

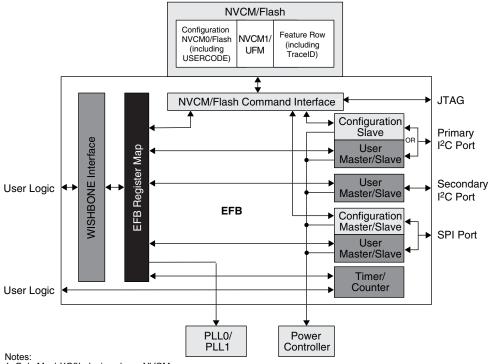
Using Hardened Control Functions in MachXO3 Devices Reference Guide

December 2016 Technical Note TN1294

Introduction

This reference guide supplements TN1293, Using Hardened Control Functions in MachXO3 Devices which explains the software usage. In this document you will find:

- WISHBONE Protocol
- EFB Register Map
- Command Sequences
- Examples


As an overview, the MachXO3™ FPGA family combines a high-performance, low power, FPGA fabric with built-in, hardened control functions. The hardened control functions ease design implementation and save general purpose resources such as LUTs, registers, clocks and routing. The hardened control functions are physically located in the Embedded Function Block (EFB). All MachXO3L/LF devices include an EFB module. The EFB block includes the following control functions:

- Two I²C Cores
- · One SPI Core
- One 16-bit Timer/Counter
- (MachXO3L) Interface to NVCM memory
- (MachXO3LF) Interface to Flash memory which includes:
 - User Flash Memory for MachXO3LF-640 and higher densities
 - Configuration logic
- · Interface to Dynamic PLL configuration settings
- Interface to On-chip Power Controller through I²C and SPI

Figure 1 shows the EFB architecture and the interface to the FPGA core logic.

Figure 1. Embedded Function Block (EFB)

Only MachXO3L devices have NVCM.
 Only MachXO3LF devices have Flash.

EFB Register Map

The EFB module has a Register Map to allow the service of the hardened functions through the WISHBONE bus interface read/write operations. Each hardened function has dedicated 8-bit Data and Control registers, with the exception of the NVCM/Flash, which are accessed through the same set of registers. Table 1 documents the register map of the EFB module. The PLL registers are located in the NVCM/Flash in MachXO3L/LF devices PLL modules, but they are accessed through EFB WISHBONE read/write cycles.

Table 1. EFB Register Map^{1, 2, 3}

Address (Hex)	Hardened Function
0x00-0x1F	PLL0 Dynamic Access1
0x20-0x3F	PLL1 Dynamic Access1
0x40-0x49	I ² C Primary
0x4A-0x53	I ² C Secondary
0x54-0x5D	SPI
0x5E-0x6F	Timer/Counter
0x70-0x75	NVCM/Flash
0x76-0x77	EFB Interrupt Source

There can be up to two PLLs in a MachXO3L/LF device. PLL0 has an address range from 0x00 to 0x1F. PLL1 (if present) has an address range from 0x20 to 0x3F. TN1282, MachXO3 sysCLOCK PLL Design and Usage Guide, for details on PLL configuration registers and recommended usage.

Address spaces that are not defined in Table 1 are invalid and will result in non-deterministic results. It is the responsibility of the designer to ensure valid addresses are presented to the EFB WISHBONE slave interface.

^{2.} NVCM in MachXO3L devices.

^{3.} Flash in MachXO3LF devices.

WISBONE Bus Interface

The WISHBONE Bus in the MachXO3L/LF is compliant with the WISHBONE standard from OpenCores. It provides connectivity between FPGA user logic and the EFB functional blocks. The user can implement a WISHBONE Master interface to interact with the EFB WISHBONE slave interface or a LatticeMico8[™] soft processor core can be used to interact with the EFB WISHBONE.

The block diagram in Figure 2 shows the supported WISHBONE bus signals between the FPGA core and the EFB. Table 2 provides a detailed definition of the supported signals.

Figure 2. WISHBONE Bus Interface Between the FPGA Core and the EFB Module

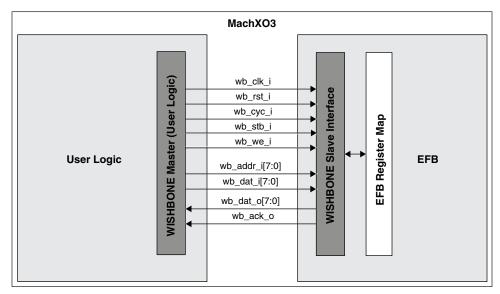


Table 2. WISHBONE Slave Interface Signals of the EFB Module

Signal Name	I/O	Width	Description
wb_clk_i	Input	1	Positive edge clock used by WISHBONE Interface registers and hardened functions within the EFB module. Supports clock speeds up to 133 MHz. When used in conjunction with the I ² C User Slave or Configuration Slave ports, the clock speed must be at least 7.5x the I ² C bus speed (for example, >3.0 MHz when I ² C rate = 400 kHz).
wb_rst_i	Input	1	Active-high, synchronous reset signal that will only reset the WISHBONE interface logic. This signal will not affect the contents of any registers. It will only affect ongoing bus transactions. Wait 1us after de-assertion before starting any subsequent WISHBONE transactions.
wb_cyc_i	Input	1	Active-high signal, asserted by the WISHBONE master, indicates a valid bus cycle is present on the bus.
wb_stb_i	Input	1	Active-high strobe, input signal, indicating the WISHBONE slave is the target for the current transaction on the bus. The EFB module asserts an acknowledgment in response to the assertion of the strobe.
wb_we_i	Input	1	Level sensitive Write/Read control signal. Low indicates a Read operation, and High indicates a Write operation.
wb_adr_i	Input	8	8-bit wide address used to select a specific register from the register map of the EFB module.
wb_dat_i	Input	8	8-bit input data path used to write a byte of data to a specific register in the register map of the EFB module.
wb_dat_o	Output	8	8-bit output data path used to read a byte of data from a specific register in the register map of the EFB module.
wb_ack_o	Output	1	Active-high, transfer acknowledge signal asserted by the EFB module, indicating the requested transfer is acknowledged.

To interface to the EFB you must create a WISHBONE Master controller in the User Logic. In a multiple-Master configuration, the WISHBONE Master outputs are multiplexed in a user-defined arbiter. A LatticeMico8 soft processor can also be utilized along with the Mico System Builder (MSB) platform which can implement multi-Master bus configurations. If two Masters request the bus in the same cycle, only the outputs of the arbitration winner reach the Slave interface.

The EFB WISHBONE bus supports the "Classic" version of the WISHBONE standard. Given that the WISHBONE bus is an open source standard, not all features of the standard are implemented or required:

- Tags are not supported in the WISHBONE Slave interface of the EFB module. Given that the EFB is a hardened block, these signals cannot be added by the user.
- The Slave WISHBONE bus interface of the EFB module does not require the byte select signals (sel_i or sel_o), since the data bus is only a single byte wide.
- The EFB WISHBONE slave interface does not support the optional error and retry access termination signals. If the slave receives an access to an invalid address, it will simply respond by asserting wb_ack_o signal. It is the responsibility of the user to stay within the valid address range.

WISHBONE Write Cycle

Figure 3 shows the waveform of a Write cycle from the perspective of the EFB WISHBONE Slave interface. During a single Write cycle, only one byte of data is written to the EFB block from the WISHBONE Master. A Write operation requires a minimum three clock cycles.

On clock Edge 0, the Master updates the address, data and asserts control signals. During this cycle:

- The Master updates the address on the wb_adr_i[7:0] address lines
- Updates the data that will be written to the EFB block, wb_dat_i[7:0] data lines
- · Asserts the write enable wb_we_i signal, indicating a write cycle
- Asserts the wb_cyc_i to indicate the start of the cycle
- Asserts the wb stb i, selecting a specific slave module

On clock Edge 1, the EFB WISHBONE Slave decodes the input signals presented by the master. During this cycle:

- The Slave decodes the address presented on the wb_adr_i[7:0] address lines
- The Slave prepares to latch the data presented on the wb_dat_i[7:0] data lines
- The Master waits for an active-high level on the wb_ack_o line and prepares to terminate the cycle on the next clock edge, if an active-high level is detected on the wb_ack_o line
- The EFB may insert wait states before asserting wb_ack_o, thereby allowing it to throttle the cycle speed. Any number of wait states may be added
- · The Slave asserts wb ack o signal

The following occurs on clock Edge 2:

- The Slave latches the data presented on the wb_dat_i[7:0] data lines
- The Master de-asserts the strobe signal, wb_stb_i, the cycle signal, wb_cyc_i, and the write enable signal, wb we i
- The Slave de-asserts the acknowledge signal, wb_ack_o, in response to the Master de-assertion of the strobe signal

Figure 3. WISHBONE Bus Write Operation

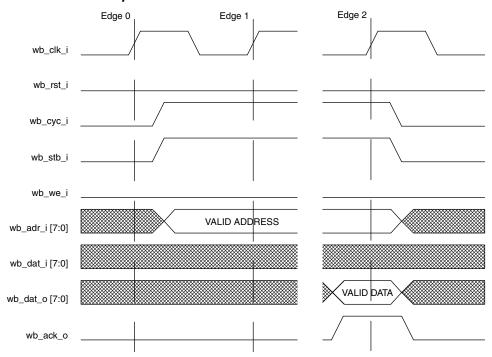
WISHBONE Read Cycle

Figure 4 shows the waveform of a Read cycle from the perspective of the EFB WISHBONE Slave interface. During a single Read cycle, only one byte of data is read from the EFB block by the WISHBONE master. A Read operation requires a minimum three clock cycles.

On clock Edge 0, the Master updates the address, data and asserts control signals. The following occurs during this cycle:

- The Master updates the address on the wb_adr_i[7:0] address lines
- De-asserts the write enable wb_we_i signal, indicating a Read cycle
- · Asserts the wb_cyc_i to indicate the start of the cycle
- · Asserts the wb_stb_i, selecting a specific Slave module

On clock Edge 1, the EFB WISHBONE slave decodes the input signals presented by the master. The following occurs during this cycle:


- The Slave decodes the address presented on the wb_adr_i[7:0] address lines
- The Master prepares to latch the data presented on wb_dat_o[7:0] data lines from the EFB WISHBONE slave on the following clock edge
- The Master waits for an active-high level on the wb_ack_o line and prepares to terminate the cycle on the next clock edge, if an active-high level is detected on the wb_ack_o line
- The EFB may insert wait states before asserting wb_ack_o, thereby allowing it to throttle the cycle speed. Any number of wait states may be added.
- The Slave presents valid data on the wb_dat_o[7:0] data lines
- The Slave asserts wb_ack_o signal in response to the strobe, wb_stb_i signal

The following occurs on clock Edge 2:

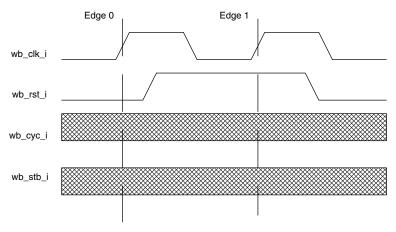
- The Master latches the data presented on the wb_dat_o[7:0] data lines
- The Master de-asserts the strobe signal, wb_stb_i, and the cycle signal, wb_cyc_i
- The Slave de-asserts the acknowledge signal, wb_ack_o, in response to the master de-assertion of the strobe signal

Figure 4. WISHBONE Bus Read Operation

To avoid simulation mismatch in functional simulations, add a delay of 100ps to wb_cyc_i and wb_stb_i assertion assignments. See the examples below. The examples assume the signal 'wb_cyc_i_gen' is generated elsewhere in the design, for example from a synchronous state machine (SSM).

Verilog example: (assumes `timescale 1 ns / 100 ps)

VHDL example:


Additionally, ensure your logic monitors for wb_ack_o, and deassert wb_cyc_i and wb_stb_i immediately.

WISHBONE Reset Cycle

Figure 5 shows the waveform of the synchronous wb_rst_i signal. Asserting the reset signal will only reset the WISHBONE interface logic. This signal will not affect the contents of any registers in the EFB register map. It will only affect ongoing bus transactions.

Figure 5. EFB WISHBONE Interface Reset

The wb rst i signal can be asserted for any length of time.

Hardened I²C IP Cores

I²C is a widely used two-wire serial bus for communication between devices on the same board. Every MachXO3L/LF device contains two hardened I²C IP cores designated as the "Primary" and "Secondary" I²C IP cores. Either of the two cores can be operated as an I²C Master or as an I²C Slave. The difference between the two cores is that the Primary core has pre-assigned I/O pins while the ports of the secondary core can be assigned by designers to any general purpose I/O. In addition, the Primary I²C core can be used for accessing the NVCM/Flash. However, the Primary I²C port cannot be used for both NVCM/Flash access and user functions in the same design. When instantiating the Hardened I²C IP cores for Slave operations, the Embedded Function Block (EFB) 'wb_clk_i' input must be connected to a valid clock source of at least 7.5x the I²C bus rate (for example, >3.0 MHz when I²C rate = 400 kHz).

I²C Registers

Both I²C cores communicate with the EFB WISHBONE interface through a set of control, command, status and data registers. Table 3 shows the register names and their functions. These registers are a subset of the EFB register map.

Table 3. PC Registers

I ² C Primary Register Name	I ² C Secondary Register Name	Register Function	Address I ² C Primary	Address I ² C Secondary	Access
I2C_1_CR	I2C_2_CR	Control	0x40	0x4A	Read/Write
I2C_1_CMDR	I2C_2_CMDR	Command	0x41	0x4B	Read/Write
I2C_1_BR0	I2C_2_BR0	Clock Pre-scale	0x42	0x4C	Read/Write
I2C_1_BR1	I2C_2_BR1	Clock Pre-scale	0x43	0x4D	Read/Write
I2C_1_TXDR	I2C_2_TXDR	Transmit Data	0x44	0x4E	Write
I2C_1_SR	I2C_2_SR	Status	0x45	0x4F	Read
I2C_1_GCDR	I2C_2_GCDR	General Call	0x46	0x50	Read
I2C_1_RXDR	I2C_2_RXDR	Receive Data	0x47	0x51	Read
I2C_1_IRQ	I2C_2_IRQ	IRQ	0x48	0x52	Read/Write
I2C_1_IRQEN	I2C_2_IRQEN	IRQ Enable	0x49	0x53	Read/Write

Note: Unless otherwise specified, all reserved bits in writable registers shall be written '0'.

Table 4. I'C Control (Primary/Secondary)

12C_1_CR / I2C_2_CR 0x4										
Bit	7	6	5	4	3	2	1	0		
Name	I2CEN	GCEN	WKUPEN	(Reserved)	SDA_DEL	_SEL[1:0]	(Reserved)			
Default	0	0	0	0	0	0	0	0		
Access	R/W	R/W	R/W	_	R/W	R/W	_	_		

Note: A write to this register will cause the I^2C core to reset.

WKUPEN

I2CEN I²C System Enable Bit – This bit enables the I²C core functions. If I2CEN is cleared, the ²C core is disabled and forced into idle state.

0: I²C function is disabled
1: I²C function is enabled

GCEN Enable bit for General Call Response – Enables the general call response in slave mode.

0: Disable 1: Enable

The General Call address is defined as 0000000 and works with either 7- or 10-bit addressing

Wake-up from Standby/Sleep (by Slave Address matching) Enable Bit – When this bit is enabled the, I²C core can send a wake-up signal to the on-chip power manager to wake the device up from standby/sleep. The wake-up function is activated when the MachXO3L/LF Slave Address is matched during standby/sleep mode.

0: Disable1: Enable

SDA_DEL_SEL[1:0] SDA Output Delay (Tdel) Selection (see Figure 15)

00: 300 ns (min) 300 ns + 2000/[wb_clk_i frequency in MHz] (max)
01: 150 ns (min) 150 ns + 2000/[wb_clk_i frequency in MHz] (max)
10: 75 ns (min) 75 ns + 2000/[wb_clk_i frequency in MHz] (max)
11: 0 ns (min) 0 ns + 2000/[wb_clk_i frequency in MHz] (max)

Table 5. PC Command (Pri/Sec)

I2C_1_CMDF	R / I2C_2_CMD	DR						0x41/0x4B
Bit	7	6	5	4	3	2	1	0
Name	STA	STO	RD	WR	ACK	CKSDIS	(Reserved)	
Default	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	R/W	R/W	_	_

STA Generate START (or Repeated START) condition (Master operation)

STO Generate STOP condition (Master operation)

RD Indicate Read from slave (Master operation)

WR Indicate Write to slave (Master operation)

ACK Acknowledge Option – when receiving, ACK transmission selection

0: Send ACK1: Send NACK

CKSDIS

Clock Stretching Disable. The I²C cores support a "wait state" or clock stretching from the slave, meaning the slave can enforce a wait state if it needs time to finish the task. Bit CKSDIS disables the clock stretching if desired by the user. In this case, the overflow flag must be monitored. For Master operations, set this bit to '0'. Clock stretching will be used by the MachXO2 EFB I2C Slave during both 'read' and 'write' operations (from the Master perspective) when I2C Command Register bit CKSDIS=0.

During a read operation (Slave transmitting), clock stretching occurs when TXDR is empty (under-run condition). During a write operation (Slave receiving) clock stretching occurs when RXDR is full (over-run condition).

Translated into I²C Status register bits, the I2C clock-stretches if TRRDY=1. The decision to enable clock stretching is done on the 8TH SCL + 2 WISHBONE clocks.

0: Enabled1: Disabled

Table 6. PC Clock Prescale 0 (Primary/Secondary)

I2C_1_BR0 /	I2C_2_BR0 0								
Bit	7	6	5	4	3	2	1	0	
Name		I2C_PRESCALE[7:0]							
Default ¹	0	0	0	0	0	0	0	0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

^{1.} Hardware default value may be overridden by EFB component instantiation parameters. See discussion below.

Table 7. PC Register Clock Prescale 1 (Primary/Secondary)

I2C_1_BR1 /	1_BR1 / I2C_2_BR1								
Bit	7	6	5	4	3	2	1	0	
Name			I2C_PRESCALE[9:8]						
Default ¹	0	0	0	0	0	0	0	0	
Access	_	_	_	_	_	_	R/W	R/W	

^{1.} Hardware default value may be overridden by EFB component instantiation parameters. See discussion below.

I2C_PRESCALE[9:0]

I²C Clock Prescale value. A write operation to I2CBR [9:8] will cause an I²C core reset. The WISHBONE clock frequency is divided by (I2C_PRESCALE*4) to produce the Master I²C clock frequency supported by the I²C bus (50 kHz, 100 kHz, 400 kHz).

Note: Different from transmitting a Master, the practical limit for Slave &C bus speed support is (WISHBONE clock)/2048. For example, the maximum WISHBONE clock frequency to support a 50 kHz Slave &C operation is 102 MHz.

Note: The digital value is calculated by IPexpressTM when the ${}^{\rho}C$ core is configured in the ${}^{\rho}C$ tab of the EFB GUI. The calculation is based on the WISHBONE Clock Frequency and the ${}^{\rho}C$ Frequency, both entered by the user. The digital value of the divider is programmed in the MachXO3L/LF device during device programming. After power-up or device reconfiguration, the data is loaded onto the I2C_1_BR1/0 and I2C_2_BR1/0 registers.

Registers I2C_1_BR1/0 and I2C_2_BR1/0 have Read/Write access from the WISHBONE interface. Designers can update these clock pre-scale registers dynamically during device operation; however, care must be taken to not violate the $^{\rho}$ C bus frequencies.

Table 8. I'C Transmit Data Register (Primary/Secondary)

I2C_1_TXDR	/ I2C_2_TXDI	2C_2_TXDR									
Bit	7	6	5	4	3	2	1	0			
Name		I2C_Transmit_Data[7:0]									
Default	0	0	0	0	0	0	0	0			
Access	W	W	W	W	W	W	W	W			

I2C_Transmit_Data[7:0]

 I^2C Transmit Data. This register holds the byte that will be transmitted on the I^2C bus during the Write Data phase. Bit 0 is the LSB and will be transmitted last. When transmitting the slave address, Bit 0 represents the Read/Write bit.

Table 9. PC Status (Primary/Secondary)

12C_1_SR / 12	I2C_1_SR / I2C_2_SR									
Bit	7	6	5	4	3	2	1	0		
Name	TIP	BUSY	RARC	SRW	ARBL	TRRDY	TROE	HGC		
Default	_	_	_	_	_	_	_	_		
Access	R	R	R	R	R	R	R	R		

TIP

Transmit In Progress. The current data byte is being transferred. Note that the TIP flag will suffer one-half SCL cycle latency right after the START condition because of the signal synchronization. Also note that this bit could be high after configuration wake-up and before the first valid I²C transfer start (when BUSY is low), and it is not indicating byte in transfer, but an invalid indicator.

1: Byte transfer in progress

0: Byte transfer complete

Using Hardened Control Functions in MachXO3 Devices Reference Guide

BUSY

I²C Bus busy. The I²C bus is involved in transaction. This is set at START condition and cleared at STOP. Note only when this bit is set should all other I²C SR bits be treated as valid indicators for a valid transfer.

- 1: I²C bus busy
- 0: I²C bus not busy

RARC

Received Acknowledge. An acknowledge response was received by the acknowledge bit monitor. All ACK/NACK bits are monitored and reported, regardless of Master/Slave source or Read/Write mode.

- 1: No acknowledge received
- 0: Acknowledge received

SRW

Slave Read/Write. Indicates transmit or receive mode.

- 1: Master receiving / slave transmitting
- 0: Master transmitting / slave receiving

Note: SRW is valid after TRRDY=1 following a synchronization delay of up to four WISHBONE clock cycles. Do not test both SRW and TRRDY in the same WISHBONE transaction, but test SRW at least four WISHBONE clock cycles after TRRDY is tested true. This delay is represented in Figure 14.

ARBL

Arbitration Lost. The core has lost arbitration in Master mode. This bit is capable of generating an interrupt.

- 1: Arbitration Lost
- 0: Normal

TRRDY

Transmitter or Receiver Ready. The I²C Transmit Data register is ready to receive transmit data, or the I²C Receive Data Register contains receive data (dependent upon master/slave mode and SRW status). This bit is capable of generating an interrupt.

- 1: Transmitter or Receiver is ready
- 0: Transmitter of Receiver is not ready

TROE

Transmitter/Receiver Overrun Error. A transmit or receive overrun error has occurred (dependent upon master/slave mode and SRW status).

Note: When acting as a transmitter (Master Write or Slave Read) a No Acknowledge received will also assert TROE indicating a possible orphan data byte exists in TXDR.

This bit is capable of generating an interrupt.

- 1: Transmitter or Receiver Overrun detected or NACK received
- 0: Normal

HGC

Hardware General Call Received. A hardware general call has been received in slave mode. The corresponding command byte will be available in the General Call Data Register. This bit is capable of generating an interrupt.

- 1: General Call Received in slave mode
- 0: Normal

Table 10. PC General Call Data Register (Primary/Secondary)

I2C_1_GCDR / I2C_2_GCDR										
Bit	7	6	5	4	3	2	1	0		
Name		I2C_GC_Data[7:0]								
Default	_	_	_	_	_	_	_	_		
Access	R	R	R	R	R	R	R	R		

I2C_ GC _Data[7:0]

I²C General Call Data. This register holds the second (command) byte of the General Call transaction on the I²C bus.

Table 11. PC Receive Data Register (Primary/Secondary)

I2C_1_RXDR	/ I2C_2_RXDR									
Bit	7	6	5	4	3	2	1	0		
Name		I2C_Receive_Data[7:0]								
Default	_	_	_	_	_	_	_	_		
Access	R	R	R	R	R	R	R	R		

I2C_ Receive _Data[7:0]

 I^2C Receive Data. This register holds the byte captured from the I^2C bus during the Read Data phase. Bit 0 is LSB and was received last.

Table 12. PC Interrupt Status (Primary/Secondary)

I2C_1_IRQ / I2C_2_ IRQ 0									
Bit	7	6	5	4	3	2	1	0	
Name		(Rese	erved)		IRQARBL	IRQTRRDY	IRQTROE	IRQHGC	
Default	_	_	_	_	_	_	_	_	
Access	_	_	_	_	R/W	R/W	R/W	R/W	

IRQARBL

Interrupt Status for Arbitration Lost.

When enabled, indicates ARBL was asserted. Write a '1' to this bit to clear the interrupt.

1: Arbitration Lost Interrupt

0: No interrupt

IRQTRRDY

Interrupt Status for Transmitter or Receiver Ready.

When enabled, indicates TRRDY was asserted. Write a '1' to this bit to clear the interrupt.

1: Transmitter or Receiver Ready Interrupt

0: No interrupt

IRQTROE

Interrupt Status for Transmitter/Receiver Overrun or NACK received.

When enabled, indicates TROE was asserted. Write a '1' to this bit to clear the interrupt.

1: Transmitter or Receiver Overrun or NACK received Interrupt

0: No interrupt

IRQHGC

Interrupt Status for Hardware General Call Received.

When enabled, indicates HGC was asserted. Write a '1' to this bit to clear the interrupt.

1: General Call Received in slave mode Interrupt

0: No interrupt

Table 13. PC Interrupt Enable (Primary/Secondary)

I2C_1_ IRQEN / I2C_2_IRQEN										
Bit	7	6	5	4	3	2	1	0		
Name		(Rese	erved)		IRQARBLEN	IRQTRRDYEN	IRQTROEEN	IRQHGCEN		
Default	0	0 0 0 0				0	0	0		
Access	_	_	_	_	R/W	R/W	R/W	R/W		

IRQARBLEN Interrupt Enable for Arbitration Lost

Interrupt generation enabled
 Interrupt generation disabled

IRQTRRDYEN Interrupt Enable for Transmitter or Receiver Ready

Interrupt generation enabled
 Interrupt generation disabled

IRQTROEEN Interrupt Enable for Transmitter/Receiver Overrun or NACK Received

Interrupt generation enabled
 Interrupt generation disabled

IRQHGCEN Interrupt Enable for Hardware General Call Received

Interrupt generation enabled
 Interrupt generation disabled

Figure 6 shows a flow diagram for controlling Master I²C reads and writes initiated via the WISHBONE interface. The following sequence is for the Primary I²C but the same sequence applies to the Secondary I²C.

Figure 6. I²C Master Read/Write Example (via WISHBONE)

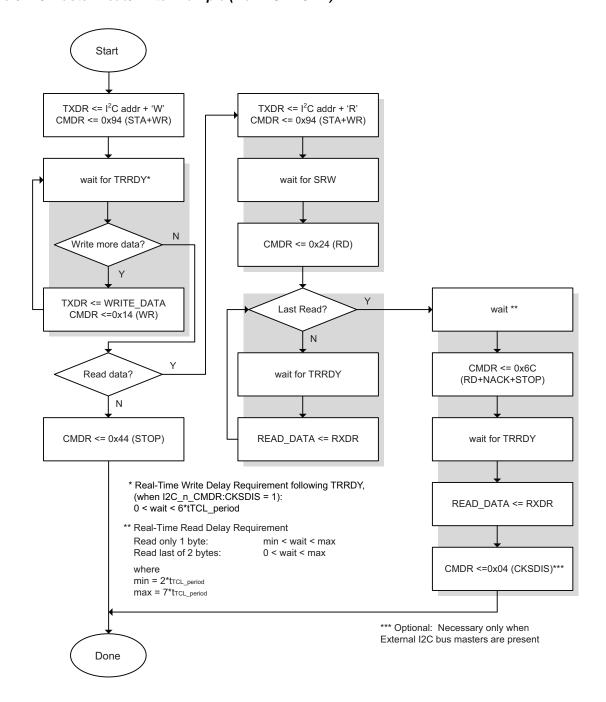
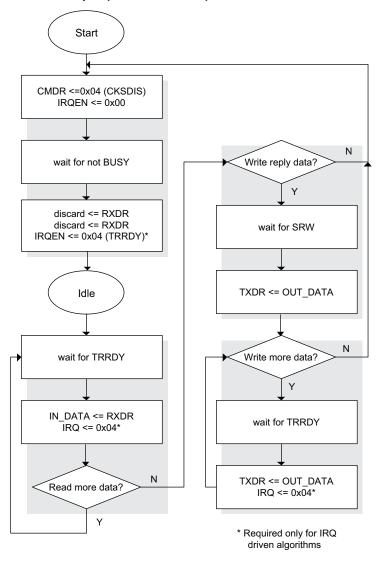



Figure 7 shows a flow diagram for reading and writing from an I²C Slave device via the WISHBONE interface. The following sequence is for the Primary I²C but the same sequence applies to the Secondary I²C.

Figure 7. I²C Slave Read/Write Example (via WISHBONE)

Typical I²C Transactions

Figure 8, Figure 9, and Figure 10 illustrate typical User I²C bus protocol transactions that are supported by the Master and Slave flows shown in Figure 6 and Figure 7. Additionally, the figures below reference typical sysConfig Configuration commands structures.

Figure 8. Simple PC Command (for example, ISC_ERASE)



Figure 9. PC Command with Write Data (for example, LSC_PROG_INCR_NV)

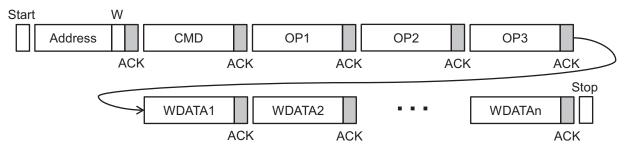
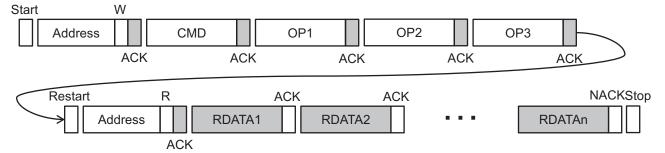



Figure 10. LC Command with Read Data (for example, LSC_READ_STATUS)

I²C Functional Waveforms

Figure 11. EFB Master – f²C Write

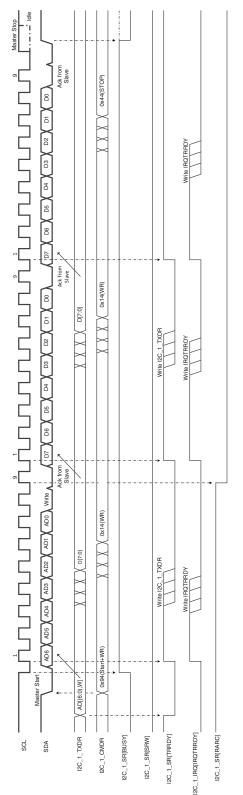


Figure 12. EFB Master - fC Read

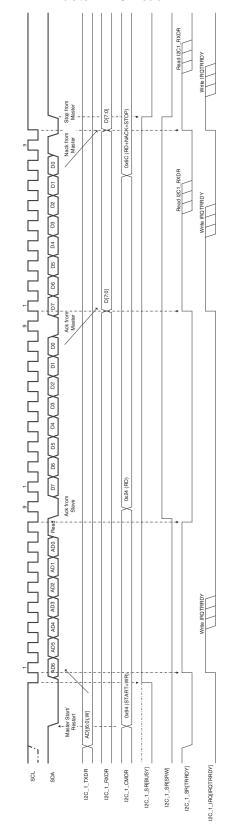
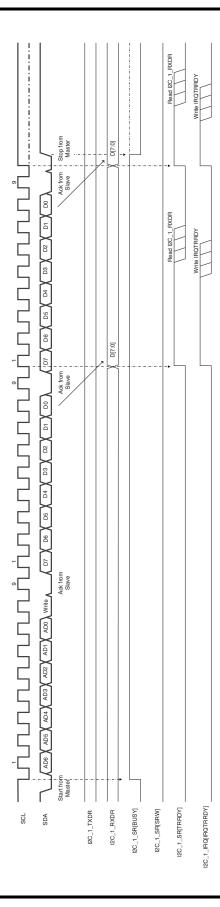
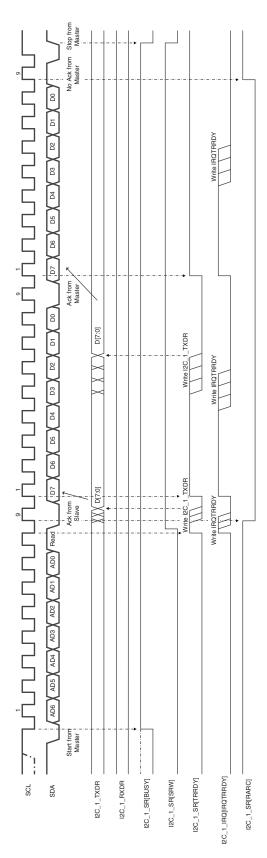
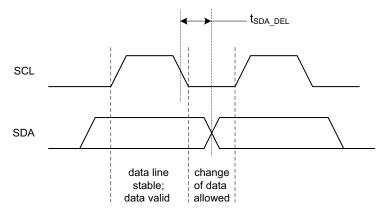


Figure 13. EFB Slave - fC Write


Figure 14. EFB Slave – f°C Read

I²C Timing Diagram

Figure 15. fC Bit Transfer Timing

I²C Simulation Model

The I²C EFB Register Map translation to the MachXO3L/LF EFB software simulation model is provided in below.

Table 14. PC Primary Simulation Mode

I ² C Primary Register Name	Register Size/Bit Location	Register Function	Address I ² C Primary	Access	Simulation Model Register Name	Simulation Model Register Path
I2C_1_CR	[7:0]	Control	0x40	Read/Write	i2ccr1[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
I2CEN	7				i2c_en	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
GCEN	6				i2c_gcen	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
WKUPEN	5				i2c_wkupen	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
SDA_DEL_SEL[1:0]	[3:2]				sda_del_sel	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
I2C_1_CMDR	[7:0]	Command	0x41	Read/Write	i2ccmdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
STA	7				i2c_sta	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
STO	6				i2c_sto	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
RD	5				i2c_rd	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
WR	4				i2c_wt	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
ACK	3				i2c_nack	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
CKSDIS	2				i2c_cksdis	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
I2C_1_BR0	[7:0]	Clock Pre-scale	0x42	Read/Write	i2cbr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
I2C_PRESCALE[7:0]	[7:0]				i2cbr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
I2C_1_BR1	[7:0]	Clock Pre-scale	0x43	Read/Write	i2cbr[9:8]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
I2C_PRESCALE[9:8]	[1:0]				i2cbr[9:8]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
I2C_1_TXDR	[7:0]	Transmit Data	0x44	Write	i2ctxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
I2C_Transmit_Data[7:0]	[7:0]				i2ctxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
I2C_1_SR	[7:0]	Status	0x45	Read	i2csr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/

Table 14. PC Primary Simulation Mode (Continued)

I ² C Primary Register Name	Register Size/Bit Location	Register Function	Address I ² C Primary	Access	Simulation Model Register Name	Simulation Model Register Path
TIP	7				i2c_tip_sync	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
BUSY	6				i2c_busy_sync	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
RARC	5				i2c_rarc_sync	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
SRW	4				i2c_srw_sync	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
ARBL	3				i2c_arbl	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
TRRDY	2				i2c_trrdy	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
TROE	1				i2c_troe	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
HGC	0				i2c_hgc	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
I2C_1_GCDR	[7:0]	General Call	0x46	Read	i2cgcdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
I2C_GC_Data[7:0]	[7:0]				i2cgcdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
I2C_1_RXDR	[7:0]	Receive Data	0x47	Read	i2crxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
I2C_Receive_Data[7:0]	[7:0]				i2crxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_1st/
I2C_1_IRQ	[7:0]	IRQ	0x48	Read/Write	{1'b0, 1'b0, 1'b0, 1'b0, i2csr_1st_irqsts_3, i2csr_1st_irqsts_2, i2csr_1st_irqsts_1, i2csr_1st_irqsts_0}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQARBL	3				i2csr_1st_irqsts_3	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTRRDY	2				i2csr_1st_irqsts_2	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTROE	1				i2csr_1st_irqsts_1	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQHGC	0				i2csr_1st_irqsts_0	/efb_top/efb_pll_sci_inst/u_efb_sci/
I2C_1_IRQEN	[7:0]	IRQ Enable	0x49	Read/Write	{1'b0, 1'b0, 1'b0, 1'b0, i2csr_1st_irqena_3, i2csr_1st_irqena_2, i2csr_1st_irqena_1, i2csr_1st_irqena_0}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQARBLEN	3				i2csr_1st_irqena_3	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTRRDYEN	2				i2csr_1st_irqena_2	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTROEEN	1				i2csr_1st_irqena_1	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQHGCEN	0				i2csr_1st_irqena_0	/efb_top/efb_pll_sci_inst/u_efb_sci/

Table 15. I²C Secondary Simulation Model

I ² C Secondary Register Name	Register Size/Bit Location	Register Function	Address I ² C Secondary	Access	Simulation Model Register Name	Simulation Model Register Path
I2C_2_CR	[7:0]	Control	0x4A	Read/Write	i2ccr1[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2CEN	7				i2c_en	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
GCEN	6				i2c_gcen	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
WKUPEN	5				i2c_wkupen	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
SDA_DEL_SEL[1:0]	[3:2]				sda_del_sel	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_2_CMDR	[7:0]	Command	0x4B	Read/Write	i2ccmdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
STA	7				i2c_sta	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
STO	6				i2c_sto	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
RD	5				i2c_rd	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
WR	4				i2c_wt	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
ACK	3				i2c_nack	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
CKSDIS	2				i2c_cksdis	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_2_BR0	[7:0]	Clock Pre-scale	0x4C	Read/Write	i2cbr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_PRESCALE[7:0]	[7:0]				i2cbr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_2_BR1	[7:0]	Clock Pre-scale	0x4D	Read/Write	i2cbr[9:8]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_PRESCALE[9:8]	[1:0]				i2cbr[9:8]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_2_TXDR	[7:0]	Transmit Data	0x4E	Write	i2ctxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_Transmit_Data[7:0]	[7:0]				i2ctxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/i2c_2nd/
I2C_2_SR	[7:0]	Status	0x4F	Read	i2csr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
TIP	7				i2c_tip_sync	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
BUSY	6				i2c_busy_sync	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
RARC	5				i2c_rarc_sync	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/i2c_2nd/
SRW	4				i2c_srw_sync	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/njport_unit/i2c_2nd/
ARBL	3				i2c_arbl	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
TRRDY	2				i2c_trrdy	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
TROE	1				i2c_troe	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
HGC	0				i2c_hgc	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_2_GCDR	[7:0]	General Call	0x50	Read	i2cgcdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_GC_Data[7:0]	[7:0]				i2cgcdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_2_RXDR	[7:0]	Receive Data	0x51	Read	i2crxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/
I2C_Receive_Data[7:0]	[7:0]				i2crxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/i2c_2nd/

Table 15. I²C Secondary Simulation Model (Continued)

I ² C Secondary Register Name	Register Size/Bit Location	Register Function	Address I ² C Secondary	Access	Simulation Model Register Name	Simulation Model Register Path
I2C_2_IRQ	[7:0]	IRQ	0x52	Read/Write	{1'b0, 1'b0, 1'b0, 1'b0, i2csr_2nd_irqsts_3, i2csr_2nd_irqsts_2, i2csr_2nd_irqsts_1, i2csr_2nd_irqsts_0}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQARBL	3				i2csr_2nd_irqsts_3	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTRRDY	2				i2csr_2nd_irqsts_2	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTROE	1				i2csr_2nd_irqsts_1	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQHGC	0				i2csr_2nd_irqsts_0	/efb_top/efb_pll_sci_inst/u_efb_sci/
I2C_2_IRQEN	[7:0]	IRQ Enable	0x53	Read/Write	{1'b0, 1'b0, 1'b0, 1'b0, i2csr_2nd_irqena_3, i2csr_2nd_irqena_2, i2csr_2nd_irqena_1, i2csr_2nd_irqena_0}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQARBLEN	3				i2csr_2nd_irqena_3	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTRRDYEN	2				i2csr_2nd_irqena_2	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTROEEN	1				i2csr_2nd_irqena_1	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQHGCEN	0				i2csr_2nd_irqena_0	/efb_top/efb_pll_sci_inst/u_efb_sci/

Hardened SPI IP Core

The MachXO3L/LF contains a hard SPI IP core that can be configured as a SPI Master or Slave. When the SPI core is configured as a Master it is able to control other devices with Slave SPI interfaces that are connected to the SPI bus. When the SPI core is configured as a Slave, it is able to interface to an external SPI Master device.

SPI Registers

The SPI core communicates with the WISHBONE interface through a set of control, command, status and data registers. Table 16 shows the register names and their functions. These registers are a subset of the EFB register map.

Table 16. SPI Registers

SPI Register Name	Register Function	Address	Access
SPICR0	Control Register 0	0x54	Read/Write
SPICR1	Control Register 1	0x55	Read/Write
SPICR2	Control Register 2	0x56	Read/Write
SPIBR	Clock Pre-scale	0x57	Read/Write
SPICSR	Master Chip Select	0x58	Read/Write
SPITXDR	Transmit Data	0x59	Write
SPISR	Status	0x5A	Read
SPIRXDR	Receive Data	0x5B	Read
SPIIRQ	Interrupt Request	0x5C	Read/Write
SPIIRQEN	Interrupt Request Enable	0x5D	Read/Write

Note: Unless otherwise specified, all Reserved bits in writable registers shall be written '0'.

Table 17. SPI Control 0

SPICR0								0x54	
Bit	7	6	5	4	3	2	1	0	
Name	TIdle_X	CNT[1:0]	Т	TTrail_XCNT[2:0]			TLead_XCNT[2:0]		
Default	0	0	0	0	0	0	0	0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Note: A write to this register will cause the SPI core to reset.

TIdle_XCNT[1:0]

Idle Delay Count. Specifies the minimum interval prior to the Master Chip Select low assertion (Master Mode only), in SCK periods.

00: ½
01: 1
10: 1.5
11: 2

TTrail_XCNT[2:0]

Trail Delay Count. Specifies the minimum interval between the last edge of SCK and the high deassertion of Master Chip Select (Master Mode only), in SCK periods.

000: ½
001: 1
010: 1.5
...
111: 4

TLead_XCNT[2:0]

Lead Delay Count. Specifies the minimum interval between the Master Chip Select low assertion and the first edge of SCK (Master Mode only), in SCK periods.

000: ½ 001: 1 010: 1.5

111: 4

Table 18. SPI Control 1

SPICR1								0x55
Bit	7	6	5	4	3	2	1	0
Name	SPE	WKUPEN_USER	WKUPEN_CFG	TXEDGE		(Rese	erved)	
Default	0	0	0	0	0	0	0	0
Access	R/W	R/W	R/W	R/W	-	_	_	_

Note: A write to this register will cause the SPI core to reset.

SPE

This bit enables the SPI core functions. If SPE is cleared, SPI is disabled and forced into idle state.

0: SPI disabled

1: SPI enabled, port pins are dedicated to SPI functions.

WKUPEN_USER

Wake-up Enable via User. Enables the SPI core to send a wake-up signal to the onchip Power Controller to wake the part from Standby mode when the User slave SPI chip select (spi_scsn) is driven low.

0: Wakeup disabled1: Wakeup enabled.

Using Hardened Control Functions in MachXO3 Devices Reference Guide

WKUPEN CFG

Wake-up Enable Configuration. Enables the SPI core to send a wake-up signal to the on-chip power controller to wake the part from standby mode when the Configuration slave SPI chip select (ufm_sn) is driven low.

0: Wakeup disabled

1: Wakeup enabled.

TXEDGE

Data Transmit Edge. Enables Lattice proprietary extension to the SPI protocol. Selects which clock edge to transmit SPI data. Refer to Figure 24 through Figure 27.

- 0: Transmit data on the MCLK/CCLK edge defined by SPICR2[CPOL] and SPICR2[CPHA]
- 1: Transmit data ½ MCLK/CCLK earlier than defined by SPICR2[CPOL] and SPICR2[CPHA]

Table 19. SPI Control 2

SPICR2										
Bit	7	6	5	4	3	2	1	0		
Name	MSTR	MCSH	SDBRE	(Reserved)	(Reserved)	CPOL	CPHA	LSBF		
Default	0	0	0	0	0	0	0	0		
Access	R/W	R/W	R/W	_	_	R/W	R/W	R/W		

Note: A write to this register will cause the SPI core to reset.

MSTR

SPI Master/Slave Mode. Selects the Master/Slave operation mode of the SPI core. Changing this bit forces the SPI system into idle state.

0: SPI is in Slave mode

1: SPI is in Master mode

MCSH

SPI Master CSSPIN Hold. Holds the Master chip select active when the host is busy, to halt the data transmission without de-asserting chip select.

Note: This mode must be used only when the WISHBONE clock has been divided by a value greater than four (4).

0: Master running as normal

1: Master holds chip select low even if there is no data to be transmitted

SDBRE

Slave Dummy Byte Response Enable. Enables Lattice proprietary extension to the SPI protocol. For use when the internal support circuit (for example, WISHBONE host) cannot respond with initial data within the time required, and to make the slave read out data predictably available at high SPI clock rates.

When enabled, dummy 0xFF bytes will be transmitted in response to a SPI slave read (while SPISR[TRDY]=1) until an initial write to SPITXDR. Once a byte is written into SPITXDR by the WISHBONE host, a single byte of 0x00 will be transmitted then followed immediately by the data in SPITXDR. In this mode, the external SPI master should scan for the initial 0x00 byte when reading the SPI slave to indicate the beginning of actual data. Refer to Figure 23.

0: Normal Slave SPI operation

1: Lattice proprietary Slave Dummy Byte Response Enabled

Note: This mechanism only applies for the initial data delay period. Once the initial data is available, subsequent data must be supplied to SPITXDR at the required SPI bus data rate.

CPOL

SPI Clock Polarity. Selects an inverted or non-inverted SPI clock. To transmit data between SPI modules, the SPI modules must have identical SPICR2[CPOL] values. In master mode, a change of this bit will abort a transmission in progress and force the SPI system into idle state. Refer to Figure 24 through Figure 27.

- 0: Active-high clocks selected.
- 1: Active-low clocks selected.

CPHA

SPI Clock Phase. Selects the SPI clock format. In master mode, a change of this bit will abort a transmission in progress and force the SPI system into idle state. Refer to Figure 24 through Figure 27.

- 0: Data is captured on a leading (first) clock edge, and propagated on the opposite clock edge.
- 1: Data is captured on a trailing (second) clock edge, and propagated on the opposite clock edge*.

Note: When CPHA=1, the user must explicitly place a pull-up or pull-down on SCK pad corresponding to the value of CPOL (for example, when CPHA=1 and CPOL=0 place a pull-down on SCK). When CPHA=0, the pull direction may be set arbitrarily.

Slave SPI Configuration mode supports default setting only for CPOL, CPHA.

LSBF

LSB-First. LSB appears first on the SPI interface. In master mode, a change of this bit will abort a transmission in progress and force the SPI system into idle state. Refer to Refer to Figure 24 through Figure 27.

Note: This bit does not affect the position of the MSB and LSB in the data register. Reads and writes of the data register always have the MSB in bit 7.

- 0: Data is transferred most significant bit (MSB) first
- 1: Data is transferred least significant bit (LSB) first

Table 20. SPI Clock Prescale

SPIBR									
Bit	7	6	5	4	3	2	1	0	
Name	(Rese	erved)		DIVIDER[5:0]					
Default1	0	0	0	0	0	0	0	0	
Access	_	_	R/W	R/W	R/W	R/W	R/W	R/W	

^{1.} Hardware default value may be overridden by EFB component instantiation parameters. See discussion below.

DIVIDER[5:0]

SPI Clock Prescale value. The WISHBONE clock frequency is divided by (DIVIDER[5:0] + 1) to produce the desired SPI clock frequency. A write operation to this register will cause a SPI core reset. DIVIDER must be >= 1.

Note: The digital value is calculated by IPexpress when the SPI core is configured in the SPI tab of the EFB GUI. The calculation is based on the WISHBONE Clock Frequency and the SPI Frequency, both entered by the user. The digital value of the divider is programmed in the MachXO3L/LF device during device programming. After power-up or device reconfiguration, the data is loaded onto the SPIBR register.

Register SPIBR has Read/Write access from the WISHBONE interface. Designers can update the clock pre-scale register dynamically during device operation.

Table 21. SPI Master Chip Select

SPICSR										
Bit	7	6	5	4	3	2	1	0		
Name	CSN_7	CSN_6	CSN_5	CSN_4	CSN_3	CSN_2	CSN_1	CSN_0		
Default	0	0	0	0	0	0	0	0		
Access	R/W									

CSN_[7:0]

SPI Master Chip Selects. Used in master mode for asserting a specific Master Chip Select (MCSN) line. The register has eight bits, enabling the SPI core to control up to eight external SPI slave devices Each bit represents one master chip select line (Active-Low). Bits [7:1] may be connected to any I/O pin via the FPGA fabric. Bit 0 has a pre-assigned pin location. The register has Read/Write access from the WISHBONE interface. A write operation on this register will cause the SPI core to reset.

Table 22. SPI Transmit Data Register

SPITXDR								0x59		
Bit	7	6	5	4	3	2	1	0		
Name		SPI_Transmit_Data[7:0]								
Default	_	_	_	_	_	_	_	_		
Access	W	W	W	W	W	W	W	W		

SPI Transmit Data[7:0]

SPI Transmit Data. This register holds the byte that will be transmitted on the SPI bus. Bit 0 in this register is LSB, and will be transmitted last when SPICR2[LSBF]=0 or first when SPICR2[LSBF]=1.

Note: When operating as a Slave, SPITXDR must be written when SPISR[TRDY] is '1' and at least 0.5 CCLKs before the first bit is to appear on SO. For example, when CPOL = CPHA = TXEDGE = LSBF = 0, SPITXDR must be written prior to the CCLK rising edge used to sample the LSB (bit 0) of the previous byte. See Figure 29. This timing requires at least one protocol dummy byte be included for all slave SPI read operations.

Table 23. SPI Status

SPISR								0x5A
Bit	7	6	5	4	3	2	1	0
Name	TIP	(Reserved)		TRDY	RRDY	(Reserved)	ROE	MDF
Default	0	_	_	0	0	_	0	0
Access	R	_	_	R	R	_	R	R

TIP

SPI Transmitting In Progress. Indicates the SPI port is actively transmitting/receiving data.

0: SPI Transmitting complete1: SPI Transmitting in progress*

TRDY

SPI Transmit Ready. Indicates the SPI transmit data register (SPITXDR) is empty. This bit is cleared by a write to SPITXDR. This bit is capable of generating an interrupt.

0: SPITXDR is not empty1: SPITXDR is empty

ROE

Using Hardened Control Functions in MachXO3 Devices Reference Guide

RRDY SPI Receive Ready. Indicates the receive data register (SPIRXDR) contains valid

receive data. This bit is cleared by a read access to SPIRXDR. This bit is capable of

generating an interrupt.

0: SPIRXDR does not contain data

1: SPIRXDR contains valid receive data

Receive Overrun Error. Indicates SPIRXDR received new data before the previous data was read. The previous data is lost. This bit is capable of generating an interrupt.

0: Normal

1: Receiver Overrun detected

MDF Mode Fault. Indicates the Slave SPI chip select (spi_scsn) was driven low while

SPICR2[MSTR]=1. This bit is cleared by any write to SPICR0, SPICR1 or SPICR2.

This bit is capable of generating an interrupt.

0: Normal

1: Mode Fault detected

Table 24. SPI Receive Data Register

SPIRXDR	PIRXDR 0x5								
Bit	7	6	5	4	3	2	1	0	
Name	SPI_Receive_Data[7:0]								
Default	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	

SPI_Receive_Data[7:0]

SPI Receive Data. This register holds the byte captured from the SPI bus. Bit 0 in this register is LSB and was received last when LSBF=0 or first when LSBF=1.

Table 25. SPI Interrupt Status

SPIIRQ								0x5C
Bit	7	6	5	4	3	2	1	0
Name	(Reserved)			IRQTRDY	IRQRRDY	(Reserved)	IRQROE	IRQMDF
Default	_	_	_	0	0	_	0	0
Access	_	_	_	R/W	R/W	_	R/W	R/W

IRQTRDY Interrupt Status for SPI Transmit Ready.

When enabled, indicates SPISR[TRDY] was asserted. Write a '1' to this bit to clear the interrupt.

1: SPI Transmit Ready Interrupt

0: No interrupt

IRQRRDY Interrupt Status for SPI Receive Ready.

When enabled, indicates SPISR[RRDY] was asserted. Write a '1' to this bit to clear the interrupt.

1: SPI Receive Ready Interrupt

0: No interrupt

Using Hardened Control Functions in MachXO3 Devices Reference Guide

IRQROE Interrupt Status for Receive Overrun Error.

When enabled, indicates ROE was asserted. Write a '1' to this bit to clear the inter-

rupt.

1: Receive Overrun Error Interrupt

0: No interrupt

IRQMDF Interrupt Status for Mode Fault.

When enabled, indicates MDF was asserted. Write a '1' to this bit to clear the inter-

rupt.

1: Mode Fault Interrupt

0: No interrupt

Table 26. SPI Interrupt Enable

SPIIRQEN 0x5								
Bit	7	6	5	4	3	2	1	0
Name	(Reserved)			IRQTRDYEN	IRQRRDYEN	(Reserved)	IRQROEEN	IRQMDFEN
Default	0	0	0	0	0	0	0	0
Access	_	_	_	R/W	R/W	_	R/W	R/W

IRQTRDYEN Interrupt Enable for SPI Transmit Ready.

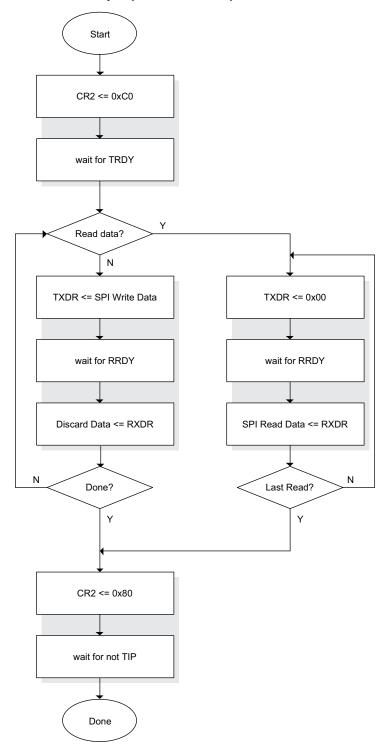
Interrupt generation enabled
 Interrupt generation disabled

IRQRRDYEN Interrupt Enable for SPI Receive Ready

Interrupt generation enabled
 Interrupt generation disabled

IRQROEEN Interrupt Enable for Receive Overrun Error

Interrupt generation enabled
 Interrupt generation disabled


IRQMDFEN Interrupt Enable for Mode Fault

Interrupt generation enabled
 Interrupt generation disabled

Figure 16 shows a flow diagram for controlling Master SPI reads and writes initiated via the WISHBONE interface.

Figure 16. SPI Master Read/Write Example (via WISHBONE) - Production Silicon

Note: Assumes CR2 register, MSCH = '1'. The algorithm when MSCH = '0' is application dependent and not provided. See Figure 22 for guidance.

Figure 17. SPI Master Read/Write Example (via WISHBONE) - R1 Silicon

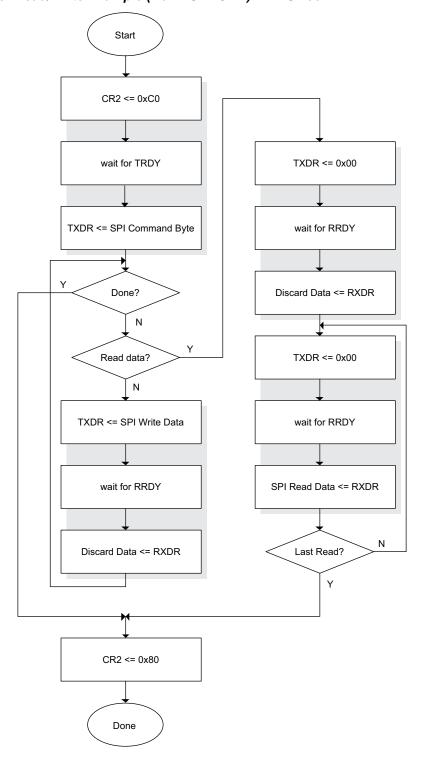
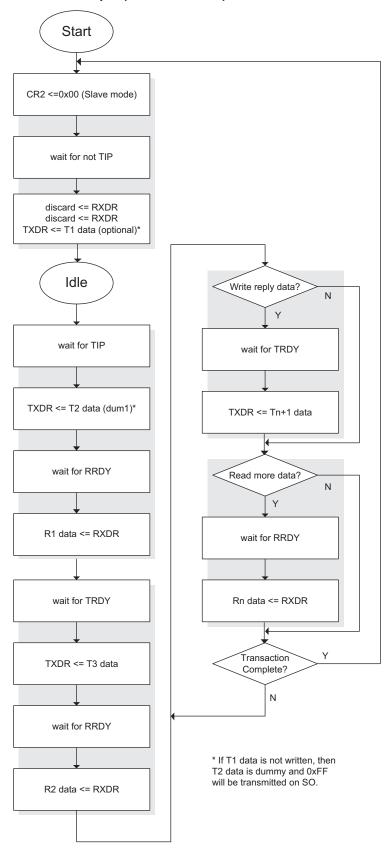



Figure 18. SPI Slave Read/Write Example (via WISHBONE) - Production Silicon

Typical SPI Transactions

Figures 19, 20, and 21 illustrate typical User SPI bus protocol transactions that are supported by the Master and Slave flows shown in Figures 16, 17, and 18. Additionally, the figures below reference typical sysConfig Configuration commands structures.

Figure 19. Simple SPI Command (for example, ISC_ERASE)

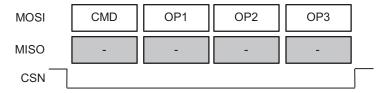


Figure 20. SPI Command w/ Write Data (for example, LSC_PROG_INCR_NV)

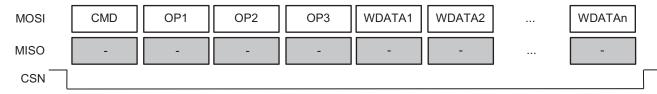
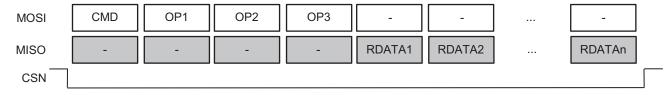



Figure 21. SPI Command w/ Read Data (for example, LSC_READ_STATUS)

SPI Functional Waveforms

Figure 22. Fully Specified SPI Transaction (MachXO3L/LF as SPI Master or Slave)

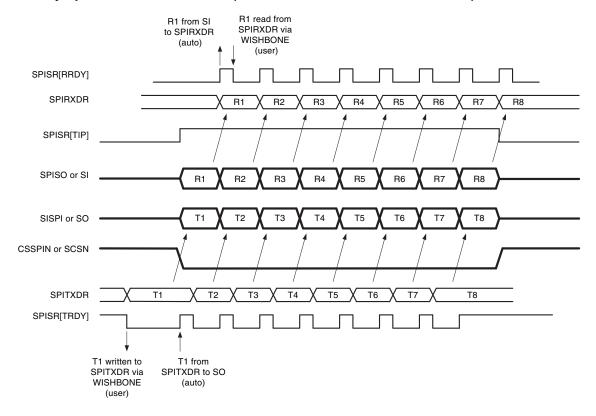
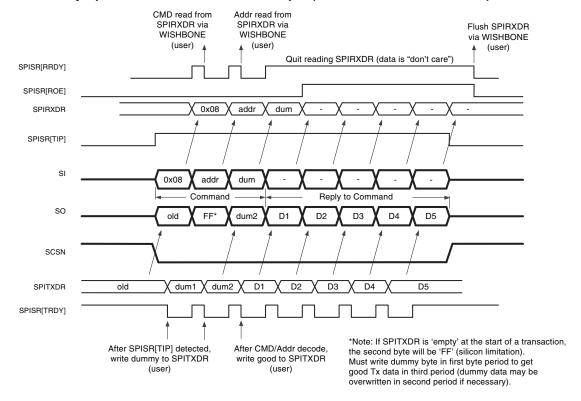



Figure 23. Minimally Specified SPI Transaction Example (MachXO3L/LF as SPI Slave)

SPI Timing Diagrams

Figure 24. SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=0)

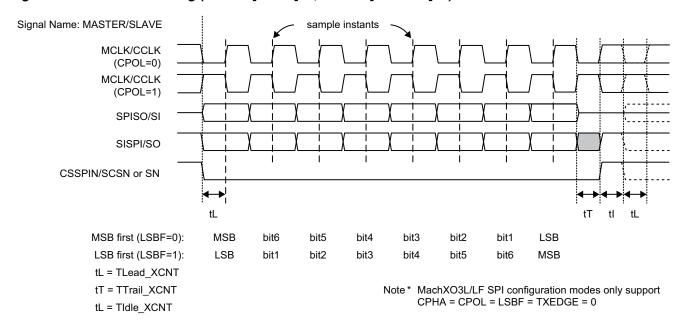


Figure 25. SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=0)

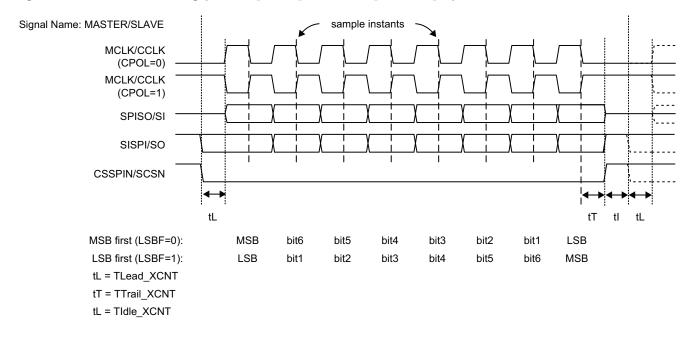


Figure 26. SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=1)

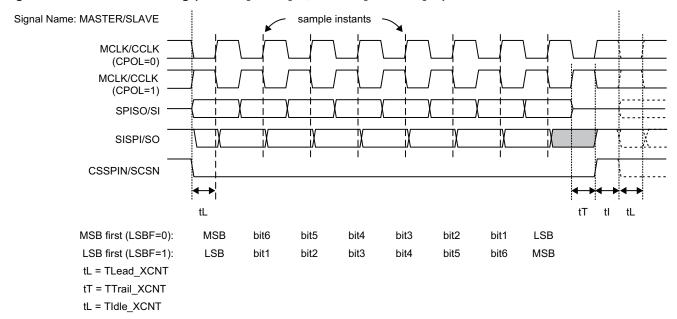


Figure 27. SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=1)

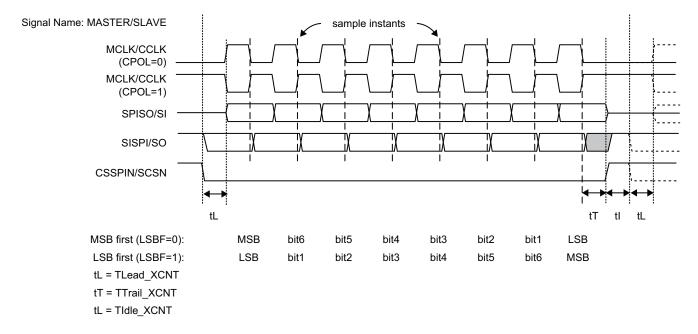
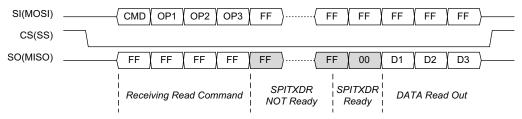



Figure 28. Slave SPI Dummy Byte Response (SPICR2[SDBRE]) Timing

SPI Simulation Model

The SPI EFB Register Map translation to the MachXO3L/LF EFB software simulation model is provided below.

Table 27. SPI Simulation Model

SPI Register Name	Register Size/Bit Location	Register Function	Address	Access	Simulation Model Register Name	Simulation Model Register Path
SPICR0	[7:0]	Control Register 0	0x54	Read/Write	spicr0[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
Tldle_XCNT[1:0]	[7:6]				spicr0[7:6]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
TTrail_XCNT[2:0]	[5:3]				spicr0[5:3]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
TLead_XCNT[2:0]	[2:0]				spicr0[2:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
SPICR1	[7:0]	Control Register 1	0x55	Read/Write	spicr1[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
SPE	7				spi_en	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
WKUPEN_USER	6				spi_wkup_usr	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
WKUPEN_CFG	5				spi_wkup_cfg	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
TXEDGE	4				spi_tx_edge	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
SPICR2	[7:0]	Control Register 2	0x56	Read/Write	spicr2[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
MSTR	7				spi_mstr	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
MCSH	6				spi_mcsh	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
SDBRE	5				spi_srme	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
CPOL	2				spi_cpol	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
СРНА	1				spi_cpha	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
LSBF	0				spi_lsbf	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
SPIBR	[7:0]	Clock Pre-scale	0x57	Read/Write	spibr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
DIVIDER[5:0]	[5:0]				spibr[5:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
SPICSR	[7:0]	Master Chip Select	0x58	Read/Write	spicsr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
CSN_7	7				spicsr[7]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
CSN_6	6				spicsr[6]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
CSN_5	5				spicsr[5]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
CSN_4	4				spicsr[4]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
CSN_3	3				spicsr[3]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
CSN_2	2				spicsr[2]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
CSN_1	1				spicsr[1]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
CSN_0	0				spicsr[0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
SPITXDR	[7:0]	Transmit Data	0x59	Write	spitxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
SPI_Transmit_Data[7:0]	[7:0]				spitxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/

Table 27. SPI Simulation Model (Continued)

SPI Register Name	Register Size/Bit Location	Register Function	Address	Access	Simulation Model Register Name	Simulation Model Register Path
SPISR	[7:0]	Status	0x5A	Read	spisr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
TIP	7				spi_tip_sync	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
TRDY	4				spi_trdy	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
RRDY	3				spi_rrdy	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
ROE	1				spi_roe	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
MDF	0				spi_mdf	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
SPIRXDR	[7:0]	Receive Data	0x5B	Read	spirxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
SPI_Receive_Data[7:0]	[7:0]				spirxdr[7:0]	/efb_top/config_plus_inst/config_core_inst/cfg_cdu/ njport_unit/spi_port/
SPIIRQ	[7:0]	Interrupt Request	0x5C	Read/Write	{1'b0, 1'b0, 1'b0, spisr_irqsts_4, spisr_irqsts_3, spisr_irqsts_2, spisr_irqsts_1, spisr_irqsts_0}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTRDY	4				spisr_irqsts_4	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQRRDY	3				spisr_irqsts_3	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQROE	1				spisr_irqsts_1	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQMDF	0				spisr_irqsts_0	/efb_top/efb_pll_sci_inst/u_efb_sci/
SPIIRQEN	[7:0]	Interrupt Request Enable	0x5D	Read/Write	{1'b0, 1'b0, 1'b0, spisr_irqena_4, spisr_irqena_3, spisr_irqena_2, spisr_irqena_1, spisr_irqena_0}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQTRDYEN	4				spisr_irqena_4	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQRRDYEN	3				spisr_irqena_3	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQROEEN	1				spisr_irqena_1	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQMDFEN	0				spisr_irqena_0	/efb_top/efb_pll_sci_inst/u_efb_sci/

Hardened Timer/Counter PWM

The MachXO3L/LF EFB contains a hard Timer/Counter IP core. This Timer/Counter is a general purpose, bi-directional, 16-bit Timer/Counter module with independent output compare units and PWM support.

Timer/Counter Registers

The Timer/Counter communicates with the FPGA logic through the WISHBONE interface, by utilizing a set of control, status and data registers. Table 28 shows the register names and their functions. These registers are a subset of the EFB register map. Refer to the EFB register map for specific addresses of each register.

Table 28. Timer/Counter Registers

Timer/Counter Register Name	Register Function	Address	Access
TCCR0	Control Register 0	0x5E	Read/Write
TCCR1	Control Register 1	0x5F	Read/Write
TCTOPSET0	Set Top Counter Value [7:0]	0x60	Write
TCTOPSET1	Set Top Counter Value [15:8]	0x61	Write
TCOCRSET0	Set Compare Counter Value [7:0]	0x62	Write
TCOCRSET1	Set Compare Counter Value [15:8]	0x63	Write
TCCR2	Control Register 2	0x64	Read/Write
TCCNT0	Counter Value [7:0]	0x65	Read
TCCNT1	Counter Value [15:8]	0x66	Read
TCTOP0	Current Top Counter Value [7:0]	0x67	Read
TCTOP1	Current Top Counter Value [15:8]	0x68	Read
TCOCR0	Current Compare Counter Value [7:0]	0x69	Read
TCOCR1	Current Compare Top Counter Value [15:8]	0x6A	Read
TCICR0	Current Capture Counter Value [7:0]	0x6B	Read
TCICR1	Current Capture Counter Value [15:8]	0x6C	Read
TCSR0	Status Register	0x6D	Read/Write
TCIRQ	Interrupt Request	0x6E	Read/Write
TCIRQEN	Interrupt Request Enable	0x6F	Read/Write

Note: Unless otherwise specified, all Reserved bits in writable registers shall be written '0'.

Table 29. Timer/Counter Control 0

TCCR0								0x5E
Bit	7	6	5	4	3	2	1	0
Name	RSTEN	(Reserved)	PRE	SCALE[2:0]		CLKEDGE	CLKSEL	(Reserved)
Default	0	0		0		0	0	0
Access	R/W	_		R/W		R/W	R/W	R/W

RSTEN Enables the reset signal (tc_rstn) to enter the Timer/Counter core from the PLD logic.

External reset enabled
 External reset disabled

PRESCALE[2:0] Used to divide the clock input to the Timer/Counter

000: Static (clock disabled)

001: Divide by 1010: Divide by 8011: Divide by 64100: Divide by 256

101: Divide by 1024110: (Reserved setting)111: (Reserved setting)

CLKEDGE Used to select the e

Used to select the edge of the input clock source. The Timer/Counter will update

states on the edge of the input clock source.

0: Rising Edge1: Falling Edge

CLKSEL Defines the source of the input clock.

0: Clock Tree

1: On-chip Oscillator

Table 30. Timer/Counter Control 1

TCCR1								0x5F
Bit	7	6	5	4	3	2	1	0
Name	(Reserved)	SOVFEN	ICEN	TSEL	OCM	1[1:0]	TCM	[1:0]
Default	0	0	0	0	()	()
Access	_	R/W	R/W	R/W	R/	W	R/	W

SOVFEN

Enables the overflow flag to be used with the interrupt output signal. It is set when the Timer/Counter is standalone, with no WISHBONE interface.

0: Disabled1: Enabled

Note: When this bit is set, other flags such as the OCRF and ICRF will not be routed to the interrupt output signal.

ICEN

Enables the ability to perform a capture operation of the counter value. Users can assert the "tc_ic" signal and load the counter value onto the TCICR0/1 registers. The captured value can serve as a timer stamp for a specific event.

0: Disabled1: Enabled

TSEL

Enables the auto-load of the counter with the value from TCTOPSET0/1. When disabled, the value 0xFFFF is auto-loaded.

0: Disabled1: Enabled

OCM[1:0]

Select the function of the output signal of the Timer/Counter. The available functions are Static, Toggle, Set/Clear and Clear/Set.

All Timer/Counter modes:

00: The output is static low

In non-PWM modes:

01: Toggle on TOP match

In Fast PWM mode:

10: Clear on TOP match, Set on OCR match11: Set on TOP match, Clear on OCR match

In Phase and Frequency Correct PWM mode:

10: Clear on OCR match when the counter is incrementing

Set on OCR match when counter is decrementing

11: Set on OCR match when the counter is incrementing

Clear on OCR match when the counter is decrementing

TCM[1:0]

Timer Counter Mode. Defines the mode of operation for the Timer/Counter.

00: Watchdog Timer Mode

01: Clear Timer on Compare Match Mode

10: Fast PWM Mode

11: Phase and Frequency Correct PWM Mode

Table 31. Timer/Counter Set Top Counter Value 0

TCTOPSET0	OPSET0									
Bit	7	6	5	4	3	2	1	0		
Name		TCTOPSET[7:0]								
Default ¹	1	1	1	1	1	1	1	1		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

^{1.} Hardware default value may be overridden by EFB component instantiation parameters.

Table 32. Timer/Counter Set Top Counter Value 1

TCTOPSET1	TCTOPSET1									
Bit	7	6	5	4	3	2	1	0		
Name		TCTOPSET[15:8]								
Default ¹	1	1	1	1	1	1	1	1		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

^{1.} Hardware default value may be overridden by EFB component instantiation parameters.

The value from TCTOPSET0/1 is loaded to the TCTOP0/1 registers once the counter has completed the current counting cycle. Refer to the Timer/Counter Modes of Operation section for usage details.

TCTOPSET0 register holds the lower eight bits [7:0] of the top value. TCTOPSET1 register holds the upper eight bits [15:8] of the top value.

Table 33. Timer/Counter Set Compare Counter Value 0

TCOCRSET0 0										
Bit	7	6	5	4	3	2	1	0		
Name		TCOCRSET[7:0]								
Default1	1	1	1	1	1	1	1	1		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

^{1.} Hardware default value may be overridden by EFB component instantiation parameters.

Table 34. Timer/Counter Set Compare Counter Value 1

TCOCRSET1	OCRSET1										
Bit	7	6	5	4	3	2	1	0			
Name		TCOCRSET[15:8]									
Default1	1	1	1	1	1	1	1	1			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			

^{1.} Hardware default value may be overridden by EFB component instantiation parameters.

The value from TCOCRSET0/1 is loaded to the TCOCR0/1 registers once the counter has completed the current counting cycle. Refer to the Timer/Counter Modes of Operation section for usage details.

TCOCRSET0 register holds the lower 8-bit value [7:0] of the compare value. TCOCRSET1 register holds the upper 8-bit value[15:8] of the compare value.

Table 35. Timer/Counter Control 2

TCCR2	R2								
Bit	7	6	5	4	3	2	1	0	
Name			(Reserved)			WBFORCE	WBRESET	WBPAUSE	
Default	0	0	0	0	0	0	0	0	
Access	_	_	_	_	_	R/W	R/W	R/W	

WBFORCE In non-PWM modes, forces the output of the counter, as if the counter value matched the compare (TCOCR) value or it matched the top value (TCTOP).

0: Disabled1: Enabled

WBRESET Reset the counter from the WISHBONE interface by writing a '1' to this bit. Manually

reset to '0'. The rising edge is detected in the WISHBONE clock domain, and the counter is reset synchronously on the next tc_clki. Due to the clock domain crossing, there is a one-clock uncertainty when the reset is effective. This bit has higher priority

then WBPAUSE.

0: Disabled1: Enabled

WBPAUSE Pause the 16-bit counter

1: Pause 0: Normal

Table 36. Timer/Counter Counter Value 0

TCCNT0								0x65		
Bit	7	6	5	4	3	2	1	0		
Name		TCCNT[7:0]								
Default	0	0	0	0	0	0	0	0		
Access	R	R	R	R	R	R	R	R		

Table 37. Timer/Counter Counter Value 1

TCCNT1							0x66			
Bit	7	6	5	4	3	2	1	0		
Name		TCCNT[15:8]								
Default	0	0	0	0	0	0	0	0		
Access	R	R	R	R	R	R	R	R		

Registers TCCNT0 and TCCNT1 are 8-bit registers, which combined, hold the counter value. The WISHBONE host has read-only access to these registers.

TCCNT0 register holds the lower 8-bit value [7:0] of the counter value. TCCNT1 register holds the upper 8-bit value [15:8] of the counter value.

Table 38. Timer/Counter Current Top Counter Value 0

ТСТОР0								0x67
Bit	7	6	5	4	3	2	1	0
Name				тсто	P[7:0]			
Default	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R

Table 39. Timer/Counter Current Top Counter Value 1

TCTOP1								0x68
Bit	7	6	5	4	3	2	1	0
Name				TCTO	P[15:8]			
Default	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R

Registers TCTOP0 and TCTOP1 are 8-bit registers, which combined, receive a 16-bit value from the TCTOP-SET0/1. The data stored in these registers represents the top value of the counter. The registers update once the counter has completed the current counting cycle. The WISHBONE host has read-only access to these registers. Refer to the Timer/Counter Modes of Operation section for usage details.

TCTOP0 register holds the lower 8-bit value [7:0] of the top value. TCTOP1 register holds the upper 8-bit value [15:8] of the top value.

Table 40. Timer/Counter Current Compare Counter Value 0

TCOCR0								0x69
Bit	7	6	5	4	3	2	1	0
Name				TCOC	R[7:0]			
Default	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R

Table 41. Timer/Counter Current Compare Counter Value 1

TCOCR1								0x6A
Bit	7	6	5	4	3	2	1	0
Name				TCOC	R[15:8]			
Default	1	1	1	1	1	1	1	1
Access	R	R	R	R	R	R	R	R

Registers TCOCR0 and TCOCR1 are 8-bit registers, which combined, receive a 16-bit value from the TCO-CRSET0/1. The data stored in these registers represents the compare value of the counter. The registers update once the counter has completed the current counting cycle. The WISHBONE host has read-only access to these registers. Refer to the Timer/Counter Modes of Operation section for usage details.

TCOCR0 register holds the lower 8-bit value [7:0] of the compare value. TCOCR1 register holds the upper 8-bit value [15:8] of the compare value.

Table 42. Timer/Counter Current Capture Counter Value 0

TCICR0								0x6B
Bit	7	6	5	4	3	2	1	0
Name				TCIC	R[7:0]			
Default	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

Table 43. Timer/Counter Current Capture Counter Value 1

TCICR1								0x6C	
Bit	7	6	5	4	3	2	1	0	
Name		TCICR[15:8]							
Default	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	

Registers TCICR0 and TCICR1 are 8-bit registers, which combined, can hold the counter value. The counter value is loaded onto these registers once a trigger event, tc_ic IP signal, is asserted. The capture value is commonly used as a time-stamp for a specific system event. The WISHBONE host has read-only access to these registers.

TCICR0 register holds the lower 8-bit value [7:0] of the counter value. TCICR1 register holds the upper 8-bit value [15:8] of the counter value.

Table 44. Timer/Counter Status Register

TCSR0								0x6D
Bit	7	6	5	4	3	2	1	0
Name		(Rese	erved)		BTF	ICRF	OCRF	OVF
Default	_	_	_	_	0	0	0	0
Access	_	_	_	_	R	R	R	R

BTF

Bottom Flag. Asserted when the counter reaches value zero. A write operation to this register clears this flag.

- 1: Counter reached zero value
- 0: Counter has not reached zero

ICRF

Capture Counter Flag. Asserted when the user asserts the TC_IC input signal. The counter value is captured into the TCICR0/1 registers. A write operation to this register clears this flag. This bit is capable of generating an interrupt.

- 1: TC_IC signal asserted.
- 0: Normal

OCRF

Compare Match Flag. Asserted when counter matches the TCOCR0/1 register value. A write operation to this register clears this flag. This bit is capable of generating an interrupt.

- 1: Counter match
- 0: Normal

OVF

Overflow Flag. Asserted when the counter matches the TCTOP0/1 register value. A write operation to this register clears this flag. This bit is capable of generating an interrupt.

- 1: Counter match
- 0: Normal

Table 45. Timer/Counter Interrupt Status

TCIRQ								0x6E
Bit	7	6	5	4	3	2	1	0
Name			(Reserved)			IRQICRF	IRQOCRF	IRQOVF
Default	0	0	0	0	0	0	0	0
Access	_	_	_	_	_	R/W	R/W	R/W

IRQICRF Interrupt Status for Capture Counter Flag.

When enabled, indicates ICRF was asserted. Write a '1' to this bit to clear the inter-

rupt.

1: Capture Counter Flag Interrupt

0: No interrupt

IRQOCRF Interrupt Status for Compare Match Flag.

When enabled, indicates OCRF was asserted. Write a '1' to this bit to clear the inter-

rupt.

1: Compare Match Flag Interrupt

0: No interrupt

IRQOVF Interrupt Status for Overflow Flag.

When enabled, indicates OVF was asserted. Write a '1' to this bit to clear the interrupt.

1: Overflow Flag Interrupt

0: No interrupt

Table 46. Timer/Counter Interrupt Enable

TCIRQEN 0								0x6F
Bit	7	6	5	4	3	2	1	0
Name			(Reserved)			IRQICRFEN	IRQOCRFEN	IRQOVFEN
Default	0	0	0	0	0	0	0	0
Access	_	_	_	_	_	R/W	R/W	R/W

IRQICRFEN Interrupt Enable for Capture Counter Flag.

Interrupt generation enabled
 Interrupt generation disabled

IRQOCRFEN Interrupt Enable for Compare Match Flag.

Interrupt generation enabled
 Interrupt generation disabled

IRQOVFEN Interrupt Enable for Overflow Flag.

Interrupt generation enabled
 Interrupt generation disabled

Timer Counter Simulation Model

The Timer Counter EFB Register Map translation to the MachXO3L/LF EFB software simulation model is provided below.

Table 47. Timer/Counter Simulation Mode

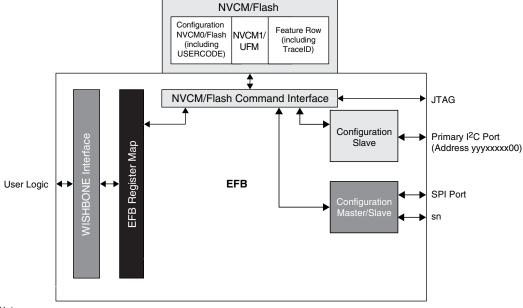
Timer/Counter Register Name	Register Size/Bit Location	Register Function	Address	Access	Simulation Model Register Name	Simulation Model Register Path
TCCR0	[7:0]	Control Register 0	0x5E	Read/Write	{tc_rstn_ena, tc_gsrn_dis, tc_cclk_sel[2:0], tc_sclk_sel[2:0]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
RSTEN	7				tc_rstn_ena	/efb_top/efb_pll_sci_inst/u_efb_sci/
PRESCALE[2:0]	[5:3]				tc_cclk_sel[2:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
CLKEDGE	2				tc_sclk_sel[2]	/efb_top/efb_pll_sci_inst/u_efb_sci/
CLKSEL	1				tc_sclk_sel[1]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCCR1	[7:0]	Control Register 1	0x5F	Read/Write	{1'b0, tc_ovf_ena, tc_ic_ena, tc_top_sel, tc_oc_mode[1:0], tc_mode[1:0]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
SOVFEN	6				tc_ivf_ena	/efb_top/efb_pll_sci_inst/u_efb_sci/
ICEN	5				tc_ic_ena	/efb_top/efb_pll_sci_inst/u_efb_sci/
TSEL	4				tc_top_sel	/efb_top/efb_pll_sci_inst/u_efb_sci/
OCM[1:0]	[3:2]				tc_oc_mode[1:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCM[1:0]	[1:0]				tc_mode[1:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCTOPSET0	[7:0]	Set Top Counter Value [7:0]	0x60	Write	{tc_top_set[7], tc_top_set[6], tc_top_set[5], tc_top_set[4], tc_top_set[3], tc_top_set[2], tc_top_set[1], tc_top_set[0]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCTOPSET[7:0]	[7:0]				{tc_top_set[7], tc_top_set[6], tc_top_set[5], tc_top_set[4], tc_top_set[3], tc_top_set[2], tc_top_set[1], tc_top_set[0]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCTOPSET1	[7:0]	Set Top Counter Value [15:8]	0x61	Write	{tc_top_set[15], tc_top_set[14], tc_top_set[13], tc_top_set[12], tc_top_set[11], tc_top_set[10], tc_top_set[9], tc_top_set[8]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCTOPSET[15:8]	[7:0]				{tc_top_set[15], tc_top_set[14], tc_top_set[13], tc_top_set[12], tc_top_set[11], tc_top_set[10], tc_top_set[9], tc_top_set[8]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCOCRSET0	[7:0]	Set Compare Counter Value [7:0]	0x62	Write	{tc_ocr_set[7], tc_ocr_set[6], tc_ocr_set[5], tc_ocr_set[4], tc_ocr_set[3], tc_ocr_set[2], tc_ocr_set[1], tc_ocr_set[0]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCOCRSET[7:0]	[7:0]				{tc_ocr_set[7], tc_ocr_set[6], tc_ocr_set[5], tc_ocr_set[4], tc_ocr_set[3], tc_ocr_set[2], tc_ocr_set[1], tc_ocr_set[0]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCOCRSET1	[7:0]	Set Compare Counter Value [15:8]	0x63	Write	{tc_ocr_set[15], tc_ocr_set[14], tc_ocr_set[13], tc_ocr_set[12], tc_ocr_set[11], tc_ocr_set[10], tc_ocr_set[9], tc_ocr_set[8]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCOCRSET[15:8]	[7:0]				{tc_ocr_set[15], tc_ocr_set[14], tc_ocr_set[13], tc_ocr_set[12], tc_ocr_set[11], tc_ocr_set[10], tc_ocr_set[9], tc_ocr_set[8]}	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCCR2	[7:0]	Control Register 2	0x64	Read/Write	{1'b0, 1'b0, 1'b0, 1'b0, 1'b0, tc_oc_force, tc_cnt_reset, tc_cnt_pause}	/efb_top/efb_pll_sci_inst/u_efb_sci/
WBFORCE	2				tc_oc_force	/efb_top/efb_pll_sci_inst/u_efb_sci/
WBRESET	1				tc_cnt_reset	/efb_top/efb_pll_sci_inst/u_efb_sci/
WBPAUSE	0				tc_cnt_pause	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCCNT0	[7:0]	Counter Value [7:0]	0x65	Read	tc_cnt_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCCNT[7:0]	[7:0]				tc_cnt_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCCNT1	[7:0]	Counter Value [15:8]	0x66	Read	tc_cnt_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCCNT[15:8]	[7:0]				tc_cnt_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
ТСТОР0	[7:0]	Current Top Counter Value [7:0]	0x67	Read	tc_top_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCTOP[7:0]	[7:0]				tc_top_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/

Table 47. Timer/Counter Simulation Mode (Continued)

Timer/Counter Register Name	Register Size/Bit Location	Register Function	Address	Access	Simulation Model Register Name	Simulation Model Register Path
TCTOP1	[7:0]	Current Top Counter Value [15:8]	0x68	Read	tc_top_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCTOP[15:8]	[7:0]				tc_top_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCOCR0	[7:0]	Current Compare Counter Value [7:0]	0x69	Read	tc_ocr_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCOCR[7:0]	[7:0]				tc_ocr_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCOCR1	[7:0]	Current Compare Top Counter Value [15:8]	0x6A	Read	tc_ocr_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCOCR[15:8]	[7:0]				tc_ocr_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCICR0	[7:0]	Current Capture Counter Value [7:0]	0x6B	Read	tc_icr_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCICR[7:0]	[7:0]				tc_icr_sts[7:0]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCICR1	[7:0]	Current Capture Counter Value [15:8]	0x6C	Read	tc_icr_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCICR[15:8]	[7:0]				tc_icr_sts[15:8]	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCSR0	[7:0]	Status Register	0x6D	Read	$ \{ \hbox{1'b0, 1'b0, 1'b0, 1'b0, tc_btf_sts,} \\ \hbox{tc_icrf_sts, tc_ocrf_sts, tc_ovf_sts} \} $	/efb_top/efb_pll_sci_inst/u_efb_sci/
BTF	3				tc_btf_sts	/efb_top/efb_pll_sci_inst/u_efb_sci/
ICRF	2				tc_icrf_sts	/efb_top/efb_pll_sci_inst/u_efb_sci/
OCRF	1				tc_ocrf_sts	/efb_top/efb_pll_sci_inst/u_efb_sci/
OVF	0				tc_ovf_sts	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCIRQ	[7:0]	Interrupt Request	0x6E	Read/Write	{1'b0, 1'b0, 1'b0, 1'b0, 1'b0, tc_icrf_irqsts, tc_ocrf_irqsts, tc_ovf_irqsts}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQICRF	2				tc_icrf_irqsts	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQOCRF	1				tc_ocrf_irqsts	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQOVF	0				tc_ovf_irqsts	/efb_top/efb_pll_sci_inst/u_efb_sci/
TCIRQEN	[7:0]	Interrupt Request Enable	0x6F	Read/Write	{1'b0, 1'b0, 1'b0, 1'b0, 1'b0, tc_icrf_irqena, tc_ocrf_irqena, tc_ovf_irqena}	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQICRFEN	2				tc_icrf_irqena	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQOCRFEN	1				tc_ocrf_irqena	/efb_top/efb_pll_sci_inst/u_efb_sci/
IRQOVFEN	0				tc_ovf_irqena	/efb_top/efb_pll_sci_inst/u_efb_sci/

NVCM (MachXO3L)/Flash(MachXO3LF) Access

Designers can access the NVCM/Flash Logic interface using the JTAG, SPI, I²C, or WISHBONE interfaces. The MachXO3L/LF NVCM/Flash consists of three sectors: Configuration NVCM0/Flash (includes USERCODE), NVCM1/UFM, Feature Row.


The NVCM/Flash is organized in pages. The NVCM/Flash is not byte addressable. Each page has 128 bits (16 bytes).

NVCM/Flash Access Ports

Designers can access the NVCM/Flash via JTAG port (compliant with the IEEE 1149.1 and IEEE 1532 specifications), external Slave SPI port and external I²C Primary port and the internal WISHBONE interface of the EFB module. Figure 29 illustrates the interfaces to the NVCM/Flash sectors.

Figure 29. Interfaces to the NVCM/Flash Sectors

- Only MachXO3L devices have NVCM.
 Only MachXO3LF devices have Flash.

The configuration logic arbitrates access from the interfaces by the following priority. When higher priority ports are enabled NVCM/Flash access by lower priority ports will be blocked.

- 1. JTAG Port
- 2. Slave SPI Port
- 3. I2C Primary Port
- 4. WISHBONE Slave Interface

Note: Enabling NVCM/Flash Interface using Enable Configuration Interface command 0x74 Transparent Mode will temporarily disable certain features of the device including:

- Power Controller
- GSR
- · Hardened User SPI port
- Hardened User Primary ^PC port

Functionality is restored after the NVCM/Flash Interface is disabled using Disable Configuration Interface command 0x26 followed by Bypass command 0xFF.

NVCM/Flash Access through WISHBONE Slave Interface

The WISHBONE Slave interface of the EFB module enables designers to access the NVCM/Flash directly from the FPGA core logic. The WISHBONE bus signals, described earlier in this document, are utilized by a WISHBONE host that designers can implement using the general purpose FPGA resources.

The WISHBONE Interface communicates to the Configuration Logic through a set of data, control and status registers. Table 48 shows the register names and their functions. These registers are a subset of the EFB register map. Refer to the EFB register map for specific addresses of each register.

Table 48. WISHBONE to NVCM/Flash Logic Registers

WISHBONE to CFG Register Name	Register Function	Address	Access
CFGCR	Control	0x70	Read/Write
CFGTXDR	Transmit Data	0x71	Write
CFGSR	Status	0x72	Read
CFGRXDR	Receive Data	0x73	Read
CFGIRQ	Interrupt Request	0x74	Read/Write
CFGIRQEN	Interrupt Request Enable	0x75	Read/Write

Note: Unless otherwise specified, all Reserved bits in writable registers shall be written '0'.

Table 49. NVCM/Flash Control

CFGCR								0x70
Bit	7	6	5	4	3	2	1	0
Name	WBCE	RSTE	(Reserved)					
Default	0	0	0	0	0	0	0	0
Access	R/W	R/W	_	_	_	_	_	_

WBCE

WISHBONE Connection Enable. Enables the WISHBONE to establish the read/write connection to the NVCM/Flash logic. This bit must be set prior to executing any command through the WISHBONE port. Likewise, this bit must be cleared to terminate the command. See Command and Data Transfers to NVCM/Flash Space for more information on framing WISHBONE commands.

1: Enabled 0: Disabled

RSTE

WISHBONE Connection Reset. Resets the input/output FIFO logic. The reset logic is level sensitive. After setting this bit to '1' it must be cleared to '0' for normal operation.

1: Reset

0: Normal operation

Table 50. NVCM/Flash Transmit Data

CFGTXDR		0x71							
Bit	7	6	5	4	3	2	1	0	
Name		CFG_Transmit_Data[7:0]							
Default	0	0	0	0	0	0	0	0	
Access	W	W	W	W	W	W	W	W	

CFG_Transmit_Data[7:0]

CFG Transmit Data. This register holds the byte that will be written to the NVCM/Flash logic. Bit 0 is LSB.

Table 51. NVCM/Flash Status

CFGSR 0x7								
Bit	7	6	5	4	3	2	1	0
Name	WBCACT	(Reserved)	TXFE	TXFF	RXFE	RXFF	SSPIACT	I2CACT
Default	0	0	0	0	0	0	0	0
Access	R	_	R	R	R	R	R	R

WBCACT

WISHBONE Bus to Configuration Logic Active. Indicates that the WISHBONE to configuration interface is active and the connection is established.

WISHBONE Active
 WISHBONE not Active

TXFE

Transmit FIFO Empty. Indicates that the Transmit Data register is empty. This bit is capable of generating an interrupt.

FIFO empty
 FIFO not empty

TXFF

Transmit FIFO Full. Indicates that the Transmit Data register is full. This bit is capable of generating an interrupt.

1: FIFO full 0: FIFO not full

RXFE

Receive FIFO Empty. Indicates that the Receive Data register is empty. This bit is capable of generating an interrupt.

FIFO empty
 FIFO not empty

RXFF

Receive FIFO Full. Indicates that the Transmit Data register is full. This bit is capable of generating an interrupt.

FIFO full
 FIFO not full

SSPIACT

Slave SPI Active. Indicates the Slave SPI port has started actively communicating with the Configuration Logic while WBCE was enabled. This port has priority over the I²C and WISHBONE ports and will pre-empt any existing, and prohibit any new, lower priority transaction. This bit is capable of generating an interrupt.

1: Slave SPI port active0: Slave SPI port not active

I2CACT

I²C Active. Indicates the I²C port has started actively communicating with the Configuration Logic while WBCE was enabled. This port has priority over the WISHBONE ports and will pre-empt any existing, and prohibit any new WISHBONE transaction. This bit is capable of generating an interrupt.

1: I²C port active
0: I²C port not active

Table 52. NVCM/Flash Receive Data

CFGRXDR	0x7							
Bit	7	6	5	4	3	2	1	0
Name		CFG_Receive_Data[7:0]						
Default	0	0	0	0	0	0	0	0
Access	R	R	R	R	R	R	R	R

CFG_Receive_Data[7:0]

CFG Receive Data. This register holds the byte read from the NVCM/Flash logic. Bit 0 in this register is LSB.

Table 53. NVCM/Flash Interrupt Status

CFGIRQ 0								
Bit	7	6	5	4	3	2	1	0
Name	(Rese	erved)	IRQTXFE	IRQTXFF	IRQRXFE	IRQRXFF	IRQSSPIACT	IRQI2CACT
Default	0	0	0	0	0	0	0	0
Access	_	_	R/W	R/W	R/W	R/W	R/W	R/W

IRQTXFE

Interrupt Status for Transmit FIFO Empty.

When enabled, indicates TXFE was asserted. Write a '1' to this bit to clear the interrupt.

1: Transmit FIFO Empty Interrupt

0: No interrupt

IRQTXFF

Interrupt Status for Transmit FIFO Full.

When enabled, indicates TXFF was asserted. Write a '1' to this bit to clear the interrupt.

1: Transmit FIFO Full Interrupt

0: No interrupt

IRQRXFE

Interrupt Status for Receive FIFO Empty.

When enabled, indicates RXFE was asserted. Write a '1' to this bit to clear the interrupt.

1: Receive FIFO Empty Interrupt

0: No interrupt

IRQRXFF

Interrupt Status for Receive FIFO Full.

When enabled, indicates RXFF was asserted. Write a '1' to this bit to clear the interrupt.

1: Receive FIFO Full Interrupt

0: No interrupt

IRQSSPIACT

Interrupt Status for Slave SPI Active.

When enabled, indicates SSPIACT was asserted. Write a '1' to this bit to clear the interrupt.

1: Slave SPI Active Interrupt

0: No interrupt

IRQI2CACT

Interrupt Status for I²C Active.

When enabled, indicates I2CACT was asserted. Write a '1' to this bit to clear the interrupt.

1: I²C Active Interrupt

0: No interrupt

Table 54. NVCM/Flash Interrupt Enable

CFGIRQEN	CFGIRQEN 0x75								
Bit	7	6	5	4	3	2	1	0	
Name	(Rese	rved)	IRQTXFEEN	IRQTXFFEN	IRQRXFEEN	IRQRXFFEN	IRQSSPIACTEN	IRQI2CACTEN	
Default	0	0	0	0	0	0	0	0	
Access	_	_	R/W	R/W	R/W	R/W	R/W	R/W	

IRQTXFEEN Interrupt Enable for Transmit FIFO Empty

1: Interrupt generation enabled

0: Interrupt generation disabled

IRQTXFFEN Interrupt Enable for Transmit FIFO Full

1: Interrupt generation enabled

0: Interrupt generation disabled

IRQRXFEEN Interrupt Enable for Receive FIFO Empty

1: Interrupt generation enabled

0: Interrupt generation disabled

IRQRXFFEN Interrupt Enable for Receive FIFO Full

Interrupt generation enabled
 Interrupt generation disabled

IRQSSPIACTEN Interrupt Enable for Slave SPI Active

1: Interrupt generation enabled0: Interrupt generation disabled

IRQI2CACTEN Interrupt Enable for I²C Active

Interrupt generation enabled
 Interrupt generation disabled

Table 55. Unused (Reserved) Register

UNUSED								0x76
Bit	7	6	5	4	3	2	1	0
Name		(Reserved)						
Default	0	0	0	0	0	0	0	0
Access	_	_	_	_	_	_	_	_

Table 56. EFB Interrupt Source

EFBIRQ	FBIRQ 02								
Bit	7	6	5	4	3	2	1	0	
Name	(Reserved)		CFG_INT	TC_INT	SPI_INT	I2C2_INT	I2C1_INT		
Default	0	0	0	0	0	0	0	0	
Access	R	R	R	R	R	R	R	R	

CFG INT

NVCM/Flash Interrupt Source. Indicates EFB interrupt source is from the NVCM/Flash Block. Use CFGIRQ for further source resolution.

1: A bit is set in register CFGIRQ

0: No interrupt

TC_INT Timer/Counter Interrupt Source. Indicates EFB interrupt source is from the Timer/Counter Block. Use TCIRQ for further source resolution.

1: A bit is set in register TCIRQ

0: No interrupt

SPI_INT SPI Interrupt Source. Indicates EFB interrupt source is from the SPI Block. Use SPI-

IRQ for further source resolution.

1: A bit is set in register SPIIRQ

0: No interrupt

Block. Use I2C_2_ IRQ for further source resolution.

1: A bit is set in register I2C_2_ IRQ

0: No interrupt

I2C1_INT I2C1 Interrupt Source. Indicates EFB interrupt source is from the Primary I²C Block.

Use I2C_1_ IRQ for further source resolution.

1: A bit is set in register I2C 1 IRQ

0: No interrupt

Command and Data Transfers to NVCM/Flash Space

The command and data transfers to the NVCM/Flash are identical for all the access ports, regardless of their different physical interfaces. The NVCM/Flash is organized in pages. Therefore, users address a specific page for Read or Write operations to that page. Each page has 128 bits (16 bytes). The transfers are based on a set of instructions and page addresses. The NVCM/Flash is composed of three sectors, Configuration NVCM0/Flash (includes USERCODE), NVCM1/UFM, Feature Row. The Erase operations are sector based.

Command Summary by Application

Table 57. NVCM (Sector 1)/UFM Commands

Command Name	Command MSB LSB	SVF Command Name	Description
Read Status Register	0x3C	LSC_READ_STATUS	Read the 4-byte Configuration Status Register.
Check Busy Flag	0xF0	LSC_CHECK_BUSY	Read the Configuration Busy Flag status.
Bypass	0xFF	ISC_NOOP	Null operation.
Enable Configuration Interface (Transparent Mode)	0x74	ISC_ENABLE_X	Enable Transparent NVCM1/UFM access – All user I/Os (except the hardened user SPI and primary user I ² C ports) are governed by the user logic, the device remains in User mode. (The subsequent commands in this table require the interface to be enabled.)
Enable Configuration Interface (Offline Mode)	0xC6	ISC_ENABLE	Enable Offline NVCM1 access – All user I/Os (except persisted sysCONFIG ports) are tristated. User logic ceases to function, NVCM1/UFM remains accessible, and the device enters 'Offline' access mode. (The subsequent commands in this table require the interface to be enabled.)
Disable Configuration Interface	0x26	ISC_DISABLE	Disable the configuration (NVCM1/UFM) access.
Set Address	0xB4	LSC_WRITE_ADDRESS	Set the NVCM1/UFM sector 14-bit Address Register.
Reset NVCM1/UFM Address	0x47	LSC_INIT_ADDR_NVCM1	Reset the address to point to Sector 1, Page 0 of the NVCM1/UFM.
Read NVCM1/UFM	0xCA	LSC_READ_TAG	Read the NVCM1/UFM data. Operand specifies number pages to read. Address Register is post-incremented.

Command Name	Command MSB LSB	SVF Command Name	Description
Erase NVCM1/UFM	0xCB	LSC_ERASE_TAG	Erase the NVCM1/UFM sector only.
Program NVCM1/UFM Page	0xC9		Write one page of data to the NVCM1/UFM. Address Register is post-incremented.

Table 58. Configuration NVCM/Flash (Sector 0) Commands

Command Name	Command MSB LSB	SVF Command Name	Description
Read Device ID	0xE0	IDCODE_PUB	Read the 4-byte Device ID (0x01 2b 20 43).
Read USERCODE	0xC0	USERCODE	Read 32-bit USERCODE.
Read Status Register	0x3C	LSC_READ_STATUS	Read the 4-byte Configuration Status Register.
Read Busy Flag	0xF0	LSC_CHECK_BUSY	Read the Configuration Busy Flag status.
Refresh ¹	0x79	LSC_REFRESH	Launch boot sequence (same as toggling PRO-GRAMN pin).
STANDBY	0x7D	LSC_DEVICE_CTRL	Triggers the Power Controller to enter or wake from standby mode.
Bypass	0xFF	ISC_NOOP	Null operation.
Enable Configuration Interface (Transparent Mode)	0x74	ISC_ENABLE_X	Enable Transparent Configuration NVCM0/Flash access – All user I/Os (except the hardened user SPI and primary user I ² C ports) are governed by the user logic, the device remains in User mode. (The subsequent com- mands in this table require the interface to be enabled.)
Enable Configuration Interface (Offline Mode)	0xC6	ISC_ENABLE	Enable Offline Configuration NVCM0/Flash access – All user I/Os (except persisted sys-CONFIG ports) are tri-stated. User logic ceases to function, and the device enters 'Offline' access mode. (The subsequent commands in this table require the interface to be enabled.)
Disable Configuration Interface	0x26	ISC_DISABLE	Exit access mode.
Set Configuration NVCM0/Flash Address	0xB4	LSC_WRITE_ADDRESS	Set the Configuration NVCM0/Flash 14-bit Page Address.
Verify Device ID	0xE2	VERIFY_ID	Verify device ID with 32-bit input, set Fail flag if mismatched
Reset Configuration NVCM0/Flash Address	0x46	LSC_INIT_ADDRESS	Reset the address to point to Sector 0, Page 0 of the Configuration NVCM0/Flash.
Read NVCM0/Flash	0x73	LSC_READ_INCR_NV	Read the NVCM0/Flash data. Operand specifies number pages to read. Address Register is post-incremented.
Erase	0x0E	ISC_ERASE	Erase the Config NVCM0/Flash, FEATURE Row, FEABITs, Done bit, Security bits and USERCODE.
Program Page	0x70	LSC_PROG_INCR_NV	Write one page of data to the NVCM/Flash. Address Register is post-incremented.
Program DONE	0x5E	ISC_PROGRAM_DONE	Program the Done bit.
Program SECURITY	0xCE	ISC_PROGRAM_SECURITY	Program the Security bit (Secures CFG NVCM0/Flash sector).
Program SECURITY PLUS	0xCF	ISC_PROGRAM_SECPLUS	Program the Security Plus bit (Secures CFG, NVCM0/Flash and NVCM1/UFM Sectors). Note: SECURITY and SECURITY PLUS commands are mutually exclusive.
Program USERCODE	0xC2	ISC_PROGRAM_USERCODE	Program 32-bit USERCODE.

Table 58. Configuration NVCM/Flash (Sector 0) Commands (Continued)

Command Name	Command MSB LSB	SVF Command Name	Description
Read Feature Row	0xE7	LSC_READ_FEATURE	Read Feature Row.
Program Feature Row	0xE4	LSC_PROG_FEATURE	Program Feature Row.
Read FEABITS	0xFB	LSC_READ_FEABITS	Read FEA bits.
Program FEABITs	0xF8	LSC_PROG_FEABITS	Program the FEA bits.

^{1.} The Refresh commands are not supported by the software simulation model.

Table 59. Non-Volatile Register (NVR) Commands

Command Name	Command msb lsb	SVF Command Name	Description
Read Trace ID code	0x19	UIDCODE_PUB	Read 64-bit TraceID.

When using the WISHBONE bus interface, the commands, operand and data are written to the CFGTXDR Register. The Slave SPI or I²C interface shift the most significant bit (MSB) first into the MachXO3L/LF device. This is required only when communicating with the configuration logic inside the MachXO3L/LF device.

In order to perform a Write, Read or Erase operation with the NVCM, it is required that the interface is enabled using Command 0x74. Affected commands are noted in the Command Description as "EN Required." Once the modification operations are completed, the interface can be disabled using commands 0x26 and 0xFF.

Command Descriptions by Command Code

Table 60. Erase NVCM/Flash (0x0E)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
v	V		V	0E	See below			

Operand: 0000 ucfs 0000 0000 0000 0000(binary)

where: u: Erase NVCM1/UFM sector

0: No action1: Erase

c: Erase CFG NVCM0/Flash sector (Config NVCM/Flash, DONE, security bits, USERCODE)

0: No action
1: Erase

f: Erase Feature sector (Slave I^2C address, sysCONFIG port persistence, Boot

mode, etc.)
0: No action
1: Erase

s: Erase SRAM

0: No action1: Erase

Poll the BUSY bit (or wait, see Table 100) after issuing this command for erasure to Notes:

complete before issuing a subsequent command other than Read Status or Check

Busy.

Erased condition for NVCM/Flash bits = 0

Examples: 0x0E 04 00 00

Erase CFG NVCM0/Flash sector

0x0E 08 00 00

Erase NVCM1/UFM sector

0x0E 0C 00 00

Erase NVCM1/UFM and CFG NVCM0/Flash sectors

Table 61. Read TraceID Code (0x19)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
L								

0x19 00 00 00 Example:

Read 8-byte TraceID

Note: First byte read is user portion. Next seven bytes are unique to each silicon die.

Table 62. Disable Configuration Interface (0x26)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
x	х		_	26	00 00	_	_	_

Example: 0x26 00 00

Disable NVCM/Flash interface for change access

Notes: Must have only two operands

> The interface cannot be disabled while the Configuration Status Register Busy bit is asserted. After commands (for example, Erase, Program) verify Busy is clear before

issuing the Disable command.

This command should be followed by Command 0xFF (BYPASS) to complete the Disable operation. The BYPASS command is required to restore Power Controller, GSR,

Hardened User SPI and I²C port operation.

SRAM must be erased before exiting Offline (0xC6) Mode

EEE

Table 63. Read Status Register (0x3C)

NVCM1/ UFM	CFG NVCM0/ Flash	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
Х	Х	N	3C	00 00 00	R	4B	xxxx IxEE Exxx xxxx xxFB xxCD xxxx xxxx

Data Format: Most significant byte of SR is received first, LSB last.

D bit 8 NVCM/Flash or SRAM Done Flag

When C = 0 SRAM Done bit has been programmed
 D = 1 Successful NVCM/Flash to SRAM transfer
 D = 0 Failure in the NVCM/Flash to SRAM transfer

When C=1 NVCM Done bit has been programed

D = 1 ProgrammedD = 0 Not Programmed

C bit 9 Enable Configuration Interface (1=Enable, 0=Disable)

B bit 12: Busy Flag (1 = busy)

F bit 13: Fail Flag (1 = operation failed)

I I=0 Device verified correct, I=1 Device failed to verify

bits[25:23]: Configuration Check Status

000: No Error 001: ID ERR 010: CMD ERR 011: CRC ERR 100: Preamble ERR 101: Abort ERR 110: Overflow ERR 111: SDM EOF

(all other bits reserved)

Usage: The BUSY bit should be checked following all Enable, Erase or Program operations.

Note: Wait at least 1us after power-up or asserting wb_rst_i before accessing the EFB.

Example: 0x3C 00 00 00

Read 4-byte Status Register for example, 0x00 00 20 00 (fail flag set)

Table 64. Reset CFG Address (0x46)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
	х		Υ	46	00 00 00	_		_

Example: 0x46 00 00 00

Set Address register to Configuration Sector 0, page 0

Table 65. Reset NVCM1 Address (0x47)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
Х			Υ	47	00 00 00	_	1	1

Example: 0x47 00 00 00

Set Address register to NVCM/Flash Sector 1, page 0

Table 66. Program DONE (0x5E)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
	х		Υ	5E	00 00 00	_	_	_

Example: 0x5E 00 00 00

Set the DONE bit

Note: Poll the BUSY bit (or wait 200us) after issuing this command for programming to com-

plete before issuing a subsequent command other than Read Status or Check Busy.

Table 67. Program Configuration NVCM (0x70)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
			V	70	00 00 01	W	16B	16 bytes NVCM0 write data

Example: 0x70 00 00 01 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Write one page of data, pointed to by Address Register

Notes: 16 data bytes must be written following the command and operand bytes to ensure

proper data alignment. The Address Register is auto-incremented following the page

write.

Operands (0x00 00 00) are equivalent to (0x00 00 01).

Use 0x0E to erase CFG NVCM0 sector prior to executing this command.

Poll the BUSY bit (or wait 200us) after issuing this command for programming to complete before issuing a subsequent command other than Read Status or Check Busy.

Table 68. Read Configuration NVCM/Flash (0x73) (SPI)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
	x		Υ	73	* (below)	R	** (below)	*** (below)

Note: This applies when Configuration NVCM/Flash is read through SPI

*Operand: 0001 0000 00pp pppp pppp pppp (binary)

pp..pp: num_pages Number of CFG NVCM0/Flash pages to read when num_pages = 1

Number of CFG NVCM0/Flash pages to read +1 when num_pages > 1

**Data Size: (num_pages * 16) bytes

Note: Read CFG NVCM0/Flash may be aborted at any time. Any data remaining in the read

FIFO will be discarded. Any read data beyond the prescribed read size will be indeter-

minate. The Address Register is auto-incremented after each page read.

***Examples: 0x73 10 00 01

0 bytes dummy followed by one page of CFG NVCM0/Flash data (16 bytes total)

0x73 10 00 04

Read 1 page dummy followed by three pages of CFG NVCM0/Flash data (four pages

total)

Table 69. Read Configuration NVCM/Flash (0x73) (PC/SPI)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
	х		Υ	73	* (below)	R	** (below)	*** (below)

Note: This applies when Configuration NVCM/Flash is read through I²C or SPI

*Operand: 0000 0000 00pp pppp pppp pppp (binary)

pp..pp: num_pages Number of CFG NVCM0/Flash pages to read when num_pages = 1

Number of CFG NVCM0/Flash pages to read +1 when num_pages > 1

**Data Size: (num_pages * 16) bytes when num_pages=1

32 bytes + (num_pages) * (16 + 4) bytes when num_pages>1

Note: Read CFG NVCM0/Flash may be aborted at any time. Any data remaining in the read

FIFO will be discarded. Any read data beyond the prescribed read size will be indeter-

minate. The Address Register is auto-incremented after each page read.

***Examples: 0x73 00 00 01

0 bytes dummy followed by one page CFG NVCM0/Flash data (16 bytes total)

0x73 00 00 04

Read 2 pages dummy, followed by three sets [1 page CFG NVCM0/Flash data, fol-

lowed by four bytes dummy (five pages and 12 dummy bytes total)

Table 70. Read Configuration NVCM/Flash (0x73) (WISHBONE)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
	x		Y	73	* (below)	R	** (below)	*** (below)

Note: This applies when Configuration NVCM/Flash is read through WISHBONE

*Operand: 0000 0000 00pp pppp pppp pppp (binary)

pp..pp: num_pages Number of CFG NVCM0/Flash pages to read when num_pages = 1

Number of CFG NVCM0/Flash pages to read +1 when

1 < num_pages ≤ 12

Set to 0x3FFF when num_pages > 12

**Data Size: (num pages * 16) bytes when num pages=1

32 bytes + (num_pages) * (16 + 4) bytes when num_pages>1

Note: When reading more than 12 pages, the num_pages argument is intentionally over-

sized. It is not necessary to read the extra pages. Read CFG NVCM0/Flash may be aborted at any time. Any data remaining in the read FIFO will be discarded. Any read data beyond the prescribed read size will be indeterminate. The Address Register is

auto-incremented after each page read.

***Examples: 0x73 00 00 01

0 bytes dummy followed by one page CFG NVCM0/Flash data (16 bytes total)

0x73 00 00 04

Read 2 pages dummy, followed by three sets [1 page CFG NVCM0/Flash data, fol-

lowed by four bytes dummy] (five pages and 12 dummy bytes total)

Note:

The maximum speed which one page of data (num_page=1) can be read using WISHBONE and no wait states is 16.6 MHz. Faster WISHBONE clock speeds are supported by inserting WB wait states to observe the retrieval delay timing requirement. For more information, refer to the Reading Flash Pages section of TN1204, MachXO2 Programming and Configuration Usage Guide.

Table 71. Enable Configuration Interface (Transparent) (0x74)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
х	х		_	74	08 00 00 or 08 00	_	_	_

Notes:

The I²C interface uses only two operands all other interfaces use three operands. This command is required to enable modification of the NVCM1/UFM, configuration CFG NVCM0/Flash, or non-volatile registers (NVR). Terminate this command with command 0x26 followed by command 0xFF.

Exercising this command will temporarily disable certain features of the device, notably GSR, user SPI port, primary user I²C port and Power Controller. These features are restored when the command is terminated.

Poll the BUSY bit (or wait 5us) after issuing this command for the NVCM/Flash pumps to fully charge.

Example:

0x74 08 00 00

Enable NVCM/Flash interface for change access through a non-I²C interface.

Table 72. Refresh (0x79)

	NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
I					79	00 00	_	-	

Example: 0x79 00 00

Issue Refresh command

Note: The Refresh command will Launch Boot sequence

Must have only two operands

After completing the Refresh command (for example, SPI SN deassertion or I^2C stop), further bus accesses are prohibited for the duration of $t_{REFRESH}$. Violating this requirement will cause the Refresh process to abort and leave the MachXO3L/LF device in an unprogrammed state.

Occasionally, following a device REFRESH or PROGRAMN pin toggle, the secondary I²C port may be left in an undefined (non-idle) state. The likely hood of this condition is design and route dependent. To positively return the Secondary I²C port to the idle state, write a value of 0x44 to register I2C_2_CMDR via WISHBONE immediately after device reset is released. This will cause a short low-pulse on SCK as the hard-block signals a STOP on the bus then returns to the idle state. Failure to manually return the Secondary I²C port to the idle state may result in an I²C bus lock-up condition. Normal I²C activity can be commenced without additional delay.

Table 73. STANDBY (0x7D)

	NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
Ī		Х		N	7D	0y 00	_	_	_

Example: 0x7D 0y 00

y:2 Triggers the Power Controller to enter standby mode

y:8 Triggers the Power Controller to wakeup from standby mode

Notes: Must have only two operands.

The MachXO3L/LF Power Controller needs to be included in the design.

Additionally the following can be used to trigger the Power Controller to wakeup from standby mode (if the user logic standby signal has not been enabled):

1. I²C has the following ways:

- a. Primary I^2C Configuration port Address match to the I^2C Configuration address (No other settings required)
- b. Primary or Secondary I²C User port Address match the I²C User address. Must have I2C_1_CR[WKUPEN] or I2C_1_CR[WKUPEN] set
- c. General Call Send the General Call Wakeup command (0xF3). Must have General Calls enabled (I2C_1_CR[GCEN] or I2C_2_CR[GCEN] set) and use the General Call address
- 2. SPI from the assertion of either Slave Configuration (sn) or User (spi_scsn) chip select, as long as the appropriate control register bit is set:
 - a. Configuration: SPICR1[WKUPEN_CFG]
 - b. User: SPICR[WKUPEN_USER]

For more information on the Power Controller refer to TN1289, Power Estimation and Management for MachXO3 Devices.

Table 74. Set Address (0xB4)

NVCM1/ UFM	CFG NVCM0/ Flash	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
Х	Х	Υ	B4	00 00 00	W	4B	0s00 0000 0000 0000 00aa aaaa aaaa aaaa

Data Format: s: sector

0: CFG NVCM0/Flash 1: NVCM1/UFM

aa..aa:address14-bit page address

Example: 0xB4 00 00 00 40 00 00 0A

Set Address register to NVCM1/UFM sector, page 10 decimal

Table 75. Read USERCODE (0xC0)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Hex)
	х		Y/N	CO	00 00 00	R	4B	_

Example: 0xC0 00 00 00

EN Required = Y Read 4-byte USERCODE from CFG NVCM0 sector

EN Required = N Read 4-byte USERCODE from SRAM

Table 76. Program USERCODE (0xC2)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Hex)
	х		Υ	C2	00 00 00	W	4B	

Example: 0xC2 00 00 00 10 20 30 40

Sets USERCODE with 32-bit input 0x10 20 30 40

Note: Poll the BUSY bit (or wait 200us) after issuing this command for programming to com-

plete before issuing a subsequent command other than Read Status or Check Busy.

Table 77. Enable Configuration Interface (Offline) (0xC6)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
	х			C6	0y 00 00	_	_	_

Operand: 08 00 00 - Enable NVCM/Flash Normal mode. Normal edit mode for Offline configura-

tion. Used for all offline commands described in this document, including

Erase SRAM.

00 00 00 - Enable SRAM mode. Optional edit mode. Supports Erase SRAM com-

mand only.

Example: 0xC6 08 00 00 Enable NVCM/Flash interface for offline change access.

Notes: Use this command to enable offline modification of the NVCM/Flash, or non-volatile

registers (NVR). SRAM must be erased exiting Offline mode. When exiting Offline mode follow the command 0x26 with the command 0xFF. Exercising this command will tri-state all user I/Os (except persisted sysCONFIG ports). User logic ceases to

function. NVCM1/UFM remains accessible.

Poll the BUSY bit (or wait 5 µs) after issuing this command for the NVCM/Flash pumps

to fully charge.

Table 78. Program NVCM1/UFM (0xC9)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
х			Υ	C9	00 00 01	W	16B	16 bytes NVCM0 write data

Example: 0xC9 00 00 01 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Write one page of data, pointed to by Address Register

Notes:

16 data bytes must be written following the command and operand bytes to ensure proper data alignment. The Address Register is auto-incremented following the page

write.

Use 0x0E or 0xCB to erase NVCM1/UFM sector prior to executing this command.

Poll the BUSY bit (or wait 200us) after issuing this command for programming to complete before issuing a subsequent command other than Read Status or Check Busy.

Table 79. Read NVCM1/UFM (0xCA) (SPI)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
x			Υ	CA	*(below)	R	**(below)	***(below)

*Operand: 0001 0000 00pp pppp pppp pppp (binary)

where: pp..pp: num_pages Number of NVCM1/UFM pages to read when num_pages = 1

Number of NVCM1/UFM pages to read +1 when num pages > 1

**Data Size (num_pages * 16) bytes

Note: Read NVCM1/UFM may be aborted at any time. Any data remaining in the read fifo

will be discarded. Any read data beyond the prescribed read size will be indetermi-

nate. The Address Register is auto-incremented after each page read.

***Examples: 0xCA 10 00 01

Read 0 bytes dummy followed by one page NVCM1/UFM data (16 bytes total)

0xCA 10 00 04

Read one page dummy followed by three pages NVCM1/UFM data (four pages total)

Table 80. Read NVCM1/UFM (0xCA) (SPI/PC)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
х			Υ	CA	*(below)	R	**(below)	***(below)

*Operand: 0000 0000 00pp pppp pppp pppp (binary)

where: pp..pp: num_pages Number of NVCM1/UFM pages to read when num_pages = 1

Number of NVCM1/UFM pages to read +1 when num pages > 1

**Data Size: (num_pages * 16) bytes when num_pages=1

32 bytes + (num_pages * 16 + 4) bytes when num_pages>1

Note: Read NVCM1/UFM may be aborted at any time. Any data remaining in the read fifo

will be discarded. Any read data beyond the prescribed read size will be indetermi-

nate. The Address Register is auto-incremented after each page read.

***Examples: 0xCA 00 00 01

Read 0 bytes dummy followed by one page NVCM1/UFM data (16 bytes total)

0xCA 00 00 04

Read two pages dummy followed by three sets [one page NVCM1/UFM data, followed

by four bytes dummy] (five pages total and 12 dummy bytes)

Table 81. Read NVCM1/UFM (0xCA) (WISHBONE)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
Х			Υ	CA	*(below)	R	**(below)	***(below)

*Operand: 0000 0000 00pp pppp pppp pppp (binary)

where: pp..pp: num_pages Number of NVCM1/UFM pages to read when num_pages = 1

Number of NVCM1/UFM pages to read +1 when

1 < num pages ≤ 12

Set to 0x3FFF when num_pages > 12

**Data Size: (num_pages * 16) bytes when num_pages=1

32 bytes + (num_pages * 16 + 4) bytes when num_pages>1

Note: When reading more than 12 pages, the num_pages argument is intentionally over-

sized. It is not necessary to read the extra pages. Read NVCM1/UFM may be aborted at any time. Any data remaining in the read fifo will be discarded. Any read data beyond the prescribed read size will be indeterminate. The Address Register is auto-

incremented after each page read.

***Examples: 0xCA 00 00 01

Read 0 bytes dummy followed by one page NVCM1/UFM data (16 bytes total)

0xCA 00 00 04

Read two pages dummy followed by three sets [one page NVCM1/UFM data, followed

by four bytes dummy] (five pages total and 12 dummy bytes)

Note: The maximum WISHBONE clock speed with which one page of data (num_page=1)

can be read using WISHBONE and no wait states is 16.6 MHz. Faster WISHBONE clock speeds are supported by inserting WB wait states to observe the retrieval delay timing requirement. For more information, refer to the Reading Flash Pages section of

TN1204, MachXO2 Programming and Configuration Usage Guide.

Table 82. Erase NVCM1 (0xCB)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
x			Υ	CB	00 00 00	_	_	

Notes: Erased condition for NVCM1 bits = '0'

Poll the BUSY bit (or wait, see Table 100) after issuing this command for erasure to complete before issuing a subsequent command other than Read Status or Check

Busy.

Example: 0xCB 00 00 00

Erase NVCM1/UFM sector

Table 83. Program SECURITY (0xCE)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format
	x		Υ	CE	00 00 00	_	1	_

Example: 0xCE 00 00 00

Set the SECURITY bit

Note: Poll the BUSY bit (or wait 200us) after issuing this command for programming to com-

plete before issuing a subsequent command other than Read Status or Check Busy.

SECURITY and SECURITY PLUS commands are mutually exclusive.

Table 84. Program SECURITY PLUS (0xCF)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data For- mat
	х		Y	CF	00 00 00	_	_	_

Example: 0xCF 00 00 00

Set the SECURITY PLUS bit

Note: Poll the BUSY bit (or wait 200us) after issuing this command for programming to com-

plete before issuing a subsequent command other than Read Status or Check Busy.

SECURITY and SECURITY PLUS commands are mutually exclusive.

Table 85. Read Device ID Code (0xE0)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Hex)
	x		N	E0	00 00 00	R	4B	See Table 86

Example: 0xE0 00 00 00

Read 4-byte device ID

Table 86. Device ID

Device Name	E Devices	C Devices
MachXO3L-640E-MG121	0xC1 2B 20 43	_
MachXO3L-1300	0x41 2B 20 43	0xC1 2B B0 43
MachXO3L-1300E-MG256	0xC1 2B 30 43	_
MachXO3L-2100	0x41 2B 30 43	0x41 2B B0 43
MachXO3L-2100E-MG324	0xC1 2B 40 43	_
MachXO3L-2100C-BG324	_	0xC1 2B C0 43
MachXO3L-4300	0x41 2B 40 43	0x41 2B C0 43
MachXO3L-4300C-BG400	_	0xC1 2B D0 43
MachXO3L-6900	0x41 2B 50 43	0x41 2B D0 43
MachXO3L-9400	0x41 2B 60 43	0x41 2B E0 43
MachXO3LF-640E-MG121	0xE1 2B 20 43	_
MachXO3LF-1300	0x61 2B 20 43	0xE1 2B B0 43
MachXO3LF-1300E-MG256	0xE1 2B 30 43	_
MachXO3LF-2100	0x61 2B 30 43	0x61 2B B0 43
MachXO3LF-2100E-MG324	0xE1 2B 40 43	_
MachXO3LF-2100C-BG324	_	0xE1 2B C0 43
MachXO3LF-4300	0x61 2B 40 43	0x61 2B C0 43
MachXO3LF-4300C-BG400	_	0xE1 2B D0 43
MachXO3LF-6900	0x61 2B 50 43	0x61 2B D0 43
MachXO3LF-9400	0x61 2B 60 43	0x61 2B E0 43

Example: 0xE0 00 00 00

Read 4-byte device ID

Table 87. Verify Device ID Code (0xE2)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Hex)
	x		Υ	E2	00 00 00	W	4B	See Table 86

Example: 0xE2 00 00 00 01 2B 20 43

Verify device ID with 32-bit input, sets ID Error bit 27 in SR if mismatched

Table 88. Program Feature Row (0xE4)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Hex)
			Y	E4	00 00 00		8B	00 00 ss uu cc cc cc cc

Data Format: ss: 8 bits for the user programmable I²C Slave Address

uu: 8 bits for the user programmable TraceID

cc cc cc cc: 32 bits of Custom ID code

Note: It is not recommended to reprogram the Feature Row in system as it should be pro-

grammed ideally once during manufacturing.

Example: 0xE4 00 00 00 00 01 00 00 00 12 34

Program Feature Row with User I²C address set to 1, default user TraceID string, Cus-

Using Hardened Control Functions

in MachXO3 Devices Reference Guide

tom ID code of 12 34

Table 89. Read Feature Row (0xE7)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Hex)
		x	Y	E7	00 00 00	R	8B	00 00 ss uu cc cc cc cc

Data Format: ss: 8 bits for the user programmable I²C Slave Address

uu: 8 bits for the user programmable TraceID

cc cc cc cc: 32 bits of Custom ID code

Example: 0xE7 00 00 00

Reads the Feature Row

Table 90. Check Busy Flag (0xF0)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
x	x		N	F0	00 00 00	R	1B	Bxxx xxxx

Data Format: B: bit 7: Busy Flag (1= busy)

(all other bits reserved)

Example: 0xF0 00 00 00

Read one byte, for example, 0x80 (busy flag set)

Table 91. Program FEABITs (0xF8)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
		x	Υ	F8	00 00 00	W	2B	00 bb mi sj di pa wv 00

Data Format: bb: Boot Sequence

1. If b=00 (Default) and m=0 then Single Boot from NVCM/Flash

2. If b=00 and m=1 then Dual Boot from NVCM/Flash then External if there

is a failure

3. If b=01 and m=1 then Single Boot from External Flash

m: Master SPI Port Persistence

0=Disabled (Default), 1=Enabled

i: I²C Port Persistence

0=Enabled (Default), 1=Disabled

s: Slave SPI Port Persistence

0=Enabled (Default), 1=Disabled

j: JTAG Port Persistence

0=Enabled (Default), 1=Disabled

d: DONE Persistence

0=Disabled (Default), 1=Enabled

i: INITN Persistence

0=Disabled (Default), 1=Enabled

p: PROGRAMN Persistence

0=Enabled (Default), 1=Disabled

a: my_ASSP Enabled

0=Disabled (Default), 1=Enabled

w: Password (Flash Protect Key) Protect All Enabled

0=Disabled (Default), 1=Enabled

v: Password (Flash Protect Key) Enabled

0=Disabled (Default), 1=Enabled

Note: It is not recommended to reprogram the FEABITs in system as it should be pro-

grammed ideally once during manufacturing.

Example: 0xF8 00 00 00 0D 20

Programs the FEABITs

Table 92. Read FEABITs (0xFB)

 	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
		Х	Υ	FB	00 00 00	R	2B	00 bb mi sj di pa wv 00

Data Format: bb: Boot Sequence

1. If b=00 (Default) and m=0 then Single Boot from NVCM/Flash

2. If b=00 and m=1 then Dual Boot from NVCM/Flash then External if there

is a failure

3. If b=01 and m=1 then Single Boot from External Flash

m: Master SPI Port Persistence

0=Disabled (Default), 1=Enabled

i: I²C Port Persistence

0=Enabled (Default), 1=Disabled

s: Slave SPI Port Persistence

0=Enabled (Default), 1=Disabled

j: JTAG Port Persistence

0=Enabled (Default), 1=Disabled

d: DONE Persistence

0=Disabled (Default), 1=Enabled

i: INITN Persistence

0=Disabled (Default), 1=Enabled

p: PROGRAMN Persistence

0=Enabled (Default), 1=Disabled

a: my_ASSP Enabled

0=Disabled (Default), 1=Enabled

w: Password (Flash Protect Key) Protect All Enabled

0=Disabled (Default), 1=Enabled

v: Password (Flash Protect Key) Enabled

0=Disabled (Default), 1=Enabled

Table 93. Bypass (Null Operation) (0xFF)

NVCM1/ UFM	CFG NVCM0/ Flash	NVR	EN Required	CMD (Hex)	Operands (Hex)	Data Mode	Data Size	Data Format (Binary)
х	Х	Х	N	FF	FF FF FF	_		_

Note: Operands are optional

Example: 0xFF FF FF Bypass

Interface to NVCM/Flash

The WISHBONE interface of the EFB module allows a WISHBONE host to access the configuration resources of the MachXO3L/LF devices. This can be particularly useful for reading data from configuration resources such as USERCODE and TraceID. Most importantly, this feature allows users to update the NVCM/Flash array of the devices while the device is in operation mode. This is a self-configuration operation. Upon power-up or a configuration refresh operation, the new content of the NVCM is loaded into the Configuration SRAM and the device continues operation with a new configuration.

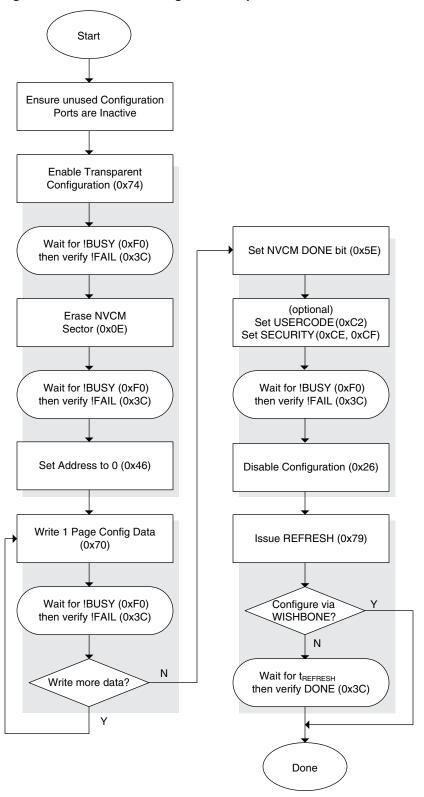
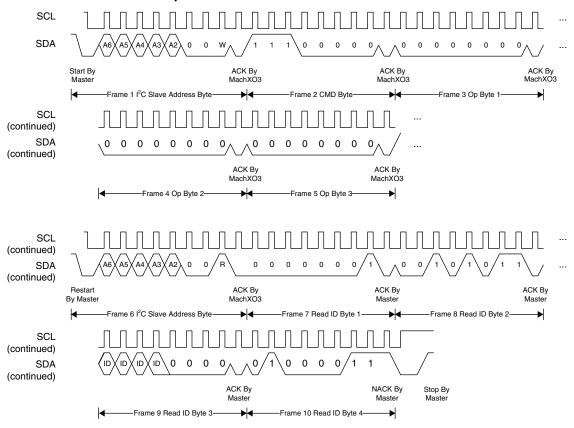

The data transfer and execution of operations is the same as the one documented in the NVCM1/UFM section of this document. This is due to the fact that the NVCM1/UFM is also a NVCM/Flash resource and the communication between the WISHBONE host and the configuration logic is performed through the same command, status and data registers. Please see Tables 48 to 96 for information on these registers.

Figure 30 shows a basic flow diagram for implementing a NVCM/Flash Update initiated via any of the sysCONFIG ports (I²C, SPI, or WISHBONE).

For detailed information on MachXO3L/LF programming and configuration, see TN1279, MachXO3 Programming and Configuration Usage Guide.

Figure 30. Basic Configuration NVCM1/UFM Program Example

Command Framing

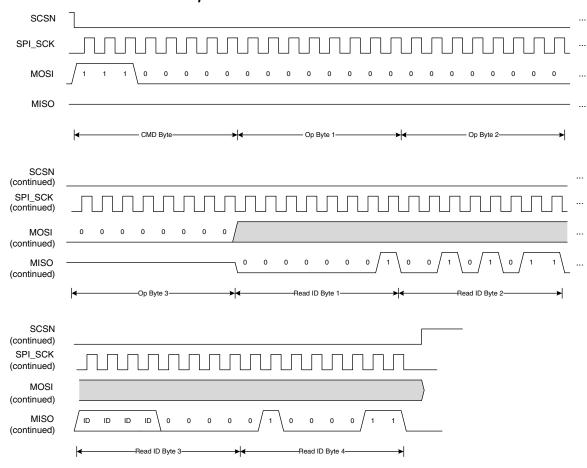

I²C Framing

Each command string sent to the I²C EFB port must be correctly "framed" using the protocol defined for each interface. In the case of I²C, the protocol is well known and defined by the industry as shown below.

Table 94. Command Framing Protocol, by Interface

Interface	Pre-op (+)	Command String	Post-op (-)
I ² C	Start	(Command/Operands/Data)	Stop

Figure 31. PC Read Device ID Example

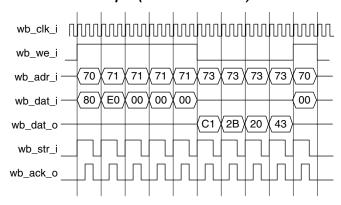

SPI Framing

Each command string sent to the SPI EFB port must be correctly 'framed' using the protocol defined for each interface. In the case of SSPI the protocol is well known and defined by the industry as shown below:

Table 95. Command Framing Protocol, by Interface

Interface	Pre-op (+)	Command String	Post-op (-)	
SPI	Assert CS	(Command/Operands/Data)	De-assert CS	

Figure 32. SSPI Read Device ID Example


WISHBONE Framing

To access the NVCM each command string sent to the WISHBONE EFB ports must be correctly 'framed' using the protocol defined for each interface. In the case of the internal WISHBONE port, each command string is preceded by setting CFGCR[WBCE]. Similarly, each command string is followed by clearing the CFGCR[WBCE] bit.

Table 96. Command Framing Protocol, by Interface

Interface	Pre-op (+)	Command String	Post-op (-)	
WISHBONE	Assert CFGCR[WBCE]	(Command/Operands/Data)	De-assert CFGCR[WBCE]	

Figure 33. WISHBONE Read Device ID Example (-1200 HC Device)

NVCM1/Flash Write and Read Examples

The NVCM/Flash sectors support page-oriented read and write operations while erase operations are sector-based. Consistent with many NVCM/Flash devices, byte-oriented operations are not supported.

Table 97. Write Two NVCM1/UFM Pages

Instruction Number	R/W1	CMD2	Operand	Data	Comment
		+			Open frame
1	W	74	08 00 00	_	Enable Configuration Interface
		_			Close frame
		+			
2	W	3C	00 00 00	_	Poll Configuration Status Register
	R			xx xx bx xx	
		_			(Repeat until Busy Flag not set, o wait 5us if not polling)
		+			
3	W	47	00 00 00	_	Init NVCM1/UFM Address to 0000
		_			
		+			
4	W	C9	00 00 01	00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F	Write NVCM1/UFM Page 0 Data
		_			
		+			

Table 97. Write Two NVCM1/UFM Pages (Continued)

Instruction Number	R/W1	CMD2	Operand	Data	Comment
5	W	3C	00 00 00	_	Poll Configuration Status Register
	R			xx xx bx xx	
		-			(repeat until Busy Flag not set, or wait 200 μs if not polling)
		+			
6	W	C9	00 00 01	10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F	Write NVCM1/UFM Page 1 Data (Note: Address automatically incre- mented)
		_			
		+			
7	W	3C	00 00 00	_	Poll Configuration Status Register
	R			xx xx bx xx	
		-			(poll until Busy Flag clear, or wait 200us if not polling)
		+			
8	W	26	00 00	_	Disable Configuration Interface
		_			
		+			
9	W	FF	_	_	Bypass (NOP)
		-			

^{1.} When accessing NVCM/Flash via WISHBONE use CFGTXDR (0x71) to write data and CFDRXDR (0x73) to read data.

^{2. &#}x27;+' and '-' refer to the command framing protocol appropriate for the interface, discussed in the Command Framing section.

Table 98. Read One NVCM1/UFM Page (All Devices, WISHBONE/SPI)

Instruction Number	R/W1	CMD2	Operand	Data	Comment
		+			Open frame
1	W	74	08 00 00	_	Enable Configuration Interface
		_			Close frame
		+			
2	W	3C	00 00 00	_	Poll Configuration Status Register
	R			xx xx bx xx	
		_			(Repeat until Busy Flag not set, or wait 5us if not polling)
		+			
3	W	B4	00 00 00	40 00 00 01	Set NVCM1/UFM Address to 0001
		_			
		+			
4	W	CA	10 00 01		Read one page NVCM1/UFM (page 1) data
	R			10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F	
		_			
		+			
5	W	26	00 00	_	Disable Configuration Interface
		_			
		+			
6	W	FF		_	Bypass (NOP)
		_			

^{1.} When accessing NVCM/Flash via WISHBONE use CFGTXDR (0x71) to write data and CFDRXDR (0x73) to read data.

^{2. &#}x27;+' and '-' refer to the command framing protocol appropriate for the interface, discussed in Command Framing section.

Table 99. Read Two NVCM1/UFM Pages (WISHBONE/SPI)

Instruction Number	R/W1	CMD2	Operand	Data	Comment
		+			Open frame
1	W	74	08 00 00	_	Enable Configuration Interface
		_			Close frame
		+			
2	W	3C	00 00 00	_	Poll Configuration Status Register
	R			xx xx bx xx	
		_			(Repeat until Busy Flag not set, or wait 5 μs if not polling)
		+			
3	W	47	00 00 00	_	Init NVCM1/UFM address to 0000
		_			
		+			
4	W	CA	10 00 03		Read two pages of NVCM1/UFM data, after one page of dummy bytes.3
	R			XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F	
		_			
		+			
5	W	26	00 00	_	Disable Configuration Interface
		_			
		+			
6	W	FF	_	_	Bypass (NOP)
		_			D (070) to good data

^{1.} When accessing NVCM/Flash via WISHBONE use CFGTXDR (0x71) to write data and CFDRXDR (0x73) to read data.

^{2. &#}x27;+' and '-' refer to the command framing protocol appropriate for the interface

^{3.} num_pages count must include dummy page.

NVCM/Flash Performance

Table 100. NVCM/Flash Performance in MachXO3L/LF Device1

		MachXO3L/LF -640	MachXO3L/LF -1300	MachXO3L/LF -1300 256 Ball Package	MachXO3L/LF -2100	MachXO3L/LF -2100 324 Ball Package	MachXO3L/LF -4300	MachXO3L/LF -4300 400 Ball Package	MachXO3L/LF -6900
CFG Erase	Min.	800	800	1100	1100	1800	1800	2800	2800
(tEraseCFG)	Max.	1400	1400	1900	1900	3100	3100	4800	4800
CFG Program	All	500	500	740	740	1400	1400	2200	2200
(tProgramCFG) 1	1 page	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
NVCM1/UFM Erase	Min.	400	400	500	500	600	600	900	900
(tEraseNVCM1/UFM)	Max.	700	700	900	900	1000	1000	1600	1600
NVCM1/UFM Program	All	110	110	140	140	180	180	480	480
(tProgramNVCM1/UFM)	1 page	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
tErase (max)	Note 2	12000	15000	15000	15000	15000	30000	30000	30000

^{1.} All times are averages, in (ms). SRAM erase times are < 0.1 ms.

Erase/Program/Verify Time Calculation Example

Using the data above, it is possible to roughly calculate the time required to perform an Program/Verify operation. The calculation assumes nearly 100% bus utilization. Overhead required by bus master processes, if any, is not accounted for in the equation below.

E/P/V time (μs): tEraseProgramVerify = tErase + tProgram + tVerify

where: tErase = tEraseCFG + tEraseNVCM1¹

tProgram = 0.2 μs * number of Pages to program²

tVerify = (8 * number of Pages programmed) * BusEff * tBUSCLK

Table 101. E/P/V Calculation parameters

	BusEff (Single Page Read)	BusEff ³ (Multi Page Read)	tBUSCLK	
I ² C	14	>12	2.5us min	
SPI	12	> 8	0.015us min	
WB	5.25	> 3	0.020us min	

^{1.} Sector erase times are additive. If a sector (for example, CFG) is not erased, its erase time is 0.

^{2.} tErase (max) is recommended for algorithm based time-outs.

^{2.} Data transfer time is insignificant to tProgram for high-speed data protocols. To account for slow bus speeds (for example, I²C) multiply tVerify by 2.

^{3.} Bus efficiency approaches this value as number of read pages increases.

Technical Support Assistance

Submit a technical support case through www.latticesemi.com/techsupport.

Revision History

Date	Version	Change Summary
December 2016	1.7	Corrected Bit 2, Default value in Table 5, I ² C Command (Pri/Sec).
		Updated document per Product Bulletin PB1381.
		— Updated Table 68, Read Configuration NVCM/Flash (0x73) (SPI).
		— Updated Table 69, Read Configuration NVCM/Flash (0x73) (I2C/SPI).
		— Added Table 70, Read Configuration NVCM/Flash (0x73) (WISHBONE).
		— Updated Table 79, Read NVCM1/UFM (0xCA) (SPI).
		— Updated Table 80, Read NVCM1/UFM (0xCA) (I2C/SPI).
		— Added Table 81, Read NVCM1/UFM (0xCA) (WISHBONE).
April 2016	1.6	Updated I2C Registers section. Corrected reference to Figure 14 in SRW definition under Table 9, I2C Status (Primary/Secondary).
		Updated Command Descriptions by Command Code section. — Modified Table 86, Device ID. Added MachXO3L-9400 and MachXO3LF-9400. — Modified Table 91, Program FEABITs (0xF8). Added wv in Data Format (Binary). — Modified Table 92, Read FEABITs (0xFB). Added wv in Data Format (Binary).
March 2016	1.5	Updated I2C Registers section. Modified Figure 6, I2C Master Read/Write Example (via WISHBONE).
		Updated Command Descriptions by Command Code section. Corrected Table 86, Device ID.
		Updated NVCM/Flash Performance section. Added tErase (max) values to Table 100, NVCM/Flash Performance in MachXO3L/LF Device.
September 2015	1.4	Updated Hardened I2C IP Cores section. Modified description of RARC and TROE.
		Updated SPI Registers section. Modified description of TXEDGE and CPOL.
		Updated SPI Timing Diagrams section. Corrected the following diagrams: — Figure 24, SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=0) — Figure 25, SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=0) — Figure 26, SPI Control Timing (SPICR2[CPHA]=0,
		SPICR1[TXEDGE]=1) — Figure 27, SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=1)
		Updated NVCM/Flash Access Ports section. Added disabled feature in Note.
		Updated Command Framing section. Corrected device name in Figure 31, I ² C Read Device ID Example.
		Updated Technical Support Assistance section.

Date	Version	Change Summary
March 2015	1.3	General updates: — Added MachXO3LF support. — Added UFM support.
		Updated WISBONE Bus Interface section. Revised In Table 2, WISHBONE Slave Interface Signals of the EFB Module. Added details to the wb_clk_i signal name description.
		Updated Hardened I2C IP Cores section. Added new EFB instantiation requirement for I ² C configuration port access per Product Bulletin PB1412.
		Updated I2C Registers section. — Changed Figure 6, I ² C Master Read/Write Example (via WISHBONE). — Revised SDA_DEL_SEL[1:0] description.
		Updated SPI Registers section. Corrected CPOL description.
		Updated SPI Timing Diagrams section. Changed the following fig-
		ures: — Figure 24, SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=0)
		— Figure 25, SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=0)
		— Figure 26, SPI Control Timing (SPICR2[CPHA]=0, SPICR1[TXEDGE]=1)
		— Figure 27, SPI Control Timing (SPICR2[CPHA]=1, SPICR1[TXEDGE]=1)
October 2014	1.2	Updated I ² C Registers section. Added note to SRW description under Table 9, I ² C Status (Primary/Secondary).
		Updated Table 58, Configuration Flash (Sector 0) Commands. Updated Erase command description.
		Updated Command Descriptions by Command Code section. Updated information on Erase Feature sector under Table 60, Erase NVCM (0x0E). Updated note under Table 24, Program FEABITs (0xF8).
July 2014	1.1	Product name/trademark adjustment.
		Updated Figure 31, I ² C Read Device ID Example. Change iCE40LM to Slave.
		General update to Table 98, NVCM Performance in MachXO3L Device.
April 2014	01.0	Initial release.