
1-1

TI Deep learning Library on TDAx

User Guide

April 2018

TI Deep learning Library User Guide April 2018

 1-2

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor
products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant
information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”)
are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale
of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI
components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party
products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a
license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by
all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be
subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any
implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and
any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and
agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their
consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives
against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers
to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are
subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a
special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been
so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with
such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated
products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive & Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications & Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers & Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energyapps

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics & Defense www.ti.com/space-avionics-
defense
Microcontrollers microcontroller.ti.com Video & Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright© 2018, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com/
http://www.ti.com/communications
http://dataconverter.ti.com/
http://www.ti.com/computers
http://www.dlp.com/
http://www.ti.com/consumer-apps
http://dsp.ti.com/
http://www.ti.com/energyapps
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com/
http://www.ti.com/medical
http://logic.ti.com/
http://www.ti.com/security
http://power.ti.com/
http://www.ti.com/space-avionics-defense
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com/
http://www.ti.com/video
http://www.ti-rfid.com/
http://e2e.ti.com/

TI Deep learning Library User Guide April 2018

 1-3

Table of Contents

IMPORTANT NOTICE 1-2

1 READ THIS FIRST 1-5

1.1 About This Manual 1-5

1.2 Intended Audience 1-5

1.3 How to Use This Manual 1-5

1.4 Related Documentation From Texas Instruments 1-5

1.5 Abbreviations 1-5

1.6 Text Conventions 1-6

1.7 Product Support 1-6

1.8 Trademarks 1-6

2 INTRODUCTION 2-1

2.1 Overview of XDAIS 2-1

2.1.1 XDAIS Overview 2-1

2.2 Overview of TI Deep Learning Library 2-2

3 INSTALLATION OVERVIEW 3-4

3.1 System Requirements 3-4

3.1.1 Hardware 3-4

3.1.2 Software 3-4

3.2 Installing the Component 3-4

3.2.1 Installing the compressed archive 3-4

3.3 Building Sample Test Application 3-5

3.3.1 Installing XDAIS tools (XDAIS) 3-6

3.3.2 Installing Code Generation Tools 3-6

3.3.3 DMA utility Library 3-6

3.3.4 MATH LIB for C66x 3-6

3.3.5 Building the Test Application Executable through GMAKE 3-6

3.4 Configuration File 3-7

3.4.1 Test Application Configuration File 3-7

TI Deep learning Library User Guide April 2018

 1-4

3.5 Host emulation build for source package 3-8

3.5.1 Installing Visual Studio 3-8

3.5.2 Building source in host emulation 3-8

3.6 Running a Model trained by user 3-9

3.6.1 Building Model import tool 3-9

3.6.2 Importing the Model and Parameters 3-10

3.6.3 Building TIDL reference executable 3-12

3.6.4 Importing Caffe-Jacinto-Models 3-12

3.6.5 Importing Tensorflow Models 3-13

3.7 Input and Output Data Formats 3-13

3.8 Matching TIDL inference result 3-14

3.9 TIDL Limitation 3-15

3.10 Uninstalling the Component 3-17

4 SAMPLE USAGE 4-18

4.1 Overview of the Test Application 4-18

4.2 Algorithm Instance Creation and Initialization 4-19

4.3 Process Call 4-19

4.4 Algorithm Instance Deletion 4-20

4.5 Frame Buffer Management 4-20

4.5.1 Input and Output Frame Buffer 4-20

5 API REFERENCE 5-21

6 FAQ 6-21

TI Deep learning Library User Guide April 2018

 1-5

11 RReeaadd TThhiiss FFiirrsstt

1.1 About This Manual

This document describes how to install and work with Texas Instruments’ (TI) TI Deep
learning Library Module implemented on TI’s TMS320C66x DSP and EVE. It also provides
a detailed Application Programming Interface (API) reference and information on the sample
application that accompanies this component.

TI Deep learning Library Module implementations are based on IVISION interface. IVISION
interface is an extension of the eXpressDSP Algorithm Interface Standard (XDAIS).

1.2 Intended Audience

This document is intended for system engineers who want to integrate TI’s vision and
imaging algorithms with other software to build a high level vision system based on C66x
DSP or EVE.

This document assumes that you are fluent in the C language, and aware of vision and
image processing applications. Good knowledge of eXpressDSP Algorithm Interface
Standard (XDAIS) standard will be helpful.

1.3 How to Use This Manual

This document includes the following chapters:

Chapter 2 - Introduction, provides a brief introduction to the XDAIS standards. It also
provides an overview of TI Deep learning Library Module and lists its supported features.

Chapter 3 - Installation Overview, describes how to install, build, and run the algorithm.

Chapter 4 - Sample Usage, describes the sample usage of the algorithm.

Chapter 5 - API Reference, describes the data structures and interface functions used in the
algorithm.

Chapter 6 - Frequently Asked Questions, provides answers to frequently asked questions
related to using TI Deep learning Library Module.

1.4 Related Documentation From Texas Instruments

This document frequently refers TI’s DSP algorithm standards called XDAIS. To obtain a
copy of document related to any of these standards, visit the Texas Instruments website at
www.ti.com.

1.5 Abbreviations

The following abbreviations are used in this document.

Table 1 List of Abbreviations

Abbreviation Description

API Application Programming Interface

http://www.ti.com/

TI Deep learning Library User Guide April 2018

 1-6

Abbreviation Description

DMA Direct Memory Access

DSP Digital Signal Processing

EVM Evaluation Module

EVE Embedded Vision Engine

XDAIS eXpressDSP Algorithm Interface Standard

1.6 Text Conventions

The following conventions are used in this document:

Text inside back-quotes (‘‘) represents pseudo-code.

Program source code, function and macro names, parameters, and command line commands

are shown in a mono-spaced font.

1.7 Product Support

When contacting TI for support on this product, quote the product name (TI Deep learning
Library Module on TMS320C66x DSP and EVE) and version number. The version number
of the TI Deep learning Library Module is included in the Title of the Release Notes that
accompanies the product release.

1.8 Trademarks

Code Composer Studio, eXpressDSP, TI Deep learning Library Module are trademarks of
Texas Instruments.

2-1

22 IInnttrroodduuccttiioonn

This chapter provides a brief introduction to XDAIS. It also provides an overview of TI’s
implementation of TI Deep learning Library Module on the C66x DSP 7 EVE and its
supported features.

2.1 Overview of XDAIS

TI’s vision analytics applications are based on IVISION interface. IVISION is an extension of
the eXpressDSP Algorithm Interface Standard (XDAIS). Please refer documents related to
XDAIS for further details.

2.1.1 XDAIS Overview

An eXpressDSP-compliant algorithm is a module that implements the abstract interface IALG.
The IALG API takes the memory management function away from the algorithm and places it
in the hosting framework. Thus, an interaction occurs between the algorithm and the
framework. This interaction allows the client application to allocate memory for the algorithm
and also share memory between algorithms. It also allows the memory to be moved around
while an algorithm is operating in the system. In order to facilitate these functionalities, the
IALG interface defines the following APIs:

algAlloc()

algInit()

algActivate()

algDeactivate()

algFree()

The algAlloc() API allows the algorithm to communicate its memory requirements to the

client application. The algInit() API allows the algorithm to initialize the memory allocated

by the client application. The algFree() API allows the algorithm to communicate the

memory to be freed when an instance is no longer required.

Once an algorithm instance object is created, it can be used to process data in real-time. The
algActivate() API provides a notification to the algorithm instance that one or more

algorithm processing methods is about to be run zero or more times in succession. After the
processing methods have been run, the client application calls the algDeactivate() API

prior to reusing any of the instance’s scratch memory.

The IALG interface also defines three more optional APIs algControl(), algNumAlloc(),

and algMoved(). For more details on these APIs, see TMS320 DSP Algorithm Standard API

Reference (literature number SPRU360).

TI Deep learning Library User Guide April 2018

2-2

2.2 Overview of TI Deep Learning Library

• Convolution neural network (CNN) based Machine learning algorithms are used in many
ADAS applications and self-driving cars. These algorithms are defined in the form of
network structure with thousands of parameters. These algorithms needs to be accelerated
on TI devices (with DSP and EVE cores) without much effort from the algorithm
developer/customer

• Interoperability : There are many tools/frameworks are available in PC for algorithm
development (Training and fine tuning). We need to have a solution to support most of
these popular frameworks in TI devices with optimal resource utilization.

• High Compute : The MAC requirements of these CNN networks are in the range of 500
Giga MACs to 10 Tera MACs for 1 MP image real-time processing. TI TDA2x+ devices can
deliver up to 70 GMACs for CNN algorithms.

• High Memory Bandwidth : CNN networks normally consists of multiple layers (20 to
100s), each of these layers have multiple channels (around 4 Mbytes output from each
layer). As we understand the embedded devises have limited memory bandwidth and it
plays a important role in device compute utilization.

• Scalability :

• API : The algorithms (layers) used in these CNN networks are evolving,
there are many layers are getting defined in continuously. The interface
and data flow shall be scalable to add any new layers.

• Performance: TI devices have multiple compute cores (EVE, DSP, ARM) in
each SoC. The solutions shall be scalable to utilize these core
simultaneously without much effort from users

Figure 1 Fundamental blocks of TI Deep Learning Library

The TI Deep Learning Library addresses the above mentioned problems with following solutions

• Software Architecture to reuse the same data flow between EVE and DSP, only compute
kernels are different

TI Deep learning Library User Guide April 2018

2-3

• Focus on exploiting sparse coefficients and effectively higher MACs

• Extendable API and software architecture to allow integration of newer layers

• Appropriate usage of memory hierarchy and data flow to optimally utilize the memory
bandwidth at DDR and OCMC

TI Deep learning Library User Guide April 2018

3-4

33 IInnssttaallllaattiioonn OOvveerrvviieeww

This chapter provides a brief description on the system requirements and instructions for
installing TI Deep learning Library Module. It also provides information on building and
running the sample test application.

3.1 System Requirements

This section describes the hardware and software requirements for the normal functioning of
the algorithm component.

3.1.1 Hardware

This algorithm has been built and tested TI’s C66x DSP and EVE on TDA2x and TDA3x
platform. The algorithm shall work on any future TDA platforms hosting C66x DSP or EVE.

3.1.2 Software

The following are the software requirements for the stand alone functioning of the TI Deep
learning Library Module:

Development Environment: This project is developed using TI’s DSP Code Generation Tool
7.4.4 and EVE Code Generation Tool 1.0.7. Other required tools used in development are
mentioned in section 3.3

The project are built using g-make (GNU Make version 3.81). GNU tools comes along with CCS
installation.

DMA utility Library Version 00.08.00.00 for programming EDMA

3.2 Installing the Component

The algorithm component is released as install executable. Following sub sections provided
details on installation along with directory structure.

3.2.1 Installing the compressed archive

The algorithm component is released as a compressed archive. To install the algorithm,
extract the contents of the zip file onto your local hard disk.



Figure 2 Component Directory Structure

TI Deep learning Library User Guide April 2018

3-5

Table 2 Component Directories

Sub-Directory Description

\common Common files for building different modules

\makerules Make rules files

\modules Top level folder containing different app modules

\modules\ti_dl TI Deep learning Library module for C66x DSP and EVE

\modules \ti_dl\docs User guide and Datasheet for TI Deep learning Library module

\modules\ti_dl\inc Contains itidl_ti.h interface file

\modules\ti_dl\lib Contains TI Deep learning Library

\modules\ti_dl\test Contains standalone test application source files

\modules\ti_dl\test\out Contains test application .out executable

\modules\ti_dl\test\src Contains test application source files

\modules\ti_dl\test\test
vecs

Contains config, input, output, reference test vectors

\modules\ti_dl
\test\testvecs\config

Contain config file to set various parameters exposed by TI
Deep learning Library module

\modules\ti_dl
\test\testvecs\input

Contains sample input feature vector .bin file

\modules\ti_dl
\test\testvecs\output

Contains output file

\modules\ti_dl
\test\testvecs\reference

Contains reference file

\modules\ti_dl\utils Contains the source code and binary of the PC tool used
importing the trained models and their parameters to the
TIDL

3.3 Building Sample Test Application

This TI Deep learning Library has been accompanied by a sample test application. To run the
sample test application XDAIS tools are required.

This version of the TI Deep learning Library has been validated with XDAIS tools containing
IVISION interface version. Other required components (for test application building) version
details are provided below.

 DSP Code Generation Tool version 7.4.2

 EVE/ARP32 Code Generation Tool version 1.0.7

TI Deep learning Library User Guide April 2018

3-6

 XDAIS version 7.22.00.03

 DMA utility Library Version 00.08.00.00

 MATH LIB for C66x version 3_1_0_0

3.3.1 Installing XDAIS tools (XDAIS)

XDAIS version 7.24 can be downloaded from the following website:

http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/xdais/

Extract the XDAIS zip file to the same location where Code Composer Studio has been
installed. For example:

C:\CCStudio5.0

Set a system environment variable named “XDAIS_PATH” pointing to <install

directory>\<xdais_directory>

3.3.2 Installing Code Generation Tools

 Install EVE and DSP Code generation Tools from the link

https://www-a.ti.com/downloads/sds_support/TICodegenerationTools/download.htm

After installing the CG tools, set the environment variable to “DSP_TOOLS” and

“ARP32_TOOLS” to corresponding the installed directory like <install

directory>\<cgtools_directory>

3.3.3 DMA utility Library

 Install DMA utility library for EVE and DSP from the link

https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.62652.37497

 After installing the DMA Utility Library, Set a system environment variable named
“DMAUTILS_PATH” pointing to <install directory>\ dmautils

3.3.4 MATH LIB for C66x

 Install MATH LIB for C66x DSP from the link

http://software-dl.ti.com/sdoemb/sdoemb_public_sw/mathlib/latest/index_FDS.html

After installing the MATH LIB Library, Set a system environment variable named
“MATHLIB_INSTALL_DIR” pointing to <install directory>\mathlib_c66x_3_1_0_0

3.3.5 Building the Test Application Executable through GMAKE

The sample test application that accompanies TIDL module will run in TI’s Code Composer
Studio development environment. To build and run the sample test application through
gmake, follow these steps:

1) Verify that you have installed code generation tools as mentioned.

2) Verify that you have installed XDAIS as mentioned

http://downloads.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/xdais/
https://www-a.ti.com/downloads/sds_support/TICodegenerationTools/download.htm
https://cdds.ext.ti.com/ematrix/common/emxNavigator.jsp?objectId=28670.42872.62652.37497
http://software-dl.ti.com/sdoemb/sdoemb_public_sw/mathlib/latest/index_FDS.html

TI Deep learning Library User Guide April 2018

3-7

3) Verify that appropriate environment variables have been set as

discussed in this above sections.

a. Environment variables can be either directly set by updating

the system environment variables or by editing the config.mk

file in makerules folder

4) Build the sample test application project

a. For DSP

 modules\ti_dl\test> gmake CORE=dsp

b. For EVE

 modules\ti_dl\test> gmake CORE=eve

5) The above step creates executable files, “dsp_test_dl_algo.out” and

“eve_test_dl_algo.out” in the modules\ti_dl\test\out sub-directory.

6) Open CCS with TDA2x platform selected configuration file. Select

Target > Load Program on C66x DSP/EVE, browse to the

modules\ti_dl\test\out sub-directory, select the executable created in

step 5, and load it into Code Composer Studio in preparation for

execution.

7) Select Target > Run on C66x DSP/EVE window to execute the sample

test application.

8) Sample test application takes the input files stored in the

\test\testvecs\input sub-directory, runs the module.

9) The reference files stored in the \test\testvecs\reference sub-directory

can be used to verify that the TIDL is functioning as expected..

10) User should compare with the reference provided in

\test\testvecs\reference directory. Both the content should be same to

conclude successful execution.

3.4 Configuration File

This algorithm is shipped along with:

tidl_conv_seg_net.cfg – specifies the configuration parameters used by the test application to
configure the TIDL for semantic segmentation algorithm.

3.4.1 Test Application Configuration File

A sample tidl_conv_seg_net.cfg file is as shown.

#--#

TI Deep learning Library User Guide April 2018

3-8

Common Parameters #

#--#

inData = "../testvecs/input/000100_1024x512_bgr.y" # Input BGR file

traceDumpBaseName = "../testvecs/output/trace_dump_" # Base filename for trace dumps

outData = "../testvecs/output/seg_out.bin" # Output filepath

netBinFile = "../testvecs/config/tidl_net_seg.bin" #Network model bin file generated

by Import tool

paramsBinFile = "../testvecs/config/tidl_pamas_seg.bin" #Network Parameters bin

generated by Import tool

3.5 Host emulation build for source package

The source release of TIDL module can be built in host emulation mode. This

option speeds up development and validation time by running the platform code on

x86/x64 PC.

3.5.1 Installing Visual Studio

Building host emulation for TI Deep Learning Library module requires Microsoft

Visual Studio 11.0 (2012) or later

3.5.2 Building source in host emulation

After installing the required components, navigate to TI Deep Learning Library

install path and run vcvarsall.bat to setup the required environment variables

{TIDL_install_path} > {…\Microsoft Visual Studio

11.0\VC\vcvarsall.bat}

Once the environment variables are setup build the TI Deep Learning Library

source in host emulation mode

{TIDL_install_path} > gmake CORE=eve TARGET_BUILD=debug

TARGET_PLATFORM=PC

This will build the host emulation executable under the path

{TIDL_install_path}\test\out\eve_test_dl_algo.out.exe

TIDL_install_path} > gmake CORE=dsp TARGET_BUILD=debug

TARGET_PLATFORM=PC

This will build the host emulation executable under the path

{TIDL_install_path}\test\out\dsp_test_dl_algo.out.exe

TI Deep learning Library User Guide April 2018

3-9

To build the example in host emulation mode for c6x DSP you will need to install the c6xsim
which is available at

http://processors.wiki.ti.com/index.php/Run_Intrinsics_Code_Anywhere

Install this package in the common folder

If you observe below error while building

linkage specification contradicts earlier specification for '_ti_rotl

Update below line in “c6xsim\C6xSimulator.h”

uint32 _rotl(uint32 a, int32 b);

to

uint32 _rotl(uint32 a, uint32 b);

Build with below setting (in “tidl_alg_int.h” file) to build the code to run the inference faster on

emulation mode on PC.

#define ENABLE_TRACE_PROFILE (0)

#define ENABLE_REF_COMPARISION (0)

#define ENABLE_CN_CODE (1)

#define ENABLE_PRINTFS (0)

Note: The target code has to be built at least once before building HSOT emulation build. The

target build generates few header files which would be needed for HSOT emulation build

3.6 Running a Model trained by user

3.6.1 Building Model import tool

The TIDL release package contains pre-built import tool for below training frame works.

 Caffe

 TensorFlow

This tool is built using the protobuf library version 3.2.0rc2.

The above mentioned module can be downloaded from below link.

https://developers.google.com/protocol-buffers/docs/downloads

This tool also can be re-built using visual studio complier with below command. Please

refer the makefile in the {TIDL_install_path}\utils\tidlModelImport folder and

update the ptotobuf module install paths.

 Gmake

http://processors.wiki.ti.com/index.php/Run_Intrinsics_Code_Anywhere
https://developers.google.com/protocol-buffers/docs/downloads

TI Deep learning Library User Guide April 2018

3-10

Note : All the pre-built windows executable are built with Microsoft visual studio V11.0

(2012). Please install Visual C++ Redistributable for Visual Studio 2012 to run these on

your windows machine.

https://www.microsoft.com/en-in/download/details.aspx?id=30679

3.6.2 Importing the Model and Parameters

We provide a PC tool to import the Model and Parameters trained using either caffe frame

work or tensor flow frame work in PC. This PC tool will accept various parameters through

import configuration file and generate the Model and Parameter file that the code will be

executed using TIDL library across multiple EVE and DSP cores. The source code to the tool

is also provided in the package for user to build it on different platform (Uinix/Linux) or extend

it for their use case.

The import configuration file is available in

{TIDL_install_path}\test\testvecs\config\import

Binary Usage:

EXE "Import configuration File Name"

Example:

>tidl_model_import.out.exe ..\..\test\testvecs\config\import\tidl_import_jseg21.txt

The list of import configuration parameters is as below:

Parameter Comment

randParams
 It can be either 0 or 1. Default value is 0. If it is set to 0, the tool will
generate the quantization parameters from model, otherwise it will
generate random quantization parameters.

modelType
 It can be either 0 or 1. Default value is 0. Set this to 0 to read from
caffeImport frame work, and set it to 1 to read from tensor flow frame
work.

quantizationStyle
 It can be ‘0’ for fixed quantization by the training framework or ‘1’ for
dynamic quantization by. Default value is 1. Currently, only dynamic
quantization is supported.

quantRoundAdd It can take any value from 0 to 100. Default value is 50.
quantRoundAdd/100 will be added while rounding to integer

numParamBits It can take values from 4 to 12. Default value is 8. This is the number of bits
used to quantize the parameters.

preProcType It can take values from 0 to 3. Default value is 0.

Conv2dKernelType

 It can be either 0 or 1 for each layer. Default value is 0 for all the layers. Set
it to 0 to use sparse convolution, otherwise, set it to 1 to use dense
convolution.

inElementType It can be either 0 or 1. Default value is 1. Set it to 0 for 8-bit unsigned input
or to 1 for 8-bit signed input.

inQuantFactor It can take values >0. Default value is -1.

https://www.microsoft.com/en-in/download/details.aspx?id=30679

TI Deep learning Library User Guide April 2018

3-11

rawSampleInData It can be either 0 or 1. Default value is 0. Set it to 0, if the input data is
encoded, or set it to 1, if the input is RAW data.

numSampleInData It can be > 0. Default value is 1.

foldBnInConv2D It can be either 0 or 1. Default value is 1.

inWidth Width of the input image, it can be >0.

inHeight Height of the input image, it can be >0.

inNumChannels input number of channels. It can be from 1 to 1024.

sampleInData Input data File name.

tidlStatsTool TIDL reference executable.

inputNetFile Input net file name (From Training frame work)

inputParamsFile Input Params file name (From Training frame work)

outputNetFile Output Model net file name, to be updated with stats.

outputParamsFile Output Params file name.

layersGroupId
Group of layers that needs to be processed on a given CORE. Refer SSD
import config for example usage

Example (tidl_import_jseg21.txt): Ignored parameters will be set to the default values.

randParams = 0

modelType = 0

quantizationStyle = 1

quantRoundAdd = 25

numParamBits = 8

inElementType = 0

inputNetFile =

..\..\test\testvecs\config\caffe_models\tiscapes_jseg21\jacintonet11.prototxt

inputParamsFile =

..\..\test\testvecs\config\caffe_models\tiscapes_jseg21\jacintonet11.caffemodel

outputNetFile = "..\..\test\testvecs\config\tidl_models\tidl_net_jsegnet21v2.bin"

outputParamsFile = "..\..\test\testvecs\config\tidl_models\tidl_param_jsegnet21v2.bin"

rawSampleInData = 1

sampleInData = "..\..\test\testvecs\input\000100_1024x512_bgr.y"

tidlStatsTool = "..\quantStatsTool\eve_test_dl_algo.out.exe"

TI Deep learning Library User Guide April 2018

3-12

3.6.3 Building TIDL reference executable

The tidlStatsTool can be built using the TIDL source code. Use below command to build
this tool from {TIDL_install_path} folder

gmake TARGET_PLATFORM=PC TARGET_BUILD=release CORE=eve RUN_REF_FOR_STATS=1

Use below commands to build with openCv for reading compressed images. Update
makefile in {TIDL_install_path}\test for your openCV install directory

gmake TARGET_PLATFORM=PC TARGET_BUILD=release CORE=eve RUN_REF_FOR_STATS=1
BUILD_WITH_OPENCV=1

After completion of build copy the executable to
{TIDL_install_path}\utils\quantStatsTool

3.6.4 Importing Caffe-Jacinto-Models

The caffe-models trained using Caffe-Jacinto framework is available in the below GitHub

repository.

https://github.com/tidsp/caffe-jacinto-models.

 Please follow the below steps to import and run inference using these models on TIDL.

1. Download/Clone the caffe-jacinto-models from the GitHub

2. Copy the downloaded repo under the {TIDL_install_path}\test\config\caffe_jacinto_models

folder. Below two folders shall be available now

 {TIDL_install_path}\test\testvecs\config\caffe_jacinto_models\trained\image_classifi

cation

 {TIDL_install_path}\test\testvecs\config\caffe_jacinto_models\trained\image_segme

ntation

3. Now run the “importTestCases.bat” from the below path.

a. {TIDL_install_path}\utils\tidlModelImport

4. On successful execution of above script, imported net and param files shall be available.

This scripts generated trace files also in the current directory.

a. {TIDL_install_path}\test\testvecs\config\tidl_models\tidl_net_*.bin

b. {TIDL_install_path}\test\testvecs\config\tidl_models\tidl_param_*.bin

5. These imported models can be executed using the configurations files available in the

below path

a. {TIDL_install_path}\test\testvecs\config\import

https://github.com/tidsp/caffe-jacinto-models

TI Deep learning Library User Guide April 2018

3-13

6. To run TIDL in Host emulation mode, Build the source code in host emulation mode as

explained in the earlier build section. Run the “runFuncTests.bat” script available in the

below path. This also generates traces and output in corresponding test case folders.

These trace files and *_out.bin file can be compared with the traces generated by import

tool for correctness. Update the DSP/EVE executable name in the script before execution

a. {TIDL_install_path}\utils\hostEmulationTest

7. To run TIDL on target EVM, Build the source code for target mode as explained in the

earlier build section. Update the “{TIDL_install_path}\test\testvecs\config config_list.txt” with

the test case that needs to be executed. Load and run the test application out file using the

CCS. The generated *_out.bin file can be compared with the traces generated by import

tool for correctness.

3.6.5 Importing Tensorflow Models

TIDL supports slim based tensorflow models. We have used Checkpoint from below to

validation. We have validated Inception V1 and MobileNet_v1_1.0_224

https://github.com/tensorflow/models/tree/master/research/slim

TIDL only accepts optimized frozen graphs.

Please refer below file to convert Checkpoint to the frozen graph.

https://gist.github.com/StanislawAntol/656e3afe2d43864bb410d71e1c5789c1

Then use "tensorflow\python\tools\optimize_for_inference.py" on the output of above step

to optimize for inference.

Example : python "tensorflow\python\tools\optimize_for_inference.py" --

input=mobilenet_v1_1.0_224.pb --output=mobilenet_v1_1.0_224_final.pb --

input_names=input --output_names="softmax/Softmax"

3.7 Input and Output Data Formats
TIDL Library expects input format per channel like on image below. The TIDL_MAX_PAD_SIZE is

defined in algorithm interface file.

https://github.com/tensorflow/models/tree/master/research/slim
https://gist.github.com/StanislawAntol/656e3afe2d43864bb410d71e1c5789c1

TI Deep learning Library User Guide April 2018

3-14

3.8 Matching TIDL inference result

The TIDL import step runs the inference on PC and the result generates expected output (With

caffe or tensorflow inference). If you observe difference at this stage please follow below steps to

debug.

1. Caffe inference input and TIDL inference input shall match. Import step dumps input of the

first layer at “trace_dump_0_*”, make sure that this is same for caffe as well.

2. If the input is matching, then dump layer level features from caffe and match with TIDL

import traces.

3. TDIL trace is in fixed point and can be converted to floating point (using OutQ printed in the

import log). Due to quantization the results will not exactly match, but will be similar.

4. Check the parameters of the layer where the mismatch is observed.

5. Share the input and Parameter with TI for further debug.

We use the statistics collected from the previous process for quantizing the activation dynamically

in the current processes. So, results we observe during the process on target will NOT be same

(but similar) for same input images compared to import steps. We have validated this logic with

semantic segmentation application on input video sequence

TI Deep learning Library User Guide April 2018

3-15

TIDL maintains range statistics for previously processed frames. It quantizes the current inference

activations using range statistics from history for processes (weighted average range).

Below is the parameters controls quantization.

quantMargin is margin added to the average in percentage.

quantHistoryParam1 weights used for previously processed inference during application

boot time

quantHistoryParam2 weights used for previously processed inference during application

execution (After initial few frames)

To get the same result in TIDL target same as import step for an image. Please set below

parameters during algorithm creation.

createParams.quantHistoryParam1 = 0;

createParams.quantHistoryParam2 = 0;

createParams.quantMargin = 0;

Set with below parameters for running on video sequence.

createParams.quantHistoryParam1 = 20;

createParams.quantHistoryParam2 = 10;

createParams.quantMargin = 20;

3.9 TIDL Limitation
• Convolution Layer

– We have tested the kernel size up to 7x7 (Shall work for higher values also, but not

validated)

– Dilation is tested with 1,2,4.

– We support only stride 1 and 2. Any value higher than 2 is not supported.

– Dense convolution flow is supported for only 1x1 and 3x3 kernels with stride = 1

and dilation =1

– Maximum number of input and output channel supported in 1024

• Deconvoltion Layer

– Number of groups shall be equal to the number of channels.

– Only supported stride value is 2

• Arg Max

– Up to 15 input channels are supported for EVE core and up to 6 channels are

supported for DSP core.

TI Deep learning Library User Guide April 2018

3-16

– out_max_val = false and top_k = 1 (Defaults) and axis = 1 (Supported only

across channel)

• InnerProductLayer

– Maximum input and output Nodes supported are 4096.

– The input data has the flattened (That is C =1 and H =1 for the input data)

– A flatten layer cab be used before this layer in C > 1 and H > 1

– If a global avg Pooling also can be flattens the output

• Spatial Pooling Layer

– Average and Max Pooling are supported with stride 1, 2, 4 and kernel sizes of

2x2,3x3,4x4 etc. STOCHASTIC Pooling not supported

– Global Pooling supported for both Average and Max. The output data N=1 and H

=1. The output W will be Updated with input ‘N’

• BiasLayer

– Only one scalar bias per channel is supported.

• CancatLayet

– Concatenate is only supported across channel (axis = 1; default).

• CropLayer

– Only Spatial crop is supported (axis = 2; default).

• FlattenLayer

– Keeps ‘N’ unchanged. Makes C=1 and H=1

• ScaleLayer

– Only one scalar scale and bias per channel is supported.

• SliceLayer

– Slice is only supported across channel (axis = 1; default).

• SoftmaxLayer

– The input data has the flattened (That is C =1 and H =1 for the input data)

• SSD

– Only Caffe-Jacinto based SSD network is validated.

– Reshape, Permute layers are supported only in the context of SSD network.

TI Deep learning Library User Guide April 2018

3-17

– “share_location” has to be true

– Tested with 4 and 5 heads.

– SaveOutputParameter is ignored in TIDL inference.

– code_type is only tested with CENTER_SIZE.

• Tensorflow

– Only Slim based models are validated. Please refer nceptionNetV1 and

mobilenet_1.0 from below as examples for building your models.

– https://github.com/tensorflow/models/tree/master/research/slim

3.10 Uninstalling the Component

To uninstall the component, delete the algorithm directory from your hard disk.

https://github.com/tensorflow/models/tree/master/research/slim

4-18

44 SSaammppllee UUssaaggee

This chapter provides a detailed description of the sample test application that accompanies this TI
Deep Learning Library component.

4.1 Overview of the Test Application

The test application exercises the IVISION and extended class of the TI Deep Learning Library

Library . The source files for this application are available in the \test\src sub-directories.

Table 3 Test Application Sample Implementation

The test application is divided into four logical blocks:

Parameter setup

Algorithm instance creation and initialization

Process call

Algorithm instance deletion

TI Deep learning Library User Guide April 2018

 4-19

4.2 Algorithm Instance Creation and Initialization

In this logical block, the test application accepts the various initialization parameters and returns an
algorithm instance pointer. The following APIs implemented by the algorithm are called in sequence
by ALG_create():

algNumAlloc() - To query the algorithm about the number of memory

records it requires.

algAlloc() - To query the algorithm about the memory requirement

to be filled in the memory records.

algInit() - To initialize the algorithm with the memory structures

provided by the application.

A sample implementation of the create function that calls algNumAlloc(), algAlloc(), and

algInit() in sequence is provided in the ALG_create() function implemented in the

alg_create.c file.

IMPORTANT! In this release, the algorithm assumes a fixed number of EDMA channels and does
not rely on any IRES resource allocator to allocate the physical EDMA channels. This EDMA
channel allocation method will be moved to IRES based mechanism in subsequent releases.

IMPORTANT! In this release, the algorithm requests two types of internal memory via
IALG_DARAM0 and IALG_DARAM1 enums. The performance of the algorithm is validated by
allocating DARAM0 to L1D SRAM and DARAM1 to L2 SRAM. Refer datasheet for more information
regarding data and program memory sizes.

4.3 Process Call

After algorithm instance creation and initialization, the test application does the following:

Sets the dynamic parameters (if they change during run-time) by calling
the control() function with the IALG_SETPARAMS command.

Sets the input and output buffer descriptors required for the process()

function call. The input and output buffer descriptors are obtained
by calling the control() function with the IALG_GETBUFINFO

command.

Calls the process() function to detect objects in the provided feature

plane. The inputs to the process function are input and output buffer
descriptors, pointer to the IVISION_InArgs and

IVISION_OutArgs structures.

When the process() function is called, the software triggers the start

of algorithm.

The control() and process() functions should be called only within the scope of the

algActivate() and algDeactivate() XDAIS functions, which activate and deactivate the

algorithm instance respectively. If the same algorithm is in-use between two process/control
function calls, calling these functions can be avoided. Once an algorithm is activated, there can be
any ordering of control() and process() functions. The following APIs are called in sequence:

algActivate() - To activate the algorithm instance.

control() (optional) - To query the algorithm on status or setting of

dynamic parameters and so on, using the eight control commands.

TI Deep learning Library User Guide April 2018

 4-20

process() - To call the Algorithm with appropriate input/output buffer

and arguments information.

control() (optional) - To query the algorithm on status or setting of

dynamic parameters and so on, using the eight available control
commands.

algDeactivate() - To deactivate the algorithm instance.

The do-while loop encapsulates frame level process() call and updates the input buffer pointer

every time before the next call. The do-while loop breaks off either when an error condition occurs
or when the input buffer exhausts.

If the algorithm uses any resources through RMAN, then user must activate the resource after the
algorithm is activated and deactivate the resource before algorithm deactivation.

4.4 Algorithm Instance Deletion

Once process is complete, the test application must release the resources granted by the IRES

resource Manager interface if any and delete the current algorithm instance. The following APIs are
called in sequence:

algNumAlloc() - To query the algorithm about the number of memory

records it used.

algFree() - To query the algorithm to get the memory record

information.

A sample implementation of the delete function that calls algNumAlloc() and algFree() in

sequence is provided in the ALG_delete() function implemented in the alg_create.c file.

4.5 Frame Buffer Management

4.5.1 Input and Output Frame Buffer

The algorithm has input buffers that stores frames until they are processed. These buffers at the
input level are associated with a bufferId mentioned in input buffer descriptor. The output buffers
are similarly associated with bufferId mentioned in the output buffer descriptor. The IDs are required
to track the buffers that have been processed or locked. The algorithm uses this ID, at the end of
the process call, to inform back to application whether it is a free buffer or not. Any buffer given to
the algorithm should be considered locked by the algorithm, unless the buffer is returned to the
application through IVISION_OutArgs->inFreeBufID[] and IVISION_OutArgs-

>outFreeBufID[].

For example,

Process Call # 1 2 3 4 5

bufferID (input) 1 2 3 4 5

bufferID (output) 1 2 3 4 5

inFreeBufID 1 2 3 4 5

outFreeBufID 1 2 3 4 5

The input buffer and output buffer is freed immediately once process call returns.

TI Deep learning Library User Guide April 2018

 6-21

55 AAPPII RReeffeerreennccee

Please refer the CHM file in the {TIDL_install_path}\Docs folder for details on the algorithm

API reference.

66 FFAAQQ

1. Where can I find TIDL release?
Object release of TIDL is part of TI’s processor software development (SDK) for vision. In the

vision SDK, you’ll find TIDL with documents at \ti_components\algorithms\.

http://www.ti.com/tool/PROCESSOR-SDK-TDAX

Source release of TIDL is available as standalone release via CDDS. Please work with your local

TI representative to get access to the same.

2. What are the platforms on which TIDL is supported?
TIDL is primarily targeted for TDA2x/TDA3x SoCs, but not limited to these TI platform. TIDL

provides software to accelerate CNN layers on EVE and C6xx DSP. If the TI SoC has either of

these cores, then TIDL can be used on this device.

3. Where can I find example CNN models?
We have GitHub repository where we have few caffe-jacinto trained models. Thew models are

validated on using TIDL on TI device. Models can be found in below path

https://github.com/tidsp/caffe-jacinto-models

4. What are the supported model-formats?
We have validated model trained with BVLC-caffe, Caffe-Jacinto, and tensorflow

5. What are tensorflow models validated?
We have validated inceptioNetV1 (googleNet) and mobile net models from below path. These are

tensorflow checkpoint, the needs to be saved as frozen graph to run on TIDL.

https://github.com/tensorflow/models/tree/master/research/slim

6. Which tensorflow version is used by the model Import tool
We have used tensorflow 1.0 proto buffer format. The source files for import tool is part of release

package. If you are using later version, the import tool can be re-built with latest proto buffer

format files from tensorflow repository

7. What are the supported CNN layers?
Majority of layers needed object classification, Semantic segmentation and Object detection are

supported by TIDL. Please refer the data sheet for complete list of supported layers.

8. What is the difference between sparse and dense convolution?

http://www.ti.com/tool/PROCESSOR-SDK-TDAX
https://github.com/tidsp/caffe-jacinto-models
https://github.com/tensorflow/models/tree/master/research/slim

TI Deep learning Library User Guide April 2018

 6-22

TIDL support two flavors of convolution layer namely Sparse and Dense flow. Functionally both

the flows will generate same results. The sparse flow takes advantage for zero kernels co-

efficient and improves the execution speed by not computing them. So default sparse

convolution can be used, however the sparse flow has relatively high overheads when processing

small ROIs (Input/Feature maps smaller than 32x32). For these cases we recommend to use

dense convolution flow. Always use a reasonably large resolution (Preferably width is multiple of

32) for performance benchmarking

9. Some layers are missing after model import. Is this expected?

TIDL import tool merges layers processing to speed up the execution. Each layer in caffe prototxt

does not one to one mapping on imported model. For example, Convolution + Batchnorm + RelU

+ MaxPool will be merged a on TILD_ConvolutionLayer.

10. What is Q format of output?

 The output is 8 bit fixed point representation with the scaling factor. The 8 bit value can be

divided by scaling factor to get the floating point value. The scaling factor (in Q8 format) is

available in dataQ of (sTIDL_DataParams_t). Import tool also prints this information for sample

data as “Out Q : X”.

Related E2E query : https://e2e.ti.com/support/arm/automotive_processors/f/1021/t/642684

11. How to read segmentation output?

Output is a Binary file having one byte data for heavy pixel in the input image. The one byte data

is unsigned char data giving the Pixel category.

0: Background

1 :ROAD

2 : Pedestrian

3 : Road Sign

4 : Vehicle

Overlay code that used in vision SDK semantic segmentation demo to overlay output on the YUV

can be used for Visualization.

https://e2e.ti.com/support/arm/automotive_processors/f/1021/t/637598

12. How to find sparsity in each layer?

https://e2e.ti.com/support/arm/automotive_processors/f/1021/t/642684
https://e2e.ti.com/support/arm/automotive_processors/f/1021/t/637598

TI Deep learning Library User Guide April 2018

 6-23

The Import tool prints the actual Sparsity considered by the TIDL after quantization and alignment

required for SIMD processing. Please find the first number after the each convolution layer after "

Sparsity : X”

13. Will TIDL inference match with caffe-jacinto/ caffe?

Same quantization logic is implemented in caffe-jacinto and TIDL. We did not spend effort to match

the outputs. The caffe-jacinto will provide close indication of expected accuracy when it is deployed

using TIDL. https://e2e.ti.com/support/arm/automotive_processors/f/1021/t/637598

14. How to read the import tool log?

Lot of information in the import log is debug trace. We are planning to mask many of them in the next

release. Relevant information are Number of layers, Layer Types, tensor Size, Sparsity in

Convolution layer and Out Q of each layer. User can safely ignore rest of the information.

15. Is caffe SSD model support?

TIDL 01.00.00.00 release does most of compute heavy layers need for SSD models. It does not

support last few layers like, Permute and detection output layer. We working on adding support for

these layers and provide one example Caffe-jacinto based SSD model. We are planning to make this

release by March End 2018.

16. Why is softmax layer running slow EVE?

Sotfmax Layer is implemented using floating point operation on EVE. EVE id fixed point processor

and floating point operation are not optimal. As per our understanding, most of the real applications

do not require softmax in the inference. If the application requires, In the final system user shall run

this layer on C6xx DSP.

17. What is the input buffer format for TIDL?

Input is a four dimensional tensor (8-bit) with size of “batch x channel x (height +

2*TIDL_MAX_PAD_SIZE) x (width + 2*TIDL_MAX_PAD_SIZE)”.

Refer “itidl_ti.h” for TIDL_MAX_PAD_SIZE

18. Do we have example use-case for TIDL in Vision SDK / Processor SDK?

We have below two use cases in Vision SDK / Processor SDK. Refer correspondiong users guide for

more information

chanis_semSeg – Real - time Semantic segmentation demo

chanis_tidl – File IO based use case to validate user model

19. How could validate the TIDL model accuracy with own test data

You need to use a script to run the inference multiple times with script. Refer below thread for more

info.https://e2e.ti.com/support/arm/automotive_processors/f/1021/t/669604

20. Do we have a white paper/publication to understand TIDL and sparsity?

Please refer Below whitepaper for high level TIDL overview

http://www.ti.com/lit/wp/spry314/spry314.pdf

Please refer CVPR paper for Sparse convolution

http://openaccess.thecvf.com/content_cvpr_2017_workshops/w4/papers/Mathew_Sparse_Quantized

_Full_CVPR_2017_paper.pdf

https://e2e.ti.com/support/arm/automotive_processors/f/1021/t/637598
https://e2e.ti.com/support/arm/automotive_processors/f/1021/t/669604
http://www.ti.com/lit/wp/spry314/spry314.pdf
http://openaccess.thecvf.com/content_cvpr_2017_workshops/w4/papers/Mathew_Sparse_Quantized_Full_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017_workshops/w4/papers/Mathew_Sparse_Quantized_Full_CVPR_2017_paper.pdf

	IMPORTANT NOTICE
	1 Read This First
	1.1 About This Manual
	1.2 Intended Audience
	1.3 How to Use This Manual
	1.4 Related Documentation From Texas Instruments
	1.5 Abbreviations
	1.6 Text Conventions
	1.7 Product Support
	1.8 Trademarks

	2 Introduction
	2.1 Overview of XDAIS
	2.1.1 XDAIS Overview

	2.2 Overview of TI Deep Learning Library

	3 Installation Overview
	3.1 System Requirements
	3.1.1 Hardware
	3.1.2 Software

	3.2 Installing the Component
	3.2.1 Installing the compressed archive

	3.3 Building Sample Test Application
	3.3.1 Installing XDAIS tools (XDAIS)
	3.3.2 Installing Code Generation Tools
	3.3.3 DMA utility Library
	3.3.4 MATH LIB for C66x
	3.3.5 Building the Test Application Executable through GMAKE

	3.4 Configuration File
	3.4.1 Test Application Configuration File

	3.5 Host emulation build for source package
	3.5.1 Installing Visual Studio
	3.5.2 Building source in host emulation

	3.6 Running a Model trained by user
	3.6.1 Building Model import tool
	3.6.2 Importing the Model and Parameters
	3.6.3 Building TIDL reference executable
	3.6.4 Importing Caffe-Jacinto-Models
	3.6.5 Importing Tensorflow Models

	3.7 Input and Output Data Formats
	3.8 Matching TIDL inference result
	3.9 TIDL Limitation
	3.10 Uninstalling the Component

	4 Sample Usage
	4.1 Overview of the Test Application
	4.2 Algorithm Instance Creation and Initialization
	4.3 Process Call
	4.4 Algorithm Instance Deletion
	4.5 Frame Buffer Management
	4.5.1 Input and Output Frame Buffer

	5 API Reference
	6 FAQ

