Typically, a workload is comprised of SQL statements that were
executed on a production system.

The Teradata Statistics Wizard analyzes a workload and makes recommendations based on
the defined workload. Ways to define a workload include:

 Select queries from the Teradata Database Query Log (DBQL).
 Open a file and directly enter SQL statements into a workload, or select the SQL

statements from one or more files.
 Select an existing set of execution plans in a user defined Query Capture Database

(QCD) to form a workload.
 Import SQL statements to the test system as a workload from a production system,

using the Teradata System Emulation Tool. The production system environment is
imported along with the SQL statements.

 Enter the SQL statement manually to add or delete statements, and then optionally
save the modified workload under a different name, if needed.

 Once a workload is defined, the next step is to analyze the workload and
recommend collection of statistics.

Validation involves collecting sampled statistics on the recommended columns and
generating query plans, based on the collected statistics.

Optimizer and Collecting Statistics Page 25-59

Teradata Statistics Wizard – Main Window

Table Pane
for a selected database, table
statistics information is provided.

Column/Index Pane
for a selected table, column and/or index
statistics information is provided.

 Optimizer and Collecting Statistics Page 25-60

Teradata Statistics Wizard – Interval Statistics
The following chart describes the fields in the Interval Statistics.

Database Name of database.
Table Name of table.
Column Name of column.
Index Number Number of index, if it is an index.
Timestamp Time when statistics were collected.
Numeric Whether the column is numeric or non-numeric.
Number of
Intervals

Number of intervals in the frequency distribution for the column/index, up
to 200.

Sampled Size The percentage of statistics that were sampled, if statistics were sampled.
Version For internal use.

Note: The following information is about the column as a whole. This is also known as interval 0
data or the summary data.

Number of Rows Number of rows.
Number of Nulls Number of empty rows for the entire column/index.
Number of Unique
Values

Number of distinct Non-Mode values in the interval.

MinValue
Minimum value for the entire column/index.
For example, if entering a date value, it must be in the form of
MMDDYYYY.

Mode Value The most frequently used (popular) value in the interval.
Mode Frequency The number of rows having the Mode Value.

Note: The following values are displayed in the spreadsheet for all 200 intervals.

Max Value The highest value in the interval.
Mode Value The most frequently used value in the interval.
Mode Frequency The number of rows having the Mode Value.

Non-Modal Value

The number of distinct non-modal values (values that are not the most
frequently used) in the interval.

Note: If the Non-Modal Value is “-1”, it means there is one loner in the
interval. If the Non-Modal Value is “-2”, it means there are 2 loners in the
interval.

Non-Modal Rows The total number of rows for all the Non-Modal values in the interval.

Note: It is not recommended, but you have the ability to modify interval data and submit it
back to the Teradata Database.

Optimizer and Collecting Statistics Page 25-61

Statistics Wizard – Interval Statistics

Summary Section
(Interval #0)

Interval details

Note:
High bias intervals
will have a “non-
modal value” of -1 or
-2 to represent 1 or 2
high bias values in
the interval.

Double-click on a
column or index that
has statistics to
display the interval
details.

What are the two high bias custid's?

 Optimizer and Collecting Statistics Page 25-62

Collect, Re-Collect, or Drop Statistics
In addition to making recommendations, the Teradata Statistics Wizard allows you to
collect, re-collect, or drop statistics on an arbitrary database, table(s), column(s) and /or
index(es).

Note: When you right-click in a pane (database, table, or column/index) to select options,
you need to click in the appropriate column to get the options dialog box.

For example, when you click in the Table pane, you need to right-click in the Table Name
column. When you click in the Column pane, you need to right-click in the Column Name
column. This will ensure that the correct Options menu is displayed.

 Right-click in the Database Name column of the Databases pane and select the
Collect option to re-collect statistics for a database.

 Right-click in the Database Name column of the Databases pane and select the

Drop option to drop statistics for a database.

 Select tables from the Table pane and right-click and select the Collect option to re-

collect statistics for one or more tables.

 Right-click in the Column Name column of the Columns pane and select the Select

Statistics for Table option to re-collect statistics for one or more tables.

 Select tables from the Table pane and right-click and select the Drop option to drop

statistics for one or more tables.

 Right-click in the Column Name column of the Columns pane and select the Drop

Statistics for Table option to drop statistics for one or more tables.

 Select one or more columns from the Table pane and right-click and select the Drop

Statistics for Selected option to drop statistics for the selected columns in the Table
pane.

 Right-click in the Table Name column of the Table pane and select the Drop

Statistics for Table option to drop statistics for all columns within the table.

Note: When selecting to collect or drop statistics, statistics are only collected or dropped if
the table has statistics defined.

Optimizer and Collecting Statistics Page 25-63

Collect, Re-Collect, or Drop Statistics

By right-clicking, you can collect, re-collect, or drop
statistics on an database, table, column(s), etc.

 Optimizer and Collecting Statistics Page 25-64

Recommendations
Statistics recommendations can be made when collecting or re-collecting statistics. The
Statistics Wizard includes user options to:

 Make recommendations on which column/index would benefit from having
statistics collected or re-collected, based on a table’s demographics and some
general heuristics.

 Retrieve the necessary types of data and apply to a table
 View, schedule, or execute recommendations.

The Teradata Statistics Wizard options are set within the Tools menu, Options. When you
set these options, you specify data type and their thresholds, and then you selectively choose
which recommendations to retrieve and their specified thresholds. Each type of
recommendation is associated with an icon, which is later displayed in the table and column
panes.

Optimizer and Collecting Statistics Page 25-65

Recommendations

Tools Menu Options Recommendations

 Optimizer and Collecting Statistics Page 25-66

Recommendations (cont.)
Re-Collection Recommendations

Statistics re-collection recommendations is the process of making recommendations, based
on which tables with existing statistics would benefit from having statistics re-collected.
Recommendations are based on the age of collection and table growth.

 Age of Collection – recommends re-collection for all columns that have the
number of days since statistics were last collected, if they exceed a user-configured
threshold.

 Table Growth – recommends re-collection for all columns that have the change in

row count since statistics were last collected, if they exceed a user-configured
threshold.

Collection Recommendations
Collection recommendations are based on the following options:

 Table Skew – recommends collection on all non-unique primary indexes for tables

that have table skews that exceed a user-configured threshold.

 General Heuristics – recommends collection based on some rules of thumb,
including:

– All indexes for Join Index table
– All non-unique secondary indexes with ALL option
– All VOSI (Value ordered NUSI)
– All Partitioned Tables

Optimizer and Collecting Statistics Page 25-67

Recommendations (cont.)

Icons are used to show the
recommendations in the table and
column/index panes.

 Optimizer and Collecting Statistics Page 25-68

Statistics Summary
Remember to refresh statistics on a regular basis.

Dropping a secondary index for a single column deletes the index’s definition from
DBC.Indexes. However, the column definition and single-column statistics stored in
DBC.TVFields (13.10 and before) or DBC.StatsTbl (starting with 14.0) will still exist.

Optimizer and Collecting Statistics Page 25-69

Statistics Summary

• Recommendations for collect statistics include:
– All non-unique indexes.

– The UPI of tables with less than 1,000 rows per AMP – collect full statistics.

– Any non-indexed column used for set selection or join constraints.

– Collect statistics on the key word PARTITION.

• Collected statistics are not automatically updated by the system.
– The user is responsible for refreshing collected statistics.

– Refresh statistics when 5% to 10% of the table’s rows have changed.

• The optimizer is more aggressive when it has COLLECTed STATISTICS. It is
more conservative when it must rely on random AMP sampling.

• The Teradata Statistics Wizard provides a graphical Windows interface to
easily view, collect, recollect, or drop statistics on selected database, tables,
columns, or indexes.

• Limitations
– Maximum # of columns in a table on which you may implicitly recollect statistics is 512.

– Maximum number of column names within a given COLUMN list is 64.

– Maximum number of multiple column COLLECT STATS statements per table is 32.

 Optimizer and Collecting Statistics Page 25-70

Module 25: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Optimizer and Collecting Statistics Page 25-71

Module 25: Review Questions

1. When alternatives are available, the Optimizer may require “hints” to ensure that it will make the best
choices.

T. True
F. False

2. If you COLLECT STATISTICS for a NUPI in Teradata 14.0, the statistics are stored in _____________.

a. DBC.StatsTbl
b. DBC.Indexes
c. DBC.TVFields
d. Data Dictionary (DD) cache

3. Dynamic AMP sample statistics are stored in the _____________.

a. DBC.TVFields
b. DBC.Indexes
c. Data Dictionary (DD) cache
d. None of the above

4. You can use the _________________ to display information (e.g., last collection date) about current
column or index statistics.

a. EXPLAIN statement
b. HELP INDEX statement
c. SHOW TABLE statement
d. COLLECT STATISTICS statement
e. HELP STATISTICS statement

 Optimizer and Collecting Statistics Page 25-72

Notes

The EXPLAIN Facility Page 26-1

Module 26

Teradata Proprietary and Confidential

The EXPLAIN Facility

After completing this module, you will be able to:

 Describe the Explain Facility.

 Define Explain terminology.

 Describe the EXPLAIN output of a CREATE TABLE statement.

 Match EXPLAIN terms to a definition.

 Identify the ways to EXPLAIN Macros.

 Use EXPLAIN to determine the number of partitions used in
various access plans.

ds186034
Highlight

 The EXPLAIN Facility Page 26-2

Notes

The EXPLAIN Facility Page 26-3

Table of Contents

The EXPLAIN Facility .. 26-4
EXPLAIN Facility Output ... 26-6
Example 1 – EXPLAIN of a Simple SELECT .. 26-8
Example 2 – EXPLAIN of a SELECT (FTS) .. 26-10
EXPLAIN Terminology ... 26-12

" (Last Use) " .. 26-12
" with no residual conditions " ... 26-12
" END TRANSACTION " ... 26-12
" eliminating duplicate rows " .. 26-12
" by way of the sort key in spool field1 (dbname.tabname.colname)" 26-12
" we do an ABORT test " ... 26-12
" by way of a traversal of index #n extracting row ids only " .. 26-12

EXPLAIN Terminology (cont.) ... 26-14
" we do a SMS (set manipulation step) " ... 26-14
" we do a BMSMS (bit map set manipulation step) " .. 26-14
" which is redistributed by hash code to all AMPs " .. 26-14
" which is duplicated on all AMPs " .. 26-14
“(one_amp) or (group_amps)” ... 26-14
"NOT (table_name.column_name IS NULL)" .. 26-14

Pseudo Table Locks ... 26-16
An example: ... 26-16

Understanding Row and Time Estimates (Part 1) .. 26-18
Understanding Row and Time Estimates (Part 2) .. 26-20

Parallel Steps .. 26-22
Example 3 – EXPLAIN with Parallel Steps .. 26-24
Example 4 – EXPLAIN of a SELECT (BMSMS) ... 26-26
Example 5 – EXPLAIN of Create Table .. 26-28
EXPLAINing Macros .. 26-30
EXPLAIN Terminology for PPI Tables ... 26-32
Example 6 – Partition Elimination with a PPI Table ... 26-34
Example 7 – Primary Index Access of PPI Table .. 26-36

Create a USI or NUSI on the PI for a PPI Table .. 26-36
Example 8 – Dynamic Partition Elimination ... 26-38
Example 9 – CURRENT_DATE Improvements ... 26-40
EXPLAIN Summary .. 26-42
Module 26: Review Questions ... 26-44

Module 26: Review Questions (cont.) ... 26-46

 The EXPLAIN Facility Page 26-4

The EXPLAIN Facility
The EXPLAIN facility is a Teradata extension that provides you with an "English"
translation of the steps chosen by the Optimizer to execute a SQL statement. It may be used
on any valid Teradata SQL statement simply by prefacing that statement with “EXPLAIN”.

The following is an example of how you would EXPLAIN a simple SELECT statement:

EXPLAIN SELECT last_name, first_name FROM employee;

The EXPLAIN facility actually parses the SQL statement but does not execute it.
EXPLAIN output provides the physical designer with an “execution strategy”. This
execution strategy provides direct feedback on what steps the Optimizer chooses to do, but
not why it chooses to do them.

Studying EXPLAIN output can be an excellent way to learn more about the inner workings
of the Teradata DBS and how it handles SQL.

The EXPLAIN facility should be used to analyze all Joins and complex queries. Using
EXPLAIN regularly can save you lots of time and computing resources by pointing out
problems with your SQL statements before you actually run them.

The EXPLAIN Facility Page 26-5

The Explain Facility

May be used on any SQL statement, except EXPLAIN itself.

Translates Optimizer output (the execution plan) into English.

• Provides direct feedback on what the system intends to do.

It is a good way to learn about the system and SQL.

Use it consistently to analyze joins, long-running and complex queries.

Time estimates are relative, not absolute.

• Assumes the query will run stand-alone; doesn’t take a loaded system into account.

• Time estimates cost formulas based on H/W configuration.

 The EXPLAIN Facility Page 26-6

EXPLAIN Facility Output
In addition to the execution strategy, the EXPLAIN facility provides you with measures of
how much work will be performed and a cost estimate expressed as time. Spool size and
timing figures are estimates and should be used for comparison purposes only.

For example, the spool size estimates are based on either Dynamic Sampling or
COLLECTed STATISTICS. Use “timings” as a cost factor. Even if the timings were
calibrated to the CPU and DSU, there is no way that the Parser could determine what other
jobs would be running when the request was executed. The developer of the EXPLAIN
facility assigned arbitrary units of time to various segments of File System code as a "cost"
factor. The sum of these costs is reported to the user.

The primary way to help the Optimizer make the best choices and ensure the most accurate
EXPLAIN output is to make sure to provide current STATISTICS.

In many cases, there is more than one way to code an SQL statement to get the desired
results. They all should be coded and EXPLAINed to find out which version will perform
best for your tables and system configuration.

Always do an EXPLAIN before submitting any Join or complex query.

The EXPLAIN Facility Page 26-7

EXPLAIN Facility Output

The timings and spool sizes shown are ESTIMATES ONLY.

• Spool sizes are based on dynamic sampling or statistics.

• Use them as “figures of merit” for comparison purposes only.

Know what the Request is supposed to do before EXPLAINing it.

In this module, we will …

1st View some text examples of EXPLAINs.

2nd Discuss EXPLAIN terminology that may appear within EXPLAIN output.

3rd Discuss PPI terminology and view some examples.

The Visual Explain utility will be covered in the next module.

ds186034
Highlight

 The EXPLAIN Facility Page 26-8

Example 1 – EXPLAIN of a Simple SELECT
The example on the facing page illustrates the output generated by EXPLAINing a simple
SELECT operation using a WHERE clause and specifying a value for the primary index.

Final output is generally put into Spool 1.

The view used in the SELECT on the facing page is shown below.

REPLACE VIEW TFACT.Daily_Sales_v
 AS SELECT Item_id, Sales_date, Sales
FROM TFACT.Daily_Sales;

The table used in the SELECT on the facing page is shown below.

CREATE TABLE Daily_Sales
 (item_id INTEGER NOT NULL
 ,sales_date DATE FORMAT 'yyyy-mm-dd’
 ,sales DECIMAL (9,2))
PRIMARY INDEX (item_id);

The EXPLAIN Facility Page 26-9

Example 1 – EXPLAIN of a Simple SELECT

QUERY
EXPLAIN SELECT * FROM Daily_Sales_v WHERE item_id = 5010;

EXPLANATION 12.0 EXPLAIN
--

1) First, we do a single-AMP RETRIEVE step from TFACT.Daily_Sales in view Daily_Sales_v by way of
the primary index "TFACT.Daily_Sales in view Daily_Sales_v.Item_id = 5010" with no residual
conditions into Spool 2 (one-amp), which is built locally on that AMP. The size of Spool 2 is
estimated with high confidence to be 2,191 rows (72,303 bytes). The estimated time for this step is
0.01 seconds.

2) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the request.

-> The contents of Spool 2 are sent back to the user as the result of statement 1. The total estimated
time is 0.01 seconds.

Notes:
• Statistics were collected on the Primary Index of this table.

• The number of bytes used in the spool file is a feature of Teradata 12.0.

• The view name is identified in the Explain plan is also a feature of Teradata 12.0.

ds186034
Sticky Note
one amp = PI

ds186034
Sticky Note
no extra

ds186034
Sticky Note
stats collected

ds186034
Sticky Note
NUPI

 The EXPLAIN Facility Page 26-10

Example 2 – EXPLAIN of a SELECT (FTS)
The example on the facing page illustrates the output generated by EXPLAINing a simple
SELECT operation that does not have a primary index value specified.

Final output is generally put into Spool 1.

The table used in the SELECT on the facing page is shown below.

CREATE TABLE Daily_Sales
 (item_id INTEGER NOT NULL
 ,sales_date DATE FORMAT 'yyyy-mm-dd’
 ,sales DECIMAL (9,2))
PRIMARY INDEX (item_id);

The EXPLAIN Facility Page 26-11

Example 2 – EXPLAIN of a SELECT (FTS)

QUERY
EXPLAIN SELECT * FROM daily_sales ORDER BY 1;

EXPLANATION 12.0 EXPLAIN
--

1) First, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent global deadlock
for TFACT.daily_sales.

2) Next, we lock TFACT.daily_sales for read.
3) We do an all-AMPs RETRIEVE step from TFACT.daily_sales by way of an all-rows scan with no

residual conditions into Spool 1 (group_amps), which is built locally on the AMPs. Then we do a
SORT to order Spool 1 by the sort key in spool field1 (TFACT.daily_sales.Item_id). The input table
will not be cached in memory, but it is eligible for synchronized scanning. The result spool file will
not be cached in memory. The size of Spool 1 is estimated with high confidence to be 76,685 rows
(2,530,605 bytes). The estimated time for this step is 0.09 seconds.

4) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the request.
-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total estimated

time is 0.09 seconds.

Notes:
• Statistics were collected on the Primary Index of this table.

• Spool file byte count and column name used as sort key are Teradata 12.0 Explain
enhancements.

ds186034
Sticky Note
we are locking the tablelocking the pseudo tableall-rows scanhigh confidence = YES for stats

ds186034
Sticky Note
nah...not redudant L..

 The EXPLAIN Facility Page 26-12

EXPLAIN Terminology
In general, EXPLAIN text is clear and easy to understand. However, there are a few phrases
and terms that you may need to be familiarized with. Here are some definitions that may
prove helpful:

" (Last Use) "
You will find this phrase following a reference to a Spool file. It indicates that the Spool file
is being used for the last time and will be DELETEd at the end of the step, thus releasing
that Spool space.

" with no residual conditions "

Residual conditions are those conditions in the WHERE clause not used to locate a row(s),
but to further qualify the rows. This phrase indicates there are no such conditions present.

With “residual conditions” indicates that there are remaining conditions to be applied.
These conditions are maintained in cache memory.

" END TRANSACTION "
When the END TRANSACTION step is sent, transaction locks are released and changes are
committed.

" eliminating duplicate rows "
This indicates that a DISTINCT operation is done to ensure that there are no duplicate rows.

" by way of the sort key in spool field1 (dbname.tabname.colname)"
Field1 is created to allow a tag sort. Teradata 12.0 includes the column name used in the
sort.

" we do an ABORT test "
ABORT tests are caused by an ABORT or ROLLBACK statement. If the condition is found
to be true, then the ABORT or ROLLBACK is performed.

" by way of a traversal of index #n extracting row ids only "

A spool file is built containing the Row IDs found in a secondary index (index #n)

The EXPLAIN Facility Page 26-13

EXPLAIN Terminology

Most EXPLAIN text is easy to understand. The following additional definitions may help:

• ... (Last Use) …

A spool file is no longer needed and will be released when this step completes.

• ... with no residual conditions …

All applicable conditions have been applied to the rows.

• ... END TRANSACTION …

Transaction locks are released, and changes are committed.

• ... eliminating duplicate rows ...

Duplicate rows only exist in spool files, not set tables. Doing a DISTINCT operation.

• ... by way of the sort key in spool field1 (dbname.tablename.colname) …

Field1 is created to allow a tag sort. Teradata 12.0 includes the column name used for the sort.

• ... we do an ABORT test …

Caused by an ABORT or ROLLBACK statement.

• ... by way of a traversal of index #n extracting row ids only …

A spool file is built containing the Row IDs found in a secondary index (index #n).

ds186034
Sticky Note
no additional conditions to look atend of the transaction

 The EXPLAIN Facility Page 26-14

EXPLAIN Terminology (cont.)

" we do a SMS (set manipulation step) "
The system will combine answer sets using a UNION, EXCEPT (MINUS) or INTERSECT
operator.

" we do a BMSMS (bit map set manipulation step) "

NUSI Bit Mapping is being used.

" which is redistributed by hash code to all AMPs "
A step is done because data is being relocated to prepare for a join.

" which is duplicated on all AMPs "
A step is done because data is being duplicated on all AMPs to prepare for a join.

“(one_amp) or (group_amps)”

Indicates one AMP or a subset of AMPs will be used instead of all the AMPs.

"NOT (table_name.column_name IS NULL)"

Feature where optimizer realizes that a nullable column is being referenced in a comparison
or join. Such conditions can not evaluate TRUE and are negated to avoid having to
participate in the comparison.

The EXPLAIN Facility Page 26-15

EXPLAIN Terminology (cont.)

• ... we do a SMS (set manipulation step) …
Combining rows using a UNION, MINUS, or INTERSECT operator.

• ... we do a BMSMS (bit map set manipulation step) …

Doing a NUSI Bit Map operation.

• ... which is redistributed by hash code to all AMPs (dbname.tablename.colname) …

Redistributing data (in SPOOL) in preparation for a join. Teradata 12.0 includes the column name.

• ... which is duplicated on all AMPs …

Duplicating data (in SPOOL) from the smaller table in preparation for a join.

• ... (one_AMP) or (group_AMPs) …

Indicates one AMP or a subset of AMPs will be used instead of all AMPs.

• ... ("NOT (table_name.column_name IS NULL)") …

Feature where optimizer realizes that a nullable column is being referenced in a comparison or
join. Such conditions can not evaluate TRUE and are negated to avoid having to participate in the
comparison.

 The EXPLAIN Facility Page 26-16

Pseudo Table Locks
Pseudo table locks reduce deadlock situations for all AMP requests.

When you use an all AMP request for a read, write, or exclusive lock, the system goes
through pseudo table locking. With pseudo table locking:

 Each table has a table id hash code.
 Table id hash codes are assigned to the AMPs.
 Each AMP becomes a “gate keeper” to the tables for which it is assigned.
 All AMP requests for read, write, or exclusive locks go through the gatekeeper.

An example:
An all-AMP request comes from user1:

1. The PE sends a message to the gatekeeper AMP for the table.
2. The AMP places a pseudo lock on the table hash.
3. There is currently no lock on that table, so user1 gets the lock and may proceed

with its all-AMP request.

Meanwhile, another all-AMP request comes from user2 for the same table.

1. The PE sends a message to the gatekeeper AMP for the table.
2. The AMP places a pseudo lock on the table hash.
3. Since user1 already has a lock, user2 has to wait. Because user2 has a pseudo lock

on the table, it is next in line.

In essence, the pseudo table lock enables sequential locking. Without pseudo-table locking,
if two users send an all-AMP lock request, there could be a deadlock because the requests
are sent in parallel and could arrive at the AMPs in a different order.

User1 gets a lock on AMP 3 while User2 gets a lock on AMP 4 first. When User1 tries to
get a lock on AMP 4, deadlock would occur. By use of gatekeeper AMP, this cannot occur.

The EXPLAIN Facility Page 26-17

Pseudo Table Locks

• Internal function to synchronize table-level locks across AMPs.
– Prevents two users from getting conflicting locks with all-AMP requests.

– Effectively results in sequenced locking of a table – first request that requests a
table-level lock will get the table-level lock.

• All-AMP lock requests are handled as follows:

– PE determines Table ID hash for an AMP to manage the all-AMP lock request.

– Place pseudo lock on the table.

– Acquire lock on all AMPs.

AMP

PE PE

AMP AMP AMP

Determine
Table ID hash

First
request

Second
request

 The EXPLAIN Facility Page 26-18

Understanding Row and Time Estimates (Part 1)
The facing page identifies some of the “confidence” phrases and their meanings that you
will find in the EXPLAIN output for a data retrieval.

The EXPLAIN Facility Page 26-19

Understanding Row and Time Estimates (Part 1)

The EXPLAIN facility may express “confidence” for a retrieve from a table.
Some of the phrases used are:

. . . with high confidence . . .
– Restricting conditions exist on index(es) or column(s) that have collected statistics.

. . . with low confidence . . .

– Restricting conditions exist on index(es) or column(s) having no statistics, but estimates
can be based upon a dynamic or random AMP sampling.

– Restricting conditions exist on index(es) or column(s) that have collected statistics but
are “AND-ed” together with conditions on non-indexed columns.

– Restricting conditions exist on index(es) or column(s) that have collected statistics but
are “OR-ed” together with other conditions.

. . . with no confidence . . .
– Conditions outside the above.

For a retrieve from a spool, the confidence is the same as the sFor a retrieve from a spool, the confidence is the same as the step generating the spool.tep generating the spool.

 The EXPLAIN Facility Page 26-20

Understanding Row and Time Estimates (Part 2)
The facing page identifies some of the “confidence” phrases and their meanings that you
will find in the EXPLAIN output for a join.

It is possible to get Index Join Confidence in the Explain output for both NUPI and UPI
indexes and whether statistics have been collected or not. If the Explain output indicates
that one set is joined to another set that has a Primary Index, then you may see Index Join
Confidence.

Explain plans actually specify numeric values for low-end times, rows, and bytes in the
EXPLAIN output.

Miscellaneous Notes:

 Estimates too large to display show 3 asterisks (***).
 High-end row and high-end time estimates have been removed starting with V2R5.
 The accuracy of the time estimate depends upon the accuracy of the row estimate.
 Actual performance can be hindered by current workload.

The EXPLAIN Facility Page 26-21

Understanding Row and Time Estimates (Part 2)

The following are “confidence” phrases for a join:

. . . with index join confidence . . .
– A join condition via a primary index.

. . . with high confidence . . .
– One input relation has high confidence and the other has high or index join confidence.

. . . with low confidence . . .
– One input relation has low confidence and the other has low, high, or join index

confidence.

. . . with no confidence . . .
– One input relation has no confidence.
– Statistics do not exist for either join field.

Notes:

• Low and no confidence may indicate a need to collect statistics on indexes or
columns involved in restricting conditions.

• You may otherwise consider a closer examination of the conditions in the query for
possible changes that may improve the confidence.

• Explain plans show “low-end” time, rows, and/or bytes associated with the step.

– Estimates too large to display show 3 asterisks (***).

 The EXPLAIN Facility Page 26-22

Parallel Steps
Parallel Steps are multi-AMP processing steps that can be transmitted to the AMPs. These
steps are numbered but execute asynchronously. All Parallel Steps must successfully
complete before the next Serial Step is sent out.

In EXPLAIN output, you will see the text, “We execute the following steps in parallel.”
Parallel steps will appear after this text.

Teradata will execute up to 20 steps in parallel if they are primary index (single-AMP). The
explain may show more steps in parallel but dispatcher will only let 20 run at the same time
(when one of those finishes it will start another one). This is 20 worker tasks out of the
entire set of worker tasks (80 * #AMPs). If you have 1000 AMPs, which is only 20 out of
80,000 total AWTs.

For all-AMP steps, the number of steps in parallel is more limited (the dispatcher doesn't
want to have too many all-AMP steps executing at the same time for one query and have
this query take over the system). Each all-AMP step takes 1 worker task per AMP (assume
80 AWTs per AMP). For example, with 1000 AMPs, this is 1/80th of the total number of
AWTs in the system. This is 1000 out of 80,000 and if dispatcher lets 3 steps run in parallel,
that is 3000 out of 80000. We have to also assume there is other work going on the system
that will need worker tasks. If there are 40 users on the system all trying to do 3 all-AMP
steps in parallel, that is 120,000 (more that 80,000 worker tasks on the system). Therefore,
some of these queries will wait for AMP worker tasks. In essence, the system is probably
very busy.

The EXPLAIN Facility Page 26-23

Parallel Steps

SELECT Last_Name, First_Name, Dept_Name, Job_Desc
FROM Employee E
INNER JOIN Department D
ON E.Dept_Number = D.Dept_Number
INNER JOIN Job J
ON E.Job_code = J.Job_code
ORDER BY 3, 1, 2;

SERIAL

PARALLEL STEPS

JobEmployee

Prep JOB for Join

Spool 3

Spool 4

Spool 1

Table Locks

Department

Spool 2

Prep DEPT for Join

PARALLEL STEPS are AMP
steps that can execute
concurrently:

• They have no functional
overlap and do not contend
for resources.

• They improve performance
– the Optimizer generates
PARALLEL STEPS
whenever possible.

• EXPLAIN text identifies
Parallel Steps.

 The EXPLAIN Facility Page 26-24

Example 3 – EXPLAIN with Parallel Steps
The example on the facing page illustrates the output generated by an EXPLAIN of a
SELECT. This output illustrates parallel steps and relates to the previous example.

This example is based on a Teradata V2R6.1 implementation.

The tables used in the SELECT on the facing page are shown below.

CREATE SET TABLE TFACT.Employee
 (Employee_Number INTEGER NOT NULL
 ,Dept_Number INTEGER
 ,Mgr_Emp_Number INTEGER
 ,Job_Code INTEGER
 ,Last_Name CHAR(20)
 ,First_Name VARCHAR(20)
 ,Salary_Amount DECIMAL(10,2))
UNIQUE PRIMARY INDEX (Employee_Number)
INDEX (Dept_Number)
INDEX (Job_Code);

CREATE SET TABLE TFACT.Department
 (Dept_Number INTEGER NOT NULL,
 Dept_Name CHAR(20) NOT NULL,
 Dept_Mgr_Number INTEGER,
 Budget_Amount DECIMAL(10,2))
UNIQUE PRIMARY INDEX (Dept_Number);

CREATE SET TABLE TFACT.Job
 (Job_Code INTEGER NOT NULL,
 Job_Desc CHAR(20) NOT NULL)
UNIQUE PRIMARY INDEX (Job_Code);

The EXPLAIN Facility Page 26-25

Example 3 – EXPLAIN with Parallel Steps

QUERY EXPLAIN SELECT Last_Name, First_Name, Dept_Name, Job_Desc
FROM Employee E
INNER JOIN Department D ON E.Dept_Number = D.Dept_Number
INNER JOIN Job J ON E.Job_code = J.Job_code
ORDER BY 3, 1, 2;

EXPLANATION 12.0 EXPLAIN
--
: (Locking steps)
5) We execute the following steps in parallel.

1) We do an all-AMPs RETRIEVE step from TFACT.D by way of an all-rows scan with no residual
conditions into Spool 2 (all_amps), which is duplicated on all AMPs. The size of Spool 2 is
estimated with high confidence to be 19,642 rows (726,754 bytes). The estimated time for this
step is 0.02 seconds.

2) We do an all-AMPs RETRIEVE step from TFACT.J by way of an all-rows scan with no residual
conditions into Spool 3 (all_amps), which is duplicated on all AMPs. The size of Spool 3 is
estimated with high confidence to be 12,166 rows (450,142 bytes). The estimated time for this
step is 0.01 seconds.

6) We do an all-AMPs JOIN step from Spool 2 (Last Use) by way of an all-rows scan, which is joined to
TFACT.E by way of an all-rows scan with a condition of ("NOT (TFACT.E.Job_Code IS NULL)"). Spool
2 and TFACT.E are joined using a single partition hash_ join, with a join condition of
("TFACT.E.Dept_Number = Dept_Number"). The result goes into Spool 4 (all_amps), which is built
locally on the AMPs. The size of Spool 4 is estimated with low confidence to be 26,000 rows
(1,690,000 bytes). The estimated time for this step is 0.04 seconds.

7) We do an all-AMPs JOIN step from Spool 3 (Last Use) by way of an all-rows scan, which is joined to
Spool 4 (Last Use) by way of an all-rows scan. Spool 3 and Spool 4 are joined using a single partition
hash join, with a join condition of ("Job_Code = Job_Code"). The result goes into Spool 1
(group_amps), which is built locally on the AMPs. Then we do a SORT to order Spool 1 by the sort

:

ds186034
Sticky Note
dept has 1403 rows..,.across the AMPSbut SPOOL says 19K19,642/ = no of amps in the system14

ds186034
Sticky Note
which has DEPT

ds186034
Highlight

ds186034
Highlight

ds186034
Sticky Note
this is a 2amp worker task

ds186034
Sticky Note
took dept table and job tableduplicated dept and jobin spool 2(Dept) and S3 (jobs)spool 2(Dept) and E (directly)result goes in Spool 4 (spread across all the amps)Step 7)Spool 4(above derived result) and Spool 3(which has dept+empl)

 The EXPLAIN Facility Page 26-26

Example 4 – EXPLAIN of a SELECT (BMSMS)
The example on the facing page illustrates the output generated by EXPLAINing a SELECT
operation that specifies values for two NUSIs. Statistics have been collected on both
NUSIs.

This example is based on a Teradata 12.0 implementation.

The table used in the SELECT on the facing page is shown below.

CREATE SET TABLE TFACT.Employee
 (Employee_Number INTEGER NOT NULL
 ,Dept_Number INTEGER
 ,Mgr_Emp_Number INTEGER
 ,Job_Code INTEGER
 ,Last_Name CHAR(20)
 ,First_Name VARCHAR(20)
 ,Salary_Amount DECIMAL(10,2))
UNIQUE PRIMARY INDEX (Employee_Number)
INDEX (Job_Code)
INDEX (Dept_Number);

The EXPLAIN Facility Page 26-27

Example 4 – EXPLAIN of a SELECT (BMSMS)

QUERY
EXPLAIN SELECT *

FROM Employee E
WHERE Job_Code = 3500
AND Dept_Number = 1310;

EXPLANATION 12.0 EXPLAIN
--
1) First, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent global deadlock for

TFACT.E.
2) Next, we lock TFACT.E for read.
3) We do a BMSMS (bit map set manipulation) step that builds a bit map for TFACT.Employee by way of

index # 4 "TFACT.E.Job_Code = 3500" which is placed in Spool 2. The estimated time for this step is
0.01 seconds.

4) We do an all-AMPs RETRIEVE step from TFACT.E by way of index # 8 TFACT.E.Dept_Number =
1310" and the bit map in Spool 2 (Last Use) with a residual condition of ("TFACT.E.Job_Code =
3500") into Spool 1 (group_amps), which is built locally on the AMPs. The size of Spool 1 is
estimated with low confidence to be 60 rows (4620 bytes). The estimated time for this step is 0.02
seconds.

5) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the request.
-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total estimated

time is 0.03 seconds.

Note:
Statistics were collected on the NUSIs Job_Code and Dept_Number.

Note:

• Employee table has 26,000 rows.

• 80 Employees are in Dept #1310.
• 248 Employees have Job_Code 3500.
• Only 4 employees in Dept #1310 have

the Job_Code of 3500.

ds186034
Sticky Note
NUSI...bitmap

 The EXPLAIN Facility Page 26-28

Example 5 – EXPLAIN of Create Table
The example on the facing page shows how Teradata goes about creating a new table. A
new table named Orders is created in the TFACT database. The orders table consists of
three columns:

 order_id (has a Unique Primary Index)
 order_date
 cust_id

The EXPLAIN Facility Page 26-29

Example 5 – EXPLAIN of a CREATE TABLE

QUERY EXPLAIN CREATE TABLE Orders
(order_id INTEGER NOT NULL
,order_date DATE FORMAT 'yyyy-mm-dd'
,cust_id INTEGER)

EXPLANATION UNIQUE PRIMARY INDEX (order_id); 12.0 EXPLAIN

1) First, we lock TFACT.Orders for exclusive use.
2) Next, we lock a distinct DBC."pseudo table" for write on a RowHash for deadlock prevention, we lock

a distinct DBC."pseudo table" for write on a RowHash for deadlock prevention, we lock a distinct
DBC."pseudo table" for read on a RowHash for deadlock prevention, and we lock a distinct
DBC."pseudo table" for write on a RowHash for deadlock prevention.

3) We lock DBC.ArchiveLoggingObjsTbl for read on a RowHash, we lock DBC.TVM for write on a
RowHash, we lock DBC.TVFields for write on a RowHash, we lock DBC.Indexes for write on a
RowHash, we lock DBC.DBase for read on a RowHash, and we lock DBC.AccessRights for write on a
RowHash.

4) We execute the following steps in parallel.
1) We do a single-AMP ABORT test from DBC.ArchiveLoggingObjsTbl by way of the primary

index.
2) We do a single-AMP ABORT test from DBC.DBase by way of the unique primary index.
3) We do a single-AMP ABORT test from DBC.TVM by way of the unique primary index.
4) We do an INSERT into DBC.TVFields (no lock required).

: :
7) We do an INSERT into DBC.Indexes (no lock required).
8) We do an INSERT into DBC.TVM (no lock required).
9) We INSERT default rights to DBC.AccessRights for TFACT.Orders.

5) We create the table header.
6) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the request.
-> No rows are returned to the user as the result of statement 1.

 The EXPLAIN Facility Page 26-30

EXPLAINing Macros
As the page on the right illustrates, there are two distinct ways to EXPLAIN a Macro:

 With hard-coded parameter values
 With “soft” parameter values

The first EXPLAIN statement specifies a parameter value of 100 which will be treated as a
hard-coded literal value. In this case, the Optimizer may choose an execution plan, which
may not accurately represent production. Do not test production Macros this way.

The second EXPLAIN statement illustrates how you should test production Macros. In this
case, both a Request parcel and a DATA parcel will be created due to the “soft” parameter
value. The Optimizer will analyze the STATISTICs of the entire table and the resulting
execution plan will accurately represent the execution plan you can expect in production.

The EXPLAIN Facility Page 26-31

EXPLAINing Macros

CREATE MACRO test (par_1 INTEGER)
AS

(SELECT * FROM table_1
WHERE cola = :par_1 ;
);

EXPLAIN EXEC test (100) ;

• This creates a Request parcel, but no DATA parcel.

• The parameter value is treated as a hard-coded literal value.

• The execution plan may not accurately represent production execution of a macro.

• Typically, do not EXPLAIN parameterized macros with hard-coded values.

EXPLAIN USING (x INTEGER) EXEC test (:x) ;

• This creates both a Request parcel and a DATA parcel.

• The Optimizer analyzes the entire table’s statistics.

• The execution plan accurately represents production execution of a macro.

• Use “soft” parameter values to test parameterized (production) macros.

 The EXPLAIN Facility Page 26-32

EXPLAIN Terminology for PPI Tables
When the phrase “a single partition of” or “n partitions of” is included in the output of an
EXPLAIN, it means that partition elimination will occur.

If a query has a range constraint on the partitioning columns in a table with a range-
partitioned primary index, an all-AMP row scan ...

 starts at the partition spanning the low end of the range and
 stops at the partition spanning the high end of the range.

Partition elimination can occur for SELECTs, UPDATE, and DELETEs.

 For a DELETE, Optimizer recognizes partitions for which all rows are being
deleted and rows in such partitions are deleted without using the transient journal.

 Optimization only performed if DELETE is an implicit transaction or is the last
statement in a transaction.

 Similar to DELETE ALL except for a partition.

“SORT to partition Spool m by rowkey”

 Indicates that the optimizer determined that a spool file is to be partitioned based
on the same partitioning expression as a table to which the spool file is be joined.
– That is, the spool is to be sorted by rowkey (partition and hash).

 Partitioning the spool file in this way allows for a faster join with the partitioned

table.

“a rowkey-based”
 Indicates an equality join on the rowkey.

– In this case, there are equality constraints on the partitioning columns and
primary index columns.

– This allows for a faster join since each non-eliminated partition needs to be
joined with at most only one other partition.

 If the phrase is not given, the join is hash based.

– That is, there are equality constraints on the primary index columns from
which the hash is derived.

– For a partitioned table, there is some additional overhead in processing the
table in hash order.

 Note that with either method, the join conditions must still be validated.

Teradata Database V2R5.1 introduced the Dynamic Partition Elimination (DPE). DPE can
be applied when there are join conditions (instead of single table constraints) on the
partitioning column/columns. The partition list that DPE uses depends on the data. The list,
called a dynamic partition list, is generated at runtime. This capability has been further
enhanced in Teradata Database V2R6.0.

The EXPLAIN Facility Page 26-33

EXPLAIN Terminology for PPI tables

"a single partition of" or "n partitions of"

• Indicates that an AMP or AMPs only need to access a single partition or n partitions of
a table – indicates partition elimination occurred.

• Partition elimination can occur for SELECTs, UPDATE, and DELETEs.

– For a DELETE, Optimizer recognizes partitions in which all rows are deleted.

– Rows in such partitions are deleted without using the transient journal.

"SORT to partition Spool m by rowkey"

• The spool is to be sorted by rowkey (partition and hash).
• Partitioning the spool file in this way allows for a faster join with the partitioned table.

"a rowkey-based"

• Indicates an equality join on the rowkey.
• In this case, there are equality constraints on the partitioning columns and primary

index columns.

"enhanced by dynamic partition …"
• Indicates a join condition where dynamic partition elimination has been used.

 The EXPLAIN Facility Page 26-34

Example 6 – Partition Elimination with a PPI Table
EXPLAIN SELECT *
 FROM Claim_PPI
 WHERE claimdate
 BETWEEN DATE '2011-01-01' AND DATE '2011-01-31';

1) First, we lock a distinct DS."pseudo table" for read on a RowHash to prevent global

deadlock for DS.Claim_PPI.
2) Next, we lock DS.Claim_PPI for read.
3) We do an all-AMPs RETRIEVE step from a single partition of DS.Claim_PPI with a

condition of ("(DS.Claim_PPI.claimdate <= DATE '2011-01-31') AND
(DS.Claim_PPI.claimdate >= DATE '2011-01-01')") into Spool 1 (group_amps), which
is built locally on the AMPs. The input table will not be cached in memory, but it is
eligible for synchronized scanning. The size of Spool 1 is estimated with high
confidence to be 21,100 rows (1,856,800 bytes). The estimated time for this step is 0.44
seconds.

4) Finally, we send out an END TRANSACTION step to all AMPs involved in processing
the request.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total
estimated time is 0.44 seconds.

The table named Claim_NPPI is similar to Claim_PPI except it does not have a Partitioned
Primary Index, but does have “c_claimid” as a UPI.

EXPLAIN SELECT *
 FROM Claim_NPPI
 WHERE claimdate
 BETWEEN DATE '2011-01-01' AND DATE '2011-01-31';

1) First, we lock a distinct DS."pseudo table" for read on a RowHash to prevent global

deadlock for DS.Claim_NPPI.
2) Next, we lock DS.Claim_NPPI for read.
3) We do an all-AMPs RETRIEVE step from DS.Claim_NPPI by way of an all-rows

scan with a condition of ("(DS.Claim_NPPI.claimdate <= DATE '2011-01-31') AND
(DS.Claim_NPPI.claimdate >= DATE '2011-01-01')") into Spool 1 (group_amps),
which is built locally on the AMPs. The input table will not be cached in memory, but
it is eligible for synchronized scanning. The size of Spool 1 is estimated with high
confidence to be 21,100 rows (1,856,800 bytes). The estimated time for this step is
49.10 seconds.

4) Finally, we send out an END TRANSACTION step to all AMPs involved in processing
the request.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total
estimated time is 49.10 seconds.

Note: Statistics were collected on the claimid, custid, and claimdate of both tables. The
Claim table has 1,200,000 rows.

The EXPLAIN Facility Page 26-35

Example 6 – Partition Elimination with a PPI Table

QUERY EXPLAIN SELECT *
FROM Claim_PPI
WHERE claimdate
BETWEEN DATE '2011-01-01' AND DATE '2011-01-31';

EXPLANATION 13.10 EXPLAIN
--

:
3) We do an all-AMPs RETRIEVE step from a single partition of DS.Claim_PPI with a condition of

("(DS.Claim_PPI.claimdate <= DATE '2011-01-31') AND (DS.Claim_PPI.claimdate >= DATE '2011-01-
01')") into Spool 1 (group_amps), which is built locally on the AMPs. The input table will not be
cached in memory, but it is eligible for synchronized scanning. The size of Spool 1 is estimated
with high confidence to be 21,100 rows (1,856,800) bytes. The estimated time for this step is 0.44
seconds.

4) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the request.
->The contents of Spool 1 are sent back to the user as the result of statement 1. The total estimated

time is 0.44 seconds.

Notes:

• The Claim table was partitioned on claimdate with monthly partitions.

• The EXPLAIN text (for this SQL statement) for a non-partitioned Claim table is shown
on the facing page in the PDF file. The estimated time is 49.10 seconds.

 The EXPLAIN Facility Page 26-36

Example 7 – Primary Index Access of PPI Table
The complete EXPLAIN example of accessing a PPI via the PI is shown on the facing page.

The table named Claim_NPPI is similar to Claim_PPI except it does not have a Partitioned
Primary Index, but does have “claimid” as a UPI.

EXPLAIN SELECT *
 FROM Claim_NPPI
 WHERE claimid = 260221;

1) First, we do a single-AMP RETRIEVE step from DS.Claim_NPPI by way of the

unique primary index "DS.Claim_NPPI.claimid = 260221" with no residual conditions.
The estimated time for this step is 0.00 seconds.

-> The row is sent directly back to the user as the result of statement 1. The total
estimated time is 0.00 seconds.

Create a USI or NUSI on the PI for a PPI Table
If the partitioning columns are not part of the Primary Index, the Primary Index cannot be
unique (e.g., claimdate). To maintain uniqueness on the Primary Index, you can create a
USI on the PI (e.g., Claim ID or claimid). Another option is to create a NUSI on the PI
column or columns. Access to specific rows via a USI or NUSI will be faster than scanning
multiple partitions on a single AMP.

Reasons for a creating a USI instead of a NUSI may include:

 Maintain uniqueness in the column via the USI.
 Establish the USI as a referenced parent in Referential Integrity

EXPLAIN SELECT *
 FROM Claim_PPI
 WHERE claimid = 260221
 AND claimdate = DATE '2008-01-11';

1) First, we do a single-AMP RETRIEVE step from DS.Claim_PPI by way of the primary

index "DS.Claim_PPI.claimid = 260221, DS.Claim_PPI.claimdate = DATE '2008-01-
11'" with a residual condition of ("(DS.Claim_PPI.claimdate = DATE '2008-01-11')
AND (DS.Claim_PPI.claimid = 260221)") into Spool 1 (one-amp), which is built
locally on that AMP. The input table will not be cached in memory, but it is eligible for
synchronized scanning. The size of Spool 1 is estimated with high confidence to be 1
row (88 bytes). The estimated time for this step is 0.00 seconds.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total
estimated time is 0.00 seconds.

The EXPLAIN Facility Page 26-37

Example 7 – Primary Index Access of PPI Table

QUERY EXPLAIN SELECT * FROM Claim_PPI WHERE claimid = 260221;

EXPLANATION 13.10 EXPLAIN
--

1) First, we do a single-AMP RETRIEVE step from all partitions of DS.Claim_PPI by way of the primary
index "DS.Claim_PPI.claimid = 260221" with a residual condition of ("DS.Claim_PPI.claimid =
260221") into Spool 1 (one-amp), which is built locally on that AMP. The input table will not be
cached in memory, but it is eligible for synchronized scanning. The size of Spool 1 is estimated
with high confidence to be 1 row (88 bytes). The estimated time for this step is 0.09 seconds.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total estimated
time is 0.09 seconds.

Note: If partitioning information isn’t provided, all of the partitions have to checked for the Row Hash.

A USI or a NUSI can optionally be placed on the Primary Index of a PPI table. The following
example shows the use of a USI.

QUERY EXPLAIN SELECT * FROM Claim_PPI WHERE claimid = 260221;

EXPLANATION (with a USI) 13.10 EXPLAIN
--

1) First, we do a two-AMP RETRIEVE step from DS.Claim_PPI by way of unique index # 4
"DS.Claim_PPI.claimid = 260221" with no residual conditions. The estimated time for this step is
0.00 seconds.

-> The row is sent directly back to the user as the result of statement 1. The total estimated time is
0.00 seconds.

ds186034
Sticky Note
creating a 2nd index

 The EXPLAIN Facility Page 26-38

Example 8 – Dynamic Partition Elimination
Starting with Teradata Database release V2R5.1, the concept of Dynamic Partition
Elimination (DPE) was introduced. DPE can be applied when there are join conditions
(instead of single table constraints) on the partitioning column/columns. The partition list
that DPE uses depends on the data in the columns being joined. The list, called a dynamic
partition list, is generated at runtime by the AMPs.

This feature (DPE) was enhanced in TD V2R6.0 and will continue to be enhanced in future
releases. Collecting statistics on the column PARTITION (V2R6.1) provides additional
information to the optimizer and the optimizer is more likely to consider and use DPE in
query plans.

The format of the “Claim_Date” table used in this simple join is:

CREATE SET TABLE DS.Claim_Date
 (claimdate DATE FORMAT 'YYYY-MM-DD')
PRIMARY INDEX (claimdate);

The complete EXPLAIN text for the query on the facing page is included:

1) First, we lock a distinct DS."pseudo table" for read on a RowHash to prevent global

deadlock for DS.Claim_Date.
2) Next, we lock a distinct DS."pseudo table" for read on a RowHash to prevent global

deadlock for DS.Claim_PPI.
3) We lock DS.Claim_Date for read, and we lock DS.Claim_PPI for read.
4) We do an all-AMPs RETRIEVE step from DS.Claim_Date by way of an all-rows scan

with a condition of ("NOT (DS.Claim_Date.claimdate IS NULL)") into Spool 2
(all_amps), which is duplicated on all AMPs. Then we do a SORT to partition by
rowkey. The size of Spool 2 is estimated with high confidence to be 6 rows (102
bytes). The estimated time for this step is 0.01 seconds.

5) We do an all-AMPs JOIN step from Spool 2 (Last Use) by way of an all-rows scan,
which is joined to all partitions of DS.Claim_PPI with no residual conditions. Spool 2
and DS.Claim_PPI are joined using a product join, with a join condition of
("DS.Claim_PPI.claimdate = claimdate") enhanced by dynamic partition elimination.
The input table DS.Claim_PPI will not be cached in memory, but it is eligible for
synchronized scanning. The result goes into Spool 1 (group_amps), which is built
locally on the AMPs. The size of Spool 1 is estimated with low confidence to be 195
rows (17,940 bytes). The estimated time for this step is 0.04 seconds.

6) Finally, we send out an END TRANSACTION step to all AMPs involved in processing
the request.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total
estimated time is 0.05 seconds.

The EXPLAIN Facility Page 26-39

Example 8 – Dynamic Partition Elimination

QUERY EXPLAIN SELECT * FROM Claim_PPI C, Claim_Date D
WHERE C.claimdate = D.claimdate;

EXPLANATION 13.10 EXPLAIN
--

:

4) We do an all-AMPs RETRIEVE step from DS.Claim_Date by way of an all-rows scan with a
condition of ("NOT (DS.Claim_Date.claimdate IS NULL)") into Spool 2 (all_amps), which is
duplicated on all AMPs. Then we do a SORT to partition by rowkey. The size of Spool 2 is
estimated with high confidence to be 6 rows (102 bytes). The estimated time for this step is 0.01
seconds.

5) We do an all-AMPs JOIN step from Spool 2 (Last Use) by way of an all-rows scan, which is joined
to all partitions of DS.Claim_PPI with no residual conditions. Spool 2 and DS.Claim_PPI are joined
using a product join, with a join condition of ("DS.Claim_PPI.claimdate = claimdate") enhanced by
dynamic partition elimination. The input table DS.Claim_PPI will not be cached in memory, but it is
eligible for synchronized scanning. The result goes into Spool 1 (group_amps), which is built
locally on the AMPs. The size of Spool 1 is estimated with low confidence to be 195 rows (17,940
bytes). The estimated time for this step is 0.04 seconds.

:

What is Dynamic Partition Elimination (DPE)?

This feature is applied when there are join conditions on the partitioning
column/columns. The partition list that DPE uses depends on the data. The dynamic
partition list is generated dynamically at execution time by the AMPs.

 The EXPLAIN Facility Page 26-40

Example 9 – CURRENT_DATE Improvements
Starting with Teradata 12.0, the Optimizer peeks at the USING values of a query and may
generate a specific plan that is not cached, rather than generating a generic plan that is
cached.

Peeking means looking at the USING values during query parsing and using those values
when checking all potential optimizations, such as satisfiability, optimum single table access
planning, partition elimination, and picking up join index(es). Peeking helps optimize a
query based on its specific USING values.

Generic plans are cached, and reusing a cached plan saves parsing time, that is, the time the
CPU takes to parse and generate a plan and send it to the Dispatcher. But reusing a cached
plan may not provide the most efficient execution plan for all queries.

A specific plan is not cached because it cannot be reused for different USING values,
although all other details such as the SQL text hash and the host character set, along with the
estimated cost, parsing time, and run time are cached.

With respect to queries that use the built-in functions DATE and CURRENT_DATE, the
Optimizer generates a specific plan and caches it. But if DATE or CURRENT_DATE
changes, the Optimizer disregards the cached plan and generates a new one.

The EXPLAIN Facility Page 26-41

Example 9 – CURRENT_DATE Improvements

QUERY EXPLAIN SELECT * FROM Claim_PPI
WHERE claimdate = CURRENT_DATE;

EXPLANATION 13.10 EXPLAIN
--

: (Locking steps)

3) We do an all-AMPs RETRIEVE step from a single partition of DS.Claim_PPI with a condition of
("DS.Claim_PPI.claimdate = DATE '2011-01-30'") with a residual condition of
("DS.Claim_PPI.claimdate = DATE '2011-01-30'") into Spool 1 (group_amps), which is built locally
on the AMPs. The size of Spool 1 is estimated with high confidence to be 16 rows (1,408 bytes).
The estimated time for this step is 0.02 seconds.

4) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the request.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total estimated
time is 0.02 seconds.

Teradata 12.0 Feature

The optimizer can resolve CURRENT_DATE in order to utilize partitioning.

Additionally, for queries that use the built-in functions DATE and CURRENT_DATE, the
Optimizer generates a specific plan and caches it. But if DATE or CURRENT_DATE
changes, the Optimizer disregards the cached plan and generates a new plan.

 The EXPLAIN Facility Page 26-42

EXPLAIN Summary
EXPLAIN output can be of great value to you. Here are some suggestions on how you can
make the most of the EXPLAIN facility:

 Make EXPLAIN output an integral part of all design review and formal system
documentation.

 Use EXPLAIN results to expose inefficiencies in query structures.

 Rerun EXPLAINs to see if the strategy chosen by the Optimizer has changed.

 This is done because data demographics change overtime.

 Retain EXPLAIN listings to facilitate periodic index re-evaluation.

 Keep formal documentation of the query structure rationale.

The EXPLAIN Facility Page 26-43

EXPLAIN Summary

• Make EXPLAIN output an integral part of all design reviews and formal system
documentation.

• EXPLAIN results can expose inefficiencies in query structures.

• Data Demographics change over time.

• Retain EXPLAIN listings to facilitate periodic index re-evaluation.

• Keep formal documentation of the query structure rationale.

• Know what the Request is supposed to do before EXPLAINing it.

 The EXPLAIN Facility Page 26-44

Module 26: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

The EXPLAIN Facility Page 26-45

Module 26: Review Questions

Fill in the blanks.

1. ___________ steps are multi-AMP processing steps that are numbered but execute at the same time.

2. The primary way to help the Optimizer make the best choices and ensure the most accurate
EXPLAIN output is to ____________ _____________ on appropriate indexes and columns.

3. An EXPLAIN plan will indicate “estimated with _______ confidence” when a value for an index is
provided to retrieve the data and the index has collected statistics.

4. Name the two ways to EXPLAIN a Macro:

a. __
b. __

(Continued on next page.)

 The EXPLAIN Facility Page 26-46

Module 26: Review Questions (cont.)
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

The EXPLAIN Facility Page 26-47

Module 26: Review Questions (cont.)

Match each EXPLAIN term to a definition.

___ 1. (Last Use)

___ 2. END TRANSACTION

___ 3. eliminating duplicate rows

___ 4. by way of the sort key in spool field

___ 5. does SMS (set manipulation step)

___ 6. does BMSMS (bit map ...)

___ 7. redistributed by hash code to all AMPs

___ 8. “Pseudo Table”

___ 9. all rows scan

___ 10. “a single partition of” or “n partitions of”

___ 11. “a rowkey-based merge join”

___ 12. group_amps operation

___ 13. “SORT to partition Spool m by rowkey”

___ 14. which is duplicated on all AMPs

a. The spool is to be ordered by partition and hash.

b. Combines answer sets using a UNION, EXCEPT
(MINUS) or INTERSECT operator.

c. Indicates transaction locks are released and
changes are committed.

d. Internal function to synchronize table-level locks
across AMPs.

e. Indicates data is being relocated in preparation
for a join.

f. Indicates that NUSI Bit Mapping is being used.

g. Indicates a full table scan.

h. Indicates that a DISTINCT operation is done to
ensure that there are no duplicate rows.

i. Indicates that the Spool file will be released at
the end of the step.

j. Subset of AMPs will be used instead of all AMPs.

k. Indicates partition elimination will occur.

l. Field1 is created to allow a tag sort.

m. Indicates an equality join based on partition and
hash.

 The EXPLAIN Facility Page 26-48

Notes

Visual Explain Page 27-1

Module 27

Teradata Proprietary and Confidential

Visual Explain

After completing this module, you will be able to:

 Use the Visual Explain utility.

 Specify how to select the base query in a compare.

 List the 3 types of QCD users that access rights are associated
with.

 Visual Explain Page 27-2

Notes

Visual Explain Page 27-3

Table of Contents

Teradata Visual Explain ... 27-4
Visual Explain – Connect to Teradata ... 27-6
Setting up the Environment .. 27-8
Placing Plans into QCD ... 27-10
Creating a Plan using "Execute SQL" Option .. 27-12
Open Execution Plans .. 27-14
Open Execution Plans (cont.) ... 27-16
Open Execution Plans (cont.) ... 27-18
Visual Explain of a Merge Join .. 27-20
Visual Explain Options .. 27-22
Visual Explain – Comparing Multiple Plans ... 27-24
Visual Explain – Example of Comparing 2 Plans .. 27-26
Granting Access Rights on a QCD .. 27-28
Visual Explain Summary ... 27-30
Module 27: Review Questions ... 27-32
Lab Exercise 27-1 .. 27-34
Lab Exercise 27-2 .. 27-36

 Visual Explain Page 27-4

Teradata Visual Explain
The Teradata Visual Explain utility provides a visual depiction of the execution plan chosen
by the Teradata Database Optimizer to access data. It does this by turning the output text of
the EXPLAIN modifier into a series of easily readable icons.

Teradata Visual Explain makes query plan analysis easier by providing the ability to capture
and graphically represent the steps of the plan and performs comparisons of two or more
plans. The tool is intended for application developers, database administrators and database
support personnel to better understand why the Teradata Optimizer chooses a particular plan
for a given SQL query. All of the information required for query plan analysis such as
database object definitions, data demographics and cost and cardinality estimates is
available through the Teradata Visual Explain interface. The tool is very helpful in
identifying the performance implications of data skew and bad or missing statistics.

Teradata Visual Explain can also capture query plans in an emulated database environment.
This is helpful for comparing query plans for different configurations or row counts to
proactively see the impact of system expansion or table growth for a particular query.

Teradata Visual Explain is especially useful in comparing the execution plans of similar
queries. Using the compare feature allows you to easily resolve Optimizer related
discrepancies.

Teradata Visual Explain reads the contents of the Query Capture Database (QCD) and turns
it into a series of icons. In order to view an execution plan using Teradata Visual Explain,
the execution plan information must first be captured into the QCD using the Query Capture
Feature (QCF), which includes the “insert explain” and “dump explain” commands.

In summary,

 The Teradata Visual Explain utility provides the Windows GUI.

 Query Capture Database (QCD) is the database that holds the execution plans.

 Query Capture Feature (QCF) is the software that includes the INSERT EXPLAIN

and DUMP EXPLAIN commands and places execution plans in the QCD database.

Visual Explain Page 27-5

Teradata Visual Explain

What is “Teradata Visual Explain”?

• Windows utility that provides graphical EXPLAIN reports.

– Turns the output text of the EXPLAIN modifier into a series of readable icons.

• Visually compare two (or more) query plans.

• Visually compare two (or more) steps.

• Utilizes a QCD (Query Capture Database).

– QCD consists of a set of tables, views, and macros that support user query plans. QCD
provides the foundation for Visual Explain.

Additional capabilities of Visual Explain

• Control Center options for manage QCDs, users, and access rights.

• Includes X versions of QCD views and macros for enhanced security.

• Integrated with other Teradata Analyst tools (e.g., Teradata Index Wizard, Teradata
Statistics Wizard, and Teradata SET (System Emulation Tool).

• Numerous GUI features including Compressed Views.

• Visual Explain 14.0 provides an improved list of QCDs and Query Plans.

Note: Package name is VEComp – Visual Explain and Compare

 Visual Explain Page 27-6

Visual Explain – Connect to Teradata
An example of the Visual Explain base screen display is shown on the facing page.

Teradata Visual Explain provides menu options and GUI interfaces to:

 Define and initialize a QCD database
 Execute an SQL Query and capture the query plan in the specified QCD
 Graphically depict the plan execution steps (including cost estimates and

confidence levels)
 Visually compare two or more query plans
 Visually compare two or more steps
 Generate a comparison report for two or more plans

Single or multiple QCDs
The QCD database schema and Visual Explain tool are both designed to allow multiple
users share a QCD. The QCD.Query table stores the user that captured a particular
execution plan. X views limit access to plans based on this user information. Visual
Explain has an interface to setup QCD privileges based on pre-defined user categories.
Whether to implement a single or multiple QCDs really depends on how the customer wants
to organize it. A customer may choose to create multiple QCDs, each for a different group
of users to share. Another customer may choose to create one QCD and store all Visual
Explain plans in that QCD for all users.

Visual Explain Page 27-7

Visual Explain – Connect to Teradata

Click on the
connection
icon to
connect to a
data source
and logon to a
Teradata
Database.

 Visual Explain Page 27-8

Setting up the Environment
To capture and visualize new query execution plans using Teradata Visual Explain, a QCD
must be set up.

Setting up QCD
The easiest technique is to use the Control Center of the Visual Explain facility. This
process will automatically create the macros, tables, and views needed in a QCD database.

1 Select Tools > Control Center from the menu bar.
2 Click the Manage QCD tab, then click the Setup QCD button.
3 Select the option Create all QCF database objects (tables and macros).
4 Enter a name for the QCD in the QCD Name field.
5 Enter an owner name in the Owner field. If this field is left blank, the owner

defaults to the name of the logged on user.
6 Specify the Perm and Spool Space, selecting the appropriate units (KB, MB or GB)

by clicking the desired option. (If no Perm Space is specified, the default is 1MB. If
no Spool Space is specified, the default is 0.)

7 If you want the fallback option, check the Fallback check box.
8. If you want to view the schema of the Tables and Macros that will be created in the

new QCD, click the View Schema button.

Sizing a QCD
The amount of permanent space required for a QCD depends primarily on the size of the
query text and DDL of referenced objects. The Database Design document has a section in
chapter 15 titled “Sizing a Query Capture Database” that discusses how to estimate the
space requirement. The LIMIT clause of the INSERT EXPLAIN statement can be used to
reduce the amount of text captured.

Upgrade the QCD
Teradata Visual Explain upgrades the definition of the QCD and then migrates any existing
query plans to the new tables. This process also creates the views and macros required by
Teradata Visual Explain to access the QCD data.

A small window is displayed to show the progress of the upgrade.

Select the OK button to close the Control Center window when the upgrade completes.

Visual Explain Page 27-9

Setting up the Environment

The Visual Explain control center allows you to …

• Manage QCDs – define/create a QCD, upgrade from previous version, or cleanup
(delete plans, workloads, or objects in a QCD

• Specify the connectivity type (CLIv2 or ODBC) and/or define data sources

• Assign access rights to users on specific QCDs and/or create new users

• Data Exchange – import/export QCD workloads, plans, or objects to/from a data file

Use the Tools > Control Center option.

 Visual Explain Page 27-10

Placing Plans into QCD
Options with the INSERT and DUMP EXPLAIN commands include:

 QCD_Name - an optional user-defined query capture database to be used instead of
the default QCD database. The database named QCD_name need not exist on the
target system; however, a database named QCD_name must exist on the test system
on which the generated script is performed. Use the Control Center feature of the
Visual Explain tool to create your QCD databases.

 Query_Plan_Name - an optional user-defined name (up to 30 characters) for which

the query plan information is to be stored. If no query_plan_name is specified, the
query plan information is stored with a null name. Because each query plan is
stored with a unique non-null Query ID, there is no problem distinguishing among
the various query plans within a given database. Note that Query IDs are not
unique across databases. query_plan_name is required to be unique and you can
store a name as “query plan name” if you enclose the name in quotation marks.

 XML and NODDLTEXT –XML captures the output as an XML document. This

document is stored in the QCD table named XMLQCD. NODDLTEXT is used to
not capture the DDL text in the XML document.

 CHECK STATISTICS - to capture COLLECT STATISTICS recommendations for

SQL_request into the StatsRecs QCD table

What INSERT EXPLAIN Does
INSERT EXPLAIN performs the following actions in the order indicated.

1 Runs an EXPLAIN on the SQL DML statement specified by SQL_query.
2 Captures the Optimizer white tree output of that EXPLAIN.
3 Writes the output to the appropriate tables in a QCD database.

What DUMP EXPLAIN Does

The DUMP EXPLAIN statement is used to export a plan from one system so that it can be
loaded into a QCD on another system. DUMP EXPLAIN performs the following actions in
the order indicated.

1 Runs an EXPLAIN on the SQL DML statement specified by SQL_query.
2 Captures the Optimizer plan output of that EXPLAIN.
3 Returns the output to the requestor as a series of INSERT statements designed to be

used to update the appropriate tables in a QCD database.

You might want to use DUMP EXPLAIN rather than INSERT EXPLAIN if you are
collecting information from several different machines and you want to ensure that only the
selected QCD on the appropriate machine is updated with the results or if you do not want to
update the QCD during heavy workload windows. In this case, you could submit the
INSERT statements as part of a batch job during a less burdened workload window.

Visual Explain Page 27-11

Placing Plans into QCD

There are multiple ways to place query plans into a QCD.

• INSERT EXPLAIN – places an optimized plan into a QCD database.

• DUMP EXPLAIN – typically used to export a plan from one system so it can be loaded into a QCD
on another system.

• Visual Explain GUI – Launch QCF – perform either function using a Visual Explain.

INSERT EXPLAIN INTO Student_QCD AS qp1
SELECT E.Last_Name , E.First_Name , D.Dept_Name , J.Job_Desc
FROM PD.Employee E
INNER JOIN PD.Department D ON D.Dept_Number = E.Dept_Number
INNER JOIN PD.Job J ON E.Job_Code = J.Job_Code
ORDER BY 3, 1, 2 ;

Example:

INSERT EXPLAIN
WITH STATISTICS AND DEMOGRAPHICS ,

NO FOR tablename

INTO QCD_name
AS query_plan_name LIMIT FOR frequency

SQL
= n

sql_statement ;
CHECK STATISTICS IN XML

NODDLTEXT

ds186034
Highlight

ds186034
Sticky Note

ds186034
Inserted Text

 Visual Explain Page 27-12

Creating a Plan using "Execute SQL" Option
An example of the Execute SQL screen display is shown on the facing page.

Previous versions of Visual Explain used an option named Launch QCF.

Additional Options that can be included with INSERT
EXPLAIN

Some of the key options you can specify with INSERT EXPLAIN are:

 The information captured by the COLLECT STATISTICS (a.k.a., WITH
STATISTICS as a clause with INSERT EXPLAIN) is only used by the Index
Wizard during index analysis to make secondary index recommendations.

This option is not needed to analyze plans with Visual Explain. The COLLECT
STATISTICS option collects sampled statistics for columns found in a query’s
where clause. These columns are considered index candidates during the index
analysis phase. If the COLLECT STATISTICS option is not used, the INSERT
EXPLAIN statement automatically captures Interval 0 (Summary) statistics from
the data dictionary. This information can be viewed when the plan is loaded into
Visual Explain. If the customer is only going to analyze plans with Visual Explain,
then this option is usually not needed.

 The AND DEMOGRAPHICS option captures row count and average row size

information per AMP at the subtable level for all of the tables referenced in the
plan. This information is not used during index analysis. This information is not
automatically captured and is usually not needed. If captured, this information is
captured in the QCD.DataDemographics table. The information can be displayed
via Visual Explain’s View->Show Demographics ... menu option.

 The FREQUENCY value is used to specify the number of times an SQL statement

is typically performed within its identified workload. This value is used to weight
the respective benefits of each column analyzed for inclusion in the index
recommendation computed by Teradata Index Wizard. Any positive integer up to
4 Billion is valid. If this clause is not specified, then the frequency defaults to 1.

 The Limit Text option allows you to place a limit on the size of the query and DDL

text captured in the QCD.

After entering the SQL, you are now ready to capture the execution plan.

Visual Explain Page 27-13

Creating a Plan using "Execute SQL" Option

You can use Visual Explain
to directly execute SQL.

Use the Tools >
Execute SQL option.

Note: This option (Execute
SQL) replaces the Launch
QCF option found in
previous versions of Visual
Explain.

The Tools > Options > General tab has an option that can be checked to "use SQL Assistant instead of
the Execute SQL window".

 Visual Explain Page 27-14

Open Execution Plans
The following steps are used to load one or more execution plans.

Once you are logged on to the Teradata Database, select File > Open Plan from Database
from the menu bar. This displays the Open Plan dialog box.

1. Right click on “Query Capture Databases” and choose Browse QCD.

Visual Explain Page 27-15

Open Execution Plans

Use the File >
Open Plan
from Database
option.

or use the icon.

1. Right click on “Query Capture
Databases” and choose Browse QCD.

 Visual Explain Page 27-16

Open Execution Plans (cont.)
The following steps are used to load one or more execution plans.

2. Right-click on a QCD database and choose "Browse Plans".

 Do one of the following to select the desired queries from the QCD database:

– To load information for all queries from the specified QCD database, leave

Query Tag and Query ID blank, and select Browse QCD.

– To load queries with a specified plan name, enter the name in the query tag

box.

– To load information for only selected queries or a range of queries, select

Query ID Range. Use commas to separate individual queries, and a dash to
specify a range of queries. (For example, to load queries 1, 3, 4, 5, 6, and 9,
enter 1, 3-6, 9 in the edit box.)

Visual Explain Page 27-17

Open Execution Plans

A list of QCD
Databases is
provided in the
left pane.

2. Right-click on a QCD database
and choose "Browse Plans".

 Visual Explain Page 27-18

Open Execution Plans (cont.)
The following steps are used to load one or more execution plans.

3. Add plan(s) to the Selected Execution Plans list.

4. Click the Open icon to display the plan(s) graphically.

Visual Explain Page 27-19

Open Execution Plans

A list of Query Plans is displayed
for a QCD database.

3. Add plan(s) to display.

4. Click the Open icon to
display plan(s) graphically.

 Visual Explain Page 27-20

Visual Explain of a Merge Join
The Visual EXPLAIN example on the facing page is one where the optimizer joins three
tables together via a merge join based on the SQL example shown earlier.

The full EXPLAIN text (Teradata 14.0) is:

 1) First, we lock a distinct PD."pseudo table" for read on a RowHash to prevent
global deadlock for PD.J.

 2) Next, we lock a distinct PD."pseudo table" for read on a RowHash to prevent
global deadlock for PD.E.

 3) We lock a distinct PD."pseudo table" for read on a RowHash to prevent global
deadlock for PD.D.

 4) We lock PD.J for read, we lock PD.E for read, and we lock PD.D for read.
 5) We do an all-AMPs RETRIEVE step from PD.E by way of an all-rows scan with

a condition of ("NOT (PD.E.Job_Code IS NULL)") into Spool 2 (all_amps), which
is redistributed by the hash code of (PD.E.Dept_Number) to all AMPs. Then we
do a SORT to order Spool 2 by row hash. The size of Spool 2 is estimated with
high confidence to be 1,000 rows (49,000 bytes). The estimated time for this step
is 0.02 seconds.

 6) We do an all-AMPs JOIN step from PD.D by way of a RowHash match scan with
no residual conditions, which is joined to Spool 2 (Last Use) by way of a
RowHash match scan. PD.D and Spool 2 are joined using a merge join, with a
join condition of ("PD.D.Dept_Number = Dept_Number"). The result goes into
Spool 3 (all_amps), which is redistributed by the hash code of (PD.E.Job_Code)
to all AMPs. Then we do a SORT to order Spool 3 by row hash. The size of Spool
3 is estimated with low confidence to be 984 rows (63,960 bytes). The estimated
time for this step is 0.03 seconds.

 7) We do an all-AMPs JOIN step from PD.J by way of a RowHash match scan with
no residual conditions, which is joined to Spool 3 (Last Use) by way of a
RowHash match scan. PD.J and Spool 3 are joined using a merge join, with a
join condition of ("Job_Code = PD.J.Job_Code"). The result goes into Spool 1
(group_amps), which is built locally on the AMPs. Then we do a SORT to order
Spool 1 by the sort key in spool field1 (PD.D.Dept_Name, PD.E.Last_Name,
PD.E.First_Name). The size of Spool 1 is estimated with index join confidence to
be 984 rows (144,648 bytes). The estimated time for this step is 0.05 seconds.

 8) Finally, we send out an END TRANSACTION step to all AMPs involved in
processing the request.

 -> The contents of Spool 1 are sent back to the user as the result of statement 1. The
total estimated time is 0.10 seconds.

Note: The HC icon on the facing page represents “High Confidence”.

Visual Explain Page 27-21

Visual Explain of a Merge Join

This Visual Explain output is
based on the previous query
which joined the Employee,
Department, and Job tables.

 Visual Explain Page 27-22

Visual Explain Options
The Visual EXPLAIN example on the facing page illustrates displaying the query statement
text and the actual Explain text along with the graphical explain.

Visual Explain Page 27-23

Visual Explain Options

These options
also display the
Explain text and
the query.

Plans >
Explain Text

Plans >
Statement Text

The View > Compressed
option was also selected.

 Visual Explain Page 27-24

Visual Explain – Comparing Multiple Plans
To visually compare two execution plans:

1. Use the Plans > Compare option to load the plans to be compared.

2. Select at least 2 plans to be compared.

3. Double click on the query to be selected as the base query. The base query will

appear in the green base query box.

4. Click on Compare to create the comparison.

5. Differences are displayed by a red arrow next to the appropriate steps. Move the

mouse pointer over this red arrow for Tool Tip text explaining the differences.

Display textual difference information
To generate a text report of the differences in multiple execution plans,

1. Create a visual comparison between the execution plans you want to compare

2. Select the type of report information you want to view using the pull-down selector

on the Toolbar.

3. Select View > Visual Compare > Textual Output from the menu bar to display the

report.

Visual Explain Page 27-25

Visual Explain – Comparing Multiple Plans

To visually compare multiple execution plans:

1. Use the Plans > Compare option.

2. Select at least 2 plans to be compared.

3. Select one query to be used as the base query by double-clicking on it.

4. Click on Compare button (bottom of screen) to create the comparison.

5. Differences are displayed by a red arrow next to the appropriate steps.

 Visual Explain Page 27-26

Visual Explain – Example of Comparing 2 Plans
The query text is:

SELECT E.Last_Name, E.First_Name,
 D.Dept_Name, J.Job_Desc
FROM Employee E
INNER JOIN Department D ON E.Dept_Number = D.Dept_Number
INNER JOIN Job J ON E.job_code = J.job_code
ORDER BY 3, 1, 2;

The facing page contains an example of 2 join plans – one without a join index and one with
a join index.

The query is the same except the tables have a Join Index.

Differences are displayed by a red arrow shown next to the appropriate steps. Move the
mouse pointer over this red arrow for Tool Tip text explaining the differences.

The SQL to create the join index is:

CREATE JOIN INDEX EDJ_Join_Idx, FALLBACK
AS
SELECT D.Dept_Number, D.Dept_Name,
 E.Employee_Number, E.Last_Name, E.First_Name,
 J.Job_code, J.Job_Desc
FROM Department D
INNER JOIN Employee E ON D.Dept_Number = E.Dept_Number
INNER JOIN TFACT.Job J ON E.Job_Code = J.Job_Code;

Visual Explain Page 27-27

Visual Explain – Example of Comparing 2 Plans

 Visual Explain Page 27-28

Granting Access Rights on a QCD
The Control Center > Security tab can be used to easily grant/revoke access rights to users
for a specific QCD.

A QCD user can be designated as one of the following:

 Normal User – load, view, or delete user’s own plans or workloads only. The Use
X-views for QCD information check box must be selected in the Options dialog box
for this option to be effective.

 Power User – load and view plans or workloads inserted by any user. Delete user’s

own plans or workloads only.

 Administrator – load, view, or delete any plan created by any user. The

administrator can drop or delete QCD tables. By default, the QCD creator has
Administrator privileges.

Visual Explain Page 27-29

Granting Access Rights on a QCD

 Visual Explain Page 27-30

Visual Explain Summary
Teradata Visual Explain has numerous enhancements and features. A partial list is show on
the facing page. A description of some of these features follows.

The Compressed view essentially displays the plan in a traditional data flow manner
without the action icons. The retrieval, redistribution and join information is still displayed
in the window, but in an abbreviated format. This feature is ideal for viewing very large
plans.

Teradata Visual Explain has been enhanced to display information on data demographics
that will be useful for query plan analysis. This information can be displayed in both
graphical and report formats.

The Teradata Visual Explain interface also has the capability to display both current and
captured index information, object definitions and statistics. This feature is useful for
identifying any changes that have occurred since the plan was last captured.

Bulk Compare - this feature allows you to perform multiple plan comparisons with a single
operation.

Visual Explain Page 27-31

Visual Explain Summary

Summary of features covered in this module:

• Visual Explain allows you to view Explain plans graphically.

• Visual Explain allows you to compare different Explain plans.

• QCD has defined user categories to easily define user access rights.

Additional capabilities:

• Compressed View – essentially displays the plan in a traditional data flow manner
without the action icons.

• Menu options are available to display both current and captured index information,
object definitions and statistics.

• The QCD is utilized with other Teradata Analyst tools.

– QCF is enhanced to collect table level data demographics as part of the execution plan
capture.

• Bulk Compare – this powerful feature allows you to perform multiple plan
comparisons with a single operation.

 Visual Explain Page 27-32

Module 27: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Visual Explain Page 27-33

Module 27: Review Questions

1. To place an execution plan into the QCD database, preface a valid parsable Teradata SQL statement
with __________ __________ .

2. When using Visual Explain to compare multiple plans, one plan must be selected as the ________
query.

3. List the 3 types of QCD users that access rights are associated with.

_______________________ _______________________ _______________________

 Visual Explain Page 27-34

Lab Exercise 27-1
Check your understanding of the concepts discussed in this module by completing the lab
exercises as directed by your instructor.

Visual Explain Page 27-35

Lab Exercise 27-1

Lab Exercise 27-1

Purpose
In this lab, you will use the COLLECT STATISTICS command.

What you need
Populated AP.Trans table and your empty Trans table.

Tasks
1. Delete all of the rows in the Trans table.

The Trans table should have a USI on Trans_Number and a NUSI on Trans_ID from a previous lab.
Verify with HELP INDEX Trans;

2. Collect statistics on the Trans table primary and secondary indexes. Use the Help Statistics
command after collecting statistics on all of the indexes.

3. Populate your Trans table from AP.Trans using the INSERT/SELECT function. Verify (SELECT
COUNT) that your Trans table has 15,000 rows.

Use the Help Statistics command after populating the Trans table. Do the statistics reflect the status
of table? ______ How many unique values are there for each column? ________

4. Recollect statistics on the Trans table. Use the Help Statistics command after populating the Trans
table. Do the statistics reflect the status of table? ______
How many unique values are there for Trans_ID? _______

 Visual Explain Page 27-36

Lab Exercise 27-2
Check your understanding of the concepts discussed in this module by completing the lab
exercises as directed by your instructor.

SQL hint:

 COLLECT STATISTICS ON table_name COLUMN column_name ;

If your Orders and Orders_PPI tables have a different number of rows, this is probably
because Orders only has 9 years of data and Orders_PPI has 10 years of data.

The easiest option to ensure that both tables have the same number of rows is to:

 Delete all the rows in Orders table and populate the Orders table from Orders_PPI.

Visual Explain Page 27-37

Lab Exercise 27-2

Lab Exercise 27-2

Purpose
In this lab, you will use Teradata SQL Assistant to explain various SQL access and join functions OR
you can use Visual Explain (if installed and available).

What you need
Populated DS tables and your populated tables from previous lab. Make sure that your Orders and
Orders_PPI tables have the same number of rows.

Tasks

1. Collect statistics on orderid, orderdate, and PARTITION for Orders and Orders_PPI.
Execute the following two Explains.

EXPLAIN SELECT * FROM Orders
WHERE orderdate BETWEEN '2012-01-01' AND '2012-01-31';

How many AMPs are accessed in this operation? _______
Is this a full table scan? ______ Why or why not? _______________________________________

EXPLAIN SELECT * FROM Orders_PPI
WHERE orderdate BETWEEN '2012-01-01' AND '2012-01-31';

How many AMPs are accessed in this operation? _______

Is this a full table scan? ______ Why or why not? _______________________________________

Is partitioning beneficial for this type of query? _______

 Visual Explain Page 27-38

Lab Exercise 27-2 (cont.)
Check your understanding of the concepts discussed in this module by completing the lab
exercises as directed by your instructor.

Visual Explain Page 27-39

Lab Exercise 27-2 (cont.)

2. Execute the following two Explains.

EXPLAIN SELECT * FROM Orders
WHERE orderid = 418200;

How many AMPs are accessed in this operation? _______
How is this row retrieved by Teradata? ___

EXPLAIN SELECT * FROM Orders_PPI
WHERE orderid = 418200;

How many AMPs are accessed in this operation? _______
How many partitions are scanned to locate this row? ________
How is this row retrieved by Teradata? ___

 Visual Explain Page 27-40

Lab Exercise 27-2 (cont.)
Check your understanding of the concepts discussed in this module by completing the lab
exercises as directed by your instructor.

Visual Explain Page 27-41

Lab Exercise 27-2 (cont.)

3. Execute the following two Explains.

EXPLAIN DELETE FROM Orders WHERE orderdate BETWEEN '2009-01-01' AND '2009-12-31';

How many AMPs are accessed in this operation? _______
Is this a full table scan? ______ Why or why not? _______________________________________

EXPLAIN DELETE FROM Orders_PPI
WHERE orderdate BETWEEN '2009-01-01' AND '2009-12-31';

How many AMPs are accessed in this operation? _______
Is this a full table scan? ______ Why or why not? _______________________________________
How many partitions are scanned to delete these rows? ________

4. Collect statistics on orderid for the Orders_CP table and execute the following two Explains.

EXPLAIN SELECT Orderid FROM Orders_CP;

How many column partitions are accessed? ______
What is the relative cost for this EXPLAIN? ______

EXPLAIN SELECT Orderid, Custid FROM Orders_CP;

How many column partitions are accessed? ______
What is the relative cost for this EXPLAIN? ______

 Visual Explain Page 27-42

Notes

Join Processing Analysis Page 28-1

Module 28

Teradata Proprietary and Confidential

Join Processing Analysis

After completing this module, you will be able to:

 Identify and describe different kinds of join plans.

 Describe join plan strategies.

– Merge Join
– Nested Join
– Hash Join
– Product Join
– Exclusion Merge Join

 Describe different types of join strategies that may be used with
PPI tables.

 Join Processing Analysis Page 28-2

Notes

Join Processing Analysis Page 28-3

Table of Contents

SELECT Statement ANSI Join Syntax .. 28-4
Example of ANSI and Teradata JOIN Syntax ... 28-6
LEFT Outer Join Example ... 28-8
RIGHT Outer Join Example .. 28-10
FULL Outer Join Example ... 28-12
Join Processing ... 28-14
Optimizer Minimizes Spool Usage .. 28-16
Row Selection .. 28-18
Join Redistribution ... 28-20

The Join column(s) is the Primary Indexes of Both Tables ... 28-20
The Join column is the Primary Index of one of the tables .. 28-20

Join Redistribution (cont.) .. 28-22
The Join column is the Primary Index of neither table .. 28-22

Duplicating a Table in Spool ... 28-24
General Join Distribution Strategies .. 28-26
Merge Join .. 28-28
Merge Join Strategy ... 28-30
Merge Join – Matching Primary Indexes ... 28-32
Merge Join – Row Redistribution .. 28-34
Merge Join – Duplicate the Smaller Table ... 28-36
Nested Joins ... 28-38
Product Join .. 28-40
Cartesian Product ... 28-42
Product Join – Duplicate the Smaller Table ... 28-44
Hash Join .. 28-46
Exclusion Joins .. 28-48
Exclusion Join Example ... 28-50
Inclusion Joins .. 28-52
n-Table Joins .. 28-54
Join Considerations with PPI ... 28-56
NPPI to PPI Join – Few Partitions ... 28-58
NPPI to PPI Join – Many Partitions ... 28-60
NPPI to PPI Join – Sliding Window .. 28-62
NPPI to PPI Join – Sliding Window (cont.) ... 28-64
NPPI to PPI Join – Hash Ordered Spool File Join ... 28-66
PPI to PPI Join – Rowkey-Based Join ... 28-68
PPI to PPI Join – Unmatched Partitions ... 28-70
Additional Join Options with PPI .. 28-72
Join Processing Summary .. 28-74
Module 28: Review Questions ... 28-76

Module 28: Review Questions (cont.) ... 28-78

 Join Processing Analysis Page 28-4

SELECT Statement ANSI Join Syntax
The facing page shows all syntax options for joins using the ANSI standard join
conventions.

Join Processing Analysis Page 28-5

SELECT Statement ANSI Join Syntax

Teradata supports the ANSI join syntax which provides outer join options.

Where:
cname Column or expression name
tname Table or view name
aname Alias for table or view name
condition Criteria for the join

SELECT cname [, cname , …]
FROM tname [aname]

[INNER] JOIN
LEFT [OUTER] JOIN
RIGHT [OUTER] JOIN
FULL [OUTER] JOIN
CROSS JOIN

tname [aname]
ON condition ;

INNER JOIN All matching rows.

LEFT OUTER JOIN Table to the left is used to qualify, table on the right has nulls
when rows do not match.

RIGHT OUTER JOIN Table to the right is used to qualify, table on the left has nulls
when rows do not match.

FULL OUTER JOIN Both tables are used to qualify and extended with nulls.

CROSS JOIN Product join or Cartesian product join.

• A two-table join condition references two
different tables.

• A self-join condition references two alias
names for one table.

 Join Processing Analysis Page 28-6

Example of ANSI and Teradata JOIN Syntax
An Inner Join (as shown on the facing page) returns an output row for each successful match
between the join tables.

The facing page shows an example comparing Teradata and ANSI JOIN syntax.

Notes about this Inner Join include:

 Information about employees and their department names where the employee’s
department number matches the existing departments.

 No information about employees who have no department number or an invalid

department number.

 No information is returned about departments which have no employees assigned

to them.

Join Processing Analysis Page 28-7

Example of ANSI and Teradata JOIN Syntax

SELECT D.Department_Number AS "Dept Number"
,D.Department_Name AS "Dept Name"
,E.Last_Name AS "Last Name"
,E.Department_Number AS "Emp Dept Number"

FROM Department D
,Employee E

WHERE E.Department_Number = D.Department_Number;

Teradata JOIN
Syntax

SELECT D.Department_Number AS "Dept Number"
,D.Department_Name AS "Dept Name"
,E.Last_Name AS "Last Name"
,E.Department_Number AS "Emp Dept Number"

FROM Department D
INNER JOIN Employee E
ON E.Department_Number = D.Department_Number;

ANSI JOIN
Syntax

Dept Number Dept Name Last Name Emp Dept Number
402 software support Crane 402
100 executive Trainer 100
501 marketing sales Runyon 501
301 research and development Stein 301
301 research and development Kanieski 301

Output is
same from
either Join.

 Join Processing Analysis Page 28-8

LEFT Outer Join Example
A left outer join produces both rows which match in both tables and rows contained in one
of the two tables which do not match. The keyword LEFT indicates that the table
syntactically to the left of the join operator will be the “driver” table, that is, all rows of this
table will be seen, whether they match or not.

Join Processing Analysis Page 28-9

LEFT Outer Join Example

SELECT E.Last_Name AS "Last Name"
,E.Department_Number AS "Dept Number"
,D.Department_Name AS "Dept Name"

FROM Employee E LEFT OUTER JOIN
Department D

ON E.Department_Number = D.Department_Number
ORDER BY 1;

In addition to output from
inner join:

• Shows employees with null
departments.

• Shows employees with
invalid departments.

Last Name Dept Number Dept Name
Green ? ?
James 111 ?
Crane 402 software support
Kanieski 301 research and develop
Runyon 501 marketing and sales
Stein 301 research and develop
Trainer 100 executive

Employee Department2 5

 Join Processing Analysis Page 28-10

RIGHT Outer Join Example
A right outer join returns both rows that match and those from one table which do not.

The RIGHT keyword indicates that the table located syntactically to the right of the join
operator is the “driver” table, i.e., all rows of that table will be returned whether or not they
match.

Join Processing Analysis Page 28-11

RIGHT Outer Join Example

SELECT D.Department_Number AS "Dept Number"
,D.Department_Name AS "Dept Name"
,E.Last_Name AS "Last Name"

FROM Employee E RIGHT OUTER JOIN
Department D

ON E.Department_Number = D.Department_Number
ORDER BY 1;

In addition to output from
inner join:

• Shows departments with no
employees.

Dept Number Dept_Name Last_Name
100 executive Trainer
301 research and develop Stein
301 research and develop Kanieski
402 software support Crane
501 marketing sales Runyon
600 new department ?

Employee Department

5 1

 Join Processing Analysis Page 28-12

FULL Outer Join Example
Outer join syntax provides the capability of showing not only rows which match, but also
those which do not. Using outer joins allows us to see rows with invalid or null entries
where there would normally be a match.

Join Processing Analysis Page 28-13

FULL Outer Join Example

SELECT D.Department_Number AS "Dept Number"
,D.Department_Name AS "Dept Name
,E.Last_Name AS "Last Name"
,E.Department_Number AS "Emp Dept Number"

FROM Employee E FULL OUTER JOIN
Department D

ON E.Department_Number = D.Department_Number
ORDER BY 1;

In addition to output from inner join:

• Shows employees with null departments.
• Shows employees with invalid departments.
• Shows departments with no employees.

Employee Department

2 5 1

Dept Number Dept Name Last Name Emp Dept Number
? ? Green ?
? ? James 111

100 executive Trainer 100
301 research and development Stein 301
301 research and development Kanieski 301
402 software support Crane 402
501 marketing sales Runyon 501
600 new department ? ?

 Join Processing Analysis Page 28-14

Join Processing
For Teradata to process a Join, the rows to be joined must be on the same AMP. Copies of
some or all of the rows may have to be moved to a common AMP. (The original rows are
never moved.)

Teradata uses several kinds of join plans:

 Product Joins
 Merge Joins
 Nested Joins
 Exclusion (Merge or Product) Joins

No matter what type of Join is being done, the Optimizer will choose the best strategy based
upon indexes and demographics (as it does with any SQL request). Use the EXPLAIN
facility to be sure what type of Join will occur.

Join Processing Analysis Page 28-15

Join Processing

Rows must be on the same AMP to be joined.

• If necessary, the system creates spool copies of one or both rows and moves them to
a common AMP.

• Join processing NEVER moves or changes the original table rows.

The Optimizer chooses the best join strategy based on:

• Available Indexes
• Demographics (COLLECTed STATISTICS or Random AMP Sample)

EXPLAIN shows what kind of join a query uses.

Typical Relational (or SQL) join types:
• Inner
• Outer

– Left
– Right
– Full

• Product
• Nested
• Cross

– Cartesian

Typical Teradata Join Plans:
• Merge Join
• Product Join
• Hash Join
• Nested Join
• Exclusion Join
• Inclusion Join
• RowID Join
• Self-Join

 Join Processing Analysis Page 28-16

Optimizer Minimizes Spool Usage
As you saw on the preceding page, Teradata often has to utilize Spool space to hold the
copies of rows redistributed to do a Join. The Optimizer minimizes the amount of Spool
required by:

 Projecting (copying) only those columns which the query requires.

 Doing single-table Set Selections first (qualifying rows).

 Putting only the Smaller Table into Spool whenever possible.

Teradata determines the Smaller Table by multiplying the number of qualified rows by the
number of bytes in the columns to be projected (qualifying rows * projected column bytes).
Which table this turns out to be is not always obvious.

Note: Non-equality Join Operators produce a (partial) Cartesian Product. Join operators
should always be equality conditions. Set selection operators may be any condition.

Join Processing Analysis Page 28-17

Optimizer Minimizes Spool Usage

1st Example: Select from Dept #1025
SELECT E.emp_number

E.last_name,
E.first_name,
P.check_num

FROM Employee E
INNER JOIN Paycheck P
ON E.emp_number = P.emp_number
WHERE E.dept_number = 1025;

Projection List

Explicit Join

Join Condition

Set Condition

The Optimizer minimizes
spool size before the join.

• Applies SET conditions
first (WHERE).

• Only the necessary
columns are used in
Spool.

Therefore, the following applies for spool space needed.

Employee – 100,000 x 300 bytes = 30 MB
Paycheck – emp# (INTEGER), check# (INTEGER) – 8 x 1,000,000 = 8 MB

2nd Example: Select from all departments
SELECT E.*, P.check_num
FROM Employee E
INNER JOIN Paycheck P
ON E.emp_number = P.emp_number;

Assume the following:
Employee (100,000 Rows, each row is 300 bytes)
Paycheck (1,000,000 rows, each row is 250 bytes)

In this example, all columns from
Employee, but only 2 columns
from Paycheck are needed.

 Join Processing Analysis Page 28-18

Row Selection
Row Selection is a very important part of Join Processing. It is dependent on the conditions
specified in the WHERE clause. If no Set Selection conditions exist, then all rows of both
tables will participate in the Join.

Reducing the number of rows that participate will improve Join performance. The two
examples on the facing page illustrate this. The first SELECT statement has no Set
Selection conditions; therefore, there is no Row Selection, and all rows from both tables will
participate in the Join.

The second SELECT statement differs from the first one in that a Set Selection condition
has been added. By specifying “WHERE Part.Ship# IS NOT NULL,” the performance of
the Join will be greatly improved. The effect of this new condition is to reduce the number
of participating Part Table rows from 30,000,000 to 500,000.

The Optimizer automatically eliminates NULLs for INNER Joins.

Note: The Part Number represents a “serial number” and is unique for a part. Therefore, a
particular part number or serial number can only be on 1 shipment.

Join Processing Analysis Page 28-19

Row Selection

• Column projection always precedes a join and row selection usually precedes a join.

• Tip: Reduce the rows that participate to improve join performance.

SHIPMENT

5,000
Rows SHIP# . . .

PK/FK PK,SA,NN
Distinct Values 5000

Max Rows/Value 1
Max Rows/NULL 0

Typical Rows/Value 1
PI/SI UPI

PART

30,000,000
Rows PART# . . . SHIP#

PK/FK PK,SA,NN FK
Distinct Values 30M 5001

Max Rows/Value 1 200
Max Rows/NULL 0 29.5M

Typical Rows/Value 1 100
PI/SI UPI

3rd Example:

SELECT . . .
FROM Shipment S
INNER JOIN Part P
ON S.ship# = P.ship# ;

SELECT . . .
FROM Shipment S
INNER JOIN Part P
ON S.ship# = P.ship#
WHERE P.ship# > 150183 ;

Assuming Shipment.Ship# is defined as NOT NULL:

• The Optimizer automatically eliminates all NULLs for
INNER joins in the Part table before doing join.

• Even though the Part table has 30,000,000 rows, only
500,000 rows have values (match) and are joined to the
Shipment table and output.

• To further eliminate additional rows, add a WHERE
condition that reduces the number of rows that
participate in the join.

 Join Processing Analysis Page 28-20

Join Redistribution
The Primary Index is the major consideration used by the Optimizer in determining how to
join two tables and deciding which rows to move.

Three general scenarios may occur when two tables are to be Merge Joined:

1. The Join column(s) is the Primary Index of both tables (best case).
2. The Join column is the Primary Index of one of the tables.
3. The Join column is not a Primary Index of either table (worst case).

The three scenarios are described below and pictured on the following pages:

The Join column(s) is the Primary Indexes of Both Tables
This is the best case scenario because rows that can be joined together are already on the
same target AMP. Equal primary index values always hash to the same AMP. No
movement of data to other AMPs is necessary. The rows are already sorted in Row Hash
sequence because of the way in which they are stored by the file system. With no need for
sorting or movement of data, the Join can take place immediately.

The Join column is the Primary Index of one of the tables

In this case, one table has its rows on the target AMPs and one does not. The rows of the
second table must be redistributed to their target AMPs by the hash code of the Join Column
value. If the table is “small,” the Optimizer might decide to simply “duplicate” the entire
table on all AMPs instead of hash redistributing. In either case, the rows of one table will be
copied to their target AMPs. (If the PI table is the “small” table, the Optimizer might choose
to duplicate it on all AMPs rather than redistributing the non-PI table.)

Join Processing Analysis Page 28-21

Join Redistribution

SELECT . . .
FROM Table1 T1
INNER JOIN Table2 T2
ON T1.A = T2.A;

Join columns are from the same domain. No Redistribution needed.

T1

A B C

PI

100 214 433

T2

A B C

PI

100 725 002

SELECT . . .
FROM Table3 T3
INNER JOIN Table4 T4
ON T3.A = T4.B;

Join columns are from the same domain. Redistribution needed.

T3

A B C

PI

255 345 225

T4

A B C

PI

867 255 566

SPOOL

A B C

PI

867 255 566

Redistribute T4 rows in spool on column B.

 Join Processing Analysis Page 28-22

Join Redistribution (cont.)

The Join column is the Primary Index of neither table

If neither column is a Primary Index, then the rows of both tables must be redistributed to
their target AMPs. This may be done by hash redistribution of the Join Column value, or by
duplicating “small” tables on each AMP. In either case, this approach involves the
maximum amount of data movement. The choice of a Primary Index should be heavily
influenced by the amount of Join activity anticipated.

Join Processing Analysis Page 28-23

Join Redistribution (cont.)

Join is on columns that aren't the Primary Index of either table.

SELECT . . .
FROM Table5 T5
INNER JOIN Table6 T6
ON T5.B = T6.C;

Join columns are from the same domain. Redistribution needed.

T5

A B C

PI

456 777 876

T6

A B C

PI

993 228 777

Redistribute T5 rows in spool
on column B.

Redistribute T6 rows in spool
on column C.

SPOOL

A B C

PI

456 777 876

SPOOL

A B C

PI

993 228 777

If the columns being joined together are not Primary Index columns and are from the same
domain, options the Optimizer may choose from include:

• Redistribute both tables in spool (as shown above)

• Duplicate the smaller table in spool across all AMPs

 Join Processing Analysis Page 28-24

Duplicating a Table in Spool
The facing page highlights the fact that Joins can require considerable Spool space. Take
this into consideration when calculating Spool requirements.

The top diagram shows an 8 million row table distributed evenly across 8 AMPs so that
there are 1 million rows on each AMP.

The bottom diagram shows what happens when the table is duplicated in Spool across all the
AMPs. You will notice that there are now 9 million rows on each AMP – 1 million for the
actual table and 8 million in Spool.

This example should convince you of the importance of using the EXPLAIN facility so that
you don't do unnecessary Product Joins.

Join Processing Analysis Page 28-25

Duplicating a Table in Spool

1M rows 1M rows 1M rows 1M rows 1M rows 1M rows 1M rows 1M rowsTable

• For merge joins, the optimizer may choose to duplicate a small table on each AMP.

• For product joins, the optimizer always duplicates one table across all AMPs.

• In either case, each AMP must have enough spool space for a complete copy.

Table 1M rows

8M rows

SPOOL
(Table is duplicated

on each AMP)

1M rows

8M rows

1M rows

8M rows

1M rows

8M rows

1M rows

8M rows

1M rows

8M rows

1M rows

8M rows

1M rows

8M rows

The Explain plan will indicate that 64M rows are needed for spool.

 Join Processing Analysis Page 28-26

General Join Distribution Strategies
The Optimizer has many join methods, or modes, to choose from to ensure that any join
operation is fully optimized. This module discusses some of the more common join
methods, but certainly does not cover all of the join methods available to the Optimizer.

The particular processing described for a given type of join (for example, duplication or
redistribution of spooled data) might not apply to all joins of that type.

Some of the common join methods include:

 Merge or Hash
– When done on matching primary indexes, do not require any data to be

redistributed.
– Hash joins are often better performers and are used whenever possible. They

can be used for equijoins only.

 Nested
– Only join expression that generally does not require all AMPs.
– Preferred join expression for OLTP applications.

 Product

– Always selected by the Optimizer for WHERE clause inequality conditions.
– High cost because of the number of comparisons required.

Join Processing Analysis Page 28-27

General Join Distribution Strategies

MERGE JOIN

Do nothing if Primary Indexes match and are the join columns.

OR

REDISTRIBUTE one or both sides (depending on the Primary Indexes used in the join).

OR

DUPLICATE the smaller table (or data set) in spool on all AMPs.

After redistributing or duplicating the data, the optimizer may choose to:

• Perform a Hash Join if the redistributed or duplicated table can be held in memory.

• SORT the duplicated table on join column row hash, create a local spool copy of the larger
table and sort it on join column hash, and perform a merge join.

NESTED JOIN – Special join case

Equijoin with a constant value for a unique index in one table.

Only join expression that generally does not require all AMPs.

PRODUCT JOIN – Rows do not have to be in any sequence.

DUPLICATE the Smaller Table on all AMPs.

 Join Processing Analysis Page 28-28

Merge Join
The Merge Join retrieves rows from two tables and then puts them onto a common AMP
based on the row hash of the columns involved in the join. The system sorts the rows into
join column row hash sequence, then joins those rows that have matching join column row
hash values.

Merge Joins are commonly done when the Join condition is based on equality. They are
generally more efficient than product joins because the number of rows comparisons is
smaller. The general merge join strategy consists of the following steps:

 Identify the smaller table to be joined

 The Optimizer only pursues the following steps if it is necessary to place qualified

rows into a spool file.
– Place the qualifying rows from one or both relations into a spool file.
– Relocate the qualified spool rows to their target AMPs based on the hash of the

join column set
– Sort the qualified spool rows on their join column row hash values.

 Compare those rows with matching Join Column Row Hash values.

Join Processing Analysis Page 28-29

Merge Join

Merge Joins

• Require rows to be on the same AMP to be joined.

• Are usually chosen for an equality join condition.

• Blocks from both tables are read only once.

• Are generally more efficient than a product join.

• Compare matching join column row hash values for the rows.

• Cause significantly fewer comparisons than a product join.

Merge join process:

• Identify the Smaller Table.

• If necessary:
– Put qualifying data of one or both tables into spool(s).

– Move the spool rows to AMPs based on the join column hash.

– Sort the spool rows into join column hash sequence.

• Compare the rows with matching join column row hash values.

General considerations:

• Join costs rise with the number of rows that are moved and sorted.

• Join plans for the same tables may change as the demographics change.

 Join Processing Analysis Page 28-30

Merge Join Strategy
Two different general Merge Join algorithms are available:

 Slow Path – the slow path is used when the left table is accessed using a read mode
other than an all rows scan. The determination is made in the AMP, not by the
Optimizer.

 Fast Path – the fast path is used when the left table is accessed using the all-row

scan reading mode.

The illustration on the facing page gives you a graphical representation of how a Merge Join
compares only those rows with matching Row Hash values.

Join Processing Analysis Page 28-31

Merge Join Strategy

There are several versions of
merge join. This particular
illustration is for the row hash
match scan.

With a row hash match scan,
both tables (or spool) are
sorted on join column row
hash sequence.

Note that unnecessary
comparisons are ignored, and
that each data block is
touched only once.

02-63-1D-B4
02-63-1D-B4
06-34-23-27
06-34-23-27
06-34-23-27
08-BC-12-34
0A-05-28-9A
0D-05-29-BB
0E-ED-E1-45
1B-8D-A7-D4
1B-8E-12-45
1B-8E-12-48
1B-9C-A4-D6
1F-4D-AA-49
1F-4D-AA-49
1F-4D-AA-49
21-6A-7D-12
28-0B-68-67
2F-AD-73-4D
2F-AD-73-4D

Right Table (or Spool)

02-63-1D-B4
04-25-1D-BC
06-34-23-27
0A-05-28-9A
0B-01-14-A1
0B-01-14-A1
0C-05-77-A1
0C-16-BB-A1
0E-ED-E1-45
12-BE-E6-B8
16-8F-EC-2B
1A-44-26-9A
1B-9C-A4-D6
1F-4D-AA-49
23-1E-AF-BC
24-BE-16-B8
26-8F-1C-2B
28-0B-68-67
2C-DC-6D-DA
2F-AD-73-4D

Left Table (or Spool)

 Join Processing Analysis Page 28-32

Merge Join – Matching Primary Indexes
The example on the facing page illustrates joining two tables together with matching
primary indexes. This strategy does not require any duplication or sorting of rows.

This example is pictured on a 4 AMP System. Teradata merely compares the rows already
on the proper AMPs.

This join strategy will occur when the Join Column is the Primary Index of both tables. This
is also referred to an AMP Local Join.

Join Processing Analysis Page 28-33

Merge Join – Matching Primary Indexes

Primary Indexes match: no duplication or sorting needed

Example: SELECT E.Enum, E.Name, …
FROM Employee E
INNER JOIN Employee_Phone P
ON E.Enum = P.Enum ;

Employee
Enum Name Dept

PK FK

UPI

1 BROWN 200
2 SMITH 310
3 JONES 310
4 CLAY 400
5 PETERS 150
6 FOSTER 200
7 GRAY 310
8 BAKER 310
9 TYLER 450

10 CARR 450

Employee rows hash distributed on Enum (UPI)

6 FOSTER 200
8 BAKER 310

4 CLAY 400
3 JONES 310
9 TYLER 450

1 BROWN 200
7 GRAY 310

5 PETERS 150
2 SMITH 310
10 CARR 450

Employee_Phone rows hash distributed on Enum (NUPI)

6 203 8337461
8 301 2641616
8 301 6675885

4 415 6347180
3 408 3628822

1 213 3241576
1 213 4950703

5 312 7463513

Employee_Phone
Enum Area_Code Phone

PK

FK

NUPI
1 213 3241576
1 213 4950703
3 408 3628822
4 415 6347180
5 312 7463513
6 203 8337461
8 301 6675885
8 301 2641616

 Join Processing Analysis Page 28-34

Merge Join – Row Redistribution
The example on the facing page illustrates an example of redistributing one of the tables.
This strategy consists of redistributing the rows of one table and sorting them on the Row
Hash of the Join Column.

This example is pictured on a 4 AMP System. Teradata copies the employee rows into
Spool and redistributes them on Employee.Dept Row Hash. The Merge Join then occurs
with the rows to be joined located on the same AMPs.

This strategy occurs when one of the tables is already distributed on the Join Column Row
Hash. The Join Column is the PI of one, not both, of the tables.

Join Processing Analysis Page 28-35

Merge Join – Row Redistribution

REDISTRIBUTE one side and SORT on join column row hash.

Example: SELECT E.Enum, E.Name, D.Dept, D.Name
FROM Employee E
INNER JOIN Department D
ON E.Dept = D.Dept ;

Employee
Enum Name Dept

PK FK

UPI

1 BROWN 200
2 SMITH 310
3 JONES 310
4 CLAY 400
5 PETERS 150
6 FOSTER 200
7 GRAY 310
8 BAKER 310
9 TYLER 450

10 CARR 450

Department
Dept Name

PK

UPI

150 PAYROLL
200 FINANCE
310 MFG.
400 EDUCATION
450 ADMIN

Department rows hash distributed on Department.Dept (UPI)

400 EDUCATION200 FINANCE
450 ADMIN

310 MFG.150 PAYROLL

Employee rows hash distributed on Employee.Enum (UPI)

6 FOSTER 200
8 BAKER 310

4 CLAY 400
3 JONES 310
9 TYLER 450

1 BROWN 200
7 GRAY 310

5 PETERS 150
2 SMITH 310
10 CARR 450

5 PETERS 150 7 GRAY 310
3 JONES 310
8 BAKER 310
2 SMITH 310

1 BROWN 200
6 FOSTER 200
9 TYLER 450
10 CARR 450

4 CLAY 400

Spool file after redistribution on Employee.Dept row hash

 Join Processing Analysis Page 28-36

Merge Join – Duplicate the Smaller Table
The example on the facing page illustrates a Merge Join by duplicating the smaller table.

This strategy consists of duplicating and sorting the smaller table on all AMPs and locally
building a copy of the Larger Table and sorting it.

This example is pictured on a 4 AMP System. Teradata duplicates the department table and
sorts it on the department column for all AMPs. The employee table is built locally and
sorted on the department Row Hash.

The Merge Join is then performed.

This example is the same as the previous example. If the Parser determines from statistics
that it would be less expensive to duplicate and sort the smaller table than to hash
redistribute the larger table, it will choose this strategy.

Join Processing Analysis Page 28-37

Merge Join – Duplicate the Smaller Table

Example:
SELECT E.Enum, …
FROM Employee E
INNER JOIN Department D
ON E.Dept = D.Dept ;

Employee
Enum Name Dept

PK FK

UPI

1 BROWN 200
2 SMITH 310
3 JONES 310
4 CLAY 400
5 PETERS 150
6 FOSTER 200
7 GRAY 310
8 BAKER 310
9 TYLER 450

10 CARR 450

Department
Dept Name

PK

UPI

150 PAYROLL
200 FINANCE
310 MFG.
400 EDUCATION
450 ADMIN

DUPLICATE and SORT the Smaller Table on all AMPs.
LOCALLY BUILD a copy of the Larger Table and SORT.

Department rows hash distributed on Department.Dept (UPI)

400 EDUCATION200 FINANCE
450 ADMIN

310 MFG.150 PAYROLL

Employee rows hash distributed on Employee.Enum (UPI)

6 FOSTER 200
8 BAKER 310

4 CLAY 400
3 JONES 310
9 TYLER 450

1 BROWN 200
7 GRAY 310

5 PETERS 150
2 SMITH 310
10 CARR 450

Spool file after duplicating and sorting on Department.Dept row hash.

150 PAYROLL
200 FINANCE
310 MFG.
400 EDUCATION
450 ADMIN

150 PAYROLL
200 FINANCE
310 MFG.
400 EDUCATION
450 ADMIN

150 PAYROLL
200 FINANCE
310 MFG.
400 EDUCATION
450 ADMIN

150 PAYROLL
200 FINANCE
310 MFG.
400 EDUCATION
450 ADMIN

Spool file after locally building and sorting on Employee.Dept row hash

6 FOSTER 200
8 BAKER 310

3 JONES 310
4 CLAY 400
9 TYLER 450

1 BROWN 200
7 GRAY 310

5 PETERS 150
2 SMITH 310
10 CARR 450

 Join Processing Analysis Page 28-38

Nested Joins
Nested Joins are the most efficient types of Join. For a Nested Join to be done between
Table 1 and Table 2, the Optimizer must be provided with both of the following:

 An equality value for a unique index on Table 1 (this will retrieve a single row).

 A Join on a column of that single row to any index on Table 2

The system will retrieve the single row from Table 1 based on the UPI or USI value, then
determine the hash of the value in the Join Column to access matching Table 2 rows.

Nested Joins are the only types of Join that don't always use all of the AMPs. The number
of AMPs involved in a Nested Join will vary.

The query on the facing page can also be coded as follows:

SELECT E.Name
 ,D.Name
FROM Employee E, Department D
WHERE E.Dept = D.dept
AND E.Enum = 5;

Join Processing Analysis Page 28-39

Nested Joins

• This is a special join case.

• This is the only join that doesn't always use all of the AMPs.

• It is the most efficient in terms of system resources.

• It is the best choice for OLTP applications.

• To choose a Nested Join, the Optimizer must have:
– An equality value for a unique index (UPI or USI) on Table1.
– A join on a column of that single row to any index on Table2.

• The system retrieves the single row from Table1.

• It hashes the join column value to access matching Table2 row(s).

Example:

SELECT E.Name
,D.Name

FROM Employee E
INNER JOIN Department D
ON E.Dept = D.Dept
WHERE E.Enum = 5;

Employee

Enum Name Dept

PK FK

UPI
1 BROWN 200
2 SMITH 310
3 JONES 310
4 CLAY 400
5 PETERS 150
6 FOSTER 400
7 GRAY 310
8 BAKER 310

Department

Dept Name

PK

UPI
150 PAYROLL
200 FINANCE
310 MFG.
400 EDUCATION

 Join Processing Analysis Page 28-40

Product Join
Product Joins are the most general forms of Join. In a product Join, every qualifying row
of one table is compared to every qualifying row in the other table. Rows which match on
WHERE conditions are saved.

Product Joins are caused by any of the following:

 The WHERE clause is missing.

 A Join condition is not based on equality (NOT =, LESS THAN, GREATER

THAN).

 Join conditions are ORed together.

 There are too few Join conditions.

 A referenced table is not named in any Join condition.

 Table aliases are incorrectly used.

 The Optimizer determines that it is less expensive than the other Join types.

Product joins get their name from the fact that the number of comparisons required is the
“product” of the number of qualifying rows of both tables. A product Join between a table
of 1,000 rows and a table of 50 rows would require 50,000 comparisons and a potential
answer set of 50,000 rows.

Because all rows of one side must be compared with all rows of the other, the smaller table
is always duplicated on all AMPs. Its rows then are compared with the AMP local rows of
the other table. If the entire table cannot fit into memory, blocks will have to be read in
more than once. Comparisons that qualify are written to spool. While legitimate cases exist
for these joins, they should be avoided whenever possible.

Join Processing Analysis Page 28-41

Product Join

Rows must be on the
same AMP to be joined.

Data
Data
Data
Data
Data
Data
Data

Data
Data
Data

• Does not sort the rows.

• May re-read blocks from one table if AMP memory size is exceeded.
• It compares every qualifying Table1 row to every qualifying Table2 row.
• Those that match the WHERE condition are saved in spool.
• It is called a Product Join because:

Total Compares = # Qualified Rows Table1 * # Qualified Rows Table2

• The internal compares become very costly when there are more rows than AMP
memory can hold at one time.

• They are generally unintentional and often give meaningless output.

• Product Join process:

– Identify the Smaller Table and duplicate it in spool on all AMPs.

– Join each spool row for Smaller Table to every row for Larger Table.

 Join Processing Analysis Page 28-42

Cartesian Product
Cartesian Products are unconstrained Product Joins. Every row of one table is joined to
every row of another table.

Since there is rarely any practical business use of Cartesian Product Joins, they generally
will occur when an error is made in coding the SQL query. Some reasons why Cartesian
Products are caused are shown on the facing page.

Running your queries through EXPLAIN will enable you to avoid unintentional Cartesian
Product Joins and thus save a lot of system resources. You should always EXPLAIN a Join
before it goes production.

An example of using an alias incorrectly:

 SELECT TableA.col1
 FROM TableA A;

The result will be a product join. Teradata will rename the TAbleA as A and then in the
SELECT clause when it sees a reference to TABLEA, it will treat it as a separate instance of
TableA.

Teradata assumes that you want to join the table to itself. It will look for a join condition,
but as there is none, Teradata will carryout a PRODUCT join.

Join Processing Analysis Page 28-43

Cartesian Product

• This is an unconstrained Product join.
• Each row of Table1 is joined to every row in Table2.
• Cartesian Product Joins consume significant system resources.

• Cartesian Product Joins are occasionally used in some business cases.
– Example: Join a single column table (with limited rows) to a second table to populate a third

table.

– The Teradata Database also supports them for ANSI compatibility.

• Cartesian Product Joins may occur when:
– A join condition is missing or there are too few join conditions.
– Join conditions are not based on equality.
– A referenced table is not named in any join condition.
– Table aliases are incorrectly used.

• The transaction aborts if it exceeds the user’s spool limit.

Table row count is critical:
Table 1 (50K rows) Table 2 (300K rows)

X = 15,000,000,000 Rows

Number of tables is even more critical:
T2 (50 rows)

X X
T1 (50 rows) T8 (50 rows)

X. . . = 39,062,000,000,000 Rows

 Join Processing Analysis Page 28-44

Product Join – Duplicate the Smaller Table
The example on the facing page illustrates the product join strategy. This strategy consists
of duplicating the smaller table on every AMP.

This example is pictured on a 4 AMP System. The Product Join plan is caused by a join
condition other than equality. As you can see, Teradata determines that the Department
Table is the Smaller Table and then distributes copies of those rows to each AMP. The
employee rows stay where they were (distributed by Enum). The Product Join then returns
those rows which satisfy the Join Condition (“Employee.Dept > Department.Dept”) after
comparing every row in the employee table with every row in the department table.

Join Processing Analysis Page 28-45

Product Join – Duplicate the Smaller Table

DUPLICATE the Smaller Table on every AMP.

Employee
Enum Name Dept

PK FK

UPI
1 BROWN 200
2 SMITH 310
3 JONES 310
4 CLAY 400
5 PETERS 150
6 FOSTER 200
7 GRAY 310
8 BAKER 310
9 TYLER 450

10 CARR 450

Department
Dept Name

PK

UPI

150 PAYROLL
200 FINANCE
310 MFG.
400 EDUCATION
450 ADMIN

Department rows hash distributed on Department.Dept (UPI)

400 EDUCATION200 FINANCE
450 ADMIN

310 MFG.150 PAYROLL

Employee rows hash distributed on Employee.Enum (UPI)

6 FOSTER 200
8 BAKER 310

4 CLAY 400
3 JONES 310
9 TYLER 450

1 BROWN 200
7 GRAY 310

5 PETERS 150
2 SMITH 310

10 CARR 450

Spool file after duplicating the Department rows.

150 PAYROLL
200 FINANCE
310 MFG.
400 EDUCATION
450 ADMIN

150 PAYROLL
200 FINANCE
310 MFG.
400 EDUCATION
450 ADMIN

150 PAYROLL
200 FINANCE
310 MFG.
400 EDUCATION
450 ADMIN

150 PAYROLL
200 FINANCE
310 MFG.
400 EDUCATION
450 ADMIN

Example: SELECT E.Enum, E.Name, D.Dept, D.Name
FROM Employee E
INNER JOIN Department D
ON E.Dept > D.Dept ;

 Join Processing Analysis Page 28-46

Hash Join
The Merge Join requires that both sides of the join have their qualifying row in join column
row hash sequence. In addition, if the join column(s) are not the Primary Index, then some
redistribution or duplication of rows precedes the sort.

In a Row Hash Join, the smaller table is sorted into join column row hash sequence and then
redistributed or duplicated on all AMPs. The larger table is then processed a row at a time
and the rows in this table do NOT have to be sorted into join column hash sequence. For
those rows that qualify for joining (WHERE or ON), the Row Hash of the join column(s) is
used to do a binary search of the smaller table (in memory) for a match. The Optimizer can
choose this join plan when the qualifying rows of the small table can be held AMP memory
resident. Use COLLECT STATISTICS on both tables to help guide the Optimizer.

You can enable hash joins and control the amount of memory allocated for hash joins with
the following DBS Control fields:

 HTMemAlloc
 SkewAllowance

Recommendations that most sites will use for these parameters:

 HTMemAlloc = 1
 Skew Allowance = 75

Consider a different setting if:

 The system is always very lightly loaded. In this case, you may want to increase
HTMemAlloc to a value between 2 and 5.

 Data is so badly skewed that the hash join degrades performance. In this case, you
should turn the feature off or increase the Skew Allowance to 80 or 90.

Miscellaneous Hash Join Notes:
 The standard hash join does require the same spooling and the same relocation of rows

before the join, whether a table is being duplicated or redistributed. In this regard, it is
similar to the merge join.

 However, if the small table is small enough to fit into one hash partition and if it is

duplicated, the redistribution of the large table can be eliminated by doing a hash join
on the fly, a variant of the standard hash join. In such a case, the large table is read
directly, without spooling or redistributing, and the hash join is performed between the
small table spool and the large table rows.

 Both types of hash joins eliminate sorting, and the on the fly version eliminates

redistribution as well.

 A Dynamic Hash Join provides the ability to do an equality join directly between a

small table and a large table on non-primary index columns without placing the large
table into a spool file. For Dynamic Hash Join to be used, the left table must be small enough
to fit in a single partition.

Join Processing Analysis Page 28-47

Hash Join

This optimizer technique effectively places the smaller table in AMP memory and joins it to
the larger table in unsorted spool. A Hash Join is applicable only to equijoins.

Row Hash Join Process:
• Identify the smaller table.
• Redistribute or duplicate the smaller table in memory across the AMPs.

• Usually sort the AMP memory into join column row hash sequence.
• Hold the rows in memory.
• Use the join column row hash of the larger table to search memory for a match.

This join eliminates the sorting, and possible redistribution or copying, of the larger table.

EXPLAIN plans will contain terminology such as “Single Partition Hash Join”.

Join Column
Hash

C4 Data
A3 Data
C6 Data
F6 Data
B7 Data
C4 Data
A3 Data

A3 Data
B8 Data
C4 Data

Join Column
Hash

AMP Memory

 Join Processing Analysis Page 28-48

Exclusion Joins
Exclusion Joins are based on set subtraction and used for finding rows that don't have a
matching row in the other table. Queries with the NOT IN and EXCEPT operator lead to
Exclusion Joins.

Exclusion Join is a Product or Merge Join where only the rows that do not satisfy (are NOT
IN) any condition specified in the request are joined. In other words, Exclusion Join finds
rows in the first table that do not have a matching row in the second table.

Exclusion Join is an implicit form of the outer join.

The appearance of a null (unknown) join value will return an answer set of NULL. Null join
values must be prohibited to get a result other than NULL.

Another way to view exclusion operations, is to look at the 3 rules that are applied from the
selected set to the NOT IN set.

 1. Any True – disqualifies the row
 2. Any Unknown – disqualifies the row
 3. All False – qualifies the row.

Therefore, in the first example, rows 1 and 3 are matched (true) so they are disqualified.
Rows 2 and 4 are all false (no matches), so they qualify.

In the second example, row 2 hits the unknown (NULL) and is disqualified, so in essence all
of the rows that do not get disqualified by the match (true) will get disqualified by rule
number 2 (Any Unknown).

Join Processing Analysis Page 28-49

Exclusion Joins

• Finds rows that DON'T have a match.

• May be done as merge or product joins.

• SQL that frequently causes exclusion joins are NOT IN subqueries and EXCEPT or
MINUS operations.

• Uses 3-value logic (= , <> , unknown) on nullable columns.

• To avoid NULL result sets:
– If possible, define columns (used with NOT IN) as NOT NULL on the CREATE TABLE.

– In queries, include WHERE column_name IS NOT NULL against nullable join columns.

Set_A

1
2
3
4

Set_B

1
3
5

NOT IN =

Set_A

1
2
3
4

Set_B

1
3
5

NULL

NOT IN =

 Join Processing Analysis Page 28-50

Exclusion Join Example
The example on the facing page illustrates an Exclusion Merge Join. The SQL query is
designed to list those salespeople who don’t have any customers.

This example is pictured on a 4 AMP System. As you can see, Teradata does the following:

 Performs the subquery (SELECT Sales_Emp_Number FROM Customer).

 Hash redistributes these rows on all AMPs.

 Eliminates duplicate values.

 Returns the name column of those rows in the employee table which do not match

the rows in the sub-query.

In this case, the salespersons whose names would be returned would be Peters and Tyler.

Join Processing Analysis Page 28-51

Exclusion Join Example

This is an example of an Exclusion Merge Join.

Example: SELECT Enum, L_Name
FROM Employee
WHERE Job_Code = 3100
AND Enum

NOT IN (SELECT Sales_Emp_Number
FROM Customer);

Employee
Enum L_Name Job_Code

PK FK

UPI

1 BROWN 3100
2 SMITH 2101
3 JONES 3100
4 CLAY 1201
5 PETERS 3100
6 FOSTER 3100
7 GRAY 1302
8 BAKER 3100
9 TYLER 3100

10 CARR 1302

Customer

Cust_Num Sales_Emp_Number

PK FK

UPI

23 6
24 3
25 8
26 1
27 6
28 8
29 1
30 3
31 8

Customer rows hash distributed on Cust_Num (UPI).

30 6
24 3
31 8

23 6
29 1

28 8
27 6
30 3

25 8
26 1

Customer.Sales_Enum after hashing and duplicate elimination.

6
8

3 1

Employee rows hash distributed on Enum (UPI).

6 FOSTER 3100
8 BAKER 3100

3 JONES 3100
9 TYLER 3100

1 BROWN 3100 5 PETERS 3100

 Join Processing Analysis Page 28-52

Inclusion Joins
There are two types of Inclusion Join.

 Inclusion Merge Join

– Read each row from the left table.
– Join each left table row with the first right table row having the same hash

value.
– End of process.

 Inclusion Product Join

– For each left table row read all right table rows from the beginning until one is
found that can be joined with it.

– Return the left row if a matching right row is found for it.
– End of process.

The facing page illustrates an example of an Inclusion Merge Join. Explain plan
terminology will indicate either “Inclusion Merge or Inclusion Product” in the explain text.

Join Processing Analysis Page 28-53

Inclusion Joins

INCLUSION JOIN – an inclusion join is a Merge or Product Join where the first right table
row that matches the left row is joined.

An example of a query that may cause an inclusion merge join:
SELECT Name, EmpNo
FROM Employee
WHERE EmpNo IN (SELECT EmpNo FROM Charges)
ORDER BY Name ;

There are two types of Inclusion Join.

• Inclusion Merge Join

– Read each row from the left table.

– Join each left table row with the first right table row having the same hash value.

• Inclusion Product Join

– For each left table row read all right table rows from the beginning until one is
found that can be joined with it.

– Return the left row if a matching right row is found for it.

 Join Processing Analysis Page 28-54

n-Table Joins
It is not uncommon to have Joins that involve more than two tables. The Optimizer will
decide which tables it processes first based on its own decision algorithms. The Optimizer
can only work with two tables at a time. The results of that Join operation will then be
applied to a third table (or another Join result).

“Smaller” means the size of the table both as a function of selection and projection.
“Selection” refers to the number of rows that qualify from that table in the answer set.
“Projection” refers to the “row size” as a function of the number of column bytes selected.
Each reduces the amount of data carried to subsequent Join steps.

Join Processing Analysis Page 28-55

n-Table Joins

• All n-Table joins are reduced to a series of two-table joins.

• The Optimizer attempts to determine the best join order.

• Collected Statistics on Join columns help the Optimizer choose wisely.

SELECT …. FROM Table_A, Table_B, Table_C, Table_D WHERE . . . ;

SPOOL
FILE

Table_A Table_B Table_C Table_D

SPOOL
FILE

SPOOL
FILE

SPOOL
FILE

SPOOL
FILE

SPOOL
FILE

RESULT

Join Plan 1

SPOOL
FILE

Table_A Table_B Table_C Table_D

SPOOL
FILE

SPOOL
FILE

SPOOL
FILE

SPOOL
FILE

SPOOL
FILE

RESULT

Join Plan 2

 Join Processing Analysis Page 28-56

Join Considerations with PPI
Direct merge joins (in which the table of interest doesn't have to be spooled in preparation
for a merge join) are available as an optimizer choice when two non-PPI tables have the
same PI, and all PI columns are specified as equality join terms (the traditional merge join).

Direct merge joins of two PPI tables are similarly available as an optimizer choice when the
tables have the same PI and identical partitioning expressions, and all PI columns and all
partitioning columns are specified as equality join terms (the rowkey-based merge join). In
both cases, the rows of the two tables will be ordered in the same way, allowing a merge
join without redistribution or sorting of the rows. The performance characteristics of a
traditional merge join and a rowkey-based merge join will be approximately the same.

A direct merge join, in the traditional sense, is not available when one table is partitioned
and the other is not, or when both tables are partitioned, but not in the same manner, as the
rows of the two tables will not be ordered in the same way. However, the traditional merge
join algorithms have been extended to provide a PPI-aware merge join, called a "sliding
window" join.

The optimizer has three general avenues of approach when joining a PPI table to a non-PPI
table, or when joining two PPI tables with different partitioning expressions.

 One option is to spool the PPI table (or both PPI tables) into a non-PPI spool file in
preparation for a traditional merge join.

 A second option (not always available) is to spool the non-PPI table (or one of the

two PPI tables) into a PPI spool file, with identical partitioning to the remaining
table, in preparation for a rowkey-based merge join.

 The third approach is to use the sliding window join of the tables without spooling

either one. The optimizer will consider all reasonable join strategies, and pick the
one that has the best-estimated performance.

Sliding window joins may be slower than the traditional merge join or the rowkey-based
merge join when there are many non-excluded partitions. Sliding window joins can give
roughly similar elapsed-time performance when the number of non-excluded partitions is
small (but with greater CPU utilization and memory consumption).

Join Processing Analysis Page 28-57

Join Considerations with PPI

PPI is based on modular extensions to the existing implementation of Teradata.
Therefore, all join algorithms support PPI without requiring a whole new set of
join code.

Performance Note

Performance for Row Hash Merge Joins may be worse with PPI (as compared to NPPI
tables) if a large number of partitions are not eliminated via query constraints.

Why?

The Row Hash Merge Join algorithm is more complicated and requires more resources
with PPI than with NPPI (assuming an equal number of qualified data blocks) since rows
are not in hash order, but rather in partition/hash order.

Example

Assume a PPI Transaction table is partitioned on date ranges and an Account table is
NPPI.

The PPI Transaction table is not in the same row hash order as the NPPI Account table.
A join of this NPPI to PPI will take longer than a typical join of the same tables if they
were both NPPI (assuming that both tables have the same PI).

 Join Processing Analysis Page 28-58

NPPI to PPI Join – Few Partitions
The following discussion assumes that two tables have the same PI and all PI columns are
specified as equality join terms.

When joining two tables together (one with an NPPI and the other with a PPI) and after
applying constraints, if there are a “small” number of surviving partitions, then the following
applies:

 Teradata can keep one block from the NPPI table and one block per partition in
memory from the PPI table to facilitate efficient join execution.

 Performance is similar to NPPI to NPPI join even when no partitions are eliminated

(assumes that the number of partitions is relatively small).

– Same number of disk I/Os (except in anomalous cases - large number of rows

in a hash)

– Higher memory requirements

– Slightly higher CPU utilization

– You can get significantly better performance when query constraints allow

partition elimination.

Join Processing Analysis Page 28-59

NPPI to PPI Join – Few Partitions

PPI

NPPI

Month 1

Hash = 1234

Hash = 1234

Month 2Hash = 1234

Month 3Hash = 1234

Month nHash = 1234

:

Teradata can keep one
block from the NPPI
table and one block per
partition in memory from
the PPI table to facilitate
efficient join execution.

 Join Processing Analysis Page 28-60

NPPI to PPI Join – Many Partitions
The join algorithms have been enhanced to optimize joins involving PPI tables.

The basic enhancement is the use of a "sliding window" technique, which can be slower than
the performance of a direct join. This is true as long as the number of partitions
participating in the join is small. Usually, CPU utilization will probably be somewhat
higher for a PPI table, and more memory will be used.

When joining two tables together (one with NPPI and the other with PPI) and after applying
constraints, if there are a “large” number of surviving partitions, then the following applies:

 Teradata can keep one block from NPPI table and one block for as many partitions
as it can fit (k) into memory from the PPI table to facilitate efficient join execution
using a “sliding window” technique.

 This type of join will usually have worse performance than NPPI to NPPI join

unless partition elimination can reduce total amount of work performed.

 Higher number of disk I/Os - the data blocks in NPPI table will have to be
rescanned multiple times.

 d1 = # of data blocks in NPPI table
 d2 = # of data blocks in PPI table
 p = # of partitions participating in the join
 k = # of partitions that can fit into memory from PPI table

 The number of I/Os for NPPI to PPI join is:

 (p/k * d1) + d2

 The number of I/Os for NPPI to NPPI join is:

 d1 + d2

 Higher memory requirements

 Higher CPU utilization

 To obtain better performance, eliminate as many partitions as possible with query

constraints.

 The p/k value must be small (less than 3 or 4) for performance to be
reasonable.

Join Processing Analysis Page 28-61

NPPI to PPI – Many Partitions

PPI

Day 1Hash = 1234

Day 2

Day nHash = 1234

:

Day 3

Day 4

Day 5

Day 6

Hash = 1234

One option available to
Teradata is to keep one
block from the NPPI table
and one block for as many
PPI partitions as it can fit
into memory using a
“sliding window”
technique.

NPPI

Hash = 1234

 Join Processing Analysis Page 28-62

NPPI to PPI Join – Sliding Window
The simple example on the facing page illustrates that one block from the NPPI table is
joined to data blocks from the first 3 partitions in the PPI table.

The most straight-forward way to join an NPPI table to a PPI table would be to make a pass
over the NPPI table for each partition of the PPI table, thus doing the join as a series of sub-
joins. This would be inefficient, especially for a large non-PPI table, though.

The "sliding window" join uses a similar concept, but minimizes the number of disk reads.
The first data block is read for the NPPI table, and the first data block of each (non-
excluded) partition of the PPI table is read into memory. The rows from the NPPI data
block are compared to the rows of each PPI data block. The join routines present the rows
in row hash order, but conceptually you can think of the process as visiting each partition’s
data block in turn. As the rows of a data block are exhausted, the next data block for that
partition is read. This results in each data block of each table being read only once due to
partitioning.

There is some additional overhead to manage the pool of data blocks, but join performance
is not badly degraded. Overall performance may even be improved, if a non-trivial fraction
of the partitions can be eliminated because of query conditions.

With this algorithm, a limiting factor is the number of data blocks that can be held in
memory at one time. The file system cache memory (FSG Cache) is used to provide
memory for the data blocks. A new user-tunable parameter is provided to control memory
usage for this purpose. The DBS Control utility is used to set the parameter
("PPICacheThrP") in the Performance Group.

The value is a number expressed in tenths of a percent that controls the portion of the file
system cache available for this purpose. The default value is 10, which represents one
percent. A higher value will improve multiple-partition operations, of which joins are the
most visible example. A high value may cause more memory contention and disk paging, so
higher isn't always better.

Join Processing Analysis Page 28-63

NPPI to PPI Join – Sliding Window

In this simple example, the
NPPI table is joined to the
first 3 days in the PPI table.

Better join performance is
possible by eliminating
partitions via query
constraints.

PPI

Hash = 1234

Hash = 1234

:

Hash = 1234

Day 4

Day 5

Day 6

Day 3

Day 2

Day 1

Day n

NPPI

Hash = 1234

 Join Processing Analysis Page 28-64

NPPI to PPI Join – Sliding Window (cont.)
The example on the facing page illustrates that one block from the NPPI table is joined to
the next 3 partitions in the PPI table. The window “slides” from the first 3 partitions to the
next 3 partitions. The NPPI table is read again from the beginning each time the window
slides in the PPI table.

A more significant degradation of join performance occurs when there are more non-
excluded partitions than data block buffers. Assume enough memory for 20 data blocks and
a table with 100 partitions. Then the "sliding window" technique lives up to its name. The
first 20 partitions are processed as above, then the non-PPI table is read again as the
"window" slides down to partitions 21 through 40. A total of five passes through the non-
PPI table are required, and the join will take on the order of five times longer than a
comparable join where the window covers the entire table. (This assumes that the non-PPI
table is roughly the same size as the PPI table.)

Join Processing Analysis Page 28-65

NPPI to PPI Join – Sliding Window (cont.)

In continuing this simple
example, the NPPI table is
joined to the next 3 days in
the PPI table.

The NPPI table is read
again from the beginning
each time the window
slides in the PPI table.

PPI

Day 1

Day 2

Day 3

Hash = 1234
Day 4

Day 5

Hash = 1234

:

Hash = 1234

Day n

Day 6

NPPI

Hash = 1234

 Join Processing Analysis Page 28-66

NPPI to PPI Join – Hash Ordered Spool File Join
In some cases, it will be more efficient to create a spool file that is hash ordered from the
surviving PPI partitions rather than to use the sliding window technique.

Creation of hash ordered spool file is done relatively efficiently using an n-way merge rather
than a full sort.

As always, the cost-based optimizer will figure out the most efficient execution plan using
statistics and assessment of various join possibilities.

Join Processing Analysis Page 28-67

NPPI to PPI – Hash Ordered Spool File Join

In some cases, it may be
more efficient to create a
spool file that is hash
ordered from the
surviving PPI partitions
rather than to use the
sliding window technique.

NPPI
Hash Order

PPI - Part/Hash Order

Hash = 1234

Day 1

Hash = 1234

Day 2

Hash = 1234

Day n

Hash = 1234

:

Hash = 1234

Spool “NPPI”
Hash Order

Hash = 1234

Hash = 1234

Row
Hash
Match
Scan

Sort
Locally

on
Row
Hash

 Join Processing Analysis Page 28-68

PPI to PPI Join – Rowkey-Based Join
Direct merge joins of two PPI tables are available as an optimizer choice when the tables
have the same PI and identical partitioning expressions, and all PI columns and all
partitioning columns are specified as equality join terms. This is referred to as a rowkey-
based merge join. In this case, the rows of the two tables will be ordered in the same way,
allowing a merge join without redistribution or sorting of the rows.

If the partitioning column is part of the Primary Index (PI), then it is possible, and usually
advantageous, to define all the tables with the same PI with identical partitioning
expressions. This allows for a rowkey-based merge join.

If NPPI table is placed into spool (redistributed or duplicated) and this spool is joined with
PPI table, then spool can be partitioned the same as the PPI table allowing for this fast join.

The performance characteristics of a traditional merge join (on matching primary indexes)
and a rowkey-based merge join will be approximately the same.

Join Processing Analysis Page 28-69

PPI to PPI Join – Rowkey Based Join

When joining two PPI
tables that have equivalent
partition definitions, a Row
Key Match Scan within
partitions can be used to
join the tables together.

PPI
Part/Hash Order

Month 1

Hash = 1234

Month 2

Hash = 1234

Hash = 1234

:

PPI
Part/Hash Order

Month 1

Hash = 1234

Month 2

Hash = 1234

Month n

Hash = 1234

:

Month n

 Join Processing Analysis Page 28-70

PPI to PPI Join – Unmatched Partitions
If the partitioning column is not part of the Primary Index (PI), then it may be impossible to
similarly partition the other tables having the same PI, as the partitioning column may not
exist in the other table(s).

An expensive situation may occur when both tables are partitioned, but have different
partitioning expressions. In this case, there is potentially a “sliding window” advancing
through both tables.

The following discussion summarizes the number of disk reads for the various types of
joins.

Given the following:

 d1 = the number of data blocks in table 1
 d2 = the number of data blocks in table 2

 p1 = the number of non-excluded partitions in table 1
 p2 = the number of non-excluded partitions in table 2

 k1 = the number of partitions which can be held in memory for table 1
 k2 = the number of partitions which can be held in memory for table 2

The number of disk reads required for the various types of joins are:

 neither table partitioned: d1 + d2
 second table partitioned: (p2/k2 * d1) + d2
 both tables partitioned: (p2/k2 * d1) + (p1/k1 * d2)

If p/k is less than one, some available memory won't be needed, and a value of one is used
for p/k. For one partitioned table, p/k must be small (maybe 4 at the most) for performance
to be attractive, unless the query conditions permit a large number of partitions to be
excluded. (Without trying to address every join costing consideration, reading the non-PPI
table twice, say, and reading 40% of the PPI table due to partition elimination, may be a less
expensive operation than reading each table once, as in the non-PPI situation.)

For two partitioned tables, p1/k1 and p2/k2 must both be small (maybe 2 or 3 maximum) for
performance to be attractive, unless a large number of partitions can be excluded.

Join Processing Analysis Page 28-71

PPI to PPI Join – Unmatched Partitions

When both tables are
partitioned, but have different
partitioning expressions,
there’s potentially a “sliding
window” advancing through
both tables.

PPI
Part/Hash Order

Month 1

Hash = 1234

Month 2

Hash = 1234

Hash = 1234

:

PPI
Part/Hash Order

Location 1

Hash = 1234

Location 2

Hash = 1234

Location n

Hash = 1234

:

Month n

SlidingSliding
Row Row
HashHash
MatchMatch
ScanScan

WithinWithin
PartitionsPartitions

 Join Processing Analysis Page 28-72

Additional Join Options with PPI
The optimizer has other options than the “sliding window” join. As usual, the optimizer
estimates the cost of all reasonable alternatives, and chooses the least expensive solution.
Given the importance of the term p/k in the previously mentioned formulas, it is important
that the optimizer have a realistic estimate of the number of non-excluded partitions.

This is the reason that the earlier examples that partitioned on “store_id” indicated that the
RANGE_N example was better than the example that used the column directly. In the
RANGE_N example, the optimizer knows that there are a maximum of ten “store_id”
partitions with rows, and will use ten or a smaller number as the value of p. When the
column was used directly, the maximum number of partitions was 65,535, and the optimizer
may use a value much larger than ten when estimating p, especially if statistics haven’t been
collected on the “store_id” column.

If one table is partitioned and the other isn't, the optimizer has two viable alternatives in
addition to the “sliding window” join approach. One is to spool the partitioned table to a
non-partitioned spool file, after which the join is between two non-partitioned relations. The
other option, not always available, is to spool the non-PPI table to a partitioned spool file,
then directly join two identically partitioned relations. The partitioned spool file option is
available only if the query specifies an equality condition on every column that is referenced
in the partitioning expression.

If both tables are partitioned, it may be possible to spool one of the tables to a spool file with
partitioning identical to the other table. It may also be cost-effective to spool both tables to
non-partitioned spool files.

Some join algorithms do not change (e.g., when algorithm is not dependent on the table
being in PI hash order), but usually benefit from a reduction in the number of blocks read
because of partition elimination.

 Product join
 Classical hash join
 Nested join
 Row ID join

Note: A nested join would not generally be selected without a secondary index on inner
table (with or without PPI).

Join Processing Analysis Page 28-73

Additional Join Options with PPI

The optimizer has other options than the “sliding window” join.

If one table is partitioned and the other isn't, alternatives to the “sliding window”
join approach.

• One is to spool the partitioned table to a non-partitioned spool file, after which the
join is between two non-partitioned relations.

• Spool the NPPI table to a partitioned spool file (matching the partitioning of the PPI
table), then directly join two identically-partitioned relations.

– This option is available only if the query specifies an equality condition on every column that
is referenced in the partitioning expression.

If both tables are partitioned, possibilities are …

• Spool one of the tables to a spool file with partitioning identical to the other table.

• Spool both tables to non-partitioned spool files.

As usual, the optimizer estimates the cost of all reasonable alternatives, and
chooses the least expensive solution.

 Join Processing Analysis Page 28-74

Join Processing Summary
The facing page summarizes many of the key points regarding Join Processing. There are
three key factors:

1. Physical design choices

2. Availability of COLLECTed STATISTICS for design

3. Quality of SQL coding

Database design is the key to efficient Join Processing because the Optimizer bases its plans
on Primary and Secondary Indexes.

COLLECTed STATISTICS are also vital since the Optimizer needs to know table Row
Counts as well as Rows per Value. Make sure that the Optimizer always has fresh
STATISTICS since data demographics change over time.

MAKE SURE you write efficient SQL code. But remember,

even the best SQL code cannot compensate for poor
database design choices.

Join Processing Analysis Page 28-75

Join Processing Summary

Inefficient joins result from:
• Poor physical design choices

– Lack of indexes
– Inappropriate indexes

• Stale or missing Collected Statistics

• Inefficient SQL code
– Poor SQL code can degrade performance on a good database design.
– Good SQL code cannot compensate for a poor database design.

The system bases join planning on:
• Primary and Secondary Indexes

• Estimated number of rows in each subtable

• Estimated ratio of table rows per index value

COLLECTed STATISTICS may improve join performance.

The fastest merge joins are based on matching Primary Indexes.

Data demographics change over time.

Join plans for the same tables change as demographics changes.

Revisit ALL index (Primary and Secondary) choices regularly. Make sure they are still serving you well.

Data demographics change over time.

Join plans for the same tables change as demographics changes.

Revisit ALL index (Primary and Secondary) choices regularly. Make sure they are still serving you well.

 Join Processing Analysis Page 28-76

Module 28: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Join Processing Analysis Page 28-77

Module 28: Review Questions

1. The best way to be sure what type of Join will occur is to use the EXPLAIN facility.

a. True
b. False

2. When two tables are to be Merge Joined, which is the best case of the following scenarios :

a. The Join column is not a Primary Index of either table.
b. The Join column is the Primary Index of one of the tables.
c. The Join column(s) is the Primary Index of both tables.
d. None of the above

3. Match the four join plans with its correct description.

__ Product Join a. Most efficient types of Join; the only type of join that doesn’t always use all
of the AMPs. The number of AMPs involved will vary.

__ Merge Join b. Based on set subtraction; used for finding rows that don't have a
matching row in the other table. Queries with the NOT IN and EXCEPT
operator lead to this type of join.

__ Nested Join c. Every qualifying row of one table is compared to every qualifying row in the
other table. Rows that match on their WHERE conditions are then saved.

__ Exclusion Join d. Commonly done when the join condition is based on equality. Efficient
because every row is not compared with every row in other table.

ds186034
Sticky Note
dont have to redistribute dont have to duplicate

 Join Processing Analysis Page 28-78

Module 28: Review Questions (cont.)
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Join Processing Analysis Page 28-79

Module 28: Review Questions (cont.)

Fill in the blanks.

4. When joining two PPI tables that are not partitioned in the same manner, a technique available to the
optimizer is referred to as the ___________ window.

5. A direct merge join of two PPI tables when the tables have the same PI and identical partitioning
expressions is referred to as a ________ - based merge join.

6. The term _____________ ____________ refers to an automatic optimization in which the optimizer
determines, based on query conditions, that some partitions can be skipped.

 Join Processing Analysis Page 28-80

Notes

Explains of Joins and Index Choices Page 29-1

Module 29

Teradata Proprietary and Confidential

Explains of Joins and Index Choices

After completing this module, you will be able to:

 Interpret the EXPLAINS of Nested, Merge, and Product Joins.

 Develop Union solutions.

 Explain the importance of Join Accesses in Index selection.

 Use the Index choice guidelines.

 Use the Teradata Index Wizard to analyze secondary index
selections.

 Explains of Joins and Index Choices Page 29-2

Notes

Explains of Joins and Index Choices Page 29-3

Table of Contents

Join Diagramming .. 29-4
Nested Join ... 29-6
Merge Join (Matching Primary Indexes) ... 29-8
Hash Join .. 29-10
Visual Explain (Hash Join) .. 29-12
Merge Join (Joining a Table to Itself) .. 29-14
Three-Table Join .. 29-16

Three-Table Join (cont.) ... 29-18
Product Join .. 29-20

Product Join (cont.) .. 29-22
A “UNION” Solution ... 29-24

A “UNION” Solution (cont.) ... 29-26
Cartesian Product Join ... 29-28
Exclusion Join .. 29-30
Example of PPI to PPI Join .. 29-32
Join ACCESS ... 29-34
Exercise 5 – Sample ... 29-36
Exercise 5 – Making Final Index Choices ... 29-38

Exercise 5 – Making Final Index Choices (cont.) .. 29-40
Exercise 5 – Making Final Index Choices (cont.) .. 29-42
Exercise 5 – Making Final Index Choices (cont.) .. 29-44
Exercise 5 – Making Final Index Choices (cont.) .. 29-46
Exercise 5 – Making Final Index Choices (cont.) .. 29-48

Teradata Index Wizard ... 29-50
Teradata Index Wizard – Main Window .. 29-52

Defining and Using Workloads with Index Wizard ... 29-52
Additional Workload Functions ... 29-52

Teradata Index Wizard – Index Analysis ... 29-54
Teradata Index Wizard – Index Analysis Results .. 29-56

Creating a Workload to Analyze using “DUMP EXPLAIN” .. 29-56
Teradata Index Wizard – Partition Analysis .. 29-58
Teradata Index Wizard – Partition Analysis Results ... 29-60
Teradata Index Wizard – Reports .. 29-62

Workload Reports .. 29-62
Analysis Reports .. 29-62
Index Recommendation Report.. 29-62

Teradata Index Wizard – Validation .. 29-64
Index Validation ... 29-64

Teradata Index Wizard – Validation (View Graph) ... 29-66
Teradata Index Wizard – Creation ... 29-68

Executing Recommendations ... 29-68
Summary – Index Choice Guidelines .. 29-70
Module 29: Review Questions ... 29-72

 Explains of Joins and Index Choices Page 29-4

Join Diagramming
Join Diagramming can save you from costly coding errors by helping you understand what
occurs when Teradata performs a Join. The example on the facing page illustrates a two-
table Join.

Four distinct pieces of information are provided in Join Diagrams. Three of these are
required and one is optional. They are:

 Table Names appear in the boxes to indicate which tables are being joined. 2 to 64
tables can participate in a Join operation. (Required)

 Join Column Name(s) indicate the column(s) used to do the Join, and are based on

the same domain with an equality condition. They appear above the lines between
the tables. At least one Join Column Name is between every pair of tables.
(Required)

 Input Value Name(s) provide Set Selection values. They appear above the boxes

containing the table names. They can be constants, host variables, or macro
parameters which appear in the WHERE clause of the SQL statement. (Optional)

 Output Value Name(s) indicate which column(s), aggregate(s), or expression(s)

will be output from a particular table. They appear below the boxes containing the
table names and there is at least one for the query. (Required)

Explains of Joins and Index Choices Page 29-5

Join Diagramming

join column name(s)
table nametable name

:input value name(s) :input value name(s)

output value name(s) output value name(s)

:INPUT VALUE NAME(S) – Optional

Constants, host variables, or macro parameters that supply Set Selection values.

TABLE NAME
From 2 to 64 tables may participate in a Join operation.

JOIN COLUMN NAME(S)
Based on the same domain and an equality condition.

OUTPUT VALUE NAME(S)
Specify at least one column, aggregate or expression.

 Explains of Joins and Index Choices Page 29-6

Nested Join
In this module, you will study various Joins. You will see different types of information
relating to Joins. These are presented in the same order that you would use when designing
a Teradata query. You would:

 State the query
 Diagram the query
 Code the query
 EXPLAIN the query

You must understand what you are asking the system to do before you

attempt to understand how it does it.

In this example, Step 1 is not a locking step as in the other EXPLAINs that you have seen
since it does not involve all AMPs. The use of the two UPIs allows the locks to be acquired
within the AMP step and immediately released.

The tables used in this Join were created as follows:

CREATE SET TABLE TFACT.Employee, FALLBACK
 (Employee_Number INTEGER NOT NULL,
 Location_Number INTEGER,
 Dept_Number INTEGER,
 Emp_Mgr_Number INTEGER,
 Job_Code INTEGER,
 Last_Name CHAR(20),
 First_Name VARCHAR(20),
 Salary_Amount DECIMAL(10,2))
UNIQUE PRIMARY INDEX (Employee_Number)
INDEX (Job_Code)
INDEX (Dept_Number);

CREATE SET TABLE TFACT.Department, FALLBACK
 (Dept_Number INTEGER NOT NULL,
 Dept_Name CHAR(20 NOT NULL,
 Dept_Mgr_Number INTEGER,
 Budget_Amount DECIMAL(10,2))
UNIQUE PRIMARY INDEX (Dept_Number);

The Employee table has 26,000 rows and the Department table has 1403 rows. Statistics
were collected on the primary indexes and any join columns.

Explains of Joins and Index Choices Page 29-7

Nested Join

Employee
(26,000 rows)

Department
(1403 rows)

Last_Name First_Name Dept_Name

Dept_Number

:Employee_NumberQUERY
EXPLAIN
SELECT Last_Name,

First_Name,
Dept_Name

FROM Employee E
INNER JOIN Department D
ON E.Dept_Number = D.Dept_Number
WHERE E.Employee_Number = 102001;

EXPLANATION 12.0 EXPLAIN
--
1) First, we do a single-AMP JOIN step from TFACT.E by way of the unique primary index

"TFACT.E.Employee_Number = 102001" with a residual condition of ("NOT (TFACT.E.Dept_Number
IS NULL)"), which is joined to TFACT.D by way of the unique primary index "TFACT.D.Dept_Number
= TFACT.E.Dept_Number". TFACT.E and TFACT.D are joined using a nested join, with a join
condition of ("(1=1)"). The input table TFACT.E will not be cached in memory, but it is eligible for
synchronized scanning. The result goes into Spool 1 (one-amp), which is built locally on that AMP.
The size of Spool 1 is estimated with high confidence to be 1 row (69 bytes). The estimated time for
this step is 0.01 seconds.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total estimated
time is 0.01 seconds.

ds186034
Sticky Note
index access inside the join= nested join

ds186034
Sticky Note
could be multiple row but here 1 row

ds186034
Sticky Note

 Explains of Joins and Index Choices Page 29-8

Merge Join (Matching Primary Indexes)
For this example and those that follow, make sure that you understand the Narrative, Join
Diagram and Query before looking at the EXPLAIN output.

You must understand what you are asking the system to do
before you attempt to understand how it does it.

The EXPLAIN tells you that this is a Merge Join. Note that there is no redistribution of
rows or sorting which means that Merge Join Plan is being used. In this example, the Join
Columns are the Primary Indexes of both tables. No redistribution or sorting is needed since
the rows are already on the proper AMPs and in the proper order for Joining. This is an
example of Merge Join Plan M1 from the previous module.

The tables used in this Join were created as follows:

CREATE SET TABLE TFACT.Employee, FALLBACK
 (Employee_Number INTEGER NOT NULL,
 Location_Number INTEGER,
 Dept_Number INTEGER,
 Emp_Mgr_Number INTEGER,
 Job_Code INTEGER,
 Last_Name CHAR(20),
 First_Name VARCHAR(20),
 Salary_Amount DECIMAL(10,2))
UNIQUE PRIMARY INDEX (Employee_Number)
INDEX (Job_Code)
INDEX (Dept_Number);

CREATE SET TABLE TFACT.Emp_Phone, FALLBACK
 (Employee_Number INTEGER,
 Area_Code SMALLINT,
 Phone_Number INTEGER,
 Extension INTEGER)
PRIMARY INDEX (Employee_Number);

The Employee table has 26,000 rows and the Employee_Phone table has 52,000 rows.
Statistics were collected on the primary indexes and any join columns.

Explains of Joins and Index Choices Page 29-9

Merge Join (Matching Primary Indexes)

QUERY
EXPLAIN
SELECT Last_Name, First_Name,

Area_Code, Phone_Number,
Extension

FROM Employee E
INNER JOIN Emp_Phone P
ON E.Employee_Number = P.Employee_Number
ORDER BY 1, 2;

EXPLANATION 12.0 EXPLAIN

: (Locking steps)

4) We do an all-AMPs JOIN step from TFACT.E by way of a RowHash match scan with no residual
conditions, which is joined to TFACT.P. TFACT.E and TFACT.P are joined using a merge join, with a
join condition of ("TFACT.E.Employee_Number = TFACT.P.Employee_Number"). The input table
TFACT.E will not be cached in memory, but it is eligible for synchronized scanning. The result goes
into Spool 1 (group_amps), which is built locally on the AMPs. Then we do a SORT to order Spool 1
by the sort key in spool field1 (TFACT.E.Last_Name, TFACT.E.First_Name). The result spool file will
not be cached in memory. The size of Spool 1 is estimated with low confidence to be 52,000 rows.
The estimated time for this step is 0.12 seconds.

5) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the request.
-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total estimated

time is 0.12 seconds.

Employee
(26,000 rows)

Emp_Phone
(52,000 rows)

Employee_Number

Last_Name First_Name Area_Code
Phone_Number

Extension

ds186034
Sticky Note
no redistribution no duplication means we have an indexalso:here PI on tablesEmplyee_Number it seems

ds186034
Sticky Note
we only have 4 billion hashesso for trillion row table..synonyms..???

 Explains of Joins and Index Choices Page 29-10

Hash Join
The EXPLAIN output tells you that this is Hash Join, however, distribution is of the
Employee table is required. The rows from the employee table are "redistributed (hashed)
across all AMPs". The rows from the department table are placed into memory for each
AMP and are joined to the employee table via a single partition hash join.

The tables used in this Join were created as follows:

CREATE SET TABLE TFACT.Employee, FALLBACK
 (Employee_Number INTEGER NOT NULL,
 Location_Number INTEGER,
 Dept_Number INTEGER,
 Emp_Mgr_Number INTEGER,
 Job_Code INTEGER,
 Last_Name CHAR(20),
 First_Name VARCHAR(20),
 Salary_Amount DECIMAL(10,2))
UNIQUE PRIMARY INDEX (Employee_Number)
INDEX (Job_Code)
INDEX (Dept_Number);

CREATE SET TABLE TFACT.Department, FALLBACK
 (Dept_Number INTEGER NOT NULL,
 Dept_Name CHAR(20) NOT NULL,
 Dept_Mgr_Number INTEGER,
 Budget_Amount DECIMAL(10,2))
UNIQUE PRIMARY INDEX (Dept_Number);

The Employee table has 26,000 rows and the Department table has 1403 rows. Statistics
were collected on the primary indexes and any join columns.

Explains of Joins and Index Choices Page 29-11

Hash Join

Employee
(26,000 rows)

Department
(1403 rows)

Last_Name First_Name Dept_Name

Dept_Number
QUERY
EXPLAIN
SELECT Last_Name,

First_Name,
Dept_Name

FROM Employee E
INNER JOIN Department D
ON E.Dept_Number = D.Dept_Number
ORDER BY 1, 2;

EXPLANATION 12.0 EXPLAIN

: (Locking steps)
4) We do an all-AMPs RETRIEVE step from TFACT.D by way of an all-rows scan with no residual

conditions into Spool 2 (all_amps), which is duplicated on all AMPs. The size of Spool 2 is estimated
with high confidence to be 19,642 rows (726,754 bytes). The estimated time for this step is 0.02
seconds.

5) We do an all-AMPs JOIN step from Spool 2 (Last Use) by way of an all-rows scan, which is joined to
TFACT.E by way of an all-rows scan. Spool 2 and TFACT.E are joined using a single partition
hash_join, with a join condition of ("TFACT.E.Dept_Number = Dept_Number"). The result goes into
Spool 1 (group_amps), which is built locally on the AMPs. Then we do a SORT to order Spool 1 by
the sort key in spool field1 (TFACT.E.Last_Name, TFACT.E.First_Name). The size of Spool 1 is
estimated with low confidence to be 26,000 rows (1,794,000 bytes). The estimated time for this step
is 0.08 seconds.

6) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the request.
-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total estimated

time is 0.10 seconds.

ds186034
Sticky Note
its an indexed access to the other tableThis is for all employeesand the 2nd table is employees for all valid depts ones only (not if nulls)

ds186034
Sticky Note
14 rows * 1403 = ~ 19,642also indeirectly shows us that its a 14 amp system

ds186034
Sticky Note
i wish that this name was memory segment(this one has noting to do with partiiton)=~200K (if linux), which is not a lotta memory (usually...standard configuration)so TD will do multiple mem segment = upto 50 maxif hash join, 1 of the table is smalll engh to be memory resident

ds186034
Sticky Note
eg que from student: 7 nodes (we dont care abt the amps)(duplicate the small set, join to the large set)1. reduce the no of rows that participate2. TD will put only the columns that are necessary will be in spool(we try to reduce spool space usage as much as necessary)

 Explains of Joins and Index Choices Page 29-12

Visual Explain (Hash Join)
The facing page contains output from the Visual Explain facility. This output represents the
Join Query on the previous page. This is a way to visually display the Joins, which will help
you to understand them more fully. Visual Explain is especially helpful when you are
dealing with complex Joins.

Explains of Joins and Index Choices Page 29-13

Visual Explain (Hash Join)

 Explains of Joins and Index Choices Page 29-14

Merge Join (Joining a Table to Itself)
The facing page shows a Self Join involving the employee table. Two aliases for the
employee table (M for manager and E for employee) are defined in the SQL query. This
helps the Optimizer treat the single employee table as two tables.

The EXPLAIN output shows that the rows from table alias E are redistributed and sorted
before being Joined to the rows from table alias M using a Merge Join.

As before, the table used in this Join was created as follows:

The tables used in this Join were created as follows:

CREATE SET TABLE TFACT.Employee, FALLBACK
 (Employee_Number INTEGER NOT NULL,
 Location_Number INTEGER,
 Dept_Number INTEGER,
 Emp_Mgr_Number INTEGER,
 Job_Code INTEGER,
 Last_Name CHAR(20),
 First_Name VARCHAR(20),
 Salary_Amount DECIMAL(10,2))
UNIQUE PRIMARY INDEX (Employee_Number)
INDEX (Job_Code)
INDEX (Dept_Number);

The Employee table has 26,000 rows. Statistics were collected on the primary indexes and
any join columns.

Explains of Joins and Index Choices Page 29-15

Merge Join (Joining a Table to Itself)

QUERY
EXPLAIN
SELECT M.Last_Name, M.First_Name,

E.Last_Name, E.First_Name
FROM Employee M
INNER JOIN Employee E
ON M.Employee_Number = E.Emp_Mgr_Number
ORDER BY 1, 3;

EXPLANATION 12.0 EXPLAIN
--
: (Locking step)
2) Next, we lock TFACT.E for read.
3) We do an all-AMPs RETRIEVE step from TFACT.E by way of an all-rows scan with a condition of

("NOT (TFACT.E.Emp_Mgr_Number IS NULL)") into Spool 2 (all_amps), which is redistributed by
hash code of (TFACT.E.Emp_Mgr_Number) to all AMPs. Then we do a SORT to order Spool 2 by row
hash. The size of Spool 2 is estimated with high confidence to be 26,000 rows (1,170,000 bytes). The
estimated time for this step is 0.05 seconds.

4) We do an all-AMPs JOIN step from TFACT.M by way of a RowHash match scan with no residual
conditions, which is joined to Spool 2 (Last Use) by way of a RowHash match scan. TFACT.M and
Spool 2 are joined using a merge join, with a join condition of ("TFACT.M.Employee_Number =
Emp_Mgr_Number"). The result goes into Spool 1 (group_amps), which is built locally on the AMPs.
Then we do a SORT to order Spool 1 by the sort key in spool field1 (TFACT.M.Last_Name,
TFACT.E.Last_Name). The size of Spool 1 is estimated with low confidence to be 26,000 rows
(2,938,000 bytes). The estimated time for this step is 0.08 seconds.

:

Employee E
(26,000 rows)

Employee M
(26,000 rows)

Employee_Number

Last_Name First_Name Last_Name First_Name

Emp_Mgr_Number

ds186034
Sticky Note
mem was only 40Kwe are not going to duplicate

 Explains of Joins and Index Choices Page 29-16

Three-Table Join
So far, you have only seen the EXPLAINs of Joins involving two tables. In this three-table
Join, you will be able to see how the Optimizer chooses a Join Plan that involves a series of
two two-table Joins.

The purpose of the query is to display the names of all employees, their department names
and their job descriptions. The Join diagram shows that the job, employee and department
tables will all be involved in the Join.

As before, the tables used in this Join were created as follows:

The tables used in this Join were created as follows:

CREATE SET TABLE TFACT.Employee, FALLBACK
 (Employee_Number INTEGER NOT NULL,
 Location_Number INTEGER,
 Dept_Number INTEGER,
 Emp_Mgr_Number INTEGER,
 Job_Code INTEGER,
 Last_Name CHAR(20),
 First_Name VARCHAR(20),
 Salary_Amount DECIMAL(10,2))
UNIQUE PRIMARY INDEX (Employee_Number)
INDEX (Job_Code)
INDEX (Dept_Number);

CREATE SET TABLE TFACT.Department, FALLBACK
 (Dept_Number INTEGER NOT NULL,
 Dept_Name CHAR(20) NOT NULL,
 Dept_Mgr_Number INTEGER,
 Budget_Amount DECIMAL(10,2))
UNIQUE PRIMARY INDEX (Dept_Number);

CREATE SET TABLE TFACT.Job, FALLBACK
 (Job_Code INTEGER NOT NULL,
 Job_Desc CHAR(20) NOT NULL DEFAULT 'Job Description ')
UNIQUE PRIMARY INDEX (Job_Code)
INDEX (Job_Desc);

The Employee table has 26,000 rows, the Department table has 1403 rows, and the Job table
has 869 rows. Statistics were collected on the primary indexes and any join columns.

Explains of Joins and Index Choices Page 29-17

Three-Table Join

QUERY

EXPLAIN
SELECT E.Last_Name,

E.First_Name,
D.Dept_Name,
J.Job_Desc

FROM Employee E
INNER JOIN Department D ON E.Dept_Number = D.Dept_Number
INNER JOIN Job J ON E.job_code = J.job_code
ORDER BY 3, 1, 2;

EXPLAIN output on following page.

Employee
(26,000 rows)

Department
(1403 rows)

Job_Desc Last_Name First_Name Dept_Name

Dept_NumberJob
(869 rows)

Job_Code

ds186034
Sticky Note
order matters for outer join not here

ds186034
Sticky Note
rows are not on the same amps

 Explains of Joins and Index Choices Page 29-18

Three-Table Join (cont.)
The EXPLAIN output shows that the duplication of rows is done in parallel. The rows from
the job and department tables are duplicated on all AMPs and then sorted. The rows from
the employee table are first joined to the Job table (Spool) via a hash join.

The query and table definitions are repeated for your convenience:

EXPLAIN
SELECT Last_Name,
 First_Name,
 Dept_Name,
 Job_Desc
FROM Employee E
INNER JOIN Department D ON E.Dept_Number = D.Dept_Number
INNER JOIN Job J ON E.Job_Code = J.Job_Code
ORDER BY 3, 1, 2;

CREATE SET TABLE TFACT.Employee, FALLBACK
 (Employee_Number INTEGER NOT NULL,
 Location_Number INTEGER,
 Dept_Number INTEGER,
 Emp_Mgr_Number INTEGER,
 Job_Code INTEGER,
 Last_Name CHAR(20),
 First_Name VARCHAR(20),
 Salary_Amount DECIMAL(10,2))
UNIQUE PRIMARY INDEX (Employee_Number)
INDEX (Job_Code)
INDEX (Dept_Number);

CREATE SET TABLE TFACT.Department, FALLBACK
 (Dept_Number INTEGER NOT NULL,
 Dept_Name CHAR(20) NOT NULL,
 Dept_Mgr_Number INTEGER,
 Budget_Amount DECIMAL(10,2))
UNIQUE PRIMARY INDEX (Dept_Number);

CREATE SET TABLE TFACT.Job, FALLBACK
 (Job_Code INTEGER NOT NULL,
 Job_Desc CHAR(20) NOT NULL DEFAULT 'Job Description ')
UNIQUE PRIMARY INDEX (Job_Code)
INDEX (Job_Desc);

Explains of Joins and Index Choices Page 29-19

Three-Table Join (cont.)

EXPLANATION 12.0 EXPLAIN
--
: (Locking steps)
5) We execute the following steps in parallel.

1) We do an all-AMPs RETRIEVE step from TFACT.D by way of an all-rows scan with no residual
conditions into Spool 2 (all_amps), which is duplicated on all AMPs. The size of Spool 2 is
estimated with high confidence to be 19,642 rows (726,754 bytes). The estimated time for this
step is 0.02 seconds.

2) We do an all-AMPs RETRIEVE step from TFACT.J by way of an all-rows scan with no residual
conditions into Spool 3 (all_amps), which is duplicated on all AMPs. The size of Spool 3 is
estimated with high confidence to be 12,166 rows (450,142 bytes). The estimated time for this
step is 0.01 seconds.

6) We do an all-AMPs JOIN step from Spool 2 (Last Use) by way of an all-rows scan, which is joined to
TFACT.E by way of an all-rows scan with a condition of ("NOT (TFACT.E.Job_Code IS NULL)"). Spool
2 and TFACT.E are joined using a single partition hash_ join, with a join condition of
("TFACT.E.Dept_Number = Dept_Number"). The result goes into Spool 4 (all_amps), which is built
locally on the AMPs. The size of Spool 4 is estimated with low confidence to be 26,000 rows
(1,690,000 bytes). The estimated time for this step is 0.04 seconds.

7) We do an all-AMPs JOIN step from Spool 3 (Last Use) by way of an all-rows scan, which is joined to
Spool 4 (Last Use) by way of an all-rows scan. Spool 3 and Spool 4 are joined using a single partition
hash join, with a join condition of ("Job_Code = Job_Code"). The result goes into Spool 1
(group_amps), which is built locally on the AMPs. Then we do a SORT to order Spool 1 by the sort
key in spool field1 (TFACT.D.Dept_Name, TFACT.E.Last_Name, TFACT.E.First_Name). The size of
Spool 1 is estimated with low confidence to be 26,000 rows (3,822,000 bytes). The estimated time for
this step is 0.08 seconds.

8) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the request.
-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total estimated

time is 0.14 seconds.

ds186034
Sticky Note

ds186034
Sticky Note
14*860=13166

ds186034
Sticky Note
this is going to be a memory join..

 Explains of Joins and Index Choices Page 29-20

Product Join
The query in this example results in a Product Join involving the employee and department
tables. The query is designed to return the names and department names of all employees
who are either workers or managers. Managers may be listed both as an employee of a
department and once as a manager of a department (if they are employed by a department
other than the one which they manage).

The EXPLAIN tells you that this is a Product Join. The Join makes almost 40,000,000
comparisons and uses considerable system resources.

As before, the tables used in this Join were created as follows:

CREATE SET TABLE TFACT.Employee, FALLBACK
 (Employee_Number INTEGER NOT NULL,
 Location_Number INTEGER,
 Dept_Number INTEGER,
 Emp_Mgr_Number INTEGER,
 Job_Code INTEGER,
 Last_Name CHAR(20),
 First_Name VARCHAR(20),
 Salary_Amount DECIMAL(10,2))
UNIQUE PRIMARY INDEX (Employee_Number)
INDEX (Job_Code)
INDEX (Dept_Number);

CREATE SET TABLE TFACT.Department, FALLBACK
 (Dept_Number INTEGER NOT NULL,
 Dept_Name CHAR(20) NOT NULL,
 Dept_Mgr_Number INTEGER,
 Budget_Amount DECIMAL(10,2))
UNIQUE PRIMARY INDEX (Dept_Number);

The Employee table has 26,000 rows and the Department table has 1403 rows. Statistics
were collected on the primary indexes and any join columns.

Explains of Joins and Index Choices Page 29-21

Product Join

QUERY
EXPLAIN
SELECT D.Dept_Name,

E.Employee_Number,
E.Last_Name,
E.First_Name

FROM Employee E
INNER JOIN Department D
ON E.Dept_Number = D.Dept_Number
OR E.Employee_Number = D.Dept_Mgr_Number
ORDER BY 1, 2, 3, 4;

EXPLAIN output on following page.

Employee
(26,000 rows)

Department
(1403 rows)

Employee_Number Last_Name First_Name Dept_Name

Dept_Number

Employee_Number

Dept_Mgr_Number

ds186034
Sticky Note
empl outside the dep tthat are reporting to this mgrduplicate the small set - product join

 Explains of Joins and Index Choices Page 29-22

Product Join (cont.)
The EXPLAIN tells you that this is a Product Join. This product join uses considerable
system resources for even small tables.

The query and table definitions are repeated for your convenience:

EXPLAIN
SELECT D.Dept_Name,
 E.Employee_Number,
 E.Last_Name,
 E.First_Name
FROM Employee E
INNER JOIN Department D
ON E.Dept_Number = D.Dept_Number
OR E.Employee_Number = D.Dept_Mgr_Number
ORDER BY 1, 2, 3, 4;

CREATE SET TABLE TFACT.Employee, FALLBACK
 (Employee_Number INTEGER NOT NULL,
 Location_Number INTEGER,
 Dept_Number INTEGER,
 Emp_Mgr_Number INTEGER,
 Job_Code INTEGER,
 Last_Name CHAR(20),
 First_Name VARCHAR(20),
 Salary_Amount DECIMAL(10,2))
UNIQUE PRIMARY INDEX (Employee_Number)
INDEX (Job_Code)
INDEX (Dept_Number);

CREATE SET TABLE TFACT.Department, FALLBACK
 (Dept_Number INTEGER NOT NULL,
 Dept_Name CHAR(20) NOT NULL,
 Dept_Mgr_Number INTEGER,
 Budget_Amount DECIMAL(10,2))
UNIQUE PRIMARY INDEX (Dept_Number);

The Employee table has 26,000 rows and the Department table has 1403 rows. Statistics
were collected on the primary indexes and any join columns.

Explains of Joins and Index Choices Page 29-23

Product Join (cont.)

EXPLANATION 12.0 EXPLAIN

1) First, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent global deadlock for

TFACT.D.
2) Next, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent global deadlock for

TFACT.E.
3) We lock TFACT.D for read, and we lock TFACT.E for read.
4) We do an all-AMPs RETRIEVE step from TFACT.D by way of an all-rows scan with no residual

conditions into Spool 2 (all_amps), which is duplicated on all AMPs. The size of Spool 2 is estimated
with high confidence to be 19,642 rows (805,322 bytes). The estimated time for this step is 0.02
seconds.

5) We do an all-AMPs JOIN step from Spool 2 (Last Use) by way of an all-rows scan, which is joined to
TFACT.E by way of an all-rows scan with no residual conditions. Spool 2 and TFACT.E are joined
using a product join, with a join condition of ("(TFACT.E.Dept_Number = Dept_Number) OR
(TFACT.E.Employee_Number = Dept_Mgr_Number)"). The result goes into Spool 1 (group_amps),
which is built locally on the AMPs. Then we do a SORT to order Spool 1 by the sort key in spool
field1 (TFACT.D.Dept_Name, TFACT.E.Employee_Number, TFACT.E.Last_Name,
TFACT.E.First_Name). The size of Spool 1 is estimated with low confidence to be 27,403 rows
(3,809,017 bytes). The estimated time for this step is 1.56 seconds.

6) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the request.
-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total estimated

time is 1.58 seconds.

 Explains of Joins and Index Choices Page 29-24

A “UNION” Solution
This example illustrates that sometimes there are more efficient ways for coding an SQL
query. The query on the facing page is designed to yield the same answer set as the previous
SQL query.

The query is:

EXPLAIN
SELECT D.Dept_Name, E.Employee_Number, E.Last_Name, E.First_Name
FROM Employee E INNER JOIN Department D
ON E.Dept_Number = D.Dept_Number
UNION
SELECT D.Dept_Name, E.Employee_Number, E.Last_Name, E.First_Name
FROM Employee E INNER JOIN Department D
ON E.Employee_Number = D.Dept_Mgr_Number
ORDER 1, 2, 3, 4;

This example illustrates that sometimes there are more efficient ways for coding an SQL
query. The query on the facing page is designed to yield the same answer set as the previous
SQL query. Both queries return 27,342 rows and exactly the same answer set.

A key to understanding the UNION and UNION ALL is that a UNION will remove any
duplicate rows from the output and UNION ALL will keep all duplicate rows.

However, if the queries were changed slightly and the Employee_Number column was not
included, the first statement (Product Join via the OR) would still return 27,342 rows.
However, the UNION solution would only return 24,035 rows.

This discussion is continued on the following text page and illustrates an example where a
PRODUCT JOIN and a UNION might not produce the same result set.

ds186034
Sticky Note
2 sep merge joincause index is uniqueness so same result as before

Explains of Joins and Index Choices Page 29-25

A “UNION” Solution

Employee
(26,000 rows)

Department
(1403 rows)

Employee_Number Last_Name First_Name Dept_Name

Dept_Number

Employee_Number

Dept_Mgr_Number

QUERY
EXPLAIN SELECT D.Dept_Name, E.Employee_Number, E.Last_Name, E.First_Name

FROM Employee E INNER JOIN Department D
ON E.Dept_Number = D.Dept_Number
UNION
SELECT D.Dept_Name, E.Employee_Number, E.Last_Name, E.First_Name
FROM Employee E INNER JOIN Department D
ON E.Employee_Number = D.Dept_Mgr_Number
ORDER BY 1, 2, 3, 4;

EXPLAIN output on following page.

 Explains of Joins and Index Choices Page 29-26

A “UNION” Solution (cont.)
A simple example is provided with the following data in Employee and the Department
tables. Assume that the Employee table has two different employees (different Employee
Numbers) that have the same name “Paul Winters”. The difference in the three examples is
that a UNION deletes any duplicate rows and a UNION ALL keeps all duplicate rows.

Employee Rows: Dept_Number Employee_Number Last_Name First_Name
 1104 101056 Winters Paul
 1104 101078 Winters Paul

Department Row: Dept_Number Dept_Name Dept_Mgr_Number
 1104 Education 101078

In essence, the following three queries will each return a different answer set.

SELECT D.Dept_Name, E.Last_Name, E.First_Name
FROM Employee E
INNER JOIN Department D
ON E.Dept_Number = D.Dept_Number
OR E.Employee_Number = D.Dept_Mgr_Number;

 Returns: Dept_Name Last_Name First_Name
 Education Winters Paul
 Education Winters Paul

SELECT D.Dept_Name, E.Last_Name, E.First_Name
FROM Employee E INNER JOIN Department D
ON E.Dept_Number = D.Dept_Number
UNION
SELECT D.Dept_Name, E.Last_Name, E.First_Name
FROM Employee E INNER JOIN Department D
ON E.Employee_Number = D.Dept_Mgr_Number;

 Returns: Dept_Name Last_Name First_Name
 Education Winters Paul

SELECT D.Dept_Name, E.Last_Name, E.First_Name
FROM Employee E INNER JOIN Department D
ON E.Dept_Number = D.Dept_Number
UNION ALL
SELECT D.Dept_Name, E.Last_Name, E.First_Name
FROM Employee E INNER JOIN Department D
ON E.Employee_Number = D.Dept_Mgr_Number;

 Returns: Dept_Name Last_Name First_Name
 Education Winters Paul
 Education Winters Paul
 Education Winters Paul

Explains of Joins and Index Choices Page 29-27

A “UNION” Solution (cont.)

4) We do an all-AMPs RETRIEVE step from TFACT.D by way of an all-rows scan with no residual
conditions into Spool 2 (all_amps), which is duplicated on all AMPs. The size of Spool 2 is estimated
with high confidence to be 19,642 rows (726,754 bytes). The estimated time for this step is 0.02
seconds.

5) We do an all-AMPs JOIN step from Spool 2 (Last Use) by way of an all-rows scan, which is joined to
TFACT.E by way of an all-rows scan. Spool 2 and TFACT.E are joined using a single partition hash_
join, with a join condition of ("TFACT.E.Dept_Number = Dept_Number"). The result goes into Spool 1
(group_amps), which is redistributed by the hash code of (TFACT.E.First_Name,
TFACT.E.Last_Name, TFACT.E.Employee_Number, TFACT.D.Dept_Name) to all AMPs. The size of
Spool 1 is estimated with low confidence to be 26,000 rows (3,614,000 bytes). The estimated time for
this step is 0.09 seconds.

6) We do an all-AMPs RETRIEVE step from TFACT.D by way of an all-rows scan with a condition of
("NOT (TFACT.D.Dept_Mgr_Number IS NULL)") into Spool 3 (all_amps), which is redistributed by the
hash code of (TFACT.D.Dept_Mgr_Number) to all AMPs. Then we do a SORT to order Spool 3 by row
hash. The size of Spool 3 is estimated with high confidence to be 1,403 rows (51,911 bytes). The
estimated time for this step is 0.01 seconds.

7) We do an all-AMPs JOIN step from Spool 3 (Last Use) by way of a RowHash match scan, which is
joined to TFACT.E by way of a RowHash match scan with no residual conditions. Spool 3 and
TFACT.E are joined using a merge join, with a join condition of ("TFACT.E.Employee_Number =
Dept_Mgr_Number"). The result goes into Spool 1 (group_amps), which is redistributed by the hash
code of (TFACT.E.First_Name, TFACT.E.Last_Name, TFACT.E.Employee_Number,
TFACT.D.Dept_Name) to all AMPs. Then we do a SORT to order Spool 1 by the sort key in spool
field1 eliminating duplicate rows. The size of Spool 1 is estimated with low confidence to be 27,403
rows (3,809,017 bytes). The estimated time for this step is 0.06 seconds.

8) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the request.
-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total estimated

time is 0.18 seconds.

 Explains of Joins and Index Choices Page 29-28

Cartesian Product Join
The example on the facing page illustrates a Cartesian Product Join.

It confirms the admonishment that no SQL should be allowed into production until it has
been EXPLAINed and approved.

The TEST table used in this Join was created as follows:

CREATE TABLE Test, NO FALLBACK
 (col1 INTEGER NOT NULL
 ,col2 INTEGER
 ,col3 INTEGER
 ,col4 INTEGER
 ,col5 CHAR(20))
PRIMARY INDEX (col1);

The TEST table was populated with 4000 rows and statistics were collected on the primary
index.

Explains of Joins and Index Choices Page 29-29

Cartesian Product Join

Test
(4000 rows)

Test
(4000 rows)

Test
(4000 rows)

Test
(4000 rows)

QUERY
EXPLAIN SELECT * FROM Test A CROSS JOIN Test B

CROSS JOIN Test C CROSS JOIN Test D;

: (locking steps) 12.0 EXPLAIN

3) We do an all-AMPs RETRIEVE step from TFACT.D by way of an all-rows scan with no residual conditions into Spool 2
(all_amps), which is duplicated on all AMPs. The size of Spool 2 is estimated with high confidence to be 56,000 rows
(2,744,000 bytes). The estimated time for this step is 0.04 seconds.

4) We do an all-AMPs JOIN step from TFACT.B by way of an all-rows scan with no residual conditions, which is joined
to Spool 2 by way of an all-rows scan. TFACT.B and Spool 2 are joined using a product join, with a join condition of
("(1=1)"). The result goes into Spool 4 (all_amps), which is built locally on the AMPs. The result spool file will not be
cached in memory. The size of Spool 4 is estimated with high confidence to be 16,000,000 rows (1,360,000,000
bytes). The estimated time for this step is 15.25 seconds.

5) We do an all-AMPs JOIN step from TFACT.A by way of an all-rows scan with no residual conditions, which is joined
to Spool 2 (Last Use) by way of an all-rows scan. TFACT.A and Spool 2 are joined using a product join, with a join
condition of ("(1=1)"). The result goes into Spool 5 (all_amps), which is duplicated on all AMPs. The result spool file
will not be cached in memory. The size of Spool 5 is estimated with high confidence to be 224,000,000 rows
(19,040,000,000 bytes). The estimated time for this step is 3 minutes and 3 seconds.

6) We do an all-AMPs JOIN step from Spool 4 (Last Use) by way of an all-rows scan, which is joined to Spool 5 (Last
Use) by way of an all-rows scan. Spool 4 and Spool 5 are joined using a product join, with a join condition of
("(1=1)"). The result goes into Spool 1 (group_amps), which is built locally on the AMPs. The result spool file will
not be cached in memory. The size of Spool 1 is estimated with high confidence to be 256,000,000,000,000 rows (***
bytes). The estimated time for this step is 115,883 hours and 2 minutes.

7) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the request.
-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total estimated time is 115,883

hours and 5 minutes.

Note: The optimizer recognizes that Spool 2 would be the same for aliases D and C
and reuses Spool 2 (for alias C) in step 5.

 Explains of Joins and Index Choices Page 29-30

Exclusion Join
The query on the facing page is designed to show all Sales Representatives who do not have
any customers. Here the employee table is merged with the customer table. The Join
Diagram shows that the employee table will be joined to the customer table via the
Employee_Number (Sales_Emp_Number) column.

The EXPLAIN output tells you that the Optimizer will choose an Exclusion Merge Join. In
fact, this is the same query used to illustrate the Exclusion Merge Join in the last module.

NOT IN operation uses three-value logic (equal, not equal, null). If the subquery side of the
join contains a null, then the entire answer becomes null. The testing for these null values
adds additional processing overhead to NOT IN operation. To reduce the tests down to two-
value logic, equal, not equal, the join columns must be declared NOT NULL.

The Employee table was populated with 26,000 rows and the Customer table was populated
with 5,000 rows. Statistics were collected on the primary indexes and any “join” columns.

The complete EXPLAIN follows:

1-3) Locking steps
4) We do an all-AMPs RETRIEVE step from TFACT.C by way of an all-rows scan with a condition of

("NOT (TFACT.C.sales_emp_number IS NULL)") into Spool 3 (all_amps), which is redistributed by the
hash code of (TFACT.C.sales_emp_number) to all AMPs. Then we do a SORT to order Spool 3 by row
hash and the sort key in spool field1 eliminating duplicate rows. The size of Spool 3 is estimated with
high confidence to be 5,000 rows (125,000 bytes). The estimated time for this step is 0.03 seconds.

5) We do an all-AMPs SUM step to aggregate from Spool 3 by way of an all-rows scan. Aggregate
Intermediate Results are computed globally, then placed in Spool 4.

6) We do an all-AMPs RETRIEVE step from Spool 4 (Last Use) by way of an all-rows scan into Spool 2
(all_amps), which is duplicated on all AMPs.

7) We do an all-AMPs JOIN step from TFACT.E by way of an all-rows scan with a condition of
("TFACT.E.Job_Code = 3100"), which is joined to Spool 3 by way of an all-rows scan. TFACT.E and
Spool 3 are joined using an exclusion merge join, with a join condition of
("TFACT.E.Employee_Number = sales_emp_number"), and null value information in Spool 2. Skip this
join step if null exists. The result goes into Spool 1 (group_amps), which is built locally on the AMPs.
The size of Spool 1 is estimated with index join confidence to be 98 rows (4,802 bytes). The estimated
time for this step is 0.12 seconds.

8) We do an all-AMPs RETRIEVE step from Spool 3 (Last Use) by way of an all-rows scan into Spool 6
(all_amps), which is redistributed by the hash code of (TFACT.C.sales_emp_number) to all AMPs. Then
we do a SORT to order Spool 6 by row hash, and null value information in Spool 2. Skip this retrieve
step if there is no null. The size of Spool 6 is estimated with high confidence to be 5,000 rows (125,000
bytes). The estimated time for this step is 0.03 seconds.

9) We do an all-AMPs JOIN step from TFACT.E by way of an all-rows scan with a condition of
("TFACT.E.Job_Code = 3100"), which is joined to Spool 6 (Last Use) by way of an all-rows scan.
TFACT.E and Spool 6 are joined using an exclusion merge join, with a join condition of
("TFACT.E.Employee_Number = sales_emp_number"), and null value information in Spool 2 (Last
Use). Skip this join step if there is no null. The result goes into Spool 1 (group_amps), which is built
locally on the AMPs. The size of Spool 1 is estimated with index join confidence to be 98 rows (4,802
bytes). The estimated time for this step is 0.12 seconds.

10) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the request.
-> The contents of Spool 1 are sent back to the user as the result of statement 1.

Explains of Joins and Index Choices Page 29-31

Exclusion Join

QUERY
EXPLAIN
SELECT Last_Name, First_Name
FROM Employee E
WHERE Job_Code = 3100
AND Employee_Number
NOT IN (SELECT Sales_Emp_Number FROM Customer C WHERE Sales_Emp_Number IS NOT NULL);

EXPLANATION 12.0 EXPLAIN
--
4) We do an all-AMPs RETRIEVE step from TFACT.C by way of an all-rows scan with a condition of

("NOT (TFACT.C.sales_emp_number IS NULL)") into Spool 3 (all_amps), which is redistributed by the
hash code of (TFACT.C.sales_emp_number) to all AMPs. Then we do a SORT to order Spool 3 by row
hash and the sort key in spool field1 eliminating duplicate rows. The size of Spool 3 is estimated with
high confidence to be 5,000 rows (125,000 bytes). The estimated time for this step is 0.03 seconds.

5) We do an all-AMPs SUM step to aggregate from Spool 3 by way of an all-rows scan. Aggregate
Intermediate Results are computed globally, then placed in Spool 4.

6) We do an all-AMPs RETRIEVE step from Spool 4 (Last Use) by way of an all-rows scan into Spool 2
(all_amps), which is duplicated on all AMPs.

7) We do an all-AMPs JOIN step from TFACT.E by way of an all-rows scan with a condition of
("TFACT.E.Job_Code = 3100"), which is joined to Spool 3 by way of an all-rows scan. TFACT.E and
Spool 3 are joined using an exclusion merge join, with a join condition of
("TFACT.E.Employee_Number = sales_emp_number"), and null value information in Spool 2. Skip
this join step if null exists. The result goes into Spool 1 (group_amps), which is built locally on the
AMPs. The size of Spool 1 is estimated with index join confidence to be 98 rows (4,802 bytes). The
estimated time for this step is 0.12 seconds.

Employee
(26,000 rows)

Customer
(5000 rows)

Employee_Number

Last_Name First_Name

Job_Code (3100)

 Explains of Joins and Index Choices Page 29-32

Example of PPI to PPI Join
The complete EXPLAIN example is shown below.

EXPLAIN
SELECT *
FROM Orders_PPI A
INNER JOIN Orders_PPI_n B
ON A.orderid = B.orderid
AND A.orderdate = B.orderdate;

1) First, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent
global deadlock for TFACT.B.

2) Next, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent
global deadlock for TFACT.A.

3) We lock TFACT.B for read, and we lock TFACT.A for read.
4) We do an all-AMPs JOIN step from TFACT.B by way of a RowHash match scan with

no residual conditions, which is joined to TFACT.A by way of a RowHash match scan
with no residual conditions. TFACT.B and TFACT.A are joined using a rowkey-based
merge join, with a join condition of ("(TFACT.A.orderid = TFACT.B.orderid) AND
(TFACT.A.orderdate = TFACT.B.orderdate)"). The result goes into Spool 1
(group_amps), which is built locally on the AMPs. The size of Spool 1 is estimated with
low confidence to be 3,600 rows (558,000 bytes). The estimated time for this step is
0.11 seconds.

5) Finally, we send out an END TRANSACTION step to all AMPs involved in processing
the request.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total
estimated time is 0.11 seconds.

Note: Statistics were collected on both tables on orderid and orderdate.

Explains of Joins and Index Choices Page 29-33

Example of PPI to PPI Join

QUERY
EXPLAIN

SELECT *
FROM Orders_PPI A
INNER JOIN Orders_PPI_n B
ON A.orderid = B.orderid
AND A.orderdate = B.orderdate;

EXPLANATION 12.0 EXPLAIN
--

: (Locking steps)
4) We do an all-AMPs JOIN step from TFACT.B by way of a RowHash match scan with no residual

conditions, which is joined to TFACT.A by way of a RowHash match scan with no residual
conditions. TFACT.B and TFACT.A are joined using a rowkey-based merge join, with a join
condition of ("(TFACT.A.orderid = TFACT.B.orderid) AND (TFACT.A.orderdate =
TFACT.B.orderdate)"). The result goes into Spool 1 (group_amps), which is built locally on the
AMPs. The size of Spool 1 is estimated with low confidence to be 3,600 rows (558,000 bytes). The
estimated time for this step is 0.11 seconds.

5) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the request.
-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total estimated

time is 0.11 seconds.

The Primary Index and the partitioning
expression for Orders_PPI and
Orders_PPI_n are the same.

 Explains of Joins and Index Choices Page 29-34

Join ACCESS
Join ACCESS occurs whenever a column appears in an Equality Join constraint. The
example at the top of the facing page features an Equality Join constraint (Table1.Column =
Table2.Column). The Join ACCESS occurs on the ColName column.

Join Access demographics come from Application and Transaction Modeling, and are
expressed in two ways:

 Join Frequency, which is a measure of how often annually, all known transactions
access rows from the table through a Join on this column.

 Join Rows, which is a measure of how many rows are accessed annually through

joins on this column across all transactions.

Index choices can greatly affect the Join Type, or other access method used:

 UPIs or USIs may make Nested Joins possible.

 NUSIs can only be used for Set Selection in most Joins or to access Table 2 in a

Nested Join.

 USIs and NUSIs do not participate in Join Conditions (except in Nested Joins).

Only PIs participate in non-Nested Join Conditions.

Explains of Joins and Index Choices Page 29-35

Join Access

• Join Access is how often a column appears in an equality constraint.

e.g., ON Table1.colname = Table2.colname

• Two metrics that represent join access are:

Join Frequency:

How often annually all known transaction access rows from the table through a
join on this column.

Join Rows:

How many rows are accessed annually through joins on this column across all
transactions.

• The demographics result from activity modeling.

• Index choices determine the join type or other access method.

 Explains of Joins and Index Choices Page 29-36

Exercise 5 – Sample
In this exercise, you will make final index choices (based on Join Access demographics) for
the same tables you used in Exercises 2, 3, and 4. You will identify the columns that
statistics should be collected.

The Final Index Choice Guidelines are:

 Choose one Primary Index (UPI or NUPI) utilizing Join Access demographics
 Do not carry identical Primary and Secondary Indexes

The example on the facing page provides you with an example of how to apply these
guidelines.

Explains of Joins and Index Choices Page 29-37

Exercise 5 – Sample

Example 60,000,000
Rows A B C D E F G H

PK/FK PK,SA FK,NN NN,ND

Value Access 5K 2.6K 0 500K 0 0 0 52
Range Access 12 0 0 0 0 0 0 4K

Join Access 1M 0 1K 0 0 0 0 0
Join Rows 50M 0 5K 0 0 0 0 0

Distinct Values 60M 7M 1.5M 60M 8 15M 15M 700
Max Rows/Value 1 12 500 1 8M 9 725K 90K
Max Rows/NULL 0 5 0 0 0 725K 5 10K

Typical Rows/Value 1 7 35 1 7M 3 3 80K
Change Rating 0 1 5 3 0 4 4 9

PI/SI

Collect Statistics (Y/N)

On the following pages, there are sample tables with
change row and value access demographics.

• Make your final index choices, as shown below.
• Identify columns to collect statistics on.
• Join Access demographics have been added.

Final Index Choice Guidelines:

• Choose ONE Primary Index (UPI or NUPI)
utilizing Join Access demographics.

• Do not carry identical Primary and
Secondary Indexes.

USI
UPI NUPI

NUSI USI

Y Y YY

ds186034
Sticky Note
nusi or nupi collect statsB: if nupi no brana = yesC: yesd: its UPI...no value of statsH: it is so volatilelet syst do dynamic sample on it

ds186034
Sticky Note
1 row per value as welland if u have a small table then collect stats on small table (100rows/amp eg)optimizer knows it (its unique so 1 row per value) but it doesn nt knw no of rows1 row per value - dynamic sampleUPI large noUPI small i do(sample or partition)on small table partition is good or___is gud

ds186034
Sticky Note
join access 1mdemographic choices UPI or NUPI

ds186034
Sticky Note
D:alot of accessesno dupsso leave USI

ds186034
Sticky Note
where stats:a: cause we have a lotta join = yes== sample or at least partitiondynamic stat in w place1: row ct 2: on indexed colns(not on any non indexed cols)we assume 10%

 Explains of Joins and Index Choices Page 29-38

Exercise 5 – Making Final Index Choices
In this exercise, you will make final index choices (based on Join Access demographics) for
the same tables you used in Exercises 2, 3, and 4. You will identify the columns that
statistics should be collected.

The Final Index Choice Guidelines are:

 Choose one Primary Index (UPI or NUPI) utilizing Join Access demographics
 Do not carry identical Primary and Secondary Indexes

The example on the facing page provides you with an example of how to apply these
guidelines.

Explains of Joins and Index Choices Page 29-39

Exercise 5 – Making Final Index Choices

ENTITY 1

100,000,000
Rows A B C D E F

PK/FK PK,UA

Value Access 50K 0 0 0 0 0
Range Access 0 0 0 0 0 0

Join Access 10M 0 0 0 0 0
Join Rows 10M 0 0 0 0 0

Distinct Values 100M 95M 300K 250K 40M 1M
Max Rows/Value 1 2 400 350 3 110
Max Rows/NULL 0 0 0 0 1.5M 0

Typical Rows/Value 1 1 325 300 2 90
Change Rating 0 3 1 1 1 1

PI/SI

Collect Statistics (Y/N)

USI
UPI NUPI NUPI NUPI

ds186034
Sticky Note
no access no joins on any ohter colsdynamic sample might be quiet good..

ds186034
Line

ds186034
Line

ds186034
Line

ds186034
Line

 Explains of Joins and Index Choices Page 29-40

Exercise 5 – Making Final Index Choices (cont.)
In this exercise, you will make final index choices (based on Join Access demographics) for
the same tables you used in Exercises 2, 3, and 4. You will identify the columns that
statistics should be collected.

The Final Index Choice Guidelines are:

 Choose one Primary Index (UPI or NUPI) utilizing Join Access demographics
 Do not carry identical Primary and Secondary Indexes

The example on the facing page provides you with an example of how to apply these
guidelines.

Explains of Joins and Index Choices Page 29-41

Exercise 5 – Making Final Index Choices (cont.)

ENTITY 2

10,000,000
Rows G H I J K L

PK/FK PK,SA

Value Access 5K 365 12 12 0 0
Range Access 12 0 0 0 0 260

Join Access 100M 0 0 0 0 0
Join Rows 100M 0 0 0 0 0

Distinct Values 10M 100K 9M 12 50 180K
Max Rows/Value 1 200 2 1M 240K 60
Max Rows/NULL 0 0 100K 0 0 0

Typical Rows/Value 1 100 1 800K 190K 50
Change Rating 0 0 9 1 2 0

PI/SI

Collect Statistics (Y/N)

NUPIUPI NUPI
USI NUSI VONUSI

ds186034
Sticky Note
all the joins are here so make it a UPI sim ple

ds186034
Sticky Note
query runs once a day

 Explains of Joins and Index Choices Page 29-42

Exercise 5 – Making Final Index Choices (cont.)
In this exercise, you will make final index choices (based on Join Access demographics) for
the same tables you used in Exercises 2, 3, and 4. You will identify the columns that
statistics should be collected.

The Final Index Choice Guidelines are:

 Choose one Primary Index (UPI or NUPI) utilizing Join Access demographics
 Do not carry identical Primary and Secondary Indexes

The example on the facing page provides you with an example of how to apply these
guidelines.

Explains of Joins and Index Choices Page 29-43

Exercise 5 – Making Final Index Choices (cont.)

DEPENDENT

5,000,000
Rows A M N O P Q

PK/FK PK NN,ND
FK SA

Value Access 0 0 0 0 0 0
Range Access 0 0 0 0 0 0

Join Access 700K 0 0 0 0 0
Join Rows 1M 0 0 0 0 0

Distinct Values 2M 50 90K 3M 5M 2M
Max Rows/Value 4 200K 75 2 1 5
Max Rows/NULL 0 0 0 390K 0 1M

Typical Rows/Value 1 60K 50 1 1 1
Change Rating 0 0 3 1 0 1

PI/SI

Collect Statistics (Y/N)

USI USI

UPI
NUPI

UPI

ds186034
Sticky Note
cancel this cause joins only on A

ds186034
Sticky Note
this to maintain uniqueness betn A and M

ds186034
Sticky Note
if we want uniquenessbutcust may choose not toie to enforce uniqueness at db level (they might say we have confirmed that at load)

ds186034
Sticky Note
we have nupi - collect stats - no brana

 Explains of Joins and Index Choices Page 29-44

Exercise 5 – Making Final Index Choices (cont.)
In this exercise, you will make final index choices (based on Join Access demographics) for
the same tables you used in Exercises 2, 3, and 4. You will identify the columns that
statistics should be collected.

The Final Index Choice Guidelines are:

 Choose one Primary Index (UPI or NUPI) utilizing Join Access demographics
 Do not carry identical Primary and Secondary Indexes

The example on the facing page provides you with an example of how to apply these
guidelines.

Explains of Joins and Index Choices Page 29-45

Exercise 5 – Making Final Index Choices (cont.)

ASSOCIATIVE 1

300,000,000
Rows A G R S

PK/FK PK
FK FK,SA

Value Access 260 0 0 0
Range Access 0 0 0 0

Join Access 0 8M 0 0
Join Rows 0 300M 0 0

Distinct Values 100M 10M 15K 800K
Max Rows/Value 5 50 21K 400
Max Rows/NULL 0 0 0 0

Typical Rows/Value 3 30 19K 350
Change Rating 0 0 0 0

PI/SI

Collect Statistics (Y/N)

UPI
NUPINUPINUPI

USI
NUSI

NUPI?

ds186034
Sticky Note

 Explains of Joins and Index Choices Page 29-46

Exercise 5 – Making Final Index Choices (cont.)
In this exercise, you will make final index choices (based on Join Access demographics) for
the same tables you used in Exercises 2, 3, and 4. You will identify the columns that
statistics should be collected.

The Final Index Choice Guidelines are:

 Choose one Primary Index (UPI or NUPI) utilizing Join Access demographics
 Do not carry identical Primary and Secondary Indexes

The example on the facing page provides you with an example of how to apply these
guidelines.

Explains of Joins and Index Choices Page 29-47

Exercise 5 – Making Final Index Choices (cont.)

ASSOCIATIVE 2

100,000,000
Rows A M G T U

PK/FK PK
FK FK

Value Access 0 0 0 0
Range Access 0 0 0 0

Join Access 7M 250K 0 0
Join Rows 800M 20M 0 0

Distinct Values 50M 10M 560K 750
Max Rows/Value 3 150 180 135K
Max Rows/NULL 0 0 0 0

Typical Rows/Value 1 8 170 100K
Change Rating 0 0 0 0

PI/SI

Collect Statistics (Y/N)

USI

UPI
NUPINUPI NUPI

What additional index choices would be available for the column G?

ds186034
Sticky Note
4 choicesAM - USIstats on NUPI no brainaa lot of queries on G so yes there too(cust says we have a lotta queries)covered nusi....Gwill have to look at the query..so nusi might have had helped(order by hash on G)ora join index on G cld help

 Explains of Joins and Index Choices Page 29-48

Exercise 5 – Making Final Index Choices (cont.)
In this exercise, you will make final index choices (based on Join Access demographics) for
the same tables you used in Exercises 2, 3, and 4. You will identify the columns that
statistics should be collected.

The Final Index Choice Guidelines are:

 Choose one Primary Index (UPI or NUPI) utilizing Join Access demographics
 Do not carry identical Primary and Secondary Indexes

The example on the facing page provides you with an example of how to apply these
guidelines.

Explains of Joins and Index Choices Page 29-49

Exercise 5 – Making Final Index Choices (cont.)

What additional index choices would be available for the DATE column?

UPI
NUPI

HISTORY

730,000,000
Rows A DATE D E F

PK/FK PK
FK SA

Value Access 10M 5K 0 0 0
Range Access 0 20K 0 0 0

Join Access 800M 0 0 0 0
Join Rows 2.4B 0 0 0 0

Distinct Values 100M 730 N/A N/A N/A
Max Rows/Value 18 1100K N/A N/A N/A
Max Rows/NULL 0 0 N/A N/A N/A

Typical Rows/Value 3 900K N/A N/A N/A
Change Rating 0 0 N/A N/A N/A

PI/SI

Collect Statistics (Y/N)
NUSI

USI
VONUSI

ds186034
Sticky Note
large tablenupi on a cause a lotta joinRange access = =20K and value access = 5K so VONUSIPI on A, but partition on DATEand can get rid of VONUSIParition by day10m in value access so it will do look up in 730 partitions (730 IOs)how can i help 10m row fasterso we will have NUSI so that value access is taken care ofon top of the NUPINUSI on NUPIto run value order access run better

 Explains of Joins and Index Choices Page 29-50

Teradata Index Wizard
Indexing is one of the most powerful tuning options available to a Database Designer or
Database Administrator. Traditionally, index selection has been a manual process, often
requiring the DBA or designer to have detailed knowledge of the application workloads and
data demography of the Warehouse, and also have experience and understanding of query
plan optimization. To determine the right set of indexes for the Active Data Warehouse,
designers mostly rely on their application experience and intuition to make index design
decisions.

The Teradata Index Wizard utility automates this process of manual index design by
recommending secondary indexes for a particular workload. Teradata Index Wizard
provides a simple, easy-to-use graphical user interface (GUI) that guides the user on how to
go about analyzing a database workload and provides recommendations for improving
performance through the use of indexes.

The following describes Teradata Index Wizard:

 Teradata Index Wizard is a client tool that provides an interface to the Teradata
Database in order to tune physical database design for performance improvement.
It automates the selection process for secondary indexes and single table join
indexes on the tables accessed by the statements in the workload.

 Each step involved in the index analysis is provided as an easy to use, menu-driven
interface.
– Workload Definition
– Workload Analysis
– Index Analysis and/or Partition Analysis (12.0 option)
– Analysis Reporting
– Recommendation Validation (optional, but very useful)
– Recommendation Implementation (optional)

 It works with the Teradata Database Query Log facility for defining a workload
from a collection of SQL statements captured in the query log.

 It provides a What-If-Analysis mode allowing users to specify their own set of
recommendations.

 It allows users to validate the recommendations provided. This feature enables the
users to check the recommendations on the production system before actually
creating the new set of indexes. It interfaces with Teradata Visual Explain to
provide a visual compare for the plans with and without the recommendations.

 It uses the Teradata Database Optimizer to recommend the indexes.
 The interface is internationalized to allow localization.
 On-line help is provided via the context-sensitive help feature.
 It interfaces with other client tools such as Teradata System Emulation Tool in

order to provide flexibility and perform offline analysis of a production system on a
test system.

 It can import the workload on a test system for analysis. This way, the production
system resources need not be used during analysis.

Explains of Joins and Index Choices Page 29-51

Teradata Index Wizard

• The Teradata Index Wizard (Windows utility) analyzes a set of queries in a defined
workload and recommends a set of secondary indexes, single table join indexes, or
partitioning to consider.

– Example of workloads that be can defined and used include …
• Queries selected from the Teradata Database Query Log (DBQL) statements
• Queries selected from Teradata DBQL XML statements
• A user-specified set or file of SQL statements.
• Set of execution plans in a user-defined Query Capture Database (QCD)

• The steps involved in index analysis are:

– Workload Definition (and optional workload analysis)
– Index and/or Partition Analysis
– Analysis Reporting
– Recommendation Validation
– Index and/or PPI Creation

• Other features and characteristics are:

– What-If Analysis mode – make your own recommendations

– The Index Analysis Engine is inside the Teradata Parser and uses the Teradata
Optimizer to recommend the indexes.

– Integrated with Teradata Analyst tool set – Teradata Index Wizard, Teradata
Statistics Wizard, and Teradata SET (System Emulation Tool).

ds186034
Underline

 Explains of Joins and Index Choices Page 29-52

Teradata Index Wizard – Main Window
The Menu bar is located at the top of the Teradata Index Wizard window. It contains the
pull-down menus displaying the commands that you use to operate the program.

In addition to accessing the commands from the menu bar, the Teradata Index Wizard
provides shortcuts to many of the commands via the tool buttons along the top and left side
of the window.

Defining and Using Workloads with Index Wizard
A workload is a set of SQL statements created or defined using the Workload Definition
dialog. Index Wizard creates several workload reports after a workload is defined.
Workloads can be defined in the following ways:

Using Database Query Log (DBQL) – The Database Query Log (DBQL) provides the
capability to store, in system tables, the performance-related data for a request

Using Statement Text – SQL statements can be directly keyed into a workload and

analyzed. The SQL statements can also be selected from one or more files.

From QCD Statements – An existing set of execution plans in a QCD can be selected

to form a workload. The workload is created in the QCD in which the execution
plans exist.

Importing Workload – Users can import workloads from other sources including other

Teradata client tools. For example, you can import SQL statements to the test
system as a workload from a production system, using the Teradata System
Emulation Tool. The production system environment is imported along with the
SQL statements.

From an Existing Workload – A new workload can be created from an existing

workload.

Additional Workload Functions
There are additional functions under the workload menu that allow you to manage
workloads better. These functions include the following.

Workload Cleanup – allows you to delete workloads that you no longer need.

View Workload Details – provides the statements and operations on a particular

workload.

Workload Summary – shows the workload name and ID as well as the number of

statements and the begin and end time.

Explains of Joins and Index Choices Page 29-53

Teradata Index Wizard – Main Window

The sequence of the menu items
represents the order of the steps
to follow with the Teradata Index
Wizard.

• Workload
• Analysis
• Reports
• Validation
• Creation

This example defines a workload
of 12 SQL statements.

Workloads can be defined …

• From DBQL statements
• Using Statement Text
• From QCD Statements
• Import Workload
• From Existing Workload
• FROM DBQL XML Statements

Note: You can Imports workloads
onto a test system for analysis,
saving production system
resources.

1st – Define a Workload of SQL statements to analyze.

 Explains of Joins and Index Choices Page 29-54

Teradata Index Wizard – Index Analysis
Teradata Index Wizard consists of a database server component and a front-end client
application. The Index Analysis Engine is actually inside the Teradata Parser and works
closely with the parallel optimizer to enumerate, simulate, and evaluate index selection
candidates. The client front end is a graphical Windows interface, providing step by step
instructions for workload definition and index analysis, and reports for both workload and
index analysis.

After the workload is defined, it is analyzed and a new set of indexes is recommended. The
Teradata Index Wizard may also recommend that indexes be added or dropped to enhance
system performance.

There are four types of analysis including:

Index Analysis – a new analysis is performed on a workload.

Partition Analysis – a partition analysis is performed on a workload.

Restarting an Analysis – an analysis can be restarted if, for some reason, it was

interrupted.

What-If Analysis – allows you to check your own recommendations on the workload

to determine the performance benefits.

 What-if analysis allows you to suggest indexes for the selected workload and

monitor the performance improvement. Statistics in the simulation mode are
collected into the QCD and are simulated to the Optimizer during the plan
generation. Only the CREATE INDEX and COLLECT STATS are valid in this
mode. If DROP INDEX is specified in the simulation mode, the indexes/stats are
not provided to the Optimizer, and the generated plans do not consider these
indexes/statistics.

 You can build the required CREATE INDEX and COLLECT STATS DDL

statements using Index Wizard. The DDL statements specified are submitted in a
simulation mode to the Teradata Database and then the workload statements are
submitted to generate the new execution plans.

Note: Various parameters that determine index recommendations are set by selecting the
Advanced button in the Index Analysis window. Examples of advanced options include:

Keep Existing Indexes – with NO, recommendations to drop indexes are given.
Maximum Columns per Recommendation – default is 4; max of 16
Maximum Recommendations per table – default is 16; max is 64
Maximum Candidates – default is 256; range is between 128 and 512
Change Rate Threshold – default is 5; 0 is non-volatile and 9 is highly volatile

Explains of Joins and Index Choices Page 29-55

Teradata Index Wizard – Index Analysis

Based on the SQL statements in
the workload, you can select which
tables to analyze.

2nd – Perform an index analysis.

Specify a “tag” or
name for the index
recommendations.

 Explains of Joins and Index Choices Page 29-56

Teradata Index Wizard – Index Analysis Results
When the index analysis is complete, Index Wizard displays the results in a summary
window. Click OK to close the window. All the analysis reports are now available.

In addition to performing an index analysis, you can use the Index Wizard to perform a
partition analysis on a workload. This analysis will possibly recommend partitioning for a
primary index on existing tables.

The example on the facing page depicts the screens involved in performing a partition
analysis.

Creating a Workload to Analyze using “DUMP EXPLAIN”

The following steps can be following to create and analyze a workload created from a
“DUMP EXPLAIN”.

1. Using BTEQ,
 .EXPORT FILE=dumpexplain.txt

 DUMP EXPLAIN INTO QCD SELECT...
 .EXPORT RESET

 .RUN FILE =dumpexplain.txt

2. Using Index Wizard,
 Select “Workload->Create->From QCD Statements”

 Enter QCD name and select Browse QCD to list the captured plans.
 Select the plan, enter a new workload name and select OK.

3. Using Index Wizard, perform the index analysis as usual.

Explains of Joins and Index Choices Page 29-57

Teradata Index Wizard – Index Analysis Results

The Index Analysis phase will provide a results report at its completion.

In this example, 4 NUSIs and 2 VONUSIs
were recommended for 2 tables.

Also note that one index was recommended
to be dropped based on the queries in this
workload.

 Explains of Joins and Index Choices Page 29-58

Teradata Index Wizard – Partition Analysis
In addition to performing an index analysis, you can use the Index Wizard to perform a
partition analysis on a workload. This analysis will possibly recommend partitioning for a
primary index on existing tables.

The example on the facing page depicts the screens involved in performing a partition
analysis.

Explains of Joins and Index Choices Page 29-59

Teradata Index Wizard – Partition Analysis

Based on the SQL statements in
the workload, you can select which
tables to analyze.

2nd (cont.) – Perform a partition analysis.

Specify a “tag” or
name for the
partitioning
recommendations.

 Explains of Joins and Index Choices Page 29-60

Teradata Index Wizard – Partition Analysis Results
When the partition analysis is complete, Index Wizard displays the results in a summary
window. Click OK to close the window. All the analysis reports are now available.

Explains of Joins and Index Choices Page 29-61

Teradata Index Wizard – Partition Analysis Results

The Partition Analysis phase will provide a results summary at its completion.

In this example, partitioning
was recommended for 1 table.

 Explains of Joins and Index Choices Page 29-62

Teradata Index Wizard – Reports
The Teradata Index Wizard creates a set of reports when a workload is created and a set
after a workload is analyzed. Workload reports are designed to help you select tables within
a workload to be analyzed. Analysis reports provide the data you need to make a decision
about the index recommendation

Workload Reports
Workload Reports provide information about the tables in a defined workload. The reports
assist you in deciding which tables make the best candidates for an index analysis. These
reports also provide a snapshot of table information which can be compared with report
information after an analysis. The following list shows the reports available when a
workload is created:

 Existing Indexes Report
 Update Cost Analysis Report
 Table Usage Analysis Report
 Table Scan Report
 Workload Analysis Report
 Object Global Use Count Report

Analysis Reports
Analysis reports provide information about the results of the index analysis. They are
designed to help you decide if the index recommendation is appropriate or not. The
following reports are available after a workload is analyzed:

 Index Recommendation Report
 Existing Indexes Report
 Query Cost Analysis Report
 Update Cost Analysis Report
 Disk Space Analysis Report
 Table Usage Analysis Report
 Table Scan Report
 Workload Analysis Report
 Summary Report
 Object Global Use Count Report

Index Recommendation Report
The Index Recommendation report (facing page) shows the recommended secondary index
for each table if one is recommended. Use the information in this report table to help you
make a decision about whether the index recommended is appropriate or not.

The report also suggests indexes that can be dropped.

The statistics used for the analysis are saved in the Index Recommendations table.

Explains of Joins and Index Choices Page 29-63

Teradata Index Wizard – Reports

3rd – Use the Reports menu to view the recommendations.

This Reports menu provides numerous other
options to generate reports.

The Index Recommendations Report is
selected.

 Explains of Joins and Index Choices Page 29-64

Teradata Index Wizard – Validation

Index Validation
Index validation is the process of checking to see if the recommended indexes actually
improve system performance. Validation does not involve the actual execution of the
recommendations, but permits the Teradata Optimizer to use the recommended indexes in
the plan generation. If the recommendations are created with a COLLECT STATISTICS
option, Index Wizard collects statistics on a sample size and saves them in the QCD. The
sampled statistics are used during index validation.

The validation process occurs in a simulated session mode. The index and the required
statistics (as indicated by the recommendations) are simulated for the plan generation. Index
recommendations are validated on the set of statements that were analyzed. The statements
are submitted to the Teradata Database in a “no execute” mode. During validation, the query
plans are saved into the specified QCD.

Recommendations for the workload are loaded either from QCD or from a file.

Explains of Joins and Index Choices Page 29-65

Teradata Index Wizard – Validation

4th – Use the Validation menu to check if the recommendations improve performance.

Two EXPLAINs for each
statement will be executed
– one without the
recommended indexes
and one with the
recommended indexes.

This phase may take some
time to complete.

During this phase, sample
statistics may be collected.

 Explains of Joins and Index Choices Page 29-66

Teradata Index Wizard – Validation (View Graph)
After validating the index recommendations, you can use the Compare option to compare
(via Visual Explain) each of the recommendations. You can use the View Graph option to
view the estimated performance gains with a summary graph.

The facing page illustrates an example of the View Graph option.

Explains of Joins and Index Choices Page 29-67

Teradata Index Wizard – Validation (View Graph)

Use the View Graph function to view estimated performance gains for each of the queries.

 Explains of Joins and Index Choices Page 29-68

Teradata Index Wizard – Creation

Executing Recommendations
The Teradata Index Wizard has an execute recommendation feature that allows you to
execute index recommendations.

Executing a recommendation applies the index recommendations to the database. It is
highly recommended that index recommendations be validated before executing.

Partition Analysis indicates tables where partitioning may be beneficial and identifies a
recommended partitioning expression. The Index Wizard does not implement partitioning.

Explains of Joins and Index Choices Page 29-69

Teradata Index Wizard – Creation

SQL is created that you can select
to create secondary indexes and
collect statistics.

The Execute button submits the
SQL.

Notes:

Partition Analysis indicates
tables where partitioning may be
beneficial and identifies a
recommended partitioning
expression.

The Index Wizard does not
implement partitioning.

5th – If desired, use the Creation menu to execute the recommendations.

 Explains of Joins and Index Choices Page 29-70

Summary – Index Choice Guidelines
The facing page shows some guidelines for choosing Primary Indexes. The most important
guidelines are:

 Primary Indexes should have Change Ratings of 0 - 2.

 Try to avoid NUPI indexes that have excessive number of duplicate values. A

general rule is that the number of number of duplicate values should be less than
the number of rows that can reside in 3 or fewer blocks.

 Collect statistics for all NUPIs and NUSIs.

 Collect statistics for UPIs of small tables (e.g., less than 1000 rows per AMP or 4

blocks per AMP).

 Consider column(s) as primary index candidates if …

 the number of max rows per value and the typical rows per value is relatively
close to each other

 AND

 the number of distinct values is greater than the number of AMPs (by at least at

factor of 10), then the column may be a candidate for a NUPI.

The facing page shows some guidelines for choosing Secondary Indexes. The most
important guidelines are:

 Secondary Indexes should have Change Ratings of 0 - 5.

 Secondary Indexes should have Value Access > 0.

 Collect Statistics for all NUSIs.

 Collect Statistics for USIs that are used with range queries

Explains of Joins and Index Choices Page 29-71

Summary – Index Choice Guidelines

Primary Index Unique Non-Unique
Value Access 1 AMP – 1 Row 1 AMP – 1+ Rows

Join Access Nested, Merge, Exclusion Joins Nested, Merge, Exclusion Joins

Distinct Values Equals row count Less than row count
Much greater than # of AMPs (10X or more)

Max Rows/Value One Close to typical value

Max Rows NULL One Less than typical value

Typical Rows/Value One Close to max value

Change Rating 0, 1, 2 0, 1, 2

Statistics Collect statistics for small tables Collect statistics

Secondary Index Unique Non-Unique
Value Access 2 AMP – 1 Row All AMPs – 1+ Rows

Join Access Nested Joins Nested and Merge Joins

Distinct Values Equals row count Less than row count

Max Rows/Value One Less than # of blocks

Max Rows NULL One Less than # of blocks

Typical Rows/Value One Less than # of blocks

Change Rating 0 to 5 0 to 5

Statistics Collect statistics for range queries Collect statistics

 Explains of Joins and Index Choices Page 29-72

Module 29: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Explains of Joins and Index Choices Page 29-73

Module 29: Review Questions

1. When do Cartesian Product Joins generally occur?

a. When the Join Column is the Primary Index of both tables.
b. When a column appears in an Equality Join constraint.
c. When an error is made in coding the SQL query.
d. None of the above.

2. A Join Condition of (1=1) in an EXPLAIN output is usually indicative of ____________.

a. Cartesian product join
b. Exclusion merge join
c. Merge join
d. Hash join

3. One of the ways in which Join Access demographics are expressed is _________________ , which is
a measure of how often all known transactions access rows from the table through a Join on this
column.

a. Join Access Rows
b. Join Access Frequency
c. High Access Rows
d. Value and Join Access

 Explains of Joins and Index Choices Page 29-74

Notes

Additional Index Choices Page 30-1

Module 30

Teradata Proprietary and Confidential

Additional Index Choices

After completing this module, you will be able to:

 List the three types of Join Indexes.

 Describe the situations where a Join Index can improve
performance.

 Describe how to create a “sparse index”.

 Describe the difference between a single-table Join Index and a
Hash Index.

 Additional Index Choices Page 30-2

Notes

Additional Index Choices Page 30-3

Table of Contents

Additional Index Choices ... 30-4
Join Indexes .. 30-6
Options for Join Indexes .. 30-8
Join Index Considerations .. 30-10
Join Index Example – Customer and Order Tables ... 30-12
Compressed Multi-Table Join Index .. 30-14
Non-Compressed Multi-Table Join Index .. 30-16
Compressed and Non-Compressed Join Indexes ... 30-18
Example 1 – Does a Join Index Help? ... 30-20
Example 2 – Does a Join Index Help? ... 30-22
Example 3 – Partitioning a Join Index ... 30-24
Join Index – Single Table ... 30-26
Join Index – Single Table (cont.) ... 30-28
Creating a Join Index – Single Table ... 30-30
Example 4 – Does the Join Index Help? .. 30-32
Why use Aggregate Join Indexes? ... 30-34
Aggregate Join Index Properties .. 30-36
Aggregation without an Aggregate Index .. 30-38
Creating an Aggregate Join Index .. 30-40
Aggregation with an Aggregate Index ... 30-42
Sparse Join Indexes .. 30-44
Creating a Sparse Join Index .. 30-46
Creating a Sparse Join Index on a Partitioned Table ... 30-48
ALTERing a Join Index to CURRENT ... 30-50
Partitioning a Sparse Join Index ... 30-52
Global (Join) Indexes ... 30-54
Global Index – Multiple Tables ... 30-56
Global Index as a “Hashed NUSI” ... 30-58
Creating a Global Index (“Hashed NUSI”) .. 30-60
Example: Using a Global Index as a Hashed NUSI ... 30-62
Repeating Row Ids in Global Index ... 30-64
Hash Indexes .. 30-66
Hash Index – Example ... 30-68
Hash Index – Example (cont.) .. 30-70
Summary .. 30-72
Module 30: Review Questions ... 30-74
Lab Exercise 30-1 .. 30-76

 Additional Index Choices Page 30-4

Additional Index Choices
As part of implementing a physical design, Teradata provides additional index choices that
can improve performance for known queries and workloads. These will be described in
more detail in this module.

Join indexes are defined to reduce the number of rows processed in generating result sets
from certain types of queries, especially joins. Like secondary indexes, users may not
directly access join indexes. They are an option available to the optimizer in query
planning. The following are properties of join indexes:

Are used to replicate and “pre-join” information from several tables into a single
structure.

Are designed to cover queries, reducing or eliminating the need for access to the base

table rows.

Usually do not contain pointers to base table rows (unless user defined to do so).

Are distributed based on the user choice of a Primary Index on the Join Index.

Permit Secondary Indexes to be defined on the Join Index (except for Single Table Join

Indexes), with either “hash” or “value” ordering.

Unlike traditional indexes, join indexes do not store “pointers” to their associated base table
rows. Instead, they are a fast path final access point that eliminates the need to access and
join the base tables they represent. They substitute for rather than point to base table rows.

The Optimizer can choose to resolve a query using the index, rather than performing a join
of two or more tables. Depending on the complexity of the join, this improves query
performance considerably. To improve the performance of Join Index creation and Join
Index maintenance during updates, consider collecting statistics on the base tables of a Join
Index.

Additional Index Choices Page 30-5

Additional Index Choices

As part of the physical design process, the designer may choose to implement
join and/or hash indexes for performance reasons.

• Join Indexes

– Can be created to pre-join multiple tables.

– Can be used on a single table to redistribute the table on a different column –
effectively creating an alternative primary index on a foreign key column.

– Can be used as a summary table to aggregate one or more columns from a table
or tables.

• Hash Indexes

– Contains properties of both secondary indexes and single table join indexes.

• Both Join Indexes and Hash Indexes

– Provides the optimizer with additional options and the optimizer may use the join
index if it “covers” the query.

– For known queries, this typically will result in much better performance.

 Additional Index Choices Page 30-6

Join Indexes
There are multiple ways in which a join index can be used. Three common ways include:

Single table Join Index — Distribute the rows of a single table on the hash value of a
foreign key value

Multi-Table Join Index — Pre-join multiple tables; stores and maintains the result from

joining two or more tables.

Aggregate Join Index — Aggregate one or more columns of a single table or multiple

tables into a summary table

A join index is a system-maintained index table that stores and maintains the joined rows of
two or more tables (multiple table join index) and, optionally, aggregates selected columns,
referred to as an aggregate join index.

Join indexes are defined in a way that allows join queries to be resolved without accessing
or joining their underlying base tables. A join index is useful for queries where the index
structure contains all the columns referenced by one or more joins, thereby allowing the
index to cover all or part of the query. For obvious reasons, such an index is often referred
to as a covering index. Join indexes are also useful for queries that aggregate columns from
tables with large cardinalities. These indexes play the role of pre-join and summary tables
without denormalizing the logical design of the database and without incurring the update
anomalies presented by denormalized tables.

Another form of join index, referred to as a single table join index, is very useful for
resolving joins on large tables without having to redistribute the joined rows across the
AMPs.

Additional Index Choices Page 30-7

Join Indexes

• A Join Index is an optional index which may be created by the user. The
basic types of Join Indexes will be described first.

• Multi-table Join Index

– Pre-join multiple tables; stores and maintains the result from joining two or more
tables.

– Facilitates join operations by possibly eliminating join processing or by
reducing/eliminating join data redistribution.

• Single-table Join Index

– Distribute the rows of a single table on the hash value of a foreign key value.

– Facilitates the ability to join the foreign key table with the primary key table without
redistributing the data.

• Aggregate Join Index (AJI)

– Aggregate (SUM or COUNT) one or more columns of a single table or multiple
tables into a summary table.

– Facilitates aggregation queries by eliminating aggregation processing. The pre-
aggregated values are contained in the AJI instead of relying on base table
calculations.

 Additional Index Choices Page 30-8

Options for Join Indexes
The facing page highlights two options that are available with join indexes.

A Sparse Join Index is simply a term that is used when a join index is created with a
WHERE condition. You can use a WHERE clause in the CREATE JOIN INDEX statement
to limit the rows that are created in the join index. This effectively reduces the size (PERM
space) of the join index. The rows included in the join index are a subset of the rows in the
base table or tables based on an SQL query result.

A Global Index is simply a term that is used to define a join index that contains the Row IDs
of the base table rows. This means that the user includes the ROWID as a user-defined
column within the join index. Row IDs that are included within a join index are always 10
bytes in length, regardless if the base table is partitioned or not.

7
7

Additional Index Choices Page 30-9

Options for Join Indexes

• Sparse Join Indexes

– When creating any of the join indexes, you can include a WHERE clause to limit the
rows created in the join index to a subset of the rows in the base table or tables.

• Global Join Indexes

– You can include the Row ID of the table(s) within the join index to allow an AMP to
join back to the data row for columns not referenced (covered) in the join index.

• Miscellaneous notes:

– Materialized Views are implemented as Join Indexes. Join Indexes improve query
performance at the expense of slower updates and increased storage.

– When you create a Join Index, there is no duplicate row check – you don’t have to
worry about a high number of NUPI duplicates in the join index.

 Additional Index Choices Page 30-10

Join Index Considerations
7
7

Join Index considerations include:

You cannot specify a column with a data type of either BLOB or CLOB in the
definition of a join index (nor for any other kind of index).

Be aware that when you define a join index using an outer join, you must reference all

the columns of the outer table in the select list of the join index definition. If any of
the outer table columns are not referenced in the select list for the join index
definition, the system returns an error to the requestor.

Perm Space — a Join Index is created as a table-like structure in Teradata and uses

Perm space.

Fallback Protection — Join Index subtables can optionally be Fallback-protected.

Because join indexes generated from inner joins do not preserve unmatched rows, you

should always consider using outer joins to define simple join indexes, noting the
following restrictions.

Inequality conditions are not supported under any circumstances for ON clauses in

join index definitions.
Outer joins are not supported under any circumstances for aggregate join indexes.

Load Utilities — MultiLoad and FastLoad utilities cannot be used to load or unload data

into base tables that have an associated join index defined on them because join
indexes are not maintained during the execution of these utilities. The TPump
utility, which perform standard SQL row inserts and updates, can be used because
join indexes are properly maintained during the execution of such utilities.

Archive and Restore — archiving is permitted on a base table or database that has a Join

Index. Prior to Teradata 13.0, during a restore of such a base table or database, the
system does not automatically rebuild the Join Index. Instead, the Join Index is
marked as invalid.

Permanent Journal Recovery — using a permanent journal to recover a base table (i.e.,

ROLLBACK or ROLLFORWARD) with an associated Join Index defined is
permitted. The join index is not automatically rebuilt during the recovery process.
Instead, the join index is marked as invalid and the join index must be dropped and
recreated before it can be used again in the execution of queries.

Collecting Statistics — statistics should be collected on the primary index and

secondary indexes of the Join Index to provide the Optimizer with baseline
statistics, including the total number of rows in the Join Index.

Additional Index Choices Page 30-11

Join Index Considerations

Join Index considerations include:
• Join indexes are updated automatically as base tables are updated (additional I/O).

• Take up PERM space and may (or may not) be Fallback protected.

• You can specify no more than 64 columns per referenced base table per join index.

• BLOB and CLOB data types cannot be defined within a Join Index.

• Load utilities such as MultiLoad and FastLoad can’t be used (use TPump).

• With a multi-table join index, you can specify INNER, LEFT OUTER, and RIGHT OUTER
joins, but not a FULL OUTER join.

In many respects, a Join Index is similar to a base table.
• You may create non-unique secondary indexes on its columns.

• Perform COLLECT/DROP STATISTICS, DROP, HELP, and SHOW statements.

Unlike base tables, you cannot do the following:
• Directly query or update join index rows.
• Create unique indexes on its columns.
• Store and maintain arbitrary query results such as expressions.

 Additional Index Choices Page 30-12

Join Index Example – Customer and Order Tables
The CREATE JOIN INDEX syntax is shown below. The reference manual provides
detailed for all of the CREATE JOIN INDEX options.

Additional Index Choices Page 30-13

Join Index Example
Customer and Order Tables

CREATE SET TABLE Customer
(custid INTEGER NOT NULL,

lname VARCHAR(15),
fname VARCHAR(10),
address VARCHAR(50),
city VARCHAR(20),
state CHAR(2),
zipcode INTEGER)

UNIQUE PRIMARY INDEX (custid);

Customer Orders72,000190

5000 Customers and 72,000 Orders.
72,000 orders are associated with valid customers.
190 customers have no orders.

CREATE SET TABLE Orders
(orderid INTEGER NOT NULL,

custid INTEGER NOT NULL,
orderstatus CHAR(1),
totalprice DECIMAL(9,2) NOT NULL,
orderdate DATE

FORMAT 'YYYY-MM-DD' NOT NULL,
orderpriority SMALLINT,
clerkid CHAR(16),
shippriority SMALLINT,
ordercomment VARCHAR(79))

UNIQUE PRIMARY INDEX (orderid);

 Additional Index Choices Page 30-14

Compressed Multi-Table Join Index
The facing page includes an example of creating a Multiple Table Join Index using the
repeating group option.

The storage organization for join indexes supports a compressed format to reduce storage
space.

If you know that a join index contains groups of rows with repeating information, then its
definition DDL can specify repeating groups, indicating the repeating columns in
parentheses. The column list is specified as two groups of columns, with each group
stipulated within parentheses. The first group contains the fixed columns and the second
group contains the repeating columns.

As another option, you can elect to store join indexes in value order, ordered by the values
of a 4-byte column. Value-ordered storage provides better performance for queries that
specify selection constraints on the value ordering column. For example, suppose a common
task is to look up sales information by order date. You can create a join index on the Orders
table and order it by order date. The benefit is that queries that request orders by order date
only need to access those data blocks that contain the value or range of values that the
queries specify.

Physical Join Index Row and Compression
A physical join index row has two parts:

A required fixed part that is stored only once.
An optional repeated part that is stored as often as needed.

For example, if a logical join result has n rows with the same fixed part value, then there is
one corresponding physical join index row that includes n repeated parts in the physical join
index. A physical join index row represents one or more logical join index rows. The
number of logical join index rows represented in the physical row depends on how many
repeated values are stored.

Limitations
For a compressed multi-table join index, the maximum number of columns defined in the
fixed portion is 64 and the maximum number of columns defined in the repeating portion is
also 64. The total maximum number of columns in this type of join index is 128.

With a LEFT or RIGHT OUTER join, at least 1 column from each inner table must be NOT
NULL.

FULL OUTER joins are not allowed with a compressed multi-table join index.

Additional Index Choices Page 30-15

Compressed Multi-Table Join Index

CREATE JOIN INDEX Cust_Ord_JI AS
SELECT (custid, lname),

(orderid, orderstatus, orderdate)
FROM Customer C
INNER JOIN Orders O
ON C.custid = O.custid
PRIMARY INDEX (custid);

Fixed Portion Variable Portion

custid lname orderid orderstatus orderdate

1443 Woods 102292 C 2008-11-30
135893 C 2009-11-30
157093 O 2011-10-16
135993 C 2009-12-14

4000 Mickelson 142000 C 2009-12-20
149600 C 2009-12-29
154798 C 2010-04-17

5809 Furyk 149698 C 2009-12-31
156599 C 2010-10-05
101199 C 2008-09-11
158999 O 2011-10-23
152399 C 2010-06-30

Within the join index, this
is one row of data
representing the orders for
a customer.

One row in Join Index.

One row in Join Index.

Fixed portion of Join Index
(max # columns is 64)

Repeating portion of Join Index
(max # of columns is 64)

Maximum # of columns for
compressed join index is 128.

 Additional Index Choices Page 30-16

Non-Compressed Multi-Table Join Index
The facing page includes an example of creating a Multiple Table Join Index without using
the repeating group option.

The storage space in this example for the non-compressed multi-table join index will be
higher.

For a non-compressed multi-table join index, the maximum number of columns defined per
referenced table is 64. The total maximum number of columns in this type of join index is
2048.

PERM Space Required
The amount of PERM space used by the compressed multi-table join index (previous
example) and the non-compressed join index is listed below. Remember that these tables
are quite small and note that the join index with repeating data requires less storage space.

TableName SUM(CurrentPerm)
Cust_Ord_JI 1,044,480
Cust_Ord_JI2 2,706,432

Additional Index Choices Page 30-17

Non-Compressed Multi-Table Join Index

CREATE JOIN INDEX Cust_Ord_JI2 AS
SELECT custid, lname,

orderid, orderstatus, orderdate
FROM Customer C
INNER JOIN Orders O
ON C.custid = O.custid
PRIMARY INDEX (custid);

Fixed Portion Variable Portion

Within the join index, each
order is represented by a
separate join index row.

Max # columns per
referenced table is 64

Maximum # of columns for
non-compressed join index is 2048.

custid lname orderid orderstatus orderdate

1443 Woods 102292 C 2008-11-30
1443 Woods 135893 C 2009-11-30
1443 Woods 157093 O 2011-10-16
1443 Woods 135993 C 2009-12-14
4000 Mickelson 142000 C 2009-12-20
4000 Michelson 149600 C 2009-12-29
4000 Michelson 154798 C 2010-04-17
5809 Furyk 149698 C 2009-12-31
5809 Furyk 156599 C 2010-10-05
5809 Furyk 101199 C 2008-09-11
5809 Furyk 158999 O 2011-10-23
5809 Furyk 152399 C 2010-06-30

 Additional Index Choices Page 30-18

Compressed and Non-Compressed Join Indexes
The facing page illustrates the difference between a compressed and a non-compressed join
index.

PERM Space Required
The amount of PERM space used by the compressed multi-table join index (previous
example) and the non-compressed join index is listed below. Remember that these tables
are quite small and note that the join index with repeating data requires less storage space.

TableName SUM(CurrentPerm)
Cust_Ord_JI 1,044,480
Cust_Ord_JI2 2,706,432

Additional Index Choices Page 30-19

Compressed and Non-Compressed Join Indexes

Example of storage of compressed and non-compressed join indexes.

SELECT TableName, SUM(CurrentPerm)
FROM DBC.TableSize
WHERE DatabaseName = USER
GROUP BY 1 ORDER BY 1;

CREATE JOIN INDEX Cust_Ord_JI AS
SELECT (custid, lname),

(orderid, orderstatus, orderdate)
FROM Customer C
INNER JOIN Orders O
ON C.custid = O.custid
PRIMARY INDEX (custid);

Compressed Join Index

Join Index Fixed Repeating Columns
Row ID Columns (Orders)

RH 5001 … Order1 Order2 Order3

RH 5002 … Order4 Order5

Non-Compressed Join Index

Join Index Join Index
Row ID Column Values

RH 5001 … Order1

RH 5001 … Order2

RH 5001 … Order3

RH 5002 … Order4

RH 5002 … Order5

TableName SUM(CurrentPerm)

Cust_Ord_JI 1,044,480
Cust_Ord_JI2 2,706,432

CREATE JOIN INDEX Cust_Ord_JI2 AS
SELECT custid, lname,

orderid, orderstatus, orderdate
FROM Customer C
INNER JOIN Orders O
ON C.custid = O.custid
PRIMARY INDEX (custid);

 Additional Index Choices Page 30-20

Example 1 – Does a Join Index Help?
This EXPLAIN is without a Join Index.

1) First, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent global

deadlock for TFACT.O.
2) Next, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent global

deadlock for TFACT.C.
3) We lock TFACT.O for read, and we lock TFACT.C for read.
4) We do an all-AMPs RETRIEVE step from TFACT.O by way of an all-rows scan with a

condition of ("TFACT.O.orderstatus = 'O'") into Spool 2 (all_amps), which is redistributed by
hash code to all AMPs. Then we do a SORT to order Spool 2 by row hash. The size of Spool 2
is estimated with high confidence to be 3,970 rows. The estimated time for this step is 0.41
seconds.

5) We do an all-AMPs JOIN step from Spool 2 (Last Use) by way of a RowHash match scan,
which is joined to TFACT.C by way of a RowHash match scan with no residual conditions.
Spool 2 and TFACT.C are joined using a merge join, with a join condition of ("TFACT.C.custid
= custid"). The result goes into Spool 1 (group_amps), which is built locally on the AMPs.
Then we do a SORT to order Spool 1 by the sort key in spool field1. The size of Spool 1 is
estimated with low confidence to be 3,970 rows. The estimated time for this step is 0.07
seconds.

6) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the
request.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total
estimated time is 0.49 seconds.

This EXPLAIN is with a Join Index.

1) First, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent global

deadlock for TFACT.CUST_ORD_JI.
2) Next, we lock TFACT.CUST_ORD_JI for read.
3) We do an all-AMPs RETRIEVE step from TFACT.CUST_ORD_JI by way of an all-rows scan

with a condition of ("TFACT.CUST_ORD_JI.orderstatus = 'O'") into Spool 1 (group_amps),
which is built locally on the AMPs. Then we do a SORT to order Spool 1 by the sort key in
spool field1. The input table will not be cached in memory, but it is eligible for synchronized
scanning. The size of Spool 1 is estimated with no confidence to be 3970 rows. The estimated
time for this step is 0.18 seconds.

4) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the
request.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total
estimated time is 0.18 seconds.

Additional Index Choices Page 30-21

Example 1 – Does a Join Index Help?

List the valid customers who have open orders?

SQL Query Time

Without Join Index .49 seconds
With Join Index .18 seconds

All referenced columns are part of the
Join Index.

Optimizer picks Join Index rather than
doing a join.

Join Index covers query and helps this
query.

The Compressed Join Index was used
for this example.

SELECT C.custid, C.lname, O.orderdate
FROM Customer C
INNER JOIN Orders O
ON C.custid = O.custid
WHERE orderstatus = 'O'
ORDER BY 1;

custid lname orderdate

1391 Poppy 2011-10-06
1906 Putman 2011-10-22
1969 Mitchell 2011-09-14
2916 Rotter 2011-10-24
2954 Agnew 2011-10-15
4336 Carson 2011-09-20
5396 Murphy 2011-10-21

: : :

 Additional Index Choices Page 30-22

Example 2 – Does a Join Index Help?
This EXPLAIN is without a Join Index.

1) First, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent global

deadlock for TFACT.O.
2) Next, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent global

deadlock for TFACT.C.
3) We lock TFACT.O for read, and we lock TFACT.C for read.
4) We do an all-AMPs RETRIEVE step from TFACT.O by way of an all-rows scan with a

condition of ("TFACT.O.orderstatus = 'O'") into Spool 2 (all_amps), which is redistributed by
hash code to all AMPs. Then we do a SORT to order Spool 2 by row hash. The size of Spool 2
is estimated with high confidence to be 3,970 rows. The estimated time for this step is 0.41
seconds.

5) We do an all-AMPs JOIN step from Spool 2 (Last Use) by way of a RowHash match scan,
which is joined to TFACT.C by way of a RowHash match scan with no residual conditions.
Spool 2 and TFACT.C are joined using a merge join, with a join condition of ("TFACT.C.custid
= custid"). The result goes into Spool 1 (group_amps), which is built locally on the AMPs.
Then we do a SORT to order Spool 1 by the sort key in spool field1. The size of Spool 1 is
estimated with low confidence to be 3,970 rows. The estimated time for this step is 0.07
seconds.

6) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the
request.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total
estimated time is 0.49 seconds.

This EXPLAIN is with a Join Index.

1) First, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent global

deadlock for TFACT.CUST_ORD_JI.
2) Next, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent global

deadlock for TFACT.C.
3) We lock TFACT.CUST_ORD_JI for read, and we lock TFACT.C for read.
4) We do an all-AMPs JOIN step from TFACT.C by way of a RowHash match scan with no

residual conditions, which is joined to TFACT.CUST_ORD_JI by way of a RowHash match
scan with a condition of ("TFACT.CUST_ORD_JI.orderstatus = 'O'"). TFACT.C and
TFACT.CUST_ORD_JI are joined using a merge join. The input table TFACT.CUST_ORD_JI
will not be cached in memory. The result goes into Spool 1 (group_amps), which is built
locally on the AMPs. Then we do a SORT to order Spool 1 by the sort key in spool field1. The
size of Spool 1 is estimated with low confidence to be 3,970 rows. The estimated time for this
step is 0.25 seconds.

5) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the
request.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total
estimated time is 0.25 seconds.

Additional Index Choices Page 30-23

Example 2 – Does a Join Index Help?

List the valid customers and their addresses who have open orders?

SELECT C.custid, C.lname,
C.address, C.city, C.state,
O.orderdate

FROM Customer C
INNER JOIN Orders O
ON C.custid = O.custid
WHERE O.orderstatus = 'O'
ORDER BY 1;

Results:
custid lname address city state orderdate

1391 Poppy 2300 Madrona Ave Carson City NV 2011-10-06
1906 Putman 903 La Pierre Ave Jackson MS 2011-10-22
1969 Mitchell 36 Main Street New York NY 2011-09-14
2916 Rotter 4564 Long Beach Blvd Trenton NJ 2011-10-24
2954 Agnew 1083 Beryl Ave Los Angeles CA 2011-10-15
4336 Carson 4021 Eleana Way St. Paul MN 2011-09-20
5396 Murphy 5603 Main Street Pierre SD 2011-10-21

: : : : : :

SQL Query Time
Without Join Index .49 seconds
With Join Index .25 seconds

• Some of the referenced columns are NOT part
of the Join Index. The Join Index does not
cover the query, but is used in this example.

• A Join Index is used in this query and is
merge joined with the Customer table.

 Additional Index Choices Page 30-24

Example 3 – Partitioning a Join Index
The facing page includes an example of partitioning a non-compressed join index.

Additional Index Choices Page 30-25

Example 3 – Partitioning a Join Index

CREATE JOIN INDEX Cust_Ord_JI3 AS
SELECT C.custid, C.lname,

O.orderid, O.orderstatus, O.orderdate
FROM Customer C
INNER JOIN Orders O
ON C.custid = O.custid
PRIMARY INDEX (custid)

PARTITION BY RANGE_N
(orderdate BETWEEN DATE '2003-01-01' AND DATE '2012-12-31'

EACH INTERVAL '1' MONTH) ;

List the valid customers who have open Orders for August, 2012?

SELECT C.custid, C.lname, O.orderdate
FROM Customer C
INNER JOIN Orders O
ON C.custid = O.custid
WHERE O.orderstatus = 'O'
AND O.orderdate BETWEEN DATE '2012-08-01' AND DATE '2012-08-31'
ORDER BY 1;

The join index is used in this query
and partition elimination will occur
on the join index.

 Additional Index Choices Page 30-26

Join Index – Single Table

A denormalization technique is to replicate a column in a table to avoid joins. If an SQL
query would benefit from replicating some or all of its columns in another table that is
hashed on the join field (usually the primary index of the table to which it is to be joined)
rather than the primary index of the original base table, then you should consider creating
one or more single table join indexes on that table.

For example, you might want to create a single table join index to avoid redistributing a
large base table or to avoid the possibly prohibitive storage requirements of a multi-table
join index. For example, a single table join index might be useful for commonly made joins
having low predicate selectivity but high join selectivity.

Additional Index Choices Page 30-27

Join Index – Single Table

• The Single Table Join Index is useful for resolving joins on large tables
without having to redistribute the joined rows across the AMPs.

• In some cases, this may perform better than building a multi-table join index
on the same columns.

Order_Line_Item

orderid part_id

PK
NUPI

Orders

orderid custid

PK FK
UPI

Customer

custid

PK
UPI

Shipments
shipid orderid

PK FK
NUPI

Customer_History

custid

PK
UPI

Without a Join Index, redistribution or
duplication is required to complete the
join of Orders and Customer (or
Customer History).

 Additional Index Choices Page 30-28

Join Index – Single Table (cont.)

You can also define a simple join index on a single table. This permits you to hash some or
all of the columns of a large replicated base table on a foreign key that hashes rows to the
same AMP as another large table. In some situations, this may perform better than building
a multi-table join index on the same columns. The advantage comes from less under-the-
covers update maintenance on the single table form of the index. Only testing can
determine which is the better design for a given set of tables, applications, and hardware
configuration.

The example on the facing page shows a technique where the join index is effectively
substituted for the underlying base table. The join index has a primary index that ensures
that rows are hashed to the same AMPs as rows in tables being joined. This eliminates the
need for row redistribution when the join is made.

Even though each single table join index you create partly or entirely replicates its base
table, you cannot query or update them directly just as you cannot directly query or update
any other join index.

In this example, the compressed format for a single table join index can be used.

CREATE JOIN INDEX Orders_JI AS
 SELECT (custid),
 (orderid,
 orderstatus,
 totalprice,
 orderdate)
 FROM Orders
 PRIMARY INDEX (custid);

 PERM Space Required
The amount of PERM space used by the compressed multi-table join index (previous
example) and the single table join index is listed below. Remember that these tables are
quite small and note that the join index with repeating data requires less storage space.

TableName SUM(CurrentPerm)
Cust_Ord_JI 1,044,480
Orders_JI 1,238,584
Orders_JI2 2,308,608

Note that in this example that the single table join index uses more permanent space.
However, the single table join index has some columns (from the Orders table) that not part
of the compressed multi-table join index.

Additional Index Choices Page 30-29

Join Index – Single Table (cont.)

• Possible advantages include:

– Less update maintenance on the single table Join Index than a multi-table Join
Index.

– Maybe less storage space for a single table Join Index than for a multi-table Join
Index.

Order_Line_Item

orderid part_id

PK
NUPI

Orders

orderid custid
PK FK
UPI

Customer

custid

PK
UPI

Shipments
shipid orderid

PK FK
NUPI

Customer_History

custid

PK
UPI

Orders_JI

orderid custid
NUPI

With this Join
Index, this is
effectively a join
on matching
primary indexes.

The JI
may have
up to 64
columns.

 Additional Index Choices Page 30-30

Creating a Join Index – Single Table
The CREATE JOIN INDEX syntax is shown below.

Joined_Table Excerpt

Indexes Excerpt

Additional Index Choices Page 30-31

Creating a Join Index – Single Table

CREATE JOIN INDEX Orders_JI AS
SELECT (custid),

(orderid,
orderstatus,
totalprice,
orderdate)

FROM Orders
PRIMARY INDEX (custid);

The Orders base table is distributed across the AMPs based on the hash value of the
orderid column (primary index of base table).

The Join Index (Orders_JI) effectively represents a subset of the Orders table (selected
columns) and is distributed across the AMPs based on the hash value of the custid
column.

The optimizer can use this Join Index to improve joins using the “customer id” to join
with the Orders table.

Compressed

CREATE JOIN INDEX Orders_JI2 AS
SELECT orderid,

custid,
orderstatus,
totalprice,
orderdate

FROM Orders
PRIMARY INDEX (custid);

Non-Compressed

 Additional Index Choices Page 30-32

Example 4 – Does the Join Index Help?
This EXPLAIN is without a Join Index.

1) First, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent global

deadlock for TFACT.O.
2) Next, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent global

deadlock for TFACT.C.
3) We lock TFACT.O for read, and we lock TFACT.C for read.
4) We do an all-AMPs RETRIEVE step from TFACT.O by way of an all-rows scan with a

condition of ("TFACT.O.orderstatus = 'O'") into Spool 2 (all_amps), which is redistributed by
hash code to all AMPs. Then we do a SORT to order Spool 2 by row hash. The size of Spool 2
is estimated with high confidence to be 3,970 rows. The estimated time for this step is 0.41
seconds.

5) We do an all-AMPs JOIN step from Spool 2 (Last Use) by way of a RowHash match scan,
which is joined to TFACT.C by way of a RowHash match scan with no residual conditions.
Spool 2 and TFACT.C are joined using a merge join, with a join condition of ("TFACT.C.custid
= custid"). The result goes into Spool 1 (group_amps), which is built locally on the AMPs.
Then we do a SORT to order Spool 1 by the sort key in spool field1. The size of Spool 1 is
estimated with low confidence to be 3,970 rows. The estimated time for this step is 0.07
seconds.

6) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the
request.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total
estimated time is 0.49 seconds.

This EXPLAIN is with a Single Table Join Index (compressed single table join index).

1) First, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent global

deadlock for TFACT.ORDERS_JI.
2) Next, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent global

deadlock for TFACT.C.
3) We lock TFACT.ORDERS_JI for read, and we lock TFACT.C for read.
4) We do an all-AMPs JOIN step from TFACT.C by way of a RowHash match scan with no

residual conditions, which is joined to TFACT.ORDERS_JI by way of a RowHash match scan
with a condition of ("TFACT.ORDERS_JI.orderstatus = 'O'"). TFACT.C and
TFACT.ORDERS_JI are joined using a merge join, with a join condition of ("TFACT.C.custid
= TFACT.ORDERS_JI.custid"). The input table TFACT.ORDERS_JI will not be cached in
memory. The result goes into Spool 1 (group_amps), which is built locally on the AMPs. Then
we do a SORT to order Spool 1 by the sort key in spool field1. The size of Spool 1 is estimated
with low confidence to be 3,970 rows. The estimated time for this step is 0.22 seconds.

5) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the
request.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total
estimated time is 0.22 seconds.

Note: The EXPLAIN cost estimates were the same for both Orders_JI (compressed join
index) and Orders_JI2 (non-compressed join index).

Additional Index Choices Page 30-33

Example 4 – Does the Join Index Help?

• The rows of the customer table and the
Join Index are located on the same
AMP.

• A single table Join Index will help this
query.

List the valid customers who have open orders?

SQL Query Time

Without Join Index .49 seconds
With Join Index .22 seconds

SELECT C.custid, C.lname, O.orderdate
FROM Customer C
INNER JOIN Orders O
ON C.custid = O.custid
WHERE O.orderstatus = 'O'
ORDER BY 1;

custid lname orderdate

1391 Poppy 2011-10-06
1906 Putman 2011-10-22
1969 Mitchell 2011-09-14
2916 Rotter 2011-10-24
2954 Agnew 2011-10-15
4336 Carson 2011-09-20
5396 Murphy 2011-10-21

: : :

 Additional Index Choices Page 30-34

Why use Aggregate Join Indexes?

Summary Tables
Queries that involve counts, sums, or averages over large tables require processing to
perform the needed aggregations. If the tables are large, query performance may be affected
by the cost of performing the aggregations. Traditionally, when these queries are run
frequently, users have built summary tables to expedite their performance. While summary
tables do help query performance there are disadvantages associated with them as well.

Summary Tables Limitations

Require the creation of a separate table
Require initial population of the table
Require refresh of changing data, either via update or reload
Require queries to be coded to access summary tables, not the base tables
Allow for multiple versions of the truth when the summary tables are not up-to-date

Aggregate Indexes
The primary function of an aggregate join index is to provide the Optimizer with a
performance, cost-effective means for satisfying any query that specifies a frequently made
aggregation operation on one or more columns. The aggregate join index permits you to
define a summary table without violating schema normalization.

Aggregate indexes provide a solution that enhances the performance of the query while
reducing the requirements placed on the user. All of the above listed limitations are
overcome with their use.

An aggregate index is created similarly to a join index with the difference that sums, counts
and date extracts may be used in the definition. A denormalized summary table is internally
created and populated as a result of creation. The index can never be accessed directly by
the user. It is available only to the optimizer as a tool in its query planning.

Aggregate indexes do not require any user maintenance. When underlying base table data is
updated, the aggregate index totals are adjusted to reflect the changes. While this requires
additional processing overhead when a base table is changed, it guarantees that the user will
have up-to-date information in the index.

Additional Index Choices Page 30-35

Why use Aggregate Join Indexes?

Summary Tables

• Queries involving aggregations over large tables are subject to high compute and
I/O overhead. Summary tables often used to expedite their performance.

Summary Tables Limitations

• Require the creation of a separate summary table.
• Require initial population of the summary table.
• Requires refresh of summary table.
• Queries must access summary table, not the base table.
• Multiple “versions of the truth”.

Aggregate Join Indexes

• Aggregate join indexes enhance the performance of the query while reducing the
requirements placed on the user.

• An aggregate join index is created similarly to a join index with the difference that
sums, counts and date extracts may be used in the definition.

Aggregate Join Index Advantages

• Do not require any user maintenance.
• Updated automatically when base tables change (requires processing overhead)
• User will have up-to-date information in the index.

 Additional Index Choices Page 30-36

Aggregate Join Index Properties
Aggregate Indexes are similar to other Join Indexes in that they are:

Automatically kept up to date without user involvement.
Never accessed directly by the user.
Optional and provide an additional choice for the optimizer.
MultiLoad and FastLoad may not be used to load tables for which indexes are defined.

Aggregate Indexes are different from other Join Indexes in that they:

Use the SUM and COUNT functions.
Permit use of EXTRACT YEAR and EXTRACT MONTH from dates.

Define an aggregate join index as a join index that specifies SUM or COUNT aggregate
operations. No other aggregate functions are permitted in the definition of a join index.

To avoid numeric overflow, the COUNT and SUM fields in a join index definition must be
typed as FLOAT. If you do not assign a data type to COUNT and SUM, the system types
them as FLOAT automatically. If you assign a type other than FLOAT, an error message
occurs.

You must have one of the following two privileges to create any join index:

CREATE TABLE on the database or user which will own the join index,
 or
INDEX privilege on each of the base tables.

Additionally, you must have this privilege:

DROP TABLE rights on each of the base tables.

Additional Index Choices Page 30-37

Aggregate Join Index Properties

Aggregate Indexes are similar to other Join Indexes:

• Automatically kept up to date without user involvement.

• Never accessed directly by the user.

• Optional and provide an additional choice for the optimizer.

• MultiLoad and FastLoad may NOT be used to load tables for which indexes are
defined.

Aggregate Indexes differ from other Join Indexes:

• Use the SUM and COUNT functions.

• Permit use of EXTRACT YEAR and EXTRACT MONTH from dates.

Privileges required to create any Join Index:

• CREATE TABLE in the database or user which will own the join index, or INDEX
privilege on each of the base tables.

Additionally, you must have this privilege:

• DROP TABLE rights on each of the base tables.

 Additional Index Choices Page 30-38

Aggregation without an Aggregate Index
The facing page contains an example of aggregation and the base table does NOT have an
aggregate index.

The Daily_Sales table has 35 item_ids and a row for every item for every day from 2002
through 2007.

The Daily_Sales table has 76,685 rows (2191 days x 35 items).

Note: Statistics were collected for all of the columns on the Daily_Sales table.

EXPLAIN SELECT
 item_id
 ,EXTRACT (YEAR FROM sales_date) AS Yr
 ,EXTRACT (MONTH FROM sales_date) AS Mon
 ,SUM (sales)
FROM Daily_Sales
GROUP BY 1, 2, 3
ORDER BY 1, 2, 3;

1) First, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent global
deadlock for TFACT.Daily_Sales.

2) Next, we lock TFACT.Daily_Sales for read.
3) We do an all-AMPs SUM step to aggregate from TFACT.Daily_Sales by way of an all-rows

scan with no residual conditions, and the grouping identifier in field 1. Aggregate Intermediate
Results are computed locally, then placed in Spool 3. The input table will not be cached in
memory, but it is eligible for synchronized scanning. The aggregate spool file will not be
cached in memory. The size of Spool 3 is estimated with low confidence to be 57,514 rows.
The estimated time for this step is 0.85 seconds.

4) We do an all-AMPs RETRIEVE step from Spool 3 (Last Use) by way of an all-rows scan into
Spool 1 (group_amps), which is built locally on the AMPs. Then we do a SORT to order Spool
1 by the sort key in spool field1. The size of Spool 1 is estimated with low confidence to be
57,514 rows. The estimated time for this step is 0.39 seconds.

5) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the
request.

-> The contents of Spool 1 are sent back to the user as the result of statement 1.

Additional Index Choices Page 30-39

Aggregation without an Aggregate Index

List the sales by Year and Month for every item.

SELECT item_id
,EXTRACT (YEAR FROM sales_date) AS Yr
,EXTRACT (MONTH FROM sales_date) AS Mon
,SUM (sales)

FROM Daily_Sales
GROUP BY 1, 2, 3
ORDER BY 1, 2, 3;

EXPLAIN without an Aggregate Index (Partial Listing)
:

3) We do an all-AMPs SUM step to aggregate from TFACT.Daily_Sales by way of an all-rows scan with
no residual conditions, and the grouping identifier in field 1. Aggregate Intermediate Results are
computed locally, then placed in Spool 3. The input table will not be cached in memory, but it is
eligible for synchronized scanning. The aggregate spool file will not be cached in memory. The size
of Spool 3 is estimated with low confidence to be 57,514 rows. The estimated time for this step is
0.85 seconds.

4) We do an all-AMPs RETRIEVE step from Spool 3 (Last Use) by way of an all-rows scan into Spool 1
(group_amps), which is built locally on the AMPs. Then we do a SORT to order Spool 1 by the sort
key in spool field1. The size of Spool 1 is estimated with low confidence to be 57,514 rows. The
estimated time for this step is 0.39 seconds.

:

An all-rows scan of base table is required.

The base table has 76,685 rows.

 Additional Index Choices Page 30-40

Creating an Aggregate Join Index
The CREATE JOIN INDEX syntax is shown below.

Joined_Table Excerpt

Indexes Excerpt

Additional Index Choices Page 30-41

Creating an Aggregate Join Index

CREATE TABLE Daily_Sales
(item_id INTEGER NOT NULL
,sales_date DATE FORMAT 'yyyy-mm-dd'
,sales DECIMAL(9,2))

PRIMARY INDEX (item_id);

CREATE JOIN INDEX Monthly_Sales_JI AS
SELECT

item_id AS Item
,EXTRACT (YEAR FROM sales_date) AS Yr
,EXTRACT (MONTH FROM sales_date) AS Mon
,SUM (sales) AS Sum_of_Sales

FROM Daily_Sales
GROUP BY 1, 2, 3; COLLECT STATISTICS ON Monthly_Sales_JI COLUMN Item;

COLLECT STATISTICS ON Monthly_Sales_JI COLUMN Yr ;
COLLECT STATISTICS ON Monthly_Sales_JI COLUMN Mon;

HELP STATISTICS Monthly_Sales_JI;

Date Time Unique Values Column Names
11/08/16 19:41:43 35 Item
11/08/16 19:41:43 10 Yr
11/08/16 19:41:43 12 Mon

 Additional Index Choices Page 30-42

Aggregation with an Aggregate Index
Execution of the following SELECT yields the result below:

SELECT item_id
 , EXTRACT (YEAR FROM sales_date) AS Yr
 , EXTRACT (MONTH FROM sales_date) AS Mon
 , SUM (sales)
FROM Daily_Sales
GROUP BY 1, 2, 3
ORDER BY 1, 2, 3;

item_id Yr Mon Sum(Sales)
-------- ------ ------ ---------------
5001 2002 1 53987.47
5001 2002 2 45235.03
5001 2002 3 53028.29
5001 2002 4 47632.64
5001 2002 5 53592.29
5001 2002 6 51825.00
5001 2002 7 50452.64
5001 2002 8 53028.29
5001 2002 9 47841.75
5001 2002 10 74663.46
5001 2002 11 65094.86
5001 2002 12 74116.94
5001 2003 1 57433.45
5001 2003 2 46217.14
5001 2003 3 57013.05
5001 2003 6 55732.95
 : : : :

The complete EXPLAIN output of this SQL statement follows:

1) First, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent global

deadlock for TFACT.MONTHLY_SALES_JI.
2) Next, we lock TFACT.MONTHLY_SALES_JI for read.
3) We do an all-AMPs RETRIEVE step from TFACT.MONTHLY_SALES_JI by way of an all-

rows scan with no residual conditions into Spool 1 (group_amps), which is built locally on the
AMPs. Then we do a SORT to order Spool 1 by the sort key in spool field1. The size of Spool
1 is estimated with high confidence to be 2,520 rows. The estimated time for this step is 0.04
seconds.

4) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the
request.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total
estimated time is 0.04 seconds.

Additional Index Choices Page 30-43

Aggregation with an Aggregate Index

List the sales by Year and Month for every item.

EXPLAIN with an Aggregate Index (Partial Listing)
:
3) We do an all-AMPs RETRIEVE step from TFACT.MONTHLY_SALES_JI by way of an all-rows scan

with no residual conditions into Spool 1 (group_amps), which is built locally on the AMPs. Then
we do a SORT to order Spool 1 by the sort key in spool field1. The size of Spool 1 is estimated
with high confidence to be 2,520 rows. The estimated time for this step is 0.04 seconds.

:

SELECT item_id
,EXTRACT (YEAR FROM sales_date) AS Yr
,EXTRACT (MONTH FROM sales_date) AS Mon
,SUM (sales)

FROM Daily_Sales
GROUP BY 1, 2, 3
ORDER BY 1, 2, 3;

• An all-rows scan of aggregate
join index is used.

• The aggregate index consists of
2520 rows versus 76,685 rows in
base table.

 Additional Index Choices Page 30-44

Sparse Join Indexes
Another capability of the join index allows you to index a portion of the table using the
WHERE clause in the CREATE JOIN INDEX statement to limit the rows indexed. You can
limit the rows that are included in the join index to a subset of the rows in the table based on
an SQL query result. This is also referred to as a “Partial Covering” join index.

Any join index, whether simple or aggregate, multi-table or single-table, can be sparse.

Examples of how the Sparse Join Index may be used include:

Ignore rows that are NULL or are most common
Index rows whose Quantity < 100
Index a time segment of the table – rows that relate to this quarter

Customer Benefit
A sparse index can focus on the portion of the table(s) that is most frequently used.

Reduces the storage requirements for a join index
Makes access faster since the size of the JI is smaller

Like other index choices, a sparse JI should be chosen to support high frequency queries that
require short response times. A sparse JI allows the user to:

Use only a portion of the columns in the base table.
Index only the values you want to index.
Ignore some columns, e.g., nulls, to keep access smaller and faster than before.
Avoid maintenance costs for updates

When the index size is smaller there is less work to maintain and updates are faster since
there are fewer rows to update. A sparse JI contents can be limited by date, location
information, customer attributes, or a wide variety of selection criteria combined with AND
and OR conditions.

Performance
Better update performance on the base table when its indexes do not contain the most

common value(s)
Smaller index size
Improved IO and storage
Collect statistics on the index even if it is only a single column

Limitations
Sparse Join Indexes follow the same rules as normal Join Indexes

Additional Index Choices Page 30-45

Sparse Join Indexes

Sparse Join Indexes

• Allows you to index a portion of the table using the WHERE clause in the CREATE
JOIN INDEX statement to limit the rows indexed.

• Any join index, whether simple or aggregate, multi-table or single-table, can be
created as a sparse index.

Examples of how the Sparse Join Index may be used include:

• Ignore rows that are NULL or are most common

• Index rows whose Quantity < 100

• Index a time segment of the table – rows that relate to this quarter

Benefits

• A sparse index can focus on the portion of the table(s) that are most frequently used.

– Reduces the storage requirements for a join index

– Faster to create or build

– Makes access faster since the size of the Join Index is smaller

– Better update performance on the base table when its indexes do not contain
the most common value(s)

 Additional Index Choices Page 30-46

Creating a Sparse Join Index
The facing page contains an example of creating a “Sparse Join Index”. The following
EXPLAIN shows that the Sparse Join Index is used.

… (Locking steps)
3) We do an all-AMPs RETRIEVE step from TFACT.CUST_ORD_SJI by way of an all-rows

scan with a condition of ("(TFACT.CUST_ORD_SJI.orderstatus = 'O') AND
(((EXTRACT(DAY FROM (TFACT.CUST_ORD_SJI.orderdate)))= 24) AND
((EXTRACT(MONTH FROM (TFACT.CUST_ORD_SJI.orderdate)))= 08))") into Spool 1
(group_amps), which is built locally on the AMPs. The size of Spool 1 is estimated with no
confidence to be 676 rows. The estimated time for this step is 0.06 seconds.

4) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the
request.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total
estimated time is 0.06 seconds.

This following EXPLAIN shows that the Sparse Join Index is not used.

… (Locking steps)
4) We do an all-AMPs RETRIEVE step from TFACT.O by way of an all-rows scan with a

condition of ("(TFACT.O.orderstatus = 'O') AND (TFACT.O.orderdate = DATE '2011-12-
18')") into Spool 2 (all_amps), which is redistributed by hash code to all AMPs. Then we do a
SORT to order Spool 2 by row hash. The size of Spool 2 is estimated with low confidence to be
23 rows. The estimated time for this step is 0.38 seconds.

5) We do an all-AMPs JOIN step from Spool 2 (Last Use) by way of a RowHash match scan,
which is joined to TFACT.C by way of a RowHash match scan with no residual conditions.
Spool 2 and TFACT.C are joined using a merge join, with a join condition of ("TFACT.C.custid
= custid"). The result goes into Spool 1 (group_amps), which is built locally on the AMPs. The
size of Spool 1 is estimated with low confidence to be 23 rows. The estimated time for this step
is 0.06 seconds.

6) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the
request.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total
estimated time is 0.44 seconds.

PERM Space Required
The amount of PERM space used by this sparse join index as compared to the full join index
is listed below.

TableName SUM(CurrentPerm)
Cust_Ord_JI 1,044,480
Cust_Ord_SJI 322,048

Additional Index Choices Page 30-47

Creating a Sparse Join Index

CREATE JOIN INDEX Cust_Ord_SJI AS
SELECT (C.custid, C.lname),

(O.orderid, O.orderstatus, O.orderdate)
FROM Customer C
INNER JOIN Orders O
ON C.custid = O.custid
WHERE EXTRACT (YEAR FROM O.orderdate) =

EXTRACT (YEAR FROM Current_Date)
PRIMARY INDEX (custid);

SELECT C.custid, C.lname, O.orderdate
FROM Customer C
INNER JOIN Orders O
ON C.custid = O.custid
WHERE O.orderdate = '2012-08-24'
AND O.orderstatus = 'O';

SELECT C.custid, C.lname, O.orderdate
FROM Customer C
INNER JOIN Orders O
ON C.custid = O.custid
WHERE O.orderdate = '2011-12-18'
AND O.orderstatus = 'O';

In this example, a
sparse join index
is created just for
the year 2012.

The join index will be used for
this SQL and the EXPLAIN
estimated cost is 0.06 seconds.

The tables will have to be joined
for this SQL and the EXPLAIN
estimated cost is 0.44 seconds.

 Additional Index Choices Page 30-48

Creating a Sparse Join Index on a Partitioned Table
The facing page contains an example of creating a sparse join index on a partitioned table.
The Sparse Join is only 130,560 bytes in size since it is only created for 3 months.

The following EXPLAIN shows the creation of the sparse join index on a set of partitions.

: (Locking Steps)
5) We execute the following steps in parallel.

1) We do a single-AMP ABORT test from DBC.DBase by way of the unique primary index.
2) We do a single-AMP ABORT test from DBC.TVM by way of the unique primary index.
3) We do an INSERT into DBC.TVFields (no lock required).
4) We do an INSERT into DBC.TVFields (no lock required).
5) We do an INSERT into DBC.TVFields (no lock required).
6) We do an INSERT into DBC.TVFields (no lock required).
7) We do an INSERT into DBC.TVFields (no lock required).
8) We do an INSERT into DBC.Indexes (no lock required).
9) We do an INSERT into DBC.TVM (no lock required).

6) We create the table header.
7) We create the index subtable on TFACT.Orders_PPI.
8) We lock DBC.TVM for write on a RowHash, and we lock DBC.Indexes for write on a

RowHash.
9) We execute the following steps in parallel.

1) We do an INSERT into DBC.Indexes.
2) We do an INSERT into DBC.Indexes.
3) We do an INSERT into DBC.Indexes.
4) We do an INSERT into DBC.Indexes.
5) We do an INSERT into DBC.Indexes.
6) We do a single-AMP UPDATE from DBC.TVM by way of the unique primary index with

no residual conditions.
7) We do an all-AMPs RETRIEVE step from 3 partitions of TFACT.Orders_PPI with a

condition of ("(TFACT.Orders_PPI.orderdate <= DATE '2012-12-31') AND
(TFACT.Orders_PPI.orderdate >= DATE '2012-10-01')") into Spool 1 (all_amps),
which is redistributed by hash code to all AMPs. Then we do a SORT to order Spool
1 by row hash. The input table will not be cached in memory, but it is eligible for
synchronized scanning. The size of Spool 1 is estimated with high confidence to be
3,983 rows. The estimated time for this step is 0.05 seconds.

10) We do an all-AMPs MERGE into TFACT.Orders_PPI_JI from Spool 1 (Last Use).
11) We lock a distinct TFACT."pseudo table" for exclusive use on a RowHash to prevent global

deadlock for TFACT.Orders_PPI.
12) We lock TFACT.Orders_PPI for exclusive use.
13) We modify the table header TFACT.Orders_PPI and update the table's version number.
14) We lock DBC.AccessRights for write on a RowHash.
15) We INSERT default rights to DBC.AccessRights for TFACT.Orders_PPI_JI.
16) We spoil the parser's dictionary cache for the table.
17) We spoil the parser's dictionary cache for the table.
18) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the

request.
-> No rows are returned to the user as the result of statement 1.

Additional Index Choices Page 30-49

Creating a Sparse Join Index on a Partitioned Table

CREATE JOIN INDEX Orders_PPI_JI AS
SELECT orderid, custid, orderstatus, totalprice, orderdate
FROM Orders_PPI
WHERE orderdate BETWEEN '2012-10-01' AND '2012-12-31'
PRIMARY INDEX (custid);

The sparse
join index is
created for the
4th quarter of
2012.

If the base table is partitioned, a sparse join index may be created for a partition or
partitions – only the “partitions of interest” are scanned.

• Creation time of sparse join index is faster because of partition elimination.

• Partition scan of base table instead of full table scan.

CREATE SET TABLE Orders_PPI
(orderid INTEGER NOT NULL,

custid INTEGER NOT NULL,
: :

orderdate DATE FORMAT 'YYYY-MM-DD' NOT NULL,
: :

ordercomment VARCHAR(79))
PRIMARY INDEX (orderid)
PARTITION BY RANGE_N

(orderdate BETWEEN DATE '2003-01-01' AND DATE '2013-12-31' EACH INTERVAL '1' MONTH) ;

Orders_PPI table is partitioned by month.

7) We do an all-AMPs RETRIEVE step from 3 partitions of TFACT.Orders_PPI with a condition of
("(TFACT.Orders_PPI.orderdate <= DATE '2012-12-31') AND (TFACT.Orders_PPI.orderdate >=
DATE '2012-10-01')") into Spool 1 (all_amps), …

3 partitions
are scanned to
build the JI.

 Additional Index Choices Page 30-50

ALTERing a Join Index to CURRENT
Staring with Teradata 13.10, you can now specify CURRENT_DATE and
CURRENT_TIMESTAMP functions in a join index.

Also starting with Teradata 13.10, Teradata provides a new option with the ALTER TABLE
statement to modify a join index that has been defined with a moving CURRENT_DATE
(or DATE) or moving CURRENT_TIMESTAMP. This new option is called ALTER
TABLE TO CURRENT.

When you specify CURRENT_DATE and CURRENT_TIMESTAMP as part of a
partitioning expression for a join index, these functions resolve to the date and timestamp
when you define the PPI. To partition on a new CURRENT_DATE or CURRENT_TIMESTAMP
value, submit an ALTER TABLE TO CURRENT request.

The options WITH DELETE and WITH INSERT [INTO] save_table option are not
available for a join index.

Additional Index Choices Page 30-51

ALTERing a Join Index to CURRENT

This Teradata 13.10 option allows you to periodically resolve the CURRENT_DATE (or
DATE) and CURRENT_TIMESTAMP of a join index to their current values.

Benefits include:

• You do not have to use ALTER TABLE to change to partitioning (drop and/or add
partitions) for a partitioned join index.

• To partition on a new CURRENT_DATE or CURRENT_TIMESTAMP value, simply
submit an ALTER TABLE TO CURRENT request.

ALTER TABLE join_index_name TO CURRENT;

Example: ALTER TABLE Cust_Ord_SJI TO CURRENT;

Considerations:

• The options WITH DELETE and WITH INSERT INTO save_table are not available for a
join index.

• If RANGE_N specifies CURRENT_DATE or CURRENT_TIMESTAMP in a partitioning
expression, you cannot use ALTER TABLE to add or drop ranges for the join index.
You must use the ALTER TABLE TO CURRENT statement to achieve this function.

 Additional Index Choices Page 30-52

Partitioning a Sparse Join Index
The example on the facing page contains an example of creating a partitioned sparse non-
compressed join index and also includes a NUSI on the same partitioned sparse non-
compressed join index.

This example also illustrates the use of CURRENT_DATE in the sparse portion and in the
partitioning expression of the join index.

Additional Index Choices Page 30-53

Partitioning a Sparse Join Index

CREATE JOIN INDEX Orders_PPI_JI2 AS
SELECT orderid, custid, orderstatus, totalprice, orderdate, clerkid
FROM Orders_PPI
WHERE EXTRACT (YEAR FROM orderdate) = EXTRACT (YEAR FROM Current_Date)

PRIMARY INDEX (custid)
PARTITION BY RANGE_N (orderdate BETWEEN

CAST(((EXTRACT(YEAR FROM CURRENT_DATE) - 1900) * 10000 + 0101) AS DATE) AND
CAST(((EXTRACT(YEAR FROM CURRENT_DATE) - 1900) * 10000 + 1231) AS DATE)
EACH INTERVAL '1' DAY)

INDEX (clerkid);

A sparse non-compressed join index can also be partitioned.
• This allows a partition scan of the join index instead of full join index.
• This example creates a sparse partitioned join index for the current year.

– Teradata 13.10 allows the use of CURRENT_DATE (or DATE) and CURRENT_TIMESTAMP in a
join index definition.

– Use ALTER TABLE join_index TO CURRENT; to resolve the dates in the next year.

• This example also creates a NUSI on the join index.

To resolve the dates in the next year, ALTER TABLE Orders_PPI_JI2 TO CURRENT;

 Additional Index Choices Page 30-54

Global (Join) Indexes
A Global Index is a term used to define a join index that contains the Row IDs of the base
table rows. Some queries are satisfied by examining only the join index when all referenced
columns are stored in the index. Such queries are said to be covered by the join index.

Other queries may use the join index to qualify a few rows, and then refer to the base tables
to obtain requested columns that aren’t stored in the join index. Such queries are said to be
partially-covered by the index. This is referred to as a partially-covered global index.

Because the Teradata Database supports multi-table, partially-covering join indexes, all
types of join indexes, except the aggregate join index, can be joined to their base tables to
retrieve columns that are referenced by a query but are not stored in the join index.
Aggregate join indexes can be defined for commonly-used aggregation queries.

A partial-covering join index takes less space than a covering join index, but in general may
not improve query performance by as much. Not all columns that are involved in a query
selection condition have to be stored in a partial-covering join index. The benefits are:

Disk storage space for the JI decreases when fewer columns are stored in the JI.
Performance increases when the number of selection conditions that can be evaluated

on the join index increases.

When a Row ID is included in a Join Index, 10 bytes are used for the Row ID (Part # + Row
Hash + Uniqueness Value). This is true even if the base table is not partitioned. Starting
with Teradata 14.0, if the bas table is partitioned with > 65,535 partitions, the RowID in the
Join Index is 16 bytes long.

Another use for a Global Join Index for a single table is that of a Hashed NUSI. This
capability will be described in more detail later in the module.

Customer Benefit
Partial–Covering Global Join Indexes can provide:

Improved performance for certain class of queries.
Some of the query improvement benefits that join indexes offer without having to

replicate all the columns required to cover the queries resulting in better
performance.

Improved scalability for certain class of queries

Limitations
Aggregate JI does not support the partial-covering capability.
Global index is not used for correlated sub-queries.
Global index is not supported with FastLoad or MultiLoad.

Additional Index Choices Page 30-55

Global (Join) Indexes

A Global Index is a term used to define a join index that contains the Row IDs of
all of the tables in the join index.

Example:

• Assume that you are joining 2 tables (Table_A and Table_B) and each has 100
columns. The join index can include (at most) 64 columns from each base table.

• You can include the ROWID as part of the 64 columns for each table (ex., A.ROWID
and B.ROWID). Each join index subtable row will include the Row IDs of the
corresponding base table rows for Table_A and Table_B.

• The optimizer can build a plan that uses the join index to get most of the data and can
join back to either or both of the tables for the rest of the data.

Another option – use a single table Global Index as a “Hashed NUSI” – the join
index contains the “secondary index column” and the Row IDs in the join index.

• Useful when a column is used as a secondary index, but the typical number of rows
for a value is much less than the number of AMPs in the system.

• For queries with an equality condition on a fairly unique column, it changes:
– Table-level locks to row hash locks

– All-AMP steps to group-AMP steps

 Additional Index Choices Page 30-56

Global Index – Multiple Tables
The facing page contains an example of creating a “global” multi-table join index.

The total number of columns in the Customer and Orders table is less than 64. Therefore,
you could create a join index that includes all of the columns (16 in this case) from the two
tables. However, if one table had 70 columns and the other table had 90 columns, you can
only include a maximum of 64 columns from each table. Since the number of columns is
more than 64, you would include the most frequently referenced columns from each table.
Another reason to only include a subset of columns may be to minimize the size of the join
index.

In this example, the join index has the most frequently referenced columns as well as the
Row IDs of both tables. The join index subtable row will include the Row ID of the base
table row for the Customer table and the Row ID of the base table for the Orders table. The
optimizer may choose to use the join index to get most of the data and join back to either the
Customer or the Orders table. The optimizer can build execution plans that can join back to
either table.

The terminology used in EXPLAIN plans that indicates a join back is “… using a row id
join …”.

Join back simply means that the ROWID is carried as part of the join index. This permits
the index to “join back” to the base row, much like a NUSI does. It is one of the features of
Partial-Covering Join Indexes.

 EXPLAIN SELECT C.custid, C.lname,
 C.address, C.city, C.state,
 O.orderdate
 FROM Customer C
 INNER JOIN Orders O
 ON C.custid = O.custid
 WHERE O.orderstatus = 'O'
 ORDER BY 1;

This EXPLAIN shows that a Global Join Index is used.

4) We do an all-AMPs RETRIEVE step from TFACT.CUST_ORD_GJI by way of an all-rows

scan with a condition of ("TFACT.CUST_ORD_GJI.orderstatus = 'O'") into Spool 2 (all_amps),
which is built locally on the AMPs. Then we do a SORT to order Spool 2 by the sort key in
spool field1. The size of Spool 2 is estimated with no confidence to be 482 rows. The
estimated time for this step is 0.03 seconds.

5) We do an all-AMPs JOIN step from Spool 2 (Last Use) by way of an all-rows scan, which is
joined to TFACT.C by way of an all-rows scan with no residual conditions. Spool 2 and
TFACT.C are joined using a row id join, with a join condition of ("Field_1 =
TFACT.C.RowID"). The result goes into Spool 1 (group_amps), which is built locally on the
AMPs. Then we do a SORT to order Spool 1 by the sort key in spool field1. The size of Spool
1 is estimated with no confidence to be 482 rows. The estimated time for this step is 0.06
seconds.

Additional Index Choices Page 30-57

Global Index – Multiple Tables

CREATE SET TABLE Customer
(custid INTEGER NOT NULL,

lname VARCHAR(15),
fname VARCHAR(10),
address VARCHAR(50),
city VARCHAR(20),
state CHAR(2),
zipcode INTEGER)

UNIQUE PRIMARY INDEX (custid);

CREATE SET TABLE Orders
(orderid INTEGER NOT NULL,

custid INTEGER NOT NULL,
orderstatus CHAR(1),
totalprice DECIMAL(9,2) NOT NULL,
orderdate DATE

FORMAT 'YYYY-MM-DD' NOT NULL,
orderpriority SMALLINT,
clerkid CHAR(16),
shippriority SMALLINT,
ordercomment VARCHAR(79))

UNIQUE PRIMARY INDEX (orderid);

CREATE JOIN INDEX Cust_Ord_GJI AS
SELECT (C.custid, C.lname, C.ROWID AS crid),

(orderid, orderstatus, orderdate, O.ROWID AS orid)
FROM Customer C
INNER JOIN Orders O
ON C.custid = O.custid
PRIMARY INDEX (custid);

• The Global Index contains those columns most frequently used in queries – effectively
used as “covering join index”.

• The Global Index may be used to join back (via the Row ID) to the tables when columns
are referenced that are not part of the join index.

 Additional Index Choices Page 30-58

Global Index as a “Hashed NUSI”
Another use for a Global Join Index for a single table is that of a Hashed NUSI. An actual
NUSI accesses all AMPs, whereas this index only accesses the AMPs that have rows
matching the value. The Global Join Index is hashed, and the system uses the hash to access
a single AMP, and then uses the Row IDs in the subtable row to then access only those
AMPs that have rows.

ODS (Operational Data Store) or tactical queries that involve an equality condition on a
fairly unique column can use a global index which will change:

Table-level locks to row hash locks
All-AMP steps to group-AMP steps

Using a global index as a “Hashed NUSI” is similar to a single-table join index with one
clear differentiation – it carries a pointer (Row ID) back to the base table, and is used as an
alternative means to get to the base table row. It is not used to satisfy a query by itself.

A “hashed NUSI” global index offers the advantages of a NUSI (it supports duplicate rows
per value) combined with the advantages of a USI (its index rows are hash-distributed on the
indexed value) and is often able to offer group AMP capabilities. As with all Teradata join
indexes, it's use is transparent to the query and will be determined by the optimizer.

Its main benefit is for situations where you are only getting a few rows for one value, and
you can avoid an all AMP operation that a NUSI always requires. This may not have a huge
impact on a system with a modest number of AMPs. However, for very large systems, with
hundreds or thousands of AMPs, a group AMP operation that engages a small percentage
(e.g., only 1% of the total AMPs or less), when done often enough, may increase overall
throughput of the platform, as well as faster query response.

Additional Index Choices Page 30-59

Global Index as a “Hashed NUSI”

Hashing
Algorithm

NUSI
Index Value

All AMP Operation

Base
Table

NUSI
Subtable

. . . .

Assume 200 AMPs and the typical rows per value is 2 for a column referenced in queries.

• A NUSI on this column avoids a FTS, but it is an all-AMP operation and every AMP is
required to look in the NUSI subtable for the hash value of the NUSI.

• A Global Join Index (“Hashed NUSI”) on this column utilizes a Group AMP operation.
The GJI subtable row contains the Row IDs of the base table rows.

Hashing
Algorithm

Column Value
for a Global JI

Group AMP Operation

Base
Table

Global
Join Index

. . . .

 Additional Index Choices Page 30-60

Creating a Global Index (“Hashed NUSI”)
The facing page contains an example creating a Global Join Index as a “Hashed NUSI”.

If the number of Row IDs within the Global Index subtable row is less than 50% of the
number of AMPs, you will see an EXPLAIN plan with “group-AMPs” operations.

If the number of Row IDs within the Global Index subtable row is more than 50% of the
number of AMPs, you will see an EXPLAIN plan with “all -AMPs” operations.

Note: When the Row ID is included in a Join Index, each Row ID is 10 bytes long. The
partition number is included even if the base table is not partitioned. The partition number is
0 for non-partitioned tables.

Creating the Global Join Index without “Repeating Row Ids”
If the Global Join Index (that is to be used as a hashed NUSI) is created as follows – without
the parenthesis, multiple Row IDs will not be included in a single join index subtable row.

CREATE JOIN INDEX Orders_GI2
AS
SELECT custid, ROWID
FROM Orders
PRIMARY INDEX (custid);

Additional Index Choices Page 30-61

Creating a Global Index (“Hashed NUSI”)

CREATE JOIN INDEX Orders_GI AS
SELECT (custid),

(ROWID)
FROM Orders
PRIMARY INDEX (custid);

Fixed portion of Join Index contains index value

Repeating portion of Join Index contains Row IDs

One Global Index row can contain multiple Row IDs.

• If the typical rows for a value is less than 50% of the number of AMPs, this global index
will yield performance gains.

This effectively means that the number of Row IDs in the subtable row is less than 50%
of the number of AMPs.

– EXPLAIN plan will indicate “group-AMPs” operation and “row hash locks”.

• If the typical rows for a value is 50% or greater than the number of AMPs, this global
index will result in an all-AMP operation (like a NUSI).

This effectively means that the number of Row IDs in the subtable row is 50% or more
than the number of AMPs.

– EXPLAIN plan will indicate “all-AMPs” operation and “table level locks”.

 Additional Index Choices Page 30-62

Example: Using a Global Index as a Hashed NUSI
The EXPLAIN of the SQL statement on the facing page is shown below.

 : (locking steps)
3) We do a single-AMP RETRIEVE step from TFACT.ORDERS_GI by way of the primary index

"TFACT.ORDERS_GI.custid = 1500" with no residual conditions into Spool 2 (all_amps),
which is redistributed by hash code to all AMPs. Then we do a SORT to order Spool 2 by the
sort key in spool field1. The input table will not be cached in memory, but it is eligible for
synchronized scanning. The size of Spool 2 is estimated with high confidence to be 14 rows
(564 bytes). The estimated time for this step is 0.00 seconds.

4) We do an all-AMPs JOIN step from Spool 2 (Last Use) by way of an all-rows scan, which is
joined to TFACT.Orders by way of an all-rows scan with no residual conditions. Spool 2 and
TFACT.Orders are joined using a row id join, with a join condition of ("Field_1 =
TFACT.Orders.RowID"). The input table TFACT.Orders will not be cached in memory. The
result goes into Spool 1 (group_amps), which is built locally on the AMPs. The size of Spool 1
is estimated with index join confidence to be 14 rows (352 bytes). The estimated time for this
step is 0.08 seconds.

5) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the
request.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total
estimated time is 0.08 seconds.

Additional Index Choices Page 30-63

Example: Using a Global Index as a Hashed NUSI

List the orders for a customer id of 1500.

SELECT custid, orderid, orderstatus, orderdate, totalprice
FROM Orders
WHERE custid = 1500;

custid orderid orderstatus orderdate totalprice

1500 152400 C 2011-08-15 1150.00
1500 153237 C 2011-08-31 2149.00
1500 156842 O 2011-10-24 1207.50

EXPLAIN showing use of a Global Join Index as a Hashed NUSI (Partial Listing)
:

3) We do a single-AMP RETRIEVE step from TFACT.Orders_GI by way of the primary index
"TFACT.Orders_GI.custid = 1500" with no residual conditions into Spool 2 (group_amps), which is
redistributed by hash code to all AMPs. Then we do a SORT to order Spool 2 by the sort key in
spool field1. The size of Spool 2 is estimated with high confidence to be 14 rows (564 bytes). The
estimated time for this step is 0.00 seconds.

4) We do a group-AMPs JOIN step from Spool 2 (Last Use) by way of an all-rows scan, which is joined
to TFACT.Orders. Spool 2 and TFACT.Orders are joined using a row id join, with a join condition of
("Field_1 = TFACT.Orders.RowID"). The result goes into Spool 1 (group_amps), which is built locally
on the AMPs. The size of Spool 1 is estimated with index join confidence to be 14 rows (352 bytes).
The estimated time for this step is 0.08 seconds.

:

 Additional Index Choices Page 30-64

Repeating Row Ids in Global Index
The SQL to create a Global Join Index with and without repeating Row IDs is shown on the
facing page.

PERM Space Required
The amount of PERM space used by these global join indexes is listed below. Remember
that these tables are quite small. Note that the global join index with parenthesis requires
less space.

SELECT TableName , SUM(CurrentPerm)
FROM DBC.TableSize
WHERE DatabaseName = USER
GROUP BY 1
ORDER BY 1;

TableName SUM(CurrentPerm)
Orders_GI 1,065,984 (with repeating Row IDs)
Orders_GI2 2,019,840 (without repeating Row IDs)

Additional Index Choices Page 30-65

Repeating Row IDs in Global Index

What is the difference in creating a “Hashed NUSI” with or without repeating Row IDs?
Answer – the amount of PERM space needed.

CREATE JOIN INDEX Orders_GI AS CREATE JOIN INDEX Orders_GI2
SELECT (custid), (ROWID) SELECT custid, ROWID
FROM Orders FROM Orders
PRIMARY INDEX (custid); PRIMARY INDEX (custid);

Global Join Index

Join Index Index (Base Table)
Row ID Value RowIDs

RH 1500 RID1 RID2 RID3

RH 1501 RID4 RID5

Global Join Index

Join Index Index (Base Table)
Row ID Value RowID

RH 1500 RID1

RH 1500 RID2

RH 1500 RID3

RH 1501 RID4

RH 1501 RID5

SELECT TableName,
SUM(CurrentPerm) AS SumPerm

FROM DBC.TableSize
WHERE DatabaseName = USER
GROUP BY 1
ORDER BY 1;

TableName SumPerm
Orders_GI 1,065,984 (repeating Row IDs)
Orders_GI2 2,019,840 (w/o repeating Row IDs)

 Additional Index Choices Page 30-66

Hash Indexes
Hash Indexes are database objects that are user-defined for the purpose of improving query
performance. They are file structures that contain properties of both secondary indexes and
join indexes. Hash indexes were first introduced with Teradata V2R4.1.

Hash Indexes have an object type of N. Join Indexes have an object type of I.

The hash index provides a space-efficient index structure that can be hash distributed to
AMPs in various ways.

The hash index has been designed to improve query performance in a manner similar to a
single-table join index. In particular, you can specify a hash index to:

Cover columns in a query so that the base table does not need to be accessed.
Serve as an alternate access path to the base table row.

Example Tables
The same Customer and Orders table definitions are also used with Hash Index examples in
this module.

CREATE SET TABLE Customer
 (custid INTEGER NOT NULL,
 lname VARCHAR(15),
 fname VARCHAR(10),
 address VARCHAR(50),
 city VARCHAR(20),
 state CHAR(2),
 zipcode INTEGER)
UNIQUE PRIMARY INDEX (custid);

CREATE SET TABLE Orders
 (orderid INTEGER NOT NULL,
 custid INTEGER NOT NULL,
 orderstatus CHAR(1),
 totalprice DECIMAL(9,2) NOT NULL,
 orderdate DATE FORMAT 'YYYY-MM-DD' NOT NULL,
 orderpriority SMALLINT,
 clerkid CHAR(16),
 shippriority SMALLINT,
 ordercomment VARCHAR(79))
UNIQUE PRIMARY INDEX (orderid);

Note: Statistics have been collected on the primary index, any join columns, and on all hash
indexes in these examples.

Additional Index Choices Page 30-67

Hash Indexes

Hash Indexes may also be used to improve query performance. The hash index
provides a space-efficient index structure that can be hash distributed to AMPs
in various ways.

Similar to secondary indexes in the following ways:
• Created for a single table only.
• The CREATE syntax is simple and very similar to a secondary index.
• May cover a query without access of the base table rows.

Similar to join indexes in the following ways:
• They “pre-locate” joinable rows to a common location.
• The distribution and sequencing of the rows is user specified.
• Very similar to single-table join index.

Unlike join indexes in the following ways:
• Automatically contains base table PI value as part of hash index subtable row.
• No aggregation operators are permitted.
• They are always defined on a single table.
• No secondary indexes may be built on the hash index.
• A trigger and a hash index cannot exist on a table – returns error message #3732.

 Additional Index Choices Page 30-68

Hash Index – Example
The facing page includes an example of creating a hash index that can be used for joins.

It is not necessary to include the “order id” (orderid) in the hash index definition. It is
included automatically as part of the hash index. If you include the primary index column(s)
in the hash index row, Teradata does not include them a second time in the actual subtable
row.

CREATE HASH INDEX Orders_HI3
 (orderid, custid, orderstatus, totalprice, orderdate)
 ON Orders
 BY (custid)
 ORDER BY HASH (custid);

The size of the subtable for Orders_HI1 (facing page) and the Orders_HI3 (above) is the
same. The ORDER BY VALUES for custid is also a valid option (Orders_HI2) in this
example.

Join Index Alternative Technique
A similar effect can be achieved with a single table join index (STJI) by adding an explicit
ROWID to the join index definition. The ORDER BY VALUES for custid is not a valid
option with a Join Index in this example.

CREATE JOIN INDEX Orders_JI3 AS
SELECT orderid, custid, orderstatus, totalprice, orderdate,
 ROWID
FROM Orders
PRIMARY INDEX (custid);

PERM Space Required
The amount of PERM space used by these indexes is listed below. Remember that these
tables are quite small.

SELECT TableName, SUM(CurrentPerm)
FROM DBC.TableSize
WHERE DatabaseName = USER
GROUP BY 1
ORDER BY 1;

 TableName SUM(CurrentPerm)
 Orders_HI1 3,606,528
 Orders_HI2 3,606,528
 Orders_HI3 3,606,528
 Orders_JI3 3,028,992

Additional Index Choices Page 30-69

Hash Index – Example

A Hash Index can be ordered by value or hash.

Create a hash index to facilitate joins between the “Orders” and “Customer” tables, based
on the PK/FK relationship on “customer id”.

CREATE HASH INDEX Orders_HI1
(custid, orderstatus, totalprice, orderdate)

ON Orders
BY (custid)
ORDER BY HASH (custid);

CREATE HASH INDEX Orders_HI2
(custid, orderstatus, totalprice, orderdate)

ON Orders
BY (custid)
ORDER BY VALUES (custid);

Characteristics of these Hash Indexes are:

• Hash index subtable rows are hash distributed by “custid” value.

• The BY option is required when ORDER BY HASH option is specified.

 Additional Index Choices Page 30-70

Hash Index – Example (cont.)
This EXPLAIN is executed against the tables without a Hash Index.

1) First, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent global

deadlock for TFACT.O.
2) Next, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent global

deadlock for TFACT.C.
3) We lock TFACT.O for read, and we lock TFACT.C for read.
4) We do an all-AMPs RETRIEVE step from TFACT.O by way of an all-rows scan with a

condition of ("(TFACT.O.custid >= 1870) AND ((TFACT.O.custid <= 1900) AND
(TFACT.O.orderstatus = 'O'))") into Spool 2 (all_amps), which is redistributed by hash code to
all AMPs. Then we do a SORT to order Spool 2 by row hash. The size of Spool 2 is estimated
with low confidence to be 375 rows. The estimated time for this step is 0.39 seconds.

5) We do an all-AMPs JOIN step from TFACT.C by way of a RowHash match scan with a
condition of ("(TFACT.C.custid <= 1900) AND (TFACT.C.custid >= 1870)"), which is joined
to Spool 2 (Last Use) by way of a RowHash match scan. TFACT.C and Spool 2 are joined
using a merge join, with a join condition of ("TFACT.C.custid = custid"). The result goes into
Spool 1 (group_amps), which is built locally on the AMPs. Then we do a SORT to order Spool
1 by the sort key in spool field1. The size of Spool 1 is estimated with low confidence to be 200
rows. The estimated time for this step is 0.06 seconds.

6) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the
request.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total
estimated time is 0.45 seconds.

This EXPLAIN plan is executed with a Hash Index created on the table.

1) First, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent global

deadlock for TFACT.ORDERS_HI2.
2) Next, we lock a distinct TFACT."pseudo table" for read on a RowHash to prevent global

deadlock for TFACT.C.
3) We lock TFACT.ORDERS_HI2 for read, and we lock TFACT.C for read.
4) We do an all-AMPs JOIN step from TFACT.C by way of an all-rows scan with a condition of

("(TFACT.C.custid <= 1900) AND (TFACT.C.custid >= 1870)"), which is joined to
TFACT.ORDERS_HI2 with a range constraint of ("(TFACT.ORDERS_HI2.custid >= 1870)
AND (TFACT.ORDERS_HI2.custid <= 1900)") with a residual condition of
("(TFACT.ORDERS_HI2.custid >= 1870) AND ((TFACT.ORDERS_HI2.custid <= 1900)
AND (TFACT.ORDERS_HI2.orderstatus = 'O'))"). TFACT.C and TFACT.ORDERS_HI2 are
joined using a product join, with a join condition of ("TFACT.C.custid =
TFACT.ORDERS_HI2.custid"). The input table TFACT.ORDERS_HI2 will not be cached in
memory, but it is eligible for synchronized scanning. The result goes into Spool 1
(group_amps), which is built locally on the AMPs. Then we do a SORT to order Spool 1 by the
sort key in spool field1. The size of Spool 1 is estimated with no confidence to be 267 rows.
The estimated time for this step is 0.06 seconds.

5) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the
request.

-> The contents of Spool 1 are sent back to the user as the result of statement 1. The total
estimated time is 0.06 seconds.

Additional Index Choices Page 30-71

Hash Index – Example (cont.)

• The rows of the customer table and
the Hash Index are located on the
same AMP.

• This Hash Index utilizes the range
constraint within the query.

List the customers with customer ids between 1870 and 1900 who have open orders?

SQL Query Time

Without Hash Index .45 seconds
With Hash Index .06 seconds

SELECT C.custid, C.lname,
O.orderid, O.orderdate

FROM Customer C
INNER JOIN Orders O
ON C.custid = O.custid
WHERE O.orderstatus = 'O'
AND C.custid BETWEEN 1870 AND 1900
ORDER BY 1;

EXPLAIN using Hash Index (Partial Listing)

4) We do an all-AMPs JOIN step from TFACT.C by way of an all-rows scan with a condition of
("(TFACT.C.custid <= 1900) AND (TFACT.C.custid >= 1870)"), which is joined to
TFACT.ORDERS_HI2 with a range constraint of ("(TFACT.ORDERS_HI2.custid >= 1870) AND
(TFACT.ORDERS_HI2.custid <= 1900)") with a residual condition of ("(TFACT.ORDERS_HI2.custid
>= 1870) AND ((TFACT.ORDERS_HI2.custid <= 1900) AND (TFACT.ORDERS_HI2.orderstatus =
'O'))").

custid lname orderid orderdate

1875 Porter 151105 2011-10-02
1876 Hengster 151166 2011-10-02

: : : :

 Additional Index Choices Page 30-72

Summary
The facing page summarizes the key topics presented in this module.

Additional Index Choices Page 30-73

Summary

Teradata provides additional index choices that can be used to improve
performance for known queries.

Reasons to use a Join Index:
• May be used to pre-join multiple tables.

• May be used as an aggregate index.

• The WHERE clause can be used to limit the number of rows in the join index.

– Referred to a “Sparse Index”.

• Row ID(s) of table (or tables) can be included to create a “Global Index”.

• May be used as a “Hashed NUSI”.

• Secondary indexes can be created on a join index. Secondary indexes can be ordered
by value or hash.

Reasons to use a Hash index (instead of a Join Index):
• Automatically includes the Primary Index value.

• The syntax is similar to secondary index syntax, thus simpler SQL to code.

• The Hash Index can be ordered by value or hash.

 Additional Index Choices Page 30-74

Module 30: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Additional Index Choices Page 30-75

Module 30: Review Questions

Check the box if the attribute applies to the index.

May be created on a single table

May be created on multiple tables

Requires the use of SUM or
COUNT functions

Requires a WHERE condition to
limit rows stored in the index.

Automatically updated as base
table rows are inserted or updated

Automatically includes the base
table PI value as part of the index

Compressed Non-
Join Compressed Aggregate Sparse

Index Join Index Join Join Hash
Syntax Syntax Index Index Index

 Additional Index Choices Page 30-76

Lab Exercise 30-1
Check your understanding of the concepts discussed in this module by completing the lab
exercises as directed by your instructor.

Use the following SQL for this exercise.

 To populate a table:

 INSERT INTO new_tablename
 SELECT * FROM existing_tablename;

Additional Index Choices Page 30-77

Lab Exercise 30-1

Lab Exercise 30-1

Purpose
In this lab, you will use Teradata SQL Assistant to create a join index and evaluate the Explains of
various joins.

What you need
Populated PD tables and Employee, Department, and Job tables in your database

Tasks

1. Verify the number of rows in Employee, Job, and Department tables. If not correct, use
INSERT/SELECT to populate the tables from the PD database.

Employee Count = 1000
Department Count = 60
Job Count = 66

2. EXPLAIN the following SQL statement.

SELECT Last_Name, First_Name, Dept_Name, Job_Desc
FROM Employee E
INNER JOIN Department D ON E.Dept_Number = D.Dept_Number
INNER JOIN Job J ON E.Job_Code = J.Job_Code
ORDER BY 3, 1, 2;

What is estimated time cost for this EXPLAIN? ______________

ds186034
Sticky Note
.10 seconds

 Additional Index Choices Page 30-78

Lab Exercise 30-1 (cont.)
Check your understanding of the concepts discussed in this module by completing the lab
exercises as directed by your instructor.

Use the following SQL for this exercise.

 To create a join index:

 CREATE JOIN INDEX join_index_name AS
 SELECT …. ;

 SUM of Perm space using the DBC.TableSizeV view.

 SELECT TableName (CHAR(15)), SUM(CurrentPerm)
 FROM DBC.TableSizeV
 WHERE DatabaseName = DATABASE
 AND TableName = 'join_index_name'
 GROUP BY 1
 ORDER BY 1;

Additional Index Choices Page 30-79

Lab Exercise 30-1 (cont.)

3. Create a “non-compressed” join index which includes the following columns of Employee,
Department, and Job.

Employee – Last_name, First_Name
Department – Dept_Number, Dept_Name
Job – Job_Code, Job_Desc

Execute the HELP USER command. What is the object type of the Join Index? ______

4. EXPLAIN the following SQL statement (same SQL as step #2)

SELECT Last_Name, First_Name, Dept_Name, Job_Desc
FROM Employee E
INNER JOIN Department D ON E.Dept_Number = D.Dept_Number
INNER JOIN Job J ON E.job_code = J.job_code
ORDER BY 3, 1, 2;

What is estimated time cost for this EXPLAIN? ______________

Is the join index used? _______

How much space does the join index require (use the DBC.TableSizeV view)? _______________

ds186034
Sticky Note
0.03 seconds

ds186034
Sticky Note
125,952

ds186034
Sticky Note
first column is the PI if none is specified - first col

 Additional Index Choices Page 30-80

Lab Exercise 30-1 (cont.)
Check your understanding of the concepts discussed in this module by completing the lab
exercises as directed by your instructor.

Additional Index Choices Page 30-81

Lab Exercise 30-1 (cont.)

5. EXPLAIN the following SQL statement – Salary_Amount has been added as a projected column.

SELECT Last_Name, First_Name, Dept_Name, Job_Desc, Salary_Amount
FROM Employee E
INNER JOIN Department D ON E.Dept_Number = D.Dept_Number
INNER JOIN Job J ON E.Job_Code = J.Job_Code
ORDER BY 3, 1, 2;

What is estimated time cost for this EXPLAIN? ______________

Is the join index used? _______ If not, why not? ___

6. Drop the Join Index.

7. (Optional) Create a new “non-compressed” join index similar to step #3 except include the Primary
Index of Employee_Number for the Join Index.

Employee – Last_name, First_Name, Employee_Number
Department – Dept_Number, Dept_Name
Job – Job_Code, Job_Desc

8. (Optional) EXPLAIN the SQL statement from step #5.

Is the join index used? _______ If so, why? ___

9. (Optional) Drop the Join Index.

ds186034
Sticky Note
0.10 seconds

ds186034
Sticky Note
rows are on diff amp - not togethernot redistributed

 Additional Index Choices Page 30-82

Notes

Miscellaneous SQL Features Page 31-1

Module 31

Teradata Proprietary and Confidential

Miscellaneous SQL Features

After completing this module, you will be able to:

• State the purpose and function of the session setting flags.

• Recognize differences in transaction modes for Teradata and ANSI.

• Distinguish between ANSI and Teradata case sensitivities.

• Describe 2 features of the System Calendar.

• Describe how space is allocated for volatile and global temporary
tables.

 Miscellaneous SQL Features Page 31-2

Notes

Miscellaneous SQL Features Page 31-3

Table of Contents

Teradata SQL ... 31-4

Who is ANSI? .. 31-4
Teradata SQL and ANSI Differences .. 31-6
SQL Session Modes ... 31-8
Transaction Modes – Teradata ... 31-10
Transaction Modes – ANSI .. 31-12
Duplicate Rows .. 31-14
Transaction Mode Examples .. 31-16
Multi-Statement Requests .. 31-18
CASE Sensitivity Issues ... 31-20

Teradata Mode ... 31-20
ANSI Mode .. 31-20
Using ANSI Blind Test .. 31-20

Setting the SQL Flagger ... 31-22
SQLFLAG Example .. 31-24
HELP SESSION Command ... 31-26

BTEQ .SHOW Command .. 31-26
Why a System Calendar? ... 31-28
Calendar View Layout ... 31-30
One Row in the Calendar ... 31-32
Using the Calendar ... 31-34
Temporary Table Choices .. 31-36
Derived Tables Revisited ... 31-38
Volatile Tables ... 31-40

Secondary Indexes and Volatile Tables ... 31-40
Volatile Table Restrictions ... 31-42
Global Temporary Tables .. 31-44

Secondary Indexes and Global Temporary Tables .. 31-44
Creating Global Temporary Tables .. 31-46
Teradata 12.0 – Major Features ... 31-48
Teradata 13.0 – Major Features ... 31-50
Teradata 13.10 – Major Features ... 31-52
Teradata 14.0 – Major Features ... 31-54
Teradata Limits (Different Releases) ... 31-56
Module 31: Review Questions ... 31-58

 Miscellaneous SQL Features Page 31-4

Teradata SQL
SQL is a standard, open language without corporate ownership. The commercial acceptance
of SQL was precipitated by the formation of SQL Standards committees by the American
National Standards Institute and the International Standards Organization in 1986 and 1987.
Various SQL standards have been released over the years.

 SQL-89 (SQL1)
 SQL-92 (SQL2)
 SQL-1999 (SQL3)
 SQL:2003
 SQL:2006
 SQL:2008

The existence of standards is important for the general portability of SQL statements.

Teradata SQL has evolved from a DB2 compatible syntax under V1 to an ANSI compliant
syntax under V2 to an ANSI SQL:2008 compatible version. In every case, Teradata has
always had its own extensions to the language. Current certification is at entry or core level
SQL:2008 with Teradata extensions and some enhanced features implemented.

Teradata, in its historical development, has produced any number of innovative SQL
language elements that do not conform to the ANSI SQL standard, a standard that did not
exist when those features were conceived. The existing Teradata user base had invested
substantial time, effort, and capital into developing applications using that Teradata SQL
dialect.

Who is ANSI?
The American National Standards Institute is an administrator and coordinator of voluntary
systems of standardization for the United States private sector. About 80 years ago a group
of engineering societies and government agencies formed the institute to enhance the
“quality of life by promoting and facilitating voluntary consensus standards and
conformity.” Today the Institute represents the interests of about 1,000 companies,
organizations and government agencies. ANSI does not itself develop standards; rather it
facilitates development by establishing consensus among qualified groups.

The American National Standards Institute (ANSI) defines a version of SQL that all vendors
of relational database management systems support to a greater or lesser degree. The
complete ANSI/ISO SQL:2008 standard is defined across nine individual volumes.

Acronym: NIST – National Institute of Standards and Technology

Miscellaneous SQL Features Page 31-5

Teradata SQL

Two levels of ANSI SQL:2008 compliance:
– Core or Entry level
– Enhanced level

Teradata SQL
– Teradata ANSI SQL:2008 compliant at the Core level
– Certified by US Government and NIST
– Includes many of the enhanced features

OS Platform SQL Compatibilities

TOS DBC/1012 DBC/SQL DB2, SQL/DS, ANSI

TOS 3600 Teradata SQL DB2, SQL/DS, ANSI
(V1R5.1) (Outer Join added)

UNIX MP-RAS 5100 Teradata SQL DB2, SQL/DS, ANSI
(V2R1) (Similar to V1R5.1)

UNIX MP-RAS 52xx – 55xx Teradata SQL ANSI (major syntax change)
Windows 2003 52xx – 56xx (V2R2
Linux 54xx – 6xxx to Teradata 14.0)

 Miscellaneous SQL Features Page 31-6

Teradata SQL and ANSI Differences
Teradata SQL meets ANSI SQL:2008 core standards and contains numerous extensions to
the SQL:2008 standard. The SQL reference manuals identify those features which are
extensions to SQL:2008.

Teradata sessions can operate in one of two modes: ANSI mode and Teradata (BTET) mode.
The choice of mode determines the transaction protocol behavior, but also affects such
things as case sensitivity defaults, collating sequences, data conversions and display
functions. It is important to note that the exact same SQL statement might perform
differently in each mode based on these considerations.

Regardless of mode selected, all syntax, whether ANSI compliant or not, is useable. The
choice of mode does not inhibit any functionality.

Miscellaneous SQL Features Page 31-7

Teradata SQL and ANSI Differences

Teradata SQL consists of:

– ANSI compatible ways
to perform many
Teradata features.

– Teradata extensions
that are not ANSI
standard.

Teradata allows for sessions to operate in either ...
– BTET (Teradata) mode
– ANSI mode

All syntax, both ANSI and Teradata extensions, is accepted in either mode.

The same syntax might function differently in each mode.

– Transaction protocol behavior

– CREATE TABLE SET or MULTISET default

– Case sensitivity and collating sequences

– Certain data conversion and display functions

ANSI Teradata

Enhanced
functions

and
features

ALTER TABLE …
FALLBACK

REPLACE TRIGGER

FORMAT and WITH BY

ALTER TABLE

CREATE TRIGGER

CAST

OUTER JOIN

 Miscellaneous SQL Features Page 31-8

SQL Session Modes
A session flag may be set for the transaction mode of the session. A session in Teradata
mode will operate with BEGIN and END TRANSACTION protocols while a session in
ANSI mode will operate with COMMIT protocol. There are other subtle differences in each
mode’s treatment of CREATE TABLE defaults, case sensitivity, collation sequences, data
conversion and display.

A comparison summary chart follows:

Teradata Mode ANSI Mode
The default is that a transaction
is implicit.

Explicit transactions are
available using the BT and ET
commands.

All transactions are explicit and a
COMMIT WORK is required to
successfully commit all completed
work.

CREATE TABLE – defaults to
SET table

CREATE TABLE – defaults to
MULTISET table

Data comparison is NOT case
specific.

Data comparison is case specific.

Allows truncation of display
data.

Forbids truncation of display data.

Miscellaneous SQL Features Page 31-9

SQL Session Modes

Transaction mode setting

BTET – uses standard Teradata mode (Begin Txn – End Txn mode)
ANSI – uses ANSI mode (Commit mode)

BTEQ Examples

.SET SESSION TRANSACTION ANSI;
– requires COMMIT to end transaction

.SET SESSION TRANSACTION BTET;
– requires neither for implicit transactions

– requires BT to start explicit transaction

– requires ET to end explicit transaction

Must be entered prior to LOGON. To change session mode, must LOGOFF first.

Session Mode affects: – Transaction protocol
– CREATE TABLE defaults
– Default case sensitivities
– Data conversions

 Miscellaneous SQL Features Page 31-10

Transaction Modes – Teradata
Teradata mode is also referred to as BTET mode (Begin Transaction/End Transaction). It
In this mode, all individual requests are treated as single implicit transactions. To aggregate
requests into a single transaction requires the BEGIN and END TRANSACTION delimiters.

Miscellaneous SQL Features Page 31-11

Transaction Modes – Teradata

.SET SESSION TRANSACTION BTET;

BTET mode characteristics:

• CREATE TABLE default – SET table

• A transaction is by definition implicit.
– Each request is an implicit transaction.

BT / ET Statements

• BEGIN TRANSACTION (BT) and END TRANSACTION (ET) statements are used to
create larger transactions out of individual requests.

• BT; – begins an explicit transaction

• ET; – commits the currently active transaction

• Locks are accumulated following a BT until an ET is issued.

• A DDL statement must be the last statement before an ET.

• A rollback occurs when any of the following occur:
– ROLLBACK WORK - explicit rollback of active Txn

– SQL statement failure - rollback of active Txn

– Session abort - rollback of active Txn

 Miscellaneous SQL Features Page 31-12

Transaction Modes – ANSI
ANSI mode is also referred to as COMMIT mode. ANSI mode automatically aggregates
requests until an explicit COMMIT command is encountered. Thus, all transactions in
ANSI mode are by definition explicit.

When the session performing a macro is in ANSI mode, the actions of the macro are uncommitted
until a commit or rollback occurs in subsequent statements unless the macro body ends with a
COMMIT statement.

Note that all DDL statements must be immediately delimited by a COMMIT and also that
macros containing DDL must contain only a single DDL statement and must also be
followed by an immediate commit.

If a macro contains a data definition statement, it can include a COMMIT, but cannot contain other
DML requests.

Miscellaneous SQL Features Page 31-13

Transaction Modes – ANSI

.SET SESSION TRANSACTION ANSI;

ANSI mode characteristics:

• CREATE TABLE default – MULTISET table

• A transaction is committed only by an explicit COMMIT.

– COMMIT WORK will commit the currently active Txn.

• Transactions are by definition explicit.

• Statement following a COMMIT automatically starts a new Txn.

• A DDL statement must be the last statement before a COMMIT.

• Locks are accumulated until a COMMIT is issued.

• A rollback occurs when any of the following occur:

– ROLLBACK WORK - explicit rollback of active Txn

– Session abort - rollback of active Txn

– SQL statement failure - rollback current statement only

 Miscellaneous SQL Features Page 31-14

Duplicate Rows
A duplicate row is a row of a table whose column values are all identical to another row of
the same table. If a designer adheres to the rule that a Primary Key must be unique, then it
should preclude the possibility of having duplicate rows.

Having said that, the ANSI standard permits duplicate rows in order to satisfy the
requirements of certain vendors who rely on them for certain types of auditing systems. For
example, if I am loading a table from several different databases and the same record
appears from three different places, I might want to know that it originated from those three
places.

Even though this contradicts relational theory, the standard generously permits duplicate
rows for these anomalous situations.

Teradata, adhering to the ANSI standard, permits duplicate rows by specifying that you wish
to create a MULTISET table. In Teradata transaction mode, the default, however, is a SET
table that does not permit duplicate rows.

When MULTISET is enabled, Teradata does not do a duplicate row check for new rows
added.

If the table is a SET table, it will only do a duplicate row check if the Primary Index is a
NUPI and there are no other unique indexes on the table. If a unique index exists on the
table, duplicate index check itself will suffice to ensure there are no duplicate rows.

Also, if MULTISET is enabled, it will be overridden by choosing a UPI as the Primary
Index or by having a unique index (e.g., unique secondary) on another column(s) on the
table. Doing this effectively disables the MULTISET.

Miscellaneous SQL Features Page 31-15

Duplicate Rows

A duplicate row is a row of a table whose
column values are all identical to another
row in the same table.

col_a col_b col_c

20 50 A

25 50 A

25 50 A

Duplicate Rows

• Because a PK uniquely identifies each row, ideally a relational table should not have
duplicate rows!

– The ANSI standard, however, permits duplicate rows for specialized situations, thus Teradata
permits them as well. NO PRIMARY INDEX tables are MULTISET tables.

• You may select whether your table will or will not allow them.

* Note: If a UPI is selected on a SET table, the duplicate row check is replaced by a
check for duplicate index values.

CREATE SET TABLE table_A
:
:

CREATE MULTISET TABLE table_B
:
:

Checks for * and disallows duplicate rows. Doesn’t check for and allows duplicate rows.

The Teradata default The ANSI default

 Miscellaneous SQL Features Page 31-16

Transaction Mode Examples
The facing page shows the various permutations of transaction modes and the expected
results from success, failure and rollback.

Miscellaneous SQL Features Page 31-17

Transaction Mode Examples

ANSI Mode

UPDATE A … ;
UPDATE B … ;
COMMIT;
(Both commit)

UPDATE A … ;
UPDATE B … ; (Fails)
COMMIT;
(A commits)

UPDATE A … ;
UPDATE B … ;
ROLLBACK ;
(Both rollback)

UPDATE A … ;
UPDATE B … ;
LOGOFF;
(Both rollback)

BTET Mode (explicit)

BT;
UPDATE A … ;
UPDATE B … ;
ET;
(Both commit)

BT;
UPDATE A … ;
UPDATE B … ; (Fails)
(Both rollback)

BT;
UPDATE A … ;
UPDATE B … ;
ROLLBACK ;
(Both rollback)

BT;
UPDATE A … ;
UPDATE B … ;
LOGOFF;
(Both rollback)

BTET Mode (implicit)

UPDATE A … ; (A commits)
UPDATE B … ; (B commits)

UPDATE A … ; (A commits)
UPDATE B … ; (Fails)
(Rollback B)

(No explicit ROLLBACK
in implicit Txn)

UPDATE A … ; (A commits)
UPDATE B … ; (B commits)
LOGOFF;

 Miscellaneous SQL Features Page 31-18

Multi-Statement Requests
A multi-statement DML request is shown on the facing page. A semicolon at the end of a
line defines the end of the request. These three UPDATE statements will be executed in
parallel.

With SQL Assistant, you can use the Execute Parallel function to also group multiple DML
statements into a single request.

As described on the facing page, requests have locks acquired up front in descending
TableID order which minimizes the chance of deadlocks if the same request is executed by
other users or if other requests using the same tables are executed.

The term request is used to refer to any of the following:

 A multi-statement request. Used only with DML (Data Manipulation Language)
requests.

 A single statement request. Used with DDL (Data Definition Language) or DML
requests.

 A macro. Used with multi-statement or single statement requests, following the
above rules. A macro can contain multiple DML statements. A macro can contain
a single DDL statement, but not a combination of DML and DDL statements.

The three types of requests above are also considered "implicit transactions" (or "system-
generated" transactions). In fact, it is because these requests are transactions that their locks
are held until the requests complete.

If locks are placed in separate requests, their order will be defined by the order of the
requests. This is not recommended since this order may be different than the order that
would be used in a single request. To prevent deadlocks, it is helpful to place all locks at the
beginning of a transaction in a single request (especially for database and table-level locks).

Miscellaneous SQL Features Page 31-19

Multi-Statement Requests

This is an example of 1 request – 3 statements. This one request is considered
an “implicit transaction”.

Notes:
• A semi-colon at the end of a line defines the end of the request (BTEQ convention).
• You cannot mix DDL and DML within a single request.

The 3 table-level write locks (in this example) will be:
• Acquired in TID order.
• Held until done.

Advantage: Minimizes deadlocks at the table level when many users execute requests on
the same tables.

This applies for all types of requests:
• Multi-statement requests (as above)
• Single-statement DDL or DML requests
• Macros

UPDATE Dept SET Salary_Change_Date = CURRENT_DATE

; UPDATE Manager SET Salary_Amt = Salary_Amt * 1.06

; UPDATE Employee SET Salary_Amt = Salary_Amt * 1.04 ;

UPDATE Dept SET Salary_Change_Date = CURRENT_DATE

; UPDATE Manager SET Salary_Amt = Salary_Amt * 1.06

; UPDATE Employee SET Salary_Amt = Salary_Amt * 1.04 ;

 Miscellaneous SQL Features Page 31-20

CASE Sensitivity Issues
Teradata Mode

In Teradata mode, data is stored as entered unless an UPPERCASE attribute is specified
for the column.

The default for character comparisons is NOT CASESPECIFIC unless either the
CASESPECIFIC or UPPER/LOWER operators are specified as part of the comparison
criteria.

ANSI Mode
ANSI mode always stores data as entered. The default mode for data comparison is always
CASESPECIFIC unless the UPPER/LOWER operator is used as part of the comparison
criteria.

Note the use of CASESPECIFIC and NOT CASESPECIFIC operators are non-ANSI
compliant syntax.

Using ANSI Blind Test
Because ANSI does not permit use of CASESPECIFIC and NOT CASESPECIFIC as
comparison operators or as column attributes, ANSI provides the UPPER operator as a
means for doing a “case-blind” comparison of characters. Using this technique will allow a
script to function compatibly in either ANSI or Teradata mode.

Teradata Mode ANSI Mode

SELECT first_name, last_name
FROM Employee
WHERE last_name LIKE '%Ra%';

SELECT first_name, last_name
FROM Employee
WHERE UPPER(last_name)
 LIKE UPPER('%Ra%');

first_name last_name
--------------- ---------------
Robert Crane
James Trader
I.B. Trainer
Larry Ratzlaff
Peter Rabbit

first_name last_name
--------------- ---------------
Robert Crane
James Trader
I.B. Trainer
Larry Ratzlaff
Peter Rabbit

Miscellaneous SQL Features Page 31-21

CASE Sensitivity Issues

Storage As entered (default) None
UPPERCASE (As entered is default)

Comparisons UPPER, LOWER UPPER, LOWER
CS (CASESPECIFIC) (CASESPECIFIC is ANSI default)
NOT CS (NOT CASESPECIFIC – Teradata Default)

Column Attributes Teradata Mode ANSI Mode

SELECT first_name, last_name
FROM Employee
WHERE last_name LIKE '%Ra%';

first_name last_name
--------------- ---------------
Robert Crane
James Trader
I.B. Trainer
Larry Ratzlaff
Peter Rabbit

SELECT first_name, last_name
FROM Employee
WHERE last_name LIKE '%Ra%';

first_name last_name
--------------- ---------------
Larry Ratzlaff
Peter Rabbit

Teradata Mode – Default is NOT CS ANSI Mode – Default is CASESPECIFIC

ANSI Blind Test – an example of executing a
“non case specific” compare in ANSI mode is
provided on the facing page.

 Miscellaneous SQL Features Page 31-22

Setting the SQL Flagger
An additional BTEQ setting is available to affect the session mode. An SQLFLAG may be
enabled to flag any syntax which is non-ANSI compliant. This flag does not inhibit the
execution of any commands; rather it generates warning when any ANSI non-compliance is
detected.

Miscellaneous SQL Features Page 31-23

Setting the SQL Flagger

Teradata sessions have an additional selectable attribute to flag ANSI SQL
non-compliance.

SQLFLAG setting

ENTRY – flags ANSI core incompatibilities
NONE – turns off flagger

.SET SESSION SQLFLAG ENTRY; – flags non-core level ANSI syntax

Must be entered prior to LOGON. To change session mode, must LOGOFF first.

Affects: – Warnings generated for ANSI non-compliance
– No effect on command execution

BTEQ Example

For example:

DATE is not ANSI standard. CURRENT_DATE is ANSI standard.

 Miscellaneous SQL Features Page 31-24

SQLFLAG Example
An example is shown of warnings generated by the SQLFlagger for a single SQL statement
to select today’s date. Note that following the warnings, the date is returned.

The following error codes are from the Teradata Messages manual.

5836 Token is not an entry level ANSI Identifier or Keyword.

Explanation: An identifier or keyword is not compliant with entry level ANSI rules.
Generated By: LEXER.
For Whom: User.
Remedy: If script is to be full ANSI compliant, change the indicated statement.

Note: This error is given because SELECT must be in uppercase.

5818 Synonyms for Operators or Keywords are not ANSI.

Explanation: A non-ANSI synonym has been used for a Keyword or Operator.
Generated By: SYN modules
For Whom: User.
Remedy: If script is to be full ANSI compliant, change the indicated statement.

Note: This error is given because SELECT must be fully spelled out.

5821 Built-in values DATE and TIME are not ANSI.

Explanation: These values are not supported in ANSI.
Generated By: SYN modules.
For Whom: User.
Remedy: If script is to be full ANSI compliant, change the indicated statement.

Note: This error is given because CURRENT_DATE must be used and in uppercase.

5804 A FROM clause is required in ANSI Query Specification.
Explanation: A query has been submitted that does not include a FROM clause.
Generated By: SYN modules.
For Whom: User.
Remedy: If script is to be full ANSI compliant, change the indicated statement.

Miscellaneous SQL Features Page 31-25

SQLFLAG Example

.set session sqlflag entry;

.logon student130,**********;
sel date;

*** Query completed. One row found. One column returned.
*** Total elapsed time was 1 second.

sel date;
$
*** SQL Warning 5836 Token is not an entry level ANSI Identifier or Keyword.

sel date;
$
*** SQL Warning 5818 Synonyms for Operators or Keywords

are not ANSI.

sel date;
$

*** SQL Warning 5821 Built-in values DATE and TIME are not ANSI.

sel date;
$

*** SQL Warning 5804 A FROM clause is required in ANSI Query
Specification.

Current Date
2012-02-24

.logoff

.set session sqlflag none;

.logon student130, …
sel date;

*** Query completed. One row found.
*** One column returned.
*** Total elapsed time was 1 second.

Current Date
2012-02-24

 Miscellaneous SQL Features Page 31-26

HELP SESSION Command
There are new HELP features available with Teradata SQL.

Help at the session level shows whether Teradata (BTET) mode or COMMIT (ANSI) mode
are invoked for the session.

BTEQ .SHOW Command
The BTEQ .SHOW command shows all settings enabled for a BTEQ invoked session of
the Teradata DBC. Because BTEQ is primarily a client utility for report generation, many
of the settings are reporting specifications. There are other settings that reflect BTEQ’s
import and export features as well.

The SHOW command displays session settings including the ANSI Flagger and the
specified transaction mode.

.SHOW CONTROL

 :
[SET] SEPARATOR = two blanks
[SET] SESSION CHARSET = ASCII
[SET] SESSION RESPBUFLEN = 8192
[SET] SESSION SQLFLAG = NONE
[SET] SESSION TRANSACTION = BTET
[SET] SESSION TWORESPBUFS = ON
 :

Miscellaneous SQL Features Page 31-27

HELP SESSION Command

HELP SESSION;

*** Help information returned. One row.
*** Total elapsed time was 1 second.

User Name STUDENT130
Account Name $M0+EDUC&S&D&H

Logon Date 12/02/24
Logon Time 10:48:14

Current DataBase STUDENT130
Collation ASCII

Character Set ASCII
Transaction Semantics Teradata

Current DateForm IntegerDate
Session Time Zone 00:00

Default Character Type LATIN
: :

Default Date Format YY/MM/DD
: :

Currency Name US Dollars
Currency $

: :
Default Timestamp format YYYY-MM-DDBHH:MI:SS.S(F)Z

Current Role TT_ACCESS_R
Logon Account $M0+EDUC&S&D&H

Profile Student_P
LDAP N

: :
Proxy User

Temporal Qualifier CURRENT VALIDTIME AND …
Default Number Format FN9

BTEQ Note:

To produce this format in BTEQ,
use these BTEQ settings:

.SET SIDETITLES

.SET FOLDLINE

To return to the default settings:

.SET DEFAULTS

Notes:

• The TD 14.0 HELP SESSION
displays more parameters than
previous releases.

• However, to see SQLFLAGGER
setting, use SHOW CONTROL
command.

 Miscellaneous SQL Features Page 31-28

Why a System Calendar?
Structured Query Language (SQL) permits a certain amount of mathematical manipulation
of dates, however the needs of real world applications often exceed this innate capability.
Implementing a system calendar is often necessary to answer time-relative business
questions. Summarizing information based on a quarter of the year or on a specific day of
the week can be onerous without the assistance of a system calendar.

As implemented for Teradata, the System Calendar is a high-performance set of nested
views which, when executed, materialize date information as a dimension in a star schema.
The system calendar is easily joined to other tables to produce information based on any
type of time period or time boundary.

The underlying base table consists of one row for each day within the range of Jan 1, 1900
through Dec. 31, 2100. There is only one column, a date, in each row. Each level of view
built on top of the base table adds intelligence to the date.

Miscellaneous SQL Features Page 31-29

Why A System Calendar?

SQL has limited ability to do date arithmetic.
There is a need for more complex, calendar-based calculations.

How does this quarter compare to same quarter last year?
How many shoes do we sell on Sundays vs. Saturdays?
During which week of the month do we sell the most pizzas?

Extends properties of DATE data type by joining to Calendar.
Easily joined to other tables, i.e., dimension of a star schema.
High performance - limited I/O.
Has advantages over user-defined calendars.

Statistics are created for materialized table for join planning.
Only necessary rows are materialized for the calendar.

I’d Like To Know …

The Truth Is ...

Some Good News

Standard Usage

 Miscellaneous SQL Features Page 31-30

Calendar View Layout
The views and the base table that make up the system calendar are contained in a database
called ‘Sys_Calendar’. The contents of this database are easily seen with the help of the
HELP DATABASE command.

HELP DATABASE Sys_Calendar;

 *** Help information returned. 4 rows.
 *** Total elapsed time was 1 second.

Table/View/Macro name Kind Comment
CALENDAR V ?
CALENDARTMP V ?
CALBASICS V ?
CALDATES T ?

The base table for the system calendar contains a row for each date between Jan 1, 1900
through Dec 31, 2100. Each row contains a single column that is a DATE data type. This is
demonstrated using the SHOW TABLE command.

SHOW TABLE Sys_Calendar.Caldates;

 *** Text of DDL statement returned.
 *** Total elapsed time was 1 second.

CREATE SET TABLE Sys_Calendar.Caldates, FALLBACK,
 NO BEFORE JOURNAL,
 NO AFTER JOURNAL
 (
 cdate DATE FORMAT 'YY/MM/DD')
UNIQUE PRIMARY INDEX (cdate);

Miscellaneous SQL Features Page 31-31

Calendar View Layout

calendar_date DATE UNIQUE (Standard Teradata date)
day_of_week BYTEINT, (1-7, where 1 = Sunday)
day_of_month BYTEINT, (1-31)
day_of_year SMALLINT, (1-366)
day_of_calendar INTEGER, (Julian days since 01/01/1900)
weekday_of_month BYTEINT, (nth occurrence of day in month)
week_of_month BYTEINT, (partial week at start of month is 0)
week_of_year BYTEINT, (0-53) (partial week at start of year is 0)
week_of_calendar INTEGER, (0-n) (partial week at start is 0)
month_of_quarter BYTEINT, (1-3)
month_of_year BYTEINT, (1-12)
month_of_calendar INTEGER, (1-n) (Starting Jan, 1900)
quarter_of_year BYTEINT, (1-4)
quarter_of_calendar INTEGER, (Starting Q1, 1900)
year_of_calendar SMALLINT, (Starting 1900)

Columns from the
System Calendar:

System Calendar is a 4-level nested view of dates.

Underlying table is Sys_calendar.Caldates:
– Has one column called ‘cdate’ - DATE data type.
– Has one row for each date of calendar.
– Unique Primary Index is cdate.
– Each level of view adds intelligence to date.

Note:
System calendar includes

Jan 1, 1900 through
Dec. 31, 2100.

 Miscellaneous SQL Features Page 31-32

One Row in the Calendar

Four Levels of Calendar Views

Calendar View which views Calendartmp

Calendartmp View which adds:
 day_of_week
 weekday_of_month
 week_of_month
 week_of_year
 week_of_calendar
 month_of_quarter
 month_of_calendar
 quarter_of_year
 quarter_of_calendar

Calbasics View which adds:
 calendar_date,
 day_of_calendar,
 day_of_month,
 day_of_year,
 month_of_year,
 year_of_calendar)

Caldates Underlying table which contains a date column:

Miscellaneous SQL Features Page 31-33

One Row in the Calendar

SELECT * FROM Sys_Calendar.Calendar WHERE calendar_date = '2012-02-17';

calendar_date 2012-02-17
day_of_week 6
day_of_month 17
day_of_year 48
day_of_calendar 40955
weekday_of_month 3
week_of_month 2
week_of_year 7
week_of_calendar 5850
month_of_quarter 2
month_of_year 2
month_of_calendar 1346
quarter_of_year 1
quarter_of_calendar 449
year_of_calendar 2012

Note: SELECT CURRENT_DATE is the ANSI standard equivalent of SELECT DATE.

S M T W T F S
1 2 3 4

5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29

February 2012

 Miscellaneous SQL Features Page 31-34

Using the Calendar
The daily sales table is used in the following example:

CREATE SET TABLE Daily_Sales,
 NO FALLBACK,
 NO BEFORE JOURNAL,
 NO AFTER JOURNAL,
 CHECKSUM = DEFAULT
 (itemid INTEGER,
 salesdate DATE FORMAT 'YYYY/MM/DD',
 sales DECIMAL(9,2))
PRIMARY INDEX (itemid);

The following is a non-ANSI standard way of performing the join on the facing page.

SELECT DS.itemid
 ,SUM(DS.sales)
FROM daily_sales DS,
 Sys_Calendar.Calendar SC
WHERE DS.salesdate = SC.calendar_date
AND SC.quarter_of_year = 1
AND SC.year_of_calendar = 2012
AND DS.itemid = 10
GROUP BY 1
;

Miscellaneous SQL Features Page 31-35

Using the Calendar

Show total sales of item 10 reported in Q1 of 2012.

SQL:

SELECT DS.itemid, SUM(DS.sales)
FROM Daily_Sales DS
INNER JOIN Sys_Calendar.Calendar SC
ON DS.salesdate = SC.calendar_date
AND SC.quarter_of_year = 1
AND SC.year_of_calendar = 2012
AND DS.itemid = 10
GROUP BY 1;

Result:

itemid Sum(sales)

10 4050.00

calendar_date
:
:

quarter_of_year
:

year-of_calendar

= 1 ?

= 2012 ?

Sys_Calendar.Calendar

Item_id
salesdate
sales

Daily_Sales table

Join

Salesdate is joined to the system calendar.

Calendar determines if this date meets this
criteria:

Is it a Quarter 1 date?
Is it a 2012 date?

If yes on both, add this sales amount to
result.

 Miscellaneous SQL Features Page 31-36

Temporary Table Choices
Generically speaking, there are three types of temporary tables now available with Teradata,
any one of which will have advantages over traditional temporary table creation.

Derived tables were incorporated into Teradata under V2R2. Derived tables are always
local to a specific query, as they are built with code within the query. The rows of the
derived table are stored in spool and discarded when the query finishes. The data dictionary
has no knowledge of derived tables.

Volatile Temporary tables (or Volatile Tables) are local to a session rather than a specific
query, which means that the table may be used repeatedly within a session. Once the
session ends, the volatile table is automatically discarded if it has not already been manually
discarded. The data dictionary has no knowledge of volatile tables. Space for a volatile
table comes from the user’s Spool space.

Global Temporary tables (or Temporary Tables) are local to a session just as are volatile
tables. Unlike volatile tables, global temporary tables are known by the data dictionary
where a permanent definition is kept. Global temporary tables are materialized within a
session, and then discarded when the session ends. Space for a global temporary table
comes from the user’s Temporary space.

In this module, we will be looking at the three types of temporary tables, how their
implementations differ and when to use each.

Miscellaneous SQL Features Page 31-37

Temporary Table Choices

Derived Tables
• Local to the query (table and columns are named within query)

• Incorporated into SQL query syntax (populated in query via SELECT in FROM)

• Materialized in SPOOL – Spool rows are discarded when query finishes

• No data dictionary involvement

• Commonly used with aggregation

Volatile Tables
• Local to a session – uses SPOOL space

• Uses CREATE VOLATILE TABLE syntax

• Discarded automatically at session end

• No data dictionary involvement

(Global) Temporary Tables
• Local to a session – uses TEMPORARY space

• Uses CREATE GLOBAL TEMPORARY TABLE syntax

• Materialized instance of table discarded at session end

• Creates and keeps table definition in data dictionary

 Miscellaneous SQL Features Page 31-38

Derived Tables Revisited
Derived tables were introduced into Teradata under V2R2. The creation of the derived
table is local to the query. A query may have multiple derived tables. These tables may be
joined or manipulated much as any other table would be.

The OLAP functions of SQL do not support standard aggregation functions due to their
conflicting uses of the GROUP BY clause. This fact makes the OLAP functions excellent
candidates for the use of derived tables, in particular when the requirement is to perform a
statistical function on an aggregation.

We see in the facing page example that to find the top three selling items across all stores,
we must first aggregate the sales by product-id using a derived table. Once we have this
aggregation done in spool, we may apply the RANK function to answer the question.

Derived tables are useful, but only exist for the duration of the query. They are not a
practical solution if the result is to be used in many follow-on queries. In this case, other
types of temporary tables will be more appropriate.

Miscellaneous SQL Features Page 31-39

Derived Tables Revisited

SELECT Prodid, Sumsales, RANK(sumsales) AS "Rank"
FROM (SELECT prodid, sum(sales) FROM Salestbl GROUP BY 1)

AS tmp (prodid, sumsales)
QUALIFY RANK (sumsales) <= 3;

Get top three selling items across all stores:

Prodid Sumsales Rank
--------- --------------- --------
A 170000.00 1
C 115000.00 2
D 110000.00 3

• Derived table name is “tmp”.
– The table is required for this query but no others.
– The query will be run only one time with this data.

• Derived column names are “prodid” and “sumsales”.

• Table is created in spool using the inner SELECT.

• SELECT statement is always in parenthesis following “FROM”.

Result:

 Miscellaneous SQL Features Page 31-40

Volatile Tables
Volatile tables have much in common with derived tables. They are materialized in spool
and are unknown to the data dictionary. Unlike derived tables, volatile tables may be used
repeatedly throughout a session. They may be dropped at any time manually or
automatically at the session end.

Volatile tables require their own CREATE syntax. The table definition is kept in cache and
not permanently written to disk. Volatile tables do not survive a system restart.

The LOG option indicates the desire for standard transaction logging of “before images”
into the transient journal.

The ON COMMIT DELETE ROWS option specifies that at the end of a transaction, the
table rows should be deleted. While this might seem a bit unusual, it is the default required
by the ANSI standard. It may be appropriate in situations where a table is materialized only
to produce an aggregation and the table rows are not needed beyond that purpose.
(Typically this would occur in a multi-statement transaction.)

The ON COMMIT PRESERVE ROWS option provides the more normal situation where
the table rows are kept following the end of the transaction.

Secondary Indexes and Volatile Tables
When initially creating a Volatile table, you can define secondary indexes as part of the
CREATE VOLATILE TABLE statement.

You cannot add secondary indexes (via CREATE INDEX) to a Volatile table after it has
been created. Secondary indexes have to be specified with the initial CREATE VOLATILE
TABLE statement.

You cannot create a join index or a hash index on a VOLATILE table.

Miscellaneous SQL Features Page 31-41

Volatile Tables

• Materialized in spool
• No Data Dictionary access or transaction locks
• Table definition kept in cache
• Designed for optimal performance

Similar to
derived tables:

• Is local to the session, not the query
• Can be used with multiple queries in the session
• Dropped manually anytime or automatically at session end
• Requires CREATE VOLATILE TABLE statement

Different from
derived tables:

CREATE VOLATILE TABLE vt_deptsal
, LOG

(deptno SMALLINT
,avgsal DEC(9,2)
,maxsal DEC(9,2)
,minsal DEC(9,2)
,sumsal DEC(9,2)
,empcnt SMALLINT)

ON COMMIT PRESERVE ROWS;

• LOG indicates that a transaction journal
is maintained.

• NO LOG allows for better performance.

• PRESERVE ROWS indicates keep table
rows at TXN end.

• DELETE ROWS indicates delete all table
rows at TXN end.

• Volatile tables do not survive a system
restart.

Example: CREATE Considerations:

 Miscellaneous SQL Features Page 31-42

Volatile Table Restrictions
Volatile tables must have names that are unique within the user’s working database. Even
though volatile tables are not known to the data dictionary, if names duplicating dictionary
names were allowed, the system would not understand where to locate the requested named
object if it could be found in two places.

Up to 1000 volatile tables are allowed on a single session. They must all have unique
names. They also must be qualified by the User ID of the session, either explicitly or
implicitly. A volatile table cannot belong to a database or a user; it can only belong to a
user’s session.

While FALLBACK is a selectable option, its value is limited for volatile tables. Because
they cannot survive a system restart, making a table FALLBACK will not keep a table
available following a restart. The only reason to make a volatile table FALLBACK would
be to allow creation of the table in the event of a down AMP.

None of the following options are permitted with volatile tables:

 Permanent Journaling
 Referential Integrity
 CHECK constraints
 Column compression
 Column default values
 Column titles
 Named indexes

Miscellaneous SQL Features Page 31-43

Volatile Table Restrictions

• Up to 1000 volatile tables are allowed on a single session.
• Each must have a unique name.
• Volatile tables are always qualified by the session’s userid.
• Secondary indexes are allowed on when VT is initially created
• Cannot be created with join and/or hash indexes.

CREATE VOLATILE TABLE username.table1 (Explicit)
CREATE VOLATILE TABLE table1 (Implicit)

CREATE VOLATILE TABLE databasename.table1 (Error)

• Each session can use the same VT name (local to session).

• VT name cannot duplicate existing object name for this user.
– Perm or Temp names, View names, etc.

Electable but not often useful for VTs. VTs don’t survive a system reset.FALLBACK:

• Permanent Journaling • Referential Integrity • Named Indexes
• CHECK constraints • Column compression
• Column default values • Column titles

Options not
permitted:

Restrictions:

Examples:

Multiple
Sessions:

 Miscellaneous SQL Features Page 31-44

Global Temporary Tables
Global Temporary Tables (also called Temporary Tables), unlike volatile and derived
tables, have definitions stored in the Data Dictionary. The table itself is materialized by the
first SQL DML statement that accesses the table, typically an INSERT SELECT or an
INSERT.

Like volatile tables, global temporary tables are local to a session. The materialized instance
of the table is not shareable with other sessions. The table instance may be dropped
explicitly or it will be automatically dropped at the end of the session. The definition
remains in the dictionary for future materialized instances of the table. The base definition
may be dropped with an explicit DROP command.

The only privilege required by the user is the DML privilege necessary to materialize the
table. Once materialized, no privileges are checked.

A special type of space called “temporary space” is used for global temporary tables. Like
perm space, temporary space is sustained during a system restart. Global temporary tables
are thus able to survive a system restart.

Up to 2000 materialized instances of global temporary tables may exist for a given session.

Two key reasons for the users of global temporary tables are

1. To simplify application code
2. Reduce the a large number of joins for specific tables

Note:

It is common to refer to volatile temporary tables as “volatile tables” and refer to
global temporary tables simply as “temporary tables”.

Secondary Indexes and Global Temporary Tables
When initially creating a Global Temporary table, you can define secondary indexes as part
of the CREATE GLOBAL TEMPORARY TABLE statement.

You can also add secondary indexes (via CREATE INDEX) to a Global Temporary table
definition ONLY if it is NOT materialized.

 If a Global Temporary table is materialized by any user in the system, you cannot
add additional secondary indexes to the Global Temporary table.

You cannot create a join index or a hash index on a Global Temporary table.

Miscellaneous SQL Features Page 31-45

Global Temporary Tables

Are created using CREATE GLOBAL TEMPORARY command.

Require a base definition which is stored in the DD.

Are materialized by first SQL DML statement to access table.

Global Temporary
Tables

Base definition is permanent and kept in DD.

Requires DML privileges necessary to materialize the table.

Space is charged against an allocation of “temporary space” -
CREATE USER TEMPORARY parameter.

User can materialize up to 2000 global tables per session.

Secondary indexes (CREATE INDEX) can be added to a Global
Temporary Table as long it has not been materialized.

Tables can survive a system restart.

Differences from
Volatile Tables

Each instance of global temp table is local to a session.

Materialized tables are dropped automatically at session end.

Have LOG and ON COMMIT PRESERVE/DELETE options.

Materialized table contents aren’t sharable with other sessions.

Does not support join and/or hash indexes.

Similarities to
Volatile Tables:

 Miscellaneous SQL Features Page 31-46

Creating Global Temporary Tables
Temporary tables are created using the CREATE GLOBAL TEMPORARY TABLE
command. This stores the base definition of the table in the data dictionary. Like volatile
tables, the defaults are to LOG transactions and ON COMMIT DELETE ROWS.

Temporary tables may be altered by the ALTER command to change any attributes of the
table, similar to perm tables.

Once the table is accessed by a DML command, such as the INSERT SELECT seen on the
facing page, the table is considered materialized and a row is entered into a dictionary view
called DBC.Temptables.

Deleting all rows from a temporary table does not de-materialize the table. The instance of
the table must be dropped or the session must be ended for the materialized table to be
discarded.

Miscellaneous SQL Features Page 31-47

Creating Global Temporary Tables

CREATE GLOBAL TEMPORARY TABLE gt_deptsal
(deptno SMALLINT
,avgsal DEC(9,2)
,maxsal DEC(9,2)
,minsal DEC(9,2)
,sumsal DEC(9,2)
,empcnt SMALLINT);

ALTER TABLE gt_deptsal,
ON COMMIT PRESERVE ROWS;

INSERT INTO gt_deptsal
SELECT dept ,AVG(sal) ,MAX(sal) ,MIN(sal)

,SUM(sal) ,COUNT(emp)
FROM emp
GROUP BY 1;

Base table definition stored in DD/D
Default is ON COMMIT DELETE ROWS

ALTER TABLE can be done to change
defaults.

Table is now materialized.
Row is inserted in DBC.Temptables.

DELETE FROM gt_deptsal; Table remains materialized until the rows
are deleted in it.

 Miscellaneous SQL Features Page 31-48

Teradata 12.0 – Major Features
A list of key new Teradata 12.0 features is shown on the facing page.

Miscellaneous SQL Features Page 31-49

Teradata 12.0 – Major Features

Cost, Quality, and Supportability
• Compression on Soft/Batch RI Columns
• Dispatcher Fault Isolation

Performance
• Multi-Level Partitioned Primary Index
• OCES-3 (Optimizer Cost Estimation Sub-

system)
• Enhanced Query Rewrite Capability
• Extrapolate Statistics Outside of Range
• Increase Statistics Intervals
• Collect Statistics for Multi-Column NULL

Values
• Collect AMP Level Statistics Values
• Parameterized Statement Caching

Improvements
• Windowed Aggregate Functions
• Hash Bucket Expansion

Ease of Use
• Queue Tables
• IN-List Processing
• LOB Enhancements to Stored Procedures
• External Stored Procedures
• UDF Table Function
• TASM: Query Banding, Traffic Cop,

Global/Multiple Exceptions, Utility
Management, and Open API’s

• Enhanced Collection: DBQL & ResUsage
• Enhanced Explain Plan Details
• Stored Procedure Result Sets
• SQL Invocation via External Stored Proc.
• Index Wizard Support for PPI
• Dynamic Result Row Specification on Table

Functions
• Normalized AMPUsage View for Coexistence

Active Enabled
• Online Archive
• Bulk SQL Error Logging Tables
• Full ANSI Merge-Into Capability
• Replication Scalability
• Restartable Scandisk
• Checktable Utility Performance
• Table Functions Without Join-Back

Enterprise Fit
• Java Stored Procedures
• Restore/Copy Dictionary Phase
• Restore/Copy to Different Configuration Data
• Phase Performance
• Cursor Positioning for MSR
• UNICODE Support for password control
• Custom Password Dictionary Support
• New Password Encryption Algorithm

 Miscellaneous SQL Features Page 31-50

Teradata 13.0 – Major Features
A list of key new Teradata 13.0 features is shown on the facing page.

Miscellaneous SQL Features Page 31-51

Teradata 13.0 – Major Features

Cost, Quality, and Supportability
• Teradata Virtual Storage
• Preserve Column Compression in a Join

Index

Performance
• JI/AJI Enhancements (cost-based rewrites)
• Combined OLD/NEW Table Trigger
• Increased Max Number of AWTs per AMP
• Increase max value of dbscontrolCylinders

Saved for PERM
• Large Object (LOB) Loader
• COUNT(*) Optimization
• Collect Statistics Optimization
• DPE for Inclusion/Exclusion Joins
• Increased Join/Subquery limits
• RESET WHEN Ordered Analytic
• Expanded Table Header (1 MB)
• Increase concrete step segment to 2MB

Ease of Use
• Queue Tables
• Automated TSET Data Acquisition
• DBQL Rules Enhancements
• Transfer Statistics

Active Enabled
• DDL Replication
• Identity Column and Trigger Replication
• LOB and UDTs Replication
• ResUsage Data by Workload Definition
• Simplified Query Capture Database
• DBQL XML Query Plan Logging

Enterprise Fit
• Java Stored Procedures
• Geospatial data types
• Teradata Trusted Sessions
• Add SSL/TLS support for LDAP
• ADAM (Active Directory Application Mode)

Support
• Novell's directory for LDAP Mechanism
• Column Level GRANT/REVOKE
• Open LDAP Support
• Period Data Type
• Extended Usage of Scalar Subquery
• UDTs as parameters in Aggregate UDFs
• Recursive Query with UDF/SP
• Ordered Input Rows to UDFs
• Java User-Defined Functions
• Tunable UDF Memory Limit
• BAR for Join Indexes
• Java Stored Procedure Answer Sets
• Support Previous TTU on new DBMS
• Stored Procedure Access Rights

 Miscellaneous SQL Features Page 31-52

Teradata 13.10 – Major Features
A list of key new Teradata 13.10 features is shown on the facing page.

Miscellaneous SQL Features Page 31-53

Teradata 13.10 – Major Features

Enterprise Fit

• Algorithmic Compression for Character Data
• Multi-Value Compression for VARCHAR

columns
• Block level compression
• Variable fetch size (JDBC)
• User Defined SQL Operators

– Temporal Processing
– Temporal table support
– Period data type enhancements
– Replication support
– Time series Expansion support

• Enhanced trusted session security
• External Directory support enhancements
• Geospatial enhancements
• Statement Info Parcel Enhancements (JDBC)
• Support for IPv6
• Support unaligned row format for 64-bit

platforms
• Enhanced hashing algorithm
• Large cylinder support
• User Defined Ordered Analytics

Quality/Supporability
• AMP fault isolation
• Parser diagnostic information capture
• Dictionary cache re-initialization
• EVL fault isolation and unprotected UDFs

Performance
• FastExport without spooling
• Character-based PPI
• Timestamp Partitioning
• Merge data blocks during full table modify

operations
• Statement independence
• TVS: Initial Data Temperature

Ease of Use
• Teradata 13.10 Teradata Express Edition
• Domain Specific System Functions
• Moving current date in PPI
• Transparent Cylinder Packing
• Archive DBQL rule table

Active Enable
• Read from Fallback
• TASM: Workload Designer
• TASM: Utilities Management
• TASM: Additional Workload Definitions
• TASM: Common Classifications

 Miscellaneous SQL Features Page 31-54

Teradata 14.0 – Major Features
A list of key new Teradata 14.0 features is shown on the facing page.

Miscellaneous SQL Features Page 31-55

Teradata 14.0 – Major Features

Enterprise Fit

• Block level compression Enhancements
• Encryption Enhancements
• Increased number of Vprocs
• Indexes on UDT columns
• Kerberos Authentication from Linux clients
• LDAP Authentication for Multiple Directory

Services
• Multiple WITH/WITH RECURSIVE clauses
• Persistent standby nodes
• Provide Table with Teradata Reserved Query

Band Names
• Restricted Creation of New Kanji1 Data
• Row-Level Security
• Separate LogonSource String
• Set AuditTrailId to Authcid for LDAP

Authentication
• Temperature-Based Block-Level

Compression
• Unicode 6.0 Update
• Unicode Support in LOWER Function
• User-Level Export Width
• Workload Management API Support for

Extended Object Name (EON)

Quality/Supporability
• Teradata uses non-root Linux user account
• Redesign RSS to Support an Application

Data Pull Mode
• Selective Dump Capability

Performance
• Teradata Columnar
• Collect statistics enhancements
• Hash Join enhancements
• Increased Partition Limits
• Initial Data Temperature, Phase 2

Ease of Use
• Expansion by Business Days
• New Embedded Services Functions
• New Fields in Workload Management APIs
• NUMBER data type
• SQL ARRAY/VARRAY data type
• TD_ANYTYPE Parameter data type

Active Enable
• Active Fallback, Phase 2
• SLES 11: Improved workload management

and priorities
• Online Reconfiguration Phase
• Teradata Unity

 Miscellaneous SQL Features Page 31-56

Teradata Limits (Different Releases)
The chart on the facing page highlights the system limits associated with different Teradata
releases.

Miscellaneous SQL Features Page 31-57

Teradata Limits (Different Releases)

12.0 13.0 13.10 14.0

Maximum Vdisk Size 1.26 TB 1.26 TB 7.2 TB 7.2 TB

Maximum Block Size (sectors) 255 255 255 255

Maximum Table Header Size 128 KB 1 MB 1 MB 1 MB

Number of defined databases/users 4.2 Billion 4.2 Billion 4.2 Billion 4.2 Billion

Concrete Step Size 1 MB 2 MB 2 MB 2 MB

Maximum number of partitions (PPI) 65,535 65,535 65,535 9.2 x 1018

Maximum number of partition levels 15 15 15 62

Number of spool tables per query 2048 2048 2048 2048

Maximum # of tables in a join 64 128 128 128

Maximum # of columns in a table 2048 2048 2048 2048

Maximum # of columns in an index 64 64 64 64

Maximum SQL Request Limit Size 1 MB 1 MB 1 MB 1 MB

Maximum SQL Response Buffer Size 1 MB 1 MB 1 MB 1 MB

Maximum # of Hash Bucket Entries 1 MB 1 MB 1 MB 1 MB

Maximum # of Vprocs (AMPs and PEs) 16,384 16,384 16,384 32,720

 Miscellaneous SQL Features Page 31-58

Module 31: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Miscellaneous SQL Features Page 31-59

Module 31: Review Questions

1. Which BTEQ setting controls Teradata vs. ANSI mode? _____________________________

2. Which commands will not work in ANSI mode? _______________

3. True or False. The SQL Flagger is just a warning device and doesn’t affect command execution.

4. True or False. Failure of an individual request in ANSI (or COMMIT) mode causes the entire
transaction to be rolled back.

5. True or False. Logging off during an explicit transaction without either a COMMIT or ET will always
result in a ROLLBACK.

6. True or False. HELP SESSION will show the session mode and the status of the SQL Flagger.

7. Where does a Volatile Temporary table get its space from? _____________

8. Where does a Global Temporary table get its space from? _____________

 Miscellaneous SQL Features Page 31-60

Notes

Introduction to Application Utilities Page 32-1

Module 32

Teradata Proprietary and Confidential

Introduction to Application Utilities

After completing this module, you should be able to:

 Identify the Application Utilities.

 Describe how the Application Utilities interface with the Teradata
Database.

 State the advantage of using a utility over other access methods.

 Match Teradata Parallel Transporter operators with the
corresponding Teradata utility.

 Introduction to Application Utilities Page 32-2

Notes

Introduction to Application Utilities Page 32-3

Table of Contents

Application Utilities ... 32-4
Application Utilities Environments ... 32-6

Application Utilities on a Local Area Network ... 32-6
Application Utilities on a Mainframe Host .. 32-6

Application Development .. 32-8
Utility advantages .. 32-8

Transferring Large Amounts of Data ... 32-10
INSERT/SELECT: The Fast Path .. 32-12
Multi-Statement Insert/Select Example ... 32-14
DELETE (ALL): The Fast Path ... 32-16
AXSMOD, INMOD, or OUTMOD Routines .. 32-18
Teradata Parallel Transporter ... 32-20
Teradata Parallel Transporter Operators .. 32-22
Referential Integrity and Load Utility Issues ... 32-24
Honoring Table Free Space Percent ... 32-26
Application Utility Checklist ... 32-28
Application Utility Summary ... 32-30
Module 32: Review Questions ... 32-32

 Introduction to Application Utilities Page 32-4

Application Utilities
The Teradata database provides several Application Utilities for processing large numbers of
INSERTs, UPDATEs, and DELETEs in a batch environment.

Each utility exploits the capabilities provided by the Teradata parallel architecture for a
specific data maintenance or batch-processing activity.

Teradata application utilities are supported on several hardware platforms including a wide
range of channel-connected mainframes.

Regardless of the host platform, however, all access between the host and the Teradata
database relies on the Call Level Interface (CLI), a series of callable subroutines that reside
in the host's address space.

CLI is responsible for creating and managing the parcels that travel back and forth between
Teradata and the host. It permits the host to send multiple tasks (sessions) to Teradata at the
same time.

CLI is the vehicle that makes parallel access possible.

BulkLoad
The BulkLoad utility (not shown on facing page) is an older utility that executed on a
channel–attached mainframe. BulkLoad was one of the original Teradata loader utilities and
has been replaced by the more efficient utility, TPump. BulkLoad supported SELECT,
INSERT, UPDATE, DELETE and submits SQL transactions at SQL speed.

In addition to the main processor being used on the host platform, most activities use special
protocols on the database engine itself.

Introduction to Application Utilities Page 32-5

Application Utilities

Teradata
Database

Host or Server

Operating System

MultiLoad

Support
Environment

CLI
Routines

FastLoad

CLI
Routines

BTEQ /
Teradata SQL

CLI
Routines

FastExport

Support
Environment

CLI
Routines

TPump

Support
Environment

CLI
Routines

Teradata
Parallel

Transporter
(operators)

CLI
Routines

 Introduction to Application Utilities Page 32-6

Application Utilities Environments
Even though a single UNIX node employs an innovative architecture that uses the combined
power of multiple tightly-coupled processors as a powerful UNIX mainframe, it is preferred
that Application Utilities execute on a separate server, a different SMP node, or on a
mainframe host. This server may be another node within the configuration or a separate
server that is LAN connected. If the node is part of the configuration, then is communicates
directly over the BYNET, thus avoiding performance constraints associated with a channel
connection.

Application Utilities on a Local Area Network

Each PC or workstation accessing the Teradata database over a LAN has a single-threaded
version of TDP (Teradata Director Program), which is known as Micro TDP (MTDP).

Although the capacities of PCs and workstations are increasing rapidly, performance can be
constrained by memory and disk limitations. For this reason PCs are less likely to handle
the large amounts of data normally associated with the Application Utilities.

Application Utilities on a Mainframe Host
Application Utilities are frequently executed on mainframes hosts using the mainframe
channel connections to load/unload data to/from Teradata. The TDP provides session
control for the mainframe host.

Introduction to Application Utilities Page 32-7

Application Utility Environments

BTEQ
FastLoad
MultiLoad
FastExport

TPump

Call Level Interface

Micro TDP

Server O.S.

TCP / IP

Server

BTEQ
FastLoad
MultiLoad
FastExport

TPump

Call Level Interface

TDP 0

Host O.S.

TDP 1

Mainframe Host

AMP
0

AMP
1

AMP
5

AMP
3

AMP
4

AMP
2

AMP
6

AMP
7

O.S.
MPL (PDE and BYNET)

PE PE

Gateway Channel Driver

 Introduction to Application Utilities Page 32-8

Application Development
All access to the Teradata database is accomplished using the Call Level Interface. All the
Teradata utilities are programs written in a 2nd or 3rd generation language. Depending upon
the programmer’s skill, programs written using the CLI are extremely flexible and can
accomplish any function supported by the Teradata database. These types of programs are
complex and difficult both to write and maintain.

Less complex, but still requiring a high level of programming ability, SQL statements can be
imbedded in programs (example C) using the Teradata Preprocessor. Application design,
coding and implementation are lengthy processes.

Utility advantages
The Teradata utilities represent an alternative to custom development. They are easy to use,
simple to maintain, and quick to implement. Moreover, they have all been tested,
documented, and are vendor-supported.

Introduction to Application Utilities Page 32-9

Application Development

Flexibility

Ease of Use DifficultEasy

Less

More

APPLICATION

UTILITIES

Input or Output Modification Routines
(AXSMODs / INMODs / OUTMODs)

Selection of the right vehicle can be crucial to the success of the application:
• How difficult is it to implement?
• How difficult is it to maintain?

Use the application utilities wherever possible:
• Offer the least complexity.
• Take full advantage of parallel processing.

AXSMOD
• Teradata supplied program (e.g.,

NPAXSMOD) that provides a specific
input or output modification.

INMOD or OUTMOD
• User-written programs (e.g., C

language) using Call-level interface.

 Introduction to Application Utilities Page 32-10

Transferring Large Amounts of Data
The Teradata application utilities reside in the host computer, whether it be the Application
Processor, a mainframe, or a workstation.

 BTEQ supports all 4 DMLs: SELECT, INSERT, UPDATE and DELETE. BTEQ

also supports IMPORT/EXPORT protocols.

 FastLoad, MultiLoad, and TPump transfer data from the host to Teradata.

 FastExport performs high volume SELECTs to export data from Teradata to the

host.

Apart from the application utilities themselves, there is a special optimization of the SQL
INSERT/SELECT and DELETE that deserve some attention.

Introduction to Application Utilities Page 32-11

Transferring Large Amounts of Data

TDP/MTDP

BTEQ
Import/Export

Both Directions Teradata to HOST

FastLoad

HOST to Teradata

MultiLoad TPump FastExport

Message Passing Layer

Teradata Database Parsing Engine Parsing Engine

SQL
INSERT/SELECT

DELETE ALL

Block

SQL
INSERT/SELECT

DELETE ALL

Block

SQL
INSERT/SELECT

DELETE ALL

Block

SQL
INSERT/SELECT

DELETE ALL

Block

Teradata
Parallel

Transporter

Both Directions

Host or Server

 Introduction to Application Utilities Page 32-12

INSERT/SELECT: The Fast Path
The Teradata INSERT/SELECT is optimized to populate one table in the Teradata database
from another at high speed provided two conditions are true:

1. The tables must have the same Primary Index (PI) and
2. The target table must be empty.

In almost all computer systems, the disk is the slowest component and therefore defines a
performance bottleneck that limits throughput. While you cannot reasonably avoid writing
I/Os to disk, you can certainly try to keep them to a minimum by writing rows to disk a
block at a time.

Teradata stores rows in data blocks sorted ascending by row hash. Teradata never mixes
rows of different tables in the same block, and rows never span blocks.

If both the source table and the target table have the same Primary Index, they will be on the
same AMP and already hashed, formatted, and sorted in data blocks. During this kind of
INSERT/SELECT operation each AMP can locally assemble the blocks for the new table in
memory, and, providing the target table is empty, write entire blocks to disk with a single
I/O.

Multiple INSERT/SELECT operation
In addition to the above, BTEQ permits you to populate a single initially empty table from
multiple source tables at high speed. To do this, use a multiple statement INSERT/SELECT.
Again, all tables must have the same Primary Index.

Example:

 INSERT into T1 SELECT * FROM T2
 ; INSERT INTO T1 SELECT * FROM T3
 ; INSERT INTO T1 SELECT * FROM T4;

Each AMP selects the (presorted) rows from all source tables, builds the data blocks in
memory, and writes the new table a block at a time.

Introduction to Application Utilities Page 32-13

INSERT/SELECT: The Fast Path

INSERT INTO New_Table
SELECT * FROM Old_Table ;

Message Passing Layer

Parsing Engine Parsing Engine

SQL
INSERT/SELECT

Block

SQL
INSERT/SELECT

Block

SQL
INSERT/SELECT

Block

SQL
INSERT/SELECT

Block

INSERT / SELECT achieves highest performance if:
• Target table is empty, AND

• Source and target tables have same Primary Index.

Advantages of using optimized INSERT / SELECT:
• One WRITE to the Transient Journal – instantaneous rollback for aborted Insert/Select statements.

• Data copied and written to disk a block at a time.

• No data redistribution over the BYNET.

 Introduction to Application Utilities Page 32-14

Multi-Statement Insert/Select Example
Look at the example on the facing page. Using multiple Regional Sales History tables, a
single summary table is built by combining summaries from the different regions.

A summarization may be done for each region. Summarizations then are inserted into a
single table using a multi-statement Insert Select statement.

All multi-statement Insert Select statements output to the same spool table. The output is
sorted and inserted into an empty table.

A multi-statement request is formed by semicolon placement in BTEQ, as shown on the
facing page, or by placing statements in a single macro.

If the statements were executed separately, only the first statement is inserted into an empty
table.

Introduction to Application Utilities Page 32-15

Multi-Statement INSERT/SELECT Example

SPOOL

Optimized INSERT/SELECT

Region_1 Region_2 Region_N

Empty Target Table

INSERT INTO Summary_Table
SELECT store, region,

SUM(sales),
COUNT(sale_item)

FROM Region_1
GROUP BY 1, 2

; INSERT INTO Summary_Table
SELECT store, region,

SUM(sales),
COUNT(sale_item)

FROM Region_2
GROUP BY 1, 2

. . .

; INSERT INTO Summary_Table
SELECT store, region,

SUM(sales),
COUNT(sale_item)

FROM Region_N
GROUP BY 1, 2
;

 Introduction to Application Utilities Page 32-16

DELETE (ALL): The Fast Path
Like INSERT/SELECT, you can achieve high performance using DELETE (ALL).

Introduction to Application Utilities Page 32-17

DELETE (ALL): The Fast Path

DELETE achieves its highest performance when deleting all of the rows in a table.

High performance is achievable because:
• Transient Journal is not used to store before-images of deleted rows.
• DELETEs are done at the cylinder index / master index level.

ANSI Transaction Mode: In ANSI Transaction mode, to achieve the DELETE Fast Path
performance, the COMMIT needs to be included as part of a multi-statement request.

DELETE Old_Table; COMMIT;

DELETE [FROM] Old_Table [ALL];

Message Passing Layer

Parsing Engine Parsing Engine

SQL
DELETE ALL

Block Free

SQL
DELETE ALL

Block Free

SQL
DELETE ALL

Block Free

SQL
DELETE ALL

Block Free

 Introduction to Application Utilities Page 32-18

AXSMOD, INMOD, or OUTMOD Routines
Access modules are dynamically linked software components that provide input and output
interfaces to different types of external data storage devices, OLE DB data sources, and
message queuing software. Access modules import data from various data sources and
return the data to a Teradata utility, which then stores the data in the data warehouse. Access
modules are dynamically linked to one or more client utilities by the Teradata Data
Connector Application Programming Interface (API).

Examples of Access Modules (AXSMOD) include

 OLE DB Access Module
 Named Pipe Access Module
 Teradata WebSphere MQ Access Module

The application utilities allow input data to be read or pre-processed by a user-written
INMOD routine. The routines call the defined program module, which is responsible for
delivering an input record.

An INMOD is a user exit routine used by utilities to supply or preprocess input records.

Major functions performed by an INMOD include:

 Generating records to be passed to the utility.
 Validating a data record before passing it to the utility.
 Reading data directly from one or more database systems such as Oracle.
 Converting fields in a data record before passing it to the utility.

An OUTMOD is a user-written program that does post-processing of the data after the
utility (e.g., FastExport) has retrieved the data. Export data to an Output Modification
(OUTMOD) routine. You can write an OUTMOD routine to select, validate, and preprocess
exported data.

Introduction to Application Utilities Page 32-19

AXSMOD, INMOD, or OUTMOD Routines

An INMOD is a user-written program that allows for pre-processing of the data before
giving the data to the utility – possibly acting as a data filter to the utility.

An INMOD routine can perform various functions:
• Validate a data record, add or change data fields in the records.

• Read data directly from one or more database systems, allowing the creation of a composite input
data record, and avoiding the need for an intermediate tape or disk.

• Select specific records for input to the Teradata Database.

• Perform data conversions not supported by the application utilities.

An OUTMOD is a user-written program that does post-processing of the data after the
utility (e.g., FastExport) has retrieved the data.

An AXSMOD is a Teradata supplied program that can provide either a specific input or
output modification.

Teradata
FASTLOAD, MULTILOAD,
TPUMP . . .

Ex. User Written
INMOD

SQL Server

Oracle

 Introduction to Application Utilities Page 32-20

Teradata Parallel Transporter
Teradata Parallel Transporter is the replacement for Teradata Warehouse Builder (TWB).
This utility is effectively an object-oriented software system that executes multiple instances
of data extraction, transformation, and load functions in a scalable, high-speed parallel
processing environment.

Teradata Parallel Transporter is scalable and enables end-to-end parallelism. The previous
versions of utilities (like FastLoad) allow you to load data into Teradata in parallel, but you
still have a single input stream. Teradata Parallel Transporter allows you to run multiple
instances of the extract, optional transformation, and load. You can have as many loads as
you have sources in the same job. With multiple sources of data coming from multiple
platforms, integration is important in a parallel environment.

Teradata Parallel Transporter eliminates the need for persistent storage. It stores data into
data buffers so you no longer need to write data into a flat file. Since you don’t need flat
files, you no longer need to worry about a 2 GB file limit.

Teradata Parallel Transporter provides a single scripting language. You can do the extract,
some transformation, and loads all in one SQL-like scripting language.

Once the dynamics of the language are learned, you can perform multiple tasks with a single
script.

Teradata Parallel Transporter supports FastLoad INMODs, FastExport OUTMODs, and
Access Modules to provide access to all the data sources you use today.

Teradata Parallel Transporter also provides a Direct API interface that can be used by Third
Party partners. They can effectively write 'C' code to directly load/unload data to/from
Teradata.

Introduction to Application Utilities Page 32-21

Teradata Parallel Transporter

Teradata Parallel Transporter (replacement for Teradata Warehouse Builder –
TWB) can load data into and export data from the Teradata database.

It is effectively a parallel load and export utility. Characteristics of this utility
include:

High performance
• Parallel Export and Load operators eliminate sequential bottlenecks.
• Data Streams eliminate the overhead of intermediate (persistent) storage.
• Scalable
• End-to-end parallelism

Easy to use
• Single scripting language
• Access to various data sources

Extensible
• Direct API enables Third Party partners to write 'C' code to directly load/unload

data to/from Teradata.

 Introduction to Application Utilities Page 32-22

Teradata Parallel Transporter Operators
Operators are the software components that provide the actual data extraction,
transformation, and load functions in support of various data stores.

This utility supports different types of operators, where the operator type signifies the
primary function of the operator:

 Producer Data extraction functions (e.g., Export operator):
– Get data from the Teradata Database or from an external data store
– Generate data internally
– Pass data to other operators by way of the operator interface

 Consumer Data loading functions (e.g., Load operator):

– Accept data from other operators by way of the operator interface
– Load data into the Teradata Database or to an external data store

 Filter Data transformation functions such as:

– Selection, validation, cleansing, and condensing

General notes about this utility and its operators.

 The FastLoad INMOD and FastExport OUTMOD operators support the current
FastLoad and FastExport INMOD/OUTMOD features.

 The Data Connector operator is an adapter for the Access Module or non-Teradata

files.

 The SQL Select and Insert operators submit the Teradata SELECT and INSERT

commands.

 The Load, Update, Export and Stream operators are similar to the current FastLoad,

MultiLoad, FastExport and TPump utilities, but built for the TWB parallel
environment.

The INMOD and OUTMOD adapters, Data Connector operator, and the SQL Select/Insert
operators are included when you purchase the Infrastructure. The Load, Update, Export and
Stream operators are purchased separately.

To simplify these new concepts, the facing page compares the Teradata Parallel Transporter
Operators with the classic utilities.

Introduction to Application Utilities Page 32-23

Teradata Parallel Transporter Operators

TPT Operator Teradata Utility Description

LOAD FastLoad A consumer-type operator that uses the Teradata
FastLoad protocol. Supports Error limits and
Checkpoint/ Restart. Both support Multi-Value
Compression and PPI.

UPDATE MultiLoad Utilizes the Teradata MultiLoad protocol to enable job
based table updates. This allows highly scalable and
parallel inserts and updates to a pre-existing table.

EXPORT FastExport A producer operator that emulates the FastExport
utility.

STREAM TPump Uses multiple sessions to perform DML transactions
in near real-time.

DataConnector N/A This operator emulates the Data Connector API.
Reads external data files, writes data to external data
files, reads an unspecified number of data files.

ODBC N/A Reads data from an ODBC Provider.

 Introduction to Application Utilities Page 32-24

Referential Integrity and Load Utility Issues
FastLoad and MultiLoad cannot be used to load data into tables that have standard or batch
referential integrity constraints defined. FastLoad and MultiLoad can be used to load data
into tables that have soft referential integrity constraints (REFERENCES WITH NO
CHECK) defined.

First approach (probably easier in many situations):

1. Create the tables and define the Primary Keys. Primary Keys (referenced
columns) must be NOT NULL and will be implemented as unique index (either primary
or secondary).

2. Populate the tables.

3. Create the Foreign Key references.

 If any row in the referencing column violates the RI constraint, the Reference
constraint is created and an error table (tablename_0) is automatically created.

Second approach:

1. Create the tables and define the Primary Keys. Primary Keys (referenced
columns) must be NOT NULL and will be implemented as unique index (either primary
or secondary).

2. Create the Foreign Key references.

3. Populate the tables.

 If you are populating the tables with INSERT/SELECT and using the second
approach, when a foreign key violation is encountered, the INSERT/SELECT fails and
the entire INSERT/SELECT is rolled back.

Introduction to Application Utilities Page 32-25

Referential Integrity and Load Utility Issues

Tables that have Standard or Batch reference constraints cannot be loaded with
FastLoad, MultiLoad, or with TPT LOAD/UPDATE operators.

Standard RI – REFERENCES
Batch RI – REFERENCES WITH CHECK OPTION

Soft RI – REFERENCES WITH NO CHECK OPTION (can be loaded with FastLoad,
MultiLoad, or Teradata Parallel Transporter (TPT) LOAD/UPDATE operators)

There are two different approaches to establishing RI and populating tables.

First Approach (recommended):

1. Create the tables and define the Primary Keys.
2. Populate the tables.
3. Create the Foreign Key references.

Second approach:

1. Create the tables and define the Primary Keys.
2. Create the Foreign Key references.
3. Populate the tables with SQL or TPump.

 Introduction to Application Utilities Page 32-26

Honoring Table Free Space Percent
Because the system dynamically allocates free cylinder space for storage of inserted or
updated data rows, leaving space for this during the initial load allows a table to expand with
less need for cylinder splits and migrates. The system uses free space for inserted or updated rows.

You can specify the default value for free space left on a cylinder during certain operations
on a table-by-table basis via the FREESPACE option in the CREATE TABLE and ALTER
TABLE statements.

This allows you to select a different value for tables that are constantly modified versus
tables that are only read after they are loaded.

To specify the global free space value, set the FreeSpacePercent (FSP) parameter with the
DBS Control utility. If you do not expect table expansion, that is, the majority of tables are
read-only, use the lowest value (0%) for free space percent.

If you set FSP to a value other than 0, tables are forced to occupy more cylinders than
necessary when loading data. The extra space is not reclaimed until either you insert rows
into the table, use the Ferret utility to initiate PACKDISK on a table, or until mini-cylinder
packs are performed due to a lack of free cylinders.

Introduction to Application Utilities Page 32-27

Honoring Table Free Space Percent

Free Space Percent – how full to fill cylinders during load operations for a table.

• System default – DBSControl parameter: FreeSpacePercent

• CREATE or ALTER Table option – FreeSpace

Utility related operations that honor the Table Free Space Percent:

• SQL to add fallback – ALTER TABLE

• SQL to create a secondary index – CREATE INDEX

• Insert/Select into an empty table

• FastLoad

• MultiLoad (when loading an empty table)

Utility related operations that do not honor the Table Free Space Percent:

• SQL inserts and updates

• MultiLoad (when inserting or updating a populated table)

• TPump

 Introduction to Application Utilities Page 32-28

Application Utility Checklist
We will complete the checklist on the opposite page as we discuss each utility. It will help
you to evaluate capabilities and advantages.

As we discuss each one, it will become apparent that they have been developed over time to
address evolving user needs.

Although not strictly a utility, BTEQ can be considered the grandparent of them all. BTEQ
was initially developed as a means of sending the SQL to the Teradata database without
having to write a complex program using the CLI for each and every query.

Introduction to Application Utilities Page 32-29

Application Utility Checklist

Feature BTEQ FastLoad FastExport MultiLoad TPump

DDL Functions

DML Functions

Multiple DML

Multiple Tables

Protocol Used

Conditional APPLY

Data Conversion

Error Capture

Error Limits

User-written Routines

Automatic Restart

Max Load Limit

Support Environment (SE)

 Introduction to Application Utilities Page 32-30

Application Utility Summary
The facing page summarizes some of the key points of this module.

Introduction to Application Utilities Page 32-31

Application Utility Summary

• BTEQ supports SELECT, INSERT, UPDATE, DELETE.

– BTEQ INSERT/SELECT and DELETE (ALL) can provide a fast effective method to
perform some tasks.

• FastLoad, MultiLoad, and TPump transfer data from the host to Teradata.

• FastExport transfers data from Teradata to the host.

• Utilities may offer the least complex solutions for an application, and can take
advantage of parallel processing.

– Utilities permit the use of AXSMODs, INMODs, and/or OUTMODs for pre- or post-
processing data.

– There is often more than one way to set up your application, but there may be one
that is fastest or most effective.

• Teradata Parallel Transporter can load data into and export data from any
accessible database object in the Teradata Database or other data store for
which there exists an access operator.

 Introduction to Application Utilities Page 32-32

Module 32: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Introduction to Application Utilities Page 32-33

Module 32: Review Questions

Answer True or False.

1. True or False. With MultiLoad, you can import and export data.

2. True or False. In Teradata mode, a BTEQ DELETE ALL function does not use the Transient
Journal to store before-images of deleted rows.

3. True or False. An INSERT/SELECT of 1,000,000 rows into an empty table is only slightly faster
than an INSERT/SELECT of 1,000,000 rows into a table with 1 row.

Match the Teradata Parallel Transporter operator with the corresponding Teradata utility.

1. ___ UPDATE A. MultiLoad

2. ___ STREAM B. FastLoad

3. ___ LOAD C. FastExport

4. ___ EXPORT D. TPump

 Introduction to Application Utilities Page 32-34

Notes

BTEQ Page 33-1

Module 33

Teradata Proprietary and Confidential

BTEQ

After completing this module, you will be able to:

 Use .EXPORT to SELECT data from the Teradata database to
another computer.

 State the purpose of the four types of BTEQ EXPORT.

 Use .IMPORT to process input from a host-resident data file.

 Use Indicator Variables to preserve NULLs.

 Describe multiple sessions, and how they make parallel
access possible.

 BTEQ Page 33-2

Notes

BTEQ Page 33-3

Table of Contents

BTEQ ... 33-4
Using BTEQ Conditional Logic .. 33-6
BTEQ Error Handling .. 33-8
BTEQ EXPORT – Example 1 ... 33-10
4 Types of BTEQ .EXPORT .. 33-12

1. Field Mode (REPORT) .. 33-12
2. Record Mode (DATA) ... 33-12
3. INDICDATA ... 33-12
4. Data Interchange Format (DIF) .. 33-12
LIMIT ... 33-12

BTEQ Data Modes ... 33-14
BTEQ EXPORT – Example 2 ... 33-16

LINUX Variables in a BTEQ script ... 33-16
BTEQ EXPORT – Example 3 ... 33-18
Indicator Variables ... 33-20
Determining the Logical Record Length with Fixed Length Columns.................................... 33-22
Determining the Logical Record Length with Variable Length Columns 33-24
Determining the Logical Record Length with .EXPORT INDICDATA 33-26
.IMPORT (for Network-Attached Systems) .. 33-28

VARTEXT Notes ... 33-28
AXSMOD Example ... 33-28

.IMPORT (for Channel-Attached Systems) ... 33-30

.PACK .. 33-32

.REPEAT .. 33-32
BTEQ IMPORT – Example 1 .. 33-34
BTEQ IMPORT – Example 2 .. 33-36
BTEQ IMPORT – Example 3 .. 33-38
Multiple Sessions ... 33-40
.SET SESSIONS .. 33-40
Parallel Processing Using Multiple Sessions to Access Individual Rows 33-42
When Do Multiple Sessions Make Sense?... 33-44
Application Utility Checklist ... 33-46
Module 33: Review Questions ... 33-48
Lab Exercise 33-1 .. 33-50
Lab Exercise 33-2 .. 33-54

 BTEQ Page 33-4

BTEQ
BTEQ (Batch/Basic Teradata Query Language) was originally designed as a means to send
SQL requests from a host file to the Teradata database and deliver the response in the format
required.

BTEQ can be used for both exporting and importing data.

BTEQ is available on every platform supported by Teradata and is widely used.
Even though BTEQ is frequently used in a pseudo-interactive mode, this course concentrates
on those features that render it a useful vehicle for batch or data maintenance operations.

A BTEQ session provides a quick and easy way to access a Teradata Database. In a BTEQ
session, you can do the following:

 Enter Teradata SQL statements to view, add, modify, and delete data.
 Enter BTEQ commands.
 Enter operating system commands.
 Create and use Teradata stored procedures.

BTEQ Page 33-5

BTEQ

• General purpose command-based utility for submitting SQL requests to the
Teradata database.

– BTEQ (Basic Teradata Query) operates in either a Batch or Interactive mode.

– BTEQ is a CLI-based utility.

• Runs on every supported platform — laptop to mainframe.

• Exports data to a client system from the Teradata database:

– As displayable characters suitable for reports, or

– In native host format, suitable for other applications.

• Imports data from a host or server data file and can use that data within SQL
statements (INSERT, UPDATE, or DELETE).

• Flexible and easy-to-use report writer.

• Limited ability to branch forward to a LABEL, based on a return code or an
activity count.

• BTEQ does error reporting, not error capture.

• The .OS command allows the execution of operating system commands.

 BTEQ Page 33-6

Using BTEQ Conditional Logic
A feature of BTEQ that can be effectively used to improve application performance is its
ability to branch forward in a script based on a test of either an error code or an activity
count. While this is not a true loop function, it can be used to avoid unnecessary, time-
consuming steps.

In the example on the facing page, the script is designed to delete a table. If the delete is
successful, the return code is zero, and the system knows that the table already exists. It
does not need to create it.

The example script also tests the number of rows that qualify for insertion into the table.
Based on the result of the test, alternative subsequent actions can be performed.

BTEQ Page 33-7

Using BTEQ Conditional Logic

The Bank offers a number of special services to its Million-Dollar customers.

DELETE FROM Million_Dollar_Customer ALL;
.IF ERRORCODE = 0 THEN .GOTO TableOK
CREATE TABLE Million_Dollar_Customer

(Account_Number INTEGER
,Customer_Last_Name VARCHAR(20)
,Customer_First_Name VARCHAR(15)
,Balance_Current DECIMAL(9,2));

.LABEL TableOK
INSERT INTO Million_Dollar_Customer
SELECT A.Account_Number, C.Last_Name, C.First_Name, A.Balance_Current
FROM Accounts A INNER JOIN

Account_Customer AC INNER JOIN
Customer C

ON C.Customer_Number = AC.Customer_Number
ON A.Account_Number = AC.Account_Number
WHERE A.Balance_Current GT 1000000;
.IF ACTIVITYCOUNT > 0 THEN .GOTO Continue
.QUIT
.LABEL Continue

DELETE all rows from the Million_Dollar_Customer table.

IF this results in an error (non-zero), THEN create the table, ELSE attempt to populate using
INSERT/SELECT.

IF some rows are inserted (ACTIVITYCOUNT>0) THEN arrange services, ELSE terminate the job.

 BTEQ Page 33-8

BTEQ Error Handling
The BTEQ error handling capability permits you to assign various severity values to specific
types of errors. Use these values to make a decision to take a specific action based on the
occurrence of either a specific type of error or a high-watermark value.

BTEQ Page 33-9

BTEQ Error Handling

.SET ERRORLEVEL 2168 SEVERITY 4,

(2173, 3342, 5262) SEVERITY 8

.SET ERRORLEVEL UNKNOWN SEVERITY 16

SELECT

FROM ;

.IF ERRORLEVEL >= 16 THEN .QUIT 16 ;

You can assign an error level (SEVERITY) for each error code returned and make decisions
based on the level you assign.

ERRORCODE Tests last SQL statement only.
ERRORLEVEL Set by user and retained until reset.

Capabilities:

• Customize mapping from error code to ERRORLEVEL.

• .SET MAXERROR <integer> defines termination threshold.

 BTEQ Page 33-10

BTEQ EXPORT – Example 1
BTEQ and SQL commands are frequently maintained in the same file or script and may be
submitted either in-stream or with a .RUN command.

BTEQ typically delivers a default response to all SQL queries that includes a helpful
message along with diagnostic information about the elapsed time taken to perform the
query. In its pseudo-interactive environment, this information is captured in the single
default output file. This mixed output typically renders the data unsuitable for some
purposes.

The .EXPORT feature of BTEQ, which names an output file, provides the ability to separate
the report or output data from the accounting information.

The main difference between BTEQ .EXPORT to a LAN and a mainframe host is in the way
the output file name is specified.

When identifying the destination for the output file, for BTEQ running on an IBM host, use
the parameter, “DDNAME =”. For a LAN environment, use the expression “FILE =”.

Note that BTEQ statements are distinct from SQL statements; they begin with a period (.)
and do not require a trailing semi-colon. (The trailing semi-colon is required for other
application utilities.)

To export a file greater than 2 GB in a UNIX MP-RAS environment, use the key word
AXSMOD as part of the .EXPORT command.

.LOGON tdp1/user1,passwd1

.OS rm /home/user1/largedatafile

.EXPORT DATA FILE=/home/user1/largedatafile AXSMOD
 SELECT *
 FROM Accounts;
.EXPORT RESET
.QUIT

BTEQ Page 33-11

BTEQ EXPORT – Example 1

BTEQ

Note: BTEQ will append data to an existing
file. To avoid this, use the .OS
"remove" command to ensure that
the file doesn't exist.

.LOGON tdp1/user1,passwd1

.OS rm /home/user1/datafile1

.EXPORT DATA FILE=/home/user1/datafile1

SELECT Account_Number
FROM Accounts
WHERE Balance_Current LT 100;

.EXPORT RESET

.QUIT

export1.btq

bteq < export1.btq
Data file of

Account Numbers

12348009
19450824
23498763
23748091
85673542
19530824
92234590

:

Logon complete
1200 Rows returned
Time was 15.25 seconds

BTEQ Script

Default Output

datafile1

 BTEQ Page 33-12

4 Types of BTEQ .EXPORT

1. Field Mode (REPORT)
When submitting BTEQ requests to a Teradata database, you may have noted that output is
always provided with column headings and underscores, with numeric values aligned to the
right, characters to the left, and all output displayed in the center of the screen or report. This
is Field mode, the default output of BTEQ (suitable for reports).

REPORT – output is truncated to 254 characters for mainframe and 75 for network.
REPORTWIDE – effectively sets width to 32,765 (only supported in some releases)

The .SET WIDTH can be used to set to width to a range of 20 – 65,531.

The REPORT format contains an option (not shown) of NOBOM or BOM (Byte Order
Mark). This option identifies if the BOM is to be added or not when exporting Unicode
data. This is associated with Unicode UTF text formatting. The default is to add the BOM.

2. Record Mode (DATA)
You might require output data in a flat-file format with binary data, no headings, etc.
Request output in this format by using Data mode.

3. INDICDATA
Host computer systems rarely have the built-in capability to recognize or handle NULL data.
You might need to use INDICDATA if the data contains NULL columns.

4. Data Interchange Format (DIF)
Use the DIF output option if you need data in a format suitable for PC-based applications
such as Lotus 1-2-3 and Microsoft Excel. The DATALABELS option includes the column
titles of the selection results as the first row in the DIF file.

The DIF format also contains an option (not shown) of NOBOM or BOM (Byte Order
Mark). This option identifies if the BOM is to be added or not when exporting Unicode
data. This is associated with Unicode UTF text formatting. The default is to add the BOM.

LIMIT
The LIMIT feature of the EXPORT command is useful to application programmers who
require a small subset of pre-existing data to test applications. Remember, however, that
BTEQ is a host-resident utility, and that BTEQ commands are not seen by the Teradata
database. For this reason, while the LIMIT function is observed by BTEQ, it is not seen by
the Teradata database parser.

 Note: The parameters must be on a single line. The LIMIT parameter must be on the

same line as the .EXPORT.

BTEQ Page 33-13

BTEQ .EXPORT

.EXPORT DATA FILE filename A
INDICDATA = , LIMIT = n
REPORT DDNAME ddname

=
DIF

DATALABELS
RESET

A
, OPEN AXSMOD
, CLOSE modname 'init_string'

.EXPORT DATA Sends results to a host file in record mode.

.EXPORT INDICDATA Sends query results that contain indicator variables to a host file. Bytes are
included with bits that indicate if a column is NULL or has a value.

.EXPORT REPORT Sends results to a host file in field mode.

Data set contains column headings and formatted data. Exported records
are truncated is they exceed width – default width is 254 for mainframe and
75 for network clients. Override with .SET WIDTH option.

.EXPORT DIF Output converted to Data Interchange Format – used to transport data to
various PC programs.

.EXPORT RESET Reverses the effect of a previous .EXPORT and closes the output file.

LIMIT n Sets a limit on number of rows exported.

OPEN/CLOSE Output Data Set or File is either OPEN or CLOSEd during RETRY

AXSMOD Access module used to export large file (> 2GB MP-RAS), tape device, etc.

 BTEQ Page 33-14

BTEQ Data Modes
The terms “FIELD” and “RECORD” as mode-names for BTEQ may not be apparent until
you consider the way parcels are sent by the Call Level Interface back and forth to the
Teradata database.

If the application needs response data as formatted, displayable characters suitable for
reports, specify FIELD Mode (the default) with an .EXPORT REPORT command. Field
mode instructs the Teradata database to return formatted data parcels with a series of header
parcels providing details of column headings, data types, and lengths. BTEQ then formats
the responses prior to delivering them to the user. Each returning parcel contains a single
FIELD of information.

If you require binary data for further activity, use .EXPORT DATA to provide a flat-file
response. Each returning parcel will contain a complete RECORD.

INDICDATA mode is needed because host computer operating systems have no way of
representing missing or unknown data (NULLs), but this functionality is required for
Relational Database Systems.

AMPs provide output data consistent with the expectations of the particular type of host and
convert output for fixed-length columns containing NULLs to zeros or spaces. Because zero
is a number and a space is a valid character value, NULLs can be misunderstood by any
application required to re-process the data. A flag is needed to indicate that, despite the
values contained in this field, it should be treated as NULL.

Use INDICDATA mode to precede the output data record with the number of bytes
representing individual bit settings for each field returned to the host. Teradata application
utilities can then be instructed to observe this convention and thereby ensure complete
integrity of the data.

BTEQ Page 33-15

BTEQ Data Modes

Field mode is set by : .EXPORT REPORT

Column A Column B Column C
1 2 3
4 5 6
7 8 9

Transfers data one column at a
time with numeric data
converted to character.

Record mode is set by : .EXPORT DATA

f1 f2 f3 Transfers data one row at a
time in host format. Nulls are
represented as zeros or
spaces.

f1 f2 f3

f1 f2 f3

Indicator mode is set by: .EXPORT INDICDATA

Transfers data one row at a
time in host format, sending an
indicator variable for nulls.
Nulls are represented as zeros
or spaces.

Indic. Byte(s) f1 f2 f3

Indic. Byte(s) f1 f2 f3

Indic. Byte(s) f1 f2 f3

 BTEQ Page 33-16

BTEQ EXPORT – Example 2
The facing page displays a simple BTEQ .EXPORT script which limits the size of the output
to 100 rows. Note the LIMIT parameter on the same line as the .EXPORT statement.

The tee command sends standard output (stdout) to the display device and to a specified file.

LINUX Variables in a BTEQ script
The following technique can be used to support variables in a LINUX script:

Example:

cat cr_bteq.sh

echo please enter the directory where all your files reside:
read in_dir

bteq << !
.run file = ${in_dir}/logon.btq;
.export data file = ${in_dir}/output_data.txt, limit=100
select * from au2.trans;
.export reset;
!

BTEQ Page 33-17

BTEQ EXPORT – Example 2

.LOGON tdp1/user1,passwd1

.EXPORT DATA FILE = datafile2, LIMIT=100, CLOSE
SELECT Account_Number
FROM Accounts
WHERE Balance_Current < 500 ;

.EXPORT RESET

.QUIT

export2.btq

To execute this script in a Linux environment:

$ bteq < export2.btq | tee export2.out

*** Success, Stmt# 1 ActivityCount = 330
*** Query completed. 330 rows found. 1 column returned.
*** Total elapsed time was 1 second.

*** Warning: RetLimit exceeded.
Ignoring the rest of the output.

*** Output returned to console

$

datafile2 – contains 100 account numbers

export2.out – contains the output informational text sent to
the console

This example uses the LIMIT parameter to reduce the amount of exported data.

CLOSE If not used,
BTEQ will
append to an
existing file.

 BTEQ Page 33-18

BTEQ EXPORT – Example 3
The facing page displays a simple BTEQ .EXPORT script which exports a CSV (Comma
Separated Value) file.

You have to specifically export the delimiter (or the comma in a CSV file) for each field that
you are exporting. Integer data is cast as variable character data.

BTEQ Page 33-19

BTEQ EXPORT – Example 3

.LOGON tdp1/user1,passwd1

.OS rm custdata_csv

.EXPORT REPORT FILE = custdata_csv

SELECT CAST(Customer_Number AS VARCHAR(11)) ||','||
CAST(Last_Name AS VARCHAR(30)) ||','||
CAST(First_Name AS VARCHAR(20)) ||','||
CAST(Social_Security AS VARCHAR(9)) (TITLE '')

FROM Customer
SAMPLE 100;

.EXPORT RESET

.QUIT

export3.btq

This script exports a data file with fields that are separated by a comma – referred to as a
CSV data file (CSV – Comma Separated Value).

Examples of exported records are:

8062,Graham,Dennis,213629066
3168,Michelson,Mervin,296604596
2327,Green,Sharon,271600391

Note: Each record has an EOR terminator (hex '0A') that is automatically added.

Effectively
exported as 1
concatenated
field.

If data records exceed default width (ex., 75
characters, use the .SET WIDTH command
to set the maximum record length (up to
65,531).

Note:

 BTEQ Page 33-20

Indicator Variables
Teradata invented the word INDICDATA for utilities that submit pure SQL as opposed to
SQL-like utility statements. INDICDATA is used for BTEQ to instruct the software that
these indicator bytes are present in the data file.

Note: The keyword INDICATORS is used for all the other utilities.

BTEQ Page 33-21

Indicator Variables

Indicator variables allow utilities to process records that contain NULL
indicators.

INDICATORS causes leading n bytes of the record as NULL indicators instead of data.

NULL Columns

Field 3 is null, Field 5 is null

00101000 00000000 F1 F2 F3 F4 F5 F6 F12

.EXPORT INDICDATA

.[SET] INDICDATA [ON]

INDICATORS

BTEQ

FastLoad
MultiLoad
FastExport
TPump

 BTEQ Page 33-22

Determining the Logical Record Length with Fixed
Length Columns

Some host systems, such as IBM mainframes, require the correct LRECL (Logical Record
Length) parameter in JCL, and will abend if the value is not correctly stated. Other types of
hosts are less sensitive to this requirement.

If the input data contains only fixed-length columns, the Logical Record Length is relatively
easy to calculate. Each record being treated has the same length. Fixed-length columns
must accommodate the largest possible value, however, and frequently involve poor
utilization of disk space.

The example on the facing page is in EBCDIC, but even so the wastage of space involved
with storage of non-functional blanks (HEX 40) is apparent.

Note: For convenience, HEX representations are provided in EBCDIC only.

BTEQ Page 33-23

Determining the Logical Record Length with
Fixed Length Columns

J o n e s J a c k

0 0 0 0 D 9 9 8 A 4 4 4 D 8 8 9 4 4 4 4 0 0 0 0 0 0 7 3 ...

0 0 0 6 1 6 5 5 2 0 0 0 1 1 3 2 0 0 0 0 0 0 0 0 0 9 A B …

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Customer # Last Name First Name Social Security Birth Date

Length

CREATE TABLE Customer, FALLBACK
(Customer_Number INTEGER 4
,Last_Name CHAR(8) 8
,First_Name CHAR(8) 8
,Social_Security INTEGER 4
,Birth_Date DATE 4
,OD_Limit DECIMAL(7,2)) 4

UNIQUE PRIMARY INDEX (Customer_Number);

Total 32

 BTEQ Page 33-24

Determining the Logical Record Length with Variable
Length Columns

By defining variable character columns as VARCHAR, you can frequently save a significant
amount of storage space, but this does have a cost. Each variable-length column is required
to provide a 2-byte leading length field, but you no longer have the cost of trailing blanks.

In calculating the correct LRECL parameter, you must allow not only for the 2-byte length
field, but also for the largest column length accommodated. While the Logical Record
Length may grow, the records themselves are typically shorter and of varying length.

BTEQ Page 33-25

Determining the Logical Record Length with
Variable Length Columns

Length

CREATE TABLE Customer, FALLBACK
(Customer_Number INTEGER 4
,Last_Name VARCHAR(8) 10
,First_Name VARCHAR(8) 10
,Social_Security INTEGER 4
,Birth_Date DATE 4
,OD_Limit DECIMAL(7,2)) 4

UNIQUE PRIMARY INDEX (Customer_Number);

Total 36

J o n e s J a c k

0 0 0 0 0 0 D 9 9 8 A 0 0 D 8 8 9 0 0 0 0 0 0 7 3 1 0 0 0

0 0 0 6 0 5 1 6 5 5 2 0 4 1 1 3 2 0 0 0 0 0 0 A B 0 0 0 C

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Customer # Last Name First Name Social Security Birth Date OD Limit

Last_Name and First_Name redefined each as VARCHAR(8) reduces storage by 7
spaces, but adds two 2-byte length fields.

 BTEQ Page 33-26

Determining the Logical Record Length with .EXPORT
INDICDATA

If Indicator Variables are also used, then 1 byte will be allocated for every 8 columns or
fields. For example, if there are 12 columns, then 2 bytes are needed for the NULL bits.

BTEQ Page 33-27

Determining the Logical Record Length with
.EXPORT INDICDATA

Length

CREATE TABLE Customer, FALLBACK
(Customer_Number INTEGER 4
,Last_Name VARCHAR(8) 10
,First_Name VARCHAR(8) 10
,Social_Security INTEGER 4
,Birth_Date DATE 4
,OD_Limit DECIMAL(7,2)) 4

UNIQUE PRIMARY INDEX (Customer_Number);

Total 37

All 6 columns are nullable adding 6 bits (1 byte) when using .EXPORT in INDICDATA mode.
Therefore, the length equals 37. Assume in this example that Social Security is NULL.

Assume
NULL for
Social
Security

J o n e s J a c k

1 0 0 0 0 0 0 D 9 9 8 A 0 0 D 8 8 9 0 0 0 0 0 0 7 3 1 0 ...

0 0 0 0 6 0 5 1 6 5 5 2 0 4 1 1 3 2 0 0 0 0 0 0 A B 0 0 ...

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Customer # Last Name First Name Social Security Birth Date

Indicator
Byte

 BTEQ Page 33-28

.IMPORT (for Network-Attached Systems)
BTEQ is also useful when you want to IMPORT data from a network-attached server to
Teradata as a series of INSERTs, UPDATEs, DELETEs, and “macro” transactions.

Since the Teradata database performs all necessary conversions from displayable characters
to binary format, BTEQ .IMPORT has no need to support the concept of FIELD mode.
BTEQ supports DATA, INDICDATA, REPORT, and VARTEXT formats for import. The
VARTEXT record format is a Teradata V2R4 feature.

As .EXPORT permits the application programmer to limit the number of records written to
the host file, .IMPORT allows you to skip a specified number of records at the beginning of
the file. This allows you to derive a more typical sampling of transactions from the middle
of the file.

VARTEXT Notes
The following rules apply to VARTEXT records:

1. The only acceptable data types are VARCHAR, VARBYTE, and LONG
VARCHAR.

2. A delimiter at the end of the input record is optional.

3. The number of data items in the input record must be equal to the number of fields

defined in the USING clause.

4. Two consecutive delimiter characters specify that the corresponding field should be

“nulled”. If the record starts with a delimiter, the first field will be “nulled”.

5. You can use SET REPEATSTOP ON to stop inserting if an error is encountered

during processing of a VARTEXT record. By default, it rejects the record and
continues processing.

AXSMOD Example
The AXSMOD allows BTEQ to process a data file greater than 2 GB from a tape subsystem.
The following two examples show an EXPORT/IMPORT pair with AXSMOD on a
Windows 2000 platform using TNTBAR (Backup and Restore).

.EXPORT DATA FILE = 'temp' AXSMOD tntbar.dll 'device=tape0 tapeidbteq1 volset=vol1'

.IMPORT DATA FILE = 'temp' AXSMOD tntbar.dll 'device=tape0 tapeidbteq1 volset=vol1'

BTEQ Page 33-29

.IMPORT
(for Network-Attached Systems)

.IMPORT DATA FILE filename
INDICDATA DDNAME = ,SKIP = n
REPORT
VARTEXT

|
'c'

AXSMOD
modname 'init_string'

DATA imports data from the server to Teradata with a USING clause.

INDICDATA import records contain NULL bits.

REPORT imports Teradata “report” data. Data expected in BTEQ EXPORT REPORT
format.

VARTEXT record format as variable length character fields. Default delimiter is | or
specify with field delimiter within single quotes.

AXSMOD access module used to import from tape, named pipes, etc.

IMPORT loads data from a server to the Teradata database with a USING clause.

 BTEQ Page 33-30

.IMPORT (for Channel-Attached Systems)
BTEQ is also useful when you want to IMPORT data from a channel-attached host to
Teradata as a series of INSERTs, UPDATEs, DELETEs, and “macro” transactions.

Since the Teradata database performs all necessary conversions from displayable characters
to binary format, BTEQ .IMPORT has no need to support the concept of FIELD mode. It
only supports DATA (flat-file input) and INDICDATA modes for Channel-Attached
systems.

As .EXPORT permits the application programmer to limit the number of records written to
the host file, .IMPORT allows you to skip a specified number of records at the beginning of
the file. This allows you to derive a more typical sampling of transactions from the middle
of the file.

BTEQ Page 33-31

.IMPORT
(for Channel-Attached Systems)

IMPORT loads data from a mainframe host to the Teradata database with a USING clause.

.IMPORT DATA DDNAME ddname

INDICDATA FILE = ,SKIP = n

.IMPORT DATA Reads a host file in record mode.

.IMPORT INDICDATA Reads data in host format using indicator variables in
record mode to identify nulls.

DDNAME Name of MVS JCL DD statement or CMS FILEDEF.

FILE Name of input data set in all other environments.

SKIP = n Number of initial records from the data stream that
should be skipped before the first row is transmitted.

 BTEQ Page 33-32

.PACK
The PACK command provides the capability of sending multiple IMPORT data file records
along with an SQL request. BTEQ uses this factor to indicate an upper limit when
determining how many records to pack into the USING data buffer sent with the SQL request.

A pack factor is established by using the PACK command or by using a PACK clause for
the REPEAT command.

.REPEAT
Submits the next Teradata SQL request a specified number of times.

The REPEAT command is typically used with Teradata SQL requests that contain a USING
clause. Each time the request is submitted, it uses the next data row from the input data
stream. The REPEAT command is cancelled if the input file cannot be accessed.

Options include:

n How many times you want to submit the next request.

* The next request is to be submitted continuously until the import file runs out

of data.

RECS r Where r is an integer in the range of 1 .. 2251636603879500

PACK p The REPEAT command’s PACK clause overrides the PACK command

setting for the duration of the repeat. Once the repeat is over, the pack factor
returns to the value associated with the PACK command.

Example1: .REPEAT * PACK 100

This equates to repeat the request as many times as possible before reaching EOF (or max n)
and pack up to 100 records with each request. The number of records actually sent is
determined at REPEAT completion. The pack factor actually used may vary for each request
sent.

Example 2: .REPEAT RECS 200 PACK 100

If you need to ensure an exact number of records are transferred, use the RECS clause
version for the repeat factor to compensate for any "reduced" requests. For example,

This equates to repeat the request as many times as necessary to read up to 200 records and
pack a maximum of 100 records with each request.

BTEQ Page 33-33

.PACK and .REPEAT

.REPEAT – Submits the next Teradata SQL request a specified number of times.

.REPEAT n

* PACK p

RECS r

.PACK – Specifies how many records to pack into the USING data buffer sent with the
SQL request.

.PACK n

The PACK command provides the capability of sending multiple IMPORT data
file records along with an SQL request. BTEQ uses this factor to indicate an
upper limit.

The REPEAT command’s PACK clause overrides the PACK command setting
for the duration of the repeat.

 BTEQ Page 33-34

BTEQ IMPORT – Example 1
The facing page displays a sample BTEQ .IMPORT script with several interesting features:

 Elimination of individual accounting output (.QUIET ON)

 .REPEAT

.QUIET ON is used to avoid individual statement accounting in the default output file. If
multiple sessions are used, all individual row accounting is eliminated, and final statistics
are provided. This method avoids a great deal of performance-limiting I/O on the host.

The .REPEAT statement causes BTEQ to continue reading input values until reaching the
limit specified. If this command is omitted, BTEQ will perform the required action only
once.

When using .REPEAT:

 The asterisk (*) causes the next request to be submitted continuously until the
import file runs out of data.

 You can specify a number to indicate how many times you want to submit the next

request.

Note: You can use either of the syntax examples on the facing page. However, if you
attempt to combine both into the same script, you will get the following error message.

 *** Failure 3706 Syntax error: expected something between the word 'in_Custno' and 'C'

BTEQ Page 33-35

BTEQ IMPORT – Example 1
(loading data from a Linux Server)

.QUIET ON
Limits output to
reporting only
errors and request
processing
statistics.

.REPEAT *

Causes BTEQ to
read records until
EOF.

USING
Defines the input
data from the
server.

import1.btq

To execute:

bteq < import1.btq | tee import1.out

.LOGON tdp1/user1,passwd1

.IMPORT DATA FILE = datafile1a;

.QUIET ON

.REPEAT *
USING in_CustNo (INTEGER)

, in_SocSec (INTEGER)
, Filler (CHAR(30))
, in_Lname (CHAR(20))
, in_Fname (CHAR(10))

INSERT INTO Customer
(Customer_Number
, Last_Name
, First_Name
, Social_Security)
VALUES
(:in_CustNo
, :in_Lname
, :in_Fname
, :in_SocSec) ;

.QUIT

import1a.btq

.LOGON tdp1/user1,passwd1

.IMPORT DATA FILE = datafile1a;

.QUIET ON

.REPEAT *
USING (in_CustNo INTEGER

, in_SocSec INTEGER
, Filler CHAR(30)
, in_Lname CHAR(20)
, in_Fname CHAR(10))

INSERT INTO Customer
(Customer_Number
, Last_Name
, First_Name
, Social_Security)

VALUES
(:in_CustNo
, :in_Lname
, :in_Fname
, :in_SocSec) ;

.QUIT

Note the syntax difference with
the USING option.

 BTEQ Page 33-36

BTEQ IMPORT – Example 2
On a Linux platform, bteq can be called in either its pseudo-interactive mode or by
reference to an input script. To specify the script files, use the “<” for input redirection and
the “>” for output redirection.

BTEQ Page 33-37

BTEQ IMPORT – Example 2
(using imported data as update data)

. LOGON tpd1/user1,passwd1

. IMPORT DATA FILE = c:\td_datafiles\datafile2

. QUIET ON

. REPEAT * PACK 10
USING in_CustNo (INTEGER)

, in_SocSec (INTEGER)
UPDATE Customer

SET Social_Security = :in_SocSec
WHERE Customer_Number = :in_CustNo

;UPDATE Customer_History
SET Social_Security = :in_SocSec
WHERE Customer_Number = :in_CustNo ;

.QUIT;

.REPEAT * PACK 10
Causes BTEQ to read records until
EOF. Up to 10 import records are sent
along with the SQL request.

Note: Multi-statement request
Allows BTEQ to use imported data with
multiple tables.

import2.btq

This example shows execution of a BTEQ
script on a Windows server and the
optional use of the .RUN command.

bteq
Enter your BTEQ Command:
.RUN FILE = c:\td_scripts\import2.btq

or

bteq < c:\td_scripts\import2.btq .RUN – processes the Teradata SQL
requests and BTEQ commands from the
specified run file.

 BTEQ Page 33-38

BTEQ IMPORT – Example 3
The facing page displays a simple BTEQ .IMPORT script which imports a CSV (Comma
Separated Value) file.

You have to specify the delimiter (the comma in a CSV file) since the default is the |.

BTEQ Page 33-39

BTEQ IMPORT – Example 3
(importing data from a CSV file)

.LOGON tdp1/user1,passwd1

.IMPORT VARTEXT ',' FILE = custdata_csv

.QUIET ON

.REPEAT *

USING (in_custno VARCHAR(11),
in_lname VARCHAR(30),
in_fname VARCHAR(20),
in_ssn VARCHAR(9))

INSERT INTO Customer
VALUES (:in_custno, :in_lname, :in_fname,:in_ssn);

.QUIET OFF
SELECT COUNT(*) FROM Customer;
.QUIT

export3.btq

This script effectively imports data from a file with fields that are separated by a comma;
referred to as a CSV data file (CSV – Comma Separated Value).

To execute:

bteq < export3.btq | tee export3.out

 BTEQ Page 33-40

Multiple Sessions
A session might be defined as a “logon to the Teradata database that permits the user to
single-thread one or more sequential transactions that continue until a LOGOFF statement is
sent."

Teradata interprets multiple sessions as a number of users logging on (with the same user ID
and password), with each one sending sequential transactions until it submits a LOGOFF
statement.

Multiple sessions permit the Teradata database to work on multiple tasks in parallel. This
capability requires special software in the (sequential processing) host to enable it to send
multiple requests at the same time. This special software is the Call Level Interface.

For multiple sessions to be effective in parallel, the system uses row hash locks rather than
full table locks. Since the only type of access that uses row hash locking is the Primary or
Unique Secondary Index request, multiple sessions are useful only in connection with UPI,
NUPI or USI transactions. All other access requires a full table lock and results in
sequential access to tables.

.SET SESSIONS
The .SET SESSIONS command must appear prior to the .LOGON statement since it directs
BTEQ to initialize the appropriate number of LOGONs. The SESSIONS parameter tells
BTEQ how many times to log on to the Teradata database for parallel access.

The sessions are then logged on by TDP or the Teradata GATEWAY and logged on to the
dedicated PEs to distribute the workload as evenly as possible.

If only a single session (no .SET SESSION statement) is used, BTEQ will still provide the
elapsed time associated with each DML.

The limit on the number of sessions that you can request with BTEQ depends on the
operating environment.

Typically, BTEQ Imports will take advantage of multiple sessions and BTEQ Exports will
not.

BTEQ Page 33-41

Multiple Sessions

• Session:

– Logical connection between host and Teradata database.

– Work stream composed of a series of requests between the host and the database.

• Multiple sessions:

– Allow tasks to be worked on in parallel.

– Require row hash locking for parallel processing: UPI, NUPI, USI transactions.

– Too few degrade performance.

– Too many will not improve performance.

.SET SESSIONS 8

.LOGON tdp1/user1,passwd1

.IMPORT DATA FILE = datafile4

.QUIET ON

.REPEAT *
USING (in_CustNo INTEGER

, in_SocSec INTEGER
, Filler CHAR(30)
, in_LName CHAR(20)
, in_FName CHAR(10))

:

.QUIT

Specified before
.LOGON

 BTEQ Page 33-42

Parallel Processing Using Multiple Sessions to Access
Individual Rows

It is important to remember that multiple sessions only benefit transactions that do not use a
full table lock.

If multiple sessions are specified where a full table lock is required, not only will they
execute sequentially but performance will be inhibited by the system resources needed for
management.

BTEQ Page 33-43

Parallel Processing Using Multiple Sessions to
Access Individual Rows

Although a single row can reside on 1
AMP, it might require a full table scan
to locate it. All AMPs are required to
participate.

TXN 2

VDisk

TXN 1

TXN 2

TXN 3

TXN 2 TXN 2

VDisk VDisk VDisk

If the location of the row is known, only
the applicable AMP needs to be
involved. Other AMPs can work on
other tasks — multiple sessions are
useful.

TXN 5

TXN 9

TXN 1

TXN 6

TXN 10

TXN 2

TXN 7

TXN 11

TXN 3

TXN 8

TXN 12

TXN 4

VDisk VDisk VDisk VDisk

Multiple transactions execute in parallel, provided that:

• Each transaction uses fewer than all AMPs.
• Enough are sent to keep ALL AMPs busy.
• Each parallel transaction has a unique internal ID.

 BTEQ Page 33-44

When Do Multiple Sessions Make Sense?
Assuming there are no fallback tables:

 Primary Index transactions use 1 AMP and a Row Hash lock.

 Unique Secondary Index transactions use 2 AMPs and Row Hash locks.

 Non-unique Secondary Index transactions and full table scans use all AMPs and

table-level locks.

You should now be in a position to respond to users who complain that since they were
using multiple sessions to perform BTEQ updates and that the job ran faster with one
session, therefore BTEQ was broken.

Try to complete the table on the facing page to determine which type of requests would
benefit from multiple sessions.

BTEQ Page 33-45

When Do Multiple Sessions Make Sense?

TRANS_HISTORY

Account_NumberTrans_Number Trans_Date Trans_ID Amount

PK FK,NN
NUPIUSI

NUSI

Multiple sessions improve performance ONLY for SQL requests that impact fewer than
ALL AMPs.

Which of the following batch requests would benefit from multiple sessions?

1. INSERT INTO Trans_History
VALUES (:T_Nbr, DATE, :Acct_Nbr, :T_ID, :Amt);

2. SELECT * FROM Trans_History
WHERE Trans_Number=:Trans_Number;

3. DELETE FROM Trans_History
WHERE Trans_Date < DATE - 120;

4. DELETE FROM Trans_History
WHERE Account_Number= :Account_Number;

Trans Table or Multiple Sessions
Type Row Lock Useful or Not?

 BTEQ Page 33-46

Application Utility Checklist
The checklist on the facing page summarizes BTEQ functions. It will be completed for each
utility as it is discussed.

While BTEQ efficiently restarts from a failure of the Teradata database system, it must
rollback in the event of a host failure and restart from the first record.

Clearly this can be a distinct disadvantage. While BTEQ can be very useful and performs
reasonably well, your applications probably also require the ability to restart from a host
failure without rolling back to the first record.

For this reason, many of the other application utilities have a restart capability built in.

Automatic Restart – If the Teradata server restarts, the utility will retry to connect to the
Teradata database automatically and restart.

BTEQ Page 33-47

Application Utility Checklist

Feature BTEQ FastLoad FastExport MultiLoad TPump

DDL Functions ALL

DML Functions ALL

Multiple DML Yes

Multiple Tables Yes

Protocol Used SQL

Conditional APPLY No

Data Conversion Yes

Error Capture No

Error Limits No

User-written Routines No

Automatic Restart No

Max Load Limit No

Support Environment (SE) No

 BTEQ Page 33-48

Module 33: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

BTEQ Page 33-49

Module 33: Review Questions

Answer True or False.

1. True or False. With BTEQ you can import data from the host to Teradata AND export from Teradata
to the host.

2. True or False. .EXPORT DATA sends results to a host file in field mode.

3. True or False. INDICDATA is used to preserve nulls.

4. True or False. With BTEQ, you can use conditional logic to bypass statements based on a test of an
error code.

5. True or False. It is useful to employ multiple sessions when ALL AMPS will be used for the
transaction.

6. True or False. With .EXPORT, you can have output converted to a format that can be used with PC
programs.

 BTEQ Page 33-50

Lab Exercise 33-1
After creating the data file named data33_1, you may want to check its size to ensure that
you have created it correctly. An easy way to do this is in Linux is to use the Linux ls –l
command.

The size of this file (data33_1) should be 312,000 bytes.

A technique that can be used to create Linux scripts without using vi or vedit is to do the
following:

1. Enter your commands (job/script) in a Notepad file.
2. Highlight the text and use the mouse to choose the Edit Copy function.

Switch to your terminal window where Linux is running and …

3. cat > lab33_14.btq (or whatever filename you wish)

 Use the mouse to choose the Edit Paste function

 To exit the cat command, press either the DELETE key or CNTL C.

BTEQ Page 33-51

Lab Exercise 33-1

Lab Exercise 33-1

Purpose

In this lab, you will use BTEQ to perform imports with different numbers of sessions. You will move
selected rows from the AP.Accounts table to your personal Accounts table and from a data file to
your table. You will repeat tasks using different numbers of sessions.

What you need

Populated AP.Accounts table and your empty Accounts table.

Tasks

1. INSERT/SELECT all rows into your Accounts table (userid.Accounts from the populated
AP.Accounts table. Note the timing and verify that you have the correct number of rows.

Time: Number of rows:

2. Export 4000 rows to a data file (data33_1).

3. Delete all rows in your “Accounts” table.

4. Import the rows from your data set (data33_1) to your empty Accounts table. Note the time and
verify the number of rows.

Time: Number of rows:

5. Delete all the rows in your "userid.Accounts" table again.

 BTEQ Page 33-52

Lab Exercise 33-1 (cont.)
Recommendation: Include the PACK option as part of the .REPEAT command.

BTEQ Page 33-53

Lab Exercise 33-1 (cont.)

6. Specify 8 sessions and import the rows from your data set to your empty Accounts table. Note the
time and verify the number of rows.

Time: Number of rows:

7. Delete all the rows from your “Accounts” table again.

8. Specify 8 sessions and use a PACK of 10 and import the rows from your data set to your empty
Accounts table. Note the timing and verify the number of rows.

Time: Number of rows:

9. What are your conclusions based on the tasks you have just performed?

__

__

 BTEQ Page 33-54

Lab Exercise 33-2
The size of data33_2 should be 3,500 bytes.

Note: If your data file size is 30,500 bytes, you exported all of the columns from the
Customer table instead of just the Customer Number.

BTEQ Page 33-55

Lab Exercise 33-2

Lab Exercise 33-2

Purpose

In this exercise, use BTEQ to export 500 customer numbers (.EXPORT DATA) from the AP.Customer
table. This data file should contain 500 customer numbers representing the customers with the
highest social security numbers. Using this as input to access the Customer table, generate a report
file (.EXPORT REPORT).

What you need

Populated AP.Customer table

Tasks

1. Using AP.Customer table, export to a data file (data33_2) the 500 customer numbers for the
customers that have the highest Social Security numbers. (Hint: Use the descending order option
(DESC) for Social Security numbers and only export the customer numbers.)

2. Using the 500 customer numbers (in data33_2), select the 500 appropriate rows from AP.Customer
and export a report file named "report33_2". In the report, include these fields: Customer_Number,
Last_Name, First_Name, Social_Security.

Hint: You will .IMPORT DATA from data33_2 and use .EXPORT REPORT to report33_2.

3. View your report using the Linux more command. The completed report should look like this:

Customer_Number Last_Name First_Name Social_Security
2001 Smith John 123456789

4. What are highest and lowest Social Security numbers in your report?

Highest: ________________________ Lowest: ________________________

 BTEQ Page 33-56

Notes

FastLoad Page 34-1

Module 34

Teradata Proprietary and Confidential

FastLoad

After completing this module, you will be able to:

 Describe the two phases of FastLoad.

 Prepare a FastLoad script.

 Partition a data load over successive runs.

 Restart an interrupted FastLoad.

 FastLoad Page 34-2

Notes

FastLoad Page 34-3

Table of Contents

FastLoad ... 34-4
FastLoad Acquisition Phase (Phase 1) ... 34-6
FastLoad End Loading Phase (Phase 2) ... 34-8
FastLoad and NoPI Tables ... 34-10
FastLoad – NoPI Table .. 34-12
A Sample FastLoad Script ... 34-14
Converting the Data ... 34-16
Data Conversion Chart ... 34-18
NULLIF ... 34-20

FastLoad INMODs ... 34-20
FastLoading Zoned Decimals and Time Stamps ... 34-22
FastLoad BEGIN LOADING Statement ... 34-24
BEGIN LOADING Statement ... 34-24
FastLoad Error Tables .. 34-26
Error Recovery ... 34-28
CHECKPOINT Option .. 34-30
END LOADING Statement ... 34-32
RECORD Statement .. 34-34
INSERT Statement ... 34-36
Staged Loading of Multiple Data Files .. 34-38
FastLoad Fails to Complete ... 34-40
Restarting FastLoad (Output) ... 34-42
Restarting FastLoad – Summary .. 34-44
Additional FastLoad Commands ... 34-46
FastLoad with Additional Options ... 34-48
Invoking FastLoad ... 34-50
Application Utility Checklist ... 34-52
Summary .. 34-54
Module 34: Review Questions ... 34-56
Lab Exercise 34-1 .. 34-58
Lab Exercise 34-2 .. 34-60

 FastLoad Page 34-4

FastLoad
The facing page describes the capabilities of FastLoad.

FastLoad Page 34-5

FastLoad

• Purpose – insert large amounts of data into a single empty table at high speed.

• Available on Teradata nodes, servers, channel, or network-attached hosts.
– Teradata 12 Driver for the JDBC Interface provides FastLoad support.

• Load data in stages – input data may be loaded from multiple separate batches

• Can be executed in batch or interactive mode.

• Supports INMOD routines.

• Input data that fails to load is saved in error tables.

• Input data error limits may be set.

• Checkpoints can be taken for automatic restarts.

Features Features

RestrictionsRestrictions

• The target table must initially be empty.

• The target table can NOT have Secondary Indexes (USI/NUSI), Join Indexes, or Hash
Indexes.

• Referential Integrity constraints are not supported, however Soft RI is supported.

• The target table can NOT have Enabled Triggers.

• Duplicate rows are NOT loaded into a target table (even if the table is MULTISET).

• If an AMP goes down, FastLoad can NOT be restarted until the AMP is back online.

 FastLoad Page 34-6

FastLoad Acquisition Phase (Phase 1)
FastLoad with a PI table has two phases. The Acquisition Phase is also called Phase 1 and
the End Loading Phase is Phase 2

For each FastLoad job, there are two SQL sessions, one for handling SQL requests and the
other for handling log table restart-related operations. There are also load sessions
established for each FastLoad job that can be specified in a FastLoad script via the
SESSIONS command.

 Note: The blocks can be up to 63.5 KB (default).

The illustration on the facing page shows the process used in Phase 1.

Step 1 – FastLoad is executed on a host and establishes two Parsing Engine SQL
sessions and one or more Load Session on AMPs (depending on the SESSIONS
parameter).

As an overview, depending on the number of sessions requested, blocks of data will be
distributed to different AMPs in the system. If the number of sessions requested is less
than the number of AMPs, then blocks will be distributed to those AMPs for which
“load” sessions have been established.

Step 2 – FastLoad sends blocks of records to Teradata.

Step 3 – The AMP receives a block of records in memory. When a FastLoad session is
established, a well-known mailbox of the AMP vproc that is associated with the session
is sent back to the Client. During the data acquisition phase, data rows that are sent from
the FastLoad Client through that session will go to the mailbox. The Load Control Task
(with the AMP) first picks up the data rows and then forwards them to the local AMP
deblocking task.

The AMP deblocking task hashes each record in the block and redistributes each row to
the Message Passing Layer (PDE and BYNET). The Message Passing Layer (MPL)
delivers rows to the appropriate AMP based on row hash value.

Step 4 – Every AMP will have a receiving task which collects the rows from the MPL.

Step 5 – When enough rows are collected to fill a block in memory, the AMP writes the
block to disk.

At this point, the AMP has the rows it should have, but they are not in row hash sequence.

FastLoad Page 34-7

FastLoad Acquisition Phase (Phase 1)

Acquisition Phase
• FastLoad uses one SQL

session to define AMP
steps and another SQL
session for log table
restart operations

• FastLoad sends a block
of records directly to
each AMP which has a
"Load" session.

• The deblocking task
within the AMP hashes
each record and
redistributes the rows.

• Every AMP's receiving
task collects the rows
and writes a block of
unsorted data rows to
disk.

• At the end of this
phase, each AMP has
the rows it should have,
but the rows are not in
row hash sequence.

Server/HostServer/Host

Message Passing LayerMessage Passing Layer

1 – FastLoad

2
AMP 0AMP 03 4

R4

R2

:

5

PEPE

SQL
Session

B1R1

B1R2

B1R3

B2R4

B2R5

B2R6

B3R7

B3R8

B3R9

B6R16

B6R17

B6R18

PEPE

SQL
Session

B1R1

B1R2

B1R3

B3R7

B3R8

B3R9

B5R13

B5R14

B5R15

R4

R2

R7

R11

R17

R15

AMP 1AMP 13 4

R6

R1

:

5

B2R4

B2R5

B2R6

B4R10

B4R11

B4R12

B6R16

B6R17

B6R18

R6

R1

R10

R9

R16

R13

AMP 2AMP 23 4

R5

R3

:

5

R5

R3

R8

R12

R18

R14

Assume Assume
SESSIONS = 2;SESSIONS = 2;

ds186034
Sticky Note
loadPI - row hash...4k buffer moves from one amp to other...broadcast...over bynet..small packs...

 FastLoad Page 34-8

FastLoad End Loading Phase (Phase 2)
The second phase of FastLoad has each AMP (in parallel) reading the data blocks from disk,
sorting the data rows based on row hash, and writing the blocks back out to PERM space.

The illustration on the facing page shows the process used in Phase 2.

Step 6 – FastLoad receives the END LOADING; statement. FastLoad sends a request
to the Parsing Engine to indicate the start of Phase 2.

Step 7 – The PE broadcasts the start of Phase 2 to all AMPs.

Step 8 – Each AMP reads its blocks in from disk.

Step 9 – Each AMP sorts its data rows based on row hash sequence.

Step10 – Each AMP writes the sorted blocks back to disk.

If the table is Fallback protected, then the Fallback copy of data is created at this time. The
table is made available for user access.

FastLoad Page 34-9

FastLoad End Loading Phase (Phase 2)

End Loading Phase

• When the FastLoad
job receives END
LOADING, FastLoad
starts the End
Loading Phase.

• Each AMP sorts the
target table, puts the
rows into blocks,
and writes the
blocks to disk.

• Duplicate rows are
removed.

• Fallback rows are
then generated if
required.

• Table data is
available when this
phase completes.

Message Passing LayerMessage Passing Layer

AMP 0AMP 0

PEPE

SQL
Session

R4

R2

R7

R11

R17

R15

AMP 1AMP 1

R6

R1

R10

R9

R16

R13

AMP 2AMP 2

6

R5

R3

R8

R12

R18

R14

Server/HostServer/Host

FastLoad Script

END LOADING;

R3

R5

R8

R12

R14

R16

R1

R6

R9

R10

R13

R16

R2

R4

R7

R11

R15

R17

7 7 7

R2

R4

R7

R11

R15

R17

8
R1

R6

R9

R10

R13

R16

8
R3

R5

R8

R12

R14

R16

8

 FastLoad Page 34-10

FastLoad and NoPI Tables
The facing page describes some considerations of using FastLoad with a NoPI table.

There are several areas that work differently with FastLoad on NoPI tables.

Acquisition Phase (Phase 1)

 Since the number of FastLoad sessions is often less than the number of AMPs in
the system (common with large systems), there will be some AMPs that do not
have a session (deblocker) task. These AMPs will not receive any data from
FastLoad.

 Therefore (to avoid skewing), each block of data received by a deblocker task will

be redistributed to all of the AMPs in a round robin fashion. The AMP that
receives the block will simply append it to the target table.

End Loading or Sort Phase (Phase 2)

 There is no sorting of the rows on a NoPI table so this portion of phase 2 is
completely eliminated for a NoPI table.

 With a PI table, duplicate rows are discarded in this phase. Duplicate rows are

NOT discarded with a NoPI table.

 With PI tables, error table 2 is used to record UPI violations. This error table not

used with NoPI tables, but it is created and dropped at job end.

 If a table has Fallback protection, then Fallback is added as part of Phase 2.

FastLoad Page 34-11

FastLoad and NoPI Tables

A NoPI Table is useful as a staging table. Loading data into a NoPI staging table will be
faster than when compared to the same table that has a primary index.

• Data can be loaded into a staging table (NoPI table) quickly using FastLoad freeing up
client resources earlier for other work.

FastLoad

• The data-redistribution processing in the acquisition phase is done more efficiently
by using bigger blocks to distribute the rows between AMPs (4 KB versus 64 KB).

• The End Loading or Sort phase is eliminated.

• Since a NoPI table load is faster, the staging table is available sooner.

FastLoad Acquisition Phase Differences

• Since the number of FastLoad sessions is often less than the number of AMPs in the
system (common with large systems), there will be some AMPs that do not have a
session (deblocker) task. These AMPs will not receive any data from FastLoad.

Therefore (to avoid skewing), each block of data received by a deblocker task will be
redistributed to all of the AMPs in a round robin fashion. The AMP that receives the
block will simply append it to the target table.

 FastLoad Page 34-12

FastLoad – NoPI Table
FastLoad with NoPI also has two phases. The Acquisition Phase is also called Phase 1 and
the End Loading Phase is Phase 2

For each FastLoad job (whether a PI or NoPI table), there are two SQL sessions, one for
handling SQL requests and the other for handling log table restart-related operations. There
are also load sessions established for each FastLoad job that can be specified in a FastLoad
script via the SESSIONS command.

The illustration on the facing page shows the process used in the Acquisition Phase.

Step 1 – FastLoad is executed on a host and establishes two Parsing Engine SQL
sessions and one or more Load Session on AMPs (depending on the SESSIONS
parameter).

As an overview, depending on the number of sessions requested, blocks of data will be
distributed to different AMPs in the system. If the number of sessions requested is less
than the number of AMPs, then blocks will be distributed to those AMPs for which
“load” sessions have been established.

Step 2 – FastLoad sends blocks of records to Teradata.

Step 3 – The AMP receives a block of records in memory. With a NoPI table, an AMP
will distribute blocks of data to other AMPs in a round robin fashion. Blocks are not
broken into rows.

Rows are sent from the FastLoad client to the AMP load sessions in round robin
fashion. For example, assume a system has 100 AMPs but there are only 10 load
sessions. Therefore, rows are sent to only 10 AMPs from the client (FastLoad).
Teradata then redistributes the blocks from those 10 AMPs to all of the AMPs in a
round robin fashion.

With the new NoPI hash map, hash bucket is selected from this NoPI hash map for
NoPI table. It is the same for FastLoad or SQL.

Step 4 – Every AMP will have a receiving task which collects the block from the MPL.

Step 5 – The AMP writes the block to disk.

At this point, the AMP has the rows it should have and new blocks are simply appended to
existing blocks in a NoPI table.

The sort function in the End Loading or Sort Phase (Phase 2) is not done with a NoPI table.
However, if the table is Fallback protected, then the Fallback subtable is created in phase 2.

FastLoad Page 34-13

FastLoad Acquisition Phase (NoPI Table)

Acquisition Phase
• FastLoad uses one SQL

session to define AMP
steps and another SQL
session for log table
restart operations.

• FastLoad sends a block
of records directly to
each AMP which has an
assigned "Load"
session.

• With a NoPI table, the
AMP distributes blocks
of data between the
AMPs in a round robin
fashion.

• Every AMP has a
receiving task which
collects the blocks and
writes the block to disk.

Server/HostServer/Host

Message Passing LayerMessage Passing Layer

1 – FastLoad

2
AMP 0AMP 03 4

PEPE

SQL
Session

PEPE

SQL
Session

AMP 1AMP 13 4 AMP 2AMP 23 4

B1

B2

5
B3

B4

5
B5

B6

5

Assume Assume
SESSIONS = 2;SESSIONS = 2;

B2R4
B2R5
B2R6

B3R7
B3R8
B3R9

B5R13
B5R14
B5R15

B1R1
B1R2
B1R3

B2R4
B2R5
B2R6

B4R10
B4R11
B4R12

B6R16
B6R17
B6R18

B3R7
B3R8
B3R9

B4R10
B4R11
B4R12

B5R13
B5R14
B5R15

B6R16
B6R17
B6R18

B1R1
B1R2
B1R3

B3R7
B3R8
B3R9

B2R4
B2R5
B2R6

B1R1
B1R2
B1R3

B4R10
B4R11
B4R12

B5R13
B5R14
B5R15

B6R16
B6R17
B6R18

B1R1
B1R2
B1R3

B2R4
B2R5
B2R6

B3R7
B3R8
B3R9

B4R10
B4R11
B4R12

B5R13
B5R14
B5R15

B6R16
B6R17
B6R18

ds186034
Sticky Note
30 to 40% fasterappendrelative row no = uniqueness valuedistributing blcks of data and then to disk(no sorting - no dups - just append)end of phase 2 - fallback load happens (most times we dont with noPI)so Phase 2 eliminated if no fallback

ds186034
Sticky Note
so how many sessions?4000 ampsnot 4000 sessionsnot more than 64 sessions1099 amp at WFbiggest 32 session(bteq upto 100k row load)

 FastLoad Page 34-14

A Sample FastLoad Script
The job on the facing page first cleans up and prepares the environment for use. It could be
performed using BTEQ.

The first step is to make sure that the table is empty and to remove old error tables before
starting the FastLoad job.

Often it is better to perform set-up steps outside the FastLoad script so that the FastLoad
operation can be isolated to perform loading tasks. If a restart is necessary, you will not
need to change your FastLoad script to remove the unneeded statements.

The load job on the facing page is being run on a Linux system as noted by the “FILE=”
parameter. If this job was going to be run on a MVS system, then use the “DDName=”
parameter instead of the “File” parameter.

FastLoad Page 34-15

A Sample FastLoad Script

LOGON tdpid/username,password;
DROP TABLE Acct;
DROP TABLE Acct_e1;
DROP TABLE Acct_e2;

CREATE TABLE Acct, FALLBACK (
Acct_Num INTEGER
,Street_Num INTEGER
,Street CHAR(25)
,City CHAR(25)
,State CHAR(2)
,Zip_Code INTEGER)

UNIQUE PRIMARY INDEX (Acct_Num);

LOGOFF;

LOGON tdpid/username,password;

BEGIN LOADING Acct
ERRORFILES Acct_e1, Acct_e2
CHECKPOINT 100000;

DEFINE in_AcctNum (INTEGER)
,in_Zip (INTEGER)
,in_Nbr (INTEGER)
,in_Street (CHAR(25))
,in_State (CHAR(2))
,in_City (CHAR(25))

FILE=datafile1;

INSERT INTO Acct VALUES (
:in_AcctNum
,:in_Nbr
,:in_Street
,:in_City
,:in_State
,:in_Zip);

END LOADING;
LOGOFF;

SETUP
Create the table, if it
doesn’t already exist.

Start the utility.
Error files must be
defined.

Checkpoint is
optional.

DEFINE the input;
must agree with
host data format.

INSERT must
agree with table
definition.
Phase 1 begins.
Unsorted blocks
are written to disk.

Phase 2 begins
with END
LOADING. Sorting
and writing blocks
to disk.

 FastLoad Page 34-16

Converting the Data
This example shows two examples of conversions you can perform in the FastLoad
environment.

Each input data field (DEFINE) must undergo a conversion to fit in the database field
(Create Table).

All are valid conversions and are limited to one per column.

Valid data types for table that can be loaded with FastLoad are:

BIGINT
BYTE
BYTEINT
CHARACTERS(n)
DATE
DECIMAL(x) OR DECIMAL(x,y)
FLOAT
GRAPHIC(n)
INTEGER
LONG VARCHAR
LONG VARGRAPHIC
SMALLINT
VARBYTE(n)
VARCHAR(n)
VARGRAPHIC(n)

FastLoad Page 34-17

Converting the Data

LOGON educ2/user14,ziplock;
DROP TABLE Accounts;
DROP TABLE Accts_e1;
DROP TABLE Accts_e2;
CREATE TABLE Accounts, FALLBACK (

Account_Number INTEGER
,Account_Status CHAR(15)
,Trans_Date DATE
,Balance_Forward DECIMAL(5,2)
,Balance_Current DECIMAL(7,2))

UNIQUE PRIMARY INDEX
(Account_Number);

LOGOFF;

LOGON educ2/user14,ziplock;

BEGIN LOADING Accounts
ERRORFILES Accts_e1, Accts_e2 ;

DEFINE in_Acctno (CHAR(9))
, in_Trnsdate (CHAR(10))
, in_Balcurr (CHAR(7))
, in_Balfwd (INTEGER)
, in_Status (CHAR(10))

FILE = datafile2;

INSERT INTO Accounts
(Account_Number
,Account_Status
,Trans_Date
,Balance_Forward
,Balance_Current)

VALUES (
:in_Acctno

,:in_Status
,:in_Trnsdate (Format 'YYYY-MM-DD')
,:in_Balfwd
,:in_Balcurr);

END LOADING;

LOGOFF;

Notes:

• FastLoad permits conversion from one data type
to another, once for each column.

• Including optional column names with the INSERT
statement provides script documentation which
may aid in the future when debugging or
modifying the job script.

 FastLoad Page 34-18

Data Conversion Chart
On the facing page is a comprehensive chart of possible conversions, showing the old data
type and the new data type, and sample data for each.

An INVALID result comes from an unsupported conversion.

An overflow output is the result of too much data for the receiving field.

General Notes:

 The “target table” can have range constraints” defined at the column level when the
table is created and these will be checked as part of Phase 1 with FastLoad.

 If the input field has leading or trailing spaces (blanks) and you are converting to a

numeric field (e.g., INTEGER), leading/trailing spaces are ignored.

 Ex. converted to
 '0001' 0001
 ' 001' 0001
 '001 ' 0001
 ' 01 ' 0001
 ' ' 0000
 '1 ' 0001
 '1 0' conversion error

FastLoad Page 34-19

Data Conversion Examples

FROM: TO: ORIGINAL DATA: STORED AS:

CHAR(13) VARCHAR(5) ABCDEFHIJKLM ABCDE
CHAR(5) INTEGER ABCDE invalid
CHAR(5) INTEGER 12345 0000012345
CHAR(13) INTEGER 12345bbbbbbbb 0000012345
CHAR(13) INTEGER 1234567890123 overflow
CHAR(13) DATE 92/01/15bbbbb 920115
CHAR(13) DATE 920115bbbbbbb invalid
CHAR(13) DATE 01/15/92bbbbb invalid
CHAR(6) DEC(5,2) 123.50 123.50
CHAR(6) DEC(5,2) 12350 overflow
VARCHAR(5) CHAR(13) ABCDE ABCDEbbbbbbbb
BYTEINT INTEGER 123 0000000123
SMALLINT INTEGER 12345 0000012345
INTEGER SMALLINT 0000012345 12345
INTEGER SMALLINT 1234567890 invalid
INTEGER BYTEINT 0000000123 123
INTEGER BYTEINT 0000012345 invalid
INTEGER DATE 0000920115 920115
INTEGER CHAR(8) 0000012345 bbb12345
DECIMAL(3,2) INTEGER 1v23 0000000001
DECIMAL(3,2) CHAR(5) 1v23 b1.23
DECIMAL(3,2) CHAR(3) 1v23 1.2
DATE INTEGER 0000920115 0000920115
DATE SMALLINT 0000920115 invalid
DATE CHAR(8) 0000920115 92/01/15
DATE CHAR(6) 0000920115 92/01/

 FastLoad Page 34-20

NULLIF
NULLIF is used for special conversions. When another system uses a special combination
to represent unknown data values, you can test for them and convert them to NULL in the
Teradata database.

If you attempt to place a zero (0) into a DATE field, you will get the following error:

 #3520 A constant value in a query is not valid for column colname.

FastLoad INMODs
An INMOD is an exit routine that can precondition data and pass it on to the loader. You
can write INMODs to pre-screen the input data being provided to FastLoad.

The INMOD and FastLoad use a return code value to communicate with each other.

You can write INMODs as restartable routines so that they synchronize with the loader’s
checkpoints.

Use INMODs to perform unusual conversions of data, for example, adding a sequenced
column to the data, or reading data from a non-standard input file format.

Note: When there is a serious problem, and the job must be terminated, the INMOD
function must return a 4-byte integer.

To reference an INMOD routine, use the INMOD option with the DEFINE statement.

 DEFINE fieldname1 (INTEGER,
 fieldname2 (CHAR(4)),
 …
 INMOD = name_of_inmod_routine;

FastLoad Page 34-21

NULLIF

DEFINE in_Acctno (CHAR(9))
,in_Status (CHAR(10))
,in_Trnsdate (CHAR(10), NULLIF = '0000-00-00')
,in_Balfwd (INTEGER)
,in_Balcurr (CHAR(7))

FILE = datafile3;

INSERT INTO Accounts VALUES (
:in_Acctno
,:in_Status
,:in_Trnsdate (FORMAT 'YYYY-MM-DD')
,:in_Balfwd
,:in_Balcurr);

• NULLIF allows you to specify that if an input field contains a specified value, it
should be treated as NULL.

– You can only include one NULLIF value with the NULLIF option.

• One common example occurs when dates are entered as zeroes; they may cause a
fault since they are not in the expected format.

 FastLoad Page 34-22

FastLoading Zoned Decimals and Time Stamps
On the facing page are two common conversion situations that you may encounter.

“Packed Decimal” is a mainframe data type that can be converted to decimal in the Teradata
database.

Dates and/or Time Stamps are often presented to the loader in display form or character
format. To convert them into acceptable dates or time stamps in the database, you must
identify the input form with a “format” statement.

The following are acceptable in DATE FORMAT statements:

 yyyy (four digit year)
 yy (year in two digits)
 mmm (three character abbreviation of month)
 mm (two digit month)
 ddd (day of the year)
 dd (day of the month)
 a series of punctuation characters

. decimal
, comma
- dash
b blank (space)
/ slash

If the input file has a field with a TimeStamp(0) in it, then

 DEFINE input field as CHARACTER (19);
 on the INSERT use (FORMAT 'YYYY-MM-DDbHH:MI:SS')

Note: TimeStamp(0) indicates that there are no decimal digits associated with the seconds
portion of the time stamp.

FastLoad Page 34-23

FastLoading Zoned Decimals and Time Stamps

• If EBCDIC unpacked decimal values are presented for loading into a decimal-type
column, an error is returned:

Packed decimal

Unpacked

Decimal (8)

F1 F2 F3 F4 F5 F6 F7 C8

1 2 3 4 5 6 7 H

01 23 45 67 8C Loads into decimal-defined column with no errors.

2679 Format or data contains
a bad character.

• Use the following script structure if a signed zoned decimal data representation is
required or if time stamps are in character format.

CREATE TABLE Trans
(Tr_Num DECIMAL(8)
, Tr_DateTIme TIMESTAMP(0)
.);

DEFINE in_TNbr (CHAR(8))
,in_TDateTime (CHAR(19))

FILE = datafile4 ;
INSERT INTO TRANS VALUES

(:in_TNbr (FORMAT '9(8)S')
,:in_TDateTime (FORMAT 'YYYY-MM-DDbHH:MI:SS')
.);

Define unpacked
decimal as
CHAR data and
FORMAT.

 FastLoad Page 34-24

FastLoad BEGIN LOADING Statement
The general syntax for the FastLoad statement to begin loading is shown on the facing page.

The BEGIN LOADING statement must reference a table, not a view.

BEGIN LOADING Statement
Use the BEGIN LOADING statement to identify the table that is to be loaded with
FastLoad. The table may be in the user's default database (shown), or, by prefixing the name
with a databasename and a dot (.), you may specify another database.

Use the BEGIN LOADING statement to specify (and create) the two error tables for the
operation. You can specify error tables in the same database as the data table or in a
different database.

You can also define a checkpoint interval for the job. It is specified as a number of input
records. The checkpoint will be rounded to the nearest number of records that can fit within
a block.

The FastLoad utility can recognize the indicator bytes placed in front of the data record by
the application that created the input. These bytes identify the fields in the input record that
should be NULL in the created record of the table and can be automatically generated by
either BTEQ Export (INDICDATA) or FastExport (INDICATORS).

FastLoad Page 34-25

BEGIN LOADING Statement

A userid needs the following privileges in order to execute the FastLoad utility.

• For Target_table_name: SELECT and INSERT (CREATE and DROP or DELETE, if
using those functions)

• For Error_tables: CREATE TABLE

• Required privileges for the user PUBLIC on the restart log table
(SYSADMIN.FASTLOG):

– SELECT INSERT UPDATE DELETE

• There will be a row in the FASTLOG table for each FastLoad job that has not
completed in the system.

BEGIN LOADING [dbname.]table_name

ERRORFILES [dbname.]Err_Table_1,

[dbname.]Err_Table_2

[CHECKPOINT integer]

[INDICATORS] ;

Name of empty table (not a view).

Name of two error tables (required).

Optional checkpoint interval.

Allows NULLs to be preserved.

 FastLoad Page 34-26

FastLoad Error Tables
FastLoad requires two error tables that you specify in the Begin Loading statement. Error
tables capture data and duplication errors.

FastLoad discards empty error tables at the successful conclusion of the loader job. If they
contain data, error tables are maintained for you to use in analyzing errors.

You must remove the error tables before you re-run the same load job or it will terminate in
an error condition.

If you must restart a FastLoad job, the error tables must already exist.

FastLoad Page 34-27

FastLoad Error Tables

ErrorTable1ErrorTable1

Contains one row for each row which failed to be loaded due to constraint
violations or translation errors. The table has three columns:

Column_Name Datatype Content

ErrorCode Integer The Error Code in DBC.ErrorMsgs.

ErrorFieldName VarChar(30) The column that caused the error.

DataParcel VarByte(64000) The data record sent by the host.

ErrorTable2ErrorTable2

For non-duplicate rows, captures those rows that cause a UPI duplicate
violation.

NotesNotes

• Duplicate rows are counted and reported but not captured.

• Error tables are automatically dropped if empty upon completion of the run.

• Performance Note: Rows are written into error tables one row at a time. Errors slow
down FastLoad.

 FastLoad Page 34-28

Error Recovery
The facing page contains some sample output from a FastLoad job. It describes the error
situations encountered during the previous FastLoad job.

Because there are errors in both of the error tables, they will be retained by the system for
analysis.

You must remember to analyze these error tables and remove them from the system prior to
running this same FastLoad script again.

FastLoad Page 34-29

Error Recovery

Output report from FastLoad

A Total Records Read = 35000

B Total ErrorTable 1 = 1250 (Not loaded due to error)

C Total ErrorTable 2 = 30 (Duplicate UPIs only)

D Total Inserts Applied = 33700

E Total Duplicate Rows = 20

(A = B + C + D + E)

Investigating the failed rows

SELECT DISTINCT ErrorCode, ErrorFieldName FROM Error_Table_1;

Investigating the duplicate index violations

SELECT * FROM Error_Table_2;

 FastLoad Page 34-30

CHECKPOINT Option
The CHECKPOINT option defines points in a job where FastLoad pauses to record that
Teradata has processed a specified number of input records. When you use checkpoints,
you do not have to rerun the entire FastLoad job if it stops before completion. FastLoad will
use the checkpoint information in the restart log table to determine the restart location.

If you are going to use the CHECKPOINT option, the Reference Manual recommendation
is:

For smaller Teradata Database systems,

 If records < 4K, then use CHECKPOINT 100,000
 If records 4K, then use CHECKPOINT 50,000

For larger Teradata Database systems, increase the CHECKPOINT value.

Because checkpoints slow down FastLoad processing, it is also recommended to set the
CHECKPOINT value to effectively take a checkpoint every 10 to 15 minutes. Frequently,
this means setting the CHECKPOINT value to a much larger value.

FastLoad Page 34-31

CHECKPOINT Option

BEGIN LOADING . . .
CHECKPOINT integer;

• Used to verify that rows have been transmitted and processed.

• Specifies the number of rows transmitted before pausing to take a checkpoint and
verify receipt by AMPs.

• If the CHECKPOINT parameter is not specified, FastLoad takes checkpoints as
follows:

– Beginning of Phase 1

– Every 100,000 input records

– End of Phase 1

• FastLoad can be restarted from previous checkpoint.

• Performance Note: Checkpoints slow down FastLoad processing – set the
CHECKPOINT large enough that checkpoints are taken every 10 to 15 minutes.
Usually, this requires a CHECKPOINT value much larger than 100,000.

 FastLoad Page 34-32

END LOADING Statement
The End Loading statement signifies to the loader that all data has been acquired.
At this time the loader can wrap up Phase One and get started with Phase Two.

With a NoPI table, FastLoad will start the END LOADING phase, but complete it very
quickly because there is no data to sort.

While a NoPI target table is being loaded with FastLoad, users can view the table content
with an ACCESS lock.

This is possible because rows are always appended at the end of a NoPI table. This is not
allowed on a PI target table until the data has been sorted which does not happen until the
end of Phase 2.

Example: A NoPI table was loaded without including the END LOADING statement.

 SELECT * FROM Orders_nopi;
 SELECT Failed. 2652: Operation not allowed: DS.Orders_nopi is being Loaded.

 LOCKING ROW FOR ACCESS SELECT * FROM Orders_nopi;

 Orderid Custid Orderstatus Amount Date O_Priority O_Clerk
 100002 1,002 C 1,010.00 2009-01-02 10 Jack Snow
 100019 1,019 C 1,095.00 2009-01-07 10 Jack Snow
 100021 1,021 C 1,105.00 2009-01-07 10 Jack Snow

FastLoad Page 34-33

END LOADING Statement

END LOADING ;

• Indicates that all data rows have been transmitted.

• Begins Phase 2 or Sort Phase processing.

• Omission implies:
– The load is incomplete and will be restarted later.

– This causes the table that is being loaded to become “FastLoad paused.”

– If you attempt to access a table (via SQL) that is in a “FastLoad paused” state, you will get
the following error.

Error #2652 Operation Not Allowed tablename is being loaded

PI Table

• There is no Sort in Phase 2 for a NoPI table. Phase 2 is very fast for a NoPI table.

• While a NoPI target table is being loaded, users can view the table with an ACCESS
lock. This is possible because rows are always appended at the end of a NoPI table.

• The following SELECT will succeed for a NoPI table.

LOCKING ROW FOR ACCESS SELECT * FROM Orders_nopi;

NoPI Table

 FastLoad Page 34-34

RECORD Statement
Use the RECORD statement to override any default positioning assumed by the loader.

You can specify the record of the input file to begin with, and optionally, the record to end
with.

The RECORD statement is a separate statement that follows the BEGIN LOADING
statement and is specified before the DEFINE statement.

FastLoad Page 34-35

RECORD Statement

• If you do not use a RECORD command, FastLoad reads from the first record in the
data source to the last record (or from the last CHECKPOINT).

• RECORD allows control over which input records are to be brought in for loading.

• RECORD is a separate statement used before the DEFINE statement.

RECORD [integer] [THRU integer];

RECORD 1 THRU 1000;

1st through the 1,000th record

RECORD 2;

2nd through the last record; ignore first record

Examples:

 FastLoad Page 34-36

INSERT Statement
INSERT is a Teradata SQL statement that inserts data records into the rows of the FastLoad
table.

During the insert operation, field values are inserted in the table in the order in which the
columns are listed in the CREATE TABLE statement. If field values in the input data are
stored in the same order as columns are defined in the CREATE TABLE statement for the
FastLoad table, you do not need to specify a list of column names in the INSERT statement.

When you use the wildcard format of the INSERT statement, a list of field names is
constructed from the definition of the table. During the insert operation, field names and
their data types are taken from the CREATE TABLE statement and used to define the table.

The field name definitions are established in the order in which columns are defined in the
CREATE TABLE statement. So, the fields in each data record must be in the same order as
the columns in the definition of the table.

When using the second form of the INSERT statement, you still need to use the DEFINE
command to specify the name of the input data source or INMOD routine used in the
FastLoad job.

If you enter a DEFINE command that defines one or more fields before the INSERT
statement, the FastLoad utility appends the field definitions to the definitions constructed
from the INSERT statement.

The command example on the following page defines the “datafile5” input data source and
fields in each record (Account_Number, Number, Street, City, State, and Zip_Code).

FastLoad Page 34-37

INSERT Statement

DEFINE Account_Number (INTEGER)
,Street_Number (INTEGER)
,Street (CHAR(25))
,City (CHAR(25))
,State (CHAR(2))
,Zip_Code (INTEGER)

FILE = datafile5;

INSERT INTO Accounts
(Account_Number
,Street_Number
,Street
,City
,State
,Zip_Code)

VALUES
(:Account_Number
,:Street_Number
,:Street
,:City
,:State
,:Zip_Code);

The “wildcard” format may be used
to construct the names in the
INSERT statement. The field names
are constructed from the DD/D table
definition.

DEFINE FILE = datafile5 ;
INSERT INTO Accounts.* ;

 FastLoad Page 34-38

Staged Loading of Multiple Data Files
The example on the facing page illustrates using FastLoad to load two different data sets
into a single table.

You might be tempted to create a single script/job that attempts to load the Customer table
with starting LOGON and LOGOFF statements. This will not work. When Fastload (as a
batch utility) encounters a LOGOFF statement, it completes and never attempts to do the
second LOGON statement.

Note that the DEFINE statements for different data files may be different in the two scripts.
However, the BEGIN LOADING statement must identify the same table name and the same
error table names.

FastLoad Page 34-39

Staged Loading of Multiple Data Files

LOGON tdpid/username,password;
BEGIN LOADING Customer

ERRORFILES Cust_e1, Cust_e2;

DEFINE in_CustNum (INTEGER)
,in_Lname (CHAR(20))
,in_Fname (CHAR(15))
,in_Postalcode (CHAR(10))

FILE=US.dat;

INSERT INTO Customer VALUES (
:in_CustNum
,:in_Lname
,:in_Fname
,:in_Postalcode);

LOGOFF;

load_US.fld fastload < load_US.fld

LOGON tdpid/username,password;
BEGIN LOADING Customer

ERRORFILES Cust_e1, Cust_e2;

DEFINE in_CustNum (INTEGER)
,in_Lname (CHAR(30))
,in_Fname (CHAR(25))
,in_Postalcode (CHAR(10))

FILE=International.dat;

INSERT INTO Customer VALUES (
:in_CustNum
,:in_Lname
,:in_Fname
,:in_Postalcode);

END LOADING;
LOGOFF;

load_Int.fld fastload < load_Int.fld

No END LOADING statement.
Table is in “FastLoad Paused”
state.

END LOADING; indicates no
more data and to start Phase 2.

 FastLoad Page 34-40

FastLoad Fails to Complete
The output on the facing page provides an example of a FastLoad job that ran out of space in
the database where the table was being loaded.

You can also see the list of each 100,000 rows as they are encountered.

The FastLoad job is shown below:

LOGON tdt5b/tfact01,tfact01;
BEGIN LOADING DS.Sales ERRORFILES DS.sales_1, DS.sales_2 INDICATORS;
DEFINE FILE=sales.dat;
INSERT INTO DS.Sales.*;
END LOADING;
LOGOFF;

The table definition is:

CREATE SET TABLE DS.Sales, NO FALLBACK,
 NO BEFORE JOURNAL,
 NO AFTER JOURNAL
 (
 store_id INTEGER NOT NULL,
 item_id INTEGER NOT NULL,
 sales_date DATE FORMAT 'YYYY-MM-DD',
 total_revenue DECIMAL(9,2),
 total_sold INTEGER,
 note VARCHAR(256) CHARACTER SET LATIN NOT CASESPECIFIC)
UNIQUE PRIMARY INDEX (store_id, item_id, sales_date);

FastLoad Page 34-41

FastLoad Fails to Complete

0001 LOGON tdt5b/tfact01, ;
:

**** 09:42:20 Number of FastLoad sessions connected = 26
**** 09:42:20 FDL4808 LOGON successful

:
0002 BEGIN LOADING DS.Sales ERRORFILES DS.sales_e1, DS.sales_e2 INDICATORS;

:
0003 DEFINE FILE=sales.dat;
**** 09:42:27 FDL4803 DEFINE statement processed

:
0004 INSERT INTO DS.Sales.*;

:
**** 09:42:27 Number of recs/msg: 228
**** 09:42:27 Starting to send to RDBMS with record 1
**** 09:42:28 Starting row 100000
**** 09:42:28 Starting row 200000
**** 09:42:28 RDBMS error 2644: No more room in database DS.
**** 09:42:28 Increase database size and restart FastLoad
**** 09:42:28 Logging off all sessions

**** 09:42:33 Total processor time used = '1.26667 Seconds'
. Start: Tue Feb 14 09:42:17 2012
. End : Tue Feb 14 09:42:33 2012
. Highest return code encountered = '12'.

**** 09:42:33 FastLoad Paused

 FastLoad Page 34-42

Restarting FastLoad (Output)
Prior to restarting the job shown on the facing page, you must give the database more space
to accommodate the load.

In the output example, you can see that:

 The restart log and error tables remain.

 The Loader repositions itself at the last checkpoint so that it can pick up loading

from that point.

 After completing the restart, error tables are dropped and loading is complete.

FastLoad Page 34-43

Restarting FastLoad (Output)

Note: These times apply to Phase 2.

0001 LOGON tdt6-1/tfact01, ;
:

**** 09:53:17 Number of FastLoad sessions connected = 26
:

0002 BEGIN LOADING DS.Sales ERRORFILES DS.sales_e1, DS.sales_e2 INDICATORS;
0003 DEFINE FILE=sales.dat;

:
0004 INSERT INTO DS.Sales.*;

:
**** 09:53:20 Starting row 200000
**** 09:53:21 Starting row 300000
**** 09:53:22 Starting row 400000
**** 09:53:22 Sending row 483350
**** 09:53:22 Finished sending rows to the RDBMS

0005 END LOADING;

**** 09:53:41 END LOADING COMPLETE

Total Records Read = 483350
Total Error Table 1 = 0 ---- Table has been dropped
Total Error Table 2 = 0 ---- Table has been dropped
Total Inserts Applied = 483350
Total Duplicate Rows = 0

Start: Tue Feb 14 09:53:24 2012
End : Tue Feb 14 09:53:41 2012

0006 LOGOFF;

 FastLoad Page 34-44

Restarting FastLoad – Summary
You may occasionally need to restart the FastLoad utility after already having started to load
the table.

On the facing page are four scenarios you might encounter that would cause you to restart
FastLoad. The scenarios also provide the steps you should take to execute the restart
process.

Note on condition 4: If you original script completes successfully and you resubmit the
original script with END LOADING; then the same data will be loaded a second time. The
duplicate rows will be removed as part of phase 2 (assuming a PI table, not a NoPI table).

FastLoad Page 34-45

Restarting FastLoad – Summary

Condition 1: Abort in Phase 1 – data acquisition incomplete.

Solution: Resubmit the script. FastLoad will begin from record 1 or the first record past
the last checkpoint.

Condition 2: Abort occurs in Phase 2 – data acquisition complete.

Solution: Submit only BEGIN and END LOADING statements; restarts Phase 2 only.

Condition 3: Normal end of Phase 1 (paused) – more data to acquire, thus there is no
'END LOADING' statement in script.

Solution: Resubmit the adjusted script with new data file name. FastLoad will be
positioned to record 1 of the new input file and will continue loading the new file.

Condition 4: Normal end of Phase 1 (paused) – no more data to acquire, no 'END
LOADING' statement was in the script.

Solution: Submit BEGIN and END LOADING statements; restarts Phase 2 only.

 FastLoad Page 34-46

Additional FastLoad Commands
Some additional FastLoad commands include:

Use AXSMOD to specify an access module (e.g., WebSphere MQ) that provides data to the
FastLoad utility on network-attached client systems.

Use SESSIONS max min to specify the number of sessions; placed before the LOGON.

(max =maximum number of sessions that will be logged on; the max specification must
be greater than zero). If you specify a max value larger than the number of available
AMPs, FastLoad limits the sessions to one per working AMP.

The default maximum is one session for each AMP. Using the asterisk as the max
specification logs on for the maximum number of sessions — one for each AMP.

min is optional; the minimum number of sessions required to run the job. The min
specification must be greater than zero; default is 1.

Using the asterisk as the min specification logs on for at least one session, but less than
or equal to the max specification.

Use ERRLIMIT to control a runaway error condition, such as an incorrect definition of the
input data. Specify the maximum number of error records you want to occur before the
system issues an ERROR and terminates the load.

Use TENACITY to specify the number of hours FastLoad will try to establish a connection.
Default is no tenacity. The statement must be placed before LOGON.

Use SLEEP to specify the number of minutes FastLoad waits before retrying a logon.
Default is 6 minutes. The statement must be placed before LOGON.

Use DELETE when you must empty an existing table prior to loading. It must precede the
BEGIN LOADING statement. (It must be removed from the script prior to a restart.)
Specify the table name and use ALL to indicate that you want all rows deleted. The option
requires DELETE access right or privilege.

Use DROP TABLE in conjunction with the CREATE TABLE command to remove an old
table and reestablish it. Use DROP TABLE to remove old error tables. These commands
must precede the BEGIN LOADING statement and must be removed before a restart. This
option requires DROP access right or privilege.

Use HELP TABLE to automatically acquire a DEFINE statement when the input data is an
exact map of the table that you are loading. The HELP TABLE uses the current Data
Dictionary definitions to generate the DEFINE.

Use DATEFORM to specify the form of the DATE data type for the job. This option is
placed before LOGON.

FastLoad Page 34-47

Additional FastLoad Commands

AXSMOD name ["init-string"] ;
SESSIONS max [min] ;
ERRLIMIT max rejected records ;
TENACITY hours ; (default is no TENACITY)
SLEEP minutes ; (default is 6 minutes)
DELETE FROM tablename [ALL] ;
DROP TABLE tablename ;
HELP TABLE tablename ;
NOTIFY OFF | LOW | MEDIUM | HIGH . . . ;
DATEFORM INTEGERDATE | ANSIDATE ;
SET SESSION CHARSET "charsetname" ;
SET RECORD FORMATTED, BINARY, TEXT, UNFORMATTED or VARTEXT "c" ;

Specifies the record format of the import file – existence of record header and/or record trailer.
FORMATTED – includes both the record length indicator (LI) and an EOR indicator
BINARY – includes a record length indicator and no EOR indicator
TEXT – no record length indicator and an EOR indicator
UNFORMATTED – no record length indicator and no EOR indicator
VARTEXT – no record length indicator and an EOR indicator; fields are in CSV format

LI Indicator Bytes Data format is dependent on how the data was exported. EOR
2 0 – n x'0A'

If the imported data has indicator bytes, include the INDICATORS option on
BEGIN LOADING.

Import Record Layout

ds186034
Underline

ds186034
Underline

ds186034
Underline

 FastLoad Page 34-48

FastLoad with Additional Options
For the FastLoad job on the facing page, the script uses the redirect process to acquire the
input script (<) and direct the printed output of the FastLoad job (>).

The example also contains several parameters (SESSIONS, TENACITY, and SLEEP) that
must be specified before the LOGON statement. Another option, DATEFORM, if used,
must be placed before the LOGON statement.

The ERRLIMIT parameter may be specified before or after the LOGON statement.

FastLoad Page 34-49

FastLoad with Additional Options

SESSIONS 12 8;
TENACITY 4;

SLEEP 3;
LOGON educ2/bank,bkpasswd;

ERRLIMIT 1000;

BEGIN LOADING Customer
ERRORFILES Cust_e1, Cust_e2;

DEFINE in_CustNum (INTEGER)
,in_SocSec (INTEGER)
,Filler (CHAR(40))
,in_Lname (CHAR(30))
,in_Fname (CHAR(20))

FILE = datafile6

INSERT INTO CUSTOMER VALUES (
:in_CustNum
,:in_Lname
,:in_Fname
,:in_SocSec);

END LOADING;
LOGOFF;

These options must be specified
before LOGON.

Start Phase 2. If omitted, FastLoad will
pause.

Start Phase 1.

fastload < job1.fld | tee job1.out Input script file name & output file (report)
name.

Maximum number of error records before
terminating.

ds186034
Sticky Note
+2

 FastLoad Page 34-50

Invoking FastLoad
The facing page displays the commands you can use to invoke the FastLoad utility in batch
mode. The parameters for each command are listed in the three-column table.

FastLoad Page 34-51

Invoking FastLoad

Network Attached Systems: fastload [PARAMETERS] < scriptname >outfilename

Channel-Attached MVS Systems: // EXEC TDSFAST FDLOPT= [PARAMETERS]

Channel-Attached VM Systems: EXEC FAST [PARAMETERS]

Channel Network Description
Parameter Parameter

BUFSIZE=kb -b kb Specifies input buffer size; maximum is 63 KB (default)

CHARSET=charsetname -c charsetname Specify a character set or its code. Examples are EBCDIC,
ASCII, or Kanji sets

ERRLOG=filename -e filename Alternate file specification for error messages; produces a
duplicate record.

INMODETYPE=SAS_C N/A Specifies that the job will use an INMOD routine written in
SAS/C.

SLEEP=minutes -s minutes Number of minutes that FastLoad pauses before retrying a
logon.

TENACITY=hours -t hours Number of hours that FastLoad will continue trying to logon
when the maximum number of load jobs are already running.

< scriptname Name of file that contains FastLoad commands and SQL
statements.

> outfilename Name of output file for FastLoad messages.

 FastLoad Page 34-52

Application Utility Checklist
The facing page adds the FastLoad capabilities to the checklist.

Whether or not a Teradata FastLoad job restarts automatically because of a Teradata
Database failure depends on the operational configuration of the Teradata Database when it
returns to service. While Teradata is not operational, the FastLoad job is paused.

 If the configuration of the restarted Teradata Database is exactly the same as it was
when you invoked Teradata FastLoad, then Teradata FastLoad restarts the job
automatically.

– If the Teradata FastLoad job was paused in the end loading phase, the Teradata

Database resumes processing at the same place it was stopped.

– If the Teradata FastLoad job was paused in the loading phase, the Teradata
Database resumes processing:

o At the last checkpoint if the BEGIN LOADING command specified

the checkpoint option.
o At the beginning if the BEGIN LOADING command did not specify

the checkpoint option.

 If the configuration of the restarted Teradata Database is different from the way it

was when you invoked Teradata FastLoad (ex., an AMP is down), then Teradata
FastLoad does not restart the job. In this case, to restart and continue with the
paused Teradata FastLoad job, you must reestablish the original configuration of
the Teradata Database.

FastLoad Page 34-53

Application Utility Checklist

Feature BTEQ FastLoad FastExport MultiLoad TPump

DDL Functions ALL LIMITED

DML Functions ALL INSERT

Multiple DML Yes No

Multiple Tables Yes No

Protocol Used SQL FASTLOAD

Conditional APPLY No No

Data Conversion Yes 1 per column

Error Capture No Yes

Error Limits No Yes

User-written Routines No Yes

Automatic Restart No Yes*

Max Load Limit No Yes

Support Environment (SE) No No

 FastLoad Page 34-54

Summary
The facing page summarizes some important concepts regarding the FastLoad utility.

FastLoad Page 34-55

Summary

FastLoad Features and Characteristics:

• Excellent utility for loading new or empty tables from a host or server.

• The empty table cannot have secondary indexes, join indexes, hash indexes,
or Referential Integrity.

• Can reload previously emptied tables

– Remove referential integrity or secondary indexes prior to using FastLoad.

• Full Restart capability

• Has two phases – creates an error table for each phase.

– Error Limits and Error Tables, accessible using SQL

 FastLoad Page 34-56

Module 34: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

FastLoad Page 34-57

Module 34: Review Questions

Match the item in the first column to a corresponding statement in the second column.

1. ___ Phase 1 a. Might be used if a zero date causes an error

2. ___ CHECKPOINT b. Table status required for loading with FastLoad

3. ___ ERRORTABLE1 c. Records written in unsorted blocks

4. ___ ERRORTABLE2 d. Records rows with duplicate values for UPI

5. ___ Empty Table e. Not permitted on table to be loaded with FastLoad

6. ___ Secondary Index f. Points FastLoad to a record in an input file

7. ___ Conversion g. Can be used to restart loading from a given point

8. ___ NULLIF h. Records constraint violations

9. ___ RECORD i. Builds the actual table blocks for the new table

10. ___ Phase 2 j. Transform one data type to another, once per column

 FastLoad Page 34-58

Lab Exercise 34-1
The BTEQ syntax to create the two data files for this exercise is:

 .LOGON …;

 .EXPORT DATA FILE = data34_1, CLOSE;
 EXEC AP.Lab34_1_1;
 .EXPORT RESET

 .EXPORT DATA FILE = data34_2, CLOSE;
 EXEC AP.Lab34_1_2;
 .EXPORT RESET

 .LOGOFF;

These macros have WHERE clauses that SELECT specific data rows. These macros limit
the number of rows that are selected; therefore there is no need to include the LIMIT
parameter with the BTEQ .EXPORT statement.

After creating these data files, you may want to check their size to ensure that you have
created them correctly. An easy way to do this is to use the Linux ls –l command.

 The size of data34_1 should be 244,000 bytes.
 The size of data34_2 should be 183,000 bytes.

A technique that can be used to create Linux scripts without using vi or vim is to do the
following:

1. Enter your commands (job/script) in a Notepad file.
2. Highlight the text and use the mouse to choose the Edit Copy function.

Switch to your terminal window where Linux is running and …

3. cat > lab34_12.fld (or whatever filename you wish)

 Use the mouse to choose the Edit Paste function
 To exit the cat command, press either the CNTL C or DELETE key.

FastLoad Page 34-59

Lab Exercise 34-1

Lab Exercise 34-1

Purpose

In this lab, you will set up a restartable FastLoad operation.

What you need

You need to create two data input sets and use your empty Customer table. The input data sets will
get their data from the AP.Customer table.

Tasks

1. Using two separate BTEQ EXPORT commands, create two source data sets, data34_1 and data34_2.
The SQL for selecting the appropriate rows is contained in the macros AP.LAB34_1_1 (for data34_1)
and AP.LAB34_1_2 (for data34_2).

Note: data34_1 has 4000 records and data34_2 has 3000 records

2. Create a FastLoad script that loads the first 4000 records (data34_1 file) into your Customer table
and do not include the END LOADING statement in this script.

3. Create a FastLoad script that loads the additional 3000 records (data34_2) into your Customer table
and complete the FastLoad.

4. Check the result. (Your Customer table should contain 7000 rows.)

 FastLoad Page 34-60

Lab Exercise 34-2
The BTEQ syntax to create the data file for this exercise is:

 .LOGON …;
 .EXPORT DATA FILE = data34_3, CLOSE;
 EXEC AP.Lab34_2;
 .EXPORT RESET
 .LOGOFF;

After creating this data file, you may want to check its size to ensure that you have created it
correctly. An easy way to check the size in Linux is to use the Linux ls –l command.

 The size of data34_3 should be 495,000 bytes.

Note: FastLoad requires that DECIMAL be spelled out (DEC causes a syntax error).

A technique that can be used to create Linux scripts without using vi or vedit is to do the
following:

1. Enter your commands (job/script) in a Notepad file.
2. Highlight the text and use the mouse to choose the Edit Copy function.

Switch to your terminal window where Linux is running and …

3. cat > lab34_22.fld (or whatever filename you wish)

 Use the mouse to choose the Edit Paste function
 To exit the cat command, press either the CNTL C or DELETE key.

FastLoad Page 34-61

Lab Exercise 34-2

Lab Exercise 34-2

Purpose

In this lab, you will create a FastLoad script to load data into a TRANS table and convert incoming
dates with a value of '0000-00-00' and converts these dates to NULL.

What you need

An empty TRANS table and the macro AP.Lab34_2.

Tasks

1. Use BTEQ EXPORT and the macro AP.Lab34_2 to create a source data file (data34_3). This macro
outputs the DATE in character format and the year is output as 4 characters.

2. FastLoad the data from the file data34_3 to your empty TRANS table. In this exercise, the default
format for a date is character (10) with a format of YYYY-MM-DD. The data file has dates set to 0
(zero) that must be converted to NULL.

(Hint: Use a FORMAT 'YYYY-MM-DD' on the INSERT and a NULLIF='0000-00-00' on the DEFINE. You
must define incoming DATE as a character field.)

3. How many rows in your table have a NULL Trans_Date? __________

 FastLoad Page 34-62

Notes

The Support Environment Page 35-1

Module 35

Teradata Proprietary and Confidential

The Support Environment for
FastExport, MultiLoad, and TPump

After completing this module, you will be able to:

 Explain the elements of the Support Environment.

 Use the Support Environment to invoke a utility.

 Process parameter input from a host file.

 Use system and user-defined variables.

 Write messages to an output file.

 The Support Environment Page 35-2

Notes

The Support Environment Page 35-3

Table of Contents

Support Environment ... 35-4
Setting Up the Support Environment ... 35-6
Invoking Utilities ... 35-8
Support Environment Commands .. 35-10
Initializing the Log Table ... 35-12
Initialization and Wrap Up Commands ... 35-14
User-defined and System Variables ... 35-16
.ACCEPT – Environment or File Variable .. 35-18
.DISPLAY and .ROUTE Commands... 35-20
Example: Using Variables in a Script .. 35-22
Working with Control Logic .. 35-24
Support Environment Example – Input ... 35-26
Support Environment Example – Output ... 35-28
Teradata SQL Support ... 35-30
Script – Example Input .. 35-32
Script – Example Output .. 35-34
Summary .. 35-36
Module 35: Review Questions ... 35-38
Lab Exercise 35-1 (optional) .. 35-40

 The Support Environment Page 35-4

Support Environment
To ensure consistency for application utilities, Teradata provides the Support Environment,
a sophisticated utility platform that makes fully automatic restarts available. Without
needing to know the reason for the failure and without needing to change the script, you can
restart a job by resubmitting the script.

The Support Environment supports a complete range of SQL commands (except SELECT),
and permits conditional processing of SQL and utility commands with an easy-to-use .IF,
.THEN, .ELSE, and .ENDIF facility.

The Support Environment Page 35-5

Support Environment

• Provides a common environment – language, functions, flexibility, etc. – for
utilities such as FastExport, MultiLoad, and TPump.

• Provides a fully-nested .RUN file facility.

• Interprets utility commands and provides error reporting.

• Supports system-defined and user-defined variables.

• Allows for conditional processing of commands.

• Supports a wide range of DDL and DML commands.

• Allows logic to be applied both before and after the utility executes.

• Provides recovery management from a Teradata or host failure.

 The Support Environment Page 35-6

Setting Up the Support Environment
Utilities are not called by the user directly, but are invoked by the Support Environment
after initial housekeeping tasks are complete.

The setup process requires the naming of a restart log table, which then governs the
operation completely.

You can follow the setup commands with SQL statements for preparing the job.

The Support Environment Page 35-7

Setting Up the Support Environment

• Utilities are invoked by the Support Environment after the preparatory statements have
been executed:

.LOGTABLE logtable_name;

.LOGON tdpid/username,password;

• These may be followed by statements to:

– Statements to SET variables
– Accept variables from outside sources (a file or the operating system)
– SQL statements to CREATE and DROP tables, secondary indexes, etc.
– SQL statements to set the default database, INSERT into tables, etc.
– Commands to invoke the utility function (e.g., .BEGIN EXPORT)

• Comments may be included with scripts.

/* This job is used to ….. */

 The Support Environment Page 35-8

Invoking Utilities
The facing page identifies the commands you can use to invoke the utilities that use the
Support Environment.

If from its interrogation of the restart log, the Support Environment determines the present
operation to be a restart, the Support Environment accepts responsibility for not submitting a
previously successful operation a second time.

The facing page also shows an example of job code that calls the Support Environment.

Note: The script on the facing page runs the FastExport utility. FastExport is discussed
in more detail in a later module.

The Support Environment Page 35-9

Invoking Utilities

• FastExport is invoked with: .BEGIN EXPORT

• MultiLoad is invoked with: .BEGIN [IMPORT] MLOAD
or

.BEGIN DELETE MLOAD

• TPump is invoked with: .BEGIN LOAD

• Upon initialization, the Support Environment accesses the Restart Log Table to
determine whether or not this is a restart.

• If it is, the Support Environment will not submit a previously successful statement a
second time.

.LOGTABLE Restartlog_fxp;

.LOGON ;

.BEGIN EXPORT;

.EXPORT OUTFILE Cust_file;
SELECT * FROM Customer;
.END EXPORT;

.LOGOFF;

Support Environment Commands

 The Support Environment Page 35-10

Support Environment Commands
Note that all Support Environment and utility commands are preceded with a period (.).
Any statement NOT preceded by a period is presumed to be SQL and is sent to the Teradata
database for processing.

The Support Environment Page 35-11

Support Environment Commands

.LOGTABLE Acquires or creates the Restart Log Table.

.LOGON Connects multiple sessions to Teradata.

.LOGOFF Terminates the utility operation.

.DATEFORM Specify INTEGERDATE or ANSIDATE.

.ACCEPT Input parameters to Support Environment.

.RUN Specifies an external script file.

.IF … THEN Identifies statements to be executed if certain conditions are true

[.ELSE] or false

.ENDIF Required to terminate a .IF condition.

.DISPLAY Writes messages to a specific destination.

.ROUTE Specifies output file other than SYSPRINT or standard output.

.SET Assigns a data type and value to a variable.

.SYSTEM Submits an operating system command to the client environment.

ds186034
Sticky Note
its a physical table...but small (TPUMP log table can get real big)

 The Support Environment Page 35-12

Initializing the Log Table
Utilities use information in the Restart Log Table to restart jobs halted because of a Teradata
or client system failure.

If a utility completes with a return code of zero, the Restart Log Table is automatically
dropped.

The Support Environment Page 35-13

Initializing the Log Table

• The .LOGTABLE command is required.

• .LOGTABLE and .LOGON commands must be the first statements processed (either
directly or via the .RUN command).

• .LOGTABLE creates a new table or acquires an existing Log Table.

• Privileges required for the Log Table:

– CREATE TABLE (to create a new table)
– INSERT
– UPDATE
– SELECT

• By default, the log table is created in your default database which requires PERM
space.

• The format of the Log Table is unique to each of the utilities (FastExport, MultiLoad, and
TPump).

 The Support Environment Page 35-14

Initialization and Wrap Up Commands
The facing page displays initialization and wrap up commands for the Support Environment.

Utilities deliver to the Host a “high watermark” return code. If this value is zero, all work
tables, empty error tables, and the restart log table are dropped. Any return code of 8 or
greater indicates an aborted job.

The Support Environment Page 35-15

Initialization and Wrap Up Commands

.LOGON [tdpid /] username , [password [,'acctid']] ; Utility will run any startup string
defined for the user.

.LOGOFF [retcode] ; Permits user to specify return-
code; otherwise, high watermark
is returned.

.RUN FILE fileid Identifies external source of
control statements and optionally
ignores extraneous data - nest
up to 16 levels of .RUN.

[IGNORE
charpos1
charpos 1 THRU
THRU charpos2
charpos1 THRU charpos2

] ;

When the Utility terminates, it returns to the HOST with a “high watermark” return code:

00 Successful completion
04 Warning
08 User error
12 Severe internal error
16 No output message available

 The Support Environment Page 35-16

User-defined and System Variables
The facing page displays some of the variables you can use within the Support Environment.
See the reference manuals for the complete set of variables.

The .SET command has to precede the .BEGIN EXPORT (MLOAD or LOAD) command.

Note: The Return Code is the return code from the last Teradata Database command.

Miscellaneous notes on Time and Date variables:

 &SYSDATE – returns 8-character date in yy/mm/dd format
 &SYSDATE4 – returns 10-character date in yyyy/mm/dd format
 &SYSDAY – returns 3-character uppercase day of week specification: MON,

TUE, WED, THU, FRI, SAT or SUN
 &SYSTIME – returns 8-character time in hh:mm:ss format

For these 4 variables, the original values are maintained after a utility restart operation.

Note that because the values are all character data types, you should not reference them in
numeric operations.

The Support Environment Page 35-17

User-Defined and System Variables

System Variables Description Format Example

&SYSDATE System Date YY/MM/DD 12/04/17
&SYSDATE4 System Date YYYY/MM/DD 2012/04/17
&SYSTIME System Time HH:MI:SS 09:11:53
&SYSDAY Day of Week X(3) TUE
&SYSOS Client Operating System X(5) UNIX, Win32, Linux
&SYSUSER Client System User Id student130
&SYSRC Return Code 0

MultiLoad Specific Variables (not complete list)

&SYSDELCNT_ Delete Count Ex., &SYSDELCNT1, &SYSDELCNT2, ...
&SYSINSCNT_ Insert Count Ex., &SYSINSCNT1, &SYSINSCNT2, ...
&SYSUPDCNT_ Update Count
&SYSETCNT_ Error Table Count
&SYSUVCNT_ Uniqueness Violation Count
&SYSRCDCNT_ Count of import records read
&SYSRJCTCNT_ Count of records rejected from import file Note: n is 1 to 5

.SET var [TO] expression; Permits a variable to be set or reset to an expression or a
pre-existing variable.

Example: .SET dbase TO 'student130'; Reference this variable with &dbase.
.SET tname TO 'customer'; Reference this variable with &tname.

 The Support Environment Page 35-18

.ACCEPT – Environment or File Variable
The ACCEPT command can...

 Accept from a single data record from an external source, and use it to set one or
more utility variables.

 Accept from an operating system variable and use it to set a utility variable.

You can treat input values for the Support Environment in whole or in part. The IGNORE
function of the .ACCEPT statement permits the ACCEPTed data to contain filler data. For
example, you can also use the IGNORE to ignore sequence numbers in the first 6 columns.

When ACCEPTing from a fileid, the fileid can be any of the following:

 with VM, a FILEDEF name
 with MVS, a DDNAME
 with UNIX and Windows, a pathname for a file
 an * which represents the system console or standard input (stdin) device.

Multiple values in the input record are space separated. Character values must be delimited
with single quotes. For example,

 'Los Angeles' 90210 is valid
 Los Angeles 90210 is not valid

If the input file contains multiple records, the ACCEPT command will only accept from the
first record.

If the number of variables is greater than the number of values in the input record, then
unused variables are undefined or NULL.

If the number of values in the input record is greater than the number of variables, you will
receive a warning message.

The Support Environment Page 35-19

.ACCEPT – Environment or File Variable

The ACCEPT command can ...

• accept from a environment variable and use the variable throughout the script/job.

• accept from a single data record from an external file, and use it to set one or more
utility variables.

.ACCEPT var [FROM] ENVIRONMENT VARIABLE env_var ;
ENV VAR

.ACCEPT var, . . [FROM] FILE fileid
[IGNORE

charpos1
charpos1 THRU
THRU charpos2
charpos1 THRU charpos2

] ;

For display or evaluation, variable names must be preceded with an ampersand (&).

Utility variables will be replaced by their values before text is displayed.

If the value is a character, the variable name must be enclosed in single quotes.

 The Support Environment Page 35-20

.DISPLAY and .ROUTE Commands
When DISPLAYing to a fileid, the fileid can be any of the following:

 with VM, a FILEDEF name
 with MVS, a DDNAME
 with UNIX and Windows, a pathname for a file
 an * which represents the system console or standard output (stdout) device.

In UNIX, /dev/tty references the user’s terminal device directly. /dev/tty is not the same as
standard output.

The DISPLAY command creates a new file or replaces an existing file; it does not append
to an existing file. However, multiple DISPLAY commands to the same filename in the
same script are all placed into the same file.

The ECHO function on the .ROUTE command permits messages to be sent to multiple
destinations.

The Support Environment Page 35-21

.DISPLAY and .ROUTE Commands

Used to write messages to specified filename.

Changes routing of default output.

'ECHO' permits routing to default and a
second copy anywhere in script.

.DISPLAY ' text ' [TO] FILE filename;

.ROUTE MESSAGES [TO] FILE filename

[WITH] ECHO [TO] FILE filename
[WITH] ECHO [OFF]

;

Examples:

.DISPLAY 'Run Date - &SYSDATE4' TO FILE /dev/tty;

Run Date - 2012/04/17

.ACCEPT home FROM ENV VAR HOME;

.DISPLAY 'The $HOME directory is &home' TO FILE *;

The $HOME directory is /home/student130
(* - the output is directed to standard output device.)

.ROUTE MESSAGES TO FILE /tmp/mldrun1.out WITH ECHO TO FILE /dev/tty;

ds186034
Sticky Note
console in win

ds186034
Sticky Note
* STD OUTPUT

 The Support Environment Page 35-22

Example: Using Variables in a Script
The facing page contains an example of using variables in a FastExport Script.

Notes:

 The .SYSTEM command is the Linux remove file command with the –f or force
option. The –f option removes the file without prompting the user.

 The script on the facing page runs the FastExport utility. FastExport is discussed in

more detail in a later module.

 The two periods (..) between the &dbase and &tname are needed to represent a

single period. If a single period was used, the support environment would interpret
the text immediately after the single period as a command.

 If an ampersand is needed in the script, use &&.

The Support Environment Page 35-23

Example: Using Variables in a Script

.LOGTABLE Custlog_fxp;

.LOGON ;

.ACCEPT home FROM ENV VAR HOME;

.SET dbase TO 'student130';

.SET tname TO 'customer';

.SET expname TO '&home/cust_file';

.SYSTEM 'rm -f &expname';

.DISPLAY 'Exporting data file &expname' TO FILE /dev/tty;

.BEGIN EXPORT;

.EXPORT OUTFILE &expname;
SELECT * FROM &dbase..&tname;
.END EXPORT;

.LOGOFF;

Data file saved in Linux:
/home/student130/cust_file

Output to terminal screen:
Exporting data file /home/student130/cust_file

Portion of FastExport output:

0011 SELECT * FROM &dbase..&tname;
**** 16:23:10 UTY2402 Previous statement modified to:
0012 SELECT * FROM student130.customer;

Example:

Output:

 The Support Environment Page 35-24

Working with Control Logic
The facing page describes the use of .IF, .ELSE, and .ENDIF statements to apply conditional
logic to your job.

The conditional expression is an expression that can be evaluated as either true or false.

When evaluation of the expression returns a numeric result:

 Zero is interpreted as false
 Nonzero results are interpreted as true

The Support Environment utilities (MultiLoad, FastExport, and TPump) support the nesting
of .IF commands up to 100 levels.

The Support Environment Page 35-25

Working with Control Logic

.IF conditional expression THEN;

if condition is true,
then execute these statement(s) ;

[.ELSE;]
if condition is false,
then execute these statement(s) ;

.ENDIF;

.IF is followed by a conditional expression that
initiates execution of subsequent commands and
statements.

.ELSE is followed by commands and statements
which execute when the preceding IF command
is false.

.ENDIF delimits the group of commands and
statements subject to previous IF or ELSE
commands.

Note:
The Support Environment utilities support the nesting of .IF commands up to 100
levels.

 The Support Environment Page 35-26

Support Environment Example – Input
The example on the facing page demonstrates a number of the features of the Support
Environment, including:

 The .RUN facility
 The .IF/.ENDIF function
 Using system variables
 Displaying messages to an output file
 Initializing MultiLoad (MLOAD)

Note: The Support Environment is case-sensitive for variables and input data.

The Support Environment Page 35-27

Support Environment Example – Input

.LOGTABLE CustLog_mld;

.RUN FILE /home/ks186001/logon;

.IF '&SYSDAY' NE 'FRI' THEN;
.DISPLAY 'This job runs on Friday'

TO FILE /tmp/display_out;
.LOGOFF;

.ENDIF;

.BEGIN IMPORT MLOAD
. . .

Create or Acquire Restart Log Table.

Run commands in file logon.

Check Day of Week. Write a message
and terminate Job if not 'FRI' (Case-
specific).

Invoke utility.

.LOGON tdt5b/KS186001,amber96;

/home/ks186001/logon

 The Support Environment Page 35-28

Support Environment Example – Output
The Support Environment performs a preliminary syntax check of all utility statements prior
to calling the utility. It also resolves all variables and writes messages to output files as
directed. The resolutions are not dynamic. Once a variable has been resolved, it remains
resolved across application restarts.

Thus, if &SYSDAY has once been resolved to 'FRI', and the job later aborts, upon
restart, &SYSDAY remains resolved to 'FRI' even though the actual day of the week may
have changed.

The Support Environment Page 35-29

Support Environment Example – Output

MultiLoad Utility Output

Logon / Connection

0001 .LOGTABLE CustLog_mld ;
0002 .RUN FILE /home/ks186001/logon;
0003 .LOGON tdt5b/KS186001, ;
17:29:43 FRI APR 13, 2012
UTY6211 A successful connect was made to the DBC.
17:29:44 FRI APR 13, 2012
UTY6211 Logtable 'KS186001.CustLog_mld' has been created.

Processing Control Statements

0004 .IF '&SYSDAY' NE 'FRI' THEN ;
17:29:44 FRI APR 13, 2012
UTY2402 Previous statement modified to:
0005 .IF 'FRI' NE 'FRI' THEN;
0006 .DISPLAY 'This job runs on Friday'

TO FILE /tmp/display_out;
0007 .LOGOFF;
0008 .ENDIF;
0009 .BEGIN IMPORT MLOAD

 The Support Environment Page 35-30

Teradata SQL Support
The Support Environment supports a full range of SQL functionality, except for SELECT.

Note:
 Specifying any DML statements (INSERT /UPDATE/DELETE) before specifying the

utility BEGIN command (e.g., BEGIN MLOAD) will use the non-fast path and
processing will be done as normal SQL statements and the Transient Journal will be used
as needed. This may be very slow depending on the SQL statement. Specifying the
DML statement after the utility BEGIN command (e.g., BEGIN MLOAD) will use the
fast path. For example, in MultiLoad, the processing will be done in the utility
transaction phase which is very fast.

The Support Environment Page 35-31

Teradata SQL Support

• The Support Environment supports:

– Utility operations.

– DML and DDL functions for preparatory tasks in the same job-step, avoiding
multiple utility invocations.

• Examples of TERADATA SQL statements that can be used include:

CREATE DATABASE ALTER TABLE
MODIFY DATABASE DROP TABLE, VIEW, MACRO, INDEX
DELETE DATABASE CREATE TABLE, VIEW, MACRO, INDEX
DROP DATABASE REPLACE VIEW, MACRO

RENAME TABLE, VIEW, MACRO
DATABASE
CHECKPOINT INSERT (INSERT/SELECT is accepted)
COLLECT STATISTICS UPDATE
COMMENT ON DELETE

SET SESSION COLLATION GRANT
REVOKE

RELEASE MLOAD GIVE

Note: User-generated transactions (BT, ET) and SELECT are not supported.

 The Support Environment Page 35-32

Script – Example Input
Multiple input variables from a file treated by the .ACCEPT command are separated by a
space. Text values must be enclosed in single quotes.

The Control_Table has the following columns:

ID

Status

2

Text

The Support Environment Page 35-33

Script – Example Input

.LOGTABLE rlog2_mld;

.LOGON tdt5b/student130,password;

.ACCEPT num, name FROM FILE parfile1;

.SET nbrin TO 2;

.IF &num = &nbrin THEN;

UPDATE Control_Table SET Status = '&name' WHERE ID = #

.DISPLAY 'Update of record &nbrin successful'

TO FILE /tmp/display2_out;

.ENDIF;

.LOGOFF;

Host File: parfile1 0 0 0 2 ' T e x t '

The script is for setting up a MultiLoad operation. The database table is named
Control_Table. It has columns named Status and ID.

 The Support Environment Page 35-34

Script – Example Output
Notice how the output shows the resolution of these values before the utility is called.

The Support Environment Page 35-35

Script – Example Output

Host File: parfile1 0 0 0 2 ' T e x t '

MultiLoad Utility
17:45:18 Processing start date FRI APR 13, 2012
Logon/connection

0001 .LOGTABLE rlog2_mld;
0002 .LOGON tdt5b/student130, ;
UTY6211 A successful connect was made to the DBC
UTY6217 Logtable 'STUDENT130.rlog2_mld' has been created.

Processing Control Statements
0003 .ACCEPT num, name FROM FILE parfile1;
0004 .SET nbrin TO 2;
0005 .IF &num = &nbrin THEN;
UTY2402 Previous statement modified to:
0006 .IF 2=2 THEN;
0007 UPDATE Control_Table SET Status = '&name' WHERE ID = #
UTY2402 Previous statement modified to:
0008 UPDATE Control_Table SET Status = 'Text' WHERE ID = 2;
UTY1016 'UPDATE' request successful
0009 .DISPLAY 'Update of record &nbrin successful' TO FILE /tmp/display2_out;
UTY2402 Previous statement modified to:
0010 .DISPLAY 'Update of record 2 successful' TO FILE /tmp/display2_out;
0011 .ENDIF;
0012 .LOGOFF;

 The Support Environment Page 35-36

Summary
The facing page summarizes some of the important concepts regarding the Support
Environment.

The Support Environment Page 35-37

Summary

Support Environment:

• Common environment for utilities such as MultiLoad, FastExport, and
TPump.

• Provides error reporting.

• Supports a wide range of DDL and DML commands for one-step jobs.

• Allows for conditional processing.

• Supports system- and user-defined variables.

• Provides recovery management from a Teradata or host failure.

 The Support Environment Page 35-38

Module 35: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

The Support Environment Page 35-39

Module 35: Review Questions

Match the item in the first column to its corresponding statement in the second column.

_____ 1. .LOGTABLE a. Connects sessions to Teradata

_____ 2. .LOGON b. Uses a single data record to set one or more utility variables

_____ 3. .ACCEPT c. System variable

_____ 4. UPDATE d. Identifies the log to create or acquire

_____ 5. &SYSDATE e. Teradata SQL statement permitted by Support Environment

 The Support Environment Page 35-40

Lab Exercise 35-1 (optional)
Check your understanding of the concepts discussed in this module by completing the lab
exercises as directed by your instructor.

The Support Environment Page 35-41

Lab Exercise 35-1 (optional)

Lab Exercise 35-1 (optional)

Purpose
In this lab, you will use the Support Environment to accept data from an input record (data35_1)
and insert it into a row in your customer table.

What you need
AP.Customer and your Customer Table.

Tasks
1. Create a file or data set (data35_1) and enter the following data for INSERT into the Customer table:

Customer_Number 10001
Last_Name 'YourLastName'
First_Name 'YourFirstName'
Social_security 333445555

Use the format:
10001 'YourLastName' 'YourFirstName' 333445555 (items separated by spaces)

2. Prepare a Support Environment script that defines the record to the Support Environment, using the
ACCEPT to read the record and use the SET command to dynamically modify the table name in your
INSERT statement. Use FastExport to execute this script.

3. Test the result: SELECT * FROM Customer WHERE Customer_Number = 10001;

 The Support Environment Page 35-42

Notes

FastExport Page 36-1

Module 36

Teradata Proprietary and Confidential

FastExport

After completing this module, you will be able to:

 State FastExport capabilities.

 Describe how sorted output is produced from a multiple-
session SELECT.

 Prepare a FastExport script.

 FastExport Page 36-2

Notes

FastExport Page 36-3

Table of Contents

FastExport .. 36-4
.BEGIN and .END EXPORT ... 36-6

SESSIONS max min ... 36-6
TENACITY and SLEEP .. 36-6
SPOOLMODE ... 36-6

.END EXPORT .. 36-6
.EXPORT ... 36-8
A FastExport Script .. 36-10
The SELECT Request .. 36-12

FastExport without Spooling ... 36-12
Impact of Requesting Sorted Output .. 36-14
The SORT Procedure ... 36-16
Multiple Exports in one FastExport Job .. 36-18
Invoking FastExport ... 36-20
FastExport and Variable Input ... 36-22

Selection Controls .. 36-22
A FastExport Script with ACCEPT ... 36-24
A FastExport Script with LAYOUT .. 36-26
Application Utility Checklist ... 36-28
Summary .. 36-30
Module 36: Review Questions ... 36-32
Lab Exercise 36-1 .. 36-34
Lab Exercise 36-2 .. 36-36

 FastExport Page 36-4

FastExport
FastExport is designed to outperform BTEQ .EXPORT in the transfer of large amounts of
data from the larger Teradata database systems to the host using multiple sessions.

FastExport is NOT designed to make the Teradata Database perform faster. It is designed to
make greater use of multiple Parsing Engines and AMPs as well as multiple channels.

FastExport Page 36-5

FastExport

• Exports large volumes of formatted data from Teradata to a host file or user-written
application.

• Takes advantage of multiple sessions.

• Export from multiple tables.

• Uses Support Environment.

• Fully automated restart.

• Uses one of the “Loader” slots.

• Teradata 13.10 Feature – FastExport without Spooling improves performance.
– Data block export begins immediately.

– The contents of a table are read in one pass and exported while data blocks are being read into
memory buffers.

– SELECT statements cannot have ORDER BY, HAVING, WITH, Joins, SUM, etc.

Server or Host

FastExport
Teradata
Database

 FastExport Page 36-6

.BEGIN and .END EXPORT
The BEGIN EXPORT command signifies the beginning of an export task and sets the
specifications for the task sessions with the Teradata Database.

SESSIONS max min
max is maximum number of FastExport sessions that will be logged on when you enter a
LOGON.

 The max specification must be greater than zero.
 If you specify a SESSIONS max value larger than the number of available AMPs, the

utility limits the sessions to one per working AMP.
 The default is 4 for Linux and networked systems.
 Using the asterisk character as the max specification logs on for the maximum number of

sessions — one for each AMP.
 min is optional, the minimum number of sessions required to run the job. The min

specification must be greater than zero. The default minimum, if you do not use the
SESSIONS option or specify a min value, is 1.

 Using the asterisk character as the min specification logs on for at least one session, but
less than or equal to the max specification.

SESSIONS * * has the effect of not using the SESSIONS parameter at all.

TENACITY and SLEEP
Tenacity specifies the number of hours that the FastExport utility tries to log on to the
Teradata Database.

When the FastExport utility tries to log on for a new task, and the Teradata Database
indicates that the maximum number of utility import/export sessions are already running, the
FastExport utility:

1. Waits for six minutes, by default, or for the amount of time specified by the SLEEP option.
2. Then it tries to log on to the Teradata Database again.
3. The FastExport utility repeats this process (steps 1 and 2) until it has either logged on for

the required number of sessions or exceeded the TENACITY hours time period.

SPOOLMODE
 SPOOL - Tells FastExport to spool the answer set. This is the default.
 NOSPOOL - Tells FastExport to try to use the NoSpool method. If the NoSpool

method is not supported, FastExport issues a warning and then uses the Spool
method

 NOSPOOLONLY - Tells FastExport to use the NoSpool method only. If the
NoSpool method is not supported, then terminate the job with an error.

.END EXPORT
The .END EXPORT command indicates that the Support Environment has completed its
syntax check and housekeeping activities and instructs FastExport to send the SELECT(s) to
the Teradata database.

FastExport Page 36-7

.BEGIN and .END EXPORT

.BEGIN EXPORT [SESSIONS max [min]
TENACITY hours
SLEEP minutes
SPOOLMODE SPOOL | NOSPOOL | NOSPOOLONLY
NOTIFY OFF | LOW | MEDIUM | HIGH …];

SESSIONS
• Maximum, and optionally, minimum number of sessions to request – defaults to 4 for Linux.
• The utility will log on 2 additional SQL sessions: one for the Restart Log and one for the SELECT.

TENACITY and SLEEP
• Tenacity – # of hours FastExport will try to establish a connection to the system; default is 4.
• Sleep – # of minutes that FastExport will wait between logon attempts; default is 6.

SPOOLMODE (13.10)
• Specifies if FastExport should use a spool file or not.

NOTIFY
• Parameter for specifying the notify user exit option
• The FastExport manual specifies in detail which events are associated with each level.

.END EXPORT;

• Delimits a series of commands that define a single EXPORT action.
• Causes the utility to send the SELECT(s) to the Teradata Database.

 FastExport Page 36-8

.EXPORT
The .EXPORT statement permits the definition of the output data file and optionally an
AXSMOD and/or OUTMOD routine. The reference manual contains the details on using
the AXSMOD and OUTMOD options.

Only RECORD and INDICATOR output modes are permitted, since FastExport
performance relies heavily on large amounts of data being returned (maybe millions of
rows) and this is considered unsuitable for generation of reports. Therefore, there is no
FIELD mode with FastExport. INDICATOR is the default.

The BLOCKSIZE parameter defaults to 63.5 KB.

The FORMAT option only applies to non-mainframe systems. The options for FORMAT
are:

FASTLOAD a two-byte integer, n, followed by n bytes of data, followed by an
end-of-record marker, either X '0A' (FastExport as Linux client) or
X '0D0A' (FastExport as Windows client) systems.

BINARY a two-byte integer, n, followed by n bytes of data

TEXT an arbitrary number of bytes followed by an end-of-record marker,

either X '0A' (FastExport as Linux client) or X '0D0A' (FastExport
as Windows client) systems.

UNFORMAT exported as it is received from CLI without any client

modifications.

In summary the FORMAT option has these characteristics.

FORMAT Length Indicator

(2 bytes)
End-of-Record Marker
(Hex '0A' or Hex '0A0D')

FastLoad Y Y
Binary Y N
Text N Y
Unformat N N

Note: The Length Indicator does not include itself or the Hex '0A' or '0D0A'.
 Indicator bytes follow the Length Indicator or they are at the start of the record.

MLSCRIPT this option causes FastExport to generate a MultiLoad script that can be

used to load the exported data back into Teradata.

FastExport Page 36-9

.EXPORT

.EXPORT OUTFILE fileid [AXSMOD name ['init-string']] [OUTMOD module_name]

[MODE RECORD | INDICATOR]
[BLOCKSIZE integer]
[FORMAT FASTLOAD | BINARY | TEXT | UNFORMAT]
[OUTLIMIT record_count]
[MLSCRIPT fileid] ;

MODE If RECORD, then indicator bytes for NULLs are not included in exported data.
If INDICATOR, then indicator bytes for NULLs are included in exported data.

BLOCKSIZE Defines the maximum block size to be used in returning exported data. Default (and
maximum) is 63.5 KB.

FORMAT Record format of the exported file – this option impacts the record header and trailer.
FASTLOAD – includes both the record length indicator (LI) and an EOR indicator
BINARY – includes a record length indicator and no EOR indicator
TEXT – no record length indicator and an EOR indicator
UNFORMAT – no record length indicator and no EOR indicator

OUTLIMIT Defines the maximum number of records to be written to the output host file.

MLSCRIPT FastExport generates a MultiLoad script that can be used later to load the exported data
back into a Teradata system.

LI Indicator Bytes Data (format is totally dependent on the SELECT) EOR
2 0 – n x'0A'

ds186034
Sticky Note
MODE RECORD for external system cause they wont know what MODE isfor other TD export its great...

 FastExport Page 36-10

A FastExport Script
FastExport is called from the Support Environment using the initialization procedure.
FastExport requires a Restart Log Table that must be identified with the .LOGTABLE
statement.

FastExport Page 36-11

A FastExport Script

.LOGTABLE RestartLog1_fxp;

.RUN FILE logon;

.SET City TO 'Los Angeles';

.SET ZipCode TO 90066;

.BEGIN EXPORT;

.EXPORT OUTFILE custacct_data;

SELECT A.Account_Number
, C.Last_Name
, C.First_Name
, A.Balance_Current

FROM Accounts A INNER JOIN
Accounts_Customer AC INNER JOIN
Customer C

ON C.Customer_Number = AC.Customer_Number
ON A.Account_Number = AC.Account_Number
WHERE A.City = '&City'
AND A.Zip_Code = &ZipCode
ORDER BY 1;

.END EXPORT;

.LOGOFF;

Define Restart Log

Specify number of sessions

Destination file

Send request.

Terminate sessions

Via a SELECT, specify the
columns and rows to
export.

 FastExport Page 36-12

The SELECT Request
FIELD MODE (formatted output for reports), is not available with FastExport. The WITH
and WITH BY operators, which provide sub-totals and grand totals, are not supported.

FastExport permits multiple statement SELECTs.

FastExport without Spooling
This Teradata 13.10 Feature (FastExport without Spooling) allows table data to be exported
without an entire table being read into a spool file.

FastExport without Spooling improves performance as follows:

 Data block export begins immediately.
 The contents of a table are read in one pass and exported while data blocks are

being read into memory buffers.

The FastExport command .begin export SPOOLMODE NOSPOOL exports the data without
spooling for SELECT statements with the following:

 A single retrieve or sampling step (simple statements)
 String functions
 Arithmetic operators
 CASE expressions
 Exports from PPI tables

Spooling is required when:

 The statement contains ORDER BY, HAVING, or WITH clauses
 There is a JOIN, SUM, or statistics step
 The SELECT statement has multiple retrieve steps
 The SELECT statement has both a retrieve and a sampling step

If you use the NOSPOOL option and the SELECT requires spooling, FastExport performs
with spool instead of returning an error message.

FastExport Page 36-13

The SELECT Request

• Defines the data to be exported to the host, server, or client workstation.

• The job may consist of multiple SELECT statements.

• Applies normal transaction locks (READ lock) which are fully automatic.

– These locks are normally held by the utility until all response rows have been moved to AMP
spool, and then are released.

– Supports the “LOCKING ROW (or TABLE tablename) FOR ACCESS” modifier to request an
“access lock”.

• FastExport Restrictions – you cannot use SELECT (in FastExport) with the following:

– Non-data tables (e.g. CURRENT_DATE, ...)

– Equality condition for a Primary Index or USI

– WITH option to generate total or subtotal response rows.

– The USING modifier to submit data parameters as a constraint to the SELECT.

• Teradata 13.10 Feature – FastExport without Spooling. Data blocks can be exported
directly, avoids use of spool. The SELECT restrictions with NOSPOOL are:

– The statement contains ORDER BY, HAVING, or WITH clauses

– There is a JOIN, SUM, or statistics step

– The SELECT statement has multiple retrieve steps

– The SELECT statement has both a retrieve and a sampling step

 FastExport Page 36-14

Impact of Requesting Sorted Output
The facing page describes the sort process.

Sorting exported data adds additional overhead to the FastExport job. Only sort the
exported data rows if it is necessary.

FastExport Page 36-15

Impact of Requesting Sorted Output

A special FastExport “sort protocol” is used to take advantage of multiple
sessions. Each session transfers data a block at a time from multiple AMPs.

This protocol includes the following steps:

• The SELECT request is fully processed in the normal way using DBC/SQL protocol.

• At this point, response data is maintained in spool, sorted locally by the AMPs.

• Two further distributions between the AMPs (using the BYNET) are required to
complete the sort.

Sort notes:

• Requesting sorted data adds additional work (overhead and time) to Teradata.

• If the exported rows are to be loaded back into a Teradata DB (e.g., MultiLoad), there
probably is no need to sort the exported rows.

 FastExport Page 36-16

The SORT Procedure
Response rows are initially placed in the AMP local spool and sorted. They are then
redistributed over the BYNET in such a way that all values from the first sort value are
placed on the first logical AMP (which is randomly selected); values from the second sort
value are placed on the next physical AMP and so on, round-robin until all data is sorted.

This process is known as the VERTICAL distribution.

HORIZONTAL distribution takes place as blocks of data are built taking all values for the
first sort value from the first AMP, all values for the second sort value from the next AMP
and so on, round-robin until the block is full.

Multiple sessions are then used to return the sorted blocks in sequence to the host.

Unlike a normal data sort, this procedure is comparatively resource-intensive. It is counter-
balanced by the improved performance possible, with multiple sessions and block transfer to
the host.

FastExport Page 36-17

The SORT Procedure

Response rows locally
sorted in SPOOL:

Horizontal Distribution:

Vertical Distribution:

ADAMS BATES BOYCE ADAMS
BOYCE DAVIS CHARLES DAVIS
FIELD KIEL HERBERT GEORGE
JONES NICHOLS POTTER HANCOCK
SMITH PETERS HERBERT
WILSON TIBBS MERCER

TOMS

BLOCK 1 BLOCK 2 BLOCK 3 BLOCK 4

ADAMS BOYCE FIELD HERBERT
ADAMS CHARLES GEORGE JONES
BATES DAVIS HANCOCK KIEL
BOYCE DAVIS HERBERT MERCER

BLOCK 5 BLOCK 6

NICHOLS TIBBS
PETERS TOMS
POTTER WILSON
SMITH

AMP 1 AMP 2 AMP 3 AMP 4

ADAMS
ADAMS BATES BOYCE CHARLES
DAVIS BOYCE
DAVIS FIELD GEORGE HANCOCK
HERBERT
HERBERT JONES KIEL MERCER
NICHOLS PETERS POTTER SMITH
TIBBS TOMS WILSON

 FastExport Page 36-18

Multiple Exports in one FastExport Job
A FastExport job can contain multiple .BEGIN EXPORT; and .END EXPORT; pairs as
shown on the facing page.

Notes:

If the script was modified as:

.BEGIN EXPORT SESSIONS 8 4 SPOOLMODE NOSPOOL;
 .EXPORT OUTFILE Cust_file;

Then the following is true:

 8 Sessions (in Linux) would be used for the first BEGIN EXPORT if 8 sessions
were available.

 A spool file is used because there were two SELECTs from two tables.
 The second .BEGIN EXPORT will use 4 sessions, the Linux default.

If the script was modified as:

 .BEGIN EXPORT SESSIONS 8 4 SPOOLMODE NOSPOOLONLY;
 .EXPORT OUTFILE Cust_file;

Then the following is true:

 8 Sessions (in Linux) would be used if 8 sessions were available.
 The script will abort with the first BEGIN EXPORT. The second BEGIN

EXPORT is not executed.

FastExport Page 36-19

Multiple Exports in one FastExport Job

.LOGTABLE RestartLog2_fxp ;

.LOGON ;

.DISPLAY 'Exporting Cust_file - &SYSDATE4' TO FILE /dev/tty;

.BEGIN EXPORT;

.EXPORT OUTFILE Cust_file;
SELECT * FROM Customer_1;
SELECT * FROM Customer_2;

.END EXPORT;

.DISPLAY 'Exporting Trans_file - &SYSDATE4' TO FILE /dev/tty;

.BEGIN EXPORT;

.EXPORT OUTFILE Trans_file;
SELECT * FROM Transactions;

.END EXPORT;

.LOGOFF ;

cust_trans.fxp

To execute: fexp < cust_trans.fxp > cust_trans.out

Exported data file: Cust_file Output to screen: Exporting Cust_file - 2012/02/28
Exported data file: Trans_file Output to screen: Exporting Trans_file - 2012/02/28

 FastExport Page 36-20

Invoking FastExport
The facing page displays the commands you can use to invoke the FastExport utility in batch
mode. The parameters for each command are listed in the three-column table.

If you want to use FastExport in interactive mode, enter the command fexp at your system
command prompt.

Optionally, when FastExport starts, it can read a configuration file to establish defaults for
the FastExport job. On network-attached systems (e.g., Linux and Windows), FastExport
can read configuration parameters from a file named fexpcfg.dat. This file is located either
in the current directory or the directory referenced by the variable FEXPLIB.

On channel-attached systems, the DD statement for the MultiLoad configuration file must be
labeled FEXPCFG.

There are 7 parameters you can set in this file.

 CHARSET=character-set-name
 ERRLOG=filename
 BRIEF=on/off
 MAXSESS=max-sessions
 MINSESS=min-sessions
 STATUS=ON/OFF
 DATAENCRYPTION=ON/OFF

The values that you specify in the FastExport configuration file override the internal utility
default values for these parameters. Configuration file parameters can be overridden with
runtime parameters. The order of preference (highest to lowest) for these parameters is:

 1 – Runtime parameters
 2 – FastExport script parameters
 3 – Configuration file parameters
 4 – FastExport default values

The FastExport utility automatically checks for a configuration file each time you invoke the
utility. Upon locating a configuration file, the utility sets the defaults as specified, produces
the appropriate output messages and begins processing your FastExport job.

If the configuration file cannot be opened, or if the FastExport utility encounters syntax
errors in the file, the utility produces an output message, disregards the error condition and
begins processing your FastExport job. An invalid configuration file entry does not abort
your FastExport job.

If there is no configuration file, the utility begins processing your FastExport job without an
error indication. The configuration file is an optional feature of the FastExport utility, and its
absence is not considered to be an error condition.

FastExport Page 36-21

Invoking FastExport

Network Attached Systems: fexp [PARAMETERS] < scriptname >outfilename

Channel-Attached MVS Systems: // EXEC TDSFEXP FEXPPARM= [PARAMETERS]

Channel-Attached VM Systems: EXEC FASTEXPT [PARAMETERS]

Channel Network Description
Parameter Parameter
BRIEF -b Reduces print output runtime to the least information

required to determine success or failure.

CHARSET=charsetname -c charsetname Specify a character set or its code. Examples are EBCDIC,
ASCII, or Kanji sets.

ERRLOG=filename -e filename Alternate file specification for error messages; produces a
duplicate record.

"fastexport command" -r 'fastexport cmd' Signifies the start of a FastExport job; usually a RUN FILE
command that specifies the script file.

MAXSESS=max sessions -M max sessions Maximum number of FastExport sessions logged on.

MINSESS=min sessions -N min sessions Minimum number of FastExport sessions logged on.

< scriptname Name of file that contains FastExport commands and SQL
statements.

> outfilename Name of output file for FastExport messages.

 FastExport Page 36-22

FastExport and Variable Input
The facing pages provide additional information regarding FastExport. Variable input to
FastExport can either be accepted from a parameter file or you can IMPORT from a data
file.

Selection Controls
This page defines the optional use of an IMPORT data set. Data from this data set can be
used as dynamic variables in the SELECT statement(s) of the FastExport.

This allows you to run the same SELECT statement multiple times, each with a different
dynamic value. The results of all of the occurrences of the SELECT statement are sent to a
single FastExport data set.

The FORMAT options are similar to these described earlier for .EXPORT. VARTEXT
specifies that each record is variable length text record format, with each field separated by a
delimiter character.

FastExport Page 36-23

FastExport and Variable Input

Selection Controls

• There are two techniques that can be used to provide variable input to
FastExport.

– ACCEPT from a parameter file; only accept from a single record.

– IMPORT from a data file; each import record is applied to every SELECT.

• Read input variables from a host input data file described by the .LAYOUT
command.

• Apply each input variable value to every SELECT in the exact order listed in
the FastExport script before reading the next.

• Defines a host file as the source of the data values required for the SELECT
REQUEST.

• Permits the use of a user-written INMOD routine to (optionally) read and
(always) process the input record before passing it to the utility.

 FastExport Page 36-24

A FastExport Script with ACCEPT
The script shown on the facing page adds an ACCEPT command to the script shown earlier.

FastExport Page 36-25

A FastExport Script with ACCEPT

.LOGTABLE RestartLog1_fxp;

.RUN FILE logon ;

.ACCEPT city, zipcode FROM FILE parmfile1;

.BEGIN EXPORT SESSIONS 4 ;

.EXPORT OUTFILE custacct_data;

SELECT A.Account_Number
, C.Last_Name
, C.First_Name
, A.Balance_Current

FROM Accounts A INNER JOIN
Accounts_Customer AC INNER JOIN
Customer C

ON C.Customer_Number = AC.Customer_Number
ON A.Account_Number = AC.Account_Number
WHERE A.City = '&city'
AND A.Zip_Code = &zipcode
ORDER BY 1 ;

.END EXPORT ;

.LOGOFF ;

'Los Angeles' 90066parmfile1

ACCEPT variables from input
record.

Reference accepted variables
with an &.

city zipcode

 FastExport Page 36-26

A FastExport Script with LAYOUT
The script shown on the facing page adds LAYOUT commands to the script shown earlier.

FastExport Page 36-27

A FastExport Script with LAYOUT

.LOGTABLE RestartLog1_fxp;

.RUN FILE logon ;

.BEGIN EXPORT SESSIONS 4 ;

.LAYOUT Record_Layout ;

.FIELD city 1 CHAR(20) ;

.FIELD zipcode * CHAR(5) ;

.IMPORT INFILE city_zip_infile LAYOUT Record_Layout ;

.EXPORT OUTFILE cust_acct_outfile2 ;

SELECT A.Account_Number
, C.Last_Name
, C.First_Name
, A.Balance_Current

FROM Accounts A INNER JOIN
Accounts_Customer AC INNER JOIN
Customer C

ON C.Customer_Number = AC.Customer_Number
ON A.Account_Number = AC.Account_Number
WHERE A.City = :city
AND A.Zip_Code = :zipcode
ORDER BY 1 ;

.END EXPORT ;

.LOGOFF ;

Los Angeles 90066
San Diego 90217

city_zip_infile

IMPORT fields from input
records.

Reference imported fields with
a :

city zipcode

 FastExport Page 36-28

Application Utility Checklist
The facing page adds the FastExport capabilities to the checklist.

Automatic Restart – If the Teradata server restarts, FastExport will retry to connect to the
Teradata database automatically and restart automatically.

FastExport Page 36-29

Application Utility Checklist

Feature BTEQ FastLoad FastExport MultiLoad TPump

DDL Functions ALL LIMITED Yes (SE)

DML Functions ALL INSERT SELECT

Multiple DML Yes No Yes

Multiple Tables Yes No Yes

Protocol Used SQL FASTLOAD EXPORT

Conditional APPLY No No No

Data Conversion Yes 1 per column Yes

Error Capture No Yes N/A

Error Limits No Yes N/A

User-written Routines No Yes Yes

Automatic Restart No Yes* Yes

Max Load Limit No Yes Yes

Support Environment (SE) No No Yes

 FastExport Page 36-30

Summary
Remember that FastExport is not designed to make the Teradata database perform faster. It
is designed to take full advantage of multiple Parsing Engines, mainframe channels, and the
LAN.

The facing page summarizes some important concepts regarding the FastExport utility.

FastExport Page 36-31

Summary

• Best choice for exporting large amounts of data from the Teradata database
to a host file using multiple sessions.

• Fully automatic restart capability.

• Specialized processing of output data can be handled using an OUTMOD
routine.

• The MaxLoadTasks and MaxLoadAWT parameters determine the maximum
number of utility jobs that can execute at a given time.

– Teradata can accommodate not more than a combined total of 60 utility jobs at any
one time (FastLoad, MultiLoad, FastExport).

– Up to 30 of these can be FastLoad, MultiLoad.

– The FastExport limit is 60 minus the number of active FastLoad and MultiLoad
jobs.

 FastExport Page 36-32

Module 36: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

FastExport Page 36-33

Module 36: Review Questions

Answer True or False.

1. True or False. FastExport requires the use of a PI or USI in the SELECTs.

2. True or False. The number of FastExport sessions (for a Linux server) defaults to the number of
AMPs.

3. True or False. The maximum block size you can specify with FastExport is 128 KB.

4. True or False. You can export from multiple tables with FastExport.

5. True or False. You can use multiple SELECTs in one FastExport job.

6. True or False. The default lock for a SELECT in a FastExport job is a table level ACCESS lock.

ds186034
Sticky Note
for fastload its true, here its 4

ds186034
Sticky Note
63.5kb

ds186034
Sticky Note
you can request access but default is read lock

 FastExport Page 36-34

Lab Exercise 36-1
The facing page describes the tasks of this lab exercise.

The size of the data file (data36_1) should be 1,005,000 bytes.

With Linux systems, to view the output text from FastExport on your screen and place the
output text into a file, you can use the following option:

 fexp < scriptname.fxp | tee scriptname.out

To append the text to a file, use the –a (append option)

 fexp < scriptname.fxp | tee –a scriptname.out

A technique that can be used to create Linux scripts without using vi or vim is to do the
following:

1. Enter your commands (job/script) in a Notepad file.
2. Highlight the text and use the mouse to choose the Edit Copy function.

Switch to your terminal window where Linux is running and …

3. cat > lab36_11.fxp (or whatever filename you wish)

 Use the mouse to choose the Edit Paste function (or right-click to paste in

Linux)
 To exit the cat command, press either the CNTL C or DELETE key.

FastExport Page 36-35

Lab Exercise 36-1

Lab Exercise 36-1

Purpose

In this lab, you will use FastExport to create an export file that contains one record for each
transaction. You will have to join columns from two different tables in order to create the export file.

What you need

Populated AP.Accounts and AP.Trans tables.

Tasks

1. Create a FastExport script that outputs to file data36_1. For each transaction in the AP.Trans table,
include the transaction_number, account_number, street_number, street, city, state, and the
zip_code of the associated account (AP.Accounts).

2. Run the script.

3. Test the result by using the Linux ls -l command.

ds186034
Sticky Note
. LOGTABLE restart_log_1.fxp;.LOGON.BEGIN EXPORT

 FastExport Page 36-36

Lab Exercise 36-2
The facing page describes the tasks of this lab exercise. The exported file should have 439
rows. The following Linux command will provide the number of rows in the output report.

 wc –l report36_2

Output should look like:

 20024001 Los Angeles $233.00 Below MIN
 20024002 Los Angeles $244.65 Below MIN
 : : : :
 20024797 Los Angeles $9,506.40 Above MAX
 20024798 Los Angeles $9,518.05 Above MAX

Note: By default, a literal is exported as variable character data (preceded by 2 byte length
indicator). This length indicator causes binary characters in the output. To avoid this,
convert or cast the literal to fixed length character output. CAST can also be used to format
the output.

The CASE can be used to generate the Below MIN or Above MAX literal for the output.

 SELECT CAST (Account_Number AS CHAR(12)),
 CAST (City AS CHAR(12)),
 CAST (CAST (Balance_Current
 AS FORMAT '$,$$$,$$9.99') AS CHAR(12)),

 CAST ((CASE
 WHEN Balance_Current < &LoVal THEN ' Below MIN'
 WHEN Balance_Current > &HiVal THEN ' Above MAX'
 END) AS CHAR(10))
FROM AP.Accounts
WHERE …

One way to create Linux scripts without using vi or vim is to do the following:

1. Enter your commands (job/script) in a Notepad file.
2. Highlight the text and use the mouse to choose the Edit Copy function.

Switch to your terminal window where Linux is running and …

3. cat > lab36_22.fxp (or whatever filename you wish)

 Use the mouse to choose the Edit Paste function or right-click in Linux.
 To exit the cat command, press either the CNTL C or DELETE key.

FastExport Page 36-37

Lab Exercise 36-2

Lab Exercise 36-2

Purpose

In this lab, you will use FastExport to accept input values as a parameter or read input data from a
data file, and export a report to another data file. In order to produce readable output, all selected
data should be converted to character data as outlined below:

What you need

Populated AP.Accounts table.

Tasks
Use FastExport to only export a report that contains a list of Accounts which either fall below a
minimum Balance_Current or exceed a maximum value AND are from the city in the input data file.

1. Create an input file named data36_2 with 1 line of input: 'Los Angeles'

2. Prepare a FastExport script which does the following:

a. Treats this as a parameter file and ACCEPT from it. Treat this data as variable input for the
SELECT.

b. Uses the .SET command to initialize two variables: LoVal 500 and HiVal 9499

c. Includes a SELECT statement that projects ACCOUNT NUMBER, CITY, BALANCE CURRENT,
and a character string of either BELOW MIN or ABOVE MAX and sorts by Account_Number.
Simply display 'BELOW MIN' or 'ABOVE MAX' as a literal with the SELECT. Cast all of the
numeric columns to character data.

d. Creates an output file named report36_2. Note: Include MODE RECORD and FORMAT TEXT.

3. Run the test and view the result using the Linux more command.

 FastExport Page 36-38

Notes

MultiLoad Page 37-1

Module 37

Teradata Proprietary and Confidential

MultiLoad

After completing this module, you will be able to:

 Describe the capabilities of MultiLoad.

 Name the five phases of MultiLoad and state the main
function of each.

 Create a MultiLoad script.

 Run a script to update/load table(s) using MultiLoad.

 Explain the advantages of using MultiLoad.

 MultiLoad Page 37-2

Notes

MultiLoad Page 37-3

Table of Contents

What is MultiLoad? ... 37-4
MultiLoad Limitations ... 37-6
How MultiLoad Works .. 37-8
Advantages of MultiLoad .. 37-10
Basic MultiLoad Statements (for Import Tasks) .. 37-12
Sample MultiLoad IMPORT Task ... 37-14
IMPORT Task .. 37-16

Other Import Options ... 37-16
INMOD .. 37-16
AXSMOD .. 37-16

5 Phases of IMPORT Task ... 37-18
Phase 1: Preliminary .. 37-20
Phase 2: DML Transaction .. 37-22
Phase 3: Acquisition ... 37-24
Phase 3: Acquisition – a Closer Look .. 37-26
Phase 4: Application .. 37-28
Phase 4: Application – a Closer Look .. 37-30
Phase 5: Cleanup .. 37-32

Execute END MLOAD processing as an explicit transaction ... 37-32
MLOAD Session Logoff .. 37-32

Sample MultiLoad DELETE Tasks ... 37-34
DELETE Task Differences from IMPORT Task... 37-36
A Closer Look at DELETE Task Application Phase ... 37-38
MultiLoad Locks .. 37-40

Utility locks .. 37-40
Restarting MultiLoad ... 37-42
RELEASE MLOAD Statement ... 37-44
Invoking MultiLoad ... 37-46
Application Utility Checklist ... 37-48
Summary .. 37-50
Module 37: Review Questions ... 37-52
Lab Exercise 37-1 .. 37-54

 MultiLoad Page 37-4

What is MultiLoad?
MultiLoad is a batch mode utility that runs on the host system. It is used for loading,
updating or deleting data to and from populated tables, typically with batch inputs from a
host file.

MultiLoad has many features that make it appealing for maintaining large tables:

 Uses FastLoad-like technology to accomplish TPump-like functionality.

 Support for up to five tables per import task.

 Tables may contain pre-existing data, but cannot have Unique Secondary Indexes

nor can it have Referential Integrity.

 Ability to perform multiple maintenance operations with one pass of input data

files.

 Ability to perform conditional maintenance based on 'apply' condition.

 Ability to do INSERTs, UPDATEs, DELETEs and UPSERTs (UPDATE if exists,

else INSERT).

 Each affected data block is written only once.

 Host and LAN support.

 Full Restart capability using a Log file, even with AMPs down.

 Programmable error limits.

 Error reporting via error tables.

 Support for INMODs to customize data being loaded—although less likely.

The DBSControl parameter MaxLoadTasks defines the maximum number of utilities
(FastLoad, FastExport, and MultiLoad) that can run on the system at one time.

MultiLoad Page 37-5

What is MultiLoad?

• Batch mode utility that runs on a server or host system.

• FastLoad-like technology – TPump-like functionality

• Supports up to five populated tables

• Multiple operations with one pass of input files

• Conditional logic for applying changes

• Supports INSERTs, UPDATEs, DELETEs and UPSERTs; typically with batch
inputs from a host file.

• Affected data blocks only written once

• Host and LAN support

• Full Restart capability

• Error reporting via error tables

• Support for INMODs

MULTILOAD

HOST/SERVER

Teradata DB

UPDATEs

INSERTs

DELETEs

TABLE A

TABLE B

TABLE C

TABLE D

TABLE E

 MultiLoad Page 37-6

MultiLoad Limitations
MultiLoad is a very powerful and flexible utility. Some MultiLoad restrictions are:

 No data retrieval capability (i.e., no SELECT statement).

 Concatenation of input data files is not allowed.

 Host (APPLY clause) will not process arithmetic functions (i.e., ABS, LOG, etc.).

 Host will not process exponentiation or aggregate operators (i.e., AVG, SUM, etc.).

 Cannot process tables with Unique Secondary Indexes USIs, Join Indexes, or Hash

Indexes defined.

 Import tasks require use of Primary Index.

If any of the above limitations are significant to your ability to load a table, you might want
to consider alternatives:

 Write an INMOD for use with MultiLoad.
 Use TPump.
 Use FastLoad.

MultiLoad Page 37-7

MultiLoad Limitations

• No data retrieval capability.

• Concatenation of input data files is not allowed.

• Host will not process arithmetic functions.

• Host will not process exponentiation or aggregates.

• Cannot process tables defined with USI’s, Referential Integrity, Join Indexes,
Hash Indexes, or Triggers.

– Soft Referential Integrity is supported

• Import tasks require use of Primary Index.

– Loads to a No Primary Index table are NOT allowed.

Alternatives:

– Write an INMOD for use with MultiLoad.

– Use TPump.

– Use FastLoad.

ds186034
Sticky Note
allow NUSIs but not usi

ds186034
Sticky Note
noPI columnar..does not work with either

 MultiLoad Page 37-8

How MultiLoad Works
MultiLoad typically uses an input file that is read to run batch-like maintenance actions
against data on the Teradata database. It allows INSERT, DELETE, UPDATE and
UPSERT operations against up to five tables per import task.

There are two distinct types of tasks that MultiLoad can perform:

IMPORT task Intermix a number of different SQL/DML statements and apply
them to up to five different tables depending on the APPLY
conditions.

DELETE task Execute a single DELETE statement on a single table, often with a

single value as a condition for the deletion (i.e., DELETE FROM
TABLE_1 WHERE COL_A > 921000;). This value may be
hard-coded or supplied from a host file.

MultiLoad Page 37-9

How MultiLoad Works

IMPORT TASK

MULTILOAD

Teradata

HOST

INSERTS
UPDATES
DELETES
UPSERTS

APPLY CONDITIONS

INPUT
DATA

T
A
B
L
E

1

T
A
B
L
E

2

T
A
B
L
E

3

T
A
B
L
E

4

T
A
B
L
E

5

DELETE TASK

MULTILOAD

Teradata

HOST

DELETES only

DELETE ROWS

DATA
VALUE

T
A
B
L
E

1

ds186034
Sticky Note
based on PI valueused for specific values

ds186034
Sticky Note
based on not on PI value...other attributes

 MultiLoad Page 37-10

Advantages of MultiLoad
The advantages of MultiLoad are listed on the facing page.

MultiLoad Page 37-11

Advantages of MultiLoad

• Minimizes the use of the PEs.

• Gets input data to the AMPs as quickly as possible.

• Uses multiple-AMP sessions.

• Uses the parallelism of the AMPs to apply changes.

• Keeps BYNET activity low with AMP-local processing.

• Avoids Transient Journaling overhead.

• Allows Checkpoint/Restartability even with down AMPs.

• Prevents lengthy rollbacks of aborted jobs.

• Allows for maximum access to table during processing.

• Posts errors to special error tables.

• Provides extensive processing statistics.

 MultiLoad Page 37-12

Basic MultiLoad Statements (for Import Tasks)
The following is an explanation of common components of a MultiLoad IMPORT script:

.LOGTABLE defines the table name of the Restart Log.

.LOGON defines username, which will own the sessions.

.BEGIN MLOAD TABLES defines the tables, which will participate in the MultiLoad.

.LAYOUT defines the layout of the incoming record(s).

.FIELD defines the name of an input field, its position in the record, and its data type.
(Absolute positioning may be done with a number, or relative positioning with an asterisk,
“*”.)

.FILLER defines input data that will not be sent to the database table. A .FILLER
statement allows a name and requires a starting position or asterisk, and the data type.

.DML LABEL defines a set of DML instructions, which will be applied if conditions are
met.

.IMPORT INFILE references the name of the input file.

 FROM m FOR n optionally defines starting # and ending #
 THRU k of records to process from input file.

 FORMAT options – FASTLOAD
 BINARY
 TEXT
 UNFORMAT
 VARTEXT ‘,’

 LAYOUT references previously defined LAYOUT.

APPLY references LABEL to be applied and conditions under which to do so.

.END MLOAD; defines end of MultiLoad script.

.LOGOFF; terminate the sessions.

MultiLoad Page 37-13

Basic MultiLoad Statements
(for Import Tasks)

.LOGTABLE [logtable_name] ;

.LOGON [tdpid/userid, password] ;

.BEGIN MLOAD TABLES [tablename1, ...] ;

.LAYOUT [layout_name] ;
.FIELD ….. ;
.FILLER ….. ;

.DML LABEL [label] ;
INSERT (or UPDATE or DELETE) statements;

.IMPORT INFILE [filename]
[FROM m] [FOR n] [THRU k]
[FORMAT FASTLOAD | BINARY | TEXT | UNFORMAT | VARTEXT 'c']
LAYOUT [layout_name]
APPLY [label] [WHERE condition] ;

.END MLOAD ;

.LOGOFF ;

.FIELD fieldname { startpos datadesc } || fieldexp [NULLIF nullexpr]
[DROP {LEADING / TRAILING } { BLANKS / NULLS }
[[AND] {TRAILING / LEADING } { NULLS / BLANKS }]] ;

.FILLER [fieldname] startpos datadesc ;

ds186034
Sticky Note
up to 5 tables

ds186034
Sticky Note
2byte indicator1b end of record(fastload)

 MultiLoad Page 37-14

Sample MultiLoad IMPORT Task
The script on the facing page updates, inserts, and deletes, depending on the conditions for
the employee table.

Each import task can include multiple INSERT, UPDATE, and DELETE statements, and
the multiple DML operations can be conditionally applied to as many as five tables with a
single pass of the client file.

The key words “DO INSERT FOR MISSING UPDATE ROWS” indicate an UPSERT
operation. An UPSERT requires consecutive UPDATE and INSERT statements following
the .DML LABEL statement.

If the UPDATE statement fails because the target table row does not exist, MultiLoad
automatically executes the INSERT statement, completing the operation in a single pass
instead of two.

MultiLoad Page 37-15

Sample MultiLoad IMPORT Task

.LOGTABLE Logtable001_mld;

.LOGON tdp3/user2,tyler;

.BEGIN MLOAD TABLES Employee, Employee_History;

.LAYOUT Record_Layout;
.FIELD in_Transcode 1 CHAR(3);
.FIELD in_EmpNo * SMALLINT;
.FIELD in_DeptNo * SMALLINT;
.FIELD in_Salary * DECIMAL (8,2);

.DML LABEL Payroll DO INSERT FOR MISSING UPDATE ROWS ;

UPDATE Employee SET Salary = :in_Salary
WHERE EmpNo = :in_EmpNo;

INSERT INTO Employee (EmpNo, Salary)
VALUES (:in_EmpNo, :in_Salary);

.DML LABEL Terminate ;

DELETE FROM Employee WHERE EmpNo = :in_EmpNo;
INSERT INTO Employee_History (EmpNo, DeptNo)

VALUES (:in_EmpNo, :in_DeptNo);

.IMPORT INFILE infile1
LAYOUT Record_Layout
APPLY Payroll WHERE in_Transcode = 'PAY'
APPLY Terminate WHERE in_Transcode = 'DEL';

.END MLOAD;

.LOGOFF;

Definition of input layout.

Begin loading.

End loading.

Definition of an UPSERT.

File name to import from.

ds186034
Sticky Note
this is how we know which amp to go todoesnt have to be uniquebutu have to give me a PI!

ds186034
Sticky Note
gonna run all st

ds186034
Sticky Note
kinda if else statement

ds186034
Sticky Note
have to include PI value here...without it,cannot work!equal to..point query...

ds186034
Sticky Note
if during a reload 2 worked and 1 did not, remove the 2 from here...

 MultiLoad Page 37-16

IMPORT Task
IMPORT tasks are used to do multiple combinations of INSERTs, DELETEs, UPDATEs
and UPSERTs to one or up to five tables. Updates that change the value of a table’s
primary index are not permitted. You may change the value of a column based on its
current value (i.e., COL = COL + 10).

IMPORT tasks cannot be done on tables with Unique Secondary Indexes.

Other Import Options
INMOD

An INMOD is an exit routine that can precondition data and pass it on to the loader. You
can write INMODs to pre-screen the input data being sourced into MultiLoad.

INMOD and MultiLoad use a return code value to communicate with each other.
You can write INMODs as restartable routines so that they can synchronize with the
loader’s checkpoints.

When an INMOD-connected loader restarts, both the utility and the INMOD can be
repositioned to the last checkpoint.

Use INMODs to perform unusual conversions of data, for example, adding a sequenced
column to the data, or reading data from a non-standard input file format.

AXSMOD
Another option for the IMPORT command is to include the specification of an AXSMOD.

AXSMOD is used to specify an access module file that imports data from a file.

The AXSMOD option is not required for importing:

 Disk files on either network- or channel-attached systems
 Magnetic tape files on channel-attached client systems.

It is required for importing magnetic tape and other types of files on network-attached client
systems.

MultiLoad Page 37-17

IMPORT Task

• INSERTs, DELETEs, UPDATEs and UPSERTs allowed.

• Up to a maximum of five tables:

– Empty or populated.

– NUSIs permitted.

• MultiLoad Import task operations are always primary index operations -
however, you are not allowed to change the value of a table’s primary index.

• Change the value of a column based on its current value.

• Permits non-exclusive access to target tables from other users except during
Application Phase.

• Input error limits may be specified as a number or percentage.

• Allows restart and checkpoint during each operating phase.

• IMPORT tasks cannot be done on tables with USI’s, Referential Integrity, Join
Indexes, Hash Indexes, or Triggers.

– IMPORT tasks can be done on tables defined with “Soft Referential Integrity”.

ds186034
Sticky Note
USI are on sep amps and hence not allowed

 MultiLoad Page 37-18

5 Phases of IMPORT Task
IMPORT consists of five separate phases of processing. They are:

 Preliminary phase Basic setup

 DML phase Get DML steps down on AMPS

 Acquisition phase Send the input data to the AMPS and sort it

 Application phase Apply the input data to the appropriate target tables

 End phase Basic clean up

MultiLoad Page 37-19

5 Phases of IMPORT Task

DML
Transaction

Acquisition

Application

Send the input data to the AMPs

Apply the input data to appropriate
table(s)

Basic clean up

Basic set up

Send the DML steps to the AMPs

Preliminary

Cleanup

Details

ds186034
Sticky Note
no rollbacksno transient journal

 MultiLoad Page 37-20

Phase 1: Preliminary
The first of IMPORT’s five phases is the Preliminary. It performs the following tasks:

Validate all statements All MultiLoad and SQL statements are validated and
syntax checked.

Start all sessions Typically, one MLOAD session per AMP plus two control

sessions. One is for handling the SQL and logging and the
second is an alternate logging session.

Create work tables Work tables are created on each AMP for each target table.

They will hold the DML steps to be performed as well as
the input data to be applied.

Create error tables Two error tables are created for each target table. One is

for general errors and one is for uniqueness violations.

Create Restart log Create the log for this run which will allow restarts.

Apply locks to tables Utility locks are applied to the target table headers. This

lock disallows any DDL to the table (except DROP).

MultiLoad Page 37-21

Phase 1: Preliminary

Validate all statements MultiLoad and SQL

Start all sessions #AMPS + 2

Create work tables One per target table

Create error tables Two per target table

Create Restart log One per IMPORT run

Apply locks to target tables Prevent DDL

IMPORT
Phases

ds186034
Sticky Note
its same as fastload...hmnn...which one was just 4

 MultiLoad Page 37-22

Phase 2: DML Transaction
The second of IMPORT’s five phases is the DML/Transaction. It performs the following:

Send prototype DML to the DBC
 All DML statements (minus data) are sent from host to DBC where they are parsed.

Steps are generated and stored on each AMP in the work table for the affected
target table.

 In Phase 1, work tables were created on each AMP for each target table. In this

phase, the DML steps to be performed will be placed into the work tables.

Add a USING modifier to the request
 Each request is submitted with a USING clause, with host data to be filled in at

execution time.

Add a “Match Tag” to the request
 Because it will be necessary to know which DML is to be associated with which

incoming record (this is what the APPLY clause decides), we will use a “match
tag” to link DML requests with input records.

MultiLoad Page 37-23

Phase 2: DML Transaction

Send prototype DML to the Teradata Database

Store DML steps in work tables

Add a USING modifier to the request

Host data to be filled in from input file

Add a “Match Tag” to the request

Allows link between DML and transaction record

IMPORT
Phases

 MultiLoad Page 37-24

Phase 3: Acquisition
The third of IMPORT’s five phases is the Acquisition phase. It performs the following
steps:

Get host data to the appropriate AMP worktables

 Work tables only, not target tables, are involved in the Acquisition phase. The host

reads the input file and tests for the APPLY conditions. A copy of the input record is
made for every successful APPLY. The appropriate “match tag” information is also
built into the record and the records are bunched into blocks. They are sent, round robin
to the AMPs using a “quickpath,” that is, they go through but are never processed by the
PEs. The AMPs will have started “deblocker” tasks that will read the individual records
from the block, hash on primary index value, and send that row to the AMP that holds
the target row. The AMPs will also have started “receiver” tasks that pick up the
incoming records with the correct hash value. These records are accumulated in the
work table of the appropriate target table and reblocked. Records are built for the
FALLBACK subtables as well.

Sort the reblocked records in the work tables

 Access locks are placed on the target tables. Records are sorted according to the hash

value and the sequence in which they will be applied to the target table.

Set up transition to the Application phase

 The Access lock on the target tables is upgraded to a Write lock. Utility locks are

applied to the table headers indicating the Application phase is about to begin. An End
Transaction statement commits all header changes for all target tables across all AMPs.

MultiLoad Page 37-25

Phase 3: Acquisition

• Get the data from host and apply it to appropriate AMP worktables.
– Duplicate “input records” record for each successful APPLY.

– Add “Match Tag” information to record.

– Make blocks and send “quickpath” to AMPs.

– Deblock and resend record to “correct” AMP.

• Reblock and store in worktable of target table.
– Sort the reblocked records in the work tables.

– Sort by hash value and sequence to be applied.

• Set up transition to the Application phase.
– Upgrade locks on target tables to Write.

– Set table headers for Application phase.

– This is effectively the “point of no return”.

Notes:

– Errors that occur in this phase go into the Acquisition Error Table (default
name is ET_tablename).

– There is no acquisition phase activity for a DELETE Task.

IMPORT
Phases

ds186034
Sticky Note
where are these work tables?spool....?

 MultiLoad Page 37-26

Phase 3: Acquisition – a Closer Look
The diagram on the facing page shows data movement from the host to the deblockers on to
the appropriate receivers (based on hash code) then to the work table where finally it is
sorted and reblocked.

MultiLoad Page 37-27

Phase 3: Acquisition – a Closer Look

IMPORT
Phases PE

AMP 1

SQL Session
LOG Session

Blocks arrive
from Server

RECEIVER
TASK

BLK 1

AMP 2

BLK 2

AMP 3

BLK 3

REBLOCKED
AND SORTED

BLK 1

BLK

BLK

BLK

BLK

BLK

BLK

WORK TABLE

BLK

BLK

BLK

BLK

BLK

BLK

WORK TABLE

BLK

BLK

BLK

BLK

BLK

BLK

WT

Acquisition steps

• Get server data to appropriate AMP work tables.
• Sort the reblocked records in the work tables.
• Set up transition to the Application phase.

BLK 2

BLK 3

AMP 4

WORK TABLE

BLK

BLK

BLK

BLK

BLK

BLK

Therefore 3 AMPs will receive blocks from
MultiLoad, but all AMPs will have data

redistributed to them.

Assume SESSIONS=3
This results in 3 AMP sessions

and 2 PE sessions.

 MultiLoad Page 37-28

Phase 4: Application
The fourth of IMPORT’s five phases is the Application phase. It performs the following
steps:

Execute MLOAD for each target table as a single multi-statement request

 There is no further interaction with the host until the end of the phase. There is a

separate execution of MLOAD for each target table, which means that the AMPs may
independently and asynchronously apply changes to target tables. Because all EXEC
MLOADs (up to five) are submitted as a multi-statement request, they are looked upon
as a single transaction. If the transaction fails, changes are not rolled back, and the
transaction is restartable at the point of failure. This eliminates the need for transient
journaling.

Apply work subtable changes to target subtables

 Each target table block requiring change is read and written only once. After reading

the target block, that part of the work table (called a “work unit”) having matching hash
codes is also read. Changes are applied to the target rows of the block according to the
DML operation identified by that row's match tag.

 If an error results from applying a row, that row is inserted into the UV error table

associated with the target table for which that row was intended. Duplicate rows,
missing update, or delete rows may also be inserted into this error table according to
options specified by the user.

 Because of the possibility of UPSERT processing and/or missing rows, it may be

necessary to sweep the block more than once. A bit map is maintained showing which
changes in the work unit have been applied and which have not. Once all processing
has been done, the block is written out and a checkpoint is written to the work table.

 After applying all changes to the target tables, NUSI changes, both primary and

fallback, are applied to the target NUSI subtables. If the target table has permanent
journaling, a Private Permanent Journal is maintained by MLOAD, and is then
transferred to the true Permanent Journal.

MultiLoad Page 37-29

Phase 4: Application

• Execute MLOAD for each target table as a single multi-statement
request.

– End of host interaction until end of phase.

– AMPs independently apply changes to target tables.

– Executed as a single transaction without rollback.

– Restartable based on last checkpoint.

– No transient journal needed.

Note:
– Errors that occur in this phase go into the Application Error Table

(default name is UV_tablename).

IMPORT
Phases

ds186034
Sticky Note
no rollbackits own logic to rebuild..

 MultiLoad Page 37-30

Phase 4: Application – a Closer Look
The diagram on the facing page is intended to show how an individual AMP applies changes
from the work subtables to the target tables during the Application phase.

There will be one MLOAD task in each AMP for each target table. Two MultiLoads
running, each against three target tables will result in each AMP having six MLOAD tasks
running.

MultiLoad Page 37-31

Phase 4: Application – a Closer Look

IMPORT
Phases

AMP

TARGET
BLOCK

WORK
UNIT

DML
STEPS

READ WRITE

A C B

TARGET TABLE

OLD NEW

C

A

SORTED
DATA ROWS
TO BE
APPLIED

WORK SUBTABLE

ONE ROW
FOR EACH
DML

WORK SUBTABLE

B

NUSI
CHANGE
ROWS

WORK SUBTABLE

CHECKPOINT
SUBTABLE
(2 ROWS)

WORK SUBTABLE

Apply work subtable
changes to target
subtables:

• Affected blocks
read/written only once.

• Changes applied based
on matching row-hash.

• Errors written to
appropriate error table.

• Checkpoint after writing
each block.

• NUSI subtable changes
applied.

 MultiLoad Page 37-32

Phase 5: Cleanup
The fifth IMPORT phase is the End or Cleanup phase, which performs the following
steps:

Execute END MLOAD processing as an explicit transaction
After all changes have been applied to the target tables, many housekeeping chores remain
before the utility is finished. All locks, both utility and DBC locks, must be released. All
table headers must be restored to their original status across all AMPs. All Work Tables and
any empty Error Tables are dropped. The dictionary cache for Target Tables is spoiled.
Statistics are reported and a final error code is returned to the user. If the error code is zero,
the Log Table is dropped.

MLOAD Session Logoff
A LOGOFF request is sent to each Load Control Task on an AMP that owns a session.

MultiLoad Page 37-33

Phase 5: Cleanup

• Execute END MLOAD processing as a series of transactions
performed by the host utility:

– All locks are released.

– Table headers are restored across all AMPs.

– Dictionary cache of Target Tables is spoiled.

– Statistics are reported.

– Final Error Code is reported.

– Target tables are made available to other users.

– Work Tables are dropped.

– Empty Error Tables are dropped.

– Log Table is dropped (if Error Code = 0).

• MLOAD Session Logoff:

– LOGOFF request is sent to each AMP with a session.

IMPORT
Phases

 MultiLoad Page 37-34

Sample MultiLoad DELETE Tasks
The following is an explanation of the components of a MultiLoad DELETE Task script:

.LOGTABLE defines the name of the Restart Log.

.LOGON defines username that will own the sessions.

.BEGIN DELETE MLOAD TABLES defines table that will participate in the MultiLoad.

.LAYOUT defines the layout of the incoming record.

.FIELD defines the name of an input field, its position in the record, and its data type.
(Absolute positioning may be done with a number, or relative positioning with an asterisk
“*.”)

DELETE FROM standard SQL DELETE statement.

.IMPORT INFILE references DDNAME of the input file.

LAYOUT references previously defined LAYOUT.

.END MLOAD; defines end of MultiLoad script.

.LOGOFF; terminate the sessions.

A DELETE task is simpler than most IMPORT tasks. Note also that a DELETE task has
no .DML and no APPLY clauses, because the single imported data record is
unconditionally applied by the single DELETE statement.

MultiLoad Page 37-35

Sample MultiLoad DELETE Tasks

.LOGTABLE Logtable002_mld;

.LOGON tdp3/user2,tyler;

.BEGIN DELETE MLOAD TABLES Employee;

DELETE FROM Employee WHERE Term_date > 0;

.END MLOAD;

.LOGOFF;

Hard code the values of
rows to be deleted.

.LOGTABLE Logtable003_mld;

.LOGON tdp3/user2,tyler;

.BEGIN DELETE MLOAD TABLES Employee;

.LAYOUT Remove;

.FIELD in_Termdate * INTEGER;

DELETE FROM Employee WHERE Term_date > :in_Termdate;

.IMPORT INFILE infile2

LAYOUT Remove;

.END MLOAD;

.LOGOFF;

Pass a single row
containing value(s) to be
used.

ds186034
Sticky Note
FASTER cause no transient journal= TRUNCATE!

 MultiLoad Page 37-36

DELETE Task Differences from IMPORT Task
DELETE tasks operate very similarly to IMPORT tasks with some differences.

Differences include:

 Deleting based on equality of a Unique Primary Index access is not permitted.

 A single DML DELETE statement is sent to each AMP with a match tag parcel.

 There is no Acquisition phase because there are no varying input records to apply.

 The Application phase reads each target block and deletes qualifying rows.

 Altered blocks are written back to disk.

 All other aspects of task are similar to IMPORT task.

MultiLoad Page 37-37

DELETE Task Differences from
IMPORT Task

DELETE tasks operate very similarly to IMPORT tasks with some differences:

• Deleting based on a equality UPI value is not permitted.

– An inequality (e.g., >) test of a UPI value is permitted.

– An equality (e.g., =) test of a NUPI value is permitted.

• A DML DELETE statement is sent to each AMP with a match tag parcel.

• No Acquisition phase because no variable input records to apply.

• Application phase reads each target block and deletes qualifying rows.

• All other aspects similar to IMPORT task.

Why use MultiLoad DELETE (versus SQL DELETE)?

• MultiLoad DELETE is faster and uses less disk space and I/O (no Transient
Journal).

• MultiLoad DELETE is restartable.

– If SQL DELETE is aborted, Teradata applies Transient Journal rows. SQL
DELETE can be resubmitted, but starts from beginning.

 MultiLoad Page 37-38

A Closer Look at DELETE Task Application Phase
The accompanying diagram attempts to show the movement of data in the Application phase
of a DELETE task. Notice the absence of a Work Table carrying imported rows. There is
no work table because the same DML DELETE statement will be applied to every row in
the table.

Using MultiLoad DELETE tasks give you an advantage over using traditional utilities to
accomplish a similar DELETE since there is no use of a transient journal, and no rollback in
the event of failure. Because of the restart capabilities of MultiLoad, no completed work
needs to be reapplied.

MultiLoad Page 37-39

A Closer Look at DELETE Task
Application Phase

AMP

TARGET
BLOCK

DML DELETE
STEP

READ WRITE

A

TARGET TABLE

OLD NEW

A

ONE ROW
FOR
DELETE
STATEMENT

WORK SUBTABLE

NUSI
CHANGE
ROWS

WORK SUBTABLE

CHECKPOINT
SUBTABLE
(2 ROWS)

WORK SUBTABLE

• Note absence of Work
Table for Import rows.

• Faster than traditional
SQL DELETE due to:

– Lack of transient
journaling

– No rollback of
work

– Restartable from
checkpoint

 MultiLoad Page 37-40

MultiLoad Locks
MultiLoad uses several different locks at various stages of the operation. These are
intended to insure maximum availability of the target tables during MultiLoad processing
as well as restartability of various phases of the utility.

Utility locks
Utility locks are placed in the table headers to indicate to utilities such as Reconfig and
Rebuild that an MLOAD is in progress and to do special processing. Utility locks are the
minimum level of lock required when an MLOAD is invoked even when it is not currently
running.

There are two types of utility locks: Acquisition locks and Application locks. They are
defined below:

Acquisition locks prevent any DDL activity against the table with the exception
of the DROP command, but does allow all DML command
access.

Application locks allow concurrent access-lock SELECT access and the DROP

DDL statement, but reject all other DML and DDL statements.

There are two important points to bear in mind in understanding the locking strategy of
MultiLoad. First, there are never any Exclusive locks used on the target tables. This means
that Access locks are always useable against target tables throughout the MultiLoad
execution.

Secondly, each of the five stages of MultiLoad is treated as one or more DBC transactions.
This means that the end of each stage is also the end of a transaction and that all locks
associated with that stage are thereby released. New locks are applied with the beginning of
the next phase/transaction. This permits the ability of other transactions, outside of
MultiLoad, to effect the target table rows during a MultiLoad execution.

For example, at the end of the Acquisition phase, the access lock on the target table is
released. As the Application phase begins, a “new write lock” is applied to the target table
as a part of the new transaction. Between these two locks, other external requests may “get
in” to the target table, thus preventing them from having to wait in the queue until
MultiLoad completes.

 Note: If you need to examine the logtable, the work tables, or the error tables at any

time during the execution of MultiLoad, you MUST use an ACCESS lock to access
them in order to prevent MultiLoad from abnormally terminating due to locking
problems.

MultiLoad Page 37-41

MultiLoad Locks

Utility locksUtility locks: Placed in table headers to alert other utilities that a MultiLoad
is in session for this table. They include:

• Acquisition lock

DML — allows all

DDL — allows DROP only

• Application lock

DML — allows SELECT with ACCESS only

DDL — allows DROP only

 MultiLoad Page 37-42

Restarting MultiLoad
MultiLoad contains a number of features that allow for recovery from any host or DBC
failure. It does this with minimal requirements for job resubmission or continuation. Upon
restart, MultiLoad will check the restart log table and resume operations from where it had
previously left off.

If a DBC restart occurs during MLOAD, the host program will reinitiate MLOAD after
DBC recovery and continue from where it left off with no user interaction required.

If a host restart occurs during MLOAD, or the job is aborted, the user may resubmit the
script as-is, and MLOAD will determine its stopping point and begin again. No script
alteration is required.

If an MLOAD task is stopped during the Application phase, it must be resubmitted and
allowed to run to completion.

Restarts are initiated based on checkpoint information in the Logtable. Because MLOAD
does not do transient journaling, a traditional rollback operation is not performed when a
failure occurs. MLOAD is designed with a check pointing feature that allows for restart of
the job with minimal loss of work. The following principles guide the MultiLoad check
pointing strategy:

Acquisition phase check pointing is performed according to user specification as
specified in the .BEGIN MLOAD statement. This checkpoint can
be based on time or on number of records processed. The default
check point interval is fifteen minutes.

Application phase check pointing is performed each time a data block is written to the

target table. Each block is written one time.

Sort phase(s) sort operations do their own internal check pointing that overrides

the higher level checkpoints.

MultiLoad Page 37-43

Restarting MultiLoad

Teradata Restart
• MLOAD reinitiated automatically after Teradata recovery.
• Continue from checkpoint without user interaction.

Host restart
• Resubmit the original script.
• MLOAD determines its stopping point and restarts.

Acquisition phase
• Checkpointing is performed according to user.
• Checkpoint based on time or on number of records.
• Default checkpoint interval is fifteen minutes.

Application phase
• Checkpointing done after each write of data block.

• Each block is written at most only one time.

Sort phase(s)
• Sort operations do their own internal checkpointing.

MultiLoad Checkpointing Strategy

 MultiLoad Page 37-44

RELEASE MLOAD Statement
Once MultiLoad execution has begun, table headers are updated in the target tables
indicating that a MLOAD is in progress. Even if the MLOAD doesn't successfully
complete, target tables are still considered under the control of the MLOAD and access to
them will be restricted accordingly.

The RELEASE MLOAD statement provides a way to return tables to general availability
where there is no desire to restart the MLOAD. If the specified table is in the Preliminary,
DDL or the early part of the Acquisition phase, the RELEASE MLOAD statement makes
the table completely accessible and prevents any attempt to restart the MLOAD. If the
MLOAD had proceeded into the Application phase, the RELEASE MLOAD statement is
rejected and the job must be restarted.

Once a lock has been applied to the target table, the RELEASE MLOAD statement will
not be effective until the transaction with the lock completes. Even if the transaction
completes, RELEASE MLOAD may be rejected if the point of no return has occurred. In a
DELETE task, because there is no Acquisition phase, the point of no return is the point in
the DML phase when the DELETE statement is sent to the DBC. In an IMPORT task, the
actual point of no return is the point at which the Acquisition phase ends.

To successfully complete a RELEASE MLOAD, the following procedure must be
followed:

1. Make sure MLOAD is not running; abort it if it is. (Note: MLOAD is still in a
restartable state if aborted. If it is past the point of no return, go to step 4.)

2. Enter RELEASE MLOAD.

3. If successful, drop the work and error tables. (You may wish to examine any errors

in the error tables before dropping them.)

4. If not successful, determine if past point of no return. If so, either restart MLOAD

and let it complete, or drop target, work, and error tables. Otherwise, handle errors
as appropriate.

MultiLoad Page 37-45

RELEASE MLOAD Statement

• Returns target tables to general availability.
• Prevents any attempt to restart MultiLoad.
• Cannot be successful in all cases.
• Cannot override a target table lock.
• IMPORT — possible before Application phase.
• DELETE — possible during Preliminary phase.

To successfully complete a RELEASE MLOAD:

1. Make sure MLOAD is not running; abort if it is. (If it is past the point of
no return, go to step 4.)

2. Enter RELEASE MLOAD.

3. If successful, drop the log, work, and error tables.

4. If not successful:
a.) restart MLOAD and let it complete, or

b.) drop target, work, and error tables, or

c.) handle error as appropriate.

RELEASE MLOAD Employee, Job, Department;

 MultiLoad Page 37-46

Invoking MultiLoad
The facing page displays the commands used to invoke the MultiLoad utility in batch mode.
The parameters for each command are listed in the three-column table.

Optionally, when MultiLoad starts, it can read a configuration file to establish defaults for
the MultiLoad job. On network-attached systems (e.g., Linux and Windows), MultiLoad
can read configuration parameters from a file named mloadcfg.dat. This file is located
either in the current directory or the directory referenced by the variable MLOADLIB.

On channel-attached systems, the DD statement for the MultiLoad configuration file must be
labeled MLOADCFG.

There are 7 parameters you can set in this file.

 CHARSET=character-set-name
 ERRLOG=filename
 BRIEF=on/off
 MAXSESS=max-sessions
 MINSESS=min-sessions
 MATCHLEN=ON/OFF
 DATAENCRYPTION=ON/OFF

 Note: When you enable MATCHLEN, MultiLoad verifies that the record length of the
import data is the same as the layout record length specified by the IMPORT command.

The values that you specify in the MultiLoad configuration file override the internal utility
default values for these parameters. Configuration file parameters can be overridden with
runtime parameters. The order of preference (highest to lowest) for these parameters is:

 1 – Runtime parameters
 2 – MultiLoad script parameters
 3 – Configuration file parameters
 4 – MultiLoad default values

The MultiLoad utility automatically checks for a configuration file each time you invoke the
utility. Upon locating a configuration file, the utility sets the defaults as specified, produces
the appropriate output messages and begins processing your MultiLoad job.

If the configuration file cannot be opened, or if the MultiLoad utility encounters syntax
errors in the file, the utility produces an output message, disregards the error condition and
begins processing your MultiLoad job. An invalid configuration file entry does not abort
your MultiLoad job.

If there is no configuration file, the utility begins processing your MultiLoad job without an
error indication. The configuration file is an optional feature of the MultiLoad utility, and its
absence is not considered to be an error condition.

MultiLoad Page 37-47

Invoking MultiLoad

Network Attached Systems: mload [PARAMETERS] < scriptname >outfilename

Channel-Attached MVS Systems: // EXEC TDSMLOAD MLPARM= [PARAMETERS]

Channel-Attached VM Systems: EXEC MLOAD [PARAMETERS]

Channel Network Description
Parameter Parameter
BRIEF -b Reduces print output runtime to the least information

required to determine success or failure.

CHARSET=charsetname -c charsetname Specify a character set or its code. Examples are EBCDIC,
ASCII, or Kanji sets.

ERRLOG=filename -e filename Alternate file specification for error messages; produces a
duplicate record.

"multiload command" -r 'multiload cmd' Signifies the start of a MultiLoad job; usually a RUN FILE
command that specifies the script file.

MAXSESS=max sessions -M max sessions Maximum number of MultiLoad sessions logged on.

MINSESS=min sessions -N min sessions Minimum number of MultiLoad sessions logged on.

< scriptname Name of file that contains MultiLoad commands and SQL
statements.

> outfilename Name of output file for MultiLoad messages.

 MultiLoad Page 37-48

Application Utility Checklist
The facing page adds the MultiLoad capabilities to the checklist.

Automatic Restart – If the Teradata server restarts, MultiLoad will retry to connect to the
Teradata database automatically and will automatically restart.

MultiLoad Page 37-49

Application Utility Checklist

Feature BTEQ FastLoad FastExport MultiLoad TPump

DDL Functions ALL LIMITED Yes (SE) Yes (SE)

DML Functions ALL INSERT SELECT INS/UPD/DEL

Multiple DML Yes No Yes Yes

Multiple Tables Yes No Yes Yes

Protocol Used SQL FASTLOAD EXPORT MULTILOAD

Conditional APPLY No No No Yes

Data Conversion Yes 1 per column Yes Yes

Error Capture No Yes N/A Yes

Error Limits No Yes N/A Yes

User-written Routines No Yes Yes Yes

Automatic Restart No Yes* Yes Yes

Max Load Limit No Yes Yes Yes

Support Environment (SE) No No Yes Yes

 MultiLoad Page 37-50

Summary
The facing page summarizes some of the important concepts regarding this module.

MultiLoad Page 37-51

Summary

• Batch mode utility.

– Supports up to five populated tables.

– Multiple operations with one pass of input files.

– Conditional logic for applying changes.

• Supports INSERTs, UPDATEs, DELETEs and UPSERTs; typically with batch
inputs from a host or server data file.

– Affected data blocks only written once.

• Full Restart capability.

• Error reporting via error tables.

• Support for INMODs.

 MultiLoad Page 37-52

Module 37: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

MultiLoad Page 37-53

Module 37: Review Questions

Answer True or False.

1. True or False. With MultiLoad, you can import data from the host into populated tables.

2. True or False. MultiLoad cannot process tables with USIs or Referential Integrity defined.

3. True or False. MultiLoad allows changes to the value of a table’s primary index.

4. True or False. MultiLoad allows you to change the value of a column based on its current value.

5. True or False. MultiLoad permits non-exclusive access to target tables from other users except
during Application Phase.

Match the MultiLoad Phase in the first column to its corresponding task in the second column.

1. ___ Preliminary a. Acquires or creates Restart Log Table.

2. ___ DML Transaction b. Locks are released.

3. ___ Acquisition c. Applies (loads) data to the work tables.

4. ___ Application d. Execute mload for each target table as a single multi-statement request.

5. ___ Cleanup e. Stores DML steps in work tables

 MultiLoad Page 37-54

Lab Exercise 37-1
To create the data37_1 file, execute the following statements in BTEQ.

.EXPORT DATA FILE=data37_1, CLOSE;
 EXEC AP.Lab37_1;
.EXPORT RESET;

The size of data37_1 should be 2400 bytes long after executing the macro AP.Lab37_1.

The format of data37_1 is:

Char(1) Integer
A PI_value for Accounts table
C PI_value for Customer table
T PI_value for Trans table

Example of data in data37_1:

Table_code PI_value
A 20024001
: :
C 2001
: :
T 20024002
T 20024003
: :

The control letter (A, C, or T) must be in upper-case letters in the APPLY statements. The
Integer value represents the Primary Index Value that you will use to delete a row in the
appropriate table. If the input record contains a code of A, delete a row from the Accounts
table using the Integer value as the PI value. Likewise, if the input record contains a code of
C, delete a row from the Customer table. If the input record contains a code of T, delete a
row from the Trans table.

A technique that can be used to create Linux scripts without using vi or vim is to do the
following:

1. Enter your commands (job/script) in a Notepad file.
2. Highlight the text and use the mouse to choose the Edit Copy function.

Switch to your terminal window where Linux is running and …

3. cat > lab37_13.mld (or whatever filename you wish)

 Use the mouse to choose the Edit Paste function
 To exit the cat command, press either the DELETE key or CNTL C.

MultiLoad Page 37-55

Lab Exercise 37-1

Lab Exercise 37-1

Purpose

In this lab, you will use MultiLoad to delete rows from your three tables. An input file will be created
which will contain a control letter (A - Accounts, C - Customer, and T - Trans) followed by a primary
index value for the appropriate table.

What you need

Your three tables with two hundred (200) rows in each.

Tasks

1. Prepare the data file by executing the macro AP.Lab37_1. Export your data to a file called data37_1.

2. Prepare your tables by doing the following:

a. Issue a Delete All command on each of your tables.

b. Execute the following commands which will load 200 rows into each of the tables:

INSERT INTO Accounts SELECT * FROM AP.Accounts WHERE Account_Number < 20024201;

INSERT INTO Customer SELECT * FROM AP.Customer WHERE Customer_Number < 2201;

INSERT INTO Trans SELECT * FROM AP.Trans WHERE Account_Number < 20024201;

3. Prepare your MultiLoad script to Delete Rows from each of the tables depending on the incoming
code (A, C, or T) from data37_1. This job should delete 100 rows from each of the three tables.

4. Check your results by doing a SELECT COUNT(*) on each of your tables.

 MultiLoad Page 37-56

Notes

A MultiLoad Application Page 38-1

Module 38

Teradata Proprietary and Confidential

A MultiLoad Application

After completing this module, you will be able to:

 Describe the tables involved in a MultiLoad job.

 Set error limits as a record value or as a percentage of loaded rows.

 Specify a checkpoint interval.

 Redefine input record layout.

 A MultiLoad Application Page 38-2

Notes

A MultiLoad Application Page 38-3

Table of Contents

New Accounts Application – Description ... 38-4

New Accounts Application Script (1 of 3) ... 38-6
New Accounts Application Script (2 of 3) ... 38-8
New Accounts Application Script (3 of 3) ... 38-10

.BEGIN IMPORT Task Command .. 38-12
Work Tables ... 38-14
Error Tables .. 38-16
ERRLIMIT ... 38-18
CHECKPOINT .. 38-20
More .BEGIN Parameters .. 38-22

SESSIONS max min ... 38-22
More .BEGIN Parameters: AMPCHECK ... 38-24
DELETE Task Command .. 38-26
.LAYOUT and .TABLE ... 38-28
.LAYOUT Parameters — CONTINUEIF .. 38-30
.LAYOUT Parameters — INDICATORS ... 38-32
.FIELD and .FILLER ... 38-34

Performance Considerations .. 38-34
.LAYOUT Command — Examples ... 38-36
Redefining the Input – Example .. 38-38
The .DML Command Options ... 38-40

The .DML Command Options (cont.) .. 38-42
MultiLoad Statistics ... 38-44
Summary .. 38-46
Module 38: Review Questions ... 38-48
Lab Exercise 38-1 .. 38-50
Lab Exercise 38-2 .. 38-52

 A MultiLoad Application Page 38-4

New Accounts Application – Description
The facing page diagrams an example of a bank procedure for customers opening new
accounts. The application must be able to handle:

 New customers with new accounts

 Existing customers who open new accounts.

You need to do an UPSERT (an UPDATE or an INSERT). The tasks are to:

 Execute an UPDATE to a Customer Row. (This UPDATE actually only checks for
the existence of the Customer Row.)

 If this fails, INSERT a new Customer Row.

A MultiLoad Application Page 38-5

New Accounts Application – Description

Transaction(s)
• Applied to Balance
• Added to History

New
Account
Information

Customer details
• New
• Existing

MULTILOAD

Customer
C #
UPI

Accounts
A #
UPI

Trans_Hist
A # DATE

NUPI

Account_Customer
A # C #

NUSI
UPI

• Each New Account requires an INSERT into the Accounts table and an INSERT into
Account_Customer.

• An Account can be opened for new or pre-existing customer(s) – UPSERT to the
Customer table.

• Each New Account will probably require an opening transaction – UPDATE to Accounts
(balance) and INSERT to Trans_History.

 A MultiLoad Application Page 38-6

New Accounts Application Script (1 of 3)
The entire input script for this application is shown on the next few pages. The first page
shows the Support Environment statements to define the LOGTABLE and LOGON.

The .BEGIN IMPORT statement defines the tables used in this example.

The .LAYOUT statement is followed by the definition of .FIELD or .FILLER statements.

These statements are discussed in more detail later in this module.

A MultiLoad Application Page 38-7

New Accounts Application Script (1 of 3)

.LOGTABLE ACT_Logtable1_mld;

.LOGON tdpid/username, password;

.BEGIN IMPORT MLOAD TABLES Accounts, Account_Customer, Customer, Trans_Hist ;

.LAYOUT Record_Layout;

.FILLER in_Field_Indicator 1 CHAR(1) ;

.FIELD in_Account_Number 2 INTEGER;

.FIELD in_Number * INTEGER;

.FIELD in_Street * CHAR(25);

.FIELD in_City * CHAR(20);

.FIELD in_State * CHAR(2);

.FIELD in_Zip_Code * INTEGER;

.FIELD in_Balance_Forward * INTEGER;

.FIELD in_Balance_Current * INTEGER;

.FIELD in_Customer_Number 2 INTEGER;

.FIELD in_Last_Name * CHAR(25);

.FIELD in_First_Name * CHAR(20);

.FIELD in_Social_Security * INTEGER;

.FIELD in_AC_Account_Number 2 INTEGER;

.FIELD in_AC_Customer_Number * INTEGER;

.FIELD in_Trans_Number 2 INTEGER;

.FIELD in_Trans_Account_Number * INTEGER;

.FIELD in_Trans_ID * INTEGER;

.FIELD in_Trans_Amount * DECIMAL(10,2);

ds186034
Sticky Note
filler:what kinda

ds186034
Sticky Note
* or position 6* means follows the precdenceif not position 6cause earlier int = 4b

 A MultiLoad Application Page 38-8

New Accounts Application Script (2 of 3)
The facing page shows all the .DML statements that define labels for the one or more DML
commands that follow.

The sequence in which these commands are performed is indicated by the APPLY clauses in
the .IMPORT statement. APPLY clauses may contain conditions to be met before the
command is applied to the input data. The .IMPORT statement also defines the name of the
file that contains the input data and the LAYOUT for that file. The LAYOUT is matched to
a defined .LAYOUT statement by the logical name that was associated with it.

The MultiLoad script is terminated with the .END MLOAD statement.

A MultiLoad Application Page 38-9

New Accounts Application Script (2 of 3)

.DML LABEL New_Accounts;
INSERT INTO Accounts VALUES

(:in_Account_Number, :in_Number, :in_Street, :in_City ,:in_State, :in_Zip_Code,
:in_Balance_Forward, :in_Balance_Current);

.DML LABEL New_Acct_Customer;
INSERT INTO Account_Customer VALUES

(:in_AC_Account_Number, :in_AC_Customer_Number);

.DML LABEL Upsert_Customer DO INSERT FOR MISSING UPDATE ROWS;
UPDATE Customer SET Last_Name = :in_Last_Name

WHERE Customer_Number = :in_Customer_Number;
INSERT INTO Customer VALUES

(:in_Customer_Number, :in_Last_Name, :in_First_Name, :in_Social_Security);

.DML LABEL Trans_Update;
INSERT INTO Trans_Hist VALUES

(:in_Trans_Number, DATE, :in_Trans_Account_Number, :in_Trans_ID, :in_Trans_Amount);
UPDATE Accounts

SET Balance_Current =Balance_Current + :in_Trans_Amount
WHERE Account_Number = :in_Trans_Account_Number;

.IMPORT INFILE datafile4 LAYOUT Record_Layout
APPLY New_Accounts WHERE in_Field_Indicator = 'A'
APPLY New_Acct_Customer WHERE in_Field_Indicator = 'B'
APPLY Upsert_Customer WHERE in_Field_Indicator = 'C'
APPLY Trans_Update WHERE in_Field_Indicator = 'T';

.END MLOAD;

ds186034
Underline

ds186034
Sticky Note
My data:its a letter beginning of each record

 A MultiLoad Application Page 38-10

New Accounts Application Script (3 of 3)
The facing page shows the support environment commands to check MultiLoad support
environment counts and COLLECT STATISTICS on the tables as part of the utility job.

System variables that are available with MultiLoad include:

&SYSDELCNT(n) Delete Count Ex., &SYSDELCNT1, …
&SYSINSCNT(n) Insert Count Ex., &SYSINSCNT1, ...
&SYSUPDCNT(n) Update Count
&SYSETCNT(n) Error Table Count
&SYSUVCNT(n) Uniqueness Violation Count
&SYSRCDCNT(n) Count of import records read
&SYSRJCTCNT(n) Count of records rejected from import file

Note: n is 1 to 5

A .LOGOFF; statement terminates the Support Environment session.

A MultiLoad Application Page 38-11

New Accounts Application Script (3 of 3)

.IF (&SYSINSCNT1 > 10000 OR &SYSUPDCNT1 > 10000) THEN;
COLLECT STATISTICS ON Accounts;

.ENDIF;

.IF (&SYSINSCNT2 > 10000) THEN;
COLLECT STATISTICS ON Account_Customer;

.ENDIF;

.IF (&SYSINSCNT3 > 5000 OR &SYSUPDCNT3 > 5000) THEN;
COLLECT STATISTICS ON Customer;

.ENDIF;

.IF (&SYSINSCNT4 > 100000) THEN;
COLLECT STATISTICS ON Trans_Hist;

.ENDIF;

.LOGOFF;

Note:
.BEGIN IMPORT MLOAD TABLES Accounts, Account_Customer, Customer, Trans_Hist ;

1st table 2nd table 3rd table 4th table

MultiLoad environment variables
can be checked to optionally
COLLECT STATISTICS as part of
the job.

&SYSDELCNT_ where _ is 1 to 5
&SYSINSCNT_ "
&SYSUPDCNT_ "
&SYSETCNT_ "
&SYSUVCNT_ "
&SYSRCDCNT_ "
&SYSRJCTCNT_ "

 A MultiLoad Application Page 38-12

.BEGIN IMPORT Task Command
The complete format of the .BEGIN IMPORT MLOAD command is:

TABLEWAIT option – This option (specified in hours) is the number of hours that Teradata
MultiLoad continues trying to start Teradata MultiLoad when one of the target tables is
being loaded by some other job (e.g., FastLoad or MultiLoad).

A MultiLoad Application Page 38-13

.BEGIN IMPORT Task Command

• Specifies the tables and optionally the work and error tables used in this MultiLoad job.

• Also used to specify miscellaneous MultiLoad options such as checkpoint, sessions,
etc.

.BEGIN [IMPORT] [NODROP] MLOAD

TABLES tname1, tname2, ...

WORKTABLES wt_table1, wt_table2, …

ERRORTABLES et_ table1 uv_table1, et_ table2 uv_table2, et_ table3 uv_table3, …

ERRLIMIT errcount [errpercent]

CHECKPOINT rate (Default – 15 min.)

SESSIONS limit (Default – 1 per AMP + 2)

TENACITY hours (Default – 4 hours)

SLEEP minutes (Default – 6 minutes)

AMPCHECK NONE | APPLY | ALL

NOTIFY OFF | LOW | MEDIUM | HIGH . . .

;

.END MLOAD; Note: tname = [dbname.]tablename

NODROP (Teradata 14.0 option)

NODROP – MultiLoad will NOT drop error tables even if they are empty at the end of the job.

 A MultiLoad Application Page 38-14

Work Tables
There must be one work table for each data table.

If WORKTABLES are not defined, they are created with the table name prefixed by 'WT_'.

If the data table is Fallback protected, then the associated Work table is Fallback protected.

If the data table is not Fallback protected, then the associated Work table is not Fallback
protected.

A MultiLoad Application Page 38-15

Work Tables

IMPORT Task: WORKTABLES wt_table1, wt_table2, …

DELETE Task: WORKTABLES wt_table1

• Default worktable is create in user’s default database and work table is named WT_TableName.

• Alternative may be specified as DataBaseName.WorkTableName.

• There must be one work table defined for each data table.

.BEGIN
parameters

.SET DBASE TO 'Payroll';

.SET DBASE_UTIL TO 'UtilityDB';

.SET TABLE1 TO 'Employee';

.SET TABLE2 TO 'Paycheck';

.BEGIN MLOAD
TABLES &DBASE..&TABLE1, &DBASE..&TABLE2

WORKTABLES &DBASE_UTIL..WT_&TABLE1
,&DBASE_UTIL..WT_&TABLE2

ERRORTABLES &DBASE_UTIL..ET_&TABLE1 &DBASE_UTIL..UV_&TABLE1
,&DBASE_UTIL..ET_&TABLE2 &DBASE_UTIL..UV_&TABLE2

. . . ;

Example:

This example utilizes variables to define the database and table names to use with MultiLoad and a
different database for the work and error tables.

For Employee, the work table is resolved to UtilityDB.WT_Employee.
For Paycheck, the work table is resolved to UtilityDB.WT_Paycheck.

ds186034
Sticky Note
.. are treated as single dot

ds186034
Sticky Note
its common to keep these on other databases

 A MultiLoad Application Page 38-16

Error Tables
ERRORTABLES default to an 'ET_' or 'UV_' prefix and the Table name. There will be two
error tables for each user table.

The “ET_tablename” error table is referred to as the Acquisition Phase Error Table. Errors
that occur in the Acquisition Phase are placed in this table.

The “UV_tablename” error table is referred to as the Application Phase Error Table. Errors
that occur in the Application Phase are placed in this table.

Regardless if the data table is Fallback or No Fallback, the ET and UV error tables are
automatically Fallback protected.

A MultiLoad Application Page 38-17

Error Tables

ERRORTABLES et_table1 uv_table1, et_table2 uv_table2, ...

• Error table (ET)
– default is the user’s database and the table is named ET_Tablename.
– contains any errors that occur in the Acquisition Phase.
– contains primary index overflow errors that occur in the Application phase.

• Uniqueness Violation (UV) table (effectively also an error table)
– default is the user’s database and the table is named UV_Tablename.
– contains Application Phase errors (uniqueness violations, constraint errors, and

overflow errors on columns other than the primary index.

.BEGIN
parameters

.SET DBASE TO 'Payroll';

.SET DBASE_UTIL TO 'UtilityDB';

.SET TABLE1 TO 'Employee';

.SET TABLE2 TO 'Paycheck';

.BEGIN MLOAD
TABLES &DBASE..&TABLE1, &DBASE..&TABLE2

WORKTABLES &DBASE_UTIL..WT_&TABLE1
,&DBASE_UTIL..WT_&TABLE2

ERRORTABLES &DBASE_UTIL..ET_&TABLE1 &DBASE_UTIL..UV_&TABLE1
,&DBASE_UTIL..ET_&TABLE2 &DBASE_UTIL..UV_&TABLE2

. . . ;

Example:

For Employee, the error tables are resolved to UtilityDB.ET_Employee and UtilityDB.UV_Employee.
For Paycheck, the error tables are resolved to UtilityDB.ET_Paycheck and UtilityDB.UV_Paycheck.

 A MultiLoad Application Page 38-18

ERRLIMIT
The ERRLIMIT option allows you to specify an error count and, optionally, an error
percent.

The specification of an error count indicates the approximate number of errors (not
uniqueness violations) that should cause the MultiLoad to stop processing (and abort).

The additional definition of an error percent indicates that you wish to stop processing when
a percentage of errors has been detected after an approximate number of records have been
transmitted.

A MultiLoad Application Page 38-19

ERRLIMIT

ERRLIMIT ErrCount

Without ERRPERCENT:

• Specifies approximate number of data errors permitted during Acquisition.

• Does not count Uniqueness violations.

ERRLIMIT ErrCount ErrPercent

With ERRPERCENT:

• Specifies a percentage of data errors after an approximate number of records has
been transmitted.

.BEGIN
parameters

.BEGIN
parameters

ERRLIMIT 10000 5Example:

In this example, after processing 10,000 input records, the system looks for an
error rate of 5%.

 A MultiLoad Application Page 38-20

CHECKPOINT
The CHECKPOINT option defines the checkpoint rate as either the number of records or a
time interval.

If you specify a CHECKPOINT rate of 60 or more, a checkpoint operation occurs after each
multiple of that number of records is processed.

If you specify a CHECKPOINT rate of less than 60, a checkpoint operation occurs at the
specified frequency, in minutes.

The default is for MultiLoad to perform a CHECKPOINT every 15 minutes. If you do not
use the CHECKPOINT rate specification, the MultiLoad utility performs a checkpoint
operation at the default rate — every 15 minutes and at the end of each phase.

Note: Specifying a CHECKPOINT rate of 0 inhibits the checkpoint function—the
MultiLoad utility does not perform any checkpoint operations during the import task.

A MultiLoad Application Page 38-21

CHECKPOINT

• Rate may be specified in the Acquisition Phase of a complex
IMPORT task as:

– A number of incoming records (exact count; not less than 60)

– A time interval in minutes (approximate; less than 60)

• If no CHECKPOINT value is specified MultiLoad will checkpoint every 15
minutes, and at the end of each Phase. The default is 15 minutes.

.BEGIN
parameters

.BEGIN
parameters

CHECKPOINT 30Example 1: In this example, a 30-minute time
interval is specified.

CHECKPOINT 100000Example 2: In this example, a checkpoint after
100,000 input records is specified.

ds186034
Sticky Note
after 60 refers to row ct

 A MultiLoad Application Page 38-22

More .BEGIN Parameters
The facing page specifies additional parameters you can use with the .BEGIN statement.

SESSIONS max min
max maximum number of MultiLoad sessions that will be logged on when you enter a
LOGON.

 The max specification must be greater than zero.

 If you specify a SESSIONS max value that is larger than the number of available

AMPs, the MultiLoad utility limits the sessions to one per working AMP.

 The default maximum is one session for each AMP.

 Using the asterisk character as the max specification logs on for the maximum

number of sessions—one for each AMP.

min optional, the minimum number of sessions required to run the job.

 The min specification must be greater than zero.

 The default minimum, if you do not use the SESSIONS option or specify a min

value, is 1.

 Using the asterisk character as the min specification logs on for at least one session,

but less than or equal to the max specification.

A MultiLoad Application Page 38-23

More .BEGIN Parameters

SESSIONS

• Used to specify the maximum, and optionally, minimum sessions generated by
MultiLoad.

TENACITY

• Number of hours MultiLoad will try to establish a connection to the system.

• The default is 4 hours.

SLEEP

• Number of minutes MultiLoad waits before retrying a logon; must be greater than 0.

• The default is 6 minutes.

NOTIFY

• NOTIFY LOW for initialize event and CLIv2 errors.
• NOTIFY MEDIUM for the most significant events.
• NOTIFY HIGH for every MultiLoad event that involves an operational decision point.
• NOTIFY OFF suppresses the notify option.

.BEGIN
parameters

.BEGIN
parametersSESSIONS 48 32

TENACITY 10

SLEEP 3

NOTIFY OFF Note: The MultiLoad manual specifies in
detail which events are associated with
each level.

ds186034
Highlight
forever for FASTLOAD

 A MultiLoad Application Page 38-24

More .BEGIN Parameters: AMPCHECK
Use the AMPCHECK option to specify what you want to occur in the event of an AMP
being down.

The default (APPLY) specifies that if AMPs are offline, you want MultiLoad to continue
processing every phase except the Application phase as long as all tables involved in the
MultiLoad job have been defined with FALLBACK protection.

A MultiLoad Application Page 38-25

More .BEGIN Parameters: AMPCHECK

AMPCHECK NONE | APPLY | ALL

• NONE

– MultiLoad will not perform an AMPCHECK.

– It will proceed if AMPs are offline, provided all target tables are FALLBACK.

• APPLY

– MultiLoad will continue in all phases except the Application phase with AMPs
offline, provided all target tables are FALLBACK.

– This is the default.

• ALL

– MultiLoad will not proceed with down AMPs, regardless of the protection-type of
the target tables.

– Most conservative option.

.BEGIN
parameters

.BEGIN
parameters

 A MultiLoad Application Page 38-26

DELETE Task Command
The facing page summarizes the options for the DELETE task. Note that it has many of the
same options as the IMPORT task.

The complete format of the .BEGIN DELETE MLOAD command is:

A MultiLoad Application Page 38-27

DELETE Task Command

• Specifies the table and optionally the work and error tables used in this MultiLoad
Delete task.

• Also used to specify miscellaneous MultiLoad options such as tenacity, sleep, etc.

.BEGIN DELETE MLOAD

TABLES tname1

WORKTABLES wt_table1

ERRORTABLES et_ table1

TENACITY hours (Default – 4 hours)

SLEEP minutes (Default – 6 minutes)

NOTIFY OFF | LOW | MEDIUM | HIGH . . .

;

.END MLOAD;

 A MultiLoad Application Page 38-28

.LAYOUT and .TABLE
The layout is given a name that is referenced in the .IMPORT statement.

The .LAYOUT statement can be used multiple times within the same MultiLoad job to
indicate files with different fields. The layout name specifies the layout that should be used
for the APPLY clauses which follow.

The .LAYOUT statement is always followed by either a .TABLE or .FIELD/.FILLER
statement. If .TABLE is used, the input data type and fields are the same as an existing
database table definition.

A MultiLoad Application Page 38-29

.LAYOUT and .TABLE

.LAYOUT

– Must appear between the .BEGIN IMPORT MLOAD command and the
applicable .IMPORT command.

– Must be immediately followed by .TABLE, .FIELD, or .FILLER commands.

.TABLE

– The input fields are defined with the same name, data type, and order of
an existing table.

.LAYOUT layoutname

CONTINUEIF position = variable ;

INDICATORS

.TABLE tableref ;

Format:

 A MultiLoad Application Page 38-30

.LAYOUT Parameters — CONTINUEIF
Input data records may be concatenated if the record to be concatenated follows the initial
data portion. For example, a data set or file contains records that are currently divided into
two or three parts (records), but need to be treated as one record for MultiLoad. The
CONTINUEIF option is used to indicate the value to check for when concatenating records.

The CONTINUEIF option must be of the type CHARACTER and may be multiple
characters.

The general format is:

 CONTINUEIF position = value

position
 an unsigned integer (never an asterisk) that specifies the starting character

position of the field of every input record that contains the continuation
indicator. Note: The position is relative to the first character position of the
input record or input record fragment, which is always position 1.

value
 the continuation indicator specified as a character constant or a string constant.

The MultiLoad utility uses the length of the constant as the length of the
continuation indicator field.

Miscellaneous Notes:

 The value is case sensitive – always specify the correct character case for this
parameter.

 If the conditional phrase is “true,” then the MultiLoad utility forms a single record

to be sent to the Teradata RDBMS by concatenating the next input record at the end
of the current record. (The current record is the one most recently obtained from the
external data source.)

 If the conditional phrase is “false”, then the MultiLoad utility sends the current

input record to the Teradata RDBMS either by itself or as the last of a sequence of
concatenated records.

 Note: Regardless of whether the condition evaluates to true or false, the MultiLoad

utility removes the tested string (the continuation indicator field) from each record.

A MultiLoad Application Page 38-31

.LAYOUT Parameters — CONTINUEIF

CONTINUEIF
– Record 1 and the immediately following Record 2 each represent a part of the input record.

– Continuation Character Field is defined beginning in character position 1.

– This option may be needed with legacy systems where input records are limited to 80 characters
(carryover from punched card era of computing).

.LAYOUT Record_Layout CONTINUEIF 1= 'Y';

Y F1 F2 F3 Record 1

1 2 10 45 80

N FILLER F5 Record 2

1 2 35 80

Physical Input
Records

F1 F2 F3 FILLER F5

1 9 44 79 80 112 113 158

Logical Input
Transaction

MultiLoad
.LAYOUT
Definition

Note: F1 begins in character position 1 and Filler immediately follows F3.

ds186034
Sticky Note
punch cards = 80 slots

 A MultiLoad Application Page 38-32

.LAYOUT Parameters — INDICATORS
Use the INDICATORS parameters to handle nulls.

Miscellaneous Notes:

 When you use the INDICATORS specification, the MultiLoad utility sends all of
the FIELD commands, including redefines, to the Teradata Database.

 Caution: Inappropriate INDICATORS specifications can corrupt the target table

on the Teradata Database.

– If INDICATORS is specified in the LAYOUT command and the data file does
not contain indicator bytes in each record, the target table is loaded with
incorrect data.

– Conversely, if INDICATORS is not specified and the data file contains

indicator bytes in each record, the target table also is corrupted.

 Always make sure that your INDICATORS specifications match the mode of the

data you are sending to the Teradata Database.

 Note: INDICATORS processing is done only after any CONTINUEIF processing

is completed for a record.

A MultiLoad Application Page 38-33

.LAYOUT Parameters — INDICATORS

INDICATORS
– The INDICATORS contain bits that, when equal to 1, represent a null data field.

.LAYOUT Record_Layout INDICATORS;

Indicator Byte(s) F1 F2 F3Physical Input
Records

MultiLoad .LAYOUT
Definition

ds186034
Sticky Note
30 fields = 1 byte8 bits in a byte

 A MultiLoad Application Page 38-34

.FIELD and .FILLER
When .FIELD is used, you specify a name for the field, the starting position or asterisk (*),
the data type, and possibly options governing the handling of the input data.

By specifying a .FILLER, you define input data that will not be sent to the database table. A
.FILLER statement requires a name, a starting position or asterisk, and the data type.

Performance Considerations
The majority of client processing during a MultiLoad job occurs when it is processing its
input rows. The most efficient means of sending the row to the Teradata Database would be
a bulk move of the input row to the output row.

However, there are many cases where fields need to be evaluated and field data may need to
be individually moved from the input to the output row. Note, however, that performance is
affected whenever a field needs to be evaluated or individually moved.

The need for moving individual field data from the input to the output row occurs for any of
the following scenarios:

 DROP syntax on FIELD statements
 FILLER fields
 Concatenated fields
 Complex layout (first field is variable-length field, redefinition of field positions)

In addition to the above scenarios, variable length fields, NULLIF in the layout, and APPLY
WHERE clauses might require additional CPU consumption.

If possible, try to avoid using the above options to improve MultiLoad performance.

A MultiLoad Application Page 38-35

.FIELD and .FILLER

.FIELD fieldname { startpos datadesc } || fieldexp

[NULLIF nullexpr]

[DROP {LEADING / TRAILING } { BLANKS / NULLS }

[[AND] {TRAILING / LEADING } { NULLS / BLANKS }]] ;

.FILLER [fieldname] startpos datadesc ;

.FIELD

• Input fields supporting redefinition and concatenation.

Startpos identifies the start of a field relative to 1.

Fieldexpr specifies a concatenation of fields in the format:

fieldname1 || fieldname2 [|| fieldname3 …]

The option DROP LEADING / TRAILING BLANKS / NULLS is applicable only to
character datatypes, and is sent as a VARCHAR with a 2-byte length field.

.FILLER

• Identifies data NOT to be sent to the Teradata database.

 A MultiLoad Application Page 38-36

.LAYOUT Command — Examples
The facing page shows two examples using .LAYOUT: one with .TABLE and one with
.FIELD and .FILLER.

A MultiLoad Application Page 38-37

.LAYOUT Command — Examples

.LAYOUT transrecord
CONTINUEIF 7 = 'ABC'
INDICATORS;

.FIELD field1 1 char(5) NULLIF field1 = 'AAAAA' DROP LEADING BLANKS;

.FILLER field2 * char(1);

.FIELD field3 * char(3);

.FIELD field4 field2 || '&' || field3 ;

Example 1:

.LAYOUT emp_record;

.TABLE Employee;

Example 2:

Note:
Employee is an existing table whose column
names and data descriptions are assigned,
in the order defined, to fields of the input
data records.

 A MultiLoad Application Page 38-38

Redefining the Input – Example
The input file may contain different types of records. Fields within these records start from
the beginning of the record (position 1). Subsequent fields are indicated by an asterisk or by
a starting character position.

By indicating the starting position of the field within the record, you can redefine the record.
Remember, the asterisk (*) refers to the next position after the preceding field.

In the example on the following page, F4 starts in position 6 (immediately following the
‘.FILLER trans_type’ and ‘.FIELD Pl’). F5 follows F4.

A MultiLoad Application Page 38-39

Redefining the Input — Example

• A bank loads daily transactions sequentially on a tape for batch processing by
MultiLoad.

• An input data record might be an Add, Update or Delete, each of which has a different
length and contains different fields, as illustrated:

Add New Account A PI F1 F2 F3

Update Existing Account U PI F4 F5

Delete Inactive Account D PI

.LAYOUT Record_Layout ;

.FILLER trans_type 1 CHAR(1) ;

.FIELD PI 2 INTEGER ;

.FIELD F1 * INTEGER ;

.FIELD F2 * CHAR(25) ;

.FIELD F3 * CHAR(20) ;

.FIELD F4 6 CHAR(2) ;

.FIELD F5 * INTEGER ;

Note:
FILLER data is
not placed into
ML work tables.

 A MultiLoad Application Page 38-40

The .DML Command Options
The DML command provides labels for one or more DML statements (INSERT, UPDATE,
or DELETE). The format of this command is shown next along with the options on this
command.

You have already seen examples of how some of these options can be used to direct the
processing of an UPSERT. The MARK option indicates that duplicate or missing rows
should be recorded in one of the error tables.

MARK is the default for INSERT, UPDATE, and DELETE. If an error occurs in the
Application Phase (e.g., uniqueness violation) with MARK specified, then the duplicate row
is placed in to the UV_errtable. If a row is missing with an UPDATE or DELETE, then that
transaction is also placed in the UV_errtable.

IGNORE is the default for UPSERT if the UPSERT is successful. If an UPSERT fails
because of a constraint violation, the error is placed in the UV_errtable.

For import tasks, you can specify as many as five distinct error treatment options with one
DML LABEL command. For example:

.DML LABEL COMPLEX
 IGNORE DUPLICATE INSERT ROWS
 MARK DUPLICATE UPDATE ROWS
 MARK MISSING UPDATE ROWS
 MARK MISSING DELETE ROWS
 DO INSERT FOR MISSING UPDATE ROWS;

Notes:

 If a uniqueness violation occurs with MARK specified, the duplicate rows go to the
uniqueness violation table.

 IGNORE DUPLICATE ROWS does not apply if there are any unique indexes in

the table.

 In the case of an upsert operation, both the insert and update portions must fail for

an error to be recorded. If MARK MISSING UPDATE ROWS, then “marked”
rows for the missing update operations then have nulls for the target table columns.

 If you do not specify either INSERT or UPDATE with DUPLICATE, then the

MARK or IGNORE specification applies to both insert and update operations.

 Similarly, if you do not specify either UPDATE or DELETE with MISSING, then

the MARK or IGNORE specification applies to both update and delete operations.

 MARK is the default for all actions except MISSING UPDATE for an upsert

operation.

A MultiLoad Application Page 38-41

The .DML Command Options

Defines Labels along with Error Treatment conditions for one or more following INSERTs,
UPDATEs or DELETEs to be applied under various conditions:

.DML LABEL Labelname

MARK | IGNORE DUPLICATE INSERT | UPDATE
MARK | IGNORE MISSING UPDATE | DELETE

DO INSERT FOR [MISSING UPDATE] ROWS ;

[[][ROWS

Operation: Default if MARK/IGNORE is not used:

INSERT (Duplicate violation) Marked in UV_tablename
UPDATE (Duplicate row violation) Marked in UV_tablename
UPDATE (Fails - missing row) Marked in UV_tablename
DELETE (Fails - missing row) Marked in UV_tablename

UPSERT (If successful) Ignored
UPSERT (Fails) Mark failure of INSERT in UV_tablename

Example of UPSERT failure:
1. PI value doesn’t exist, so UPDATE can’t occur.
2. INSERT fails because of check violation - e.g., can’t put character data in a numeric field.

MARK or IGNORE
Whether or not to record
duplicate or missing
INSERT, UPDATE, OR
DELETE rows into the
UV_error_table and
continue processing.

 A MultiLoad Application Page 38-42

The .DML Command Options (cont.)
The syntax of the .DML Label command is repeated on the facing page for your
convenience.

The default for an UPSERT operation is to not mark missing update rows.

When the MARK MISSING UPDATE ROWS is used with an UPSERT, this will list (in the
UV_errtable) data rows that can’t be updated (the row doesn’t exist with the PI value). If
the insert also fails (e.g., constraint violation), the insert record is also marked in the
UV_errtable. In this case, one record can cause 2 rows to go into the UV_errtable – one for
the missing update and one for the insert failure.

A MultiLoad Application Page 38-43

The .DML Command Options (cont.)

.DML LABEL Labelname

MARK | IGNORE DUPLICATE INSERT | UPDATE
MARK | IGNORE MISSING UPDATE | DELETE

DO INSERT FOR [MISSING UPDATE] ROWS ;

[[][ROWS

DO INSERT FOR MISSING UPDATE Key statement that indicates an UPSERT. An SQL
UPDATE followed by an SQL INSERT is required.

.DML LABEL Action1 DO INSERT FOR MISSING UPDATE ROWS;

The default for an UPSERT operation is to not mark missing update rows.

Example 1:

.DML LABEL Action2 MARK MISSING UPDATE ROWS
DO INSERT FOR MISSING UPDATE ROWS;

Example 1:

When the MARK MISSING UPDATE ROWS is used with an UPSERT, this
will place (in the UV_table) data rows that can’t be updated (no PI). If the
insert also fails, the insert record is also marked in the UV_table.

 A MultiLoad Application Page 38-44

MultiLoad Statistics
Statistics indicating the number of records processed by each DML for each table is
reported at the end of the Application Phase. The facing page shows an example of this
output.

A MultiLoad Application Page 38-45

MultiLoad Statistics

At the end of the application phase, MultiLoad provides statistical information.

****06:06:41 UTY1803 Import Processing Statistics
Total

Import 1 Thus far
Candidate Records considered 200000 200000
Apply conditions satisfied 200000 200000

****06:18:34 UTY0818 Statistics for table ACCOUNTS:
Inserts: 50000
Updates: 50000
Deletes: 0

****06:18:35 UTY0818 Statistics for table ACCOUNT_CUSTOMER:
Inserts: 50000
Updates: 0
Deletes: 0

****06:18:35 UTY0818 Statistics for table CUSTOMER:
Inserts: 25000
Updates: 25000
Deletes: 0

****06:18:35 UTY0818 Statistics for table TRANS_HIST:
Inserts: 50000
Updates: 0
Deletes: 0

 A MultiLoad Application Page 38-46

Summary
The facing page summarizes some of the important concepts regarding the MultiLoad
utility.

A MultiLoad Application Page 38-47

Summary

• On the .BEGIN statement, optionally, the names of work and error tables can
be specified.

• You can:

– Specify error limits and checkpoints.

– Limit sessions.

– Designate time allowed for connection.

– Specify retry time limit.

– Designate the level of notification you prefer.

– Designate how MultiLoad will proceed if AMPs are offline.

• .LAYOUT parameters define the data format.

• .DML commands define Labels and Error Treatment conditions for one or
more operations.

• You can use FastLoad or MultiLoad INMODs.

 A MultiLoad Application Page 38-48

Module 38: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

A MultiLoad Application Page 38-49

Module 38: Review Questions

1. Complete the BEGIN statement to accomplish the following:

– Specify an error limit count of 200,000 and an error percentage of 5%.

– Specify a checkpoint at 500,000 records.

– Request 16 sessions, but allow the job to run with only 8.

– Set the number of hours to try to establish connection as 6.

.LOGTABLE RestartLog_mld;

.LOGON ________________;

.BEGIN [IMPORT] MLOAD TABLES Trans_Hist

;

.END MLOAD ;

 A MultiLoad Application Page 38-50

Lab Exercise 38-1
The size of data38_1 should be 26,700 bytes.

The execution of the macro AP.Lab38_1 will cause 300 rows to be created in data38_1. 100
of these records will start with an A, 100 will start with a C, and 100 will start with a T.

The format of data38_1 is:

Char(1) Multiple columns
A Data row for Accounts table
C Data row for Customer table
T Data row for Trans table

Example of data in data38_1:

Char(1) Data
A 20024001 279 Beach Blvd Los Angeles CA 90066 394.00 233.00
: :
C 2001 Atchison Roger 213598761
: :
T 1 2002-02-08 20024002 413 -0.08
T 2 2002-02-08 20024003 414 -0.15
: :

The control letter (A, C, or T) must be in upper-case letters in the APPLY statements. If the
input record contains a code of A, insert a row into the Accounts table. If the input record
contains a code of C, insert a row into the Customer table. If the input record contains a
code of T, insert a row into the Trans table.

Important note: The Trans_Date is output as a date in ANSI date ('YYYY-MM-DD')
format of CHAR(10). Therefore, define the Tran_Date as CHAR(10) for input.

A technique that can be used to create Linux scripts without using vi or vim is to do the
following:

1. Enter your commands (job/script) in a Notepad file.
2. Highlight the text and use the mouse to choose the Edit Copy function.

Switch to your terminal window where Linux is running and …

3. cat > lab38_12.mld (or whatever filename you wish)

 Use the mouse to choose the Edit Paste function
 To exit the cat command, press either the DELETE key or CNTL C.

A MultiLoad Application Page 38-51

Lab Exercise 38-1

Lab Exercise 38-1

Purpose
In this lab, you will use MultiLoad to insert the data rows you deleted in a lab from Module 37. The
Accounts, Trans, and Customer tables each should have 100 rows in them (from Lab 37-1).

What you need

Populated tables and macro AP.Lab38_1.

Tasks
1. Export data to a file called data38_1 by executing the macro AP.Lab38_1. Submit the following

commands in BTEQ:
.EXPORT DATA FILE = data38_1, CLOSE;
EXEC AP.LAB38_1;
.EXPORT RESET;

Note: The Trans_Date is exported with an ANSI Date Format of 'YYYY-MM-DD' and a data type of
CHAR(10).

2. Prepare a MultiLoad script which inserts rows into one of three different tables using the redefinition
feature of MultiLoad. The input record contains a mixture of records which are to be inserted into
the Accounts table if the first record byte is an "A", the Customer table if the first byte is a "C" and
the Trans table if the first byte is a "T".

3. Check your tables for 200 rows per table. Your MultiLoad job should have a final return code of zero
and should evidence 100 rows inserted into each of the three tables.

 A MultiLoad Application Page 38-52

Lab Exercise 38-2
The size of data38_2 should be 15,600 bytes.

The execution of the macro AP.Lab38_2 will cause 200 rows to be created in data38_2. 100
of these records will be used to update 100 existing rows in the Accounts table and 100 of
the records will be used to add 100 new rows (accounts) to the Accounts table.

There is no code (A) since all of the records apply to the Accounts table.

Each record in the data38_2 file has the same data as the columns in the Accounts table.

Data row for Accounts table
Data row for Accounts table

:

A technique that can be used to create Linux scripts without using vi or vim is to do the
following:

1. Enter your commands (job/script) in a Notepad file.
2. Highlight the text and use the mouse to choose the Edit Copy function.

Switch to your terminal window where Linux is running and …

3. cat > lab38_23.mld (or whatever filename you wish)

 Use the mouse to choose the Edit Paste function
 To exit the cat command, press either the DELETE key or CNTL C.

A MultiLoad Application Page 38-53

Lab Exercise 38-2

Lab Exercise 38-2

Purpose
In this lab, you will prepare and execute a MultiLoad script which performs an 'UPSERT' operation
(INSERT MISSING UPDATE) on your Accounts table as a single operation.

What you need
Populated tables and macro AP.Lab38_2.

Tasks
1. Delete all rows from the Accounts Table and use the following INSERT/SELECT to create 100 rows of

data in your table.

INSERT INTO Accounts SELECT * FROM AP.Accounts WHERE Account_Number < 20024101 ;

2. Export data to a file data38_2 using the macro AP.Lab38_2.

.EXPORT DATA FILE = data38_2, CLOSE;
EXEC AP.Lab38_2;
.EXPORT RESET;

3. Prepare and execute a MultiLoad script which performs an 'UPSERT' operation (INSERT MISSING
UPDATE) on your Accounts table as a single operation. Use the data from data38_2 as input to the
MultiLoad 'UPSERT' script. If the row exists, UPDATE the Balance_Current with the appropriate
incoming value. If not, INSERT a row into the Accounts table.

4. Validate your results. MultiLoad should have performed 100 UPDATES and 100 INSERTS with a final
return code of zero.

 A MultiLoad Application Page 38-54

Notes

TPump Page 39-1

Module 39

Teradata Proprietary and Confidential

TPump

After completing this module, you will be able to:

 State the capabilities and limitations of TPump.

 Describe TPump commands and parameters.

 Prepare and execute a TPump script.

 TPump Page 39-2

Notes

TPump Page 39-3

Table of Contents

TPump .. 39-4

ATOMIC UPSERT .. 39-4
TPump Limitations .. 39-6
.BEGIN LOAD Statement ... 39-8

Notes on CHECKPOINT ... 39-8
Notes on ERRLIMIT ... 39-8

TPump Specific Parameters ... 39-10
SERIALIZE ... 39-10
PACK ... 39-10
RATE ... 39-10
LATENCY ... 39-10
NOMONITOR ... 39-10
ROBUST .. 39-10
MACRODB ... 39-10

.BEGIN LOAD – PACK and RATE ... 39-12

.BEGIN LOAD – SERIALIZE OFF .. 39-14

.BEGIN LOAD – SERIALIZE ON ... 39-16
Latency ... 39-16

.BEGIN LOAD – ROBUST ON .. 39-18
Sample TPump Script (1 of 2) ... 39-20
Sample TPump Script (2 of 2) ... 39-22

Optional INMOD ... 39-22
TPump Compared with MultiLoad .. 39-24

Economy of Scale and Performance .. 39-24
Multiple Statement Requests.. 39-24
Macro Creation .. 39-24
Locking and Transactional Logic... 39-24

Additional TPump Statements ... 39-26
DATABASE .. 39-26
EXEC(UTE) ... 39-26

Invoking TPump .. 39-28
TPump Statistics .. 39-30
TPump Monitor .. 39-32

Checking Status of a Job .. 39-32
Changing the Statement Rate as a Job Runs .. 39-32

Application Utility Checklist ... 39-34
Summary .. 39-36
Module 39: Review Questions ... 39-38
Lab Exercise 39-1 .. 39-40

 TPump Page 39-4

TPump
TPump (Teradata Parallel Data Pump) provides an excellent utility for low-volume batch
maintenance of large Teradata databases. It enables acquisition of data from the client with
low processor utilization. TPump is as flexible as BulkLoad (an older Teradata utility that is
no longer supported), which it is has replaced.

The functionality of TPump is enhanced by the Support Environment. In addition to
coordinating activities involved in TPump tasks, it provides facilities for managing file
acquisition, conditional processing, and certain DML (Data Manipulation Language) and
DDL (Data Definition Language) activities on the Teradata Database. The Support
Environment enables an additional level of user control over TPump.

TPump uses row-hash locks, making concurrent updates on the same table a possibility.

TPump has a built-in resource governing facility that allows the operator to specify how
many updates occur (the statement rate) minute by minute, and then change the statement
rate while the job continues running. This utility can be used to increase the statement rate
during windows when TPump is running by itself, and then decrease the statement rate later
on if users log on for ad-hoc query access.

TPump can always be stopped and all its locks can be dropped with no ill effect.

The facing page identifies the principal features of the TPump utility.

ATOMIC UPSERT
TPump has support for ATOMIC UPSERT. This enhances active warehouse transactions
by allowing TPump to perform PACKed UPSERT operations without the cost of rollbacks
that were incurred in previous UPDATE then INSERT transactions. UPSERT is a
composite of UPDATE and INSERT operations.

The one-pass UPSERT is called atomic to emphasize that both the UPDATE and the
INSERT are grouped together and executed as a single SQL statement. The syntax has been
modified to allow an optional ELSE in the UPDATE statement. ATOMIC UPSERT makes
inserting faster because it requires only one lock, no one can change the table during the
ATOMIC UPSERT, and the client application sends and receives fewer packets during
inserts, which improves performance.

TPump Page 39-5

TPump

• Allows near real-time updates from transactional systems into the warehouse.

• Performs INSERT, UPDATE, and DELETE operations, or a combination, from the same
source. Up to 128 DML statements can be included for one IMPORT task.

• Alternative to MultiLoad for low-volume batch maintenance of large tables.

• Allows target tables to:
– Have secondary indexes, join indexes, hash indexes, and Referential Integrity.

– Be MULTISET or SET.

– Be populated or empty.

– Tables can have triggers - invoked as necessary

• Allows conditional processing (via APPLY in the .IMPORT statement).

• Supports automatic restarts; uses Support Environment.

• No session limit — use as many sessions as necessary.

• No limit to the number of concurrent instances.

• Uses row-hash locks, allowing concurrent updates on the same table.

• Can always be stopped and locks dropped with no ill effect.

• Designed for highest possible throughput.

– User can specify how many updates occur minute by minute; can be changed as the job runs.

ds186034
Sticky Note
no default for the sessionrow hash lock (rather than table or utility locks) - so restart is easy

 TPump Page 39-6

TPump Limitations
The facing page lists some TPump limitations you should be aware of.

TPump Page 39-7

TPump Limitations

• Use of SELECT is not allowed.

• Concatenation of data files is not supported.

• Exponential operators are not allowed.

• Aggregate operators are not allowed.

• Arithmetic functions are not supported.

• There is a limit of four IMPORT commands within a single TPump "load" task.

• In using TPump with dates before 1900 or after 1999, the year portion of the
date must be represented by four numerals (yyyy).

– The default of two numerals (yy) to represent the year is interpreted to be the 20th
century.

– The correct date format must be specified at the time of table creation.

 TPump Page 39-8

.BEGIN LOAD Statement
The format of the .BEGIN LOAD statement is:

Notes on CHECKPOINT
Note that for TPump, only the frequency option is used for checkpoints. If you specify a
CHECKPOINT frequency of more than 60, TPump terminates the job. Specifying a
CHECKPOINT frequency of zero bypasses the check pointing function.

Notes on ERRLIMIT
In extreme cases (all records have errors), if the number of statements in each request
(PACK factor) is greater than the ERRLIMIT, the job can stop due to exceeding the
ERRLIMIT, producing no error table rows. To avoid this, set the ERRLIMIT greater than
the PACK factor.

TPump Page 39-9

.BEGIN LOAD Statement

Many of the .BEGIN parameters are similar to those for MultiLoad.

.BEGIN LOAD
SESSIONS max [min] (required)
ERRORTABLE tablename (defaults to jobname_ET)
ERRLIMIT errcount [errpercent]
CHECKPOINT frequency (default is 15 minutes)
TENACITY hours (default is 4)
SLEEP minutes (default is 6)
NOTIFY OFF [LOW, …] (default is OFF)

However, TPump has numerous parameters on the .BEGIN LOAD statement
that are unique to TPump.

SERIALIZE ON | OFF (default ON if UPSERT)
PACK number (default is 20, max is 600)

PACKMAXIMUM (use maximum pack factor)
RATE number (default is unlimited)

LATENCY number (range is 10 – 600 seconds)
NOMONITOR (default is monitoring on)

ROBUST ON | OFF (default is ON)

MACRODB dbname (default is logtable dbase) ;

ds186034
Sticky Note
ML=2 per user table = error tableML one err table for all user tableTPUMP

 TPump Page 39-10

TPump Specific Parameters
There are a number of parameters specific to TPump.

SERIALIZE
If ON, this options guarantees that operations on a row occur serially. If SERIALIZE is specified
without ON or OFF, the default is ON. If SERIALIZE is not specified, the default is OFF unless the
job contains an UPSERT operation which causes SERIALIZE to default to ON. This feature is
meaningful only when a primary index for the table is specified by using the KEY option with the
FIELD command.

 Ex. .FIELD ACCTNUM * INTEGER KEY;

PACK
Specifies the number of statements to pack into a multiple-statement request. Packing improves
network/channel efficiency by reducing the number of sends and receives between the application
and Teradata.

RATE
Specifies the initial maximum rate at which statements are sent to the Teradata RDBMS per minute.
If the statement rate is either zero or unspecified, the rate is unlimited. If the statement rate is less
than the statement packing factor, TPump sends requests smaller than the packing factor. If the
TPump monitor is in use, the statement rate can be changed later.

LATENCY
Allows TPump to commit to Teradata any data sitting in the buffer longer than the LATENCY value.
Allows TPump to become a multi -threaded application in the event that control of the main thread is
awaiting input from an access module. The range is 10-600 seconds.

NOMONITOR
Prevents TPump from checking for statement rate changes from or update status information for the
TPump Monitor application.

ROBUST
The OFF parameter signals TPump to use “simple” restart logic. In this case, restarts cause TPump
to begin where the last checkpoint occurred in the job. Any processing that occurred after the
checkpoint is redone. This method does not have the extra overhead of additional database writes in
the robust logic. Note, that certain errors may cause reprocessing, resulting in extra error table rows
due to re-executing statements (attempting to re-insert rows) which previously resulted in the errors.

In Robust Mode, Teradata writes 1 database row in the Restart Log table for every SQL transaction.

MACRODB
Specifies the database to contain any macros used by TPump. If not specified, the default database
that TPump uses to place create macros is the same database as the Restart Log table.

TPump Page 39-11

TPump Specific Parameters

Specific TPump .BEGIN LOAD parameters are:

SERIALIZE ON | OFF ON guarantees that operations on a given key combination
(row) occur serially. Used only when a primary index is
specified. KEY option must be specified if SERIALIZE ON.

PACK statements Number of statements to pack into a multiple-statement request.

PACKMAXIMUM Number of statements to pack into a multiple-statement request.

RATE statement Initial maximum rate at which statements are sent per minute.

rate If the statement rate is zero or unspecified, the rate is unlimited.

LATENCY seconds # of seconds before a partial buffer is sent to the database.

NOMONITOR Prevents TPump from checking for statement rate changes from
or update status information for the TPump Monitor.

ROBUST ON | OFF OFF signals TPump to use “simple” restart logic; TPump will
begin where the last checkpoint occurred.

MACRODB dbname Indicate a database to contain any macros used by TPump.

ds186034
Sticky Note
Latency:packing factor like 20 in tpump..latency: longest the tran to sit on queue...we dont wait until we have the buffer fullMACRO..plastic stepsdata parcelsgenerate concrete stepsTPT (specify operator...load operator..build operator)under the operator it does Fload, Mload..-ve:scripts are bigger! TPT is a wordy scripti language...bigger they are, tougher they are to debugnewer customer = TPT(long term direction..)reduce no of trips from client - by using packing factorspackage - also called arrays..array insertsthey might have diff PI value so we still have to hash them but now we pack emTpump is sql generator...sql jobDBQL log...if u have milllion..then milllion entries in the log(something seriazed talkin later..works differently)

 TPump Page 39-12

.BEGIN LOAD – PACK and RATE
PACK specifies the number of statements to pack into a multi-statement request. This
improves network/channel efficiency by reducing the number of sends and receives between
the application and Teradata. Up to a maximum of 600 statements may be specified. If the
TPump parser issues a warning that it has reduced the requested packing rate to a value,
change your script to this value. This will reduce the overhead caused by dynamic adjusting
of TPump.

The Teradata Database enforces a maximum column limit with TPump jobs. This limit is
2550.

Example – if you issue a TPump job as a multi-statement request, with a USING clause that
has 64 columns, you could divide 2560 by 64 to give you the maximum PACK factor you
could use – but note that this will most likely not provide the best performance level, and
will most certainly blow out the (unknown) plastic steps limit. The other restrictions that
must be considered are:

 64K message size limit
 TPump limit of 2430 statements
 Teradata USING limit of 2560 columns
 Plastic Steps limit

In order to determine the best PACK rate for a TPump job, you need to experiment with
various numbers. As you increase the PACK rate, the throughput improvement is great at
first, then falls off and gets worse. Going from a PACK rate of 1 to 2 could provide huge
performance gains, and going from 2 – 4 could be just as beneficial, but moving from 8 to
16 might cause a performance drop. You could run tests at 2, 4, 8, 16, 32 and 64 and graph
the results. One goal is to find the “sweet spot” that provides the best performance for your
job, and another goal is to find the maximum PACK rate that your job can use.

PACKMAXIMUM can be used to determine what the MAX PACK can be. Do not run
PACKMAXIMUM against productions jobs, because it determines the PACK factor by trial
and error. Do this once, in a test situation, to determine the maximum PACK factor you
could employ.

NOTE: Clean Data
 If your data has errors in it, larger packs can hurt – this is because of the way TPump

handle errors. If you have a few hundred statements and an error occurs, Teradata rolls
back the entire request, and TPump has to remove the statement and the data, and then
reissue the entire statement. It is very important to have CLEAN data when using
TPump.

TPump Page 39-13

.BEGIN LOAD – PACK and RATE

• PACK specifies the number of statements to pack into a multi-statement
request.

– Improves network/channel efficiency by reducing the number of sends and
receives between the application and Teradata.

– Increasing the PACK rate improves throughput performance – to a certain level.

• Restrictions to consider:
– 64K message size limit

– TPump limit of 2430 statements

– Teradata USING clause limit of 2560 columns

– Teradata Plastic Steps limit

• PACKMAXIMUM – use in testing to help establish a PACK value; do not use in a
production job.

• RATE sets the initial maximum rate at which statements are sent per minute.

– Defaults to unlimited; specify a value to control the number of amount of work sent to
Teradata.

– Example: RATE 12000 PACK 20

12000 20 = 600 packets/minute or approximately 10 packets/second

ds186034
Sticky Note
reducing no of pack from client and TD..."request to step cache"DBQL has a flag in it to indicate itlower the packing factor if we are not using it..."RATE"slow TPUMP jobs at diff timescause same LAN as the users...so TPUMP can slow down LAN- user trbl eneso RATE can be set12K-20= 600pack/min=10p/sso thats what the client will sendso gives a break users can loginWalmart has 1000T/secondother customer 7-8T/second(its basically a throttle)slowing down to open up LAN or other system resources...

ds186034
Sticky Note
so these are the 2 options on begin load...there are more..

 TPump Page 39-14

.BEGIN LOAD – SERIALIZE OFF
With SERIALIZE OFF, statements are executed on the first session available; hence,
operations may occur out of order.

The example on the facing page illustrates how transactions are processed by TPump.

TPump Page 39-15

.BEGIN LOAD – SERIALIZE OFF

• With SERIALIZE OFF, transactions are processed in the order they are encountered and
placed in the first available buffer. Buffers are sent to PE sessions and different PEs
process the data independently of other PEs.

• SERIALIZE OFF does not guarantee the order in which transactions are processed.

Transaction
File

PI Time
01 8:00
03 8:01
02 8:02
01 8:03
04 8:04
05 8:05
03 8:06
01 8:07
08 8:08
06 8:09
07 8:10
01 8:11
03 8:12
02 8:13

Session 1

01 8:00
03 8:01
02 8:02
01 8:03

08 8:08
06 8:09
07 8:10
01 8:11

Session 2

04 8:04
05 8:05
03 8:06
01 8:07

03 8:12
02 8:13

AMP
0

AMP
1

AMP
2

AMP
3

AMP
N

AMP
…

TPump
Buffers

01 8:00
03 8:01
02 8:02
01 8:03

04 8:04
05 8:05
03 8:06
01 8:07

08 8:08
06 8:09
07 8:10
01 8:11

:
: Teradata

This set of transactions
may be processed first.

ds186034
Sticky Note
Packing factor = 4tranaction has time and logic dependencyin logic order...logic dependencyif serialized is off then no guaranty of transaction in place...cause if not then TPump will pack it and it will be different sessionsand so withdrawal is made before the deposit in our example

ds186034
Sticky Note
multiple withdrawals

 TPump Page 39-16

.BEGIN LOAD – SERIALIZE ON
SERIALIZE ON tells TPump to partition the input records across the number of sessions it
is using, ensuring that all input records that touch a given target table row (or that contain
the same non-unique primary index value, for example) are handled by the same session.

SERIALIZE ON is useful for two reasons:

1. The order that the updates are applied is important in this application.
2. There is a possibility that rows with the same primary index value will be inserted

through different buffers at the same time.

This second point has performance implications, as SERIALIZE ON can eliminate the lock
delays or potential deadlocks caused by primary index collisions.

This guarantees both input record order and all the records with the same primary index
value will be handled in the same session, and possibly the same buffer. The way
SERIALIZE guarantees input order is to partition on the columns you have specified in your
TPump script as KEY fields. Usually this will be the primary index of the table being
updated, but it may be a different column or set of columns. It could, for example, be the
primary index column(s) of a join index built upon the table being loaded.

SERIALIZE reduces row blocking which could lead to deadlocks between buffers within
the same TPump job, when rows with non-unique primary index values are being processed.
Manual partitioning is required to do the same if the input data is divided between multiple
TPump jobs.

Latency
Latency (seconds) is the number of seconds to use as a threshold for flushing stale buffers,
based on the number of seconds the oldest record is in the buffer. The range is from 10 to 600
seconds. If serialization is off, only the current buffer can be stale. If serialization is on, the number
of stale buffers can range from zero to the number of sessions.

TPump Page 39-17

.BEGIN LOAD – SERIALIZE ON

• SERIALIZE ON can eliminate lock delays or potential deadlocks caused by primary index
collisions, improving performance.

• SERIALIZE guarantees both input record order and all records with the same PI value
will be handled in the same session. It is recommended to specify the PI in the
statement column(s) as KEY.

• KEY Fields determine the PE session in which TPump send the transaction to.

Transaction
File

PI Time
01 8:00
03 8:01
02 8:02
01 8:03
04 8:04
05 8:05
03 8:06
01 8:07
08 8:08
06 8:09
07 8:10
01 8:11
03 8:12
02 8:13

Session 1

01 8:00
02 8:02
01 8:03
01 8:07

08 8:08
06 8:09
01 8:11
02 8:13

Session 2

03 8:01
04 8:04
05 8:05
03 8:06

07 8:10
03 8:12

AMP
0

AMP
1

AMP
2

AMP
3

AMP
N

AMP
…

TPump
Buffers

01 8:00
02 8:02
01 8:03
01 8:07

03 8:01
04 8:04
05 8:05
03 8:06

08 8:08
06 8:09
01 8:11
02 8:13

:
: Teradata

ds186034
Sticky Note
we will build the bufferBUT(u need to know the key..same as PI but doesnt have to be)so transactions will go to one buffer...and then it will goto Parsing Engine (will be processed in the order)

 TPump Page 39-18

.BEGIN LOAD – ROBUST ON
ROBUST ON is the default for all TPump jobs. By inserting some extra information about
the rows just processed into the database log table at the completion of each buffer’s request,
TPump has a way to avoid re-applying rows that have already been processed in the event of
a restart.

The ROBUST ON variable causes a row to be written to the log table each time a buffer has
successfully completed its updates. These mini-checkpoints are deleted from the log when a
checkpoint is taken, and are used during a restart to identify which rows have already been
successfully processed since the most recent checkpoint was taken, then bypassing them on
a restart. The larger the TPump pack factor, the less overhead involved in this activity.

ROBUST ON is particularly important if re-applying rows after a restart would cause either
a data integrity problem or have an unacceptable performance impact. ROBUST ON is
advisable for these specific conditions:

1. INSERTs into multi-set tables, as such tables will allow reinsertion of the same rows
multiple times.

2. When updates are based on calculations or percentage increases
3. If pack factors are large, and applying and rejecting duplicates after a restart would be

unduly time-consuming.
4. If data is time-stamped at the time it is inserted into the database.

ROBUST ON is always a good idea for TPump jobs that read from queues, but is
particularly important if timestamps are used to record the time of insertion into the
database. The original rows that were inserted before the restart will carry a timestamp that
reflects their insertion time. If a reapply of a row is attempted, the reapplied row will carry a
timestamp that is different, even though all of the other data is identical. To Teradata, this
will appear as a different row with the same primary index value, so duplicate row checking
will not prevent the duplicate insertion. ROBUST ON is needed to keep duplicates from
being added to the table being loaded in the case of restart.

TPump Page 39-19

.BEGIN LOAD – ROBUST ON

• ROBUST ON is the default and recommended option for all TPUMP jobs.

– This option avoids re-applying rows that have already been processed in the event
of a restart.

– Causes a row to be written to the log table each time a buffer has successfully
completed its updates.

– The larger the TPump PACK factor, the less overhead involved in this activity.

• These rows are deleted from the log when a checkpoint is taken.

• ROBUST ON is recommended for these specific conditions:

– INSERTS into multi-set tables, as such tables will allow re-insertion of the same rows multiple
times.

– When UPDATEs are based on calculations or percentage increases.

– If PACK factors are large, and applying and rejecting duplicates after a restart would be time-
consuming.

– If data is time-stamped at the time it is inserted into the database.

• ROBUST ON is always a good idea for TPump jobs that read from queues. It keeps
duplicates from being re-inserted into the table in the event of a restart.

ds186034
Sticky Note
restart logic...check logic...robust off:tpump processing outside TDtpump goes to last check pointrexecutes sql 2nd time..dangerous..cause 2nd time...data integrity!!with robust on..TPUMP does not reprocess 2nd time...looks at the log...leave it on...most peoplealso applies to TPT!

 TPump Page 39-20

Sample TPump Script (1 of 2)
The next few pages provide an example of a TPump script.

Miscellaneous TPump Notes:

 With TPump, all required data is imported; none is obtained from tables already in
the Teradata Database.

 No statement of an IMPORT task may make any reference to a table or row other

than the one affected by the statement.

 TPump rejects UPDATEs that try to change to Primary Index value.

 .DML UPDATE requires a WHERE clause.

 .DML DELETE must not contain any joins

 .DML DELETE cannot have an OR (alternative is to use 2 separate .DML

DELETE statements)

 MARK is default for INSERT, UPDATE, and UPDATE. IGNORE is the default

for UPSERT.

 DUPLICATE – if a duplicate row is created as a result of an UPDATE or an

INSERT (and the table doesn’t support duplicate rows), the duplicate row is either
ignored (IGNORE) or placed (MARK) in the Error_Table.

 MISSING – if a row is missing on an UPDATE or DELETE, the transaction is

either ignored (IGNORE) or placed (MARK) in the Error_Table.

 EXTRA – lets you know if multiple rows are affected. If duplicate rows already

exist and an UPDATE or a DELETE impacts multiple duplicate rows, then either
the duplicates are ignored (IGNORE) or placed (MARK) in the Error_Table.

TPump Page 39-21

Sample TPump Script (1 of 2)

.LOGTABLE restartlog39_tpp;

.LOGON tdpid/username,password;

.BEGIN LOAD SESSIONS 8 SERIALIZE ON
PACK 20 RATE 12000
ERRORTABLE ACT_tpp_ET ERRLIMIT 100 ;

.LAYOUT layout12;
.FIELD table_code 1 CHAR(1);
.FIELD A_accountno 2 INTEGER KEY;
.FIELD A_strnum * INTEGER;
.FIELD A_street * CHAR(25);
.FIELD A_city * CHAR(20);
.FIELD A_state * CHAR(2);
.FIELD A_zipcode * INTEGER;
.FIELD A_balancefor * DECIMAL(10,2);
.FIELD A_balancecur * DECIMAL (10,2);
.FIELD C_customer_number 2 INTEGER KEY;
.FIELD C_last_name * CHAR(30);
.FIELD C_first_name * CHAR(20);
.FIELD C_social_security * INTEGER;
.FIELD T_trans_number 2 INTEGER;
.FIELD T_trans_date * CHAR(10);
.FIELD T_accountno * INTEGER KEY;
.FIELD T_trans_id * CHAR(4);
.FIELD T_trans_amount * DECIMAL(10,2);

ds186034
Sticky Note
same as last labdiffis the word "key"if serialized is on, we need a key wordit does not to have be a PI...but usually is...

 TPump Page 39-22

Sample TPump Script (2 of 2)
The facing page shows the rest of the example TPump script. Note the two IMPORT
clauses.

Note about the USE option with .DML LABEL. TPump uses all of the fields in the layout
in 1) the macro definition, 2) the using clause of the macro definition, and 3) sends them in
the data parcel even if they aren't referenced in the values clause.

 To minimize the amount of data placed into a data parcel, use the USE option to
only specify the fields needed for the SQL statements that are part of the .DML
LABEL.

 A problem can also occur when a field is redefined over another field with an

incompatible data type. Use of the USE option helps avoid this problem.

Optional INMOD
An INMOD is a user exit routine used by TPump to supply or preprocess input records. The
INMOD is specified as part of the IMPORT command.

Major functions performed by an INMOD include:

 Generating records to be passed to TPump.
 Validating a data record before passing it to TPump.
 Reading data directly from one or more database systems like IMS, Total.
 Converting fields in a data record before passing it to TPump.

Because of operational differences between TPump and the older utilities, some changes
have been made to the INMOD utility interface for TPump. For compatibility with
INMODs, the FDLINMOD parameter should be used. The use of this parameter provides
support of existing INMODs, with the some restrictions, as noted in the TPump manual.

TPump Page 39-23

Sample TPump Script (2 of 2)

.DML LABEL lns_Account
USE (A_accountno, A_number, A_street, A_city, A_state, A_zipcode, A_balancefor, A_balancecur);
INSERT INTO Accounts VALUES

(:A_accountno, :A_strnum, :A_street, :A_city, :A_state, :a_zipcode, :A_balancefor, :A_balancecur);

.DML LABEL lns_Customer
USE (C_customer_number, C_last_name, C_first_name, C_social_security);
INSERT INTO Customer VALUES

(:C_customer_number, :C_last_name, :C_first_name, :C_social_security);

.DML LABEL lns_Trans
USE (T_trans_number, T_trans_date, T_accountno, T_trans_Id, T_trans_amount);
INSERT INTO Trans VALUES

(:T_trans_number, :T_trans_date, :T_accountno, :T_trans_Id, :T_trans_amount);

.IMPORT INFILE datafile1 LAYOUT layout12
APPLY lns_Account WHERE table_code = 'A'
APPLY lns_Trans WHERE table_code = 'T'
APPLY lns_Customer WHERE table_code = 'C';

.IMPORT INFILE datafile2 LAYOUT layout12
APPLY lns_Account WHERE table_code = 'A'
APPLY lns_Trans WHERE table_code = 'T'
APPLY lns_Customer WHERE table_code = 'C';

.END LOAD;

.LOGOFF;

ds186034
Sticky Note
no USE st with MLOAD..why laterTPUMP will take it and internally make a MACRO out of it..parameterized macro..what are we specifcyingthese fields..the fields are passed to the macro..if we have a single tableandmaybe no table codeand have fieldsthen no use statement(if no use statementthen take every field and pass it in the same sequenceif i put a filler..BUT RECOMMENDATION IS TO PUT A USE STATEMENT IN IT....if single table..then...

 TPump Page 39-24

TPump Compared with MultiLoad
If you have both MultiLoad and TPump utilities, you may want to know which to use when.
In fact, TPump compliments MultiLoad.

Economy of Scale and Performance
1

MultiLoad performance improves as the volume of changes increases. In phase two of
MultiLoad, changes are applied to the target table(s) in a single pass and all changes for any
physical data block are effected using one read and one write of the block. The temporary
table and the sorting process used by MultiLoad are additional overhead that must be
“amortized” through the volume of changes. TPump, on the other hand, does better on
relatively low volumes of changes because there is no temporary table overhead. TPump
becomes expensive for large volumes of data because multiple updates to a physical data
block will most likely result in multiple reads and writes of the block.

Multiple Statement Requests
The most important technique used by TPump to improve performance is the use of a
multiple statement request. Placing more statements in a single request is beneficial for two
reasons. First, because it reduces network overhead since large messages are more efficient
than small ones. Second, (in ROBUST mode) it reduces TPump recovery overhead which
amounts to one extra database row written for each request. TPump automatically packs
multiple statements into a request based upon the PACK specification in the BEGIN LOAD
command.

Macro Creation
For efficiency, TPump uses macros to modify tables, rather than the actual DML commands.
The technique of changing statements into equivalent macros before beginning the job
greatly improves performance.

 The size of network (and channel) messages sent to the Teradata Database by
TPump is reduced.

 Teradata Database parsing engine overhead is reduced because the execution plans
(or “steps”) for macros are cached and re-used.

Locking and Transactional Logic

In contrast to MultiLoad, TPump uses row hash locking to allow for some amount of
concurrent read and write access to its target tables. At any point TPump can be stopped and
target tables are fully accessible. If TPump is stopped, however, depending on the nature of
the update process, it may mean that the “relational” integrity of the data is impaired.

This differs from MultiLoad, which operates as a single logical update to one or more target
tables. Once MultiLoad goes into phase two of its logic, the job is “essentially” irreversible
and the entire set of table(s) is locked for write access until it completes. If TPump operates
on rows that have associated “triggers,” the triggers are invoked as necessary.

TPump Page 39-25

TPump Compared with MultiLoad

• MultiLoad performance improves as the volume of changes increases.

• TPump does better on relatively low volumes of changes.

• TPump improves performance via a multiple statement request.

• TPump uses macros to modify tables rather than the actual DML commands.

Example of macro name – M20110826_105647_01136_001_001

• MultiLoad uses the DML statements.

• TPump uses row hash locking to allow for concurrent read and write access
to target tables. It can be stopped with target tables fully accessible.

• In Phase 4, MultiLoad locks tables for write access until it completes.

 TPump Page 39-26

Additional TPump Statements
The facing page identifies additional statements used by TPump.

DATABASE
The DATABASE statement changes the default database qualification for all unqualified
DML and DDL statements. It only affects “native SQL” commands, and has no effect on
the BEGIN LOAD command. The DATABASE command does affect INSERT, UPDATE,
DELETE and EXEC statements issued as part of a load. (When TPump logs on sessions, it
immediately issues a DATABASE statement on each session.)

The DATABASE command does not affect the placement of TPump macros.

EXEC(UTE)
4

The EXECUTE statement specifies a user-created macro for execution. The macro named in
this statement is resident in the Teradata RDBMS and specifies the type of DML statement
(INSERT, UPDATE, DELETE, or UPSERT) being handled by the macro.

The EXECUTE command immediately follows .DML LABEL;

Rules for user-created macros include:

 TPump expects the parameter list for any macro to exactly match the FIELD list
specified by the LAYOUT in the script. FILLER fields are ignored. If the USE
clause is used in the DML statement, TPump expects the parameter list for every
macro in the DML statement to exactly match the field list specified by the USE
clause.

 The macro should specify a single prime index operation: INSERT, UPDATE,

DELETE, or UPSERT. TPump reports an error if the macro contains more than one
supported statement. If the EXECUTE statement is replacing an INSERT, UPDATE,
DELETE, or UPSERT statement in a job script, the EXECUTE statement must be
placed at the same location as the INSERT, UPDATE, DELETE, or UPSERT
statement that it replaces.

TPump Page 39-27

Additional TPump Statements

DATABASE Changes the default database qualification for all DML statements.

EXEC(UTE) Specifies a user-created macro for execution. The macro named is
resident in the Teradata database.

EXECUTE [database.]macro_name UPDATE/UPD

INSERT/INS ;

DELETE/DEL

UPSERT/UPS

DATABASE database ;

Commands and statements in common with MultiLoad:

ACCEPT IMPORT RUN
DELETE INSERT SET
DISPLAY LAYOUT SYSTEM
DML LOGON TABLE
FIELD LOGOFF UPDATE
FILLER LOGTABLE
IF / ELSE / ENDIF ROUTE

ds186034
Sticky Note
user defined macros are also supported

 TPump Page 39-28

Invoking TPump
The facing page displays the commands you can use to execute TPump.

TPump Page 39-29

Invoking TPump

Network Attached Systems: tpump [PARAMETERS] < scriptname >outfilename

Channel-Attached MVS Systems: // EXEC TDSTPUMP PARM= [PARAMETERS]

Channel-Attached VM Systems: EXEC TPUMP [PARAMETERS]

Channel Network Description
Parameter Parameter
BRIEF -b Reduces print output runtime to the least information

required to determine success or failure.

CHARSET=charsetname -c charsetname Specify a character set or its code. Examples are EBCDIC,
ASCII, or Kanji sets.

ERRLOG=filename -e filename Alternate file specification for error messages; produces a
duplicate record.

"tpump command" -r 'tpump cmd' Signifies the start of a TPump job; usually a RUN FILE
command that specifies the script file.

MACROS -m Keep macros that were created during the job run.

VERBOSE -v Additional statistical data in addition to the regular statistics.

< scriptname Name of file that contains TPump commands and SQL
statements.

> outfilename Name of output file for TPump messages.

 TPump Page 39-30

TPump Statistics
For each task, TPump accumulates statistical items and writes them to the customary output
destination of the external system, SYSPRINT/stdout (or the redirected stdout), or the
destination specified in the ROUTE command.

Candidate records considered. The number of records read.

Apply conditions satisfied. Represents the number of statements sent to the RDBMS.

If there are no rejected or skipped records, this value is equal to the number of
candidate records, multiplied by the number of APPLY statements referenced in
the import.

Candidate records rejected. Represents the number of records that are rejected by the

TPump client code because they are formatted incorrectly.

Candidate records with data errors (not applied). Represents the number of records

resulting in errors on the Teradata Database. These records are found in the
associated error table.

Statistics for Apply Label. This area breaks out the total activity count for each

statement within each DML APPLY clause. The ‘Type’ column contains the values
U for update, I for insert and D for delete. Note that unlike the other reported
statistics, these values are NOT accumulated across multiple imports.

TPump Page 39-31

TPump Statistics

. IMPORT 1 Total thus far

. ========= ===========
Candidate records considered:.....… 200 200
Apply conditions satisfied:.......… 200 200
Candidate records not applied:....... 0 0
Candidate records rejected:.......... 0 0

**** Statistics for Apply Label : UPSERT_ACCOUNT
Type: U
Database: STUDENT130
Table or Macro Name: Accounts
Activity: 100
Type: I
Database: STUDENT130
Table or Macro Name: Accounts
Activity: 100

**** 10:31:48 UTY6677 Loading phase statistics
Elapsed time: 00:00:00:01 (dd:hh:mm:ss)
CPU time: 0.01 Seconds
MB/sec: 0.015
MB/cpusec: 1.5

**** 10:31:48 UTY0821 Error table STUDENT130.errtable_tpp is EMPTY, dropping table.

0018 .LOGOFF;

Note: These
statistics are not for
the example TPump
job shown earlier in
this module.

 TPump Page 39-32

TPump Monitor
The TPump Monitor facility provides run-time monitoring of the TPump job. It allows
users, via a command line interface, to track and alter the rate at which requests are issued to
the Teradata Database.

To install the TPump tables, views, and macros for the TPump monitor facility, modify the
following Linux script (with DBC password) and execute it with BTEQ.

 /opt/teradata/client/14.00/sample/tpumpar.csql

With Windows XP, the script to execute with BTEQ is:

 C:\Program Files\Teradata\Client\14.00\tpump\tpumpar.csql

The monitor interface is implemented by creating the table named
SysAdmin.TPumpStatusTbl. When this table is present, TPump places rows into this table
each minute a TPump job executes. This table is required to use the monitor functionality
but is otherwise optional.

Checking Status of a Job
TPump users can find out the status of an import by querying against this table. TPump
updates this table approximately once every minute.

Changing the Statement Rate as a Job Runs
TPump users can alter the statement rate of an import by updating this table. TPump
examines this table approximately once every minute.

TPump Page 39-33

TPump Monitor

Tool to control and track TPump imports.

• The table SysAdmin.TPumpStatusTbl is updated once a minute.

• Alter the statement rate on an import by updating this table using macros.

• Use macros and views to access this table.

DBA Tools

View

• SysAdmin.TPumpStatus - view allows DBAs to view all of the TPump jobs.

Macro

• SysAdmin.TPumpUpdateSelect - allows DBAs to manage individual TPump jobs.

User Tools

View

• SysAdmin.TPumpStatusX - allows users to view their own TPump jobs.

Macro

• TPumpMacro.UserUpdateSelect - allows users to manage their own jobs.

ds186034
Sticky Note
rate can be changed dynamically!

 TPump Page 39-34

Application Utility Checklist
The facing page adds the TPump capabilities to the checklist.

Automatic Restart – If the Teradata server restarts, the TPump utility will retry to connect to
the Teradata database automatically and restart automatically.

TPump Page 39-35

Application Utility Checklist

Feature BTEQ FastLoad FastExport MultiLoad TPump

DDL Functions ALL LIMITED Yes (SE) Yes (SE) Yes (SE)

DML Functions ALL INSERT SELECT INS/UPD/DEL INS/UPD/DEL

Multiple DML Yes No Yes Yes Yes

Multiple Tables Yes No Yes Yes Yes

Protocol Used SQL FASTLOAD EXPORT MULTILOAD SQL

Conditional APPLY No No No Yes Yes

Data Conversion Yes 1 per column Yes Yes Yes

Error Capture No Yes N/A Yes Yes

Error Limits No Yes N/A Yes Yes

User-written Routines No Yes Yes Yes Yes

Automatic Restart No Yes* Yes Yes Yes

Max Load Limit No Yes Yes Yes No

Support Environment (SE) No No Yes Yes Yes

ds186034
Sticky Note
but runs at sql speed

 TPump Page 39-36

Summary
The facing page summarizes some of the important concepts regarding the TPump utility.

TPump Page 39-37

Summary

• Allows near real-time updates from transactional systems into the warehouse.

• Performs INSERTs, UPDATEs, DELETEs, or UPSERTs.

• Alternative to MultiLoad for low-batch maintenance of large databases.

• Uses row-hash locks, allowing concurrent updates on the same table.

• Can always be stopped and locks dropped with no ill effect.

• User can specify how many updates occur minute by minute; can be changed
as the job runs.

 TPump Page 39-38

Module 39: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

TPump Page 39-39

Module 39: Review Questions

Match the item in the first column to its corresponding statement in the second column.

_____ 1. TPump purpose a. Query against TPump status table

_____ 2. MultiLoad purpose b. Concurrent updates on same table

_____ 3. Row hash locking c. Low-volume changes

_____ 4. PACK d. Use to specify how many statements to put in a multi-statement
request

_____ 5. MACRO e. Large volume changes

_____ 6. Statement rate change f. Used instead of DML

 TPump Page 39-40

Lab Exercise 39-1
Check your understanding of the concepts discussed in this module by completing the lab
exercises as directed by your instructor.

 .LOGON …;
 .EXPORT DATA FILE = data39_1, CLOSE;
 EXEC AP.Lab39_1;
 .EXPORT RESET
 .LOGOFF;

The size of data39_1 should be 15,600 bytes.

The execution of the macro AP.Lab39_1 will cause 200 rows to be created in data39_1. 100
of these records will be used to update 100 existing rows in the Accounts table and 100 of
the records will be used to add 100 new rows (accounts) to the Accounts table.

There is no code (A) since all of the records apply to the Accounts table.

Each record in the data39_1 file has the same data as the columns in the Accounts table.

Data row for Accounts table
Data row for Accounts table

:

A technique that can be used to create Linux scripts without using vi or vim is to do the
following:

1. Enter your commands (job/script) in a Notepad file.
2. Highlight the text and use the mouse to choose the Edit Copy function.

Switch to your terminal window where Linux is running and …

3. cat > lab39_13.tpp (or whatever filename you wish)

 Use the mouse to choose the Edit Paste function
 To exit the cat command, press either the DELETE key or CNTL C.

TPump Page 39-41

Lab Exercise 39-1

Lab Exercise 39-1

Purpose
In this lab, you will perform an operation similar to lab 38-2, using TPump instead of MultiLoad. For
this exercise, use 4 SESSIONS with a PACK of 20 and a RATE of 4800.

What you need
Data file (data39_1) created from macro AP.Lab39_1.

Tasks
1. Delete all rows from the Accounts Table and use the following INSERT/SELECT to create 100 rows of

test data:

INSERT INTO Accounts SELECT * FROM AP.Accounts WHERE Account_Number < 20024101;

2. Export data to the file data39_1 using the macro AP.Lab39_1.

3. Prepare a TPump script which performs an UPSERT operation (INSERT MISSING UPDATE) on your
Accounts table as a single operation. Use the data from data39_1 as input to the UPSERT script. If
the row exists, UPDATE the Balance_Current with the appropriate incoming value. If not, INSERT a
row into the Accounts table. In your script, be sure to set a statement rate.

4. Run the script.

5. Validate your results. TPump should have performed 100 UPDATES and 100 INSERTS with a final
return code of zero.

ds186034
Sticky Note
this is an upsert operation(100upd followed by 100 ins)

 TPump Page 39-42

Notes

Choosing a Utility Page 40-1

Module 40

Teradata Proprietary and Confidential

Choosing a Utility

After completing this module, you will be able to:

 Describe various solutions to applications.

 Compare how different utilities work for the same
application.

 Choosing a Utility Page 40-2

Notes

Choosing a Utility Page 40-3

Table of Contents

Maximum Number of Load Jobs ... 40-4
Maximum Number of Load Jobs (cont.) .. 40-6
Solution 1: Update or Delete vs. Insert/Select ... 40-8
Solution 2: SQL Update vs. MultiLoad or TPump ... 40-10
Solution 3: SQL Update vs. FastLoad... 40-12
Utility Considerations .. 40-14
Module 40: Various Ways of Performing an Update... 40-16
Module 40: Choosing a Utility Exercise .. 40-18

 Choosing a Utility Page 40-4

Maximum Number of Load Jobs
With Teradata V2R6.0 (and previous releases), the DBS Control parameter MaxLoadTasks
has a maximum limit of 15. One of the reasons that this limit is enforced is to prevent
FastLoad, MultiLoad, and FastExport jobs from using up all available AMP worker tasks
(AWTs).

In Teradata Database V2R6.1, the maximum number of concurrent load jobs is increased.

 For FastLoad and MultiLoad Jobs: up to 30 concurrent jobs

 For FastExport Jobs: Up to 60 jobs (minus the number of active FastLoad and

MultiLoad jobs)

Users should be aware that running more load/unload utilities may impact other work and
applications running concurrently (such as DSS queries or tactical queries) because of
higher demand of the following resources: number of sessions, CPU, I/O, and memory.

This new feature is controlled by a new internal DBS Control parameter named
MaxLoadAWT. (AWT – AMP Worker Tasks).

When MaxLoadAWT is zero (by default), this feature is disabled. Everything works as
before. The DBS control flag MaxLoadTasks which specifies the concurrency limit for
FastLoad, MultiLoad, and FastExport cannot be greater than 15.

When MaxLoadAWT is greater than zero, this feature is effectively enabled. This
parameter specifies the maximum number of AWTs that can be used by FastLoad and
MultiLoad jobs. The maximum allowable value is 60% of the total AWTs. Usually the
maximum number of AWTs is 80; therefore, this maximum is 48.

Characteristics of this feature (when enabled) include:

 MaxLoadTasks only controls FastLoad and MultiLoad jobs. Its maximum limit is
increased from 15 to 30.

 FastExport jobs are managed differently:

– FastExport is no longer controlled by MaxLoadTasks flag.
– FastExport limit is 60 minus number of active FastLoad and MultiLoad jobs.
– A FastExport job is only rejected if the total number of active utility jobs is 60.
– The minimum number of FastExport jobs that can run is 30. A FastExport job

may be able to run even when FastLoad and MultiLoad jobs are rejected.

Answer to question 1 is 45. (60 – 15 FL/ML)
Answer to question 2 is 40. (60 – 20 FL/ML) 5 of the FL/ML jobs will be waiting.

Choosing a Utility Page 40-5

Maximum Number of Load Jobs

There are two DBSControl parameters that control the maximum number of concurrent
load jobs.

– MaxLoadTasks and MaxLoadAWT (AWT – AMP Worker Tasks)

If MaxLoadAWT = 0 (the default), then MaxLoadTasks has a range of 0 to 15.

• 15 is the maximum number of FastLoad, FastExport, and MultiLoad jobs

If MaxLoadAWT > 0, then MaxLoadTasks has a range of 0 to 30.

• 30 is the maximum number of FastLoad and MultiLoad jobs

• 60 is the maximum number of FastLoad, MultiLoad, and FastExport jobs.

– Therefore, 60 – (# FL + # ML) = # possible FastExport jobs (i.e., 30 to 60)

Example situations: Assume MaxLoadTasks = 20 (and MaxLoadAWT > 0)

1. Assume 5 ML jobs and 10 FL jobs are running. How many FastExports can run?

2. Assume 15 ML jobs and 10 FL jobs have been started. How many FastExports can run?

ds186034
Sticky Note
shldnt have put FastExport cause it doesnt put that much load into the system but they have itno of amp worker tasks(to have more concurrent load jobs running)

ds186034
Sticky Note
we can run as many as 60 FE jobs

ds186034
Sticky Note
20,,its a big noif this is the scenario....=60-15=45=60-20=40(5 are sleeping)

 Choosing a Utility Page 40-6

Maximum Number of Load Jobs (cont.)
If the MaxLoadAWT parameter is greater than 0, then the maximum number of concurrent
load utilities is controlled by both MaxLoadTasks and MaxLoadAWT parameters.

A new FastLoad or MultiLoad job is allowed to start only if BOTH MaxLoadTasks AND
MaxLoadAWT limits are not reached.

FastLoad and MultiLoad jobs use a different number of AWTs depending on the phase the
utility is in.

 Utility # of AWTs needed
 FastLoad Phase 1 (Acquisition) 3
 Phase 2 (Sort) 1
 MultiLoad Acquisition Phase 2
 Application Phase 1
 FastExport All phases 0*

* The count of AWTs only applies to FastLoad and MultiLoad jobs. FastExport
jobs use AWTs, but the count doesn’t apply. The SELECT phase of FastExport
actually uses 2 AWTs, but these are executed as normal DML so no AWT is
counted toward the AWT limit. The export phase is processed by the Load
Control Task (LCT) so no AWT is required.

For example, with MaxLoadAWT = 48 and MaxLoadTasks = 30, possible job mixes
include:

 16 FastLoad jobs in Phase 1, or
 9 FastLoad jobs in Phase 1 and 21 FastLoad jobs in Phase 2, or
 24 MultiLoad jobs in Acquisition Phase, or
 5 MultiLoad jobs in Acquisition Phase and 25 MultiLoad jobs in Application Phase

Answer to question 1 is No. (The limit of MaxLoadAWT is already reached.)
Answer to question 2 is No. (The limit of MaxLoadTasks is already reached.)
Answer to question 3 is Yes. (Neither limit has been reached.)

Choosing a Utility Page 40-7

Maximum Number of Load Jobs (cont.)

If MaxLoadAWT > 0, then these rules are followed to start new load jobs:

• A FastExport job is started if the total count of load jobs < 60.

• A FastLoad (FL) or MultiLoad (ML) is started if either limit is not exceeded.
– MaxLoadTasks (0 – 30); has the limit of FL/ML load jobs been reached?
– MaxLoadAWT (0 – 48*); has the limit of FL/ML AWTs been reached?

• Maximum number is 60% of system AWTs (typically 80)

– If the answer is NO to both limits, then the FL or ML job can be started.

• TASM utility throttles (if used) override the MaxLoadTasks and MaxLoadAWT values
and uses 60% as the setting for the AWTs.

• The # of AWTs used by FastLoad and MultiLoad jobs depends on the utility phase.

Utility Phase # of AWTs Phase # of AWTs

FastLoad Phase 1 (Acquisition) 3 Phase 2 (Sort) 1

MultiLoad Acquisition Phase 2 Application Phase 1

Example situations: MaxLoadTasks (MLT) = 20 and MaxLoadAWTs (MLA) = 40

Can a new FastLoad job be started given the following?

1. Assume system is currently using 16 MLTs and 40 MLAs?
2. Assume system is currently using 20 MLTs and 32 MLAs?
3. Assume system is currently using 18 MLTs and 35 MLAs?

ds186034
Sticky Note
80 amp worker task / amp = most system have it...

ds186034
Sticky Note
FL job in phase 1, we set upt 3 amp worker task per ampuntilp1 finishes(10 concurrent - 10*3=30 outof 62 avail AWT tied up just to get load doneso very expensive)ML is not that expensive = p2 = 2so diff phases we use diff AWTsMLT=20(means 20ML and FL job concurrently)1) wont start cause hit2) wont start either3) yes 1 FL job can start..2nd wont startcause 1st will take 3AWTandnow second will also need 3AWT and now i will exceed the limit so i cannotbut for the same eqn i can start MLcause i will only be at 40so ML okif it doesnt start then it will go to....sleep(6mins)

 Choosing a Utility Page 40-8

Solution 1: Update or Delete vs. Insert/Select
As fast or as flexible as the application utilities might be, you sometimes need to employ a
certain amount of ingenuity and imagination to make the best use of them.

Consider the simple global update on the facing page. It is a long-running table update that
requires maintenance of a transient journal row for every row changed. In the event of
failure, it will need to roll back the transaction as if it had never begun. The longer the
transaction takes to complete, the greater the chance of failure.

Another way of performing this task might be to create a new table and populate it using the
"fast path" INSERT/SELECT.

Another approach you might consider is to delete unneeded rows from a table and preserve
the rows you wish to keep.

By looking at the problem in a different way, you can use the fast INSERT/SELECT
performance to handle a series of updates.

Choosing a Utility Page 40-9

Solution 1: Update or Delete vs. Insert/Select

UPDATE Customer
SET Credit_Limit = Credit_Limit * 1.20 ;

DELETE FROM Trans
WHERE Trans_Date < DATE '2000-01-01';

• SQL statements are treated as single transactions.

• This requires Transient journal space for every updated or deleted row in the target
table until the transaction finishes.

• A failure will cause the system to back out all changes that have been completed (which
could take hours if the table and the number of completions are very large).

CREATE TABLE Cust_N AS Customer WITH NO DATA ;
INSERT INTO Cust_N

SELECT … , Credit_Limit * 1.20 FROM Customer ;
DROP TABLE Customer ;
RENAME TABLE Cust_N TO Customer ;

CREATE TABLE Trans_N AS Trans WITH NO DATA;
INSERT INTO Trans_N SELECT * FROM Trans

WHERE Trans_Date > DATE '1999-12-31';
DROP TABLE Trans;
RENAME TABLE Trans_N TO Trans;

• This approach reduces the number of changes that would have to be backed out by the
system in case of a failure.

• The “Fast path” INSERT / SELECT offers the fastest possible transfer of data that can
be achieved in a single SQL statement.

• The same approach could also be used to delete rows from a table, simply by not
selecting them for insert.

Update all customers credit limit by 20%. Delete all transactions prior to 2000.

ds186034
Sticky Note
we didnt twoce the space at system level(like above st)yes for user levelcause no transient journal overheadsame like select * intobasically a no log operationfast path means = 1) no logand2) its done amp local

ds186034
Sticky Note
partition would be good choicebut ML delete task is designed for this situation-- does not use Tjournal

 Choosing a Utility Page 40-10

Solution 2: SQL Update vs. MultiLoad or TPump
The facing page displays another solution that uses the speed and sophisticated functionality
of MultiLoad to attain good performance by writing updates to disk a block at a time,
effectively removing the disk as a performance constraint.

If the percentage of updates is small as compared to the number of rows in the table, TPump
may be a good choice.

Choosing a Utility Page 40-11

Solution 2: SQL Update vs. MultiLoad or TPump

SQL Update

UPDATE Customer
SET credit_limit = credit_limit * 1.20

WHERE over_limit_count > 0
AND late_payment_count = 0 ;

Full table Write lock

Full table scan

Potentially large Transient Journal

FastExport

SELECT customer_number, phone, credit_limit * 1.20
FROM Customer

WHERE over_limit_count > 0
AND late_payment_count = 0 ;

MultiLoad or TPump
UPDATE Customer

SET credit_limit = :credit_limit
WHERE phone = :phone

AND customer_number = :customer_number;

Full table Read lock

Full table scan

No Transient Journal

MultiLoad advantages -
• Sorts updates by Primary Index.
• Each data block is accessed only

once.
• Full automatic restart under all

conditions.

If the percentage of updates compared
to number of table rows is large, use
MultiLoad. If the percentage is small,
use TPump.

ds186034
Sticky Note
which means that i have a non tpa node(an assumption)space outside TD is also cheaper(this is all just to show how customers get creative..how transient journal is avoided)hoping that its a non tpa node...so all fast

 Choosing a Utility Page 40-12

Solution 3: SQL Update vs. FastLoad
FastLoad is limited in functionality in that, like the optimized INSERT/SELECT, it is used
to insert rows into an initially empty table.

Even so, FastLoad is very fast. If you export the rows you wish to update to the host
(updating the values in the process), and add the remainder of the rows, you have a complete
host-resident file suitable for recovery. You can then take full advantage of FastLoad’s
excellent performance to insert all the rows into a new table:

 Create a new table.
 Use FastLoad to populate it at high speed.
 Drop the old table.
 Rename the new table to the old table name.

Again, by looking at the problem from a different perspective, you are able to employ the
high speed of FastLoad to perform updates to a populated table.

 Note: The examples shown for all solutions illustrate updates to the target table. Each
of the solutions could equally be changed to delete rows from the target table.

Choosing a Utility Page 40-13

Solution 3: SQL Update vs. FastLoad

SQL Update

UPDATE Customer
SET credit_limit = credit_limit * 1.20

WHERE over_limit_count > 0
AND arrears_count = 0 ;

Full table Write lock

Full table scan

Potentially large Transient Journal

FastExport

SELECT . . . , credit_limit * 1.20, . . .
FROM Customer

WHERE over_limit_count > 0
AND arrears_count = 0

; SELECT *
FROM Customer

WHERE NOT (over_limit_count > 0 AND
arrears_count = 0);

DELETE FROM Customer;

FastLoad

Full table Read lock

Full table scan

No Transient Journal

An alternate solution when the
external disk space is capable of
housing the entire table.

 Choosing a Utility Page 40-14

Utility Considerations
While a selection of tools is available for batch-type processing, application success relies
principally on choosing the right one.

In order to make a good choice, you have to ask the right questions. Some of these are
obvious, such as “Is the utility supported on the host?” Other important concerns are less
apparent: “What happens when things go wrong?” “Does this utility allow me to work
within the window required by the user?”

To get a count of load jobs that are currently executing, you can use the following SQL.

SELECT COUNT(DISTINCT LogonSequenceNo) AS Utility_Cnt
FROM DBC.SessionInfo
WHERE Partition IN ('Fastload', 'Export', 'MLoad');

Choosing a Utility Page 40-15

Utility Considerations

• Utility support
– Has the customer purchased the utility and does it run on your host?

• Restart capability
– Is there a restart log?
– What happens with a Teradata restart?
– What happens if the host fails?

• Multiple sessions
– Does the utility support multiple sessions?
– How do you choose the optimum number?

• Error handling
– Are errors captured in an error table?
– Do you have control over error handling?

• Are special processing routines needed?
– Does the utility support INMODs, OUTMODs, or AXSMODs?

• Does the utility meet performance requirements?
– Does the job fit your batch window?
– Do the tables require continuous (7 x 24) access by the user groups?

ds186034
Sticky Note
not all customers have all utilitiesthe last one is probably most impML not applicable...if it does not satisfy the open window

 Choosing a Utility Page 40-16

Module 40: Various Ways of Performing an Update
Consider this simple global update of a large table. We use a bank application since you are
probably familiar with bank accounts, checks, deposits, etc.

At the end of each month, before it prints the bank statements, the bank (which maintains
derived data for the account balance) is required to set the value of the Balance_Forward to
Balance_Current. The data is already available in the Teradata database.

Based on what you have learned, try to evaluate the listed methods fastest to slowest.

Choosing a Utility Page 40-17

Module 40: Various Ways of Performing an Update

Prior to producing a monthly statement, the Bank sets the Balance_Forward
amount equal to the Balance_Current for 900,000 accounts:

UPDATE Accounts
SET Balance_Forward = Balance_Current ;

Which is the fastest method?

1. Submit the statement above.

2. INSERT/SELECT revised values to a new table, drop the original table and rename the
new table.

3. FastExport the data rows to the server and UPDATE using MultiLoad.

4. FastExport the data rows to the server and FastLoad these rows back to a new table.
Drop the old table and rename the new.

Order the above Fastest to Slowest , , ,

 Choosing a Utility Page 40-18

Module 40: Choosing a Utility Exercise
The facing page contains two scenarios. Make the best choice of which utilities to use for
each of the two scenarios.

Choosing a Utility Page 40-19

Module 40: Choosing a Utility Exercise

1. A sales table currently contains 24 months of transaction data. At the end of each month, 250 million
rows are added for the current month and 250 million rows are removed for the oldest month. There
is enough PERM space to hold 30 months worth of data.

Which choice (from below) makes the most sense? ______

2. The customer decides to partition the table by month and maintain each month’s data in a separate
partition. At this time, only the most recent 24 months need to be maintained. At the end of each
month, data is loaded into a new monthly partition and the oldest month is removed. The partition
expression does not include the NO RANGE partition.

Which choice (from below) makes the most sense? ______

Utility Choices:

a. Use FastLoad to add new data to existing table, and ALTER TABLE to remove old data.

b. Use MultiLoad to add new data to existing table, and ALTER TABLE to remove old data.

c. Use FastLoad to add new data to existing table, and MultiLoad to remove old data.

d. Use MultiLoad to add new data to existing table, and MultiLoad to remove old data.

e. Use TPump to add new data, and TPump to remove old data.

f. Use TPump to add new data, and ALTER TABLE to remove old data.

ds186034
Sticky Note
a and c nope cause cannot add to existing tabled) delete is only for the delta part not allb) too much data for mli can also use delete-alter table to drop the oldest partition-alter table:no range partition...it just marks the data does not delete it

ds186034
Sticky Note
ML still uses locksstill assuming that we do have the window to do the ML(RBC had along these lines 4 yrs ago)

 Choosing a Utility Page 40-20

Notes

Database Administration and Building the Database Environment Page 41-1

Module 41

Teradata Proprietary and Confidential

Database Administration and
Building the Database Environment

After completing this module, you should be able to:

 Describe the purpose and function of an administrative user.

 Differentiate between creators, owners (parents), and children.

 Describe how to transfer ownership of databases and users.

 Database Administration and Building the Database Environment Page 41-2

Notes

Database Administration and Building the Database Environment Page 41-3

Table of Contents

Database Administration .. 41-4
Initial Teradata Database.. 41-6
Administrative User ... 41-8
Owners, Parents and Children .. 41-10
Creating New Users and Databases ... 41-12
Transfer of Ownership ... 41-14
DELETE/DROP Statements .. 41-16
Teradata Administrator – New System .. 41-18
Teradata Administrator – Hierarchy .. 41-20
Summary .. 41-22
Module 41: Review Questions ... 41-24

 Database Administration and Building the Database Environment Page 41-4

Database Administration
The facing page identifies some of the functions of a Teradata Database Administrator
(DBA). These functions include:

 User Management – creation of databases, users, accounts, roles, and profiles
 Space Allocation and Usage – perm, spool, and temporary space
 Access of Objects (e.g., tables, views) – access rights, roles, use of views, etc.
 Access Control and Security – logon access, logging access, etc.
 System Maintenance – specification of system defaults, restarts, data integrity, etc.
 System Performance – use of Priority scheduler, job scheduling, etc.
 Resource Monitoring – use of ResUsage tables/views, query capture (DBQL), etc.
 Data Archives, Restores, and Recovery – ARC facility, Permanent Journals, etc.

Examples of tools available to the Teradata DBA include:

 Use of Data Dictionary/Directory tables and views to manage the system
 Teradata Administrator – graphical Windows tool to assist in administration
 Teradata Manager – suite of Windows tools for performance management, etc.
 Teradata Viewpoint – set of portlets for database monitoring and administration
 Teradata Analyst Toolset – Visual Explain, Index Wizard, Statistics Wizard, and

Teradata SET
 Teradata Dynamic Workload Manager, Teradata Workload Analyzer, and Query

Scheduler – job scheduling facility
 System utilities – e.g., dbscontrol, ferret, rebuild, etc.
 User scripts and 3rd party applications

To do these functions, it is important to understand key concepts such as the Teradata
hierarchy and the concepts of ownership (parents and children). The hierarchy and the
concept of ownership will be discussed in this module.

Acronyms:
 Teradata DWM – Teradata Dynamic Workload Manager
 DBQL – Database Query Log
 DBW – Database Window
 SET – System Emulation Tool

Database Administration and Building the Database Environment Page 41-5

Database Administration

Some of the functions of a Teradata Database Administrator (DBA) include:
• User and Database Management
• Space Allocation and Usage
• Access of Objects (e.g., tables, views, macros, etc.)
• Access Control and Security
• System Maintenance
• System Performance and Resource Monitoring
• Data Archives, Restores, and Recovery

Examples of tools available to the Teradata DBA include:
• Use of Data Dictionary/Directory tables and views to manage the system
• Teradata Administrator – Windows administration utility
• Teradata Manager – suite of Windows tools – e.g., Teradata Performance Monitor
• Teradata Viewpoint – set of portlets for database monitoring and administration
• Teradata Analyst Toolset – Visual Explain, Index Wizard, Statistics Wizard, and SET
• Teradata Dynamic Workload Manager and Teradata Workload Analyzer
• Database Console Window and System utilities – e.g., dbscontrol, ferret, rebuild, etc.
• User scripts and 3rd party applications

To do these functions, it is important to understand key concepts such as …
• Teradata hierarchy and the concepts of ownership (parents and children)

ds186034
Sticky Note
who has what access to which objects...

 Database Administration and Building the Database Environment Page 41-6

Initial Teradata Database
The Teradata Database software includes the following users and databases:

DBC
With the few exceptions described below, a system user named DBC owns all usable disk
space. DBC’s space includes dictionary tables, views and macros discussed in the next
module. The usable disk space of DBC initially reflects the entire system hardware
capacity, less the following:

Sys_Calendar
This user is used to hold the system calendar table and views.

SysAdmin
SysAdmin is a system user with a minimum of space for table storage. SYSADMIN
contains several supplied views and macros as well as a restart table for FastLoad jobs.

SystemFE User
This system user contains special macros used to generate diagnostic reports for Customer
Engineers (field support personnel) logged on as this user. The default password is
“service”.

Crashdumps User
Crashdumps is a user provided for temporary storage of PDE dumps generated by the
software. The default is 1 GB. You should enlarge the Crashdumps user based on the size of
the configuration to accommodate at least three dumps.

PUBLIC and TDPUSER
PUBLIC and TDPUSER are “dummy” database names used by the database system
software and appear in the system hierarchy. These users are defined with no permanent
space. TDPUSER is used to support two-phase commit.

Default and All
Default and All are also “dummy” database names that are reserved by the database system
software and don’t appear in the hierarchy.

SQLJ, SYSLIB, SYSUDTLIB, and TD_SYSFNLIB Databases
The SYSLIB database can be used to store user-defined functions and the SYSUDTLIB
database can be used to store user-defined data types. The SQLJ database (new with Teradata
12.0) contains a series of new views that reference the new dictionary tables to support Java external
stored procedures. TD_SYSFNLIB database is new with Teradata 13.10 and supports domain-
specific and temporal functions.

TDStats

This database contains collected statistics starting with Teradata 14.0).

Database Administration and Building the Database Environment Page 41-7

Initial Teradata Database

DBC

Current Permanent Space

Maximum Permanent Space

All (reserved name)

Default (reserved name)

PUBLIC

SQLJ

SYSSPATIAL (13.0)

SYSLIB

SYSUDTLIB

TDPUSER

TD_SYSFNLIB (13.10)

TDStats (14.0)

500 MB

500 MB

2 GB

1 GB

SysAdmin

Sys_Calendar

SystemFE

Crashdumps

 Database Administration and Building the Database Environment Page 41-8

Administrative User
System user DBC contains all Teradata Database software components and all system
tables.

Before you define application users and databases, you should first use the CREATE USER
statement to create a special administrative user to complete these tasks.

The amount of space for the administrative user is allocated from DBC’s current PERM
space. DBC becomes the owner of your administrative user and of all users and databases
you subsequently create.

Be sure to leave enough space in DBC to accommodate the growth of system tables and
logs.

You can name the user anything you would like. We have called the user SYSDBA.

Create the administrative user, and then logon as that user to protect sensitive data in DBC.
In addition, change and secure the DBC password.

To ensure perm space is from the administrative user, logon as that user to add other users
and databases.

Notes:

 All space in the Teradata Database is owned. No disk space known to the system is
unassigned or not owned.

 Think of a user as a database with a password. Both may contain (or “own”)

tables, views and macros.

 Both users and databases may hold privileges.

 Only users may logon, establish a session with the Teradata Database, and submit

requests.

Database Administration and Building the Database Environment Page 41-9

Administrative User

Current Permanent Space

Maximum Permanent Space

DBC

SYSDBA
Recommendation: Create a database administrator

which owns most of the PERM space.

All (reserved name)

Default (reserved name)

PUBLIC

SQLJ

SYSLIB

SYSSPATIAL (13.0)

SYSUDTLIB

TDPUSER

TD_SYSFNLIB (13.10)

TDStats (14.0)

500 MB

500 MB

2 GB

1 GB

SysAdmin

Sys_Calendar

SystemFE

Crashdumps

ds186034
Sticky Note
keep remaining space for system level of functions

 Database Administration and Building the Database Environment Page 41-10

Owners, Parents and Children
As you define users and databases, a hierarchical relationship among them will evolve.

When you create new objects, you subtract permanent space from the assigned limit of an
existing database or user. A database or user that subtracts space from its own permanent
space to create a new object becomes the immediate owner of that new object.

An “owner” or “parent” is any object above you in the hierarchy through which a direct line
of ownership is established during the creation process. (Note that you can use the terms
owner and parent interchangeably.) A “child” is any object below you in the hierarchy
through which a direct line of ownership is established during the creation process.

The term “immediate parent” is sometimes used to describe a database or user just above
you in the hierarchy.

Example
The diagram on the facing page illustrates Teradata system hierarchy. System user DBC is
the owner, or parent, of all the objects in the hierarchy. The administrative user (SYSDBA)
is the owner of all objects below it, such as Human Resources, Accounting, Personnel and
Benefits. These objects are also children of DBC, since DBC owns SYSDBA.

Database Administration and Building the Database Environment Page 41-11

Owners, Parents, and Children

Human_Resources Accounting

Personnel Benefits

PR01 PR02 PR03

DBC

SYSDBA

• Parent or owner

– Any object directly above you in the hierarchy

• Child

– Any object directly below you in the hierarchy

Users may own databases and databases may own users.

ds186034
Sticky Note

 Database Administration and Building the Database Environment Page 41-12

Creating New Users and Databases
The “creator” of an object is the user who submitted the CREATE statement.

Every object has one and only one creator. If you are the creator of a new space, you
automatically have access rights to that space and anything created in it.

Notes:

 While you may be the creator of an object, you are not necessarily the owner of the
database or user that contains the object.

 You are the owner of an object if the new object is directly below you in the

hierarchy.

 As a creator, you can submit a CREATE statement that adds a new object

somewhere else in the hierarchy, assuming you have the appropriate privileges. In
this instance, the creator (you) and the owner are two different users or databases.

 If authorized, you may create databases or users FROM someone else's space.

 You can transfer databases and users from one owner to another.

Database Administration and Building the Database Environment Page 41-13

Creating New Users and Databases

Human_Resources Accounting

Personnel Benefits

PR01 PR02 PR03

DBC

SYSDBA GRANT USER ON
Human_Resources TO Accounting ;

CREATE USER Payroll FROM
Human_Resources AS … ;

Payroll

• The creator is the user who submits the CREATE statement.

• Every object has one and only one creator.

• A user (if authorized) may create databases or other users from
someone else’s space.

ds186034
Sticky Note
ownerandcreatorcan be different like here

 Database Administration and Building the Database Environment Page 41-14

Transfer of Ownership
The GIVE statement transfers a database or user space to a recipient you specify. The GIVE
statement also transfers all child databases and users as well as the tables, views and macros
owned by the transferred object.

Rules affecting transfer of ownership:

 Use the GIVE statement to transfer databases and users only. (You cannot use the
GIVE statement to transfer tables, views, and macros from one database to
another.)

 To transfer an object, you must have DROP DATABASE privilege on the object to

transfer and CREATE DATABASE privilege on the receiving object.

– Even though you may be transferring a USER to another user, you need the
CREATE DATABASE privilege on the user that is going to get the transferred
user. A CREATE USER privilege will not work.

 You cannot give an object to one of its children.

 During a transfer, you transfer all objects the object owns.

 Transfer of ownership affects space ownership and access right privileges. When

you transfer an object, the space the object owns is also transferred. The
implications of how access rights are affected will be described in more detail later
in this course.

Example
In the illustration on the facing page, the administrative user, SYSDBA, GIVES the user,
Payroll, to Accounting. The original owner, Human_Resources, loses ownership of the
perm space that belonged to Payroll. The new owner, Accounting, acquires ownership of
the perm space that Payroll brings with it. All objects that belong to Payroll are transferred
as well, including its tables, views, macros and children databases.

Database Administration and Building the Database Environment Page 41-15

Transfer of Ownership

• The GIVE statement is valid to only
transfer databases and users.

• To give an object, you must have:

– DROP DATABASE privilege on the
object to transfer.

– CREATE DATABASE privilege on
the receiving object.

Human_Resources

Personnel Benefits

PR01 PR02 PR03

DBC

SYSDBA GIVE Payroll TO Accounting;

PY01 PY02

Payroll

Accounting

ds186034
Sticky Note
but we can transfer ownershipwe can switch payroll over to accountingu need to have privilige-drop db privil-create db privil on obj

 Database Administration and Building the Database Environment Page 41-16

DELETE/DROP Statements
DELETE DATABASE and DELETE USER statements delete all data tables, views, and
macros from a database or user. The database or user remains in the Teradata Database as a
named object and retains the available space. None of that space is any longer in use. All
space used by the deleted objects becomes available as spool space until it is reused as perm
space.

You must have DROP DATABASE or DROP USER privilege on the referenced database or
user to delete objects from them. The database or user that you are dropping cannot own
other databases or users.

DELETE USER Example
The diagram on the facing page illustrates a DELETE USER statement. Assume the user
Personnel has three tables: TB01, TB02, and TB03. Human Resources logs on to the system
and submits the DELETE USER statement on user Personnel. All tables are deleted from
the user space owned by Personnel. The DELETE DATABASE/USER command does
NOT delete a permanent journal, join indexes, or hash indexes.

DROP USER Example
The DROP DATABASE or DROP USER statement drops empty databases or users only.
You must delete all objects associated with the database or user before you can drop the
DATABASE or USER. When you drop a database or user, its perm space is credited to the
immediate owner.

The diagram on the facing page illustrates the DROP USER statement. Human Resources
submits the DROP USER statement on user Personnel. The user Personnel is dropped from
the hierarchy. The user space that belonged to user Personnel is returned to its parent,
Human Resources.

DELETE USER Syntax

DROP USER Syntax

DEL name
ETE ;

DATABASE

USER

DROP name
;

DATABASE

USER

Database Administration and Building the Database Environment Page 41-17

DELETE / DROP Statements

SYSDBA

Human Resources

Personnel

Tables Views Macros

DELETE USER Personnel; DROP USER Personnel;

SYSDBA

Human Resources

Personnel

SYSDBA

Human Resources

 Database Administration and Building the Database Environment Page 41-18

Teradata Administrator – New System
Teradata Administrator (previously named WinDDI for Windows Data Dictionary Interface)
is the Teradata Manager application that you can use to perform database administration
tasks on the associated Teradata Database computer.

The facing page contains an example of the users and databases that exist in a newly
initialized Teradata 14.0 system.

Database Administration and Building the Database Environment Page 41-19

Teradata Administrator

New System

Teradata Administrator

• GUI interface to
Teradata hierarchy
and objects.

• This example
shows the default
users and
databases in a
newly initialized
Teradata 14.0
system.

Which database
has the majority of
the Perm space?

 Database Administration and Building the Database Environment Page 41-20

Teradata Administrator – Hierarchy
The facing page contains an example of a screen display from a Teradata system and
illustrates the hierarchy in the left pane.

You may use Teradata Administrator to perform the following functions:

 Create, modify and drop users or databases
 Create tables (using ANSI or Teradata syntax)
 Grant or revoke access/monitor rights
 Copy table, view or macro definitions to another database, or to another system
 Drop or rename tables, views or macros
 Move space from one database to another
 Run an SQL query
 Display information about a Database (list of tables, views, macros, child

databases, rights)
 Display information about a Table (columns, journals, indexes, row counts, users,

space summary), View (columns, info, rights, row count, users, show), or Macro
(rights, users, info, show)

Teradata Administrator keeps a record of all the actions you take and can optionally save
this record to a file. This record contains a time stamp together with the SQL that was
executed, and other information such as the statement’s success or failure.

To use the viewing functions of Teradata Administrator, you must have Select access to the
DBC views of the Teradata DBS. To use the Copy, Drop, Create or Grant tools you must
have the corresponding privilege on the table or database that you are trying to modify or
create. To use the Browse or Row Count features you must have select access to the Table
or View.

Additional examples of Teradata Administrator displays and capabilities will be shown
in various modules throughout this course.

Database Administration and Building the Database Environment Page 41-21

Teradata Administrator – Hierarchy

Teradata
Administrator

• This example
shows the
hierarchy of a
Teradata system
and the objects
in one of the
databases.

• This utility also
provides drag
and drop
capabilities.

The hierarchy of the
Teradata database is
shown in the left pane.

Who is the immediate parent of TT_Data?

 Database Administration and Building the Database Environment Page 41-22

Summary
The facing page summarizes some important concepts regarding this module.

Database Administration and Building the Database Environment Page 41-23

Summary

• Initially, system user DBC owns all space in the Teradata Database except that owned
by system users and databases.

• The database administrator should create a special administrative user containing most
of the space available which will become the owner of all administrator-defined
application databases and users.

• Everyone directly higher in the hierarchy is a parent or owner. Everyone directly lower
in the hierarchy is a child.

• Every object has one and only one creator. The creator is the user who executes the
CREATE statement.

• The GIVE statement enables you to transfer a database or user. The following
privileges are necessary:

– DROP DATABASE on the given object.
– CREATE DATABASE on the receiving object.

• You cannot DROP databases or users that own objects (tables, views, macros, journals
or children databases/users).

• Teradata Administrator provides an easy-to-use Windows-based graphical interface to
the Teradata Database Data Dictionary.

 Database Administration and Building the Database Environment Page 41-24

Module 41: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Database Administration and Building the Database Environment Page 41-25

Module 41: Review Questions

1. True or False. You should use system user DBC to create application users and databases.

2. True or False. A database or user can have multiple Owners, but only one Creator.

3. True or False. An Owner and a Parent are two different terms that mean the same thing.

4. True or False. An Owner and a Creator are two different terms that mean the same thing.

5. True or False. An administrative user (e.g., Sysdba) will never have more permanent space than
DBC.

6. True or False. The GIVE statement transfers a database or user space to a recipient you specify.
It does not automatically transfer all child databases.

 Database Administration and Building the Database Environment Page 41-26

Notes

The Data Dictionary Page 42-1

Module 42

Teradata Proprietary and Confidential

The Data Dictionary

After completing this module, you will be able to:

 Summarize information contained in the Data Dictionary tables.

 Differentiate between restricted and unrestricted views.

 Use the supplied Data Dictionary views to retrieve information
about created objects.

 The Data Dictionary Page 42-2

Notes

The Data Dictionary Page 42-3

Table of Contents

Data Dictionary / Directory .. 42-4
Fallback Protected Data Dictionary Tables .. 42-6
Non-Hashed Data Dictionary Tables ... 42-8
Updating Data Dictionary Tables .. 42-10
Supplied Data Dictionary Views .. 42-12
Restricted Views .. 42-14
Suffix Options with Views ... 42-16
Selecting Information about Created Objects .. 42-18
Children View .. 42-20
Databases View .. 42-22
Users View ... 42-24
Tables View ... 42-26
Columns View .. 42-28
Indices View... 42-30
Partitioning Constraints View .. 42-34
Show Table Checks View .. 42-36
Show Column Checks View .. 42-38
Triggers View... 42-40
All Temporary Tables View... 42-42
Referential Integrity Views .. 42-44
Using the DBC.Tables View .. 42-46
Referential Integrity States ... 42-48
DBC.All_RI_Children View .. 42-50
DBC.Databases2 View ... 42-52
Time Stamps in Data Dictionary .. 42-54
Teradata Administrator – List Columns of a View .. 42-56
Teradata Administrator – Object Options .. 42-58
Summary .. 42-60
Module 42: Review Questions ... 42-62
Lab Exercise 42-1 .. 42-64
Lab Exercise 42-2 (optional) .. 42-70

 The Data Dictionary Page 42-4

Data Dictionary / Directory
The data dictionary/directory is a complete database composed of system tables, views, and
macros that reside in system user DBC.

It is referred to as a Dictionary / Directory because it provides two functions:

 Dictionary – information you can view (e.g., you can view the columns and their
attributes of a table)

 Directory – information to control the system (e.g., table names are converted to

table IDs for the software to use)

The Teradata Data Dictionary / Directory is usually referred to as the Teradata Data
Dictionary.

Data dictionary tables are present when you install the system.

The system references some of these tables with SQL requests, while others are used for
system or data recovery only.

Data dictionary views reference data dictionary tables. The system views and macros are
created by running the Database Initialization Program (DIP) scripts. When a system is
first installed, the start dip utility is executed by the installation person/team.

Data dictionary tables are used to:

 Store definitions of objects you create (e.g., databases, tables, indexes, etc.).
 Record system events (e.g., logon, console messages, etc.).
 Hold system message texts.
 Control system restarts.
 Accumulate accounting information.
 Control access to data.

The Data Dictionary Page 42-5

Data Dictionary / Directory

DBC

Sys_Calendar SysAdmin SystemFECrashdumps SYSDBA

Data Dictionary / Directory Tables

Object definitions
System event logs
System message table
Journals and Restart control tables
Accounting information
Access control tables

Views of Data Dictionary Tables

Administrative
Security
Supervisory
End User
Operational

Macros

Add calculation sequence
Generate utilization reports
Reset accounting values
Authorize secured functions

 The Data Dictionary Page 42-6

Fallback Protected Data Dictionary Tables
Most data dictionary tables are fallback protected.

Fallback protection means that a copy of every table row is maintained on a different AMP
vproc in the configuration. Fallback-protected tables are always fully accessible and are
automatically recovered by the system.

Note: Every system database and user includes a dummy table named “ALL” (with an
internal TableID of binary zeros). This table represents all the tables in a system
database or user when, for example, privileges are granted or disk space is
summarized at the database level.

The Data Dictionary Page 42-7

Fallback Protected Data Dictionary Tables

AccessRights
Users Rights on objects

AccLogRuleTbl
Specifies events to be logged

AccLogTbl
Logged User-Object events

Accounts
Account Codes by user

ALL
(Dummy) Represents all tables

ConstraintNames DBase
Database and User Profiles

DBCInfoTbl
Software Release & Version

Indexes
Defines indexes on tables

Owners
Hierarchy (Downward)

RCEvent
Archive/Recovery events

SW_Event_Log
Database Console Log

TableConstraints
Table Constraints

ErrorMsgs
Message Codes and text

LogonRuleTbl
Users Rights on objects

Parents
Hierarchy (Upward)

RepGroup
Replication Groups for Tables

Roles
Defined Roles

SysSecDefaults
Logon security options

TempTables
Materialized Temporary Tables

EventLog
Session logon/logoff history

Next
Internal ID for next create

Profiles
Users and logon attributes

ResUsage
Resource Usage tables

RoleGrants
Users/Roles assigned to Roles

TVFields
Table/View column description

Hosts
To override default char. sets

OldPasswords
Encoded password history

RCConfiguration
Archive/Recovery Config

ReferencedTbls
Referential Integrity (PK)

SecConstaints
Security Constraint Objects

TVM
Tables, Views and Macros

TriggersTbl
Stores trigger information

ReferencingTbls
Referential Integrity (FK)

(Partial list of Data Dictionary tables in Teradata 14.0)

IdCol
Maintains Identity column data

SessionTbl
Current logon information

 The Data Dictionary Page 42-8

Non-Hashed Data Dictionary Tables
The data dictionary tables on the following page contain rows that are not distributed using
hash maps.

Rows in these tables are stored AMP-locally. For example, the DBC.Acctg table rows
represent CPU time and I/O counts and are stored on the same AMP where the CPU time is
used and I/Os are executed.

Note: User-defined table rows are always hash distributed ... either with or without a

fallback copy.

The Data Dictionary Page 42-9

Non-Hashed Data Dictionary Tables

Acctg
Resource usage by user/account

ChangedRowJournal
Down-AMP Recovery Journal

DatabaseSpace
Database and Table space accounting

LocalSessionStatus
Last request status by AMP

LocalTransactionStatus
Last TXN Consensus status

OrdSysChngTable
Table-level recovery

RecoveryLockTable
Recovery session locks

RecoveryPJTable
Permanent Journal recovery

SavedTransactionStatus
AMP recovery table

SysRcvStatJournal
Recovery, reconfig, startup information

TransientJournal
Actually implemented in WAL Log

UtilityLockJournalTable
Host Utility Lock records

AMP AMP AMP AMP

AMP Cluster

PRIMARY ROW FALLBACK ROW

AMP LOCAL ROW AMP LOCAL ROW AMP LOCAL ROW AMP LOCAL ROW

 The Data Dictionary Page 42-10

Updating Data Dictionary Tables
Whenever you submit a data definition or data control statement, Teradata system software
automatically updates data dictionary tables.

When you use the EXPLAIN modifier to describe a DDL statement, you can view updates
to the data dictionary tables.

The EXPLAIN modifier is a helpful function that allows you to understand what happens
when you execute an SQL statement.

 The statement is not executed.
 The type of locking used is described.
 At least five different tables are updated when you define a new table.

The Data Dictionary Page 42-11

Updating Data Dictionary Tables

EXPLAIN CREATE TABLE Orders
(order_id INTEGER NOT NULL,
order_date DATE FORMAT 'yyyy-mm-dd',
cust_id INTEGER)

UNIQUE PRIMARY INDEX (order_id);
--
1) First, we lock TFACT.Orders for exclusive use.
2) Next, we lock a distinct DBC."pseudo table" for write on a RowHash for deadlock prevention, we

lock a distinct DBC."pseudo table" for read on a RowHash for deadlock prevention, we lock a
distinct DBC."pseudo table" for write on a RowHash for deadlock prevention, we lock a distinct
DBC."pseudo table" for read on a RowHash for deadlock prevention, and we lock a distinct
DBC."pseudo table" for write on a RowHash for deadlock prevention.

3) We lock DBC.Indexes for write on a RowHash, we lock DBC.DBase for read on a RowHash, we lock
DBC.TVFields for write on a RowHash, we lock DBC.TVM for write on a RowHash, and we lock
DBC.AccessRights for write on a RowHash.

4) We execute the following steps in parallel.
1) We do a single-AMP ABORT test from DBC.DBase by way of the unique primary index.
2) We do a single-AMP ABORT test from DBC.TVM by way of the unique primary index.
3) We do an INSERT into DBC.TVFields (no lock required).
4) We do an INSERT into DBC.TVFields (no lock required).
5) We do an INSERT into DBC.TVFields (no lock required).
6) We do an INSERT into DBC.Indexes (no lock required).
7) We do an INSERT into DBC.TVM (no lock required).
8) We INSERT default rights to DBC.AccessRights for TFACT.Orders.

5) We create the table header.
6) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the request.
-> No rows are returned to the user as the result of statement 1.

 The Data Dictionary Page 42-12

Supplied Data Dictionary Views
System views are supplied from the data dictionary for frequently used data. The system
views do not contain data. They are stored as entries in the data dictionary until you submit
an SQL statement that uses them. Views of data dictionary tables are provided for the same
reasons that views are defined for any database application.

Data dictionary table column names are re-titled and formatted. Derived values are
computed from data dictionary tables. Most supplied views reference more than one table
and have the join syntax included. Supplied views also allow you, as the database
administrator, to limit access to data dictionary information and provide a consistent image
of the data stored in the data dictionary. In practice, as the administrator you may grant
permission to the appropriate members of your organization to use any supplied view.

The installation script for the standard views is contained in the supplied Database
Initialization Program (DIP) scripts which are normally executed by the installation teams.

The DIP installation screen lists each DIP script separately. You are given the option of
choosing “All” to execute all the DIP scripts with one command, or you can choose and run
each script separately. There are specific DIP scripts that can be executed to enable specific
functions.

When DIP is executed, the following menu (e.g., Teradata 14.0) is provided:

 1. DIPERR - Error Messages
 2. DIPDEM - UDF/UDT/XSP/SPL Macros
 3. DIPRSS - ResUsage Tables
 4. DIPVIEWS - System Views
 5. DIPOLH - Online Help
 6. DIPSYSFE - System FE Macros
 7. DIPACR - Access Rights
 8. DIPCRASH - CrashDumps Database
 9. DIPRUM - ResUsage Views/Macros
10. DIPCAL - Calendar Tables/Views
11. DIPCCS - Client Character Sets
12. DIPOCES - Cost Profiles
13. DIPUDT - UDT Macros
14. DIPSYSFNC - System Functions
15. DIPSQLJ - SQLJ Views/Procedures
16. DIPPWRSTNS - Password Restrictions
17. DIPRCO - Reconfig
18. DIPTDWM - TDWM Configuration
19. DIPSTATS - Automated Stats Mgmt
20. DIPALL - All of the above
21. DIPPDCR - PDCR Tables/Views
22. DIPACC - Access Logging
23. DIPPATCH - Stand-alone patches
24. DIPGLOP - GLOP Tables/Procedures

The Data Dictionary Page 42-13

Supplied Data Dictionary Views

ADMINISTRATOR

SECURITY ADMINISTRATOR

SUPERVISORY USERS

END USERS

OPERATIONS CONTROL

Supplied DD/D
Views

Dictionary
TABLE

Dictionary
TABLE

Dictionary
TABLE

• Views are representations of data accessed/derived from DD/D tables.

– Clarify tables – re-title tables and/or columns; reorder and format columns, etc.

– Simplify operations – supply join operation syntax; select and project relevant
rows and columns.

– Limit access to data – exclude certain rows and/or columns from selection.

• View definitions are stored in DBC.TVM.

• View column information is stored in DBC.TVFields.

• DIP scripts install the dictionary views.

• Disclaimer: The view descriptions in this module may not include all the columns in
the view. Appendix D includes the complete view and column definitions.

 The Data Dictionary Page 42-14

Restricted Views
There are two versions of the system views: restricted [x] and non-restricted [non-x]. The
system administrator can load either or both versions.

Non-X views are named according to the contents of their underlying tables.
DBC.DiskSpaceV, DBC.TableSizeV, and DBC.SessionInfoV are examples of Non-X
views.

X Views are the same views with an appended WHERE clause. The WHERE clause limits
the information returned by a view to only those rows associated with the requesting user.

Granted Rights
By default, the SELECT privilege is granted to PUBLIC User on most views in X and non-
X versions. This privilege allows any user to retrieve view information via the SELECT
statement. The system administrator can use GRANT or REVOKE statements to grant or
revoke a privilege on any view to or from any user at any time.

Special Needs Views
Some views are applicable only to users who have special needs. For example, the
administrator, a security administrator, or a Teradata field engineer may need to see
information that other users do not need. Access to these views is granted only to the
applicable user.

Access Tests
Limited views typically run three different tests before returning information from data
dictionary tables to a user. Each test focuses on the user and his or her current privileges. It
can take longer to receive a response when a user accesses a restricted view.

The Data Dictionary Page 42-15

Restricted Views

These views limit the scope of what a user can access in the DD/D.

Views with an [X] suffix typically make the following three tests before returning
information to the user:

View used with suffix [X]
Where the user owns
the selected objects.

Where the user is
the selected object.

Where the user holds certain
rights on the selected objects.

Data
Dictionary

Tables

For example,

• The following query returns information about ALL parents and children.

SELECT Child, Parent FROM DBC.ChildrenV;

• The restricted [x] version of this view selects only information on objects owned by the
executing user or that the requesting user has access to:

SELECT Child, Parent FROM DBC.ChildrenVX;

 The Data Dictionary Page 42-16

Suffix Options with Views
The following are the view forms:

 Without the X (for example, DBC.AccountInfo and DBC.AccountInfoV), they
display global information.

 With the X (for example, DBC.AccountInfoX and AccountInfoVX), they display

information associated with the requesting user only.

 With the V (for example, AccessLogV), they display information associated with

the Unicode version, where object name columns have a data type of
VARCHAR(128).

 Without the V (for example, DBC.AccountInfo or DBC.AccountInfoX), they

display information associated with the Compatibility version, where object name
columns have a data type of CHAR(30).

Operations that use restricted views tend to take longer to run because these views access
more data dictionary tables. By contrast, operations that use unrestricted views may run
faster but return more rows.

To control access to data dictionary information, you can grant users permission to access
only restricted views.

The Data Dictionary Page 42-17

Suffix Options with Views

Views may optionally include a suffix of [V] and/or [X].

• Views without the V are the "Compatibility" version of the views, where object name
columns have a data type of CHAR(30).

• In general, the X version is for restricted views.

• Starting with Teradata 12.0, most views have a "V" version which is the newer version
of the view. This version of a view has object name columns with a data type of
VARCHAR(128). This version can display information associated with Unicode.

For example, the recommended views to use for account information are:

• DBC.AccountInfoV – displays global information using VARCHAR(128)

• DBC.AccountInfoVX – displays information associated with the requesting user only
using VARCHAR(128).

The older "compatibility" views (without the V) are:

• DBC.AccountInfo – displays global information using CHAR(30)

• DBC.AccountInfoX – displays information associated with the requesting user only
using CHAR(30).

ds186034
Sticky Note
now 128 from 120iefrom TD 12

 The Data Dictionary Page 42-18

Selecting Information about Created Objects
The following views return information about created objects:

Note: The table “Indexes” is referenced by a view spelled “Indices.”

Object Definition System Views

View Name Data Dictionary Table Purpose

DBC.Children[V][X] DBC.Owners Provides information about
hierarchical relationships.

DBC.Databases[V][X] DBC.DBase Provides information about
databases, users and their
immediate parents.

DBC.Users[V] DBC.DBase Similar to DataBases view, but
includes columns specific to
users.

DBC.Tables[V][X] DBC.TVM Provides data about tables, views,
macros, triggers, and stored
procedures.

DBC.ShowTblChecks[V][X] DBC.TableConstraints Database table constraint
information.

DBC.ShowColChecks[V][X] DBC.TVFields Information about columns in
tables and views, and parameters
in macros.

DBC.Columns[V][X] DBC.TVFields Data about columns in tables and
views as well as parameters in
macros.

DBC.Indices[V][X] DBC.Indexes Data about indexes on tables.

DBC.IndexConstraints[V][X] DBC.DBase

DBC.TableConstraints

Provides information about index
constraints implied by a
partitioning expression

DBC.AllTempTables[V][X] DBC.TempTables Information about all global
temporary tables materialized in
the system.

DBC.Triggers[V][X] DBC.TriggersTbl Information about event-driven
triggers attached to a single table
and stored in the database.

The Data Dictionary Page 42-19

Selecting Information about Created Objects

DBC.Children[V][X] Hierarchical relationship information.

DBC.Databases[V][X] Database, user and immediate parent information.

DBC.Users[V] Similar to Databases view, but includes columns specific to users.

DBC.Tables[V][X] Tables, views, macros, triggers, and stored procedures information.

DBC.ShowTblChecks[V][X] Database table constraint information.

DBC.ShowColChecks[V][X] Database column constraint information.

DBC.Columns[V][X] Information about columns/parameters in tables, views, and macros.

DBC.Indices[V][X] Table index information.

DBC.IndexConstraints[V][X] Provides information about index constraints, e.g., PPI definition.

DBC.AllTempTables[V][X] Information about global temporary tables materialized in the system.

DBC.Triggers[V][X] Information about event-driven, specialized procedures attached to a
single table and stored in the database.

 The Data Dictionary Page 42-20

Children View
The Children view lists the names of databases and users and their parents in the hierarchy.

Column Definition

Child Name of a child database or user

Parent Name of a parent database or user

Example
The diagram on the facing page uses an SQL statement to list the parents of the current user.
The SQL keyword USER causes the parser to substitute the “User Name” of the user who
has logged on and submitted the statement. The results of the request show one child,
student230, and four parents.

The Data Dictionary Page 42-21

Children View

Provides the names of all databases, users and their owners.

DBC.Children[V][X]

Child Parent

Child Parent

student230 DBC
student230 Students
student230 Sysdba
student230 TT_Class2

Example Results:

SELECT *
FROM DBC.ChildrenV
WHERE CHILD = USER;

Example:
Using the unrestricted form of the view and a
WHERE clause, list your parents.

 The Data Dictionary Page 42-22

Databases View
The Databases view returns information about databases and users from the DBC.DBase
table.

Notes:

 Only the immediate owner is identified in this view. Use the parent column of the
Children view to select all owners.

 The data dictionary records the name of the creator of a system user or database, as

well as the date and time the user created the object. This information is not used
by the software, but is recorded in DBC.DBase for historical purposes.

Column definitions in this view include:

Column Definition

OwnerName The IMMEDIATE parent (owner)

ProtectionType Default protection type for tables created within this

database:
 F = Fallback N = No Fallback

JournalFlag Two characters (before and after image) where:
 S = Single

D = Dual
N = None
L = Local

For Example:
SD = Single before, dual after image
NL = (Single) Local after image

CreatorName Name of the user who created the object.

CreateTimeStamp Date and time the user created the object.

Example
The SQL request on the facing page uses the Databases view to find the users with the
names that start with TFACT and identify the creator, permanent disk space limit, and
database type.

The Data Dictionary Page 42-23

Databases View

SELECT DatabaseName (CHAR(10)) AS "Name"
,CreatorName (CHAR(10)) AS "Creator"
,CreateTimeStamp
,PermSpace (FORMAT 'zzz,zz9,999')
,DBKind

FROM DBC.DatabasesV
WHERE DatabaseName LIKE 'TFACT%'
ORDER BY 1;

Provides information about databases and users.

Example Results:

Example:
For databases/users with a
name of “tfact%”, find the
creator name, when it was
created, its max perm space,
and the type (database or
user).

DBC.Databases[V][X]

DatabaseName CreatorName OwnerName AccountName
ProtectionType JournalFlag PermSpace SpoolSpace
TempSpace CommentString CreateTimeStamp LastAlterName
LastAlterTimeStamp DBKind AccessCount ** LastAccessTimeStamp **

** Only updated if DBSControl ObjectUseCountCollectRate > 0

Name Creator CreateTimeStamp PermSpace DBKind

TFACT DBC 2011-01-16 19:56:21 20,000,000 D
tfact01 Sysdba 2011-01-17 08:06:52 10,000,000 U
tfact02 Sysdba 2011-01-17 08:06:55 10,000,000 U
tfact03 Sysdba 2011-01-17 08:06:57 10,000,000 U

 The Data Dictionary Page 42-24

Users View
The Users view is a subset of the Databases view and:

 Limits rows returned from DBC.DBase to only USER rows (e.g., where there is a
password).

 Restricts rows returned to:

 The current users’ information.

 Information about owned users or databases (i.e., children).

 Information about users on which the current user has DROP USER or DROP

DATABASE rights.

 Date and time a user is locked due to excessive erroneous passwords and the

number of failed attempts since the last successful one.

The view features CreatorName and CreateTimeStamp columns that display the user name
who created an object and the date and time he or she created it. The LastAlterName and
LastAlterTimeStamp columns list the name of the last user to modify an object, as well as
the date and time.

Note: The DBC.Users view is already a restricted view; there is no [X] version.

Column definitions in this view include:

Column Definition

PermSpace Maximum permanent space available for this user.

SpoolSpace Maximum spool space available for this user.

DefaultCollation A = ASCI

E = EBCDIC
M = Multinational
H = Host (default)
C = CharSet_Col
J = JIS_Coll

Example:
The SQL statement on the facing page finds the user’s default account code, name of his or
her immediate owner, and spool space limit.

The Data Dictionary Page 42-25

Users View

SELECT UserName
,DefaultAccount
,OwnerName
,SpoolSpace (FORMAT 'zzz,zz9,999')

FROM DBC.UsersV
WHERE UserName = USER;

Provides information about the users that the requesting user owns or to which he or she
has modify rights. This is a restricted view … there is no [x] version.

Example Results:

Example:
Find your default account
code, the name of your
immediate owner, and max
spool space.

DBC.Users[V]

UserName CreatorName PasswordLastModDate PasswordLastModTime
OwnerName PermSpace SpoolSpace TempSpace
ProtectionType JournalFlag StartupString DefaultAccount
DefaultDatabase CommentString DefaultCollation PasswordChgDate
LockedDate LockedTime LockedCount TimeZoneHour
TimeZoneMinute DefaultDateForm CreateTimeStamp LastAlterName
LastAlterTimeStamp DefaultCharType RoleName ProfileName
AccessCount ** LastAccessTimeStamp **

UserName DefaultAccount Owner SpoolSpace

tfact02 $M_9038_&D&H Teradata_Factory 50,000,000

** Only updated if DBSControl ObjectUseCountCollectRate > 0

 The Data Dictionary Page 42-26

Tables View
The Tables view accesses the data dictionary table, DBC.TVM, which contains descriptions
of objects – tables, views, macros, journals, join indexes, triggers, stored procedures, etc..

The view features a TableKind column that allows you to specify the kind of object to
reference. The view also features CreatorName and CreateTimeStamp columns that display
the name of the user who created an object and the date and time he or she created it. The
LastAlterName and LastAlterTimeStamp columns list the name of the last user to modify an
object, as well as the date and time.

The PrimaryKeyIndexID column identifies the columns used as the primary index. As the
administrator, use this view to find NO FALLBACK tables (where ProtectionType = 'N').

Additional column definitions for this view include:

Column Definition

Version A number incremented each time a user alters a table.

RequestText Returns the text of the most recent DDL statement that was used

to CREATE or MODIFY the table.

TableKind T = Table

M = Macro
V = View
G = Trigger
P = Stored Procedure
F = User-defined Function
I = Join index
N = Hash Index
J = Journal table
O = No Primary Index

The SQL statement on the facing page requests a list of all tables, views and macros that
contain the letters “rights” in their name. The response displays the database name, table
name, and a code for the type of object. Additional columns with Teradata V2R6 are:

RepStatus – identifies the replicated table status for the table. It is NULL if the table is
not a member of any replication group.

UtilVersion – contains the utility version count. This column is modified to match the

Version column when a significant change of the table definition occurs that would
prohibit an incremental restore or copy of an archive.

QueueFlag – this field specifies the queue option as a single character whose value can

be either Y if it is queue table, or N if it is not a queue table.

The Data Dictionary Page 42-27

Tables View

SELECT TRIM(DatabaseName) || '.' || TableName AS "Qualified Name"
,TableKind

FROM DBC.TablesV
WHERE TableName LIKE '%rolerights%'
ORDER BY 1, 2 ;

Provides information about objects – tables, views, macros, journals, join indexes, hash
indexes, triggers, stored procedures, etc.

Example Results:

Example:
List the objects that
contain the characters
"rolerights" in their
name.

Qualified Name TableKind

DBC.AllRoleRights V
DBC.AllRoleRightsV V
DBC.UserRoleRights V
DBC.UserRoleRightsV V

DBC.Tables[V][X]
DataBaseName TableName Version TableKind
ProtectionType JournalFlag CreatorName RequestText
CommentString ParentCount ChildCount NamedTblCheckCount
UnnamedTblCheckExist PrimaryKeyIndexId RepStatus CreateTimeStamp
LastAlterName LastAlterTimeStamp RequestTxtOverFlow AccessCount **
LastAccessTimeStamp ** UtilVersion QueueFlag CommitOpt

(this is not a compete list of columns – Appendix D has compete list of columns)

** Only updated if DBSControl ObjectUseCountCollectRate > 0

 The Data Dictionary Page 42-28

Columns View
The Columns view returns information from the DBC.TVFields table.

This data dictionary table includes information about:

 Table and view columns
 Macro and stored procedure parameters

Like several other views in this module, the Columns view features CreatorName and
CreateTimeStamp columns that display the name of the user who created an object and the
date and time he or she created it. The LastAlterName and LastAlterTimeStamp columns list
the name of the last user to modify an object, as well as the date and time.

As an administrator, you may use this view to enforce domain constraints. The following
SELECT statement provides an example:

SELECT DatabaseName, TableName FROM DBC.TVFields
WHERE ColumnTitle LIKE 'amount'
AND ColumnType NE 'D'
OR DecimalTotalDigits NE 7
OR DecimalFractionalDigits NE 2
ORDER BY 1,2;

Some of the common column types for this view include:

I = INTEGER F = FLOAT BF = BYTE Fixed CV = VARCHAR
I1 = BYTEINT DA = DATE BV = BYTE Variable BO = BLOB
I2 = SMALLINT D = DECIMAL CF = CHARACTER Fixed CO = CLOB
I8 = BYTEINTEGER GF = GRAPHIC GV = VARGRAPHIC UT = UDT Type
TS = TIMESTAMP TZ = TIME w ZONE SZ = TIMESTAMP w ZONE

Example
The SQL statement on the facing page displays selected parameters for the

“ResCPUbyAMP” macro.

Miscellaneous Notes:

 The SPParameterType field specifies the type of the parameter in case of stored
procedure object as I (in), O (out) and B (inout).

 The UpperCaseFlag field indicates whether the column is to be stored in uppercase
and whether comparisons on the column are case specific. U = Uppercase and not
specific, N = not uppercase and not specific, C = not uppercase and specific.

 The CompressValueList field contains the list of values that will be compressed
from the column.

 ColumnUDTName – this field specifies the name of a UDT if that column data
type is a UDT (User Defined Type).

The Data Dictionary Page 42-29

Columns View

SELECT ColumnName, ColumnFormat, DefaultValue
FROM DBC.ColumnsV
WHERE DatabaseName = 'DBC' AND TableName = 'ResCPUbyAMP' ;

Provides information about columns in tables and views, and parameters in macros and
stored procedures.

Example Results:

Example:
Use this view to show
the parameters of the
DBC.ResCPUbyAMP
macro.

DBC.Columns[V][X]
DatabaseName TableName ColumnName ColumnFormat
ColumnTitle SPParameterType ColumnType UDTColumnName
ColumnLength DefaultValue Nullable CommentString
DecimalTotalDigits DecimalFractionalDigits ColumnId UpperCaseFlag
Compressible CompressValue ColumnConstraint ConstraintCount
CreatorName CreateTimeStamp LastAlterName LastAlterTimeStamp
CharType IdColType AccessCount ** LastAccessTimeStamp **
CompressValueList TimeDimension * VTCheckType * TTCheckType *

ColumnName ColumnFormat DefaultValue

FromDate YYYY-MM-DD Date
FromNode X(6) '000-00'
FromTime 99:99:99 0.00000000000000E000
ToTime 99:99:99 9.99999000000000E005
ToDate YYYY-MM-DD Date
ToNode X(6) '999-99'

** Only updated if DBSControl ObjectUseCountCollectRate > 0* 13.10

 The Data Dictionary Page 42-30

Indices View
The Indices view returns information about each indexed column from the DBC.Indexes
table. (A compound index returns multiple rows.) Use the view to list tables with non-
unique primary indexes (NUPI). (These tables may be subject to skewed data distribution.)

The following SELECT statement shows an example of how to list NUPI tables:

SELECT DatabaseName, TableName
FROM DBC.Indices
WHERE IndexType = 'P' AND UniqueFlag = 'N';

Column definitions for this view include:

Column Definition
IndexType P = Primary (non-partitioned table)
 Q= Primary (partitioned table)

S = Secondary
U = Unique constraint (USI with NOT NULL)
K = Primary Key
J = Join
V = Value-ordered secondary
H = Hash-ordered ALL (covering) secondary
O = Value-ordered ALL (covering) secondary
I = Ordering column of a composite secondary index
M = Multi-Column Statistics
D = Derived column partition statistics
Q = Partitioned Primary Index

UniqueFlag Y = Unique N = Non-unique

Column Position Position of a column within an index. This value may be greater
than one if the column is part of a composite index.
1 = Field 1 column of a join index
2 = Field 2 column of a join index

Example
 The example on the facing page shows a data request about the Employee_Phone table

indices in the current database. The result displays three rows. Notice that the
secondary index is a composite index consisting of two columns.

Miscellaneous Notes:
 IndexMode is H (secondary index rows are hash distributed to the AMPs), L (secondary

index rows are on the same AMP as the referenced data row), or NULL (primary
index). If the index type is J or N, index mode is L but has no meaning.

 These 13.10 columns (UniqueOrPK, VTConstraintType, and TTConstraintType) only

apply when the column is associated with a time dimension. The values in the column
will be NULL for all tables NOT associated with a time dimension.

 TT – Transaction Time Constraint; VT – Valid Time Constraint

The Data Dictionary Page 42-31

Indices View

SELECT ColumnName (CHAR(15)) AS "Column Name"
,UniqueFlag AS "Unique"
,IndexType AS "Type"
,IndexName AS "Name"
,IndexNumber AS "IndNo"
,ColumnPosition AS "ColPos"

FROM DBC.IndicesV
WHERE TableName = 'Emp_Phone'
AND DatabaseName = DATABASE
ORDER BY IndNo, ColPos ;

Example Results:

Example:
Select information about the
Employee Phone table
indices in the current
database.

Column Name Unique Type Name IndNo ColPos

employee_number N P ? 1 1
area_code N S ac_phone 4 1
phone_number N S ac_phone 4 2

Provides information about each indexed column defined for each table.

DBC.Indices[V][X]
DatabaseName TableName IndexNumber IndexType
UniqueFlag IndexName ColumnName ColumnPosition
CreatorName CreateTimeStamp LastAlterName LastAlterTimeStamp
IndexMode AccessCount ** LastAccessTimeStamp ** UniqueOrPK*
VTConstraintType* TTConstraintType* SystemDefinedJI*

** Only updated if DBSControl ObjectUseCountCollectRate > 0* 13.10

 The Data Dictionary Page 42-32

Indices View (Second Example)
Column definitions for this view include:

Column Definition

IndexType P = Primary
 S = Secondary

U = USI (U is used if USI is created via UNIQUE constraint)
J = Join
V = Value-ordered secondary
H = Hash-ordered ALL (covering) secondary
O = Value-ordered ALL (covering) secondary
I = Ordering column of a composite secondary index

UniqueFlag Y = Unique
N = Non-unique

Column Position Position of a column within an index. This value may be

greater than one if the column is part of a composite index.

1 = Field 1 column of a join index
2 = Field 2 column of a join index

An IndexType of U indicates a USI that is created via a UNIQUE constraint. However, a
USI that is created as a UNIQUE INDEX in the table definition is still identified via the
IndexType and UniqueFlag.

Example:
 The example on the facing page shows a data request about the Department table

indices in the current database. Notice that this example contains a join index.

The Data Dictionary Page 42-33

Indices View (Second Example)

Example Results:

Example:
Select information about the
Department table indices in
the current database.

SELECT ColumnName (CHAR(15)) AS "Column Name"
,UniqueFlag AS "Unique"
,IndexType AS "Type"
,IndexName AS "Name"
,IndexNumber AS "IndNo"
,ColumnPosition AS "ColPos"

FROM DBC.IndicesV
WHERE TableName = 'Department'
AND DatabaseName = DATABASE
ORDER BY IndNo, ColPos ;

Column Name Unique Type Name IndNo ColPos

dept_number Y P ? 1 1
dept_name Y U ? 4 1
dept_number N J Dept_JnIx 8 1
dept_name N J Dept_JnIx 8 2
dept_mgr_number N J Dept_JnIx 8 3

SQL of how this Join Index was created:

CREATE JOIN INDEX Dept_JnIx AS SELECT dept_number, dept_name, dept_mgr_number
FROM Department
PRIMARY INDEX (dept_mgr_number);

 The Data Dictionary Page 42-34

Partitioning Constraints View
DBC.PartitioningConstraintsV provides information about index constraints, specifically a
partitioning expression constraint. A partitioning expression is an implied index constraint.

A ConstraintType = Q indicates a partitioned primary index.

The ConstraintText indicates the partitioning constraint. The general format of the text will
be:

CHECK ((<partitioning-expression>) BETWEEN 1 AND <max>)

 <max> is 65535 or the number of partitions defined by the partitioning expression

if the partitioning expression consists solely of a RANGE_N or CASE_N function.

The definition of the Sales_History table is:

CREATE SET TABLE DS.Sales_History, NO FALLBACK,
 NO BEFORE JOURNAL,
 NO AFTER JOURNAL
 (
 store_id INTEGER NOT NULL,
 item_id INTEGER NOT NULL,
 sales_date DATE FORMAT 'YYYY-MM-DD',
 total_revenue DECIMAL(9,2),
 total_sold INTEGER,
 note VARCHAR(256) CHARACTER SET LATIN NOT CASESPECIFIC)
UNIQUE PRIMARY INDEX (store_id ,item_id ,sales_date)
PARTITION BY RANGE_N(sales_date BETWEEN
DATE '2003-01-01' AND DATE '2012-12-31' EACH INTERVAL '1' MONTH);

An example of constraint text for the Sales_History table is:

CHECK ((RANGE_N("sales_date" BETWEEN
DATE '2003-01-01' AND DATE '2012-12-31' EACH INTERVAL '1' MONTH))
BETWEEN 1 and 65535)

The DBC.PartitioningConstraintsV is new starting with Teradata 14.0. The previous view
was named DBC.IndexConstraints and is still available. However, it is recommended to use
the new view as it contains additional information.

The Data Dictionary Page 42-35

Partitioning Constraints View

This Teradata 14.0 view is the recommended view to use to display information about
partitioning constraints for tables or join indexes.

• The previous view was named DBC.IndexConstraintsV and is still available.

SELECT TableName AS "Table Name"
,ColumnPartitioningLevel AS "CP"
,PartitioningLevels AS "# PLevels"
,ConstraintText AS "Constraint Text"

FROM DBC.PartitioningConstraintsV
WHERE DatabaseName = USER;

Results:

Example:
List all of the partitioning
expression constraints for all
tables in the current
database.

DBC.PartitioningConstraintsV[X]

DatabaseName TableName IndexName IndexNumber
ConstraintType ConstraintText ConstraintCollation CollationName
CreatorName CreateTimeStamp CharSetID SessionMode
ResolvedCurrent_Date ResolvedCurrent_TimeStamp DefinedMaxPartitions (14.0)
MaxCombinedPartitions(14.0) PartitioningLevels (14.0) ColumnPartitioningLevel (14.0)

Table Name CP # PLevels Constraint Text

Orders_PPI 0 1 CHECK ((RANGE_N("orderdate" BETWEEN DATE '200
Orders_PPI_ML 0 2 CHECK (/*02*/ RANGE_N(orderdate BETWEEN DATE
Orders_CP 1 1 CHECK (/*01 02 01*/ PARTITION#L1 /*1 12+65522*/ =1)
Orders_CP_TP 1 2 CHECK (/*02 02 01*/ PARTITION#L1 /*1 12+10*/ =1 AND

 The Data Dictionary Page 42-36

Show Table Checks View
The ShowTblChecks view displays database table constraint information. The view features
CreatorName and CreateTimeStamp columns that display the name of the user who created
an object, and the date and time he or she created it. The LastAlterName and
LastAlterTimeStamp columns list the name of the last user to modify an object, as well as
the date and time.

Column definitions for this view include:

Column Definition

DatabaseName

TableName

Names of databases that contain tables with table-level
checks.

Table names that have table-level constraints.

CheckName Table-level check name.

TblCheck Returns the text for the table level or named column level

check constraint.

CreatorName Name of the user who created the object.

CreateTimeStamp The time the object was created.

The SQL to create these table level constraints follows:

ALTER TABLE Employee ADD CONSTRAINT Emp_Chk1
 CHECK (Employee_number >= 100000);

ALTER TABLE Department ADD CONSTRAINT Dept_Chk1
 CHECK (Dept_number >= 1000);

ALTER TABLE Job
 ADD CHECK (Job_code >= 3000);

Note: If a check constraint is created at the column level and it is a named constraint, then it
will appear in this view.

CREATE SET TABLE TFACT.Dept2 ,
 (dept_number INTEGER NOT NULL
 CONSTRAINT Dept_chk2 CHECK (dept_number >= 1000),
 dept_name CHAR(20) NOT NULL UNIQUE,
 dept_mgr_number INTEGER,
 budget_amount DECIMAL(10,2))
UNIQUE PRIMARY INDEX (dept_number);

The Data Dictionary Page 42-37

Show Table Checks View

SELECT TableName (CHAR(10))
,CheckName (CHAR(10))
,TblCheck

FROM DBC.ShowTblChecksV
WHERE DatabaseName = 'TFACT';

Provides information about check constraints at the table level and “named” column
constraints.

Example Results:

Example:
Display table constraint
information.

DBC.ShowTblChecks[V][X]

DatabaseName TableName CheckName TblCheck
CreatorName CreateTimeStamp

TableName CheckName TblCheck

DEPARTMENT Dept_Chk1 CONSTRAINT "Dept_Chk1" CHECK ("Dept_nu
EMPLOYEE Emp_Chk1 CONSTRAINT "Emp_Chk1" CHECK ("Employe
JOB ? CHECK ("Job_code" >= 3000)

Note: The first two are named constraints and the third is an unnamed constraint.
All three of these constraints were created at the table level.

 The Data Dictionary Page 42-38

Show Column Checks View
The ShowColChecks view displays database column constraint information for unnamed
column level constraints. The view features CreatorName and CreateTimeStamp columns
that display the name of the user who created an object and the date and time he or she
created it.

Column definitions for this view include:

Column Definition

DatabaseName

TableName

Names of databases that contain tables with column-level
checks.

Table names that have column-level constraints.

ColumnName

Names of columns that contain column-level check
constraints.

ColCheck Returns text for the column-level check condition.

CreatorName Name of the user who created the object.

CreateTimeStamp The time the object was created.

The SQL to create these column level constraints follows:

CREATE SET TABLE TFACT.Emp_2
 (employee_number INTEGER NOT NULL CHECK (employee_number >= 100000),
 dept_number INTEGER,
 :
 salary_amount DECIMAL(10,2))
UNIQUE PRIMARY INDEX (employee_number);

CREATE SET TABLE TFACT.Dept_2
 (dept_number INTEGER NOT NULL CHECK (dept_number >= 1000),
 :
 budget_amount DECIMAL(10,2))
UNIQUE PRIMARY INDEX (dept_number);

CREATE SET TABLE TFACT.Job_2
 (job_code INTEGER NOT NULL CHECK (Job_code >= 3000),
 job_desc CHAR(20) NOT NULL UNIQUE)
UNIQUE PRIMARY INDEX (job_code);

The Data Dictionary Page 42-39

Show Column Checks View

SELECT TableName (CHAR(10))
,ColumnName (CHAR(10))
,ColCheck

FROM DBC.ShowColChecksV
WHERE DatabaseName = 'TFACT';

Provides information about unnamed column check constraints.

Example Results:

Example:
Show information about
column constraints for a
database.

DBC.ShowColChecks[V][X]

DatabaseName TableName ColumnName ColCheck
CreatorName CreateTimeStamp

Note: A second set of Employee, Department, and Job tables were created with
unnamed CHECK constraints at the column level.

TableName ColumnName ColCheck

EMP_2 employee_number CHECK ("employee_number" >= 100000)
DEPT_2 dept_number CHECK ("dept_number" >= 1000)
JOB_2 job_code CHECK ("job_code" >= 3000)

 The Data Dictionary Page 42-40

Triggers View
The Triggers view provides information about event-driven, specialized procedures attached
to a single table and stored in the Teradata database.

Using Triggers
Characteristics of triggers include:

 To define a trigger, use the CREATE TRIGGER statement.
 To cause the database to execute a trigger, use the INSERT, UPDATE or DELETE

statements on the specified table or view.
 There are two kinds of triggers:
 Row triggers (R) evaluate each row changed by the trigger action.
 Statement triggers (S) evaluate the entire statement.
 When a triggered statement fires a trigger, cascading ensues that, in some instances,

can fire other triggers and become triggering statements.
 Use the REFERENCING clause when you reference subject tables that are

qualified with old or new table values. In addition, all subject table columns must
use new or old correlation names.

Note: A positioned (updateable cursor) UPDATE or DELETE is not allowed to fire a

trigger and generates an error. In addition, the FastLoad and MultiLoad utilities
return an error if you have any triggers enabled on the target table.

Column definitions for this view include:

Column Definition

ActionTime Indicates when the triggered action fires.

B = Before trigger statement changes the table.
A = After trigger statement changes the table.

Event Indicate which of the following SQL statements fires the trigger:

U = UPDATE I = INSERT D = DELETE

Column Position Position of a column within an index. This value may be greater

than one if the column is part of a composite index.

The Data Dictionary Page 42-41

Triggers View

Provides information about event-driven triggers attached to a single table and stored in
the database.

SELECT TableName (CHAR(10)) AS TName
,TriggerName (CHAR(12))
,EnabledFlag AS "Enabled"
,ActionTime AS Action
,Event
,Kind

FROM DBC.TriggersV
WHERE DatabaseName = DATABASE;

Example Results:

Example:
Show if the trigger is enabled,
when it fires, the type of
statement that fires it, and the
kind.

TName TriggerName Enabled Action Event Kind

Employee Raise_Trig Y A U R

DBC.Triggers[V][X]

DatabaseName SubjectTableDataBaseName TableName
TriggerName EnabledFlag ActionTime
Event Kind OrderNumber
TriggerComment RequestText CreatorName
CreateTimeStamp LastAlterName LastAlterTimeStamp
AccessCount ** LastAccessTimeStamp ** CreateTxtOverflow
VTEventType * TTEventType *

* 13.10 column

** Optionally
updated

 The Data Dictionary Page 42-42

All Temporary Tables View
This view provides information about all global temporary tables materialized in the system.

Global Temporary Tables
Use global temporary tables to store temporary, immediate results from multiple queries into
working tables. To create a global temporary table, you must state the keywords GLOBAL
TEMPORARY in the CREATE TABLE statement. The temporary table defined during the
CREATE TABLE statement is referred to as the base temporary table.

When referenced in an SQL session, a local temporary table is materialized with the exact
same definition as the base table. Once the temporary table is materialized, subsequent DML
statements referring to that table are mapped to the materialized instance.

Note: After you create a global temporary table definition, use the INSERT statement to
create a local instance of the global temporary table to use during the session.

Temporary versus Permanent Tables
Temporary tables are different than permanent tables in the following ways:

 They are always empty at the start of a session.
 Their contents cannot be shared by other sessions.
 You can empty them at the end of each transaction.
 The system automatically drops them at the end of each session.

The Data Dictionary Page 42-43

All Temporary Tables View

SELECT HostNo
,SessionNo
,UserName (CHAR(10))
,B_DatabaseName

AS "DataBase"
,B_TableName AS "Table Name"

FROM DBC.AllTempTablesV;

Provides information about all global temporary tables materialized in the system.

Example Results:

Example:
Show all temporary tables
materialized in the system.

DBC.AllTempTables[V][X]

HostNo SessionNo UserName B_DatabaseName
B_TableName E_TableID

HostNo SessionNo UserName Database Table Name

01 20887 TFACT02 PD GT_DEPTSALARY
01 20908 TFACT01 PD GT_DEPTSALARY

 The Data Dictionary Page 42-44

Referential Integrity Views
The facing page identifies a number of views that can be used to list tables with referential
integrity and the state of the referential integrity on the tables.

Additional views that specifically provide referential integrity information are listed below.
The effects of referential integrity on the database can be seen in the series of views
identified with the letters “RI”. The X views were implemented in Teradata V2R6.0.

VIEW NAME DESCRIPTION

DBC.All_RI_Children[V][X]

This view shows the Referential Integrity
Constraints defined in the database, from the
Child-Parent point of view.

DBC.All_RI_Parents[V][X] This view shows the same information as the
above view, but from the Parent-Child
perspective.

DBC.RI_Distinct_Children[V][X]

Provides information about tables in child-
parent order without the duplication that could
result from multi-column foreign keys.

DBC.RI_Distinct_Parents[V][X]

Provides information about tables in parent-
child order without the duplication that could
result from multi-column foreign keys.

DBC.RI_Child_Tables[V][X]

Provides information about tables in child-
parent order. It is similar to the
All_RI_Children view but returns the internal
Ids of databases, tables, and columns.

DBC.RI_Parent_Tables[V][X]

Provides information about all tables in parent-
child order. It is similar to the All_RI_Parents
view but returns the internal IDs of databases,
tables, and columns instead of names.

The Data Dictionary Page 42-45

Referential Integrity Views

Views that can be used to provide information about Referential Integrity are:

View Description

DBC.Tables[V][X] Can be used to list parent and child counts for tables.

DBC.All_RI_Children[V][X] Information about tables in child-parent order. Also
identifies if RI constraint is consistent or inconsistent.

DBC.All_RI_Parents[V][X] Similar to above view but provides Information in
parent-child order.

DBC.Databases2[V][X] Can be used to identify child tables with unresolved
reference constraints.

Note: Additional RI views are listed on the facing page.

 The Data Dictionary Page 42-46

Using the DBC.Tables View
The DBC.Tables[V][X] views (described previously) provide parent and child counts for
tables within a database.

The examples on the following pages are based on the following CREATE and ALTER
TABLE statements.

CREATE SET TABLE Employee
 (employee_number INTEGER NOT NULL PRIMARY KEY
 ,dept_number INTEGER
 ,emp_mgr_number INTEGER
 ,job_code INTEGER
 ,last_name CHAR(20)
 ,first_name VARCHAR(20)
 ,salary_amount DECIMAL(10,2)) ;

CREATE SET TABLE Department
 (dept_number INTEGER NOT NULL PRIMARY KEY
 ,dept_name CHAR(20) NOT NULL UNIQUE
 ,dept_mgr_number INTEGER
 ,budget_amount DECIMAL (10,2)) ;

CREATE SET TABLE Job
 (job_code INTEGER NOT NULL PRIMARY KEY
 ,job_desc CHAR(20) NOT NULL UNIQUE) ;

CREATE SET TABLE Emp_Phone
 (employee_number INTEGER NOT NULL
 ,area_code SMALLINT NOT NULL
 ,phone_number INTEGER NOT NULL
 ,extension INTEGER
 ,PRIMARY KEY (employee_number, area_code, phone_number))
 PRIMARY INDEX (employee_number);

ALTER TABLE Employee ADD CONSTRAINT emp_dept_ref
 FOREIGN KEY (dept_number) REFERENCES
 Department (dept_number);

ALTER TABLE Employee ADD CONSTRAINT emp_job_ref
 FOREIGN KEY (job_code) REFERENCES
 Job (job_code);

ALTER TABLE Employee ADD CONSTRAINT emp_mgr_ref
 FOREIGN KEY (emp_mgr_number) REFERENCES
 Employee (employee_number);

ALTER TABLE Department ADD CONSTRAINT dept_mgr_ref
 FOREIGN KEY (dept_mgr_number) REFERENCES
 Employee (employee_number);

ALTER TABLE Emp_Phone ADD CONSTRAINT phone_emp_ref
 FOREIGN KEY (employee_number) REFERENCES
 Employee (employee_number);

The Data Dictionary Page 42-47

Using the DBC.Tables View

SELECT TableName
,TableKind
,ParentCount
,ChildCount

FROM DBC.TablesV
WHERE DatabaseName = 'TFACT'
AND TableKind = 'T'
ORDER BY 2, 1 ;

Example Results:

Example:
List the tables objects in
the database TFACT and
identify parent and child
counts.

TableName TableKind ParentCount ChildCount

Department T 1 1
Employee T 3 3
Emp_Phone T 1 0
Job T 0 1
Salary_Log T 0 0

The DBC.Tables[V][X] views can be used to list parent and child counts for tables.

• ParentCount – how many foreign keys does a table have or how many parents does
the table reference?

• ChildCount – how many foreign keys reference this table or how many children does
the table have?

 The Data Dictionary Page 42-48

Referential Integrity States
The facing page identifies three states that are associated with a Referential Integrity
constraint.

The Data Dictionary Page 42-49

Referential Integrity States

The status of a Referential integrity constraint is classified as follows:

• Unresolved reference constraint – the FK exists, but the PK does not.

– Creating a table with a FK before creating the table with Parent Key (PK).

– Restoring a table with a FK and the table with the PK does not exist or hasn't
been restored.

• Inconsistent reference constraint – both the FK and the PK exist, but the
constraint is marked as inconsistent.

– When either the child or parent table is restored, the reference constraint for the
child table is marked as inconsistent.

• no inserts, updates, deletes or table changes are allowed

• Consistent reference constraint – both the FK and the PK exist and are
considered consistent, but FK values without a corresponding PK value are
identified as “invalid rows”.

– Typically occurs when the reference constraints are created on already
populated tables or …

– Following a REVALIDATE REFERENCES command after a restore of either the
child or parent table.

 The Data Dictionary Page 42-50

DBC.All_RI_Children View
The DBC.All_RI_Children[X] views provide information about all tables in child-parent
order.

A table can have many referential constraints defined. When either the child or parent table
is restored, these constraints are marked inconsistent. The DBC.All_RI_Children view
provides information about reference constraints.

The REVALIDATE REFERENCES FOR statement validates these inconsistent constraints
against the target table.

If inconsistent constraints remain after a REVALIDATE REFERENCES FOR statement has
been executed, the SQL statement ALTER TABLE DROP INCONSISTENT
REFERENCES must be used to remove them.

REVALIDATE REFERENCES FOR creates error tables containing information about data
rows that failed referential constraint checks.

The Data Dictionary Page 42-51

DBC.All_RI_Children View

This view is used to identify tables with RI in child-parent order and can also be used to
show if the RI constraint is consistent or inconsistent.

IndexID IndexName ChildDB ChildTable
ChildKeyColumn ParentDB ParentTable ParentKeyColumn
InconsistencyFlag CreatorName CreateTimeStamp

ID IndexName ChildTable ChildKeyColumn ParentTable ParentKeyColumn ICF

0 dept_mgr_ref Department dept_mgr_number Employee employee_number N
0 emp_dept_ref Employee dept_number Department dept_number Y
8 emp_mgr_ref Employee emp_mgr_number Employee employee_number Y
4 emp_job_ref Employee job_code Job job_code Y
0 phone_emp_ref Emp_Phone employee_number Employee employee_number N

DBC.All_RI_Children
[V][X]

Example: SELECT IndexID (FORMAT 'z9') AS ID
,IndexName ,ChildTable ,ChildKeyColumn
,ParentTable ,ParentKeyColumn ,InconsistencyFlag AS ICF

FROM DBC.ALL_RI_ChildrenV
WHERE ChildDB = 'PD' ORDER BY 3, 4 ;

Results:

Options to handle inconsistent references:

• ALTER TABLE tname DROP INCONSISTENT REFERENCES; – FK constraints are
dropped – use the ALTER TABLE command to create new references constraints.

• Use the REVALIDATE REFERENCES command (ARC facility).

 The Data Dictionary Page 42-52

DBC.Databases2 View
The DBC.Databases2[V][X] views provide ID definition information about databases and
provide a count of unresolved reference constraints for any tables within the database.

It is similar to the Databases view but returns the ID of the database and Referential
Integrity (RI) information instead of the other information (creator name, owner name, etc.)
provided by the Databases view.

You can control who has access to internal ID numbers by limiting the access to the
Databases2 view while allowing more users to access the names via the Databases view.

Example
The SQL request on the facing page uses the Databases2 view to find databases that have
tables with unresolved references.

The columns selected are:

DatabaseName Returns the name of a database with the indicated count of

unresolved references.

DatabaseId Returns the ID of the database with the indicated count of

unresolved references.

UnresolvedRICount Returns the total number of unresolved Referential Integrity (RI)

constraints in the database.

 If one table has 2 unresolved reference constraints, then the count

is 2.

The Data Dictionary Page 42-53

DBC.Databases2 View

The DBC.Databases2[V][X] views provide information about unresolved reference
constraints.

Unresolved reference constraints are caused by:

• Creating a table with a Foreign Key before creating the table with Parent Key (Primary
Key).

• Restoring a table with a Foreign Key and the Parent Key (Primary Key) table does not
exist or hasn't been restored.

DatabaseName DatabaseID UnresolvedRICountDBC.Databases2

Example: List all databases with
unresolved references.

DatabaseName DatabaseID UnresolvedRICount

PD 0000FE03 2

Results:

Restore the Parent Table to “resolve” the
references constraint, but the references
constraint is marked as inconsistent.

SELECT DatabaseName
,DatabaseId
,UnresolvedRICount

FROM DBC.Databases2V
WHERE UnresolvedRICount > 0;

 The Data Dictionary Page 42-54

Time Stamps in Data Dictionary
The Teradata Database includes a time stamp in most of the data dictionary tables.

The time stamp feature is meant to facilitate and enhance your system administration tasks
by providing a means to identify obsolete objects, and clean up and recapture space. Time
stamps also help you determine when a change to an object occurred for system
maintenance activities and problem investigations.

The facing page shows the time stamp fields in dictionary tables, system views and
dictionary views. A description of these fields follows.

Time Stamp Field Definitions:

Create Time Stamp The time the object was created in ANSI
TimeStamp Format.

CreateUID User ID of the user who created the object.

CreatorName Name of the user who created the database,

table, or the name of the user’s creator.

LastAlterName Name of the user who last updated the object.

LastAlterTimeStamp The time the object was last updated in ANSI

TimeStamp format.

LastAlterUID User ID of the user who last updated the object.

AccessCount The number of times the object was accessed.

(Only used if requested.)

LastAccessTimeStamp The time the object was last accessed in ANSI

TimeStamp format.

The Data Dictionary Page 42-55

Time Stamps in Data Dictionary

SELECT TRIM(DatabaseName) || '.' || TableName
AS "Qualified Name"

,LastAlterName AS "User Name"
,LastAlterTimeStamp AS "Last Alter Date & Time"

FROM DBC.TablesV
WHERE EXTRACT (YEAR FROM LastAlterTimeStamp) = 2011
AND EXTRACT (MONTH FROM LastAlterTimeStamp) = 8
ORDER BY 1, 2 ;

The Teradata Database features a time stamp in the Data Dictionary tables.

• CreateTimeStamp, CreatorName, LastAlterTimeStamp, LastAlterName

This feature can help system administration tasks by providing a means to identify
objects recently updated, obsolete objects, etc. and who altered the objects.

Example Results:

Example:
List all tables that have
been altered in August
of 2011.

Qualified Name User Name Last Alter Date & Time

HR_Tab.Job tfact03 2011-08-23 08:10:14
HR_Tab.Location tfact03 2011-08-23 17:19:07
HR_Tab.Raise_Trig Sysdba 2011-08-20 04:58:14
HR_Tab.Salary_Log Sysdba 2011-08-20 04:58:14
TFACT.New_Sales tfact03 2011-08-24 16:25:27

 The Data Dictionary Page 42-56

Teradata Administrator – List Columns of a View
Teradata Administrator can be used to perform many of the functions described in this
module.

The facing page shows a simple example of using Teradata Administrator to view the
columns in a system view.

The Data Dictionary Page 42-57

Teradata Administrator

List Columns of a View

Appendix D of this
manual contains a
listing of all the DD/D
views and columns.

Teradata
Administrator can be
used to list the
columns of DD/D
views (and tables).

 The Data Dictionary Page 42-58

Teradata Administrator – Object Options
Teradata Administrator can be used to perform a wide range of functions. The facing page
shows an example of the options available at a Table object level.

To use the viewing functions of Teradata Administrator, you must have Select access to the
DBC views of the Teradata Database. To use the Copy, Drop, Create or Grant options, you
must have the corresponding privilege on the table or database that you are trying to modify
or create. To use the Browse or Row Count features you must have select access to the
Table or View.

The Data Dictionary Page 42-59

Teradata Administrator

Object Options

Teradata
Administrator
can also be used
to display object
details.

For example,
right-click on the
object (e.g.,
Department
table) and a
menu of options
is displayed.

In this example,
the Indexes
option was
selected.

 The Data Dictionary Page 42-60

Summary
The facing page summarizes some important concepts regarding this module.

The Data Dictionary Page 42-61

Summary

• The data dictionary consists of tables, views, and macros stored in system
user DBC.

• The Teradata Database software automatically updates data
dictionary/directory tables as you create or drop objects.

• You can access data dictionary tables with supplied views.

• Data dictionary tables keep track of all created objects:

– Database and users

– Tables, views, macros, triggers, stored procedures, and user-defined functions

– Columns and indexes

– Hierarchies

• Note: To access information about individual objects stored in the data
dictionary, use the HELP and SHOW commands.

 The Data Dictionary Page 42-62

Module 42: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

The Data Dictionary Page 42-63

Module 42: Review Questions

1. True or False. The DBC.Databases view only contains information about databases; users are
not included in this view.

2. True or False. The DBC.Users view only contains information about users; databases are not
included in this view.

3. True or False. Queries that use restricted views usually take less time to execute than queries
that use unrestricted views.

4. True or False. All of the data dictionary tables are Fallback protected.

5. If a child table exists and the parent table doesn't, the reference constraint is marked as __________.

a. Inconsistent
b. Unresolved
c. Missing
d. Invalid

6. After executing the ALTER TABLE … ADD FOREIGN KEY … statement, Foreign Key values that are
missing in the parent table are marked in an error table and are known as ___________ rows.

a. Inconsistent
b. Unresolved
c. Missing
d. Invalid

 The Data Dictionary Page 42-64

Lab Exercise 42-1
Notes about DBC.DBCInfoV columns:

 The Release column provides the PDE release number.
 The Version column provides the Teradata software version number.

The Data Dictionary Page 42-65

Lab Exercise 42-1

Lab Exercise 42-1

Purpose

In this lab, you will use Teradata SQL Assistant to view information in the data dictionary using
various Data Dictionary views – Appendix D has details on Data Dictionary views.

What you need

SELECT Access to the Data Dictionary views.

Tasks

1. Using the DBC.DBCInfoV view, find the release and version of the system you are logged on:

Release (PDE) ___________________ Version (Teradata) ___________________

2. Using the DBC.ChildrenV view, list your parents’ user names.

___________________ __________________ ___________________ ___________________

3. Using the DBC.DatabasesV view, find your:

Immediate parent’s name ________________
Creator’s name ________________
Default account code ________________
Perm space limit ________________
Spool space limit ________________
Temp space limit ________________

 The Data Dictionary Page 42-66

Lab Exercise 42-1 (cont.)
The following pages describe the tasks for this lab exercise.

The Data Dictionary Page 42-67

Lab Exercise 42-1 (cont.)

4. Using the DBC.UsersV view, find your:

Default database name _________________
Default collation sequence _________________
Default date format _________________
Create time stamp _________________
Last password modification date _________________

OPTIONAL: SHOW this view. Note the WHERE conditions. (Remember, this is a restricted view, even
though it does not have an [X] suffix.)

5. Using the DBC.TablesV view, find the number of tables in the DD/D (user DBC) that are:

Fallback protected __________________

Not Fallback protected __________________

Modify the query to find the number of tables OTHER THAN DD/D (not DBC tables) that are:

Fallback protected __________________

Not Fallback protected __________________

 The Data Dictionary Page 42-68

Lab Exercise 42-1 (cont.)
The following pages describe the tasks for this lab exercise.

The Data Dictionary Page 42-69

Lab Exercise 42-1 (cont.)

6. Using the DBC.PartitioningConstraintsV view, answer the following questions; hint, use the
ColumnPartitioningLevel column to determine if a table is column partitioned or not.

For your user, how many tables have a PPI? ____
For your user, how many tables have column partitioning? ____

For the system, how many tables have a PPI? ____
For the system, how many tables have column partitioning? ____

What is the constraint type for PPI tables? ____

7. Using the DBC.IndicesV view, find the number of tables OTHER THAN Dictionary tables that have
non-unique primary indexes (NUPI):

Number of NUPI tables _________________

8. Using the DBC.ColumnsV view, find the number of columns in the entire system defined with default
values:

Number of columns _________________

Optional: Modify the query to find the number of objects that have columns defined with default
values:

Number of tables _________________

 The Data Dictionary Page 42-70

Lab Exercise 42-2 (optional)
Check your understanding of the concepts discussed in this module by completing the lab
exercises as directed by your instructor.

Use the following SQL for this exercise.

To populate a table:

INSERT INTO empty_tablename
SELECT * FROM non_empty_tablename;

To grant an Access Right on a table:

GRANT REFERENCES ON tablename TO username;

To grant an Access Right on a specific column:

GRANT REFERENCES (column_name) ON tablename TO username;

The Data Dictionary Page 42-71

Lab Exercise 42-2 (optional)

Lab Exercise 42-2 (optional)

Purpose

In this lab, you will use Teradata SQL Assistant to establish References constraints between 4
populated tables and view the associated data dictionary entries.

What you need
Populated PD tables and empty tables in your database

Tasks

1. Use INSERT/SELECT to place all rows from the populated PD tables into your empty tables. Verify
the number of rows in your tables.

PD.Employee to populate Employee Count = _______
PD.Department to populate Department Count = _______
PD.Job to populate Job Count = _______
PD.Emp_Phone to populate Emp_Phone Count = _______

2. Use the GRANT statement to GRANT yourself the REFERENCES access rights on the tables.

GRANT REFERENCES ON tablename TO username;

 The Data Dictionary Page 42-72

Lab Exercise 42-2 (optional – cont.)
Check your understanding of the concepts discussed in this module by completing the lab
exercises as directed by your instructor.

Use the following SQL for this exercise.

To create a References constraint:

ALTER TABLE child_tablename
 ADD CONSTRAINT constraint_name

 FOREIGN KEY (child_name)
 REFERENCES parent_tablename (parent_column);

To select from the DBC.ALL_RI_ChildrenV view:

SELECT Indexid (FORMAT 'z9') AS ID
 ,IndexName
 ,ChildTable
 ,ChildKeyColumn
 ,ParentTable
 ,ParentKeyColumn
FROM DBC.ALL_RI_ChildrenV
WHERE ChildDB = USER
ORDER BY 1;

The Data Dictionary Page 42-73

Lab Exercise 42-2 (optional – cont.)

3. Create a References constraint between the Employee.Dept_Number column and the
Department.Dept_Number column.

What is the name of the Employee RI error table? _______________

How many rows are in this table? ______

Which department is not represented in the department table? _______

4. Use the DBC.All_RI_ChildrenV view (qualify the ChildDB to your database) and verify this References
constraint.

What is the IndexID of this constraint? _______

 The Data Dictionary Page 42-74

Notes

Space Allocation and Usage Page 43-1

Module 43

Teradata Proprietary and Confidential

Space Allocation and Usage

After completing this module, you will be able to:

 Define permanent space, spool space and operating system
space requirements.

 Estimate system capacity.

 Use the AllSpace, DiskSpace, and TableSize views to
monitor disk space utilization.

 Use Teradata Administrator to view database and table
space utilization.

Teradata Training

 Space Allocation and Usage Page 43-2

Notes

Space Allocation and Usage Page 43-3

Table of Contents

Permanent Space Terminology .. 43-4
Spool Space Terminology .. 43-6
Temporary Space Terminology.. 43-8
Resetting Peak Values .. 43-10
Assigning Perm and Spool Limits ... 43-12
Giving One User to Another .. 43-14
Teradata Administrator – Move Space .. 43-16
Reserving Space for Spool ... 43-18
Views for Space Allocation Reporting .. 43-20
DiskSpace View ... 43-22
TableSize View .. 43-24
AllSpace View ... 43-26
DataBaseSpace Table ... 43-28
Different Views — Different Results .. 43-30
Additional Utilities to View Space Utilization .. 43-32
Teradata Administrator – Database Menu Options .. 43-34
Teradata Administrator – Object Menu Options .. 43-36
Transient Journal Space ... 43-38
Ferret Utility ... 43-40
Ferret SHOWSPACE Command ... 43-42
Ferret SHOWBLOCKS .. 43-44

Ferret SHOWBLOCKS – Subtable Detail ... 43-46
Module 43: Review Questions ... 43-48

Teradata Training

 Space Allocation and Usage Page 43-4

Permanent Space Terminology
MaxPerm

MaxPerm is the maximum number of bytes available for table, index, and permanent journal
storage in a system database or user.

The number of bytes specified is divided by the number of AMP vprocs in the system. The
result is recorded on each AMP vproc and may not be exceeded on that vproc. *

Perm space limits are deducted from the limit set for the immediate parent of the object
defined.

Perm space is acquired when data is added to a table. The space is released when you delete
or drop objects.

CurrentPerm
CurrentPerm is the total number of bytes (including table headers) in use on the database to
store the tables, subtables and permanent journals contained in a User or Database. This
value is maintained on each AMP vproc.

PeakPerm
PeakPerm is the largest number of bytes ever actually used to store data in a user or
database. This value is maintained on each AMP vproc.

Reset the PeakPerm value to zero by using the ClearPeakDisk Macro supplied in User DBC.

 Note: Space limits are enforced at the database level. A database or user may own

several small tables or a few large tables as long as they are within the MaxPerm limit
set on each AMP.

* Minor exceptions to this rule may occur occasionally. For example, utilities that write

data to disk a block at a time (such as FastLoad) check space limits after a block is
written.

Space Allocation and Usage Page 43-5

Permanent Space Terminology

MaxPerm

The maximum number of bytes available for table, index and permanent journal storage
in a database or user.

CurrentPerm

The total number of bytes in use to store the tables, subtables, and permanent journals
contained in the database or user.

PeakPerm

The largest number of bytes actually used to store data in this user since the value was
last reset.

MaxPerm

CurrentPerm

PeakPerm

ds186034
Sticky Note
max avail to that db and userits on free list if they dont use itMacros to reset the peak perm...and sets so current at that time (ie the time of reset)

Teradata Training

 Space Allocation and Usage Page 43-6

Spool Space Terminology
MaxSpool

MaxSpool is a value used to limit the number of bytes the system will allocate to create
spool files for a user.

The value you specify may not exceed that of a user's immediate parent (database or user) at
the time you create the user. If you do not specify a value, MaxSpool defaults to the
parent’s MaxSpool value.

Limit the spool space you allocate to users to reduce the impact of "runaway" transactions,
such as accidental product joins.

Spool space marked (last use) is recovered by a worker task that is initiated every five
minutes.

CurrentSpool
CurrentSpool is the number of bytes in use for running transactions. This value is
maintained on each AMP vproc for each user.

PeakSpool
PeakSpool is the maximum number of bytes used by a transaction run for a user since the
value was last reset by the ClearPeakDisk Macro (supplied in system user DBC).

Space Allocation and Usage Page 43-7

Spool Space Terminology

MaxSpool

A value used to limit the number of bytes the system will consume to create spool files
for a user.

CurrentSpool

The number of bytes currently in use for running transactions.

PeakSpool

The maximum number of bytes used by a transaction run for this user since the value
was last reset.

MaxSpool

CurrentSpool

PeakSpool

ds186034
Sticky Note
typically use = peak

Teradata Training

 Space Allocation and Usage Page 43-8

Temporary Space Terminology
MaxTemp

MaxTemp is a value used to limit the number of bytes the system will use to store data for
global temporary tables for a user.

The value you specify may not exceed that of a user's immediate parent (database or user) at
the time you create the user. If you do not specify a value, MaxTemp defaults to the
parent’s MaxTemp value.

CurrentTemp
CurrentTemp is the number of bytes in use for global temporary tables. This value is
maintained on each AMP vproc for each user.

PeakTemp
PeakTemp is the maximum number of bytes used by global temporary tables for a user since
the value was last reset by the ClearPeakDisk Macro (supplied in system user DBC).

Space Allocation and Usage Page 43-9

Temporary Space Terminology

MaxTemp

A value used to limit the number of bytes the system will use to store data for global
temporary tables for a user.

CurrentTemp

The number of bytes in use for global temporary tables.

PeakTemp

The maximum number of bytes used by global temporary tables for a user since the
value was last reset.

MaxTemp

CurrentTemp

PeakTemp

Temporary space is released when the user terminates the session or when the user
frees the temporary space (e.g., Deleting the rows in a global temporary table.

Teradata Training

 Space Allocation and Usage Page 43-10

Resetting Peak Values
From time to time, the administrator needs to clear out the values accumulated in the
DBC.DataBaseSpace table. These values must be reset to restart the data collection process.

DBC.ClearPeakDisk
The Teradata software provides a macro to reset the PeakPerm, PeakSpool, and PeakTemp
values in the DBC.DataBaseSpace table. It may be used to reset the peak values for the next
collection period.

Space Allocation and Usage Page 43-11

Resetting Peak Values

The ClearPeakDisk macro resets PeakPerm, PeakSpool, and PeakTemp values in
the DatabaseSpace table.

REPLACE MACRO DBC.ClearPeakDisk AS
(
UPDATE DatabaseSpace
SET PeakPermSpace = CurrentPermSpace,

PeakSpoolSpace = 0,
PeakTempSpace = 0 ALL ;

) ;

SHOW MACRO DBC.ClearPeakDisk;

This macro may be used to reset peak values for the next data collection period.

To clear accounting values:

*** Update completed. 3911 rows changed.

*** Time was 4 seconds.

EXEC DBC.ClearPeakDisk;

ds186034
Sticky Note
to reset values in Data Dictionary

Teradata Training

 Space Allocation and Usage Page 43-12

Assigning Perm and Spool Limits
You define permanent and spool space limits at the database or user level, not at the table
level.

When you create databases or users, perm space limits are deducted from the available
(unused) space of the immediate owner.

The spool space limit may not exceed that of the immediate owner at the time you create an
object. If you do not specify a spool space limit, the new object “inherits” its limit from the
immediate owner (user or database).

Example
The diagram on the facing page illustrates how Teradata manages permanent and spool
space.

A user, Payroll, has a 25 GB permanent space limit and a 50 GB spool space limit.

Payroll creates two new users, PY01 and PY02. After Payroll creates the new objects, its
maximum Perm space drops to 15 GB. PY01 has 6 GB of maximum Perm and PY02 has 4
GB.

Later, Payroll drops user PY02. Payroll’s maximum Perm space increases to 19 GB since it
regains the permanent space that used to belong to PY02.

Payroll has a limit of 50 GB of maximum Spool. When it creates PY01, it assigns 35 GB of
maximum Spool to the new user. Since there is no statement of spool space for PY02, its
maximum Spool defaults to the limit of its immediate parent: 50 GB.

The amount of maximum Perm increases and decreases as the owner creates and drops new
users. The spool space figure remains constant even when the owner adds and drops users.

Space Allocation and Usage Page 43-13

Assigning Perm and Spool Limits

MaxPerm = 25E9 MaxSpool = 50E9

CREATE USER PY01 AS PASSWORD = abc, PERM = 6E9, SPOOL = 35E9;

CREATE USER PY02 AS PASSWORD = xyz, PERM = 4E9;

MaxPerm = 15E9 MaxSpool = 50E9Payroll

PY01 PY02

The maximum Spool value may not exceed that of the
immediate owner at the time you create the new user.

What is the maximum Spool limit of PY02?

DROP USER PY02;

MaxPerm = 19E9 MaxSpool = 50E9Payroll

PY01
The Perm space from PY02 is returned back to the
immediate owner.

Payroll

ds186034
Sticky Note
E9 = Gigabytes

ds186034
Sticky Note
subtracted from parent max permparent now has 15PY02 = 50 (defaults to the parent value)PY01 is definedthey have 4now becomes 19 (4+15)

Teradata Training

 Space Allocation and Usage Page 43-14

Giving One User to Another
When you give an object to another object in the hierarchy, all space allocated to that object
goes with it. If you drop the object, its space is credited to its immediate owner.

When you give databases or users, all descendants of the given object remain descendants of
the given object.

When you give an object to new parents, the ownership of space is transferred; however the
limits remain the same.

If you drop an object, its space is credited to its immediate owner.

The facing page illustrates giving a database/user from one database/user to another such as
giving Payroll from Human_Resources to Accounting.

Adjusting Perm Space Limits
You can easily adjust perm space limits. Using the illustration on the facing page as an
example, you could transfer 10 GB from Human_Resources to Accounting using the
following technique:

1. CREATE DATABASE Temp FROM Human_Resources AS PERM = 10E9;
2. GIVE Temp TO Accounting;
3. DROP DATABASE Temp;

The database TEMP is NOT shown on the facing page, but is used as an example of how
space could be transferred from one database to another.

Notes:

You enforce limits when you create an object.

Objects you give may have spool limits that exceed that of their current owner.

Space Allocation and Usage Page 43-15

Giving One User to Another

SysDBA

Personnel

GIVE Payroll TO Accounting;

(Users)

MaxPerm = 10E9
MaxSpool = 50E9

Benefits

(Users)

Payroll

MaxPerm = 10E9
MaxSpool = 20E9

MaxPerm = 15E9
MaxSpool = 50E9

PY01 PY02

Human_Resources Accounting

• Payroll ownership is transferred (GIVE) to Accounting.

• All descendants (child users/databases, tables, views, etc.) of a “given” object remain
with the “given” object.

• The GIVE command may also be used to move Permanent space from one
database/user to another database/user.

ds186034
Sticky Note
small change in the DDwho is the new immediate parentnothing else changes...only the new immediate parent

ds186034
Sticky Note
this is how child can have higher spool value than their Parents50 parent is only 20(can only change to 20 or less...if try to change it to 40 , it will fail)

ds186034
Sticky Note
higher max permvery possible for child to have more than parentTOTAL is avail in the systemtechnique to move space around...changing parent...by using "give"

Teradata Training

 Space Allocation and Usage Page 43-16

Teradata Administrator – Move Space
The Move Space function of Teradata Administrator makes it easy to move space from one
database/user to another database/user. The Tools > Move Space menu choice displays the
Move Space dialog box that you use to reallocate permanent disk space from one database to
another:

The example on the facing page illustrates moving 20 MB of Permanent space from the
HR_Tab database to the Payroll_Tab database.

The user who has logged onto Teradata Administrator requires the DROP DATABASE
access right on HR_Tab and the CREATE DATABASE access right on Payroll_Tab in
order to do this move space operation.

As discussed previously, the following commands would accomplish the same thing.

1. CREATE DATABASE Temp FROM HR_Tab AS PERM = 20E6;
2. GIVE Temp TO Payroll_Tab;
3. DROP DATABASE Temp;

Space Allocation and Usage Page 43-17

Teradata Administrator – Move Space

Teradata Training

 Space Allocation and Usage Page 43-18

Reserving Space for Spool
Spool space serves as temporary storage for returned rows during transactions that users
submit. To ensure that space is always available, you may want to set aside about 20 to 25%
of total available space as spool space. To do this, you can create a special database called
Spool_Reserve. This database will not be used to load tables.

Decision support applications should reserve more of the total disk space as reserved spool
space since their SQL statements generate larger spool files. OLTP applications can use less
as reserved spool space because their statements generate smaller spool files.

The above actions guarantee that data tables will never occupy more than 60% to 75% of the
total disk space. Since there is no data stored in Spool_Reserve, the system will use its
permanent space as spool space when necessary.

Orphan or Phantom Spool Issues
Spool tables are temporary work tables which are created and dropped as queries are
executed. When a query is complete, all of the spool tables it used should be dropped
automatically.

Like all tables, spool tables require a Table ID. There is a range of tableids exclusively
reserved for spool tables (C000 0001 thru FFFF FFFF) and the system cycles through
them. If a spool table is not dropped correctly, it remains in existence. Eventually, the
system will cycle through all the table ids and reassign the tableid which is in use by our left
over spool table. Usually, the presence of this table is detected, the query which was going
to use the tableid is aborted – even though it is innocent of any wrongdoing – and the
following message is returned to the user and put in the error log:

 *** FAILURE 2667 Left-over spool table found: transaction aborted.

This case is very unusual, but can happen. The unusual cases of leftover spool are covered
in another module later in this course.

Space Allocation and Usage Page 43-19

Reserving Space for Spool

To ensure space will
always be available
for spool ...

DBC

Spool_Reserve

SystemFE

SysAdmin

CrashDumps

Sys_Calendar

Users

View, Macro,
and Stored
Procedure
Databases

Database
(1)

Database
(1)

Database
(1)

Database
(2)

QCD

SysDBA

Temporary
Table

Databases

CREATE DATABASE Spool_Reserve
AS PERM = spool_amount ;

(The space used by Spool_Reserve
will reduce the total available
permanent space in the system by
25-40% or whatever is appropriate.)

Do not use the Spool_Reserve
database to store tables. Data
tables will occupy up to 60-75%
of the total disk space.

ds186034
Sticky Note
25%setting aside space

Teradata Training

 Space Allocation and Usage Page 43-20

Views for Space Allocation Reporting
Use the following system views to report current space allocation:

DBC.DiskSpace[V][X]
This view gives AMP vproc information about disk space usage for any database or account.
It gets this information from the ALL table.

DBC.TableSize[V][X]
This view gives AMP vproc information about disk space usage (excluding spool) for any
table or account.

DBC.AllSpace[V][X]
This view gives AMP vproc information about disk space usage (including spool) for any
database, table, or account.

Each of these views references the non-hashed DBC.DataBaseSpace table.

Space Allocation and Usage Page 43-21

Views for Space Allocation Reporting

AMP vproc information about disk space usage
(including spool) for any database or account.

AMP vproc information about disk space usage
(excluding spool) for any database, table or account.

AMP vproc information about disk space usage
(including spool) for any database, table, or account.

View Name Description

DBC.DiskSpace[V][X]

DBC.TableSize[V][X]

DBC.AllSpace[V][X]

Database_XYZ

Table_X – 50 MB

Table_Y – 10 MB

Table_Z – 40 MB

All (sum of X, Y, Z)

Example: SUM (CurrentPerm) using the 3 views

DBC.DiskSpaceV

Table All – 100 MB

DBC.TableSizeV DBC.AllSpaceV

Table_X – 50 MB Table_X – 50 MB
Table_Y – 10 MB Table_Y – 10 MB
Table_Z – 40 MB Table_Z – 40 MB

Table All – 100 MB
100 MB 200 MB

ds186034
Sticky Note
every db has a table all behind the scenediskspaceVwill show 100AllSpaceV = 200(includes but its double count)

Teradata Training

 Space Allocation and Usage Page 43-22

DiskSpace View
The DiskSpace[V][X] view provides AMP vproc information about disk space usage at the
database level. This view includes spool space usage.

The PeakSpool column can be used to determine the maximum amount of spool space that a
user has used (via DatabaseName and AccountName columns) .

Example
The SELECT statement on the facing page calculates the percentage of disk space used in
the owner's database. The result displays a partial report with five rows. The DS database
has the highest percentage of utilized space at 88.41%. SystemFE has the lowest at 12.39%.

Note: In the statement, use NULLIFZERO to avoid a divide exception.

Space Allocation and Usage Page 43-23

DiskSpace View

Provides AMP Vproc disk space usage at the database level, including spool space.

SELECT DatabaseName
,CAST (SUM (MaxPerm) AS FORMAT 'zzz,zzz,zz9')
,CAST (SUM (CurrentPerm) AS FORMAT 'zzz,zzz,zz9')
,CAST (((SUM (CurrentPerm))/

NULLIFZERO (SUM(MaxPerm)) * 100)
AS FORMAT 'zz9.99%') AS "% Used"

FROM DBC.DiskSpaceV
GROUP BY 1
ORDER BY 4 DESC ;

Example Results:

Example:
Calculate the percentage of
permanent space used in
databases and users.

DBC.DiskSpace[V][X]

Vproc DatabaseName AccountName MaxPerm MaxSpool
MaxTemp CurrentPerm CurrentSpool CurrentTemp PeakPerm
PeakSpool PeakTemp MaxProfileSpool MaxProfileTemp

DatabaseName Sum(MaxPerm) Sum(CurrentPerm) % Used

DS 209,715,200 185,413,632 88.41%
TFACT 104,857,600 45,396,480 43.29%
AP 20,000,000 3,978,240 19.89%
Sys_Calendar 15,000,000 2,647,040 17.65%
SystemFe 1,000,000 123,904 12.39%

This view selects values for TableName “ALL” (TableID = '000000000000' XB).

Teradata Training

 Space Allocation and Usage Page 43-24

TableSize View
The TableSize view is a Data Dictionary view that provides AMP Vproc information about
disk space usage at a table level, optionally for tables the current User owns or has SELECT
privileges on.

Example
The SELECT statement on the facing page looks for poorly distributed tables by displaying
the CurrentPerm figures for a single table on all AMP vprocs.

The result displays one table, Table2, which is evenly distributed across all AMP vprocs in
the system. The CurrentPerm figure is nearly identical across all vprocs. The other table,
Table2_nupi, is poorly distributed. The CurrentPerm figures range from 95,232 bytes to
145,920 bytes on different AMP vprocs.

Space Allocation and Usage Page 43-25

TableSize View

Provides AMP Vproc disk space usage at table level.

SELECT Vproc
,CAST (TableName

AS FORMAT 'X(20)')
,CurrentPerm
,PeakPerm

FROM DBC.TableSizeV
WHERE DatabaseName = USER
ORDER BY TableName, Vproc ;

Example:
Look at table distribution across AMPs.

DBC.TableSize[V][X]

Vproc DatabaseName AccountName TableName
CurrentPerm PeakPerm

Vproc TableName CurrentPerm PeakPerm

0 Table2 127,488 253,440
1 Table2 127,488 253,440
2 Table2 127,488 253,952
3 Table2 127,488 253,952
4 Table2 128,000 255,488
5 Table2 128,000 255,488
6 Table2 126,976 251,904
7 Table2 126,976 251,904
0 Table2_nupi 95,232 95,232
1 Table2_nupi 95,232 95,232
2 Table2_nupi 145,920 145,920
3 Table2_nupi 145,920 145,920
4 Table2_nupi 123,904 123,904
5 Table2_nupi 123,904 123,904
6 Table2_nupi 145,408 145,408
7 Table2_nupi 145,408 145,408

Excludes TableName “All” (TableID = ‘000000000000’ XB)

ds186034
Sticky Note
8 AMP system

Teradata Training

 Space Allocation and Usage Page 43-26

AllSpace View
The AllSpace[V][X] view provides AMP vproc information about disk space usage at the
database and table level. This information includes the “All” table.

Example
The SELECT statement on the facing page lists the MaxPerm and CurrentPerm figures for
each table in the user's space. The result displays three table names: All, Table2, and
Table2_nupi.

The “All” table represents all tables that reside in the user's space. The MaxPerm figure for
“All” is the amount of permanent space defined for that user. There are only two tables in
this user's defined space.

Note: The “Table2 and Table2_nupi” tables display zero bytes in the MaxPerm column.

This is because tables do not have MaxPerm space, only databases and users do, as
represented by the “All” table.

Space Allocation and Usage Page 43-27

AllSpace View

AMP vproc disk space usage at the database AND table level.

SELECT Vproc
,CAST (TableName AS

FORMAT 'X(20)')
,MaxPerm
,CurrentPerm

FROM DBC.AllSpaceV
WHERE DatabaseName = USER
ORDER BY TableName, Vproc ;

Example:
List all tables (by Vproc) contained in
the user’s space.

DBC.AllSpace[V][X]

Vproc TableName MaxPerm CurrentPerm

0 All 1,250,000 222,720
1 All 1,250,000 222,720
2 All 1,250,000 273,408
3 All 1,250,000 273,408
: : : :

0 Table2 0 127,488
1 Table2 0 127,488
2 Table2 0 127,488
3 Table2 0 127,488
: : : :

0 Table2_nupi 0 95,232
1 Table2_nupi 0 95,232
2 Table2_nupi 0 145,920
3 Table2_nupi 0 145,920
: : : :

Vproc DatabaseName AccountName TableName
MaxPerm MaxSpool MaxTemp CurrentPerm
CurrentSpool CurrentTemp PeakPerm PeakSpool
PeakTemp MaxProfileSpool (13.0) MaxProfileTemp (13.0)

Includes TableName “All” (TableID = ‘000000000000’ XB)

ds186034
Sticky Note
we only have it for databases and usersnot for tables and hence the value of 0

ds186034
Sticky Note
use diskspaceratherthan this allspace view

Teradata Training

 Space Allocation and Usage Page 43-28

DataBaseSpace Table
The DataBaseSpace table tracks and stores information about disk space usage for objects in
the Teradata system. The information is updated as users create new databases and add
tables to them. The facing page illustrates four columns from DataBaseSpace. The SQL to
generate this report follows:

 SELECT DatabaseID, TableID, Vproc, CurrentPermSpace
 FROM DBC.DataBaseSpace
 WHERE DatabaseID='00001404'XB
 ORDER BY 2;

DataBaseSpace Columns
The four columns described below are used by the AllSpace, DiskSpace and TableSize
views to produce disk space utilization reports:

DatabaseID
A DatabaseID is a unique identification number assigned to a database when the CREATE
DATABASE statement is issued. The SQL statement adds a new row to the DataBaseSpace
table and automatically assigns an internal database ID that corresponds with the database
name assigned by the user.

TableID
TableID is a unique identification number assigned to a table when the CREATE TABLE
statement is issued. The SQL statement adds a new row to the DataBaseSpace table and
automatically assigns an internal table ID that corresponds with the table name assigned by
the user.

Each database has a table ID 000000000000. This table has a special purpose. It displays
the total amount of PermSpace used by the entire database, not just a single table. This table
name is referenced as “All”.

Vproc
Vproc is the logical vproc number where a table is stored. Since tables are evenly
distributed across all AMP vprocs, a single table is stored on several different vprocs.

CurrentPermSpace
CurrentPermSpace is the number of bytes of permanent space taken up on a specific vproc
by that table. Table ALL (ID of 000000000000) displays the total amount of permanent
space used by the tables stored in that database.

Space Allocation and Usage Page 43-29

DataBaseSpace Table

DatabaseID TableID

UPI Vproc CurrentPermSpace

00001404 000000000000 0 222,720
00001404 000000000000 1 222,720
00001404 000000000000 2 273,408
00001404 000000000000 3 273,408
00001404 000000000000 4 251,904
00001404 000000000000 5 251,904
00001404 000000000000 6 272,384
00001404 000000000000 7 272,384

00001404 0000260C0000 0 127,488
00001404 0000260C0000 1 127,488
00001404 0000260C0000 2 127,488
00001404 0000260C0000 3 127,488
00001404 0000260C0000 4 128,000
00001404 0000260C0000 5 128,000
00001404 0000260C0000 6 126,976
00001404 0000260C0000 7 126,976

00001404 0000270C0000 0 95,232
00001404 0000270C0000 1 95,232
00001404 0000270C0000 2 145,920
00001404 0000270C0000 3 145,920
00001404 0000270C0000 4 123,904
00001404 0000270C0000 5 123,904
00001404 0000270C0000 6 145,408
00001404 0000270C0000 7 145,408

Table
“All”

Sum is
2,040,832

Table2
Sum is

1,019,904

Table2_nupi
Sum is

1,020,928

Four columns from
DBC.DataBaseSpace:

Notes: 1,019,904
+ 1,020,928

2,040,832

2,040,832
1,019,904

+ 1,020,928

4,081,664

ds186034
Sticky Note
its a pseudo table called ALL=000000000000

ds186034
Sticky Note
8 AMPS

ds186034
Line

ds186034
Sticky Note
above the line is table all

Teradata Training

 Space Allocation and Usage Page 43-30

Different Views — Different Results
Conflicting Results

It would seem logical that query results would be the same for any of the preceding views,
since they all use the same underlying table. However, query results can differ depending
upon which view you select.

The SQL statements and results on the facing page illustrate how a single SQL statement
can produce a different result for each view.

For example, when we select the MAX (CurrentPerm) and SUM (CurrentPerm) from each
of the AllSpace, DiskSpace, and TableSize views, our results will differ. The SUM
(CurrentPerm) value from the DBC.AllSpace view represents the Sum of “All” tables (i.e.,
the database total) plus the sum of each table in the database. The results are misleading.
We suggest that you do not use this query.

We recommend that you use the DBC.DiskSpace view for queries at the database level and
use the DBC.TableSize view for queries at the table level.

Sum(CurrentPerm)
The DiskSpace view displays 2,040,832 bytes of total permanent space used for database ID
00001404. This figure reflects the total number of bytes stored on each processor in table
ID 000000000000 or table ALL. Remember, the DiskSpace view reports on database space
usage.

The TableSize view also displays 2,040,832 bytes of total CurrentPerm. This figure comes
from the individual tables stored within the same database. The total comes from adding all
of the bytes in tables 0000260C0000 and 0000270C0000 together. Since DiskSpace reports
on the database and TableSize reports on the individual tables in the database, both result in
the same figure.

The AllSpace view displays 4,081,664 bytes which is double what the other two views
reported. This view displays the total of all tables including table ID 000000000000 or table
ALL. Since table name ALL already contains the totals from all of the other tables, the
resulting total is double what it should be.

Maximum(CurrentPerm)
Both DiskSpace and AllSpace display 273,408 bytes as the largest number of permanent
space. Both views read the result from table 000000000000. TableSize, on the other hand,
displays 145,920. TableSize looks at individual tables. It excludes figures stored in table ID
000000000000 or table ALL.

Space Allocation and Usage Page 43-31

Different Views — Different Results

SELECT MAX(CurrentPerm)
,SUM(CurrentPerm)

FROM DBC.DiskSpaceV
WHERE DatabaseName = USER ;

SELECT MAX(CurrentPerm)
,SUM(CurrentPerm)

FROM DBC.TableSizeV
WHERE DatabaseName = USER ;

SELECT MAX(CurrentPerm)
,SUM(CurrentPerm)

FROM DBC.AllSpaceV
WHERE DatabaseName = USER ;

Maximum (CurrentPerm) Sum (CurrentPerm)

273,408 2,040,832

Values only represent table ALL.

Maximum (CurrentPerm) Sum (CurrentPerm)

145,920 2,040,832

Values represent all of the actual tables except
table ALL.

Maximum (CurrentPerm) Sum (CurrentPerm)

273,408 4,081,664

Values represent all of the actual tables and
table ALL.

ds186034
Sticky Note
it excludes table allall space is from all currrentprermspace(double count)"ALLSPACE" larry does not use it...

Teradata Training

 Space Allocation and Usage Page 43-32

Additional Utilities to View Space Utilization
Examples of additional tools that may be used to view database and table space utilization
are provided in this module.

Space Allocation and Usage Page 43-33

Additional Utilities to View Space Utilization

Teradata Administrator – graphical tool to easily view space usage

• Database menu

– Child Space – space usage for all child databases of the selected database

– Table space – space usage for all tables of the selected database

• Object menu

– Space Summary – current and peak perm usage of the specified table

– Space by AMP – current and peak perm usage of the specified table by AMP

Ferret – system utility – started via Database Console or Viewpoint Remote Console

• ShowSpace – space usage (perm, spool, and temporary) at the system level

• ShowBlocks – allocation of permanent space at the table and subtable level

Question – Why use ShowBlocks to determine space usage at a table level?

• “How much perm space is currently being used by a secondary index?”

– This level of detail is not available with DBC.TableSizeV and Teradata
Administrator – only provide current perm space usage at the table level.

– ShowBlocks provide subtable space information – multiply the typical block size
times the number of blocks to determine subtable space usage.

ds186034
Sticky Note
TD Admin great way to see spaceFerret

ds186034
Sticky Note
big tablewe have SItable = totalbase table + all SIhow much space is the index using upshowblock can show that

Teradata Training

 Space Allocation and Usage Page 43-34

Teradata Administrator – Database Menu Options
Use the command selections on the Database pull-down menu to indicate the type of
information you want displayed.

A check mark indicates the current setting of your database Default View option (i.e., the
information displayed when you double click on a database.)

Note: The Database menu does not appear on the Teradata Administrator menu bar until you
establish a connection with a database server.

Select a database from the database tree windowpane and make a selection from the
Database pull-down menu. Selections and corresponding information displayed are
identified in the table below.

Selection Display Information

List Tables

Each table in the selected database

List Views

Each view in the selected database

List Macros

Each macro in the selected database

Database Info The selected database itself

Database Rights Access rights for each table, view, and macro in the
selected database

Table Space

Space usage for each table in the selected database

Child Space Space usage for each database that is owned directly by
the selected database

List Databases All databases and users created under the selected
database

List All DB/TVM Each table, view, macro, trigger and join index in the
selected database and show all Child Database/Users in
the tree

Open / Close DB Expansion or contraction of the database tree

Space Allocation and Usage Page 43-35

Teradata Administrator

Database Menu Options

Database menu

• List databases, tables,
views and macros.

• Display database
information and access
rights.

• View table and child space
usage.

• Information appears in grid
area.

Database > Child Space
displays a space usage
report for each database
that is owned directly by
selected database.

OR

Right-click on a database/user
and select Child Space.

Teradata Administrator can be used to easily view database/user space usage.

Teradata Training

 Space Allocation and Usage Page 43-36

Teradata Administrator – Object Menu Options
Select an item in the upper grid area, and use the submenu selections on the Object menu to
display detail information, described below, about the selected table, macro, or view.

Object Type Selection Display Information

Table, View List Columns

Information about the columns of the
selected table or view

Table Index

The indexes for the selected table

Table Statistics

Statistics information for the selected
table

Table, View Row Count The number of rows in the selected
table or view

Table, View Browse Information from the data rows of
the selected table or view

Table, View, Macro Info

General information about the
selected object

Table Space Summary Space usage information for the
selected table

Table Space by AMP Space usage by AMP information for
the selected table

Table, View, Macro Rights Access rights for the selected object

Table, View, Macro

Users The users who have access rights to
the selected object

Table Journal The journal table for the selected
table

Table, View, Macro Show Definition The text that was used to create the
selected object

Space Allocation and Usage Page 43-37

Teradata Administrator

Object Menu Options

Object menu

• Select a table, view
or macro from the
upper grid area and
the desired
submenu selection.

• This menu can also
be seen by right-
clicking on the
object.

• Information appears
in lower pane area.

Right-click on Table2_nupi and
select “Space by AMP” which

is displayed in lower pane.

Lower pane

Same information as
provided by earlier
DBC.TableSize view.

Teradata Training

 Space Allocation and Usage Page 43-38

Transient Journal Space
Starting with Teradata V2R6.2, the Transient Journal images are maintained within the
WAL Log. The WAL Log includes the following:

 Redo Records for updating disk blocks and insuring file system consistency during
restarts, based on operations performed in cache during normal operation.

 Transient Journal (TJ) records used for transaction rollback.

The WAL Log is conceptually similar to a table, but the log has a simpler structure than a
table. Log data is a sequence of WAL records, different from normal row structure and not
accessible via SQL.

The system maintains the before-update copies of rows updated within a transaction in the
Transient Journal (TJ). Prior to V2R6.2, the TJ records were stored in the system table
DBC.TransientJournal. These are now stored in the WAL log.

For historical and reporting purposes, the Transient Journal still appears as a table within
DBC. Its space may be greater than the maximum PERM space of DBC, but it is not getting
its space from DBC. This table entry effectively indicates the size of the WAL log which is
outside of DBC’s perm space.

After-update images (REDO images), as well as all of the following items, are also
contained within the file system Write Ahead Log, or WAL:

 Images of updates made to data blocks
 Images of updates made to cylinder indexes
 Images of updates made to File Information Blocks (FIBs)
 Instructions for where and how to use all these change images.

These WAL images are called redo records. After the system applies the appropriate set of
WAL log redo records to the data on disk, then the data blocks, cylinder indexes, and FIB
images appear as if the updated copies of those blocks that had really only been in memory,
had actually been written to disk. In other words, the redo records apply their updates to
older versions of those blocks.

The TJ records in the WAL log are undo records. After the system finishes processing the
redo records, the data is in a consistent state, which permits the processing of the undo
records.

During file system startup, and before the AMPs begin to come up, the file system handles any redo
records in the WAL log that need to be processed. After that, the file system finishes its part
of the startup process and the database software goes into normal recovery mode, where it
processes any applicable TJ records in the same way they have always been processed.

Space Allocation and Usage Page 43-39

Teradata Administrator

Transient Journal Space

For historical purposes,
the TransientJournal
table still appears within
DBC.

TJ space is actually
allocated in the WAL log
and may have a value
greater than DBC's
maximum perm space.

This entry actually
represents WAL Log
space that is allocated.

Note that the MaxPerm
of DBC is 51 MB, but its
CurrentPerm is 88 MB.

Transient Journal (TJ) images are maintained within the WAL Log.

ds186034
Sticky Note
Curr Perm > max permcause entry for Transient journalwhich tells me how much space we are using in WALLBUTa big chunk is in the wall

Teradata Training

 Space Allocation and Usage Page 43-40

Ferret Utility
To maintain data integrity, the Ferret utility (File Reconfiguration Tool) enables you to
display and set various disk space utilization attributes associated with the Teradata
database.

When you select the Ferret utility attributes and functions, it dynamically reconfigures the
data on the disks to correspond with the selections.

Depending on the functions, Ferret can operate at the vproc, table, subtable, disk, or cylinder
level.

Start Ferret from the DBW connected to the Teradata database. Note that the Teradata
database must be in the Logons Enabled state.

The commands within the Ferret utility that we will discuss in this module include:

 SCOPE
 SHOWSPACE
 SHOWBLOCKS

To start the Ferret utility, enter the following command in the Supervisor screen of the
DBW:

 START FERRET

You will be placed in the interactive partition where the Ferret utility was started.

Space Allocation and Usage Page 43-41

Ferret Utility

From Supervisor (of Database Window), enter: START FERRET

Functions of FERRET
covered in this module:

 SHOWSPACE
 SHOWBLOCKS

26 background tasks were
started – one for each AMP.

Ferret Utility

| | |
| ___ __ ____ | ____ __|__ ____
/	/ \ ____	____	____		____
---	/	/	/		/
___	____	____	____		__ ____

Release 14.00.00.01 Version 14.00.00.01
Ferret

Waiting for 26 Ferret background tasks to start
All Background tasks have been started
FERRET will run in Perf Group: M
The SCOPE has been set

Ferret ==>

ds186034
Sticky Note
cause 26 = 26 no of amps on the system

Teradata Training

 Space Allocation and Usage Page 43-42

Ferret SHOWSPACE Command
The SHOWSPACE command reports the amount of disk cylinder space currently in use and
the amount of cylinder space that remains available. Use SHOWSPACE to determine if
disk compaction or system expansion is required.

SHOWSPACE is a command you execute from within the Ferret utility. To start the utility,
enter START FERRET in the Supervisor window. Within the Ferret application window,
enter SHOWSPACE (upper or lowercase). The Showspace command reports on physical
disk utilization, reported as:

 Permanent space
 Spool space
 Global Temporary space
 Journal space
 Lost disk space from disk flaws
 Free disk space

The facing page shows the results of a SHOWSPACE command. Notice the command
displays the average utilization per cylinder for permanent and spool space. It displays the
percentage of total available cylinders as well as the number of cylinders for all types of
space.

Enter an S for a summary report that displays only subtotals for all AMP vprocs in the
system. The facing page shows an example of a Showspace summary report.

The typical percentage of cylinders used for Permanent data is 28%.

Enter an L for a full report that displays Pdisk and Vdisk information for all AMP vprocs in
the system. The full report format displays information separately for each of the Pdisks
used by an AMP vproc, as well as total space utilization for the vproc.

Space Allocation and Usage Page 43-43

Ferret SHOWSPACE Command

Showspace options: showspace /s Summary listing
showspace /l Long listing

Approximately, how large (in GB) is each AMP’s Vdisk?

What is the typical percentage of cylinders (per AMP) that is used for Permanent data?

AMP

ds186034
Sticky Note
79% = cyl fill factor15 wall1944 for spoolno perm journaldatasystem reasonable distribited78..79%(BUTif 10% difference then its a problm..skewing)

ds186034
Sticky Note
cyl * space /cyl(2MB = cyl)how many cul = 3669436694*2 =~ 73 gig of space...dats wat each amp sees

ds186034
Sticky Note
28%

Teradata Training

 Space Allocation and Usage Page 43-44

Ferret SHOWBLOCKS
The Ferret utility includes a SHOWBLOCKS command that displays the data block size
and/or the number of rows per data block for a defined scope.

The SHOWBLOCKS command displays the following disk space information for a defined
range of data blocks and cylinders.

SHOWBLOCKS /M – displays subtable information.

SHOWBLOCKS /L – displays minimum, average, and maximum number of rows per block.

SHOWBLOCKS /S – displays table level information – doesn’t display empty tables (tables

with no rows).

Another option to set the scope for the table (example on facing page) is to use the following
command:

 SCOPE TABLE (“PD.Employee” 0)

The facing page poses this question – “How large (in MB) is primary data subtable?”

The solution is (typical block size) x (total number of blocks).

 124 sectors x 512 bytes = 62 KB

 62 KB x 30 blocks = 1920 KB or 2 MB.

Space Allocation and Usage Page 43-45

Ferret SHOWBLOCKS Command

How large (in MB) is this primary data subtable?

Note: The Summary information display only provides size
information about the primary data subtable of a table.
Fallback and index subtables are not included.

Showblocks showblocks /s displays table information
options: showblocks /m displays subtable information

showblocks /l displays rows per block information

ds186034
Sticky Note
this 1 line of info is the base table7% between..93% between...30 blocks across 3 cylinders30blocks(ave blk size = 124)124 sector = 62 (div by 2)30blks * 62= 1860k or 2mb

Teradata Training

 Space Allocation and Usage Page 43-46

Ferret SHOWBLOCKS – Subtable Detail
The Ferret ShowBlocks utility also allows you to view block sizes down to the subtable
level. The /m option provides this level of detail

Notes about Subtable IDs (shown in decimal in ShowBlocks report):

0 – Header
1024 – Primary data subtable
2048 – Fallback subtable

1028 – 1st Secondary Index subtable
2052 – 1st Secondary Index Fallback subtable

1032 – 2nd Secondary Index subtable
2056 – 2nd Secondary Index Fallback subtable

1536 – 1st Reference Index subtable
2560 – 1st Reference Index Fallback subtable

1792 – 1st BLOB or CLOB subtable
2816 – 1st BLOB or CLOB subtable

1794 – 2nd BLOB or CLOB subtable
2818 – 2nd BLOB or CLOB subtable

The facing page poses this question – “How large (in MB) is first secondary index?”

The 1st secondary index subtables have subtable IDs of 1028 and 2052.

The solution is (typical block size) x (total number of blocks).

 114 sectors x 512 bytes = 57 KB

 57 KB x 16 blocks x 2 = 1824 KB or 1.8 MB.

Note: Subtable ID of 1028 is 16 blocks and the fallback (2052) is also 16 blocks. The 1st
secondary index uses a total of 32 blocks.

Space Allocation and Usage Page 43-47

Ferret SHOWBLOCKS – Subtable Detail

showblocks /m – This example displays the distribution of a
specific table and its indexes.

How large (in KB) is the 1st secondary index?

ds186034
Sticky Note
these are sub table ids

ds186034
Sticky Note
how many SI?it has 31024 is the base1028 - first secondary1032 - second secondary

ds186034
Sticky Note
2048 is the base fallback table

ds186034
Highlight

ds186034
Highlight

ds186034
Underline

ds186034
Underline
10282052114114161657 KB* 16blocks x 2 = 1824 kb or 1.8MB

Teradata Training

 Space Allocation and Usage Page 43-48

Module 43: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Space Allocation and Usage Page 43-49

Module 43: Review Questions

1. True or False. Space limits are enforced at the table level.

2. True or False. When you use the GIVE statement to transfer a database/user, only the tables
allocated to the original database/user are transferred to the new database/user.

3. True or False. You should reserve at least 25% of total available space for spool.

4. The DBC. ___________________ view provides disk space usage at the table level and excludes
table ALL.

5. The DBC. ___________________ view only provides disk space usage at the database level.

ds186034
Sticky Note
everything is transferred so false3) true - should..rule of thumb4) TablesizeV5) DiskSpaceV(not recommending AllSpace...larry...)

Teradata Training

 Space Allocation and Usage Page 43-50

Notes

Users, Accounts, and Accounting Page 44-1

Module 44

Teradata Proprietary and Confidential

Users, Accounts, and Accounting

After completing this module, you will be able to:

 Use Teradata accounting features to determine resource
usage by user or account.

 Explain how the database administrator uses system
accounting to support administrative functions.

 Use system views to access system accounting information.

 Users, Accounts, and Accounting Page 44-2

Notes

Users, Accounts, and Accounting Page 44-3

Table of Contents

Creating New Users & Databases .. 44-4
CREATE DATABASE Statement ... 44-6
CREATE USER Statement .. 44-8
CREATE USER and the Data Dictionary .. 44-10
CREATE USER and the Data Dictionary (cont.) .. 44-12
MODIFY USER Statement .. 44-14
Teradata Administrator – Tools Menu > Create Options .. 44-16
Creating and Using Account IDs ... 44-18

Using Account IDs with Logon ... 44-18
Dynamically Changing an Account ID .. 44-20

Syntax ... 44-20
Examples .. 44-20

Account Priorities .. 44-22
Account String Expansion.. 44-24

ASE Variables: ... 44-24
ASE Accounting Example ... 44-26

Background Information .. 44-26
Tasks .. 44-26

System Accounting Views ... 44-28
AccountInfo Views .. 44-28
AMPUsage Views .. 44-28

AccountInfo View .. 44-30
Example ... 44-30

AMPUsage View ... 44-32
AMPUsage View – Example ... 44-34

Example ... 44-34
Users, Accounts & Accounting Summary ... 44-36
Module 44: Review Questions ... 44-38
Lab Exercise 44-1 .. 44-40

Lab Exercise 44-1 (cont.) ... 44-42
Lab Exercise 44-1 (cont.) ... 44-44

 Users, Accounts, and Accounting Page 44-4

Creating New Users & Databases
As the database administrator, you create system databases and tables and assign user
privileges and access rights to tables.

To perform the above tasks, you must:

 Determine database information content and create macros to ensure the referential

integrity of the database.

 Define authorization checks and validation procedures.

 Perform audit checks on the database for LOGON, GRANT, REVOKE and other

privilege statements.

You can give the authority to use the CREATE DATABASE or CREATE USER statements
to any application user. He or she may then create other system users or databases from his
or her own space, or if specifically authorized, from the space of another system database or
user.

Users, Accounts, and Accounting Page 44-5

Creating New Users and Databases

Human_Resources Accounting

DBC

SYSDBA

PR01 PR02 PR03 BF01 BF02 BF03

Personnel Benefits

You can grant CREATE DATABASE and/or CREATE USER authority to any user.

The user may then create other users and databases from:

• The user’s own space, or

• The space of another user or database (if authorized).

ds186034
Sticky Note
hierarchy is very wide not too deepusers can create new databases...children but not databases (dats only for admin folks)

ds186034
Sticky Note
personnel parents are HR Sysdba dbc..how do we create db...create database

 Users, Accounts, and Accounting Page 44-6

CREATE DATABASE Statement
As the database administrator, you use the CREATE DATABASE statement to add new
databases to the existing system. The permanent space for new databases you create comes
from the immediate parent database or user. A database becomes a uniquely named
collection of tables, views, macros, triggers, stored procedures, and access rights.

The spool and temporary definitions are not relevant to a database. However, the spool and
temporary definitions establish the maximum and default value for databases/users that are
created as children under this database.

Users, Accounts, and Accounting Page 44-7

CREATE DATABASE Statement

CREATE DATABASE database_name AS A

CD FROM db_name

,

A PERMANENT = n

PERM BYTES ;

SPOOL = n TEMPORARY = n

BYTES BYTES

ACCOUNT = 'account_id' FALLBACK

NO PROTECTION

JOURNAL AFTER JOURNAL

NO BEFORE NO
DUAL DUAL

LOCAL
NOT LOCAL

DEFAULT JOURNAL TABLE = table_name

db_name.

ds186034
Sticky Note
we need create database privilegecan have 0 perm...views/macros/triggers cause they do not use spacedatabases do not use spool and temp space(users do)cause i might have users for this database so for them i have itSP are auto FB protected regardless of this attribute same for UDFsprotection..just extra for readabillity

ds186034
Sticky Note
permanent journalif u dont use it then no journalcan override on table level

ds186034
Sticky Note
can no more than 1 perm journal

ds186034
Sticky Note
this is a perm journal table within the db

 Users, Accounts, and Accounting Page 44-8

CREATE USER Statement
The CREATE USER statement enables you to add new users to the system. The permanent
space for these new users comes from the immediate parent database or user.

Users have passwords while databases do not. User passwords allow users to log on to the
Teradata database and establish sessions.

When you create a new user, you also create a temporary password for the user. When the
user logs on for the first time, he or she is prompted to change the password. Note: This
assumes the password expiration time period is not set to 0.

If a user forgets the password, you can assign a new temporary password. (As another
option, you can set user passwords not to expire.)

Acronym: ch_dt – Character Data Type

Users, Accounts, and Accounting Page 44-9

CREATE USER Statement

CREATE USER name AS PERMANENT = n A

FROM db_name PERM BYTES ,

,

A PASSWORD = password

;

SPOOL = n TEMPORARY = n STARTUP = 'string;'

BYTES BYTES

ACCOUNT = 'account_id' FALLBACK

('acct_id', 'acct_id', …) NO PROTECTION

DEFAULT DATABASE = db_name COLLATION = coll_seq DEFAULT CHARACTER SET = ch_dt

JOURNAL AFTER JOURNAL

NO BEFORE NO

DUAL DUAL

LOCAL

NOT LOCAL

DEFAULT JOURNAL TABLE = table_name DATEFORM = INTEGERDATE

db_name. ANSIDATE

NULL

TIMEZONE = LOCAL DEFAULT ROLE = role_name PROFILE = profile_name

quotestring NULL NULL

sign NONE

NULL ALL

ds186034
Sticky Note
user needs a password..wen created for the first time(SSO etc fine but need it for 1st time)

ds186034
Sticky Note
you cannot override the profile at the user level

ds186034
Sticky Note
first defaults to the profileacct id of the immediate parentif its not specified here...if not there then $Mmedium priority

ds186034
Sticky Note
we have been defaulting to our first acct idacct id*chargeback capability*logon with diff acct id*and to capture cpu and io with acc it

ds186034
Sticky Note
defaulthas an impactwhen char or varchar columns(the default character set is = latin)[cld be unicode]

ds186034
Sticky Note
default date displayand how dates are being exportedint date = 4byte field (offset to 1900)ansi = 10byte char fieldif null then system default

 Users, Accounts, and Accounting Page 44-10

CREATE USER and the Data Dictionary
In addition to creating a new system user, the CREATE USER statement also defines space.

A user is associated with a password and an account, and can log on, establish a session, and
execute SQL statements. A user, not a database, performs these actions.

Notice the entries the CREATE USER statement makes in the data dictionary.
Default values associated with the CREATE USER statement are:

Entry Defaults to the value of

FROM database Current CREATOR
SPOOL Same value as the OWNER
TEMPORARY Same value as the OWNER
STARTUP Null (no startup string)
ACCOUNT Immediate OWNER’S first account ID
DEFAULT DATABASE Username

There are also two types of rights granted automatically when you use the CREATE USER
statement:

 The rights granted to a newly created user or database on itself.
 The rights granted on a newly created user, database, or object to the creating user.

By issuing a CREATE USER statement, the creator gains certain automatic rights over the
created object.

As shown on the facing page, the database administrator logged on as Sysdba and creates
tfact06:

 CREATE USER tfact06 AS PERM = 100E6, SPOOL = 1E9,
 PASSWORD = secure1time;

Users, Accounts, and Accounting Page 44-11

CREATE USER and the Data Dictionary

EXPLAIN
CREATE USER tfact06 AS PERM = 100E6, SPOOL = 1E9, PASSWORD = secure1time;

Explanation
1) First, we lock data base tfact06 for exclusive use.
2) Next, we lock a distinct DBC."pseudo table" for write on a RowHash to prevent global deadlock for

DBC.DataBaseSpace.
3) We lock a distinct DBC."pseudo table" for write on a RowHash to prevent global deadlock for

DBC.AccessRights.
4) We lock a distinct DBC."pseudo table" for write on a RowHash to prevent global deadlock for DBC.Parents.
5) We lock a distinct DBC."pseudo table" for write on a RowHash to prevent global deadlock for DBC.Owners.
6) We lock DBC.DataBaseSpace for write, we lock DBC.AccessRights for write, we lock DBC.Parents for write,

we lock DBC.Owners for write, we lock DBC.Accounts for write on a RowHash, we lock DBC.DBase for
write on a RowHash, and we lock DBC.DBase for write on a RowHash.

7) We execute the following steps in parallel.
1) We do a single-AMP ABORT test from DBC.DBase by way of the unique primary index with no

residual conditions.
2) We do a single-AMP ABORT test from DBC.Roles by way of the unique primary index with no

residual conditions.
3) We do a single-AMP ABORT test from DBC.DBase by way of the unique primary index.
4) We do a single-AMP ABORT test from DBC.DBase by way of the unique primary index.
5) We do an INSERT into DBC.DBase.
6) We do a single-AMP UPDATE from DBC.DBase by way of the unique primary index with no residual

conditions.
7) We do a single-AMP RETRIEVE step from DBC.Parents by way of the primary index with no residual

conditions into Spool 1 (all_amps), which is redistributed by hash code to all AMPs. Then we do a
SORT to order Spool 1 by row hash.

8) We do an all-AMPs MERGE into DBC.Owners from Spool 1 (Last Use).

ds186034
Sticky Note
< .5 secbut not instant its not .1 seccause a lotta dictionary involvedwe can modify our own user name (and pwd)student109 --> teradata109modify user (even as a normal user of course we can change our pwdnot perm - we can but not in general)locking time is configurable

 Users, Accounts, and Accounting Page 44-12

CREATE USER and the Data Dictionary (cont.)
Several steps are performed in parallel during the CREATE USER statement.

Users, Accounts, and Accounting Page 44-13

CREATE USER and the Data Dictionary (cont.)

9) We execute the following steps in parallel.
1) We do an INSERT into DBC.Owners.
2) We do a single-AMP RETRIEVE step from DBC.Parents by way of the primary index with no residual

conditions into Spool 2 (all_amps), which is redistributed by hash code to all AMPs. Then we do a
SORT to order Spool 2 by row hash.

10) We do an all-AMPs MERGE into DBC.Parents from Spool 2 (Last Use).
11) We execute the following steps in parallel.

1) We do an INSERT into DBC.Parents.
2) We do an INSERT into DBC.Accounts.
3) We do a single-AMP RETRIEVE step from DBC.AccessRights by way of the primary index into Spool 3

(all_amps), which is redistributed by hash code to all AMPs.
12) We execute the following steps in parallel.

1) We do a single-AMP RETRIEVE step from DBC.AccessRights by way of the primary index into Spool 3
(all_amps), which is redistributed by hash code to all AMPs.

2) We do an all-AMPs RETRIEVE step from DBC.AccessRights by way of an all-rows scan into Spool 4
(all_amps), which is redistributed by hash code to all AMPs. Then we do a SORT to order Spool 4 by
row hash.

13) We do an all-AMPs JOIN step from DBC.Owners by way of a RowHash match scan, which is joined to
Spool 4 (Last Use). DBC.Owners and Spool 4 are joined using a merge join. The result goes into Spool 3
(all_amps), which is redistributed by hash code to all AMPs. Then we do a SORT to order Spool 3 by row
hash.

14) We do an all-AMPs MERGE into DBC.AccessRights from Spool 3 (Last Use).
15) We flush the DISKSPACE and AMPUSAGE caches.
16) We do an all-AMPs ABORT test from DBC.DataBaseSpace by way of the unique primary index.
17) We do an INSERT into DBC.DataBaseSpace.
18) We do an all-AMPs UPDATE from DBC.DataBaseSpace by way of the unique primary index with no residual

conditions.
19) We flush the DISKSPACE and AMPUSAGE caches.
20) We spoil the parser's dictionary cache for the database.
21) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the request.
-> No rows are returned to the user as the result of statement 1.

 Users, Accounts, and Accounting Page 44-14

MODIFY USER Statement
The MODIFY USER statement enables you to change the options of an existing user.

Options you can change without the DROP DATABASE privilege include:

 Password
 Startup string
 Default database
 Collation
 Fallback Protection default
 Default Dateform
 Default Character Set data type
 Timezone
 Permanent journal default options

Options requiring the DROP DATABASE privilege are:

 PERMANENT space limit
 SPOOL space limit
 TEMPORARY space limit
 Account codes
 Release password lock
 DROP DEFAULT JOURNAL TABLE
 Role
 Profile

The FOR USER option effectively established a temporary password that can be used to
logon one time by the user. This option is only effective if the ExpirePassword attribute (set
in DBC.SysSecDefaults or a profile) is set to a value greater than 0.

 MODIFY USER RobertSmith AS PASSWORD = secret FOR USER;

The existing password immediately expires and is replaced by “secret”. In this example,
“secret” is effectively a temporary password that allows a one-time logon. The value for
PasswordChgDate is reset to 0.

 Note: The PasswordChgDate column is also set to 0 when a new user is created –

assuming that ExpirePassword is set to a value greater than 0.

The temporary password expires immediately when the user logs on for the first time and
the user needs to select a new, permanent password at that time. Another option is to use the
MODIFY USER command without the FOR USER option.

Users, Accounts, and Accounting Page 44-15

MODIFY USER Statement

,

MODIFY USER name AS

;
PASSWORD = passwd RELEASE PASSWORD LOCK STARTUP = NULL

FOR USER 'string;'

PERMANENT = n SPOOL = n TEMPORARY = n
PERM BYTES BYTES BYTES

ACCOUNT = 'account_id' FALLBACK COLLATION = coll_seq

('acct_id', 'acct_id', …) NO PROTECTION

DEFAULT DATABASE = db_name DEFAULT CHARACTER SET = character_data_type

DATEFORM = INTEGERDATE JOURNAL AFTER JOURNAL

ANSIDATE NO BEFORE NO

NULL DUAL DUAL

LOCAL

NOT LOCAL

DEFAULT JOURNAL TABLE = table_name DROP DEFAULT JOURNAL TABLE

db_name. =table_name

TIMEZONE = LOCAL DEFAULT ROLE = role_name PROFILE = profile_name

quotestring NULL NULL

sign NONE

NULL ALL

ds186034
Highlight
1 time user can logonandthen prompt

ds186034
Sticky Note
who can execute this?any parent in a higher hierarchy can execute this

 Users, Accounts, and Accounting Page 44-16

Teradata Administrator – Tools Menu > Create Options
The Tools menu provides the following options.

Menu Selection Function / Options

Create

Create an entirely new object – Database, Table,
User, Profile, or Role.

Grant/Revoke Grant or revoke general access privileges to users.
Options include Object Rights, System Rights,
Logon Rights, or Column Rights.

Administer Profiles Create and manage Profiles for users.

Administer Roles Create and manage Roles.

Clone User Create a new user either identical or closely related
to an existing user.

Modify User Change the specifications of an existing user.

Access Logging Create and manage Access Log rules.

Query Logging Create and manager Query Log rules.

Move Space Reallocate permanent disk space from one database
to another (efficient if not a direct descendant or
parent).

Query Create, modify, test, or run SQL query scripts.

Options Configure the operational preferences for Teradata
Administrator.

Users, Accounts, and Accounting Page 44-17

Teradata Administrator
Tools Menu > Create Options

Teradata Administrator
can be used to create
and manage users and
databases.

Tools menu

• Selections to create
and modify
databases and users,
grant/revoke access
rights, and send ad
hoc query requests
to Teradata.

• Options include the
ability to clone a
user, move space,
and set preferences.

• This example
illustrates how to
create a new user by
completing the
entries.

ds186034
Sticky Note
can also clone user

ds186034
Sticky Note
simply a tool that generates SQLfor many new users to be created, script might need to be written

 Users, Accounts, and Accounting Page 44-18

Creating and Using Account IDs
When you create a user, you can specify one or more account IDs that a new user can
specify. Account codes may be used to track system CPU, I/O usage, or space usage.
When the user logs on, the user can specify a valid account ID, or let the first account ID in
the user row (from CREATE or MODIFY USER) become the default.

You should determine an account ID scheme for ease of accounting and priorities.

Account IDs may begin with the characters $L, $M, $H, or $R to identify the priorities low,
medium, high, and rush, respectively. The relative level of CPU service is 1, 2, 4, and 8,
respectively. These priority levels will be discussed on the following pages.

Using Account IDs with Logon
All logons require an account ID. A user can submit an explicit account ID by including it
in the logon string. It must be a valid ID specified in the last CREATE or MODIFY USER
statement. If no ID is specified in the CREATE or MODIFY statements, it defaults to the
ID of the immediate owner's database.

Note:

batch logon syntax:

 .LOGON tdpid/user_name, password, 'account_ID';

BTEQ Interactive logon syntax:

 .LOGON tdpid/user_name,, 'account_ID' (note the two commas)
 Enter password when prompted

Users, Accounts, and Accounting Page 44-19

Creating and Using Account IDs

CREATE USER tfact07 Names user
FROM Sysdba Name of immediate owner in hierarchy
AS PERM = 1E9 Amount of Permanent space

,SPOOL = 20E9 Maximum amount of Spool space
,PASSWORD = Secure12 Initial password
,FALLBACK Specifies Fallback as the default protection type
,ACCOUNT = ('$M_9038_&S&D&H', Default account – medium priority

'$H0+EDUC&S&D&H', Opt. Account – high priority – recommended format
'$M1$LOAD&S&D&H', Opt. Account – performance group M1
'$M_9038'); Opt. account – medium priority – no ASE

A logon can optionally include an account ID; the first account ID is the default account ID.

batch logon syntax: .LOGON tdpid/username,password,'account_id'

Example: .LOGON tdt6-1/tfact07,Secure12,'$H0+EDUC&S&D&H'

BTEQ Interactive logon syntax: .LOGON tdpid/username,,'account_id'

Example: .LOGON tdt6-1/tfact07,,'$H0+EDUC&S&D&H'

Enter password when prompted

SQL Assistant Notes:
• With an ODBC connection, single quotes for the account id are optional.
• With a .NET connection, the single quotes for the account id are not used.

ds186034
Sticky Note

ds186034
Sticky Note
its session day and hour(used for acctng purposes)

ds186034
Sticky Note
dont have to enter thiswe have notandin which case it defaults to the first one'$M_9038_&S&D&H

 Users, Accounts, and Accounting Page 44-20

Dynamically Changing an Account ID
You can dynamically change your Account ID without logging off and logging back on.
One reason you may want to do this is to change your session’s priority. This is also called
“nicing a query”. “Nicing” is a UNIX term that means manipulating the scheduling priority
of a “running” task. You typically “nice” a query to re-prioritize jobs. For instance, you
could nice a query to a higher priority to run a business-critical job sooner than under its
originally defined priority.

Self-nicing refers to a user specifying changes on his/her own request or session.
Asynchronous nicing refers to a super user or system administrator manipulating another
user’s account.

Use the SET SESSION ACCOUNT statement to change your performance group (account
priority) for the next SQL query you run, or for all jobs for the remainder of the current
session.

Syntax
For the next SQL statement:

 SET SESSION ACCOUNT = 'Account_ID' FOR REQUEST;

For the remainder of the current session:

 SET SESSION ACCOUNT = 'Account_ID' FOR SESSION;

Examples

You cannot change a priority to exceed the priority originally defined by the performance
group for an account or to a forbidden priority level. The following chart shows three
accounts and the defined, permitted and forbidden priorities.

Account Defined
Priority

Priority
Definition

Permitted
Priority
Changes

Forbidden
Priority
Changes

Sales $H High <=$H $R
Marketing $M Medium <$H $H
Development $L Low None >$L

You can see that you cannot change marketing’s account priority to high, because it exceeds
the group’s original priority definition and is a forbidden priority for the account.

As another example, you can change sale’s priority group to low or medium, because they
do not exceed the groups’ original priority definition and are not forbidden for the account.

Lastly, you cannot change development’s priority. The chart shows that no priority changes
are permitted and that the account cannot have any priority that exceeds low.

Users, Accounts, and Accounting Page 44-21

Dynamically Changing an Account ID

• You can change your Account ID without logging off. This may be done to re-
prioritize a query. This is also referred to as “nicing a query”.

• You can change Account IDs for the next SQL statement you run, or for all
jobs for the remainder of the current session.

• To change Account IDs, use the SET SESSION ACCOUNT statement:

Syntax:

For the next SQL statement : SET SESSION ACCOUNT = 'Account_ID' FOR REQUEST;

For the rest of the current session: SET SESSION ACCOUNT = 'Account_ID' FOR SESSION;

Example:

For the rest of the session: SET SESSION ACCOUNT = '$H0+EDUC&S&D&H' FOR SESSION;

• Note: You can only use valid account IDs. Therefore, you cannot exceed the priority
defined by the performance groups in your account ID.

 Users, Accounts, and Accounting Page 44-22

Account Priorities
Account IDs may begin with the characters $L, $M, $H, or $R to identify the priorities low,
medium, high, and rush, respectively. The relative level of CPU service is 1, 2, 4, and 8,
respectively.

The Priority Scheduler facility lets you use codes to assign users to performance groups
using these levels and user-defined levels of CPU usage. The Priority Scheduler facility will
be described in detail later in the course.

You can design billing algorithms to reflect the usage of higher or lower account priorities.
That way, a user with $H account priority is charged more for using system resources than a
user with $L account priority.

Character

Priority

CPU
Service

Comments

$L Low 1 Consider using for queries not
needed immediately, such as
batch jobs.

$M Medium 2 Consider using for complex ad
hoc queries.

$H High 4 Consider using for tactical or
OLTP queries.

$R Rush 8 Use for very critical queries

Users, Accounts, and Accounting Page 44-23

Account Priorities

Performance Default
Groups Weights Possible Uses

$L 5 Low – consider using for low priority queries (e.g., batch jobs)

$M 10 Medium – consider using for complex ad hoc queries

$H 20 High – consider using for index access queries (e.g., tactical)

$R 40 Rush – consider for critical index access user queries

$L

$M

$L

$M

Performance Active Relative Percent
Group Sessions Weight Calc. Allocated

$L N 0 0
$M Y (10) 10/10 100
$H N 0 0
$R N 0 0

Performance Active Relative Percent
Group Sessions Weight Calc. Allocated

$L Y (2) 5/15 33.3
$M Y (10) 10/15 66.7
$H N 0 0
$R N 0 0

ds186034
Sticky Note
appliance one has these 4EDW can have up to 40!Misconceptiondont get twice CPU or anything at allit just defines the "opportunity" to use the CPU28 class - had 61 sessionsbut those sessions were not activewe only care abt the active sessionso its all divided between the 10each one gets equal opportunity

ds186034
Sticky Note
group of users get 5/15th of opportunity3rd of the opponce the queries are done...cpu is done..(our queries are fast)\

 Users, Accounts, and Accounting Page 44-24

Account String Expansion
Account String Expansion (ASE) is an optional feature that enables you to use substitution
variables in the account ID portion of the user’s logon string. These variables enable you to
include date and time information in the string. You must explicitly modify a user’s logon
to order to use ASE. The variables are resolved at logon time or at actual SQL execution
time.

Account strings cannot exceed 30 characters. If, as a result of string expansion, you
generate a string longer than 30 characters, the system truncates all characters to the right of
position 30. Separation characters, such as colons in time fields and slashes in dates, are
included in the character count.

ASE Variables:
&L The logon time stamp variable causes the logon time stamp to be inserted into

the account string. The full logon time stamp consists of 15 characters and
becomes truncated if &L is placed in position 17 or higher. The value inserted
into AMPUsage is established at logon time. It does not change unless the user
logs off then logs on again.

&D The date variable causes the date to be inserted into the account string. The value

becomes truncated if you place &D at, or to the right of, position 26 or higher.
You can use truncation to monitor resources on a yearly or monthly basis.

&T The time variable inserts the time of day into the account string. The value

becomes truncated if you place &T at, or to the right of, position 26 or higher.
You can use truncation to monitor resources hourly or by the minute. This
variable allows for one-second granularity, thus causing a row to be written for
virtually every individual SQL request.

&H The hour variable inserts the hour of the day into the account string. The inserted

value consists of two characters and becomes truncated if you place &H to the
right of position 29.

&I The logon host ID/session number/request number variable inserts the logon

host ID, the session number and the request number into the account string.

&S The session number variable inserts the current session number into the account

string.

Users, Accounts, and Accounting Page 44-25

Account String Expansion

• ASE is used to provide more detailed utilization reports and user accounting data.

– ASE increases the granularity of information returned with the DBC.AMPUsageV.

– For queries that span multiple hours, the time will be accumulated in its entirety to
the query’s start hour.

• You may add the following substitution variables to a user’s account string. The
system resolves the variables at logon or at SQL statement execution time.

&S Session number (SSSSSSSSS)

&D Date (YYMMDD)

&H Hour (HH)

&I Logon hostid, session number, request number (LLLL SSSSSSSSS RRR RRR RRR)

&L Logon timestamp (YYMMDDHHMISS.hh)

&T Time (HHMISS)

• $xxxWORK&S&D&H is the recommended account format where WORK is a 4-character
work load type starting in the 5th position of an account id.

– For $L, $M, $H, and $R in Resource Partition 0, then examples are:

$M0+EDUC&S&D&H or $M0_EDUC&S&D&H (+ and _ are simply placeholders)

– If a two-character performance group name like M1 (or MD) is used, then examples are:

$M1$TACT&S&D&H or MDLOAD&S&D&H

ds186034
Sticky Note
for chargeback andother performance related activities

ds186034
Sticky Note
time and IOwill be charged to when u started the queryacct string needs to be in the recommended formatcause if not the same then the perf team will have to go and change their scriptperf team likes1 or 2 characterxxx = LMH priorityWORKLOAD TYPE = next 4(catg on type of worktactical is 1 of them6 to 16 bytes practically(like batch..etc..))Work load type is by dept(we have implemented PDCI)(colleague on the right most of my bench)

 Users, Accounts, and Accounting Page 44-26

ASE Accounting Example
Background Information

Two existing users, TFACT01 and TFACT02, logged onto the system using an account
string defined as &S&D&H. The DBC.Acctg table contains a number of rows generated by
the ASE feature.

Logon example: .LOGON DBC/tfact01, password, '$M_9038_&S&D&H';

Tasks
You need to create a table, view, and a number of reports that provide billing and resource
usage information based on the statistics collected by the AMPUsage view.

Step 1. Create AmpUsageSum table.
 Create a table to hold the collected statistics from the AMPUsage view. This

table will serve as the basis for all of the other objects that you create. This is
a history table since it contains stored historical data.

Step 2. Populate AMPUsageSum table.
 After you build the AmpUsageSum table, use the INSERT command to

populate it with row information from the DBC.AMPUsage view.

Step 3. Create Usage view
 Use the CREATE statement to combine columns from the DBC.AMPUsage

view and DBC.LogOnOff view into the Usage view.

Step 4. Create billing and resource usage reports.
 Once the view is completed, construct SQL statements to SELECT

information from the Usage view to create billing and resource usage reports.

Users, Accounts, and Accounting Page 44-27

ASE Accounting Example

• Users TFACT01 and TFACT02 each log on with $M0+9038&S&D&H account string.

– Each hour a new row is placed in Acctg.

• Impact of using ASE variables with Acctg.

ASE Performance Data Capacity
Variable Impact Impact

none Negligible 1 row per account per AMP.
&D Negligible 1 row per account per day per AMP.
&H Negligible 1 row per account per hour per AMP (all days go into 1 hour).
&D&H Negligible 1 row per account per hour per day per AMP.
&S&D&H Negligible 1 row per account per session per hour per day per AMP.
&L Negligible 1 row per logon (LAN) or session pool.
&T Potentially 1 row per query per AMP.

Non-negligible

• Perform the following tasks to extract accounting information:

Step 1. Create AMPUsageSum table.
Step 2. Populate AMPUsageSum table.
Step 3. Create Usage view.
Step 4. Create billing and resource usage reports.

 Users, Accounts, and Accounting Page 44-28

System Accounting Views
The Teradata Database provides two system-supplied views to support accounting functions.

AccountInfo views provide information about valid accounts, and AMPUsage views provide
information about the usage of each AMP vproc by user and account.

AccountInfo Views
The DBC.AccountInfo[V][X] views provide information about valid accounts for a specific
user. The information provided is based on data from the DBC.Accounts table in the data
dictionary. Each time a CREATE or MODIFY statement indicates an account ID, a row is
either inserted or updated in the DBC.Accounts table.

 (When you use restricted views, you must be the requester or have modify rights turned on.)

AMPUsage Views
The DBC.AMPUsage[V][X] views provide information about the usage of each AMP vproc
for each user and account. It is based on information in the DBC.Acctg table in the data
dictionary and supplies information about AMP CPU time consumed, and the number of
AMP to DSU read and write operations generated by a given user or account. It also tracks
the activities of any console utilities.

Each time a user logs on or submits an SQL request; a row is either inserted or updated in
the DBC.Acctg table. If the user_name/account_name does not exist, then a new row is
inserted. If the row already exists in the DBC.Acctg table, then it is updated. The rows in
this table track how much AMP usage the specific user_name/account_name generates.
This information may be used to bill an account for system resource use.

Users, Accounts, and Accounting Page 44-29

System Accounting Views

View Description

DBC.AccountInfo[V][X] Returns each Account Name (Account ID) associated
with a user (for users the requestor owns).

DBC.AMPUsage[V][X] Provides information about I/O and AMP CPU usage by
user and account.

 Users, Accounts, and Accounting Page 44-30

AccountInfo View
The DBC.AccountInfo[V][X] views shown on the facing page provide information about
each user and the valid account codes associated with each user. When the requesting user
indicates the [X] view, they can only see information about users that they own or have
modify rights on.

The UserOrProfile column is new with V2R5 and indicates whether the user is an actual
user or a profile.

Example
The SQL statement on the facing page requests a list of all users with a valid HIGH priority
account code.

Users, Accounts, and Accounting Page 44-31

AccountInfo View

Provides information about each user and the valid account codes associated
with each.

(X views – lists users and accounts the requestor owns or has modify rights to).

Example Results:

Example:
Identify all users with a
valid HIGH priority code.

DBC.AccountInfo[V][X]

UserName AccountName UserOrProfile

SELECT *
FROM DBC.AccountInfoV
WHERE AccountName LIKE '$H%'
ORDER BY 1 ;

UserName AccountName UserOrProfile

AP $H_9038 User
Cust_Service_Gold $H_&S_&D&H Profile
Employee $H_&S_&D&H Profile
Students $H_9038 User
Sysdba $H_9038 User
TDPUSER $H User
tfact01 $H_9038_&S_&D&H User
tfact07 $H_9038 User

 Users, Accounts, and Accounting Page 44-32

AMPUsage View
The DBC.AmpUsage[V][X] views use the underlying DBC.Acctg table to provide
accounting information by username and account. You can update this view. This view
provides CPU activity and logical I/O counts explicitly requested by the following two
sources:

 AMP database software
 File system that is running in the context of an AMP worker task

This view can be used to determine which user or users are consuming CPU and I/O
resources on a system.

The system requests I/Os to execute a step in the user’s query. The DBC.AmpUsage views
do not include I/Os the operating system performs for swapping or I/Os caused by parsing
the user’s query. The system charges a logical I/O even if the segment you request is cached
and no physical I/O is done.

Column definitions in this view include:

Column Definition

Vproc The virtual processor ID

VprocType AMP

Model System model (e.g., 5650, etc.)

Users, Accounts, and Accounting Page 44-33

AMPUsage View

AMPUsage views are updateable views that use the DBC.Acctg table to provide
accounting information by username and account.

These views can be used to determine which users are consuming CPU and/or
I/O resources.

AMPUsage will accumulate CPU and I/O usage for every unique account.

DBC.AMPUsage[V][X]

AccountName UserName CPUTime DiskIO

Vproc VprocType Model

CPUTime: Total number of AMP CPU seconds used (increments of 1/100 second).

DiskIO: Total number of logical disk I/O operations.

Vproc: AMP Vproc number

VprocType: AMP

Model: Model number (e.g., 5650)

ds186034
Sticky Note
tiks100 of cpu sec

ds186034
Sticky Note
assuming its an all amp operationrow for every queryits all chargeable

 Users, Accounts, and Accounting Page 44-34

AMPUsage View – Example
Example

The SQL statement on the facing page requests totals for CPU time and I/O for user
TFACT03. The totals are aggregates of all resources used across all AMP vprocs. The
result returns six rows, one for each unique account ID that has been expanded.

Users, Accounts, and Accounting Page 44-35

AMPUsage View – Example

SELECT UserName (CHAR(10))
,AccountName (CHAR(25))
,SUM (CPUTime) (FORMAT 'zzzz.99')
,SUM (DiskIO) (FORMAT ‘zzz,zzz,999')

FROM DBC.AMPUsageV
WHERE UserName = 'tfact03'
GROUP BY 1, 2
ORDER BY 3 DESC ;

Example Results:

Example:
Show CPU time
and I/O totals for
a single user.

UserName AccountName Sum(CPUTime) Sum(DiskIO)

TFACT03 $M_9038 37,259.45 462,339,216
TFACT03 $M_9038_000051018_11091614 1,924.32 41,821,581
TFACT03 $M_9038_000051018_11091615 989.25 18,710,619
TFACT03 $M_9038_000051019_11091614 184.63 1,091,912
TFACT03 $L_9038_11091908 113.28 819,457
TFACT03 $L_9038_11091909 42.56 105,115

To reset counters for ALL rows or selected rows, you can use the DBC.ClearAccounting
macro.

SHOW MACRO DBC.ClearAccounting;

REPLACE MACRO DBC.ClearAccounting
AS (UPDATE Acctg SET CPU = 0, IO = 0 ALL;);

Note:
The Account IDs for
TFACT03 are:

$M_9038
$M_9038_&S_&D&H
$L_9038_&D&H

ds186034
Sticky Note
session no

ds186034
Sticky Note
2 digit year number2011(with hour2 clock)

ds186034
Sticky Note
group by means across all amps

ds186034
Sticky Note
now using DBQL i can get to know more which query etc)even without this DBQL will tell u the infothis is jst an easier way..

ds186034
Sticky Note
so to know things by sessioncapturing usage by sessionsome clients/apps might be a single user and so dis is d way ene

ds186034
Sticky Note
5108 means the one that starts 3'o clock

ds186034
Sticky Note
sep 19 eight o clockwe dont know how many sessions...(cld be 1 cld be many)the last _is just for readability

ds186034
Sticky Note
many clients keep cleaning this up periodically

 Users, Accounts, and Accounting Page 44-36

Users, Accounts & Accounting Summary
The facing page summarizes some important concepts regarding this module.

Users, Accounts, and Accounting Page 44-37

Users, Accounts & Accounting Summary

• To establish execution time priorities, use the first two characters in the
account code and the performance groups.

• Your position in the hierarchy does not affect your priority.

• You can define accounting mechanisms:

– Charge-back billing

– System usage reporting

– Capacity planning

– Performance analysis

• To reset data dictionary tables used to collect accounting information, use:

– DBC.ClearAccounting macro

– DBC.ClearPeakDisk macro

 Users, Accounts, and Accounting Page 44-38

Module 44: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Users, Accounts, and Accounting Page 44-39

Module 44: Review Questions

4. When creating a new user, which option defaults to the immediate owner’s value. ___

a. SPOOL
b. FALLBACK PROTECTION
d. All of the Account_IDs
c. DEFAULT DATABASE

5. When creating a new user, which options are required with the CREATE USER command. ___

a. SPOOL
b. PERMANENT
c. User name
d. PASSWORD

1. True or False. You can only give the authority to use the CREATE DATABASE and CREATE
USER statements to certain types of users.

2. True or False. An individual user with a $L priority will always receive less CPU time than a
user with a $M priority.

3. True or False. A user can use the MODIFY USER statement to change their password, default
database, and date format.

 Users, Accounts, and Accounting Page 44-40

Lab Exercise 44-1
The following pages describe the tasks for this lab exercise.

Users, Accounts, and Accounting Page 44-41

Lab Exercise 44-1

Lab Exercise 44-1

Purpose
In this lab, you will use Teradata SQL Assistant or Teradata Administrator to view information in the
data dictionary regarding space usage and accounting information (use Appendix D).

Tasks

1. Using the DBC.DiskSpaceV view, find the total disk storage capacity of the system on which you are
logged on:

Total capacity ________________

2. Using the same view, find how much of the space is currently in use:

Current space utilization ________________

Write a query to show what percentage of system capacity is currently in use. _________%

OPTIONAL: Write a query to show which databases/users are currently using (current perm) the
largest percentage of their max perm space limit (group by database/user).

 Users, Accounts, and Accounting Page 44-42

Lab Exercise 44-1 (cont.)
The following pages describe the tasks for this lab exercise.

Users, Accounts, and Accounting Page 44-43

Lab Exercise 44-1 (cont.)

3. Using the DBC.DatabasesV view, find the total number of databases and users defined in the system.

Total row count (databases and users) ____________

Using this view, how many users are there? _________

Using this view, how many databases are there ? _________

Who is the creator of AP? _________________

Who is the owner of AP? _________________

4. Using the TableSizeV view, find the name and size of each table in the DBC user. List the Data
Dictionary tables in DESCending order by size.

List the six largest tables:

1. ___________________ 2. ___________________ 3. ___________________

4. ___________________ 5. ___________________ 6. ___________________

 Users, Accounts, and Accounting Page 44-44

Lab Exercise 44-1 (cont.)
The following pages describe the tasks for this lab exercise.

Users, Accounts, and Accounting Page 44-45

Lab Exercise 44-1 (cont.)

5. Using the DBC.AMPUsageV view, find the number of AMP vprocs defined on your system.
(HINT: Use a WHERE condition to reduce the number of DD/D table rows considered.)

Number of AMPS ______________

6. Using the DBC.AccountInfoV view, list all of your valid account codes.

______________________ ______________________

7. Using the DBC.AMPUsageV view, write a query to show the number of AMP CPU seconds and logical
disk I/Os that have been charged to your:

User ID ___________ Seconds ___________ I/Os ___________

 Users, Accounts, and Accounting Page 44-46

Notes

Profiles Page 45-1

Module 45

Teradata Proprietary and Confidential

After completing this module, you should be able to:

• List two advantages of utilizing profiles.

• Use profiles when creating new users.

• Use system views to display profile information.

Profiles

 Profiles Page 45-2

Notes

Profiles Page 45-3

Table of Contents

Profiles ... 45-4
Example of Simplifying User Management ... 45-6
Implementing Profiles .. 45-8
Impact of Profiles on Users .. 45-10
CREATE/MODIFY PROFILE Statement ... 45-12
Password Attributes (CREATE/MODIFY PROFILE) .. 45-14
Teradata Password Control .. 45-16
Teradata Password Control (cont.) ... 45-18
Teradata Password Control Options .. 45-20
CREATE PROFILE Example .. 45-22
Teradata Administrator CREATE PROFILE Example ... 45-24
CREATE PROFILE Example (cont.) .. 45-26
DROP PROFILE Statement ... 45-28
ProfileInfo View .. 45-30
Miscellaneous SQL Functions ... 45-32
Summary .. 45-34
Module 45: Review Questions ... 45-36
Lab Exercise 45-1 .. 45-38

 Profiles Page 45-4

Profiles
Profiles define system attributes. By assigning a profile to a group of users, you can ensure
that all group members operate with a common set of attributes.

To manage system attributes for groups, a database administrator can:

 Create a different profile for each user group, based on system attributes that group
members share.

 You can define values for all or a subset of the parameters in a profile. If you do

not set the value of a parameter, the system uses the setting defined for the user in a
CREATE USER or MODIFY USER statement.

 Assign profiles to users.

 The parameter settings in a user profile override the settings for the user in a

CREATE USER or MODIFY USER statement.

Like roles, the concept of ownership and ownership hierarchy is not be applicable to
profiles.

Profiles Page 45-5

Profiles

What is a “profile”?

• A profile is a set of common user attributes that can be applied to a group of users.

• Profile parameters include:

– Account id(s)
– Default database
– Spool space allocation
– Temporary space allocation
– Password attributes (expiration, etc.)

What are advantages of using “profiles”?

• Profiles simplify user management.

– A change of a common attribute requires an update of a profile instead of each
individual user affected by the change.

– Specify password security controls for groups of users.

How are “profiles” managed?

• New DDL commands, tables, view, command options, and access rights.

– CREATE PROFILE, MODIFY PROFILE, DROP PROFILE, and SELECT PROFILE
– New system table - DBC.Profiles
– New system views - DBC.ProfileInfo[V][X]

 Profiles Page 45-6

Example of Simplifying User Management
The profile concept provides a solution to the following problem.

A customer has a group of 10,000 users that are assigned the same amount of spool space,
the same default database, and the same account ID. Changing any of these parameters for
10,000 users is a very time-consuming task for the database administrators.

The database administrators’ task will be simplified if they can create a profile that contains
one or more system parameters such as accounts ids, default database, spool space and
temporary space. This profile is assigned to the group of users.

This would simplify system administration because a parameter change requires updating
only the profile instead of each individual user.

In summary, a set of parameters may be assigned certain values in a profile and this profile
may be assigned to a group of users and thereby have them share the same settings. This
makes changing parameters for a group of users a single step instead of a multi-step (one for
each user in the group) process.

Profiles Page 45-7

Example of Simplifying User Management

Example:

• The problem:

– A customer has a group of 10,000 users that are assigned the same spool space,
the same default database, and the same account ID.

– Changing any of these parameters for 10,000 users can be a time-consuming
task.

• A solution using profiles:

– Create a profile that contains these parameters and assign that profile to the
users.

– This would simplify system administration because a parameter change requires
updating only the profile instead of each individual user.

 Profiles Page 45-8

Implementing Profiles
The CREATE PROFILE and DROP PROFILE access rights are system rights. These rights
are not on a specific database object. Note that the PROFILE privileges can only be granted
to a user and not to a role or database.

Profiles enable you to manage the following common parameters:

 Account strings, including ASE codes and Performance Groups
 Default database
 Spool space
 Temporary space
 Password attributes, including:

– Expiration
– Composition (length, digits, and special characters)
– Allowable logon attempts
– Duration of user lockout (indefinite or elapsed time)
– Reuse of passwords

Note: In the example on the facing page, another technique of granting CREATE PROFILE
and DROP PROFILE to Sysdba is to use the following SQL.

GRANT PROFILE TO SYSDBA WITH GRANT OPTION;

The key word PROFILE will give both the CREATE PROFILE and DROP
PROFILE access rights.

Profiles Page 45-9

Implementing Profiles

What access rights are used to support profiles?

• CREATE PROFILE – needed to create new profiles

• DROP PROFILE – needed to modify and drop profiles

Who is allowed to create and modify profiles?

• Initially, only DBC has the CREATE PROFILE and DROP PROFILE access rights.

• As DBC, give the “profile” access rights to the database administrators (e.g, Sysdba).

GRANT CREATE PROFILE, DROP PROFILE TO Sysdba WITH GRANT OPTION;

How are users associated with a profile?

• The CREATE PROFILE command is used to create a profile of desired attributes.

CREATE PROFILE Employee_P AS … ;

• The PROFILE option is used with CREATE USER and MODIFY USER commands to
assign a user to a specific profile.

CREATE USER Emp01 AS …, PROFILE = Employee_P;

MODIFY USER Emp02 AS PROFILE = Employee_P;

 Profiles Page 45-10

Impact of Profiles on Users
The assignment of a profile to a group of users is a way of ensuring that all members of a
group operate with a common set of parameters. Therefore, the values in a profile always
take precedence over values defined for a user via the CREATE and MODIFY USER
statements.

All members inherit changed profile parameters. The impact is immediate, or in response to
a SET SESSION statement, or upon next logon, depending on the parameter:

 SPOOL and TEMP space allocations are imposed immediately. This will affect the
current session of any member who is logged on at the time his or her user
definition is modified.

 Password attributes take effect upon next logon.

 Account IDs and a default database are considered at next logon unless the member

submits a SET SESSION ACCOUNT statement, in which case the account ID must
agree with the assigned profile definition.

Order of Precedence
With profiles, there are 3 ways of setting accounts and default database. The order of
precedence (from high to low) is as follows:

1. The DATABASE statement is used to set the current default database or the SET
SESSION ACCOUNT is used to set the account ID. However, a user can only
specify a valid account ID.

2. Specify them in a profile and assign the profile to a user.

3. Specify accounts or default database for a user through the CREATE

USER/MODIFY USER statements.

Profiles Page 45-11

Impact of Profiles on Users

The assignment of a profile to a group of users is a way of ensuring that all
members of a group operate with a common set of parameters.

Profile definitions apply to every assigned user, overriding specifications at the
system or user level.

• However, any profile definition can be NULL or NONE.

All members inherit changed profile parameters. The impact on current users is
as follows:

• SPOOL and TEMPORARY space allocations are imposed immediately.

• Password attributes take effect upon next logon.

• Database and Account IDs are considered at next logon unless the member submits
a SET SESSION ACCOUNT statement.

Order of Precedence for parameters:

1. Specify database or account ID at session level

2. Specified parameters in a Profile

3. CREATE USER or MODIFY USER statements

 Profiles Page 45-12

CREATE/MODIFY PROFILE Statement
The CREATE PROFILE statement enables you to add new profiles to the system. The
CREATE PROFILE access right is required in order to execute this command. The syntax
is shown on the facing page.

Profile names come from their own name space. Like roles, the concept of ownership and
ownership hierarchy is not applicable to profiles.

A parameter not set in a profile will have a value of NULL. Resetting a parameter to NULL
will cause the system to apply the user’s setting instead. In a profile, the SPOOL and
TEMPORARY limits may not exceed the current space limits of the user submitting the
CREATE/MODIFY PROFILE statement.

The default database specified in a profile need not refer to an existing database. This is
consistent with current CREATE USER and MODIFY USER statements where a non-
existent default database may be specified. An error will be returned when the user tries to
create an object within the non-existent database.

It is not necessary to define all of the parameters in a profile, a subset will also do. The
parameter values in a user profile take precedence over the values set for the user. For
example, if a user is assigned a profile containing Default Database and Spool Space, the
profile settings will override the individual settings previously made via a CREATE USER
or MODIFY USER statement.

Accounts in a profile will also override, not supplement, any other accounts the user may
have. The assignment of a profile to a group of users is a way of ensuring that all group
members operate with a common set of parameters. The first account in a list will be the
default account.

If a parameter in a profile is not set, then the user’s setting will be applied.

Note when using the CREATE USER command:

 When creating a new user, if the PROFILE option specifies a Profile that does not
exist, you will get the following error.

 Error 5653: Profile 'profile_name' does not exist.

Modify Profile Statement
The MODIFY PROFILE statement enables you to change the options of an existing profile.
The DROP PROFILE access right is required in order to execute this command. The syntax
is similar to CREATE PROFILE and is also shown on the facing page.

To remove a profile from a user,

 MODIFY USER username AS PROFILE = NULL;

Profiles Page 45-13

CREATE/MODIFY PROFILE Statement

ACREATE PROFILE profile_name

A
,

AS ACCOUNT = 'account_ID'
,

('account_ID')
NULL

DEFAULT DATABASE = database_name
NULL

SPOOL = n
BYTES

NULL
TEMPORARY = n

BYTES
NULL

,
PASSWORD = (attribute)

ATTRIBUTES NULL

;

AMODIFY PROFILE profile_name

 Profiles Page 45-14

Password Attributes (CREATE/MODIFY PROFILE)
The facing page describes the Password Attributes associated with the CREATE PROFILE
and MODIFY PROFILE commands.

If a parameter is not specified in a profile and is not specified with the CREATE USER or
MODIFY USER statement, the following list of defaults applies.

Parameter Default Value

Account ID The default account ID (first account ID of the
immediate owner of the user).

Performance Group $M

DEFAULT DATABASE Username

SPOOL The same SPOOL value as the owner of the space
in which the user is being created.

TEMPORARY The same TEMPORARY value as the owner of the
space in which the user is being created.

If the password attributes option is not specified in a profile, then the password attributes
specified in the DBC.SysSecDefaults table are used for the users assigned to this profile.

Profiles Page 45-15

Password Attributes
(CREATE/MODIFY PROFILE)

EXPIRE = n (# of days; 0 doesn't expire)
NULL

MINCHAR = n (range is 1 - 30)
NULL

MAXCHAR = n (range is 1 - 30)
NULL

DIGITS = c (options are Y, y, N, n, R, r)
NULL

RESTRICTWORDS = c (options are Y, y, N, n)
NULL

SPECCHAR = c (options are Y, y, N, n, …)
NULL

MAXLOGONATTEMPTS = n (# of attempts; 0 = never locked)
NULL

LOCKEDUSEREXPIRE = n (# of minutes; 0 = not locked; -1 = locked indefinitely)
NULL

REUSE = n (# of days; 0 - reuse immediately)
NULL

Password Attributes

ds186034
Sticky Note
2300 words come with it

 Profiles Page 45-16

Teradata Password Control
Forcing users to create passwords with one or more of the special character options
enhances password security. It also may make the password harder for the user to remember
and to type in at logon. Consider these two factors when deciding how elaborate the
password special character requirements should be for your system

Many passwords would be relatively easy for an intruder to guess, especially if some of the
letters are known. Forcing users to create passwords with one or more digits enhances
password security.

When specifying the maximum password length, keep in mind that some users may try to
create a password of maximum length. Because it is more difficult to remember a long
password, the user is more likely to write it down rather than memorize it – and it is strongly
recommended that users do not write passwords down.

Adding and Removing Restricted Words
The PasswordRestrictWords (DBC.SysSecDefaults) or RestrictWords (profiles) parameter
determines whether or not a password is subject to the content restrictions defined in the
DBC.PasswordRestrictions list. A default set of Restricted Words is automatically installed
when a system is upgraded to Teradata Database 12.0 or greater.

You can add words to the Restricted Words list, using the following form:

 INSERT INTO DBC.PasswordRestrictions
 VALUES ('newrestrictedword');

 Note: Although the default Restricted Words list is composed of English words, the

words you add can be in any supported character set.

You can also remove words from the list using the following form:

DELETE FROM DBC.PasswordRestrictions WHERE
 (RestrictedWords = 'wordtobedeleted');

The DBC.RestrictedWords (or DBC.RestrictedWordsV) views can be used to view
restricted words.

Profiles Page 45-17

Teradata Password Control

Description

• At the system level, the DBC.SysSecDefaults table has password parameters to
control system-wide password attributes. Similar parameters are available at the
profile level to establish password attributes for a group of users.

• The DBS Password Control feature provides additional requirements on valid
Teradata user passwords.

– These requirements, which mainly consist of enforcing character variation within
a password string, can be enabled or disabled by the DBA/Security Administrator
on a system/user basis.

• Starting with Teradata 12.0, you can specify whether or not a password is subject to
the content restrictions defined in the table DBC.PasswordRestrictions.

Customer Benefit

• These new features allow for the requirement and enforcement of stronger
passwords.

• Many passwords would be relatively easy for an intruder to guess, especially if they
contain common words or names. Forcing users to create passwords that do not use
common words or names enhances password security.

 Profiles Page 45-18

Teradata Password Control (cont.)
The PasswordDigits or Digits parameter determines if digits may be used in a password.

The default value for the PasswordDigits or the Digits parameter is Y: Digits are allowed in
a password.

The acceptable values for the PasswordDigits (DBC.SysSecDefaults – table or
DBC.SecurityDefaults - view) or Digits (Profile) parameter are:

 Y = Digits are allowed
 N = Digits are not allowed
 R = At least one digit is required

Note: The values are not case sensitive.

Password Special Characters
One of the key password parameters is "PasswordSpecChar" or "SpecChar". This parameter
determines how ASCII special characters can be used in a password. It includes the
following options:

 special characters are allowed/not allowed/required
 passwords must contain at least one alpha character
 no password can contain the database username
 passwords must contain a mixture of upper/lower case letters

The default value of this parameter is Y:

 special characters are allowed in a password
 username is allowed in the password string
 alpha characters are allowed but not required
 mixed upper and lower case characters are allowed but not required

Profiles Page 45-19

Teradata Password Control (cont.)

Options

• The PasswordSpecChar (or SpecChar) parameter is used to establish the following
password control rules.

– Do not allow a password to contain the user name

– Allow or require a mixture of upper/lower case characters

– Allow or require at least one alpha character

– Allow, not allow, or require at least one special character

• The PasswordDigits (or Digits) parameter is used to allow, not allow, or require a
numeric digit in the password.

• The PasswordRestrictWords (or RestrictWords) parameter is used to indicate that a
password cannot contain one of the "restricted words".

• Note: The DBC.SecurityDefaultsV (view) can be used to view/update
DBC.SysSecDefaults.

 Profiles Page 45-20

Teradata Password Control Options
The PasswordSpecChar parameter (DBC.SysSecDefaults) or SPECCHAR (Profile)
determines how special characters can be used in a password. It includes the following
options:

 special characters are allowed/not allowed /required
 passwords must contain at least one alpha character
 no password can contain the database username
 passwords must contain a mixture of upper/lower case letters

The default value of the PasswordSpecChar parameter is Y:

 special characters are allowed in a password
 username is allowed in the password string
 alpha characters are allowed but not required
 mixed upper and lower case characters are allowed but not required

A Password can contain ...

 1 to 30 characters (UTF-8 or UTF-16 characters)
 Letters A through Z and/or a through z
 Digits 0 through 9 in single-byte or multi-byte form
 Note: A password can be all-numeric only if it is enclosed in quotes as shown in

the following example: password = “12341234”
 The following special characters, in either single-byte or multi-byte form:
 $ (dollar sign)
 _ (underscore)
 # (pound sign)
 Other special characters may be used (if they are not specifically prohibited by the

rules in the reference manuals) and if the password is enclosed in quotes (“ ”).

Profiles Page 45-21

Teradata Password Control Options

Options Table for PasswordSpecChar and SpecChar

N – Not Allowed, Y – Allowed, but not required, R – Required
Note: These options are not case sensitive. You can use "A" or "a".

Option
PasswordSpecChar N Y A B C D E F G H I J K L M O P R
or
SpecChar

Rule Y Y Y Y Y Y Y Y Y N N N N N N N N N
Username

Rule Y Y Y Y Y Y R R R Y Y Y Y Y Y R R R
Upper/Lower

Rule Y Y Y R R R R R R Y Y Y R R R R R R
One Alpha

Rule N Y R N Y R N Y R N Y R N Y R N Y R
Special Chars.

ds186034
Sticky Note
I P Rfreq used

 Profiles Page 45-22

CREATE PROFILE Example
The facing page contains a simple example of creating a profile, assigning it to a user, and
then removing it from the user with the MODIFY USER command.

As mentioned previously, profile definitions apply to every assigned user, overriding
specifications at the system or user level.

Answers to first set of two questions on facing page:
 1E9
 $M0_EDUC&S&D&H

Answers to second set of three questions on facing page:

 2E9
 $M0_EDUC&S&D&H
 $M_&S&D&H

Profiles Page 45-23

CREATE PROFILE Example

CREATE PROFILE Employee_P AS
ACCOUNT = ('$M0_EDUC&S&D&H', '$L0_EDUC&S&D&H'),
DEFAULT DATABASE = HR_VM,
SPOOL = 1E9,
TEMPORARY = 500E6,
PASSWORD = (EXPIRE = 90, MINCHAR = 8, MAXLOGONATTEMPTS = 3,

LOCKEDUSEREXPIRE = 60, REUSE = 180,
DIGITS = 'R', RESTRICTWORDS = 'Y', SPECCHAR = 'P');

Create a profile.

Assign the profile to a user.

What is the spool space limit for Emp01?
What is the default account code for Emp01?

Assume this command is executed: MODIFY USER Emp01 AS PROFILE = NULL;

What is the spool space limit for Emp01?
What is the default account code for Emp01 for the current session?
What is the default account code for Emp01 for a new session?

CREATE USER Emp01 AS PERM = 0,
PASSWORD = emp01pass,
PROFILE = Employee_P,
SPOOL = 2E9,
ACCOUNT = '$M_&S&D&DH';

ds186034
Sticky Note
1Gig space...so all users will default to this space allocation

ds186034
Sticky Note
first one in the string - in profile

ds186034
Sticky Note
2E9

 Profiles Page 45-24

Teradata Administrator CREATE PROFILE Example
The facing page contains an example of creating a profile using Teradata Administrator.

Profiles Page 45-25

Teradata Administrator

CREATE PROFILE Example

These 2 options are
equivalent to:

SPOOL=1E9,
TEMPORARY=500E6

From Teradata Administrator, use the Tools > Administer Profiles menus.

CREATE PROFILE Employee_P AS
ACCOUNT = ('$M0_EDUC&S&D&H', '$L0_EDUC&S&D&H')
DEFAULT DATABASE = HR_VM, SPOOL = 1E9, TEMPORARY = 500E6, …

 Profiles Page 45-26

CREATE PROFILE Example (cont.)
The facing page continues the example of creating a profile using Teradata Administrator.

Profiles Page 45-27

Teradata Administrator

CREATE PROFILE Example (cont.)

CREATE PROFILE Employee_P …

PASSWORD = (EXPIRE=90, MINCHAR=8, MAXCHAR=15, MAXLOGONATTEMPTS=3,

LOCKEDUSEREXPIRE=60, REUSE=180, DIGITS='R', RESTRICTWORDS='Y', SPECCHAR='P');

These options are
equivalent to:

DIGITS='R',
RESTRICTWORDS='Y',
SPECCHAR='P'

From Teradata Administrator, use the Tools > Administer Profiles menus.

ds186034
Sticky Note
4 Rulesbut here only Y N or R

 Profiles Page 45-28

DROP PROFILE Statement
The DROP PROFILE statement drops the named profile. The DROP PROFILE access right
is required in order to execute this command.

The syntax is simply:

 DROP PROFILE profile_name;

When a profile is dropped, users who have the profile assigned to them continue to have that
profile assigned to them; the system does not reset the profile for the affected users to
NULL. Affected users receive no warnings or errors the next time they log on.

The effects of re-creating a profile with the same name as the dropped profile are not
immediate. The parameter settings in the re-created profile take effect the next time that
users (who are assigned the profile) log on.

DROP PROFILE has the following effects on users (sessions) logged on with the profile:

 Spool and temporary space settings immediately change to the settings defined for

the affected users.

 Account and database settings change to the settings defined for the affected users

the next time the users log on or explicitly change the settings.

However, changes to the list of valid account IDs take effect immediately. Users may only
explicitly change to an account ID in the list of account IDs available to them.

Profiles Page 45-29

DROP PROFILE Statement

Syntax:
DROP PROFILE profile_name;

Notes:

• If a profile is dropped, users who have the profile assigned to them continue
to have that profile assigned to them.

• Effects on sessions logged on with the profile that has been dropped:

– Spool and temporary space settings immediately change user’s settings.

– Account and database settings change to user's settings on next log on or if user
explicitly changes the settings.

– Users may only explicitly change to an account in the list of account IDs
available to them.

• The effects of re-creating a profile with the same name as the dropped
profile are not immediate.

– The parameter settings in the re-created profile take effect the next time the users
log on.

ds186034
Sticky Note
maybe an exam que

 Profiles Page 45-30

ProfileInfo View
The DBC.ProfileInfo view will list all profiles and their parameter settings. This
information is taken from the DBC.Profiles table.

The DBC.ProfileInfoX view will list the profile, if any, and its parameter settings for the
current user.

Extension to COMMENT command:

 COMMENT [ON] PROFILE <profile name> [[AS] <comment string>]

– inserts or retrieves comments in CommentString column of the DBC.Profiles table
for the named profile.

Implementation Note:

 Like accounts for the DBC.Dbase table, only the default account is stored in the

DBC.Profiles table. All other accounts associated with the profile will be stored in
DBC.Accounts table. The ProfileInfoV view provides the first or default account ID.

Profiles Page 45-31

ProfileInfo View

SELECT ProfileName
,DefaultAccount AS "Def Acct"
,DefaultDB
,SpoolSpace
,TempSpace

FROM DBC.ProfileInfoV
ORDER BY 1;

Provides information about profiles that exist in the system.

DBC.ProfileInfo[V][X]

ProfileName DefaultAccount DefaultDB
SpoolSpace TempSpace ExpirePassword
PasswordMinChar PasswordMaxChar PasswordDigits
PasswordSpecChar PasswordRestrictWords MaxLogonAttempts
LockedUserExpire PasswordReuse CommentString
CreatorName CreateTimeStamp LastAlterName
LastAlterTimeStamp

ProfileName Def Acct DefaultDB SpoolSpace TempSpace

Cust_Service_P $M_&S&D&H CS_VM 200000000 100000000
Cust_Gold_P $H_&S&D&H CS_VM 200000000 100000000
Employee_P $M0_EDUC&S&D&H HR_VM 1000000000 500000000
Payroll_P $M_&S&D&H Payroll_VM 200000000 100000000

Example Results:

Example:
List profiles that exist
in the system.

ds186034
Sticky Note
we have this cause in the future we gonna have larger obj namesright now only 30but more in the future

 Profiles Page 45-32

Miscellaneous SQL Functions
As you may notice, the DBC.AccountInfoV view has a column named UserOrProfile. This
corresponds to the column named RowType in the DBC.Accounts table.

The RowType column is necessary because profile and user names come from separate
name spaces. Since profile accounts are also stored in DBC.Accounts, they will be confused
with accounts of a user with the same name. Hence, the RowType column is necessary to
distinguish a user account from a profile account. This column will have a value of P (for
Profile) or U (for User).

The facing page contains 3 simple examples of SQL functions that a user can execute to
identify their user, profile, role, or current database information.

Miscellaneous notes:

 If you are accessing the Teradata Database through a proxy connection,
CURRENT_USER returns the proxy user name. Otherwise, it functions exactly
like the USER built-in function and returns the session user name.

 If you are accessing the Teradata Database through a proxy connection, then

CURRENT_ROLE returns the current role of the proxy user. If you are not
accessing the Teradata Database through a proxy connection, CURRENT_ROLE
functions exactly like the ROLE built-in function and returns the session current
role, which is the current role of the session user.

 CURRENT_ROLE is not supported in the FastLoad and MultiLoad utilities.

Profiles Page 45-33

Miscellaneous SQL Functions

Example 2: As Emp01, list the profile attributes.

SELECT * FROM DBC.ProfileInfoVX;

ProfileName DefaultAccount DefaultDB SpoolSpace TempSpace

Employee_P $M0_EDUC&S&D&H HR_VM 1000000000 500000000
Result 2:

Example 3: As Emp01, list account information.

SELECT * FROM DBC.AccountInfoVX;

Name AccountName UserOrProfile

Employee_P $M0_EDUC&S&D&H Profile
Employee_P $L0_EDUC&S&D&H Profile
Emp01 $M_&S&D&H User

Result 3:

Example 1: As Emp01, identify the current user, role, profile, and database information.

SELECT USER, ROLE, PROFILE, DATABASE;

Result 1: User Role Profile Database

EMP01 HR_R EMPLOYEE_P HR_VM

 Profiles Page 45-34

Summary
The facing page summarizes some important concepts regarding this module.

Profiles Page 45-35

Summary

• A profile is a set of common user parameters that can be applied to a group
of users.

• The CREATE PROFILE command is used to create a profile of desired
attributes.

– CREATE PROFILE profile_name AS … ;

• The PROFILE option (new) is used with CREATE USER and MODIFY
USER commands to assign a user to a specific profile.

– CREATE USER user1 AS …, PROFILE = prof_name;

– MODIFY USER user2 AS PROFILE = prof_name;

 Profiles Page 45-36

Module 45: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Profiles Page 45-37

Module 45: Review Questions

Answer the following questions:

1. List 2 advantages of utilizing profiles.

2. If a user's profile is set to NULL, which two are immediately affected in the current session.

a. SPOOL value
b. Session priority
c. Default database
d. TEMPORARY value

Match each term to the definition.

___ 1. CREATE PROFILE a. Lists all words that can not be included in passwords

___ 2. DBC.ProfileInfoV b. System access right needed to create a profile

___ 3. DBC.PasswordRestrictions c. Lists the profiles currently in the system

 Profiles Page 45-38

Lab Exercise 45-1
The following page continues this lab exercise.

Profiles Page 45-39

Lab Exercise 45-1

Lab Exercise 45-1

Purpose
In this lab, you will use Teradata SQL Assistant or Teradata Administrator to create a profile and
multiple users. This lab will also provide an opportunity to use the DBC.ProfileInfoV view.

What you need
Tables from PPI exercise and a user account with system profile privileges.

Tasks

1. Create a user profile with a profile name that is the same as your user name (e.g., "studentxxx_P"
where xxx is your student number). The attributes of your profile are:

ACCOUNT = '$M0+FACT&S&D&H',
DEFAULT DATABASE = studentxxx (i.e., your database),
SPOOL = 50E6,
TEMPORARY = 50E6,
PASSWORD = (EXPIRE = 91, MINCHAR = 6, MAXLOGONATTEMPTS = 3,

LOCKEDUSEREXPIRE = 5, REUSE = 365,
DIGITS='R', RESTRICTWORDS='Y', SPECCHAR='P');

2. Use the DBC.ProfileInfoV view to display information about profiles in the system.

How many profiles are defined in the system? _____

 Profiles Page 45-40

Lab Exercise 45-1 (cont.)
The following page continues this lab exercise.

Profiles Page 45-41

Lab Exercise 45-1 (cont.)

3. Create two new users in the system with the following attributes.

User name: studentxxx_A (where xxx is your student number)
Perm space: 0
Password: studentxxxA
Profile: studentxxx_P

User name: studentxxx_B (where xxx is your student number)
Perm space: 0
Password: studentxxxB
Profile: studentxxx_P

4. Logon to Teradata as "studentxxx_A".

Were you prompted to enter a new password? If so, set the password to a new value.

Why were you prompted to enter a new password? ______________________________________

 Profiles Page 45-42

Notes

Access Rights Page 46-1

Module 46

Teradata Proprietary and Confidential

Access Rights

After completing this module, you will be able to:

 Use the DBC.AllRights, DBC.UserRights and DBC.UserGrantedRights
views to obtain information about current users.

 Use views and macros to access information about privileges.

 Use the GRANT and REVOKE statements to assign and remove
access rights.

 Understand the impact of the GIVE statement with access rights.

 Access Rights Page 46-2

Notes

Access Rights Page 46-3

Table of Contents

Privileges/Access Rights .. 46-4
Access Rights Mechanisms .. 46-6

Automatic Rights ... 46-6
Explicit Rights .. 46-6
Ownership Rights ... 46-6
Access Rights Views .. 46-6

CREATE TABLE – Automatic Rights .. 46-8
CREATE USER – Automatic Rights ... 46-10

Example ... 46-10
Implicit, Automatic, and Explicit Rights ... 46-12

Example ... 46-12
GRANT Command .. 46-14

GRANT PUBLIC Implementation Change ... 46-14
Granting Rights at Database Level .. 46-16
GRANT Rights at the Table or Column Level .. 46-18

Access Rights and Triggers .. 46-18
REVOKE Command .. 46-20

REVOKE Recipients .. 46-20
Revoking Non-Existent Rights .. 46-22

Example ... 46-22
Removing a Level in the Hierarchy ... 46-24

Transfer Ownership .. 46-24
Delete User or Database ... 46-24
Drop User ... 46-24
Access Rights ... 46-24

Inheriting Access Rights .. 46-26
Example ... 46-26

The GIVE Statement and Access Rights ... 46-28
Example ... 46-28

Access Rights and Views ... 46-30
Access Rights and Nested Views ... 46-32
System Views for Access Rights ... 46-34

DBC.AllRights[V][X] .. 46-34
DBC.UserRights[V] ... 46-34
DBC.UserGrantedRights[V] .. 46-34

AllRights and UserRights Views ... 46-36
UserGrantedRights View ... 46-38
Teradata Administrator – Grant/Revoke Rights .. 46-40
Teradata Administrator – Rights on DB/User .. 46-42
Access Rights Summary .. 46-44
Module 46: Review Questions ... 46-46

 Access Rights Page 46-4

Privileges/Access Rights
Your privileges (access rights) define the types of activities you can perform during a
session. The following operations are examples that require you to have specific privileges:

 CREATE
 DROP
 REFERENCES
 INDEX
 SELECT
 UPDATE
 INSERT
 DELETE
 EXECUTE
 EXECUTE PROCEDURE
 CHECKPOINT
 DUMP
 RESTORE

Examples of objects that privileges (access rights) are associated with include:

Users Macros Columns of tables
Databases Triggers Columns of views
Tables Stored Procedures
Views User-defined Functions

Notes:

 To use UPDATE or DELETE commands, you must also have the SELECT right on
the object.

 Additional rights you need to control access to performance monitoring functions

are discussed in another module.

 A column can only be specified with the SELECT (Teradata 13.0), INSERT

(Teradata 13.0), UPDATE or REFERENCES access right.

 SHOW privilege (Teradata 13.0) – this privilege enables you to have access to

database object definitions and create text without having access to the data
contained by the objects on which the privilege is granted. For example, SHOW
permits a user to execute HELP and SHOW requests against an object while at the
same time not being able to SELECT from it.

 STATISTICS privilege (Teradata 13.0) – allows a user to collect or drop statistics

on an object (e.g., table). INDEX and DROP TABLE can still be used, but
STATISTICS does not grant users the wider capabilities associated with those
privileges. STATISTICS can be granted at both the table and database levels.

}DML

} Archive/Recovery

} DDL

Access Rights Page 46-5

Privileges/Access Rights

A privilege (or access right) is the right of a specific user to perform a specified operation.

Note: Some access rights don't directly correspond to an SQL statement.

On a specified Object

DATABASE USER

TABLE VIEW MACRO TRIGGER STORED
PROCEDURE

COLUMN COLUMN

User-Defined
FUNCTION

CREATE DROP INDEX

REFERENCES

EXECUTE

SELECT UPDATEINSERT DELETE

CHECKPOINTDUMP RESTORE

EXECUTE PROCEDURE

STATISTICS*SHOW*

* Teradata 13.0

ds186034
Sticky Note
checkpoint before 13cant see the dataunless select privilege

 Access Rights Page 46-6

Access Rights Mechanisms
The data dictionary includes a system table called DBC.AccessRights that contains
information about the access rights assigned to existing users.

The DBC.AccessRights table internally has the following indexes:

PI – NUPI (UserId, DatabaseId)
SI – NUSI (TVMId)

Access rights may be categorized in one three ways:

 Automatic (or Default) Access Rights
 Explicit Access Rights
 Implicit (or Ownership) Access Rights

Automatic Rights
Automatic rights are privileges given to creators and, in the case of users and databases,
their created objects. When a user submits a CREATE statement, new rows are inserted in
the DBC.AccessRights table. All rights are automatically removed for an object when it is
dropped.

Explicit Rights
Explicit rights are privileges conferred by using a GRANT statement. This statement inserts
new rows into the DBC.AccessRights table. Explicit rights can be removed using the
REVOKE statement.

Ownership Rights
Owners (Parents) have the implicit right to grant rights on any or all of their owned objects
(Children), either to themselves or to any other user or database. If an owner grants him or
herself rights over any owned object, the parser will validate that GRANT statement even
though the owner holds no other privileges.

Ownership rights cannot be taken away unless ownership is transferred.

Access Rights Views
The data dictionary contains views that return information about access rights:

 DBC.AllRights[V][X] and DBC.UserRights[V]
 DBC.AllRoleRights[V][X] and DBC.UserRoleRights[V][X]
 DBC.UserGrantedRights[V][X]

Access Rights Page 46-7

Access Rights Mechanisms

Implicit Right
(Ownership)

Automatic
(Default)

Explicit

CREATE

DROP

GRANT

REVOKE

DBC.AccessRights

DBC.Owners

DBC.AllRights[V][X]

DBC.UserRights[V]

DBC.UserGrantedRights[V]

Views for user
access rights:

ds186034
Sticky Note
u have to be the owneror have the privilege for grant command

 Access Rights Page 46-8

CREATE TABLE – Automatic Rights
The SQL request is preceded by the modifier EXPLAIN. As a result, the parser prints out
the AMP steps (in simple English) that the CREATE statement generates.

In step 4 (parallel step 11 on the facing page), you can see how the system adds each access
right to the AccessRights table.

The following access rights are inserted; each with the grant authority:

 SELECT (R)
 INSERT (I)
 UPDATE (U)
 DELETE (D)
 DROP TABLE (DT)
 INDEX (IX)
 REFERENCES (RF)
 CREATE TRIGGER (CG)
 DROP TRIGGER (DG)
 DUMP (DP)
 RESTORE (RS)
 STATISTICS (ST) - new with Teradata 13.0

If a view is created, 5 access rights are added.

Creation of a macro causes 2 access rights to be added.

Access Rights Page 46-9

CREATE TABLE – Automatic Rights

EXPLAIN CREATE TABLE TFACT.Customer
(Customer_Number INTEGER, Last_Name CHAR(30),
First_Name CHAR(20), Social_Security INTEGER)

UNIQUE PRIMARY INDEX (Customer_Number)
UNIQUE INDEX (Social_Security);

1) First, we lock TFACT.Customer for exclusive use.
2) Next, we lock a distinct DBC."pseudo table" for write on a RowHash for deadlock prevention, we lock a distinct

DBC."pseudo table" for write on a RowHash for deadlock prevention, we lock a distinct DBC."pseudo table" for write
on a RowHash for deadlock prevention, and we lock a distinct DBC."pseudo table" for read on a RowHash
for deadlock prevention.

3) We lock DBC.ArchiveLoggingObjsTbl for read on a RowHash, we lock DBC.TVM for write on a RowHash, we lock
DBC.TVFields for write on a RowHash, we lock DBC.Indexes for write on a RowHash, we lock DBC.DBase for read on
a RowHash, and we lock DBC.AccessRights forwrite on a RowHash.

4) We execute the following steps in parallel.
1) We do a single-AMP ABORT test from DBC.ArchiveLoggingObjsTbl by way of the primary index.
2) We do a single-AMP ABORT test from DBC.DBase by way of the unique primary index.
3) We do a single-AMP ABORT test from DBC.TVM by way of the unique primary index.
4) We do an INSERT into DBC.TVFields (no lock required).
: :

8) We do an INSERT into DBC.Indexes (no lock required).
9) We do an INSERT into DBC.Indexes (no lock required).

10) We do an INSERT into DBC.TVM (no lock required).
11) We INSERT default rights to DBC.AccessRights for TFACT.Customer.

5) We create the table header.
6) We create the index subtable on TFACT.Customer.
7) We modify the table header TFACT.Customer.
8) Finally, we send out an END TRANSACTION step to all AMPs involved in processing the request.
-> No rows are returned to the user as the result of statement 1.

 Access Rights Page 46-10

CREATE USER – Automatic Rights
When you create a new user or database, the system automatically generates access rights
for the created object and the creator of the object. The system inserts this rights
information into the DBC.AccessRights table when you submit a CREATE request. You
can remove these rights from the DBC.AccessRights table with the REVOKE statement.

Example
In the example on the facing page, user SYSDBA logs on to the system and creates a new
user called Accounting. Both SYSDBA and Accounting have the following privileges
written into the DBC.AccessRights table:

CREATE TABLE DROP TABLE
CREATE VIEW DROP VIEW
CREATE MACRO DROP MACRO
CREATE TRIGGER DROP TRIGGER
SELECT INSERT
UPDATE DELETE
EXECUTE DROP PROCEDURE
CHECKPOINT RESTORE
DUMP DROP FUNCTION
CREATE AUTHORIZATION DROP AUTHORIZATION
STATISTICS

Note: CREATE and DROP AUTHORIZATION access rights are new with Teradata
V2R6.1

In addition, user SYSDBA has the following rights over Accounting as its creator:

 CREATE Database/User
 DROP Database/User

Access Rights Page 46-11

CREATE USER – Automatic Rights

By issuing a CREATE USER statement, the CREATOR causes Automatic rights to be
generated for both the created user and the creator.

SYSDBA Accounting SYSDBA creates a new user named Accounting.

Both SYSDBA and Accounting are given the following rights over Accounting:

SYSDBA is given the following additional rights over Accounting:

CREATE Database DROP Database CREATE User DROP User

CREATE Table DROP Table CREATE View DROP View

CREATE Macro DROP Macro CREATE Trigger DROP Trigger

SELECT INSERT UPDATE DELETE

EXECUTE DROP Procedure DROP Function DUMP

CHECKPOINTRESTORE CREATE Authorization DROP Authorization

STATISTICS* * 13.0

 Access Rights Page 46-12

Implicit, Automatic, and Explicit Rights
Implicit rights belong to the owners of objects. Owners do not require rows in the
DBC.AccessRights table to grant privileges on owned objects. Ownership rights cannot be
“revoked.” An owner has the implicit right to GRANT privileges over any owned object.

When you submit a CREATE statement, the system automatically adds new rows to the
DBC.AccessRights table. You can remove automatic rights with the REVOKE or DROP
statements.

GRANT and REVOKE statements control explicit rights. The GRANT statement adds new
rows to the DBC.AccessRights table. The REVOKE statement removes them.

Example
In the example, Accounting is the creator. The system automatically inserts rows for access
rights in DBC.AccessRights for the creator (Accounting) and for the created user
(Personnel). These rights can be revoked.

The user named Personnel is the created object. The database Personnel automatically
receives all but four access rights on itself. These rights are inserted automatically in
DBC.AccessRights. These rights can be revoked.

The user named Human_Resources is the immediate owner. The system does not insert any
rows in the Data Dictionary for Human Resources. However, Human_Resources has the
owner’s implicit right to grant itself rights over Personnel. You cannot revoke the right to
GRANT (or re-GRANT) rights over owned objects.

Access Rights Page 46-13

Implicit, Automatic, and Explicit Rights

Human_Resources Accounting

DBC

SYSDBA

Personnel

GRANT USER ON
Human_Resources TO Accounting;

CREATE USER Personnel
FROM Human_Resources
AS PASSWORD = securepwd,
PERM = 10E9;CREATOR

Owners

How many automatic access rights are created for Personnel?

How many automatic access rights are created for Human_Resources?

How many automatic access rights are created for Accounting?

 Access Rights Page 46-14

GRANT Command
You can use the GRANT statement to give to users, databases, or roles one or more
privileges on a database, user, table, view, macro, trigger, stored procedure, or user-defined
function.

To grant a privilege, you must:

 Have the privilege itself and have GRANT authority
 OR
 Be an owner

The recipient of an explicitly granted privilege may be:

 Username The specific user(s) or database(s) named
 PUBLIC Every user in the DBC system (same as ALL DBC)
 ALL username The named user and ALL descendants
 Role Specified role or roles

Access rights that a new user inherits because the ALL or PUBLIC option is used are
referred to as “inherited rights”.

The WITH GRANT OPTION confers on the recipient “Grant Authority”. The recipient
(or “Grantee”), holding this authority, may then grant the access right to other users,
databases, or roles.

Syntax for REFERENCES or UPDATE access right for a column:

 GRANT REFERENCES [(columnname list or
 ALL BUT column_name_list)] …

 GRANT UPDATE [(columnname list or
 ALL BUT column_name_list)] …

GRANT PUBLIC Implementation Change
The PUBLIC option of the GRANT command allows privileges to be granted to all existing
and future users.

Starting with V2R5, the PUBLIC implementation (also works with the ALL DBC syntax)
was changed from one dictionary row per PUBLIC right per user to one row per right. That
is, a single row per access right is placed in the DBC.AccessRights table when the PUBLIC
option is used.

The use of ALL DBC effectively works the same as PUBLIC.

Access Rights Page 46-15

GRANT Command
(SQL Form)

To GRANT a privilege, the user (grantor) must have one of the following:
• Have the privilege granted, and hold GRANT authority on the privilege
• Be an owner of the object.

TO

ALL

username

PUBLIC

A

,

WITH GRANT OPTION ;

25

role_name

,

GRANT ALL

privilege
,

ALL BUT

PRIVILEGES
dbname

dbname.object_name

object_name

AON

,

privilege

PROCEDURE procedure_name

SPECIFIC FUNCTION specific_function_name

FUNCTION function_name ()

,

| par_dt |

par_nm

role_privilege

,

profile_privilege

,

TYPE UDT_name

 Access Rights Page 46-16

Granting Rights at Database Level
The facing page illustrates privileges granted at the database level.

A system structure for the Teradata database is shown on the facing page and this hierarchy
will be used in numerous examples.

Keys to the hierarchy on the facing page are:

 HR_Users – users that require SELECT and EXECUTE access rights on the views
and macros in the HR_VM database.

 PY_Users – users that require SELECT and EXECUTE access rights on the views

and macros in the Payroll_VM database.

The database HR_VM will have the SELECT WITH GRANT OPTION access right on the
database named HR_Tab.

The database Payroll_VM will have the SELECT WITH GRANT OPTION access right on
the database named Payroll_Tab.

Access Rights Page 46-17

Granting Rights at Database Level

SYSDBA

HR_VM

View_1
View_2

:
Macro_1
Macro_2

Human_Resources

HR_Tab

Table_1
Table_2
Table_3
Table_4

Payroll_VM

View_5
View_6

:
Macro_3
Macro_4

Payroll

Payroll_Tab

Table_5
Table_6
Table_7
Table_8

HR_Users

HR_02

HR_04

HR_01

HR_03

PY_Users

PY_02

PY_04

PY_01

PY_03

GRANT SELECT ON HR_Tab TO HR_VM WITH GRANT OPTION;
GRANT SELECT, EXECUTE ON HR_VM TO ALL HR_Users;

GRANT SELECT ON Payroll_Tab TO Payroll_VM WITH GRANT OPTION;
GRANT SELECT, EXECUTE ON Payroll_VM TO ALL PY_Users;

The ALL option grants the SELECT and EXECUTE privileges to HR_Users
and all of its current and future descendants on the database HR_VM.

 Access Rights Page 46-18

GRANT Rights at the Table or Column Level
Prior the Teradata 13.0, only the UPDATE and REFERENCES privileges can be granted
at the table level or at the column or columns level.

Starting with Teradata 13.0, the SELECT, INSERT, UPDATE, and REFERENCES
privileges can be granted at the table or the column or columns level.

The INDEX privilege must be granted at the table level, to permit the creating of secondary
indexes.

Access Rights and Triggers
To create or replace a trigger, specific access rights are required.

Access Rights to Create Triggers:

 CREATE TRIGGER privilege on the subject table or the database.
 SELECT privilege on any column referenced in a WHEN clause or a triggered

SQL statement subquery.
 INSERT, UPDATE, or DELETE privileges on the triggered SQL statement target

table, depending on the triggered SQL statement.

Access Rights to Replace Triggers:

 DROP TRIGGER privilege on the subject table or the database. The exception is
when you use the REPLACE TRIGGER statement when no target trigger exists
and you instead create a new trigger.

 SELECT privilege on any column referenced in a WHEN clause or a triggered
SQL statement subquery.

 INSERT, UPDATE, or DELETE privileges on the triggered SQL statement target
table, depending on the triggered SQL statement.

Example: CREATE TRIGGER trigger1
 AFTER UPDATE OF (col1) ON table1 FOR EACH ROW
 WHEN NEW col1 > 100
 INSERT INTO log_table VALUES …

Access Rights Page 46-19

GRANT Rights at the Table or Column Level

Examples assigning the UPDATE privilege to a table or columns of a table:

GRANT UPDATE ON Employee TO tfact01;
GRANT UPDATE (salary_amount) ON Employee TO tfact01;
GRANT UPDATE (ALL BUT salary_amount) ON Employee TO tfact01;

To CREATE or ALTER a table with foreign key references:

GRANT REFERENCES ON Employee TO tfact01;
GRANT REFERENCES (employee_number) ON Employee TO tfact01;
GRANT REFERENCES (ALL BUT employee_number) ON Employee TO tfact01;

The INDEX privilege is granted at the table level to allow a user to CREATE or DROP
indexes on a table or to allow a user to collect statistics on a table.

GRANT INDEX ON Employee TO tfact01;

Prior to Teradata 13.0, only the UPDATE and REFERENCES privileges can be granted at the
table level or the column(s) level.

Starting with Teradata 13.0, the SELECT, INSERT, UPDATE, and REFERENCES privileges
can be granted at the table or the column(s) level.

 Access Rights Page 46-20

REVOKE Command
REVOKE is passive in that it:

 Does not add rows to DBC.AccessRights.

 Removes rows from the DBC.AccessRights table only if the privileges specified

exist.

 Does not cascade through the hierarchy unless you specify the “ALL username”

option.

 Is not automatically issued for privileges granted by a grantor dropped from the

system.

The REVOKE statement removes rights inserted in the DBC.AccessRights table by a
CREATE statement. It can also remove explicit rights inserted in the DBC.AccessRights
table by the GRANT statement.

REVOKE Recipients
The REVOKE statement can remove privileges from one of the following:

 username A specific named user(s)
 PUBLIC Every user in the DBC system
 ALL username The named user and all of his descendants
 Role Specified role or roles

Access Rights Page 46-21

REVOKE Command
(SQL Form)

To REVOKE a privilege, the user must have one of the following:
• Have the privilege granted, and hold GRANT authority on the privilege
• Be an owner of the object.

REVOKE ALL

,
PRIVILEGES

A

privilege

GRANT OPTION FOR

ALL BUT privilege

,

role_privilege

,

profile_privilege

,

B

ON

A TO

ALL

username

PUBLIC

,

;

role_name

,

FROM

dbname

dbname.object_name

object_name

PROCEDURE procedure_name

SPECIFIC FUNCTION specific_function_name

FUNCTION function_name ()

,

| par_dt |

par_nm

B
25

TYPE UDT_name

 Access Rights Page 46-22

Revoking Non-Existent Rights
A REVOKE statement at the object level cannot remove privileges from that object that
were granted at the database or user level because there is no correlating row in the
DBC.AccessRights table for the individual object.

Example
The diagram on the facing page illustrates privileges granted at the database level. User
Payroll logs on to the system, and grants the SELECT privilege to user PY_Users and ALL
of its descendants on the database Payroll_VM.

Later, Payroll REVOKES the SELECT privilege from ALL PY_Users only on View_6 that
resides in Payroll_VM. Although the system returns the message “Revoke Accepted,”
nothing actually happened. The user PY_Users and its descendants still have the SELECT
privilege on all views residing in database Payroll_VM because the DBC.AccessRights table
does not have a row correlating to View_6. Since the row granting select at the database
level is still intact, all access rights remain in effect.

Access Rights Page 46-23

Revoking Non-Existent Rights

GRANT SELECT ON Payroll_VM TO ALL PY_Users;
Grant Accepted.

REVOKE SELECT ON Payroll_VM.View_6 FROM ALL PY_Users;
Revoke Accepted.

REVOKE is passive. It does not add rows to DBC.AccessRights,
but removes rows if they exist.

HR_VM

View_1
View_2

:
Macro_1
Macro_2

HR_Tab

Table_1
Table_2
Table_3
Table_4

Payroll_VM

View_5
View_6

:
Macro_3
Macro_4

Payroll_Tab

Table_5
Table_6
Table_7
Table_8

HR_Users

HR_02

HR_04

HR_01

HR_03

PY_Users

PY_02

PY_04

PY_01

PY_03

SYSDBA

Human_Resources Payroll

ds186034
Sticky Note
cause rights were done at the db level and not at the object levelandso this will not workdba might think its done but its not

 Access Rights Page 46-24

Removing a Level in the Hierarchy
The example on the facing page demonstrates how to remove a level from an existing
hierarchy. In the first diagram, user A is the owner of users B, C, and D. User A no longer
needs user B. He wants to keep users C and D.

Transfer Ownership
The first thing user A needs to do is transfer ownership of user C to A. When user A
submits the GIVE statement, both user C and user D will be transferred. That is because the
GIVE statement transfers the named object and all of its children. Since user D is a child of
user C, both objects are transferred under user A.

Delete User or Database
In order to DROP user B, user A must first delete all objects from user B. The DELETE
USER command will delete all data tables, views, triggers, stored procedures, and macros from a
database or user. This command will not remove a Permanent Journal, Hash Indexes, or Join
Indexes from a user or database.

Drop User
After user A removes all objects from user B, user A can submit the DROP statement.

Access Rights
The privileges for user C and user D remain intact. Although user B, their original creator,
no longer exists, the privileges granted or caused to be granted are not automatically
revoked. Note that user A has recovered the perm space held by user B.

Access Rights Page 46-25

Removing a Level in the Hierarchy

LOGON with the required
privileges, and

1) GIVE C TO A;
2) DELETE USER B;
3) DROP USER B;

A

B

C

D

A

D

CB

A

C

D

Although B no longer exists as a user, the privileges granted or caused to
be granted are not automatically revoked.

ds186034
Sticky Note
space goes to free list

ds186034
Sticky Note
space now goes to A

ds186034
Sticky Note
B is out of DBASE tablebtstill does appear in DDcause B might have given right to other childs so hist/audit purpose...name will be floating around

 Access Rights Page 46-26

Inheriting Access Rights
You may inherit access rights by the placement of your user in the hierarchy. As an
administrator, you can set up access rights so that any new object added to an existing user
or database inherits specific access rights. Doing so saves time since you do not need to
submit a GRANT statement each time you add a new user.

The immediate owner (user or database) of a view or table that is referenced by another
must have the right on the referenced object that is specified (SELECT, EXECUTE, etc.)
and must have that right with the GRANT option.

Example
The example on the facing page illustrates a user inheriting access rights.

The user Human_Resources logs on the system and grants the SELECT and EXECUTE
privileges to user HR_Users and all of its current and future descendants on the database
HR_VM.

The user Payroll also logs on the system and grants the SELECT and EXECUTE privileges
to user PY_Users and all of its current and future descendants on the database Payroll_VM.

Later, Payroll creates a new user called Ann from the space owned by user PY_Users. Ann
inherits the SELECT and EXECUTE privileges on database Payroll_VM database.

Access Rights Page 46-27

Inheriting Access Rights

GRANT SELECT ON Payroll_Tab TO Payroll_VM WITH GRANT OPTION;
GRANT SELECT, EXECUTE ON Payroll_VM TO ALL PY_Users;

CREATE USER Ann FROM PY_Users AS PERM = 0, PASSWORD = temp;

Ann “inherits” the SELECT and EXECUTE access rights for the database Payroll_VM.

HR_VM

View_1
View_2

:
Macro_1
Macro_2

HR_Tab

Table_1
Table_2
Table_3
Table_4

Payroll_VM

View_5
View_6

:
Macro_3
Macro_4

Payroll_Tab

Table_5
Table_6
Table_7
Table_8

HR_Users

Jan

Bob

Ted

PY_Users

Kay

Joe

Ron

SYSDBA

Human_Resources Payroll

Ann

ds186034
Sticky Note
imperative rights = select and execute212502= 46+2=48

 Access Rights Page 46-28

The GIVE Statement and Access Rights
When you give a user to another owner, privileges are not altered. The GIVE statement
does not alter DBC.AccessRights. No rights on the given database or user are granted to
the new ownership hierarchy as a result of the GIVE statement. The database or user that
you GIVE does not receive any access rights from its new owner. The new owner gains
implicit access rights over the transferred object and the old owner loses them.

Example
In the example on the facing page, Sysdba logs on to the system and gives user Ann to
HR_Users. Ann retains the privileges that she inherited from PY_Users when she was
created. Ann does not inherit any access privileges from the new owner, HR_Users, or from
Human_Resources

HR_Users is Ann’s new owner. It has ownership rights over Ann. PY_Users loses
ownership rights over Ann when she is transferred.

The syntax of the GIVE statement is as follows:

 GIVE database_name TO recipient_name;

Access Rights Page 46-29

The GIVE Statement and Access Rights

.LOGON sysdba, password;

GIVE Ann TO HR_users;

HR_VM

View_1
View_2

:
Macro_1
Macro_2

HR_Tab

Table_1
Table_2
Table_3
Table_4

Payroll_VM

View_5
View_6

:
Macro_3
Macro_4

Payroll_Tab

Table_5
Table_6
Table_7
Table_8

HR_Users

Jan

Bob

Ted

PY_Users

Kay

Joe

Ron

SYSDBA

Human_Resources Payroll

AnnAnn

The GIVE command transfers
ownership, but does not
change any access rights.

NOT
Recommended

.LOGON sysdba, password;

DROP USER Ann;
CREATE USER Ann FROM HR_Users …;

Recommended

GIVE

The DROP will cause Ann’s
access rights to be removed for
Payroll_VM. The CREATE will
allow Ann to inherit access
rights for HR_VM.

 Access Rights Page 46-30

Access Rights and Views
Views may be nested up to 64 levels.

View names are fully expanded (resolved) at creation time.

The system checks access rights at creation time, and validates them again at execution time.
Any database referenced by the view requires access rights on all objects accessed by the
view.

The facing page shows an example of a nested view.

You can create a view with the intention of read access only, or for controlled UPDATES
use. For read access, the SELECT right is needed. For updates, the UPDATE right is
needed.

For other users to access a view, the owner must grant the appropriate rights on the view and
must have the appropriate rights WITH GRANT OPTION.

The system verifies that the creator has the appropriate right on the objects being referenced
when a view is created. It also verifies that the creator has the rights needed to execute the
statements defined in a macro. To grant to another user any privilege on a view or macro
that references objects owned by a third user, the owner of the view or macro must have the
appropriate rights with GRANT OPTION.

Teradata also verifies that the appropriate privileges exist on the objects being referenced for
any user who attempts to access a view or execute a macro. This ensures that a change to a
referenced object does not result in a violation of access rights when the view or macro
referencing that object is invoked.

Access Rights Page 46-31

Access Rights and Views

• View names are fully expanded (resolved) at creation time.

• The system checks access rights at creation time, and validates them again at
execution time.

GRANT SELECT
ON Table1 TO User2;

GRANT SELECT
ON Table1 TO User2
WITH GRANT OPTION;

CREATE VIEW View1
AS SELECT …
FROM User1.Table1;

SELECT * FROM View1;

GRANT SELECT
ON View1 TO User3;

GRANT SELECT
ON View1 TO User3;

SELECT * FROM User1.Table1;
Fails - Error 3523

SELECT * FROM User2.View1;
Fails - Error 3523

SELECT * FROM User2.View1;
Fails - Error 5315

SELECT * FROM User2.View1;
Success

SELECT * FROM User1.Table1;
Fails - Error 3523

Table1

User1

View1

User2 User3

3523 : The user does not have SELECT access to [owner.object].
5315: The owner does not have SELECT WITH GRANT OPTION …

 Access Rights Page 46-32

Access Rights and Nested Views
Views that reference other views are sometimes called nested views. Views may be nested
up to 64 levels. View names are fully expanded (resolved) at creation time.

The system checks access rights at creation time, and validates them again at execution time.
Any database referenced by the view requires access rights on all objects accessed by the
view.

The previous example is continued on the facing page.

Access Rights Page 46-33

Access Rights and Nested Views

• Views that reference other views are sometimes called nested views. Views may be nested up to 64
levels.

• The system validates access rights at execution time.

GRANT SELECT
ON Table1 TO User2
WITH GRANT OPTION;

REVOKE GRANT OPTION
FOR SELECT
ON Table1 FROM User2;

GRANT SELECT
ON View1 TO User3
WITH GRANT OPTION;

User2 can select from Table1
and can create and use
views that access Table1.

SELECT * FROM View1;
Success

User3 is given SELECT access
on View1 and can create View 2.
User3 can access Table1 via
View1 or View2.

User3 can GRANT SELECT
access to View2 to other users.

SELECT * FROM View2;
Fails - Error 5315

SELECT * FROM User2.View1;
Fails - Error 5315

5315: The owner does not have SELECT WITH GRANT OPTION …

If you REVOKE access rights from any user in the chain, the
system issues the following message:

Table1

User1

View1

User2 User3

View2

 Access Rights Page 46-34

System Views for Access Rights
There are three system views you can use to obtain information about access rights. (These
views access the DBC.AccessRights table to obtain needed information.) They are:

 DBC.AllRights[V][X]
 DBC.UserRights[V]
 DBC.UserGrantedRights[V]

DBC.AllRights[V][X]

The DBC.AllRights[X] views provide information about all rights that have been
automatically or explicitly granted.

DBC.UserRights[V]
This view provides information about all rights that the user has acquired, either
automatically or explicitly.

DBC.UserGrantedRights[V]
This view provides information about rights that the current user has explicitly granted to
other users.

Access Rights Page 46-35

System Views for Access Rights

View Description

DBC.AllRights[V][X] Provides information about all rights that have been
automatically or explicitly granted.

DBC.UserRights[V] Provides information about all rights the user has
acquired, either automatically or explicitly.

DBC.UserGrantedRights[V] Provides information about rights which the current
user explicitly has granted to other users.

 Access Rights Page 46-36

AllRights and UserRights Views
Examples of access rights and their abbreviations include:

DATABASE = CREATE (CD) + DROP (DD)

USER = CREATE (CU) + DROP (DU)

TABLE = CREATE (CT) + DROP (DT)

VIEW = CREATE (CV) + DROP (DV)

MACRO = CREATE (CM) + DROP (DM)

TRIGGER = CREATE (CG) + DROP (DG)

PROCEDURE = CREATE (PC) + DROP (PD)

FUNCTION = CREATE (CF) + DROP (DF)

Examples of Access Rights and their codes include:

AE = ALTER EXTERNAL PROCEDURE
AF = ALTER FUNCTION
AP = ALTER PROCEDURE
AS = ABORT SESSION
CA = CREATE AUTHORIZATION
CD = CREATE DATABASE
CE = CREATE EXTERNAL PROCEDURE
CF = CREATE FUNCTION
CG = CREATE TRIGGER
CM = CREATE MACRO
CO = CREATE PROFILE
CP = CHECKPOINT
CR = CREATE ROLE
CT = CREATE TABLE
CU = CREATE USER
CV = CREATE VIEW
D = DELETE
DA = DROP AUTHORIZATION
DD = DROP DATABASE
DF = DROP FUNCTION
DG = DROP TRIGGER
DM = DROP MACRO
DO = DROP PROFILE
DP = DUMP
DR = DROP ROLE
DT = DROP TABLE
DU = DROP USER
DV = DROP VIEW
E = EXECUTE
EF = EXECUTE FUNCTION

* GC = CREATE GLOP
* GD = DROP GLOP
* GM = GLOP MEMBER
I = INSERT
IX = INDEX
MR = MONITOR RESOURCE
MS = MONITOR SESSION
NT = NONTEMPORAL
* OD = OVERRIDE DELETE POLICY
* OI = OVERRIDE INSERT POLICY
* OP = CREATE OWNER PROCEDURE
* OS = OVERRIDE SELECT POLICY
* OU = OVERRIDE UPDATE POLICY
PC = CREATE PROCEDURE
PD = DROP PROCEDURE
PE = EXECUTE PROCEDURE
RO = REPLICATION OVERRIDE
R = RETRIEVE/SELECT
RF = REFERENCE
RS = RESTORE
* SA = SECURITY CONSTRAINT ASSIGNMENT
* SD = SECURITY CONSTRAINT DEFINITION
SS = SET SESSION RATE
SR = SET RESOURCE RATE
* ST = STATISTICS
* TH = CTCONTROL
U = UPDATE
UU = UDT Usage
UT = UDT Type
UM = UDT Method

 * Reserved for future use (or associated with Teradata 13.0)

The RESTORE statement also allows the recipient to execute ROLLBACK, ROLLFORWARD, and
DELETE JOURNAL commands in the ARC facility. The DROP allows COMMENT ON and
COLLECT STATISTICS on the object.

Access Rights Page 46-37

AllRights and UserRights Views

Provides information about the objects on which all users (DBC.AllRights), or the current
user (DBC.UserRights), have automatically or explicitly been granted privileges.

SELECT DatabaseName (FORMAT 'X(16)')
,AccessRight
,GrantorName (FORMAT 'X(16)')

FROM DBC.UserRights
WHERE Tablename = 'ALL'
ORDER BY 1, 2;

Example Results:

Example:
All rights held by the user
at the database level (for
user tfact07).

DBC.AllRights[V][X]

UserName DatabaseName
TableName ColumnName
AccessRight GrantAuthority
GrantorName AllnessFlag
CreatorName CreateTimeStamp

DatabaseName AccessRight GrantorName

AP R DBC
PD D SYSDBA
PD I SYSDBA
PD R SYSDBA
PD U SYSDBA
tfact07 CG SYSDBA

DBC.UserRights[V]

DatabaseName TableName
ColumnName AccessRight
GrantAuthority GrantorName
CreatorName CreateTimeStamp

 Access Rights Page 46-38

UserGrantedRights View
The DBC.UserGrantedRights[V] view provides information about objects on which the
current user has explicitly granted privileges. When you submit the GRANT statement, the
system stores explicit privileges as rows in the DBC.AccessRights table.

Column definitions in this view include:

Column Definition

Grantee The recipient of the access right.

AllnessFlag Y (Yes) indicates the privilege was granted to all.
 N (No) indicates the privilege was not granted to all.

Access Rights Page 46-39

UserGrantedRights View

Provides information about objects on which the current user has explicitly
granted privileges to other users.

SELECT DatabaseName (FORMAT 'X(12)')
,TableName (FORMAT 'X(15)')
,Grantee (FORMAT 'X(10)')
,AccessRight
,AllnessFlag

FROM DBC.UserGrantedRights
ORDER BY 1, 2, 3, 4;Example Results:

Example:
List the rights explicitly
granted by the current
user.

DBC.UserGrantedRights[V]

DatabaseName TableName ColumnName Grantee
AccessRight GrantAuthority AllnessFlag CreatorName
CreateTimeStamp

DatabaseName TableName Grantee AccessRight AllnessFlag

AP All tfact07 R N
DS Daily_Sales tfact03 R N
DS Daily_Sales tfact03 RF N
DS Order_Item_JI tfact03 IX N
PD All Students R Y

ds186034
Sticky Note
all

ds186034
Sticky Note
y

ds186034
Sticky Note
y

 Access Rights Page 46-40

Teradata Administrator – Grant/Revoke Rights
The facing page contains an example of the Grant/Revoke dialog box that is provided when
using the menus of Teradata Administrator.

 Tools Grant/Revoke Object Rights

The help facility of Teradata Administrator also lists all of the Access Right Codes.

Access Rights Page 46-41

Teradata Administrator
GRANT/REVOKE Rights

• Select the object name and
object type.

• Select who is going to get
the right.

• Select the rights.

Teradata Administrator can be used to easily grant or revoke access rights.

Tools Grant/Revoke Object Rights

 Access Rights Page 46-42

Teradata Administrator – Rights on DB/User
The facing page contains an example of using Teradata Administrator to view the access
rights that are on a specific database or user.

Access Rights Page 46-43

Teradata Administrator
Rights on DB/User

Teradata Administrator can also be used to easily view existing access rights

Right-click on the
database AP and
select the option.

In this example,
Rights on
DB/User was
selected.

 Access Rights Page 46-44

Access Rights Summary
The facing page summarizes some important concepts regarding this module.

Access Rights Page 46-45

Access Rights Summary

• Access Rights (Privileges) are maintained in the data dictionary.

• Rows are inserted into or removed from DBC.AccessRights by:

– CREATE or DROP statements

– GRANT or REVOKE statements

• Creators are given automatic rights on created objects.

• A newly created user or database is given all rights on themselves except:

– CREATE Database/User

– DROP Database/User

• Owners have the right to grant privileges on their owned objects.

• The GIVE command affects ownership, but not information in the
DBC.AccessRights table.

 Access Rights Page 46-46

Module 46: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Access Rights Page 46-47

Module 46: Review Questions

1. True or False There are only two types of access rights or privileges: explicit and implicit.

2. True or False The primary statements you use to manage access rights are GRANT, REVOKE,
and GIVE.

3. The _______ option on the GRANT command grants privileges to a database or user and all of its
current and future descendants.

4. The _____________, _____________, _____________, and _____________ access rights can be
granted at the column level.

5. The ____________ user is used to grant an access right to every user in the system.

6. Given the following: Ann owns Table_A, Bob creates View_TabA and grants SELECT on View_TabA
to Paul.

What access right does Ann give Bob on Table_A so Paul can use View_TabA to access Table_A?

Table_A

Ann

View_TabA

Bob Paul

SELECT?

ds186034
Sticky Note
there is automatic and inherited - so false

ds186034
Sticky Note
not give

ds186034
Sticky Note
column rights: grant references, select, update, and insert

ds186034
Sticky Note
roleits a psuedo userits a function

 Access Rights Page 46-48

Notes

Roles and Profiles Page 47-1

Module 47

Teradata Proprietary and Confidential

Roles

After completing this module, you should be able to:

• List 3 advantages of utilizing roles.

• Identify the access rights needed to create roles.

• Number the steps of access right validation.

• Specify the order of precedence of user/session parameters.

• Specify the default role when creating new users.

• Use system views to display role information.

 Roles and Profiles Page 47-2

Notes

Roles and Profiles Page 47-3

Table of Contents

What are Roles? ... 47-4
Advantages of Roles .. 47-4
Access Rights without Roles .. 47-6
Access Rights Issues (prior to Roles)... 47-6
Access Rights Using a Role ... 47-8
Implementing Roles ... 47-10
Current or Active Roles ... 47-12
Nesting of Roles ... 47-14
Example of Using “Nested Roles” ... 47-16
Access Rights Validation and Roles .. 47-18
SQL Statements to Support Roles .. 47-20
GRANT Command (SQL Form) ... 47-22
REVOKE Command (SQL Form) ... 47-24
GRANT and REVOKE Commands (Role Form) .. 47-26
System Hierarchy (used in following examples) ... 47-28
Example of Using Roles... 47-30
Example of Using Roles (cont.) ... 47-32
Example of Using Roles (cont.) ... 47-34
Roles for Directory-Based Users ... 47-36
Roles for Proxy Users .. 47-38
RoleInfo View .. 47-40
RoleMembers View ... 47-42
DBC.AccessRights and “Rights” Views .. 47-44
AllRoleRights and UserRoleRights Views .. 47-46
Steps to Implementing Roles ... 47-48
Summary .. 47-50
Module 47: Review Questions ... 47-52
Lab Exercise 47-1 .. 47-54
Lab Exercise 47-2 .. 47-58

 Roles and Profiles Page 47-4

What are Roles?
An additional database administration and security concept called roles can be used to
simplify database administration.

A role can be viewed as a pseudo-user with privileges on a number of database objects. Any
user granted a role can take on the identity of the pseudo-user and access all of the objects it
has rights to.

A database administrator can create different roles for different job functions and
responsibilities, grant specific privileges on database objects to these roles, and then grant
these roles to users.

Advantages of Roles
Advantages of roles include:

 Simplify access rights administration

 A database administrator can grant rights on database objects to a role and have

these rights automatically applied to all users assigned to that role. When a user's
function within his organization changes, it is easier to change his/her role than
deleting old rights and granting new rights that go along with the new function.

 Reduce disk space usage

 Maintaining rights on a role level rather than on an individual level makes the size

of the DBC.AccessRights table much smaller. Instead of inserting one row per user
per right on a database object, one row per role per right is placed in the
DBC.AccessRights table.

 Better performance – roles can improve performance and reduces dictionary

contention for DDL

 If roles are fully utilized on a system, roles will reduce the size of the AccessRights

table and improve the performance of DDL commands that do full-file scans of this
table.

– Faster DROP/DELETE USER/DATABASE, DROP TABLE/VIEW/MACRO

due to shorter scans of the DBC.AccessRights table.

– Faster CREATE USER, DATABASE - remove copy of hierarchical inherited

rights.

 Less dictionary contention during DDL operations because the commands use less

time.

Roles and Profiles Page 47-5

What is a Role?

A Role is an administration/security features which can help simplify the
management of access rights.

What is a “role”?

• A role is simply a collection of access rights.

– Rights are first granted to a role and the role is then granted to users.

• A DBA can create different roles for different job functions and responsibilities.

What are the advantages of using “roles”?

• Simplify access rights management by allowing grants and revokes of multiple rights
with one request.

– useful when an employee changes job function (role) within the company.

– if a job function needs a new access right, grant it to the role and it is effective immediately.

• The number of access rights in the DBC.AccessRights table is reduced.

• Improves performance and reduces dictionary contention for DDL, especially CREATE
USER.

– Removal of hierarchical inherited rights improves DDL performance and reduces dictionary
contention.

ds186034
Sticky Note
roleits a psuedo userits a functionreduce size of access right table

 Roles and Profiles Page 47-6

Access Rights without Roles
The facing page illustrates the following:

 If 10 users have the SELECT access right on each of 10 views, there would be 100

rows in the DBC.AccessRights table for these 10 users.

 What if there were 50,000 users in the system and there were 500 views needed by

each user? The DBC.AccessRights table would have 25 million rows.

When a new user is added in this simple example, 10 rows have to be added to the
DBC.AccessRights table.

Access Rights Issues (prior to Roles)
The role concept provides a solution to the following problem.

Prior to Teradata V2R5 and the concept of roles, there are typically 2 ways of granting rights
to a large user base:

1. Use the ALL option of the GRANT statement to grant rights on the shared object(s)

to a parent database. Sometimes this is referred to as a “profile” database or a
“group” database in V2R4.1. Do not confuse the logical profile database with the
Profile capability in V2R5.

 GRANT SELECT ON database_object TO ALL profile_database;

 Then, create users under the profile database. The system will automatically grant

all rights held by the profile database to each user created under the profile
database. This is frequently referred to as “inherited rights”.

2. Grant the rights to users individually – an administrative nightmare.

Roles and Profiles Page 47-7

Access Rights Without Roles

GRANT SELECT ON View1 TO New_User; GRANT SELECT ON View2 TO New_User; …

When a new user is given the SELECT access right to these 10 views, 10 new access
right rows are added to the DBC.AccessRights table.

In this simple example, these 10 views and 11 users would place 110 access right rows
in the DBC.AccessRights table.

New_User

10 views
(possibly in

different
databases)

10 users

ds186034
Sticky Note
every view to every user= 100 entries in access rights

 Roles and Profiles Page 47-8

Access Rights Using a Role
When creating a new user, only one right to use a role needs to be granted, as opposed to a
right for every table/view/macro/stored procedure that the user needs to access.

As mentioned earlier, a role can be viewed as a pseudo-user with privileges on a number of
database objects. Any user granted a role can take on the identity of the pseudo-user and
access all of the objects it has rights to.

A database administrator can create different roles for different job functions and
responsibilities, grant specific privileges on database objects to these roles, and then grant
these roles to users.

In the example on the facing page, the GRANT Role_X to New_User places a row in the
DBC.RoleGrants table, not the DBC.AccessRights table.

Note:
 When an access right is granted to a role, a row in placed in the DBC.AccessRights

table. The DBC.AllRights system view only shows access rights associated with users,
not roles. The DBC.UserRoleRights system view shows access right rows associated
with roles.

Roles and Profiles Page 47-9

Access Rights Using a Role

First, create a role and grant privileges to the role.

CREATE ROLE Role_X;
GRANT SELECT ON View1 TO Role_X; GRANT SELECT ON View2 TO Role_X; …

When creating a new user, only one right to use a role needs to be granted.

GRANT Role_X TO New_User;

This command places a row in the DBC.RoleGrants table, not DBC.AccessRights.

With 10 views, 1 role, and 11 users, there would be 10 rows in the DBC.AccessRights
table and 11 rows in the DBC.RoleGrants table.

New_User

10 usersRole_X

10 views
(possibly in
different
databases)

ds186034
Sticky Note
still 10 rowsnew tableroleGrants tableaccess rows has 10 rowsroleGrants has 10 rows1000-1000=1millwith role1000-1000=2000 only

 Roles and Profiles Page 47-10

Implementing Roles
Roles define access privileges on database objects. When you assign a default role to a user,
you give the user access to all the objects that the role has been granted privileges to. A
default role that has a role as a member gives the user additional access to all the objects that
the nested role has privileges to.

A newly created role does not have any associated privileges until grants are made to it. To
manage user access privileges, you can:

 Create different roles for different job functions and responsibilities.
 Grant specific privileges on database objects to the roles.
 Assign default roles to users.
 Add members to the role.
 Members of a role can be users or other roles.
 Roles can only be nested one level. Thus, a role that has a role member cannot also

be a member of another role.

The CREATE ROLE and DROP ROLE access rights are system rights. These rights are not
on a specific database object. Note that the ROLE privileges can only be granted to a user
and not to a role or database.

The example on the facing page explicitly identifies the CREATE ROLE and DROP ROLE
rights for Sysdba. Another technique of granting both the CREATE ROLE and DROP
ROLE access rights to Sysdba is to use the following SQL.

GRANT ROLE TO SYSDBA WITH GRANT OPTION;

 The key word ROLE will give both the CREATE ROLE and DROP ROLE access

rights.

Note:
 If Sysdba is only given the CREATE ROLE access right, Sysdba can create new roles

and Sysdba can drop roles that he/she has created. Sysdba would not be able to drop
roles created by other users (such as DBC).

The syntax to create a new role is simply:

CREATE ROLE role_name;

When a role is first created, it does not have any associated rights until grants are made to it.

Roles and Profiles Page 47-11

Implementing Roles

What access rights are used to create new roles?

• CREATE ROLE – needed to create new roles

• DROP ROLE – needed to drop roles

Who is allowed to create and modify roles?

• Initially, only DBC has the CREATE ROLE and DROP ROLE access rights.

• As DBC, give the “role” access rights to the database administrators (e.g., Sysdba).

GRANT CREATE ROLE, DROP ROLE TO Sysdba WITH GRANT OPTION;

How are access rights associated with a role?

• First, create a role.

CREATE ROLE HR_Role;

A newly created role does not have any associated rights until grants are made to it.

• Use the GRANT (or REVOKE) command to assign (or take away) access rights to (or
from) the role.

GRANT SELECT, EXECUTE ON HR_VM TO HR_Role;

ds186034
Sticky Note
this will add rows to access rights table

 Roles and Profiles Page 47-12

Current or Active Roles
With Teradata V2R5.0, at any time, only one role may be the session’s current role.
Enabled roles are the session’s current role plus any nested roles. At logon time, the current
role will be the user’s default role.

Starting with Teradata V2R5.1, the SET ROLE ALL option is available and this allows a
user to have all valid roles (for that user) to be active or available.

Create User or Modify User
The user executing the CREATE USER command with the DEFAULT ROLE option must
have ADMIN privileges on a specified role. The default role is automatically granted to the
newly created user.

The user executing the MODIFY USER command with the DEFAULT ROLE option must
also have ADMIN privileges on a specified role. The new default role must have first been
directly granted to the user before modifying the DEFAULT ROLE with the MODIFY
USER command.

Roles and Profiles Page 47-13

Current or Active Roles

How are users associated with a role?

• The role needs to be granted to the user.

GRANT HR_Role TO user1;

The current or active role can be set to a specific role or to the key word ALL.

• A specific role can established as the current role.

– A user has the access rights of the current role plus any nested roles.

• SET ROLE ALL allows a user to have all valid roles (for that user) to be active.

• At logon, the current role is determined by the DEFAULT ROLE value for the user.

CREATE/MODIFY USER user1 AS … , DEFAULT ROLE = HR_Role;

or CREATE/MODIFY USER user1 AS … , DEFAULT ROLE = ALL;

• A user may change roles by executing the following command within their session.

SET ROLE role_name;

or SET ROLE ALL;

• ANSI Note: A session that has only one current role complies with the ANSI standard.

ds186034
Sticky Note
this will add rows to the Roles table

 Roles and Profiles Page 47-14

Nesting of Roles
Roles define access privileges on database objects. When you assign a default role to a user,
you give the user access to all the objects that the role has been granted privileges to. It is
possible to grant a role to another role. This is referred to as “nesting”. Teradata supports
one level of nesting.

If a role has another role as a member (a role has been granted to a role) and the role is the
active role for a user, then a user gets additional access to all the objects that the nested role
has privileges to.

For example:

 Assume Role_A and Role_B is granted to Role_AB and assume that Role_AB is
the current role of a user. The user then has the following access rights:

– Access rights directly assigned to the user
– Access rights assigned to Role_A
– Access rights assigned to Role_B
– Access rights assigned to Role_AB

Roles and Profiles Page 47-15

Nesting of Roles

You can GRANT a role to another role – referred to as “nesting of roles”.

Allowed: 1 level of nesting

Role_A

Role_AB

Role_AC

Not Allowed: 2nd level of nesting

GRANT Role_A TO Role_AB;
GRANT Role_B TO Role_AB;
GRANT Role_A TO Role_AC;
GRANT Role_C TO Role_AC;
GRANT Role_B TO Role_BCD;
GRANT Role_C TO Role_BCD;
GRANT Role_D TO Role_BCD;

A user that is granted access to Role_AB
also has all of the access rights associated
with Role_A, Role_B, and Role_AB.

Role_AB

Role_B

Role_AC

Role_DRole_A Role_C

Role_BCD

GRANT Role_A TO Role_AB; /*accepted*/
GRANT Role_AB TO Role_AC; /*fails*/

 Roles and Profiles Page 47-16

Example of Using “Nested Roles”
The facing page contains an example of using nested roles.

Roles and Profiles Page 47-17

Example of Using "Nested Roles"

Characteristics include:

• Users are only assigned to one "role" – ANSI standard.

• Provides a logical separation between application access rights and user access
rights.

– Access rights for an application are only assigned to a single "application" role.

– For example, if a user needs to use Applications A, B, and C, then the user is
granted access to Role_ABC.

Role_A

Application A Application B Application C

Access rights required by an Application are assigned to "application" roles.

User Roles

Application
Roles

Role_B Role_C
Role_AB Role_BC

Users are assigned to a role at this level based on job requirements.

Role_ABC

 Roles and Profiles Page 47-18

Access Rights Validation and Roles
The validation of access rights for accessing a given database object is carried out in one or
more steps. The first step verifies if a right has been granted on an individual level. If no
such right exists and there is a current role for the session, then the second and third steps
verify if a right has been granted to a role. The actual search goes like this:

1) Search the AccessRights table for a UserId-ObjectId pair entry for the required

right. In this step, the system will check for rights at the database/user level and at
the object (e.g., table, view) level.

2) If the access right is not yet found and the user has a current role, search the

AccessRights table for RoleId-ObjectId pair entry for the required right.

3) If not yet found, retrieve all roles nested within the current role from the

RoleGrants table. For each nested role, search the AccessRights table for RoleId-
ObjectId pair entry for the required right.

4) If not yet found, check if the right is a Public right.

Performance note: If numerous roles are nested within the current role, there may have
noticeable performance impact on “short requests”. A few more access right checks won't
be noticed on a 1-hour query.

Notes: The following indexes are placed on the DBC.AccessRights, DBC.RoleGrants, and
DBC.Roles tables and are used by Teradata software.

 DBC.AccessRights
 PI – (NUPI) – (UserId, DatabaseId)
 SI – (NUSI) – (TVMId)

 DBC.RoleGrants
 PI – (NUPI) – (GranteeId)
 SI – (USI) – (GranteeId, RoleId)
 SI – (NUSI) – (RoleId)

 DBC.Roles
 PI – (UPI) – (RoleNameI)
 SI – (USI) – (RoleId)

Roles and Profiles Page 47-19

Access Rights Validation and Roles

Validation of access rights for accessing a given database object will be carried
out in the following steps.

Order of access right validation is:

1) Check the DBC.AccessRights table for the required right at the individual level.

2) If the user has a current role, check the DBC.AccessRights table for the required right
at the role level.

3) Retrieve all roles nested within the current role from the DBC.RoleGrants table. For
each nested role, check the DBC.AccessRights table for the required right.

4) Check if required right is a PUBLIC right.

 Roles and Profiles Page 47-20

SQL Statements to Support Roles
Some miscellaneous rules concerning roles include:

 Roles may only be granted to users and other roles.

 There is no limit on the number of roles that can be granted to a grantee.

 The default role for a user will automatically be made the current role for the

session when he first logs on. The default role can be established with the
CREATE USER or MODIFY USER commands.

 A role grantor can only be a user, but a role grantee can be a user or another role.

A role may share the same name as a profile, table, column, view, macro, trigger,
or stored procedure. However, a role name must be unique amongst users,
databases and roles.

 The role creator is automatically granted membership to the newly created role

WITH ADMIN OPTION, which makes the role creator a member of the role who
can grant membership to the role to other users and roles.

Dropping a Role
The following users can drop a role:

1. DBC
2. Any user given the system right DROP ROLE
3. Any user granted the role WITH ADMIN OPTION
4. A user whose current role has the specified role as a nested role, and the nested role

was granted to the current role WITH ADMIN OPTION

The creator does not have the implicit right to drop a role. If WITH ADMIN OPTION and
DROP ROLE rights are revoked from him/her, he/she will not be able to drop the role.

Default role settings for all users with the dropped role as their default role do not reset to
NULL. Affected users receive no warnings or errors the next time they log on. The system
does not use the obsolete default role for privileges validation.

If a dropped default role is subsequently recreated, it reassumes its status as the default role,
but it has a different role ID number than it had before being dropped.

Roles and Profiles Page 47-21

SQL Statements to Support Roles

Command Syntax:

CREATE ROLE role_name;

GRANT access_rights TO role_name;

GRANT role_name TO user_name [WITH ADMIN OPTION];

– ADMIN OPTION allows grantee the right to grant or drop the role.

SET ROLE role_name / NONE / NULL / ALL;

– Assigns/changes current role for session.

– Role must be granted to user before statement is valid.

– SET ROLE ALL; All valid roles for user are available to user.

CREATE/MODIFY USER user1 AS …, DEFAULT ROLE = role_name;

– When the user logs on, the default role will become the session’s
initial current role.

Other commands:

REVOKE ... role_name … ;

DROP ROLE role_name ;

SELECT ROLE ;

ds186034
Sticky Note
1 DBC.roles2 DBC.access rights3 DBC.rolegrants4 5 DBC.dbase (where we keep track of users)

 Roles and Profiles Page 47-22

GRANT Command (SQL Form)
Once a new role is created, access rights can be added to or withdrawn from the role with
GRANT/REVOKE statements.

Roles may be granted privileges on the following database objects.

 Database
 Table
 View
 Macro
 Column
 Triggers
 Stored procedures
 Join and Hash indexes

Roles may not be granted on the following access rights (or functions).

 CREATE ROLE and DROP ROLE
 CREATE PROFILE and DROP PROFILE
 CREATE USER and DROP USER
 CREATE DATABASE and DROP DATABASE

 CTCONTROL – Grants the privilege to connect as a proxy permanent or proxy

application user through the specified trusted user, storing the information in
DBC.ConnectRulesTbl. Authorizes a user to grant or revoke the CONNECT
THROUGH privilege using the GRANT CONNECT or REVOKE CONNECT
statements. You can only grant CTCONTROL to specific users

.
 REPLCONTROL (controls two separate functions

– The privilege to define and manage replication groups.
– The ability to run SQL statements that change columnar data values for a table

when that table is in a state that would not otherwise allow changes to be
made.

Exceptions
A role cannot have descendants, i.e., the ALL option of a GRANT/REVOKE statement
cannot be applied to a role. The following statement is not allowed.

 GRANT <right> ON <database object> TO ALL <role name>;

ANSI also disallows a right to be granted to a role with the GRANT option. The following
statement is also illegal.

 GRANT <right> ON <db object> TO <role name> WITH GRANT OPTION;

Roles and Profiles Page 47-23

GRANT Command
(SQL Form)

The GRANT command may be used to grant access rights to roles.

TO

ALL

username

PUBLIC

A

,

WITH GRANT OPTION ;

25

role_name

,

GRANT ALL

privilege
,

ALL BUT

PRIVILEGES
dbname

dbname.object_name

object_name

AON

,

privilege

PROCEDURE procedure_name

SPECIFIC FUNCTION specific_function_name

FUNCTION function_name ()

,

| par_dt |

par_nm

role_privilege

,

profile_privilege

,

TYPE UDT_name

 Roles and Profiles Page 47-24

REVOKE Command (SQL Form)
The facing page shows the syntax for the REVOKE Command.

Roles and Profiles Page 47-25

REVOKE Command
(SQL Form)

The REVOKE command may be used to revoke access rights from roles.

REVOKE ALL

,
PRIVILEGES

A

privilege

GRANT OPTION FOR

ALL BUT privilege

,

role_privilege

,

profile_privilege

,

B

ON

A TO

ALL

username

PUBLIC

,

;

role_name

,

FROM

dbname

dbname.object_name

object_name

PROCEDURE procedure_name

SPECIFIC FUNCTION specific_function_name

FUNCTION function_name ()

,

| par_dt |

par_nm

B
25

TYPE UDT_name

 Roles and Profiles Page 47-26

GRANT and REVOKE Commands (Role Form)
GRANT (Role Format) is used to grant role membership to users or other roles.

role_name

 This is a list of one or more comma-separated names of roles to which membership

or administrative ability is being granted

TO user_name or role_name

 This is a list of names of role grantees. Grantees can be users or roles; however, a

role cannot be granted membership to itself.

WITH ADMIN OPTION

 The role grantees have the right to use DROP ROLE, GRANT, and REVOKE

statements to administer the roles to which they are becoming members.

 A GRANT statement that does not include WITH ADMIN OPTION does not

revoke a previously granted WITH ADMIN OPTION privilege from grantee.

REVOKE (Role Format) is used to revoke role membership to users or other roles.

ADMIN OPTION FOR

 The role members maintain membership status, but lose the right to use GRANT,

REVOKE, and DROP ROLE statements to administer the roles to which they are
members.

 If ADMIN OPTION FOR does not appear in the REVOKE statement, the system

removes the specified roles or users as role members.

role_name

 This is a list of one or more comma-separated names of roles from which

membership or administrative ability is being revoked. The system ignores
duplicate role names.

TO/FROM user_name or role_name

 This identifies the names of role members that are losing membership or

administrative ability. Members can be users or roles.

Roles and Profiles Page 47-27

GRANT and REVOKE Commands
(Role Form)

The syntax to grant a role to a user (or role) is:

GRANT

WITH ADMIN OPTION ;

,

role_name TO user_name

,

role_name

REVOKE

;

,

role_name

ADMIN OPTION FOR

TO

FROM

user_name

role_name

,

The syntax to revoke a role from a user (or role) is:

WITH ADMIN OPTION

Gives the role grantee(s) the right to use DROP ROLE, GRANT, and REVOKE
statements to administer the roles to which they are becoming members.

ADMIN OPTION FOR

The role members maintain membership status, but lose the right to administer
the roles to which they are members.

If this option is not used, the system removes the specified roles or users as
role members.

ds186034
Sticky Note
DBC.rolegrantsall on dis page

 Roles and Profiles Page 47-28

System Hierarchy (used in following examples)
A system structure for the Teradata database is shown on the facing page and this hierarchy
will be used in numerous examples.

Keys to the hierarchy on the facing page are:

 Roles will have a _R at the end of the role_name. For example, HR_R represents
the Human Resources Role.

 Inquiry Users – users that require SELECT and EXECUTE access rights on the

views and macros in the VM databases. These users will be assigned either to the
HR_R, Pay_R, or the HR_PAY_R.

 Update Users – users that require SELECT, EXECUTE, INSERT, UPDATE, and

DELETE access rights on the views and macros in the VM databases. These users
will be assigned either to the HR_Upd_R, Pay_Upd_R, or the HR_PAY_Upd_R.

The database HR_VM will have SELECT, EXECUTE, INSERT, UPDATE, and DELETE
privileges WITH GRANT OPTION on the database named HR_Tab. Likewise for
Payroll_VM and Payroll_Tab.

Dropping a User
When a DROP USER command is issued, both individual rights and role rights granted to
the user being dropped will be deleted from the DBC.AccessRights and the
DBC.RoleGrants tables. Deletions of database objects within the user space prior to the
DROP USER command will cause corresponding deletions of DBC.AccessRights rows for
rights granted on these objects to roles and other users/databases.

However, rights granted by the dropped user that are not on objects within its space will
remain in the system. This would include role rights. Roles and profiles created by the
dropped user will remain in the system.

Roles and Profiles Page 47-29

System Hierarchy
(used in following examples)

SYSDBACrashDumps SystemFE

Employees

DBC

SysAdmin

HR_VM

View_1
View_2

Macro_1
Macro_2

Sys_CalendarQCD Spool_Reserve

Human_Resources

HR_Tab

Table_1
Table_2
Table_3
Table_4

Payroll_VM

View_5
View_6

Macro_5
Macro_6

Payroll

Payroll_Tab

Table_5
Table_6
Table_7
Table_8

Emp02

Emp04

Emp01

Emp03

HR_R

Pay_R

HR_Pay_R

Access rights are
assigned to these roles
in this example.

Sup06 HR_Pay_Upd_R

HR_R

HR_Pay_R

HR_Upd_R Pay_R Pay_Upd_R

HR_Pay_Upd_RRoles

Emp05

ds186034
Sticky Note
all emp in a grp instead of a sep set

ds186034
Sticky Note
role = HR_R

 Roles and Profiles Page 47-30

Example of Using Roles
The facing page contains a simple example of creating a role, assigning access rights to it,
and granting the role to users.

The default role for a user will automatically be made the current role for the session when
the user first logs on. The role must be currently granted to the user (otherwise, it is
ignored).

Only a partial listing of the access rights that would be assigned to roles is shown on the
facing page. Additionally, these commands would also be executed to complete the
example.

 GRANT SELECT, EXECUTE ON Payroll_VM TO Pay_R;

 GRANT SELECT, EXECUTE, INSERT, UPDATE, DELETE ON Payroll_VM TO

Pay_Upd_R;

 GRANT HR_Upd_R TO HR_Pay_Upd_R; /* nested role */

 GRANT Pay_Upd_R TO HR_Pay_Upd_R; /* nested role */

Roles and Profiles Page 47-31

Example of Using Roles

Create roles.

CREATE ROLE HR_R; CREATE ROLE HR_Upd_R;
CREATE ROLE Pay_R; CREATE ROLE Pay_Upd_R;
CREATE ROLE HR_Pay_R; CREATE ROLE HR_Pay_Upd_R;

Assign access rights to the roles (partial listing).
GRANT SELECT, EXECUTE ON HR_VM TO HR_R;
GRANT SELECT, EXECUTE, INSERT, UPDATE, DELETE ON HR_VM TO HR_Upd_R;

Grant users permission to use the roles (partial listing).
GRANT HR_R TO Emp01, Emp02;
GRANT Pay_R TO Emp03, Emp04;

GRANT HR_R TO HR_Pay_R; /*nested role*/
GRANT Pay_R TO HR_Pay_R; /*nested role*/

GRANT HR_Pay_R TO Emp05;
GRANT HR_Pay_Upd_R TO Sup06 WITH ADMIN OPTION;

Modify the user to set the default role.
MODIFY USER Emp01 AS DEFAULT ROLE = HR_R;
MODIFY USER Emp02 AS DEFAULT ROLE = HR_R;
MODIFY USER Emp03 AS DEFAULT ROLE = Pay_R;
MODIFY USER Emp04 AS DEFAULT ROLE = Pay_R;
MODIFY USER Emp05 AS DEFAULT ROLE = HR_Pay_R;
MODIFY USER Sup06 AS DEFAULT ROLE = HR_Pay_Upd_R;

ds186034
Sticky Note
four sep steps!

ds186034
Sticky Note
some cust just puts allwhich works fine as well

 Roles and Profiles Page 47-32

Example of Using Roles (cont.)
The facing page continues the example.

Answer to first question on facing page:

Emp01 does not have UPDATE permission to update the Employee table via the
Employee_v view. The error returned is:

 5315: The user does not have UPDATE access to HR_VM.Employee_v.Dept_Number.

Answer to second question on facing page:

Both SQL statements work for Emp05 because the access rights for HR_R and Pay_R are
nested within HR_Pay_R.

Roles and Profiles Page 47-33

Example of Using Roles (cont.)

Emp01 – is granted to HR_R role and this is the current role.

SELECT *
FROM HR_VM.Employee_v
WHERE Employee_Number = 100001; (success)

UPDATE HR_VM.Employee_v
SET Dept_Number=1001
WHERE Employee_Number=100001; (success or fail?)

Does this statement succeed or fail for Emp01?

Emp05 – is granted to HR_Pay_R role and this is the current role.

SELECT *
FROM HR_VM.Employee_v
ORDER BY 1; (success or fail)

SELECT *
FROM Payroll_VM.Salary_v
ORDER BY 1; (success or fail)

Do both of these statements succeed for Emp05?

ds186034
Sticky Note
failswhy?1 - they are not granted to update role2 - or the role that they are granted to does not have the update privilege

ds186034
Sticky Note
both succeedcauseHR and pyaroll are both nested within this

 Roles and Profiles Page 47-34

Example of Using Roles (cont.)
The facing page continues the example.

If a user tries to use the SET ROLE command to specify a role they have not been granted
access, the user will get the following error:

 5621: User has not been granted a specified role.

Answer to first question: The statement fails because Emp05’s current role is only provides
Select access and this role does not have update permission on Employee_v.

Answer to second question: The statement succeeds because Emp05’s current role is now
HR_Pay_Upd_R and this role does have update permission on Employee_v.

Answer to third question: Assuming that the default role for Emp05 is HR_Pay_R, the
statement will fail until Emp05 uses the SET ROLE command or uses a MODIFY USER
command to change the DEFAULT ROLE.

For example:

 MODIFY USER Emp05 as DEFAULT ROLE = HR_Pay_Upd_R;

Roles and Profiles Page 47-35

Example of Using Roles (cont.)

Sup06 – is granted to HR_Pay_Upd_R role WITH ADMIN OPTION.

GRANT HR_Pay_Upd_R TO Emp05; (success)

Emp05 – HR_Pay_R is current role.
SELECT *
FROM HR_VM.Employee_v
WHERE Employee_Number=100001; (success)

UPDATE HR_VM.Employee_v
SET Dept_Number=1001
WHERE Employee_Number=100001; (success or fail?)

Does this statement fail for Emp05?

Emp05 – executes the following SET ROLE command

SET ROLE HR_Pay_Upd_R;

UPDATE HR_VM.Employee_v
SET Dept_Number=1001
WHERE Employee_Number=100001;

Will this UPDATE statement succeed this time?

Will this UPDATE statement succeed the next time Emp05 logs on?

ds186034
Sticky Note
we granted this to 55 logs inthey did grant but they did not change the userupdate failscause HR_PAY_Ris stil the current role

ds186034
Sticky Note
another set role commandif not then next time they login it will not workit will succeed this time

 Roles and Profiles Page 47-36

Roles for Directory-Based Users
There are a couple of options in providing access rights to directory-based users.

 Map each directory user to one or more database users that already have database
privileges.

 You can optionally create external roles and grant privileges to them. Then map

each directory user to one or more of the external roles.

The use of roles by directory users depends on the setting of the AuthorizationSupported
property:

 When the AuthorizationSupported property is set to no, directory users can log on
using a username that matches a database username. They have access to roles in
which the matching database username is a member.

 When the AuthorizationSupported property is set to yes, directory users are authorized

privileges according to the roles (and users) they are mapped to in the directory.

Implementing Roles for Directory Authorization of Database
Privileges

1. Create external roles.

2. Review directory user management options and select a user provisioning strategy.

3. Create one or more directory role objects with names that match Teradata Database

external roles and map the roles to directory group objects.

 Since roles are assigned by mapping instead of role grants, assignments cannot include

WITH ADMIN OPTION.

The system records external roles in the data dictionary, along with database roles, but when
you map an external role to a directory user, the system does not insert a row in the
DBC.RoleGrants table.

Roles and Profiles Page 47-37

Roles for Directory-Based Users

What is the difference between an internal role and an external role?

• External roles are mapped to users on the directory server (e.g., LDAP).

• Internal roles are granted to users with the GRANT command.

How do roles work for directory users?

• An assigned external role overrides the default role of the permanent user on
Teradata.

• To associate rights with an external role, first create the role.

CREATE EXTERNAL ROLE HR_Ext_Role;

• Use the GRANT (or REVOKE) command to assign (or take away) access rights to (or
from) the role, as with internal roles.

GRANT SELECT, EXECUTE ON HR_VM TO HR_Ext_Role;

• A user may change roles to any external or internal role available to them by
executing the SQL command:

SET ROLE role_name;

• External roles are identified in the DBC.Roles table. However, when you map an
external role to a directory user, the system does not insert a row in DBC.RoleGrants.

ds186034
Sticky Note
hr_vm is a db in TD(it has views and macros)

 Roles and Profiles Page 47-38

Roles for Proxy Users
For proxy users that are either permanent database users or users unknown to the database,
you can specify one or more roles in the GRANT CONNECT THROUGH statement that
defines the proxy.

For proxy users that are also permanent database users:

 You can specify WITHOUT ROLE to use the privileges granted to the permanent
user.

 You can assign row level security constraints to the permanent user or the user
profile. Proxy user sessions use the profile constraints, if assigned. If no constraints
are assigned in the profile, the session uses the user constraints. The user can also
use the SET SESSION CONSTRAINT command to access any assigned security
constraints.

The following chart lists characteristics of roles for Proxy Users.

CONNECT
THROUGH
option

SET QUERY_BAND
option

Proxy connection role

With roles PROXYROLE = rolename Rolename, if it has been specified in GRANT
CONNECT

PROXYROLE = ALL All roles in the GRANT privilege

PROXYROLE = NONE or
PROXYROLE = NULL

Not permitted

PROXYROLE is not used All roles in the GRANT privilege

Without
roles

PROXYROLE = rolename Rolename, if it is granted to the permanent user

PROXYROLE = ALL All permanent user’s roles

PROXYROLE = NONE or
PROXYROLE = NULL

NULL

PROXYROLE is not used Permanent user’s default role

Roles and Profiles Page 47-39

Roles for Proxy Users

Proxy users use standard internal roles, if these are specified in the WITH ROLE
clause of the GRANT CONNECT THROUGH statement or associated with the
permanent proxy user.

• A proxy user is an end user that logs on to the database through a trusted user application. The
system identifies and authorizes the user an individual.

• Proxy users can be either permanent database users or other end users unknown to the database.

How are roles associated with a proxy user?

• Use the GRANT CONNECT THROUGH statement to grant the application the privilege
to connect as the application users:

GRANT CONNECT THROUGH Application1_User TO App_End_User1 [WITH ROLE HR_Role];

• Each time the application performs a request for an application user, it must issue the
SET QUERY_BAND statement before its SQL queries:

SET QUERY_BAND = 'PROXYUSER=App_End_User1;[PROXYROLE=HR_Role;]' FOR SESSION;

SELECT FirstName, LastName FROM HR_VM.Employee;
…

SET QUERY_BAND = NONE FOR SESSION;

ds186034
Sticky Note

 Roles and Profiles Page 47-40

RoleInfo View
The DBC.RoleInfo (or DBC.RoleInfoV) views list all of roles, their creators, and the
creation timestamp in the system. This information is taken from the DBC.Roles and the
DBC.Dbase tables.

The DBC.RoleInfoX (or DBC.RoleInfoVX) views only return roles that a user has created.
Users that can create roles need the system access right – CREATE ROLE.

Extension to COMMENT command:

 COMMENT [ON] ROLE <role_name> [[AS] <comment string>]

– Inserts or retrieves comments in CommentString column of the DBC.Roles
table for the named role.

Example:

 COMMENT ON ROLE HR_R AS 'SEL and EXE rights for HR_VM';

Roles and Profiles Page 47-41

RoleInfo View

Example: List role names that exist in the system.

SELECT RoleName, CreatorName, CreateTimeStamp
FROM DBC.RoleInfoV
ORDER BY 1;

Provides information about roles.

DBC.RoleInfo[V][X]

RoleName CommentString CreatorName
CreateTimeStamp ExtRole

RoleName CreatorName CreateTimeStamp

HR_Pay_R Sysdba 2011-01-24 17:25:41
HR_Pay_Upd_R Sysdba 2011-01-24 17:25:44
HR_R Sysdba 2011-01-24 17:25:02
HR_Upd_R Sysdba 2011-01-24 17:25:19
Pay_R Sysdba 2011-01-24 17:25:34
Pay_Upd_R Sysdba 2011-01-24 17:25:37

Results:

ds186034
Sticky Note
just the roles we creatednot all!

 Roles and Profiles Page 47-42

RoleMembers View
The DBC.RoleMembers (or DBC.RoleMembersV) views list each role and all of its
members.

The DBC.RoleMembersX (or DBC.ROleMemebersVX) views list all roles, if any, directly
granted to the user.

For example, Emp05 executes the following statement:

 SELECT RoleName, Grantor, WhenGranted, DefaultRole, WithAdmin
 FROM DBC.RoleMembersX
 ORDER BY 1;

The result is:

 RoleName Grantor WhenGranted DefaultRole WithAdmin
 HR_Pay_R Sysdba 2010-01-24 17:32:51 Y N

Roles and Profiles Page 47-43

RoleMembers View

Example: List roles and the members that have access to the HR database.

SELECT RoleName, Grantee, GranteeKind, DefaultRole, WithAdmin
FROM DBC.RoleMembersV
WHERE RoleName IN ('HR_Pay_R', 'HR_Pay_Upd_R', 'HR_R' ,'HR_Upd_R')
ORDER BY 1, 2;

Provides information about roles and its members.

RoleName Grantee GranteeKind DefaultRole WithAdmin

HR_Pay_R DBC User N Y
HR_Pay_R Emp05 User Y N
HR_Pay_R Sysdba User N Y
HR_Pay_Upd_R DBC User N Y
HR_Pay_Upd_R Sup06 User Y Y
HR_Pay_Upd_R Sysdba User N Y
HR_R DBC User N Y
HR_R Emp01 User Y N
HR_R Emp02 User Y N
HR_R HR_Pay_R Role N N
HR_R Sysdba User N Y
HR_Upd_R DBC User N Y
HR_Upd_R HR_Pay_Upd_R Role N N
HR_Upd_R Sysdba User N Y

Results:

DBC.RoleMembers[V][X] RoleName Grantee GranteeKind Grantor
WhenGranted DefaultRole WithAdmin

 Roles and Profiles Page 47-44

DBC.AccessRights and “Rights” Views
The facing page illustrates the difference between the various “Rights” views of the
DBC.AccessRights table.

Roles and Profiles Page 47-45

DBC.AccessRights and “Rights” Views

AllRights[V][X] – lists all rights granted to users in the system.

UserRights[V] – lists all rights granted to the current user.

AllRoleRights[V] – lists all rights granted to roles in the system.

UserRoleRights[V] – lists all rights granted to the enabled roles of the user.

DBC.AccessRights
(Table)

User Access Rights

Role Access Rights

DBC.AllRightsV and DBC.UserRightsV
(only select user access rights)

DBC.AllRoleRightsV and DBC.UserRoleRightsV
(only select role access rights)

Views

Views

ds186034
Sticky Note
two views together for all

 Roles and Profiles Page 47-46

AllRoleRights and UserRoleRights Views
The DBC.AllRoleRights[V] and DBC.UserRoleRights[V] views provide information about
role and access rights granted to roles in the system.

DBC.UserRoleRights[V] view lists all rights granted to the current role of the user and its
nested roles.

Roles and Profiles Page 47-47

AllRoleRights and UserRoleRights Views

Example: List current role rights.

SELECT RoleName, DatabaseName, TableName, ColumnName, AccessRight
FROM DBC.UserRoleRightsV
ORDER BY 1;

AllRoleRights[V] – lists all rights granted to roles in the system.
UserRoleRights[V] – lists all rights granted to the enabled roles of the user.

RoleName DatabaseName TableName ColumnName AccessRight

HR_R HR_VM All All R
HR_R HR_VM All All E

Example Results for Emp01:

DBC.AllRoleRights and DBC.UserRoleRights

RoleName DatabaseName TableName ColumnName
AccessRight GrantorName CreateTimeStamp

RoleName DatabaseName TableName ColumnName AccessRight

HR_R HR_VM All All R
HR_R HR_VM All All E
Pay_R Payroll_VM All All R
Pay_R Payroll_VM All All E

Example Results for Emp05:

The default role of Emp05 is
HR_Pay_R which has 2
nested roles.

HR_R and Pay_R

ds186034
Sticky Note
both roles nested withinwat we are seeing access rightsusing roles

 Roles and Profiles Page 47-48

Steps to Implementing Roles
The facing page identifies a sequence of steps to consider when implementing roles. A
sample query and results are also provided.

Roles and Profiles Page 47-49

Steps to Implementing Roles

Sample query to identify individual rights that may be good candidates for conversion to
roles.

1. Identify individual rights to be converted into role rights.

2. Create roles and grant appropriate rights to each role.

3. Grant roles to users and assign users their default roles.

4. Revoke from users individual rights that have been replaced by role rights.

SELECT DatabaseName,
TVMName,
COUNT(*) AS RightsCount

FROM DBC.AccessRights AR,
DBC.TVM TVM,
DBC.DBase DBASE

WHERE AR.tvmid = TVM.tvmid
AND AR.databaseid = DBASE.databaseid
AND AR.fieldid = 0
GROUP BY DatabaseName, TVMName
ORDER BY 3 DESC;

DatabaseName TVMName RightsCount

DS All 110
QCD All 86
HR_Tab All 72
HR_VM All 68
Payroll_VM All 67
Payroll_Tab All 67

Results:

ds186034
Sticky Note
looking for candidateswith a lotta specific rights

 Roles and Profiles Page 47-50

Summary
The facing page summarizes some important concepts regarding this module.

A summary of the rules for using roles are as follows:

 You can grant one or more roles to one or more users and/or roles; thus:

– A role can have many members
– A user or role can be a member of more than one role

 Only single-level nesting is allowed; that is, a role that has a member role cannot

also be a member of another role.

 An access privilege granted to an existing role immediately affects any user and/or

role that is specified as a recipient in the GRANT statement and currently active
within a session.

 The privileges of a role granted to another role are inherited by every user member

of the grantee role.

 When a user logs on, the assigned default role is the initial current role for the

session and is used to authorize access after all checks against individually granted
rights have failed.

 Once the session is active, the user can submit a SET ROLE statement to change or

nullify the current role.

Roles and Profiles Page 47-51

Summary

• A role is simply a collection of access rights.

• Rights are first granted to a role and the role is then granted to users.

– CREATE ROLE role_name;

– GRANT access_right ON object TO role_name;

– GRANT role_name TO user_name;

ds186034
Sticky Note
roles are assigned to usersand users get those rights

 Roles and Profiles Page 47-52

Module 47: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Roles and Profiles Page 47-53

Module 47: Review Questions

Answer the following questions:

1. List 3 advantages of utilizing roles and profiles.

2. How many levels of role nesting are currently allowed? ____

3. True or False. A user can use the SET ROLE command to set their current role to any defined
role in the system.

4. True or False. Roles may only be granted to users and other roles.

Match each term to the definition.

___ 1. WITH ADMIN OPTION a. Established by the SET ROLE command

___ 2. CREATE ROLE b. Lists the roles currently in the system

___ 3. DBC.RoleInfo c. System access right needed to create a role

___ 4. DBC.UserRoleRights d. Lists all of a user’s role rights – including nested roles

___ 5. DEFAULT ROLE e. Allows the user to assign other users to the role

___ 6. Current role f. Option with the MODIFY USER statement

ds186034
Sticky Note
lesser entries in access rights tablei can simplify access right management - more manageableget some performance gain - reduces DD contention

ds186034
Sticky Note
not any

 Roles and Profiles Page 47-54

Lab Exercise 47-1
The following page continues this lab exercise.

Roles and Profiles Page 47-55

Lab Exercise 47-1

Lab Exercise 47-1

Purpose
In this lab, you will use Teradata SQL Assistant or Teradata Administrator to work with access rights.
This lab will also provide an opportunity to use some system views.

Tasks

1. Using the DBC.AllRightsV view, find the total number of rows in the DBC.AccessRights table
assigned to users.

Total number of user rights (AllRightsV) ____________

Using the DBC.AllRoleRightsV view, find the total number of rows in the DBC.AccessRights table
assigned to roles.

Total number of role rights (AllRoleRightsV) ____________

2. Using the DBC.UserRightsV view, how many access rights do you currently have?

Total number of your user rights (UserRightsV) ____________

How do you think most of these access rights were granted? ________________________________

Execute the following SQL command and then recheck the number of Access Rights you have.

CREATE TABLE Emp_Phone2 AS PD.Emp_Phone WITH NO DATA;

What is the total number of your user rights? ____________

How many new access rights were created? ____________

 Roles and Profiles Page 47-56

Lab Exercise 47-1 (cont.)
The following page continues this lab exercise.

Roles and Profiles Page 47-57

Lab Exercise 47-1 (cont.)

3. For your Emp_Phone2 table, use the GRANT command to give the SELECT access right to the
database AP.

Use the GRANT command to give the SELECT WITH GRANT access right to the database PD.

Check the total number of user rights returned _________

Did this count change? _________

If not, why not? ______________________________________

Use the DBC.UserGrantedRightsV view to show any user rights that you may have explicitly granted.

How many rows are returned with this view? ____

 Roles and Profiles Page 47-58

Lab Exercise 47-2
Check your understanding of the concepts discussed in this module by completing the lab
exercises as directed by your instructor.

 DBC.RoleInfo[V][X]

RoleName CommentString CreatorName
CreateTimeStamp ExtRole

Roles and Profiles Page 47-59

Lab Exercise 47-2

Lab Exercise 47-2

Purpose
In this lab, you will use Teradata SQL Assistant or Teradata Administrator to use roles. This lab will
also provide an opportunity to use the RoleInfoV, RoleMembersV, and UserRoleRightsV views.

What you need
Tables from PPI exercise and a user account with system role and profile privileges.

Tasks
1. Three roles are available for your use. The role names have your user name incorporated into them.

Your role names will be unique in the system. For example, if your user name is "student102", then
your role names are:

Role1_102 Role1_xxx (note - this role may be referred to as "Role1" throughout this lab).
Role2_102 Role2_xxx
Role3_102 Role3_xxx

Using the DBC.RoleInfoV view, what is the total number of roles defined in the system? ______

Using the DBC.RoleInfoVX view, what is the number of roles that you have created? ______

Using the DBC.RoleMembersVXview, what is your (studentxxx) default role? ____________

Using the DBC.RoleMembersVXview, which roles do you have the "With Admin" option?

_______________ _______________ _______________

 Roles and Profiles Page 47-60

Lab Exercise 47-2 (cont.)
Check your understanding of the concepts discussed in this module by completing the lab
exercises as directed by your instructor.

DBC.ProfileInfo[V][X]

ProfileName DefaultAccount DefaultDB
SpoolSpace TempSpace ExpirePassword
PasswordMinChar PasswordMaxChar PasswordDigits
PasswordSpecChar PasswordRestrictWords MaxLogonAttempts
LockedUserExpire PasswordReuse CommentString
CreatorName CreateTimeStamp LastAlterName
LastAlterTimeStamp

Roles and Profiles Page 47-61

Lab Exercise 47-2 (cont.)

2. Grant the following access rights to the specified roles as follows:

Access Rights Tables Role Name
SELECT Orders, Orders_2012 Role1_xxx
SELECT Orders_PPI Role2_xxx
INSERT, UPDATE, DELETE Orders_PPI Role3_xxx

3. Grant these roles as following:

Grant Role1_xxx to studentxxx_A;
Grant Role2_xxx to studentxxx_B;
Grant Role2_xxx to Role3_xxx;
Grant Role3_xxx to studentxxx_B;

4. Modify your two users to set their default role as follows:

User name: studentxxx_A (where xxx is your student number)
Default Role: Role1_xxx

User name: studentxxx_B (where xxx is your student number)
Default Role: Role2_xxx

 Roles and Profiles Page 47-62

Lab Exercise 47-2 (cont.)
Check your understanding of the concepts discussed in this module by completing the lab
exercises as directed by your instructor.

 DBC.ProfileInfo[V][X]

ProfileName DefaultAccount DefaultDB
SpoolSpace TempSpace ExpirePassword
PasswordMinChar PasswordMaxChar PasswordDigits
PasswordSpecChar PasswordRestrictWords MaxLogonAttempts
LockedUserExpire PasswordReuse CommentString
CreatorName CreateTimeStamp LastAlterName
LastAlterTimeStamp

Roles and Profiles Page 47-63

Lab Exercise 47-2 (cont.)

5. Logon as "studentxxx_A" and execute the following SQL statements and indicate if SELECT is
allowed or not.

SELECT COUNT(*) FROM Orders; Permitted or not? _____
SELECT COUNT(*) FROM Orders_PPI; Permitted or not? _____

6. As "studentxxx_A", use the DBC.RoleMembersVX and DBC.UserRoleRightsV views to view role
information about this user.

How many roles are available to studentxxx_A? _____

What is the default role for studentxxx_A? ______________

Does studentxxx_A have the "With Admin" option on any roles? ____

How many user role rights are available to studentxxx_A? _____

OPTIONAL

7. Logon to Teradata as "studentxxx_B".

If prompted, set the password to a new value.

 Roles and Profiles Page 47-64

Lab Exercise 47-2 (cont.)
Check your understanding of the concepts discussed in this module by completing the lab
exercises as directed by your instructor.

DBC.UserRoleRights[V]

RoleName DatabaseName TableName
ColumnName AccessRight GrantorName
CreateTimeStamp

DBC.RoleMembers[V][X]

RoleName Grantee GranteeKind
Grantor WhenGranted DefaultRole
WithAdmin

Roles and Profiles Page 47-65

Lab Exercise 47-2 (cont.)

OPTIONAL

8. As "studentxxx_B", execute the following SQL statements and indicate if SELECT is allowed or not.

SELECT COUNT(*) FROM Orders; Permitted or not? _____
SELECT COUNT(*) FROM Orders_PPI; Permitted or not? _____
DELETE Orders_PPI; Permitted or not? _____

9. As "studentxxx_B", use the DBC.RoleMembersVX and DBC.UserRoleRightsV views to view the
current role of the user, any nested roles, and access rights for the roles.

How many roles are available to studentxxx_B? _____

What is the default role for studentxxx_B? ______________

Does studentxxx_B have the "With Admin" option on any roles? ____

How many user role rights are available to studentxxx_B? _____

10. As "studentxxx_B", use the SET ROLE command to set the current role to "Role3_xxx".

SELECT COUNT(*) FROM Orders; Permitted or not? _____

SELECT COUNT(*) FROM Orders_PPI; Permitted or not? _____

DELETE Orders_PPI; Permitted or not? _____

11. Log off as "studentxxx_A" and "studentxxx_B". Using your initial user logon name, DROP the two
users and the profile you created.

 Roles and Profiles Page 47-66

Notes

System Access Controls Page 48-1

Module 48

Teradata Proprietary and Confidential

System Access Controls

After completing this module, you will be able to:

 Describe where and how to control and log user access to
the Teradata database.

 Use views and macros to limit user access to data.

 Design your system hierarchy structures for better security
and easier maintenance.

 System Access Controls Page 48-2

Notes

System Access Controls Page 48-3

Table of Contents

System Access Control Levels ... 48-4
Teradata Access Control Mechanisms ... 48-6
Teradata Password Encryption ... 48-8
Password Security Features ... 48-10
Teradata Connectivity .. 48-12
Host Logon Processing .. 48-14
Objects used in Host Logon Processing ... 48-16
GRANT/REVOKE LOGON Statements ... 48-18
GRANT/REVOKE LOGON Example .. 48-20
Session Related Views ... 48-22
LogonRules View .. 48-24
LogOnOff View ... 48-26
SessionInfo View ... 48-28
Additional Utilities to View Sessions .. 48-30
Viewpoint – Query Monitor ... 48-32
Teradata Manager Sessions .. 48-34
Remote Console – Viewpoint .. 48-36
Structure the System .. 48-38
A Recommended Access Rights Structure .. 48-40
A Recommended Structure Using Roles.. 48-42
A Recommended System Hierarchy .. 48-44
System Access Controls Summary .. 48-46
Module 48: Review Questions ... 48-48

 System Access Controls Page 48-4

System Access Control Levels
The mission of security administration on a Teradata system is to:

 Prevent unauthorized persons from gaining access to the RDBMS and its resources.
 Permit legitimate users access to only those resources they are authorized to use.

A variety of mechanisms provide security to the data stored on a Teradata system.

Access Control Levels
This lesson introduces a guideline for how to determine user access rights and explains how
Teradata verifies user access rights.

There are three levels of access controls for the Teradata database:

Physical Security Physical security pertains to the actual building or
computer room in which the Teradata system
resides. The system's owner designs and
implements physical security.

Host Logon Processing Host logon processing is the first level of access

control and allows or disallows connection between
the host and database systems. It involves a host ID
and password. This level controls access to the host
system.

Database Logon
Processing

Database logon processing is the second level of
access control and determines access to the
Teradata system. This level employs a username
and password. It controls access to the Teradata
system itself.

Data access structures (views, macros and tables) are discussed later in this module.

System Access Controls Page 48-5

System Access Control Levels

User Privileges

Database Logon Processing

Information (Data Tables)

Host Logon Processing

Physical Security

Data Access Structures

Views Macros Stored
Procedures

ds186034
Sticky Note
typical user community obv will access only thru view macros SPonly archive load utilities and users will have direct access

 System Access Controls Page 48-6

Teradata Access Control Mechanisms
You can control user access by granting access to specific views and macros. Views limit
user access to table columns or rows that may contain sensitive information. Macros limit
the types of actions a user can perform on the columns and rows.

User Privileges
During a session, the Teradata Database system accesses the user's default database to
search for or store the occurrence of an object whose reference in the SQL statement is not
qualified with a database name.

The user can override the default for a particular object by qualifying statement references
with a database name (in the form databasename.objectname).

At any time during the session, the user can override the current default by executing the
SQL DATABASE statement. The system uses the space associated with the specified or
default database as the default until the user executes another DATABASE statement or logs
off.

An arrangement of predefined privileges or access rights control the user’s activities during
a session. Access rights are associated with a user, a database, and an object (table, view, or
macro).

The system verifies a user’s access rights when the user attempts to access or execute a
function that accesses an object. Teradata stores access rights information in the system
table DBC.AccessRights. You can retrieve this information by querying the
DBC.UserRights view.

As the administrator, there are two additional methods you can use to limit user access to
the Teradata Database:

 Create views
 Create macros and/or stored procedures

The facing page shows a diagram of access control mechanisms in Teradata.

System Access Controls Page 48-7

Teradata Access Control Mechanisms

Teradata Logon Processing

DBC.LogonRuleTbl

DBC.Dbase

DBC.SessionTbl DBC.EventLog

Teradata Dynamic Workload Manager
or Viewpoint Workload Designer

DBC.SysSecDefaults
and/or

DBC.Profiles

User/Role
Privileges

DBC.AccessRights
DBC.RoleGrants

DBC.Roles

DBC.AccLogRuleTbl DBC.AccLogTbl

DBC.DBQLRuleTbl DBC.DBQL tables

DBC.TVM
DBC.TVFields
DBC.Indexes

Stored ProceduresViews Macros

Information (Data Tables)

ds186034
Sticky Note
security audit

ds186034
Sticky Note
even more imp security wise!capture queries that are taking longer than say 5 minsto build index choicesworkload management

ds186034
Sticky Note
small tables

ds186034
Sticky Note
large tables

ds186034
Sticky Note
account g table is on each ampacct string is also expanded on DBQL

 System Access Controls Page 48-8

Teradata Password Encryption
You can give access to the Teradata database with the CREATE USER statement, which
identifies a username and, usually, a password value.

Although the username is the basis for identification to the system, it is not usually protected
information. Often the username is openly displayed during interactive logon, on printer
listings, and when session information is queried.

To protect system access, associate a password with the username. Teradata does not
display or print passwords on listings, terminals or PC screens.

Note: Neither you nor other system users should ever write down passwords or share

them among users.

Teradata stores password information in encrypted form in the DBC.Dbase system table.
Information stored in the table includes the date and time a user defined a password, along
with the encrypted password. As the administrator, you may modify passwords temporarily
when the PasswordLastModDate plus a fixed number has been reached. This allows you to
ensure that users change their passwords regularly.

To establish a session on the Teradata system, a user must enter a username at logon. Upon
successful logon, the username is associated with a unique session number until the user
logs off.

To supervise and enforce users’ access rights to stored data, the system associates each
username with a default storage area and an arrangement of access rights.

Displaying Passwords
The PasswordString column from the DBC.Dbase table displays encrypted passwords. The
SQL request on the facing page demonstrates how you can access an encrypted password.
Note that a password cannot be decrypted.

DBC.Users View
The DBC.Dbase table stores the date and time a user defines or modifies a password. The
DBC.Users[V] view displays PasswordLastModDate and PasswordLastModTime. A user
can modify his or her password without additional access privileges.

System Access Controls Page 48-9

Teradata Password Encryption

Encryption AlgorithmDate &TimeDBC.SysSecDefaults

DBC.Profiles

DBC.Dbase

SELECT DatabaseName,
EncryptedPassword

FROM DBC.Dbase
WHERE DatabaseName = 'tfact03' ;

DatabaseName EncryptedPassword

tfact03 -†kTªí�Dzpl‘0]ùs?f¸˜��ô�Ô³pd@%Û

DBC.OldPasswords

CREATE USER tfact03 AS PERM=0, SPOOL=500E6, PASSWORD = secure123 ;

DBC.PasswordRestrictions 12.0*

* Table of words that cannot
appear in a password.

ds186034
Sticky Note
one way encryptionpwd is hidden in the systemusername is open

 System Access Controls Page 48-10

Password Security Features
Teradata password security features allow you to:

 Expire passwords after a specific number of days.
 Define the amount of time to elapse before a password can be reused.
 Control minimum/maximum length of password.
 Disallow digits/special characters in a password.
 Limit the number of erroneous logon attempts before the system locks a user’s

access.
 Automatically unlock users after a specific period of time.

You can enable these features by updating the appropriate row in the DBC.SysSecDefaults
table as shown on the facing page. The DBC.SecurityDefaults[V] view can also be used to
view/update this table. After modifying this table, it is necessary to restart Teradata for the
changes to be in effect.

When you create a new user, you also create a temporary password for the user. When the
user logs on for the first time, he or she is prompted to change the password.

If a user forgets the password, you can assign a new temporary password. [As another
option, you can set user passwords not to expire.]

If you attempt to set the PasswordMinChar attribute equal to 0, Teradata will assume a value
of 1.

Note: If MaxLogonAttempts is set to a value other than zero, and if the time interval for
locking users after erroneous attempts is left at zero, then the user is never locked.

Options that can be placed in the PasswordSpecChar column include:

Option
PasswordSpecChar

N Y A B C D E F G H I J K L M O P R

RULE
Username

Y Y Y Y Y Y Y Y Y N N N N N N N N N

RULE
Upper/
Lower

Y Y Y Y Y Y R R R Y Y Y Y Y Y R R R

RULE
One Alpha

Y Y Y R R R R R R Y Y Y R R R R R R

RULE
Spec Chars

N Y R N Y R N Y R N Y R N Y R N Y R

System Access Controls Page 48-11

Password Security Features

The DBC.SecurityDefaults[V] (view) can be used to view/update DBC.SysSecDefaults table.

To change system-wide password security features:

1. UPDATE this view or table with the desired values
2. Restart Teradata (required)

ExpirePassword Number of days to elapse before the password expires. Zero (0) indicates passwords do not
expire; default is 0.

PasswordMinChar Minimum number of characters in a valid password string; default is 1.

PasswordMaxChar Maximum number of characters in a valid password string; default is 30.

PasswordDigits Indicate if digits are to be allowed in the password (Y, N, or R); default is Y;
(R – one or more digits are required in password).

PasswordSpecChar Indicate if special characters are allowed in the password (Y or N); default is Y;
(Options – A to P, R – options provide for more secure passwords).

PasswordRestrictWords Indicate whether or not a password is subject to the content restrictions (Y or N); default is N.

MaxLogonAttempts Number of erroneous logons allowed before locking user. Zero (0) indicates that user is
never locked; default is 0 - max is 32,767.

LockedUserExpire Number of minutes to elapse before a locked user is unlocked. Zero (0) indicates immediate
unlock; -1 = locked indefinitely; default is 0 - max is 32,767.

PasswordReuse Number of days to elapse before a password can be reused. Zero (0) indicates immediate
reuse; default is 0 - max is 32,767.

ds186034
Sticky Note
its at the system level(ie dis table)changes to this are only affected after TD restart

 System Access Controls Page 48-12

Teradata Connectivity
Teradata utilities and software programs support Teradata database access in both
mainframe and LAN environments. Utilities and programs run under the client's operating
system and provide the functionality for a user to access the database system.

When a system is configured, host numbers are assigned to different channel and LAN
connections. It is possible to enable/disable user access from specific host numbers.

Channel Environment
The Teradata Channel Interface is an architecture that enables communication between a
mainframe client and a Teradata server using a channel with either an ESCON or FICON
channel interface.

With Teradata servers, the nodes use I/O adapters such as the PXSA4 (PCI-X Bus ESCON
Adapter) to connect to an ESCON channel or the PCI-X FICON Adapter (PXFA) to connect
to a FICON channel. TDP software executes on the mainframe and communicates with the
PE software executing within Teradata.

LAN Environment and Teradata Gateway Software
In a local area network (LAN) environment, each workstation on the network will have the
utilities and programs needed to access the Teradata database. A network interface card
connects workstations directly to the LAN. An Ethernet card in a PCI slot within the
processing node connects the node directly to the LAN. These connections provide the
workstation operating system access to the gateway software in the node.

The gateway software runs on the Teradata server that is running the Teradata Database.
Client programs that communicate through the gateway to the Teradata Database may be
resident on the system, or may be installed and running on network-attached workstations.

When a system is configured, it is possible to assign different hostids to different LANs
(Ethernet connections) coming into a system. By having multiple hostids (for LANs), a
customer can enable/disable a specific LAN. An example might be that you have east/west
coast users on different LANs. You can disable the west coast users as a group. If you have
multiple LAN hostids, you are effectively setting up "multiple" gateways. Gateway
software will balance the number of sessions between the PEs assigned to the hostid for the
LAN.

Most customers have multiple Ethernet connections across multiple nodes, but only one
hostid is assigned to all LAN connections and there is effectively one gateway in the system.
Usually the hostid for LANs has a value of 1; older systems often used a value of 52.

Teradata’s gateway software supports up to 1200 sessions per node, depending on available
system resources. Gateway errors are handled in the same manner as other database errors.

System Access Controls Page 48-13

Teradata Connectivity

Typically ESCON

TDP
(Teradata
Director
Program)

Utilities
or

user
batch

programs

Interactive
Utilities

(BTEQ)

CICS
Appls.

CLI CLI CLI

CROSS MEMORY SERVICES (XMS)

AS AS AS AS

MainFrame O.S. (ex., MVS)

System
Console

Workstation or Server O.S.
(ex., Linux, Windows)

Application
(ex. SQL Assistant)

CLI or
ODBC, JDBC, .NET

MTDP MOSI

LAN – TCP/IP

Gateway Software

Host ID 01

PE
16383

Channel Software

Host ID 200

(1 or more nodes)Teradata Database

PE
16382

PE
16381

PE
16380

ds186034
Sticky Note
mainframe

ds186034
Sticky Note
laptop etc

ds186034
Sticky Note
each will be assigned 1 number

ds186034
Sticky Note
can also revoke logon

ds186034
Sticky Note
range 1 to 1023grant revoke logon statement

 System Access Controls Page 48-14

Host Logon Processing
The Teradata system default is that any defined user with a valid password who is logged on
to a host machine has permission to access the Teradata server through any identified client
connection. After installing the software, you may restrict access to the server by
associating individual users with specific hosts.

GRANT/REVOKE LOGON Statements
Use the GRANT LOGON statement to give users permission to log on to the Teradata
RDBMS from one or more specific client systems. Use the REVOKE LOGON command to
retract permission to log on to the Teradata database from one or more specific client
systems. These two commands store rows in the DBC.LogonRuleTbl.

You must have EXECUTE privileges on the macro DBC.LogonRule to execute either of
these commands.

After installation, use the REVOKE LOGON statement to change the system default by first
removing access privileges from all users from all hosts. Then, you can submit the GRANT
LOGON statement to assign individual users to specific host IDs.

You can execute the GRANT or REVOKE LOGON statements any time after installation to
add or remove user names on individual host connections as needed.

System Access Controls Page 48-15

Host Logon Processing

The default is that any authorized user can access Teradata through any
identified client connection only if they provide a valid password.

Optionally, an administrator can ...

• grant or deny users permission to logon to Teradata from specific client connections.

• give users permission to logon to Teradata from specific host connections using a
NULL password.

The following statements are used to control access from specific “host ids”.

• GRANT LOGON statement

– Gives users permission to logon to Teradata from specific client connections
and optionally use a pre-validated logon request.

• REVOKE LOGON statement

– Denies users permission to logon to Teradata from client system(s).

 System Access Controls Page 48-16

Objects used in Host Logon Processing
You must have EXECUTE privileges on the macro DBC.LogonRule to execute the GRANT
LOGON and REVOKE LOGON statements.

 Note: DBC.LogonRule is a “dummy macro”. It only has a ; in it.

The GRANT LOGON and REVOKE LOGON statements store rows in the
DBC.LogonRuleTbl.

To view the rows in this table use the DBC.LogonRules view.

System Access Controls Page 48-17

Objects used in Host Logon Processing

Users who are granted the EXECUTE permission on the following macro can
use the GRANT LOGON and REVOKE LOGON statements.

DBC.LogonRule

DD/D MacroExample:

GRANT EXECUTE ON DBC.LogonRule
TO Sysdba;

This allows “Sysdba” to execute the GRANT
LOGON and REVOKE LOGON statements.

Execution of GRANT LOGON or REVOKE
LOGON statements causes rows (representing
the rules) to be added or updated in ...

To view the rules in this table, SELECT from
this view.

DBC.LogonRuleTbl

DD/D Table

DBC.LogonRules[V]

DD/D View

ds186034
Sticky Note
simple macro only ";" in it

ds186034
Sticky Note
if grant is yesthen that person can build rule which goes into the tables

 System Access Controls Page 48-18

GRANT/REVOKE LOGON Statements
GRANT LOGON and REVOKE LOGON are flagged as non-ANSI when the SQL Flagger
is enabled.

Keywords
Keywords you can use with the GRANT and REVOKE LOGON commands include:

HostID Identifies a mainframe channel connection or a local area
network connection that is currently defined to the Teradata
RDBMS by the hardware configuration data. The host ID for
the Teradata database console is zero (0). For any other
connector, the host ID is a value from 1 to 1023.

ALL The ALL keyword, used in place of a host ID, applies to any

source through which a logon is attempted, including the
Teradata database console. This is shown as host ID 1024.

AS DEFAULT Specifies that the current default for the specified host ID(s)

is to be changed as defined in this GRANT LOGON
statement. A statement with AS DEFAULT has no effect on
the access granted to or revoked from particular user names.

TO or FROM
username(s)

Overrides the current default for the specified username(s) on
the specified host ID(s). The name DBC cannot be specified
as a username in a GRANT LOGON statement. A statement
that includes this name will return an error message.

WITH NULL
PASSWORD

The initial Teradata database default is that all logon requests
must include a password. The WITH NULL PASSWORD
option, in conjunction with a TDP security exit procedure,
permits a logon string that has no password to be accepted on
a Teradata system.

System Access Controls Page 48-19

GRANT/REVOKE LOGON Statements

,

GRANT LOGON ON host_ID AS DEFAULT

ALL , WITH NULL PASSWORD ;

TO username

FROM

,

REVOKE LOGON ON host_ID AS DEFAULT

ALL , ;

TO username

FROM

host_ID Host number from configuration data. The database console is host
number "0" (zero). ALL is represented as "1024".

AS DEFAULT Changes the default for the specified host.

username You can specify up to 25, but not "DBC".

WITH NULL When used in conjunction with a TDP exit or with single sign-on in
PASSWORD Windows 2000, overrides the system default that a password is required.

To execute a GRANT or REVOKE LOGON statement,
you must hold execute privileges on the DBC.LogonRule macro.

ds186034
Sticky Note
as default means to all users unless we specify explicit ones

 System Access Controls Page 48-20

GRANT/REVOKE LOGON Example
The facing page contains an example of using the REVOKE and GRANT LOGON
statements.

COP Entries for LAN Connections
CLI clients work a little differently than ODBC clients. Any CLI based utility will
dynamically generate a set of “cop” names at the time you try to make a connection.
Example of entries in a “hosts” file:

 141.206.28.01 SMP001-7 educ1 educcop1
 141.206.28.02 SMP001-8 educ2 educcop2
 141.206.28.03 SMP001-9 educ3 educcop3
 141.206.28.04 SMP001-10 educ4 educcop4

For example, if you have a 4-node system, you can have four entries for the hostid:
TDPIDcop1, TDPIDcop2, TDPIDcop3, TDPIDcop4. Where you put these “cop” entries for
address resolution is up to you. COP entries for multiple hosts can be placed in the local
hosts file OR in the DNS server file. Most people use DNS, since it is a central repository.
If you have “cop” entries in the local hosts file AND they are also in the DNS server file,
which are used?

The usual order is to first look in the local /etc/hosts file and then look at DNS server files.
With UNIX MP-RAS, you can specify the order of resolution in the "/etc/netconfig" file.
With Windows, the default order is to first look in the local hosts file and then escalate to the
DNS.

Typically, the place to manage these cop entries is definitely the DNS server. When there
are changes, it is much easier to do them in one place rather than on every machine that
connects to Teradata.

When you specify a hostid in your logon, the first attempt at connection is to establish the
size of the COP pool. First it looks for TDPIDcop1, then TDPIDcop2 ... when an attempt
for TDPIDcopn+1 fails, the pool is established as n cops. This "cop" pool is only used to do
connection balancing. Another reason for a "cop" pool is to help avoid a single point of
connection failure. If the user has the host aliases in the local host file, then the DNS server
doesn't get involved until copn if one has local name resolution selected before DNS
resolution.

ODBC requires you to create a DSN entry that specifies the machine to connect to. When
you create the DSN entry you can give the TDPID and ODBC will resolve the cop names as
they exist at that time and cache them in the registry. There is an option on the screen to
create the DSN that says do NOT resolve. In that case, ODBC will behave like CLI by
dynamically generating the list of cops to choose from when you make a connection.
Something to remember is that most user access to Teradata is via ODBC tools and most
DSN entries have those IP addresses cached, so for normal client traffic, there is not a lot of
copname resolution that has to be done.

System Access Controls Page 48-21

GRANT/REVOKE LOGON Example

GRANT LOGON ON 01 TO tfact08; REVOKE LOGON ON 01 TO tfact09;

Teradata BTEQ 13.10.00.04 for LINUX.
Enter your logon or BTEQ command:
.logon tdt6-1/tfact08

.logon tdt6-1/tfact08
Password:

*** Logon successfully completed.
*** Transaction Semantics are BTET.
*** Character Set Name is 'ASCII'.

*** Total elapsed time was 1 second.

BTEQ -- Enter your DBC/SQL request or BTEQ ...
.logoff

*** You are now logged off from the DBC.

Notes: This GRANT LOGON creates a specific
logon rule in DBC.LogonRuleTbl.

If "REVOKE LOGON ON 01 AS DEFAULT;" is
executed, tfact08 can still logon since
individual rules override AS DEFAULT.

Teradata BTEQ 13.10.00.04 for LINUX.
Enter your logon or BTEQ command:
.logon tdt6-1/tfact09

.logon tdt6-1/tfact09
Password:

*** Error 3026 The user's right to log on
has been revoked.

*** Error: Logon failed!

*** Total elapsed time was 3 seconds.

Teradata BTEQ 13.10.00.04 for LINUX.
Enter your logon or BTEQ command:

Notes: This REVOKE LOGON creates a
specific logon rule in DBC.LogonRuleTbl.

A "GRANT LOGON ON 01 TO tfact09;" can
be executed to allow tfact09 to logon.

ds186034
Sticky Note
everybody else cannot logon but 8 can

 System Access Controls Page 48-22

Session Related Views
There are three system views that you can use to monitor database access. They are:

DBC.LogonRules[V] Retrieves information about logon rules generated as a
result of successfully processed GRANT/REVOKE
LOGON statements. This view uses columns from the
DBC.LogonRuleTbl.

DBC.LogOnOff[V][X] Supplies information about logon and logoff activity.
This view uses columns from the DBC.EventLog table,
which records both successful and unsuccessful logon
attempts.

DBC.SessionInfo[V][X] Provides information about users who are currently
logged on. This view uses columns from
DBC.SessionTbl.

Dictionary Tables accessed include:

 DBC.LogonRuleTbl
 DBC.EventLog
 DBC.SessionTbl

System Access Controls Page 48-23

Session Related Views

DBC.LogonRules[V] Returns a list of logon rules generated by GRANT and
REVOKE statements.

DBC.LogOnOff[V][X] Provides information about logon attempts (successful
or unsuccessful) and logoffs.

DBC.SessionInfo[V][X] Provides information about the current user or all
users currently logged on.

 System Access Controls Page 48-24

LogonRules View
The LogonRules view retrieves information about logon rules generated as a result of
successfully processed GRANT LOGON statements. This information is stored as rows in
the system table DBC.LogonRuleTbl.

This view returns information about the defined rules that you, as the administrator, specify
with the GRANT LOGON statement. This statement controls access to the Teradata
Database from any server or host.

System administrators or security administrators must specifically authorize user logon
requests without passwords.

Example
The SQL statement on the facing page requests a list of the logon rules sorted by username.
The response displays that user “tfact06” cannot log on using host ID 200. The users
“tfact05 and tfact07” can log on to the database without a password.

System Access Controls Page 48-25

LogonRules View

SELECT *
FROM DBC.LogonRulesV
WHERE UserName LIKE 'tfact%'
ORDER BY UserName ;

Provides information about logon rules that are created by GRANT LOGON and
REVOKE LOGON statements.

Returns rules from the DBC.LogonRuleTbl.

Example Results:

Example:
List logon rules for
TFACT users.

DBC.LogonRules[V]

UserName LogicalHostID LogonStatus
NullPassword CreatorName CreateTimeStamp

Username LogicalHostID LogonStatus NullPassword

tfact05 1024 G T
tfact06 200 R F
tfact07 200 G T
tfact08 1 G F
tfact09 1 R F

ds186034
Sticky Note
1024 refers to all locnrefers to all = 1024

 System Access Controls Page 48-26

LogOnOff View
The DBC.LogOnOff[V][X] views provide information about users who have logged on and
off. You can also use this view when you need to know about a user’s failed attempts to
logon. The facing page shows an example of the DBC.LogonOff view.

DBC.LogOnOff event column definitions include:

 Event Result
Logon Bad User

Bad Password
Bad Account

Logon failed.

Logoff Forced Off User had their session aborted.

System Access Controls Page 48-27

LogOnOff View

Provides information about logon and logoff activity, including bad logon
attempts and sessions forced off.

SELECT CAST (LogDate AS FORMAT 'YYYY-MM-DD')
,LogTime
,CAST (UserName AS FORMAT 'X(12)')
,Event

FROM DBC.LogOnOffV
WHERE (Event LIKE 'Bad%'
OR Event LIKE 'Forced%')
AND LogDate > CURRENT_DATE - 7
ORDER BY LogDate, LogTime ;

Example Results:

Example:
List “bad” logon attempts
and sessions forced off
during the last seven days.

DBC.LogOnOff[V][X]

LogDate LogTime UserName AccountName
Event LogicalHostId IFPNo SessionNo
LogonDate LogonTime LogonSource

LogDate LogTime UserName Event

2011-09-23 10:02:54.84 student30 Bad User
2011-09-23 10:05:22.14 student130 Bad Password
2011-09-23 12:10:13:11 student125 Bad Account
2011-09-24 08:14:11:71 student117 Forced Off

 System Access Controls Page 48-28

SessionInfo View
The facing page shows an example of the DBC.SessionInfo[V][X] view.

This view provides information about users who are currently logged on the system. You
can use the [X] option of this view to obtain information about the current user.

Example

LogonSource May contain up to 11 fields, depending on the values returned.

Operating system name (e.g., VM or MVS) followed by:
TDP name
VM user ID or MVS job name
Environment name (e.g., TSO, CICS) etc.
Transaction mode:
T = TDBS
A = ANSI
Two PC mode:
2 = 2PC mode
N = Non-2PC mode

Partition DBC/SQL = an SQL session
EXPORT = a FASTEXPORT session
FASTLOAD = a FASTLOAD session
HUTPARSE = an ARC data session
MLOAD = a MULTILOAD session
MONITOR = sessions running in a performance monitoring
application
NONE = session is recognized but not yet assigned

To get a count of load jobs that are currently executing, you can use the following SQL.

SELECT COUNT(DISTINCT LogonSequenceNo) AS Utility_Cnt
FROM DBC.SessionInfo
WHERE Partition IN ('Fastload', 'Export', 'MLoad');

The LogonAcct and AccountName columns will usually have the same account id for a user.
If a user changes the account id within a session, the AccountName column will reflect the
current account id and the LogonAcct will have the logon (or initial) account id.

Both the LogonAcct and AccountName columns will have the actual logon account id (e.g.,
‘$M_9038_&S&D&H’), not an expanded account id.

System Access Controls Page 48-29

SessionInfo View

Returns information about the current users or all users currently logged on.

SELECT UserName, 'from ' || CAST (LogonSource AS CHAR(55)) AS "Logon Info"
,CAST (LogonDate AS FORMAT 'YYYY-MM-DD')
,CAST (TIME - LogonTime AS FORMAT '99:99:99') AS ConnectTime

FROM DBC.SessionInfoV
ORDER BY UserName ;

Example: List all users currently logged on, their session source, the logon date, and connect time.

DBC.SessionInfo[V][X]
UserName AccountName SessionNo DefaultDataBase
IFPNo Partition LogicalHostId HostNo
CurrentCollation LogonDate LogonTime LogonSequenceNo
LogonSource ExpiredPassword TwoPCMode Transaction_Mode
ProfileName CurrentRole LogonAcct LDAP
AuditTrailID CurIsolationLevel (12.0) QueryBand (12.0) ProxyUser (13.0)
ProxyCurRole (13.0)

UserName Logon Info LogonDate ConnectTime

DBC from (TCP/IP) BCB6 127.0.0.1 TDT6-1 13866 ROOT BTEQ 0 2011-09-23 00:25:40
DBCMANAGER from (TCP/IP) 0540 153.65.42.35 TDT6-1 864 SYSTEM IS 2011-09-23 03:04:22
STUDENT102 from (TCP/IP) 8A84 127.0.0.1 TDT6-1 3091 LINUX102 BTE 2011-09-23 03:16:21
STUDENT103 from (TCP/IP) 0521 153.65.42.41 153.64.24.65 3624 IM 2011-09-23 03:33:11
STUDENT103 from (TCP/IP) 0507 153.65.42.41 153.64.24.65 4824 IM 2011-09-23 03:35:34
STUDENT104 from (TCP/IP) 04ED 153.65.42.202 153.64.24.65 4460 M 2011-09-23 03:19:43

 System Access Controls Page 48-30

Additional Utilities to View Sessions
Additional tools that may be used to view session activity are listed on the facing page.

Additional information about the gateway utility follows.

Gateway Global Utility
Gateway Global is not as commonly used as it once was because the Sessions display of
Teradata Manager is easier to use. However, you can still access the Gateway Global Utility
by invoking the following commands:

 Command-line version: gtwglobal
 Command for X-version: xgtwglobal

Session Control
The Gateway Global utility allows you to monitor and control Teradata database network-
attached users and their sessions. For example, by starting the utility and issuing utility
commands with this utility, you can monitor network sessions and traffic, disable logons,
force users off the Teradata database and diagnose gateway problems.

Disconnect and Kill Commands
The Disconnect User/Session and Kill User/Session commands are similar in that they both
disconnect sessions from the database. The Kill command will abort one session
immediately or all sessions of a particular user, then log the user off. The Disconnect
command simply puts the sessions in a disconnect state and does not log the user off. The
database is still aware of the sessions, and if the user re-establishes the connection from their
client workstation, the sessions are allowed to re-connect.

Examples of Gateway Global Commands

Network and Session Information

DISPLAY NETWORK Displays your network configuration.
DISPLAY GTWALL Displays all sessions connected to the gateway.
DISPLAY SESSION Displays information about a specific session on the gateway.

Administering Users and Sessions

DISABLE LOGONS Disable logons to the RDBMS through the gateway.
ENABLE LOGONS Enable logons to the RDBMS via the gateway
DISCONNECT USER Disconnects all sessions owned by a user.
DISCONNECT SESSION Disconnects a specific session. Must provide the session

number in the command syntax.
KILL USER Terminates all sessions of a specific user.
KILL SESSION Terminates a specific session. Must know session number.

System Access Controls Page 48-31

Additional Utilities to View Sessions

Viewpoint – Query Monitor and My Queries

• Provides functions to view sessions and details about user sessions

• Optionally, sessions can be aborted or have their priority changed

Teradata Manager and/or Performance Monitor – Windows utilities

• Both of these utilities provide functions to view and abort sessions

• Can be used to change a session’s priority

• Performance Monitor may be executed independently or via Teradata Manager

QrySessn – utility started via Supervisor (e.g., Viewpoint – Remote Console)

• Provides display of sessions; Supervisor is used to abort sessions

gtwglobal – system utility

• This utility can be used to monitor/abort only gateway or LAN-based sessions

– gtwglobal or xgtwglogal (X Windows)

– Not as commonly used because Viewpoint or Teradata Manager provides an
easier interface

 System Access Controls Page 48-32

Viewpoint – Query Monitor
Teradata Viewpoint enables database and system administrators and business users to
monitor and manage Teradata Database systems from anywhere using a standard web
browser.

Teradata Viewpoint allows users to view system information, such as query progress,
performance data, and system saturation and health through preconfigured portlets displayed
from within the Teradata Viewpoint portal. Portlets can also be customized to suit individual user
needs. User access to portlets is managed on a per-role basis.

Database administrators can use Teradata Viewpoint to determine system status, trends, and
individual query status. By observing trends in system usage, system administrators are
better able to plan project implementations, batch jobs, and maintenance to avoid peak periods of
use. Business users can use Teradata Viewpoint to quickly access the status of reports and queries
and drill down into details.

The Query Monitor portlet allows you to view information about queries running in a
Teradata Database system so you can spot problem queries. You can analyze and decide
whether a query is important, useful, and well written. After you have identified a problem
query, you can take action to correct the problem by changing the priority or workload,
releasing the query, or aborting the query or session. You can take these actions for one
query or session, or multiple queries or sessions at a time.

System Access Controls Page 48-33

Viewpoint – Query Monitor

The Query Monitor portlet of Viewpoint allows you to view and control sessions.

To access this
portlet:

Add Content >
Monitoring >
Query Monitor

 System Access Controls Page 48-34

Teradata Manager Sessions
An example of the Sessions display from Teradata Manager is shown on the facing page.

From the Teradata Manager menu, click Monitor > Sessions, and choose the filter for the
types of sessions to view:

 All - shows all sessions currently on the Database
 Active - shows all active sessions
 Blocked - shows sessions that are blocked by other sessions
 Idle - lists information about inactive and idle sessions
 Parsing - lists information about parsing sessions
 Responding - lists information about responding sessions
 Aborting - shows sessions that are in the process of aborting
 Other - lists information about sessions when there is a difference in the state of

the AMP and PE or if the state is not Idle, Active, Blocked, Parsing, Responding,
Aborting or Delayed, including those that are currently logged on to the Monitor
Partition.

 Delayed - shows sessions that are delayed

To view session details, either double-click the session number, or right-click the number of
the session to display the shortcut menu, and click Session Details.

Other options include:

 Modify Session Priority – modify session’s account to change priority.

 Note: Modifying accounts is allowed only in the DBC/SQL partition;

therefore, this option is enabled only when the partition is DBC/SQL.

 Abort Session- abort this session
 Blocked By - display a report showing which sessions (if any) are blocking this

session
 Blocking - display a report showing which sessions this one is blocking
 Current SQL - view the SQL statements currently being executed by this session,

along with job step information and associated Explain text
 Skew - display a report showing skew (workload imbalance) for this session
 Modify Session Workload - modify session workload settings
 Release Request - release a request that is on hold
 Query Band - display a report showing the query band pairs applied to this session

System Access Controls Page 48-35

Teradata Manager Sessions

The Sessions display of Teradata Manager allows you to view and control sessions.

To access this
display:

Monitor Menu >
Sessions

This pull down
menu can be
accessed by
right-clicking
on the session
number.

 System Access Controls Page 48-36

Remote Console – Viewpoint
The Query Session utility provides information about all Teradata sessions. To start the
utility, enter START QRYSESSN in the Supervisor window. A Teradata session may be in
one of several possible states. They include:

State Description

Unknown The session number is not recognized.

Idle Process is not taking place at this time.

Delay The query is on a Teradata DWM Delay queue.

Parsing Session is in the DBC/SQL parser phase.

Active1 Session has sent steps to the dispatcher/AMPs

Aborting1 Session is aborting the latest request.

Blocked2 Session is waiting for a database lock to release.

Response Response to session request is in process.

Archive/Recovery, FastLoad, MultiLoad, FastExport, and other utility status information is
also provided.

The Query Session utility can also be started from HUTCNS by entering the following
command: SES or ses

Example
The example on the facing page illustrates using the Remote Console portlet of Viewpoint to
access the Query Session utility. A sample Query Session Report and the headings
displayed by Query Session for this report. You can use an asterisk (*) as a wild card
symbol to depict all hosts and/or all sessions. If a session is idle, only the session identifier
information would be displayed.

The complete prompt for detailed information is …

 “Is detailed information needed for HUT/FASTLOAD/MLOAD/EXPORT? y-yes, n-no

Answering yes to this prompt provides more details for the archive and load utilities.

1Shows CPU time (all AMPS) in 100ths of a second and total segment access calls.
2Shows if lock was requested and if the lock encountered was a host utility lock (archive).

System Access Controls Page 48-37

Viewpoint

Remote Console – Query Session

From Remote Console, Select Query Session

Query Session prompts for:

Please enter logical host id? 1
Please enter session ids? *
Is detail information needed? y

From Viewpoint Operator Console, you
can also abort sessions.

• The ABORT SESSION command aborts
the currently running SQL transaction in
progress.

• The LOGOFF option also terminates the
user session.

ABORT SESSION hostid:ses# [LOGOFF]
hostid.username

*.username
hostid.*

.

Why use operator console to abort sessions?

You can abort a large number of sessions
quickly.

ABORT SESSION *.* LOGOFF

 System Access Controls Page 48-38

Structure the System
As the administrator, it is your responsibility to manage access rights. Managing access
rights is important for:

 New user creation
 Security rule enforcement
 Data maintenance
 Training and documentation
 Archiving and recovery

System Access Controls Page 48-39

Structure the System

TO FACILITATE

SECURITY
RULE

ENFORCEMENT

NEW
USER

CREATION

ARCHIVING
and

RECOVERY

TRAINING
and

DOCUMENTATION

DATA
MAINTENANCE

ACCESS
RIGHTS

MANAGEMENT

 System Access Controls Page 48-40

A Recommended Access Rights Structure
An access rights structure recommended for the Teradata database has the following
characteristics:

 All users belong to a database and inherit their access rights.
 Users do not have direct access to data tables, unless they are performing batch

operations.
 Users access databases that contain only views and macros.
 VMDB databases contain only views and macros.
 TABLE databases contain only tables.
 Access rights are only extended at the database or user level, not at the individual

table level.

Example
The diagram on the facing page illustrates an example of the suggested Teradata access
rights scheme. This scheme has three user databases:

INQ_Users Users that belong to the Inquiry database inherit SELECT
and EXECUTE privileges when you create them.

UPD_Users Users that belong to the Update database inherit SELECT,

EXECUTE, INSERT, DELETE and UPDATE privileges
when you create them.

BAT_Users Users that belong to the Batch database inherit DROP and

CREATE TABLE, CHECKPOINT, DUMP, and RESTORE
privileges when you create them.

In addition to the access rights stored in each user database, the Inquiry VM and Update VM
databases also contain a set of access rights. Both are discussed below:

INQ_VM_DB The Inquiry VM Database contains views and macros that
give Inquiry users access to information. The database has
the SELECT privilege with GRANT OPTION.

UPD_VM_DB The Update VM Database contains views and macros that
enable Update users to modify information. This database
has the SELECT, INSERT, DELETE and UPDATE
privileges with GRANT OPTION.

The WITH GRANT option enables the Upd_VM_Database to give the necessary privileges
to the update users.

System Access Controls Page 48-41

A Recommended Access Rights Structure

INQ_VM_DB

View_1
View_2

Macro_1
Macro_2

UPD_VM_DB

View_3
View_4

Macro_3
Macro_4

Tables_DB

Table_1
Table_2
Table_3
Table_4

SELECT WITH GRANT

SELECT, INSERT,
UPDATE, DELETE

WITH GRANT

INQ_Users

User02

User01

User03

UPD_Users

User05

User04

User06

BAT_Users

Batch02

Batch01

CREATE TABLE, DROP TABLE, CHECKPOINT, DUMP, RESTORE
* Only Batch Users directly access the data tables.

SELECT, EXECUTE, INSERT, UPDATE, DELETE

SELECT, EXECUTE

SELECT, EXECUTE

Rules: Access rights are extended at user or database level.
Users belong to a “database group” and inherit their access rights.
Users access databases that contain only views and macros.

ds186034
Sticky Note
as more tables are addedas more view are addednothin else needs to be doneas more users are added they will inherit the rights from inq_usersso nothin needs to be done

ds186034
Sticky Note
doing everything at the db level and not at the object levelwe can take advantage of this by using roles (which he did not have it back then)

 System Access Controls Page 48-42

A Recommended Structure Using Roles
The example on the facing page illustrates an example of the suggested Teradata access
rights scheme utilizing roles. This scheme has three roles:

Inquiry_R Users granted to the Inquiry role get SELECT and
EXECUTE privileges associated with this role.

Update_R Users granted to the Update role get SELECT, EXECUTE,

INSERT, DELETE and UPDATE privileges associated with
this role.

Batch_R Users granted to the Batch role get DROP and CREATE

TABLE, CHECKPOINT, DUMP, and RESTORE privileges
associated with this role.

In addition to the access rights assigned to the roles, the Inquiry VM and Update VM
databases also contain a set of access rights. Both are discussed below:

INQ_VM_DB The Inquiry VM Database contains views and macros that
give Inquiry users access to information. The database has
the SELECT privilege with GRANT OPTION.

UPD_VM_DB The Update VM Database contains views and macros that
enable Update users to modify information. This database
has the SELECT, INSERT, DELETE and UPDATE
privileges with GRANT OPTION.

System Access Controls Page 48-43

A Recommended Structure Using Roles

SELECT, EXECUTE,
INSERT, UPDATE, DELETE

SELECT,
EXECUTE

INQ_VM_DB

View_1
View_2

Macro_1
Macro_2

UPD_VM_DB

View_3
View_4

Macro_3
Macro_4

Tables_DB

Table_1
Table_2
Table_3
Table_4

SELECT WITH GRANT

SELECT, INSERT,
UPDATE, DELETE

WITH GRANT

Access rights are granted to roles instead of being inherited by users.
Roles give the option of grouping different types of users under a single database.

Inquiry_R

Update_R

Batch_R

App_Users

User02

User01

User03

User05

User04

User06

Batch02

Batch01

CREATE TABLE, DROP TABLE,
CHECKPOINT, DUMP, RESTORE

GRANT
Inquiry_R

TO
Update_R;

 System Access Controls Page 48-44

A Recommended System Hierarchy
A system structure recommended for the Teradata database is shown on the facing page.
Each major application function has an associated administrator that would have control of
the users and databases within that application function.

Keys to the hierarchy on the facing page are:

INQ_Users – database or set of “inquiry” users

UPD_Users – database or set of “update” users

INQ_VM_DB – database of views and macros that access tables in Tables_DB

UPD_VM_DB – database of views and macros that update tables in Tables_DB

Tables_DB – database of user data tables

BAT_Users – database or set of “batch” users; operational users that execute utilities

that directly access the tables (e.g., FastLoad)

Optionally roles can be used to easily maintain access rights and reduce the number of
access rights.

System Access Controls Page 48-45

A Recommended System Hierarchy

Application2_DBA

Similar Hierarchy for Application 2

SysDBACrashdumps SystemFE

DBC

SysAdminSys_CalendarQCD Spool_Reserve

INQ_Users INQ_VM_DB

View_1
View_2

Macro_1
Macro_2

User02

User01

User03

Application1_DBA

UPD_Users

User05

User04

User06

UPD_VM_DB

View_3
View_4

Macro_3
Macro_4

Tables_DB

Table_1
Table_2
Table_3
Table_4

BAT_Users

Batch02

Batch01

Ex. Roles are granted to users and only the roles
have access rights on the views and macros.

Inquiry_R

Update_R

Batch_R

 System Access Controls Page 48-46

System Access Controls Summary
The facing page summarizes some important concepts regarding this module.

System Access Controls Page 48-47

System Access Controls Summary

• The mission of security administration is to prevent unauthorized user access
to the database and its resources.

• To protect system access:
– Associate passwords with usernames.

– Associate application users with specific hosts.

• You can control database access by granting access to views and macros.
– Views can limit access to certain columns and rows.

– Macros can limit the actions a user can perform.

• Good access rights management facilitates your role as system administrator
in security rule enforcement, data maintenance, archive and recovery, and
other areas.

• Characteristics of a good database structure include:
– Users belong to a database group and get their access rights from roles.

– Users do not have direct access to tables.

– Access rights are extended at the database, user, or role level (not at the individual
table level).

 System Access Controls Page 48-48

Module 48: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

System Access Controls Page 48-49

Module 48: Review Questions

1. True or False. Although usernames are the basis for identification in the system, username
information usually is not protected information.

2. True or False. Once users have a username and password, they can access any information in
the system.

3. True or False. To change the minimum number of characters in a valid password from 6 to 8, you
would update the DBC.LogonRules table.

4. What does 1024 represent in the DBC.LogonRules view? _________________

5. Which choices can be used to view host or mainframe sessions? _______

a. Sessions utility
b. QrySessn utility
c. Gtwglobal utility
d. DBC.SessionInfo view

6. Which choice is used to determine why a user logon has failed? ____

a. DBC.Logons view
b. DBC.LogOnOff view
c. DBC.AccessLog view
d. DBC.SessionInfo view
e. DBC.LogonEvents view

ds186034
Sticky Note
sys security defaults tablelogonrules is for which host identifier is logged in or nt

ds186034
Sticky Note
ALL of the hosts = 1024

ds186034
Sticky Note
just for lan connection

ds186034
Sticky Note
we dont have a sessions utility

ds186034
Sticky Note

 System Access Controls Page 48-50

Notes

Access and Query Logging Page 49-1

Module 49

Teradata Proprietary and Confidential

Access and Query Logging

After completing this module, you will be able to:

 Describe how the BEGIN/END LOGGING statements capture
information about user access to Teradata.

 Describe how to set up user access logging.

 Use system views to gather information about data access.

 Identify the reasons for using the Database Query Log.

 Identify the tables and views that make up the DBQL facility.

 Access and Query Logging Page 49-2

Notes

Access and Query Logging Page 49-3

Table of Contents

Access and Query Logging .. 49-4
Access Logging .. 49-6
Objects used in Access Logging .. 49-8
BEGIN LOGGING Statement ... 49-10
END LOGGING Statement ... 49-12
Setting up Access Logging .. 49-14

Log Entries ... 49-14
Keywords and Object-Names .. 49-14

Access Log Views .. 49-16
AccLogRules View .. 49-18
BEGIN LOGGING – Example .. 49-20
AccessLog View .. 49-22
AccessLog View – Example .. 49-24
END LOGGING – Example .. 49-26
Teradata Administrator – Tools Menu > Access Logging ... 49-28
Query Logging (DBQL) Concepts ... 49-30

Provides Collection of Historical records based on Rules ... 49-30
Objects used in Defining Rules for DBQL .. 49-32

Rules ... 49-32
Objects used in DBQL (cont.) .. 49-34
BEGIN QUERY LOGGING Statement... 49-36

BEGIN QUERY LOGGING.. 49-36
BEGIN QUERY LOGGING WITH … (cont.).. 49-38
BEGIN QUERY LOGGING LIMIT … (cont.) ... 49-40
BEGIN QUERY LOGGING Examples ... 49-42

Hierarchy of Applying Database Query Logging Rules .. 49-42
BEGIN QUERY LOGGING Examples (cont.) ... 49-44
BEGIN QUERY LOGGING Examples (cont.) ... 49-46
END QUERY LOGGING Statement... 49-48
REPLACE QUERY LOGGING (13.10) Statement .. 49-50
DBQLRules View .. 49-52
QryLog View – Example ... 49-54
QryLogSummary View – Example .. 49-56
Teradata Administrator – Tools Menu > Query Logging .. 49-58
Access and Query Logging Summary.. 49-60
Module 49: Review Questions ... 49-62
Lab Exercise 49-1 .. 49-64

Lab Exercise 49-1 (cont.) ... 49-66
Lab Exercise 49-2 .. 49-68

Lab Exercise 49-2 (cont.) ... 49-70
Lab Exercise 49-2 (cont.) ... 49-72

 Access and Query Logging Page 49-4

Access and Query Logging
Use Access Logging for security and auditing purposes.

Use DBQL to capture details needed for workload analysis, performance tuning, and
resource usage analysis.

Access Logging Facility
The Access Logging facility provides an administrator with the capability to monitor data
access requests in the system and log granted and/or denied requests.

With Access Logging, logged rows are written immediately to disk before the SQL is
executed, which can slow down short query work. At the same time, this approach to
logging does offer higher reliability and can register negative accesses (attempts to view
data that did not succeed), which would not show up in DBQL.

Query Logging Facility
The Database Query Log (DBQL) is a feature (starting with Teradata V2R5) that you can
employ to log query processing activity for later analysis. Query counts and response times
can be charted and SQL text and processing steps can be compared to fine-tune your
applications for optimum performance.

DBQL provides a series of predefined tables that can store, based on rules you specify,
historical records of queries and their duration, performance, and target activity.

DBQL is flexible enough to log information on the variety of SQL requests that run on
Teradata, from short transactions to longer-running analysis and mining queries. You begin
and end collection for a user or group of users and/or one or a list of accounts.

DBQL is streamlined for collection efficiency and provides more detail about the query than
the Access Log. On the other hand, because DBQL caches data in memory before writing it
periodically to disk, there is some delay in seeing the logged data, and it is possible to lose
data that is still in the cache on a restart.

Access and Query Logging Page 49-5

Access and Query Logging

There are two logging facilities available to the database and/or security
administrator.

• Access Logging Facility

– Used for access and security audit analysis.

– May be used to monitor data access requests (via access rights checks) and
log entries for requests that are granted and/or denied.

• Query Logging Facility (DBQL)

– Used for query activity and workload analysis.

– Can be used to track processing behavior and/or capture detailed information
about the queries that are running on a system.

– Workloads can be utilized with Teradata Analyst tools such as Teradata Index
Wizard.

ds186034
Sticky Note
1) tried dbc access and they were notsecurity audit - dats it2) DBQL is for workload analsys

 Access and Query Logging Page 49-6

Access Logging
The Access Logging facility provides an administrator with the capability to monitor data
access requests in the system and log granted and/or denied requests.

The DDL statements BEGIN LOGGING and END LOGGING are used to control the
monitoring of access rights checks performed by the Teradata Database. Each time you
execute a BEGIN LOGGING statement, the system table DBC.AccLogRuleTbl receives
applicable rule entries. (The system view DBC.AccLogRules offers access to the contents
of this table.)

When a user named in a BEGIN LOGGING statement attempts to execute a specified action
against a specified object, the Teradata Database checks the access rights necessary to
execute the statement according to the rules in DBC.AccLogRuleTbl. The privilege checks
made and/or the access results are logged in the system table DBC.AccLogTbl. (The system
view DBC.AccessLog offers access to the contents of this table.)

A logging entry does not indicate that a statement was executed; rather, it indicates that the
system checked the privileges necessary to execute the statement.

You can terminate logging by submitting an END LOGGING statement for any action, user,
or object for which logging is currently active. Note that you cannot end logging begun for a
specific username by omitting the BY username option.

Access and Query Logging Page 49-7

Access Logging

An administrator can ...

– use the Access Logging facility to monitor data access requests and log entries
for requests that are granted and/or denied.

– optionally capture the SQL text along with the access right check.

The following statements are used to specify objects and/or SQL requests to
monitor for specific or all users.

– BEGIN LOGGING statement

• Starts the monitoring of data access requests by Teradata.

– END LOGGING statement

• Ends the monitoring of data access requests by Teradata.

 Access and Query Logging Page 49-8

Objects used in Access Logging
You must have EXECUTE privileges on the macro DBC.AccLogRule to execute the
BEGIN LOGGING and END LOGGING statements.

 Note: DBC.AccLogRule is a “dummy macro”. It only has a ; in it.

The BEGIN LOGGING and END LOGGING statements start and stop the auditing of data
access requests. The BEGIN LOGGING and END LOGGING statements store rows in the
DBC.AccLogRuleTbl. To view the rows in this table, use the DBC.AccLogRules[V] views.

If the user does not submit a BEGIN LOGGING statement, then by default the system does
not generate any entries on any user action.

When an object or SQL request (identified in one of the access log rules) is accessed, an
entry is logged in the DBC.AccLogTbl. To view the rows in this table, use the
DBC.AccessLog[V] views.

Access and Query Logging Page 49-9

Objects used in Access Logging

Users who are granted EXECUTE permission on the following macro can use
the BEGIN LOGGING and END LOGGING statements.

DBC.AccLogRule

DD/D MacroExample:

GRANT EXECUTE ON DBC.AccLogRule TO SecAdmin;

This allows "SecAdmin" to execute the BEGIN LOGGING
and END LOGGING statements.

Execution of BEGIN LOGGING or END LOGGING
statements causes rows (representing the rules) to be
added or updated in …

To view the rules in this table, SELECT from these views.

Based on the rules, access of specified objects or SQL
statements cause entries to be placed in …

To view the log of entries, SELECT from these views.

DBC.AccLogRuleTbl

DD/D Table

DBC.AccLogRules[V]

DD/D View

DBC.AccLogTbl

(can potentially become large)

DD/D Table

DBC.AccessLog[V]

DD/D View

ds186034
Sticky Note
it just has ; in it

ds186034
Sticky Note
not too many rules hereits a small tbl

ds186034
Sticky Note
this table is gonna be big hopefully not super large but still biguse the view to see it not directly

 Access and Query Logging Page 49-10

BEGIN LOGGING Statement
Teradata verifies a user’s access rights when the user attempts to access an object. As the
administrator, you can capture information about checks performed on a user's access rights
with the BEGIN LOGGING statement.

When you activate logging, the specified privilege check performed by the Teradata
Database generates a row in the DBC.AccLogTbl. Later, you can use system-supplied
views to monitor and analyze the information stored there.

The BEGIN LOGGING statement has a number of options. Several are described below:

DENIALS — Tracks only those entries when statement execution fails because the user
does not have the privilege(s) necessary to execute the statement.

FIRST, LAST, EACH — Defines the frequency with which log entries are made. The

default for BEGIN LOGGING is FIRST.

ALL — Tells the system to make a log entry when the user attempts certain actions

against the specified object, including:

CD CREATE DATABASE DP DUMP I INSERT
CM CREATE MACRO D DELETE S RETRIEVE/SELECT
CP CHECKPOINT CU CREATE USER RS RESTORE
CT CREATE TABLE DU DROP USER U UPDATE
CV CREATE VIEW G GRANT E EXECUTE
DD DROP DATABASE/USER

BY username — Lists the users for which the system will make log entries. The

default is all users.

ON keyword object-name — Defines which objects will generate rows in the log table

when a user attempts to access them. The keyword object-name combinations must
be one of the following:

USER User name TRIGGER Trigger name

DATABASE Database name MACRO Macro name

TABLE Table name PROCEDURE Stored procedure name

VIEW View name FUNCTION User-defined function name

Absence of the ON keyword object name option implies all entities that the user attempts to
access. A single logging statement may contain up to 20 objects.

Access and Query Logging Page 49-11

BEGIN LOGGING Statement

Operation Any function for which an access right can be granted (e.g., GRANT).

BY username – implies all users, if not specified.

ON object-name – implies all entities, if not specified. Valid object-names are:

DATABASE database_name USER user_name
TABLE table_name VIEW view_name
MACRO macro_name PROCEDURE procedure_name
TRIGGER trigger_name FUNCTION function_name

BEGIN LOGGING ON A

DENIALS WITH TEXT FIRST

LAST

FIRST AND LAST

EACH

A ALL ;

, , ON DATABASE dbname

operation BY username USER username

GRANT TABLE name

VIEW dbname.

MACRO

TRIGGER

PROCEDURE

FUNCTION

TYPE

ds186034
Sticky Note
on every command

ds186034
Sticky Note
first time u build d tableandlast timeso just for the last time

 Access and Query Logging Page 49-12

END LOGGING Statement
Stops the auditing of SQL requests that attempt to access data that was started with a
BEGIN LOGGING statement.

The END LOGGING statement erases only the frequency or text flags for the specified
actions and user or object. However, if erasing a frequency leaves all logging blank for a
particular user, database, and table, then the row is deleted from the AccLogRuleTbl table.

Use of the END LOGGING statement results in an error if BEGIN LOGGING is not
currently in effect for the community for which logging is to be ended.

The END LOGGING statement has a number of options. Several are described below:

DENIALS — tracks only those entries when statement execution fails because the user
does not have the privilege(s) necessary to execute the statement.

ALL — tells the system to make a log entry when the user attempts certain actions

against the specified object, including:

CD CREATE DATABASE DP DUMP I INSERT
CM CREATE MACRO D DELETE S RETRIEVE/SELECT
CP CHECKPOINT CU CREATE USER RS RESTORE
CT CREATE TABLE DU DROP USER U UPDATE
CV CREATE VIEW G GRANT E EXECUTE
DD DROP DATABASE/USER

BY username — lists the users for which to end logging on. The default is all users.

ON keyword object-name — defines which objects to end logging for in the log table

when a user attempts to access them. The keyword object-name combinations must
be one of the following:

USER User name TRIGGER Trigger name

DATABASE Database name MACRO Macro name

TABLE Table name PROCEDURE Stored procedure name

VIEW View name FUNCTION User-defined function name

Absence of the ON keyword object name option implies all entities that the user attempts to
access. A single logging statement may contain up to 20 objects.

Access and Query Logging Page 49-13

END LOGGING Statement

END LOGGING ON A

DENIALS WITH TEXT

A ALL ;

, , ON DATABASE dbname

operation BY username USER username

GRANT TABLE name

VIEW dbname.

MACRO

TRIGGER

PROCEDURE

FUNCTION

TYPE

Operation Any function for which an access right can be granted (e.g., GRANT).

BY username – implies all users, if not specified.

ON object-name – implies all entities, if not specified. Valid object-names are:

DATABASE database_name USER user_name
TABLE table_name VIEW view_name
MACRO macro_name PROCEDURE procedure_name
TRIGGER trigger_name FUNCTION function_name

 Access and Query Logging Page 49-14

Setting up Access Logging
Before you can execute BEGIN/END LOGGING statements, you must run DIP script
located on the software release medium. The DIP script creates a special security macro
called DBC.AccLogRule. After you run the script, you must reset the system to initialize
the logging software.

Log Entries
A logging entry does not indicate that the system successfully executed an SQL statement.
It only indicates that the system checked the privileges necessary to execute the statement.

Keywords and Object-Names
By default, access logging inserts a row whenever a user accesses any database object. To
restrict the scope of the log entries, you can include one of the following combinations in the
BEGIN LOGGING statement:

DATABASE databasename USER username
TABLE databasename.tablename VIEW databasename.viewname
MACRO databasename.macroname TRIGGER databasename.triggername

 PROCEDURE databasename.procedurename
 FUNCTION databasename.functionname TYPE databasename.datatypename

To activate access logging:

 Install Access Logging on the system with the DIP script DIPACC.
 Create and empower a security administrator.
 Submit the BEGIN LOGGING statement to define an access logging rule. You

must submit this statement for each rule you define.

Example
Step 3 on the facing page is an example of three access logging rules. Each rule is described
below:

 Log all attempts to access the security macros — Creates a new row in the log table
each time a user attempts to access DBC.LogonRule or DBC.AccLogRule security
macros. The ALL keyword indicates that any one of 27 user actions triggers an
entry in the log table. The WITH TEXT option stores SQL statement contents in
the log table.

 Log all denied attempts to access system user DBC — Logs all denied attempts

made by any user to access system user with any one of the 27 defined actions.
Teradata stores the SQL text in the log table.

 Log any SQL statements that involve CREATE or DROP USER/DATABASE or

GRANT.

Access and Query Logging Page 49-15

Setting Up Access Logging

STEP 1 Install Access Logging on the system:

1. Run the DIP script DIPACC to install the DBC.AccLogRule macro in
system user DBC.

2. Restart the database to activate the code.

STEP 2 Create and empower a security administrator:

CREATE USER SecAdmin AS PASSWORD = secpasswd, PERM = 0, SPOOL = 500E6;
GRANT EXECUTE ON DBC.AccLogRule TO SecAdmin;
GRANT EXECUTE ON DBC.LogonRule TO SecAdmin;

STEP 3 Define access logging rules. Examples:

1. Log all attempts to access security macros.
2. Log all denied attempts to access DBC User.
3. Log any CREATE or DROP USER/DATABASE or GRANT commands.

BEGIN LOGGING WITH TEXT ON EACH ALL
ON MACRO DBC.LogonRule,

MACRO DBC.AccLogRule;

BEGIN LOGGING DENIALS WITH TEXT ON EACH ALL
ON USER DBC;

BEGIN LOGGING WITH TEXT ON EACH DATABASE, USER, GRANT;

ds186034
Sticky Note
they are macros with ;AccLogRuleandLogonRule (grant logon revoke logon)

ds186034
Sticky Note
if somebody tries to access security macrosbut if u try to update somethin on DBC and u were denied access, we wanna log it...only deniedanytime we have new users/db...or drop users/db, i wannna log thator anybody issues grant commands i wanna know that

ds186034
Underline
anybody

ds186034
Sticky Note
anytime there is a denial on dbc - log it

ds186034
Sticky Note
for any create drop grant

 Access and Query Logging Page 49-16

Access Log Views
There are actually four system-supplied views that provide information about the entries in
the DBC.AccLogRuleTbl[V] and the DBC.AccLogTbl[V]. They are:

DBC.AccLogRules[V] Teradata maintains entries in this view's underlying
table as the result of executing BEGIN/END
LOGGING statements. The system uses these entries
to determine which privilege checks should generate
rows in the DBC.AccLogTbl.

DBC.AccessLog[V] The underlying table for this view is DBC.AccLogTbl.

Each entry in DBC.AccLogTbl indicates the results of a
privilege check performed against a Teradata SQL
request, based on the criteria defined by the BEGIN
LOGGING statement.

Underlying DD/D Tables

 DBC.AccLogRuleTbl
 DBC.AccLogTbl

Access and Query Logging Page 49-17

Access Log Views

DBC.AccLogRules[V] Contains current logging rules generated by BEGIN
and END LOGGING statements.

DBC.AccessLog[V] Contains log entries collected as a result of applying
access log rules.

Dictionary Tables Accessed:

• DBC.AccLogRuleTbl

• DBC.AccLogTbl

ds186034
Sticky Note
this will be the bigger table

 Access and Query Logging Page 49-18

AccLogRules View
The DBC.AccLogRules[V] views provide information about logging rules currently in
effect on the system. These rules were put into effect by successfully processing BEGIN
LOGGING statements.

Example
The SQL statement on the facing page requests a list of the current rules stored in the
DBC.AccLogRules table. It limits the rules to CREATE and DROP database and user,
GRANT, SELECT, and EXECUTE.

The response produces four rows. Each contains a series of codes under each privilege
column. There are three positions under each privilege. The first position indicates how
often to log privilege checks. The second position indicates how often to log denials. The
third position indicates when to save text. The following codes are used for positions 1 and
2:

B Log FIRST and LAST occurrences.
E Log each occurrence.
F Log the FIRST occurrence.
L Log the LAST occurrence.
Blank No logging

The third position for text uses the following codes:

- Save text only for Denial entries.
+ Save text for all entries.
= Save text for all entries specified in multiple BEGIN

LOGGING Statements

The code E+ means insert a row for each occurrence and save the text. The code E- means
insert a row for each occurrence but only save the text for denials.

Access and Query Logging Page 49-19

AccLogRules View

SELECT UserName (CHAR (6)) AS "User//Name"
,DatabaseName (CHAR (6)) AS "Dbase//Name"
,TVMName (CHAR (10)) AS "TVM//Name"
,AcrCreateDatabase, AcrCreateUser, AcrDropDatabase
,AcrDropUser, AcrGrant, AcrSelect, AcrExecute

FROM DBC.AccLogRulesV;

Results:

ACR Columns are positional:

Position #1 = How often to log
requests (F, L, B, E, blank = First,
Last, Both, Each, None)

Position #2 = How often to log
denials (F, L, B, E, blank = First,
Last, Both, Each, None)

Position #3 = How often to save text
(+ All entries, - Denials, = All
Specified)

DBC.AccLogRules[V] views – return information about current access logging rules.

UserName DatabaseName TVMName AcrAlterFunction (AFN)
AcrCheckpoint (CPT) AcrCreateDatabase (CDB) AcrCreateFunction (CFN) AcrCreateMacro (CMC)
AcrCreateTable (CTB) AcrCreateUser (CUS) AcrCreateView (CVW) AcrCreateProcedure (CSP)
AcrCreExtProcedure (CXP) AcrDelete (DEL) AcrDropDatabase (DDB) AcrDropFunction (DFN)
AcrDropMacro (DMC) AcrDropTable (DTB) AcrDropUser (DUS) AcrDropView (DVW)
AcrDropProcedure (DSP) AcrDump (DMP) AcrExecute (EXE) AcrExecuteFunction (EFN)
AcrExecuteProcedure (ESP) AcrGrant (GRT) AcrIndex (IDX) AcrInsert (INS)
AcrReference (REF) AcrRestore (RST) AcrSelect (SEL) AcrUpdate (UPD)
AcrCreateTrigger (CTG) AcrDropTrigger (DTG) AcrCreateRole (CRO) AcrDropRole (DRO)
AcrCreateProfile (CPR) AcrDropProfile (DPR) AcrAlterProcedure (ASP) AcrRepControl (REP)
AcrAlterExtProcedure (AXP) AcrUDTUsage (USG) AcrUDTType (UDT) AcrUDTMethod (UDM)
AcrCreAuthorization (CAU) AcrDropAuthorization (DAU) AcrStatistics (STA) AcrShow (SHO)
AcrCreOwnerProcedure (COP) AcrConnectThrough(CTH) CreatorName CreateTimeStamp
AcrCreateGLOP (CGL) AcrDropGLOP (DGL) AcrGLOPMember (MGL)

User Dbase TVM
Name Name Name CDB CUS DDB DUS GRT SEL EXE

All All All E + E + E + E + E +
All DBC LogonRule E + E +
All DBC All E - E - E - E - E - E - E -
All DBC AccLogRule E + E +

 Access and Query Logging Page 49-20

BEGIN LOGGING – Example
The facing page provides an additional example of entries that may appear in the
DBC.AccLogRules view. This view provides information about logging rules currently in
effect on the system. These rules were put into effect by successfully processing BEGIN
LOGGING statements.

Access and Query Logging Page 49-21

BEGIN LOGGING – Example

BEGIN LOGGING DENIALS WITH TEXT ON EACH SELECT ON TABLE PD.Employee;

BEGIN LOGGING WITH TEXT ON FIRST INSERT ON TABLE PD.Employee;

BEGIN LOGGING WITH TEXT ON FIRST AND LAST DELETE ON TABLE PD.Employee;

BEGIN LOGGING WITH TEXT ON FIRST UPDATE ON TABLE PD.Employee;

BEGIN LOGGING DENIALS WITH TEXT ON LAST UPDATE ON TABLE PD.Employee;

SELECT UserName (CHAR (6)) AS "User//Name"
,DatabaseName (CHAR (6)) AS "Dbase//Name"
,TVMName (CHAR (10)) AS "TVM//Name"
,AcrSelect, AcrInsert, AcrDelete, AcrUpdate

FROM DBC.AccLogRulesV
WHERE DatabaseName = 'PD';

1

2

3

4

User Dbase TVM
Name Name Name SEL INS DEL UPD

All PD Employee E- F + B + FL=

1 2 3 4

Position #1 = How often to log requests (F, L, B, E, blank = First, Last, Both, Each, None)

Position #2 = How often to log denials (F, L, B, E, blank = First, Last, Both, Each, None)

Position #3 = How often to save text (+ All entries, - Denials, = All Specified)

ds186034
Sticky Note
blank so grant and denials

ds186034
Sticky Note
we have 4 rules here

ds186034
Sticky Note
not a lotta test questions on it

 Access and Query Logging Page 49-22

AccessLog View
The DBC.AccessLog[V] views display the entries made in the DBC.AccLogTbl system
table. It returns information on the results of privilege checks performed against user
requests to access data, which are logged as determined by the access logging rules.

Administrators may use this view to analyze application performance. This view would
provide information about SQL requests (the text), tables and views accessed, embedded
view (view of views), etc.

 Access Type
 The same codes are used to indicate an access right, but with CUS and DUS for

CREATE/DROP USER, AN for any privilege (validated for HELP and SHOW
commands), HR for HOST UTILITY LOCK, and WL for WRITE LOCK.

 Frequency
 F, L, B, E = First, Last, Both or Each.

Once logging begins, the access log grows very quickly. To keep space consumption under
control, you should archive and empty the log regularly using the DBC.DeleteAccessLog
view.

Examples:

 DELETE FROM DBC.DeleteAccessLogV;

 – Deletes entries from DBC.AccLogTbl older than 30 days.

 DELETE FROM DBC.DeleteAccessLogV WHERE LOGDATE < (DATE – 90);

 – Deletes entries from DBC.AccLogTbl older than 90 days.

Access and Query Logging Page 49-23

AccessLog View

These views display entries made to DBC.AccLogTbl.

DBC.AccessLog[V]

LogDate LogTime LogonDate LogonTime
LogicalHostID IFPNo SessionNo UserName
AccountName OwnerName AccessType Frequency
EventCount AccLogResult Result DatabaseName
TVMName ColumnName StatementType StatementText
QueryBand ProxyUser

Access Type The same codes are used that indicate an access right.
Frequency F, L, B, E = First, Last, Both or Each.

To delete entries in the DBC.AccLogTbl, use the DBC.DeleteAccessLog[V][X] views.

• DELETE FROM DBC.DeleteAccessLogV;

– Deletes entries older than 30 days.

• DELETE FROM DBC.DeleteAccessLogV WHERE LOGDATE < (CURRENT_DATE – 90);

– Deletes entries older than 90 days.

ds186034
Sticky Note
default is older than 30 days

 Access and Query Logging Page 49-24

AccessLog View – Example
The SELECT statement on the facing page requests the contents of the DBC.AccLogTbl via
the DBC.AccessLog view. The response shows seven separate entries.

User TFACT01 executed the following SQL statements at the listed times:

09:04:25 SELECT * FROM PD.Employee;

09:17:04 UPDATE PD.Employee SET Salary_Amount = 51000 WHERE
 Employee_Number = 100996;

09:24:31 UPDATE PD.Employee SET Salary_Amount = 51000 WHERE
 Employee_Number = 100995;

09:32:50 UPDATE PD.Employee SET Salary_Amount = 51000 WHERE
 Employee_Number = 100994;

Note that only the last UPDATE denial for TFACT01 appears on the following page. The
rule specified to log the Last Update denial.

User Sysdba executed the following SQL statements at the listed times:

09:10:17 INSERT INTO PD.Employee VALUES
 (101001, 1060, 100991, 3054, 'Scott', 'Bill', 50000.00);

09:12:22 DELETE FROM PD.Employee
 WHERE Employee_Number = 100900;

09:12:25 DELETE FROM PD.Employee
 WHERE Employee_Number = 100901;

09:12:31 DELETE FROM PD.Employee
 WHERE Employee_Number = 100902;

09:15:54 UPDATE PD.Employee SET Salary_Amount = 51000
 WHERE Employee_Number = 101001;

09:57:20 UPDATE PD.Employee SET Salary_Amount = 51000
 WHERE Employee_Number = 100800;

Note that only the first and last DELETEs for Sysdba appear on the following page based on
the Access Log Rules. Also notice that only the first UPDATE appears on the facing page.

Note about uppercase and lowercase Frequency values:
 When a FIRST and LAST are both specified for an entry, a lower case ‘l’ or ‘f’ are used

to identify which entry this one is. An uppercase ‘L’ and ‘F’ is used if one is specified
without the other.

Access and Query Logging Page 49-25

AccessLog View – Example

SELECT LogTime
,UserName (CHAR (10)) AS "User//Name"
,AccessType AS "Access//Type"
,Frequency AS "Log//Freq"
,AccLogResult AS "Granted//Denied"
,StatementText AS "Statement//Text"

FROM DBC.AccessLogV
WHERE LogDate = CURRENT_DATE
ORDER BY LogDate, LogTime ;

Results:

Example:
List all of the entries
in the Access Log
table for the current
date.

LogTime User Access Log Granted Statement
Name Type Freq Denied Text

09:04:25 TFACT01 S E D SELECT * FROM PD.Empl...
09:10:17 SYSDBA I F G INSERT INTO PD.Employe ...
09:12:22 SYSDBA D f G DEL FROM PD.Employee ...
09:12:31 SYSDBA D l G DEL FROM PD.Employee ...
09:15:54 SYSDBA U F G UPDATE PD.Employee SE ...
09:17:04 TFACT01 U f D UPDATE PD.Employee SE ...
09:32:50 TFACT01 U l D UPDATE PD.Employee SE ...

Note: The facing page contains the SQL that generated this report.

 Access and Query Logging Page 49-26

END LOGGING – Example
The facing page provides the END LOGGING statements to remove the logging for the
PD.Employee table.

The BEGIN LOGGING statements (that were previously executed) are:

BEGIN LOGGING DENIALS WITH TEXT
 ON EACH SELECT
 ON TABLE PD.Employee;

BEGIN LOGGING WITH TEXT
 ON FIRST INSERT
 ON TABLE PD.Employee;

BEGIN LOGGING WITH TEXT
 ON FIRST AND LAST DELETE
 ON TABLE PD.Employee;

BEGIN LOGGING WITH TEXT
 ON FIRST UPDATE
 ON TABLE PD.Employee;

BEGIN LOGGING DENIALS WITH TEXT
 ON LAST UPDATE
 ON TABLE PD.Employee;

Access and Query Logging Page 49-27

END LOGGING – Example

Previously, these rules were created for logging on PD.Employee table.

BEGIN LOGGING DENIALS WITH TEXT ON EACH SELECT ON TABLE PD.Employee;
BEGIN LOGGING WITH TEXT ON FIRST INSERT ON TABLE PD.Employee;
BEGIN LOGGING WITH TEXT ON FIRST AND LAST DELETE ON TABLE PD.Employee;
BEGIN LOGGING WITH TEXT ON FIRST UPDATE ON TABLE PD.Employee;
BEGIN LOGGING DENIALS WITH TEXT ON LAST UPDATE ON TABLE PD.Employee;

To end the logging for PD.Employee table, the following statements can be executed:

END LOGGING DENIALS ON SELECT, UPDATE ON TABLE PD.Employee;
END LOGGING ON INSERT, DELETE, UPDATE ON TABLE PD.Employee;

To verify the rules have been removed, use the DBC.AccLogRules view:

SELECT UserName (CHAR (6)) AS "User//Name"
,DatabaseName (CHAR (6)) AS "Dbase//Name"
,TVMName (CHAR (10)) AS "TVM//Name"
,AcrSelect, AcrInsert, AcrDelete, AcrUpdate

FROM DBC.AccLogRulesV
WHERE DatabaseName = 'PD';

User Dbase TVM
Name Name Name SEL INS DEL UPD Rules for PD.Employee have

been removed.

ds186034
Sticky Note
can use just this 2 statements to turn em all off

ds186034
Sticky Note
and then check it

ds186034
Sticky Note
if we created this way

 Access and Query Logging Page 49-28

Teradata Administrator – Tools Menu > Access
Logging

The Tools menu provides the following options.

Menu Selection Function / Options

Create

Create an entirely new object – Database, Table,
User, Profile, or Role.

Grant/Revoke Grant or revoke general access privileges to users.
Options include Object Rights, System Rights,
Logon Rights, or Column Rights.

Administer Profiles Create and manage Profiles for users.

Administer Roles Create and manage Roles.

Clone User Create a new user either identical or closely related
to an existing user.

Modify User Change the specifications of an existing user.

Access Logging Create and manage Access Log rules.

Query Logging Create and manage Query Log rules.

Move Space Reallocate permanent disk space from one database
to another (efficient if not a direct descendant or
parent).

Query Create, modify, test, or run SQL query scripts.

Options Configure the operational preferences for Teradata
Administrator.

The example on the facing page effectively causes the following BEGIN LOGGING
statement to be executed.

 BEGIN LOGGING WITH TEXT ON EACH
 CREATE DATABASE, CREATE USER, CREATE PROFILE, CREATE ROLE, DROP

DATABASE, DROP USER, DROP PROFILE, DROP ROLE;

Access and Query Logging Page 49-29

Teradata Administrator
Tools Menu > Access Logging

Teradata Administrator
can be used to Begin
and End Access
Logging – effectively
managing Access Log
rules.

To select …

Tools >
Access Logging

Group Options:

Selecting different Groups
will automatically choose
specific Normal, Create, or
Drop functions.

The corresponding BEGIN
LOGGING statement is
provided on the facing
page.

ds186034
Sticky Note
for all db and all usersprofile and roletheni wanna log

 Access and Query Logging Page 49-30

Query Logging (DBQL) Concepts

Provides Collection of Historical records based on Rules
DBQL provides a series of predefined tables that can store, based on rules you specify,
historical records of queries and their duration, performance, and target activity. DBQL is
flexible enough to log information on the variety of SQL requests that run on Teradata, from
short transactions to longer-running analysis and mining queries. You begin and end
collection for a user or group of users and/or one or a list of accounts.

Performance
The performance of collecting query activity with DBQL is much better that attempting to
capture query activity with the Access Logging facility because DBQL stores information in
cache memory and will write to disk only when cache is full or when you use END QUERY
LOGGING.

Notes about performance:

 The impact of turning on DBQL for all-AMP operations is negligible in
comparison to the time an all-AMP operation takes to complete.

 The impact of turning on DBQL for single-AMP (PI) and two-AMP (USI)

operations does impact the response time of the operation by a small amount.
These types of operations are best suited for summary logging where the overhead
is negligible.

 Specific information from the San Diego performance group follows:

With a single session of single-AMP queries (a total of 40,000 were executed), with
default logging, the total response time increased by 6.5%. The performance report
shows an average CPU path length increase of 4.6 ms for similar type work, from a
baseline (no logging) path length of 4.3 ms, essentially a doubling of the path
length.

While the response time tests indicated summary level logging on single AMP
queries to have only a 1.6% increase in total response time, the performance report
showed less than 1% increase in path length with summary logging.

The clear conclusion to be drawn is that single or few AMP queries will be best
suited for summary logging, and will exhibit negligible overhead if logging is at
that level.

With all-AMP queries, even very short ones, the response time tests were not able
to pick up any overhead at all with any level of query logging enabled, including
“all”.

Access and Query Logging Page 49-31

Query Logging (DBQL) Concepts

• DBQL is a feature that is used to log historical query information.

– DBQL caches and eventually stores query information in multiple Teradata Data Dictionary
tables as the queries are executed.

– Key use is to track SQL for query and workload analysis.

– Not intended for live review of quer ies and query steps.

• Logging is invoked and revoked via SQL statements – BEGIN QUERY LOGGING, END
QUERY LOGGING, and REPLACE QUERY LOGGING.

– Logging can be invoked for an application name (e.g., FASTLOAD), all users, a list of users, a
list of accounts, or a specific user/account.

– You can also selectively exclude users, applications, and so on from logging through the use
of the WITH NONE option (13.0 feature).

– 13.10 Feature – REPLACE QUERY LOGGING allows you to replace a logging rule set.

• By default, 1 row per query is logged that contains user id information and some
statistics for that query.

– Options are available to expand the amount and kind of information to be logged.

• DBSControl option (DBQLFlushRate) – determines the frequency (default is 10
minutes) for writing DBQL cache entries to DBQL dictionary tables.

ds186034
Sticky Note
security logging all earlierfor security analysisnow capturing for workload analysis WA)lets me log queriesfor WL analysisfor goood design choicesnew after 13.10 replace query logging

 Access and Query Logging Page 49-32

Objects used in Defining Rules for DBQL
The DBQL logs are a series of system tables created in database DBC during the Teradata
Database installation process. The suite of DBQL components includes a security macro
and a view for each table, which are created in database DBC by the DIP utility during
installation.

Rules
You define rules that identify for which users and how much data to log for queries. For
instance, you can log the first 5,000 characters of any query that runs during a session
invoked by a specific user under a specific account. This rule can also be qualified so that
only queries that exceed a specified time threshold are logged and those queries that execute
in less than the threshold time are simply counted.

The DBC.DBQLRuleTbl table stores the rules resulting from each BEGIN QUERY
LOGGING statement. One row exists for each set of specifications, which are made up of
user and/or account plus any options or limits set for the user.

The DBC.DBQLRuleCountTbl table is an internal table that stores the cardinality of
DBC.DBQLRuleTbl table.

The DBC.DBQLRules[V] views are used to display DBQL rules that are in effect.

Access and Query Logging Page 49-33

Objects used in Defining Rules for DBQL

Users who are granted EXECUTE permission on the following macro can use the BEGIN
QUERY LOGGING, END QUERY LOGGING, and REPLACE QUERY LOGGING statements.

DBC.DBQLAccessMacro

DD/D MacroExample:

GRANT EXECUTE ON DBC.DBQLAccessMacro TO Sysdba;

Initially, only DBC and SystemFE users are allowed to issue
BEGIN/END QUERY LOGGING statements.

Execution of BEGIN QUERY LOGGING, END QUERY LOGGING, or
REPLACE QUERY LOGGING (13.10) statements causes rows
(representing the rules) to be added or updated in …

To view the rules in this table, SELECT from these views.

DBC.DBQLRuleTbl

DD/D Tables

DBC.DBQLRules[V]

DD/D Views

Note: There are additional tables and views that are used to hold and view
captured query data – these are shown on next page.

 Access and Query Logging Page 49-34

Objects used in DBQL (cont.)
The DBQL logs are a series of system tables created in database DBC during the Teradata
Database installation process. The suite of DBQL components includes a security macro
and a view for each table, which are created in database DBC by the DIP utility during
installation.

Like other system tables, the predefined DBQL logs are created as relational tables in
database DBC during normal Teradata Database installation. However, while most system
tables are populated automatically, you can choose whether you want to populate the DBQL
tables.

If you choose not to use the feature, the tables remain empty. If you want to use the feature,
simply submit a BEGIN/END QUERY LOGGING statement, with or without options, to
control the start, magnitude, and end of logging activity. The options enable you to control
the volume and detail of the logged data. You can define rules, for instance, that log the first
5,000 characters of any query that runs during a session invoked by a specific user under a
specific account, if the time to complete that query exceeds the specified time threshold.

The key or foundation table in DBQL is the DBC.DBQLogTbl table that holds the default
rows. When you specify options that result in more information being captured, a default
row is still generated in this table plus one or more additional logs (tables) will get rows.

 Exceptions to this are when you use the SUMMARY option or a query completes
within a THRESHOLD. In these cases, default rows won’t be placed into
DBC.DBQLogTbl.

The facing page summarizes the tables and views used by DBQL to hold query data. Details
on these views can be found in Appendix C.

Acronym: TDWM – Teradata Dynamic Workload Manager

Access and Query Logging Page 49-35

Objects used in DBQL (cont.)

Key views and tables used to hold query data are ...

DBC.DBQLogTbl

DD/D TablesDD/D Views

DBC.QryLog[V]

DBC.DBQLStepTblDBC.QryLogSteps[V]

DBC.DBQLObjTblDBC.QryLogObjects[V]

DBC.DBQLSqlTblDBC.QryLogSQL[V]

DBC.DBQLSummaryTblDBC.QryLogSummary[V]

DBC.DBQLExplainTblDBC.QryLogExplain[V]

Stores default rows (key table)

One row per step

One row per object referenced in
query

Stores full SQL text – multiple rows
may be needed

Queries meeting Summary or
Threshold rules

Stores EXPLAIN steps of query

Stores Optimizer query plan for the
logged query as an XML document

DBQL Purpose

Examples of additional DBQL views that provide TDWM information include:

DBC.QryLogEvents[V] – TDWM events that could affect system performance
DBC.QryLogEventHis[V] – history of TDWM events
DBC.QryLogExceptions[V] – query exceptions as defined by Workload Definitions (WD)

DBC.DBQLXMLTblDBC.QryLogXMLV (13.0)

ds186034
Sticky Note
these are default rowsrest are optionalthese tables can get pretty largethey are part of DBC space

 Access and Query Logging Page 49-36

BEGIN QUERY LOGGING Statement
The DBQL facility is controlled by the Teradata SQL statements BEGIN QUERY
LOGGING and END QUERY LOGGING.

There are numerous collection options using the WITH and LIMIT options. These options
will be described on the following pages.

BEGIN QUERY LOGGING
When submitted by a user with EXECUTE privileges on DBC.DBQLAccessMacro, enables
logging for the named users and/or accounts. For active sessions, logging begins when the
next query is received. (Teradata recommends a maximum of 100 user/account pairs per
statement.)

When you do not specify a LIMIT option, one default row of query-level information is
logged in DBQLogTbl for each query processed during a session that is initiated by any user
for whom a query logging rule exists.

Default rows are stored in DBQLogTbl, the foundation of the DBQL feature. If you specify
options that result in more detailed information, a default row is still generated in
DBQLogTbl (except with the SUMMARY option or a query that completes within the limit
specified with the THRESHOLD option), plus one or more additional logs are populated
with one or more additional rows.

Examples of valid application names (Teradata 13.0 feature) include FASTLOAD,
FASTEXP, MULTLOAD, ARC, etc.

You can determine the application name used in the LogonSource string for a running
application by querying DBC.SessionInfo as follows:

 SELECT DISTINCT (LogonSource) FROM DBC.SessionInfo;

The Default Row
The fields of the default row provide general query information that is usually adequate for
investigating a query that is interfering with performance. When no options are specified,
key fields in a default row includes the following (not a complete list).

 User name under which the session being logged was initiated
 Unique ID for the process, session, and host (client) connection
 Account string, expanded as appropriate, that was current when the query

completed
 First 200 characters of the query SQL statement.
 Time of receipt
 Number of processing steps completed
 Time the first step was dispatched, and
 Times of the first and last response packets were returned to the host.

Access and Query Logging Page 49-37

BEGIN QUERY LOGGING Statement

• A BEGIN QUERY LOGGING statement without the WITH or LIMIT options causes default
rows to be placed in the DBQLogTbl. A default row contains:

– User name, account string (expanded), time stamp information
– Unique ID for process, session, and client (host) connection
– First 200 characters of SQL statement

• Use of the WITH option(s) cause a default row to be placed in DBC.DBQLogTbl plus
additional rows in other DBQL tables or can cause query logging to be turned off.

• The LIMIT option may be used to limit the amount of SQL text captured, set thresholds,
or just capture summary information.

BEGIN QUERY LOGGING A
,

WITH logging_option LIMIT limit_option
AND limit_option

A ON ALL
, ;

,

user_name
,

ACCOUNT = ('account_name')
,

('appl_name')
Note: single account names or application names do not require ()

 Access and Query Logging Page 49-38

BEGIN QUERY LOGGING WITH … (cont.)

… NONE (13.0)
You can specify any of the following items with NONE:

 account:user pair or account:user list
 application name or application name list
 user name list
 ALL:account name or account name list
 ALL (which specifies all accounts)

No additional options are valid if you specify WITH NONE.

… ALL
Logs all information generated by all the WITH rules (EXPLAIN, OBJECTS, SQL, & STEPINFO)
and the default row.

… EXPLAIN
Use this option selectively because the performance cost of generating EXPLAINs can be expensive.
This option generates and logs the unformatted EXPLAIN text for each query. It does not generate
EXPLAIN text for queries preceded by the EXPLAIN modifier. This option logs one or more rows
into DBC.DBQLExplainTbl

… OBJECTS
Use this option selectively. Object data is useful for analyzing queries that make heavy use of join
indexes and indexed access, but can generate many rows. Inserts one row per target object per query
in DBC.DBQLObjTbl.

… SQL
This option logs the entire SQL statement in the DBC.DBQLSqlTbl table. Large statements can
cause multiple rows to be written in order to log the full query text.

… STEPINFO
Use this option selectively. Although step data is useful for analyzing queries, this option can
generate many rows. Inserts one row per step per query in the DBC.DBQLStepTbl.

… XMLPLAN (13.0)

Logs the query plan generated by the Optimizer for all SQL DML requestsa as an XML document in
system table DBC.DBQLXMLTbl. Because the XML document includes the query and step text,
you generally do not need to specify the EXPLAIN and SQL options if you specify XMLPLAN.
You should also specify a value of 0 for SQLTEXT to avoid redundant logging when you specify
XMLPLAN. This option logs one or more rows into DBC.DBQLXMLTbl.

… STATSUSAGE (14.0)

Logs statistics usage data and detailed query plan information for all DML and selected DDL
requests as an XML document in DBC.DBQLXMLTbl. If you specify both XMLPLAN and
STATSUSAGE, Teradata logs the collected data into a single integrated document.

Access and Query Logging Page 49-39

BEGIN QUERY LOGGING WITH ... (Cont.)

WITH options

• NONE – turns off query logging for the specified user, account, or application name.

• ALL – logs the default row plus includes EXPLAIN, OBJECTS, SQL, and STEPINFO options.

• EXPLAIN – logs the default row plus the unformatted EXPLAIN text for the query in DBQLExplainTbl.

• OBJECTS – logs one row per target object per query in DBQLObjTbl plus default row in DBQLogTbl.

• SQL – logs the entire SQL for each request DBQLSqlTbl plus default row in DBQLogTbl.

• STEPINFO – inserts one row per step per query in DBQLStepTbl plus default row.

• STATSUSAGE (14.0) – logs statistics usage data and detailed query plan information for all DML and
selected DDL requests as an XML document in DBQLXMLTbl.

• XMLPLAN – stores Optimizer query plan for the query in DBQLXMLTbl as an XML document.

BEGIN QUERY LOGGING A
,

WITH logging_option LIMIT limit_option
AND limit_option

A ON ALL
, ;

,

user_name
,

ACCOUNT = ('account_name')
,

('appl_name')
Note: single account names or application names do not require ()

ds186034
Sticky Note
default only has 200bytes for SQLif u wanna capture SQL if it exceeds than turn this option onSTEPifno:lower level of detail than explain

 Access and Query Logging Page 49-40

BEGIN QUERY LOGGING LIMIT … (cont.)
… SQLTEXT

Use this option if you want to capture less than or more than the first 200 characters in the
default row. To turn off text capture in the default row completely, specify 0 (zero). The
maximum limit is 10,000 characters. If you specify the option keyword but not a value, up
to 10,000 characters are logged in DBQLogTbl.

To store the complete statement regardless of length, specify the SQL option, as many rows
as needed to contain the full text will be logged in DBQLSqlTbl. (If you do this, define
LIMIT SQLTEXT=0 to avoid redundant logging in both the default row and DBQLSqlTbl.)

Note: Also set LIMIT SQLTEXT=0 if you specify either the WITH ALL or the WITH
SQL option, which also logs SQL.

… SUMMARY
SUMMARY is useful for tracking voluminous short queries, such as for OLTP applications,
because it does not grow the DBQLogTbl. It simply counts queries based on specified time
differentials and stores the count results in DBQLSummaryTbl.

The SUMMARY option is unique in that it:

 Does not generate default rows in DBQLogTbl
 Summary information is flushed at system-controlled intervals of 10 minutes
 If no data has been collected for a summary category in a 10-minute interval, no

rows will be written for it.

… THRESHOLD
THRESHOLD also is useful for short, high-volume queries, but in addition to incrementing
a count for qualifying queries, THRESHOLD logs a default row for any query that exceeds
the specified time. This enables you examine the processing timestamps and the query
structure. You can combine THRESHOLD with SQLTEXT if you want to capture more
than the first 200 characters of a query that runs longer than THRESHOLD seconds for
identification of the longer running queries.

You define the threshold of execution time, in seconds, which determines whether to log a
query or just count it, as follows:

IF a query completes at or under the threshold time

 Increments the query count and the query seconds
 Stores the final count for the session as a row in DBQLSummaryTbl
 In the summary row, sets the value in the LowHist field to the THRESHOLD time

and in the HighHist field to 0 (to identify it as a THRESHOLD row)

IF a query runs beyond the threshold time

 DBQL logs a default row for the query in DBQLogTbl so you can examine its
structure and the number and level of processing steps.

Access and Query Logging Page 49-41

BEGIN QUERY LOGGING LIMIT … (cont.)

LIMIT options

• SQLTEXT – specify the amount of SQL text to capture in the default row of DBQLogTbl. (Default is
200 char., 0 = off, max = 10,000 characters)

• SUMMARY (for high volume queries or tactical queries – doesn't log default rows)
– Counts queries; count is written in DBQLSummaryTbl every 10 min

• THRESHOLD (Also for short high-volume queries – example tactical queries)

– Similar to SUMMARY, but default rows are generated in DBQLogTbl.

– Threshold, in seconds, determines whether to log a query or just count it.

• Query that complete <= threshold (sec.) are counted in DBQLSummaryTbl.

• Query that complete > threshold (sec.), DBQL logs the default row.

BEGIN QUERY LOGGING A
,

WITH logging_option LIMIT limit_option
AND limit_option

A ON ALL
, ;

,

user_name
,

ACCOUNT = ('account_name')
,

('appl_name')
Note: single account names or application names do not require ()

ds186034
Sticky Note
capture long running onesand count the short ones

 Access and Query Logging Page 49-42

BEGIN QUERY LOGGING Examples
The facing page contains a number of BEGIN QUERY LOGGING examples.

Prior to Teradata 13.0, when you specify BEGIN QUERY LOGGING ON ALL;, you
effectively create a rule for “everyone”. Therefore, you cannot create rules for specific
users. The opposite is also true. If you create rules for specific users, you cannot create a
rule for ALL.

Starting with Teradata 13.0, there is more flexibility with query logging. Also starting with
Teradata 13.0, there is a hierarchy of applying database query logging rules.

Hierarchy of Applying Database Query Logging Rules
Database Query Logging works from a hierarchical foundation that allows BEGIN QUERY
LOGGING requests to be submitted for individual users even if a rule exists for ALL users.

However, if a rule exists for a specific account:user pair, you must submit an appropriate
END QUERY LOGGING request to delete the rule before you can issue a new rule for that
account:user pair. Teradata Database applies the rules in the following order:

Order Type of Rule
 1 A rule based on an application name.
 2 A rule for this specific user and specific account.
 3 A rule for this specific user and any account.
 4 A rule for all users and this specific account.
 5 A rule for all users and any account.

DBQL first searches for a rule based on an application name. If no such rule exists, DBQL
then looks for a rule specific to the user and account, and so on down the hierarchy.

The rules cache contains rules either for an application or for a specific account:user
combination. As each user logs on, DBQL first searches the rules cache in hierarchical
order for a rule. If there are no specific rules in the rules cache for level 1 or 2, DBQL
searches DBC.DBQLRuleTbl in hierarchical order for the best fit. DBQL makes an entry in
the rules cache for the account:user pair: either a rule that DBQL is not enabled for the
account:user or the DBQL rule that applies with its options. If a match is made on the rules
table at level 1, DBQL makes an application name entry in the rules cache.

For example, you can submit a BEGIN QUERY LOGGING request for default logging on
ALL users, and DBQL can also be enabled for user1 with objects and steps. If user1 logs
on and executes queries, DBQL collects objects and steps. When users other than user1 log
on and execute queries, DBQL only logs default row information for them.

Access and Query Logging Page 49-43

BEGIN QUERY LOGGING Examples

BEGIN QUERY LOGGING ON ALL;

BEGIN QUERY LOGGING ON ALL;
BEGIN QUERY LOGGING WITH NONE ON tfact01, tfact02;

BEGIN QUERY LOGGING ON tfact03 ACCOUNT = ('$L_&S&D&H', '$M_&S&D&H');

BEGIN QUERY LOGGING WITH SQL ON ALL;
BEGIN QUERY LOGGING WITH NONE ON APPLNAME = ('FASTLOAD', 'TPTLOAD');

• Creates a rule to log default query information on all users and accounts.

• Creates a rule to log default query information on all users and accounts.
• Creates two additional rules to disable query logging for tfact01 and tfact02.

• Creates two rules for a specific user – each rule identifies a specific account id.

• Creates a rule to log default query information and full SQL on all users and accounts.
• Creates a rule to disable logging for any FastLoad or TPT Load job.

BEGIN QUERY LOGGING ON APPLNAME = ('MULTLOAD', 'TPTUPD');

• Creates a rule to enable logging for any MultiLoad or TPT Update job. (no 'I' in MULTLOAD)

ds186034
Sticky Note
turn it off for 1 and 2

ds186034
Sticky Note
i can turn it off by account

ds186034
Sticky Note
application has the ability to pass on the app name

 Access and Query Logging Page 49-44

BEGIN QUERY LOGGING Examples (cont.)
The facing page contains additional BEGIN QUERY LOGGING examples.

Limits that may be used include:

SQLTEXT: option to control the number of SQL statement characters to log

 200 characters of SQL logged in default row
 SQLTEXT values range from 0 to 10,000
 “SQLTEXT” without a value logs 10,000 characters

 THRESHOLD: option to limit the queries logged by elapsed time

 THRESHOLD values are specified in seconds.
 “THRESHOLD” without a value results in a 5 second value.
 Queries greater than Threshold value generate a default row.
 Maximum THRESHOLD value is 32,767 seconds.

Notes about Threshold logging in Teradata 13.10:

 Starting with Teradata 13.10, you can use THRESHOLD logging along with the
SQL, STEPINFO, and EXPLAIN options.

 With threshold logging, DBQL cannot log to separate Explain and XML tables,

even for those queries taking longer than the specified criteria. SQL, STEPINFO,
and OBJECTS can be logged during threshold logging, even for those queries
taking longer than the specified clock seconds.

 By filtering logging with THRESHOLD will lower the performance overhead of

detailed logging of unnecessary queries.

 For example, to log into DBQLogTbl, DBQLSqlTBL, DBQLStepTbl and

DBQLObjTbl queries that run beyond 1 CPU and summarize all other queries in
the DBQLSummaryTbl:

 BEGIN QUERY LOGGING with SQL, STEPINFO, OBJECTS LIMIT

THRESHOLD=100 CPUTIME on ALL;

SUMMARY: option to only count running queries based on elapsed time.

 3 values (in seconds) are needed; no verification done on order of values
 4 count intervals are created

 <= n1; > n1 <= n2; > n2 <= n3; > n3
 Data is logged in the DBC.DBQLSummaryTbl every 10 minutes (or if the cache

should get full). There is no parameter to change the flush period of 10 minutes.
 1 row for each count > 0
 SUMMARY cannot be used with any other “limits”.

Access and Query Logging Page 49-45

BEGIN QUERY LOGGING Examples (cont.)

BEGIN QUERY LOGGING WITH ALL ON ALL;

BEGIN QUERY LOGGING LIMIT SUMMARY = 5, 60, 600 ON ALL;

• ALL options are logged for ALL users (probably generates too much information).

• Default Summary option is to only count running queries based on elapsed time. 3 values (in
sec.) are required. 4 count intervals are logged (<=5, <=60, <=600, >600)

• Summary limit cannot be used with any other limits.

• If a query runs for less than or equal to 60 seconds (1 minute), increment the count.
• If a query runs longer than 1 minute, log a default row.
• Teradata 13.10 feature – ability to also log SQL, Objects, and StepInfo with Threshold logging.

BEGIN QUERY LOGGING WITH OBJECTS, SQL ON ALL;
BEGIN QUERY LOGGING WITH OBJECTS, SQL, EXPLAIN ON tfact07, tfact08;

• Default rows are logged as well as complete SQL text and objects used in queries for all users.
• The default row has the first 200 bytes of SQL text.
• For tfact07 and tfact08, Explain text is also captured.

BEGIN QUERY LOGGING WITH SQL, OBJECTS LIMIT THRESHOLD = 60 ON ALL;

In these examples, the ON option can specify users, account ids, or application names.

 Access and Query Logging Page 49-46

BEGIN QUERY LOGGING Examples (cont.)
The SUMMARY and THRESHOLD limits have additional options. The default for each of
these limits is elapsed time (ELAPSEDSEC).

SUMMARY
SUMMARY = n1, n2, n3 [ELAPEDSEC, ELAPSEDTIME, CPUTIME, CPUTIMENORM or
IOCOUNT]

The SUMMARY option is designed for use with short, OLTP-like, queries. This option counts the
number of queries for the session that fall into each of four time intervals. Interval values can be
specified in seconds, CPU time, or I/O counts.

If you specify SUMMARY, then you cannot specify any other options. You must specify the first
three intervals explicitly. The fourth interval is created by default which is 32,767 seconds or 9
hours.

THRESHOLD

THRESHOLD [=n] [ELAPEDSEC, ELAPSEDTIME, CPUTIME, CPUTIMENORM or IOCOUNT]

This option is also designed for use with tactical queries. This option sets a threshold time in
seconds that determines whether a query is to be logged fully or just counted.

If a query completes earlier than or equal to the threshold value, then it is only logged as a count in
DBQLSummaryTbl. The Threshold row in DBQLSummaryTbl is identified by a HighHist field
value of 0. If a query completes later than the threshold value, then a full entry is logged for it in
DBQLogTbl with values for all fields of the row

Options for both SUMMARY and THRESHOLD
ELAPSEDSEC (default) – use this option to set ranges and to summarize counts of the number of
requests that fall into an elapsed time interval. This value is expressed in units of 1.00 seconds.

ELAPSEDTIME – use this option to set ranges and to summarize counts of the number of requests
that fall into an elapsed time interval. The value is expressed in units of 0.01 seconds so it provides
finer granularity for elapsed time than ELAPSEDSEC.

CPUTIME – use the CPU time for the query to set ranges and to summarize. The value is in units of
0.01 second. For example, if you specify 500 for one of the intervals, then the value used to make
the determination is 5 CPU seconds.

CPUTIMENORM – use this option to set ranges and to summarize counts of the number of requests
that fall into a normalized CPU time interval. This option is designed for use with coexistence
systems to aid in managing mixed nodes more efficiently, but it can be used with any system. The
value is expressed in units of 0.01 second.

IOCOUNT – use the I/O count for the query to set ranges and to summarize.

Access and Query Logging Page 49-47

BEGIN QUERY LOGGING Examples (cont.)

BEGIN QUERY LOGGING LIMIT SUMMARY = 100, 500, 2000 CPUTIME ON ALL;

• This Summary example only counts queries based on actual CPU time.

• 100 is 1 CPU second, 500 is 5 CPU seconds, and 2000 is 20 CPU seconds. 3 values are required. 4
count intervals are logged (<=100, <=500, <=2000, >2000)

• Summary limit cannot be used with any other limits.

• If a query generates less than or equal to 50 IO's, increment the count.

• If a query generates more than 50 IO's, log a default row.

BEGIN QUERY LOGGING LIMIT THRESHOLD = 50 IOCOUNT ON ALL;

In these examples, the ON option can also specify user name and/or account IDs.

The THRESHOLD and SUMMARY Limit options include:

• ELAPSEDSEC (default) – values are in units of 1.0 seconds; counts the number of requests that fall into
elapsed wall-clock time intervals

• ELAPSEDTIME – values are specified in units of 0.01 sec – provides finer granularity than ELAPSEDSEC

• CPUTIME – uses actual CPU time to set ranges and summarize – represented in units of 0.01 sec.

• CPUTIMENORM – similar to CPUTIME, but with normalized time intervals (use with coexistence systems)

• IOCOUNT – uses the I/O count for the query to set ranges and to summarize

ds186034
Sticky Note
not as accurate as CPU time

ds186034
Sticky Note
100 = 1cpu secin tick unit

 Access and Query Logging Page 49-48

END QUERY LOGGING Statement
… ON ALL – to stop logging query information for all users specified by a rule created by
a BEGIN QUERY LOGGING ON ALL statement.

…user_name – the name of a specific user or set of users for whom logging of SQL query
information is to be stopped.

…account_name – the name of one or more specific accounts for which logging of SQL
query information is to be stopped.

Account names must be enclosed by LEFT and RIGHT PARENTHESIS characters.
When you specify a list of accounts, each account name must be delimited by
APOSTROPHE characters and separated by COMMA characters.

If you begin query logging on a specific user-account pair, then you must also specify that
user-account pair to end query logging.

When this statement is submitted by a qualified user (with EXECUTE privileges on
DBQLAccessMacro), logging is stopped for the named users and/or accounts. This
command can be used for up to 100 active sessions. When this command is used, a routine
is called that commits the data and flushes the cache.

When you enable or disable query logging, the change has an immediate effect on active
sessions where the user or account being logged appears within the first 100 names you
specify in the user and/or account list of a single BEGIN/END QUERY LOGGING
statement. For users listed beyond the first 100, the user must log off from the Teradata
Database and restart the session.

Note: If you need to enable or disable large volumes of users or accounts, the best practice
is to submit an additional BEGIN/END QUERY LOGGING statement for each block of 100
names.

When you disable logging (submit an END QUERY LOGGING statement) for an active
session (a query for that session is in process) and data is already cached, the following
occurs:

 The data is committed immediately
 One or more DBQL rows are written (but may be incomplete)
 The cache is flushed
 Subsequent queries during that session are not logged

Access and Query Logging Page 49-49

END QUERY LOGGING Statement

END QUERY LOGGING ON ALL
, ;

ACCOUNT = ('account_name')

RULES
,

user_name
,

ACCOUNT = ('account_name')
,

appl_name

• Prior to Teradata 13.0, if “ON ALL” was used in the BEGIN statement, “ON ALL” must
be used in the END statement.

• If a list of users or a list of account strings was given in the BEGIN statement, logging
can be ended on an individual basis.

• The “END QUERY LOGGING” statement will cause DBQL cache to be written to the
tables except for Summary cache.

END QUERY LOGGING ON ALL RULES; Removes all rules.

END QUERY LOGGING ON tfact01; (You can end logging for a
specific user.)

END QUERY LOGGING ON tfact03 ACCOUNT=('$L_&D&H'); (You can end logging for a
specific account of a user.)

 Access and Query Logging Page 49-50

REPLACE QUERY LOGGING (13.10) Statement
The REPLACE QUERY LOGGING statement allows the customer to modify their query
logging for active users without having to end query logging and begin query logging. This
will help prevent missing logging data between the end logging and begin logging sequence
of statements.

This statement can also be used to avoid the end query logging and begin query logging
statement pairs and unnecessary flushing of DBQL caches.

The REPLACE QUERY LOGGING statement will replace an existing rule or will create a
new rule if one did not exist.

Additional 13.10 DBQL Enhancement
An additional Teradata 13.10 DBQL enhancement is that TypeOfUse column in the
DBQLObjTbl table will be populated

The TypeOfUse column contains the following numeric values:

 1 = Found in the resolver
 2 = Accessed during query processing
 4 = Found in a conditional context
 8 = Found in inner join condition
16 = Found in outer join condition
32 = Found in a sum node
64 = Found in a full outer join condition

Access and Query Logging Page 49-51

REPLACE QUERY LOGGING (13.10) Statement

• A REPLACE QUERY LOGGING (13.10) statement has the same options as the BEGIN
QUERY LOGGING statement.

– Replaces an existing rule. If no rule exists, it will be created.

• This statement allows you to replace a logging rule set. Formerly, this action required
two statements: END QUERY LOGGING and BEGIN QUERY LOGGING.

– This will help prevent missing logging data between the end logging and begin logging
sequence of statements.

– This statement also avoids the unnecessary flushing of DBQL caches.

REPLACE QUERY LOGGING A
,

WITH logging_option LIMIT limit_option
AND limit_option

A ON ALL
, ;

,

user_name
,

ACCOUNT = ('account_name')
,

('appl_name')
Note: single account names or application names do not require ()

 Access and Query Logging Page 49-52

DBQLRules View
A description of the columns in the DBC.DBQLRules[V] views follows:

UserName: Identifies the name associated with the rule.
AccountString: Contains the default account for the user, or the specified Account.
ApplName Contains the application name for the rule.
TypeOfRule Indicates whether logging is enabled or disabled by this rule.
ExplainFlag: T = Explain text will be stored; F = No explain text is provided.
ObjFlag: T = Object data (Columns, Indexes) will be stored; F = No object data.
SqlFlag: T = SQL text will be stored; F = No SQL text is provided.
StepFlag: T = Step level data will be stored; F = No step level data is provided.
XMLPlanFlag T = XML plans will be stored, F = No XML plans.
SummaryFlag: T = Summary information will be stored; F = not summarized.
ThresholdFlag: T = Count queries shorter than ThreshValue seconds;
 detailed data on long queries.Detailed data for all queries
TextSizeLimit: Indicates the number of characters of SQL text to be stored.
SummaryVal1: If Summary or Threshold is T, low history in seconds, CPU or IO.
SummaryVal2: Group 2: SummaryVal1 to SummaryVal2 seconds.
SummaryVal3: Group 3: SummaryVal2 to SummaryVal3 seconds.
TypeOfCriterion: Indicates if values are elapsed time, CPU seconds, or IO counts
 0 = Summary values are in 1.0 seconds
 1 = Values in CPU hundredths of seconds
 2 = Values in IO count
 3 = Values in normalized CPU time (hundredths of seconds)
 4 = Summary values are in 0.01 seconds

The BEGIN QUERY LOGGING statements that generated the rules on the facing page are
as follows:

BEGIN QUERY LOGGING ON ALL ACCOUNT = ('$H’);
BEGIN QUERY LOGGING LIMIT SQLTEXT=500 ON tfact01, tfact02;
BEGIN QUERY LOGGING ON tfact03 ACCOUNT = ('$M_&D&H');
BEGIN QUERY LOGGING LIMIT SUMMARY = 5, 30, 60 ON tfact04;
BEGIN QUERY LOGGING LIMIT THRESHOLD = 200 CPUTIME ON tfact05;
BEGIN QUERY LOGGING WITH SQL LIMIT SQLTEXT=0 ON tfact06;

The END QUERY LOGGING statements that correspond to these BEGIN QUERY
LOGGING statements are as follows:

END QUERY LOGGING ON ALL ACCOUNT = ('$H');
END QUERY LOGGING ON tfact01, tfact02;
END QUERY LOGGING ON tfact03 ACCOUNT = ('$M_&S&D&H');
END QUERY LOGGING ON tfact04;
END QUERY LOGGING ON tfact05;
END QUERY LOGGING ON tfact06;

Note: Simply replacing the BEGIN with END will also remove the rules.

Access and Query Logging Page 49-53

DBQLRules View

SELECT UserName (CHAR (8)) AS "User"
,AccountString (CHAR (8)) AS "Acct_ID"
,SqlFlag AS "Sql" , TextSizeLimit AS "Size"
,ThresholdFlag AS "T_Flag" , SummaryFlag AS "S_Flag"
,TypeofCriterion AS "Type"
,SummaryVal1 AS "V1" , SummaryVal2 AS "V2" , SummaryVal3 AS "V3"

FROM DBC.DBQLRulesV
ORDER BY 1;

DBC.DBQLRules[V] views – return information about current query logging rules.

UserName AccountString ApplName (13.0) TypeofRule (13.0) ExplainFlag
ObjFlag SqlFlag StepFlag XMLPlanFLag (13.0) SummaryFlag
ThresholdFlag TextSizeLimit SummaryVal1 SummaryVal2 SummaryVal3
ThreshValue TypeofCriterion (13.0)

User Acct_ID Sql Size T_Flag S_Flag Type V1 V2 V3

All $H F 200 F F ? ? ? ?
tfact01 F 500 F F ? ? ? ?
tfact02 F 500 F F ? ? ? ?
tfact03 $M_&S&D&H F 200 F F ? ? ? ?
tfact04 F 200 F T 0 5 30 60
tfact05 F 200 T F 1 200 ? ?
tfact06 T 0 F F ? ? ? ?

Example:

Notes:
BEGIN QUERY
LOGGING statements
are on facing page.

Type of Criterion:
0 – Elapsed (1.0 sec)
1 – CPUTIME
2 – IOCOUNT
3 – CPUTIMENORM
4 – Elapsed (0.01 sec)

ds186034
Sticky Note

 Access and Query Logging Page 49-54

QryLog View – Example
The facing page contains an example of using the DBC.QryLog[V] view.

One of the key columns is the CacheFlag column. This column can be one of the following:

 Blank indicates the query is not found in step cache.
 “S” if the query is a parameterized query and a Specific Plan is generated.
 “G” if the query is a parameterized query and a Generic Plan is generated.
 “T” if the query is found in step cache.
 “A” if the query is a parameterized query and a SpecAlways decision is taken.

That is, each time a query submitted, the USING values are peeked at and the query
is parsed.

The first time a parameterized request is seen, the parser peeks at the values in the USING
clause, and a plan specific to those values is produced. This will cause the cache flag for
that query's execution to be set to 'S' for 'specific plan'. At this point in time, no plan is
actually cached for re-use, because a value-specific plan was produced.

After this first 'specific plan' execution is complete, metrics from the execution, as well as
the estimates that were produced, are saved in the request cache, in preparation for
additional decisions that will be made should this request be seen again. If the parsing
engine (PE) time that resulted from the specific plan was a very small percent of the total
query execution time, then the optimizer may set a flag to always use a specific plan for this
query. If that decision is made, then the cache flag going forward will contain an 'A' for
'always specific' and no generic plans will be generated for this request as long as its metrics
remain in the request cache.

The second time that parameterized request is seen (assuming that the PE time that resulted
from the specific plan is non-trivial), a generic plan is produced resulting in a cache flag 'G'.
Once both a specific and a generic plan have been generated, the estimates and run-time
metrics they each produced can be compared side by side, and further decisions can be made
whether to always produce the specific or always produce the generic plan.

Assuming the same parameterized request is repetitively executed on the same PE, a
common pattern that may occur, is a cache flag sequence of 'S', 'G', 'T', 'T', 'T'...

The first time the query is seen, a specific plan is produced ('S'), the second time a generic
plan ('G'), and from that point on, the same generic plan is executed ('T') until that plan is
flushed from the cache.

Another column in this view (not listed on facing page) is AppId. Examples of names in
this column are BTEQ, EXECUTOR, FASTEXP, FASTLOAD, SAS, SQLA,
TBUILDEXE, TDLOAD, TPTEXP, TPTLOAD, and TPTUPD.

Access and Query Logging Page 49-55

DBC.QryLog View – Example

DBC.QryLog[V] views – return information about default rows in the DBQLogTbl.

SELECT ProcID, SessionID, UserName, QueryID, UserID, AcctString, ExpandAcctString,
StartTIme, FirstStepTime, ElapsedTime, CacheFlag, NumResultRows,
SpoolUsage, QueryText

FROM DBC.QryLogV
WHERE QueryID = 163811496961777848;

Example of the data in a default row with a QueryID of 163811496961777848.

Result: ProcID 16381
SessionID 116038
UserName tfact07

QueryID 163811496961777848
UserID 00007506

AcctString $M0+EDUC&S&D&H
ExpandAcctString $M0+EDUC00011603811092219

StartTime 2011-09-12 19:14:52
FirstStepTime 2011-09-12 19:14:52
ElapsedTime 0:00:00.070000

CacheFlag T
NumResultRows 1137

SpoolUsage 313,856
QueryText SELECT * FROM DBC.AccLogTbl WHERE Username LIKE …

Shown in BTEQ with SIDETITLES and FOLDLINE on.

ds186034
Sticky Note
they gonna use this query id hash it across the amps for a noPI table

 Access and Query Logging Page 49-56

QryLogSummary View – Example
An example of the output from the DBC.QryLogSummary[V is provided on the facing page.
This summary data was collected for the tfact04 user who had established multiple sessions
on the system. The summary rule was created as follows:

 BEGIN QUERY LOGGING LIMIT SUMMARY = 5, 30, 60 ON tfact04;

Access and Query Logging Page 49-57

QryLogSummary View – Example

Returns information about summary rows in the DBQLSummaryTbl.

This example is based on the summary rule:

BEGIN QUERY LOGGING LIMIT SUMMARY = 5, 30, 60 ON tfact04;

SELECT UserID, CollectTimeStamp, QueryCount, QuerySeconds,
LowHist, HighHist

FROM DBC.QryLogSummaryV
ORDER BY 2, 3, 6;

Result:

1

2

3

1 – In this summary collection, no queries were executed that exceeded 30 seconds.
2 – In this summary collection, queries were executed in all 4 summary intervals.
3 – In this summary collection, no queries were executed that ran between 30 and 60 seconds.

407 / 1060 = .38
748 / 41 = 18.24
351 / 8 = 43.88

2478 / 3 = 826.00

For #2, the average
time of queries can be
calculated:

UserID CollectTimeStamp QueryCount QuerySeconds LowHist HighHist

00003305 2011-09-12 19:32:06 60 18 0 5
00003305 2011-09-12 19:32:06 2 27 5 30
00003305 2011-09-12 19:42:06 1060 407 0 5
00003305 2011-09-12 19:42:06 41 748 5 30
00003305 2011-09-12 19:42:06 8 351 30 60
00003305 2011-09-12 19:42:06 3 2478 60 32767
00003305 2011-09-12 19:52:06 258 80 0 5
00003305 2011-09-12 19:52:06 16 251 5 30
00003305 2011-09-12 19:52:06 1 821 60 32767

ds186034
Sticky Note
summary turned on - we selected from the summary view

ds186034
Sticky Note
i had 1 query that ran more than 821 seconds...

 Access and Query Logging Page 49-58

Teradata Administrator – Tools Menu > Query Logging
The Tools menu provides the following options.

Menu Selection Function / Options

Create

Create an entirely new object – Database, Table, User,
Profile, or Role.

Grant/Revoke Grant or revoke general access privileges to users.
Options include Object Rights, System Rights, Logon
Rights, or Column Rights.

Administer Profiles Create and manage Profiles for users. (V2R5 feature)

Administer Roles Create and manage Roles. (V2R5 feature)

Clone User Create a new user either identical or closely related to an
existing user.

Modify User Change the specifications of an existing user.

Access Logging Create and manage Access Log rules.

Query Logging Create and manager Query Log rules.

Move Space Reallocate permanent disk space from one database to
another (efficient if not a direct descendant or parent).

Query Create, modify, test, or run SQL query scripts.

Options Configure the operational preferences for Teradata
Administrator.

The example on the facing page effectively causes the following BEGIN QUERY
LOGGING statement to be executed.

 BEGIN QUERY LOGGING LIMIT THRESHOLD=60
 ON student301, student302, student303, student304, student305;

Access and Query Logging Page 49-59

Teradata Administrator
Tools Menu > Query Logging

Teradata Administrator
can be used to Begin
and End Query Logging
– effectively managing
DBQL rules.

To select …

Tools > Query Logging

Options:

DISPLAY will show query
log rules for the selected
users.

The corresponding BEGIN
QUERY LOGGING statement
is provided on the facing
page.

ds186034
Sticky Note
ne querying here

 Access and Query Logging Page 49-60

Access and Query Logging Summary
The facing page summarizes some important concepts regarding this module.

Access and Query Logging Page 49-61

Access and Query Logging Summary

There are two logging facilities available to the database and/or security
administrator.

• Access Logging Facility

– Used for access and security audit analysis

• Query Logging Facility (DBQL)

– Used for query activity and workload analysis

• Additional DBQL Enhancements:

– Macros, views, triggers, stored procedures, and User-DefinedFunctions (UDFs)
are logged in DBQLObjTbl if the WITH OBJECTS option is used.

– By querying DBQLObjTbl information, Database Administrators (DBAs) are able
to see which views and macros users access.

– If the WITH OBJECTS option is used, FastLoad and MultiLoad target tables are
also logged in the DBQLObjTbl.

 Access and Query Logging Page 49-62

Module 49: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Access and Query Logging Page 49-63

Module 49: Review Questions

1. In order to use the BEGIN/END LOGGING commands, what is the name of the system macro you
need execute permission on?

2. How is this macro initially created?

3. What is a negative impact of the following statement?

BEGIN LOGGING WITH TEXT ON EACH ……

4. With DBQL, what is the size of the default text captured for queries? ________

5. True or False. With DBQL, the LIMIT SUMMARY option cannot be used with any other LIMIT.

6. True or False. With DBQL, use WITH SQL option only captures a maximum of 10,000 characters.

7. True or False. With DBQL, the option WITH ALL ON ALL is typically a good choice.

8. True or False. With DBQL, default rows are logged in the DBC.DBQLogTbl.

ds186034
Sticky Note
access log rule

ds186034
Sticky Note
database initialization programdip(not most of us will never run this)

 Access and Query Logging Page 49-64

Lab Exercise 49-1
The following page contains the start of this lab exercise.

Access and Query Logging Page 49-65

Lab Exercise 49-1

Lab Exercise 49-1

Purpose

In this lab, you will use Teradata SQL Assistant to view information in the data dictionary about
security defaults and invalid logons in the system (use Appendix D).

Tasks

1. What system security defaults are in effect for your system?

Number of days to expire password: ___________
Minimum number of characters required: ___________
Maximum number of characters required: ___________
Are digits allowed? Yes____ No____
Are special characters allowed? Yes____ No____
Maximum failed logons permitted (0=never lock): ___________
Minutes to elapse before unlocking: ___________
Days to expire before password reuse: ___________

2. Are these the security defaults that are in effect for your username? Yes or No.

3. Is a Profile in effect for your username? If so, what is the name of your Profile? ____________

4. If a Profile is being used, which attributes in the Profile override the system security defaults?

 Access and Query Logging Page 49-66

Lab Exercise 49-1 (cont.)
The following page continues this lab exercise.

Access and Query Logging Page 49-67

Lab Exercise 49-1 (cont.)

5. Using the DBC.LogOnOffV view, list the “BAD” logon attempts on your system that have occurred
during the last ten days. Qualify the SELECT using LIKE 'BAD%'.

Number of Bad Logons (System) ________
Number of Bad Logons (Your UserName) __________

6. Using the DBC.SessionInfoV, list the sessions currently logged on your system.

Total number of Sessions (System) ________
Total number of sessions (Your UserName) __________

 Access and Query Logging Page 49-68

Lab Exercise 49-2
The following page contains the start of this lab exercise.

Access and Query Logging Page 49-69

Lab Exercise 49-2

Lab Exercise 49-2

Purpose

In this lab, you will use Teradata SQL Assistant to list access and query logging rules that are being
used and the entries in these logs for your username.

Tasks

1. Using the DBC.AccLogRulesV view, list the access log rules that are in effect for your username.

Which codes are being logged and what type of logging is being captured?

Code Type of Logging SQL Function Being Logged

Ex. CDB B + Create Database

____ ___ ________________________________

____ ___ ________________________________

____ ___ ________________________________

____ ___ ________________________________

____ ___ ________________________________

____ ___ ________________________________

____ ___ ________________________________

____ ___ ________________________________

____ ___ ________________________________

____ ___ ________________________________

2. How many different access logging rules are there for all users? Count ___________

 Access and Query Logging Page 49-70

Lab Exercise 49-2 (cont.)
The following page continues this lab exercise.

Access and Query Logging Page 49-71

Lab Exercise 49-2 (cont.)

3. Execute the following statement.

CREATE DATABASE Test FROM DBC AS PERM=0;

(this command should fail – access right violation)

4. Using the DBC.AccessLogV view, list the access log entries for the last 2 weeks for your username.

How many entries are in this log have been granted? ______

How many entries are in this log have been denied? ______

What is the difference between the Create Table and the Execute command log entries?

__

 Access and Query Logging Page 49-72

Lab Exercise 49-2 (cont.)
The following page continues this lab exercise.

Access and Query Logging Page 49-73

Lab Exercise 49-2 (cont.)

5. Using the DBC.DBQLRulesV view, list the attributes of query log rule that is in effect for your
username.

Explain Text Logged ____
Objects Logged ____
Full SQL Logged ____
Execution Steps Logged ____
Summary ____ If Summary, times ____ ____ ____
Threshold ____ If threshold, time ____ Type of Criterion ____
SQL Text Size ____

6. Using the DBC.QrylogV view, list the logged queries for your username and how many are there?

Count = _______

Using this view, how many queries are logged for all of the users with usernames like 'student%'?

Count = _______

7. (Optional) Using the DBC.QrylogSummaryV view, what is the count of queries that have been
executed for your username? (Hint: Join the DBC.QrylogSummaryV to the DBC.QryLogV)

Count = _______

(Optional) Using this view, what is the count of queries that have executed for all of the users with
usernames like 'student%'?

Count = _______

 Access and Query Logging Page 49-74

Notes

Priority Scheduler Page 50-1

Module 50

Teradata Proprietary and Confidential

Priority Scheduler

After completing this module, you will be able to:

 Explain the purpose of Resource Partitions, Performance
Groups, and Allocation Groups.

 Determine the minimum % of resources a user can expect
with a specific performance group.

 Priority Scheduler Page 50-2

Notes

Priority Scheduler Page 50-3

Table of Contents

Levels of Workload Management .. 50-4
Priority Scheduler Facility ... 50-6
Priority Scheduler Architecture.. 50-8
Priority Scheduler Architecture with TASM Workloads ... 50-10
Priority Scheduler Concepts ... 50-12
Resource Partitions and Performance Groups.. 50-14
Relative Weights .. 50-16
Performance Periods and Milestones ... 50-18
CPU Usage Limits with Priority Scheduler ... 50-20
Use of Performance Groups ... 50-22
Getting Started with Priority Scheduler ... 50-24
Schmon Utility ... 50-26
Schmon Example ... 50-28
Priority Scheduler Administrator ... 50-34
Summary .. 50-36
Module 50: Review Questions ... 50-38

 Priority Scheduler Page 50-4

Levels of Workload Management
The facing page illustrates three tiers of workload management. This module provides
details on Priority Scheduler. The Teradata DWM, Teradata QS, and Database Query Log
facility are covered in other modules.

Teradata Dynamic Workload Manager (TDWM) or Viewpoint
Workload Designer

Teradata Dynamic Workload Manager (also known as Teradata DWM or TDWM) or
Viewpoint Workload Designer provides a graphical user interface (GUI) for creating rules
that manage database access, increase database efficiency, and enhance workload capacity.
Via the rules, queries can be rejected, throttled, or executed when they are submitted to the
Teradata Database.

Teradata Query Scheduler (QS) is designed to provide a facility to submit Teradata SQL
jobs to the Teradata Database. TQS is not shown on the facing page, but is an external tool
that simply is submits SQL to Teradata.

Priority Scheduler
The Priority Scheduler is a resource management tool that controls how compute resources
(e.g., CPU) are allocated to different users in a Teradata Database system. This resource
management function is based on scheduler parameters that satisfy your site-specific
requirements and system parameters that depict the current activity level of the Teradata
Database system. You can provide Priority Scheduler parameters to directly define a
strategy for controlling compute resources.

Database Query Log
The Database Query Log (DBQL) is a feature that lets you log query processing activity for
later analysis. Query counts and response times can be charted and SQL text and processing
steps can be compared to fine-tune your applications for optimum performance.

Priority Scheduler Page 50-5

Levels of Workload Management

Three Tiers of Workload Management

TDWM or
Viewpoint Workload Designer

Control what and how much is
allowed to begin execution.

Priority Scheduler
Manage the level of resources
allocated to different priorities
of executing work.

Database Query Log
Analyze query performance
and behavior after completion.

Teradata Dynamic
Workload Manager (TDWM) Pre-Execution

or Viewpoint Workload Designer

Priority Scheduler Query Executes

Database Query Log Post-Execution

 Priority Scheduler Page 50-6

Priority Scheduler Facility
The Priority Scheduler Facility (PSF) provides a resource partition hierarchy that allows you
to control system resources, specifically the CPU resource. With this utility, processes have
an externally assigned priority associated with their database session that the Priority
Scheduler Facility uses to allocate CPU and I/O resources. Characteristics include:

 Automatic change of priority if needed
– Time of day
– Resource usage at the session or query level

 All work in the database treated equal
– Not biased toward the short and the quick
– No punishment for the lengthy

 Flexible: When activity is sparse, lower priority jobs get more resources.

 Offers utilities to define scheduling parameters and to monitor your current system

activity.

Why create a customized priority environment?

 Assign very high priority users to a very high priority level to support Active Data
Warehouse applications.

 Establish priorities to control the impact of TPump load jobs on short, medium and

long DS queries that are running at the same time.

 Create a consistent service level for web requests supported in a database doing a

mix of decision-making.

 Provide better service for your more important work.

 Control resource sharing among different applications.

 Automate changes in priority by time of day or by amount of CPU used.

 Place a ceiling on Teradata Database system resources for specific applications.

Priority Scheduler Page 50-7

Priority Scheduler Facility

• Teradata’s facility to mandate how database resources will be shared.

– It is a weight-based system that uses relative weights to control how frequently
and quickly CPU resources will be available for different categories of work.

– Does not provide more capacity, but simply allows more control over how the
available capacity is used.

• Runs independently on each node in the configuration.

– Accumulates CPU usage and I/O demand independently on each node and is not
coordinated across nodes.

• Priority can automatically change if needed (defined by performance periods
or milestones).

– Time of day

– CPU Resource usage at query or session level

• Should be used AFTER application-level tuning has been done.

• To configure Priority Scheduler, use:

– schmon command-line utility

– Priority Scheduler Administrator (PSA) via Teradata Manager

– Teradata Dynamic Workload Manager (TDWM) or Viewpoint Workload Designer
when TASM workloads are enabled

ds186034
Sticky Note
TASM type of rules

ds186034
Sticky Note
"opportunities" to use

 Priority Scheduler Page 50-8

Priority Scheduler Architecture
Priority Scheduler is a resource management tool that controls the dispersal of computer
resources in a Teradata Database system. This resource management tool uses scheduler
parameters that satisfy site-specific requirements and system parameters that depict the
current activity level of the Teradata Database system. You can provide Priority Scheduler
parameters to directly define a strategy for controlling computer resources.

The Priority Scheduler does the following:

 Allows you to define a prioritized weighting system based on user logon
characteristics.

 Balances the workload in your data warehouse based on this weighting system.

Priority Scheduler includes default parameters that provide four priority levels with all users
assigned to one level using performance groups of L, M, H, and R. Additional performance
groups can be created and a performance group (e.g., DM) is specified as part of the
Account ID.

If TDWM workloads are NOT enabled, when a SQL request is issued, it enters Teradata, is
parsed, and broken into steps. Each step is then dispatched as one or many individual
processes. Each process active on behalf of a query executes at the same priority. The
priority will depend on how the administrator has put together the several components in the
priority framework.

V2R6 Priority Scheduler Changes
A number of enhancements have been made with Priority Scheduler with Teradata V2R6.

Several options/parameters have been removed, including:

 Internal Performance Groups
 Attributes such as Priority ON/OFF, I/O Prioritization, Throughput vs. Response
 The VALUE parameter of the performance group, which in V2R5

controlled ranking within a resource partition (0-7)
 The allocation group POLICY (default, immediate, relative, absolute)
 The limit on the number of performance groups within one resource

partition (was 8 in V2R5)

New enhancements include:

 DBS-generated critical work has been disassociated from the default resource
partition. This internal critical work now runs outside the user-controlled priorities
as “system” work, and means you no longer have to keep RP0 as the highest-
weighted resource partition.

 New allocation group parameter to limit CPU given to an AG.
 Default time quantum for UNIX is now 10 ms., was 20 ms.

Priority Scheduler Page 50-9

Priority Scheduler Architecture

If TASM workloads are not enabled,
priorities are assigned by Priority
Scheduler in this manner.

• User Logs on a session with an Account ID.

• Access of USER record confirms Account
ID which establishes the Performance
Group.

The "priority" for the session is effectively
determined by the Account ID.

• A query is submitted and the Optimizer
breaks query into processing steps.

• Each step is sent to the AMP as a process,
belonging to the User’s Performance Group
(PG).

• Each PG associates the process to one
Allocation Group (AG).

• The relative weight in the AG controls the
priority of the process.

User Record
Priority = 'DM'

A
M

P

E
xe

cu
tio

n
P

a
rs

in
g

 E
ng

in
e

AG has
Relative Weight

Performance
Group DM

Query Optimized
into Steps

User Query

ds186034
Sticky Note
first few letters = priority

ds186034
Sticky Note
without TASM workload, its all abt AccountIDit determines everything

 Priority Scheduler Page 50-10

Priority Scheduler Architecture with TASM Workloads
TDWM (Teradata Dynamic Workload Manager) allows for the creation of workloads.
This capability is part of a new concept called Teradata Active System Management
(TASM). TASM is made up of several products/tools that assist the DBA or application
developer in defining and refining the rules that control the allocation of resources to
workloads running on a system. These rules include filters, throttles, and “workload
definitions”.

The concept of workloads is new with Teradata V2R6.1. To create workloads, you need to
use TDWM Release 6.1 (or later) with the following Teradata releases.

 UNIX MP-RAS – Teradata V2R6.0.2 or later
 Windows 2003 or Linux – Teradata V2R6.1.0 or later

TASM and workload definitions will be covered in more detail later in this course.

What is a Workload Definition?
A workload represents a portion of the queries that are running on a system. A Workload
Definition (WD) is a workload grouping and its operating rules to assist in managing
queries. The requests that belong to the same workload will share the same resource priority
and exception conditions. It consists of:

 Classification Criteria: criteria to determine which queries belong to the workload.

This criteria defines characteristics which are detectable prior to query execution.
This is also known as the "who", "where", and "what" criteria of a query. For
example, "who" may be an account name, "where" is the database tables being
accessed, and "what" may be the type of statement (UPDATE) being executed.

 Exception Criteria: criteria to specify “abnormal” behavior for queries in this

workload. This criterion is only detectable after a query has begun execution. If an
exception criterion is met, the request is subject to the specified exception action
which may be to lower the priority or abort the query.

 Operating Periods: a description of hours of the day and/or days of the week (or

month). Directives may be specified for exception handling and Priority Scheduler
settings can be changed for each operating period.

A Workload Definition is mapped to an Allocation Group (AG) of Priority Scheduler.

Priority Scheduler Page 50-11

Priority Scheduler Architecture
with TASM Workloads

If TASM workloads are enabled, priorities
are assigned by Priority Scheduler in this
manner.

• User Logs on a session.

• A query is submitted and the Optimizer
breaks query into processing steps.

• Queries are classified based on criteria
(who, where, and what) and the query is
assigned to a Workload.

Different types queries (e.g., Tactical and
DSS) from the same user can automatically
be assigned to different workloads and
effectively different priorities.

• Each Workload is assigned to an Allocation
Group (AG).

• Each step is sent to the AMP as a process,
effectively associated with an Allocation
Group (AG).

• The relative weight of the AG controls the
priority of the process.

User Record
(Criteria)

A
M

P

E
xe

cu
tio

n
P

a
rs

in
g

 E
n

g
in

e

AG has
Relative Weight

Workload is
assigned to AG

Query Optimized
into Steps

User Query

Query Classified
into a Workload

 Priority Scheduler Page 50-12

Priority Scheduler Concepts
To establish the partition hierarchy, establish values for:

 Resource partitions (up to 5)
 Performance groups (up to 40)
 Performance periods (up to 8 per performance group)
 Allocation groups (up to 200)

Resource Partitions

A Resource Partition is a collection of prioritized Performance Groups. A Resource
Partition carries a weight that will be compared to other Resource Partition weights.

You can divide your system and user base into resource partitions (RP) that you usually
distinguish by use or by accounting strategy. You must number and name the partitions, and
assign a weight to each partition that determines the total system resources they receive.

Performance Groups
You define Performance Groups within each Resource Partition. The Performance Group
names are used in user Account IDs and determine the priority level for the user.

 Performance Group names match the Account ID string and must be unique.

The default resource partition has a set of 4 performance groups (L, M, H, and R). You can
define as many performance groups in a resource partition as you wish. However, the total
number of performance groups that can be defined in the system is 40.

Performance Periods
Performance periods link a performance group to an allocation group. Up to 8 performance
periods can be assigned to one performance group. Performance periods are based on
milestones and are one of three types.

 T for time-of-day
 Q for query resource usage
 S for session resource usage

Allocation Groups
An allocation group (AG) defines a weight that is compared to other Allocation Group
weights. These weights determine the amount of scheduling resources allocated. Allocation
groups may be referenced by more than one performance period and performance group.
However, all references to an allocation group must come from the same resource partition.

Priority Scheduler Page 50-13

Priority Scheduler Concepts

• Maximums of 5 Resource Partitions, 40 Performance Groups, and 200 Allocation Groups
– Starting with V2R6, all Performance Groups can be placed in a single resource partition

(flattened approach) and may be easier to manage.

• Maximum of 8 Performance Periods per Performance Group

– One Performance Period is assigned to one Allocation Group (1:1 relationship)

• User accounts specify performance group names – for DH, specify 'DH' in account id.

Resource Partition
DSS

1:M

Performance Group

DH

Performance Period
use AG 9

Allocation Group 9
Weight 40

1:M

1:1

Performance Group

DM

Allocation Group 8
Weight 10

Allocation Group 7
Weight 2

Performance Period
If Query 1 CPU sec., use AG 7

Performance Period
If Query < 1 CPU sec., use AG 8

ds186034
Sticky Note
admin test que

 Priority Scheduler Page 50-14

Resource Partitions and Performance Groups
Teradata comes with Resource Partition 0 defined for customer use. Many customers may
only need Resource Partition 0 and will not need to define additional Resource Partitions.

Resource Partition 0 uses the standard Teradata priorities – L, M, H, and R. The default
allocation weights are shown on the facing page. These priorities are used at the beginning
of the Account IDs and are specified as: $L, $M, $H, and $R.

The complete description of Resource Partition 0 is shown below for Teradata V2R6.0.

 Perf Group # Perf Group Name Alloc Group # Alloc Group Weight
 0 L 1 5
 1 M 2 10
 2 H 3 20
 3 R 4 40

Note: With Teradata V2R5.1 (and previous release), RP# 0 is also used by internal Teradata
software (rollbacks, deadlock detection, etc.). Therefore, RP# 0 is usually given the highest
resource partition weight with V2R5.1 and previous releases of Teradata. Starting with
Teradata V2R6.0, internal work is no longer assigned to the Default partition.

What is a weight?
Weights (not percentages) are assigned at Resource Partition level and to Allocation Groups
within a Resource Partition. Weights are used at the Resource Partition and Allocation
Group levels to determine the relative proportion of resources to allocate to the user.
Weights are:

 A numeric value used at the Resource Partition Level to compute a relative weight
(compared to other Resource Partitions) to determine the proportion of resources
the processes of the entire Resource Partition are to receive.

 A numeric value used at the Allocation Group Level to compute a relative weight

(within the Resource Partition) to determine the proportion of resources the
processes of the Allocation Group are to receive.

Additional Resource Partitions
Additional resource partitions may be added to the Priority Scheduler. The maximum
number of resource partitions is 5. The facing page contains an example with a second
resource partition named Tactical.

For example, you may assign the following Performance Groups to different types of users.

TL Tactical queries that are all AMP operations – possibly utilize a NUSI
TH Tactical queries that are one or two AMP operations – possibly utilize a PI or USI

Priority Scheduler Page 50-15

Resource Partitions and Performance Groups

PG # Name AG # Weight PG # Name AG # Weight PG# Name AG # Weight

0 L 1 5 4 TL 5 10 6 DL 7 2
1 M 2 10 5 TH 6 40 7 DM 8 10
2 H 3 20 8 DH 9 40
3 R 4 40

RP 1 – Tactical
Weight – 60

RP 0 – Default
Weight – 20

Example:

• L, M, H, or R – assigned to Batch and Load jobs
• TL – assigned to Tactical queries that are all AMP operations (e.g., NUSI)
• TH – assigned to Tactical queries that are one or two AMP operations (e.g., PI)
• DM – assigned to unknown DSS queries (e.g., ad hoc)
• DH – assigned to known DSS queries

Assuming queries are active in all 3 partitions, system resources are effectively divided
between the three partitions as follows:

Default (20/100) = 20% Tactical (60/100) = 60% DSS (20/100) = 20%

Resource Partition 0 is
provided with Teradata.

To create this partition,
schmon -b 1 Tactical 60

RP 2 – DSS
Weight – 20

To create this partition,
schmon -b 2 DSS 20

ds186034
Sticky Note
defined 9 grps (P)can have upto 40

 Priority Scheduler Page 50-16

Relative Weights
Resource partition weight is a relative weight, since its value is relative to the weights of the
currently active partitions. Dividing the weight of a partition by the sum of the weights of all
active partitions gives the percentage of total Teradata Database system resources for that
partition. The concept applies to performance groups within a resource partition.

The facing page contains two examples of how the system resource is divided between
resource partitions and between performance groups within a resource partition.

Priority Scheduler Page 50-17

Relative Weights

Relative weights are based on the assigned weights of the ACTIVE Allocation Groups.
Fewer ACTIVE AG’s will result in more CPU priority for those AG’s that are ACTIVE.

PG PG AG AG Active Relative Weight AG
Name # Weight Sessions Calculation %

0 L 1 5 Y 20/80 x 5/15 8.3
1 M 2 10 Y 20/80 x 10/15 16.7
2 H 3 20 N
3 R 4 40 N

4 TL 5 10 N
5 TH 6 40 Y 60/80 x 40/40 75.0
6 DL 7 2 N
7 DM 8 10 N
9 DH 9 40 N

RP 0
Weight 20

RP 1
Weight 60

RP 2
Weight 20

PG PG AG AG Active Relative Weight AG
Name # Weight Sessions Calculation %

0 L 1 5 Y 20/100 x 5/35 2.9
1 M 2 10 Y 20/100 x 10/35 5.7
2 H 3 20 Y 20/100 x 20/35 11.4
3 R 4 40 N
4 TL 5 10 Y 60/100 x 10/50 12.0
5 TH 6 40 Y 60/100 x 40/50 48.0
6 DL 7 2 N
7 DM 8 10 Y 20/100 x 10/10 20.0
9 DH 9 40 N

RP 0
Weight 20

RP 1
Weight 60

RP 2
Weight 20

ds186034
Sticky Note
many more opp to use the CPU

ds186034
Sticky Note
all in DSS are idlethisis where 80 comes from

ds186034
Sticky Note
understand this for the test

 Priority Scheduler Page 50-18

Performance Periods and Milestones
A performance period type defines a type of threshold used to change performance periods
for a Performance Group. The milestone limit represents that threshold. The milestone limit
triggers an automatic change in Allocation Group when a threshold you define is reached.

You can express milestone limits in the following units:

 Time-of-day – minutes of military time (0 – 2359) and represent time periods
during a 24-hour day.

 Session resource usage – defined in CPU seconds (0 – 86400) and represents an

amount of session CPU resource consumption per node.

 Query resource usage – defined in CPU seconds (0 – 86400) and represents an

amount of Query CPU resource consumption per node.

The facing page contains an example of having multiple performance periods and automated
priority changes.

Day-of-Week options for Time-of-Day Milestone
Optionally, you can use a day-of-week specification with a time-of-day milestone for a
performance period to indicate days when the performance period is to be active. This
specification might indicate one or more individual days, or a range of days, but not both.

Days are numbered sequentially from 0 to 6, Sunday through Saturday. A range of days is
indicated by two day numbers separated by a hyphen.

If a day-of-week specification is present for one performance period, then day-of-week must
be present for all.

A time-of-day milestone for a performance period defines the end of a time period during
which the associated Allocation Group is to control processes. The beginning of each period
is the end of the preceding period. This might be on a previous day if day of week has been
specified.

Resource Usage
When you express milestone limits in units of session or query resource usage, their values
indicate the total resource usage of all processes working on behalf of a session, or a query
submitted by a session, on that node. In this case, a performance period controls processes
grouped into sessions. Since some sessions or queries might consume more or less
resources than others, several performance periods of a Performance Group might be
actively controlling processes of different sessions concurrently.

Priority Scheduler Page 50-19

Performance Periods and Milestones

A performance period type defines a type of threshold (milestone limit) used to
change performance periods for a Performance Group. Milestone options are:

• T – Time-of-day
• S – Session resource usage (based on CPU time accumulated in a session by node)
• Q – Query resource usage (based on CPU time accumulated by a query by node)

Performance Group #7
DM

Milestone Type – Q

AG #8
Weight – 10

AG #7
Weight – 2

< 1 sec. Remaining time

Performance Group #8
DH

Milestone Type – T

AG #7
Weight – 2

AG #9
Weight – 40

AG #8
Weight – 10

8:00 17:00 22:00

schmon -p 7 DM 1 Q 1 8 0 7 schmon -p 8 DH 1 T 800 7 1700 9 2200 8

Milestones cause a change in Allocation Group, not Performance Group.

 Priority Scheduler Page 50-20

CPU Usage Limits with Priority Scheduler
It is possible to limit the amount of CPU usage that is available to the system, to a specific
resource partition, or to a specific allocation group. A percentage can be included with each
of these levels. The general format of the “Limit” follows:

 Limit – range is 1 through 100 or the value “none”

– A value of 100 indicates that no limit is to be enforced.
– A character string of “none” indicates that no limit is to be enforced.
– For Resource Partitions and Allocation Groups, if limit is not present, any

previously defined limit is removed.

System Level (Node level)
To limit the CPU usage at the system level, you can specify a percentage value to limit the
amount of CPU usage available to all Teradata Database sessions. This usage does not
include non-Teradata work, such as time-share users, I/O or other interrupt services,
Gateway processing, or streams work.

For example, to set the Teradata Database system CPU usage limit to 80%, use the
following command:

schmon –l 80 (Sets system CPU % limit to 80%)

Resource Partition Level
To limit CPU usage at the resource partition level, you can specify a percentage limit on
total CPU usage by all processes controlled by that a resource partition.

For example, to set a 75% limit at a Resource Partition level, use the following command:

schmon –b 1 Tactical 100 75 (Sets RP CPU % limit to 75%)

 Note: The Resource Partition weight is 100 and the CPU limit is 75%.

Allocation Group Level
To limit CPU usage at an allocation group level, you may specify a percentage limit on total
CPU usage by all processes controlled by the allocation group.

Priority Scheduler Page 50-21

CPU Usage Limits with Priority Scheduler

CPU usage limits may be used to place a “ceiling” on the amount of resources
that are available to a specific level.

• System level

Example: To limit system CPU usage to 80%,

schmon –l 80 (l: lower case L)

• Resource Partition level

Example: To limit CPU usage to 75% for Resource Partition "Tactical",

schmon –b 1 Tactical 60 75

weight limit

• Allocation Group level

Example: To limit CPU usage to 50% for Allocation Group #9,

schmon –a 9 N 40 50

weight limit

Note: All weights and CPU limits are enforced by Priority Scheduler at the node level.

 Priority Scheduler Page 50-22

Use of Performance Groups
Performance Group names are specified within the Account parameter when creating or
modifying a user. Performance Group names must be delimited with a “starting $” and an
“ending $”. For example, DH would be identified as DH.

In earlier Teradata Database versions, a single character (L, M, H, or R) prefixed by the $
character in the Account ID string indicated the Performance Group. To provide backward
compatibility, Priority Scheduler provides each of these single character identifiers as a
Performance Group name within default Resource Partition 0.

In this special case, the four Performance Group names (L, M, H, and R) do not require an
ending $ character in the Account ID string. In this case, the strings $M and M are
equivalent.

The logon process assigns each user session to a Performance Group based on the accounted
string of the logon command. If a Performance Group cannot be assigned based on the
Account ID string, a default assignment is made.

Each session has a designated Performance Group. When a session begins a process, it falls
under the control of a performance period whose milestone limit conditions are met.

Priority Scheduler Page 50-23

Use of Performance Groups

Performance Group names are specified within the Account parameter when
creating or modifying a user.

CREATE USER rjones AS PERM=0, SPOOL=500e6, PASSWORD=rj182130,
ACCOUNT=('DM_TT_&S_&D&H', 'DH_TT_&S_&D&H');

If “rjones” only needs 'DM' as a priority, then only include that account ID.

Users log on to Teradata using valid account IDs which can include Performance
Group names.

.logon educ1/rjones, rj182130 Uses DM performance group

.logon educ1/rjones, rj182130, 'DH_TT_&S_&D&H' Uses DH performance group

ds186034
Sticky Note
performance group goes in acct string

 Priority Scheduler Page 50-24

Getting Started with Priority Scheduler
To establish the partition hierarchy, establish values for:

 Resource partitions (up to 5)
 Performance groups (up to 40)
 Performance periods (up to 8 per performance group)
 Allocation groups (up to 200)

Resource Partitions
Divide the computer system and user base into resource partitions (RP) that you usually
distinguish by use or by accounting strategy. You must number and name the partitions.
Assign a weight to each partition that determines the total system resources they receive.

Allocation Groups
An allocation group (AG) defines a weight and a division type that determines the amount of
scheduling resources allocated. Allocation groups may be referenced by more than one
performance period and performance group in the same resource partition.

When creating an allocation group, it is necessary to set the division type.

 N for NONE – resources are divided amongst processes; better for complex queries
and all-AMP queries. N is the default and recommended choice for most
environments.

 S for SESSION – resources are divided by # of active sessions, then by processes;

may be better for simpler queries and single-AMP queries. (This option is usually
not needed or used as the impact it has is negligible.)

Performance Groups
Each resource partition has a set of performance groups. Performance groups divide the
resource partition in priority groups. 4 performance groups per resource partition are
typical. However, with V2R6, you can have more than 4 performance groups per resource
partition and having all of the performance groups in one partition (flattened approach) may
be useful in some environments.

Performance Periods
Performance periods link a performance group to an allocation group. Up to 8 performance
periods can be assigned to one performance group.

 Performance periods make it possible to have changes in priority weight by time or
resource usage.

Priority Scheduler Page 50-25

Getting Started with Priority Scheduler

1. Create and name a Resource Partition and assign a
weight.

Optionally assign all Tactical queries to a RP with the
highest priority.

2. Create Allocation Groups.

Specify weight and division type (N or S).

N – None (default & best choice for most environments)
S – Session (normally not used)

3. Create Performance Groups with unique names.

Assign an Allocation Group to the Performance Group
or to each Performance Period.

Optionally define Performance Periods or Milestones.
If weight will not change, Session = 0.

4. Modify users to create Account IDs with Performance
Group names – ex. 'DM_TT_&S_&D&H'.

5. Use Performance Group names on logons.

Resource Partition

Assign Weight

Allocation Groups
Weight =

Division = N

Performance Groups

DM

Milestones

Query < 1 CPU sec.

 Priority Scheduler Page 50-26

Schmon Utility
The schmon utility is used to add and change Priority Scheduler Facility parameters. There
are both command-line and an X-Windows versions of this utility.

Schmon – a command-line interface.
Xschmon – a graphical user interface that uses the X-Window system.

The section on the Priority Scheduler Facility in the Teradata Database User Utilities
reference manual has details for all parameters to all commands you can execute with this
utility.

Via Teradata Manager, you can also use the Priority Scheduler Administrator (PSA) utility
to manage priority scheduler settings. This is a Windows based utility and provides an
easier to use GUI interface.

Priority Scheduler Page 50-27

schmon Utility

• The schmon utility modifies and displays scheduler parameters and displays
current scheduling activity.

• schmon -h will display help information about the options.

• schmon -d will display …
– current settings including the age and active times

– Allocation Group to Performance Group assignments

– Allocation Group weight and policy settings

• schmon -m or -M will display the current scheduling activity.

– This shows the current CPU and I/O usage, the number of processes attached to
each Allocation Group and other data.

• Priority Scheduler Administrator (PSA) provides a Windows interface to also
manage the Priority Scheduler facility.

 Priority Scheduler Page 50-28

Schmon Example
The facing page contains the schmon parameters needed to establish the Tactical resource
partition shown previously.

Some additional notes:

When creating an allocation group, it is necessary to set the division type.

 N for NONE - Resources are divided amongst processes; better for complex
queries and all-AMP queries. N is the default and recommended value for most
environments.

 S for SESSION – Resources are divided by # of active sessions, then by processes;

better for simpler queries and single-AMP queries.

 The example on the facing page shows the division type set to N.

When creating a Performance Group, either T (time), S (session), or Q (Query) is used as the
Performance Period. The last milestone for the Session or Query group type must be 0.

Following the T, S, or Q, you can include up to 8 performance period pairs consisting of
milestone limits and allocation group #.

To modify the weight of an existing component, use the same commands except with a
different weight. The change will be effective immediately. For example:

schmon -a 7 S 25 none (changes AG# 7 weight to 25 and removes the limit)

schmon -b 1 Tactical 80 none (sets RP# 1 weight to 80 and removes the limit)

Priority Scheduler Page 50-29

schmon Example

The following commands will establish the Tactical resource partition shown earlier.

To create Resource Partitions:
schmon -b 0 Default 20 100
schmon -b 1 Tactical 60 100
schmon -b 2 DSS 20 100

RP# RP Name Weight (Optional % Limit)

To create Allocation Groups:
schmon -a 5 N 10 100
schmon -a 6 N 40 100
schmon -a 7 N 2 100
schmon -a 8 N 10 100
schmon -a 9 N 40 100

AG# Division Weight (Optional % Limit)
Type (N or S)

To create Performance Groups:
schmon -p 4 TL 1 S 0 5
schmon -p 5 TH 1 S 0 6
schmon -p 6 DL 2 S 0 7
schmon -p 7 DM 2 Q 1 8 0 7
schmon -p 8 DH 2 T 800 7 1700 9 2200 8

PG# PG Name RP# Session, Mile- AG# Mile- AG# Mile- AG#
(unique) (unique) Query, stone stone stone

Time

 Priority Scheduler Page 50-30

Schmon –d Example Output
An example of schmon -d option is shown on the facing page.

Options for schmon include:

schmon

-a ['all' | <AG#>] | [<AG#> -x] | [<AG#> -s|-S] | [<AG#> <div> [X] <weight> [limit]]
 allows you to set/display allocation groups.

-b ['all' | <RP#>] | [<RP#> -x] | [<RP#> -s|-S] | [<RP#> <RPNAME> <weight> [limit]]
 allows you to set/display resource partitions.

-p ['all' | <PG#>] | [<PG#> -x] | [<PG#> -s|-S] | [<PG#> <PGNAME> <R> <T> <PP(i)(i = 0,7)>]
 allows you to set/display performance groups.

-c [-p|-b|-a|-w|-t] [-f path] allows you to dump current settings as commands.

-d displays the current settings in a multiple line format.

-f [path] specifies a path for which input is to be read.

-h [specific option(s)] displays help information for the option specified.

-l [limit] sets the system CPU usage limit.

-m [-S [delay [reps]] monitors PS statistics for the current node.

-M [-p] [delay [reps]] monitors PS statistics for the current node.

-s ['all' | <id>] [-S] | [-S] displays PS data for specified sessions.

-t <age> <active> <disp> <ioconc> displays Age, Time, Active Time, and Disp. Time.

-w <reserve> <maximum> sets/displays the number of processes available for AG
 with the Expedite attribute.

-X [-p|-b|-a|-w|-t] dumps all the fields from GDO in hexadecimal format.

Priority Scheduler Page 50-31

schmon -d Example Output

Scheduler Times & Attributes:
Age Time(sec): 60.0 Active Time(sec): 61.0 Limit(%): none I/O Concurrency: 10

Resource Partitions (0 - 4)
Id Partition Name Weight Limit
0 Default 20 none
1 Tactical 60 none (Note: Limit of 100% is identified as "none".)
2 DSS 20 none

Performance Groups (0 - 39)
Id Group Name RP Type Milestones & Alloc Groups[0-4]
0 L 0 S 0.00 1
1 M 0 S 0.00 2
2 H 0 S 0.00 3
3 R 0 S 0.00 4
4 TL 1 S 0.00 5
5 TH 1 S 0.00 6
6 DL 2 S 0.00 7
7 DM 2 Q 1.00 8 0.00 7
8 DH 2 T 0800 7 1700 9 2200 8

Allocation Groups (0 - 199)
Id Type Weight Limit (new starting with V2R6)
1 N 5 none
2 N 10 none
3 N 20 none
4 N 40 none
5 N 10 none
6 N 40 none
7 N 2 none
8 N 10 none
9 N 40 none

AWT Expedited work type limits (new starting with V2R5)
res max

0 80

ds186034
Sticky Note
DM=alloc grp of 8rest of the time goes to 7until 5 its 9after 22 its 8

 Priority Scheduler Page 50-32

Schmon –m Example
Examples of the schmon –m are shown on the facing page.

An example of schmon –m with a single resource partition is shown below. The –M option
(not shown) provides information for all of the SMPs or nodes.

Answer to question on facing page:

 Queries running between 17:00 (5:00 PM) and 22:00 (10 PM) in the DH group use AG

#8.

Column definitions for AG #3 at the bottom of the facing page are:

 AG: The ID of each active allocation group. Only allocation groups that have seen
new requests for AMP worker tasks during the most recent age interval (usually the
last 60 seconds) will appear in this list.

 #requests: This column reflects the number of messages that have been received

for this allocation group within the age interval. This represents work that needs to
acquire AMP worker tasks to get underway. This may be work belonging to any
work type.

 Avg queue wait (msec): This column shows the average time per re-quest spent

waiting for an AMP worker task, in milliseconds, as captured during the age
interval. On UNIX, if this is a number from 0 to 5, it is considered normal and is
not pointing to a performance issue.

 Avg queue length: This represents the average queue length during the age

interval for new requests that were waiting in line to be serviced. A zero in this
column means that on average, there was no line of requests waiting for an AWT.
Since this is an average, and only whole numbers are represented, a zero could
represent a fraction.

 Avg service time (msec): This is the average amount of time an AMP worker task

was held within the recent age interval. This represents wall-clock time, not
milliseconds of CPU consumption, as is reported for CPU usage in the higher
portion of the schmon –m output.

Priority Scheduler Page 50-33

schmon -m Example

schmon -m
Stats: Thu Jul 29 17:00:16 2010

Rel Avg CPU Avg I/O # of # of
RP Wgt % (msec) % (sblks) Procs Sets

=== === === ======= === ======= ===== ===== ==============================
0 50 0 311 7 597 8 2
2 50 2 4718 91 13135 4 2

Rel Avg CPU Avg I/O # of # of
AG Wgt % (msec) % (sblks) Procs Sets Performance Groups Affected

=== === === ======= === ======= ===== ===== ==============================
2 8 0 175 5 393 7 1 M
3 16 0 136 2 204 1 1 H
8 24 5 3430 26 4717 2 1 DM, DH
9 48 2 1288 65 8418 2 1 DH

200 MAX 0 63 2 31 69 1 System

System: %CPU CPU(msec) I/O(sblks) #procs
==== ========= ========== ======

1 5029 13722 37

Avg queue Avg queue Avg service
AG #requests wait(msec) length time(msec)

=== ========== ========== ========== =============
3 1 57.10 0.00 6832.20

200 5 0.00 0.00 639.80

System with 2 Resource Partitions
being utilized:

Question:
At this time, what AG is
used for queries running
with DH priority?

ds186034
Sticky Note
info occurred in last 1 minAG...weights...200 - TD internal system

ds186034
Sticky Note
we goto alloc grp 8 after 5 lcok(prev page)we capture after 16 sec hereso we will be using alloc grp 8

 Priority Scheduler Page 50-34

Priority Scheduler Administrator
The Teradata Priority Scheduler Administrator (PSA) is a resource-management tool that
provides an easy-to-use graphical interface that allows you to define Priority Definition Sets,
generate schmon scripts to implement these sets, and monitor and control the Priority
Scheduler environment.

This utility is accessed via Teradata Manager. An example of a PSA display representing
the Tactical resource partition is shown on the facing page.

Features of PSA include:

 Makes Priority Scheduler more usable and understandable.
 Provides visualization of Resource Partition and Allocation Group weights and

CPU Utilization.
 Eliminates much of your current guesswork about the results of Priority Scheduler

changes.
 Easily manage multiple Priority Scheduler configuration profiles.

Corresponding schmon Commands
The following “schmon” commands correspond to the PSA example shown on the facing
page.

 schmon -b 0 Default 20 100
 schmon -b 1 Tactical 60 100
 schmon -b 2 DSS 20 100
 schmon -a 5 N 10 100
 schmon -a 6 N 40 100
 schmon -a 7 N 2 100
 schmon -a 8 N 10 100
 schmon -a 9 N 40 100
 schmon -p 4 TL 1 S 0 5
 schmon -p 5 TH 1 S 0 6
 schmon -p 6 DL 2 S 0 7
 schmon -p 7 DM 2 Q 1 8 0 7
 schmon -p 8 DH 2 T 1700 9 2200 8 800 7

Priority Scheduler Page 50-35

Priority Scheduler Administrator

 Priority Scheduler Page 50-36

Summary
The facing page summarizes some important concepts regarding this module.

Priority Scheduler Page 50-37

Summary

• Priority Scheduler is Teradata's facility to mandate how database resources
will be shared.

– It is a weight-based system that uses relative weights to control how frequently
and quickly CPU resources will be available for different categories of work.

• Priority can automatically change if needed (defined by performance periods
or milestones).

– Time of day

– CPU Resource usage at query or session level

• To configure Priority Scheduler, use:

– schmon command-line utility

– Priority Scheduler Administrator (PSA) via Teradata Manager

– Teradata Dynamic Workload Manager (TDWM) when TDWM workloads are enabled

 Priority Scheduler Page 50-38

Module 50: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Priority Scheduler Page 50-39

Module 50: Review Questions

1. Given the following, what is minimum % of opportunities to use the CPU resource that
the following Performance Groups (PG) can expect.

TM = _______________________ DH = _______________________

Default Tactical DSS

RP 0 - Weight 20 RP 1 - Weight 60 RP 2 - Weight 20

PG Name AG Wgt PG Name AG Wgt PG Name AG Wgt

L 5 TL 5 DL 5
M 10 TM 10 DM 10
H 20 TH 30 DH 30
R 40 TR 55 DR 75

2. Without TASM workloads enabled, a user session is associated with a ______________
which is effectively assigned to an _________________.

3. With TASM workloads enabled, a user query is associated with a ___________ which is
effectively assigned to an _________________.

ds186034
Sticky Note
3 partitions(PG NAme)all of em are activeTM has 10 of 60= 0.06DH=20/100=30/120 (sum of all ag wt is 120 not 100)= 0.05

ds186034
Sticky Note
exam queperf grp(resource partition 1 to 40 - max of 40its assigned to 1 or more perf period(8)which has assigned to alloc grp which has 25)alloc grp

ds186034
Sticky Note
workloadallocation grp (which has wts and always use under the cover = alloc grp)

 Priority Scheduler Page 50-40

Notes

Workload Management Page 51-1

Module 51

Teradata Proprietary and Confidential

Workload Management

After completing this module, you will be able to:

 Describe the type of workload management rule to apply to limit
certain kinds of queries.

 List the query attributes that are used to classify a query into a
Workload Definition.

 Specify the exception actions that are possible for a workload
definition.

 Place the TASM control options in the proper sequence as they are
acted upon by Teradata software.

 Workload Management Page 51-2

Notes

Workload Management Page 51-3

Table of Contents

Levels of Workload Management .. 51-4
What is TASM? ... 51-6
TASM Capabilities .. 51-8
Query Management Architecture ... 51-10
Query Management Architecture (cont.) ... 51-12
TDWM Example .. 51-14
Workload Designer Example ... 51-16
Filters and Throttles for Query Management ... 51-18
Object Access and Query Resource Filters .. 51-20
Object and Load Utility Throttles .. 51-22
Workload Definitions ... 51-24
Example of Using Workloads .. 51-26
Creating Workloads ... 51-28
WD – Classification Criteria .. 51-30
Specify Exception Criteria ... 51-32
Example – Exception Handling ... 51-34
Teradata Workload Analyzer ... 51-38
Summary .. 51-40
Module 51: Review Questions ... 51-42

 Workload Management Page 51-4

Levels of Workload Management
The facing page illustrates three tiers of workload management. This module provides an
overview on the types of workload management rules that can be created.

Teradata Dynamic Workload Manager (TDWM) or Viewpoint
Workload Designer

Teradata Dynamic Workload Manager (also known as Teradata DWM or TDWM) or
Viewpoint Workload Designer provides a graphical user interface (GUI) for creating rules
that manage database access, increase database efficiency, and enhance workload capacity.
Via the rules, queries can be rejected, throttled, or executed when they are submitted to the
Teradata Database.

Teradata Query Scheduler (QS) is designed to provide a facility to submit Teradata SQL
jobs to the Teradata Database. TQS is not shown on the facing page, but is an external tool
that simply is submits SQL to Teradata.

Priority Scheduler
The Priority Scheduler is a resource management tool that controls how compute resources
(e.g., CPU) are allocated to different users in a Teradata Database system. This resource
management function is based on scheduler parameters that satisfy your site-specific
requirements and system parameters that depict the current activity level of the Teradata
Database system. You can provide Priority Scheduler parameters to directly define a
strategy for controlling compute resources.

Database Query Log
The Database Query Log (DBQL) is a feature that lets you log query processing activity for
later analysis. Query counts and response times can be charted and SQL text and processing
steps can be compared to fine-tune your applications for optimum performance.

Workload Management Page 51-5

Levels of Workload Management

Three Tiers of Workload Management

TDWM or
Viewpoint Workload Designer

Control what and how much is
allowed to begin execution.

Priority Scheduler
Manage the level of resources
allocated to different priorities
of executing work.

Database Query Log
Analyze query performance
and behavior after completion.

Teradata Dynamic
Workload Manager (TDWM) Pre-Execution

or Viewpoint Workload Designer

Priority Scheduler Query Executes

Database Query Log Post-Execution

ds186034
Sticky Note
we talked about this earlier todaywhich will help me Priority schedulerbut maybe i can build ruleswhich can help me control the jobs=====TDWM

 Workload Management Page 51-6

What is TASM?
Teradata Active System Management (TASM) is made up of several products/tools that
assist the DBA or application developer in defining and refining the rules that control the
allocation of resources to workloads running on a system. These rules include filters,
throttles, and “workload definitions”.

Rules to control the allocation of resources to workloads are effectively represented as
workload definitions. Tools are also provided to monitor workloads in real time and to
produce historical reports of resource utilization by workloads. By analyzing this
information, workload definitions can be adjusted to improve the allocation of resources.

The key products to implement TASM “workloads” are:

Teradata Dynamic Workload Manager (TDWM) or Viewpoint Workload Designer
Teradata Manager or Viewpoint
Teradata Workload Analyzer (TWA)

Note: Starting with Teradata Release 13.10, TDWM and Teradata Manager are no longer
available.

Teradata Dynamic Workload Manager (known as TDWM or DWM) or Workload Designer
is a key supporting product component for TASM. The major functions include:

Define Filters and Throttles
Define Workloads (new) and their operating periods, goals and PSF mapping/weights
Define general TASM controls

The benefit of TASM is to automate the allocation of resources to workloads and to assist
the DBA or application developer regarding system performance management. The benefits
include:

Fix and prevent problems before they happen. Seamlessly and automatically manage
resource allocation; removes the need for constant setup and adjustment as
workload conditions change.

Improved reporting of both real-time and long-term trends – Service Level statistics are

now reported for each workload. This helps manage Service Level Goals (SLG)
and Service Level Agreements (SLA) – applications can be introduced with known
response times

Automated Exception Handling – queries that are running in an inappropriate manner

can be automatically detected and corrected.

Reduced total cost of ownership – one administrator can analyze, tune, and manage a

system’s performance.

Workload Management Page 51-7

What is TASM?

What is TASM?

• Teradata Active System Management (TASM) is made up of several products/tools
that assist the DBA or application developer in defining (and refining) the rules that
control the allocation of resources to workloads running on a system.

• These rules include filters, throttles, and workload definitions.

– Workload definitions are rules to control the allocation of resources to
workloads.

The key products that are used to create, manage, and monitor "workloads" are:

• Teradata Dynamic Workload Manager and Teradata Manager

or

• Viewpoint Workload Designer and Viewpoint

• Teradata Workload Analyzer (for both TDWM and Viewpoint)

The benefit of TASM is to automate the allocation of resources to workloads.

ds186034
Sticky Note
1. Filters/Rules(RULE:------rule based on explain plan...if a user/profile/acct string/or all userif they are doin a cartesion prod...returning more than 100k rows runs more than 30 minsthen i will reject it)query using access resources, dont let it even starttime bound as well- queries against certain table depending on the time it runs2. throttlesquery limitsad hoc queriesif more than 5 - say from my analytic grpthen the 6th one will be delayedno msg comes back to the usercontrol the type of no of users that can run at a given time==> delay it3. Workload definitiongets saved at every Parsing Engine- better classification of queries4. Exceptionswhile the query is running, take some action (cause its misbehaving)(rules get saved in every PE)

 Workload Management Page 51-8

TASM Capabilities
Teradata Dynamic Workload Manager (also known as Teradata DWM or TDWM) and
Viewpoint Workload Designer are products that enable you to effectively manage the access
to and utilization of a Teradata Database. These tools provide both Query and Workload
Management capabilities.

TDWM or Viewpoint Workload Designer provides a graphical user interface (GUI) for
creating rules that manage database access, increase database efficiency, and enhance
workload capacity.

What is Query Management?
 Query Management is a set of “rules” to determine whether logon and query requests

will be accepted by the Teradata Database, and further to determine whether the
execution of some query requests should be “delayed” (internally queued). The purpose
of “delaying” queries is to limit the number of database resources that are tied up in
processing low priority and/or long running queries. Queries that are delayed are still
perceived as executing within the user’s session.

Why use a Query Management facility?

Enables the DBA to effectively manage access to and the use of Teradata resources.

Allows the processing of logon and query requests from all types of clients sources
without any client software requirements.

TASM addresses the key problems of database system overload and network saturation

that result from a large number of clients accessing the Teradata Database.

What is Workload Management?
 Workload management on a system yields improved workload distribution and

customized delegation of resources among the various workloads. A workload
represents a portion of the queries that are running on a system. To use workload
management in Teradata, a set of workload definitions must be established and enabled.
A Workload Definition (WD) is a workload grouping and its operating rules to assist in
managing queries. The requests that belong to the same workload will share the same
resource priority and exception conditions.

Why use a Workload Management (new with TASM) facility?

Assign queries to the correct workload before they start executing. Fix and prevent
problems before they happen. Seamlessly and automatically manage resource
allocation; removes the need for constant setup and adjustment as workload
conditions change.

A new application (i.e., Teradata Workload Analyzer) is also available to help in

migrating existing environments to a “workload” environment.

Workload Management Page 51-9

TASM Capabilities

TASM provides a Query Management (QM) capability.

• A set of user-defined “rules (or filters and throttles)” is created to determine whether
logon and query requests will be accepted by the Teradata Database.

– These rules also determine whether the execution of some query requests
should be “delayed” (internally queued).

• Query Management provides "non-workload" filters and throttles:

– Filters – object access and query resource rules used to reject queries

– Throttles – object and load utility rules used to delay or reject queries

TASM also provides a Workload Management (WM) capability.

• A set of user-defined “workload definitions” is created to control the allocation of
resources to workloads.

• Queries are associated with a “workload” based on who, where, and what criteria.

 Workload Management Page 51-10

Query Management Architecture
The rules you create are stored in tables in the Teradata database. Unless otherwise
specified, every logon and every query in every Teradata Database session is checked
against the enabled rules. That includes SQL queries from any supported Teradata Database
interface, such as BTEQ, CLIv2, ODBC, and JDBC.

The TASM rules are loaded into the Dispatcher components of the Teradata Database.
When a Teradata client application issues a request to the Teradata Database, the request is
examined and checked by TASM functions in the Dispatcher before being forwarded to the
AMPs to execute the request against the user database.

The Query Management component examines database log on and query requests. It also
analyzes the resource criteria of those requests and the objects it references. TASM then
compares the requests against the active rules to see if the requests should be accepted,
rejected, or delayed

Workload Management Page 51-11

Query Management Architecture

User logs on a session with an Account ID
and submits a query.

• A User and/or account may be associated
with one or more Query Management Rules.

• Rules-checking happens in the PE
(Dispatcher) before the query begins to
execute.

• Queries that do not pass Filter Rules are
rejected.

• Queries that pass Throttle Rules can also be
delayed or rejected if the query would
exceed a query limit.

• Delayed queries are managed by Query
Workload Manager.

• Queries from all client sources are checked
for compliance to Query Management Rules.

A
M

P
P

a
rs

in
g

 E
n

g
in

e

Query Executes

Query Optimized
into Steps

User Query

Rule Set

RejectPass

Query Limit
Delay Queue

Count Delay
Queue

Scheduled Query (TQS)

 Workload Management Page 51-12

Query Management Architecture (cont.)
The illustration on the facing page expands the rules shown in the previous illustration.

Query Management rules have been generally classified into three groups: Filters, Throttles,
and Workload Definitions.

Query Management analyzes the incoming requests and compares the requests against the
active rules to see if the requests should be accepted, rejected, or delayed.

Queries that do not pass Filter Rules are rejected
Queries that do not pass Throttle Rules can be delayed or rejected
Queries that pass both Filter and Throttle rules are checked against Workload rules.

Additional throttles can also be applied at the Workload Definition level.
As queries execute within their assigned workload, they will be monitored against any

exception rules.
Violations of exception rules can invoke several actions from changing workloads,

abort the query, send alert or run a program.

TASM provides two major capabilities.

With workloads, queries can be rejected, delayed or run in a performance group based
on query attributes, not just the account string.

Executing queries can be monitored and acted on. TASM has the ability to monitor and

manage running queries. This is done with exception criteria that is specified in the
workload definition and the query with the criteria detected can have its priority
changed (e.g., lowered) or even aborted.

How are queries associated with a workload?

Teradata Parsing Engine software “classifies” a query into a Workload Definition
(WD). It takes the query attributes (user name, account, optimizer estimates, etc.)
and puts the query into the correct WD.

The example in the illustration shows five ways to control workload resource allocation.

Workload Management Page 51-13

Query Management Architecture (cont.)

YES, Reclassify
to different WD

YES, Reject YES Delay Queue

Exception
CPU > 1 sec?

Exception
Skew >50%

YES, Abort

1 3

5

WD C Throttle
queries > 5

4

Maximum Rows
> 100,000,000

Send Alert

Workload A
(Tactical)

CPU Weight = 80%

Workload B
(Priority)

CPU Weight = 15%

Workload C
(Background)

CPU Weight = 5%

4

Delay Queue

Filter
Product Join?

Throttle
queries > 10

Workload
PE

AMP

Incoming Queries

2

Workload
Classification

YES

ds186034
Sticky Note
to one of the workload

 Workload Management Page 51-14

TDWM Example
TDWM is a graphical user interface (GUI) client utility that runs on Microsoft Windows. It
allows a database administrator (DBA) to control the behavior of TDWM. The following
are the main features of query management:

Create, delete, modify, view, enable, and disable filters, throttle, or workloads.
Database Browser window for associating query objects with defined filters.
Grant bypasses privileges to specific users, groups of users, or accounts.
You can configure TDWM to affect how rules are enforced by ignoring EXPLAIN

estimates that are below a specified level of confidence.
Apply (or notify the database of) the latest filter, throttle, or workload changes.

The TDWM rules you create are stored in tables in the tdwm database. Unless otherwise
specified, every logon and every query in every Teradata Database session is checked
against the enabled TDWM rules in the tdwm database. That includes SQL queries from
any supported Teradata Database interface, such as BTEQ, CLIv2, ODBC, and JDBC.

 Note: Although every SQL request is subject to TDWM rules, you can set up specific

users to bypass TDWM checking. These users are also called “unrestricted users”.

TDWM rules are loaded into the Dispatcher components of the Teradata Database. When a
Teradata client application issues a request to the Teradata Database, the request is
examined and checked by TDWM functions in the Dispatcher before being forwarded to the
AMPs to execute the request against the user database.

There are three sets of workload management rules that are available. Any of theses three
sets can enabled or disabled.

System-wide query management filters
System-wide query management throttles
Workload Definitions

Types of Query Management Rules

Object Access filters Access to and from specific Teradata Database objects and object combinations
by some or all users.

Query Resource filters Which Teradata Database requirements are necessary to execute certain
queries; such as limiting row count, processing time, or types of joins?

Object Throttles How many sessions and/or queries can be running for specified Teradata

Database objects?

Load Utilities How many load utilities can be running on the Teradata Database either
individually or collectively? Load utilities include FastLoad, MultiLoad, and
FastExport.

Workload Management Page 51-15

TDWM Example

Left pane is Rules
Directory Information
Tree (DIT).

From here, you can
create, delete, enable,
or disable rules.

Note the disabled rule.

The Settings option
lets you define overall
parameters for TDWM.

Types of rules include:

– Filters
– Throttles
– Workloads

* System Regulation –
new TD 12.0.

Filters

Throttles

Workloads

* New with 12.0

ds186034
Sticky Note
viewpoint workload designeris the new one (this is the old one < TD13)

ds186034
Sticky Note
all filters reject it

ds186034
Sticky Note
limit no of load utiltiiesits a queuing system not a sleeping syste,

 Workload Management Page 51-16

Workload Designer Example
Viewpoint’s Workload Designer is required with Teradata 13.10 (and later) to manage
filters, throttles, and workload definitions. Workload Designer is the replacement for
Teradata Dynamic Workload Manager (TDWM).

Workload Management Page 51-17

Workload Designer Example

Viewpoint's Workload Designer is the replacement for TDWM.

This example illustrates the starting
point of creating a throttle.

 Workload Management Page 51-18

Filters and Throttles for Query Management
The facing page identifies the 4 types of rules (2 filters and 2 throttles). The following is an
overview of how logon and query requests are processed.

1. Request is checked for any Context objects that are currently bypassed. If present, the request is

immediately executed. For logon requests, go to step 5.
2. Teradata Optimizer step plan for each statement in the query request is traversed to determine

the following:
Type of statement and type of step
Objects in the request
Estimated answer set size (number of rows) to be returned
Estimated number of rows involved in each step
Estimated total processing time required to complete execution
Table join required (product or unconstrained product)
Full table (all-rows) scan required
Types of steps which are all-AMP
Confidence level for each step

3. Step costs (that is, the row count and processing time estimates) are used only if the confidence

level of the estimates is greater than or equal to the minimum confidence level you have
configured.

4. Estimated resource usage values are compared with any global Query Resource rules.
5. Referenced Context and Query objects are checked against any applicable Filter rules. If any

object is currently restricted, the step values for the request are compared to any Query
Resource rules.

6. Referenced Context and Query objects are checked against any applicable Object Throttle rules.
If any object is currently throttled, a supplementary indicator is returned so that the request is
forwarded to the Query Manager task for throttle limit checking.

7. Object limits for a query are passed to the Workload Query Manager. The Workload Query
Manager determines whether a logon is processed immediately or rejected, and whether a query
request is processed immediately, delayed, or rejected.

 Note: Delayed objects are held until throttle limits allow them to run at which time an OK

status is returned to the Teradata Database Dispatcher.

8. OK or reject status is returned to the Teradata Database Dispatcher.

 Note: TDWM examines all logon and query requests in a SQL partition before they are

sent to the Teradata Database for execution.

9. Teradata Database Dispatcher takes one of the following actions depending on the applicable
rules:

Lets the request proceed to the AMPs.
Rejects the request or logon.

 Note: Rejected logons and queries are stored in an exception cache. This cache is flushed

based on the logging interval you define. Entries for rejected logons and queries are logged
in the TDWM.EXCEPTIONLOG table so you can analyze them later.

Workload Management Page 51-19

Filters and Throttles for Query Management

Notes:

• Users and or objects are linked to filters/throttles (e.g., rules) via the Database Browser.

• DBC and Bypass Users – set of users for which filters and throttles do not apply.

• Filters and throttles can be created as Global Rules.

Logon and Query Requests Load Utilities

Query Resource Filters
(Use – reject queries
based on query resource
time, number of response
rows by step or final row
count, types of joins, or
not allowing FTS)

Object Access Filter
(Use – reject access to
database objects)

Current State

Resource Limits

Load Utility Throttles
(Use – limits number of
active FastLoad,
FastExport, and
MultiLoad jobs)

Object Throttles
(Use – limit the number
of active sessions
and/or query requests)

SQL Type

Current State

SQL Type

Current State

SQL Type

Throttle Limits

Current State

Utility Limits

ds186034
Sticky Note
test

 Workload Management Page 51-20

Object Access and Query Resource Filters
Object Access filters are used to reject queries that attempt to access to all objects associated
with the filter during the time period specified.

When you define an Object Access filter, you can specify that only combinations of issuing
and query objects are restricted. This lets you selectively limit access to the Teradata
Database, tables, macros, and so on. For example, you could create a filter that never allows
specific users access to specific database tables.

Defining Query Resource filters lets you reject queries based on database resource usage for
any issuing object, query object, or object combinations associated with this type of filter.
You define how resource usage is limited, as well as the dates and times the resource usage
limits apply.

You can configure how Query Resource filters are enforced by ignoring EXPLAIN
estimates below a specified level of confidence. For example, if the row count estimate on a
query is generated with “no confidence” and the minimum explain confidence level is set to
low confidence, then the row count estimate is not used.

Example of Object Access filters include:

On Saturday and Sunday, user A cannot log on to the Teradata Database.
On Weekdays between 8:00 am and 5:00 pm, table B cannot be accessed.

Examples of Query Resource filters include:

On Fridays between 9:00 am and 2:00 pm, table B cannot be involved in a Product Join
AND that returns more than 1 million rows.

On Tuesdays between 12:30 pm and 4:00 pm, queries estimated to take longer than 30
minutes cannot run.

SQL Types
For Object Access filters, Query Resource filters, and Object throttles, you can specify the
types of SQL requests to which the rule applies. For example, you can specify ALL, DDL,
DML, or SELECT.

Global
Global filters apply to all objects, and as a result to all logon and/or query requests during
the specified time period. If a filter applies to all objects, you can specify it as a global rule.
Because a global rule automatically applies to all Teradata Database objects, you do not
need to associate individual Teradata Database objects with the rule.

 Caution: Defining a global Object Access rule causes all of the specified statement

type requests to be rejected except those from the DBC user and any bypassed objects.

Workload Management Page 51-21

Object Access and Query Resource Filters

Object Access Filters

Object Access Filters reject any access to database objects that you associate with the
restriction.

Example:

If you associate a table (T1) with an access restriction for a group of users, then
TDWM rejects any query that contains T1 within the defined operating environment
(may be defined time period or a defined state such as LOAD).

Query Resource Filters
Query Resource Filters reject any access to database objects based on resource usage
limits, as well as the dates/times or states that the resource usage limits apply.

Example:

On weekdays between 08:00 and 17:00, queries estimated to take longer than 30
minutes are not allowed to execute for users assigned to a specific performance
group.

You can configure how Query Resource filters are enforced by ignoring EXPLAIN
estimates below a specified level of confidence.

 Workload Management Page 51-22

Object and Load Utility Throttles
For Object Throttles, you define additional limits on logon and queries requests. For Load
Utility Throttles, you choose the type of load utility to which the rule applies instead of the
type of SQL request.

Object Throttles
Defining Object Throttles lets you limit the number of logon sessions and/or queries active
on for particular Teradata Database objects. You can define Object Throttles that apply to
most types of Teradata Database objects. You cannot associate Object Combinations with
Object Throttles. You can associate Macros and Stored Procedures with Object Throttles.
However, they are treated like table objects in that we do not know that they are a “Macro”
or a “Stored Procedure” per se. TDWM will just know that the name in the rule matches the
name on the object list.

You can set up this type of rule to reject or to delay any query that cannot be immediately
processed. If more than one Object throttle applies to an object, the one with the lowest
limit one is used.

 Note: SQL requests evaluated under this category must include an ALL-AMP step to

be considered against throttle values. Single AMP operations (for example, prime
index) are always allowed to run and are not counted against throttle limits on context
objects.

Load Utility Throttles
Defining Load Utility throttles lets you control how many load utilities are simultaneously
running on a Teradata Database at any given time. Using this throttle type lets you override
the MaxLoadTasks value set using the DBS Control Utility. Setting a throttling rate lets you
override the value without having to change it using the DBS Control Utility.

You can specify limits for all load utilities as a group, and/or specify limits for each
individual load utility. Because Load Utility throttles apply only to the kind and number of
load utilities running on the Teradata Database, you cannot associate Teradata Database
objects with them.

Context Objects
Context objects relate to the conditions in which a request is issued. Because they relate to
who issued the request, they are also called who objects. The types of context objects you
can associate with rules are Users, Accounts, Performance Groups, and Profiles.

Workload Management Page 51-23

Object and Load Utility Throttles

Object Throttles

Object Throttles limit the number of logon sessions and/or active queries.

Example:

On Weekdays between 8:00 and 17:00, performance group $M cannot have more
than 200 simultaneous sessions on the entire Teradata Database.

On Weekends, performance group “$H” cannot have more than 5 simultaneous
queries on the entire Teradata Database – delay queries, do not reject.

Load Utility Throttles

Load Utility Throttles allow you to control how many load utilities are simultaneously
running on a Teradata Database at any given time.

Example:

On Weekdays between 8:00 and 17:00, the maximum number of simultaneous
FastLoad and/or MultiLoad jobs is 3.

 Workload Management Page 51-24

Workload Definitions
A workload represents a portion of the queries that are running on a system. A Workload
Definition (WD) is a workload grouping and its operating rules to assist in managing
queries. The requests that belong to the same workload will share the same resource priority
and exception conditions. It consists of:

Classification Criteria: criteria to determine which queries belong to the workload. This

criteria defines characteristics which are detectable prior to query execution. This
is also known as the "who", "where", and "what" criteria of a query. For example,
"who" may be an account name, "where" is the database tables being accessed, and
"what" may be the type of statement (UPDATE) being executed.

Exception Criteria: criteria to specify “abnormal” behavior for queries in this workload.

These criteria are only detectable after a query has begun execution. If the
exception criteria are met, the request is subject to the specified exception action
which may be to lower the priority or abort the query.

Operating Periods: a description of hours of the day and/or days of the week (or month).

Directives may be specified for exception handling and Priority Scheduler settings
can be changed for each operating period.

A Workload Definition is mapped to an Allocation Group (AG) of Priority Scheduler.

Why Create Workload Definitions?
The reason to create workload definitions is to allow TASM to manage and monitor the
work executing on a system.

There are three basic reasons for grouping requests into a workload definition.

Improved Control – some requests need to obtain higher priority to system resources
than others. Resource priority is given on the basis of belonging to a particular
workload.

Accounting Granularity – workload definitions allow you to see who is using the

system and how much of the various system resources. This is useful information
for performance tuning efforts.

Automatic Exception Handling – queries can be checked for exceptions while they are

executing, and if an exception occurs, a user-defined action can be triggered.

Workload Management Page 51-25

Workload Definitions

What is a Workload Definition?

• It is a description of rules that represent who, where, and what of a workload. A
Workload Definition is assigned to a Priority Scheduler allocation group.

Why Create Workload Definitions?

• Improved Control of Resource Allocation – resource priority is given on the basis of
belonging to a particular workload.

– Classification rules permit queries to run at the correct priority from the start.

• Improved Reporting – workload definitions allow you to see who is using the system
and how much of the various system resources.

– Service level statistics are reported for each workload.

– Real-time and long-term trends for workloads are available.

• Automatic Exception Handling

– After a query has started executing, a query that is running in an inappropriate manner can
be automatically detected. Actions can be taken based on exception criteria that has been
defined for the workload.

ds186034
Sticky Note
multiple criteriaacct idbased on first few charactersmuch more criteria heresix!

 Workload Management Page 51-26

Example of Using Workloads
The facing page illustrates an example of creating five workload definitions to handle a mix
of queries.

Recommendations Summary When Defining Workload Criteria

Lead with “Who” criteria, and add “Where”, “What” and exception criteria only when
necessary.

“Who” criteria is the most exact and has the least overhead.

Keep the total number of workloads small (e.g. 10-20)

Keep the number of criteria associated with a workload as simple as possible, avoiding

long confusing lists of and’d classification and exception criteria as well as
include/exclude lists of “Who”/”Where” criteria.

Use order of evaluation to put more specific definitions ahead of less specific

definitions, enabling the system to accurately classify a request without having to
evaluate the request against the entire list of workloads and their criteria.

Avoid exception monitoring if possible, relying on classification to properly assign a

request before execution even begins. This enables concurrency throttles if
necessary as well as avoiding even a momentary mis-classification of the request in
the unintended priority resource allocation.

If using exception monitoring, use the longest exception interval as possible to keep

exception monitoring overhead lower, yet still meet your goals for detecting
exceptions in a timely manner. If no exception monitoring is used, set the
exception interval to the maximum 3600 seconds.

Workload Management Page 51-27

Example of Using Workloads

Classification
ALL AMP?

WD-CallCenter-TAC
NO

YES

Call Center
Tactical

WD-CallCenter-AllAMP

WD-Field-DSS
Field Ops

DSS
Exception

CPU > 120?

YES
WD-PenaltyBox

Throttle
Active <= 5 ?

Strategic
Ad Hoc

YES

NO

WD-Strategic Delay Queue

WD-Strategic
Exception

Skew > 50%?

YES

ABORT

TACTICAL
Priority

HIGH
Priority

NORMAL
Priority

VERY LOW
Priority

LOW
Priority

ds186034
Sticky Note
green = 5 workload definition

 Workload Management Page 51-28

Creating Workloads
The facing page provides a list of the major tasks that are used in TASM. A brief
description of each of the tasks is also included.

1. Collect data to analyze – one source of data is Priority Scheduler settings captured in

PD (Priority Definition) sets. The second source is DBQL log data that represents
captured queries for a period of time (e.g., three months) that represent the typical
workload.

2. Generate Recommended Workload Definitions – use/combine the information from

the two sources to generate the initial workload definitions. There are primarily two
techniques in which workload definitions can be created:

Create workload definitions from scratch. In doing so, users first collect query log

information for the existing workload mix.

Use Teradata Workload Analyzer to analyze and create workload definitions based on

the two sources identified in step #1.

3. Activate the Workload Management Rule set – the Teradata Dynamic Workload

Manager (TDWM) or Workload Designer administrator is used to optionally modify the
workload definitions and activate them on the system.

Steps 4 – 6 are a reiterative process.

4. Monitor the Workload – Teradata Manager has new features which allow the

administrator to monitor workloads. These enhancements are part of the Dashboard and
Trend Analysis displays.

5. Refine Workload Definitions - based on how well the workload definitions are

working, they may need to be adjusted.

6. Activate “new” Workload Definitions – use TDWM to activate the adjusted workload

definitions.

Workload Management Page 51-29

Creating Workloads

Use DBQL
to capture workload

Directly create
Workload Definitions

1. Collect data to analyze.

2. Generate Workload Definitions and
optionally Service Level Goals.

Use PSF Settings
(PSA)

Activate Workload Management

Monitor Workload
(Teradata Manager)

Modify Workload Definitions

4. Monitor with Teradata Manager
Dashboard and Trend Analysis.

5. Refine Workload Definitions.

Activate new workload definitions

6. Activate new Workload Management
Rule Set and repeat process by
monitoring how well the rules work.

3. Modify Workload Definitions and
activate workload rule set.

Use Workload Analyzer
to create

Workload Definitions

 Workload Management Page 51-30

WD – Classification Criteria
After specifying a new workload definition name and attributes and clicking on the NEXT
button, it is necessary to define classification criteria for the workload.

The basic classification criteria describes the "who", "where", and the "what" of a query.
This information effectively determines which queries will run in a workload.

You can specify up to six different criteria for a workload. A query is classified into a
Workload Definition (WD) if it satisfies all of the Classification criteria. Normally, you will
only need to specify one or two criteria for a workload definition.

The "who" criteria define who is executing the query. Examples include:

Account – the user’s unexpanded account string (e.g., $M1$LOAD&S&D&H)
User – the Teradata username (e.g., NomarJoe, SmithRobert, DBC)
Client ID – the logon name on the network client (e.g., JN450824)
Client Address – the IP address of the network client (e.g., 141.206.28.51)
Profile – the user’s Teradata profile name (e.g., Buyer)
Application – the application name on the network client (e.g., QUERYMAN)

Avoid long include/exclude lists associated with “Who” and “Where” criteria. Consider the
use of accounts (that combine many users into one logical group) or profiles to minimize
long “Who” include/exclude lists.

The "where" criteria defines which database objects are referenced by the query.

Data Objects – choices include databases, tables, views, macros, and stored
procedures. Note that UDFs are not supported.

The "what" criteria for the query is based on optimizer estimates. Options include:

AMP Limits – is this an all-AMP request or not? Selecting this checkbox causes the
workload to accept only queries that are not all-AMP queries.

Load Utility Type – FASTLOAD, MULTILOAD, FASTEXPORT (or all three) When
selecting additional criteria, be aware that you cannot combine a load utility type
with anything other than a “who” criteria.

Statement Type – the type of statement being submitted (e.g., SELECT, DDL, DML)
Row Count – minimum and/or maximum rows at each step for spool files and result set
Final Row Count – minimum and/or maximum rows for result set only
CPU Time – minimum and/or maximum estimated processing time. You can specify

CPU time in hundredths of a second (using the format HHH:MM:SS.dd).

“Who” criteria has lower overhead than “where” and “what” because “who” is determined
once per session logon, whereas “where” and “what” are determined once per query.

Workload Management Page 51-31

WD – Classification Criteria

• Workload definitions have classification criteria that specify the WHO,
WHERE, and WHAT.

 WHO – determines who is executing the query
– For example: Account string, Username, Profile, Application name, etc.

 WHERE – defines which database objects that are referenced by the query
– For example: databases, tables, views, macros, and stored procedures , etc.

 WHAT – is based on optimizer estimates
– For example: Number of AMPs used, step row count, final row count, CPU time, etc.

• A query will run in a specific workload based on the classification criteria.

– With previous Teradata releases, queries were only classified by account string.

• Each of the criteria are ANDed together.

– Normally, you only need to have 1 or 2 classification criteria (maximum of 6).

– A query is classified into a Workload definition (WD) if it satisfies all of the
Classification criteria.

 Workload Management Page 51-32

Specify Exception Criteria
After identifying the types of requests that make up the workload, you begin defining the
behavior you want for those requests. Use Exception Criteria to define performance-related
thresholds that trigger special handling such as aborting the requests, or continuing the
requests but modifying the workload, issuing an alert, or running an external program.

Teradata checks for exception conditions at the following times.

Synchronously – at the end of each AMP step
Asynchronously – at the configurable time interval (1-3600 seconds); this value is set

within TDWM using the left pane selection: Settings → Intervals → Exception
Interval

Exception Actions specify what to do when an Exception condition is detected.

No exception monitoring – exception handling is effectively turned off and exceptions
are NOT logged.

Abort – query is aborted.
Change Workload; move the query into a different workload.
Raise Alert; no change to query; send a Teradata Manager Alert
Run Program; no change to query; have Teradata Manager execute a program.

Notes:

Any exception taken on a query is automatically logged in the
DBC.TDWMExceptionLog.

Skew is NOT calculated synchronously at the end of query steps. Asynchronous

exception checking is the sole method used to detect skew.

CPU Time Note

If the workload has an Enforcement Priority of tactical, initially the Tactical CPU Usage
Threshold (per node) check box will be grayed out (not available). The Tactical CPU
Usage Threshold (per node) check box will be enabled as soon as a positive value is
specified for Sum Over All Nodes. This causes the Teradata Database to use PSF query
milestones to move the workload to a different Allocation Group as soon as the limit is
reached. Normal exception processing happens less frequently. When exception processing
sees that either CPU time limit has been reached, it will perform normal exception
processing.

If the workload is tactical and a positive value for Tactical CPU Usage Threshold (per
node) is specified, then one of the Exception Actions must be Change Workload.

Before saving the Rule Set, TDWM checks to see that all Tactical WD’s with a positive
value for CPU Usage Threshold (per node) have another WD specified. The user needs to
define another WD in the same Resource Partition to satisfy this condition.

Workload Management Page 51-33

Specify Exception Criteria

The Qualification Time box
represents how long the
query has to remain skewed
(in seconds) before this
exception is met.

 Workload Management Page 51-34

Example – Exception Handling
The facing page contains an example of a screen that is accessed in Teradata Manager.

Teradata Manager Dashboard Virtual Utilization Summary

Several queries were submitted in the Strategic workload and these all caused AMP
skewing. TASM automatically aborted these queries because of the exception criteria.

Workload Management Page 51-35

Example – Exception Handling

"Bad" Query causes skewing. Query is automatically aborted by TASM.

ds186034
Sticky Note
high to low AMP utilization

 Workload Management Page 51-36

Example – Exception Handling (cont.)
A user will receive an error message if a query is aborted because an exception criteria was
exceeded.

Any exception taken on a query is automatically logged in the DBC.TDWMExceptionLog.

Examples of error codes that are logged in the TDWM Exception Log are:

3149 Query request was rejected because of an Object Access Filter rule.

3150 Query request was rejected due to a Query Resource Filter rule.

3151 Query request was rejected because of an Object Throttle rule.

3152 Logon request was rejected due to an Object Access Filter rule.

3153 Logon request was rejected because of an Object Throttle rule.

3156 Request aborted by TDWM. Exception Criteria exceeded.

3158 Informational message logged by TDWM. Exception Criteria exceeded.

3162 TWM Limit for this utility type was exceeded (not returned); for load utilities.

3163 TWM Limit for all utilities has been exceeded (not returned); for load utilities.

Workload Management Page 51-37

Example – Exception Handling (cont.)

End user gets an error message describing the reason why the query was aborted.

Exception is logged in TASM Exception Log: DBC.TDWMExceptionLog

 Workload Management Page 51-38

Teradata Workload Analyzer
This application provides the following capabilities:

Migrate existing PSF settings into workload definitions.
Establish workload definitions from query history or directly
Can be used “iteratively” to analyze and understand how well the existing workload

definitions are working, and modify those definitions if necessary.

This tool combines data from existing Priority Scheduler settings (via Priority Definition or
PD sets) and workloads (via Teradata DBQL – Database Query Log) to determine workload
definitions.

This application can also apply best practice standards to workload definitions such as
assistance in SLG definition and priority scheduler setting recommendations.

In addition, Workload Analyzer supports the conversion of existing Priority Scheduler
Definitions (PD Sets) into new workloads. A PD set is the collection of data, including the
resource partition, allocation group, period type, and other definitions that control how the
Priority Scheduler manages and schedules session execution.

Workload Management Page 51-39

Teradata Workload Analyzer

Capabilities of Teradata Workload Analyzer include:

• Identifies classes of queries and recommends workload definitions and operating
rules

• Recommends workload to allocation group mappings and Priority Scheduler weights

• Provides recommendations for appropriate workload Service Level Goals (SLG)

• Provides the ability to migrate existing Priority Scheduler Definitions (PDSets) into
new workloads

Workload Analyzer provides 2 paths to creating a Workload Rule set.

1. Generate new workload recommendations using statistics from DBQL data

2. Migrate current Priority Scheduler settings

Migrate existing PS
settings

Generate new workload
recommendations

Use Workload Analyzer to create
Workload Definitions and

recommend Service Level Goals

 Workload Management Page 51-40

Summary
The facing page summarizes some important concepts regarding this module.

Workload Management Page 51-41

Summary

• Workload Management is accomplished by using several tools that assist in
defining the rules that control the allocation of resources to workloads
running on a system.

– These rules include filters, throttles, and workload definitions.

– Workload definitions are rules to control the allocation of resources to workloads.

• The benefit of TASM is to automate the allocation of resources to workloads.

• The key product that is used to create and manage these rules is either

– Teradata Dynamic Workload Manager (TDWM) or

– Viewpoint Workload Designer

• Other tools that facilitate in workload management include:

– Teradata Workload Analyzer – helps create workload definitions by analyzing
existing PSF settings and DBQL information.

– Teradata Manager or Viewpoint– contains Workload Monitor and Trend Analysis
capabilities.

– Teradata Query Scheduler – facility to schedule query requests for Teradata

 Workload Management Page 51-42

Module 51: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Workload Management Page 51-43

Module 51: Review Questions

1. What type of TASM filter or throttle rule is needed for the following restrictions?

Limit the number of concurrent sessions _______________________________

Reject queries based on max processing time _______________________________

Reject queries accessing a specific DB _______________________________

Limit the number of FastLoad jobs _______________________________

Delay more the 20 queries for a specific account _______________________________

2. What is the purpose of the default workload definition name "WD-Default"?

a. Default workload for any queries with an enforcement policy of normal.
b. Default workload for any queries that are not associated with a workload.
c. Default workload for any queries assigned to Default resource partition.
d. Default workload for any queries assigned to Standard resource partition.

3. Which query attribute is not used by the Parsing Engine software to classify a query into a Workload
Definition (WD)?

a. User name
b. Account
c. User Role
d. User Profile
e. Optimizer estimates

ds186034
Sticky Note
role is jus test of access rights so not here

 Workload Management Page 51-44

Module 51: Review Questions (cont.)
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Workload Management Page 51-45

Module 51: Review Questions (cont.)

4. Which Teradata application can be used to initially define workload definitions?

a. Teradata Manager
b. Workload Analyzer
c. Dynamic Workload Wizard
d. Priority Scheduler Administrator

5. Place the following control options in the proper sequence from 1 to 4 as they are acted upon by
Teradata software.

___ a. Object throttles
___ b. Exception criteria
___ c. Workload throttles
___ d. Object filters

 Workload Management Page 51-46

Notes

Teradata Manager and Performance Monitor Page 52-1

Module 52

Teradata Proprietary and Confidential

Teradata Viewpoint

After completing this module, you will be able to:

 List 3 portlets that are available with Viewpoint.

 Understand the purpose of various Viewpoint portlets

 Use Viewpoint to monitor sessions.

 Teradata Manager and Performance Monitor Page 52-2

Notes

Teradata Manager and Performance Monitor Page 52-3

Table of Contents

What is Teradata Viewpoint? ... 52-4
Viewpoint Portal and Portlets .. 52-6
Logging onto Viewpoint .. 52-8
Example of Initial Session and Portlets ... 52-10
Viewpoint Portlet Controls .. 52-12
Viewpoint Rewind ... 52-14
Query Monitor .. 52-16
Viewpoint Query Monitor Detail View ... 52-18
My Queries ... 52-20
Viewpoint – Remote Console .. 52-22
Viewpoint Alert Viewer ... 52-24
Viewpoint SQL Scratchpad ... 52-26
Viewpoint SQL Scratchpad Object Browser ... 52-28
Viewpoint SQL Scratchpad Saved/History .. 52-30
Summary .. 52-32
Module 52: Review Questions ... 52-34

 Teradata Manager and Performance Monitor Page 52-4

What is Teradata Viewpoint?
Teradata Viewpoint is a web portal application framework with a primary focus on Teradata
Systems Management functionality that is integrated into the Teradata platform.

Teradata Viewpoint provides systems management via a web browser which is extensible to
Teradata end users and management, allowing them to understand the state of the system
and make intelligent decisions about their work day.

Teradata Viewpoint enables database and system administrators and business users to
monitor and manage Teradata Database systems from anywhere using a standard web
browser.

Teradata Viewpoint allows users to view system information, such as query progress,
performance data, and system saturation and health through preconfigured portlets displayed
from within the Teradata Viewpoint portal. Portlets can also be customized to suit individual user
needs. User access to portlets is managed on a per-role basis.

Database administrators can use Teradata Viewpoint to determine system status, trends, and
individual query status. By observing trends in system usage, system administrators are
better able to plan project implementations, batch jobs, and maintenance to avoid peak periods of
use. Business users can use Teradata Viewpoint to quickly access the status of reports and queries
and drill down into details.

Teradata Viewpoint - Benefits
Viewpoint provides several benefits to the customer, including:

 A complete solution provided by Teradata
 A single operational view for all Teradata systems
 A leading edge interface
 Highly customizable and personalized
 Ease of accessibility; lower TCO
 Self Service extensibility to all Teradata users
 Add your own content with the PDK (Portlet Development Kit)

Teradata Manager and Performance Monitor Page 52-5

Teradata Viewpoint

Viewpoint is the cornerstone of Teradata
Systems Management.

• Provides systems management via a web
browser.

• Provides a single operational view (SOV) for
multiple systems.

• Highly customizable and can be personalized.
• Teradata Management Portlets are the

replacement for Teradata Manager and PMON.

Viewpoint Architecture
• Viewpoint Server – external server or appliance

that executes the Viewpoint application
• Viewpoint Portal is an AJAX Web 2.0 application
• Data Collection (DCS) is performed by the

Viewpoint server.

Browser Support Examples
• Internet Explorer 7 or later
• Firefox 3.6 or 4.0
• Chrome 10
• Safari 5

TASM Portlets
• Workload Designer support TD 12.0 to TD 14.0
• Workload Monitor and Health V2R6.2 to TD 14.0

Eco-
System

Teradata
Platform

Viewpoint
Portal

Teradata
Database

U
s

e
rs

 V
ie

w
T

e
ra

d
a

ta
 S

e
lf

 S
e

rv
ic

e
P

o
rt

le
ts

Platform View
Teradata Mgt Portlets

M
u

lti S
ystem

 V
iew

T
M

S
M

 P
o

rtle
ts

Single System View
Teradata Mgt Portlets

TASM Portlets

Self
Service

ds186034
Sticky Note
TMS = teradata managed serverViewPoint is avail on___server

 Teradata Manager and Performance Monitor Page 52-6

Viewpoint Portal and Portlets
Portal Basics

To help you work efficiently, Teradata Viewpoint uses a page metaphor as the framework
for displaying and updating portlets. Each portal page is a virtual work space where you
decide which portlets to display and how to arrange them on the page. Examples of ways to
organize your work include defining a page for each system being monitored, or for each
type of query or user. As you work, Teradata Viewpoint continually updates the information
displayed on the page that currently fills the Teradata Viewpoint portal. This page is called
the active page.

Portlet Basics

Teradata Viewpoint system management tools are called portlets. Select the portlets that you
want to display and monitor from submenus, or categories, under Add Content. You can also
search for a specific portlet name using the filter feature. Generally, every instance of a
portlet:

 Has a frame that appears when the cursor moves over any part of the portlet on the
page and disappears when the cursor moves off the portlet.

 Displays the portlet name or the current settings in the upper frame, depending on
the current activity.

 Has a width requirement to ensure proper display of its graphical information such
as charts, spark lines, or graphs.

 Remains at a fixed size even when the browser window is re-sized. You can use the
browser scroll bars to view the entire portlet view.

 Can be repositioned on the portal page.

With the exception of the Calendar portlet, multiple instances of a portlet can be added to a
portal page. Each portlet instance has its own settings and controls in addition to the features
shared by all portlets. The System Administrator assigns portlet privileges for each Teradata
Viewpoint user.

Teradata Manager and Performance Monitor Page 52-7

Viewpoint Portal and Portlets

Monitoring
• Alert Viewer
• Canary Response Times
• Lock Viewer
• Metrics Analysis
• My Queries
• Node Resources
• Productivity
• Query Monitor
• Query Spotlight
• Space Usage
• System Health
• TVS Monitor
• Today's Statistics
• Viewpoint Monitoring

TASM
• Workload Designer
• Workload Health
• Workload Monitor

Tools
• Calendar
• External Content
• Remote Console
• SQL Scratchpad

Trend Reporting
• Capacity Heatmap
• Metrics Graph

• A Viewpoint portal represents a Web location that can be accessed or logged onto.

• Each portal page is a virtual work space where you decide which portlets to display and
how to arrange them on the page.

– Viewpoint system management tools are called portlets. Viewpoint's Add Content allows the
following content (portlets) to be added.

• Viewpoint continually updates the information displayed on the portal page. This page
is called the active page.

ds186034
Sticky Note
VPROC managerTMS = viewpoint serverhow often u wanna collect and how..(?)Rewind

 Teradata Manager and Performance Monitor Page 52-8

Logging onto Viewpoint
Logging on to the Teradata Viewpoint portal begins your session so you can begin working
with the Teradata Viewpoint portal.

1. Open a browser.
2. Enter the address for your Teradata Viewpoint portal.

The Welcome page appears, with the portal version number shown at the bottom.

3. Log on to the Teradata Viewpoint portal.

If your Teradata Viewpoint system is set up to create a user profile automatically, the
username and password you enter are authenticated against your company-provided
username and password the first time you log on to Teradata Viewpoint. Automatic profile
creation is known as auto-provisioning.

Teradata Manager and Performance Monitor Page 52-9

Logging onto Viewpoint

Logging on to the Teradata Viewpoint portal begins your session so you can begin
working with the Teradata Viewpoint portal.

1. Open a browser.
2. Enter the address for your Teradata Viewpoint portal.
3. Log on to the Teradata Viewpoint portal.

 Teradata Manager and Performance Monitor Page 52-10

Example of Initial Session and Portlets
The facing page illustrates an initial session with 3 portlets that have been started.

You can manage portal pages using the following guidelines:

 Add portal pages at any time during a Teradata Viewpoint session.
 Access any portal page by clicking its tab; only one page can be active at a time.
 Change the name of any tab, including the Home page tab; page names can be

duplicated.
 Rearrange pages by dragging and dropping into a new location.
 Remove pages, along with any portlets contained on the page, with a single mouse-

click.
 One page (tab) must remain, as well as the Add Page tab.

Adding a Portal Page
Organize your system management tools by adding pages to the Teradata Viewpoint portal.
Multiple pages can be added or removed per session. The newest page is always the active
page unless you click on another tab.

 In the Teradata Viewpoint portal, click Add Page.
 A New Page tab appears to the left of Add Page and becomes the active page.

Teradata Manager and Performance Monitor Page 52-11

Example of Initial Session and Portlets

New portlets
are added
via the Add
Content.

This initial
logon shows
3 portlets
that are
executing.

Pages

Current Page

Portlets

 Teradata Manager and Performance Monitor Page 52-12

Viewpoint Portlet Controls
The following controls appear within each portlet frame if the control is available:

 Rewind – indicates that the portlet can be set to display data from a previous point

in time.

 Preferences – accesses portlet preferences and settings. Preferences are used to

specify what information is displayed, time intervals for reporting, and other
features that help you customize the portlet functions.

 Share Portlet – captures a customized version of a portlet for use by other users.

The Teradata Viewpoint Administrator must make the customized portlet available
for sharing.

 Collapse – toggles the portlet closed. This button appears only when the portlet is

open. When collapsed, only the upper and lower portlet frame sections are
displayed.

 Expand – toggles the portlet open. This button appears only when the portlet is

collapsed. When expanded, the portlet returns to its normal size and position on the
portal page.

 Maximize – toggles the portlet to fill the portal page, covering all other portlets

being displayed.

 Remove – removes the portlet and all its settings from the active portal page.

Teradata Manager and Performance Monitor Page 52-13

Viewpoint Portlet Controls

Preferences

Share Portlet

On-Line Help

(Pop-ups must be allowed)

Rewind

Collapse

Expand

Maximize

Remove

Resize Restore

ds186034
Sticky Note
can go back in timesession and performancesession and query information

 Teradata Manager and Performance Monitor Page 52-14

Viewpoint Rewind
The rewind feature allows you to view data that corresponds to dates and times in the past
and compare it to data for a different date and time. You can rewind the data for some or all
portlets on a portal page to a previous point in time, such as when a job failed. Rewinding
portlet data is useful for identifying and resolving issues.

You can rewind data as far back as data is available. The rewind feature is not available for
portlets that have portlet-specific methods for reviewing data over time.

Using the rewind toolbar, you can enter a specific date and time as well as scroll through the
data in increments of seconds, minutes, hours, or days. All portlets on the page that are
participating in rewind activities display data that corresponds to the selected rewind date
and time each time a selection is made.

Teradata Manager and Performance Monitor Page 52-15

Viewpoint Rewind

Rewind, replay, fast forward Viewpoint portlets to review
Teradata operations at past points in time

Status Date and Time Selector Back 1 Hr/Min/Sec Forward 1 Hr/Min/Sec

Slider to go Back or Forward

 Teradata Manager and Performance Monitor Page 52-16

Query Monitor
The Query Monitor portlet allows you to view information about queries running in a
Teradata Database system so you can spot problem queries. You can analyze and decide
whether a query is important, useful, and well written. After you have identified a problem
query, you can take action to correct the problem by changing the priority or workload,
releasing the query, or aborting the query or session. You can take these actions for one
query or session, or multiple queries or sessions at a time.

The summary view contains a table with one row allocated to each of the sessions, account
strings, users, or utilities running on the database.

The portlet allows you to filter queries in all of the session views. You can set thresholds for
any column and when the threshold is exceeded, the information is highlighted in the
sessions table.

Select a row to access session and query information in the details view. Using Query
Monitor, you can also determine the types of utilities that are running most frequently on the
system and then set utility limits. You can spot utilities that are using a large number of
partition connections and, potentially, a high number of resources.

From the PREFERENCES view, you can set the criteria values used to display sessions in
the My Criteria view and customize the information displayed in the views. For example,
you can set criteria values to display only those sessions currently running on the selected
system that exceed the specified criteria. You can troubleshoot Teradata Database system
problems to quickly explore details about queries such as the current state of a query or how
long a query has been blocked.

Teradata Manager and Performance Monitor Page 52-17

Query Monitor

The Query Monitor portlet allows you to view information about queries running in a
Teradata Database system.

Selecting a SESSION ID will provide detailed information about the request.

 Teradata Manager and Performance Monitor Page 52-18

Viewpoint Query Monitor Detail View
The details view displays statistics and information about the selected session. This view can
be accessed by clicking on a session row in the summary view.

When viewing a request, you can see detailed information from the following tabs:

 Overview – key statistics for a session. Any value exceeding the thresholds is

highlighted.
 SQL – SQL for the selected query.
 Explain – Explain steps for the query, including step statistics and explain text.
 Blocked By – details about other queries that are blocking this query.
 Delay – details about rules delaying this query.
 Query Band – displays the query band name and value for the selected query.

Use the Tools menu to change the priority or workload, release a query, or abort a query or
session for one query or session at a time.

Use the Next and Previous buttons to move through sessions without returning to the
summary view.

Teradata Manager and Performance Monitor Page 52-19

Viewpoint Query Monitor Detail View

Depending on the current state of the request, by selecting the
drop down menu, the request can be:

• Aborted
• Changed to another Workload
• Released

Depending on Query State,
available tabs include:

• Overview
• SQL
• Explain
• Blocked By
• Delay
• Query Band

Query

Session

 Teradata Manager and Performance Monitor Page 52-20

My Queries
The My Queries portlet allows you to view and manage your queries across multiple
Teradata Database systems. You can see if queries are queued or blocked, and you can see
their impact on system resources.

Use the My Queries portlet to view information about queries in either the summary view or
the details view. The summary view contains a table with one row allocated to each of the
sessions logged on under one or more user names. Select a row in the summary view to see
additional session and query information in the details view. Use the SQL, Explain, Blocked
By, or Query Band tab in the details view to display information for the selected session.

The PREFERENCES view allows you to select one or more Teradata Database systems, and
then select one or more users per system to monitor. From this view, you can also select a
format for the SQL that appears in the query details view.

Teradata Manager and Performance Monitor Page 52-21

My Queries

My Queries allows a user to view their queries across multiple systems.

Selecting a SESSION ID will provide detailed information about the request.

Different
Systems

 Teradata Manager and Performance Monitor Page 52-22

Viewpoint – Remote Console
The Remote Console portlet allows you to run many of the Teradata Database console
utilities remotely from within the Teradata Viewpoint portal.

Using this portlet, you can:

 Select or search for a system.
 Select or search for a utility.
 Enter console utility commands.
 Display responses from the commands.

Teradata field engineers, Teradata Database operators, System Administrators, and System
Programmers use Teradata Database utilities to administer, configure, monitor, and diagnose
issues with Teradata Database.

Remote Console activity requires special access rights, BUT does not require UNIX Root
authority.

Teradata Manager and Performance Monitor Page 52-23

Remote Console

The Remote Console
portlet allows you to
execute system
utilities.

Add Content > Tools >
Remote Console

• Abort Host
• Check Table
• Configure
• DBS Control
• Ferret
• Gateway Global
• Lock Display
• Operator Console
• Priority Scheduler
• Query Configuration
• Query Session
• Recovery Manager
• Show Locks
• Teradata DWM

Dump
• Vproc Manager

ds186034
Sticky Note
diff utiltiestest questions

ds186034
Sticky Note
test que

ds186034
Sticky Note
what are the other ways to run it?i can logon to teradata nodeCNS termcommand lineotherwise run these system utilities jst form remote console

 Teradata Manager and Performance Monitor Page 52-24

Viewpoint Alert Viewer
The ALERT VIEWER portlet allows users to view alerts defined for the system. The alert
information in the summary view is updated every 30 seconds. Every alert has a timestamp,
displaying the date and time at which the alert was issued.

You can filter the alerts by for example severity, time period, type, or name. You can also
combine the filters to narrow the results further.

The ALERT DETAILS view displays detailed information about what triggered the alert,
the source of the alert, and any relevant messages.

An alert is an event that the Teradata System Administrator defines as being significant. The
Teradata System Administrator assigns alert severity levels to rank alerts, and can also
include an explanatory message. The severity levels are: critical, high, medium, or low. The
alerts displayed in the ALERT VIEWER portlet are specific to your system.

Teradata Manager and Performance Monitor Page 52-25

Viewpoint Alert Viewer

An Alert Action was defined to write a row
into the Alert Log and send an email when
the AMPLimit event is detected.

ds186034
Sticky Note
we can set thresholdif certain things go below levels, raise alerts

 Teradata Manager and Performance Monitor Page 52-26

Viewpoint SQL Scratchpad
The SQL SCRATCHPAD portlet allows you to enter queries and retrieve data from a
Teradata Database system. Select a system to run your query, enter a single or multi-
statement query, and then view the results.

After the Teradata Database system retrieves the data, the RESULTS section expands to
display four tabs. Use the Results tab to see the results of your query. Use the SQL tab to
display the SQL statements used to create the query. Use the Explain tab to see steps listed
in chronological order. The steps are refreshed every 30 seconds so you can see how longer
running queries are progressing. If there are delays in processing your query, you can cancel
the query. If running a query takes longer than you expected, it might be blocked. Use the
Blocked By tab to see information about queries that are blocking the currently running
query.

Use the OBJECT BROWSER to view a list of objects in the database. Also use the
OBJECT BROWSER to insert an object into a query to reduce the time required to build a
query and help reduce errors in object names.

The SQL SCRATCHPAD portlet also allows you to save queries or export results to a file
where you can sort and analyze the information. You can pin query results (pinning allows
you to temporarily save the query results). Saving the query allows you to use the query in
the current session or in future sessions. Use the History tab to access previously run
queries from your current session.

The SQL SCRATCHPAD portlet frame displays the system name on which the query is
running.

Teradata Manager and Performance Monitor Page 52-27

Viewpoint SQL Scratchpad

Selecting the Run button the
first time will prompt for the
logon information and the
query results will be displayed.

After the request is executed, the
Results and SQL tabs appear below.

ds186034
Sticky Note
its okay...L does not use itfor mix of queries, i use SQL Assistant

 Teradata Manager and Performance Monitor Page 52-28

Viewpoint SQL Scratchpad Object Browser
Selecting the down arrow on the load button will load the Object Browser.

The OBJECT BROWSER allows you to view a list of objects in a Teradata Database
system and insert an object into a query. Use the OBJECT BROWSER to reduce the time
required to build a query and help reduce errors in object names. Use filtering to search for
objects in the OBJECT BROWSER.

The OBJECT BROWSER employs a directory tree that is organized in a hierarchical
structure, displaying a list of databases and users on the connected system.

Teradata Manager and Performance Monitor Page 52-29

Viewpoint SQL Scratchpad Object Browser

The SQL Scratchpad portlet allows
you to enter queries and retrieve data.

Select the Load down arrow to load
the Object Browser.

After building the SQL statement,
Select the Run button to execute
the SQL.

 Teradata Manager and Performance Monitor Page 52-30

Viewpoint SQL Scratchpad Saved/History
Selecting the down arrow on the load button will load the Object Browser.

The OBJECT BROWSER allows you to view a list of objects in a Teradata Database
system and insert an object into a query. Use the OBJECT BROWSER to reduce the time
required to build a query and help reduce errors in object names. Use filtering to search for
objects in the OBJECT BROWSER.

The OBJECT BROWSER employs a directory tree that is organized in a hierarchical
structure, displaying a list of databases and users on the connected system.

Teradata Manager and Performance Monitor Page 52-31

Viewpoint SQL Scratchpad Saved/History

Select the Load button to display
the Saved and History tabs.

 Teradata Manager and Performance Monitor Page 52-32

Summary
The facing page summarizes some important concepts regarding this module.

Teradata Manager and Performance Monitor Page 52-33

Summary

Viewpoint is the cornerstone of Teradata Systems Management.

• Provides systems management via a web browser.

• Viewpoint provides a single operational view (SOV) for multiple systems.

• Highly customizable and can be personalized.

The Teradata Viewpoint Management and Self-Service portlets allow the Viewpoint user
access Viewpoint and Teradata resources. Examples include:

• Alert Viewer – allows users to view alerts defined for the system

• Query Manager – allows users to view information about requests

• System Health – allows users to monitor and display the status of a selected Teradata
Database system

• Node Resources – allows users to monitor physical and virtual resources

• Remote Console – allows users to run many of the Teradata Database console utilities
remotely from within the Teradata Viewpoint portal

• SQL Scratchpad – allows users to enter queries and retrieve data

 Teradata Manager and Performance Monitor Page 52-34

Module 52: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Teradata Manager and Performance Monitor Page 52-35

Module 52: Review Questions

1. List three portlets of Viewpoint.

__

__

__

ds186034
Sticky Note
remote consolealert viewerquery monitor

 Teradata Manager and Performance Monitor Page 52-36

Notes

ResUsage - Performance Monitoring Page 53-1

Module 53

Teradata Proprietary and Confidential

ResUsage – Performance Monitoring

After completing this module, you will be able to:

 Identify the purpose of various ResUsage tables.

 List two ways in which ResUsage data can be collected.

 Name the two phases of gathering resource
usage data and briefly describe them.

 Describe the purpose of the Teradata System Emulation Tool

 ResUsage - Performance Monitoring Page 53-2

Notes

ResUsage - Performance Monitoring Page 53-3

Table of Contents

Performance Monitoring Tools .. 53-4

SAR and xperfstate .. 53-4
Why Collect Performance Data? .. 53-6
Resource Usage Data ... 53-8

Data Collection .. 53-8
Data Logging .. 53-8

Collection Costs ... 53-8
Cost .. 53-8

Filling the ResUsage Tables... 53-10
Collection and Log Buffers .. 53-10
Resource Usage Logging ... 53-10
Real-time Performance Monitoring ... 53-10

Specifying ResUsage Tables and Logging Rates... 53-12
Specifying Tables using the ctl Utility ... 53-12
Specifying Tables using Supervisor Commands.. 53-12

Resource Usage Tables .. 53-14
Setting Resource Logging from DBW ... 53-14
Setting Resource Logging from the Control Utility – ctl ... 53-14

Resource Usage Views ... 53-16
ResGeneralInfoView .. 53-16
ResCPUUsageByAMPView .. 53-16
ResCPUUsageByPEView .. 53-16
ResShstGroupView .. 53-16
ResSldvGroupView ... 53-16
ResSvdskGroupView ... 53-16

Resource Usage Macros ... 53-18
Example Output from DBC.ResNode Macro .. 53-20
PM/API and Viewpoint .. 53-22

How PM/API Collects Data ... 53-22
Collecting and Reporting Resource Usage Data .. 53-22
Collecting and Reporting Session-level Usage Data ... 53-22

Example ... 53-22
Teradata System Emulation Tool (Teradata SET) ... 53-24
Performance Monitoring Summary ... 53-26
Module 53: Review Questions ... 53-28

 ResUsage - Performance Monitoring Page 53-4

Performance Monitoring Tools
The facing page identifies the performance monitoring tools and the platforms on which
they reside.

The Teradata Database provides several facilities you can use to monitor database
performance.

 EXPLAIN statement
 Access logging – record the activity of specific users.
 AMPUsage – a view that provide AMP Usage information for each user and

account.
 ResUsage – a set of tables, view, and macros used to record and monitor system

resource usage.
 Teradata PM/API – Performance Monitor / Application Programming Interface
 Teradata Manager – Performance Monitor (formerly PMON)
 Database Console Utilities – (e.g., Showspace displays space utilization)
 Linux tools (e.g., sar)
 TDP User Transaction Monitor (TDPTMON)

For example, you may have to use several of these tools to monitor query performance. You
should always have an EXPLAIN report to understand what the query is doing.

SAR and xperfstate
SAR (System Activity Reports) is a UNIX facility to capture performance metrics at the
UNIX operating system level.

Xperfstate is a UNIX tool that provides a real-time display of system performance
combining some UNIX and Teradata information.

ResUsage - Performance Monitoring Page 53-5

Performance Monitoring Tools

Gateway Software

PE vproc
RSS

AMP vproc
RSS

Message Passing Layer – RSS (Resource Sampling Subsystem)

One or more Nodes

V iewpoint

ETH

Viewpoint

SQL – EXPLAIN
AMPUsage view
DBQL
QCD

PE vproc
RSS

AMP vproc
RSS

AMP vproc
RSS

AMP vproc
RSS

DBC.ResUsage Tables

Teradata
PM /API

Linux commands
• sar

Levels of performance collection:

• System (e.g., ResUsage)
• Session (e.g., Viewpoint)
• Query (e.g., DBQL)

ds186034
Sticky Note
if ur doing system level performance we do these 3 things

ds186034
Sticky Note
PERF managementOS info = SARsystem activity report (14 of em)understanding and analyzing (tougher)andthen making recommendation - which is the toughest part

 ResUsage - Performance Monitoring Page 53-6

Why Collect Performance Data?
Traditionally, performance data and reports have been the primary diagnostic tool available
to analyze performance data on a Teradata system.

The facing page shows some uses for ResUsage reports and data.

When considering system expansion and doing capacity planning, some of the activities to
consider include:

 Batch windows – how much time is available to perform batch SQL jobs. A larger
system with more AMPs usually means that these jobs can run faster. However, if
the network and/or channel are the bottleneck, then maybe additional network
and/or channel connections may be necessary.

 Backup windows – how much time is available to perform Archive activities? If a

disaster occurred and a RESTORE/RECOVERY had to be performed, how long
can the system be unavailable before there is negative impact to the business?

 Maintenance Windows - how much time is available to perform batch load/unload

activities? A larger system with more AMPs usually means that the load/unload
functions will take less time. However, if the network and/or channel is the
bottleneck, then maybe additional network and/or channel connections may be
necessary.

 Ad-hoc decision support queries – how much spool is needed? When will these be

executed

ResUsage - Performance Monitoring Page 53-7

Why Collect Performance Data?

Performance data may be used to:

• Measure system benchmarks.

• Measure component performance.

• Analyze performance degradation and improvement.

• Identify potential performance impact.

• Identify bottlenecks, parallel inefficiencies and other problems.

• Assist on-site job scheduling.

• Plan installations.

• Capacity planning – resource usage data can help determine if system expansion is
necessary.

 ResUsage - Performance Monitoring Page 53-8

Resource Usage Data
ResUsage data gathering is a two-phase process that encompasses data collection and data
logging. The ResUsage facility consists of a set of tables, views, and macros to access
system metrics.

Two Teradata subsystems work in conjunction with other subsystems to gather ResUsage
data:

 Parallel Database Extension (PDE)
 Resource Sampling Subsystem (RSS)

Data Collection
During the data collection phase, both PDE and RSS gather information from the operating
system and from Teradata Database. This data is temporarily stored in shared data
collection buffers. Data collection continues for a user-specified period of time called the
collect interval.

Data Logging
In the logging phase, RSS writes all gathered data to ResUsage tables and reinitializes the
shared data collection buffers for the next log interval.

Collection Costs
Recording information in the DBC.ResUsage table requires disk space and processing time.
Despite the additional resources used in performance monitoring, there are benefits to
understanding how your system resources are being used.

Cost
The collection of ResUsage data incurs associated system overhead costs in three areas: I/O
capacity, User DBC Perm Space and CPU utilization. The CPU has to write new rows to
the ResUsage table depending on the preset logging interval. This increases CPU utilization
during the collection process. In addition, the new rows added to the ResUsage tables
require more perm space to hold the added data in user DBC where the table resides.

The costs for collecting ResUsage data depend on the table-logging interval, the number of
active tables, and on the physical and virtual configuration of your system.

ResUsage - Performance Monitoring Page 53-9

Resource Usage Data

ResUsage data provides historical system-level performance information.

• Data is logged into various ResUsage tables at a specified logging interval.

Two Teradata subsystems work in conjunction with other subsystems to gather
ResUsage data:

• Parallel Database Extension (PDE)
• Resource Sampling Subsystem (RSS)

Data collection

• PDE and RSS help to collect data and gather information from the operating system
and the Teradata Database software.

Data logging

• RSS writes the collected data to ResUsage tables.

Collections Costs

• Disk Space
• Additional I/Os (minimal)
• Additional CPU overhead (minimal)

ds186034
Sticky Note
resusageso space is not contained just within DD

 ResUsage - Performance Monitoring Page 53-10

Filling the ResUsage Tables
ResUsage information is gathered in three ways, depending on the nature of the data being
collected.

 Counted – the number of times an event happened. The “gather or live” buffer is
updated at each event.

 Time monitored – determines how much time was spent in a particular state. The

“gather or live” buffer is updated at each state change.

 Tracked data – uses a snap shot of a queue length at the collect period. This

information goes directly into the collect buffer.

Collection and Log Buffers
Statistical information is stored in the gather buffer and holds it there until the set collect
interval. At that time, the utility moves the data to the work and collect buffers. The
collected data is referred to as PM/PC (Performance Monitoring/Production Control) data.

For ResUsage data, the work buffer is moved to the log buffer, where it is held until the set
log interval is reached. The data in the log buffer is written to appropriate ResUsage tables
in the Teradata database.

Resource Usage Logging
When you initiate data logging, the system collects a variety of statistics for a period you
specify. Teradata stores performance data in the DBC.ResUsage tables. Teradata uses nine
tables to gather resource utilization data for a specified time period, and stores this
information by node or vproc.

You can access the statistics stored in the DBC.ResUsage tables directly or use supplied
views. In addition, you may create ResUsage reports using supplied macros that access the
ResUsage views.

The system does not automatically collect resource utilization data. Consequently, you must
activate resource collection and logging to gather performance data. Setting resource
logging is described later in this module.

Real-time Performance Monitoring
Data in ResUsage tables is after-the-fact data, because it has been collected and stored.
With Viewpoint, you can view and capture data by looking directly into the collect buffer to
see what is happening real-time on the system. This can be very useful for determining what
is happening as a particular transaction or request is running.

ResUsage - Performance Monitoring Page 53-11

Logging ResUsage Data

Gather or Live Buffer

Collect Buffer
(near real-time data)

Log Buffer
(written to

ResUsage tables)

AMP AMP AMP AMP

ResUsage Tables

ResUsage
Views and Macros

ResUsage
Reports

Collect Interval
(e.g., 60 sec.)

Provides historical
performance information.

Log Interval
(e.g., 600 sec.)

Work Buffer
(summarized data)

Near real-time performance
metrics used by

Performance Monitoring tools
(e.g., Viewpoint).

ds186034
Sticky Note
larry hagaa(?)Perf guru

 ResUsage - Performance Monitoring Page 53-12

Specifying ResUsage Tables and Logging Rates
Various utilities can be used to specify which of the ResUsage tables to collect and log
information into. These tools include:

 ctl utility
 Supervisor commands (e.g., SET LOGTABLE …) via DB Window

 Note: Using the supervisor commands in the Database Window, you can enable

tables and set collection and logging, but you cannot set Summary mode.

Teradata 13.10 Notes

 The RSS Collection Rate will not be displayed in the TD13.1 ctl RSS screen.

 The rationale for no longer displaying the Collection rate in the RSS screen is that
the RSS screen is really all about logging the ResUsage data. In the past, the
Collection rate had to be enabled, but in TD 13.10, the Collection and Logging are
independent. The Collection rate is for PM/PC which also has its own interface for
setting the Collection rate. The Collection rate is still supported in CTL since CTL
should be able to set or read all the fields in the Control GDO when necessary.

 You can display the collection rate as shown below. Using ctl, …

> print rss collection rate
 RSS Collection Rate=30
> print vproc logging rate
 Vproc Logging Rate=0

Specifying Tables using the ctl Utility

From a Linux command line, enter the command - ctl - and then enter appropriate control
utility commands as shown in detail in the reference manual. Note – the logging rate has a
range from 0 – 3600 seconds (0 turns it off).

Example: The following command (from root prompt) will set the collection rate to 60
seconds and the logging rate to 600 seconds.

ctl -first "RSS Collection Rate = 60; node logging rate=600; screen rss; write; quit"

Specifying Tables using Supervisor Commands

You can also set resource logging from the Database Window Supervisor screen. The set
and get resource commands may be used:

 set logtable tablename_or_ALL ON/OFF

ResUsage - Performance Monitoring Page 53-13

Specifying ResUsage Tables and Logging Rates

Tools that can be used to specify the tables to collect and log include:

• Control GDO Editor – ctl

• Supervisor commands (e.g., SET LOGTABLE …) via DB Window

Example of specifying tables to log system data using the "ctl" utility.

ctl
> screen rss
> 1=on

(0) Node Logging Rate : 600 sec

RSS Table Logging Enable

(1) SPMA : On (2) IPMA : Off (3) SCPU: Off
(4) SVPR : On (5) IVPR : Off (6) SLDV: Off (7) SHST: Off
(8) SPDSK: Off (9) SVDSK: On (A) SAWT: On (B) SPS : On

RSS Summary Mode Enable

Summarize SPMA: Off Summarize IPMA : Off (C) Summarize SCPU : Off
(D) Summarize SVPR: On (E) Summarize IVPR : Off (F) Summarize SLDV : Off
(G) Summarize SHST: Off (H) Summarize SPDSK: Off (I) Summarize SVDSK: Off
(J) Summarize SAWT: On (K) Summarize SPS : On

> write

CTL: Control GDO successfully written.

 ResUsage - Performance Monitoring Page 53-14

Resource Usage Tables
Teradata stores ResUsage data in a set of system tables. Each ResUsage macro derives its
report from one or more of these tables. You must activate logging to produce a useful
ResUsage report.

The Resource Sampling Subsystem (RSS) gathers ResUsage data through shared data
collection buffers. The Collect buffer gathers entries according to the collection rate
intervals. During the log rate interval, the entries are moved into the Log buffer. At the end
of the log period, RSS will log the gathered data to the following ResUsage Tables and re-
initialize the shared data collection buffers for the next log period.

All ResUsage table names begin with ResUsage and have the following extensions.

S: System or I: Internal (of interest mainly to Teradata development personnel)

pma: node information
cpu: cpu-specific information
vpr: vproc information
ldv: logical device information
hst: Channel and LAN host information

The following tables are new starting with Terdata 12.0.

 awt: AMP Worker Task information
 ps: Priority Scheduler performance group information

pdsk: AMP pdisk cylinder allocation, migration, and I/O statistics
vdsk: AMP vdisk cylinder allocation, migration, and I/O statistics

Miscellaneous notes:

 All of the ResUsage tables are located in the DBC database.
 The DBC.ResUsageSobj table exists in V2R5, but is currently no used.

Setting Resource Logging from DBW
You can also set resource logging from the Database Window Supervisor screen. The set
and get resource commands may be used:

 set resource coll <vproc-collect-rate> vproc log <vproc log rate>
 set resource coll <node-collect-rate> node log <node log rate>
 get resource

Setting Resource Logging from the Control Utility – ctl
From a Linux command line, enter the command - ctl - and then enter appropriate control
utility commands as shown in detail in the reference manual.

ResUsage - Performance Monitoring Page 53-15

Resource Usage Tables

Node Data
ResUsageSpma System-wide node information. Generally enabled.
ResUsageIpma System-wide internal node information. Generally not needed.

CPU Data
ResUsageScpu Information specific to the CPUs in a node. Enable if Spma shows

no obvious bottleneck.

VProc Data
ResUsageSvpr Data specific to each virtual processor Generally enabled.
ResUsageIvpr System-wide internal vproc information. Generally not needed.

Host and LAN Data
ResUsageShst Information specific to the host channels Generally enabled.

and LANs that communicate with TD.

Logical Device Data
ResUsageSldv Logical Device – information specific to disk I/O. Generally not needed.

Additional tables
ResUsageSawt Collects and reports statistics about the AWTs.
ResUsageSpdsk Provides AMP-level Pdisk statistics. Generally not needed.
ResUsageSvdsk Provides AMP-level Vdisk statistics.
ResUsageSps Priority Scheduler Performance Group information.

ds186034
Sticky Note
S systemI internalpma is node(PMAprocessor modular assemble)

ds186034
Sticky Note
if running out of AWTthenwork will start queing thenflow control situation, which is not desirable(system -> session -> query)

 ResUsage - Performance Monitoring Page 53-16

Resource Usage Views
Each row in the ResUsage tables represents activity during one logging period; the same is
true of each row in the views. The difference between the tables and the views are the
specific column values. ResUsage tables hold raw data. The views derive values from data
in ResUsage tables.

ResGeneralInfoView
The ResGeneralInfoView provides an overview of system operation. Contains data from
ResUsageSpma covering CPUs, disks, and BYNET information.

 ResCPUUsageByAMPView
Contains data from ResUsageSvpr detailing the ways the CPUs are used by the AMPs.

ResCPUUsageByPEView
Contains data from ResUsageSvpr detailing the ways the CPUs are used by the PEs.

ResShstGroupView
The ResShstGroupView is based on the ResUsageShst table.

ResSldvGroupView
The ResSldvGroupView is based on the ResUsageSldv table.

ResSvdskGroupView
The ResSvdskGroupView is based on the ResUsageSvdsktable. This view includes
resource usage detail on cylinder allocation, migration, and I/O statistics.

ResUsage - Performance Monitoring Page 53-17

Resource Usage Views

ResUsage Tables ResUsageSpma
ResUsageScpu
ResUsageSvpr
ResUsageShst
ResUsageSldv
ResUsageSawt
ResUsageSps
ResUsagePvdsk
ResUsageSvdsk

(raw data)

ResGeneralInfoView View of general system information

ResCPUUsageByAMPView View of CPU usage by AMP

ResCPUUsageByPEView View of CPU usage by PE

ResShstGroupView View of Host Channel and LAN activity

ResSldvGroupView View of disk activity with Node Groups

ResVdskGroupView View AMP virtual disk activity

ResUsage Views
(Examples)

The following types of data are derived
from ResUsage tables:

• Resource utilization percentages

• Event counts per second

• Average event size

Calculations

ds186034
Sticky Note
we collect datathenwe give you views to see themand then we give u macros(most of what we need is in macrosif its not therewe can go to the view)

 ResUsage - Performance Monitoring Page 53-18

Resource Usage Macros
Resource usage macros produce reports from data collected in the resource usage tables.
You can use the reports to analyze key operational statistics and evaluate the performance of
your system. Like other macros, resource usage macros consist of one or more Teradata
SQL statements stored in the Teradata Database and executed by a single EXECUTE
statement.

In addition to the name of the macro, the EXECUTE statement for resource usage macros
can include optional parameters to specify the following:

 A specific single node or a group of nodes
 Starting and ending dates and times
 Starting and ending nodes of a range of nodes

The macros are installed in the DBC database by DIP. You can run these macros after
logging ResUsage data on a specific job or set of jobs.

There are different macros for one node, multiple nodes, a group of nodes, or all nodes.
Examples of some of the macros are listed below.

Macro Information Provided
ResCPUByAmp CPU utilization of each AMP vproc.

ResCPUByPE CPU utilization of each PE vproc.

ResCPUByNode CPU utilization of the node.

ResHostByLink Host traffic for each communication link.

ResLdvByNode Logical device traffic channeled through the node by totaling
its controller links into one summarized node output line.

ResMemMgmtByNode Memory management activity information for the node.

ResNetByNode Net traffic for the node.

Teradata features four ResNode macros that summarize resource usage.

Macro Provides summary of ResUsage…
ResNode Averaged across all nodes
ResOneNode For a specific node
ResNodeByNode Node by node
ResNodeByGroup For a node grouping

ResUsage - Performance Monitoring Page 53-19

Resource Usage Macros

The ResUsage facility provides macros to report information about Teradata.

One-node Macros Multiple-node Macros Group-node Macros* All-node Macros
ResAwtByAMP ResAwt
ResAwtByNode ResAmpCpuByGroup

ResCPUByAMPOneNode ResCPUByAMP ResPeCpuByGroup
ResCPUByPEOneNode ResCPUByPE ResCPUByGroup
ResCPUOneNode ResCPUByNode ResHostByGroup
ResHostOneNode ResHostByLink ResLdvByGroup
ResLvdOneNode ResLdvByNode ResMemByGroup
ResMemMgmtOneNode ResMemMgmtByNode ResNetByGroup
ResNetOneNode ResNetByNode ResNodeByGroup ResNode
ResOneNode ResNodeByNode ResPdskByGroup
ResPdskOneNode ResPdskByNode ResVdskByGroup
ResVdskOneNode ResVdskByNode ResPsByGroup

ResPsByNode

General Macro Syntax:

EXEC Macroname (FromDate, ToDate, FromTime,ToTime [, additional parameters depend on macro];

Example using ResNode macro:

EXEC DBC.ResNode (Date - 7, Date , ,);

This generates data from one week ago to today using the ResNode macro.

* Group-node macros are designed
for co-existence systems.

ds186034
Sticky Note
this is not viewpoint (which is real time)this is historical data we collect in the system

 ResUsage - Performance Monitoring Page 53-20

Example Output from DBC.ResNode Macro
The facing page contains an example of general ResUsage Summary information across all
nodes.

There are 23 columns (including date and time) with the ResNode report. The first 5
columns (after the date and time) represent:

CPU Bsy% Percent of time the CPUs are busy, based on average
CPU usage per node

CPU Eff% Parallel efficiency of node CPU usage. Parallel
efficiency is the total percent of time nodes are busy.
It is the average for all nodes of total busy divided by the
total busy time of the busiest node.

WIO % Percent of time the CPUs are idle and waiting for
completion of an I/O operation.

Ldv IOs /Sec Average number of logical device (disk) reads and writes
per second per node.

Ldv Eff % Parallel efficiency of the logical device (disk) I/Os.
It is the average number of I/Os per node divided by the
number of I/Os performed by the node with the most
I/Os.

If a system’s resources are (CPU and I/O) are heavily utilized, it may be necessary to add
system resources. The DBC.ResNode macro can be used to provide before and after results.

The example on the facing page was captured for a Teradata 5450 four-node system.

ResUsage - Performance Monitoring Page 53-21

Example Output from DBC.ResNode

Date Time CPU Bsy % CPU Eff % WIO % Ldv IOs /Sec Ldv Eff % ...

2011-01-25 08:00:00 98 100 0 1477 99 …
2011-01-25 08:10:00 99 100 0 1416 98 …
2011-01-25 08:20:00 100 100 0 1290 97 …
2011-01-25 08:30:00 100 100 0 1260 100 …
2011-01-25 08:40:00 95 99 1 1315 99 …
2011-01-25 08:50:00 97 100 0 1240 97 …

EXEC DBC.resnode ('2011-01-25', '2011-01-25', '08:00:00', '09:00:00');

For the DBC.ResNode macro to display data, logging must be enabled on ResUsageSpma.

Notes about columns shown in this output:

• CPU Busy - % of time the CPUs are busy; based on average CPU usage per node.

• CPU Efficiency - parallel efficiency of node CPU usage; parallel efficiency is
calculated by dividing average node utilization by maximum node utilization.

• WIO % - Percent of time the CPUs are idle and waiting for completion of an I/O
operation.

• Ldv IOs /Sec - average number of logical device (disk) reads and writes per second
per node.

• Ldv Eff % - parallel efficiency of the logical device (disk) I/Os.

 ResUsage - Performance Monitoring Page 53-22

PM/API and Viewpoint
The PM/API (Performance Monitor/Application Programming Interface) facility is a real-
time performance-monitoring tool that allows you to collect and return performance data on
a Teradata Database with low overhead.

Teradata Viewpoint is a web-based application that uses the PM/API to provide real-time
performance and session information (PM/PC) which has been collected.

How PM/API Collects Data
PM/API contains monitoring commands that you issue through a logon partition called
MONITOR. MONITOR collects different types of performance data, including the current
system configuration; resource usage and status of individual nodes or vprocs; and of
individual sessions.

PM/API collects data in memory, not in a spool file on disk. As a result, PM/API routines
(except the IDENTIFY command) cannot be blocked and consequently incur low overhead.
PM/API stores node and vproc resource usage data and session-level usage data in separate
collection areas. The data stored in memory is updated once during each sampling period.
All users share the collected data.

The MONITOR partition collects and reports resource usage data differently from session-
level usage data. To interpret the information that the MONITOR returns, you must
understand the difference.

Collecting and Reporting Resource Usage Data
PM/API collects and reports node and vproc usage data for a single sample period. For
example, a user sets the sampling period to 120 seconds. Then she issues the MONITOR
RESOURCE request. The system collects node and/or vproc usage data during the next 120
seconds. If the user does not examine the data within the next 120 seconds, the data is lost
when it is overwritten by data collected during the next 120-second interval.

Collecting and Reporting Session-level Usage Data
PM/API cumulatively collects session-level usage data, such as counts and “time used.”
Other data, such as locking information and “AMP State,” is not gathered cumulatively.
The sampling period limits how frequently the cumulative data is updated.

Example
A user sets the sampling period to 300 seconds and issues the MONITOR SESSION request.
The system collects new information every 300 seconds, and adds the information to the
existing total in a cumulative fashion. Session-level data includes data for the beginning 300
seconds as well as for any subsequent intervals.

ResUsage - Performance Monitoring Page 53-23

PM/API and Viewpoint

The PM/API (Performance Monitor/Application Programming Interface) ...
• is part of Teradata software and has low overhead.
• provides real-time monitoring capability and session information.
• provides the following data.

– Processor Data
• Collects/reports node/vproc usage for single period.
• New period overwrites data from previous period.
• Collection is not cumulative.

– Session-level Data
• Collects/reports session-level data cumulatively.
• New sampling period increases collected data.

• Accessed via applications such as Teradata Viewpoint.

Teradata Viewpoint

• Web-based application that utilizes portlets to ...

– provide real-time performance monitoring.
– show how efficiently the Teradata database is using its resources.
– identify problem sessions and users
– abort sessions and users having a negative impact on system performance

 ResUsage - Performance Monitoring Page 53-24

Teradata System Emulation Tool (Teradata SET)
The Teradata System Emulation Tool simplifies the task of emulating a target system by
providing the ability to export and import all of the information necessary to fake out the
optimizer in a test environment. This information can be used along with Teradata’s Target
Level Emulation feature to generate query plans on the test system as if they were run on the
target system. This feature is useful for verifying queries and reproducing optimizer related
issues in a test environment.

Teradata SET allows the user to capture system cost parameters, object definitions, random
AMP samples, statistics, query execution plans and demographics by database, by query or
by workload. This tool does not export user data. Upon import the user can customize or edit
object definitions, random AMP samples, statistics and cost parameters. The Customize
feature allows the user to perform “what-if” scenarios relating to the data demography of the
tables and system performance parameters. Teradata SET also has an option to log SQL
statements. The user can view the log directly from the Teradata SET window to
troubleshoot any failures that occur during export or import operations.

ResUsage - Performance Monitoring Page 53-25

Teradata System Emulation Tool

Test (Development) System

AMP Samples

QCD

GDO

Tables

Statistics

Teradata Database

Linux / MP-RAS / Windows

Cost Parameters

Target
Production

System

AMP Samples Schema DDL

Teradata Database

Linux / MP-RAS / Windows

QCD

GDO

Statistics

Cost Parameters

Workstation

Teradata SET Client Tool

Windows 2003 / XP

Teradata
SET

Data FilesEXPORT
System Information

IMPORT
System Information

Features of Teradata System Emulation Tool (SET)
• Emulates a target system

• Export and import information to fool the optimizer
in a test environment.

• Uses TLE (Target Level Emulation) to generate query
plans on a test system.

• Verify queries and reproduce optimizer issues in a
test environment.

• Capture system cost parameters, object definitions, random AMP samples, statistics,
query execution plans and demographics by database, by query or by workload.

• Perform “what-if” scenarios relating to the data demography of the tables and system

ds186034
Sticky Note
globally distributed objectcost infosystem infoDBQL cannot be imported with this tooldb object defn are in DBQLteradata analyzer to get DBQL from 1 system to another

 ResUsage - Performance Monitoring Page 53-26

Performance Monitoring Summary
The facing page summarizes some important concepts regarding this module.

ResUsage - Performance Monitoring Page 53-27

Performance Monitoring Summary

• Resource usage (ResUsage) data and reports can help you to improve system
performance and management.

• Various tools exist to specify the tables to collect and log as well as setting
the collection and log rates.

• You can access the ResUsage statistics stored in the ResUsage tables
directly or use supplied views and macros.

• The PM/API facility is an application programming interface that can be used
to provides a real-time monitoring capability and session information.

• Teradata Viewpoint is a web-based interface that utilizes portlets to assist in
monitoring the resources of a system.

 ResUsage - Performance Monitoring Page 53-28

Module 53: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

ResUsage - Performance Monitoring Page 53-29

Module 53: Review Questions

1. What are two methods of setting the ResUsage logging intervals?

_________________________ _________________________

2. Match the following tools to its description.

____ 1. ResUsage tables A. Set logging rates

____ 2. Teradata Viewpoint B. Emulates a target system

____ 3. Teradata SET C. Provides session level information

____ 4. ctl D. Holds historical resource data

 ResUsage - Performance Monitoring Page 53-30

Notes

System Restarts Page 54-1

Module 54

Teradata Proprietary and Confidential

System Restarts

After completing this module, you will be able to:

 List three different ways to restart the Teradata database.

 Use the RESTART command.

 Describe the impact of …

– Disk(s) failure
– Disk array controller(s) failure
– BYNET(s) failure
– Node failure
– AWS failure
– VPROC failure

 System Restarts Page 54-2

Notes

System Restarts Page 54-3

Table of Contents

Types of Restarts .. 54-4

Scheduled Restart/User-initiated Restart ... 54-4
Unscheduled Restart/Automatic Restart .. 54-4

Scheduled Restarts ... 54-6
-f option .. 54-6
-x option ... 54-6
-y option ... 54-6
-d option ... 54-6
-l delay option .. 54-6
-P option ... 54-6
-Q option .. 54-6
cold option .. 54-6
coldwait option ... 54-6

Restart Teradata from DB Window ... 54-8
RESTART Command Options ... 54-8

Restart using the “tpareset” Command .. 54-10
PDE States .. 54-12
Unscheduled Restarts ... 54-14

Disk Failure .. 54-14
Unscheduled Restarts (cont.) ... 54-16

BYNET Failure .. 54-16
Unscheduled Restarts (cont.) ... 54-18

Node Failure ... 54-18
VPROC Failure .. 54-18
AWS Failure .. 54-18

TPA Reset – Crashdumps .. 54-20
PDE DUMP .. 54-20

Allocating Crashdumps Space ... 54-22
Example ... 54-22

TPA Dump Maintenance ... 54-24
Linux Operating (Panic) Dumps .. 54-24
Module 54: Review Questions ... 54-26

 System Restarts Page 54-4

Types of Restarts
There are two types of restarts on a Teradata Database:

 Scheduled restarts
 Unscheduled restarts

Scheduled Restart/User-initiated Restart
In a scheduled or user-initiated restart, use the RESTART command from either the DBW
Supervisor window or from vprocmanager to restart the system.

Unscheduled Restart/Automatic Restart
In an unscheduled restart or automatic restart, the system reboots without user input.

The facing page provides examples of when you might need to perform scheduled restarts,
and under what conditions you might encounter unscheduled restarts.

System Restarts Page 54-5

Types of Restarts

Scheduled Restarts

• Changing system parameters (e.g., DBS Control parameter is updated)

• Software upgrades

• Configuration changes (addition of new AMPs and/or PEs)

Unscheduled Restarts

• Power failure (e.g., 8/14/2003 – the North East U.S. and parts of Canada)

• Disasters (e.g., 8/29/2005 – Katrina hurricane; 10/22/2007 – Rancho Bernardo fires)

• Hardware failure

• Software failure

• Accidents

Restart Processes

1. Spool cylinders are returned to free cylinder list (unused cylinder pool).

2. Before logons are enabled, uncommitted work is rolled back.

1st Tables are re-locked for background recovery.

2nd Logons are enabled in cold start.

 System Restarts Page 54-6

Scheduled Restarts
The facing page shows the windows and utilities from which you can restart the Teradata
Database system, the necessary commands and available restart options. Additional
information about options commonly used with tpareset or restart is provided below:

-f option
The -f option, used with the tpareset command, forces all TPA nodes to participate in the
tpareset regardless of their current state, without rebooting Linux.

-x option
The -x option allows you to shut down the Teradata Database on the entire system without
shutting down the operating system. This option does not automatically restart Teradata.

-y option
The -y option automatically answers yes to the confirmation prompt.

-d option
Specifies that a DBS dump be taken before doing the restart.

-l delay option
Specifies the delay interval in seconds to wait for other nodes to join the TPA configuration.
This parameter controls how long a node will wait during the BYNET configuration phase
of PDE initialization for other nodes to reach that point before continuing on without them.

-P option
Requests the node to panic after the DBS dump is saved.

-Q option
Requests tpareset to run in silent mode, i.e., user is not prompted for confirmation. This
should be combined with any other desired option. This will not have any effect on the –P
option.

cold option
If you use the cold option in conjunction with the restart tpa or restart commands, the system
does not wait for AMP vprocs to complete recovery. Instead, the system places them in
offline catchup. The system will enable logons before recovery is complete.

coldwait option
If you use the coldwait option, the system waits for down AMP vproc recovery to complete
on all vprocs and brings all AMP vprocs online. The system will enable logons after
recovery is complete.

System Restarts Page 54-7

Scheduled Restarts

Restart Teradata with Use this command Options

Command-line tpareset <comment> -f, -x, -y
-d, -l, -Q, -P

DB Console - Supervisor restart tpa <comment> cold, coldwait

vprocmanager restart cold, coldwait

MultiTool (12.0 option) reset (via GUI choices) GUI menu choices

Example:

tpareset -f Change of system parameters

To see any restarts that have occurred in the last 60 days:

LOGON tdpid/systemfe,service;
EXEC ALLRESTARTS (DATE - 60,);
LOGOFF;

The “tpatrace” command may also be used to see information about restarts.

tpatrace 3 (shows last 3 restarts)

ds186034
Sticky Note
need superuser privilege

 System Restarts Page 54-8

Restart Teradata from DB Window
In a scheduled restart, you may restart the system using the RESTART command from the
DBW Supervisor screen or from vprocmanager.

RESTART Command Options
The RESTART command provides the following options:

DUMP – Default is NODUMP. This option can request that the Teradata Database restarts

with or without a crashdump. DUMP=YES:NO.

COLD – A full restart, but transaction recovery will be deferred. This option allows the

system to determine whether a down processor is to be kept off-line, or brought back
on-line while recovery is being performed. The amount of updating to be performed on
the down processor is the determining factor.

 Recovery tasks are performed in the background after the system becomes available for

use. Objects involved in recovery tasks are locked until the recovery is complete. All
other objects are accessible to users.

COLDWAIT – A full restart, but DBS startup will be held up until transaction recovery is

complete. This option specifies that all recovery options must be completed before
logons are enabled. All recovered AMP vprocs are placed on-line.

COMMENT – Enter a note explaining why the restart occurred. This entry is mandatory.

You can parse the RESTART command using commas. There is no mandatory order for the
keywords (dump option and the restart kind).

Note: The SET RESTART command and Set Restart Type screen set the restart type to use
during the next restart of the system.

System Restarts Page 54-9

Restart Teradata from DB Window

RESTART TPA [NODUMP:DUMP={YES:NO}] [COLD:COLDWAIT] COMMENT

restart tpa dump=no cold Change of DBS Control parameters

 System Restarts Page 54-10

Restart using the “tpareset” Command
The tpareset command can be used to restart the Teradata database. Common options used
with tpareset include:

 -f option

 The -f option, used with the tpareset command, forces all TPA nodes to participate
in the tpareset regardless of their current state, without rebooting Linux.

 -x option

 The -x option allows you to shut down the Teradata Database on the entire system
without shutting down the operating system. This command shuts down Teradata
without restarting Teradata.

Restart information is logged in numerous locations depending on the operating system. For
example, with older UNIX MP-RAS systems, the following locations are utilized.

 SW_Event_Log table – view with Software_EventLog[V] view
 Console Log (e.g., /etc/.osm)
 /var/adm/streams (MP-RAS)

System Restarts Page 54-11

Restart using the “tpareset” Command

tpareset -f Change of DBSControl parameters

You are about to restart the database
on the system

'tdt6-1'
Do you wish to continue (default: n) [y,n]

tpareset: TPA reset submitted.

tpatrace

TPA Initialization Trace for System tpt6-1 Node 001-01

01/28/11 11:18:34 -------------------- PDE starting TPA Cycle = 41

01/28/11 11:18:34.16 (0/0 58a4) ---- PDE starting.
01/28/11 11:18:34.16 (0/0 58a4) State is START/BEGIN.
:
01/28/11 11:18:36.71 (0/0 58a4) State is START/VPROCSTART.
:
01/28/11 11:18:36.96 (0/0 58a4) State is RUN/STARTED.
01/28/11 11:18:39.96 (0/0 58a4) PDE started in 6 seconds.

Example of using the
tpareset command:

Example of using the
tpatrace command:

Restart information is logged to Linux and to Teradata:

• Linux messages log – /var/log/messages

• DBC.Sw_Event_Log table – use the following view to select Teradata restart entries

– SELECT * FROM DBC.Software_Event_LogV WHERE TheFunction LIKE 'tpareset%';

ds186034
Sticky Note
software event logwhere function is like tpa reset

 System Restarts Page 54-12

PDE States
The /ntos/bin/pdestate command can be used to check the current state of the PDE and
Teradata software. The states have different names depending on the operating system
environment.

 Open PDE (Linux/Windows) has five major operational states: DOWN, START,
RUN, RESET, and STOP.

 PDE (UNIX MP-RAS) has three major operational states: NULL, NOTPA, and

TPA. When PDE starts up, it transitions between them in that order. The sub-
states correspond to the different phases of startup.

Examples of the major states and sub-states with MP-RAS include:

NULL/START - PDE has never started on the node(s).

NULL/STOPPED – PDE is stopped on the node(s), either explicitly or due to the start-up crash

count exceeding its crash limit.

NULL/RESET – “Real” state when PDE is in reset or down state.

NULL – TPA is down on a node due to a late-joiner or other reason. The node(s) will respond

to any type of reset.

NOTPA/START – the PDE is reading the local vconfig.GDO to get the TPA node list. It starts
the kernel event daemons.

NOTPA/NETCONFIG – the PDE is waiting for all the node(s) to reach this state. There is a

wait default of 6 min. (360 seconds) if node(s) are down. Note: Late-joiners fall out at this
stage.

NOTPA/NETREADY – the PDE synchronizes the system GDO’s. It selects the control and

distribution nodes.

NOTPA/RECONCILE – the PDE verifies that the correct level of PDE and TPA software is

installed on all the nodes.

NOTPA – the tpastartup file is processed.

TPA/START – the PDE starts all Vprocs. It enters the final FSG initialization stage by

opening the Pdisks.

TPA/VPROCS – initializes and synchronizes application GDO’s.

TPA/READY – the PDE start-up is complete. The DBS is not running.

TPA – the PDE start-up is complete. It also indicates that the DBS has started or is running.

System Restarts Page 54-13

PDE States

To display the DBS and PDE state without opening the vprocmanager utility.

tdatcmd (sets the path for Teradata command-line utilities)
vprocmanager –s
DBS State: Logons are enabled - Users are logged on
PDE State: RUN/STARTED

The pdestate command displays the PDE state for a specific node.

/usr/ntos/bin/pdestate -a
DBS State is 4: Logons are enabled – Users are logged on
PDE State is RUN/STARTED.

OpenPDE (Linux/Windows) has 5 primary operational states:

DOWN, START, RUN, RESET, and STOP

DOWN – no PDE services are currently running, other than those that are required to
switch out of this state, i.e., startup of the database.

START – this is a transitory state between DOWN and RUN that may be seen for a brief
time during database startup.

RUN – all PDE services are fully available and the TPA is started. Once this point has been
reached, Teradata RDBMS can go through it's initialization.

 System Restarts Page 54-14

Unscheduled Restarts

Disk Failure
When a disk fails, there may be a loss of data. Tables with fallback protection continue to
be 100% available. Tables without fallback protection will only be partially available.

An AMP will attempt 5 retries to a disk array before determining that it cannot access the
array or its associated Vdisk.

System Restarts Page 54-15

Unscheduled Restarts

Disk Drive Failures

Scenario 1

Failure: One disk in a drive group
Result: No TPA reset
Resolution: Replace disk – Array Controllers automatically rebuild the disk

Scenario 2

Failure: Two disks in a drive group

Result: – TPA reset (1-5 minutes)
– AMP taken offline and marked as Fatal
– Fallback tables OK
– Non-fallback tables partially available

Resolution: – Replace the two disks
– Reformat LUNs or Volumes in the drive group
– Perform a table rebuild
– Restore non-fallback tables

Scenario 3
Failure: Two disks in 2 different drive groups associated with AMPs in the same

cluster – 2 AMPs fail in a cluster
Result: Machine halts

Resolution: Restore User DBC and tables

ds186034
Sticky Note
if a single drive fail in an arrayno alertserr msg go to OS log - yessupport center - yes

 System Restarts Page 54-16

Unscheduled Restarts (cont.)

BYNET Failure
If a BYNET fails, processing will resume on the other BYNET. Performance will be
impacted.

System Restarts Page 54-17

Unscheduled Restarts (cont.)

BYNET Failures

Scenario 1

Failure: One BYNET fails

Result: – No TPA reset
– All traffic auto-switched to remaining BYNET
– Impact on system performance

Resolution: Repair BYNET

Scenario 2

Failure: Both BYNETs fail

Result: Teradata halts and is not available

Resolution: Repair BYNETs

 System Restarts Page 54-18

Unscheduled Restarts (cont.)

Node Failure
The facing page describes a node failure.

VPROC Failure
PE VPROC This type of failure produces very little impact on system performance. It
reduces the maximum number of sessions that can be active at one time, however, and
logons may take longer when a PE vproc is down.

AMP VPROC If a single vproc fails in one or more clusters, the system can continue
servicing users with the other AMP vprocs. However, the performance level drops causing
a slow down in performance and response time.

If two or more AMP vprocs fail in a single cluster, it halts the database system. All
processing stops until the administrator brings at least one of the down vprocs back on-line.

AWS Failure
The facing page describes an AWS failure.

System Restarts Page 54-19

Unscheduled Restarts (cont.)

Node Failure

Scenario

Failure: Node Fails (e.g., O.S. hangs, 2 power supplies fail, memory fails, etc.)

Result: – TPA restart (1 - 5 minutes) and vprocs migrate to other nodes in clique
– Possible O.S. reboot (3 - 15 minutes)

Resolution: – Repair node and reboot operating system
– Restart Teradata to allow node to rejoin Teradata configuration

Vproc Software Failure

Scenario

Failure: AMP or PE Vproc fails
Result: TPA restart (1 - 5 minutes) and vprocs may be marked offline

Resolution: If necessary, run Scandisk, Checktable, and Rebuild utilities

SWS Failure

Scenario

Failure: SWS fails
Result: No restart of Teradata; SWS is not available to monitor/manage system

Resolution: Reboot or recover SWS

 System Restarts Page 54-20

TPA Reset – Crashdumps
When there is an unscheduled TPA reset, a crashdump is generated (PDE dump).

PDE DUMP
A PDE dump is a selective dump of system memory; including only information that might
be needed to analyze a problem within PDE or TPA (the only one currently is the Teradata
Database). It can also contain pages read in from swap space that are not in memory at the
time of the dump. Exact contents vary depending on the cause of the dump.

PDE dumps, being selective, vary in size depending on the system configuration and the
cause of the crash. PDE dumps are much smaller than memory. PDE dumps are taken in
parallel on all nodes.

System Restarts Page 54-21

TPA Reset – Crashdumps

L
i
n
u
x

Collector
Task

Linux Dump directory
(/var/opt/teradata/tddump)

AMP AMP AMP AMP

Crashdump Table

1 2

1. Selective memory and swapped pages are written to “pdedump” space.

2. As part of Teradata restart, a background collector task reads “pdedump” and writes
dump information to a Crashdump table in Crashdumps database.

• If the Crashdumps database is out of perm space, the collector task outputs a
warning message and retries every 60 minutes to create a crashdump table.

ds186034
Sticky Note
we have a problmwe capture in memwe dump it herewe take wats here and write to a table inside td..crashdump table...

 System Restarts Page 54-22

Allocating Crashdumps Space
During installation of a Teradata system, a user called CRASHDUMPS is created as a child
of user DBC. Crashdumps is allocated 1GB of permanent space. Teradata recommends you
allocate enough space to this database to hold three crash dumps.

Dump size is approximately 150 - 250 MB per node. Dump size can vary depending on the
number of vprocs running, how busy the system was at the time of the crash, and a number
of other factors. The use of fallback approximately doubles the total space requirement.

If a site needs additional space for the Crashdumps database, increase the MaxPerm space
by submitting the MODIFY USER statement.

Example
The diagram on the facing page illustrates how to calculate the appropriate amount of
permanent space for the Crashdumps database.

A site has a four-node system. The administrator needs to allocate enough space for three
crash dumps. The formula is:

(4 x 96 GB x 3) = 1152 GB without fallback
(4 x 96 GB x 3) x 2 = 2304 GB with fallback

Since a crash dump is normally about 50% of actual memory, the above numbers can be
divided in half. For initial sizing, use 1152 GB which will probably be enough for 3 crash
dumps with fallback in the future.

You should monitor the actual Crashdumps space usage and adjust it up or down as
appropriate, depending on the size of the dumps a site typically gets.

To modify Crashdumps space, you need to log on to the system as user DBC and submit the
following SQL statement:

 MODIFY USER Crashdumps AS PERM = 1152E9;

System Restarts Page 54-23

Allocating Crashdumps Space

DBC

Sys_Calendar SysAdmin SystemFECrashdumps SYSDBA

Use the following formula to estimate the amount of space to allocate:

Example: Four-node system, 96 GB memory/node, and space for 3 Crashdumps.

(4 x 96 GB) x 3) = 1152 GB without fallback – double for fallback if needed

MODIFY USER Crashdumps AS PERM = 1152E9;

Note: Normally, a crashdump uses only 50% of node memory; for initial sizing purposes,
allocate enough space for an entire memory image per node without fallback.

Example of Crashdump name: Crash_20110930_143249_20
(Date) (Time) (Segment #)

Help USER Crashdumps;

Table/View/Macro name Kind Comment

Crash_20110930_143249_20 T PDE:13.10.00.05,TDBMS:13.10.00.05,TGTW:13.10.00.05;

 System Restarts Page 54-24

TPA Dump Maintenance
The facing page describes tasks for maintaining TPA dumps.

Linux Operating (Panic) Dumps
A Linux operating system dump is a complete dump of system memory including PDE and
Kernel information, but only for the node(s) that panicked. If Linux panics on multiple
nodes, you get a separate dump for each one.

Since this is a complete dump of memory, dump size is equal to the memory size on your
system.

System Restarts Page 54-25

TPA Dump Maintenance

Is the Crashdump needed?

(Contact support center
if in doubt.)

DELETE from Crashdumps

Optionally, delete from pdedump device

Options:

– Allow access to system via network

– Archive to file and ftp to support center

– Use DUL and archive to tape

No

Yes

 System Restarts Page 54-26

Module 54: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

System Restarts Page 54-27

Module 54: Review Questions

1. What is the operating system command to restart Teradata? __________________

2. What is the DB Window supervisor command to restart Teradata? __________________

3. Which of the following choices will cause a Teradata restart? __________________

a. SWS hard drive failure
b. Single drive failure in RAID 1 drive group

c. Two drive failures in same RAID 1 drive group
d. Single power supply failure in a TPA node
e. TPA node CPU failure
f. One of BYNETs fails

g. LAN connection to SMP is lost

ds186034
Sticky Note
tparesetrestart tpanonoyesno (we have multiple +1)yesnono

 System Restarts Page 54-28

Notes

Maintenance and Recovery Utilities Page 55-1

Module 55

Teradata Proprietary and Confidential

System and Maintenance Utilities

After completing this module, you will be able to:

• List two ways in which a system utility can be started.

• Explain how to use the following utilities to maintain a Teradata
database:

– DBSControl
– Ferret Packdisk
– Ferret Defragment
– Ferret Scandisk
– Checktable
– Table Rebuild
– Recovery Manager
– Showlocks
– UpdateSpace
– Vprocmanager

• List the order in which to execute the Checktable and Scandisk utilities.

ds186034
Sticky Note
CS runs it...

 Maintenance and Recovery Utilities Page 55-2

Notes

Maintenance and Recovery Utilities Page 55-3

Table of Contents

Starting Teradata System Utilities ... 55-4
SMP and Database Window Utilities ... 55-6
Teradata Database Window ... 55-8
DBW Supervisor Window ... 55-10
DBS Control Utility ... 55-12
DBS Control Record – General Fields ... 55-14
DBS Control Record – General Fields ... 55-16
DBS Control Record – File System Fields .. 55-18
DBS Control Record – Performance Fields ... 55-20
Modifying DBS Control Parameters .. 55-22
Ferret – Defragment and Packdisk ... 55-24
Checking Data Integrity ... 55-26
Ferret – Scandisk Utility .. 55-28
Checktable Utility .. 55-30
Checktable – Levels of Checking .. 55-32
Checktable – Example ... 55-34
Table Rebuild Utility ... 55-36
Recovery Manager Utility .. 55-38
Recovery Manager Commands .. 55-40
Rcvmanager – List Status .. 55-42
Rcvmanager – List Locks .. 55-44
Rcvmanager – List Status (2nd Example) ... 55-46
Rcvmanager – List Rollback Tables .. 55-48
Rcvmanager – Cancel Rollback on Table .. 55-50
Showlocks Utility ... 55-52
Orphan or Phantom Spool Issues ... 55-54
Update Space Utility .. 55-56
Vprocmanager .. 55-58
Summary .. 55-60
Module 55: Review Questions ... 55-62

 Maintenance and Recovery Utilities Page 55-4

Starting Teradata System Utilities
Teradata Database offers several user interfaces from which the utilities may be started as
shown on the facing page. Note that not all utilities support all the user interfaces.

Once a utility is started, some utilities present their own interactive command-line or
graphical user interfaces. These utilities let you browse and enter information until you
explicitly exit the utility.

Other utilities present their own interactive command-line or graphical user interfaces.
These utilities continue running until they are explicitly stopped by the user. Many utilities
that present their own command environment are stopped by entering the QUIT command.

Utilities that present a graphical user interface are usually stopped by clicking the Exit or
Close command from the graphical menu.

Teradata Console Task
The Teradata Console (CNS) task is responsible for managing the Teradata DB Window.

There are numerous ways in which the CNS task can be invoked.

– xdbw or the Teradata Database window
– Command-line utilities
– cnsterm (command-line interface to access supervisor)
– cnstool (command-line interface to access supervisor)

Examples of HUTCNS utilities (not covered in this class)

Examples:

Session Status (QRYSESSN) enter SES

Configuration Display (QRYCONFIG) enter CON

Locks Display (SHOWLOCKS) enter LOC

Recovery Manager (RCVMANAGER) enter RCV

Showlocks Displays host utility (HUT) locks that are held on databases and
tables during archive and restore operations.

Rcvmanager Displays the number of unprocessed transactions and down-
AMP-recovery journal rows, as well as locks held by transaction
recovery.

Maintenance and Recovery Utilities Page 55-5

Starting Teradata System Utilities

Linux
Command Line Execute "tdatcmd" – adds the directories to the path to execute

command-line utilities.

Database Window This Database Window is an X client program that requires an X
server to be running on the local machine.

example: xdbw -display 192.0.2.24:0.0 &

Typical interfaces to start Teradata System Utilities are:

• Command line Linux and Windows
• Database Window Linux (X Windows) and Windows (Database Window)
• Remote Console Viewpoint
• Host Utility Console (HUTCNS) Mainframe operating system

Windows
Command Line Start the Teradata Command Prompt in Windows – adds the

Teradata directories to the PATH environment variable

Start>Programs>Teradata Database>Teradata Command Prompt

Database Window Open Database Window (DBW) from the Windows Start menu:

Start>Programs>Teradata Database>Database Window

ds186034
Sticky Note
Mainframe....

 Maintenance and Recovery Utilities Page 55-6

SMP and Database Window Utilities
The facing page lists various Teradata control and support utilities and from where they are
executed. These functions can be secured through the SMP cnsperms and rhosts files. This
cnsperms file contains 4 fields separated by colons. The format is:

 A:B:C:D where A = linux_userid_name@hostname
 B = ALL or a list of allowed supervisor commands
 C = Utilities the user is allowed to start
 D = Utilities the user is NOT allowed to start

 List of commands or utilities is space separated. Field D is ignored if field C is present.

This file is maintained by DB Window Supervisor commands.

 GET PERMISSIONS
 GRANT
 REVOKE

This file is automatically copied to all nodes by PDE software. Only execute these commands when
all SMP nodes are available so that all copies are updated. Note that the HELP and GET commands
require no permissions (these are always accepted).

cnstool and cnsterm commands
cnstool and cnsterm are command-line interfaces to the Teradata DB Console functions.

Starting cnstool
After executing cnstool, commands directed to the Supervisor or any application area have to be
preceded with the appropriate number. Window numbers 1 through 4 are the console utility
windows, 5 is the Database I/O window, and 6 is the Supervisor Window.

Only the root user is allowed to use this command: # cnstool

To start a utility such as qrysconfig, enter the following:
 6: start qryconfig (assume qryconfig is started in area 1)
 1:offline; (offline is a qryconfig option)

To exit from cnstool, enter either Del or Control C.

Starting cnsterm
When you start cnsterm, the only command line option is the window number.

Only the root user is allowed to use this command: # cnsterm n

 where n is the window number.

For example, to display the supervisor: # cnsterm 6

To exit from any screen, press the keyboard’s “break” or interrupt key (Del or Control C).

Maintenance and Recovery Utilities Page 55-7

Using the Interfaces to Access Utilities

Linux or Windows

Command Line (Examples)

tpareset
pdestate
dbscontrol
vprocmanager
cnsterm (Linux)
cnstool (Windows)
schmon
dip

Linux (X Windows) Windows

xdbw dbw

Viewpoint
Remote Console

Miscellaneous Options (older)

Teradata MultiTool (Windows)
Teradata Manager

Remote Console
PSA

Supervisor

ABORT SESSION
CNSGET
CNSSET [optons]
DISABLE LOGONS
ENABLE LOGONS
GET CONFIG
GET LOGTABLE
GET PERMISSIONS
GET RESOURCE
GET SSO
GET TIME
GET VERSION
GRANT
HELP
LOG
QUERY STATE
RESTART TPA
REVOKE
SET LOGTABLE
SET RESOURCE
SET SESSION
COLLECTION
START **
STOP

** START Application
ABORTHOST
CHECKTABLE
CONFIG
DBSCONTROL
DIP
FERRET
FILER
LOKDISP
QRYCONFIG
QRYSESSN
REBUILD
RECONFIG
RCVMANAGER
SHOWLOCKS
UPDATESPACE
VPROCMANAGER

FERRET Utilities

DEFRAGMENT
PACKDISK
SHOWBLOCKS
SHOWSPACE
SCANDISK
SCOPE
UPDATE DATA INTEGRITY

Teradata DB Window

ds186034
Sticky Note
once i get to the supevisor, i can start any of ht eappli...ferret here....

 Maintenance and Recovery Utilities Page 55-8

Teradata Database Window
The Database Window (DBW) is the console software for the Teradata Database. The
DBW software provides a dimension of flexibility to a database administrator since you can
start the console from virtually any workstation.

Database Window Icons
The DBW contains an icon labeled “Supvr” that opens the Supervisor window. You can
start Teradata AMP-based utilities from the Supervisor window.

Once a Teradata utility is running, the DBW displays a new application icon. This icon
opens a window where the Teradata utility is running. You can have a number of
application icons present in the DBW, with each representing a different Teradata utility.
You may move back and forth from one utility to another by returning to the DBW.

You can have multiple instances of the DBW window running at the same time. While you
can have up to nine DBW windows open, you probably should not have more than 7 open.
Two windows should be reserved for remote support, if necessary.

There are four application utility partitions available with the DBW window. You can run
up to four utilities at one time, as well as any commands you execute from the Supervisor
window.

To start DBW in Linux, execute the following command from the Linux command line:

 xdbw -display hostname:0.0 &

You must enter the command from the PDN node, or you must specify the PDN node using
the machine option with the command as shown:

 i -machine l7544 -display hostname:0.0 &

Maintenance and Recovery Utilities Page 55-9

Teradata Database Window

Database Window (DBW)

• The Database Window provides a windows interface to the Supervisor and the
application areas.

Database Window Icons

• The Database Window contains a “Supvr” icon that opens the Supervisor window.

• Once a Teradata utility is running, the DBW displays a new icon which opens a
window for the Teradata utility.

 Maintenance and Recovery Utilities Page 55-10

DBW Supervisor Window
You must start the DBW before you can start the Supervisor program. To open the
Supervisor window, click the “Supvr” icon in the DBW.

Sub-windows
The Supervisor window contains the following four sub-windows:

Output Displays the results of user commands. It displays Input
Supervisor Command when the Supervisor window first opens.
Use the scroll bars to review results from previous commands
not currently visible in the Output sub-window.

Status Displays the current status message. The word Status: appears

to the left of the sub-window and is used by CNS to indicate
the state of the application running in this window. Current
states include:

Blank, Running: and Reading:

Command
History

Displays a list of commands you previously entered. Use the
scroll bars to review commands previously entered that are not
currently visible in the Command History sub-window.

Input Area where you type commands. The phrase Enter a

command: appears just above this sub-window.

Maintenance and Recovery Utilities Page 55-11

DBW Supervisor Window

Input Command Area

Command
History Area

Status Area

Output Display
Area

 Maintenance and Recovery Utilities Page 55-12

DBS Control Utility
The DBS Control utility is used to view/modify the DBS Control record fields which:

 Establish system values
 Tune performance
 Debug/diagnose problems

DBSControl Record fields are logically grouped based on how the Teradata Database uses
them. The physical position of the field in the record is not significant. The group names
are defined as follows:

This group... Contains fields used...
General For various purposes by the Teradata Database
File System By Teradata Database V2 File System
Performance For tuning performance
CheckSum Set of parameters for CHECKSUM feature

There are multiple ways to access the DBSControl utility:

1. DB Window – START DBSCONTROL
2. Command line – /tpasw/bin/dbscontrol
3. Teradata Manager – Remote Database Console (pre 13.10 option)

Because modifying the DBSControl Record fields may have system wide ramifications,
only trained personnel should use it.

For more information about DBSControl and all fields displayed by the utility, see the
Teradata RDBMS User Utilities

Maintenance and Recovery Utilities Page 55-13

DBS Control Utility

The DBS Control utility is used to view/modify the DBS Control Record fields
which:

• Establish system values
• Tune performance
• Debug/diagnose problems

There are multiple ways to access the DBS Control utility.

1. Command line – dbscontrol

2. DB Window (Supervisor) – START DBSCONTROL

Parameters are divided into categories. Key categories include:

• General
• File System
• Performance

DISPLAY or HELP commands

• DISPLAY GENERAL | FILESYS | PERFORMANCE | CHECKSUM
• HELP GENERAL | FILESYS | PERFORMANCE | CHECKSUM

 Maintenance and Recovery Utilities Page 55-14

DBS Control Record – General Fields
This page only lists the first 30 general parameters.

Field Purpose
 1. Version Indicates the DBS Control Record version number set by SysInit. Cannot be changed with

DBSControl.
 2. SysInit Indicates whether or not the last SysInit was successful – cannot be changed with DBSControl. -

set by SysInit.
 3. DeadLockTimeout Used for deadlock time-out detection cycles – time is in seconds.
 4. Reserved Reserved for future use.
 5. HashFuncDBC Defines the DBS hashing function. Cannot be changed with DBSControl - set by SysInit.
 6. Reserved Reserved for future use.
 7. Reserved Reserved for future use.
 8. SessionMode This field defines the system default transaction mode, case sensitivity, and character truncation

rule for a session. The setting is either 0 (Teradata) or 1 (ANSI).
 9. LockLogger Enables logging of lock delays due to database locks.
10. Rollback Priority Defines the priority for rollback operations – RUSH or user prioity. If RUSH is wanted, set to

TRUE.
11. MaxLoadTasks Controls the combined number of FastLoad, MultiLoad, and FastExport tasks allowed (max is

15).
12. RollForwardLock Defines the system default for the RollForward Using Row Hash Locks option. This allows the

DBA to specify that row hash locks should be used to lock the target table rows during a
RollForward. To enable this feature set the field to TRUE. To disable the feature set the field to
FALSE.

13. MaxDecimal Defines max number of decimal digits used in expression typing (valid values are 15 and 18).
14. CenturyBreak Defines which Teradata dates are specific to the 21st Century. Valid values range from 0 to 100.
15. DateForm Defines the standared date format – IntegerDate is 0, ANSIDate is 1.
16. System TimeZone Hr. This field defines the System TimeZone Hour offset from UTC. Permitted range: -12 to 13.
17. System TimeZone Min. This field defines the System Time Zone Minute offset from UTC. Permitted range: -59 to 59.
18. RollbackRSTransaction Used when a subscriber replicated transaction and a user transaction are involved in a deadlock.

TRUE means rollback the subscriber replicated transaction. FALSE means rollback the user
transaction.

19. RSDeadLockInterval Deadlock checking between a subscriber-replicated transaction and a user transaction.
20. RoundHalfwayMagUp This field indicates how rounding should be performed when computing values of DECIMAL

type.
21. DefaultDateFormat Default date format for the system. If a date format is defined then the format is used as the

default for the system. Date formats are defined between enclosing single quotes ‘ ’. The
following is an example, m g 21 = ‘yyyy/mm/dd’.

22. Target Level Emulation Used when a user wants to emulate a Target Level Machine. TRUE means the user wants to run
Target Level Emulation. FALSE means the user does NOT. The default is FALSE

23. Export Width Table ID For Expected Defaults, enter 0. For Compatibility Defaults, enter 1. For Maximum Defaults,
enter 2.

24. EnableStepText When TRUE, dispatcher step text will include names and costs. When FALSE no name and
cost information will be available. The default value is FALSE.

25. EnableDBQM When TRUE, validation of all SQL through the DBQM rule will be enforced. When FALSE no
validation through DBQM will be done. This toggle has a dependency on the EnableStepText
toggle (#24). The default value is FALSE.

26. External Authentication 26. - This field indicates whether external authentication is enabled. The valid values are 0, 1, 2.
27. IdColBatchSize Indicates the size of the pool of numbers to be reserved for generating numbers for a batch of

rows to be bulk-inserted into a table with an identity column. The valid range of value is 1 ..
1000000. The default value is 100000.

28. LockLogger Delay
Filter

Indicate whether locking logger delay filter is ON. If it is ON, the delay filter time in field 29
will take effect. The default is OFF.

29. LockLogger Delay
Filter Time

Indicates the delay filter time used by locking logger. Only blocked lock request with delay time
greater than this value will be logger. The valid range is 0 .. 1000000 seconds, default is 0
second.

30. Object Use Count
Collect Rate

Determines the default amount of time which the Data Dictionary columns of database object
AccessCount and LastAccess Time Stamp are reset automatically. The default is 0, which
disables the database object use count feature. To enable, the recommended value is 10 minutes.

Maintenance and Recovery Utilities Page 55-15

DBS Control Record – General Fields

General Fields:

1. Version = 6
2. SysInit = TRUE
3. DeadLockTimeOut = 240 (seconds)
4. (Reserved for future use)
5. HashFuncDBC = 5 (Universal)
6. (Reserved for future use)
7. (Reserved for future use)
8. SessionMode = 0 (Teradata)
9. LockLogger = FALSE

10. RollbackPriority = FALSE
11. MaxLoadTasks = 5
12. RollForwardLock = FALSE
13. MaxDecimal = 15 (18, or 38)
14. CenturyBreak = 0
15. DateForm = 0 (IntegerDate)
16. System TimeZone Hour = 0
17. System TimeZone Minute = 0
18. RollbackRSTransaction = FALSE
19. RSDeadLockInterval = 0 (240)
20. RoundHalfwayMagUp = FALSE
21. (Reserved for future use) =
22. Target Level Emulation = FALSE

23. Export Width Table ID = 0
24. (Reserved for future use)
25. DBQL Options (spec. options) = 0
26. External Authentication = 0 (On)
27. IdCol Batch Size = 100000
28. LockLogger Delay Filter* = FALSE
29. LockLogger Delay Filter Time* = 0
30. ObjectUseCountCollectRate* = 0 minutes

(Disabled)

ds186034
Sticky Note
1 would be ansiwhich means to enter we have to write commitbut most customers use TD mode

ds186034
Sticky Note
maxloadtasks - no of con FL,ML,FE jobs that can runif mre than job = sleeps

ds186034
Sticky Note
centurybreakhow to interpret 2 digits yearcause appl gave us 2 digit00(0-65 -> 2000-2065)1966-1999)(but if 0, 12=> 1912)15 DateFormat1 = ansi datecan be or at user level, session leveland..impact:how dates are displayedandhow dates are exported

 Maintenance and Recovery Utilities Page 55-16

DBS Control Record – General Fields
This page only lists the additional general parameters.

Field Purpose
31. LockLogSegmentSize

Indicates the size of the locking logger segment used by the lock manager in kilo bytes.
The minimum value is 64 KB and maximum value is 1024 KB.

32. System Default Cost Profile Id. This value is used to select the cost profile from DBC.CostProfiles that will be used to
create cost prediction method parameter values.

33. DBQLFlushRate Determines the frequency for writing DBQL cache entries to DBQL dictionary tables.
Default is 600 seconds (10 minutes). Valid range is 1 to 3600 seconds. The
recommended value is 600 seconds or more.

34. Memory Limit Per Transaction Specifies the maximum amount (number of pages) of in-memory temporary storage that
can be used by the RSG to store the records for one transaction. If the transaction
exhausts this amount, then it is moved to a disk file (specified by general field number
37). Default - 2 pages; minimum - 0 pages and maximum value is 127 pages.

35. Client Reset Timeout Specifies how long the RSG should wait for an intermediary to reconnect after a
communication failure, an intermediary reset, or a server reset before taking the needed
actions. Default - 300 seconds; minimum - 0 sec and maximum value is 65535 sec.

36. Temporary Storage Page Size Specifies the size (in KB) of a memory page that is used to store data rows of a
replicated transaction. Default - 4 KB; minimum – 1 KB and maximum is 1024 KB.

37. Spill File Path Specifies a directory that will be used by the RSG for spill files. The default path is
C:\Program Files\Teradata\Tdat\tdconfig\tdrsg

38. MDS Is Enabled Assumed that the MDS packages are installed, the MDS will be running if this flag is
TRUE. The default is FALSE.

39. Checktable table lock retry limit (Default = 0 is retry forever). When a table is locked, checktable will retry until it gets
the table. If the retry limit is set, checktable will retry within the specified limit. Retry
limit range = 0 to 32767 minutes

40. EnableCostProfileTLE This boolean determines whether new Optimizer Cost Profile System (OCES)
diagnostics are enabled in combination with Target Level Emulation (TLE).

41. EnableSetCostProfile This controls usage of DIAGNOSTIC SET PROFILE ... statements to dynamically
change cost profiles used for query planning. Meaningful values are 0,1,2,20,21, and 22.

42. UseVirtualSysDefault If this == 0, then the system default cost profile is always SysDefault. If this > 0, then
the system default cost profile is chosen based on run time envirnoment characteristics.

43. DisableUDTImplCastForSysFuncOp This field disables/enables implicit cast/conversion of UDT expressions passed to system
operators/functions. Conversions are from UDTs to compatible predefined types. A
value of TRUE disables implicit conversions. A value of FALSE (default) enables.

44. CurHashBucketSize The number of bits currently used for the hash bucket size - 16 or 20.
45. NewHashBucketSize The number of bits used for the hash bucket size for next reconfig or sysinit – 16 or 20.
46. MaxLoadAWT This field defines the maximum number of AMP worker tasks (AWT) that concurrent

FastLoad and MultiLoad can use altogether. The valid range is 0 .. (60% of
maxampworkertasks).

47. MaxRowHashBlocksPercent This field defines the maximum percentage of an AMP Lock Table's control blocks that
a transaction can utilize for its rowhash locks.

48. MonSesCPUNormalization This field disables/enables normalization of CPU values in Monitor Session response.
49. TempLargePageSize This field specifies another method of RSG storage memory pool in addition to the

existing temporary storage page size.
50. RepCacheSegSize This field specifies the size of a cache segment (in kilobytes) that is allocated in each

AMP to store EVLobjects,
51. MaxDownRegions Sets the maximum allowable number of down regions for a subtable. Default is 6.
52. MPS_IncludePEOnlyNodes Include PE-only nodes in Monitor Physical Summary PM/API response calculation.
53. PrimaryIndexDefault Enables/disables the behavior of whether PI tables or NoPI tables are created when a

CREATE TABLE DDL is used without the PRIMARY INDEX, NO PRIMARY
INDEX or PRIMARY KEY or UNIQUE constraints. In this case, a value of
 D : results in tables created as per Teradata Default (Default Setting).
 P : results in tables with the first column as the non-unique Primary Index.
 N : results in tables created without a primary index(as NoPI tables).

 A value of 'D' is equivalent to a value of 'P'.
54. AccessLockForUncomRead This field, when enabled imposes access lock on source table(s) of DML statement when

transaction isolation level is Read Uncommitted (RU). The default value is FALSE.

Maintenance and Recovery Utilities Page 55-17

DBS Control Record – General Fields

General Fields (New with Teradata 13.10)

55. EnabNonTempoOp = FALSE
56. InclNTforGrntOrRevokAll = FALSE
57. TimeDateWZControl =
58. (Reserved for future use)
59. SysInitRelease = 13100000
60. DefaultCaseSpec = FALSE
61. PMPC_TimeoutSecs = 60 (Sec.)
62. ExportOrderBySegmentLimit= 500
63. MLoadDiscardDupRowUPI = FALSE
64. DBQL CPU/IO Collection = 0
65. No13dot0Backdown = TRUE

General Fields (New with Teradata 14.0)

66. SnapBypassAggrCache = FALSE
67. RedriveProtection = 0
68. RedriveFallbackResponse = FALSE
69. PMPC_SessionRateThreshold = 60 (Sec.)
70. RoundNumberAsDec = FALSE
71. DMLStatementShipping = 0 (Disabled)

General Fields (cont.)

31. LockLogSegmentSize = 64 KB
32. CostProfileId = 0
33. DBQLFlushRate = 600 (sec.)
34. Memory Limit Per Transaction = 2 pages
35. Client Reset Timeout = 300 (sec.)
36. Temporary Storage Page Size = 4K bytes
37. Spill File Path = /var/tdrsg
38. MDS Is Enabled = FALSE
40. EnableCostProfileTLE = FALSE
41. EnableSetCostProfile = 0
42. UseVirtualSysDefault = 0
43. DisableUDTImplCastForSysFuncOp = FALSE
44. CurHashBucketSize = 20 bits
45. NewHashBucketSize = 20 bits
46. MaxLoadAWT = 0
47. MaxRowHashBlocksPercent = 50%
48. MonSesCPUNormalization = FALSE
49. TempLargePageSize = 64K Bytes
50. RepCacheSegSize = 512K bytes
51. MaxDownRegions = 6 *def*
52. MPS_IncludePEOnlyNodes = FALSE
53. PrimaryIndexDefault = D *def*
54. AccessLockForUncomRead = FALSE

 Maintenance and Recovery Utilities Page 55-18

DBS Control Record – File System Fields

Field Purpose
1. FreeSpacePercent This field is used by the DBS and the File System to determine the

percentage of free space to leave on cylinders during data load operations.
The valid range of values is 0 .. 75. The default value is 0 (percent).

A table definition (CREATE or ALTER) overrides this value.

2. MiniCylPackLowCylProd Determines the number of free cylinders below which it will start to
perform the "MiniCylPacks" operation in anticipation of their need. Setting
this field to 0 indicates that "MiniCylPacks" will only be performed when
no free cylinders exist. The default value is 10.

3. PermDBSize Determines the maximum size of a Permanent Table's multi-row Data

Blocks in 512-byte sectors. The valid range of values is 14 .. 255. The
default value is 127 (sectors).

A table definition (CREATE or ALTER) overrides this value.

4. JournalDBSize Determines the maximum size of Transient Journal and Permanent Journal
Table multi-row Data Blocks in 512-byte sectors. The valid range of values
is 1 .. 127. The default value is 12 (sectors).

5. DefragLowCylProd Determines the number of free cylinders below which it will start to

perform the "Cylinder defragmentation" operation. Setting this field to 0
disables "Cylinder defragmentation". The default value is 100.

6. PermDBAllocUnit Determines the allocation unit for Permanent Table's multi-row Data
Blocks in units of 512-byte sectors. If a Permanent Table Data Block
contains multiple rows, the size of the Data Block will be a multiple of the
PermDBAllocUnit. The valid range of values is 1 .. 63. The default value is
1 (sector).

7. Cylinders Saved for PERM Used to save X number of cylinders for Perm Data only – cannot be used
by Spool. Range is 1 to 100; default is 10. If the number of available
cylinders falls below this value, spool files will not be allocated space.

8-14. WAL parameters Parameters to setup options for Write-Aheada Logging. (V2R6.2 feature)

15. Free Cylinder Cache Size

This field is used by the File System to determine how many cylinders are
to be managed in File System cache for use as spool cylinders. NOTE - A
value of 1 will disable use of the cache. Valid range is 1 - 1000. Default
is 100.

16. Bkgrnd Age Cycle Interval - This field is used by the File System to determine the amount of time that
elapses between background cycles to write a subset of modified segments
in the cache to disk. This background activity serves to reduce the size of
the WAL log and promotes improved disk space utilization in WAL modes.
Valid range is 1-240. The default value is 60 (seconds).

Maintenance and Recovery Utilities Page 55-19

DBS Control Record – File System Fields

File System Fields:
1. FreeSpacePercent = 0%
2. MiniCylPackLowCylProd = 10 (free cylinders)
3. PermDBSize = 127 (sectors)
4. JournalDBSize = 12 (sectors)
5. DefragLowCylProd = 100 (free cylinders)
6. PermDBAllocUnit = 1 (sectors)
7. Cylinders Saved for PERM = 10 (cylinders)
8. DisableWALforDBs = FALSE
9. DisableWAL = FALSE

10. WAL Buffers = 20 (WAL log buffers)
11. MaxSyncWALWrites = 5 (MaxSyncWalWrites)
12. SmallDepotCylsPerPdisk = 2 (cylinders)
13. LargeDepotCylsPerPdisk = 1 (cylinders)
14. WAL Checkpoint Interval = 60 (seconds)
15. Free Cylinder Cache Size = 100 (number of cylinders)
16. Bkgrnd Age Cycle Interval = 60 (seconds)
17. DisableAutoCylPack = FALSE (Enabled)
18. AutoCylPackColddata = FALSE (Disabled)
19. AutoCylPackFSP = 10 (Percent; Default value)
20. AutoCylPackStyle = 2 (PACK / UNPACK)
21. AutoCylPackThresh = 5 (Percent; Default value)
22. AutoCylPackFreeCylThresh = 20 (Cylinders; Default value)
23. AutoCylPackInterval = 60 (Seconds; Default value)
24. AutoCylPackIOThresh = 1 (Number; Default value)
25. (Reserved for future use)
26. (Reserved for future use)
27. MergeBlockRatio = 60 (Percent; Default value)
28. DisableMergeBlocks = FALSE (Enabled)

* Parameters 8 to 14 apply to WAL
* Parameters 15-16 apply to TD 13.0
* Parameters 17-28 apply to TD 13.10

ds186034
Sticky Note
data block sizedefault for most customers is = 254impact1-file system software:a.insert the row in the block...b.defragmentc.expand d blockd.blck split1. when we do a block split - first empact2. second impact - when we are loading datainsert-selectwe will make all blcks max size(fast loading)make all blk that size(-free space, which defaultsl to 0 here)unit of io/amt of space we using in FSHGcachebuffer sizeeffects even we are using select

 Maintenance and Recovery Utilities Page 55-20

DBS Control Record – Performance Fields

Field Purpose
 1. DictionaryCacheSize This field defines the size of the dictionary cache for each PE Vproc on the system. The valid

range of values is 64 .. 16384. 64-bit system default is 3072 (kilobytes).
 2. DBSCacheCtrl Enable or disable the performance enhancements associated with Cache Control Page-

Release Interface. FALSE cause old caching rules to be used. With old cache rules, data
blocks added to spool tables or used in sort operations are NOT cached. With old cache
rules, data blocks for user tables are always cached.

 3. DBSCacheThr Specifies the percentage value to use to calculate the cache threshold when the
DBSCacheCtrl field is enabled. The valid range of values is 0 .. 100. The default value is 10.

 4. MaxParseTreeSegs This field defines the maximum number of 64KB tree segments that the parser will allocate
while parsing a request. The valid range of values is 12 .. 12000. 64-bit sys default is 2000.

 5. ReadAhead Enable or disable the performance enhancements associated Read-Ahead Sequential File
Access Workload. The default value is TRUE.

 6. StepsSegmentSize Defines the maximum size of the plastic steps segment. Range of values is 64 – 1024
Kbytes. Default is 1024.

 7. RedistBufSize This field determines the size in units of kilobytes of hashed row redistribution buffers,
subject to certain adjustments.On systems with few virtual AMP's, a larger buffer size will
usually have a positive effect on performance. However, on systems with many virtual
AMP's, making the buffer size too large will cause excessive memory consumption,
especially if many queries involving hashed row redistribution are run concurrently. The
range of valid values is 1 to 63. The default value is 4.

 8. DisableSyncScan Enables or disables the performance enhancements associated with synchronized full table
scans.

 9. SyncScanCacheThr SyncScanCacheThr - This field specifies the percentage of file system (FSG) cache that the
Teradata file system can assume is available for synchronized scans of tables. It does not
reserve cache for this purpose. Instead, this value specifies the amount of permanent data the
Teradata file system should try to retain in memory at any one time for all tables involved in
synchronized scans. Whether that much memory is truly available depends on actual
workload. The valid range of values is 0 .. 100, where 0 indicates that the default value
should be used. The default value is 10.

10. HTMemAlloc Specifies the percentage of memory to be allocated to a hash table for a hash join. A value
of 0 turns off hash joins. Valid range is 0 to 10. The default value is 0.

11. SkewAllowance Specifies a percentage factor used by the optimizer in deciding on the size of each hash join
partition. It makes allowance for data skew in the build relation. Valid range is 20 to 80.
The default value is 75.

12. Read Ahead Count ReadAhead Count - If the ReadAhead field is set TRUE,
ReadAhead Count is used to specify the number of data blocks that will be preloaded in
advance of the current file position while performing sequential scans. The valid range of
values is 1 .. 100. The default value is 1.

13. PPICacheThrP This field specifies the percentage value to be used for calculating the cache threshold used
in operations dealing with multiple partitions. Valid range is 0 to 500. The default is 10.

14. ReadLockOnly ReadLockOnly – This field is used to disable or enable the special read-or-access lock
protocol on DBC.AccessRights table during access rights validation and on dictionary tables
accessed by read-only queries during request parsing. The default value is FALSE. FALSE
enables this feature.

15. IAMaxWorkloadCache This tunable field defines the maximum size in megabytes of the workload cache, which is
used during index analysis. Valid range is 32 to 128. The default value is 32 (megabytes).

16. MaxRequestsSaved This field governs the number of request cache entries allowed on a PE. The default number
of entires that can be saved in the cache is 600. The user can modify this field to a fixed
value that ranges from 300 to 2000 and, is a multiple of 10.

17. UtilityReadAheadCount Specifies the number of data blocks the Teradata utilities will preload at a time while it
performs its sequential scan. The utilities uses this field instead of the ReadAhead and
ReadAhead Count fields. The valid range of values is 1 .. 100. Default is 10 blocks.

18. StandAloneReadAheadCount Specifies the number of data blocks to preload when File System startup or a utility runs as a
standalone task. The valid range of values is 1 .. 100. Default is 20 blocks.

19. DisablePeekUsing This field enables or disables the performance enhancements associated with exposed using
values. A value of F enables the feature. A value of T disables the feature. The default is F.

20. IVMaxWorkloadCache This tunable field defines the maximum size in megabytes of the workload cache used by
Index Wizard Validation. Valid range is 1 to 32. The default value is 1 (megabytes).

Maintenance and Recovery Utilities Page 55-21

DBS Control Record – Performance Fields

Performance Fields: Notes

1. DictionaryCacheSize = 3072 Size of data dictionary cache for each PE
2. DBSCacheCtrl = TRUE
3. DBSCacheThr = 10%
4. MaxParseTreeSeg = 2000 Raise for more complex SQL requests
5. ReadAhead = TRUE
6. StepsSegmentSize = 1024 (kilobytes) Maximum size of the plastic steps segment in KB
7. RedistBufSize = 4 (kilobytes)
8. DisableSyncScan = FALSE
9. SyncScanCacheThr = 10%
10. HTMemAlloc = 10%
11. SkewAllowance = 75%
12. Read Ahead Count = 1
13. PPICacheThrP = 10
14. ReadLockOnly = FALSE (FALSE enables this feature)
15. IAMaxWorkloadCache = 32 (megabytes)
16. MaxRequestsSaved = 600 (default)
17. UtilityReadAheadCount = 10
18. StandAloneReadAheadCount = 20
19. DisablePeekUsing = FALSE (new in 12.0)
20. IVMaxWorkloadCache = 1 (megabytes) (new in 12.0)
21. RevertJoinPlanning = FALSE (new in 13.0)
22. MaxJoinTables = 128 (new in 13.0)
23. DBQLXMLPlanMemLimit = 8192 (KB; Def.) (new in 13.10)
24. LimitInlistCVal = 1048576 (new in 13.10)
25. NumStatisticsCacheSegs = 4 (SizeofSegment is 1024 KB) (new in 14.0)

ds186034
Sticky Note
test questions

ds186034
Sticky Note
3mb - no of segments2 kinda cache memoryDD cachestep cache3mb of mem per cachestatistics in the memory - its this memory6 i am setting it to a meg

 Maintenance and Recovery Utilities Page 55-22

Modifying DBS Control Parameters
The modify command is used to change DBS Control parameters. After making a
modification, it is necessary to write the update to disk.

Example: Set the Century Break value
Another example (different than the facing page) follows. To change the Century Break
value, you need to use modify and write commands of the DBSControl utility.

To change the Century Break value:

1. From the command-line prompt (or the Supervisor window of the Database Window):

 dbscontrol

2. From the DBS Control window:

 display general

3. Use the modify command to change flag 14:

 modify general 14 = 50

4. Write changes to the GDO:

 write

Note: The change does not take place until the next database restart, even though the flag

shows the change right away. If you DISPLAY GENERAL, you’ll see the new
setting, but the setting is not really available until the system is restarted.

Maintenance and Recovery Utilities Page 55-23

Modifying DBS Control Parameters

To modify a DBS
Control parameter,
use the Modify and
Write commands.

This example
changes parameter
30 to a value of 10
minutes.

To save the changes,
use the Write
command.

 Maintenance and Recovery Utilities Page 55-24

Ferret – Defragment and Packdisk

SCOPE Command
The SCOPE command defines the range of tables and/or vprocs to display or reconfigure
with the Defragment and Packdisk commands.

The facing page has an example of the SCOPE and PACKDISK commands.

DEFRAGMENT Command
Over time, it is possible that INSERTs and DELETEs can cause cylinders to become
fragmented. If this is the case, the DEFRAGMENT command may be used to defragment
the cylinders on an AMP (or the system) depending on SCOPE options.

PACKDISK Command

The PACKDISK command alters a disk to reconfigure the cylinders within the scope
defined by the SCOPE command. PACKDISK uses the default Free Space Percent or a new
percentage specified as part of the command to pack the entire disk or a single table.

The allowable scope for PACKDISK is vprocs or tables, but not both.

The system will automatically perform mini-cylpacks when the number of cylinders falls
below a certain internal threshold value. The PACKDISK command can be used to force
this situation.

Starting PACKDISK
PACKDISK is a command within the Ferret utility. To start PACKDISK, enter packdisk
fsp = nnn (where fsp = free space percent and nnn equals the percentage of cylinder free
space) in the command window of the Ferret partition. Key the command in uppercase,
lowercase or a combination of both. Note the interactive area where the utility has been
started.

Stopping PACKDISK
To terminate the PACKDISK command, enter ABORT.

Maintenance and Recovery Utilities Page 55-25

Ferret – Defragment and Packdisk

DEFRAGMENT

combines free sectors
and moves them to the
end of a cylinder.

PACKDISK

fill (or packs) cylinders
up to the FSP (Free
Space Percentage).

ds186034
Sticky Note
some cust never do itsome do it monthly etcdeframent cyl and puts it in the beg of the cyl(FS is at the end of the cylinder)td will do auto defragm...and so they dont use thispack diskmoves it to adj cylindermoves it to = free cyl list (spool and temp and whatever)some once every quarterthis is space within a cyl itselfwe ran packdisk with fsp=10free space percentpack data together leaving 10pct freehow far along are we right now= 11%abort it and start it some other timegood data integrity is most imp when we have a prblm some kinda any knda failurechecks that MI - CI - Block are in sync

 Maintenance and Recovery Utilities Page 55-26

Checking Data Integrity
There are two utilities that are used to check data consistency.

 SCANDISK - checks the AMP’s file system structures (CIs and DBs for
consistency)

 CHECKTABLE - checks for consistency in internal data structures such as table

headers, SI subtables, row identifiers, etc.

Maintenance and Recovery Utilities Page 55-27

Checking Data Integrity

SCANDISK
Checks the AMP’s file system
structures (CIs and DBs for
consistency)

CHECKTABLE
Checks for consistency in internal
data structures such as table
headers, SI subtables, row
identifiers, etc.

Typically, first execute SCANDISK,
then CHECKTABLE.

Cylinder Index

Cylinder Index

Data Block

Data Block

Data Block

Data Block

AMP
Master Index

Cylinder Index

Cylinder Index

Data Block

Data Block

Data Block

Data Block

AMP
Master Index

Cylinder Index

Cylinder Index

Data Block

Data Block

Data Block

Data Block

AMP
Master Index

1.
 S

C
A

N
D

IS
K

2. CHECKTABLE

ds186034
Sticky Note
good data integrity is most imp when we have a prblm some kinda any knda failurechecks that MI - CI - Block are in syncwhy TD gets out of sync..well only cause of TD user!read it - archive itand lose an ampand instead of restroting all, we only get 1 amp backand so if any changes are madethen data is getting out of syncits recovery/restore process where problms occurrestore table is the soln

 Maintenance and Recovery Utilities Page 55-28

Ferret – Scandisk Utility
The SCANDISK utility/command enables you to determine if there is a problem with the
AMP file system and assess its extent. SCANDISK is a diagnostic tool designed to check
for inconsistencies between key file system data structures such as the master index,
cylinder index, and data blocks.

As an administrator, you can perform this procedure as preventative maintenance to validate
the file system, as part of other maintenance procedures, or when users report that there are
file system problems.

Execute the SCANDISK command in the Ferret utility while the system is operational.

The SCANDISK command:

 Verifies data block content matches the data descriptor.
 Checks that all sectors are allocated to one and only one of the following:

– Bad sector list
– Free list
– A data block

 Ensures that continuation bits are flagged correctly.

If Scandisk discovers a problem with a disk, you must use the Table Rebuild utility to
rebuild any tables it reports as having bad data for the particular AMP vproc. (The Table
Rebuild utility is discussed later in this lesson.) The output of the SCANDISK command is
displayed on the screen directly after the command completes.

To avoid potential TPA resets, run SCANDISK prior to:

 Running the Checktable utility
 Rebuilding database tables using the Table Rebuild utility

Starting Scandisk
Enter start Ferret and from within the Ferret utility window, enter the command Scandisk.
The SCANDISK command may be limited by the SCOPE command to scan only one table,
a range of tables, or the whole vproc.

Stopping Scandisk
Scandisk terminates itself after performing the scan.

Maintenance and Recovery Utilities Page 55-29

Ferret – Scandisk Utility

If Scandisk encounters an error for a specific AMP,
execute (table) REBUILD for that AMP.

ds186034
Sticky Note
15%if i have erri am going to do recovery

 Maintenance and Recovery Utilities Page 55-30

Checktable Utility
Checktable is a diagnostic tool designed to check for inconsistencies in internal data
structures such as table headers, row identifiers, and secondary indexes. Checktable can
help determine if there is corruption in your system. Normally, Checktable is executed on a
system that is quiescent.

Use the Checktable utility as both a diagnostic and validation tool. As a diagnostic tool, you
can identify problems with data integrity. As a validation tool, you can verify data integrity
prior to a reconfiguration or archive. Checktable only identifies inconsistencies; it does not
correct them.

Always run Scandisk before you run Checktable. Checktable assumes the underlying
structure of the file system is intact. If there are structural errors, Checktable could cause a
tpa reset on the database. Scandisk is located within the Ferret utility.

The estimated run time for a Checktable varies depending on the characteristics of the data.
The more non-unique secondary indexes defined on the tables, the longer it takes to run
Checktable. If you invoke Checktable when users are logged on, the time it takes to process
the Checktable will depend on the activity on the system and the amount of resource
contentions that it encounters (for example, object locks).

Starting Checktable
To start the utility, enter start Checktable from the DBW supervisor.

Stopping Checktable
To stop Checktable, enter QUIT;

Maintenance and Recovery Utilities Page 55-31

Checktable Utility

Three
levels of
typical
checking.

Checktable
Command

From supervisor of DB Window, START CHECKTABLE

ds186034
Sticky Note
it runs at diff levelsthere are other lvls than shown here3 takes a lotta time...some cust...lvl1and when upgrade, lvl2, lvl3Integrity checks across AMPsnon fallbackonly the header

 Maintenance and Recovery Utilities Page 55-32

Checktable – Levels of Checking
The Checktable utility provides more than three levels of checking. The first three levels of
checking are typically used by customers. Each level is a superset of the lower levels and
runs all previous level checks.

Level One Level one checking compares the counts of data and index subtables. Use

level-one checking to identify specific tables that contain errors. If errors are detected,
perform a more detailed check using level-two or level-three checking.

Level Two Level two compares lists of index and row IDs as well as primary to fallback

checksums. This level also verifies that hash codes reflect correct row distribution in
any given subtable. Level two checking requires significantly more system resources
than level one. You can use spool space to check tables that have secondary indexes.

Level Three Use level three checking to obtain detailed diagnostic information. This level

provides the most detailed check and requires the most system resources. Level three
compares entire rows, byte by byte.

Teradata Recommendations
Teradata recommends that you perform the following maintenance routine once a month:

1. Run a Scandisk diagnostic for all Vdisks. Scandisk performs intra-disk integrity

checks by determining that the underlying file system is intact. Users may want
their field support representative to start this task.

2. Follow Step 1 with a Checktable run at Level 2. The Checktable utility completes

the diagnostic analysis with inter-disk integrity checks, according to the rules of the
database system.

Maintenance and Recovery Utilities Page 55-33

Checktable – Levels of Checking

Checktable provides three levels of checking that are typically used:

Level 1 Compares only the counts of data and index subtables.

Level 2 Includes level 1 checking; also compares lists of index and data row ids/keys and primary
to fallback checksums.

Level 3 Includes levels 1 and 2 checking; also compares entire rows.

While Checktable is running, you may use the following function keys:

F2 Displays current status.

F3 Aborts the current table check and continues with the next.

F4 Aborts the current Checktable command.

F7 Help

It is recommended that you periodically (e.g., monthly) schedule the following
maintenance routines:

• A SCANDISK diagnostic run for all AMPs. This function performs intra-disk integrity checks.
Your Customer Engineer can start this diagnostic tool.

• A CHECKTABLE run at level 2. Checktable completes the diagnostic analysis with inter-disk
integrity checks.

 Maintenance and Recovery Utilities Page 55-34

Checktable – Example
The facing page shows the output from executing Checktable against several databases.
Additional options in Checktable are:

Error Limit for a Check Command
The error limit is the maximum number of errors that can be found during checking a table.
If the number of found errors exceeds the error limit, Checktable stops checking on the
current table but continues to check the next table.

To by-pass tables which are locked.
The SKIPLOCKS option is intended to help the user by-pass any contention on tables.
Without this option Checktable will block indefinitely on the table to be checked until it has
been unlocked. When this option is specified Checktable will automatically skip the in-use
(locked) tables.

To check database(s) or table(s) in serial or parallel.
SERIAL/PARALLEL mode allows the user to specify whether the Checktable utility should
check the specified databases/tables in SERIAL mode or in PARALLEL mode. Default
mode <checkmode> is SERIAL mode.

In SERIAL mode, the Checktable utility checks a single table at a time.

In PARALLEL mode, the Checktable utility checks the specified database(s)/table(s) in
parallel. The number of tables that can be checked simultaneously in parallel depends on
the resource availability. A status command can be used to determine the number of parallel
checks being performed at any given point of time.

To control resource consumption
The CheckTable utility runs with MEDIUM priority by default. The user has an option to
specify a performance group name with the command. Checktable will then run in the
priority for the performance group name. The user can also specify LOW, MEDIUM,
HIGH, or RUSH priority explicitly.

Specify the first character L (=LOW), M (=MEDIUM), H (=HIGH) or R (RUSH) when
using PRIORITY option.

This option can be used to control the resource consumption by the Checktable utility.

To Specify Indexes or Large Objects
Use BUT ONLY or BUT NOT to include or exclude data subtables in the check.

Maintenance and Recovery Utilities Page 55-35

Checktable – Example

CheckTable Command: CHECK AP, DS, PD, TFACT AT LEVEL THREE;

 Maintenance and Recovery Utilities Page 55-36

Table Rebuild Utility
Table Rebuild is a utility that repairs data corruption. It does so by rebuilding tables on a
specific AMP vproc based on data located on the other AMP vprocs in the fallback cluster.

Table Rebuild can rebuild data in the following subsets:

 The primary or fallback portion of a table
 An entire table (both primary and fallback portions)
 All tables in a database
 All tables that reside on an AMP vproc

Table Rebuild performs differently based on the type of table (e.g., fallback or not, etc.)

Type of Table Action
Fallback tables Delete the table header (one row table which defines a user data

table)

Delete specified portion of the table being rebuilt

Rebuild the table header

Rebuild the specified portion of the table

Non-fallback tables Delete the table header

Rebuild the table header

Permanent journal
tables

Delete data for the table being rebuilt

Rebuild the table header

Locks the table (“pending rebuild”)

Note: You must restore non-fallback data.

Note: You can start REBUILD when the failed AMP has been fixed and brought back to the
OFFLINE state.

The command syntax is shown on the facing page.

Maintenance and Recovery Utilities Page 55-37

Table Rebuild Utility

For an AMP that has
failed (e.g., a Vdisk
failure) and has been
repaired, REBUILD will …

• Rebuild table
headers and data for
fallback tables.

• Only build table
headers for non-
fallback tables.

 Maintenance and Recovery Utilities Page 55-38

Recovery Manager Utility
The Rcvmanager (Recovery Manager) utility lets you monitor the backing out of incomplete
transactions on tables that may be locked for access. The resulting journal is called the
Transaction Journal. Rcvmanager also shows the count of records of data presently in the
Down AMP Recovery Journal. This journal represents the data rows an AMP vproc must
recover from the other AMP vprocs in the cluster before coming back online to the database.

The Recovery Manager utility runs only when the system is in one of the following states:

 Logon
 Logon/Quiet
 Logoff
 Logoff/Quiet
 Startup (if system has completed voting for transaction recovery).

If the system is not in one of the above states, Recovery Manager will terminate
immediately after you start it.

Starting Rcvmanager
To start Recovery Manager, enter start rcvmanager in the Supervisor interactive area.

Stopping Rcvmanager
After you start Recovery Manager, you cannot stop it with the Supervisor program STOP
command.

You must use the Rcvmanager QUIT; command to stop the program.

Note: All Rcvmanager commands end with a semicolon (;).

Maintenance and Recovery Utilities Page 55-39

Recovery Manager Utility

RCVMANAGER provides a means for the user to interact with the recovery
subsystem.

Following a Teradata restart, you can ...

• View the number of rows being rolled back via the Transient Journal (TJ).

• View the number of rows being updated on an AMP via the Recovery Journal
(Fallback tables and rows that were updated while the AMP was out of service).

• List the tables that are locked until the rollback completes.

• Change the priority of Rollback and/or Recovery operations.

Other options …

• View which tables are being rolled back.

• Set the rollback priority for a specific session to a specific performance group.

• For a table or tables, cancel rollback processing for an online user requested abort or
following a system restart.

– WARNING: The target table will be unusable after this command is issued.

• View the tables for which rollback processing is not pending cancellation during the
online transaction recovery.

– The table is removed from the list when no more TJ rows exist for the table.

 Maintenance and Recovery Utilities Page 55-40

Recovery Manager Commands
The LIST STATUS command displays information about recovery operations in progress.
The processor id option provides additional detailed information about a specific down
AMP.

The LIST LOCKS command displays a list of all locks currently held by online transaction
recovery.

The LIST ROLLBACK TABLES command displays the list of tables which are currently
being rolled back in the system. Separate listings are generated to distinguish between online
transaction recovery and system recovery. Table ids can be selected from this listing for
executing the CANCEL ROLLBACK ON TABLE command. In case a '*' character follows
the table names then they cannot be specified in the CANCEL ROLLBACK ON TABLE
command.

The LIST CANCEL ROLLBACK TABLES command displays the list of tables for which
rollback processing is pending cancellation during the online transaction recovery. These
tables are removed from the list when all the journal rows corresponding to the tables have
been skipped on all the AMPs.

The PRIORITY command can be used to either display or set the current priorities for
rebuild or recovery. For example:

 RECOVERY PRIORITY; displays the current recovery priority setting.
 RECOVERY PRIORITY LOW; sets the recovery priority to Low.
 DEFAULT PRIORITY; sets the recovery priority to Low and the rebuild priority to

Medium.

The CANCEL ROLLBACK ON TABLE command is used to specify a table for which
rollback processing is to be cancelled for an online user requested abort or during system
recovery. The DBC password is required to execute this command. Multiple tables can be
specified by separating their table ids with commas. WARNING: The target table will be
unusable after this command is issued, and will become usable only when the table is
dropped and created again, or when the table is restored from an archived backup, or when a
DELETE ALL operation is performed on that table. The CANCEL ROLLBACK command
should only be used in cases where the rollback will take longer than the restore of the table,
or in cases where the table is unimportant (i.e., a temporary table). A single table retrieve
operation can be performed on the target table by using the READ OVERRIDE locking
modifier on it.

The ROLLBACK SESSION... PERFORMANCE GROUP command can be used to
either display or set the current performance group of the rollback for a particular session.
The priority associated with the specified performance group is used to change the priority
of the rollback for the specified host-id and session number.

Maintenance and Recovery Utilities Page 55-41

Recovery Manager Commands

From supervisor: START RCVMANAGER

Commands are:

LIST STATUS [<proc-id>] ; shows status of transaction and/or down AMP recovery

LIST LOCKS; displays all locks currently held by online transaction recovery

REBUILD PRIORITY [Low | Medium | High] ; sets the table rebuild priority

RECOVERY PRIORITY [Low | Medium | High] ; sets the AMP recovery priority

DEFAULT PRIORITY; sets both priorities back to their default

HELP;

QUIT;

Other commands include:

LIST ROLLBACK TABLES; – view the tables being rolled back for which rollback
processing is not pending cancellation

LIST CANCEL ROLLBACK TABLES; view the tables that are pending cancellation

CANCEL ROLLBACK ON TABLE <table-id> [{, <table-id>} ...] ;

ROLLBACK SESSION <host>, <session> PERFORMANCE GROUP [<Perf Group Name>];

 Maintenance and Recovery Utilities Page 55-42

Rcvmanager – List Status
The Recovery Manager utility uses two basic commands: the LIST STATUS and LIST
LOCKS commands. These commands display information about online transaction recovery
and offline AMP recovery.

The LIST STATUS command generates two reports:

 ONLINE TRANSACTION RECOVERY JOURNAL
 DOWN AMP CATCHUP JOURNAL

ONLINE TRANSACTION RECOVERY JOURNAL
This report pertains to online transaction recovery and displays a list of all active recovery
sessions as well as the maximum number of transaction journal rows remaining to be
processed for the AMP that has this maximum count. Since all AMPs must complete the
processing of a given recovery session before the processing of the next session begins, this
information is sufficient to compute the worst-case count of transaction journal entries to be
scanned.

The online transaction recovery journal counts are updated by each AMP every time a
checkpoint is taken. Thus, every time an AMP checkpoints, the system will decrement its
online transaction recovery journal count by 1000 and a later LIST STATUS command may
display different results. If there are no recovery sessions active, then the report displays
only the title.

The entries in this report are:

Recovery Session ID of active recovery session

Count Maximum number of transaction journal rows remaining to
be processed for a specific AMP

AMP W/Count The AMP to which the corresponding count applies

Maintenance and Recovery Utilities Page 55-43

Rcvmanager – List Status

After a Teradata
restart, the list status
command is used.

In this example, there
are almost 270K TJ
rows remaining to be
rolled back.

The list status
command is used a
second time and the
count has decreased.

Note: The AMP with
the highest count of TJ
rows to roll back is
listed.

ds186034
Sticky Note
its amp with the mostrollin back1or many tables

 Maintenance and Recovery Utilities Page 55-44

Rcvmanager – List Locks
The screen display on the facing page continues the same example and has an example of
using the List Locks command.

The LIST LOCKS command displays all locks currently held by transaction recovery. The
command generates a singe report called, Locks Held By Online Transaction Recovery.

The report is sorted alphabetically by object name. The report does not display information
for row range and row hash locks, but does display the table within which the row resides.
If Recovery Manager is unable to determine the database name associated with an object,
then it displays the database ID in decimal and hexadecimal. The same is true if the table
name cannot be determined.

Note: LIST LOCKS displays only those locks currently held by online transaction
recovery. Currently, there is no way to display locks held by offline catchup.

Rebuild & Recover Priority
The Rcvmanager utility also includes the PRIORITY command that can used to specify
priorities for:

 Table rebuild operations
 System recovery operations

Both operations are independent of each other. For either operation, if you do not explicitly
set a recovery priority, the system uses the default priority. If you do not enter a new
priority, the current priority setting displays. The system saves the priority settings for both
operations in the Recovery Status system table.

The REBUILD PRIORITY command applies to any Table Rebuild started from the console,
automatic table rebuild due to disk error recovery and MLOAD rebuild of target tables for
non-participant online AMPs.

The RECOVERY PRIORITY command enables you to set a priority for the system
recovery operation.

The syntax is:

REBUILD PRIORITY HIGH | MEDIUM | LOW ;
RECOVERY PRIORITY HIGH | MEDIUM | LOW ;
DEFAULT PRIORITY ;
 Sets REBUILD PRIORITY to MEDIUM and RECOVERY PRIORITY to LOW

Maintenance and Recovery Utilities Page 55-45

Rcvmanager – List Locks

To determine which
tables are locked as
part of “Online
Transaction Recovery”,
the list locks command
is used.

The list status
command is used a
third time and the count
has decreased even
more.

ds186034
Sticky Note
this table was locked..while we are doing our rcv and restart,,insert gets queue upnow do it again andits 68K...how far we are in the process..

 Maintenance and Recovery Utilities Page 55-46

Rcvmanager – List Status (2nd Example)

AMP CATCHUP JOURNAL COUNTS
This report pertains to offline AMP recovery and displays an entry for every offline AMP.
Entries include the following:

AMP to be caught up Designates which AMP needs to be recovered.

Asterisk (*) indicates that the AMP would be
brought into online catchup if a restart were to
occur (CJ < 3000 and the OJ/TJ = 0).

AMP Status Describes the recovery mode now in progress for

the recovering AMP:

NOT IN RECOVERY — AMP is still down, and
has not come up into recovery yet.

OFFLINE CATCHUP -- AMP is offline, and is in
catchup mode
.
ONLINE CATCHUP — The AMP is still catching
up, but it is online and will accept new transactions.

Changed Row Journal Count The number of rows updated in the cluster while an

AMP was down. Usually DML changes that
impact a row on a single AMP.

Ordered System Change Journal The number of system or table level changes in the

cluster. Usually DDL changes that impact row(s)
on all of the AMPs.

Transient Journal Count Number of transaction journal entries (rows)

remaining in all recovery sessions on the recovering
AMP:

N/A - AMP is not available
0 - Local transaction recovery completed

Maintenance and Recovery Utilities Page 55-47

Rcvmanager – List Status (2nd Example)

If an AMP has been
offline, use the list
status command to
determine if fallback
table rows are being
updated from the
down AMP recovery
journal.

OJ (Ordered System
Change Journal) –
DDL changes to
fallback tables.

CJ (Changed Row
Journal) – DML
changes to fallback
tables.

ds186034
Sticky Note
AMP is off lineFB table..we do keep it inDOWN AMP RECOVERY JOURNALwhich amp we took offlineamp# =4(other ins were going on while recovery was going onwhich will be applied laterwe dont have to do anythingcause ofthe down amp recovery jounal)3criteria for the journal-amp has to be offline-only applies to FB tables-only applies to FB tables we are making changes to(so DPRJ will be used only in above 3 conditions or else it will be empty)

 Maintenance and Recovery Utilities Page 55-48

Rcvmanager – List Rollback Tables
The LIST ROLLBACK TABLES command displays the list of tables which are currently
being rolled back in the system. Separate listings are generated to distinguish between
online transaction recovery and system recovery.

Table Ids can be selected from this listing for executing the CANCEL ROLLBACK ON
TABLE command. In the situation where a '*' character follows the table names, then they
cannot be specified in the CANCEL ROLLBACK ON TABLE command.

Maintenance and Recovery Utilities Page 55-49

Rcvmanager – List Rollback Tables

In this example, the
List Rollback Tables
lists a table that is
being rolled back
because of a user
aborted transaction.

The number of rows
remaining to be rolled
back and the
estimated time for
rollback is provided.

The Table ID and table
name are also
provided.

ds186034
Sticky Note
its gonna take 28 mins to get the rollback completed(in some case 2 days)lotta rows in the TJ...

 Maintenance and Recovery Utilities Page 55-50

Rcvmanager – Cancel Rollback on Table
The CANCEL ROLLBACK ON TABLE command is used to specify a table for which
rollback processing is to be cancelled for an online user requested abort or during system
recovery. The DBC password is required to execute this command. Multiple tables can be
specified by separating their table ids with commas.

The CANCEL ROLLBACK command should only be used in cases where the rollback will
take longer than the restore of the table, or in cases where the table is unimportant (i.e., a
temporary table). A single table retrieve operation can be performed on the target table by
using the READ OVERRIDE locking modifier on it.

WARNING: The target table will be unusable after this command is issued, and will become
usable only when the table is dropped and created again, or when the table is restored from
an archived backup, or when a DELETE ALL operation is performed on that table.

For example,

 SELECT * FROM Sales_and_SalesHistory;

 Error 7562: Invalid operation on table Sales_andSalesHistory

 DELETE Sales_and_SalesHistory ALL:

 Completed: 483, 350 rows processed (command executes successfully)

Maintenance and Recovery Utilities Page 55-51

Rcvmanager – Cancel Rollback on Table

CANCEL ROLLBACK should
only be used when …

• rollback will take longer
than a restore of the table

• or the table is
unimportant (i.e., a
temporary table)

Is only executed by the
Support Center!!

You will prompted for the DBC
password.

After a cancelled rollback, the
table is unusable.

SELECT * FROM …;
• Error 7562

You can …
• DROP TABLE tbname;
• DELETE tbname ALL;

Table ID is provided with
LIST ROLLBACK TABLES;

ds186034
Sticky Note
occassionaly we have good archivecan we cancel rollbackstatus = unknownbut better hope and bet that the archive is goodif u wanna go this routeand not the rollback route

ds186034
Sticky Note
test que!

 Maintenance and Recovery Utilities Page 55-52

Showlocks Utility
The Showlocks utility enables you to retrieve information about host utility locks the ARC
utility places on databases and tables during backup or restore activities. This utility also
displays information about locks placed during a system failure.

Host utility locks may interfere with application processing and are normally released after
the utility process is complete.

If locks interfere with application processing, you can remove them by invoking the
RELEASE LOCK statement. It is available through the ARC utility or as an SQL statement.
An individual session may be in a "blocked" state due to one of the following situations:

 An ARC operation failed and a database cannot be accessed
 Locks were not implicitly or explicitly released after an ARC operation
 A lock was not released by the user after a system failure occurred

Showlocks can be started from DB Window Supervisor screen or HUTCNS console.

Supervisor – start showlocks
HUTCNS – LOCksdisplay (entering LOC is all that is needed)

Report Contents
The utility displays the following information for each utility lock:

 Database name that contains lock
 Table name that contains lock (if applicable)
 User name of user who placed the utility lock
 Lock mode (read, write, exclusive, access)
 Read = Dump
 Write = Roll
 Exclusive = Restore/Copy
 Access = Group read lock or Checkpoint
 ID of vproc (all AMPs when lock resides on all AMPs)

If an object has more than one utility lock, Showlocks provides information for the most
restrictive lock placed on the object.

Maintenance and Recovery Utilities Page 55-53

Showlocks Utility

SHOWLOCKS displays “host
utility” (HUT) locks that ARC
has placed on databases and
tables during an archive,
restore, or recovery operation.

From supervisor: START
SHOWLOCKS

The ARCHIVE command places
a READ lock on database/table.

The RESTORE/COPY command
places an EXCLUSIVE lock on
database/table.

This utility displays the host
utility locks that are present
and terminates. There are no
commands to exit this utility.

ds186034
Sticky Note
archive lockslocks dat hang around from the archive utilitydoes not go away auto

 Maintenance and Recovery Utilities Page 55-54

Orphan or Phantom Spool Issues
Like all tables, spool tables require a Table ID. There is a range of tableids exclusively
reserved for spool tables (C000 0001 thru FFFF FFFF) and the system cycles through
them. If a spool file (table) is incorrectly not dropped, it remains in existence. Eventually,
the system will cycle through all the table ids and reassign the tableid which is in use by our
left over spool table. Usually, the presence of this table is detected, the query which was
going to use the tableid is aborted – even though it is innocent of any wrongdoing – and the
following message is returned to the user and put in the error log:

 *** FAILURE 2667 Left-over spool table found: transaction aborted.

In rare cases, the leftover spool file (orphan spool) is not detected and the leftover spool is
used. Since it was not created by the current transaction, its format is incorrect and the
system will crash in an unpredictable way.

A more subtle condition is when a spool table is dropped, but the steps which reduce the
tally of spool space currently in use are not. This is phantom spool. The tallies say the table
exists, but it does not. Phantom spool does not cause restarts. Unless the space involved is a
significant percentage of the total spool reserve, it is just an annoyance.

The query on the facing page can be run to flag the presence of either variety (real or
phantom) of leftover spool.

Should this query return rows, the next step is to run the utility updatespace. This can be
done while the system is in operation, but naturally; it is best done during periods of lower
usage. Updatespace will correct the phantom spool problem. If the above query still
returns rows after updatespace is run, then there are actual leftover spool tables. The way
to get rid of them is to perform a database reset. Do not be concerned about how to avoid a
restart. Do a restart and be operational faster and a whole lot surer and safer.

An important caveat about the query: notice that the user who caused the leftover spool table
to be created must not be logged on when the query is run. If he/she is, then spool is
considered legitimate by the query. Now, it is not uncommon for some sites to have a user
which is nearly always logged on. If the leftover spool was created by such a user, this
query will be not report it unless it is run when the system is quiescent.

Filer can also be used by qualified personnel in the GSC to detect real leftover spool on a
quiescent system. This often has an advantage of sometimes giving important clues about
the root cause.

So what do you do when you discover leftover spool? Institute a procedure to detect
leftover spool tables on a regular cycle. You want to discover and eliminate them before the
system attempts to reuse the id. How quickly the spool table ids are reused is very site
dependent, but something near 2 weeks is the median value.

Maintenance and Recovery Utilities Page 55-55

Orphan or Phantom Spool Issues

In rare cases, when a query completes (or is aborted), the spool file is not dropped.

Orphan Spool – spool file (tableid) incorrectly remains in existence
Phantom Spool – spool file tableid is gone, but the spool space remains allocated.

The following query can be executed to determine the presence of leftover spool (orphan
or phantom).

SELECT Databasename, Vproc, CurrentSpool
FROM DBC.Diskspace
WHERE Databasename NOT IN (SELECT UserName FROM DBC.SessionInfo)
AND CurrentSpool > 0
ORDER BY 1, 2
WITH SUM (CurrentSpool);

Should this query return rows, the next step is to run the utility "updatespace".

The UpdateSpace utility is also used to correct inconsistencies in the DBC.DatabaseSpace
table, which might occur as the result of unusual (rare) types of system failures.

From supervisor: START UPDATESPACE

ds186034
Sticky Note
if space accounting is not rightthen there is some spool that was not released(its like a bug in the systm)just resets it.resets the space calculationspool was hangin didnt get released and we are just refreshing it....

 Maintenance and Recovery Utilities Page 55-56

Update Space Utility
The Update Space utility (updatespace) recalculates the permanent, temporary, or spool
space used by either of the following:

 A single database and its individual tables
 All databases in a system and their individual tables

The Update Space utility accomplishes this by performing the following:

 Examining storage descriptors and adding up space for each table.
 Setting values in CurrentPermSpace, CurrentTempSpace, or CurrentSpoolSpace in

the DBC.DatabaseSpace table for each table and for the containing database as a
whole.

A different utility, Update DBC (updatedbc), recalculates the maximum allowed values for
permanent, temporary, and spool space in the DBC.Dbase and DBC.DatabaseSpace tables.

The following table lists the difference between the Update DBC and Update Space utilities.

 Update DBC recalculates maximum allowed values for permanent, temporary, and
spool space.

 Update Space recalculates current usage for permanent, temporary, and spool

space.

The only reason to use Update Space is to correct inconsistencies in the
DBC.DatabaseSpace table, which might occur as the result of rare types of system failures.

The format of the command to use with the “Update Space” utility is:

Maintenance and Recovery Utilities Page 55-57

Update Space Utility

The Update Space
utility, updatespace,
recalculates the
permanent,
temporary, or spool
space in the
DBC.DatabaseSpace
table.

| --- | / | / | / | | / |
| ___ | ____| ____| ____| |__ ____|

Release 14.00.00.01 Version 14.00.00.01
UPDATE SPACE Utility (Dec 94)

The Update Space program provides for recalculating the
permanent database space or temporary space or spool
space used by a single database or by all databases in
the system.

The format of the input command is:

UPDATE [SPOOL | TEMPORARY | PSPOOL | ALL] SPACE FOR {ALL DATABASES | dbname} ;

Enter either ALL DATABASES or the name of the database
for which space is to be recalculated. The SPOOL and PSPOOL
parameters are only allowed with a single database.

Enter Command
update all space for all databases;Command

 Maintenance and Recovery Utilities Page 55-58

Vprocmanager
The Vprocmanager utility provides a means to manage/manipulate various vproc attributes.
Vprocmanager can be started from the Supervisor (start vprocmanager) or command-line
(vprocmanager).

Valid commands are: STATUS, INITVDISK, RESTART, BOOT, SET, HELP, and QUIT,.

STATUS
The simple format of this command (i.e., STATUS without any options) returns the DBS
and PDE status tables in their entirety.

INITVDISK <VprocId>
This command initializes the DBS File System on the Virtual Disk (Vdisk) associated with
the specified AMP vproc. It is only applicable to NEWPROC or FATAL AMP vprocs.

Valid VprocIds are decimal numbers in the range of 0 .. 16383. Hex number may be

used with a trailing “x”.

RESTART [TPA] [NODUMP | DUMP = {YES, NO}][<RestartKind]
[<comment>]

This command is used to force different flavors of DBS restarts.

 A system dump will not be taken when the NODUMP option is specified. This is
the default action.

 The DUMP = YES option causes a system dump to be taken.
 The DUMP = NO option is equivalent to NODUMP.
 Valid RestartKinds are COLD or COLDWAIT.
 The comment specifies the reason for the restart.

BOOT <VprocId>

This command will reinitialize the AMP's disk in anticipation of all-tables table rebuild and
start the DBS partitions on the specified AMP. It is only applicable to vprocs with a
VprocState of FATAL and a ConfigStatus of Down. A confirmation input is needed to
process the initialization.

Valid VprocIds are decimal numbers in the range of 0 .. 16383. Hex number may be
used with a trailing “x”.

SET

Sets the state of a vproc to either ONLINE, OFFLINE, or FATAL.

Maintenance and Recovery Utilities Page 55-59

Vprocmanager

Commands:

STATUS – provides
status information
about vprocs

SET – sets the state
(e.g., ONLINE,
OFFLINE) of a vproc.

RESTART – restarts
Teradata

INITVDISK – initializes
the DBS File System on
a Vdisk.

BOOT – initializes the
File System and boots a
specific vproc

Note the large vproc
numbers that are
available in 14.0.

status;

SYSTEM NAME: TDT5B 12/03/09 03:16:54

DBS LOGICAL CONFIGURATION

Rcv
Jrnl/

Vproc Rel. Node Can Crash Vproc Config Config Cluster/ Host TVS
Number Vproc# ID Move Count State Status Type Host No. Type Vproc
------ ------ ------ ----- ----- ------- -------- ------ -------- ----- -----

0* 1 1-13 Yes 0 ONLINE Online AMP 0 On 28671
1 2 1-13 Yes 0 ONLINE Online AMP 1 On 28671
2 3 1-13 Yes 0 ONLINE Online AMP 2 On 28671
3 4 1-13 Yes 0 ONLINE Online AMP 3 On 28671
4 5 1-13 Yes 0 ONLINE Online AMP 4 On 28671
5 6 1-13 Yes 0 ONLINE Online AMP 5 On 28671
6 7 1-13 Yes 0 ONLINE Online AMP 6 On 28671
7 8 1-13 Yes 0 ONLINE Online AMP 7 On 28671

: : : :
: : : :

22529 - 1-14 No 0 NONODE ? ? ? ? N/A
28670 30 1-13 Yes 0 ONLINE N/A TVS 0 N/A N/A
28671 31 1-13 Yes 0 ONLINE N/A TVS 0 N/A N/A
30718 27 1-13 Yes 0 ONLINE Online PE 1 COP N/A
30719 28 1-13 Yes 0 ONLINE Online PE 1 COP N/A

What does the NONODE vproc state indicate?

ds186034
Sticky Note
all of my amps are herenonode of vproc= HSN

 Maintenance and Recovery Utilities Page 55-60

Summary
The facing page summarizes some important concepts regarding this module.

Maintenance and Recovery Utilities Page 55-61

Summary

• DBSControl – used to view/modify the DBS Control Record fields to establish system
and default values.

• Packdisk – fill (packs) cylinders up to the Free Space Percentage (FSP) with the
purpose of freeing up cylinders.

• Defragment – combines free sectors and moves them to the end of a cylinder.

• Scandisk – identifies and determines the extent of any problems with the AMP file
system.

• Checktable – checks for inconsistencies in internal structures such as table headers,
row identifiers and secondary indexes.

• Table Rebuild – repairs data corruption.

• Recovery Manager (RCVManager) – enables you to view information about online
transaction recovery and AMP recovery.

• Showlocks – displays host utility locks.

ds186034
Sticky Note
for test

 Maintenance and Recovery Utilities Page 55-62

Module 55: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Maintenance and Recovery Utilities Page 55-63

Module 55: Review Questions

1. What are two ways that you initiate a Teradata system utility (e.g., dbscontrol)?

_______________________ _______________________

2. Identify the purpose of the following DBS Control utility parameters.

CenturyBreak __

DateForm __

MaxLoadTasks __

SessionMode __

3. True or False. The Checktable utility has only two levels of internal table checking.

4. True or False. The Table Rebuild utility rebuilds tables differently depending on whether the table is
a fallback, non-fallback or permanent journal table.

5. The ___________________ utility does a consistency check within an AMP’s file system.

6. The ___________________ utility does a consistency check for a table across all AMPs.

7. The ___________________ utility can be used to set an offline AMP to online.

ds186034
Sticky Note
command linedb windowviewpoint remote consolelotta ways

ds186034
Sticky Note
y2k interpret 2 digit yrdateformint and ansi--displayed and exportedSNteradata node (BTET)andansi node

 Maintenance and Recovery Utilities Page 55-64

Notes

Permanent Journals Page 56-1

Module 56

Teradata Proprietary and Confidential

Permanent Journals

After completing this module, you will be able to:

 Describe journaling options and the type of recovery each
option provides.

 Determine when to use permanent journals instead of (or in
addition to) fallback to provide data integrity.

 Create, modify and delete permanent journals for databases
and tables.

 Use the DBC.Journals view to associate tables with specific
permanent journals.

 Permanent Journals Page 56-2

Notes

Permanent Journals Page 56-3

Table of Contents

Automatic Data Protection Mechanisms (Review) .. 56-4

Transient Journal .. 56-4
Fallback Protection... 56-4
Down AMP Recovery Journal ... 56-4
RAID 1 and RAID 5 .. 56-4
Cliques ... 56-4

Permanent Journals .. 56-6
Location of Change Images ... 56-8

AMP Definitions .. 56-8
After-Image Journals Save Storage Space ... 56-8

Assigning Tables to a Permanent Journal .. 56-10
Journaling Functions .. 56-10

Creating a Permanent Journal .. 56-12
Deleting a Permanent Journal .. 56-12

Syntax ... 56-12
Assigning a Permanent Journal .. 56-14

Rules and Limitations .. 56-14
DBC.Tables .. 56-14
Syntax ... 56-14

Before-Image Journals ... 56-16
Before Images .. 56-16

After-Image Journals .. 56-18
Site Disaster ... 56-18

Journal Subtables ... 56-20
Current Journal ... 56-20
Restored Journal ... 56-20

Permanent Journal Statements ... 56-22
Backing up tables on a Teradata System.. 56-22

Recovery with Permanent Journals .. 56-24
Journals View ... 56-26

Columns Defined ... 56-26
Summary .. 56-28
Module 56: Review Questions ... 56-30

 Permanent Journals Page 56-4

Automatic Data Protection Mechanisms (Review)
The Teradata system offers a variety of methods to protect data. Some methods are
automatically activated when particular events occur in the system. Other data protection
methods require that you set options. Each data protection technique offers different types
of advantages under different circumstances.

Transient Journal
The Transient journal maintains snapshots of rows in tables before you or other users make
changes to them. If the transaction fails or if you abort the request, the Transient Journal
copies its snapshot into the existing table which rolls back any changes the failed transaction
may have made to the table.

Fallback Protection
Fallback protection is an optional data protection feature that you activate with the CREATE
or MODIFY commands. Fallback provides data level protection by automatically creating a
copy of each row on a fallback AMP. If the primary AMP fails, the system can access the
fallback copy. The fallback feature allows automatic recovery using the Down AMP
Recovery Journal once the down AMP comes back on-line. Fallback protected tables
occupy twice the space in your system as non-fallback tables.

Down AMP Recovery Journal
The Down AMP Recovery Journal supports fallback protection. If a primary AMP fails, the
fallback feature allows automatic data recovery using the Down AMP Recovery Journal.
This feature consists of these two journals: DBC.ChangedRowJournal and
DBC.OrdSysChngTable.

RAID 1 and RAID 5
RAID 1 provides data redundancy through disk mirroring which means that data on one disk
is identical to the information on another disk. If one disk fails, the alternate disk takes over.
RAID 5 (or RAID S) protects data with a technique called “data parity protection”. Data is
striped across multiple disks while the parity of each piece of data is preserved to allow
array controllers to determine what the missing data is. The user experiences no downtime

Cliques
Group of SMP nodes sharing a common set of disk arrays. If a node fails, vprocs can
migrate to other nodes within the clique. Although Teradata will restart, allows Teradata to
continue running in the event of a node failure.

Permanent Journals Page 56-5

Automatic Data Protection Mechanisms
(Review)

• Transient Journal
– Takes before-image (snapshot) of row before change is made
– Copies before-image of row back to table if transaction fails
– Maintained within the WAL Log

• Fallback Protection
– Optional data protection feature for a table
– Creates copy of each row on fallback AMP

• Down AMP Recovery Journal
– Automatically used for fallback tables when an AMP is down
– Other AMPs in the cluster identify rows that have changed for a down AMP

• RAID 1 or RAID 5
– Data redundancy through disk mirroring (RAID 1) or data parity protection (RAID 5)
– Provides protection from physical disk failure

• Cliques
– Group of nodes where vproc migration can occur
– Provides protection from node failure(s)

ds186034
Sticky Note
great buti do have FBwhich is multiple fallsinstead of FB (which is expensive)so after sunwe keep track of it on a diff ampwe can keep track of the deltaafter images

 Permanent Journals Page 56-6

Permanent Journals
The Teradata system offers a manual method called permanent journals that you can use to
protect data. The purpose of a permanent journal is to maintain a sequential history of all
changes made to the rows of one or more tables. Permanent Journals help protect user data
when users commit, rollback, or abort transactions. A permanent journal can capture a
snapshot of rows before a change, after a change, or both. Each database or user space can
contain only one journal table.

Existing data tables can write to a journal table defined in its parent or to a journal table
located in another database or user. Journal tables require permanent space.

You can create permanent journal tables with the CREATE USER/CREATE DATABASE
statement or the MODIFY USER/MODIFY DATABASE statement.

Permanent journal tables exist within a database or user space. Only one permanent journal
can be assigned to that user or database. The journal may be located in the same database or
user as the tables that use the journal or in a different database.

Permanent Journals Page 56-7

Permanent Journals

Permanent journals:

• Optional features that can provide protection for software and hardware failures.
• Store committed, uncommitted and aborted changes.
• Users manage journal tables.

Permanent journal options:

• Single before change image: BEFORE
– Captures images before a change is made
– Protects against software failures
– Allows rollback to a checkpoint

• Single after-change image: AFTER
– Captures images after a change is made
– Protects against hardware failures
– Allows rollforward to a checkpoint

• Dual image: DUAL BEFORE or DUAL AFTER
– Maintains two images copies
– Protects against loss of journals

• Keyword JOURNAL with no other keywords capture single before and after images.

ds186034
Sticky Note
before i do this big update commandiam going to do a check pt commandbig updaterollback at d pt of timeso i do is before journalwhich i can apply itto restore the status before updateif no FB then i wld use dual!!!!dual before or dual afterif FB, u get auto ones

 Permanent Journals Page 56-8

Location of Change Images
Tables that include fallback and journaling options automatically receive dual image journal
protection. Tables with no-fallback protection can request either single or dual permanent
journals.

The chart on the facing page illustrates the location of change-image journals. The
placement of permanent journals depends on: requested image type (either before or after)
and the protection type (either fallback or non-fallback).

AMP Definitions
The following definitions are used to describe how AMPs are used to store before and/or
after images.

Primary AMP Holds before- and/or after-images for any table with fallback
protection. Holds single before images and dual after-images
for non-fallback protected tables.

Fallback AMP Contains before- and/or after-images for tables with fallback

protection. The DBC distributes duplicate data rows to
fallback processors by assigning the row's hash code to a
different AMP in the cluster.

Backup AMP With most systems, clusters consist of 2 AMPs. Therefore,

the Fallback and Backup AMP is the same AMP.

For older systems with clusters > 2 AMPS, the Backup AMP
holds three types of images for non-fallback tables: single or
dual after images, and dual before images. The hashing
algorithm is not used for the row distribution. All images for
one AMP go to a single backup, which is always in the same
cluster. For example, if AMPs 1, 2, 3, and 4 are in the same
cluster, 1 backs up 2, 2 backs up 3, 3 backs up 4, and 4 backs
up 1. There is no way to predict the backup AMP.

After-Image Journals Save Storage Space
If fallback protection is too costly in terms of storage space, after-image journals offer
alternative data protection with minimal space usage. After-image journals write changes to
the backup AMP. Since the system only duplicates changed rows rather than all of the rows,
storage space is minimized.

Since changes are written to the backup AMP, a primary AMP failure does not cause a loss
of data. You can recover all table data by restoring the appropriate archive tape and rolling
forward the rows stored in the after-image journal.

Permanent Journals Page 56-9

Location of Change Images

The location of journal rows depends on the image type requested (before or after) and the
protection type of the journaled tables.

Fallback Tables

Journal Option Change Image Location
After images Primary AMP and fallback AMP
Before images Primary AMP and fallback AMP

• Dual images are always maintained for fallback tables.

• To determine the fallback AMP for a journal row, the fallback hash map is used.

Non-fallback Tables
Journal Option Change Image Location
After images Backup AMP
Before images Primary AMP
Dual after images Backup AMP and primary AMP
Dual before images Primary AMP and backup AMP

• For no fallback tables, you may request either single or dual journal images.

• Since most systems (all new systems) have 2-AMP clusters, the fallback and backup
AMP is the same AMP in a cluster.

– With clusters > 2 AMPs, a backup AMP is another AMP in the same cluster as the primary AMP
assigned to journal rows.

ds186034
Sticky Note
for NFBcapture afterorcapture beforekept in a journal table, a UDF table

 Permanent Journals Page 56-10

Assigning Tables to a Permanent Journal
When you create a new journal table, there are options you can use to control the type of
information the table captures.

A permanent journal provides four basic options:

Option Description
Single Image Captures/stores one copy of the data.

Dual Image Captures/stores two separate copies of data: one copy on

the primary AMP and one on the fallback AMP or
backup AMP.

Before Image Captures/stores row values before a change occurs.

After Image Captures/stores row values after a change occurs.

Unlike transient and recovery journals, permanent journal options capture and store all
changes whether, committed, uncommitted, or aborted. In addition, journal maintenance
and activity are under user control.

Journaling Functions
Journal tables use rollback operations for software failure recoveries. To restore data tables
to the state they were in before a software failure; configure a permanent journal to capture
before-change information.

Permanent journaling is not a substitute for RAID technology or fallback protection. Both
options provide duplicate images of all rows in a table. The journal tables only maintain
images for changed rows.

Journal tables can protect against:

 Loss of data caused by a disk failure in a table that is not fallback or RAID
protected.

 Loss of data if two or more AMP vprocs fail in the same cluster. (This would mean
the loss of two disks in a rank per failed AMP vproc.)

 Incorrect operation of a batch or application program.
 Disaster recovery of an entire system.
 Loss of changes made after a data table is archived.
 Loss of one copy of the journal table (Dual journal).

Permanent Journals Page 56-11

Assigning Tables to a Permanent Journal

DATABASE

Single
Table

Permanent
Journal

#1

DATABASE

Multiple
Tables

Permanent
Journal

#2

DATABASE

Multiple
Tables

DATABASE

Permanent
Journal

DATABASE

Multiple
Tables

DATABASE

Table_A
Table_B
Table_C
Table_D

Permanent
Journal

#3

#4

A database/user can contain only 1 permanent
journal table.

The journal table may be located:

• In the same database [#1, #2 and #4]
or

• In a different database than the data tables
[#3 & #4]

ds186034
Sticky Note
2 and 3 are common

 Permanent Journals Page 56-12

Creating a Permanent Journal
You create permanent journals when you create a user or database. To create permanent
journals within an existing user or database, use the MODIFY statement. The facing page
shows examples of using these statements.

The following restrictions apply to the use of permanent journals:

 If a journal table in another user/database is specified as the default, that other
journal table must already exist.

 You can change a DEFAULT JOURNAL for a user or database only if no tables or
other databases journal into it.

 Permanent journals are not supported across an AMP configuration change.
Rollforward or Rollback operations terminate if there is a change in the hash maps
for primary, fallback, or backup rows.

 Permanent journals are not supported across certain Data Definition (DDL)
statements. Statements that may prevent a rollforward or rollback operation from
passing that point in the journal include:

 ALTER TABLE
 RENAME TABLE
 MODIFY USER or MODIFY DATABASE
 COMMENT

Deleting a Permanent Journal
Use the MODIFY USER or MODIFY DATABASE statement to delete a permanent journal.
Before you delete the journal, you must use the ALTER TABLE statement to stop the
journaling being done to that journal.

Syntax
 ALTER [TABLE NAME]
 ,WITH [JOURNAL TABLE=JOURNAL TABLE NAME];
 ,NO BEFORE JOURNAL
 ,NO AFTER JOURNAL;

 MODIFY DATABASE [DATABASE NAME AS]
 DROP DEFAULT JOURNAL TABLE=[JOURNAL TABLE NAME];

Permanent Journals Page 56-13

Creating a Permanent Journal

You create permanent journals at the user/database level when you define a
new user or database:

Or you can create them in an existing user or database:

MODIFY DATABASE HR_Tab AS
DEFAULT JOURNAL TABLE = HR_Jrnl;

CREATE DATABASE Payroll_Tab AS PERM = 100E6
DEFAULT JOURNAL TABLE = Payroll_Jrnl;

They are identified in the DD/D as TableKind 'J':

SELECT DatabaseName, TableName, TableKind
FROM DBC.TablesV
WHERE TableKind = 'J' ;

DatabaseName TableName TableKind

Payroll_Tab Payroll_Jrnl J
HR_Tab HR_Jrnl J

Response:

ds186034
Sticky Note
specifying does not do anything"J"tablesV = objectsV(it has all kinda things in it)

 Permanent Journals Page 56-14

Assigning a Permanent Journal
Permanent journals are optional. You can specify journal options at the database/user level
or at the individual table level. The journal options you can define are:

JOURNAL
BEFORE JOURNAL
AFTER JOURNAL
DUAL JOURNAL
DUAL BEFORE JOURNAL

DUAL AFTER JOURNAL
NO JOURNAL
NO AFTER JOURNAL
NO BEFORE JOURNAL

You can define a DEFAULT JOURNAL TABLE associated with a user or database. You
can associate an individual table within the database with the DEFAULT JOURNAL (by
default) or another journal table by specifying that on the CREATE or ALTER TABLE
statement.

Users activate permanent journaling by including the JOURNAL option in the CREATE or
MODIFY statements for users or databases. The following page illustrates CREATE USER
and CREATE TABLE statements that create and assign permanent journals.

If you create a database/user and specify a default journal table, but do not specify any
journaling options, the default at the database level is NO BEFORE and NO AFTER
journaling for tables created in the database. When creating a table in this database/user and
if you want journaling, you must specify the journaling options you want as part of the
CREATE TABLE.

Rules and Limitations
You must allocate sufficient permanent space to a database or user that will contain
permanent journals. If a database or user that contains a permanent journal runs out of
space, all table updates that write to that journal abort.

DBC.Tables
The DBC.Tables view can display the names of existing journal tables. The TableKind field
displays the letter J for any table set up as a permanent journal. The query statement on the
next page displays a list of journal table names.

Syntax
[NO] [BEFORE] [[,][NO] [AFTER JOURNAL]]
[DUAL] [AFTER] [[,][DUAL] [BEFORE JOURNAL]]
DEFAULT JOURNAL TABLE = [dbname.] tname

Permanent Journals Page 56-15

Assigning a Permanent Journal

{ CREATE USER | CREATE DATABASE } . . .
[[[NO | DUAL] [AFTER | BEFORE] JOURNAL] . . .]
[DEFAULT JOURNAL TABLE = journal_name] ;

Default journal values at the database levels are:

Journal Option Default
NONE SPECIFIED NO JOURNAL MAINTAINED
NEITHER AFTER NOR BEFORE BOTH TYPES IMPLIED
NEITHER DUAL NOR NO FALLBACK – DUAL IMAGES; NO FALLBACK – SINGLE IMAGES

At the table level, you can indicate journal options with the CREATE statement:

CREATE TABLE . . .
[[[NO | DUAL] [AFTER | BEFORE] JOURNAL] ...]
[WITH JOURNAL TABLE = journal_name] ;

Default journal values at the table levels are :

Journal Option Default
NONE SPECIFIED Defaults to USER/DATABASE
AFTER IMAGE ONLY Defaults FOR BEFORE IMAGE
BEFORE IMAGE ONLY Defaults FOR AFTER IMAGE
NEITHER DUAL NOR NO Defaults to PROTECTION TYPE

Note: If a database or
user that contains a
permanent journal runs
out of space, all table
updates that write to
that journal abort.

ds186034
Sticky Note
now how do u assign itcan be default for all table creation

 Permanent Journals Page 56-16

Before-Image Journals
You can define permanent journals to record:

After Change Images The data in a row after a change has occurred
is recorded in the permanent journal.

Before Change Images The data in a row prior to its change is

recorded in the permanent journal.

Both
(Before Change Images
and After Change
Images)

The data in the permanent journal is
maintained in the internal DBC format and is
not accessible to the user through any SQL
statements. Users delete permanent journals.

Before Images
Before Images are used for ROLLBACK recovery as shown on the following page. Once a
before-image journal is created, a snapshot of an existing row is stored in the journal table
before any data is modified. In the event of a software failure, the before-image journal can
roll back any unwanted changes. Permanent journals roll back all transactions from a table
to a checkpoint. They may not be used to roll back specific transactions.

Permanent Journals Page 56-17

Before-Image Journals

Before-images are used to roll back users’ changes to one or more tables by
returning the data to a previous consistent state.

BEFORE data is modified, a copy is placed in the...

Before-Image Journal

APPLICATIONAPPLICATION

Data Table(s)

1a

2a

3a

1st update

2nd update

3rd update

1b 2b 3b

ds186034
Sticky Note
before same amp(for sw)after on a diff amp(for hw dats why they are on a diff amp)its just the changes i have made - after image

ds186034
Sticky Note
changes in greenbefore images are in yellow box

 Permanent Journals Page 56-18

After-Image Journals
After you create an after-image journal, a snapshot of a row value is stored in the permanent
journal after a change is committed. If a hardware failure occurs, the after-image journal
can roll forward any changes made to data tables since the last full system backup.

Site Disaster
To protect against the loss of data in the event of a site disaster, many applications require
that data archives be kept off-site at all times. Ideally, users dump the database to magnetic
tape daily and store the tape off-site.

Daily archives may not be practical for very large databases. To solve this problem, you can
activate after-change journals and take a daily archive of the journal itself that provides
archived copies of all changes made since the last full database archive. The full backup
tapes along with the journal backup tapes could restore the entire database.

The facing page shows after images in the permanent journal are used for
ROLLFORWARD recovery.

Permanent Journals Page 56-19

After-Image Journals

After-images can be used to apply changes users have made since the last
full backup.

AFTER data is modified, a copy is placed in the...

Data Table(s)

1a

2a

3a

APPLICATIONAPPLICATION

1st update

2nd update

3rd update

Archive Tape
contains last full
backup – before
applications
update the rows.

To recover data that must be restored, use the after-images in the permanent
journal to rollforward users’ changes since the restored backup was taken.

After-Image Journal 1a 2a 3a

ds186034
Sticky Note
often use for hardware failurecheap alternative for FB tablesrestoreandroll fwdput these 2 changes in the table

 Permanent Journals Page 56-20

Journal Subtables
Each journal table consists of three areas:

 Active area (part of current journal subtable)
 Saved area (part of current journal subtable)
 Restored area (part of restored journal subtable)

The active and saved areas together are referred to as the Current Journal. The restored
subtable is called the Restored Journal. The contents and purpose of each subtable are
discussed below:

Current Journal
Each time you update a data table that has an associated journal table; a change image is
appended to the active subtable. You cannot archive journal tables while the change images
are in the active subtable. Instead, you must move the images to the saved subtable.

To move images from active to saved areas, you must submit the Checkpoint With Save
statement. A checkpoint places a marker at the chronological end of the active subtable. The
database assigns an event number any time a user submits the checkpoint statement. The
With Save option of the checkpoint statement inserts a checkpoint in the active subtable and
then appends the contents of the active subtable to the end of the saved subtable.

After the database appends the contents, it initiates a new active subtable automatically. You
can now submit an ARCHIVE JOURNAL TABLE statement. Archiving the journal saves it
to tape.

Restored Journal
To restore a journal, move the journal table contents from the portable storage media back to
the restored subtable. The information stays there until you invoke roll operations.

Permanent journals are maintained in an internal Teradata database format. They are not
accessible by SQL statements and cannot be used for audit trail purposes.

Permanent Journals Page 56-21

Journal Subtables

A permanent journal table consists of three areas:

• Active area – part of Current journal

• Saved area – part of Current journal

• Restored area – part of Restored journal

Restored journals replace
the contents of the
restored subtable.

• A CHECKPOINT WITH SAVE creates
a logical division in the current
journal subtable.

• Subsequent journal images append
to the active area.

• You can ARCHIVE and delete rows
only from the Saved Journal area.

RESTORED
JOURNAL

CURRENT JOURNAL

Restored Saved Active

ds186034
Sticky Note
after images go there(ignore green and blue box)for a week if u had the spaceat some pt u might wanna archive..maybe daily....

ds186034
Sticky Note
mondays changetue changewed change...on the diskrestoreit goes into restored journalits asub tabletape for mon-> roll fwdtape for tue -> roll fwdfor Fri changei roll fwd the current journal(this is a fri fail scenario)

 Permanent Journals Page 56-22

Permanent Journal Statements
Use the ARC (Archive and Recovery) utility to perform backup and recovery functions
associated with permanent journals. The archive and recovery functions include:

ROLLFORWARD Replaces a data row by its after-image from the
beginning of the journal, to either a checkpoint or
to the end of the journal.

ROLLBACK

Replaces a data row by its before change image
from the end of the journal, to a checkpoint or to
the beginning of the journal.

DELETE

Deletes the contents of either the saved or restored
journal areas.

Backing up tables on a Teradata System
 Archive the data tables onto portable storage media.
 Submit a checkpoint with a SAVE statement to move change images from the

active journal to the saved journal.
 Archive the journal tables onto portable storage media.
 Submit the DELETE JOURNAL statement to erase the saved journal rows.

Permanent Journals Page 56-23

Permanent Journal Statements

ARCHIVE
DATA TABLES

ARC Facility

Data Tables

CHECKPOINT
WITH SAVE

ARC Facility

ARCHIVE
JOURNAL TABLE

ARC Facility

ACTIVE Journal

SAVED Journal ACTIVE Journal

Current JournalINSERT
UPDATE
DELETE

1. First, ARCHIVE data tables.

After users and/or applications have modified tables, save the journal images.

2. The CHECKPOINT WITH SAVE command creates a saved journal.

3. You can ARCHIVE and delete saved journal rows.

#1 #2 #3

ds186034
Sticky Note
3 tablesblocks of the tablessave on tape outside TD(blue disk)sodel blue journal tablerestore - roll fwd

 Permanent Journals Page 56-24

Recovery with Permanent Journals
An example of how to use some of these ARC statements is shown when a batch program is
run:

1. Submit an SQL Checkpoint statement as the first statement of the batch job, with or
without a Checkpoint name.

2. If required, ROLLBACK to the Checkpoint using either the checkpoint name or the

event number supplied by the DBC when you executed the Checkpoint command.
Later changes are also backed out.

3. The data table is now in its original condition.

A permanent journal is time-oriented, not transaction-oriented.

Permanent Journals Page 56-25

Recovery with Permanent Journals

RESTORE
DATA TABLES

ARC Facility

Data Tables

RESTORE
JOURNAL TABLE

ARC Facility

RESTORED Journal SAVED Journal ACTIVE Journal

Tables or databases are restored first. Next, archived journals are restored,
one at a time, and then the restored journal is rolled forward.

#1

#3

ROLLFORWARD,
USE RESTORED JOURNAL

ROLLFORWARD,
USE CURRENT JOURNAL

ARC Facility

#2

Finally, the
current journal
is used to
bring the data
up to date.

Current Journal

 Permanent Journals Page 56-26

Journals View
The Teradata system provides a system view called DBC.Journals[V][X], that displays links
between journal tables and the data tables that journal into them. The DBC.JournalsX View
is a restricted view. The restricted version of the view displays only those objects that you
own or to which you hold access rights.

The example on the next page uses the SELECT statement to list all of the tables in the
system that uses a permanent journal. In addition, it requests to see a list of the journal
names.

The response displays the table names first followed by the journal names.

Columns Defined
The Journals view has four different columns. Each one is described below:

Tables_DB Displays the name of a database where a data table resides
that has the journal option activated.

TableName Displays the name of a data table that records changed

images in a journal table.

Journals_DB Displays the name of a database where a journal table

resides.

JournalName Displays the name of a journal table associated with a listed

data table.

Permanent Journals Page 56-27

Journals View

Associates journals with tables when the user owns or holds rights on the
objects referenced.

DBC.Journals[V][X]

Tables_DB TableName Journals_DB JournalName

Example: List all tables
in the system that use a
journal and list the
names of the journals.

SELECT TRIM (Tables_DB) || '.' || TableName
AS "Table Name" (CHAR(30))

,TRIM (Journals_DB) || '.' || JournalName
AS "Assigned to Journal" (CHAR(30))

FROM DBC.JournalsV
ORDER BY 1 ;

Table Name Assigned to Journal

HR_Tab.Employee HR_Tab.HR_Jrnl
HR_Tab.Department HR_Tab.HR_Jrnl
HR_Tab.Job HR_Tab.HR.Jrnl
Payroll_Tab.Paycheck Payroll_Tab.Payroll_Jrnl

Example Results:

 Permanent Journals Page 56-28

Summary
The facing page summarizes some important concepts regarding this module.

Permanent Journals Page 56-29

Summary

• Permanent journals maintain a sequential history of all changes made to the
rows of one or more tables.

• You create a permanent journal when you CREATE/MODIFY a user/database.

• Permanent journal image options:

– Single before-change images

• Capture images before a change is made and allows rollback to a checkpoint.
Protects against software failures.

– Single after-change images

• Capture images after a change is made and allows rollforward to a checkpoint.
Protects against hardware failures.

– Dual images

• Maintain two copies of before or after images. Protects against loss of
journals.

• Use ARC facility to perform backup and recovery operations associated with
permanent journals.

• The Journals[X] view provides information about links between journal tables
and the tables that journal to them.

 Permanent Journals Page 56-30

Module 56: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Permanent Journals Page 56-31

Module 56: Review Questions

1. True or False. A permanent journal stores committed, uncommitted, and aborted
changes to a row in a table.

2. True or False. A database or user can have many permanent journals.

3. True or False. Separate Permanent Journals are required for before and after images.

4. True or False. The Saved and Active areas are both part of the Current Journal.

5. True or False. The CREATE JOURNAL statement may be used to create a permanent
journal.

6. True or False. Tables that use a Permanent Journal must be in the same database as
the Permanent Journal.

ds186034
Sticky Note
we write out to journal first even if its abortedcause we write to a PJ first

ds186034
Sticky Note
wen u create or modify a db

ds186034
Sticky Note
can be in a diff db

 Permanent Journals Page 56-32

Notes

A Tale of Three Tables Page 57-1

Module 57

Teradata Proprietary and Confidential

A Tale of Three Tables

After completing this module, you will be able to:

 Analyze the efficiency of backup procedures after
both drives in a mirrored pair have failed.

 A Tale of Three Tables Page 57-2

Notes

A Tale of Three Tables Page 57-3

Table of Contents

Permanent Journal Scenario ... 57-4
Table X ... 57-6
Table Y ... 57-8
Table Z ... 57-10
Permanent Journals .. 57-12
Archive Policy .. 57-14

Daily Archive Procedures .. 57-14
Weekly Archive Procedure ... Error! Bookmark not defined.

Archive Scenario .. 57-16
After Restart Processing Completes... 57-18
After REBUILD and Restart of Teradata ... 57-20
Table X Recovery .. 57-22
Table Y Recovery .. 57-24

Recovery Action .. 57-24
Table Z Recovery ... 57-26

Recovery Action .. 57-26
After Recovery ... 57-28
Summary .. 57-30

 A Tale of Three Tables Page 57-4

Permanent Journal Scenario
In the following scenario, assume that a user has three tables in a four AMP system. Each
table has its own data protection features stored on all four AMPs. The illustrations on the
following pages illustrate data protection features in effect for each table.

In this example, AMPs 1 and 2 are clustered together and AMPs 3 and 4 are clustered
together.

A Tale of Three Tables Page 57-5

Permanent Journal Scenario

A Tale of Three Tables

A user has three data tables:

Table X Fallback
Before and
After Image Journals

Table Y No Fallback
No Before and
Dual After Image Journals

Table Z No Fallback
Single Before and
Single After Image Journals

ds186034
Sticky Note
X:X is v impFBand on top of itB and AY:dual after...Z:

 A Tale of Three Tables Page 57-6

Table X
Table X is defined as having fallback, dual before images, and dual after images.

A Tale of Three Tables Page 57-7

Table X

 Fallback protected data

 Fallback protected before images

 Fallback protected after images

AMP 1 AMP 2 AMP 3 AMP 4

Table X Table X Table X Table X
Primary Primary Primary Primary

1 2 3 4

Table X Table X Table X Table X
Fallback Fallback Fallback Fallback

2 1 4 3

After After After After
1 2 3 4

After After After After
2 1 4 3

Before Before Before Before
1 2 3 4

Before Before Before Before
2 1 4 3

Data

PJ

Assume AMPs 1 & 2 are
in a cluster and AMPs 3 &
4 are in a cluster.

ds186034
Sticky Note
1and2 are clustered3and 4 are lustered

 A Tale of Three Tables Page 57-8

Table Y
Table Y has no fallback protection, but has dual after image journaling defined.

A Tale of Three Tables Page 57-9

Table Y

 No fallback

 Dual after image

AMP 1 AMP 2 AMP 3 AMP 4

Table Y Table Y Table Y Table Y
Primary Primary Primary Primary

1 2 3 4

After After After After
1 2 3 4

After After After After
2 1 4 3

Data

PJ

Assume AMPs 1 & 2 are
in a cluster and AMPs 3 &
4 are in a cluster.

ds186034
Sticky Note
if not dualthen not on 2 PJjust 1 PJ

 A Tale of Three Tables Page 57-10

Table Z
Table Z has no fallback protection. This table has single before and after-images.

A Tale of Three Tables Page 57-11

Table Z

 No fallback

 Single before images

 Single after images

AMP 1 AMP 2 AMP 3 AMP 4

Table Z Table Z Table Z Table Z
Primary Primary Primary Primary

1 2 3 4

Before Before Before Before
1 2 3 4

After After After After
2 1 4 3

Data

PJ

Assume AMPs 1 & 2 are
in a cluster and AMPs 3 &
4 are in a cluster.

ds186034
Sticky Note
B - same amp - SW prblmA - diff amp - HW prblm

 A Tale of Three Tables Page 57-12

Permanent Journals
The facing page shows the three tables and all their data protection options.

A Tale of Three Tables Page 57-13

Permanent Journals
(Putting all tables three together)

AMP 1 AMP 2 AMP 3 AMP 4
Table X Table X Table X Table X
Primary Primary Primary Primary

1 2 3 4
Table X Table X Table X Table X
Fallback Fallback Fallback Fallback

2 1 4 3

After After After After
1 2 3 4

After After After After
2 1 4 3

Before Before Before Before
1 2 3 4

Before Before Before Before
2 1 4 3

Table Y Table Y Table Y Table Y
Primary Primary Primary Primary

1 2 3 4
After After After After

1 2 3 4
After After After After

2 1 4 3

Table Z Table Z Table Z Table Z
Primary Primary Primary Primary

1 2 3 4
Before Before Before Before

1 2 3 4
After After After After

2 1 4 3

 A Tale of Three Tables Page 57-14

Archive Policy
The company established an archive policy to cover any data loss in the event of a site
disaster. The archive policy has two components:

 Daily archive procedures
 Weekly archive procedures

Daily Archive Procedures
Each day the administrator submits a CHECKPOINT WITH SAVE command for each
journal table which appends any changes stored in the active journal subtable to the saved
journal subtable. In addition, it initiates a new active journal subtable. Second, the
administrator archives each current journal, and then deletes the saved journal subtable from
the saved journal.

Only one table is archived each day. By the end of the week, each table has been archived
once.

A Tale of Three Tables Page 57-15

Archive Policy

DAILY

CHECKPOINT ALL JOURNALS with SAVE

ARCHIVE JOURNAL TABLES

DELETE SAVED JOURNALS

ARCHIVE One Complete Table per Day

WEEKLY

Perform ALL-AMPs ARCHIVE of all DATA TABLES

 A Tale of Three Tables Page 57-16

Archive Scenario
The company activated its archive policy and implemented daily and weekly backup
procedures as scheduled. Each day the administrator archives journals X, Y, and Z.

On Monday, the administrator archived data table X, and on Tuesday archived table Y. On
Wednesday, the administrator archived data table Z. On Thursday, two drives failed in a
drive group.

A Tale of Three Tables Page 57-17

Archive Scenario

Monday:

Archive journals X, Y and Z

Archive table X

Tuesday:

Archive journals X, Y and Z

Archive table Y

Wednesday:

Archive journals X, Y and Z

Archive table Z

Thursday:
AMP 3: Two drives fail in a drive group

 A Tale of Three Tables Page 57-18

After Restart Processing Completes
The administrator utilized restart procedures to replace the down AMP. The diagram on the
facing page outlines each restart step. Each restart procedure is explained below:

1. Replace the 2 drives.

2. Initialize the rank.

3. Format the array (RAID 1 or 5).

4. Initialize and rebuild the AMP’s Vdisk using Vprocmanager functions (e.g.,

BOOT).

5. Use the table REBUILD utility to rebuild AMP 3 - the VprocState will be

UTILITY during this phase.

6. REBUILD will set the VprocState to ONLINE when finished.

7. Restart Teradata.

A Tale of Three Tables Page 57-19

After Restart Processing Completes

AMP 1 AMP 2 AMP 3 AMP 4
Table X Table X Table X
Primary Primary Primary

1 2 4
Table X Table X Table X
Fallback Fallback Fallback

2 1 3

After After After
1 2 4

After After After
2 1 3

Before Before Before
1 2 4

Before Before Before
2 1 3

Table Y Table Y Table Y
Primary Primary Primary

1 2 4
After After After

1 2 4
After After After

2 1 3

Table Z Table Z Table Z
Primary Primary Primary

1 2 4
Before Before Before

1 2 4
After After After

2 1 3

1. Replace the 2 drives.

2. Initialize the rank.

3. Format the array
(RAID 1 or 5).

4. Initialize and rebuild
the AMP’s Vdisk
using Vprocmanager
functions (e.g.,
BOOT).

5. Use the table
REBUILD utility to
rebuild AMP 3 - the
VprocState will be
UTILITY during this
phase.

6. REBUILD will set the
VprocState to
ONLINE when
finished.

7. Restart Teradata.

ds186034
Sticky Note
TD just restarted (of course)(lost 2 drives..)X - FB6. REBUILD - can rebuild this ampafter restart of TDtable X everythin is rebuildPrimary rows from fallback amp

 A Tale of Three Tables Page 57-20

After REBUILD and Restart of Teradata
The diagram on the facing page shows the row information that the administrator recovered
after she executed the REBUILD and RESTART commands.

Table X is fully recovered. All primary and fallback rows are restored. In addition, all
before and after-journal images are recovered as well. The administrator needs to perform
additional recovery measures on table Y and table Z.

A Tale of Three Tables Page 57-21

After REBUILD and Restart of Teradata

AMP 1 AMP 2 AMP 3 AMP 4
Table X Table X Table X Table X
Primary Primary Primary Primary

1 2 3 4
Table X Table X Table X Table X
Fallback Fallback Fallback Fallback

2 1 4 3

After After After After
1 2 3 4

After After After After
2 1 4 3

Before Before Before Before
1 2 3 4

Before Before Before Before
2 1 4 3

Table Y Table Y Table Y Table Y
Primary Primary (Header) Primary

1 2 4
After After After After

1 2 3 4
After After After After

2 1 4 3

Table Z Table Z Table Z Table Z
Primary Primary (Header) Primary

1 2 4
Before Before Before

1 2 4
After After After

2 1 3

ds186034
Sticky Note
table Yonly built thing is header of the table (no data)data is in archivefor Z we lost the journal completelytable x - no work - cause FB table Ylast good archive was tuerestore from tuewe gonna put data upto tuebut failure was thuso we dont release the lockstill 2 days lefti restore the journal wed archive- roll fwdbut data only till wedso thu - roll fwd from the other amp that was rebuilttable Z1 z upto wed for the data2 curr journal has thu...roll fwd..so now table upto thubutwe lost amp4 after journalarchive the whole table at that pt

 A Tale of Three Tables Page 57-22

Table X Recovery
Table X has primary and fallback rows restored. All journal images are also recovered.

A Tale of Three Tables Page 57-23

Table X Recovery

 Fallback protected data

 Fallback protected before images

 Fallback protected after images

AMP 1 AMP 2 AMP 3 AMP 4

Table X Table X Table X Table X
Primary Primary Primary Primary

1 2 3 4

Table X Table X Table X Table X
Fallback Fallback Fallback Fallback

2 1 4 3

After After After After
1 2 3 4

After After After After
2 1 4 3

Before Before Before Before
1 2 3 4

Before Before Before Before
2 1 4 3

Data

PJ

Fully Recovered

 A Tale of Three Tables Page 57-24

Table Y Recovery
The diagram on the facing page illustrates table Y after REBUILD and RESTART
procedures.

The administrator used tables stored on AMP 2 and AMP 4 to restore the two permanent
journal tables stored on AMP. The primary table is still missing. The administrator needs to
perform some interactive recovery procedures to fully recover missing data for table Y.

The administrator will be unsuccessful if he/she attempts to access the row information from
table Y. The following message may appear in response to an attempted SQL statement:

 2642 AMP Down: The request against non-fallback Table_Y cannot be done.

Recovery Action
The administrator must perform the following steps to fully recover table Y:

1. Perform an all-AMP RESTORE using Tuesday's ARCHIVE of table Y to restore
all data rows stored in the archive file from table Y.

2. Do NOT release the utility locks.

3. Restore Wednesday’s ARCHIVE of journal Y.

4. Perform a all-AMP ROLLFORWARD using the RESTORED journal from table Y.

Doing so replaces the existing rows in table Y with any after-change images made
since the last backup on Tuesday.

5. Use the DELETE JOURNAL command to delete restored journal Y. This action

deletes all stored images from the restored journal.

6. Perform an all-AMP ROLLFORWARD using the CURRENT journal from table Y.

This step replaces existing table rows with any after-change images stored in the
active and/or saved subtables of the permanent journal.

7. RELEASE all utility locks.

Table Y is now fully recovered. All its contents are now available to users.

A Tale of Three Tables Page 57-25

Table Y Recovery

Before
Recovery:

AMP 1 AMP 2 AMP 3 AMP 4

Table Y Table Y Table Y Table Y
Primary Primary (Header) Primary

1 2 4

After After After After
1 2 3 4

After After After After
2 1 4 3

Data

PJ

1. All AMP RESTORE of Tuesday’s ARCHIVE of Table Y.
2. Do NOT release utility locks.
3. RESTORE JOURNAL of Wednesday’s ARCHIVE of journal Y.
4. All AMP ROLLFORWARD USE RESTORED journal of Table Y.
5. DELETE RESTORED JOURNAL Y.
6. All AMP ROLLFORWARD USE CURRENT journal of Table Y.
7. RELEASE utility LOCKs.

After
Recovery:

AMP 1 AMP 2 AMP 3 AMP 4

Table Y Table Y Table Y Table Y
Primary Primary Primary Primary

1 2 3 4

After After After After
1 2 3 4

After After After After
2 1 4 3

Data

PJ

 A Tale of Three Tables Page 57-26

Table Z Recovery
The first diagram on the facing pace illustrates table Z after REBUILD and RESTART
procedures.

Neither permanent journal tables stored on AMP 3 were restored. In addition, the primary
table information is still missing. The administrator needs to perform some interactive
recovery procedures to fully recover the missing data for table Z.

Recovery Action
The administrator must perform the following steps to fully recover table Z:

1. Perform an all-AMP RESTORE using Wednesday's ARCHIVE of table Z to
restore all data rows stored in the archive file from table Z. The administrator does
not restore the journal tables for table Z since a complete backup of the table was
performed on the same day as the journal archive. All changes through Wednesday
would be in the archive of the entire table.

2. The administrator does NOT release the utility locks.

3. Perform an all-AMP ROLLFORWARD using the CURRENT journal from table Z.

This action replaces existing table rows with any after-change images stored in the
active and/or saved subtables of the permanent journal. Any changes in the current
journal would have occurred on Thursday before the disk failure.

4. Perform an all-AMPs archive of table Z to protect against a second disk failure in

the same cluster. The administrator is unable to restore the journal for AMP 3
because he/she did not elect dual images. Another disk failure in this cluster leaves
data unrecoverable. To correct this, the administrator deletes the saved journal and
starts a new journal.

5. Perform a CHECKPOINT WITH SAVE and DELETE SAVED JOURNAL. The

CHECKPOINT step moves any stored images from the active subtable to the saved
subtable of the current journal and initiates the active subtable. The DELETE step
erases the contents of the saved subtable since they are no longer needed.

6. RELEASE all utility locks.

Table Z is now fully recovered. All its contents are now available to users. Notice that the
table is recovered but the journals are not.

A Tale of Three Tables Page 57-27

Table Z Recovery

Before
Recovery:

AMP 1 AMP 2 AMP 3 AMP 4

Table Z Table Z Table Z Table Z
Primary Primary (Header) Primary

1 2 4

Before Before Before
1 2 4

After After After
2 1 3

Data

PJ

1. All AMP RESTORE of Wednesday's ARCHIVE of Table Z.
2. Do NOT release utility locks.
3. All AMP ROLLFORWARD USE CURRENT journal of Table Z.
4. Perform all-AMPs ARCHIVE of Table Z.
5. Run CHECKPOINT WITH SAVE and DELETE SAVED JOURNAL.
6. RELEASE utility LOCKs.

After
Recovery:

AMP 1 AMP 2 AMP 3 AMP 4

Table Z Table Z Table Z Table Z
Primary Primary Primary Primary

1 2 3 4

Data

PJ

 A Tale of Three Tables Page 57-28

After Recovery
The diagram on the facing page shows the three tables after recovery. The following
summary outlines the effects of permanent journals on recovery from a single disk failure.

Fallback Tables, Dual Image Tables (Table X)

 Processing continues
 Journals play no part in recovery

No Fallback Tables, Dual Image Journals (Table Y)

 Limited processing continues
 Data and journal tables are fully recovered

No Fallback Tables, Single Image Journals (Table Z)

 Limited processing continues
 Data is fully recovered
 Journals are lost

No Fallback Tables, No Journals

 Limited processing continues
 The administrator can only recover data to the point of the last archive

A Tale of Three Tables Page 57-29

After Recovery

AMP 1 AMP 2 AMP 3 AMP 4
Table X Table X Table X Table X
Primary Primary Primary Primary

1 2 3 4
Table X Table X Table X Table X
Fallback Fallback Fallback Fallback

2 1 4 3

After After After After
1 2 3 4

After After After After
2 1 4 3

Before Before Before Before
1 2 3 4

Before Before Before Before
2 1 4 3

Table Y Table Y Table Y Table Y
Primary Primary Primary Primary

1 2 3 4
After After After After

1 2 3 4
After After After After

2 1 4 3

Table Z Table Z Table Z Table Z
Primary Primary Primary Primary

1 2 3 4

ds186034
Sticky Note
Z i have to archive the whole tablethe only table....

 A Tale of Three Tables Page 57-30

Summary
The facing page contains some useful concepts on how permanent journals operate during
recovery.

A Tale of Three Tables Page 57-31

Summary

Fallback Tables Data is fully recoverable.

Dual Image Journals Journals play no part in recovery.

No Fallback Tables Data is partially available.

Dual Image Journals Data and journals are fully recoverable.

No Fallback Tables Data is partially available.

Single Image Journals Data is recoverable, but journals are lost.

No Fallback Tables Data is partially available.

No Journals Data can be recovered only to the point of the last
archive.

 A Tale of Three Tables Page 57-32

Notes

Archiving Data Page 58-1

Module 58

Teradata Proprietary and Confidential

Archiving Data

After completing this module, you will be able to:

 Understand how to use the ARC facility to back up data on
external media.

 State the access privileges needed to execute Archive and
Recovery statements.

 Identify the kind of utility locks placed during archive and
recovery procedures, and use statements to release the locks
when appropriate to do so.

 Understand the syntax and the restrictions when archiving
selected partitions of a PPI table.

 Archiving Data Page 58-2

Notes

Archiving Data Page 58-3

Table of Contents

Archive and Recovery Utility (ARC) .. 58-4

Common Uses for ARC ... 58-4
Archive and Recovery Phases .. 58-6
Restore versus FastLoad .. 58-8
ARC ... 58-10

NetBackup .. 58-10
Session Control .. 58-12
Multiple Sessions ... 58-14
ARC Statements ... 58-16
ARCHIVE Statement ... 58-18
ARCHIVE Examples ... 58-20

ARCHIVE Examples (cont.) .. 58-22
Archiving Selected Partitions of PPI Table ... 58-24

Considerations .. 58-24
ARCHIVE Partition Example .. 58-26
ANALYZE Statement .. 58-28
ANALYZE Output ... 58-30
Archive Objects .. 58-32
Archive Objects (cont.) .. 58-34

Single Database Archive .. 58-34
Database ALL Archive .. 58-34
Single or Multiple Table Archives ... 58-34
EXCLUDE Option ... 58-34

Archive Levels ... 58-36
Multi-Stream Archives ... 58-36
Cluster Archives ... 58-36

Archive Options ... 58-38
ONLINE Archive Option ... 58-40
BakBone NetVault Example .. 58-42
Database DBC Archive .. 58-44

RESTORE Considerations ... 58-44
Summary .. 58-46
Module 58: Review Questions ... 58-48

 Archiving Data Page 58-4

Archive and Recovery Utility (ARC)
The basic function of the Archive and Recovery (ARC) utility is to back up and optionally
restore databases and database objects (e.g., tables, views, macros, stored procedures, etc.).
The ARC utility performs four major tasks:

 Archive
 Restore
 Copy
 Recovery

The archive task dumps information from the Teradata system onto some type of portable
storage media. The restore function reverses the archive process and moves the data from
the storage media back to the database. The copy feature allows you to copy data from one
system onto another system. The recovery feature utilizes information stored in permanent
journals to rollback or rollforward row information.

Common Uses for ARC
The Teradata system provides a number of automatic data protection features. However,
these features do not cover all types of data loss. The ARC utility provides additional data
protection for the situations listed below:

 Loss of an AMP’s Vdisk for no fallback tables
 Loss of multiple AMPs in the same cluster
 Failed batch processes
 Accidentally dropped tables, views, or macros
 Miscellaneous user errors
 Disaster recovery

You can use Teradata ARC to do the following:

 Archive a database, individual table, or selected partitions of a PPI table from a
Teradata Database to a client resident file.

 Restore a database, individual table, or selected partitions of a PPI table back to a

Teradata Database from a client resident archive file.

 Copy an archived database, table, or selected partitions of a PPI table to a Teradata

Database on a different hardware platform than the one from which the database or
table was archived.

 Place a checkpoint entry in a journal table.

 Recover a database to an arbitrary checkpoint by rolling it back or rolling it

forward, using change images from a journal table.

 Delete change image rows from a journal table.

Archiving Data Page 58-5

Archive and Recovery Utility (ARC)

Major tasks or functions of the ARC facility include:

Archive – captures user data on portable storage media.
Restore – restores data from portable storage media.
Copy – transfer archived data to another system or optionally back to same system
Recovery – recovers changes to data from permanent journal tables.

ARC provides additional data protection for these situations:

• Loss of an AMP’s Vdisk for no fallback tables

• Loss of multiple Vdisks (AMPs) in the same cluster

• Failed batch processes

• Accidentally dropped tables, views or macros

• Miscellaneous user errors

• Disaster recovery

Common uses for ARC:

• Archive a database, individual table, or selected partitions of a PPI table.

• Restore a database, individual table, or selected partitions of a PPI table.

• Copy an archived database, table, or selected partitions of a PPI table to a Teradata
Database on a different system.

ds186034
Sticky Note
archive the new datathat has been incrementally added

 Archiving Data Page 58-6

Archive and Recovery Phases
Archive or recovery jobs always operate in two phases. The steps of each phase are
described on the facing page.

The archive process is intensive. You may want to create a user just for archive activities so
that you can use your user ID to perform other actions while archive is running.

Teradata ARC creates files when you archive databases, individual data tables, selected
partitions of primary partition index (PPI) tables, or permanent journal tables from the
Teradata Database. You provide Teradata ARC with such files when you restore databases,
individual data tables, partitions of tables, or permanent journal tables back to the Teradata
Database.

Teradata ARC also includes recovery with rollback and rollforward functions for data tables
defined with a journal option. Moreover, you can checkpoint these journals with a
synchronization point across all AMPs, and you can delete selected portions of the journals.

Archiving Data Page 58-7

Archive, Restoration, and Recovery Phases

Phase 1 — Dictionary Phase
1. Allocate an event number (from DBC.Next).
2. Issue a BEGIN TRANSACTION statement.
3. Resolve object name.
4. Check access rights.
5. Place locks:

• Utility locks on data dictionary rows.

• Utility locks on data rows.

Note: READ locks on ARCHIVE; EXCLUSIVE locks on RESTORE.

6. Delete existing tables prior to RESTORE.
7. Issue an END TRANSACTION statement.

Phase 2 — Data Phase
1. Issue a BEGIN TRANSACTION statement.
2. Insert rows into RCEVENT and RCCONFIGURATION.
3. Perform the operation.
4. Update RCEVENT.
5. Release locks (if user specified).
6. Issue an END TRANSACTION statement.

ds186034
Sticky Note
archive utility runs in multiple phaseswhile restore is occurring...locks...

 Archiving Data Page 58-8

Restore versus FastLoad
You could consider running a FastLoad utility job to restore the information to disk. This
would mean that instead of archiving to tape, you have used BTEQ EXPORT or some other
means to put the information into a host file for the FastLoad utility. FastLoad requires an
empty table.

FastLoad Steps
Steps involved with FastLoad include.

 FastLoad uses a single session to send the INSERT statement to the PE and AMP
vprocs.

 Multiple sessions are then used to facilitate sending rows to the AMP vprocs.
 Upon receipt, each AMP vproc hashes each record and redistributes it over the

BYNET. This is done in parallel.
 The receiving AMP vproc then writes these rows directly to the target table as

unsorted blocks.
 When loading completes, each AMP vproc sorts the target table, puts the rows into

blocks, and writes the blocks to disk.
 Then, fallback rows are generated if required. FastLoad operates only on tables

with no secondary indexes.
 You have to create any required indexes when the FastLoad is complete.

Restore Steps
Restoring to the same configuration includes:

 Recovery of data blocks to the AMP vproc.

 The blocks are already in the appropriate format.

Restoring to a different configuration includes:

 The block is first sent to the AMP vproc in the old configuration.

 Then, it strips off its own rows and forwards (redistributes) the remainder of the

block to the AMP vproc for the new configuration. Since the original rows were
sorted in data blocks by RowID, the result is usually much faster than a normal
redistribution.

ARC is the easiest and fastest to restore a very large number of objects. FastLoad operates
on a table-by-table basis, while ARC can restore an entire machine with one simple
command.

Archiving Data Page 58-9

Restore versus FastLoad

FastLoad (3 Tables - 3 jobs)
or

RESTORE (3 Tables - 1 job)

Target Table Target Table Target Table

Even if rebuilding 1 table, RESTORE is faster than
FastLoad.

FastLoad is a very fast loader, but
not as fast as RESTORE in
rebuilding a table. Why?

• FastLoad has to hash each row,
redistribute every row, collect
and write to disk, then read, sort,
and write back to disk.

• RESTORE copies blocks to the
appropriate AMPs.

Which is easier?

• FastLoad operates on a table by
table basis (one at a time).

• RESTORE can restore all of the
tables for one or more databases
with a single job.

ds186034
Sticky Note
restore is even faster than fastload

 Archiving Data Page 58-10

ARC
Teradata Database offers a wide variety of utilities, management tools, and peripherals.
Some of these reside on Teradata Database and others are part of the Teradata Tools and
Utilities management suite available for installation in client environments. With database
management tools, you can back up and restore important data, save dumps, and investigate
and control Teradata Database configuration, user sessions, and various aspects of its
operation and performance. Management and analysis tools help keep the database running
at optimum performance levels.

Teradata Backup, Archive, and Restore (BAR) supports third party software products that
provide data archiving, backup, and restore functions. Teradata utilizes software extensions
called TARA (Tiered Archive Restore Architecture) and plug-ins that help connect BAR
software to the Teradata Database.

There are several ways to invoke the Archive facility.

 NetBackup – TARA
 Tivoli Storage Manager – TARA
 NetVault
 Command Line (arcmain)
 Host or Mainframe

Teradata Archive/Recovery utility (ARC), working with BAR application software, writes
and reads sequential files on a Teradata client system to archive, restore, recover, and copy
Teradata Database table data. Through its associated script language, it also provides an
interface between Teradata Backup Application Software solutions and Teradata Database.

NetBackup
Symantec™ NetBackup and NetBackup Extension for Teradata NetBackup Extension for
Teradata is an access module that enables NetBackup to work with Teradata Database.
Administrators can schedule automatic, unattended backups for client systems across a
network. It supports parallel backups and restores coordinated across multiple hosts in a
single Teradata Database. Teradata TARA in the NetBackup framework and is comprised of
three components: TARA Server, TARA GUI, and NetBackup Extension for Teradata.

Archiving Data Page 58-11

ARC

The ARC facility is required to archive/restore/copy the Teradata Database.

• ARCMAIN is the program name of the Teradata ARC utility.

• ARCMAIN is normally executed in batch mode, but it can be run interactively.

• Required dependency of the BAR (Backup and Recovery) backup products.

• ARC version must match the Teradata DBS version.

Teradata Backup, Archive, and Restore (BAR) supports third party software products that
provide data archiving, backup, and restore functions. Teradata utilizes software
extensions called TARA (Tiered Archive Restore Architecture) and plug-ins that help
connect BAR software to the Teradata Database.

The BAR application software offering includes:

• NetBackup (from VERITAS software) – utilizes TARA
• Tivoli Storage Manager – utilizes TARA
• NetVault (from BakBone software)
• Command Line (execute arcmain)
• Host or Mainframe

Utilities such as NetBackup allow you to create scripts, schedule jobs, and
provide various tape management capabilities.

 Archiving Data Page 58-12

Session Control
To use the ARC utility, you must use the LOGON statement to logon to the Teradata system
before you can execute other ARC statements. The user ID with which you log on has to
have access rights for the ARC statements that you want to use.

The facing page shows the LOGON and LOGOFF statements.

Since the archive process can be intensive, you may want to create a user just for archiving
to free your user ID for other processes while archive is running.

In general, the amount of system resources (that is, memory and processing power) that are
required to support the archive or recovery increases with the number of sessions. The
impact on a particular system depends on the specific configuration.

Teradata ARC uses two control sessions to control archive and recovery operations. The
LOGON statement always connects these sessions no matter what type of operation being
performed. Teradata ARC connects additional data sessions based on the number indicated
in the SESSIONS parameter. These sessions are required for the parallel processing that
occurs in archive and restore or copy operations.

If additional data sessions are required, Teradata ARC connects them at one time. Teradata
ARC calculates the number of parallel sessions it can use, with maximum available being
the number of sessions indicated with this parameter. Any connected sessions that are not
actually used in the operation result in wasted system resources.

To request a specific number of sessions, the “SESSIONS=xnn” runtime parameter can be
used. If not specified, the number of sessions defaults to 4 plus 2 control sessions for a total
of 6 sessions.

The SESSIONS parameter specifies the number of Teradata Database sessions that are
available for archive and recovery operations. This number does not include any additional
sessions that might be required to control archive and recovery operations.

Archiving Data Page 58-13

Session Control

The LOGON statement:

1. Causes two sessions to be logged on: one for SQL statements, and one for control
requests.

When it encounters an ARCHIVE or RESTORE command, ARC starts additional data
sessions requested in the SESSIONS=nnn runtime parameter.

2. Identifies the user and account to charge for used resources.

3. Identifies the user to the Teradata database system so that the software may verify
ownership or check access rights. The system verifies access rights as it executes
each statement.

CHECKPOINT Permits you to execute both the SQL and ARC utility checkpoint statements.

DUMP Permits you to execute the ARC Archive statement

RESTORE Permits you to execute the following ARC statements:

Restore Delete Journal Rollforward Release Lock* Rollback Build

The LOGOFF statement:

1. Ends all Teradata sessions logged on by the task, and

2. Terminates the utility.

* To release a lock held by another User, you must specify Override and hold DROP privileges on the
underlying objects.

 Archiving Data Page 58-14

Multiple Sessions
You can specify the number of archive and/or recover sessions with which to work, or use
the default. To set the number, use the SESSIONS runtime parameter.

For small systems (e.g., less than 40 AMPs), the recommended number of sessions is:

 One per AMP vproc for archive.
 Two per AMP vproc for recovery.

The number of sessions to use can vary based on a number of factors. Several are described
below.

The description on the facing page tells more about how the vprocs use the sessions.

If fewer than one session per vproc is specified for the archive:

 For vproc groups, archive/recovery will archive blocks from each group with each
vproc completed before the next starts.

 In this case, a large number of sessions allocated to recovery will not help recovery
performance.

For larger configurations, say over 100 AMP vprocs, specifying one session per AMP will
not increase performance because of other limiting component(s).

In this case, for maximum throughput, cluster level operation is recommended with one
session per AMP for involved AMPs. For example, if the system has 50 clusters with 4
AMPs each, you can partition it into two jobs with 25 clusters each and 100 sessions per job
provided that your site has two (or more) tape drives available and enough host resources to
run two jobs in parallel.

Archiving Data Page 58-15

Multiple Sessions

AMP 0 AMP 1 AMP 2 AMP 3 AMP 4 AMP 5 AMP 6 AMP 7

The appropriate number of sessions depends on …

• number of AMPs
• number of channel or LAN connections
• speed and type of tape subsystem

For small systems, 1 session per AMP ensures all data blocks from all AMPs are
evenly distributed.

Conf DD Table 1 3 2 5 4 7 0 1 6 2 7 3 0 4 5 6 4 5

Info Info Hdr Data Blocks

• Teradata assigns each session to a vproc. All sessions stay with that vproc until all
required data is archived. Then will it be moved to another vproc if necessary.

• Archive attempts to build blocks from each vproc in turn. The blocks are composed of
complete database blocks.

• Data blocks from different vprocs are never mixed within the same archive block.

ds186034
Sticky Note
in DDtable header + all the tables

 Archiving Data Page 58-16

ARC Statements
The ARC utility contains a number of commands to perform archive, restore, and recovery
tasks. Some of the commands are shown on the facing page.

Additional ARC options can be set via runtime parameters. The following environment
variables are used with ARC.

ARCDFLT – this is the environment variable that points to the file containing the
system-wide default parameters values.

 Example: SET ARCDFLT=C:\TESTARC\CONFIG.ARC

 The file CONFIG.ARC would include valid runtime parameters. For example:

 SESSIONS=8
 RESTARTLOG=C:\TEMP\arcrlog1

ARCENV – this is the environment variable that specifies any valid Teradata ARC

runtime parameters.

 Example: SET ARCENV=RESTARTLOG=C:\TEMP\arcrlog2

ARCENVX – same as ARCENV, except that ARCENVX has the highest override

priority. Any runtime parameter set in ARCENVX is guaranteed to be used.

Examples of typical runtime parameters that can be used include:

RESTARTLOG (or RLOG) = filename

 The RESTARTLOG runtime option is available only on Windows and MP-RAS

platforms.

 Teradata ARC adds the extension type RLG to the name of the file specified in

RESTARTLOG. Therefore, do not use this extension in the name of the restart log.

 The restart log is created under the current directory or the working directory, if

defined, unless the full path is specified.

 Teradata ARC does not automatically remove the restart log files after the

successful completion; therefore you may need to clean the files periodically.

SESSIONS = nnn

 Two additional control sessions are automatically added.

Archiving Data Page 58-17

ARC Statements

LOGON Begins a session.

LOGOFF Ends a session.

ARCHIVE Archives a copy of a database or table to a host-resident data set/file.

ANALYZE Reads an archive tape to display information about its content.

RESTORE Restores a database or table from a archive file to specified AMPs.

COPY Restores a copy of an archived file to a specified Teradata database
system.

BUILD Builds indexes and fallback data.

RELEASE LOCK Releases host utility locks on databases or tables.

DELETE DATABASE Deletes a database.

CHECKPOINT Marks a journal for later archive or recovery activities.

ROLLBACK Recovers a database and tables to a state that existed before some
change.

ROLLFORWARD Recovers a database or table to a state that existed after some change.

DELETE JOURNAL Deletes SAVED or RESTORED Journal rows.

REVALIDATE Revalidate referential integrity; a housekeeping or cleanup function.
REFERENCES

 Archiving Data Page 58-18

ARCHIVE Statement
The ARCHIVE statement allows you to backup database objects to host media (usually
magnetic tape). The format for this statement is shown on the following page.

Note: ARCHIVE is the preferred term as the DUMP command is supported only for
backward compatibility.

The ACHIVE control statement allows you to specify the archive:

 Type
 Objects
 Levels
 Options

The EXCLUDE option allows you to specify an alphabetical listing of database/user names
that you want excluded. The values do NOT have to match existing database/user names.
For example, you could EXCLUDE (A) TO (D).

Referential Integrity
Tables with unresolved referential integrity constraints cannot be archived. An unresolved
constraint occurs when a CREATE TABLE (child) statement references a table (parent) that
does not exist. Create the parent table (use the SQL command CREATE TABLE).
Effectively, create the referenced table to resolve these constraints.

ARC and HASH/JOIN Indexes
Prior to Teradata 13, ARC cannot be used to archive or restore Hash and/or Join Indexes.
However, prior to Teradata 13.0, you are permitted to archive a base table or database that
has an associated Hash or Join Index defined.

The output of the SHOW HASH INDEX or the SHOW JOIN INDEX statement includes a
special status message if a Join Index has been marked invalid.

PARTITIONS WHERE
This option specifies the conditional expression for selecting partitions. If the condition
selects a partial partition, the entire partition is archived.

Archiving Data Page 58-19

ARCHIVE StatementARCHIVE Statement

ARCHIVE DATA TABLES A

DICTIONARY TABLE

NO FALLBACK

JOURNAL

,
A (dbname) B

, ,
(EXCLUDE TABLE/TABLES (xtname)) , EXCLUDE (xdbname)

ALL ALL
, (xdbnam1) TO (xdbnam2)

(EXCLUDE TABLE/TABLES (db.xtname))

(dbname.tname) (PARTITIONS WHERE (! cond_express !))

B C
4096 , RELEASE LOCK , INDEXES , ABORT ,ONLINE

, CLUSTERS = nnn
CLUSTER

5
AMP = n

2

C , FILE = name ;

KEEP LOGGING , USE , NONEMPTY DATABASES

GROUP READ , NONEMPTY DATABASE

LOCK
(12.0 Features – ONLINE & KEEP LOGGING)

ds186034
Sticky Note
all the child databases

 Archiving Data Page 58-20

ARCHIVE Examples
Examples of the Archive scripts are shown on the facing page.

EXCLUDE TABLE OPTION Details
This option is only accepted in a database level object in a DATA TABLES of all amps or
cluster operations. A database level object that has one or more excluded tables is a partial
database. An archive of a partial database contains the dictionary info and the table header
row of the excluded table but actual data rows are excluded, i.e., not archived.

On the restore side, if a partial database archive is restored, no data rows will be restored for
the excluded tables. If the table is excluded state, ARC restores the dictionary info and the
table header row, but leaves the table in restore state. This protects the table from other
application's attempt to access it before the table level restore is performed. Table level
restore for the excluded tables is expected to follow the partial database restore to fully
restore a partial database. If the intention of the user is to really exclude the table, the user
has an option to run an explicit BUILD statement for the excluded tables. The excluded
tables become accessible and are empty; they can then be dropped.

If ALL keyword is specified after the object name, then only fully qualified table names in
the form of databasename.tablename is accepted in the list of EXCLUDE TABLES. If ALL
is not specified then a fully qualified table name cannot be entered in the list of EXCLUDE
TABLES, i.e., database names cannot be prefixed.

EXCLUDE TABLES cannot be used with the following options. ARC0215 error message
will be issued if any of these conditions are detected.

 Table level object: (databasename.tablename)
 DICTIONARY, JOURNAL, NO FALLBACK
 AMP= or PN=

ARC0106: “User excluded table(s) (%s) does/do not belong to database %s”
 This error is issued when a table specified in EXCLUDE TABLE list is not part of the

database object. The object will be aborted, the database will be skipped and the next
database will be processed.

By default, Teradata ARC counts output sectors and output rows. The row count is the
number of primary data rows archived when you specify the DATA or NO FALLBACK
option. Both counts are included in the output listing.

Archiving Data Page 58-21

ARCHIVE Examples

LOGON dbc/sysdba,dbapass;
ARCHIVE DATA TABLES (PD)

(EXCLUDE TABLES (dept_summary, phone_summary))
, ABORT
, RELEASE LOCK
, FILE = arc2_PD;

LOGOFF;

archive2_pd.arc

LOGON dbc/sysdba,dbapass;
ARCHIVE DATA TABLES (PD)
, ABORT
, RELEASE LOCK
, FILE = arc1_PD;

LOGOFF;

archive1_pd.arc

arcmain < archive2_pd.arc

Portion of output from executing above script

ARCHIVING DATABASE "PD"
TABLE "Department" - 3,446 BYTES, 60 ROWS ARCHIVED
TABLE "Dept_Summary" - EXCLUDED BY USER
TABLE "Employee" - 65,077 BYTES, 1,000 ROWS ARCHIVED
TABLE "Emp_Phone" - 52,504 BYTES, 2,000 ROWS ARCHIVED
TABLE "GT_Deptsalary" - 548 BYTES, 0 ROWS ARCHIVED
TABLE "Job" - 2,898 BYTES, 66 ROWS ARCHIVED
VIEW "LargeTableSpaceTotal" - ARCHIVED
TABLE "Phone_Summary" - EXCLUDED BY USER
MACRO "SetAnsiDate_OFF" - ARCHIVED
MACRO "SetAnsiDate_ON" - ARCHIVED
"PD" - LOCK RELEASED
DUMP COMPLETED

ds186034
Sticky Note
archive data tablePD = student 122table header as actual compressed valuePresence bit is in tableheaderbut both of them are kept here as part of the archive

ds186034
Sticky Note
i can exclude table/objects dat i dont wanna archiveorder is alpha in which archive occurs

 Archiving Data Page 58-22

ARCHIVE Examples (cont.)
Additional examples of Archive scripts are shown on the facing page.

In the second example, Demo, Guest_Users, and Sandbox are databases or users that will be
excluded from the archive.

EXCLUDE TABLE Caution
When you do a full database-level restore of an archive with excluded tables, the data
dictionaries and the table headers of all tables, including excluded tables, are replaced.

As a result, all of the existing rows in the excluded tables are deleted.

You can restore individual tables from a database-level archive with excluded tables. In the
RESTORE statement, you must individually specify all the tables you want to restore,
except the excluded tables. By omitting the excluded tables, you preserve the data
dictionaries and table headers of the excluded tables. That way you can restore the database
from the archive without altering the excluded tables.

However, you cannot name macros, views, or stored procedures as objects in your
RESTORE statement. So if you create an archive with excluded tables and you want to
preserve the excluded tables, you cannot recover the macros, views, or stored procedures
from the archive.

Archiving Large Objects (LOBs) Notes
Teradata ARC also supports the archive operation for tables that contain large object
columns as long as the database systems are enabled for large object support. However,
large object columns cannot be restored on a system that uses a hash function that is
different than the one used for the archive.

An archive of selected partitions with LOBs is supported, but the restore is not. To restore
selected partitions of LOBs, perform a full-table restore.

Archiving Data Page 58-23

ARCHIVE Examples (cont.)

LOGON dbc/sysdba,dbapass;
ARCHIVE DATA TABLES (DS)
, ABORT , RELEASE LOCK, ONLINE
, FILE = arc3_DS;

LOGOFF;

archive3_ds.arc

This script archives DS and allows
writes to tables in the database by
using the ONLINE Archive option.

LOGON dbc/sysdba,dbapass;
ARCHIVE DATA TABLES

(Sysdba) ALL
(EXCLUDE TABLES (PD.dept_summary, PD.phone_summary))
, EXCLUDE (Demo), (Guest_Users) ALL, (Sandbox)

, ABORT , RELEASE LOCK
, FILE = arc4_Sys;

LOGOFF;

archive4_sysdba.arc

This script archives
Sysdba and all of its
child databases/users
and excludes some
tables and databases.

LOGON dbc/dbc,dbcpass;
ARCHIVE DATA TABLES (DBC) ALL
, RELEASE LOCK
, FILE = arc5_DBC;

LOGOFF;

archive5_DBC.arc

This script archives DBC and all of
its child databases/users.

(ABORT is not a valid option when
archiving data dictionary tables.)

ds186034
Sticky Note
online - pt in time read lockthenaccess lock(so users do have ability to make changes)we keep track...we built new sub table(like TJ images)we put into STthen we...

 Archiving Data Page 58-24

Archiving Selected Partitions of PPI Table
Starting with Teradata Database V2R6.0, you can perform an all-AMPs archive on one or
more partitions of a table rather than performing a full-table backup. The ability to select
partitions from PPI tables is limited to all-AMP archives. Dictionary, cluster, and journal
archives are not supported.

Use archive partitioning to accomplish the following tasks:

 Archive only a subset of data (this can minimize the size of the archive and
improve performance).

 Restore data in a table that is partially damaged.

 Copy a limited set of data to a disaster recovery machine or to a test system.

Considerations
Consider the following when archiving selected partitions in PPI tables:

 Archiving selected partitions operates on complete partitions within tables,

meaning that the selection of a partial partition implies the entire partition.

 A restore operation always deletes the selected partitions of the target table before
restoring the rows that are stored in the archive.

 PPI and non-PPI tables are allowed in a single command. This allows you to

manage both table types in a single database with the EXCLUDE TABLES option.

 Partitioning is based on one or more columns specified in the table definition.

 Partition elimination restricts a query to operating only in the set of partitions that
are required for the query.

 Incremental archives are possible by using a partition expression that is based on

date fields, which indicate when a row is inserted or updated.

 An archive or restore of selected partitions only places full-table locks. Locks on
individual partitions are not supported.

 It is recommended that you re-collect table statistics after a restore of selected

partitions because statistics are part of the table dictionary rows, which are not
restored during a partition-level restore.

 If a table has a partitioning expression that is different from the partitioning

expression used in the PPI archive, a PPI restore is possible as long as no other
significant DDL changes are made to the table.

Archiving Data Page 58-25

Archiving Selected Partitions of PPI Table

You can perform an all-AMPs archive on one or more partitions of a table rather
than performing a full-table backup and restore.

• Archiving selected partitions is limited to all-AMP archives.

• Dictionary, cluster, and journal archives are not supported.

Considerations:

• Archiving selected partitions operates on complete partitions within tables.

– Defining a partial partition means that the entire partition will be archived.

– A restore operation always deletes the selected partitions of the target table
before restoring the rows that are stored in the archive.

• An archive or restore of selected partitions only places full-table locks. Locks on
individual partitions are not supported.

• Re-collect table statistics after a restore of selected partitions because statistics are
part of the table dictionary rows, which are not restored during a partition-level
restore.

 Archiving Data Page 58-26

ARCHIVE Partition Example
An example of an Archive script that archives partitions of a PPI table is shown on the
facing page.

The table definition for the Sales_PPI table is:

CREATE SET TABLE TFACT.Sales_PPI
 (store_id INTEGER NOT NULL,
 item_id INTEGER NOT NULL,
 sales_date DATE FORMAT 'YYYY-MM-DD',
 total_revenue DECIMAL(9,2),
 total_sold INTEGER,
 note VARCHAR(256) CHARACTER SET LATIN NOT CASESPECIFIC)
PRIMARY INDEX (store_id, item_id)
PARTITION BY RANGE_N (sales_date BETWEEN DATE '2002-01-01' AND DATE
'2011-12-31' EACH INTERVAL '1' MONTH);

Additional Notes when Archiving Partitions

Bounding condition – is well-defined if the PARTITION BY expression on the source table
consists of a single RANGE_N function, and if the specified range does not include NO
RANGE or UNKNOWN.

Use Correct Specifications – the incorrect use of specifications may cause the following
problem. An incorrect PARTITIONS WHERE specification during backup can result in an
incomplete archive or difficulties during a restore operation.

Restrict Updates to Active Partitions – it is not possible for the ARC facility to determine
which partitions have been modified since the last backup. If changed partitions are not re-
archived, the changes are lost when restored.

For example, if, for a given table, the backup strategy is to only backup the active (latest)
partition of the table, and a change is made to a non-active partition (to fix an incorrect
update), the change is not archived unless you run a separate archive of the changed
partitions.

The remedy for this situation is either to restrict updates to the active partitions only (by
using views to control which rows/partitions are updated) or to re-archive all modified
partitions.

Archiving Data Page 58-27

ARCHIVE Partition Example

LOGON dbc/sysdba,dbapass;
ARCHIVE DATA TABLES

(TFACT.Sales_PPI) (PARTITIONS WHERE (!Sales_Date BETWEEN '2011-10-01' AND '2011-12-31'!))
, ABORT, RELEASE LOCK, FILE = arc6_PPI;

LOGOFF;

archive6_ppi.arc

arcmain < archive6_ppi.arc

Portion of output from executing above script

ARCHIVE DATA TABLES (TFACT.Sales_PPI) (PARTITIONS WHERE (!Sales_Date BETWEEN '2011-10-01' AND '2011-12-
31'!))
,ABORT, RELEASE LOCK, FILE = arc6_PPI;
UTILITY EVENT NUMBER - 36
LOGGED ON 4 SESSIONS
ARCHIVING DATABASE "TFACT“

Archive Bounding Condition:
RANGE_N("TFACT"."SALES_PPI"."sales_date" BETWEEN DATE '2002-01-01' AND DATE '2011-12-31' EACH INTERVAL
'1' MONTH) IN (118 TO 120)

[Bounding condition is well-defined]
TABLE "Sales_PPI" - 2,391,241 BYTES, 40,500 ROWS ARCHIVED
"TFACT"."SALES_PPI" - LOCK RELEASED
DUMP COMPLETED

 Archiving Data Page 58-28

ANALYZE Statement
The ANALYZE statement reads data from an archive tape and displays information about
tape contents. When you invoke the statement, you can choose a specific database or a
range of databases from which to display information. This information will help you if you
are trying to restore a specific database instead of the entire archive set. This statement does
not require a prior logon.

The ANALYZE statement provides the following information about the database(s) you
specify:

 Time and date of the archive operation

 The archive level: all-AMPs; clusters of AMPs; or specific AMPs

 The name of each database, data table, journal table, view, and macro in each

database and the fallback status of the tables. Information appears only if you use
the keyword LONG with the DISPLAY option.

 If an archive file contains a selected partition archive of a table, the bounding

condition used to select the archived partitions is displayed with an indication as to
whether the bounding condition is well-defined.

The CATALOG option (not shown on facing page) generates/rebuilds the CATALOG table
in the CATALOG database.

DISPLAY Option
If no option is listed, display is the default. It shows the time, date and level of the archive.
If you use the LONG option, the display includes the names of all tables, views, macros,
triggers, or stored procedures.

VALIDATE Option
This option reads each archive record in the specified database. It checks that each data
block in the file can be read but does not check whether the data block read has valid rows
or not, i.e., it does not check anything inside the data block record. It only checks whether
or not the data block record can be read.

You can specify both the DISPLAY and VALIDATE options on a single ANALYZE
statement.

Archiving Data Page 58-29

ANALYZE Statement

Notes:

• The ANALYZE statement instructs the ARC utility to read an archive file and display
information about its content.

• The LONG option displays all table, view, macro, trigger, and stored procedure
names.

– If an archive file contains a selected partition archive of a table, the bounding
condition used to select the archived partitions is displayed.

• The VALIDATE option reads each record to check that each block on the archive file is
readable.

• ANALYZE doesn’t require a LOGON or LOGOFF statement.

Example: analyze1_pd.arc (script name)

ANALYZE (PD), DISPLAY LONG, FILE = arc1_PD;

To execute: arcmain < analyze1_pd.arc

Format: ANALYZE [* | ALL | [(Databasename) | (Dbname1) TO (Dbname2)] [, ...]

[, DISPLAY [LONG] | , VALIDATE]

, FILE = name ;

 Archiving Data Page 58-30

ANALYZE Output
An example of the output from the ANALYZE command is shown on the facing page.

Archiving Data Page 58-31

ANALYZE Output

:
01/13/2011 11:30:02 CHARACTER SET IN USE: ASCII
01/13/2011 11:30:02 ANALYZE (PD),
01/13/2011 11:30:02 DISPLAY LONG,

:
01/13/2011 11:30:02 ARC VERSION 13
01/13/2011 11:30:02 ARCHIVED AT 01-13-11 10:25:22
01/13/2011 11:30:02 ARCHIVE CHARACTER SET: ASCII
01/13/2011 11:30:02 ARCHIVED FROM ALL AMP DOMAINS

:
01/13/2011 11:30:02 UTILITY EVENT NUMBER - 15
01/13/2011 11:30:02
01/13/2011 11:30:02 DATABASE "PD"
01/13/2011 11:30:02 TABLE "Department"
01/13/2011 11:30:02 TABLE "Dept_Summary"
01/13/2011 11:30:02 TABLE "Employee"
01/13/2011 11:30:02 TABLE "Emp_Phone"
01/13/2011 11:30:02 TABLE "GT_Deptsalary"
01/13/2011 11:30:02 TABLE "Job"
01/13/2011 11:30:02 VIEW "LargeTableSpaceTotal"
01/13/2011 11:30:02 TABLE "Phone_Summary"
01/13/2011 11:30:02 MACRO "SetAnsiDate_OFF"
01/13/2011 11:30:02 MACRO "SetAnsiDate_ON"
01/13/2011 11:30:02
01/13/2011 11:30:02 ANALYZE COMPLETED

:

Output from ...

ANALYZE (PD),
DISPLAY LONG,
FILE = arc1_PD;

 Archiving Data Page 58-32

Archive Objects
The archive statement can only back up one table type at a time: data; dictionary; no
fallback; or journal. Users must submit separate archive statements in order to archive each.

Below is a description of each archive type:

DATA TABLES Archives fallback and non-fallback tables, views,
triggers, and macros when you archive from ALL AMPs
or clusters of AMPs.

DICTIONARY
TABLES

Backs up DD/D rows that describe the databases or
tables archived during a cluster- level archive. If you
archive a database, the archive includes table, view,
trigger, and macro definitions. If you archive a table,
back up only includes table definition rows. DD/D
information for permanent journals is not included.

NO FALLBACK
TABLES

Run this archive type only to back up no fallback tables
on an AMP that was down during a DATA TABLE
archive. It completes the previous ALL AMP or cluster
archive.

JOURNAL TABLES Archives the dictionary rows and selected contents of the
journal tables.

Archiving Data Page 58-33

Archive Objects

• Tables, Views, Macros, Triggers,
Stored Procedures, UDFs, and
Join/Hash Indexes in 13.0.

• Does NOT archive Journal Tables
• All AMP or cluster archive

ARCHIVE
DATA TABLES

ARC Facility

• DD/D rows to complement
cluster-level archive

ARCHIVE
DICTIONARY TABLES

ARC Facility

• Non-fallback tables
• Archives AMP data missed during

previous all AMP or cluster-level
archive

ARCHIVE
NO FALLBACK TABLES

ARC Facility

• Used to archive Journal Tables

ARCHIVE
JOURNAL TABLES

ARC Facility

 Archiving Data Page 58-34

Archive Objects (cont.)
The information backed up in an archive operation varies depending upon the type of object
you select:

 Single database or table
 Multiple databases or tables
 All databases

Single Database Archive
An ALL AMP database archive backs up a wide range of DD/D information. It archives all
objects that belong to the database including views, macros and the data tables themselves.
The information archived for the data tables includes table, column, and index information
as well as table headers and data rows. A table header is a row of information about the table
that is kept in the first block of the table.

Database ALL Archive
A Database ALL archive archives the parent and all children. The backed up objects are
identical to those archived in a single database archive.

Single or Multiple Table Archives
For each table specified in the archive statement, the ARC utility backs up table, column,
and index information along with table headers and the actual data rows.

EXCLUDE Option
This option directly affects which databases are backed up. The exclude option changes the
range of objects that the ARC utility archives. Users can leave out a single database, a
database and all of its children, or a range of alphabetically sorted databases.

Archiving Data Page 58-35

Archive Objects (cont.)

An ALL AMP archive that identifies a database that contains data tables, etc.

Views, Macros, and Triggers

Tables & Stored Procedures

The ALL option archives all items listed above for the
specified database, as well as all its descendants.

Archives all DD/D information for the identified database,
including views, macros, triggers, stored procedures, and
UDFs. Join and hash indexes are also archived in TD 13.

The archive also includes all table, column and index
information, as well as table headers and data rows.

DatabaseName.TableName

Note:
The EXCLUDE option allows you to exclude a single
database, a database and all its descendants, a range of
alphabetically sorted databases, or specific tables.

An ALL AMPs table archive that identifies a table archives
table, column and index information, as well as table
headers and data rows.

An ALL AMP archive that identifies a single table or partition(s) of a table.

 Archiving Data Page 58-36

Archive Levels
The default archive level for any archive operation is all AMPs.

Normally, you do not specify an archive level in your ARCHIVE statement since ALL is the
default. When an AMP is off-line during an all-AMP archive, non-fallback tables may only
be partially archived.

You need to perform a single-AMP back up of NO FALLBACK TABLES to obtain a
complete back up. Fallback tables are always completely archived even if a vproc is down,
because there is either a primary or fallback copy of the data on another AMP vproc.

Multi-Stream Archives
Characteristics of Multi-stream Archives include:

 ARC enhancement to use local (same-node) sessions to archive data for each AMP
 Provides substantial (up to 2x) archive and restore performance compared to non-

local AMP
 Eliminates most BYNET traffic during BAR operations
 Must be configured properly to get full benefit

– Advocated solutions will use this automatically
– Enterprise-fit solutions must properly balance node connectivity and session

count to get maximum performance
– ARC user must have MONITOR privilege to get necessary AMP-level

information

Cluster Archives
As an alternative to archiving data tables from all AMPs into a single archive, you can break
the archive into a set of archive files called a cluster archive. A cluster archive archives data
tables by groups of AMP clusters. You can run a cluster archive in parallel, or schedule it to
run over several days. It may be faster to restore a single vproc since the system has fewer
tapes to scan to recover lost data.

In general, cluster archiving improves the archive and recovery performance of very large
tables. In addition, it can simplify the restore process of non-fallback tables for a specific
AMP vproc.

A cluster archive does not contain any dictionary information. You must perform a
DICTIONARY TABLE archive before you run a cluster archive for the first time, because
Database DBC is automatically excluded for this kind of archive operation. You must run
the dictionary table archive again any time there is a change in the structure of the tables in
the cluster archive.

Cluster archives have two restrictions:

 You cannot create a cluster archive of journal tables.
 You cannot setup cluster archives when you are archiving DBC database.

Archiving Data Page 58-37

Archive Levels

• By default, Teradata performs ALL AMP level archives.

• BAR solutions (e.g., NetBackup) also provide Multi-Stream backups.
– Effectively multiple ARC jobs.
– Data is divided automatically by ARC at the AMP level.
– Alternative to cluster backup and usually provides the better performance.

• ARC also provides options to archive at the cluster or the individual AMP level.

AMP 0 AMP 1 AMP 2 AMP 3

Cluster 0

ARCHIVE DATA TABLES
(Sysdba) ALL ,
CLUSTER = 0,
FILE = cluster0;

Cluster level archives group data from one or
more clusters into separate archive data sets.

A single AMP can be recovered in less time.

Dictionary information is archived separately.

AMP 4 AMP 5 AMP 6 AMP 7

ARCHIVE NO FALLBACK
TABLES (Sysdba) ALL ,
AMP = 5,
FILE = amp5only;

Single AMP archives are only used to
complete the archive of no fallback tables
after the AMP is returned to service.

ds186034
Sticky Note
dont do individual ampsclustersbit and pcsjust do aLL AMP

 Archiving Data Page 58-38

Archive Options
The archive statement includes a number of options. Each option is described below:

RELEASE LOCK Automatically releases Utility Locks if the operation
completes successfully.

INDEXES For all-AMP archives only, this option specifies to
include secondary indexes with the archive. You will
need more time and media to archive objects with their
secondary indexes.

Neither the GROUP READ LOCK nor the ONLINE
Archive feature supports the INDEXES keyword of
ARC, to back up secondary index data. Index data will
be rebuilt from the primary data when the table is
restored.

ABORT Causes all AMP or cluster archives to fail with error
messages if an AMP is off-line and the objects to be
archived includes:

 No fallback tables

 Single image journals

NONEMPTY
DATABASES

Instructs the ARC utility to exclude users/databases
without tables, views, macros, or triggers from the
archive.

ONLINE Online archive allows backups to be performed
without placing read locks on the tables; this means
that write availability is maintained while the backup is
running.

USE GROUP READ
LOCK

Permits you to archive as transactions update locked
rows. You must define after image journaling for the
table during the time the archive is taking place.

Archiving Data Page 58-39

Archive Options

• Release Lock
– Utility locks automatically released upon successful operation completion

• Indexes
– Restricted to all-AMP dumps
– Includes secondary indexes with archive; requires more time and media

• Abort
– Fails All-AMP or cluster archives AND provides error messages if:

 AMP is off-line AND,
 Archived objects include no fallback tables OR single-image journals

• Nonempty Database(s)
– Excludes users/databases without tables, views, macros, triggers, or stored procedures from

archive operation

• Online (12.0),
– Permits concurrent table archiving and transaction updates on databases and/or tables
– Preferred online archive technique – captures before-images of changes along with archive
– Point-in-time archive; if a table is restored, it will reflect the table when the archive was started

• Use Group Read Lock
– Permits concurrent table archiving and transaction updates on locked rows
– Requires after-image journaling of table
– After restoring a table and applying after-image journal images, the table will have rows that

reflect the state of the table when the archive was completed.

ds186034
Sticky Note
pt in timeexact pt of timeuse group read lockchanges allowed while archiving goes ontkeep track of changes then do use grp read lockif notthen do onine

 Archiving Data Page 58-40

ONLINE Archive Option
The facing page identifies key characteristics of ONLINE Archive.

Some additional benefits of Online archive include:

 Removes the restore restrictions associated with journaling (GROUP READ
LOCK)
– Logged (changed) data is stored in the same archive as the base data.

 For an all-AMP backup, the feature can be used by adding a single keyword,
'ONLINE', to the ARC 'ARCHIVE' statement.
– No ARC syntax changes are needed when restoring an online archive.

 Cluster archives require a single new statement to activate the feature; this is
specified in the dictionary archive step.

 Cross-release and cross-platform restores are allowed.

The following archive/restore options are not supported with the TD12 Online Archive
feature:

 Archives of the following objects are not supported with Online Archive:
– Database DBC, Permanent Journal tables, Temporary tables, tables in Fastload

state, MultiLoad aborted tables, MultiLoad work tables
 Archive of Selected Partitions.
 INDEXES option.
 RESTORE FALLBACK option in RESTORE statement.
 USE [GROUP] READ LOCK option.
 Archive of non-fallback tables with a down AMP.
 The following operations cannot be performed on a table during an online archive

of that table:
– DDL operations (except COLLECT STATISTICS, ACCESS LOGGING, and

COMMENT).
– FastLoad.

Archiving Data Page 58-41

ONLINE Archive Option

Online Archive Description

• Simplifies the backup and restore process for backups in an active Data Warehouse
environment. Perform backups without affecting write availability of tables.

– Use when table writes are needed at all times

• Table-level online archives.
– A short read lock is used to establish a consistency point. Effectively a point-in-time archive.

– Limited DDL is allowed (e.g., COLLECT STATISTICS, COMMENT)

– FastLoad is not allowed.

• Database-level online archives.
– An access lock will be placed on the database; this will prevent table create, table drop, and

DDL changes.

• Logged (changed) data is automatically stored in the same archive as the base data.

– Removes the restore restrictions associated with journaling (GROUP READ LOCK).

– ONLINE Archive captures the before-images (i.e., Transient Journal type image) in a subtable
associated with the data table. This subtable is automatically archived with the data table
and the before-images are used to rollback any changes after the archive was started.

• For an all-AMP backup, the feature can be used by adding a single keyword (ONLINE)
to the ARCHIVE statement.

– No ARC syntax changes are needed when restoring an online archive.

 Archiving Data Page 58-42

BakBone NetVault Example
The facing page contains a screenshot of the ONLINE options available with BakBone
NetVault.

 Fully supported starting with NetVault Teradata plug-in version 11.0 or later.

 NetVault must be configured to use Teradata Database 12.0 features.

–
– Otherwise the NetVault ‘Online’ options will use the original GROUP READ

LOCK method to perform the online archive.

 Online archives can be performed by selecting the ‘Full Online’, `Full Multi-
Stream On-line’ or ‘Full Clustered Online’ backup types.

 The Online Archive feature can be used with prior NetVault releases by manually

creating an ARC script and submitting it as a ‘User Script’ backup.

Archiving Data Page 58-43

BakBone NetVault Example

NetVault must be configured to use Teradata Database 12.0 features;
Otherwise the NetVault 'Online' options will use the GROUP READ LOCK method for online archive.

ds186034
Sticky Note
=we now recomm netbackkup

ds186034
Sticky Note
they build d scriptsandmaintain ur back up env

 Archiving Data Page 58-44

Database DBC Archive
An archive of the information in DBC should be done every time DDL makes changes to the
definitions stored in the database. Examples of the types of commands that make these
changes are:

 CREATE DATABASE/USER
 MODIFY DATABASE/USER
 CREATE/ALTER TABLE
 CREATE/REPLACE VIEW
 CREATE/REPLACE MACRO
 CREATE INDEX
 DROP TABLE/VIEW/MACRO
 DROP INDEX
 GRANT
 REVOKE

Database SYSUDTLIB is linked with database DBC and is only archived if DBC is
archived. SYSUDTLIB cannot be specified as an individual object in an ARCHIVE statement.

If database DBC is involved in an archive operation, it is always archived first, followed by
database SYSUDTLIB. If additional databases are being archived, they will follow
SYSUDTLIB in alphabetical order.

RESTORE Considerations
If you drop a table in a database, you cannot restore a dropped table unless you restore the
entire database.

Furthermore, you cannot restore a dropped database unless you restore database DBC first.

If you need to restore all of a user database or database DBC (that is, all of the Teradata
Database) because of a catastrophic event, you can restore the dictionary information for the
database at the database level before you restore the individual tables. Restoring the
dictionary first restores the table definitions, so you are able to successfully restore the
tables.

You can only restore Database DBC to an initialized Teradata Database – usually following
a SYSINIT. An initialized Teradata system can only have the user DBC and the default
users of ALL, Default, and Public in order to RESTORE DBC (ALL).

Archiving Data Page 58-45

Database DBC Archive

An archive of database DBC causes the system to copy the following tables to the archive.

AccessRights Specification of all GRANTed rights
AccLogRuleTbl Stores access logging specifications
Accounts Lists all authorized account numbers
CollationTbl Defines MULTINATIONAL collation
DBase Definition of each DATABASE and USER
DBQLRuleTbl DBQL Rule table (13.10)
Hosts Character set default override rules
LogonRuleTbl User, host, password requirements
Next Internal table for generating TABLE and DATABASE identifiers
OldPasswords Lists passwords that are no longer in use,
Owners Defines all databases owned by another
Parents Defines the parent/child relationship between databases
Profiles Defines Profiles
RCConfiguration Records the configuration for the RCEvents rows
RCEvent Records all archive and recovery events
RCMedia Records all removable media used in archive activities
RepGroup Defines each replication group in the server.
Roles Defines Roles
RoleGrants Contains Users and Roles granted to Roles
Translation National character support tables
UDTCast Contains source & target data types used in casting operations for UDTs.
UDTInfo Captures the specifics contained within the CREATE TYPE statement.
UDTTransform Contains the transform group name and the routine identifiers.

Database DBC can only be restored to an initialized Teradata Database system.

ds186034
Sticky Note
if just DBCthen these are the only set of tables that gets archived in dBCnt everything gets archived(non-hierarchy dependent objects)users view are not thereor unlesss we use ALL option

ds186034
Sticky Note
initializedwe have done a sysinit on...

 Archiving Data Page 58-46

Summary
The facing page summarizes some important concepts regarding this module.

Archiving Data Page 58-47

Summary

• Archive and Recovery (ARC) is a command-line utility that performs three
operations: archive, restore and recovery.

• For small systems, the optimum number of sessions for archive and recovery
operations is:

– One per AMP vproc for archive
– Two per AMP vproc for recovery

• An archive operation can back up a single database or table, multiple
databases or tables, or all databases.

• Available archive levels are all-AMP, specific AMP and cluster archives.

 Archiving Data Page 58-48

Module 58: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Archiving Data Page 58-49

Module 58: Review Questions

1. True or False. The Archive and Recovery utility protects against more types of
potential data loss than automatic data protection features.

2. True or False. Recovery and FastLoad are about the same in ease and speed to
recover data.

3. True or False. An All-AMPs archive of a database archives all of the objects in the
database.

4. True or False. Archiving a partition of a PPI table places a partition-level lock on the
partition being archived.

ds186034
Sticky Note
falsePPI it gives u a table level lockso false

 Archiving Data Page 58-50

Notes

Restoring Data Page 59-1

Module 59

Teradata Proprietary and Confidential

Restoring Data

After completing this module, you will be able to:

 Use the ARC facility to replace existing data on a Teradata
system with information stored on portable storage media.

 Understand the RESTORE, COPY, BUILD, REVALIDATE
REFERENCES FOR, and RELEASE LOCK statements.

 Use Recovery Control views to obtain ARC event information.

 Restoring Data Page 59-2

Notes

Restoring Data Page 59-3

Table of Contents

Understanding Restore Operations .. 59-4

Considerations before Restoring Data ... 59-4
Restore-Related Statements ... 59-6
The Restore Statement ... 59-8
Restoring Examples ... 59-10
RESTORE Example and Output .. 59-12

EXCLUDE TABLE Caution: .. 59-12
RESTORE Considerations if the Configuration has Changed ... 59-12

Restoring Selected Partitions of PPI Table .. 59-14
RESTORE Partition Example .. 59-16
COPY Statement .. 59-18

Copying Partitioned Data ... 59-18
Copying Objects ... 59-20

Keyword Options with COPY ... 59-20
Copying .. 59-22
BUILD Statement .. 59-24
RELEASE LOCK Statement ... 59-26
Revalidate References .. 59-28
Revalidate References Output .. 59-30
Recovery Control Data Dictionary Views ... 59-32

DBC.Association[V][X] Views ... 59-32
DBC.Events[V][X] Views ... 59-32
DBC.Events_Configuration[V][X] Views ... 59-32
DBC.Events_Media[V][X] Views ... 59-32

Association View ... 59-34
Events View ... 59-36
Restoring Data Summary ... 59-38
Module 59: Review Questions ... 59-40

 Restoring Data Page 59-4

Understanding Restore Operations
A restore operation transfers database information from archive files backed up on portable
storage media to all AMP vprocs, clusters of AMPs, or specified AMP vprocs.

Considerations before Restoring Data
Before performing a restore operation, consider the following items.

Dropped Database and Users – a restore of a database DBC drops all new databases or
users created since the time the archive was created.

Dropped Tables, Views, and Macros – a restore of a user database drops any new tables,
views, macros, stored procedures, and triggers created since the archive of the database.

Restoring Undefined Tables with COPY – because of potentially conflicting database and
table internal identifiers, you cannot restore a database or table to another system that does
not contain an equivalent definition of the entity (for example, the same name and internal
identifier). To restore data tables that are not already defined in the data dictionary, use the
COPY statement.

Insufficient Memory for Large Tables – Teradata ARC uses the same methodology as the
Teradata SQL CREATE INDEX function to rebuild secondary table indexes. If there is
insufficient available disk space, it may not be possible to restore a very large table because
of the amount of temporary disk space that is required to recreate a secondary index.

Join Indexes – Prior to Teradata 13, ARC did not archive or restore join indexes. If a
database containing a join index is restored, then the join index will no longer exist when the
restore operation is complete. If a partial database restore is done where a table is restored,
any join indexes that reference that table will be marked as invalid.

Matching Hash Functions for Large Objects – Teradata ARC supports the restore
operation for tables that contain large object columns as long as the database system is
enabled for large object support. However, large object columns cannot be restored on a
system that uses a hash function that is different than the one used for the archive.

Certain Statements Force the Restoration of the Entire Database – a Teradata SQL
DROP or RENAME statement cause the definition of an entity to be removed from the
dictionary, and this same definition cannot be re-created using a Teradata SQL CREATE
statement because a create operation is a new logical definition.

Restoring Data Page 59-5

Understanding Restore Operations

Restore operations transfer information from archive files to AMP vprocs.

Data Definitions

• Database archives contain dictionary definitions.

• Dictionary table archives contain dictionary definitions.

Replacing Objects

• ALL AMP vproc archives contain data and dictionary definitions.

• Restore operations replace both.

Notes:

• You can only RESTORE an entity if the Data Dictionary has an equivalent definition of
the entity being restored (same name and internal ID).

• The COPY operation can be used if the object doesn't exist. To COPY the object in a
database/user, the database/user must exist on the target system.

ds186034
Sticky Note
brandi-cake-football-palm springstable is recreated(got new id from next)we have archive from day beforetry to restore football--get error name matches bt object id does notcannot do restore on football but i can do....bt i can copy!if obj id does nt match then we can do copy...across diff amp diff system

 Restoring Data Page 59-6

Restore-Related Statements
The Archive and Recovery utility provides several recovery control statements you use
during restore-related operations. Each command is described below:

ANALYZE Reads the contents of an archive tape and displays
the information.

BUILD Builds indexes for fallback and non-fallback

tables. It also builds fallback rows for fallback
tables, and can build journal tables by sorting the
change images.

COPY Copies a database or table from an archived file to

the same or different Teradata system than the one
from which it was archived.

DELETE DATABASE Deletes all data tables, views and macros from the

database. This command does not remove journal
tables.

RELEASE LOCK Removes a utility lock from a specific database or

table.

RESTORE Moves data from archive files back to the same

Teradata system from which it was archived. You
can also restore data to another system. For
example, migrating from V1 to V2 required a fresh
system (Sysinit).

REVALIDATE
REFERENCES FOR

Validates inconsistent restraints against a target
table thereby allowing users to execute UPDATE,
INSERT and DELETE statements on the tables.

You may invoke the Archive and Recovery utility from a channel-attached MVS or VM
host system.

Restoring Data Page 59-7

Restore-Related Statements

LOGON Begins a session.

LOGOFF Ends a session and terminates the utility.

ANALYZE Reads an archive tape to display information about its contents.

RESTORE Restores a database or table from an archive file to specified
AMP Vprocs.

COPY Restores a copy of an archived file to a specified Teradata
database System.

BUILD Builds Indexes and fallback data.

RELEASE LOCK Releases host utility locks on databases or tables.

DELETE DATABASE Deletes data tables, views and macros from a database.

REVALIDATE Validates inconsistent restraints against a target table thereby
REFERENCES allowing users to execute UPDATE, INSERT and DELETE

statements on the tables.

ds186034
Sticky Note

 Restoring Data Page 59-8

The Restore Statement
The RESTORE statement allows you to replace database objects from an archive tape to the
same system or to another system. The ARC facility has four types of restore or recover
operations described below:

Data Tables
The DATA option restores fallback, non-fallback, or both types of data tables to all AMP
vprocs or clusters of AMP vprocs. If you restore a database, the data dictionary definitions
(for table, view, macro, and triggers) are restored automatically. If you restore a table, only
table definition rows are included.

Dictionary Tables
The DICTIONARY option restores data dictionary rows that describe the databases or tables
dumped (necessary with a cluster-level restore). A RESTORE DICTIONARY TABLES
only restores the definitions of all the entities in the dictionary for the selected databases.

No Fallback Tables
Use the no fallback option to restore a single processor.

Journal Tables
This option restores an archived journal for subsequent use in a roll operation.

Restore Fallback
This option applies only to data table restores of fallback tables. This option restores the
fallback copy of primary and unique secondary indexes while restoring the data.

No Build
NO BUILD prevents secondary indexes on non-fallback tables from being restored or built.
On fallback tables, it prevents the creation of secondary indexes and fallback table rows.

Release Lock
Automatically release of the utility locks when a restore completes successfully.

Abort
This option causes an all-AMP restore to abort with error messages if an AMP is offline and
the restore includes a non-fallback table. It does not affect a specific-AMP restore.

Restoring Data Page 59-9

RESTORE Statement

,

RESTORE DATA TABLES (dbname) A

DICTIONARY TABLE ALL OPTIONS

NO FALLBACK (dbname.tname)

JOURNAL ALL FROM ARCHIVE

A B
, 4096

, EXCLUDE (dbname) , CLUSTERS = nnn RESTORE FALLBACK
ALL CLUSTER

(dbname1) TO (dbname2) 5
AMP = n

B , FILE = name ;

, ABORT , NO BUILD , RELEASE LOCK

(A1
,

EXCLUDE TABLE/TABLES (xtname)

xdbname.xtname

A1)

PARTITIONS WHERE (! cond_exp !)
, LOG WHERE (! cond_exp !) , ERRORDB edbname

ALL PARTITIONS , ERRORTABLES etname

QUALIFIED PARTITIONS edbname.etname

OPTIONS

ds186034
Sticky Note
restore footballif did not drop itif then brandi...u can do all from archivethen i restored brandi and jason

ds186034
Sticky Note
no build:restore data tablebut no FB or SIcause i first wanna run journals first and then do it

 Restoring Data Page 59-10

Restoring Examples
Three RESTORE examples are shown on the facing page.

As mentioned before, you can restore archived data tables to the Teradata Database if the
data dictionary contains a definition of the entity (same name and same internal ID) you
want to restore.

For example, if the entity is a database, that database must be defined in the dictionary. Or,
if the entity is a table, that table must be defined in the dictionary. You cannot restore
entities not defined in the data dictionary.

A dictionary table archive contains all table, view, and macro definitions in the database. A
restore of a dictionary archive restores the definitions of all data tables, views and macros.
However, it does not restore any data.

ALL FROM ARCHIVE
In the first example, the ALL FROM ARCHIVE keywords take the place of the database
and/or table names that are normally specified after the DATA, DICTIONARY, JOURNAL,
or NO FALLBACK TABLES keywords.

You are not allowed to specify any other database or table names to be restored when using
ALL FROM ARCHIVE. All databases and tables in the given archive file will be restored,
and any existing databases or tables will be overwritten.

ALL FROM ARCHIVE can not be used to restore database DBC. The user must exclude
DBC if it is present in the archive being restored.

Specified Database
The second example is restoring the DS database when all AMP vprocs are online. The
restore type is data and the restore object is all databases belonging to user DS. Since there
is no mention of any restore levels, such as a specific AMP number, the system assumes all
AMPs. The release lock option removes the utility lock after completing the restore
operation. The name of the archive file is “arch3_DS”.

The third example has a narrower scope. This statement is only restoring non- fallback
tables on AMP 1. The administrator has already performed an all-AMPs restore on the rest
of the system. The release lock option removes the utility lock after completion of the
restore operation. The archive filename is “arch3_Sys”.

Any databases or users created since the Archive of the dictionary or any table, view, or
macro created since the archive of a database will be dropped when you restore the DBC
database or a user database.

Restoring Data Page 59-11

RESTORE Examples

Restore all tables and databases from
archive (ALL AMPs restore with all AMPs
online).

Restores all objects for DS and restores all
rows to the point-in-time of archive –
ONLINE option is not used on RESTORE.

LOGON dbc/sysdba,dbapass;
RESTORE DATA TABLES ALL FROM ARCHIVE
, RELEASE LOCK, ABORT, FILE = arc1_PD;

LOGOFF;

restore1_pd.arc

LOGON dbc/sysdba,dbapass;
RESTORE DATA TABLES (DS)
, RELEASE LOCK, ABORT, FILE = arc3_DS;

LOGOFF;

restore3_ds.arc

LOGON dbc/sysdba,dbapass;
RESTORE NO FALLBACK TABLES (SYSDBA) ALL
, AMP=1, RELEASE LOCK, FILE = arc4_Sys;

LOGOFF;

restore_amp1.arc

Restores non-Fallback tables for Sysdba
and ALL child databases/users of Sysdba
(single AMP restore - AMP 1).

DATA
TABLE(S)RESTORE

DATA TABLES

ARC Facility

ds186034
Sticky Note
all from archiveCAREFULcause restores everything from the system

ds186034
Sticky Note
can restore single dbbuild this and run it

 Restoring Data Page 59-12

RESTORE Example and Output
An example of the output from a RESTORE command is shown on the facing page.

EXCLUDE TABLE Caution:
When you do a full database-level restore of an archive with excluded tables, the data dictionaries
and the table headers of all tables, including excluded tables, are replaced.

As a result, all of the existing rows in the excluded tables are deleted.

You can restore individual tables from a database-level archive with excluded tables. In the
RESTORE statement, you must individually specify all the tables you want to restore, except the
excluded tables. By omitting the excluded tables, you preserve the data dictionaries and table
headers of the excluded tables. That way you can restore the database from the archive without
altering the excluded tables.

RESTORE Considerations if the Configuration has Changed
When restoring or copying to the same configuration that the archive came from, then the first AMP
takes all the rows in the block and there is no redistribution.

However, if the configuration is different, then the data rows have to be redistributed. Prior to
Teradata 12, the redistribution occurred during the restore phase. As arcmain restored or copied
blocks of data to a system, each block was sent to the AMP that owned the first row. That AMP took
rows from the block until a row was detected that belonged to a different AMP, the remainder of the
block was sent on to that AMP. This continued until the block was empty. This approach worked
well enough until PPI came along. With PPI tables, blocks began to bounce between AMPs more
than a non-PPI table.

Starting with Teradata 12, the restore was modified so when an AMP receives a block the entire
block is placed in a temporary subtable. When the build occurs the data is sort merged to place the
data in row order and redistributed to the correct AMP. This made the restore blazing fast, but the
build can be very slow depending on the size of the system and the type of table. More memory
helps, but when the data (an AMP has to sort merge) is larger than it can buffer, then there is
additional I/O that will slow you down more.

With Teradata 13, the sort merge is moved to the end of the restore phase. The blocks are still stored
in temporary sub tables, but the sort merge will usually be faster in Teradata 13. With Teradata13,
the redistribution occurs at the end of the restore phase. As blocks of data are sent to the AMPs, the
AMPs break the data into buffers. There is 1 buffer for each AMP. As the buffers fill they are sent to
the correct AMP. At the end of the restore phase each AMP sorts and merges the data.

The build phase under TD13 is like V2R6, secondary indexes and fallback are recreated and the
restore flag is reset.

The old redistribution algorithm can still be used by adding NOSORT as a command line parameter.
There are times when NOSORT will be faster and times when SORT will be faster. Only testing
will determine the whether this option is useful or not.

Restoring Data Page 59-13

RESTORE Example and Output

LOGON dbc/sysdba,dbapass;
RESTORE DATA TABLES

ALL FROM ARCHIVE
, ABORT
, RELEASE LOCK
, FILE = arc1_PD;

LOGOFF;

restore1_pd.arc

Output from this restore script ...

… :

… RESTORE DATA TABLES ALL FROM ARCHIVE
… , ABORT
… , RELEASE LOCK
… , FILE = arc1_PD;
… UTILITY EVENT NUMBER - 17
… LOGGED ON 4 SESSIONS
… STARTING TO RESTORE DATABASE "PD"
… "LargeTableSpaceTotal" - VIEW RESTORED
… "SetAnsiDate_OFF" - MACRO RESTORED
… "SetAnsiDate_ON" - MACRO RESTORED
… DICTIONARY RESTORE COMPLETED
… "Department" - 3,446 BYTES, 60 ROWS RESTORED
… "Dept_Summary" - 2,966 BYTES, 50 ROWS RESTORED
… "Employee" - 65,077 BYTES, 1,000 ROWS RESTORED
… "Emp_Phone" - 52,504 BYTES, 2,000 ROWS RESTORED
… "GT_Deptsalary" - 548 BYTES, 0 ROWS RESTORED
… "Job" - 2,898 BYTES, 66 ROWS RESTORED
… "Phone_Summary" - 51,464 BYTES, 1,960 ROWS RESTORED
… "PD" - LOCK RELEASED

… STATEMENT COMPLETED

ds186034
Sticky Note
viewsmacrosandthen all tablesin alpha order

 Restoring Data Page 59-14

Restoring Selected Partitions of PPI Table
Selected partitions can be directly backed up and restored with a PARTITIONS WHERE
option that restricts the list of rows processed. The PARTITIONS WHERE option operates
on complete table partitions. A RESTORE (or COPY) completely wipes out selected
partitions (specified by the PARTITIONS WHERE option) of an existing target table before
recovering the rows stored on the backup tape.

A restore of selected partitions is impacted by the various maintenance activities that can
occur on a table. For example, a user may not be able to perform a full-table backup every
time a secondary index is added or dropped, or the partitioning expression is changed. A
restore of selected partitions is able to restore data into a target table with different
characteristics than the source stored on tape.

To RESTORE selected partitions, a table must already exist on the target system.

PARTITIONS WHERE Keyword
Use the PARTITIONS WHERE option to specify the conditional expression, which contains
the definition of the partitions that you want to restore. The following restrictions apply to
the use of PARTITIONS WHERE option:

 The object must be an individual table name (not a database).
 The source and target tables must have a PARTITIONS BY expression defined.
 The restore is an all-AMP restore (not a dictionary, cluster, or journal restore).
 If the table belongs to a database that is specified in the RESTORE statement, the

table is excluded from the database-level object (with EXCLUDE TABLES) and is
individually specified.

 Any name specified in the conditional expression is within the table specified.
 It is recommended that the only referenced columns in the conditional expression

be the partitioning columns or system-derived column PARTITION of the table.
References to other columns do not contribute to partition elimination, and might
accidentally qualify more partitions than intended.

LOG WHERE Keyword
You might find that the PARTITIONS WHERE option does not capture all the rows that
need to be restored. In this case, use the LOG WHERE option to insert into a Teradata-
generated error table archived rows that both fall outside the partitions specified by the
PARTITIONS WHERE conditional expression and match the LOG WHERE conditional
expression.

Use the option only if PARTITIONS WHERE is also specified for the object. If LOG
WHERE is omitted, the default is to log to the error table only the rows in the partitions
being restored that have errors.

Restoring Data Page 59-15

Restoring Selected Partitions of PPI Table

PARTITION Options with RESTORE and COPY commands.

PARTITIONS WHERE (! conditional expression !)

This option specifies a conditional expression that contains the definition of the
partitions that you want to restore/copy.

LOG WHERE (! conditional expression !) – the conditional expression specifies rows to log to
the error table when restoring selected partitions.

ERRORDB / ERRORTABLES – specifies the location of the error log for partition-level
operations.

ALL PARTITIONS

Use this option to restore/copy all of the archived partitions for a PPI table.

QUALIFIED PARTITIONS (may not be used very often)

Use this option only to restore/copy a specific-AMP archive after restoring selected
partitions from an all-AMP archive done while an AMP is down.

Note: For partition archives, specify PARTITIONS WHERE or ALL PARTITIONS.

If PARTITIONS WHERE or ALL PARTITIONS options are not specified for a RESTORE
or COPY operation, the default action is to overwrite the entire table with the archived
table definition and data. Essentially, this is the same as a full-table restore.

ds186034
Sticky Note
restore using partitionit wipes out the tableand puts 3 months backusing archive imagine only 3 P in it

 Restoring Data Page 59-16

RESTORE Partition Example
An example of a Restore script that restores all partitions in a partition archive for a PPI
table is shown on the facing page.

The partitioning expression for the Sales_PPI table is:

PARTITION BY RANGE_N (sales_date BETWEEN DATE '2002-01-01' AND DATE '2011-12-31'
EACH INTERVAL '1' MONTH);

Additional Notes when Restoring Partitions

Always Specify PARTITIONS WHERE or ALL PARTITIONS – If the PARTITIONS
WHERE or ALL PARTITIONS options are not specified for a RESTORE or COPY
operation, the default action is to overwrite the entire table with the archived table definition
and data. Essentially, this is the same as a full-table restore.

For example, if you forget to use PARTITIONS WHERE when you try to restore a single
partition backup, data is dropped from the table and the single partition stored on the archive
is restored.

Know What Partitions are Being Deleted – with a RESTORE or COPY operation, all
partitions that match the PARTITIONS WHERE condition are deleted, even if they are not
stored in the archive.

For example, if you restore an archive that only contains the data for November 2012, but
mistakenly enter a PARTITIONS WHERE condition that matches both October and
November 2012, the data for both October and November 2012 are deleted, and only
November 2012 is restored.

The remedy for this situation is to be very careful about using the PARTITONS WHERE
condition. If there is any doubt about which partitions are affected, COPY the selected
partition backup to a staging table, and manually copy the desired partition(s) into the target
table using INSERT/SELECT and/or DELETE.

Avoid Restoring From a Previous Partitioning Scheme – when changing the partitioning
expression for a table, it is possible to change the boundaries of existing partitions. If these
partitions are restored, Teradata might either drop more data than expected or restore less
data than expected, if the archive does not include data for all of the selected partitions.

For example, if an archive is done on a table partitioned by month with the archive data
corresponding to October 2011, and the table is re-partitioned by week, then a PPI restore of
the October backup (using ALL PARTITIONS) overwrites the data for all weeks that
contain at least one day in October. As a result, the last few days of September and the first
few days of October might be deleted and not restored.

The remedy for this situation is to avoid restoring partition backups from a previous
partitioning scheme to an updated table. Or, use LOG WHERE for the weeks that contain
days in both October and September/November, and manually copy the rows into the table.

Restoring Data Page 59-17

RESTORE Partition Example

LOGON dbc/sysdba,dbapass;
RESTORE DATA TABLES

(TFACT.Sales_PPI) (ALL PARTITIONS), ABORT, RELEASE LOCK, FILE = arc6_PPI;
LOGOFF;

restore6_ppi.arc

arcmain < restore6_ppi.arc

Portion of output from executing above script

RESTORE DATA TABLES
(TFACT.Sales_PPI) (ALL PARTITIONS), ABORT, RELEASE LOCK, FILE = arc6_PPI;

UTILITY EVENT NUMBER - 38
LOGGED ON 4 SESSIONS
STARTING TO RESTORE TABLE "TFACT"."Sales_PPI"
Archive Bounding Condition:
RANGE_N("TFACT"."SALES_PPI"."sales_date" BETWEEN DATE '2002-01-01' AND DATE '2011-12-31' EACH INTERVAL
'1' MONTH) IN (118 TO 120)

[Bounding condition is well-defined]

Restore Bounding Condition:
RANGE_N("TFACT"."SALES_PPI"."sales_date" BETWEEN DATE '2002-01-01' AND DATE '2011-12-31' EACH INTERVAL

'1' MONTH) IN (118 TO 120)
[Bounding condition is well-defined]

DICTIONARY RESTORE COMPLETED
"Sales_PPI" - 2,391,241 BYTES, 40,500 ROWS RESTORED
"TFACT"."SALES_PPI" - LOCK RELEASED

ds186034
Sticky Note
restore using partitionit wipes out the tableand puts 3 months backusing archive imagine only 3 P in it

 Restoring Data Page 59-18

COPY Statement
Use the COPY statement to recreate tables and/or databases that have been dropped or to
restore them to the same system or to a different system.

Some of the options for the COPY statement are:

NO FALLBACK Copies fallback tables into non-fallback tables. This

option applies during the COPY of an all-AMP or
DICTIONARY archive.

NO JOURNAL Copies all tables with journaling disabled. This option
applies during the COPY of an all-AMP or
DICTIONARY archive.

WITH JOURNAL TABLE = Overrides the default journal table of the receiving
database for tables that had journaling enabled. This
option applies during the COPY of an all-AMP or
DICTIONARY archive.

APPLY TO Specifies to which tables in the receiving system

change images apply. This option is required when
copying journal images.

NO BUILD Prevents secondary indexes on non-fallback tables
from being copied or built. On fallback tables, it
prevents the creation of secondary indexes as well as
fallback table rows. There is no rehashing of V1 to V2
data.

ABORT Aborts ALL AMP copies with error messages if an
AMP is offline and the restore includes a non-fallback
table.

RELEASE LOCK Causes ARC to release utility locks when a copy
completes successfully.

Copying Partitioned Data
You can copy selected partitions of PPI tables, meaning that you can backup of one or more
partitions of a table so you can archive, restore, and copy only a subset of data in a table.

To COPY selected partitions, a table must already exist on the target system. For a COPY
operation, the existing table must have been created by a full-table COPY from the source
machine.

Restoring Data Page 59-19

COPY Statement

(FROM (dbname))

(dbname.tname) , NO FALLBACK , REPLACE CREATOR , NO JOURNAL

WITH JOURNAL TABLE = (db.tn)

, 4096
APPLY TO (dbname.tname)

OPTIONS #1

,

COPY DATA TABLES (dbname) A

DICTIONARY TABLE (dbname.tname) OPTIONS #1 OPTIONS #2

NO FALLBACK ALL FROM ARCHIVE

JOURNAL

A B
, 4096

, EXCLUDE (dbname) , CLUSTERS = nnn
ALL CLUSTER =

(dbname1) TO (dbname2) 5
AMP = n

B , FILE = name ;

, ABORT , NO BUILD , RELEASE LOCK

OPTIONS #2

Same options with RESTORE – shown previously.

ds186034
Sticky Note
similar to restoreit does not have the ALL optso does not do archive below

 Restoring Data Page 59-20

Copying Objects
The COPY statement has two uses:

 It uses an archived file to recreate tables and/or databases that have been dropped.
 It copies archived files to a different system.

The COPY statement can perform one of the following tasks:

 Copy an object that has been dropped back into the original system.
 Copy an object from one system to another.
 Copy an object back to the same system.

Keyword Options with COPY

NO FALLBACK Keywords
This option applies only during a copy of a dictionary archive or an all-AMPs archive. If a
fallback table has permanent journaling on the archive, the table has dual journaling of its
non-fallback rows after the copy when Teradata ARC applies the NO FALLBACK option
(unless NO JOURNAL is specified).

FROM Keyword
The object specified in the FROM keyword identifies the archive object. This option applies
only during a copy of a dictionary archive or an all-AMPs archive.

Journal enabled tables in the original archive carry their journaling forward to the copy
unless you specify the NO JOURNAL keywords.

The NO JOURNAL keywords apply to all tables in a database when you copy a database.
This option has no effect on a receiving database’s journaling defaults.

If the object you specify in the FROM option is a table, ARC copies only that table.

WITH JOURNAL TABLE Keywords
This option only applies during a copy of a dictionary archive or an all-AMPs archive. To
use this option, you must have INSERT access rights to the referenced journal table. The
source table must have a journal or this option has no effect.

If you are copying a database, the journaling you specify with this option applies only to
those tables that had journaling enabled in the original database. This option has no effect
on a receiving database’s default journaling.

If the database has default journaling specified, then ARC uses those options. This option
only overrides the journal table in the receiving database, and is only valid if the originating
table had journaling enabled.

Restoring Data Page 59-21

Copying Objects

ARCHIVE
DATA TABLES

ARC Facility

Original Data Tables Receiving Data Tables

COPY
DATA TABLES

ARC Facility

LOGON dbc/sysdba,dbapass;
COPY DATA TABLES (SANDBOX)

(FROM (DEMO))
, ABORT , RELEASE LOCK
, FILE = arc_demo;

LOGOFF;

copy1_demo.arc

Copy objects from archive of Demo
database to Sandbox database.

LOGON dbc/sysdba,dbapass;
COPY DATA TABLE (SANDBOX.Employee)

(FROM (DEMO),
NO FALLBACK, REPLACE CREATOR)

, ABORT , RELEASE LOCK
, FILE = arc_demo;
LOGOFF;

copy2_demo.arc

Copy Demo.Employee from archive to
Sandbox.Employee and change some attributes.

ds186034
Sticky Note
3 tableswanna put into a diff db(same syst or diff syst)

 Restoring Data Page 59-22

Copying
Examples of the output from the previous COPY operations are shown on the facing page.

Views, Macros, Triggers, and Stored Procedures
Copying a full database archive is the same as a restore operation. ARC deletes or drops all
existing tables, views, macros, stored procedures, and triggers in the receiving system.
Copying a full database archive copies all views, macros, and stored procedures in the
archive to the receiving database.

But triggers cannot be copied with the COPY statement. If a trigger is defined in a database,
then <trigger> NOT COPIED is displayed when the COPY statement is executed. This is
not an error or warning. Triggers must be manually recreated via SQL.

You cannot copy one or more stored procedures from one database to another using the
COPY statement. They can only be copied as part of a full database.

If your views, stored procedures, and macros have embedded references to databases and
objects that are not in the receiving environment, those views, stored procedures, and
macros will not work. To make any such views, stored procedures, and macros work,
recreate or copy the references to which they refer into the receiving database.

If your views, stored procedures, and macros have embedded references to databases and
objects that are in the receiving environment, they will work correctly.

Note: Make sure you fully qualify all table, stored procedure, and view names in a macro
and all table names in a view. If you do not, you may receive an error. When you execute a
COPY statement, partial names are fully qualified to the default database name. In some
cases, this may be the name of the old database.

Referential Integrity
After an all-AMPs copy, copied tables do not have referential constraints. First, referential
constraints are not copied into the dictionary definition tables, database
DBC.ReferencedTbls and database DBC.ReferencingTbls, for either a referenced (parent) or
referencing (child) table copied into a Teradata Database. Moreover, all referential index
descriptors are deleted from the archived table header before it is inserted into the copied
table.

For tables that already exist (same name) in the target system, reference constraints remain.
However, on any table for which the copied table is a referenced table (a parent table) or a
referencing table (a child table), the RI constraint will be marked in the dictionary definition
tables as inconsistent.

Restoring Data Page 59-23

Output of Copying Objects

Output from 1st copy example

… COPY DATA TABLES (SANDBOX) (FROM (DEMO))
… , ABORT
… , RELEASE LOCK
… , FILE = arc_demo;
… UTILITY EVENT NUMBER - 19
… LOGGED ON 4 SESSIONS
… "SANDBOX"."Department" CREATED
… "SANDBOX"."Employee" CREATED
… "SANDBOX"."Emp_Phone" CREATED
… "SANDBOX"."Job" CREATED
… "SANDBOX"."Salary_Log" CREATED
… STARTING TO COPY DATABASE "SANDBOX"
… "Raise_Trig" - TRIGGER NOT COPIED
… DICTIONARY COPY COMPLETED
… "Department" - 3,446 BYTES, 60 ROWS COPIED
… "Employee" - 65,077 BYTES, 1,000 ROWS COPIED
… "Emp_Phone" - 52,504 BYTES, 2,000 ROWS COPIED
… "Job" - 2,898 BYTES, 66 ROWS COPIED
… "Salary_Log" - 626 BYTES, 1 ROWS COPIED
… "SANDBOX" - LOCK RELEASED

Output from 2nd copy example

… COPY DATA TABLE (SANDBOX.Employee)
(FROM (DEMO), NO FALLBACK, REPLACE CREATOR)

… , ABORT
… , RELEASE LOCK
… , FILE = arc_demo;
… LOGGED ON 4 SESSIONS
… UTILITY EVENT NUMBER - 20
… *** Warning 3803:Table 'Employee' already exists.
… STARTING TO COPY TABLE "SANDBOX"."Employee"
… DICTIONARY COPY COMPLETED
… "EMPLOYEE" - 65,077 BYTES, 1,000 ROWS COPIED
… "SANDBOX"."EMPLOYEE" - LOCK RELEASED
…

ds186034
Sticky Note
TEST QUE

ds186034
Sticky Note
we do not copy triggerrestored bt not copyst 1 logonst 2 build db table (); logoff

 Restoring Data Page 59-24

BUILD Statement
The BUILD statement recreates unique and non-unique secondary indexes on non-fallback
and fallback tables. This statement also builds fallback rows for fallback tables when the
restore statement was performed with the NO BUILD option and generates journal tables by
sorting the change images.

You must rebuild indexes for non-fallback tables after a restore operation if any of the
following situations occur:

 An AMP vproc is offline during a dump or restore.
 The restore operation is not an all-AMP vproc restore.
 The archive did not include the INDEXES option.
 The restore included the NO BUILD option.

Format

DATA TABLES
JOURNAL TABLES
NO FALLBACK TABLES or NO FALLBACK TABLE

 This identifies the type of table to build.

 The default is NO FALLBACK TABLE.

 Specify DATA TABLES when building fallback, non-fallback, or both types of

tables from all AMPs. This option normally follows the restore of a cluster
archive.

 Specify NO FALLBACK TABLE only when building indexes for non-fallback

tables.

The format of the BUILD statement is shown on the facing page. The following example
builds unique and non-unique secondary indexes for all tables in Sysdba and any child
user/databases. The release lock option removes the utility lock after successful completion
of the build operation.

 BUILD DATA TABLES (Sysdba) ALL, RELEASE LOCK;

Restoring Data Page 59-25

BUILD Statement

BUILD
DATA TABLES

ARC Facility

NO FALLBACK Data Tables FALLBACK Data Tables

BUILD
DATA TABLES

ARC Facility• Recreates unique
secondary indexes

• Recreates non-unique
secondary indexes

• Recreates unique
secondary indexes

• Recreates non-unique
secondary indexes

• Builds fallback rows

,

BUILD (dbname) A

DATA TABLES ALL

JOURNAL TABLES (dbname.tname)

NO FALLBACK TABLES

NO FALLBACK TABLE

A ;
,

, EXCLUDE (dbname) , RELEASE LOCK , ABORT
ALL

(dbname1) TO (dbname2)

 Restoring Data Page 59-26

RELEASE LOCK Statement
The ARC utility places locks on database objects while it performs archive and restore
activities. These locks are referred to as utility-level locks.

The ARC utility does not automatically release these locks upon successful completion of an
ARC command. In fact, these locks remain intact even when an AMP vproc goes down and
comes back online. You must submit the RELEASE LOCK statement to remove the locks.

Not everyone can issue the release lock statement. You must have either the DUMP or the
RESTORE privilege on the locked object. You can also release a utility-level lock if you
are the owner of the locked object.

You may submit the RELEASE LOCK option at the same time you issue ARCHIVE,
ROLLBACK, ROLLFORWARD, RESTORE, COPY, and BUILD commands. This
accomplishes the same purpose as issuing the RELEASE LOCK statement.

The release lock syntax is shown on the facing page. Options are described below:

ALL Releases locks on AMP vprocs that are offline when
the RELEASE LOCK statement is issued. The utility
releases locks when the AMP vprocs return to online
operation.

OVERRIDE Allows locks to be released by a user other than the

one who set them. This option requires that the User
has the DROP DATABASE privilege on the object or
is an owner.

BACKUP NOT DOWN Allows locks to remain on non-fallback tables (with

single after-image journaling) for those AMP vprocs
where the permanent journal backup AMP vproc is
offline. The utility releases all other locks requested.

Restoring Data Page 59-27

RELEASE LOCK Statement

RELEASE LOCK You must have ARCHIVE or RESTORE privilege on the object or be the owner.

OVERRIDE You must have DROP DATABASE privilege on the object or be an owner.

ALL Also releases locks on offline AMPs. (Locks released when vproc is returned to
service.)

BACKUP Allows locks to remain on no fallback table (with single after image journals) on
NOT DOWN vproc whose permanent journal backup vproc is down.

,

RELEASE LOCK (dbname) A

ALL

(dbname.tname)

A B
,

, EXCLUDE (dbname)
ALL

(dbname1) TO (dbname2)

B ;
4096 , ALL , OVERRIDE , BACKUP NOT DOWN

, CLUSTERS = nnn
CLUSTER

5
AMP = n

 Restoring Data Page 59-28

Revalidate References
When either referenced (parent) or referencing (child) table is restored, the reference is
marked inconsistent in the database dictionary definitions. As a result, the system does not
allow application users to execute UPDATE, INSERT or DELETE statements on such
tables.

The REVALIDATE REFERENCES FOR statement validates the inconsistencies thereby
allowing users to execute UPDATE, INSERT and DELETE statements on the tables.

The REVALIDATE REFERENCES FOR statement:

 Validates the inconsistent reference index on the parent table and the child table.

 Creates an error table.

 Inserts rows that fail the referential constraint specified by the reference index into

the error table.

If inconsistent restraints remain after you execute the statement, you can use the statement,
ALTER TABLE DROP INCONSISTENT REFERENCES, to remove them.

Required Privileges
To use the REVALIDATE REFERENCES FOR statement, the username you have specified
in the LOGON statement must have one of the following privileges:

 RESTORE privileges on the table you are revalidating
 Ownership privileges on the database or table

Example
The facing page shows the syntax for the REVALIDATE REFERENCES FOR statement.

Restoring Data Page 59-29

Revalidate References

The REVALIDATE REFERENCES FOR statement validates the inconsistencies
between foreign and parent keys.

This allows users to execute UPDATE, INSERT and DELETE statements on the tables.

,

REVALIDATE REFERENCES FOR (dbname) A

ALL

(dbname.tname)

A ;
,

, EXCLUDE (dbname) , RELEASE LOCK , ERRORDB dbname
ALL

(dbname1) TO (dbname2)

LOGON dbc/sysdba,dbapass;
REVALIDATE REFERENCES FOR (PD) , RELEASE LOCK;
LOGOFF;

revalidate_ref_pd.arc

Revalidate references
for the PD database.

Example:

ds186034
Sticky Note
bunch of tablesRIarchiverestorebutref constraint is marked NOPEso cannot insert/upd/delso TD says if ur have restoredlets get RI constraint gets re validated for all tables in the systemthat have RIrecheck it

 Restoring Data Page 59-30

Revalidate References Output
The facing page illustrates the output from using the REVALIDATE REFERENCES FOR
statement in the previous example.

Note: Error tables were not created for Department and Emp_Phone because all of the
foreign key values are parent key values. The Revalidate References command will only
create “error tables” if there are invalid foreign key values.

Restoring Data Page 59-31

Revalidate References Output

LOGON dbc/sysdba,dbapass;
REVALIDATE REFERENCES FOR (PD)
, RELEASE LOCK;
LOGOFF;

revalidate_ref_pd.arc Output from this restore script
:

… REVALIDATE REFERENCES FOR (PD)
… , RELEASE LOCK;

… VALIDATING REFERENCE INDEX '0' FOR TABLE PD.DEPARTMENT
… REFERENCES VALIDATED FOR INDEX 0.
… NO ERRORS FOUND.

… VALIDATING REFERENCE INDEX '0' FOR TABLE PD.EMPLOYEE
… REFERENCES VALIDATED FOR INDEX 0.
… 1 ERRORS FOUND AND LOGGED IN TABLE PD.EMPLOYEE_0

… VALIDATING REFERENCE INDEX '4' FOR TABLE PD.EMPLOYEE
… REFERENCES VALIDATED FOR INDEX 4.

… 1 ERRORS FOUND AND LOGGED IN TABLE PD.EMPLOYEE_4

… VALIDATING REFERENCE INDEX '8' FOR TABLE PD.EMPLOYEE
… REFERENCES VALIDATED FOR INDEX 8.
… 1 ERRORS FOUND AND LOGGED IN TABLE PD.EMPLOYEE_8

… VALIDATING REFERENCE INDEX '0' FOR TABLE PD.EMP_PHONE
… REFERENCES VALIDATED FOR INDEX 0.
… NO ERRORS FOUND.

… PD.EMPLOYEE - LOCK RELEASED
… PD.DEPARTMENT - LOCK RELEASED
… PD.JOB - LOCK RELEASED
… PD.EMP_PHONE - LOCK RELEASED
… STATEMENT COMPLETED

:

ds186034
Sticky Note
have errorbuild error table

 Restoring Data Page 59-32

Recovery Control Data Dictionary Views
The system views that contain information about ARC utility events are listed below. The
name, purpose, and dictionary table name of each view is also included.

DBC.Association[V][X] Views
These views provide information about objects that have been imported from another
Teradata Database system or otherwise created using the ARC COPY statement. The
associated table name is DBC.RCEvent.

DBC.Events[V][X] Views
These views provide a row for each archive and recovery activity. The associated table
name is DBC.RCEvent.

DBC.Events_Configuration[V][X] Views
These views provide information about archive and recovery activities that do NOT affect
all AMP vprocs. The associated table name is DBC.RCConfiguration.

DBC.Events_Media[V][X] Views
These views provide information about archive and recovery activities that involve
removable media. The associated table name is DBC.RCMedia.

Restoring Data Page 59-33

Recovery Control Data Dictionary Views

View Name Description

DBC.Association[V][X] Provides information about about objects
you import from another database system
(an example is provided).

DBC.Events[V][X] Provides an audit trail of all archive and
recovery activity (an example is provided).

Provides information about archive and
DBC.Events_Configuration[V][X] recovery activities that did not affect ALL

AMPs.

Provides information about archive and
DBC.Events_Media[V][X] recovery activities that involve removable

media.

 Restoring Data Page 59-34

Association View
The DBC.Association[V][X] views allow you to retrieve information about an object
imported from another Teradata Database.

An existing object created with the ARC utility COPY statement also displays in the
Association view. If you later drop a copied object from its new destination, the information
is deleted from the Association table and is no longer available.

Example
The example on the facing page uses the Association view to list all tables, views, or macros
that were copied into the Sandbox database. The result of the query displays imported table
names. The object column displays the current name of each table. The “From_Source”
column provides the name of the original table. The event column shows the event number
assigned to the copy operation.

Restoring Data Page 59-35

Association View

Provides information about
COPY operations.

Enables you to retrieve
information about an object
imported from another
Teradata database.

DatabaseName* TableName EventNum
Original_DatabaseName Original_TableName
Original_TableKind Original_Version
Original_ProtectionType Original_JournalFlag
Original_CreatorName Original_CommentString

* DatabaseName: The name of the database or user where the imported
object now resides.

DBC.Association[V][X]

Example: List all objects copied into the Sandbox database.

SELECT TRIM (DatabaseName) || '.' || TableName (FORMAT 'X(25)') AS Object
,TRIM (Original_DatabaseName) || '.' || Original_TableName (FORMAT 'X(25)') AS From_Source
,EventNum (FORMAT 'Z(4)9') AS Event

FROM DBC.AssociationV
WHERE DatabaseName LIKE '%Sandbox%'
ORDER BY Event_Num, Object;

Object From_Source Event

Sandbox.Department DEMO.Department 19
Sandbox.Emp_Phone DEMO.Emp_Phone 19
Sandbox.Job DEMO.Job 19
Sandbox.Salary_Log DEMO.Salary_Log 19
Sandbox.Employee DEMO.Employee 20

 Restoring Data Page 59-36

Events View
The DBC.Events[X] views track ARC activity. The ARC utility inserts a new row in the
Events system table each time another ARC activity begins. The Events views return a row
for each activity tracked. Each event type is listed below:

Checkpoint Event Row Created for each journal checkpoint
Copy Event Row Created for each database or table copied
Delete Event Row Created for each journal deleted
Dump Event Row Created for each database or table dumped
Restore Event Row Created for each database or table restored
Rollback Event Row Created for each database or table rolled back
Rollforward Event Row Created for each database or table rolled forward

Example
The SQL statement on the next page requests a list of all ARC activity that took place on
January 13, 2011. The results display five ARC activities.

Restoring Data Page 59-37

Events View

SELECT CreateDate
,EventNum (FORMAT 'Z(4)9') AS Event
,UserName (FORMAT 'X(12)')
,EventType (FORMAT 'X(12)')
,DatabaseName (FORMAT 'X(12)') AS DBName

FROM DBC.EventsV
WHERE CreateDate = '2011-01-13'
ORDER BY EventNum ;

Provides an audit trail of all archive and recovery activities for objects visible to you.

Example:
List all ARC activity that
occurred on Jan 13, 2010.

DBC.Events[V][X]

CreateDate AllAMPsFlag LockMode CreateTime
RestartSeqNum JournalUsed EventNum OperationInProcess
JournalSaved EventType TableName IndexPresent
UserName CheckpointName DupeDumpSet DatabaseName
LinkingEventNum* ObjectType DataSetName

CreateDate Event UserName EventType DBName

2011-01-13 15 SYSDBA Dump PD
2011-01-13 16 SYSDBA Dump PD
2011-01-13 17 SYSDBA Restore PD
2011-01-13 18 SYSDBA Restore PD
2011-01-13 19 SYSDBA Copy SANDBOX
2011-01-13 20 SYSDBA Copy SANDBOX

Example Results:

ds186034
Sticky Note
who is the guiltywho did d copyso eventsevery cmdarchive cmd will get a row generated

 Restoring Data Page 59-38

Restoring Data Summary
The facing page summarizes some important concepts regarding this module.

Restoring Data Page 59-39

Summary

• Restore operations transfer database information from archive files stored on
portable media to all AMP vprocs, AMP clusters or specified AMP vprocs.

• You can restore archived data tables to the database if the data dictionary
contains a definition of the entity you wish to restore.

• The primary statements that you use in recovery operations are:

– ANALYZE

– REVALIDATE REFERENCES FOR

– RESTORE

– RELEASE LOCK

– COPY

– BUILD

• Teradata features several recovery control system views that contain
information about ARC utility events.

ds186034
Sticky Note
another set of command to restore/review

 Restoring Data Page 59-40

Module 59: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Restoring Data Page 59-41

Module 59: Review Questions

1. True or False. You can use the RESTORE command to restore entities that are not
defined in the data dictionary.

2. True or False. When you execute a RESTORE of a database, any tables or views
created since the archive of the database are dropped when you restore
the database.

3. True or False. You can use the COPY operation to copy tables, views, macros, and
triggers from one system to another system.

4. The REVALIDATE REFERENCES FOR statement is used to validate Referential Integrity
between tables that are identified as ___________.

a. Invalid
b. Missing
c. Unresolved
d. Inconsistent

 Restoring Data Page 59-42

Notes

Data Recovery Operations Page 60-1

Module 60

Teradata Proprietary and Confidential

Data Recovery Operations

After completing this module, you will be able to:

 Describe how to use the following statements to
recover archived data back to the Teradata Database:

– CHECKPOINT

– DELETE JOURNAL

– ROLLBACK

– ROLLFORWARD

 Data Recovery Operations Page 60-2

Notes

Data Recovery Operations Page 60-3

Table of Contents

Data Recovery Using Roll Operations ... 60-4
The CHECKPOINT Statement .. 60-6
CHECKPOINT WITH SAVE Statement... 60-8

Example ... 60-8
Checkpoint Lock Mechanisms ... 60-8
Checkpoint with Offline AMPs ... 60-8

Using the ROLLBACK Command .. 60-10
Example ... 60-10
NO DELETE Option .. 60-10

The ROLLBACK Statement .. 60-12
ROLLFORWARD Statement .. 60-14

Example ... 60-14
PRIMARY DATA Option ... 60-14

ROLLFORWARD Restrictions ... 60-16
AMP-Specific Restore ... 60-16
All-AMP Restore ... 60-16

Example ... 60-16
The ROLLFORWARD Statement ... 60-18
DELETE JOURNAL Statement .. 60-20

Access Privileges ... 60-20
Restrictions ... 60-20

Summary .. 60-22
Module 60: Review Questions ... 60-24

 Data Recovery Operations Page 60-4

Data Recovery Using Roll Operations
The restore statement allows you to move information from archive files back to the
Teradata database. The restore operation can restore data or journal tables.

After you execute a RESTORE statement, data tables are ready to use.

When you restore a journal table, the system restores the information to a permanent journal
subtable. Before you can use the tables, you must perform a rollback or rollforward
operation to move the journal tables back to the data tables.

Roll operations can use either the current journal or the restored journal. If you specify the
current journal, then the ARC utility uses information stored in both the active and saved
subtables.

A permanent journal is checkpoint-oriented rather than transaction-oriented. The goal of the
journals is to return existing data tables to some previous or subsequent checkpoint. For
example, if a batch program corrupted existing data, the rollback operation would return the
data to a checkpoint prior to the running of the batch job.

A rollforward operation might occur after an all-AMP restore. After you move the data and
journal archive files back to the database, the data tables would only include changes
committed since the last full backup. Any intermediate changes would reside in the journal
tables. The rollforward operation would replace the existing data with changes from the
journal table.

Data Recovery Operations Page 60-5

Data Recovery Using Roll Operations

Restored Saved Active

Past

Restore Data

Present

• The RESTORE function copies journal archive files to the restored subtable
of the permanent journal.

• ROLLBACK and ROLLFORWARD statements apply journal table contents
to data tables.

• Roll operations can use:

– Current journal (active and saved subtable)

– Restored journal (restored subtable)

 Data Recovery Operations Page 60-6

The CHECKPOINT Statement
Use the CHECKPOINT statement to indicate a recovery point in the Journal.

The CHECKPOINT statement places a marker row after the most recent change image row
in the active subtable of a permanent journal. The database assigns an event number to the
marker row and returns the number in response. You may assign a name to the
CHECKPOINT command rather than use the event number in subsequent ARC activities.

Use the following options with the CHECKPOINT statement:

WITH SAVE Use this option before you archive saved journal images
to a host media to append the active journal subtable to
the saved journal subtable. After you archive the saved
area of the journal, you can delete this section of the
current journal to make space for subsequent saved
journal images. The saved journal subtable has no fixed
size and can grow to the limit of the database.

USE ACCESS
LOCK

A checkpoint with save may optionally use an access
lock. Without this option, the system must acquire a read
lock on all tables assigned to the journal being
checkpointed.

Updates to tables may continue when you use the access
lock option. Updates in progress complete after the
checkpoint.

NAMED
checkpointname

Checkpoint names may be up to 30 characters long and
are not case-specific. Teradata software always supplies
an event number for each checkpoint. Use the number to
reference a checkpoint if a name is not supplied.

If there are duplicate checkpoint names in the journal and
an event number is not specified:

 Rollforward uses the first (oldest) occurrence.
 Rollback uses the last (latest) occurrence.

Data Recovery Operations Page 60-7

The CHECKPOINT Statement

,

CHECKPOINT (dbname) A

ALL ,

(dbname.tname) , EXCLUDE (dbname)

ALL

(dbname1) TO (dbname2)

A ;
, WITH SAVE , USE ACCESS LOCK , NAMED chkptname

READ

Checkpoint With Save allows
you to archive and delete

saved journal images.

RESTORED
JOURNAL

CURRENT JOURNAL

Restored Saved Active

ds186034
Sticky Note
named checkpoint on an hourly basis;

 Data Recovery Operations Page 60-8

CHECKPOINT WITH SAVE Statement
The CHECKPOINT WITH SAVE option inserts a marker row and appends any stored
images preceding the marker row from the active to the saved subtable. The database
automatically initiates a new active subtable. You can dump the contents of the saved
subtable to an archive file.

Example
The facing page shows two different current journals, before and after a checkpoint
operation. The active subtable before checkpoint contains five change image rows. After
checkpoint with save, the active subtable is empty, and the saved subtable contains the five
change rows and a marker row.

Checkpoint Lock Mechanisms
The default lock mechanism for the checkpoint command is read lock. The read lock
suspends update activity for all data tables that might write changes to the journal table
during checkpoint. This lock provides a clean point on the journal.

The USE LOCK option permits users to assign an access lock rather than a read lock. The
access lock accepts all transactions that insert change images to the journal, but it treats
them as though they were submitted after the checkpoint was written. The access lock
option requires that you also use the WITH SAVE option.

Since users cannot know which side of a checkpoint a particular transaction will fall on,
restoring to a checkpoint created under an access lock cannot guarantee that transactions in
progress at the time of the checkpoint will be included in that restore.

Checkpoint with Offline AMPs
An individual AMP may be off-line when you issue the checkpoint command. In this case,
the utility automatically generates a system log entry that marks the checkpoint as soon as
the AMP comes back on-line. The system startup process generates the checkpoint and
requires no user input.

Data Recovery Operations Page 60-9

CHECKPOINT WITH SAVE Statement

CURRENT JOURNAL

ACTIVE

090 135 367 189
LOGON sysdba,dbapass;
CHECKPOINT (Payroll_Tab.Salaries_Jnl), WITH SAVE;
LOGOFF;

090 135 367 189

CURRENT JOURNAL

ACTIVESAVED

"Saved CHECKPOINT"

LOGON sysdba,dbapass;
CHECKPOINT (Payroll_Tab.Salaries_Jnl), WITH SAVE;
ARCHIVE JOURNAL TABLE (Payroll_Tab.Salaries_Jnl), ABORT, RELEASE LOCK, FILE = pay_jrl;
DELETE SAVED JOURNAL (Payroll_Tab.Salaries_Jnl);
LOGOFF;

To create a saved checkpoint, archive the saved journal, and delete the images in the
permanent journal, you could execute the following script.

ds186034
Sticky Note
in my curent journal i have some new rows adddedthose lines...lot more rowsnew rows that i have ddedits in the system but no FB

 Data Recovery Operations Page 60-10

Using the ROLLBACK Command
The ROLLBACK command helps you recover from one or more transaction errors. It
reverses changes made to a database or table. To accomplish this reversal, it replaces
existing data table rows with before-change images stored in a permanent journal. The
before-change images must reside in either the restored or current subtables of a permanent
journal. If you choose the current subtable for rollback procedures, the database uses the
contents of both the active and saved subtables.

When you use the restored subtable for rollback procedures, you need to verify it contains
the desired journal table. If it does not, submit the RESTORE JOURNAL TABLE
command with the appropriate removable storage media. This process ensures that you
restore the correct subtable contents. The Teradata database does not have any simple tools
for looking at journal subtables to determine that they contain the desired data.

Example
The example on the facing page illustrates a rollback procedure. First, (step 1), activate the
ROLLBACK CURRENT JOURNAL statement to rollback any changes made since the
journal table was archived. This statement rolls back the current subtable. Next (step 2),
run the RESTORE JOURNAL TABLE command to load the appropriate archive file into
the restored subtable of the permanent journal.

Finally (step 3), submit the ROLLBACK RESTORED JOURNAL command to reverse the
changes by replacing any changed rows with their before-image rows stored in the restored
journal. Repeat Steps 2 and 3 as necessary

NO DELETE Option
By default, the rollback procedure automatically deletes the contents of the restored subtable
after successfully completing the command. The NO DELETE option overrides the default,
enables you to recover selected tables first, and then later recovers other tables that may
have changes in the journal.

Data Recovery Operations Page 60-11

Using the ROLLBACK Command

2

PERMANENT JOURNAL TABLE

3 1

RESTORE
JOURNAL TABLE

ARC Facility

DATA TABLE(S)

ROLLBACK (Payroll_Tab)
,USE CURRENT JOURNAL

ARC Facility

ROLLBACK (Payroll_Tab)
,USE RESTORED JOURNAL

ARC Facility

RESTORED Subtable

RESTORED JOURNAL

SAVED Journal

CURRENT JOURNAL

ACTIVE Journal

NO DELETE Option
• Overrides automatic deletion of

restored subtable

• Used only for restored subtables

• Never used with current subtables

 Data Recovery Operations Page 60-12

The ROLLBACK Statement
To recover from one or more transaction errors, use the ROLLBACK statement. To use this
statement, you must define the table with a before-image journal table. The ROLLBACK is
performed to a checkpoint or to the beginning of the current or restored journal.

The system uses the before images to replace any changes made to the table or database
since a particular checkpoint was taken.

The facing page shows the format of the ROLLBACK statement. A description of the “TO
CHECKPOINT” option follows:

TO checkpointname,
eventno

Checkpoint names need to match existing names used
with a previous CHECKPOINT statement. An eventno
is the software-supplied event number of a previous
checkpoint. You can supply either one of these or both.
To find the checkpoint names or event numbers, select
information about the checkpoint from the DBC.Events
view.

If there are duplicate checkpoint names in the journal
and an event number is not supplied, rollback stops at
the last chronological entry made with a matching name.

Data Recovery Operations Page 60-13

The ROLLBACK Statement

Use ROLLBACK to recover from a transaction error.

ROLLBACK

C
H
K
P
T

C
H
K
P
T

C
H
K
P
T

,

ROLLBACK (dbname) A

ALL ,

(dbname.tname) , EXCLUDE (dbname)

ALL

(dbname1) TO (dbname2)

A B

, TO chkptname , 5 , RELEASE LOCK

chkptname, eventno , AMP = n

eventno

B , USE CURRENT JOURNAL ;

, NO DELETE , ABORT RESTORED

, DELETE

 Data Recovery Operations Page 60-14

ROLLFORWARD Statement
The ROLLFORWARD command helps you recover from a hardware error and changes
existing rows in data tables by replacing them with after-change images stored in a
permanent journal. The after-change images must reside in either the restored or current
subtables of a permanent journal.

When you use the restored subtable for rollforward procedures, you need to verify that it
contains the desired journal table. If it does not, submit the RESTORE JOURNAL TABLE
command with the appropriate portable storage media. This process ensures that you restore
the correct subtable.

Example
The example on the facing page illustrates a rollforward procedure. First, the administrator
runs the RESTORE DATA TABLE command. Then, he/she runs the RESTORE
JOURNAL TABLE command to load the appropriate archive files into the restored
permanent journal subtable. Next, he/she submits the ROLLFORWARD RESTORED
JOURNAL command to replace existing data table rows with their after-image rows stored
in the restored journal.

Lastly, he/she activates the ROLLFORWARD CURRENT JOURNAL statement to
rollforward any changes made since the journal table was archived. This statement rolled
forward the saved subtable first followed by the active subtable.

PRIMARY DATA Option
This option replaces only primary row images during the rollforward process. It ignores
secondary index and fallback rows.

If you use this option with a rollforward operation, you can reduce the amount of I/O. It
also improves the rollforward performance when recovering a specific AMP from disk
failure.

Unique indexes are invalid when recovering a specific AMP. Always submit a BUILD
statement when the rollforward command includes the PRIMARY DATA option.

Data Recovery Operations Page 60-15

Using the ROLLFORWARD Command

PRIMARY DATA Option
• Ignores fallback rows and secondary index rows
• Reduces amount of I/O
• Improves performance when recovering single-AMP
• Always use BUILD statement with this option

PERMANENT JOURNAL TABLE

RESTORE
JOURNAL TABLE

ARC Facility

DATA TABLE(S)

ROLLFORWARD (Payroll_Tab)
,USE CURRENT JOURNAL

ARC Facility

ROLLFORWARD (Payroll_Tab)
,USE RESTORED JOURNAL

ARC Facility

RESTORED Subtable

RESTORED JOURNAL

SAVED Journal

CURRENT JOURNAL

ACTIVE Journal

2

3 4
RESTORE

DATA TABLES

ARC Facility
1

ds186034
Sticky Note
common scenarioarchive on moncaptured changes on tue/wed/thu and frifri falls apartI restore my tableschanges for monrestore and roll fwdtuelogoon restore and roll fwd......fri:current journaltediousTeradata EXPRESS version on laptop to play around

 Data Recovery Operations Page 60-16

ROLLFORWARD Restrictions
The diagrams on the facing page illustrate several important restrictions in using the
ROLLFORWARD statement.

AMP-Specific Restore
If you perform a restore operation on a specific AMP rather than on all AMPs, the
ROLLFORWARD command does not permit you to use the TO CHECKPOINT NAME
option. Following an AMP-specific restore, the system permits a rollforward only to the end
of the journal. You must follow up the restore process with a rollforward of the entire
journal table.

All-AMP Restore
When you perform an all-AMP restore, you choose whether to submit the
ROLLFORWARD command with the TO CHECKPOINT NAME option, or to the end of
the journal.

The PRIMARY DATA option of the ROLLFORWARD statement indicates that the
operation should ignore secondary index and fallback rows that will reduce the amount of
I/O during rollforward. If you use this option, follow up with the BUILD statement.

Note: Use the DBC.Events view to determine event numbers and/or checkpoint names.

Example

SELECT EventNum FROM DBC.Events WHERE CreateDate = '2011-02-15';

SELECT CheckPointName FROM DBC.Events WHERE CreateDate = '2011-02-15';

Data Recovery Operations Page 60-17

ROLLFORWARD Restrictions

Following an AMP-specific
restore, a ROLLFORWARD
is permitted only to the end
of the journal.

After an ALL-AMP restore, a
ROLLFORWARD may be
done to a checkpoint, or to
the end of the journal.

Archive
Tape

AMP-SPECIFIC RESTORE

ROLLFORWARD

C
H
K
P
T

C
H
K
P
T

C
H
K
P
T

Permanent
Journal

Archive
Tape

ALL AMP RESTORE

ROLLFORWARD

C
H
K
P
T

C
H
K
P
T

C
H
K
P
T

Permanent
Journal

 Data Recovery Operations Page 60-18

The ROLLFORWARD Statement
Use the ROLLFORWARD statement to recover from a hardware error. Before you can
rollforward, you must have a backup copy of the table rows and AFTER Image journal rows
since the last backup.

The format of the ROLLFORWARD statement is shown on the next page. A description of
some of the options follows:

PRIMARY DATA During a rollforward operation, this option instructs
the software to ignore secondary index and fallback
row updates. A BUILD operation will rebuild the
invalidated fallback copy and indexes.

TO checkpointname,
eventno

Checkpoint names need to match existing names used
with a previous CHECKPOINT statement. An event
number is the software-supplied event number of a
previous checkpoint. You can supply either one or
both of these. To find the checkpoint names or event
numbers, select information about the checkpoint from
the DBC.Events view.

If there are duplicate checkpoint names in the journal
and an event number is not supplied, rollforward stops
when it encounters the first chronological entry made
with a matching name.

Data Recovery Operations Page 60-19

The ROLLFORWARD Statement

,

ROLLFORWARD (dbname) A

ALL ,

(dbname.tname) , EXCLUDE (dbname)

ALL

(dbname1) TO (dbname2)

A B

, TO chkptname , 5 , PRIMARY DATA , RELEASE LOCK

chkptname, eventno , AMP = n

eventno

B , USE CURRENT JOURNAL ;

, NO DELETE , ABORT RESTORED

, DELETE

Use ROLLFORWARD to recover from a hardware
failure.

ROLLFORWARD

C
H
K
P
T

C
H
K
P
T

C
H
K
P
T

 Data Recovery Operations Page 60-20

DELETE JOURNAL Statement
The DELETE JOURNAL command enables you to erase the contents of either the restored
subtable or the saved subtable of a permanent journal. You cannot delete the contents of the
active subtable. You must have the RESTORE privilege to execute this command.

The facing page shows the DELETE JOURNAL statement.

Access Privileges
To delete a journal table, the user name specified in the LOGON statement must have one of
the following:

 The RESTORE privilege on the database or journal table being deleted
 Ownership of the database containing the journal table

Restrictions
You cannot delete a saved subtable when all of the following conditions are true:

 A CHECKPOINT statement in the archive utilized an access lock, and
 The journal is not dual image, and
 One or more AMPs are off-line.

Transactions between an all-AMP archive and a single-AMP archive may not be consistent
when a journal archive has all three of the above conditions. You cannot delete a saved
subtable with an AMP off-line that does not have a dual journal.

The command does not delete the rows in the active journal.

Data Recovery Operations Page 60-21

DELETE JOURNAL Statement

To use the DELETE JOURNAL statement, you must have the RESTORE privilege or own
the database that contains the journal. Note: you cannot delete rows from an active
journal.

To create a saved checkpoint and delete the images in the permanent journal, you could
execute the following script.

,

DELETE SAVED JOURNAL (dbname) A

RESTORED ALL

(dbname.tname)

A ;
,

, EXCLUDE (dbname)
ALL

(dbname1) TO (dbname2)

LOGON sysdba,dbapass;
CHECKPOINT (Payroll_Tab.Salaries_Jnl), WITH SAVE;
DELETE SAVED JOURNAL (Payroll_Tab.Salaries_Jnl);
LOGOFF;

ds186034
Sticky Note
get rid of the images

 Data Recovery Operations Page 60-22

Summary
The facing page summarizes some important concepts regarding this module.

Data Recovery Operations Page 60-23

Summary

• As like archive and restore operations, you use the ARC facility for recovery
operations.

• Roll operations can use either current journals (active and saved subtables)
or restored journals (restored subtable).

• The CHECKPOINT statement indicates a recovery point in a journal.

– The CHECKPOINT WITH SAVE statement saves stored images before a row
marker in an active subtable and appends them to the saved subtable.

• ROLLBACK commands help you recover from one or more transaction errors
and reverses changes made to a database or table.

• ROLLFORWARD commands help you recover from hardware errors. These
commands replace existing row data with after-change images.

• DELETE JOURNAL command erases the contents of either the restored
subtable or the saved subtable in the permanent journal.

 Data Recovery Operations Page 60-24

Module 60: Review Questions
Check your understanding of the concepts discussed in this module by completing the
review questions as directed by your instructor.

Data Recovery Operations Page 60-25

Module 60: Review Questions

1. True or False. The DELETE JOURNAL command can be used to delete the active and
the saved areas of the current journal.

2. In general, rollback operations help you recover from ______________ failures and
rollforward operations help you recover from ______________ failures.

3. To use the ARCHIVE JOURNAL TABLE command to archive a permanent journal, the
active journal images need to be moved to the saved area of the current journal. The
command to do this is:

 Data Recovery Operations Page 60-26

Notes

Teradata Factory Recap Page 61-1

Module 61

Teradata Proprietary and Confidential

Teradata Factory Recap

After completing this module, you will be able to:

 Identify those Data Dictionary tables that need periodic
maintenance.

 Identify those administrative functions that are NOT
necessary with Teradata.

 Teradata Factory Recap Page 61-2

Notes

Teradata Factory Recap Page 61-3

Table of Contents

Teradata Factory Review – Week 1 ... 61-4
Teradata Factory Review – Week 2 ... 61-6
Dictionary Tables to Maintain ... 61-8
Plan and Follow-up .. 61-10
Things You Never Have to do with Teradata .. 61-12
Things You Never Have to do with Teradata (cont.) ... 61-14
Teradata Differentiators ... 61-16
Teradata Certification Tests ... 61-18

 Teradata Factory Recap Page 61-4

Teradata Factory Review – Week 1
The facing page lists some of the key topics that were covered in the first week of this
course.

Teradata Factory Recap Page 61-5

Teradata Factory Review – Week 1

Teradata Concepts – Big Picture view of Teradata

• Teradata Database concepts, architecture, and terminology
• Data protection mechanisms (RAID, Cliques, Clusters, Locks, and Journals)
• Teradata Systems and Configurations (e.g., Teradata 6650 and 6680)
• How Teradata uses memory and utilizes disk array storage

GOAL – Understand basic concepts of Teradata and how Teradata fits with MPP systems

Physical Database Design and Implementation – Detailed view of Teradata

• Data Distribution, Hashing, and Index Access
• Analyze Primary Index Criteria and choose Primary Indexes
• Analyze Secondary Index Criteria and choose Secondary Indexes
• Access Issues, Constraints, Sizing, and Statistics
• Understand Join Processing and interpret EXPLAIN plans of joins
• Additional Index Choices – Join Indexes, Hash Indexes, etc.

GOAL – Create tables with appropriate attributes and indexes.

ds186034
Sticky Note
indexesstatisticsnow i wanna load data

 Teradata Factory Recap Page 61-6

Teradata Factory Review – Week 2
The facing page lists some of the key topics that were covered in the second week of this
course.

Teradata Factory Recap Page 61-7

Teradata Factory Review – Week 2

Teradata Application Utilities – Load and Export data

• Utilization of BTEQ, FastLoad, FastExport, MultiLoad, and TPump utilities

GOAL – Create load and export scripts to load/export data into/from Teradata tables

Teradata Database Administration

• Creating and using the Database Environment and Hierarchy
• The Data Dictionary/Directory
• Space Allocation and Usage
• Management of Users and Databases
• Controlling access to system via Access Rights, Roles, and Profiles
• Monitoring system activity and logging user access and queries
• Workload Management (TASM)
• Utilization of tools such as Teradata Administrator and Viewpoint
• System utilities – administrative, maintenance, and recovery

GOAL – Administration of a Teradata Database using DBA commands and utilities

ds186034
Sticky Note
where views are avail

 Teradata Factory Recap Page 61-8

Dictionary Tables to Maintain
You need to maintain some dictionary tables. The following pages list these tables and
describe the maintenance.

Teradata Factory Recap Page 61-9

Dictionary Tables to Maintain

Reset accumulators and peak values using DBC.AMPUsage view and the ClearPeakDisk macro
provided with the software.

DBC.Acctg
Resource usage by Account/user

DBC.DataBaseSpace
Dbase and Table space accounting

Teradata automatically maintains these tables, but good practices can reduce their size.

DBC.AccessRights
User Rights on objects

DBC.Accounts
Account Codes by user

DBC.RoleGrants
Role rights on objects

Archive these logging tables (if desired) and purge information 60-90 days old. Retention depends
on customer requirements.

DBC.SW_Event_Log
Database Console Log

DBC.EventLog
Session logon/logoff history

DBC.ResUsage
Resource monitor tables

DBC.AccLogTbl
Logged User-Object events

Purge these tables when the associated removable media is expired and over-written

DBC.RCEvent
Archive/Recovery events

DBC.RCMedia
VolSerial for Archive/Recovery

DBC.RCConfiguration
Archive/Recovery config

DBC.DBQL tables
Logged user/SQL activity

DBC.Roles
Defined Roles

 Teradata Factory Recap Page 61-10

Plan and Follow-up
Establish a set of procedures that will help you administer the Teradata Database.
Document these procedures and periodically refer to them.

Teradata Factory Recap Page 61-11

Plan and Follow-up

Review the material you have learned and experienced in this course. From it,
develop a checklist of tasks. For example:

1. Set up a job that periodically checks the size of your dictionary tables.

2. Set up a job that periodically checks the size of your application databases.
Evaluate them for even data distribution on AMPs. Ensure that user’s permanent
space is being used efficiently. Reallocate space if necessary.

3. Verify adequate Spool_Reserve.

4. Set up and document the definition of users, roles, profiles, privileges, and an
accounting system (if you don’t have one already).

5. Check the allocation of the Crashdumps database.

6. Install and run the ResUsage macros at regular intervals. Evaluate and review
reports for even distribution of processing.

ds186034
Highlight

ds186034
Sticky Note
RESUSAGE tablecopy to some other dbwhen they were happyafter 6ms - more data - more users - more complex querycapture resusageagainnow make recommendation (after comparing)run Resusagecapturesave it

 Teradata Factory Recap Page 61-12

Things You Never Have to do with Teradata
The facing page lists a number of database maintenance functions that you never have to do
with the Teradata database.

Teradata Factory Recap Page 61-13

Things You Never Have to do with Teradata

Implementation

1. Create and format data files to hold the data and the indexes.

2. Determine the physical location of each table and index partition or simple tablespace.

3. Write programs to determine how to divide data into partitions.

4. Code the space allocation for each partition or underlying file structures.

5. Embed partitioning assignments into CREATE TABLE statements.

6. Code the definition and allocation for temporary work space.

7. Create, size, and determine the content of tablespaces.

8. Associate tables and/or queries with degrees of parallelism.

9. Add hints or otherwise rewrite SQL.

10. Determining the level of parallelism to be assigned to tables or indexes.

11. Assign and manage special buffer pools for parallel processing.

12. Create rollback segments or log files.

13. Ensure that the data is spread evenly across disks and controllers.

14. Build summary tables before end users can access the data warehouse.

15. Carefully build indexes on tables and summary tables to support index only access for
performance, based on known queries – these indexes may or may not aid in ad hoc access.

16. Build and partition materialized view logs.

17. Build and partition indexes on top of materialized views.

18. Determine how materialized views are updated, asynchronously or synchronously.

ds186034
Sticky Note
include as collateral

 Teradata Factory Recap Page 61-14

Things You Never Have to do with Teradata (cont.)
The facing page lists a number of database maintenance functions that you never have to do
with the Teradata database.

Teradata Factory Recap Page 61-15

Things You Never Have to do with Teradata (cont.)

Support

19. Monitor partition size.

20. Monitor and tune temporary work and sort spaces.

21. Monitor and tune buffer pool assignments.

22. Monitor and tune parameters and control blocks that enable parallel execution.

23. Perform periodic table and index reorgs (unloads and reloads, dropping and rebuilding).

24. Convert data types of mainframe data sets prior to a data warehouse load.

25. Setting up multiple load jobs from a mainframe to the data warehouse in order to load a single table
in parallel.

26. Manually restart the multi-step load process when failure occurs.

27. Sort and/or split the data before a load job.

Growth and Leverage

28. Alter the parallelism assignments as the number of users or data volume increases.

29. Expand partition boundaries or relocate partition data sets.

30. Add or delete table or index partitions as tables grow.

 Teradata Factory Recap Page 61-16

Teradata Differentiators
The facing page identifies a number of key Teradata differentiators.

Teradata Factory Recap Page 61-17

Teradata Differentiators

• Product Maturity – Teradata has focused on data warehousing needs since 1984.

• Customer References – Teradata’s impressive list of customers includes leaders in
their respective industries and also in the use of data warehousing technology.

• Quickest Time to Solution – By the nature of the inherent parallel architecture and self-
managing features, Teradata provides the flexibility needed for rapid, initial
implementation, and ongoing extensibility.

• Lowest Total Cost of Ownership – even the largest Teradata sites report having two or
fewer full-time DBAs.

• Complete Support Infrastructure – Teradata is supported by the most skilled and
experienced data warehousing professionals with 20+ years of experience.

• Effortless Scalability – unique, unconditional parallelism and automatic hashed data
distribution are the key reasons behind Teradata’s scalability.

• High User Concurrency – Teradata offers industry-leading performance to increasing
numbers of satisfied users as the warehouse workload grows.

• Complex and Ad Hoc Query Performance – Teradata’s parallel-aware, cost-based
optimizer provides for advanced ad hoc and complex query environment.

• Fast, Fail-safe Data Load Utilities – Teradata ensures mission-critical availability of the
information by allowing load/restore activities while users access the warehouse.

• Seamless Mainframe Integration – Teradata offers bi-directional, high-speed channel
connectivity to leading mainframe environments.

ds186034
Sticky Note
marketing pointswe (SA for sure)can talk more on this technically!!!!!!

 Teradata Factory Recap Page 61-18

Teradata Certification Tests
The facing page lists the various Teradata certification tests. Depending upon the tests that
are completed, you can earn various Teradata Certified designations such as Teradata
Certified Professional.

The Teradata 12 Certification tests require knowledge plus experience with Teradata. This
manual will help you prepare for these Teradata 12 tests, but many of the test questions are
scenario-based and Teradata experience is needed to answer these types of questions.

Disclaimer: The Teradata Certification tests include questions from a mix of sources and
require experience, especially on tests other than the Basics test. However, some
suggestions on Teradata Factory modules to concentrate on for the different tests include:

 1 – Teradata 12 Basics (modules 1–8, 12, 16, 31, 32, 41)
 2 – Teradata 12 SQL (Teradata WBT classes)
 3 – Teradata 12 Physical Design and Implementation (modules 8, 10, 12–32, 40–43)
 4 – Teradata 12 Database Administration (modules 8, 10, 12, 22–25, 30–32, 41–60)
 5 – Teradata 12 Solutions Development (modules 12–40)
 6 – Teradata 12 Enterprise Architecture (entire course)
 7 – Teradata 12 Comprehensive Mastery (entire course)

ds186034
Sticky Note
take the test ASAPbasics test right away

ds186034
Sticky Note
97% of que - exam que

ds186034
Sticky Note
take it soon as well

ds186034
Sticky Note
TCPP websiteget vouchertake test freesample questions are there

Teradata Factory Recap Page 61-19

Teradata Certification Tests

Teradata 12.0 Certification Tests

 1 – Teradata 12 Basics
2 – Teradata 12 SQL

 3 – Teradata 12 Physical Design and Implementation
 4 – Teradata 12 Database Administration

5 – Teradata 12 Solutions Development
6 – Teradata 12 Enterprise Architecture

7 – Teradata 12 Comprehensive Mastery

By passing all seven Teradata 12 certification tests, you become a Teradata 12 Certified Master.

 This course (along with Teradata experience) will prepare you for these tests.

Options for Teradata V2R5 Certified Masters:

• The Teradata 12 Qualifying Exam is available as an alternative to taking tests 1 – 6.

• To achieve the Teradata 12 Master certification …

1. Pass the Teradata 12 Qualifying Exam OR pass each of the 6 tests

2. Pass the Teradata 12 Comprehensive Mastery exam

 Teradata Factory Recap Page 61-20

Notes

Lab Environment Page A-1

Module A

Teradata Proprietary and Confidential

Appendix A: The Lab Environment

This appendix describes the lab environment that
will be used during the class.

 Lab Environment Page A-2

Lab Environment Notes

One way to connect from a Windows workstation to a Teradata server to a Linux system is
to use a Secure Shell connection. This opens a terminal window which you can use to logon
to Linux and enter Linux commands.

 putty is an example of a utility that provides a secure shell connection

If you are executing BTEQ interactively, you cannot enter your password as part of the
.LOGON statement. BTEQ will prompt you for your Teradata username password.

Lab Environment Page A-3

Lab Environment

DBC

Sysdba

Students

IP Address: 153.64.112.7

TT_Class1 TT_Class2

Student101

Student102

Student103

Student201

Student202

Student203

TT_Data

AP DS PD

Accounts

Customer

Trans

Orders

Orders_2012

Department

Employee

Emp_Phone

Job

Common Teradata SQL Commands:
To populate a newtable:

INSERT INTO newtable
SELECT * FROM db.oldtab WITH [NO] DATA;

HELP USER username; - lists objects owned by user
HELP 'SQL sqlcommand'; - help for an SQL command
SHOW TABLE tablename; - shows table creation syntax
SELECT COUNT(*) FROM tname; - provides count of rows
DELETE tablename ALL; - deletes all rows in a table
DROP TABLE tablename; - drops table from the database

Useful Linux Commands:
ls -l - long listing of UNIX files)
more filename - view contents of text file
vi filename - create or edit a text file
cp file1 file2 - copies file1 to file2
mv oldname newname - renames a file
rm filename - delete a file
exit - exits Linux

 Lab Environment Page A-4

Notes

Lab Environment Page A-5

AP Tables

Account Street Zip Balance Balance
Number Number Street City State Code Forward Current

PK

UPI

20024010 123 Harbor Blvd. Torrance CA 90323 1000.00 900.00
20031023 3456 186th St. Glendale CA 90451 1500.00 1700.00
20049873 100 Western Av. Las Vegas NV 97345 400.00 400.00
20031134 10 Heather Rd. S. Monica CA 92345 6020.00 5312.00

Integer Integer Char(25) Char(20) Char(2) Integer Decimal(10,2) Decimal(10,2)

AP.Accounts (10,000 Rows)

Customer Last First Social
Number Name Name Security

PK

UPI

13021 Smith George 456788765
18765 Jones Barbara 987453498
11023 Wilson John 495028367

1123 Omaguchi Sandra 234904587

Integer Char(30) Char(20) Integer

AP.Customer (7,000 Rows)

Trans Trans Account Trans Trans
Number Date Number ID Amount

PK

NUPI

4653 2002-02-11 20024020 2009 -50.00
3241 2002-02-08 20034567 DEP 160.00
1298 2002-02-08 20024005 2987 -70.00

11026 2002-02-13 20024020 DEP 20.00

Integer Date Integer Char(4) Decimal(10,2)

AP.Trans (15,000 Rows)

Note:
Column names that span
2 lines are connected
with an underscore.

Ex: Account_Number

 Lab Environment Page A-6

Notes

Lab Environment Page A-7

DS Tables

orderid custid orderstatus totalprice orderdate orderpriority clerk location shippriority ordercomment

PK FK,NN

UPI

100001 1001 C 1,005.00 2000-01-02 10 Jack .. 5 20 In Stock
103501 1451 C 1,005.00 2002-12-01 10 Dee ... 3 20 In Stock
101400 1080 C 1,150.00 2001-02-28 10 Fred ... 10 20 In Stock

Integer Integer CHAR(1) Decimal (10,2) Date SmallInt Char(16) SmallInt Smallint Varchar(79)

Orders (31,200 Rows)

Orders_2012 (12000 Rows) - Same Layout

 Lab Environment Page A-8

Notes

Lab Environment Page A-9

PD Tables

Employee Dept Emp_Mgr Job Last First Salary
Number Number Number Code Name Name Amount

PK FK FK FK

UPI

100001 1001 ? 3000 DeBosse Ibee 200000.00
100797 1048 100791 3017 Myers Ruth 41000.00
100002 1001 100001 3001 Smith Steve 110000.00

Integer Integer Integer Integer Char(20) Varchar(20) Decimal (10,2)

Employee (1000 Rows)

Dept Dept Dept_Mgr Budget
Number Name Number Amount

PK FK

UPI

1048 Design SW 100791 1000000.00
1050 Design Services 100811 1000000.00
1028 Engineering SW 100441 3000000.00

Integer Char(20) Integer Decimal (10,2)

Department (60 Rows)

Employee Area Phone
Number Code Number Extension

PK

FK

NUPI

100001 937 5100001 1001
100001 937 4100001 1001
100389 858 4852815 815

Integer SmallInt Integer Integer

Emp_Phone (2000 Rows)

Job Job
Code Description

PK

UPI

3000 President
3001 Senior Mgmt
3017 Analyst L2

Integer Char(20)

Job (66 Rows)

Note:
Column names that span 2 lines are connected with an underscore.
Ex: Employee_Number

 Lab Environment Page A-10

vi or vim Notes
If you are not comfortable or familiar with vi or vim, you can create your script in a
Windows Notepad, copy it, and paste it into a vi file.

1. Enter your commands (job/script) in a Notepad file.

2. Highlight the text and use the mouse to choose the Edit Copy function

Switch to your terminal window where Linux is running and …

3. vi labx_1.btq (or whatever filename you wish)

 enter an i by itself (do not press <Enter>)

 Use the mouse to choose the Edit Paste function

 Press the ESC key (multiple times does not hurt)

 Enter :wq (this saves the file and exits vi)

Another technique that can be used to create Linux scripts without using vi is to do the
following:

1. Enter your commands (job/script) in a Notepad file.

2. Highlight the text and use the mouse to choose the Edit Copy function

Switch to your terminal window where Linux is running and …

3. cat > labx_1.btq (or whatever filename you wish)

 Use the mouse to choose the Edit Paste function

 To exit the cat command, press either the DELETE key or CNTL C.

Lab Environment Page A-11

vi or vim Commands

Movement and other
h move cursor to left
j move cursor down a line
k move cursor up a line
l move cursor to right
space move cursor to right
w move a word to right
b move a word to left
0 go to start of a line (zero)
$ go to end of a line
G go to end of file
nG go to line n
^f scroll forward 1 screen
^b scroll back 1 screen
^l refresh the screen
/str search forward for str
. repeat last command

Modification
r replace 1 character
x delete char under cursor
X delete char before cursor
5x delete 5 characters
dw delete a word
dd delete the line
d$ delete the rest of the line
dG delete rest of the file
cw change a word
C change rest of the line
J join 2 lines together
yy yank or copy a line
3yy yank or copy 3 lines
p put yanked line(s) after line
P put yanked line(s) before line
u undo last command

Colon mode
:w write or save the file
:w fname write new file name
:wq write and quit
:q! quit and don’t save

:e fname edit another file
:r fname read in a file
:!cmd run UNIX command
:set smd set showmode on

Input mode
i insert before cursor
I insert at beginning of line
a insert after cursor
A insert at end of line
o open a new line below
O open a new line above
R Replace mode and insert

after <cr>

ESC exits
input &
colon

modes

vim filename

 Lab Environment Page A-12

Notes

Acronyms Page B-1

Module B

Teradata Proprietary and Confidential

Appendix B: Acronyms

This Appendix contains a listing of various
Teradata acronyms.

 Acronyms Page B-2

Notes

Acronyms Page B-3

 Numbers
2PC Two-phase Commit

-A-

ABF Adaptive Bandwidth Feature
ABI Application Binary Interface
ABIOS Advanced BIOS
ABM Asynchronous Balance Mode
ABRD Automatic Baud Rate Detection
AC Application Component, Alternating Current
ACE Array Configuration Editor
ACF Advanced Communications Function
ACF/NCP Advanced Communication Function for the Network Control Program
ACF/SSP ACF/Software Support Program
ACF/VTAM Advanced Communication Function for the
 Virtual Telecommunications Access Method
ACID Atomicity, Consistency, Isolation, Durability
ADAM Application Data Access Manager
ADCOM Advanced Distributed Communications System
ADCS Advanced Data Communication System
ASCII American Standard Code for Information Interchange
ADE Application Development Environment
ADW Active Data Warehouse
AFMS Advanced Function Management System
AFMS/NDP Advanced Function Management System/Normalized Data Protocol
AFMS/SEF Advanced Function Management System/System Exchange Format
AI Artificial Intelligence
AJI Aggregate Join Index
ALC Algorithmic Compression
AMP Access Module Processor
ANSI American National Standards Institute
ANSWER Alpha-Numeric Single Wire Electronic Recorder
AOD Application Output Definition
AOE Application Operating Environment
AOS Automated Order System
AP Application Processor
API Application Programming Interface
APPC Advanced Program to Program Communication
AS Administration Station
ASF Archive Storage Facility
ASIC Application Specific Integrated Circuit
ATM Asynchronous Transfer Module (Networking)
 Automated Teller Machine
AUI Attachment Unit Interface
AWS Administration WorkStation

 Acronyms Page B-4

 -B-
BAM BYNET Administrative Menus
BASIC Beginner's All-purpose Symbolic Instruction Code
BCD Binary-Coded Decimal
BDL BYNET Data Link
BIC BYNET Interface Card (Adapter)
BIM Business Information Model; Business Impact Model
BIOS Basic Input/Output System
BIST Built-In Self Test
BIU Battery Interface Unit
BLC Block Level Compression
BLIP BYNET Low Level Internet Protocol
BLLI BYNET Low Latency Interface
BLM BYNET Link Manager
BLOB Binary Large Object
BMCA BYNET Micro Channel Architecture adapter
BNC Bayonet-Neill-Concelman (Ethernet connector)
BOM Byte Order Mark (associated with Unicode)
BOOTP BOOTstrap Protocol
BPCI BYNET Peripheral Component Interconnect
bps bits per second
BTAM Basic Telecommunications Access Method
BTEQ Basic Teradata Query facility
BYA4G BYNET A Switch V2 – 4 ports – Gigahertz speed (60 MB/sec.)
BYA4M BYNET A Switch V2 – 4 ports – Gigahertz speed (60 MB/sec.)
BYA4MS BYNET A Switch V2 – 4 ports – Gigahertz speed (60 MB/sec.)
BYA4P BYNET A Switch V1 – 4 ports – 10 MB/sec.
BYA8QX BYNET A Switch V3 – 8 ports within BYA64GX or BYC64G
BYA16 BYNET A Switch V1 – 16 ports – 10 MB/sec.
BYA16G BYNET A Switch V2 – 16 ports – Gigahertz speed (60 MB/sec.)
BYA64GX BYNET A Switch V2 – 64 ports – Expandable - Gigahertz speed
BYAS Component name for BYA16XS boards
BYB32 BYNET B Switch – 10 MB/sec.
BYB64G BYNET B Switch V2
BYC64G BYNET C Switch V3
BYCLK BYNET Clock (BYNET V3)
BYNET Banyan Network - High speed interconnect
BYOX BYNET Optical Externsion (BYNET V3)

Acronyms Page B-5

 -C-
CA Cable Adapter
CAD/CAM Computer-Aided Design/Computer-Aided Manufacturing
CAE Computer Aided Engineering
CAI Century Analysis, Inc., Computer-Aided Instruction
 Computer-Assisted Instruction
CASE Computer Aided Software Engineering
CAT Configuration and Test
CC Cluster Controller, Common Cable, Common Carrier
CCB Change Control Board, Character Control Block,
 Command Control Block
CCC Common Carrier Communication
CCDLC Common Carrier Data Link Control
CCITT Consultative Committee on International Telephone and Telegraph
CCL Customer Care Link (older software to alert remote support center)
CD Compact Disk
CD-ROM Compact Disk - Read Only Memory
CDS Customer Data Storage
CE Customer Engineer
CFM Configuration File Management
CI Cylinder Index
CICS Customer Information Control System
CIM Common Information Model (used as model for WBEM)
CJK Chinese, Japanese, and Korean
CLAN Cabinet Local Area Network
CLC Cabinet Level Controller (5100 component)
CLCX Cabinet Level Controller eXtended (5100 component)
CLI Call Level Interface
CLOB Character Large Object
CM Communications Manager
CMB Chassis Management Board
CMIC Cabinet Management Interface Controller (for 5100)
CMIC Chassis Management Interface Controller (for later systems)
CMOS Complementary Metal Oxide Semiconductor
COBOL Common Business-Oriented Language
COP Communications Processor
COS Corporate Office Server
CP Column Partitioning (or Partitioned)
CPPI Character PPI
CPU Central Processing Unit
CR/LF Carriage Return/Line Feed
CRC Cyclic Redundancy Check
CRU Customer Replaceable Unit
CSF Customer Support Facility
CSI Complex Service Interface
CTG Channel Tailgate
CTS Clear to Send

 Acronyms Page B-6

 -D-
DA Disk Array
DAC Disk Array Controller
DAMC Disk Array Module Cabinet
DARDAC Dual Active Redundant Disk Array Controller
DASD Direct-Access Storage Device
DAT Digital Audio Tape, Dynamic Address Translation
DBA Database Administrator
DBC Database Computer (Teradata)
DBLT Disk Bay Locator Table
DBMS Database Management System
DBQL Database Query Log
DBS Database Subsystem
DC Data Communications, Direct Current
DCE Distributed Computing Environment
DCL Data Control Language
DCRAM Disk Cache Random Access Memory
DD Derived Data
DDE Direct Data Exchange
DDI Device Driver Interface
DDL Data Definition Language
DES Data Encryption Standard
DEUI Dual Ethernet UPS Interface (5400 UPS feature)
DIF Document Interchange Facility, Data Interchange Format
DKI Driver Kernel Interface
DIM Diagnostic Interconnect Module (3600 component
DIMM Dual In-line Memory Module
DIP Database Initialization Procedure or Program
DISCO Disconnect memory
DLPI Data Link Provider Interface
DMA Direct Memory Access
DMCA Dual Micro Channel Architecture
DML Data Manipulation Language
DMX EMC2 Direct Matrix Disk Array
DNS Domain Name Server
DOD Department Of Defense
DOS Disk Operating System
DP Diagnostic Processor
DR Deficiency or Defect Report
DRAM Dynamic Random Access Memory
DS Desk Side
DSC Data Stream Compatible
DSS Decision Support System
DSU Disk Storage Unit
DSW Destination Selection Word
DTP Distributed Transaction Processing
DTR Data Terminal Ready

Acronyms Page B-7

 -E-
E2I External-to-Internal
EA EaseAdvantage
EAFW EaseAdvantage Framework
EBCA EISA Bus Channel Adapter
EBCDIC Extended Binary Coded Decimal Interchange Code
ECC Error Check and Correction
ECL Emitter Coupler Logic
EDAC Error Detection and Correction
EDI Electronic Data Interchange
EEPROM Electronically Erasable Programmable Read Only Memory
EGA Enhanced Graphics Adapter (IBM)
EISA Extended Industry Standard Architecture
EOE Enhanced Operating Environment
EPROM Erasable Programmable Read-Only Memory
ESCON Enterprise System Connection
ESM Environmental Services Monitor
EUC Extended UNIX Code

 -F-

4GL Fourth Generation Language
FAX Facsimile
FC Fibre Channel
FDDI Fiber Distributed Data Interface
FE Field Engineer
FEU Front End Unit
FICON Fibre Connection (IBM)
FIFO First In, First Out
FIPS Federal Information Processing Standards
FK Foreign Key
FMLI Forms and Menu Language Interpreter
FORTRAN FORmula TRANslation
FSB Front Side Bus
FSG File Segment Cache
FRU Field Replaceable Unit
FTAM File Transfer and Access Method (OSI)
FTP File Transfer Protocol
FUD Fear, Uncertainty, Doubt
FW Firmware
FYI For Your Information

 Acronyms Page B-8

 -G-
GB Gigabyte (one billion bytes)
GCA General Customer Availability
GOSIP Government Open Systems Interconnection Profile
GSC Global Support Center
GUI Graphical User Interface

 -H-

HASP Houston Automatic Spooling Program
HATP High Availability Transaction Processing
HBN Hash Bucket Number
HCA Host Channel Adapter
HDA Home Disk Address (used with Virtual Storage Services)
HDD Hard Disk Drives
HDLC High-level Data Link Control
HI Hash Index
HOLAP Hybrid On-Line Analytical Processing
HSN Hot Standby Node
HW Hardware
Hz Hertz - cycles per second

Acronyms Page B-9

 -I-
iABI Intel Application Binary Interface
I2E Internal-to-External
I2C or I2C Inter-Integrated Circuit
IC Integrated Circuit
ICI Initial Certified Installation
ICMB Intelligent Chassis Management Bus
ICSI Integrated Complex Service Interface
IDE Integrated Development Environment
IE Information Engineering
IEEE Institute of Electrical and Electronics Engineers
I/L Memory Inter-Leave controller
IMS Information Management System, Inventory Management System
IO Input/Output
IP Internet Protocol
IPMB Intelligent Platform Management Bus
IPS Integrated Peripheral Subsystem
IRQ Interrupt Request
ISA Industry-Standard Architecture
ISAM Indexed Sequential Access Method
ISD Interactive System Definition
ISDN Integrated Services Digital Network
ISO International Standards Organization
ISP Internet Support Package
ISPF Interactive System Productivity Facility
ISV Independent Software Vendor
IT Information Technology

 -J-

JBOD Just a Bunch of Disks
JCL Job Control Language
JDBC Java Database Connectivity
JDO Joint Development Operation (Teradata and NCR)
JES Job Entry Subsystem
JFS Journaling File System
JI Join Index
JIS Japanese Industrial Standards
JIT Just-In-Time

 Acronyms Page B-10

 -K-
Kb Kilobit
KB Kilobyte (1,024 bytes)
Kbaud Kilo Baud
Kbps Kilobits per second
KBPS Kilobytes per second
KHz Kilohertz
KSR Keyboard Send/Receive

 -L-

LAN Local Area Network
LARC Limited Address Range Cache
LCMP Loosely Coupled Multiprocessing
LCD Liquid Crystal Display
LDAP Lightweight Directory Access Protocol
LDM Limited Distance Modem, Local Domain Manager
LED Light Emitting Diode
LFM Log File Management
LM Local Media Module
LOB Large Object (either a BLOB or CLOB)
LPB Local Peripheral Board
LPI Language Processors Inc.
lpm lines per minute (or line-per-minute)
LSU Logical Storage Unit
LT/ST Large Table/Small Table (join)
LUN Logical Unit (disk array logical unit)

Acronyms Page B-11

 -M-
MA Modular Array
MAC Media Access Control, Medium Access Control,
 Message Authentication Code
MAP Manufacturing Automation Protocol, Maintenance Analysis
 Procedures, Master Application Processor
Mb Megabit
MB Megabyte
Mbps Megabits per second
MLAN Management LAN
MCA Micro Channel Architecture
MCCA Micro Channel to Channel Adapter
MCIA Micro Channel Interface Architecture
MHz MegaHertz - million cycles per second
MI Master Index
MIPS Million Instructions per Second
MIS Management Information System
MLPPI Multi-Level Partitioned Primary Index
MO Method of Operation
MOLAP Multi-dimensional On-Line Analytical Processing
MPEG Moving Picture Experts Group
MPL Message Passing Layer
MPP Massively Parallel Processing
MSU Memory Storage Unit
MTBDL Mean Time Between Data Loss
MTBF Mean Time Between Failures
MTBR Mean Time Between Repairs
MTDP Micro Teradata Director Program
MVC Multi-Value Compression
MVS Multiple Virtual Storage (IBM mainframe OS)

 Acronyms Page B-12

 -N-
NA Network Agent
ND No Duplicates
NetBIOS Network Basic Input/Output System
NFS Network File System
NI Network Interface
NIST National Institute of Standards and Technology
NLQ Near Letter Quality
NN No Nulls
NOBOM No Byte Order Mark (associated with Unicode)
NoPI No Primary Index Table (Teradata 13.0 feature)
NPPI Non-Partitioned Primary Index
NRZ Non-Return to Zero
Ns Nanosecond
NSC NCR Storage Cabinet
NTOS NCR Teradata Operating System
NUPI Non-Unique Primary Index
NUSI Non-Unique Secondary Index
NVRAM Non-Volatile Random Access Memory (read and write memory)

Acronyms Page B-13

 -O-
OCC Open Cooperative Computing
OCCA Open Cooperative Computing Architecture
OCR Optical Character Reader, Optical Character Recognition
ODBC Open Database Connectivity
ODS Operational Data Store
OE Operating Environment
OEM Original Equipment Manufacturer
OLAP On-Line Analytical Processing
OLCP On-Line Complex Processing
OLE Object Linking and Embedding
OLTP On-Line Transaction Processing
OMC ORION Memory Controller chip
OMC-DC ORION Memory Controller - DRAM Controller
OMC-DP ORION Memory Controller - Data Path Controller
ONE Open Network Environment
ONS Open Networking System
OOP Object Oriented Programming
OPB ORION PCI Bridge chip
OPS Oracle Parallel Server
OS Operating System
OSA Open Systems Architecture
OSF Open Software Foundation
OSI Open Systems Interconnect
OSI/DTP Open Systems Interconnect/Distributed Transaction Processing
OSS Open System Standards
OTOS Open Teradata Operating System

 Acronyms Page B-14

 -P-
PBX Private Branch Exchange
PC Personal Computer, Printed Circuit
PCEB PCI EISA Bridge chip
PCI Peripheral Component Interconnect
PCMCIA Personal Computer Memory Card International Association
PC/RA Probable Cause/Recommended Action
PCS Personal Computer Support
PDB Parallel Data Bus
PDCR Performance Data and Collection Repository
PDE Parallel Database Extensions
PDN Public or Private Data Network
PE Parsing Engine
PEP Parsing Engine Processor
PIM Plug-In Module (used with V3 BYNET 32 switch)
PK Primary Key (or Parent Key)
PL/1 Programming Language I
PLAN Private LAN
PM/PC Performance Management/Production Control
PN Primary Network
POPS Parallel Object Processing System
POS Point of Sale (noun), Point-of-Sale (terminal) (adj.)
POSIX Portable Operating System Interface for Computing Environments
POST Power-On System Test
PPI Partitioned Primary Index
PQS PCI Quad SCSI
PSA Priority Scheduler Administrator
PSC Power Shelf Controller
PSI Power Supply Interface
PTB Pass Through Board
PUT Parallel Upgrade Tool

 -Q-
QA Quality Assurance
QCD Query Capture Database
QFC Quad Fibre Channel
QIC Quarter Inch Cartridge

Acronyms Page B-15

 -R-
RAID Redundant Array of Independent (formerly, Inexpensive) Disks
RAM Random Access Memory
RASUI Reliability, Availability, Serviceability, Usability, Installability
RC Remote Client
RCMB Rack (or Remote) Chassis Management Board
RDAC Redundant Disk Array Controller (software)
RDBMS Relational Database Management System
RFC Request for Change
RFP Request for Proposal
RFS Remote File System
RGB Red, Green, Blue
RISC Reduced Instruction Set Computing
RJE Remote Job Entry
RLM Revision Level Manager
RM Resource Manager (TOP END) or Rack Mount
ROLAP Relational On-Line Analytical Processing
ROM Read Only Memory
ROSE Remote Operation Service Element
RPC Remote Procedure Call
RPG Report Program Generator
rpm revolutions (or rotations) per minute
RSC Remote System Call
RSS Resource Sampling Subsystem (used for performance capture)
RTS Ready to Send, Request to Send
RTS-CTS Request to Send - Clear to Send

 Acronyms Page B-16

 -S-
SAN Storage Area Network
SAR System Activity Report (sar – UNIX utility)
SCO Santa Cruz Operation UNIX
SCSI Standard (or Small) Computer System Interface
SDL Screen Definition Language
SDW Scalable Data Warehouse
SE Systems Engineer
SEEPROM Serial Electronically Erasable Programmable Read-Only Memory
SI Self-Instruction
SIMM Single In-line Memory Module
SKU Stock-keeping Unit
SLAN Service or System LAN (Local Area Network)
SLES SUSE Linux Enterprise Server
SLC Second Level Cache
SM3G Server Management – 3rd Generation
SMB Server Management Board
SMC Server Management Chassis
SMP Symmetrical Multi-Processing
SN Secondary Network
SNA Systems Network Architecture
SNAG SNA Gateway
SNO SuperNode
SNP Super Node Processor
SOV Single Operational View
SP Stored Procedure
SPI System Performance Investigator
SQL Structured Query Language
SQLCA Structured Query Language Communication Area
SQLDA Structured Query Language Data Area
SRAM Static Random Access Memory
SS Support Sentinel
SSA Symbolic Service Address, System-to-System Adapter
SSD Solid State Disk or Drive
SSI Single System Image, Standard Serial Interface
SSL Secure Socket Layer (Networking)
SSP Software Support Program, System Support Program (IBM)
STMP Simple Mail Transfer Protocol
SUS Startup Subsystem
SUSE Software und System Entwicklung (German name which means

Software and Systems Development)
SVID System V Interface Definition
SVR4 System V Release 4
SW Software
SWS Service Workstation (used with 56xx and later systems)
SYSGEN System Generation

Acronyms Page B-17

 -T-
3GL Third Generation Language
TAM Teradata Access Method (used with Replication Services)
TAP Teradata Application Program
TARA Tiered Archive Restore Architecture
TASM Teradata Active System Management
TAXI Transparent Asynchronous Xceiver Interface
TB Terabyte (a trillion bytes)
TBA To Be Announced
TBD To Be Determined
TCAM Telecommunications Access Method
TCP/IP Transmission Control Protocol/Internet Protocol
TDAS Teradata Dual Active Solution
TDQM Teradata Dynamic Query Manager
TFTP Trivial File Transfer Protocol
TLI Transport Layer Interface
TLS Transport Layer Security (Networking)
TM Transaction Manager
TMSM Teradata Multi-System Manager
TOD Time of Day (noun) or Time-of-Day (adj.)
TOS Teradata Operating System
TQD Teradata Query Director
TP Transaction Processing
TPA Trusted Parallel Application or Architecture
TPD Teradata Parallel Database
tps transactions per second
TPT Teradata Parallel Transporter
TSET Teradata System Emulation Tool
TSO Time-Sharing Option
TTL Transistor-Transistor Logic
TTU Teradata Tools and Utilities
TTY Teletype (serial communication protocol)
TVI Teradata Vital Infrastructure (software to alert remote support)
TVS Teradata Virtual Storage
TVSS Teradata Virtual Storage Services
TWA Teradata Workload Analyzer

 Acronyms Page B-18

 -U-
U Unit of Measurement – 1.75” or 4.445 cm
UDF User Defined Function
UDM User Defined Method
UDP Unreliable Data Protocol
UDT User Defined Type
UFS UNIX File System
UMB Universal Management Board
UPI Unique Primary Index
UPS Uninterruptible Power Source
UPS-IS Uninterruptible Power Source – Input Selector
USI Unique Secondary Index

 -V-
VAR Value Added Reseller
VDC Volts Direct Current
VDT Video Display Terminal
VGA Video Graphics Array
VLC Value List Compression
VLF Very Low Frequency
VLSI Very Large Scale Integration
VM Virtual Machine
VONUSI Valued-ordered NUSI
VPIX "DOS under UNIX"
VPROC Virtual Processor
VSAM Virtual System Access Method
VSS Virtual Storage Services
VTAM Virtual Telecommunications Access Method

 -W-
WAL Write Ahead Logic
WAN Wide Area Network
WAWS Windows AWS (Administration Workstation)
WBEM Web-Based Enterprise Management
WCI WAL Cylinder Index
WinDDI Windows Data Dictionary Interface (application)
WIN-TCP Wollongong Integrated Networking/Transmission Control Protocol
WMI WAL Master Index
WORM Write Once - Read Many Optical Disk
WTO Write to Operator
WYSIWYG What You See Is What You Get

Acronyms Page B-19

 -X-
XA Extended Architecture
XMIT Transmit
XML Extensible Markup Language

 -Y-

YMCA Ynet Micro Channel Architecture adapter
YTD Year-to-Date

 Acronyms Page B-20

Notes

Answers to Review Questions Page C-1

Module C

Teradata Proprietary and Confidential

Appendix C: Answers to Review Questions

This Appendix contains answers to the review
questions for the course modules.

 Answers to Review Questions Page C-2

Notes

Answers to Review Questions Page C-3

Module 1: Review Question Answers

1. Which feature allows the Teradata Database to process enormous volumes of data quickly? ____

a. High availability software and hardware components
b. High performance servers from Intel
c. Proven Scalability
d. Parallelism

2. The Teradata Database is primarily a ____ .

a. Client
b. Server

3. Which choice represents a quadrillion bytes or a Petabyte (PB) of data? ____

a. 109

b. 1012

c. 1015

d. 1018

4. In a relational table, the set of columns that uniquely identifies a row is the _________ _________. Primary Key.

 Answers to Review Questions Page C-4

Module 2: Review Question Answers

1. What language is used to access a Teradata table?

2. What are five Teradata database objects?

3. What are four major components of the Teradata architecture?

4. What are views?

5. What are macros?

SQL

Tables, views, macros, triggers, and stored procedures

PEs, AMPs, Vdisks, and Message Passing Layer

Filter (or subset) of rows and columns or one or more tables

Predefined, stored set of SQL statements

Answers to Review Questions Page C-5

Module 3: Review Question Answers

1. What are the two software elements that accompany an application on all client side environments?

2. What is the purpose of the PE?

3. What is the purpose of the AMP?

4. How many sessions can a PE support?

Match Quiz

___ 1. CLI

___ 2. MTDP

___ 3. MOSI

___ 4. Parser

___ 5. AMP

___ 6. Message Passing Layer

___ 7. TDP

___ 8. Optimizer

___ 9. Dispatcher

___ 10. Parallelism

a. Does Aggregating and Locking

b. Validates SQL syntax

c. Connects AMPs and PEs

d. Balances sessions across PEs

e. Provides Client side OS independence

f. Library of Session Management Routines

g. PE S/W turns SQL into AMP steps

h. PE S/W sends plan steps to AMP

i. Library of Teradata Service Routines

j. Foundation of Teradata architecture

CLI/ODBC/JDBC/.NET and TDP/MTDP

Parse, optimize, and dispatch queries

Manage and retrieve data from disk storage

120

i

f

e

b

a

c

d

g

h

j

 Answers to Review Questions Page C-6

True or False

______ 1. A database will always have tables.

______ 2. A user will always have a password.

______ 3. A user creating a subordinate user must give up some of his/her Perm Space.

______ 4. Creating tables requires the definition of at least 1 column and a Primary Index.

______ 5. The sum of all user and database Perm Space will equal the total space on the system.

______ 6. The sum of all user and database Spool Space will equal the total space on the system.

______ 7. Before a user can read a table, a database or table SELECT privilege must exist in the DD/D
for that user.

______ 8. Deleting a macro from a database reclaims Perm Space for the database.

9. Which statement is TRUE about PERM space? ____

a. PERM space cannot be dynamically modified.
b. The per/AMP limit of PERM space can be exceeded.
c. Tables, index subtables, and stored procedures use PERM space.
d. Maximum PERM space can be defined at the database or table level.

10. Which statement is TRUE about SPOOL space? ____

a. SPOOL space cannot be dynamically modified.
b. Maximum SPOOL space can be defined at the database or user level.
c. The SPOOL limit is dependent on the database limit where the table is located.
d. Maximum SPOOL space can be defined at a value greater than the immediate parent's value.

False

True

False

False

True

False

True

False

Module 4: Review Question Answers

Answers to Review Questions Page C-7

Module 5: Review Question Answers

Answer the following either as True or False as these apply to Primary Indexes:

True or False 1. UPI and NUPI equality value accesses are always a one-AMP operation.

True or False 2. UPI and NUPI indexes allow NULL in a primary index column.

True or False 3. UPI, NUPI, and NOPI tables allow duplicate rows in the table.

True or False 4. Only UPI can be used as a Primary Key implementation.

Fill in the Blanks

5. The output of the hashing algorithm is called the _____ _____.

6. To determine the target AMP, the Message Passing Layer must lookup an entry in the Hash Map
based on the _______ _______ _______.

7. A Row ID consists of a row hash plus a ____________ value.

8. A uniqueness value is required to produce a unique Row ID because of ______ ___________ and
________ ___________.

9. Once the target AMP has been determined for a PI search, the _______ ________ for that AMP is
accessed to determine the cylinder that may hold the row.

10. The Cylinder Index points us to the address and length of the data ________.

row hash

hash bucket number

uniqueness

hash synonyms
NUPI duplicates

Master Index

block

 Answers to Review Questions Page C-8

Module 6: Review Question Answers

USI
Access FTS

AMPs

rows

Parallel Operation

Uses Hash Maps

Uses Separate Sub-table

Reads all data blocks of table

Fill each box with either Yes, No, or the appropriate number.

NUSI
Access

2 All All

0 - 1 0 - n 0 - all

No Yes Yes

Yes No No

Yes Yes No

No No Yes

Answers to Review Questions Page C-9

Module 7: Review Question Answers

Complete the following.

1. Each AMP has its own memory and manages its own disk space and executes independently of
other AMPs. This is referred to as a _________ _________ architecture.

2. The software component that allows the Teradata Database to execute in different operating system
environments is the __________.

3. A physical message passing interconnect is called the _____________.

4. A clique provides protection from a _________ failure.

5. If a node fails, all vprocs will migrate to the remaining nodes in the clique. This feature is referred to
as ___________ _____________.

6. The _______ or _______ provides a single point of operational control for Teradata MPP systems.

7. A _________ node is part of a system configuration, is connected to the BYNET, and executes the
Teradata Database software.

8. A _________ node is part of a system configuration, connects to the BYNET, and is used to execute
application software other than Teradata Database software.

9. A _________ node is part of a system configuration, connects to the BYNET, and is used as a spare
node in the event of a node failure.

shared nothing

PDE

BYNET

node

vproc migration

AWS SWS

TPA

NOTPA

HSN

 Answers to Review Questions Page C-10

Module 8: Review Question Answers

Match the item to a lettered description.

a. Provides for TXN rollback in case of failure

b. Teradata Backup and Recovery applications

c. Protects all rows of a table

d. Logs changed rows for down AMP

e. Provides for recovery to a point in time

f. Applies to all tables and views within

g. Multi-platform archive utility

h. Lowest level of protection granularity

i. Protects tables from AMP failure

j. Protects database from a physical drive failure

k. Group of AMPs used by Fallback

____ 1. Database locks

____ 2. Table locks

____ 3. Row Hash locks

____ 4. FALLBACK

____ 5. Cluster

____ 6. Recovery journal

____ 7. Transient journal

____ 8. ARC

____ 9. NetBackup/Tivoli

____ 10. Permanent journal

____ 11. Disk Array

f

c

h

i

k

d

a

g

b

e

j

Answers to Review Questions Page C-11

Module 9: Review Question Answers

1. What is a major difference between a 6650 system as compared to a 6690 system?

2. What is a major difference between a 2650 node and a 2690 node?

3. What does the acronym represent and briefly define the purpose of the following subsystems?

BYNET ___

SWS ___

4. Specify the names of the two TPA nodes in 6690 cabinet #2.

__________ ____________

2690 nodes have hardware compression boards.

Banyan Network; high speed interconnect for data/message passing between nodes

Service Workstation; is dedicated to operations, system servicing, and maintenance

SMP002-8 SMP002-9

6690 Systems have both spinning disks and solid state disks in the same cabinet.

Play the numbers games – match the number to a definition.

1. 3 a. Typical # of AMPs per node in a 6650 3+1 clique

2. 8 b. Maximum number of nodes that can be in a 2690 cabinet

3. 24 c. Maximum number of drives in one NetApp 6844 disk array

4. 42 d. Number of nodes in a 2650 clique

5. 128 e. Large disk drive size (GB) for a 2690 disk array

6. 900 f. Typical # of AMPs in a 2690 node

d

b

f

a

c

e

 Answers to Review Questions Page C-12

Module 10: Review Question Answers

1. Which two are placed into FSG cache?
a. Hash maps
b. Master Index
c. Cylinder Indexes
d. Permanent data blocks

2. What is the WAL Depot used for?
a. UNDO Rows
b. New data blocks
c. Master Index updates
d. Write-in-place data blocks

3. Which two are placed into the WAL Log?
a. REDO Rows
b. UNDO Rows
c. New data blocks
d. Master Index updates
e. Write-in-place data blocks

4. Describe the fundamental relationship between Linux, logical units, and disk array controllers.

__

5. Describe the fundamental relationship between AMPs, Vdisks, Pdisks, Partitions, and LUNs.

__

__

Linux uses logical unit names to communicate with disk array controllers.

Each AMP is assigned to a Vdisk which is made up of 1 or more Pdisks. A Pdisk is assigned to a
partition in a logical unit or LUN.

Answers to Review Questions Page C-13

Module 11: Review Question Answers

1. List two capabilities of using Teradata Virtual Storage.

__

__

2. List the two operational modes of Teradata Virtual Storage.

_______________________________ _______________________________

3. Which choice is associated with data temperature?

a. Skewed data
b. Frequency of access
c. Solid State Disk Drives
d. Inner tracks versus outer tracks on a spinning disk

4. Which data level is migrated from hot to cold storage?

a. Row
b. Block
c. Cylinder
d. Subtable

5. Which two types of data are typically considered to be HOT data?

a. WAL
b. DBC tables
c. Spool data
d. History data

Simplify adding storage space,
Provides a multi-temperature data warehouse

Teradata Traditional Intelligent Placement

 Answers to Review Questions Page C-14

Module 12: Review Question Answers

1. Which three are benefits to creating a data model in 3NF? ____ ____ ____

a. Minimize redundancy
b. To reduce update anomalies
c. To improve distribution of data
d. To improve flexibility of access
e. To reduce number of I/Os to access data

2. Which data model would include the definition of a partitioned primary index? ____

a. Logical data model
b. Physical data model
c. Business information model
d. Extended logical data model

3. Which two factors should be considered when deciding to denormalize a table? ____ ____

a. Volatility
b. Performance
c. Distribution of data
d. Connectivity of users

4. Which is a benefit of implementing data types at the domain level? ____

a. Reduce storage space
b. Avoid data conversion
c. Provides consistent display of data
d. Reduce need for secondary indexes

Answers to Review Questions Page C-15

Module 13: Review Question Answers

1. The Row Hash for a PI value of 824 is the same for the data types of INTEGER and DECIMAL(18,0).
True or False. _______

2. The first 16 or 20 bits of the Row Hash is referred to as the ________ ________ ________.

3. The Hash Map consists of entries or buckets which identify an _____ number for the Row Hash.

4. The Current Configuration ___________ Hash Map is used to locate the AMP to locate/store a row
based on PI value.

5. The ____________ utility is used to redistribute rows to a new system configuration with more
AMPs.

6. When creating a new table, the Unique Value of a Table ID comes from the dictionary table named
DBC.________.

7. The Row ID consists of the _______ ________ and the ___________ _______.

8. The _______ _______ contains a Cylinder Index Descriptor (CID) for each allocated Cylinder.

9. The ________ ________ contains an entry for each data block in the cylinder.

10. The _____ __________ ________ consists of a set of 2 byte pointers to the data rows in data block.

11. The maximum block size is approximately _______ and the maximum row size is approximately
_______.

12. The Primary Index data value is used as a row qualifier to eliminate hash _____________.

True

hash bucket number

AMP

Primary

RECONFIG

Next

Row Hash Uniqueness Value

Master Index

Cylinder Index

Row Reference Array

128 KB
64 KB

synonyms

 Answers to Review Questions Page C-16

Module 14: Review Question Answers

1. When Teradata INSERTs a new row into a table, it first goes to the _________ to locate the proper
cylinder for the new row.

a. Cylinder Index
b. Fallback AMP
c. Free Cylinder List
d. Master Index

2. When a new block is needed, the File System searches the Free Block List looking for the first Free
Block whose size is equal to, or greater than the new block’s requirement. It does not have to be an
exact match.

a. True
b. False

3. Name the condition which occurs when there is no block on the Free Block List with enough sectors
to accommodate the additional data during an INSERT or UPDATE.

a. Mini Cylinder Pack
b. Cylinder Migrate to a new cylinder
c. Cylinder Migrate to an adjacent cylinder
d. Cylinder Full

4. The ______________ parameter can be set to control how completely cylinders are filled during
loading and PackDisk.

a. Free Space Percent
b. DataBlockSize
c. PermDBSize
d. PermDBAllocUnit

Answers to Review Questions Page C-17

Module 14: Review Question Answers

5. Number the following steps in sequence from 1 to 6 that the File System software will attempt to
perform in order to insert a new row into an existing data block.

____ Perform a Cylinder Migrate operation to an adjacent cylinder

____ Simply insert the row into data block if enough contiguous free bytes in the block

____ Perform a Block split

____ Perform a Cylinder Migrate operation to a new cylinder

____ Defragment the block and insert the row

____ Expand or grow the block to hold the row

6. As part of a cylinder full condition, if the number of free sectors within a cylinder is greater than 25%,
what operation will Teradata perform in the background?

7. If the number of free cylinders falls below a minimum threshold, what operation will Teradata perform
in the background?

2

1

3

4

5

6

Cylinder Defragmentation

Mini-Cylpack

 Answers to Review Questions Page C-18

Module 15: Review Question Answers

1. Which two data interfaces are available with Teradata SQL Assistant?

a. CLIv2

b. JDBC

c. ODBC

d. Teradata .Net

2. Separate history database files are needed to maintain queries for different data sources.

a. True

b. False

3. Which piece of query information is not available in the History Window?

a. User name

b. Query band

c. Elapsed time

d. Data source name

e. Number of rows returned

4. What are two techniques to execute multiple statements as a multi-statement request?

__________________________________ __________________________________Use the Execute Parallel icon Use function key 9 – F9

Answers to Review Questions Page C-19

Module 16: Exercise 2 – Choosing PI Candidates

ENTITY 1

100,000,000
Rows A B C D E F

PK/FK PK,UA

Value Access 50K 0 0 0 0 0
Range Access 0 0 0 0 0 0

Join Access 10M 0 0 0 0 0
Join Rows 10M 0 0 0 0

Distinct Values 100M 95M 300K 250K 40M 1M
Max Rows/Value 1 2 400 350 3 110
Max Rows/NULL 0 0 0 0 1.5M 0

Typical Rows/Value 1 1 325 300 2 90
Change Rating 0 3 2 1 1 1

PI/SI

Collect Statistics (Y/N)

UPI NUPI NUPI NUPI NUPI

 Answers to Review Questions Page C-20

Module 16: Exercise 2 – Choosing PI Candidates

ENTITY 2

10,000,000
Rows G H I J K L

PK/FK PK,SA

Value Access 5K 365 12 12 0 0
Range Access 12 0 0 0 0 260

Join Access 100M 0 0 0 0 0
Join Rows 100M 0 0 0 0 0

Distinct Values 10M 100K 9M 12 50 180K
Max Rows/Value 1 200 2 1M 240K 60
Max Rows/NULL 0 0 100K 0 0 0

Typical Rows/Value 1 100 1 800K 190K 50
Change Rating 0 0 9 1 2 0

PI/SI

Collect Statistics (Y/N)

NUPIUPI NUPI

Answers to Review Questions Page C-21

Module 16: Exercise 2 – Choosing PI Candidates

DEPENDENT

5,000,000
Rows A M N O P Q

PK/FK PK NN, ND
FK SA

Value Access 0 0 0 0 0 0
Range Access 0 0 0 0 0 0

Join Access 700K 0 0 0 0 0
Join Rows 1M 0 0 0 0 0

Distinct Values 2M 50 90K 3M 5M 2M
Max Rows/Value 4 200K 75 2 1 5
Max Rows/NULL 0 0 0 390K 0 1M

Typical Rows/Value 1 60K 50 1 1 1
Change Rating 0 0 3 1 0 1

PI/SI

Collect Statistics (Y/N)

UPI
NUPI NUPI

UPI

 Answers to Review Questions Page C-22

Module 16: Exercise 2 – Choosing PI Candidates

UPI
NUPI NUPINUPI

ASSOCIATIVE 1

300,000,000
Rows A G R S

PK/FK PK
FK FK,SA

Value Access 260 0 0 0
Range Access 0 0 0 0

Join Access 0 8M 0 0
Join Rows 0 300M 0 0

Distinct Values 100M 10M 15K 800K
Max Rows/Value 5 50 21K 400
Max Rows/NULL 0 0 0 0

Typical Rows/Value 3 30 19K 350
Change Rating 0 0 0 0

PI/SI

Collect Statistics (Y/N)

NUPI?

Answers to Review Questions Page C-23

Module 16: Exercise 2 – Choosing PI Candidates

UPI
NUPINUPI NUPI

ASSOCIATIVE 2

100,000,000
Rows A M G T U

PK/FK PK
FK FK

Value Access 0 0 0 0
Range Access 0 0 0 0

Join Access 7M 250K 0 0
Join Rows 800M 20M 0 0

Distinct Values 50M 10M 560K 750
Max Rows/Value 3 150 180 135K
Max Rows/NULL 0 0 0 0

Typical Rows/Value 1 8 170 100K
Change Rating 0 0 0 0

PI/SI

Collect Statistics (Y/N)

 Answers to Review Questions Page C-24

Module 16: Exercise 2 – Choosing PI Candidates

HISTORY

730,000,000
Rows A DATE D E F

PK/FK PK
FK SA

Value Access 10M 5K 0 0 0
Range Access 0 20K 0 0 0

Join Access 800M 0 0 0 0
Join Rows 2.4B 0 0 0 0

Distinct Values 100M 730 N/A N/A N/A
Max Rows/Value 18 1100K N/A N/A N/A
Max Rows/NULL 0 0 N/A N/A N/A

Typical Rows/Value 3 900K N/A N/A N/A
Change Rating 0 0 N/A N/A N/A

PI/SI

Collect Statistics (Y/N)

UPI
NUPI

Answers to Review Questions Page C-25

Module 16: Review Question Answers

1. Which trade-off must be balanced to make the best choice for a primary index? ____

a. Access and volatility
b. Access and block size
c. Block size and volatility
d. Access and distribution

2. When volatility is considered as one of the Primary Index choice criteria, what is analyzed? ____

a. Degree of uniqueness
b. How often the data values will change
c. How often the fixed length rows will change
d. How frequently the column is used for access

3. To optimize the use of disk space, the designer should choose a primary index that ________.

a. is non-unique
b. consists of one column
c. is unique or nearly unique
d. consists of multiple columns
e. has fewer distinct values than AMPs

 Answers to Review Questions Page C-26

Module 16: Review Question Answers

4. For NoPI tables, what are 2 ways in which the Random Generator is executed?

a. At the AMP level with FastLoad
b. At the PE level for ad hoc SQL requests
c. At the TPump client level for array insert operations
d. At the AMP level for INSERT-SELECT into an empty NoPI table

5. Assume DBSControl flag #53 (Primary Index Default) is set to N (No Primary Index), which two
indexes are created for TableX given the following DDL command?

CREATE TABLE TableX
(col1 INTEGER NOT NULL UNIQUE
,col2 CHAR(10) NOT NULL PRIMARY KEY
,col3 CHAR(80));

a. col1 will be a UPI
b. col1 will be a USI
c. col2 will be a UPI
d. col2 will be a USI

6. Which two options are permitted for NoPI tables?

a. Fallback
b. MultiLoad
c. Hash Index
d. BLOBs and CLOBs

Answers to Review Questions Page C-27

Module 17: Review Question Answers

1. In a PPI table, every row is uniquely identified by its ______ _____ + ______ ______ + _____ ______ .

2. The Row Key consists of the ________ ________ + _______ _______ .

3. In an NPPI table, the partition number defaults to ________ .

4. True or False. For a PPI table, the partition number and the Row Hash are both used by the
Message Passing Layer to determine which AMP(s) should receive the request.

5. Which two options apply to the RANGE_N expression in a partitioning expression? ____ ____

a. Ranges can be listed in descending order
b. Allows use of NO RANGE OR UNKNOWN option
c. Partitioning column must be part of the Primary Index
d. Has a maximum of 65,535 partitions with Teradata Release 13.10

6. With a populated table, select 2 actions that are allowed with the ALTER TABLE command. ____ ____

a. Drop all of the ranges
b. Add or drop ranges from the partition “ends”
c. Change the columns that comprise the primary index
d. Add or drop special partitions (NO RANGE, UNKNOWN)

7. Which 2 choices are advantages of partitioning a table? ____ ____

a. Fast delete of rows in partitions
b. Fewer AMPs are involved when accessing data
c. Faster access (than an NPPI table) if the table has a UPI
d. Range queries can be executed without a secondary index

Partition # + Row Hash + Uniqueness Value.

Partition # + Row Hash .

0 .

b d

b d

a d

 Answers to Review Questions Page C-28

Module 17: Review Question Answers

Given this CREATE TABLE statement, answer the following questions.

CREATE TABLE Orders
(Order_id INTEGER NOT NULL,
Cust_id INTEGER NOT NULL,
Order_status CHAR(1),
Total_price DECIMAL(9,2) NOT NULL,
Order_date DATE FORMAT 'YYYY-MM-DD' NOT NULL,
Order_priority SMALLINT,
Clerk CHAR(16),
Ship_priority SMALLINT,
Order_Comment VARCHAR(80))

PRIMARY INDEX (Order_id)
PARTITION BY RANGE_N (Order_date

BETWEEN DATE '2003-01-01' AND DATE '2012-12-31'
EACH INTERVAL '1' MONTH)

UNIQUE INDEX (Order_id);

8. What is the name of partitioning column? ______________

9. What is the time period for each partition? ______________

10. Why is there a Unique Secondary Index specified instead of defining Order_id as a UPI? _____

a. This is a coding style choice.
b. You cannot have a UPI when using a partitioned primary index.
c. You cannot have a UPI if the partitioning column is not part of the primary index.
d. This is a mistake. You cannot have a secondary and a primary index on the same column(s).

Order_date

1 Month

c

Answers to Review Questions Page C-29

Module 18: Review Question Answers

1. Which two choices apply to Column Partitioning?

a. SET table
b. NoPI table
c. Table with multi-level partitioning
d. Table with existing row partitioning

2. What are two benefits of Column Partitioning?

a. Reduced I/O
b. Reduced CPU
c. Reduced disk space usage
d. Reduced tactical query response times

3. True or False? Deleting a row in a column partitioned table will reclaim table space.

4. True or False? In a multi-level columnar table, only one level may have column partitioning.

5. True or False? The preferred way to load a columnar table is using INSERT/SELECT.

 Answers to Review Questions Page C-30

Module 19: Review Question Answers

1. Because the row is hash-distributed on different columns, the subtable row will typically land on an
AMP other than the one containing the data row. This index would be:

a. UPI or NUPI
b. USI
c. NUSI
d. None of the above

2. The Teradata DBS hashes the value and uses the Row Hash to find the desired rows. This is always
a one-AMP operation. This index would be:

a. UPI or NUPI
b. USI
c. NUSI
d. None of the above

3. ___________________ is a process that determines common Row IDs between multiple NUSI values
by a process of intersection.

a. NUSI Bit Mapping
b. Dual NUSI Access
c. Full Table Scan
d. NUSI Read

4. If aggregation is performed on a NUSI column, the Optimizer accesses the NUSI subtable and returns
the result without accessing the base table. This is referred to as:

a. NUSI bit mapping
b. Full table scan
c. Dual NUSI access
d. Covering Index

Answers to Review Questions Page C-31

Module 20: Exercise 3 – Choosing SI Candidates

NUSI NUSIUSI NUSI NUSI NUSI

ENTITY 1

100,000,000
Rows A B C D E F

PK/FK PK,UA

Value Access 50K 0 0 0 0 0
Range Access 0 0 0 0 0 0

Join Access 10M 0 0 0 0 0
Join Rows 10M 0 0 0 0 0

Distinct Values 100M 95M 300K 250K 40M 1M
Max Rows/Value 1 2 400 350 3 110
Max Rows/NULL 0 0 0 0 1.5M 0

Typical Rows/Value 1 1 325 300 2 90
Change Rating 0 3 2 1 1 1

PI/SI

Collect Statistics (Y/N)

UPI NUPI NUPI NUPI NUPI

 Answers to Review Questions Page C-32

Module 20: Exercise 3 – Choosing SI Candidates

NUSI

ENTITY 2

10,000,000
Rows G H I J K L

PK/FK PK,SA

Value Access 5K 365 12 12 0 0
Range Access 12 0 0 0 0 260

Join Access 100M 0 0 0 0 0
Join Rows 100M 0 0 0 0 0

Distinct Values 10M 100K 9M 12 50 180K
Max Rows/Value 1 200 2 1M 240K 60
Max Rows/NULL 0 0 100K 0 0 0

Typical Rows/Value 1 100 1 800K 190K 50
Change Rating 0 0 9 1 2 0

PI/SI

Collect Statistics (Y/N)

NUPIUPI NUPI
USI NUSI NUSI NUSI

Answers to Review Questions Page C-33

Module 20: Exercise 3 – Choosing SI Candidates

NUSINUSINUSI
USI

NUSI
USI

NUSI

UPI
NUPI NUPI

UPI

DEPENDENT

5,000,000
Rows A M N O P Q

PK/FK PK NN,ND
FK SA

Value Access 0 0 0 0 0 0
Range Access 0 0 0 0 0 0

Join Access 700K 0 0 0 0 0
Join Rows 1M 0 0 0 0 0

Distinct Values 2M 50 90K 3M 5M 2M
Max Rows/Value 4 200K 75 2 1 5
Max Rows/NULL 0 0 0 390K 0 1M

Typical Rows/Value 1 60K 50 1 1 1
Change Rating 0 0 3 1 0 1

PI/SI

Collect Statistics (Y/N)

 Answers to Review Questions Page C-34

Module 20: Exercise 3 – Choosing SI Candidates

USI
NUSINUSI NUSINUSI

UPI
NUPINUPI

ASSOCIATIVE 1

300,000,000
Rows A G R S

PK/FK PK
FK FK,SA

Value Access 260 0 0 0
Range Access 0 0 0 0

Join Access 0 8M 0 0
Join Rows 0 300M 0 0

Distinct Values 100M 10M 15K 800K
Max Rows/Value 5 50 21K 400
Max Rows/NULL 0 0 0 0

Typical Rows/Value 3 30 19K 350
Change Rating 0 0 0 0

PI/SI

Collect Statistics (Y/N)

NUPI NUPI?

Answers to Review Questions Page C-35

Module 20: Exercise 3 – Choosing SI Candidates

NUSI NUSI
USI

NUSI NUSI

UPI
NUPINUPI NUPI

ASSOCIATIVE 2

100,000,000
Rows A M G T U

PK/FK PK
FK FK

Value Access 0 0 0 0
Range Access 0 0 0 0

Join Access 7M 250K 0 0
Join Rows 800M 20M 0 0

Distinct Values 50M 10M 560K 750
Max Rows/Value 3 150 180 135K
Max Rows/NULL 0 0 0 0

Typical Rows/Value 1 8 170 100K
Change Rating 0 0 0 0

PI/SI

Collect Statistics (Y/N)

 Answers to Review Questions Page C-36

Module 20: Exercise 3 – Choosing SI Candidates

UPI
NUPI

HISTORY

730,000,000
Rows A DATE D E F

PK/FK PK
FK FK,SA

Value Access 10M 5K 0 0 0
Range Access 0 20K 0 0 0

Join Access 800M 0 0 0 0
Join Rows 2.4B 0 0 0 0

Distinct Values 100M 730 N/A N/A N/A
Max Rows/Value 18 1100K N/A N/A N/A
Max Rows/NULL 0 0 N/A N/A N/A

Typical Rows/Value 3 900K N/A N/A N/A
Change Rating 0 0 N/A N/A N/A

PI/SI

Collect Statistics (Y/N)
NUSI NUSI

USI

Answers to Review Questions Page C-37

Module 20: Exercise 4 – Eliminating SI Candidates

USI NUSI NUSI NUSI NUSI

ENTITY 1

100,000,000
Rows A B C D E F

PK/FK PK,UA

Value Access 50K 0 0 0 0 0
Range Access 0 0 0 0 0 0

Join Access 10M 0 0 0 0 0
Join Rows 10M 0 0 0 0 0

Distinct Values 100M 95M 300K 250K 40M 1M
Max Rows/Value 1 2 400 350 3 110
Max Rows/NULL 0 0 0 0 1.5M 0

Typical Rows/Value 1 1 325 300 2 90
Change Rating 0 3 1 1 1 1

PI/SI

Collect Statistics (Y/N)

UPI NUPI NUPI NUPI NUPI
NUSI

 Answers to Review Questions Page C-38

Module 20: Exercise 4 – Eliminating SI Candidates

NUSI VONUSINUSI

ENTITY 2

10,000,000
Rows G H I J K L

PK/FK PK,SA

Value Access 5K 365 12 12 0 0
Range Access 12 0 0 0 0 260

Join Access 100M 0 0 0 0 0
Join Rows 100M 0 0 0 0 0

Distinct Values 10M 100K 9M 12 50 180K
Max Rows/Value 1 200 2 1M 240K 60
Max Rows/NULL 0 0 100K 0 0 0

Typical Rows/Value 1 100 1 800K 190K 50
Change Rating 0 0 9 1 2 0

PI/SI

Collect Statistics (Y/N)

NUPIUPI NUPI
USI NUSI NUSI

Answers to Review Questions Page C-39

Module 20: Exercise 4 – Eliminating SI Candidates

DEPENDENT

5,000,000
Rows A M N O P Q

PK/FK PK NN,ND
FK SA

Value Access 0 0 0 0 0 0
Range Access 0 0 0 0 0 0

Join Access 700K 0 0 0 0 0
Join Rows 1M 0 0 0 0 0

Distinct Values 2M 50 90K 3M 5M 2M
Max Rows/Value 4 200K 75 2 1 5
Max Rows/NULL 0 0 0 390K 0 1M

Typical Rows/Value 1 60K 50 1 1 1
Change Rating 0 0 3 1 0 1

PI/SI

Collect Statistics (Y/N)
NUSINUSINUSI

USI
NUSI

USI
NUSI

UPI
NUPI NUPI

UPI

 Answers to Review Questions Page C-40

Module 20: Exercise 4 – Eliminating SI Candidates

ASSOCIATIVE 1

300,000,000
Rows A G R S

PK/FK PK
FK FK,SA

Value Access 260 0 0 0
Range Access 0 0 0 0

Join Access 0 8M 0 0
Join Rows 0 300M 0 0

Distinct Values 100M 10M 15K 800K
Max Rows/Value 5 50 21K 400
Max Rows/NULL 0 0 0 0

Typical Rows/Value 3 30 19K 350
Change Rating 0 0 0 0

PI/SI

Collect Statistics (Y/N)

UPI
NUPINUPINUPI

USI
NUSINUSI NUSINUSI

NUPI?

Answers to Review Questions Page C-41

Module 20: Exercise 4 – Eliminating SI Candidates

NUSI NUSI
USI

NUSI NUSI

UPI
NUPINUPI NUPI

ASSOCIATIVE 2

100,000,000
Rows A M G T U

PK/FK PK
FK FK

Value Access 0 0 0 0
Range Access 0 0 0 0

Join Access 7M 250K 0 0
Join Rows 800M 20M 0 0

Distinct Values 50M 10M 560K 750
Max Rows/Value 3 150 180 135K
Max Rows/NULL 0 0 0 0

Typical Rows/Value 1 8 170 100K
Change Rating 0 0 0 0

PI/SI

Collect Statistics (Y/N)

 Answers to Review Questions Page C-42

Module 20: Exercise 4 – Eliminating SI Candidates

UPI
NUPI

HISTORY

730,000,000
Rows A DATE D E F

PK/FK PK
FK SA

Value Access 10M 5K 0 0 0
Range Access 0 20K 0 0 0

Join Access 800M 0 0 0 0
Join Rows 2.4B 0 0 0 0

Distinct Values 100M 730 N/A N/A N/A
Max Rows/Value 18 1100K N/A N/A N/A
Max Rows/NULL 0 0 N/A N/A N/A

Typical Rows/Value 3 900K N/A N/A N/A
Change Rating 0 0 N/A N/A N/A

PI/SI

Collect Statistics (Y/N)
NUSI

USI
VONUSI

Answers to Review Questions Page C-43

Module 20: Review Question Answers

1. With a NUPI, a technique to avoid a duplicate row check is to ________.

a. use set tables
b. use the NOT NULL constraint on the column
c. create the table as MULTISET table
d. compare data values byte-by-byte within a Row Hash in order to ensure uniqueness

2. Which type of usage normally applies to a USI? ____

a. Range access
b. NOT condition
c. Equality value access
d. Inequality value access

3. Which two types of usage normally apply to a composite NUSI that is hash-ordered? ____ ____

a. Covering index
b. Equality value access
c. Inequality value access
d. Non-covering range access

 Answers to Review Questions Page C-44

Module 21: Review Question Answers

1. Which one of the following situations requires the use of the Transient Journal?

a. loading a table with FastLoad
b. DELETE all the rows in a table
c. UPDATE all the rows in a table
d. INSERT/SELECT into an empty table

2. What is a negative impact of updating a UPI value?

__

3. What are the 4 types of constraints?

_____________ _____________ _____________ _____________

4. True or False? A primary key constraint is always implemented as a primary index.

5. True or False? A primary key constraint is always implemented as a unique index.

6. True or False? Multi-column constraints must be coded as table level constraints.

7. True or False? Only named check constraints may be modified.

8. True or False? Named primary key constraints may always be dropped if they are no longer
needed.

9. True or False? Using the “START WITH 1” and “INCREMENT BY 1” options with an Identity
column will provide sequential numbering with no gaps for the column.

Very I/O intensive - requires that (internally) the data row be deleted and re-inserted into the table as
well as updating the existing secondary indexes.

Primary Key Unique References Check

Answers to Review Questions Page C-45

Module 22: Review Question Answers

1. Which of the following rules is not one of the relational modeling rules for a Primary Key?

a. Must not contain NULL values
b. Must be unique
c. Must consist of a single column
d. Must not change

2. Which choice cannot be referenced by a Foreign Key?

a. Column defined as a USI with NOT NULL
b. Column defined as UNIQUE with NOT NULL
c. Column defined as a NUPI with NOT NULL
d. Column defined as a Primary Key with NOT NULL

3. True or False. A reference index subtable is only created for standard (or full) referential integrity.

4. How is the reference index subtable hash distributed?

By the foreign key values.

5. How can a reference index row be marked as “invalid”?

1) Adding a RI constraint to a populated table
2) Revalidating a RI constraint after a table is restored

 Answers to Review Questions Page C-46

Module 23: Review Question Answers

1. Which of the following can be used with the COMPRESS option?

a. Identity column
b. Non-unique Primary Index
c. USI as PK with Standard RI
d. Non-unique Secondary Index

2. Which section of a row identifies the starting location of variable length column data and is present
only if variable length columns without compression are declared?

a. Presence Bits
b. Column Offsets
c. VARCHAR Columns
d. Uncompressed Columns

3. How can you override the default that a column with a NULL value will require row space?

a. Use the NOT NULL option on the column as part of the CREATE TABLE statement.
b. Set the user's default so columns will default to COMPRESS when creating a table.
c. Use the COMPRESS option on the column as part of the CREATE TABLE statement.
d. Use the DEFAULT NULL option on the column as part of the CREATE TABLE statement.

4. What is the minimum space the table headers will take for a 6-column table on a 10 AMP system?

a. 1024 bytes
b. 4096 bytes
c. 5120 bytes
d. 10240 bytes

5. What DD view is used to get sizing information about tables? DBC.TableSizeV

Answers to Review Questions Page C-47

Module 24: Review Question Answers

1. What must a REQUEST parcel contain? ________________________

2. Which two statements about the RESPOND parcel are true? ___

a. Identifies response buffer size.
b. Generates a SUCCESS/FAIL parcel.
c. Always followed by one or more DATA parcels.
d. May be sent by itself as a continuation request.

3. Match the six SQL Parser phases listed below with its correct description.

__ Syntaxer a. Determines whether the Requesting User ID has the necessary permissions
__ Resolver b. Create concrete steps
__ Security c. Checks the Request for valid syntax.
__ Optimizer d. Creates the steps for execution.
__ Generator e. Breaks down Views and Macros into their underlying table references
__ Apply f. Chooses the execution plan.

4. Which Parser phase benefits the most from the use of macros? ___

a. Generator
b. Resolver
c. Syntaxer
d. Apply

c
e
a
f
d
b

At least 1 SQL statement

 Answers to Review Questions Page C-48

Module 24: Review Question Answers

5. What is the function of the Request-to-Steps (R-T-S) Cache? ____

a. Stores the SQL text and AMP steps generated by the Parser.
b. Resolves View and Macro references down to table references.
c. Stores the most recently used DD information including SQL names, their related numeric IDs

and Statistics.
d. Analyzes the various ways an SQL Request can be executed and determines which of these is

the most efficient.

6. Teradata’s Late Binding Parser refers to Apply, which acts upon the _____________ from the
Generator and produces __________ by binding in the data values from the DATA parcel.

a. Plastic Steps / Concrete Steps
b. Interpretive Steps / Compiled Steps
c. Processing Steps / Execution Steps

d. AMP steps / Request-to-Steps Cache

Answers to Review Questions Page C-49

Module 25: Review Question Answers

1. When alternatives are available, the Optimizer may require “hints” to ensure that it will make the best
choices.

T. True
F. False

2. If you COLLECT STATISTICS for a NUPI in Teradata 14.0, the statistics are stored in _____________.

a. DBC.StatsTbl
b. DBC.Indexes
c. DBC.TVFields
d. Data Dictionary (DD) cache

3. Dynamic AMP sample statistics are stored in the _____________.

a. DBC.TVFields
b. DBC.Indexes
c. Data Dictionary (DD) cache
d. none of the above

4. You can use the _________________ to display information (e.g., last collection date) about current
column or index statistics.

a. EXPLAIN statement
b. HELP INDEX statement
c. SHOW TABLE statement
d. COLLECT STATISTICS statement
e. HELP STATISTICS statement

 Answers to Review Questions Page C-50

Module 26: Review Question Answers

Fill in the blanks.

1. Parallel steps are multi-AMP processing steps that are numbered but execute at the same time.

2. The primary way to help the Optimizer make the best choices and ensure the most accurate
EXPLAIN output is to Collect Statistics on appropriate indexes and columns.

3. An EXPLAIN plan will indicate “estimated with High confidence” when a value for an index is
provided to retrieve the data and the index has collected statistics.

4. Name the two ways to EXPLAIN a Macro:

a. Hard-coded parameter values
b. Soft-coded parameter values

(Continued on next page.)

Answers to Review Questions Page C-51

Module 26: Review Question Answers

i

c

h

l

b

f

e

d

g

k

m

j

a

e

Match each EXPLAIN term to a definition.

___ 1. (Last Use)

___ 2. END TRANSACTION

___ 3. eliminating duplicate rows

___ 4. by way of the sort key in spool field

___ 5. does SMS (set manipulation step)

___ 6. does BMSMS (bit map ...)

___ 7. redistributed by hash code to all AMPs

___ 8. “Pseudo Table”

___ 9. all rows scan

___ 10. “a single partition of” or “n partitions of”

___ 11. “a rowkey-based merge join”

___ 12. group_amps operation

___ 13. “SORT to partition Spool m by rowkey”

___ 14. which is duplicated on all AMPs

a. The spool is to be ordered by partition and hash.

b. Combines answer sets using a UNION, EXCEPT
(MINUS) or INTERSECT operator.

c. Indicates transaction locks are released and
changes are committed.

d. Internal function to synchronize table-level locks
across AMPs.

e. Indicates data is being relocated in preparation
for a join.

f. Indicates that NUSI Bit Mapping is being used.

g. Indicates a full table scan.

h. Indicates that a DISTINCT operation is done to
ensure that there are no duplicate rows.

i. Indicates that the Spool file will be released at
the end of the step.

j. Subset of AMPs will be used instead of all AMPs.

k. Indicates partition elimination will occur.

l. Field1 is created to allow a tag sort.

m. Indicates an equality join based on partition and
hash.

 Answers to Review Questions Page C-52

Module 27: Review Question Answers

1. To place an execution plan into the QCD database, preface a valid parsable Teradata SQL statement
with INSERT EXPLAIN.

2. When using Visual Explain to compare multiple plans, one plan must be selected as the base query.

3. List the 3 types of QCD users that access rights are associated with.

Normal Power User Administrator

Answers to Review Questions Page C-53

Module 28: Review Question Answers

1. The best way to be sure what type of Join will occur is to use the EXPLAIN facility.

a. True
b. False

2. When two tables are to be Merge Joined, which is the best case of the following scenarios :

a. The Join column is not a Primary Index of either table.
b. The Join column is the Primary Index of one of the tables.
c. The Join column(s) is the Primary Index of both tables.
d. None of the above

3. Match the four join plans with its correct description.

C Product Join a. Most efficient types of Join; the only type of join that doesn’t always use all
of the AMPs. The number of AMPs involved will vary.

D Merge Join b. Based on set subtraction; used for finding rows that don't have a
matching row in the other table. Queries with the NOT IN and EXCEPT
operator lead to this type of join.

A Nested Join c. Every qualifying row of one table is compared to every qualifying row in the
other table. Rows that match on their WHERE conditions are then saved.

B Exclusion Join d. Commonly done when the join condition is based on equality. Efficient
because the every row is not compared with every row in other table.

 Answers to Review Questions Page C-54

Module 28: Review Question Answers

Fill in the blanks.

4. When joining two PPI tables that are not partitioned in the same manner, a technique available to the
optimizer is referred to as the ___________ window.

5. A direct merge join of two PPI tables when the tables have the same PI and identical partitioning
expressions is referred to as a ________ - based merge join.

6. The term _____________ ____________ refers to an automatic optimization in which the optimizer
determines, based on query conditions, that some partitions can be skipped.

rowkey

sliding

partition elimination

Answers to Review Questions Page C-55

Module 29: Exercise 5 – Making Final Index Choices

ENTITY 1

100,000,000
Rows A B C D E F

PK/FK PK,UA

Value Access 50K 0 0 0 0 0
Range Access 0 0 0 0 0 0

Join Access 10M 0 0 0 0 0
Join Rows 10M 0 0 0 0 0

Distinct Values 100M 95M 300K 250K 40M 1M
Max Rows/Value 1 2 400 350 3 110
Max Rows/NULL 0 0 0 0 1.5M 0

Typical Rows/Value 1 1 325 300 2 90
Change Rating 0 3 1 1 1 1

PI/SI

Collect Statistics (Y/N)

USI
UPI NUPI NUPI NUPI

Y*

Y* – For large tables, a dynamic sample or COLLECT SAMPLE will suffice.

 Answers to Review Questions Page C-56

Module 29: Exercise 5 – Making Final Index Choices

ENTITY 2

10,000,000
Rows G H I J K L

PK/FK PK,SA

Value Access 5K 365 12 12 0 0
Range Access 12 0 0 0 0 260

Join Access 100M 0 0 0 0 0
Join Rows 100M 0 0 0 0 0

Distinct Values 10M 100K 9M 12 50 180K
Max Rows/Value 1 200 2 1M 240K 60
Max Rows/NULL 0 0 100K 0 0 0

Typical Rows/Value 1 100 1 800K 190K 50
Change Rating 0 0 9 1 2 0

PI/SI

Collect Statistics (Y/N)

NUPIUPI NUPI
USI NUSI VONUSI

Y Y** Y**Y*
Y* – For large tables, a dynamic sample or COLLECT SAMPLE will suffice.

Y** – Possibly only collect statistics (or SAMPLE) when needed. Column I may be
too volatile for stats.

Y

Answers to Review Questions Page C-57

Module 29: Exercise 5 – Making Final Index Choices

DEPENDENT

5,000,000
Rows A M N O P Q

PK/FK PK NN,ND
FK SA

Value Access 0 0 0 0 0 0
Range Access 0 0 0 0 0 0

Join Access 700K 0 0 0 0 0
Join Rows 1M 0 0 0 0 0

Distinct Values 2M 50 90K 3M 5M 2M
Max Rows/Value 4 200K 75 2 1 5
Max Rows/NULL 0 0 0 390K 0 1M

Typical Rows/Value 1 60K 50 1 1 1
Change Rating 0 0 3 1 0 1

PI/SI

Collect Statistics (Y/N)

USI USI

UPI
NUPI

UPI

Y

 Answers to Review Questions Page C-58

Module 29: Exercise 5 – Making Final Index Choices

ASSOCIATIVE 1

300,000,000
Rows A G R S

PK/FK PK
FK FK,SA

Value Access 260 0 0 0
Range Access 0 0 0 0

Join Access 0 8M 0 0
Join Rows 0 300M 0 0

Distinct Values 100M 10M 15K 800K
Max Rows/Value 5 50 21K 400
Max Rows/NULL 0 0 0 0

Typical Rows/Value 3 30 19K 350
Change Rating 0 0 0 0

PI/SI

Collect Statistics (Y/N)

UPI
NUPINUPINUPI

USI
NUSI

Y Y

NUPI?

Answers to Review Questions Page C-59

Module 29: Exercise 5 – Making Final Index Choices

ASSOCIATIVE 2

100,000,000
Rows A M G T U

PK/FK PK
FK FK

Value Access 0 0 0 0
Range Access 0 0 0 0

Join Access 7M 250K 0 0
Join Rows 800M 20M 0 0

Distinct Values 50M 10M 560K 750
Max Rows/Value 3 150 180 135K
Max Rows/NULL 0 0 0 0

Typical Rows/Value 1 8 170 100K
Change Rating 0 0 0 0

PI/SI

Collect Statistics (Y/N)

USI

UPI
NUPINUPI NUPI

Y Y

Note: Options that may improve the join performance on G: 1) Create a single table join index on G or
2) Create a covered NUSI on G (order by hash on G).

What additional index choices would be available for the column G?

 Answers to Review Questions Page C-60

Module 29: Exercise 5 – Making Final Index Choices

UPI
NUPI

HISTORY

730,000,000
Rows A DATE D E F

PK/FK PK
FK SA

Value Access 10M 5K 0 0 0
Range Access 0 20K 0 0 0

Join Access 800M 0 0 0 0
Join Rows 2.4B 0 0 0 0

Distinct Values 100M 730 N/A N/A N/A
Max Rows/Value 18 1100K N/A N/A N/A
Max Rows/NULL 0 0 N/A N/A N/A

Typical Rows/Value 3 900K N/A N/A N/A
Change Rating 0 0 N/A N/A N/A

PI/SI

Collect Statistics (Y/N)
NUSI

USI
VONUSI

Y Y

What additional index choices would be available for the DATE column?

Possibly create a PPI on A partitioned by DATE. If so, maybe leave the NUSI on A for value access.

Answers to Review Questions Page C-61

Module 29: Review Question Answers

1. When do Cartesian Product Joins generally occur?

a. When the Join Column is the Primary Index of both tables.
b. When a column appears in an Equality Join constraint.
c. When an error is made in coding the SQL query.
d. None of the above.

2. A Join Condition of (1=1) in an EXPLAIN output is usually indicative of ____________.

a. Cartesian product join
b. Exclusion merge join
c. Merge join
d. Hash join

3. One of the ways in which Join Access demographics are expressed is _________________ , which is
a measure of how often all known transactions access rows from the table through a Join on this
column.

a. Join Access Rows
b. Join Access Frequency
c. High Access Rows
d. Value and Join Access

 Answers to Review Questions Page C-62

Module 30: Review Question Answers

Check the box if the attribute applies to the index.

May be created on a single table

May be created on multiple tables

Requires the use of SUM or
COUNT functions

Requires a WHERE condition to
limit rows stored in the index.

Automatically updated as base
table rows are inserted or updated

Automatically includes the base
table PI value as part of the index

Compressed Non-
Join Compressed Aggregate Sparse

Index Join Index Join Join Hash
Syntax Syntax Index Index Index

Answers to Review Questions Page C-63

Module 31: Review Question Answers

1. Which BTEQ setting controls Teradata vs. ANSI mode? .SET SESSION TRANSACTION

2. Which commands will not work in ANSI mode? BT, ET

3. True or False. The SQL Flagger is just a warning device and doesn’t affect command execution.

4. True or False. Failure of an individual request in ANSI (or COMMIT) mode causes the entire
transaction to be rolled back.

5. True or False. Logging off during an explicit transaction without either a COMMIT or ET will always
result in a ROLLBACK.

6. True or False. HELP SESSION will show the session mode and the status of the SQL Flagger.

7. Where does a Volatile Temporary table get its space from? Spool

8. Where does a Global Temporary table get its space from? Temporary

 Answers to Review Questions Page C-64

Module 32: When Do Multiple Sessions
Make Sense?

TRANS_HISTORY

Account_NumberTrans_Number Trans_Date Trans_ID Amount

PK FK,NN
NUPIUSI

NUSI

Multiple sessions improve performance ONLY for SQL requests that impact fewer than
ALL AMPs.

Which of the following batch requests would benefit from multiple sessions?

1. INSERT INTO Trans_History
VALUES (:T_Nbr, DATE, :Acct_Nbr, :T_ID, :Amt);

2. SELECT * FROM Trans_History
WHERE Trans_Number=:Trans_Number;

3. DELETE FROM Trans_History
WHERE Trans_Date < DATE - 120;

4. DELETE FROM Trans_History
WHERE Account_Number= :Account_Number;

Trans Table or Multiple Sessions
Type Row Lock Useful or Not?

NUPI Row Hash Yes

NUSI Full Table No

FTS Full Table No

NUPI Row Hash Yes

Answers to Review Questions Page C-65

Module 32: Review Question Answers

Answer True or False.

1. True or False. With MultiLoad, you can import and export data.

2. True or False. In Teradata mode, a BTEQ DELETE ALL function does not use the Transient
Journal to store before-images of deleted rows.

3. True or False. An INSERT/SELECT of 1,000,000 rows into an empty table is only slightly faster
than an INSERT/SELECT of 1,000,000 rows into a table with 1 row.

Match the Teradata Parallel Transporter operator with the corresponding Teradata utility.

1. _a_ UPDATE a. MultiLoad

2. _d_ STREAM b. FastLoad

3. _b_ LOAD c. FastExport

4. _c_ EXPORT d. TPump

 Answers to Review Questions Page C-66

Module 33: Review Question Answers

Answer True or False.

1. True or False. With BTEQ you can import data from the host to Teradata AND export from Teradata to
the host.

2. True or False. .EXPORT DATA sends results to a host file in field mode. (Results are in record mode.)

3. True or False. INDICDATA is used to preserve nulls.

4. True or False. With BTEQ, you can use conditional logic to bypass statements based on a test of an
error code.

5. True or False. It is useful to employ multiple sessions when ALL AMPS will be used for the
transaction. (It is useful when fewer than all AMPs are used.)

6. True or False. With .EXPORT, you can have output converted to a format that can be used with PC
programs.

Answers to Review Questions Page C-67

Module 34: Review Question Answers

c

g

h

d

b

e

j

a

f

i

Match the item in the first column to a corresponding statement in the second column.

1. ___ Phase 1 a. Might be used if a zero date causes an error

2. ___ CHECKPOINT b. Table status required for loading with FastLoad

3. ___ ERRORTABLE1 c. Records written in unsorted blocks

4. ___ ERRORTABLE2 d. Records rows with duplicate values for UPI

5. ___ Empty Table e. Not permitted on table to be loaded with FastLoad

6. ___ Secondary Index f. Points FastLoad to a record in an input file

7. ___ Conversion g. Can be used to restart loading from a given point

8. ___ NULLIF h. Records constraint violations

9. ___ RECORD i. Builds the actual table blocks for the new table

10. ___ Phase 2 j. Transform one data type to another, once per column

 Answers to Review Questions Page C-68

Module 35: Review Question Answers

Match the item in the first column to its corresponding statement in the second column.

__d__ 1. .LOGTABLE a. Connects sessions to Teradata

__a__ 2. .LOGON b. Uses a single data record to set one or more utility variables

__b__ 3. .ACCEPT c. System variable

__e__ 4. UPDATE d. Identifies the log to create or acquire

__c__ 5. &SYSDATE e. Teradata SQL statement permitted by Support Environment

Answers to Review Questions Page C-69

Module 36: Review Question Answers

Answer True or False.

1. True or False. FastExport requires the use of a PI or USI in the SELECTs.

2. True or False. The number of FastExport sessions (for a Linux server) defaults to the number of
AMPs. (The UNIX default is 4 sessions.)

3. True or False. The maximum block size you can specify is 128 KB. (It is 64 KB.)

4. True or False. You can export from multiple tables with FastExport.

5. True or False. You can use multiple SELECTs in one FastExport job.

6. True or False. The default lock for a SELECT in a FastExport job is a table level ACCESS lock.

 Answers to Review Questions Page C-70

Module 37: Review Question Answers

Answer True or False.

1. True or False. With MultiLoad, you can import data from the host into populated tables.

2. True or False. MultiLoad cannot process tables with USIs or Referential Integrity defined.

3. True or False. MultiLoad allows changes to the value of a table's primary index.

4. True or False. MultiLoad allows you to change the value of a column based on its current value.

5. True or False. MultiLoad permits non-exclusive access to target tables from other users except
during Application Phase.

Match the MultiLoad Phase in the first column to its corresponding task in the second column.

1. _a_ Preliminary a. Acquires or creates Restart Log Table.

2. _e_ DML Transaction b. Locks are released.

3. _c_ Acquisition c. Applies (loads) data to the work tables.

4. _d_ Application d. Execute mload for each target table as a single multi-statement request.

5. _b_ Cleanup e. Stores DML steps in work tables

Answers to Review Questions Page C-71

Module 38: Review Question Answers

1. Complete the BEGIN statement to accomplish the following:

– Specify an error limit count of 200,000 and an error percentage of 5%.

– Specify a checkpoint at 500,000 records.

– Request 16 sessions, but allow the job to run with only 8.

– Set the number of hours to try to establish connection as 6.

.LOGTABLE RestartLog_mld;

.LOGON ________________;

.BEGIN [IMPORT] MLOAD TABLES Trans_Hist

;

.END MLOAD ;

ERRLIMIT 200000 5

CHECKPOINT 500000

SESSIONS 16 8

TENACITY 6

 Answers to Review Questions Page C-72

Module 39: Review Question Answers

Match the item in the first column to its corresponding statement in the second column.

__c__ 1. TPump purpose a. Query against TPump status table

__e__ 2. MultiLoad purpose b. Concurrent updates on same table

__b__ 3. Row hash locking c. Low-volume changes

__d__ 4. PACK d. Use to specify how many statements to put in a multi-statement
request

__f__ 5. MACRO e. Large volume changes

__a__ 6. Statement rate change f. Used instead of DML

Answers to Review Questions Page C-73

Module 40: Various Ways of
Performing an Update Solution

Answer: 2, 4, 3, 1 (Note: Timings are for an older and very small Teradata system).

• UPDATE (Do the UPDATE statement as shown):

Timings: Total time: 29 minutes 9 seconds

• INSERT / SELECT the revised values into a new table; drop the old table and rename the new table.

Timings: Create new table 1 second
Insert/Select 900000 rows 1 minute 26 seconds
Drop Old Table 11 seconds
Rename New Table 1 second
Total Time: 1 minute 39 seconds

• .EXPORT the new data values and the primary index columns to the Host and use MultiLoad UPDATE.

Timings: Export 900,000 rows 14 seconds
MultiLoad/Update 3 minutes 27 seconds
Total Time: 3 minutes 41 seconds

• .EXPORT the whole rows to the Host selecting the updated values along with the rest of the record,
and FastLoad the table.

Timings: Export 900,000 rows 16 seconds
Delete old rows 2 seconds
FastLoad the data 1 minute 59 seconds
Total Time: 2 minutes 17 seconds

 Answers to Review Questions Page C-74

Module 40: Choosing a Utility Exercise Solution

1. A sales table currently contains 24 months of transaction data. At the end of each month, 250 million
rows are added for the current month and 250 million rows are removed for the oldest month There
is enough PERM space to hold 30 months worth of data.

Which choice (from below) makes the most sense? _____

2. The customer decides to partition the table by month and maintain each month’s data in a separate
partition. At this time, only the most recent 24 months need to be maintained. At the end of each
month, data is loaded into a new monthly partition and the oldest month is removed. The partition
expression does not include the NO RANGE partition.

Which choice (from below) makes the most sense? ______

Utility Choices:

a. Use FastLoad to add new data to existing table, and ALTER TABLE to remove old data.

b. Use MultiLoad to add new data to existing table, and ALTER TABLE to remove old data.

c. Use FastLoad to add new data to existing table, and MultiLoad to remove old data.

d. Use MultiLoad to add new data to existing table, and MultiLoad to remove old data.

e. Use TPump to add new data, and TPump to remove old data.

f. Use TPump to add new data, and ALTER TABLE to remove old data.

d

b

Answers to Review Questions Page C-75

Module 41: Review Question Answers

1. True or False. You should use system user DBC to create application users and databases.

2. True or False. A database or user can have multiple Owners, but only one Creator.

3. True or False. An Owner and a Parent are two different terms that mean the same thing.

4. True or False. An Owner and a Creator are two different terms that mean the same thing.

5. True or False. An administrative user (e.g., Sysdba) will never have more permanent space than
DBC.

6. True or False. The GIVE statement transfers a database or user space to a recipient you specify.
It does not automatically transfer all child databases.

You should create and logon as an administrative user to perform these tasks.

The term “Creator” is used to mean the one and only one user who creates a database object.

Sysdba can be allocated more permanent space than DBC.

The GIVE statement automatically transfers all child databases, users, tables, view and
macros the transferred object owns.

 Answers to Review Questions Page C-76

Module 42: Review Question Answers

1. True or False. The DBC.Databases view only contains information about databases; users are
not included in this view.

2. True or False. The DBC.Users view only contains information about users; databases are not
included in this view.

3. True or False. Queries that use restricted views usually take less time to execute than queries
that use unrestricted views.

4. True or False. All of the data dictionary tables are Fallback protected.

5. If a child table exists and the parent table doesn't, the reference constraint is marked as __________.

a. Inconsistent
b. Unresolved
c. Missing
d. Invalid

6. After executing the ALTER TABLE … ADD FOREIGN KEY … statement, Foreign Key values that are
missing in the parent table are marked in an error table and are known as ___________ rows.

a. Inconsistent
b. Unresolved
c. Missing
d. Invalid

Answers to Review Questions Page C-77

Module 43: Review Question Answers

1. True or False. Space limits are enforced at the table level.

2. True or False. When you use the GIVE statement to transfer a database/user, only the tables
allocated to the original database/user are transferred to the new database/user.

3. True or False. You should reserve at least 25% of total available space for spool.

4. The DBC. ___________________ view provides disk space usage at the table level and excludes
table ALL.

5. The DBC. ___________________ view only provides disk space usage at the database level.

TablesizeV

DiskSpaceV

 Answers to Review Questions Page C-78

Module 44: Review Question Answers

4. When creating a new user, which option defaults to the immediate owner’s value. ___

a. SPOOL
b. FALLBACK PROTECTION
c. All of the Account_IDs
d. DEFAULT DATABASE

5. When creating a new user, which options are required with the CREATE USER command. ___

a. SPOOL
b. PERMANENT
c. User name
d. PASSWORD

1. True or False. You can only give the authority to use the CREATE DATABASE and CREATE
USER statements to certain types of users.

2. True or False. An individual user with a $L priority will always receive less CPU time than a
user with a $M priority.

3. True or False. A user can use the MODIFY USER statement to change their password, default
database, and date format.

Answers to Review Questions Page C-79

Module 45: Review Question Answers

Answer the following questions:

1. List 2 advantages of utilizing profiles.

2. If a user's profile is set to NULL, which two are immediately affected in the current session.

a. SPOOL value
b. Default database
c. Session priority
d. TEMPORARY value

Match each term to the definition.

___ 1. CREATE PROFILE a. Lists all words that can not be included in passwords

___ 2. DBC.ProfileInfo b. System access right needed to create a profile

___ 3. DBC.PasswordRestrictions c. Lists the profiles currently in the system

Change common user attributes for large groups of users.
Specify password security controls for groups of users.

b

c

a

 Answers to Review Questions Page C-80

Module 46: Review Question Answers

1. True or False There are only two types of access rights or privileges: explicit and implicit.

2. True or False The primary statements you use to manage access rights are GRANT, REVOKE,
and GIVE.

3. The _______ option on the GRANT command grants privileges to a database or user and all of its
current and future descendants.

4. The _____________, _____________, _____________, and _____________ access rights can be
granted at the column level.

5. The ____________ user is used to grant an access right to every user in the system.

6. Given the following: Ann owns Table_A, Bob creates View_TabA and grants SELECT on View_TabA
to Paul.

What access right does Ann give Bob on Table_A so Paul can use View_TabA to access Table_A?

Table_A

Ann

View_TabA

Bob Paul

SELECT?

ALL

UPDATEREFERENCESINSERT SELECT

PUBLIC

SELECT WITH GRANT OPTION

Answers to Review Questions Page C-81

Module 47: Review Question Answers

Answer the following questions:

1. List 3 advantages of utilizing roles.

Simplify access rights management

The number of access rights in the DBC.AccessRights table is reduced.
Improves performance and reduces dictionary contention

2. How many levels of role nesting are currently allowed? 1

3. True or False. A user can use the SET ROLE command to set their current role to any defined
role in the system.

4. True or False. Roles may only be granted to users and other roles.

Match each term to the definition.

e 1. WITH ADMIN OPTION a. Established by the SET ROLE command

c 2. CREATE ROLE b. Lists the roles currently in the system

b 3. DBC.RoleInfo c. System access right needed to create a role

d 4. DBC.UserRoleRights d. Lists all of a user’s role rights - including nested roles

f 5. DEFAULT ROLE e. Allows the user to assign other users to the role

a 6. Current role f. Option with the MODIFY USER statement

 Answers to Review Questions Page C-82

Module 48: Review Question Answers

1. True or False. Although usernames are the basis for identification in the system, username
information usually is not protected information.

2. True or False. Once users have a username and password, they can access any information in
the system.

3. True or False. To change the minimum number of characters in a valid password from 6 to 8, you
would update the DBC.LogonRules table.

4. What does 1024 represent in the DBC.LogonRules view? _________________

5. Which choices can be used to view host or mainframe sessions? _______

a. Sessions utility
b. QrySessn utility
c. Gtwglobal utility
d. DBC.SessionInfo view

6. Which choice is used to determine why a user logon has failed? ____

a. DBC.Logons view
b. DBC.LogOnOff view
c. DBC.AccessLog view
d. DBC.SessionInfo view
e. DBC.LogonEvents view

All of the hosts

b and d

b

Answers to Review Questions Page C-83

Module 49: Review Question Answers

1. In order to use the BEGIN/END LOGGING commands, what is the name of the system macro you
need execute permission on?

DBC.AccLogRule

2. How is this macro initially created?

When the DIP script (DIPACC) is executed.

3. What is a negative impact of the following statement?

BEGIN LOGGING WITH TEXT ON EACH ……

Potentially a lot of entries are placed in the dictionary and would require a lot of PERM space.

4. With DBQL, what is the size of the default text captured for queries? 200 characters

5. True or False. With DBQL, the LIMIT SUMMARY option cannot be used with any other LIMIT.

6. True or False. With DBQL, the WITH SQL option only captures a maximum of 10,000 characters.

7. True or False. With DBQL, the option WITH ALL ON ALL is typically a good choice.

8. True or False. With DBQL, default rows are logged in the DBC.DBQLogTbl.

 Answers to Review Questions Page C-84

Module 50: Review Question Answers

6% (60/100 x 10/100 = .06) 5% (20/100 x 30/120 = .05)

Performance Group

Allocation Group

Workload
Allocation Group

1. Given the following, what is minimum % of opportunities to use the CPU resource that
the following Performance Groups (PG) can expect.

TM = _______________________ DH = _______________________

Default Tactical DSS

RP 0 - Weight 20 RP 1 - Weight 60 RP 2 - Weight 20

PG Name AG Wgt PG Name AG Wgt PG Name AG Wgt

L 5 TL 5 DL 5
M 10 TM 10 DM 10
H 20 TH 30 DH 30
R 40 TR 55 DR 75

2. Without TASM workloads enabled, a user session is associated with a ______________
which is effectively assigned to an _________________.

3. With TASM workloads enabled, a user query is associated with a ___________ which is
effectively assigned to an _________________.

Answers to Review Questions Page C-85

Module 51: Review Question Answers

1. What type of TASM filter or throttle rule is needed for the following restrictions?

Limit the number of concurrent sessions _______________________________

Reject queries based on max processing time _______________________________

Reject queries accessing a specific DB _______________________________

Limit the number of FastLoad jobs _______________________________

Delay more the 20 queries for a specific account _______________________________

2. What is the purpose of the default workload definition name "WD-Default"?

a. Default workload for any queries with an enforcement policy of normal.
b. Default workload for any queries that are not associated with a workload.
c. Default workload for any queries assigned to Default resource partition.
d. Default workload for any queries assigned to Standard resource partition.

3. Which query attribute is not used by the Parsing Engine software to classify a query into a Workload
Definition (WD)?

a. User name
b. Account
c. User Role
d. User Profile
e. Optimizer estimates

Object Throttle

Query Resource Filter

Object Access Filter

Load Utility Throttle

Object Throttle

 Answers to Review Questions Page C-86

Module 51: Review Question Answers (cont.)

4. Which Teradata application can be used to initially define workload definitions?

a. Teradata Manager
b. Workload Analyzer
c. Dynamic Workload Wizard
d. Priority Scheduler Administrator

5. Place the following control options in the proper sequence from 1 to 4 as they are acted upon by
Teradata software.

___ a. Object throttles
___ b. Exception criteria
___ c. Workload throttles
___ d. Object filters

2
4
3
1

Answers to Review Questions Page C-87

Module 52: Review Question Answers

1. List three portlets of Viewpoint.

__

__

__

Remote Database Console

Query Monitor

My Queries

 Answers to Review Questions Page C-88

Module 53: Review Question Answers

1. What are two methods of setting the ResUsage logging intervals?

_________________________ _________________________

2. Match the following tools to its description.

____ 1. ResUsage tables a. Set logging rates

____ 2. Teradata Viewpoint b. Emulates a target system

____ 3. Teradata SET c. Provides session level information

____ 4. ctl d. Holds historical resource data

Supervisor SET commands ctl utility

d

c

b

a

Answers to Review Questions Page C-89

Module 54: Review Question Answers

tpareset

restart tpa

1. What is the operating system command to restart Teradata? __________________

2. What is the DB Window supervisor command to restart Teradata? __________________

3. Which of the following choices will cause a Teradata restart? __________________

a. SWS hard drive failure

b. Single drive failure in RAID 1 drive group

c. Two drive failures in same RAID 1 drive group

d. Single power supply failure in a TPA node

e. TPA node CPU failure

f. One of BYNETs fails

g. LAN connection to SMP is lost

c, e

 Answers to Review Questions Page C-90

Module 55: Review Question Answers

1. What are two ways that you initiate a Teradata system utility (e.g., dbscontrol)?

_______________________ _______________________

2. Identify the purpose of the following DBS Control utility parameters.

CenturyBreak __

DateForm __

MaxLoadTasks __

SessionMode __

3. True or False. The Checktable utility has only two levels of internal table checking.

4. True or False. The Table Rebuild utility rebuilds tables differently depending on whether the table is
a fallback, non-fallback or permanent journal table.

5. The ___________________ utility does a consistency check within an AMP’s file system.

6. The ___________________ utility does a consistency check for a table across all AMPs.

7. The ___________________ utility can be used to set an offline AMP to online.

SCANDISK

CHECKTABLE

VPROCMANAGER

Command-line Teradata DB Window

determines break point for 21st century; how 2-digit years are interpreted

sets IntegerDate or ANSIDate default; how dates are displayed and exported

max # of concurrent FastLoad, MultiLoad, & FastExport jobs

sets default session mode – BTET or ANSI

Answers to Review Questions Page C-91

Module 56: Review Question Answers

1. True or False. A permanent journal stores committed, uncommitted, and aborted
changes to a row in a table.

2. True or False. A database or user can have many permanent journals.

3. True or False. Separate Permanent Journals are required for before and after images.

4. True or False. The Saved and Active areas are both part of the Current Journal.

5. True or False. The CREATE JOURNAL statement may be used to create a permanent
journal.

6. True or False. Tables that use a Permanent Journal must be in the same database as
the Permanent Journal.

 Answers to Review Questions Page C-92

Module 58: Review Question Answers

1. True or False. The Archive and Recovery utility protects against more types of
potential data loss than automatic data protection features.

2. True or False. Recovery and FastLoad are about the same in ease and speed to
recover data.

3. True or False. An All-AMPs archive of a database archives all of the objects in the
database.

4. True or False. Archiving a partition of a PPI table places a partition-level lock on the
partition being archived.

Answers to Review Questions Page C-93

Module 59: Review Question Answers

1. True or False. You can use the RESTORE command to restore entities that are not
defined in the data dictionary.

2. True or False. When you execute a RESTORE of a database, any tables or views
created since the archive of the database are dropped when you restore
the database.

3. True or False. You can use the COPY operation to copy tables, views, macros, and
triggers from one system to another system.

4. The REVALIDATE REFERENCES FOR statement is used to validate Referential Integrity
between tables that are identified as ___________.

a. Invalid
b. Missing
c. Unresolved
d. Inconsistent

 Answers to Review Questions Page C-94

Module 60: Review Question Answers

1. True or False. The DELETE JOURNAL command can be used to delete the active and
the saved areas of the current journal.

2. In general, rollback operations help you recover from software failures and rollforward
operations help you recover from hardware failures.

3. To use the ARCHIVE JOURNAL TABLE command to archive a permanent journal, the
active journal images need to be moved to the saved area of the current journal. The
command to do this is:

CHECKPOINT ,WITH SAVE

Data Dictionary Views Page D-1

Module D

Teradata Proprietary and Confidential

Appendix D: Data Dictionary Views

This Appendix contains the
Data Dictionary Views

for Teradata 14.0.

 Data Dictionary Views Page D-2

Data Dictionary views are part of the Teradata Database Data Dictionary and reside in the
space owned by the system user DBC. They provide information about users, their access
rights, grants, and logons.

View definitions are stored in the table DBC.TVM. View column information is stored in
DBC.TVFields.

The following are the view forms:

 Without the X (for example, DBC.AccountInfo and DBC.AccountInfoV), they
display global information.

 With the X (for example, DBC.AccountInfoX and AccountInfoVX), they display

information associated with the requesting user only.

 With the V (for example, AccessLogV), they display information associated with

the Unicode version, where object name columns have a data type of
VARCHAR(128).

 Without the V (for example, DBC.AccountInfo or DBC.AccountInfoX), they

display information associated with the Compatibility version, where object name
columns have a data type of CHAR(30).

Data Dictionary Views Page D-3

Data Dictionary Views – Teradata 14.0

DBC.AccessLog[V]

User Type Columns Selected

Security Administrator LogDate
LogTime
LogonDate
LogonTime
LogicalHostId
IFPNo
SessionNo
UserName
AccountName
OwnerName
AccessType
Frequency
EventCount
AccLogResult
Result
DatabaseName
TVMName
ColumnName
StatementType
StatementText
QueryBand
ProxyUser

 Data Dictionary Views Page D-4

Data Dictionary Views – Teradata 14.0

DBC.AccLogRules[V]
User Type Columns Selected

Security Administrator UserName
DatabaseName
TVMName
AcrAlterFunction
AcrCheckpoint
AcrCreateDatabase
AcrCreateFunction
AcrCreateMacro
AcrCreateTable
AcrCreateUser
AcrCreateView
AcrCreateProcedure
AcrCreExtProcedure
AcrDelete
AcrDropDatabase
AcrDropFunction
AcrDropMacro
AcrDropProcedure
AcrDropTable
AcrDropUser
AcrDropView
AcrDump
AcrExecute
AcrExecuteFunction
AcrExectuteProcedure
AcrGrant
AcrIndex

DBC.AccLogRules[V] (cont.)
User Type Columns Selected

AcrInsert
AcrReference
AcrRestore
AcrSelect
AcrUpdate
AcrCreateTrigger
AcrDropTrigger
AcrCreateRole
AcrDropRole
AcrCreateProfile
AcrDropProfile
AcrAlterProcedure
AcrRepControl
AcrAlterExtProcedure
AcrUDTUsage
AcrUDTType
AcrUDTMethod
AcrCreAuthorization
AcrDropAuthorization
AcrStatistics
AcrShow
ArcCreOwnerProcedure
ArcConnectThrough
CreatorName
CreateTimeStamp
ArcCreateGLOP
ArcDropGLOP
ArcGLOPMember

Data Dictionary Views Page D-5

Data Dictionary Views – Teradata 14.0

DBC.AccountInfo[V][X]

User Type Columns Selected

Database Administrator UserName
End User UserOrProfile
Supervisor AccountName

DBC.AllRights[V][X]

User Type Columns Selected

Database Administrator UserName
DatabaseName
TableName
ColumnName
AccessRight
GrantAuthority
GrantorName
AllnessFlag
CreatorName
CreateTimeStamp

 Data Dictionary Views Page D-6

Data Dictionary Views – Teradata 14.0

DBC.AllRoleRights[V][X]

User Type Columns Selected

Security Administrator UserName
Database Administrator DatabaseName
Supervisor TableName

ColumnName
AccessRight
GrantorName
CreateTimeStamp

Data Dictionary Views Page D-7

Data Dictionary Views – Teradata 14.0

DBC.AllSpace[V][X]

User Type Columns Selected

Database Administrator Vproc
End User DatabaseName
Supervisor AccountName

TableName
MaxPerm
MaxSpool
MaxTemp
CurrentPerm
CurrentSpool
CurrentTemp
PeakPerm
PeakSpool
PeakTemp
MaxProfileSpool
MaxProfileTemp

 Data Dictionary Views Page D-8

Data Dictionary Views – Teradata 14.0

DBC.AllTempTables[V][X]

User Type Columns Selected

Database Administrator HostNo
End User SessionNo

UserName
B_DatabaseName
B_TableName
E_TableId

Data Dictionary Views Page D-9

Data Dictionary Views – Teradata 14.0

DBC.All_RI_Children[V][X]

User Type Columns Selected

All Users IndexID
IndexName
ChildDB
ChildTable
ChildKeyColumn
ParentDB
ParentTable
ParentKeyColumn
InconsistencyFlag
CreatorName
CreateTimeStamp

 Data Dictionary Views Page D-10

Data Dictionary Views – Teradata 14.0

DBC.All_RI_Parents[V][X]

User Type Columns Selected

All Users IndexID
IndexName
ParentDB
ParentTable
ParentKeyColumn
ChildDB
ChildTable
ChildKeyColumn
InconsistencyFlag
CreatorName
CreateTimeStamp

Data Dictionary Views Page D-11

Data Dictionary Views – Teradata 14.0

DBC.AMPUsage[V][X]

User Type Columns Selected

Database Administrator AccountName
UserName
CPUTime
DiskIO
CPUTimeNorm
Vproc
VprocType
Model

 Data Dictionary Views Page D-12

Data Dictionary Views – Teradata 14.0

DBC.Association[V][X]

User Type Columns Selected

Operations Control DatabaseName
TableName
EventNum
Original_DataBaseName
Original_TableName
Original_TableKind
Original_Version
Original_ProtectionType
Original_JournalFlag
Original_CreatorName
Original_CommentString

DBC.ArchiveLoggingObjsV[X]

User Type Columns Selected

Database Administrator DatabaseName
TVMName
LogLevel
CreatorName
CreateTimeStamp

Data Dictionary Views Page D-13

Data Dictionary Views – Teradata 14.0

DBC.Authorizations[V][X]

User Type Columns Selected

Database Administrator DatabaseName
AuthorizationName
AuthorizationID
TableKind
Version
AuthorizationType
AuthorizationSubType
OSDomainName
OSUserName

 Data Dictionary Views Page D-14

Data Dictionary Views – Teradata 14.0

DBC.BusinessCalendarExceptions (14.0)

User Type Columns Selected

Database Administrator CalendarName
ExceptionIndicator
ExceptionDate
ExceptionReason
CreatorName
CreationTime

DBC.BusinessCalendarPatterns (14.0)

User Type Columns Selected

Database Administrator CalendarName
DayName
Pattern
PatternComment
CreatorName
LastModified

Data Dictionary Views Page D-15

Data Dictionary Views – Teradata 14.0

DBC.CharTranslations[V]

User Type Columns Selected

End User CharSetName
CharSetId
InstallFlag
E2I
E2IUp
I2E
I2EUp

DBC.Children[V][X]

User Type Columns Selected

Supervisor Child
Parent

DBC.CharSets[V]

User Type Columns Selected

End User CharSetName

 Data Dictionary Views Page D-16

Data Dictionary Views – Teradata 14.0

DBC.Collations[V]

User Type Columns Selected

End User CollName
CollInstall
CollEqvClass
CollOrderCS
CollOrderUC

Data Dictionary Views Page D-17

Data Dictionary Views – Teradata 14.0

DBC.Columns[V][X]

User Type Columns Selected

DB Administrator DatabaseName
End User TableName

ColumnName
ColumnFormat
ColumnTitle
ColumnType
ColumnUDTName
ColumnLength
DefaultValue
Nullable
CommentString
DecimalTotalDigits
DecimalFractionalDigits
ColumnId
UpperCaseFlag
Compressible
CompressValue
ColumnConstraint
ConstraintCount
ConstraintId (14.0)

DBC.Columns[V][X] (cont.)

User Type Columns Selected

DB Administrator CreatorName
End User CreateTimeStamp

LastAlterName
LastAlterTimeStamp
CharType
IdColType
AccessCount
LastAccessTimeStamp
CompressValueList
TimeDimension
VTCheckType
TTCheckType
PartitioningColumn (14.0)
ColumnPartitionNumber (14.0)
ColumnPartitionFormat (14.0)
ColumnPartitionAC (14.0)
ArrayColNumberOfDimensions (14.0)
ArrayColScope (14.0)
ArrayColElementType (14.0)
ArrayColElementUdtName (14.0)

 Data Dictionary Views Page D-18

Data Dictionary Views – Teradata 14.0

DBC.ColumnStats[V]

User Type Columns Selected

All Users DatabaseName
TableName
ColumnName
StatsName (14.0)
StatsSource (14.0)
DBSVersion (14.0)
IndexNumber (14.0)
SampleSignature (14.0)
SampleSizePct (14.0)
ThresholdSignature (14.0)
RowCount (14.0)
UniqueValueCount (14.0)
NullCount (14.0)
AllNullCount (14.0)
HighModeFreq (14.0)
TimeStamp (14.0)
LastAlterTimeStamp (14.0)

Data Dictionary Views Page D-19

Data Dictionary Views – Teradata 14.0

DBC.ConnectRules[V][X]
User Type Columns Selected

Security Administrator TrustUser
ProxyUser
ProxyUserType
GrantStatus
WithoutRole
ProxyRole1
ProxyRole2
ProxyRole3
ProxyRole4
ProxyRole5
ProxyRole6
ProxyRole7
ProxyRole8
ProxyRole9
ProxyRole10
ProxyRole11
ProxyRole12
ProxyRole13
ProxyRole14
ProxyRole15
CreatorName
CreateTimeStamp
TrustOnly (14.0)

 Data Dictionary Views Page D-20

Data Dictionary Views – Teradata 14.0

DBC.ConstraintFunctionsV (14.0)

User Type Columns Selected

Security Administrator ConstraintName
Action
DatabaseName
FunctionName

DBC.ConstraintValuesV (14.0)

User Type Columns Selected

Security Administrator ConstraintName
ValueName
ValueConstant
ValueisBitPos

Data Dictionary Views Page D-21

Data Dictionary Views – Teradata 14.0

DBC.CostProfiles_V

User Type Columns Selected

All Users ProfileTypeName
ProfileName
ProfileCat
ProfileDesc

DBC.CostProfileTypes_V

User Type Columns Selected

All Users ProfileTypeName
ProfileTypeDesc

 Data Dictionary Views Page D-22

Data Dictionary Views – Teradata 14.0

DBC.CostProfileValues_V

User Type Columns Selected

All Users ProfileName
ProfileId
ConstName
ConstId
ConstCat
ConstVal
ConstDesc

DBC.CSPSessionInfo[V]

User Type Columns Selected

Operations Control SessionNo
HostNo
StartMBox
LogonSource

Data Dictionary Views Page D-23

Data Dictionary Views – Teradata 14.0

DBC.Databases[V][X]

User Type Columns Selected

Database Administrator DatabaseName
End User CreatorName

OwnerName
AccountName
ProtectionType
JournalFlag
PermSpace
SpoolSpace
TempSpace
CommentString
CreateTimeStamp
LastAlterName
LastAlterTimeStamp
DBKind
AccessCount
LastAccessTimeStamp

 Data Dictionary Views Page D-24

Data Dictionary Views – Teradata 14.0

DBC.Databases2[V][X]

User Type Columns Selected

Database Administrator DatabaseName
DatabaseId
UnResolvedRICount

DBC.Database_Default_Journals[V][X]

User Type Columns Selected

Database Administrator DatabaseName
End User Journal_DB

JournalName

DBC.DBCInfo[V]

User Type Columns Selected

All Users InfoKey
InfoData

Data Dictionary Views Page D-25

Data Dictionary Views – Teradata 14.0

DBC.DBQLRules[V]

User Type Columns Selected

All Users UserName
AccountString
ApplName
TypeofRule
ExplainFlag
ObjFlag
SqlFlag
StepFlag
XMLPlanFlag
SummaryFlag
ThresholdFlag
TextSizeLimit
SummaryVal1
SummaryVal2
SummaryVal3
TypeofCriterion

 Data Dictionary Views Page D-26

Data Dictionary Views – Teradata 14.0

DBC.DeleteOldInDoubt[V]

User Type Columns Selected

Database Administrator LogicalHostId
CoordTaskId
LogonUserName
CommitOrRollback
CompletionDate
UserLogonTime
SessionNumber
RunUnitId
ResolvingUserLogonName
UserLogonDate
CompletionTime
Options

DBC.DeleteAccessLog[V][X]

User Type Columns Selected

Security Administrator LogDate
LogTime

Data Dictionary Views Page D-27

Data Dictionary Views – Teradata 14.0

DBC.DiskSpace[V][X]

User Type Columns Selected

Database Administrator Vproc
End User DatabaseName
Supervisor AccountName

MaxPerm
MaxSpool
MaxTemp
CurrentPerm
CurrentSpool
CurrentTemp
PeakPerm
PeakSpool
PeakTemp
MaxProfileSpool
MaxProfileTemp

 Data Dictionary Views Page D-28

Data Dictionary Views – Teradata 14.0

DBC.ErrorTblsV[X]

User Type Columns Selected

Operations Control LogicalHostId
ErrTblDbName
ErrTblName
BaseTblDbName
BaseTblName
CreatorName
CreateTimeStamp

Data Dictionary Views Page D-29

Data Dictionary Views – Teradata 14.0

DBC.Events[V][X]

User Type Columns Selected

Operations Control CreateDate
CreateTime
EventNum
EventType
UserName
DatabaseName
ObjectType
AllAMPsFlag
RestartSeqNum
OperationInProcess
TableName
CheckpointName
LinkingEventNum
DataSetName
LockMode
JournalUsed
JournalSaved
IndexPresent
DupeDumpSet

 Data Dictionary Views Page D-30

Data Dictionary Views – Teradata 14.0

DBC.Events_Configuration[V][X]

User Type Columns Selected

Operations Control CreateDate
CreateTime
EventNum
EventType
UserName
LogProcessor
PhyProcessor
Vproc
ProcessorState
RestartSeqNum

Data Dictionary Views Page D-31

Data Dictionary Views – Teradata 14.0

DBC.Events_Media[V][X]

User Type Columns Selected

Operations Control CreateDate
CreateTime
EventNum
EventType
UserName
DataSetName
VolSerialId
VolSequenceNum
DupeDumpSet

DBC.ExportWidthV (14.0)

User Type Columns Selected

All Users ExportDefinitionName
ExportWidthRuleSet

 Data Dictionary Views Page D-32

Data Dictionary Views – Teradata 14.0

DBC.ExternalSPs[V][X]

User Type Columns Selected

Database Administrator DatabaseName
ExternalProcedureName
ExternalProcedureID
NumParameters
ExternalName
SrcFileLanguage
NoSQLDataAccess
ParameterStyle
ExecProtectionMode
ExtFileReference
CharacterType
Platform
RoutineKind
ParameterUDTIDs
AuthIDUsed
AppCategory
GLOPSetDatabaseName
GLOPSetMemberName

Data Dictionary Views Page D-33

Data Dictionary Views – Teradata 14.0

DBC.Functions[V][X]

User Type Columns Selected

Database Administrator DatabaseName
FunctionName
SpecificName
FunctionId
NumParameters
ParameterDataTypes
FunctionType
ExternalName
SrcFileLanguage
NoSQLDataAccess
ParameterStyle
DeterministicOpt
NullCall
PrepareCount
ExecProtectionMode
ExtFileReference
CharacterType
PlatformInterimFldSize
RoutineKind
ParameterUDTIds
MaxOutParameters
GLOPSetDatabaseName
GLOPSetMemberName

 Data Dictionary Views Page D-34

Data Dictionary Views – Teradata 14.0

DBC.HostsInfo[V]

User Type Columns Selected

Database Administrator LogicalHostId
End User HostName

DefaultCharSet

DBC. IndexConstraints[V]

User Type Columns Selected

Database Administrator DatabaseName
End User TableName

IndexName
IndexNumber
ConstraintType
ConstraintText
ConstraintCollation
CollationName
CreatorName
CreateTimestamp
CharSetID
SessionMode
ResolvedCurrent_Date
ResolvedCurrent_TimeStamp

Note:
The DBC.PartitioningConstraints views
are the preferred views for information
about partitioning constraints.

Data Dictionary Views Page D-35

Data Dictionary Views – Teradata 14.0

DBC.IndexStats[V]

User Type Columns Selected

Database Administrator DatabaseName
End User TableName

ColumnName
StatsName (14.0)
StatsSource (14.0)
DBSVersion (14.0)
IndexNumber (14.0)
SampleSignature (14.0)
SampleSizePct (14.0)
ThresholdSignature (14.0)
RowCount (14.0)
UniqueValueCount (14.0)
NullCount (14.0)
AllNullCount (14.0)
HighModeFreq (14.0)
CollectTimeStamp
LastAlterTimeStamp

 Data Dictionary Views Page D-36

Data Dictionary Views – Teradata 14.0

DBC.Indices[V][X]

User Type Columns Selected

Database Administrator DatabaseName
End User TableName

IndexNumber
IndexType
UniqueFlag
IndexName
ColumnName
ColumnPosition
CreatorName
CreateTimeStamp
LastAlterName
LastAlterTimeStamp
IndexMode
IndexMode
AccessCount
LastAccessTimeStamp
UniqueOrPK
VTConstraintType
TTConstraintType
SystemDefinedJI

Data Dictionary Views Page D-37

Data Dictionary Views – Teradata 14.0

DBC.JoinIndexesV

User Type Columns Selected

Database Administrator DatabaseName
TableName
JoinIdxDatabaseName
JoinIdxName
IndexType

DBC.InDoubtLog[V]

User Type Columns Selected

Database Administrator LogicalHostId
CoordTaskId
LogonUserName
UserLogonDate
CompletionDate
CommitOrRollBack
SessionNumber
RunUnitId
ResolvingUserLogonName
UserLogonTime
CompletionTime
Options

 Data Dictionary Views Page D-38

Data Dictionary Views – Teradata 14.0

DBC.Journals[V][X]

User Type Columns Selected

Database Administrator Tables_DB
End User TableName

Journals_DB
JournalName

Data Dictionary Views Page D-39

Data Dictionary Views – Teradata 14.0

DBC.LogOnOff[V][X]

User Type Columns Selected

Database Administrator LogDate
Security Administrator LogTime
Supervisor UserName

AccountName
Event
LogicalHostId
IFPNo
SessionNo
LogonDate
LogonTime
LogonSource
ClientODBCDriverVersion (14.0)
ClientNetDataProviderVersion (14.0)
ClientODBCDriverManagerVersion (14.0)
ClientNetFrameworkVersion (14.0)
ClientAttributesEx (14.0)
ClientJDBCDriverVersion (14.0)
ClientJavaVersion (14.0)
RecoverableNetworkProtocol (14.0)
LogonRedrive (14.0)

 Data Dictionary Views Page D-40

Data Dictionary Views – Teradata 14.0

DBC.LogonRules[V]

User Type Columns Selected

Security Administrator UserName
LogicalHostId
LogonStatus
NullPassword
CreatorName
CreateTimeStamp

Data Dictionary Views Page D-41

Data Dictionary Views – Teradata 14.0

DBC.MultiColumnStatsV

User Type Columns Selected

Database Administrator DatabaseName
End User TableName

ColumnName
StatsName (14.0)
StatsSource (14.0)
DBSVersion (14.0)
IndexNumber (14.0)
SampleSignature (14.0)
SampleSizePct (14.0)
ThresholdSignature (14.0)
RowCount (14.0)
UniqueValueCount (14.0)
NullCount (14.0)
AllNullCount (14.0)
HighModeFreq (14.0)
CollectTimeStamp (14.0)
LastAlterTimeStamp (14.0)

 Data Dictionary Views Page D-42

Data Dictionary Views – Teradata 14.0

DBC.PartitioningConstraintsV[X] (14.0)

User Type Columns Selected

Database Administrator DatabaseName
End User TableName

IndexName
IndexNumber
ConstraintType
ConstraintText
ConstraintCollation
CollationName
CreatorName
CreateTimeStamp
CharSetID
SessionMode
ResolvedCurrent_Date
ResolvedCurrent_TimeStamp
DefinedCombinedPartitions
MaxCombinedPartitions
PartitioningLevels
ColumnPartitioningLevel

Data Dictionary Views Page D-43

Data Dictionary Views – Teradata 14.0

DBC.ProfileAsgdSecConstraintsV[X] (14.0)

User Type Columns Selected

All Users ProfileName
ConstraintName
ValueName
IsDefault
Assignor

 Data Dictionary Views Page D-44

Data Dictionary Views – Teradata 14.0

DBC.ProfileInfo[V][X]

User Type Columns Selected

Database Administrator ProfileName
End User DefaultAccount
Security Administrator DefaultDB
Supervisor SpoolSpace

TempSpace
ExpirePassword
PasswordMinChar
PassordMaxChar
PasswordDigits
PasswordSpecChar
PasswordRestrictWords
MaxLogonAttempts
LockedUserExpire
PasswordReuse
CommentString
CreatorName
CreateTimeStamp
LastAlterName
LastAlterTimeStamp

Data Dictionary Views Page D-45

Data Dictionary Views – Teradata 14.0

DBC.QryLog[V]

User Type Columns Selected

Database Administrator ProcID
CollectTimeStamp
QueryID
UserID
UserName
DefaultDatabase
AcctString
ExpandAccString
SessionID
LogicalHostID
RequestNum
InternalRequestNum
LogonDateTime
AccStringTime
AccStringHour
AccStringDate
AppID
ClientID
ClientAddress
QueryBand
ProfileID
StartTime
FirstStepTime
FirstRespTime
ElapsedTime
NumSteps
NumStepswPar

DBC.QryLog[V] (cont.)

User Type Columns Selected

Database Administrator MaxStepsInPar
MaxStepsInPar
NumResultRows
TotalIOCount
AMPCPUTime
ParserCPUTime
UtilityRowCount
ErrorCode
ErrorText
WarningOnly
AbortFlag
CacheFlag
StatementType
StatementGroup
QueryText
NumOfActiveAMPs
MaxAMPCPUTime
MaxCPUAmpNumber
MinAmpCPUTime
MaxAmpIO
MaxIOAmpNumber
MinAmpIO
SpoolUsage
LSN
EstResultRows
EstProcTime
EstMaxRowCount

 Data Dictionary Views Page D-46

Data Dictionary Views – Teradata 14.0

DBC.QryLog[V] (cont.)

User Type Columns Selected

Database Administrator AMPCPUTimeNorm
ParserCPUTimeNorm
MaxAMPCPUTimeNorm
MaxCPUAmpNumberNorm
MinAmpCPUTimeNorm
ParExpreqTime
ProxyUser
ProxyRole
SessionTemporalQualifer
CalendarName (14.0)
CPUDecayLevel (14.0)
IODecayLevel (14.0)
TacticalCPUException (14.0)
TacticalIOException (14.0)
SeqRespTime (14.0)
ReqIOKB (14.0)
ReqPhysIO (14.0)
ReqPhysIOKB (14.0)
DataCollectAlg (14.0)
CallNestingLevel (14.0)
NumRequestCtx (14.0)
KeepFlag (14.0)
QueryRedriven (14.0)
ReDriveKind (14.0)

Data Dictionary Views Page D-47

Data Dictionary Views – Teradata 14.0

DBC.QryLogEventsHis[V]

User Type Columns Selected

Database Administrator ProcID
CollectTimeStamp
EntryTS
EntryKind
EntryID
EntryName
EventValue
LastValue
Activity
ActivityId
ActivityName
ConfigId
SeqNo
Spare1
Spare2
Spare3

 Data Dictionary Views Page D-48

Data Dictionary Views – Teradata 14.0

DBC.QryLogEvents[V]

User Type Columns Selected

Database Administrator ProcID
CollectTimeStamp
SessionID
LogicalHostID
WDID
OpEnvID
SysConID
EventTime
EventCode
EventSubCode
EventInfo

Data Dictionary Views Page D-49

Data Dictionary Views – Teradata 14.0

DBC.QryLogExceptions[V]

User Type Columns Selected

Database Administrator ProcID
CollectTimeStamp
Query ID
UserName
SessionID
RequestNum
LogicalHostID
AcctString
WDID
OpEnvID
SysConID
ClassificationTime
ExceptionTime
ExceptionValue
ExceptionAction
NewWDID
ExceptionCode
ExceptionSubCode
ErrorText
ExtraInfo
RuleID
WarningOnly
RejectionCat

 Data Dictionary Views Page D-50

Data Dictionary Views – Teradata 14.0

DBC.QryLogExplain[V]

User Type Columns Selected

Database Administrator ProcID
CollectTimeStamp
Query ID
ExpRowNo
ExplainText

Data Dictionary Views Page D-51

Data Dictionary Views – Teradata 14.0

DBC.QryLogSQL[V]

User Type Columns Selected

Database Administrator ProcID
CollectTimeStamp
Query ID
SqlRowNo
SqlTextInfo

DBC.QryLogObjects[V]

User Type Columns Selected

Database Administrator ProcID
CollectTimeStamp
QueryID
ObjectDatabaseName
ObjectTableName
ObjectColumnName
ObjectID
ObjectNum
ObjectType
FreqofUse
TypeofUse

 Data Dictionary Views Page D-52

Data Dictionary Views – Teradata 14.0

DBC.QryLogSteps[V]

User Type Columns Selected

DB Administrator ProcID
CollectTimestamp
QueryID
StepLev1Num
StepLev2Num
StepName
StepStartTime
StepStopTime
ElapsedTime
EstProcTime
EstCPUCost
CPUtime
IOcount
EstRowCount
RowCount
RowCount2
NumOfActiveAMPs
MaxAmpCPUTime
MaxCPUAmpNumber
MinAmpCPUTime
MaxAmpIO
MaxIOAmpNumber

DBC.QryLogSteps[V] (cont.)

User Type Columns Selected

DB Administrator MinAmpIO
LastRespTime
SpoolUsage
MaxAMPSpool
MaxSpoolAmpNumber
MinAMPSpool
StepWD
LSN
UtilityTableId
RowsWComprColumns
EstIOCost
EstNetCost
EstHRCost
CPUTimeNorm
MaxAmpCPUTimeNorm
MaxCPUAmpNumberNorm
MinAmpCPUTimeNorm
NumCombinedPartitions (14.0)
NumContexts (14.0)
NumCPReferences (14.0)

Data Dictionary Views Page D-53

Data Dictionary Views – Teradata 14.0

DBC.QryLogSummary[V]

User Type Columns Selected

Database Administrator ProcID
CollectTimeStamp
UserID
AcctString
LogicalHostID
AppID
ClientID
ClientAddr
ProfileID
SessionID
QueryCount
ValueType
QuerySeconds
AverageTime
TotalIOCount
AverageIO
AMPCPUTime
AverageAmpCPU

DBC.QryLogSummary[V] (cont.)

User Type Columns Selected

DB Administrator ParserCPUTime
AverageParserCPU
AMPCPUTimeNorm
AverageAmpCPUNorm
ParserCPUTimeNorm
AverageParserCPUNorm
LowHist
HighHist

 Data Dictionary Views Page D-54

Data Dictionary Views – Teradata 14.0

DBC.QryLogTDWM[V]

User Type Columns Selected

DB Administrator ProcID
CollectTimeStamp
QueryID
UserID
UserName
DefaultDatabase
AcctString
LastStateChange
DelayTime
WDDelayTime
WDID
OpEnvID
SysConID
LSN
NoClassification
WDOverride
SLGMet
ExceptionValue
FinalWDID

DBC.QryLogTDWM[V] (cont.)

User Type Columns Selected

DB Administrator TDWMEstMaxRows
TDWMEstLastRows
TDWMEstTotalTime
TDWMAllAmpFlag
TDWMConfLevelUsed
StatementGroup
SessionWDID

Data Dictionary Views Page D-55

Data Dictionary Views – Teradata 14.0

DBC.QryLogTDWMSum[V]

User Type Columns Selected

Security Administrator ProcID
CollectTimeStamp
WDID
OpEnvID
SysConID
StartColTime
Arrivals
ActiveCount
Completions
MinRespTime
MaxRespTime
AvgRespTime
MinCPUTime
MaxCPUTime
AvgCPUTime
DelayedCount
AvgDelayTime
ExceptionAbCount
ExceptionMvCount
ExceptionCoCount
ExceptionCount
AbortCount
ErrorCount

DBC.QryLogTDWMSum[V] (cont.)

User Type Columns Selected

Security Administrator MetSLGCount
MetSLGCount
RejectedCount
MovedInCount
IntervalDelayCnt
DelayedQueries

 Data Dictionary Views Page D-56

Data Dictionary Views – Teradata 14.0

DBC.QryLogXMLV

User Type Columns Selected

Database Administrator ProdID
CollectTimeStamp
QueryID
XMLRowNo
XMLTextInfo

Data Dictionary Views Page D-57

Data Dictionary Views – Teradata 14.0

DBC.RCC_Media[V][X]

User Type Columns Selected

Operations Control EventNum
VolSerialId
VolSequenceNum
DupeDumpSet

DBC.RCC_Configuration[V][X]

User Type Columns Selected

Operations Control EventNum
LogProcessor
PhyProcessor
ProcessorState
RestartSeqNum
Vproc

 Data Dictionary Views Page D-58

Data Dictionary Views – Teradata 14.0

DBC.ReconfigDeleteOrderV

User Type Columns Selected

All Users EventNum
OrderNumber
DatabaseName
TableName
CheckTableOption
ProcessOffline

Data Dictionary Views Page D-59

Data Dictionary Views – Teradata 14.0

DBC.ReconfigInfoV

User Type Columns Selected

All Users ReconfigId
Description
ReconfigType
BeginTimeStamp
EndTimeStamp
BeginRedistTimeStamp
EndRedistTimeStamp
BeginDelTimeStamp
EndDelTimeStamp
Status
CurrByteCount
CurrTabRedistCount
CurrTabDeleteCount
EstRemainRedistSecs
EstRemainDeleteSecs
AddAmpCount
DelAmpCount
MovAmpCount
ModAmpCount
NodeCount
TotTaskCount
TotTableCount
TotByteCount
TotCatchUpByteCount
TotJournalByteCount
ActualRedistSecs
ActualDeleteSecs

DBC.ReconfigInfoV (cont.)

User Type Columns Selected

All Users MetSLGCount
EstRedistSecs
EstDeleteSecs
BeginCalcHBTimeStamp
EndCalcHBTimeStamp
BeginWrSpaceTimeStamp
EndWrSpaceTimeStamp
BeginPHBNewTimeStamp
EndPHBNewTimeStamp
BeginFBHBNewTimeStamp
EndFBHBNewTimeStamp
BeginWrPHBTimeStamp
EndWrPHBTimeStamp
BeginWrFBHBTimeStamp
EndWrFBHBTimeStamp
BeginWrCfgTimeStamp
EndWrCfgTimeStamp
BeginWrCfgNewTimeStamp
EndWrCfgNewTimeStamp
BeginWrBkupIdTimeStamp
EndWrBkupIdTimeStamp
BeginWrBMTimeStamp
EndWrBMTimeStamp
BeginDelHBNewTimeStamp
EndDelHBNewTimeStamp
BeginVProcCfgTimeStamp
EndVProcCfgTimeStamp

 Data Dictionary Views Page D-60

Data Dictionary Views – Teradata 14.0

DBC.ReconfigRedistOrderV

User Type Columns Selected

All Users OrderNumber
DatabaseName
TableName
ProcessOffline

Data Dictionary Views Page D-61

Data Dictionary Views – Teradata 14.0

DBC.ReconfigTableStatsV

User Type Columns Selected

All Users DatabaseName
TableName
ReconfigId
Phase
Status
BeginTimeStamp
EndTimeStamp
TotRowCount
TotByteCount
TotCPUSecs
TotIOCount
LowRowCount
LowRowCountAmp
HighRowCount
HighRowCountAmp
LowByteCount
LowByteCountAmp
HighByteCount
HighByteCountAmp
LowCPUSecsCount
LowCPUSecsCountAmp
HighCPUSecsCount

DBC.ReconfigTableStatsV (cont.)

User Type Columns Selected

All Users HighCPUSecsCountAmp
LowIOCount
LowIOCountAmp
HighIOCount
HighIOCountAmp
MetSLGCount
ActualRedistSecs
ActualDeleteSecs
EstRedistSecs
EstDeleteSecs
FSGIOCount
FSysReadCount
FSysWriteCount
FSysMiscCount
MsgRcvCount
MsgSendCount
MsgMiscCount
MsgWaitRcvTime
MsgWaitSendTime
MsgWaitMiscTime
NoMemFlushCount

' CkptFlushCount

 Data Dictionary Views Page D-62

Data Dictionary Views – Teradata 14.0

DBC.RepTables[V][X]

User Type Columns Selected

All users GroupName
TableName

DBC.RepCaptureRulesV

User Type Columns Selected

All users GroupName
RuleSetName
GroupName
ObjectKind
DefaultOpt
LikePattern
LikeEscape
NotLikePattern
NotLikeEscape

Data Dictionary Views Page D-63

Data Dictionary Views – Teradata 14.0

DBC.RestrictedWords[V]

User Type Columns Selected

All users RestrictedWord

DBC.ResolvedDTSV[X] (14.0)

User Type Columns Selected

All users ResolvedCurrent_Date
ResolvedCurrent_TimeStamp
TableName
DatabaseName

 Data Dictionary Views Page D-64

Data Dictionary Views – Teradata 14.0

DBC.RI_Child_Tables[V][X]

User Type Columns Selected

All users IndexID
IndexName
ChildDbID
ChildTID
ChildKeyFID
ParentDbID
ParentTID
ParentKeyFID
InconsistencyFlag
CreatorName
CreateTimeStamp

Data Dictionary Views Page D-65

Data Dictionary Views – Teradata 14.0

DBC.RI_Distinct_Children[V][X]

User Type Columns Selected

All users IndexID
IndexName
ChildDB
ChildTable
ParentDB
ParentTable
InconsistencyFlag
CreatorName
CreateTimeStamp

 Data Dictionary Views Page D-66

Data Dictionary Views – Teradata 14.0

DBC.RI_Distinct_Parents[V][X]

User Type Columns Selected

All users IndexID
IndexName
ParentDB
ParentTable
ChildDB
ChildTable
InconsistencyFlag
CreatorName
CreateTimeStamp

Data Dictionary Views Page D-67

Data Dictionary Views – Teradata 14.0

DBC.RI_Parent_Tables[V][X]

User Type Columns Selected

All users IndexID
IndexName
ParentDbID
ParentTID
ParentKeyFID
ChildDbID
ChildTID
ChildKeyFID
InconsistencyFlag
CreatorName
CreateTimeStamp

 Data Dictionary Views Page D-68

Data Dictionary Views – Teradata 14.0

DBC.RoleMembers[V][X]

User Type Columns Selected

Database Administrator RoleName
End User Grantee

GranteeKind
Grantor
WhenGranted
DefaultRole
WithAdmin

DBC.RoleInfo[V][X]

User Type Columns Selected

Database Administrator RoleName
End User CreatorName

CommentString
CreateTimeStamp
ExtRole

Data Dictionary Views Page D-69

Data Dictionary Views – Teradata 14.0

DBC.SecConstraintsV[X] (14.0)

User Type Columns Selected

All Users ConstraintName
DataType
Nullable
SizeInBytes
AssigneeCount
Creator
CreateTimeStamp

 Data Dictionary Views Page D-70

Data Dictionary Views – Teradata 14.0

DBC.SecurityLog[V][X] Note: Older view – use AccessLogV

User Type Columns Selected

Security Administrator LogDate
LogTime
LogType
UserName
AccountName
DatabaseName
TableName
Text

DBC.SecurityDefaults[V]

User Type Columns Selected

Security Administrator ExpirePassword
PasswordMinChar
PasswordMaxChar
PasswordDigits
PasswordSpecChar
PasswordRestrictWords
MaxLogonAttempts
LockedUserExpire
PasswordReuse

Data Dictionary Views Page D-71

Data Dictionary Views – Teradata 14.0

DBC.SessionInfo[V][X]

User Type Columns Selected

Database Administrator UserName
End User AccountName
Security Administrator SessionNo
Supervisor DefaultDataBase

IFPNo
Partition
LogicalHostId
HostNo
CurrentCollation
LogonDate
LogonTime
LogonSequenceNo
LogonSource
ExpiredPassword
TwoPCMode
Transaction_Mode
CurrentRole
ProfileName
LogonAcct
LDAP
AuditTrailID
CurIsolationLevel
QueryBand
ProxyUser
ProxyCurRole

DBC.SessionInfo[V][X] (cont.)

User Type Columns Selected (14.0)

Database Administrator TemporalQualifier
End User CalendarName
Security Administrator ExtendedLogonSource
Supervisor ClientIpAddress

ClientProgramName
ClientSystemUserId
ClientConnectionType
ClientCoordName
ClientEnvName
ClientJobId
ClientJobName
ClientOsName
ClientProcThreadId
ClientSecProdGrp
ClientSecProdUserId
ClientTcpPortNumber
ClientTdHostName
ClientTerminalId
ClientTransactionId
ClientUserOperId
ClientVmName
ClientVmUserId
MechanismName
ClientTDPReleaseId
ClientCLIv2ReleaseId

 Data Dictionary Views Page D-72

Data Dictionary Views – Teradata 14.0

DBC.SessionInfo[V][X] (cont.)

User Type Columns Selected (14.0)

Database Administrator ClientSessionDesc
End User ClientWorkload
Security Administrator ClientJobData
Supervisor ClientODBCDriverVersion

ClientNetDataProviderVersion
ClientODBCDriverManagerVersion
ClientNetFrameworkVersion
ClientAttributesEx
ClientJDBCDriverVersion
ClientJavaVersion
ExportDefinitionName
ExportWidthRuleSet
RecoverableNetworkProtocol
LogonRedrive

Data Dictionary Views Page D-73

Data Dictionary Views – Teradata 14.0

DBC.ShowColChecks[V][X]

User Type Columns Selected

Database Administrator DatabaseName
End User TableName

ColumnName
ColCheck
CreatorName
CreateTimeStamp

DBC.ShowTblChecks[V][X]

User Type Columns Selected

Database Administrator DatabaseName
End User TableName

CheckName
TblCheck
CreatorName
CreateTimeStamp

 Data Dictionary Views Page D-74

Data Dictionary Views – Teradata 14.0

DBC.Software_Event_Log[V]

User Type Columns Selected

Operations Control TheDate
TheTime
Event_Tag
Category
Severity
PMA
Vproc
Partition
Task
TheFunction
Function
SW_Version
Line
Text

Data Dictionary Views Page D-75

Data Dictionary Views – Teradata 14.0

DBC.Table_LevelConstraints[V][X]

User Type Columns Selected

Database Administrator DatabaseName
End User TableName

ConstraintName
ConstraintText
CreatorName
CreateTimeStamp
VTCheckType
TTCheckType

 Data Dictionary Views Page D-76

Data Dictionary Views – Teradata 14.0

DBC.Tables[V][X]

User Type Columns Selected

DB Administrator DatabaseName
End User TableName

Version
TableKind
ProtectionType
JournalFlag
CreatorName
RequestText
CommentString
ParentCount
ChildCount
NamedTblCheckCount
UnnamedTblCheckExist
PrimaryKeyIndexId
RepStatus
CreateTimeStamp
LastAlterName
LastAlterTimeStamp
RequestTxtOverFlow
AccessCount
LastAccessTimeStamp

DBC.Tables[V][X]

User Type Columns Selected

DB Administrator UtilVersion
End User QueueFlag

CommitOpt
TransLog
CheckOpt
TemporalProperty
ResolvedCurrent_Date
ResolvedCurrent_Timestamp
SystemDefinedJI
VTQualifier
TTQualifier
PartitioningLevels (14.0)
PIColumnCount (14.0)

Data Dictionary Views Page D-77

Data Dictionary Views – Teradata 14.0

DBC.Tables2[V][X]

User Type Columns Selected

Database Administrator TVMName
Supervisor TVMId

DatabaseId
ParentCount
ChildCount

DBC.Tables3VX

User Type Columns Selected

Database Administrator DatabaseName
Supervisor TableName

FieldName
TableId
FieldId

 Data Dictionary Views Page D-78

Data Dictionary Views – Teradata 14.0

DBC.TableText[V][X]

User Type Columns Selected

Database Administrator DatabaseName
End User TableName

TableKind
RequestText
LineNo

DBC.TableSize[V][X]

User Type Columns Selected

Database Administrator Vproc
End User DatabaseName

AccountName
TableName
CurrentPerm
PeakPerm

Data Dictionary Views Page D-79

Data Dictionary Views – Teradata 14.0

DBC.TempTableStatsV (14.0)

User Type Columns Selected

Database Administrator DatabaseName
End User TableName

ColumnName
StatsName
StatsSource
ValidQuery
DBSVersion
IndexNumber
SampleSignature
SampleSizePct
ThresholdSignature
MaxIntervals
MaxValueLength
RowCount
UniqueValueCount
PNullUniqueValueCount
NullCount
AllNullCount
HighModeFreq
PNullHighModeFreq
CreateTimeStamp
LastTimeStamp
LastAlterTimeStamp

 Data Dictionary Views Page D-80

Data Dictionary Views – Teradata 14.0

DBC.Triggers[V][X]

User Type Columns Selected

Database Administrator DatabaseName
SubjectTableDataBaseName
TableName
TriggerName
EnabledFlag
ActionTime
Event
Kind
OrderNumber
TriggerComment
RequestText
CreatorName
CreateTimeStamp
LastAlterName
LastAlterTimeStamp
AccessCount
LastAccessTimeStamp
CreateTxtOverflow
VTEventType
TTEventType

Data Dictionary Views Page D-81

Data Dictionary Views – Teradata 14.0

DBC.UsrAsgdSecConstraintsV[X] (14.0)

User Type Columns Selected

All Users UserName
ConstraintName
ValueName
IsDefault
Assignor

DBC.User_Default_Journals[V][X]

User Type Columns Selected

End User UserName
Journal_DB
JournalName

 Data Dictionary Views Page D-82

Data Dictionary Views – Teradata 14.0

DBC.UserGrantedRights[V]

User Type Columns Selected

End User DatabaseName
TableName
ColumnName
Grantee
GrantAuthority
AccessRight
AllnessFlag
CreatorName
CreateTimeStamp

Data Dictionary Views Page D-83

Data Dictionary Views – Teradata 14.0

DBC.UserRoleRights[V]

User Type Columns Selected

End User RoleName
DatabaseName
TableName
ColumnName
AccessRight
GrantorName
CreateTimeStamp

DBC.UserRights[V]

User Type Columns Selected

End User DatabaseName
TableName
ColumnName
AccessRight
GrantAuthority
GrantorName
CreatorName
CreateTimeStamp

 Data Dictionary Views Page D-84

Data Dictionary Views – Teradata 14.0

DBC.Users[V]

User Type Columns Selected

DB Administrator UserName
End User CreatorName
Supervisor PasswordLastModDate

PasswordLasModTIme
OwnerName
PermSpace
SpoolSpace
TempSpace
ProtectionType
JournalFlag
StartupString
DefaultAccount
DefaultDataBase
CommentString
DefaultCollation
PasswordChgDate
LockedDate
LockedTime
LockedCount

DBC.Users[V] (cont.)

User Type Columns Selected

DB Administrator TimeZoneHour
End User TimeZoneMinute
Supervisor DefaultDateForm

CreateTimeStamp
LastAlterTime
LastAlterTimeStamp
DefaultCharType
RoleName
ProfileName
AccessCount
LastAccessTimeStamp

Solutions to Lab Exercises Page E-1

Module E

Teradata Proprietary and Confidential

Appendix E: Solutions to Lab Exercises

This Appendix contains possible solutions
to the lab exercises.

 Solutions to Lab Exercises Page E-2

Notes

Solutions to Lab Exercises Page E-3

Lab Solutions for Lab 15-1

Lab Exercise 15-1 Solutions

7. Using the Query window, execute the following query.

INSERT INTO Old_Orders SELECT * FROM DS.Orders
WHERE o_orderdate BETWEEN '2008-07-01' AND '2008-09-30';

Use the "Format Query" option to format the query.

How many rows are in the Old_Orders table? 1200

8. Using the History window, recall the query from step #7 and modify it to add orders from '2006-10-01'
through '2006-12-31'.

How many rows are in the Old_Orders table? 2400

9. Execute the following query by using the drag and drop object feature of SQL Assistant.

SELECT custid, SUM (totalprice)
FROM Old_Orders
GROUP BY 1
ORDER BY 1;

Use the "Add Totals" feature to automatically generate a total sum for all of the orders.

What is the sum of the orders using this feature? 3,065,969.88

 Solutions to Lab Exercises Page E-4

Lab Solutions for Lab 15-1 (cont.)

11. Using the Query Builder feature, create a view named "Old_Orders_v" for the Old_Orders table that
includes the following columns and only includes orders for December, 2008.

orderid, custid, totalprice, orderdate

CREATE VIEW Old_Orders_v AS
SELECT orderid, custid, totalprice, orderdate FROM Old_Orders
WHERE orderdate BETWEEN '2008-12-01' AND '2008-12-31';

SELECT all of the rows from the view named "Old_Orders_v".

How many rows are displayed from this view? 400

12. Using the Query Builder feature, create a simple macro named "Old_Orders_m" which selects all of
the orders from the view named "Old_Orders_v".

CREATE MACRO Old_Orders_m
AS (SELECT * From Old_Orders_v;);

Execute the macro "Old_Orders_m".

EXEC Old_Orders_m;

What is the sum of the orders for December using this "Add Totals" feature? 517,341.92

Solutions to Lab Exercises Page E-5

Lab Solutions for Lab 16-1

Lab Exercise 16-1 Solutions

Purpose

In this lab, you will use Teradata SQL Assistant to evaluate various columns of table as primary index
candidates.

What you need

Populated PD.Employee table; your empty Employee table

Tasks

1. INSERT/SELECT all rows from the populated PD.Employee table to your “Employee” table. Verify
the number of rows in your table.

INSERT INTO Employee SELECT * FROM PD.Employee;

SELECT COUNT(*) FROM Employee; Count = _________

INSERT INTO Employee SELECT * FROM PD.Employee;
SELECT COUNT(*) FROM Employee; Count = 1000

 Solutions to Lab Exercises Page E-6

Lab Solutions for Lab 16-1 (cont.)

2. Collect column demographics for each of these columns in Employee and determine if the column
would be a primary index candidate or not.

By using the SHOW TABLE Employee command, you should be able to complete the
Employee_number information without executing any SQL.

Distinct Max Rows Max Rows Avg Rows Candidate
Values for a Value NULL per Value for PI (Y/N)

Employee_Number 1000 1 0 1 Yes

Dept_Number 61 40 0 16 No

Job_Code 52 97 0 19 No

Last_name 464 42 0 2 Yes?

SELECT COUNT(DISTINCT(Dept_number)) FROM Employee;

SELECT Dept_number, COUNT(*) FROM Employee GROUP BY 1 ORDER BY 2 DESC;

SELECT COUNT(*) FROM Employee WHERE Dept_number IS NULL;

SELECT COUNT(*) / COUNT(DISTINCT(Dept_number)) FROM Employee;

Solutions to Lab Exercises Page E-7

Lab Solutions for Lab 16-2

Lab Exercise 16-2 Solutions

Tasks

1. Use SHOW TABLE command to determine which column is the Primary Index. PI = ______________

SHOW TABLE Employee;
CREATE SET TABLE Student130.Employee , FALLBACK,

NO BEFORE JOURNAL,
NO AFTER JOURNAL,
CHECKSUM = DEFAULT,
DEFAULT MERGEBLOCKRATIO

(employee_number INTEGER NOT NULL,
dept_number INTEGER,
emp_mgr_number INTEGER,
job_code INTEGER,
last_name CHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC,
first_name VARCHAR(20) CHARACTER SET LATIN NOT CASESPECIFIC,
salary_amount DECIMAL(10,2))

UNIQUE PRIMARY INDEX (employee_number);

Primary Index = Employee_number

 Solutions to Lab Exercises Page E-8

Lab Solutions for Lab 16-2 (cont.)

1. (cont.) Determine the AMP space usage of your Employee table using DBC.TableSizeV.

SELECT Vproc, TableName (CHAR(15)), CurrentPerm
FROM DBC.TableSizeV
WHERE DatabaseName = DATABASE AND TableName = 'Employee'
ORDER BY 1 ;

Vproc TableName CurrentPerm
0 Employee 6,656
1 Employee 7,168
2 Employee 6,656
3 Employee 7,168
4 Employee 8,192 (max)
5 Employee 7,168
6 Employee 6,656
7 Employee 6,144 (min)
8 Employee 6,144
9 Employee 6,144

10 Employee 6,656
11 Employee 6,656
12 Employee 7,168
13 Employee 6,656

: : :
25 Employee 7,168

Note: This result is based on an 26-AMP system.

Solutions to Lab Exercises Page E-9

Lab Solutions for Lab 16-2 (cont.)

2. Create a new table named Employee_2 with the same columns as Employee except specify
Last_Name as the Primary Index.

CREATE TABLE Employee_2, FALLBACK
(employee_number INTEGER NOT NULL

,dept_number INTEGER
,emp_mgr_number INTEGER
,job_code INTEGER
,last_name CHAR(20)
,first_name VARCHAR(20)
,salary_amount DECIMAL(10,2))

PRIMARY INDEX (last_name);

Use INSERT/SELECT to populate Employee_2 from Employee.

INSERT INTO Employee_2 SELECT * FROM Employee;

 Solutions to Lab Exercises Page E-10

Lab Solutions for Lab 16-2 (cont.)

2. (cont.) Determine the AMP space usage of your Employee_2 table using DBC.TableSizeV.

SELECT Vproc, TableName (CHAR(15)), CurrentPerm
FROM DBC.TableSizeV
WHERE DatabaseName = DATABASE AND TableName = 'Employee_2'
ORDER BY 1 ;

Vproc TableName CurrentPerm
0 Employee_2 15,872 (max)
1 Employee_2 7,168
2 Employee_2 4,608
3 Employee_2 6,144
4 Employee_2 3,584 (min)
5 Employee_2 7,168
6 Employee_2 4,608
7 Employee_2 7,680
8 Employee_2 5,632
9 Employee_2 9,216

10 Employee_2 5,632
11 Employee_2 4,608
12 Employee_2 5,632
13 Employee_2 15,872

: : :
25 Employee_2 5,632

Note: This result is based on an 26-AMP system.

Solutions to Lab Exercises Page E-11

Lab Solutions for Lab 17-1

Lab Exercise 17-1 Solutions

1. INSERT/SELECT all rows from the populated DS.Orders table to your "Orders" table. Verify the
number of rows in your table.

INSERT INTO Orders SELECT * FROM DS.Orders;
INSERT INTO Orders_2012 SELECT * FROM DS.Orders_2012;
SELECT COUNT(*) FROM Orders; Count = 31,200
SELECT COUNT(*) FROM Orders_2012; Count = 12,000

2. Use the SHOW TABLE for Orders to help create a new, similar table (same column names and
definitions, etc.) named "Orders_PPI" that has a PPI.

CREATE TABLE Orders_PPI
(orderid INTEGER NOT NULL,
custid INTEGER NOT NULL,
orderstatus CHAR(1),
totalprice DECIMAL(9,2) NOT NULL,
orderdate DATE FORMAT 'YYYY-MM-DD' NOT NULL,
orderpriority SMALLINT,
clerk CHAR(16),
location SMALLINT,
shippriority SMALLINT,
ordercomment VARCHAR(79))

PRIMARY INDEX (orderid)
PARTITION BY RANGE_N (orderdate
BETWEEN DATE '2003-01-01' AND DATE '2012-12-31' EACH INTERVAL '1' MONTH, NO RANGE);

How many partitions are logically defined for the Orders_PPI table? 121

 Solutions to Lab Exercises Page E-12

Lab Solutions for Lab 17-1 (cont.)

3. INSERT/SELECT all of the rows from your Orders table into the Orders_PPI table. Verify the
number of rows in your table. Count = ________

INSERT INTO Orders_PPI SELECT * FROM Orders;
SELECT COUNT(*) FROM Orders; Count = 31,200

How many partitions would you estimate have data at this time? 108

4. Use the PARTITION key word to list the partitions and the number of rows in various partitions.

SELECT COUNT(DISTINCT(PARTITION)) FROM Orders_PPI;

SELECT PARTITION, COUNT(*)
FROM Orders_PPI
GROUP BY 1
ORDER BY 1;

How many partitions actually have data? 108
How many rows are in each partition for the year 2003? 100
How many rows are in each partition for the year 2011? 600

PARTITION Count(*)
1 100
: :

72 400
73 400

: :
108 600

Solutions to Lab Exercises Page E-13

Lab Solutions for Lab 17-1 (cont.)

5. Use INSERT/SELECT to add the rows from the DS.Orders_2012 table to your Orders_PPI table.
Verify the number of rows in your table. Count = ________

INSERT INTO Orders_PPI SELECT * FROM Orders_2012;

SELECT COUNT(*) FROM Orders_PPI; Count = 43,200

Use the PARTITION key word to determine the number of partitions used and number of rows in
various partitions.

SELECT COUNT(DISTINCT(PARTITION))
FROM Orders_PPI;

How many partitions actually have data? 120

SELECT PARTITION, COUNT(*)
FROM Orders_PPI
WHERE orderdate BETWEEN '2012-01-01' AND '2012-12-31'
GROUP BY 1
ORDER BY 1;

How many rows are in each partition for 2012? 1000

 Solutions to Lab Exercises Page E-14

Lab Solutions for Lab 17-1 (cont.)

6. INSERT the following row (using these values) into the Orders_PPI table.

INSERT INTO Orders_PPI
VALUES (100000, 1000, 'C', 1000, '2000-12-31', 10, 'EF Codd', 5, 20, 'old order');

How many partitions are in Orders_PPI? 121

SELECT COUNT(DISTINCT(PARTITION)) FROM Orders_PPI;

What is the partition number (highest partition #) of the NO RANGE partition? 121

SELECT MAX(PARTITION) FROM Orders_PPI;
or

SELECT PARTITION FROM Orders_PPI WHERE orderdate ='2000-12-31';

Solutions to Lab Exercises Page E-15

Lab Solutions for Lab 17-1 (cont.)

7. (Optional) Create a new table named "Orders_PPI_ML" with multi-level partitioning.

CREATE TABLE Orders_PPI_ML
(orderid INTEGER NOT NULL,
custid INTEGER NOT NULL,
orderstatus CHAR(1),
totalprice DECIMAL(9,2) NOT NULL,
orderdate DATE FORMAT 'YYYY-MM-DD' NOT NULL,
orderpriority SMALLINT,
clerk CHAR(16),
location SMALLINT,
shippriority SMALLINT,
ordercomment VARCHAR(79))

PRIMARY INDEX (orderid)
PARTITION BY (
RANGE_N (orderdate BETWEEN DATE '2003-01-01' AND DATE '2012-12-31'

EACH INTERVAL '1' MONTH , NO RANGE),
RANGE_N (location BETWEEN 1 AND 10 EACH 1, NO RANGE OR UNKNOWN))

UNIQUE INDEX (orderid) ;

8. (Optional) Populate the Orders_PPI_ML table from the Orders and Orders_2012 tables using
INSERT/SELECT. Verify the number of rows in Orders_PPI_ML.

INSERT INTO Orders_PPI_ML SELECT * FROM Orders;
INSERT INTO Orders_PPI_ML SELECT * FROM Orders_2012;
SELECT COUNT(*) FROM Orders_PPI_ML ; Count = 43,200

 Solutions to Lab Exercises Page E-16

Lab Solutions for Lab 17-1 (cont.)

9. (Optional) For the Orders_PPI_ML table, use the PARTITION key word to answer the following
questions.

How many partitions actually have data? 1200
SELECT COUNT(DISTINCT(PARTITION)) FROM Orders_PPI_ML;

What is the highest partition number? 1319
SELECT MAX(PARTITION) FROM Orders_PPI_ML;

What is the partition number for orders placed from location #1 in January, 2012? 1189
SELECT DISTINCT(PARTITION) FROM Orders_PPI_ML
WHERE location = 1
AND orderdate BETWEEN '2012-01-01' AND '2012-01-31';

What is the partition number for orders placed from location #1 in February, 2012? 1200
SELECT DISTINCT(PARTITION) FROM Orders_PPI_ML
WHERE location = 1
AND orderdate BETWEEN '2012-02-01' AND '2012-02-29';

Is there a difference of 11 partitions between these 2 months? Yes

Why or why not? The second level of partitioning was based on 10 locations plus the NO RANGE
partition for a difference of 11.

Solutions to Lab Exercises Page E-17

Lab Solutions for Lab 17-1 (cont.)

10. (Optional) Before altering the table, verify the number of rows in Orders_PPI. Count = 43,201

SELECT COUNT(*) FROM Orders_PPI; Count = 43,201

Use the ALTER TABLE command on Orders_PPI.

ALTER TABLE Orders_PPI MODIFY PRIMARY INDEX
DROP RANGE BETWEEN DATE '2003-01-01' AND DATE '2003-12-31'

EACH INTERVAL '1' MONTH
ADD RANGE BETWEEN DATE '2013-01-01' AND DATE '2013-12-31'

EACH INTERVAL '1' MONTH
WITH DELETE;

How many partitions currently have data rows? 109

SELECT COUNT(DISTINCT(PARTITION)) FROM Orders_PPI; Count = 109

How many rows now exist in the table? 43,201 Has the row count changed? No

SELECT COUNT(*) FROM Orders_PPI; Count = 43,201

If the row count did not change, why not?

Because this table had NO RANGE defined, the rows from the dropped partitions are moved
into the NO RANGE partition.

 Solutions to Lab Exercises Page E-18

Lab Solutions for Lab 18-1

Lab Exercise 18-1

Purpose
In this lab, you will use Teradata SQL Assistant to create tables with column partitioning in various
ways. These tables will be used in later labs.

What you need
Populated DS tables and Orders and Orders_2012 tables in your database

Tasks

1. Use the SHOW TABLE for Orders to help create a new, similar table (same column names and
definitions, etc.) that does NOT have a primary index and name this table "Orders_NoPI".

CREATE MULTISET TABLE Orders_NoPI, FALLBACK
(orderid INTEGER NOT NULL,
custid INTEGER NOT NULL,
orderstatus CHAR(1),
totalprice DECIMAL(9,2) NOT NULL,
orderdate DATE FORMAT 'YYYY-MM-DD' NOT NULL,
orderpriority SMALLINT,
clerk CHAR(16),
location SMALLINT,
shippriority SMALLINT,
ordercomment VARCHAR(79))

NO PRIMARY INDEX;

Solutions to Lab Exercises Page E-19

Lab Solutions for Lab 18-1 (cont.)

2. Populate the Orders_NoPI table (via INSERT/SELECT) with all of the rows from the DS.Orders and
DS.Orders_2012 tables.

INSERT INTO Orders_NoPI SELECT * FROM DS.Orders;
INSERT INTO Orders_NoPI SELECT * FROM DS.Orders_2012;

Verify the number of rows in your table. Count = 43,200 (count should be 43,200)

3. Using SHOW TABLE for Orders_NoPI, create a new column partitioned table named "Orders_CP".

CREATE MULTISET TABLE Orders_CP, FALLBACK
(orderid INTEGER NOT NULL,
custid INTEGER NOT NULL,
orderstatus CHAR(1),
totalprice DECIMAL(9,2) NOT NULL,
orderdate DATE FORMAT 'YYYY-MM-DD' NOT NULL,
orderpriority SMALLINT,
clerk CHAR(16),
location SMALLINT,
shippriority SMALLINT,
ordercomment VARCHAR(79))

NO PRIMARY INDEX
PARTITION BY COLUMN;

Populate the Orders_CP table (via INSERT/SELECT) from the Orders_NoPI table.

INSERT INTO Orders_CP SELECT * FROM Orders_NoPI;

 Solutions to Lab Exercises Page E-20

Lab Solutions for Lab 18-1 (cont.)

4. Verify the number of rows in your table and fine how many partitions are defined. Count = 43,200

SELECT COUNT(*) FROM Orders_CP;

How many partitions actually have data? 1

SELECT COUNT(DISTINCT(PARTITION)) FROM Orders_CP;

Note: Even though each column stored in separate partitions internally, the table only has 1
logical partition.

Solutions to Lab Exercises Page E-21

Lab Solutions for Lab 18-1 (cont.)

5. Use the SHOW TABLE for Order_NoPI to create a new column partitioned table named
"Orders_CP_NoAC" without automatic compression on each column.

CREATE MULTISET TABLE Orders_CP_noAC, FALLBACK
(orderid INTEGER NOT NULL,
custid INTEGER NOT NULL,
orderstatus CHAR(1),
totalprice DECIMAL(9,2) NOT NULL,
orderdate DATE FORMAT 'YYYY-MM-DD' NOT NULL,
orderpriority SMALLINT,
clerk CHAR(16),
location SMALLINT,
shippriority SMALLINT,
ordercomment VARCHAR(79))

NO PRIMARY INDEX PARTITION BY COLUMN
(orderid NO AUTO COMPRESS,
custid NO AUTO COMPRESS,
orderstatus NO AUTO COMPRESS,
totalprice NO AUTO COMPRESS,
orderdate NO AUTO COMPRESS,
orderpriority NO AUTO COMPRESS,
clerk NO AUTO COMPRESS,
location NO AUTO COMPRESS,
shippriority NO AUTO COMPRESS,
ordercomment NO AUTO COMPRESS);

Populate the Orders_CP_NoAC table (via INSERT/SELECT) from the Orders_NoPI table.

INSERT INTO Orders_CP_noAC SELECT * FROM Orders_NoPI;

 Solutions to Lab Exercises Page E-22

Lab Solutions for Lab 18-1 (cont.)

6. (Optional) Use the SHOW TABLE for Order_CP to create a new column partitioned table named
"Orders_CP_TP based on the following:

CREATE MULTISET TABLE Orders_CP_TP, FALLBACK
(orderid INTEGER NOT NULL,
custid INTEGER NOT NULL,
orderstatus CHAR(1),
totalprice DECIMAL(9,2) NOT NULL,
orderdate DATE FORMAT 'YYYY-MM-DD' NOT NULL,
orderpriority SMALLINT,
clerk CHAR(16),
location SMALLINT,
shippriority SMALLINT,
ordercomment VARCHAR(79))

NO PRIMARY INDEX
PARTITION BY
(COLUMN,
RANGE_N (orderdate

BETWEEN DATE '2003-01-01' AND DATE '2012-12-31' EACH INTERVAL '1' MONTH));

Populate the Orders_CP_TP table (via INSERT/SELECT) from the Orders_NoPI table.

INSERT INTO Orders_CP_TP SELECT * FROM Orders_NoPI;

Solutions to Lab Exercises Page E-23

Lab Solutions for Lab 18-1 (cont.)

7. (Optional) Use the PARTITION key word to determine the number of partitions defined in the
Orders_CP_TP.

How many partitions actually have data? 120

SELECT COUNT(DISTINCT(PARTITION)) FROM Orders_CP_TP;

8. (Optional) Determine the AMP space usage of the Orders_CP, Orders_CP_noAC, and Orders_CP_TP
tables using DBC.TableSizeV.

SELECT TableName (CHAR(15)), SUM(CurrentPerm)
FROM DBC.TableSizeV
WHERE DatabaseName = DATABASE
AND TableName In ('Orders_CP', 'Orders_CP_noAC', 'Orders_CP_TP')
GROUP BY 1
ORDER BY 1;

TableName Sum(CurrentPerm)
Orders_CP 3,100,672
Orders_CP_noAC 4,532,224
Orders_CP_TP 5,909,504

 Solutions to Lab Exercises Page E-24

Lab Solutions for Lab 23-1

Lab Exercise 23-1 Solutions

1. Populate your Accounts table from the AP.Accounts table using the INSERT/SELECT statement:

INSERT INTO Accounts SELECT * FROM AP.Accounts;

Using the DBC.TableSizeV view, what is the amount of Perm space used. Accounts = 1,844,224

2. Create a new table, named "Accounts_MVC", based on the Accounts table except compress the
following city names: Culver City, Hermosa Beach, Los Angeles, and Santa Monica

CREATE SET TABLE Accounts_MVC, FALLBACK
(Account_Number INTEGER NOT NULL,
Street_Number INTEGER,
Street CHAR(25),
City CHAR(20)

COMPRESS ('Hermosa Beach', 'Culver City', 'Los Angeles','Santa Monica'),
State CHAR(2),
Zip_Code INTEGER,
Balance_Forward DECIMAL(10,2),
Balance_Current DECIMAL(10,2))

PRIMARY INDEX (Account_Number);

Populate your Accounts_MVC table from the AP.Accounts table using INSERT/SELECT.

Using the DBC.TableSizeV view, what is the amount of Perm space used. Accounts_MVC = 1,444,864

Solutions to Lab Exercises Page E-25

Lab Solutions for Lab 23-2

Lab Exercise 23-2 Solutions

1. Determine the size of your empty Trans table using the DBC.TablesizeV view (SELECT with and
without the SUM aggregate function).

SELECT SUM(CurrentPerm) FROM DBC.TablesizeV
WHERE DatabaseName = DATABASE AND TableName = 'Trans';

Sum(CurrentPerm)
26,624 Size of empty Trans = 26,624 (Captured on a 26 AMP system)

What size are the table headers on each AMP? 1024

2. Since the typical row length is 38 bytes (see facing page), estimate the size of this table assuming it
will have 15,000 rows.

38 x 15,000 = 570,000 x 2 (Fallback) = 1,140,000 bytes

Estimated size of Trans = 1,140,000

3. Populate your Trans table from the AP.Trans table using the following INSERT/SELECT statement:

INSERT INTO Trans SELECT * FROM AP.Trans;

Use the SELECT COUNT(*) function to verify the number of rows. 15,000

SELECT COUNT(*) FROM Trans; Count(*)
15000

 Solutions to Lab Exercises Page E-26

Lab Solutions for Lab 23-2 (cont.)

4. Using the DBC.TablesizeV view, determine the actual size of the Trans table using the SUM function.

Size of populated Trans = 1,185,792

SELECT SUM(CurrentPerm) FROM DBC.TablesizeV
WHERE DatabaseName = DATABASE AND TableName = 'Trans' ;

Sum(CurrentPerm)
1,185,792 (Estimated size was 1,140,000)

5. Create a USI on the Trans_Number column.

CREATE UNIQUE INDEX (Trans_Number) on Trans;

Estimate the size of the USI = 1,020,000

(4 + 29 + 1) x 15,000 = 510,000 x 2 (Fallback) = 1,020,000 bytes

Actual size of the table with a USI = 2,222,080

SELECT SUM(CurrentPerm) FROM DBC.TablesizeV
WHERE DatabaseName = DATABASE AND TableName = 'Trans' ;

Sum(CurrentPerm)
2,222,080

Actual size of the USI = 1,036,288 (using the empirical sizing technique)

2,222,080 - 1,185,792 = 1,036,288

Solutions to Lab Exercises Page E-27

Lab Solutions for Lab 23-2 (cont.)

6. Create a NUSI on the Trans_ID column.

CREATE INDEX (Trans_ID) on Trans;

Estimate the size of the NUSI = _______________

SELECT COUNT(DISTINCT(Trans_ID)) FROM Trans;

Count(Distinct(TRANS_ID))
975

(15,000 x 8) + (975 x (4 + 21 + 1) x 15) = 500,250 bytes approx.

Estimate of NUSI = 500,250 x 2 (Fallback) = 1,000,500 bytes

Actual size of the table including indexes = 2,856,960

SELECT SUM(CurrentPerm) FROM DBC.TablesizeV
WHERE DatabaseName = DATABASE
AND TableName = 'Trans' ;

Sum(CurrentPerm)
2,856,960

Actual size of the NUSI = 634,880 (using the empirical sizing technique)

2,856,960 - 2,222,080 = 634,880

The NUSI calculation is not as
close because the NUSI has one
value that has a large number of
duplicate values.

15,000 / 975 = 15 (approximately)

 Solutions to Lab Exercises Page E-28

Lab Solutions for Lab 23-3

Lab Exercise 23-3 Solutions

1. Populate the Employee and Emp_Phone tables

INSERT INTO Employee SELECT * FROM PD.Employee;
INSERT INTO Emp_Phone SELECT * FROM PD.Emp_Phone;

2. Using the DBC.TablesizeV view, determine the actual size of the Emp_Phone table by using the SUM
aggregate function.

Size of populated Emp_Phone = 154,624

SELECT SUM (CurrentPerm) FROM DBC.TablesizeV
WHERE DatabaseName = DATABASE
AND TableName = 'Emp_Phone' ; Sum(CurrentPerm)

154,624

3. The Foreign key is Employee_Number in the Emp_Phone table and the Primary Key is the
Employee_Number in the Employee table.

Create a References constraint on Employee_Number using the following SQL statements.

ALTER TABLE Emp_Phone ADD CONSTRAINT fk1 FOREIGN KEY (Employee_Number)
REFERENCES Employee (Employee_Number);

(use the HELP CONSTRAINT Emp_Phone.fk1; to view constraint information.

HELP CONSTRAINT Emp_Phone.fk1;

Name Type State Index ID Foreign Key Columns ...
FK1 REFERENCE VALID 0 EMPLOYEE_NUMBER ...

Solutions to Lab Exercises Page E-29

Lab Solutions for Lab 23-3 (cont.)

4. Using the DBC.TablesizeV view, determine the actual size of the Emp_Phone table by using the SUM
aggregate function.

SELECT COUNT(DISTINCT(Employee_Number)) AS "Count"
FROM Emp_Phone;

Count
1000

(4 + 25 + 1) x 1,000 = 30,000 x 2 (Fallback) = 60,000 bytes approx.

Estimated size of the Reference Index = 60,000

Size of Emp_Phone table with references index = 233,472

SELECT SUM (CurrentPerm) FROM DBC.TablesizeV
WHERE DatabaseName = DATABASE
AND TableName = 'Emp_Phone' ;

Sum(CurrentPerm)
233,472

Size of references index = 78,848

233,472 - 154,624 = 78,848

 Solutions to Lab Exercises Page E-30

Lab Solutions for Lab 27-1

Lab Exercise 27-1 Solutions

1. Delete all of the rows in the Trans table.

DELETE Trans ALL;

The Trans table should have a USI on Trans_Number and a NUSI on Trans_ID from a previous lab.
Verify with HELP INDEX Trans;

HELP INDEX Trans;

Unique? Primary or Secondary? Column Names_____ Index Id
N P ACCOUNT_NUMBER 1
Y S TRANS_NUMBER 4
N S TRANS_ID 8

2. Collect statistics on the Trans table primary and secondary indexes. Use the Help Statistics
command after collecting statistics on all of the indexes.

COLLECT STATISTICS ON Trans COLUMN Account_Number;
COLLECT STATISTICS ON Trans COLUMN Trans_Number;
COLLECT STATISTICS ON Trans COLUMN Trans_ID;

HELP STATISTICS Trans;

Date Time Unique Values Column Names
12/02/25 11:13:36 0 *
12/02/25 11:17:12 0 TRANS_NUMBER
12/02/25 11:17:13 0 ACCOUNT_NUMBER
12/02/25 11:17:13 0 TRANS_ID

Solutions to Lab Exercises Page E-31

Lab Solutions for Lab 27-1 (cont.)

3. Populate your Trans table from AP.Trans using the INSERT/SELECT function. Verify (SELECT
COUNT) that your Trans table has 15,000 rows.

INSERT INTO Trans SELECT * FROM AP.TRANS;
SELECT COUNT(*) FROM Trans;
Count(*)

15000

Use the Help Statistics command after populating the Trans table. Do the statistics reflect the status
of table? NO How many unique values are there for each column? 0

HELP STATISTICS Trans;

Date Time Unique Values Column Names
12/02/25 11:13:36 0 *
12/02/25 11:17:12 0 TRANS_NUMBER
12/02/25 11:17:13 0 ACCOUNT_NUMBER
12/02/25 11:17:13 0 TRANS_ID

4. Recollect statistics on the Trans table. Use the Help Statistics command after populating the Trans
table. Do the statistics reflect the status of table? YES How many unique values are there for
Trans_ID? 975

COLLECT STATISTICS ON Trans;
HELP STATISTICS Trans;
Date Time Unique Values Column Names
12/02/25 11:13:36 15000 *
12/02/25 11:19:57 15000 TRANS_NUMBER
12/02/25 11:19:57 10000 ACCOUNT_NUMBER
12/02/25 11:19:58 975 TRANS_ID

 Solutions to Lab Exercises Page E-32

Lab Solutions for Lab 27-2

Lab Exercise 27-2 Solutions

1. Collect statistics on orderid and orderdate for Orders and Orders_PPI.

COLLECT STATISTICS ON Orders COLUMN orderid;
COLLECT STATISTICS ON Orders COLUMN orderdate;
COLLECT STATISTICS ON Orders_PPI COLUMN orderid;
COLLECT STATISTICS ON Orders_PPI COLUMN orderdate;

Execute the following two Explains.

EXPLAIN SELECT * FROM Orders
WHERE orderdate BETWEEN '2012-01-01' AND '2012-01-31';

How many AMPs are accessed in this operation? All
Is this a full table scan? Yes Why or why not? Because orderdate is not indexed or partitioned

EXPLAIN SELECT * FROM Orders_PPI
WHERE orderdate BETWEEN '2012-01-01' AND '2012-01-31';

How many AMPs are accessed in this operation? All
Is this a full table scan? No Why or why not? Values are specified for a partitioning column

Is partitioning beneficial for this type of query? Yes

Solutions to Lab Exercises Page E-33

Lab Solutions for Lab 27-2 (cont.)

2. Execute the following two Explains.

EXPLAIN SELECT * FROM Orders
WHERE orderid = 418200;

How many AMPs are accessed in this operation? One
How is this row retrieved by Teradata? Via the Primary index

EXPLAIN SELECT * FROM Orders_PPI
WHERE orderid = 418200;

How many AMPs are accessed in this operation? One
How many partitions are scanned to locate this row? All
How is this row retrieved by Teradata? By scanning each partition for the primary index value.

 Solutions to Lab Exercises Page E-34

Lab Solutions for Lab 27-2 (cont.)

3. Execute the following two Explains.

EXPLAIN DELETE FROM Orders WHERE orderdate BETWEEN '2009-01-01' AND '2009-12-31';

How many AMPs are accessed in this operation? All
Is this a full table scan? Yes Why or why not? No index qualification nor any partitioning

EXPLAIN DELETE FROM Orders_PPI
WHERE orderdate BETWEEN '2009-01-01' AND '2009-12-31';

How many AMPs are accessed in this operation? All
Is this a full table scan? No Why or why not? Values are specified for a partitioning column
How many partitions are scanned to delete these rows? 12

4. Collect statistics on orderid for the Orders_CP table and execute the following two Explains.

EXPLAIN SELECT Orderid FROM Orderid_CP;

How many column partitions are accessed? 2
What is the relative cost for this EXPLAIN? .03

EXPLAIN SELECT Orderid, Custid FROM Orders_CP;

How many column partitions are accessed? 3
What is the relative cost for this EXPLAIN? .04

Solutions to Lab Exercises Page E-35

Lab Solutions for Lab 30-1

Lab Exercise 30-1 Solutions

1. Use INSERT/SELECT to place all rows from the populated PD tables into your empty tables. Verify
the number of rows in your tables.

INSERT INTO Employee SELECT * FROM PD.Employee;

SELECT COUNT(*) FROM Employee; Count = 1000

INSERT INTO Department SELECT * FROM PD.Department;

SELECT COUNT(*) FROM Department; Count = 60

INSERT INTO Job SELECT * FROM PD.Job;

SELECT COUNT(*) FROM Job; Count = 66

2. EXPLAIN the following SQL statement.

SELECT Last_Name, First_Name, Dept_Name, Job_Desc
FROM Employee E
INNER JOIN Department D ON E.Dept_Number = D.Dept_Number
INNER JOIN Job J ON E.Job_Code = J.Job_Code
ORDER BY 3, 1, 2;

What is estimated time cost for this EXPLAIN? 0.10 seconds

 Solutions to Lab Exercises Page E-36

Lab Solutions for Lab 30-1 (cont.)

3. Create a “non-compressed” join index which includes the following columns of Employee,
Department, and Job.

CREATE JOIN INDEX EDJ_JI AS
SELECT Last_Name, First_Name, D.Dept_Number, Dept_Name, J.Job_Code, Job_Desc
FROM Employee E
INNER JOIN Department D ON E.Dept_Number = D.Dept_Number
INNER JOIN Job J ON E.job_code = J.job_code;

Execute the HELP USER command. What is the object type of the Join Index? I

4. EXPLAIN the following SQL statement (same SQL as step #2)

What is estimated time cost for this EXPLAIN? 0.03 seconds

Is the join index used? Yes

How much space does the join index require (use the DBC.TableSizeV view)? 125,592

SELECT TableName , SUM(CurrentPerm)
FROM DBC.TableSizeV
WHERE DatabaseName = USER AND TableName = 'EDJ_JI'
GROUP BY 1
ORDER BY 1;

TableName Sum(CurrentPerm)
EDJ_JI 125,592

ds186034
Sticky Note
I

Solutions to Lab Exercises Page E-37

Lab Solutions for Lab 30-1 (cont.)

5. EXPLAIN the following SQL statement – Salary_Amount has been added as a projected column.

SELECT Last_Name, First_Name, Dept_Name, Job_Desc, Salary_Amount
FROM Employee E
INNER JOIN Department D ON E.Dept_Number = D.Dept_Number
INNER JOIN Job J ON E.Job_Code = J.Job_Code
ORDER BY 3, 1, 2;

What is estimated time cost for this EXPLAIN? 0.10 seconds

Is the join index used? No If not, why not? Salary_Amount is not in the Join Index. The join index
rows and the associated Employee row are not on the same AMP. Therefore, the optimizer chooses
to join the two tables together.

6. Drop the Join Index.

DROP JOIN INDEX EDJ_JI;

 Solutions to Lab Exercises Page E-38

Lab Solutions for Lab 30-1 (cont.)

7. (Optional) Create a new “non-compressed” join index similar to step #3 except include the Primary
Index of Employee_Number for the Join Index.

CREATE JOIN INDEX EDJ_JI2 AS
SELECT Employee_Number, Last_Name, First_Name,

D.Dept_Number, Dept_Name, J.Job_Code, Job_Desc
FROM Employee E
INNER JOIN Department D ON E.Dept_Number = D.Dept_Number
INNER JOIN Job J ON E.job_code = J.job_code
PRIMARY INDEX (Employee_Number);

8. (Optional) EXPLAIN the SQL statement from step #5.

Is the join index used? Yes If so, why? Because a join index row and the associated employee row
are on same AMP – the join index and the Employee table can be joined together with matching PI
values. The cost is .04 seconds versus .10 seconds without the join index.

9. (Optional) Drop the Join Index.

DROP JOIN INDEX EDJ_JI2;

Solutions to Lab Exercises Page E-39

Lab Solution for Lab 33-1

Lab Exercise 33-1 Solution

more lab33_12.btq
.LOGON tdt5b/student130,xxx
.EXPORT DATA FILE = data33_1, LIMIT=4000, CLOSE
SELECT * FROM AP.Accounts;
.EXPORT RESET
.QUIT

bteq < lab33_12.btq

Note:

This general technique to create data files will be used for many class exercises, but will not always
be shown.

 Solutions to Lab Exercises Page E-40

Lab Solution for Lab 33-1

Lab Exercise 33-1 Solution

more lab33_18.btq
.SET SESSIONS 8
.LOGON tdt5b/student130,xxx
.IMPORT DATA FILE = data33_1
.QUIET ON
.REPEAT * PACK 10
USING in_account_number (INTEGER),

in_street_number (INTEGER),
in_street (CHAR(25)),
in_city (CHAR(20)),
in_state (CHAR(2)),
in_zip_code (INTEGER),
in_balance_forward (DECIMAL(10,2)),
in_balance_current (DECIMAL(10,2))

INSERT INTO Accounts VALUES
(:in_account_number, :in_street_number, :in_street, :in_city, :in_state,
:in_zip_code, :in_balance_forward, :in_balance_current);

.QUIT

bteq < lab33_18.btq

Solutions to Lab Exercises Page E-41

Lab Solution for Lab 33-2

Lab Exercise 33-2 Solution

more lab33_22.btq

.LOGON tdt5b/student130,xxx

.IMPORT DATA FILE = data33_2

.EXPORT REPORT FILE = report33_2

.WIDTH 80

.REPEAT *
USING in_customer_number (INTEGER)

SELECT customer_number (TITLE '')
, last_name (CHAR(10)) (TITLE '')

, first_name (CHAR(10)) (TITLE '')
, social_security (TITLE '')

FROM AP.Customer
WHERE customer_number = :in_customer_number;

.EXPORT RESET

.QUIT

more report33_2

9000 Underwood Anne 213633756
: : : :

8501 Atchison Jose 213631261

 Solutions to Lab Exercises Page E-42

Lab Solutions for Lab 34-1

Lab Exercise 34-1 Solution
more lab34_12.fld

LOGON tdt5b/student130,xxx;
BEGIN LOADING Customer

ERRORFILES cust_e1, cust_e2;
DEFINE in_cust (INTEGER),

in_lname (CHAR(30)),
in_fname (CHAR(20)),
in_social (INTEGER)

FILE = data34_1;
INSERT INTO Customer VALUES

(:in_cust,
:in_lname,
:in_fname,
:in_social);

LOGOFF;

Or

LOGON tdt5b/student130,xxx;
BEGIN LOADING Customer

ERRORFILES cust_e1, cust_e2;
DEFINE FILE = data34_1;
INSERT INTO Customer.* ;
LOGOFF;

fastload < lab34_12.fld

more lab34_13.fld

LOGON tdt5b/student130,xxx;
BEGIN LOADING Customer

ERRORFILES cust_e1, cust_e2;
DEFINE in_cust (INTEGER),

in_lname (CHAR(30)),
in_fname (CHAR(20)),
in_social (INTEGER)

FILE = data34_2;
INSERT INTO Customer VALUES

(:in_cust,
:in_lname,
:in_fname,
:in_social);

END LOADING;
LOGOFF;

Or

LOGON tdt5b/student130,xxx;
BEGIN LOADING Customer

ERRORFILES cust_e1, cust_e2;
DEFINE FILE = data34_2;
INSERT INTO Customer.* ;
END LOADING;
LOGOFF;

fastload < lab34_13.fld

Solutions to Lab Exercises Page E-43

Lab Solution for Lab 34-2

Lab Exercise 34-2 Solution

more lab34_22.fld
LOGON tdt5b/student130,xxx;
BEGIN LOADING Trans ERRORFILES trans_e1, trans_e2;
DEFINE in_transno (INTEGER),

in_transdate (CHAR(10), NULLIF='0000-00-00'),
in_accno (INTEGER),
in_trans_id (CHAR(4)),
in_trans_amt (DECIMAL(10,2))

FILE = data34_3;
INSERT INTO Trans
VALUES (:in_transno,

:in_transdate (FORMAT 'YYYY-MM-DD'),
:in_accno,
:in_trans_id,
:in_trans_amt);

END LOADING;
LOGOFF;

fastload < lab34_22.fld

From bteq:
SELECT COUNT(*) FROM Trans WHERE Trans_Date IS NULL;

COUNT(*)
150

 Solutions to Lab Exercises Page E-44

Lab Solution for 35-1

Lab Exercise 35-1 Solution

more lab35_12.fxp

.LOGTABLE Restartlog3512_fxp;

.LOGON tdt5b/student130,xxx;

.ACCEPT cnum, lname, fname, socsec FROM FILE data35_1;

.SET filename TO 'Customer';
INSERT INTO &filename

VALUES (&cnum, '&lname', '&fname', &socsec) ;
.LOGOFF;

fexp < lab35_12.fxp

Solutions to Lab Exercises Page E-45

Lab Solutions for Lab 36-1

Lab Exercise 36-1 Solutions

more lab36_12.fxp
.LOGTABLE Restartlog3612_fxp ;
.LOGON tdt5b/student130,xxx;
.BEGIN EXPORT;
.EXPORT OUTFILE data36_1;

SELECT T.trans_number
,A.account_number
,A.number
,A.street
,A.city
,A.state
,A.zip_code

FROM AP.Accounts A
INNER JOIN AP.Trans T
ON A.Account_number = T.Account_number;

.END EXPORT;

.LOGOFF;

fexp < lab36_12.fxp

(alternative join syntax)

more lab36_12a.fxp
.LOGTABLE Restartlog3612a_fxp;
.LOGON tdt5b/student130,xxx;
.BEGIN EXPORT;
.EXPORT OUTFILE data36_1;

SELECT T.trans_number
,A.account_number
,A.number
,A.street
,A.city
,A.state
,A.zip_code

FROM AP.Accounts A
, AP.Trans T

WHERE A.Account_number = T.Account_number;
.END EXPORT;
.LOGOFF;

fexp < lab36_12a.fxp

ds186034
Sticky Note
creates table for load time..later dropped ie only if successful

 Solutions to Lab Exercises Page E-46

Lab Solutions for Lab 36-2 (ACCEPT and CASE)

Lab 36-2 Solutions

more lab36_22a.fxp

.LOGTABLE Restartlog3622a_fxp;

.LOGON tdt5b/student130,xxx;

.SET LoVal TO 500;

.SET HiVal TO 9499;

.ACCEPT city FROM FILE data36_2;

.BEGIN EXPORT;

.EXPORT OUTFILE report36_a MODE RECORD FORMAT TEXT;

SELECT CAST (Account_Number AS CHAR(12)),
CAST (City AS CHAR(12)),
CAST (CAST (Balance_Current AS FORMAT '$,$$$,$$9.99') AS CHAR(12)),
CAST ((CASE WHEN Balance_Current < &LoVal THEN ' Below MIN'

WHEN Balance_Current > &HiVal THEN ' Above MAX'
END) AS CHAR(10))

FROM AP.Accounts
WHERE City = '&city'
AND (Balance_Current < &LoVal OR Balance_Current > &HiVal)
ORDER BY Account_Number;

.END EXPORT;

.LOGOFF;

fexp < lab36_22a.fxp

ds186034
Highlight

ds186034
Highlight

ds186034
Sticky Note
mode record skips indicator byteandformat text...

Solutions to Lab Exercises Page E-47

Lab Solutions for Lab 36-2 (ACCEPT and UNION)

more lab36_22b.fxp

.LOGTABLE Restartlog3622b_fxp;

.LOGON tdt5b/student130,xxx;

.SET LoVal TO 500;

.SET HiVal TO 9499;

.ACCEPT city FROM FILE data36_2;

.BEGIN EXPORT;

.EXPORT OUTFILE report36_b MODE RECORD FORMAT TEXT;

SELECT Account_Number (CHAR(12)), City (CHAR(12)), Balance_Current (CHAR(12)),
' Above MAX' (CHAR(10))

FROM AP.Accounts
WHERE City = '&city' AND Balance_Current > &HiVal

UNION

SELECT Account_Number (CHAR(12)), City (CHAR(12)), Balance_Current (CHAR(12)),
' Below MIN' (CHAR(10))

FROM AP.Accounts
WHERE City = '&city' AND Balance_Current < &LoVal
ORDER BY 1;
.END EXPORT;
.LOGOFF;

fexp < lab36_22b.fxp

 Solutions to Lab Exercises Page E-48

Lab Solutions for Lab 36-2 (.IMPORT)

more lab36_22c.fxp

.LOGTABLE Restartlog3622c_fxp;

.LOGON tdt5b/student130,xxx;

.SET LoVal TO 500;

.SET HiVal TO 9499;

.BEGIN EXPORT;

.LAYOUT Record_Layout;

.FIELD city * CHAR(15);

.IMPORT INFILE data36_2c FORMAT TEXT LAYOUT Record_Layout ;

.EXPORT OUTFILE report36_c MODE RECORD FORMAT TEXT;
SELECT CAST (Account_Number AS CHAR(12)),

CAST (City AS CHAR(12)),
CAST (CAST (Balance_Current AS FORMAT '$,$$$,$$9.99') AS CHAR(12)),
CAST ((CASE WHEN Balance_Current < &LoVal THEN ' Below MIN'

WHEN Balance_Current > &HiVal THEN ' Above MAX'
END) AS CHAR(10))

FROM AP.Accounts
WHERE City = :city
AND (Balance_Current < &LoVal OR Balance_Current > &HiVal)
ORDER BY Account_Number ;

.END EXPORT;

.LOGOFF;

fexp < lab36_22c.fxp

Solutions to Lab Exercises Page E-49

Lab Solution for Lab 37-1

Lab 37-1 Solution

more lab37_13.mld

.LOGTABLE Restartlog3713_mld;

.LOGON tdt5b/student130,xxx;

.BEGIN MLOAD TABLES Accounts, Customer, Trans ;

.Layout Record_Layout;
.FIELD Table_Code * CHAR(1) ;
.FIELD PI_Value * INTEGER ;

.DML LABEL Del_Acct ;

DELETE FROM Accounts WHERE Account_Number = :PI_Value ;

.DML LABEL Del_Cust ;

DELETE FROM Customer WHERE Customer_Number = :PI_Value ;

.DML LABEL Del_Trans ;

DELETE FROM Trans WHERE Account_Number = :PI_Value ;

.IMPORT INFILE data37_1
LAYOUT Record_Layout
APPLY Del_Acct WHERE Table_Code = 'A'
APPLY Del_Cust WHERE Table_Code = 'C'
APPLY Del_Trans WHERE Table_Code = 'T' ;

.END MLOAD ;

.LOGOFF ;

mload < lab37_13.mld | tee lab37_13.out

ds186034
Sticky Note
this is the imp line of course

ds186034
Sticky Note
coming in 5 byteschar followed by number...char followed by number...

 Solutions to Lab Exercises Page E-50

Lab Solution for Lab 38-1

Lab Exercise 38-1 Solution

more lab38_13.mld
.LOGTABLE Log3813_mld;
.LOGON tdt5b/student130,xxx;
.BEGIN MLOAD TABLES

Accounts, Customer, Trans;
.LAYOUT Record_Layout;
.FIELD in_code 1 CHAR(1);
.FIELD in_account1 2 INTEGER;
.FIELD in_streetnum * INTEGER;
.FIELD in_streetname * CHAR(25);
.FIELD in_city * CHAR(20);
.FIELD in_state * CHAR(2);
.FIELD in_zip_code * INTEGER;
.FIELD in_balancefor * DECIMAL (10,2);
.FIELD in_balancecur * DECIMAL (10,2);
.FIELD in_custno 2 INTEGER;
.FIELD in_lastname * CHAR(30);
.FIELD in_firstname * CHAR(20);
.FIELD in_socsec * INTEGER;
.FIELD in_transno 2 INTEGER;
.FIELD in_transdate * CHAR(10);
.FIELD in_account2 * INTEGER;
.FIELD in_transid * CHAR(4);
.FIELD in_transamount * DECIMAL(10,2);

(continued)
.DML LABEL Insert_Acct;
INSERT INTO Accounts VALUES
(:in_account1, :in_streetnum, :in_streetname,
:in_city, :in_state, :in_zip_code, :in_balancefor,
:in_balancecur) ;

.DML LABEL Insert_Cust;
INSERT INTO Customer VALUES
(:in_custno, :in_lastname,

:in_firstname, :in_socsec);

.DML LABEL Insert_Trans;
INSERT INTO Trans VALUES
(:in_transno, :in_transdate, :in_account2,

:in_transid, :in_transamount);

.IMPORT INFILE data38_1
LAYOUT Record_Layout
APPLY Insert_Acct WHERE in_code = 'A'
APPLY Insert_Cust WHERE in_code = 'C'
APPLY Insert_Trans WHERE in_code = 'T';

.END MLOAD;

.LOGOFF;

mload < lab38_13.mld | tee lab38_13.out

Solutions to Lab Exercises Page E-51

Lab Solution for Lab 38-2

Lab Exercise 38-2 Solution

more lab38_23.mld
.LOGTABLE Log3823_mld;
.LOGON tdt5b/student130,xxx;
.BEGIN IMPORT MLOAD TABLES Accounts;
.LAYOUT Record_Layout;

.FIELD in_account 1 INTEGER;

.FIELD in_streetnum * INTEGER;

.FIELD in_streetname * CHAR(25);

.FIELD in_city * CHAR(20);

.FIELD in_state * CHAR(2);

.FIELD in_zip_code * INTEGER;

.FIELD in_balancefor * DECIMAL (10,2);

.FIELD in_balancecur * DECIMAL (10,2);

.DML LABEL Update_Account DO INSERT FOR MISSING UPDATE ROWS;

UPDATE Accounts SET Balance_Current = :in_balancecur
WHERE Account_Number = :in_account;

INSERT INTO Accounts VALUES (:in_account, :in_streetnum, :in_streeetname, :in_city,
:in_state, :in_zip_code, :in_balancefor, :in_balancecur);

.IMPORT INFILE data38_2 LAYOUT Record_Layout APPLY Update_Account;

.END MLOAD;

.LOGOFF;

mload < lab38_23.mld | tee lab38_23.out

 Solutions to Lab Exercises Page E-52

Lab Solution for Lab 39-1

Lab Exercise 39-1 Solution

more lab39_13a.tpp
.LOGTABLE Log813a_tpp;
.LOGON tdt5b/student130,xxx;
.BEGIN LOAD SESSIONS 4 PACK 20 RATE 4800 SERIALIZE ON;
.LAYOUT Record_Layout;

.FIELD in_accountno 1 INTEGER KEY;

.FIELD in_stnum * INTEGER;

.FIELD in_stname * CHAR(25);

.FIELD in_city * CHAR(20);

.FIELD in_state * CHAR(2);

.FIELD in_zip_code * INTEGER;

.FIELD in_balancefor * DECIMAL (10,2);

.FIELD in_balancecur * DECIMAL (10,2);
.DML LABEL Update_Account DO INSERT FOR MISSING UPDATE ROWS

USE (in_accountno,in_stnum,in_stname,in_city,in_state,in_zip_code,in_balancefor,in_balancecur);

UPDATE Accounts SET Balance_Current = :in_balancecur
WHERE Account_Number = :in_accountno;

INSERT INTO Accounts VALUES (:in_accountno, :in_stnum, :in_stname, :in_city,
:in_state, :in_zip_code, :in_balancefor, :in_balancecur);

.IMPORT INFILE data39_1 LAYOUT Record_Layout APPLY Update_Account;

.END LOAD;

.LOGOFF;

tpump < lab39_13a.tpp | tee lab39_13a.out

ds186034
Sticky Note

ds186034
Sticky Note
USE was not needed here..

ds186034
Sticky Note
error table is auto createdERRORTABLE ACT_tpp_ET

Solutions to Lab Exercises Page E-53

Lab Solution for Lab 39-1
(Alternate Solution using SQL UPSERT)

Lab Exercise 39-1 Alternate Solution

more lab39_13b.tpp
.LOGTABLE Log813b_tpp;
.LOGON tdt5b/student130,xxx;
.BEGIN LOAD SESSIONS 4 PACK 20 RATE 4800 SERIALIZE ON;
.LAYOUT Record_Layout;

.FIELD in_accountno 1 INTEGER KEY;

.FIELD in_stnum * INTEGER;

.FIELD in_stname * CHAR(25);

.FIELD in_city * CHAR(20);

.FIELD in_state * CHAR(2);

.FIELD in_zip_code * INTEGER;

.FIELD in_balancefor * DECIMAL (10,2);

.FIELD in_balancecur * DECIMAL (10,2);
.DML LABEL Update_Account

USE (in_accountno,in_stnum,in_stname,in_city,in_state,in_zip_code,in_balancefor,in_balancecur);

UPDATE Accounts SET Balance_Current = :in_balancecur
WHERE Account_Number = :in_accountno

ELSE INSERT INTO Accounts VALUES (:in_accountno, :in_stnum, :in_stname, :in_city,
:in_state, :in_zip_code, :in_balancefor, :in_balancecur);

.IMPORT INFILE data39_1 LAYOUT Record_Layout APPLY Update_Account;

.END LOAD;

.LOGOFF;

tpump < lab39_13b.tpp | tee lab39_13b.out

 Solutions to Lab Exercises Page E-54

Lab Solutions for Lab 42-1

Lab Exercise 42-1 Solutions

1. Using the DBC.DBCInfoV view, find the release and version of the system on which you are logged
on:

SELECT *
FROM DBC.DBCInfoV;

InfoKey InfoData
RELEASE 14.00.00.01 (PDE Release #)
VERSION 14.00.00.01 (Teradata Version #)

2. Using the DBC.ChildrenV view, list your parents’ userids:

SELECT Parent
FROM DBC.ChildrenV
WHERE Child = USER;

Parent
DBC
Sysdba
Students
TT_Class1

ds186034
Sticky Note
show tablehelp tableshow and help - great for objects - for brief infoor even selectnext choiceteradata administratorlast choice is to build query..and therefore are the exercises

ds186034
Sticky Note
Software and PDE can be different

ds186034
Sticky Note

Solutions to Lab Exercises Page E-55

Lab Solutions for Lab 42-1 (cont.)

3. Using the DBC.DatabasesV view, find your:

SELECT OwnerName, CreatorName, AccountName, PermSpace, SpoolSpace, TempSpace
FROM DBC.DatabasesV
WHERE Databasename = USER;

Immediate parent’s name TT_Class1
Creator’s name TT_Class1
Default account code $M0+EDUC&S&D&H
Perm space limit 1,999,999,976 (2 GB)
Spool space limit 4,999,999,992 (5 GB)
Temp space limit 999,999,988 (1 GB)

4. Using the DBC.UsersV view, find your:

SELECT DefaultDatabase, DefaultCollation,
DefaultDateForm, CreateTimeStamp, PasswordLastModDate

FROM DBC.UsersV
WHERE UserName = USER;

Default database name ?
Default collation sequence H
Default date format ?
Create Time Stamp 2012-02-10 11:50:45
Last password modification date 2012-02-10

ds186034
Sticky Note
direct parent

ds186034
Sticky Note
it cld have been dbcdoesnt have to be the same as parent

ds186034
Sticky Note
its a recommended account string (from our engineering)'

ds186034
Sticky Note
here is the diff between databases and user views (only abt the user)

ds186034
Sticky Note
user name is the default db= student109can be anything else

ds186034
Sticky Note
H stands for hostif ur connecting fromMF = epsidecand for LAN = ascii

ds186034
Sticky Note
which means we are taking from system default (system date)

 Solutions to Lab Exercises Page E-56

Lab Solutions for Lab 42-1 (cont.)

4. OPTIONAL: SHOW this view. Note the WHERE conditions. (Remember, this is a restricted view, even
though it does not have an [X] suffix.)

REPLACE VIEW DBC.UsersV
AS SELECT

dbase.DatabaseName(NAMED UserName),
dbase.CreatorName,

...

5. Using the DBC.TablesV view, find the number of tables in the DD/D (User DBC) that are:

Fallback protected Count is 152

SELECT Count(*)
FROM DBC.TablesV
WHERE DatabaseName = 'DBC'
AND TableKind IN ('T', 'O') AND ProtectionType = 'F';

Not Fallback protected Count is 15

SELECT Count(*)
FROM DBC.TablesV
WHERE DatabaseName = 'DBC'
AND TableKind IN ('T', 'O') AND ProtectionType = 'N';

ds186034
Sticky Note
distinction for no reasons ene...lol

Solutions to Lab Exercises Page E-57

Lab Solutions for Lab 42-1 (cont.)

5. Modify the query to find the number of tables OTHER THAN DD/D (not DBC tables) that are:

Fallback protected Count will vary - 1685

SELECT Count(*)
FROM DBC.TablesV
WHERE DatabaseName NE 'DBC'
AND TableKind IN ('T', 'O')
AND ProtectionType = 'F';

Not Fallback protected Count will vary - 317

SELECT Count(*)
FROM DBC.TablesV
WHERE DatabaseName NE 'DBC'
AND TableKind IN ('T', 'O')
AND ProtectionType = 'N';

ds186034
Sticky Note
not DBC Tables

ds186034
Underline

ds186034
Underline

 Solutions to Lab Exercises Page E-58

Lab Solutions for Lab 42-1 (cont.)

6. Using the DBC.PartitioningConstraintsV view, answer the following questions; hint, use the
ColumnPartitioningLevel column to determine if a table is column partitioned or not.

Note: Your answers may vary

For your user, how many tables have a PPI? 2
For your user, how many tables have column partitioning? 3

For the system, how many tables have a PPI? 108
For the system, how many tables have column partitioning? 94

What is the constraint type for PPI tables? Q

SELECT TableName,
ColumnPartitioningLevel AS "CP",
PartitioningLevels AS "# Levels",
ConstraintText AS "Text"

FROM DBC.PartitioningConstraintsV
WHERE DatabaseName = USER;

SELECT COUNT(*)
FROM DBC.PartitioningConstraintsV
WHERE ColumnPartitioningLevel = 0; 108

SELECT COUNT(*)
FROM DBC.PartitioningConstraintsV
WHERE ColumnPartitioningLevel <> 0; 94

ds186034
Sticky Note
new in 14!

ds186034
Sticky Note
0 = Part PI1 = col part table - new in 14CP column has 1)

ds186034
Sticky Note
column Partition table does not have a PI!it is implemented as noPI table

ds186034
Sticky Note
(CP)

ds186034
Sticky Note
CP col has 0

ds186034
Sticky Note
108 and 94answers may vary

Solutions to Lab Exercises Page E-59

Lab Solutions for Lab 42-1 (cont.)

7. Using the DBC.ColumnsV view, find the number of columns in the entire system defined with default
values:

Number of columns Count will vary - 1936

SELECT 'Column count:'
,COUNT (*)

FROM DBC.ColumnsV
WHERE DefaultValue IS NOT NULL;

'Column count:' Count(*)
Column count: 1936

OPTIONAL: Modify the query to find the number of objects that have columns defined with default
values:

Number of tables Count will vary - 166

SELECT 'Object Count:'
,COUNT (DISTINCT (DatabaseName || '.' || TableName))

FROM DBC.ColumnsV
WHERE DefaultValue IS NOT NULL;

'Object Count:' Count(Distinct(TableName))
Object Count: 166

 Solutions to Lab Exercises Page E-60

Lab Solutions for Lab 42-1 (cont.)

8. Using the DBC.IndicesV view, find the number of tables OTHER THAN Dictionary tables that have
non-unique primary indexes (NUPI):

Number of tables Count will vary - 1187

SELECT COUNT (DISTINCT(DatabaseName || '.' || TableName))
FROM DBC.IndicesV
WHERE IndexType IN ('P', 'Q')
AND UniqueFlag = 'N'
AND DatabaseName NE 'DBC';

Count(Distinct(TableName))
1187

Note: The IndexType of 'P' is used for the primary index of non-partitioned tables.
The IndexType of 'Q' is used for the primary index of partitioned tables.

ds186034
Sticky Note
if PI is on the partition table, indextype = Qif PI is NOT on the partition table, indextype = P (weird not obvious)

Solutions to Lab Exercises Page E-61

Lab Solutions for Lab 42-2 (optional)

Lab Exercise 42-2 (optional) Solutions

1. Use INSERT/SELECT to place all rows from the populated PD tables into your empty tables. Verify
the number of rows in your tables.

INSERT INTO Employee SELECT * FROM PD.Employee;

SELECT COUNT(*) FROM Employee; Count = 1000

INSERT INTO Department SELECT * FROM PD.Department;

SELECT COUNT(*) FROM Department; Count = 60

INSERT INTO Job SELECT * FROM PD.Job;

SELECT COUNT(*) FROM Job; Count = 66

INSERT INTO Emp_Phone SELECT * FROM PD.Emp_Phone

SELECT COUNT(*) FROM Emp_Phone; Count = 2000

2. Use the GRANT statement to GRANT yourself the REFERENCES access rights on the tables.

GRANT REFERENCES ON Employee TO student130;
GRANT REFERENCES ON Department TO student130;
GRANT REFERENCES ON Job TO student130;

 Solutions to Lab Exercises Page E-62

Lab Solutions for Lab 42-2 (optional – cont.)

3. Create a References constraint between the Employee.Dept_Number column and the
Department.Dept_Number column.

ALTER TABLE Employee ADD CONSTRAINT emp_dept_ref
FOREIGN KEY (dept_number) REFERENCES
Department (dept_number) ;

What is the name of the Employee RI error table? EMPLOYEE_0
How many rows are in this table? 1
Which department is not represented in the department table? 1000

4. Use the DBC.All_RI_ChildrenV view (qualify the ChildDB to your database) and verify this References
constraint.

What is the IndexID of this constraint? 0

SELECT Indexid (FORMAT 'z9') AS ID
,IndexName
,ChildTable
,ChildKeyColumn
,ParentTable
,ParentKeyColumn

FROM DBC.ALL_RI_ChildrenV
WHERE ChildDB = USER
ORDER BY 1;

ID IndexName ChildTable ChildKeyColumn ParentTable ParentKeyColumn

0 emp_dept_ref Employee dept_number Department dept_number

ds186034
Sticky Note
ties back to the error table no

ds186034
Underline

Solutions to Lab Exercises Page E-63

Lab Solutions for Lab 44-1

Lab Exercise 44-1

1. Using the DBC.DiskSpaceV view, find the total disk storage capacity of the system on which you are
logged on:

Total capacity 1,739,098,519,142

SELECT SUM(MaxPerm) (FORMAT 'zzz,zzz,zzz,999') FROM DBC.DiskSpaceV;

Sum(MaxPerm)
1,739,098,519,142

2. Using the same view, find how much of the space is currently in use:

Current space utilization 3,709,982,208

SELECT SUM(CurrentPerm) (FORMAT 'zzz,zzz,zzz,999') FROM DBC.DiskSpaceV;

Sum(CurrentPerm)
3,709,982,208

Write a query to show what percentage of system capacity is currently in use.

SELECT ((SUM(CurrentPerm)) / NULLIFZERO (SUM(MaxPerm)) * 100) (FORMAT 'z9.99')
AS "% Used Perm Space"

FROM DBC.DiskSpaceV;

% Used Perm Space
0.21

ds186034
Sticky Note
18,531,802,624.00

 Solutions to Lab Exercises Page E-64

Lab Solutions for Lab 44-1 (cont.)

2. (cont.)

OPTIONAL: Write a query to show which databases/users are currently using (current perm) the
largest percentage of their max perm space limit (group by database/user).

SELECT Databasename
,((SUM(CurrentPerm)) / NULLIFZERO (SUM(MaxPerm)) * 100) (FORMAT 'z9.99')

AS "% Used Perm Space"
FROM DBC.DiskSpaceV
GROUP BY 1
ORDER BY 2 DESC;

DatabaseName % Used Perm Space
TD_SYSFNLIB 59.21
MYQCD 29.75
student206 3.08
TDStats 2.99
SYSSPATIAL 2.55
student223 2.48

Solutions to Lab Exercises Page E-65

Lab Solutions for Lab 44-1 (cont.)

3. Using the DBC.DatabasesV view, find the total number of databases and users defined in the system.

SELECT COUNT(*) AS "Total Count"
FROM DBC.DataBasesV;

Total Count
200

Total row count (databases and users) 200 (Answers will vary)

How many users are there? 174 (Answers will vary)

SELECT COUNT(*) AS "User Count"
FROM DBC.DataBasesV
WHERE DBKind = 'U';

User Count
174

How many databases are there ? 26 (Answers will vary)

SELECT COUNT(*) AS "DB Count"
FROM DBC.DataBasesV
WHERE DBKind = 'D';

DB Count
26

ds186034
Sticky Note
231

ds186034
Sticky Note
205

 Solutions to Lab Exercises Page E-66

Lab Solutions for Lab 44-1 (cont.)

3. (cont.)

Who is the creator of AP? SYSDBA
Who is the owner of AP? TT_Data

SELECT CreatorName, OwnerName
FROM DBC.DataBasesV
WHERE DatabaseName = 'AP';

CreatorName OwnerName
SYSDBA TT_Data

Solutions to Lab Exercises Page E-67

Lab Solutions for Lab 44-1 (cont.)

4. Using the DBC.TableSizeV view, find the name and size of each table in the DBC user. List the Data
Dictionary tables in DESCending order by size.

SELECT TableName, SUM(CurrentPerm) (FORMAT 'zzz,zzz,zzz')
FROM DBC.TableSizeV
WHERE DatabaseName = 'DBC'
GROUP BY 1
ORDER BY 2 DESC;

TableName Sum(CurrentPerm)
EventLog 2,118,117,376
TransientJournal 103,088,128
TVM 34,121,728
TVFields 19,522,048
TextTbl 18,756,608
DataBaseSpace 16,474,112

5. Using the DBC.AMPUsage view, find the number of AMP vprocs defined on your system.

(HINT: Use a WHERE condition to reduce the number of DD/D table rows considered.)

SELECT COUNT(DISTINCT (Vproc)) AS "# of AMPS"
FROM DBC.AMPUsageV WHERE UserName = USER;

of AMPS
26

 Solutions to Lab Exercises Page E-68

Lab Solutions for Lab 44-1 (cont.)

6. Using the DBC.AccountInfoV view, list all of your valid account codes.

SELECT *
FROM DBC.AccountInfoV
WHERE UserName = USER;

UserName AccountName
student130 $M0+EDUC&S&D&H
student130 $L0+EDUC&S&D&H

7. Using the DBC.AMPUsageV view, write a query to show the number of AMP CPU seconds and logical
disk I/Os that have been charged to your:

SELECT UserName (CHAR(12))
,SUM (CPUTime) (FORMAT 'zzzz.99')
,SUM (DiskIO) (FORMAT 'zzz,zzz,zzz')

FROM DBC.AMPUsageV
WHERE UserName = USER
GROUP BY UserName ;

UserName Sum(CpuTime) Sum(DiskIO)

student130 111.53 1,021,628

ds186034
Sticky Note
555.52

ds186034
Sticky Note
3,889,585.00

ds186034
Sticky Note
medium prioritylow pirority

Solutions to Lab Exercises Page E-69

Lab Solutions for Lab 45-1

Lab Exercise 45-1 Solutions

1. Create a user profile with a profile name that is the same as your user name (studentxxx_P).

CREATE PROFILE student130_P AS
ACCOUNT = '$M',
DEFAULT DATABASE = student130
SPOOL = 50E6,
TEMPORARY = 80E6,
PASSWORD = (EXPIRE = 91, MINCHAR = 6, MAXLOGONATTEMPTS = 3,

LOCKEDUSEREXPIRE = 5, REUSE = 365, DIGITS='R',
RESTRICTWORDS='Y', SPECCHAR='P');

2. Use the DBC.ProfileInfoV view to display information about profiles in the system.

SELECT ProfileName
,DefaultAccount AS "Def Acct"
,DefaultDB
,SpoolSpace
,TempSpace

FROM DBC.ProfileInfoV
ORDER BY 1;

 Solutions to Lab Exercises Page E-70

Lab Solutions for Lab 45-1 (cont.)

3. Create two new users in the system as follows:

CREATE USER student130_A AS PERM = 0, PASSWORD = ***, PROFILE = student130_P;
CREATE USER student130_B AS PERM = 0, PASSWORD = ***, PROFILE = student130_P;

4. Logon to Teradata as studentxxx_A.

Were you prompted to enter a new password? YES

Why were you prompted to enter a new password? Because EXPIRE was not equal to 0.

Solutions to Lab Exercises Page E-71

Lab Solutions for Lab 47-1

Lab Exercise 47-1

1. Using the DBC.AllRightsV view, find the total number of rows in the DBC.AccessRights table
assigned to users.

SELECT COUNT(*) FROM DBC.AllRightsV;

Count(*)
64,816 Total row count (AllRights view) (Answers will vary)

Using the DBC.AllRoleRightsV view, find the total number of rows in the DBC.AccessRights table
assigned to roles.

SELECT COUNT(*) FROM DBC.AllRoleRightsV;

Count(*)
155 Total row count (AllRoleRights view) (Answers will vary)

2. Using the DBC.UserRightsV view, take a look at the databases and tables on which you currently
hold rights.

SELECT COUNT(*) FROM DBC.UserRightsV;

Count(*)
355 Total number of rows returned (Answers will vary)

How do you think most of these privileges were granted?

These are automatic rights that you received when your user and tables were created.

ds186034
Sticky Note
depending on the no of objects...(352)automatic rights...

 Solutions to Lab Exercises Page E-72

Lab Solutions for Lab 47-1 (cont.)

2. (cont.)

Execute the following SQL command and then recheck the number of Access Rights you have.

CREATE TABLE Emp_Phone2 AS PD.Emp_Phone WITH NO DATA;

Total number of user rights returned 367 (Answers will vary)

SELECT COUNT(*) FROM DBC.UserRightsV;

Count(*)
367

How many new access rights were created? 12

Solutions to Lab Exercises Page E-73

Lab Solutions for Lab 47-1 (cont.)

3. For your Emp_Phone2 table, use the GRANT command to give the SELECT access right to the
database AP.

GRANT SELECT ON Emp_Phone2 TO AP;

Use the GRANT command to give SELECT WITH GRANT access right to the database PD.

GRANT SELECT ON Emp_Phone2 TO PD WITH GRANT OPTION;

Check the total number of user rights returned 367

SELECT COUNT(*) FROM DBC.UserRightsV;

Count(*)
367

Did this count change? No

If not, why not? These new rights are associated with users different than yourself.

Use the DBC.UserGrantedRightsV view to show any user rights that you may have explicitly granted.

How many rows are returned with this view? 92 (answers will vary)

SELECT Count(*) FROM DBC.UserGrantedRightsV;

ds186034
Highlight

ds186034
Highlight

 Solutions to Lab Exercises Page E-74

Lab Solutions for Lab 47-2

Lab Exercise 47-2 Solutions

1. Using the DBC.RoleInfoV view, find the total number of roles defined in the system?

SELECT COUNT(*) FROM DBC.RoleInfoV; Count = 423

Using the DBC.RoleInfoVX view, what is the number of roles that you have created?

SELECT COUNT(*) FROM DBC.RoleInfoVX; Count = 0

Using the DBC.RoleMembersVXview, what is your (studentxxx) default role?

SELECT * FROM DBC.RoleMembersVX; TT_Access_R

Using the DBC.RoleMembersVXview, which roles do you have the "With Admin" option?

SELECT * FROM DBC.RoleMembersVX; Role1_130, Role2_130, Role3_130

2. Grant the following access rights to the specified roles as follows:

GRANT SELECT ON Orders TO Role1_130;
GRANT SELECT ON Orders_2012 TO Role1_130;
GRANT SELECT ON Orders_PPI TO Role2_130;
GRANT INSERT, UPDATE, DELETE ON Orders_PPI TO Role3_130;

ds186034
Sticky Note
roles u have created...not somebody elseVX view -> 1 default (total 4)

ds186034
Sticky Note
admin - grant this role to other usersandcan also drop this role

Solutions to Lab Exercises Page E-75

Lab Solutions for Lab 47-2 (cont.)

3. Grant Role1_xxx to studentxxx_A; GRANT Role1_130 to student130_A;
Grant Role2_xxx to studentxxx_B; GRANT Role2_130 to student130_B;
Grant Role2_xxx to Role3_xxx; GRANT Role2_130 TO Role3_130;
Grant Role3_xxx to studentxxx_B; GRANT Role3_130 TO student130_B;

4. Modify the two users in the system as follows:

MODIFY USER student130_A AS DEFAULT ROLE = Role1_130;
MODIFY USER student130_B AS DEFAULT ROLE = Role2_130;

5. As "studentxxx_A", execute the following SQL statements and indicate if SELECT is allowed or not.

SELECT COUNT(*) FROM Orders; Permitted or not? YES
SELECT COUNT(*) FROM Orders_PPI; Permitted or not? NO

ds186034
Highlight

 Solutions to Lab Exercises Page E-76

Lab Solutions for Lab 47-2 (cont.)

6. As "studentxxx_A", use the DBC.RoleMembersV and DBC.UserRoleRightsV views to view the
current role of the user, any nested roles, and access rights for the roles.

SELECT * FROM DBC.RoleMembersVX;

SELECT RoleName, DatabaseName, TableName, ColumnName, AccessRight
FROM DBC.UserRoleRIghtsV
ORDER BY 1;

How many roles are available to studentxxx_A? 1

What is the default role for studentxxx_A? Role1_130

Does studentxxx_A have the "With Admin" option on any roles? No

How many user role rights are available to studentxxx_A? 2

OPTIONAL

7. Logon as "studentxxx_B" and set the password if requested.

8. As "studentxxx_B", execute the following SQL statements and indicate if SELECT is allowed or not.

SELECT COUNT(*) FROM Orders; Permitted or not? No
SELECT COUNT(*) FROM Orders_PPI; Permitted or not? Yes
DELETE Orders_PPI; Permitted or not? No

ds186034
Sticky Note
we are not supposed to give themie we havent ene

Solutions to Lab Exercises Page E-77

Lab Solutions for Lab 47-2 (cont.)

9. As "studentxxx_B", use the DBC.RoleMembersVX and DBC.UserRoleRightsV views to view the
current role of the user, any nested roles, and access rights for the roles.

SELECT * FROM DBC.RoleMembersVX;

SELECT RoleName, DatabaseName, TableName, ColumnName, AccessRight
FROM DBC.UserRoleRIghtsV
ORDER BY 1;

How many roles are available to studentxxx_B? 2

What is the default role for studentxxx_B? Role2_xxx

Does studentxxx_B have the "With Admin" option on any roles? No

How many user role rights are available to studentxxx_B? 1

10. As "studentxxx_B", use the SET ROLE command to set the current role to "Role3_xxx".

SET ROLE Role3_130;

SELECT COUNT(*) FROM Orders; Permitted or not? No
SELECT COUNT(*) FROM Orders_PPI; Permitted or not? Yes
DELETE Orders_PPI; Permitted or not? Yes

11. Log off as "studentxxx_A" and "studentxxx_B". Using your initial user logon name, DROP the two
users and the profile you created.

DROP USER student130_A; DROP USER student130_B; DROP PROFILE student130_P;

 Solutions to Lab Exercises Page E-78

Lab Solutions for Lab 49-1

Lab Exercise 49-1 Solutions

1. What system security defaults are in effect for your system? SELECT * FROM DBC.SysSecDefaults;

Number of days to expire password: 0
Minimum number of characters required: 3
Maximum number of characters required: 15
Are digits allowed? Yes X No____
Are special characters allowed? Yes X No____
Maximum failed logons permitted (0=never lock): 3
Minutes to elapse before unlocking: 5
Days to expire before password reuse: 0

2. Are these the security defaults that are in effect for your username? Yes or No.

SELECT * FROM DBC.ProfileInfoVX; (minimum password length and unlock times are different)

3. Is a Profile in effect for your username? If so, what is the name of your Profile? Student_P

SELECT Profile;

4. If a Profile is being used, which attributes in the Profile override the system security defaults?

Minimum Password Length, Password Special Characters, Password Restricted Words

ds186034
Sticky Note
against the table or the VIEW

Solutions to Lab Exercises Page E-79

Lab Solutions for Lab 49-1 (cont.)

5. Using the DBC.LogOnOffV view, list the “BAD” logon attempts on your system that have occurred
during the last ten days. Qualify the SELECT using LIKE ’BAD%’.

Number of Bad Logons (System) 148 (Answers will vary)

SELECT COUNT(*)
FROM DBC.LogonoffV
WHERE EVENT LIKE 'BAD%'
AND LOGDATE > CURRENT_DATE - 10;

Number of Bad Logons (Your UserName) 2 (Answers will vary)

SELECT COUNT(*)
FROM DBC.LogonoffV
WHERE EVENT LIKE 'BAD%'
AND LOGDATE > CURRENT_DATE - 10
AND UserName = USER;

6. Using the DBC.SessionInfoV, list the sessions currently logged on your system.

Total number of Sessions (System) 28 (Answers will vary)
Total number of sessions (Your UserName) 2 (Answers will vary)

SELECT COUNT(*) FROM DBC.SessionInfoV;

SELECT COUNT(*) FROM DBC.SessionInfoV WHERE UserName = USER;

 Solutions to Lab Exercises Page E-80

Lab Solutions for Lab 49-2

Lab Exercise 49-2 Solutions

Tasks

1. Using the DBC.AccLogRules view, list the access log rules that are in effect for your username.

SELECT * from DBC.AccLogRules WHERE Username=USER;

Which codes are being logged and what type of logging is being captured?

Code Type of Logging SQL Function Being Logged

Ex. CDB B + Create Database

CTB B + Create Table

CUS B + Create User

DDB B + Drop Database

DTB B + Drop Table

DUS B + Drop User

EXE E Execute

CPO B + Create Profile

DPO B + Drop Profile

CTR B + Create Role

DTR B + Drop Role

2. How many different access logging rules are there for all users? Count = 91 (answers will vary)

SELECT COUNT(*) from DBC.AccLogRulesV;

Solutions to Lab Exercises Page E-81

Lab Solutions for Lab 49-2 (cont.)

3. Execute the following statement.

CREATE DATABASE Test130 FROM DBC AS PERM=0;

(this command should fail – 3524: access right violation)

4. Using the DBC.AccessLog view, list the access log entries for the last two weeks for your username.

How many entries are in this log have been granted? 257 (answers will vary)

SELECT COUNT(*) FROM DBC.AccessLog WHERE "AccLogResult" = 'G' AND Username=USER
AND Logdate > Current_Date - 14;

How many entries are in this log have been denied? 1 (at least one; answers will vary)

SELECT COUNT(*) FROM DBC.AccessLog WHERE "AccLogResult" = 'D' AND Username=USER
AND Logdate > Current_Date - 14;

What is the difference between the Create Table and the Execute command log entries?

SQL text is not captured for Execute commands.

 Solutions to Lab Exercises Page E-82

Lab Solutions for Lab 49-2 (cont.)

5. Using the DBC.DBQLRulesV view, list the attributes of query log rule that is in effect for your
username.

SELECT * from DBC.DBQLRulesV WHERE Username=USER;

Explain Text Logged F
Objects Logged F
Full SQL Logged F
Execution Steps Logged F
Summary F If Summary, times ____ ____ ____
Threshold T If threshold, time = 100 millisec.
SQL Text Size 200
Type of Criterion CPU time

6. Using the DBC.QryLogV view, list the logged queries for your username and how many are there?

SELECT COUNT (*) FROM DBC.QryLogV WHERE Username = USER;

Count = 11 (answers will vary)

Using this view, how many queries are logged for all of the users with usernames like 'student%'?

SELECT COUNT (*) FROM DBC.QryLogV WHERE Username LIKE 'student%';

Count = 445 (answers will vary)

ds186034
Sticky Note

Solutions to Lab Exercises Page E-83

Lab Solutions for Lab 49-2 (cont.)

7. (Optional) Using the DBC.QryLogSummaryV view, what is the count of queries that have been
executed for your username? (Hint: Join the DBC.QryLogSummaryV to the DBC.QryLogV)

SELECT SUM(S.QueryCount)
FROM DBC.QryLogSummaryV S
INNER JOIN DBC.QryLogV Q
ON S.UserID = Q.UserID
WHERE Q.UserName LIKE 'student140%';

Count = 1967 (answers will vary)

(Optional) Using this view, what is the count of queries that have executed for all of the users with
usernames like 'student%'?

SELECT SUM(S.QueryCount)
FROM DBC.QryLogSummaryV S
INNER JOIN DBC.QryLogV Q
ON S.UserID = Q.UserID
WHERE Q.UserName LIKE 'student%';

Count = 213,646 (answers will vary)

ds186034
Sticky Note
summary view does not have the user name and hence join it

 Solutions to Lab Exercises Page E-84

Notes

Miscellaneous Platform Details Page F-1

Module F

Teradata Proprietary and Confidential

Appendix F: Miscellaneous System Utility
and Platform Details

This Appendix contains details on ...

– System utilities and MultiTool
– 15xx and 25xx Appliances
– 48xx/52xx Systems
– 49xx/53xx Systems
– 5400/5450 Systems
– 5500/5550/5555 Systems
– 5600/5650 Systems
– BYNET
– Disk Arrays
– Server Management 2nd and 3rd Generation

 Miscellaneous Platform Details Page F-2

Table of Contents

Locations from which Utilities can be Executed ... F-4
Teradata Console Task .. F-6
Teradata MultiTool (Windows and Linux) .. F-8
DB Window via MultiTool .. F-10
PUT and Disk Arrays ... F-12
Making Sense of the Different Platforms .. F-14
MP-RAS Coexistence Combinations .. F-16
Linux Coexistence Combinations .. F-18
LSI Logic – 6843 Disk Array .. F-20
Disk Array Providers ... F-22
6844 Disk Array .. F-24
SMP Servers .. F-26
Teradata 2500 Appliance ... F-28
Teradata 255x Appliance ... F-30
Teradata 2500/255x Cabinets .. F-32
Teradata 1550 Appliance ... F-34
Teradata 1550 Cabinets ... F-36
Teradata 255x and 2580 Appliances .. F-38
Teradata 2580 Appliance ... F-38
Teradata 2500 Appliance ... F-38
Teradata 1600 Appliance ... F-40
Teradata 1550 (not shown) .. F-40
Teradata 255x and 1600 Cabinets .. F-42
Appliance Configuration Examples ... F-44
Appliance Configuration Examples (cont.) ... F-46
4800/4850 and 5200/5250 Systems ... F-48
4851/4855 and 5251/5255 Systems ... F-50
4900 and 5300 Systems ... F-52
4980 and 5380 Systems ... F-54
4980/5380 Processing Node .. F-56
4980/5380 System and Expansion Racks .. F-58
Example 1: 4980 System ... F-60
Example 2: 5380 System – 8 Nodes .. F-62
Example 3: 5380 System – 16 Nodes .. F-64
Example 4: 5380 System – 32 Nodes .. F-66
5400 Processing Node ... F-68
5400/5450 Systems .. F-70
5400/5450 Cabinets ... F-72
Teradata 555x Systems .. F-74
Example of 5500C Coexistence with a 5380 ... F-76
5500 Teradata Configuration Examples .. F-78
5555H Example ... F-80
5555H System – 8 (6+2) Nodes .. F-82
5555H System – 16 (12+4) Nodes... F-84
5555H System – 32 (24+8) Nodes... F-86
Teradata 5600 Systems .. F-88
Examples of Teradata 555x and 56xx Cabinets .. F-90

Miscellaneous Platform Details Page F-3

5600H and 6844 Disk Arrays ... F-92
5600H System – 9 (6+3) Nodes ... F-94
Teradata 5650 Systems .. F-96
Example of Teradata 5650 Cabinets .. F-98
5650H and 6844 Disk Arrays ... F-100
5650H System – 9 (6+3) Nodes ... F-102
5650H System – 18 (12+6) Nodes ... F-104
5650H System – 36 (24+12) Nodes ... F-106
Teradata Configuration Examples ... F-108
What is BYNET Version 2.1? .. F-110
BYNET Interface Cards (BIC) or Adapters ... F-112
BYNET Switches ... F-114
BYNET Switches (BYA64GX and BYB64G) .. F-116
BYNET™ Software ... F-120
Enterprise Storage Solutions .. F-122
SMP Connectivity – Fibre Channel ... F-124
6841-2456 Fibre Channel Disk Array .. F-124
LSI Logic – Models 1000, 2000, & 3000 .. F-126
5380 and 6841-2456 Disk Arrays .. F-128
Server Management (2nd Generation) .. F-130
Server Management with AWS ... F-132
Server Management (3rd Generation) – SM3G .. F-134
SM3G Architecture Description .. F-136
SM3G Fault Tolerance ... F-140

 Miscellaneous Platform Details Page F-4

Locations from which Utilities can be Executed
The Teradata software includes two different types of utilities: host-based utilities and
AMP-based utilities.

Host-based Utilities
Host-based utilities are programs/applications that you install on a host system. The term
“host” may refer to a channel-attached host or a network-attached host. Host-based utilities
run under the host operating system.

The Archive and Recovery Utility (ARC) and DUMP Unload/Load Utility (DUL, DULtape)
are discussed later in this course.

AMP-based Utilities
You initialize AMP-based utilities using the Teradata Database Window. A console
interface called Host Utility Console (HUTCNS) is a host-based utility that runs on a
channel-attached mainframe and provides access to a number of AMP-based utilities.

The diagram on the facing page shows AMP-based utilities available through HUTCNS on a
channel-attached mainframe and those available through the database window.

Example of Utilities available through HUTCNS:

 Session Status (QRYSESSN) enter SES
 Configuration Display (QRYCONFIG) enter CON
 Locks Display (SHOWLOCKS) enter LOC
 Recovery Manager (RCVMANAGER) enter RCV

Examples of Utilities available through the Teradata DB Window:

Ferret Showspace Displays, by AMP vproc or by Vdisk, the number of
physical cylinders in use for permanent table storage and
spool, as well as the average percent cylinder utilization.

Ferret Packdisk Packs system and user data stored on permanent data

cylinders to a specified density. You can select one or
more vprocs to pack.

Abort Host Aborts all outstanding transactions running on behalf of a

host that has crashed.

Miscellaneous Platform Details Page F-5

Locations from which Utilities
can be Executed

Host Utilities:

TSO / CMS

BTEQ
FastLoad

FastExport
MultiLoad

TPump

DUL

Archive
and

Recovery

HUTCNS

QRYCONFIG
QRYSESSN

SHOWLOCKS
RCVMANAGER

TDP

Channel Drivers Gateway Software

PE vproc

AMP
vproc

PDE and BYNET S/W (Message Passing Layer)

Operating System

AMP
vproc

AMP
vproc

AMP
vproc

PE vproc

One or
more SMPs

DB Window
Supervisor

ETH
ETH

QRYCONFIG
QRYSESSN
SHOWLOCKS
RCVMANAGER
DBSCONTROL
FERRET

DB Window

AWS/SWS

dbscontrol
vprocmanager

pdeconfig
pdestate
schmon

Teradata SMP
Utilities

 Miscellaneous Platform Details Page F-6

Teradata Console Task
The Teradata Console (CNS) task is responsible for managing the Teradata DB Window.

There are 3 ways in which the CNS task can be invoked.

– Xdbw (Teradata Database window)
– /usr/ntos/bin/cnsterm (command-line interface)
– /usr/ntos/bin/cnstool (command-line interface)

cnstool and cnsterm commands
cnstool and cnsterm are command-line interfaces to the Teradata DB Console functions.
cnstool is available with both UNIX and Windows 2000 systems. cnsterm is only available
with UNIX MP-RAS systems.

Starting cnstool
After executing cnstool, commands directed to the Supervisor or any application area have
to be preceded with the appropriate number. Window numbers 1 through 4 are the console
utility windows, 5 is the Database I/O window, and 6 is the Supervisor Window.

Only the root user is allowed to use this command: # cnstool

For example, to enter a Supervisor command such as get version: 6:get version

To start a utility such as qrysessn, enter the following:

 6: start qryconfig (assume qryconfig is started in area 1)
 1:offline; (offline is a qryconfig option)

To exit from cnstool, enter either Del or Control C.

Starting cnsterm
When you start cnsterm, the only command line option is the window number.

Only the root user is allowed to use this command: # cnsterm n

 where n is the window number.

For example, to display the supervisor: # cnsterm 6

To exit from any screen, press the keyboard’s “break” or interrupt key. (You can check
your interrupt key setting with the UNIX command, stty.) The interrupt key is often set to
Del or Control C

Miscellaneous Platform Details Page F-7

Teradata Console Task

The Supervisor is
accessed via ...

• dbw (Database Window)

• cnstool (command line)

• cnsterm (command line,
e.g. Linux)

Note: With Linux, use
tdatcmd to set the PATH
for Teradata command-
line utilities.

tdatcmd
vprocmanager

Supervisor
6

Appl.
1

Appl.
2

Appl.
3

Appl.
4

DBS I/O
5

Console Task
(CNS) PDE

SMPdbw cnstool cnsterm 6

dbw cnstool cnsterm

Get Config 6:Start Qrysessn Start Ferret

Get Config Qrysessn Ferret

 Miscellaneous Platform Details Page F-8

Teradata MultiTool (Windows and Linux)
Teradata MultiTool provides a Graphical User Interface (GUI) on Windows and Linux that
provides Teradata administrators and support personnel with a Windows interface to
command-line-based Teradata and PDE tasks. The interface is additional to the existing
user interfaces.

Teradata MultiTool is a Graphical User Interface (GUI) that you can use to start specific
utilities. You can also start many utilities from the Supervisor Window within Teradata
MultiTool.

To start Teradata MultiTool, do the following:

 Start Programs Teradata RBDMS Teradata MultiTool

PDE State Arrow
State information is received when you execute a pdestate -a command. In general, the
following applies:

 An upward-pointing green arrow indicates a component is UP.
 A downward-pointing red arrow indicates a component is DOWN.
 An animated green or red arrow indicates that the PDE is in transition.

DBS State Arrow

In the DBS area, the following applies:
 An upward-pointing green arrow indicates a component is UP.
 A downward-pointing red arrow indicates a component is DOWN.
 An animated green or red arrow indicates that the Teradata RDBMS is in transition.

In addition, an upward-pointing arrow indicates the following:

 Green indicates that logons are enabled.
 Red indicates that logons are disabled.
 Three faces indicate that users are logged on. If no users are logged on, the faces

are not present, and the RDBMS is quiescent.

Applications (Tools) that can be started via MultiTool
 Control GDO Editor (CTL) display and modify the fields of the PDE GDO

(Globally Distributed Object).

 Database Window (DBW) - activate the Teradata DB Window

 Database Initialization Program (DIP) executes one or more of the standard

Database Initialization Program (SQL) scripts packaged with Teradata.

 Vproc Manager – numerous support functions such as change vproc states,

initialize and boot a specific vproc, etc.

Miscellaneous Platform Details Page F-9

Teradata MultiTool (Windows and Linux)

The Teradata MultiTool utility (Windows and Linux) can be used to …
• Start and reset Teradata
• Check status and versions of Teradata software
• Initiate various support applications

– Control GDO Editor (CTL) - same function as xctl
– Database Window (DBW) - activate the Teradata DB Window
– Database Initialization Program (DIP) scripts
– Vproc Manager - change state of vprocs, initialize a Vdisk, restart Teradata

• Connect to a remote Teradata node

Example of Main
Window of MultiTool

 Miscellaneous Platform Details Page F-10

DB Window via MultiTool
The DBW may also be started via the MultiTool program.

In the Teradata MultiTool main window, select Tools -> Database Window (DBW) and the
DBW should appear.

You can create files that log all output that appears in the Supervisor window or any of the
application windows. These logs might be useful when you want to review or print
information.

When you log all windows, standard log files are opened. If a log file already exists, the
system overwrites the old log with the new log.

To start a log, Select the “File” menu and then select “Enable Logging”. The Select
Logging File dialog appears and complete the dialog box.

The following list identifies the default file names, which are located in the drive:\Program
Files\NCR\LPDE directory, where drive is the drive where you installed the default files.

 Supervisor – SupvLog
 Application window 1 – App1Log
 Application window 2 – App2Log
 Application window 3 – App3Log
 Application window 4 – App4Log

Miscellaneous Platform Details Page F-11

DB Window via MultiTool

This example shows
the Teradata DB
Window supervisor
function started via
MultiTool.

The various functions
appear as tabs within
the window.

This example shows
execution of a simple
command (get config)
and starting a utility.

From Supervisor, enter: START DBSCONTROL

 Miscellaneous Platform Details Page F-12

PUT and Disk Arrays
The PUT (Parallel Upgrade Tool) utility is used to configure a Teradata Database
environment. This utility performs many functions in the configuration of a Teradata
Database system. One of the key functions is to scan a system for disk arrays and configure
those disk arrays for use with the Teradata Database.

The chart on the facing page shows the PUT default configurations for different disk arrays.

If the default configuration is not desired, then either Symplicity or ACE utilities can be
used to manually configure an array.

Notes:

RAID 1 – Classic mirroring (no striping); commonly used with the Teradata Database
RAID 1 + 0 – Striped Mirroring
RAID 5 – commonly used with the Teradata Database with 4, 9, 18, 36, or 73 GB disk
drives

Miscellaneous Platform Details Page F-13

PUT and Disk Arrays

The PUT (Parallel Upgrade Tool) utility is used to configure a Teradata Database
environment.

• One of its key functions is to scan a system for disk arrays and configure those disk arrays
for use with Teradata. Depending on the type of array, RAID Level, size and number of
disks, this utility will configure arrays differently.

• With Teradata Virtual Storage (discussed in another module), Storage Initialization &
Profiling is called from PUT before adding new devices.

• This chart lists some of the configuration defaults (not an inclusive chart).

• Note that RAID 5 is rarely used with 146 GB and larger disk drives.

of disks
in array

RAID
Level

Max # of
Disks

Disks/
Group

of
Groups

Total
LUNs

Disk Size (GB)
 73 146* 300*

 LUN Sizes (GB)
40 1 40 2 20 20 73 146 300
40 5 40 4 10 10 219 438 900

52 1 52 2 26 26 73 146 300
52 5 52 4 13 13 219 438 900

60 1 64 2 30 30 73 146 300
60 5 64 4 15 15 219 438 900

64 1 64 2 32 32 73 146 300
64 5 64 4 16 16 219 438 900

108 1 128 2 54 54 146 300

 Miscellaneous Platform Details Page F-14

Making Sense of the Different Platforms
The facing page attempts to provide some perspective of the different platforms.

The 4400, 4800, 4850, 5200, and 5250 nodes are based on the Intel Eclipse chassis and
Aspen baseboard technology. These nodes are often referred to as Eclipse nodes.

The 4455, 4851, 4855, 5251, and 5255 nodes are based on the Intel Koa baseboard
technology. These nodes may be referred to as Koa nodes.

The 4470, 4900 and 5300 nodes are based on the INTEL Dodson baseboard technology and
may be referred to as Dodson nodes.

The 4475, 4950 and 5350 nodes are based on the INTEL Hodges baseboard technology and
may be referred to as Hodges nodes.

The 4480, 4980, and 5380 nodes are based on the INTEL Harlingen baseboard technology
and may be referred to as Harlingen nodes.

The 5400 and 5450 nodes are based on the INTEL Jarrell baseboard technology and may be
referred to as Jarrell nodes.

The 155x, 25xx, and 55xx nodes are based on the INTEL Alcolu baseboard technology and
may be referred to as Alcolu nodes.

The following dates indicate when these systems were generally available to customers
(GCA – General Customer Availability).

– 5100M January, 1996 (not described in this course)
– 4700/5150 January, 1998 (not described in this course)
– 4800/5200 April, 1999
– 4850/5250 June, 2000
– 4851/4855/5251/5255 July, 2001
– 4900/5300 March, 2002
– 4950/5350 December, 2002
– 4980/5380 August, 2003
– 5400E/5400H March, 2005
– 5450E/5450H April, 2006
– 5500E/5500C/5500H March, 2007
– 2500/5550H January, 2008
– 2550 October, 2008
– 1550 December, 2008
– 2555/5555C/H March, 2009
– 1600/2580/5600C/H March, 2010
– 5650C/H July, 2010
– 6650C/H and 6680 April, 2011

Miscellaneous Platform Details Page F-15

Making Sense of the Different Platforms

SMP MPP

2003
2004

2005
2006

2007

2008
2009

2010

4950/4980 (1 – 4 nodes)
Intel Xeon 2.8/3.06 GHz
BYNET V2.1

4475/4480
Intel Xeon
2.8/3.06 GHz

5350/5380 (2 – 512 nodes)
Intel Xeon 2.8/3.06 GHz
BYNET V2.1

5400/5450E (1 – 4 nodes)
Intel Xeon 3.6/3.8 GHz
BYNET V2.1

5400/5450H (1–1024 nodes)
Intel Xeon 3.6/3.8 GHz
BYNET V3.0

540S
Intel Xeon 3.4 GHz

5500C/H (1–1024 nodes)
One/Two Intel Dual-core

Xeon CPUs 2.66 GHz
BYNET V3.1

550S/550P
1 or 2 Intel
Dual-core Xeon
CPUs 2.33 GHz

5500E (1 – 2 nodes)
1 or 2 Intel Dual-core

Xeon CPUs 2.66 GHz
Gbit Ethernet Switch

5550/5555H (1–1024 nodes)
Two Intel Quad-core

Xeon CPUs 2.33 GHz
BYNET V3.1/V3.2

551
1 Intel
Quad-core Xeon
CPU 2.33 GHz

5600/5650H (1–4096 nodes)
Two Intel quad or six-core

CPUs 2.66/2.93 GHz
BYNET V4.0

560
2 Intel
Six-core Xeon
CPU 2.93 GHz

 Miscellaneous Platform Details Page F-16

MP-RAS Coexistence Combinations
Teradata provides investment protection by allowing coexistence of different platforms in a
single system. Different options are available to the customer - upgrades, expansion,
migration, or coexistence.

Coexistence systems contain a mixture of nodes and storage that operate as a single MPP
system running the same software. Each system is managed with the same AWS.

All coexistence opportunities must be assessed and approved by Teradata Development
Division and the Global Sales Support (GSS) to ensure a proper configuration.

5350 (and later) Coexistence with 5400 and 5450
Coexistence of a 5400/5450 with 5350 and later generations usually makes more sense and
is recommended. The power difference between 5350 and 5400 (est. 60%) should result in a
manageable number of Vprocs on the 5400 nodes – memory contention should not be an
issue.

In addition, a 5400/5450 coexistence system requires a Windows 2003 AWS 4.x that
supports SM3G. Additional information on Server Management with coexistence will be
covered in the Server Management lesson.

5250/5300 Coexistence with the 5400 and 5450
Although 5400/5450 coexistence is supported back to 5250 (where the 5250 is the oldest
node technology in the configuration), it may not be in the customers’ best interest to have
5250 through 5300 nodes coexist with 5400/5450 nodes because of sub-optimal parallel
efficiency.

Coexistence & Parallel Efficiency
When planning coexistence, several factors must be evaluated:

 Increasing power differential between oldest and newest nodes in multi-generation
coexistence systems usually results in a high number of AMPs (workload) on latest
nodes.

 The resulting AMP contention for increasingly limited memory can result in an

imbalance – the newest nodes become the pacing nodes and customers do not
achieve the expected parallel efficiency (obtain expected value for investment).

 Problem increases with the number of generations being supported.

Miscellaneous Platform Details Page F-17

MP-RAS Coexistence Combinations

5555C – 4 core Xeon 2.33 GHZ

555xH – 8 core Xeon 2.33 GHz

5400/5450 – Xeon 3.6/3.8GHz

4900/5300 – Tualatin 1.4 GHz

Teradata provides investment protection to customers by allowing coexistence of different
generations in the same system.

4950/5350 – Xeon 2.8 GHz

4980/5380 – Xeon 3.06 GHz

4850/5250 – Xeon 700 MHz

4851/5251 – Xeon 700 MHz
4855/5255 – Xeon 900 MHz

Goal is to have Parallel
Efficiency:

Utilization of one set of
cliques at 100% and the
other sets of cliques as
close to 100% as possible.

This is done by balancing
the workload between the
nodes.

Older generations are
supported, but coexistence
is more complicated to
achieve.

5500C – 2 core Xeon 2.66 GHz

5500H – 4 core Xeon 2.66 GHz
32-bit Coexistence with
MP-RAS systems

5500C is needed for
coexistence with nodes
prior to 5500.

 Miscellaneous Platform Details Page F-18

Linux Coexistence Combinations
The facing page illustrates possible Linux coexistence combinations.

Miscellaneous Platform Details Page F-19

Linux Coexistence Combinations

5450E/5450H – Xeon 3.8 GHz

In a 64-bit Linux environment, coexistence across multiple generations is
supported with 55xx and 56xx systems.

Goal is to have
Parallel Efficiency:

Utilization of one set of
cliques at 100% and the
other sets of cliques as
close to 100% as
possible.

This is done by
balancing the workload
between the nodes.

Conversion to 64-bit
Linux is required if the
nodes are not already
running 64-bit Linux.

5500C – 2 core Xeon 2.66 GHz

5500H – 4 core Xeon 2.66 GHz

5550H – 8 core Xeon 2.33 GHz

5400E/5400H – Xeon 3.6 GHz

May need to leverage
larger Linux memory.

5555C – 4 core Xeon 2.33 GHz

5555H – 8 core Xeon 2.33 GHz

56xxC – 4/6 core Nehalem 2.66/2.93 GHz

56xxH – 8/12 core Westmere 2.66/2.93 GHz

 Miscellaneous Platform Details Page F-20

LSI Logic – 6843 Disk Array
The Storage Cabinet (model 6700-4000) supports 1 or 2 6843 disk arrays.

Characteristics of this array include:

 Each array has one controller module (dual array controllers that support 4 Gbit
Fibre Channel speeds.

 Cabinet has two arrays, therefore fewer drives per array.
 2 arrays per cabinet provide better performance for Teradata.
 Drive trays support up to 16 disks – 73 (older), 146, or 300 GB disk drives.
 Each array supports 4 drive trays – maximum of 64 disks

Miscellaneous Platform Details Page F-21

LSI Logic – 6843 Disk Array

The Storage Cabinet (model 6700-4000)
supports one or two 6843 disk arrays.

Common characteristics:

• Each array has one controller module (dual array
controllers) that support 4 Gbit Fibre Channel speeds.

• Cabinet has two arrays, therefore fewer drives per
array.

• Drive trays support up to 16 disks – 73 (older), 146,
and 300 GB disk drives – 15K rpm.

• Each array supports 4 drive trays – maximum of 64
disks

6700-4000

½ Populated
Cabinet

Disk Array
Controllers

2U UPS

2U UPS

2U UPS

2U UPS

Disk Array
Controllers

Disk Array
Controllers

2U UPS

2U UPS

2U UPS

2U UPS

 Miscellaneous Platform Details Page F-22

Disk Array Providers
Disk array subsystems are primarily available from two vendors – NetApp (formerly LSI
Logic Engenio®) and EMC2 .

This chart identifies some of the older releases of LSI Logic (Engenio) Disk Arrays.

Key for this chart: NSC – NCR Storage Cabinet; WES – WorldMark Enterprise Storage

Release Key Feature Disk Array

Class/Model
O.S. Support GCA

Enterprise
Storage (5.5)

Fibre Channel
(2 Gbit)

6841-2456 MP-RAS, Win 2000 08/2003

Enterprise
Storage (6.0)

Fibre Channel
(2 Gbit)

6841-6456 MP-RAS, Win 2000 08/2003

Enterprise
Storage (6.1)

Fibre Channel
(2 Gbit; DAP-1)

6841-7456
6842-1000

MP-RAS, Win 2003,
Linux

07/2004
05/2005

Enterprise
Storage (7.0)

Fibre Channel
(4 Gbit; DAP-3)

6843-1000, 2000,
3000 and 6287

MP-RAS, Win 2003,
Linux

07/2006

Enterprise (7.1) Fibre Channel
(4 Gbit; DAP-3)

6843-4000 MP-RAS, Win 2003,
Linux

01/2008

Examples of EMC2 disk arrays for a 54xx system include:

 6291-1002 (a.k.a., EMC2 Symmetrix DMX-2 1000 M2) – supports up to 144 disks
(73 GB); typically used with 1 or 2 nodes and up to 100 drives in Teradata
Database configurations. This is a standard single-wide cabinet.

 6291-2000 (a.k.a., EMC2 Symmetrix DMX-2 2000 M2) – supports up to 288 disks
(73 GB); typically used with 3+ nodes and up to 196 drives in Teradata Database
configurations. This is a double-wide cabinet.

Although the DMX models support up to 144/288 drives and Teradata systems may have as
many 100/196 drives, typically only 100 (96 + 4) or 196 (192 + 4) of the drives are used in
Teradata Database configurations. 80 or 160 drives are used for AMP storage. The 4
additional drives are used as following: 2 for hot or dynamic spares and 2 drives (volumes)
are needed by EMC2 software and work space.

Miscellaneous Platform Details Page F-23

Disk Array Providers

Two primary storage vendors:
• NetApp – (LSI Logic, Inc. sold its Engenio® external storage systems in 2011)
• EMC2

Examples of NetApp or Engenio® disk arrays are:

• 6844 (uses 6701-2000 storage cabinet)

– supports up to 128 HDD per disk array; 128 drives per rack; 16 drives/tray

• 3650 (Solid state disk array in 6680 cabinet)

– supports up to 12 SSD per array;

Example of an EMC2 disk array is:

• EMC2 Symmetrix DMX-4 disk array (Model 4500) with 192 disk drives (+ 4 hot spare)

– Design center configuration – each 5600 node accesses 192 drives configured
with 480 pdisks used by 40 AMPs

Note: This presentation will provide examples of NetApp disk arrays.

 Miscellaneous Platform Details Page F-24

6844 Disk Array
The Storage Cabinet (model 6701-2000) supports one 6844 disk array.

Characteristics of this array include:

 Cabinet has one array, 30+% faster than 6843.
 Drive trays support up to 16 disk drives – 146, 300, 450, and 600 GB disk drives –

15K rpm.
 Available in three configurations:

– 4-tray (up to 64 drives)
– 6-tray (up to 96 drives)
– 8 tray (up to 128 drives)

 Not supported with UNIX MP-RAS systems.
 Hardware features and characteristics

– Integrated Fibre Channel harness
– Integrated AC power harness
– Integrated Ethernet harness
– Two AC boxes
– 30A, 32A, & 50A models

The following chart compares the 6843 (previous model) and 6844 arrays.

Feature 6843 6844

Data Protection DAP1 & 3
(Controller & Drives)

- same -

Drive Ports 4 per controller 8 per controller

Max Host Ports 4 per controller 8 per controller

Host-Ports
Expandable

No Yes – via Host-Interface
Cards (HICs)

Daisy-Chained Drive
Trays

Yes No

Miscellaneous Platform Details Page F-25

LSI Logic – 6844 Disk Array

6701-2000

Disk Array
Controllers

Opt. SM (CMIC)

2U UPS

2U UPS

2U UPS

2U UPS

The Storage Cabinet (model 6701-2000) supports one
6844 disk array.

Characteristics:

• Each array has one controller module (dual array controllers).

• Cabinet has one array, 30+% faster than 6843.

• Drive trays support up to 16 disk drives – 146, 300, 450, and 600 GB
disk drives – 15K rpm.

• Available in three configurations:

– 4-tray (up to 64 drives)

– 6-tray (up to 96 drives)

– 8 tray (up to 128 drives)

• Drive and host ports per controller is 8 versus 4 for 6843

• Drive trays are not chained together as 6843

• AC Power

– Two 50 AMP Domestic (USA)
– Four 30 AMP Domestic (USA)
– Four 32 AMP, three phase international

• Not supported with UNIX MP-RAS systems.

 Miscellaneous Platform Details Page F-26

SMP Servers
The following servers are entry-level data warehousing system servers. These systems can
execute the UNIX MP-RAS, Windows Server 2003, or SUSE Linux operating systems.

These servers, when combined with the Teradata Database, external storage, connectivity
features and applications, provide a complete entry-level data warehousing environment.

4480 Server
The base components of the 4480 server (not shown) are the same as the 4980/5380
processing node. Characteristics include:

 Two Intel XEON CPUs – 3.06 GHz with 512KB cache, 533 MHz front side bus
 Memory – 1 GB to 6 GB (Teradata maximum is 4 GB)
 I/O Slots - 6 PCI slots:

– Two 64-bit/100 MHz slots (PCI Bus 1, slots 1, 2)
– Three 32-bit/33 MHz slots (PCI Bus 0, slots 3, 4, and 5)
– One 64-bit/133 MHz slot (PCI Bus 2, slot 6)

 Drive Bays
– 1 flex drive (3.5")
– 2 removable media bays (5.25”) populated with a CD-ROM drive and a tape

drive
– 5 hot-pluggable disk bays housing two 73 GB hard drives standard and an

optional three disk drives

540S Server
The 540S server is also an entry-level data warehousing system server. The 540S platform
is based on the Dell 2800 server. Characteristics include:

 Two Intel XEON processors – 3.4 GHz with 1 MB cache, 800 MHz front side bus
 Memory: 1 GB to 4 GB (6 GB for Linux)
 Two 73 GB Seagate hard drives (10K RPM)
 Tape drive
 Available adapters:

– Fibre channel disk storage: LSI Logic 2 Gb PCI-X quad port (LSI7402XP)
– Fibre channel tape storage: LSI Logic 2 Gb PCI-X quad port (LSI7402XP)
– Teradata IBM host channel: PCI-X ESCON (PXSA4), FICON (PXFA)
– Network communication: Ethernet 10/100/1000T copper dual port, 1 Gb

Ethernet fiber single port
– PCI single port serial card: SIIG CyberSerial PCI (JJ-PO1012)

550 and 551 S/P Servers
The facing page also illustrates the 550S, 550P, and 551P servers and the special rack used
for these servers.

Miscellaneous Platform Details Page F-27

SMP Servers

SMP Servers
• Designed as an entry-level Teradata data warehousing servers

540S Server – pedestal or deskside server
• 540S is based on Dell server

– Utilizes two Intel® Xeon® 3.4 GHz CPUs; 800 MHz FSB

• Utilizes external deskside disk arrays – e.g., 6287 (July, 2006)

550S/550P/551P Servers

• Single node, disk storage (drive trays), monitor, and
2 UPS in a rack (no AWS)

– 550S – one Intel® Dual-core Xeon® 2.33 GHz CPU
– 550P – one or two Intel® Dual-core Xeon® 2.66 GHz CPUs
– 551P – one Intel® Quad-core Xeon® 2.33 GHz CPUs

Monitor

Server Node

16 Drives

16 Drives

16 Drives

16 Drives

UPS

UPS

 Miscellaneous Platform Details Page F-28

Teradata 2500 Appliance
There is only one Teradata configuration for the 2500. Each disk array will be fully
populated with 32 disks and each node is configured with 32 AMPs.

Miscellaneous 2500 Notes

 Smallest System: 2 Nodes - 1 Base cabinet
 Largest System: 48 nodes - 1 Base cabinet and 23 Expansion cabinets.

– Expansions must be added in 2 node increments.
 Each 2500 system will have a Teradata AWS.
 The 2500 is released as a Linux only platform.

Down Node Protection

In a 2500 cabinet, a node is cabled to only one array (no cliques), therefore a node failure on
the 2500 platform will cause the AMPs assigned to the failed node to become offline. The
2500 platform can use fallback protection to enable the system to run with offline AMPs.

Utilities considerations for the 2500 are:

 Included in Bundled 2500 Price

TPT Load and Export Operators, ODBC, JDBC, CLI, OLE DB Provider, .NET
Data Provider, Plug-in for Eclipse, SQL Assistant, SQL Assistant/Web Edition,
BTEQ, Teradata Administrator, Meta Data Services, Data Connector, and
MultiTool

 Optional

TPT Update Operator, TPT Operator Stream, Teradata Manager, Teradata
Warehouse Miner, Teradata Analyst Pak, Query Director, Teradata Replication
Services

 Available only to existing users

FastLoad, MultiLoad, Fast Export, and TPump

 Limited or restricted use software

Priority Scheduler and “schmon”

 Not supported with the 2500

TASM, Workload Analyzer, Dynamic Workload Manager, Mainframe Channel
Connection

Miscellaneous Platform Details Page F-29

Teradata 2500 Appliance

• Teradata Data Warehouse Appliance 2500
– Teradata 6.2.1, 64-bit Novel SUSE Linux 9, and bundled utilities
– Typical configuration – 32 AMPs and 2 PEs per node
– Configured as single-node cliques

• Fully-integrated cabinet design
– Two Nodes

• Each node has 2 Intel Dual-core CPUs at 2.66 GHz; total of 8 cores in the cabinet

• 8 GB of memory per node; total of 16 GB memory in cabinet

• 32 AMPs per node with shared LUNs

– Two Disk Arrays – total of (64) 300 GB enterprise-class Fibre-Channel drives
• 32 Drives per Node; RAID1 disk mirroring, Fallback is optional

– 6.12 TB customer data per cabinet (assumes 30% data compression)
– Scales up to 24 cabinets, 48 nodes, and 146 TB customer data
– Nodes are interconnected via BYNET software over redundant Ethernet switches

• Features not available for the Teradata 2500
– Multi-node cliques are not supported for automatic failover and recovery
– RAID 5, hot standby nodes, hot spare disk drives, and dual active is not supported
– Cannot co-exist with other Teradata systems

 Miscellaneous Platform Details Page F-30

Teradata 255x Appliance
There is only one Teradata configuration for the 255x. Nodes are purchased in 2 node
increments. Each of two nodes will be assigned to a disk array that is fully populated with
72 disks. Each node is assigned to 36 disks.

The 2550 node uses the Intel Xeon Clovertown CPU (8 MB of level-two cache) whereas the
2555 node uses the Intel Xeon Harpertown CPU. The Harpertown CPU has 12 MB of level-
two cache and improved internal pipelines for a performance gain of approximately 5%.

Miscellaneous 255x Notes

 Smallest System: 2 Nodes - 1 Base cabinet
 Largest System: 44 nodes - 1 Base cabinet and 10 Expansion cabinets.

– Expansions must be added in 2 node increments.
 Each 255x system will have a Teradata AWS.
 The 255x is released as a Linux only platform.

Down Node Protection

In a 255x cabinet, two nodes are configured in a clique. In the event of a node failure, PEs
and AMPs can migrate to the remaining node within the clique.

Utilities considerations for the 255x are:

 Included in Bundled 255x Price

TPT Load and Export Operators, ODBC, JDBC, CLI, OLE DB Provider, .NET
Data Provider, Plug-in for Eclipse, SQL Assistant, SQL Assistant/Web Edition,
BTEQ, Teradata Administrator, Teradata Manager, Meta Data Services, Data
Connector, and MultiTool

 Optional

TPT Update Operator, TPT Operator Stream, Teradata Manager, Teradata
Warehouse Miner, Teradata Analyst Pak, Query Director, Teradata Replication
Services

 Available only to existing users

FastLoad, MultiLoad, Fast Export, and TPump

 Limited or restricted use software

Priority Scheduler and “schmon”

Miscellaneous Platform Details Page F-31

Teradata 2550/2555 Appliance

• Teradata Data Warehouse Appliance 2550/2555
– Teradata 12.0, 64-bit Novel SUSE Linux 10, and bundled utilities
– Typical configuration – 36 AMPs and 2 PEs per node

• Fully-integrated cabinet design
– Up to 4 Nodes in a cabinet – purchased in 2 node increments

• Each node has 2 Intel Quad-core Xeon CPUs at 2.33 GHz; nodes are 40% to 45% faster
• 32 GB of memory per node; maximum total of 128 GB memory in cabinet

– Up to 2 Disk Arrays in cabinet – total of (144) 300 GB enterprise-class SAS drives
• 36 Drives per Node; RAID1 disk mirroring, Fallback is optional

– 12.6 TB customer data per cabinet (assumes 4 nodes and 30% data compression)

– Scales up to 11 cabinets, 44 nodes, and 140 TB customer data

– Nodes are interconnected via BYNET software over redundant Ethernet switches

– Configured with 2 node cliques – provides continuity in event of node failure

– Optional – Teradata Managed Server within cabinet (e.g., SAS or Viewpoint)

– Optional – Mainframe channel connectivity (ESCON or FICON) in separate cabinet

• Features not available for the Teradata 2550/2555
– RAID 5, hot standby nodes, hot spare disk drives, and dual active is not supported
– Cannot co-exist with other Teradata systems

 Miscellaneous Platform Details Page F-32

Teradata 2500/255x Cabinets
There are no optional configurations for the 2500 cabinet; every cabinet must be configured
as shown on the facing page. The 255x cabinet may have 2 nodes with 1 array or 4 nodes
with 2 arrays.

Teradata 2500 Node Characteristics:

 Same basic node as 5500 – includes 2 dual-core 2.66 GHz CPUs with 8 GB of

memory per node. Each node is pre-configured with 32 AMPs utilizing shared
LUNs in the associated disk array.

 It has all the Server Management and AWS capabilities used in the MPP systems.

Teradata 255x Node Characteristics:

 Same basic node as 555x – includes 2 quad-core 2.33 GHz CPUs with 32 GB of

memory per node. Each node is pre-configured with 36 AMPs utilizing shared
LUNs in the associated disk array.

 The 2550 node uses the Intel Xeon Clovertown CPU (8 MB of level-two cache)

whereas the 2555 node uses the Intel Xeon Harpertown CPU. The Harpertown
CPU has 12 MB of level-two cache and improved internal pipelines for a
performance gain of approximately 5%.

 It has all the Server Management and AWS capabilities used in the MPP systems.

BYNET features of the Teradata 25xx include:

 BYNET switching is provided by redundant, dual-active Gigabit Ethernet
Switches.

 25xx processing node on-board Ethernet interfaces are connected to the BYNET

Gigabit Ethernet Switches.
– eth0 (the connector on the right) is connected to BYNET 0.
– eth1 (the connector on the left) is connected to BYNET 1.

 All connections are copper. Cables are available in 5, 10, 20, and 30 meter lengths.

Miscellaneous Platform Details Page F-33

Teradata 2500/2550/2555 Cabinets

2500 Cabinet

1st E'net Switch – P
1st E'net Switch – S

Dual Array
Controllers

Dual Array
Controllers

2500 Node

2500 Node
BYNET E'net Switch

Blank

BYNET E'net Switch

Server Mgmt – 2U

2U UPS

2U UPS

2U UPS

2U UPS

Disk Array
(32 Drives)

2 Nodes

BYNET
Ethernet

Disk Array
(32 Drives)

2550/2555 Cabinet

2 Nodes

Disk Array
(Dual Array
Controllers;
72 Drives)

2 Nodes

Disk Array
(Dual Array
Controllers;
72 Drives)

255x Node

255x Node

Server Mgmt – 2U

Managed Server

255x Node

255x Node

Dual PDU

(no UPS)

 Miscellaneous Platform Details Page F-34

Teradata 1550 Appliance
The Teradata Extreme Data Appliance 1550 allows you to gain deep strategic intelligence
from extremely large amounts of detailed data. It supports very high-volume, non-enterprise
data/analysis requirements for a small number of power users in specific workgroups or
projects that are outside of your enterprise data warehouse (EDW).

This appliance is based on the field proven Teradata Purpose-Built 5550 processing nodes
and provides the same scalability and data warehouse capabilities expected from Teradata.

Key features include:

 Extremely large user data capacities with 34 TB per node of uncompressed user
data. With a typical 40% compression level, the usable capacity per node expands
to 50TB.

 This means that the appliance can support a 1PB data store/analysis need with only

20 Teradata nodes.

 Featuring massively parallel processing (MPP) architecture, the Teradata BYNET®

system interconnect with high-speed, fault tolerant, optimized messaging between
nodes is a key scalability ingredient.

 The Teradata Extreme Data Appliance has scale out capability with up to 1,024

nodes, thereby enabling the potential of a huge data warehouse of more than 50PB.

 Utilizes a density optimized version of Teradata Storage that is based on industry-

standard, commercial high capacity drives and high-performance, industry leading
disk array technology.

 Storage consists of a fixed configuration of 124 commercial data disk drives each

with 1TB of capacity. The storage array also includes four hot standby drives to
ensure minimal impact and data loss exposure from drive failures – an important
capability due to the large amount of data in each array.

 Pre-configured – to meet the demands of very large data set analysis with simple-

to-order and easy-to-expand increments of a single Teradata node with storage.

 All the indexing capabilities of Teradata Database are included on this platform.

These features, such as Partitioned Primary Index, help you efficiently organize and
query the very large amounts of data.

Miscellaneous Platform Details Page F-35

Teradata 1550 Appliance

• Teradata Extreme Data Appliance 1550
– Teradata 12.0 and 64-bit Novel SUSE Linux 10
– Each node is configured with 62 AMPs and each AMP has 1 TB of Vdisk space
– Intent is to support small number of analytical queries accessing a large amount of

data.

• Processor Node cabinet characteristics
– Up to 9 Nodes in a cabinet

• Each node has 2 Intel Quad-core Xeon CPUs at 2.33 GHz
• 32 GB of memory per node

– System can scale up to 1024 nodes and up to 50 PB of
– Nodes are interconnected via MPP BYNET V3
– Optional – HSN (Hot Standby Node) in 4 node (3+1) clique environments
– Optional – Teradata Managed Server within cabinet (e.g., SAS or Viewpoint)
– Optional – Mainframe connectivity (ESCON or FICON) – requires channel node

• Enterprise Storage cabinet characteristics
– Up to 124 disk drives + 4 HSD (Hot Spare Drives) in a cabinet
– Drive pairs configured with RAID 1
– Each disk drive is 1 TB capacity, SATA interface, 7.2K RPM
– Storage connectivity is 4 Gb Quad Fibre Channel

 Miscellaneous Platform Details Page F-36

Teradata 1550 Cabinets
The facing page illustrates the processor and storage cabinets for the Teradata Extreme Data
Appliance.

The 1550 cabinet characteristics include:

 One to nine Teradata processing nodes (typical max is 8)
 BYNET switches
 Server management server and network
 UPS, Dual AC distribution, cooling fans
 Patented enhanced airflow

Key characteristics of the 1550 Processing Node include:

 1550 Processors
– Up to two Quad Core Intel® Xeon® 5300 Series 2.33GHz processors with

8MB Advanced Transfer L2 Cache Memory

– 32GB using DDR2 667MHz fully buffered DIMM with ECC for Teradata

 Database running on Novell® SUSE®Linux 64-bit

 Internal Node Data Storage Devices

– Two hot-swappable 73GB or 146GB SAS® hard drives (four max)
– One CD/DVD-ROM drive
– One 4mm 36/72GB tape drive per cabinet (standard)

Key characteristics of the 1550 Enterprise Storage Cabinet

 Disk Drive Supported - SATA interface, 7.2K RPM, 1TB capacity

 Up to 124 drives = 124 TB spinning disk capacity plus 4 host spare disks

 Connects directly to Teradata nodes and certified for operation with Teradata

Database by using Quad Fibre Channel Adapters which support 4Gb/sec
connectivity between nodes and the multi-ported disk arrays.

 RAID 1 Mirroring

Miscellaneous Platform Details Page F-37

Teradata 1550 Cabinets

1550 Processor Cabinet

1st E'net Switch – P
1st E'net Switch – S

4U Unused

1U BYNET Switch – A
1U BYNET Switch – B

1550 Node

1550 Node

1550 Node

1550 Node

1550 Node

1550 Node

1550 Node

1550 Node

1550 Node

Server Mgmt Node

2U UPS

2U UPS

2U UPS

2U UPS

2U UPS

Disk Array
Controllers

Server Mgmt (opt)

2U UPS

2U UPS

2U UPS

2U UPS

1550 Storage Cabinet

Disk Array
• Dual Array Controllers
• 8 Drive Trays, each

with 16 disks
• 124 Drives + 4 HSD
• 1 TB SATA Disk Drives
• 62 RAID 1 drive pairs

Processing Node
• Dual Quad Core CPUs
• 32 GB of memory
• Typically configured

with 62 AMPs

One node is effectively
connected to a storage
cabinet.

One node will have 62
AMPs accessing 62 TB of
Vdisk space.

 Miscellaneous Platform Details Page F-38

Teradata 255x and 2580 Appliances
These systems utilize these Linux nodes that are purchased in 2 node increments. With
255x systems, each of two nodes will be assigned to a disk array that is fully populated with
72 disks. Each node is assigned to 36 disks.

The 2550 node uses the Intel Xeon Clovertown CPU (8 MB of level-two cache) whereas the
2555 node uses the Intel Xeon Harpertown CPU. The Harpertown CPU has 12 MB of level-
two cache and improved internal pipelines for a performance gain of approximately 5%.

The smallest system is 2 Nodes - 1 Base cabinet and the largest system is 44 nodes - 1 Base
cabinet and 10 Expansion cabinets.

In a 255x cabinet, two nodes are configured in a clique. In the event of a node failure, PEs
and AMPs can migrate to the remaining node within the clique.

Teradata 2580 Appliance
Characteristics of a 2580 appliance node include:

 Dell R710 TMS using quad core Intel® Nehalem-EP Processor (Bluefish)
 96 GB memory – 8 GB DIMMS
 1 less adapter slot and 2 less onboard network ports
 SATA Tape support in SWS rather than node
 300 & 450 GB 15K6 SAS drives & 1 TB 7.2K SAS drives
 (1) CMIC based on 55xx node – SMWeb
 Channel Node based on 55xx
 Co-resident with 2550 & 2555

Teradata 2500 Appliance
This is the original Teradata appliance and is not described on the facing page.
Characteristics include:

 Fully-integrated cabinet design

– Two Nodes
• Each node has 2 Intel Dual-core CPUs at 2.66 GHz; total of 8 cores in

the cabinet; 8 GB of memory per node;
– Two Disk Arrays – total of (64) 300 GB enterprise-class Fibre-Channel drives

• 32 Drives per Node; RAID1 disk mirroring, Fallback is optional
– 6.12 TB customer data per cabinet (assumes 30% data compression)
– Scales up to 24 cabinets, 48 nodes, and 146 TB customer data
– Nodes are interconnected via BYNET software over redundant Ethernet

switches
– Typical configuration – 32 AMPs and 2 PEs per node
– Configured as single-node cliques

Miscellaneous Platform Details Page F-39

Teradata 255x and 2580 Appliances

• Teradata Data Warehouse Appliance (2550, 2555, and 2580)
– Fully integrated cabinet design with nodes and disk arrays in the same cabinet

• Up to 4 Nodes in a cabinet – purchased in 2 node increments

• Up to 2 Disk Arrays in cabinet with 144 drives – RAID1; Fallback is optional

– Typical configuration – 36 AMPs and 2 PEs per node

– Nodes are interconnected via BYNET software over redundant Ethernet switches

• Teradata 255x Systems
– Nodes use 2 Intel Quad-core Xeon CPUs at 2.33 GHz; 2555 nodes are 5% faster

• 32 GB of memory per node

– 36 SAS Drives per node - 300 GB @ 15K drives

– Scales up to 11 cabinets, 44 nodes, and 140 TB customer data

• Teradata Data Warehouse Appliance 2580
– Dell R710 node with 2 Intel quad-core Nehalem CPUs with 96 GB memory
– Available SAS disk drives – 300, 450 GB @ 15K drives, or 1 TB @ 7.2K drives
– Optional – up to 2 Dell R710 TMS and 2 channel nodes (based on 55xx nodes)
– Co-residence with 2550 and 2555 is supported

 Miscellaneous Platform Details Page F-40

Teradata 1600 Appliance
The Teradata Extreme Data Appliance 1600 allows you to gain deep strategic intelligence
from extremely large amounts of detailed data. It supports very high-volume, non-enterprise
data/analysis requirements for a small number of power users in specific workgroups or
projects that are outside of your enterprise data warehouse (EDW).

Characteristics of the 1600 are listed on the facing page.

Teradata 1550 (not shown)
The Teradata 1550 consists of separate processor and storage cabinets. For 1 fully
populated processor cabinet of 8 1550 nodes, there will an associated 8 storage cabinets.

The 1550 cabinet characteristics include:

 One to nine Teradata processing nodes (typical max is 8)
 BYNET switches
 Server management server and network
 UPS, Dual AC distribution, cooling fans
 Patented enhanced airflow

Key characteristics of the 1550 Processing Node include:

 1550 Processors
– Up to two Quad Core Intel® Xeon® 5300 Series 2.33GHz processors with

8MB Advanced Transfer L2 Cache Memory

– 32GB using DDR2 667MHz fully buffered DIMM with ECC for Teradata

 Database running on Novell® SUSE® Linux 64-bit

Key characteristics of the 1550 Enterprise Storage Cabinet

 Disk Drive Supported - SATA interface, 7.2K RPM, 1TB capacity

 Up to 124 drives = 124 TB spinning disk capacity plus 4 host spare disks

 Connects directly to Teradata nodes and certified for operation with Teradata

Database by using Quad Fibre Channel Adapters which support 4 Gb/sec
connectivity between nodes and the multi-ported disk arrays.

 RAID 1 Mirroring

Miscellaneous Platform Details Page F-41

Teradata 1600 Appliance

• Teradata Extreme Data Appliance 1600
– Node is based on Dell R710 chassis – 1+1 node in a clique (HSN is optional)
– BYNET over 1 Gb Ethernet for systems up to 23 TPA nodes (46 including HSN)

– BYNET v4 for systems > 23 TPA nodes

– Up to 58 TB of user data in one cabinet
– Co-residence with 1550 and 1555 systems is supported (with BYNET v4)
– Uses SWS and SMWeb for server management

• Processor, Node, and Cabinet characteristics
– Up to 4 Nodes in a cabinet (1+1)

• Each node has 2 Intel Quad-core Nehalem CPUs @ 2.66 GHz with Hyper-Threading
• 48 GB of memory per node

– System can scale to 50 PB of user data with BYNET v4
– Optional – HSN (Hot Standby Node) in 2 node (1+1) clique environments
– Optional – up to 5 TMS (Teradata Managed Server) nodes (R710 TMS)
– Optional – up to 5 Channel Server (ESCON or FICON) nodes

• Storage within 1600 cabinet
– Up to 144 disk drives – 72 drives per node – RAID 1 drive pairs
– Nodes are configured with 36 AMPs – 2 disks per AMP
– SAS disk drives are 1 TB capacity @ 7.2K RPM

 Miscellaneous Platform Details Page F-42

Teradata 255x and 1600 Cabinets
There are no optional configurations for the 2500 cabinet; every cabinet must be configured
as shown on the facing page. The 255x cabinet may have 2 nodes with 1 array or 4 nodes
with 2 arrays.

Teradata 2500 Node Characteristics:

 Same basic node as 5500 – includes 2 dual-core 2.66 GHz CPUs with 8 GB of

memory per node. Each node is pre-configured with 32 AMPs utilizing shared
LUNs in the associated disk array.

 It has all the Server Management and AWS capabilities used in the MPP systems.

Teradata 255x Node Characteristics:

 Same basic node as 555x – includes 2 quad-core 2.33 GHz CPUs with 32 GB of

memory per node. Each node is pre-configured with 36 AMPs utilizing shared
LUNs in the associated disk array.

 The 2550 node uses the Intel Xeon Clovertown CPU (8 MB of level-two cache)

whereas the 2555 node uses the Intel Xeon Harpertown CPU. The Harpertown
CPU has 12 MB of level-two cache and improved internal pipelines for a
performance gain of approximately 5%.

 It has all the Server Management and AWS capabilities used in the MPP systems.

BYNET features of the Teradata 25xx include:

 BYNET switching is provided by redundant, dual-active Gigabit Ethernet
Switches.

 25xx processing node on-board Ethernet interfaces are connected to the BYNET

Gigabit Ethernet Switches.
– eth0 (the connector on the right) is connected to BYNET 0.
– eth1 (the connector on the left) is connected to BYNET 1.

 All connections are copper. Cables are available in 5, 10, 20, and 30 meter lengths.

Miscellaneous Platform Details Page F-43

Teradata 255x and 1600 Cabinets

255x Cabinet

2 Nodes

Disk Array
(Dual Array
Controllers;
72 Drives)

2 Nodes

Disk Array
(Dual Array
Controllers;
72 Drives)

255x Node

255x Node

Optional TMS

SM3G (CMIC)

255x Node

255x Node

Dual PDU

(no UPS)

Disk Array
(Dual Array
Controllers;
72 Drives)

Disk Array
(Dual Array
Controllers;
72 Drives)

1600 Cabinet

2 Nodes

2 Nodes Dell R710 HSN

Dell R710 TPA

Optional TMS

SM3G (CMIC)

Dell R710 HSN

Dell R710 TPA

Dual PDU

(no UPS)

 Miscellaneous Platform Details Page F-44

Appliance Configuration Examples
The examples on the facing page show a typical AMP and Disk configurations for 255x,
1550, and 1600 systems.

Notes:

 2500 systems utilize Fibre Channel disks
 255x systems utilize SAS disks (Serial Attached SCSI)
 1550 systems utilize SATA disks (Serial Advanced Technology Attachment)
 1600 systems utilize SAS disks (300 GB, 450 GB, or 1 TB)

The typical configuration for a 2500 (not shown) is as follows:

 32 Disks / Node (RAID 1)
 8 GB Memory / Node
 32 AMPs / Node
 1 Node Cliques

2500 Cabinet effectively has 2 Nodes managing 6.12 TB with 30% data compression.

Miscellaneous Platform Details Page F-45

Appliance Configuration Examples

155x and Disk Array Cabinets

155x – Linux

62 AMPs / Node
Cliques optional – require HSN

124 Disks per Node (RAID 1)
32 GB Memory per Node

Each Vdisk – 2 Disks (RAID 1)
Each Vdisk – 1 TB*

Node – 62 AMPs x 1 TB = 62 TB*

Node 4

Node 3

Node 2

Node 1

1 Array
Cabinet

per
node

124
Disks

1 TB
DD

4 hot
spare
disks

. .

1 Array
Cabinet

per
node

124
Disks

1 TB
DD

4 hot
spare
disks

255x, 2580

255x, 2580 – Linux

36 AMPs / Node
2 Node Cliques

36 Disks / Node (RAID 1)
32 GB Memory / Node

Cabinet

4 Nodes; 12.6 TB with
30% data compression

Node 4

Node 3

Node 2

Node 1

72
Disks

300 GB

72
Disks

300 GB

1600

1600 – Linux

36 AMPs / Node
2 (1+1) Cliques

72 Disks / Node (RAID 1)
48 GB Memory / Node

Cabinet

2 Nodes; 58 TB with 30%
data compression

HSN

Node 2

HSN

Node 1

72
Disks
1 TB

72
Disks
1 TB

 Miscellaneous Platform Details Page F-46

Appliance Configuration Examples (cont.)
The examples on the facing page show a typical AMP and Disk configurations for 2650 and
4600 systems.

Notes:

 2650 systems utilize SAS disks (Serial Attached SCSI) – 300 GB and 600 GB disk
drives

 2650 systems can utilize 2 TB SATA disks (Serial Advanced Technology
Attachment)

 4600 systems utilize 300 GB SSD (Solid State Disks)

Miscellaneous Platform Details Page F-47

Appliance Configuration Examples (Cont.)

2650

2650 Clique (e.g., 600 GB)

• 3 Node Cliques (3+0) share
3 drive trays

• 96 GB Memory / Node
• 24 AMPs / Node
• 72 AMPs /Clique

• 24 Disks / Node (RAID 1)
• 72 Disks / Clique

• Spinning Disks – 43.2 TB
• Max Perm – 19.4 TB
• Customer Data – 10.7 TB

(after DBC and spool space)

2650 Cabinet with 9 nodes

• 216 AMPs
• 864 GB memory in cabinet

24 Disks – 600 GB

24 Disks – 600 GB

24 Disks – 600 GB

24 Disks – 600 GB

24 Disks – 600 GB

24 Disks – 600 GB

24 Disks – 600 GB

24 Disks – 600 GB

24 Disks – 600 GB

Node – Westmere CPUs

Node – Westmere CPUs

Node – Westmere CPUs

Node – Westmere CPUs

Node – Westmere CPUs

Node – Westmere CPUs

Node – Westmere CPUs

Node – Westmere CPUs

Node – Westmere CPUs

2650 Disk Options

• 300 or 600 GB SAS Disks
2.5" – 216 in cabinet

• 2 TB Disks
3.5" – 108 in cabinet

(3, 6, or 9 Nodes
in a cabinet)

4600

4600 Clique (e.g., 600 GB)

• 3 Node Cliques (3+0)
share 2 drive trays

• 96 GB Memory / Node
• 32 AMPs / Node
• 96 AMPs /Clique

• 8 Disks / Node
• 24 Disks / Clique

• SSD Space – 7.2 TB
• Max Perm – 6.5 TB
• Customer Data – 1.8 TB

(after DBC, Spool and
Fallback)

4600 Cabinet with 9 nodes

• 288 AMPs
• 864 GB memory in

cabinet

12 Disks – 300 GB

12 Disks – 300 GB

12 Disks – 300 GB

12 Disks – 300 GB

12 Disks – 300 GB

12 Disks – 300 GB

Node – Nehalem CPUs

Node – Nehalem CPUs

Node – Nehalem CPUs

Node – Nehalem CPUs

Node – Nehalem CPUs

Node – Nehalem CPUs

Node – Nehalem CPUs

Node – Nehalem CPUs

Node – Nehalem CPUs

4600 Disks

• 300 GB Solid State Drives
(SSD)

• 3.5" – 72 SSD in cabinet

 Miscellaneous Platform Details Page F-48

4800/4850 and 5200/5250 Systems
The 4800/4850 and 5200/5250 systems utilize a rack-based cabinet. Like other Teradata
systems, the 4800/4850 and 5200/5250 systems are composed of different type of
subsystems.

The processing node is housed in an 11U “chassis” which is mounted in rack-based cabinet.
A 4800/4850 or 5200/5250 cabinet is capable of housing two processing nodes.

4800 and 5200 Systems
The key component is the SMP node – it is based on the Intel 100 MHz internal bus
architecture, uses the Intel Pentium II Xeon 450 MHz or Intel Pentium III Xeon
500 or 550 MHz CPUs, and has 3 PCI buses. Simply stated, the 4800/5200 SMP is a faster
computing engine than the previous 4700/5150.

4800 and 5200 systems can be upgraded to 4850 and 5250 systems.

4850 and 5250 Systems
The 4850 and 5250 systems are very similar to the 4800 and 5200 systems. The key
difference is that 4850 and 5250 SMPs utilize the Intel Pentium III Xeon 700 MHz
CPU.

The 4850/5250 SMP chassis is 11U in height, same height as the 4800/5200 SMP chassis.

The following table lists the height of each chassis:

Chassis Height
Server Management 3U (13.3 cm, 5.25 in)
BYA16G 3U (13.3 cm, 5.25 in)
SMP – 4800/4850/5200/5250 11U (48.9 cm, 19.25 in.)
UPS – 4800/4850/5200/5250 3U (13.3 cm, 5.25 in.)

Miscellaneous Platform Details Page F-49

4800/4850 and 5200/5250 Systems

Front View with PanelsFront View

UPS 3

UPS 3

UPS 3

SMP - 4 way node

SMP - 4 way node

BYNET V2

BYNET V2

SMC

2 SMP Nodes (11U)

4800/5200
4 Intel Xeon CPUs

(450/500/550 MHz)

4850/5250
4 Intel Xeon CPUs

(700 MHz)

1 - 4 GB Memory
3 PCI Buses

11 PCI slots

Example of BYNET V2
(BYNET 16 switch)

Server Management
(CMIC2)

Three 3U UPS
with Dual AC

Notes:

• 4800/4850 – up to 4 SMPs
and uses BYNET 4 PCI
board switches.

• 5200/5250 – up to 512
SMPs and uses BYNET
chassis switches.

• SMPs and components are
housed in chassis modules
which are mounted in a
rack-based cabinet.

• SMPs use Intel® Pentium®
III XeonTM CPUs, a 100
MHz system bus, and
leverage 4400 SMP
technology.

 Miscellaneous Platform Details Page F-50

4851/4855 and 5251/5255 Systems
The 4851/4855 and 5251/5255 systems have a different SMP architecture than the
4800/4850/5200/5250 SMPs. The module chassis for these SMPs is 7U in height as
compared to 11U for the 4800/4850/5200/5250 SMPs.

4851/5251 Systems
The 4851 and 5251 SMPs utilize the Intel Pentium III Xeon 700 MHz CPU. The
4851 and 5251 systems will primarily be used in a co-existence environment with existing
4850 and 5250 systems.

4855/5255 Systems
One key performance difference is that 4855 and 5255 SMPs utilize the Intel Pentium III
Xeon 900 MHz CPU. This faster CPU provides approximately a 15% performance gain.

The following table lists the height of each chassis:

Chassis Height
Service Management 3U (13.3 cm, 5.25 in)
BYA16G 3U (13.3 cm, 5.25 in)
SMP – 4851/4855/5251/5255 7U (31.1 cm, 12.25 in.)
UPS – 4851/4855/5251/5255 3U (13.3 cm, 5.25 in.)

Miscellaneous Platform Details Page F-51

4851/4855 and 5251/5255 Systems

Notes:

• 4851/4855 – up to 4 SMPs;
use BYNET 4 V2 switches.

• 5251/5255 – up to 512
SMPs; use BYNET V2
switches.

• SMPs are based on the
4455 SMP architecture
and are housed in a
chassis that is 7U in
height.

• 4855/5255 SMPs use
Intel® Pentium® III 900
XeonTM MHz CPUs, a 100
MHz system bus, and
leverage 4455 SMP
technology (4851/5251
SMPs use 700 MHz CPUs).

Front View with Panels

2 SMP Nodes (7U)

4 Intel CPUs
(Xeon 700/900 MHz)

1 - 4 GB Memory
3 PCI Buses

8 PCI Slots

BYNET 16 switches
(Optional)

Server Management
(CMIC3)

Three 3U UPS
with Dual AC

Front View

UPS 3

UPS 3

UPS 3

SMP - 4 way node

4U Space

SMP - 4 way node

4U Space

BYNET V2

BYNET V2

SMC

 Miscellaneous Platform Details Page F-52

4900 and 5300 Systems
The 4900 and 5300 systems have a new SMP architecture. The module chassis for these
new SMPs is 5U in height as compared to 7U for the 4851/4855/5251/5255 SMPs.

The 4900 and 5300 SMPs utilize the Intel Pentium III Tualatin 1.4 GHz CPU.

One key difference with this generation is that a cabinet or rack can now hold 4 SMPs rather
than two.

The following table lists the height of each chassis:

Chassis Height
Service Management 3U (13.3 cm, 5.25 in)
BYA16G 3U (13.3 cm, 5.25 in)
SMP – 4900/5300 5U (22.2 cm, 8.75 in.)
UPS – 4900/5300 2U (8.9 cm, 3.5 in.)

Miscellaneous Platform Details Page F-53

4900 and 5300 Systems

Front View with Panels

4 SMP Nodes (5U)

2 Intel CPUs
(Pentium III 1.4 GHz)

1 - 4 GB Memory
3 PCI Buses

6 PCI Slots

BYNET 16 switches
(Optional)

Server Management
(CMIC3)

Three 2U UPS
with Dual AC

Front View

SMP 2 CPUs

SMP 2 CPUs

SMP 2 CPUs

SMP 2 CPUs

BYNET V2

BYNET V2

SMC

4U Space

1U Space

Notes:

• 4900 – up to 4 SMPs; uses
BYNET 4 V2.1 switch.

• 5300 – up to 512 SMPs;
use BYNET V2 switches.

• SMPs are housed in a
chassis that is 5U in
height and this allows for
4 SMPs in the rack.

• Each 4900/5300 SMP has
two Intel® Pentium® III 1.4
GHz CPUs and a 133 MHz
system bus.

 Miscellaneous Platform Details Page F-54

4980 and 5380 Systems
MPP systems represent Teradata’s large system configurations to support the Teradata
Database. The 4980 and 5380 systems were released on July 24, 2003. The 4950/5350
systems were released on December 20, 2002.

Each 4950/5350 SMP utilizes two Intel Pentium IV Xeon 2.8 GHz CPUs and a 400 MHz
FSB (Front Side Bus).

Each 4980/5380 SMP utilizes two Intel Pentium IV Xeon 3.06 GHz CPUs that utilize
Hyper-Threading and a 533 MHz FSB (Front Side Bus).

Characteristics or both systems include:

 Shared memory – standard 2 GB; can be configured with up to 4 GB for Teradata

Database nodes (TPA nodes).

 I/O architecture – PCI, 3 PCI buses

 2 internal 36 GB disks and removable media devices

System features:
 Improved system MTBF - four nodes per cabinet usually means fewer cabinets.

 Expandable In-cabinet upgrade; add nodes to partially populated rack

 TPA nodes running MP-RAS can be integrated with non-TPA nodes running

Windows 2000 in same system.

 Uses existing BYNET 2.0 fabric switches; uses BYNET BIC Release 2.1 interface

cards - increases the PCI I/O throughput of the BICs.

 With the release of the 5380, a new BYNET 16 (BYA16G) switch 1U switch

chassis is also available.

 Server Management features utilizes the CMIC3; 4980/5380 utilizes a new 11 slot

SMC (vs. previous 10 slot SMC) and uses a 2U UPS chassis with integrated IS
(Input Selector).

 AWS capabilities – the Windows 2000 AWS can be used with MP-RAS systems

 AWS can monitor mixed operating systems in a single MPP system

Miscellaneous Platform Details Page F-55

4980 and 5380 Systems

4980 and 5380 systems leverage a common hardware building block – the same
processing node or SMP.

• Nodes are 5U in height; up to 4 nodes can be placed in one rack or cabinet

• 4980/5380 SMPs utilize two Intel Pentium IV Xeon 3.06 GHz CPUs (with Hyper-
Threading) and a 533 MHz FSB

Multiple independent nodes (SMPs) work together as a system through these
technologies.

• Teradata Database - parallel database software

• BYNET - system interconnect

• AWS - single point of operational control

4980 systems scale to 4 nodes; 5380 systems scale to 512 nodes.

TPA nodes running UNIX MP-RAS can be integrated with non-TPA nodes
running Windows 2000 in same system.

 Miscellaneous Platform Details Page F-56

4980/5380 Processing Node
The Processing node is comprised completely of Intel designed components. The older
4950/5350 components consist of an Intel Hudson III chassis kit and an Intel Hodges boxed
board set kit. The 4980/5380 systems utilize the Intel Harlingen boxed board set kit.

A description of key components for a 4980/5380 is:

 Intel Hudson III Node Chassis – chassis used for node

 Intel Harlingen boxed board set (SE7501HG2) with two 3.06 GHz CPUs with

Hyper-Threading enabled and has a 533 MHz FSB.

– 2-Way Pentium 4 Xeon processor 3.06 GHz
– Integrated ATI PCI video
– Integrated Adaptec dual-channel Ultra 160 SCSI
– Integrated dual 10/100Mb Ethernet
– Six 72-bit sockets for 184-pin, 200 MHz, 2.5 V, DDR200 or DDR266

compliant, registered, ECC, SDRAM single-sided or double-sided memory
modules (DIMM)

– Entry server SSI/ATX form factor (12” x 13”)
– 6 full length PCI slots

 Note: Some of the 4950/5350 processing nodes utilized the Hodges baseboard and

some of the newer 4950/5350 processing nodes utilized the Harlingen baseboard.
Regardless of the baseboard used in a 4950/5350, the FSB bus speed is set to 400
MHz.

4980/5380 Memory
The baseboard provides six DIMM sockets supporting three pairs of DIMMs: PC1600
(DDR200) for the 4950/5350, upward compatible with PC2100 (DRR266) for the
4980/5380. Memory is partitioned in three banks and can be implemented with either
single-sided (one row) or double-sided (two rows) DIMMs, allowing for a maximum
memory capacity of 12 GB using 2-GB DIMMs.

PCI Slots
The 4980/5380 has 6 PCI slots.

 Two 64-bit/100 MHz slots
 Three 32-bit/33MHz slots
 One 64-bit/133 MHz slot

Miscellaneous Platform Details Page F-57

4980/5380 Processing Nodes

4980/5380 Processing Node characteristics:

• Two Intel Pentium IV Xeon 3.06 GHz CPUs (Hyper-Threading) and a 533 MHz FSB

• Typical memory is 4 GB for TPA nodes (required for Teradata V2R5.1 and above)

• Two 36 GB internal disk drives and local media devices
– Used to hold Operating System and Teradata software

– Mirrored for redundancy (via software mirroring)

• 6 PCI slots via 3 PCI buses – fast (133 MHz) and wide (64-bit). Adapter examples:
– LSI Quad FC (Fibre Channel) host adapter

– High Performance PQS (PCI Quad SCSI) host adapter

– PCI Bus ESCON Adapter (PBSA) – connects an ESCON channel.

– BIC2MS for 4980; connects to BYNET 4 switches

– BIC4MS for 5380; connects to BYNET 16 or 64 switches

– Networking adapters – e.g., GigaBit Ethernet

• Integrated dual 10/100 Ethernet adapters

Can be added and/or upgraded in the field

 Miscellaneous Platform Details Page F-58

4980/5380 System and Expansion Racks
4980 and 5380 systems use industry standard rack mount architecture and individual chassis
that conform to industry standards. Types of chassis that can be placed in a 4980/5380
cabinet include:

 Processing Node
 BYNET V2 16 Node Switch (BYA16G)
 Server Management
 Uninterruptible Power Supply

The rack is referred to as a 40U rack. A U represents a “unit of vertical measurement” in an
industry standard rack. 1U = 4.445 cm or 1.75” high. Therefore, this cabinet has 40U or 40
x 1.75” (70”) of usable space. The following table lists the height of each chassis:

Chassis Height
Service Management 3U (13.3 cm, 5.25 in)
BYA16G 3U (13.3 cm, 5.25 in)

1U (4.445 cm, 1.75 in.)
4950/5350 or 4980/5380 SMP Node 5U (22.2 cm, 8.75 in.)
UPS – 4950/5350 or 4980/5380 2U (8.9 cm, 3.5 in.)

A Base (or System) rack contains either BYNET 4 (or BYNET 16 switches) and SMP
nodes. An Expansion rack contains SMP nodes, but no BYNET switches.

Depending on the number of nodes required in the configuration:

 1 Node: Use the 4950 or 4980 Single Node cabinet

 2 – 4 Nodes: Use an appropriate combination of 4950/4980 series Single, Two,

Three and Four Nodes cabinet configurations; one base cabinet is required to
provide the BYNET switches. A BYNET switch is always required in multi-node
systems. The Internal BYNET switch (BYA4M) is used in two different nodes.

 5 – 16 Nodes: Use an appropriate combination of 5350/5380 series Base and

Expansion cabinets. One 5350 Base cabinet is required to provide the BYNET
switches.

 17 – 64 Nodes: Use an appropriate combination of 5350/5380 series Expansion

cabinets along with two BYNET 64 switch cabinets. Two BYNET 64 cabinets are
required to provide redundant BYNET fabrics.

 65 – 512 Nodes: Use an appropriate combination of 5350/5380 series Expansion

cabinets along with an appropriate number of BYNET 512 switch cabinets. Two
BYNET 512 cabinets are required to provide redundant BYNET fabrics for every
64 nodes.

Miscellaneous Platform Details Page F-59

4980 Base or
System Rack

5380 Expansion
Rack

NCR

SMC

SMP001-4

BIC2MS BYA4MS

SMP001-5

BIC2MS BYA4MS

SMP001-6

BIC2MS

SMP001-7

BIC2MS

NCR

SMP001-4

BIC4MS

SMC

SMP001-6

BIC4MS

SMP001-7

BIC4MS

BYA16G Switch

BYA16G Switch

5380 Base or
System Rack

SMP001-5

BIC4MS

NCR

SMP001-4

BIC4MS

SMC

SMP001-6

BIC4MS

SMP001-7

BIC4MS

SMP001-5

BIC4MS

4980/5380 System and Expansion Racks

 Miscellaneous Platform Details Page F-60

Example 1: 4980 System
The facing page contains an example of an 4980 system. This example illustrates a
configuration where 4 SMPs are Fibre-channel connected to 2 disk arrays.

This configuration from a Teradata Database perspective will be described in more detail
later in this module.

Miscellaneous Platform Details Page F-61

Example 1: 4980 System

Notes:

• 4980 Cabinet with BYNET 4 switches.

• Each SMP has a BIC adapter to
connect to the BYNET 4 switches.

• 4980 systems can be upgraded to 5380
systems.

– Requires different BYNET
switches

• Existing 4900 SMPs (in 4900 racks)
can be upgraded to 4980 SMPs.

– SMP chassis replacement

• Typical configuration is 1 4980
processor rack with 1 storage rack
using 112 drives (73 GB).

Enterprise Storage
6841-6456

NCR

SMC - 2U

6841-6456

6841-6456

NCR

SMC

SMP001-4

BIC2MS BYA4MS

SMP001-5

BIC2MS BYA4MS

SMP001-6

BIC2MS

SMP001-7

BIC2MS

 Miscellaneous Platform Details Page F-62

Example 2: 5380 System – 8 Nodes
The facing page contains an example configuration of an 8-node 5380 system utilizing the
6841-6456 disk arrays. With the 6841-6456 disk array, a typical configuration is to
configure cliques of 4 nodes sharing 4 disk arrays.

What additional racks (cabinets) are needed to upgrade this system to 16 nodes?

Answer:

 2 additional 5380 “Expansion” racks, each with 4 SMPs
 2 additional 6841-6456 Storage racks

Miscellaneous Platform Details Page F-63

Example 2: 5380 System – 8 Nodes

6841-6456 Disk Arrays

Clique 0
SMP001-4
SMP001-5
SMP001-6
SMP001-7

Clique 1
SMP002-4
SMP002-5
SMP002-6
SMP002-7

SMC

BYNET 16
BYNET 16

SMP

SMP

SMP

SMP

SMC

SMP

SMP

SMP

SMP

Clique 0 Clique 1

Cabinet 1 Cabinet 2

What racks are needed to grow
this system to 16 nodes?

 Miscellaneous Platform Details Page F-64

Example 3: 5380 System – 16 Nodes
The facing page contains an example configuration of a 16-node 5380 system utilizing the
6841-6456 disk arrays. With the 6841-6456 disk array, a typical configuration is to utilize
cliques of 4 nodes sharing 2 disk arrays.

What additional racks (cabinets) are needed to upgrade this system to 32 nodes?

Answer:

 2 BYNET V2 64 Node Switch racks
 4 additional 5380 “Expansion” racks, each with 4 SMPs

 4 additional 6841-6456 Storage racks

The 5380 system can scale up to 16 processing nodes using the BYNET V2 16 switch
(BYA16G). This is a BYNET Release 2 implementation (i.e., 60 MB /sec).

Miscellaneous Platform Details Page F-65

Example 3: 5380 System – 16 Nodes

6841-6456 Disk Arrays

Clique 0
SMP001-4
SMP001-5
SMP001-6
SMP001-7

Clique 1
SMP002-4
SMP002-5
SMP002-6
SMP002-7

Clique 2
SMP003-4
SMP003-5
SMP003-6
SMP003-7

Clique 3
SMP004-4
SMP004-5
SMP004-6
SMP004-7

What racks are needed to
grow this system to 32
nodes?

SMC

BYNET 16
BYNET 16

SMP

SMP

SMP

SMP

SMC

SMP

SMP

SMP

SMP

Clique 0 Clique 1

Cabinet 1 Cabinet 2

SMC

SMP

SMP

SMP

SMP

SMC

SMP

SMP

SMP

SMP

Clique 2 Clique 3

Cabinet 3 Cabinet 4

 Miscellaneous Platform Details Page F-66

Example 4: 5380 System – 32 Nodes
The facing page contains an example configuration of a 32-node 5380 system utilizing the
6841-6456 disk arrays. As mentioned earlier, with the 6841-6456 disk array, a typical
configuration is to configure cliques of 4 nodes sharing 2 disk arrays.

The 5380 system can scale to 64 processing nodes using the BYNET V2 64 Node switch
(BYA64GX) which is housed in a BYNET V2 Switch cabinet. Note that there are two
BYNET V2 Switch cabinets in the illustration on the facing page.

This is also a BYNET Release 2 implementation (i.e., 60 MB /sec).

What types of cabinets are needed to upgrade this system to 64 nodes?

Answer:

 8 additional 5380 “Expansion” racks, each with 4 SMPs
 8 additional 6841-6456 Storage racks

Miscellaneous Platform Details Page F-67

Example 4: 5380 System – 32 Nodes

SMC

SMP

SMP

SMP

SMP

SMC

SMP

SMP

SMP

SMP

SMC

SMP

SMP

SMP

SMP

SMC

SMP

SMP

SMP

SMP

SMC

SMP

SMP

SMP

SMP

SMC

SMP

SMP

SMP

SMP

SMC

SMP

SMP

SMP

SMP

SMC

SMP

SMP

SMP

SMP

SMC

6841-6456

6841-6456

SMC

6841-6456

6841-6456

SMC

6841-6456

6841-6456

SMC

6841-6456

6841-6456

SMC

6841-6456

6841-6456

SMC

6841-6456

6841-6456

SMC

6841-6456

6841-6456

SMC

6841-6456

6841-6456

SMC

BYNET V2
64 Node
Switch

BYA64GX

SMC

BYNET V2
64 Node
Switch

BYA64GX

What additional racks are needed to upgrade this system to 64 nodes?

6841-6456 Disk Arrays

 Miscellaneous Platform Details Page F-68

5400 Processing Node
Each 5400E and 5400H Node Chassis is configured with the two Intel processors running at
3.6 GHz. These latest generation Intel® Xeon™ processors integrate Demand Based
Switching (DBS) with Enhanced Intel SpeedStep® Technology to adjust power and lower the
processor's power demand.

The new Intel® Extended Memory 64 Technology (Intel® EM64T), enables 64-bit memory
addressability. The new processor contains enhancements to Intel Hyper-Threading
Technology and expanded Streaming SIMD Extensions 3 (SSE3) Instructions to improve
thread synchronization for better system responsiveness.

5400E/5400H Memory
Each 5400E and 5400H node includes 4 GB of memory bundled as an every unit item. The
node contains six DIMM memory slots supporting DDR-2 400 MHz memory or DDR
266/333 MHz memory.

The 5400E and 5400H node chassis are shipped fully populated with memory and therefore
do not require memory upgrade. Non-Teradata Windows nodes may be ordered with either
4 GB or 6 GB of memory.

Drives and Local Media Devices
The node chassis configuration will support:

 Up to a maximum of 4 hot-swappable SCSI hard drives ; comes with standard two
36 GB disk drives

 A slim-line CDROM drive (every unit item)
 Flex drive (every unit item)
 Tape Drive (optional)

PCI Slots

The 4980/5380 has 6 PCI slots. The slots support fast (133 MHz) and wide (64-bit) PCI
cards. SCSI, Token Ring and FDDI adapters are not available for the 5400 platform.

Two Fibre Channel Storage adapters are available with the 5400, a quad port adapter for
connection to Disk Arrays and Tape subsystems, and a dual port adapter for connection to
Tape subsystems only.

Quad Fibre Channel Adapter: The quad Fibre Channel Storage Adapter provides
connectivity to Enterprise Storage Quad Modular Fibre Channel Arrays, EMC DMX
External Disk Storage Subsystems, and Tape subsystems. The quad Fibre Channel adapter
offers four 2 Gb channels for connectivity.

Dual Fibre Channel Adapter: The dual Fibre Channel Storage Adapter provides
connectivity to Tape Subsystems for MP-RAS and Windows Server 2003. The dual Fibre
Channel adapter offers two 2 Gb channels for connectivity.

Miscellaneous Platform Details Page F-69

5400 Processing Nodes

5400 Processing Node characteristics:

– Two Intel Pentium IV Xeon 3.6 GHz CPUs (Hyper-Threading) and a 800 MHz FSB

– Intel “Jarrell” Baseboard

– 4 GB Memory for TPA nodes

– Two 36 GB internal disk drives and local media devices
– Used to hold Operating System and Teradata software

– Mirrored for redundancy (via software mirroring)

– Integrated dual 10/100 Ethernet adapters for Server Management

– 6 PCI slots via 3 PCI buses – fast (133 MHz) and wide (64-bit). Adapter examples:
– LSI Quad FC (Fibre Channel) host adapter

– PCI Bus ESCON Adapter (PBSA) – connects an ESCON channel.

– BIC2QC for 5400E; connects to BYNET 4 switches

– BIC2Q for 5400H; connects to BYNET 16 or 64 switches

– Networking adapters – e.g., GigaBit Ethernet

– Can be added and/or upgraded in the field.

 Miscellaneous Platform Details Page F-70

5400/5450 Systems
The 5400/5450 Platform supports the Teradata Warehouse solution. There are two models
of the 5400/5450 Platform, the 5400/5450E and the 5400/5450H.

The major difference between a 5400 and a 5450 node is the speed of the processing node:

 5400 – two Intel Xeon 3.6 GHz CPUs each with 1 MB of cache memory
 5450 – two Intel Xeon 3.8 GHz CPUs each with 2 MB of cache memory

54xxE Systems
The defining characteristic of the 5400/5450E is its node configuration which ranges from 1
to 4 nodes. These four nodes can be Teradata processing (i.e., TPA or Trusted Parallel
Application) nodes and / or non-Teradata (i.e., non-TPA) nodes.

The 5400/5450E cabinet can not be reconfigured to expand to more than four nodes. This is
because 5400/5450E cabinets are pre-wired with structured cabling to support only 4 nodes.

The 5400/5450E cabinet also contains components which support Server Management,
BYNET Interconnect and Power Management. The 5400/5450E resides in a single industry
standard rack, which has cabling to support up to four nodes.

54xxH Systems
The 5400/5450H models are targeted to the full-scale large data warehouse. The
5400/5450H models offer expansion capabilities from 1 to 1024 nodes of TPA and non-TPA
nodes. The power of the Teradata database combined with the throughput, power and
performance of both the Intel® Xeon™ processor and BYNET V3 technologies offers
unsurpassed performance and capacity within the scalable data warehouse.

The 5400/5450H Platform is housed in one or more industry standard racks which can
support up to 10 nodes (TPA and / or non-TPA nodes). When more than 16 TPA nodes are
present, BYNET Switch Cabinets are required to support dual BYNET node interconnects
(called BYNET fabrics).

Optionally, the 5400/5450H can support Large Cliques and/or Hot Standby Nodes. Large
Cliques allow for up to eight nodes to be configured in a clique (standard cliques are four
nodes) thus reducing the amount of degradation to less than 15% in the event of a node
failure. Large Clique configurations require Fibre Channel Switches to reside in the 54xxH
rack cabinet. These racks are frequently referred to as 54xxH FC cabinets or racks.

A Hot Standby Node (HSN) prevents system degradation by providing a “standby” node in
the event of a node failure. With standard sized cliques, one HSN is needed for every three
TPA nodes (referred to as a “3+1” configuration). When HSN is combined with Large
Cliques, only one HSN is needed for every seven TPA nodes (referred to as a “7+1”
configuration).

Miscellaneous Platform Details Page F-71

5400/5450 Systems

There are basically two 5400/5450 systems.
• 5400 and 5450E systems scale up to 4 nodes – uses a BYNET 4 V2.1 switch.
• 5400 and 5450H systems scale up to 1024 nodes.

Key features of the 54xx systems include:

• Processing nodes that are 2U in size
– 5400 nodes – two Intel® Xeon® 3.6 GHz CPUs (each with 1 MB cache)
– 5450 nodes – two Intel® Xeon® 3.8 GHz CPUs (each with 2 MB cache)
– These nodes support both 32-bit and 64-bit operating systems.

• New Cabinet design (more modern design) – allows up to 10 nodes in rack
– Improved cooling and integrated cabling (cables bundled in a harness)

• BYNET Version 3
– Faster interconnect – 90 MB/sec (versus 60 MB/sec) per BYNET
– Support for up to 1024 nodes; optical connection beyond 512 nodes

• Improved 3rd Generation Server Management (SM3G)
– Ethernet-based server management
– SM Chassis (CMIC) is a standard processing node – fewer required in system

 Miscellaneous Platform Details Page F-72

5400/5450 Cabinets
The facing page illustrates the 54xx system family.

The 54xx system platforms also use industry standard rack mount architecture. The newly
designed 54xx rack provides for better air flow and cooling. Similar to previous rack-based
systems, this rack contains individual subsystem chassis that are housed in standard rack
frames. Subsystems are self-contained, and their configurations — either internal or within
a system — are redundant. The design ensures overall system reliability, enhances its
serviceability, and enables time and cost efficient upgrades.

The Server Management (SM) chassis is redesigned with the 54xx and is located above the
UPS chassis modules, instead of at the top of the cabinet.

The key chassis in the rack/cabinet is the SMP chassis. The SMP node chassis is 2U in
height. Each 5400 SMP has two Intel Pentium IV Xeon 3.6 GHz CPUs that utilize
Hyper-Threading and have 1 MB cache. Each 5450 SMP has two Intel Pentium IV
Xeon 3.8 GHz CPUs that utilize Hyper-Threading and have 2 MB cache. Each node is also
configured with 4 GB of memory.

The 54xxE rack-based cabinet houses up to 4 SMPs, BYNET V2.1, and has 3 UPS chassis.

The 54xxH rack-based cabinet houses up to 10 SMPs, optionally BYNET V3.0 switches,
and has 5 UPS chassis. To accommodate the increased node density of the 54xxH, the
number of UPS chassis modules per rack is five.

The 54xxH FC (Fibre Channel) or LC (Large Clique) rack-based cabinet houses up to 10
SMPs, optionally BYNET V3.0 switches, and has 5 UPS chassis. Usually, only 8 of the 10
nodes can be TPA nodes.

The following table lists the height of each chassis:

Chassis Height
Service Management Chassis (3rd generation) 2U (8.9 cm, 3.5 in)
BYA32G-A and BYA32G-B 1U (4.5 cm, 1.75 in)
SMP – 5400/5450 2U (8.9 cm, 3.5 in)
UPS 2U (8.9 cm, 3.5 in)

SM3G – Server Management 3rd Generation

Miscellaneous Platform Details Page F-73

5400/5450 Cabinets

1st E'net Switch – P
1st E'net Switch – S

1U FC Switch
1U FC Switch
1U FC Switch
1U FC Switch

1U BYNET Switch - A
1U BYNET Switch - B

2U Node

2U Node

2U Node

2U Node

2U Node

2U Node

2U Node

2U Node

2U Node - NOTPA

2U Node - NOTPA

Server Mgmt Node

2U UPS

2U UPS

2U UPS

2U UPS

2U UPS

54xxH LC

1st E'net Switch – P
1st E'net Switch – S

4U Unused

1U BYNET Switch - A
1U BYNET Switch - B

2U Node

2U Node

2U Node

2U Node

2U Node

2U Node

2U Node

2U Node

2U Node

2U Node

Server Mgmt Node

2U UPS

2U UPS

2U UPS

2U UPS

2U UPS

54xxH

1st E'net Switch – P
1st E'net Switch – S

18U Unused

2U Node

2U Node

2U Node

2U Node

Server Mgmt Node

4U Unused

2U UPS

2U UPS

2U UPS

54xxE

Terminology:

System Cabinet –
includes BYNET
switches

Expansion Cabinet –
doesn't include
BYNET switches

 Miscellaneous Platform Details Page F-74

Teradata 555x Systems
The 555x processing nodes utilize the quad-core Intel CPUs to access Teradata database.

Teradata 5500 Systems
The predecessor to the 555x was the 5500 system. The three 5500 models are:

 5500E – one or two nodes with one or two Intel Xeon dual-core 2.66 GHz CPUs
 5500C – one Intel Xeon dual-core 2.66 GHz CPU with 2 MB of cache memory
 5500H – two Intel Xeon dual-core 2.66 GHz CPUs with 4 MB of cache memory

The 5500E System is a special system and cabinet configuration used for entry-level data
warehousing environments. The 5500E cabinet can not be reconfigured to expand to more
than two nodes. This is because 5500E cabinets are pre-wired with structured cabling to
support only 2 nodes. Therefore, the rack for the 5500E is not upgradeable and does not
have cable harnesses for additional nodes. This cabinet is a full-height rack and only has
32Amps of power as compared to 50 Amps of power for 5500C and 5500H cabinets. The
5500E cabinet also does not have traditional BYNET switches. This special implementation
of the “BYNET” interconnect uses a dedicated Ethernet switch for continuous connectivity
between the nodes and no HSN (Hot Spare Node) is available.

5550H and 5555 C/H Systems
These models are targeted to the full-scale large data warehouse. These models offer
expansion capabilities from 1 to 1024 nodes of TPA and non-TPA nodes. The power of the
Teradata database combined with the throughput, power and performance of both the Intel®
Xeon™ quad-core processors and BYNET V3 technologies offers unsurpassed performance
and capacity within the scalable data warehouse.

The 5550H and 5555 C/H platforms are housed in one or more industry standard racks
which can support up to 9 nodes (or a combination (up to 9) of TPA, channel, and/or
managed server nodes). When more than 16 TPA or channel nodes are present, BYNET
Switch Cabinets are required to support dual BYNET node interconnects (called BYNET
fabrics).

Typically the 5550H and 5555 C/H platforms are configured with Hot Standby Nodes. Key
characteristics of the 5550 are listed on the facing page. These nodes may have 16 GB of
memory, but commonly are configured with 32 GB of memory. 32 GB is recommended for
customers who meet any of the following criteria:

 Current customer has a I/O limited configuration and needs more bandwidth in
their 5550 configuration

 Greater than a 500 AMP system or use large capacity drives - i.e., 300 GB drives
 Greater than 108 disks per node
 Customer who has less than 78 MB FSG cache and is moving to the 5550
 For a customer who may have had to lower their FSG cache below 65% and is

moving to the 5550

Miscellaneous Platform Details Page F-75

Teradata 555x Systems

Features of the 555x nodes include:

• Processing node utilizes quad-core CPUs.

– Utilizes two Intel® Xeon® 2.33 GHz quad-core CPUs
• 5550 nodes have 8 MB L2 cache per CPU; 5555 nodes have 12 MB L2 cache per CPU

– Linux nodes start with 16 GB of memory; can be upgraded to 32 GB.

– Linux (64 bit) is only offered for new systems; requires Teradata V26.2 or higher.
• MP-RAS is only available for co-existence and existing system expansions.

• Windows 2003 is not supported on 555x nodes.

– 5500 server nodes are upgradeable to 555x server nodes

• Available systems

– 5550H or 5555H – utilizes BYNET v3 or v4; supports up to 1024/4096 nodes.

– 5555C – only has 1 quad-core CPU; may be used for coexistence
• Note: There is no 5550C model

• Largest recommended clique size is 3 nodes + 1 Hot Standby Node (HSN)

– Typical LSI Disk Array is model 6843-4000 with 146 GB or 300 GB drives

– Typical design center configuration is 3+1 nodes with 5 arrays (2½ racks)

– Large cliques are not available with 555x systems.

 Miscellaneous Platform Details Page F-76

Example of 5500C Coexistence with a 5380
The example on the facing page shows the typical AMP and Disk configurations for a
5500C coexistence with a 5380.

Miscellaneous Platform Details Page F-77

Example of 5500C Coexistence with 5380

5380 (4 nodes/clique)

7 AMPs / Node
28 AMPs / Clique

4 Nodes – 56 Disks
14 Disks per Node

Each Vdisk – 2 Disks (RAID 1)
Each Vdisk – 73 GB*

Clique – 28 AMPs x 73 GB = 2044 GB*

5380 and Disk Storage (Raid 1)

56
Disks

73 GB

Node 4

Node 3

Node 2

Node 1

5500C and 6843-2000 (Raid 1)

Node 4

Node 3

Node 2

Node 1

5500C (4 nodes/clique)

14 AMPs / Node
56 AMPs / Clique

4 Nodes – 112 Disks
28 Disks per Node

Each Vdisk – 2 Disks (RAID 1)
Each Vdisk – 73 GB*

Clique – 56 AMPs x 73 GB = 4088 GB*

* Actual
MaxPerm
space will
be less.

112
Disks

73 GB

 Miscellaneous Platform Details Page F-78

5500 Teradata Configuration Examples
The examples on the facing page show a typical AMP and Disk configurations for 5500
cliques.

Miscellaneous Platform Details Page F-79

5500 Teradata Configuration Examples

* Actual
MaxPerm
space will
be less.

5500H and 6843-2000 (Raid 1) with HSN

5500H (4 nodes/clique) – Linux

72 Disks per Node
3 Nodes – 216 Disks

18 AMPs / Node
54 AMPs / Clique

Each Vdisk – 4 Disks (RAID 1)
Each Vdisk – 146 GB*

Clique – 54 AMPs x 146 GB = 7,884 GB*

HSN

Node 3

Node 2

Node 1

72
Disks

73 GB

72
Disks

73 GB

72
Disks

73 GB

5500H and 6843-2000 (Raid 1)

5500H (4 nodes/clique) – Linux

72 Disks per Node
4 Nodes – 288 Disks

18 AMPs / Node
72 AMPs / Clique

Each Vdisk – 4 Disks (RAID 1)
Each Vdisk – 146 GB*

Clique – 72 AMPs x 146 GB = 10,512 GB*

Node 4

Node 3

Node 2

Node 1

96
Disks

73 GB

96
Disks

73 GB

96
Disks

73 GB

 Miscellaneous Platform Details Page F-80

5555H Example
The facing page contains an example of a 4-node clique sharing five 6843-4000 disk arrays.
Three nodes will be TPA nodes and 1 node will be a hot standby node.

Each 5555 node has 3 Quad Fibre Channel (4 Gbit/sec.) Host Bus Adapters (HBA). These
Fibre Channel cables are point-to-point connections.

Note the distribution of AMPs among the 5555 nodes. The typical design center
configuration is to configure 25 AMPs per node effectively utilizing 100 disks per node.

Miscellaneous Platform Details Page F-81

5555H Example

3+1 node clique sharing 300 drives; 25 AMPs/node; Linux System

60 disks 60 disks 60 disks 60 disks 60 disks

0 3 72…….

SMP001-9 AMPs

1 4 73…….

SMP001-10 AMPs

2 5 74…….

SMP001-11 AMPs SMP001-12 AMPs

Hot Standby Node

Vdisk 0

Pdisk 0

Pdisk 1

146 GB

MaxPerm = 263 GB*

* Actual space is app. 90%.

AMP 0

146 GB

146 GB

146 GB

 Miscellaneous Platform Details Page F-82

5555H System – 8 (6+2) Nodes
The facing page contains an example configuration of an 8-node 5555H system utilizing the
6843-4000 disk arrays. This example illustrates two 4-node cliques. Each clique has three
TPA nodes and 1 hot standby node.

What additional racks (cabinets) are needed to upgrade this system to 16 (12+4) nodes?

Answer:

 1 additional 5555H “Expansion” rack with 8 (6+2) nodes
 5 additional 6843-4000 Storage racks

Miscellaneous Platform Details Page F-83

5555H System – 8 (6+2) Nodes

Clique 0
HSN

SMP001-11
SMP001-10
SMP001-9

Clique 1
HSN

SMP001-15
SMP001-14
SMP001-13

Storage:

25 AMPs/node
100 Disks/node

75 AMPs/clique
300 Disks/clique

Note: Base Cabinet – contains BYNET switches
Expansion Cabinet – no BYNET switches

BIC

BIC

SMP001-16

SMP001-15

SMP001-14

SMP001-13

SMP001-12

SMP001-11

SMP001-10

SMP001-9

BIC

BIC

BIC

BIC

BIC

BIC

HSN

HSN

Array
Controllers

120 Disks

Array
Controllers

Array
Controllers

120 Disks

Array
Controllers

Array
Controllers

120 Disks

Array
Controllers

Array
Controllers

120 Disks

Array
Controllers

Array
Controllers

120 Disks

Array
Controllers

Collective 1

BYNET
BYNET

HSN
1-15
1-14
1-13
HSN
1-11
1-10
1-9

SM (CMIC)

 Miscellaneous Platform Details Page F-84

5555H System – 16 (12+4) Nodes
The facing page contains an example configuration of a 16-node 5555 system utilizing the
6843-4000 disk arrays. Each clique has three TPA nodes and 1 hot standby node.

This will be a BYNET Release 3 implementation (i.e., 375 MB /sec per node).

What types of cabinets are needed to upgrade this system to 32 (24 + 8) nodes?

Answer:

 2 BYNET switch racks
 2 additional 5555H “Expansion” racks, each with 8 (6+2) nodes
 10 additional 6843-4000 Storage racks

Miscellaneous Platform Details Page F-85

5555H System – 16 (12+4) Nodes

Clique 0
HSN

SMP001-11
SMP001-10
SMP001-9

Clique 1
HSN

SMP001-15
SMP001-14
SMP001-13 Array

Controllers

120 Disks

Array
Controllers

Array
Controllers

120 Disks

Array
Controllers

Array
Controllers

120 Disks

Array
Controllers

Array
Controllers

120 Disks

Array
Controllers

Collective 1

BYNET
BYNET

HSN
1-15
1-14
1-13
HSN
1-11
1-10
1- 9

SM (CMIC)

Array
Controllers

120 Disks

Array
Controllers

Clique 2
HSN

SMP002-11
SMP002-10
SMP002-9

Clique 3
HSN

SMP002-15
SMP002-14
SMP002-13 Array

Controllers

120 Disks

Array
Controllers

Array
Controllers

120 Disks

Array
Controllers

Array
Controllers

120 Disks

Array
Controllers

Array
Controllers

120 Disks

Array
Controllers

Collective 2

HSN
2-15
2-14
2-13
HSN
2-11
2-10
2-9

SM (CMIC)

Array
Controllers

120 Disks

Array
Controllers

 Miscellaneous Platform Details Page F-86

5555H System – 32 (24+8) Nodes
The facing page contains an example configuration of a 32-node 5555 system utilizing the
6843-4000 disk arrays. Each clique has three TPA nodes and 1 hot standby node. Each
clique will share 5 disk arrays.

The Teradata 5555H system can scale to 64 processing nodes using the BYNET V3 64 Node
switch (BYA64GX) which is housed in a BYNET V3 Switch cabinet. Note that there are
two BYNET V3 Switch cabinets in the illustration on the facing page.

This will be a BYNET Release 3 implementation (i.e., 375 MB /sec per node).

What types of cabinets are needed to upgrade this system to 64 nodes?

Answer:

 4 additional 5555H “Expansion” racks, each with 8 nodes
 20 additional 6843-4000 Storage racks

Miscellaneous Platform Details Page F-87

5555H System – 32 (24+8) Nodes

BYNET V3
64 Node
Switch

BYA64GX

BYNET V3
64 Node
Switch

BYA64GX

Collective 1

5 Storage
Cabinets

…

Array

Array Array

Array

Collective 2

5 Storage
Cabinets

…

Array

Array Array

Array

Collective 3

5 Storage
Cabinets

…

Array

Array Array

Array

Collective 4

5 Storage
Cabinets

…

Array

Array Array

Array

 Miscellaneous Platform Details Page F-88

Teradata 5600 Systems
The 5600 processing nodes are the newest release of Teradata Servers which supports the
Teradata Warehouse solution. These nodes utilize the Intel Nehalem™ quad-core CPUs
with hyper-threading enabled.

5600C and 5600H Systems
These models are targeted to the full-scale large data warehouse. These models offer
expansion capabilities from 1 to 4096 nodes of the types TPA, HSN, non-TPA nodes,
Channel, and TMS. The power of the Teradata database combined with the throughput,
power and performance of both the Intel® Nehalem™ quad-core processors with hyper-
threading and BYNET v4 technologies offers unsurpassed performance and capacity within
the scalable data warehouse.

The 5600C and 5600H platforms are housed in one or more industry standard racks which
can support up to 9 nodes (or a combination (up to 9) of TPA, channel, and/or managed
server nodes). When more than 16 TPA are present, BYNET Switch Cabinets are required
to support dual BYNET node interconnects (called BYNET fabrics).

 Typically, the 5600C and 5600H platforms are configured with Hot Standby
Nodes. Key characteristics of the 5600 are listed on the facing page. 5600H nodes
start with 48 GB of memory and may have 96 GB of memory.

5600 Node Details

 5600H Node (dual CPUs) – Tylersburg Two Sockets @ 2.66 GHZ -Urbana
Baseboard / Nehalem – Quad Core CPU w/ 12MB L2 Cache and HT enabled.

– Memory - up 96 GB w/ 12GB D/R DIMMS

 5600C Node (single CPU) – Tylersburg Two Sockets @ 2.66 GHZ -Urbana

Baseboard / Nehalem – Quad Core CPU w/ 12MB L2 Cache and HT enabled

– Memory - up to 24 GB Max – 4GB D/R DIMMS and 48 GB w/ 8GB D/R
DIMMS

 5600 Channel Server (single CPU) –Tylersburg Two Sockets @ 2.66 GHZ -Urbana

Baseboard / Nehalem – Quad Core CPU w/ 12MB L2 Cache and HT enabled

– Memory - up to 24 GB Max – 4GB D/R DIMMS

 TMS Nodes - Dell Node R710 – new 2U (dual CPU) Dell node based on Nehalem
processors – (2.4 GHZ CPU)

– Memory - up to 72 GB w/ 4GB DIMMS and up to 144GB w/ 8GB DIMMS

Miscellaneous Platform Details Page F-89

Teradata 5600 Systems

Features of the 5600 node include:

• Processing node utilizes Intel quad-core Nehalem CPUs with hyper-threading enabled.

– Utilizes one or two Intel® 2.66 GHz quad-core CPUs
• 5600C nodes utilize one quad-core CPU; may be used for coexistence

• 5600H nodes utilize two quad-core CPUs

– 5600H nodes start with 48 GB of memory; can be upgraded to 96 GB.
• 5600C nodes start with 24 GB of memory

– Linux operating system: SLES 10; requires Teradata V12.0 or higher.

– 5600C server nodes are upgradeable to 5600H server nodes

• Available 5600 systems

– 5600C or 5600H – utilize BYNET v4 with support up to 1024 nodes.

• Largest recommended clique size is 2 TPA + 1 HSN

– Typical LSI Disk Array is model 6844 with 300 or 450 GB drives

– Typical design center configuration (LSI) is 2+1 nodes with 3 arrays (3 racks)

– Large cliques are not available with 5600 systems.

 Miscellaneous Platform Details Page F-90

Examples of Teradata 555x and 56xx Cabinets
The facing page illustrates various Teradata 555x and 56xx cabinets.

55xx systems also use the 54xx industry standard rack mount cabinet which provide for
excellent air flow and cooling. Similar to previous rack-based systems, this rack contains
individual subsystem chassis that are housed in standard rack frames. Subsystems are self-
contained, and their configurations — either internal or within a system — are redundant.
The design ensures overall system reliability, enhances its serviceability, and enables time
and cost efficient upgrades.

The 56xx cabinet is similar to the 55xx cabinet, but is approximately 4” deeper.

The key chassis in the rack/cabinet is the node chassis. The SMP node chassis is 2U in
height. The 5500 SMP chassis is the same height as the 54xx chassis, but is approximately 2
inches deeper. The baseboards are different between the 54xx and 5500 systems.

Important Note: A Hot Standby Node is strongly recommended with 555x and 56xx
cliques. For 555x systems, maximum of three TPA nodes with one HSN node. For
5600 systems, maximum of two TPA nodes with one HSN node.

Large Cliques (older configurations)
Teradata allows clique sizes up to 8 nodes via a set of Fiber Channel switches between the
nodes and the disk arrays. Large clique configurations were common with the 54xx systems
and available (and not as common) with 55xx systems.

The 5500H LC (Large Clique) rack-based cabinet houses up to 9 SMPs, optionally BYNET
V3 switches, and has 5 UPS chassis. Only 8 of the SMP nodes can be TPA nodes. If a HSN
(Hot Standby Node) is configured, then the maximum number of TPA nodes is 7.

Optionally, the 5500 can support Large Cliques and/or Hot Standby Nodes. Large Cliques
allow for up to eight nodes to be configured in a clique (standard cliques are four nodes)
thus reducing the amount of degradation to less than 15% in the event of a node failure.
Large Clique configurations require Fibre Channel Switches to reside in the 54xxH rack
cabinet. These racks are frequently referred to as 5500C or 5500H LC (Large Clique)
cabinets or racks. Large Cliques are available with the 5500, but are not recommended.

A Hot Standby Node (HSN) prevents system degradation by providing a “standby” node in
the event of a node failure. With standard sized cliques, one HSN is needed for every three
TPA nodes (referred to as a “3+1” configuration).

Important Note: The Large Clique configuration is NOT available with the 5550H,
5555C, 5555H, 56xxC, and 56xxH systems.

Miscellaneous Platform Details Page F-91

Examples of Teradata 555x and 56xx Cabinets

5600H

1st E'net Switch – P
1st E'net Switch – S

4U Unused

1U BYA32S – 1
1U BYA32S – 0

HSN

8 core TPA

8 core TPA

HSN

8 core TPA

8 core TPA

HSN

8 core TPA

8 core TPA

SM (CMIC)

2U UPS

2U UPS

2U UPS

2U UPS

2U UPS

5600C

1st E'net Switch – P
1st E'net Switch – S

4U Unused

1U BYA32S – 1
1U BYA32S – 0

HSN

4 core TPA

4 core TPA

HSN

4 core TPA

4 core TPA

HSN

4 core TPA

4 core TPA

SM (CMIC)

2U UPS

2U UPS

2U UPS

2U UPS

2U UPS

5550H/5555H

1st E'net Switch – P
1st E'net Switch – S

4U Unused

1U BYA32S – 1
1U BYA32S – 0

HSN

8 core TPA

8 core TPA

8 core TPA

HSN

8 core TPA

8 core TPA

8 core TPA

Non-TPA or TMS

SM (CMIC)

2U UPS

2U UPS

2U UPS

2U UPS

2U UPS

3+1
Clique

5650H

1st E'net Switch – P
1st E'net Switch – S

4U Unused

1U BYA32S – 1
1U BYA32S – 0

Dell TMS Node

Dell TMS Node

Dell TMS Node

HSN

12 core TPA

12 core TPA

HSN

12 core TPA

12 core TPA

SM (CMIC)

2U UPS

2U UPS

2U UPS

2U UPS

2U UPS

2+1
Clique

Optional
TMS Nodes

 Miscellaneous Platform Details Page F-92

5600H and 6844 Disk Arrays
The facing page contains an example of a 3-node clique sharing three 6844 disk arrays.
Two nodes will be TPA nodes and 1 node will be a hot standby node.

Each 5600 node has 3 Quad Fibre Channel (4 Gbit/sec.) Host Bus Adapters (HBA). These
Fibre Channel cables are point-to-point connections.

Note the distribution of AMPs among the 5600 nodes. The typical design center
configuration is to configure 40 AMPs per node effectively utilizing 120 disks per node.

Miscellaneous Platform Details Page F-93

5600H and 6844 Disk Arrays

2+1 node clique sharing 320 drives; 40 AMPs/node; Linux System

Vdisk 0

Pdisk 0

Pdisk 1

300 GB

MaxPerm = 540 GB*

* Actual space is app. 90%.

AMP 0

300 GB

300 GB

300 GB

108 disks 108 disks 104 disks

0 2 78…….

SMP001-8 AMPs

1 3 79…….

SMP001-9 AMPs SMP001-10 AMPs

Hot Standby Node

: : : : : : : : : : : :

 Miscellaneous Platform Details Page F-94

5600H System – 9 (6+3) Nodes
The facing page contains an example configuration of a 9-node 5600H system utilizing the
6844 disk arrays. This example illustrates three 3-node (2+1) cliques. Each clique has two
TPA nodes and 1 hot standby node.

This will be a BYNET Release 4 implementation (i.e., 960 MB /sec per node).

What additional racks (cabinets) are needed to upgrade this system to 18 (12+6) nodes?

Answer:

 1 additional 5600H “Expansion” rack with 9 (6+3) nodes
 9 additional 6844 Storage racks

Miscellaneous Platform Details Page F-95

5600H System – 9 (6+3) Nodes

Clique 0
HSN

SMP005-9
SMP005-8

Clique 1
HSN

SMP005-12
SMP005-11

Storage:

40 AMPs/node
160 Disks/node

80 AMPs/clique
320 Disks/clique

BIC

SMP005-16

SMP005-15

SMP005-14

SMP005-13

SMP005-12

SMP005-11

SMP005-10

SMP005-9

SMP005-8

BIC

BIC

BIC

BIC

HSN

Clique 2
HSN

SMP005-15
SMP005-14

BIC

BIC

BIC

BIC HSN

HSN Collective 5

BYNET
BYNET

HSN
5-15
5-14
HSN
5-12
5-11
HSN
5-9
5-8

SM (CMIC)

Note: Each array will have an
additional 4 Global Hot Spare Drives.

108 Disks

Controllers

108 Disks

Controllers

104 Disks

Controllers

108 Disks

Controllers

108 Disks

Controllers

104 Disks

Controllers

108 Disks

Controllers

108 Disks

Controllers

104 Disks

Controllers

 Miscellaneous Platform Details Page F-96

Teradata 5650 Systems
The 5650 processing nodes are the newest release of Teradata Servers which supports the
Teradata Warehouse solution. These nodes utilize the Intel Westmere™ six-core CPUs with
hyper-threading enabled.

5650C and 5650H Systems
These models are targeted to the full-scale large data warehouse. These models offer
expansion capabilities from 1 to 4096 nodes of the types TPA, HSN, non-TPA nodes,
Channel, and TMS. The power of the Teradata database combined with the throughput,
power and performance of both the Intel® Westmere™ six-core processors with hyper-
threading and BYNET v4 technologies offers unsurpassed performance and capacity within
the scalable data warehouse.

The 5650C and 5650H platforms are housed in one or more industry standard racks which
can support up to 9 nodes (or a combination (up to 9) of TPA, channel, and/or managed
server nodes). When more than 16 TPA are present, BYNET Switch Cabinets are required
to support dual BYNET node interconnects (called BYNET fabrics).

 Typically, the 5650C and 5650H platforms are configured with Hot Standby
Nodes. Key characteristics of the 5650 are listed on the facing page. 5650C nodes
typically have 48 GB of memory and 5600H nodes have 96 GB of memory.

5650 Node Details

 5650H Node : Intel Urbana Node - Tylersburg chipset, Two Sockets , w/
Westmere CPU (Six Core) @ 2.93GHZ - HT Enabled

– Memory Size: TPA Node: 96 GB max w/ 1333MHZ DDR3 8GB DIMMS
– Two 450 GB mirrored disk drives plus one 300 GB disk drive for dumps

 5650C Node : Intel Urbana Node - Tylersburg chipset, One Socket , w/ Westmere

CPU (Six Core) @ 2.93GHZ - HT Enabled

– Memory Size: TPA Node: 48 GB max w/ 1333MHZ DDR3 8GB DIMMS

 5600 Channel Server (single CPU) –Tylersburg Two Sockets @ 2.66 GHZ -Urbana
Baseboard / Nehalem – Quad Core CPU w/ 12MB L2 Cache and HT enabled

– Memory - up to 24 GB Max – 4GB D/R DIMMS

 TMS Nodes - Dell Node R710 – new 2U (dual CPU) Dell node based on Nehalem
processors – (2.4 GHZ CPU)

– Memory - up to 72 GB w/ 4GB DIMMS and up to 144GB w/ 8GB DIMMS

Miscellaneous Platform Details Page F-97

Teradata 5650 Systems

Features of the 5650 node include:

• Processing node utilizes Intel six-core Westmere CPUs with hyper-threading enabled.

– Utilizes one or two Intel® 2.93 GHz six-core CPUs
• 5650C nodes utilize 1 socket with one six-core CPU; may be used for coexistence

• 5650H nodes utilize 2 sockets with two six-core CPUs

– 5650H nodes start with 96 GB of memory
• 5650C nodes start with 48 GB of memory

– Linux operating system: SLES 10; requires Teradata 12.00.03.003 or Teradata
13.00.00.19 or higher. PDE support for > 16 logical processors is needed.

– 5650C server nodes are upgradeable to 5650H server nodes

• Available 5650 systems

– 5650C or 5650H – utilize BYNET v4 with support up to 4096 nodes.

• Largest recommended clique size is 2 TPA + 1 HSN

– LSI Disk Array is model 6844 with 300, 450, or 600 GB drives

– Typical design center configuration (LSI) is 2+1 nodes with 3 arrays (3 racks)

– Typical node configuration is 47 AMPs with 4 disks/AMP

 Miscellaneous Platform Details Page F-98

Example of Teradata 5650 Cabinets
The facing page illustrates various Teradata 5650 cabinet configurations.

56xx and later systems utilize an industry standard rack mount cabinet which provide for
excellent air flow and cooling. Similar to previous rack-based systems, this rack contains
individual subsystem chassis that are housed in standard rack frames. Subsystems are self-
contained, and their configurations — either internal or within a system — are redundant.
The design ensures overall system reliability, enhances its serviceability, and enables time
and cost efficient upgrades. The 56xx cabinet is similar to the 55xx cabinet, but is
approximately 4” deeper.

The key chassis in the rack/cabinet is the node chassis. The SMP node chassis is 2U in
height.

A Hot Standby Node is required with each 5650 clique.

 For 56xx systems, a clique has a maximum of two TPA nodes with one HSN node.

Large Cliques (older configurations)
Teradata allows clique sizes up to 8 nodes via a set of Fiber Channel switches between the
nodes and the disk arrays. Large clique configurations were common with the 54xx systems
and available (and not as common) with 55xx systems.

The 5500H LC (Large Clique) rack-based cabinet houses up to 9 SMPs, optionally BYNET
V3 switches, and has 5 UPS chassis. Only 8 of the SMP nodes can be TPA nodes. If a HSN
(Hot Standby Node) is configured, then the maximum number of TPA nodes is 7.

Optionally, the 5500 can support Large Cliques and/or Hot Standby Nodes. Large Cliques
allow for up to eight nodes to be configured in a clique (standard cliques are four nodes)
thus reducing the amount of degradation to less than 15% in the event of a node failure.
Large Clique configurations require Fibre Channel Switches to reside in the 54xxH rack
cabinet. These racks are frequently referred to as 5500C or 5500H LC (Large Clique)
cabinets or racks. Large Cliques are available with the 5500, but are not recommended.

A Hot Standby Node (HSN) prevents system degradation by providing a “standby” node in
the event of a node failure. With standard sized cliques, one HSN is needed for every three
TPA nodes (referred to as a “3+1” configuration).

Note: The Large Clique configuration is NOT available with the 5550H, and later
systems.

Miscellaneous Platform Details Page F-99

Example of Teradata 5650 Cabinets

2+1
Clique

5650H

Primary SM Switch
Secondary SM Switch

4U Unused

BYA32S – 1
BYA32S – 0

HSN

TPA Node

TPA Node

HSN

TPA Node

TPA Node

HSN

TPA Node

TPA Node

SM (CMIC)

2U UPS

2U UPS

2U UPS

2U UPS

2U UPS

Optional
TMS Nodes

5650H

Primary SM Switch
Secondary SM Switch

6U Unused

TMS Node

TMS Node

TMS Node

HSN

TPA Node

TPA Node

HSN

TPA Node

TPA Node

SM (CMIC)

2U UPS

2U UPS

2U UPS

2U UPS

2U UPS

2+1
Clique

 Miscellaneous Platform Details Page F-100

5650H and 6844 Disk Arrays
The facing page contains an example of a 3-node clique sharing three 6844 disk arrays.
Two nodes will be TPA nodes and 1 node will be a hot standby node.

Each 5650 node has 3 Quad Fibre Channel (8 Gbit/sec.) Host Bus Adapters (HBA). These
Fibre Channel cables are point-to-point connections.

Note the distribution of AMPs among the 5650 nodes. The typical design center
configuration is to configure 47 AMPs per node effectively utilizing 188 disks per node.

In this example, a clique will consist of 2 TPA nodes sharing 376 disks implemented in 3
6844 disk arrays which require 3 storage cabinets.

In the illustration on the facing page, disks shown in white are data disks and disks shown in
light yellow color are hot spare drives.

Miscellaneous Platform Details Page F-101

5650H and 6844 Disk Arrays

2+1 node clique sharing 376 drives; 47 AMPs/node; Linux System

Vdisk 0

Pdisk 0

Pdisk 1

600 GB

MaxPerm = 1.08 TB*

* Actual space is app. 90%.

AMP 0

600 GB

600 GB

600 GB

126 disks 126 disks 124 disks

0 2 92…….

SMP001-8 AMPs

1 3 93…….

SMP001-9 AMPs SMP001-10 AMPs

Hot Standby Node

: : : : : : : : : : : :

 Miscellaneous Platform Details Page F-102

5650H System – 9 (6+3) Nodes
The facing page contains an example configuration of a 9-node 5650H system utilizing the
6844 disk arrays. This example illustrates three 3-node (2+1) cliques. Each clique has two
TPA nodes and 1 hot standby node.

In this example, a clique will consist of 2 TPA nodes sharing 376 disks implemented in 3
6844 disk arrays which require 3 storage cabinets. Therefore, 3 cliques will require 9 disk
arrays or 9 storage cabinets.

This will be a BYNET Release 4 implementation (i.e., 960 MB /sec per node).

In the illustration on the facing page, disk areas shown in green color are used as data disks,
disk areas shown in yellow color are hot spare drives, and disk areas shown in white are
empty.

What additional racks (cabinets) are needed to upgrade this system to 18 (12+6) nodes?

Answer:

 1 additional 5650H “Expansion” rack with 9 (6+3) nodes
 9 additional 6844 Storage racks

Miscellaneous Platform Details Page F-103

5650H System – 9 (6+3) Nodes

What cabinets are needed to grow this to a 18 (12+6) node system?

Storage:

47 AMPs/node
188 Disks/node

80 AMPs/clique
376 Disks/clique

BIC

SMP001-16

SMP001-15

SMP001-14

SMP001-13

SMP001-12

SMP001-11

SMP001-10

SMP001-9

SMP001-8

BIC

BIC

BIC

BIC

HSN

BIC

BIC

BIC

BIC HSN

HSN
Collective 1

BYNET
BYNET

HSN
1-15
1-14
HSN
1-12
1-11
HSN
1-9
1-8

SM (CMIC)

126 Disks

Controllers

126 Disks

Controllers

124 Disks

Controllers

126 Disks

Controllers

126 Disks

Controllers

124 Disks

Controllers

126 Disks

Controllers

126 Disks

Controllers

124 Disks

Controllers

Clique 2
HSN

SMP001-15
SMP001-14

Clique 0
HSN

SMP001-9
SMP001-8

Clique 1
HSN

SMP001-12
SMP001-11

 Miscellaneous Platform Details Page F-104

5650H System – 18 (12+6) Nodes
The facing page contains an example configuration of an 18-node 5650 system utilizing the
6844 disk arrays. Each clique has two TPA nodes and 1 hot standby node.

In this example, a clique will consist of 2 TPA nodes sharing 376 disks implemented in 3
6844 disk arrays which require 3 storage cabinets. Therefore, 6 cliques will require 18 disk
arrays or 18 storage cabinets.

This will be a BYNET Release 4 implementation (i.e., 960 MB /sec per node).

In the illustration on the facing page, disk areas shown in green color are used as data disks,
disk areas shown in yellow color are hot spare drives, and disk areas shown in white are
empty.

What types of cabinets are needed to upgrade this system to 36 (24 + 12) nodes?

Answer:

 2 BYNET switch racks with BYNET 64 switches (e.g., BYA64S)
 2 additional 5650H “Expansion” racks, each with 9 (6+3) nodes
 18 additional 6844 Storage racks

Miscellaneous Platform Details Page F-105

5650H System – 18 (12+6) Nodes

What cabinets are needed to grow this to a 36 (24+12) node system?

Clique 2
HSN

SMP001-15
SMP001-14

Clique 1
HSN

SMP001-12
SMP001-11

Clique 0
HSN

SMP001-9
SMP001-8

Collective 1

BYNET
BYNET

HSN
1-15
1-14
HSN
1-12
1-11
HSN
1-9
1-8

SM (CMIC)

126 Disks

Controllers

126 Disks

Controllers

124 Disks

Controllers

126 Disks

Controllers

126 Disks

Controllers

124 Disks

Controllers

126 Disks

Controllers

126 Disks

Controllers

124 Disks

Controllers

Clique 5
HSN

SMP002-15
SMP002-14

Clique 4
HSN

SMP002-12
SMP002-11

Clique 3
HSN

SMP002-9
SMP002-8

Collective 2

HSN
2-15
2-14
HSN
2-12
2-11
HSN
2-9
2-8

SM (CMIC)

126 Disks

Controllers

126 Disks

Controllers

124 Disks

Controllers

126 Disks

Controllers

126 Disks

Controllers

124 Disks

Controllers

126 Disks

Controllers

126 Disks

Controllers

124 Disks

Controllers

 Miscellaneous Platform Details Page F-106

5650H System – 36 (24+12) Nodes
The facing page contains an example configuration of a 36-node 5650 system utilizing the
6844 disk arrays. Each clique has two TPA nodes and 1 hot standby node.

In this example, a clique will consist of 2 TPA nodes sharing 376 disks implemented in 3
6844 disk arrays which require 3 storage cabinets. Therefore, 12 cliques will require 36 disk
arrays or 36 storage cabinets.

This will be a BYNET Release 4 implementation (i.e., 960 MB /sec per node).

In the illustration on the facing page, disk areas shown in green color are used as data disks,
disk areas shown in yellow color are hot spare drives, and disk areas shown in white are
empty.

What types of cabinets are needed to upgrade this system to 63 (42 + 21) nodes?

Answer:

 3 additional 5650H “Expansion” racks, each with 9 nodes
 27 additional 6844 Storage racks

Miscellaneous Platform Details Page F-107

5650H System – 36 (24+12) Nodes

Collective 3

9 Storage
Cabinets

.

Array

Array

Collective 4

9 Storage
Cabinets

.

Array

Array

What cabinets are needed to grow this to a 63 (42+21) node system?

Collective 2

9 Storage
Cabinets

.

Array

Array

Collective 1

9 Storage
Cabinets

.

Array

Array

BYNET v4
Switch

BYA64S
Switch

BYNET v4
Switch

BYA64S
Switch

 Miscellaneous Platform Details Page F-108

Teradata Configuration Examples
The examples on the facing page show a typical AMP and Disk configuration for 5555 and
5600 cliques.

The 5555 example on the left uses 146 GB disk drives and the 5600 example on the right
uses 300 GB disk drives.

An example of a 5600 would be 40 AMPs per node with 4 disks per AMP. Typical clique
characteristics are:

 2+1 nodes
 Total of 80 AMPs and 320 disks
 3 LSI disk arrays

Miscellaneous Platform Details Page F-109

Teradata Configuration Examples

* Actual MaxPerm
space is app. 90%.

5555H and 6843 (Raid 1)

5555H (3+1 nodes/clique) – Linux

25 AMPs / Node
75 AMPs / Clique

100 Disks per Node
300 Disks per Clique

Each Vdisk – 4 Disks (RAID 1)
Each Vdisk – 263 GB*

Clique – 75 AMPs x 263 GB = 19.7 TB*

HSN

Node 3

Node 2

Node 1

60
Disks

146 GB

60
Disks

146 GB

60
Disks

146 GB

60
Disks

146 GB

60
Disks

146 GB

Note:
Each disk array
will typically
have additional
global hot
spare drives.

5600H and 6844 (Raid 1)

5600H (2+1 nodes/clique) – Linux

40 AMPs / Node
80 AMPs / Clique

160 Disks per Node
320 Disks per Clique

Each Vdisk – 4 Disks (RAID 1)
Each Vdisk – 540 GB*

Clique – 80 AMPs x 540 GB = 43.2 TB*

HSN

Node 2

Node 1

108
Disks

300 GB

108
Disks

300 GB

104
Disks

300 GB

 Miscellaneous Platform Details Page F-110

What is BYNET Version 2.1?
The facing page lists the performance improvements of BYNET Version 2.1 as compared to
BYNET Version 2.0. BYNET v2.1 is an incremental release to BYNET v2.0 that increases
the PCI throughput of the BYNET interface adapters.

The SMP PCI interface (BIC) is changed to 64-bit (Wide) and 66 MHz (Fast). It is also
downward compatible (64 bit or 32 bit @ 66 or 33 MHz). The new BICs are the BIC2M
and the BIC4M.

The major benefit is that the PCI I/O throughput of the BIC is quadrupled to eliminate a
potential bottleneck. Although it might seem that since a BYNET channel is full duplex, it
could send/receive at 120 MB/sec. In reality, the bandwidth is about 95 MB/sec.

Since there are two BYNETs, then 2 x 95 MB/sec = 190 MB/sec.

However, BYNET v2.0 BICs are PCI 32-bit, 33 MHz adapters and have a PCI throughput
limit of 100 MB/sec. Even though the BYNET can send/receive 195 MB/sec., the BIC
limits the throughput to 100 MB/sec.

BYNET v2.1 BICs are PCI 64-bit, 66 MHz adapters and have a PCI throughput of 400
MB/sec.

There have been no changes to BYNET v2.0 switch infrastructure with BYNET v2.1. The
same BYNET connectors, cables, and switch chassis modules are used.

Another enhancement is the BYA4M switch that supports PCI Narrow/Fast so as to not
degrade PCI fast bus.

BYNET v2.1 is interoperable with Bynet v2.0.

Miscellaneous Platform Details Page F-111

What is BYNET Version 2.1?

• An incremental release to BYNET v2.0 that increases the PCI throughput
of the BYNET interface adapters.

• The SMP PCI interface is changed to 64-bit (Wide) and 66 MHz (Fast). It is
also downward compatible (64 bit or 32 bit @ 66 or 33 MHz).

– BIC2M for 4900
– BIC4M for 5300

• PCI I/O throughput of the BIC is quadrupled to eliminate a potential
bottleneck.

• One BYNET channel is full duplex - the actual throughput is about 95
MB/sec.

– Therefore, two BYNET channels is 2 x 95 MB/sec. = 190 MB/sec.

– BYNET v2.0 BIC (PCI 32-bit, 33 MHz) PCI throughput is limited to 100 MB/sec.

– BYNET v2.1 BIC (PCI 64-bit, 66 MHz) PCI throughput is 400 MB/sec.

• No changes to BYNET v2.0 switch infrastructure.

• BYA4M switch supports PCI Narrow/Fast so as to not degrade PCI fast
bus.

• BYNET v2.1 is interoperable with Bynet v2.0.

 Miscellaneous Platform Details Page F-112

BYNET Interface Cards (BIC) or Adapters

BIC2G BYNET Adapter
The WorldMark 4800 BYNET uses the BIC2G and BYA4 switches to connect up to 4 SMP
nodes. The role of the BIC2G Adapter board is to provide a processing node with access to
two independent BYNET networks via a single PCI slot. One BIC2G board is required in
each SMP node.

The BIC2G is a PCI 2.1 compliant 32 bit / 33 MHz adapter. Following the standard
WorldMark 4800/5200 SMP configuration, the BIC2G adapter is installed in PCI slot 1 and
is assigned IRQ 5 from the SSU (identified as a multifunction adapter).

The BIC2G adapter (used with 4800 systems) actually has 4 channels or ports.

 Two 125 Megabit/sec. channels, compatible with BYNET V1.0 and V1.1 switches.

 Two 1 Gigabit/sec. channels, compatible with BYNET V2.0 switches.

BIC4G BYNET Adapter
The BIC4G adapter board interfaces the WorldMark 4850, 5200, and 5250 SMP nodes to
the BYNET network. Each BIC4G provides the circuitry to connect to up to four BYNET
Version 2 networks. All four of the ports on the BIC4G are based on a 1 Gbit/sec Fibre
Channel interface.

Important: Only 2 BYNET networks are supported on the current release of the MPP
systems.

One BIC adapter is housed in each SMP node chassis this adapter provides the interface to
both networks.

The BIC4G is a PCI 2.1 compliant 32 bit / 33 MHz adapter. Following the standard
WorldMark 4850, 5200, 5250 SMP configuration, the BIC4G adapter is installed in PCI slot
1 and is assigned IRQ 5 from the SSU (identified as a multifunction adapter).

Miscellaneous Platform Details Page F-113

BYNET Adapters

BIC2G BYNET Adapter
• Used with 4800 SMPs
• 4 ports - two V1 channels and two V2 channels

BIC4G BYNET Adapter
• Used with 52xx SMPs
• 4 ports - four V2 channels

BIC2C BYNET Adapter
• Used with 485x SMPs
• 2 ports - two V2 channels

BIC2M BYNET Adapter
• Used with 4900 SMPs
• 2 ports - two V2.1 channels

BIC4M BYNET Adapter
• Used with 5300 SMPs
• 4 ports - two V2.1 channels

 Miscellaneous Platform Details Page F-114

BYNET Switches
BYNET 4 Switch (BYA4P) - a PCI card designed to interconnect up to 4 SMPs. This
switch is effectively a BYNET V1.1 switch (10 MB/sec.) and is used in the 4800. The
BYA4P is a PCI card that is placed into a PCI slot of an SMP.

BYNET V2 4 Switch (BYA4G) - PCI card designed to interconnect up to 4 SMPs. This
switch is a BYNET V2 switch (60 MB/sec.) designed for 485x systems. The BYA4G is a
PCI card that is placed into a PCI slot of an SMP.

BYNET V2.1 4 Switch (BYA4M) - PCI card designed to interconnect up to 4 SMPs. This
switch is a new BYNET V2.1 switch (60 MB/sec.) designed for 4900 systems. The
BYA4M is a PCI card that is placed into a PCI slot of an SMP.

BYNET V2 16 Node Switch (BYA16G) – this V2 switch (60 MB/sec.) allows up to 16
5200 SMPs to interconnect. This 3U chassis switch resides in the 5200/5300 System
Cabinet.

BYNET V2 64 Node Switch (BYA64GX chassis) – this V2 switch is actually composed of
8 BYA8X switch boards in the BYA64GX chassis. Each BYA8X switch board allows up
to 8 SMPs to interconnect (i.e., 8 switches x 8 SMPs each = 64 SMPs). The BYA64GX is
actually a backpanel that allows the 8 BYA8X switch boards to interconnect. The
BYA64GX also includes a Diagnostic Processor (DP) board. This 12U chassis resides in
either the BYNET V2 64 Node Switch cabinet or the BYNET V2 64/512 Node Expansion
Cabinet.

Note: BYA8X switch board (in BYA64GX chassis): This is Stage A base switch board.
Each board supports 8 links to nodes. The BYA64GX chassis can contain a maximum
of 8 BYA8X switches, allowing for 64 links to nodes. In systems greater than 64 nodes,
the BYA8GX switch boards also connect the BYA64GX chassis to BYB64G chassis
through X-port connectors, one on each BYA8X board.

BYNET V2 512 Node Switch (BYB64G chassis) – this V2 switch is actually composed of
4 BYB16G switch boards in the BYB64X chassis. This is effectively the Stage B expansion
switch board. These boards interconnect through the BYB backpanel to provide 8
expansion ports. The expansion ports are used to interconnect BYA64GX chassis (through
X-port connections on BYA8X switch boards). A maximum of 8 BYA64GX chassis can be
interconnected to a maximum of 8 BYB64G chassis (one X-port connection from each
BYA64 chassis to the expansion port on each BYB64 chassis), thus providing up to 512-
node switching capacity. This chassis also include a Diagnostic Processor board.

Miscellaneous Platform Details Page F-115

BYNET Switches

BYA4P Switch - Version 1.1 switch
• used with 4800 systems
• PCI card that connects up to 4 SMPs

BYA4G Switch - Version 2 switch
• used with 485x systems
• PCI card that connects up to 4 SMPs

BYA4M Switch - Version 2.1 switch
• used with 4900 systems
• PCI card that connects up to 4 SMPs

BYA16G Switch (BYA16G) - Version 2 switch
• used with 52xx/5300 systems for up to 16 SMPs
• 3U chassis that resides in 52xx System Cabinet

BYA64GX Switch - Version 2 switch
• connects up to 64 52xx/5300 SMPs
• 12U chassis resides in BYNET V2 Switch Cabinet

BYB64G Expansion Switch - Version 2 switch
• connects up to 8 BYA64GX switches together

(8 x 64 nodes = 512 nodes)
• 12U chassis resides in BYNET V2 Switch Cabinet

 Miscellaneous Platform Details Page F-116

BYNET Switches (BYA64GX and BYB64G)
The facing page illustrates the purpose of BYA64GX and BYB64G switches. BYA
switches connect SMPs. With more than 64 SMPs, multiple BYA switches are needed for
one BYNET and the multiple BYA switches are connected together with BYB switches.

BYNET V2 Switches
Conceptual views of the BYA64GX chassis and the BYB64G chassis are shown on the
facing page.

Miscellaneous Platform Details Page F-117

BYNET V2 Switches

D
ia

g
n

o
st

ic
 P

ro
ce

s
so

r

BYA8X

BYA64GX Chassis

D
ia

g
n

o
st

ic
 P

ro
ce

s
so

r

B
Y

B
16

G

B
Y

B
16

G

B
Y

B
16

G

B
Y

B
16

G

BYB64G Chassis

 Miscellaneous Platform Details Page F-118

Example of BYNET V2 Switches - 128 Nodes
A conceptual view of the BYNET switches for 128 nodes is shown on the facing page.

Miscellaneous Platform Details Page F-119

Example of BYNET Switches for 128 Nodes

BYA64GX Chassis

B
Y

B
1

6G

B
Y

B
1

6G

B
Y

B
1

6G

B
Y

B
1

6G

D
P

B
Y

B
1

6G

B
Y

B
1

6G

B
Y

B
1

6G

B
Y

B
1

6G

D
P

BYA64GX Chassis
SMP

BIC4M

BYB64G ChassisBYB64G Chassis

Other BYNET

+ 127 Other Nodes

This example only shows
one of the two BYNETs.

 Miscellaneous Platform Details Page F-120

BYNET™ Software
The bynet software package is required for the Teradata Database. This package contains
the blm (BYNET Link Manager) and bdl (BYNET Data Link) drivers. This package
provides for both BYNET protocol and TCP/IP communication across the BYNET.

BYNET™ Device Drivers
The bynet software package provides two primary drivers to access the BYNET.

 blm – BYNET Link Manager
 bdl – BYNET Data Link

BLM
The BLM software driver is a STREAMS-based UNIX driver and is responsible for
managing the BIC adapters (physical device). The BLM driver places messages/data on the
BIC adapters and is the UNIX interface to the BYNET. This driver is linked into the UNIX
kernel.

The following software currently uses the BLM driver:

 Teradata Database software to directly access the BYNET.

 BDL software driver – interface between TCP/IP software and BLM.

 Can also be used by databases or applications other than Teradata Database.

There are two blmd daemons running on an SMP node – one for each BYNET. The
functions of these daemons include:

 Topology generation when UNIX initializes and when topology needs

regenerating.

 Handle heartbeat messages.

BDL
The BDL software driver is also a STREAMS-based UNIX driver and its primary purpose is
to allow TCP/IP over the BYNET.

Miscellaneous Platform Details Page F-121

BYNET™ Software

BYNET software package (bynet)

• provides the blm and bdl drivers for the
BYNET.

– Provides features used by Teradata.

• Simple (UNIX) diagnostic utility is

/usr/bin/bam

bam -s
Board State Nodes Net # Net name
BPCI 0 Online 2 0 BYA022-0
BPCI 1 Online 2 1 BYA022-1

Teradata User TCP/IP User

BDL

BLM

TCP UDP

IP

PCI bus

Teradata
Database

BYNET 0 BYNET 1

BYNET
I/F 2

BYNET
I/F 3BIC4MS

BYNET
I/F 1

BYNET
I/F 0

 Miscellaneous Platform Details Page F-122

Enterprise Storage Solutions
The chart below attempts to clarify the major releases of Engenio (LSI Logic) Disk Arrays.

Key for this chart:

 NSC – NCR Storage Cabinet
 WES – WorldMark Enterprise Storage
 DS – Deskside or Pedestal
 MP-RAS – UNIX MP-RAS
 Win NT – Windows NT
 Win 2000 – Windows 2000

Release Key Feature Disk Array

Class/Model
O.S. Support GCA

NSC 1.0 Modular
Arrays (SCSI)

6285-1220
6285-1440

MP-RAS, Win NT,
Win 2000

1998

NSC 2.0 Fibre Channel 6286-1220 Rack
or Deskside

Win NT, Win 2000 1999

WES 3.0 Quad Array
(SCSI)

6288-1440

MP-RAS

1999

WES 3.5 Quad Array
(SCSI)

6288-1452 MP-RAS

2000

WES 4.0 Fibre Channel 6289-1440 Win 2000 07/2000

WES 5.0 Fibre Channel 6840-1440
6840-1456

MP-RAS 05/2002

Enterprise
Storage (5.5)

Fibre Channel 6841-2456 MP-RAS, Win 2000 08/2003

Enterprise
Storage (6.0)

Fibre Channel 6841-6456 MP-RAS, Win 2000 08/2003

Enterprise
Storage (6.1)

Fibre Channel 6841-7456 MP-RAS 07/2004

Miscellaneous Platform Details Page F-123

Enterprise Storage Solutions

Engenio Disk Array Comparisons

Feature 6284 6841-6456 6841-7456

Interface Fibre Channel Fibre Channel Fibre Channel
2 Gbit (end-to-end) 2 Gbit (end-to-end) 2 Gbit (end-to-end)

Teradata Use SMP only MPP MPP

Operating Environments UNIX MP-RAS Windows UNIX MP-RAS
Windows UNIX MP-RAS

Disks 36 GB – 15K RPM 36 GB – 15K RPM 36 GB – 15K RPM
73 GB – 15K RPM 73 GB – 15K RPM 73 GB – 15K RPM

Node to Array Ratio (typical) 1 : 1 or 2 1 : 1 (36 GB) 1 : 1 (36 GB)
2 : 1 (73 GB) 2 : 1 (73 GB)

Maximum Teradata Disks 28 56/112 56/112
(array/cabinet)

Floor Space (width) Deskside Rack - 1 Floor Tile Rack - 1 Floor Tile

 Miscellaneous Platform Details Page F-124

SMP Connectivity – Fibre Channel
The WorldMark Enterprise Storage (WES) 6840 Solution uses a Fibre Channel Arbitrated
Loop (FCAL) interconnect scheme for the Teradata cliques. This scheme effectively uses
point-to-point Fibre Channel cables from the host (SMP) to the disk array controller. This
provides better performance, higher reliability, and easier cabling and configurations.

6841-2456 Fibre Channel Disk Array
Cabinet characteristics include:

 2U Server Management Chassis

 Three 2U UPS with Dual AC Distribution Boxes

 Support for two arrays for a total of 112 drives and 4.1 TB raw data capacity using

36 GB disk drives

Fibre Channel Disk Array characteristics include:

 Dual hot swappable redundant 4884 Fibre Channel RAID controllers with 1 GB of
cache and an Intel 550 MHz Celeron microprocessor.

 Each 6841-2456 disk array has support for up to 56 hot swappable 2 Gbit Fibre

Channel 36GB 15K rpm disk drives (Seagate Cheetah drives).

 Quad Fibre Channel Host Adapter (2 Gb/sec) point-to-point connectivity between

processing node and disk arrays.

 Support for RAID 1 and RAID 5.

Performance and availability features include:

 Quad Ported Fibre Channel Host Adapters

 Dual ported Fibre Channel drives for higher availability and reliability

 Quad Modular Fibre Channel RAID Controllers are designed to match the I/O

demands of 2+ GHz nodes.

 Fibre optic point-to-point connections between node and array provide for higher

performance and greater distances between node and array.

Miscellaneous Platform Details Page F-125

6841-2456 Fibre Channel Disk Array

Cabinet characteristics:

• Support for two arrays for a total of 112 drives.

Fibre Channel Disk Array characteristics:

• Utilizes new drive tray that provides 2 Gbit access to disks. I/O
path is 2 Gbit from hosts to array controllers to disk drives.

• Dual hot swappable redundant 4884 Fibre Channel RAID
controllers

– I/O maximum throughput (per array) is approximately 250
MB/sec.

• Utilizes 2 Gbit Fibre Channel 36 GB 15K rpm disk drives.

• Typical configuration usage within a clique:

– Typically used in coexistence environments

– 4 nodes sharing 4 arrays

• Support for RAID 1 and RAID 5.

NCR

SMC - 2U

4884 Controllers

4884 Controllers

6841-2456

 Miscellaneous Platform Details Page F-126

LSI Logic – Models 1000, 2000, & 3000
The Enterprise Storage 7.0 (NS 7.0) solution utilizes a newly designed cabinet (model
6700). The benefits include:

 New rack frame with integrated cable channel in rear
 New rack to be implemented across all product lines.
 Cable harnesses, like 54XX, fit to connector location, labeled & color coded
 RoHS (Restriction of Hazardous Substances) compliant – standard required by

European Union starting July 1, 2006

The disk arrays that will be placed in the 6700 storage cabinet are 6843 disk arrays.
Characteristics and benefits of the 6843 array include:

 Higher performance controllers that support 4Gb FC end-to-end
 16 drive slots per tray
 DAP error protection thru drives (DAP-1 and DAP-3 protection)
 Up to 9 trays per array (144 drives) – up to 29% increase in storage density
 RoHS compliant

Note: DAP – Data Availability Protection. The 6843 provides DAP-1 (Intra-Controller
Protection) and DAP-3 (Controller to Disks and Back) protection. DAP-3 is new with the
6843.

6700 Cabinet Models
6700-1000 Characteristics include:

 1 Controller Module with 3 drive trays (6843-1000) – RAID 1 only
 This array can be expanded with two additional 3-drive tray modules
 The array in this cabinet will have 3, 6, 9 drive trays
 2 Ethernet Switches, 4 UPS’s, no SM3G, and 50 Amp AC Power

6700-2000 Characteristics include:

 1 Controller Module with 4 drive trays (6843-2000) – RAID 1 or 5
 This array can be expanded with one additional 4-drive tray module
 The array in this cabinet will have 4 or 8 drive trays
 2 Ethernet Switches, 4 UPS’s, optional SM3G, and 50 Amp AC Power

6700-3000 Characteristics (“Lite” version) include:

 1 Controller Module with 3 drive trays (6843-1000) – RAID 1 only
 This array can be expanded with one additional 3-drive tray module
 The array in this cabinet will have 3 or 6 drive trays
 2 Ethernet Switches, 3 UPS’s, optional SM3G, and 30 Amp AC Power

Miscellaneous Platform Details Page F-127

LSI Logic – Models 1000, 2000, & 3000

The Storage Cabinet (model 6700) has three
models supporting the 6843 Disk Array.

Common characteristics:

• New cabinet has one controller module (dual array
controllers) that support 4 Gbit Fibre Channel speeds.

• Drive trays support up to 16 disks – 73 GB and 146 GB
drives.

Array Cabinet 6700-1000 (RAID 1 only)
• Supports 3, 6, or 9 drive trays – maximum of 144 disks

• No Server Management Chassis (for 54xx/5500
systems)

Array Cabinet 6700-2000 (RAID 1 or RAID 5)

• Supports 4 or 8 drive trays – maximum of 128 disks

• Optional Server Management Chassis

Array Cabinet 6700-3000 (RAID 1 only)
• Supports 3 or 6 drive trays – maximum of 96 disks

• Optional Server Management Chassis

Disk Array
Controllers

2U UPS

2U UPS

2U UPS

2U UPS

6700-1000 6700-2000

Disk Array
Controllers

Server Mgmt (opt)

2U UPS

2U UPS

2U UPS

2U UPS

 Miscellaneous Platform Details Page F-128

5380 and 6841-2456 Disk Arrays
The facing page contains an example of a 4-node clique sharing four 6841-2456 disk arrays.

Each SMP has 2 Quad Fibre Channel adapters (2 Gbit/sec.). Fibre Channel cables are point-
to-point connections.

Miscellaneous Platform Details Page F-129

5380 and 6841-2456 Disk Arrays

Typical coexistence
configuration is:
• 4 node cliques sharing 4

arrays.
• Each node – 14 AMPs.
• Each Vdisk – 72 GB.
• 56 AMPs @ 72 GB – total

MaxPerm in clique – 4 TB.

DAC-A DAC-B

6841-2456

DAC-A DAC-B

6841-2456

DAC-A DAC-B

6841-2456

0 4 52…….

SMP001-4 AMPs

1 5 53…….

SMP001-5 AMPs

2 6 54…….

SMP001-6 AMPs

3 7 55…….

SMP001-7 AMPs

RAID 1

Vdisk 0

Pdisk 0

Pdisk 1

MaxPerm
72 GB

AMP 0

36 GB

36 GB

36 GB

36 GB

DAC-A DAC-B

6841-2456

 Miscellaneous Platform Details Page F-130

Server Management (2nd Generation)
To communicate with processing nodes and system components, the AWS is connected to
the system via two Ethernet LANs.

 SLAN – Service (or System) Ethernet LAN known as the SLAN; connects AWS to
the CMIC (Chassis Management Interface Controller) in the Server Management
Chassis of each cabinet

 PvtLAN – Private Ethernet LAN - connects AWS directly to SMPs.

Service LAN (SLAN)
The Service or System LAN (SLAN) is a private Ethernet LAN between the AWS and
CMICs in a 48xx/52xx and 4900/5300 systems. The CMIC (Chassis Management Interface
Controller) is the intelligent component (actually an Intel processor) of the SMC. The
CMIC provides network connectivity for the SMC to the SLAN.

The MLAN (Management LAN) is an internal LAN that connects components to the CMICs
and also connects the SMC in a storage rack to the SMC in a processor rack.

 System Events
 Console and Diagnostic connections

The new recommended name for the SLAN is the Service LAN.

Private LAN (PvtLAN)
This Ethernet LAN is used to directly connect the AWS to each processing node (SMP).

 All SMPs are connected using 10baseT (Twisted Pair).

 Up to 100 Mbps full duplex to AWS.

 The PvtLAN uses hubs and switches to allow connection to all nodes.

The PvtLAN is also connected to the disk array controllers in the 6841 (and future) Fibre
Channel disk arrays.

Miscellaneous Platform Details Page F-131

Server Management (2nd Generation)

AWS

console
messages

ETH

ETH

SLAN

PvtLAN

MLAN MLAN

AWS (UNIX or Windows) is connected to the system via two Ethernet LANs.

• SLAN (Service or System Ethernet LAN) – connects AWS to the CMIC in the SMC of
each processor cabinet.

– Used for hardware functions; console connections, power control, etc.

– CMIC is connected to components within rack via “serial” type connections.

• PvtLAN – Private Ethernet LAN - connects AWS directly to SMPs.
– Used for software functions; LAN connections, Teradata Database Window, etc.

Cabinet 1

SMC

BYNET 16

SMP

SMP

SMP

SMP

Cabinet 101

SMC

Disk Array

Disk Array

Cabinet 2

SMC

BYNET 16

SMP

SMP

SMP

SMP

Cabinet 102

SMC

Disk Array

Disk Array

 Miscellaneous Platform Details Page F-132

Server Management with AWS
The AWS provides a single operational view of a Teradata Large System (e.g., 2500, 54xx,
55xx), and the environment to configure, monitor, and manage the system. The AWS is a
UNIX-based or Windows-based processor with a user-friendly graphical interface.

The AWS effectively becomes a central console for MPP systems.

The AWS is one part of the Server Management subsystem that provides monitoring and
management capabilities of MPP systems.

 1st Generation Server Management (3600) – Server Management (SM) processing,

storage and display occurred on AWS.

 2nd Generation Server Management (5100, 48xx/52xx, 49xxx/53xx) – most SM

processing occurs on CMICs and Management Boards. The AWS still provides all the
storage and display.

 3rd Generation Server Management (SM3G) – new with 2500, 54xx, and 55xx – all

SM processing and storage occurs on the 2U management nodes (effectively CMICs).
These CMICs also enable customizable displays (a.k.a., Service Nodes or Panels). The
AWS provides the on-site management views.

Server Management (3rd Generation) – SM3G
The 54xx/55xx platform uses a new Server Management architecture, SM3G (Third
Generation Server Management). The Third Generation Server Management Chassis
manages the communication interface between the AWS and other chassis located within
the cabinet.

The Server Management subsystem in a 54xx/55xx uses industry standard parts, 2U Server
Management Node (similar to a processing node and referred to as a CMIC node) and
Ethernet switches to implement an Ethernet based Server Management solution. This new
Server Management is referred to a Third Generation Server Management (SM3G).

SM3G provides all of features/functionality of the legacy platform sever management.
Note: the acronym SM3G should be used for 3rd Generation Server Management because
AT&T already has a product named 3GSM.

Industry Standard Ethernet Interfaces
One of the reasons for the new Server Management subsystem is to better adhere to industry
standards. Ethernet-based management is now the industry standard for chassis vendors.

Miscellaneous Platform Details Page F-133

Server Management with AWS

The AWS is a standalone Windows-based workstation that is the primary
operations interface for MPP systems.

AWS
console
messages

ETH

ETH

AWS provides GUI
to ...

• connect to SMPs

• connect to DB
Window

• power
on/off/reset

• manage faults

• obtains h/w or
s/w status
information

• The AWS is one part of the “Server Management”
subsystem that provides system monitoring and
management capabilities for MPP systems.

• The AWS provides a single, graphical view of the system.

• 15xx/25xx/54xx/55xx Systems require a Windows-based
AWS.

Collective #1 Collective #2

BYNET
BYNET

HSN
SMP 15
SMP 14
SMP 13

HSN
SMP 11
SMP 10
SMP 9

SM

Array
Controllers

Array
Controllers

HSN
SMP 15
SMP 14
SMP 13

HSN
SMP 11
SMP 10
SMP 9

SM

Array
Controllers

Array
Controllers

Dual Ethernet
LANs

 Miscellaneous Platform Details Page F-134

Server Management (3rd Generation) – SM3G
The 5400 platform uses a new Server Management architecture, SM3G (Third Generation
Server Management). The Third Generation Server Management Chassis manages the
communication interface between the AWS and other chassis located within the cabinet.

The Server Management subsystem in a 5400 uses industry standard parts, 2U Server
Management Node (similar to a processing node and referred to as a CMIC node) and
Ethernet switches to implement an Ethernet based Server Management solution. This new
Server Management is referred to a Third Generation Server Management (SM3G).

SM3G provides all of features/functionality of the legacy platform sever management.
Note: the acronym SM3G should be used for 3rd Generation Server Management because
AT&T already has a product named 3GSM.

Industry Standard Ethernet Interfaces
One of the reasons for the new Server Management subsystem is to better adhere to industry
standards. Ethernet-based management is now the industry standard for chassis vendors.

Node Interface (including CMICs)
The nodes – processing and sever management (CMICs) – have two Ethernet ports on the
system board; these two ports provide the connections to the Primary and Secondary Server
management networks. Through BIOS Setup, console redirection is enabled and sent over
the Primary network.

BYNET Interfaces
Each BYNET chassis (BYA32G, BYA64GX, and BYC64G) has a single Ethernet port on
the Diagnostic Processor (DP) interface that connects to Primary management network.

The BYOX and BYCLK chassis do not connect to the server management network; instead
they are managed from the BYA64GX and BYC64G chassis.

Engenio Disk Array Controllers Interface
Each Disk array controller module has two Ethernet ports, one for controller A (Primary
Network) the second for controller B (Secondary Network).

Fibre Channel Switch
Each QLogic Fibre Channel Switch (FCS) has a single Ethernet interface that is connected
to the Primary management network.

UPS Interface
Each UPS has a Dual Ethernet UPS Interface (DEUI) plug-in adapter that replaces the
legacy RS-232 port. The primary and secondary management networks connect to this
adapter.

Miscellaneous Platform Details Page F-135

Server Management (3rd Generation) – SM3G

NCR 5400 System Monitoring and Management is provided through Ethernet-
based server management – called Server Management 3rd Generation (SM3G).

• Server management functions and software execute on the Server Management node
(also referred to as the CMIC node).

• Redundant Ethernet connections to most chassis provide the management path.

Advantages of using an Ethernet-based server management subsystem are:

• Enables improvements for remote service applications such as AWS

– Option of customized “Service Node” applications (future)

• Industry standard for chassis vendors (Ethernet instead of serial)

• Reduced number of SMC in system (storage and BYNET cabinets don’t need a SMC)

Collective – a collective is the collection of chassis controlled by a CMIC.

• Generally consists of a node cabinet and its associated disk array cabinets.

• There is a CMIC controlling each collective in the system and an optional fail-over
CMIC node for systems with only one collective.

• In systems with more than one collective, the CMIC nodes from different collectives
will provide fail-over for each other. Every node cabinet will have CMIC (SM chassis).

 Miscellaneous Platform Details Page F-136

SM3G Architecture Description
SM3G provides chassis level management for the following chassis:

MP-RAS Nodes Bynet V3

CMIC Chassis 2u UPS

Windows Nodes Engenio Disk Array

Fibre Channel Switch

Server Management Networks

The Server Management Network consists of two physical networks; Primary Network (PN)
and Secondary Network (SN).

Primary Network

The purpose of the Primary Network is to provide direct communication between the
AWS(s), CMIC(s) and all rack mounted chassis. For co-existence with Legacy Systems, the
SLAN will connect to the Primary Network.

Secondary Network

The purpose of the Secondary Network is to provide backup communications between those
chassis that support a second Ethernet port. For co-existence with Legacy Systems, the
PLAN will connect to the Secondary Network.

CMICS and Collectives
The SM3G CMIC (CMIC4) will has similar functionality to the legacy CMIC (CMIC3) but
the CMIC hardware is an industry standard Intel based computing node (same as the 2U
processing node). The CIMC4 will utilize all new code.

A collective is the collection of chassis controlled by a CMIC. Generally it includes a node
cabinet and its associated disk array cabinets which can include Bynet chassis resident in
node cabinets.

There is a CMIC controlling each collective in the system and an optional fail-over CMIC
for systems with only one collective. In systems that have more than one collective the
CMICs from different collectives will provide fail-over for each other. CMICs always reside
in the node cabinet.

Some key SM3G functional changes include:

 Redistribute some AWS functionality (other than display related) to the CMIC
 Nodes take over AC fail operation
 Employ CMIC failover

Miscellaneous Platform Details Page F-137

CMIC

Collective 3

SM3G Architecture

Primary Network
AWS

Secondary Network

Node

UPS
UPS

UPS
UPS

Node
Node

Node

Bynet

FC Switch

Bynet

Node

FC Switch

UPS

Array
Array

CMIC

UPS
UPS

UPS

Collective 1 (clique)

CMIC

Collective 2

E-net switches

BMC

BMC

BMC

BMC
BMC

 Miscellaneous Platform Details Page F-138

SM3G Chassis Interfaces

Node Interface (including CMICs)

The nodes (processing and CMICs) have two Ethernet ports on the system board, these two
ports proved the connections to the Primary and Secondary Server management networks.
Through BIOS Setup, Console redirection is enabled and sent over the Primary network.

UPS Interface
Each UPS has a Dual Ethernet UPS Interface (DEUI) plug-in adapter that replaces the
legacy RS-232 port. The primary and secondary management networks connect to this
adapter.

BYNET Interfaces
The BYNET chassis (BYA16Gx, BYA64GX, and BYC64) has a single Ethernet port on the
Diagnostic Processor (DP) interface that connects to Primary management network.

There is no MLAN port on the SM3G supported chassis. The CMB interface on the BYA64
and BYC64 chassis was modified to provide status through the DP's Ethernet port.

The BYOX and BYCLK chassis do not connect to the server management network, instead
they are managed from the BYA64 and BYC64 chassis.

Engenio Disk Array Controllers Interface
Each Disk array controller module has two Ethernet ports, one for controller A (Primary
Network) the second for controller B (Secondary Network).

Fibre Channel Switch
The QLogic Fibre Channel Switches (FCS) have a single Ethernet interface that is connected
to the Primary management network.

Miscellaneous Platform Details Page F-139

SM3G Chassis Interfaces

Ethernet

DPT
AC1 AC2

V3
V2

7 6 5
4

3 2 PIM4-V3 1
0

7 6 5
4

3 2 PIM8-V3 1
0

7 6 5
4

3 2 PIM8-V3 1
0

Nodes
(Processing

& CMIC)

UPS

BYNET
(BYA16GX)

Fibre
Channel
Switch

 Miscellaneous Platform Details Page F-140

SM3G Fault Tolerance
Primary Network Switch Failures

AWS, CMIC, and Chassis communications will occur through the secondary network (as
possible) if the primary network fails

The following functions are supported on both networks, therefore they will continue to
function if either network fails:

CMIC heartbeats / failover
Node and CMIC:

Orderly Reset
Software Event Forwarding
 Telnet / Remote Desktop Consoles
UPS Status, Events, Control including:

AC Fail processing - SMP and CMIC against UPS’s in Node Cabinets
Enhanced AC Fail processing - CMIC against UPS’s in Disk/Bynet Cabinets

LSI Disk Array Status, Events, Control, and Console
Assuming Controller-B is Dual Active

The following functions will NOT be supported if the primary network fails::

Node and CMIC Hardware Events and Status
Out-of-Band Commands:

Power On, Hard Power Off, Hard Reset, NMI, View SEL
Out-of-Band Consoles (console redirection is enabled on primary only)
Node and CMIC Orderly Shutdown (would not be able to power them back on)
Fibre Channel Switch Status, Events, Control, and console (no Secondary network
connection
Bynet V3 Status, Events, Control, and Console (no Secondary-network connection)
Power Cable Verification (will lose communications when Secondary-network cabinet
switch powers off)
Hardware configuration changes (bootp clients/servers)

Secondary Network Switch Failures
There will be no impact if the secondary network fails.

Miscellaneous Platform Details Page F-141

CMIC

Collective 3

SM3G Fault Tolerance

Primary Network
AWS

Secondary Network

UPS
UPS

UPS
UPS

Bynet

FC Switch

Bynet

FC Switch

UPS

Array
Array

CMIC

UPS
UPS

UPS

Collective 1

CMIC

Collective 2

E-net switches

Node
Node

Node
Node

NodeBMC

BMC

BMC

BMC
BMC

 Miscellaneous Platform Details Page F-142

Notes

Table of Contents Page T-1

Module T

Teradata Proprietary and Confidential

Appendix T: Table of Contents

This Appendix contains the combined table of
contents for each module in this course.

 Table of Contents Page T-2

Notes

Table of Contents Page T-3

Table of Contents

Module 1 – Overview

What is Teradata? ... 1-4
Teradata – A Brief History ... 1-6
What is a Data Warehouse? ... 1-8
What is Active Data Warehousing? ... 1-10
What is a Relational Database? .. 1-12
Answering Questions with a Relational Database ... 1-14
Teradata Database Competitive Advantages ... 1-16
Module 1: Review Questions ... 1-18

Module 2 – Teradata Basics

Major Components of Teradata ... 2-4
Teradata Storage Architecture.. 2-6
Teradata Retrieval Architecture ... 2-8
Multiple Tables on Multiple AMPs ... 2-10
Linear Growth and Expandability .. 2-12
Teradata Objects... 2-14
The Data Dictionary Directory (DD/D) ... 2-16
Structure Query Language (SQL) .. 2-18
CREATE TABLE – Example of DDL .. 2-20
Views ... 2-22
Multi-Table Views ... 2-24
Macros .. 2-26
HELP Commands .. 2-28
SHOW Command .. 2-30
EXPLAIN Facility ... 2-32
Summary .. 2-34
Module 2: Review Questions ... 2-36

 Table of Contents Page T-4

Module 3 – Teradata Database Architecture

Teradata and MPP Systems ... 3-4
Teradata Functional Overview .. 3-6
Channel-Attached Client Software Overview ... 3-8
Network-Attached Client Software Overview ... 3-10
The Parsing Engine .. 3-12
Message Passing Layer .. 3-14
The Access Module Processor (AMP) .. 3-16
Teradata Parallelism .. 3-18
Module 3: Review Questions ... 3-20

Module 4 – Teradata Databases and Users

A Teradata Database .. 4-4
A Teradata User ... 4-6
Database – User Comparison ... 4-8
The Hierarchy of Databases and Users .. 4-10
Example of a System Hierarchy .. 4-12
Permanent Space .. 4-14
Spool Space ... 4-16
Temporary Space ... 4-18
Creating Tables .. 4-20
Data Types ... 4-22
Access Rights and Privileges ... 4-24
Module 4: Review Questions ... 4-26

Table of Contents Page T-5

Module 5 – Primary Index Access and Mechanics

Primary Keys and Primary Indexes ... 5-4
Distribution of Rows .. 5-6
Specifying a Primary Index .. 5-8
Primary Index Values ... 5-10
Accessing Via a Unique Primary Index ... 5-12
Accessing Via a Non-Unique Primary Index ... 5-14
Row Distribution Using a Unique Primary Index (UPI) – Case 1 ... 5-16
Row Distribution Using a Non-Unique Primary Index (NUPI) – Case 2 5-18
Row Distribution Using a Highly Non-Unique Primary Index (NUPI) – Case 3 5-20
Which AMP has the Row? ... 5-22
Hashing Down to the AMPs .. 5-24
A Hashing Example ... 5-26
The Hash Map .. 5-28
Hash Maps for Different Systems .. 5-30
Identifying Rows .. 5-32
The Row ID .. 5-34
Storing Rows (1 of 2) ... 5-36
Locating a Row on an AMP Using a PI ... 5-40
Module 5: Review Questions ... 5-42

Module 6 – Secondary Indexes and Table Scans

Secondary Indexes ... 6-4
Choosing a Secondary Index .. 6-6
Unique Secondary Index (USI) Access.. 6-8
Non-Unique Secondary Index (NUSI) Access .. 6-10
Comparison of Primary and Secondary Indexes .. 6-12
Full Table Scans ... 6-14
Module 6: Review Questions ... 6-16

 Table of Contents Page T-6

Module 7 – Teradata System Architecture

Teradata Database Releases ... 7-4
Teradata Database Architecture ... 7-6
Teradata Database – Multiple Nodes ... 7-8
MPP Systems ... 7-10
Example of 2+1 Node Teradata System .. 7-12
Teradata Cliques .. 7-14
BYNET .. 7-16
BYNET Communication Protocols ... 7-18
Vproc Inter-process Communication ... 7-20
Examples of Teradata Database Systems .. 7-22
6650 Cabinets .. 7-24
What makes Teradata’s MPP Platforms Special? ... 7-26
Summary .. 7-28
Module 7: Review Exercises ... 7-30

Table of Contents Page T-7

Module 8 – Data Protection

Data Protection Features .. 8-4
Disk Arrays .. 8-6
RAID Technologies ... 8-8
RAID 1 – Mirroring ... 8-10
RAID 1 Summary .. 8-12
Cliques ... 8-14
Teradata Vproc Migration .. 8-16
Hot Standby Nodes (HSN) ... 8-18
Performance Degradation with Node Failure .. 8-20
Fallback .. 8-22
Fallback Clusters .. 8-24
Fallback and RAID Protection ... 8-26
Fallback and RAID 1 Example .. 8-28
Fallback vs. non-Fallback Tables Summary .. 8-38
Clusters and Cliques ... 8-40
Locks .. 8-42
Locking Modifier ... 8-44
Rules of Locking .. 8-46
Access Locks .. 8-48
Transient Journal .. 8-50
Recovery Journal for Down AMPs .. 8-52
Permanent Journal .. 8-54
Archiving and Recovering Data ... 8-56
Module 8: Review Questions ... 8-58

 Table of Contents Page T-8

Module 9 – Introduction to Teradata Systems

Teradata Systems ... 9-4
SMP Architecture .. 9-6
Hyper-Threading and Multi-Core CPUs ... 9-8
Comparing Performance of Servers ... 9-10
Cabinet or Rack Pictures ... 9-12
Teradata 6650 Systems .. 9-14
Teradata 6650 Cabinets ... 9-16
Adding SSD to a 6650 (Future) ... 9-18
Teradata 6650 Configuration Examples .. 9-20
Teradata 6690 Systems .. 9-22
Teradata 6690 Cabinets ... 9-24
Teradata Extended Nodes .. 9-26
Making Sense of the Different Platforms .. 9-28
Linux Coexistence Combinations .. 9-30
Teradata Appliance Introduction ... 9-32
Teradata 2650/2690 Appliances .. 9-34
Teradata 2650/2690 Cabinets .. 9-36
Appliance Configuration Examples ... 9-38
What is the BYNET™? ... 9-40
BYNET 32 Switches .. 9-42
BYNET 64 Switches .. 9-44
BYNET Expansion Switches ... 9-46
BYNET Expansion to 1024 Nodes .. 9-46
Server Management with SWS .. 9-48
Node Naming Conventions .. 9-50
Summary .. 9-52
Module 9: Review Questions ... 9-54

Table of Contents Page T-9

Module 10 – How Teradata uses MPP Systems

Teradata and the Processing Node ... 10-4
Memory and the Teradata Database ... 10-6
SMP Memory – Summary ... 10-8
O.S. Managed Memory and FSG Cache .. 10-10
WAL – Write Ahead Logic .. 10-12
WAL Concepts ... 10-14
Linux Vproc Number Assignment ... 10-16
Disk Arrays from a O.S. Perspective ... 10-18
Logical Units and Partitions ... 10-20
Teradata and Disk Arrays... 10-22
Teradata 6650 (2+1) Logical View .. 10-24
Teradata 6650 (3+1) Logical View .. 10-26
Example of 1.2 TB Vdisk (pre-TVS) ... 10-28
Teradata File System Concepts .. 10-30
Teradata Vdisk Size Limits .. 10-30
Teradata 13.10 Large Cylinder Support ... 10-32
Full Cylinder Read ... 10-34
Summary .. 10-36
Module 10: Review Questions ... 10-38

Module 11 – Teradata Virtual Storage

Teradata Virtual Storage .. 11-4
Teradata Virtual Storage Concepts .. 11-6
Teradata Virtual Storage Terminology .. 11-8
TVS Operational Modes .. 11-10
Expanding Data Storage Concepts ... 11-12
Multi-Temperature Concepts ... 11-14
Storage Performance vs. Data Temperature ... 11-16
Teradata with Hybrid Storage .. 11-18
What Goes Where? .. 11-20
Result of Data Migration .. 11-22
Teradata with Hybrid Storage .. 11-24
Multi-Temperature Data Example ... 11-26
Teradata 6690 Cabinets .. 11-28
Multi-Temperature Data Example ... 11-30
Summary .. 11-32
Module 11: Review Questions ... 11-34

 Table of Contents Page T-10

Module 12 – Physical Database Design Overview

The Stages of Database Development ... 12-4
Example of Data Model – ER Diagram ... 12-6
Customer Service Logical Model .. 12-8
Relational Terms Review .. 12-10
Domains ... 12-12
Attributes ... 12-14
Entities and Relationships .. 12-16
Decomposable Data ... 12-18
Normal Forms .. 12-20
Normalization .. 12-22
Normalization Example ... 12-24
Denormalizations ... 12-34
Derived Data .. 12-36
Pre-Joins .. 12-38
System Assigned Primary Keys ... 12-40
Exercise 1: Choose Indexes ... 12-40
Tables Index Selection ... 12-42
Database Design Components ... 12-44
Extended Logical Data Model ... 12-46
Physical Data Model .. 12-48
The Principles of Index Selection .. 12-50
Transactions and Parallel Processing ... 12-52
Module 12: Review Questions ... 12-54

Table of Contents Page T-11

Module 13 – Data Distribution and Hashing

Data Distribution .. 13-4
Hashing .. 13-6
Hash Related Expressions .. 13-8
Hashing – Numeric Data Types ... 13-10
Multi-Column Hashing .. 13-12
Additional Hash Examples ... 13-16
Using Hash Functions to View Distribution .. 13-18
Primary Index Hash Mapping .. 13-20
Hash Maps .. 13-22
Primary Hash Map ... 13-24
Hash Maps for Different Systems .. 13-26
Fallback Hash Map .. 13-28
Reconfiguration .. 13-30
Row Retrieval via PI Value – Overview .. 13-32
Names and Object IDs ... 13-34
Table ID ... 13-36
Row ID ... 13-38
AMP File System – Locating a Row via PI ... 13-40
Teradata File System Overview ... 13-42
Master Index Format .. 13-44
Cylinder Index Format ... 13-46
Data Block Layout ... 13-48
Example of Locating a Row – Master Index ... 13-50
Example of Locating a Row – Cylinder Index... 13-52
Example of Locating a Row – Data Block... 13-54
Accessing the Row within the Data Block ... 13-56
AMP Read I/O Summary ... 13-58
Module 13: Review Questions ... 13-60

 Table of Contents Page T-12

Module 14 – File System Writes

AMP Write I/O .. 14-4
New Row INSERT – Part 1 ... 14-6
New Row INSERT – Part 2 ... 14-8
New Row INSERT – Part 2 (cont.) ... 14-10
New Row INSERT – Part 3 ... 14-12
New Row INSERT – Part 4 ... 14-14
Blocking in Teradata .. 14-16
Block Size and Filling Cylinders ... 14-18
Variable Block Sizes .. 14-20
Block Splits (INSERT and UPDATE) .. 14-22
Space Fragmentation ... 14-24
Cylinder Full .. 14-26
Mini-Cylpack ... 14-28
Space Utilization .. 14-30
Merge Datablocks (13.10 Feature) .. 14-32
File System Write Summary .. 14-36
Module 14: Review Questions ... 14-38

Table of Contents Page T-13

Module 15 – SQL Assistant

SQL Assistant .. 15-4
Defining a Data Source .. 15-6
Defining a Data Source (cont.) .. 15-8
Defining a Data Source (cont.) .. 15-10
Connecting to a Data Source .. 15-12
Main Window... 15-14
Database Explorer Tree .. 15-16
Creating and Executing a Query .. 15-18
Dragging Object Names to the Query Window ... 15-20
Query Options .. 15-22
Viewing Query Results .. 15-24
Formatting Answersets .. 15-26
Using Query Builder .. 15-28
History Window ... 15-30
General Options ... 15-32
Connecting to Multiple Data Sources .. 15-34
Additional Options ... 15-36
Importing/Exporting Large Object Files .. 15-38
Importing/Exporting Large Object Files .. 15-40
To Import a LOB into Teradata ... 15-40
Selecting from a Table with a LOB ... 15-42
Displaying a JPG within SQL Assistant .. 15-44
Teradata SQL Assistant Summary ... 15-46
Module 15: Review Questions ... 15-48
Lab Exercise 15-1 .. 15-50

 Table of Contents Page T-14

Module 16 – Analyze Primary Index Criteria

Primary Index Choice Criteria ... 16-4
Primary Index Defaults .. 16-6
CREATE TABLE – Indexing Rules .. 16-8
Order of Preference Exercise ... 16-10
Primary Index Characteristics .. 16-12
Multi-Column Primary Indexes ... 16-14
Primary Index Considerations ... 16-16
PKs and Duplicate Rows ... 16-18
NUPI Duplicate Row Check .. 16-20
Primary Index Demographics .. 16-22
Column Distribution Demographics for a PI Candidate .. 16-24
SQL to View Data Demographics ... 16-26
Example of Using Data Demographic SQL .. 16-28
TableSize View .. 16-32
SQL to View Data Distribution ... 16-34
E-R Diagram for Exercises .. 16-36
Exercise 2 – Sample ... 16-38
Exercise 2 – Choosing PI Candidates .. 16-40
What is a NoPI Table? ... 16-52
Reasons to Consider Using NoPI Tables ... 16-54
Creating a Table without a PI .. 16-56
How is a NoPI Table Implemented? .. 16-58
NoPI Random Generator ... 16-60
The Row ID for a NoPI Table ... 16-62
Multiple NoPI Tables at the AMP Level ... 16-66
Loading Data into a NoPI Table .. 16-68
NoPI Options ... 16-70
Summary .. 16-72
Module 16: Review Questions ... 16-74
Module 16: Review Questions (cont.) ... 16-76
Lab Exercise 16-1 .. 16-78
Lab Exercise 16-2 .. 16-82

Table of Contents Page T-15

Module 17 – Partitioned Primary Indexes

Partitioning a Table .. 17-4
How is Partitioning Implemented?... 17-6
Logical Example of NPPI versus PPI .. 17-8
Primary Index Access (NPPI) .. 17-10
Primary Index Access (PPI) ... 17-12
Why Partition a Table? .. 17-14
Advantages/Disadvantages of Partitioning .. 17-16
PPI Considerations ... 17-18
How to Define a PPI .. 17-20
Partitioning with CASE_N and RANGE_N .. 17-22
Partitioning with RANGE_N – Example 1 .. 17-24
Partitioning with RANGE_N – Example 2 .. 17-34
Partitioning – Example 3 .. 17-36
Special Partitions with CASE_N and RANGE_N ... 17-38
Special Partition Examples .. 17-40
Partitioning with CASE_N – Example 4 ... 17-42
SQL Use of PARTITION Key Word ... 17-44
SQL Use of CASE_N .. 17-46
Using ALTER TABLE with PPI Tables .. 17-48
ALTER TABLE – Example 5 .. 17-50
ALTER TABLE – Example 5 (cont.) .. 17-52
ALTER TABLE TO CURRENT ... 17-54
ALTER TABLE TO CURRENT – Example 7 .. 17-56
PPI Enhancements .. 17-58
Multi-level PPI Concepts ... 17-60
Multi-level PPI Concepts (cont.) ... 17-62
Multi-level Partitioning – Example 8 ... 17-64
Multi-level Partitioning – Example 8 (cont.) ... 17-66
How is the MLPPI Partition # Calculated? .. 17-68
Character PPI ... 17-70
Character PPI – Example 9 .. 17-72
Summary .. 17-74
Module 17: Review Questions ... 17-76
Lab Exercise 17-1 .. 17-80

 Table of Contents Page T-16

Module 18 – Teradata Columnar

Teradata Columnar .. 18-4
Teradata Columnar Benefits .. 18-6
No Primary Index Table DDL ... 18-8
The No Primary Index Table ... 18-10
Column Partition Table DDL (without Auto-Compression) ... 18-12
Column Partition Container (No Automatic Compression) .. 18-14
The Column Partition Table (without Auto-Compression) ... 18-16
CP Table Query #1 (without Auto-Compression) ... 18-18
CP Table Query #1 (without Auto-Compression) ... 18-20
Column Partition Table DDL (with Auto-Compression) .. 18-22
Auto-Compression for CP Tables .. 18-24
Auto-Compression Techniques for CP Tables .. 18-26
User-Defined Compression Techniques .. 18-28
Column Partition Container (Automatic Compression) .. 18-30
The Column Partition Table (with Auto-Compression) .. 18-32
CP Table Query #2 (with Auto-Compression) .. 18-34
CP Table with Row Partitioning DDL ... 18-36
The Column Partition Table (with Row Partitioning) ... 18-38
CP Table with Multi-Column Container DDL .. 18-40
The CP Table with Multi-Column Container .. 18-42
CP Table Hybrid Row & Column Store DDL ... 18-44
The CP Table (with Hybrid Row & Column Store) .. 18-46
Populating a CP Table ... 18-48
DELETE Considerations ... 18-50
UPDATE Considerations ... 18-52
CP Table Restrictions .. 18-54
Summary .. 18-56
Module 18: Review Questions ... 18-58
Lab Exercise 18-1 .. 18-60

Table of Contents Page T-17

Module 19 – Secondary Index Usage

Secondary Indexes ... 19-4
Defining Secondary Indexes .. 19-6
Secondary Index Subtables .. 19-8
USI Subtable General Row Layout .. 19-10
USI Hash Mapping ... 19-12
NUSI Subtable General Row Layout ... 19-14
NUSI Hash Mapping .. 19-16
Table Access – A Complete Example .. 19-18
Secondary Index Considerations .. 19-20
Single NUSI Access (Between, Less Than, or Greater Than) ... 19-22
Dual NUSI Access ... 19-24
NUSI Bit Mapping ... 19-26
Value-Ordered NUSIs .. 19-28
Value-Ordered NUSIs (cont.) .. 19-30
Covering Indexes ... 19-32
Covering Indexes (cont.) .. 19-34
NUSI vs. Full Table Scan (FTS) .. 19-36
Full Table Scans – Sync Scans .. 19-38
Module 19: Review Questions ... 19-40

Module 20 – Analyze Secondary Index Criteria

Accessing Rows ... 20-4
Row Selection .. 20-6
Secondary Index Considerations .. 20-8
Composite Secondary Indexes ... 20-10
Secondary Index Candidate Guidelines ... 20-12
Exercise 3 – Sample ... 20-14
Exercise 3 – Choosing SI Candidates .. 20-16
Change Rating .. 20-28
Value and Range Access .. 20-30
Exercise 4 – Sample ... 20-32
Exercise 4 – Eliminating Index Candidates ... 20-34
Module 20: Review Questions ... 20-46

 Table of Contents Page T-18

Module 21 – Access Considerations and Constraints

Access Method Comparison .. 21-4
Optimizer Access Scenarios .. 21-6
Data Conversions ... 21-8
Storing Numeric Data .. 21-10
Data Conversion Example ... 21-12
Matching Data Types ... 21-14
Counting I/O Operations .. 21-16
Transient Journal I/O ... 21-18
INSERT and DELETE Operations .. 21-20
UPDATE Operations ... 21-22
Primary Index Value UPDATE ... 21-24
Additional I/O .. 21-26
Table Level Attributes ... 21-28
Column Level Constraints ... 21-30
Table Level Constraints ... 21-32
CHECK Constraints ... 21-32
Example: Department Table with Constraints ... 21-34
Example (13.0) – SHOW Department Table ... 21-36
Example (13.10) – SHOW Department Table ... 21-38
Altering Table Constraints ... 21-40
Identity Column – Overview ... 21-42
Identity Column – Implementation .. 21-44
Identity Column – Example 1 .. 21-46
Identity Column – Example 2 .. 21-48
Identity Column – Considerations ... 21-50
Module 21: Review Questions ... 21-52

Module 22 – Referential Integrity

Referential Integrity ... 22-4
Parent-Child Relationships .. 22-6
Three Types of Referential Constraints ... 22-8
Reference Index Subtables .. 22-10
Reference Index Example – Add REFERENCES ... 22-12
Fixing Referential Integrity Problems ... 22-20
Batch Referential Integrity .. 22-22
Soft Referential Integrity ... 22-24
Referential Integrity Example .. 22-26
Referential Integrity Example (cont.) .. 22-28
Join Optimization with RI ... 22-30
Summary .. 22-34
Module 22: Review Questions ... 22-36

Table of Contents Page T-19

Module 23 – Sizing

General Row Format .. 23-4
Presence Bits .. 23-6
NULL and COMPRESS .. 23-8
Multi-Value Compression .. 23-10
Implementing Multi-Value Compression .. 23-12
ALTER TABLE and Compression .. 23-14
Algorithmic Compression Example ... 23-18
Detailed Row Format ... 23-20
Multi-Value Compression vs. VARCHAR .. 23-22
Teradata Compression Comparison ... 23-24
Sizing a Data Row Considerations ... 23-26
Teradata Data Types .. 23-28
INTEGER Data Types ... 23-30
DECIMAL and FLOAT Data Types.. 23-32
NUMBER Data Type (14.0) .. 23-34
DATE and TIME Data Types .. 23-36
CHARACTER Data Types .. 23-38
Character Sets... 23-40
BYTE Data Types .. 23-42
Large Object Data Types ... 23-44
Variable Column Offsets ... 23-46
Row Size Calculation Form ... 23-48
Example: Sizing a Row .. 23-50
Row Size Exercise.. 23-54
Sizing Tables and Indexes .. 23-56
Table Headers... 23-58
Sizing a Data Table .. 23-60
Table Sizing Exercise ... 23-62
Estimating the Size of a USI Subtable ... 23-64
Estimating the Size of a NUSI Subtable .. 23-66
Estimating the Size of a Reference Index Subtable ... 23-68
Index Sizing Exercise ... 23-70
Other Sizing Techniques .. 23-72
Empirical Sizing ... 23-74
Collect Demographics Command .. 23-76
Collect Demographics Example ... 23-78
Spool Space .. 23-80
Release of Spool ... 23-82
System Sizing Exercise .. 23-84
Sizing Summary ... 23-86
Module 23: Review Questions ... 23-88
Lab Exercise 23-1 .. 23-90
Lab Exercise 23-2 .. 23-92
Lab Exercise 23-3 (optional) .. 23-96

 Table of Contents Page T-20

Module 24 – Parser

Internal, Channel and LAN Parcels ... 24-4
Request Parcel ... 24-6
The Data Parcel .. 24-8
SQL Parser Overview .. 24-10
Software Cache .. 24-12
Request-To-Steps Cache .. 24-14
Dictionary Cache ... 24-20
Syntaxer ... 24-22
Resolver ... 24-24
Security .. 24-26
Optimizer ... 24-28
Generator ... 24-30
Apply ... 24-32
Dispatcher .. 24-32
SQL Parser Review .. 24-34
Parser Summary ... 24-36
Module 24: Review Questions ... 24-38

Table of Contents Page T-21

Module 25 – Optimizer and Collecting Statistics

Teradata Optimizer... 25-4
Optimizer – Cost Based vs. Rule Based .. 25-6
Optimizer Statistics .. 25-8
Optimizer’s Search for Statistics .. 25-10
Optimizer – Random AMP Samples .. 25-12
Random AMP Sampling – How it Works ... 25-14
Example of an Optimizer Estimate without Collected Statistics .. 25-16
Statistics ... 25-18
Statistics Data – What is Collected? .. 25-20
Statistics Data – What is Collected? (cont.) ... 25-22
Statistics Data – What is Collected? (cont.) ... 25-24
Statistics Example .. 25-26
Statistics Example (cont.) .. 25-28
COLLECT STATISTICS Command ... 25-30
Collecting Statistics .. 25-32
Refresh or Re-Collect Statistics ... 25-34
COLLECT STATISTICS Command ... 25-36
COLLECT STATISTICS on a Data Sample ... 25-38
Collecting Statistics (14.0 Examples) .. 25-40
Viewing Statistics .. 25-42
Optimizer’s use of Statistics with Uneven NUSI ... 25-44
Collecting Statistics on PARTITION... 25-46
Copying STATISTICS ... 25-48
Statistics Extrapolation... 25-50
Teradata 13.0 Enhancements ... 25-52
Teradata 14.0 Enhancements ... 25-54
Teradata Statistics Wizard.. 25-56
Teradata Statistics Wizard – Main Window .. 25-58
Teradata Statistics Wizard – Interval Statistics .. 25-60
Collect, Re-Collect, or Drop Statistics ... 25-62
Recommendation Options .. 25-64
Statistics Recommendations .. 25-66
Statistics Summary ... 25-68
Module 25: Review Questions ... 25-70

 Table of Contents Page T-22

Module 26 – The EXPLAIN Facility

The EXPLAIN Facility .. 26-4
EXPLAIN Facility Output ... 26-6
Example 1 – EXPLAIN of a Simple SELECT .. 26-8
Example 2 – EXPLAIN of a SELECT (FTS) .. 26-10
EXPLAIN Terminology .. 26-12
Pseudo Table Locks ... 26-16
Understanding Row and Time Estimates (Part 1) ... 26-18
Parallel Steps ... 26-22
Example 3 – EXPLAIN with Parallel Steps .. 26-24
Example 4 – EXPLAIN of a SELECT (BMSMS) .. 26-26
Example 5 – EXPLAIN of Create Table ... 26-28
EXPLAINing Macros .. 26-30
EXPLAIN Terminology for PPI Tables .. 26-32
Example 6 – Partition Elimination with a PPI Table ... 26-34
Example 7 – Primary Index Access of PPI Table .. 26-36
Example 8 – Dynamic Partition Elimination ... 26-38
Example 9 – CURRENT_DATE Improvements ... 26-40
EXPLAIN Summary .. 26-42
Module 26: Review Questions ... 26-44

Module 27 – Visual Explain

Teradata Visual Explain .. 27-4
Visual Explain – Connect to Teradata ... 27-6
Setting up the Environment ... 27-8
Placing Plans into QCD ... 27-10
Creating a Plan using "Execute SQL" Option ... 27-12
Open Execution Plans .. 27-14
Open Execution Plans (cont.) .. 27-16
Open Execution Plans (cont.) .. 27-18
Visual Explain of a Merge Join ... 27-20
Visual Explain Options .. 27-22
Visual Explain – Comparing Multiple Plans ... 27-24
Visual Explain – Example of Comparing 2 Plans ... 27-26
Granting Access Rights on a QCD .. 27-28
Visual Explain Summary ... 27-30
Module 27: Review Questions ... 27-32
Lab Exercise 27-1 .. 27-34
Lab Exercise 27-2 .. 27-36

Table of Contents Page T-23

Module 28 – Join Processing Analysis

SELECT Statement ANSI Join Syntax .. 28-4
Example of ANSI and Teradata JOIN Syntax ... 28-6
LEFT Outer Join Example ... 28-8
RIGHT Outer Join Example .. 28-10
FULL Outer Join Example ... 28-12
Join Processing ... 28-14
Optimizer Minimizes Spool Usage .. 28-16
Row Selection .. 28-18
Join Redistribution ... 28-20
Duplicating a Table in Spool ... 28-24
General Join Distribution Strategies .. 28-26
Merge Join .. 28-28
Merge Join Strategy ... 28-30
Merge Join – Matching Primary Indexes ... 28-32
Merge Join – Row Redistribution .. 28-34
Merge Join – Duplicate the Smaller Table ... 28-36
Nested Joins ... 28-38
Product Join .. 28-40
Cartesian Product ... 28-42
Product Join – Duplicate the Smaller Table ... 28-44
Hash Join .. 28-46
Exclusion Joins .. 28-48
Exclusion Join Example ... 28-50
Inclusion Joins .. 28-52
n-Table Joins .. 28-54
Join Considerations with PPI ... 28-56
NPPI to PPI Join – Few Partitions ... 28-58
NPPI to PPI Join – Many Partitions ... 28-60
NPPI to PPI Join – Sliding Window .. 28-62
NPPI to PPI Join – Sliding Window (cont.) ... 28-64
NPPI to PPI Join – Hash Ordered Spool File Join ... 28-66
PPI to PPI Join – Rowkey-Based Join ... 28-68
PPI to PPI Join – Unmatched Partitions ... 28-70
Additional Join Options with PPI .. 28-72
Join Processing Summary .. 28-74
Module 28: Review Questions ... 28-76

 Table of Contents Page T-24

Module 29 – Explains of Joins and Index Choices

Join Diagramming ... 29-4
Nested Join ... 29-6
Merge Join (Matching Primary Indexes) ... 29-8
Hash Join ... 29-10
Visual Explain (Hash Join) .. 29-12
Merge Join (Joining a Table to Itself) .. 29-14
Three-Table Join .. 29-16
Product Join ... 29-20
A “UNION” Solution .. 29-24
Cartesian Product Join ... 29-28
Exclusion Join .. 29-30
Example of PPI to PPI Join ... 29-32
Join ACCESS ... 29-34
Exercise 5 – Sample ... 29-36
Exercise 5 – Making Final Index Choices ... 29-38
Teradata Index Wizard .. 29-50
Teradata Index Wizard – Main Window ... 29-52
Teradata Index Wizard – Index Analysis .. 29-54
Teradata Index Wizard – Index Analysis Results .. 29-56
Teradata Index Wizard – Partition Analysis .. 29-58
Teradata Index Wizard – Partition Analysis Results ... 29-60
Teradata Index Wizard – Reports .. 29-62
Teradata Index Wizard – Validation .. 29-64
Teradata Index Wizard – Validation (View Graph) .. 29-66
Teradata Index Wizard – Creation ... 29-68
Summary – Index Choice Guidelines .. 29-70
Module 29: Review Questions ... 29-72

Table of Contents Page T-25

Module 30 – Additional Index Choices

Additional Index Choices ... 30-4
Join Indexes .. 30-6
Options for Join Indexes .. 30-8
Join Index Considerations .. 30-10
Join Index Example – Customer and Order Tables ... 30-12
Compressed Multi-Table Join Index .. 30-14
Non-Compressed Multi-Table Join Index .. 30-16
Compressed and Non-Compressed Join Indexes ... 30-18
Example 1 – Does a Join Index Help? ... 30-20
Example 2 – Does a Join Index Help? ... 30-22
Example 3 – Partitioning a Join Index ... 30-24
Join Index – Single Table ... 30-26
Join Index – Single Table (cont.) ... 30-28
Creating a Join Index – Single Table ... 30-30
Example 4 – Does the Join Index Help? .. 30-32
Why use Aggregate Join Indexes? ... 30-34
Aggregate Join Index Properties .. 30-36
Aggregation without an Aggregate Index .. 30-38
Creating an Aggregate Join Index .. 30-40
Aggregation with an Aggregate Index ... 30-42
Sparse Join Indexes .. 30-44
Creating a Sparse Join Index .. 30-46
Creating a Sparse Join Index on a Partitioned Table ... 30-48
ALTERing a Join Index to CURRENT ... 30-50
Partitioning a Sparse Join Index ... 30-52
Global (Join) Indexes ... 30-54
Global Index – Multiple Tables ... 30-56
Global Index as a “Hashed NUSI” ... 30-58
Creating a Global Index (“Hashed NUSI”) .. 30-60
Example: Using a Global Index as a Hashed NUSI ... 30-62
Repeating Row Ids in Global Index ... 30-64
Hash Indexes .. 30-66
Hash Index – Example ... 30-68
Hash Index – Example (cont.) .. 30-70
Summary .. 30-72
Module 30: Review Questions ... 30-74
Lab Exercise 30-1 .. 30-76

 Table of Contents Page T-26

Module 31 – Miscellaneous SQL Features

Teradata SQL ... 31-4
Teradata SQL and ANSI Differences .. 31-6
SQL Session Modes ... 31-8
Transaction Modes – Teradata ... 31-10
Transaction Modes – ANSI ... 31-12
Duplicate Rows .. 31-14
Transaction Mode Examples ... 31-16
Multi-Statement Requests .. 31-18
CASE Sensitivity Issues .. 31-20
Setting the SQL Flagger .. 31-22
SQLFLAG Example .. 31-24
HELP SESSION Command .. 31-26
Why a System Calendar? ... 31-28
Calendar View Layout ... 31-30
One Row in the Calendar ... 31-32
Using the Calendar .. 31-34
Temporary Table Choices .. 31-36
Derived Tables Revisited ... 31-38
Volatile Tables ... 31-40
Volatile Table Restrictions .. 31-42
Global Temporary Tables .. 31-44
Creating Global Temporary Tables ... 31-46
Teradata 12.0 – Major Features ... 31-48
Teradata 13.0 – Major Features ... 31-50
Teradata 13.10 – Major Features ... 31-52
Teradata 14.0 – Major Features ... 31-54
Teradata Limits (Different Releases) ... 31-56
Module 31: Review Questions ... 31-58

Table of Contents Page T-27

Module 32 – Introduction to Application Utilities

Application Utilities ... 32-4
Application Utilities Environments ... 32-6
Application Development .. 32-8
Transferring Large Amounts of Data ... 32-10
INSERT/SELECT: The Fast Path .. 32-12
Multi-Statement Insert/Select Example ... 32-14
DELETE (ALL): The Fast Path ... 32-16
AXSMOD, INMOD, and OUTMOD Routines ... 32-18
Teradata Parallel Transporter ... 32-20
Teradata Parallel Transporter Operators .. 32-22
Referential Integrity and Load Utility Issues ... 32-24
Maximum Number of Load Jobs ... 32-26
Maximum Number of Load Jobs (cont.) .. 32-28
Application Utility Checklist ... 32-30
Application Utility Summary ... 32-32
Module 32: Review Questions ... 32-34

 Table of Contents Page T-28

Module 33 – BTEQ

BTEQ ... 33-4
Using BTEQ Conditional Logic .. 33-6
BTEQ Error Handling .. 33-8
BTEQ EXPORT – Example 1 ... 33-10
4 Types of BTEQ .EXPORT ... 33-12
BTEQ Data Modes .. 33-14
BTEQ EXPORT – Example 2 ... 33-16
BTEQ EXPORT – Example 3 ... 33-18
Indicator Variables ... 33-20
Determining the Logical Record Length with Fixed Length Columns 33-22
Determining the Logical Record Length with Variable Length Columns 33-24
Determining the Logical Record Length with .EXPORT INDICDATA 33-26
.IMPORT (for Network-Attached Systems) .. 33-28
.IMPORT (for Channel-Attached Systems) .. 33-30
.PACK .. 33-32
.REPEAT ... 33-32
BTEQ IMPORT – Example 1 .. 33-34
BTEQ IMPORT – Example 2 .. 33-36
BTEQ IMPORT – Example 3 .. 33-38
Multiple Sessions ... 33-40
.SET SESSIONS .. 33-42
Parallel Processing Using Multiple Sessions to Access Individual Rows 33-44
When Do Multiple Sessions Make Sense? .. 33-46
Application Utility Checklist ... 33-48
Module 33: Review Questions ... 33-50
Lab Exercise 33-1 .. 33-52
Lab Exercise 33-2 .. 33-56

Table of Contents Page T-29

Module 34 – FastLoad

FastLoad ... 34-4
FastLoad Phase 1 ... 34-6
FastLoad Phase 2 ... 34-8
A Sample FastLoad Script ... 34-10
Converting the Data ... 34-12
Data Conversion Chart ... 34-14
NULLIF ... 34-16
FastLoading Zoned Decimals and Time Stamps ... 34-18
FastLoad BEGIN LOADING Statement ... 34-20
BEGIN LOADING Statement ... 34-20
FastLoad Error Tables .. 34-22
Error Recovery ... 34-24
CHECKPOINT Option .. 34-26
END LOADING Statement ... 34-28
RECORD Statement .. 34-30
INSERT Statement ... 34-32
Staged Loading of Multiple Data Files .. 34-34
FastLoad Fails to Complete ... 34-36
Restarting FastLoad (Output) ... 34-38
Restarting FastLoad – Summary .. 34-40
Additional FastLoad Commands ... 34-42
FastLoad with Additional Options ... 34-44
Invoking FastLoad ... 34-46
INMOD .. 34-48
Application Utility Checklist ... 34-50
Summary .. 34-52
Module 34: Review Questions ... 34-54
Lab Exercise 34-1 .. 34-56
Lab Exercise 34-2 .. 34-58

 Table of Contents Page T-30

Module 35 – The Support Environment

Support Environment ... 35-4
Setting Up the Support Environment ... 35-6
Invoking Utilities ... 35-8
Support Environment Commands .. 35-10
Initializing the Log Table .. 35-12
Initialization and Wrap Up Commands ... 35-14
User-defined and System Variables ... 35-16
.ACCEPT – Environment or File Variable .. 35-18
.DISPLAY and .ROUTE Commands .. 35-20
Example: Using Variables in a Script .. 35-22
Working with Control Logic ... 35-24
Support Environment Example – Input ... 35-26
Support Environment Example – Output .. 35-28
Teradata SQL Support ... 35-30
Script – Example Input .. 35-32
Script – Example Output ... 35-34
Summary .. 35-36
Module 35: Review Questions ... 35-38
Lab Exercise 35-1 (optional) ... 35-40

Module 36 – FastExport

FastExport .. 36-4
.BEGIN and .END EXPORT ... 36-6
.EXPORT ... 36-8
A FastExport Script ... 36-10
The SELECT Request .. 36-12
Impact of Requesting Sorted Output ... 36-14
The SORT Procedure ... 36-16
Multiple Exports in one FastExport Job .. 36-18
Invoking FastExport .. 36-20
FastExport and Variable Input ... 36-22
A FastExport Script with ACCEPT ... 36-24
A FastExport Script with LAYOUT .. 36-26
Application Utility Checklist ... 36-28
Summary .. 36-30
Module 36: Review Questions ... 36-32
Lab Exercise 36-1 .. 36-34
Lab Exercise 36-2 .. 36-36

Table of Contents Page T-31

Module 37 – MultiLoad Part 1

What is MultiLoad? ... 37-4
MultiLoad Limitations ... 37-6
How MultiLoad Works .. 37-8
Advantages of MultiLoad .. 37-10
Basic MultiLoad Statements .. 37-12
Sample MultiLoad IMPORT Task ... 37-14
IMPORT Task .. 37-16
5 Phases of IMPORT Task ... 37-18
Phase 1: Preliminary .. 37-20
Phase 2: DML Transaction .. 37-22
Phase 3: Acquisition ... 37-24
Phase 3: Acquisition – a Closer Look .. 37-26
Phase 4: Application .. 37-28
Phase 4: Application – a Closer Look .. 37-30
Phase 5: Cleanup .. 37-32
Sample MultiLoad DELETE Tasks ... 37-34
DELETE Task Differences from IMPORT Task... 37-36
A Closer Look at DELETE Task Application Phase ... 37-38
MultiLoad Locks .. 37-40
Restarting MultiLoad ... 37-42
RELEASE MLOAD Statement ... 37-44
Invoking MultiLoad ... 37-46
Application Utility Checklist ... 37-48
Summary .. 37-50
Module 37: Review Questions ... 37-52
Lab Exercise 37-1 .. 37-54

 Table of Contents Page T-32

Module 38 – MultiLoad Part 2

New Accounts Application – Description ... 38-4
.BEGIN IMPORT Task Commands .. 38-12
Work Tables ... 38-14
Error Tables ... 38-16
ERRLIMIT .. 38-18
CHECKPOINT .. 38-20
More .BEGIN Parameters .. 38-22
More .BEGIN Parameters: AMPCHECK .. 38-24
DELETE Task Commands .. 38-26
.LAYOUT and .TABLE .. 38-28
.LAYOUT Parameters — CONTINUEIF ... 38-30
.LAYOUT Parameters — INDICATORS ... 38-32
.FIELD and .FILLER ... 38-34
.LAYOUT Command — Examples .. 38-36
Redefining the Input – Example .. 38-38
The .DML Command Options ... 38-40
MultiLoad Statistics ... 38-44
INMOD .. 38-46
Summary .. 38-48
Module 38: Review Questions ... 38-50
Lab Exercise 38-1 .. 38-52
Lab Exercise 38-2 .. 38-54

Table of Contents Page T-33

Module 39 – TPump

TPump .. 39-4
TPump Limitations .. 39-6
.BEGIN LOAD Statement ... 39-8
TPump Specific Parameters ... 39-10
.BEGIN LOAD – PACK and RATE ... 39-12
.BEGIN LOAD – SERIALIZE OFF .. 39-14
.BEGIN LOAD – SERIALIZE ON ... 39-16
.BEGIN LOAD – ROBUST ON .. 39-18
Sample TPump Script (1 of 2) ... 39-20
Sample TPump Script (2 of 2) ... 39-22
TPump Compared with MultiLoad .. 39-24
Additional TPump Statements ... 39-26
Invoking TPump .. 39-28
TPump Statistics .. 39-30
TPump Monitor .. 39-32
INMOD .. 39-34
Application Utility Checklist ... 39-36
Summary .. 39-38
Module 38: Review Questions ... 39-40
Lab Exercise 39-1 .. 39-42

Module 40 – Choosing a Utility

Solution 1: Update or Delete vs. Insert/Select ... 40-4
Solution 2: SQL Update vs. MultiLoad or TPump ... 40-6
Solution 3: SQL Update vs. FastLoad... 40-8
Utility Considerations .. 40-10
Various Ways of Performing an Update .. 40-12
Choosing a Utility Exercise ... 40-14

 Table of Contents Page T-34

Module 41 – Database Administration and Building the Database
Environment

Database Administration ... 41-4
Initial Teradata Database ... 41-6
Administrative User ... 41-8
Owners, Parents and Children ... 41-10
Creating New Users and Databases ... 41-12
Transfer of Ownership ... 41-14
DELETE/DROP Statements .. 41-16
Teradata Administrator – New System .. 41-18
Teradata Administrator – Hierarchy .. 41-20
Summary .. 41-22
Module 41: Review Questions ... 41-24

Table of Contents Page T-35

Module 42 – The Data Dictionary

Data Dictionary / Directory .. 42-4
Fallback Protected Data Dictionary Tables .. 42-6
Non-Hashed Data Dictionary Tables ... 42-8
Updating Data Dictionary Tables .. 42-10
Supplied Data Dictionary Views .. 42-12
Restricted Views .. 42-14
Suffix Options with Views ... 42-16
Selecting Information about Created Objects .. 42-18
Children View .. 42-20
Databases View .. 42-22
Users View ... 42-24
Tables View ... 42-26
Columns View .. 42-28
Indices View... 42-30
IndexConstraints View ... 42-34
ShowTblChecks View .. 42-36
ShowColChecks View ... 42-38
Triggers View... 42-40
AllTempTables View ... 42-42
Referential Integrity Views .. 42-44
Using the DBC.Tables View .. 42-46
Referential Integrity States ... 42-48
DBC.All_RI_Children View .. 42-50
DBC.Databases2 View ... 42-52
Time Stamps in Data Dictionary .. 42-54
Teradata Administrator – List Columns of a View .. 42-56
Teradata Administrator – Object Options .. 42-58
Summary .. 42-60
Module 42: Review Questions ... 42-62
Lab Exercise 42-1 .. 42-64
Lab Exercise 42-2 (optional) .. 42-70

 Table of Contents Page T-36

Module 43 – Space Allocation and Usage

Permanent Space Terminology .. 43-4
Spool Space Terminology .. 43-6
Temporary Space Terminology ... 43-8
Resetting Peak Values ... 43-10
Assigning Perm and Spool Limits ... 43-12
Giving One User to Another .. 43-14
Teradata Administrator – Move Space .. 43-16
Reserving Space for Spool ... 43-18
Views for Space Allocation Reporting .. 43-20
DiskSpace View ... 43-22
TableSize View .. 43-24
AllSpace View ... 43-26
DataBaseSpace Table .. 43-28
Different Views — Different Results .. 43-30
Additional Utilities to View Space Utilization .. 43-32
Teradata Administrator – Database Menu Options ... 43-34
Teradata Administrator – Object Menu Options ... 43-36
Transient Journal Space ... 43-38
Ferret Utility .. 43-40
Ferret SHOWSPACE Command ... 43-42
Ferret SHOWBLOCKS ... 43-44
Module 43: Review Questions ... 43-48

Table of Contents Page T-37

Module 44 – Users, Accounts, and Accounting

Creating New Users & Databases .. 44-4
CREATE DATABASE Statement ... 44-6
CREATE USER Statement .. 44-8
CREATE USER and the Data Dictionary .. 44-10
CREATE USER and the Data Dictionary (cont.) .. 44-12
MODIFY USER Statement .. 44-14
Teradata Administrator – Tools Menu > Create Options .. 44-16
Creating and Using Account IDs ... 44-18
Dynamically Changing an Account ID .. 44-20
Account Priorities .. 44-22
Account String Expansion.. 44-24
ASE Accounting Example ... 44-26
System Accounting Views ... 44-28
AccountInfo View .. 44-30
AMPUsage View ... 44-32
AMPUsage View – Example ... 44-34
Users, Accounts & Accounting Summary ... 44-36
Module 44: Review Questions ... 44-38
Lab Exercise 44-1 .. 44-40

 Table of Contents Page T-38

Module 45 – Profiles

Profiles ... 45-4
Example of Simplifying User Management .. 45-6
Implementing Profiles ... 45-8
Impact of Profiles on Users ... 45-10
CREATE/MODIFY PROFILE Statement ... 45-12
Password Attributes (CREATE/MODIFY PROFILE) .. 45-14
Teradata Password Control .. 45-16
Teradata Password Control (cont.) .. 45-18
Teradata Password Control Options .. 45-20
CREATE PROFILE Example ... 45-22
Teradata Administrator CREATE PROFILE Example ... 45-24
CREATE PROFILE Example (cont.) .. 45-26
DROP PROFILE Statement .. 45-28
ProfileInfo View .. 45-30
Miscellaneous SQL Functions ... 45-32
Summary .. 45-34
Module 45: Review Questions ... 45-36
Lab Exercise 45-1 .. 45-38

Table of Contents Page T-39

Module 46 – Access Rights

Privileges/Access Rights .. 46-4
Access Rights Mechanisms .. 46-6
CREATE TABLE – Automatic Rights .. 46-8
CREATE USER – Automatic Rights ... 46-10
Implicit, Automatic, and Explicit Rights ... 46-12
GRANT Command .. 46-14
Granting Rights at Database Level .. 46-16
GRANT Rights at the Table or Column Level .. 46-18
REVOKE Command .. 46-20
Revoking Non-Existent Rights .. 46-22
Removing a Level in the Hierarchy ... 46-24
Inheriting Access Rights .. 46-26
The GIVE Statement and Access Rights ... 46-28
Access Rights and Views ... 46-30
Access Rights and Nested Views ... 46-32
System Views for Access Rights ... 46-34
AllRights and UserRights Views ... 46-36
UserGrantedRights View ... 46-38
Teradata Administrator – Grant/Revoke Rights .. 46-40
Teradata Administrator – Rights on DB/User .. 46-42
Access Rights Summary .. 46-44
Module 46: Review Questions ... 46-46

 Table of Contents Page T-40

Module 47 – Roles

What are Roles? ... 47-4
Advantages of Roles .. 47-4
Access Rights without Roles ... 47-6
Access Rights Issues (prior to Roles) .. 47-6
Access Rights Using a Role ... 47-8
Implementing Roles ... 47-10
Current or Active Roles ... 47-12
Nesting of Roles .. 47-14
Example of Using “Nested Roles” .. 47-16
Access Rights Validation and Roles .. 47-18
SQL Statements to Support Roles ... 47-20
GRANT Command (SQL Form) ... 47-22
REVOKE Command (SQL Form) ... 47-24
GRANT and REVOKE Commands (Role Form) ... 47-26
System Hierarchy (used in following examples) ... 47-28
Example of Using Roles .. 47-30
Example of Using Roles (cont.) ... 47-32
Example of Using Roles (cont.) ... 47-34
Roles for Directory-Based Users ... 47-36
Roles for Proxy Users .. 47-38
RoleInfo View ... 47-40
RoleMembers View ... 47-42
DBC.AccessRights and “Rights” Views ... 47-44
AllRoleRights and UserRoleRights Views .. 47-46
Steps to Implementing Roles ... 47-48
Summary .. 47-50
Module 47: Review Questions ... 47-52
Lab Exercise 47-1 .. 47-54
Lab Exercise 47-2 .. 47-58

Table of Contents Page T-41

Module 48 – Access Control

System Access Control Levels ... 48-4
Teradata Access Control Mechanisms ... 48-6
Teradata Password Encryption ... 48-8
Password Security Features ... 48-10
Teradata Connectivity .. 48-12
Host Logon Processing .. 48-14
Objects used in Host Logon Processing ... 48-16
GRANT/REVOKE LOGON Statements ... 48-18
GRANT/REVOKE LOGON Example .. 48-20
Session Related Views ... 48-22
LogonRules View .. 48-24
LogOnOff View ... 48-26
SessionInfo View ... 48-28
Additional Utilities to View Sessions .. 48-30
Viewpoint – Query Monitor ... 48-32
Teradata Manager Sessions .. 48-34
Remote Console – Viewpoint .. 48-36
Structure the System .. 48-38
A Recommended Access Rights Structure .. 48-40
A Recommended Structure Using Roles.. 48-42
A Recommended System Hierarchy .. 48-44
System Access Controls Summary .. 48-46
Module 48: Review Questions ... 48-48

 Table of Contents Page T-42

Module 49 – Access and Query Logging

Access and Query Logging .. 49-4
Access Logging ... 49-6
Objects used in Access Logging .. 49-8
BEGIN LOGGING Statement ... 49-10
END LOGGING Statement ... 49-12
Setting up Access Logging .. 49-14
Access Log Views ... 49-16
AccLogRules View .. 49-18
BEGIN LOGGING – Example .. 49-20
AccessLog View .. 49-22
AccessLog View – Example .. 49-24
END LOGGING – Example .. 49-26
Teradata Administrator – Tools Menu > Access Logging .. 49-28
Query Logging (DBQL) Concepts .. 49-30
Objects used in Defining Rules for DBQL .. 49-32
Objects used in DBQL (cont.) ... 49-34
BEGIN QUERY LOGGING Statement .. 49-36
BEGIN QUERY LOGGING WITH … (cont.) ... 49-38
BEGIN QUERY LOGGING LIMIT … (cont.) .. 49-40
BEGIN QUERY LOGGING Examples .. 49-42
BEGIN QUERY LOGGING Examples (cont.) ... 49-44
BEGIN QUERY LOGGING Examples (cont.) ... 49-46
END QUERY LOGGING Statement .. 49-48
DBQLRules View .. 49-50
QryLog View – Example ... 49-52
QryLogSummary View – Example ... 49-54
Teradata Administrator – Tools Menu > Query Logging .. 49-56
Access and Query Logging Summary ... 49-58
Module 49: Review Questions ... 49-60
Lab Exercise 49-1 .. 49-62
Lab Exercise 49-2 .. 49-66

Table of Contents Page T-43

Module 50 – Priority Scheduler

Levels of Workload Management .. 50-4
Priority Scheduler Facility ... 50-6
Priority Scheduler Architecture.. 50-8
Priority Scheduler Architecture with TDWM Workloads ... 50-10
Priority Scheduler Concepts ... 50-12
Resource Partitions and Performance Groups.. 50-14
Relative Weights .. 50-16
Performance Periods and Milestones ... 50-18
CPU Usage Limits with Priority Scheduler ... 50-20
Use of Performance Groups ... 50-22
Getting Started with Priority Scheduler ... 50-24
Schmon Utility ... 50-26
Schmon Example ... 50-28
Priority Scheduler Administrator ... 50-34
Summary .. 50-36
Module 50: Review Questions ... 50-38

 Table of Contents Page T-44

Module 51 – Workload Management

Levels of Workload Management ... 51-4
What is TASM? ... 51-6
TASM Capabilities .. 51-8
Query Management Architecture .. 51-10
Query Management Architecture (cont.) ... 51-12
TDWM Example ... 51-14
Workload Designer Example ... 51-16
Filters and Throttles for Query Management .. 51-18
Object Access and Query Resource Filters ... 51-20
Object and Load Utility Throttles .. 51-22
Workload Definitions .. 51-24
Example of Using Workloads .. 51-26
Creating Workloads ... 51-28
WD – Classification Criteria ... 51-30
Specify Exception Criteria ... 51-32
Example – Exception Handling ... 51-34
Teradata Workload Analyzer ... 51-38
Summary .. 51-40
Module 51: Review Questions ... 51-42

Table of Contents Page T-45

Module 52 – Teradata Viewpoint

What is Teradata Viewpoint? ... 52-4
Viewpoint Portal and Portlets .. 52-6
Logging onto Viewpoint .. 52-8
Example of Initial Session and Portlets ... 52-10
Viewpoint Portlet Controls .. 52-12
Viewpoint Rewind ... 52-14
Query Monitor .. 52-16
Viewpoint Query Monitor Detail View ... 52-18
My Queries ... 52-20
Viewpoint – Remote Console .. 52-22
Viewpoint Alert Viewer ... 52-24
Viewpoint SQL Scratchpad ... 52-26
Viewpoint SQL Scratchpad Object Browser ... 52-28
Viewpoint SQL Scratchpad Saved/History .. 52-30
Summary .. 52-32
Module 52: Review Questions ... 52-34

 Table of Contents Page T-46

Module 53 – Performance Monitoring – ResUsage

Performance Monitoring Tools .. 53-4
Why Collect Performance Data? ... 53-6
Resource Usage Data ... 53-8
Collection Costs ... 53-8
Filling the ResUsage Tables .. 53-10
Specifying ResUsage Tables and Logging Rates .. 53-12
Resource Usage Tables .. 53-14
Resource Usage Views .. 53-16
Resource Usage Macros .. 53-18
Example Output from DBC.ResNode Macro .. 53-20
PM/API and Viewpoint ... 53-22
Teradata System Emulation Tool (Teradata SET) ... 53-24
Performance Monitoring Summary ... 53-26
Module 53: Review Questions ... 53-28

Module 54 – System Restarts

Types of Restarts ... 54-4
Scheduled Restarts ... 54-6
Restart Teradata from DB Window ... 54-8
Restart using the “tpareset” Command .. 54-10
PDE States ... 54-12
Unscheduled Restarts ... 54-14
Unscheduled Restarts (cont.) ... 54-16
Unscheduled Restarts (cont.) ... 54-18
TPA Reset – Crashdumps .. 54-20
Allocating Crashdumps Space ... 54-22
TPA Dump Maintenance ... 54-24
Linux Operating (Panic) Dumps .. 54-24
Module 54: Review Questions ... 54-26

Table of Contents Page T-47

Module 55 – System and Maintenance Utilities

Starting Teradata System Utilities ... 55-4
SMP and Database Window Utilities ... 55-6
Teradata Database Window ... 55-8
DBW Supervisor Window ... 55-10
DBS Control Utility ... 55-12
DBS Control Record – General Fields ... 55-14
DBS Control Record – General Fields ... 55-16
DBS Control Record – File System Fields .. 55-18
DBS Control Record – Performance Fields ... 55-20
Modifying DBS Control Parameters .. 55-22
Ferret – Defragment and Packdisk ... 55-24
Checking Data Integrity ... 55-26
Ferret – Scandisk Utility .. 55-28
Checktable Utility .. 55-30
Checktable – Levels of Checking .. 55-32
Checktable – Example ... 55-34
Table Rebuild Utility ... 55-36
Recovery Manager Utility .. 55-38
Recovery Manager Commands .. 55-40
Rcvmanager – List Status .. 55-42
Rcvmanager – List Locks .. 55-44
Rcvmanager – List Status (2nd Example) ... 55-46
Rcvmanager – List Rollback Tables .. 55-48
Rcvmanager – Cancel Rollback on Table .. 55-50
Showlocks Utility ... 55-52
Orphan or Phantom Spool Issues ... 55-54
Update Space Utility .. 55-56
Vprocmanager .. 55-58
Summary .. 55-60
Module 55: Review Questions ... 55-62

 Table of Contents Page T-48

Module 56 – Permanent Journals

Automatic Data Protection Mechanisms (Review) ... 56-4
Permanent Journals .. 56-6
Location of Change Images ... 56-8
Assigning Tables to a Permanent Journal .. 56-10
Creating a Permanent Journal .. 56-12
Assigning a Permanent Journal ... 56-14
Before-Image Journals ... 56-16
After-Image Journals ... 56-18
Journal Subtables ... 56-20
Permanent Journal Statements ... 56-22
Recovery with Permanent Journals ... 56-24
Journals[x] View .. 56-26
Summary .. 56-28
Module 56: Review Questions ... 56-30

Module 57 – A Tale of Three Tables

Permanent Journal Scenario .. 57-4
Table X .. 57-6
Table Y .. 57-8
Table Z ... 57-10
Permanent Journals .. 57-12
Archive Policy ... 57-14
Archive Scenario ... 57-16
After Restart Processing Completes .. 57-18
After REBUILD and Restart of Teradata .. 57-20
Table X Recovery .. 57-22
Table Y Recovery .. 57-24
Table Z Recovery .. 57-26
After Recovery ... 57-28
Summary .. 57-30

Table of Contents Page T-49

Module 58 – Archiving Data

Archive and Recovery Utility (ARC) .. 58-4
Archive and Recovery Phases .. 58-6
Restore versus FastLoad .. 58-8
ARC ... 58-10
Session Control .. 58-12
Multiple Sessions ... 58-14
ARC Statements ... 58-16
ARCHIVE Statement ... 58-18
ARCHIVE Examples ... 58-20
Archiving Selected Partitions of PPI Table ... 58-24
ARCHIVE Partition Example .. 58-26
ANALYZE Statement .. 58-28
ANALYZE Output ... 58-30
Archive Objects .. 58-32
Archive Objects (cont.) .. 58-34
Archive Levels ... 58-36
Archive Options ... 58-38
ONLINE Archive Option ... 58-40
BakBone NetVault Example .. 58-42
Database DBC Archive .. 58-44
Summary .. 58-46
Module 58: Review Questions ... 58-48

 Table of Contents Page T-50

Module 59 – Restoring Data

Understanding Restore Operations .. 59-4
Restore-Related Statements ... 59-6
The Restore Statement ... 59-8
Restoring Examples ... 59-10
RESTORE Example and Output ... 59-12
Restoring Selected Partitions of PPI Table .. 59-14
RESTORE Partition Example .. 59-16
COPY Statement .. 59-18
Copying Objects .. 59-20
Copying .. 59-22
BUILD Statement .. 59-24
RELEASE LOCK Statement ... 59-26
Revalidate References ... 59-28
Revalidate References Output ... 59-30
Recovery Control Data Dictionary Views ... 59-32
Association View ... 59-34
Events View ... 59-36
Restoring Data Summary ... 59-38
Module 59: Review Questions ... 59-40

Module 60 – Data Recovery Operations

Data Recovery Using Roll Operations .. 60-4
The CHECKPOINT Statement .. 60-6
CHECKPOINT WITH SAVE Statement .. 60-8
Using the ROLLBACK Command .. 60-10
The ROLLBACK Statement .. 60-12
ROLLFORWARD Statement .. 60-14
ROLLFORWARD Restrictions ... 60-16
The ROLLFORWARD Statement ... 60-18
DELETE JOURNAL Statement .. 60-20
Summary .. 60-22
Module 60: Review Questions ... 60-24

Table of Contents Page T-51

Module 61 – Teradata Factory Recap

Teradata Factory Review – Week 1 ... 61-4
Teradata Factory Review – Week 2 ... 61-6
Dictionary Tables to Maintain ... 61-8
Plan and Follow-up .. 61-10
Things You Never Have to do with Teradata .. 61-12
Things You Never Have to do with Teradata (cont.) ... 61-14
Teradata Differentiators ... 61-16
Teradata Certification Tests ... 61-18

 Table of Contents Page T-52

Notes

	B100 TF Introduction
	B101 Overview
	B102 Basics
	B103 TD Arch
	B104 DBs and Users
	B105 Primary Indexes
	B106 Secondary Indexes
	B107 System Arch
	B108 Data Protection
	B109 Intro Systems
	B110 System Use
	B111 TVS
	B112 Design Overview
	B113 Hashing
	B114 FS Writes
	B115 SQL Assistant
	B116 Analyze PI
	B117 PPI
	B118 Columnar
	B119 SI Usage
	B120 Analyze SI
	B121 Access & Constraints
	B122 Referential Integrity
	B123 Sizing
	B124 Parser
	B125 Statistics
	B126 Explain
	B127 Visual Explain
	B128 Joins
	B129 Explain Joins
	B230 Additional Indexes
	B231 Misc SQL
	B232 AU Intro
	B233 Bteq
	B234 FastLoad
	B235 Support
	B236 FastExport
	B237 Mload Part 1
	B238 Mload Part 2
	B239 Tpump
	B240 Choose
	B241 Admin Env
	B242 DD
	B243 Space
	B244 Users
	B245 Profiles
	B246 Access Rights
	B247 Roles
	B248 AccControl
	B249 AccLog
	B250 Priority Scheduler
	B251 Workload Mgmt
	B252 Viewpoint
	B253 ResUsage
	B254 Restart
	B255 System Utilities
	B256 Perm Jrl
	B257 Tale3T
	B258 Archive
	B259 Restore
	B260 Roll_BF
	B261 Recap
	B262 AppA Lab Environment
	B263 AppB Acronyms
	B264 AppC Review Q Answers
	B265 AppD DD Views
	B266 AppE Lab Solutions
	B267 AppF Misc Arch
	B268 AppT TOC

