
A Pascal P-Code Interpreter for the Stanford Emmy

by

Donald Alpert

Tecmioal Note No. 164

September 1979

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305

The work described herein was supported by the author's National
Science Foundation Graduate Fellowship using facilities provided
by the Department of Energy under contract EY-76-S-03-0326-PA 39.

Computer Systems Laboratory
Departments of Eleotrioal Engineering and Computer Scienoes

Stanford University
Stan ford, CA 94306

Teohnioal Note No. 164

September 1979

A Pasoal P-Code Interpreter for the Stanford Emmy

by

Donald Alpert

ABSIRACT

This report desoribes an interpreter for P-Code that runs on
the Stanford Emmy. Programs written in Pasoal may be oompiled
into P-Code. The P-Code is then assembled into a binary
representation that is interpreted by a mioroprogram in the Emmy
oontrol store. File handling is performed with the aid of mini
UNIX running in a PDP11/0S attaohed to the Emmy.

KEYWORDS

Emmy Emulation Pasoal P-Code

The work desoribed herein was supported by the author's National
Scienoe Foundation Graduate Fellowship using faoilities provided
by the Department of Energy under oontraot EY-76~S-03-0326-PA 39.

Table of Contents

1 Introduction •• 1

2 Use of Pascal on the Emmy-PDP11/05 system ••••••••••••••••••• 2

3 Description ofP-Code ••••••••••••••••••••••••••••••••••••••• 3
3.1 Machine architecture •••••••••••••••••••••••••••••••••• 3
3.2 Instruction set ••••••••••••••••••••••••••••••••••••••• q

q P-Code implementation on Emmy ••••••••••••••••••••••••••••••• 5
4.1
q.2
q.3
q.q
q.5

q.6
q.7

Emmy main menory ••••••••••••••••••••••• " ••••••••••••••• 5
Interpretation. , •••••••••• " ••••••••••••••••••••••• " •••••• 6
Data types •• 7
Procedure linkage ••••••••••••••••••••••••••••••••••••• 8
I/O implementation •••••••••••••••••••••••••••••••••••• 9
q.5.1 Buffer variable ••••••••••••••••••••••••••••••• 9
q.5.2 File i/o ••••••••••••••••••••••••••••••••••• ~.10
q • 5 • 3 In put ••••••••••••••• ' ••••••••••••••••• " •••••••• 10
4.5.4 Output ••••••••••••••••••••••••••••••••••••••• 11
4.5.5 Teletype i/o ••••••••••••••••••••••••••••••••• 12
Interrupts ••• 12
Program termination •••••••••••••••••••••••••••••••••• 12

5 Bootstrap procedure •• 13

6 Pe"rformance •• 15

1 .0 Introduc tion

P-Code is an assembly language for a hypothetical stack machine
which is useful in transporting the programming language Pascal [7].
A relatively simple compiler, written in Pascal, translates Pascal
source programs to P-Code. A host system may easily gain the capabil
ity of running this c'ompiler and subsequently other Pascal programs in
at least two ways.

(i) Write a program to translate P-Code programs into the host
machine language instructions, most likely through macro expan
sions.
(ii) Write a program to interpret P-Code instructions without
translation.

Either of these methods may include optimization on the P-Code to im
prove performance during interpretation by the partioular host
machine.

The second choice was selected for Emmy. A program in Emmy con
trol store interprets a binary representation of the P-Code program in
Emmy core. The use of Pascal on the combined Emmy-PDP11/05 system is
desoribed in seotion 2. A brief description of P-Code is given in
section 3. The implementation of the interpreter is described in seo
tion 4.

The version of P-Code in the Emmy system comes from Sasan Hazeghi
of the Computation Researoh Group at SLAC [2]. His ver sion running at
SLAC was the basis of a bootstrap procedure described in seotion 5.

I wish to thank Sasan Hazeghi, Jerry Huok, and Charlie Neuhauser
for their patient assistanoe in answering a multitude of questions.

- -1-

2.0 Use of Pascal on the Emmy-PDP11/0S system~

It is possible to oompile and run Pascal programs under mini-UNIX
on the PDP11/0S in the Emmy lab with almost complete transparency to
the aotual prooessing ooourring in Emmy. The oapabilities of the Emmy
lab system are quite fully displayed.. The Unix shell interprets oom
mands to oall programs written in C whioh initialize the Emmy oontrol
store interpreter and P-Code program. The P-Code program is executed
by the Emmy while another C program provides the i/o interface to
files and teletype through UNIX [3].

The use of Pascal on the lab system may ohange in the future but
presently these are the salient features:

1. UNIX shell files poompile{I) and prun(I) oompile and
Pasoal programs and provide limited diagnostio support.
pendix 4.

execute
See Ap-

2. The P-Code oompiler for Pasoal provides only a large subset of
Pasoal. Consult references for differences [2] [7]. The most
signifioant is that files are limited to type TEX!', sequential
oharaoter files. Also, prooedures and functions may not be
passed as arguments.

3. The implementation limits files in the souroe program to 6
predefined names:

INPUT, our PUT, PRD (input),
PRR (output), QRD (input), QRR (output)

The signifioanoe of input or output is that a RESET or REWRITE is
generated for the file automatioally before execution.

4. Real data types and operations are not supported by the imple
mentation.

-2-

3~O Description of P-Code

This section oontains a brief desoription of the P-Code stack
machine (P-machine). For a more complete description consult [1] and
[7] from which most of this information was taken. Appendix 3 con
tains an example of P-Code assembly language for which the Pascal
source may be found in Appendix 2.

3.1 Machine architecture

The hypothetical P-machine has two regions of storage: CODE and
STORE. CODE is read only and contains the P-code insructions. The
ourrent instruction is pointed to by the register PC. srORE is
read/write memory and contains constants, stack, and dynamic storage
allocation (called heap). The top of the stack is pOinted to by SP,
the bottom of the ourrent data segment by MP, and the top of the
dynamic allocation by NP. See Figure 3. 1. (Note that the P-machine
as implemented on Emmy differs in several respects. See Figure 4.1.)

PC->

CODE

0->-------------
I stack

MP-> I
SP-> 1----------

I
I
I

NP-> 1---------

P-machine

Figure 3. 1

heap
1----------
I
I

I constants

STORE

Each time a procedure is called, a new data segment is oreated
and pointed to by MP. This data segment contains "mark stack" informa
tion to allow return including return value, return address, dynamic
link, static link, etc. The exact information is implementation
dependent. Also in the data segment is spaoe for parameters, local
variables, and expression evaluation.

Address references into STORE in the P-Code instructions may be
expressed as a pair (P,Q) where P deSignates the static nesting level
and Q the displacement into the most recently activated data segment
at that level. It is necessary to use the static links or a display
to determine the real address in the stack at run time.

-3-

3.2 Instruction set

P-Code instructions contain four fields, although not all are al
ways used. The OP field must be at least 7 bits long to contain the
opcode. The T field must be at least 4 bits to contain the operand
type. (The type field is an addition to the original P-Codeby Sasan
Hazeghi [2].) The P field is at least 4 bits; usually it contains a
static nesting level for describing operand location. The Q field
contains enough bits to address all of srORE or CODE. It usually con
tains an absolute address, a data segment displacement, a jump·desti
nation address, or a short constant.

A typical P-Code assembly instruction looks like

OPC [T,] [P,] [Q]

ope is a three letter opcode mnemonic
T is a letter from {A,B,C,I,R,S, etc.} for type address,boolean,

character,integer,real,set, etc.
P is usually an integer specifying a static level for addressing
Q is an integer or label

For more information about the particular instructions see Appen
dix 1 or references [1] or [7].

-4-

4.'0 P-Code implementation on Emmy

This description of the P-Code implementation on Emmy can be used
as an overview or as a guide to more detailed study of the inter
preter. It assumes familiarity with the Emmy [5].

4.1 Emmy main memory

The P-machine CODE and STORE are stored in the Emmy main memory
(Figure 4.1). CODE is stored as consecutive 32 bit words from the be
ginning of memory. On top of CODE is storage for constants. On top
of the constants is the bottom of the stack. Since the base address
of the constants and the stack depends on the P-Code program, their
location is passed to the interpreter by the assembler when the pro
gram is loaded. Also passed to the interpreter is the entry point to
begin execution from CODE. The heap grows downward from a fixed point
near the top of main memory. At the end of main memory is an area
reserved to buffer i/o transfers from UNIX.

+--------------+<-1FFFF
I i/o buffers I
1--------1 <-1 F SOO
I heap I

NP->III--------1 addresses are no. bytes in HEX
1

SP->II 1---· · ----I
MP->Il stack

*1--------1
1 constants

*1--------------1
1 CODE I

PC->II I

11=> varies dynamically during execution

*=> varies between programs but
static during execution

1<-0 -------
Emmy main store

Figure 4. 1

-5-

4.2 Interpretation

The interpre.ter and a portion of the P-machine reside in Emmy
control store. This occupies approximately 2K words. The P-machine
SP and PC are stored in two of the Emmy's registers while MP, NP, and
the display are in control store. The basic interpretation cycle
fetohes the next instruotion word from main memory using the word ad
dress in PC, extraots the opcode, and jumps to the appropriate routine
to execute the instruotion. Eaoh instruotion is stored in the format
shown in Figure 4.2.·

31 25124 21120 17116 o

op p T Q

P-Code instruction

Figure 4.2

There is a debug flag in the Emmy state register that allows halt
before instruction execution at selected looations in the P-Code pro
gram, after a selected number of P-Code instruotions have been execut
ed, or on a selected opcode. ThiS oheoking is normally disabled to
speed execution. Another debugging aid allows Pasoal programs oom
piled and assembled with the debug option to halt at a source oode
line number.

Most P-Code instructions are entirely straightforward in their
meaning and execution. Some which require detailed explanation are
inoluded in the remainder of this section.

-6-

4.3 Data types

The interpreter supports the following simple data types.

type

ohar
boolean
integer
address
set

size in bytes

1
4
4
4
8

Real data type is not presently supported. Address is used for
pointers or maohine representation invisible to the Pasoal programmer.
Sets 0 f 64 or fewer el em en ts ar e allowed.

All addressing in STORE is done in bytes. Data are stored
without alignment oonsideration. Data types of more than one byte are
stored with more signifioant bytes at lower addresses. The high order
bits of the address are used by the memory oontroller to select the
length and justifioation of the data (6]. SP always pOints to the
first free byte on top of the staok. When aooess is performed on the
top of the staok the data type is known and its address is given by
(SP)-length. When data are pushed on the stack they are stored begin
ning at the byte pOinted to by SP and SP is inoremented by the length.

-7-

4~4 Prooedure linkage

A prooedure or funotion call contains six phases:

MS! reserve area on the stack for return linkage
push parameters if any
CUP transfer control to prooedure
EN! reserve area on stack for looal variable storage
procedure computation
RET return to calling program, possibly with a value

Eaoh procedure activation has a data segment (Figure 4.4.1).

evaluation
I-~---.------I
Ilooal variables 1
I I ,------,

parameters
I I

I-~------------I
I mark staok

MP->+--- ----+

Procedure data segment

Figure 4.4. 1

The Mark Staok area has six entries of four bytes each.

old level
I I 1-----'

return PC
1--------1
I dynamio link I
I I ,-----,
1 statio 1 ink
I----~- -I
1 return value I
I I 1-..... ------1
1 return value I

Mark Staok area

Figure 4.4.2

When MST is executed the current MP is stored as the dynamic link. MP
is set to the present value of SP and SP is inoremented to reserve the
Mark Staok area. When CUP is executed PC is stored in the return PC
word of the Mark Staok area and the address of prooedure entry is
plaoed in PC. When ENT is executed SP is inoremented to allow for 10-
oal variable storage and SP is ohecked against NP for staok overflow.

-8-

The level of the calling procedure is stored in the Mark Stack area
and the new level is saved in a particular control store location.
The pointer to the data segment of the last procedure invoked at the
new level is found in the display and stored as the static link. The
current value of MP replaces it in the display.

When the procedure executes RET all of the linkage in the Mark
Stack area is restored. If a function executes RET the type of the
returned value determines how many bytes to leave on top of the stack.

4.5 IIO implementation

The ilo handling represents one of the largest portions of the
effort in developing the interpreter. Because ilo is so machine
dependent, P-Code buries the details in relatively high level standard
procedures. (See Appendix 1.2) This implementation is described in
some detail for the interest of future designers on Emmy. In the fol
lowing description it is assumed that the reader is familiar with Vac
cess, a program running on the PDP11 which allows Emmy to interface to
the UNIX file system [3].

4.5.1 Buffer variable

All files used til Pascal P-Code are of type TEXI'. At present only
six predefined files may be used in Pascal programs. The six files
are INPUT ,OUIPUT ,PRD,PRR,QRD,QRR. INPUT ,PRD,QRD are input files, the
others are output files. The significance of input or output defini
tion is that an automatic RESET or R.EWRITE is per formed before program
execution. Otherwise the definition is arbitrary. Pascal programs
have a window for each file through which they may read or write the
next character in sequence. This window is called a buffer variable
[3, p.55l. Pascal ilo operations are translated into the following
P-Code framework

LDA buffer variable
CSP SIO start ilo
ilo operations
CSP EIO end ilo

The buffer var iable address on the stack is used by the interpreter to
identify the file on which to perform i/o.

-Q-

4~5.2 File i/o

This section ooncerns the implementation of file i/o in the in
terpreter. The slight differenoes for teletype i/o are explained in a
later seotion.

Eaoh file has a buffer of 256 bytes near the top of Emmy main
memory used for transfers to UNIX on the PDP11 through Vaooess. These
buffers are used by the interpreter but are invisible to the Pasoal
program. One oomplioation associated with this buffer is that the
signifioanoe of the high and low bytes of a PDP11 word are reversed
from Emmy's byte addressing. When addressing into an i/o buffer using
a oounter the LSB of the oounter is oomplemented.

Eaoh file also has an entry in a table of file desoriptors held
in oontrol store with the following information

1. buffer address in main memory
2. devioe number assigned by Vaooess
3. oount of oharaoters into buffer
4. oount of oharaoters out from buffer
5. flags

The reason for separate oounts in and out is related to the peouliari
ties of the teletype. There are five flag bits used to speoify wheth
er the file is a teletype, whether an i/o request to UNIX has been re
quested but not oompleted, whether the file is read or write, and for
read files whether end of line or end of file have been reaohed.

When start i/o (CSP SIO) is exeouted by the interpreter the
buffer variable address is used to oaloulate an internal pointer to
the oorreot entry in the table of file desoriptors. This pOinter is
used by subsequent i/o operations to speed acoess to the oorreot file.
CSP EIO signals the end of the i/o sequenoe. It oauses the buffer
variable address to be popped from the staok. A sequenoe of CSP SIO,
i/o operations, CSP EIO will not be nested within another suoh se
quenoe in oode produoed by the oompiler.

Input and output share all aspeots of the file handling desoribed
thus far. Further explanation is desoribed in the next two sections,
separately for input and output.

4.5.3 Input

All i/o routines in the interpreter performing input oall one
routine, CETCH, eaoh time they require a oharaoter. CETCH uses the
descriptor table pOinter to find the buffer address of the file. If
end of file has not been reaohed then the count of oharaoters out from
the buffer is used as an index to read the next charaoter. The ohar
aoter is tested to properly set the end of line flag. The count of
oharacters out from the buffer is inoremented and oompared to the
oount in. If more oharacters remain in the buffer then oontrol re
turns. Otherwise a new buffer of 256 oharaoters is requested from
Vacoess and prooessing waits for the transfer to oomplete. Double

-10-

buffering and i/o overlapped with computation are not used, to minim
ize the record keeping. When the transfer has completed the count
into the buffer is set to the length of the transfer reported by Vac
cess and control returns to the calling routine. The length of the
transfer may be less than 256 if end of file has been reached in UNIX.
When the next buffer request is made a length of zero will be re
turned; the interpreter recognizes this as end of file and sets the
nag.

4.5.4 Output

All i/o routines in the interpreter performing output call one
routine, PUTCH, each time they output a character. PUTCH uses the
table pointer to find the buffer address of the file. The count into
the buffer is used to place the character in the next loco at ion • The
count is incremented and if it has not yet reached 256 then control
returns. Otherwise the buffer is full and a request is made to Vac
cess to transfer the entire buffer While processing waits. Double
buffering and i/o overlapped with computation are not used, to minim
ize the record keeping. The count is set to zero and control returns
to the calling routine. At program termination partially filled
buffers are emptied.

-11-

4~5.5 Teletype i/o

When the file on whioh i/o is being performed is a teletype then
the implementation differs slightly from that for files. On output
the oharaoters are not buffered but are sent direotly to UNIX. This
is better for interaotive programs.

On input there is a oomplioation oaused by Vaooess. The KEYBOARD
is different from other virtual devioes in that it will interrupt the
interpreter whenever a oharaoter has been entered from· the keyboard.
~hese unsolioited oharaoters may be reoeived even when no program in
put requests are pending. A special pointer is reserved to locate the
KEYBOARD entry in the table of file desoriptors maintained by the in
terpreter. The interrupt for the input oharaoter may be received dur
ing a potentially oritioal seotion when another character is being re
moved from the buffer. ' A oiroular buffer with separate oounters in
and out avoids the oritioal use of shared variables.

4.6 Interrupts

The only Emmy interrupts used by the interpreter are the two mil
lisecond oonsole timer and mailbox notioes from Vaooess in the PDP11.
Any other interrupts cause the interpreter to return an error oondi
tion and to halt.

4.7 Program termination

The program may terminate in three expeoted ways: normal oomple
tion, a Pasoal program EXIT is exeouted with a return oode, or the in
terpreter deteots an error. Some of the errors deteoted by the inter
preter are variable out of bounds, arithmetio overflOW, and read past
end of file. Before termination all output buffers are emptied and
Vacoess is oalled with a return oode to indioate the oause of termina
tion.

-12-

5.0 Bootstrap prooedure

The first step in the bootstrap prooedure was to write the P-Code
interpreter in Emmy assembly languange. At SLAC a version of the Pas
oal to P-Code oompiler, written in Pascal, was modified to be compati
ble with the interpreter. Some of the modifications were to the size
of data types, looation of ilo buffer variables, and position of funo
tion return value in the staok. The Pasoal version of the oompiler is
independent of the charaoter set representation. In transporting to
another machine, however, oharaoter set dependenoies arose. In par
tioular, when a oharaoter variable was used as the switoh in a oase
statement, the jump table oreated at SLAC assumed the EBCDIC represen
tation. The oompiler was mod ified to produoe P-Code to run on a
maohine using the Pasoal oharacter set of 64 members. The interpreter
also translated from ASCII charaoters used by UNIX to the Pasoal ohar
acter set. It is unfortunate that (for reasons not explained here) the
oompiler was not modified to produoe P-Code for an ASCII oharaoter set
direotly.

A Pasoal program was also written to assemble the P-Code into a
hex representation to be loaded into the Emmy oore for interpretation.
A simple test program was oompiled and assembled at SLAC and brought
to the Emmy lab for debug of the interpreter. This step was followed
several times as bugs were located in the assembler as well as the in
terpreter.

When the initial debug was oomplete, the oompiler in Pasoal and
P-Code along with the assembler in Pasoal, P-Code, and hex were
brought to the Emmy lab from SLAC. The assembler and interpreter were
debugged together, with patohes to the assembler made in the hex im
age. Most of these changes resulted from the different ilo environment
between SLAC and the Emmy lab. For example, at SLAC all of the input
were treated as card images padded with blanks to 80 oolumns but in
the UNIX files the trailing blanks were not present. At this point
patohes in the interpreted programs oould be made more easily in the
P-Code version and then translated into hex by the assembler. In this
way a P-Code version of the oompiler was debugged. Now patohes oould
be made in the original Pasoal programs and oonsistent, working ver
sions of the assembler and oompiler were available and easily modifi
able.

The oompiler and assembler were then modified to produoe oode
that assumed an ASCII representation for charaoters. This required
the new programs to be oompiled and assembled with the old ver sions
and then processed through themselves. The interpreter was modified to
avoid translation between ASCII and Pasoal sets. The oompiler and as
sembler were modified onoe more to handle the oharaoter set operations
more effioiently with use of CHR and ORD funotions instead of expli
oitly using the ASCII oharaoter oodes.

-13-

Many of the tedious details of the bootstrap procedure have not
been described. Although several levels of program were involved:
Pascal, P-Code, hex, and Emmy interpreter, the process was nearly as
straightforward as explained because the debugging proceded orderly up
the hierarchy. By the time the compiler was being debugged it was in
frequent that problems had to be located at the level of single step
ping the interpreter. It was important to debug each lower level ful
ly before proceding to the next level.

-14-

6. a Per formance

It is difficult to make a meaningful measure of the performance
of the P-Code implementation and even more difficult to make compari
son with other implementations. Some specific examples and measure
ments are provided below. It should be noted that no attempt has been
made to improve the P-Code representation or to tune the interpreter.
By way of comparison the Emmy can emulate the PDP11 at 50 KIPS and the
IBM 360 at 60 KIPS (highly optimized) •

The P-Code compiler was run on Emmy to compile itself with no
other users on the PDP11. The following measurements were made.

no. source lines
no. source lines that generate code
no. P-Code instructions in compiler
time to oompile
peroentage 0 f oompilation time in ilo wait
average P-Code execution rate

5339
3032
15938
458 seo
7.0 ~
58 KIPS

A benchmark program per forms the quicksort algorithm on 20, 000
pseudorandom numbers (see Appendix 2). The inner sorting loop (souroe
lines 53 to 94) oontains no ilo operations .• The P-Code for this loop
ex eoutes in 91 seconds at an average rate of 71 KIPS. The same loop
with debugging enabled executes in 107 seoonds at 73 KIPS. (Debugging
includes CHK for bounds oheoking and· LOC to test for breakpoint.) The
interpreter was used in a slower mode to oapture the execution oo~ts

for the P-Code operations in the loop. The results for this loop are
presented in Table 6.1. The execution times for the operations were
measured by foroing each operation into a one instruotion loop. This
involved modification of the interpreter for PC and SP adjustment.
These artifacts were approximately subtracted out.

The IBM 370/168 at SLAC executes the same loop translated from
P-Code into its mac~~ne oode with extensive optimization in 1.5
seconds at a rate of 2 MIPS. Typioally the translation maps one P
Code instruotion into one 370 RX instruction [2].

There are two ways in which the performanoe oan be easily im
proved. First, new operations may be generated at assembly time and
the interpreter may be tuned to be more effioient but less structured.
For example, this prooess may be applied to the introduction of three
separate LOD operations for types of 1, 4, or 8 bytes. This should
reduoe the execution time of LOD to about 12 us and deorease the exe
oution time for the quiksort loop by 6.2~. Secondly, peephole optimi
zation oan be used at assembly time to reduoe the number of operations
performed. For example, in the quiksort loop all of the DEC opera
tions are used to oreate zero offset indexing into the arrays that
were deolared to have lower index 1. These DEC operations oan all be
eliminated by adjusting the base address used in aocessing the arrays.

-15-

Notes:

Quicksort loop executio.n statistios

OP EXEC TIME COUNT TIME COUNT TIME
(us) (sec) ~ ~

-------.. -------------------------~--------------ADI 11.7 184450 2.16 . 2.8 2.4
DEC 12.8 662589 8.48 10.2 9.2
EQU 18 .. 6 957 0.18 0.0 0.2
FJP 10.0 499867 5.00 7.7 5.4
GEQ 18.6 203575 3.79 3.1 4.1
GRT 18.6 6327 o. 12 0.1 0.1
INC 12.8 19999 0.26 0.3 0.3
IND 14.8 518680 7.68 8.0 8.4
lXA 19.1 662589 12.7 10.2 13.8
LDA 10.0 662589 6.63 10.2 7.2
LDC 10.8 472961 5.11 7.3 5.6
LEQ 18.6 190103 3.54 2.9 3.9
LES 18.6 20000 0.37 0.3 0.4
LOD 15.6 1578046 24.6 24.2 26.8
NEQ 18.6 23642 0.44 0.4 0.5
SBI 11.7 239573 2.80 3.7 3.0
STO 14.0 143909 2.01 2.2 2.2
STR 14.8 394695 5.84 6.1 6.4
UJP 7.1 27344 o. 19 0.4 0.2
----------------------------...----------
TOfAL , ... 6511895 91.2 100 100

1. All operations with type field had type integer.

2. lXA exeoution time d'epends on the storage size in the Q field.
Eaoh time lXA was executed in the loop the storage size was 4.

3. The compare operations (EQU, CEQ, eto.) and FJP take varying time
to execute depending on the truth value of the result or the test.
This difference is 2~ or less of the execution time and was ignored.

4. TOTAL measurements may disagree slightly with column sums.

Table 6.1

-16-

MNEMONIC

ABI
ABR
ADI
ADR
AND
CHI{
CHR
CSP
CUP
DEC
DIF
DVl
DVR
ENT
EOF
EQU
FJP
FLO
FLT
CEQ
GRT
INC
IND
INN
INT
lOR
lXA
LAO
LCA
LCI
LDA
LDC
LEQ

. LES
LOC
LOD
MOD
MOV
MPI
MPH
Msr
NEQ
NEW
NGI
NGR
NOT
ODD

Appendix 1.1

P-Code assembly mnemonics

OPERATION

pop integer on top of stack and push its absolute value
pop real on top of stack and push its absolute value
pop two integer s on top 0 f stack and push sum
pop two reals on top of stack and push sum
pop two booleans on top of stack and push their logical AND
perform bounds oheck on top of stack, error if out of bounds
pop integer on top of stack and push its character equivalent
oall standard prooedure
oall user prooedure
decrement top of stack by Q field
perform set difference of TOP and NTOP and push result
integer divide NTOP by TOP and push quotient
real divide NTOP by TOP and push quotient
enter user prooedure
not used, see CSP EOF
pop TOP, NTOP, oompare acoording to type and push NTOP = TOP
pop boolean TOP and if it is FALSE jump to address in Q
oonvert integer NTOP to real NTOP
pop integer TOP, oonvert it to real and push
pop TOP,NTOP, oompare according to type and push NTOP >= TOP
pop TOP., NTOP, oompare acoording to type and push NTOP > TOP
inorement top of staok by Q field
pop address TOP, add index Q, and push from that address
pop TOP,NTOP and push boolean result NTOP IN TOP
pop two sets on top of st.aok and push their set interseotion
pop two booleans on top of stack and push their inclusive OR
pop TOP, NTOP and push address NTOP + TOP*Q
push address of global, in static level 1, with displacement Q
push address of string
generated by assembler to load oonstants too long for Q field
push address (P,Q)
load the constant immediately specified in Q
pop TOP, NTOP, oompare acoording to type and push NTOP <= TOP
pop TOP, NTOP, oompare acoording to type and push NTOP < TOP
specifies souroe oode line number
push (P,Q)@
integer divide NTOP by TOP and push remainder
pop TOP, NTOP and move Q bytes starting at address TOP to NTOP
pop two integer s on top of staok and push their produot
pop two reals on top of staok and push their produot
reserve and initialize Mark Stack area prior to procedure oall
pop TOP,NTOP, oompare aooording to type and push NTOP <> TOP
pop address TOP, allooate Q bytes on heap, store NP in TOP
pop integer on top of stack and push its additive inverse
pop real on top of staok and push its additive inverse
pop boolean on top of staok and push its logical NOT
pop integer on top of stack and push boolean ODD(TOP)

-17-

MNEMONIC OPERATION

ORD pop TOP and push its ordinal integer value
RET return from procedure
RS! deallocate heap: pop address TOP and assign it to NP
SAV pop address TOP and store NP at that address
SBI pop integers TOP, NTOP and push NTOP - TOP
SBR pop reals TOP, NI'OP and push NTOP - TOP
SGS pop integer on top of stack and push its singleton set
SQI pop integer on top of staok and push its square
SQR pop real on top of stack and push its square
SRO pop TOP to store as global in (1,Q)
STO pop, TOP and NTOP and store TOP in address NTOP
STP normal program termination
SIR pop TOP and store in (P,Q)
TRC pop real TOP, truncate it to an integer and push
UJP unconditional jump to Q
UNI pop two sets on top of stack and push their set union
XJP pop integer TOP and if in range use it as index into jump table

Notes: 1. TOP and NTOP refer to the items on top of the stack and next to
the top of the stack before the instruction is executed.

2. (P ,Q) represents the address specified by the static level,
displacement pair.
(P,Q)@ represents the data item in address (P,Q)

-18-

MNEMONIC

ATN
CLK
COS
EIO
ELN

EOF

EXP
<ET
LOG
PUT
RDB

RDC

RDI

RDR

RDS

RES
REW
RLN
SIN
SIO
SQr
WLN
WRB
WRC
WRI
WRR
WRS
XIT

Note: 1. TOP
the

Appendix 1.2

P-Code standard prooedures

OPERATION

pop real TOP and push its arctangent
pop integer TOP and select clock value to push
pop real TOP and push its oosine
end of i/o sequenoe, pop file buffer address TOP
pop file buffer address TOP, push boolean result for end of
line test and push address for EIO to pop
pop file buffer address TOP, push boolean result for end of
file test and push address for EIO to pop
pop real TOP and push its exponential
use file buffer address TOP to get next charaoter from the file
pop real TOP and push its logarithm
use file buffer address TOP to put next character to the file
pop adress TOP, use file buffer address NTOP to read a boolean
value from the file and store the value in TOP
pop adress TOP, use file buffer address NTOP to read a
charaoter from the file and store the value in TOP
pop adress TOP, use file buffer address NTOP to read an
integer from the file and store the value in TOP
pop adress TOP, use file buffer address NTOP to read a
real from the file and store the value in TOP
read a string with file, destination, and length speoified
in stack
use file buffer address TOP to perform RESET on file
use file buffer address TOP to perform REWRITE on file
use file buffer address TOP to perform READLN on file
pop real TOP and push its sine
start i/o sequenoe for file with buffer address TOP
pop real TOP and push its square root
use file buffer address TOP to perform WRIrELN on file
write boolean value to file with format speoified in stack
write character to file with format speoified in staok
write integer to file with format speoified in staok
write real to file with format specified in staok
write string to file with format speoified in staok
terminate program with return code TOP

and NTOP refer to the items on top of the stack and next to
top of the staok before the instruction is executed.

-19-

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 ,
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Appendix 2

Quioksort program

(*$L-*)
PROGRAM QUICKSORT (our PUT) ;

(* PARTIrION-XCHANGE SORT, AFTER B .• SEDGEWICK, S. HAZE(]{I.

*)

WITH MODIFICATIONS TO our PUT FORMAT BY DONALD ALPERT
M :: = SIZE OF THE PARTIrIONS TO BE BUBBLE-80RTED
N :: = NUMBER OF ELEMENT S TO BE SORTED ;
N 1 :: = N +1
STACK SIZE :: = MAX II OF UNSORTED PARTITIONS (>= 2*(LOG2(N)-3))

LABEL 101,111

CONST M = 9 N = 20000; N 1 = 20001 ;STACK_SIZE = 25;

VAR L, R t P, It J, V , T t TIM: INT E GER ;
STACK: ARRAY (1 •• STACK SIZE]. OF INTEGER
(* STACK SIZE 2*(LG(N)=3) *)
A : ARRAY (1 •• Nl] OF INTEGER ;

PROCEDURE PRINTDATA ;

(* TO PRINT THE RAW AND SORTED DATA, 10 NUMBERS PER LINE *)

BEGIN
FOR I : = 1 TON 1 DO

BEGIN
IF (I MOD 10) = 1 THEN WRITELN()
WRIrE(' t ,A(I]: 11) ;
END;

WRIrELN () ;
END ;

BEGIN (* QUIKSORT *)

(* 1- GENERATE RANDOM DATA FOR SORTING *)

A(l] := 0; L := 2; R := Nl; P := 0;
FOR I : = 1 TON 00

BEGIN A (I +1] : = A (I]*314159269..453806245;
IF A(I+1] < 0 THEN

BEGIN A(I+1]: = A(I+l]-+2147483647
A [I +1] : = A [I +1] +1
END

END ;

PRINTDATA ;
TIM : = CLOC K (1)

-20-

50
51 (* 11- PARTrrION THE INPUT DATA *)
52
53 REPEAT 1:= L-1; J := R; V := A[R];
54 REPEAT
55 REPEAT I : = I +1 UNTIL (A[I] >= V)
56 A [J] : = A [I] ;
57 REPEAT J : = J-1 UNT IL (A[J] <= V)
58 IF I >= J THEN (DTO 101
59 A[I] := A[J]
60 UNTIL FALSE ;
61 101 : IF I 0 J THEN J: = J +1 ;
62 A[J] : = V;
63 IF J-L > R-J THEN
64 BEGIN
65 IF M >= J-L THEN
66 BEGIN IF P = 0 THEN OOTO 111 ;
67 R : = STACK[P +1]; L: = STACK[P]; P: = P-2;
68 END
69 ELSE IF R-J > M THEN
70 BEGIN P: = P.f2 STACK[P]: = L
71 ST AeK [P +1] : = J -1 ; L: = J +1
72 END
73 ELSE R:= J-1
74 END
75 ELSE IF M >= R-J THEN
76 BEGIN IF P = 0 THEN (DTO 111 ;
77 R := STACK[P+1]; L:= STACK[P]; P:= P-2;
78 END
79 ELSE IF J-L > M THEN
80 BEGIN P: = P.f2 STACK[P]: = J +1 ;
81 STACK[P+1] := R R:= J-1
82 END
83 ELSE L: = J +1
84 UNT IL FALSE ;
85
86 l (* 111- EXCHANGE SORT EACH PART rr ION *)
87
88 111 : FOR I : = 2 TO N 1 DO
89 IF A[I] < A [1-1] THEN
90 BEGIN
91 V : = A [I]; J: = 1-1
92 REPEAT A[J+1] := A[J]; J:= J-1 UNTIL (A[J] <= V)
93 A [J +1] : = V
94 END ;
95
96 TIM := (CLOCK(1) - TIM) DIV 10 ;
97 waIl'ELN () ;
98 waIrELN(' SORTING TIME =', TIM DIV 100:4,'.' ,TIM MOD 100:2,' SECONDS');
99 PRINTDATA ;

100
101 END (* QUIKSORT *).
102 (**)

-21-

Appendix 3

P-Code program for PRINTDATA procedure in Appendix 2

PRINT001 ENT P,2,L1 PRINT DATA
LDC I, 1
STR 1,1,260
LDC 1,20001
STR It 2,24
LOD 1,1,260
LOD 1,2,24
LEQ I
FJP L3

L2 LAB
LOC 28
LOD I, 1,260
LDC I, 10
MOD
LDC It 1
EQU I
FJP L4
LOA 1, 193
CSP SIO
CSP WLN
CSP EIO

L4 LAB
LOC 29
LOA 1, 193
CSP SIO
LCA '
LDC 1,2
LDC 1,2
CSP WRS
LDA 1 t 376
LOD It 1,260
CHI{ 1,1,20001
DEC 1,1
IXA It 4
IND 1,0
LDC It 11
CSP WRI
CSP EIO
LOC 30
LOD I, 1,260
LOD 1,2,24
NEQ I
FJP L3
LOD 1,1,260
INC I, 1
STR I, 1,260
UJP L2

L3 LAB
LOC 31
LDA 1, 193

111 1

-22-

esp SIO
esp WLN
esp EIO
Loe 32
RET P

L1 DEF 28

-23-

Appendix ij

UNIX shell file desoriptions

PRUN (I) 7/19/79 PRUN (I)

NAME
prun - interpret Pasoal P-Code program on emm'y

SYNOPSIS
prun file input output [prd [prr [qrd [qrr]]]]

DESCRIPT ION
Prun is a shell oommand which is used to run Pascal programs
on emmy. The Pascal program file.pas should previously have
been compiled and assembled into the P-Code program file .em
with pcompile(I). The P-Code program is interpr'eted on emmy
with the named files assigned to Pascal souroe
INPUT, our PUT ,PRD, PRR, QRD, QRR. INPUT, PRD, QRD are input
files, the others are output files. The significanoe of in
put or output definition is that an automatic RESET or
REWRITE is performed before program execution. Otherwise
the definition is arbitrary. INPUT or OurPUT oan be direct
ed to the terminal by the assignment "tty". Unassigned
files must be represented with "_" except that trailing
unused files may be omitted.

E.g. "prun foo tty - - foo .out " will interpret the P-Code
program foo.em with INPUT assigned to the terminal keyboard
and PRR assigned to the file foo.out.

FILES
file.em

file.init

file.log

file.msg

assembled version of souroe program in em
load format
temporary file used for initialization be
fore running emmy
on exceptional termination of P-Code program
this file contains some diagnostio informa
tion
file used to reoord standard output from
some programs oalled by'poompile for use in
oase of errors in processing

SEE ALSO
poompile(I)

BUGS
Under certain error conditions, e.g. emmy not powered on,
the program will hang. Type one or more rubouts and look at
file.msg to try to determine the oause. The emmy is not a
proteoted resouroe on the unix system. If more than one user
tries to run on emmy they will be in confliot.

PC OM PILE (I) 7/19/79 PCOMPILE(I)

NAME
pcompile - compile Pascal program

SYNOPSIS
pcompile file {-p I -a I input output [prd [prr [qrd [qrr]]]]}

DESCRIPr ION

FILES

Pcompile is a shell command which allows pascal programs to
be compiled into P-Code and interpreted on emmy. The Pascal
source program should be in file.pas. During compilation a
symbol table and referencing statistics are col,lected in
file.stat. A program listing with error diagnostics is in
cluded in file.lst. The compiled P-Code program is in
file.pcode. If no compilation errors are found the assem
bler removes file .pcode and creates file .em which can be in
terpreted on emmy.

-p suspends processing after compilation and leaves
file.pcode.

-a suspends processing after assembly.

If no assembly errors are found the user program is executed
wi th a call to prun (I) and the named files.

file.em

file.err

file.init

file.log

file.lst

file.msg

file .pas
file.pcode
file.stat

assembled version of source program in em
load format
if errors occur during assembly they will be
reported here
temporary file used for initialization be
fore running emmy
on exceptional termination of P-Code program
this file contains some diagnostic informa
tion
listing of source program including compiler
d iagno st 1c s
file used to record standard output from
some programs called by pcompile for use in
case of errors in processing
pascal source program
compiled ver sion of source in P-Code
symbol table for compiled program with re
ferencing statistics

SEE ALSO
prun(I)

-25-

References

(1] Gilbert, Erik J. and Wall, David W., "P-Code Intermediate
Assembler Language (PAIL-4)", Technical Note No. 148, Com
puter Systems Laboratory, Stanford University, Stanford CA
94305

(2.] Hazeghi, Sa san , per sona1 conver sations and unpublished
work, SLAC Computation Research Group, Stanford CA 94305

[3] Huck, Jerry, "A Virtual Input/Output System for the Stan
ford Emmy - V -Access", Technical Note No. 144, Computer
Systems Laboratory" Stanford University, Stanford CA 94305

(4] Jensen, Kathleen and Wirth, Niklaus, "PASCAL User Manual
and Report" , Second Edition, New York, Springer-Verlag,
1974

(5] Neuhauser, e., "Emmy System Processor - Principles of
Operation", Technical Note No. 114, Computer Systems La
boratory, Stanford University, Stanford CA 94305

(6] Neuhauser, C., "Emmy System Peripherals -- Principles of
Operation", Technical Note No. 77, Computer Systems La
boratory, Stanford University, Stanford CA 94305

(7] Hori, K. V. et a1, "The PASCAL <P> Compiler: Impl em en ta
tion Notes", Eidgenossische Technische Hochschule Zurich,
Instituts fur Informatik, July, 1976

-26-

