
Unisys e-@ction

ClearPath Enterprise

Servers

Task Management
Programming Guide

ClearPath MCP Release 7.0 SSP1

Printed in USA
March 2002 8600 0494–506

.

Unisys e-@ction

ClearPath Enterprise

Servers

Task Management
Programming Guide

UNISYS

û 2002 Unisys Corporation.
All rights reserved.

ClearPath MCP Release 7.0 SSP1

Printed in USA
March 2002 8600 0494–506

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related information
described herein is only furnished pursuant and subject to the terms and conditions of a duly executed agreement to
purchase or lease equipment or to license software. The only warranties made by Unisys, if any, with respect to the
products described in this document are set forth in such agreement. Unisys cannot accept any financial or other
responsibility that may be the result of your use of the information in this document or software material, including
direct, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the laws,
rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Notice to Government End Users: This is commercial computer software or hardware documentation developed at
private expense. Use, reproduction, or disclosure by the Government is subject to the terms of Unisys standard
commercial license for the products, and where applicable, the restricted/limited rights provisions of the contract data
rights clauses.

Correspondence regarding this publication can be e-mailed to doc@unisys.com.

Unisys, ClearPath, and e-@ction are registered trademarks of Unisys Corporation in the United States and other
countries.
All other brands and products referenced in this document are acknowledged to be the trademarks or registered
trademarks of their respective holders.

Unisys e-@ction
ClearPath Enterprise
Servers

Task Management
Programming Guide

ClearPath MCP
Release 7.0 SSP1

 Unisys e-@ction
ClearPath
Enterprise
Servers

Task Management

Programming
Guide

ClearPath MCP
Release 7.0
SSP1

8600 0494–506 8600 0494–506

Bend here, peel upwards and apply to spine.

.

8600 0494–506 iii

Contents

Section 1. Understanding Basic Tasking Concepts

About This Guide... 1–1
Tasking Concepts .. 1–2

Programs and Processes ... 1–2
Task Attributes... 1–3
Interactive Tasking ... 1–4
Programmatic Tasking ... 1–5
Process Termination .. 1–5
Internal and External Processes .. 1–6
Program Structure.. 1–8

Advantages of Tasking .. 1–10
Simplifying System Operations.. 1–10
Increasing Programmer Productivity.................................. 1–10
Improving Application Performance................................... 1–13

Limitations of Tasking ... 1–14

Section 2. Understanding Interprocess Relationships

Inclusion .. 2–1
Flow of Control.. 2–2

Synchronous Processes... 2–2
Asynchronous Processes... 2–2
Coroutines.. 2–3

Dependency .. 2–7
Communications Effects.. 2–8
Flow of Control Effects – Synchronization........................... 2–8
Flow of Control Effects – Critical Blocks.............................. 2–9
Process Families .. 2–17

Familial Relationships .. 2–17
Jobs and Tasks.. 2–18
Special Types of Jobs ... 2–19
Accessing Task Variables .. 2–21
Setting Resource Limits.. 2–24

Section 3. Tasking from Interactive Sources

CANDE .. 3–1
CANDE Tasking Capabilities .. 3–1

Initiating Dependent Processes from CANDE 3–1
Initiating Compilations from CANDE........................... 3–3

Contents

iv 8600 0494–506

Initiating Utilities from CANDE.................................... 3–3
Submitting WFL Jobs from CANDE 3–4
Monitoring and Controlling Processes in

CANDE.. 3–4
Access to Task Attributes in CANDE.......................... 3–5
Saving CANDE Commands for Later Use................... 3–7

CANDE Programming Considerations................................. 3–7
Receiving Parameters from CANDE 3–7
Access to Ancestral Processes in CANDE 3–7
Communicating with CANDE Terminals..................... 3–8

MARC.. 3–9
MARC Tasking Capabilities.. 3–9

Initiating Dependent Processes from MARC.............. 3–9
Initiating Compilations from MARC 3–10
Initiating Utilities from MARC 3–10
Submitting WFL Jobs from MARC 3–10
Monitoring Processes Initiated from MARC............. 3–10
Monitoring Other Processes in MARC 3–12
Communicating with Interactive Processes in

MARC ... 3–12
Access to Task Attributes in MARC 3–13

MARC Programming Considerations................................. 3–14
Receiving Parameters from MARC........................... 3–14
Access to Ancestral Processes in MARC 3–15
Communicating with MARC Terminals 3–16

Operations Center... 3–17
Operations Center Tasking Capabilities............................. 3–17

Submitting WFL Jobs from Operations Center 3–17
Initiating Processes from Operations Center............ 3–17
Initiating Compilations from Operations

Center ... 3–18
Monitoring and Controlling Processes from

Operations Center .. 3–18
Access to Task Attributes from Operations

Center ... 3–19
Operations Center Programming Considerations.............. 3–19

Receiving Parameters from Operations Center........ 3–19
Access to Ancestral Processes in the

Operations Center .. 3–20
Communicating with Operations Center 3–20

ODT... 3–21
ODT Tasking Capabilities... 3–21

Submitting WFL Jobs from an ODT 3–21
Initiating Processes from an ODT............................. 3–21
Initiating Compilations from an ODT......................... 3–22
Initiating Utilities from an ODT 3–22
Monitoring and Controlling Processes at an

ODT .. 3–22
Access to Task Attributes from an ODT 3–23

ODT Programming Considerations.................................... 3–23
Receiving Parameters from an ODT 3–23

 Contents

8600 0494–506 v

Access to Ancestral Processes in the ODT
Environment.. 3–24

Communicating with an ODT.................................... 3–24
Tasking Command Equivalents ... 3–26
Communicating with an Operator ... 3–32

Displaying Information to Operators.................................. 3–32
Accepting Information from Operators.............................. 3–33

Accepting Input from HI Commands 3–33
Accepting Input from AX Commands 3–34
Accepting Input from SW Commands 3–35

Section 4. Tasking from Programming Languages

Work Flow Language (WFL).. 4–1
Submitting WFL Input.. 4–2
Selecting the Queue for a Job ... 4–4
Specifying a Start Time .. 4–8
Structuring the WFL Job.. 4–8
Initiating Dependent Processes from WFL.......................... 4–9
Initiating Compilations from WFL .. 4–9
Initiating Utilities from WFL ... 4–9
Initiating Interactive Processes from WFL......................... 4–10
Submitting Other WFL Jobs .. 4–10
Access to Task Attributes in WFL 4–10
Using File Equations in WFL.. 4–11
Responding to Error Conditions in WFL 4–11
Communicating with Other Processes in WFL 4–12
Controlling a Task from a Job .. 4–13
Restarting WFL Jobs ... 4–13
WFL Example... 4–14

ALGOL... 4–15
Structuring an ALGOL Program ... 4–15
Initiating Processes from ALGOL 4–16
Initiating Compilations from ALGOL 4–16
Initiating Utilities from ALGOL... 4–16
Initiating Interactive Processes from ALGOL 4–17
Submitting WFL Jobs from ALGOL................................... 4–17
Access to Task Attributes in ALGOL 4–17
Communicating with Other Processes from ALGOL 4–18
Restarting ALGOL Processes .. 4–18
DCALGOL Features ... 4–18
ALGOL Examples... 4–19

COBOL .. 4–21
Structuring a COBOL Program .. 4–21
Initiating Processes from COBOL...................................... 4–22
Using Coroutines in COBOL .. 4–23
Entering Individual COBOL Procedures............................. 4–23
Resolving Ambiguous CALL Statements in

COBOL85 .. 4–24
Initiating Compilations from COBOL 4–24
Initiating Utilities from COBOL .. 4–24

Contents

vi 8600 0494–506

Initiating Interactive Processes from COBOL 4–25
Submitting WFL Jobs from COBOL.................................. 4–25
Access to Task Attributes in COBOL 4–25
Invoking COBOL Programs ... 4–26
Communicating with Other Processes from

COBOL .. 4–26
Terminating Processes from COBOL Programs 4–26
COBOL Examples.. 4–27

Other Languages... 4–31

Section 5. Establishing Process Identity and Privileges

Process Identity .. 5–1
Mix Number, Session Number, Stack Number, and

MPID Attribute .. 5–1
Usercode, Access Code, Charge Code, and Group

Code .. 5–4
Name ... 5–6
Object Code File .. 5–6
Originating Source ... 5–8

Process Security Classes.. 5–9
Nonprivileged Status ... 5–10
Privileged Status .. 5–13
Granulated Privileges... 5–15
Nonusercoded Status .. 5–17
ODT Status .. 5–19
SYSTEMUSER Status.. 5–19
Security Administrator Status.. 5–19
Compiler Status ... 5–20
Message Control System Status....................................... 5–20
Tasking Status ... 5–24

Process Identity and Process Initiation ... 5–26
Temporarily Assuming an Identity .. 5–26
Real, Saved, and Effective Process Identities 5–28

Using SETUSERCODE and SETGROUPCODE.................. 5–28
Understanding Real and Saved Identities.......................... 5–29
Toggling between Identities .. 5–29

Section 6. Monitoring and Controlling Process Status

Understanding Process Status.. 6–1
STATUS Task Attribute.. 6–3
WFL Task State Expression... 6–4
Mix Display Commands... 6–5
Y (Status Interrogate) Stack States...................................... 6–6

Monitoring Changes in Process Status... 6–7
Controlling Process Status.. 6–9

Terminating a Process ... 6–9
Thawing a Library... 6–10
Suspending and Resuming Processes 6–11
Preparing a Task Variable for Reuse 6–11

 Contents

8600 0494–506 vii

Preventing Process Scheduling ... 6–11
Preventing Process Suspension .. 6–12

Checking File Residence ... 6–12
Using AUTORESTORE for Disk Files 6–13
Identifying Tape Files .. 6–13
Using UNITNO and OMITTEDEOF for

Unlabeled Tape Files... 6–14
Using the AUTORM Option 6–15
Using the ORGUNIT Value for ODT Files.................. 6–15
Using Conditional ACCEPT Statements.................... 6–15

Section 7. Controlling Processor Usage

Controlling Process Priority ... 7–1
Limiting Processor Usage ... 7–3
Understanding Processor Usage Accounting.. 7–4

Section 8. Controlling Process Memory Usage

Understanding Process Memory Usage ... 8–1
Main Memory and Virtual Memory...................................... 8–1
Process Components... 8–2
Presence-Bit Operations .. 8–3

Controlling Code Segment Dictionary Sharing 8–3
Controlling Process Scheduling... 8–4
Preventing Stack Stretches... 8–6
Protecting against Stack Overflow.. 8–7
Restricting Save Memory Usage .. 8–7

Section 9. Controlling Process I/O Usage

Establishing the Default Usercode for Disk Files 9–1
Modifying File Attributes ... 9–2
Controlling Disk File Usage ... 9–4

Specifying Family Substitution... 9–4
Preventing File Duplications... 9–6
Automatically Restoring Missing Disk Files......................... 9–6
Limiting Disk Usage ... 9–7
Specifying a Current Directory... 9–8

Controlling Printing .. 9–9
Default Handling of Printer Output 9–9

Storing Printer Backup Files Temporarily 9–9
Titling of Printer Backup Files.................................... 9–11
Submitting Print Requests .. 9–13
Selecting Print Requests... 9–13

Programmatic Control Over Printing.................................. 9–13
Other Print-Related Task Attributes................................... 9–15

Controlling Message Tanking.. 9–16
Suppressing Unwanted System Messages .. 9–18
Localization.. 9–20

Contents

viii 8600 0494–506

Limiting I/O Usage .. 9–20

Section 10. Determining Process History

Understanding Termination Messages... 10–1
Using Log Information .. 10–4

Specifying the Information to Be Logged.......................... 10–4
Controlling Job Summary Printing 10–5
Saving the Job Summary File .. 10–6
Analyzing the System Log ... 10–6

Programmatically Interrogating Process History................................. 10–7
Determining the Type of Termination................................ 10–7
Determining Whether a Compilation Was

Successful ... 10–8
Responding to Task Failures.. 10–8
Determining Where a Fault Occurred................................ 10–8

Protecting a Process from Abnormal Terminations 10–11
Preventing All Abnormal Terminations 10–12

Protection against Most Conditions........................ 10–12
Protection against All Conditions 10–13
Including Multiple Statements................................ 10–14
Determining the Cause of the Error........................ 10–14
Using TRY as an Expression 10–15
Providing Alternate Sets of Error Handling

Code ... 10–15
Optimizing Performance ... 10–15
Triggering Program Dumps..................................... 10–16

Protecting a Process from Faults 10–16
Retrying a Failed Task.. 10–17
Protecting a Process from Operator DS

(Discontinue) Commands.. 10–18
Protecting Procedures from DS and ST Commands 10–18
Performing Cleanup during an Abnormal

Termination ... 10–19
Interactions between Error Recovery Statements 10–21

Multiple TRY Statements.. 10–22
TRY Statements and Library Delinkage 10–22
TRY Statements and ON Statements..................... 10–24
TRY Statements, EPILOG Procedures, and

EXCEPTION Procedures..................................... 10–24
Controlling Program Dumps.. 10–26

Using Program Statements to Control Program
Dumps... 10–26

Using Operator Commands to Control Program
Dumps... 10–27

Controlling the Program Dump Destination 10–28
Using the Task File .. 10–30
Analyzing a Program Dump from a Running

Process.. 10–32
Determining Whether a Dump is In Progress 10–33
Causing Symbolic Dumps for RPG Processes 10–33

 Contents

8600 0494–506 ix

Effect of Resource Limits on Program Dumps................ 10–34
Understanding Internal and External Causes................... 10–34

Section 11. Restarting Jobs and Tasks

Designing WFL Jobs for Automatic Restarts...................................... 11–2
Preventing Job Side Effects... 11–3
Preventing Task Side Effects ... 11–3
Understanding Job Restart Failure 11–4
Understanding Disk Resource Control Effects 11–5

Manually Restarting WFL Jobs ... 11–5
Checkpoint Facility .. 11–6

Programmatically Invoked Checkpoints............................. 11–7
Storing Information with a Checkpoint...................... 11–7
Planning for File Recovery... 11–7
Planning for Library Recovery 11–8
Invoking the Checkpoint.. 11–8
Creating Output Disk Files with a Checkpoint 11–12
Restrictions on the Use of Checkpoints 11–13
Determining Eligibility for Checkpoints 11–14
Determining Whether the Checkpoint

Succeeded .. 11–14
Operator-Invoked Checkpoints .. 11–19

Programmatically Preventing Operator
Checkpoints .. 11–19

Displaying the Checkpoint Status 11–19
Invoking a Checkpoint Interactively......................... 11–20
Canceling a Checkpoint Interactively 11–21
Operator Actions after the Checkpoint 11–21

Restarting a Checkpointed Task 11–21
Restarting Checkpointed Tasks Automatically........ 11–22
Initiating a Restart Explicitly 11–22

Using the CHECKPOINTARRAY Procedure 11–25

Section 12. Tasking across Multihost Networks

Submitting Remote WFL Jobs.. 12–2
Running a Local WFL Job on a Remote Host.................... 12–2
Submitting a WFL Job Stored on a Remote Host 12–2
Meeting Remote Job Queue Requirements 12–3

Initiating Non-WFL Remote Processes ... 12–3
Specifying the Remote Host.. 12–3
Limitations on a Non-WFL Remote Process...................... 12–4
Host Availability.. 12–5
Initiating Processes from a Remote Session..................... 12–5
Interrogating the Remote Ancestry of a Process 12–6

Preventing User Identity Problems ... 12–6
Usercode Identity... 12–6
Accesscode and Charge Validation.................................... 12–8
Family and Group Code Identity .. 12–8

Logging of Remote Processes.. 12–9

Contents

x 8600 0494–506

System Log Entries ... 12–9
Job Summaries for Remote Processes............................. 12–9

Resource Limits for Remote Processes ... 12–9
Interacting with Remote Processes.. 12–10

Viewing Remote Process Messages............................... 12–10
Local Operator Control of Remote Processes................. 12–11
MARC Control of Remote Processes.............................. 12–12
CANDE Control of Remote Processes 12–12
Visibility of Remote Processes to Remote

Operators .. 12–13
TASKING/MESSAGE/HANDLER and

TASKING/STATE/CONTROLLER................................. 12–13
Using Host Services-Supported Task Attributes 12–14

Section 13. Understanding Interprocess Communication

Methods of Sharing Objects ... 13–2
Methods of Synchronizing Access.. 13–5

Section 14. Using Task Attributes

Section 15. Using Global Objects

Communication through Global Objects in WFL 15–2
Communication through Global Objects in ALGOL 15–4

Section 16. Using Events and Interlocks

Using Events ... 16–2
Declaring Events.. 16–2
Accessing the Available State ... 16–3

Procuring an Event Unconditionally 16–4
Procuring an Event Conditionally 16–4
Liberating an Event ... 16–4
Partially Liberating an Event...................................... 16–5
Testing the Availability of an Event........................... 16–6
Determining the Ownership of an Event 16–6

Accessing the Happened State ... 16–8
Causing an Event .. 16–8
Implicitly Causing an Event 16–9
Causing and Resetting an Event............................... 16–9
Partially Causing an Event... 16–9
Resetting an Event.. 16–9
Waiting on an Event.. 16–10
Waiting on Time.. 16–10
Waiting on and Resetting an Event 16–11
Waiting on Multiple Events..................................... 16–11
Waiting for POSIX Signals....................................... 16–12
Testing the Happened State 16–12

 Contents

8600 0494–506 xi

Duration of the Happened State 16–13
Using Implicitly Declared Events 16–13
Using Interrupts ... 16–14

Declaring Interrupts... 16–15
Attaching or Detaching an Interrupt 16–16
Enabling or Disabling an Interrupt 16–16
Using General Disable and Enable Statements 16–17
Waiting for Interrupts .. 16–18

Efficiency Considerations... 16–18
Buzz Loops .. 16–18
Preventing Excessive Interrupt Overhead 16–19
Preventing Starvation Problems.............................. 16–19

Discontinued Processes and Events 16–21
Using EPILOG and EXCEPTION Procedures 16–21
Using Timed Wait Statements 16–21
Using Conditional Procure Statements 16–22
Determining Whether to Liberate an Event 16–22

Example of Event Usage.. 16–22
Using Interlocks... 16–24

Declaring Interlocks and Interlock Arrays 16–25
Locking an Interlock ... 16–25
Unlocking Interlocks... 16–26
Interrogating the Interlock Status 16–27
Discontinued Processes and Interlocks........................... 16–28
Replacing Readlocks with Interlocks 16–28

Section 17. Using Parameters

Determining the Scope of Parameters.. 17–1
Parameter Passing Modes .. 17–3

Call-by-Value Parameters ... 17–3
Call-by-Name Parameters .. 17–3
Call-by-Reference Parameters ... 17–4
Read-Only Parameters ... 17–6
Specifying the Passing Mode .. 17–6

Using Tasking Parameters... 17–7
Matching Each Parameter Type... 17–8
Resolving Passing Mode Conflicts 17–27
Passing Arrays ... 17–29

Matching Dimensions and Elements 17–29
Matching Unbounded Arrays 17–29
Matching Pascal Arrays... 17–31
Passing COBOL74 Arrays to Bound

Procedures.. 17–35

Contents

xii 8600 0494–506

Section 18. Using Libraries

Introducing Libraries ... 18–1
Creating Server Library Programs... 18–3

Exporting Objects .. 18–4
Freezing the Library ... 18–4
Controlling Server Library Sharing 18–6
Initiating Internal Server Library Processes 18–8
Using Server Library Objects... 18–8

Local Objects in Server Libraries 18–8
Global Objects in Server Libraries............................. 18–9
Exported Data in Server Libraries 18–11
Restrictions on OWN Objects in Server

Libraries .. 18–15
Restrictions on COBOL74 Libraries................................. 18–16
Monitoring Server Library Linkage................................... 18–17
Thawing and Resuming Server Libraries 18–17

Creating Client Programs .. 18–18
Importing Procedures to Client Programs 18–18
Importing Data to Client Programs.................................. 18–19
Specifying Client Libraries ... 18–20
Linking to Server Libraries ... 18–21

Implicitly Linking to Server Libraries 18–22
Explicitly Linking to Server Libraries 18–23
Directly Linking to Server Libraries 18–24
Matching Client and Server Library Objects 18–24

Initiating Server Library Processes 18–26
Implicitly Initiating a Server Library 18–26
Explicitly Initiating a Server Library 18–28

Monitoring Client Process Linkage.................................. 18–29
Delinking from Server Libraries 18–30

Creating Connection Library Programs ... 18–32
Declaring a Connection Library.. 18–33
Establishing Connections .. 18–34

Explicitly Linking Connection Libraries.................... 18–35
Assigning Connection Library Attributes........ 18–35
Using LINKLIBRARY for the Requesting

Library .. 18–38
Using READYCL for the Responding

Library .. 18–39
Implicitly Linking Connection Libraries 18–41
Directly Linking Connection Libraries 18–41
Controlling Connection Library Sharing................... 18–43
Approving a Connection.. 18–44
Monitoring Connection State.................................. 18–45
Matching Connection Library Objects 18–48
Initiating Connection Libraries 18–49

Implicitly Initiating a Connection Library 18–49
Explicitly Initiating a Connection Library......... 18–50

Unreadying a Connection Library............................ 18–51
Delinking Connection Libraries 18–51
Using PROLOG and EPILOG Procedures 18–52

 Contents

8600 0494–506 xiii

Using Connection Library Objects 18–54
Global Objects in Connection Libraries 18–55
Connection Objects in Connection Libraries........... 18–57
Local Objects in Connection Libraries..................... 18–59
Exported and Imported Data in Connection

Libraries .. 18–60
Predeclared Objects: THIS and THISCL.................. 18–63

Referencing the Connection with THIS.......... 18–63
Referencing the Connection Library with

THISCL ... 18–64
Passing Connections as Parameters....................... 18–65
Restrictions on OWN Objects in Connection

Libraries .. 18–67
Linking Connection Libraries, Server Libraries, and Client

Programs... 18–67
Linking a Client Library to a Connection Library............... 18–67
Linking a Connection Library to a Server Library 18–69
Linking to a Connection Library in a Server Library

Program ... 18–69
Directly Linking Client, Server, and Connection

Libraries ... 18–72
Using Library Attributes... 18–73

APPROVAL .. 18–75
AUTOLINK ... 18–78
CHANGE .. 18–79
CLUSAGE... 18–84
CONNECTIONS ... 18–85
DELINKEVENT ... 18–86
FUNCTIONNAME .. 18–87
INTERFACENAME ... 18–89
INTNAME... 18–90
LIBACCESS.. 18–91
LIBERROR ... 18–93
LIBPARAMETER .. 18–94
SINGLE... 18–95
STATE .. 18–96
TITLE .. 18–97

Methods of Providing Objects .. 18–99
Direct Provision.. 18–99
Indirect Provision ... 18–99
Dynamic Provision ... 18–101
Circular Provision ... 18–102

Understanding Circular Linkage and Circular
Provision ... 18–103

Example 1: Circular Provision of a Single
Procedure ... 18–103

Example 2: Circular Linkage without
Circular Provision...................................... 18–104

Example 3: Circular Linkage Including a
Connection Library 18–105

Example 4: Circular Linkage with an
Extra Connection Library Linkage............. 18–106

Contents

xiv 8600 0494–506

Example 5: Noncircular Linkage Involving
Connection Libraries 18–107

Example 6: Circular Linkage with a
Connection Library as Client 18–108

Restrictions on Circular Linkage and Circular
Provision ... 18–109

Matching the Object Name ... 18–110
Type Matching .. 18–112

Matching Procedure Types.. 18–112
Matching Parameter Types ... 18–113

ALGOL Parameter Types 18–114
C Parameter Types ... 18–115
COBOL74 Parameter Types 18–117
COBOL85 Parameter Types 18–118
FORTRAN77 Parameter Types 18–119
NEWP Parameter Types 18–120
Pascal Parameter Types.. 18–122

Using the ANYTYPE Parameter..................................... 18–126
Matching Array Lower Bounds...................................... 18–127
Matching Parameter-Passing Mode 18–128
Matching Data Types... 18–130

Determining Which Clients Are Linked to a Library........................ 18–131
Understanding Library Process Structure 18–132

Process Stacks .. 18–132
Using Isolated Procedures in Libraries 18–132
Library Task Attributes... 18–136
Error Handling .. 18–138

Design Strategies for Linking Libraries ... 18–139
Technical Architectures ... 18–139
Client Strategies .. 18–140
Server Strategies ... 18–142
Middleware Strategies .. 18–144

Factors Affecting System Performance.. 18–146
Delinkage Overuse .. 18–146
Hazards of Circular Connections.................................... 18–146

Security Considerations for Libraries .. 18–149
Privileges of the Importing Process............................... 18–149
Support Library Attributes ... 18–149
Nonresumable Libraries... 18–151
Restricting Access to a Library Code File 18–151
Using Linkage Classes... 18–151

Library Debugging... 18–156
Server Library Examples ... 18–157

ALGOL Library: OBJECT/FILEMANAGER/LIB............... 18–157
ALGOL Client Program #1 ... 18–159
ALGOL Library: OBJECT/SAMPLE/LIBRARY 18–160
ALGOL Library: OBJECT/SAMPLE/DYNAMICLIB......... 18–161
ALGOL Client Program #2 ... 18–163
ALGOL Circular Client Programs 18–163
ALGOL Incorrect Circular Libraries 18–165
C Library and ALGOL Client Program............................ 18–167
C Client Program Passing Array to ALGOL Library........ 18–169

 Contents

8600 0494–506 xv

C Client Program Passing File to ALGOL Library........... 18–171
COBOL74 Library: OBJECT/SAMPLE4.......................... 18–173
COBOL74 Library: OBJECT/SAMPLE5.......................... 18–173
COBOL74 Client Program.. 18–174
COBOL85 Libraries and Client Program 18–176
FORTRAN77 Library and Client Program....................... 18–180
Pascal Library ... 18–181

Connection Library Example.. 18–184

Section 19. Using Shared Files

Sharing Communications Files .. 19–1
Using Port Files.. 19–1
Using Host Control (HC) Files .. 19–6
Using HYPERchannel (HY) Files .. 19–6

Sharing Other Kinds of Files.. 19–7
Using Shared Logical Files ... 19–8

Specifying the File Location 19–8
Synchronizing Access with Shared Logical

Files... 19–9
Establishing Access Rights 19–9
Understanding I/O Accounting 19–13
Understanding File Attribute Access....................... 19–14
File Sharing Examples ... 19–15

Accessing Disk Files Through Separate Logical
Files ... 19–17

Entering a File in the Directory................................ 19–17
Matching Physical Files ... 19–18
Synchronizing Access with Separate Logical

Files... 19–18
Using the BUFFERSHARING File

Attribute ... 19–19
Using the EXCLUSIVE File Attribute 19–23
Avoiding Nonpreferred Methods.................... 19–24
Synchronizing Access on Shared Disk

Families .. 19–24

Section 20. Using Core-to-Core (CRCR) and Storage Queue
(STOQ)

Using CRCR... 20–1
How CRCR Processes Interlock .. 20–2
Using CRCR Through Library Calls 20–2
Using CRCR Through COBOL85 Statements.................... 20–5

Using STOQ .. 20–7
Creating and Using STOQs.. 20–7
Using STOQ Through Library Calls 20–8
Using STOQ Through COBOL85 Statements.................. 20–12

Waiting On CRCR or STOQ Events... 20–14
CRCR and STOQ Events in ALGOL 20–14
CRCR and STOQ Events in COBOL85 20–15

Contents

xvi 8600 0494–506

Handling the CRCR or STOQ Result ... 20–17
Result Handling in ALGOL... 20–20
Result Handling in COBOL74 .. 20–20

Operations Interfaces to CRCR and STOQ....................................... 20–21
Clearing a STOQ .. 20–21
Polling a STOQ... 20–23
Displaying Status of CRCR or STOQ Operations 20–25

Section 21. Using ONC+ Remote Procedure Call (RPC)

Appendix A. Related Product Information

Index ..1

8600 0494–506 xvii

Figures

10–1. Multiple TRY Statements ... 10–22
10–2. TRY Statements and Library Delinkages.. 10–23
10–3. ON Statements and TRY Statements .. 10–24
10–4. TRY Statement, EPILOG Procedure, and EXCEPTION Procedure................. 10–25
10–5. TRY Statements and Bad GO TO Statements ... 10–26

18–1. Circular Provision of a Single Procedure .. 18–103
18–2. Circular Linkage without Circular Provision .. 18–104
18–3. Circular Linkage Including a Connection Library... 18–105
18–4. Circular Linkage with an Extra Connection Library Linkage 18–106
18–5. Noncircular Linkage Involving Connection Libraries..................................... 18–107
18–6. Circular Linkage with a Connection Library as Client 18–108
18–7. Two-Tier Model .. 18–139
18–8. Three-Tier Model .. 18–140

Figures

xviii 8600 0494–506

8600 0494–506 xix

Tables

3–1. Interactive Tasking Functions... 3–27

4–1. WFL Execution Modes... 4–3

5–1. WFL Statements Executed with Privilege ... 5–18

6–1. Process States ... 6–2
6–2. Effects of GOINGAWAY and ACTIVE Assignments .. 6–10

10–1. Abnormal Termination Messages .. 10–3

11–1. Checkpoint Completion Codes... 11–15
11–2. Comparison of CHECKPOINTARRAY and Checkpoint Facility....................... 11–25

13–1. Methods of Sharing Objects .. 13–2

17–1. Programming Language Parameter Types... 17–12
17–2. Matching Parameter Types .. 17–18

18–1. C Parameters.. 18–115
18–2. COBOL74 Parameters.. 18–117
18–3. COBOL85 Parameters.. 18–118
18–4. FORTRAN77 Parameters ... 18–119
18–5. NEWP Parameters ... 18–120
18–6. Pascal Parameters.. 18–122
18–7. Unbounded and Simple Array Declarations.. 18–127
18–8. Parameter-Passing Modes ... 18–129
18–9. Linkage Classes.. 18–154

Tables

xx 8600 0494–506

8600 0494–506 1–1

Section 1
Understanding Basic Tasking
Concepts

Tasking features are inherent in the overall system architecture. Various programming
languages and operations interfaces provide you with access to different subsets of the
tasking capabilities of the system. This section presents an overview of tasking features
and discusses the advantages and limitations of these features.

About This Guide

Purpose

This guide describes the following types of operating system features that are accessed
using programming languages:

• Tasking features

Features that enable processes to initiate, monitor, and control other processes
include the CALL, PROCESS, and RUN statements, task variables, and task
attributes. Features related to job restarting and process history also are this
category.

• Interprocess communication features

Features that enable user-defined information to be passed between processes, or
that help regulate the timing of parallel processes include events, libraries, and
parameter passing.

Audience

The audience for this guide consists of applications programmers familiar with at least
one high-level programming language, such as ALGOL, C, COBOL74, COBOL85,
FORTRAN77, Pascal, or WFL.

Terminology Conventions

Statements about ALGOL in this guide apply also to DCALGOL, DMALGOL, and
BDMSALGOL unless otherwise specified.

Two different ANSI levels of COBOL are supported: ANSI-74 and ANSI-85. These
implementations are referred to in this guide as COBOL74 and COBOL85, respectively.

Understanding Basic Tasking Concepts

1–2 8600 0494–506

Statements in this guide about COBOL are true of both COBOL implementations unless
otherwise specified.

The term library, which was used in previous editions of this guide, has been replaced by
the term server library. The term user process (when used in the context of libraries) has
been replaced by the term client process. The library as it is declared in the client
process is now referred to as the client library.

These changes resulted from the implementation of a new type of libraries, called
connection libraries. The term library is now used as a general term referring to a server
library, a client library, or a connection library.

Tasking Concepts
The following subsections discuss the relationships between programs and processes,
and the methods you can use to monitor and control process behavior.

Programs and Processes

A program is a sequence of statements written in any of a number of languages,
including ALGOL, C, COBOL74, COBOL85, FORTRAN77, Pascal, and Work Flow
Language (WFL). The file in which you write and store these statements is referred to as
a source file. By compiling the source file, you cause the creation of an object code file.

By using any of a number of commands or statements, you can cause a particular object
code file to be initiated. That is to say, you cause the system to start performing the
instructions in the object code file. At this point, the object code file is being executed.
However, in a sense, nothing is happening to the object code file itself. The system
merely reads instructions from the object code file; the contents of the file remain
unchanged.

There is, nonetheless, a dynamic entity called a process, which is separate from the
object code file, but which reflects the current state of the execution of the object code
file. A process stores the current values of variables used by the program, as well as
information about which procedures have been entered and which statement is currently
being executed. (Procedures are discussed under “Internal and External Processes”
later in this section.)

Each process exists in the system memory, and consists of several distinct structures
that are discussed in Section 8, “Controlling Process Memory Usage.”

The distinction between object code files and processes is a very important one. This is
because, at any given time, there can be multiple processes that are executing the same
object code file; these are referred to as instances of that object code file. A new
instance is created each time a user or an existing process submits a statement that
initiates the object code file.

Because many instances of the same object code file can be running at the same time,
the object code file title is not sufficient to uniquely identify a process. Therefore, in
system command displays, the various processes are identified both by an object code

 Understanding Basic Tasking Concepts

8600 0494–506 1–3

file title and by a unique number called the mix number. For further information on mix
numbers, refer to Section 5, “Establishing Process Identity and Privileges.”

Even if processes are executions of the same object code file, the processes are
completely separate entities and do not interact with each other. For example, suppose
the object code file called OBJECT/PROG includes a declaration of an integer variable
named N, as well as various statements that assign values to N. In this case, each
instance of OBJECT/PROG has its own copy of variable N in memory. When one
process changes the value of N, there is no change to the value N has for the other
processes.

The fact that processes are separate and maintain their own copies of variables generally
prevents confusion and simplifies program design. However, there can also be cases
where you want processes to have shared access to a particular variable. For these
cases, the system provides a variety of interprocess communication techniques, which
are described in Part II of this guide.

Tasking consists of using various features to initiate, monitor, and control processes.
You can perform tasking functions by entering commands through various system
operation interfaces, or by writing programs that initiate, monitor, and control the
execution of other programs.

Task Attributes

Task attributes are entities that record various properties of a process, such as its
usercode, mix number, priority, printing defaults, and so on.

There are a limited number of task attributes, which are defined by the operating system
and have fixed meanings. Each process possesses all of these task attributes, but the
values of the task attributes can vary. For example, each process has a USERCODE task
attribute, but where one process might have a USERCODE value of JASMITH, another
process might have a USERCODE value of JANEDOE.

Task attributes record or modify many aspects of process execution, including security,
processor usage, memory usage, and I/O activity. You can assign task attributes to a
process either through commands entered at an interactive source, or through
statements in a program.

This guide introduces many of the important uses of task attributes. The remaining
sections in Part I of this guide introduce task attributes within discussions of general
functional areas, such as processor usage, memory usage, and so on. For detailed
information about any of these task attributes, you can refer to the Task Attributes
Programming Reference Manual, which presents the task attributes in alphabetical order.

Understanding Basic Tasking Concepts

1–4 8600 0494–506

Interactive Tasking

You can perform tasking functions through any of the following interactive interfaces:

• Command and Edit (CANDE)

A command-driven environment that provides file handling and tasking capabilities

• Menu-Assisted Resource Control (MARC)

A menu-driven interface to system operations functions

• Operations Center

A Windows-based application that provides a graphical user interface (GUI) to system
operations

• Operator display terminals (ODTs)

Terminals that support an interface called system command mode

Each of these products provides the following general types of tasking capabilities:

• A command or menu selection that allows you to initiate any object code file by
name. Examples are the RUN command in CANDE and MARC.

• Syntax for specifying task equations, which are task attribute assignments applied to
a process when it is first initiated.

• Task attribute inheritance, which causes a process to receive task attributes
associated with the initiating source.

• Various commands or selections for monitoring process status and resource use, or
for intervening in process execution.

The tasking capabilities of CANDE, MARC, Operations Center, and the ODT are
described in Section 3, “Tasking from Interactive Sources.”

Note that many commands entered by users can indirectly cause a process to be
initiated. For example, the Transaction Server initiates instances of direct window
programs in response to variations in the message traffic from users. Similarly, the
system initiates processes to execute some specialized system commands, such as
LOG.

This guide does not attempt to describe all such cases of indirect tasking. CANDE,
MARC, and the ODT are all introduced in this guide because they provide direct,
generalized tasking interfaces. With these products, you can initiate any object code file,
as well as monitor and control any process (to the extent allowed by system security).

 Understanding Basic Tasking Concepts

8600 0494–506 1–5

Programmatic Tasking

You can perform tasking functions using any of the following programming languages:
ALGOL, C, COBOL74, COBOL85, and WFL. This guide provides details about the
tasking capabilities of ALGOL, WFL, and both versions of COBOL.

Each of these languages provides you with the following types of tasking capabilities:

• Statements that allow you to initiate any object code file by name. Examples are the
CALL, PROCESS, and RUN statements in ALGOL and COBOL.

• Constructs for reading and assigning the task attributes of a process before the
process is initiated, while it is running, and after it completes execution.

The tasking capabilities of each of these languages are described in Section 4, “Tasking
from Programming Languages.”

At this point you might be aware of the potential for some ambiguity in the use of task
attributes within programs. For example, every process has a USERCODE task attribute.
If you write a program that makes an assignment to the USERCODE task attribute, how
does the system know which process the USERCODE should be applied to?

The answer is that ALGOL, COBOL, and WFL all provide a special type of variable called
a task variable. A task variable is also known as a control point in COBOL. You can
declare one or more task variables in a program, each with a distinct name. When you
use a process initiation statement, you include a reference to a task variable in that
statement. The task variable thereafter becomes associated with the new process.

Statements that use task attributes always specify a task variable name as well as a task
attribute name. In this way, it is always clear which process is being referred to.

When one process initiates another process, many of the task attributes of the initiating
process are transferred to the new process. This transference is called inheritance.
Details about the task attributes that are inherited, and under what circumstances they
are inherited, are given in the Task Attributes Programming Reference Manual.

Process Termination

A process typically ends when the last instruction in the object code file is executed.
This is referred to as a normal termination.

However, a process can also terminate prematurely for any of a number of reasons. For
example, you can use the DS (Discontinue) system command to terminate a process. A
process can also terminate because a flaw in program design causes it to attempt to do
something impossible, such as dividing by zero. Additionally, all processes are
terminated in the event of a system halt/load. All of these types of terminations are
referred to as abnormal terminations because the inference is that something went
wrong.

When you initiate a process, you usually want to be able to find out later whether it ran
successfully or not. The system provides a number of facilities to help you determine

Understanding Basic Tasking Concepts

1–6 8600 0494–506

whether the process ran successfully, and why it failed if it was not successful. These
facilities include the HISTORYTYPE, HISTORYCAUSE, and HISTORYREASON task
attributes, and the program dump facility. These facilities are described in Section 10,
“Determining Process History.”

Sometimes you might want to rerun a process that terminated abnormally. For example,
if the process was terminated by a system halt/load, then the underlying program might
be perfectly sound. Restarting the process could enable it to complete its work
successfully. However, a number of design issues must be considered for processes
that are intended to be restartable. These design issues, and the means of restarting
processes, are explained in Section 11, “Restarting Jobs and Tasks.”

Internal and External Processes

Up to this point, this section has discussed only cases where an object code file is
executed from beginning to end as a single process. However, the system gives you the
option of causing individual procedures to be initiated as separate processes. These
processes fall into two general categories: internal and external processes.

The following subsections describe the various types of internal and external processes.
For a discussion of the varying capabilities of these types of processes, refer to the
discussion of inclusion in Section 2, “Understanding Interprocess Relationships.”

Internal Processes

Many programming languages give you the ability to create groups of declarations and
statements within a program, and to assign a name to each group. In ALGOL, these
groupings are referred to as procedures. In WFL, these groupings are referred to as
subroutines. However, the basic concept is similar in both cases, and the term
“procedure” in this guide refers equally to ALGOL procedures and WFL subroutines.

Other programming languages offer similar types of structures, but ALGOL and WFL are
the only languages that give you a choice between the following two methods of
invoking a procedure:

• Procedure entrance

The syntax for entering a procedure consists of using the procedure name as if it
were a statement. Entering a procedure causes the procedure to be executed as
part of the same process that invoked the procedure. When the process finishes
executing the procedure, the process exits that procedure.

• Procedure initiation

The syntax for initiating a procedure consists of using a CALL, PROCESS, or RUN
statement in ALGOL, or a PROCESS <subroutine> statement in WFL. Initiating a
procedure causes it to be executed as a new process, separate from the process
that invoked the procedure. This new process is referred to as an internal process
because it is executing part of the same object code file as the initiating process.

Of these methods, procedure entrance has the advantages of simplicity and low impact
on system resources, as discussed under “Limitations of Tasking” later in this section.

 Understanding Basic Tasking Concepts

8600 0494–506 1–7

On the other hand, procedure initiation allows you to use parallel processing or to assign
the new process different task attribute values than those of the initiating process.
These features are introduced under “Advantages of Tasking” later in this section.

Note that, if you use the Binder utility to bind a procedure from a subprogram into a host
program, that procedure is thereafter considered an internal procedure of the host
program. If the host program is an ALGOL program, the host program can either enter or
initiate the bound procedure. If the procedure is initiated, the resulting process is
considered to be an internal process. For information about the Binder utility, refer to the
Binder Programming Reference Manual.

External Processes

An external process is one that results when a statement in a program initiates an
external procedure. An external procedure is one that resides in a program other than
the program containing the statement that invokes the procedure. External procedures
are of three types:

• Separate programs

Any program, taken as a whole, can be thought of as an external procedure when it
is invoked by a statement in a different program. A separate program is always
executed as a separate process; that is, a process can initiate, but cannot enter, a
separate program. WFL, ALGOL, and COBOL all allow you to initiate separate
programs. In ALGOL and COBOL, you must specify dummy procedures, called
declared external procedures, in statements that initiate separate programs.

• Passed external procedures

These are procedures passed into the program as parameters. You can write
programs in ALGOL that accept procedures as parameters from the initiating
program. Statements in the receiving ALGOL program can either enter or initiate a
passed procedure.

• Library procedures

These are procedures that are provided by a special type of program called a library.
Libraries make procedures available for use by other programs. Statements in an
ALGOL program can either enter or initiate a library procedure. Programs written in
other languages can enter, but cannot initiate, a library procedure. The methods for
writing libraries and programs that use libraries are discussed in Section 18, “Using
Libraries.”

Understanding Basic Tasking Concepts

1–8 8600 0494–506

Program Structure

Each program is viewed by the operating system as having a certain block structure. The
block structure of the program can have implications for the critical block definition and
for the ability of processes to communicate through global objects. For further
information on these topics, refer to “Critical Blocks” in Section 2, “Understanding
Interprocess Relationships” and to Section 15, “Using Global Objects.”

The term flow of control refers to the order in which the statements of a program are
executed. Most statements perform an action and then pass control to the immediately
following statement. However, some statements can pass control to structures residing
elsewhere in the program.

A block is a program, or program subunit, that can contain a group of declarations and a
group of statements. The declarations create objects that are for local use by the
statements in the block. There are two kinds of blocks: procedures and simple blocks.

A procedure is a block that can be executed using a procedure invocation statement,
which passes control to the start of the procedure. When the procedure finishes
executing, control automatically returns to the procedure invocation statement, and
passes to the next statement in the program.

This abstract definition of a procedure corresponds to the way procedures are viewed by
the operating system. Procedures are called by different names in the syntax of the
various programming languages. This definition of a procedure corresponds, for
example, to a PROCEDURE in ALGOL, a PROCEDURE or FUNCTION in Pascal, or a
SUBROUTINE or FUNCTION in FORTRAN77. It also corresponds to a complete program
written in any of these languages.

Note that a complete program written in COBOL is also considered a procedure.
However, a paragraph or a section in COBOL is not considered a procedure. It is true
that a PERFORM statement resembles a procedure invocation statement in that it
causes control to pass through the paragraph or section and then return to the
PERFORM statement. However, paragraphs and sections cannot include declarations
and thus are not treated as procedures by the operating system. Therefore, the various
properties of procedures discussed in this guide do not apply to paragraphs or sections.

Similarly, COBOL85 nested programs are not currently treated as procedures by the
operating system. However, this implementation is subject to change. In future
versions of COBOL85, nested programs might be treated like blocks.

A simple block is a block that cannot be specified in a procedure invocation statement.
Simple blocks exist only in ALGOL, where they appear among the statements in the
program, rather than among the declarations. The beginning and end of a simple block
are marked by the keywords BEGIN and END. A simple block is executed in sequence
between the statements that immediately precede and follow the simple block.

Note that a BEGIN...END group is considered to be a simple block only if it contains at
least one declaration. Otherwise, it is considered a compound statement. Compound
statements do not affect tasking or interprocess communication issues, and will not be
further discussed in this guide.

 Understanding Basic Tasking Concepts

8600 0494–506 1–9

Some languages, including WFL and ALGOL, allow blocks to be declared within other
blocks. This practice is referred to as nesting. A block that contains a nested block is
said to be global to that nested block. The most global block is referred to as the outer
block of the program.

The lexical level of a block is a measure of how deeply the block is nested. By default,
the outer block of a program has a lexical level of 2; however, compiler control options
can be used to cause the outer block to be compiled with a higher lexical level. Each
procedure has a lexical level one higher than the outer block or procedure in which it is
declared.

ALGOL and NEWP support special TYPE declarations called structure blocks and
connection blocks. Either of these declarations creates a data type consisting of a group
of objects of possibly varying types. Note that structure blocks and connection blocks
are not considered blocks in the sense that the term block is used in this book.

Understanding Basic Tasking Concepts

1–10 8600 0494–506

Advantages of Tasking
The benefits of tasking fall into the general areas of simplifying system operations,
increasing programmer productivity, and improving performance of an application.

Simplifying System Operations

Many applications involve running a sequence of programs, one after another in a certain
set order. Often it is necessary to specify parameters and task attribute assignments for
each of the programs. An operator can initiate the programs individually, providing the
needed parameters and task attribute assignments in each case. However, this proves
to be too time consuming in an environment where many applications are run during a
given work shift.

An alternative, which reduces the labor required of the operator, is to write a small
program whose only purpose is to initiate a series of other programs. Such a program
can provide a standard set of parameters and task attribute assignments. You can write
such a program in ALGOL, COBOL, or WFL. This enables the operator to initiate a single
program and leave it to initiate all the others.

WFL is particularly suitable for implementing such programs because WFL programs
typically pass through job queues. An operator can use the MQ (Make or Modify Queue)
system command to create job queues and assign various job queue attributes to them.
The use of job queues enables the operator to submit jobs when it is convenient, while
relying on the system to initiate jobs at specified times or according to specified criteria.
Job queues are further discussed under “Selecting the Queue for a Job” in Section 4,
“Tasking from Programming Languages.”

Increasing Programmer Productivity

Tasking techniques can improve programmer productivity by modifying the behavior of
existing programs, by allowing you to use programs as modules in a larger application,
and by allowing multiple programming languages to be used in an application.

Modifying Program Behavior

Sometimes a program is designed to run in a particular environment, and later that
environment changes. For example, a program might be designed to read a file on a
family named DATAPK. Later, you might want to run a copy of that program on a
different system that does not have a family with that name. Rewriting the source
program and recompiling it can be a time-consuming process. Fortunately, many such
behaviors can be modified through task attribute assignments.

For example, there is a task attribute called FAMILY that causes a process to use files on
a different family than it otherwise would. Suppose a process expects to find all its input
files on the family named DATAPK. You can assign the FAMILY task attribute a value of
"DATAPK = CONTROL OTHERWISE DISK". This causes the process to look for all its
input files on the family named CONTROL instead of the family named DATAPK.

 Understanding Basic Tasking Concepts

8600 0494–506 1–11

You can assign a task attribute to a process in any of the following ways, none of which
requires recompiling or rewriting the program that is being initiated:

• If you are running a program from CANDE or MARC, you can append task attribute
assignments to the RUN command that initiates the program.

• You can use a WFL MODIFY statement to assign default task attribute values to an
object code file. The system assigns these task attribute values each time the object
code file is run.

• ALGOL, COBOL, and WFL all allow you to assign task attributes to a task variable. If
you then specify this task variable in a statement that initiates a separate program,
the task attribute assignments are applied to the new process.

The Task Attributes Programming Reference Manual gives examples of these methods
of assigning task attributes.

Using Programs as Modules

A module is a body of code that can be reused in a variety of different contexts. The use
of modules simplifies the programmer's job by making it unnecessary to repeat large
amounts of code. One advantage of tasking is that it allows you to use an entire
program as a module in one or more larger applications.

For example, you could have a report-formatting and printing program. You might also
have a program that retrieves customer data from a database, and another program that
does an inventory analysis. The customer data program and the inventory analysis
program could both use process initiation statements to invoke the report-formatting and
printing program and cause it to create reports using the data collected.

Tasking is only one of the methods that the system provides for allowing code to be
reused by different programs. Some of the other methods are

• Compile-time options

You can use a $INCLUDE option in a program source file. At compilation, the
compiler inserts text from a separate source file specified by the $INCLUDE option.
This option is discussed in the manuals for each programming language.

• Binding

This technique enables you to insert a compiled procedure from one object code file
into a separate object code file. This technique is documented in the Binder
Programming Reference Manual.

• Libraries

This technique enables a process to dynamically invoke a procedure in another
running process. This technique is described in Section 18, “Using Libraries.”

All of these methods have their virtues. Compared to the $INCLUDE option or binding,
tasking has the advantage of enabling you to maintain the shared module separately from
the programs that call on it. You can make changes to the module without having to
recompile another program or rerun the Binder.

Understanding Basic Tasking Concepts

1–12 8600 0494–506

On the other hand, both the $INCLUDE option and binding have the advantage of
enabling you to insert an external procedure directly into the source or object program.
Because the inserted procedure is treated by the system as an internal procedure, the
main program can enter the procedure rather than initiating it. This results in savings of
processor time and memory.

Compared to libraries, tasking has a slight performance advantage in some situations.
Initiating a program carries a certain cost in terms of processor time, memory, and so on.
The cost of entering a library procedure varies, and can be higher or lower than the cost
of initiating a process. For the first call on a particular library, the system must initiate the
library process and establish a linkage between the calling program and the library. Once
the library is running, it is more economical to enter a library procedure than to initiate a
process.

Another advantage of the tasking method arises in situations where there already exists
a program that performs a function needed by your application. You can initiate that
program as a process without having to rewrite or recompile the program that performs
the function. Changing the program into a library would require rewriting, and binding the
program into another program requires using the Binder utility.

Using Multiple Languages in an Application

Different programming languages have different unique capabilities. These might make
it easier to implement some types of routines in one language, and other types of
routines in another language. If the same application requires routines in two or more
different languages, then those routines have to be stored in separate source files and
compiled separately.

One way to enable an application to use modules written in different languages is
through tasking. You can accomplish this by using statements that initiate separate
object code files. For example, you can write a COBOL program that initiates another
program written in ALGOL.

A nice thing about this technique is that the system also enables you to pass parameters
between programs written in different languages. The operating system allows
parameters to match as long as they are of compatible types. Section 17, “Using
Parameters,” explains which parameter types are considered compatible by the
operating system.

Alternatively, you could use binding or libraries to create an application that uses modules
written in different languages. The advantages of using tasking instead of binding or
libraries are introduced under “Using Programs as Modules” earlier in this section.

 Understanding Basic Tasking Concepts

8600 0494–506 1–13

Improving Application Performance

The definition of performance for an application has two general aspects: measurements
of the resource usage of an application and measurements of the elapsed time of the
application. Resource usage includes total processor time, average memory usage, and
so on. Elapsed time means the total clock time a batch program takes to run, or the
average time an online program takes to respond to a transaction.

If you find that the elapsed time of an application is of crucial importance to your
business, you can use tasking features to help decrease the elapsed time by allowing the
application to use system resources more intensively. The two features that allow you
to do this are process priorities and parallel processing.

The system is designed to be able to execute large numbers of processes
simultaneously. However, each central processor can execute only one process at a
time. The operating system frequently reevaluates the processes waiting for processor
service, and assigns the processor to the process with the highest priority. You can use
task attributes and system commands to control some aspects of process priority, as
discussed in Section 7, “Controlling Processor Usage.”

Parallel processing consists of dividing your application into two or more processes that
run concurrently. Parallel processing enables the application to use system resources
more intensively than a single process can. This increased intensity of system resource
usage results because each process typically alternates among using the central
processor, I/O processor, and other resources. With parallel processes, one process can
use the central processor while the other is waiting for an I/O to complete, and so on.

You can create parallel processes by designing one process to initiate another process of
type PROCESS or type RUN. These process types are discussed in Section 2,
“Understanding Interprocess Relationships.”

Understanding Basic Tasking Concepts

1–14 8600 0494–506

Limitations of Tasking
If you do not need any of the benefits of tasking described in the preceding subsection,
you can simply implement your entire application as a single program, and use only
procedure entrance statements rather than procedure initiation statements. Procedure
entrance uses fewer system resources than procedure initiation, and allows your
application to complete faster and interfere less with other running applications.

Some of the expenses involved in initiating a procedure are

• It takes slightly more processor time than entering a procedure.

• It causes several hundred words of save memory to be allocated for the new
process stack.

• It causes the system to create additional system log entries, and thus adds to
general system overhead.

• It adds to the number of entries visible to the operator in a mix display. It thus tends
to complicate the system operator's efforts to monitor the system.

The performance differences between entering and initiating a procedure are not great if
the procedure is to be executed only once. However, for a procedure that is invoked
many times, the performance loss can slow an application noticeably.

8600 0494–506 2–1

Section 2
Understanding Interprocess
Relationships

The relationship between a process and its initiator is defined in terms of three major
properties, which are defined in the following subsections. These properties are
inclusion, flow of control, and dependency. These properties affect the speed and
efficiency with which a process is executed, and the ability of the initiator to interact with
the process. You can control these properties in two ways:

• By choosing among the various process-initiation statements that are available

• By choosing a program structure appropriate to the type of process desired

This section examines these choices and their implications for a family of processes.

Several of the discussions that follow refer to the term parent. This term is defined fully
under “Dependency” in this section. For now, it is enough to know that the initiator of a
process is usually also the parent of that process.

Inclusion
Section 1, “Understanding Basic Tasking Concepts,” introduced the distinction between
internal and external procedures, and the concept that initiating procedures results in
internal or external processes. The differing properties of internal and external processes
are referred to in this guide as inclusion properties and are as follows:

• An internal process must be dependent. Similarly, external processes resulting from
initiating library procedures or passed external procedures must be dependent. Only
external processes resulting from initiating separate programs can be either
dependent or independent. Any attempt to initiate a procedure that is not a separate
program as an independent process causes the error “NON - EXTERNAL RUN.” For
an explanation of the difference between dependent and independent processes,
refer to “Dependency” in this section.

• In ALGOL and WFL, internal procedures have access to variables declared globally in
the program. These global variables can serve as a medium for interprocess
communication if the internal procedure is initiated. For information about this
interprocess communication technique, refer to Section 15, “Using Global Objects.”

• Several task attributes inherited by internal processes are not inherited by external
processes. These task attributes include LIBRARY, NAME, OPTION, STACKSIZE,
and TADS. For a discussion of task attribute inheritance, refer to the Task Attributes
Programming Reference Manual.

Understanding Interprocess Relationships

2–2 8600 0494–506

Flow of Control
In Section 1, “Understanding Basic Tasking Concepts,” control was defined as the path
execution takes among the various statements of a program. In a broader sense, control
is the path execution takes among the statements of a procedure and any procedures
initiated by that procedure. The programmer specifies the type of control path used by
choosing the corresponding process initiation statement.

The control path determines whether the initiating process and new process execute in
parallel or by taking turns. If they are executing by turns, the control path specifies when
and how often they take turns before the new process terminates. The following
subsections discuss the types of control paths that are available.

Synchronous Processes

When a synchronous process is initiated, control is transferred from the initiating process
to the new process. In other words, the initiating process stops executing and the new
process begins executing. The initiating process is still considered active during this
period and its process stack still exists. When the new process terminates, the initiating
process begins executing again, starting with the first statement after the process
initiation statement.

Examples of statements that initiate synchronous processes are the CALL statement in
ALGOL or COBOL and the RUN statement in Work Flow Language (WFL). Synchronous
processes are sometimes referred to as coroutines, but more properly the term
coroutine has a different use. (Refer to “Coroutines” in this section for details.)

The initiating process can set the attributes of a synchronous process only at initiation
time and can interrogate the attributes only after the synchronous process has
terminated.

Synchronous processes can be simpler to design than coroutines or asynchronous
processes because you do not have to deal with certain complexities of timing that arise
for these other types of processes.

Asynchronous Processes

When an asynchronous process is initiated, the necessary memory structures are
created for the new process. Thereafter, the new process and the initiator execute in
parallel. Although they execute at the same time, they do not necessarily execute at the
same speed. It is for this reason that the new process is called asynchronous.

Examples of statements that initiate asynchronous processes are the PROCESS
statement in ALGOL or COBOL, and the PROCESS RUN or PROCESS <subroutine>
statement in WFL.

Asynchronous processes are useful because, in many situations, two or more processes
running in parallel can do needed work in less elapsed time than a single process. What
is saved in elapsed time does not necessarily translate into savings in processor or I/O
time, however.

 Understanding Interprocess Relationships

8600 0494–506 2–3

The task attributes of an asynchronous process can be read or assigned by its initiator
while the asynchronous process is executing. This makes it possible for the initiator to
intervene in the execution of the asynchronous process.

A disadvantage to initiating processes asynchronously is that, except in WFL, the
programmer must take special measures to prevent a critical block exit error from
occurring. (See the discussion of “Critical Blocks” in this section.)

In addition, initiating processes asynchronously can create ambiguous timing situations
because it is impossible to predict exactly how long a process will take to execute. If an
asynchronous process and its initiator share a data item, such as a global variable, and
both change the value of that data item, it will be difficult to predict the order in which
the changes will occur.

Various methods are used to regulate the timing of asynchronous processes. These
methods are discussed in Section 16, “Using Events and Interlocks.”

Coroutines

The term coroutines refers to a group of processes that exist simultaneously but take
turns executing, so that only one of the processes is executing at any given time.
Coroutines offer some of the advantages of asynchronous processes, but generally are
easier to design because coroutines execute in a sequential order that prevents any
ambiguities of timing. The use of coroutines offers the following benefits:

• The ability to execute a procedure repeatedly without incurring the processor time
required to enter or initiate the procedure each time

• The ability to execute a procedure repeatedly without losing the values of objects
declared in the procedure between each execution

Note, however, that coroutines use the processor less efficiently than do asynchronous
processes. Only one coroutine runs at a time, and there might be periods when the
processor is unused because the coroutine is waiting for an I/O operation to complete.
Furthermore, the statements coroutines use to transfer control to other coroutines use
more processor time than the event-related functions that asynchronous processes can
use to suspend or resume each other.

Creating Coroutines

An ALGOL or COBOL process can create a coroutine by executing a CALL statement.
The new process and its initiator are referred to as coroutines. When the initiator
executes a CALL statement, the initiator temporarily ceases execution and its stack state
becomes “TO BE CONTINUED”. The stack state can be displayed by using the Y
(Status Interrogate) system command. A coroutine with this stack state is referred to as
a continuable coroutine.

The new process has one of the stack states that indicate the process is being
processed, or soon will be, such as ALIVE or READY. The new process is referred to as
an active coroutine.

Understanding Interprocess Relationships

2–4 8600 0494–506

The total number of coroutines increases each time an active coroutine executes a CALL
statement. The new process created is an active coroutine and all others are continuable
coroutines.

The concept of a coroutine is closely related to that of a synchronous process, as defined
in “Synchronous Processes” in this section. Every synchronous process is also a
coroutine; however, not every coroutine is a synchronous process. An asynchronous
process can execute a CALL statement and thus become a continuable coroutine.

Using Continue Statements

An active coroutine can transfer control to a continuable coroutine by executing an
ALGOL CONTINUE statement or a COBOL CONTINUE or EXIT PROGRAM statement.
For convenience, these are all referred to as continue statements in the following
discussion.

The other programming languages (FORTRAN77, Pascal, RPG, and WFL) do not provide
continue statements. Therefore, processes other than ALGOL or COBOL processes can
be considered coroutines only in a restricted sense. For example, a WFL job can create a
synchronous offspring by executing a RUN statement. The stack state of the WFL job
then becomes “TO BE CONTINUED.” However, the system does not allow the offspring
to use a continue statement to transfer control to the WFL job. Instead, the system
automatically continues the WFL job when the offspring terminates. This act is referred
to as an implicit continue and is discussed further in “Continuing the Partner Process” in
this section.

To understand the effects of a continue statement, suppose an active coroutine called A
executes a continue statement that specifies a continuable coroutine called B. When the
continue statement is executed, the coroutine A ceases execution and coroutine B
resumes execution. In other words, coroutine A becomes a continuable coroutine and
coroutine B becomes an active one. Control passes from coroutine A to coroutine B.

Coroutine B can later reverse this situation by executing a continue statement that
passes control back to coroutine A. However, control does not always have to pass back
and forth between the same pair of processes. For example, coroutine B might continue
another coroutine called C and that coroutine might then continue coroutine A.

Control can pass between coroutines any number of times. In the course of its lifetime,
a coroutine can execute many continue statements applying to any number of other
processes. However, for a continue statement to be successful, it must be executed by
an active coroutine and it must specify a continuable coroutine. The continue statement
results in an “ILLEGAL VISIT” error if it transfers control to a process that is not a
continuable coroutine.

Coroutines usually belong to the same process family because continue statements
must explicitly or implicitly specify the task variable of the process to be continued. A
process usually has access only to the task variables of processes in its own process
family. Process families are defined under “Process Families” in this section. The
means of accessing the task variables of related processes are discussed under
“Accessing Task Variables” in this section.

 Understanding Interprocess Relationships

8600 0494–506 2–5

Determining Where Execution Resumes

When any coroutine continues an ALGOL coroutine, the ALGOL coroutine resumes at
the point where it left off. Thus, if an ALGOL coroutine executes a CALL statement, it
later resumes with the first statement after the CALL statement. If an ALGOL coroutine
executes a CONTINUE statement, it later resumes with the first statement after the
CONTINUE statement.

By contrast, a COBOL coroutine can resume execution at either of two points. If a
COBOL coroutine executes a CONTINUE statement or an EXIT PROGRAM RETURN
HERE statement, then the coroutine later resumes at the point where it left off.
However, if a COBOL coroutine executes a simple EXIT PROGRAM statement, then the
coroutine later resumes with the first statement in the program. (Certain limitations on
the EXIT PROGRAM statement are discussed under “Continuing the Partner Process”
later in this section.)

Block Structure and Coroutines

Continue statements can occur in any of the procedures executed by a process. For
example, a process can execute a continue statement and, after being continued later
on, can enter another procedure and execute another continue statement. Both of those
continue statements can transfer control to the same coroutine, or they can transfer
control to different coroutines.

If a coroutine uses a continue statement to resume its parent, and the parent exits the
critical block for that coroutine, then the parent is terminated with a “CRITICAL BLOCK
EXIT” error. The methods of preventing a critical block exit are discussed under “Critical
Blocks” in this section.

Continuing the Partner Process

There are two types of continue statements: specific continue statements and general
continue statements.

A specific continue statement is one that specifies a task variable. An ALGOL example
of a specific continue statement is CONTINUE (T1). A COBOL example of a specific
continue statement is CONTINUE T1. Either of these statements continues the
coroutine specified by the task variable T1.

A general continue statement does not specify a task variable. In ALGOL, the general
continue statement is CONTINUE. In COBOL, the general continue statement is EXIT
PROGRAM or EXIT PROGRAM RETURN HERE.

The effect of the general continue statement is to continue the partner process. The
partner process is the process specified by the PARTNER task attribute. This task
attribute is said to be task-valued because it accesses the task variable of a particular
process. For a synchronous process, the system assigns the initiating process as the
partner process by default. You can design a program to assign a different task variable
to the PARTNER task attribute. Thereafter, any general continue statements affect the
process with that task variable.

Understanding Interprocess Relationships

2–6 8600 0494–506

When a synchronous process terminates, the system implicitly continues the partner
process. This is the reason the initiating process usually resumes after a synchronous
process terminates. However, if a synchronous process has another task variable
assigned to the PARTNER task attribute, then the system continues that partner process
rather than the initiating process.

Setting the PARTNER task attribute to a process other than the initiator is not
recommended. Such a practice causes general continue statements or implicit
continues to consume more processor time than they otherwise would. This practice
also leads to source code that is difficult to understand and maintain.

A process can interrogate the PARTNEREXISTS task attribute to determine whether the
current partner process is in a continuable state. This can be a useful method for
avoiding “ILLEGAL VISIT” errors.

For further information regarding the PARTNER and PARTNEREXISTS task attributes,
see the discussions of these attributes in the Task Attributes Programming Reference
Manual.

Communication between Coroutines

When an active coroutine becomes a continuable coroutine, or vice versa, objects
declared by the coroutine retain their values and are not reinitialized.

Nevertheless, the values of objects declared by a continuable coroutine can be changed
by any active coroutine having access to those objects. For example, if a process
executes a CALL statement, passing call-by-reference parameters, the process becomes
a continuable coroutine. The offspring process is an active coroutine and can change the
values of the call-by-reference parameters. The offspring process can use this method to
communicate information to the parent process. When the parent process is continued,
it can check to see if the parameter values were changed.

Similar considerations apply to the task attributes of a coroutine. An active coroutine can
read or assign the task attributes of other coroutines, including continuable coroutines.
When a continuable coroutine is continued, it can check its task attribute values to see if
any were changed.

Complex Coroutine Structures

The continue statements enable you to develop complex coroutine structures that do not
exactly correspond to the classical model of coroutines. A complex coroutine structure is
one in which two or more active coroutines exist at the same time. In a simple coroutine
structure, only one of the coroutines is active at a time.

A complex coroutine structure can result, for example, if a process called INITP initiates
an asynchronous offspring called PROCP, and then initiates a synchronous offspring
called CALLP. While INITP is waiting for CALLP to complete, INITP is in a “TO BE
CONTINUED” state. PROCP can, therefore, execute a continue statement that causes
INITP to resume. In this case, PROCP becomes a continuable coroutine and INITP and
CALLP are active coroutines at the same time.

 Understanding Interprocess Relationships

8600 0494–506 2–7

In general, the use of complex coroutine structures is not recommended because they
lack the simplicity that is the primary benefit of using coroutines.

Dependency
The last of the three main properties the programmer can specify for a process is
dependency. To understand the concept of dependency, the programmer must first be
familiar with the following related concepts.

• Critical objects

Every process makes use of certain objects originally declared by another process.
These include the task variable, the procedure the process is executing, and any
objects passed as actual parameters to the process. In this guide, these objects are
referred to as the critical objects of the process.

• Parents

When a process is initiated, it receives these critical objects from a process called
the parent. In most cases, the initiator of a process is also the parent of that
process. The exact method for determining which process is the parent of a
particular process is given under “Critical Blocks” later in this section.

Dependency is the relationship between a process and its parent that determines how
these critical objects are stored. For an independent process, the system creates copies
of these critical objects when the process is initiated. For a dependent process, the
system creates references to the objects stored by the parent.

The programmer can specify the dependency of a process by choosing an appropriate
process initiation statement. The dependency of a process remains the same
throughout execution; if it is initiated as dependent, it cannot later become independent,
or vice versa.

To initiate an independent process, you can use an ALGOL or COBOL RUN statement or
a ??RUN (Run Code File) system command. Also, a WFL job submitted through a START
statement is executed as an independent process.

To initiate a dependent process, you can use a CALL or PROCESS statement in ALGOL
or COBOL, or a RUN statement in Command and Edit (CANDE), Menu-Assisted
Resource Control (MARC), or WFL.

Many implications result from the choice to initiate a process as dependent or
independent. However, the most crucial difference is that an independent process can
continue to exist after its parent has terminated. A dependent process must terminate
before its parent does.

The second most crucial difference between dependent and independent processes is
that a dependent process and its parent can communicate through shared objects,
whereas an independent process and its parent cannot.

Understanding Interprocess Relationships

2–8 8600 0494–506

Communications Effects

Some objects declared by the parent process can be shared with a dependent process,
but not with an independent process.

For example, a parent can declare a task variable and include it in a process initiation
statement executed by the parent. For a dependent process, the task variable remains
associated with the process for as long as the process exists. After the dependent
process terminates, the task variable continues to store the final task attribute values of
the dependent process (though later assignments can change these values). The parent
can use the task variable to access the task attributes of the process before initiation,
while the process is in use, or after the process terminates. However, for an
independent process, the task variable ceases to be associated with the process once
initiation is complete. Only task attributes assigned to the task variable before initiation
have any effect on the independent process.

Similarly, a procedure declared in the parent can be initiated only as a dependent
process. A separate program, on the other hand, can be initiated as a dependent or
independent process. Thus, an independent process is always an external process.

Like any external process, an independent process is unable to access objects declared
globally in the parent. On the other hand, a dependent process, if it is also internal, can
access objects declared globally in the parent.

Finally, any parameters passed to an independent process must be passed by value. A
dependent process can be passed parameters by name, by reference, or by value.

Flow of Control Effects – Synchronization

The dependency of a process affects the ability of the process to be synchronous or
asynchronous, and the ability of the parent to exit certain blocks without incurring an
error.

An independent process is always asynchronous. The initiator of an independent
process continues execution without waiting for the independent process to terminate.
By contrast, a dependent process can be synchronous or asynchronous, depending on
the type of initiation statement that is used. Another difference is that an independent
process can continue executing after its parent has terminated, whereas a dependent
process must terminate before its parent does.

 Understanding Interprocess Relationships

8600 0494–506 2–9

Flow of Control Effects – Critical Blocks

Another flow of control issue related to dependency is the prevention of critical block
exits. To understand exactly what a critical block exit is and why it is important, you
must first understand the following basic concepts:

• Critical objects

This concept is introduced under “Dependency” in this section. You should be aware
that the critical objects of a process can be stored in more than one process stack,
and they can be stored in more than one activation record in a process stack. If any
block that declares one of these critical objects is exited, the corresponding
activation record is removed and that critical object ceases to exist. This block exit
causes the process using that critical object to terminate abnormally.

• Critical block

This is a block that includes a definition of at least one critical object and is so
positioned that it is normally exited before any other blocks that declare critical
objects are exited. If you ensure the parent does not exit the critical block
prematurely, then the other blocks declaring critical objects also are not exited
prematurely.

At this point, the definition of a parent can be further refined as follows: the parent is the
process that owns the critical block of a specified process. In other words, the parent
has entered the critical block and not yet exited that block. A dependent process is said
to be an offspring of its parent.

You need to be concerned with the critical block for a process only if that process is an
asynchronous dependent process or a coroutine. If the process is either of these, you
must take steps to ensure the critical block is not exited before the process terminates.

By contrast, if a process is independent, it is not affected by critical block exits. If the
process is synchronous, then the parent ceases execution until the process terminates
and therefore has no opportunity to exit the critical block prematurely.

Effects of a Critical Block Exit

When a parent exits an offspring's critical block, the parent is discontinued and the error
message “CRITICAL BLOCK EXIT” is displayed. When the parent terminates, all its
offspring processes currently in use are discontinued and a “PARENT PROCESS
TERMINATED” error message is displayed.

Understanding Interprocess Relationships

2–10 8600 0494–506

Defining the Critical Block

The critical block of a process usually occurs somewhere in the program containing the
statement that initiated the process. Within that program, the critical block is the
procedure of the highest lexical level that contains any of the following items:

• The declaration of the task variable specified in the process initiation statement.

• The declaration of the procedure that was initiated, if it is an internal procedure, a
passed external procedure, or an imported library procedure. The position of a
declared external procedure has no effect on the critical block definition.

• The declarations of any actual parameters passed to the process by name or by
reference. (For call-by-value parameters, the declaration of the actual parameter
does not affect the critical block definition.)

• Any thunk generated for the process by the compiler. A thunk, also referred to as an
accidental entry, is generated if the procedure initiation statement passes a constant
or an expression to a call-by-name parameter. The thunk is located in the procedure
containing the procedure-initiation statement. For an illustration of the effect of a
thunk on the critical block definition, refer to Example 3 in “Critical Block Examples”
later in this section.

Note that the definition of the critical block can be affected if any of the critical objects
are passed as parameters from one procedure to another. If a critical object is passed as
a parameter to a procedure, then for purposes of defining the critical block, the formal
parameter receiving the critical object must be considered the declaration of that critical
object. For an illustration, refer to Example 4 in “Critical Block Examples” later in this
section.

There is one exception to the rule about the effects of passing critical objects as
parameters. If a task variable is passed as a parameter to an external procedure, the
critical block is affected by the declaration of the actual parameter rather than the formal
parameter. This exception holds true for all types of external procedures: separate
programs, passed external procedures, and imported library procedures. This exception
also makes it possible for the procedure-initiation statement to reside in a different
program than the critical block does. For an illustration, refer to Example 5 in “Critical
Block Examples” later in this section.

The initiator of a process might or might not also be the parent of that process. This
issue is illustrated by Examples 1 and 2 in “Critical Block Examples” later in this section.

TYPE Declarations and Critical Blocks

ALGOL and NEWP support special declarations called TYPE declarations. TYPE
declarations define a customized class of variables. Later declarations can declare
particular variables that are instances of that TYPE. If a variable based on a TYPE is
passed to a dependent process as a by-name or by-reference parameter, then the critical
block is affected by the location where the particular variable is declared and not the
location where the TYPE is declared.

 Understanding Interprocess Relationships

8600 0494–506 2–11

Among the TYPE declarations supported by ALGOL and NEWP is a TYPE called a
structure block. Each structure block can include multiple objects of varying kinds,
among which could be one or more of the critical objects for a task. The effect of such
objects on the critical block definition is determined by the location of the structure block
instance, not the structure block type declaration.

For example, suppose there is a structure block type declaration called TASKSTUFF that
includes a task variable TVAR. Further, there is a structure block instance called
THIS_SB, and an asynchronous task is initiated by a statement such as PROCESS
PROC1 [THIS_SB.TVAR]. For purposes of critical block definition, the task variable
declaration is considered to reside in the block where THIS_SB is declared.

ALGOL and NEWP also support a TYPE declaration called a connection block. Like a
structure block, a connection block can include multiple objects of varying types.
However, a connection block is intended for use by connection library declarations. For
purposes of critical block definition, any critical objects declared in a connection block are
considered to reside where the connection library is declared, not where the connection
block is declared.

Preventing ALGOL Critical Block Exits

In ALGOL, the programmer can prevent a critical block exit by including a statement such
as the following at the end of the critical block:

WHILE T.STATUS GTR VALUE(TERMINATED) DO
 WAITANDRESET(MYSELF.EXCEPTIONEVENT);

In this example, T is the task variable of the dependent process. This statement causes
the parent to wait on its own EXCEPTIONEVENT task attribute, which is automatically
caused by the system whenever the offspring changes status. The program then checks
the status of the offspring and returns to a waiting state if the offspring has not yet
terminated.

Preventing COBOL Critical Block Exits

The paragraph and section structures supported by COBOL74 and COBOL85 are not
blocks and therefore do not affect the critical block definition. Similarly, nested programs
in COBOL85 are also not blocks and do not affect the critical block definition. A COBOL
process cannot receive a critical block error for exiting any of these types of structures.
However, a COBOL process can incur a critical block exit error if the process

• Terminates while one of its offspring is in-use

• Exits a bound-in procedure that is the critical block for an offspring

• Exits an imported library procedure that is the critical block for an offspring

Understanding Interprocess Relationships

2–12 8600 0494–506

Statements such as the following can be included at the end of a COBOL program to
prevent it from terminating before an offspring terminates:

PROCWAIT SECTION.
P2.
 WAIT AND RESET UNTIL ATTRIBUTE EXCEPTIONEVENT OF MYSELF.
 IF ATTRIBUTE STATUS OF TASK-VAR-1 IS GREATER THAN
 VALUE TERMINATED THEN GO PROCWAIT.
STOP RUN.

The preceding example assumes that an asynchronous offspring was initiated using task
variable TASK-VAR-1. The COBOL program waits on its own EXCEPTIONEVENT task
attribute, which is automatically caused whenever the offspring changes status. The
program then checks the status of the offspring and returns to a waiting state if the
offspring has not yet terminated.

Note: The implementation of nested program structures by the COBOL85 compiler is
subject to change. Nested programs may affect the critical block definition in future
releases.

Automatic Protection from WFL Critical Block Exits

The programmer does not need to include any special statements in WFL jobs to prevent
critical block exits. WFL implicitly waits for the termination of asynchronous processes
initiated by the job. The implicit wait occurs at the end of the subroutine that executed
the process initiation statement.

Critical Block Examples

The following examples illustrate various factors that affect the definition of the critical
block for a process. The more typical cases are presented first.

Example 1

In most cases, the initiator of a process is also the parent of that process. However, this
is not always the case. The following ALGOL program is an illustration of the difference
between the parent and the initiator:

100 PROCEDURE TRUEPARENT;
110 BEGIN
120 TASK T1, T2;
130 REAL I;
140
150 PROCEDURE WAITFOR(T);
160 TASK T;
170 BEGIN
180 WHILE T.STATUS GTR VALUE(TERMINATED) DO
190 WAITANDRESET(MYSELF.EXCEPTIONEVENT);
200 END;
210
220 PROCEDURE OFFSPRING(X);

 Understanding Interprocess Relationships

8600 0494–506 2–13

230 REAL X;
240 BEGIN
250 X:= 1;
260 END;
270
280 PROCEDURE INITIATOR;
290 BEGIN
300 PROCESS OFFSPRING(I) [T2];
310 END;
320
330 PROCESS INITIATOR [T1];
340 WAITFOR(T1);
350 WAITFOR(T2);
360 END.

In this example, the procedure TRUEPARENT initiates the procedure INITIATOR as an
asynchronous process. INITIATOR then initiates the procedure named OFFSPRING. In
this situation, the initiator of OFFSPRING is INITIATOR, but the parent is TRUEPARENT.

TRUEPARENT is considered the parent because the declarations of the procedure
OFFSPRING, the task variable T2, and the actual parameter I all occur in the outer block
of TRUEPARENT.

Example 2

In the following ALGOL example, the process called INITIATOR is both the initiator and
the parent of the process named OFFSPRING. INITIATOR is considered the initiator
because INITIATOR includes the task initiation statement that initiates the OFFSPRING
procedure. INITIATOR is considered the critical block for OFFSPRING because the task
initiation statement passes OFFSPRING a parameter declared within INITIATOR. An
invocation of the WAITFOR procedure is added to INITIATOR to prevent a critical block
exit.

100 PROCEDURE OUTERBLOCK;
110 BEGIN
120 TASK T1, T2;
130
140 PROCEDURE WAITFOR(T);
150 TASK T;
160 BEGIN
170 WHILE T.STATUS GTR VALUE(TERMINATED) DO
180 WAITANDRESET(MYSELF.EXCEPTIONEVENT);
190 END;
200
210 PROCEDURE OFFSPRING(X);
220 REAL X;
230 BEGIN
240 X:= 1;
250 END;
260
270 PROCEDURE INITIATOR;
280 BEGIN

Understanding Interprocess Relationships

2–14 8600 0494–506

290 REAL R;
300 PROCESS OFFSPRING(R) [T2];
310 WAITFOR(T2);
320 END;
330
340 PROCESS INITIATOR [T1];
350 WAITFOR(T1);
360 END.

Example 3

The following is an ALGOL example of a case where the presence of a thunk affects the
critical block definition for a process:

100 PROCEDURE OUTERBLOCK;
110 BEGIN
120 TASK T1, T2;
130 REAL A, B, C, D;
140
150 PROCEDURE WAITFOR(T);
160 TASK T;
170 BEGIN
180 WHILE T.STATUS GTR VALUE(TERMINATED) DO
190 WAITANDRESET(MYSELF.EXCEPTIONEVENT);
200 END;
210
220 PROCEDURE OFFSPRING(X);
230 REAL X;
240 BEGIN
250 C:= X;
260 END;
270
280 PROCEDURE INITIATOR;
290 BEGIN
300 PROCESS OFFSPRING(A + B) [T2];
310 WAITFOR(T2);
320 END;
330
340 A:= 2;
350 B:= 5;
360 PROCESS INITIATOR [T1];
370 WAITFOR(T1);
380 END.

In the preceding example, X is a call-by-name formal parameter of the procedure
OFFSPRING. The statement invoking OFFSPRING passes the expression (A + B) to the
parameter. This creates a thunk at the point of the procedure initiation, which causes the
INITIATOR procedure, rather than the OUTERBLOCK procedure, to be considered the
critical block of OFFSPRING. Because the statement at line 360 initiates INITIATOR
rather than entering it, INITIATOR becomes a separate process that is the parent of
OFFSPRING.

 Understanding Interprocess Relationships

8600 0494–506 2–15

You can avoid some thunks by making the formal parameter call-by-value rather than call-
by-name. For example, you can avoid the thunk in the preceding example by adding a
line to the procedure heading of the procedure OFFSPRING at line 220. The revised
procedure heading appears as follows:

PROCEDURE OFFSPRING(X);
VALUE X;
REAL X;

This change has the side effect of making OUTERBLOCK the critical block, instead of
INITIATOR.

Example 4

In the following ALGOL example, the location of the critical block is affected by a formal
parameter specification:

100 PROCEDURE OUTERBLOCK;
110 BEGIN
120 TASK T1, TVAR;
130 REAL I;
140
150 PROCEDURE WAITFOR(T);
160 TASK T;
170 BEGIN
180 WHILE T.STATUS GTR VALUE(TERMINATED) DO
190 WAITANDRESET(MYSELF.EXCEPTIONEVENT);
200 END;
210
220 PROCEDURE OFFSPRING(X);
230 REAL X;
240 BEGIN
250 X:= X + 1;
260 WAIT ((10));
270 END;
280
290 PROCEDURE INITIATOR(T2);
300 TASK T2;
310 BEGIN
320 PROCESS OFFSPRING(I) [T2];
330 WAITFOR(T2);
340 END;
350
360 PROCESS INITIATOR(T1) [TVAR];
370 WAITFOR(TVAR);
380 END.

In this example, INITIATOR is the critical block for the procedure OFFSPRING, because
the task variable T2 is declared in the procedure heading of INITIATOR. It makes no
difference that the actual parameter T1 is declared in the outer block. It is the formal
parameter T2 that is mentioned in the procedure invocation statement, and therefore the
declaration of T2 takes precedence.

Understanding Interprocess Relationships

2–16 8600 0494–506

Example 5

In the following ALGOL examples, the critical block is located in a different program than
the one that contains the process-initiation statement. The following is program
OBJECT/CALL:

100 BEGIN
110 TASK T, T1;
120 PROCEDURE OB (T);
130 TASK T;
140 EXTERNAL;
150 REPLACE T.NAME BY "OBJECT/CALL/2.";
160 PROCESS OB (T1) [T];
170 WHILE T1.STATUS GTR VALUE(TERMINATED)
180 DO WAITANDRESET (MYSELF.EXCEPTIONEVENT);
190 END.

The previous program initiates a separate program called OBJECT/CALL/2, passing a task
variable as a parameter. The following is the program OBJECT/CALL/2:

100 PROCEDURE OB (T);
110 TASK T;
120 BEGIN
130 PROCEDURE X;
140 EXTERNAL;
150 REPLACE T.NAME BY "OBJECT/TASK.";
160 PROCESS X [T];
170 END.

The preceding program uses its task variable parameter to initiate a third program. The
procedure declaration at lines 130 and 140 does not affect the critical block definition,
because it is an external procedure declaration. Note that since the process initiation
statement is PROCESS, and no WAIT statement follows it, the preceding program
finishes executing while the third program, OBJECT/TASK, is still running. However, no
CRITICAL BLOCK EXIT error occurs.

The following is the third program, OBJECT/TASK:

100 BEGIN
110 EBCDIC ARRAY FORMALARRAY[0:119];
120 REPLACE FORMALARRAY BY MYSELF.EXCEPTIONTASK.NAME;
130 DISPLAY (FORMALARRAY);
140 WAIT(MYSELF.ACCEPTEVENT);
150 END.

This program displays the name of its EXCEPTIONTASK, which, by default, is the same
as the parent. The name it displays is OBJECT/CALL, which is therefore the parent.
Because OBJECT/CALL is the parent, no CRITICAL BLOCK EXIT occurs when
OBJECT/CALL/2 terminates.

 Understanding Interprocess Relationships

8600 0494–506 2–17

Recall the rule about passing task variables to external procedures that is discussed
under “Defining the Critical Block” earlier in this section. It is the declaration of the
actual task variable parameter, at line 110 in OBJECT/CALL, that affects the critical block
definition. The critical block is therefore the outer block of OBJECT/CALL. However, the
process initiation statement occurs in OBJECT/CALL/2. This is the only type of situation
where it is possible for the process-initiation statement and the critical block to reside in
separate programs.

Process Families

A process family is a group of processes that have relationships based on dependency.
These relationships have many effects, including effects on interprocess communication,
handling of printer output, and enforcement of resource usage limits.

Familial Relationships

Each process belonging to a process family is called a member of that process family.
Every process family includes a single independent process as its founding member.
The process family also includes any dependent offspring of that independent process,
any dependent offspring of those offspring, and so on

Familial terms are used to describe the relationships between the members of a process
family. Of these, parent and offspring are defined under “Critical Blocks” earlier in this
section. A related term is sibling. Offspring processes that have the same parent are
referred to as siblings.

Each offspring of a process is considered a descendant of the process. Any offspring of
the descendants of a process are also considered descendants of the original process.

Conversely, the parent of a process is considered to be an ancestor of the process, and
any ancestors of the parent are also considered to be ancestors of the same process.
Processes having a common ancestor, but not a common parent, are referred to as
cousins. The independent process in a process family is the common ancestor of all the
processes in that family.

Finally, processes are considered related if they belong to the same process family, and
unrelated if they do not.

A dependent process is dependent on the continued existence of all its ancestors, not
only its parent. This is true because a type of domino effect occurs if any of the
ancestors terminates. The immediate offspring of the terminated process are
discontinued with a “PARENT PROCESS TERMINATED” error. The offspring of the
discontinued processes are, in turn, discontinued with the same error, and so on.

In contrast, a member of a process family does not depend on the continued existence
of any of its descendants. For example, the descendants of a process can terminate
abnormally without affecting the process.

Understanding Interprocess Relationships

2–18 8600 0494–506

Jobs and Tasks

The independent process in a process family is called the job for that family. The
dependent processes in a process family are referred to as tasks.

Note that, in some older publications, you might find the term task used with a different
meaning than the one defined here. In addition to the meaning given here, task has
sometimes been used to refer to any process, to the offspring of some particular
process, or to any discrete unit of work. These usages are generally avoided in this
guide, except in the terms task attribute and task variable, which have been retained
because they are well known. (More properly, these terms would be process attribute
and process variable because they can apply to either jobs or tasks.)

Certain services that the system provides for a process family are linked to the job for
the family. The job provides the following services:

• Job logging

The job has a job file associated with it that stores the job log. The job log includes
information about the activities of all the processes in the process family. When the
job terminates, the system can issue a printout of the job log, called the job
summary. (The job file for a WFL job includes additional information, which is
described under “Special Types of Jobs” later in this section.)

• Printer output

By default, any printer backup files created by process family members are saved
until the job terminates. The system groups these files into a single entry in the print
queue, unless the files have incompatible print attributes, such as different
DESTINATION values. For further information about print requests, refer to the Print
System and Remote Print System Administration, Operations, and Programming
Guide.

Operators or programmers can use the following means to determine whether a process
is a job or a task:

• Process messages

The system displays a “BOJ” message when a job is initiated and an “EOJ”
message when the job is terminated. For a task, the corresponding messages are
“BOT” and “EOT.”

• Job displays

The J (Job and Task Display) system command displays all the process families that
currently exist. The members of each process family appear in hierarchical order,
beginning with the job.

 Understanding Interprocess Relationships

8600 0494–506 2–19

• Job number

A task has a job number that differs from the mix number and indicates the job or
session associated with the task. For a job, the job number and mix number are
equal. The operator can see the job number and mix number in the output of many
system commands. A process can also read these values from the JOBNUMBER
and MIXNUMBER task attributes.

• Process type

A process can determine whether a particular process is a job by reading the TYPE
task attribute. For WFL jobs, the value is JOBSTACK; for other jobs, the value is
RUN. For tasks, the value is CALL or PROCESS.

Special Types of Jobs

The following subsections describe WFL jobs, BDBASE tasks, and MCS sessions, all of
which are special types of jobs and entities that resemble jobs.

WFL Jobs

A program written in WFL is usually executed as an independent process. Because of
this, the execution of a WFL program is referred to as a WFL job. The TYPE task
attribute of a WFL job usually has a value of JOBSTACK.

When a WFL job is submitted from one of the available sources, the system initiates the
WFL compiler. (The sources for submitting WFL jobs include START commands in
CANDE and MARC sessions, and various statements in programming languages.) The
WFL compiler creates the job file for the WFL job.

The job file for a WFL job contains several kinds of information not included in the job file
for any other kind of job. In addition to the logging information, a WFL job file includes
the following:

• A copy of the WFL source program.

• Object code for the job. The job file also serves as the code file for a WFL job.

• Data specifications used by the job. A data specification is a portion of the WFL
source program that can be used as an input file by one or more of the offspring of
the job.

• Job restart information.

WFL jobs have several other properties not shared by any other type of process. For
details, refer to Section 4, “Tasking from Programming Languages.”

Understanding Interprocess Relationships

2–20 8600 0494–506

BDBASE Tasks

Setting the BDBASE option of the OPTION task attribute causes a task to assume some
characteristics of a job. The exact effects of the BDBASE option depend on whether it is
assigned before or after initiation of the task. If BDBASE is assigned before task
initiation, then the task receives the following joblike characteristics:

• Its own job file.

• Ability to produce a job summary.

• A mix number equal to its job number.

• “BOJ” and “EOJ” messages.

• Automatic printing, when the BDBASE task terminates, of any backup files created
by the BDBASE task or its descendants. Note that this behavior applies only to
backup files whose PRINTDISPOSITION file attribute has the default value of EOJ.

If BDBASE is assigned after task initiation, then its only effect is to cause default printing
of backup files when the task terminates. Even if BDBASE is assigned before initiation, it
does not make the task into a true job. A BDBASE task differs from a job in the following
ways:

• The BDBASE task usually is not an independent process. (There is no point in setting
BDBASE for an independent process, because such a process already has all job
capabilities.)

• The JOBNUMBER value for a descendant of a BDBASE task does not equal the
MIXNUMBER of the BDBASE task. Rather, the JOBNUMBER equals the
MIXNUMBER of the job at the head of the process family.

• The MYJOB task variable never refers to a BDBASE task. For details, refer to
“MYJOB Task Variable” in this section.

In the past, the main use of the BDBASE option was to cause printer backup files
produced by a task to print when the task terminated, rather than being saved until the
job terminated. However, other Print System features now enable you to provide the
same control over printing, without assigning any other joblike characteristics to the task.
For further information, refer to the discussion of printing in Section 9, “Controlling
Process I/O Usage.”

MCS Sessions

CANDE and MARC sessions have the following job characteristics:

• Job summaries that are produced at the end of the session and that summarize the
activities of all tasks initiated from the session

• Default printing, when the session ends, of backup files produced by tasks initiated
from that session

• A mix number, also called the session number, that is inherited by the JOBNUMBER
task attribute of tasks initiated from the session

 Understanding Interprocess Relationships

8600 0494–506 2–21

However, CANDE and MARC sessions are not really jobs because they are not
processes. Each session is merely a dialogue between the user and the CANDE or
MARC software. The MYJOB task attribute has a special meaning for tasks initiated
from CANDE and MARC sessions. For further information, refer to “Access to Ancestral
Processes in CANDE” and “Access to Ancestral Processes in MARC” in Section 3,
“Tasking from Interactive Sources.”

Accessing Task Variables

The system automatically provides several task variables, called predeclared task
variables, for use by a process. The process can use these task variables to access task
attributes of certain related members of the process family.

MYSELF Task Variable

A process can access its own task attributes by way of the predeclared task variable
MYSELF.

MYSELF has a special meaning for processes that are descendants of CANDE or MARC
sessions. For more information, refer to Section 3, “Tasking from Interactive Sources.”

MYJOB Task Variable

A process can use the predeclared task variable MYJOB to access the task attributes of
its job. When a job uses MYJOB, it has the same meaning as the MYSELF task variable.

If a BDBASE task, or a descendant of a BDBASE task, uses the MYJOB task variable,
MYJOB does not refer to the BDBASE task. Instead, MYJOB refers to the independent
process that is the eldest ancestor of the BDBASE task and, therefore, the real head of
the process family. In other words, MYJOB refers to the job.

MYJOB has a special meaning for processes that originate from CANDE or MARC
sessions or from an ODT. For more information, refer to Section 3, “Tasking from
Interactive Sources.”

Exception Task

Every process has an associated exception task with which it has a special relationship.
There are two aspects to this relationship:

• Whenever the value of the STATUS task attribute of the process changes, the
system notifies the exception task by causing the EXCEPTIONEVENT task attribute
of the exception task.

• A process can access the task attributes of its exception task by way of its own
EXCEPTIONTASK task attribute. For example, the following ALGOL statement
assigns a value to the TASKVALUE task attribute of the exception task:

MYSELF.EXCEPTIONTASK.TASKVALUE:= 5;

Understanding Interprocess Relationships

2–22 8600 0494–506

The parent of a dependent process is the default exception task of the process. An
independent process, by default, is its own exception task; however, in this case, the
exception task relationship embodies only the second of the aspects in the previous list.
The EXCEPTIONEVENT of the independent process is not caused when the status of the
independent process changes.

A dependent process can use the EXCEPTIONTASK task attribute to access the task
variable of any of its ancestors. The process can specify EXCEPTIONTASK repeatedly to
access ancestors two or more generations back (for example, the grandparent, great-
grandparent, and so on). The following statement assigns an attribute to the grandparent
of the process:

MYSELF.EXCEPTIONTASK.EXCEPTIONTASK.SW1:= TRUE;

A process can override the default exception task and assign a different process as the
exception task. The following ALGOL statement specifies that the process identified by
the task variable TVAR be treated as the exception task:

MYSELF.EXCEPTIONTASK:= TVAR;

The process assigned as the exception task must be the process itself or an ancestor,
sibling, or cousin of the process. The exception task cannot be a descendant of the
process. An attempt to assign a descendant as the exception task results in the error
“UP LEVEL TASK ASSIGNMENT.”

It is recommended that only the process itself or one of its ancestors be assigned as the
exception task. If a sibling or cousin is assigned as the exception task, then any attempt
to access the exception event of the exception task causes a “NON ANCESTRAL TASK
REFERENCE” error. For example, in such a situation, the following statement would
cause an error:

CAUSE (MYSELF.EXCEPTIONTASK.EXCEPTIONEVENT);

Assigning a process that is not the parent as the exception task can also have more
subtle side effects. Suppose the task is called T and the parent contains a statement
such as the following:

WHILE T.STATUS GTR VALUE(TERMINATED) DO
 WAITANDRESET(MYSELF.EXCEPTIONEVENT);

This statement causes the parent to wait until its exception event is caused, at which
point it checks the status of T. If T has terminated, the next statement in the parent is
executed. If T has not terminated, the parent goes back into a waiting state.

The problem is that, if a parent is not also the exception task for its offspring, then any
changes in the offspring's status do not cause the parent's exception event. Instead,
changes in the task's status cause the exception event of the process assigned as the
exception task. Therefore, the parent continues waiting indefinitely, regardless of any
changes in the task's status.

 Understanding Interprocess Relationships

8600 0494–506 2–23

Sometimes, however, it is not desirable for the exception event of a process to be
caused whenever the status of any of its offspring changes. For example, the process
might be waiting for a HI (Cause EXCEPTIONEVENT) system command. In this case,
each of the offspring could be assigned itself as its exception task. This assignment
prevents any of the offspring from accidentally causing its parent's exception event.

The MCS that controls a session is the parent of any tasks initiated from that session.
By default, therefore, the MCS is also the exception task for any tasks initiated from that
session.

Partner Processes

The partner process is the process specified by the task-valued task attribute PARTNER.
For a synchronous process, the default value of this attribute is the initiator. However, a
process can assign any task variable to this attribute. A process can use the PARTNER
task attribute as a convenient means of accessing the task attributes of the partner
process. For example, the following ALGOL statement assigns a value to the
TASKVALUE task attribute of the partner process:

MYSELF.PARTNER.TASKVALUE:= 3;

The partner process has a special significance for coroutines. For details, refer to
“Continuing the Partner Process” in this section.

Other Task Variables

A programmer can make it possible for two sibling or cousin processes to access each
other's task variables by declaring the task variables in a common ancestor of the two
processes. Internal processes can access task variables that are declared globally in the
same object code file as the internal procedure declaration. Task variables can also be
passed as parameters to offspring processes.

Private Processes

A private process is a process whose task attributes cannot be altered by any of its
descendant processes. Assigning the private process option to the OPTION task
attribute causes the process to become a private process. Any descendant process that
attempts to access the task attributes of a private process is terminated with the error
“NON OWNER WRITE ACCESS OF A PRIVATE TASK.”

Both CANDE and MARC are private processes.

Understanding Interprocess Relationships

2–24 8600 0494–506

Setting Resource Limits

Any resource limits attached to a job are propagated downward through all the job's
descendants. Resource limits are stored in the values of the task attributes
ELAPSEDLIMIT, MAXIOTIME, MAXLINES, MAXPROCTIME, PRIORITY, RESOURCE,
SAVEMEMORYLIMIT, TEMPFILELIMIT, and WAITLIMIT. Information about the amount
of resources a particular process has used is stored in the task attributes
ACCUMIOTIME, ACCUMPROCTIME, ELAPSEDTIME, and TEMPFILEMBYTES. If the
accumulated usage of a resource rises above the maximum allowed, the process
terminates abnormally. Most of these resource limits are propagated in two ways:

• When a task is initiated, by default each resource limit for the task is assigned the
difference between the parent's own limit for the resource and the parent's
accumulated usage of the resource. For example, if the parent's MAXPROCTIME is
100 and its ACCUMPROCTIME is 75, then the task is assigned a MAXPROCTIME of
25. The parent's own MAXPROCTIME and ACCUMPROCTIME values are not
affected. The parent can assign resource limits to the task through task equation,
but the values are ignored unless they specify lower limits than the task would
receive by default.

• When a task terminates, the values of its accumulated usage attributes are added to
the accumulated usage attributes of the task's job. If this addition causes any
accumulated usage attribute of the job to be assigned a value greater than the
corresponding maximum usage attribute, the job is abnormally terminated. The
termination of the job in turn causes the termination of all the other members of the
process family.

The resource-limiting attributes of a task cannot be set above the values of the
corresponding attributes of the job. The MAXPROCTIME and MAXIOTIME task
attributes can be set above the job values for an inactive task, but when the task is
initiated, the values of these task attributes are automatically reduced to a value within
the allowed limits.

If a job is a WFL job, then its resource-limiting attributes can inherit values specified by
the queue attributes of the job queue from which the WFL job was initiated. For further
information on queue limits, refer to Section 4, “Tasking from Programming Languages.”

8600 0494–506 3–1

Section 3
Tasking from Interactive Sources

An interactive tasking source is one that enables you to enter at a terminal commands
that initiate, monitor, and control processes. This section reviews the tasking capabilities
of the most important sources for interactive tasking: Command and Edit (CANDE),
Menu-Assisted Resource Control (MARC), Operations Center, and the operator display
terminal (ODT).

The information in this section can help you decide which of these interfaces best serves
your needs. This section also explains considerations to keep in mind when writing
programs that are to be initiated from these sources.

Note that many users access applications primarily through the Transaction Server direct
windows. This interface is not reviewed here because the direct window interface does
not provide any direct means to control processes. Rather, the Transaction Server
initiates and controls direct window programs automatically, within various parameters
set by the system administrator. For information about direct window programs, refer to
the Transaction Server Programming Guide.

CANDE
CANDE is a message control system (MCS) that enables you to interactively perform
functions such as file editing, program compilation, and program execution. You initiate
communications with CANDE by logging on at a terminal controlled by CANDE, or by
opening a CANDE window dialogue on a terminal controlled by the Transaction Server.
Your interactions with CANDE between the times you log on and log off are referred to
as a session.

CANDE Tasking Capabilities

CANDE offers a number of process-initiation commands, as well as other commands for
monitoring or controlling processes. For details about any of the commands discussed in
the following subsections, refer to the CANDE Operations Reference Manual.

Initiating Dependent Processes from CANDE

You can initiate a task from a CANDE session by using the RUN command. (EXECUTE is
a synonym for the RUN command.) The RUN command can pass only a single string
parameter to a program.

Tasking from Interactive Sources

3–2 8600 0494–506

The CANDE RUN command is unique in that it usually specifies a program by its source
file title rather than by its object code file title. CANDE takes the file title specified in the
RUN command and looks for an object code file with the same title, except that the
object code file title is prefixed by OBJECT/. For example, the object code file
OBJECT/TEST can be initiated by the command RUN TEST.

However, if you prefix the file title with a dollar sign ($), then CANDE interprets the file
title as an object code file title. You can use this form of the RUN statement to initiate
programs whose object code file title does not begin with OBJECT/. An example of such
a command is RUN $ACCOUNTS/INPUT, which initiates the object code file named
ACCOUNTS/INPUT.

CANDE also assumes that the file title is an object code file title if the file title is
nonusercoded. You can indicate that a file title is nonusercoded by including an
asterisk (*) at the start of the title. For example, you can initiate an object code file titled
*SYSTEM/FILEDATA with the command RUN *SYSTEM/FILEDATA.

If you omit the file title from the RUN statement, CANDE assumes the current work file
is the source program. If no object code file with the related file title exists, or if the
object code file does not reflect recent changes to the work file, then CANDE
automatically compiles the work file and executes the resulting object code file.

The task is asynchronous (that is, it runs in parallel with the CANDE software that
initiated it). However, the process appears to the user to be a synchronous task because
most CANDE commands are not available while the task is running. Only control
commands (commands, such as ?Y, that start with a question mark) can be used. It is
not possible to issue file maintenance or editing commands or to initiate another task
until the first task terminates.

An alternative to the RUN command is the UTILITY command. The UTILITY command
behaves like the RUN command in most respects. However, the UTILITY command
enables you to append to it unquoted text that is passed as a string parameter to the
program. If you do not append any text, the UTILITY command passes an empty string
parameter. The following are examples of UTILITY commands and the equivalent RUN
commands:

U DAILY UPDATE OUTPUT = PRINTER
RUN DAILY/UPDATE("OUTPUT=PRINTER")

U DAILY UPDATE
RUN DAILY/UPDATE("")

The UTILITY command also automatically passes certain task equations and file
equations to the program initiated. These equations make it possible for the program to
use the unsaved work file, work source, or work object associated with the session.
Certain utilities, such as the Editor, are designed to accept these task and file equations.
Such programs must be initiated with the UTILITY command instead of the RUN
command. For details about the task and file equations that are passed, refer to the
UTILITY command discussion in the CANDE Operations Reference Manual.

 Tasking from Interactive Sources

8600 0494–506 3–3

Initiating Compilations from CANDE

You can use the COMPILE command to compile a program. This command allows you
to specify the compiler to use, the input file titles, the object code file title, and task
equations for the compiler and the resulting object code file. For example:

COMPILE DAILY/UPDATE/PATCH AS DAILY/UPDATE/NEW WITH COBOL74;
 COMPILER FILE SOURCE = DAILY/UPDATE/SOURCE;
 PRIORITY = 40;

This example initiates the COBOL74 compiler, specifying a primary input file called
DAILY/UPDATE/PATCH and a secondary input file called DAILY/UPDATE/SOURCE. The
object code file that results is called OBJECT/DAILY/UPDATE/NEW. The compiler stores
the PRIORITY assignment in the resulting object code file, so that
OBJECT/DAILY/UPDATE/NEW receives a default PRIORITY value of 40 whenever it is
run.

The COMPILE command can be used more simply than it is in the preceding example.
Suppose that DAILY/UPDATE is your work file. Simply entering COMPILE in your
CANDE session is sufficient to compile your work file. CANDE chooses the compiler
that matches the file type of the source file. The resulting object code file consists of the
source file title with “OBJECT/” prefixed (for example, OBJECT/DAILY/UPDATE.)

The COMPILE command cannot cause the execution of the resulting object code file.
However, a simple RUN command compiles and runs the work file if no object code file
exists.

Initiating Utilities from CANDE

The RUN and UTILITY commands can be used to initiate a variety of system utility
programs such as FILECOPY, LOGGER, and so on. However, CANDE also includes a
number of specialized commands that you can use to initiate particular utilities. The
following are the commands and the names of the corresponding utilities:

Command Utility

BACKUPPROCESS Backup Processor

DCSTATUS DCSTATUS

LFILES FILEDATA

LOG LOGANALYZER

Tasking from Interactive Sources

3–4 8600 0494–506

Submitting WFL Jobs from CANDE

You can submit WFL programs from CANDE sessions using the START or WFL
command. The START command submits a WFL program that is stored in a disk file.
The WFL command enables you to enter WFL statements directly at the terminal.

The START command can pass any number or type of parameters that are expected by
the WFL program. In addition, you can use the FOR SYNTAX clause for syntax checking.
This clause causes the program to be compiled, but not executed, and displays
information about any syntax errors in the WFL program. You can also assign the
STARTTIME task attribute to delay initiation of the program. However, you cannot assign
any other task attributes to the program.

While the WFL program is compiling, only CANDE control commands are available. If
you enter any other CANDE commands during this period, CANDE queues the
commands and executes them when the compilation is finished. However, after the
WFL program is compiled and entered in a job queue, all CANDE commands are available
again. The WFL program executes as a job and can have a job summary or printer
backup files associated with it. By default, these files are queued for printing when the
WFL program terminates.

You can use the WFL command to submit one or more WFL statements. Simply enter
WFL, followed by the WFL statements. You can omit the ?BEGIN JOB and ?END JOB
statements. The WFL statements can include all the constructs defined in WFL with the
exception of data specifications and STARTTIME specifications.

When you submit WFL input by way of the WFL command, only CANDE control
commands are available while the WFL input compiles and executes. Any other CANDE
commands that you enter during this period are queued for later execution. By default,
any backup files created by the WFL process are saved with the CANDE session. The
files are queued for printing when you end the CANDE session.

The CANDE ADD, COPY, and PRINT commands correspond to the WFL commands of
the same names. When you enter any of these commands, CANDE passes it to WFL for
execution.

Monitoring and Controlling Processes in CANDE

Any messages generated by a task initiated from a CANDE session are automatically
displayed at that session, including any “BOT”, “EOT”, DISPLAY, and RSVP messages
and error or warning messages. However, for processes indirectly associated with a
session, the display of messages is optional. Processes indirectly associated with a
session include WFL processes initiated by a START or WFL command, the descendants
of such processes, and the descendants of any task initiated from a session.

The CANDE session option MSG controls the display of messages by processes
indirectly associated with a session. While MSG is set, all messages generated by such
indirect processes are displayed at the session. While MSG is reset, all such messages
are suppressed. CANDE sets the MSG option to TRUE if the usercode attribute
CANDEGETMSG is set for the usercode of the session. You can also set the MSG

 Tasking from Interactive Sources

8600 0494–506 3–5

option to TRUE for a session by entering a CANDE SO MSG command. You can use the
equivalent CANDE control command, ?SO MSG, even when the station is busy.

A number of CANDE control commands are available for monitoring and controlling
particular processes. You can use these commands to monitor or control any process
that has the same usercode as the session usercode. This includes processes initiated
from the current session as well as processes initiated from other sources, such as
MARC or the ODT.

Most CANDE commands related to process control correspond to system commands
with similar names. Some restrictions and differences in spelling apply to the CANDE
versions of these commands. For further information, refer to “Tasking Command
Equivalents” later in this section.

The system assigns a unique number, also known as the session number, to each
CANDE session. The session number is assigned from a range of numbers defined by
the MAX (Maximums) system command. Depending on the range defined, the session
number can be as low as 100 or as high as 65535.

The CANDE session number does not appear as a process in mix display commands.
However, the session number does appear in the output from two system commands:
Y (Status Interrogate) and C (Completed Mix Entries). The output from these commands
shows both the job number and the mix number of a process. If the process is a task,
and it was initiated from a CANDE session, then the job number shown is actually the
CANDE session number.

Access to Task Attributes in CANDE

For each session, CANDE maintains a task variable and sets selected attributes. CANDE
requests some of this information from the user at log-on time and obtains most of the
rest from usercode attributes defined in the USERDATAFILE. Tasks initiated within the
session inherit the attributes following typical inheritance rules. Attributes that can be set
by CANDE include the following:

ACCESSCODE JOBNUMBER PRINTDEFAULTS

CHARGE JOBSUMMARY PRIORITY

CONVENTION JOBSUMMARYTITLE SOURCESTATION

DESTNAME LANGUAGE STATION

DISPLAYONLYTOMCS NOJOBSUMMARYIO USERCODE

FAMILY

Accessing the CLASS attribute of the session or of a task within the session returns the
queue number from which CANDE was started.

A task initiated from a CANDE session receives a JOBNUMBER value equal to the
session number. The JOBNUMBER value for such a task can range from 100 to 65535,
depending on the session number range established by the system command
MAX SESSION = <number>.

Tasking from Interactive Sources

3–6 8600 0494–506

For a WFL job started from a CANDE session, the MCP assigns a MIXNUMBER value
from the mix number pool and assigns a JOBNUMBER value equal to the MIXNUMBER
value. The JOBNUMBER value for such a task can range anywhere from 100 to 65535,
depending on the mix number range established by the system command MAX MIX =
<number>.

You can use CANDE commands to change the values of some of the session attributes.
By using these commands, you create new defaults that are applied to all tasks initiated
later in that session. The ACCESS, CHARGE, DESTNAME, FAMILY, and LANGUAGE
commands each display or assign the session attribute of the same name. Additionally,
the PDEF command displays or assigns the PRINTDEFAULTS session attribute.

CANDE supports the following methods of providing default values for the
DISPLAYONLYTOMCS task attribute:

• The session option DISPLAYONLYTOMCS establishes a default
DISPLAYONLYTOMCS value for all processes initiated from the current CANDE
session. To establish a default of TRUE, use the command ?SO
DISPLAYONLYTOMCS. To establish a default of FALSE, use the command ?RO
DISPLAYONLYTOMCS.

• The ?DISPLAYONLYTOMCS control command establishes the initial value of the
DISPLAYONLYTOMCS session option for all CANDE sessions. To cause
DISPLAYONLYTOMCS to default to TRUE, use the command ?OP +
DISPLAYONLYTOMCS. To cause DISPLAYONLYTOMCS to default to FALSE, use
the command ?OP- DISPLAYONLYTOMCS.

You can also assign task attributes to specific processes by using task equations. Task
equations can be appended to most CANDE process initiation statements, including
RUN, UTILITY, COMPILE, and the various special-purpose commands for initiating
utilities. Task equations can assign values to all but task-valued or event-valued task
attributes, such as EXCEPTIONTASK or EXCEPTIONEVENT. If a task equation conflicts
with task attribute inheritance, the task equation takes precedence. For example, the
following CANDE command assigns to a process a LANGUAGE value different from the
LANGUAGE value of the session:

RUN DRIVER;LANGUAGE = FRANCAIS

For information about the task attributes available in CANDE, refer to the CANDE
Operations Reference Manual.

 Tasking from Interactive Sources

8600 0494–506 3–7

Saving CANDE Commands for Later Use

You can achieve some of the convenience of programmatic task initiation and control by
saving CANDE commands in a file for later use. You can use the DO or SCHEDULE
command to execute the commands in the file. You can reuse the file as many times as
desired.

The DO command takes effect immediately and prevents you from using most other
commands in the session until the DO file is completed. However, you can use the
SCHEDULE command to cause the file to be executed separately from your current
session or at a later time.

Files that store CANDE commands are different from programs in that they are not
compiled and are not executed as separate processes. Their process control abilities are
more limited than those of WFL, ALGOL, or COBOL programs, because no conditional
statements or variables are available.

CANDE Programming Considerations

When you design a program to be run from CANDE, you need to be aware of CANDE
features affecting parameter passing, task attribute access, and terminal
communications.

Receiving Parameters from CANDE

If you are designing a program to be initiated from CANDE, be aware that the program
can receive only one parameter from the RUN or UTILITY command that initiates it. This
parameter appears as a string to the user, but in the program it must be declared as type
Real Array (or compatible parameter type) with an unspecified lower bound. For
information about Real Array parameters and compatible parameter types, refer to
Section 17, “Using Parameters.”

Access to Ancestral Processes in CANDE

If you initiate a task from a CANDE session, and that task accesses its own
EXCEPTIONTASK task attribute, the system interprets EXCEPTIONTASK as a reference
to the CANDE MCS. The task can use the EXCEPTIONTASK task attribute to query the
values of the task attributes of the CANDE MCS. However, if the task attempts to
modify the task attributes of the CANDE MCS, the task is terminated with a task
attribute error. This error occurs because CANDE runs with the private process option of
the OPTION task attribute set to TRUE.

Session attributes can be interrogated and set using the MYJOB task variable.

Tasking from Interactive Sources

3–8 8600 0494–506

The following ALGOL example assigns a value of SUPPRESSED to the JOBSUMMARY
task attribute of the session. If this program is initiated by a CANDE RUN command, the
program prevents a job summary from being printed when the session ends.

BEGIN
 MYJOB.JOBSUMMARY:= VALUE(SUPPRESSED);
END.

The MCSNAME task attribute of tasks initiated from CANDE sessions typically returns a
value of SYSTEM/CANDE, which might or might not be preceded by an asterisk (*).
Note that the MCSNAME value can be different if CANDE was installed at your site
under a different name.

Communicating with CANDE Terminals

The STATIONNAME task attribute is the preferred method of specifying the station
where remote files should be opened. However, CANDE does not assign the
STATIONNAME attribute of programs or WFL jobs initiated from a CANDE session. It is
therefore advisable for you to explicitly assign a STATIONNAME value to any interactive
processes originating from a CANDE session.

For example, you can include the following statement in WFL jobs initiated from a
CANDE session:

MYSELF(STATIONNAME = #MYSELF(SOURCENAME));

This STATIONNAME value is inherited by any tasks of the WFL job, and enables them to
open remote files successfully.

The STATION task attribute can be used for a similar purpose. However, the
STATIONNAME task attribute is more reliable than STATION, because STATION stores a
logical station number (LSN), and the LSN of any given station is subject to change.

 Tasking from Interactive Sources

8600 0494–506 3–9

MARC
MARC is a Transaction Server transaction processor that enables you to perform system
operations and tasking functions. You initiate communications with MARC by opening
the MARC window. Depending on the way your terminal is defined to the Transaction
Server, the MARC window might appear automatically after you log on to the Transaction
Server. If it does not, you might still be able to open the MARC window by entering the
command ?ON MARC. Your interactions with MARC between the time you open the
MARC window and the time you log off or close the window are referred to as a session.
MARC assigns each session an identifying number called the session number.

MARC Tasking Capabilities

MARC provides the only menu-assisted interface to tasking. You can use MARC menu
selections or commands to submit WFL jobs or to initiate programs written in any
language.

MARC offers commands and menu selections for initiating dependent processes,
submitting WFL jobs, and initiating utilities. Once the process is initiated, MARC displays
the TASK command in the Action field of the current screen. By transmitting this
command, you can display a special screen called TASKSTATUS. You can use the
TASKSTATUS screen to monitor and control the process.

Because the system administrator can modify MARC to add or delete functions, some
features mentioned here might not be available at your site. The descriptions apply to
the original version of MARC.

The following paragraphs provide an overview of MARC tasking capabilities. For further
details about these features, refer to the Menu-Assisted Resource Control (MARC)
Operations Guide.

Initiating Dependent Processes from MARC

You can enter RUN in the choice field of the MARC home menu to initiate a program as a
dependent process. This selection can initiate a program written in any language except
WFL. Entering this selection displays the RUN screen. You can use the RUN screen to
specify the object code file title, any parameter that is to be passed, and any assignment
to the TASKVALUE task attribute. You enter TASKVALUE assignments in the Value field
of the screen.

An alternate method of initiating dependent processes is by using the RUN command.
You can enter this command in the Action field of a screen or on the COMND screen.
The syntax of this command is similar to the WFL RUN statement, except that the
command can pass only a single parameter. Depending on the requirements of the
program being initiated, the parameter can be a string of characters enclosed in quotation
marks (") or a number with no quotation marks. The following are both valid examples:

RUN OBJECT/RECOMM("REPORT=DAILY")

RUN OBJECT/TELEMAX(346)

Tasking from Interactive Sources

3–10 8600 0494–506

Initiating Compilations from MARC

You can initiate compilations from MARC in either of the following ways:

• By using the MARC WFL command to submit a WFL COMPILE statement. For
details, refer to “Submitting WFL Jobs from MARC” later in this section.

• By using the EDIT screen to initiate an Editor session. While in the Editor, you can
use the Editor COMPILE command to initiate a compilation.

Initiating Utilities from MARC

You can initiate utilities by using either the RUN screen or the RUN command. However,
you can also use either of two special screens, UTIL or TOOLS, which list many utilities
as selections. By choosing one of the selections on the UTIL or TOOLS screen, you
cause the corresponding utility to be initiated. If parameters are needed, MARC prompts
you to supply them.

Submitting WFL Jobs from MARC

You can use the START selection on the MARC screen to submit a WFL program that is
stored in a disk file. Entering this selection displays the START screen. Use this screen
to enter the file title of the WFL program and any parameter values to be passed to the
program. You can also use this screen to enter a value for the STARTTIME task attribute
of the WFL program.

WFL programs stored in disk files can also be initiated by way of the START command.
The START command can pass parameters to the WFL program, but cannot include a
STARTTIME specification.

You can use the MARC WFL command to submit WFL statements directly at the
terminal. Simply type the word WFL, followed by the statements that constitute the
WFL program. You can omit the ?BEGIN JOB and ?END JOB statements. The program
cannot include any WFL constructs except data specifications or a STARTTIME
specification. For example, the following WFL input initiates another program and
assigns it a task attribute:

WFL RUN OBJECT/INVENTORY;FAMILY DISK = DPMAST OTHERWISE DISK

Monitoring Processes Initiated from MARC

When you initiate any dependent process, WFL job, or utility from a MARC session, the
TASK command appears as a prompt on the current screen. Entering TASK in the Action
field displays the TASKSTATUS screen. This screen displays information about the
process and includes a field in which you can enter process control commands. You can
leave the TASKSTATUS screen at any time by entering one of the screen traversal
commands, such as HOME or GO, that are displayed. As long as the process is running,
you can return to the TASKSTATUS screen by using the TASK command.

 Tasking from Interactive Sources

8600 0494–506 3–11

The TASKSTATUS screen includes fields that display various types of information for the
process. The following are the fields and their meanings:

• The Task field displays the mix number and the name of the process.

• The Parameter field, if it appears, displays the value of the parameter passed to the
process.

• The Task Status field displays the current stack state of the process. For a
discussion of what the stack states mean, refer to Section 6, “Monitoring and
Controlling Process Status.”

• The Elapsed field displays the time elapsed since the process was initiated.

• The Processor field displays the processor time used by the process.

• The I/O field displays the accumulated I/O initiation time for the process.

• The area below the Elapsed, Processor, and I/O fields displays messages generated
by the process, including “BOT”, “EOT”, DISPLAY, and RSVP messages.

You can enter process control commands in the Action field. The list of available actions
below the Action field includes the most common system commands used for process
monitoring and control. You can enter any of the listed commands without having to
prefix them with the mix number of the process; MARC automatically prefixes the
command with the mix number listed in the Task field. You can also enter system
process control commands that are not listed as actions, but you must prefix them with
the mix number of the process. For a list of system commands related to process
monitoring and control, refer to “Tasking Command Equivalents” in this section.

If you submit a WFL job by way of the START screen or the START command, then the
process control commands are displayed only during the compilation of the job.
However, you can enter these commands even after they no longer appear as prompts,
provided that you prefix them with a mix number. You can prefix them with the mix
number of the job or of any task initiated by the job. The TASKSTATUS screen continues
to display any messages generated by the job as it executes. You can initiate another
process as soon as the job has finished compiling and has been inserted in a job queue.

However, if you submit a WFL job by way of the MARC WFL command, the process
control commands continue to be displayed as the job executes. Also, it is not possible
to initiate new processes until the job terminates.

If you initiate a process that initiates offspring, then any messages created for the
offspring are included with the other process messages on the TASKSTATUS screen.
You can enter process control commands for the offspring in the Action field, but you
must always prefix the command with the mix number of the offspring process.

You can usually learn the mix number of the offspring by looking at its “BOT” message
in the process messages display. However, if MARC has scrolled this message off the
screen, you can learn the mix number by entering the VIEW command in the Action field.
This command causes MARC to display the TASKVIEW screen, which lists the mix
numbers and the names of the original process and all its descendants in a hierarchical
order.

Tasking from Interactive Sources

3–12 8600 0494–506

You cannot enter process control commands on the TASKVIEW screen. You can display
the TASKSTATUS screen for a particular offspring by entering the mix number of the
offspring in the Action field of the TASKVIEW screen. You can then enter process
control commands on that TASKSTATUS screen. Alternatively, you can return from the
TASKVIEW screen to the original TASKSTATUS screen by entering the RETURN
command in the Action field.

Monitoring Other Processes in MARC

All system commands related to process monitoring and control can be entered through
MARC, except for the primitive commands (commands preceded by two question
marks). You can use these commands to monitor or control processes initiated from the
current MARC session or processes initiated from other sources, such as CANDE or an
ODT.

You can enter system commands on the COMND screen or in the Action field of any
screen that displays “COmnd” as a prompt. However, system commands that you
enter through MARC are screened for security. Many system commands are available
only if the usercode of the session has privileged, SYSTEMUSER, or security
administrator status. For details, refer to “Tasking Command Equivalents” in this
section.

Each MARC session receives a unique number, also called the session number, which
appears in the output from some system commands, including mix display commands.
The session number is assigned from a range of numbers defined by the MAX
(Maximums) system command. Depending on the range defined, the session number
can be as low as 100 or as high as 65535.

The MARC session number does not appear as a process in mix display commands.
However, the session number does appear in the output from two system commands:
Y (Status Interrogate) and C (Completed Mix Entries). The output from these commands
shows both the job number and the mix number of a process. If the process is a task,
and it was initiated from a MARC session, then the job number shown is the MARC
session number.

Communicating with Interactive Processes in MARC

A special window called a task window is created if a remote file is opened by a process
run from a MARC session. In most cases, when the process opens the remote file,
MARC automatically displays the task window. The current screen disappears and
MARC displays the following message:

Enter ?MARC for task status

If the process writes to the remote file, the messages appear in the task window. If you
type and transmit any text in the task window, MARC interprets this as input to the
remote file. The only exceptions are the ?MARC command and other Transaction Server
commands that are prefixed with question marks.

 Tasking from Interactive Sources

8600 0494–506 3–13

You can return to the TASKSTATUS screen by entering the ?MARC command. You can
return to the task window by entering the TASK command in the Action field of any
screen.

If you are on the task window when the process terminates, then MARC returns you to
the originating screen. In some cases, MARC prompts you to press the SPCFY key
before making this transfer. For information about why this happens, refer to
“Communicating with MARC Terminals” later in this section.

Note that if you submit a WFL job through the START command and the job initiates a
task that opens a remote file, you are not automatically transferred to the task window
when the remote file is opened. When the task opens the remote file, a message of the
following form appears on the TASKSTATUS screen:

<time> <mix number> Remote window <remote window name> OPEN.
 INTNAME = <internal name>. PROGRAM = <object code file title>.

Note the <remote window name> value in this message. You can transfer to the
remote window by entering a command of the form:

?ON <remote window name>

You can return to the TASKSTATUS screen by entering the following command:

?ON MARC

The shorter form, ?MARC, is not accepted in this situation.

Access to Task Attributes in MARC

For each session, MARC stores information about a few selected task attributes. MARC
requests some of this information from the user at log-on time and obtains the rest from
usercode attributes defined in the USERDATAFILE. MARC assigns these task attribute
values to any process initiated by that session (for example, by a MARC RUN command).
The task attributes stored by MARC include the following:

BACKUPFAMILY JOBNUMBER PRINTDEFAULTS

CHARGE JOBSUMMARY SOURCESTATION

CONVENTION JOBSUMMARYTITLE STATION

DESTNAME LANGUAGE USERCODE

EXCEPTIONTASK NOJOBSUMMARYIO

FAMILY PRIORITY

A task initiated from a MARC session receives a JOBNUMBER value equal to the
session number. The JOBNUMBER value for such a task can range anywhere from 100
to 65535, depending on the session number range established by the system command
MAX SESSION = <number>.

Tasking from Interactive Sources

3–14 8600 0494–506

For a WFL job started from a MARC session, MARC assigns a MIXNUMBER value from
the mix number pool and assigns a JOBNUMBER value equal to the MIXNUMBER value.
The JOBNUMBER value for such a task can range anywhere from 100 to 65535,
depending on the mix number range established by the system command MAX MIX =
<number>.

Certain of the session attributes established for MARC dialogue 1 are inherited by any
sessions started in other MARC dialogues; these session attributes are USERCODE,
ACCESSCODE, CHARGE, FAMILY, and LANGUAGE.

MARC provides commands and menu selections that you can use to set the values of
the following attributes: DESTNAME, FAMILY, JOBSUMMARY, JOBSUMMARYTITLE,
LANGUAGE, NOJOBSUMMARYIO, and PRINTDEFAULTS. The other attributes in the
previous list cannot be accessed by the user.

You can also assign task attributes to specific processes by using task equations. You
can enter task equations in MARC in either of the following ways:

• RUN, FILEEQUATE, and TASKATTR screens

The RUN screen includes boxes you can fill to indicate that file equations or task
attribute assignments are needed. If file equations are needed, the FILEEQUATE
screen is displayed. You can enter any number of file equations. Implicitly, these are
assignments to the FILECARDS task attribute. If task attribute assignments are
needed, the TASKATTR screen is displayed. This screen includes fields for assigning
selected task attributes, as well as an empty field you can use to assign one or more
additional task attributes of your choice.

• RUN command

When you initiate a task by using a RUN command, you can include task equations
that assign task attribute values for the task. The following RUN command includes
several task equations:

 RUN OBJECT/PROGA;TASKVALUE=1;DISPLAYONLYTOMCS=TRUE;FILE OUT=OUT/FILE;

MARC Programming Considerations

When you design a program to be run from MARC, you need to be aware of MARC
features affecting parameter passing, task attribute access, and terminal
communications.

Receiving Parameters from MARC

If you are designing a program to be initiated from MARC, be aware that the program can
receive only one parameter from the RUN screen or RUN command that initiates it. If
the user encloses the parameter in quotation marks ("), MARC passes the parameter as
type Real Array with an unspecified lower bound. If the user does not enclose the
parameter in quotation marks, MARC passes the parameter as type Real. For
information about the parameter types in each language that are compatible with the
Real and Real Array types, refer to Section 17, “Using Parameters.”

 Tasking from Interactive Sources

8600 0494–506 3–15

Access to Ancestral Processes in MARC

If you initiate a task through the MARC RUN command and that task accesses its own
EXCEPTIONTASK task attribute, the system interprets EXCEPTIONTASK as a reference
to the MARC library, *SYSTEM/MARC/COMMANDER. The task can use the
EXCEPTIONTASK task attribute to query the values of the task attributes of the MARC
MCS. However, if the task attempts to modify the task attributes of the MARC MCS,
the task is terminated with a task attribute error. This error occurs because MARC runs
with the private process option of the OPTION task attribute set to TRUE.

For tasks initiated through a MARC RUN command, the MYJOB task variable and the
PARTNER task attribute act as synonyms for the MYSELF task variable. When such a
task uses MYJOB or PARTNER to access any task attributes, the task attributes
accessed are those of the task itself. However, if the task changes the values of the job
summary-related task attributes, the changes affect the job summary of the MARC
session. The job summary-related task attributes are JOBSUMMARY,
JOBSUMMARYTITLE, and NOJOBSUMMARYIO.

For WFL statements submitted through a MARC WFL command, the MYJOB task
variable refers to the WFL compiler process. The NAME of the WFL compiler process in
this case is MARC WFL, prefixed by the usercode of the session. The MYSELF task
variable refers to the task that is executing the compiled WFL statements. The NAME of
this task is WFLCODE, prefixed by the usercode of the session. MYSELF(JOBNUMBER)
returns the MARC session number, but MYJOB(MIXNUMBER) returns the mix number
of the WFL compiler process.

When statements submitted through the WFL command use the MYJOB construct to
alter job summary-related task attributes, these changes affect the job summary of the
MARC session. However, if the MYSELF variable is used to access these task
attributes, there is no effect on the job summary of the MARC session.

Note: When you use the JOBSUMMARY command to display the current
JOBSUMMARY value for the session, the output does not reflect any JOBSUMMARY
assignments made by tasks of the session. Nevertheless, such assignments made by
tasks do affect the job summary of the session unless overridden by a later
JOBSUMMARY command.

The MCSNAME task attribute of tasks initiated from MARC sessions typically returns a
value of SYSTEM/COMS, which might or might not be preceded by an asterisk (*).

Tasking from Interactive Sources

3–16 8600 0494–506

Communicating with MARC Terminals

The STATIONNAME task attribute is the preferred method of specifying the station
where remote files should be opened. However, MARC does not assign the
STATIONNAME attribute of programs or WFL jobs initiated from a MARC session. It is
therefore advisable for you to explicitly assign a STATIONNAME value to any interactive
processes originating from a MARC session.

For example, you can include the following statement in WFL jobs initiated from a MARC
session:

MYSELF(STATIONNAME = #MYSELF(SOURCENAME));

This STATIONNAME value is inherited by any tasks of the WFL job, and enables them to
open remote files successfully.

The STATION task attribute can be used for a similar purpose. However, the
STATIONNAME task attribute is more reliable than STATION, because STATION stores a
logical station number (LSN) that is subject to change.

The “Communicating with Interactive Processes” subsection pointed out that MARC
opens a task window to enable a process to communicate with a user through a remote
file. You can use the AUTOSWITCHTOMARC attribute to affect the handling of the task
window for users. If you set the AUTOSWITCHTOMARC task attribute to TRUE, then
users of the program are automatically transferred from the task window to the
originating screen when the process terminates. If AUTOSWITCHTOMARC is FALSE,
then the user must press the SPCFY key to return to the originating screen.

 Tasking from Interactive Sources

8600 0494–506 3–17

Operations Center
Operations Center is an application that runs under the Microsoft Windows operating
system and is available on ClearPath MCP servers. This utility provides a graphical user
interface (GUI) to system operations. If Operations Center is available on your
workstation, initiate Operations Center by double-clicking the icon that appears in the
Unisys Administration program group or folder.

Operations Center Tasking Capabilities

Operations Center enables you to submit jobs and to execute the supported task-related
commands in a real-time environment. Through Operations Center, you can monitor and
respond to all processes in the system mix. If you want to initiate and monitor a single
program, you can do so more conveniently from CANDE or MARC.

Submitting WFL Jobs from Operations Center

From the Commands menu, you can submit jobs from Operations Center by using any of
the following methods:

• Typing in an entire WFL program, including a BEGIN JOB; statement at the start, and
then transmitting it. (There is no need to include an END JOB statement.)

• Entering one or more WFL statements preceded by the letters CC. (The BEGIN JOB
is not necessary in this case.)

• Entering one of a certain group of WFL statements that do not require a BEGIN JOB
or any other prefix when used in Operations Center. These statements include
COMPILE, COPY, PROCESS, RERUN, RUN, and START.

When you submit WFL statements through the methods listed, the system usually
executes the input as a WFL job. However, the system can execute some statements
directly, without creating a WFL job. Such statements do not pass through the job queue
mechanism and, therefore, are not affected by job queue attributes. For a list of these
statements, refer to Section 4, “Tasking from Programming Languages.”

For further details about submitting WFL programs from Operations Center, refer to the
Work Flow Language (WFL) Programming Reference Manual.

Initiating Processes from Operations Center

You can use the PRIMITIVE RUN system command to initiate a program as an
independent process. The program can be written in any language except WFL. The
resulting process receives its own job file and job summary.

Note that if you enter RUN without specifying PRIMITIVE, the system treats this as the
WFL RUN statement. The system creates a WFL job to execute the RUN statement and
enters the job in a job queue. The job can be delayed by the queue mix limit or affected
by other job queue attributes. Further, the job affects the job queue active count.

Tasking from Interactive Sources

3–18 8600 0494–506

Therefore, you might prefer to use PRIMITIVE RUN to initiate processes, such as MCSs,
that you do not wish to go through the job queue mechanism.

Initiating Compilations from Operations Center

You can initiate compilations from Operations Center by using the WFL COMPILE
statement. The system responds to this command by creating a WFL job that includes
the COMPILE statement and sending it through the job queue mechanism for initiation.

Monitoring and Controlling Processes from Operations Center

Operations Center provides the same commands as the ODT for monitoring and
controlling processes. These system commands are used to monitor or control all the
processes on the system, including processes initiated from any of the sources
discussed in this section. These system commands are listed under “Tasking Command
Equivalents” in this section. You can enter system commands by choosing the
Commands Menu.

When you initiate Operations Center, there are nine standard views that can be opened
from either the File Menu or the standard toolbar. These views correspond to the types
of information you can view at an ODT in automatic display mode (ADM). You can modify
the standard views or create new views. Standard views include:

View Description

Active Entries Currently running jobs and tasks in the mix

Waiting Entries Tasks that need operator or user action because they are
suspended on an RSVP condition

Scheduled Entries Tasks that have not begun processing

Completed Entries Jobs and tasks that have finished executing

Message Entries System messages and programmatic display messages

Database Entries Active database stacks

Library Entries Frozen libraries

NT Task Management
Entries

All active processes and their threads

From these views, you can perform tasks and access information. Select a view or an
entry within a view. The commands on the Command toolbar and the Commands Menu
that are valid for that view or entry are bold. Those commands that are not valid are
dimmed. You can also display a Commands Menu by using the right mouse button to
select an entry within a view.

To obtain more information than what is normally visible in a view, double-click an entry
within a view. A Detailed Information dialog box appears that contains additional
information about the entry and allows you to see fields such as Display and Reply Text
that may be too short for a single line.

 Tasking from Interactive Sources

8600 0494–506 3–19

Access to Task Attributes from Operations Center

You can include task equations after a WFL task initiation statement submitted from
Operations Center. In addition, if you type in a complete WFL job from Operations
Center, you can include task attribute assignments in the job attribute list. However, you
cannot use task equations after the PRIMITIVE RUN command.

When you initiate a process from Operations Center, the process typically does not
inherit any of the task attributes that it would if you initiated the process from a MARC or
CANDE session. For example, the USERCODE, ACCESSCODE, CHARGE, and FAMILY
values of the process are usually null, unless explicitly assigned.

However, task attributes are inherited in the following cases:

• If you submit a WFL job that includes a USERCODE assignment in the job attribute
list, then the following task attributes of the WFL job inherit values from the
corresponding usercode attributes: CHARGE, CLASS, CONVENTION, FAMILY,
LANGUAGE, PRINTDEFAULTS, and PRIORITY. This inheritance can be overridden
by assignments to these attributes in the job attribute list.

• If you submit a job, the job can inherit attributes from a job queue. Refer to
“Deciding on the Queue for a Job” in Section 4.

Note that programs initiated by a PRIMITIVE RUN command do not inherit the terminal
usercode or any other usercode attributes.

Operations Center Programming Considerations

When you design a program to be run from Operations Center, you need to be aware of
Operations Center features affecting parameter passing, task attribute access, and
terminal communications.

Receiving Parameters from Operations Center

If you are designing a program to be initiated by the PRIMITIVE RUN command, be
aware that the program cannot receive any parameters.

If the program is to be initiated by a WFL RUN statement entered from Operations
Center, the program can receive the four parameter types passed by WFL: Boolean,
integer, real, and string. The string parameter should be declared in the program as a
real array (or compatible parameter type) with an unspecified lower bound. For
information about real array parameters and compatible parameter types, refer to
Section 17, “Using Parameters.”

Tasking from Interactive Sources

3–20 8600 0494–506

Access to Ancestral Processes in the Operations Center

For a process initiated by the PRIMITIVE RUN command, the MYJOB task variable and
the EXCEPTIONTASK and PARTNER task attributes are all references to the process
itself.

For a process initiated by a WFL RUN statement from Operations Center, MYJOB,
EXCEPTIONTASK, and PARTNER are all references to the job that was created by the
system to execute the RUN statement. The name of this job consists of the first 17
characters of the job input you submitted or the name after BEGIN JOB.

Communicating with Operations Center

Operations Center is not a terminal like an ODT. A program cannot use an ODT file as a
remote file to display or read text in an Operations Center session. A WFL display
statement is the only way to send text to Operations Center for display.

 Tasking from Interactive Sources

8600 0494–506 3–21

ODT
An operator display terminal (ODT) is any data comm terminal or workstation that is
connected to the system through the System Control Processor (SCP) or the ODT-DLP.
The system provides ODTs with access to two operational modes: system command
mode and data comm mode. When an ODT is in data comm mode, you can log on to
the Transaction Server and use various programs that run under the Transaction Server,
such as MARC. When an ODT is in system command mode, you can enter system
commands or view automatic displays of system information.

The following subsections discuss tasking capabilities and programming considerations
for an ODT running in system command mode. For details about any of the system
commands, refer to the System Commands Operations Reference Manual.

ODT Tasking Capabilities

The ODT provides you with the capability to submit WFL jobs and initiate dependent or
independent processes. The ODT also enables you to conveniently monitor all the
processes in the system mix.

Submitting WFL Jobs from an ODT

You can submit WFL programs at an ODT by using any of the following methods:

• Typing in an entire WFL program, including a BEGIN JOB statement at the start, and
then transmitting it. (There is no need to include an END JOB statement.)

• Entering one or more WFL statements preceded either by a question mark (?) or by
the letters CC. (The BEGIN JOB is not necessary in this case.)

• Entering one of a certain group of WFL statements that do not require a BEGIN JOB
or any other prefix when used at the ODT. These include COMPILE, COPY,
PROCESS, RERUN, RUN, and START.

When you submit WFL statements through the methods listed, the system usually
executes the input as a WFL job. However, the system can execute some statements
directly, without creating a WFL job. Such statements do not pass through the job queue
mechanism, and therefore are not affected by job queue attributes. For a list of these
statements, refer to Section 4, “Tasking from Programming Languages.”

For further details about submitting WFL programs from an ODT, refer to the Work Flow
Language (WFL) Programming Reference Manual.

Initiating Processes from an ODT

You can use the ??RUN (Run Code File) primitive system command or the PRIMITIVE
RUN system command to initiate a program as an independent process. The program
can be written in any language except WFL. The resulting process receives its own job
file and job summary.

Tasking from Interactive Sources

3–22 8600 0494–506

Note that if you enter RUN without the two question marks, the system treats this as the
WFL RUN statement. The system creates a WFL job to execute the RUN statement and
enters the job in a job queue. The job can be delayed by the queue mix limit or affected
by other job queue attributes. Further, the job affects the job queue active count.
Therefore, you might prefer to use ??RUN or PRIMITIVE RUN to initiate processes, such
as MCSs, that you do not wish to go through the job queue mechanism.

Initiating Compilations from an ODT

You can initiate compilations at an ODT by using the WFL COMPILE statement. The
system responds to this command by creating a WFL job that includes the COMPILE
statement and sending it through the job queue mechanism for initiation.

Initiating Utilities from an ODT

Utilities can be initiated at the ODT by way of the ??RUN or the PRIMITIVE RUN
command or the WFL RUN statement. There are other system commands that initiate
specific utilities, such as the TDIR (Tape Directory) command, which initiates the
FILEDATA utility to list the directory of a tape, and the DA (Dump Analyzer) system
command, which initiates the DUMPANALYZER utility.

Two WFL statements that initiate specific utilities can be entered at the ODT. The LOG
statement initiates the LOGANALYZER utility, and the PB statement initiates the
BACKUP utility. To use the WFL PB statement at the ODT, you must prefix it with a
question mark (?); otherwise, the system interprets it as the PB (Print Backup) system
command, which does not initiate the BACKUP utility.

Monitoring and Controlling Processes at an ODT

Of all the interactive sources for process initiation, the ODT provides the most complete
selection of commands for monitoring and controlling processes. The operator can use
these system commands to monitor or control all the processes on the system, including
processes initiated from any of the sources discussed in this section. These system
commands are listed under “Tasking Command Equivalents” in this section.

A unique feature of the ODT is Automatic Display mode. You initiate and control this
mode by using the ADM (Automatic Display Mode) system command. You can use this
feature to cause various types of information to be displayed at intervals, such as active
entries, waiting entries, completed entries, and process messages. This feature allows
you to monitor processes from beginning to end without having to enter commands
repeatedly.

By default, Automatic Display mode displays seven lines of A (Active Mix Entries) system
command output, three lines of W (Waiting Mix Entries) system command output, two
lines of S (Scheduled Mix Entries) system command output, five lines of C (Completed
Mix Entries) system command output, and devotes the remainder of the display to MSG
(Display Messages) system command output. By default, the system updates the
contents of the display every four seconds. You can use the ADM command to cause
different system commands to be displayed or to change the time interval for updates to
the display.

 Tasking from Interactive Sources

8600 0494–506 3–23

Access to Task Attributes from an ODT

You can include task equations after a WFL task initiation statement submitted from the
ODT. Also, if you type in a complete WFL job at the ODT, you can include task attribute
assignments in the job attribute list. However, you cannot include task equations after
the ??RUN or the PRIMITIVE RUN command.

When you initiate a process from the ODT, the process typically does not inherit any of
the task attributes that it would if you initiated the process from a MARC or CANDE
session. For example, the USERCODE, ACCESSCODE, CHARGE, and FAMILY values of
the process are usually null, unless explicitly assigned.

However, task attributes are inherited in the following cases:

• If you submit a WFL job that includes a USERCODE assignment in the job attribute
list, then the following task attributes of the WFL job inherit values from the
corresponding usercode attributes: CHARGE, CLASS, CONVENTION, FAMILY,
LANGUAGE, PRINTDEFAULTS, and PRIORITY. This inheritance can be overridden
by assignments to these attributes in the job attribute list.

• If you use the TERM (Terminal) system command to assign a terminal usercode to
an ODT. This usercode is inherited by WFL jobs submitted from the ODT, unless
overridden by a USERCODE assignment in the job attribute list. The job also inherits
values for the same set of task attributes listed in the previous item in this list.

• If you submit a WFL job, the job can inherit attributes from a job queue. Refer to
“Deciding on the Queue for a Job” in Section 4.

Note that programs initiated by a ??RUN command or a PRIMITIVE RUN command do
not inherit the terminal usercode or any other usercode attributes.

Special types of security status apply to nonusercoded processes and certain WFL
statements when they are entered at the ODT. These privileges are discussed in
Section 5, “Establishing Process Identity and Privileges.”

ODT Programming Considerations

When you design a program to be run from the ODT, you need to be aware of ODT
features affecting parameter passing, task attribute access, and terminal
communications.

Receiving Parameters from an ODT

If you are designing a program to be initiated by the ??RUN primitive system command
or the PRIMITIVE RUN system command, be aware that the program cannot receive any
parameters.

Tasking from Interactive Sources

3–24 8600 0494–506

If the program is to be initiated by a WFL RUN statement entered at an ODT, the
program can receive the four parameter types passed by WFL: Boolean, integer, real,
and string. The string parameter should be declared in the program as a real array (or
compatible parameter type) with an unspecified lower bound. For information about real
array parameters and compatible parameter types, refer to Section 17, “Using
Parameters.”

Access to Ancestral Processes in the ODT Environment

For a process initiated by the ??RUN primitive system command or the PRIMITIVE RUN
system command, the MYJOB task variable and the EXCEPTIONTASK and PARTNER
task attributes are all references to the process itself.

For a process initiated by a WFL RUN statement at an ODT, MYJOB, EXCEPTIONTASK,
and PARTNER are all references to the WFL job that was created by the system to
execute the RUN statement. The name of this WFL job consists of the first 17
characters of the WFL input you submitted.

Communicating with an ODT

Interactive programs that are designed for use at remote terminals might not run
successfully if initiated from the ODT. You must design the program somewhat
differently if it is to be initiated at an ODT. If the process opens a file with KIND =
REMOTE, it is discontinued with an “UNKNOWN FILE/STATION” error. The process
should open a file with KIND = ODT instead. A process can determine whether it was
initiated from an ODT or a remote terminal by interrogating the SOURCEKIND task
attribute.

A process can open a file either at a labeled ODT or at a scratch ODT. A labeled ODT is
one that has been assigned a label by the LABEL (Label ODT) system command. A
scratch ODT is one that has not been assigned such a label.

To open a file at a labeled ODT, a process should first set the TITLE file attribute to
match the label assigned to the ODT. In addition, the NEWFILE file attribute value
should be FALSE or else unspecified. If NEWFILE is unspecified, the MYUSE file
attribute value should be IN or IO. When the process runs, the system opens the
remote file at any ODT with a matching label. If none of the ODTs has a matching label,
the process is suspended with a “NO FILE <file title> (SC)” RSVP message. The
process resumes execution when an operator uses the LABEL command to label an
ODT with the requested file title.

To open a file at a scratch ODT, a process should set the NEWFILE file attribute to TRUE,
or leave NEWFILE unspecified and set MYUSE to OUT. The value of the TITLE file
attribute makes no difference in this case. If the process was initiated from an ODT, and
that ODT is a scratch ODT, the system opens the file at that ODT. Otherwise, the
system selects another scratch ODT and opens the file there.

To open a file at a particular ODT, regardless of whether that ODT is labeled or scratch,
the process can assign the UNITNO file attribute a value equal to the physical unit
number of the ODT. The system opens the file at the requested ODT even if the ODT is

 Tasking from Interactive Sources

8600 0494–506 3–25

labeled and the label does not match the TITLE file attribute. However, note that use of
the UNITNO file attribute is restricted on systems running the Security Services for
ClearPath MCP at the S2 level; refer to the Security Administration Guide for details.

To open a file at the ODT where the process was initiated, regardless of whether that
ODT is labeled or scratch, the process should first read the physical unit number from its
own SOURCESTATION or ORGUNIT task attribute value. The process can then assign
the physical unit number to the UNITNO file attribute, as described previously.

When a process opens an ODT file, automatic display mode at the ODT is temporarily
suspended. However, system commands continue to be available. You can enter text
into the ODT file by preceding the text with a GS character. The GS character is also
known as the delta character and looks like an upward-pointing triangle. (Do not confuse
the GS character with the circumflex character, which resembles an inverted letter V.)
Refer to the documentation for your terminal to find out whether your terminal supports
the GS character, and which key it is mapped to.

You can indicate that there is no more input, and cause an end-of-file condition, by
entering the GS character, followed by ?END.

When the process closes the ODT file, the system removes the label from the ODT and
resumes Automatic Display mode. You can also resume Automatic Display mode while
the ODT file is still open by entering an ADM OK command at the ODT.

An example of a program that uses an ODT file is given in the ORGUNIT description in
the Task Attributes Programming Reference Manual.

Tasking from Interactive Sources

3–26 8600 0494–506

Tasking Command Equivalents
MARC and the ODT allow you to enter almost all of the same system commands for
process initiation, monitoring, and control. In addition, CANDE allows you to enter
process control commands that correspond closely to system commands.

The system commands available in MARC for process control are spelled the same as
those available at an ODT, and have the same functionality, with the following
exceptions:

• Security

If the Transaction Server security category COMMANDCAPABLE is defined, then
system commands can be submitted in MARC only by users defined as
COMMANDCAPABLE. Further, some commands are available only to users with
SYSTEMUSER or privileged status. Some other commands are filtered: in other
words, they are limited to monitoring and controlling processes with the same
usercode as the MARC session. For further information about
COMMANDCAPABLE, SYSTEMUSER, and privileged status, refer to the Security
Administration Guide.

• Spelling

The MSG (Display Messages) system command is spelled SMSG in MARC.

CANDE process control commands differ from the corresponding system commands in
the following ways:

• Spelling

The CANDE process control commands each begin with a single question mark (?).
In addition, the following spelling differences exist:

− ?JA corresponds to the J (Job and Task Structure) system command.

− ?CS corresponds to the mix number system command, which is formally known
as the COMPILE STATUS (Information for Compiler Task) command. Note that
the ?CS command in CANDE is not related to the CS (Change Supervisor)
system command.

− ?MXA corresponds to the MX (Mix Entries) system command. ?MXA can be
abbreviated as ?MX or ?M.

• Implicit mix numbers

For commands that apply to a dependent process initiated directly from the CANDE
session, you can omit the mix number from the command. For example, instead of
entering ?1234 Y, you can enter simply ?Y.

• Security

In general, the CANDE process control commands can monitor or control only
processes running with the same usercode as the CANDE session. If you attempt to
apply a CANDE process control command to a process running with a different
usercode, CANDE displays the message “INVALID NUMBER.” However, CANDE
makes one exception to this restriction. If you initiate a process in a CANDE session,

 Tasking from Interactive Sources

8600 0494–506 3–27

and that process later changes its own usercode, CANDE still enables you to apply
process control commands to that process.

• Mix display options

The CANDE mix display commands (?C, ?JA, ?LIBS, and ?MXA) do not provide the
following options of the equivalent system commands: ALL, MCSNAME, NAME,
QUEUE, and USER. However, the ALL option is implicitly set for all CANDE mix
display commands. Furthermore, CANDE mix display commands do offer one
feature that the corresponding system commands do not: the ability to specify a
logical station number (LSN), which limits the display to processes originating from
the specified station.

Table 3–1 shows the equivalent commands in these three interfaces and briefly states
the function of each command. In Table 3–1, the abbreviations (f), (pu), and (su) are used
in the MARC column to indicate commands that are filtered or that require
SYSTEMUSER status or privileged status. For complete descriptions of these
commands, refer to the System Commands Operations Reference Manual, the Menu-
Assisted Resource Control (MARC) Operations Guide, and the CANDE Operations
Reference Manual. For a general introduction to process monitoring and control from an
ODT, refer to the System Operations Guide.

Table 3–1. Interactive Tasking Functions

Functional
Area

ODT or
Operations
Center

MARC

CANDE

Specific Function

Initiating
Processes

PRIMITIVE
RUN

None None Initiate an object code
file as an independent
process.

 ??RUN (ODT
only)

None None Initiate an object code
file as an independent
process.

 RUN RUN RUN,
UTILITY

Initiate an object code
file as a dependent
process.

 <WFL
statements>

WFL WFL Submit WFL
statements.

 START START START Submit a WFL
program stored in a
file.

Managing
Queued WFL
Jobs

<mixno>DS ?<mixno>
DS (f)

?<mixno>
DS

Discontinue a queued
WFL job.

 FS FS (su) None Force initiation of a
queued WFL job.

 MOVE MOVE (su) None Change order of
queued WFL jobs.

Tasking from Interactive Sources

3–28 8600 0494–506

Table 3–1. Interactive Tasking Functions

Functional
Area

ODT or
Operations
Center

MARC

CANDE

Specific Function

Managing
Queued WFL
Jobs (cont.)

PF PF (su) None Display FETCH
message associated
with a WFL job.

 PQ PQ (su) None Discontinue all the
WFL jobs in a queue.

 PR PR (su) None Change the priority of
a queued WFL job.

 SQ SQ (f) ?SQ Display the WFL jobs
in a queue.

 STARTTIME STARTTIME
(f)

?<mixno>
STARTTIME

Assign a start time to
a queued WFL job.

 Y Y (f) ?<mixno> Y Display information
about a queued WFL
job.

Monitoring
the Mix

ADM (ODT
only)

None None Periodically display
system mix and other
items.

 C COMND C (f) ?C Display completed
entries.

 DBS DBS (su) None Display database
stacks.

 J J (f) ?JA Display active mix
entries, grouped into
process families.

 LIBS LIBS (f) ?LIBS Display library
processes.

 MSG SMSG (f) ?MSG Display process
messages.

 MX MX (f) ?MXA Display active,
scheduled, and
waiting mix entries.

 S S (su) ?S Display scheduled
mix entries.

 W W (f) ?W Display waiting mix
entries.

 Tasking from Interactive Sources

8600 0494–506 3–29

Table 3–1. Interactive Tasking Functions

Functional
Area

ODT or
Operations
Center

MARC

CANDE

Specific Function

Displaying
Process
Status

Y Y (f) ?Y Display current status
of a process.

 <mixno> <mixno> ?<mixno> or
?CS

Display the status of a
compilation.

 OT OT (f) ?OT Display contents of a
selected word in the
process stack.

Displaying
Process
Resource
Usage

CU CU (f) ?CU Display current
memory usage of a
process.

 TI TI (f) ?TI Display accumulated
processor, I/O,
presence bit, ready
queue, and elapsed
times for a process.

Communi-
cating with a
Process

HI HI (f) ?HI Cause process
EXCEPTIONEVENT
and optionally assign
a TASKVALUE.

 AX AX (f) ?AX Pass a string of text
to a process.

 IB IB (su) None Display instruction
block associated with
a WFL job.

 PF PF (su) None Print a FETCH
message associated
with a WFL job.

 SW SW (f) ?SW Modify the SW1
through SW8 task
attributes of a
process.

Modifying an
Active
Process

DS DS (f) ?DS Abnormally terminate
execution of a
process.

 DUMP (DP on
Operations
Center toolbar)

DUMP ?DUMP Initiate a program
dump.

 FS FS (su) None Force initiation of a
scheduled process.

Tasking from Interactive Sources

3–30 8600 0494–506

Table 3–1. Interactive Tasking Functions

Functional
Area

ODT or
Operations
Center

MARC

CANDE

Specific Function

Modifying an
Active
Process
(cont.)

LP LP (f) None Protect a process
from DS or QT
commands.

 PR PR (su) None Change the priority of
a process.

 ST ST (f) ?ST Suspend execution of
a process.

Responding
to Suspended
Processes

AX AX (f) ?AX Pass a string of text
to a process.

 BADFILE (BF
on Operations
Center toolbar)

BADFILE (f) None Continue to copy a
file from tape to disk
when tape errors
occur.

 DS DS (f) ?DS Discontinue a
process.

 FA FA (f) ?FA Modify file attributes
used by a process.

 FM FM (su) None Change the printer
form used by a
process.

 FR FR (f) ?FR Specify that a tape
reel is the last of a
multireel set.

 IL IL (su) None Change the physical
unit used for an input
file.

 NF NF (f) ?NF Return an open error
to a process opening
a file that is not an
optional file.

 NOTOK NOTOK (f) ?NOTOK Prevent the process
from attempting a
given action, but do
not discontinue the
process.

 OF OF (f) ?OF Indicate an optional
file is not present.

 OK OK (f) ?OK Cause a suspended
process to attempt to
resume processing.

 Tasking from Interactive Sources

8600 0494–506 3–31

Table 3–1. Interactive Tasking Functions

Functional
Area

ODT or
Operations
Center

MARC

CANDE

Specific Function

Responding
to Suspended
Processes
(cont.)

OU OU (su) None Change the physical
unit used for an
output file.

 RM RM (f) ?RM Remove a file
specified in a DUP
LIBRARY message.

 UL UL (su) None Assign an unlabeled
tape file to a particular
process.

Saving and
Restarting
Processes

BR BR (su) None Display checkpoint
eligibility or initiate a
checkpoint.

 OK OK (f) ?OK Allow automatic
restart of a process.

 DS DS (f) ?DS Deny automatic
restart of a process.

 RERUN WFL RERUN WFL RERUN Initiate manual restart
of a process.

 RESTART RESTART None Terminate and restart
a WFL job.

Note: The <mixno> syntax is formally known as the COMPILE STATUS (Information
for Compiler Task) system command.

The following abbreviations are used in Table 3–1:

• f (Filtered if not SYSTEMUSER or privileged.)

• su (SYSTEMUSER or privileged status required.)

• mixno (Mix number)

Tasking from Interactive Sources

3–32 8600 0494–506

Communicating with an Operator
You can design a process to display information to an operator or accept information
from an operator. You can accomplish this communication through any of the following
methods:

• By accepting parameters from the operator in the statement that initiates the
process. This topic is discussed earlier in this section under “Receiving Parameters
from CANDE,” “Receiving Parameters from MARC,” and “Receiving Parameters
from an ODT.”

• By performing read and write operations on a remote file or ODT file. This topic is
discussed in the following subsections of this section: “Communicating with CANDE
Terminals,” “Communicating with MARC Terminals,” and “Communicating with an
ODT.”

• By using certain statements and task attributes that the system provides for operator
communications. These methods are discussed in the following subsections.

Displaying Information to Operators

A process can display information to operators using any of the following features:
DISPLAY statements, instruction blocks, and fetch specifications.

DISPLAY statements are the most commonly used of these methods. The DISPLAY
statement is implemented in ALGOL, COBOL, and WFL. This feature is also available as
the Display procedure in Pascal. The following is a WFL example of this statement:

DISPLAY "INCORPORATING NEW DATA - MAY TAKE AWHILE";

The output from a DISPLAY statement is referred to as a DISPLAY message. The
DISPLAY message appears as one of the entries in the response to the MSG (Display
Messages) system command. If the process is initiated from a CANDE or MARC
session, the DISPLAY message is automatically displayed at the session. The
programmer can use the DISPLAYONLYTOMCS task attribute to limit the display of the
message to the originating session. If this task attribute is TRUE, then the DISPLAY
message does not appear at the ODT.

You can use instruction blocks to store information that an operator can display at any
time. By contrast, DISPLAY messages are only temporarily visible to the operator,
because the MSG command displays only the most recent system messages.
Instruction blocks are created using the INSTRUCTION statement, which is available only
in WFL. The following is an example of this statement.

INSTRUCTION 3 TESTTAPE IS IN TAPE RACK 3.;

An operator can use the IB (Instruction Block) system command to display instruction
blocks for a WFL job. For example, a command of the form 7645 IB displays the most
recent instruction block for the WFL job with mix number 7645. A command of the form
7645 IB 3 displays instruction block 3 for that WFL job.

 Tasking from Interactive Sources

8600 0494–506 3–33

The disadvantage of instruction blocks is that nothing prompts the operator to use the IB
command. The operator has to know in advance that instruction blocks exist for a
particular WFL job. If you want to be sure that an operator sees a message, you can use
the FETCH task attribute. This task attribute can be used only in WFL jobs, and only in
the job attribute list at the start of the job. You can assign any arbitrary string of text to
this attribute. The following is an example of a FETCH assignment:

FETCH = "THIS JOB NEEDS THREE TAPE DRIVES";

If the operating system option NOFETCH is not set, then when a WFL job containing a
FETCH assignment reaches the head of a job queue, the system suspends the job rather
than initiating it. The job appears in the W (Waiting Mix Entries) system command
display with an RSVP message of REQUIRES FETCH. The operator can use the PF (Print
Fetch) system command to display the FETCH specification, and the OK (Reactivate)
system command to cause the job to be initiated.

If NOFETCH is set, then the system does not suspend jobs with FETCH specifications.
However, the PF system command can still be used to display FETCH specifications.

If you enter a PF command for a process that has no FETCH specification, the system
displays the message “NO FETCH STATEMENT.”

Accepting Information from Operators

A process can be passed information by an operator using the HI (Cause
EXCEPTIONEVENT), AX (Accept), or SW (Switches) system command.

Accepting Input from HI Commands

EXCEPTIONEVENT is an event-valued task attribute, meaning that it has either of two
states: HAPPENED or NOT HAPPENED. The HI command causes the
EXCEPTIONEVENT, meaning that the value is changed to HAPPENED. This action has
no effect on process execution unless the program is specifically designed to monitor
the status of the EXCEPTIONEVENT. Only programs written in WFL, ALGOL, or COBOL
have access to this attribute.

A program can monitor the EXCEPTIONEVENT in any of the following ways:

• To suspend execution until the EXCEPTIONEVENT is caused, the process can use a
simple wait statement such as WAIT(MYSELF.EXCEPTIONEVENT) in ALGOL or
WAIT; in WFL.

• To suspend execution until either the EXCEPTIONEVENT or some other event
occurs, the process can use a complex wait statement that lists the
EXCEPTIONEVENT as one of several events.

• To continue doing other work until the EXCEPTIONEVENT is caused, the process can
attach an interrupt to the EXCEPTIONEVENT.

Tasking from Interactive Sources

3–34 8600 0494–506

In addition to causing the EXCEPTIONEVENT, the HI command can also pass an
assignment to the TASKVALUE task attribute of the process. For example, the
command 3874 HI 14 causes the EXCEPTIONEVENT of the process with mix number
3874 and assigns a TASKVALUE of 14. To design a process to use this type of input, you
must first use a wait statement or interrupt to monitor the EXCEPTIONEVENT.
Whenever the EXCEPTIONEVENT occurs, the process can read its own TASKVALUE and
take appropriate action.

Accepting Input from AX Commands

Because the programmer controls the way an application responds to a HI command, the
operator has no direct way of discovering whether a HI command is needed or what
effect it has. Another feature is available that allows the process itself to prompt the
operator for certain types of input. This feature is the ACCEPT statement.

The ACCEPT statement displays a string of text to the operator and suspends execution
of the process. The process appears in the W (Waiting Mix Entries) system command
display, where it can attract the attention of an operator. Execution resumes when the
operator uses an AX (Accept) system command to pass another string of text to the
process.

In some situations, you might find it more convenient for a process to continue executing
until an AX string is available from the operator. This goal can be achieved in any of the
following ways:

• If the operator is familiar with the program, and knows that the program requires an
AX string, he or she can enter the AX string without waiting for the process to
become suspended. The operator can enter the AX string either by appending an AX
task equation to the RUN statement or by entering an AX system command while
the process is running. The system saves the AX string that was input by the
operator. When the process executes an ACCEPT statement, the process retrieves
the AX string and immediately continues executing.

If an operator submits more than one AX string for a process before the process
performs its next ACCEPT statement, then the system must either queue the extra
AX strings or discard them. You can use the QUEUEDAX option of the SYSOPS
(System Option) system command to enable or disable queuing of AX strings. If
QUEUEDAX is set, then the system queues up to 250 AX strings for a process. If
QUEUEDAX is reset, then each AX string overwrites any pending AX string for a
process.

QUEUEDAX is set TRUE by default on ClearPath systems.

• By using a conditional ACCEPT statement. This form of ACCEPT checks for AX text
previously submitted by the operator. The conditional ACCEPT returns a Boolean
value indicating whether such text was found. The process continues executing
normally, regardless of whether an AX text was available.

 Tasking from Interactive Sources

8600 0494–506 3–35

• By using the ACCEPTEVENT task attribute. The system causes the ACCEPTEVENT
of a process whenever the operator enters an AX command for that process. A
process can monitor the ACCEPTEVENT using wait statements or interrupts, similar
to those used for monitoring the EXCEPTIONEVENT. Whenever the ACCEPTEVENT
is caused, the process can execute an ACCEPT statement to capture the AX input.

Note: Programs should not use interrupts to detect AX strings passed to the program
through the AX task attribute. AX task attribute assignments do not cause the
ACCEPTEVENT task attribute. For further details, refer to the description of the AX task
attribute in the Task Attributes Programming Reference Manual.

Accepting Input from SW Commands

Each process has associated with it eight Boolean task attributes named SW1 through
SW8. These task attributes have no intrinsic meaning, but serve to convey application-
defined information to a process. Operators can modify the values of these attributes for
a running process by using the SW (Switches) system command. For example, the
following commands set and reset the SW1 attribute of the process with mix number
4875:

4875 SW1 TRUE

4875 SW1 FALSE

There is no event, equivalent to EXCEPTIONEVENT or ACCEPTEVENT, to inform the
process that one of the switch values has changed. Instead, to detect that one of the
switch task attributes has changed value, the process must periodically interrogate the
value of that switch.

Alternately, you can establish a convention whereby the operator is expected to follow
each SW command with a HI or AX command to notify the process to interrogate the
switch values. For example, the following ALGOL statements cause a program to
interrogate SW1 and SW2 whenever an AX command is received:

INTERRUPT SWITCHER;
BEGIN
 IF MYSELF.SW1 THEN
 <statements>
 ELSE IF MYSELF.SW2 THEN
 <statements>
END;
ATTACH SWITCHER TO MYSELF.ACCEPTEVENT;

Tasking from Interactive Sources

3–36 8600 0494–506

The operator can also use the SW command to display the current values of the SW1
through SW8 task attributes of a process. The following is an example of a command
that interrogates these attributes for mix number 4873, and the resulting display:

4873 SW

 SWITCH VALUES FOR 4873:
 SW 1 = FALSE
 SW 2 = FALSE
 SW 3 = FALSE
 SW 4 = TRUE
 SW 5 = FALSE
 SW 6 = FALSE
 SW 7 = FALSE
 SW 8 = TRUE

8600 0494–506 4–1

Section 4
Tasking from Programming
Languages

The implementations of several programming languages include extensions for process
initiation and control. You can use these features to

• Initiate related suites of programs, so there is no need for an operator to initiate them
individually

• Divide an application into two or more cooperating, parallel processes for faster
execution

Among the languages with advanced process initiation and control capabilities are WFL,
ALGOL, and COBOL. Of these, WFL is the simplest to use, and has the advantage of
passing through the job queue mechanism and offering automatic job restart after a
halt/load. On the other hand, ALGOL and COBOL offer sophisticated features such as
user-declared events, interrupts, port files, and a large variety of parameter types. Each
of these languages provides access to task attributes.

This section describes the tasking capabilities of WFL, ALGOL, and COBOL in some
detail and provides brief examples of tasking programs written in each of these
languages. Additionally, this section includes a brief overview of the tasking capabilities
of other languages.

Work Flow Language (WFL)
Work Flow Language (WFL) is a programming language that is designed specifically for
use in task initiation and control. WFL is a block-structured language with syntax similar
to ALGOL, although WFL is simpler and easier to learn.

The following subsections explain how WFL jobs are submitted and how they can be
used to initiate other processes.

For further information about WFL, refer to the Work Flow Language (WFL) Programming
Reference Manual.

Tasking from Programming Languages

4–2 8600 0494–506

Submitting WFL Input

WFL statements can be stored in disk files or in arrays in programs written in other
languages. You can also enter and transmit WFL statements at a terminal. Regardless
of how WFL statements are stored or submitted, a group of one or more WFL
statements is referred to as WFL input.

WFL input must be submitted with special-purpose statements such as START and ZIP.
You cannot use general-purpose initiation statements such as CALL, PROCESS, and
RUN to initiate a WFL job.

The system can compile WFL input and execute it as a job or a task, or it can skip the
compilation and simply interpret the WFL input. The statement you use to submit the
WFL input and the statements contained in the WFL input together determine how the
system executes that input.

Table 4–1 summarizes the factors that determine how the system executes WFL input.
The various sources that can submit WFL input are listed at the left. The headings of the
two right hand columns give information about the contents of the WFL input. The
following are the meanings of these headings:

• The Single Interpretive Statement column indicates WFL input consisting of a single
statement that is one of the following statements: ALTER, CHANGE, PRINT,
REMOVE, RERUN, SECURITY, or START. The WFL input can also include a FAMILY
job attribute assignment, but cannot include any other job attributes. For example,
the following input is treated as a single interpretive statement:

 FAMILY DISK = SYSPK ONLY;CHANGE (JASMITH)ORDS TO (JASMITH)OLDORDS;

• The Other Statements column indicates WFL input that consists of either more than
one statement or a single statement that is not one of the interpretive statements.
A WFL input also falls into this category if it includes assignments to job attributes
other than the FAMILY attribute. For example, the following input would fall into this
category:

 JOBSUMMARY = SUPPRESSED;CHANGE (JASMITH)ORDS TO (JASMITH)OLDORDS;

 Tasking from Programming Languages

8600 0494–506 4–3

Table 4–1. WFL Execution Modes

Sources for Submitting WFL Input

Single Interpretive
Statement

Other Statements

CALL SYSTEM WFL (COBOL74, COBOL85) Interpreted Job

CONTROLCARD function (DCALGOL)

 With [38:01] =1 and
[07:08] = 4 (Array Input):

Interpreted Task

 Otherwise: Interpreted Job

START Statement (CANDE, MARC, or WFL) Job Job

WFL Command (CANDE or MARC) Interpreted Task

WFL Statements Entered at the ODT Interpreted (except
PRINT, which is
executed as a job)

Job

ZIP statement (ALGOL or RPG)

 With Array: Interpreted Job

 With File: Job Job

If the system executes the WFL input as a job, it first calls an independent runner called
CONTROLCARD to compile the job and create a job file. CONTROLCARD invokes the
WFL compiler, which is a procedure exported by the system library WFLSUPPORT.
CONTROLCARD runs in a special high-priority category that prevents it from being
scheduled or suspended by the system if there is a shortage of available memory. The
job file that CONTROLCARD creates contains more information than a typical job file, as
discussed in Section 2, “Understanding Interprocess Relationships.”

The system then inserts the job file in a job queue. (For a description of the job queue
mechanism, refer to “Selecting the Queue for a Job” later in this section.) Later, the
system selects the job file from the job queue and initiates it as a job (an independent
process). When the job terminates, the system usually prints the job summary and any
backup files associated with the job and its tasks. The system then deletes the job file.

If the system executes the WFL input as a task, the system initiates CONTROLCARD to
compile the input and create an object code file. The system then initiates the WFL input
as a task (a dependent process); the task does not pass through the job queue
mechanism. When the task terminates, the system removes the object code file.

By default, no job summary or backup files are associated with the WFL task. For
example, if the WFL task was initiated from a CANDE session, then backup files
produced by the WFL task or its descendants are associated with the CANDE session
and queued for printing only when the session is ended.

Tasking from Programming Languages

4–4 8600 0494–506

If the system handles the WFL input interpretively, then CONTROLCARD executes the
WFL statement without creating a WFL job or a WFL task. In this case, CONTROLCARD
creates neither a job file nor an object code file, nor does it use the job queue
mechanism.

Selecting the Queue for a Job

A job queue is a list of WFL jobs that are awaiting initiation. Job queues are defined by
the system administrator and managed by the operating system.

The purpose of job queue definitions is to allow the system administrator to set up some
general parameters affecting the flow of WFL jobs on the system. Because a WFL job is
typically an agent for initiating batch programs, the job queue system by implication can
be used to regulate the initiation of batch programs in general.

Before defining the job queues, the system administrator usually analyzes the batch
programs run on the system in terms of their patterns of resource usage and their
relative urgency. The administrator then defines a separate job queue for each set of
batch programs that show similar characteristics. For example, if there is a payroll
application that has to finish processing before a precise deadline, the administrator
might assign the application to a high-priority job queue. The administrator uses an MQ
(Make or Modify Queue) system command to define the job queue.

For a complete explanation of job queues and using job queues in system administration,
refer to the System Administration Guide. For information about using system
commands to monitor and interact with jobs in queues, refer to the System Operations
Guide. The following subsections describe the features of job queues that are of most
direct interest to a programmer.

Deciding on the Queue for a Job

Depending on the policies that are in effect at your site, you might be required to ask
your system administrator to which job queue to submit a particular WFL job. However,
if the system administrator allows you to decide on the job queue, then you need to
examine the job queue definitions to determine which queue is most suitable to your job.

The system command for displaying job queue definitions is QF (Queue Factors). The
following is an example of a QF command and the response:

QF 4

 QUEUE 4:
 MIXLIMIT = 2
 DEFAULTS:
 PRIORITY = 50
 PROCESSTIME = 100
 LIMITS:
 PRIORITY = 60
 PROCESSTIME = 200

 Tasking from Programming Languages

8600 0494–506 4–5

In this example, 4 is the job queue number. This number uniquely identifies a job queue.
If the QF command does not specify a number, the output displays the definitions of all
job queues on the system. The MIXLIMIT value specifies, roughly, the maximum number
of jobs and descendant tasks initiated through this job queue that can be running
concurrently. If the actual number of jobs and tasks originating from this job queue
equals or exceeds the MIXLIMIT value, the system temporarily ceases initiating jobs
from this job queue. After one or more of the jobs and tasks in this job queue
terminates, the system resumes initiating jobs from this job queue.

The DEFAULTS and LIMITS portions of the job queue definition specify default values
and maximum values for various task attributes that restrict the resource usage of a
process.

The job queue defaults are inherited by the corresponding task attributes of a WFL job.
However, the job can override this inheritance with assignments in the job header; that
is, assignments that follow the BEGIN JOB construct but precede any of the declarations
and statements in the job. Consider the following example:

?BEGIN JOB;
 CLASS = 4;
 PRIORITY = 55;
 TASK T;
 MYSELF(MAXPROCTIME = 150);
 RUN OBJECT/PROG;
?END JOB

Assume that this job is submitted through the job queue that was previously shown in
the QF command example. Queue 4 has default values for both PRIORITY and
PROCESSTIME (which corresponds to the MAXPROCTIME task attribute). The
PRIORITY assignment in the job is part of the job header, and therefore overrides the
PRIORITY queue default. However, the MAXPROCTIME assignment in the job is not
part of the job header. Therefore, the job does inherit the default MAXPROCTIME of 100
at initiation. The statement that assigns MAXPROCTIME a value of 150 has no effect,
because the system does not allow a process to increase its MAXPROCTIME value after
initiation.

Now consider the following job:

?BEGIN JOB;
 CLASS = 4;
 PRIORITY = 75;
 MAXPROCTIME = 300;
 TASK T;
 RUN OBJECT/PROG;
?END JOB

The system would never accept this job into queue 4, because the job header assigns
values to PRIORITY and MAXPROCTIME that are both higher than the queue limits for
these attributes. Since the CLASS attribute explicitly requests queue 4, the system
rejects the job and displays a “Q-DS” message. (The CLASS attribute is explained under
“Requesting the Queue for a Job,” later in this section.)

Tasking from Programming Languages

4–6 8600 0494–506

The following are the job queue attributes that establish resource usage limits, and the
task attributes that correspond to the job queue attributes....

Job Queue Attribute Task Attribute Effect

ELAPSEDLIMIT ELAPSEDLIMIT Limits the amount of time a job
can be in use

IOTIME MAXIOTIME Limits the amount of processor
time that can be devoted to
initiating I/O operations for the job
and its tasks

LINES MAXLINES Limits the number of lines the job
and its tasks can print

PROCESSTIME MAXPROCTIME Limits the amount of processor
time that a process can use for
computations

PRIORITY PRIORITY Specifies the relative urgency of
jobs and tasks as compared to
other processes in the mix

SAVEMEMORYLIMIT SAVEMEMORYLIMIT Limits the amount of save
memory the job and its tasks can
use

TEMPFILELIMIT TEMPFILELIMIT Limits the space the job and its
tasks can allocate for temporary
disk files

WAITLIMIT WAITLIMIT Limits the amount of time the job
and its tasks can remain waiting
after executing a WAIT statement

If the actual resource usage of the job or its tasks exceeds one or more of the resource
usage limits, the system discontinues the process that exceeded the limit. The point of
this behavior is to encourage you to reexamine the job queue definitions and submit the
job through the appropriate job queue.

In summary, you can determine an appropriate job queue for a job by estimating the
resource usage requirements of the job and choosing a job queue whose resource usage
limits are adequately high. There are, however, some additional restrictions:

• The system administrator can assign two attributes to your usercode that specify
which job queues you are allowed to use. These attributes are CLASSLIST and
ANYOTHERCLASSOK. If ANYOTHERCLASSOK is set, then CLASSLIST is
interpreted as a list of the job queues you are forbidden to use. If
ANYOTHERCLASSOK is not set, then CLASSLIST is interpreted as a list of all the job
queues you are allowed to use. You should ask the system administrator whether
these attributes are defined for your usercode.

• The system administrator can use the UQ (Unit Queue) system command to specify
that all WFL jobs submitted from a particular ODT be routed into a particular job
queue. The inquiry form of the UQ command can be used to display the unit queue
assignments in effect on the system.

 Tasking from Programming Languages

8600 0494–506 4–7

• The job queue definition can include a FAMILY attribute that corresponds to the
FAMILY task attribute. However, the FAMILY queue attribute is not exactly a default
or a limit. Rather, it excludes any job from the job queue if the job header includes a
FAMILY assignment different from the FAMILY queue attribute. You can use the QF
command to determine whether a job queue has a FAMILY queue attribute.

Requesting the Queue for a Job

If you have decided that a specific job queue is most appropriate for your job, then you
can request the job queue through a CLASS assignment in the job header. For example,
the following job requests queue 10:

?BEGIN JOB;
 CLASS = 10;
RUN OBJECT/PROG;
?END JOB

If the job does not include a CLASS assignment, it can inherit a value from the CLASS
usercode attribute. An inherited CLASS value has the same effect as an assigned
CLASS value.

The system evaluates the eligibility of a job for a requested job queue based on the
factors discussed previously: queue resource usage limits, usercode class limits, unit
queue assignments, and the FAMILY value. If the job qualifies for the requested queue,
the system places the job in the queue. If the job does not qualify for the requested
queue, the system rejects the job and displays the message “Q-DS.”

If the job has no assigned or inherited CLASS value, the system attempts to find an
appropriate job queue in which to place the job. The method the system uses for making
this selection depends on whether the operating system compile-time option
QFACTMATCHING is set.

If the job has no CLASS assignment and QFACTMATCHING is set, then the system
examines the various job queues to determine their eligibility for receiving the job. The
system selects the first job queue that meets the following criteria:

• Any resource limits specified for the queue are greater than or equal to the
corresponding resource limits in the WFL job header. For example, if the queue has
a PRIORITY limit of 50, the job must have either no PRIORITY assignment in the job
header or a PRIORITY assignment less than 51.

• The job queue must be one that is legal for a job with this usercode.

If the job has no CLASS assignment and QFACTMATCHING is reset, then the system
selects the default job queue. The system administrator defines the default job queue
using the DQ (Default Queue) system command. If no default queue has been defined,
the system checks all the job queues, just as it would if QFACTMATCHING were set.

Tasking from Programming Languages

4–8 8600 0494–506

Whether QFACTMATCHING is set or not, the system performs an additional check. If
the job queue selected by the system has a FAMILY attribute and the job has a FAMILY
assignment in the job header, the system checks to see whether they match. If they do
not specify identical family values, the system rejects the job and displays a “Q-DS”
message.

Specifying a Start Time

You can use the STARTTIME task attribute to specify the earliest time and date that a
particular job can be selected from a job queue. This task attribute can be assigned only
to WFL jobs. It can be assigned in the task attribute list of the WFL job or in the
statement that initiates the WFL job. You can also use the STARTTIME (Start Time)
system command or the CANDE ?STARTTIME command to assign this attribute to a job
in a job queue. Changes made using these commands are maintained permanently,
even if a halt/load occurs.

When you initiate a job with a STARTTIME specification, the job is compiled immediately
and placed in an appropriate job queue. The job remains in the job queue at least until
the date and time specified by the STARTTIME. You can use the SQ (Show Queue)
system command to display the STARTTIME of jobs in a queue. The following is an
example of the output for the command SQ 2:

QUEUE 2
 6643 01 TEST/WFL (#0001)
 QUEUED: 07/13/2001 AT 15:41:31 STARTTIME = 07/21/2001 AT 18:00:00

The STARTTIME specification provides a convenient means of scheduling a job for a time
when the system load is lighter, such as in the evening or during a weekend.
STARTTIME is also a convenient means of scheduling jobs that must run at regular
intervals, such as every morning. The following example job, which is stored in the file
(JASMITH)WFL/RUN, restarts itself on a daily basis:

?BEGIN JOB WFL/RUN;
 RUN OBJECT/PROG;
 START (JASMITH)WFL/RUN;STARTTIME = 10:00 ON +1
?END JOB

Structuring the WFL Job

A complete WFL job is considered a block, and each subroutine declared in the job is a
block as well. The WFL job can enter or initiate subroutines. WFL automatically protects
against critical block exits by performing an implicit wait at the end of the block that
contains a task initiation statement. Control does not exit this block until all tasks
initiated in that block have terminated.

WFL includes CASE, DO UNTIL, GO, IF, and WHILE DO statements that you can use to
direct the flow of control in a job. By using these statements together with task attribute
interrogations, a WFL job can provide conditional control over tasks. For example, the job
can initiate the SYSTEM/PATCH utility as a task. When SYSTEM/PATCH terminates, the
job can interrogate the task attributes of the SYSTEM/PATCH task. If the attribute values

 Tasking from Programming Languages

8600 0494–506 4–9

indicate that SYSTEM/PATCH ran without errors, the job can compile the merged source
program. If the compilation is free of errors, the job can run SYSTEM/XREFANALYZER to
produce an analysis of cross-references in the program.

Initiating Dependent Processes from WFL

In WFL, the RUN statement can be used to initiate an object code file as a synchronous
dependent process. The TYPE task attribute of the resulting process shows a value of
CALL. The initiated program can be written in any language except WFL.

The PROCESS keyword is used as a modifier in front of other initiation statements to
cause the process to run asynchronously. Thus, a PROCESS RUN statement initiates an
asynchronous task. The TYPE task attribute of the task has a value of PROCESS.

WFL cannot initiate a program as an independent process. In addition, a WFL job is
never considered to be a coroutine; that is, a WFL job and its offspring cannot use
CONTINUE statements to pass control back and forth.

There are some noteworthy differences between task initiation in WFL and task initiation
in ALGOL or COBOL. In the latter two languages, RUN initiates an independent process
and PROCESS initiates an asynchronous dependent process. Another difference is that
WFL does not use external procedure declarations. In addition, there is no need to
include a NAME task attribute assignment in WFL; the name of the object code file to be
executed is specified in the RUN statement.

WFL jobs can also initiate internal procedures. An internal procedure in WFL is referred
to as a subroutine. If the PROCESS keyword precedes a subroutine invocation
statement, the system initiates the subroutine as an internal, asynchronous, fully
dependent process. (If you do not use the PROCESS keyword, the subroutine invocation
statement enters, rather than initiates, the subroutine.)

Initiating Compilations from WFL

A WFL job can initiate compilations by using the COMPILE statement. The COMPILE
statement initiates a compiler and specifies the object code file to be compiled. The
COMPILE statement can also include an object code file disposition, which specifies
whether the object code file is to be executed once it is compiled, and whether the
object code file is to be saved. The COMPILE statement can also be used to invoke the
Binder. BIND is a synonym for the COMPILE statement.

Initiating Utilities from WFL

In addition to the RUN statement, WFL provides various special-purpose initiation
statements. These statements include ADD, COPY, LOG, and PB. The COPY and ADD
statements each initiate the visible independent runner LIBRARY/MAINTENANCE to
copy a file. The LOG statement initiates the LOGANALYZER utility, and the PB
statement initiates the BACKUP utility.

Tasking from Programming Languages

4–10 8600 0494–506

Initiating Interactive Processes from WFL

A WFL job can initiate an interactive process, but you might need to include a task
attribute assignment for the interactive process to run properly. The STATIONNAME and
STATION task attributes specify the station where any remote files used by the process
are to be opened. WFL jobs initiated through a CANDE or MARC START command do
not inherit the STATIONNAME or STATION of the remote terminal where they are
initiated. You can remedy this problem by including the following statement at the start
of the job:

MYJOB (STATIONNAME = #MYSELF(SOURCENAME));

This statement assigns the name of the station that initiated the job to the
STATIONNAME attribute. This STATIONNAME value is inherited by all tasks initiated by
the job. (Note that this assignment is lost across a halt/load. For details, refer to
Section 11, “Restarting Jobs and Tasks.”)

It is preferable to assign the STATIONNAME attribute rather than the STATION attribute,
because the STATIONNAME attribute stores the station name, which is less volatile than
the logical station number (LSN) stored by the STATION attribute.

Submitting Other WFL Jobs

A WFL job can include a START statement to initiate another WFL job. The START
statement can initiate only WFL programs that are stored on disk files. This statement
can include any of the parameter types that WFL recognizes. The START statement can
also include an assignment to the STARTTIME task attribute, which specifies when the
WFL job should be initiated.

Access to Task Attributes in WFL

A WFL job can include a job attribute list, which specifies task attributes to be applied to
the job before initiation. Certain task attributes, if included in this list, can help determine
the job queue in which the job is placed. The CLASS task attribute has the most direct
effect on job queue selection; for more information about the CLASS attribute, refer to
“Selecting the Queue for a Job” later in this section.

A WFL job can specify initial values for the attributes of a task if you include a task
equation list in a task initiation statement. All task initiation statements in WFL (including
RUN, COPY, and COMPILE) allow the use of task equations.

A WFL job can also use task variables to interrogate or modify the task attributes of a
process. The task variable becomes associated with a task by being included in the task
initiation statement. Assignments to the task variable before task initiation have the
same effect as task equations. A job can monitor and control an asynchronous task
while it is executing by accessing its task variable. After a task terminates, the job can
interrogate the task variable to return task history information.

 Tasking from Programming Languages

8600 0494–506 4–11

A WFL job can use the predeclared task variable MYSELF to access the job's own task
attributes. A job can also use the predeclared task variable MYJOB, which has the same
meaning as MYSELF unless it is referred to in an asynchronous subroutine. For an
asynchronous subroutine, MYJOB refers to the parent WFL job and MYSELF refers to
the subroutine's task attributes.

The COMPILE statement can specify task attributes that are stored in the object code
file created by the compilation. These task attribute values are used each time the object
code file is executed, unless the values are overridden by task equations at run time. In
addition, a WFL job can use the MODIFY statement to assign task attributes to an object
code file that already exists.

WFL jobs can directly access all task attributes except for task-valued or event-valued
task attributes and the HISTORYREASON task attribute.

In general, the syntax for accessing task attributes in WFL is simpler than that used in
ALGOL. Mnemonic-valued task attributes return string values rather than integers.
Pointer-valued task attributes also return string values. Attributes that record resource
usage, such as ACCUMPROCTIME, return values in units of seconds instead of 2.4
microseconds.

Using File Equations in WFL

Assignments to the FILECARDS task attribute are referred to as file equations. In WFL
jobs, FILECARDS can be abbreviated to FILE. Using this task attribute, the job can
modify the attributes of the logical files used by the task. The TITLE attribute can be
used to cause the task to use a different physical file than it otherwise would.

You can include a construct called a global file assignment in a WFL job to cause an
offspring to use a file declared in the WFL job. A global file assignment assigns a
particular file declared by the WFL job to a particular internal name used by the offspring.
Whenever the offspring attempts to use the file with that internal name, the system
causes it to use the global file instead. This mechanism amounts to a hidden call-by-
reference parameter because the job and its offspring use the same logical file.

A unique feature of WFL is the ability to include data specifications in the WFL source
program. Whenever an offspring attempts to read from a card reader file, it reads
instead from a data specification, if one is available. You can also use data specifications
to replace other kinds of input files used by an offspring. To do this, you must include a
file equation in the statement that initiates the offspring. The file equation must assign
the input file a KIND file attribute value of READER. The offspring then reads lines from
the data specification as if they were lines of the input file; for this reason, data
specifications are also known as pseudo-reader files.

Responding to Error Conditions in WFL

Use the ON TASKFAULT statement to specify actions to be taken if a task terminates
abnormally or if a compilation is terminated for syntax errors. WFL can also interrogate
the values of the STATUS and HISTORYTYPE task attributes after a task terminates to
determine the type of termination and take appropriate action.

Tasking from Programming Languages

4–12 8600 0494–506

Communicating with Other Processes in WFL

WFL jobs can communicate with their tasks by using any of several methods. The
following list reviews each method of interprocess communication:

• Globally declared objects

A subroutine initiated with a PROCESS <subroutine> statement can access objects
declared globally to the subroutine in the WFL job.

• Parameters

The RUN statement can include Boolean, integer, real, or string parameters. By
default, these parameters are call-by-value parameters. However, you can specify
that a parameter is call-by-reference by including the word REFERENCE after the
parameter. A WFL job and an asynchronous task can communicate by interrogating
and modifying the value of a call-by-reference parameter.

• Events

A WFL job cannot declare events or interrupts and cannot access event-valued task
attributes directly. However, a WFL job can use the WAIT statement, which can
wait on many different types of implicitly declared events. For example, the simple
form of the WAIT statement waits on the job's exception event. A job can also use
WAIT statements to wait for a task to terminate or for one of the task attributes to
attain a specified value. A WFL job can also access the LOCKED task attribute.
LOCKED is a Boolean task attribute that acts like an event.

• Libraries

Libraries cannot be written in WFL, nor can WFL jobs use libraries written in other
languages.

• Port files and disk files

WFL jobs cannot read from or write to files. A WFL job can create a single disk file
and specify the contents of that file by using the DECK statement. However, the
DECK statement, if used, must be the only statement in the job. Another useful
feature is the ability of WFL to create a dummy file by simply declaring a file, opening
it, and closing it. Such files can be used as flags to other processes. For example, a
WFL job can perform a file-residence inquiry to determine whether a file with a
certain title exists.

For details about any of these interprocess communication methods, refer to Part II of
this guide, “Interprocess Communication.”

 Tasking from Programming Languages

8600 0494–506 4–13

Controlling a Task from a Job

You can use the LOCKED attribute to control a task from its parent job, perhaps by
causing it to wait while the job performs some action. If you set the LOCKED attribute to
TRUE, it acts as an interlock, which blocks any subsequent attempt to set the attribute to
TRUE until the attribute has been set to FALSE.

The following code excerpts show a possible use:

JOB
 BEGIN JOB J;
 TASK T;
 T (LOCKED=TRUE);
 PROCESS RUN program[T];
 .
 .
 .
 T (LOCKED=FALSE);
 END JOB

TASK
 BEGIN;
 % Perform initialization before synchronizing with JOB
 .
 .
 .
 T (LOCKED=TRUE); % Wait until job is ready
 .
 .
 .
 END

Restarting WFL Jobs

A WFL job automatically restarts if interrupted by a halt/load. WFL is the only language
with this automatic restart capability. WFL also plays an important role in the restarting
of checkpointed processes. These processes must be offspring of a WFL job in order to
be checkpointed. In addition, the WFL RERUN statement is the means used to restart a
checkpointed process. For further information, refer to Section 11, “Restarting Jobs and
Tasks.”

Tasking from Programming Languages

4–14 8600 0494–506

WFL Example

The following example illustrates some WFL capabilities for task initiation and control:

?BEGIN JOB AUTOPB/HELP(STRING SOURCE, STRING PATCH);
 JOBSUMMARY = SUPPRESSED;
 DISPLAYONLYTOMCS = TRUE;
 CLASS = 15;
TASK T;
STRING RUN1, HELPTITLE;
HELPTITLE:= (PATCH & "/LEVEL1/HELPBOOK");
RUN1:= ("SOURCE=" & SOURCE
 & ",PATCH=" & PATCH
 & ",OUT=" & PATCH & "/LEVEL1/ED"
 & ",HELP=" & HELPTITLE
 & ",MESSAGEFILE=" & PATCH & "/LEVEL1/MESSAGES");
DISPLAY "RUNNING AUTOPB WITH " & RUN1;
RUN OBJECT/AUTOPB ON DOCMAST(RUN1) [T];
 FILE TEACHUTILNAME=*SYSTEM/HELP/UTILITY ON DOCMAST;
IF T(TASKVALUE) NEQ 1
 THEN BEGIN
 DISPLAY "HELPBOOK NOT CREATED; PRINTING ERRORS FILE";
 RUN *OBJECT/AUTOLP ON DOCMAST;
 TASKVALUE = 1;
 FILE SOURCE = #PATCH/LEVEL1/MESSAGES;
 END;
?END JOB

The main point of this job is to run a program called AUTOPB. The AUTOPB program
accepts two input files, SOURCE and PATCH, and produces three output files, OUT,
HELP, and MESSAGEFILE.

The job accepts two string parameters that provide the titles of the SOURCE and PATCH
files. Using these, the job constructs an elaborate string parameter to pass to AUTOPB.
This string parameter defines the titles for all the input and output files.

AUTOPB sets its own TASKVALUE to 1 unless it finds errors in the input files. The job
inspects the TASKVALUE after AUTOPB terminates and prints out the MESSAGEFILE if
there are errors.

 Tasking from Programming Languages

8600 0494–506 4–15

ALGOL
ALGOL is a structured, high-level programming language with advanced computational
and I/O capabilities. ALGOL also provides the most complete process initiation and
control capabilities of any language available.

Closely related to ALGOL are several extended versions of the ALGOL language.
DCALGOL is an extended ALGOL that includes some system control and data
communications interfaces. DMALGOL includes special constructs for data
management software. BDMSALGOL contains extensions for accessing Enterprise
Database Server databases. In the following discussion, the features described are
available in each of these languages, except where otherwise noted.

For further information about the ALGOL tasking features discussed in the following
subsections, refer to the ALGOL Programming Reference Manual, Volume 1: Basic
Implementation.

Structuring an ALGOL Program

The following ALGOL structures are considered blocks:

• Any complete ALGOL program. A complete ALGOL program can be initiated but
cannot be entered.

• Any typed procedure; that is, any procedure designed to be invoked as a function
that returns a value. (For example, Boolean procedures or real procedures.) Typed
procedures can be entered and initiated. However, if a typed procedure is initiated,
the returned value is discarded.

• A simple block, which is any group of declarations and statements that appears
between the words BEGIN and END and is not preceded by a procedure heading.
(An exception is the outer block of the program, which is not considered a simple
block.) Such a block cannot be entered or initiated. The block is executed when
control passes either from the previous statement in the program or from a GO TO
statement elsewhere in the program. (Note that a BEGIN...END statement is not
treated as a block if it does not include any declarations. In this case, it is simply a
compound statement.)

When you initiate one of these ALGOL structures, the system creates a process stack.
When you enter one of these ALGOL structures, the system creates an activation
record. When a BEGIN...END block that includes declarations is executed, the system
also creates an activation record.

An ALGOL program that initiates an asynchronous process should usually include a wait
statement to prevent the critical block from being exited while the offspring is in use. An
example of this wait statement is given in Section 2, “Understanding Interprocess
Relationships.”

ALGOL includes an abundance of flow-of-control statements, such as CASE, DO, FOR, IF
and WHILE. By using these statements together with task attribute interrogations, an
ALGOL program can provide conditional control over tasks.

Tasking from Programming Languages

4–16 8600 0494–506

Initiating Processes from ALGOL

An ALGOL program can initiate any procedure, including imported library procedures,
passed external procedures, and separate programs. However, if a typed procedure is
initiated, the returned value is discarded.

To initiate another object code file, an ALGOL program must declare an external
procedure and a task variable. The program must also assign the title of the object code
file to the NAME attribute of a task variable. The program can then initiate the object
code file with a process initiation statement that specifies the declared external
procedure and task variable that were previously prepared.

Three process initiation statements are available. The CALL statement initiates a
dependent, synchronous process. The PROCESS statement initiates a dependent,
asynchronous process. The RUN statement initiates an independent process.

You can implement coroutines in ALGOL using CALL and CONTINUE statements. The
CALL statement creates an active coroutine and changes the initiating process into a
continuable coroutine. Coroutines can pass control back and forth by using CONTINUE
statements.

Initiating Compilations from ALGOL

ALGOL does not provide any statement specifically for initiating compilations. However,
an ALGOL program can submit a WFL job that includes a COMPILE statement.
Alternatively, an ALGOL program can initiate a compiler like any other program, with a
CALL, PROCESS, or RUN statement. An example of this method is given under “ALGOL
Examples” later in this section.

Initiating Utilities from ALGOL

ALGOL does not provide any statements specifically for initiating utilities. However, the
CALL, PROCESS, and RUN statements can initiate any utility and pass any parameters
that are required by that utility. An example of an ALGOL program that initiates the
LOGANALYZER utility is given under “ALGOL Examples” later in this section.

 Tasking from Programming Languages

8600 0494–506 4–17

Initiating Interactive Processes from ALGOL

An ALGOL program initiated from a MARC or CANDE session inherits the STATION task
attribute of the session. The STATION attribute is in turn inherited by any processes
initiated by the ALGOL program. As a result, the processes initiated by the ALGOL
program can usually open a remote file at the originating terminal without having to make
any special remote file assignments.

However, remote file opens can fail because the STATION attributes stores the logical
station number (LSN), which is subject to change. To prevent this problem, you can
include statements such as the following in the ALGOL program:

EBCDIC ARRAY SOURCEARRAY[0:255];
REPLACE SOURCEARRAY BY MYSELF.SOURCENAME;
REPLACE MYSELF.STATIONNAME BY SOURCEARRAY;

The preceding statements assign the originating station name to the STATIONNAME
task attribute, which in turn is inherited by all tasks.

An ALGOL program initiated from a WFL job or from an ODT might not inherit a
STATION or STATIONNAME value. For further information, refer to “Work Flow
Language (WFL)” in this section and to the ODT discussion in Section 3, “Tasking from
Interactive Sources.”

Submitting WFL Jobs from ALGOL

You can use the ZIP statement to submit a WFL job for execution. You can store the
WFL job source in a disk file or in an array in the ALGOL program itself. Note that
messages produced by the WFL job or its descendants will not be forwarded to the
CANDE or MARC session that originated the ALGOL program. However, you can use
the CANDE ?MSG command or the MARC SMSG command to display these messages.

Access to Task Attributes in ALGOL

An ALGOL program can declare task variables for use in accessing the task attributes of
offspring processes. Every process-initiation statement must specify a task variable,
which thereafter is associated with the new process. An ALGOL program can
interrogate or assign task attribute values of the task variable before or after the task
variable is used in a process initiation statement. Assignments made to a task variable
before initiation are saved and applied to the process at initiation time.

An ALGOL program can use the predeclared task variables MYSELF and MYJOB to
access its own task attributes and those of its job.

An ALGOL program can interrogate and modify task attributes that store any of the
possible data types, such as Boolean, integer, and so on. The task attribute types
available in ALGOL include two types that are not available in WFL: event and task.

Tasking from Programming Languages

4–18 8600 0494–506

Communicating with Other Processes from ALGOL

ALGOL programs have full access to all of the interprocess communication methods
discussed in this guide, including globally declared objects, call-by-reference or call-by-
name parameters, events and interrupts, port files, and libraries. For details about any of
these interprocess communication methods, refer to Sections 13 through 21 of this
guide.

Restarting ALGOL Processes

An ALGOL program can include a CHECKPOINT statement that creates a checkpoint file.
The checkpoint file stores information about the current state of a process. You can use
the checkpoint file after a halt/load to restart the process. For further information, refer
to Section 11, “Restarting Jobs and Tasks.”

DCALGOL Features

In addition to the ALGOL features previously discussed, DCALGOL includes the
CONTROLCARD function, which you can use instead of the ZIP statement to submit
WFL jobs for execution. The CONTROLCARD function has several capabilities that are
unavailable through ZIP. For example, the CONTROLCARD function can

• Specify whether the WFL job should be a dependent or independent process

• Compile the job for syntax checking only, without executing it

• Specify that any messages generated by the job be routed to an MCS for display in
the originating session

• Define the invalid character to be something other than a question mark (?)

• Submit a job that is stored as a message in a DCALGOL queue

Additionally, the process that submits the CONTROLCARD function can determine
whether the WFL job compiled without syntax errors. If a WFL job submitted through
CONTROLCARD has syntax errors, the system assigns the value 1 to the TASKVALUE of
the process that submitted the job.

A privileged DCALGOL process can also duplicate the process initiation and control
capabilities that are available at an ODT. You can use the DCKEYIN statement to submit
system commands to the operating system. The GETSTATUS and SETSTATUS
functions directly invoke the operating system interfaces that are accessed by system
commands. For information about ODT process initiation and control capabilities, refer to
Section 3, “Tasking from Interactive Sources.”

 Tasking from Programming Languages

8600 0494–506 4–19

ALGOL Examples

The following sample program initiates a separate program called REPORTER. The
REPORTER program is initiated twice, both times as an asynchronous task, and is
passed a different parameter each time. The sample program then uses a
WAITANDRESET statement to prevent a critical block exit.

BEGIN
EBCDIC ARRAY DAILYTYPE[0:5],
 WEEKLYTYPE[0:6];
TASK T, T2;
PROCEDURE REPORTS (ACTUALARRAY);
 EBCDIC ARRAY ACTUALARRAY[*];
EXTERNAL;

REPLACE T.NAME BY "(JASMITH)OBJECT/REPORTER ON DATAPK.";
REPLACE DAILYTYPE[0] BY "DAILY";
PROCESS REPORTS (DAILYTYPE) [T];

REPLACE T2.NAME BY "(JASMITH)OBJECT/REPORTER ON DATAPK.";
REPLACE WEEKLYTYPE[0] BY "WEEKLY";
PROCESS REPORTS (WEEKLYTYPE) [T2];

WHILE (T.STATUS GTR 0 OR T2.STATUS GTR 0) DO
 WAITANDRESET (MYSELF.EXCEPTIONEVENT);
END.

The following is an example of initiating a compilation from an ALGOL program. The
sample program passes an array parameter and makes FILECARDS assignments to tell
the compiler what files to use:

BEGIN

TASK CTASK;
ARRAY SHEET[0:32];

PROCEDURE ALGOLCOMPILER(SHEET);
 ARRAY SHEET[*];
 EXTERNAL;

REPLACE CTASK.NAME BY "*SYSTEM/ALGOL ON DISK.";
REPLACE CTASK.FILECARDS BY
 "FILE CARD (KIND=DISK, TITLE=ALGOL/TASK);"
 "FILE CODE (KIND=DISK, TITLE=OBJECT/ALGOL/TASK);"
 48"00";

REPLACE SHEET BY 0 FOR 33 WORDS;
SHEET[8]:=VALUE(LIBRARY); % This statement specifies the
 % object code file disposition.
SHEET[0]:= 0 & 1[47:1];

Tasking from Programming Languages

4–20 8600 0494–506

CALL ALGOLCOMPILER(SHEET) [CTASK];

END.

The following is an example of initiating a utility from ALGOL. This sample program
includes a statement that initiates LOGANALYZER:

BEGIN

 TASK T;
 ARRAY ACTUAL_OPTIONS[0:19];

 PROCEDURE LOGRUN (FORMAL_OPTIONS);
 ARRAY FORMAL_OPTIONS[*];
 EXTERNAL;

 REPLACE T.NAME BY "*SYSTEM/LOGANALYZER ON DISK.";
 REPLACE ACTUAL_OPTIONS BY "PRINTER JOB 1260",48"00";

 CALL LOGRUN (ACTUAL_OPTIONS) [T];

 END.

The following ALGOL example submits WFL jobs for execution in two different ways.
The first ZIP statement submits the WFL job stored in array WFLARRAY. The second
ZIP statement submits the WFL job stored in the file WFL/TEST. Note the use of triple
quotes (""") in the REPLACE statement wherever a single quote (") is to occur in the WFL
program.

BEGIN
 EBCDIC ARRAY WFLARRAY[1:120];
 FILE WFLFILE(KIND=DISK,NEWFILE=FALSE,DEPENDENTSPECS=TRUE,
 TITLE="WFL/TEST.");

 REPLACE WFLARRAY BY
 "CLASS=2;JOBSUMMARY=SUPPRESSED;ELAPSEDLIMIT=120;"
 "MYSELF(STATIONNAME=#MYSELF(SOURCENAME));"
 "DISPLAY ("""HI""");";

 ZIP WITH WFLARRAY;
 ZIP WITH WFLFILE;
END.

 Tasking from Programming Languages

8600 0494–506 4–21

COBOL
COBOL is available in two different implementations: COBOL74 and COBOL85. These
correspond to the ANSI-74 and ANSI-85 levels of COBOL, respectively.

Both the COBOL implementations incorporate a full range of tasking capabilities. With
few exceptions, the same statements for performing tasking functions are provided in
each language. In the following descriptions, statements about COBOL refer to all three
COBOL implementations unless otherwise specified.

For further information about COBOL85, refer to the COBOL ANSI-85 Programming
Reference Manual, Volume 1: Basic Implementation. For further information about
COBOL74, refer to the COBOL ANSI-74 Programming Reference Manual, Volume 1:
Basic Implementation.

Structuring a COBOL Program

COBOL provides access to procedure-like subdivisions within the program, as well as to
procedures outside the program.

Internal Procedure Structure

Paragraphs and sections within a COBOL program are not considered blocks, because
executing a paragraph or a section does not result in the creation of an activation record.
Paragraphs and sections therefore do not affect the definition of critical blocks.

If the Binder is used to bind a procedure from a separate object code file into the
program, then the bound-in procedure is considered a separate block. The bound-in
procedure could be another COBOL program or a procedure from a program written in
some other language. A COBOL program can enter, but cannot initiate, a bound-in
procedure.

COBOL85 provides a structure called nested programs that is not available in COBOL74.
Nested programs are programs that reside inside another program or inside another
nested program. Nested programs resemble ALGOL procedures in the respect that
nested programs can include declarations of local variables. However, the rules
determining the scope of variable declarations in COBOL85 differ from the scope rules in
ALGOL. The COBOL85 scope rules are explained in the interprogram communication
discussion in the COBOL ANSI-85 Programming Reference Manual, Volume 1: Basic
Implementation.

COBOL85 can enter, but cannot initiate, nested programs.

Note: COBOL85 is currently implemented in such a way that exiting a nested program
cannot cause a CRITICAL BLOCK EXIT error. However, this implementation is subject to
change. Nested programs may affect the critical block definition in future releases.

Tasking from Programming Languages

4–22 8600 0494–506

Another structure unique to COBOL85 is that of consecutive programs. Consecutive
programs are completely separate programs that are stored, one after the other, in the
same source file. When you compile a source file that contains consecutive programs,
the compiler creates a separate object code file for each consecutive program. The
resulting object code files are not linked in any way and have no special abilities related
to tasking or interprocess communication.

External Procedure Structure

The following rules govern COBOL access to external procedures:

• Separate programs

A COBOL program can declare external procedures and use them to initiate separate
programs.

• Passed external procedures

COBOL does not provide any method for passing procedures as parameters.
Therefore, a COBOL program generally has no access to passed external
procedures.

One exception to this rule occurs when a program passes a constant or an
expression by name to a COBOL program. The system creates a procedure called a
thunk, whose purpose is to evaluate the constant or expression. Whenever the
COBOL program interrogates the parameter, the system executes the thunk on the
COBOL program's process stack.

• Imported library procedures

A COBOL program can enter, but cannot initiate, a procedure imported from a library.

A critical block exit error can occur if the COBOL program terminates before an
asynchronous offspring or a coroutine. For information about how to prevent such
critical block exits, refer to Section 2, “Understanding Interprocess Relationships.”

Initiating Processes from COBOL

A COBOL program can initiate separate programs as processes, but cannot initiate
internal sections, paragraphs, or nested programs.

Separate object code files are initiated by statements that have the following general
form:

<verb> <task variable> WITH <section name> [USING <parameter list>]

The verb in this statement can be CALL, which initiates a synchronous, dependent
process; PROCESS, which initiates an asynchronous, dependent processor; or RUN,
which initiates an independent process. EXECUTE is a synonym for RUN.

The task variable in this statement is a data item declared with a usage of TASK,
CONTROL-POINT, or CP.

 Tasking from Programming Languages

8600 0494–506 4–23

The section name in this statement must have been previously defined in the
DECLARATIVES portion of the PROCEDURE DIVISION. The section name definition in
the DECLARATIVES must be followed by a USE EXTERNAL statement.

The COBOL program must also associate an object code file title with a <section name>
by one of the following methods:

• Using a mnemonic name in the SPECIAL-NAMES paragraph. This is the preferred
method.

• Using a MOVE statement to assign the object code file title to the identifier specified
in the USE EXTERNAL statement in the DECLARATIVES.

• Assigning the NAME task attribute to the task variable before task initiation. The title
assigned must be a string enclosed in quotes and terminated with a period.

The USING <parameter list> clause passes parameters to the initiated program. If no
parameters are to be passed, you can omit this clause.

Using Coroutines in COBOL

You can implement coroutines in COBOL using CALL, CONTINUE, and EXIT PROGRAM
statements. The CALL statement creates a synchronous task that is an active coroutine
and changes the parent process into a continuable coroutine. The task can return control
to its parent by executing an EXIT PROGRAM statement. The parent can return control
to its task by executing a CONTINUE <task variable> statement.

The EXIT PROGRAM statement, in addition to transferring control to the parent, also
specifies where execution resumes when the parent later continues the task. The
simple form EXIT PROGRAM specifies that the task resume from the beginning. The
EXIT PROGRAM RETURN HERE form specifies that the task resume with the statement
that follows the EXIT PROGRAM statement.

In COBOL85, the EXIT PROGRAM statement in a nested program merely causes the
nested program to be exited. To return control from a synchronous task to a parent
program, the EXIT PROGRAM statement must occur in the main program rather than in a
nested program.

Entering Individual COBOL Procedures

COBOL allows the use of certain special formats for the CALL statement that enter,
rather than initiate, a procedure.

A COBOL program can use a CALL statement with one of the following forms to enter a
bound-in procedure:

CALL <section name>.
CALL <section name> USING <parameter list>.

Tasking from Programming Languages

4–24 8600 0494–506

A COBOL program can use any of several forms of the CALL statement to enter an
imported library procedure. The following is an example:

CALL "PROCEDUREDIVISION OF OBJECT/COBOL/PROG" USING PARAM1.

COBOL85 allows you to optionally specify an access value of BYTITLE or BYFUNCTION
in the CALL statement, as in the following example:

CALL "PROCEDUREDIVISION OF DELTASUPPORT BYFUNCTION" USING PARAM1.

COBOL85 also supports the use of explicit library declarations. For examples of libraries
and user programs written in COBOL74 and COBOL85, refer to Section 18, “Using
Libraries.”

By contrast, the GO and PERFORM statements do not enter procedures. They simply
transfer control to a selected paragraph or section without creating an activation record.

Resolving Ambiguous CALL Statements in COBOL85

In COBOL85, the form of the CALL statement that invokes a nested program is identical
to the form that implicitly invokes a library. The following is an example of such a
statement:

CALL "QROUTINE".

By default, the system treats this as an invocation of a nested program. If the COBOL85
program does not contain a nested program with the requested name, or the nested
program with that name is not declared with the appropriate scope, the system treats
the CALL statement as an implicit library invocation. The system links the calling
program to a library whose title matches the name specified in the CALL statement.

Initiating Compilations from COBOL

COBOL does not include any statement specifically for initiating compilations. However,
a COBOL program can submit a WFL job that includes a COMPILE statement.
Alternatively, a COBOL program can initiate a compiler like any other program, with a
CALL, PROCESS, or RUN statement.

Initiating Utilities from COBOL

COBOL does not include any statements specifically for initiating utilities. However, the
CALL, PROCESS, and RUN statements can initiate any utility and pass any parameters
that are required by the utility.

 Tasking from Programming Languages

8600 0494–506 4–25

Initiating Interactive Processes from COBOL

A COBOL program initiated from a MARC or CANDE session inherits the STATION task
attribute of the session. The STATION attribute, in turn, is inherited by any processes
initiated by the COBOL program. As a result, these processes can usually open a remote
file at the originating terminal without having to make any special remote file
assignments.

However, remote file opens can fail because the STATION attributes stores the logical
station number (LSN), which is subject to change. To prevent this problem, you can
include statements such as the following in the COBOL program:

MOVE ATTRIBUTE SOURCENAME OF MYSELF TO NAMEBUF.
CHANGE ATTRIBUTE STATIONNAME OF MYSELF TO NAMEBUF.

The preceding statement assigns the originating station name to the STATIONNAME
task attribute, which in turn is inherited by all tasks. These statements assume that
NAMEBUF was declared as 01 NAMEBUF PIC X(80).

A COBOL program initiated from a WFL job or from an ODT might not inherit a STATION
or STATIONNAME value. For further information, refer to “Work Flow Language (WFL)”
earlier in this section and to “Communicating with an ODT” in Section 3, “Tasking from
Interactive Sources.”

Submitting WFL Jobs from COBOL

A COBOL85 or COBOL74 program can submit WFL jobs with a statement of the
following form:

CALL SYSTEM WFL USING <identifier or literal>

If a literal is used in this statement, it must be a string literal consisting of the complete
text of a WFL source program. If an identifier is used in this statement, the identifier
must be that of a data item that contains the complete WFL source program.

Note that when a COBOL program submits a WFL job, any messages produced by the
WFL job or its descendants are not forwarded to the CANDE or MARC session that
originated the COBOL program. However, you can use the CANDE ?MSG command or
the MARC SMSG command to display these messages.

Access to Task Attributes in COBOL

A COBOL program can access task attributes by using a task variable. A COBOL
program can create a task variable by declaring a data item with a USAGE of TASK, CP,
or CONTROLPOINT in the DATA DESCRIPTION entry.

The MYSELF and MYJOB task variables are available in COBOL and enable a COBOL
program to access its own task attributes or those of its job.

Tasking from Programming Languages

4–26 8600 0494–506

A COBOL program can read task attribute values by using the MOVE statement, and can
set task attributes using the CHANGE statement.

COBOL programs can use all types of task attributes, including event-valued and task-
valued task attributes.

Invoking COBOL Programs

Most COBOL74 programs can be invoked in either of two ways: through process
initiation statements or through the library linkage mechanism. If the program is invoked
through the library linkage mechanism, the program automatically freezes and exports
the PROCEDURE DIVISION. This automatic freeze occurs even though the program
does not include a FREEZE statement or export declaration. For further information
about COBOL library capabilities, refer to Section 18, “Using Libraries.”

By contrast, a COBOL85 program can be initiated as a library only if it includes the $SET
LIBRARYPROG compiler control statement or the CALL SYSTEM FREEZE statement.

Communicating with Other Processes from COBOL

COBOL programs have access to almost all the interprocess communication methods
discussed in this guide, including call-by-reference parameters, events and interrupts,
port files, and libraries. The only interprocess communication method that does not
apply to COBOL is the use of globally declared objects, because COBOL cannot initiate
an internal procedure. For details about any of these interprocess communication
methods, refer to Sections 13 through 21.

COBOL85 also supports ANSI-defined methods of interprogram communication. For the
most part, ANSI interprogram communication simply defines the relationships between
nested programs that are all executed as part of a single process. By contrast, the
interprocess communication features of COBOL85 are enhancements that allow data to
be exchanged between separate processes.

Terminating Processes from COBOL Programs

You can use the DETACH statement to terminate the process associated with a given
task variable. The task variable must have been previously used in a CALL, PROCESS, or
RUN statement.

The DETACH <task variable> statement has the same effect as using the CHANGE
statement to assign the STATUS task attribute a value of TERMINATED. However, from
the standpoint of COBOL programming style, the DETACH is the preferable statement to
use for terminating processes.

The program that contained the DETACH statement continues execution asynchronously
while the system terminates the specified process. If a program is to reuse the task
variable in another process initiation statement, the program should first read the
STATUS attribute to determine whether the system has finished terminating the
process. If the process is terminated, then the STATUS attribute returns a value of
TERMINATED.

 Tasking from Programming Languages

8600 0494–506 4–27

The DETACH statement is also used to detach events from interrupt procedures. This
use of DETACH is described under “Attaching or Detaching an Interrupt” in Section 16,
“Using Events and Interlocks.”

COBOL Examples

The following program can be compiled in COBOL74 or COBOL85. This program
initiates a separate program called OBJECT/COBOL/TEST using the task variable TASK-
VAR-1:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TASK-VAR-1 USAGE IS TASK.
01 EXT-NAME PIC X(80).
PROCEDURE DIVISION.
DECLARATIVES.
PROC-EXTERNAL SECTION.
 USE EXTERNAL EXT-NAME AS PROCEDURE.
END DECLARATIVES.

START-HERE SECTION.
P1.
 MOVE "OBJECT/COBOL/TEST." TO EXT-NAME.
 PROCESS TASK-VAR-1 WITH PROC-EXTERNAL.

PROCWAIT SECTION.
P2.
 WAIT AND RESET UNTIL ATTRIBUTE EXCEPTIONEVENT OF MYSELF.
 IF ATTRIBUTE STATUS OF TASK-VAR-1 IS GREATER THAN
 VALUE TERMINATED THEN GO PROCWAIT.
STOP RUN.

The following program can be compiled in COBOL74 or COBOL85. This program
invokes OBJECT/COBOL/TEST as an imported library procedure rather than as a task.
OBJECT/COBOL/TEST is executed as part of the calling process.

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.
START-HERE SECTION.
P1.
 CALL "PROCEDUREDIVISION IN OBJECT/COBOL/TEST".
STOP RUN.

Tasking from Programming Languages

4–28 8600 0494–506

The following is the program OBJECT/COBOL/TEST. If this program is compiled in
COBOL74, then it can be invoked by either of the two preceding programs, and execute
either as a task or as a library. If this program is compiled in COBOL85, then it can be
invoked only as a task. If you add the $SET LIBRARYPROG compiler control statement
and compile this program in COBOL85, then the program can be invoked as a library.

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 MIXNO BINARY PIC 9(11).
PROCEDURE DIVISION.
START-HERE SECTION.
P1.
 MOVE ATTRIBUTE MIXNUMBER OF MYSELF TO MIXNO.
 DISPLAY MIXNO.
STOP RUN.

The following program can be compiled in COBOL74 or COBOL85. This program
submits WFL input in array form for execution. The WFL statements are stored in an
array of picture items. Note that if any of the WFL statements includes a quotation
mark ("), the quotation mark must be represented by two quotation marks ("") in the
MOVE statement that stores the statement in the array. The use of double quotation
marks is necessary because the compiler interprets a single quotation mark as the end of
the WFL input rather than as part of the WFL input.

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 PARAM.
 05 PARAM-1 PIC X(80).
 05 PARAM-2 PIC X(80).
 05 PARAM-3 PIC X(80).

PROCEDURE DIVISION.
START-HERE SECTION.
P1.
MOVE "CLASS=2;JOBSUMMARY=SUPPRESSED;ELAPSEDLIMIT=120;" TO PARAM-1.
MOVE "MYSELF(STATIONNAME=#MYSELF(SOURCENAME));" TO PARAM-2.
MOVE "DISPLAY (""HI AGAIN"");" TO PARAM-3.
CALL SYSTEM WFL USING PARAM.

STOP RUN.

 Tasking from Programming Languages

8600 0494–506 4–29

The following program can be compiled in COBOL74 or COBOL85. This program
initiates a utility. This example also shows how to pass parameters to a task from a
COBOL program.

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TASK-VAR-1 USAGE IS TASK.
01 EXT-NAME PIC X(80).
01 ACTUALPARAM PIC X(19).
LOCAL-STORAGE SECTION.
LD PARAMS.
 01 FORMALPARAM PIC X(19).
PROCEDURE DIVISION.
DECLARATIVES.
PROC-EXTERNAL SECTION.
 USE EXTERNAL EXT-NAME AS PROCEDURE
 WITH PARAMS USING FORMALPARAM.
END DECLARATIVES.
START-HERE SECTION.
P1.
 MOVE "*SYSTEM/LOGANALYZER ON DISK." TO EXT-NAME.
 MOVE "PRINTER JOB 1260" TO ACTUALPARAM.
 CALL TASK-VAR-1 WITH PROC-EXTERNAL USING ACTUALPARAM.
 STOP RUN.

Tasking from Programming Languages

4–30 8600 0494–506

The following program can be compiled in COBOL74 or COBOL85. This program
initiates a compilation:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TASK-VAR-1 USAGE IS TASK.
01 EXT-NAME PIC X(80).
01 VALUE-ONE PIC 9(11) BINARY VALUE 1.
01 ACTUALPARAM.
 03 PARAMWORD BINARY PIC 9(11) OCCURS 33.
LOCAL-STORAGE SECTION.
LD PARAMS.
01 FORMALPARAM.
 03 FORMALWORD BINARY PIC 9(11) OCCURS 33.
PROCEDURE DIVISION.
DECLARATIVES.
PROC-EXTERNAL SECTION.
 USE EXTERNAL EXT-NAME AS PROCEDURE
 WITH PARAMS USING FORMALPARAM.
END DECLARATIVES.
START-HERE SECTION.
P1.
 MOVE "*SYSTEM/ALGOL ON DISK." TO EXT-NAME.
 MOVE 2 TO PARAMWORD (9).
 MOVE VALUE-ONE TO PARAMWORD (1) [00:47:01].
 CHANGE ATTRIBUTE FILECARDS OF TASK-VAR-1 TO
 "FILE CARD (KIND=DISK,TITLE=ALGOL/TASK);".
 CHANGE ATTRIBUTE FILECARDS OF TASK-VAR-1 TO
 "FILE CODE (KIND=DISK,TITLE=OBJECT/ALGOL/TASK);".
 CALL TASK-VAR-1 WITH PROC-EXTERNAL USING ACTUALPARAM.
 STOP RUN.

In this example, the COBOL program initiates the compiler directly as a task. An
alternative would be for the program to submit in array form a WFL program that
contains a COMPILE statement.

 Tasking from Programming Languages

8600 0494–506 4–31

Other Languages
The other user languages available are C, FORTRAN77, Pascal, and RPG. These
languages are not primarily intended for process initiation and control. However, most of
these languages have one or more of the following tasking capabilities:

• Submitting WFL jobs

If a program can submit a WFL job, the job, in turn, can initiate and control programs
written in any language.

• Invoking library procedures

You can implement ALGOL or COBOL libraries that export procedures that initiate or
control processes. Any language using libraries can invoke these procedures.

• Using bound-in procedures

You can bind ALGOL procedures or complete COBOL programs into programs
written in other languages. These bound-in procedures can be designed to initiate
and control processes.

The following are the tasking capabilities of each language.

• C

Includes tasking features defined by the POSIX standards. These features include
the fork() procedure and the exec() procedures. For an overview of process handling
in C, refer to the POSIX User's Guide.

C programs can also invoke library procedures in libraries written in other languages.
For further information, refer to the C Programming Reference Manual, Volume 1:
Basic Implementation.

• FORTRAN77

Can invoke library procedures in libraries written in other languages. Additionally, you
can add tasking features to a FORTRAN77 program by binding in ALGOL procedures
or COBOL programs. For further information, refer to the FORTRAN77 Programming
Reference Manual.

• Pascal

Can invoke library procedures in libraries written in other languages. Additionally, you
can add tasking features to a Pascal program by binding in ALGOL procedures or
COBOL programs. For further information, refer to the Pascal Programming
Reference Manual, Volume 1: Basic Implementation.

• RPG

Can include ZIP statements that submit WFL jobs for execution. An RPG program
can use the external indicators U1 through U8 to interrogate the SW1 through SW8
task attributes. For further information, refer to the Report Program Generator (RPG)
Programming Reference Manual, Volume 1: Basic Implementation.

Tasking from Programming Languages

4–32 8600 0494–506

8600 0494–506 5–1

Section 5
Establishing Process Identity and
Privileges

Process identity is the term used in this guide for a number of task attributes and other
features that uniquely identify a process and its capabilities. This section explains:

• The various aspects of process identity and their implications for security, billing, and
operations

• The security classes a process can belong to, and the privileges associated with each
of these classes

• Issues related to initiating processes with different USERCODE or FAMILY values
than those of the initiator

• The way an interactive program can temporarily assume the identity of a user

Process Identity
Some of the aspects of process identity, such as mix numbers, are assigned by the
operating system. You can control other aspects of process identity, such as the
usercode, although the system provides default values for these aspects if you do not.

Mix Number, Session Number, Stack Number, and MPID
Attribute

In Section 1, “Understanding Basic Tasking Concepts,” it was pointed out that there may
be multiple processes running that are instances of the same object code file. Thus, the
object code file title cannot serve as a unique identification for a process. Instead, the
system assigns two identifying numbers to a process: the mix number and the stack
number. A related type of identifying number, which applies to CANDE and MARC
sessions, is the session number. In addition, the MPID task attribute can be used to
identify a process. This MPID task attribute is especially useful when more than one
process using the same object code file is running.

The mix number is a 5-digit number that the system assigns to each process when the
process is initiated. The name arises because all the processes running on the system
are collectively referred to as the system mix, and the mix number distinguishes a
process from the other processes in the mix. Mix numbers identify processes in the
system log as well as in many system commands and CANDE commands that affect
running processes or provide information about them.

Establishing Process Identity and Privileges

5–2 8600 0494–506

The system assigns mix numbers to WFL jobs when they are first entered into a job
queue. This mix number remains the same when the WFL job leaves the queue and
begins executing.

Each process or queued WFL job is generally assigned a mix number one higher than the
last assigned number in the mix number pool. However, a jump in the numbering can
occur after a halt/load. This jump occurs because the system periodically reserves a
range of numbers for use by new processes. After a halt/load, the system avoids
reusing any number in the range reserved at the time of the halt/load.

The mix number pool is determined by the maximum mix number that is configured on
the system. When the system is running in an active MoreTasks state (OP+
MORETASKS or OP+ 32 followed by a halt/load), the maximum mix number can be
configured between 9999 and 65535 using the MAX MIX = <number> form of the MAX
(Maximums) system command. When the system is running in a nonactive MoreTasks
state (OP– MORETASKS or OP– 32 followed by a halt/load), the maximum mix number is
fixed at 9999.

When the mix numbers reach the maximum configured mix number, which ranges from
9999 to 65535, the number starts over at 100. Certain low numbers are reserved for
some operating system processes. Also, a number cannot be reused if the last process
to which it was assigned is still in the mix.

Processes can determine their own mix numbers, or the mix number of a related
process, by interrogating the MIXNUMBER task attribute. However, the mix number has
little use in programmatic tasking. A process accesses the task attributes of another
process by specifying a particular task variable, rather than by specifying a particular mix
number.

A concept related to mix numbers is that of session numbers. The system assigns
session numbers to identify individual CANDE and MARC sessions. This session number
is inherited by the JOBNUMBER task attribute of tasks initiated from a session.

The system selects these session numbers from either the mix number pool
(determined by the value of the system command, MAX MIX = <number>), or a
separate session number pool (determined by the value of the MAX SESSION =
<number>). The following are the effects of this command:

• The MAX SESSION value cannot be less than the MAX MIX value. An increase in
the MAX MIX value results in a corresponding increase in the MAX SESSION value.
An attempt to reduce the MAX SESSION value to be less than the MAX MIX value
results in no change in the MAX SESSION value.

• If the MAX SESSION value is the same as the MAX MIX value, then the system
allocates session numbers from the mix number pool, which ranges from 100 to the
MAX MIX value. The system never assigns the same number to both a process and
a session.

 Establishing Process Identity and Privileges

8600 0494–506 5–3

• If the MAX SESSION value is greater than the MAX MIX value, then the system
allocates session numbers from a separate session number pool. The numbers in
this pool range from the MAX MIX value +1 through the MAX SESSION value. If a
session number is not available in the session number pool, a value is selected from
the mix number pool.

The use of a session number pool enables many more sessions to be active than
would otherwise be possible, because you can create a session number pool that is
larger than the mix number pool, and none of the numbers are used as mix numbers.

Like the mix number, the stack number of a process is a number assigned by the
operating system. The stack number is unique to the process and remains constant for
the lifetime of the process. However, while the mix number is intended primarily for use
by system operators, the stack number of a process is intended primarily for internal use
by the operating system. Yet the stack number is visible to operators and programmers
in the following contexts:

• The stack number appears in the system log records for Major Type 0, Minor Type 1
(Establish Identity) and Major Type 1, Minor Types 1 (BOJ), 2 (EOJ), 3 (BOT), 4 (EOT),
5 (File Open), and 6 (File Close). The stack number is expressed in hexadecimal
format.

• The output from the OT (Inspect Stack Cell) system command includes the stack
number for the process. The stack number is expressed in hexadecimal format.
Thus, in the following output, the stack number is 011B:

011B STACK CELL 20= 7 09624650E003 (HEX)

• The PROCESSID function in ALGOL returns the stack number of the process. The
stack number is expressed in integer format.

• The stack number can appear in memory dump analyses created by
DUMPANALYZER. The stack number is reported in hexadecimal format.

• The STACKNUMBER task attribute returns the stack number of a process. The stack
number is returned in integer format.

The MPID attribute is not assigned by the operating system, but can be assigned to a
process before initiation. The attribute remains constant for the lifetime of the process.
The MPID attribute enables system operators to distinguish between multiple instances
of a process using a single object code file. The value of the attribute is visible to
operators in the following contexts:

• The value is shown in response to mix-related system commands (A, C, J, LIBS, M,
S, and W). It appears as a quoted string after the process name.

• The value appears in system log records for Major Type 0, Minor Type 1 (Establish
Identity), and Major Type 1, Minor Types 1 (BOJ) and 3 (BOT).

Establishing Process Identity and Privileges

5–4 8600 0494–506

Usercode, Access Code, Charge Code, and Group Code

USERCODE, ACCESSCODE, CHARGE, and GROUPCODE are closely related task
attributes that help to specify the identity and privileges of a process.

The USERCODE task attribute stores a value that is intended to identify the user who
initiated the process. In actual practice, more than one user of the system can use the
same usercode, but only if all the users agree to do so. This is because you must know
the password associated with a usercode to use the usercode, and only the owner of the
usercode can tell you the password.

Usercodes are created by the security administrator for the system, usually by using the
MAKEUSER utility. The security administrator can associate a variety of usercode
attributes with each usercode. Some of these usercode attributes confer various types
of special security privileges, as described under “Process Security Classes” later in this
section.

Other usercode attributes interact with the values of various task attributes. Some of
these usercode attributes provide default values for the corresponding task attributes.
Other usercode attributes define a range of permitted values for a task attribute, or
specify whether the task attribute must have a value. The following are these usercode
attributes and the task attributes that are related to them:

Usercode Attribute Task Attribute

ACCESSCODELIST,
ACCESSCODENEEDED

ACCESSCODE

CHARGECODE, CHARGEREQ,
USEDEFAULTCHARGE

CHARGE

CANDEDESTNAME DESTNAME

CLASS, CLASSLIST, ANYOTHERCLASSOK CLASS

CONVENTION CONVENTION

DEPTASKACCOUNTING DEPTASKACCOUNTING

FAMILY FAMILY

FILEACCOUNTING FILEACCOUNTING

GROUPCODE GROUPCODE

LANGUAGE LANGUAGE

PRINTDEFAULTS PRINTDEFAULTS

PRIORITY PRIORITY

SAVEMEMORYLIMIT SAVEMEMORYLIMIT

SUPPLEMENTARYGRPS SUPPLEMENTARYGRPS

TEMPFILELIMIT TEMPFILELIMIT

 Establishing Process Identity and Privileges

8600 0494–506 5–5

The values supplied by usercode attributes are propagated to their corresponding task
attributes in the following ways:

• MARC and CANDE read some usercode attributes when you log on, and store the
corresponding task attribute values for your session. Thereafter, if you initiate a
process from that session, the process inherits the task attributes of the session.

• If a WFL job includes a USERCODE assignment in the job header, the WFL job
inherits the attribute values associated with the usercode.

For details about the effects of usercode attributes on task attributes, refer to the task
attribute descriptions in the Task Attributes Programming Reference Manual.

The ACCESSCODE task attribute serves as a form of secondary identification, in addition
to the usercode. This identification is relevant only when a process attempts to use a file
that is guarded by a guard file; refer to “Nonprivileged Status” later in this section for
further details.

The CHARGE task attribute serves as a form of group identification for billing purposes.
Thus, all the people working in a particular department might have usercodes with the
same CHARGECODE usercode attribute. The system records the CHARGE attribute of
each process in the system log. This makes it possible for site personnel to write billing
programs that analyze the system usage on a charge code by charge code basis. For
further information about billing programs, refer to the System Administration Guide.

The GROUPCODE and SUPPLEMENTARYGRPS task attributes provide another form of
group identification. The GROUPCODE attribute identifies the primary group to which a
process belongs, and the SUPPLEMENTARYGRPS attribute identifies one or more
secondary groups. The group identification can affect the ability of a process to access
files that have the GROUP file attribute set. For further information about group usage,
refer to the POSIX User's Guide.

You can override the propagation of most usercode attributes to task attributes by
explicitly assigning task attributes to the process in question. However, the system
enforces some consistency checks to ensure that the USERCODE, ACCESSCODE, and
CHARGE attribute values are consistent with each other. For details about these
consistency checks, refer to the descriptions of these attributes in the Task Attributes
Programming Reference Manual.

A process can change its own usercode while it is running by making an assignment to
the USERCODE attribute. Such an assignment must specify the password as well as the
usercode. The system verifies the correctness of the usercode and password before
making the usercode assignment.

Establishing Process Identity and Privileges

5–6 8600 0494–506

Name

The name of a process is stored in the NAME task attribute of the process. The value of
this attribute is, by default, the same as the title of the object code file that the process is
executing. The process name appears in system log entries generated for the process.
The process name also appears in the output from system mix display commands such
as A (Active Mix Entries), W (Waiting Mix Entries), and C (Completed Mix Entries).

In addition to aiding the operator, the process name can affect the ability of the process
to use some files. If a file has a guard file associated with it, the guard file can include a
PROGRAM clause that specifies access rights for processes with a given name.

In some cases, the NAME value for a process can be different from its object code file
title. This can occur if a WFL process or an ALGOL process initiates an internal
procedure. The initiating process can make an arbitrary assignment to the NAME
attribute of the new process before initiating it.

The initiating process can even assign the internal process the NAME of an entirely
different program. This method enables the process to circumvent the PROGRAM
clause in a guard file. To prevent such abuses, a CODEFILE clause is also available for
guard files. This clause ignores the process name and instead specifies access rights for
processes having a particular object code file title. For details, refer to the Security
Features Operations and Programming Guide.

Object Code File

An operator can use the MP (Mark Program) system command to assign any of several
options to an object code file. Some of these options confer special types of security
status on a process, and these options are the following:

• COMPILER. This option marks an object code file with compiler status. The effects
of compiler status are described under “Compiler Status” later in this section.

• PU. This option marks an object code file with privileged status. The effects of
privileged status are discussed under “Privileged Status” later in this section.

• SECADMIN. This option marks an object code file with security administrator status.
The effects of security administrator status are described under “Security
Administrator Status” later in this section.

• TASKING. This option marks an object code file with tasking status. The effects of
tasking status are described under “Tasking Status” later in this section.

The MP system command also can be used to mark an object code file with granulated
privileges when the PU option is undesirable. Each granulated privilege is a subset of
privileged status. Available granulated privileges are CHANGE, CHANGESEC,
CREATEFILE, EXECUTE, GETSTATUS, GSDIRECTORY, IDC, LOCALCOPY,
LOGINSTALL, LOGOTHERS, READ, REMOVE, SETSTATUS, SYSTEMUSER,
USERDATA, and WRITE. Their effects are described under “Privileged Status” later in
this section.

 Establishing Process Identity and Privileges

8600 0494–506 5–7

When an object code file is initiated, the resulting process receives the privileges that
were assigned to the object code file. The process can make some of the procedures in
the object code file available to other processes by initiating an internal procedure, by
initiating a process and passing a procedure parameter, or by becoming a library and
exporting procedures. Any of these processes temporarily assumes the privileges
assigned to the object code file while it is executing procedures from the object code file.

The following subsections explain how these privileges are propagated to processes
from object code files.

Transparent Object Code File Privileges

Most of the options available through the MP (Mark Program) system command have
only two states: set or reset. However, the MP command enables you to specify a third
state for the PU, SECADMIN, TASKING, and granulated privilege options. This third state
is called transparent. The following are MP commands and the security categories they
assign:

MP Command Security Category

MP <file title> + <granulated privilege> Granulated privileged

MP <file title> + <granulated privilege>
TRANSPARENT

Granulated privileged transparent

MP <file title> + PU Privileged

MP <file title> + PU TRANSPARENT Privileged transparent

MP <file title> -PU Nonprivileged

MP <file title> + SECADMIN Security administrator

MP <file title> + SECADMIN TRANSPARENT Security administrator transparent

MP <file title> -SECADMIN Non-security administrator

MP <file title> + TASKING Tasking

MP <file title> + TASKING TRANSPARENT Tasking transparent

MP <file title>-TASKING Nontasking

Each option can be in only one state at a time: enabled, disabled, or transparent.
However, the three options (PU, SECADMIN, and TASKING) do not have to be in the
same state. The following command assigns privileged status and security administrator
transparent status, and removes tasking status:

MP <file title> + PU, + SECADMIN TRANSPARENT, - TASKING

Setting any granulated privilege option disables the PU option. Setting the PU option
disables all granulated privilege options. The USERDATA option is mutually exclusive of
the SECADMIN TRANSPARENT option and the SECADMIN option is mutually exclusive
of the USERDATA TRANSPARENT option.

Establishing Process Identity and Privileges

5–8 8600 0494–506

The concept of transparent status is intended primarily for libraries, to enable the actions
of a library to be applied with the status of the user program that invokes the library. If a
procedure resides in an object code file that has one of these options in the transparent
state, then

• If the procedure is initiated, the resulting process is treated as if the option were
disabled.

• If the procedure is entered, it inherits the enabled or disabled state of the option of
the invoking procedure. Privileged, granulated privilege, security administrator, or
tasking status can be inherited through a series of privileged transparent procedures.

For example, if a privileged program initiates a procedure in a privileged transparent
library, the procedure is executed as nonprivileged. However, if the privileged program
enters the same procedure instead of initiating it, the procedure is executed as
privileged.

For information about how privileged transparent status applies to file access rights, refer
to Section 19, “Using Shared Files.”

Delayed Effects of Object Code File Privileges

When you mark an object code file with special privileges, these privileges do not affect
any processes that are already running. The privileges take effect the next time you
initiate the object code file.

Copying Privileged Object Code Files

If you copy an object code file marked with privileged, security administrator, or compiler
status, the copy retains the same privileges as the original. However, the system
administrator can limit the ability to copy or execute such object code files by using the
RESTRICT (Set Restrictions) system command. For details, refer to the discussion of the
RESTRICT command in the Security Administration Guide.

Originating Source

When you initiate a process through a peripheral device, the system records the type of
peripheral device in the SOURCEKIND attribute. There is one situation in which the
SOURCEKIND value can make an important difference in the capabilities of the process.
If the SOURCEKIND value is ODT, the system accords the process ODT status, which is
described under “Process Security Classes” in this section.

Additionally, the system records the physical unit number or logical station number (LSN)
of the originating peripheral device in the SOURCESTATION task attribute. The value of
this attribute allows messages generated by a process to be routed back to the station
that originated the process, so that you can easily monitor the progress of your
processes.

 Establishing Process Identity and Privileges

8600 0494–506 5–9

MARC and CANDE similarly assign the LSN of a session to the STATION task attribute of
any tasks (but not jobs) initiated from that session. Refer to Section 9, “Controlling
Process I/O Usage” for a discussion of the effects of this attribute.

The system also records the name of the originating station in the SOURCENAME task
attribute. The station name can be more stable than the LSN, which often changes after
a halt/load or Transaction Server quit.

Process Security Classes
The system software provides a number of security features that you can use to regulate
the ability of processes to access other users' files or perform other restricted actions.
Processes are classified according to security classes, and each security class allows the
process to perform a somewhat different set of restricted actions.

The following subsections describe the capabilities of each of the process security
classes and explain how a process can be assigned to a particular class. For further
information about any of the security features discussed, refer to the Security Features
Operations and Programming Guide and the Security Administration Guide.

The following are the security classes a user process can belong to:

• Nonprivileged

• Privileged

• Nonusercoded

• Operator display terminal (ODT)

• SYSTEMUSER

• Security administrator

• Compiler

• MCS

• Tasking

A process can belong to more than one of these classes, although certain classes are
mutually exclusive. In addition, a process can belong to different security classes at
different points in its execution.

Additional security classes exist for operating system processes. For information about
system library security and library linkage classes, refer to Section 18, “Using Libraries.”

For a discussion of certain special security issues that arise from the sharing of logical
files between processes, refer to Section 19, “Using Shared Files.”

Establishing Process Identity and Privileges

5–10 8600 0494–506

Nonprivileged Status

The default security class for a process is nonprivileged. On a typical system, the vast
majority of processes fall into this class. A nonprivileged process can perform any of the
following actions:

• Inspect or modify any object within the extended addressing environment of the
process. For information about the addressing environment, refer to Section 15,
“Using Global Objects,” and Section 17, “Using Parameters.”

• Create, remove, open, close, read, write, copy, or access the file attributes of data
files.

• Initiate, copy, remove, open, close, read, or access the file attributes of object code
files.

• Use the nonprivileged form of the GETSTATUS directory call. The nonprivileged form
of this call provides information only about directories having the same usercode as
the process.

• Use the VOLUME CHANGE form of the WFL VOLUME statement to affect tape
volumes whose FAMILYOWNER value is the same as the usercode of the process.

• Use the WFL ARCHIVE command to back up, roll out, or restore files that have the
same usercode as the process.

• Use the MAKEUSER utility to change owner-modifiable attributes of the usercode of
the process. A nonprivileged process can change only attributes of its own
usercode. Of these attributes, the process can change only those marked with a
status of OWNER by a PRIVILEGES segment in the USERDATAFILE.

The ability of a nonprivileged process to access a particular disk file is determined by the
values of certain task attributes and file attributes. The following task attributes affect
file access rights:

• USERCODE

The USERCODE value generally grants the process access to files that are stored
under the usercode. Certain USERCODE values can also grant special privileges, as
discussed under “Privileged Status” and “Nonusercoded Status” later in this
section.

• ACCESSCODE

The ACCESSCODE value can grant the process access to some files that are
protected by guard files, as discussed later in this subsection. The process can
assign only accesscode/password combinations corresponding to values in the
ACCESSCODELIST usercode attribute. Additionally, the process can delete the
accesscode value by assigning a null string.

• NAME

The value of this task attribute can grant the process access to some files that are
protected by guard files, as discussed later in this subsection.

 Establishing Process Identity and Privileges

8600 0494–506 5–11

• FILEACCESSRULE

The effects of this task attribute are discussed in Section 19, “Using Shared Files.”

• GROUPCODE and SUPPLEMENTARYGRPS

If a process is not the owner of a file, and one of the values of GROUPCODE or
SUPPLEMENTARYGRPS matches the GROUP file attribute of the file, then the file
access rights are determined by the group-related subattributes of the
SECURITYMODE file attribute.

The process that creates a disk file can assign security-related file attributes to determine
which nonprivileged processes can access the file. Thereafter, only privileged processes
or processes running with the same usercode as the file can change the values of these
security-related file attributes. Following are brief descriptions of the security-related file
attributes:

• TITLE

This file attribute includes the usercode under which the file is stored. For
nonusercoded files, an asterisk (*) is included instead of a usercode. Only privileged
or nonusercoded processes can create a nonusercoded file.

• SECURITYTYPE

This file attribute specifies whether a process must have the same usercode as the
file in order to access the file. A value of PUBLIC allows any process to access the
file. A value of PRIVATE enables nonprivileged processes to access the file only if
the processes are running under the same usercode as the file. For nonusercoded
files, a value of PRIVATE enables only privileged processes and nonusercoded
processes to access the file. A value of GUARDED or CONTROLLED specifies that a
guard file is used to determine which nonprivileged processes can access the file.

• SECURITYUSE

This file attribute specifies whether nonprivileged processes having a usercode
different from the file can read from or write to the file. SECURITYUSE does not
restrict the ability to initiate an object code file. SECURITYUSE has effect only if the
SECURITYTYPE file attribute value is PUBLIC.

• SECURITYGUARD

For files with a SECURITYTYPE value of GUARDED or CONTROLLED, the
SECURITYGUARD file attribute specifies the title of the guard file to be used.

• SECURITYMODE

This file attribute provides an alternative method of specifying the security
restrictions for a file. SECURITYMODE provides functions similar to the
SECURITYTYPE and SECURITYUSE attributes. However, SECURITYMODE provides
more detailed control. SECURITYMODE specifies

− Separate file access rights for three classes of users: the owner, group
members, and other users. For each class of users, SECURITYMODE can
specify any combination of read access, write access, and execution access.

− Whether a guard file is used, and whether the guard file also applies to the
owner of the file.

Establishing Process Identity and Privileges

5–12 8600 0494–506

− Whether code files should run under the usercode and group code of the initiator
of the program, or under the usercode and group code of the code file itself. For
more information about this topic, refer to “Real, Saved, and Effective Process
Identities” later in this section.

• GROUP

This file attribute specifies the group to which a file belongs. When determining the
rights of a process to access a particular file, if the usercode of the process differs
from the owner of the file, the system compares the GROUPCODE and
SUPPLEMENTARYGRPS attributes of the process with the SECURITYMODE and
GROUP attributes of the file.

• OWNER

This attribute is read-only and reports the usercode portion of the TITLE file attribute.
If TITLE begins with an asterisk (*) instead of a usercode, OWNER returns a null
string.

These file attributes are described in detail in the File Attributes Programming Reference
Manual.

Guard files can be created using the GUARDFILE utility, which is described in the
Security Features Operations and Programming Guide. A guard file can include detailed
information about the types of access allowed to various nonprivileged processes. The
guard file can include USERCODE or ACCESSCODE clauses that discriminate between
processes on the basis of the corresponding task attributes. The guard file can also
include a PROGRAM clause that discriminates between processes on the basis of the
NAME task attribute value, and a CODEFILE clause that discriminates between
processes on the basis of the code file title.

If a guard file is used, it overrides the value of the SECURITYUSE attribute.

If the tape volume security feature of the Secure Accountability Facility is enabled on the
system, then the rights of a nonprivileged process to access a particular tape file are
regulated by the task attributes and file attributes listed in the previous discussion as well
as by the tape volume attributes FAMILYOWNER, PERMANENTLYOWNED, and
MATCHONLYSERIALNO. The tape volume attributes can be assigned only by a
privileged user or a privileged process with the WFL VOLUME statement. The security
administrator can enable tape volume security by using the SECOPT (Security Options)
system command to set the security option TAPECHECK to AUTOMATIC. If tape
volume security is not enabled, then a nonprivileged process can open a tape file on any
tape unit that is not currently in use by another process.

An additional security restriction for disk files is system file status. The operating system
marks disk files that are part of the acting system software as system files. Examples of
system files are the object code file of the current MCP, the job description file, and the
current system log. An application process cannot remove or change the title of any
system file. Some files have a modified form of system file status. Thus, the
USERDATAFILE has system file status and additionally is protected from being read by
any application process (only system software can read this file).

 Establishing Process Identity and Privileges

8600 0494–506 5–13

Privileged Status

A privileged process has the capabilities of a nonprivileged process, as well as the ability
to:

• Access physical files stored under other usercodes, regardless of the
SECURITYTYPE, SECURITYUSE, SECURITYGUARD, and SECURITYMODE file
attribute values. Note that logical access to a database guarded by a guardfile is not
affected by privileged status.

• Use the following WFL statements on files regardless of their usercode:

ADD COPY RUN

ALTER MODIFY RESTORE

ARCHIVE MOVE RESTOREADD

CATALOG PRINT SECURITY

CHANGE REMOVE START

• Use the following WFL statements:

VOLUME ADD

VOLUME DELETE

VOLUME DESTROYED

VOLUME OFFSITE

VOLUME ONSITE

• Create files stored under other usercodes and to create nonusercoded files.

• Set the value of the USERCODE task attribute to a null string.

• Set the GROUP file attribute to any group code, not just the group codes specified by
the GROUPCODE task attribute or the SUPPLEMENTARYGRPS task attribute.

• Set the FILEACCESSRULE task attribute to a value of ACTOR.

• Survive most task attribute access errors.

• Use the MAKEUSER utility to change selected usercode attributes. A privileged
process can change attributes of any usercode. However, the process can change
only those attributes marked with a status of PU by a PRIVILEGES segment in the
USERDATAFILE.

Privileged status also grants several other capabilities on systems where the Security
Services for ClearPath MCP security administrator feature is not enabled. On systems
where the security administrator feature is enabled, these capabilities are wholly or
partially reserved for processes with security administrator status. (Refer to “Security
Administrator Status” later in this section.) The following are the capabilities:

• The ability to access certain system interfaces, including the DCKEYIN, GETSTATUS,
and SETSTATUS functions in DCALGOL.

• The ability to create, modify, and delete usercode definitions in the USERDATAFILE.

Establishing Process Identity and Privileges

5–14 8600 0494–506

Note that the following types of file access are not granted by privileged status: the
ability to remove or change the titles of most system files, and the ability to write to
object code files. Further security restrictions can apply if the privileged process
accesses the file through a shared logical file, as discussed in Section 19, “Using Shared
Files.”

A process is automatically considered privileged if it is running under a privileged
usercode. The usercode of a process is stored in the USERCODE task attribute. An
operator can assign privileged status to a usercode by running the MAKEUSER utility or
using the MU (Make User) system command. A usercode can also be assigned
privileged status by a program that uses the USERDATA function in ALGOL, DCALGOL,
or NEWP. For further information about these features, refer to the Security
Administration Guide.

A process usually inherits the usercode of the session or process that initiated it. A
different usercode can be assigned by task attribute assignment, use of the USERDATA
function, or use of the WFL USER statement. However, in each of these cases, the
statement that assigns the usercode must also specify a password, which is checked for
validity. Only processes with special privileges can assign a usercode without specifying
a password. Message control systems (MCSs) and processes with tasking status use
this feature when assigning a usercode to a process initiated by a session.

If a process is not running under a privileged usercode, then the ability of a process to
perform a privileged action is determined by the privilege status of the object code file
that contains the request.

A process can execute code from several different object code files. This is the case if
the process has entered either a library procedure or a passed external procedure. (For
an introduction to external procedures, refer to Section 1, “Understanding Basic Tasking
Concepts.”) The various object code files might not have the same privilege status. The
current privilege status for the process is determined by the privilege status of the object
code file containing the procedure that was most recently entered. This procedure
contains the code that is currently being executed. For further details about this concept,
refer to “Object Code File” earlier in this section.

Note that a privileged program has no special privileges when accessing files on a
remote host. For example, suppose a process sets the HOSTNAME attribute of a file to
specify a remote host, and then attempts to open that file. This action is executed with
privilege on the remote host only if the process usercode is privileged on that host.

 Establishing Process Identity and Privileges

8600 0494–506 5–15

Granulated Privileges

Capabilities associated with privileged status can be individually recognized as granulated
privileges. When it is undesirable or even dangerous for a process to acquire the full
privileged status, granulated privileges can be alternatively used. Given a particular
granulated privilege, a process is bounded by the limitation of such privilege. A security
administrator can identify the security needs of a user or a program and delegate just the
capabilities necessary for the performance of the job (the concept of least privilege). The
description for each granulated privilege follows.

Privilege Description

CHANGE A process with this privilege can change titles of other users’ disk
files. This includes the file ownership. When a new file name is
identical to another user’s existing disk file, the file overwrite is not
permitted if it is not accompanied by the REMOVE privilege.

CHANGESEC A process with this privilege can modify security file attributes for
files belonging to other users.

CREATEFILE A process with this privilege can create disk files under another
usercode without replacing existing disk files. The privilege does not
include file creations through the WFL CHANGE command or through
a library maintenance copy operation.

EXECUTE A process with this privilege can execute other users’ code files.

GETSTATUS A process with this privilege can use the GETSTATUS intrinsic to
retrieve information about jobs, tasks, status of peripherals, status of
the operating system, and mainframe configuration. The privilege
does not include those GETSTATUS directory and volume requests
that currently require privileged-user status.

GSDIRECTORY A process with this privilege can browse other users’ private
directories and files. In addition, this privilege enables a program to
make GETSTATUS directory and volume requests that are typically
restricted to a privileged-user status and enables a user to use the
FILEDATA TAPEDIR request.

IDC A process with this privilege can update the current DATACOMINFO
file through DATACOMSUPPORT entry points, which are used by the
SYSTEM/IDC utility.

LOCALCOPY A process with this privilege can copy files and directories belonging
to other users.This is done on the local host using library
maintenance.

LOGINSTALL A process with this privilege can access the MCSLOGGER intrinsic to
create log installation records.

LOGOTHERS A process with this privilege can access the MCSLOGGER intrinsic to
create other log records for which privilege is currently required.

READ A process with this privilege can have read access to other users’
files, regardless of their security attributes.

Establishing Process Identity and Privileges

5–16 8600 0494–506

Privilege Description

REMOVE A process with this privilege can remove files belonging to other
users. When REMOVE is used with the CREATEFILE, LOCALCOPY,
or CHANGE privileges, an existing disk file can be either replaced or
removed. A close with purge operation on a non-owned file also
requires the process to have the REMOVE privilege.

SETSTATUS A process with this privilege can use the SETSTATUS intrinsic to
control MCP mix, unit, and operational functions. The privilege does
not include those SETSTATUS directory and volume requests that
currently require privileged-user status.

SYSTEMUSER A process with this privilege can make GETSTATUS, SETSTATUS,
and DCKEYIN requests that are currently restricted to a system user.

USERDATA A process with this privilege can access the USERDATA intrinsic.
This includes all USERDATA functionality available to a privileged user
on a system with security administrator status disabled and all
USERDATA functionality available to a security administrator on a
system with security administrator status enabled.

WRITE A process with this privilege can have write access to other users’
files, regardless of the file’s security attributes. Processes with this
privilege can also change all modifiable, non-security-related file
attributes.

An operator assigns granulated privileges to a usercode by running the MAKEUSER utility
or assigns granulated privileges to an object codefile by using the MP (Mark Program)
system command. For more information about the MAKEUSER utility, refer to the
Security Administration Guide. For more information about the MP command, refer to
the System Commands Operations Reference Manual.

 Establishing Process Identity and Privileges

8600 0494–506 5–17

Nonusercoded Status

A nonusercoded process is one whose USERCODE task attribute value is a null string.
By default, a process runs without a usercode if you initiate it from a nonusercoded
MARC session.

In addition, a process initiated from an ODT is nonusercoded by default unless one of the
following conditions is true:

• The ODT has been assigned a terminal usercode by the TERM (Terminal) system
command. The terminal usercode is the default usercode for most processes
initiated at that ODT.

However, processes initiated at an ODT by a primitive system command default to a
null usercode, even if there is a terminal usercode associated with the ODT.
??COPY (Copy Files) and ??RUN (Run Code File) are two primitive system
commands that initiate processes.

• The process is a remote WFL job and the system has a host usercode. Host
usercodes are assigned by the HU (Host Usercode) system command.

Note, however, that a remote WFL job runs nonusercoded if the job is initiated by an
AT <hostname> START command and the host usercode of the initiating system is
defined with SYSTEMUSER status at the host where the job runs.

Processes initiated by a nonusercoded process are, by default, also nonusercoded.

Processes initiated by usercoded processes are, by definition, always usercoded. It is
possible for a process to assign a null usercode to a task variable that is not in use, and
then initiate a process with that task variable. However, the null usercode value in the
task variable is overridden by task attribute inheritance, and the new process runs with
the usercode of its initiator.

It is possible for a usercoded process to be assigned a null usercode after initiation.
However, only a privileged process can assign a null usercode to an in-use process.
Thus, for example, a privileged process can change its own usercode to a null usercode.
When the usercode of a privileged process is changed to a null usercode, the process
retains its privileged status.

A privileged process can also initiate a task with a nonprivileged usercode, and then
change the usercode of the task to a null while the task is running. The task then
assumes nonusercoded security status. Processes that are nonusercoded from the time
they are first initiated also have nonusercoded security status.

Establishing Process Identity and Privileges

5–18 8600 0494–506

A process with nonusercoded status has the same capabilities as a nonprivileged
process, with the following additions:

• The ability to create nonusercoded files; that is, files whose TITLE file attributes
begin with an asterisk (*) instead of a usercode, and whose OWNER file attribute is
null.

• The ability to initiate a nonusercoded process; that is, a process whose USERCODE
task attribute value is a null string.

• The ability to use the UNITNO file attribute, even on a system running with the
security option NONPRIVUNITNO set.

Further, certain WFL statements are treated as privileged when submitted by a
nonusercoded process. These statements, and other conditions affecting their privilege
status, are shown in Table 5–1. This table refers to two concepts not discussed
previously:

• Single-statement WFL inputs. These are single WFL statements entered directly at
an ODT, entered in CANDE or MARC with the WFL prefix, or submitted in array form
by a ZIP statement in a program.

• ODT status. This concept is defined under “ODT Status” later in this section.

Table 5–1. WFL Statements Executed with Privilege

WFL Statements Conditions Granting Privilege

ADD, ARCHIVE,
CATALOG, COPY, MOVE,
RESTORE

Privileged if the process is nonusercoded

CHANGE, REMOVE,
RERUN, SECURITY,
START

Privileged if a nonusercoded, single-statement WFL input.

PRINT Privileged if a nonusercoded, single-statement WFL input
that does not have ODT status. .

VOLUME Privileged if either of the following is true:

• The process is nonusercoded and has ODT status.

• The process has ODT status, only the VOLUME ADD
or VOLUME DELETE form of the command is used,
and the statement affects only volumes with the same
usercode as the process.

 Establishing Process Identity and Privileges

8600 0494–506 5–19

ODT Status

A process is said to have ODT status if it was initiated from an ODT, or if it is descended
from a process initiated from an ODT. The exception to this rule is that processes
initiated with the ??RUN (Run Code File) primitive system command do not receive ODT
status, nor do the descendants of such processes.

Processes initiated from an ODT frequently run without a usercode and receive
nonusercoded status, as discussed under “Nonusercoded Status” earlier in this section.

Regardless of whether it has a usercode, a process with ODT status is granted access to
all GETSTATUS calls in DCALGOL. This access includes the privileged form of the
GETSTATUS directory call. (The privileged form of this call can return information about
directories stored under any usercode.)

Certain WFL statements are treated as privileged when submitted by a process with
ODT status. For a list of these statements, and other conditions affecting their privilege
status, refer to Table 5-1, “WFL Statements Executed with Privilege.

SYSTEMUSER Status

A process receives SYSTEMUSER status if it is running under a usercode whose
SYSTEMUSER usercode attribute is set. SYSTEMUSER status enables a process to use
the DCKEYIN, GETSTATUS, and SETSTATUS functions in DCALGOL, even if the process
does not have privileged status. A process can use these functions to submit system
commands and perform other system operations functions.

By default, SYSTEMUSER status gives access to all the possible DCKEYIN, GETSTATUS,
and SETSTATUS calls. However, certain restrictions can apply on a system running the
Secure Identification Facility

Security Administrator Status

On a system where the Secure Identification Facility is installed, the system
administrator can enable a special security administrator status. If security administrator
status is enabled for the system, then certain system commands that would otherwise
be available to any privileged or SYSTEMUSER process are instead reserved for use only
by processes with security administrator status. The DCKEYIN and SETSTATUS
functions corresponding to these system commands are similarly restricted. In addition,
the ability to create or alter usercode definitions, which would otherwise be available to
any privileged user, is restricted to processes with security administrator status.

The security administrator can also use the RESTRICT command to prevent or limit the
use of certain system commands. For information about the RESTRICT command, refer
to the System Commands Operations Reference Manual.

Establishing Process Identity and Privileges

5–20 8600 0494–506

The system administrator can enable security administrator status on the system by
setting the system SECADMIN option. This option is set using the ??SECAD system
command. Once the SECADMIN option is set, a process assumes security administrator
status if either of the following conditions are true:

• The process is running with a usercode for which the SECADMIN attribute is set in
the USERDATAFILE.

• The process is executing code from an object code file that has been marked with
security administrator status. This concept is discussed further under “Object Code
File” earlier in this section.

For further information about security administrator capabilities, refer to the Security
Administration Guide.

Compiler Status

A process with compiler status is allowed to create an object code file or write to an
existing object code file. You can mark an object code file with compiler status by using
the MP <file title> + COMPILER form of the MP (Mark Program) system command. An
operator can use this command to mark any program with compiler status, whether or
not the program is really a compiler.

If a process without compiler status attempts to write to an object code file that is a
permanent file, the write operation is not performed and the process is abnormally
terminated. A process without compiler status can write to an object code file that is a
temporary file. However, if the process attempts to lock the file, the system changes
the file from an object code file into a data file. (For information about the concepts of
permanent and temporary files, refer to the I/O Subsystem Programming Guide.)

Note that a compiler program has no special privileges when accessing object code files
on a remote host. For example, suppose you initiate a compiler and file equate the
HOSTNAME attribute of the CODE output file to a remote host. The compiler receives a
file attribute error when it attempts to create the object code file. A compiler must
create object code files on the host where the compiler is running.

Message Control System Status

Message control systems (MCSs) Error! Bookmark not defined.differ from other
interactive programs in that they interface directly to the data comm subsystem (rather
than opening a remote file) in order to send or receive messages from terminals. This
interface is possible because MCSs are written in DCALGOL, an extended version of
ALGOL with special data comm capabilities. The system extends a number of special
privileges to MCSs.

 Establishing Process Identity and Privileges

8600 0494–506 5–21

How an MCS Acquires Its Privileges

The MCS security privileges and MCS priority are not granted to a program simply
because it is written in DCALGOL; the system must also recognize the program as an
MCS. Two things are necessary for the system to recognize a program as an MCS:

• Each MCS on a system must be named in the data comm network definition for that
system. Note that the system disregards the family name portion of the MCS code
file title when comparing the title with the data comm network definition. Only one
MCS of a given name can be active.

• The MCS must invoke the DCALGOL DCWRITE function to initialize its primary
queue. Every MCS must have such a queue and must initialize it in order to be
recognized as an MCS.

The system removes MCS status from a process if either of the following events occurs:

• The process deactivates its primary queue, either by setting the QACTIVE queue
attribute to FALSE or by exiting the block in which the primary queue is declared.

• A data comm quit takes place. A data comm quit can be caused by the ID: QUIT
form of the ID (Initialize Data Comm) system command.

Priority of an MCS

An MCS automatically runs in the same priority category that control programs run in.
This priority category gives the MCS higher priority than WFL jobs and application
programs. However, the priority of an MCS is lower than that of any invisible
independent runner. The priority of MCSs relative to each other is determined by the
PRIORITY task attribute. For an explanation of process priority, refer to Section 7,
“Controlling Processor Usage.” For a discussion of how and when this special priority
can be inherited by offspring of an MCS, refer to “Inheritance of MCS Status” later in
this section.

Privileges of an MCS

When an MCS first initializes its primary queue, the system grants that MCS all the
privileges associated with privileged status, as discussed under “Privileged Status”
earlier in this section. This is true even if the MCS is running under a nonprivileged
usercode and has not been marked as a privileged program.

However, if the MCS changes its usercode, the system reevaluates the privileged status
of the MCS. Thereafter, the MCS receives privileged status only if one of the following
conditions is true:

• The MCS is running without a usercode.

• The MCS is running under a privileged usercode, and the MCS did not request lesser
privileges when changing to that usercode. (Refer to the discussion of USERDATA
function 3 later under this heading.)

• The MCS object code file has been marked with privileged status.

Establishing Process Identity and Privileges

5–22 8600 0494–506

Additionally, an MCS receives a number of privileges that are unique to MCSs. These
privileges are retained by the MCS regardless of the usercode under which the MCS
runs. The following paragraphs describe these unique privileges and features of MCS
status.

An MCS is allowed the following privileges with regard to the USERDATA function:

• Ability to use USERDATA function 3 to assume a usercode without supplying the
corresponding password.

When an MCS uses USERDATA function 3 to temporarily assume a usercode, the
MCS does not appear in GETSTATUS mix request calls that request mix entries with
that usercode. The MCS also does not appear in the output from system commands
that display the mix and that request mix entries with that usercode.

By default, the MCS inherits any of the following types of privileges that are
associated with the new usercode: privileged status, security administrator status,
and SYSTEMUSER status. However, the MCS can use the USERDATA locator
parameter to limit the privileges the MCS can receive from the new usercode. The
locator parameter can specify separate limits for each of these types of privileges.

For an example of a program that uses USERDATA function 3, refer to “Temporarily
Assuming an Identity,” later in this section.

• Ability to change a user's password with USERDATA function 6, subfunction 1,
which is normally disallowed on a system using password generation.

• Ability to call the USERDATA function to validate a usercode/password combination
or, optionally, a usercode without the password. This USERDATA function allows
the MCS to run with the specified usercode so the MCS can perform a function on
behalf of that usercode.

• Ability to call the USERDATA function to validate a usercode/chargecode
combination.

• Ability to call the USERDATA function to validate an accesscode/accesscode
password combination.

• Ability to call USERDATA function 9 (Privileged Fetch and Examine).

• Ability to specify that the last log-on information for a usercode should be updated as
a result of the current USERDATA call.

• Ability to survive USERDATA errors that would normally be fatal. The errors are
returned in the USERDATA error result field.

 Establishing Process Identity and Privileges

8600 0494–506 5–23

An MCS receives the following special privileges with regard to other restricted
DCALGOL functions:

• Ability to call the DCWRITE function, which handles station message traffic.

• Ability to call the MCSLOGGER function, which creates sessions or logs session
activity.

• Ability to survive SETSTATUS errors that would otherwise be fatal. The SETSTATUS
error reporting mechanism returns the error to the MCS process.

• Trusted status that causes the operating system not to perform validation on any mix
numbers specified by the MCS in SETSTATUS calls.

An MCS receives the following special privileges with regard to initiating processes:

• Ability to survive errors in initiating an external object code file, such as security
errors, that would otherwise be fatal. Also, the ability to attempt to initiate a missing
external code file without becoming suspended with a NO FILE condition. The MCS
can determine if initiation was successful by inspecting the task variable used in the
process initiation statement. If initiation failed, the STATUS task attribute has a value
of BADINITIATE. The reason for the failure is reported in the HISTORYTYPE,
HISTORYCAUSE, and HISTORYREASON task attributes.

• Ability to pass a single array parameter to an offspring process by value instead of by
reference.

• Trusted status that causes the operating system not to perform validation of any
sheet array parameter the MCS passes when initiating a compiler.

An MCS receives the following special privileges with regard to task attribute access:

• Ability to survive task attribute errors that are normally fatal. The MCS can
determine whether an error occurred, and the type of error, by interrogating the
TASKERROR task attribute of the task variable that was accessed.

• Ability to commit task attribute errors in reading a task attribute without any error
messages resulting.

• Ability to assign values to the JOBNUMBER and SOURCESTATION task attributes.

• Ability to modify the NAME task attribute value of a running process.

• Ability to modify the CHARGE task attribute of a running process. Note that the
MCS should check the validity of the new CHARGE value before assigning that
value.

Establishing Process Identity and Privileges

5–24 8600 0494–506

An MCS has the following special privileges with regard to file access:

• Ability to invoke the exported MCP procedure CHANGESECURITY, which changes
the security attributes of files.

• Ability to survive security errors that occur while changing file security.

• Ability to call the exported MCP procedure DRCDETERMINEUSERLIMITS, which
reports on the file usage limits imposed on a user by the disk resource control (DRC)
system.

• Ability to exceed DRC limits at file open time without any error messages being
displayed.

• Ability to set the HSFILECOPY file attribute, which then allows an MCS to modify
various “read only” disk file attributes such as CREATIONDATE, CREATIONTIME,
and TIMESTAMP.

An MCS has sufficient privilege to access library objects that have a linkage class of 3.
For information about library linkage classes, refer to “Security Considerations” in
Section 18, “Using Libraries.”

Inheritance of MCS Status

In some cases, it can be useful for an MCS to initiate one or more tasks to handle some
of its work. By default, these tasks do not receive any special privileges as a result of
being initiated by an MCS. These tasks also do not receive the special MCS priority
category, and by default they receive a PRIORITY task attribute value of 50 rather than
inheriting the PRIORITY value of the MCS.

However, the MCS can grant MCS privileges and priority to any of its offspring by
assigning a value of TRUE to the INHERITMCSSTATUS task attribute of the offspring.

Tasking Status

Tasking status grants a process a subset of the privileges associated with MCS status,
without the process actually having to be an MCS. Tasking status is well suited to
interactive programs that service multiple users and need to be able to assume the
identity of those users temporarily.

Tasking status allows programs access to some system software features that must be
used with care. For example, if a tasking program calls an MCP intrinsic, the MCP omits
some of the checking it would perform for other callers. If the tasking program formats a
parameter incorrectly, the error might not be detected immediately and could cause later
errors or system dumps. Therefore, you should grant tasking status only to programs
that use these privileges properly.

A process receives tasking status when the process is executing code from an object
code file that has been marked with tasking status. You can mark object code files with
tasking status by using the MP (Mark Program) system command. For information about
how processes receive privileges from their object code files, refer to “Object Code File”
earlier in this section.

 Establishing Process Identity and Privileges

8600 0494–506 5–25

Tasking status provides the same privileges and restrictions as MCS status, with the
following exceptions:

• When a process first becomes an MCS, the process automatically receives
privileged status in addition to its other MCS privileges. However, when a tasking
process is first initiated, tasking status confers privileged status only if the process is
nonusercoded. If a tasking process is initiated under a usercode, then privileged
status is determined by the privileged status of the usercode and the object code
file.

Once an MCS or tasking process changes its own usercode, the privileged status of
the process is affected by the new usercode, as previously discussed under
“Privileges of an MCS” in this section.

• Tasking status does not grant access to the DCALGOL functions DCWRITE and
SETUPINTERCOM.

• Tasking status does not allow a process to make assignments to the
SOURCESTATION task attribute.

• Tasking status does not enable a process to set the HSFILECOPY file attribute to
TRUE and then modify certain disk file attributes, such as CREATIONDATE and
CREATIONTIME, which are normally read-only.

• Tasking status does not cause the process to run in the MCS priority category.

• Multiple instances of the same tasking program can be running at the same time.

• The INHERITMCSSTATUS task attribute does not cause tasking status to be
inherited.

Establishing Process Identity and Privileges

5–26 8600 0494–506

Process Identity and Process Initiation
When a process initiates an external task, the NAME task attribute of the task specifies
the title of the object code file to be initiated. The USERCODE and FAMILY attributes of
the task have no effect on the search for the object code file; instead, the USERCODE
and the FAMILY of the initiating process affect the search for the object code file. For
example, consider the following WFL job:

BEGIN JOB;
 USERCODE = DADA/DALI;
 FAMILY DISK = MYPACK OTHERWISE YOURPACK;

 RUN OBJECT/EPSILON;
 USERCODE = RENE/MAX;
 FAMILY DISK = AMAST OTHERWISE BMAST;
END JOB

In this job, the phrase RUN OBJECT/EPSILON implicitly assigns "OBJECT/EPSILON" to
the NAME attribute of the task. When executing this RUN statement, the system uses
the USERCODE and FAMILY of the job, not those of the task. Therefore, the system
searches for OBJECT/EPSILON in the following locations, in the order listed:

(DADA)OBJECT/EPSILON ON MYPACK;
*OBJECT/EPSILON ON MYPACK;
(DADA)OBJECT/EPSILON ON YOURPACK;
*OBJECT/EPSILON ON YOURPACK;

However, once OBJECT/EPSILON is initiated, it runs under usercode RENE. When
OBJECT/EPSILON attempts to access files, the system applies the value FAMILY DISK
= AMAST OTHERWISE BMAST to the file search.

Temporarily Assuming an Identity
Some interactive programs, such as MCSs, temporarily assume the identity of users
when performing actions on behalf of those users. To effectively behave with a
particular user's identity, the interactive program might need to do more than assume a
usercode. For example, if an interactive program performs actions on files, the
interactive program might need to assume the FAMILY statement of the user in order to
find the correct files. A program can achieve this effect indirectly by taking the following
steps:

• Temporarily assuming the usercode of the user by calling USERDATA function 3
(Validate Usercode/Password). To use this call without supplying a password, the
process must have MCS status or tasking status.

To assume a usercode without specifying a password, the process must pass the
usercode to USERDATA function 3 in standard form and set bits [1:2] of the
qualification byte to 0. To assume a usercode when the password is also supplied,
the process can pass the usercode/password combination to USERDATA function 3
in either display form or standard form.

 Establishing Process Identity and Privileges

8600 0494–506 5–27

To make it possible to interrogate the FAMILY attribute, the process must also set
bit 5 of the ACTION parameter when making the USERDATA function 3 call. Bit 5
causes USERDATA to return a copy of the USERDATA entry in the data output
parameter.

• Retrieving the FAMILY value of the user by calling USERDATA function 1 (Examine
User Entry), with the data input parameter set to the USERDATA entry previously
returned, and the locator parameter set to USERDATALOCATOR ("FAMILY"). This
call returns the FAMILY attribute of the usercode in the data output parameter.

• Assigning the value from the data output parameter to the FAMILY attribute of
MYSELF.

The following DCALGOL example demonstrates these steps.

$INSTALLATION 1
BEGIN
 BOOLEAN BRSLT;
 REAL RSLT;
 ARRAY UDENTRY[0:255];
 ARRAY UCSTANDARD[0:14];
 EBCDIC ARRAY UCDISPLAY[0:2],
 FAM[0:89];
 REPLACE UCDISPLAY BY "JSMITH.";
 BRSLT:= DISPLAYTOSTANDARD (UCDISPLAY, UCSTANDARD);
 UCSTANDARD[0].[33:2]:= 0; % Indicates no password is supplied

 % Assume other usercode
 RSLT:= USERDATA(3 % Function 3:
 % Validate Usercode/Password
 & 1[5:1] % Copy USERDATA entry to UDENTRY
 & 1[6:1], % Use standard form
 MYSELF,
 7, % Assume privileges of the new usercode
 UDENTRY, % Returns copy of USERDATA entry
 UCSTANDARD);
 IF BOOLEAN(RSLT) THEN
 DISPLAY("USERDATA ERROR:" CAT STRING(RSLT.[07:07],*));

 % Interrogate FAMILY of usercode
 RSLT:= USERDATA(1, % Function 1:
 % Examine User-Provided Entry
 , % No task variable
 USERDATALOCATOR("FAMILY"), % Fetch FAMILY attribute
 FAM, % Return FAMILY value in this array
 UDENTRY); % Search this USERDATA entry
 IF BOOLEAN(RSLT) THEN
 DISPLAY("USERDATA ERROR:" CAT STRING(RSLT.[07:07],*));

 % Assume new FAMILY value
 REPLACE MYSELF.FAMILY BY FAM;
END.

Establishing Process Identity and Privileges

5–28 8600 0494–506

For the preceding example to work, the object code file must be marked with tasking
status.

The $INSTALLATION 1 option in the example is necessary in order to give the DCALGOL
compiler access to the DISPLAYTOSTANDARD function.

To retrieve the values of usercode attributes other than FAMILY, you could add further
Function 1 calls, with different values specified for the third parameter. For example, to
interrogate the IDENTITY usercode attribute, you could set the third parameter to
USERDATALOCATOR ("IDENTITY").

Real, Saved, and Effective Process Identities
You can use the SECURITYMODE file attribute to specify that a code file should run
under the usercode or group code of the code file itself, instead of the usercode or group
code received from the initiator. Once the code file is initiated, it can freely toggle back
and forth between the usercode and group code of the code file and the usercode and
group code of the initiator.

Using SETUSERCODE and SETGROUPCODE

The usercode of a code file is the usercode located at the start of the TITLE file attribute.
This usercode is also stored in the OWNER file attribute. To cause a code file to run
under the usercode of the code file, you can assign the SETUSERCODE subattribute of
the SECURITYMODE file attribute. The following ALGOL statement makes such an
assignment to file F:

F.SETUSERCODE := TRUE;

The group code of a code file is the value specified by the GROUP file attribute. To
cause a code file to run under the group code of the code file, you can set the
SETGROUPCODE subattribute of the SECURITYMODE file attribute. The following
ALGOL statement makes such an assignment to file F:

F.SETGROUPCODE := TRUE;

 Establishing Process Identity and Privileges

8600 0494–506 5–29

Understanding Real and Saved Identities

The system uses multiple task attributes to distinguish between the identity a process
receives from its code file and the identity it receives from its initiator. These task
attributes are as follows:

• REALUSERCODE

This attribute records the USERCODE attribute value the process received from its
initiator, either through inheritance or task equation.

• SAVEDUSERCODE

This attribute records the USERCODE attribute value the process received from its
code file, if SETUSERCODE was set for the code file. If SETUSERCODE was not
set, then SAVEDUSERCODE is a copy of REALUSERCODE.

• USERCODE

This attribute records the effective usercode that is currently in use by the process.
When the process is first initiated, this value is the same as SAVEDUSERCODE.
Thereafter, the process could change its USERCODE to different values, either
through assignments to the USERCODE attribute, or through the method described
in the following subsection “Toggling Between Identities.”

• REALGROUPCODE

This attribute records the GROUPCODE attribute value the process received from its
initiator, either through inheritance or task equation.

• SAVEDGROUPCODE

This attribute records the GROUPCODE attribute value the process received from its
code file, if SETGROUPCODE was set for the code file. If SETGROUPCODE was not
set, then SAVEDGROUPCODE is a copy of REALGROUPCODE.

• GROUPCODE

This attribute records the effective usercode that is currently in use by the process.
When the process is first initiated, this value is the same as SAVEDGROUPCODE.
Thereafter, the process could change its GROUPCODE to different values through
the method described in the following subsection “Toggling Between Identities.”

Toggling between Identities

A process can change its current USERCODE to either of those stored in the
REALUSERCODE or SAVEDUSERCODE attribute, without having to specify a password.
However, the process cannot do this toggling with ordinary task attribute assignments.
Instead, the process must use certain specialized functions that are available in three
forms:

• As ALGOL procedures in the file SYMBOL/POSIX/ALGOL/PROPERTIES. These
procedures are documented in the ALGOL and MCP Interfaces to POSIX Features
Programming Reference Manual.

Establishing Process Identity and Privileges

5–30 8600 0494–506

• As C language functions accessible through a header file. These functions are
documented in the C Programming Reference Manual, Volume 2: Headers and
Functions.

• As library procedures exported by the MCPSUPPORT library. These procedures are
documented in the ALGOL and MCP Interfaces to POSIX Features Programming
Reference Manual.

These functions and procedures refer to user identities by numeric values that
correspond to the UID usercode attribute. Therefore, changing to the REALUSERCODE
or SAVEDUSERCODE is a two-step process:

1. Retrieve the user ID associated with the REALUSERCODE or SAVEDUSERCODE.

2. Change the process's current user ID to the user ID that was retrieved.

Similarly, a process can change its current GROUPCODE to either of those stored in the
REALGROUPCODE or SAVEDGROUPCODE attribute. The process uses procedures or
functions that are available from the SYMBOL/POSIX/ALGOL/PROPERTIES file, the C
header file, or the MCPSUPPORT library.

The following table lists the procedures and functions used to toggle between the real
and saved usercode or group code:

Action to Perform

ALGOL
Procedure

C Function

MCPSUPPORT
Procedure

Retrieve user ID of
REALUSERCODE

GETUID getuid() POSIX_INTEGERIDS

Retrieve user ID of
USERCODE

GETEUID geteuid() POSIX_INTEGERIDS

Change current
user ID

SETUID setuid() POSIX_SETIDS

Retrieve group ID of
REALGROUPCODE

GETGID getgid() POSIX_INTEGERIDS

Retrieve group ID of
GROUPCODE

GETEGID getegid() POSIX_INTEGERIDS

Change current
group ID

SETGID setgid() POSIX_SETIDS

 Establishing Process Identity and Privileges

8600 0494–506 5–31

The following ALGOL program uses procedures from SYMBOL/POSIX/ALGOL/
PROPERTIES to change its usercode and group code between the “real” and “saved”
values:

BEGIN
$INCLUDE "SYMBOL/POSIX/ALGOL/PROPERTIES."
INTEGER ERRNO,
 REAL_GID,
 REAL_UID,
 RSLT,
 SAVED_GID,
 SAVED_UID;

% RECORD SAVED USERCODE AND GROUPCODE
% Because process has not yet changed its identity, these values
% are the same as the effective usercode and group code.
SAVED_UID := GETEUID(ERRNO);
SAVED_GID := GETEGID(ERRNO);

% RECORD REAL USERCODE AND GROUPCODE
REAL_UID := GETUID(ERRNO);
REAL_GID := GETGID(ERRNO);

% CHANGE USERCODE TO REALUSERCODE
RSLT := SETUID(REAL_UID, ERRNO);

% CHANGE GROUPCODE TO REALGROUPCODE
RSLT := SETGID(REAL_GID, ERRNO);

% CHANGE USERCODE TO SAVEDUSERCODE
RSLT := SETUID(SAVED_UID, ERRNO);

% CHANGE GROUPCODE TO SAVEDGROUPCODE
RSLT := SETGID(SAVED_GID, ERRNO);

END.

Note that the system performs security checking on the SETUID function. The system
permits the SETUID to succeed only if the requested user ID corresponds to the
USERCODE, REALUSERCODE, or SAVEDUSERCODE of the process.

Similarly, the system performs checking on the SETGID function. The system permits
the SETGID to succeed only if the requested group ID corresponds to the value of the
GROUPCODE, REALGROUPCODE, or SAVEDGROUPCODE of the process.

Establishing Process Identity and Privileges

5–32 8600 0494–506

8600 0494–506 6–1

Section 6
Monitoring and Controlling Process
Status

During its lifetime, a process can pass through several distinct states. These states
characterize whether the process is currently executing, and if not, why not. You can
design programs to monitor and modify process states through the use of task attributes
and related expressions. You can also monitor process status through the use of system
commands.

Understanding Process Status
From the time a process is initiated until it terminates, it is considered an in-use process.
An in-use process can pass through several process states. These process states
indicate whether the process is currently executing, and if not, why not.

When a process is not in use, the task variable for that process stores any of several
process states. These process states specify if the process has not been initiated, if
initiation failed, or if the process has terminated. It is possible for the task variable to
store this information because the task variable of a process exists before the process is
initiated and continues to exist after the process terminates. In the following WFL
example, task variable T is created when the system executes the declaration TASK T,
and continues to exist until the system executes the END JOB statement:

?BEGIN JOB;
TASK T;
RUN OBJECT/PROG [T];
.
.
.
?END JOB

Information about process status is available through several mechanisms, including the
STATUS task attribute, the task state expression in WFL, mix display commands, and the
STACK STATE line of the Y (Status Interrogate) system command output. Each of these
programming constructs and system commands uses a slightly different terminology to
portray process status. Table 6–1 shows the possible values of the STATUS task
attribute and the corresponding status values returned by the other process monitoring
methods. The meanings of the various process states are discussed in the subsections
following the table.

Monitoring and Controlling Process Status

6–2 8600 0494–506

Table 6–1. Process States

STATUS Task
Attribute

WFL Task State

Mix Display
Commands

STACK STATE in Y
Display

NEVERUSED None None None

SCHEDULED Both of these:

• SCHEDULED

• INUSE

Both of these:

• S (Scheduled Mix
Entries)

• MX (Mix Entries)

One of these:

• Scheduled

• Selected

ACTIVE Both of these:

• ACTIVE

• INUSE

All of these:

• A (Active Mix
Entries)

• J (Job and Task
Display)

• MX (Mix Entries)

• DBS (Database
Stack Entries)

One of these:

• Alive

• Holding

• Ready

• To be continued

• Waiting on an
event

SUSPENDED Both of these:

• STOPPED

• INUSE

Both of these:

• W (Waiting Mix
Entries)

• MX (Mix Entries)

Waiting on an event

FROZEN Both of these:

• ACTIVE

• INUSE

LIBS (Library Task
Entries)

Frozen

GOINGAWAY None None None

BADINITIATE ABORTED None None

TERMINATED One or more of these:

• COMPLETED

• COMPLETEDOK

• COMPILEDOK

• ABORTED

C (Completed Mix
Entries)

None

Note: GOINGAWAY is a write-only value. That is, assigning GOINGAWAY actually
changes the STATUS value to ACTIVE, with additional effects that are described under
“Thawing a Library” later in this section.

 Monitoring and Controlling Process Status

8600 0494–506 6–3

STATUS Task Attribute

The following are explanations of the STATUS task attribute values shown in Table 6–1.

• NEVERUSED

The task variable being interrogated has never been used in a process initiation
statement, or has been reinitialized since it was last used. Refer to “Preparing a
Task Variable for Reuse” later in this section.

• SCHEDULED

A process initiation statement has been executed, but the system is delaying
initiation of the process. For further information, refer to “Preventing Process
Scheduling” later in this section.

• ACTIVE

Process execution is proceeding normally. In the Y command output, this status is
expressed through any of several more specific values, which are described under
“Y (Status Interrogate) Stack States” later in this section.

• SUSPENDED

The process is waiting on an event that might require operator intervention. For
example, the process might be trying to open a tape file, and the operator might
need to mount the appropriate tape on a drive. Or the process might have executed
an ACCEPT statement, which requires a response from an operator. For further
information, refer to the discussion of responding to waiting entries in the System
Operations Guide.

• FROZEN

The process is a frozen server library process. It might be a permanent or temporary
library. For information about library processes, refer to Section 18, “Using
Libraries.”

• GOINGAWAY

You can assign this value to a frozen server library process to cause it to resume
execution as soon as possible. For details, refer to “Thawing a Library” later in this
section.

• BADINITIATE

An unsuccessful attempt was made to initiate the process. Process initiation can
fail, for example, if the specified object code file is missing or if the object code file
expects different parameters than are passed by the initiator. Note that
BADINITIATE is only one of the terminations that can cause the WFL task state of
ABORTED to return a value of TRUE. See the following description of
TERMINATED.

• TERMINATED

The process initiated successfully and later terminated. You cannot tell from the
STATUS value whether the process completed normally or whether some
circumstance caused the process to fail. For further information about process
terminations, refer to “WFL Task State Expression” later in this section and to
Section 10, “Determining Process History.”

Monitoring and Controlling Process Status

6–4 8600 0494–506

WFL Task State Expression

The task state expression in WFL returns a Boolean value indicating whether a process is
in a specified state. For example, the following statement fragment takes a specified
action if the process with task variable T1 has completed execution.

IF T1 IS COMPLETED THEN...

Some of the task states that can be queried correspond to single STATUS task attribute
values. Other task states correspond to two or more STATUS task attribute values.
Thus, at any given time, it is possible that more than one of the possible task state
expressions will return a value of TRUE. The following are values that can be used in a
WFL task state expression, and the conditions that cause them to evaluate to TRUE:

• SCHEDULED

The system is delaying initiation of the process. The STATUS task attribute value is
SCHEDULED.

• ACTIVE

The process is executing normally. The STATUS task attribute value is ACTIVE.

• STOPPED

The process is waiting on an event that might require operator action. The STATUS
task attribute value is SUSPENDED.

• INUSE

The process is in use; that is, it has been initiated but has not yet terminated. The
STATUS task attribute value is SCHEDULED, ACTIVE, or SUSPENDED.

• COMPLETED

The process terminated. The STATUS task attribute value is TERMINATED or
BADINITIATE.

• COMPLETEDOK

The process completed execution normally, but if it was a compilation, it might not
have compiled the program successfully. The STATUS task attribute value is
TERMINATED and the HISTORYTYPE task attribute value is NORMALEOTV or
SYNTAXERRORV.

• COMPILEDOK

The process completed execution normally. If the process was a compilation, it
compiled the program successfully. The STATUS task attribute value is
TERMINATED and the HISTORYTYPE task attribute value is NORMALEOTV.

• ABORTED

The process terminated abnormally, for example, because of a fault or because of
operator entry of a DS (Discontinue) system command. The STATUS task attribute
value is TERMINATED or BADINITIATE, and the HISTORYTYPE task attribute value is
DSEDV.

 Monitoring and Controlling Process Status

8600 0494–506 6–5

The COMPLETEDOK, COMPILEDOK, and ABORTED values give you the ability to
determine whether a process completed successfully. For further information on
determining how and why a process terminated, refer to Section 10, “Determining
Process History.”

Mix Display Commands

Several different system commands are available for displaying all the processes that are
in a particular state. The following are the system mix commands and the process
states they display:

• A (Active Mix Entries)

Displays processes that are running normally. The STATUS task attribute value is
ACTIVE.

• C (Completed Mix Entries)

Displays processes that have recently terminated. The STATUS task attribute value
is TERMINATED or BADINITIATE.

• DBS (Database Stack Entries)

Displays all active database stacks.

• J (Job and Task Display)

Displays all in-use processes. The STATUS task attribute value is SCHEDULED,
ACTIVE, or SUSPENDED.

• LIBS (Library Task Entries)

Displays frozen library processes. The STATUS task attribute value is FROZEN.

• MX (Mix Entries)

Displays all in-use processes. The STATUS task attribute value is SCHEDULED,
ACTIVE, or SUSPENDED.

• S (Scheduled Mix Entries)

Displays processes that the system is delaying initiating. The STATUS task attribute
value is SCHEDULED.

• W (Waiting Mix Entries)

Displays processes that are waiting on an event that might require operator
intervention. The STATUS task attribute value is SUSPENDED.

In addition to being available through individual system commands, these displays are
available as part of the ADM (Automatic Display Mode) output. For information about
using ADM to track processes, refer to the System Operations Guide.

Monitoring and Controlling Process Status

6–6 8600 0494–506

Y (Status Interrogate) Stack States

The Y (Status Interrogate) system command returns several types of information about a
process, including the mix number, usercode, program name, and stack state. In the
following example, the stack state is WAITING ON AN EVENT:

Status of Task 3251\4441 AT 16:15:28
Program name: *OBJECT/ED ON DOCPK
Priority: 50
Origination: SA154/CANDE/3 (LSN 288)
MCS: SYSTEM/CANDE
Usercode: JASMITH
Chargecode: 6825
Stack State: Waiting on an event

If the process is a library, then the Y display also includes a list of the processes linked to
the library. Refer to “Determining Which Users Are Linked to a Library” in Section 18,
“Using Libraries.”

The following are explanations of the STACK STATE values shown in Table 6–1:

• Alive

The process is currently bound to a processor. That is, it is actually being processed
rather than being in any type of waiting state. You can see this state displayed only
on a multiprocessor system, because on a single processor system, the
CONTROLLER independent runner has to take over the only processor to execute
the Y command.

• Frozen

The process is a frozen library.

• Holding

The process is waiting on interrupts. This type of waiting is described in Section 16,
“Using Events and Interlocks.”

• Ready

The process is in the ready queue and will proceed as soon as a processor is
available. It is not unusual for a process to be in this state, because each central
processor on the system can be executing only one process at a time, and the mix
can contain many processes. The priority of a process can affect the amount of time
it spends in the ready queue; refer to Section 7, “Controlling Processor Usage.”

• Scheduled

The system is delaying initiation of the process for any of various reasons. For
information about process scheduling, refer to “Preventing Process Scheduling” later
in this section.

• Selected

The process is being initiated.

 Monitoring and Controlling Process Status

8600 0494–506 6–7

• To be continued

This value indicates a process that has initiated a synchronous task that has not yet
completed, or a process that has executed a CONTINUE statement and is waiting on
its coroutine.

• Waiting on an event

If no RSVP line appears in the Y command output, then this value means the process
is waiting for an I/O operation to be completed or for a particular event to be caused.
For a general discussion of events, refer to Section 16, “Using Events and
Interlocks.”

If an RSVP line appears in the Y command output, then the WAITING ON AN EVENT
value means that the process is waiting on an event that might require operator
intervention. The RSVP line lists system commands that might be helpful responses
to the situation. For more information about responding to waiting entries, refer to
the System Operations Guide.

If the process is taking a program dump, executing a SORT procedure, or scrubbing disk
areas, then the Stack State value includes a second component that states
Programdumping, Sorting, scrubbing disk areas, or some combination of them. The
following example shows the output for a process that is taking a program dump:

Status of Task 6408/6513 at 16:39:09
Program name: *OBJECT/ED ON SYS00
Priority: 50
Origination: OCDWH_1/CANDE/2 (LSN 295)
MCS:SYSTEM/CANDE
Usercode: DEBS
Chargecode: 6893
Stack State: Waiting on an event, Programdumping
Display: ED:OPERATOR DSED @ (47312200)

Monitoring Changes in Process Status
A process can monitor the status of its offspring by waiting on its own
EXCEPTIONEVENT task attribute. This method works because, when the status of a
process changes, the system automatically causes the EXCEPTIONEVENT of the parent
of the process, unless the EXCEPTIONTASK of the offspring has been changed.

If you design a process to wait on its own EXCEPTIONEVENT, it can resume execution
and check the status of its offspring each time the EXCEPTIONEVENT is caused. For
example, to wait for a task to terminate, the parent process can execute the following
ALGOL statement:

WHILE T.STATUS GTR VALUE(TERMINATED) DO
 WAITANDRESET(MYSELF.EXCEPTIONEVENT);

Note that a WAITANDRESET statement is used rather than a simple WAIT statement. If
a simple WAIT statement were used, then the WHILE loop would execute an infinite
number of times after the first time the EXCEPTIONEVENT was caused.

Monitoring and Controlling Process Status

6–8 8600 0494–506

The most typical reason for using such WAIT statements is to prevent critical block exits
for ALGOL or COBOL programs that initiate asynchronous tasks. Critical block exits are
discussed in Section 2, “Understanding Interprocess Relationships.”

It is not necessary to take steps to prevent critical block exits in WFL. WFL automatically
waits at the end of each block if any processes initiated by statements in the block are
still in use. However, there can be other reasons for a WFL job to wait on the
termination of an asynchronous task. For example, suppose you have an application
consisting of three programs. The first two programs create files that are used as input
by the third program. The following WFL job runs the first two programs in parallel, and
waits for them to complete before initiating the third program:

100 ?BEGIN JOB;
110 TASK T1, T2, T3;
120 PROCESS RUN OBJECT/RUNEX [T1];
130 PROCESS RUN OBJECT/TADCOM [T2];
140 WHILE T1 ISNT COMPLETED OR T2 ISNT COMPLETED DO
150 WAIT;
160 PROCESS RUN OBJECT/DIALUP [T3];
170 ?END JOB

Note that the statement at line 150 is simply WAIT, rather than WAITANDRESET
(MYSELF.EXCEPTIONEVENT) as it would be in ALGOL. This difference arises because
WFL has no syntax for directly accessing the EXCEPTIONEVENT task attribute, or events
in general for that matter. However, the simple WAIT in WFL has the effect of implicitly
waiting on and resetting the EXCEPTIONEVENT.

WFL provides some other useful expressions for monitoring process status. You can
design a WFL job to wait for a task to terminate, to wait for the task to assume a
particular status, or to wait for any attribute of the task to assume a desired value. For
details, refer to the discussion of the WAIT statement in the Work Flow Language (WFL)
Programming Reference Manual.

 Monitoring and Controlling Process Status

8600 0494–506 6–9

Controlling Process Status
You can accomplish some changes to process status through programmatic
assignments to the STATUS task attribute. Additionally, you can prevent many instances
of process scheduling or suspension through careful program design.

Terminating a Process

You can interactively terminate a process by entering the DS (Discontinue) system
command. You can design a program to terminate a process by assigning the STATUS
task attribute a value of TERMINATED. The following is a WFL program that terminates
a task if it becomes suspended:

100 ?BEGIN JOB ACCOUNTS/JOB;
110 JOBSUMMARY = SUPPRESSED;
120 CLASS = 2;
130 TASK T;
135 BOOLEAN DONE;
140 PROCESS RUN OBJECT/DAILY/ACCOUNTS [T];
150 WHILE NOT DONE DO
160 BEGIN
170 WAIT;
180 IF T IS STOPPED THEN
190 BEGIN
200 T(STATUS = TERMINATED);
210 MYSELF(JOBSUMMARY = UNCONDITIONAL);
220 END;
230 IF T IS COMPLETED THEN
240 DONE:= TRUE;
250 END;
260 ?END JOB

The presumption behind this WFL program is that OBJECT/DAILY/ACCOUNTS is a
program that does not normally become suspended at any point in its run. If this
particular program becomes suspended, it means that something has gone wrong and it
is something that an operator cannot easily fix. Further, it is assumed that job queue 2,
which this job is initiated from, has a mix limit of 1. Thus, if OBJECT/DAILY/ACCOUNTS
becomes suspended, it is impossible for any more WFL jobs to be initiated from that job
queue until an operator notices the situation and discontinues the process.

The WHILE statement at lines 150 to 250 is included to prevent this job from ever
uselessly blocking up the job queue. Within the WHILE statement, the WAIT statement
at line 170 causes the WFL job to wait until its own EXCEPTIONEVENT is caused. The
system automatically causes the job's EXCEPTIONEVENT when the STATUS value of
any of the job's offspring changes. When the status value of the offspring changes, the
statement at line 180 uses the task state expression to determine if
OBJECT/DAILY/ACCOUNTS is suspended; if so, then the statement at line 200 assigns a
STATUS of TERMINATED to discontinue OBJECT/DAILY/ACCOUNTS. The statement at
line 210 causes printing of the job summary. For information about job summaries, refer
to Section 10, “Determining Process History.”

Monitoring and Controlling Process Status

6–10 8600 0494–506

The statement at lines 230 to 240 causes the loop to be exited when
OBJECT/DAILY/ACCOUNTS terminates (whether it terminated normally or was
discontinued).

Thawing a Library

Thawing a library is the act of changing a permanent library into a temporary library. A
temporary library automatically resumes execution as soon as it has no more users. By
contrast, a permanent library remains frozen indefinitely. Thawing a permanent library is
thus a first step toward removing the library process from usage (for example, because
you want a newer version of the library program to be used). Thawing the library is less
drastic than discontinuing the library process with a DS (Discontinue) system command
or a STATUS assignment of TERMINATED.

You can design a program to thaw a library process by assigning either of two values to
the STATUS task attribute: ACTIVE or GOINGAWAY. Table 6–2 summarizes the
differences in the effects of these two assignments.

Table 6–2. Effects of GOINGAWAY and ACTIVE Assignments

Effects GOINGAWAY Assignment ACTIVE Assignment

Time Execution
Resumes

When there are no more
users

When there are no more
users

New Users of
Shared Libraries

Are linked to a new invocation
of the latest version of the
library object code file

Are linked to the existing
library process

STATUS Task
Attribute

ACTIVE FROZEN

WFL Task State ACTIVE, INUSE ACTIVE, INUSE

Mix Commands A, J, MX LIBS

Y Stack State WAITING ON AN EVENT FROZEN

The key difference between GOINGAWAY and ACTIVE assignments is that the
GOINGAWAY assignment prevents any additional user processes from linking to the
library process. For libraries that are shared by many users, this can make a big
difference in how long the library process takes to resume execution. If you use an
assignment of ACTIVE instead, new processes can continue linking to the (newly
temporary) library, with the result that the library remains frozen indefinitely.

Note that neither the GOINGAWAY assignment nor the ACTIVE assignment actually
changes the STATUS task attribute to the requested value. After a GOINGAWAY
assignment, the STATUS value is ACTIVE. GOINGAWAY is therefore never returned as
a value when a process reads the STATUS task attribute. By contrast, after an ACTIVE
assignment, the STATUS remains FROZEN until there are no more users of the library.
Then the library STATUS changes to ACTIVE and the process resumes execution.

 Monitoring and Controlling Process Status

8600 0494–506 6–11

You can thaw a library interactively with the THAW (Thaw Frozen Library) system
command. This command has the same effect as assigning a value of ACTIVE to the
STATUS task attribute.

Suspending and Resuming Processes

You can interactively suspend execution of a process with the ST (Stop) system
command, and resume execution of the process with an OK (Reactivate) system
command. You can design a program to achieve the same result by assigning the
STATUS task attribute a value of SUSPENDED or ACTIVE. However, note that if the
process is suspended by the system, the OK command or ACTIVE assignment
frequently is not enough to resolve the cause of the suspension. In this case, the
process is suspended again by the system without progressing any further in its
execution.

One reason to suspend a process programmatically is for testing. For example, you can
add a statement in a program that causes it to be suspended at a certain point where a
problem has been occurring. Then you can force a memory dump or program dump
through the DUMP (Dump Memory) system command, with the knowledge that the
dump will reflect the state of the process at a selected point in its execution.

Parallel processes can also use assignments of SUSPENDED or ACTIVE as a means of
coordinating their activities. However, the system provides special variables called
events that are better suited to coordinating parallel processes. For details, refer to
Section 16, “Using Events and Interlocks.”

Preparing a Task Variable for Reuse

As was stated earlier in this section, a task variable can be in use by only one process at
a time. However, it is possible to reuse a task variable so long as the first process
terminates before the task variable is used in another process initiation statement. The
side effects that can result from such reuse of task variables are discussed in the Task
Attributes Programming Reference Manual.

Suffice it to say here that the side effects involve task attribute values that are retained
from one use of the task variable to the next. To restore all the task attributes of the
task variable to their default values, you can assign the STATUS task attribute a value of
NEVERUSED. In WFL, you also have the option of using an INITIALIZE statement, which
has the same effect as the STATUS assignment.

Preventing Process Scheduling

A process is SCHEDULED when it has been submitted for initiation, but the system is
delaying initiation of the process. Scheduling can have any of several causes, the most
common of which is a lack of available memory on the system. If the system estimates
that a particular process will require more memory for efficient execution than is
currently available, the system places the process in a scheduled state until more
memory becomes available.

Monitoring and Controlling Process Status

6–12 8600 0494–506

Two methods that help prevent a process from being scheduled because of a shortage
of available memory are:

• Override the system's memory estimate for the process through assignments to the
CORE and STACKSIZE task attributes. For details, refer to Section 8, “Controlling
Process Memory Usage.”

• Assign the process with control program status by marking its object code file with
the MP <file title> + CONTROL form of the MP (Mark Program) system command.
For information about control program status, refer to Section 7, “Controlling
Processor Usage.”

For further information about the causes of scheduling, refer to the process scheduling
discussion in the System Administration Guide.

Preventing Process Suspension

Many cases where a process becomes suspended by the system can be prevented with
a little planning. To be sure, there are situations that cannot be anticipated that might
make it necessary for the system to suspend a process. One such example is an
extreme shortage of available memory. However, a good many cases of process
suspension result from such causes as failed attempts to open files or ACCEPT
statements that require immediate input from the operator.

In many of these cases, it might be preferable to allow the process to become
suspended. The advantage to this is that the process appears in the W (Waiting Mix
Entries) display with a message explaining why it is suspended. This is desirable if the
situation is one that an operator can easily remedy. A common example of such a
situation is one where a process is attempting to open a tape file. When the process
appears in the W display, the operator is prompted to mount the appropriate tape.

However, if you are interested in automating operations at your site as much as possible,
then you might find the techniques discussed in the following subsections to be useful.
For further information about the file attributes mentioned in the following discussions,
refer to the File Attributes Programming Reference Manual.

Checking File Residence

You can design a program to read the AVAILABLE or RESIDENT attributes of a file before
attempting to open the file. RESIDENT returns a value of TRUE or FALSE to indicate
whether the file is available. AVAILABLE returns a numeric value indicating whether the
file can be opened, and if not, why not.

If the file is available, the program can execute an OPEN statement. If the file is not
available, the program can skip the OPEN statement and take whatever recovery actions
are deemed appropriate by the programmer.

 Monitoring and Controlling Process Status

8600 0494–506 6–13

Using AUTORESTORE for Disk Files

You can use the AUTORESTORE task attribute to request that the system automatically
attempt to restore any missing disk file requested by a process. Automatic restoration
can prevent the process from becoming suspended with a NO FILE condition. Refer to
the discussion of disk file usage in Section 9, “Controlling Process I/O Usage.”

Identifying Tape Files

When a process opens a tape file, the process can become suspended even if the
requested tape is already mounted on an available tape drive. The suspension occurs if
the process does not give the system sufficient information to identify the particular tape
to search for the file. If the process becomes suspended, the operator can use system
commands such as IL (Ignore Label) or OU (Output Unit) to specify the correct tape drive
so process execution can resume.

Nothing you can do removes the need for someone to mount a tape containing the tape
file on a tape drive. However, you can ensure that an operator does not have to take any
further action beyond mounting the tape and later removing it.

You can use the SERIALNO attribute to specify the particular tape that should be
opened. When the process attempts to open the file, the system checks to see whether
a tape with that SERIALNO value is mounted on any of the available drives. If the tape is
mounted, then the system looks for the requested file on that tape, without ever
suspending the process.

SERIALNO is also available as an option in the WFL COPY statement. The following is
an example:

COPY (JASMITH)= FROM SYSPK(PACK) TO LABCON(TAPE,SERIALNO="LABIN");

This example creates a tape named LABCON with a SERIALNO value of LABIN. The
SERIALNO value can include letters as well as digits. Any letters in the string must be
capitalized.

Sometimes you want the program to write output to a tape, but you do not really care
which tape, as long as it goes to a tape that is not otherwise in use. In this case, you can
leave the SERIALNO value empty and set the MYUSE file attribute to OUT. If the
SERIALNUMBER operating system option is not set, then the system writes the file to
any scratch tape that is mounted and not in use. If you specify the SCRATCHPOOL or
DENSITY file attributes, the system restricts the selection to tapes with the requested
scratch pool or density.

An operator can set or reset the SERIALNUMBER option with the OP (Options) system
command.

Monitoring and Controlling Process Status

6–14 8600 0494–506

Using UNITNO and OMITTEDEOF for Unlabeled Tape Files

By default, any tapes created by an A Series system have ANSI-standard tape labels.
These tape labels store identification information for the tape. However, you might have
occasion at some time to use a tape on an A Series system that was created by a
different type of computer system. If the different computer system did not create an
ANSI-standard tape label, you must design your program to read the tape as an unlabeled
tape. You can also use this technique to enable a program to read a tape whose label
has become corrupted.

When a process attempts to open an unlabeled tape, the process typically becomes
suspended until an operator enters a UL (Unlabeled) system command. This command
specifies the tape drive to use for the file. You can prevent the need for the operator to
enter this command. However, you must use a different technique than was previously
described for labeled tapes. The SERIALNO attribute has no meaning for unlabeled
tapes.

Instead, if you know the physical unit number of the drive where the correct tape will be
mounted, you can design the program to assign the physical unit number of that tape
drive to the UNITNO file attribute. A file open operation then opens any tape that
happens to be on the specified tape drive. This method should not be used unless you
can ensure that the correct tape will be mounted on the tape drive when the program
runs. Note also that access to unlabeled tapes and to the UNITNO file attribute are
restricted on systems running Security Services for ClearPath MCP security
enhancement software when the security options UnLabeledTapes and NonPrivUnitNo
have the values NOTOK; refer to the Security Administration Guide for details.

A process can also be suspended when it reaches the end of an unlabeled tape file. This
happens because, depending on the circumstances, a tape mark can indicate the end of
the file or simply the end of a reel. If the LABEL file attribute value is OMITTED, the tape
mark is interpreted to mean that the file continues on another tape reel. The process
becomes suspended until the operator enters a UL command (to specify where the next
reel is located) or an FR (Final Reel) system command.

If you know in advance that the unlabeled tape file will be confined to a single reel, you
can prevent the process from suspending at the end of the file. To do this, you must
declare the file with a LABEL value of OMITTEDEOF. In this case, when the process
reads to the end of the file, the system returns an end-of-file condition on the read
operation. The process can check the result of the read operation and take appropriate
action. This method saves the operator the trouble of entering the FR command.

 Monitoring and Controlling Process Status

8600 0494–506 6–15

Using the AUTORM Option

A process can become suspended if it attempts to enter a file into the disk directory and
a file of the same title already exists. The system displays a “DUP LIBRARY” RSVP
message for the process. The process does not proceed any further until an operator
enters an RM (Remove) system command. The RM command causes the system to
remove the existing file. You can save the operator from having to enter an RM
command by setting the AUTORM option. AUTORM can be set for a process through
assignments to the OPTION task attribute, or for the whole system through the OP
(Options) system command. The AUTORM option causes the system to automatically
remove any old duplicate files that a process encounters. For further information about
disk directories and the AUTORM option, refer to “Entering a File in the Directory” in
Section 19, “Using Shared Files.”

Using the ORGUNIT Value for ODT Files

A process can become suspended when it executes a statement that opens an ODT file.
For information about how to prevent this process suspension from occurring, refer to
the discussion of ODT terminal communications in the Section 3, “Tasking from
Interactive Sources.”

Using Conditional ACCEPT Statements

A process can become suspended when it executes an ACCEPT statement to prompt
the operator for input. For information about how to prevent this suspension from
occurring, refer to the discussions of the conditional ACCEPT statement and the
ACCEPTEVENT task attribute in Section 3, “Tasking from Interactive Sources.”

Monitoring and Controlling Process Status

6–16 8600 0494–506

8600 0494–506 7–1

Section 7
Controlling Processor Usage

You can control two aspects of the processor usage for a process: process priority and
total processor usage. In addition, you can monitor the processor usage of a particular
process to gain an understanding of the resource usage patterns of the process.

Controlling Process Priority
The system is designed to efficiently execute large numbers of processes
simultaneously. However, each system incorporates a limited number of processors,
including central processors, I/O processors, and data link processors (DLPs). Each
system also has a finite amount of main memory. On a heavily used system, all the
processes in the mix are competing for the use of these system resources.

However, it may be that not all these processes are equally urgent from the user's point
of view. The system provides the concept of priority to allow you to specify which
processes should receive preference in the competition for system resources.

The primary effect of process priority occurs in cases where more than one process is
ready to use a central processor. Each central processor executes only one process at a
time, but divides its time among all the processes on the system. The system maintains
a list, called the ready queue, of all processes that are waiting for a processor, arranged
in priority order.

A processor continues executing a particular process until one of three things happens:
the process reaches a natural stopping point (for example, because it is waiting for an I/O
to complete), a higher-priority process appears in the ready queue, or the process
exceeds its time slice and a process of equal priority is present in the ready queue. The
processor then retrieves the higher-priority process from the ready queue and begins
executing it.

The priority of a process is determined by several factors, only some of which can be
controlled by the user. For example, some system software processes have a higher
priority than can be assigned to an ordinary application process. For a complete overview
of factors affecting process priority, refer to the System Administration Guide.

One aspect of priority that you can control, within certain limits, is the PRIORITY task
attribute value. The PRIORITY task attribute has a range of values from 0 to 99, with the
higher values indicating higher priority. The default value is 50. You can assign a
PRIORITY value to a process anytime before initiation, either through task equations or
assignments to a task variable. Once a process is initiated, any programmatic
assignments to the PRIORITY task attribute change the task attribute value without

Controlling Processor Usage

7–2 8600 0494–506

affecting the actual priority at which the process executes. The new PRIORITY task
attribute value is returned when the task attribute is read, and displayed in the output of
various system commands.

The only way to effectively change the priority of an in-use process is with the PR
(Priority) system command. This command changes the PRIORITY task attribute value
and also causes the system to enforce the new priority value.

One point to bear in mind about this attribute is that its effects are absolute rather than
proportional. That is to say, the system always gives the processor to the highest-priority
process that is ready to use it. A PRIORITY value of 51 gives as much advantage over a
PRIORITY of 50 as a PRIORITY value of 99 does. If the process with the PRIORITY of 51
is very processor-intensive, it could prevent the process with PRIORITY 50 from
receiving any processor time at all. For this reason, you should be cautious about raising
the PRIORITY value of a processor-intensive process.

On the other hand, it is sometimes helpful and appropriate to raise the priority of
interactive processes. An interactive process is one that is largely driven by input from a
user at a terminal. Such a process typically spends most of its time waiting for the user
to enter commands. Once the user does enter a command, the user typically has to wait
for a response before being able to accomplish any further useful work. If the processor
usage of the process is small and occasional, you can improve response time by raising
the priority with relatively little impact on overall system performance.

For information about how to determine whether a process is processor-intensive, refer
to “Understanding Processor Usage Accounting” later in this section.

The system administrator can place some constraints on the values you are able to
assign to the PRIORITY task attribute. For example, the administrator can assign a
PRIORITY limit to a job queue. If you write a WFL job that is initiated from that job
queue, the job cannot request a PRIORITY value higher than the job queue PRIORITY
limit. Similarly, the system administrator can assign a value to the PRIORITY attribute of
your usercode. CANDE and MARC read the PRIORITY attribute of your usercode when
you log on. When you initiate a task from a CANDE or MARC session, CANDE and
MARC do not allow you to assign the PRIORITY task attribute a value higher than your
PRIORITY usercode attribute.

Aside from the PRIORITY task attribute, the major feature you can use to manipulate
process priority is the MP <file title> + CONTROL form of the MP (Mark Program)
system command. This option marks an object code file as a control program.
Thereafter, whenever that program is initiated, it runs in the same priority category that
message control systems (MCSs) do. This category gives higher priority than WFL jobs
or application programs have, but lower priority than invisible independent runners.

An additional effect of control program status is that it prevents the system from
scheduling a process (that is, delaying initiation of the process) when there is a shortage
of available memory. If you mark too many programs with control program status, the
result can be that system memory becomes overloaded, with a resulting adverse effect
on system performance. Therefore, you should use caution in marking programs with
control program status.

 Controlling Processor Usage

8600 0494–506 7–3

The system also places WFL jobs in a special priority category. WFL jobs receive higher
priority than all application programs, but lower priority than control programs, MCSs, and
invisible independent runners.

The system uses the PRIORITY task attribute only when comparing processes that are in
the same priority class. Thus, a WFL job running with a PRIORITY value of 1 still has a
higher priority than an ordinary process with a PRIORITY of 99.

The system places WFL jobs in the high priority class because their only purpose, in
most cases, is to initiate tasks; the sooner the job initiates each task, the sooner the
system can evaluate the priority of each task on its own merits. However, it would not
be possible to rewrite a typical application in WFL to take advantage of its priority. WFL
is specialized for tasking functions and has no ability to read from or write to files.

The high priority class is limited to a maximum of 60 seconds of processor time. After a
WFL job has used 60 seconds of processor time, its priority bias is automatically
removed and the job competes for processor resources based on its visible priority value,
in the same way most other tasks compete for processor resources.

Running a looping WFL job at priority 99 can still seriously impact system performance in
the same way as any looping task running at priority 99 impacts the system
performance. In general, the priority of a WFL job should be about the same as the
priority of the tasks that it initiates.

Because the PRIORITY task attribute and control program assignments have a potential
to affect overall system performance, you should generally consult with the administrator
of your system before raising the priority of any particular process.

Limiting Processor Usage
You can use the MAXPROCTIME task attribute to set a limit on the amount of processor
time that a process can use. The accumulated processor time for a process is stored in
the ACCUMPROCTIME task attribute. When ACCUMPROCTIME reaches a value equal
to that of MAXPROCTIME, the system discontinues the process and displays the error
message PROCESSOR TIME EXCEEDED.

The main use of the MAXPROCTIME task attribute is to ensure that WFL jobs are placed
in the proper job queues. For example, suppose there is a high-priority job queue that is
intended for short jobs. The system administrator can use the PROCESSTIME job queue
attribute to provide default and limiting values for the MAXPROCTIME task attribute of all
WFL jobs that use the job queue. If you submit an extremely processor-intensive job
through that job queue, the system discontinues the job when it exceeds the
MAXPROCTIME value. This gives you an incentive to resubmit the job through a
different job queue. For an introduction to the subject of job queues, refer to the
discussion of WFL in Section 4, “Tasking from Programming Languages.”

Controlling Processor Usage

7–4 8600 0494–506

Understanding Processor Usage Accounting
Programs vary a lot in terms of their patterns of processor usage. Understanding the
processor usage of a program can help you to decide the priority at which it should run.
It can also help you to diagnose inefficiencies in program design or problems in overall
system performance.

The system divides the processor usage of a process into several categories, which can
be displayed through system commands, examined through task attributes, or read in
the system log.

The system command that displays processor usage information is the TI (Times)
command. The following is an example of the output:

 5825 TI

 TIMES FOR 5825
 PROCESS = 00:00:37 LIMIT 0:01:20
 IO = 00:00:01 LIMIT 0:02:40
 READYQ = 00:00:56
 INITPBIT = 00:00:06 3217 OPERATIONS
 OTHERPBIT = 00:00:02 1521 OPERATIONS
 ELAPSED = 00:11:40

In the TI command output, all the times are expressed in a format of
<hours>:<minutes>:<seconds>. The following are the meanings of these fields in the TI
command output:

• PROCESS

The accumulated processor usage of the process, with the exception of the process
time spent on presence-bit operations. (See the following descriptions of INITPBIT
and OTHERPBIT.) The LIMIT time, if displayed, corresponds to the MAXPROCTIME
task attribute value.

• IO

The accumulated I/O usage for the process. The LIMIT time, if displayed,
corresponds to the MAXIOTIME task attribute value.

• READYQ

The accumulated ready queue time for the process. Ready queue time is the time
spent waiting for the processor to become available. If this value is excessive, it
indicates either that the processor is overloaded or that other higher priority
processes are dominating the processor.

 Controlling Processor Usage

8600 0494–506 7–5

• INITPBIT

The amount of processor time spent on initial presence-bit operations. These are
operations that create arrays, files, and code segments for this process. This value is
followed by a count of the number of presence-bit operations.

If the value of INITPBIT is high compared to the value of PROCESS, this can be a
symptom of poor program structure. For example, if a large local array is declared in
a procedure that is entered repeatedly, then much processor time is spent recreating
the array each time the procedure is entered, thus resulting in a high INITPBIT value.
You can prevent this problem by declaring the array globally to the procedure, or by
declaring the array with an OWN clause (in ALGOL programs only).

• OTHERPBIT

The amount of processor time spent on noninitial presence-bit operations for this
process. Noninitial presence bit operations read arrays and code segments back into
main memory after they have been overlaid. The value of OTHERPBIT can vary
widely for different runs of the same program, depending on the memory demands
that are made by other active processes. If this value is very high, it might indicate
that memory is overloaded and the system is thrashing.

• ELAPSED

The amount of real time that has passed since the process was initiated. This value
is stored in a different form in the ELAPSEDTIME task attribute.

The value of ELAPSED can be greater than or less than the sum of the other values
listed in the TI display. The ELAPSED value can be greater because it includes time
spent waiting on events, and this waiting time is not displayed separately. The
ELAPSED value can be less because, in some cases, a process might be using the
processor and performing one or more I/O operations at the same time.

Most of the resource usage information that can be displayed for a process can also be
interrogated through task attributes.

The ACCUMPROCTIME task attribute returns the accumulated processor time. The
value does not include processor time spent on presence-bit operations. The
INITPBITTIME, INITPBITCOUNT, OTHERPBITTIME, and OTHERPBITCOUNT task
attributes return the times and counts for presence-bit operations. The ACCUMIOTIME
task attribute returns the accumulated I/O time for the process. The ELAPSEDTIME task
attribute returns the total elapsed time.

The values these task attributes return are expressed in units of 2.4 microseconds,
except if the attributes are read from WFL, which expresses the values in units of
seconds.

The system log (SUMLOG) records several categories of processor usage for each
process. This information includes the processor time, I/O time, ready queue time, and
p-bit times and counts. This information is stored in the Major Type 1, Minor Type
2 (EOJ) and Minor Type 4 (EOT) log entries. For a description of these log entry types,
refer to the System Log Programming Reference Manual.

Controlling Processor Usage

7–6 8600 0494–506

8600 0494–506 8–1

Section 8
Controlling Process Memory Usage

Process execution takes place in a memory environment that is shared with all the other
processes in the mix. Understanding that environment can help you to improve process
performance and prevent a process from impairing overall system performance.

This section is aimed at programmers, and concentrates on the aspects of process
memory usage that can be affected by task attributes and object code file location.

Understanding Process Memory Usage
A process consists of several distinct components, some of which reside in main
memory and some of which can reside in virtual memory. The system uses presence-bit
operations to create or re-create some of the process components in main memory.

Main Memory and Virtual Memory

The effective memory capacity of a system consists of the following two components:

• Main memory

This is the total amount of memory that is physically present.

• Virtual memory

This is an additional amount of memory whose existence is simulated by temporarily
copying segments of main memory out to disk. The use of virtual memory enables
the system to handle more processes than can fit into main memory at the same
time.

To facilitate memory management, the system classifies each of the segments of main
memory into one of the following three categories:

• Available memory

This is memory that is not assigned to an in-use process. The system is free to
allocate this memory as the need arises.

• Overlayable memory

This is memory that is assigned to in-use processes, but which can nevertheless be
overwritten if necessary. For data segments, the system must copy the data to a
different location in main memory or to an overlay disk file before reusing the
memory segment. For code segments, the system can simply overwrite the code

Controlling Process Memory Usage

8–2 8600 0494–506

segment with other code or data. The system can read the code segment back in
from the object code file the next time it is needed.

• Save memory

Save memory consists of structures that, for performance reasons, must be kept in
main memory at all times. The system never copies these segments out to disk, nor
does it move them around in main memory except for stack stretches. (Refer to
“Preventing Stack Stretches” later in this section.)

When the processes in the mix require far more memory than exists as main memory,
the processor is forced to spend a lot of time performing overlays. When the time spent
performing overlays begins to significantly impair system performance, the situation is
called thrashing.

Process Components

Every running process includes the following basic structures in memory:

• Process information block (PIB)

This structure contains process control information visible only to the operating
system. The PIB also contains a reference to the TAB.

• Task attribute block (TAB)

This structure stores the task variable for the process and includes the values of all
task attributes. In addition to the TAB of the process, the system creates a separate
TAB for each task variable the process declares. Thus, reusing a task variable can
slightly reduce the memory usage of a process. For cautions related to task variable
reuse, refer to the Task Attributes Programming Reference Manual.

• Process stack

This structure includes storage areas, or descriptors pointing to outside storage
areas, for all variables declared by the process. The top of the process stack also
serves as a working storage area that the processor can use when evaluating
expressions. For information about estimating and limiting process stack size, refer
to “Controlling Process Scheduling,” “Preventing Stack Stretches,” “Protecting
against Stack Overflow,” and “Restricting Save Memory Usage” later in this section.

• Code segment dictionary

This structure includes descriptors pointing to the locations of

− The code segments used by the process.

− Constant data used by the process, such as value arrays and translate tables.

− Sequence numbers for all the code segments, if the program was compiled with
the LINEINFO compiler options set. (For information about LINEINFO, refer to
Section 10, “Determining Process History.”)

For further information about code segment dictionaries, refer to “Controlling Code
Segment Dictionary Sharing” later in this section.

 Controlling Process Memory Usage

8600 0494–506 8–3

Presence-Bit Operations

When the processor constructs an array, a logical file, or a code segment for a process in
memory, this action is referred to as a presence-bit operation. An initial presence-bit
operation is one that creates an array or a code segment because the related procedure
has just been invoked. A noninitial presence-bit operation is one that copies an array or a
code segment back into main memory from disk.

The number of initial presence-bit operations performed by a process, and the processor
time they take, are relatively stable from one run of a program to the next (provided that
each run results in the same sequence of procedure entrances). However, the number
of noninitial presence-bit operations performed by a process depends to a large extent on
how much memory is being used by all the other processes in the mix. When memory
is crowded, more noninitial presence-bit operations are performed.

You can monitor the number of presence-bit operations for a process, and the processor
time spent on them, by using the TI (Times) system command, by interrogating task
attributes, or by reading system log entries. Refer to the discussion of processor usage
accounting in Section 7, “Controlling Processor Usage.”

Controlling Code Segment Dictionary Sharing
The system generally causes processes to share the same code segment dictionary if
the processes are executions of the same program. This technique reduces total
memory usage and thus reduces the system overhead for memory management. The
result is that all the processes in the mix are able to run more quickly.

There are a few situations in which the system does not use the same code segment
dictionary for processes that are executing the same program. Understanding these
situations can help you to conserve memory and control process privileges.

To decide whether two processes are executions of the same program, the system
compares the object code file title for each process. Suppose you have one copy of
OBJECT/PROG on the family SYSPK, and another copy on a family called DOCPK. In this
case, the family part of the object code file title is different. The system therefore
regards these as two different programs. If people are using both programs
simultaneously, the system has to create two separate code segment dictionaries. You
can eliminate this duplication, and thus reduce system overhead, by placing a single
object code file in a central location where all the users have access to it.

Controlling Process Memory Usage

8–4 8600 0494–506

Even if two processes have the same object code file title, the system still assigns them
different code segment dictionaries in the following cases:

• If either of the processes is running in Test and Debug System (TADS) mode. A
process runs in this mode if you compile the program with the TADS compiler option
set and run the program with the TADS task attribute set. TADS mode gives
ALGOL, C, COBOL74, COBOL85, or FORTRAN77 processes access to the TADS
facility for debugging programs. You can prevent unnecessary duplication of code
segment dictionaries by using TADS mode only for the rare cases when you are
actually doing debugging.

• If the object code file is overwritten. An object code file can be overwritten if, for
example, you recompile the program or use a COPY statement to replace it with a
different program having the same title. If the object code file of a running process is
overwritten, the system retains the old object code file as a temporary file. The
running process continues to use its code segment dictionary and the old object
code file. However, any new processes that are initiated with the same object code
file title receive a code segment dictionary reflecting the new object code file. The
main point to bear in mind is that updating or removing an object code file has no
effect on processes that are already running.

The MP (Mark Program) system command can be used to assign various options to
object code files. These options are described in Section 5, “Establishing Process
Identity and Privileges.” Be aware that these options do not affect instances of the
program that are already running when the MP command is entered.

Controlling Process Scheduling
A process is considered scheduled when it has been submitted for initiation, but the
system is delaying initiation of the process. Scheduling can occur for any of a number of
reasons, most of which are not preventable by the programmer. For an explanation of
these reasons, refer to the discussion of process scheduling in the System
Administration Guide.

One type of process scheduling that you can prevent, to some extent, is scheduling due
to a lack of available memory. The system performs this type of scheduling if it
estimates that a particular process requires more memory for efficient execution than is
currently available. The system places the process in a scheduled state until more
memory becomes available.

The initial memory estimate for a process is created by the compiler and stored in the
object code file. The memory estimate is an estimate of the average amount of memory
that must be available for the process to run efficiently (that is, without excessive
overlays). This ideal amount of memory is referred to as the working set of the process.

Each time the object code file is executed, the system writes an updated memory
estimate into the object code file. The updated estimate is based on the average of the
existing estimate and the memory usage during the current run. The effect is gradually
refined and improved the accuracy of the memory estimate each time the object code
file is run.

 Controlling Process Memory Usage

8600 0494–506 8–5

The memory estimate for a process consists of two separate statistics: the estimated
process stack size, and the estimated memory usage for data and code segments. You
can override the process stack size estimate through an assignment to the STACKSIZE
task attribute. You can override the data and code estimate through an assignment to
the CORE task attribute. By assigning large or small values to the STACKSIZE and CORE
attributes, you can make it more or less likely that the system will schedule a process
when it is submitted for initiation.

It is rarely necessary or desirable for you to make assignments to the STACKSIZE and
CORE task attributes. It is true, for example, that you can help ensure that a process will
not be scheduled by setting STACKSIZE and CORE to artificially low values. However,
doing so could cause a system to begin thrashing, with the result that system
performance could dramatically worsen.

The following are situations in which it might make sense to assign STACKSIZE and
CORE values:

• When initiating a program that is newly compiled. The memory estimate in such an
object code file has not been refined through repeated use.

• When initiating a program that is stored on a read-only disk. Many types of disk
drives have a switch that enables an operator to put the disk drive in read-only mode.
If an object code file is stored on a read-only disk, the system is not able to update
the memory estimate in the object code file after each run.

• When initiating a program whose memory usage varies widely from one run to the
next. This can be the case if the memory usage depends on the type and quantity of
the data passed to the program for processing.

Even in these situations, there is no point in your assigning a CORE or STACKSIZE value
unless you have some information about what the working set of the program really is.
You can get some general idea of the memory usage of a program by running it and
examining statistics with the LOGANALYZER utility. You can use the LOGANALYZER
MIX option to return log entries for a particular process. In the Major Type 1, Minor
Types 2 and 4 (EOJ and EOT) log entries, you can find figures for the average memory
usage of a process.

The average memory usage is not necessarily the ideal memory usage for a process; if
memory is very crowded, the process might be constrained to use a less-than-optimum
amount. Still, these statistics might be helpful in some cases.

For example, suppose you run the same reporting program twice a day: once to report
on the payroll for your whole department, and once to summarize the time charged to
certain accounts. Using LOGANALYZER, you might discover that the program
consistently uses less memory for the time-accounting run than it does for the payroll
run. In this example, the memory estimate in the object code file tends to reflect an
average of the two types of runs. You can improve on this memory estimate for
individual runs by assigning one set of CORE and STACKSIZE values for the time
accounting run and another set of CORE and STACKSIZE values for the payroll run.

Controlling Process Memory Usage

8–6 8600 0494–506

Preventing Stack Stretches
The process stack for a process can vary in size significantly during the execution of the
process. Each time a process enters a procedure, the system adds a storage area called
an activation record on top of the process stack. In turn, the system removes an
activation record from the process stack when a procedure is exited. The size of the
activation record, in turn, is affected by the number and type of objects that are declared
in a procedure, as well as by the nature of the computations made in the procedure.

The process stack resides entirely in a contiguous region of save memory. To leave
room for the process stack to grow, the system sets aside a region of memory larger
than the initial size of the process stack. The amount of memory set aside is based on
the stack memory estimate or the STACKSIZE task attribute value, as described under
“Controlling Process Scheduling” earlier in this section.

In addition to its effects on scheduling, the stack estimate has implications on the
performance of the process. If the process stack grows to a greater size than the stack
estimate, the system must stretch the process stack. The stack stretch is an expensive
operation because it requires moving the entire process stack to a different location and
updating all ASD table entries that are used by the process.

You can tell if stack stretches occurred for a process by checking the job summary or, in
some cases, the system log. (By default, stack stretches are recorded only in the job
summary.) If a stack stretch occurred, an entry such as the following appears:

18:01:19 3211 STACK EXTENDED FROM 511 TO 704 WORDS.

If a process experiences stack stretches, the system changes the stack estimate in the
object code file to the average of the previous estimate and the final stack area allocated
in the current run. Thus, if the program is fairly consistent in the amount of stack space
it needs, then the stack estimate can become very accurate after several runs. The
result is that stack stretches are no longer necessary and the program executes faster.

You can consider making STACKSIZE assignments to improve performance in the same
situations where you might want to use STACKSIZE assignments to regulate scheduling,
that is, for newly compiled programs, programs stored on read-only disk units, or
programs whose memory usage varies widely from one run to the next. You can help
decide on an appropriate STACKSIZE value by observing the STACK EXTENDED log
entries for various program runs.

Note that you can assign values to the STACKSIZE only before process initiation (for
example, through task equations). You cannot use STACKSIZE to change the stack
space allocated for an in-use process.

 Controlling Process Memory Usage

8600 0494–506 8–7

Protecting against Stack Overflow
Another task attribute related to process stack size is STACKLIMIT. The STACKLIMIT
value places a limit on the size to which the process stack can be stretched. If a process
cannot proceed further without exceeding this limit, the system discontinues it and
returns the error message “STACK OVERFLOW.”

The STACKLIMIT task attribute defaults to a value of 6000 words for most programs.
(The system uses a higher default for certain types of programs that are likely to need a
larger stack size.) It is unlikely that any process stack will reach the default STACKLIMIT
size if it is running as intended. The “STACK OVERFLOW” error usually indicates that a
process has entered into an infinite loop of recursive procedure calls. Because each
procedure call adds an activation record to the process stack, the process stack quickly
exceeds the STACKLIMIT value.

The PERFORM statement in COBOL also adds to the size of the process stack, and an
infinite loop of recursive PERFORM statements also causes a “STACK OVERFLOW”
error. (This is true even though a PERFORM statement does not create an activation
record. A PERFORM statement adds a different type of structure to the process stack.)
By contrast, GO TO statements do not increase the process stack size and so cannot
cause a “STACK OVERFLOW” error.

If a process receives a “STACK OVERFLOW” error, and you determine that the process
was running as intended, then you can remedy the problem by assigning a higher value
to the STACKLIMIT task attribute before initiating the process. The highest value
STACKLIMIT can be set to is about 64000 words.

Because a process stack is built exclusively in save memory, the save memory
restrictions discussed in the next subsection also effectively limit the size of the process
stack.

Restricting Save Memory Usage
The amount of save memory in use on the system is of particular concern to a system
administrator because it is one of the factors that can have a big effect on system
thrashing. As the percentage of memory allocated to save memory increases, the
probability that the system will begin thrashing also increases.

A number of memory structures associated with a process are stored in save memory.
The total save memory usage of a process varies, depending on factors such as process
stack size, code segment dictionary sharing, and file and array declarations.

Since processes use varying amounts of save memory, and save memory usage impacts
system performance, it is possible for an individual process to harm system performance
by using excessive save memory. This might happen, for example, if the process enters
an infinite loop of procedure calls, as discussed under “Protecting against Stack
Overflow” earlier in this section. This might also happen if the process uses large
numbers of arrays and files.

Controlling Process Memory Usage

8–8 8600 0494–506

You can prevent a process from exceeding a planned level of save memory usage by
assigning a value to the SAVEMEMORYLIMIT task attribute. If the save memory usage
of the process exceeds the limit set by this attribute, the system discontinues the
process and displays the message “USER SAVE MEMORY LIMIT EXCEEDED.”

If a process is discontinued with the “USER SAVE MEMORY LIMIT EXCEEDED” error,
you should check to see if it was running normally or looping. If it was running normally,
you can consider program design measures to reduce the save memory usage.
Alternatively, you can raise the SAVEMEMORYLIMIT value and plan to run the process at
a time when the system is not very busy.

The system administrator can place some limits on the SAVEMEMORYLIMIT value your
processes can have. For example, the system administrator can assign a
SAVEMEMORYLIMIT value to your usercode. This value becomes the maximum
SAVEMEMORYLIMIT value for all processes initiated with your usercode. If you assign a
different SAVEMEMORYLIMIT value to a process, the system uses the lower of your
SAVEMEMORYLIMIT assignment and the usercode SAVEMEMORYLIMIT assignment.

You might also find that the system administrator has assigned a SAVEMEMORYLIMIT
value to a job queue you use for your WFL jobs. If the SAVEMEMORYLIMIT is assigned
as a job queue default, you can override it with a different SAVEMEMORYLIMIT
assignment in the job header of your WFL job. If the SAVEMEMORYLIMIT is assigned
as a job-queue limit, your WFL job is rejected from the job queue if the job header
includes a higher SAVEMEMORYLIMIT assignment. For more information about job
queues, refer to the discussion of WFL in Section 4, “Tasking from Programming
Languages.”

8600 0494–506 9–1

Section 9
Controlling Process I/O Usage

The I/O activity of a process is primarily determined by various I/O statements that the
process executes. These include statements for reading from, writing to, opening, and
closing files. For an overview of I/O features available in programming languages, refer
to the I/O Subsystem Programming Guide.

There are also a number of task attributes that affect various global aspects of process
I/O activity. For example, you can use task attributes to establish default locations for
files used by a process, or to specify defaults for handling printer output produced by a
process. This section introduces the functions of task attributes that affect process I/O
activity and some related system commands.

Establishing the Default Usercode for Disk Files
One of the effects of the USERCODE task attribute is to supply a default usercode for all
disk files used by a process. For example, suppose a process runs with a USERCODE
value of FERMAT. Suppose also that this process attempts to open a file with a TITLE
file attribute of INPUT/DATA ON DBFAM. In this case,

• If the NEWFILE file attribute is TRUE, the system creates the file under usercode
FERMAT and changes the TITLE file attribute to (FERMAT)INPUT/DATA ON DBFAM.

• If the NEWFILE file attribute is FALSE, the system searches for the file first under
the title (FERMAT)INPUT/DATA ON DBFAM. If no file of that title exists, the system
searches for the file under the title *INPUT/DATA ON DBFAM.

A process can override the default behavior by assigning a usercode as part of the TITLE
file attribute before attempting to open the file. For example, a process could assign
TITLE the value (LUANN)INPUT/DATA ON DBFAM. In this case, the system searches
for the file only under usercode LUANN.

Note: The preceding description of default usercodes applies only to files for which the
SEARCHRULE file attribute value is NATIVE. For an explanation of the file searching
rules used when SEARCHRULE = POSIX, refer to “Specifying a Current Directory” later
in this section.

Controlling Process I/O Usage

9–2 8600 0494–506

Modifying File Attributes
File attributes are entities that describe the properties of files. For example, file
attributes specify the title of the file and the physical device type on which it resides
(such as disk or tape). Programs can specify attributes for a file in the file declaration.
Programs can also add to or change file attributes with file attribute assignment
statements later in the program.

After you have written and compiled a program, you might later find that you would like
the program to start using a different set of file attributes than were originally specified in
the program. One method for doing this is to rewrite and recompile the program. This
method can be time consuming for the programmer, and can make heavy use of system
resources such as processor time and memory.

Alternatively, you can modify the file attributes used by a program through constructs
called file equations. For example, suppose a program uses a file called IN and another
file called OUT. In a CANDE RUN command, you could use file equations to specify
different titles for these files in the RUN statement that initiates the program. The
following is an example:

RUN REPORT1;FILE IN = (HKANE)INDATA, OUT = (HKANE)OUTDATA

File equations thus enable you to modify the file attributes used by a program without
having to rewrite or recompile the program. However, in order to use a file equation you
first have to know the internal name of the file. The internal name of the file is
determined by the value of the INTNAME file attribute. If the program does not specify a
value for INTNAME, then INTNAME defaults to the value of the file identifier used for the
file in the program. You can determine the internal name of a file by looking at the file
declaration in the program source file. Thus, either of the following ALGOL declarations
creates a file with an internal name of SOURCE:

FILE CUSTDATA(INTNAME = "SOURCE.");
FILE SOURCE;

The syntax for file equations in CANDE, MARC, and WFL is almost identical. For
example, to change the device kind of the file with the internal name of SOURCE, you
can append the following to a RUN statement submitted through any of these sources:

FILE SOURCE(KIND = REMOTE);

The flexibility provided by file equations can be so convenient that programmers
sometimes design a program with the intention that the user will use file equations. For
example, in the documentation for various compilers and utilities, you can find
descriptions of the internal names of files used by these compilers and utilities. These
internal names are documented so that you can use them in file equations.

 Controlling Process I/O Usage

8600 0494–506 9–3

Note that the same file attribute can be assigned different values by file declarations, file
attribute assignment statements, and file equations. In these cases, the values assigned
through file equations override those specified in the file declaration. File equations are
in turn overridden by any conflicting file attribute assignment statements executed by the
program. A programmer can prevent file equations from having effect simply by
specifying file attributes through file attribute assignment statements rather than through
attribute assignments in the file declaration.

When you specify file equations for a process, the system stores the equations in the
FILECARDS task attribute of the process. For further information about FILECARDS,
refer to the Task Attributes Programming Reference Manual.

One of the file attributes that it is frequently useful to change at run time is the
FAMILYNAME file attribute. You can save yourself the trouble of including
FAMILYNAME equations for each disk file in the program by using the FAMILY task
attribute instead. Refer to “Specifying Family Substitution” later in this section. Also,
you can establish default values for the file attributes related to printing by using the
PRINTDEFAULTS task attribute, as described under “Programmatic Control Over
Printing” later in this section.

You might find occasionally that you initiated a process and forgot to specify the correct
file equations. The system suspends the process if both the following conditions are
true:

• The process attempts a open operation with the WAIT option specified or with no
specific open option.

• The process is unable to open the specified file because of a missing or incorrect file
attribute value.

You cannot use file equations to remedy this problem, because file equations must be
specified at process initiation. Instead, you can use the FA system command to supply
the needed file attribute values. For example, suppose a process is suspended because
it tried to open a file SOURCE with KIND = TAPE, and the file is a disk file. The Y system
command output looks like this:

STATUS OF TASK 38057\23046 at 07:28:51
Program name: *SYSTEM/DUMPALL ON DISK
 Codefile created: Monday, July 2, 2001 (2001183) at 11:07:28
Priority: 50
Origination: SB154/CANDE/3 (LSN 320)
MCS: SYSTEM/CANDE
Usercode: JASMITH
Stack State: Waiting on an event, Assigning a file
RSVP: NO FILE SOURCE (MT) #1
Reply: NF, FA, UL, IL, OK, DS

Controlling Process I/O Usage

9–4 8600 0494–506

Note that the name SOURCE, which appears on the RSVP line, is the file title rather than
the internal name. However, it does not matter if you do not know the internal name in
this case. When you specify file attribute assignments in an FA command, the system
automatically applies the assignments to the file the process is trying to open. The
following FA command enables the process to open the file and resume running
normally:

5692 FA KIND = DISK

For detailed descriptions of all the file attributes available on the system, refer to the File
Attributes Programming Reference Manual.

Controlling Disk File Usage
You can use task attributes to take advantage of several disk storage features, including
the concept of disk families, disk directories, and the disk resource control system.

Specifying Family Substitution

Disk families are groups of disk units that are labeled with a common name and treated
as a logical unit. Disk families are defined through system configuration and system
commands. Once a family has been defined, a program can use the FAMILYNAME file
attribute to specify that a file is located on that family.

It is quite often the case that all the input and output files used by a process are located
on one, or possibly two, disk families. Now, suppose that you include FAMILYNAME file
attribute assignments in the program for each file used by the program. The system
administrator might later decide to change the name of a disk family, or might ask you to
place your files on a different family. Further, you might need to run your program on a
different host system, where no family of the original name exists. For any of these
reasons, it might become desirable for the program to look for its files on a different
family than is specified in the program code.

The simplest way to make a process use a different family is by assigning the FAMILY
task attribute. This task attribute specifies a target family and one or two substitute
families to be searched for files. For example, suppose a process expects to find its files
on the family SYSPK. This is considered the target family. To make the process look for
its files on the family PARTS instead, you could use the assignment FAMILY SYSPK =
PARTS ONLY.

Note that this FAMILY value affects only files with a FAMILYNAME value of SYSPK. For
example, if the file has a FAMILYNAME of DBFAM, then the process still looks for the
file on DBFAM.

Note also that only one FAMILY value can be in effect at a time. For example, suppose
the existing FAMILY value of a process is FAMILY SYSPK = PARTS ONLY. In this case,
an assignment such as FAMILY DBFAM = PACK ONLY disables family substitution for
the SYSPK family and enables substitution for the DBFAM family.

 Controlling Process I/O Usage

8600 0494–506 9–5

If a program does not specify a FAMILYNAME for a disk file, the system searches for the
file on the family named DISK. If you want the users of a program to specify a FAMILY
value, you can leave the FAMILYNAME unspecified for all the files. The user can
override the default FAMILYNAME of DISK with a FAMILY task attribute assignment
such as FAMILY DISK = DBFAM ONLY.

Sometimes it is useful to specify two substitute families in the FAMILY value. For
example, you might have a WFL job that runs utilities stored on the family named
DBFAM, which in turn use data files stored on the family named SYSPK. In this case,
you can use a FAMILY statement like the one in the following WFL job:

?BEGIN JOB;
 FAMILY DISK = DBFAM OTHERWISE SYSPK;
RUN OBJECT/DAILY/RUN;
RUN OBJECT/REPORT/GENERATOR;
?END JOB

Because the FAMILY assignment is in the job header, the system searches for
OBJECT/DAILY/RUN and OBJECT/REPORT/GENERATOR on DBFAM family and then on
SYSPK family. The FAMILY task attribute value is inherited by both tasks, which search
for their data files on DBFAM and SYSPK families.

When a family statement specifies two substitute families, the first is referred to as the
primary family and the second as the alternate family. In the previous example, DBFAM
is the primary family and SYSPK is the alternate family.

When a process attempts to create a new file on the target family, the system creates
the file on the primary family instead. When a process attempts to open or execute an
existing file on the target family, the process searches for the file first on the primary
family and then on the alternate family. If the TITLE file attribute of the existing file does
not begin with a usercode or an asterisk, then the system searches for the file in the
following locations, in the order shown:

1. On the primary family, under the usercode of the process

2. On the primary family, as a nonusercoded file

3. On the alternate family, under the usercode of the process

4. On the alternate family, as a nonusercoded file

If the TITLE attribute of a file does not specify a usercode, and the NEWFILE file attribute
is TRUE, the system creates the file on the primary family under the usercode of the
process.

Controlling Process I/O Usage

9–6 8600 0494–506

Another method for overriding the FAMILYNAME file attribute is through file equations,
as described under “Modifying File Attributes” earlier in this section. The following are
two advantages to using FAMILY instead of file equations for this purpose:

• A single FAMILY assignment affects all the files in the program that have the
specified target FAMILYNAME. Using file equations, you must specify each file
individually.

• The FAMILY assignment overrides the target FAMILYNAME wherever it is
mentioned in the program. By contrast, file equations are applied when a file is first
declared. The program can later use file attribute assignment statements to override
the values supplied through file equations.

Note: The preceding description of family substitution applies only to files for which the
SEARCHRULE file attribute value is NATIVE. For an explanation of the file searching
rules used when SEARCHRULE = POSIX, refer to “Specifying a Current Directory” later
in this section.

Preventing File Duplications

The system does not allow two permanent disk files with the same title to exist on the
same disk family. In order to handle attempts to duplicate disk file titles, most system
administrators set the system option AUTORM. If a process attempts to enter a file in
the disk directory for a family, but a file with the same name already exists in that
family's disk directory, then the AUTORM option causes the existing file to be removed.
For further information, refer to the discussion of preventing process suspension in
Section 6, “Monitoring and Controlling Process Status.”

Automatically Restoring Missing Disk Files

If your site uses the archiving subsystem to perform system backups, you can use the
AUTORESTORE task attribute to reduce the likelihood that a process will be suspended
for attempting to open a nonresident disk file.

The system checks to see if there is an archive record specifying the location of a backup
copy of a file if a process attempts to open the file and all the following conditions are
true:

• The process has an AUTORESTORE value of TRUE.

• The file title is under the usercode of the process.

• The disk file is not present on the requested family because the file was removed by
one of the following WFL statements: ARCHIVE RELEASE or ARCHIVE ROLLOUT.

If there is an archive record for the file, the system issues a request for an operator to
mount the necessary tape. When the tape is mounted, the system copies the file back
onto disk. At this point, the process that was attempting to use the tape resumes
execution.

 Controlling Process I/O Usage

8600 0494–506 9–7

If the system is unable to restore the file for any reason, the process becomes
suspended and appears in the W (Waiting Entries) system command display with a “NO
FILE” RSVP message.

For an overview of the system archiving and AUTORESTORE features, refer to the
System Administration Guide.

Limiting Disk Usage

The system administrator can use the disk resource control (DRC) system to limit the
disk usage of each user. For each usercode, the administrator can establish the
maximum amount of space the user can use on each family. The limits are applied in a
somewhat different manner for permanent and temporary disk files.

For permanent disk files, the limits imposed by the system administrator apply to the
total of all the user's files on a given family. Any process that attempts to increase the
total file usage beyond the limit receives an I/O error. For example, suppose the system
administrator has established a limit of 2 megabytes on the disk usage for usercode
CHAN on DBFAM family. Suppose there are already 1999999 bytes of permanent files
under CHAN usercode on DBFAM, and a process attempts a write operation that
requires another area to be allocated for one of these files. In this case, the write
operation fails.

For temporary disk files, the limits imposed by the system administrator apply to
individual processes running under the specified usercode. The administrator specifies
the limit by assigning a TEMPFILELIMIT attribute to the usercode. This in turn sets a
limit on the value that can be stored by the TEMPFILELIMIT task attribute of processes
running under the usercode. If a process attempts to increase its temporary file usage
beyond the number of megabytes specified by TEMPFILELIMIT, the process receives an
I/O error.

For example, if the TEMPFILELIMIT for usercode CHAN is 3 megabytes, there can be
two different processes running with CHAN usercode that each use 2 megabytes for
temporary files. The total temporary file usage is thus 4 megabytes. This is not a
violation of the TEMPFILELIMIT because the limit is enforced on a process-by-process
basis.

Note also that, unlike the permanent disk file limits, the TEMPFILELIMIT cannot be linked
to a particular disk family. The process might allocate its temporary files on any family.
For example, if the TEMPFILELIMIT is 3 megabytes, and the process has allocated 2
megabytes of temporary files on DBFAM, the process can allocate no more than 1
megabyte on SYSPK.

At any given time, the TEMPFILEMBYTES task attribute records the total number of disk
megabytes in use by the process for temporary files. The process can interrogate this
task attribute to determine the process is nearing the TEMPFILELIMIT value.
Alternatively, you can design the process to include I/O error handling that enables the
process to recover from temporary file limit errors.

Controlling Process I/O Usage

9–8 8600 0494–506

For information about permanent and temporary disk files, and about I/O error handling,
refer to the I/O Subsystem Programming Guide. For more information about the DRC
system, refer to the System Administration Guide and the System Operations Guide.

Specifying a Current Directory

The system supports two different methods of file searching: native rules and POSIX
rules. You can select the file searching method by setting the SEARCHRULE file
attribute to NATIVE or POSIX. Native rules are the default.

An advantage to using POSIX rules for file searching is that POSIX allows you to define
the current working directory for a process. You define this directory with the
CURRENTDIRECTORY task attribute. Once you have defined a current directory, the
process can specify file names using an incomplete form known as a relative pathname.
The system automatically combines the relative pathname with the
CURRENTDIRECTORY value to determine the absolute pathname. The absolute
pathname is the complete title of the file, encoded in a POSIX-defined format. The
pathname is stored in the PATHNAME file attribute.

For example, consider the following WFL statements:

MYSELF (CURRENTDIRECTORY = "/-/MYFAM/USERCODE/JASMITH/DATA");
FILE F1(SEARCHRULE = POSIX, PATHNAME = "TEST/ONE");
FILE F2(SEARCHRULE = POSIX, PATHNAME = "REPORT/BRIEF");

The preceding statements have the same effect as the following statements:

FILE F1(SEARCHRULE = POSIX,
 PATHNAME = "/-/MYFAM/USERCODE/JASMITH/DATA/TEST/ONE");
FILE F2(SEARCHRULE = POSIX,
 PATHNAME = "/-/MYFAM/USERCODE/JASMITH/DATA/REPORT/BRIEF");

You can use a SEARCHRULE value of POSIX only if the DL (Disk Location) command has
been used to define a DL ROOT family on your system.

A SEARCHRULE value of POSIX has two side effects of which you should be aware:

• Family substitution is disabled.

• For usercoded files, the usercode must be explicitly included in the PATHNAME
attribute or the CURRENTDIRECTORY attribute. The system does not implicitly add
a usercode when none is specified.

For more details about absolute and relative pathnames, refer to the
CURRENTDIRECTORY task attribute description in the Task Attributes Programming
Reference Manual. Refer also to the descriptions of the SEARCHRULE and PATHNAME
file attributes in the File Attributes Programming Reference Manual.

 Controlling Process I/O Usage

8600 0494–506 9–9

Controlling Printing
One aspect of process control is the ability to direct the printer output generated by a
task. A process can control the printer output of an offspring by using relevant task
attributes, such as PRINTDEFAULTS and FILECARDS.

The following subsections briefly introduce the printing control features of the system
and the role that task attributes play in printing control. For complete details about
controlling printer output, refer to the Print System and Remote Print System
Administration, Operations, and Programming Guide.

For information about printing job summaries, refer to Section 10, “Determining Process
History.”

Default Handling of Printer Output

The system handles printer output in certain typical ways if operators, programmers, and
users do not use printing-related statements to request different treatment. The
following subsections describe the typical handling of printer output.

Storing Printer Backup Files Temporarily

When a program creates a printer file, the system either routes the output directly to a
printer or stores the output in a printer backup file for later printing. If the output is routed
directly to a printer, the program editing the file either controls all aspects of printing or
allows the Print System to control printing.

If the BDNAME task attribute has a non-null value, then the system always creates a
backup file. Other effects of the BDNAME task attribute are discussed under “Other
Print-Related Task Attributes,” later in this section.

If the BDNAME task attribute is null (the default), then the PRINTDISPOSITION file
attribute determines whether output is sent directly to a printer or to a printer backup file.

Output is sent directly to a printer and all aspects of printing are controlled by the
program that created the file if the PRINTDISPOSITION file attribute is set to one of the
following values:

• DIRECTDLP

• DIRECT

This value is used when the value of the DIRECTPRINTER option of the SYSOPS
system command is DIRECTDLP.

Note: The DIRECTDLP value works only on systems with printers directly attached to
them.

Controlling Process I/O Usage

9–10 8600 0494–506

Output is sent directly to a printer under the control of the Print System if the
PRINTDISPOSITION file attribute is set to one of the following values:

• DIRECTPS

• DIRECT

This value is used when the value of the DIRECTPRINTER option of the SYSOPS
system command is DIRECTPS.

• NOW

Note: The NOW value provides additional functionality from the Print System.

If the PRINTDISPOSITION value is FILEOPEN, FILECLOSE, EOT, EOJ, or DONTPRINT,
then the system creates a backup file. FILEOPEN automatically creates a print request
when the file is opened. For FILECLOSE, EOT, or EOJ, the system automatically creates
a print request when the file is closed, at end of task, or at end of job, respectively. For
DONTPRINT, the system creates a backup file but does not create a print request; you
can print the backup file later with a WFL PRINT statement.

If the program does not assign a PRINTDISPOSITION value for the file, and no
PRINTDISPOSITION is file-equated for the file when the program is initiated, then the
default is inherited from the PRINTDEFAULTS task attribute. The PRINTDEFAULTS task
attribute can itself inherit its value from any of several sources, as discussed in the Task
Attributes Programming Reference Manual.

If the PRINTDEFAULTS task attribute does not specify a PRINTDISPOSITION value, then
the following factors determine the PRINTDISPOSITION value:

• If either the LPBDONLY system option or the BACKUP option of the OPTION task
attribute is enabled, then the PRINTDISPOSITION file attribute inherits the system
default PRINTDISPOSITION. The LPBDONLY system option is set by the OP
(Options) system command. The system default PRINTDISPOSITION is set by the
PS DEFAULTS PRINTDISPOSITION system command. If the PS DEFAULTS
PRINTDISPOSITION command is never used, the system default
PRINTDISPOSITION is EOJ.

• If neither LPBDONLY nor BACKUP is enabled, then the PRINTDISPOSITION defaults
to DIRECT. The PS DEFAULTS PRINTDISPOSITION value is ignored.

If the printer file is a backup file, the BACKUPKIND file attribute specifies the kind of
medium on which the backup file is to be created. If the BACKUPKIND is DISK or
DONTCARE, the backup file is created on the family named DISK. If the BACKUPKIND is
PACK, the backup file is created on the family named PACK.

If the BACKUPKIND value is TAPE, then the process is suspended and displays an RSVP
message asking the operator to mount a tape. When the tape is mounted, the backup
file is created on the tape. The system does not print the backup file automatically.
However, you can later use SYSTEM/BACKUP or a WFL PRINT command to cause the
file to be printed.

 Controlling Process I/O Usage

8600 0494–506 9–11

The operator can use the SB (Substitute Backup) system command to specify a
substitute backup medium for each possible BACKUPKIND value. The SB setting can
convert any BACKUPKIND value to any other BACKUPKIND value. For example, SB can
specify that all files with a BACKUPKIND of DISK be created on PACK instead.

The SB command can also convert any BACKUPKIND value to DLBACKUP. This value
cannot be specified directly by the BACKUPKIND file attribute; only the SB setting can
cause this value to be applied to a backup file. The DLBACKUP value causes the backup
file to be created on the family specified by the FAMILYNAME file attribute. If the
FAMILYNAME file attribute is null, the backup file is created on the family specified by
the BACKUPFAMILY task attribute. If BACKUPFAMILY is also null, the backup file is
created on the family specified by the DL BACKUP ON <family name> form of the DL
(Disk Location) system command.

Titling of Printer Backup Files

MOREBACKUPFILES Option Is Set

If the MOREBACKUPFILES option of the OP (Options) system command is set and no
title is specified by the process that created a backup file, the system automatically
assigns the backup file a title of the following form:

*BD/<mix number>/..../<12-digit file number>/
<internal name> ON <backup family>

In this title, the *BD node indicates that this is a printer backup file. On a system running
the Secure Accountability Facility with the USERCODEDBACKUP option set to TRUE, the
backup file titles are prefixed with the usercode of the process, rather than an asterisk
(*).

The first node of the title is followed by one or more nodes that store mix numbers. The
first of these nodes contains the mix number of the originating job or the session number
of the originating session. Other mix number nodes, if there are any, contain the mix
numbers for other ancestors of the process, in order, from eldest to youngest. The last
of the mix number nodes contains the mix number of the process itself. If there is only
one mix number node, the backup file was created directly by a job or session. Each mix
number node is padded on the left with enough zeros to bring the node to 7 digits in
length.

The file number node is a 12-digit number that indicates the chronological order of this
backup file compared to other backup files produced by the same process. For example,
suppose a process declares a backup file with an INTNAME of A and another with an
INTNAME of B. If the process opens and closes A three times, the system creates
multiple backup files whose titles end with 000000000000/A, 000000000001/A, and
000000000002/A. If the process then opens B, the system creates a backup file whose
title ends with 000000000003/B.

The last node of the title stores a file name. The name is up to 17 characters of the
FILENAME file attribute, which can be assigned by the process. If FILENAME is not
assigned, FILENAME defaults to the value of the INTNAME file attribute. If INTNAME is
not assigned, its value defaults to the file identifier used in the file declaration.

Controlling Process I/O Usage

9–12 8600 0494–506

MOREBACKUPFILES Option Is Not Set

If the MOREBACKUPFILES option of the OP (Options) system command is not set and
no title is specified by the process that created a backup file, the system automatically
assigns the backup file a title of the following form:

*BD/<mix number>/..../<file number><internal name> ON <backup family>

In this title, the *BD node indicates that this is a printer backup file. On a system running
the Secure Accountability Facility with the USERCODEDBACKUP option set to TRUE, the
backup file titles are prefixed with the usercode of the process, rather than an asterisk
(*).

The first node of the title is followed by one or more nodes that store mix numbers. The
first of these nodes contains the mix number of the originating job or the session number
of the originating session. Other mix number nodes, if there are any, contain the mix
numbers for other ancestors of the process, in order, from eldest to youngest. The last
of the mix number nodes contains the mix number of the process itself. If there is only
one mix number node, the backup file was created directly by a job or session. Each mix
number node is padded on the left with enough zeros to bring the node to 7 digits in
length.

The last node of the file name stores a file number and a name. The name is the first
fourteen characters of the FILENAME file attribute, which can be assigned by the
process. If FILENAME is not assigned, FILENAME defaults to the value of the INTNAME
file attribute. If INTNAME is not assigned, its value defaults to the file identifier used in
the file declaration.

The file number is a 3-digit number that indicates the chronological order of this backup
file compared to other backup files produced by the same process. For example,
suppose a process declares a backup file with an INTNAME of A and another with an
INTNAME of B. If the process opens and closes A three times, the system creates
multiple backup files whose titles end with 000A, 001A, and 002A. If the process then
opens B, the system creates a backup file whose title ends with 003B.

Note that if a process attempts to create a backup file that would be numbered higher
than 999, the system discontinues the process with the error TOO MANY BACKUP
FILES. The HISTORYTYPE value is 4 (DSEDV), the HISTORYCAUSE value is 8
(SOFTIOERRCAUSEV), and the HISTORYREASON value is 115.

For more information on the OP (Options) system command refer to the System
Commands Operations Reference Manual.

The backup family is the family determined by the rules discussed under “Storing Printer
Backup Files Temporarily” earlier in this section.

Note that the backup file title can be affected by the task attributes discussed under
“Other Print-Related Task Attributes” later in this section.

 Controlling Process I/O Usage

8600 0494–506 9–13

Submitting Print Requests

The PRINTDISPOSITION file attribute controls when the system generates a print
request for any given backup file, as discussed under “Storing Printer Backup Files
Temporarily” earlier in this section. If PRINTDISPOSITION has the default value of EOJ,
then the system creates print requests in the following manner:

• When a job terminates, the system groups the backup files produced by the job and
its tasks into print requests. These print requests are groups of all the backup files
that can be printed on the same device. The system then queues all the print
requests for printing. In this context, a session is treated like a job, and backup files
produced by tasks of the session are queued for printing when you end the session.

• For WFL jobs submitted through a MARC or CANDE WFL command, the backup files
are associated with the session and are queued for printing when the session ends.
However, for WFL jobs submitted through a MARC or CANDE START command, the
backup files are associated with the job and are queued for printing when the job
terminates.

Selecting Print Requests

When one of the default printers becomes available, the system chooses one of the
queued print requests to be the next print request printed. By default, short print
requests are chosen before longer print requests. However, if the BACKUPBYJOBNR
operating system option is set, then backup files are printed in order according to job
number. The operator can set or reset this system option by using the OP (Options)
system command.

Normally, the system removes any backup file from disk once the backup files has been
printed. However, the system does not delete the backup file in the following
circumstances:

• The SAVEPRINTFILE file attribute is assigned the value TRUE.

• The LOCKEDFILE file attribute is assigned the value TRUE.

• The file resides on a CD-ROM disk.

• The file resides on a disk that is write-protected.

Programmatic Control Over Printing

A program can control the handling of printer output by specifying print attributes and
print modifiers. Using these attributes and modifiers, the program can control such
issues as

• The location and the device kind of the backup file

• When the backup file is queued for printing

• The printer used

• The time the print request is considered for printing

• The number of copies that are printed

Controlling Process I/O Usage

9–14 8600 0494–506

• The portions of the backup file to be printed

• The formatting and translation of printed output

The final values of the print attributes and print modifiers for a backup file are the result
of several different factors, most of which are controlled by a programmer. To begin
with, each print attribute and modifier has an ultimate default value that is used if no
other factor affects the value. The ultimate defaults can be overridden by process
defaults. The process defaults are established by the PRINTDEFAULTS task attribute.
The PRINTDEFAULTS value consists of a list of print attributes and modifiers and their
associated values. The system applies these values to all backup files produced by the
process, unless the values are overridden for particular backup files.

The PRINTDEFAULTS value is itself the outcome of several layers of possible
assignments. The sources of these assignments include the PRINTDEFAULTS usercode
attribute in the USERDATAFILE, the PRINTDEFAULTS attribute of a session, inheritance
from a parent process, assignments to the object code file, run-time task equations, and
assignments to an active process.

You can override the process defaults for particular backup files by assigning print
attributes to the backup file. Print attributes is the name given to file attributes that are
related to printing, and they are assigned in the same way as any other file attribute.
Using print attributes, a process can cause each backup file to be handled differently.

Another option for printing files is to use the WFL PRINT statement. You can enter this
statement in WFL jobs, in MARC or CANDE sessions, or at an ODT. The PRINT
statement is used mainly to print permanent backup files that were created on an earlier
occasion. The backup files remain on disk when printing is completed, so they can be
reused later.

The PRINT statement can assign print attributes and modifiers for any or all of the
backup files printed. These assignments override all previous assignments for the
backup files.

A process can affect the print handling for another process by making assignments to
the PRINTDEFAULTS task attribute of the process. Where more specific control is
needed, you can use the FILECARDS task attribute to specify print attributes for each
backup file.

However, the PRINTDEFAULTS and FILECARDS values that are assigned externally can
be overridden internally. A process can assign a different value to its own
PRINTDEFAULTS task attribute after initiation. Also, file attribute assignments made by
the process outside the file declaration override any conflicting assignments made by
way of the FILECARDS task attribute.

 Controlling Process I/O Usage

8600 0494–506 9–15

Other Print-Related Task Attributes

Aside from PRINTDEFAULTS and FILECARDS, the following task attributes are related to
printing: BACKUPFAMILY, BDNAME, and OPTION (BACKUP, BDBASE, and
NOSUMMARY options only). However, these task attributes were implemented before
the current Print System. You can now use various print attributes to achieve effects
similar to the effects of most of these task attributes. Print attributes are the preferred
method for achieving such print control.

The BDNAME task attribute, if assigned, prevents a backup file from being automatically
printed; instead, the file is saved on disk. In addition, BDNAME causes the backup file to
be stored under the usercode of the process. The BDNAME value replaces *BD as the
beginning of the file name. However, the remainder of the file name follows the
standard backup-file naming conventions.

As we have seen, BDNAME has several effects. You can achieve some of the same
effects through the use of several attributes. You can prevent automatic printing by
setting the PRINTDISPOSITION print attribute to DONTPRINT. You can assign a file
name by setting the USERBACKUPNAME print attribute to TRUE and assigning the
desired name to the FILENAME file attribute. The following example shows what these
assignments look like in WFL:

FILE OUT (PRINTDISPOSITION=DONTPRINT, USERBACKUPNAME=TRUE,
 FILENAME= <file name>)

An advantage to using file attributes instead of BDNAME is that the file attributes give
you complete control over the backup file name, whereas BDNAME only affects the
prefix. On the other hand, this method is admittedly somewhat more complex than
using BDNAME. A single BDNAME assignment affects all backup files used by a
process, whereas when file attributes are used, separate FILENAME assignments must
be made for each backup file. For example, if a process creates multiple backup files by
opening and closing the same logical file repeatedly, then the FILENAME value should be
changed before each file open operation; otherwise, each time the file is opened, the
previous backup file with the same FILENAME is removed.

If BDNAME is assigned a non-null value, the backup file is saved and not printed,
regardless of the PRINTDISPOSITION and SAVEPRINTFILE values.

If BDNAME has a non-null value and USERBACKUPNAME is FALSE, then the FILENAME
value is ignored. However, if both BDNAME and USERBACKUPNAME are TRUE, then
the FILENAME value is used as the file title. If FILENAME was not assigned, then the
INTNAME file attribute value is used as the title. If INTNAME was not assigned, then the
file identifier is used as the title.

You can use the BACKUPFAMILY task attribute to specify the family where backup files
produced by a process are to be stored. You can also assign the family for a backup file
by using the FAMILYNAME file attribute. If there is a conflict between FAMILYNAME
and BACKUPFAMILY, the FAMILYNAME value takes precedence over the
BACKUPFAMILY value.

Controlling Process I/O Usage

9–16 8600 0494–506

You can use the BDBASE option of the OPTION task attribute to cause the task to
assume some of the characteristics of a job. One of the effects of this option is to cause
task backup files to be submitted for printing when the task terminates. If BDBASE is
not set, the backup files are not submitted for printing until the task's job terminates.
Another method of controlling the timing of print requests is to use the
PRINTDISPOSITION print attribute. Assigning PRINTDISPOSITION a value of EOT has
the same effect on printing as setting the BDBASE option.

If you set BDBASE, then the PRINTDISPOSITION value is treated as it would be for a job.
PRINTDISPOSITION values of EOT and EOJ are synonyms in this case, and both cause
backup files to be printed when the task terminates. Other PRINTDISPOSITION values
have their usual effect, regardless of whether BDBASE is set.

The BACKUP option of the OPTION task attribute is discussed earlier in this section
under “Storing Printer Backup Files Temporarily.” The NOSUMMARY option of the
OPTION task attribute is discussed under “Controlling Job Summary Printing” in the
“Determining Process History” section.

Controlling Message Tanking
Processes can communicate with terminals by way of remote files. Tanking is a method
the system can use to temporarily store messages that a process writes to a remote file.
You can use the TANKING task attribute to specify the default tanking mode for all
remote files used by a process. The effects of this task attribute vary, depending on
whether or not the terminal that the process writes to is controlled by the Transaction
Server.

When a process writes a message to a remote file, the system inserts the message in
an output queue. The system transfers messages from the output queue to the remote
device as fast as the remote device is able to accept them. If the process writes
messages to the remote file faster than the remote device can receive them, then the
output queue can become full. If the output queue is full, and the process writes another
message to the remote file, then the system can respond by tanking the output. Tanked
output is stored in a file called the tank file on disk. The system retrieves messages from
the tank file and places them in the output queue when space becomes available.

If the output queue is full and tanking is not enabled for the remote file, and the process
attempts to write to the remote file, then the process must wait for room to become
available in the output queue before the write operation can complete. The result can be
a delay in the execution of the process. However, the process does not actually become
suspended and does not appear in the W (Waiting Mix Entries) system command
display.

The tanking mode for a particular remote file is determined primarily by the file attribute
TANKING. To prevent tanking from occurring, you can assign TANKING a value of
NONE. To enable tanking, you can assign TANKING a value of SYNC. To enable a
process to close the remote file and continue execution while tanked output exists, you
can assign TANKING a value of ASYNC. When ASYNC is used and the process closes
the remote file, the system continues to transfer messages from the tank file to the
output queue until the tank file is empty. For details about the TANKING file attribute,
refer to the File Attributes Programming Reference Manual.

 Controlling Process I/O Usage

8600 0494–506 9–17

The default value of the TANKING file attribute is UNSPECIFIED. If the file attribute has
this value, then tanking is determined by the TANKING task attribute and the MCS. The
TANKING task attribute has the same possible range of values as the TANKING file
attribute. Thus, setting the TANKING task attribute to NONE, SYNC, or ASYNC causes
these values to be applied to all remote files whose TANKING file attribute is
UNSPECIFIED.

If the TANKING file attribute and the TANKING task attribute are both UNSPECIFIED, the
MCS controlling the station can set the tanking mode for the remote file. The MCS can
do this by way of a parameter to the Station Assignment to File DCWRITE. The
DCWRITE statement is described in the DCALGOL Programming Reference Manual.

For remote files that communicate with terminals controlled by the CANDE MCS, an
operator can use the ?TANKING network control command to specify the default tanking
mode. The ?TANKING command can specify default values of UNSPECIFIED, NONE,
SYNC, or ASYNC.

For remote files that communicate with terminals controlled by the Transaction Server,
the effects of the TANKING file and task attributes vary depending on the type of
program involved. Three types of application programs can run under the Transaction
Server: direct window programs, remote-file programs, and MCS window programs.

Direct window programs communicate with terminals through special Transaction Server
structures rather than through remote files. Consequently, the TANKING file attribute
and task attribute have no meaning for these programs.

Remote-file programs are programs that communicate through declared or dynamic
remote-file windows. Declared remote-file windows are windows that appear in the
Transaction Server configuration file and have particular programs associated with them.
Dynamic remote-file windows are created by the Transaction Server at run time when a
program initiated from a MARC session opens a remote file.

For remote-file programs with a TANKING value of NONE or UNSPECIFIED, the system
does not perform tanking for the remote file. If the TANKING value is SYNC or ASYNC,
the system performs tanking as if the TANKING value were ASYNC.

It is recommend that you enable tanking for a remote-file program unless the program
services only a single terminal. If a remote-file program services multiple terminals and
uses a TANKING value of NONE, the program can go into a waiting state when writing
output to a terminal. While the program is in a waiting state, it is unable to service input
from other terminals. On the other hand, if a remote-file program services a single
terminal, it can be reasonable for the program to wait for all output to be displayed before
accepting any further input.

An MCS window program is a program that you initiate from a Transaction Server
window devoted to a subsidiary MCS. For example, any programs you initiate by
entering a RUN command in a CANDE window are considered MCS window programs.
For such programs, the system supports the full range of TANKING file attribute and task
attribute values: NONE, SYNC, ASYNC, and UNSPECIFIED. The subsidiary MCS, such
as CANDE, can specify a tanking mode if the TANKING file and task attribute are both
UNSPECIFIED.

Controlling Process I/O Usage

9–18 8600 0494–506

In addition to the system-level tanking that has been described up to this point, the
Transaction Server-level tanking is provided for the programs that run in a Transaction
Server environment. The Transaction Server-level tanking affects direct window
programs, remote-file programs, and MCS window programs. The Transaction Server
places output messages in the Transaction Server tank file if the messages are being
written faster than the station can receive them, or if the messages are sent to a window
dialogue that is suspended.

By default, only messages generated for the user's current window dialogue are
displayed at the terminal, and all other window dialogues are considered suspended. The
user can resume another dialogue by using an ON command to transfer to the dialogue,
or by entering a RESUME command that specifies the dialogue. When the window
dialogue is resumed, the Transaction Server retrieves tanked messages and sends them
to the station.

The Transaction Server-level tanking is a necessary feature in the Transaction Server
windowing environment and is performed regardless of the value of the TANKING file
and task attributes.

Suppressing Unwanted System Messages
Although system messages are intended to be helpful, there can be situations where you
might find it more convenient to suppress the display of certain messages.

Deimplementation warning messages are a good example of this principle. The system
issues a deimplementation-warning message for a process when the process uses a
feature that has been scheduled for future deimplementation. These warning messages
can be very valuable because they help you to identify programs that need to be
modified before you can migrate your system to a new release.

However, the system displays these deimplementation warnings each time the program
is run. If you run the program frequently, you may see the warning messages more
often than you care to be reminded of the pending deimplementation. You can suppress
the messages by using the SUPPRESSWARNING task attribute. This attribute enables
you to specify a list of warning message numbers or number ranges, as in the following
example:

RUN OBJECT/PROG;SUPPRESSWARNING = "1,4,8-10";

You can learn the identifying number for a message in either of two ways. First, you can
note the warning number when it appears in the message itself. For example, after
seeing the following message, you might assign SUPPRESSWARNING a value of 156.

WARNING 156: The TCPNATIVESERVICE mnemonic of the SERVICE file attribute
will be deimplemented in software released after April 30, 2002.

Second, you can interrogate the TASKWARNINGS task attribute. This task attribute
returns the value of the WARNINGS file attribute of the object code file that is being
executed. The WARNINGS file attribute, in turn, stores the message numbers for all the
warning messages that the system has ever displayed for processes executing code
from that object code file. The following is an example of a declaration and statements

 Controlling Process I/O Usage

8600 0494–506 9–19

you can use in an ALGOL program to suppress all previously displayed warning
messages:

EBCDIC ARRAY WARN[0:999];
REPLACE WARN BY MYSELF.TASKWARNINGS;
REPLACE MYSELF.SUPPRESSWARNING BY WARN;

The SUPPRESSWARNING task attribute suppresses warnings for only a single process.
You can suppress selected warnings for all processes on the system by using the
SUPPRESSWARNING system command. A particular warning is suppressed for a
process if either the SUPPRESSWARNING system command or the
SUPPRESSWARNING task attribute indicates that the warning is to be suppressed.

You might also find it useful to suppress DISPLAY messages. A process issues a
DISPLAY message by executing a DISPLAY statement. DISPLAY messages are used to
enable a process to communicate information to the user without actually opening a
remote file or ODT file. DISPLAY messages appear in the MSG (System Messages)
system command display, at the terminal of the user that initiated the process, and in the
system log.

If a process is initiated by a user at a data comm terminal, the DISPLAY messages
issued by the process are probably of interest only to that user. The appearance of these
messages in the MSG display can be a needless distraction to the system operator. You
can eliminate this distraction by setting the DISPLAYONLYTOMCS task attribute to
TRUE for the process. When this attribute is TRUE, if the process is initiated from a data
comm terminal, DISPLAY messages appear at the originating terminal but do not appear
in the MSG display at the ODT.

The DISPLAYONLYTOMCS task attribute affects only the DISPLAY messages generated
by a single process. However, you can use the command ?SO DISPLAYONLYTOMCS to
establish a default of DISPLAYONLYTOMCS = TRUE for the current CANDE session.

Further, you can use the CANDE control command ?OP + DISPLAYONLYTOMCS to set
a global default of DISPLAYONLYTOMCS = TRUE for all CANDE sessions. For
information about CANDE control commands, refer to the CANDE Operations Reference
Manual.

The SUPPRESSWARNING and DISPLAYONLYTOMCS task attributes enable you to
control certain message displays. You can control a broader range of message displays
by using the MSC (Message Control) command in MARC. A user with SYSTEMUSER
status can use the MSC system command to suppress messages for all processes with
a particular usercode, charge code, mix number, or job number. The MSC system
command can also suppress selected types of messages, including DISPLAY messages,
particular warning messages, or other common messages. For details, refer to the
Menu-Assisted Resource Control (MARC) Operations Guide. The MSC system command
can also be entered from the ODT.

Controlling Process I/O Usage

9–20 8600 0494–506

Localization
Localization is the process of tailoring the user interface of a program to users of a
particular nation or culture. Two task attributes can assist you in the localization process:
the LANGUAGE task attribute and the CONVENTION task attribute.

You can use the LANGUAGE task attribute to specify the language that is used for a
process. This task attribute has effects on two levels:

• The system attempts to use the specified language when displaying any system
messages generated for the process, such as BOT, EOT, and RSVP messages. The
LANGUAGE value has effect only if system messages in the specified language have
been installed on your system.

• The specified language becomes the default language for any messages that are
displayed by MESSAGESEARCHER statements in an ALGOL or NEWP program.
The LANGUAGE value has effect only if a version of the OUTPUTMESSAGEARRAY
using the specified language has been bound to the object code file.

You can use the CONVENTION task attribute to specify the conventions for dates, times,
and currency used by a process. This task attribute affects processes that use the
CENTRALSUPPORT library to format data according to requested conventions. The
CONVENTION task attribute specifies a default convention to be used for
CENTRALSUPPORT procedure calls. The user process can selectively override this
default through parameters to the CENTRALSUPPORT procedures.

For further information about localization, refer to the MultiLingual System (MLS)
Administration, Operations, and Programming Guide.

Limiting I/O Usage
When a process executes an I/O statement, the central processor must execute some
operating system code to initiate the I/O operation. Thereafter, I/O processors (IOPs)
and various peripheral devices such as disk drives might all devote varying amounts of
time to executing the I/O operation. At the completion of the I/O operation, the central
processor executes some I/O finish code.

The I/O time recorded by the system for individual processes includes I/O initiation time
as well as actual device time. The accumulated I/O time for a process is stored in the
ACCUMIOTIME task attribute. The I/O time for a process is also visible in the output
from the TI (Times) system command and in the Major Type 1, Minor Types 2 and 4 (EOJ
and EOT) system log entries.

You can use the MAXIOTIME task attribute to set a limit on the amount of I/O time that a
process can use. When the ACCUMIOTIME task attribute reaches a value equal to that
of MAXIOTIME, the system discontinues the process and displays the error message I/O
TIME EXCEEDED.

The main use of the MAXIOTIME task attribute is to ensure that WFL jobs are placed in
the proper job queues. For example, suppose there is a high-priority job queue that is
intended for jobs that are not very I/O intensive. The system administrator can use the

 Controlling Process I/O Usage

8600 0494–506 9–21

IOTIME job queue attribute to provide default and limiting values for the MAXIOTIME
task attribute of all WFL jobs that use the job queue. If you submit an extremely I/O
intensive job through the job queue, the system discontinues the job when it exceeds
the MAXIOTIME value. This enforcement of the MAXIOTIME value gives you an
incentive to resubmit the job through a different job queue. For an introduction to the
subject of job queues, refer to the discussion of WFL in Section 4, “Tasking from
Programming Languages.”

It is also possible for the system administrator to limit each person's usage of disk space.
Refer to “Limiting Disk Usage” earlier in this section.

Controlling Process I/O Usage

9–22 8600 0494–506

8600 0494–506 10–1

Section 10
Determining Process History

Process history consists of information about how a process terminated, the
accumulated resource usage of the process, and what actions the process took while it
was active. Process history information can help you determine if a program is running
as intended, and can help you to locate the source of any problems that arise.

This section describes the uses of various sources of process history information,
including termination messages, job summaries, system log entries, history-related task
attributes, and program dumps.

Understanding Termination Messages
You can quickly find out how a process terminated by examining the C (Completed Mix
Entries) system command display. The following is an example of this display:

---Job-Task-Time-Hist---- COMPLETED ENTRIES -----------------
* 1962\3430 11:43 EOT (LANJ) *LIBRARY/MAINTENANCE
* 2619\3368 11:43 EOT (ELMER) *OBJECT/MAIL ON PACK
* 3353\3354 11:43 SNTX (ORDS) *BINDER ON SYS37 MCP/FIXSBP ON DPMAST
 3384\3422 11:42 O-DS (JAS) (JAS)MARC WFL
 3384\3423 11:42 P-DS (JAS) (JAS)WFLCODE
 3327\3327 11:42 EOJ (RALPH) JOB (RALPH)OBJECT/BNATEST ON DPMAST

For each entry, the following information is displayed: the job number, the mix number,
the time the process terminated, the type of termination, the usercode of the process,
and the name of the process (which is usually the object code file title).

If you know the mix number of the completed process, you can use the <mix number> Y
form of the Y (Status Interrogate) system command to display the completion status of
that process only. The following is an example of such a command and the response to
the command:

7800 Y

 Task 7800 is completed
 7784\7800 15:08 F-DS (JASMITH) (JASMITH)OBJECT/JUNK ON PACK

Determining Process History

10–2 8600 0494–506

If the process was initiated from a Menu-Assisted Resource Control (MARC) session,
then a similar termination message is automatically displayed on the TASKSTATUS
screen. The following is an example:

12:10 3384\3718 EOT (ROLLINS)MARC WFL

For a process initiated from a Command and Edit (CANDE) session, abnormal
terminations result in a display of the termination type and other process history
information. The following is an example:

#2316 OPERATOR DSED @ (00000120)
#O-DS @ 00000120.
#ET=3.2 PT=0.1 IO=0.1

The first two lines shown in the preceding example would be displayed only for an
abnormal termination. These lines give the mix number, the cause of the termination,
and the sequence number of the statement the process was executing when it
terminated. (The sequence number is replaced by a code address if the program was
compiled without the LINEINFO compiler option being set. For information about how to
interpret the code address, refer to “Determining Where a Fault Occurred” later in this
section.)

The third line in the preceding example is displayed for all terminations (normal or
abnormal) of tasks initiated from CANDE. This line gives statistics on the elapsed time,
accumulated processor time, and accumulated I/O time for the process.

The CANDE, MARC, and ODT termination messages make use of the same termination
type abbreviations. Of these, the following indicate normal terminations:

EOJ The process was a job that terminated normally.

EOT The process was a task that terminated normally.

SNTX The process was a compilation that encountered syntax errors. The
process terminated normally, but no object code file was created.

For processes that terminated abnormally, you can get a general idea of the cause of the
termination by examining the DS message (P–DS, O–DS, and so on). Table 10–1 lists the
abnormal termination messages and their meanings.

For a more specific indication of why a process terminated abnormally, you need to
examine the values of the history-related task attributes (HISTORYTYPE,
HISTORYCAUSE, and HISTORYREASON). Table 10–1 lists the HISTORYTYPE and
HISTORYCAUSE values corresponding to each DS message. For an introduction to
history-related task attributes, refer to “Determining the Type of Termination” later in
this section. For a list of the possible values for history-related task attributes, refer to
the Task Attributes Programming Reference Manual.

 Determining Process History

8600 0494–506 10–3

Table 10–1. Abnormal Termination Messages

Message HISTORYTYPE HISTORYCAUSE Meaning

A-DS 8 0 The process was a Work Flow Language
(WFL) job whose initiation failed because
the job attribute list included an invalid
task attribute assignment; or, the
process was discontinued, but is now
executing an EPILOG procedure.

D-DS 4 6 The process encountered a data comm
error.

E-DS 4 12 The process encountered an Enterprise
Database Server error.

F-DS 4 4 The process requested a machine
operation that could not be executed.
Examples are dividing by zero or reading
past the end of an array.

I-DS 4 7-9 The process encountered an I/O error.

N-DS 4 13 The process encountered a BNA error.

O-DS 4 1 The process was discontinued by an
operator command.

P-DS 4 2 The process attempted an illegal action
or deliberately set its STATUS task
attribute to TERMINATED, or was
terminated because its parent
terminated.

Q-DS 7 0 The process was a job that did not
qualify for any job queue.

R-DS 4 3 The process exceeded a resource limit,
such as MAXPROCTIME.

S-DS 4 5 The process violated system parameters
or a system hardware fault occurred.

U-DS 4 10-11 The process was discontinued by an
unknown cause.

?-DS 4 0 The process was discontinued by an
unknown cause.

Determining Process History

10–4 8600 0494–506

Using Log Information
The system records the activity of each process in two types of logs:

• The system log (SUMLOG)

This central log stores information about all kinds of actions on the system.

• Job logs

A separate job log is created for each job on the system and is stored in the job's job
file. The system creates a job log for WFL jobs and other independent processes, as
well as for CANDE and MARC sessions. The job log contains information about the
job (or session) and its descendant tasks. Depending on the values of various task
attributes and system options, the system might create a printout of the job log,
called the job summary.

The following subsections explain how the programmer and system operator can control
the contents of these logs and the generation of reports from these logs.

Specifying the Information to Be Logged

An operator can use the LOGGING (Logging Options) system command to select the
major and minor log entry types that are to be logged. You can specify that a particular
type of log entry is to appear in the job log, in the system log, in both, or in neither. The
following LOGGING command causes Major Type 1, Minor Type 5 (File Open) entries to
appear in job logs, and Major Type 1, Minor Type 6 (File Close) entries to appear in the
system log:

LOGGING 1,5 JOBFILE ALL;1,6 SUMLOG ALL;

You can use the DEPTASKACCOUNTING task attribute and the FILEACCOUNTING task
attribute to control certain types of logging. These task attributes affect the system log
and the job log equally. You can use DEPTASKACCOUNTING to prevent the system
from generating log entries to record the initiation and termination of a dependent
process. You can use the FILEACCOUNTING task attribute to prevent the system from
generating log entries to record file open and close actions. You can create defaults for
these task attributes on a system wide basis with the ACCOUNTING (Resource
Accounting) system command. You can create defaults for these task attributes on a
usercode basis through assignments to the usercode attributes with the same names in
the USERDATAFILE.

You can use either of two system commands to log comments about the history of a
particular process. The LC (Log Comment) system command enters a comment in the
system log only. The LJ (Log to Job) system command enters a comment in both the
system log and the job log of a particular job. The following is an example of this
command:

3335 LJ JOB RAN NORMALLY

 Determining Process History

8600 0494–506 10–5

You can use the NOJOBSUMMARYIO task attribute to suppress the logging of
information in the job log. If NOJOBSUMMARYIO is set, no entries are written to the job
log, except for the Major Type 1, Minor Type 1 (BOJ) entry or the Major Type 4, Minor
Type 1 (Log-on) entry. NOJOBSUMMARYIO can also be set and reset throughout a job
to prevent selected parts of the job from appearing in the job log. Using
NOJOBSUMMARYIO saves I/O time and thus allows the job to run more efficiently.

You can use the LG (Log for Mix Number) system command and the LOGSELECT
usercode attribute to enable logging of selected types of events for a particular usercode.
These features enable the system administrator to monitor the activities of a particular
user who might be committing some type of security breach. These features affect the
system log only.

Controlling Job Summary Printing

The printing of job summaries is controlled primarily by the JOBSUMMARY task
attribute. To cause job summary printing, you can assign a value of UNCONDITIONAL,
and to prevent job summary printing, you can assign a value of SUPPRESSED. To cause
conditional printing of job summaries, you can use either of two values: ABORTONLY or
CONDITIONAL. Either of these values causes job summary printing if the job or any of
its tasks terminate abnormally. The difference between the two values is that the
CONDITIONAL value also causes job summary printing if the job has any printer backup
files associated with it or if a compiler task encounters syntax errors.

If the JOBSUMMARY task attribute has a value of DEFAULT, then job summary printing
is controlled by either of two types of defaults.

• If the NOSUMMARY option of the OPTION task attribute is set, then a
JOBSUMMARY task attribute of DEFAULT is interpreted as CONDITIONAL.

• If the NOSUMMARY option of the OPTION task attribute is reset, then the Print
System JOBSUMMARY option controls the job summary printing. The Print System
JOBSUMMARY option is set or reset through the PS DEFAULT system command.
The JOBSUMMARY option can specify any of the following values: CONDITIONAL,
UNCONDITIONAL, SUPPRESSED, or ABORTONLY.

A job summary can be printed for any WFL job that compiled successfully, as well as a
job that failed to compile. This is true even if the job never ran because no job queue
would accept it or because an operator discontinued the job while it was queued.

The conversion of job logs into job summaries for printing is handled by visible
independent runners with the name JOBFILE/CONVERTER. These processes are visible
in the mix so that you can monitor their resource usage.

Determining Process History

10–6 8600 0494–506

Saving the Job Summary File

You can use the JOBSUMMARYTITLE task attribute to cause the job summary file to be
saved as a permanent disk file.

If the JOBSUMMARYTITLE value is a null string (the default value), then the system
creates a job summary file only if a job summary is to be printed. If the system does
create a job summary file, the system removes the file once it is printed. The job
summary file title can have two forms. If the MOREBACKUPFILES option of the OP
(Options) system command is set the following form is used:

*BD/<7-digit job number>/000000000000/SUMMARY

If the MOREBACKUPFILES option of the OP (Options) system command is not set, the
following form is used:

*BD/<7-digit job number>/000SUMMARY

For more information on the OP (Options) system command, refer to the System
Commands Operations Reference Manual.

If you assign a file title to JOBSUMMARYTITLE, then the system creates a job summary
file with the specified file title. The job summary file remains on disk, whether or not the
system prints the job summary. You can use a Command and Edit (CANDE), Menu-
Assisted Resource Control (MARC), or WFL PRINT command to print out the job
summary file later. For a description of the PRINT command, refer to the Print System
and Remote Print System Administration, Operations, and Programming Guide.

Analyzing the System Log

You can use the LOGANALYZER utility to obtain a detailed report of the history of a
particular process. You can invoke LOGANALYZER by using the LOG command from
CANDE, MARC, WFL, or an ODT. The LOG command causes the current system log to
be searched, unless the title of an old system log is specified.

The following command displays all log entries for the job with mix number 7483 and for
all descendants of that job:

LOG JOB 7483

The following command displays all log entries for the process with mix number 8923:

LOG MIX 8923

You can specify various options to limit the types of entries that are displayed for the
process and to direct the output to an ODT, a remote terminal, or a printer. For details,
refer to the discussion of LOGANALYZER in the System Software Utilities Operations
Reference Manual.

 Determining Process History

8600 0494–506 10–7

Programmatically Interrogating Process History
After a task terminates, the task variable associated with it continues to exist until the
parent exits the block that contains the task variable declaration. As long as the task
variable exists, the parent can use it to interrogate the final task attribute values of the
task. By interrogating history-related task attributes, the parent can find out whether the
task terminated normally.

On the other hand, the history of a job cannot be interrogated through task attributes.
The task variable of a job can be accessed only by the job itself and its descendants, and
the descendants cannot survive the termination of the job.

Determining the Type of Termination

Several task attributes and a special WFL expression are available for determining how a
task terminated. The relevant WFL expression is the task state inquiry. This expression
can be used to determine whether termination was normal or abnormal. For example,
the following WFL statement causes a specified action to be taken if the task terminated
abnormally:

IF TSK ISNT COMPLETEDOK THEN

Another way to determine whether a task terminated normally is to inspect the
HISTORYTYPE task attribute. A HISTORYTYPE value of NORMALEOTV indicates that
the termination was normal. A value of DSEDV indicates that termination was abnormal.
Most of the other values indicate that the process has not yet terminated and give an
indication of its current state.

If termination was abnormal, the HISTORYCAUSE task attribute can be interrogated to
determine the general type of abnormal termination that occurred. For example, a value
of OPERATORCAUSEV indicates that an operator command discontinued the process
and a value of DCERRV means that the process was discontinued because of a data
comm error.

A more detailed account of why a task terminated abnormally is stored in the
HISTORYREASON task attribute. For example, suppose the HISTORYCAUSE value is
RESOURCECAUSE, meaning that a resource limit was exceeded. The
HISTORYREASON value might be PROCESSEXCEEDEDV, which means specifically that
the processor time limit was exceeded.

The system uses the HISTORYTYPE and HISTORYCAUSE values to determine what
termination message to display for a process. The correspondence between these task
attributes and the termination messages is shown in Table 10–1.

Determining Process History

10–8 8600 0494–506

Determining Whether a Compilation Was Successful

You can use any of several methods to determine programmatically whether a particular
compilation uncovered syntax errors in the source program.

For a compilation initiated from WFL, the task state expression can be used to determine
whether the compilation was successful. To use this expression, a task variable must
first be associated with the compilation in the COMPILE statement. The following is an
example:

COMPILE OBJECT/PROG WITH ALGOL [COMPILETASK] LIBRARY;
IF COMPILETASK IS COMPILEDOK THEN
 RUN SYSTEM/XREFANALYZER (0);

Another way to determine whether the compilation was successful is to interrogate the
HISTORYTYPE task attribute of the compilation. A value of NORMALEOTV means that
the compilation was successful, but a value of SYNTAXERRORV means that syntax
errors were found.

Another method that can be used is to interrogate the TASKVALUE task attribute.
TASKVALUE has a value of zero if the compilation was successful or one if syntax errors
were found.

Responding to Task Failures

WFL includes a special statement that specifies actions to be taken if any offspring
terminates abnormally. This is the ON TASKFAULT form of the ON statement. The ON
TASKFAULT statement remains in effect for the remainder of the job unless overridden
by another ON TASKFAULT statement. For example, a WFL job could include the
statement ON TASKFAULT, ABORT. This statement causes the job to terminate
abnormally when any of its offspring terminates abnormally.

Determining Where a Fault Occurred

You can use the STACKHISTORY task attribute to determine the statement that was
being executed and the procedures that had been entered when a process terminated
abnormally. To understand the value returned by this attribute, you must have compiled
the program that was being executed with one or both of the following compiler options
set: LINEINFO and LIST.

Setting LINEINFO causes the STACKHISTORY value to include the sequence number for
each of the relevant statements in the source program. Setting LIST causes the
compiler to produce a printout of the source program that includes code addresses for
each line. The code addresses are needed to interpret the STACKHISTORY value if
LINEINFO was not set.

 Determining Process History

8600 0494–506 10–9

The following is an example of the source program printout for a program that was
compiled with the LIST and LINEINFO options set. (The example has been condensed
horizontally to fit on the page.)

BEGIN 00000200 000:0000:0
 BLOCK#1 IS SEGMENT 0003
 1 00000300 003:0000:1
 00000400 003:0000:1
REAL X, Y; 00000500 003:0000:1
PROCEDURE ONE; 00000600 003:0000:1
BEGIN 00000700 003:0000:1
 PROCEDURE TWO; 00000800 003:0000:1
 ONE IS SEGMENT 0004
 2 00000900 004:0000:1
 BEGIN 00001000 004:0000:1
 Y:= X DIV 0; 00001100 004:0000:1
 END; 3 00001200 004:0001:2
 3 00001300 004:0001:3
 TWO; 00001400 004:0001:3
END; 00001500 004:0002:1
 ONE(004) LENGTH IN WORDS IS 0005
 2 00001600 003:0000:1
 00001700 003:0000:1
ONE; 00001800 003:0000:1
 00001900 003:0000:5
END. 00002000 003:0000:5
 BLOCK#1(003) LENGTH IN WORDS IS 0006

In this example, each line of source code ends with the sequence number and code
address of the line. The code address is divided into three parts by colons; the first part
is the code segment number, the second is the word number, and the third is the
syllable number. The numbers in the code address are in hexadecimal format.

If a process terminates normally, the STACKHISTORY value is a null string. However, if
the process terminates abnormally, STACKHISTORY returns a value such as the
following:

004:0000:5 (00001100), 004:0002:1 (00001400), 003:0000:5 (00001800).

This value gives the code address and sequence number for the statement that was
being executed when the process terminated and for each procedure invocation
statement that was in effect when the process terminated. Thus, the value in this
example indicates that the statement at line 1100 was being executed when the process
terminated, and that procedure invocation statements at lines 1400 and 1800 were in
effect. The sequence numbers are included in the STACKHISTORY value because the
program was compiled with LINEINFO set.

If LINEINFO is not set, then STACKHISTORY returns the following value:

004:0000:5, 004:0002:1, 003:0000:5.

Determining Process History

10–10 8600 0494–506

The numbers in this example give a somewhat less exact idea of the locations of the
statements that were being executed when the process terminated. Each statement
usually occurs on the line preceding the specified code address. The address 004:0000:5
does not appear in the printout, but the statement occurs on the next lower-numbered
line: 004:0000:1.

Note that if the object code file was produced by the Binder, you must use some extra
care in interpreting the code addresses or sequence numbers returned in the
STACKHISTORY value. When the Binder produces a bound object code file, the Binder
changes the code segment numbers for statements in the subprogram. Fortunately, if
you use the Binder option LIST, the Binder produces a printout that lists such changes.
The following is an example of such a printout:

 O B J E C T / A L G O L / B I N D O N D I S K
 =

HOST IS OBJECT/ALGOL/HOST; 00001270
BIND PRINTIT FROM OBJECT/ALGOL/SUB; 00001272
STOP; 00001274
BEGIN BINDING PRINTIT OF BLOCK#1 FROM OBJECT/ALGOL/SUB
 PRINTIT (02,0006) CHANGED TO (02,0006)
K <-- NEW GLOBAL ADDED TO HOST - WARNING ONLY
 K (02,0004) CHANGED TO (02,0008)
 LINE (02,0005) CHANGED TO (02,0003)
 J (02,0003) CHANGED TO (02,0005)
 BUFFER (02,0002) CHANGED TO (02,0004)
 ?010 (01,0006) CHANGED TO (01,0006)
 <SEG DICT ITEM> (01,0002) CHANGED TO (01,0005) = 03 000001300001
 <SEG DICT ITEM> (01,0003) CHANGED TO (01,0007) = 05 07000000005F
 <SEG DICT ITEM> (01,0004) CHANGED TO (01,0008) = 05 080000540002
END OF BINDING PRINTIT

Note the three lines near the bottom of the list that begin with “<SEG DICT ITEM>.”
These list changes to the address couples for code segments in the subprogram. The
second number in each address couple is the offset, which is the same as the code
segment number for that code segment. The list informs us that code segment number
2 was changed to 5, 3 was changed to 7, and 4 was changed to 8. Therefore, you should
look at the STACKHISTORY value for code addresses that begin with 5, 7, or 8, and
make a note that they really begin with 2, 3, or 4, respectively. Then you can look for the
code addresses in the compiler listing that was created when you originally compiled the
subprogram. Suppose that the STACKHISTORY value is as follows:

005:000F:1, 003:0017:3.

You should translate the first address into 002:000F:1, and then look at the compiler
listing of the subprogram to determine which statement had that code address. The
second address does not begin with 5, 7, or 8, so you don't need to translate it. You can
find the procedure invocation referred to by the second address at 003:0017:3 in the
compiler listing for the host program.

 Determining Process History

8600 0494–506 10–11

If the host program and the subprogram were compiled with the LINEINFO compiler
option set, and the Binder was run with the LINEINFO Binder option set, then the bound
object code file contains sequence numbers that appear in the STACKHISTORY value.
The Binder does not change the sequence numbers of the host program or the
subprogram. When interpreting the sequence number, beware of the possibility that the
same sequence number occurred in both the host program and the subprogram file. For
example, suppose that the following is the STACKHISTORY value:

005:000F:1 (00000750), 003:0017:3 (00001350).

The subprogram and the host program both might contain lines with the sequence
number 750, and they also both might contain lines with the sequence number 1350.
However, the last address in the STACKHISTORY value always refers to a statement in
the host program. At line 1350 in the host program listing is a procedure invocation
statement. If this statement invokes the bound-in procedure, then line 750 is found in
the subprogram listing. Otherwise, line 750 is found in the host program listing.

Another task attribute that provides information related to process history is the
STOPPOINT task attribute. This real-valued attribute has fields defined that store the
fault reason and the code address. The fault reason is the same as the value returned by
the HISTORYREASON task attribute, and the code address is the same as the first code
address of the STACKHISTORY value.

Protecting a Process from Abnormal Terminations
You can use a variety of different methods to prevent a process from being terminated
abnormally. Depending on the method you choose, you can

• Trap faults and recover from them.

• Protect a process from operator-entered DS (Discontinue) system commands.

• Retry a process that was terminated by a fault.

• Protect a process from all possible faults, errors, and termination conditions.

You can also specify code to perform cleanup functions when a process is forced to
terminate abnormally.

Determining Process History

10–12 8600 0494–506

Preventing All Abnormal Terminations

ALGOL and NEWP programs can use the TRY statement to protect processes against
abnormal terminations.

Before the implementation of the TRY statement, the best-known method of protection
was the ON statement in ALGOL and NEWP. The ON statement is discussed under
“Protecting a Process from Faults” later in this section. Compared to the ON statement,
the TRY statement provides the following advantages:

• Protection against a broader range of otherwise fatal conditions.

• Alternate sets of error handling code to be executed if the error handling code itself
incurs an error.

• Faster execution.

Protection against Most Conditions

The basic form of the TRY statement is

TRY <statement> ELSE <statement>;

TRY executes the first statement or expression. If an error occurs during execution, TRY
then executes the statement or expression in the ELSE clause. Control then continues
to the next statement after the TRY statement.

This form of the TRY statement protects processes against most termination conditions,
including the following:

• Faults detected by the hardware, such as divide-by-zero conditions. (These faults
could also be trapped by an ON statement in ALGOL or NEWP.)

• Untrapped I/O errors.

• Security errors. However, the system ignores the TRY error-handling code and
terminates the process if the SAVEVIOLCOUNT usercode attribute is set and the
error causes the VIOLATIONCOUNT usercode attribute to exceed the value of the
VIOLATIONLIMIT usercode attribute.

• Task attribute errors.

• Library linkage errors caused by an attempt to invoke an imported procedure that is
not available for one of the following reasons:

− The procedure is not supplied by the linked library.

− The procedure is in a library that could not be linked.

− The procedure is in an unlinked library with AUTOLINK set to FALSE.

• Delinkage of a library by a DELINKLIBRARY statement with the ABORT option.
Normally, the ABORT option causes the system to discontinue any processes that
are executing a procedure imported from the linked library. To protect processes
against this condition, the TRY statement must be invoked before the library
procedure call. For an example, refer to “TRY Statements and Library Delinkage”
later in this section.

 Determining Process History

8600 0494–506 10–13

• Operator DS (Discontinue) commands applied to a process waiting on an RSVP,
ACCEPT, or unit clear action. (An operator can still discontinue the process by
entering a second DS command.)

• Assignments of MYSELF.STATUS to VALUE(TERMINATED).

The TRY statement does not handle exception conditions that would not result in
process termination. Such conditions include bad GO TO statements and exponent
underflow faults. Such conditions can be trapped by an ON statement or EXCEPTION
procedure, however.

Protection against All Conditions

You can use the unsafe form of the TRY statement to extend protection against all
possible causes of termination.

Note: The unsafe form should be used with great care and only by programmers
familiar with the operating system. In particular, it is important that unsafe TRY code
execute quickly, so it does not monopolize system locks. It might also be necessary for
the TRY code to cut back the process stack to prevent stack overflow errors. Misuse of
the unsafe form can result in hung programs, system dumps, or halt/loads.

The unsafe form of the TRY statement is distinguished by the use of the PROTECTED
clause, as follows:

TRY [:PROTECTED] <statement> ELSE <statement>;

The PROTECTED clause of the TRY statement is only available in NEWP and DMALGOL,
and in NEWP is only permitted in blocks marked with the UNSAFE block directive. The
compiler marks the resulting object code file as nonexecutable. To enable execution of
the object code file, an operator can use either of the following commands:

• The MP <file title> + EXECUTABLE form of the MP (Mark Program) system
command. This command removes the nonexecutable status so that the object
code file can be initiated with the normal process initiation statements such as CALL,
PROCESS, and RUN.

• The SL <function name> = <file title> form of the SL (Support Library) system
command. This command enables a nonexecutable object code file to be initiated by
the library linkage mechanism when the library is linked to by function.

Note: An unsafe DMALGOL program is only nonexecutable if the security option
DMALGOLUNSAFE is set.

The conditions protected against by the PROTECTED clause include:

• Operator DS (Discontinue) commands applied to a normally executing process.

• PARENT PROCESS TERMINATED conditions.

• STATUS = VALUE(TERMINATED) assignments made by a different process.

Determining Process History

10–14 8600 0494–506

• Cancellation of a library linkage through a DELINKLIBRARY statement with the
ABORT option. Normally, the ABORT option causes the system to discontinue any
processes that are executing a procedure imported from the linked library. The
unsafe TRY statement protects processes against this type of condition, even if the
TRY statement is invoked after the library procedure call. For an example, refer to
“TRY Statements and Library Delinkage” later in this section.

• GO TO statements that attempt to exit outside the TRY statement.

Note: By default, the error-handling statement in the ELSE clause is not protected. To
protect the error-handling statement, you could use multiple ELSE clauses as discussed
under “Providing Alternate Sets of Error Handling Code.” Alternatively, you could protect
the error-handling statement from interrupts with unsafe constructs such as the
CONTROLSTATE block directive in NEWP or the DISALLOW statement in DMALGOL.
You should use these unsafe constructs only to protect short code streams that do not
include any procedure calls.

Including Multiple Statements

The TRY statement can include compound statements or procedure calls. For example,
the following statement form is valid:

TRY
 <procedure call>
ELSE
 BEGIN
 <multiple statements>
 END;

Determining the Cause of the Error

The error handling code in a TRY statement can determine the cause of the error by
inspecting the values of the task attributes PRIORHISTORY, PRIORHISTORYTYPE,
PRIORHISTORYCAUSE, and PRIORHISTORYREASON. These task attributes store the
values that HISTORY, HISTORYTYPE, HISTORYCAUSE, and HISTORYREASON would
have had if the process had been terminated by the error.

The following example shows how TRY statement error code could use CASE
statements to interrogate the PRIORHISTORYCAUSE and PRIORHISTORYREASON task
attributes:

TRY [: PROTECTED]
 <statement or expression>
ELSE
 BEGIN
 CASE MYSELF.PRIORHISTORYCAUSE OF
 BEGIN
 0: % If PROTECTED, this value indicates a GO TO
 % is exiting to outside the TRY statement.
 % Perform any necessary cleanup.
 LIBERATE(E1);

 Determining Process History

8600 0494–506 10–15

 VALUE(OPERATORCAUSEV):
 CASE MYSELF.PRIORHISTORYTYPE OF
 BEGIN
 VALUE(JUSTDSEDV): DISPLAY("DO NOT ATTEMPT TO DS ME");
 VALUE(RSVPV): DISPLAY("WRONG ANSWER");
 END;
 VALUE(PROGRAMCAUSEV):
 CASE MYSELF.PRIORHISTORYREASON OF
 BEGIN
 VALUE(DEATHINFAMILYV):
 VALUE(CRITICALBLOCKV): LIBERATE(E1);
 END;
 ELSE:
 END;
 END;

Using TRY as an Expression

When you use TRY to invoke an expression or to make a typed procedure call, TRY itself
is treated as an expression that returns a value. For example, the following statement
invokes typed procedure PROCA and stores the result in RSLT. If PROCA incurs an
error, a value of -1 is stored in RSLT.

RSLT := TRY PROCA ELSE -1;

Providing Alternate Sets of Error Handling Code

You can protect the error handling code itself by specifying additional ELSE clauses. For
example, a TRY statement could have the following form:

TRY <statement> ELSE <statement> ELSE <statement>;

The example first executes the statement following the TRY verb. If an error occurs in
that statement, this example executes the statement following the first ELSE verb. If an
error occurs in that statement, this example executes the statement following the
second ELSE verb. If an error occurs in the final statement, the program is not protected
from the error.

Optimizing Performance

On some machines, the TRY statement might be executed more quickly if you use the
following limited form of the statement:

TRY [<error procedure identifier>] <procedure invocation or reference>

Determining Process History

10–16 8600 0494–506

This limited form of the TRY statement provides more limited protection than the normal
form. Unlike the normal form, the limited form does not begin to protect the process
until the procedure begins execution. Thus, if an error occurs in passing parameters to
the procedure, or if the procedure invoked is a null procedure reference, the process is
not protected from the error. (However, on some machines the limited form does
protect the process if the process invokes an imported procedure that is not available.
This protection is provided on all machines except the A7, A2100, and NX4200.

If the procedure fails to finish normally, the error procedure is automatically invoked. No
protection is provided if the error procedure also fails to finish normally.

Triggering Program Dumps

TRY error-handling code can include statements that invoke program dumps. However,
such dumps might not be useful because the system cuts back the process stack to the
point where the TRY statement occurs before executing the error-handling code. Thus, if
the TRY statement invoked one or more procedures, then any variables declared by
those procedures would be lost before the error-handling code invokes the program
dump.

To obtain a more useful program dump, you can set the FAULT and DSED bits in the
OPTION task attribute when the process is first initiated. (For an explanation of the
difference between the FAULT and DSED bits, refer to “Understanding Internal and
External Causes” later in this section.) When these bits are set, and a termination
condition occurs, the system initiates a program dump. After the program dump
finishes, the system cuts back the process stack to the TRY statement and invokes the
error-handling code.

Protecting a Process from Faults

A fault is an invalid action that is detected by the hardware, such as an attempt to divide
by zero. In general, a process is discontinued if it encounters a fault. However, ALGOL
and NEWP provide a feature that can be used to allow the process to continue normal
execution after most faults. The ON statement specifies actions to be taken if a fault
occurs. In addition, the ON statement can be used to interrogate the type of fault and
the stack history. The stack history value returned is identical in format to that returned
by the STACKHISTORY task attribute.

The ON statement can specify which particular fault types it is to handle, or can include
the ANYFAULT clause to handle all eligible faults. Certain faults, such as stack
overflows, cannot be handled by the ON statement. If any fault occurs that can be
handled, the following ON statement stores the stack history into array FAULTARRAY
and the number into FAULTNO. The statement then invokes the procedure
HANDLEFAULTS, passing the fault number to it as a parameter:

ON ANYFAULT [FAULTARRAY:FAULTNO], HANDLEFAULTS(FAULTNO);

In addition, the C language supports a signals mechanism that can be used for fault
handling. The signals mechanism is among the C language extensions that support the
POSIX environment. For an overview of signals, refer to the POSIX User's Guide.

 Determining Process History

8600 0494–506 10–17

Retrying a Failed Task

You can design a process to be restarted automatically if it is terminated because of an
error. This effect is achieved by assigning a value to the RESTART task attribute. The
value of this task attribute specifies the number of times the process is to be restarted
following an error termination. Execution of the restarted process begins with the first
statement in the outer block. After each restart, the RESTART task attribute value is
reduced by one. When the RESTART value is zero, the next error termination is final.

When the process is restarted, no “EOJ” or “EOT” messages are displayed. Some
elements of the process survive the error termination and they are reused. These
elements are the PIB, the code segment dictionary, and the base of the process stack.
All task attribute values of the original process are retained, including the mix number. In
addition, the values of any parameters the process received from its initiator are saved.

However, the values of all objects, including all variables and arrays, declared by the
process are lost. These objects must be re-created and reinitialized after the process
restarts.

If the process has offspring tasks, they are discontinued with a “PARENT PROCESS
TERMINATED” error each time the process has an error termination. However, each
time the process is restarted, it can execute the task initiation statements again and
create new tasks.

A process that was discontinued by an operator command does not restart, regardless of
the value of the RESTART attribute. The RESTART value also does not cause a process
to be restarted after a halt/load. (It is true that WFL jobs restart after a halt/load, but this
feature is not related to the RESTART task attribute. For information about WFL job
restarts, refer to Section 11, “Restarting Jobs and Tasks.”)

The RESTART task attribute is primarily useful in situations where the process might be
discontinued by a temporary hardware fault or where the process will receive different
input data after it restarts. If the process is attempting to do something invalid or
contradictory, repeated restarts are not helpful. The process terminates abnormally each
time.

If the process includes a statement that assigns a value to RESTART, make sure that the
statement is not reexecuted after each restart. If the statement is always reexecuted,
then the value of RESTART can never reach zero, and the process restarts infinitely. The
following example shows an ALGOL program that would enter such a loop:

100 BEGIN
200 REAL X;
300 MYSELF.RESTART:= 4;
400 X:= X DIV O;
500 END.

Determining Process History

10–18 8600 0494–506

The following example shows how the program could be modified so that it would not
enter an infinite loop. The SW1 task attribute is used as a flag to indicate whether the
process has been executed at least once.

100 BEGIN
200 REAL X;
300 IF NOT MYSELF.SW1 THEN
400 MYSELF.RESTART:= 4;
500 MYSELF.SW1:= TRUE;
600 X:= X DIV 0;
700 END.

In ALGOL or NEWP, you can use the ON statement to prevent an abnormal termination
from occurring after a program fault. The ON statement has fewer applications than the
RESTART task attribute because it applies only to errors that would otherwise cause the
process to be discontinued with HISTORYCAUSE = FAULTCAUSE. However, for these
cases, the ON statement provides more flexible error handling than the RESTART task
attribute.

For more information about the ON statement, refer to “Protecting a Process from
Faults” earlier in this section.

Protecting a Process from Operator DS (Discontinue)
Commands

You can protect a process from operator-entered DS (Discontinue) commands by using
the following form of the MP (Mark Program) system command:

MP <object code file title> + LOCKED

The effects of this command carry over each time the program is run.

You can also use the TRY statement to protect a process against DS commands, as
described under “Preventing All Abnormal Terminations” earlier in this section.

Protecting Procedures from DS and ST Commands

The ISOLATED procedure attribute specifies that when a procedure runs on a different
process stack than the stack that declares the procedure, it is protected from DS
(Discontinue) and ST (Stop) commands that are applied to the second stack.

The stack that declares the procedure is the task or library started when the code file
containing the procedure code is initiated. In library procedures, this stack is called the
library stack.

Since an isolated procedure can cause DS and ST commands to be delayed, ensure that
the isolated procedure runs quickly and efficiently without consuming excess system
resources.

 Determining Process History

8600 0494–506 10–19

For a full description of isolated procedures, refer to “Using Isolated Procedures in
Libraries” in Section 18.

Performing Cleanup during an Abnormal Termination

You can use EPILOG or EXCEPTION procedures to perform cleanup if a process is
terminated abnormally.

Using EPILOG Procedures

An EPILOG procedure is a special type of procedure that is available only in ALGOL,
DCALGOL, DMALGOL, and NEWP. An EPILOG procedure is executed whenever the
block that declares it is exited, even if the exit was caused by the process being
discontinued. The EPILOG procedure can be designed to perform cleanup actions, such
as liberating or causing an event.

EPILOG procedures can be declared in procedures, structure blocks, or connection
blocks. The use of EPILOG procedures in connection blocks is discussed under “Using
PROLOG and EPILOG Procedures” in Section 18, “Using Libraries.” The use of EPILOG
procedures in structure blocks is discussed in the ALGOL Programming Reference
Manual, Volume 1: Basic Implementation. The remainder of this discussion assumes
that the EPILOG procedure is declared in a procedure.

An EPILOG procedure can determine whether the procedure exit is normal, or whether
the process is being discontinued, by inspecting the STATUS, HISTORYTYPE,
HISTORYCAUSE, and HISTORYREASON task attributes of the MYSELF task variable.
You can design the EPILOG procedure to take different actions, depending on whether
the block exit is normal.

Note that the EPILOG procedure can be discontinued and, thus, prevented from
completing all its cleanup functions. For example, if you enter two DS commands for a
process, the first causes the EPILOG procedure to be entered. The second DS
command discontinues the EPILOG procedure if it has not yet finished execution. This
problem should rarely occur if the EPILOG procedure is kept brief.

Determining Process History

10–20 8600 0494–506

Using EXCEPTION Procedures

If you need to ensure that certain actions are always performed when a procedure is
exited abnormally, you can use an EXCEPTION procedure instead of an EPILOG
procedure. EXCEPTION procedures are available in ALGOL, DCALGOL, DMALGOL, and
NEWP. These procedures serve a similar function to EPILOG procedures. However, an
EXCEPTION procedure is executed only if the block that declares it is exited abnormally,
whereas an EPILOG procedure is executed even if the block exit is normal. Block exits
are considered abnormal in either of the following cases:

• The block is exited because of a bad GO TO statement. A bad GO TO statement
transfers control to a label outside the block and can occur in the block that declared
the EXCEPTION procedure, or in a nested block within that block.

• The block is exited because the process was discontinued, because of either an
operator DS (Discontinue) system command or an internal fault.

Another important feature of EXCEPTION procedures is that you can prevent them from
being interrupted. To do this, you simply add the PROTECTED clause to the EXCEPTION
procedure declaration. If the block that declares a protected EXCEPTION procedure is
exited abnormally, then the EXCEPTION procedure executes in protected mode. A
protected EXCEPTION procedure cannot be interrupted by the DS (Discontinue) or ST
(Stop) system command, or by stack stretches.

The PROTECTED form of the EXCEPTION procedure is only available in NEWP and
DMALGOL, and in NEWP is only permitted in blocks marked with the UNSAFE block
directive. The compiler marks the resulting object code file as nonexecutable. To enable
execution of the object code file, an operator can use either of the following commands:

• The MP <file title> + EXECUTABLE form of the MP (Mark Program) system
command. This command removes nonexecutable status so that the object code
file can be initiated with the normal process initiation statements such as CALL,
PROCESS, and RUN.

• The SL <function name> = <file title> form of the SL (Support Library) system
command. This command enables a nonexecutable object code file to be initiated by
the library linkage mechanism when the object code file is linked to by function.

Note: An unsafe DMALGOL program is only nonexecutable if the security option
DMALGOLUNSAFE is set.

 Determining Process History

8600 0494–506 10–21

If you want an EXCEPTION procedure to be executed before any block exit, normal or
abnormal, you can include an explicit call on the EXCEPTION procedure in the block. The
following is an example:

700 PROCEDURE P1;
710 BEGIN
720 FILE MYFILE(KIND=DISK);
730 PROTECTED EXCEPTION PROCEDURE CLEANUP;
740 BEGIN
750 CLOSE(MYFILE,LOCK);
760 END;
 .
 .
 .
900 CLEANUP;
910 END;

The vertical ellipses in this example denote lines that are omitted because they are not
essential to the point being illustrated. If P1 exits normally, then the EXCEPTION
procedure CLEANUP is explicitly invoked by the statement at line 900. Note that in this
case, CLEANUP is executed without protected status. If P1 exits abnormally, the
system automatically invokes CLEANUP and executes it with protected status.

Interactions between Error Recovery Statements

A single process could include two or more of the error recovery and cleanup
mechanisms mentioned in this section. For example, a process might include ON
statements, TRY statements, EPILOG procedures, and EXCEPTION procedures. A
process can also contain multiple instances of each of these types of protection (for
example, multiple TRY statements).

Determining Process History

10–22 8600 0494–506

Multiple TRY Statements

It is possible for multiple TRY statements to be in effect at the same time (for example,
because a TRY statement invoked a procedure that also invoked a TRY statement). If
multiple TRY statements are in effect, and a termination condition occurs, the system
invokes the error-handling code in the most recent TRY statement. If the termination
condition can be handled only by an unsafe TRY statement, then the system invokes the
most recent protected TRY statement and bypasses any safe TRY statements that are
more recent.

For example, Figure 10–1 shows a process stack that has three TRY statements in
effect.

Figure 10–1. Multiple TRY Statements

In this example, if a condition occurs that can be handled by a safe TRY statement, the
system then executes the TRY statement in procedure PROCD. If a condition occurs
that can be handled only by an unsafe TRY statement, then the system executes the
TRY statement in procedure PROCC instead.

TRY Statements and Library Delinkage

A TRY statement can be skipped if a process is executing a procedure imported from a
library, and one of the following conditions occurs:

• The library process is discontinued.

• The library is a connection library and is delinked by a DELINKLIBRARY statement
with the ABORT option.

 Determining Process History

8600 0494–506 10–23

The behavior that results depends on whether the library is a server library or a
connection library, and whether the TRY statement is safe or unsafe. For example, in
Figure 10–2, a process has invoked procedure PROCB in connection library CL.

Figure 10–2. TRY Statements and Library Delinkages

The following table explains which TRY error-handling code is executed for the preceding
example:

WHEN the TRY
statement in PROCC
is . . .

AND the library
is a . . .

THEN . . .

Safe Server library No TRY statements are executed; the process
is discontinued.

Safe Connection library The system deletes PROCD, PROCC, and
CL.PROCB from the stack, and then executes
the TRY code in PROCA.

Unsafe Server library or
connection library

The system executes the TRY error-handling
code in PROCC before deleting PROCC from
the stack. The TRY code is responsible for
cutting back PROCB (for example, by means of
a bad GO TO statement).

Determining Process History

10–24 8600 0494–506

TRY Statements and ON Statements

If a TRY statement and an ON statement are both in effect, and a fault occurs, the
system examines the more recent of the two statements. The system invokes the ON
statement if ON is the more recent statement and it is coded to handle the fault in
question. Otherwise, the system invokes the TRY statement.

For example, Figure 10–3 shows two process stacks that each includes an ON
statement and a TRY statement.

Figure 10–3. ON Statements and TRY Statements

In this example, if a termination condition occurs for process stack 1, the TRY statement
is used instead of the ON statement, because the TRY statement is more recent. If a
termination condition occurs for process stack 2, then the system checks the ON
statement first, because the ON statement is more recent than the TRY statement.
However, if the condition cannot be handled by the ON statement, the system executes
the TRY statement instead.

TRY Statements, EPILOG Procedures, and EXCEPTION Procedures

If a TRY statement is used in a block that declares an EXCEPTION procedure, the system
invokes the EXCEPTION procedure only if the TRY statement does not handle the
condition.

If a block contains an EPILOG procedure, then the system invokes the EPILOG
procedure at block exit, regardless of whether or not any termination conditions
occurred, and regardless of whether or not such conditions were handled by other
mechanisms.

 Determining Process History

8600 0494–506 10–25

While a TRY statement is in effect, a process might enter one or more procedures. If an
error occurs, the system deletes the activation records for all procedures entered since
the TRY statement. Any of these activation records might include an EXCEPTION
procedure or an EPILOG procedure. Before deleting each activation record, the system
executes any EXCEPTION or EPILOG procedures contained in that activation record. For
example, if the process in Figure 10–4 incurs a termination condition, the system
executes the EPILOG procedure in PROCD, then the EXCEPTION procedure in PROCC,
and then the TRY statement in PROCB.

Figure 10–4. TRY Statement, EPILOG Procedure, and EXCEPTION Procedure

Determining Process History

10–26 8600 0494–506

The system skips executing TRY error-handling code if an EXCEPTION or EPILOG
procedure returns control to a point before the TRY statement. For example, in
Figure 10–5, the EXCEPTION procedure in PROCC invokes procedure PROCE.
Procedure PROCE, in turn, executes a bad GO TO statement that transfers control to
PROCA. Therefore, the TRY statement in PROCB is never executed.

Figure 10–5. TRY Statements and Bad GO TO Statements

Controlling Program Dumps
A program dump is a printout of information about the current state of a process. You
can use this information to help debug a defective program. The following subsections
explain how to specify when program dumps are to occur, and how to specify which
types of information should be included in the dump.

On a system running the Secure Accountability Facility, some security options can
restrict the contents of program dumps and the ability to copy program dumps. Refer to
the Security Administration Guide for details.

Using Program Statements to Control Program Dumps

You can initiate and control program dumps in either of two ways: by using program
dump statements, or by using the OPTION task attribute.

The program dump statements that are available are the ALGOL PROGRAMDUMP
statement, the COBOL74 and COBOL85 CALL SYSTEM DUMP statement, the
FORTRAN77 DEBUG PROGRAMDUMP statement, and the Pascal Programdump
procedure. Some languages provide other statements to dump process information, but
these are language-specific features. The preceding statements call an operating system
feature that is available from a variety of sources.

 Determining Process History

8600 0494–506 10–27

Alternatively, you can enable a program dump by setting certain options of the OPTION
task attribute. If the FAULT option is set, then the process generates a program dump if
it terminates abnormally because of an internal cause. If the DSED option is set, then
the process generates a program dump if the process terminates abnormally because of
an external cause. For a definition of internal and external causes, refer to
“Understanding Internal and External Causes” later in this section.

You can also specify various dump options, which determine the types of information
that are included in the program dump. These dump options can be accessed through
assignments to the OPTION task attribute. In ALGOL, FORTRAN77, and Pascal, these
options can also be set by parameters in a program dump statement.

If a program dump statement specifies dump options, then the dump options specified in
that statement are used, and the value of the OPTION task attribute is ignored. If the
program dump is caused by the DSED or FAULT option of the OPTION task attribute, or
by a program dump statement that does not specify any dump options, then the dump
options specified by the OPTION task attribute are used for the dump.

The possible dump options are ARRAY, BASE, CODE, DBS, FILE, LIBRARIES,
PRESENTARRAYS, PRIVATELIBRARIES, TODISK, CRITICALBLOCK, and TOPRINTER.
The effects of these options are explained in the discussion of the OPTION task attribute
in the Task Attributes Programming Reference Manual. The effects of the TODISK and
TOPRINTER options are also discussed under “Controlling the Program Dump
Destination” later in this section.

Using Operator Commands to Control Program Dumps

If a process is behaving abnormally, you might want to invoke a program dump for the
process. You can use the dump later to help debug the process.

One way you can invoke a dump is by using the DUMP (Dump Memory) system
command. The <mix number> DUMP form of this command initiates a program dump
for the specified process. The <mix number> DUMP <option list> form of this
command assigns dump-related options to the OPTION task attribute and then initiates a
program dump. The OPTION values are retained, and they affect any later program
dumps for the process, unless overridden by later assignments. The following example
dumps information about arrays and files for a process with the mix number 3457:

3457 DUMP ARRAYS, FILES

It is possible to view the program dump while the process is still running. Refer to
“Analyzing a Program Dump from a Running Process” later in this section.

You can also trigger a dump by way of the DS (Discontinue) system command. The
<mix number> DS <option list> form of this command initiates a program dump and
discontinues the process. The option list in this command controls the contents of the
dump by assigning options to the OPTION task attribute. The following example dumps
arrays and code segments and discontinues the process with mix number 3457:

3457 DS ARRAYS, CODE

Determining Process History

10–28 8600 0494–506

Note that the simple form of the DS command, <mix number> DS, causes a program
dump if the DSED option of the OPTION task attribute was previously set through object
code file assignments, task equations, or task attribute assignments executed by the
process. You can prevent such a dump from occurring by using the <mix number> DS
NONE form of the DS command.

A program dump requested by the DUMP system command might not be taken
immediately if the process is running at a low priority or is in an MCP service routine. For
example, if the process is waiting on an event, the program dump is not taken until the
wait completes.

Furthermore, if an operator uses a DS command to discontinue the process while a
program dump is pending for the process, then the program dump might not be taken at
all. The DS command causes the pending program dump to be taken only if at least one
of the following conditions is true:

• The DSED option of the OPTION task attribute is set.

• The previous DUMP command specified the DSED option.

• The DS command specifies one or more dump options.

Controlling the Program Dump Destination

You can direct a program dump to a printer backup file for printing, to a disk file for later
analysis and printing, or both. You can control the program dump destination through
two dump options: TOPRINTER and TODISK. These options are available in ALGOL,
FORTRAN77, and Pascal through program dump statements. Languages that provide
access to task attributes can also assign these options by way of the OPTION task
attribute. Additionally, these options can be assigned in a DS (Discontinue) or DUMP
(Dump Memory) system command.

The TOPRINTER option directs program dumps to a printer backup file called the task
file. For details about the task file, refer to “Using the Task File” later in this section.

The TODISK option directs program dumps to a disk file, and causes a brief summary of
each dump to be written to the task file. The contents of the program dump are
determined by the other dump options, except for the BASE option. Whenever TODISK
is set, the BASE option is treated as if it is also set.

The following are advantages to using the TODISK option instead of the TOPRINTER
option:

• The dump is performed more rapidly, and less printer output is produced at the time
of the dump. This factor makes it convenient for you to set the dump options to
dump all possible information. By setting all the dump options, you reduce the
likelihood of having to try to reproduce the problem later to obtain more information.

• The disk file stores dump information in a format that can be analyzed by the
DUMPANALYZER utility. DUMPANALYZER also enables you to decide at analysis
time what information to include in the report. You can even run DUMPANALYZER
repeatedly to produce reports on different information from the same dump.

 Determining Process History

8600 0494–506 10–29

Another benefit is that DUMPANALYZER provides a detailed analysis of the process
information block (PIB).

You can also use DUMPANALYZER to produce a report similar to one created by the
TOPRINTER option. Like TOPRINTER reports, DUMPANALYZER reports include the
names of all the identifiers used by the process. (However, identifiers are included in
the report only if all object code files used by the process are present when
DUMPANALYZER is run.) For information about running the DUMPANALYZER utility,
refer to the System Software Utilities Operations Reference Manual.

When the TODISK option is used, the default title for the resulting disk file has the
following format:

(<usercode>)PDUMP/<process name>/<date>/<time>/<mix number> ON <family>

The values of the various elements of this title are as follows:

Title Element Value

<usercode> The value of the USERCODE task attribute of the process.

<process name> The value of the NAME task attribute of the process, except that
any usercode or family name is omitted. If the resulting process
name is more than eight nodes long, then only the first eight nodes
are included.

<date> The current date, in the form YYMMDD.

<time> The current time, in the form HHMMSS.

<mix number> The value of the MIXNUMBER task attribute of the process.

<family> DISK, unless the FAMILY task attribute provides a primary family to
be used in place of DISK.

The following is an example title:

(UC)PDUMP/OBJECT/TEST/PDUMP/961009/154444/0958 ON APACK

If you are running the process from CANDE, it will display the name of the final program,
dump to disk. Only the final dump name is displayed even though the program may
perform more than one.

Program Dump: (UC)PDUMP/OBJECT/TEST/PDUMP/961009/154444/0958 ON APACK

You can use file equations to specify a different file name or family name for a dump to
disk. You can file-equate the FILENAME, FAMILYNAME, and TITLE file attributes. The
file equations must specify PDUMP as the internal name of the file. For example, a WFL
job can use the following statement to initiate a program and specify the title of any
program dumps generated by the program. Note that the file equation has effect only if
the TODISK option is specified, either in the OPTION task attribute or in the statement
that invokes the program dump.

Determining Process History

10–30 8600 0494–506

RUN OBJECT/JADCON;
 FILE PDUMP(TITLE = JADCON/DUMP ON PACK);
 OPTION = (FAULT, TODISK);

If a program dump occurs, the system adds a suffix to the file-equated title. The suffix is
a 3-digit integer ranging from 000 to 999. The suffix is incremented by one for each
program dump generated by the process. Thus, in the previous example, if
OBJECT/JADCON runs under usercode BLAKE and generates three program dumps in a
single run, the program dumps receive the following titles:

(BLAKE)JADCON/DUMP/000 ON PACK;
(BLAKE)JADCON/DUMP/001 ON PACK;
(BLAKE)JADCON/DUMP/002 ON PACK;

You can include a usercode in the PDUMP file equation, but only a privileged process can
assign the program dump a usercode different from that of the process. If the process is
nonprivileged, and PDUMP is equated to a different usercode, then a security violation
results when a program dump occurs. The system deletes the program dump file rather
than saving it under the requested usercode.

If neither the TODISK nor the TOPRINTER option is set, the operating system option
PDTODISK determines whether the program dump is directed to a disk file or to the task
file. If the PDTODISK option is set, program dumps are written by default to a disk file;
otherwise, program dumps are directed by default to the task file. An operator can use
the OP (Options) system command to set or reset the PDTODISK option.

If either the TODISK or TOPRINTER option is set for a process, the program dump is
directed only to the destination specified by the option: a disk file for TODISK, or the task
file for TOPRINTER. If both of these options are set, then two program dumps occur:
the first is directed to disk and the second is directed to the task file.

If the TODISK and TOPRINTER options are both used, the two resulting dumps may
differ slightly, because the act of directing a program dump to disk can cause some
arrays used by the process to be made present or overlaid. The contents of the arrays
are not affected, and both present and overlaid arrays are included in the dump.
However, if you compare both of the dumps that were produced, you might see the
same array indicated as present in one dump, and overlaid in the other dump.

Using the Task File

The task file is a predeclared printer backup file that is associated with each process. If a
program dump is directed to a task file, the task file is automatically queued for printing,
in the same way as other printer backup files produced by a process. If a process
generates multiple program dumps, then by default, they are all stored in the same task
file.

 Determining Process History

8600 0494–506 10–31

You can use the TASKFILE task attribute to write comments to the task file or interrogate
the file attributes of the task file. You can also use this task attribute in a program to
force multiple program dumps to be stored in separate backup files. The program can
achieve this effect by closing the task file after each dump and then writing a comment
to the task file. An example of this method is given in the TASKFILE task attribute
description in the Task Attributes Programming Reference Manual.

A program can also use the TASKFILE task attribute to access the task file of an ancestor
process.

You can assign file attributes to the task file through file equation. This task attribute can
be assigned only before process initiation. The following is a WFL example of such an
assignment:

RUN OBJECT/PROG;
 FILE TASKFILE (PRINTDISPOSITION=DONTPRINT,USERBACKUPNAME=TRUE,
 FILENAME=PROG/DUMP);

You can also use the BDNAME task attribute to save the task file and assign a prefix
other than *BD to the file title.

Some security restrictions apply if file equations or a BDNAME task attribute assignment
is used to prefix the task file title with a usercode other than that of the process. The
following are WFL examples of such statements:

RUN OBJECT/PROG;
 BDNAME = (FRAN)PROGDUMP;

RUN OBJECT/PROG;
 FILE TASKFILE (PRINTDISPOSITION=DONTPRINT,USERBACKUPNAME=TRUE,
 FILENAME=(FRAN)PROGDUMP);

In general, a process must have privileged status to open a file under another usercode.
The system enforces this rule even more strictly for task files by requiring that the
process have a privileged usercode rather than merely being a privileged program. The
purpose of this restriction is to prevent nonprivileged users of privileged programs from
using a program dump to overwrite files under another usercode.

This restriction is not foolproof, however. If a privileged program is running under a
nonprivileged usercode, and the program opens the task file with a write statement
before the dump takes place, the program can successfully open the task file under
another usercode. The following is an ALGOL example of such a write statement:

WRITE (MYSELF.TASKFILE,//,"DUMP NUMBER ONE");

When the program dump takes place later, the dump is directed to the already-opened
task file. For this reason, if you are designing a privileged program intended for use by
nonprivileged users, you should not include any statements that would cause the task
file to be opened before the dump.

Determining Process History

10–32 8600 0494–506

Analyzing a Program Dump from a Running Process

Some program dumps occur when a program is terminated, either by a fault or by a DS
(Discontinue) system command. However, there can also be situations when it is useful
to generate a program dump for a process while it is still running. Such a dump can be
initiated by the DUMP (Dump Memory) system command or by a PROGRAMDUMP
statement in the program.

By default, program dumps are directed to printer and do not print until the process and
its job have terminated. The following paragraphs explain how you can gain access to
the program dump while the process is still running.

One method of gaining immediate access to a program dump is by directing the program
dump to disk. For information on directing dumps to disk, refer to “Controlling the
Program Dump Destination” earlier in this section. If the program dump is directed to
disk, then the dump file becomes available as soon as the dump is completed. You can
then run the DUMPANALYZER utility to analyze the disk file. For a description of
DUMPANALYZER, refer to the System Software Utilities Operations Reference Manual.

If the program dump is directed to printer, you can enable immediate printing by setting
the PRINTDISPOSITION attribute of the task file to CLOSE. You can accomplish this
assignment with a task equation in the statement that runs the program. The following
is a WFL example:

RUN OBJECT/TEST/ALGOL/TASK;FILE TASKFILE(PRINTDISPOSITION= CLOSE)

Alternatively, you can assign the task file PRINTDISPOSITION through a FILECARDS task
attribute assignment within the program. The following is an ALGOL example:

REPLACE MYSELF.FILECARDS BY
 "FILE TASKFILE(PRINTDISPOSITION = CLOSE);" 48"00";

If the program dump is initiated by the DUMP command, the system closes the task file
at the end of the program dump. The PRINTDISPOSITION attribute then causes the
program dump to be queued for printing.

If the program dump is initiated by a PROGRAMDUMP statement in the program, the
task file is not closed automatically at the end of the dump. To cause immediate printing,
the program must follow the PROGRAMDUMP statement with a statement that closes
the task file. The following is an ALGOL example:

CLOSE(MYSELF.TASKFILE);

 Determining Process History

8600 0494–506 10–33

Determining Whether a Dump is In Progress

If a process is taking a program dump, then this fact is reflected in the Stack State
display of the Y (Status Interrogate) system command. The following example shows
the output from the Y command for a process that is taking a dump:

Status of Task 6408/6513 at 16:39:09
Program name: *OBJECT/ED ON SYS00
Priority: 50
Origination: OCDWH_1/CANDE/2 (LSN 295)
MCS: SYSTEM/CANDE
Usercode: DEBS
Chargecode: 6893
Stack State: Waiting on an event, Programdumping
Display: ED:OPERATOR DSED @ (47312200)

This command can be useful, for example, if you have entered a DS (Discontinue)
system command for a process, and the process seems to be taking a long time to
terminate. By entering the Y command, you can determine whether the delay is caused
by a program dump. You can then enter a second DS command if you wish to
discontinue the program dump.

Causing Symbolic Dumps for RPG Processes

The task file of an RPG process can store a symbolic dump instead of, or in addition to, a
program dump. A symbolic dump provides much of the same information as a program
dump, but is shorter and simpler to read. A symbolic dump can be produced in any of
the following ways:

• The RPG process can execute a DUMP operation code. This operation produces a
symbolic dump, but no program dump. By default, the symbolic dump is written to
the task file. However, the RPG process can specify that the symbolic dump is to be
written to another file previously declared by the process.

• The operator can enter the AX DUMP form of the AX (Accept) system command in
response to a halted RPG program. This action produces a symbolic dump, but no
program dump. The symbolic dump is always written to the task file.

• The RPG process can generate a program dump when the process terminates
abnormally and dump options were specified in a DS (Discontinue) system command
or the DSED or FAULT option was set in the OPTION task attribute. If an abnormal
termination results in a program dump, a symbolic dump appears in the task file after
the program dump. If there is no program dump, then no symbolic dump is
produced either.

The DUMP (Dump Memory) system command, when applied to an RPG process,
produces a program dump, but no symbolic dump.

For further information, refer to the discussion of the DUMP operation code in the Report
Program Generator (RPG) Programming Reference Manual, Volume 1: Basic
Implementation.

Determining Process History

10–34 8600 0494–506

Effect of Resource Limits on Program Dumps

Resource limits imposed by task attributes are deliberately overridden by the system for
a process that is generating a program dump. Task attributes that might be overridden
include ELAPSEDLIMIT, MAXIOTIME, MAXLINES, MAXPROCTIME, MAXWAIT,
SAVEMEMORYLIMIT, STACKLIMIT, TEMPFILELIMIT, and WAITLIMIT. This policy
ensures that a process can generate a complete program dump, even when the
termination is caused by the process exceeding one of these limits

Understanding Internal and External Causes

The causes of abnormal terminations are divided into two categories: internal and
external. The difference between these two types of causes can determine whether a
process generates a program dump, and whether the process restarts automatically. To
be more specific, the FAULT option of the OPTION task attribute causes a program
dump if a process is discontinued by an internal cause. The DSED option of the OPTION
task attribute causes a program dump if a process is discontinued by an external cause.
The RESTART task attribute causes a process to restart only if it is terminated by an
internal cause. If the task has not executed any user code, the RESTART count is
ignored. For example, RESTART is ignored if a task fails to run because the codefile is
too old to run on the current release.

An abnormal termination is considered to be due to an external cause if the
HISTORYCAUSE and HISTORYREASON task attributes have any of the following
combinations of values:

HISTORYCAUSE HISTORYREASON

OPERATORCAUSE Any

RESOURCECAUSE Any

FAULTCAUSE DISKPARITYV

SYSTEMCAUSE APPLICATIONTIMEOUTV or FORCIBLECLOSEV

PROGRAMCAUSE DATABASEDIEDV, LIBRARYDIEDV, DEATHINFAMILYV,
STEPPARENTDIEDV, INFANTICIDEV, or CLIENTDIEDINACRV

An abnormal termination is considered to be due to an internal cause if the
HISTORYCAUSE and HISTORYREASON values are not any of the combinations listed in
the preceding table.

8600 0494–506 11–1

Section 11
Restarting Jobs and Tasks

A process can be discontinued by any of a variety of causes, including system
commands, program faults, or resource limits. In most situations, this discontinuation is
permanent. The system does not attempt to continue execution of the process or
restart it from the beginning. The system removes the process stack, process
information block (PIB), task attribute block (TAB), and any temporary files that the
process was using. Only the permanent files used by the process are preserved and
reflect all changes made by the process before it terminated.

However, in certain cases you can cause various aspects of a process to be saved for
later restarting. This section discusses the following methods of saving and restarting
processes:

• Work Flow Language (WFL) job restarts. The system automatically stores
information about WFL jobs that enables the jobs to restart after a halt/load. Further,
you can terminate and restart a WFL job manually with the RESTART (Restart Jobs)
system command.

• Checkpoint facility. This facility stores a complete copy of a process and its data
items, so that the process can be re-created later from a given point in its execution.

• CHECKPOINTARRAY procedure. ALGOL and NEWP processes can use this
procedure to copy an array to disk or recover the array from disk.
CHECKPOINTARRAY has fewer restrictions than the checkpoint facility and thus is
suitable for wider use.

An additional restart method is the RESTART task attribute, which restarts a process that
was terminated due to a fault. For further information about the RESTART attribute,
refer to “Retrying a Failed Task” in Section 10, “Determining Process History.”

Restarting Jobs and Tasks

11–2 8600 0494–506

Designing WFL Jobs for Automatic Restarts
A WFL job is the only type of user process that automatically restarts if interrupted by a
halt/load. If a halt/load occurs while a WFL job is executing, then the WFL job and its
offspring are terminated. After the halt/load, the job recovers in one of two ways.

If the restarted WFL job was executing a checkpointed task at the time of the halt/load,
then a process called JOBRESTART appears in the W (Waiting Entries) system command
display. For information about how to respond to this waiting entry, refer to “Restarting
a Checkpointed Task” later in this section.

If the job was not executing a checkpointed task at the time of the halt/load, the system
begins execution of the job from the last point that a successful job rollout took place. A
job rollout stores selected information about the job for use if the job is restarted. The
system attempts a job rollout before each of the following statements:

ALTER COPY PRINT RUN

ARCHIVE LOG PROCESS START

CHANGE MODIFY PTD WAIT

COMPILE OPEN REMOVE

Also, if any of the following statements contains an ACCEPT function, the system
attempts a job rollout before the statement:

Assignment Statements DO WHILE

CASE IF

Additionally, the system attempts job rollouts after each WAIT statement. The WAIT
statement is the only statement for which the system attempts a rollout both before and
after the statement.

Note that a job rollout can succeed only if no tasks are running. If a job rollout fails, and
the system has to restart the job, then the system restarts the job from a previous job
rollout. The following examples illustrate this point:

• Suppose that at the time of the halt/load the WFL job is waiting for a single
synchronous task to complete. Therefore, the last successful job rollout took place
before the initiation of that task. After the halt/load, the WFL job resumes by
executing the task initiation statement again. This creates a new task that is an
instance of the same program.

• Suppose that the WFL job initiates three asynchronous tasks before the halt/load,
and all of these tasks are still in use when the halt/load occurs. Therefore, the last
successful job rollout took place before the first asynchronous task was initiated.
After the halt/load, execution resumes with the first of the three task initiation
statements.

 Restarting Jobs and Tasks

8600 0494–506 11–3

• Suppose the WFL job initiated an asynchronous task called A and then another
asynchronous task called B. Task A terminates while task B is still in use. Then a
halt/load occurs, also while task B is still in use. Therefore, the last successful job
rollout took place before A was initiated. After the halt/load, execution of the job
resumes with the statement that initiated task A. This was the last point at which no
in-use task existed, because task A still existed when task B was initiated.

Preventing Job Side Effects

The values of Boolean, integer, real, and string identifiers are retained across a halt/load.
The values of job parameters are also retained. However, the following types of values
are lost:

• The values of the task attributes of the job, except for the MIXNUMBER task
attribute and any task attributes assigned in the job attribute list. Thus, for example,
values assigned to any task attribute using the MYJOB task variable are not retained.

• The task attribute values of task variables declared in the job. Only task attribute
values assigned in task variable declarations are retained.

• The effects of the ST (Stop) system command. The effects of this command are not
retained across a halt/load, because the ST system command simply assigns the
STATUS task attribute a value of SUSPENDED.

• The effects of any file attribute assignments that were executed after the file
declaration in the job.

The ON RESTART statement can be used to specify actions that are taken immediately
after a halt/load. Typically, the ON RESTART statement is used to restore the values of
file and task variables before job execution continues.

Task equations included in task initiation statements are reexecuted when the task
initiation statement is reexecuted. Therefore, the ON RESTART statement does not
need to restore attributes specified in task equations.

The job can determine whether it has been restarted by interrogating the RESTARTED
task attribute. This task attribute returns a value of TRUE if the job has been restarted.

Preventing Task Side Effects

When the WFL job reinitiates a task, some of the physical files used by the new task
might reflect changes made by the old task before the halt/load. When designing a
program that is to be initiated by a WFL job, you must plan ahead for this possibility and
provide a way for the program to produce appropriate audit trails.

A WFL task that opens a remote file might not be able to do so after a halt/load.
Normally, a task equation such as the following is used to enable a WFL task to open a
remote file:

RUN OBJECT/PROG;
 STATIONNAME = #MYSELF(SOURCENAME);

Restarting Jobs and Tasks

11–4 8600 0494–506

This task equation directs the task to open any remote files at the station that initiated
the WFL job. However, the requested station might not exist after a halt/load. This is
the case, for example, if the job was initiated from a pseudostation, such as a Command
and Edit (CANDE) dialogue opened through the Transaction Server. This pseudostation is
discarded during a halt/load and is not reestablished until you log on to the same CANDE
dialogue again. The task terminates abnormally if it attempts to open a remote file at a
nonexistent pseudostation.

Understanding Job Restart Failure

Any of the following circumstances can prevent a WFL job from restarting after a
halt/load:

• The system switches to using a different job description file after the halt/load. The
operator can use system commands to cause the switch to a different job
description file. For further information, refer to the discussion of the job description
file in the System Administration Guide.

• The operator physically transfers the pack containing the job description file to an
incompatible type of system and attempts to make it the new job description file for
that system.

If the operator uses the DL JOBS ON <family> command to mark the pack as the
location of the next job description file, then after the next halt/load, the system
attempts to restart the jobs from the specified job description file. The jobs should
restart successfully, provided that the pack was transferred to a compatible type of
system with the same type of memory architecture. The following are the
compatible classes of systems; transfers within each class are possible, but
transfers between the classes are not:

− A 7, A2100, NX4200

− A11, A14, A16, A18, A19, A2410, NX4600

− A2800, NX4800, NX5600, NX5620, NX5800, NX5820, NX6820, NX6830, LX
Systems, CS7101, CS7201

If you transfer a job description file between systems of different classes, then the
restart of each job fails with the error INCOMPATIBLE SYSTEM TYPE. Additionally
transferring the job description file between incompatible systems can cause the
system to halt/load again.

• The operating system option AUTORECOVERY is reset. The operator can reset this
option using the OP (Options) system command. Resetting AUTORECOVERY
causes the mix limit for each job queue to be set to zero after a halt/load. Any job
that would have restarted will instead remain in a job queue until the operator uses
the MQ (Make or Modify Queue) system command to assign a new mix limit to the
job queue.

Resetting AUTORECOVERY also prevents automatic halt/loads in some situations.
For details, refer to the System Commands Operations Reference Manual.

 Restarting Jobs and Tasks

8600 0494–506 11–5

• An operator changes the job queue definitions after the job is initiated, but before the
halt/load. For example, the job attribute list of a job might set CLASS = 10 and
MAXPROCTIME = 60. The definition of job queue 10 might include a
PROCESSTIME limit of 120. The job is submitted through job queue 10 originally.
While the job is executing, an operator might use the MQ (Make or Modify Queue)
system command to lower the PROCESSTIME limit for that job queue to 30. Then a
halt/load might occur. After the halt/load, the job cannot restart because its
MAXPROCTIME value is greater than the PROCESSTIME limit that is now defined
for job queue 10. The job terminates abnormally with a queue violation.

• A task of the job executed a checkpoint and then was terminated by the halt/load. In
this case, the job is suspended after the halt/load and appears in the W (Waiting
Entries) system command display. For information about operator responses to this
situation, refer to “Restarting a Checkpointed Task” later in this section.

Understanding Disk Resource Control Effects

On systems using the Disk Resource Control (DRC) system, the system normally delays
restarting WFL jobs until the DRC system becomes active. The WFL jobs remain in their
job queues, and the system displays an RSVP message notifying the operator that DRC
initialization is underway. You can use the FS (Force Schedule) system command to
force a queued WFL job to restart before DRC is active. However, be aware that the
following statements in a WFL job can have unexpected effects if they execute before
DRC is active:

• CHANGE and REMOVE statements

If these statements specify usercoded files, the statements are skipped without
being executed.

• COPY statement

If this statement creates a usercoded copy of a file, the copy proceeds normally, but
DRC is not notified of the increased disk usage for that usercode. Therefore, it might
become possible for the actual disk usage of that usercode to exceed the limit set in
DRC.

For further information about DRC, refer to the System Administration Guide and the
System Operations Guide.

Manually Restarting WFL Jobs
You restart a running WFL job with the RESTART (Restart Jobs) system command. This
command first discontinues the current job and its tasks, and then restarts the new job
as though a halt/load had occurred. For example, the job resumes execution from the
last point at which no offspring were in use. For further information about the restart
point, as well as about job and task side effects that you should plan for, refer to
“Designing WFL Jobs for Automatic Restarts” earlier in this section.

If the DSED program dump option is set for any task of the job, the RESTART command
causes the task to generate a program dump.

Restarting Jobs and Tasks

11–6 8600 0494–506

You can use the RESTART command to achieve some of the effects of a halt/load
without interrupting the system. For example, if you need to perform maintenance on a
disk unit, you must terminate any jobs that have files open on that disk unit. You can set
the mix limit for the relevant job queue to zero, and then apply the RESTART command
to such a job (rather than using the DS command). You can then hold the restarted job in
the job queue until pack maintenance is completed. When you increase the mix limit,
the job restarts from the last point where it had no tasks active.

You can also use the RESTART command to test ON RESTART statements in WFL jobs
without having to halt/load the machine.

If the WFL job had no checkpointed task in progress at the time of the RESTART
command, then the system automatically submits the job to a job queue. The job
resumes execution whenever it is selected from that job queue.

If the WFL job was executing a checkpointed task at the time the RESTART command
was entered, the job does not restart immediately after the command. Instead, the
independent runner JOBRESTART appears in the W (Waiting Mix Entries) system
command display. For information on how to respond to this waiting entry, refer to
“Restarting Checkpointed Tasks Automatically” later in this section.

Checkpoint Facility
The checkpoint facility provides the ability to restart a terminated task from any selected
point in its execution. Invoking a checkpoint causes the creation of a checkpoint file,
which records the state of the task when the checkpoint was invoked. Either a
statement in the task or a BR (Breakout) system command can invoke a checkpoint.
Later, you can use the RERUN statement to restart the task from the point at which the
checkpoint was invoked.

The main application of the checkpoint facility is the restarting of tasks that were
terminated by a system halt/load. The unique advantage of the checkpoint facility is the
ability to restart a task from a selected point during the task's execution. You can invoke
repeated checkpoints for the same task and restart the task from any of these
checkpoints.

ALGOL provides a CHECKPOINT statement that enables a program to invoke a
checkpoint during its execution. Additionally, programs can invoke a checkpoint by
calling the exported MCP procedure CALLCHECKPOINT. The CALLCHECKPOINT
procedure can be invoked from any of the languages that support libraries, including C,
COBOL74, COBOL85, FORTRAN77, NEWP, and Pascal. You can also use operator
commands to initiate a checkpoint for ALGOL and COBOL74 tasks. However,
checkpoints cannot be initiated for WFL or RPG tasks.

There are several restrictions on the circumstances in which a checkpoint can be
invoked. One restriction is that the task must have been initiated from WFL, rather than
from a session or a user program. Another is that the task must not have any offspring.
These restrictions, and others, are discussed in detail in the following subsections.

 Restarting Jobs and Tasks

8600 0494–506 11–7

Programmatically Invoked Checkpoints

Designing a program to be checkpointed and successfully restarted involves more than
simply including a checkpoint invocation statement. You must verify that the program is
not using features that are disallowed for checkpointing. You must also plan for recovery
of data file contents and libraries.

Storing Information with a Checkpoint

Invoking a checkpoint causes the following types of information about the task to be
stored:

• The structure of the process stack, including information about the procedures that
have been entered, but have not yet exited, and the statement that is currently being
executed

• The current values of all objects declared by the task

• The current values of the task attributes of the task

Planning for File Recovery

The checkpoint facility does not store a record of the contents of files used by a task.
Instead, information is stored about the attributes of the files; that is, whether each file is
open and the current position of the record pointer for each file. You must plan for the
fact that file contents might have been modified, or files might have been removed or
replaced, between the time the task was checkpointed and the time it is restarted.

When the task is restarted, each data file must be on the same type of medium as it was
when the checkpoint was invoked. They do not have to be on the same physical units or
at the same locations on disk. They must retain the same basic characteristics, such as
blocking.

If a temporary disk file is open when the checkpoint is invoked, the file is locked and
assigned a title that begins with the letters CP. However, the system does not assign
this title to the TITLE attribute of the logical file; instead, the TITLE attribute retains
whatever value it was assigned by the program. If this file is later locked by the program,
the system enters the file in the disk directory under the title specified in the TITLE file
attribute. At restart, the process looks for the file only under the CP directory, and the
task is suspended with a NO FILE condition.

To prevent this situation, all files that will eventually be locked can be opened as
permanent files. That is, the file attribute PROTECTION can be set to SAVE. You can
design the task to remove this file later by closing the file with the PURGE option set.
Another method of avoiding this problem is never to lock a temporary file.

Restarting Jobs and Tasks

11–8 8600 0494–506

Planning for Library Recovery

It is possible to checkpoint a user task that is linked to a library, but only if the task is not
currently executing a library procedure. When a user task linked to a library is
checkpointed, the checkpoint records the values of the library attributes. However, the
checkpoint does not store any information about the state of the library or its contents.

When the user task restarts, the task is not immediately relinked to the library. The
library link is reestablished the first time the user task calls a library procedure.

You must be aware that the values of global objects in the library might have changed
since the user task was checkpointed. Global objects in the library might have changed
for any of the following reasons:

• The user task might have invoked a library procedure after the checkpoint and before
the user task terminated. This library procedure might have included statements that
modified the values of global objects in the library.

• If the library was frozen with duration of TEMPORARY and a sharing option of
PRIVATE, then the library thaws when the user task terminates, and the system
removes the library process. The values of all global objects in the library are lost
when the library terminates. When the user task restarts, its first attempt to use the
library causes the creation of a new instance of the library.

• If the library has a sharing option of SHAREDBYALL, then other tasks have access to
the library and might make changes to global objects in the library after the original
user task is checkpointed.

Invoking the Checkpoint

The task invokes a checkpoint by executing a CHECKPOINT statement or by invoking the
exported MCP procedure CALLCHECKPOINT. These methods are discussed separately
in the following pages.

Using a CHECKPOINT Statement

ALGOL provides a CHECKPOINT statement. You can create multiple checkpoints by
including a CHECKPOINT statement at several points in the program. Later, you can
restart the task from any of these checkpoints.

Each CHECKPOINT statement can specify the following options:

• Device option

 Determines the family where the checkpoint-related files are to be created. A value
of DISK causes checkpoint files to be created on the family named DISK. A value of
DISKPACK causes checkpoint files to be created on the family named PACK. You
can specify PACK as a synonym for DISKPACK.

 Restarting Jobs and Tasks

8600 0494–506 11–9

• Disposition option

 Determines whether checkpoint files are saved. If the value is PURGE, then the
checkpoint files are removed if the task terminates normally. If the value is LOCK,
then checkpoint files are saved indefinitely. Later, you can use the checkpoint files
to restart the task even if it terminated normally.

 The disposition option also determines if a checkpoint removes any previous
checkpoint files created by the same task. If the disposition is PURGE, then any
previous checkpoints that were invoked with a disposition of PURGE are removed. If
the disposition is LOCK, then no previous checkpoints are removed.

The following is an example:

CHECKPOINT (DISK,PURGE);

Using the CALLCHECKPOINT Procedure

A program can invoke a checkpoint by calling the MCP exported procedure
CALLCHECKPOINT. You can create multiple checkpoints by invoking
CALLCHECKPOINT at several points in the program. Later, you can restart the task from
any of these checkpoints.

CALLCHECKPOINT is an integer procedure that receives four integer parameters, in the
following order: UTYP, CPTYP, CCODE, CPNUM, and RSFLAG. The following table
explains these parameters.

Parameter Name

Type
Input/

Output

Meaning

UTYP Integer Input Similar to the device option in a CHECKPOINT statement.
This parameter determines the family where the
checkpoint-related files are created. Checkpoint files with a
value of 1 are created on the family named DISK; files with
a value of 17 are created on the family named PACK. These
values can also be represented by the VALUE function in
ALGOL as VALUE(DISK) and VALUE(PACK).

CPTYP Integer Input Similar to the disposition option in a CHECKPOINT
statement. This parameter determines whether checkpoint
files are saved. A value of 0 is the same as a disposition of
PURGE: checkpoint files are removed if the task terminates
normally. A value of 1 is the same as a disposition of
LOCK: checkpoint files are always saved indefinitely. Later,
you can use the checkpoint files to restart the task even if
it terminated normally.

 The CPTYP parameter also determines if a checkpoint
removes previous checkpoint files created by the same
task. If the disposition is 0 (PURGE), any previous
checkpoints invoked are removed. If the disposition is 1
(LOCK), no previous checkpoints are removed.

CCODE Integer Output If the checkpoint is unsuccessful, the CCODE parameter
stores one of the values listed in Table 11–1, “Checkpoint
Completion Codes.”

Restarting Jobs and Tasks

11–10 8600 0494–506

Parameter Name

Type
Input/

Output

Meaning

CPNUM Integer Output CPNUM returns the number the system assigned to this
checkpoint. The numbering scheme is explained in
“Creating Output Disk Files with a Checkpoint” in this
section.

RSFLAG Integer Output If the task is restarted from a checkpoint, RSFLAG returns
a value of 1 the next time the task invokes
CALLCHECKPOINT. In this case, CALLCHECKPOINT
actually does not invoke a checkpoint for the task. If the
task invokes CALLCHECKPOINT a second time, RSFLAG
returns a value of 0 and the checkpoint is actually invoked.

Procedure result Integer Output A value of 0 indicates a successful checkpoint. A value of 1
indicates the checkpoint was not taken, in which case
either the CCODE parameter or the RSFLAG parameter
should be nonzero.

The following are ALGOL statements that declare the CALLCHECKPOINT procedure and
invoke it:

LIBRARY MCPSUPPORT(LIBACCESS=BYFUNCTION,FUNCTIONNAME="MCPSUPPORT.");

INTEGER PROCEDURE CALLCHECKPOINT(UTYP, CPTYP, CCODE, CPNUM, RSFLAG);
 INTEGER UTYP, CPTYP, CCODE, CPNUM, RSFLAG;
 LIBRARY MCPSUPPORT;

INTEGER CCODE_ACTUAL, CPNUM_ACTUAL, RSFLAG_ACTUAL, CPRESULT;

CPRESULT:= CALLCHECKPOINT(VALUE(DISK),1, CCODE_ACTUAL, CPNUM_ACTUAL,
 RSFLAG_ACTUAL);

The following COBOL85 program uses the explicit library interface to invoke the
CALLCHECKPOINT procedure. The invocation specifies a device option of PACK and a
disposition of PURGE.

IDENTIFICATION DIVISION.
PROGRAM-ID. CHECK-POINT.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT ATTR-FILE ASSIGN TO DISK.
DATA DIVISION.
FILE SECTION.
FD ATTR-FILE.
01 ATTR-REC PIC X(80).

WORKING-STORAGE SECTION.
77 CHECKPOINTDEVICE PIC S9(11) USAGE BINARY.
77 CHECKPOINTTYPE PIC S9(11) USAGE BINARY.
77 COMPLETIONCODE PIC S9(11) USAGE BINARY.

 Restarting Jobs and Tasks

8600 0494–506 11–11

77 CHECKPOINTNUMBER PIC S9(11) USAGE BINARY.
77 RESTARTFLAG PIC S9(11) USAGE BINARY.
77 RSLT PIC S9(11) USAGE BINARY.
77 VALUE-OF-PACK PIC S9(11) USAGE BINARY.
77 VALUE-OF-PURGE PIC S9(11) USAGE BINARY VALUE 0.

LOCAL-STORAGE SECTION.
LD LD-CALLCHECKPOINT.
77 CHECKPOINTDEVICE PIC S9(11) USAGE BINARY.
77 CHECKPOINTTYPE PIC S9(11) USAGE BINARY.
77 COMPLETIONCODE PIC S9(11) USAGE BINARY.
77 CHECKPOINTNUMBER PIC S9(11) USAGE BINARY.
77 RESTARTFLAG PIC S9(11) USAGE BINARY.
77 RSLT PIC S9(11) USAGE BINARY.

PROGRAM-LIBRARY SECTION.
LB MCPSUPPORT IMPORT
 ATTRIBUTE
 FUNCTIONNAME IS "MCPSUPPORT"
 LIBACCESS IS BYFUNCTION.
ENTRY PROCEDURE CALLCHECKPOINT
 WITH LD-CALLCHECKPOINT
 USING
 CHECKPOINTDEVICE
 CHECKPOINTTYPE
 COMPLETIONCODE
 CHECKPOINTNUMBER
 RESTARTFLAG
 GIVING
 RSLT.

PROCEDURE DIVISION.
INIT-PARA.
 CHANGE ATTRIBUTE KIND OF ATTR-FILE
 TO PACK.
 MOVE ATTRIBUTE KIND OF ATTR-FILE
 TO VALUE-OF-PACK.
 PERFORM CHECKPOINT-PARA.
 STOP RUN.

CHECKPOINT-PARA.
 MOVE VALUE-OF-PACK TO CHECKPOINTDEVICE.
 MOVE VALUE-OF-PURGE TO CHECKPOINTTYPE.
 CALL CALLCHECKPOINT
 USING
 CHECKPOINTDEVICE
 CHECKPOINTTYPE
 COMPLETIONCODE
 CHECKPOINTNUMBER
 RESTARTFLAG
 GIVING
 RSLT.

Restarting Jobs and Tasks

11–12 8600 0494–506

Creating Output Disk Files with a Checkpoint

Invoking a checkpoint causes the creation of one or more of the following checkpoint-
related disk files: a checkpoint file, a checkpoint job file, and checkpoint temporary files.
The following paragraphs explain what these files are, and the factors that determine
whether they are created.

A checkpoint file is always created if the checkpoint is successful. This file stores a
complete description of the checkpointed task and is titled according to the following
convention:

(<usercode>)CP/<job number>/<checkpoint number> ON <family name>

The usercode in the checkpoint file title is the usercode of the task. The job number is
the 5-digit mix number of the job that initiated the task. The checkpoint number is a 3-
digit number used to distinguish this checkpoint from any other checkpoints executed by
the same task. The family name is taken from the value of the device option in the
CHECKPOINT statement.

If the disposition option is set to PURGE, the checkpoint number is always 0 (zero) and
each succeeding checkpoint with PURGE set removes the previous checkpoint file. If
the disposition option is set to LOCK, the checkpoint number starts at a value of 1 for the
first checkpoint, and is incremented by 1 for each succeeding checkpoint that is invoked
with LOCK. If a task invokes some checkpoints with LOCK and some with PURGE, then
the “locked” checkpoints use ascending checkpoint numbers and the “purged”
checkpoints use a checkpoint number of 0.

A checkpoint job file is produced by the first checkpoint in the task that is invoked with
LOCK. This checkpoint job file makes it possible to restart the checkpointed task after its
original job has terminated. Later checkpoints with LOCK do not produce a job file, nor
do any checkpoints invoked with PURGE. The checkpoint job file is titled according to
the following convention:

(<usercode>)CP/<job number>/JOBFILE ON <family name>

Checkpoint temporary files store the contents of temporary files in use by the
checkpointed task. Checkpoint temporary files are created only in certain circumstances,
which are discussed under “Planning for File Recovery” earlier in this section. These
files are titled according to the following convention:

(<usercode>)CP/<job number>/F<file number> ON <family name>

In the checkpoint temporary file title, the file number is a 3-digit file number that starts
at 1 and is incremented by 1 for each temporary disk file.

The way the checkpointed task terminates can have an effect on the checkpoint-related
files. If the checkpointed task terminates abnormally and the last checkpoint has a
disposition of PURGE, the system retitles the checkpoint file to have the next sequential
checkpoint number and creates a checkpoint job file if none exists. If the checkpointed
task terminates normally and all checkpoints have a disposition of PURGE, then the
system removes all checkpoint-related files that were created for the task.

 Restarting Jobs and Tasks

8600 0494–506 11–13

For tasks that invoke a large number of checkpoints with the LOCK disposition, the
checkpoint number is incremented up to 999 and then is recycled to 1 (leaving 0
undisturbed). When this happens, the checkpoint files previously numbered 1, 2, and so
on are lost as new ones using those numbers are created.

When a task restarts at a checkpoint that was not the last, subsequent checkpoints
invoked from the restarted task continue in numerical sequence from the one used for
the restart. Old high-numbered checkpoints are thus lost.

If a rerun is initiated and the original job number is in use by another task, then a new job
number is assigned to the job. The titles of all checkpoint-related files for the task are
changed to reflect the new job number.

Restrictions on the Use of Checkpoints

There are certain restrictions on the features that can be in use by a task when it is
checkpointed. These restrictions apply to both programmatically initiated checkpoints
and operator initiated checkpoints. If any of these features are in use, they prevent a
successful checkpoint. If a checkpoint fails, the task continues normally, but no
checkpoint files are created.

The following restrictions apply to the tasking environment of the checkpointed task:

• The task must have been initiated by a RUN statement in a WFL job. The
checkpointed task must be the only in-use offspring of the WFL job at the time the
checkpoint is invoked.

• The task cannot be a remote task. That is, it must not be initiated on a BNA host
system other than that on which the job is running.

• The task must not have any offspring at the time of the checkpoint. However, the
task can have offspring at earlier, or later, points in its execution.

A checkpoint cannot be invoked from within the following types of procedures:

• An imported library procedure. The checkpoint cannot take place if an imported
library procedure is anywhere in the process stack. However, the checkpoint can be
invoked if the user process is merely linked to a library.

• A SORT input or output procedure. (SORT provides its own restart capability; refer to
the System Software Utilities Operations Reference Manual.)

Several types of files cannot be open at the time of the checkpoint. However, the
process can close these files, take a checkpoint, and then reopen the files and continue
to use them. The following are the restricted types of files:

• Direct files

• Disk files whose DUPLICATED attribute value is TRUE

• Files whose FILESTRUCTURE attribute value is not ALIGNED180

• ISAM files

• Multireel unlabeled tape files

Restarting Jobs and Tasks

11–14 8600 0494–506

• ODT files

• Remote files

• Port files

• Reversed tape files

Some restrictions also apply to printer output. All open printer files must be backup files,
and have a PRINTDISPOSITION file attribute value of EOJ or DONTPRINT. In addition,
the BDBASE option of the OPTION task attribute cannot be set.

The process cannot have an Enterprise Database Server database open at the time of
the checkpoint.

No direct arrays can be in the process stack at the time of the checkpoint. A direct array
can be declared in a procedure in the program. However, the procedure must not have
been entered, or must have been entered and exited, before the checkpoint.

The checkpoint file cannot be created if doing so would cause the user's file usage on a
family to exceed the limits enforced for the user by the disk resource control (DRC)
system. For information about the disk resource control system, refer to the System
Administration Guide and the System Operations Guide.

Determining Eligibility for Checkpoints

A task can determine whether it is probably eligible for checkpoints by interrogating the
CHECKPOINTABLE task attribute. This read-only Boolean attribute is assigned by the
system. The system assigns a value of FALSE if the task does not meet certain basic
requirements for a checkpointed task. However, a CHECKPOINTABLE value of TRUE
does not guarantee that a checkpoint will succeed. For details, refer to the discussion of
CHECKPOINTABLE in the Task Attributes Programming Reference Manual.

Determining Whether the Checkpoint Succeeded

The checkpoint facility returns a value indicating the result of the attempted checkpoint.
This value is divided into the following fields:

[46:01] If this bit is set, then the current task was restarted from this checkpoint.

[25:12] If the checkpoint succeeded, this field stores the checkpoint number
assigned to the checkpoint files.

[10:10] If the checkpoint failed, this field stores the completion code that indicates
why the checkpoint failed. For a list of the possible completion codes, refer to
Table 11–1.

[00:01] This is the exception bit. If this bit is set, then either the checkpoint did not
succeed or the process was restarted from this checkpoint.

In ALGOL, you can store the result value in a Boolean variable by invoking the checkpoint
facility as a function. This Boolean value can then be stored in a real variable, and the
various fields of the real variable can be conveniently interrogated.

 Restarting Jobs and Tasks

8600 0494–506 11–15

In the following ALGOL example, BOOL is a Boolean variable and the other variables are
real.

BOOL:= CHECKPOINT(PACK,LOCK);
REALRSLT:= REAL(BOOL);
CPRESTART:= REALRSLT.[46:01];
CPNUMBER:= REALRSLT.[25:12];
CPCOMPLETION:= REALRSLT.[10:10];
CPEXCEPTION:= REALRSLT.[00.01];

You can tell whether a checkpoint was successful by observing the completion message
that is displayed. The following is an example of a successful completion message:

#1082 CHECKPOINT #1080/001 TAKEN @ (029900)*

The following is an example of the completion message for a checkpoint that failed:

#1111 CHECKPOINT ABORTED: BAD IPC ENVIRONMENT @ (029900)*

Each completion message corresponds to one of the completion codes from field [10:10]
of the checkpoint result. The completion messages are listed in Table 11–1.

Table 11–1. Checkpoint Completion Codes

Completion
Code

Completion Message and Meaning

0 CHECKPOINT #<mix number>/<checkpoint number> TAKEN

The checkpoint was executed successfully.

1 INVALID AREA IN STACK

2 SYSTEM ERROR

Completion errors 1 and 2 both mean that a system error occurred.

3 BAD IPC ENVIRONMENT

The process has offspring or was not initiated by a WFL RUN statement.

4 NO USER DISK FOR CP FILE

The family requested by the device option in the checkpoint statement is not
available.

5 IO ERROR DURING CHECKPOINT

An I/O error occurred.

6 # ROWS IN CP FILE > 1024

The process is too large to be successfully checkpointed.

7 DIRECT FILE NOT ALLOWED

The process has a direct file that is open.

Restarting Jobs and Tasks

11–16 8600 0494–506

Table 11–1. Checkpoint Completion Codes

Completion
Code

Completion Message and Meaning

8 TOO MANY TEMPORARY DISK FILES

The process has more than 998 temporary files.

9 ILLEGAL FILEKIND

The process is using a file for writing directly to a line printer or a card punch.

10 DUPLICATED FILE NOT ALLOWED

The process is using a duplicated file.

11 ILLEGAL FILE ORGANIZATION

The process is using an Index Sequential Access Method (ISAM) file.

12 INSUFFICIENT MEMORY TO CHECKPOINT

Not enough memory is available to checkpoint the process.

13 OPEN REVERSED TAPE FILE NOT ALLOWED

The process is using a reversed tape file.

14 ICM AREA IN STACK

The process is using a BNA Version 2 port file.

15 DMS AREA IN STACK

The process is using an Enterprise Database Server data set.

16 DIRECT ARRAY IN STACK

The process has entered, and not yet exited, a block that includes a direct array
declaration.

17 SECURITY ERROR SAVING TEMPORARY DISK FILE

The process has a temporary file open under another usercode. This situation can
occur, for example, if both the following are true:

• The process opened a permanent disk file that resided under someone else's
usercode.

• While the process had the file open, another process attempted to remove the
file, thus changing it to a temporary file.

19 STACKMARK

A system error occurred.

20 SORT AREA IN STACK

The process is using the SORT function.

21 IN USE ROUTINE NOT ALLOWED

The process has entered a USE procedure.

 Restarting Jobs and Tasks

8600 0494–506 11–17

Table 11–1. Checkpoint Completion Codes

Completion
Code

Completion Message and Meaning

22 ILLEGAL CONSTRUCT

Either the process has opened a port file or there is operating system code in the
process stack. The latter can occur, for example, when a fault causes the execution
of an ALGOL ON statement.

23 BDBASE ILLEGAL

The BDBASE option of the OPTION task attribute has been set.

24 ILLEGAL FILESTRUCTURE

The process has an open file with a FILESTRUCTURE value for which checkpointing
is not implemented.

25 MULTI-REEL UNLABELED TAPE NOT ALLOWED

The process has opened a multireel unlabeled tape file.

26 SURROGATE TASK NOT ALLOWED

The task was initiated on a BNA host other than that on which the job is running.

27 NON-EVENT PO IN STACK

The process is using the MCP post office box facility.

28 PROGRAM USES LIBRARIES

The process is executing an imported library procedure.

30 ROW SIZE TOO SMALL FOR CP FILE

The process stack is too large to fit in a row of the checkpoint file. The maximum size
of a process stack that can be checkpointed is approximately 22700 words.

32 OPERATOR CHECKPOINT REQUEST CANCELED

A checkpoint or restart was already underway.

34 BR REQUEST REJECTED

The BRCLASS task attribute value is NOBR.

36 OPEN BACKUP FILE WITH PRINTDISPOSITION = EOT NOT ALLOWED

37 OPEN BACKUP FILE WITH PRINTDISPOSITION = CLOSE NOT ALLOWED

38 OPEN BACKUP FILE WITH PRINTDISPOSITION = DIRECT NOT ALLOWED

Each of these three values means that the PRINTDISPOSITION file attribute has a
value not allowed for checkpoints.

40 ATTEMPT TO EXCEED TEMPORARY FILE LIMIT ON CP FILE

41 ATTEMPT TO EXCEED FAMILY LIMIT ON CP FILE

Restarting Jobs and Tasks

11–18 8600 0494–506

Table 11–1. Checkpoint Completion Codes

Completion
Code

Completion Message and Meaning

42 FAMILY INTEGRAL LIMIT EXCEEDED ON CP FILE

These three values mean the checkpoint file cannot be created because doing so
causes the user's file usage on a particular family to exceed the limits set by the disk
resource control system. For information about the disk resource control (DRC)
system, refer to the System Administration Guide and the System Operations Guide.

43 INVALID ENVIRONMENT IN STACK

The process has invoked and not yet exited a library procedure. Either the process is
currently executing code from that procedure, or it is executing code from some
other procedure that was invoked from the library procedure.

44 DISK TYPE MUST BE DISK OR PACK

A process invoked the exported MCP procedure CALLCHECKPOINT and passed a
value of other than 1 (disk) or 17 (pack) to the UTYP parameter.

45 CHECKPOINT TYPE MUST BE ZERO OR ONE

A process invoked the exported MCP procedure CALLCHECKPOINT and passed a
value of other than 0 (purge) or 1 (lock) to the CPTYP parameter.

46 SHARED BUFFERS NOT ALLOWED

The process has a file open for which the value of the BUFFERSHARING file attribute
is not NONE.

47 STACK CONTAINS STRUCTURE TYPE VARIABLES

The process includes structure block declarations.

48 LIBRARY IS LINKED TO A CONNECTION LIBRARY ENVIRONMENT

The process is linked to a connection library.

49 PROGRAM USES CONNECTION LIBRARIES

The process includes a connection library declaration.

50 PROGRAM USES SIGNALS

The process uses the POSIX signals mechanism.

51 PROGRAM USES FILE DESCRIPTORS

52 FIFO NOT ALLOWED

53 POSIX SPECIAL FILES NOT ALLOWED

54 PRINTDISPOSITION OF OPEN BACKUP FILE MUST BE EOJ OR DONTPRINT

The process has an open backup file with a PRINTDISPOSITION value other than
EOJ, DONTPRINT, EOT, CLOSE, or DIRECT. PRINTDISPOSITION values of EOT,
CLOSE, and DIRECT generate other completion codes.

55 PRINTER FILES MUST BE BACKUP

An open printer file is not a printer backup file.

 Restarting Jobs and Tasks

8600 0494–506 11–19

Operator-Invoked Checkpoints

You can initiate checkpoints for a task by using the BR (Breakout) system command.
This feature is designed to allow you to checkpoint tasks when an external condition
prevents execution from continuing. For example, checkpointing a task just before
halt/loading the system preserves the work done up to that point.

The BR command, if it is completed successfully, has the same effect as a CHECKPOINT
statement in a program. All restrictions that apply to a programmed checkpoint also
apply to an operator-initiated checkpoint. For example, the task must have been initiated
from a WFL job and must not have any offspring. The task must be written in ALGOL or
COBOL74. For details about these restrictions, refer to “Restrictions on the Use of
Checkpoints” earlier in this section.

The programmer is responsible for designing a task to recover data file contents and
libraries after a restart. It can be difficult to design such recovery mechanisms without
knowing exactly when the checkpoint will take place. You can overcome this difficulty
through the use of the BRCLASS task attribute. This task attribute specifies whether the
task currently allows an operator-invoked checkpoint.

Programmatically Preventing Operator Checkpoints

You can use the BRCLASS task attribute to specify how a task will respond to an
operator-invoked checkpoint. Using repeated assignments to BRCLASS, you can specify
that operator checkpoints be allowed at some points in the task and not at others.

You can disallow operator checkpoints by assigning BRCLASS a value of NOBR (the
default). You can allow a single checkpoint, and cause the task to be discontinued
automatically after the checkpoint, by assigning BRCLASS a value of ONCEONLY. You
can allow multiple checkpoints, and allow the task to continue normally after each
checkpoint, by assigning BRCLASS a value of MULTIPLE.

Note: Multiple operator checkpoints are possible only if BRCLASS is set to MULTIPLE
for both the job and the task. It is not sufficient to assign MULTIPLE to the task alone.

The BRCLASS task attribute has effect only if the CHECKPOINTABLE task attribute is
TRUE.

Displaying the Checkpoint Status

You can use the <mix number> BR system command to determine whether a task is
eligible for an operator checkpoint and whether the task is currently being checkpointed
or restarted. The response has the following form:

TASK <mix number> <checkpoint status>

The following are possible responses if the task is not currently being checkpointed or
restarted. The phrase “CANNOT CONTINUE AFTER BR” indicates that the BRCLASS
task attribute has a value of ONCEONLY. When BRCLASS = ONCEONLY, the system
automatically discontinues the process after the checkpoint completes. However, the

Restarting Jobs and Tasks

11–20 8600 0494–506

process can continue if the operator cancels the checkpoint with an OF (Optional File)
system command, as discussed under “Operator Actions after the Checkpoint” later in
this section.

TASK <mix number> IS NOT CHECKPOINTABLE BY THE OPERATOR
TASK <mix number> IS CHECKPOINTABLE
TASK <mix number> IS CHECKPOINTABLE (CANNOT CONTINUE AFTER BR)

The following are responses that indicate that a checkpoint has been requested or is
underway:

TASK <mix number> CHECKPOINT REQUESTED
TASK <mix number> CHECKPOINT REQUESTED (CANNOT CONTINUE AFTER BR)
TASK <mix number> CHECKPOINT RUNNING
TASK <mix number> CHECKPOINT RUNNING (CANNOT CONTINUE AFTER BR)

The following responses indicate that a restart is underway. In these responses, the
phrase “PROGRAM” means that the checkpoint was initiated by a CHECKPOINT
statement in the task. The phrases “ONCEONLY” and “MULTIPLE” specify the value of
the BRCLASS task attribute in cases where the checkpoint was operator initiated.

TASK <mix number>: RESTARTING
TASK <mix number>: RESTARTING (PROGRAM)
TASK <mix number>: RESTARTING (ONCEONLY)
TASK <mix number>: RESTARTING (MULTIPLE)

The Y (Status Interrogate) system command displays more limited information about the
checkpoint status of a task. If a checkpoint or restart action has been requested for a
task, a line of the following form appears in the Y display:

CHECKPOINT STATUS: <status>

The possible <status> values are REQUESTED, RUNNING, or RESTARTING. These
values have the same meaning they do in the BR display.

Invoking a Checkpoint Interactively

You can invoke a checkpoint for a task by entering the <mix number> BR + form of the
BR command. If the checkpoint is accepted, it is executed with DISK as the device
option and PURGE as the disposition option. Checkpoint files are therefore created on
DISK family, with a checkpoint number of 0.

If the BRCLASS task attribute value is ONCEONLY, the task is discontinued after the
checkpoint.

The system might delay execution of the checkpoint request if it is not immediately able
to save the task stack correctly. For example, a checkpoint request cannot be completed
while the task is waiting on an event. If the checkpoint request is being delayed, a BR
command shows a checkpoint status of REQUESTED.

 Restarting Jobs and Tasks

8600 0494–506 11–21

Canceling a Checkpoint Interactively

If the checkpoint status is REQUESTED, you can cancel the checkpoint request by
entering a BR command of the form <mix number> BR –. This command cancels the
request immediately.

Operator Actions after the Checkpoint

As soon as the checkpoint has been taken successfully and the checkpoint file is entered
into the directory, the checkpoint function waits for an operator action. The following is
an example of the W (Waiting Mix Entries) system commands display for such a process:

-Job-Task-Pri-Elapsed--- 5 WAITING ENTRIES ---------------------
 6927\6928 50 1:44 (JASMITH) (JASMITH)OBJECT/ALGOL/CP ON SYSPK
 OPERATOR CHECKPOINT #6927/000 TAKEN @ 112F:00EA:1 @ (00000500)

You can determine the possible responses to this waiting state by entering a <mix
number> Y command. The REPLY line of the Y command display lists one or more of
the following possible responses:

• <mix number> DS

This command immediately discontinues the checkpointed task and its job. Any user
protection, such as EPILOG procedures, will not be considered during the DS
operation. This restriction ensures that neither the job nor the task will change the
state of any of its files after the checkpoint has been taken. This response is always
available after an operator-initiated checkpoint.

• <mix number> OF

This command cancels the checkpoint, removes the files created by the checkpoint,
and causes the checkpointed task and its job to continue their normal execution.
This response can be used if you decide that the checkpoint was not needed.

• <mix number> OK

This command causes the system to complete the checkpoint, and causes the
checkpointed task and its job to continue execution normally after the checkpoint.
Any files created by the checkpoint are saved. This response is allowed only if the
BRCLASS task attribute value was MULTIPLE.

Additionally, if the task was checkpointed in preparation for a halt/load, the ??PHL
(Programmatic Halt Load) system command can be used to initiate the halt/load. After
the halt/load, you can enter a command to restart the task.

Restarting a Checkpointed Task

A checkpointed task can be restarted automatically after a halt/load or explicitly with a
WFL RERUN statement.

Restarting Jobs and Tasks

11–22 8600 0494–506

Restarting Checkpointed Tasks Automatically

If a WFL job was executing a checkpointed task when a halt/load occurred, the job does
not immediately restart after the halt/load. Instead, an independent runner called
JOBRESTART appears in the W (Waiting Entries) system command display. The
following is an example of the entry:

---Mix-Pri---Elapsed------------ 2 WAITING ENTRIES -----------------
 7082 50 :55 JOB JOBRESTART
 RESTART PENDING 7119 DAILY/RUNNIT

In the preceding example, DAILY/RUNNIT is the job that is pending restart, and its mix
number is 7119. The checkpointed task does not appear in the display. JOBRESTART is
a job that was initiated by the system software to do the restarting, and its mix number
is 7082. The following are the possible operator responses to this example and the
effects of the responses:

• 7082 OK

This command restarts the job and restarts the task at the last checkpoint.

• 7082 DS

This command discontinues the job and the task. Any checkpoint files are saved,
regardless of whether the disposition was LOCK or PURGE. The checkpoint number
of PURGE files is left as 0 (zero).

• 7082 QT

In this context, QT has the same effect as DS.

Initiating a Restart Explicitly

You can use a WFL RERUN statement to restart a checkpointed task. The checkpoint
files of the task to be restarted must have been permanently saved. Checkpoint files are
permanently saved if the checkpoint disposition is LOCK, if the job terminates
abnormally, or if the checkpoint is initiated by an operator BR command.

The RERUN statement can be included in a WFL job. Also, you can enter the RERUN
statement directly at the ODT, in which case the RERUN statement causes the creation
of a WFL job that does the restart. The RERUN statement has the following form:

RERUN <job number> / <checkpoint number>

In the RERUN statement, the job number is the mix number of the job that initiated the
checkpointed task. The checkpoint number identifies the checkpoint that is to be used.

If the checkpointed task had a usercode, the checkpoint files are stored under that
usercode. To restart such a task, you must enter the RERUN command in a job that
specifies the usercode. The following can then be entered at an ODT:

?BEGIN JOB;USERCODE = <usercode> / <password>;
 RERUN <job number> / <checkpoint number>

 Restarting Jobs and Tasks

8600 0494–506 11–23

Following are some of the conditions that can prevent a successful restart:

• The usercode of the checkpointed task or its job is no longer valid.

• The program has been recompiled since the checkpoint was created.

• The system is now running on a different MCP release level than it was when the
checkpoint was created. For example, the system is now running a 48.1 MCP, and
the checkpoint was created on a system running a 47.1 MCP.

• The system is now using different intrinsics from when the checkpoint was taken.

• The checkpoint files are not present on DISK family or PACK family. The files must
be on one of these two families, regardless of any FAMILY equations entered with
the RERUN statement.

• The process was restarted on a different type of machine from the one where the
checkpoint was taken. For example, the process was checkpointed on an LX5100
and restarted on an NX5820.

If a rerun is initiated and the job number is in use by another job, a new job number is
assigned and the checkpoint files are automatically retitled to reflect the new job
number.

The following messages can be displayed to show the result of the restart attempt:

• RESTART PENDING

• RESTART INITIATED

• RESTART ABORTED: MISSING CHECKPOINT FILE

• RESTART ABORTED: IO ERROR DURING RESTART

• RESTART ABORTED: USERCODE NO LONGER VALID

• RESTART ABORTED: OPERATOR DSED RESTART

• RESTART ABORTED: OPERATOR QTED RESTART

• RESTART ABORTED: MISSING CODE FILE

• RESTART ABORTED: NOT ABLE TO RESTART

• RESTART ABORTED: INVALID JOB FILE

• RESTART ABORTED: ERR COPYING JOB FILE

• RESTART ABORTED: MISSING JOB FILE

• RESTART ABORTED: FILE POSITIONING ERROR

• RESTART ABORTED: WRONG JOB FILE

• RESTART ABORTED: WRONG CODE FILE

• RESTART ABORTED: BAD CHECKPOINT FILE

• RESTART ABORTED: BAD STACK NUMBER

• RESTART ABORTED: WRONG MCP

• RESTART ABORTED: MISSING FAMILY MEMBER

Restarting Jobs and Tasks

11–24 8600 0494–506

• RESTART ABORTED: MACHINE TYPES DIFFER

• RESTART ABORTED: PAGED ARRAY PAGE SIZE HAS CHANGED

• RESTART ABORTED: FILE IS RESTRICTED

• RESTART ABORTED: FILE IS ON A RESTRICTED FAMILY

• RESTART ABORTED: TAPE LABELKIND CONFLICTS WITH FILEUSE

 Restarting Jobs and Tasks

8600 0494–506 11–25

Using the CHECKPOINTARRAY Procedure
You can use the CHECKPOINTARRAY procedure to write the contents of arrays to disk
files. CHECKPOINTARRAY can also restore arrays from the disk files where they were
previously stored. The CHECKPOINTARRAY procedure is exported by the
MCPSUPPORT library.

The CHECKPOINTARRAY procedure is not part of the checkpoint facility described earlier
in this section, but serves a related purpose. The following table compares the features
provided by CHECKPOINTARRAY procedure with those provided by the checkpoint
facility.

Table 11–2. Comparison of CHECKPOINTARRAY and Checkpoint Facility

Features CHECKPOINTARRAY Checkpoint Facility

How invoked CHECKPOINTARRAY procedure CHECKPOINT statements,
CALLCHECKPOINT procedure,
or BR (Breakout) system
command

Types of data stored by the
checkpoint

Most types of arrays. Can be
multidimensional. Must contain
data. Cannot be any of the
following:

• Direct array

• Double array

• Event array

• Interlock array

• Queue array

• Value array

• Message

• Array declared in a
structure block or
connection block

• ALGOL string

All types of data objects, except
for files.

Programming languages ALGOL and NEWP

(CHECKPOINTARRAY requires
a parameter of type ANYTYPE,
which is supported only by
these languages)

ALGOL, C, COBOL74,
COBOL85, FORTRAN77,
NEWP, and Pascal

Restrictions on use None, except that certain types
of arrays are excluded

Numerous, including
restrictions against using direct
I/O, port files, Enterprise
Database Server data sets, and
many other features. For
details, refer to “Restrictions on
the Use of Checkpoints” earlier
in this section.

Restarting Jobs and Tasks

11–26 8600 0494–506

The following paragraphs present a brief explanation and example of the
CHECKPOINTARRAY procedure.

The CHECKPOINTARRAY procedure has the following parameters and result:

Parameter Explanation

CPOPTIONS A real variable that indicates whether the operation is a checkpoint
or a restore, and whether the operation should abort or wait on an
RSVP if certain conditions are encountered.

CPARRAY The array to be checkpointed or restored. The array can be of any
type, as long as it directly contains data. That is, the array cannot be
a value array, a message array, a queue array, an event array, an
interlock array, an ALGOL string, or an array in a structure block or
connection block.

FTITLE A real array that stores the title of the checkpoint file in display form.

INFO A real array of which word 0 is stored during a checkpoint and
retrieved during a restore. You can use this array to store version
information of your choice.

Procedure Result A Boolean value indicating whether the operation succeeded, and if
not, why not.

The following ALGOL program shows how these parameters can be used in
CHECKPOINTARRAY calls:

100 BEGIN
110
120 LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION,
130 FUNCTIONNAME = "MCPSUPPORT.");
140
150 BOOLEAN PROCEDURE CHECKPOINTARRAY(CPARRAY, FTITLE, CPOPTIONS, INFO);
160 VALUE CPOPTIONS; REAL CPOPTIONS;
170 ANYTYPE CPARRAY;
180 ARRAY FTITLE, INFO[*];
190 LIBRARY MCPSUPPORT;
200
210 DEFINE % CPOPTIONS parameter fields
220 CHECKPOINTING = 1[0:1] #,
230 RESTORING = 0[0:1] #,
240 NORSVP = 1[1:1] #,
250 RSVP = 0[1:1] #;
260
270 DEFINE % Procedure result error field and numbers
280 ERRNUMF = [15:8] #,
290 NOCPAFILE = 1 #, % Restore: File not found or not accessible
300 NOTACPAFILE = 2 #, % Restore: File not a checkpoint file
310 BADFTITLE = 3 #, % CP or Restore: Invalid file title
320 NOPACKFAMILY = 4 #, % CP or Restore: Family name not online
330 NODATA = 5 #, % CP: Untouched / empty array
340 DIFFERENTDIMS = 6 #, % Restore: Array has different # of dims

 Restarting Jobs and Tasks

8600 0494–506 11–27

350 MISMATCH = 7 #, % Restore: Wrong array type / element-size
360 BADARRAY = 8 #, % CP: Non-array or unsupported array type
370 RESIZED = 9 #, % CP: User resized array during checkpoint
380 DISKERROR = 10 #, % CP or Restore: Disk error occurred
390 NOTENOUGHMEM = 11 #, % Restore: Not enough memory for array
400 CALLERDSED = 12 #, % CP or Restore: Process was discontinued
 % (Dsed)
410 WRONGVERSION = 13 #, % Restore: CPAFILE format incompatible with
420 % current MCP
430 WRONGPAGESIZE = 14 #, % Restore: System has different page size
440 % than when array was checkpointed
450 NODISKSPACE = 15 #, % CP: Not enough disk space to checkpoint
460 LOGICERROR = 255 #; % CP or Restore: MCP internal logic error
470
480 ARRAY TABLETHING[0:9999,0:9999];
490 ARRAY INFOW[0:1],
500 CPTITLE[0:42];
510 BOOLEAN INITNEEDED,
520 RSLT;
530
540 FILE CPFILE(KIND=DISK,TITLE="TABLETHING/CP.",NEWFILE=FALSE,
550 DEPENDENTSPECS=TRUE);
560
570 % The following statements
580 % - Check to see if the job was interrupted
590 % - Check to see if a checkpoint array file is present
600 % - Attempt to restore TABLETHING from the checkpoint file
610 % - Check the mix number in the INFOW word to determine whether
620 % the checkpoint was generated earlier within this job, or is an
630 % obsolete remnant of a previous job run
640 REPLACE CPTITLE BY "TABLETHING/CP.";
650 INITNEEDED := TRUE;
660 IF MYJOB.RESTARTED AND CPFILE.RESIDENT THEN
670 BEGIN
680 IF NOT CHECKPOINTARRAY(TABLETHING,
690 CPTITLE,
700 0 & RESTORING & RSVP,
710 INFOW) THEN
720 BEGIN
730 IF INFOW[0] = MYJOB.MIXNUMBER THEN
740 INITNEEDED := FALSE;
760 END;
770 END;
780
790 IF INITNEEDED THEN
800 BEGIN
810 % Initialize TABLETHING.
820 % [Statements omitted from example here]
830
840 % Then checkpoint the TABLETHING array to disk
850 INFOW[0] := MYJOB.MIXNUMBER;
860 RSLT := CHECKPOINTARRAY(TABLETHING,

Restarting Jobs and Tasks

11–28 8600 0494–506

870 CPTITLE,
880 0 & CHECKPOINTING & RSVP,
890 INFOW);
900 END;
910
920 %%%% Begin Main Portion of Program %%%%
930
940 % [Statements omitted from example here]
950
960 END.

The preceding program includes only the code relevant to checkpointing and restoring an
array.

The program initializes an array named TABLETHING at the start of each run. The array
is assumed to be very large and costly to initialize. If the program is interrupted by a
halt/load, then it is cheaper to restore the array from a checkpoint than to reinitialize the
array.

The program is designed to run from a WFL job. If the program and its parent WFL job
are interrupted by a halt/load, then when the job is restarted, the RESTARTED attribute of
the job is TRUE. Therefore, at line 660 the program checks the RESTARTED attribute of
the WFL job. If the job was restarted and a checkpoint file with the appropriate title is
available, then the statements at 680 to 710 attempt to restore the TABLETHING array.

Line 730 checks the INFOW value returned by the CHECKPOINTARRAY procedure. This
program always stores the mix number of the job in the INFOW array when performing a
checkpoint. Note that if a WFL job is interrupted by a halt/load and restarted, the WFL
job is restarted with its original mix number. Therefore, the program can use the INFOW
value to determine whether the checkpoint was created earlier by this same job (before
interruption by a halt/load).

If no checkpoint file was recovered, or if the recovered checkpoint file was not created
by the current job, then the program initializes the array itself. The statements initializing
the array would reside at line 820, but are omitted from this example.

Once the array is initialized, the statements at lines 850 to 890 checkpoint the array to a
file.

The defines at lines 270 to 460 are not actually used in this example, but are included for
your information. A program could use these defines to interrogate the procedure result
and determine the cause of a CHECKPOINTARRAY failure.

8600 0494–506 12–1

Section 12
Tasking across Multihost Networks

The linking of systems into a multihost network provides the capability for a type of
distributed processing. Each process executes on a single host system. However, the
various members of a process family can run on different host systems and can
communicate with each other in most of the same ways they could if they were all
running on the same system.

This type of distributed processing is referred to as remote tasking and is provided by
Host Services software. Remote tasking is supported across BNA Version 2, and Open
Systems Interconnection (OSI) networks

This section uses some specialized terminology to discuss remote tasking. The term
remote process is used to refer to a process that is initiated from one host system, but
runs on another host system. The host from which the remote process is initiated is
referred to as the local host. The host at which the remote process runs is referred to as
the remote host.

In the same way, the local operator is an operator at the system from which the remote
process is initiated. The remote operator is an operator at the system where the remote
process runs.

A remote process can be initiated from programs or from interactive sources such as the
operator display terminal (ODT), a Command and Edit (CANDE) session, or a Menu-
Assisted Resource Control (MARC) session. Any messages generated by the process
are routed back to the local ODT and originating terminal. You can monitor and control
the remote process by transmitting ODT commands to the remote host system.

The following are reasons why you might want to initiate a remote process:

• To equalize the processor load on the various systems at an installation. If the local
system is overloaded, a process may run more quickly at a remote host.

• To make use of a program stored at a remote host. A process must run on the same
system where the object code file is stored. Therefore, initiating a program that is
stored at another system implies the creation of a remote process.

• To efficiently access files stored on a remote host. A remote process running on the
remote host can access these files more efficiently than a local process that
accesses the files using Host Services logical I/O. The result can be savings in I/O
time and elapsed time.

Tasking across Multihost Networks

12–2 8600 0494–506

For further information about Host Services, other than remote tasking, refer to the
Distributed Systems Services (DSS) Operations Guide. For additional information about
Host Services logical I/O, refer to the I/O Subsystem Programming Guide.

Submitting Remote WFL Jobs
Any Work Flow Language (WFL) job can be designed to run on a remote host.
Additionally, a local operator can initiate jobs that are stored on remote hosts.

Running a Local WFL Job on a Remote Host

In some cases, it might be convenient to store a WFL job source program on the local
host, even though the job is to be run on a remote host. For these cases, you can
include an AT <hostname> specification at the start of the job.

You can submit the WFL job for execution by entering a START command at the local
host. If the AT hostname specification in the job requests a hostname that is not
currently available, the system rejects the job and displays the message “SPECIFIED
HOST NOT REACHABLE.” If the requested hostname is available, the system transfers
the job to the remote host. The entry “JOB/HANDLER/<local hostname>” appears in
the mix at the remote host and indicates that a job has been transferred to the remote
host. The job compilation, job queuing, and job execution all take place at the remote
host.

If the AT <hostname> phrase is used, the job cannot include a job parameter list, any
BINARY data specifications, or a null character within a quoted string. In addition, if the
WFL source program is stored in a disk file, a question mark must be included before the
END JOB statement. If the WFL source program is submitted in array form, it should not
include any strings with embedded null characters; otherwise, the job receives a syntax
error at the remote host.

The following is an example of the job heading for a job that is to run on a remote host
named CHICAGO:

?AT CHICAGO BEGIN JOB REMOTE/RUNNER;

Submitting a WFL Job Stored on a Remote Host

If a WFL source program resides on a remote host, you can submit the WFL program for
execution with the command AT <hostname> START <file title>. The following is an
example of this command:

AT CHICAGO START (SMITH)REMOTE/RUNNER ON DPMAST

The WFL program is compiled and executed on the remote host where it resides.

A WFL job initiated in this way runs without a usercode in some circumstances. For a
discussion of these circumstances, refer to “Usercode Identity” later in this section.

 Tasking across Multihost Networks

8600 0494–506 12–3

Meeting Remote Job Queue Requirements

You must be aware of the possibility that the job queue definitions on the remote host
might be different from those on the local host. The job is enqueued on the remote host
as if it were a local job submitted on that host. If the job does not qualify for any of the
queues, it is discontinued.

The job queuing algorithm is outlined in “Selecting the Queue for a Job” in Section 4,
“Tasking from Programming Languages.”

Initiating Non-WFL Remote Processes
You can initiate remote processes from a local session or a local process. Several
restrictions apply to the features that can be used by the remote process.

Specifying the Remote Host

The HOSTNAME task attribute can be used to specify the remote host at which the
process is to run. This task attribute can be assigned through a task equation or an
assignment to the task variable before initiation.

The HOSTNAME task attribute can be accessed from ALGOL, COBOL, and WFL.
Therefore, remote processes can be initiated from any of these languages. For example,
the following ALGOL statements initiate a remote process:

PROCEDURE RUNNER;
 EXTERNAL;
REPLACE T.NAME BY "OBJECT/RUNNIT ON DPPACK.";
REPLACE T.HOSTNAME BY "SEATTLE.";
CALL RUNNER [T];

CANDE and MARC also enable HOSTNAME to be included as a task equation following a
RUN statement. The following is an example of a CANDE command that initiates a
remote process:

RUN RUNNIT;HOSTNAME=MIAMI

The equivalent statement in MARC is as follows:

RUN OBJECT/RUNNIT;HOSTNAME=MIAMI

Tasking across Multihost Networks

12–4 8600 0494–506

Limitations on a Non-WFL Remote Process

The following restrictions apply to a remote process that is not a WFL job:

• The remote process must be an external process whose object code file is stored on
the remote host.

• The remote process can be passed no more than one parameter. The parameter
must be a real array of one dimension. The actual parameter must have a zero lower
bound. The system automatically chooses a passing mode of call-by-value for the
parameter.

• The WFL COMPILE statement cannot cause the resulting object code file to be
executed as a remote process. For example, suppose the compiler equation
COMPILER HOSTNAME = SFA15C is used. The compilation will run successfully on
the foreign host with a disposition of LIBRARY or SYNTAX, but if the disposition is
GO or LIBRARY GO, it is rejected.

If one of the preceding restrictions is violated, the initiating process is discontinued with
HISTORYCAUSE = 2 (PROGRAMCAUSEV) and HISTORYREASON = 31
(ILLEGALTASKXFERV). The following error message is displayed:

ILLEGAL HOST-TO-HOST TRANSFER OF TASK

Another restriction is that a WFL job cannot use global file assignments for remote tasks
initiated by the job. For example, the following sequence of statements is illegal:

FILE IN(KIND=DISK,TITLE=NEW/INPUT/DATA);
RUN OBJECT/UPDATE;
 HOSTNAME = ALBANY;
 FILE CARD:= IN;

Global file assignments have no effect when applied to remote tasks initiated from WFL.
The remote task executes normally, but the file used by the task does not receive any of
the file attributes specified for the global file in the WFL job. When the remote task
opens the file, the following nonfatal attribute error message is displayed:

[<hostname>] <mixno> ATTRIBUTE ERROR:<file internal name>.GLOBALFILESIRW

A remote task initiated from a local WFL job cannot read from any data specifications in
the WFL job. When the remote task attempts to read from a data specification, it is
suspended with a “NO FILE” condition and waits for a card reader file with the
requested title to appear. An RSVP message such as the following is routed back to the
local host:

[ALBANY] 2079 RSVP (JASMITH)OBJECT/UPDATE ON USERPK. NO FILE CARD (CR)

A coroutine cannot use a continue statement to transfer control to a coroutine on a
remote host. By default, the PARTNER task attribute of a remote task is treated as
MYSELF and the PARTNEREXISTS task attribute of a remote task returns a value of
FALSE. In this case, any continue statement executed by the remote task has no effect.
Execution simply proceeds to the next statement in the remote task.

 Tasking across Multihost Networks

8600 0494–506 12–5

The MYJOB task variable of a remote task is treated as a reference to the DSSSUPPORT
library on the remote host. Any references to MYSELF.EXCEPTIONTASK in the remote
task are treated as references to TASKING/MESSAGE/HANDLER, a task initiated by
DSSSUPPORT on the remote host. TASKING/MESSAGE/HANDLER is discussed under
“Displaying TASKING/MESSAGE/HANDLER and TASKING/STATE/CONTROLLER” later
in this section. Any references to MYJOB.EXCEPTIONTASK in the remote task are
treated as references to the remote task itself.

Any files accessed by a remote process are searched for on the remote host by default.
If the remote process uses a file on the local host, the HOSTNAME file attribute must be
assigned. For the remote process to open a remote file on the local host, the process
must also set its STATION task attribute to zero and assign the desired station name to
the FILENAME task attribute. Note that the STATIONNAME task attribute is ignored
when the HOSTNAME file attribute is non-null.

Host Availability

If a process attempts to initiate a task at a remote host that is nonexistent or currently
unavailable, the initiation fails, but the initiating process continues normally. The task
variable of the task stores a STATUS value of -2 (BADINITIATE), a HISTORYTYPE of 4
(DSEDV), and a HISTORYCAUSE of 13 (NETWORKCAUSEV). The HISTORYREASON
value varies depending on the exact reason the host is unreachable.

A pair of messages such as the following is displayed when this error occurs:

6749 TASK NOT INITIATED AT TESTSYS: ERROR - HOST NOT REACHABLE
6749 FOREIGN TASK INITIATION FAILED @ 103A:0001:4 @ (00000234)*

Initiating Processes from a Remote Session

An alternate method of initiating a process on a remote host is to initiate it from a remote
CANDE or MARC session. You can establish a remote session by using the Station
Transfer feature provided by Host Services. A process initiated from such a session is
considered a local process because the session is under the direct control of the remote
host. The process is therefore not limited by any of the restrictions previously discussed
under “Limitations on a Non-WFL Remote Process” in this section.

For a detailed discussion of Station Transfer, refer to the Distributed Systems Services
(DSS) Operations Guide.

Tasking across Multihost Networks

12–6 8600 0494–506

Interrogating the Remote Ancestry of a Process

A process can find out which host system it is running on by interrogating its own
HOSTNAME task attribute. This feature makes it possible to write a single program that
will take different actions when it is run on different systems.

A process can interrogate its remote ancestry by inspecting the ITINERARY task
attribute. This task attribute stores the hostnames of the host systems where each of
the ancestors of the process is running. This task attribute can be useful for cases
where the process needs to transmit information back to the user and thus needs to
know where the user is located.

Preventing User Identity Problems
The user identity of a process consists of several related task attributes, including
USERCODE, ACCESSCODE, CHARGE, FAMILY, GROUPCODE, and
SUPPLEMENTARYGRPS. Each system in a multihost network has its own
USERDATAFILE, which stores definitions of the users that are allowed on the system.
These definitions can be different on different host systems. For a remote process to
run successfully, it must be assigned an identity that is recognized on the remote host.

Usercode Identity

The most basic user identity requirement is that a remote process must run with a
usercode that is allowed at the remote host, or it must run without a usercode.

If the remote process has a usercode, then the usercode must be one that is permitted
as a remote user at the remote host. Remote users are defined by REMOTEUSER
entries in the USERDATAFILE of the remote host. REMOTEUSER entries can specify in
detail the hosts that can submit a process with a particular usercode. The following is an
example of a REMOTEUSER entry at a remote host that allows processes with usercode
JASMITH to be initiated from the host named CHICAGO:

RU JASMITH OF CHICAGO

In addition to the REMOTEUSER entry, there must be a USER entry for the usercode of
the process in the USERDATAFILE at the remote host. A USER entry defines a
usercode and assigns usercode attributes to the usercode.

A system administrator at the remote host can cause remote processes that request a
particular usercode to be run under a different usercode instead. The substitute
usercode is referred to as a local alias usercode. A remote process assumes a local alias
usercode if the REMOTEUSER entry at the remote host specifies a local alias for the
requested usercode. The local alias usercode must also be defined by a USER entry in
the USERDATAFILE at the remote host. The following is an example of a REMOTEUSER
entry that specifies a local alias usercode:

RU JASMITH OF CHICAGO LOCALALIAS=JOHNSMITH

 Tasking across Multihost Networks

8600 0494–506 12–7

The following is an example of a USER entry for the local alias:

USER = JOHNSMITH
 MAXPW = 1
 PASSWORD = ?
 FAMILY DISK = SYSPK OTHERWISE DISK
 IDENTITY = "ALIAS FOR JASMITH FROM CHICAGO"

Local alias usercodes are intended for use in cases where two different users on two
different systems happen to have the same usercode. Establishing local alias usercodes
allows these users to run processes on each other's systems, but prevents them from
accessing each other's files.

Alternatively, the system administrator can use a local alias usercode to cause many
usercodes from remote systems to be mapped to a single usercode at the local system.
This mechanism can be useful if the users need to have access to the same set of files.

If no local alias usercode is defined for the requested usercode, then the requested
usercode must itself be defined by a USER entry in the USERDATAFILE at the remote
host. Note that one or more of the usercode attributes can have different values on the
remote host than they have on the local host. These differences do not prevent remote
process initiation.

In addition, the usercode can have passwords on the remote host that are different from
those defined for that usercode on the local host. If the remote process inherits the
usercode of the local process, the password is implicitly changed to a password that is
accepted at the remote host. However, if the remote process is explicitly assigned a
usercode at initiation time, the password specified should be one of the passwords
defined for the usercode at the local host. If the remote process changes its usercode
after it is initiated, the process must specify a password that is allowed on the remote
host.

A WFL job is the only type of remote process that can run without a usercode. The
following are sources from which a remote WFL job can receive a usercode, listed in
order of precedence:

1. Assignments to the USERCODE task attribute in the job attribute list.

2. The usercode of a session, if the job is submitted from a CANDE or MARC session.

3. The terminal usercode, if the job is submitted from an ODT. An operator can assign
a terminal usercode to an ODT by using the TERM (Terminal) system command.

4. The host usercode of the system, if the job is submitted from an ODT or a
nonusercoded MARC session. The host usercode is assigned by the HU (Host
Usercode) system command. You can create a nonusercoded MARC session by
logging on with an asterisk (*) at a SUPERUSER-capable station.

If a process does not receive a usercode from any of the first three sources listed, then
the host usercode is evaluated for SYSTEMUSER status. If the USER entry for the
usercode at the remote host assigns SYSTEMUSER status, then the job runs without a
usercode. Otherwise, the host usercode is used as the usercode for the job.

Tasking across Multihost Networks

12–8 8600 0494–506

A local process cannot initiate a nonusercoded remote process. In the first place, any
null usercode explicitly assigned to a process is overridden at initiation time by
inheritance from the parent. For example, if the local process assigns a null USERCODE
value to a task variable, and then initiates a remote process with the task variable, then
the null USERCODE assignment is ignored. The task initiates successfully, but inherits
the usercode of its parent. In the second place, if the local process is nonusercoded, and
it does not explicitly assign a usercode to the remote process, then the remote process
inherits a null usercode. However, the system cannot initiate a remote process that has
a null usercode, so the system displays error messages such as the following:

DISPLAY: 1807000 HOST SERVICES ERROR 17: USER ERROR - NO USERCODE
TASK OBJECT/ALGOL/TASK ON PACK NOT INITIATED AT PARIS: USER ERROR
 - NO USERCODE
FOREIGN TASK INITIATION FAILED @ 109E:0001:4 @ (00012500)*

For more information about usercode definitions and the REMOTEUSER command, refer
to the Security Administration Guide.

Accesscode and Charge Validation

A remote process does not inherit the CHARGE task attribute value of its parent. If no
CHARGE value is explicitly assigned to the remote process, it runs without a charge
code. However, the remote process runs with a CHARGE value if one is explicitly
assigned by a statement in the parent process. Note that usercode definitions in the
USERDATAFILE can specify the range of CHARGE values that are valid for processes
with a given usercode. If the CHARGEREQ attribute is set in the usercode definition at
the remote host, then the remote task must have one of the CHARGE values defined by
the CHARGECODE usercode attribute at the remote host.

The ACCESSCODE task attribute also is not inherited by remote processes, but it can be
assigned. However, if it is assigned, it must be assigned a value that is allowed for the
remote process usercode on the remote host.

Family and Group Code Identity

A remote task does not inherit the FAMILY, GROUPCODE, or SUPPLEMENTARYGRPS
task attribute values of its parent. Instead, the remote task inherits the values of the
corresponding usercode attributes in the usercode definition at the remote host. If any
of these attributes is not specified in the usercode definition at the remote host, then by
default that task attribute receives a null value.

The parent process can override the family default at the remote host by explicitly
assigning a FAMILY value to the remote task. The parent process can override the
FAMILY specification at the remote host by explicitly assigning a FAMILY value to the
remote task, either with a task equation or with an assignment to the task variable of the
remote task. However, the parent process cannot override the GROUPCODE or
SUPPLEMENTARYGRPS values at the remote host because these attributes are read-
only.

 Tasking across Multihost Networks

8600 0494–506 12–9

Logging of Remote Processes
The system logging and job logging responsibilities for remote process families are
divided between the local host and the remote host.

System Log Entries

When a local process or session initiates a remote process, the local system log does
not contain a log entry to record the event.

All system log entries for the remote process are made in the system log at the remote
host. The remote process receives BOJ and EOJ log entries, even if it is actually a task.
The BOJ log entry shows the originating unit as zero and includes a line called
ITINERARY that specifies the host that initiated the process. The following is an example
of this log entry:

BOJ 23586 *SYSTEM/LOGANALYZER ON DISK.
 CODE COMPILED: 07/02/2001 11:20:45 BY DCALGOL 48.140
 RELEASE ID: SSR 48.1 [48.138.000] (48.138.0019)
 QUEUE: 0, ORIGINATING UNIT: 0
 STACK NUMBER: 02DC, PRIORITY: 50
 USERCODE: JASMITH. REALUSERCODE: JASMITH.
 ITINERARY: SANTAFE

Job Summaries for Remote Processes

The job summary for a process family is printed on the system where the job runs.
Thus, for WFL jobs that include an AT <hostname> specification, the job summary is
printed at the remote host. The same is true for WFL jobs started by an AT <hostname>
START command. Any other independent remote processes, such as programs initiated
by an ALGOL RUN statement, also print job summaries on the remote host.

When a local job initiates a remote task, a single entry is made in the job summary
indicating that the remote task was initiated. No other job summary entries are made for
the remote task. The following is an example of this entry:

17:55:18 1708 DISPLAY: [MIAMI] 3382 BOT (JAS)OBJECT/UPDATE/FILES.

Resource Limits for Remote Processes
Remote processes do not inherit resource limits from their local parents. For example, if
a local job has a MAXPROCTIME limit, remote tasks do not inherit that limit.
Furthermore, the local job cannot be terminated because of excessive resource usage by
its remote tasks.

The only way resource limits are propagated across networks is by explicit assignment.
Thus, a local process can initiate a remote task and assign it a MAXPROCTIME value. If
the remote task uses more processor time on the remote host than MAXPROCTIME
allows, the remote task is discontinued.

Tasking across Multihost Networks

12–10 8600 0494–506

For information about how resource limits are propagated in a local process family, refer
to Section 2, “Understanding Interprocess Relationships.”

Interacting with Remote Processes
An operator at the local host system can use system commands to monitor or interact
with processes running on remote host systems. A user at a MARC or CANDE session
can also use MARC or CANDE commands to monitor or interact with processes running
on remote host systems.

Viewing Remote Process Messages

In general, any messages generated by a remote process are routed back to the local
host. These include “BOT” and “EOT” messages, display messages, accept messages,
and RSVP messages. The following are the only exceptions to this rule:

• WFL jobs initiated by an AT <hostname> START command. No messages are
returned to the local host for such a job. (On the other hand, messages are returned
for WFL jobs that use an AT <hostname> specification in the job header.)

• Non-WFL independent processes. These include any remote processes initiated by
an ALGOL or COBOL RUN statement.

Remote process messages appear in the MSG (Display Messages) system command
display at the local host, prefixed by the hostname of the remote host, as in the following
example. If the controller option SEPARATEMSGS is set, use the MSG NW system
command to see these entries.

---Mix-Time--------------------- MESSAGES -------------------------
* ** 19:33 [PARIS] 1057 EOT (JASMITH)OBJECT/REPORTER ON DPMAST.
* ** 19:25 [PARIS] 1057 BOT (JASMITH)OBJECT/REPORTER ON DPMAST.

If the remote process was initiated from a CANDE or MARC session, the process
messages are also routed back to the CANDE or MARC session. The following is an
example of a CANDE command that initiates a remote task and the messages that are
returned:

RUN REPORTER ON DPMAST;HOSTNAME=PORTLAND
 #RUNNING 6881 AT PORTLAND.
 #[PORTLAND] 6881 BOT (JASMITH)OBJECT/REPORTER ON DPMAST.
 #ET=1:00.2 PT=0.0 IO=0.2
 #[PORTLAND] 6881 EOT (JASMITH)OBJECT/REPORTER ON DPMAST.

The message “#ET=1:00.2 PT=0.0 IO=0.2” is the termination message displayed for the
process by CANDE. The elapsed time, processor time, and I/O time displayed in this
message summarize the resource usage accumulated by the process on the remote
host.

 Tasking across Multihost Networks

8600 0494–506 12–11

Note that the local termination message for the process appears before the EOT
message from the remote host. This occurs because there is a slight delay in the
forwarding of messages from the remote host.

Local Operator Control of Remote Processes

At the local host, you can control and interrogate remote processes by using system
commands prefixed with the phrase AT <hostname>. You can direct any system
command to a remote host in this way. However, security restrictions can be
implemented at the remote host to limit or prevent the execution of such commands.

The system provides a usercode for each system command that is directed to a remote
host. If the ODT has a terminal usercode, the terminal usercode is used. You can assign
a terminal usercode with the TERM (Terminal) system command. If there is no terminal
usercode, the host usercode is used. You can assign a host usercode with the HU (Host
Usercode) system command.

If a process uses the DCKEYIN statement to submit a system command with an AT
<hostname> prefix, the system command is submitted under the usercode of the
process that executed the DCKEYIN statement.

For the command to be accepted at the remote host, the associated usercode must
have a USER entry and a REMOTEUSER entry in the USERDATAFILE at the remote
host. Otherwise, an error occurs at the remote host and the command is not executed.
The command is also rejected if no usercode is associated with it. (The command might
not have a usercode if neither a terminal usercode nor a host usercode is defined.)

If the REMOTEUSER entry defines a local alias usercode, the system command
becomes associated with the local alias usercode. In this case, the USERDATAFILE
must include a USER entry for the local alias usercode.

The remote host inspects the USER entry of the associated usercode to find out whether
SYSTEMUSER status is set for the usercode. If SYSTEMUSER status is set for the
usercode, then the system command is always allowed. If the usercode is not a
SYSTEMUSER, then only a limited subset of the system commands can be used.

If the command usercode does not have SYSTEMUSER status, then the output of mix
display commands is filtered so that only processes running under the command
usercode are displayed. Likewise, commands that specify a particular process can only
be applied to processes running under the command usercode. The following are the
tasking-related commands that are available:

• AX (Accept)

• C (Completed Mix Entries)

• CU (Core Usage)

• DBS (Database Stack Entries)

• DS (Discontinue)

• DUMP (Dump Memory)

Tasking across Multihost Networks

12–12 8600 0494–506

• FA (File Attribute)

• FI (File Information)

• FR (Final Reel)

• HI (Cause EXCEPTIONEVENT)

• J (Job and Task Structure Display)

• LIBS (Library Task Entries)

• MSG (Display Messages)

• MX (Mix Entries)

• OF (Optional File)

• OK (Reactivate)

• OT (Inspect Stack Cell)

• RM (Remove)

• SL (Support Library)

• SQ (Show Queue)

• ST (Stop)

• THAW (Thaw Frozen Library)

• TI (Times)

• Y (Status Interrogate)

MARC Control of Remote Processes

You can enter system commands in MARC and direct them to a remote host by
including the AT <hostname> prefix. The security checking that is done is the same as
that done for commands entered at the ODT. However, the usercode of the MARC
session is used as the command usercode. If the MARC session has no usercode, then
the system uses the host usercode.

CANDE Control of Remote Processes

You can direct system commands to a remote host from a CANDE session by prefixing
the command with ?AT <hostname>. These system commands are subject to the same
restrictions as commands entered using AT <hostname> at an ODT. The usercode of
the CANDE session, or its local alias, is inspected for SYSTEMUSER status at the remote
host and the commands are handled according to the results of this test.

 Tasking across Multihost Networks

8600 0494–506 12–13

Visibility of Remote Processes to Remote Operators

A remote process is visible to an operator at the remote host in the same way as it
would if it were a local process. However, the remote process appears to be a job, even
if it is actually a task. The following is an example of the Y (Status Interrogate) system
command display for a remote task:

Status of Job 2022/2022 at 18:20:31
Program name:*UNIDATS/MCS ON DISK
Priority: 50
Origination: Unit 0
Stack State: Waiting on an event
Display: DISPLAY:WARNING: PREVIOUS ALIAS REPLACED: SPARE/UNIDATS/1.

The “ORIGINATION” displayed is always “UNIT 0” if the process was initiated from a
remote host. (However, other circumstances can also cause an origination of “UNIT 0”
to be displayed.)

The following is an example of how such a task might appear in the J (Job and Task
Structure) system command display. No job is displayed for the task.

1450 50..(CYNTHIA) (CYNTHIA)OBJECT/ALGOL/TASK ON SYS37

TASKING/MESSAGE/HANDLER and
TASKING/STATE/CONTROLLER

The networking software creates two special processes that handle initiation of remote
processes and communication between the remote processes and their local parents.
These processes are tasks initiated by the DSSSUPPORT library on the local host and the
remote host. Their names are TASKING/MESSAGE/HANDLER and
TASKING/STATE/CONTROLLER. One instance of each of these tasks appears in the mix
at a host as long as any remote processes or parents of remote processes are running at
the host. These tasks also continue to appear in the mix for a few minutes after all
remote processes have terminated.

Tasking across Multihost Networks

12–14 8600 0494–506

Using Host Services-Supported Task Attributes

Host Services supports task attributes in four ways.

• Supported attributes set in the task variable before the remote task is initiated are
passed to the remote task for its initiation.

• Supported attributes set in the initiating program while the remote program is
running are copied to the remote task immediately.

• Supported attributes that are inquired on in the initiating program while the remote
program is running are fetched from the remote task immediately.

• When the remote task terminates, the following attributes are copied back to the
task variable in the local program:

ACCUMIOTIME ACCUMPROCTIME CHARGE ELAPSEDTIME

FAMILY HISTORYCAUSE HISTORYREASON HISTORYTYPE

MIXNUMBER OPTION PDUMPTITLE STACKHISTORY

STATION STATUS STOPPOINT SW1

SW2 SW3 SW4 SW5

SW6 SW7 SW8 TASKVALUE

Supported task attributes are only copied back to the initiating program either when they
are interrogated by the initiating program or when they are in the preceding list and the
remote program terminates.

Host Services supports the majority of the task attributes discussed in this guide.
However, some task attributes cannot be used across multihost networks. If Host
Services does not support a task attribute, then that attribute cannot be accessed by a
process running on a different host system. For example, if a parent process is running
on one system and its task is running on another system, the parent cannot access
some of the task attributes of the task.

To determine whether a particular task attribute is supported by Host Services, refer to
the description of that attribute in the Task Attributes Programming Reference Manual.

Generally, if Host Services does not support a task attribute, then any attempt to access
the attribute through Host Services is ignored. No error results, but the task attribute
remains unchanged. A warning message is displayed if the DSSSUPPORT library on the
system was compiled with the DIAGNOSTICS option set. However, if a process
attempts to access the ACCEPTEVENT, EXCEPTIONEVENT, or TASKFILE task attribute
of another process across a multihost network, the accessing process is discontinued.

Hosts running different software release levels can be linked in the same network. When
accessing the task attributes of a remote task, the remote host may be running an old
version of Host Services that does not support all the task attributes that the current
version of Host Services does.

8600 0494–506 13–1

Section 13
Understanding Interprocess
Communication

Interprocess communication, or IPC, is a voluntary exchange of information between two
or more processes. Interprocess communication is sometimes referred to as
interprogram communication. The latter term is avoided in this guide for two reasons.

First, a program is an artifact stored in a file that doesn't do anything. When the program
is initiated, a process is created, and the process can communicate with other
processes.

Second, the processes involved in interprocess communication are not necessarily
instances of different programs. They might be two different instances of the same
program, or they might be internal processes created by initiating procedures within the
same program.

If the distinction between programs and processes seems unclear to you, read Section 1,
“Understanding Basic Tasking Concepts,” before proceeding any further in this section.

Information in a computer system is always stored in a particular form. For example, to
store information about whether a given condition is true or false, a process might
declare a Boolean variable. To store numeric data, the process might declare an integer
variable or real variable. To record a set of instructions that can be invoked repeatedly,
the process might declare a procedure. All of the things that can be declared in
processes can be thought of, in a general way, as “objects.”

With this point in mind, you can see that IPC consists of processes making use of
objects declared by other processes. For example, if one process assigns a value of 3 to
an integer variable declared in another process, this assignment is an example of
interprocess communication. If a process invokes a procedure declared by another
process, this procedure invocation is another example of interprocess communication.

Why should two processes need to have access to the same objects? The following are
some examples:

• In an electronic mail system. One way for such a system to work would be for each
user to initiate his or her own mail process. The mail processes could then use IPC
techniques to send messages back and forth.

• For transaction processing. For example, you might have a file that is updated by
many different online users. You can use IPC techniques to ensure that different
users' updates do not overwrite each other.

Understanding Interprocess Communication

13–2 8600 0494–506

• To promote reuse of code. You might write a procedure that is useful in many
different applications. You can place the procedure in a library where it can be used
by many different applications.

The system provides a variety of IPC techniques. This section introduces

• The methods available for sharing various types of objects

• The means of synchronizing access to the shared object

Methods of Sharing Objects
The system provides several methods of sharing objects among processes. Your choice
of which method to use is affected by several factors that are listed in Table 13–1,
“Methods of Sharing Objects.” The following are the meanings of the various columns
in this table:

• IPC Method. The name of the method used for sharing objects among processes.

• Language Support. The programming languages that support this IPC method.

• Objects Shared. The types of objects that can be shared by using this method.

• Between Process Families. Indicates whether this method permits communication
between processes in different process families.

• Multihost Networks. Indicates whether this method permits communication among
processes running on different hosts. If such communication is permitted, this
column also indicates whether the hosts must all be A Series hosts, or whether they
can be from a variety of vendors.

Table 13–1. Methods of Sharing Objects

IPC Method

Language
Support

Objects
Shared

Between
Process
Families

Multihost
Networks

More Info

Task
Attributes

WFL

ALGOL

COBOL

NEWP

Boolean

Event

Integer

Real

String

No No Section 14

Global Objects ALGOL

NEWP

WFL

Any No No Section 15

 Understanding Interprocess Communication

8600 0494–506 13–3

Table 13–1. Methods of Sharing Objects

IPC Method

Language
Support

Objects
Shared

Between
Process
Families

Multihost
Networks

More Info

Tasking
Parameters

(by reference
or by name)

ALGOL

C

COBOL

NEWP

Pascal

WFL

Most types
of objects

No No Section 17

Tasking
Parameters

(by value)

ALGOL

C

COBOL

NEWP

Pascal

WFL

Most types
of objects

Yes Yes Section 17

Server
Libraries

ALGOL

C

COBOL

FORTRAN7
7

NEWP

Pascal

Procedures Yes No Section 18

Connection
Libraries

ALGOL

NEWP

Procedures Yes No Section 18

Port Files All but WFL Multiple text
records

Yes Yes;
A Series
only

Section 19

HC Files ALGOL

NEWP

Multiple text
records

Yes Yes;
A Series
only

Section 19

HY Files ALGOL

NEWP

Multiple text
records

Yes Yes;
multi-
vendor

Section 19

Shared Logical
Files

All Multiple text
records

Yes No Section 19

Understanding Interprocess Communication

13–4 8600 0494–506

Table 13–1. Methods of Sharing Objects

IPC Method

Language
Support

Objects
Shared

Between
Process
Families

Multihost
Networks

More Info

Disk Files with
Buffer Sharing
and Record
Locking

COBOL85
native;
library
support for
others

Multiple text
records

Yes No Section 19

CRCR COBOL85
native;
library
support for
others

Single text
string

Yes No Section 20

STOQ COBOL85
native;
library
support for
others

Multiple text
strings

Yes No Section 20

ONC+ RPC C Procedures Yes Yes;
multi-
vendor

Section 24

Shared
Memory

C native;
library
support for
others

Boolean

Character

Double

Integer

Real

Yes No POSIX
User's
Guide

 Understanding Interprocess Communication

8600 0494–506 13–5

Methods of Synchronizing Access
When two or more processes are able to update the value of a common data item, the
possibility arises that the updates can interfere with and overwrite each other. An
example is that of a variable that records the current balance of a customer account.
Suppose the account has a current balance of $100. One process might have
responsibility for subtracting $10 from the account. Another process, running
simultaneously, might have responsibility for adding $15 to the account. The net result
should be a balance of $105. However, the actual results can be quite different.

The problem arises because this type of update involves building on the value that is
already present. If more than one process updates the account, a sequence like the
following can occur:

1. Process A reads the account balance ($100) into variable A1.

2. Process B reads the account balance ($100) into variable B1.

3. Process A subtracts $10 from variable A1, leaving $90.

4. Process B adds $15 to variable B1, leaving $115.

5. Process A assigns the value from A1 to the account balance, leaving a balance of
$90.

6. Process B assigns the value of B1 to the account balance, leaving a balance of $115.

In other words, process B can unintentionally delete the effect of the update performed
by process A. The result is that the customer balance is left at $115 instead of the
correct $105.

To prevent such situations from occurring, it is sometimes necessary that a process be
able to secure exclusive access to an object for the duration of the transaction. The
system provides a special type of variable called an event for handling these and other
types of timing problems. You must use some means, such as global declarations,
parameters, or SHAREDBYALL libraries, to provide the communicating processes with
access to the event. You can then design the processes to use the event as a sort of
flag to signal the availability of another object, such as a variable or file.

Events can be declared and used in ALGOL and COBOL. Certain implicitly declared
events can also be accessed by WFL. For further information about events, refer to
Section 16, “Using Events and Interlocks.”

In addition to events, the system supports a synchronizing mechanism known as
interlocks. You can use interlocks for some of the same purposes as events, but
interlocks have the advantage of being executed more quickly. For further information
about interlocks, refer to “Using Interlocks” in Section 16, “Using Events and
Interlocks.”

The system also supports two synchronization mechanisms based on the POSIX
standards: signals and semaphores. These mechanisms serve a purpose similar to
events, and are primarily useful for POSIX applications that are ported to the A Series.
For further information, refer to the POSIX User's Guide.

Understanding Interprocess Communication

13–6 8600 0494–506

8600 0494–506 14–1

Section 14
Using Task Attributes

Certain task attributes exist only for the purpose of transmitting information between
different members of a process family. These attributes have no meaning to the system,
and thus can be used only for storing values to be read later. The following are the task
attributes that fall into this category:

• AX

This attribute stores a string that the process can read with an ACCEPT statement.

• LOCKED

This Boolean-valued task attribute accesses the availability state of an event. For
further information, refer to “Using Implicitly Declared Events” in Section 16, “Using
Events and Interlocks.” For information about using this attribute to control a task
from a job, refer to “Controlling a Task from a Job” in Section 4, “Tasking from
Programming Languages.”

• SW1 through SW8

Each of these attributes stores a Boolean value.

• TARGET

This attribute stores an integer value.

• TASKSTRING

This attribute stores a string value.

• TASKVALUE

This attribute stores a real value.

In a more general way, all task attributes are instruments for interprocess
communication (IPC). After all, each task attribute stores information about the process
it applies to, and this information is visible to any other process that can access the task
variable. What distinguishes the task attributes in the preceding list is that they have no
meaning at all, except what is established by convention between two processes.

These task attributes provide the simplest means of IPC. There is no need to create and
define complex data structures, as all task attributes are predeclared.

Each of the attributes involved stores only a single Boolean, arithmetic, or string value,
which can be changed and read repeatedly during process execution.

Using Task Attributes

14–2 8600 0494–506

A disadvantage to using these task attributes is that the task attribute names are fixed
and thus do not convey any information about what is being stored in the attribute.
Someone reading the program might have trouble understanding why the attribute is
being used. By contrast, a variable can always be assigned a meaningful name.

Another disadvantage is that it generally takes more processor time to read or write a
task attribute than to read or write variables declared by the process.

For two processes to communicate using task attributes, one or both must have access
to a common task variable. If two processes belong to the same process family, they
can always communicate by way of the MYJOB task variable. If two processes have a
common parent, they can communicate by way of their own EXCEPTIONTASK task
attribute. For further information about the task variables a process can access, refer to
Section 2, “Understanding Interprocess Relationships.”

The task attribute most commonly used for IPC is TASKVALUE, and its most common
use is in task equations. For example, you could use TASKVALUE to instruct a program
whether to produce a printout. The program could contain the following statement:

IF MYSELF.TASKVALUE = 1 THEN F.KIND:= VALUE(PRINTER)
 ELSE F.KIND:= VALUE(REMOTE);

If TASKVALUE has a value of 1, the program produces a printout; otherwise the program
displays its output at the user's terminal. You might use a statement like the following to
initiate the program and cause the program to produce a printout:

RUN REPORT/GENERATOR;TASKVALUE = 1

8600 0494–506 15–1

Section 15
Using Global Objects

In Section 1, “Understanding Basic Tasking Concepts,” the concept of an internal task
was introduced. An internal task is created by a statement that initiates a single
procedure within a program. The capability of initiating internal tasks exists only in WFL
and ALGOL.

WFL and ALGOL share a similar type of program structure. Both languages allow you to
create blocks that can include declarations of objects for use within the block. Both
languages allow you to nest blocks within other blocks. Both languages allow nested
blocks to use objects declared in the blocks they are nested within. These objects are
referred to as global objects.

Globally declared objects can be used to allow an internal task to communicate with its
parent or with other internal tasks of the same parent. Even widely separated members
of a process family can communicate with each other by way of global objects. For
example, sibling or cousin tasks could communicate, or a task could communicate with
an ancestor. For an introduction to the possible relationships in a process family, refer to
Section 2, “Understanding Interprocess Relationships.”

Processes can communicate through a particular global object only if the processes meet
both the following rules:

• Each process is one of the following: the process that executed the declaration of
the global object, or an internal task of that process, or an internal task of one of
these internal tasks, and so on.

• Each process must have been created by initiating a procedure that falls within the
scope of the declaration of the global object.

The scope of a declaration consists of all the blocks that have access to the object
declared. Conversely, the addressing environment of a block consists of all the objects
that can be used by statements in the block. The following subsections discuss the
scope of declarations in WFL and ALGOL, and give examples of related processes that
communicate through global objects.

Global objects can also be used in SHAREDBYALL libraries to provide communication
between unrelated processes. The use of global objects in libraries is discussed in
Section 18, “Using Libraries.”

Using Global Objects

15–2 8600 0494–506

Communication through Global Objects in WFL
The types of blocks that can occur in a WFL job are the outer block and any
SUBROUTINE declarations in the job. The scope of a declaration in WFL is limited to the
following blocks:

• The block in which the declaration occurs

• Any blocks that are nested in the declaration block and that occur after the
declaration

The following WFL example illustrates the effects of these scope rules:

100 ?BEGIN JOB;
110 INTEGER OUTERINT1;
120 SUBROUTINE FIRSTSUB;
130 BEGIN
140 INTEGER FIRSTINT;
150 SUBROUTINE NESTEDSUB;
160 BEGIN
170 INTEGER NESTEDINT;
180 OUTERINT1:= 3;
190 FIRSTINT:= 3;
200 NESTEDINT:= 3;
210 END NESTEDSUB;
220 OUTERINT1:= 2;
230 FIRSTINT:= 2;
240 END FIRSTSUB;
250 INTEGER OUTERINT2;
260 OUTERINT1:= 1;
270 OUTERINT2:= 1;
280 ?END JOB

This example includes three procedures: the outer block of the job and two subroutines,
of which NESTEDSUB is nested within FIRSTSUB. Each procedure includes integer
variable declarations. Additionally, each procedure that is within the scope of an integer
variable declaration includes a statement making an assignment to the integer variable.

Thus, the integer variable OUTERINT1 can be used by statements in the outer block, the
FIRSTSUB subroutine, and the NESTEDSUB subroutine. This is because the scope of a
declaration includes the procedure it is declared in and all nested procedures. By
contrast, the integer variable OUTERINT2 cannot be used by statements in FIRSTSUB or
NESTEDSUB, because these subroutines are declared prior to OUTERINT2.

The integer variable FIRSTINT can be used by statements in FIRSTSUB, because
FIRSTINT is declared in FIRSTSUB; and by statements in NESTEDSUB, because it is
nested in FIRSTSUB. However, FIRSTINT cannot be used by statements in the outer
block, because the outer block is not nested inside FIRSTINT.

The integer variable NESTEDINT can be used only by statements in NESTEDSUB,
because no other procedures are nested in NESTEDSUB.

 Using Global Objects

8600 0494–506 15–3

The next example shows the use of global objects in WFL to provide an elementary type
of IPC.

100 ?BEGIN JOB GLOBAL/DISPLAY;
110 CLASS = 0;
120 STRING MSG;
130 TASK S1, S2;
140 SUBROUTINE SUBONE;
150 BEGIN
160 WHILE S2(STATUS) ISNT SUSPENDED DO
170 WAIT(1);
180 MSG:= ACCEPT("ENTER A MESSAGE PLEASE");
190 S2(STATUS = ACTIVE);
200 END SUBONE;
210 SUBROUTINE SUBTWO;
220 BEGIN
230 MYSELF(STATUS = SUSPENDED);
240 DISPLAY(MSG);
250 END SUBTWO;
260
270 PROCESS SUBONE [S1];
280 PROCESS SUBTWO [S2];
290
300 ?END JOB

In this example, two subroutines, SUBONE and SUBTWO, are initiated as asynchronous
tasks. Both subroutines fall within the scope of the string MSG, which is declared in the
outer block. SUBONE waits for SUBTWO to become suspended. SUBTWO executes a
statement that suspends itself. At this point, SUBONE resumes execution and assigns
an operator ACCEPT message to the MSG string. SUBONE then changes the status of
SUBTWO to ACTIVE. When SUBTWO resumes execution, it displays the value of the
MSG string.

This is a simple example, but even in this example, it was necessary to take measures to
regulate the timing of the asynchronous tasks. For example, the statement at line 180
should execute before the statement at line 240; otherwise, the DISPLAY statement at
line 240 displays an empty value. This example uses assignments to the STATUS task
attribute to suspend and restart execution of the asynchronous tasks. Other timing
methods available in WFL include the LOCKED task attribute and various forms of the
WAIT statement. These timing methods are discussed under “Using Implicitly Declared
Events” in Section 16, “Using Events and Interlocks.”

Using Global Objects

15–4 8600 0494–506

Communication through Global Objects in ALGOL
ALGOL programs can include the following types of blocks: the outer block,
PROCEDURE declarations, and simple blocks (BEGIN...END groups that include at least
one declaration). The scope of most types of objects in ALGOL is subject to the scope
limits previously described for WFL. That is, the scope of an object is limited to the
following blocks:

• The block in which the object is declared

• Any blocks that are nested in the declaration block and that occur after the
declaration of the object

However, ALGOL provides special constructs that can be used to increase the scope of
procedure, interrupt, and switch label declarations. These constructs, which are called
forward reference declarations, allow two objects to contain references to each other,
without violating the rule that objects must be declared before they can be used. The
following example illustrates this and other aspects of ALGOL scope rules.

100 BEGIN
110 INTEGER OUTER_INT1;
120
130 PROCEDURE SECONDPROC; % Forward reference declaration
140 FORWARD;
150
160 PROCEDURE FIRSTPROC;
170 BEGIN
180 INTEGER FIRST_INT;
190 OUTER_INT1:= * + 1;
200 FIRST_INT:= * + 1;
210 % Begin simple block
220 BEGIN
230 INTEGER SIMPLE_INT;
240 SIMPLE_INT:= OUTER_INT1 + FIRST_INT;
250 END;
260 % End simple block
270 IF OUTER_INT1 + FIRST_INT < 100 THEN
280 SECONDPROC;
290 END FIRSTPROC;
300
310 PROCEDURE SECONDPROC;
320 BEGIN
330 FIRSTPROC;
340 END;
350
360 INTEGER OUTER_INT2;
370 % Beginning of outer block statements
380 OUTER_INT1:= 1;
390 OUTER_INT2:= 1;
400 SECONDPROC;
410 END.

 Using Global Objects

8600 0494–506 15–5

Two integers are declared in the outer block of this example: OUTER_INT1 and
OUTER_INT2. Of these, OUTER_INT1 is visible to the outer block, FIRSTPROC,
SECONDPROC, and the simple block inside FIRSTPROC. However, OUTER_INT2 is
visible only to the outer block, because it follows all the nested procedure declarations.

Procedure FIRSTPROC is visible to SECONDPROC, because both are declared in the
outer block, and the declaration of FIRSTPROC precedes that of SECONDPROC.
Procedure SECONDPROC is visible to FIRSTPROC because of the forward reference
declaration that precedes FIRSTPROC.

Integer SIMPLE_INT is visible only in the simple block in which it is declared, because
there are no other blocks nested within the simple block.

The next example shows the use of global objects in ALGOL to provide an elementary
type of IPC.

100 BEGIN
110 EBCDIC ARRAY MSG[0:71];
120 EVENT E;
130 TASK S1, S2;
140 PROCEDURE SUBONE;
150 BEGIN
160 REPLACE MSG BY "ENTER A MESSAGE PLEASE";
170 ACCEPT(MSG);
180 CAUSE(E);
190 END SUBONE;
200 PROCEDURE SUBTWO;
210 BEGIN
220 WAIT(E);
230 DISPLAY(MSG);
240 END SUBTWO;
250
260 PROCESS SUBONE [S1];
270 PROCESS SUBTWO [S2];
280
290 WHILE S1.STATUS GTR VALUE(TERMINATED) OR
300 S2.STATUS GTR VALUE(TERMINATED) DO
310 WAITANDRESET(MYSELF.EXCEPTIONEVENT);
320 END.

In this example, the two procedures SUBONE and SUBTWO are able to communicate
through the EBCDIC array MSG, which is declared globally to the two procedures. This
example is similar to the example shown earlier at the end of the “Communication
through Global Objects in WFL” subsection. The major difference is that this ALGOL
example regulates the timing of the tasks with a special type of object called an event.
Thus, the WAIT(E) statement at line 220 causes SUBTWO to wait until SUBONE
executes the CAUSE(E) statement at line 180. For further information about events,
refer to Section 16, “Using Events and Interlocks.”

Using Global Objects

15–6 8600 0494–506

8600 0494–506 16–1

Section 16
Using Events and Interlocks

Shared objects and task attributes provide a relatively simple means of communicating
information if all the tasks involved are synchronous tasks. If the tasks in a process
family are all synchronous, then only one process is executing at a time. The order in
which processes access shared objects is therefore fixed.

However, in cases where asynchronous processes access the same object, the order in
which they access the shared objects is not fixed. This fact can create many unexpected
side effects in communication. For example, suppose two processes communicate a
vital bit of information by way of a shared integer variable. How is one process to know
that the other process has updated the variable, so that it is now ready to be read?

The answer is that a programmer must implement flags to indicate whether a particular
variable is to be accessed at this time. You can implement many types of flags. For
example, a process could reset the value of a variable to zero after reading it. Another
process could be designed to write a new value to the variable whenever the variable
contains a zero. In this example, the zero value is being used as a flag to show that the
variable has been read and is ready to have a new value written into it.

One problem with these types of flags is that the processes involved have to keep
checking the flag periodically to see if it has been set. These repeated checks waste
processor time. Another problem is that, between the time that one process reads the
flag and the time it sets the flag, another process might have written to or read the flag.
The flag is, therefore, not completely reliable.

You can avoid both of these problems by using events. An event is a special type of
object that is used only for regulating the timing of asynchronous processes. A process
can wait for an event to assume a certain state, without using any processor time while
it waits. When the event assumes the desired state, the process resumes execution
automatically.

Aside from events, the system supports objects called interlocks, which can also be
used for timing purposes. Interlocks provide faster execution than events in some
situations. Interlocks also make it easy for processes to detect and recover from cases
where the process owning an interlock is discontinued.

Using Events and Interlocks

16–2 8600 0494–506

Using Events
Events can be declared in ALGOL and COBOL programs, but not in other languages.
Work Flow Language (WFL) jobs can wait on certain predeclared and implicitly declared
events.

Events can be made available to tasks in the same way as other objects can. That is,
internal tasks can access events declared globally in their parents. An internal or external
task can be passed an event as a parameter.

An event consists of an identifier that has two states associated with it: the available
state and the happened state. The available state can be AVAILABLE or NOT
AVAILABLE. The happened state can be HAPPENED or NOT HAPPENED. These values
can be inspected or changed by any of several event-related statements that are
described in the following pages.

The available state of an event is typically used to temporarily restrict access to a
particular object, so that only one process can access the object during a given period of
time. The happened state is used to allow one or more processes to wait without using
any processor time while waiting.

The initial available state of an event is AVAILABLE. The initial happened state of an
event is NOT HAPPENED.

Declaring Events

In ALGOL, an event declaration is similar to a simple variable declaration. The following
statement declares two events:

EVENT EDATA, EACCESS;

Events can be grouped in ALGOL as a one-dimensional event array. The following
example declares an event array:

EVENT ARRAY EVNT[1:12];

The elements of this array can be used wherever an event is allowed. For example,
EVNT[3] accesses the third event in the previous array declaration.

Events can be declared in COBOL as elementary or group items. The following example
declares an event as an elementary item:

77 E1 USAGE IS EVENT.

 Using Events and Interlocks

8600 0494–506 16–3

The following example declares a group item that contains two events and a two-
dimensional event array:

01 EGROUP USAGE IS EVENT.
 03 E-1.
 03 E-2.
 03 E-3 OCCURS 5.
 05 E-4 OCCURS 10.

Accessing the Available State

You can use the available state of an event to ensure that only one process has access
to an object, or set of objects, at a time. This one-at-a-time access is sometimes referred
to as mutual exclusion. You might need to ensure mutual exclusion for either of the
following reasons:

• To prevent updates made by one process from overwriting updates made by other
processes. In this case, you need mutual exclusion only among processes that
update an object.

• To ensure that a set of related objects are updated, and consistency restored, before
the next time a process reads any of those objects. This consistency can be
important, for example, when table entries include cross-references to other table
entries. In this case, you need mutual exclusion among all the processes that read or
update the objects.

The available state of an event records whether the event is currently assigned to a
process. An event can only be assigned to one process at a time. If the event is
currently assigned to a process, the available state is NOT AVAILABLE. If the event is
not assigned to a process, the available state is AVAILABLE. A procure statement is one
that changes the available state from AVAILABLE to NOT AVAILABLE. A liberate
statement is one that changes the available state to AVAILABLE.

To prevent two processes in a process family from accessing the same object at the
same time, you declare an event that can be used by all the processes that access the
object. The processes should be designed according to a common convention so that
each attempts to procure the declared event before accessing the shared object. If the
event cannot be procured immediately, the process should either wait for the event to
become AVAILABLE or proceed with other business until the event becomes
AVAILABLE. When a process is finished using the shared object, it should liberate the
event and thus make the shared object available for use by other processes.

This mechanism of protecting a shared object depends on the cooperation of all the
processes that access the object. The system is not aware of any link between the
event and the object it protects.

Furthermore, procuring an event does not prevent other processes from accessing the
event. It simply prevents other processes from directly procuring the event. These
other processes could execute statements to liberate the event and then procure it, or
execute statements that access the happened state. This fact allows considerable
flexibility in the use of events.

Using Events and Interlocks

16–4 8600 0494–506

Procuring an Event Unconditionally

An unconditional procure statement is one that stops execution of the process until the
requested event becomes AVAILABLE. When the event becomes available, the
unconditional procure statement immediately changes the event back to NOT
AVAILABLE and allows the process to resume executing. If the requested event is
already AVAILABLE, then the unconditional procure does not stop execution of the
process; instead, the unconditional procure immediately changes the event to NOT
AVAILABLE and allows the process to continue executing.

The following ALGOL statement unconditionally procures the event E1:

PROCURE (E1);

The following COBOL statement has the same effect:

LOCK (E1).

There is one situation that can cause an unconditional procure to continue waiting even
after an event becomes AVAILABLE. For details, refer to “Partially Liberating an Event”
later in this section.

Procuring an Event Conditionally

A conditional procure statement allows the process to continue execution if the
requested event cannot be immediately procured. The process makes one attempt to
procure the event and, if the event is AVAILABLE, changes the available state to NOT
AVAILABLE. The conditional procure statement returns information that enables the
process to tell whether the conditional procure action was successful.

The following ALGOL statement conditionally procures the event E1 and stores the result
in the Boolean variable BOOL. If the conditional procure succeeds, BOOL receives a
value of FALSE. If the conditional procure fails, BOOL receives a value of TRUE.

BOOL:= FIX (E1);

The following COBOL statement conditionally procures the event E1. The AT LOCKED
clause specifies an action to be taken if the procure fails.

LOCK (E1) AT LOCKED GO P2.

Liberating an Event

A liberate statement sets the available state of the event to AVAILABLE and sets the
happened state to HAPPENED. (For information about the happened state, refer to
“Accessing the Happened State” later in this section.) The process then continues
normally.

If another process was waiting to procure the event, that process procures the event and
continues execution. The available state returns to NOT AVAILABLE. If more than one

 Using Events and Interlocks

8600 0494–506 16–5

process was waiting to procure the event, then only the highest-priority process
succeeds, and the other processes continue to wait until the event is liberated again.
Note, however, that process priority is affected by a number of factors aside from the
PRIORITY task attribute. Therefore, the programmer cannot use the PRIORITY task
attribute to determine which of the contending processes will procure the event.

The following ALGOL statement liberates event E1:

LIBERATE (E1);

The following COBOL statement has the same effect:

UNLOCK (E1).

Partially Liberating an Event

A partial liberate statement sets the available state of an event to AVAILABLE, but leaves
the happened state unchanged. The process performing the partial liberate statement
continues execution normally. The partial liberate statement differs from a liberate
statement in that it does not cause waiting processes to resume execution. Any
processes that previously had executed a wait statement or an unconditional procure
statement will continue to wait indefinitely. However, because the partial liberate
statement changes the event to AVAILABLE, the event can be procured by procure
statements executed after the partial liberate statement.

You should be very careful when using the partial liberate statement. You need to either
cause or liberate the event eventually so that the processes that are waiting on the event
can resume. (The cause statement is discussed under “Causing an Event” later in this
section.) However, because the partial liberate statement changes the state to
AVAILABLE, another process could procure the event before the first process fully
liberates it. Unless you design the code carefully, two different processes might
accidentally use the resource flagged by the event at the same time.

In ALGOL, the partial liberate statement is called FREE. The following is an example of
this statement:

FREE (E1);

The partial liberate statement can also be used as a function that returns a Boolean value.
If the event is already AVAILABLE, a value of FALSE is returned. If the event is NOT
AVAILABLE, a value of TRUE is returned, and the event is set to AVAILABLE. The
following ALGOL statement partially liberates event E1 and stores the result in BOOL:

BOOL:= FREE (E1);

The partial liberate statement is not available in COBOL.

Using Events and Interlocks

16–6 8600 0494–506

Testing the Availability of an Event

An availability test returns a Boolean value that indicates whether the event is
AVAILABLE. If the available state is AVAILABLE, the test returns TRUE. If the available
state is NOT AVAILABLE, the test returns FALSE. The process continues normal
execution in either case; it does not wait for the event to become AVAILABLE. The
availability test does not make any change to the event and does not affect processes
waiting on the event.

The following ALGOL statement tests the available state of the event E1:

WHILE AVAILABLE (E1) DO...

The availability test is not available in COBOL.

Note that the availability test is not an adequate substitute for the conditional procure
statement. Thus, the effects of the following two statements are quite different:

FIX (E1);
IF AVAILABLE (E1) THEN PROCURE (E1);

Suppose these statements are executed by a process called A. The first statement, FIX,
causes a conditional procure. This statement procures event E1 if it is AVAILABLE, but
abandons the procure and allows process A to continue running if E1 is NOT AVAILABLE.
The second statement attempts an unconditional procure if E1 is AVAILABLE. However,
there might be another process, hereafter referred to as B. Process B might procure E1
after process A executes the availability test, but before process A executes the
unconditional procure. In that case, process A would cease execution until process B
eventually liberated the event.

The lesson to be learned from this example is that the availability test should be used
only in cases where the process does not need to procure the event, but only needs to
determine whether the event is currently in use by another process. However, even this
use can cause efficiency problems if done with excessive frequency. Refer to “Buzz
Loops” later in this section for details.

Determining the Ownership of an Event

A process becomes the owner of an event when the process successfully procures that
event, and remains the owner until the event is liberated. A process can use the MCP
procedure EVENT_STATUS to determine whether that process is the current owner of
the event.

The EVENT_STATUS procedure is primarily useful in fault-handling code, EPILOG
procedures, and EXCEPTION procedures. In these contexts, the EVENT_STATUS result
enables the process to determine whether it should liberate the event before exiting a
procedure, to make the event available to other processes. For further information about
EPILOG and EXCEPTION procedures, refer to “Using EPILOG and EXCEPTION
Procedures” later in this section.

 Using Events and Interlocks

8600 0494–506 16–7

Note: The EVENT_STATUS procedure is the only safe method of determining the
owner of an event. Unsafe NEWP programs that manipulate events directly should be
avoided, because the format of events differs among system models and is subject to
change without notice. Use of the EVENT_STATUS procedure makes it unnecessary to
modify application programs when the event format changes.

The following declarations can be included in an ALGOL program to enable the
EVENT_STATUS procedure to be used:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);

REAL PROCEDURE EVENT_STATUS(EV);
 EVENT EV;
 LIBRARY MCPSUPPORT;

DEFINE LOCKOWNERF = [18:15] #; % Lock owner field in EVENT_STATUS result

The program passes the event in question to the EV parameter of the EVENT_STATUS
procedure. This procedure returns information about the event in the procedure result.
The format of this result is as follows:

Field Meaning

[18:15] Stack number of the process that owns this event

[3:2] Event usage

0 = Normal event

2 = Interrupt attached

[1:1] Availability state

0 = AVAILABLE

1 = NOT AVAILABLE

[00:01] Happened state

0 = NOT HAPPENED

1 = HAPPENED

Note: The information in the EVENT_STATUS result reflects the state of the event at a
single moment in time. If other processes have access to the event, ownership of the
event could change between the time a process calls EVENT_STATUS and the time the
process reads the result.

Assuming that EVENT_STATUS, the MCPSUPPORT library, and the LOCKOWNERF field
have been declared as shown previously, the following ALGOL statement can be used to
determine whether the current process owns an event:

IF PROCESSID = EVENT_STATUS(EVENT1).LOCKOWNERF THEN
BEGIN
 % Take various appropriate actions
END;

Using Events and Interlocks

16–8 8600 0494–506

Accessing the Happened State

A process can use the happened state of an event to inform another process that some
expected condition has been fulfilled. A statement that sets the happened state to
HAPPENED is said to cause the event. A statement that sets the happened state to
NOT HAPPENED is said to reset the event. Every process that has visibility to the event
also has the right to cause or reset the event.

A process can also wait on an event, in which case execution of the process is
suspended until another process causes the event. A process that is waiting on an event
does not use any processor time. The waiting process cannot resume execution until
the event is caused by some other process. Any number of processes can wait on the
same event.

Processes that wait on the happened state and processes that wait on an unconditional
procure statement are in a similar situation. In both cases, the process can take no
further action until another process modifies the event. However, the following
differences might make it more convenient to use the happened state in some cases and
the availability state in others:

• Causing the happened state reactivates all the processes that are waiting on the
happened state. However, liberating the available state reactivates, at most, one
process. Other processes attempting unconditional procures will continue to wait.

• A single process can wait on the happened state of more than one event
simultaneously. If any of the events are caused, the process resumes execution. By
contrast, a single process can attempt to procure only one event at a time.

• The functions that wait on the happened state and functions that reset the happened
state can be used separately or together. By contrast, a function that waits on the
availability state of an event always resets the availability state at the same time that
it reactivates the process.

Causing an Event

The cause statement sets the happened state to HAPPENED and reactivates all
processes that are waiting on the happened state of an event. Causing an event has no
effect on the available state. The process that performs the cause continues without
interruption.

Reactivating a process simply makes that process eligible for processor time. The
priority of the process, compared to other processes in the mix, determines how soon
the process resumes execution.

The happened state can be reset as soon as it is caused, if another process is waiting on
the event with a wait and reset statement. Refer to “Waiting On and Resetting an
Event” later in this section.

An ALGOL statement can cause only one event at a time. The following ALGOL
statement causes the event EVNT:

CAUSE (EVNT);

 Using Events and Interlocks

8600 0494–506 16–9

A single COBOL statement can cause one or more events, as in the following example:

CAUSE EVNT1, EVNT2, EVNT3.

Implicitly Causing an Event

A secondary effect of liberating an event is that the happened state is set to HAPPENED,
and processes waiting on the happened state are reactivated. For more information
about the liberate statement, refer to “Liberating an Event” earlier in this section.

Causing and Resetting an Event

The cause and reset statement reactivates waiting processes and then returns the event
to NOT HAPPENED. If the event is already HAPPENED when this function is applied, the
effect is to reset the event to NOT HAPPENED.

The following ALGOL statement causes and resets the event EVNT1:

CAUSEANDRESET (EVNT1);

The following COBOL statement causes and resets three events:

CAUSE AND RESET EVNT1, EVNT2, EVNT3.

Partially Causing an Event

The partial cause statement sets the happened state of an event without reactivating any
processes that are waiting on the event. The waiting processes cannot reactivate until a
later statement causes the event. In addition, any new processes that attempt to wait
on the event will immediately continue because the event is already HAPPENED.

The following ALGOL statement partially causes the event EVNT:

SET (EVNT);

The partial cause statement is not available in COBOL.

Resetting an Event

The reset statement changes the happened state of an event to NOT HAPPENED. This
statement makes it possible to reuse an event after it has been caused. If the event is
not reset after it is caused, then any processes that try to wait on the event will continue
immediately instead of waiting.

The following ALGOL statement resets the event EDATA:

RESET (EDATA);

Using Events and Interlocks

16–10 8600 0494–506

The following COBOL statement resets two events:

RESET EDATA, ECONTROL.

You can also reset the happened state with the statements discussed under “Causing
and Resetting an Event” earlier in this section or “Waiting on and Resetting an Event”
later in this section.

Waiting on an Event

The wait statement suppresses execution of the process until another process causes
the event. If the happened state is already HAPPENED, then the wait statement has no
effect and the process proceeds immediately. The wait statement does not change the
happened or available states of the event.

The waiting process does not use any processor time. Nevertheless, the waiting
process is considered active, rather than suspended, and does not appear in the W
(Waiting Entries) system command display.

A waiting process is discontinued if it exceeds the time limit specified by the WAITLIMIT
task attribute.

The following is an ALGOL statement that waits on the event EVNT1.

WAIT (EVNT1);

In COBOL, the statement appears as follows:

WAIT UNTIL EVNT1.

Waiting on Time

A wait statement can also cause the process to wait for a specified number of seconds.
The wait statement implicitly causes the system to create an event. The system causes
the event after the specified time period. The actual time can be somewhat longer than
the requested time, depending on the priority of the process and how busy the processor
is.

The maximum time delay that a process can request is 164926 seconds (about 46
hours). If a wait statement specifies a longer period of time, the system reduces it to
this maximum value.

The following ALGOL statement waits for 123 seconds:

WAIT ((123));

The WFL syntax is the same, except that only one set of parentheses is used.

 Using Events and Interlocks

8600 0494–506 16–11

In COBOL, the statement appears as follows:

WAIT UNTIL 123.

Waiting on and Resetting an Event

The wait and reset statement has the same effect as the wait statement, except that the
happened state of the event is reset to NOT HAPPENED after the process reactivates.

The following ALGOL statement waits and resets the event EWAIT:

WAITANDRESET (EWAIT);

The following COBOL statement has the same effect:

WAIT AND RESET UNTIL EWAIT.

Waiting on Multiple Events

The wait statement can specify a list of events. The process waits until any one of the
events is caused. If any one of the events is already HAPPENED when the wait
statement is executed, the process does not wait at all. The wait statement can return a
value that specifies which one of the events was caused. If more than one of the events
was caused, the value returned indicates the leftmost of the caused events in the list.

A wait and reset statement can also wait on multiple events. This statement resets to
NOT HAPPENED the single event that reactivates the process.

ALGOL and COBOL85 programs can optionally specify which of the events in a WAIT
statement should be tested first. COBOL74 does not offer this feature. This feature can
help prevent starvation problems of the type described under “Preventing Starvation
Problems” later in this section.

The following ALGOL statement waits for 10 seconds, or until event E1 or E2 is caused,
whichever comes first. The variable EVCOUNT specifies which of the three events listed
should be tested first. The relative position of the event that reactivates the process is
stored in T. For example, if E1 reactivates the process, T receives a value of 2.

T:= WAIT ((10), E1, E2) [EVCOUNT];

The following COBOL85 statement has the same effect:

WAIT UNTIL 10, E1, E2 USING EVCOUNT GIVING T.

The USING EVCOUNT clause would be omitted in COBOL74, as this language does not
support this feature.

Using Events and Interlocks

16–12 8600 0494–506

ALGOL also supports an INTERRUPTIBLE option in WAIT or WAITANDRESET
statements. This option causes the statement to return if a signal is received before any
of the other events are caused. For information about the use of this option, refer to the
POSIX User's Guide.

Waiting for POSIX Signals

The POSIX environment provides a notification mechanism that is similar to events in
some ways. This is the signals mechanism. For an overview of signals, refer to the
POSIX User's Guide.

A POSIX application can use any of the following functions to wait for a signal to arrive:
pause(), sigsuspend(), sigpause(), or sleep(). Unfortunately, these functions do not
provide a method of waiting for an event and a signal at the same time. For example, if
you attach an interrupt to an event, and the event is caused while the process is waiting
for a signal, the interrupt is not executed until a signal is received. Even then, the signal
is handled before the interrupt is executed.

If you want a process to wait for signals and other events at the same time, you must
use a WAIT or WAITANDRESET statement with the INTERRUPTIBLE option. The
INTERRUPTIBLE option is available only in ALGOL and NEWP.

For example, suppose a program includes the following statement:

RSLT := WAIT [INTERRUPTIBLE] ((NAPTIME), E1, E2);

This statement causes the process to wait until the first of the following events occur: a
signal is received, event E1 or E2 is caused, or NAPTIME number of seconds elapses. If
the WAIT statement returns because a signal is received, then RSLT stores a zero.

Testing the Happened State

The happened test inspects the happened state of an event. This test returns a value of
TRUE if the event is HAPPENED and FALSE if the event is NOT HAPPENED.

Note that repeated happened tests are not the most efficient method of waiting on an
event. Refer to “Efficiency Considerations” later in this section.

The following ALGOL statement invokes the procedure PFILE if the event E1 is
HAPPENED:

IF HAPPENED (E1) THEN PFILE;

The following COBOL statement has the same effect:

IF E1 THEN GO PFILE.

 Using Events and Interlocks

8600 0494–506 16–13

Duration of the Happened State

You can use an event to flag either a momentary condition or an elapsed condition. A
momentary condition is one that is relevant only to the particular process or processes
that are already waiting for the condition. An elapsed condition is one that continues to
be relevant to other processes in the future.

You can flag a momentary condition by using statements that cause the event and then
immediately reset it. An event is immediately reset after being caused if either of the
following conditions is true:

• The event was caused by a cause and reset statement.

• At least one of the processes waiting on the event used a wait and reset statement.

The program will be easier to understand and maintain if these methods of resetting the
event are not mixed. If you use a wait and reset statement, you should use a simple
cause statement. If you use a simple wait statement, you should use a cause and reset
statement.

You can flag an elapsed condition by using simple cause and wait statements. After the
event is caused, it remains in the HAPPENED state. When the elapsed condition ends, a
reset statement returns the event to the NOT HAPPENED state.

Note that the use of separate reset statements automatically implies an elapsed
condition. Even if the reset statement is the first action executed after a cause or wait
statement, a significant interval of time can elapse before the reset statement is
executed. Only through the use of wait and reset or cause and reset statements can
you flag a truly momentary condition.

Using Implicitly Declared Events

A process can access a number of types of events that are never explicitly declared.
Some of these are predeclared and always available. Others are created by the system
in response to certain forms of the wait statement.

Two predeclared events that are associated with every process are the exception event
and the accept event. You can access these events by using the EXCEPTIONEVENT and
ACCEPTEVENT task attributes. A process can wait on, cause, or reset these events by
way of their associated task attributes. The following ALGOL statement waits on the
exception event of the process:

WAIT (MYSELF.EXCEPTIONEVENT);

The following COBOL statement has the same effect:

WAIT UNTIL EXCEPTIONEVENT OF MYSELF.

The following WFL statement has the same effect:

WAIT;

Using Events and Interlocks

16–14 8600 0494–506

The accept event cannot be accessed in WFL. The ALGOL and COBOL syntax for
accessing the accept event parallels that used for the exception event. In addition,
COBOL allows the following special syntax for waiting on the accept event:

WAIT UNTIL ODT-INPUT-PRESENT.

You can access another predeclared event by using the LOCKED task attribute. This
attribute translates Boolean assignments into procure and liberate statements. Thus, a
statement that sets the LOCKED attribute of a process to TRUE has the effect of
unconditionally procuring the predeclared event. Setting LOCKED to FALSE liberates the
predeclared event. If LOCKED is already TRUE, then any processes that attempt to set
LOCKED to TRUE are queued until another process sets LOCKED to FALSE. The main
virtue of this task attribute is that it provides WFL jobs with an easy way of protecting a
resource, even though WFL jobs cannot access events directly.

Certain types of objects have event-valued attributes associated with them. These
objects include DCALGOL queues, Direct I/O buffers, port files, and remote files.
Processes can wait on these event-valued attributes just as if they were explicitly
declared events. For information about DCALGOL queues, refer to the DCALGOL
Programming Reference Manual. For information about Direct I/O buffers, port files, and
remote files, refer to the I/O Subsystem Programming Guide.

The WAIT statement in WFL can also include clauses that cause the job to wait until
specified task attribute values or file attribute values are attained. Refer to the Work
Flow Language (WFL) Programming Reference Manual for full details.

Using Interrupts

An interrupt is a procedure that is associated with an event. Specifying an interrupt
allows a process to continue executing other statements at the same time that it waits
on an event. When the event is caused, control passes directly to the interrupt
procedure. When the interrupt procedure finishes, the process resumes execution
where it left off.

An interrupt cannot be invoked using any of the standard procedure invocation
statements. An interrupt is entered only when the associated event is caused. Causing
an event invokes the interrupt even if the event is already in a HAPPENED state.
Therefore, there is no effective difference between using a cause statement or a cause
and reset statement to invoke the interrupt.

You can use attach and detach statements to specify with which event an interrupt is
associated. Execution of the interrupt can be selectively allowed or suppressed through
the use of enable and disable statements. The statements that attach or detach and
enable or disable an interrupt can occur in any order, and do not affect each other. For
example, detaching an interrupt does not also cause it to be disabled. The initial state of
an interrupt is detached and enabled.

 Using Events and Interlocks

8600 0494–506 16–15

An interrupt might not always execute immediately when its event is caused. Any of the
following three circumstances can delay execution of an interrupt:

• The interrupt is disabled.

• The process is waiting on an event. Any interrupts that are caused are queued and
executed when the process resumes.

• The processor is engaged in executing a higher-priority process.

Declaring Interrupts

The purpose of an interrupt declaration is to assign an identifier to the interrupt and
specify the statements that are to be executed when the associated event is caused.

An interrupt cannot be passed any parameters. Otherwise, it has the same addressing
environment as a procedure would have if it were declared at the same point in the
program. That is, in ALGOL the interrupt can access objects declared within the interrupt
and within any procedures that are declared globally to the interrupt.

In rare instances, you might want to restart the process at a point other than the point at
which the process was interrupted. You can achieve this effect in ALGOL with a bad
GO TO statement (that is, a GO TO statement that transfers control to a statement
outside the interrupt). However, COBOL does not allow a GO TO statement to transfer
control outside of the interrupt.

You should be aware of a side effect that arises from using a bad GO TO to exit an
interrupt. During execution of an interrupt, the system automatically executes a general
disable on all other interrupts used by the process. A bad GO TO out of an interrupt
leaves the process with all interrupts disabled. You should include a general enable
statement to correct this situation. (Refer to “Using General Disable and Enable
Statements” later in this section.)

The following is an ALGOL example of an interrupt declaration:

INTERRUPT BLOCK1;
 BEGIN
 DISPLAY("ERROR");
 DISPLAY("INTERRUPT BLOCK1 OCCURRED");
 END;

In COBOL, an interrupt declaration can occur only in the DECLARATIVES section of the
procedure division. The following is an example of a DECLARATIVES section that
includes an interrupt called INT-1:

DECLARATIVES.
INT SECTION.
 USE AS INTERRUPT PROCEDURE.
INT-1.
 DISPLAY "ERROR".
 DISPLAY "INTERRUPT 1 OCCURRED".
END DECLARATIVES.

Using Events and Interlocks

16–16 8600 0494–506

Attaching or Detaching an Interrupt

The attach statement associates an interrupt with an event. If the interrupt is already
attached to another event, it is automatically detached from the old event and then
attached to the new event.

You can attach each interrupt to only one event. However, you can attach more than one
interrupt to the same event. When the event is caused, the associated interrupts are
queued for execution in the reverse of the order that they were attached to the event.

It is possible to attach an interrupt to an event that is declared in a different process. The
interrupt executes as part of the process that declared it, even if it is associated with an
event in a different process. The interrupt declaration cannot be more global than the
event declaration, or an “UP LEVEL ATTACH” error results. This error occurs at compile
time if the compiler detects the problem. Otherwise, it occurs at run time.

The detach statement removes the association of an interrupt with an event. If the
interrupt is not currently associated with an event, the detach statement has no effect
and execution continues normally.

Note that if the interrupt is disabled, queued instances of the interrupt might have
accumulated. Detaching the interrupt, or attaching the interrupt to a different event,
causes these queued instances to be deleted. You can prevent this problem by enabling
the interrupt before detaching it from an event or attaching it to a different event.

The following are ALGOL statements that attach and detach an interrupt. The first
statement attaches the interrupt INT1 to the event E1. The second statement implicitly
detaches the interrupt and then attaches it to the event E2. The third statement then
detaches the interrupt and leaves it detached.

ATTACH INT1 TO E1;
ATTACH INT1 TO E2;
DETACH INT1;

The following COBOL statements attach two interrupts to the same event and then
detach them:

ATTACH INT-1 TO E1.
ATTACH INT-2 TO E1.
DETACH INT-1, INT-2.

Enabling or Disabling an Interrupt

There might be periods during process execution when it would be undesirable for the
interrupt to occur. These are generally periods when the process is accessing objects
that are also modified by the interrupt. A programmer can selectively suppress
execution of interrupts by using enable and disable statements.

If an interrupt's event is caused while the interrupt is disabled, the interrupt is queued for
later execution. If the event is caused more than once, then multiple instances of the

 Using Events and Interlocks

8600 0494–506 16–17

interrupt are queued for execution. When a later statement enables the interrupt, the
queued interrupts are executed one at a time in reverse chronological order.

All interrupts are implicitly disabled while any interrupt is executing. That is, any
interrupts that are caused while an interrupt is executing are queued for later execution.
When the interrupt completes, the queued interrupts are executed one at a time in
reverse chronological order.

Because the queuing of interrupts creates substantial overhead for a process, you should
leave the interrupt in the enabled state whenever possible.

The following are examples of ALGOL statements that enable and disable an interrupt.
Each statement can specify only one interrupt:

ENABLE INT1;
DISABLE INT1;

The following are examples of COBOL statements that enable and disable multiple
interrupts:

ALLOW INT1, INT2.
DISALLOW INT1, INT2.

Using General Disable and Enable Statements

You can use a general disable statement to disable all the interrupts declared by the
process. Interrupts declared in other related processes, such as a parent or offspring,
are not affected. While a general disable is in effect, any interrupts whose events are
caused are queued for later execution.

To again enable the interrupts that were disabled by the general disable statement, use a
general enable statement. For the most part, the general enable statement does not
enable interrupts that were already disabled when the general disable statement was
entered. However, if a statement enables a specific interrupt while a general disable
statement is in effect, then the general enable statement also enables that interrupt.

The following ALGOL statements illustrate the interaction of specific and general enables
and disables for three interrupts, INT1, INT2, and INT3:

ENABLE INT1; % Enables INT1.
DISABLE INT2; % Disables INT2.
DISABLE INT3; % Disables INT3.
DISABLE; % Disables INT1. INT2 and INT3 remain disabled.
ENABLE INT2; % All three events remain disabled.
ENABLE; % Enables INT1 and INT2. INT3 remains disabled.

The following are the general disable and enable statements in COBOL:

DISALLOW INTERRUPT.
ALLOW INTERRUPT.

Using Events and Interlocks

16–18 8600 0494–506

Waiting for Interrupts

You can use a special form of the wait statement to make the process wait for
interrupts. While the process is waiting for interrupts, any interrupt can execute; as soon
as the interrupt completes, the process returns to its waiting state. The only way the
process can continue further is if an interrupt executes a bad GO TO statement that
transfers control to a different statement outside the interrupt.

Waiting for interrupts can be useful for processes, such as message control systems
(MCSs), that are driven by input received over time from a variety of sources. However,
waiting on multiple events might be more efficient in these cases; refer to “Efficiency
Considerations” later in this section.

In ALGOL, the following wait statement causes the process to wait for interrupts:

WAIT;

The COBOL equivalent is the following statement:

WAIT UNTIL INTERRUPT.

Efficiency Considerations

The event and interrupt features provide a very efficient method of synchronizing
processes, if they are used as intended. However, some misuses of these features can
cause performance problems. The following subsections describe some possible
problems and ways to avoid them.

Buzz Loops

Several of the event-related statements allow a process to test the state of an event
without causing the process to wait. These are the happened test, the availability test,
the conditional procure statement, and the partial liberate statement.

These statements are designed for occasional, rather than frequent, use because each
execution of the statement uses processor time. In particular, looping continuously on
these statements is a very inefficient way of making a process wait. Such a loop is
called a buzz loop. The following is an ALGOL example of such a loop:

 WHILE NOT HAPPENED (E1) DO;

This loop repeats the happened test over and over until the event E1 attains a state of
HAPPENED. This loop causes two problems:

• It wastes processor time that could be devoted to executing other processes,
including the process that will eventually cause the event.

• On a single-processor system, it could become an infinite loop. Assume that another
process is supposed to cause event E1. If the looping process has higher priority, it
will completely monopolize the processor. The second process never executes and
thus never causes event E1.

 Using Events and Interlocks

8600 0494–506 16–19

You should replace the buzz loop with some form of the wait statement, which does not
use any processor time. The ALGOL statement WAIT (E1) could replace the loop shown
in the preceding example.

Preventing Excessive Interrupt Overhead

Use of interrupts increases the processor usage of a process. The processor overhead is
small if only one interrupt is used and the interrupt is not often caused. However, the
overhead is much greater when multiple interrupts are used and greater still when
interrupts are queued because an interrupt was disabled.

By contrast, a wait statement does not cause any continuing drain on processor
resources. A process that executes a wait statement is simply ignored until the
associated event is caused.

Because of these facts, wait statements should be used in preference to interrupts
where possible. This is particularly true where the process needs to wait on several
events simultaneously. In these cases, a statement that waits on multiple events is
more efficient than a statement that waits on multiple interrupts.

Preventing Starvation Problems

A process that waits on multiple events must be carefully designed or there is a
possibility that some events might be overlooked. This possibility arises because the
value returned by the wait statement always indicates the leftmost of the events in the
event list that has been caused. For example, consider the following ALGOL statement:

ENUM:= WAIT (E1, E2, E3);

If E1 is caused, ENUM receives a value of 1. If E1 and E2 are caused, ENUM still
receives a value of 1. Now, suppose that E1 is an event that happens very frequently.
Each time the wait statement is executed and E1 has already happened, the wait
statement returns 1 as a value; thus, the process might never be notified that event E2
or E3 has happened. This situation is referred to as a starvation problem.

Strictly speaking, a starvation problem exists only if the repeated wait statement is not
fulfilling the needs of the particular application. The effect of the wait statement is to
give preference to the leftmost events in the event list. But if the leftmost events occur
infrequently, there will be no starvation. If you order the list so that the most important
events are on the left, then the starvation condition might even be desirable.

If the events in a wait list are equally important, you might wish to consider using a start
index in the wait statement. A start index indicates which of the events in a wait list
should be tested first. You can design the program to change the value of the start index
before each time the wait statement is executed. Start indexes are supported only in
ALGOL and COBOL85. The following is an ALGOL example using start indexes:

EVORDER:= 1;
WHILE NOT DONE DO
BEGIN

Using Events and Interlocks

16–20 8600 0494–506

 EVT:= WAIT (EV1, EV2, EV3, EV4) [EVORDER];
 EVORDER:= * + 1;
 IF EVORDER > 4 THEN
 EVORDER:= 1;
 .
 .
 .
 END;

Another way to prevent events from being overlooked is to use happened tests after
each execution of the wait statement. You could apply a happened test to each event
that is to the right of the event that was returned by the wait statement. The following is
an ALGOL example of a procedure that uses this technique:

PROCEDURE EVENTWAIT;
BEGIN
 BOOLEAN BOOL;
 INTEGER ENUM;
 DO BEGIN
 ENUM:= WAIT (E1, E2, E3);
 CASE ENUM OF
 BEGIN
 1: BOOL:= INPUTHANDLER (TRUE, HAPPENED(E2), HAPPENED(E3));
 2: BOOL:= INPUTHANDLER (FALSE, TRUE, HAPPENED(E3));
 3: BOOL:= INPUTHANDLER (FALSE, FALSE, TRUE);
 END;
 END
 UNTIL BOOL;
END EVENTWAIT;

The procedure EVENTWAIT is responsible for waiting on three events, E1, E2, and E3,
which were declared globally. When at least one of these events is caused, EVENTWAIT
invokes another procedure called INPUTHANDLER and passes it Boolean values
indicating whether each of the three events has been caused. The ENUM value
indicates the leftmost event that has happened. The happened test is used for each of
the events to the right of that event. You increase efficiency by minimizing the number
of happened tests.

INPUTHANDLER is expected to make whatever response is appropriate for each event.
INPUTHANDLER returns a Boolean value of TRUE if there is no need to wait on any
more events. INPUTHANDLER is also expected to reset the events that were caused,
so that it will be meaningful to wait on them again.

Note that the INPUTHANDLER invocation is used in this example for the sake of
simplicity. From an efficiency standpoint, such repeated procedure invocations are rather
expensive. It would be better to include the code that handles each event in the
EVENTWAIT procedure.

 Using Events and Interlocks

8600 0494–506 16–21

Discontinued Processes and Events

When a number of processes are being synchronized by using events, unexpected
problems can occur if one of the processes is discontinued. A process might be
discontinued by the system because of an error, or by an operator using a DS
(Discontinue) system command.

If the process has procured an event, but has not yet liberated it, then the event remains
procured when the process is discontinued. Any other processes attempting to
unconditionally procure the event will wait indefinitely.

Similarly, if the process was supposed to execute a cause statement, but was
discontinued first, then the event is never caused. Other processes waiting on the event
wait indefinitely, unless the processes use a wait statement with a time limit or multiple
events. Refer to “Waiting on Time” and “Waiting on Multiple Events” earlier in this
section.

The programmer can ignore these problems if none of the processes using an event is
ever likely to be discontinued. However, in environments such as a SHAREDBYALL
library, where a large number of user processes from various sources can access the
same event, the programmer might want to take special precautions. The following
subsections describe methods of dealing with these problems.

An additional alternative is to replace an event with an interlock, as discussed under
“Discontinued Processes and Interlocks” later in this section.

Using EPILOG and EXCEPTION Procedures

You can use EPILOG or EXCEPTION procedures to help ensure that a process liberates
or causes a certain event, even if the process terminates abnormally. These
procedures are available only in selected languages, including ALGOL, DCALGOL, and
NEWP. For further information about EPILOG and EXCEPTION procedures, refer to
“Performing Cleanup during an Abnormal Termination” in Section 10, “Determining
Process History.”

Using Timed Wait Statements

By including a time limit on a wait statement, you can make it possible for a process to
recover if a particular important event is not caused. For example, the following
statement could be used in ALGOL:

ENUM:= WAIT ((120),E1);

This statement waits for 120 seconds or until event E1 is caused, whichever comes first.
For example, you might know that if E1 is not caused within 120 seconds, then
something has gone wrong. The process could check the value of ENUM to determine if
the wait timed out. If so, the process could check the STATUS task attribute of the
process that was supposed to cause the event and find out whether that process was
discontinued. (This type of checking is possible only if the process has access to the
task variable of the process that was supposed to cause the event.)

Using Events and Interlocks

16–22 8600 0494–506

Using Conditional Procure Statements

There is no direct way to set a time limit on an unconditional procure statement. One
alternative is to use a conditional procure statement, such as the FIX statement in
ALGOL or a LOCK statement with an AT LOCKED clause in COBOL. If the conditional
procure operation fails, the process could attempt it again after a specified time period.
(Note that the process should not execute conditional procure operations in rapid
succession, as this causes the problem discussed under “Buzz Loops” earlier in this
section.) If several conditional procure operations fail, the process could check the status
of other processes that might have procured the event.

Determining Whether to Liberate an Event

If the state of an event is NOT AVAILABLE, then the process that most recently procured
the event can be referred to as the owner of that event. A process can use the MCP
procedure EVENT_STATUS to determine whether that process is the current owner of an
event. The EVENT_STATUS procedure is especially useful in fault-handling code and in
EPILOG and EXCEPTION procedures. Refer to “Determining the Ownership of an
Event” earlier in this section.

Example of Event Usage

The following is a simplified example of an online application that has one driver process
and three servers. The driver process reads input from users and passes it on to
whichever server is not currently busy. The underlying assumption is that the user is
capable of submitting input faster than any single server can process it; this could be the
case if the server has to perform many time-consuming actions, such as disk I/Os, to
process the input. However, this example concentrates on the timing and resource
control aspects of this situation, and so the servers in the example do not really do any
useful work.

100 BEGIN
110 FILE TERM(KIND=REMOTE);
120 BOOLEAN FINISHED;
130 EBCDIC ARRAY MSG[0:71];
140 EVENT INMSG_EVENT, MSG_READ;
150 INTEGER I, READNUM;
160 TASK T1, T2, T3;
170
180 PROCEDURE SERVER;
190 BEGIN
200 BOOLEAN DONE;
210 EBCDIC ARRAY MSGCOPY[0:71];
220 WHILE NOT DONE DO
230 BEGIN
240 PROCURE(INMSG_EVENT);
250 REPLACE MSGCOPY BY MSG FOR 72;
260 CAUSE(MSG_READ);
270 IF MSGCOPY = "QUIT" THEN
280 DONE:= TRUE

 Using Events and Interlocks

8600 0494–506 16–23

290 ELSE BEGIN
300 REPLACE MSGCOPY[66] BY MYSELF.MIXNUMBER FOR * DIGITS;
310 WRITE(TERM,72,MSGCOPY);
320 END;
330 END;
340 END;
350
360 PROCURE(INMSG_EVENT);
370 PROCESS SERVER [T1];
380 PROCESS SERVER [T2];
390 PROCESS SERVER [T3];
400
410 OPEN(TERM);
420 WHILE NOT FINISHED DO
430 BEGIN
440 WAIT(TERM.INPUTEVENT);
450 READ(TERM,72,MSG);
460 IF MSG = "QUIT" THEN
470 BEGIN
480 FINISHED:= TRUE;
490 READNUM:= 3;
500 END
510 ELSE READNUM:= 1;
520 I:= 1;
530 WHILE I LEQ READNUM DO
540 BEGIN
550 LIBERATE(INMSG_EVENT);
560 WAITANDRESET(MSG_READ);
570 I:= * + 1;
580 END;
590 END;
600
610 WHILE T1.STATUS GTR VALUE(TERMINATED) OR
620 T2.STATUS GTR VALUE(TERMINATED) OR
630 T3.STATUS GTR VALUE(TERMINATED) DO
640 WAITANDRESET(MYSELF.EXCEPTIONEVENT);
650
660 END.

The communication in this example takes place between the parent process and three
asynchronous tasks that are instances of procedure SERVER. The communication takes
place by way of the array MSG and the events INMSG_EVENT and MSG_READ. Of
these, MSG is used to convey messages from the parent process to the servers. The
parent process uses INMSG_EVENT to inform the servers that there is a message
waiting to be read. A server uses MSG_READ to inform the parent that it has
successfully read the message, so the parent can now reuse the MSG array.

When this program is initiated, the driver process procures INMSG_EVENT and initiates
three instances of the SERVER procedure. Each of these servers begins by attempting
to procure INMSG_EVENT; since the driver has already procured this event, all the
servers wait.

Using Events and Interlocks

16–24 8600 0494–506

The driver process then enters the loop on lines 420-590. Within this loop, the driver
waits for input from a user to appear in the remote file, and then reads the input into
MSG. In most cases, the driver then liberates INMSG_EVENT and waits on the
MSG_READ event. When the driver liberates INMSG_EVENT, one of the servers
succeeds in procuring the event and copies the contents of MSG to the local array
MSGCOPY. The server then causes MSG_READ, informing the driver that MSG is again
available for use as a buffer. The server then performs some processing on the input in
MSGCOPY and notifies the user of the result by writing a message to the remote file.

If the input received from the user is the command QUIT, then the driver takes some
special actions. It liberates INMSG_EVENT and waits on MSG_READ three times
without performing any more read operations. This allows the contents of the MSG
array to be read by each of the three servers. Each server recognizes the QUIT
command and terminates gracefully. Then the driver terminates as well.

Note that this program uses the available state of INMSG_EVENT, but uses the
happened state of MSG_READ. This difference reflects the different purposes for which
these events are used. The program alternates between two phases: a phase in which
the driver uses the MSG array, and a phase in which any single one of the servers can
use the MSG array. Causing MSG_READ initiates the phase in which the driver uses
MSG; liberating INMSG_EVENT initiates the phase in which one of the waiting servers is
allowed to use MSG.

Using Interlocks
You can use interlocks to protect a resource that is shared among several participating
processes. Interlocks are used in much the same way as the availability state of an
event. However, for interlocks, the LOCK and UNLOCK functions are used instead of
PROCURE and LIBERATE statements. Interlocks provide the following advantages when
compared to the use of events:

• Interlock functions are executed more quickly than PROCURE and LIBERATE
statements.

• Unlike the PROCURE statement, the LOCK statement can include options causing
the action to be abandoned if a specified event occurs or if a given time limit elapses.

Interlocks are available only in ALGOL and NEWP. The syntax for declaring and using
interlocks is the same in both languages.

Interlocks can be in any of three different states: FREE, LOCKED_CONTENDED, or
LOCKED_UNCONTENDED. Only one process can succeed in locking the interlock at a
time. If multiple processes are waiting to lock the interlock, then when the current
owner unlocks that interlock, the system allows one of the waiting processes to
complete its lock; the other processes continue to wait.

 Using Events and Interlocks

8600 0494–506 16–25

Declaring Interlocks and Interlock Arrays

You can declare individual interlocks or arrays of type INTERLOCK, as shown in the
following examples:

INTERLOCK LK1;

INTERLOCK ARRAY[0:10];

The initial state of an interlock is FREE.

Locking an Interlock

The LOCK function attempts to secure ownership of an interlock. If the LOCK succeeds,
the following effects occur:

• The state of the interlock changes to LOCKED_CONTENDED or
LOCKED_UNCONTENDED (depending on whether other processes are also waiting
to secure this lock).

• The system updates the interlock to record the stack number of the process that
now owns the interlock.

The LOCK function can specify any of several actions to take if the requested interlock is
not immediately available. The following are examples:

RSLT := LOCK (LK1);

Wait indefinitely.

RSLT := LOCK (LK1, 60);

Wait with 60-second time limit.

RSLT := LOCK (LK1, 0);

Abandon lock attempt if interlock is unavailable.

RSLT := LOCK(LK1, EVENT2);

Wait with option of being interrupted by event EVENT2.

RSLT := LOCK [INTERRUPTIBLE] (LK1);

Wait with option of being interrupted by receipt of a signal. Signals are a feature of
the POSIX environment. For an overview of signals, refer to the POSIX User's
Guide.

Using Events and Interlocks

16–26 8600 0494–506

RSLT := LOCK [DSABLE] (LK1);

Wait with the following conditions:

• If the process has already been discontinued, the wait is abandoned. This
situation can occur if the LOCK function is executed in an EPILOG or
EXCEPTION procedure.

• Once the process is waiting, if a DS (Discontinue) system command is received,
the wait is abandoned.

The DSABLE option is implemented in DMALGOL and NEWP because programs in
these languages are capable of entering a state in which they would otherwise be
immune to DS commands. The DSABLE option is not available in ALGOL because
ALGOL interlocks can be discontinued anyway.

If the DSABLE option is used, then the INTERRUPTIBLE option cannot be used.
However, the INTERRUPTIBLE option includes the effects of the DSABLE option.

The LOCK function is of type INTEGER and returns one of the following values:

Value Meaning

0 A signal was received or a DS command was received before the interlock
could be acquired.

1 The interlock was successfully acquired.

2 The timeout elapsed or the event HAPPENED before the interlock could be
acquired.

LOCK can be used as a statement rather than a function. However, if the LOCK
statement does not finish successfully, the system discontinues the process executing
the LOCK statement.

Unlocking Interlocks

The UNLOCK function gives up ownership of an interlock. If the UNLOCK succeeds, the
following effects occur:

• If no process is waiting to acquire the interlock, then the state of the interlock
changes to FREE and the system changes the stack number stored in the interlock
to 0.

• If one process is waiting to acquire the interlock, then the state of the interlock
changes to LOCKED_UNCONTENDED, and the system changes the stack number in
the interlock to record the new owner.

 Using Events and Interlocks

8600 0494–506 16–27

• If multiple processes are waiting to acquire the interlock, then the state of the
interlock is LOCKED_CONTENDED. The highest-priority process acquires the
interlock. Note, however, that process priority is affected by a number of factors
aside from the PRIORITY task attribute. Therefore, the programmer cannot use the
PRIORITY task attribute to determine which of the contending processes will acquire
the interlock.

Additionally, the system changes the stack number in the interlock to record the new
owner. The state of the interlock remains LOCKED_CONTENDED.

The UNLOCK function is typically used by the current owner of the interlock. However, it
is also possible for a process to UNLOCK an interlock owned by another process.

The UNLOCK function is of type INTEGER and returns one of the following values:

Value Meaning

1 The interlock was successfully unlocked.

2 The interlock has a state of FREE and therefore cannot be unlocked.

UNLOCK can be used as a statement rather than a function. However, if the UNLOCK
statement does not finish successfully, the system discontinues the process executing
the UNLOCK statement.

Following are examples of UNLOCK functions:

I := UNLOCK (MYLOCK)

I := UNLOCK (YOURLOCKS [2])

Interrogating the Interlock Status

The LOCKSTATUS function returns the state and ownership of the specified interlock.
The LOCKSTATUS function is of type REAL, and the result has the following subfields:

Field Value and Meaning

[47:24] Stack number of the owner process. If the current
state is FREE, this field stores a 0.

[23:22] Undefined

[01:02] Current state:

 0 FREE

 1 LOCKED_UNCONTENDED

 2 LOCKED_CONTENDED

Using Events and Interlocks

16–28 8600 0494–506

Following are examples of the LOCKSTATUS function:

R := LOCKSTATUS (MYLOCK);

OWNERID := LOCKSTATUS (YOURLOCKS [3]).[47:24];

IF I := LOCKSTATUS (YOURLOCKS [3]).[47:24] = PROCESSID THEN
 GOFORIT;

Discontinued Processes and Interlocks

When multiple processes have access to the same interlock, you need to plan for the
possibility that a process might be discontinued while it has ownership of the interlock.
This is the same problem that occurs for shared events, as previously discussed under
“Discontinued Processes and Events” in this section. Interlocks incorporate the
following features that help you to deal with this problem:

• The time limit and event options in the LOCK function.

• The stack number value that is returned by the LOCKSTATUS function.

For example, if you believe that the process is normally unlikely to have to wait more
than one minute, you could include a 60-second time limit in the LOCK function. If the
time limit expires, the process could use LOCKSTATUS to determine the stack number
of the current owner of the interlock. The process could then use GETSTATUS call type
6 (Mix Entries), Subtype 4, to determine whether the owner process is still running. If
the owner process has terminated, this process could use an UNLOCK statement to
make the interlock available for locking again.

Replacing Readlocks with Interlocks

In the past, many programmers have avoided the processor overhead of PROCURE and
LIBERATE statements through techniques that make use of the READLOCK intrinsic
instead. The READLOCK intrinsic is available in ALGOL and NEWP. The use of
READLOCK should be eliminated. Other alternatives are available. A swap statement
replaces the use of the READLOCK intrinsic for swapping values where locking is not
required. If locking is required, the READLOCK intrinsic is replaced by an interlock
function. The interlock functions are a suitable replacement with low processor
overhead. The following example shows how interlocks can replace readlocks in one
locking situation.

Using readlocks:

 REAL
 THELOCK,
 THEOWNER;

 EVENT
 THEEVENT;

 DEFINE

 Using Events and Interlocks

8600 0494–506 16–29

 ACQUIRETHELOCK =
 BEGIN
 IF READLOCK(PROCESSID,THELOCK) NEQ 0 THEN
 DO
 PROCURE(THEEVENT) % or WAITANDRESET(THEEVENT)
 UNTIL READLOCK(-1,THELOCK) EQL 0;
 THEOWNER := PROCESSID;
 END#,

 RELINQUISHTHELOCK =
 BEGIN
 THEOWNER := 0;
 IF READLOCK(0,THELOCK) NEQ PROCESSID THEN
 LIBERATE(THEEVENT); % or CAUSE(THEEVENT);
 END#;

Using interlocks:

INTERLOCK
 THELOCK;

DEFINE
 ACQUIRETHELOCK = LOCK(THELOCK)#,

 RELINQUISHTHELOCK = UNLOCK(THELOCK)#;

Using Events and Interlocks

16–30 8600 0494–506

8600 0494–506 17–1

Section 17
Using Parameters

A parameter is an object passed to a procedure by the procedure invocation statement.
Note that the term “procedure” is used here, as it is throughout this guide, to refer to
complete programs as well as to subroutines within a program. Most programming
languages can pass parameters to procedures. Parameters can be of many types, and in
each language, most or all of the types of available variables can be passed as
parameters.

Each parameter has two aspects: an actual parameter and a formal parameter. The
actual parameter is the parameter specified in the procedure invocation statement. The
formal parameter is the parameter as it is declared in the procedure that is being invoked.

Parameters that are used in a process initiation statement provide an avenue of
communication between the initiating process and the new process. Such parameters
are referred to hereafter as tasking parameters.

Parameters that are used in a library procedure invocation statement provide another
type of interprocess communication. Such parameters are hereafter referred to as library
parameters.

The “Determining the Scope of Parameters” and “Parameter Passing Modes”
subsections of this section provide information that is relevant to both tasking
parameters and library parameters. The remainder of this section addresses only tasking
parameters. For further information about library parameters, refer to Section 18, “Using
Libraries.”

Determining the Scope of Parameters
Section 15, “Using Global Objects,” defined the scope of a declaration as all the blocks in
a program with access to an object declared in the program. That section explained how
the scope of a declaration extends through nested blocks in a program.

You can use parameters to pass an object to a procedure that does not fall within the
scope of the declaration of that object. This fact makes parameters a more general tool
for IPC than global objects. A parameter can increase the scope of an object in the
following ways:

• An object can be passed as a parameter to a procedure that is not nested within the
block that declares the object.

• A parameter can be passed to an external procedure, whether the procedure is a
passed external procedure, a library procedure, or a separate program.

Using Parameters

17–2 8600 0494–506

The objects a procedure can access, because the objects are declared in the procedure
or are declared globally to the procedure, are referred to as the direct addressing
environment of the procedure. The objects in the direct addressing environment,
together with any objects passed as parameters to the procedure, comprise the
extended addressing environment of the procedure.

If a procedure is passed as a parameter to another procedure, the invoked procedure
gains access to the passed procedure. However, the scope is extended only one way.
The passed procedure does not automatically gain access to objects declared in the
invoked procedure.

The following ALGOL example includes two cases where the scope of a declaration has
been increased by the effects of parameter passing:

Example

100 BEGIN
110
120 PROCEDURE P(Q);
130 PROCEDURE Q (R);
140 REAL R;
150 FORMAL;
160 BEGIN
170 REAL A;
180 A:= 2;
190 Q(A);
200 DISPLAY (STRING(A,*));
210 END;
220
230 PROCEDURE Y;
240 BEGIN
250 PROCEDURE X(Z);
260 REAL Z;
270 BEGIN
280 Z:= Z * 2;
290 END;
300
310 P(X);
320 END;
330
340 Y;
350
360 END.

Case 1

Procedure X cannot be directly invoked by a statement in procedure P, because the
declaration of procedure X occurs within procedure Y. However, the statement at line
310 that invokes procedure P passes procedure X as an actual parameter to the formal
parameter Q. Thus, the statement at line 190, which invokes the formal parameter Q,
actually results in an invocation of procedure X. In this way, a statement in procedure P
is able to invoke a procedure outside the direct addressing environment of procedure P.

 Using Parameters

8600 0494–506 17–3

Case 2

Real variable A cannot be directly accessed by a statement in procedure X because A is
declared within procedure P. However, the statement at line 310 passes procedure X as
an actual parameter to formal parameter Q of procedure P. The statement in procedure
P at line 190 then passes A as a parameter to procedure Q, thus making it possible for
procedure X to access A.

Even after being passed to P, X does not automatically have access to objects declared
in P. Thus, X could not have accessed A if A had not been passed as a parameter to X.

Parameter Passing Modes
There are several different passing modes that govern the relationship between the
actual parameter and the formal parameter. The passing mode determines, for example,
whether assignments made to the formal parameter are reflected by the actual
parameter. The passing mode can also make a large difference in program performance
in cases where the actual parameter is an expression. The three types of passing modes
available are call-by-value, call-by-name, and call-by-reference.

The following subsections describe the three types of passing modes and explain how
you can specify which passing mode is used.

Call-by-Value Parameters

If a parameter is passed by value, the system evaluates the actual parameter when the
procedure is invoked and assigns the value to the formal parameter. Changes made to
the value of the formal parameter do not affect the value of the actual parameter.
Similarly, any changes made to the value of the actual parameter after procedure
invocation do not affect the value of the formal parameter.

An advantage to using call-by-value parameters is that they never result in the accidental
creation of a thunk. (Thunks are defined in the discussion of call-by-name parameters
that follows.) Another advantage is that they simplify program structure. Because the
actual parameter and the formal parameter do not affect each other, new values can be
assigned to either without creating unexpected side effects.

Call-by-Name Parameters

When a parameter is passed by name, the system never creates the formal parameter.
Instead, the system substitutes the actual parameter for the formal parameter wherever
the formal parameter is mentioned in the procedure.

The effect of passing by name is simplest in cases where the actual parameter is a
simple variable. When the procedure accesses the formal parameter, the effect is as if
the procedure were using a global variable. Any changes made to the value of the formal
parameter immediately affect the value of the actual parameter and vice versa. This
feature makes call-by-name parameters a useful means of communicating information
between an asynchronous process and its initiator.

Using Parameters

17–4 8600 0494–506

When an actual parameter that is a constant or an expression is passed by name, the
compiler generates a thunk. A thunk (also known as an accidental entry) is a piece of
code that evaluates the actual parameter and assigns the resulting value to the formal
parameter. The system substitutes the thunk for the formal parameter wherever the
formal parameter is mentioned in the procedure.

Thunks can be undesirable because they slow execution of the program and affect the
definition of the critical block. (Critical blocks are discussed in Section 2, “Understanding
Interprocess Relationships.”) The programmer can prevent the creation of a thunk by
passing each element of the expression as a separate parameter.

If a constant is passed by name, then whenever the value of the formal parameter is
read, the formal parameter returns the value of the constant. The value of the formal
parameter cannot change. An attempt to assign a value to the formal parameter results
in a run-time error.

The effect of passing an expression by name varies, depending on whether the
expression evaluates as a reference to a single object. For example, A[I] evaluates into a
reference to a single element of array A. In this guide, such an expression is referred to
as a simple expression. Other examples of simple expressions are the POINTER
function in ALGOL and references to character-based record fields. On the other hand,
an expression such as A + B does not evaluate as a reference to a single element. Such
an expression is referred to as a complex expression.

For a simple expression, the system passes a thunk that reevaluates the expression
each time the parameter is used in the procedure. For example, suppose the actual
parameter A[I] is passed to the formal parameter F. At the time of the procedure
invocation, I has a value of 5. The formal parameter F becomes a reference to element 5
of array A. When F is read, it reflects the most recent value of A[5]. When F is assigned,
it changes the value of A[5]. If I is then assigned a value of 10, F becomes a reference to
A[10]. Thereafter, reading or assigning F really accesses the value stored in A[10].

For a complex expression, the system passes a thunk that reevaluates the expression
each time the formal parameter is read in the procedure. However, it is impossible to
assign a value to the formal parameter; any attempt to do so results in a run-time error.

Call-by-Reference Parameters

When a parameter is passed by reference, the system passes the formal parameter a
reference to the place where the actual parameter is stored in memory. Passing a
parameter by reference is essentially the same as passing it by name, except that the
compiler does not create a thunk for a call-by-reference parameter. Any expressions
passed by reference are, therefore, evaluated immediately and changed into simple
values or pointers to simple values.

 Using Parameters

8600 0494–506 17–5

The effects of passing a parameter by reference are somewhat different in FORTRAN77
than in other languages. In non-FORTRAN languages, the effects of passing by
reference are as follows:

• When a simple variable is passed by reference, the effect is the same as if it had
been passed by name. Changes made to the value of the formal parameter
immediately affect the value of the actual parameter and vice versa.

• In most languages, constants and complex expressions cannot be passed by
reference; a syntax error results from an attempt to do so. However, simple
expressions can be passed by reference. For a simple expression, the system
passes a reference to the location of the element. This location never changes, even
if the value of the subscript later changes. For example, suppose the actual
parameter A[I] is passed to the formal parameter F and I has a value of 5. Formal
parameter F becomes a reference to array element A[5]. Even if I is later assigned a
different value, F remains a reference to A[5]. When F is read, it reflects the most
recent value of A[5]. When F is assigned, it changes the value of A[5].

In FORTRAN77 the effects of passing by reference are as follows:

• For simple variables of type integer, real, double precision, complex, or logical, two
different kinds of call-by-reference passing are available. The default method is
known as call-by-value-result. With this method, the value of the actual parameter is
assigned to the formal parameter. Thereafter, assignments to the actual parameter
have no effect on the formal parameter. Assignments to the formal parameter have
no immediate effect on the actual parameter; however, when the procedure is
exited, the value of the formal parameter is assigned to the actual parameter. The
alternate method is true call-by-reference passing, in which the formal parameter
receives a reference to the actual parameter itself; changes to the actual parameter
are immediately visible to the formal parameter and vice versa. The programmer can
request true call-by-reference passing by enclosing the formal parameter in
slashes (/).

• For parameters that are character variables, arrays, or subprograms, the parameter is
always treated as a true call-by-reference parameter. Any changes to the actual
parameter are immediately visible to the formal parameter and vice versa.

• Constants of type integer, real, double precision, complex, or logical can be passed
by reference, but character or array constants cannot. The receiving procedure can
make assignments that change the value of the formal parameter, but the value of
the actual parameter is never updated to reflect the change.

• For an actual parameter that is a simple expression, the parameter is treated as
either call-by-value-result, or true call-by-reference, depending on the way the formal
parameter is declared. If the formal parameter is a character variable or array, then
the parameter is treated as a true call-by-reference parameter. If the formal
parameter is an integer, real, double precision, complex, or logical variable, then by
default the parameter is treated as call-by-value-result; however, if the formal
parameter is enclosed in slashes, the parameter is treated as true call-by-reference.

• For an actual parameter that is a complex expression, the system evaluates the
expression and passes the value to the formal parameter. The receiving procedure
can make assignments that change the value of the formal parameter, but the value
of the actual parameter remains unchanged.

Using Parameters

17–6 8600 0494–506

Read-Only Parameters

A concept related to parameter passing modes is that of read-only parameters. The term
“read-only” refers, not to a passing mode, but to a restriction on the ways a parameter
can be used.

Formal parameter declarations in a Pascal program can include a CONST clause, which
causes a parameter to be treated as a read-only parameter. The CONST clause prevents
the receiving Pascal program or procedure from making any changes to the value of the
formal parameter. However, the CONST clause does not guarantee that the formal
parameter has a constant value. The formal parameter value can change because the
CONST clause does not affect the passing mode. If the actual parameter is passed by
name or by reference, then any changes made by the initiator to the value of the actual
parameter are immediately reflected in the value of the formal parameter.

Specifying the Passing Mode

You will seldom have the opportunity to choose among all three of these passing modes
for a particular parameter. The choice of passing modes is restricted on the basis of
several different considerations, including parameter type, language, and process type.

Though there are many different parameter types, these types fall into two basic
categories: word and descriptor. Boolean variables, integer variables, and real variables
are examples of word types. Strings, arrays, files, and other complex data structures are
descriptor types.

Word-type parameters can be passed by value, by name, or by reference.

In most languages, descriptor-type parameters must be passed by name or by reference.
Exceptions are Pascal, which allows descriptor type parameters to be passed by value,
and WFL, which can pass strings by value. Also, message control systems (MCSs) and
Host Services tasking can pass descriptor type parameters by value. Host Services
tasking makes it possible to write a program that passes an array to a remote process by
value. (Remote processes are discussed in Section 12, “Tasking across Multihost
Networks.”)

Each language imposes a different set of restrictions on the passing mode. For example,
ALGOL passes descriptor types by name or by reference and word types by name, by
reference, or by value. COBOL passes all library parameters by reference, and
parameters to tasks or bound-in procedures by reference or by value. WFL passes
parameters either by reference or by value. For details about these language restrictions,
refer to the programming language reference manuals.

One additional restriction is based on the process type. A statement that initiates an
independent process can pass parameters only by value, not by name or by reference.

 Using Parameters

8600 0494–506 17–7

Using Tasking Parameters
The system provides the application programmer with the ability to design a program in
one language that initiates a program written in a different language. The initiating
program can even pass parameters to the initiated program. However, because each
language provides a different set of parameter types, the programmer needs to
understand which types of parameters are compatible.

The languages that can initiate a process and pass it parameters are ALGOL, COBOL74,
COBOL85, and Work Flow Language (WFL).

The languages that can receive tasking parameters from another program are ALGOL, C,
COBOL74, COBOL85, AND Pascal.

WFL jobs can also receive parameters. However, strictly speaking, these are compile-
time rather than tasking parameters because a WFL job is recompiled each time it is
submitted. ALGOL, COBOL74, COBOL85, and RPG can all submit WFL jobs, but none
of them can pass a parameter to the WFL job. Parameters can be passed to a WFL job
only by a START statement. START statements can be submitted in Command and Edit
(CANDE) or Menu-Assisted Resource Control (MARC) sessions or at an operator display
terminal (ODT). START statements can also be submitted by DCALGOL programs using
the DCKEYIN function or by WFL jobs.

The remainder of this section discusses only tasking parameters and not WFL compile-
time parameters.

Whenever a process passes a tasking parameter, the system software checks that the
number of actual parameters the calling program passes matches the number of formal
parameters declared in the receiving program.

The system also compares each actual parameter with the matching formal parameter to
determine if they are of compatible types. The matching is done based on parameter
order rather than parameter names. It is permissible for the actual and formal
parameters to have different names.

In many cases, the system allows matches between similar, though not identical,
parameter types. For instance, an integer actual parameter can generally be passed to a
real formal parameter. Also, types that are, in effect, identical might have different
names in different languages. Details about which parameter matches are allowed by
the system software are given under “Matching Each Parameter Type” later in this
section.

Information about how the passing mode is determined for tasking parameters is given
under “Resolving Passing Mode Conflicts” later in this section.

Special considerations for arrays passed as tasking parameters are discussed under
“Passing Arrays” later in this section.

Using Parameters

17–8 8600 0494–506

Matching Each Parameter Type

By using Tables 17-1 and 17-2 at the end of this subsection, you can find out what
parameter types in a given language match particular parameter types in any other given
language. In the following discussion, the term original parameter refers to the
parameter you want to find a match for. The original parameter might be either an actual
parameter or a formal parameter. The term matching parameter refers to the parameter
about which you are uncertain. The tables can help you decide what type the matching
parameter should be.

Note: The tables in this section document the tasking parameter-type-matching rules
enforced by the system at process initiation time. If you are initiating an imported library
procedure, you should know about the library parameter matching rules discussed in
Section 18, “Using Libraries.” These rules are enforced by the operating system at
library linkage time, and in general, are much stricter than the tasking parameter
matching rules.

Further, if you are initiating a bound-in procedure, you should know about the binding
parameter matching rules discussed in the Binder Programming Reference Manual.
These rules are enforced by the Binder during its run, and in general, are more limiting
than the library parameter matching rules.

To use the parameter matching tables, you must know the following characteristics of
the original parameter: the language, the name of the parameter type, and whether it is a
formal or an actual parameter. For the matching parameter, you must know the
language in which it will be specified.

Begin by looking at Table 17–1. Table 17–1 is separated into three columns labeled
Language, Parameter Type, and General Type. Search the Language column until you
find the language of your original parameter. Next, scan the Parameter Type column until
you find the type of your original parameter. Next, in the General Type column to the
right, note the general type listed there.

In some cases, the general type shown is “(Unique)” instead of a word or a phrase. This
means your original parameter is a unique type that does not match any other parameter
type. For example, an ALGOL Boolean direct array can pass only to another ALGOL
Boolean direct array. In this case, you can skip the rest of these directions, because
there are no other matching parameter types.

Next, look at Table 17–2, which extends over several pages with each page including one
or more boxes. Each box is a separate entry with a General Type heading appearing at
the upper left of each box. The boxes appear in alphabetical order based on the General
Type headings. Look for the box whose General Type heading corresponds to the
general type you noted earlier.

Within the box you selected, scan down the Language and Parameter Type columns.
Make a note of the parameter types that are in the language you want to find out about.

At this stage, you can consider yourself finished. Take the parameter types you noted
and look in the appropriate programming language reference manual for the detailed
syntax of the parameter types. However, if this initial search did not uncover any

 Using Parameters

8600 0494–506 17–9

parameters in the desired language, or if you want a complete list of the possible
parameter types for the matching parameter, then the information in the Special
Matches column can help you extend your search.

The Special Matches column of each box can include up to three subentries that list
general types that match your original parameter, but only in some limited
circumstances. Examine each subentry that appears in the Special Matches column of
the box. The following are the possible subentries and their meanings:

• Matching Actuals

This list of general types can match your original parameter, if your original parameter
is a formal one and you are looking for an actual parameter to match it. If you are
looking for an actual parameter, note each of these general types, and for each do
the following:

− Go to the box labeled with the name of the specific general type.

− Look at the main parameter group in the box and note any parameter types
shown that are in the language you want for your matching parameter.

− Ignore any Matching Actuals, Matching Formals, or COBOL74 Matches
subentries that appear in the box.

• Matching Formals

This list of general types can match your original parameter, if your original parameter
is an actual one and you are looking for a formal parameter to match it. To translate
these general types into specific parameter types, follow the same steps that you
did for the Matching Actuals subentry.

• COBOL74 Matches

These general-type matches are allowed if the calling program or the receiving
program is written in COBOL74. If true, then note the general types shown. For
each general type, do the following:

− Go to the box that is labeled with the name of the specific general type.

− If the original parameter is in COBOL74, note any parameters shown in the
Parameter Types column that are in the language you want for your matching
parameter. If the original parameter is not in COBOL74, note only the COBOL74
types that appear in the Parameter Types column.

− Ignore any Matching Actuals, Matching Formals, or COBOL Matches subentries
that appear in the box.

You now have a complete list of the possible parameter types for your matching
parameter. Refer to the various programming language reference manuals for the syntax
used to declare the parameter types you have listed.

Note that the programming languages restrict some parameter types so that they can be
used only as formal parameters or only as actual parameters. The syntax given in the
programming language reference manuals should explain any such restrictions.

The following examples illustrate the method for finding matching parameter types.

Using Parameters

17–10 8600 0494–506

Example 1

Suppose you want to pass a string value from a WFL job to an ALGOL program. Look at
the last line of Table 17–1. The parameter type shown is WFL STRING. The general type
shown is Real Array.

Now look through Table 17–2 until you find the box labeled Real Array. The main
parameter group in the box includes two ALGOL types: REAL ARRAY and REAL VALUE
ARRAY.

In addition, the Matching Formals list specifies the general type integer array. Look at
the box labeled Integer Array. The main parameter group in the box includes the
following ALGOL types: INTEGER ARRAY and INTEGER VALUE ARRAY.

You now have a list of four different ALGOL parameter types. However, if you refer to
the ALGOL manual, you will find that value arrays are not allowed as formal parameters
(although they can be actual parameters). Therefore, a WFL STRING parameter can be
passed to two ALGOL types: REAL ARRAY or INTEGER ARRAY.

Example 2

Suppose you want to pass a 01 DISPLAY Group Item from a COBOL74 program to an
ALGOL program. Look through Table 17–1 until you find the line that says COBOL74 01
DISPLAY Group Item. The general type shown is EBCDIC Array.

Now look through Table 17–2 until you find the box labeled EBCDIC Array. The ALGOL
parameter types shown in the box are EBCDIC ARRAY and EBCDIC VALUE ARRAY.
Note these.

The Special Matches column of the box includes three general types as COBOL74
Matches: Hex Array, Integer Array, and Real Array. Go to the box for Hex Array. The
Parameter Types column includes two ALGOL types: HEX ARRAY and HEX VALUE
ARRAY. Note these. Repeat this process for each of the general types that you noted.

When you have finished this process, you have the following list of ALGOL formal
parameter types:

EBCDIC ARRAY
EBCDIC VALUE ARRAY
HEX ARRAY
HEX VALUE ARRAY
INTEGER ARRAY
INTEGER VALUE ARRAY
REAL ARRAY
REAL VALUE ARRAY

Of these, you should discard the value arrays because they cannot be used as formal
parameters. The matching parameter could be any of the remaining ALGOL types from
this list.

 Using Parameters

8600 0494–506 17–11

Example 3

Suppose you want to pass a real array from an ALGOL program to a COBOL74 program.
Scan through the ALGOL parameters in Table 17–1 until you find REAL ARRAY. The
General Type shown is also Real Array.

Now look through Table 17–2 until you find the box labeled Real Array. One COBOL74
parameter is shown in the Parameter Types column: 01 BINARY Group Item. Note this.
Additionally, the box contains entries in the Special Matches column for Matching
Actuals, Matching Formals, and COBOL74 Matches. You can interpret these entries as
follows:

• Matching Actuals

Ignore this entry, as your original parameter is the actual parameter. The matching
parameter you are looking for is a formal parameter.

• Matching Formals

The entry shown under this heading is Integer Array. Go to the box for Integer Array.
In the Parameter Type column, you find one COBOL74 parameter: 77 BINARY
Elementary Item. Make a note of this.

• COBOL74 Matches

The entries shown under this heading are EBCDIC Array and Hex Array.

− Go to the box for EBCDIC Array. The COBOL74 parameters shown in the
Parameter Type column are 01 DISPLAY Group Item and 01 KANJI Group Item.
Make a note of these.

− Go to the box for Hex Array. The COBOL74 parameters shown in the Parameter
Type column are 01 COMP Group Item and 01 INDEX Group Item. Make a note
of these.

When you finish this process, you find that the COBOL74 formal parameter can be of
any of the following types:

01 BINARY Group Item
01 COMP Group Item
01 DISPLAY Group Item
01 INDEX Group Item
01 KANJI Group Item
77 BINARY Elementary Item

Example 4

Suppose you want to pass a HEX DIRECT ARRAY from an ALGOL program to a
COBOL74 program. Look through Table 17–1 until you find the line that lists ALGOL
HEX DIRECT ARRAY. The General Type column lists “(Unique)” instead of the general
type. This means that HEX DIRECT ARRAY is a unique parameter type that can match
only a parameter of exactly the same type. In this case, there is no need for you to look
at Table 17–2.

Using Parameters

17–12 8600 0494–506

Table 17–1. Programming Language Parameter Types

Language Parameter Type General Type

ALGOL ASCII PROCEDURE REFERENCE ARRAY (Unique)

ALGOL ASCII ARRAY ASCII Array

ALGOL ASCII DIRECT ARRAY (Unique)

ALGOL ASCII PROCEDURE (Unique)

ALGOL ASCII STRING (Unique)

ALGOL ASCII STRING ARRAY (Unique)

ALGOL ASCII VALUE ARRAY ASCII Array

ALGOL BOOLEAN Boolean

ALGOL BOOLEAN ARRAY Boolean Array

ALGOL BOOLEAN DIRECT ARRAY (Unique)

ALGOL BOOLEAN PROCEDURE Boolean Procedure

ALGOL BOOLEAN PROCEDURE REFERENCE ARRAY (Unique)

ALGOL BOOLEAN VALUE ARRAY Boolean Array

ALGOL COMPLEX (Unique)

ALGOL COMPLEX ARRAY Complex Array

ALGOL COMPLEX PROCEDURE (Unique)

ALGOL COMPLEX PROCEDURE REFERENCE ARRAY (Unique)

ALGOL COMPLEX VALUE ARRAY Complex Array

ALGOL DIRECT FILE (Unique)

ALGOL DIRECT SWITCH FILE (Unique)

ALGOL DOUBLE Double

ALGOL DOUBLE ARRAY Double Array

ALGOL DOUBLE DIRECT ARRAY (Unique)

ALGOL DOUBLE PROCEDURE Double Procedure

ALGOL DOUBLE PROCEDURE REFERENCE ARRAY (Unique)

ALGOL DOUBLE VALUE ARRAY Double Array

ALGOL EBCDIC ARRAY EBCDIC Array

ALGOL EBCDIC DIRECT ARRAY (Unique)

ALGOL EBCDIC PROCEDURE ARRAY (Unique)

ALGOL EBCDIC STRING (Unique)

ALGOL EBCDIC STRING ARRAY (Unique)

ALGOL EBCDIC VALUE ARRAY (Unique)

ALGOL EBCDIC PROCEDURE REFERENCE ARRAY (Unique)

 Using Parameters

8600 0494–506 17–13

Table 17–1. Programming Language Parameter Types

Language Parameter Type General Type

ALGOL ENTITY REFERENCE (Unique)

ALGOL ENTITY REFERENCE ARRAY (Unique)

ALGOL EPILOG PROCEDURE (Unique)

ALGOL EVENT Event

ALGOL EVENT ARRAY Event Array

ALGOL FILE File

ALGOL FORMAT (Unique)

ALGOL HEX ARRAY Hex Array

ALGOL HEX DIRECT ARRAY (Unique)

ALGOL HEX PROCEDURE (Unique)

ALGOL HEX STRING (Unique)

ALGOL HEX STRING ARRAY (Unique)

ALGOL HEX VALUE ARRAY Hex Array

ALGOL HEX PROCEDURE REFERENCE ARRAY (Unique)

ALGOL INTEGER Integer

ALGOL INTEGER ARRAY Integer Array

ALGOL INTEGER DIRECT ARRAY Integer Direct Array

ALGOL INTEGER PROCEDURE Integer Procedure

ALGOL INTEGER PROCEDURE REFERENCE ARRAY (Unique)

ALGOL INTEGER VALUE ARRAY Integer Array

ALGOL INTERLOCK Interlock

ALGOL INTERLOCK ARRAY Interlock

ALGOL LABEL (Unique)

ALGOL LIST (Unique)

ALGOL PICTURE (Unique)

ALGOL PICTURE ARRAY (Unique)

ALGOL POINTER Pointer

ALGOL PROCEDURE (SUBROUTINE) Procedure

ALGOL QUERY VARIABLE (Unique)

ALGOL QUEUE (Unique)

ALGOL QUEUE ARRAY (Unique)

ALGOL REAL Real

ALGOL REAL ARRAY Real Array

Using Parameters

17–14 8600 0494–506

Table 17–1. Programming Language Parameter Types

Language Parameter Type General Type

ALGOL REAL DIRECT ARRAY Real Direct Array

ALGOL REAL PROCEDURE Real Procedure

ALGOL REAL PROCEDURE REFERENCE ARRAY (Unique)

ALGOL REAL VALUE ARRAY Real Array

ALGOL SWITCH (Unique)

ALGOL SWITCH FILE (Unique)

ALGOL SWITCH FORMAT (Unique)

ALGOL SWITCH LIST (Unique)

ALGOL TASK Task

ALGOL TASK ARRAY Task Array

ALGOL TRANSACTION RECORD ALGOL Transaction
Record

ALGOL TRANSACTION RECORD ARRAY ALGOL Transaction
Record

ALGOL UNTYPED PROCEDURE REFERENCE ARRAY (Unique)

C int argc, char* argv[] Real Array
(unbounded)

COBOL74 01 BINARY Group Item Real Array

COBOL74 01 COMP Group Item Hex Array

COBOL74 01 CONTROL-POINT Elementary Item Task

COBOL74 01 CONTROL-POINT Group Item Task Array

COBOL74 01 DISPLAY Group Item EBCDIC Array

COBOL74 01 EVENT Group Item Event Array

COBOL74 01 INDEX Group Item Hex Array

COBOL74 01 KANJI Group Item EBCDIC Array

COBOL74 01 LOCK Group Item Event Array

COBOL74 77 BINARY Elementary Item Integer

COBOL74 77 CONTROL-POINT Elementary Item Task

COBOL74 77 DOUBLE Elementary Item Double

COBOL74 77 EVENT Elementary Item Event

COBOL74 77 LOCK Elementary Item Event

COBOL74 77 REAL Elementary Item Real

 Using Parameters

8600 0494–506 17–15

Table 17–1. Programming Language Parameter Types

Language Parameter Type General Type

COBOL74 File File

COBOL74 Transaction Record Transaction Record

COBOL85 01 BINARY Group Item Integer Array

COBOL85 01 COMP Group Item Hex Array

COBOL85 01 REAL Group Item Real Array

COBOL85 01 DOUBLE Group Item Double Array

COBOL85 01 DISPLAY Group Item EBCDIC Array

COBOL85 77 REAL Elementary Item Real

COBOL85 77 DOUBLE Elementary Item Double

COBOL85 77 BINARY PIC 9(1-11) Elementary Item Integer

COBOL85 77 BINARY PIC 9(11-23) Elementary Item Double

COBOL85 77 File File

Pascal Array of Boolean Boolean Array

Pascal Array of Char Integer Array

Pascal Array of Char Subrange Integer Array

Pascal Array of Enumeration Integer Array

Pascal Array of Enumeration Subrange Integer Array

Pascal Array of Explicit Data Type Real Array

Pascal Array of Fixed (n < 12) Integer Array

Pascal Array of Fixed (n > 11) Double Array

Pascal Array of Integer Integer Array

Pascal Array of Integer Subrange Integer Array

Pascal Array of Packed Array Real Array

Pascal Array of Real Real Array

Pascal Array of Record Real Array

Pascal Array of Set Real Array

Pascal Array of Sfixed (n < 12) Integer Array

Pascal Array of Sfixed (n > 11) Double Array

Pascal Array of Vlstring Real Array

Pascal Binary (n) EBCDIC Array

Pascal Bits (n) EBCDIC Array

Using Parameters

17–16 8600 0494–506

Table 17–1. Programming Language Parameter Types

Language Parameter Type General Type

Pascal Boolean Boolean

Pascal Boolean Subrange Boolean

Pascal Boolean1 Hex Array

Pascal Boolean4 Hex Array

Pascal Char Integer

Pascal Char Subrange Integer

Pascal Digits (n) Hex Array

Pascal Digits_s (n) Hex Array

Pascal Display_s (n) EBCDIC Array

Pascal Display_z (n) EBCDIC Array

Pascal Enumeration Integer

Pascal Enumeration Subrange Integer

Pascal Explicit Record (call-by-value) Real Array

Pascal Explicit Record (var) EBCDIC Array

Pascal Fixed (n < 12) Integer

Pascal Fixed (n > 11) Double

Pascal Function: Boolean Boolean Procedure

Pascal Function: Boolean Subrange Boolean Procedure

Pascal Function: Char Integer Procedure

Pascal Function: Char Subrange Integer Procedure

Pascal Function: Enumeration Integer Procedure

Pascal Function: Enumeration Subrange Integer Procedure

Pascal Function: Fixed (n < 12) Integer Procedure

Pascal Function: Fixed (n > 11) Double Procedure

Pascal Function: Integer Integer Procedure

Pascal Function: Integer Subrange Integer Procedure

Pascal Function: Real Real Procedure

Pascal Function: Sfixed (n < 12) Integer Procedure

Pascal Function: Sfixed (n > 11) Double Procedure

Pascal Hex (n) Hex Array

Pascal Integer Integer

Pascal Integer Subrange Integer

Pascal Integer48 (n) EBCDIC Array

 Using Parameters

8600 0494–506 17–17

Table 17–1. Programming Language Parameter Types

Language Parameter Type General Type

Pascal Integer96 (n) EBCDIC Array

Pascal Long Set (> 48 Elements in Set) Real Array

Pascal Packed Array of Boolean Hex Array

Pascal Packed Array of Char EBCDIC Array

Pascal Packed Array of Enumeration

 (0-16 Elements) Hex Array

 (17-256 Elements) EBCDIC Array

 (> 256 Elements) Integer Array

Pascal Packed Array of Fixed (n < 12) Integer Array

Pascal Packed Array of Fixed (n > 11) Double Array

Pascal Packed Array of Integer Integer Array

Pascal Packed Array of Real Real Array

Pascal Packed Array of Record Real Array

Pascal Packed Array of Set Real Array

Pascal Packed Array of Sfixed (n < 12) Integer Array

Pascal Packed Array of Sfixed (n > 11) Double Array

Pascal Packed Array of Subrange

 (0-16 Elements) Hex Array

 (17-256 Elements) EBCDIC Array

 (> 256 Elements) Integer Array

Pascal Packed Array Of Vlstring Real Array

Pascal Procedure Procedure

Pascal Real Real

Pascal Real48 (n) EBCDIC Array

Pascal Record Real Array

Pascal Schema Refer to “Passing
Parameters to Pascal
Schemata” later in
this section.

Pascal Sfixed (n < 12) Integer

Pascal Sfixed (n > 11) Double

Pascal Short Set (1-48 Elements In Set) Real

Pascal S_digits (n) Hex Array

Pascal S_display (n) EBCDIC Array

Using Parameters

17–18 8600 0494–506

Table 17–1. Programming Language Parameter Types

Language Parameter Type General Type

Pascal U_display (n) EBCDIC Array

Pascal Vlstring Real Array

Pascal Word48 (n) EBCDIC Array

Pascal Word96 (n) EBCDIC Array

Pascal Z_display (n) EBCDIC Array

WFL BOOLEAN Boolean

WFL INTEGER Integer

WFL REAL Real

WFL STRING Real Array

Table 17–2. Matching Parameter Types

General Type Language Parameter Type Special Matches

ASCII Array ALGOL ASCII ARRAY

 ALGOL ASCII VALUE ARRAY

Boolean ALGOL BOOLEAN

 Pascal Boolean

 Pascal Boolean Subrange

 WFL BOOLEAN

 Matching Actuals:

 • Boolean Procedure (with
no parameters)

 • Integer

 • Real

 Matching Formals:

 • Integer

 • Real

Boolean
Array

ALGOL BOOLEAN ARRAY

 ALGOL BOOLEAN VALUE ARRAY

 Pascal Array of Boolean

 Using Parameters

8600 0494–506 17–19

Table 17–2. Matching Parameter Types

General Type Language Parameter Type Special Matches

Boolean
Procedure

ALGOL BOOLEAN PROCEDURE

 ALGOL BOOLEAN VALUE ARRAY

 Pascal Array of Boolean

 Pascal Function: Boolean

Complex
Array

ALGOL COMPLEX ARRAY

 ALGOL COMPLEX VALUE ARRAY

Direct File ALGOL DIRECT FILE

Double ALGOL DOUBLE

 COBOL74 77 DOUBLE Elementary
Item

 COBOL85 77 BINARY PIC 9(11-23)
Elementary Item

 COBOL85 77 DOUBLE Elementary
Item

 Pascal Fixed (n > 11)

 Pascal Sfixed (n > 11)

Double
Array

ALGOL DOUBLE ARRAY

 ALGOL DOUBLE VALUE ARRAY

 COBOL85 01 DOUBLE Group Item

 Pascal Array of Fixed (n > 11)

 Pascal Array of Sfixed (n > 11)

 Pascal Packed Array of Fixed
(n > 11)

 Pascal Packed Array of Sfixed
(n > 11)

Double
Procedure

Pascal Function: Fixed (n>11)

 Pascal Function: Sfixed (n>11)

EBCDIC
Array

ALGOL EBCDIC ARRAY

 ALGOL EBCDIC VALUE ARRAY

 COBOL74 01 DISPLAY Group Item

 COBOL74 01 KANJI Group Item

Using Parameters

17–20 8600 0494–506

Table 17–2. Matching Parameter Types

General Type Language Parameter Type Special Matches

EBCDIC
Array
(cont.)

COBOL85 01 DISPLAY Group Item

 Pascal Binary (n)

 Pascal Bits (n)

 Pascal Display s (n)

 Pascal Display z (n)

 Pascal Explicit Record (var)

 Pascal Integer48 (n)

 Pascal Integer96 (n)

 Pascal Packed Array of
Enumeration (17-256
Elements in Enumeration)

 Pascal Packed Array of Subrange
(17-256 Elements in
Subrange)

 Pascal Packed Array of Char

 Pascal Real48 (n)

 Pascal S display (n)

 Pascal U display (n)

 Pascal Word48 (n)

 Pascal Word96 (n)

 Pascal Z display (n)

 Matching Actuals:

• Integer Array

 Matching Formals:

• Integer Array

 COBOL74 Matches:

• Hex Array

• Integer Array

• Real Array

Event ALGOL EVENT

 COBOL74 77 EVENT Elementary Item

 COBOL74 77 LOCK Elementary Item

 Using Parameters

8600 0494–506 17–21

Table 17–2. Matching Parameter Types

General Type Language Parameter Type Special Matches

Event Array ALGOL EVENT ARRAY

 COBOL74 01 EVENT Group Item

 COBOL74 01 LOCK Group Item

File ALGOL FILE

 COBOL74 File

 COBOL85 77 File

Hex Array ALGOL HEX ARRAY

 ALGOL HEX VALUE ARRAY

 COBOL74 01 COMP Group Item

 COBOL74 01 INDEX Group Item

 COBOL85 01 COMP Group Item

 Pascal Boolean1

 Pascal Boolean4

 Pascal Digits s (n)

 Pascal Digits (n)

 Pascal Hex (n)

 Pascal Packed Array of
Enumeration (0-16
Elements)

 Pascal Packed Array of Subrange
(0-16 Elements)

 Pascal Packed Array of Boolean

 Pascal S digits (n)

 Matching Actuals:
• Integer Array

 Matching Formals:

• Integer Array

 COBOL74 Matches:

• EBCDIC Array

• Integer Array

• Real Array

Using Parameters

17–22 8600 0494–506

Table 17–2. Matching Parameter Types

General Type Language Parameter Type Special Matches

Integer ALGOL INTEGER

 COBOL74 77 BINARY Elementary Item

 COBOL85 77 BINARY PIC 9(1-11)
Elementary Item

 Pascal Char

 Pascal Char Subrange

 Pascal Enumeration

 Pascal Enumeration Subrange

 Pascal Fixed (n < 12)

 Pascal Integer

 Pascal Integer Subrange

 Pascal Sfixed (n < 12)

 WFL INTEGER

 Matching Actuals:

• Boolean

• Integer Procedure (with no
parameters)

• Real

• Real Procedure (with no
parameters)

 Matching Formals:

• Boolean

• Real

Integer
Array

ALGOL INTEGER ARRAY

 ALGOL INTEGER VALUE ARRAY

 COBOL85 01 BINARY Group Item

 Pascal Array of Char

 Pascal Array of Char Subrange

 Pascal Array of Enumeration

 Pascal Array of Enumeration
Subrange

 Pascal Array of Fixed (n < 12)

 Pascal Array of Integer

 Pascal Array of Integer Subrange

 Using Parameters

8600 0494–506 17–23

Table 17–2. Matching Parameter Types

General Type Language Parameter Type Special Matches

Integer
Array
(cont.)

Pascal Array of Sfixed (n < 12)

 Pascal Packed Array of
Enumeration (> 256
elements)

 Pascal Packed Array of Fixed
(n < 12)

 Pascal Packed Array of Integer

 Pascal Packed Array of Subrange
(> 256 Elements)

 Pascal Packed Array of Sfixed
(n < 12)

 Matching Actuals:

• EBCDIC Array

• Hex Array

• Real Array

 Matching Formals:

• EBCDIC Array

• Hex Array

• Real Array

Integer
Direct Array

ALGOL INTEGER DIRECT ARRAY

 Matching Actuals:

• Real Direct Array

 Matching Formals:

• Real Direct Array

Integer
Procedure

ALGOL INTEGER PROCEDURE

 Pascal Function: Char

 Pascal Function: Char Subrange

 Pascal Function: Enumeration

 Pascal Function: Enumeration
Subrange

 Pascal Function: Fixed (n < 12)

 Pascal Function: Integer

Using Parameters

17–24 8600 0494–506

Table 17–2. Matching Parameter Types

General Type Language Parameter Type Special Matches

Integer
Procedure
(cont.)

Pascal Function: Integer Subrange

 Pascal Function: Sfixed (n < 12)

 Matching Actuals:

• Real Procedure

 Matching Formals:

• Integer

• Real

• Real Procedure

Interlock ALGOL INTERLOCK

Interlock
Array

ALGOL INTERLOCK ARRAY

Pointer ALGOL POINTER

Procedure ALGOL PROCEDURE
(SUBROUTINE)

 Pascal Procedure

Real ALGOL REAL

 COBOL74 77 REAL Elementary Item

 COBOL85 77 REAL Elementary Item

 Pascal Real

 Pascal Short Set (1-48 Elements in
Set)

 WFL REAL

 Matching Actuals:

• Boolean

• Integer

• Integer Procedure

• Real Procedure (with no
parameters)

 Matching Formals:

• Boolean

• Integer

 Using Parameters

8600 0494–506 17–25

Table 17–2. Matching Parameter Types

General Type Language Parameter Type Special Matches

Real Array ALGOL REAL ARRAY

 ALGOL REAL VALUE ARRAY

 C Int argc, Char *argv

 COBOL74 01 BINARY Group Item

 COBOL85 01 REAL Group Item

 Pascal Array of Explicit Data Type

 Pascal Array of Packed Array

 Pascal Array of Real

 Pascal Array of Record

 Pascal Array of Set

 Pascal Array of Vlstring

 Pascal Explicit Record (call-by-
value)

 Pascal Long Set (> 48 Elements in
Set)

 Pascal Packed Array of Real

 Pascal Packed Array of Record

 Pascal Packed Array of Set

 Pascal Packed Array of Vlstring

 Pascal Record

 Pascal Vlstring

 WFL STRING

 Matching Actuals:

• Integer Array

 Matching Formals:

• Integer Array

 COBOL74 Matches:

• EBCDIC Array

• Hex Array

Using Parameters

17–26 8600 0494–506

Table 17–2. Matching Parameter Types

General Type Language Parameter Type Special Matches

Real Direct
Array

ALGOL REAL DIRECT ARRAY

 Matching Actuals:

• Integer Direct Array

 Matching Formals:

• Integer Direct Array

Real
Procedure

ALGOL REAL PROCEDURE

 Pascal Function: Real

 Matching Actuals:

• Integer Procedure

 Matching Formals:

• Integer

• Integer Procedure

• Real

Task ALGOL TASK

 COBOL74 01 CONTROL-POINT
Elementary Item

 COBOL74 77 CONTROL-POINT
Elementary Item

Task Array ALGOL TASK ARRAY

 COBOL74 01 CONTROL-POINT Group
Item

Transaction
Record

ALGOL TRANSACTION RECORD

 ALGOL TRANSACTION RECORD
ARRAY

 COBOL74 Transaction Record

 Using Parameters

8600 0494–506 17–27

Resolving Passing Mode Conflicts

Some programming languages, such as WFL and ALGOL, allow the initiating program to
specify the passing mode for a tasking parameter. In addition, programming languages
typically allow the receiving program to specify a passing mode for the formal parameter.
Thus, it is possible for the calling program and the receiving program to request different
passing modes for the same parameter.

The system is very forgiving of these types of mismatches and generally allows any
combination of actual and formal passing modes without issuing an error. However,
when the calling program and the receiving program request different passing modes,
the system uses the passing mode requested by the calling program. For example, if a
call-by-value actual parameter is passed to a call-by-reference formal parameter, the
system passes the parameter by value.

Note that the system is less forgiving of passing mode mismatches for parameters
passed to library procedures. For a discussion of the allowable passing mode
combination for library procedures, refer to Section 18, “Using Libraries.”

Be very careful when writing a program that is to be initiated, and passed a parameter,
by calling programs written by other people. The calling program might use a different
passing mode for the parameter than you expected. For example, you might design the
receiving program to receive a parameter by value, and make assignments to the
parameter. However, if the calling program actually passes an expression by name, then
the receiving program terminates with an error when it attempts to assign a value to the
formal parameter. This is true because the calling program implicitly passed a thunk, and
it is not possible to store values into thunks. You can avoid these types of problems by
not making assignments to the formal parameter.

There is one type of passing mode problem that can make it impossible even for the
receiving program to read the value of the formal parameter. If the calling program
specifies a constant or an expression as a call-by-name actual parameter, then the
compiler creates a thunk. If the receiving program specifies the formal parameter as call-
by-reference, then the formal parameter cannot receive a thunk. The calling program can
initiate the receiving program successfully. However, when the receiving program
attempts to interrogate or modify the value of the formal parameter, the system issues
an “INVALID OPERATOR” error and discontinues the receiving program.

Note that this error does not occur if the call-by-name actual parameter is a variable,
rather than a constant or an expression. If a variable is used, then the compiler does not
create a thunk. The receiving program can use the formal parameter without any
problems.

Using Parameters

17–28 8600 0494–506

Examples

Suppose that the following COBOL74 program is the receiving program. Note that the
formal parameter specification indicates the parameter REAL-PARAM is to be received
by reference:

100 IDENTIFICATION DIVISION.
110 ENVIRONMENT DIVISION.
120 DATA DIVISION.
130 WORKING-STORAGE SECTION.
140 77 REAL-PARAM BINARY PIC 9(11) RECEIVED BY REFERENCE.
150 PROCEDURE DIVISION USING REAL-PARAM.
160 START-HERE SECTION.
170 P1.
180 MOVE 15 TO REAL-PARAM.
190 STOP RUN.

The following ALGOL program invokes the preceding program and passes the real
variable ACTUALREAL as the actual parameter. Note that the statement at line 150 in
the following example specifies that the parameter be passed by value. This statement
overrides the RECEIVED BY REFERENCE clause and causes the parameter to be passed
by value. When the receiving program assigns a value of 15 to the formal parameter, the
value of the actual parameter is not affected. Thus, the statement at line 210 displays a
value of 5; but if the statement at line 150 were deleted, the statement at line 210 would
display a value of 15.

100 BEGIN
110 FILE TERM (KIND=REMOTE);
120 TASK T;
130 REAL ACTUALREAL;
140 PROCEDURE COBOLTASK (RVAL);
150 VALUE RVAL;
160 REAL RVAL;
170 EXTERNAL;
180 ACTUALREAL := 5;
190 REPLACE T.NAME BY "OBJECT/COBOL/TASK.";
200 CALL COBOLTASK (ACTUALREAL) [T];
210 WRITE (TERM,*//,ACTUALREAL);
220 END.

Now suppose that the COBOL74 program was invoked by a WFL job instead. The
following WFL job invokes the COBOL74 program and passes a real parameter by value
(the default passing mode in WFL):

100 ?BEGIN JOB WFL/TEST;
110 CLASS = 2;
120 JOBSUMMARY = SUPPRESSED;
130 ELAPSEDLIMIT = 120;
140 REAL R:= 5;
150 RUN OBJECT/COBOL/TASK (R);
160 DISPLAY STRING(R,*);
170 ?END JOB

 Using Parameters

8600 0494–506 17–29

The statement at line 160 displays a value of 5. However, if you change the RUN
statement to read RUN OBJECT/COBOL/TASK (R REFERENCE); then the parameter is
passed by reference and the statement at line 160 displays a value of 15.

Passing Arrays

When an array is passed as a parameter, the actual and formal arrays must be of
compatible data types (such as integer, real, and so on). The actual and formal arrays
must also be compatible structurally. That is, the number of dimensions and the lower
bounds for each dimension must be compatible.

The following subsections discuss these types of compatibility issues for arrays that are
passed in process initiation statements. Note that this discussion centers on the
compatibility issues the system enforces at run time. If the parameter is passed
between procedures in a single program, the compiler can enforce additional restrictions
at compile time. For information about any such compile-time restrictions, refer to the
appropriate programming language manuals.

Matching Dimensions and Elements

When the calling program passes arrays, the actual array and the formal array must have
the same number of dimensions.

However, it is not necessary for the actual array and the formal array to have the same
number of elements in each dimension. Some languages allow formal array parameters
that do not specify the number of elements in each dimension. For example, ALGOL
does not allow upper bounds to be specified for the dimensions in a formal array
parameter specification; and Pascal allows formal array parameters, called schemata,
that are incompletely specified. (Schemata are discussed under “Passing Parameters to
Pascal Schemata” later in this section.) In these cases, the system assigns the formal
parameter the same number of elements as the actual parameter at run time.

Even if the formal parameter specifies the number of elements in each dimension of an
array, the actual parameter can have a different number of elements. The system does
not issue an error or warning in these cases. If the actual parameter passes more
elements than the formal parameter can receive, the system ignores the extra elements.

Matching Unbounded Arrays

Some languages, such as ALGOL, allow formal array parameters that do not specify the
lower bounds for array dimensions. Such array parameters are referred to in this guide
as unbounded array parameters. Array parameters that explicitly specify the lower
bounds are referred to as simple array parameters.

Be aware that parameter mismatch errors can result from passing an actual array with an
unspecified lower bound to a formal array with a specified lower bound, or vice versa.
For example, WFL STRING parameters are passed as unbounded real arrays. If a WFL
program passes a string parameter to an ALGOL program, the ALGOL program must
declare the formal parameter as unbounded; otherwise, a PARAMETER MISMATCH
error occurs at run time.

Using Parameters

17–30 8600 0494–506

The following is an example of an ALGOL program that is passed a string parameter from
a WFL job.

100 PROCEDURE OUTER(ARR);
110 REAL ARRAY ARR[*];
120 BEGIN
130 FILE TERM(KIND=REMOTE);
140 INTEGER ARR_SIZE;
150 POINTER P;
160 P:= ARR;
170 ARR_SIZE:= SIZE(ARR) * 6;
180 WRITE(TERM,*//,P FOR ARR_SIZE);
190 END.

In the preceding program, the SIZE function at line 170 returns the size of the array
parameter in words. This value is multiplied by 6 to give the length of the array
parameter in characters.

COBOL74 and COBOL85 are somewhat more forgiving than ALGOL in their handling of
array parameters. Formal array parameters in COBOL74 or COBOL85 programs can
receive either simple or unbounded actual parameters. Consider the following COBOL74
or COBOL85 program:

100 IDENTIFICATION DIVISION.
110 ENVIRONMENT DIVISION.
120 DATA DIVISION.
130 WORKING-STORAGE SECTION.
140 01 PARAM PIC X(12) DISPLAY.
150 PROCEDURE DIVISION USING PARAM.
160 START-HERE SECTION.
170 P1.
180 DISPLAY PARAM.
190
200 STOP RUN.

The preceding COBOL74 program is initiated twice by the following ALGOL program.
The first time, the ALGOL program passes an unbounded array parameter. The second
time, the ALGOL program passes a simple array parameter. In each case, the actual
parameter is received by the formal parameter PARAM in the COBOL74 program. The
COBOL74 program runs normally and displays the same output in each case.

100 BEGIN
110 REAL ARRAY ARRIN[0:12];
120 TASK T;
130 PROCEDURE EX1(ARRACT);
140 REAL ARRAY ARRACT[*];
150 EXTERNAL;
160 PROCEDURE EX2(ARRACT);
170 REAL ARRAY ARRACT[0];
180 EXTERNAL;
190 REPLACE ARRIN BY "HI THERE";
200 REPLACE T.NAME BY "(JASMITH)OBJECT/TEST/COBOL/TASK.";

 Using Parameters

8600 0494–506 17–31

210 CALL EX1 (ARRIN) [T];
220 CALL EX2 (ARRIN) [T];
230 END.

Note that the preceding comments about COBOL74 and COBOL85 hold true only for
tasking parameters. COBOL74 and COBOL85 programs display less flexible behavior
when they are invoked as libraries. In this case, the programmer must know in advance
whether the actual array parameter is simple or unbounded. If the actual parameter is
unbounded, the programmer must use a LOWER-BOUNDS clause in the formal array
declaration, or else declare an extra BINARY parameter to receive the lower bound. Of
these two techniques, the LOWER-BOUNDS clause is equally compatible with tasking or
library calls, whereas the extra BINARY parameter works only for library calls.

If a program has a single parameter that is a single-dimensional unbounded array, and no
parameter is passed when the program is initiated, a one word array is supplied
containing nulls, 4"000000000000". An example ALGOL program heading would be

$ SET LEVEL 2
PROCEDURE P(A);
ARRAY A[*];
BEGIN

For further information about unbounded array parameters to library procedures, refer to
Section 18, “Using Libraries.”

Matching Pascal Arrays

Some special rules apply for passing parameters to a Pascal formal parameter that is
either a multidimensional array or an incompletely defined array.

Passing Multidimensional Arrays

Pascal arrays are all stored internally as one-dimensional arrays. Declaring a Pascal array
with multiple dimensions creates an indexing compiler scheme, which makes it appear
that the array has multiple dimensions. Within the Pascal program, the fact that the array
is one-dimensional is never visible. However, this fact is visible when parameters are
passed to a Pascal program from a program written in another language.

Because Pascal formal array parameters are implicitly one dimensional, actual array
parameters passed to Pascal programs must always be one-dimensional. The elements
of the actual array are mapped into the formal array according to an algorithm that
increments the indexes for the highest dimension, then the next highest dimension, and
so on.

Using Parameters

17–32 8600 0494–506

For example, suppose the actual parameter is an ALGOL EBCDIC array of one
dimension, [1:27]. The initiating process could pass this parameter to a Pascal formal
parameter that is a three-dimensional packed array of char. Suppose each dimension is
declared with indexes [1..3]. The following table illustrates the mapping of elements
from the ALGOL actual array into the Pascal formal array:

ALGOL Index Pascal Index

1 1,1,1

2 1,1,2

3 1,1,3

4 1,2,1

5 1,2,2

6 1,2,3

7 1,3,1

8 1,3,2

9 1,3,3

The initiating process maps the remaining elements in a similar way.

Passing Parameters to Pascal Schemata

Before reading the rules for passing parameters to Pascal schemata, you should
understand the following Pascal terms:

• Index

An index specifies a location in a particular array dimension. If a dimension has
indexes running from 1 to 5, then there are five indexes in that dimension.

• Discriminant

A discriminant appears in an array declaration and specifies the highest-numbered or
lowest-numbered index for a particular dimension. If the discriminant is an integer, it
is called a constant discriminant. If the discriminant is a variable, it is called a
dynamic discriminant.

• Element

An element is a single location in an array. An element is identified by an index for
each dimension stating the element's location in that dimension.

• Schema

A schema is an array declaration that includes one or more dynamic discriminants. In
other words, a schema is a type of incomplete array declaration. Using a schema as
a formal parameter makes it possible to pass arrays with different bounds and
different numbers of elements to the same formal parameter. The plural of schema
is schemata.

 Using Parameters

8600 0494–506 17–33

When passing an array to a formal parameter that is a Pascal schema, the initiating
process must pass one or more additional parameters. This is the only situation in which
the system requires that the number of actual parameters be different from the number
of formal parameters. The additional actual parameters provide information about the
size of the actual array. Each of these additional parameters is a call-by-value integer.

The following are Pascal schemata types and the rules for passing parameters to each of
these schemata types:

• A vlstring (variable-length string). This formal parameter receives two actual
parameters: a parameter that contains the string value, followed by a call-by-value
integer parameter that records the length of the string.

• A one-dimensional packed array of char whose upper discriminant is dynamic. This
formal parameter receives the following two actual parameters: a one-dimensional
array, followed by one call-by-value integer parameter that gives the value of the
dynamic discriminant.

• Any other type of array or packed array whose declaration includes at least one
dynamic discriminant. This type of formal parameter receives the following actual
parameters, in the order listed:

− A one-dimensional array of a compatible type.

− For each dimension, a call-by-value integer parameter specifying the total
number of elements in that dimension and all higher dimensions. For example,
imagine an array with five indexes in the first dimension, three in the second
dimension, and two in the third dimension. The first integer parameter is 30,
which is the result of multiplying 5, 3, and 2 together. The second integer
parameter is 6, which is the result of multiplying 3 and 2 together. The third
integer parameter is 2.

− For each dynamic discriminant, a call-by-value integer parameter giving the value
of the discriminant. The order of the integer parameters is as follows: first-
dimension lower discriminant, first-dimension upper discriminant, second-
dimension lower discriminant, second-dimension upper discriminant, and so on.
Any constant discriminants are omitted.

Examples

The following programs illustrate how an ALGOL program can pass an array to a Pascal
two-dimensional packed array of char. The ALGOL program passes a one-dimensional
EBCDIC array.

% ALGOL PROGRAM
BEGIN
 EBCDIC ARRAY
 ALGOLARRAY[0:24];
 TASK T;

 PROCEDURE OUTSIDE(ACTUALARRAY);
 EBCDIC ARRAY ACTUALARRAY[*];
 EXTERNAL;

REPLACE T.NAME BY "OBJECT/PASCAL/TWODIM/CHAR.";

Using Parameters

17–34 8600 0494–506

REPLACE ALGOLARRAY[0] BY "ONETWOONETWOONETWOONETWO";
CALL OUTSIDE(ALGOLARRAY) [T];
END.

{ PASCAL PROGRAM }
program pascalarray((formalarray: formalarraytype));
 TYPE
 indexrange = 1..10;
 formalarraytype = packed array [2..5, 2..7] of char;
 VAR
 arrayindex, arrayindex2: indexrange;
BEGIN
 for arrayindex:= 2 to 5 do
 for arrayindex2:= 2 to 7 do
 formalarray[arrayindex, arrayindex2]:= 'a';
END.

The following example shows what would happen if the formal parameter formalarray in
the preceding example were changed from a fully specified array to a schema. Because
of this change, the ALGOL program must pass additional call-by-value integer
parameters.

% ALGOL PROGRAM
BEGIN
EBCDIC ARRAY
 ALGOLARRAY [0:24];
INTEGER
 ONEDIM, TWODIM, DISC1, DISC2;
TASK T;
PROCEDURE OUTSIDE (ACTUALARRAY, ONEDIM, TWODIM, DISC1, DISC2);
 VALUE ONEDIM, TWODIM, DISC1, DISC2;
 EBCDIC ARRAY ACTUALARRAY [*];
 INTEGER ONEDIM, TWODIM, DISC1, DISC2;
EXTERNAL;

REPLACE T.NAME BY "OBJECT/TASK/SCHEMA/PASCAL/TWODIM/CHAR.";
ONEDIM:= 24;
TWODIM:= 6;
DISC1:= 2;
DISC2:= 7;
REPLACE ALGOLARRAY [0] BY "ONETWOONETWOONETWOONETWO";
CALL OUTSIDE (ALGOLARRAY, ONEDIM, TWODIM, DISC1, DISC2) [T];
END.

 Using Parameters

8600 0494–506 17–35

{PASCAL PROGRAM }
program pascal_twodim_schema((formalschema: formalschematype));
 TYPE
 indexrange = 1..10;
 formalschematype(disc1, disc2:indexrange) =
 packed array [disc1..5, 2..disc2] of char;
 VAR
 indexschema, indexschema2: indexrange;
BEGIN
 for indexschema:= formalschema.disc1 to 5 do
 for indexschema2:= 2 to formalschema.disc2 do
 formalschema[indexschema, indexschema2]:= 'a';
END.

Passing COBOL74 Arrays to Bound Procedures

A COBOL74 host program can initiate a bound subprogram as a task with a PROCESS
statement or with the CALL <task identifier> WITH <section name> form of the CALL
statement. If the host program passes an array parameter to the task, the subprogram
can receive various run-time errors (such as INVALID OPERATOR or SEG ARRAY
ERROR) when it attempts to use the array. These errors can occur even if the arrays in
the host and subprogram are the same type and length.

Specifically, arrays of usage BINARY, COMPUTATION, REAL, or DOUBLE always receive
run-time errors when passed as parameters to a bound subprogram called as a task.
EBCDIC arrays (01-level with usage DISPLAY) are the only type of array that can be
passed successfully to such a subprogram. Nonarray items (77-level) can be passed
without a problem.

If it is necessary for the bound subprogram to share a non-EBCDIC array with the host
program, you can declare the array in the subprogram as a global array rather than a
parameter. This method allows the same data to be shared between the subprogram and
host, and does not cause run-time errors.

Using Parameters

17–36 8600 0494–506

8600 0494–506 18–1

Section 18
Using Libraries

Introducing Libraries
A library is a collection of grouped objects that are shared with another process or
processes. There are three types of libraries: server libraries, client libraries, and
connection libraries. Unless otherwise specified, statements in this section about
libraries apply to all types of libraries.

Server Libraries and Export Objects

A server library is said to export objects. Exporting objects enables other processes to
use objects that were declared by the server library process. A process that creates a
server library is referred to as a server library process.

Client Libraries and Import Objects

A client library is said to import objects. Importing objects enables the client library
process to use objects that were declared by another process. A process that creates a
client library is referred to as a client process.

Library Objects

Server libraries are usually used in combination with client libraries. The objects
exported by a server library, in turn, are imported for use by a client library process.
Objects that are exported by one library and imported by another are referred to as
library objects.

Connection Libraries

Connection libraries enable a two-way exchange of objects between processes. When
two connection library processes establish a connection, each library can export objects
for use by the other library. Both library processes can execute in parallel. Compared to
server libraries, connection libraries also provide greater ability to monitor and control
linkages with other processes.

Server, Client, and Connection Library Combinations

It is possible for server library programs to export objects to connection libraries. It is
also possible for client programs to import objects from connection libraries. However,
this section describes library capabilities mostly in terms of unmixed usage: server
libraries that are used with client programs, and connection libraries that are used with
other connection libraries. The combinations involving mixed usage are discussed under
“Linking Connection Libraries, Server Libraries, and Client Programs” later in this
section.

Using Libraries

18–2 8600 0494–506

Language Support

You can write server library programs in ALGOL, C, COBOL74, COBOL85, FORTRAN77,
NEWP, and Pascal. You can write client programs in all of these languages, as well as in
RPG. A library written in one language can be used by programs written in other
languages.

You can write connection library programs only in ALGOL and NEWP.

Importing Process

This section makes some statements that apply both to client processes and to
connection library processes that import objects. Because both these types of
processes use imported objects, such a process is referred to by the term importing
process in this section.

Procedure Objects

A procedure is the type of object most commonly exported by libraries. By consolidating
procedures into a library, you can avoid duplicating the procedures in all the programs
that need to use them. Further, you can maintain and enhance the shared procedures
more easily when they reside in a library, because you don't have to repeat your work in
every program that uses the procedures.

Data Objects

In addition to their role in providing shared procedures, libraries can also provide data
structures to client processes. Thus,

• ALGOL libraries can export simple types of variables, events, event arrays, and other
types of arrays.

• NEWP libraries can export events, event arrays, and other types of arrays.

• FORTRAN77 libraries can export files and arrays.

• Libraries in most other languages can provide client processes with indirect access
to data objects that are declared in a library but not actually exported. The use of
libraries to allow client processes to share data objects is discussed in “Global
Objects in Server Libraries” and “Global Objects in Connection Libraries” later in this
section.

Libraries Compared to Binding

Aside from libraries, the system provides several other methods by which programs can
make use of a shared procedure, including binding, installation intrinsics, and separate
programs. Compared to binding, libraries offer the following advantages:

• Libraries export objects at run time, whereas the Binder adds procedures from one
object code file to another for permanent storage. You have to run the Binder
separately for each object code file to which a procedure is to be added. You have
to run the Binder again for each of these object code files whenever you make
changes to the shared procedure.

• Libraries allow procedures to be shared between programs in a wider variety of
languages than the Binder permits.

 Using Libraries

8600 0494–506 18–3

Libraries Compared to Installation Intrinsics

Compared to installation intrinsics, libraries offer the following advantages:

• Libraries can include objects that are declared globally to the exported procedures.
These could include files, databases, and so on.

• Libraries can contain initialization and termination code.

• Individual users can create their own libraries without possessing special privileges.

• Libraries can be written in more languages than can installation intrinsics.

• More than one version of a library can be in use at a time.

Libraries Compared to Separate Programs

Another method for sharing procedures is to write each procedure as a separate
program. Any other program that needs to make use of one of these procedures can
initiate the appropriate program as a task. Compared to this method of sharing
procedures, libraries offer the following advantages:

• The shared procedures can either be entered or initiated by the client program,
whereas a separate program can only be initiated. Procedure entry takes less time
and system resource than process initiation.

• There are more programming languages that provide the ability to use libraries than
there are programming languages that provide the ability to initiate programs.

COBOL74 Restrictions

This section notes various restrictions on COBOL74 libraries that arise because this
language does not permit nested blocks. Note that COBOL85 does permit nested
blocks, and consequently provides more complete access to library features than
COBOL74.

Creating Server Library Programs
Features of Server Library Programs

In most programming languages, server library programs can contain all the features of
any ordinary program. What distinguishes a server library program is the inclusion of an
export library, which is visible in most languages as an export list and a FREEZE
statement. A server library program generally also includes features that specify the
sharing and duration properties of the server library.

COBOL74 Exceptions

The following subsections outline the features required of server library programs in
most languages, while also noting certain exceptions that apply to COBOL74 server
libraries. The features of COBOL74 server libraries are most easily understood as a
subset of the general server library features supported by the operating system.

Using Libraries

18–4 8600 0494–506

Exporting Objects

Export Lists

A server library can contain many declarations of objects, some of which are exported
and some of which are not exported. There is nothing in the declaration of an exported
object that distinguishes it from a nonexported object. Instead, a separate construct
called an export list specifies all the objects in a given block that are to be exported. The
export list is used in addition to, rather than instead of, the declarations of the exported
objects.

Exporting Objects in COBOL74

Export lists are not used in COBOL74. Libraries in this language always export exactly
one object, which corresponds to the PROCEDURE DIVISION of the program.

Freezing the Library

FREEZE Statement

When a server library program is first initiated, it does not immediately become a library
process. In most languages, a server library program is executed as an ordinary process
until a FREEZE statement in the program is encountered. The FREEZE statement
changes an ordinary process into a server library process. While the process is frozen, it
typically does little or no work on its own; it simply remains present in memory so that
client processes can link to it and use the exported objects.

Duration of the Freeze

Eventually, a server library process ceases to be a library and resumes execution as an
ordinary process. The duration of the library state is specified by one of three FREEZE
options. In most languages, you specify the FREEZE option in the FREEZE statement.
The following are all the options supported by the system. Not all options are available in
all languages.

• TEMPORARY

The server library program ceases execution and remains available as long as clients
of the library remain. A temporary library that is no longer in use resumes execution
and ceases to be available for linkage. The export objects declared in the server
library process do not become available to client programs again; attempts to link
cause another instance of the server library to be initiated. Using the TEMPORARY
option prevents memory space from being occupied by a server library that is not in
use.

• PERMANENT

The server library program ceases execution and remains available unless interrupted
by an operator command or another program action. (Resuming a permanent library
is discussed under “Thawing and Resuming Server Libraries” later in this section.) It
is advisable to make a server library permanent if it is frequently used; the
PERMANENT option prevents the system from having to re-create the server library
repeatedly during the day. It is also advisable to make a server library permanent if it
accesses a database or other files that need to be kept open.

 Using Libraries

8600 0494–506 18–5

• CONTROL

The program is made available as a server library, and control passes to a local
procedure in the library called the control procedure, where execution continues.
The control library changes into a temporary library when the control procedure is
exited.

The CONTROL option makes it possible for a server library to decide when to
resume itself. The CONTROL option is available in ALGOL and, implicitly, in
FORTRAN77. The programmer typically includes statements in the control procedure
to prevent it from being exited until certain conditions are met.

In order to get the expected response, program the library to periodically check the
values of its LIBRARYSTATE and LIBRARYUSERS task attributes. If the duration bit
(bit 27) in the LIBRARYSTATE attribute is reset, and the value of LIBRARYUSERS is
zero, the library is expected to exit the CONTROL procedure as soon as possible.
Library linkages to this library are not initiated. The MCP linker waits for the library to
resume normal execution before initiating a new instance of the server library.

The library’s EXCEPTIONEVENT is caused by the MCP upon the transition to a
temporary duration and when the last library user delinks.

After a server library unfreezes, it cannot execute another FREEZE statement in order to
become a library again.

Freezing COBOL74 Libraries

FREEZE statements are not used in COBOL74 libraries. Programs written in this
language freeze automatically if they are initiated through the library linkage mechanism.
(This method of initiation is discussed under “Initiating Server Library Processes” later in
this section.) You can use the TEMPORARY compiler control option to specify that the
library freeze should be temporary. If you do not use the TEMPORARY option, the
library sharing option determines the type of freeze. A sharing value of SHAREDBYALL
results in a permanent freeze, and sharing values of PRIVATE or SHAREDBYRUNUNIT
result in a temporary freeze. For further information about the sharing option, refer to
“Controlling Server Library Sharing” later in this section.

Freezing C Libraries

The FREEZE statement is also not used in C libraries. A C library freezes automatically if
it is initiated by the library linkage mechanism. You can use the DURATION compiler
option to specify whether it should be a temporary, permanent, or control freeze. If a
temporary or permanent freeze is specified, the library freezes immediately after the
function main finishes executing. If a control freeze is specified, the function main
executes as the control procedure.

Displaying Frozen Libraries

You can use the LIBS (Library Task Entries) system command to list the frozen library
processes on the system. The list includes permanent, temporary, and control libraries.

Using Libraries

18–6 8600 0494–506

Controlling Server Library Sharing

SHARING Compiler Option

Although multiple client programs can use the same server library at the same time, they
are not necessarily using the same instance of the library. You can use the compiler
control option SHARING to specify whether multiple client processes access the same
instance of the library. The possible values of this option are PRIVATE, SHAREDBYALL,
SHAREDBYRUNUNIT, and DONTCARE.

SHARING = PRIVATE

The operating system initiates a separate instance of the server library program for each
client process that links to the library. Values assigned to global objects in the library by
a particular client process are visible only to that client process.

SHARING = SHAREDBYALL

All client processes share the same instance of the library. If one client process changes
the value of a global object in the library, the next client process that interrogates the
global object receives the changed value. The SHAREDBYALL option can be useful if
the service provided by the library involves combining information from several clients or
sharing resources among several clients.

The SHAREDBYALL option is not permitted in C or COBOL85.

SHARING = SHAREDBYRUNUNIT

The same instance of the server library is shared by each linkage that originates, either
directly or indirectly, from the same client process. Multiple linkages can originate from
the same client process in situations such as the following:

• A single client process contains multiple library declarations that link to the same
library program.

• A client process imports one or more library objects provided indirectly. Though a
client process might import objects from two separate libraries (LIB1 and LIB2), both
of those libraries, in turn, might link to the same library (LIB3) to provide these
objects. If LIB3 is SHAREDBYRUNUNIT, then the objects are imported from the
same instance of library LIB3.

The SHAREDBYRUNUNIT option makes it possible for you to implement the ANSI
COBOL concept of a run unit. A run unit consists of a client process and the libraries it
calls, directly or indirectly. To meet the ANSI definition, if the client process links to the
same library multiple times, the linkage must be to the same instance of that library.

 Using Libraries

8600 0494–506 18–7

However, the SHAREDBYRUNUNIT option, by itself, does not guarantee that a client
process and its libraries will form a single run unit. To ensure a single run unit, you must
use the following design rules:

1. The client must not use any library objects from a control procedure or from
offspring processes.

2. The libraries used by the client, directly or indirectly, must all have a sharing option of
SHAREDBYRUNUNIT.

3. The libraries must not link to any other libraries before or after freezing.

The following example illustrates what can happen if rule 3 is not followed:

• A client process CP1 implicitly links to a SHAREDBYRUNUNIT library named LIB1 by
invoking a procedure in that library.

• The client process CP1 also implicitly links to a SHAREDBYRUNUNIT library named
LIB2 by invoking procedure X in that library.

• Before LIB2 freezes, it links to LIB1. Because LIB2 is not yet frozen, LIB2 is not
considered part of the run unit of CP1. Therefore, the system links LIB2 to a new
instance of LIB1.

In this example, the client process gets access to a second instance of LIB1, which is
not part of the ANSI run unit. If library LIB2 had frozen before linking to LIB1, then the
linkage would have accessed the existing instance of LIB1, which is part of the run unit.

A run unit is not the same as a process family. For example, tasks initiated by the client
process are not part of the run unit. Any other client processes linked to the library are
also considered to be separate run units and receive their own instances of the library.

SHARING = DONTCARE

In most programming languages, this option is a nonpreferred synonym for
SHAREDBYALL. However, in C and COBOL85, this option is a nonpreferred synonym
for SHAREDBYRUNUNIT.

Default Values for SHARING

If a server library program does not include the SHARING compiler control option, then
the compiler assigns a default SHARING option to the library. The default value of the
SHARING option is SHAREDBYALL in ALGOL, and FORTRAN77; and
SHAREDBYRUNUNIT in C, COBOL74, COBOL85, and Pascal. The SHAREDBYALL value
is not available in C or COBOL85.

Sharing in COBOL74

Sharing is handled in a special way for COBOL74 libraries. If a library written in this
language has a sharing value of SHAREDBYALL or SHAREDBYRUNUNIT, then multiple
client processes can link to the same instance of the library. However, the operating
system ensures that only one client process can be executing the procedure exported by
this library at any given time. If another client process invokes the procedure while it is
in use, the operating system causes this client process to wait until the procedure
becomes available.

Using Libraries

18–8 8600 0494–506

Shared Library Declarations

Note that the library sharing option affects only the relationship between library
declarations and library instances. The sharing option cannot prevent multiple client
processes from accessing the same server library instance through a common library
declaration. For example, the outer block of an ALGOL program might include a library
declaration. If this ALGOL program initiates two internal tasks, the library declaration is
visible to both tasks. The two tasks could use this library declaration to access the same
library instance, even if the library sharing option is PRIVATE.

Initiating Internal Server Library Processes

In ALGOL programs, an internal procedure can be initiated as a task and later freeze as a
server library, if the procedure includes a FREEZE statement and an export list. NEWP
programs marked with UNSAFE(TASKING) status also have this capability. However, to
simplify this discussion, this section discusses server library processes as if they were
always executions of an entire server library program.

Using Server Library Objects

Server libraries provide clients with access to data objects in either of two ways:

• By exporting procedures that read or update data objects in the server library
program. These exported procedures provide indirect access to either local objects
or global objects. Local objects are those declared within the exported procedures.
Global objects are those declared globally to the exported procedures.

• By exporting the data objects themselves.

The following pages describe the use of local objects, global objects, and exported data
objects.

Local Objects in Server Libraries

Local Objects Recreated

In most languages, any local variables declared in an exported procedure are recreated
each time that procedure is invoked.

COBOL85 Exception

Variables declared in COBOL85 nested programs retain their values from one invocation
to the next, unless the PROGRAM-ID paragraph of the nested program includes an
IS INITIAL clause.

 Using Libraries

8600 0494–506 18–9

Global Objects in Server Libraries

Interprocess Communication

Shared server libraries provide one of the most sophisticated means for communicating
information between processes. Any number of client processes can access the same
object by way of a shared library. The client processes can belong to different process
families, and can be written in different languages.

Capabilities

The main benefit of using a library for interprocess communication (IPC) is the flexible
control it provides over the interactions between client processes and shared objects.
For example,

• If a data item is being made available to many different client processes, the library
can act to protect the data from being corrupted by a wrongly designed client
process.

• The library can filter information, so that a particular piece of data in an object can be
made visible to one client and not to others.

• A library can provide a simple interface to information that has a complex structure.

Scope of Global Library Objects

The key to using global objects for IPC lies in the addressing environment of an exported
library procedure. Such a procedure can access any objects declared globally to it in the
library. The rules for determining if a declaration is global to a given ALGOL procedure
are discussed in Section 15, “Using Global Objects.” Objects declared in COBOL74
libraries are global to the exported PROCEDURE DIVISION unless they are specified as
parameters to the PROCEDURE DIVISION. For information about the scope of
declarations in other languages, refer to the appropriate programming language manuals.

Parameters from Client Process

A library procedure can also access objects that are passed to it as parameters by a
client process. These parameters can be used to inform the library procedure of
changes that need to be made to a global object.

Typed Procedures

If the library procedure is a typed procedure, then you can use the return value to
transfer information about the global object back to the client process. You can also use
parameters that are passed to the procedure, by name or by reference, to transfer
information back to the client process.

Using Libraries

18–10 8600 0494–506

Accessing the Same Library Instance

For client processes to communicate through a server library, they must access the
same instance of the library. You can ensure this by following these steps:

1. Set the SHARING option to SHAREDBYALL. This prevents a separate instance of
the library from being initiated each time a new client process links to the library.

2. Use a permanent freeze in some cases. A library with a temporary freeze suffices
for most cases, because it does not resume until all client processes have
terminated. However, if there will be periods of time when no client processes are
linked to the library, and the communication information needs to be preserved, then
a permanent freeze must be used. This preserves the library instance until it is
thawed by an operator command or a programmatic change to the STATUS task
attribute.

Local Objects in Library Procedures

Note that objects declared within a library procedure cannot be used for IPC. Even if
client processes access the same instance of a library, they receive different instances
of any exported library procedure when they invoke that procedure. Changes made to
these local objects by one client process are not visible to other client processes. OWN
objects are an exception to this rule, and are discussed separately under “Restrictions on
OWN Objects in Server Libraries” later in this section.

Ensuring One-at-a-Time Access to Objects

A library can be written to ensure that only one client process can access a particular
global object, or group of global objects, at a time. For example, the library procedure
that accesses a particular global object could be written to first procure a globally
declared event, then access the global object, and then liberate the event. If all the
library procedures that modify the global object are written this way, then the global
object is protected from conflicting updates by different client processes.

Controlling the Order in Which Processes Access Objects

Events can also be used to ensure that client processes access a global object in a
certain order. For example, assume that client process A is supposed to access a
particular global object before client process B does. Client process B could invoke a
library procedure that waits on a certain global event. This event might be one that is
caused only at the end of the library procedure called by client process A.

 Using Libraries

8600 0494–506 18–11

Discontinued Processes and Shared Events

When designing a library, you must be aware of the fact that any of the client processes
might be discontinued while executing a procedure from the library. If the library
procedure being executed has procured an event, but has not yet liberated the event,
then the event remains procured. Other client processes waiting to procure the event
wait indefinitely. You can prevent this problem in either of the following ways:

• Include a CHANGE procedure in the server library process. Each time a client
process delinks, the system passes a parameter to the CHANGE procedure
indicating whether the delinkage is caused by the client process terminating
abnormally. The server library could respond to this notification by, for example,
liberating all global events whenever any client terminates abnormally. For
information about the CHANGE procedure, refer to “Monitoring Client Process
Linkage” later in this section.

• Use features such as EPILOG and EXCEPTION procedures to ensure that clients can
perform cleanup actions during an abnormal termination. For further information,
refer to “Discontinued Processes and Events” in Section 16, “Using Events and
Interlocks.”

MYSELF Task Variable

A library procedure can use the MYSELF task variable to access the task attributes of the
client process. (In a procedure exported by a frozen library, MYSELF always refers to the
client process, not the library.) For example, the library procedure could interrogate the
USERCODE task attribute of the client process. The library procedure could be defined
to provide different actions for different client processes.

Protecting Against Data Loss

Another point to be aware of is that the information stored in a permanent library can be
lost if a system halt/load terminates the library process. The library can protect against
this possibility by writing data out to disk files or to a database.

Shared Access Examples

For a simple example of a server library that provides client processes with shared
access to a disk file, refer to “File Sharing Examples” in Section 19, “Using Shared
Files.”

Exported Data in Server Libraries

Language Restrictions

The only languages that can export data are ALGOL, NEWP, and FORTRAN77.

Currently, NEWP exports a more limited range of data types than ALGOL. For
information about the types of data that can be exported in ALGOL and NEWP, refer to
“Matching Data Types” later in this section.

This section does not discuss the exporting of data in FORTRAN77. Instead, refer to the
FORTRAN77 Programming Reference Manual.

Using Libraries

18–12 8600 0494–506

Comparison with Global Objects

ALGOL and NEWP server libraries can export certain types of data objects in much the
same way as procedures. By exporting data, you provide client processes with direct
access to the data, rather than the indirect type of access described under “Global
Objects in Server Libraries” in this section. The capabilities provided by these methods
are compared in the following table:

Capability

Exporting Data

Exporting Procedures That
Access Global Data

Ease of
Implementation

The importing program is given
direct access to the data.

You have to implement library
procedures that provide an
interface to the data.

Maintainability Changes to data structures,
semantics, and access rules can
make it necessary to revise all
client programs.

Changes to data structures,
semantics, and access rules can
often be hidden from client
programs.

Processor
Overhead

Low. Somewhat higher, due to the cost
of invoking a procedure.

Sharing In the case of a SHAREDBYALL
or SHAREDBYRUNUNIT library, all
clients of the same library
instance receive the same
instance of the exported variable.

In the case of a SHAREDBYALL or
SHAREDBYRUNUNIT library, all
clients of the same library instance
receive indirect access to the same
instance of the global variable.

Writeability The library can specify whether
clients have read-write or read-
only access to the variable.

The exported procedures can each
contain logic to provide read-write
or read-only access.

Mutual
Exclusion

The library can export an event
that client processes are expected
to procure before updating some
particular object. The library
cannot enforce the use of this
event.

The exported procedures can be
coded to always procure a global
event before updating the global
variable. In this way, the library can
ensure that the event is used.

Client Identity The library provides the same
access rights to all clients.

However, individual clients can
reduce their own access rights by
requesting read-only access to
data that was exported with read-
write access.

The exported procedures can
include code to interrogate the
client's identity, and allow different
actions for different clients.

 Using Libraries

8600 0494–506 18–13

Use by Client Programs or Connection Libraries

The importing of data by client programs is supported only in ALGOL. Therefore, if a
server library exports data, that data can be imported only by a connection library or an
ALGOL client program.

Specifying the Access Mode

The server library can specify an access mode of READONLY or READWRITE for most
exported data objects. If the server library does not specify an access mode, the default
is READONLY.

In ALGOL, if all of the objects exported in an EXPORT declaration have the same access
mode, you can specify the access mode within square brackets just after the EXPORT
keyword. If the objects in the export list have different access modes, the access
modes can be specified individually after each export object in the list.

You cannot specify an access mode for events or event arrays. However, access to
events is automatically restricted in some ways, as described in the following
paragraphs.

Limitations on Events

A server library program can use exported events in the same ways as any other event.
However, a number of restrictions apply to the use of imported events by the importing
program. The usage of imported events is restricted in the following ways:

Usage Restriction

WAIT and
WAITANDRESET
Statements

An imported event cannot be used in WAIT or WAITANDRESET
statements.

However, imported events can be used in other event-related
statements and functions, such as AVAILABLE, CAUSE,
CAUSEANDRESET, FIX, FREE, HAPPENED, LIBERATE,
PROCURE, RESET, and SET.

 Furthermore, a server library and client program could
communicate by having the server library apply WAIT or
WAITANDRESET statements to the exported event, and having
the client library apply CAUSE or CAUSEANDRESET
statements to the imported event.

Interrupts An imported event cannot be attached to an interrupt.

LOCK Statements An imported event cannot be used in statements of the form
LOCK (<interlock>, <event>).

Direct I/O An imported event cannot be used in direct I/O.

Parameters An imported event cannot be passed as a parameter to a
procedure.

If a program violates one of these restrictions, a syntax error results.

Using Libraries

18–14 8600 0494–506

Syntax Examples for Exporting Data

The following ALGOL statements export several data objects. Real array A receives the
default access mode of read-only, and integer I is assigned an access mode of read-
write.

REAL ARRAY A [0:10];
INTEGER I;
EVENT E1;
EXPORT A (LINKCLASS = PROTECTED),
 I AS "I2" (READWRITE),
 E1;

Alternatively, the EXPORT statement can include a single access mode assignment that
affects all the items in the export list, as in the following example:

EXPORT [READWRITE] A, I;

Direct, Indirect, and Dynamic Data Provision

Server libraries must use direct provision when exporting data objects; indirect and
dynamic provision are not permitted. For definitions of these various types of provision,
refer to “Methods of Providing Objects” later in this section.

 Using Libraries

8600 0494–506 18–15

Restrictions on OWN Objects in Server Libraries

Purpose of OWN Clause

You must take a special precaution when declaring arrays with an OWN clause in an
exported library procedure. The OWN clause, which is available only in ALGOL, causes
the value of an object to be saved between invocations of the procedure in which that
object is declared. If multiple invocations of the procedure are running simultaneously,
the OWN clause also causes all invocations of the procedure to access the same
instance of the object.

OWN Array Restrictions

If an exported procedure includes an array declaration with an OWN clause, then the
server library program should itself invoke the exported procedure before any client
process invokes the procedure. If a client process invokes the procedure before the
server library does, then the system discontinues the client process with the error
“ILLEGAL OWN ARRAY.” The server library process itself is not affected by this error.

OWN Simple Variables

Note that this restriction applies only to OWN arrays, not to simple variables or pointers
with an OWN clause. For exported procedures that declare such variables, it does not
matter whether the client process or the server library process invokes the procedure
first.

Timing Issues in Shared Libraries

If the library is a shared library, then synchronization issues arise for any OWN objects
declared in an exported procedure. The OWN clause allows multiple client processes to
access the same instance of the same object. For example, if two client processes are
concurrently executing the same library procedure, and the library procedure declares an
OWN object, then any changes made by one client process to the value of the object are
immediately visible to the other client process. To prevent timing ambiguities, you can
use techniques such as those discussed under “Global Objects in Server Libraries” later
in this section.

Using Libraries

18–16 8600 0494–506

Restrictions on COBOL74 Libraries

Dual Nature: Server Libraries and Ordinary Programs

COBOL74 object code files are structured in a special way that allows them to be
executed either as server libraries or as ordinary processes. Every program written in
this language is available for use as a server library, except for programs that

• Specify in the data division that a parameter is RECEIVED BY CONTENT (that is,
received as a call-by-value parameter).

• Specify parameters in the USING clause of the PROCEDURE division that are not
allowed for libraries. Each data item in the USING phrase must be defined as
level 01 or level 77, and the data item must not redefine another data item. Further,
the parameters must be of data types that are allowed for library parameters. For a
list of the allowed library parameter types for COBOL74, refer to Table 18–4,
“COBOL74 Parameters.”

• Are compiled with a LEVEL compiler control option that specifies a lexical level
greater than 2.

Library-Capable Programs

A program that does not use any of these restricted features is said to be library-capable.
A library-capable COBOL74 program freezes if it is initiated through the library linkage
mechanism. If the program is initiated by a process-initiation statement, then the
program runs as an ordinary process and does not freeze. For a discussion of the library
linkage mechanism, refer to “Initiating Server Library Processes” later in this section.

Circular Linkage Disallowed

Circular library linkages are not allowed for COBOL74 libraries. If a COBOL74 library
invokes itself, the operating system discontinues the library with a run-time error. If a
COBOL74 library invokes a procedure in another library that in turn invokes the original
library, both libraries freeze successfully but the client process hangs indefinitely in the
state WAITING ON AN EVENT.

EXIT PROGRAM Versus STOP RUN

An EXIT PROGRAM statement must be used to exit a COBOL74 library and to return to
the calling program. By contrast, a STOP RUN statement causes the client process to
terminate at the point of the statement that invoked the library procedure.

Sharing in COBOL74

The system prevents multiple clients of a shared COBOL74 library from executing the
exported procedure at the same time. Refer to “Controlling Server Library Sharing”
earlier in this section.

Global Nature of Declarations

Because only the PROCEDURE DIVISION of a COBOL74 library is exported, most
objects declared in the DATA DIVISION or ENVIRONMENT DIVISION are considered as
global to the exported procedure. Within each library instance, these objects retain their
values from one procedure call to the next. In a shared library, any changes made to the
values of these objects by a client process are visible to all other client processes.

 Using Libraries

8600 0494–506 18–17

Objects in USING Clause

One exception to this behavior occurs for objects that are referred to in the USING
clause of the PROCEDURE DIVISION. This clause causes the objects to be treated as
parameters to the PROCEDURE DIVISION. Each client process receives a separate
instance of these objects, and the values of the objects are not retained from one
procedure call to the next.

No Initiation or Termination Code

Another limitation arises from the fact that the entire PROCEDURE DIVISION is exited.
There is no place in a COBOL74 library to specify initialization or termination code. By
contrast, the outer block of an ALGOL library can contain statements that execute before
the FREEZE statement or that execute after the library unfreezes.

Monitoring Server Library Linkage

Server libraries can optionally include a procedure that notifies the library of changes in
linkage state. For more information about this procedure, called the CHANGE procedure,
refer to “Monitoring Client Process Linkage” later in this section.

Thawing and Resuming Server Libraries

Thawing a server library is the act of changing the frozen library process from a
permanent library into a temporary library. By contrast, the act of resuming a library
causes the server library to be deactivated, and causes the server library process to
resume execution as an ordinary process. Execution of the process resumes with the
first statement after the FREEZE statement.

STATUS Attribute and THAW Command

You can thaw a server library process programmatically through assignments to the
STATUS task attribute of a process, or operationally through the THAW (Thaw Frozen
Library) system command. For details, refer to Section 6, “Monitoring and Controlling
Process Status.”

CANCEL Statement

Additionally, you can resume a server library process programmatically with the CANCEL
statement in ALGOL, as discussed under “Delinking from Server Libraries” later in this
section.

Using Libraries

18–18 8600 0494–506

Creating Client Programs
Features of Client Programs

In general, client programs can include all of the features of an ordinary program.
Further, a client program can itself be a server library program that uses objects imported
from other libraries.

Import Declarations and Client Library Declarations

In most programming languages, client programs are distinguished by the inclusion of
import declarations and client library declarations. These declarations, and their
equivalents in COBOL74, are described in the following subsections.

Importing Procedures to Client Programs

Import Declarations

Import declarations include information such as the name of the imported procedure, the
type of procedure, and the library from which it is imported. Declarations of imported
procedures must also include parameter specifications for any parameters accepted by
the procedure. However, the procedure body (including all local declarations and
statements) is omitted. For example, in ALGOL an imported procedure might be
declared as follows:

BOOLEAN PROCEDURE X (I);
 INTEGER I;
 LIBRARY LIB1;

Use of Imported Objects

In languages that include library declarations and import declarations, the client program
can use imported objects just as if they were local objects of the client program.

COBOL74 Imports

In COBOL74, import objects are not explicitly declared. Instead, when invoking an
imported procedure, you can use a special form of the CALL statement that specifies
both the name of the procedure and that of the library. If the CALL statement does not
explicitly specify a procedure name, the procedure name is assumed as
PROCEDUREDIVISION.

Objects That Are Not Imported

In addition to import declarations, the client program can contain declarations of objects
that are not imported from libraries.

 Using Libraries

8600 0494–506 18–19

Importing Data to Client Programs

Server libraries written in ALGOL or NEWP can export data objects, as discussed under
“Exported Data in Server Libraries” earlier in this section. Client programs written in
ALGOL can import these data objects by listing them in the LIBRARY declaration.
(NEWP does not yet support the importing of data objects by client programs.)

Syntax for Importing Data

For example, the following ALGOL library declaration specifies several imported data
items (M, N, G, and E):

LIBRARY L(LIBACCESS = BYFUNCTION, FUNCTIONNAME = "MYSUPPORT")
 [INTEGER M (READWRITE),
 N (READONLY);
 ARRAY G[0] (ACTUALNAME = "GG"),
 E[0]];

Matching Access Modes

The client program can specify whether each imported data item is read-only or read-
write. The default access mode is read-only.

The server library also specifies the access mode for exported data. The following table
shows the actual access modes resulting from the possible combinations of values:

Exported Access Mode Imported Access Mode Resulting Access Mode

READONLY or unspecified READONLY or unspecified READONLY

READONLY or unspecified READWRITE Objects cannot match.

READWRITE READONLY or unspecified READONLY

READWRITE READWRITE READWRITE

If the import and export objects do not match due to conflicting access modes, library
linkage can still complete successfully. The LINKLIBRARY result indicates that some
requested objects were not available. If the client process attempts to use the imported
data object, the client process is discontinued with the error message “OBJECT <object
name> ACCESS MODE MISMATCH.” The client process can prevent this error by
checking the availability of the data object with the ISVALID function as described under
“Matching Client and Server Library Objects” later in this section.

Data Type Matching

The exported data object and the imported data objects must be of the same or
compatible types. Refer to “Matching Data Types” later in this section.

Limitations on Events

If a client library imports an EVENT or EVENT ARRAY, the client library must explicitly
specify an access mode of READWRITE, or a syntax error results.

Using Libraries

18–20 8600 0494–506

Exported events can be used in the same ways as any other event. Refer to the topic
“Limitations on Events” in “Exported Data in Server Libraries” discussed earlier in this
section.

If a program violates one of these restrictions, a syntax error results.

Specifying Client Libraries

Client Library Declarations

In most languages, the client program must include explicit declarations of all client
libraries and library objects used by the program. A client library declaration specifies the
identifier by which the library is known throughout the client program. A client library
declaration can also include library attribute assignments.

Library Attributes

Library attributes should not be confused with task attributes or file attributes. Library
attributes provide information that help monitor and control libraries.

Changes to Library Attributes

The client process can change library attribute values repeatedly, if the client library is
not currently linked to a server library. The operating system ignores any changes made
to the attributes of a client library while the client library is linked to the server library.
The exception to this rule is the AUTOLINK attribute, which can be changed while the
client library is linked to the server library.

COBOL74 Client Libraries

In COBOL74, client programs do not include library declarations. However, this language
does allow you to assign library attributes to a client library.

CHANGE Attribute Assignment

Unlike most library attributes, the CHANGE attribute can be assigned in the client library
program, the server library program, or both.

The following paragraphs briefly explain the use of library attributes related to client
libraries.

LIBACCESS, TITLE, and FUNCTIONNAME Library Attributes

A client process uses the LIBACCESS attribute of the client library to specify how to
select the server library. The possible values are BYTITLE, BYFUNCTION, and
BYINITIATOR.

If LIBACCESS = BYTITLE, then the server library program is selected by its title. The
client process assigns the library code file title to the TITLE attribute of the client library.
No value is assigned to the FUNCTIONNAME library attribute.

If LIBACCESS = BYFUNCTION, then the server library program is selected by its
function name, which is defined and mapped to a library code file beforehand by the SL
(Support Library) system command. The client process assigns the desired function

 Using Libraries

8600 0494–506 18–21

name to the FUNCTIONNAME attribute of the client library. No value is assigned to the
TITLE library attribute.

If LIBACCESS = BYINITIATOR, then the client process must be either a task initiated by
a library, or a library initiated by the library linkage mechanism after another library
invokes it. In either case, BYINITIATOR causes the client process to link to the library
that originated the client process. No value is assigned to the FUNCTIONNAME or
TITLE attributes of the client library.

LIBPARAMETER Library Attribute

The client process can use the LIBPARAMETER library attribute for cases where the
server library provides objects dynamically. The LIBPARAMETER value can include
application-defined information to help the server library decide to which secondary
library to link. For more information, refer to “Dynamic Provision” later in this section.

If the client library is linking to a connection library instead of to a server library, the client
process can use the LIBPARAMETER attribute to pass information to the APPROVAL
procedure. Refer to description of the APPROVAL library attribute under “APPROVAL”
later in this section.

AUTOLINK Library Attribute

The client process can use the AUTOLINK library attribute to specify whether this client
library can be linked implicitly to the server library. For more information, refer to
“Linking to Server Libraries.”

INTERFACENAME Library Attribute

If the client library links to a connection library instead of a server library, the client
process assigns an INTERFACENAME attribute to the client library. Refer to “Linking a
Client Library to a Connection Library,” later in this section.

For detailed descriptions of these and other library attributes, refer to “Using Library
Attributes” later in this section.

 Linking to Server Libraries

Types of Linkages

Linkage between a client library and a server library is established at run time by the
operating system, based on the values of the library attributes of the client library. There
are three ways a client library can link to a server library: implicitly, explicitly, or directly.

Linkage Errors

Linkage errors have different effects, depending on the type of linkage that is used. If an
implicit linkage results in an error, that error is fatal for the client program. On the other
hand, if an explicit or direct linkage results in an error, the error is nonfatal and is
communicated to the client program as a LINKLIBRARY function result.

Using Libraries

18–22 8600 0494–506

Implicit Initiations

If a process attempts to link to a server library, and no frozen instance of that library is
currently available, the system performs an implicit initiation of the library. This implicit
initiation can occur regardless of whether the linkage attempt was an implicit linkage, an
explicit linkage, or a direct linkage. Refer to “Implicitly Initiating a Server Library” later in
this section.

Implicitly Linking to Server Libraries

Initiating Implicit Linkage

Library linkage typically occurs when the client process first uses an object imported
through a particular client library. For example, suppose a client process has import
declarations for three procedures, PROC1, PROC2, and PROC3, which all come from
client library LIB1. Note that the order in which these imports are declared might not be
the same as the order in which they are invoked. Thus, PROC1 might be declared first,
but the client process might invoke PROC3 first. In this case, the linkage of client library
LIB1 to a server library is implicitly requested by the attempt to invoke PROC3.

Allowing or Preventing Implicit Linkages

The AUTOLINK library attribute determines whether such implicit linkage attempts are
allowed. If AUTOLINK is FALSE, the linkage fails and the client process incurs a fatal
error. If AUTOLINK is TRUE (which is the default for client libraries), then the system
proceeds with an attempt to link the client library to the server library.

Missing Server Library

If the requested server library program cannot be found, the client process becomes
suspended at this point. If the LIBACCESS value is BYTITLE, then a “NO LIBRARY”
message is displayed as the RSVP message. If the LIBACCESS value is BYFUNCTION,
and the FUNCTIONNAME library attribute requests a function name that does not exist,
the RSVP message is “FUNCTION <function name> IS NOT DEFINED, SL, FA, OR DS.”

Missing Object in Library

If the requested server library program is found, the system links the client library to an
existing instance of the server library or initiates a new instance as discussed under
“Implicitly Initiating a Server Library” later in this section. The system then determines if
the requested object is exported by the server library. If the requested object is not
available, the system returns one of the errors discussed under “Matching Client and
Server Library Objects” later in this section.

Missing Objects and Indirect or Dynamic Provision

If the requested object is provided indirectly or dynamically, then linkage can succeed
even if the object is not available for use. This behavior is possible because indirect and
dynamic linkage involve one or more intermediate libraries— aside from the library that
ultimately provides the object. The requested object might be exported by an
intermediate library, and still not be available from the library that is ultimately supposed
to provide the object.

 Using Libraries

8600 0494–506 18–23

For example, suppose client library CL1 imports procedure PROC1 from server library
SL1. Server library SL1 provides PROC1 indirectly by importing it from server library SL2.
Now suppose that server library SL2 is unable to freeze or does not export a procedure
called PROC1. In this case, the system successfully links CL1 to SL1. However, an
error occurs if CL1 attempts to invoke PROC1. CL1 could prevent this error by using the
ISVALID function before invoking PROC1; refer to “Matching Client and Server Library
Procedures” later in this section.

Explicitly Linking to Server Libraries

LINKLIBRARY Function

Because of the possibilities for fatal errors in linking client libraries to server libraries, you
might want to consider using the LINKLIBRARY function to make the linkage. This
function, which is available only in ALGOL, NEWP, and Pascal, makes a conditional
attempt to establish linkage with the server library. If the attempt fails, the function
returns a value indicating the reason for the failure, but no error messages are displayed.
If the attempt succeeds, the function returns a value indicating whether all the import
objects defined in the client program for the client library were really present in the
server library.

LINKLIBRARY Parameters

The LINKLIBRARY function can include the following parameters:

• Substitute values for any of the following library attributes: FUNCTIONNAME,
INTERFACENAME, and TITLE. These values temporarily override any values
previously assigned to these attributes of the client library.

• An option indicating the action to take if the library is not available. The following are
the possible values of this option and their effects:

− DONTWAIT

The linkage attempt proceeds only if a library instance is immediately available
(that is, already frozen or readied by the READYCL function). Otherwise,
LINKLIBRARY returns an error result.

− DONTWAITFORFILE

If a library instance is not available, the system initiates a new instance of the
library code file. If the library code file is also not available, LINKLIBRARY
returns an error result.

− WAITFORFILE

The linkage attempt continues regardless of whether a library instance or library
code file is available. If a library instance is not available, the system initiates a
new instance of the library code file. If the library code file is also not available,
the linking process is suspended with an RSVP message and waits for an
operator response.

Using Libraries

18–24 8600 0494–506

LINKLIBRARY Result

LINKLIBRARY returns a result indicating whether the linkage attempt was successful or
not. The possible LINKLIBRARY results are documented in the ALGOL Programming
Reference Manual, Volume 1: Basic Implementation.

Directly Linking to Server Libraries

Linking a Client Library to a Task Variable

If a process has access to a declaration of a client library and the task variable of a server
library, the process can link the client and server libraries together by specifying the
library declaration and the task variable in the LINKLIBRARY function. This type of
linkage is referred to as direct linkage, because it bypasses the mechanisms that the
system otherwise would use to locate the matching library. When you use direct
linkage, the system ignores the values of the library attributes FUNCTIONNAME,
INTERFACENAME, LIBACCESS, and TITLE.

LINKLIBRARY Syntax

The direct form of the LINKLIBRARY function is available only in ALGOL and NEWP. The
following is an example of such a LINKLIBRARY call:

RSLT := LINKLIBRARY(CLIB1, LIBRARY = TVAR);

In this example, CLIB1 is the client library identifier and TVAR is the task variable of the
server library process. The STATUS of TVAR must be FROZEN for linkage to succeed.

Limits on LINKLIBRARY Options

The direct form of the LINKLIBRARY function cannot include a DONTWAIT/
DONTWAITFORFILE/WAITFORFILE option or any library attribute values.

Previously Specified Library Attributes

Other library attributes such as LIBPARAMETER have the same effects that they do for
implicit or explicit linkages.

Matching Client and Server Library Objects

Matching Import and Export Objects

During the linkage process, the system attempts to establish matches between objects
imported by the client library and objects exported by the server library. The rules
governing this matching are discussed under “Methods of Providing Objects” and “Type
Matching”.

 Using Libraries

8600 0494–506 18–25

Missing Objects Might Not Prevent Linkage

Library linkage can proceed successfully even if the system does not find matches for all
the import objects. However, the following minimum matches must succeed in order
for linkage to take place:

• If any objects are imported, then at least one object must match for linkage to
succeed.

• If the linkage was initiated implicitly, by accessing an import object in an unlinked
library, then a match must be found for that particular import object.

Error When Missing Object Is Used

The system returns an error for a missing object when that object is first used. (In the
case of implicit linkage, these errors can occur at linkage time if they apply to the object
whose usage caused the implicit linkage.)

The following are the errors that the system can return:

• MISSING OBJECT <object name> IN LIBRARY <library name>

No object with the requested name is exported by the server library. The system
discontinues the client process.

• OBJECT <object name> LINKAGE CLASS VIOLATION IN LIBRARY <library name>

The client process lacks the linkage class necessary to use the exported object. The
system discontinues the client process.

• Object <procedure name>: Type or parameter mismatch in interface <client library
identifier> to library <library name>

An export object with the requested name exists, but the type or parameters of the
import and export objects do not match. The system discontinues the client
process. For an explanation of the rules used to match object types and parameters,
refer to “Type Matching” later in this section.

• OBJECT <object name> ACCESS MODE MISMATCH

A client process attempted to import a data object as read-write when the object
was exported as read-only. The system discontinues the client process.

Detecting Whether Objects Are Missing

If the LINKLIBRARY function is used to establish the linkage, the return value indicates
whether there were any problems in finding object matches.

Checking the Availability of an Object

To prevent the possibility of a fatal error when using an imported object, the client
program can use the ISVALID function in ALGOL or NEWP. The ISVALID function
returns a Boolean result indicating whether a given object is valid. For example, the
following statement invokes procedure PROC1 only if that procedure is valid:

IF ISVALID(PROC1) THEN PROC1;

Using Libraries

18–26 8600 0494–506

For imported data, the ISVALID function can check whether the data is available for
reading or for reading and writing. The following statement reads integer J if it is
available, regardless of whether the access mode is read-only or read-write:

IF ISVALID(J) THEN I := J;

The following statement writes to integer J if it is available and the access mode is read-
write.

IF ISVALID(J, READWRITE) THEN J := 43;

Initiating Server Library Processes

Server library processes can be initiated in either of two ways: implicitly, through the
library linkage mechanism, or explicitly, by a process-initiation statement in another
process.

Implicitly Initiating a Server Library

Initiations Caused by Linkage Attempts

If a client process attempts to link to a server library, then in some cases the library
linkage mechanism attempts to initiate a new instance of the server library. This
initiation is referred to as an implicit initiation.

The linkage attempt that causes the implicit initiation could be an explicit linkage, an
implicit linkage, or a direct linkage.

Task Attribute Inheritance

The library process inherits task attributes from the client process if the library is initiated
implicitly and the linkage mode is BYTITLE. The library process inherits the same task
attributes that an ordinary task inherits from its initiator.

If the linkage mode is BYFUNCTION or BYINITIATOR, the library process does not inherit
any attributes from the client process.

Waiting for the Library to Freeze

While the system is performing an implicit initiation, the client process enters a waiting
state. The STATUS task attribute is still ACTIVE, but the stack state in the Y (Status
Interrogate) system command is WAITING ON AN EVENT. The library linkage
mechanism of the operating system automatically initiates the server library program,
which executes normally until it freezes and becomes a server library process. At this
point, the system completes the linkage between the client library and the server library,
and the client process resumes execution.

 Using Libraries

8600 0494–506 18–27

If you do not wish to expose a client process to the potential delay involved in an implicit
initiation, then you should use explicit linkage with the LINKLIBRARY function, and
specify the DONTWAIT option. If a frozen instance of the library is not available, the
LINKLIBRARY function returns with an error result. The following is an example of such
a function:

RSLT:= LINKLIBRARY (LIB1, DONTWAIT);

Libraries with Limited Sharing

Even if an instance of the server library is already frozen, the system might initiate a new
instance of the server library for the client library to link to. For example, if the sharing
option of the server library is PRIVATE, then the system initiates a new instance of the
library for each client library. If the sharing option is SHAREDBYRUNUNIT, then the
system initiates a new instance of the server library program for each run unit that uses
the server library. (Refer to “Controlling Server Library Sharing” for more information.)

Limited Sharing Causes Limited Library Duration

If a PRIVATE or SHAREDBYRUNUNIT server library is initiated through the library linkage
mechanism and the library requests a permanent freeze, the system actually freezes the
library as a temporary library. The system does this because a PRIVATE or
SHAREDBYRUNUNIT library instance can only be linked to by a client library once. Thus,
no purpose would be served by allowing the library instance to linger after the original
client delinks.

Programs That Cannot Become Libraries

If an attempt is made to link a client library to a program that is not capable of becoming
a library, then the library linkage mechanism issues the error “LIBRARY WAS NOT
INITIATED: <library name>” and discontinues the client process. This error can happen,
for example, if the client process attempts to link to an ALGOL program that does not
contain a FREEZE statement.

Waiting for a Delayed Freeze

Because a server library program initially runs as a regular program, the flow of execution
can be such that the execution of a FREEZE statement is conditional and can occur
anywhere in the program. If the library linkage mechanism initiates such a program, and
the client process waits longer than one minute for the library to freeze, the system
displays the following message for the user process:

Waiting For Library (Mix <mix number>) to Freeze

If you miss seeing the original display of this message, you can use the Y (Status
Interrogate) system command. The message appears in the Display line of the Y
command output.

Using Libraries

18–28 8600 0494–506

Libraries That Never Freeze

If the library process terminates without ever having executed a FREEZE statement, the
system returns an error condition. For implicit linkage attempts, this condition causes
the client process to be discontinued and displays the following message:

LIBRARY DID NOT FREEZE: <library name>

For explicit linkage attempts, the LINKLIBRARY function returns an error indication, and
the client process continues execution.

Explicitly Initiating a Server Library

Synchronous Tasks Cannot Freeze

A server library process can be explicitly initiated by a process initiation statement in a
program. However, the resulting process can freeze only if it is an independent process
or an asynchronous dependent process. If the program is initiated as a synchronous
dependent process, by a WFL RUN statement, for example, then when the process
attempts to freeze, it is discontinued with the error “FREEZE FAILED, TASK TYPE NOT
PROCESS OR RUN.”

Freeze Duration

When a server library process is meant to be explicitly initiated, the library should
typically specify a freeze duration of PERMANENT or CONTROL. If the freeze is
TEMPORARY, then the process can freeze successfully only if the process is an internal
process initiated by a PROCESS statement.

Library Sharing

For server libraries that are explicitly initiated, some special considerations apply to the
sharing option. If the sharing option is PRIVATE or SHAREDBYRUNUNIT, then the
server library instance is not directly available to client processes. However, such a
server library instance can serve as a secondary library in a dynamic provision
mechanism. (This type of linkage is discussed under “Dynamic Provision” later in this
section.) If the sharing option is SHAREDBYALL or DONTCARE, then any client process
can link to that server library instance.

Determining How a Library Was Initiated

A server library program can determine whether it was initiated explicitly or by the library
linkage mechanism by interrogating the LIBRARYSTATE task attribute. Bit [0:1] of the
LIBRARYSTATE value stores a 1 if the process was initiated by the library linkage
mechanism. For example, an ALGOL program can use the following expression to
determine whether it was initiated by the library linkage mechanism:

IF BOOLEAN(MYSELF.LIBRARYSTATE) THEN...

 Using Libraries

8600 0494–506 18–29

Monitoring Client Process Linkage

CHANGE Procedures for Server or Client Libraries

Server libraries and client libraries can each specify CHANGE procedures that monitor
changes in the library linkage state. You can specify a CHANGE procedure for only the
client library, for only the server library, for both the client library and the server library,
or for neither.

Declaring a CHANGE Procedure

To use a CHANGE procedure in a server library, you must declare a procedure in the
library that accepts a standard set of parameters from the operating system. You must
also include an EXPORTLIBRARY statement that includes an assignment to the
CHANGE library attribute. The CHANGE attribute specifies the name of the procedure to
be used as the CHANGE procedure. For example, the following ALGOL statement in a
server library specifies that the library is using a CHANGE procedure called CHG1:

EXPORTLIBRARY (CHANGE = CHG1);

To use a CHANGE procedure in a client program, you must declare a procedure with the
required parameters in the client program. You must also assign the procedure name to
the CHANGE attribute in the client library declaration.

When the CHANGE Procedure Is Invoked

The system invokes the CHANGE procedure for the server library whenever any client
process completes linking to the server library or begins delinking from the server library.
The system invokes the CHANGE procedure for the client library whenever that client
process completes linking to or begins delinking from the server library.

Parameters to the CHANGE Procedure

The system passes parameters to each invocation of the CHANGE procedure including
the new linkage state, the reason for the change in linkage state, and an indication of
whether the client process is terminating abnormally. The CHANGE procedure can read
the parameter values but does not return any value itself.

Modifying Global Objects

The CHANGE procedure can modify globally-declared objects such as events in the
program that declared the CHANGE procedure (either the server library or the client
process). These modifications can be used to inform the server library process or client
process of the change in linkage state.

Control Libraries and CHANGE Procedures

If a server library has performed a control freeze, the control procedure can include
statements to monitor and respond to any changes made to global objects by the
CHANGE procedure. If the server library has a permanent or temporary freeze, the
server library cannot directly detect any changes to global objects made by the CHANGE
procedure. However, before the server library performs a permanent or temporary
freeze, the server library could initiate an asynchronous task to monitor changes to global
objects in the library.

Using Libraries

18–30 8600 0494–506

Keeping Track of Client Processes

The CHANGE procedure does not provide any indication to a server library process of
which client process has just linked or delinked. However, the server library process
could keep a running count of the number of linkages and delinkages, and so know how
many client processes are linked at a given time.

Note: A server library cannot determine its current number of clients by reading the
LIBRARYUSERS task attribute inside the CHANGE procedure, because the MYSELF task
variable in a CHANGE procedure does not refer to the server library process.

For a description of the CHANGE procedure, refer to the discussion of the CHANGE
library attribute under “Using Library Attributes” later in this section.

Delinking from Server Libraries

Delinking Libraries Early

The system automatically delinks a client library from a server library when the client
process exits the block in which the client library is declared. However, at times it can
be useful to delink a client library from a server library at an earlier point. For example,
delinking a client process from a server library enables the client process to modify one
or more of the client library attributes. Delinking a client process also allows a temporary
library process to unfreeze and resume execution. With the exception of the AUTOLINK
attribute, none of the attributes of a client library can be modified while the client library
is linked to the server library.

Delinking a library is a very costly operation. For more information, refer to “Overuse of
Delinkage.”

Two features you can use to explicitly delink a client library from a server library are the
DELINKLIBRARY function and the CANCEL statement.

Delinking without Affecting Other Users

The DELINKLIBRARY function delinks the client library from the server library without
affecting any of the other processes using the server library. The server library remains
frozen, unless it is a temporary library and the delinked process was the only process
using the library. The DELINKLIBRARY function is available in ALGOL, NEWP, and
Pascal.

 Using Libraries

8600 0494–506 18–31

Canceling and Unfreezing a Library

The CANCEL statement also delinks the client library from the server library, but has the
following additional effects:

• Delinks any other clients that are currently linked to the library, and discontinues any
of those clients that are doing any of the following:

− Executing a procedure imported from that library.

− Waiting to procure an event imported from that library.

− Using certain UNSAFE features of DMALGOL or NEWP to access objects in the
library.

• Causes the server library process to unfreeze and resume execution as a regular
process. This is true regardless of whether the server library has a permanent or
temporary freeze.

The CANCEL statement is available in ALGOL, COBOL74, COBOL85, and Pascal.

Canceling SHAREDBYALL Libraries Not Allowed

Only server libraries with a sharing option of PRIVATE or SHAREDBYRUNUNIT can be
canceled. An attempt to cancel a client library that is linked to a SHAREDBYALL server
library results in the warning message “CANCEL WARNING, SHARED LIBRARY WAS
DELINKED.” In this case, the client library is delinked as if it had performed a
DELINKLIBRARY function, and the server library process remains frozen unless it is a
temporary library with no other clients.

Canceling SHAREDBYRUNUNIT Libraries

If a client process cancels a client library linked to a SHAREDBYRUNUNIT server library,
then any other client processes in the same run unit that are currently linked to the
server library lose their linkage. The next time one of these processes uses an object in
the server library, the system initiates a new instance of the server library and links the
client library to the new library instance.

Effect on Clients Sharing the Same Declaration

Note that internal tasks of a client process can link to a server library by way of a single
client library declaration, declared globally in the client process. If such an internal task is
using a library object when the parent client process executes a DELINKLIBRARY
function or a CANCEL statement, the internal task is discontinued.

Using Libraries

18–32 8600 0494–506

Creating Connection Library Programs
Connection libraries are a special type of library that can be implemented only in ALGOL
or NEWP. The use of connection libraries provides the following features that are not
available to server libraries:

• A two-way exchange of objects between libraries through a linkage called a
connection.

• The ability of a single program to export more than one library simultaneously.

• The ability to specify multiple connections for a library, where the connections can
lead to different libraries in different programs.

• The ability to monitor and control each connection with another library separately.

• The ability to declare objects that are local to each connection of the library.

When to Use Server Libraries Instead

Connection libraries are a good choice for projects that make use of these special
features. However, if you do not need to use any of these features, you might find it
easier to implement the project using server libraries.

Mixing Connection Libraries, Server Libraries, and Client Libraries

Linkages can exist between connection libraries, between a connection library and a
server library, or between a connection library and a client program. However, to
simplify the explanation, this section generally discusses connection libraries as if they
could link only to other connection libraries. For an overview of linkages between
connection libraries, server libraries, and client programs, refer to “Linking Connection
Libraries, Server Libraries, and Client Programs”.

Connection Library Performance Consideration

When libraries are used for a two-way exchange of objects, such as in the following
cases, the system must execute expensive cleanup code when a library delinks:

• A connection library that both imports and exports objects

• Multiple connection libraries between two stacks, some of which export and some
of which import objects

• Circular libraries

This expense can become extreme when many stacks are included in the process
families. It is advisable to design applications to avoid a two-way exchange of objects
between stacks whenever possible. For more information, refer to “Hazards of Circular
Connections.”

 Using Libraries

8600 0494–506 18–33

Declaring a Connection Library

Connection Blocks

To declare a connection library, you must first declare a connection block. The
connection block is a type declaration that acts as a model for the definition of one or
more connection libraries. The following ALGOL statements define a connection block
called CL_TYPE and two different connection libraries that are based on this connection
block:

TYPE CONNECTION BLOCK CL_TYPE;
 BEGIN
 REAL PROCEDURE PROC1;
 BEGIN
 % Procedure body statements
 END;
 EXPORT PROC1;
 END;

CL_TYPE SINGLE EXPORTING LIBRARY CL_ONE (INTERFACENAME="CLTESTLIB1.");

CL_TYPE EXPORTING LIBRARY CL_TWO (INTERFACENAME="CLTESTLIB2.",
 CONNECTIONS=3);

Connection Libraries Based on the Same Connection Block

The actual connection libraries are CL_ONE and CL_TWO. These two libraries are
completely separate and independent of each other. Nevertheless, the two libraries do
follow a common pattern. Hence, CL_ONE and CL_TWO each export a procedure called
PROC1. To create connection libraries that contain different procedure declarations, you
must base the connection libraries on separate connection blocks.

Multiple Connections of the Same Connection Library

Each connection library supports one or more connections. A connection is used to
establish a linkage between a connection library and another connection library.

Examples of Single and Multiple Connections

In the previous example, library CL_ONE can support only one connection, because
CL_ONE is declared with the keyword SINGLE. The CONNECTIONS attribute cannot be
increased by later assignment statements.

By contrast, library CL_TWO initially supports up to 3 connections, because the SINGLE
keyword is omitted and the CONNECTIONS library attribute is set to 3. The use of 3
connections enables CL_TWO to link to up to 3 other connection libraries. Further,
because the SINGLE keyword is omitted, the CONNECTIONS attribute can be increased
by later assignment statements.

Numbering of Connections

The numbering of connections is zero-relative. Thus, a CONNECTIONS value of 3
enables the use of connections numbered 0 through 2.

Using Libraries

18–34 8600 0494–506

One-Way Connections

The connections defined in these examples only export data. The EXPORTING keyword
is used to specify this and to ensure that this library is only used in one-way connections.
Using the EXPORTING or IMPORTING keyword eliminates your ability to do two-way
data sharing in this program, but has the significant advantage of helping to ensure that
library delinkage does not become an application performance problem.

Establishing Connections

Requesting and Responding Libraries

In any linkage attempt, one library is known as the requesting library, and the other
library is known as the responding library. The same connection library can be used as
the requesting library to establish one of its connections, as well as the responding
library when establishing another of its connections.

Explicit, Implicit, and Direct Linkage

You can establish linkage between connection libraries in any of the following ways:

• Using explicit linkage. In this method, the requesting library process executes a
LINKLIBRARY function, and the responding library process executes a READYCL
function.

• Using implicit linkage. In this method, the requesting library process simply
accesses an import object in an unlinked connection, and the responding library
process executes a READYCL function.

• Using direct linkage. In this method, a process specifies a LINKLIBRARY function
that specifies the identifiers of both the requesting library and the responding library.

Linkage Errors

Linkage errors have different effects, depending on the type of linkage that is used. If an
implicit linkage results in an error, that error is fatal for the client program. On the other
hand, if an explicit or direct linkage results in an error, the error is nonfatal and is
communicated to the client program as a LINKLIBRARY function result.

Matching Libraries

Relative to any connection library, the library on the other end of the connection can be
referred to as the matching library.

Approving and Monitoring Linkages

Each library program can contain APPROVAL and CHANGE procedures that determine
whether to allow the linkage and monitor the status of the linkage.

 Using Libraries

8600 0494–506 18–35

Sharing Instances of Connection Library Programs

Each process that is an execution of the same connection library program is referred to
as an instance of that library program. You use the sharing option of a library program to
tell the system to decide whether to initiate a new instance of the library when the
library is being linked to. You can also initiate connection library programs explicitly
through task initiation statements.

Equal Partnership in Connections

Once two connection libraries are linked, the distinction between requesting and
responding is no longer meaningful. Both libraries are equal partners in the connection,
and each can import objects from or export objects to the matching library. Further,
either side can sever the connection, as described in “Delinking Connection Libraries”.

The following pages describe each of these connection library features in more detail.

Explicitly Linking Connection Libraries

Required Steps for Linking Libraries

To explicitly link two libraries, you must assign appropriate library attributes to each
library, code an appropriate LINKLIBRARY function for the requesting library, and code a
READYCL function for the responding library.

Order of LINKLIBRARY and READYCL Functions

Either the LINKLIBRARY function or the READYCL function can be executed first. If the
LINKLIBRARY function is executed first, then the requesting library program might be
delayed while the system waits for the responding library to execute the READYCL
function.

Assigning Connection Library Attributes

For linkage to occur, you must assign library attributes to both the requesting and the
responding libraries. However, different library attributes are required in each case.

Using Libraries

18–36 8600 0494–506

Attributes for the Requesting Library

The following attributes of the requesting library affect linkage. For descriptions of these
and other library attributes, refer to “Using Library Attributes” later in this section.

Library Attribute Value and Meaning

LIBACCESS Specifies how the system is to search for the code file of the
responding library. The following are the possible values and their
meanings:

• BYTITLE

The responding library code file is searched for by the value
stored in the TITLE library attribute.

• BYFUNCTION

The responding library code file is searched for by the value
stored in the FUNCTIONNAME library attribute.

• BYINITIATOR

The requesting library must be part of a process that was
either initiated by another library process, or initiated by the
library linkage mechanism after being invoked by another
library. In either case, the BYINITIATOR value causes the
requesting library to be linked to the library that originally
initiated this instance of the requesting library.

FUNCTIONNAME If LIBACCESS = BYFUNCTION, specifies the SL function name of
the responding library code file. If FUNCTIONNAME is not
explicitly assigned, it defaults to the value stored in the INTNAME
library attribute.

TITLE If LIBACCESS = BYTITLE, specifies the title of the library code file.
If TITLE is not explicitly assigned, it defaults to the value stored in
the INTNAME library attribute.

INTERFACENAME Specifies which connection library to use in the code file of the
responding library. It must match the INTERFACENAME value of
the responding library.

The INTERFACENAME values must match, even if the responding
library program contains only one connection library and regardless
of whether the LIBACCESS value is BYTITLE, BYFUNCTION, or
BYINITIATOR.

If INTERFACENAME is not explicitly assigned, it defaults to the
value stored in the INTNAME library attribute.

The INTERFACENAME value is used only for implicit and explicit
linkages; it is ignored for direct linkages.

 Using Libraries

8600 0494–506 18–37

Linking Connections to Different Libraries

To cause the various connections of the requesting library to link to different responding
libraries, you must vary these library attributes in one of the following ways:

• By specifying substitute values for library attributes in the LINKLIBRARY function.
You can specify values for FUNCTIONNAME, TITLE, or INTERFACENAME in this
function.

• By assigning different library attributes to the requesting library before each
LINKLIBRARY invocation.

Attributes for the Responding Library

The following attributes of the responding library affect linkage. For detailed descriptions
of these and other library attributes, refer to “Using Library Attributes” later in this
section.

LIBACCESS, FUNCTIONNAME, and TITLE are not used for linkage attempts when this
library is the responding library. For INTERFACENAME, a different INTERFACENAME
value should be assigned to each connection library in the responding connection library
program, so that each library has a unique identification. When a requesting library
attempts to link to a responding library, the system selects the responding library with an
INTERFACENAME value matching that of the requesting library.

If INTERFACENAME is not explicitly assigned, it defaults to the value stored in the
INTNAME library attribute.

Note: The preceding attributes are ignored for direct linkages.

Attribute Assignment Examples

The following are examples of attribute assignments in ALGOL:

SERVER_CL_TYPE LIBRARY SERVER_CL(CONNECTIONS = 10,
 LIBACCESS = BYFUNCTION,
 INTERFACENAME = "SECONDLINK.");

LIBRARY (SERVER_CL).CONNECTIONS := 10;
LIBRARY (SERVER_CL).LIBACCESS := VALUE(BYFUNCTION);
REPLACE LIBRARY(SERVER_CL).INTERFACENAME BY "SECONDLINK.";

Using Libraries

18–38 8600 0494–506

Using LINKLIBRARY for the Requesting Library

LINKLIBRARY Parameters

You can use the LINKLIBRARY function to explicitly initiate linkage of the requesting
connection library to another connection library. The LINKLIBRARY function can include
the following parameters:

Parameter Description

Connection Library Specifier For non-SINGLE connection libraries, the connection library
specifier can include a connection index. Alternatively, you can
use the APPROVAL procedure to select the connection.

Note that the index specifies only the connection to use in the
requesting library. The requesting library cannot anticipate, and
does not need to know, what connection index of the
responding library it will be linked to. The requesting library
connection links to an unused connection index in the
responding library, unless the responding library has an
APPROVAL procedure that specifies a particular connection
index.

DONTWAIT/
DONTWAITFORFILE/
WAITFORFILE Option

This option indicates the action to take if the matching library is
not available. The following are possible values of this option
and their effects:

• DONTWAIT

The linkage attempt proceeds only if a library instance is
immediately available (that is, already frozen or readied by
the READYCL function). Otherwise, LINKLIBRARY returns
an error result.

• DONTWAITFORFILE

If a library instance is not available, the system initiates a
new instance of the library code file. If the library code file
is also not available, LINKLIBRARY returns an error result.

• WAITFORFILE

The linkage attempt continues regardless of whether a
library instance or library code file is available. If a library
instance is not available, the system initiates a new instance
of the library code file. If the library code file is also not
available, the linking process is suspended with an RSVP
message and waits for an operator response.

Attribute Values Substitute values for any of the following library attributes:
FUNCTIONNAME, INTERFACENAME, or TITLE. These values
temporarily override any values previously specified for these
attributes.

Required Versus Optional Parameters

Of these parameters, only the connection library specifier is required. The DONTWAIT/
DONTWAITFORFILE/ WAITFORFILE parameter and the library attribute values are
optional.

 Using Libraries

8600 0494–506 18–39

LINKLIBRARY Result

LINKLIBRARY returns a result indicating whether the linkage attempt was successful or
not. The possible LINKLIBRARY results are documented in the ALGOL Programming
Reference Manual, Volume 1: Basic Implementation.

LINKLIBRARY Example

The following ALGOL program fragment declares a connection library and then executes
a LINKLIBRARY function to initiate linkage to another connection library:

EBCDIC ARRAY ARR[0:35];
REAL RSLT;

TYPE CONNECTION BLOCK TEST1;
 BEGIN
 PROCEDURE PROC2;
 BEGIN
 % Procedure body statements
 END;
 EXPORT PROC2;
 END;

TEST1 EXPORTING LIBRARY CL1 (LIBACCESS = BYTITLE, TITLE = "OBJECT/CLTEST.",
 CONNECTIONS = 3);

REPLACE ARR BY "CLTEST.";
RSLT:= LINKLIBRARY (CL1[0], WAITFORFILE, INTERFACENAME = ARR);

In this example, the LINKLIBRARY function attempts to link connection 0 of CL1 to the
library with an INTERFACENAME of CLTEST in the connection library program
OBJECT/CLTEST. If program OBJECT/CLTEST is not available, then this process is
suspended with an RSVP message.

In response to the LINKLIBRARY function, the system initiates OBJECT/CLTEST, if
necessary. Then the system waits for OBJECT/CLTEST to ready connection library
CLTEST. Thereafter, the system can complete the linkage.

Using READYCL for the Responding Library

READYCL Compared to FREEZE

For the responding connection library, the READYCL function indicates that the export
objects in the connection library are now available. Thus, READYCL serves a purpose
roughly similar to that of a FREEZE statement in a server library. However, unlike the
FREEZE statement, the READYCL function never halts execution of the connection
library program. Nor does the READYCL function offer any equivalent to the
PERMANENT, TEMPORARY, and CONTROL options of the FREEZE statement.

Using Libraries

18–40 8600 0494–506

READYCL Syntax

Unlike the LINKLIBRARY function, the READYCL function applies to the whole
connection library instead of to a single connection. READYCL also returns a real value
as a result. Thus, for a connection library named CL1 and a real variable named RSLT,
the following ALGOL statement could be used:

RSLT:= READYCL (CL1);

READYCL Result

Field [15:16] of the return value stores the result of the operation. A zero indicates
success. Odd numbers are errors, which indicate that the function failed. Even
numbers are reserved for future use. The possible READYCL results are documented in
the ALGOL Programming Reference Manual, Volume 1: Basic Implementation.

READYCL Example

The following statements in OBJECT/CLTEST declare library CL1 and ready it.

TYPE CONNECTION BLOCK TEST1;
 BEGIN
 PROCEDURE PROC2;
 IMPORTED;
 PROCEDURE PROC1;
 BEGIN
 % Procedure body statements
 END;
 EXPORT PROC1;
 END;

REAL RYRSLT;

TEST1 SINGLE LIBRARY CL2 (INTERFACENAME="CLTEST.");

RYRSLT:= READYCL (CL2);

In the preceding example, the READYCL function makes it possible for another
connection library to be linked to this one.

Reversing a READYCL Action

You can reverse the effects of the READYCL function by using the UNREADYCL
function, as discussed in “Unreadying a Connection Library”.

 Using Libraries

8600 0494–506 18–41

Implicitly Linking Connection Libraries

Implicit linkage can occur if a process accesses an import object in a connection and no
matching library has yet been linked to that connection.

Example of Causing Implicit Linkage

For example, suppose a connection library LIB1 has import declarations for three
procedures: PROC1, PROC2, and PROC3. Suppose also that LIB1 has two connections,
and the connection library process uses the LINKLIBRARY function to initiate linkage for
connection 0. The connection library process then invokes PROC2 in connection 1.
Note that, at this point, connection 1 has not yet been linked to a matching library.

AUTOLINK Library Attribute

The AUTOLINK library attribute determines what happens at this point. If AUTOLINK is
FALSE (the default value), then the attempt to invoke PROC2 fails with a fatal run-time
error. If AUTOLINK is TRUE, then the system proceeds with an attempt to link the
connection to a matching library. The system uses library attributes to search for the
match, as previously described in “Assigning Connection Library Attributes”.

READYCL Function Required

For linkage to reach completion, the matching library must be readied by a READYCL
function, as described in “Using READYCL for the Responding Library”.

Missing Library

If the matching library program is not ready or otherwise cannot be found, the invoking
process becomes suspended at this point. If the LIBACCESS value is BYTITLE, then a
“NO LIBRARY” message is displayed as the RSVP message. If the LIBACCESS value is
BYFUNCTION, and the FUNCTIONNAME library attribute requests a function name that
does not exist, the RSVP message is “FUNCTION <function name> IS NOT DEFINED,
SL, FA, OR DS.”

Missing Objects

If the matching library program is found, the system links the requesting library to an
existing instance of the matching library program or initiates a new instance as discussed
under “Implicitly Initiating a Connection Library” later in this section. The system then
checks to see if the requested object is exported by the matching library. If the
requested object is not available, the system returns one of the errors discussed in
“Matching Connection Library Objects”.

Directly Linking Connection Libraries

If a process has access to the declarations of two different connection libraries, the
process can link the libraries together by specifying both library identifiers in the
LINKLIBRARY function. This type of linkage is referred to as direct linkage, because it
bypasses the mechanisms that the system otherwise would use to locate the matching
library.

Using Libraries

18–42 8600 0494–506

Syntax for Direct Linkage

The direct form of the LINKLIBRARY function is available in both ALGOL and NEWP.
The following is an example of such a LINKLIBRARY call:

RSLT := LINKLIBRARY(CLIB1, LIBRARY = CLIB2);

Specifying a Connection Index

In this example, CLIB1 and CLIB2 are both connection library identifiers. Optionally, you
can include a connection index for either or both of the connection libraries, as in the
following example:

RSLT := LINKLIBRARY(CLIB1[1], LIBRARY = CLIB2[3]);

Requesting and Responding Library

The system treats the first library (CLIB1) as the requesting library and the second library
(CLIB2) as the responding library.

READYCL Not Necessary

It is not necessary to ready the responding library with the READYCL function.

Most Library Attributes Ignored

When you use direct linkage, the system ignores the values of the library attributes
FUNCTIONNAME, INTERFACENAME, LIBACCESS, and TITLE.

LINKLIBRARY Parameters Restricted

The direct form of the LINKLIBRARY function cannot include a DONTWAIT/
DONTWAITFORFILE/WAITFORFILE option or any library attribute values.

APPROVAL Procedure Skipped

The system omits executing the APPROVAL procedure for either library unless the
APPROVAL procedure is needed to determine the connection index. That is, the system
executes the APPROVAL procedure for either library only if that library supports multiple
connections and no connection index was specified for that library in the LINKLIBRARY
statement.

Note that the LIBPARAMETER library attribute provides input to the APPROVAL
procedure. If the APPROVAL procedure is going to be skipped, there is no point in
assigning a LIBPARAMETER value.

Other Library Attributes

Other library attributes such as CHANGE and LIBPARAMETER have the same effects
that they do for implicit or explicit linkages.

 Using Libraries

8600 0494–506 18–43

Controlling Connection Library Sharing

SHARING Option

You can use the compiler control option SHARING to specify whether one or many
processes can link to the same instance of a connection library. The SHARING option
has the same range of values for connection libraries that it does for server libraries. The
meanings are also roughly the same.

Responding Library Determines Sharing

When one connection library links to another, the SHARING option of the responding
library determines whether a new library instance is created.

Same Sharing for All Libraries in a Program

Because the SHARING option can be specified only once in a program (at the start), all
the connection libraries in a single program use the same SHARING value.

The following paragraphs explain the special implications that each SHARING value has
for a connection library.

SHARING = PRIVATE

The system initiates a separate instance of the connection library program each time a
process attempts to link to any connection library in the program. Even if two processes
link to different connection libraries in the PRIVATE library program, the system still
initiates two separate instances of the PRIVATE library program. As a result, processes
linking to a connection library in the PRIVATE library program will never use more than
the first connection specified for that library

However, the PRIVATE library program could itself use repeated LINKLIBRARY functions
to create multiple connections between a connection library and other libraries.

The PRIVATE sharing option is less useful for connection libraries than it is for server
libraries, because SHAREDBYALL connection libraries can use connection objects to
store data that is different for each user. Refer to “Connection Objects in Connection
Libraries”.

SHARING = SHAREDBYALL

All processes that link to the library program share the same instance of the library. If
one such process changes the value of a global object in the library, the next process
that interrogates the global object receives the changed value. However, if one such
process changes the value of a connection object in the library, the change is visible only
to the process that is linked through that connection. The SHAREDBYALL option is the
SHARING option typically used for connection library programs

The SHAREDBYALL option should not typically be used for connection libraries that have
the SINGLE keyword. The SHAREDBYALL option ensures that all processes that link to
the library will access the same library instance, but the SINGLE keyword ensures that
only one connection is available for linking to that library instance. Therefore, only one
process at a time can be linked to the library. If any other process attempts to link to the

Using Libraries

18–44 8600 0494–506

connection library when the library is already in use, the linkage attempt fails
immediately and returns an error result.

SHARING = SHAREDBYRUNUNIT

This value cannot be used for connection libraries. If a program has SHARING =
SHAREDBYRUNUNIT, then any attempt to perform a READYCL function for a
connection library declared in that program results in a runtime error.

SHARING = DONTCARE

This option is a nonpreferred synonym for SHAREDBYALL

Default SHARING Value

If a connection library program does not include the SHARING compiler control option,
then the compiler assigns a default SHARING option of SHAREDBYALL to the program.

Approving a Connection

APPROVAL Procedure

Connection libraries can optionally include a procedure to determine whether any given
process should be permitted to link to the library. This procedure is called the
APPROVAL procedure. If there is an APPROVAL procedure, you must include an
APPROVAL attribute assignment in the connection library declaration. The APPROVAL
attribute specifies the name of the procedure to be used as the APPROVAL procedure.
The APPROVAL procedure itself must be declared outside the connection library.

Dual APPROVAL Procedures

When a connection library attempts to link to another connection library, there can be
two different APPROVAL procedures involved. Each connection library program can
contain its own APPROVAL procedure, and each connection library declaration can
contain its own APPROVAL attribute assignment. The APPROVAL procedure declared
by the requesting library process is executed before the APPROVAL procedure declared
by the responding library process.

Parameters to the APPROVAL Procedure

The system passes parameters to the APPROVAL procedure including the task variable
of the process that declared the matching library and the LIBPARAMETER attribute
specified by the matching process, if any. The APPROVAL procedure can read the task
attributes and the LIBPARAMETER value. The APPROVAL procedure then returns a real
value indicating whether linkage is permitted. The APPROVAL procedure for either
library can also select which connection to use for that end of the linkage. If the
APPROVAL procedure does not permit linkage, then the system does not link the two
processes together.

For a description of the APPROVAL procedure, refer to the discussion of the APPROVAL
library attribute under “Using Library Attributes” later in this section.

 Using Libraries

8600 0494–506 18–45

APPROVAL Procedure Example

The following ALGOL example declares and readies a connection library, CL1. The
APPROVAL procedure in the example ensures that only processes with a given
usercode are allowed to link to the connection library:

TYPE CONNECTION BLOCK TEST1;
 BEGIN
 PROCEDURE PROC1;
 BEGIN
 % Procedure body statements
 END;
 EXPORT PROC1;
 END;

REAL PROCEDURE CL1_APPROV (OWNER, LIBPAR, LEN, WAIT);
 VALUE LEN, WAIT;
 TASK OWNER;
 EBCDIC ARRAY LIBPAR[*];
 INTEGER LEN;
 BOOLEAN WAIT;
 BEGIN
 EBCDIC ARRAY UC[0:17];
 REPLACE UC BY OWNER.USERCODE;
 IF UC = "TRUSTME." THEN
 CL1_APPROV.[47:4]:= 2 % Allow linkage; MCP chooses connection.
 ELSE
 BEGIN
 CL1_APPROV.[47:4]:= 3; % Forbid linkage
 CL1_APPROV.[38:39]:= 510; % Notify that a bad usercode was used.
 % Meaning of this value is established
 % by convention between the applications.
 END;
 END;

TEST1 LIBRARY CL1 (INTERFACENAME="CLTEST.", CONNECTIONS = 10,
 APPROVAL = CL1_APPROV);

RYRSLT:=READYCL (CL1);

Monitoring Connection State

A program can monitor the status of a connection in either of two ways: by using the
STATE connection attribute or the CHANGE library attribute.

Checking the Current State

The STATE attribute is a read-only attribute that returns the current state of a connection.
The possible mnemonic values are NOTLINKED, LINKING, LINKED, or DELINKING. The
following ALGOL statement checks the state of connection 4 of connection library CL1:

IF LIBRARY(CL1[4]).STATE = VALUE(LINKED) THEN...

Using Libraries

18–46 8600 0494–506

Notification of Changes

The STATE attribute returns the current state of a connection at the time that you
interrogate the attribute. By contrast, the CHANGE attribute allows you to arrange for
automatic notification whenever any connection happens to change state.

CHANGE Procedure

The CHANGE attribute specifies the name of a procedure called the CHANGE procedure.
You must implement this procedure yourself, including the standard set of parameters.
The CHANGE procedure, if there is one, must be declared within the connection block of
the connection library.

Transition to New State

Whenever the linkage state of any connection to the library changes, the system calls
the CHANGE procedure. Note that the connection cannot fully transition to the new
state until the CHANGE procedure exits. Therefore, when you design a CHANGE
procedure, you should be careful to ensure that the CHANGE procedure exits quickly.
For example, the CHANGE procedure should not wait for a port file read or for an event
that might never be caused.

Dual CHANGE Procedures

When a particular connection changes state, there can be two different CHANGE
procedures involved: one associated with the requesting library and one associated with
the responding library. The requesting library is the library that caused the linkage or
delinkage. The responding library is the library on the receiving end of the linkage or
delinkage. Note that the library that is requesting during the linkage process might be
responding during the delinkage process, and vice versa. The CHANGE procedure
declared by the requesting library is executed before the CHANGE procedure declared
by the responding library.

Parameters to CHANGE Procedure

The system passes the following information as parameters to the CHANGE procedure:

• The index of the connection that has changed state

• The new linkage state

• The reason for the change in linkage state

• The task variable of the active library process (the process that caused the change in
linkage state)

• An indication of whether the active library is terminating abnormally

Results Returned by CHANGE Procedure

The CHANGE procedure can read the parameter values, but does not return any value
itself. However, the CHANGE procedure can modify globally-declared objects in the
connection library program where it is declared. These objects can include event
variables. These modifications can be used to inform the connection library of the
change in linkage state.

 Using Libraries

8600 0494–506 18–47

For a description of the CHANGE procedure, refer to the discussion of the CHANGE
library attribute under “Using Library Attributes” later in this section.

CHANGE Procedure Example

The following ALGOL statements declare a connection library called CL1 with a CHANGE
procedure called CL1_CHG. An underlying assumption is that each connection of the
library might be linked to and delinked from repeatedly. The CL1_CHG procedure
increments the value of connection object LINKNUM each time a process completes
linkage through that connection. Note that, because LINKNUM is declared in the
connection block, the system creates a separate instance of LINKNUM for each
connection. Each instance of LINKNUM thus keeps a running count of the number of
times that connection has been used to link to CL1.

INTEGER GLOBALINT;
REAL RSLT;

TYPE CONNECTION BLOCK TEST1;
 BEGIN

 INTEGER LINKNUM;

 PROCEDURE CL1_CHG (CONN_INDEX, NEW_STATE, REASON, ACTOR, IMDSED);
 VALUE CONN_INDEX, NEW_STATE, REASON, IMDSED;
 INTEGER CONN_INDEX, NEW_STATE, REASON;
 TASK ACTOR;
 BOOLEAN IMDSED;
 BEGIN
 IF NEW_STATE = VALUE(LINKED) THEN
 LINKNUM:= * + 1;
 END;

 PROCEDURE PROC1;
 BEGIN
 % Procedure body statements
 END;

 EXPORT PROC1;

 END;

TEST1 LIBRARY CL1 (INTERFACENAME="CLTEST.", CONNECTIONS = 10,
 CHANGE = CL1_CHG);

RSLT:= READYCL(CL1);

Note that the CL1_CHG procedure in the preceding example updates only a connection
object. If CL1_CHG updated a global object (such as GLOBALINT in the preceding
example), then the possibility would arise that more than one invocation of CL1_CHG
might be attempting to update the global object at the same time. To prevent updates

Using Libraries

18–48 8600 0494–506

from overwriting each other, you would need to add a timing mechanism involving the
use of PROCURE and LIBERATE statements and a shared global event.

Matching Connection Library Objects

As part of the linkage process resulting from a LINKLIBRARY request, the system
checks to see whether the objects imported and exported by the requesting library and
the responding library match up.

Missing Objects during Linkage

Ideally, for each object imported by one library, an exported object of the same name
should be declared by the other library. However, library linkage can succeed even if the
system does not find matches for some of the imported and exported objects. The
following minimum object matches must succeed in order for linkage to take place:

• If any objects are imported on either side, then a minimum of one object must
match.

• If the linkage was initiated implicitly, by invoking an import object in an unlinked
library, then a match must be found for that particular import object.

Error When Missing Object Is Used

The system returns an error for a missing object when that object is first used. (In the
case of implicit linkage, these errors can occur at linkage time if they apply to the object
whose usage caused the implicit linkage.)

The following are the errors that the system can return:

• MISSING OBJECT <object name> IN LIBRARY <library name>

No object with the requested name is exported by the matching library. The system
discontinues the importing process.

• OBJECT <object name> LINKAGE CLASS VIOLATION IN LIBRARY <library name>

The importing process lacks the linkage class necessary to use the exported object.
The system discontinues the importing process.

• Object <procedure name>: Type or parameter mismatch in interface <client library
identifier> to library <library name>

An export object with the requested name exists, but the type or parameters of the
import and export objects do not match. The system discontinues the importing
process. For an explanation of the rules used to match object types and parameters,
refer to “Type Matching” later in this section.

• OBJECT <object name> ACCESS MODE MISMATCH

A process attempted to import a data object as read-write when the object was
exported as read-only. The system discontinues the importing process.

 Using Libraries

8600 0494–506 18–49

Checking the Availability of an Object

To prevent the possibility of a fatal error when using an imported object, the library can
use the ISVALID function in ALGOL or NEWP. The ISVALID function returns a Boolean
result indicating whether a given object is valid. For example, the following statement
invokes procedure PROC1 only if that procedure is valid:

IF ISVALID(PROC1) THEN PROC1;

For imported data, the ISVALID function can check whether the data is available for
reading or for reading and writing. The following statement reads integer J if it is
available, regardless of whether the access mode is read-only or read-write:

IF ISVALID(J) THEN I := J;

The following statement writes to integer J if it is available and the access mode is read-
write.

IF ISVALID(J, READWRITE) THEN J := 43;

Initiating Connection Libraries

Connection library processes can be initiated in either of two ways: implicitly, because of
a LINKLIBRARY function, or explicitly, by a process-initiation statement in another
process.

Implicitly Initiating a Connection Library

Library Linkage Mechanism

If a connection library process attempts to link to another connection library, and no
appropriate instance of the responding connection library is currently available, then the
requesting library process enters a waiting state. The STATUS task attribute is still
ACTIVE, but the stack state in the Y (Status Interrogate) system command is WAITING
ON AN EVENT. The library linkage mechanism of the operating system automatically
initiates the program containing the responding connection library. The responding
connection library program executes normally and at some point executes a READYCL
function for the connection library. At this point, the system completes the linkage
between the requesting library and the responding library, and the requesting library
process resumes execution.

Multiple Library Instances

Even if an instance of the responding connection library program is already available, the
system might initiate a new instance of the library program for the requesting library to
link to. For example, if the sharing option of the connection library is PRIVATE, then the
system initiates a new instance of the connection library program each time a process
attempts to link to the connection library.

Using Libraries

18–50 8600 0494–506

SHAREDBYALL Libraries with All Connections in Use

If the requesting library attempts to link to a responding library program that is
SHAREDBYALL, and no connections of the responding library are available for use, the
linkage attempt fails immediately and returns an error result. The system does not
initiate a new instance of the responding library program.

Programs That Cannot Become Libraries

If the process attempts to link to a program that is not capable of becoming either a
server library or a connection library, then the library linkage mechanism issues the error
“LIBRARY WAS NOT INITIATED: <library name>.” This error can happen, for example, if
the client process attempts to link to an ALGOL program that does not contain a FREEZE
statement or a READYCL function.

Programs That Never READYCL or FREEZE

Because a library program initially runs as a regular program, the flow of execution can
be such that the execution of a READYCL function or FREEZE is conditional. If the
library linkage mechanism initiates such a program, and the resulting process terminates
without ever having executed a READYCL function or FREEZE statement, the library
linkage fails and the LINKLIBRARY function returns an error.

Explicitly Initiating a Connection Library

Process Initiation Statements

A program containing connection libraries can be explicitly initiated by a process initiation
statement, just like any other program.

Types of Library Processes

Connection library programs can be initiated as any type of process: independent,
synchronous dependent, or asynchronous dependent. (By contrast, server libraries
cannot be initiated as synchronous dependent processes.)

Internal Tasks

In ALGOL programs, an internal procedure can be initiated as a task and can later
participate in connection library linkages by executing READYCL or LINKLIBRARY
functions. NEWP programs marked with UNSAFE(TASKING) status also have this
capability. However, to simplify this discussion, this section discusses connection library
processes as if they were always executions of an entire program

Sharing Option

For connection library programs that are explicitly initiated, some special considerations
apply to the sharing option. If other processes need to be able to link to the connection
library instance, then a sharing option of SHAREDBYALL must be used. However, the
connection library program can initiate linkages to other processes regardless of whether
its own sharing value is SHAREDBYALL, PRIVATE, or SHAREDBYRUNUNIT.

 Using Libraries

8600 0494–506 18–51

Determining How the Program Was Initiated

A connection library program can determine whether it was initiated explicitly or by the
library linkage mechanism by interrogating the LIBRARYSTATE task attribute. Bit [0:1] of
the LIBRARYSTATE value stores a 1 if the process was initiated by the library linkage
mechanism.

Unreadying a Connection Library

Preventing Further Linkages

You can use the UNREADYCL function to make a given connection library unready for
new linkages. While a connection library is unready, it cannot serve as the responding
side in an implicit or explicit linkage attempt. However, an unready connection library
can serve as the responding side in a direct linkage attempt or as the requesting side in
any type of linkage attempt.

UNREADYCL has no effect on existing linkages.

Compare with READYCL Function

UNREADYCL performs a function opposite to that performed by the READYCL function,
as discussed in “Using READYCL for the Responding Library,” earlier in this section.
You can use these functions to ready and unready a connection library repeatedly.

Delinking Connection Libraries

Delinkage Due to Block Exits

The system automatically delinks two connection libraries when a process exits a block
in which one of the connection libraries is declared.

Requesting Delinkage

Alternatively, either of the linked library processes can use the DELINKLIBRARY function
to delink the connection. When used with connection libraries, the DELINKLIBRARY
function affects only one connection and must specify a particular connection index or a
SINGLE connection library. DELINKLIBRARY also provides two options for connection
libraries that are not available for server libraries: the ORDERLY/ABORT option and the
WAIT/DONTWAIT option.

Delinking a library is a very costly operation. For more information, refer to “Overuse of
Delinkage.”

Using Libraries

18–52 8600 0494–506

ORDERLY/ABORT Option

The ORDERLY/ABORT option indicates what to do if any objects exported through this
connection from either side are currently being used. The following are the possible
values and their meanings:

• A value of ORDERLY indicates that the delinkage is delayed until none of the
exported objects are in use. The ORDERLY value also prevents any new access to
the exported objects while delinkage is taking place. ORDERLY is the default value
of the ORDERLY/ABORT option.

• A value of ABORT causes any processes using objects exported through this
connection to be discontinued (possibly including the process that invoked
DELINKLIBRARY). The discontinued processes receive a HISTORYCAUSE task
attribute value of 2 (PROGRAMCAUSEV) and a HISTORYREASON task attribute
value of 101 (LIBCANCELERRV).

WAIT/DONTWAIT Option

The WAIT/DONTWAIT option indicates when control should return from the
DELINKLIBRARY function. The following are the possible values and their meanings:

• A value of WAIT specifies that the DELINKLIBRARY function does not finish until the
delinkage is complete. WAIT is the default value of the WAIT/DONTWAIT option.

• A value of DONTWAIT specifies that the DELINKLIBRARY function finishes as soon
as it has initiated the delinkage. If the DONTWAIT value is used, the program can
later interrogate the connection attribute STATE to determine if delinkage has
completed. Alternatively, the program can issue another DELINKLIBRARY call,
perhaps with the WAIT value specified.

Using PROLOG and EPILOG Procedures

A connection block declaration can contain two special types of procedures: a PROLOG
procedure, an EPILOG procedure, or both. These procedures are available in both
ALGOL and NEWP.

PROLOG Procedures

For each connection in any connection library based on that connection block TYPE, the
PROLOG procedure is executed the first time that connection is used in any way. The
first use of a connection might occur in any of the following ways:

• The connection might be specified in a LINKLIBRARY statement in the same
program.

• A statement elsewhere in the same program might access an object in the
connection library. The object might be an imported object or a local object.

• Another connection library might initiate a linkage to this one.

 Using Libraries

8600 0494–506 18–53

EPILOG Procedures

By contrast, an EPILOG procedure specifies the actions performed for each connection
just before the connection block is deleted. The connection block is deleted when a
program exits the procedure (or outer block) in which the connection block is declared.
A separate instance of the EPILOG procedure is executed for each active connection of
each connection library that is based on that connection block. In this context, a
connection is considered active if it is currently linked or was previously linked and then
delinked. (If a particular connection was declared, but never used, then the EPILOG
procedure is not executed for that connection.)

Uses Outside Connection Blocks

PROLOG and EPILOG procedures can also be declared in structure blocks, where they
behave similarly to the way they behave for connection blocks. Furthermore, EPILOG
procedures can be declared in any procedure, and specify actions to be performed when
the procedure is exited (refer to “Using EPILOG and EXCEPTION Procedures” in
Section 16, “Using Events and Interlocks”).

Order of Execution for EPILOG Procedures

A connection block EPILOG procedure is executed before any EPILOG procedure for the
procedure that declares the connection block.

PROLOG and EPILOG Example

The following ALGOL example includes various combinations of PROLOG and EPILOG
procedures:

100 PROCEDURE OUTERPROC;
110 BEGIN
115 EBCDIC ARRAY LIBF[0:23];
120
130 EPILOG PROCEDURE OUTER_EPILOG;
140 BEGIN
150 % Procedure body statements
160 END;
170
180 TYPE CONNECTION BLOCK CL_TYPE;
190 BEGIN
200 INTEGER CONN_INT;
210
220 PROLOG PROCEDURE CL_PROLOG;
230 BEGIN
240 % Procedure body statements
250 END;
260
270 EPILOG PROCEDURE CL_EPILOG;
280 BEGIN
290 % Procedure body statements
300 END;
310
320 PROCEDURE CL_INIT(I);
330 INTEGER I;

Using Libraries

18–54 8600 0494–506

340 BEGIN
350 CONN_INT:= I;
360 END;
370
380 PROCEDURE CL_EXP;
390 BEGIN
400 % Procedure body statements
410 END;
420 EXPORT CLEXP;
430 END;
440
450 CL_TYPE LIBRARY CL1 (LIBACCESS=BYFUNCTION, FUNCTIONNAME="F1.",
455 CONNECTIONS=3);
460
470 % End declarations, begin statements of procedure OUTERPROC
480 CL1[0].CL_INIT(5);
485 REPLACE LIBF BY "CLTEST1.";
490 LINKLIBRARY (CL1[0], WAITFORFILE, INTERFACENAME = LIBF);
500 REPLACE LIBF BY "CLTEST2.";
510 LINKLIBRARY (CL1[1], WAITFORFILE, INTERFACENAME = LIBF);
520
530 END OUTERPROC;

In the preceding example, the statement at line 480 is the first statement to use
connection 0, and therefore causes the CL_PROLOG procedure to be executed for
connection 0. The statement at line 510 causes the CL_PROLOG procedure to be
executed for connection 1. The CL_PROLOG procedure is never executed for
connection 2, because connection 2 is never actually used in this example.

When the OUTERPROC procedure is being exited, the system invokes separate
instances of the CL_EPILOG procedure for connections 0 and 1. CL_EPILOG is not
invoked for connection 2, because connection 2 is never used in this example. Then the
system invokes the OUTER_EPILOG procedure. OUTER_EPILOG is executed only once,
because OUTER_EPILOG is associated with the procedure OUTERPROC rather than
with the connection block CL_TYPE.

Using Connection Library Objects

Like server libraries, connection libraries provide access to objects that are local to
exported procedures, objects that are global to such procedures, and data objects that
are explicitly exported. However, connection libraries also support objects that are local
to a particular connection. The following pages explain the differences between these
various types of objects.

 Using Libraries

8600 0494–506 18–55

Global Objects in Connection Libraries

Scope of Global Objects

The global objects for a connection library consist of all the objects that are visible to the
connection library but that are declared outside of the connection block. The rules
governing the scope of declarations in ALGOL are discussed under “Communication
through Global Objects in ALGOL” in Section 15, “Using Global Objects.” The same
scope rules apply to NEWP programs.

Interprocess Communication and Timing

The use of global objects in connection libraries provides a flexible tool for interprocess
communication, with the same advantages previously described for server libraries
under “Global Objects in Server Libraries.” The use of global objects also makes it
necessary to consider using events or other such mechanisms to regulate the timing of
processes that use a global object.

Global Object Example

Procedures in a connection library can read or change the values of global objects. Any
changes are visible to later invocations of the same or different procedures in the same
or different connections of that library. The following DMALGOL example includes a
connection library procedure PROC1 making changes to the global object GLOBINT:

BEGIN

REAL RSLT;
INTEGER GLOBINT;
EVENT GLOBACCESS;
EBCDIC ARRAY LIBF[0:23];

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);

REAL PROCEDURE EVENT_STATUS(EV);
 EVENT EV;
 LIBRARY MCPSUPPORT;

DEFINE LOCKOWNERF = [18:15] #; % Lock owner field in EVENT_STATUS result

TYPE CONNECTION BLOCK CL_TYPE;
 BEGIN

 REAL PROCEDURE PROC1;
 BEGIN
 INTEGER TEMPINT;
 PROTECTED EXCEPTION PROCEDURE KLEENUP;
 BEGIN
 IF EVENT_STATUS(GLOBACCESS).LOCKOWNERF = PROCESSID THEN
 BEGIN
 IF TEMPINT = GLOBINT THEN
 GLOBINT:= * + 10;
 LIBERATE (GLOBACCESS);
 END;
 END;
 PROCURE (GLOBACCESS);

Using Libraries

18–56 8600 0494–506

 TEMPINT:= GLOBINT;
 GLOBINT:= * + 10;
 PROC1:= GLOBINT;
 KLEENUP;
 END;
 EXPORT PROC1;
 END;

CL_TYPE LIBRARY CL1 (LIBACCESS = BYFUNCTION, FUNCTIONNAME = "TESTF.",
 CONNECTIONS=2);

GLOBINT:= 0;
REPLACE LIBF BY "LIB0.";
RSLT:= LINKLIBRARY(CL1[0], INTERFACENAME = LIBF);
REPLACE LIBF BY "LIB1.";
RSLT:= LINKLIBRARY(CL1[1], INTERFACENAME = LIBF);

END.

Explanation of Example: GLOBINT

This library links to two matching libraries. Each time either matching library invokes
procedure PROC1, the procedure increments the value of GLOBINT by 10.

The current value of GLOBINT is therefore available to three different processes: the
connection library program that declares GLOBINT and the two other connection library
processes that link to library CL1. The event GLOBACCESS is used to ensure that no
two processes perform conflicting, simultaneous updates or interrogations of GLOBINT.

Explanation of Example: KLEENUP Procedure

Procedure PROC1 includes a protected EXCEPTION procedure called KLEENUP. The
purpose of KLEENUP is to make sure that the event GLOBACCESS is liberated, and
GLOBINT is updated, if a process is discontinued while executing PROC1. Protected
EXCEPTION procedures are the most reliable technique for performing such cleanup
work, because the PROTECTED clause prevents the procedure from being discontinued.
However, the PROTECTED clause is available only in DMALGOL and NEWP. For
information about this use of EXCEPTION procedures, refer to “Using EPILOG and
EXCEPTION Procedures” in Section 16, “Using Events and Interlocks.”

Explanation of Example: EVENT_STATUS

The KLEENUP procedure itself invokes an MCP library procedure called EVENT_STATUS.
The purpose of this call is to determine whether PROC1 had succeeded in procuring the
event GLOBACCESS before being discontinued. KLEENUP liberates GLOBACCESS only
if EVENT_STATUS indicates that the current process has already succeeded in procuring
the event.

 Using Libraries

8600 0494–506 18–57

Connection Objects in Connection Libraries

Objects Declared in Connection Blocks

The connection objects for a connection library consist of all the objects that are declared
in the connection block, including all procedures or variables. The system creates a
separate instance of each connection object for each connection of the library.

References Inside the Connection Block

All connection objects can be referenced by any procedures that are declared later in the
same connection block.

References Outside the Connection Block

In NEWP, statements outside the connection block can reference any objects declared in
the connection block by prefixing the object with the connection library name and the
connection index.

In ALGOL, procedures, events, and event arrays are the only connection objects that can
be referenced by statements outside the connection block. Such statements must
prefix the object name with the connection library name and the connection index. To
make it possible for statements outside the connection block to change the values of
other types of connection variables, you must implement connection procedures that
provide such access indirectly.

Usage Before and After Linkage

For either ALGOL or NEWP, when objects in a connection library are used by statements
in the same program, the following rules apply:

• Imported objects cannot be used until the connection has been linked to a matching
connection library.

• Exported objects, or objects neither imported nor exported, can be used either
before or after library linkage.

Usage by the Matching Library Program

The matching connection library program has more limited access to objects in this
connection library. The matching program can access only objects that are exported by
the connection library, and can access these objects only after library linkage. The
matching program does not have access to any variables declared in the connection
block, unless those variables are explicitly exported. However, exported procedures can
provide indirect access to connection block variables or procedures that are not
exported.

Values Retained between Repeated Linkages

If a connection is linked, delinked, and relinked, all connection objects retain their last
value. The connection objects are not automatically reinitialized during linkage.
However, you can design a CHANGE or APPROVAL procedure to include statements
that initialize connection objects.

Using Libraries

18–58 8600 0494–506

Connection Objects Example

The following ALGOL example illustrates several issues regarding the visibility of
connection objects:

REAL RVAL;
EBCDIC ARRAY LIBF[0:23];

TYPE CONNECTION BLOCK CL_CSPEC;
 BEGIN
 INTEGER CONN_INT;

 PROCEDURE PROC1;
 BEGIN
 CONN_INT:= * + 10;
 END;

 PROCEDURE PROC2;
 IMPORTED;

 REAL PROCEDURE PROC3;
 BEGIN
 PROC3:= CONN_INT;
 END;
 EXPORT PROC3;
 END;

CL_CSPEC LIBRARY CL_ONE (LIBACCESS = BYFUNCTION,
 FUNCTIONNAME = "TESTF.",
 CONNECTIONS = 2);

CL_ONE[0].PROC1;
CL_ONE[1].PROC1;
RVAL:= CL_ONE[0].PROC3;

REPLACE LIBF BY "LIB1.";
LINKLIBRARY (CL_ONE[0], INTERFACENAME = LIBF);
REPLACE LIBF BY "LIB2.";
LINKLIBRARY (CL_ONE[1], INTERFACENAME = LIBF);

CL_ONE[1].PROC2;

Explanation of Example: Objects Visible within Program

In the preceding example, PROC1 is provided to allow statements in the same program
to indirectly access the connection object CONN_INT. Any changes made to CONN_INT
are local to a single connection of the library.

Explanation of Example: Procedures Invoked Before and After Linkage

Procedures PROC1 and PROC3 can be invoked before library linkage because neither is
an imported procedure. Procedure PROC2, which is imported, can be invoked only after
library linkage. This illustrates using connection libraries to simultaneously import and

 Using Libraries

8600 0494–506 18–59

export objects. However, the potential performance problems of using two-way
connections that contain both imported and exported objects should be considered
before designing an application in this way. For more information, refer to “Design
Strategies for Linking Libraries.”

Explanation of Example: Objects Visible to Matching Libraries

Of the objects declared by library CL_ONE, the only object that can be used by the
matching libraries is PROC3. This is true because the only object listed in the EXPORT
statement is PROC3. However, PROC3 does provide the matching library with indirect
access to the connection variable CONN_INT.

Local Objects in Connection Libraries

Local Variables Reinitialized

Any local variables declared in a procedure exported by a connection library are
reinitialized each time that procedure is invoked.

Local Variables Example

The following ALGOL example declares a connection library CL_ONE that exports
procedure PROC1. Procedure PROC1 declares a variable LOCAL_INT and increments
the value of this variable.

EBCDIC ARRAY LIBF[0:23];

TYPE CONNECTION BLOCK CL_CSPEC;
 BEGIN

 PROCEDURE PROC1;
 BEGIN
 INTEGER LOCAL_INT;
 LOCAL_INT:= * + 10;
 END;

 EXPORT PROC1;

 END;

CL_CSPEC LIBRARY CL_ONE (LIBACCESS = BYFUNCTION,
 FUNCTIONNAME = "TESTF.",
 CONNECTIONS = 2);

REPLACE LIBF BY "LIB1.";
LINKLIBRARY (CL_ONE[0], INTERFACENAME = LIBF);
REPLACE LIBF BY "LIB2.";
LINKLIBRARY (CL_ONE[1], INTERFACENAME = LIBF);

In this example, variable LOCAL_INT will never exceed a value of 10, no matter how
many times procedure PROC1 is invoked.

Using Libraries

18–60 8600 0494–506

Exported and Imported Data in Connection Libraries

Advantages and Disadvantages

 By exporting data, you provide the matching library process with direct access to the
data, rather than the indirect type of access described in "Global Objects in Connection
Libraries" and "Connection Objects in Connection Libraries" earlier in this section. The
following table compares these methods of providing data:

Capability Exporting Data
Exporting Procedures That
Access Global Data

Ease of
Implementation

The importing program is given
direct access to the data.

You have to implement library
procedures that provide an
interface to the data.

Maintainability Changes to data structures,
semantics, and access rules
may require revision of all
client programs.

Changes to data structures,
semantics, and access rules may
be hidden from client programs.

Processor
Overhead

Low. Somewhat higher, due to the cost
of invoking a procedure.

Sharing For a multiple-connection
library, each connection
exports a different instance of
the data object.

For a multiple-connection library, all
matching libraries receive indirect
access to the same instance of the
global variable.

However, exported procedures
could provide access to connection
objects, of which a different
instance exists for each connection.

Writeability The library can specify whether
clients have read-write or read-
only access to the variable.

The exported procedures can each
contain logic to provide read-write
or read-only access.

Importing Process
Identity

The library provides the same
access rights to all importing
processes.

However, individual importing
processes can reduce their
own access rights by
requesting read-only access to
data that was exported with
read-write access.

The exported procedures can
include code to interrogate the
identity of the importing process,
and allow different actions for
different clients.

Mutual Exclusion

Mutual exclusion is the ability of a process to secure exclusive access to data before
updating it.

For a connection library providing indirect access to a global object, the exported
procedures can be coded to always procure a global event before updating the global
variable. In this way, the library can ensure that the event is updated by no more than
one process at a time.

 Using Libraries

8600 0494–506 18–61

For data exported by connection libraries, mutual exclusion might not be necessary
because each importing library receives a different instance of the exported data object.
However, you might need to ensure mutual exclusion in any of the following cases:

• The exporting connection library process and the importing connection library
process both access the exported data object.

• One of the importing library processes initiates internal tasks using the library
through the same library declaration.

If mutual exclusion is necessary, the exporting connection library can export an event to
be used together with the exported data object. Each importing process is expected to
procure the event before updating the data object. However, the exporting connection
library cannot enforce the use of this event.

Data Types That Can Be Exported

Currently, NEWP exports a more limited range of data types than ALGOL. For
information about the types of data that can be exported and imported in ALGOL and
NEWP, refer to “Matching Data Types” later in this section.

Specifying the Access Mode

Data can be exported with an access mode of read-only or read-write. Omitting an
access mode assignment is the same as assigning read-only access. The access mode
can be specified by both the exporting library and the importing library. The following
table shows how the exported access mode and imported access mode combine to
determine the actual access mode that is used:

Exported Access Mode Imported Access Mode Resulting Access Mode

READONLY or
unspecified

READONLY or
unspecified

READONLY

READONLY or
unspecified

READWRITE Objects cannot match.

READWRITE READONLY or
unspecified

READONLY

READWRITE READWRITE READWRITE

If the import and export objects do not match because of conflicting access modes,
library linkage can still conclude successfully. The LINKLIBRARY result indicates that
some requested objects were not available. If the client process attempts to use the
imported data object, the client process is discontinued with the error message
“OBJECT <object name> ACCESS MODE MISMATCH.” The client process can prevent
this error by checking the availability of the data object with the ISVALID function, as
described in “Matching Connection Library Objects”.

Data Type Matching

The exported data object and the imported data objects must be of the same or
compatible types. Refer to “Matching Data Types” later in this section.

Using Libraries

18–62 8600 0494–506

Syntax for Exporting Data

The following ALGOL statements export several data objects. Real array A receives the
default access mode of read-only, and integer I is assigned an access mode of read-
write.

TYPE CONNECTION BLOCK CL_TYPE;
 BEGIN
 REAL ARRAY A [0:10];
 INTEGER I;
 EVENT E1;

 EXPORT A (LINKCLASS = PROTECTED),
 I AS "I2" (READWRITE),
 E1;
 END;

CL_TYPE SINGLE LIBRARY CL_ONE (INTERFACENAME="CLTESTLIB1.");

Alternatively, the EXPORT statement can include a single access mode assignment that
affects all the items in the export list, as in the following example:

EXPORT [READWRITE] A, I;

Syntax for Importing Data

The following ALGOL library statements import the data items that were exported by the
previous example:

TYPE CONNECTION BLOCK CL_TYPE;
 BEGIN
 IMPORTED ARRAY A2[0] (ACTUALNAME = "A");
 IMPORTED INTEGER I2 (READWRITE);
 IMPORTED EVENT E1;
 END;

CL_TYPE SINGLE LIBRARY CL_ONE (INTERFACENAME="CLTESTLIB1.");

Direct, Indirect, and Dynamic Data Provision

Connection libraries must use direct provision for any exported objects; indirect and
dynamic provision are not permitted. For definitions of these various types of provision,
refer to “Methods of Providing Objects” later in this section.

 Using Libraries

8600 0494–506 18–63

Limitations on Events

Events cannot be assigned an access mode. Exported events can be used in the same
ways as any other event. However, the usage of imported events is restricted in the
following ways:

Usage Restriction

WAIT and
WAITANDRESET
statements

Imported events can be used in WAIT or WAITANDRESET
statements only if the compiler control option WAITIMPORT has
been set.

Interrupts An imported event cannot be attached to an interrupt.

LOCK statements An imported event cannot be used in statements of the form
LOCK (<interlock>, <event>).

Direct I/O An imported event cannot be used in direct I/O.

Parameters An imported event cannot be passed as a parameter to a
procedure.

If a program violates one of these restrictions, a syntax error results.

Predeclared Objects: THIS and THISCL

ALGOL and NEWP provide two functions called THIS and THISCL. These functions
return references to the current connection and the current connection library,
respectively.

Referencing the Connection with THIS

The THIS function returns a reference to the connection in which the current procedure
is being executed.

THIS Function Example

In the following ALGOL example, the exported procedure CLPROC calls the global
procedure OTHERPROC, passing THIS as a parameter. OTHERPROC uses the
parameter to assign a value to the connection object called CONN_VAL.

TYPE CONNECTION BLOCK CLTYPE;
 FORWARD;

PROCEDURE OTHERPROC(CONNECTION_REF);
 CLTYPE CONNECTION_REF;
 FORWARD;

TYPE CONNECTION BLOCK CLTYPE;
 BEGIN

 INTEGER CONN_VAL;

 PROCEDURE SET_CONN_VAL (I);

Using Libraries

18–64 8600 0494–506

 VALUE I;
 INTEGER I;
 BEGIN
 CONN_VAL:= I;
 END;

 PROCEDURE CLPROC;
 BEGIN
 OTHERPROC (THIS);
 END;

 EXPORT CLPROC;
 END;

PROCEDURE OTHERPROC(CONN_REF);
 CLTYPE CONN_REF;
 BEGIN
 CONN_REF.SET_CONN_VAL(6);
 END;

Note that this example is intended merely to illustrate the syntactical possibilities. In
practice, procedure CLPROC could modify CONN_VAL directly, without having to call a
global procedure to do it.

Referencing the Connection Library with THISCL

The THISCL function returns a reference to the connection library in which the current
procedure is declared. The THISCL function can be used in library attribute queries and
assignments. If THISCL is used with a connection attribute (like STATE), the attribute of
the current connection is returned. Note that THISCL provides access only to attributes;
THISCL cannot be used to access variables within a connection library.

THISCL Function Example

In the following ALGOL example, the exported procedure CLPROC increments the value
of the CONNECTIONS attribute of this connection library by the value of INC and returns
the value of the STATE attribute to the caller.

TYPE CONNECTION BLOCK CLTYPE;
 BEGIN

 INTEGER PROCEDURE CLPROC(INC);
 VALUE INC; INTEGER INC;
 BEGIN
 THISCL.CONNECTIONS:= THISCL.CONNECTIONS + INC;
 CLPROC:= THISCL.STATE;
 END;
 EXPORT CLPROC;

 END;

CLTYPE LIBRARY CLLIB(CONNECTIONS=10);

 Using Libraries

8600 0494–506 18–65

Note that the THISCL references occur in the connection block, which is defined before
the connection library. Therefore, it is not possible to simply use the connection library
name CLLIB instead of THISCL.

Passing Connections as Parameters

There are two methods of passing a connection as a parameter to a procedure: using a
formal parameter based on a particular connection block, or using a parameter of type
CONNECTION. The following table compares these two methods:

 Formal Parameter Based on
Connection Block

Formal Parameter of Type
CONNECTION

Language Support ALGOL and NEWP ALGOL and NEWP

Actual Parameter Must be based on a connection
library type specified by the formal
parameter.

Can be a connection of any
connection library.

Connection Objects In ALGOL, provides access to
procedures declared in the
connection block.

In NEWP, provides access to any
object declared in the connection
block.

Does not provide access to
connection objects.

Library Attributes Provides access only to STATE
attribute.

Provides access only to STATE
attribute.

Parameters to
Library Procedures

Cannot be used as a formal
parameter to an imported or
exported procedure.

Can be used as a formal
parameter to an imported or
exported procedure.

Connection Parameters Example

The following NEWP program illustrates both of these methods of passing connections
as parameters:

100 BEGIN
110
120 TYPE CB1_TYPE = CONNECTION BLOCK
130 BEGIN
140 PROCEDURE PROC1;
150 IMPORTED;
160 END;
170
180 TYPE CB2_TYPE = CONNECTION BLOCK
190 BEGIN
200 PROCEDURE PROC2(CLE);
210 CONNECTION CLE;
220 IMPORTED;
230 END;
240
250 CB1_TYPE LIBRARY LIB1(LIBACCESS = BYTITLE,

Using Libraries

18–66 8600 0494–506

260 CONNECTIONS = 9,
270 TITLE = "OBJECT/LIB1.");
280
290 CB2_TYPE LIBRARY LIB2(LIBACCESS = BYTITLE,
300 CONNECTIONS = 3,
310 TITLE = "OBJECT/LIB2.");
320
330 PROCEDURE PROC3(CB);
340 CB1_TYPE CB;
350 BEGIN
360 INTEGER I;
370 I := LIBRARY(CB).STATE;
380 IF I = VALUE(LINKED) THEN
390 CB.PROC1;
400 END;
410
420 PROCEDURE PROC4(CN);
430 CONNECTION CN;
440 BEGIN
450 INTEGER I;
460 I := CN.STATE;
470 END;
480
510 LINKLIBRARY(LIB1[0]);
520 LINKLIBRARY(LIB2[0]);
530 PROC3(LIB1[0]);
540 PROC4(LIB1[0]);
550 PROC4(LIB2[0]);
560 LIB2[0].PROC2(LIB1[0]);
570
580 END.

Explanation of Example: Connection Block Parameter

In this example, procedure PROC3 (at line 330) declares a parameter CB that is based on
connection block CB1_TYPE. As a result, statements in PROC3 are able to read the
STATE attribute of the connection, and to initiate procedure PROC1 (which is declared in
CB1_TYPE). However, the statement at line 530 that invokes PROC3 must pass a
connection of a library (LIB1) that is based on CB1_TYPE. This statement could not have
passed a connection of LIB2, because LIB2 is based on a different connection block
type.

Explanation of Example: CONNECTION Parameter

Procedure PROC4 (at line 420) declares a parameter of type CONNECTION. As a result,
this procedure cannot include any statements invoking procedures declared by the
connection. On the other hand, PROC4 can receive connections from libraries based on
different connection blocks. Thus, the statements at lines 540 and 550 pass
connections of LIB1 and LIB2, which are based on two different connection block types.

 Using Libraries

8600 0494–506 18–67

Restrictions on OWN Objects in Connection Libraries

There are some restrictions on the use of OWN objects in connection libraries. These
same restrictions apply to server libraries. Refer to “Restrictions on OWN Objects in
Server Libraries” earlier in this section.

Linking Connection Libraries, Server Libraries, and
Client Programs

So far, this section has discussed only linkages between client libraries and server
libraries, and linkages between connection libraries and other connection libraries.
However, linkages can also be established between connection libraries and server
libraries or client libraries. The following pages briefly illustrate the use of the READYCL
and LINKLIBRARY functions for:

• Linking a client library to a connection library

• Linking a connection library to a server library

• Linking a process to a program that includes both a server library and one or more
connection libraries

• Directly linking a process to a combination of client libraries, server libraries, and
connection libraries

Linking a Client Library to a Connection Library

Client Library Declarations

In this context, a client program can be defined as a program that links to a connection
library through a client library declaration rather than a connection block and connection
library declaration.

INTERFACENAME Attribute

A client library can link to a connection library in much the same way as to a server
library. The only difference is that, when linking to connection libraries, the
INTERFACENAME attribute specifies the connection library to which to link.

The INTERFACENAME attribute does not replace the LIBACCESS, TITLE, and
FUNCTIONNAME attributes. The latter attributes serve their usual purpose of identifying
the library program to which to link. The INTERFACENAME attribute supplements this
information by identifying a particular connection library within the connection library
program.

INTERFACENAME Default Value

If the client program does not explicitly assign INTERFACENAME to the client library,
then the INTNAME value is used as the default for INTERFACENAME; if INTNAME is
also not assigned, then the library identifier is used.

Using Libraries

18–68 8600 0494–506

Types of Linkage

A client program can link to a connection library through explicit linkage, implicit linkage,
or direct linkage.

Example

The following ALGOL statements reside in a client program. These statements declare a
client library CL1 and initiate explicit linkage for that library:

LIBRARY CL1 (LIBACCESS = BYTITLE, TITLE = "OBJECT/CLTEST.",
 INTERFACENAME = "CLTEST.");

PROCEDURE PROC1;
 LIBRARY CL1;

RSLT:= LINKLIBRARY (CL1);

The following statements reside in OBJECT/CLTEST, the connection library program that
is being linked to:

TYPE CONNECTION BLOCK TEST1;
 BEGIN

 PROCEDURE PROC1;
 BEGIN
 % Procedure body statements
 END;

 EXPORT PROC1;

 END;

TEST1 LIBRARY CL1 (INTERFACENAME="CLTEST.", CONNECTIONS = 2);

RYRSLT:= READYCL (CL1);

In the preceding example, the READYCL function is necessary so that the LINKLIBRARY
function in the client program can succeed.

 Using Libraries

8600 0494–506 18–69

Linking a Connection Library to a Server Library

Example

The following ALGOL statements declare a connection library and then execute a
LINKLIBRARY function to link to a server library:

TYPE CONNECTION BLOCK TEST1;
 BEGIN
 PROCEDURE PROC2;
 IMPORTED;
 END;

TEST1 LIBRARY CL1 (LIBACCESS = BYTITLE, TITLE = "OBJECT/SERVLIB.",
 CONNECTIONS = 3);

RSLT:= LINKLIBRARY (CL1[0]);

The library program OBJECT/SERVLIB referenced in the preceding example can be a
server library program. In this case, it is not necessary to specify an INTERFACENAME
because a server library program can contain no more than one server library.

Server Library Linked to by Connection Library

Such a server library might contain ALGOL statements such as the following:

PROCEDURE PROC2;
 BEGIN
 % Procedure body statements
 END;

EXPORT PROC2;

FREEZE (TEMPORARY);

Thus, connection 0 of connection library CL1 in the first example imports procedure
PROC2 from the server library in the second example.

Linking to a Connection Library in a Server Library Program

A server library program can also contain one or more connection libraries. Hereafter,
we shall refer to such a library program as a composite library. A process that initiates
linkage to such a library program, either through the LINKLIBRARY function or by
accessing an imported object, is referred to as the linking process.

Using Libraries

18–70 8600 0494–506

INTERFACENAME and Composite Libraries

The INTERFACENAME specified by the linking process determines whether the linkage
is made to the server library or one of the connection libraries, as follows:

• If the linking process specifies an INTERFACENAME that matches one of the eligible
connection libraries in the composite program, then the system attempts to create
the linkage to that connection library. For implicit or explicit linkage attempts, only
connection libraries that have been readied by a READYCL statement are eligible.
For direct linkage attempts, all connection libraries in the composite program are
eligible.

• If the linking process specifies an INTERFACENAME that does not match any of the
eligible connection libraries in the composite program, then the system creates the
linkage to the server library.

• If the linking process does not specify an INTERFACENAME, the system applies the
default value for INTERFACENAME and then makes one of the two determinations
listed previously. The default value of INTERFACENAME is inherited from the
INTNAME attribute; if INTNAME is not assigned, then INTERFACENAME inherits the
library identifier as its value.

Composite Library Example

The following is an example of an ALGOL composite library program:

BEGIN

PROCEDURE DOSTUFF1;
 BEGIN
 % Procedure body statements
 END;

TYPE CONNECTION BLOCK TEST1;
 BEGIN
 PROCEDURE DOSTUFF2;
 BEGIN
 % Procedure body statements
 END;
 EXPORT DOSTUFF2;
 END;

TEST1 LIBRARY CL1 (INTERFACENAME="CONLIB.");

RSLT:= READYCL (CL1);

EXPORT DOSTUFF1;

FREEZE (PERMANENT);
END.

 Using Libraries

8600 0494–506 18–71

In this library program, the server library exports procedure DOSTUFF1, and the
connection library CL1 exports procedure DOSTUFF2. Suppose that this library program
is titled OBJECT/TESTLIB, and that the following SL command has been used to define a
function name mapping:

SL TESTLIB = OBJECT/TESTLIB

Examples of Linking to the Composite Library

The following are the results of various sorts of library declarations in the linking process,
and the results of linkage attempts that use those declarations:

• LIBRARY LIB1(LIBACCESS = BYFUNCTION, FUNCTIONNAME = "TESTLIB.",
INTERFACENAME = "WRONGNAME.");

Because WRONGNAME does not match the INTERFACENAME of the connection
library in OBJECT/TESTLIB, the linking process is linked to the server library.

• LIBRARY LIB1(LIBACCESS = BYFUNCTION, FUNCTIONNAME = "CONLIB.");

In this example, the FUNCTIONNAME attribute is wrongly assigned a value
corresponding to the INTERFACENAME of the connection library instead of the SL
function name of the library program. Because of this mistake, library linkage fails.

• LIBRARY LIB1(LIBACCESS = BYTITLE, TITLE = "OBJECT/TESTLIB.");

The system attempts to link the process to the library program OBJECT/TESTLIB.
Because OBJECT/TESTLIB includes a connection library, the system inspects the
INTERFACENAME specified by the linking process.

Because the linking process did not assign the INTERFACENAME or INTNAME
attributes, INTERFACENAME inherits the library identifier, which is LIB1. Because
there is no connection library with an INTERFACENAME of LIB1 in
OBJECT/TESTLIB, the system links the process to the server library.

• LIBRARY LIB1(LIBACCESS = BYTITLE, TITLE = "OBJECT/TESTLIB.",
INTERFACENAME = "CONLIB.");

The system attempts to link the process to the library program OBJECT/TESTLIB.
Because OBJECT/TESTLIB includes a connection library, the system inspects the
INTERFACENAME specified by the linking process. Because the INTERFACENAME
matches the connection library in OBJECT/TESTLIB, the system links the process to
the connection library.

Using Libraries

18–72 8600 0494–506

Directly Linking Client, Server, and Connection Libraries

Direct linkage is a method of linking libraries by way of their library identifiers or task
variables. Direct linkage was introduced previously in this section under “Directly
Linking to Server Libraries” and “Directly Linking Connection Libraries.”

LINKLIBRARY Function for Direct Linkage

The direct form of the LINKLIBRARY function is available in both ALGOL and NEWP.
The following is an example of such a LINKLIBRARY call:

LINKLIBRARY(LIB1, LIBRARY = LIB2);

In this example:

• LIB1 must be the library identifier from a client library declaration or a connection
library declaration. If LIB1 is a connection library identifier, it can optionally include a
connection index (for example LIB1[3]).

• LIB2 must be a connection library identifier (with or without a connection index), a
client library identifier, or a task variable. If a task variable is used, it must be the
task variable of a frozen server library process.

Direct Linkage Combinations

Thus, depending on the types of identifiers you specify as the first and second
parameters, you can establish any of the following direct linkages:

• Client library to server library

• Client library to connection library

• Connection library to connection library

• Connection library to server library

• Connection library to client library

 Using Libraries

8600 0494–506 18–73

Using Library Attributes
Library attributes specify properties of a particular library.

Server Libraries and Client Libraries

For server libraries, most attributes are specified in the client program. Such attributes
can be included in the library declaration, or assigned to the library identifier later in the
client program. However, the CHANGE attribute of a library is specified either in the
client program, in an EXPORTLIBRARY statement in the server library program, or both.

Connection Libraries

For connection libraries, most attributes can be assigned in either or both of the
programs joined by a connection. The attributes can be assigned in the connection
library declaration, or assigned to the library identifier later in the program. The STATE
attribute is unique in that it applies to a single connection rather than to an entire
connection library.

Properties

The following pages describe all the library attributes. For each attribute, the following
properties are described:

• Kind

This property indicates the type of library to which the attribute applies.

For library attributes that control library linkage, the Kind value indicates the library
declaration to which the attribute is assigned, rather than the matching library that is
being linked to.

One or more of the following Kind values are listed for each library attribute:

− Client Libraries. This value indicates library attributes that are used within the
client program. For example, the FUNCTIONNAME attribute can be assigned to
a client library to indicate the library program being linked to.

− Server Libraries. This value indicates library attributes that are specified for a
server library inside the server library program itself. For example, an ALGOL
server library program can use the EXPORTLIBRARY statement to assign a
CHANGE attribute to the server library.

− Connection Libraries. This value indicates library attributes read or assigned to a
connection library by the connection library program.

− Single Connections. This value indicates library attributes that apply to a single
connection of a connection library.

• Type

This property indicates what type of object can be assigned to the attribute, or what
type of object the attribute value can be read into. Examples are integer, Boolean,
EBCDIC string, procedure, and mnemonic. Mnemonics are numeric values that can
be represented in a program by the VALUE function and a mnemonic identifier.

Using Libraries

18–74 8600 0494–506

Note that attribute types of EBCDIC string are pointer expressions in NEWP, but can
be either pointer expressions or true EBCDIC strings in ALGOL.

• Read

This property indicates whether, and when, the value of the attribute can be read.

• Write

This property indicates whether, and when, the value of the attribute can be written.

− While not linked. The attribute can be written only before library linkage or after
library delinkage. Most library attributes, if writeable, fall into this category.

− While not ready. The attribute can be written only before the library is readied
by a READYCL statement or after the library is unreadied by an UNREADYCL
statement.

− Anytime. The attribute can be written even while the library is linked.

• Default

This property indicates the default value, if any.

These property descriptions are followed by one or more of the following headings:

• Explanation

Text under this heading explains the basic function of the attribute. For attributes
that apply to both server libraries and connection libraries, this text explains only the
features that are common to both types of libraries.

• Client Libraries

For attributes that apply to both client libraries and connection libraries, this text
explains features that apply only to client libraries.

• Server Libraries

For attributes that apply to both server libraries and connection libraries, this text
explains features that apply only to server libraries.

• Connection Libraries

For attributes that apply to both server libraries and connection libraries, this text
explains features that apply only to connection libraries.

• COBOL74 Considerations

This text explains features that apply only to COBOL74 libraries. Note that such
features do not apply to COBOL85 libraries.

Note: The library attributes described in the following pages are those that are
applicable to a client program, server library program, or connection library program.
Libraries can have additional, security-related attributes that are assigned by the
operating system or by an SL (Support Library) system command. For descriptions of
those attributes, refer to “Security Considerations for Libraries” later in this section.

 Using Libraries

8600 0494–506 18–75

APPROVAL

Property Value

Kind Connection library

Type Procedure (see below)

Read Never

Write Only in connection library declaration

Default See below

Explanation

The APPROVAL attribute specifies a procedure that can prevent linkage from occurring if
the matching library is unauthorized. Additionally, the APPROVAL procedure can select
the connection number to be used.

The person who implements the library program is responsible for writing this procedure
(hereafter referred to as the APPROVAL procedure).

If there is an APPROVAL procedure for a connection library, the APPROVAL procedure
must be declared outside the connection block for that library.

The APPROVAL attribute can be assigned to the connection library on either side of a
connection. That is, an APPROVAL attribute can be specified in a connection library
declaration regardless of whether that connection library is to be used in READYCL or
LINKLIBRARY functions.

If both ends of a connection specify APPROVAL procedures, then the APPROVAL
procedure declared by the process requesting the LINKLIBRARY is executed first,
followed by the APPROVAL procedure declared by the process that performed the
READYCL. Both APPROVAL procedures can optionally select a connection index; each
connection index applies to the side of the connection that executes the APPROVAL
procedure.

If an error or fault occurs in an APPROVAL procedure, the system prevents the linkage
from completing. However, neither the linking process nor the library being linked to
incurs an error.

Default

If no APPROVAL procedure is specified, then permission for the linkage is granted and
the operating system selects the connection to use for the linkage.

MYSELF Task Variable

Currently, when the MYSELF task variable is used inside an APPROVAL procedure,
MYSELF refers to the process that initiated the linkage. This process is not necessarily
the declarer of either library involved in the linkage.

Using Libraries

18–76 8600 0494–506

Note: The meaning of the MYSELF task variable in APPROVAL procedures is subject
to change in future software releases. Therefore, you should avoid using MYSELF in
APPROVAL procedures.

The OWNER parameter to the APPROVAL procedure is also a task variable, as defined
later under this heading. In most cases, you can use OWNER for the same purposes as
MYSELF (that is, for checking the USERCODE and other attributes of the other library
process).

Direct Library Linkages

If a process uses direct linkage to link two libraries, the system does not execute the
APPROVAL procedure for either library unless it is necessary to resolve the connection
index. That is, the system executes the APPROVAL procedure for either library only if
that library supports multiple connections and no connection index was specified in the
LINKLIBRARY statement. For information about direct linkage, refer to “Directly Linking
Connection Libraries,” earlier in this section.

Initiating Library Linkages from the APPROVAL Procedure

In general, the system does not permit APPROVAL procedures to execute statements
that cause a new library linkage to occur; such statements result in a failed linkage
attempt. However, the system does permit APPROVAL procedures to link to certain
system libraries such as GENERALSUPPORT and MCPSUPPORT. When a statement in
an APPROVAL procedure links to a system library, the system does not execute any
CHANGE or APPROVAL procedure that the linking process has declared for the system
library itself.

Parameters and Return Value

The system passes parameters to the APPROVAL procedure that identify the other
process involved in the linkage and the LIBPARAMETER, if any, specified by the linking
process. The APPROVAL procedure returns a real result that indicates whether the
linkage is to be allowed and, optionally, indicates which connection to use on the
responding side.

The APPROVAL procedure must have the following form:

 REAL PROCEDURE APPROVAL (OWNER, LIBPAR, LEN, WAIT);
 VALUE LEN, WAIT;
 TASK OWNER;
 EBCDIC ARRAY LIBPAR[*];
 INTEGER LEN;
 BOOLEAN WAIT;

 Using Libraries

8600 0494–506 18–77

The APPROVAL procedure should read, but not modify, the procedure parameters. The
following are the meanings of these parameters:

Parameter Meaning

OWNER The task variable of the process that declared the connection library process
being linked to. For an APPROVAL procedure declared by the connection
library that is being linked to, the OWNER parameter is the task variable of
the process that declared the connection library that initiated the linkage.

The APPROVAL procedure can read (but cannot modify) the task attributes
of this task variable.

LIBPAR The LIBPARAMETER library attribute value of the requesting connection
library.

LEN The length of the LIBPARAMETER value in bytes.

WAIT The value of the WAITFORFILE parameter of the LINKLIBRARY function.
The APPROVAL procedure can use this information in cases where a delay
is necessary before a linkage can be approved. In such a case,

• If WAIT = TRUE, then the APPROVAL procedure should wait as long as
necessary before deciding to approve the linkage.

• If WAIT = FALSE, then the APPROVAL procedure should exit
immediately and return an indication that the permission to link was
denied.

The result of the APPROVAL procedure is composed of the following fields:

Field Value and Meaning

[47:04] Permission to link. This field must be assigned a nonzero value. The following
are the possible values and their meanings:

 1 Permission granted. The number of the connection to use is stored in
field [38:39].

 2 Permission granted. If the LINKLIBRARY statement specifies a
connection index for this library, the connection with that index is used.
Otherwise, the operating system selects the connection to use for the
linkage, and increases the value of the CONNECTIONS attribute if
necessary.

 3 Permission denied. An error number is stored in field [38:39].

[38:39] If field [47:04] = 1, this field stores the number of the connection to be used.
The number specified must be of a connection that is not currently in use. If the
LINKLIBRARY statement specifies a connection index for this library, the
number specified in [38:39] must match the connection index specified in the
LINKLIBRARY statement. This value must not exceed the value of the
CONNECTIONS attribute.

If field [47:04] = 2, this field has no meaning.

If field [47:04] = 3, this field stores an error number. If the error number is a
value from 501 to 1000, then the LINKLIBRARY function returns the negative of
the error number to the linking process. If the error number falls outside this
range, then LINKLIBRARY returns a value of –500.

Using Libraries

18–78 8600 0494–506

AUTOLINK

Property Value

Kind Client library or connection library

Type Boolean

Read Anytime

Write Anytime

Default Client libraries: TRUE

Connection libraries: FALSE

Explanation

The AUTOLINK library attribute specifies whether a library can be linked to implicitly.
Implicit linkage occurs when a process uses an imported object without having first
executed a LINKLIBRARY function. If AUTOLINK is TRUE, the system automatically
attempts to link the importing process to the library. If AUTOLINK is FALSE, the
importing process incurs a fatal error and terminates.

Setting AUTOLINK to TRUE is useful if your program uses LINKLIBRARY to initiate the
linkage and you want to catch any unexpected implicit linkages.

Client Libraries

The AUTOLINK attribute defaults to TRUE, but can be explicitly assigned a value of
either TRUE or FALSE.

Connection Libraries

The AUTOLINK attribute defaults to FALSE, but can be explicitly assigned a value of
either TRUE or FALSE.

 Using Libraries

8600 0494–506 18–79

CHANGE

Property Value

Kind Server library, client library, or connection
library

Type Procedure (see below)

Read Never

Write Server libraries: only in an
EXPORTLIBRARY statement in the server
library program

Client libraries: only in the library
declaration

Connection libraries: only in the connection
library declaration

Default Not applicable

Explanation

The CHANGE attribute specifies a procedure that notifies the library process of any
changes in the status of a particular connection. The person who implements the library
program is responsible for writing this procedure (hereafter referred to as the CHANGE
procedure).

The system passes parameters to the CHANGE procedure that identify the new state of
the connection and the reason that the state is changing. The CHANGE procedure can
notify the library process of the changed status by modifying global objects in the library.

The connection does not fully transition to the state reported by the CHANGE procedure
until the CHANGE procedure exits. Therefore, it is important not to include statements
in the CHANGE procedure that could cause the CHANGE procedure to enter any
prolonged waiting state.

If an error or fault occurs in a CHANGE procedure and the new state is LINKING or
LINKED, the system prevents the change in connection state from completing. Further,
the error or fault is propagated to the requesting process (the process that initiated the
linkage or delinkage that is in progress). If the requesting process does not include code
to handle the fault, the system discontinues the requesting process.

Library Linkages

In general, the system does not permit CHANGE procedures to execute statements that
cause a new library linkage to occur; such statements result in a failed linkage attempt.
However, the system does permit CHANGE procedures to link to certain system libraries
such as GENERALSUPPORT and MCPSUPPORT. When a statement in a CHANGE
procedure links to a system library, the system does not execute any CHANGE or
APPROVAL procedure that the linking process has declared for the system library itself.

Using Libraries

18–80 8600 0494–506

Client Libraries and Server Libraries

A CHANGE procedure can be specified inside the server library program or inside the
client program.

For server libraries, the CHANGE attribute can be assigned only in an EXPORTLIBRARY
statement. For example, the following ALGOL statement specifies that when the
current block freezes as a library, the procedure CHG1 should be used as the CHANGE
procedure for that library:

EXPORTLIBRARY (CHANGE = CHG1);

When CHANGE is specified for a server library, the CHANGE procedure is executed
whenever any client process finishes linking to, or starts delinking from, the library.

For client programs, the CHANGE attribute can be assigned only in a library declaration.
In this case, the CHANGE procedure is executed whenever that particular client program
finishes linking to or starts delinking from the library.

For server libraries and client libraries, the system invokes the CHANGE procedure only
when the connection state changes to LINKED or to DELINKING. In some cases, it is
possible that the system will invoke the CHANGE procedure more than once for the
DELINKING state.

Note: A server library cannot determine its current number of clients by reading the
LIBRARYUSERS task attribute inside the CHANGE procedure, because the MYSELF task
variable does not refer to the server library process. Refer to the discussion of the
MYSELF task variable later under this heading.

Connection Libraries

The CHANGE attribute can be assigned only in a connection library declaration, and the
CHANGE procedure must be declared inside the connection library block.

The CHANGE attribute can be assigned to the connection library on either side of a
connection. That is, a CHANGE attribute can be specified in a connection library
declaration regardless of whether that connection library is to be used in READYCL or
LINKLIBRARY functions.

When a linkage attempt for a connection library fails, it does not go through the normal
state progression from NOTLINKED to LINKING to LINKED to DELINKING and back to
NOTLINKED. Instead, the connection library either does not undergo state transitions or
traverses the states from LINKING to DELINKING and back to NOTLINKED.

MYSELF Task Variable

Currently, when the MYSELF task variable is used inside a CHANGE procedure, MYSELF
refers to the process initiating the linkage or delinkage. This process is also referenced
by the task-valued parameter ACTOR, which is described later under this heading.

Note: The meaning of the MYSELF task variable in CHANGE procedures is subject to
change in future software releases. Therefore, it is preferable to use the ACTOR
parameter instead of MYSELF in CHANGE procedures.

 Using Libraries

8600 0494–506 18–81

Parameters and Return Value

The CHANGE procedure must have the following form:

PROCEDURE CHANGE (CONN_INDEX, NEW_STATE, REASON, ACTOR, IMDSED);
 VALUE CONN_INDEX, NEW_STATE, REASON, IMDSED;
 INTEGER CONN_INDEX, NEW_STATE, REASON;
 TASK ACTOR;
 BOOLEAN IMDSED;

The CHANGE procedure should read, but not modify, the procedure parameters. The
following are the meanings of these parameters:

Parameter Meaning

CONN_INDEX Server libraries: This parameter has no meaning.

Connection libraries: The index of the connection that has changed state.
The index can be different on the requesting library side than on the
responding library side. CONN_INDEX reflects the value from the point of
view of the requesting or responding connection library to which this
CHANGE procedure is assigned.

NEW_STATE The value that the STATE attribute now returns.

The following descriptions include the STATE attribute mnemonic
corresponding to each numeric value:

• 1 (NOTLINKED)

Server libraries: Value is never returned.

Connection libraries: The connection specified by CONN_INDEX has
completed delinkage and imported library objects cannot be used. If
any connection libraries are referenced, the CHANGE procedure
causes a fault and ceases processing.

• 2 (LINKING)

Server libraries: Value is never returned.

Connection libraries: A linkage is initiated, but not complete, for the
connection index specified by CONN_INDEX. The APPROVAL
procedure, if any, is called. However, no linkages have been
established between export and import objects and imported library
objects cannot be used. If any connection libraries are referenced, the
CHANGE procedure causes a fault and ceases processing. The linkage
fails with error -23 (CHANGE procedure faulted).

• 3 (LINKED)

Server libraries: A client process has completed linking to the library.

Connection libraries: The connection specified by CONN_INDEX has
completed linkage.

Using Libraries

18–82 8600 0494–506

Parameter Meaning

NEW_STATE
(cont.)

• 4 (DELINKING)

Server libraries: A client process has started delinking from the library.

Connection libraries: Delinkage is initiated, but not complete, for the
connection index specified by CONN_INDEX.

REASON The reason for the state change.

 Field [03:03] If the NEW_STATE value is 2 (linking) or 4 (delinking), then the following
are the possible values of this field and their meanings:

• 0

The change resulted from a LINKLIBRARY, DELINKLIBRARY, or
CANCEL function.

• 1

The change resulted from implicit library linkage or from delinkage due
to block exit.

 If the NEW_STATE value is 1 (not linked), then the following are the
possible values of this field and their meanings:

• 0

Linkage removed by DELINKLIBRARY or CANCEL.

• 1

Linkage terminated due to block exit.

• 2

Linkage attempt failed because templates didn't match.

• 3

Linkage attempt failed because of a CHANGE procedure fault.

• 4

An MCP error occurred.

 Field [00:01] The locality bit.

The following are the possible values and meanings:

• 0

This CHANGE procedure is the CHANGE procedure for the process
initiating the linkage or delinkage.

• 1

This CHANGE procedure is the CHANGE procedure for the library
being linked to or delinked from.

ACTOR The task variable for the process whose action caused the state change. If
the new state is 2 (linking) or 3 (linked), the ACTOR process is the one that
initiated the link, either by calling LINKLIBRARY or by implicit linkage.

Statements in the CHANGE procedure can read the task attributes of the
ACTOR parameter, but cannot modify any of these attributes. Attempts to
modify such task attributes result in the warning message MAY NOT
MODIFY THIS TASK, and the attribute values are not changed.

 Using Libraries

8600 0494–506 18–83

Parameter Meaning

IMDSED • TRUE

The ACTOR process is terminating abnormally, either due to a
program fault or a DS (Discontinue) system command. The ACTOR
process is being delinked because of this abnormal termination.

• FALSE

The ACTOR process is not terminating abnormally.

Using Libraries

18–84 8600 0494–506

CLUSAGE

Property Value

Kind Connection library

Type Integer

Read Anytime

Write Never

Default None

Explanation

The CLUSAGE library attribute returns the number of active connections from a
connection library.

 Using Libraries

8600 0494–506 18–85

CONNECTIONS

Property Value

Kind Connection library

Type Integer

Read Anytime

Write Anytime

Default 1

Explanation

The CONNECTIONS library attribute specifies the number of connections this connection
library is currently prepared to handle.

The maximum CONNECTIONS value that can be included in a connection library
declaration is 1048575. If CONNECTIONS is assigned a larger value in the declaration,
the compiler generates a syntax error.

However, it might be possible to assign CONNECTIONS a larger value in statements
outside the declaration. The actual maximum value is machine-dependent, and
corresponds to the maximum number of rows supported for a segmented array on the
system. Attempting to assign CONNECTIONS a larger value results in a run-time error
message that states the maximum value allowed for that machine. The error is not fatal,
but the CONNECTIONS assignment is not made.

Because connection indexes are zero-relative, the highest possible connection index is
one less than the value of CONNECTIONS. For example, CONNECTIONS = 10 allows
the use of connections numbered 0 through 9.

The CONNECTIONS value can be increased, but not decreased, by assignment
statements in a program. If CONNECTIONS is decreased, an attribute error results.

The CONNECTIONS value might also increase because of library linkage. Refer to
“APPROVAL” earlier in this section.

When a program attempts to set the CONNECTIONS attribute to an erroneous value that
is less than 1, the CONNECTIONS attribute is set to 1 and the following system
message is given:

LIBRARY ATTRIBUTE ERROR: CONNECTIONS MUST EXCEED ZERO

If CONNECTIONS is not specified in the connection library declaration, then
CONNECTIONS defaults to 1, but can be increased later.

If the SINGLE modifier is used in the connection library declaration, then only a single
connection is allowed. In this case, the CONNECTIONS attribute is treated as read-only.
Any attempt to modify it results in an attribute error.

Using Libraries

18–86 8600 0494–506

DELINKEVENT

Property Value

Kind Connection library

Type Event

Read Anytime

Write Anytime (see explanation)

Default None

Explanation

The DELINKEVENT library attribute accesses a predeclared event that is associated with
a connection library.

The DELINKEVENT attribute is caused when the number of active connections from a
connection library is decremented to 0 (zero). The attribute is reset whenever a new
connection is created.

Write

A process can cause or reset the DELINKEVENT attribute at any time. However, a
process can never assign an event variable to the DELINKEVENT attribute.

 Using Libraries

8600 0494–506 18–87

FUNCTIONNAME

Property Value

Kind Client library or connection library

Type EBCDIC string

Read Anytime

Write Client libraries: While not linked

Connection libraries: While not ready and
no connections are linked

Default Value of INTNAME library attribute

Explanation

If the LIBACCESS library attribute is set to BYFUNCTION, then the FUNCTIONNAME
library attribute identifies the function name of the library program that is to be linked to.
The function name is associated with a library object code file title by the SL (Support
Library) system command. You can also establish SL function names programmatically
through the DCALGOL SETSTATUS function.

The operating system stores the mappings between SL function names and library
programs and links to the appropriate code file if a function name is used. The function
name makes it possible to change to a differently titled library program without having to
recompile all the client programs that use the library.

Not all library programs have associated function names, although any library program
can be assigned one or more function names by an SL command. A library program that
has an associated function name is called a support library.

An SL command can do any of the following:

• Display the current function names and their associated object code files.

• Assign a particular library object code file to a function name, without affecting any
programs that are currently using the library. In some cases, the change does not
take effect until the current invocation of the library thaws and resumes execution.
The associations between function names and library object code files survive a
halt/load or a CM (Change MCP) system command.

• Create a new function name and assign the object code file that is initially associated
with it.

• Delete an existing function name, without affecting any processes that are currently
using the library. In some cases, the deletion is denied if a frozen invocation of the
library currently exists.

Client programs can access a library directly by object code file title even if a function
name has been defined for the library. However, undesirable side effects can result if
the first client program to access a library does so by object code file title instead of by
function name.

Using Libraries

18–88 8600 0494–506

For example, if a library has a SHARING value of SHAREDBYALL and the first client
program accesses the library by object code file title, then the library process inherits
several task attributes of the client program, including USERCODE, FAMILY, and
SOURCESTATION. However, if the same library is first accessed by function name,
these task attributes are not inherited.

In addition, system libraries must first be accessed by function name, so they receive
their special privileges. For a discussion of this and other security issues related to the
SL command, refer to “Security Considerations for Libraries” later in this section.

The FUNCTIONNAME library attribute can be specified in a library declaration, a library
attribute assignment statement, or a LINKLIBRARY function.

Direct Library Linkages

The FUNCTIONNAME library attribute has no effect when direct library linkage is used.
Refer to “Directly Linking to Server Libraries” and “Directly Linking Connection
Libraries,” earlier in this section.

Connection Libraries

For connection libraries, the FUNCTIONNAME library attribute has meaning only for the
library on the requesting side of the linkage attempt. If the requesting library has a
LIBACCESS value of BYFUNCTION, then the FUNCTIONNAME value of the requesting
library identifies the library program that contains the responding library.

The FUNCTIONNAME attribute affects the entire connection library. If you want to link
the various connections BYFUNCTION to different library programs, you can specify a
different FUNCTIONNAME attribute in each LINKLIBRARY request. The action of
specifying a different FUNCTIONNAME causes a value override to the BYFUNCTION
value for the LIBACCESS attribute for the LINKLIBRARY request. For example, the
following ALGOL statements link connections 0 and 1 of connection library CL1 to
different library programs:

CLTYPE LIBRARY CL1(INTERFACENAME = "CLF.", CONNECTIONS = 2);
REPLACE FNAME BY "DELTA.";
RSLT:= LINKLIBRARY (CL1[0], FUNCTIONNAME = FNAME);
REPLACE FNAME BY "GAMMA.";
RSLT:= LINKLIBRARY (CL1[1], FUNCTIONNAME = FNAME);

In order for linkage to complete, the requesting connection library and the responding
connection library must also have matching INTERFACENAME library attribute values.

 Using Libraries

8600 0494–506 18–89

INTERFACENAME

Property Value

Kind Client library or connection library

Type EBCDIC string

Read Anytime

Write Client libraries: While not linked

Connection libraries: While not ready and
no connections are linked

Default Value of INTNAME library attribute

Explanation

The INTERFACENAME library attribute identifies a particular connection library in a
connection library program.

The INTERFACENAME library attribute does not identify the program that contains the
connection library. To identify that program, you must use the LIBACCESS library
attribute, usually in combination with the TITLE library attribute or the FUNCTIONNAME
library attribute.

Direct Library Linkages

The INTERFACENAME library attribute has no effect when direct library linkage is used.
Refer to “Directly Linking to Server Libraries” and “Directly Linking Connection
Libraries,” earlier in this section.

Connection Libraries

Connection library programs can potentially contain more than one connection library. To
provide unique identification, you should assign a different INTERFACENAME value to
each connection library that is declared in the same program.

Client Libraries

You can assign the INTERFACENAME value to a client library. This attribute has no
effect if the client library links to a server library. However, if the client library links to a
connection library, the INTERFACENAME attribute of the client library specifies the
connection library to link to in the connection library program.

Also, if the client library links to a server library program that includes a connection
library, and the INTERFACENAME value matches the connection library, then the system
links the client library to the connection library instead of to the server library.

Using Libraries

18–90 8600 0494–506

INTNAME

Property Value

Kind Client library or connection library

Type EBCDIC string

Read Anytime

Write Client libraries: While not linked

Connection libraries: While not ready and
no connections are linked

Default Library identifier, except in COBOL74;
see following discussion

Explanation

The INTNAME library attribute specifies the internal name for the library.

One use of the internal name is in assignments to the LIBRARY task attribute. You can
use the LIBRARY task attribute to alter the behavior of client programs. For example,
suppose a client program declares a library with an internal name of LIB1, a LIBACCESS
value of BYTITLE, and a TITLE value of OBJECT/LIB1. When you run the client program,
you can assign the LIBRARY task attribute a value of LIBRARY LIB1(TITLE
=OBJECT/OTHERLIB). This has the effect of causing the client program to link to a
different library than it otherwise would.

INTNAME also serves as the default value for the FUNCTIONNAME, INTERFACENAME,
and TITLE attributes.

COBOL74 Considerations

Because libraries cannot be explicitly declared in COBOL74, the compiler constructs the
default INTNAME for a library from the first reference to that library title in the client
program. If the title includes multiple nodes separated by slashes (/), the INTNAME is
formed from the final node of the title.

The first reference to the library title might be in the CALL statement that invokes the
library, or in a CHANGE statement that assigns attributes to the library. If either of the
following two statements is the first reference to a library in a COBOL74 client program,
the library receives an INTNAME of LIB1:

CHANGE ATTRIBUTE FUNCTIONNAME OF "OBJECT/LIB1" TO "TESTSUPPORT.".
CALL "FACT IN OBJECT/LIB1" USING PARAM.

To prevent any two libraries in a COBOL74 program from receiving the same INTNAME,
you should assign each library a TITLE attribute value that has a different value in the
final node.

 Using Libraries

8600 0494–506 18–91

LIBACCESS

Property Value

Kind Client library or connection library

Type Mnemonic

Read Anytime

Write Client libraries: While not linked

Connection libraries: While no
connections are linked

Default BYTITLE, except in some LINKLIBRARY
requests affecting connection libraries;
see following discussion

Explanation

The LIBACCESS library attribute specifies the method the linking library uses to identify
the library being linked to. The linking library is either a client library or else a connection
library that is acting as the requesting side in a linkage attempt.

LIBACCESS has one of the following mnemonic values: BYFUNCTION, BYINITIATOR, or
BYTITLE. The following are the effects of these values:

• BYFUNCTION

The FUNCTIONNAME library attribute specifies the library being linked to. The value
of the TITLE library attribute is ignored.

• BYINITIATOR

This value has meaning only when preceded by one of the following activities:

− The originating library uses a server library linkage mechanism to link a library,
which becomes the initiating process.

− The originating library initiates a dependent process, which becomes the
initiating process.

− The originating library initiates a link to a connection library through a client library
declaration. The connection library contains a local client library declaration,
which is used by the initiating process.

The BYINITIATOR value causes the initiating process to link to the originating library.
When the BYINITIATOR value is used, the values of the FUNCTIONNAME and TITLE
library attributes are ignored.

Using Libraries

18–92 8600 0494–506

Note: If the process was initiated by the library linkage mechanism, the
BYINITIATOR value can be used only while the original linkage exists. If the initiating
library delinks from the process, the process uses the BYINITIATOR value, and the
WAITFORFILE option is set, the system suspends the process with the message

 BYINITIATOR IS SPECIFIED, BUT THE INITIATOR IS NOT A LIBRARY

The operator can use the FA (File Attributes) system command to specify the
location of the appropriate library, or use the DS (Discontinue) system command to
terminate the program.

• BYTITLE

The TITLE library attribute specifies the library being linked to. The value of the
FUNCTIONNAME library attribute is ignored.

Connection Libraries

The LIBACCESS attribute affects the entire connection library. To link the various
connections to different library programs, you can use different implicit settings for the
LIBACCESS attribute in each LINKLIBRARY request. If a TITLE is specified in the
request, a LIBACCESS value of BYTITLE is assumed. If a FUNCTIONNAME is specified
in the request, a LIBACCESS value of BYFUNCTION is assumed. For example, the
following ALGOL statements link connections 0 and 1 of connection library CL1 to
different programs, using different values of LIBACCESS:

CLTYPE LIBRARY CL1 (INTERFACENAME = "CLF.", CONNECTIONS = 2);
REPLACE TITL BY "OBJECT/DELTA ON DISK.";
RSLT := LINKLIBRARY (CL1[0], TITLE = TITL);
REPLACE FNAME BY "GAMMA.";
RSLT := LINKLIBRARY (CL1[1], FUNCTIONANME = FNAME);

To complete the linkage, the requesting connection library and the responding
connection library must have matching INTERFACENAME attribute values.

If the library being linked to is a connection library, then the INTERFACENAME library
attribute also plays an essential role in the linkage attempt, regardless of the value of the
LIBACCESS library attribute. Refer to “INTERFACENAME” earlier in this section.

Direct Library Linkages

The LIBACCESS library attribute has no effect when direct library linkage is used. Refer
to “Directly Linking to Server Libraries” and “Directly Linking Connection Libraries,”
earlier in this section.

 Using Libraries

8600 0494–506 18–93

LIBERROR

Property Value

Kind Client library or connection library

Type Boolean

Read Anytime

Write Never

Default None

Explanation

The LIBERROR library attribute indicates whether the most recent library attribute action
for this library incurred an error. If LIBERROR is TRUE, then an error occurred. If
LIBERROR is FALSE, then no error occurred.

When a program finishes reading the LIBERROR attribute, the system automatically
resets the LIBERROR value to FALSE.

Using Libraries

18–94 8600 0494–506

LIBPARAMETER

Property Value

Kind Client library or connection library or
SINGLE connection

Type EBCDIC string

Read Anytime

Write Client libraries: While not linked

Connection libraries (SINGLE): While not
linked

Connection libraries (Non-SINGLE):
Anytime

SINGLE connections: While not linked

Default Null string

Explanation

The LIBPARAMETER library attribute is used to transmit information from the linking
library to the selection procedure of the library or to the approval procedure of the
connection library being linked to. Selection procedures are used by libraries that use
dynamic provision to export objects. For more information, refer to “Dynamic Provision”
in this section.

The linking library can be a client library or a connection library. The primary library linked
to can be a server library or a connection library. However, the selection procedure in
the primary library must select a secondary library that is a server library (not a
connection library).

For connection libraries, the system also passes the LIBPARAMETER library or
connection attribute of the requesting library to the APPROVAL procedure or procedures.
The connection attribute is passed if it is set. If the connection attribute is not set, the
library attribute is used. For more information, refer to “APPROVAL” in this section.

The LIBPARAMETER attribute for a single connection cannot be library-equated.

 Using Libraries

8600 0494–506 18–95

SINGLE

Property Value

Kind Connection library

Type Boolean

Read Anytime

Write Never

Default Not applicable

Explanation

The SINGLE library attribute returns an indication of whether or not the connection library
was declared with the SINGLE modifier. The SINGLE modifier specifies that a
connection library can have no more than one connection. If SINGLE is TRUE, then the
CONNECTIONS attribute cannot be modified.

Using Libraries

18–96 8600 0494–506

STATE

Property Value

Kind Connection library

Type Mnemonic

Read Anytime

Write Never

Default Not applicable

Explanation

The STATE library attribute returns the logical state of one of the connections of a
connection library.

When a program reads the STATE attribute, the program must specify a connection
index unless the connection library was declared with the SINGLE keyword. For
example, the following ALGOL statement reads the STATE attribute for connection 3 of
connection library CLIB:

IF LIBRARY(CLIB[3]).STATE = VALUE(NOTLINKED) THEN...

The following are the possible STATE values and their meanings:

Mnemonic Value Integer Value Meaning

NOTLINKED 1 The connection is not linked.

LINKING 2 Linkage is initiated but is not complete. The
APPROVAL procedure, if any, is called. However,
no procedure linkages are established yet.

LINKED 3 The connection is now fully linked.

DELINKING 4 The connection is in the process of being delinked.

The current state of a connection is also automatically passed to the CHANGE
procedure, if any. Refer to “CHANGE” earlier in this section.

 Using Libraries

8600 0494–506 18–97

TITLE

Property Value

Kind Client library or connection library

Type EBCDIC string

Read Anytime

Write Client libraries: While not linked

Connection libraries (SINGLE): While not
linked

Connection libraries (Non-SINGLE):
Anytime

Default Value of INTNAME library attribute,
except in COBOL74; see following
discussion

Explanation

The TITLE library attribute specifies the object code file title of the library. The TITLE
attribute has meaning only if the LIBACCESS library attribute is set to BYTITLE.

Connection Libraries

The TITLE attribute affects the entire connection library. If you want to link the various
connections BYTITLE to different library programs, you can specify a different TITLE
attribute in each LINKLIBRARY request. The action of specifying a different TITLE
causes a value override to the BYTITLE value for the LIBACCESS attribute for the
LINKLIBRARY request. For example, the following ALGOL statements link connections 0
and 1 of connection library CL1 to different library programs:

CLTYPE LIBRARY CL1(INTERFACENAME = "CLF.", CONNECTIONS = 2);
REPLACE TITL BY "OBJECT/DELTA ON DISK.";
RSLT:= LINKLIBRARY (CL1[0], TITLE = TITL);
REPLACE TITL BY "OBJECT/GAMMA ON DISK.";
RSLT:= LINKLIBRARY (CL1[1], TITLE = TITL);

In order for linkage to complete, the requesting connection library and the responding
connection library must also have matching INTERFACENAME library attribute values.
Refer to “INTERFACENAME” earlier in this section.

COBOL74 Considerations

Because libraries cannot be explicitly declared in COBOL74, the compiler constructs the
default title for a library from the first reference to that library in the client program. The
first reference to the library title might be in the CALL statement that invokes the library,
or in a CHANGE statement that assigns attributes to the library. If either of the following
two statements is the first reference to a library in a COBOL74 client program, the library
receives a title of OBJECT/LIB1:

CHANGE ATTRIBUTE FUNCTIONNAME OF "OBJECT/LIB1" TO "TESTSUPPORT.".
CALL "FACT IN OBJECT/LIB1" USING PARAM.

Using Libraries

18–98 8600 0494–506

To prevent any two libraries in a COBOL74 program from receiving the same INTNAME,
you should give each library a title that has a different value in the final node of the title.
Refer to “INTNAME” earlier in this section.

Direct Library Linkages

The TITLE library attribute has no effect when direct library linkage is used. Refer to
“Directly Linking to Server Libraries” and “Directly Linking Connection Libraries,” earlier
in this section.

 Using Libraries

8600 0494–506 18–99

Methods of Providing Objects
Libraries provide export objects in one of three ways: directly, indirectly, and dynamically.
The declaration of each export object in the library program specifies which of these
provision methods is used. The method chosen depends on whether the export object
originates in the library program, or if the library itself imports the object from another
library.

Additionally, a series of indirect provisions can result in an object being ultimately
provided by the very library that is importing it. This type of provision is said to be
circular.

Direct Provision

Direct provision occurs when the library program contains the complete declaration of
the object that is named in the export list of the library. For example, if a procedure is
exported, the library contains all the statements that make up the procedure.

Direct provision is the only type of provision that is provided by COBOL74 libraries.

Indirect Provision

Indirect provision occurs when the library program exports an object that is, in turn,
imported from another library. The system then attempts to link the client process to
this second library, which can provide the exported object directly, indirectly, or
dynamically. A chain of indirect or dynamic provisions must eventually end in a library
that provides the object directly.

Exported Data

Indirect provision can be used only for exported procedures, not for exported data.

Indirect Provision and Server Library Objects

The following is an example of an ALGOL server library that provides procedure PROC1
indirectly, by importing PROC1 from another server library called OBJECT/PROVIDER:

LIBRARY OTHERLIB(LIBACCESS = BYTITLE, TITLE = "OBJECT/PROVIDER");

PROCEDURE PROC1;
 LIBRARY OTHERLIB;

EXPORT PROC1;

FREEZE(PERMANENT);

Indirect Provision and Connection Library Objects

Server libraries can provide objects indirectly, but connection libraries cannot. That is, a
connection library cannot import an object and then export the same object. Further, a
connection library cannot use an object that is indirectly provided through a server library.

Using Libraries

18–100 8600 0494–506

For example, a connection library could not link to the library in the preceding example
and invoke procedure PROC1.

It is possible for a server library to indirectly provide procedures that originate in a
connection library. However, to do this, the server library must use procedure
references or procedure reference arrays. Procedure references and procedure
reference arrays are supported in NEWP and in all varieties of ALGOL.

The following ALGOL server library imports the procedure PROC1 from the connection
library with the INTERFACENAME of CLTEST in the program OBJECT/CLTEST. This
server library then indirectly exports PROC1 to any client programs that link to this server
library:

LIBRARY CL1 (LIBACCESS = BYTITLE, TITLE = "OBJECT/CLTEST.",
 INTERFACENAME = "CLTEST.");

PROCEDURE PROC1;
 LIBRARY CL1;

PROCEDURE REFERENCE PREF;

RSLT:= LINKLIBRARY (CL1);
PREF:= PROC1;
EXPORT PREF AS "PROC1";
FREEZE (PERMANENT);

Note that this server library exports a procedure reference PREF instead of PROC1 itself.
The use of the procedure reference is necessary because this server library imports
PROC1 from a connection library. The use of procedure references is the only way to
indirectly provide a connection library procedure.

Indirect Provision Compared with Indirect Usage

A program can obtain an effect similar to indirect provision by directly exporting a
procedure that includes a statement that uses an imported object. For example, the
following ALGOL example imports procedure PROC1 from library LIB1. This program
then freezes as a server library, exporting procedure OTHERPROC, which includes an
invocation of LIB1.

LIBRARY LIB1 (LIBACCESS=BYFUNCTION,FUNCTIONNAME="LIBTEST.",
 INTERFACENAME="CONLIB.");

PROCEDURE PROC1;
 LIBRARY LIB1;

PROCEDURE OTHERPROC;
 BEGIN
 PROC1;
 END;

EXPORT OTHERPROC;
FREEZE (TEMPORARY);

 Using Libraries

8600 0494–506 18–101

In this example, PROC1 could be imported from another server library or from a
connection library. The usual restriction on indirect provision of connection library
objects does not apply here, because OTHERPROC is not actually linked to PROC1.

Dynamic Provision

Dynamic provision is similar to indirect provision in that it enables a library to export an
object that, in turn, was imported from another library. However, dynamic provision
allows the primary library to import objects with the same name from multiple secondary
libraries. Whenever a client process attempts to import an object with that name, the
primary library can dynamically select the version of the object to provide to the client
process.

For an example of a library using dynamic provision, refer to “ALGOL Library:
OBJECT/SAMPLE/DYNAMICLIB” later in this section.

Restrictions

• The dynamic provision feature is supported only in ALGOL.

• Server libraries can provide objects dynamically, but connection libraries cannot.

• Dynamic provision can be used only for exported procedures, not for exported data.

BY CALLING Clause for Exporting Procedures

Procedures that are exported dynamically include a BY CALLING clause, as in the
following example:

PROCEDURE READFILE;
 BY CALLING SELECTION;

Selection Procedure

The BY CALLING clause specifies the name of a selection procedure, which you must
declare elsewhere in the library program. Whenever a client process first links to a
library, the system checks to see if any objects imported by that client process are
provided by the library with a BY CALLING clause. If so, the system invokes the
selection procedure. The selection procedure must accept the following two parameters
from the system:

• A parameter of type EBCDIC string, which the system uses to pass in the value of
the LIBPARAMETER library attribute as specified by the client process. This
parameter enables the client process to convey information to the library that might
help the library decide from which secondary library to import the object.

• A parameter of type procedure, which the system uses to pass in an MCP
procedure. This procedure itself has a parameter, which is a task variable. The
selection procedure must invoke the MCP procedure before exiting, and must pass
to it the task variable of the secondary library that has been selected. Otherwise, the
linking process is discontinued.

Using Libraries

18–102 8600 0494–506

Secondary Library

The secondary library that is selected can provide the requested object directly,
indirectly, or dynamically. A chain of indirect or dynamic provisions must eventually end
in a library that provides the object directly.

Note that the secondary library must be a server library, not a connection library.

Selection Occurs during Linkage

The selection procedure is invoked only at library linkage time. All links to exported
objects in the library are resolved during linkage. To cause the selection of a different
secondary library after linkage, the client process must first delink from the dynamic
library. The client process can then modify the LIBPARAMETER library attribute to
request a different secondary library, and relink to the dynamic library.

Circular Provision

Circular Linkage

A circular library linkage is a series of library linkages that flow in the same direction and
return to the first program in the series. The operating system permits certain types of
circular linkages, but disallows other types of circular linkages.

Circular Provision

Similarly, a circular provision is the provision of a particular library object through circular
library linkage. In other words, a library can indirectly import an object from the same
library. However, the import object in the library must ultimately be provided by a
different export object in that library.

Compared to Connection Libraries

Circular linkage is an advanced technique that can become quite complex to use.
Connection libraries were invented, in part, as a replacement for the use of circular
library linkage. If you are designing an application to use circular linkage, you should
consider replacing the circular linkage with a pair of connection libraries that export
objects to each other. For more information, refer to “Hazards of Circular Connections.”

Nevertheless, circular linkages are still allowed, and connection libraries can even
participate in them. The following subsections explain the types of linkages that are
considered to be circular, and then list the restrictions that apply to circular linkages.

 Using Libraries

8600 0494–506 18–103

Understanding Circular Linkage and Circular Provision

The following paragraphs illustrate the nature of circular linkage and circular provision
through several examples.

Example 1: Circular Provision of a Single Procedure

Figure 18–1 shows one example of a circular linkage:

Figure 18–1. Circular Provision of a Single Procedure

In Figure 18–1,

• The arrows point from import procedures to the corresponding export procedures.

• Client program CL1 imports procedure X from server library SL1.

• SL1 provides procedure X indirectly by importing procedure X with an
ACTUALNAME of Y from server library SL2.

• SL2 provides procedure Y indirectly by importing procedure Y from server library
SL3.

• SL3 provides procedure Y indirectly by importing procedure Y from server library
SL1.

In this example, the library linkage is circular because server library SL1 is both the first
and the last library in the linkage series.

The provision of procedure X is also circular, because import object X in SL1 is ultimately
provided by export object Y in the same library, SL1.

Using Libraries

18–104 8600 0494–506

Example 2: Circular Linkage without Circular Provision

The definition of circular library linkages is actually broader than Example 1 would
suggest. The operating system might consider a series of linkages to be circular even if
no single object is exported through the entire chain. Figure 18–2 shows an example of
this type of circular linkage:

Figure 18–2. Circular Linkage without Circular Provision

In Figure 18–2,

• The arrows point from import procedures to the corresponding export procedures.

• Client library CL1 imports procedure A from server library SL1.

• Server library SL1 imports procedure X from server library SL2.

• Client library CL2 imports procedure B from server library SL2.

• Server library SL2 imports procedure Y from SL1.

In this example, library programs SL1 and SL2 are linked in a way that the operating
system considers circular. The linkage is considered circular because each library
imports an object from the other library (even though it is not the same object).

On the other hand, this example is not an example of circular provision. Procedures A,
B, X, and Y are each provided directly.

 Using Libraries

8600 0494–506 18–105

Example 3: Circular Linkage Including a Connection Library

A connection library can be included in a circular linkage. Consider the following
example:

Figure 18–3. Circular Linkage Including a Connection Library

In Figure 18–3,

• The arrows point from import procedures to the corresponding export procedures.

• Program PROG1 declares a client library CLIENT1, which imports procedure X from
connection library CONLIB1 in program PROG2.

• Program PROG2 contains two connection libraries: CONLIB1 and CONLIB2.
Connection library CONLIB1 exports procedure X to CLIENT1 in PROG1. Connection
library CONLIB2 imports procedure Y from server library program PROG3.

• PROG3 includes a client library CLIENT3, which imports procedure Z from
connection library CONLIB3 in program PROG1.

Note that, in this example, the linkage among library declarations is not continuous. That
is, CLIENT1 links to CONLIB1, and CONLIB2 links to PROG3, but CONLIB1 never links
to CONLIB2. Nevertheless, this example is considered a circular linkage, because the
linkage proceeds from a library in PROG1 to a library in PROG2, from a library in PROG2
to a library in PROG3, and from a library in PROG3 back to a library in PROG1.

On the other hand, this example is not an example of circular provision. Procedures X, Y,
and Z are each provided directly.

Using Libraries

18–106 8600 0494–506

Example 4: Circular Linkage with an Extra Connection Library Linkage

Although circular linkages can include connection libraries, a circular linkage cannot
depend on a link between two connection libraries. Thus, in Example 3, the connection
library CONLIB1 is linked to client library CLIENT1, and connection library CONLIB2 is
linked to server library PROG3. The circularity does not depend on any linkages between
two connection libraries.

Now, suppose that a linkage is added to Example 3, so that CONLIB1 imports a
procedure from CONLIB2. The result is shown in Figure 18–4.

Figure 18–4. Circular Linkage with an Extra Connection Library Linkage

In this example, the arrows point from import procedures to the corresponding export
procedures.

In this case, the operating system still considers linkage as circular, but it does not
include the link between CONLIB1 and CONLIB2. In general, to determine whether a
given series of linkages is circular, you should ignore those linkages that exist between
two connection libraries, and then see if the linkage series is still circular.

 Using Libraries

8600 0494–506 18–107

Example 5: Noncircular Linkage Involving Connection Libraries

The following is an example of a linkage that appears to be circular, but is not considered
circular by the operating system:

Figure 18–5. Noncircular Linkage Involving Connection Libraries

In this example,

• The arrows point from import procedures to the corresponding export procedures.

• Program PROG1 declares a connection library CONLIB1, which imports procedure X
from connection library CONLIB2 in program PROG2.

• Program PROG2 contains both connection library CONLIB2 and client library
CLIENT1. Client library CLIENT1 imports procedure Y from server library program
PROG3.

• PROG3 includes a client library CLIENT2, which imports procedure Z from
connection library CONLIB1 in program PROG1.

The preceding example appears to include a circular linkage, because the linkage
proceeds from a library in PROG1 to a library in PROG2, from a library in PROG2 to a
library in PROG3, and from a library in PROG3 back to a library in PROG1. However, if
you ignore the linkage between the two connection libraries (CONLIB1 and CONLIB2),
you can see that there is no longer any link between programs PROG1 and PROG2.
Because this linkage series depends on a linkage between two connection libraries, this
linkage series is not considered circular.

Using Libraries

18–108 8600 0494–506

Example 6: Circular Linkage with a Connection Library as Client

A connection library can import an object from a server library that, in turn, is part of a
circular linkage. For example:

Figure 18–6. Circular Linkage with a Connection Library as Client

In this example,

• The arrows point from import procedures to the corresponding export procedures.

• Program PROG1 contains connection library CONLIB1, which imports procedure W
from server library PROG2.

• Server library PROG2 imports procedure X from server library PROG3.

 Using Libraries

8600 0494–506 18–109

• Server library PROG3 imports procedure Y from server library PROG4.

• Server library PROG4 imports procedure Z from server library PROG2.

In this example, the server libraries PROG2, PROG3, and PROG4 are linked circularly.
However, procedure W is not actually provided circularly. Procedure W, which is
imported by CONLIB1, is provided directly by PROG2. If PROG2 provided procedure W
indirectly by importing W from another library, then the system would not allow
CONLIB1 to invoke W. In general, the system does not allow connection libraries to use
objects that are provided indirectly, as discussed under “Indirect Provision” earlier in this
section.

Restrictions on Circular Linkage and Circular Provision

Requirements for Circular Linkage

If the system determines that a particular linkage attempt would complete a circular
linkage, then the system imposes the following restrictions on that linkage attempt:

• A circular linkage can be made only if all the libraries involved are either frozen server
libraries or ready connection libraries, and at least one of them was already frozen or
ready at the time it linked to one of the other libraries in the circle.

• No more than one of the libraries in a circular linkage can have a freeze type of
CONTROL.

• A given object exported by a library cannot be provided circularly by the same object
in the same library. That is, if library L exports procedure X, the chain of linkages that
provide that procedure cannot lead back to procedure X in library L. However, the
linkages could lead back to some other procedure, for example Y, in library L.

For an example of libraries that violate this restriction, refer to “Example 1: Indirect
Self Referencing,” under “ALGOL Incorrect Circular Libraries.”

Error for Incorrect Linkages

If the client process makes a procedure call that results in a circular linkage of two or
more libraries that violates one of these restrictions, the system discontinues the client
process and displays the error message “CURRENT CIRCULAR LIBRARY REFERENCE
STRUCTURE IS NOT ALLOWED: <library name>.” The library name identifies the library
at the point in the chain where the linkage became circular. If the client process initiated
the chain of circular linkages with a LINKLIBRARY function, the linkage fails and the
function returns a value of –7.

Linkages That Cause the Client to Hang

Additionally, some incorrect types of circular linkage can result in the client process
hanging indefinitely. This situation occurs if

• A library provides an object by direct provision of the same object in the same library.
Refer to “Example 2: Direct Self-Referencing,” under “ALGOL Incorrect Circular
Libraries.”

• Two libraries are waiting on each other to freeze. Refer to “Example 3: Libraries that
Wait on Each Other,” under “ALGOL Incorrect Circular Libraries.”

Using Libraries

18–110 8600 0494–506

In either case, the Y (Status Interrogate) system command shows the client process to
have a STACK STATE of WAITING ON AN EVENT. However, the STATUS task attribute
value remains ACTIVE, and the client process does not appear in the W (Waiting Mix
Entries) system command display. This situation continues until an operator enters a DS
(Discontinue) system command or until the system is halt/loaded.

For a correct example of circular library linkage, refer to “ALGOL Circular Client
Programs” later in this section.

Matching the Object Name

The system matches import objects to export objects only if they have the same name.
In general, the name matching is based on the identifier specified in the import or export
declaration. However, there are a couple of exceptions to this rule.

Importing Procedures with a Different ACTUALNAME

ALGOL client programs can declare import objects under one name, and cause them to
match export projects with a different name, by including an ACTUALNAME clause in
the import declaration. For example:

PROCEDURE READIT;
 LIBRARY LIB1(ACTUALNAME = "READLINE");

Because of the ACTUALNAME assignment, the system looks for a matching export
object named READLINE instead of READIT.

Importing Data with a Different ACTUALNAME

For data objects, the ACTUALNAME assignment can be included in the LIBRARY
declaration. The following example matches imports object M with export object GG:

LIBRARY L (LIBACCESS = BYFUNCTION, FUNCTIONNAME = "MYSUPPORT")
 [INTEGER M (READWRITE, ACTUALNAME = "GG")];

Changing the ACTUALNAME Outside the Import Declaration

You can also change the actual name of an imported procedure or data item outside the
declaration, by using the SETACTUALNAME function. For example:

I := SETACTUALNAME (READIT, "READLINE");

The SETACTUALNAME function makes the requested change, if possible; otherwise,
SETACTUALNAME returns a value indicating why the actual name could not be changed.
One reason SETACTUALNAME can fail is that the actual name of an import object
cannot be changed while the client process is linked to the library from which the object
is imported.

 Using Libraries

8600 0494–506 18–111

Exporting Objects with a Different ACTUALNAME

Similarly, ALGOL library programs can declare export objects under one name, and cause
them to match import objects with a different name, by including an AS clause in the
export declaration. For example, the following export declaration causes an object
named PROC_READ to be exported under the name READLINE:

EXPORT PROC_READ AS "READLINE";

Interlanguage Communication

One of the main uses of the ACTUALNAME clause, SETACTUALNAME function, and AS
clause is to facilitate interlanguage communication. For example, identifiers in COBOL74
can include hyphens (-), whereas identifiers in ALGOL cannot. If a COBOL74 library
exports an object with a name that includes a hyphen, an ALGOL client program cannot
declare an import object with exactly the same name. Instead, the ALGOL client
program can declare the import object with an identifier that is valid in ALGOL, and use
an ACTUALNAME clause to specify the name used in the COBOL74 library.

COBOL Programs: Name of Exported PROCEDURE DIVISION

As discussed under “Creating Server Library Programs” earlier in this section, most
COBOL74 programs can be called as libraries. However, these programs do not include
export lists or declarations of export objects. Instead, the PROCEDURE DIVISION of the
program is always the single export object. If the program contains a PROGRAM-ID
comment and the CCI option FEDLEVEL is equal to 5, the first word of this comment is
used as the name of the library export object. If no PROGRAM-ID comment appears, or
if the FEDLEVEL is not equal to 5, the name of the export object is
PROCEDUREDIVISION.

In COBOL85 library programs, which export nested programs as library procedures, the
export name is specified by the PROGRAM-ID paragraph in the IDENTIFICATION
DIVISION of each nested program.

Using Libraries

18–112 8600 0494–506

Type Matching
When a process invokes an imported procedure, the system compares several aspects
of the import and export procedures to ensure that they match. The factors considered
are discussed in the following pages under the following headings:

• Matching Procedure Types

• Matching Parameter Types

• Matching Array Lower Bounds

• Matching Parameter-Passing Mode

Similarly, when a process uses an imported data item, the system compares the data
types of the exported data item and imported data item, as described under “Matching
Data Types” later in this section.

Matching Procedure Types

ALGOL Procedure Types

Procedures in ALGOL and some other languages can be invoked as functions that return
values. Such procedures are referred to as typed procedures. For example, an ALGOL
procedure can be of any of the following types:

• Untyped

• ASCII STRING

• BOOLEAN

• COMPLEX

• DOUBLE

• EBCDIC STRING

• HEX STRING

• INTEGER

• REAL

COBOL Procedure Types

A client program written in COBOL74 or COBOL85 can use the GIVING clause of the
CALL statement to receive the value returned by a typed library procedure.

FORTRAN77 Procedure Types

A FORTRAN77 library procedure can be any of the following:

• SUBROUTINE

• REAL FUNCTION

• INTEGER FUNCTION

 Using Libraries

8600 0494–506 18–113

• DOUBLE PRECISION FUNCTION

• LOGICAL FUNCTION

• COMPLEX FUNCTION

• CHARACTER FUNCTION (FORTRAN77 only)

• COMMON

• FILE

Matching the Procedure Types

If an export procedure is typed, the matching import procedure must be of the same
type or a compatible type. For information about the compatibility of data types in
different languages, refer to “Matching Parameter Types”.

Matching Parameter Types

For an import procedure to match the corresponding export procedure successfully, both
procedures must specify the same number of parameters. The parameters must be
specified in the same order in both procedures. Further, each parameter specified by
the import procedure must be of a type compatible with the equivalent parameter to the
export procedure.

Parameters in Different Programming Languages

Because the system permits client programs to be written in different languages than
the libraries they use, there are times when the actual and formal parameters to a library
procedure are specified in different programming languages. Each programming
language provides different names for the same or similar types of data.

Listings by ALGOL Equivalents

The following subsections list the parameter types that are available for library
procedures in each of the various programming languages. For each parameter type, the
equivalent ALGOL parameter type is listed. You can also use this information to deduce
which parameter types in two non-ALGOL languages are equivalent. In general, two
parameters can match only if they are equivalent to the same ALGOL parameter type.

Example of Using the Tables

For example, you will find that an int parameter in C is equivalent to an ALGOL integer
variable, and that a BINARY, level 77 1-11 digits parameter in COBOL74 is also
equivalent to an ALGOL integer variable. It follows that the C parameter type can also
match the COBOL74 parameter type.

Matches between Different ALGOL Types

The system permits one exception to the rule that parameters must match the same
ALGOL type. A call-by-value INTEGER parameter of an imported procedure can match a
REAL parameter of an exported procedure.

Using Libraries

18–114 8600 0494–506

ALGOL Parameter Types

The following are the parameter types that can be specified in an ALGOL library
procedure:

• ANYTYPE (The ANYTYPE parameter has special properties that are discussed under
“Using the ANYTYPE Parameter” later in this section.)

• ASCII ARRAY or DIRECT ASCII ARRAY

• ASCII STRING or ASCII STRING ARRAY

• BOOLEAN, BOOLEAN ARRAY, or DIRECT BOOLEAN ARRAY

• COMPLEX or COMPLEX ARRAY

• DOUBLE, DOUBLE ARRAY, or DIRECT DOUBLE ARRAY

• EBCDIC ARRAY or DIRECT EBCDIC ARRAY

• EBCDIC STRING or EBCDIC STRING ARRAY

• EVENT or EVENT ARRAY

• FILE or DIRECT FILE

• HEX ARRAY or DIRECT HEX ARRAY

• HEX STRING or HEX ARRAY

• INTEGER, INTEGER ARRAY, or DIRECT INTEGER ARRAY

• INTERLOCK or INTERLOCK ARRAY

• POINTER

• PROCEDURE, declared using the FORMAL clause. (If the procedure has
parameters, they must each be one of the types listed previously. The procedure
itself must be untyped or else of one of the ALGOL procedure types listed under
“Matching Procedure Types”.)

• QUEUE

• QUEUE ARRAY

• QUEUE ARRAY REFERENCE

• REAL, REAL ARRAY, or DIRECT REAL ARRAY

• TASK or TASK ARRAY

• TRANSACTION RECORD or TRANSACTION RECORD ARRAY

 Using Libraries

8600 0494–506 18–115

C Parameter Types

All of the data types supported in C can be passed between a C client program and a C
library, with a few exceptions that are documented in the C Programming Reference
Manual, Volume 1: Basic Implementation.

The data types that can be passed between C libraries and client programs in other
languages, or between C client programs and libraries in other languages, are much
more limited. Table 18–1, “C Parameters,” lists the C parameter types available for
interlanguage library calls, and the ALGOL equivalents of these C parameter types.

Table 18–1. C Parameters

ALGOL Parameter Corresponding C Parameters

BOOLEAN int (both signed and unsigned types)

INTEGER char

 int (both signed and unsigned types)

 short (both signed and unsigned types)

 long (both signed and unsigned types)

 pointers (all types)

REAL float

 double

DOUBLE long double

INTEGER ARRAY int []

 short []

 long []

EBCDIC ARRAY char []

 __heap_t

REAL ARRAY float []

 double []

 long double []

 struct

 union

FILE _file_t

INTEGER PROCEDURE char ()

 int ()

 short ()

 long ()

Using Libraries

18–116 8600 0494–506

Table 18–1. C Parameters

ALGOL Parameter Corresponding C Parameters

REAL PROCEDURE float ()

 double ()

DOUBLE PROCEDURE long double ()

PROCEDURE void ()

The __heap_t parameter passes the value of the heap, which is a memory area where a
C program stores arrays, structures, addressed objects, and dynamically allocated
objects.

Pointers in C are integer types that indicate the location of an item within the heap. The
exact meaning of C pointers varies according to the memory model used for the C
program; the programmer can request a particular memory model with the
MEMORY_MODEL compiler control option. If the heap is implemented with a
MEMORY_MODEL value of TINY or SMALL, then a non-C program that calls a C library
can use the C pointer as an indicator of the offset of the item within a heap. If the heap
is implemented with a different MEMORY_MODEL value, then the non-C program must
use the __heap_to_ptr_t procedure to convert the C pointer into a conventional pointer.

The __heap_to_ptr_t procedure is one of several export procedures that the C compiler
automatically creates in each C library. Other procedures that aid in array handling
include __copy_to_ptr_t, __copy_from_ptr_t, __free_t, and __malloc_t. These procedures
can be accessed only by programs written in ALGOL (including any of the extended
forms of ALGOL), NEWP, or Pascal. For examples of the use of some of these
procedures, refer to “Library Examples.”

 Using Libraries

8600 0494–506 18–117

COBOL74 Parameter Types

Table 18–2, “COBOL74 Parameters,” lists the allowable parameters to a COBOL74
library and the corresponding ALGOL parameters. For further information about
COBOL74 parameters, refer to the COBOL ANSI-74 Programming Reference Manual,
Volume 1: Basic Implementation.

Table 18–2. COBOL74 Parameters

ALGOL Parameter Corresponding COBOL74 Parameters

DOUBLE BINARY, 77 12-23 digits

 DOUBLE, 77

DOUBLE ARRAY [0] DOUBLE, 01

EBCDIC ARRAY [0] COMP, 01 group item

 DISPLAY, 01

 INDEX, 01 group item

EBCDIC STRING (nonresizable) DISPLAY item in STRING clause

EVENT EVENT, 77

EVENT ARRAY [0] EVENT, 01

FILE FILE

HEX ARRAY [0] COMP, elementary 01 and 77

 INDEX, 01 elementary item

INTEGER BINARY, 77 1-11 digits

 COMP item in INTEGER clause

INTEGER ARRAY [0] BINARY, 01 (If $INTEGERBNRY = TRUE, the
default)

PROCEDURE TRANSACTION PROCEDURE

REAL REAL, 77

REAL ARRAY [0] BINARY, 01 (If $INTEGERBNRY = FALSE)

 REAL, 01

TRANSACTION RECORD TRANSACTION RECORD

TRANSACTION RECORD ARRAY [0] TRANSACTION RECORD ARRAY

In COBOL74 client programs, the GIVING clause of a CALL statement specifies a
variable to receive the value returned by a typed procedure. If the item in the GIVING
clause is a level 77 REAL, the procedure must be of type real. If the item in the GIVING
clause is a level 77 DOUBLE, the procedure must be of type double. If the item in the
GIVING clause is of any other type, the procedure must be of type integer, and the
system converts the integer value returned by the procedure to the data type specified
in the GIVING clause. If there is no GIVING clause, the procedure must be untyped.

Using Libraries

18–118 8600 0494–506

COBOL85 Parameter Types

Table 18–3, “COBOL85 Parameters,” lists the allowable parameters to a COBOL85
library and the corresponding ALGOL parameters. For further information about
COBOL85 parameters, refer to the COBOL ANSI-85 Programming Reference Manual,
Volume 1: Basic Implementation.

Table 18–3. COBOL85 Parameters

ALGOL Parameter Corresponding COBOL85 Parameters

DOUBLE DOUBLE level 77

DOUBLE ARRAY DOUBLE level 01

(Double Integer) BINARY level 77, 12 to 23 digits

 Note: This data type is not
implemented in ALGOL.

Integer (COMPUTATIONAL) 12 to 23 digits

(Double Integer Array)

Note: This data type is not
implemented in ALGOL.

BINARY level 01, 12 to 23 digits

EBCDIC ARRAY DISPLAY

EBCDIC STRING String (DISPLAY)

HEX ARRAY COMPUTATIONAL and INDEX

INTEGER BINARY level 77, 1 to 11 digits

 Integer (COMPUTATIONAL) 1 to 11 digits

INTEGER ARRAY BINARY level 01, 1 to 11 digits

REAL REAL level 77

REAL ARRAY REAL level 01

The BINARY and INTEGER items with 12-23 digits correspond to a data type that is not
implemented in ALGOL, but which would be a double-precision integer. These
parameter types can be passed only between a COBOL85 client program and a
COBOL85 library.

In COBOL85 client programs, the GIVING clause of a CALL statement can specify a
variable to receive the value returned by a typed procedure. If the item in the GIVING
clause is a level 77 numeric, you can use Table 18–5 to determine the corresponding
procedure type. If the item in the GIVING clause is a level 01 numeric item, the item can
match only a procedure of type Integer.

 Using Libraries

8600 0494–506 18–119

FORTRAN77 Parameter Types

Table 18–4, “FORTRAN77 Parameters,” lists the allowable parameters to a FORTRAN77
library and their corresponding ALGOL equivalents. For further information about
FORTRAN77, refer to the FORTRAN77 Programming Reference Manual.

Table 18–4. FORTRAN77 Parameters

ALGOL Parameter

Corresponding FORTRAN77
Parameter

BOOLEAN LOGICAL

BOOLEAN ARRAY [*] LOGICAL array

COMPLEX COMPLEX

COMPLEX ARRAY [*] COMPLEX array

DOUBLE DOUBLE PRECISION

DOUBLE ARRAY [*] DOUBLE PRECISION array

EBCDIC ARRAY [*] CHARACTER

 CHARACTER array

INTEGER INTEGER

INTEGER ARRAY [*] INTEGER array

REAL REAL

REAL ARRAY [*] REAL array

 Notes:

• For the parameters COMPLEX array and DOUBLE PRECISION array, the
DOUBLEARRAYS option must be set in the FORTRAN77 source.

• The EBCDIC ARRAY [*] parameter must be followed by an INTEGER parameter.
The INTEGER parameter matches the hidden lower-bounds parameter that
FORTRAN77 generates for a CHARACTER or CHARACTER ARRAY.

A FORTRAN77 array with a lower bound of 1 is equivalent to an ALGOL array with a
lower bound of 0.

Using Libraries

18–120 8600 0494–506

NEWP Parameter Types

Table 18–5, “NEWP Parameters,” lists the allowable parameters to a NEWP library. The
corresponding ALGOL parameters are identical. For further information about NEWP,
refer to the NEWP Programming Reference Manual.

Table 18–5. NEWP Parameters

ALGOL Parameter Corresponding NEWP Parameter

ANYTYPE ANYTYPE

ASCII ARRAY [0] ASCII ARRAY [0]

BOOLEAN BOOLEAN

BOOLEAN PROCEDURE BOOLEAN PROCEDURE

(None) CONNECTION

DIRECT ARRAY [0] DIRECT ARRAY [0]

DIRECT EBCDIC ARRAY [0] DIRECT EBCDIC ARRAY [0]

DIRECT FILE DIRECT FILE

DIRECT HEX ARRAY [0] DIRECT HEX ARRAY [0]

DIRECT REAL ARRAY [0] DIRECT REAL ARRAY [0]

DOUBLE DOUBLE

DOUBLE ARRAY [0] DOUBLE ARRAY [0]

DOUBLE PROCEDURE DOUBLE PROCEDURE

EBCDIC ARRAY [0] EBCDIC ARRAY [0]

EVENT EVENT

EVENT ARRAY [0] EVENT ARRAY [0]

FILE FILE

HEX ARRAY [0] HEX ARRAY [0]

INTEGER INTEGER

INTEGER ARRAY [0] INTEGER ARRAY [0]

INTEGER PROCEDURE INTEGER PROCEDURE

INTERLOCK INTERLOCK

INTERLOCK ARRAY INTERLOCK ARRAY

POINTER POINTER

PROCEDURE (Untyped) PROCEDURE (Untyped)

QUEUE WORD

 Using Libraries

8600 0494–506 18–121

Table 18–5. NEWP Parameters

ALGOL Parameter Corresponding NEWP Parameter

QUEUE ARRAY WORD ARRAY

QUEUE ARRAY REFERENCE WORD ARRAY

REAL REAL

REAL SHORT SET (MAX VALUE <= 47)

REAL ARRAY LONG SET (MAX VALUE > 47)

REAL ARRAY [0] REAL ARRAY [0]

REAL PROCEDURE REAL PROCEDURE

TASK VARIABLE or ARRAY [0] TASK VARIABLE or ARRAY [0]

TRANSLATE TABLE TRANSLATE TABLE

TRUTHSET TRUTHSET

Note: The ANYTYPE parameter has special properties that are discussed under “Using
the ANYTYPE Parameter.”

Using Libraries

18–122 8600 0494–506

Pascal Parameter Types

Table 18–6, “Pascal Parameters,” lists the allowable parameters to a Pascal library and
their corresponding ALGOL equivalents. For further information about Pascal, refer to
the Pascal Programming Reference Manual, Volume 1: Basic Implementation.

Table 18–6. Pascal Parameters

ALGOL Parameter Corresponding Pascal Parameters

BOOLEAN Boolean

 Boolean subrange

BOOLEAN ARRAY [*] Array of Boolean

BOOLEAN PROCEDURE Function: Boolean

 Function: Boolean subrange

DOUBLE Fixed (n > 11)

 Sfixed (n > 11)

DOUBLE ARRAY [*] Array of fixed (n > 11)

 Array of sfixed (n > 11)

 Packed array of fixed (n > 11)

 Packed array of sfixed (n > 11)

DOUBLE PROCEDURE Function: fixed (n > 11)

 Function: sfixed (n > 11)

EBCDIC ARRAY [*] Bits (n)

 Binary (n)

 U_display (n)

 Z_display (n)

 Display_z (n)

 S_display (n)

 Display_s (n)

 Word48 (n)

 Word96 (n)

 Integer48

 Integer96

 Real48

 Explicit record (var)

 Packed array of char

 Using Libraries

8600 0494–506 18–123

Table 18–6. Pascal Parameters

ALGOL Parameter Corresponding Pascal Parameters

 EBCDIC ARRAY [*] (cont.) Packed array of subrange (17-256 elements in subrange)

 Packed array of enumeration (17-256 elements in
enumeration)

FILE Systemfile

HEX ARRAY [*] Hex (n)

 Digits (n)

 S_digits (n)

 Digits_s (n)

 Boolean1

 Boolean4

 Packed array of Boolean

 Packed array of subrange (0-16 elements in subrange)

 Packed array of enumeration (0-16 elements in
enumeration)

INTEGER Integer

 Char

 Enumeration

 Fixed (n < 12)

 Sfixed (n < 12)

 Integer subrange

 Char subrange

 Enumeration subrange

INTEGER ARRAY [*] Array of integer

 Array of char

 Array of enumeration

 Array of fixed (n < 12)

 Array of sfixed (n < 12)

 Array of integer subrange

 Array of char subrange

 Array of enumeration subrange

 Packed array of integer

 Packed array of fixed (n < 12)

 Packed array of sfixed (n < 12);

Using Libraries

18–124 8600 0494–506

Table 18–6. Pascal Parameters

ALGOL Parameter Corresponding Pascal Parameters

 INTEGER ARRAY [*] (cont.) Packed array of subrange (> 256 elements in subrange)

 Packed array of enumeration (> 256 elements in
enumeration)

INTEGER PROCEDURE Function: integer

 Function: char

 Function: enumeration

 Function: fixed (n < 12)

 Function: sfixed (n < 12)

 Function: integer subrange

 Function: char subrange

 Function: enumeration subrange

PROCEDURE Procedure

REAL Real

 Short set (max value <= 47)

REAL ARRAY [*] Array of real

 Array of record

 Array of set

 Array of vlstring

 Array of packed array

 Array of explicit type

 Long set (max value > 47)

 Record

 Vlstring

 Explicit record (by-value)

 Packed array of real

 Packed array of set

 Packed array of record

 Packed array of vlstring

REAL PROCEDURE Function: real

Some types of Pascal parameters can cause extra parameters to be passed if a variable
of the parameter is declared as a parameter for a procedure or function. The Pascal
parameters affected by this are string schema, fixed length string schema, and any other
schema.

 Using Libraries

8600 0494–506 18–125

Refer to the Pascal Programming Reference Manual, Volume 1: Basic Implementation
for information about the Pascal parameters.

Subranges of types integer, Boolean, char, or enumeration are mapped as their host
type, except when the subranges or the types are components of packed arrays, which
are described below.

Each user-defined type identifier is resolved to one of the Pascal parameter types shown
in Table 18–8 according to its general type characteristics. For example, type color, as it
is usually defined, would be considered an enumerated type and would be mapped to
the generic type integer. The following two array declarations are equivalent:

array [index-type1] of array [index-type2] of...

array [index-type1, index-type2] of...

Packed arrays of integers, reals, sets, records, variable-length strings, or other arrays are
mapped as unpacked arrays of the same type. For packed arrays of Boolean, char,
subrange, or enumeration types, the mapping depends on the number of bits it takes to
represent the range of the type. If four bits or fewer are required, the mapping is to a
hexadecimal array with lower bound. If five to eight bits are required, the mapping is to
an EBCDIC array with lower bound. If nine bits or more are required, the mapping is to
an integer array with lower bound. More details appear in the data representation
discussion in the Pascal Programming Reference Manual, Volume 1: Basic
Implementation.

If a Pascal library program declares a parameter to be received as a read-only parameter,
the client program is allowed to pass the corresponding actual parameter either by
call-by-name, call-by-reference, call-by-value, or read-only. This is allowed because the
Pascal library program ensures that the parameter's value remains unchanged. A client
program can only pass a read-only parameter to a library program that receives the
parameter as a read-only parameter, to ensure that the value of the actual parameter is
not changed.

Using Libraries

18–126 8600 0494–506

Using the ANYTYPE Parameter

The ANYTYPE parameter enables an import procedure to accept any kind of data item
from the statement that invokes the procedure. ANYTYPE parameters are supported
only in ALGOL and NEWP.

The matching export procedure must occur in a NEWP program, in a block marked as
UNSAFE, with the parameter declared as type WORD. Otherwise, when the import
procedure is invoked, an error occurs and the system displays the following message:

Object <procedure name>: Type or parameter mismatch in interface <client
library identifier> to library <library name>

The export procedure can examine the tag bits in the parameter to determine the actual
data type that was passed.

The ANYTYPE parameter is typically used for accessing certain operating system
procedures that accept multiple data types. An example of such a procedure is the
MCPSUPPORT procedure CHECKPOINTARRAY, which is described in Section 11,
“Restarting Jobs and Tasks.”

The following is an example of a client program with an import procedure that uses the
ANYTYPE parameter:

BEGIN

LIBRARY L (LIBACCESS = BYFUNCTION, FUNCTIONNAME = "TESTSUPPORT.");

PROCEDURE TESTPROC (W);
 ANYTYPE W;
 LIBRARY L;

INTEGER I;
EBCDIC ARRAY EBTEST[0:99];
REAL ARRAY RTEST[0:99,0:99];

TESTPROC(I);
TESTPROC(EBTEST);
TESTPROC(RTEST);

END.

In this example, import procedure TESTPROC is declared with parameter W of type
ANYTYPE. The program invokes procedure TESTPROC three times, passing a different
type of data item to parameter W each time.

 Using Libraries

8600 0494–506 18–127

Matching Array Lower Bounds

Array parameters can be declared either with an undeclared lower-bound specification or
with a formal lower-bound specification. Arrays with undeclared lower bounds are
hereafter referred to as unbounded arrays. Arrays with formal lower bounds are
hereafter referred to as simple arrays.

In the case of unbounded arrays, the lower-bound value of the array is provided during
execution by the program that calls the procedure. In the case of simple arrays, the
lower-bound value of the array is fixed during compilation, typically to a value of zero.
The actual value of the lower-bound parameter for the simple array is ignored during
execution.

If an unbounded array appears as a parameter to an imported or exported procedure, the
system generates one or more hidden parameters that pass the actual lower bound for
each dimension of the array. These hidden parameters are integer parameters that
follow the array parameter and are passed by value.

The syntax for array specifications in the various programming languages is described in
Table 18–7.

Table 18–7. Unbounded and Simple Array Declarations

Language Unbounded Array Simple Array

ALGOL ARRAY A[*]; ARRAY A[0];

C float (*) [] None

COBOL74 01 A BINARY.

77 B PIC S9(11) BINARY.

01 A BINARY.

COBOL85 01 A BINARY WITH LOWER-BOUNDS. 01 A BINARY.

FORTRAN77 REAL A(*). None

NEWP ARRAY A[*]; ARRAY A[0];

Pascal var a: ARRAYTYPE; None

Libraries and client programs written in COBOL85 can receive unbounded array
parameters by including a LOWER-BOUNDS clause in the formal array declaration. A
COBOL85 library always treats such an array parameter as if it had a lower bound of
zero, regardless of the actual lower bound passed by the client program.

COBOL74 libraries and client programs can specify unbounded array parameters by
adding a numeric parameter that receives the lower bound. In a COBOL74 client
program, this extra parameter must occur immediately after the unbounded array in the
CALL statement parameter list. In a COBOL74 library program, this extra parameter
must occur immediately after the unbounded array in the USING clause of the
PROCEDURE DIVISION. COBOL74 libraries always treat array parameters as if they had
a zero lower bound, regardless of the value passed in the extra parameter.

Using Libraries

18–128 8600 0494–506

Pascal array parameters can reference space in a data pool or in the heap. As a result, if
a Pascal client program passes an array parameter to a library, some constructs in the
library might result in incorrect references or cause overwrite corruption of other arrays
stored in the same data pool or heap.

For example, suppose a Pascal client program passes an array A to an ALGOL library. In
the exported ALGOL procedure, the expression POINTER(A) references the first element
in the data pool or heap. By contrast, the expression POINTER(A[0]) correctly references
the actual first element of the Pascal array A. Other constructs that can cause similar
problems, if not carefully used, include the SIZE and REMAININGCHARS functions and
the REPLACE, SCAN, and RESIZE statements. Note that no system function can return
the size of a Pascal array.

Additional problems can arise if a Pascal client program passes an array parameter to a
library written in a COBOL language. Like ALGOL libraries, COBOL libraries have no way
of determining the upper bound of an array in the heap. However, COBOL libraries have
the additional limitation that the lower bound of the array is always treated as zero,
regardless of where the array starts in the data pool.

Matching Parameter-Passing Mode

Library parameters can be passed by value, by reference, by name, or as read-only. The
read-only property causes the compiler to select the most efficient parameter-passing
mode, and prevents the receiving procedure from modifying the value of the parameter.
For an introduction to these parameter-passing modes and read-only parameters, refer to
“Parameter Passing Modes” in Section 17, “Using Parameters.”

If the library program declares a parameter to be received as a read-only parameter, the
client program can pass the parameter as call-by-name, call-by-reference, call-by-value, or
read-only. If a library program declares a parameter to be received by name or by
reference, the client program can pass the parameter by name, by reference or by value.
If the library program declares a parameter to be received by value, the client program
can only pass the parameter by value. For pointer parameters, the parameter-passing
mode of the library program and the client program must match.

 Using Libraries

8600 0494–506 18–129

Table 18–8, “Parameter-Passing Modes,” illustrates the parameter-passing rules. In the
table, the legal combinations of parameter-passing modes are marked with a P for
pointer parameters and an X for all other parameter types.

Table 18–8. Parameter-Passing Modes

 Client Program

Library Program Read-Only Name Reference Value

Read-Only X X X X

Name X X X

Reference X P/X X

Value P/X

In ALGOL programs, parameters are declared with or without a VALUE clause. In
ALGOL library programs, parameters declared with a VALUE clause are received by
value. Parameters declared without the VALUE clause are received by reference, except
for formal procedures and integer, real, double, Boolean, and complex variables, which
are received by name. In ALGOL client programs, library procedure parameters declared
with a VALUE clause are passed by value. Parameters declared without a VALUE clause
are passed by reference, except for integer, real, double, Boolean, and complex
variables, which are passed by name.

In COBOL74, parameters are passed by reference; therefore, a COBOL74 client program
cannot call a library that has declared its parameters by value. An ALGOL library must
declare its parameters to be by name or by reference if the ALGOL library is to be called
by a COBOL74 program.

A COBOL74 library must declare its 77-level BINARY parameters to be received by
reference. If any BINARY parameter is received by content, the program is not library-
capable. Due to the parameter-passing rules and the ALGOL and COBOL74 language
restrictions, an ALGOL program that calls a COBOL74 library must declare its integer,
real, or double parameters to be by value.

In COBOL85, parameters can be passed by reference or by value. If a COBOL85
program passes a group item of other than 01 level by reference, then the item is
passed as call-by-value-result. In other words, the value of the item in the calling
program is updated when the library procedure terminates.

In FORTRAN77, variable parameters are passed by name; array parameters are passed
by reference.

In NEWP, parameters are declared to be by value or by reference. Integers, real, double,
and Boolean variables that are not declared to be by value are passed by reference.

In Pascal, parameters are passed by reference, read-only, or value. Parameters that are
not passed by reference (“VAR” parameters) or by read-only (“CONST” parameters) are
passed by value.

Using Libraries

18–130 8600 0494–506

Matching Data Types

ALGOL and NEWP provide the ability to export and import data objects, as discussed
earlier in this section under “Exported Data in Server Libraries,” “Importing Data to
Client Programs,” and “Exported and Imported Data in Connection Libraries.”

ALGOL Capabilities

ALGOL libraries can export or import simple variables of the following data types:

• Simple variables of type BOOLEAN, COMPLEX, DOUBLE, EVENT, INTEGER, and
REAL.

• Arrays of any of these data types, as well as ASCII, EBCDIC, and HEX.

Note that if an exported array is multidimensional, it must have an access mode of
READWRITE.

ALGOL cannot export VALUE arrays, but does permit array references to be used to
export an array that is assigned the VALUE array.

NEWP Capabilities

Currently, the data exporting and importing capabilities of NEWP are much more
restricted than those of ALGOL. In NEWP, the full ability to both import and export data,
optionally specifying an access mode, exists only for events and event arrays. NEWP
can export other types of arrays, but cannot import them and cannot specify an access
mode for them.

FORTRAN77 Capabilities

This section does not discuss the exporting of data in FORTRAN77. Instead, refer to the
FORTRAN77 Programming Reference Manual.

Matching Data Names

The names of the exported and imported data objects must match, unless an
ACTUALNAME assignment is used to establish an alias used for matching, as discussed
under “Matching the Object Name” earlier in this section.

Matching Data Types

The type of data that is imported must match the exported data type exactly, except that
an INTEGER export can match a REAL import if the access mode is read-only.

 Using Libraries

8600 0494–506 18–131

Determining Which Clients Are Linked to a Library
Y (Status Interrogate) System Command

You can use the Y (Status Interrogate) system command to display the client processes
that are linked to a server library process. The following is an example of this display:

Status of Job 2375/2375 at 01:14:11
Program name: *SYSTEM/GENERALSUPPORT
 Codefile created: Monday, July 16, 2001 (20011197) at 14:55:19
Priority: 50
Origination: Unit 0
Stack State: Frozen, Permanent

This library is being used by 8 programs:
 The MCP
 9345: *SYSTEM/SDASUPPORT ON SYS38
 4972: *SYSTEM/TCPHOSTSERVICES
 4876: *SYSTEM/TCPIP/BNAV2/MANAGERS/12152
 6551: *OBJECT/MAIL
 2953: (SWDUNCAN)MCP/39/TRAP/MULTICOMP/AMLIP
 2915: (JASMITH)MCP/MM17A ON MCPS
 4983: *SYSTEM/PRINT/REMOTE/SERVER

Equivalent GETSTATUS Call

A DCALGOL program can obtain the same information by using the GETSTATUS call
with type 6 (Mix Entries), subclass 1, and mask bits 18 and 34 set. Mask bit 18 returns
the number of client processes linked to the library. Mask bit 34 returns a list of the
client processes.

Using Libraries

18–132 8600 0494–506

Understanding Library Process Structure
In most respects, an imported object can be used just as if it were declared by the
importing process rather than the server library or connection library process. The
following pages explore the effects of library process structure on scope of declarations,
task attribute usage, and error handling.

In this discussion, the process that imports an object is referred to as the importing
process. The importing process might be a client process (which imports an object
through a client library declaration), or a connection library process (which imports an
object through a connection library declaration).

Process Stacks

A process can either enter or initiate an imported procedure.

If a process enters an imported procedure, the procedure is executed on the process
stack of the importing process, rather than the process stack of the library that exported
the procedure.

If a process initiates an imported procedure, the procedure must run as a dependent
process. The system creates a new process stack to execute the procedure. The
resulting process is considered an external process. (For information about external
processes, refer to Section 2, “Understanding Interprocess Relationships.”)

Using Isolated Procedures in Libraries

The ISOLATED procedure attribute specifies that when an isolated procedure runs on a
stack other than the stack that declared the procedure, it is protected from operator DS
(Discontinue) commands and operator ST (Stop) commands that are applied to the stack
on which the isolated procedure is running.

An operator-entered DS command applied to the stack that declared an isolated
procedure results in the MCP discontinuing all stacks running its procedures, including
its isolated procedures.

The stack that declared a procedure is the task or library that was started when the code
file containing the procedure code was initiated. For library procedures, for example, this
stack is called the library stack.

When an isolated procedure is running on a stack other than its own stack, and that
stack is discontinued or stopped by an operator, the stack is discontinued or stopped
below the isolated stack frames.

• If those frames continue to run for 5 seconds of processor time after an operator
initiates a DS command, a message is displayed that indicates the operator-entered
DS command has been delayed while running isolated code from a specified task.

 Using Libraries

8600 0494–506 18–133

• If those frames continue to run for 5 seconds of processor time on a stack stopped
by an operator, the stop action takes effect as if the ISOLATED procedure attribute
had not been specified, and a message is displayed describing the situation.

• If those frames continue to run for 5 seconds of processor time on a
resource-discontinued stack, an RSVP message enables the operator to override the
resource limit. The RSVP message also indicates that the alternative is to terminate
the task that owns the “isolated” environment.

Thus a library or other IPC program that uses the ISOLATED procedure attribute can
assume that the isolated procedures are not interrupted by operator-entered DS
commands when running on other stacks. In addition, operator-entered ST commands
cannot delay the isolated procedures if those procedures do not consume more than 5
seconds of processor time before exiting.

If an isolated procedure fails to exit cleanly while running on a stack other than the stack
that declared it, the stack that declared it is discontinued by the MCP. Failure to exit
cleanly includes things such as fatal errors in the isolated procedure or in procedures
invoked above the isolated procedure, or a GO TO statement that cuts back the stack
environment of the isolated procedure.

When a stack is running isolated code from another stack, asynchronous actions such as
software interrupts, signals, approval and change procedures, and so on are delayed until
the isolated code exits. (If this restriction were not enforced, a software interrupt or
other asynchronous action that makes the isolated procedure work correctly could be
violated. For example, a software interrupt or other asynchronous action could initiate a
GO TO statement that would cut back the stack environment of the isolated procedure.
Other actions could also take place that the lock or locks held by the isolated procedure
were designed to prevent.)

Note: Software interrupts declared within isolated procedures or declared within
procedures invoked above isolated procedures never run.

When a stack is running isolated code from another stack, stack stretch is permitted up
to the limits imposed by hardware, and the discontinuance of stack overflow is
postponed until the isolated code exits.

A library or IPC program that uses isolated procedures might use the DSABLE option of
the WAIT or LOCK command so that the wait or lock attempt terminates and returns a
value indicating that the client stack has been discontinued. If one of these commands
is used with the DSABLE option, there should be code to cleanly terminate the operation
and exit the procedure when the operator issues a DS command.

Using Libraries

18–134 8600 0494–506

When running in an isolated procedure (or in a nonisolated procedure invoked above an
isolated procedure) on an operator-discontinued stack (different than the stack which
declared the isolated procedure), most system interfaces continue to function as if the
stack had not been discontinued. For example, files can be opened, read, written, and
so on. Some exceptions are as follows:

• Any RSVP situation that typically lists DS as an acceptable reply takes the DS
command. For example, an attempt to open a file that does not exist produces an
open result of DSEDINFINDV, which means an open attempt by a nondiscontinuable
task was discontinued by a DS system command while the task was trying to find
the file.

• DSABLE WAIT and LOCK statements terminate immediately and return a value
indicating that the client stack has been discontinued. A Wait on Time operation that
does not also use events (WHEN in ALGOL; WAIT (<arithmetic expression>) in
NEWP) is interrupted when an operator initiates a DS command, but is fully
performed if the operation is begun after the operator initiates a DS command. This
is true whether or not the DSABLE option was specified. (To get a fully DSABLE or
non-DSABLE Wait on Time operation, use WAIT[DSABLE](<arithmetic
expression>,E), where E is an event that is never caused.)

When a stack is running an isolated procedure on a stack other than the stack that
declared the procedure, the isolated semantics apply to that stack until that procedure
exits or the task or library that declared the procedure is discontinued. Thus, when such
an isolated procedure invokes a nonisolated procedure, the nonisolated procedure
experiences isolated semantics. This is true regardless of how many isolated or
nonisolated procedures are invoked above the first isolated procedure.

When a stack is running multiple isolated procedures declared by multiple different
stacks, the isolated semantics apply down to the lowest of the stack frames of an
isolated procedure from a task or library that has not been discontinued.

An isolated procedure can cause some system operations (for example, operator-entered
DS and ST commands) to be delayed.

Tip: Code an isolated procedure so that the procedure runs quickly and efficiently, and
does not consume excessive system resources.

The ISOLATED procedure attribute is usually used in the context of shared libraries that
have global data protected by locking mechanisms. However, isolated procedures could
be used in any situation where a procedure or procedures from one stack run on another
stack or stacks.

 Using Libraries

8600 0494–506 18–135

Example of an Isolated Procedure

The following library stores configuration data, updating it and searching it in response to
invocations of its exported procedures. An interlock and two isolated procedures are
used to ensure that updates and searches do not overlap, that partial updates to the
configuration data never occur, and that the interlock is never left locked, even if client
tasks are discontinued by an operator while running procedures from the library.

 $ SHARING = SHAREBYALL
 BEGIN
 <global configuration data declarations>
 INTERLOCK CONFIG_LOCK;

 PROCEDURE UPDATE_CONFIG(<parameters>);
 BEGIN

 <local configuration data declarations>

 PROCEDURE UPDATE_GLOBAL;

 BEGIN [ISOLATED]

 LOCK(CONFIG_LOCK);

 <copy from local configuration data to global
 configuration data>

 UNLOCK(CONFIG_LOCK);
 END UPDATE_GLOBAL;

 <build local configuration, using parameters, data from
 files, etc.>
 UPDATE_GLOBAL;

 END UPDATE_CONFIG;

 PROCEDURE SEARCH_CONFIG(<parameters>);
 BEGIN [ISOLATED]
 LOCK(CONFIG_LOCK);
 <using data from parameters, search global configuration
 data>
 <store results of search in other parameters>
 UNLOCK(CONFIG_LOCK);
 END SEARCH_CONFIG;

 EXPORT UPDATE_CONFIG, SEARCH_CONFIG;

 FREEZE(PERMANENT);

 END

Using Libraries

18–136 8600 0494–506

Library Task Attributes

Task Attributes for Entered Procedures

If a process enters an imported procedure, the task attributes of the importing process
govern the execution of the procedure. If the MYSELF predeclared task variable is used
in the imported procedure, MYSELF refers to the importing process. If the MYJOB task
variable is used in the imported procedure, MYJOB refers to the job of the importing
process (that is, the eldest ancestor of the importing process).

Task Attributes for Initiated Procedures

If a process initiates an imported procedure, the resulting process receives its own set of
task attributes. In this case, the MYSELF task variable refers to the new process. The
MYJOB task variable refers to the job of the importing process and the new process.
(Because the new process must be dependent, the client process and the new process
always have the same job.)

Access to Task Attributes of the Library

Thus, the MYSELF task variable, when referenced in an imported procedure, never
refers to the task attributes of the library process that exported the procedure. There is
no direct way for the importing process to access the task attributes of the library
process it is linked to.

On the other hand, you can design a library to provide importing processes with indirect
access to the task variable of the library process. The following ALGOL server library
program provides indirect access to its own task variable:

BEGIN

PROCEDURE VIRTUAL_OB (LIBTASK);
 TASK LIBTASK;
 BEGIN
 PROCEDURE X (I);
 INTEGER I;
 BEGIN
 I := LIBTASK.TASKVALUE;
 END;
 EXPORT X;
 FREEZE(TEMPORARY);
 END;

VIRTUAL_OB (MYSELF);

END.

In the preceding example, the exported procedure X indirectly interrogates a task
attribute of the library's task variable. This indirect access is possible because the library
program passes MYSELF as an actual parameter to the formal parameter LIBTASK of
procedure VIRTUAL_OB. Because exported procedure X is declared in VIRTUAL_OB,
procedure X has access to the LIBTASK variable.

 Using Libraries

8600 0494–506 18–137

APPROVAL and CHANGE Procedures

The MYSELF task variable should not be used inside APPROVAL procedures or CHANGE
procedures. For further information, refer to the “APPROVAL” and “CHANGE”
headings earlier in this section.

Task Attributes Useful for Libraries

Certain task attributes are particularly useful in the implementation of library applications.
These include the following:

• LIBRARY

This attribute passes library equations to a client process at run time. A library
equation modifies the library attributes of libraries declared in the client process.
Each library equation is applied to the library declaration with the corresponding
internal name, as discussed under “INTNAME” earlier in this section.

• LIBRARYSTATE

This attribute reports several types of information about a library process, including
the sharing value, the type of freeze, and the linkage class. A library process also
uses this attribute to determine whether the library process was initiated through the
library linkage mechanism.

• LIBRARYUSERS

For a server library process, this attribute returns the total number of client
processes or connection libraries that are linked to this server library.

• STATUS

A frozen server library process can be thawed by assigning this task attribute the
value of GOINGAWAY, as discussed in Section 6, “Monitoring and Controlling
Process Status.” In addition, the GOINGAWAY assignment prevents further client
processes from linking to this library instance.

For complete descriptions of these task attributes, refer to the Task Attributes
Programming Reference Manual.

Using Libraries

18–138 8600 0494–506

Error Handling

Faults in Imported Procedures

If an importing process encounters a fault while executing an imported procedure, the
system treats this as a fault in the importing process rather than in the process that
exported the procedure. If neither the imported procedure nor the importing program
incorporates fault-handling code, the fault causes the importing process to terminate.
The fault has no effect on the status of the exporting library process.

Conditions That Can Discontinue the Library Process

A server library with a permanent or temporary freeze cannot incur any faults while
frozen, because it is not executing any statements. However, an operator can terminate
the process with a DS (Discontinue) system command. Further, a server library with a
control freeze can incur faults while executing the control procedure, even while the
library is frozen.

Effects of Library Termination

If a library process is terminated by a fault or operator action while client processes are
linked to it, the system discontinues all processes currently executing procedures
imported from that library, and it delinks all other libraries linked to that library.

APPROVAL Procedure Errors

If an error or fault occurs in an APPROVAL procedure, the system prevents the linkage
from completing. However, neither the linking process nor the library being linked to
incurs an error.

CHANGE Procedure Errors

If an error or fault occurs in a CHANGE procedure, the system prevents the change in
connection state from completing. Further, the error or fault is propagated to the
requesting process (the process that initiated the linkage or delinkage that is in
progress). If the requesting process does not include code to handle the fault, the
system discontinues the requesting process.

Errors Linking to Server Libraries

For information about errors that can occur when a process links to a server library or
uses an object imported from a server library, refer to “Linking to Server Libraries”.

Errors Linking to Connection Libraries

For information about errors that can occur when a process links to a connection library
or uses an object imported from a connection library, refer to “Matching Connection
Library Objects”.

 Using Libraries

8600 0494–506 18–139

Design Strategies for Linking Libraries

Technical Architectures

Any program that uses library linkages is part of a distributed application. To get the most
out of using libraries, it is essential that such applications are designed with this
distributed nature in mind. Almost all architectures used to create distributed applications
follow one of the two following models.

Two-Tier Model

The two-tier model is the more traditional approach to application distribution.
Figure 18–7 illustrates the two-tier model.

Figure 18–7. Two-Tier Model

Using Libraries

18–140 8600 0494–506

Three-Tier Model

The three-tier model is the newer approach to application distribution. Figure 18–8
illustrates the three-tier model.

Figure 18–8. Three-Tier Model

The three-tier model is more complex than the two-tier model, but it is also more flexible
and robust. There are many ways the models can be mapped to application
architectures. In simple cases, one program can contain the whole model. In the more
complex cases, each tier is represented by a separate program and the application uses
different services so a program is part of several distribution models. Libraries can be
used as the interaction mechanism, but they are not the only interaction mechanism in
situations where programs interact. In designing such a system, it is important to
recognize which role each side of a library linkage has to fulfill, and what the
implementation choices are. An implementation should avoid combining these roles
whenever possible. If a library implements two services, there should be separate
interfaces to each of the services.

Client Strategies

Clients are typically simple in structure and many in number. They usually need a single
access to a service and they initiate the link to the service. There are usually no critical
sections or other locking issues. Abnormal termination of a client, if a service terminates,
is the acceptable or desired action. For more information refer to “Using Global Objects”
and “Using Events and Interlocks” in this book.

Client Libraries

This is the simplest form of a client. The program requires a LIBRARY declaration, which
defines where the service provider is located, and a collection of library objects, which
define the interface to the service. This implementation strategy is supported by all
languages that implement libraries.

 Using Libraries

8600 0494–506 18–141

Examples

The following is an example of an ALGOL LIBRARY declaration:

LIBRARY SERVICE (LIBACCESS = BYFUNCTION,
 FUNCTIONNAME = "SERVICESUPPORT.");
PROCEDURE REQUEST (BUF);
 ARRAY BUF [*];
 LIBRARY SERVICE;

REQUEST (BUF);

The following is an example of a COBOL LIBRARY declaration:

CHANGE ATTRIBUTE LIBACCESS OF "SERVICE" TO BYFUNCTION.
CHANGE ATTRIBUTE FUNCTIONNAME OF "SERVICE"
 TO "SERVICESUPPORT.".
CALL "REQUEST IN SERVICE" USING BUF

Connection Libraries

This advanced client is only available in ALGOL and NEWP. The program requires a
connection block TYPE declaration, which holds declarations for library objects making
up the interface, and a SINGLE LIBRARY instance declaration of the connection library
type.

Example

An example of an ALGOL SINGLE LIBRARY declaration of the connection library type:

TYPE CONNECTION BLOCK SERVICETYPE;
 BEGIN
 PROCEDURE REQUEST (BUF);
 ARRAY BUF [*];
 IMPORTED;
 END SERVICETYPE;

SERVICETYPE SINGLE IMPORTING LIBRARY SERVICE
 (LIBACCESS = BYFUNCTION,
 FUNCTIONNAME = "SERVICESUPPORT.");

SERVICE.REQUEST (BUF);

Using Libraries

18–142 8600 0494–506

The reasons for choosing a connection library over a client library are

• Program modularity

The interface declaration is contained inside the connection library type declaration.

• Robustness

A connection library is delinked instead of terminated when a service terminates.

• Exported functionality

The interface definition specifies the export of library objects and the imported
objects. These implement advanced concepts such as callback functions and client
handlers for service events. However, using two-way connections can cause
performance problems. For more information about these problems, refer to
“Hazards of Circular Connections.”

Server Strategies

The main reason servers are typically more complex is that they serve multiple clients.
Servers usually are initiated upon the first linkage request from a client. There are usually
critical sections and other locking issues to consider. Servers must provide graceful
termination of clients if a service is terminated. Some simple services are still
implemented using a server library.

Server Libraries

This is the simplest form of a server. The program requires an EXPORT list, which
defines the collection of available library objects, and a FREEZE statement, which
defines the point in the execution logic that the service is available. This implementation
strategy is supported by most languages implementing libraries, although in many cases,
the FREEZE statement is performed implicitly.

Examples

The following is an example of an ALGOL EXPORT list:

PROCEDURE REQUEST (BUF);
 ARRAY BUF [*];
 BEGIN
 . . .
 END REQUEST;
EXPORT REQUEST;

FREEZE (TEMPORARY);

 Using Libraries

8600 0494–506 18–143

The following is an example of an COBOL EXPORT list:

IDENTIFICATION DIVISION.
PROGRAM-ID.
 REQUEST.
DATA DIVISION.
WORKING STORAGE SECTION.
 77 BUF PIC X(80).
PROCEDURE DIVISION USING BUF.
. . .

Connection Libraries

This is an advanced server, only available in ALGOL and NEWP. The program requires a
connection block TYPE declaration, which holds declarations for the LIBRARY OBJECTS
that make up the interface, a LIBRARY interface declaration of the connection library
type, and a READYCL statement for that library interface.

Example

The following is an example of an ALGOL connection block TYPE declaration:

TYPE CONNECTION BLOCK SERVICETYPE;
 BEGIN
 PROCEDURE REQUEST (BUF);
 ARRAY BUF [*];
 BEGIN
 . . .
 END REQUEST;
 EXPORT REQUEST;
 END SERVICETYPE;

SERVICETYPE LIBRARY SERVICE;

READYCL (SERVICE);

The reasons for choosing a connection library over a server library are

• Program modularity

The interface declaration is contained inside the connection library type declaration.

• Exported functionality

The interface definition specifies the export of library objects in addition to the
imported objects. These implement advanced concepts such as callback functions
and client handlers for service events. However, using two-way connections can
cause performance problems. For more information, refer to “Hazards of Circular
Connections.”

Using Libraries

18–144 8600 0494–506

• Client state information

Declarations local to the connection block TYPE declaration are instantaneous for
each connection, providing an efficient mechanism to track and save client
information. To achieve similar function with server libraries, either a mechanism
detecting client identity and locating state information is invoked on every client call
referencing local state, or the server is implemented as a private library. This assures
a server instance per client, but possibly strains system resources and management.

Middleware Strategies

Middleware, the most complex tier, serves multiple servers and clients. A middleware
application usually is initiated upon the first linkage request from a client, but can be
available constantly and “listening”. There are critical sections and other locking issues
to consider, and these applications must provide full client protection if a service
terminates. A middleware application is implemented using connection libraries, as there
is no solution for implementing middleware using client and server libraries combined.

Connection Libraries

The program requires two connection block TYPE declarations: one for library objects
making up the client interface and one for library objects making up the server interface.
The middleware application should include a LIBRARY interface declaration of each
connection library type and a READYCL statement for the library interface to clients.
How client requests are routed to servers depends on the type of the service. Routing is
determined on a session basis or on a per-call basis. For session-based connections, the
change procedure for the client interface initiates the server connection.

Example

The following is an example of two ALGOL connection block TYPE declarations:

TYPE CONNECTION BLOCK SERVICETYPE;
 BEGIN
 INTEGER MY_SERVICE_INDEX; %% Set up in CHANGE
 PROCEDURE REQUEST (BUF);
 ARRAY BUF [*];
 PENDING;
 EXPORT REQUEST;
 END SERVICETYPE;

TYPE CONNECTION BLOCK SERVERTYPE;
 BEGIN
 PROCEDURE REQUEST (BUF);
 ARRAY BUF [*];
 IMPORTED;
 END SERVICETYPE;

SERVICETYPE SINGLE LIBRARY SERVICE
 (LIBACCES = BYFUNCTION,
 FUNCTIONNAME = "SERVICESUPPORT.");

 Using Libraries

8600 0494–506 18–145

SERVICETYPE LIBRARY SERVERS;

PROCEDURE SERVICETYPE.REQUEST (BUF);
 ARRAY BUF [*];
 BEGIN
 SERVERS [MY_SERVICE_INDEX].REQUEST (BUF);
 END REQUEST;

READYCL (SERVICE);

Linkage Status Control

A CHANGE procedure is required for each library to allow applications to terminate a
delinked connection properly. There is no other way to be notified of clients linking to or
delinking from your program as it happens or of servers that have delinked and thus
become unavailable while your program is using them. Any exported functions that
require guaranteed cleanup should use EXCEPTION procedures. This is typical for any
locking protocol. No other safe mechanism is guaranteed to be invoked in all cases. The
TRY mechanism cannot be invoked for a termination related to a delinkage of the service
that is being protected by a TRY statement. If absolute guarantees of cleanup are
necessary, an unsafe mechanism should be used, such as a protected EXCEPTION
procedure.

Using Libraries

18–146 8600 0494–506

Factors Affecting System Performance
Libraries can be complex and difficult to use correctly and, when used incorrectly, can
cause a negative effect on system performance. Delinkage and circular connections
should be considered carefully when using libraries.

Delinkage Overuse

Dynamic delinkage of libraries is a complex and costly operation. Excessive use of this
capability can lead to severe, system-wide performance problems. The more services a
program uses simultaneously (including open subports and open databases), the costlier
delinking gets. In addition, the larger a process family is, the more costly library
delinkages are. Exiting an environment containing and using a library declaration causes a
dynamic delink. Application designers should ensure all libraries are declared globally,
and that dynamic delinkage is avoided when unnecessary to the application design.

Hazards of Circular Connections

Circular connections are library connections that provide the ability to both import and
export objects. They are created either by circularly linked server libraries or by two-way
connection libraries. Circular connections provide complex and powerful library
structures that provide benefits and disadvantages to both server and client libraries.

The benefits of circular connections include the ability to implement advanced concepts
such as callback functions and client handlers for service events.

Circular connections have significant limitations that degrade system performance.
Performance degradation results from the increased time required to search through the
associated process families to ensure that references and environments belonging to
the delinking connections do not persist beyond delinkage. When two-way connections
are used, the processor overhead of delinkage is proportionally greater.

Limited Scaling

Library connections create graph structures used by the MCP to denote which stacks or
processes need to be searched when each connection is delinked. When applications
use circular linkages, they can require that every stack be searched every time one of
the connections is delinked. In a large application, this could result in the system
seeming to pause and perform no work for several seconds to several minutes. For this
reason, avoid circular connections unless they are essential to the design of the
application. If circular connections are used, isolate other applications from the
environment to reduce the size of the process environment that is searched at delink.

Indirect or Implicit Connections

Two-way connections can be indirect or implicit; that is, two processes can use two
separate connection libraries to create separate import and export paths between each
other. This creates the same set of interconnected processes that is created if there is
only one two-way connection library.

 Using Libraries

8600 0494–506 18–147

Existing Circular Libraries

Existing circular applications based on the standard client/server library model can be
converted to use connection libraries to gain the robustness that they provide. However,
the redesign of such applications should attempt to eliminate circularity to avoid the
potential performance degradation while incorporating the advantages of connection
libraries.

One-Way Connection Libraries

Use one-way connection libraries whenever possible. You can explicitly define a
connection library as a one-way connection library using the IMPORTING or EXPORTING
modifier to the Connection Library Declaration Statement in both ALGOL and NEWP.
This form of library enables a design to take advantage of most of the features of
connection libraries without encountering the performance problems that two-way
connections and circular linkages can cause. The compilers and the MCP ensure that a
linkage operation does not create a two-way import/export relationship with current
library and IPC relationships.

Use of either the IMPORTING or the EXPORTING modifier instructs the compiler to
issue a syntax error if an importing connection library contains exports or an exporting
connection library contains imports. The MCP returns error –26 at library linkage if an
importing or exporting connection library has both imports and exports. This error is also
returned by the MCP if an explicit one-way connection library had no imports or exports,
or if the importing side of the connection is a server library.

When linking importing and exporting connection libraries, the MCP ensures that only a
one-way import or export relationship is established; the context of all of the existing
library and IPC relationships for the processes being linked are included in this check. If
this one-way relationship check fails, a link error of –7 is returned.

A library link error of –27 is returned if an attempt is made to connect either two
importing or two exporting connection libraries.

Application design must still avoid linking one-way connection libraries first and then
creating loops by linking to either server libraries or connection libraries not specified as
IMPORTING or EXPORTING. Loops are checked for only when connections are made
that are explicitly marked as IMPORTING or EXPORTING. This kind of inadvertent
circularity can be avoided by only using importing or exporting connection libraries within
an application. Such an application will avoid the performance drawbacks inherent in
two-way connections and circular libraries.

Using Libraries

18–148 8600 0494–506

Examples

The use of the IMPORTING and EXPORTING modifiers is illustrated as follows:

Client

TYPE CONNECTION BLOCK SERVICETYPE;
 BEGIN
 PROCEDURE REQUEST (BUF);
 ARRAY BUF [*];
 IMPORTED;
 END SERVICETYPE;

SERVICETYPE SINGLE IMPORTING LIBRARY SERVICE
 (LIBACCESS = BYFUNCTION,
 FUNCTIONNAME = "SERVICESUPPORT.");

SERVICE.REQUEST (BUF);

 Server

 TYPE CONNECTION BLOCK SERVICETYPE;
 BEGIN
 PROCEDURE REQUEST (BUF);
 ARRAY BUF [*];
 BEGIN
 . . .
 END REQUEST;
 EXPORT REQUEST;
 END SERVICETYPE;

SERVICETYPE EXPORTING LIBRARY SERVICE;

READYCL (SERVICE);

 Using Libraries

8600 0494–506 18–149

Security Considerations for Libraries
The same sorts of security considerations apply to both server libraries and connection
libraries.

Privileges of the Importing Process

Usercode Privileges

When a process enters an imported procedure, the procedure is executed under the
usercode of the importing process, with whatever privileges are defined for the
usercode.

Inheriting Privileges from Library Code File

A process can also temporarily assume additional privileges while executing an imported
procedure. This is the case because the MP (Mark Program) system command can be
used to assign options to a library object code file. These options can confer compiler
status, control program status, privileged status, security administrator status, or tasking
status. The importing process benefits from these added privileges only while executing
procedures imported from that library; it is not enough simply to be linked to the library.

Inheriting Privileges from Importing Process Code File

Alternatively, the MP command can assign privileged transparent status, security
administrator transparent status, or tasking transparent status to the library object code
file. In this case, library procedures inherit privileges from the object code file of the
process that invokes the procedures.

For more information about privileges inherited from usercodes and from object code
files, refer to Section 5, “Establishing Process Identity and Privileges.”

Support Library Attributes

You can use the SL (Support Library) system command to assign any of several security-
related attributes to an SL function name. These attributes affect any library that is
initiated by function with the specified function name.

These attributes should not be confused with the general library attributes discussed
under “Using Library Attributes”.

Using Libraries

18–150 8600 0494–506

Attribute Descriptions

The following are the support library attributes and their meanings:

• LINKCLASS

Specifies the linkage class for the library. The linkage class restricts the classes of
programs allowed to import objects from that library. Refer to “Using Linkage
Classes.”

• MCPINIT

If set, then only operating system processes can initiate a library by linking to the
library by function.

Nonoperating system processes can still cause library initiation by linking to the
library by title, or can initiate the library program with a task initiation statement such
as CALL, PROCESS, or RUN. However, when a system library is initiated in any of
these ways, the system library does not receive the privileges normally granted to
system libraries.

MCPINIT affects only library initiation. If the library has already been initiated by
function, then the LINKCLASS and TRUSTED attributes determine whether a given
client can link to the library instance by function.

• ONEONLY

If set, only one version of the library code file is frozen as a BYFUNCTION library at
any one time.

• SYSTEMFILE

If set, the library code file is made a nonremovable system file when initiated or
marked as a support library by an SL command.

• TRUSTED

If set, the library can specify a different linkage class for each export object. Refer to
“Using Linkage Classes.”

Attributes Preset by the Operating System

Note that some system libraries have selected library attributes assigned to them
automatically by the operating system. You can use the SL command to set any
Boolean attribute of a system library. However, if the operating system has already set a
Boolean attribute, you cannot use the SL command to reset that attribute. The Boolean
attributes are MCPINIT, ONEONLY, SYSTEMFILE, and TRUSTED.

Changing a Preset LINKCLASS

If the LINKCLASS value of a system library is set by the operating system, then you can
use an SL command to change the LINKCLASS only to values that are able to link to the
system-defined LINKCLASS. For example, you can use an SL command to change the
LINKCLASS from 2 to 1, but not from 2 to 3.

 Using Libraries

8600 0494–506 18–151

Error for Incorrect Attribute Assignments

If an SL command assigns attributes to a system library that violate the preceding rules,
the system displays the error message “LIBRARY ATTRIBUTES NOT CHANGEABLE.”

Nonresumable Libraries

The operating system treats certain system libraries as nonresumable. Such libraries
cannot be thawed by THAW (Thaw Frozen Library) commands or discontinued by DS
(Discontinue) commands. Most nonresumable libraries support specialized commands
for the operator to thaw and resume the library. For example, an operator can use the
PS QUIT system command to thaw and resume the PRINTSUPPORT system library.

Restricting Access to a Library Code File

Users of a library can be restricted using the SECURITYTYPE file attribute of the library's
object code file. If the SECURITYTYPE value is PRIVATE, then any nonprivileged
process that uses the library must have the same usercode as the library. If the
SECURITYTYPE value is GUARDED or CONTROLLED, then a guard file is used to
restrict the nonprivileged library users.

Using Linkage Classes

Linkage Classes

Every process and every exported library object has a linkage class. Whenever a process
links to an exported library object the system compares the linkage classes of the
importing process and the exporting library object. If the linkage classes are not
compatible, the system prevents the object from being imported and returns a linkage
error.

Library linkage classes provide a level of protection that goes beyond that provided by
the SECURITYTYPE file attribute. Even if the SECURITYTYPE value is PUBLIC, the
linkage class still prevents certain processes from importing objects from the library.
Linkage classes control several layers of system software services. By applying linkage
classes, less privileged applications and system software processes are prevented from
linking to more privileged system library processes.

Trusted Libraries

A system library process can have a trusted status. This status allows the library to
export library objects with a linkage class different from its own linkage class. Typically,
this differing linkage class is less privileged and incompatible with its own linkage class.
Only trusted library processes can export library objects into an incompatible linkage
class, thus enabling them to offer their services to processes in otherwise incompatible
linkage classes.

Using Libraries

18–152 8600 0494–506

Determining the Importing Linkage Class

The system determines an importing linkage class for a program when the program is
first initiated. The importing linkage class remains the same until the program
terminates.

The system uses the following factors to determine the importing linkage class of a
process:

• LINKCLASS support library attribute

This attribute affects only library programs that are initiated by function. If an
existing library instance is linked to by function, and the linkage class of the library
instance is less privileged than the LINKCLASS of the function name, then the
system displays the warning message “LIBRARY INITIATED IN INCOMPATIBLE
LINKAGE CLASS.”

• MCS status, tasking status, privileged program status, and compiler status

For information about how a process receives these types of security status, refer to
Section 5, “Establishing Process Identity and Privileges.”

• Multiple linkage classes

If a process qualifies for two or more different linkage classes, the system grants the
linkage class that affords the greatest privileges, except for compilers which only
have compiler linkage class even if marked Tasking or PU. A process can inquire on
its own importing linkage class through field [19:04] in the LIBRARYSTATE task
attribute.

Determining the Trusted Status

The system determines the trusted status for each library program on the system when
the program is first initiated. The trusted status remains the same until the program
terminates.

The system uses the following factors to determine the trusted status of a library
process:

• The TRUSTED support library attribute. This attribute affects only library programs
that are initiated by function.

• MCS status, tasking status, privileged program status, or compiler status. These
types of security status give trusted status to a process. Refer to Section 5,
“Establishing Process Identity and Privileges” for more information about how a
process receives these types of security status.

A process can inquire on its own trusted status through field [26:01] in the
LIBRARYSTATE task attribute.

 Using Libraries

8600 0494–506 18–153

Determining the Exporting Linkage Class

The system determines an exporting linkage class for an exported library object of a
program when the program makes the library objects available for linkage. The exporting
linkage class remains the same until the library object is no longer available. The system
uses the following factors to determine the exporting linkage class of an exported library
object:

• The trusted status of the library process. If a library process does not have trusted
status, the system treats all the library objects as having the same linkage class as
the importing linkage class of the library process.

• The LINKCLASS export list modifier. In ALGOL and NEWP libraries you can use the
export list to specify the linkage class for each library object. If the export list does
not specify a linkage class for a particular object, the object defaults to zero.

• The importing linkage class of a program. As a performance optimization, if a process
has an importing linkage class of zero, the process is implicitly trusted, since there is
no security breach possible.

Programs That Contain Multiple Libraries

The linkage class value evaluations apply to all libraries in that program. For example,
suppose a program is a server library program that also contains two connection libraries
and a client library. Then,

• If the program has no trusted status, all exported objects in these libraries receive
the importing linkage class of the program.

• If the program does have trusted status, all exported objects in the libraries have the
same default linkage class value of zero, which can be overridden for individual
exported library objects.

If a separate function name is associated with each library in the program, then you
could assign a different LINKCLASS value to each function name. However, the only
LINKCLASS value that has effect is the one used at initiation time. Therefore, the actual
linkage class for the program will depend on which library is linked to first.

Using Libraries

18–154 8600 0494–506

Descriptions of the Linkage Classes

Table 18–9 lists the linkage classes and indicates which linkage classes are compatible.

Table 18–9. Linkage Classes

Importing
Linkage
Class

Type of Process

Exporting
Linkage Class

0 Default 0

1 The following processes belong to this class:

• Master control program (MCP)

• Libraries initiated BYFUNCTION, using a function
name that has LINKCLASS = 1. This category includes
some system libraries such as COMSSUPPORT,
DATACOMSUPPORT, and PRINTSUPPORT

Any

2 The following processes belong to this class:

• Libraries initiated BYFUNCTION, using a function
name that has LINKCLASS = 2

• Message control systems (MCSs)

• Tasking programs

0, 2, 3, 4

3 This class consists of libraries initiated BYFUNCTION,
using a function name that has LINKCLASS = 3

0, 3, 4

4 The following processes belong to this class:

• Libraries initiated BYFUNCTION, using a function
name that has LINKCLASS = 4

• Programs marked as privileged by the PU option of
the MP (Mark Program) system command

0, 4

5 The following processes belong to this class:

• Libraries initiated BYFUNCTION, using a function
name that has LINKCLASS = 5

• Programs marked as compilers by the COMPILER
option of the MP (Mark Program) system command.

0, 5

6-7 Reserved for use by system software.

8-15 Free for site-dependent definition and use. Any other site-
defined linkage
class of equal
or lesser value

 Using Libraries

8600 0494–506 18–155

Linkage Class Errors

A process might be able to link to a library even if that library is of an incompatible
linkage class. The system evaluates the linkage classes only when the importing
process attempts to use an import object. At this point, if the linkage classes are
incompatible, the system discontinues the importing process and displays the following
error message:

OBJECT <name> LINKAGE CLASS VIOLATION IN LIBRARY <name>

The importing process could avoid this error by checking the ISVALID function before
using the import object. Refer to “Matching Client and Server Library Objects” and
“Matching Connection Library Objects” earlier in this section.

For implicit linkages, the above error can occur at linkage time rather than later. This is
possible because implicit linkages result when a process uses an import object from a
library that is not yet linked. If this import is of a linkage class that is incompatible with
the matching export object, then linkage fails.

System Libraries

Libraries with a linkage class other than 0 are referred to as system libraries. Much of
the system software is provided in the form of system libraries. Examples of system
libraries are GENERALSUPPORT, which provides intrinsic functions; MARCSUPPORT,
which provides Menu-Assisted Resource Control (MARC); and DSSSUPPORT, which
supports distributed system services (DSSs).

Using Libraries

18–156 8600 0494–506

Library Debugging
LIBRARIES Option for Program Dumps

If you are debugging a library application, and you are not sure whether an observed bug
originates in an exported procedure or in the process that invoked a library procedure,
then it can be helpful to set the LIBRARIES option of the OPTION task attribute in the
importing process. The LIBRARIES option causes information related to libraries to be
included in any program dumps generated by the importing process. This information
includes

• The contents of all library process stacks to which the importing process is linked.
For a server library, the library process stack is dumped from the base of the FREEZE
environment down to the base of the stack. For a connection library, the library
process stack is dumped from the highest environment containing a ready
connection library interface down to the base of the stack. If no interfaces have been
readied from the program, then the process stack will not be dumped even if there is
a linked connection library element.

• The contents of the library directory in each library process stack. There is one
library directory for each export list in a library. For server libraries, only one library
directory is in effect at the time a library freezes. For connection libraries, multiple
library directories can be in effect at the same time. For each export object, the
library directory stores the name, the type of object, and the type of provision used
(direct, indirect, or dynamic). For exported procedures, the library directory also
stores a description of the parameters of the procedure.

• The contents of all library templates in the importing process stack. One library
template exists for each library declaration executed by the importing process. A
library template stores information about the library attributes. A library template
also stores descriptions of all the objects imported from a particular library, including
the name, type of object, and parameters.

LIBTRACE System Command

If you encounter a system software bug related to libraries, it might be a good idea to
use the LIBTRACE (Library Trace) system command to enable the STANDARD library
trace option. The STANDARD option causes the system to write a useful subset of
library trace information to the system log. If you succeed in reproducing the bug,
submit the system log containing the trace information along with the User
Communication Form (UCF). The LIBTRACE system command is available only on
systems running diagnostic versions of the MCP.

After you finish reproducing the bug and submitting your UCF, you can reduce system
overhead by disabling the STANDARD library trace option.

 Using Libraries

8600 0494–506 18–157

Server Library Examples
The following subsections give examples of server libraries and client programs that
import objects from these libraries.

ALGOL Library: OBJECT/FILEMANAGER/LIB

The following library, called OBJECT/FILEMANAGER/LIB, uses dynamic provision to
export a set of file management routines. This library demonstrates features of dynamic
provision, but does not necessarily represent efficient programming.

$SHARING = PRIVATE
 BEGIN % FILEMANAGER/LIB.
 TASK ARRAY LIBTASKS [0:10]; % PROVIDE UP TO 11 DIFFERENT LIBRARY
 % PROCESSES.
 STRING ARRAY FILETITLES [0:10]; % LIBPARAMETER FOR EACH LIB PROCESS

 PROCEDURE FILEMANAGER (TASKINDEX);
 VALUE TASKINDEX;
 INTEGER TASKINDEX;

 BEGIN
 PROCEDURE READFILE;
 BEGIN
 .
 .
 .
 END READFILE;

 PROCEDURE WRITEFILE;
 BEGIN
 .
 .
 .
 END WRITEFILE;

 EXPORT READFILE, WRITEFILE;

 FREEZE (TEMPORARY);
 FILETITLES [TASKINDEX]:= ".";
 END FILEMANAGER;

 PROCEDURE SELECTION (USERSFILE, MCPCHECK);
 VALUE USERSFILE;
 EBCDIC STRING USERSFILE;
 PROCEDURE MCPCHECK (T); TASK T; FORMAL;
 BEGIN
 INTEGER TASKINDEX;
 BOOLEAN FOUND;

Using Libraries

18–158 8600 0494–506

 LABEL SEARCH;

 % LOOK AT ALL THE FILETITLES CHECKING TO SEE IF A LIBRARY PROCESS
 % HAS ALREADY BEEN INITIATED FOR FILE TITLE USERSFILE.

 SEARCH:

 WHILE NOT FOUND AND (TASKINDEX LEQ 10) DO
 BEGIN
 IF FILETITLES [TASKINDEX] = USERSFILE THEN
 FOUND:= TRUE
 ELSE
 TASKINDEX:= * + 1;
 END;

 % IF NO LIBRARY PROCESS EXISTS FOR THIS FILE TITLE, THEN CREATE ONE
 IF NOT FOUND THEN
 BEGIN
 TASKINDEX:= 0;
 WHILE NOT FOUND AND (TASKINDEX LEQ 10) DO
 IF LIBTASKS [TASKINDEX].STATUS LEQ 0 THEN
 FOUND:= TRUE
 ELSE
 TASKINDEX:= * + 1;
 IF NOT FOUND THEN
 BEGIN

 % WAIT A SECOND AND MAYBE
 % A LIBRARY PROCESS WILL GO TO EOT.
 WAIT ((1));
 GO SEARCH; %
 END;

 PROCESS FILEMANAGER (TASKINDEX) [LIBTASKS [TASKINDEX]];
 WHILE LIBTASKS [TASKINDEX].STATUS NEQ VALUE (FROZEN) DO
 WAIT ((1));
 FILETITLES [TASKINDEX]:=USERSFILE;
 END;

 MCPCHECK (LIBTASKS [TASKINDEX]);
 END SELECTION;

 PROCEDURE READFILE;
 BY CALLING SELECTION;
 PROCEDURE WRITEFILE;
 BY CALLING SELECTION;

 EXPORT READFILE, WRITEFILE;
 FREEZE (TEMPORARY);
 END LIBRARY.

 Using Libraries

8600 0494–506 18–159

Before attempting to understand this example, you should be familiar with the concepts
discussed under “Dynamic Provision” in this section.

OBJECT/FILEMANAGER/LIB exports two procedures: READFILE and WRITEFILE.
OBJECT/FILEMANAGER/LIB provides these procedures dynamically. The procedures
are ultimately provided by various library processes that are initiated by
OBJECT/FILEMANAGER/LIB. Each of these offspring library processes is an instance of
the procedure FILEMANAGER. Each library process is intended to provide read and
write access to a different data file. Each client process is expected to use the
LIBPARAMETER library attribute to indicate the name of the file to be read or written.

The system automatically invokes the SELECTION procedure whenever a client process
first links to OBJECT/FILEMANAGER/LIB. The system passes an MCP procedure to the
MCPCHECK parameter of the SELECTION procedure. The system also passes the
LIBPARAMETER attribute specified by the client process to the USERSFILE parameter
of the SELECTION procedure.

The SELECTION procedure searches the string array FILETITLES to see if a library
process with the name specified by USERSFILE is already running. If so, the
SELECTION procedure selects the task variable of the requested library process. If no
library process with the requested name is yet running, SELECTION initiates a new
library process and stores the name of the process in the FILETITLES array.

After SELECTION has selected a task variable, it invokes the procedure MCPCHECK,
passing the selected task variable as a parameter. The MCPCHECK procedure informs
the system to link the client process to the library process with the specified task
variable. The actual library linkage is not performed until SELECTION has been exited.

ALGOL Client Program #1

The following ALGOL client program invokes the ALGOL dynamic library in the previous
example, OBJECT/FILEMANAGER/LIB. This client program reads information from the
file MYFILE by assigning a value of "MYFILE" to the LIBPARAMETER library attribute and
then invoking the procedure READFILE. The client program then writes information to a
file called OTHERFILE by canceling the library, changing the LIBPARAMETER library
attribute to "OTHERFILE", and invoking the WRITEFILE procedure.

BEGIN
LIBRARY L (TITLE = "OBJECT/FILEMANAGER/LIB.");
PROCEDURE READFILE;
 LIBRARY L;
PROCEDURE WRITEFILE;
 LIBRARY L;

L.LIBPARAMETER:= "MYFILE";

READFILE;

CANCEL (L);

L.LIBPARAMETER:="OTHERFILE"; % LIBPARAMETER CAN BE CHANGED

Using Libraries

18–160 8600 0494–506

 % BECAUSE THE LIBRARY HAS BEEN
 % CANCELED.

WRITEFILE;
END PROGRAM.

ALGOL Library: OBJECT/SAMPLE/LIBRARY

The following ALGOL library, compiled as OBJECT/SAMPLE/LIBRARY, uses direct library
linkage:

BEGIN
 ARRAY MSG[0:120];

 INTEGER PROCEDURE FACT(N);
 INTEGER N;

 BEGIN
 IF N LSS 1 THEN
 FACT:= 1
 ELSE
 FACT:= N * FACT(N - 1);
 END; % OF FACT.

 PROCEDURE DATEANDTIME(TOARRAY, WHERE);
 ARRAY TOARRAY[*];
 INTEGER WHERE;

 BEGIN
 REAL T;
 POINTER PTR;

 T:= TIME(7);
 PTR:= POINTER(TOARRAY, 8) + WHERE;
 CASE T.[5:6] OF

 BEGIN
 0: REPLACE PTR:PTR BY "SUNDAY, ";
 1: REPLACE PTR:PTR BY "MONDAY, ";
 2: REPLACE PTR:PTR BY "TUESDAY, ";
 3: REPLACE PTR:PTR BY "WEDNESDAY, ";
 4: REPLACE PTR:PTR BY "THURSDAY, ";
 5: REPLACE PTR:PTR BY "FRIDAY, ";
 6: REPLACE PTR:PTR BY "SATURDAY, ";
 END;
 REPLACE PTR BY T.[35:6] FOR 2 DIGITS, "-",
 T.[29:6] FOR 2 DIGITS, "-",
 T.[47:12] FOR 4 DIGITS, ", ",
 T.[23:6] FOR 2 DIGITS, ":",
 T.[17:6] FOR 2 DIGITS, ":",

 Using Libraries

8600 0494–506 18–161

 T.[11:6] FOR 2 DIGITS;
 END; % OF DATEANDTIME.

 EXPORT FACT, DATEANDTIME AS "DAYTIME";
 REPLACE POINTER(MSG, 8) BY
 " - SAMPLE LIBRARY STARTED",
 " " FOR 94;
 DATEANDTIME(MSG, 60);
 DISPLAY(MSG);
 FREEZE(TEMPORARY);
 REPLACE POINTER(MSG, 8)+ 19 BY "ENDED ";
 DATEANDTIME(MSG, 60);
 DISPLAY(MSG);
 END.

ALGOL Library: OBJECT/SAMPLE/DYNAMICLIB

The following ALGOL library, compiled as OBJECT/SAMPLE/DYNAMICLIB, uses
dynamic and indirect provision. This library references the library
OBJECT/SAMPLE/LIBRARY in the preceding example:

BEGIN
 TASK LIB1TASK, LIB2TASK;
 LIBRARY SAMLIB(TITLE= "OBJECT/SAMPLE/LIBRARY.");
 INTEGER PROCEDURE FACT(N);
 INTEGER N;
 LIBRARY SAMLIB;

 PROCEDURE DYNLIB1;
 % LIBRARY PROVIDED DYNAMICALLY AND INDIRECTLY
 BEGIN % PRINTS DATE WITH TIME.
 LIBRARY SAMLIB (TITLE="OBJECT/SAMPLE/LIBRARY.");
 PROCEDURE DAYTIME(TOARRAY, WHERE);
 ARRAY TOARRAY[*];
 INTEGER WHERE;
 LIBRARY SAMLIB;
 EXPORT DAYTIME;
 FREEZE(TEMPORARY);
 END; % OF DYNLIB1.

 PROCEDURE DYNLIB2;
 % LIBRARY PROVIDED DYNAMICALLY
 BEGIN % PRINTS DATE WITHOUT TIME.
 PROCEDURE DAYTIME(TOARRAY, WHERE);
 ARRAY TOARRAY[*];
 INTEGER WHERE;

 BEGIN
 REAL T;
 T:= TIME(7);
 REPLACE POINTER(TOARRAY, 8) + WHERE

Using Libraries

18–162 8600 0494–506

 BY T.[35:6] FOR 2 DIGITS, "-",
 T.[29:6] FOR 2 DIGITS, "-",
 T.[47:12] FOR 4 DIGITS;
 END; % OF DAYTIME.
 EXPORT DAYTIME;
 FREEZE(TEMPORARY);
 END; % OF DYNLIB2

 % THE SELECTION PROCEDURE.
 PROCEDURE THESELECTIONPROC(LIBPARSTR, NAMINGPROC);
 VALUE LIBPARSTR;
 EBCDIC STRING LIBPARSTR;

 PROCEDURE NAMINGPROC(LIBTASK);
 TASK LIBTASK; FORMAL;

 BEGIN
 IF LIBPARSTR EQL "WITH TIME" THEN
 BEGIN
 IF LIB1TASK.STATUS NEQ VALUE(FROZEN) THEN
 PROCESS DYNLIB1 [LIB1TASK];
 NAMINGPROC(LIB1TASK);
 DISPLAY(" *** CALLING DYNLIB1 ");
 END
 ELSE
 BEGIN
 IF LIB2TASK.STATUS NEQ VALUE(FROZEN) THEN
 PROCESS DYNLIB2 [LIB2TASK];
 NAMINGPROC(LIB2TASK);
 DISPLAY(" *** CALLING DYNLIB2 ");
 END;
 END; % OF THE SELECTION PROCEDURE

 PROCEDURE DAYTIME(TOARRAY, WHERE);
 ARRAY TOARRAY[*];
 INTEGER WHERE;
 BY CALLING THESELECTIONPROC;

 EXPORT FACT % PROVIDED INDIRECTLY.
 ,DAYTIME; % PROVIDED DYNAMICALLY
 FREEZE(TEMPORARY);
 END.

 Using Libraries

8600 0494–506 18–163

ALGOL Client Program #2

The following ALGOL program invokes the library OBJECT/SAMPLE/DYNAMICLIB
described previously.

BEGIN
 LIBRARY MYLIB(TITLE= "OBJECT/SAMPLE/DYNAMICLIB.");
 INTEGER PROCEDURE FAKTORIAL(N);
 INTEGER N;
 LIBRARY MYLIB(ACTUALNAME= "FACT");

 PROCEDURE DAYTIME(A, W);
 ARRAY A[*];
 INTEGER W;
 LIBRARY MYLIB;

 REAL T;
 ARRAY DATIME[0:120];

 MYLIB.LIBPARAMETER:= "WITH TIME";
 REPLACE POINTER(DATIME[0], 8) BY
 " 13 FACTORIAL IS ",
 FAKTORIAL(13) FOR 12 DIGITS,
 " - ";
 DAYTIME(DATIME[*], 40);
 DISPLAY(DATIME[0]);
 END.

ALGOL Circular Client Programs

The following ALGOL programs invoke each other. The first program is the client
program.

BEGIN
LIBRARY L(TITLE="OBJECT/MYLIB1");
PROCEDURE PLIB1_A (R);
 VALUE R;
 REAL R;
 LIBRARY L;
REAL X;
.......
PLIB1_A (X);
.......
END.

The second program (MYLIB1) is a library that uses another library.

BEGIN
LIBRARY L(TITLE="OBJECT/MYLIB2");
REAL PROCEDURE PLIB2_A (R);
 VALUE R;

Using Libraries

18–164 8600 0494–506

 REAL R;
 LIBRARY L;

REAL PROCEDURE PLIB1_A (R);
 VALUE R;
 REAL R;
 BEGIN

 PLIB1_A:= PLIB2_A (R); %% Invokes a procedure in MYLIB2.
 END;

PROCEDURE PLIB1_B (P1, P2);
 VALUE P1;
 REAL P1, P2;
 BEGIN

 END;

EXPORT PLIB1_A, PLIB1_B;
FREEZE(TEMPORARY);
END.

The third program (MYLIB2) is a library that uses another library (MYLIB1).

BEGIN
LIBRARY L(TITLE="OBJECT/MYLIB1");
REAL PROCEDURE PLIB1_B (A, B);
 VALUE A;
 REAL A, B;
 LIBRARY L;

REAL PROCEDURE PLIB2_A (R);
 VALUE R;
 REAL R;
 BEGIN
 REAL X, Y;

 PLIB1_B (X, Y) %% Procedure in MYLIB1; circular linkage
 %% is allowed, because MYLIB1 is frozen.
 PLIB2_A:=Y;
 END;

BOOLEAN PROCEDURE PLIB2_B (X);
 VALUE X;
 REAL X;
 BEGIN

 END;

EXPORT PLIB2_A, PLIB2_B;
FREEZE(TEMPORARY);
END.

 Using Libraries

8600 0494–506 18–165

ALGOL Incorrect Circular Libraries

The following are examples of libraries and client programs that use circular linkage
incorrectly.

Example 1: Indirect Self Referencing

The following is the client program OBJECT/INDIRECT/CALL. This program invokes
procedure X in the library OBJECT/INDIRECT/LIB1.

BEGIN
 LIBRARY L(TITLE="OBJECT/INDIRECT/LIB1");
 PROCEDURE X;
 LIBRARY L;
 X;
 END.

The following is the library OBJECT/INDIRECT/LIB1. This library provides procedure X
indirectly by importing it from another library, OBJECT/INDIRECT/LIB2.

$SHARING = SHAREDBYALL
 BEGIN
 LIBRARY L(TITLE="OBJECT/INDIRECT/LIB2");
 PROCEDURE X;
 LIBRARY L;
 EXPORT X;
 FREEZE(PERMANENT);
 END.

The following is the library OBJECT/INDIRECT/LIB2. This library also provides procedure
X indirectly, in this case by importing procedure X from OBJECT/INDIRECT/LIB1.

$SHARING = SHAREDBYALL
 BEGIN
 LIBRARY L(TITLE="OBJECT/INDIRECT/LIB1");
 PROCEDURE X;
 LIBRARY L;
 EXPORT X;
 FREEZE(PERMANENT);
 END.

This chain of linkages is completely circular. That is, the chain leads back not just to the
original library, but also to the original procedure. When the client program invokes
procedure X, the system discontinues the program and displays the message
“CURRENT CIRCULAR LIBRARY REFERENCE STRUCTURE IS NOT ALLOWED.”

Using Libraries

18–166 8600 0494–506

Example 2: Direct Self Referencing

The following ALGOL library, called OBJECT/ALGOL/SELF/LIB, attempts to provide a
procedure by importing it from the same procedure in the same library. When a client
process attempts to invoke procedure X in this library, the client process hangs. The Y
(Status Interrogate) system command shows a STACK STATE of WAITING ON AN
EVENT, but the process does not appear in the W (Waiting Mix Entries) system
command display. This situation continues until an operator enters a DS (Discontinue)
system command or until the system is halt/loaded.

$SHARING = SHAREDBYALL
 BEGIN
 LIBRARY L(TITLE="OBJECT/ALGOL/SELF/LIB");
 PROCEDURE X;
 LIBRARY L;
 EXPORT X;
 FREEZE(TEMPORARY);
 END.

Example 3: Libraries That Wait on Each Other

The following client program invokes a procedure in the library OBJECT/LIB/WAIT1.

BEGIN
 LIBRARY L(TITLE="OBJECT/LIB/WAIT1.");
 PROCEDURE X;
 LIBRARY L;
 X;
 END.

The following is the library OBJECT/LIB/WAIT1. Before freezing, this library invokes a
procedure in the library OBJECT/LIB/WAIT2.

$SHARING = SHAREDBYALL
 BEGIN
 LIBRARY L(TITLE="OBJECT/LIB/WAIT2.");
 PROCEDURE X;
 LIBRARY L;
 PROCEDURE Y;
 DISPLAY ("Y");
 EXPORT X, Y;
 X;
 FREEZE(TEMPORARY);
 END.

 Using Libraries

8600 0494–506 18–167

The following is the library OBJECT/LIB/WAIT2. Before freezing, this library invokes a
procedure in the library OBJECT/LIB/WAIT1.

$SHARING = SHAREDBYALL
 BEGIN
 LIBRARY L(TITLE="OBJECT/LIB/WAIT1.");
 PROCEDURE Y;
 LIBRARY L;
 PROCEDURE X;
 DISPLAY ("X");
 EXPORT X, Y;
 Y;
 FREEZE(TEMPORARY);
 END.

Because OBJECT/LIB/WAIT1 was initiated through the library linkage mechanism, is
SHAREDBYALL, and has not yet frozen, OBJECT/LIB/WAIT2 waits for
OBJECT/LIB/WAIT1 to freeze. Both libraries are then waiting for each other to freeze.
The client process hangs indefinitely. The Y (Status Interrogate) system command
shows the client process to have a STACK STATE of WAITING ON AN EVENT, but the
client process does not appear in the W (Waiting Mix Entries) system command display.
This situation continues until an operator enters a DS (Discontinue) system command or
until the system is halt/loaded.

C Library and ALGOL Client Program

The following pair of examples illustrate the ability of an ALGOL calling program to
indirectly access character data in a C library.

The following C library exports a procedure named WRITELINE. This procedure accepts
a parameter that is a pointer to a string of characters. The procedure writes the string to
a file named TEST.

#include <stdio.h>
#include <stdlib.h>
FILE * pf;

asm WRITELINE(char * pc) {
 fputs(pc, pf);
 fputc('\n',pf);
}

void cleanup(void) {
 /* called after main exits, i.e., after thaw */
 fputs("all done\n", pf);
 fclose(pf);
}

Using Libraries

18–168 8600 0494–506

main() {
 pf = fopen("TEST", "w");
 atexit(cleanup);
}

The C library is called by the following ALGOL client program:

BEGIN

LIBRARY CLIB(LIBACCESS = BYTITLE, TITLE="OBJECT/STREAM/C.");
INTEGER PROCEDURE MALLOC(BYTES);
 VALUE BYTES;
 INTEGER BYTES;
 LIBRARY CLIB;
INTEGER PROCEDURE FREE(CPTR);
 VALUE CPTR;
 INTEGER CPTR;
 LIBRARY CLIB;
INTEGER PROCEDURE HEAPTOPTR(CPTR, APTR);
 VALUE CPTR ;
 INTEGER CPTR ;
 POINTER APTR;
 LIBRARY CLIB;
INTEGER PROCEDURE WRITELINE(CPTR);
 VALUE CPTR;
 INTEGER CPTR;
 LIBRARY CLIB;

PROCEDURE XFER(S);
 VALUE S;
 STRING S;
BEGIN
 POINTER APTR;
 INTEGER CPTR;
 CPTR:=MALLOC (LENGTH(S) + 1);
 HEAPTOPTR(CPTR, APTR);
 REPLACE APTR BY S, 48 "00";
 WRITELINE(CPTR);
 FREE (CPTR);
END XFER;

XFER("HELLO WORLD");
XFER("THIS IS AN EXAMPLE");

END.

In addition to importing WRITELINE from the C library, this program also imports the
procedures MALLOC, HEAPTOPTR, and FREE. These procedures are implicitly created
by the #include <stdlib.h> statement in the C library, and are referred to in C as
__malloc_t, __heap_to_ptr_t, and __free_t.

 Using Libraries

8600 0494–506 18–169

The ALGOL program includes the XFER procedure, which accepts a string parameter
and writes it to the file TEST by making appropriate calls on the C library. First, XFER
invokes the MALLOC procedure, which allocates memory space for the string.
MALLOC returns an integer, CPTR, which indicates the position of the string in memory.

CPTR can be used as a pointer only within the C library itself. To write data into the
memory area allocated by MALLOC, the ALGOL program must first assign an ALGOL-
style pointer to that memory location. The program does this with the call on
HEAPTOPTR. The ALGOL program then uses the REPLACE statement to write the
string to the area allocated for it.

The ALGOL program then invokes the WRITELINE procedure, passing CPTR as a
parameter. The WRITELINE procedure in the C library uses CPTR to locate the string
that is to be written to the file.

C Client Program Passing Array to ALGOL Library

The following examples illustrate the C syntax for calling a library. The examples also
illustrate the ability to pass arrays between C and ALGOL.

The following is a file named FOO, which is specified by a #include statement in the C
client program. This file contains the import declaration for a procedure called LC.

extern "ALGOL" void LC (char*, char (&)[], int, int&, __heap_t,
 __errno_t);

In the FOO file, the use of the string "ALGOL" has the following effects on the
declaration:

• The return type of void causes the declaration to be interpreted as an untyped
procedure rather than an integer procedure.

• Normally, C passes all parameters by value. The string "ALGOL" identifies LC as a
non-C procedure, thereby allowing parameters to be passed by reference. Call-by-
reference parameters are denoted by the ampersand (&) operator. For example, int&
matches a call-by-reference integer, and char (&) [] matches a call-by-reference
unbounded EBCDIC array.

• The string "ALGOL" also allows some hidden parameter types to be included in the
import procedure declaration. In FOO, the hidden parameters are __heap_t and
__errno_t. These parameters are supplied by the compiler, and are not mentioned in
the statement in the C program that invokes the imported procedure. The __heap_t
parameter passes the C program's heap as an EBCDIC array with 0 lower bound.
The __errno_t parameter passes the predeclared global variable errno as a call-by-
name integer.

Notice that the import procedure name, LC, is given in all uppercase. This is because
many languages, including ALGOL, do not allow library objects to be exported with
names containing lowercase letters.

Using Libraries

18–170 8600 0494–506

The following is the C client program FOO/C.

#include <stdio.h>
#include "foo" (bytitle="OBJECT/FOO/A", intname="FOO")

main (int argc, char *argv []) {
 char buf [10];
 int i, len;

 for (i=1; i<argc; i++) {
 errno = 0;
 LC (argv [i], buf, sizeof (buf), len);
 if (errno!= 0) {
 printf ("string too long: %d > %d\n", len-1, sizeof (buf)-1);
 errno = 0;
 } else {
 printf ("(%2d) \"%s\" -> \"%s\"\n", len-1, argv [i], buf);
 }
 }
}

The #include "foo" line in this client program serves as the library declaration. This
program calls the imported procedure LC to convert some text to lowercase letters.
Notice that the invocation of LC has only four parameters supplied. The compiler
automatically supplies parameters for __heap_t and __errno_t as described previously.

After invoking LC, the program uses the variable errno to read and update the error value
returned by the library in the __errno_t parameter. Notice that the C program initializes
errno to 0 before calling LC. The library functions responsible for assigning errno only
modify the errno value if an error occurs. These functions do not automatically assign a
value of 0 to errno when a valid result occurs, as the 0 would overwrite any value left to
record a previous error.

The following is the ALGOL library FOO/A, which is used by the C program FOO/C.

BEGIN
 PROCEDURE LC (PTR, BUF, BUFSIZE, LEN, HEAP, ERRNO);
 VALUE PTR, BUFSIZE;
 INTEGER PTR, BUFSIZE;
 EBCDIC ARRAY BUF [*], HEAP[0];
 INTEGER LEN, ERRNO;
 BEGIN
 DEFINE MAX_LEN = 65536 #;
 POINTER P;
 INTEGER L;
 TRANSLATETABLE DOWNCASE(EBCDIC TO EBCDIC,
 "ABCDEFGHIJKLMNOPQRSTUVWXYZ" TO "abcdefghijklmnopqrstuvwxyz");
 SCAN P:HEAP [PTR] FOR L:MAX_LEN UNTIL = 48"00";
 LEN:= MAX_LEN - L + 1; % +1 for trailing null
 IF LEN > BUFSIZE THEN BEGIN
 ERRNO:= 1;
 END ELSE BEGIN

 Using Libraries

8600 0494–506 18–171

 REPLACE BUF [0] BY HEAP [PTR] FOR LEN WITH DOWNCASE;
 END IF;
 END;

 EXPORT LC;
 FREEZE(TEMPORARY);
END.

In this example, the BUF parameter is specified as unbounded in order to match the char
(&) [] parameter in the FOO file. The HEAP parameter is specified with a lower bound of
0 because C passes the __heap_t parameter this way.

Note that the PTR parameter is declared as an integer. The program is able to use PTR
as a pointer by including it in the pointer expression HEAP [PTR]. This technique works
reliably only if the MEMORY_MODEL compiler control option in the C program specifies
a one-dimensional memory model. If the C program had specified a two-dimensional
memory model, this ALGOL program would have to use the HEAPTOPTR function to
convert the integer value to a pointer.

The SCAN statement and the LEN assignment statement both rely on the fact that C
terminates each string with a null character.

As noted in the description of the C program, this procedure assigns a value to ERRNO
only if an error is encountered.

C Client Program Passing File to ALGOL Library

The following is an ALGOL library called FOO/FILE/A:

BEGIN
 INTEGER PROCEDURE STATIONNAME (F, MALLOC, COPYTOPTR);
 FILE F;
 INTEGER PROCEDURE MALLOC (SIZE);
 VALUE SIZE;
 INTEGER SIZE;
 FORMAL;
 PROCEDURE COPYTOPTR (LEN, BUF, OFF, PTR);
 VALUE LEN, OFF, PTR;
 INTEGER LEN, OFF, PTR; EBCDIC ARRAY BUF [*];
 FORMAL;
 BEGIN
 EBCDIC ARRAY T [0:300];
 POINTER P;
 INTEGER PTR, LEN;
 REPLACE P:T BY F(1).STATIONNAME;
 IF F.ATTERR THEN BEGIN
 REPLACE P:T BY "<attribute error>.";
 END IF;
 REPLACE P-1 BY 48"00";
 LEN:= OFFSET (P);
 PTR:= MALLOC (LEN);
 COPYTOPTR (LEN, T, 0, PTR);

Using Libraries

18–172 8600 0494–506

 STATIONNAME:= PTR;
 END;
 EXPORT STATIONNAME;
 FREEZE (TEMPORARY);
END.

FOO/FILE/A exports a single procedure called STATIONNAME. The STATIONNAME
procedure accepts three parameters: a remote file called F, the procedure MALLOC, and
the procedure COPYTOPTR. The STATIONNAME procedure reads the STATIONNAME
attribute of the remote file into array T. The STATIONNAME procedure uses the
MALLOC function to allocate space in the C client program heap. The STATIONNAME
procedure then uses the COPYTOPTR function to copy the contents of array T into the C
client program heap. The STATIONNAME procedure return value stores the length of
the STATIONNAME file attribute value.

The following is the file FOO/FILE/H, which is a header file used by the C client program
to declare the imported procedure STATIONNAME:

extern "ALGOL" char *STATIONNAME (__file_t, __malloc_t,
 __copy_to_ptr_t);

Of the items in this header file, __file_t corresponds to parameter F in the ALGOL library;
__malloc_t corresponds to MALLOC; and __copy_to_ptr_t corresponds to COPYTOPTR.

The following is the C client program, FOO/FILE/C:

#include <stdio.h>
#include "foo.file.h" (bytitle="OBJECT/FOO/FILE/A", intname="LIB")

main () {
 printf ("this printf implicitly opens stdout.\n");
 printf ("title=\"%s\"\n", STATIONNAME (stdout->_file_no));
}

The first printf statement in the C client program implicitly opens the file stdout as a
remote file. The second printf statement implicitly invokes the STATIONNAME
procedure and displays the STATIONNAME file attribute value stored in the C client
program heap.

Note that the STATIONNAME invocation does not mention the __malloc_t and
__copy_to_ptr_t parameters, because these are automatically passed by the C compiler.
However, the STATIONNAME invocation explicitly passes __file_t a parameter of type
int, which the C compiler changes into a parameter of type file, as required by the
ALGOL library. The int value that is passed should always be extracted from a FILE*
pointer, as shown by the ->_file_no clause in this example.

 Using Libraries

8600 0494–506 18–173

COBOL74 Library: OBJECT/SAMPLE4

The following COBOL74 library compiled as OBJECT/SAMPLE4 is referenced in various
examples in this section. The entry point to this library is named PROCEDUREDIVISION.
This library is PERMANENT by default.

IDENTIFICATION DIVISION.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 77 PARAM PIC 9(11) BINARY.
 PROCEDURE DIVISION USING PARAM.
 P1.
 DISPLAY "I AM SAMPLE4".
 DISPLAY "MY PARAMETER IS " PARAM.
 EXIT PROGRAM.

COBOL74 Library: OBJECT/SAMPLE5

The following COBOL74 library is referenced in various examples in this section. This
library is TEMPORARY; therefore, when it is no longer in use it unfreezes and resumes
running as a regular program. The FEDLEVEL option is set to 5 to allow the PROGRAM-
ID to be used as the entry point name.

$ SET FEDLEVEL = 5
 $ SET TEMPORARY
 IDENTIFICATION DIVISION.
 PROGRAM-ID. ENTRYPOINT.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 77 PARAM PIC 9(11) COMP.
 PROCEDURE DIVISION USING INTEGER (PARAM).
 P1.
 DISPLAY "I AM SAMPLE5".
 DISPLAY "MY PARAMETER IS " PARAM.
 EXIT PROGRAM.

Using Libraries

18–174 8600 0494–506

COBOL74 Client Program

The following COBOL74 program uses various ALGOL and COBOL74 libraries described
in this section:

IDENTIFICATION DIVISION.
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 77 PARAM1 PIC 9(11) BINARY.
 77 PARAM2 PIC 9(11) COMP.
 77 RETURNVAL1 PIC 9(11) BINARY.
 77 RETURNVAL2 PIC 9(11) COMP.
 01 TOARRAY BINARY WITH LOWER-BOUNDS.
 03 ELEMENT PIC 9(6) BINARY OCCURS 13.
 77 WH PIC 9(11) BINARY.
 PROCEDURE DIVISION.
 P1.

 * CALL COBOL74 LIBRARY NAMED "OBJECT/SAMPLE4"

 CALL "PROCEDUREDIVISION OF OBJECT/SAMPLE4" USING PARAM1.

 * CALL COBOL74 LIBRARY NAMED "OBJECT/SAMPLE4" USING TITLE ATTRIBUTE

 CHANGE ATTRIBUTE TITLE OF "OBJECT/SAMPLE6" TO
 "OBJECT/SAMPLE4.".
 CALL "PROCEDUREDIVISION IN OBJECT/SAMPLE6"
 USING INTEGER (PARAM2).

 * CALL COBOL74 LIBRARY NAMED "OBJECT/SAMPLE5" WHOSE ENTRYPOINT IS
 * NAMED ENTRYPOINT

 CALL "ENTRYPOINT OF OBJECT/SAMPLE5" USING PARAM1.

 * CALL COBOL74 LIBRARY NAMED "OBJECT/SAMPLE4"
 * USING ANSI74 IPC SYNTAX; CANCEL THAT COBOL74 LIBRARY

 CALL "OBJECT/SAMPLE4" USING INTEGER (PARAM2).
 CANCEL "OBJECT/SAMPLE4".

 * CALL DIRECT ALGOL LIBRARY
 * INTERNAL NAME IS "INTLIB"; TITLE IS "OBJECT/SAMPLE/LIBRARY"

 CHANGE ATTRIBUTE TITLE OF "INTLIB"

 TO "OBJECT/SAMPLE/LIBRARY.".

 CALL "FACT OF INTLIB"
 USING PARAM1 GIVING RETURNVAL1.

 * CALL DYNAMIC ALGOL LIBRARY
 * TITLE IS "OBJECT/SAMPLE/DYNAMICLIB"

 Using Libraries

8600 0494–506 18–175

 * SELECTION PROCEDURE PARAMETER IS "WITH TIME"

 CHANGE ATTRIBUTE LIBPARAMETER OF "OBJECT/SAMPLE/DYNAMICLIB"
 TO "WITH NAME".
 CALL "DAYTIME IN OBJECT/SAMPLE/DYNAMICLIB"
 USING TOARRAY, WH.

 STOP RUN.

Using Libraries

18–176 8600 0494–506

COBOL85 Libraries and Client Program

The following is a COBOL85 library named TASKM/COBOL85/LIBRARY:

000100$ RESET LIST SET ERRORLIST LINEINFO
000200 IDENTIFICATION DIVISION.
000300 PROGRAM-ID. EXPLICIT-LIBRARY LIBRARY.
000400 ENVIRONMENT DIVISION.
000500 INPUT-OUTPUT SECTION.
000600 FILE-CONTROL.
000700 SELECT FL-1 ASSIGN TO DISK.
000800 DATA DIVISION.
000900 FILE SECTION.
001000 FD FL-1 GLOBAL.
001100 01 FL-1-REC PIC X(80) GLOBAL.
001200 WORKING-STORAGE SECTION.
001300 PROGRAM-LIBRARY SECTION.
001400 LB EXPLICIT-LIBRARY EXPORT
001500 ATTRIBUTE SHARING IS SHAREDBYRUNUNIT.
001600 ENTRY PROCEDURE USERCODE.
001700 ENTRY PROCEDURE WRITER.
001800 PROCEDURE DIVISION.
001900 P-1.
002000 OPEN OUTPUT FL-1.
002100 CALL "DISPLAYER".
002200 CALL SYSTEM FREEZE TEMPORARY.
002300 CLOSE FL-1 SAVE.
002400 EXIT PROGRAM.
002500 IDENTIFICATION DIVISION.
002600 PROGRAM-ID. WRITER.
002700 DATA DIVISION.
002800 PROCEDURE DIVISION.
002900 P-1.
003000 MOVE "DATA WRITTEN FROM LIBRARY" TO FL-1-REC.
003100 WRITE FL-1-REC.
003200 EXIT PROGRAM.
003300 END PROGRAM WRITER.
003400 IDENTIFICATION DIVISION.
003500 PROGRAM-ID. DISPLAYER.
003600 PROCEDURE DIVISION.
003700 P-1.
003800 DISPLAY "THE EXPLICIT LIBRARY HAS BEEN ENTERED."
003900 EXIT PROGRAM.
004000 END PROGRAM DISPLAYER.
004100 IDENTIFICATION DIVISION.
004200 PROGRAM-ID. USERCODE.
004300 DATA DIVISION.
004400 WORKING-STORAGE SECTION.
004500 01 REC-1.
004600 02 BUFFER PIC X(20).
004700 02 USERNAME PIC X(20).

 Using Libraries

8600 0494–506 18–177

004800 02 DIRECTORIES PIC 9(4) COMP.
004900 01 MAX-DIRECTORIES PIC 9(4) COMP VALUE 17 GLOBAL.
005000 LINKAGE SECTION.
005100 01 STR PIC X(80).
005200 01 USER-CODE PIC X(20).
005300 PROCEDURE DIVISION USING STR USER-CODE.
005400 P-1.
005500 UNSTRING STR DELIMITED BY "/" OR "(" OR ")"
005600 INTO BUFFER USERNAME TALLYING IN DIRECTORIES.
005700 MOVE USERNAME TO USER-CODE.
005800 IF DIRECTORIES IS GREATER THAN MAX-DIRECTORIES
005900 CALL "ERROR-MESSAGE" USING DIRECTORIES.
006000 EXIT PROGRAM.
006100 IDENTIFICATION DIVISION.
006200 PROGRAM-ID. ERROR-MESSAGE.
006300 DATA DIVISION.
006400 WORKING-STORAGE SECTION.
006500 77 EXTRA-DIRECTORIES PIC 9(4) COMP.
006600 LINKAGE SECTION.
006700 77 TOTAL-DIRECTORIES PIC 9(4) COMP.
006800 PROCEDURE DIVISION USING TOTAL-DIRECTORIES.
006900 P-1.
007000 SUBTRACT MAX-DIRECTORIES FROM TOTAL-DIRECTORIES
007100 GIVING EXTRA-DIRECTORIES.
007200 DISPLAY "THERE WERE " EXTRA-DIRECTORIES
007300 "EXTRA DIRECTORIES".
007400 EXIT PROGRAM.
007500 END PROGRAM ERROR-MESSAGE.
007600 END PROGRAM USERCODE.
007700 END PROGRAM EXPLICIT-LIBRARY.

The program TASKM/COBOL85/LIBRARY illustrates several library features that
distinguish COBOL85 libraries from libraries in earlier COBOL implementations. These
features include:

• An explicit FREEZE statement at line 2200, which includes the freeze duration option
of TEMPORARY.

• The PROGRAM-LIBRARY SECTION, which includes an explicit export declaration at
lines 1400-1700. The declaration specifies a sharing option of SHAREDBYRUNUNIT
and lists USERCODE and WRITER as the names of nested programs to be exported.

• Three nested programs, including the two specified in the export declaration:
USERCODE, at lines 4100-7600; and WRITER, at lines 2500-3300.

• Local variables. The exported nested program USERCODE includes declarations of
the data items REC-1 at line 4500 and MAX-DIRECTORIES at 4900. Note that these
local variables are reinitialized each time the USERCODE nested program is invoked.
You can cause the values of these variables to be preserved by adding an IS INITIAL
clause to the PROGRAM-ID paragraph at line 4200.

Using Libraries

18–178 8600 0494–506

The following is another COBOL85 library called TASKM/COBOL85/PROCEDURE:

000100$RESET LIST SET ERRORLIST LINEINFO
000200$SHARING = SHAREDBYRUNUNIT
000300$LIBRARYPROG
000400 IDENTIFICATION DIVISION.
000500 PROGRAM-ID. IMPLICIT-LIBRARY.
000600 ENVIRONMENT DIVISION.
000700 DATA DIVISION.
000800 WORKING-STORAGE SECTION.
000900 77 SWAP PIC X(10).
001000 LINKAGE SECTION.
001100 01 A-REC.
001200 02 FLD-1 PIC X(10).
001300 02 FLD-2 PIC X(10).
001400 PROCEDURE DIVISION USING A-REC.
001500 P-1.
001600 MOVE FLD-1 TO SWAP.
001700 MOVE FLD-2 TO FLD-1.
001800 MOVE SWAP TO FLD-2.
001900 EXIT PROGRAM.

The library TASKM/COBOL85/PROCEDURE is designed to function much as a COBOL74
library. There is no explicit export declaration or freeze statement, and the entire
PROCEDURE DIVISION is exported. However, unlike COBOL74, COBOL85 requires the
LIBRARYPROG compiler option to be set in order to indicate that the program will
function as a library.

The following is a COBOL85 client program called TASKM/COBOL85/PROGRAM. This
program calls the two COBOL85 libraries described previously:

000100$ RESET LIST SET ERRORLIST LINEINFO
000200 IDENTIFICATION DIVISION.
000300 PROGRAM-ID. DRIVER.
000400 ENVIRONMENT DIVISION.
000900 DATA DIVISION.
001500 WORKING-STORAGE SECTION.
001600 01 THE-TITLE PIC X(80).
001700 01 USERCODES.
001800 02 USERCODE-1 PIC X(20).
001900 02 USERCODE-2 PIC X(20).
002000 LOCAL-STORAGE SECTION.
002100 LD PARAM-1.
002200 01 P-REC-1.
002300 02 A-FLD-1 PIC X(10).
002400 02 A-FLD-2 PIC X(10).
002500 LD PARAM-2.
002600 01 P-REC-2 PIC X(80).
002700 01 P-REC-3 PIC X(20).
003100 PROGRAM-LIBRARY SECTION.
003200 LB LIB-ONE IMPORT
003300 ATTRIBUTE FUNCTIONNAME IS "THELIBRARY"

 Using Libraries

8600 0494–506 18–179

003400 LIBACCESS IS BYTITLE.
003500 ENTRY PROCEDURE WRITER.
003600 ENTRY PROCEDURE USERCODE WITH PARAM-2
003700 USING P-REC-2 P-REC-3.
003800 LB LIB-TWO IMPORT
003900 ATTRIBUTE TITLE IS "OBJECT/TASKM/COBOL85/PROCEDURE".
004000 ENTRY PROCEDURE PROCEDUREDIVISION WITH PARAM-1
004100 USING P-REC-1.
004500 PROCEDURE DIVISION.
004600 P-1.
004700 CHANGE ATTRIBUTE TITLE OF LIB-ONE
004800 TO "OBJECT/TASKM/COBOL85/LIBRARY".
005000 CALL WRITER.
005100 CALL WRITER OF LIB-ONE.
005200 MOVE ATTRIBUTE TITLE OF LIB-TWO TO THE-TITLE.
005300 CALL USERCODE
005400 USING THE-TITLE USERCODE-1.
005500 MOVE ATTRIBUTE TITLE OF LIB-ONE TO THE-TITLE.
005600 CALL "USERCODE IN OBJECT/TASKM/COBOL85/LIBRARY"
005700 USING THE-TITLE USERCODE-2.
005800 CALL PROCEDUREDIVISION OF LIB-TWO
005900 USING USERCODES.
006000 CALL "OBJECT/TASKM/COBOL85/PROCEDURE"
006100 USING USERCODES.
006200 DISPLAY USERCODES.
006300 STOP RUN.

The program TASKM/COBOL85/PROGRAM illustrates the explicit library declarations
and import declarations provided by COBOL85. Thus, the PROGRAM-LIBRARY
SECTION at lines 3100-4400 includes declarations of the libraries LIB-ONE and LIB-TWO.
These library declarations include library attribute assignments as well as import
declarations for WRITER, USERCODE, and PROCEDUREDIVISION.

TASKM/COBOL85/PROGRAM includes examples of the following types of CALL
statements:

• A CALL statement that invokes an explicitly declared import object. The statements
at lines 5000 and 5300-5400 are examples that invoke import objects declared in the
PROGRAM-LIBRARY SECTION.

• A CALL statement that invokes an explicitly declared import object in an explicitly
specified library. The statements at lines 5100 and 5800 refer to the LIB-ONE and
LIB-TWO declarations in the PROGRAM-LIBRARY SECTION.

• A CALL statement that uses a string literal to specify the library object code file title.
The statement at line 6000 invokes the library TASKM/COBOL85/PROCEDURE. The
CALL statement does not need to specify the name of a particular import object, as
the library in question exports only the PROCEDUREDIVISION.

• A CALL statement that uses a string literal to specify both the library object code file
title and the import object name. The statement at line 5600 invokes the object
USERCODE in the library OBJECT/TASKM/COBOL85/LIBRARY.

Using Libraries

18–180 8600 0494–506

FORTRAN77 Library and Client Program

The following examples present the FORTRAN77 versions of the library program and
client program.

The following FORTRAN77 program, compiled as MATHINTRINSICS, creates a library.

 BLOCK GLOBALS
FILE 6(KIND="PRINTER")
 EXPORT (SINE="SIN",COSINE)
 END
 REAL FUNCTION SINE(X)
C* PERFORM SINE CALCULATION...
 SINE=SIN(X)
 END
 REAL FUNCTION COSINE(X)
C* PERFORM COSINE CALCULATION...
 COSINE=COS(X)
 END
C* MAIN PROGRAM
 WRITE(6,*)SINE(X),COSINE(X)
 CALL FREEZE("TEMPORARY")
 END

The following FORTRAN77 program invokes the FORTRAN77 library MATHINTRINSICS
previously described:

 BLOCK GLOBALS
FILE 5(KIND="REMOTE")
FILE 6(KIND="PRINTER")
 LIBRARY LIB1(TITLE="MATHINTRINSICS",
* INTNAME="MATHINTRINSICS")
 END
 REAL FUNCTION SIN(X)
 REAL X
 IN LIBRARY LIB1
 END
 REAL FUNCTION COS(X)
 REAL X
 IN LIBRARY LIB1(ACTUALNAME="COSINE")
 END
 PROGRAM MAIN_PROGRAM
 EXTERNAL SIN, COS
 READ(5,*)X
 WRITE(6,*)SIN(X),COS(X)
 END

 Using Libraries

8600 0494–506 18–181

Pascal Library

The following is an example of a Pascal library.

library lib; usage(sharing = sharedbyall);
 interface
 type vect = array [1..30] of integer;
 procedure sum (vector1, vector2: vect);
 function fact (n: integer): integer;
 function sin (r: real): real;
 end;

 library mylib (title = 'OBJECT/ARITHLIB');
 procedure sum;
 var i: integer;
 begin
 for i:= 1 to 30 do
 vector[i]:= vector1[i] + vector2[i];
 end;
 function sin; mylib;
 function fact;
 begin
 if n < 1 then
 fact:= 1
 else
 fact:= n * fact(n-1);
 end;

 begin
 freeze;
 end.

This library exports the procedure sum and the functions fact and sin, all of which appear
in the interface part. Sum and fact are completely declared in the library block. Sin is
imported from another library.

When an ALGOL library procedure uses an EBCDIC array that was passed from a Pascal
client program, the library procedure should specify the starting index of the array. This
precaution is necessary because ALGOL processes the following statements slightly
differently:

REPLACE A BY "HI";
REPLACE A[0] BY "HI";

The following statement causes the value "HI" to be correctly assigned to element 0 of
array A:

REPLACE A[0] BY "HI";

Using Libraries

18–182 8600 0494–506

The following ALGOL library illustrates the use of these types of statements:

$SHARING = PRIVATE
BEGIN

PROCEDURE ALGOLDISPLAY(S1, S2);
 EBCDIC ARRAY S1[*], S2[*]
 BEGIN
 REPLACE S1[0] BY "HI"; % THESE TWO STATEMENTS ARE CORRECT
 DISPLAY(S1[0]);

 REPLACE S2 BY "HI" % THESE TWO STATEMENTS ARE ALLOWED,
 DISPLAY(S2); % BUT WILL NOT GIVE THE EXPECTED RESULTS.

 END;

 EXPORT ALGOLDISPLAY;
 FREEZE(TEMPORARY);
END.

The following example illustrates how an ALGOL client program should pass an
unbounded array to a Pascal library. The ALGOL client program declares the imported
procedure PASCPROC with an unbounded array parameter A. The ALGOL client
program declares another array, called MYARRAY, for use as the actual parameter.
MYARRAY is declared with a lower bound of 0 because a Pascal library always assumes
the first array element to be at index 0.

BEGIN
 LIBRARY MYLIB;
 PROCEDURE PASCPROC(A);
 EBCDIC ARRAY A[*];
 LIBRARY MYLIB;
 EBCDIC ARRAY MYARRAY [0:5];

 REPLACE MYARRAY BY "DATA";
 PASCPROC(MYARRAY);

END.

 Using Libraries

8600 0494–506 18–183

The following Pascal program invokes the procedure ALGOLDISPLAY in an ALGOL
library called OBJECT/ALGOLLIB.

program p;
 type
 stringbyte = packed array [1..20] of char;

 library mylib(title= 'OBJECT/ALGOLLIB');
 procedure algoldisplay(s1, s2: stringtype); mylib;

 var
 s1, s2: stringtype;

 begin
 s1:= 'abcdefghijklmnopqrst';
 s2:= '12345678901234567890';

 algoldisplay(s1, s2);
 end.

Using Libraries

18–184 8600 0494–506

Connection Library Example
The following connection library program serves as a switch, connecting client libraries
to any of several similar server libraries. These server libraries each export a procedure
called A2.

Note that this example includes only the connection library program; the server libraries
and client libraries would be in separate programs, which are not shown here.

TYPE CONNECTION BLOCK SERVER_CL_TYPE;
 BEGIN
 PROCEDURE A2;
 IMPORTED;
 END OF SERVER_CL_TYPE;

SERVER_CL_TYPE LIBRARY SERVER_CL(CONNECTIONS = 10,
 LIBACCESS = BYFUNCTION,
 INTERFACENAME = "SECONDLINK.");

TYPE CONNECTION BLOCK CLIENT_CL_TYPE;
 BEGIN
 INTEGER SERVER_ID,
 SERVER_CL_INDEX;

 PROCEDURE LINK_ME (ID);
 VALUE ID; INTEGER ID;
 BEGIN
 EBCDIC ARRAY A[0:15];
 INTEGER I;

 SERVER_ID:= ID;

 % FIND A VALID CONNECTION
 I:= 1;
 WHILE I LSS LIBRARY(SERVER_CL).CONNECTIONS AND
 SERVER_CL_INDEX = 0 DO
 IF LIBRARY(SERVER_CL[I]).STATE = VALUE(NOTLINKED) THEN
 SERVER_CL_INDEX:= I
 ELSE
 I:= * + 1;
 IF SERVER_CL_INDEX = 0 THEN
 BEGIN
 LIBRARY(SERVER_CL).CONNECTIONS:=
 LIBRARY(SERVER_CL).CONNECTIONS + 1;
 SERVER_CL_INDEX:= LIBRARY(SERVER_CL).CONNECTIONS;
 END;

 REPLACE A BY "SERVERNAME", ID FOR * NUMERIC;
 LINKLIBRARY(SERVER_CL[SERVER_CL_INDEX], FUNCTIONNAME = A);
 END OF LINK_ME;
 PROCEDURE A1;

 Using Libraries

8600 0494–506 18–185

 BEGIN
 SERVER_CL[SERVER_CL_INDEX].A2;
 END OF A1;

 EXPORT LINK_ME, A1;
 END OF CLIENT_CL_TYPE;

CLIENT_CL_TYPE LIBRARY CLIENT_CL(CONNECTIONS = 10,
 INTERFACENAME = "FIRSTLINK.");

RSLT:= READYCL(CLIENT_CL);

In this example, the client program submits a linkage request by invoking the procedure
LINK_ME in connection library CLIENT_CL. The client program uses parameter ID to
procedure LINK_ME to specify which server library to link to. LINK_ME performs the
following actions:

• Searches for a CLIENT_CL connection that is not in use, and increases the
CONNECTIONS value if necessary.

• Builds a FUNCTIONNAME value out of the string SERVERNAME and the value of
parameter ID.

• Links through the selected connection using the selected FUNCTIONNAME value.

Once procedure LINK_ME is finished, the client program can invoke the procedure A1 of
connection library CLIENT_CL. Procedure A1 in turn executes a call on procedure A2 of
the server library that was linked to previously.

Using Libraries

18–186 8600 0494–506

8600 0494–506 19–1

Section 19
Using Shared Files

Files are relevant to interprocess communication (IPC) in two ways:

• Certain kinds of files are intended specifically for use in IPC, and present unique
advantages when compared to other IPC techniques.

• Processes can share the same file, even if the file is not used as a medium for IPC.
For example, two processes might have a shared responsibility for updating a single
file. Even though the file is not used for IPC, the processes must use IPC techniques
to ensure that their updates do not conflict.

This section gives an overview of both of these aspects of files and IPC. For more
detailed information on many of the topics discussed in this section, refer to the I/O
Subsystem Programming Guide.

Sharing Communications Files
IPC files enable processes to communicate with other processes in a manner similar to
reading or writing a file on a physical device. This makes IPC files an ideal method for
transmitting large quantities of textual information between processes.

The processes that communicate through an IPC file do not have to belong to the same
process family. The processes specify various file attributes that allow the system to
establish a link between the correct pair of processes.

The system supports three types of files for use in IPC: port files, host control (HC) files,
and HYPERchannel (HY) files. The following subsections briefly outline the capabilities of
each of these types of IPC files.

Using Port Files

Port files enable communication between processes regardless of whether those
processes reside on a single host or on separate hosts in a local area network or wide
area network. There are several different environments, known as port providers,
available on your system, which provide port file capabilities. Examples of port providers
are BNA Version 2, Open Systems Interconnection (OSI), and Transmission Control
Protocol/Internet Protocol (TCP/IP). However, even if none of these port providers are
installed on a host, applications on the host can still use port files to communicate with
applications on the same host.

Using Shared Files

19–2 8600 0494–506

Port files have been implemented to provide the applications programmer with a single
interface that can be used to communicate within a single host or across all the types of
multihost networks supported by A Series systems. However, the programmer can
choose among any of several different port services with varying functionality. Each type
of port provider supports one or more of these port services. A port service that is
available from most port providers is BASICSERVICE. Port file applications using
BASICSERVICE can run with little or no modification on BNA Version 2, OSI networks, or
a single host that is not part of any network.

The following languages support port file functionality: ALGOL, COBOL74, COBOL85
FORTRAN77, and Pascal. Other languages that support files also access port files;
however, for these languages, full support of port file statements might not be available.

A port file consists of one or more distinct communication paths, or subfiles, that are
grouped under a common name. Individual subfiles are identified by way of the port file
name and a number called the subfile index. You can specify the number of subfiles
associated with a port file by using the MAXSUBFILES file attribute. On systems running
BNA Version 2 or TCP/IP, you can establish differing priorities for the subfiles using the
DIALOGPRIORITY file attribute.

Before opening a subfile, the application can assign several file attributes that help the
system to identify the matching port subfile. These file attributes include FILENAME,
which specifies the name of the port file; MYNAME, which must match the YOURNAME
file attribute of the matching port subfile; and YOURHOST, which specifies the host
where the matching process is running. Other attributes can be used to restrict access
to processes having specified usercodes.

An application can use any of several OPEN statement options to specify whether the
process waits for a matching process to appear or continues execution immediately. If
the process continues execution, it can either abandon the open operation or leave the
subfile in an offered state, ready for the matching process to link to it.

Each subfile consists of an input queue, from which the process reads, and an output
queue, to which the process writes. Messages are processed through each queue on a
first-in, first-out basis, so they always reflect the chronological order in which they were
transmitted. The system provides the event-valued file attributes INPUTEVENT and
OUTPUTEVENT to inform the process of activity in the input and output queues.

The process can write messages to individual subfiles, or can use a broadcast write
statement, which sends the same message to all the subfiles in a port file. Similarly, a
process can read messages from a specific subfile, or use a nonselective read
statement, which reads a message from any one of the subfiles with waiting input.

For a complete explanation of how to use port files, refer to the I/O Subsystem
Programming Guide.

The following subsections provide simple examples of port file programs written in
COBOL74 and ALGOL.

 Using Shared Files

8600 0494–506 19–3

COBOL74 Port File Example

The following COBOL74 program declares a port file called MSSR with three subfiles.
This program runs on host SFA15CD and opens the port file with MYNAME = MASTER
and YOURHOST = SF59D. The program opens the port and broadcasts a message to all
subfiles. The program then performs a nonselective operation read to determine which
of the remote processes responded first. It sends a message to the remote process that
responded first and a different message to the other remote processes. A “USE AFTER
ERROR” procedure causes the program to display a message after any I/O error. Note
that this program should be initiated after the three matching processes have been
initiated and have attempted to open their subfiles.

*COBOL74 READ/WRITE PROGRAM USING BNA OPTIONS.
 *THIS PROGRAM RUNS ON HOST SFA15CD.
 IDENTIFICATION DIVISION.
 PROGRAM-ID. COBOL74-PORTFILE-DEMO2.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT MSSR ASSIGN TO PORT
 ACTUAL KEY IS MSSR-KEY
 FILE STATUS IS MSSR-STATUS.
 DATA DIVISION.
 FILE SECTION.
 FD MSSR.
 01 MSSR-REC PIC X(17).
 WORKING-STORAGE SECTION.
 01 MSSR-WS.
 05 MSSR-STATUS PIC XX.
 05 MSSR-KEY PIC 9 COMPUTATIONAL.
 PROCEDURE DIVISION.
 DECLARATIVES.
 IO-ERROR SECTION.
 USE AFTER ERROR PROCEDURE ON I-O.
 IO-ERROR-HANDLER.
 DISPLAY "I/O ERROR ENCOUNTERED".
 DISPLAY "STATUS IS ", MSSR-STATUS.
 END DECLARATIVES.
 THE-PROGRAM SECTION.
 INITIALIZATION.
 CHANGE ATTRIBUTE MAXSUBFILES OF MSSR TO 3.
 CHANGE ATTRIBUTE MYNAME OF MSSR TO "MASTER.".
 *COBOL74 APPLIES THE FOLLOWING ASSIGNMENTS TO ALL SUBFILES.
 CHANGE ATTRIBUTE YOURNAME OF MSSR(0) TO "SERVANT.".
 CHANGE ATTRIBUTE YOURHOST OF MSSR(0) TO "SF59D.".
 OPEN-THE-PORT.
 MOVE 0 TO MSSR-KEY.
 OPEN I-O MSSR.
 BROADCAST-THE-MESSAGE.
 MOVE 0 TO MSSR-KEY.
 MOVE "SEND ME A MESSAGE" TO MSSR-REC.
 WRITE MSSR-REC.

Using Shared Files

19–4 8600 0494–506

 GET-A-MESSAGE.
 MOVE 0 TO MSSR-KEY.
 READ MSSR.
 DISPLAY "MESSAGE RECEIVED FROM SUBFILE ", MSSR-KEY.
 DISPLAY MSSR-REC.
 SEND-A-MESSAGE.
 * THE ACTUAL KEY AT THIS POINT CONTAINS THE SUBFILE
 * FROM WHICH THE MESSAGE WAS REMOVED IN THE LAST
 * READ STATEMENT.
 MOVE "YOU WIN" TO MSSR-REC.
 WRITE MSSR-REC.
 CLOSE-THE-WINNING-SUBFILE.
 CLOSE MSSR.
 * READ THE MESSAGES FROM THE LOSING SUBFILES.
 PERFORM GET-A-MESSAGE.
 PERFORM GET-A-MESSAGE.
 BROADCAST-A-MESSAGE-TO-LOSERS.
 MOVE "YOU LOSE" TO MSSR-REC.
 MOVE 0 TO MSSR-KEY.
 WRITE MSSR-REC.
 CLOSE-THE-LOSERS.
 CLOSE MSSR.
 STOP RUN.

ALGOL Port File Example

The following ALGOL program is designed to communicate with the preceding
COBOL74 program. If three instances of this program are initiated, they will each
communicate with one of the subfiles declared in the COBOL74 program. This ALGOL
program runs on host SF59D and opens a port file called MSSR with a single subfile, and
with MYNAME = MASTER and YOURHOST = SFA15CD. The program reads the
message broadcast from the COBOL74 program, sends a reply, and then reads another
message from the COBOL74 program. The read and write statements are handled by
the procedures READIT and WRITEIT, which use complex wait statements to monitor
the status of the subfiles used.

% COMPLEMENTARY ALGOL PROGRAM FOR READ/WRITE TO A PORT FILE.
% THIS PROGRAM IS TO BE EXECUTED ON HOST "SF59D".
BEGIN
FILE MSSR (KIND = PORT, MAXSUBFILES = 1, MAXRECSIZE = 17,
 MYUSE = IO, UNITS = CHARACTERS, MYNAME = "SERVANT.",
 YOURNAME="MASTER.", YOURHOST = "SFA15CD.");
EBCDIC ARRAY INMSS[1:17],OUTMSS[1:14];
BOOLEAN RSLT;
INTEGER INT;
PROCEDURE ABORT(REASON);
STRING REASON;
BEGIN
 DISPLAY (REASON);
 MYSELF.STATUS:= VALUE(TERMINATED);
END;

 Using Shared Files

8600 0494–506 19–5

PROCEDURE READIT;
BEGIN
 INTEGER EVNT;
 EVNT:= WAIT ((120),MSSR.CHANGEEVENT,MSSR.INPUTEVENT);
 CASE EVNT OF
 BEGIN
 1: ABORT ("TIME LIMIT ELAPSED - NO MESSAGE RECEIVED");
 2: CASE MSSR.FILESTATE OF
 BEGIN
 VALUE(BLOCKED):VALUE(DEACTIVATIONPENDING):
 VALUE(OPENED): VALUE(SHUTTINGDOWN):
 IF HAPPENED (MSSR.INPUTEVENT) THEN
 RSLT:= READ (MSSR,17,INMSS)
 ELSE ABORT ("NO MESSAGE RECEIVED");
 ELSE: ABORT ("BAD FILESTATE");
 END;
 3: RSLT:= READ (MSSR,17,INMSS);
 END;
 IF RSLT THEN ABORT ("MESSAGE MISCARRIED")
 ELSE DISPLAY (INMSS);
END READIT;

PROCEDURE WRITEIT;
BEGIN
 INTEGER EVNT;
 EVNT:= WAIT ((120),MSSR.CHANGEEVENT,MSSR.OUTPUTEVENT);
 CASE EVNT OF
 BEGIN
 1: ABORT ("TIME LIMIT ELAPSED - NO ROOM TO WRITE");
 2: CASE MSSR.FILESTATE OF
 BEGIN
 VALUE(BLOCKED): VALUE(OFFERED): WRITEIT;
 VALUE(OPENED): IF HAPPENED (MSSR.OUTPUTEVENT) THEN
 RSLT:= WRITE(MSSR,14,OUTMSS);
 ELSE: ABORT ("BAD FILESTATE");
 END;
 3: RSLT:= WRITE (MSSR,14,OUTMSS);
 END;
 IF RSLT THEN ABORT ("WRITE MISCARRIED");
END WRITEIT;

IF (INT:= OPEN (MSSR)) NEQ 1 THEN
 ABORT("UNABLE TO OPEN SUBFILE");
READIT;
REPLACE OUTMSS BY "REMOTE MESSAGE";
WRITEIT;
READIT;
CLOSE (MSSR);
END.

Using Shared Files

19–6 8600 0494–506

Using Host Control (HC) Files

Host control (HC) files provide a simple, high-speed method for transferring data
between processes running on two different hosts in a local area network.

HC file communication takes place through intersystem control (ISC) hardware. Each ISC
link consists of an ISC hub, which is connected by cables to a host control data link
processor (HCDLP) at each host system.

The ISC link must be dedicated to the exclusive use of a pair of application processes,
one on each host. Each process opens a file with a KIND file attribute value of HC and a
FILENAME value equal to the ISC hub name. The processes must communicate using
direct I/O. Therefore, the application must be written in one of the languages that
support HC files and direct I/O. The only languages that support both these features are
ALGOL and NEWP.

Compared to port files, HC files have the potential for offering faster data transfer.
However, unlike port files, HC files can operate only across a single type of dedicated
hardware link, and only in a local area network. Further, HC files lack helpful port file
features such as multiple subfiles, subfile matching based on user-supplied names,
message rerouting, and data compression.

For additional information, refer to the I/O Subsystem Programming Guide.

Using HYPERchannel (HY) Files

HYPERchannel (HY) files are similar to HC files in that HY files allow application
processes to communicate in a local area network over dedicated hardware links. In the
case of HY files, the links are HYPERchannel coaxial trunks that are connected to a host
through an A223 adapter and a HYPERchannel data link processor (HYDLP). An
application declares an HY file by specifying a KIND file attribute value of HY.
Applications that communicate over the HYPERchannel link must use direct I/O.
Therefore, the applications must be written in one of the languages that support HY files
and direct I/O. The only languages that support both these features are ALGOL and
NEWP.

Compared to port files, HY files offer much the same advantages and liabilities as HC
files. That is, HY files can offer a faster data transfer rate than port files, but lack helpful
port file features such as multiple subfiles, subfile matching based on user-supplied
names, message rerouting, and data compression.

 Using Shared Files

8600 0494–506 19–7

However, the underlying HYPERchannel hardware gives HY files the following
advantages over HC files:

• HYPERchannel interfaces are supported by many non-MCP Series systems, including
1100 and 2200 series systems as well as IBM and DEC systems. Thus, HY files
enable you to implement applications that communicate across networks of
multivendor systems.

• HYPERchannel links can connect systems spread over a distance of several
kilometers. By contrast, the ISC links that support HC files are limited to a few
hundred feet in length. Thus, HY files can provide communication across a larger
distance than HC files can.

For further information about HY files, including examples of programs that use HY files,
refer to the I/O Subsystem Programming Guide.

Sharing Other Kinds of Files
Port files, HC files, and HY files were designed specifically for use in IPC. The system
also supports a number of other file types that are associated with permanent storage
media, such as disk or tape. These file types are not well suited for use in transmitting
information between processes, for two reasons. First, an I/O operation to a peripheral
device takes greater elapsed time than operations on port files, which take place largely
within main memory. Second, these file types do not provide some of the convenient
features of port files, such as separate input and output queues, or event-valued file
attributes that notify processes when records have been received.

However, there are cases where it can useful for two or more processes to share the
same file, even if the file itself is not being used for IPC. These are cases where several
different processes running at the same time are responsible for reading and updating
the same file. The file is being used as a permanent storage medium, rather than a
method of passing control information between processes.

In this situation, you can use IPC techniques to accomplish two of the goals of file
sharing:

• To provide two or more processes with access to the same file

• To regulate timing to prevent these processes from accidentally overwriting each
other's changes to the file

For most file types, the only way to achieve these goals is to design the processes so
they communicate with the file through the same logical file. The logical file is an access
structure, created by a file declaration in the program that exists in system memory. By
contrast, the physical file is the file that exists on a peripheral storage device, such as a
disk or tape drive. Opening a file causes the logical file to be linked to a physical file so
that the process can read or write information in the file. The following subsections
discuss the concept of the logical file and considerations that arise from sharing logical
files.

Using Shared Files

19–8 8600 0494–506

For disk files, it is also possible for processes to use the same physical file without using
the same logical file. Considerations for doing this are discussed under “Accessing Disk
Files Through Separate Logical Files” later in this section.

Using Shared Logical Files

Processes can use any of the following methods to share logical files:

• An internal task can use logical files declared globally in the parent program, as
discussed in Section 15, “Using Global Objects.”

• An initiating process can pass a file as a parameter to a process that it initiates, as
discussed in Section 17, “Using Parameters.”

• A WFL job can declare a file and use a global file equation to cause a task to use this
file in place of one declared in the task itself. An example of global file equation is
given under “File Sharing Examples” later in this section.

• A shared library can contain a file declaration that is global to the exported library
procedures. You can design the exported procedures to allow user processes to
access the file declared globally in the library. Refer to “Global Objects in Server
Libraries” and “Global Objects in Connection Libraries” in Section 18, “Using
Libraries.”

If all the processes that use the file belong to the same process family, then you can use
any of these sharing methods. If the processes belong to different process families,
then using shared libraries is the only method that can enable the logical file to be
shared.

Specifying the File Location

For files with KIND = DISK and NEWFILE = FALSE, if the TITLE file attribute of the
logical file was not assigned a usercode, then at file-open time the file is searched for
under the usercode of the process that declared the file. If the file is not found under
that usercode, it is searched for as a nonusercoded file. This search pattern is the same
even if the file-open statement is executed by a process different from the process that
declared the file.

Similarly, the family where the system searches for the file is affected by the FAMILY
task attribute of the process that declares the file, rather than by that of the process that
opens the file. If the TITLE file attribute specifies a family, the FAMILY task attribute can
specify a substitute family. If the TITLE file attribute does not include a family, the
default is DISK, and the FAMILY task attribute can specify a substitute family for DISK.

 Using Shared Files

8600 0494–506 19–9

Synchronizing Access with Shared Logical Files

The design of the I/O hardware prevents any two I/O operations from accessing the
same record at the same time. For example, there is no way for a record to be read
when a write operation involving the same record is half completed. The read operation
is delayed until the write operation finishes.

However, you can prevent other types of synchronization problems only through careful
program design. Note that these synchronization concerns arise only in cases where at
least one of the processes writes to the shared file. If all the processes simply read from
the file, then the order in which they execute their read operations makes no difference.
The following are the basic goals of synchronization:

• For cases where one process writes to a particular record and a second process is to
read the updated record, the second process should wait until the record is updated
before reading it.

• For cases where two processes read and update the same record, the processes
should be prevented from accidentally overwriting each other's updates. Such
overwriting can occur if both processes read from the record and then both
processes write to the record. The second write operation erases the effects of the
first, and information can therefore be lost. A mechanism must be established to
ensure that the first process completes its update of the record before the second
process reads it.

These types of synchronization can be achieved conveniently through the use of events.
Events can be shared between processes in the same way that logical files are shared:
they can be accessed as global objects by internal tasks, passed as call-by-reference
parameters, or accessed through a SHAREDBYALL library.

If it is only necessary to ensure that different processes do not update the file at the
same time, the available state of an event can be used. Each process can be designed
to procure the event before using the file, and liberate the event afterward.

If it is necessary to ensure that processes access a file in a certain order, the happened
state of an event can be used. The second process that is to use the file can wait on an
event. When the first process is finished using the file, the process can cause the event.

Establishing Access Rights

Some special security considerations arise from the ability of different processes to
share a logical file. The use of a shared logical file can override the file access privileges
of some processes. The use of a shared logical file can make a physical file available to
processes that would otherwise not have been able to access it. A shared logical file can
also prevent a process from using a physical file that it would normally have had access
to. You can control the effects of the shared logical file through careful program design.

Before reading the following discussion, you should be familiar with the concepts
introduced in Section 5, “Establishing Process Identity and Privileges.”

Using Shared Files

19–10 8600 0494–506

The access rights allowed for a logical file are determined at file-open time. Once the
logical file is opened, all the processes that share the logical file have equal access rights
to the physical file. This is true even if the processes have different usercodes,
accesscodes, names, and security statuses.

When a process attempts to open a file, the system examines the physical file to
determine the access rights that can be granted to the logical file. The system evaluates
these rights according to one of the following two rules:

• Actor rule

File access rights are based on the security status and task attributes of the process
that opens the file.

• Declarer rule

File access rights are based on the security status and task attributes of the process
that declares the file.

The actor rule was formerly the only method used for file security checking. The declarer
rule was introduced to provide an alternative that gives more predictable behavior. By
default, the declarer rule is now used to determine file access rights.

You can override the default method of file access by assigning the FILEACCESSRULE
task attribute of the process that opens the file. The default value of DECLARER results
in file access rights being based on the declarer rule. A value of ACTOR causes file
access rights to be based strictly on the actor rule. The value of ACTOR can be assigned
only by a privileged process.

The following subsections give examples of how the actor and declarer rules apply to file
access through libraries and file access restricted by guard files.

Example: Nonprivileged Library Program

Suppose there is a SHAREDBYALL library program. The library object code file is
nonprivileged and has a SECURITYTYPE of PUBLIC. An instance of the library is running
under a privileged usercode called U1. This library declares a file with usercode U2. The
library also exports procedures that can be used to open, close, read from, and write to
the file. It happens that a physical file with the specified title already exists and has a
SECURITYTYPE of PRIVATE. There are also a number of user processes, including one
called A that has usercode U3 and runs with nonprivileged status, and another user
process B that has usercode U4 and runs with privileged status.

Under the actor rule, if the library process attempts to open the file before freezing, then
the file open operation is successful and all user processes are able to access the file by
way of the exported procedures. The file open operation succeeds because the library
runs under a privileged usercode and therefore has the right to access a private file
stored under a different usercode.

 Using Shared Files

8600 0494–506 19–11

On the other hand, if the library process freezes before it opens the file, and user
process A enters a library procedure that opens the file, then the file open operation fails.
This is because user process A is nonprivileged and, therefore, does not have the right to
access private files stored under different usercodes. However, if user process B enters
the library procedure that opens the file, the file open operation succeeds. Once the file
is open, all user processes, including user process A, are able to access the file by way
of library procedures.

Under the declarer rule, the file open operation will be successful regardless of whether
the library process opens the file directly or exports a procedure to a user process that
opens the file. In either case, file access is evaluated based on the declaring process,
which is the library. The library, because it is privileged, has the ability to access a file
stored under a different usercode.

Example: Privileged Transparent Library Program

The concept of privileged transparent status was introduced under “Transparent Object
Code File Privileges” in Section 5, “Establishing Process Identity and Privileges.” For
library procedures that open files, the effects of privileged transparent status vary,
depending on whether the file to be opened is globally declared, locally declared, or
passed as a parameter. The following ALGOL library, named FILELIB, illustrates these
three possibilities.

100 $ SHARING = SHAREDBYALL
110 BEGIN
120 FILE GLOBALFILE;
130
140 PROCEDURE GLOBAL_OPEN;
150 OPEN(GLOBALFILE);
160
170 PROCEDURE LOCAL_OPEN;
180 BEGIN
190 FILE LOCALFILE;
200 OPEN(LOCALFILE);
210 END;
220
230 PROCEDURE USER_OPEN(PASSEDFILE);
240 FILE PASSEDFILE;
250 BEGIN
260 OPEN(PASSEDFILE);
270 END;
280
290 EXPORT GLOBAL_OPEN, LOCAL_OPEN, USER_OPEN;
300 FREEZE(PERMANENT);
310 END.

FILELIB is a permanent, SHAREDBYALL library. The object code file is marked with
privileged transparent status. FILELIB exports three procedures: GLOBAL_OPEN, which
opens a file declared globally in the library; LOCAL_OPEN, which declares and opens a
file; and USER_OPEN, which opens a file received as a parameter from the user process.

Using Shared Files

19–12 8600 0494–506

FILELIB is used by the following user program, called USERPROC.

100 BEGIN
110 FILE USERFILE;
120 LIBRARY L(LIBACCESS=BYTITLE,TITLE="OBJECT/TEST/ALGOL/LIB.");
130
140 PROCEDURE GLOBAL_OPEN;
150 LIBRARY L;
160
170 PROCEDURE LOCAL_OPEN;
180 LIBRARY L;
190
200 PROCEDURE USER_OPEN(PASSEDFILE);
210 FILE PASSEDFILE;
220 LIBRARY L;
230
240 GLOBAL_OPEN;
250 LOCAL_OPEN;
260 USER_OPEN(USERFILE);
270 END.

USERPROC invokes all of the library procedures: GLOBAL_OPEN, LOCAL_OPEN, and
USER_OPEN.

Suppose that USERPROC runs with a FILEACCESSRULE value of ACTOR. If
USERPROC is privileged, then it succeeds in opening all three files: LOCALFILE,
GLOBALFILE, and PASSEDFILE. If USERPROC is nonprivileged, then the procedures
might or might not succeed in opening the files. The success of each file open operation
depends on the TITLE and SECURITYTYPE attributes of the file.

Suppose instead that the user process USERPROC has a FILEACCESSRULE value of
DECLARER. In this case, USERPROC has different file access rights with regard to
PASSEDFILE than it does with regard to GLOBALFILE and LOCALFILE. The rules are as
follows:

• Because PASSEDFILE is ultimately declared by USERPROC, the security status of
USERPROC determines whether it has the right to open PASSEDFILE. If
USERPROC runs under a privileged usercode, the file open operation is executed
with privileged status. Similarly, if the object code file for USERPROC is privileged,
the library procedures inherit this status because they are privileged transparent.

• Because GLOBALFILE and LOCALFILE are declared in the library program, the rights
to open these files are determined solely by the security status of the library
process. Even if the object code file of USERPROC is privileged, the privileges
inherited by GLOBAL_OPEN and LOCAL_OPEN do not extend to files declared in the
library program. This behavior is a special exception to the rule that privileged
transparent procedures inherit the privileged status of the code that invokes them.

 Using Shared Files

8600 0494–506 19–13

There is a good reason for this strict treatment of files declared in privileged transparent
libraries. The file access rights for a file declared in a library are permanently established
at file-open time. Thus, a privileged user process opening a file in a shared library can
have the effect of granting file access to other, nonprivileged user processes. The
behavior under the default declarer rule prevents this file access from being granted
accidentally.

You can overcome this restriction by assigning a FILEACCESSRULE value of ACTOR to
the privileged user process that opens the file.

Example: Parent and Task Accessing a Guarded File

Suppose that a process with a NAME task attribute value of (SMITH)PROC1 declares a
file titled (SMITH)FILEA ON DISK. The process (SMITH)PROC1 initiates a second
process with a NAME of (SMITH)PROC2 and passes the file as a call-by-reference
parameter. Both of these processes are nonprivileged. Suppose, further, that
(SMITH)FILEA ON DISK has a SECURITYTYPE of CONTROLLED and a guard file that
allows only processes named (SMITH)PROC1 to access this file.

Under the actor rule, if (SMITH)PROC1 opens the file, then both (SMITH)PROC1 and
(SMITH)PROC2 are granted access to the file. However, if (SMITH)PROC2 attempts to
open the file before (SMITH)PROC1 opens it, the file open operation fails. The process
(SMITH)PROC2 cannot use the file until it has been opened by (SMITH)PROC1.

Under the declarer rule, both processes are granted access to the file, regardless of
which one opens the file first. This is because (SMITH)PROC1, which declares the file, is
allowed access rights by the guard file.

Understanding I/O Accounting

The system maintains several records of the I/O time accumulated by a process. More
specifically, these are records of the time I/O devices devoted to executing I/Os for the
process. This information is maintained in the ACCUMIOTIME task attribute. This
information also appears in the Major Type 1, Minor Type 2 (EOJ) and Minor Type 4
(EOT) log entries.

If you are involved in writing billing systems or in evaluating the system workload, then
you should be aware that the system logs all I/O time for shared logical files to the
process that declared the file. The process that declared the file is not necessarily the
process that is actually executing read and write statements that use the file. Consider
the following ALGOL example:

BEGIN
FILE DATAFILE(KIND=DISK,NEWFILE=FALSE,DEPENDENTSPECS=TRUE);
TASK T;
PROCEDURE UPDATE;
BEGIN
 ARRAY LINE[0:79];
 WHILE NOT READ(DATAFILE,80,LINE) DO
 BEGIN
 REPLACE LINE BY "NEW DATA";

Using Shared Files

19–14 8600 0494–506

 WRITE(DATAFILE,80,LINE);
 END;
END;
CALL UPDATE [T];
END.

In this example, the parent process initiates the procedure UPDATE as a synchronous
task. UPDATE then reads each line of the file, modifies the data, and writes it back out
to the file. Because the parent process was the declarer of DATAFILE, the
ACCUMIOTIME attribute of the parent reflects all the I/O time logged by the UPDATE
task.

Note that the system handles I/O accounting in a different manner for direct files.
Suppose that one process declares a direct file, and that several other processes read
from or write to that file using direct arrays. In this situation, the I/O time for each I/O
operation is charged to the process that declares the direct array used for the I/O, rather
than to the process that declares the direct file.

Understanding File Attribute Access

When multiple processes access a file through the same logical file, file attribute
changes made by any one process are visible to all the other processes. This visibility
holds true regardless of whether a process assigned a file attribute explicitly, or
performed some other action that implicitly caused the file attribute value to change.
Therefore, when you design processes to read or write the attributes of a shared file, you
must be aware of the timing considerations previously discussed under “Synchronizing
Access with Shared Logical Files” in this section.

For example, suppose a process performs a read operation through a shared logical file,
and then immediately interrogates attributes such as STATE, LASTRECORD, or
CURRENTRECORDLENGTH. These attributes do not necessarily return the values
established by the preceding read statement, because another process might have
executed an I/O operation in between the read statement and the file attribute
interrogations performed by this process. You can prevent this problem in either of the
following ways:

• By designing an I/O statement to directly return the information you need, so that the
process does not have to interrogate file attributes to determine the result of the
statement. For example, you could use a statement like the following:

B := READ (PORTF [SUBFILE INX:0], 72, IOBUF)

If this statement is used, the process can use the value stored in B instead of
interrogating the STATE attribute, and can use the value stored in INX instead of
interrogating the LASTSUBFILE attribute. The process could also read the current
record length from field [47:20] of B, instead of interrogating the
CURRENTRECORDLENGTH attribute.

• By designing your application so that no process performs an I/O operation on a file
while another process is interrogating the attributes of that file.

 Using Shared Files

8600 0494–506 19–15

File Sharing Examples

The following is a simple example of a library that allows multiple user processes to
access the same disk file. This particular library allows processes to access a file as if it
were a stack. In other words, whenever a user process writes to the file, the line pointer
is incremented by one. Whenever a user process reads from the file, the line pointer is
decremented by one. The PROCURE and LIBERATE statements are used to ensure that
only one process accesses the file at a time.

$SHARING = SHAREDBYALL
 BEGIN
 FILE STK(KIND=DISK,MAXRECSIZE=12,BLOCKSIZE=1200);
 EVENT STACK_ACCESS;
 INTEGER TOP_OF_STACK;

 BOOLEAN PROCEDURE PUSH_STK(BUF);
 ARRAY BUF[0];
 BEGIN
 PROCURE(STACK_ACCESS);
 TOP_OF_STACK:= * + 1;
 PUSH_STK:= WRITE(STK[TOP_OF_STACK], 12, BUF);
 LIBERATE(STACK_ACCESS);
 END PUSH_STK;

 BOOLEAN PROCEDURE POP_STK(BUF);
 ARRAY BUF[0];
 BEGIN
 PROCURE(STACK_ACCESS);
 POP_STK:= READ(STK[TOP_OF_STACK], 12, BUF);
 TOP_OF_STACK:= * - 1;
 LIBERATE(STACK_ACCESS);
 END POP_STK;

 EXPORT PUSH_STK, POP_STK;
 OPEN (STK);
 TOP_OF_STACK:= -1;
 FREEZE(PERMANENT);
 END.

The following is an example of a WFL job that uses a global file equation to cause two
tasks to use the same logical file. The logical file is declared in the job at lines 140-150.
The global file equations occur at lines 190 and 210.

100 ?BEGIN JOB TEST/WFL;
110 JOBSUMMARY = SUPPRESSED;
120 DISPLAYONLYTOMCS = TRUE;
130 CLASS = 0;
140 FILE GBAL(KIND=REMOTE,NEWFILE=TRUE,TITLE="JUNK/ERRORLOG",
150 MAXRECSIZE=15,UNITS=WORDS);
160 MYSELF(STATIONNAME = #MYSELF(SOURCENAME));
170 OPEN(GBAL);
180 PROCESS RUN OBJECT/TEST/ALGOL/TASK;

Using Shared Files

19–16 8600 0494–506

190 FILE BALANCES:= GBAL;
200 PROCESS RUN OBJECT/TEST/ALGOL/TASK;
210 FILE BALANCES:= GBAL;
220 LOCK(GBAL);
230 ?END JOB

Note that, in the preceding WFL job, it is the colon before the equal sign on lines 190 and
210 that informs WFL that this is a global file equation. If the statement were FILE
BALANCES = GBAL, then WFL would interpret this as meaning that the file title is GBAL.

The statement at line 160 ensures that the STATIONNAME task attribute of the job
reflects the name of the originating station. This STATIONNAME value is inherited by
the tasks, and determines the station where the GBAL remote file is opened.

The following is the program that is initiated twice by this WFL job.

100 BEGIN
110 FILE BALANCES;
120 PROCEDURE ERRWRITE(ERR_ARRAY,DEPOSIT,SEQ);
130 EBCDIC ARRAY ERR_ARRAY[*];
140 INTEGER DEPOSIT,SEQ;
150 BEGIN
160 INTEGER CUST_BALANCE;
170 MYJOB.LOCKED:= TRUE;
180 READ(BALANCES[SEQ],//,ERR_ARRAY);
190 CUST_BALANCE:= INTEGER(ERR_ARRAY,8) + DEPOSIT;
200 REPLACE ERR_ARRAY BY CUST_BALANCE FOR 8 DIGITS;
210 WRITE(BALANCES[SEQ],//,ERR_ARRAY);
220 MYJOB.LOCKED:= FALSE;
230 END;
240 % The outer block statements are omitted from this example
250 END.

Because events cannot be declared in WFL, this program is designed to make use of the
LOCKED task attribute to regulate access to the file. Setting LOCKED to TRUE has the
same effect as procuring an event, and setting LOCKED to FALSE has the same effect
as liberating an event. The program uses the MYJOB task variable because this task
variable has visibility to all the tasks of the WFL job. This mechanism ensures that only
one process is actively reading and writing the file at a time, though all processes
continue to have the file open.

 Using Shared Files

8600 0494–506 19–17

Accessing Disk Files Through Separate Logical Files

It is possible for multiple processes to use the same physical disk file at the same time
without sharing the same logical file. The sharing is accomplished by using identifying
file attributes to cause the logical files in each process to link to the same physical file
when opened.

The following pages explain how to link separate logical files to the same physical file,
and then review the methods of synchronizing access to the physical file.

Entering a File in the Directory

Multiple logical files can link to the same physical file only if the physical file has been
entered into the disk directory. The concept of the disk directory is closely related to the
concepts of permanent and temporary files. A permanent file appears in the disk
directory, and by default is retained when it is closed. A temporary file does not appear
in the disk directory, and by default is removed when it is closed.

A process can cause a file to be entered in the directory by any of the following methods,
which are referred to as directory entrance operations:

• Opening the file with the NEWFILE file attribute set to TRUE and the PROTECTION
file attribute set to SAVE or PROTECTED. Of these two values, SAVE is preferable in
most cases because PROTECTED adds overhead. Opening the file creates a
permanent file, which is entered immediately in the directory. The file continues to
exist after the process terminates, unless the process specifies the PURGE option in
the statement that closes the file.

• For a file that was opened with a PROTECTION value of TEMPORARY (the default),
closing the file with either the LOCK or CRUNCH option specified in the close
statement. In addition to closing the file, this action enters the file in the directory.

• Opening the file with the NEWFILE file attribute and the SENSITIVEDATA file
attribute both set to TRUE. The main purpose of using the SENSITIVEDATA attribute
is to protect sensitive information, but it also has the side effect of entering a file in
the directory.

If two files with the same title exist on the same family, they cannot both be permanent.
An option called AUTORM specifies the action to be taken if a process attempts to enter
a file in the directory, and a file with same title already exists. If the AUTORM option is
set, the attempt to enter the file in the directory causes one of the following actions:

• If the old file is not in use by any process, it is removed and the new file is entered in
the directory.

• If the old file is still in use by another process, the old file is removed from the
directory and the new file is added to the directory. The old file remains open as a
temporary file. Some unexpected effects can arise from this situation. For example,
suppose the new file was opened as a temporary file by process B, and the old file
was originally opened as a permanent file by process A. When process B closes the
new file with LOCK, the new file is changed into a permanent file, and the old file is
changed into a temporary file. If process A then closes the old file with LOCK, the

Using Shared Files

19–18 8600 0494–506

old file becomes permanent again and the new file is changed back into a temporary
file.

In general, the last file entered or reentered in the directory is the one that is saved
permanently, regardless of whether the directory entry was caused by the file
attribute values in force at file open time, or by the option used for the close
operation.

If the AUTORM option is reset, and a permanent file with a particular title already exists,
then a process that attempts to enter a file with the same title into the directory is
suspended with a “DUP LIBRARY” RSVP message. An operator can restart the process
by entering the RM (Remove) system command, which deletes the existing duplicate
file.

The system treats the AUTORM option as set for a particular process if either or both of
the following are true:

• The AUTORM option of the OPTION task attribute is set.

• The AUTORM operating system option is set. This option can be set or reset
through the OP (Options) system command.

Matching Physical Files

Once a physical file is entered in the directory, processes can link other logical files to it
by specifying appropriate values for the following file attributes:

• KIND

Specifies the type of storage medium, such as DISK.

• TITLE

Specifies the usercode, file name, and family.

• NEWFILE

If set to FALSE, specifies that an existing file should be opened. Note that the
process will be suspended with a “NO FILE” message if the file does not exist.

• DEPENDENTSPECS

Causes the logical file to assume all the file attributes of the physical file. This makes
it unnecessary for all processes to repeat the file attribute assignments that
determine the structure of the file.

Synchronizing Access with Separate Logical Files

When processes access a single disk file through separate logical files, some additional
synchronization problems arise beyond those that occur for shared logical files. These
problems arise because read and write operations affect physical files indirectly, through
a set of buffers associated with the logical file. The system moves information between
the buffers and the physical file only when necessary, and the application typically plays
no role in determining when such updates occur.

 Using Shared Files

8600 0494–506 19–19

What is more, the BLOCKSIZE file attribute can cause multiple records to be read into or
written from a buffer, so that changes by other processes to nearby records can be
accidentally overwritten. (For more information about file blocking and file buffers, refer
to the I/O Subsystem Programming Guide.)

These synchronization concerns arise only in cases where at least one of the processes
writes to the shared physical file. If all the processes simply read from the file, then the
order in which they execute their read operations makes no difference.

However, if at least one of the processes writes to the shared physical file, then you
must use one of the following methods to ensure that I/O operations are properly
synchronized:

• Use the BUFFERSHARING file attribute to cause multiple logical files to share the
same set of buffers.

• Use the EXCLUSIVE file attribute to ensure that only one process has the physical
file open at any given time.

Using the BUFFERSHARING File Attribute

You can use the BUFFERSHARING file attribute to allow separate logical files to share
the same set of buffers. The effect is to make the results of each write statement
immediately visible to all processes that use the same buffers, even if the physical file
has not yet been updated. The following are the possible mnemonic values for this
attribute:

• NONE. The logical file does not share buffers with any other logical file. This value is
the default.

• SHARED. The logical file shares buffers with any other logical files that have a
BUFFERSHARING value of SHARED or EXCLUSIVELYSHARED. Logical files with a
BUFFERSHARING value of NONE can link to the same physical file, but use separate
buffers.

• EXCLUSIVELYSHARED. The logical file shares buffers with any other logical files
that link to the same physical file. Logical files with a BUFFERSHARING value of
NONE are prevented from linking to the same physical file.

Note that several restrictions apply to the use of the BUFFERSHARING file attribute. For
example, the physical file must reside on the local host and the BLOCKSTRUCTURE
attribute must be FIXED. For a detailed list of the restrictions, refer to the File Attributes
Programming Reference Manual.

If you use the SHARED or EXCLUSIVELYSHARED value for all the processes that share
the same physical file, then the issue of when the physical file is updated becomes
irrelevant. However, you must still handle the types of synchronization problems that
were previously described under “Synchronizing Access with Shared Logical Files” in
this section.

Using Shared Files

19–20 8600 0494–506

You can handle these synchronization problems in any of the following ways:

• Through the use of event variables, using the techniques described under
“Synchronizing Access with Shared Logical Files,” earlier in this section.

• By setting the APPEND file attribute to TRUE. The primary effect of this setting is to
prevent random writes to a file and to cause all serial writes to begin at the current
end-of-file position. However, when BUFFERSHARING has a value of SHARED or
EXCLUSIVELYSHARED, an APPEND value of TRUE has the additional effect of
causing the system to provide implicit locking for write statements. This implicit
locking prevents write statements issued by different processes from conflicting and
overwriting each other. Note that this locking is effective only if all the processes
that write to the file use a BUFFERSHARING value of SHARED or
EXCLUSIVELYSHARED and an APPEND value of TRUE.

• Through the use of a feature called record locking. This record locking feature makes
it possible for a process to secure exclusive access to one or more file records while
the process reads and updates those records. The record locking feature can be
used only for files that have BUFFERSHARING = SHARED or EXCLUSIVELYSHARED
or that use direct I/O.

Record locking is supported in COBOL85 through the LOCKRECORD and
UNLOCKRECORD statements. Record locking is available in other languages through
calls on the MCPSUPPORT library procedures RECORDLOCKER,
DIRECTRECORDLOCKER, RECORDLOCKTEST, and DIRECTRECORDLOCKTEST.

Record locks are of two types: shared locks and exclusive locks.

Before performing a read operation, each process should typically secure a shared lock
on the file records that are to be read. A shared lock allows other processes to establish
shared locks that overlap the same region, but prevents other processes from
establishing exclusive locks that overlap that region. After performing the read operation,
the process should then remove the shared lock from the region.

Before performing a write operation, each process should typically secure an exclusive
lock on the file records that are to be written. An exclusive lock prevents other
processes from establishing any shared locks or exclusive locks that overlap the same
region. After performing the write operation, the process should then remove the
exclusive lock from the region.

Note that it is possible for processes to read or write a record without first locking the
record, regardless of the value of the BUFFERSHARING attribute. Locking a record only
prevents another process from locking the same record, not from performing I/O on that
record. Record locking works well as long as all participating processes follow the
convention of locking records before reading or writing them.

If a process locks a record and then terminates before unlocking the record, the system
implicitly unlocks the record.

The following paragraphs briefly introduce the MCPSUPPORT procedures and COBOL85
statements that support record locking, and then explain how record locking applies to
direct I/O files.

 Using Shared Files

8600 0494–506 19–21

Record Locking with MCPSUPPORT Procedures

A program can lock records by calling the MCPSUPPORT procedure RECORDLOCKER.
This procedure includes parameters that allow you to specify

• Whether a shared lock or exclusive lock is to be used.

• The starting position and length of the locked region.

• For regions that already have a conflicting lock, whether the RECORDLOCKER
procedure should fail or wait (and if it waits, for how long).

A program can interrogate the availability of a range of records for locking by invoking the
procedure RECORDLOCKTEST.

For direct files, the program must use the procedures DIRECTRECORDLOCKER instead
of RECORDLOCKER, and DIRECTRECORDLOCKTEST instead of RECORDLOCKTEST.

For detailed descriptions of each of these procedures, refer to the Master Control
Program (MCP) System Interfaces Programming Reference Manual.

Record Locking with COBOL85 Statements

A COBOL85 program can lock a record with the LOCKRECORD <file name> statement.
This statement creates exclusive locks only (never shared locks). The record to be
locked is not specified by the LOCKRECORD statement, but rather by the ACTUAL KEY
phrase for the file. The statement can optionally include an ON EXCEPTION clause and a
NOT ON EXCEPTION clause (specifying actions to be taken if the lock fails or succeeds,
respectively). For a file named THETA-DATA and subroutines named BAD-LOCK and
GOOD-LOCK, you could use a statement of the following form:

LOCKRECORD THETA-DATA
 ON EXCEPTION PERFORM BAD-LOCK
 NOT ON EXCEPTION PERFORM GOOD-LOCK.

If a conflicting lock already exists for the requested region, then the LOCKRECORD
statement waits for the length of time specified by the FILELOCKTLIMIT (File Lock Time
Limit) system command. If the conflicting lock is removed before the time limit expires,
the LOCKRECORD statement succeeds, and the NOT ON EXCEPTION clause is invoked
(if there is one). If the time limit expires, the LOCKRECORD statement fails, and the
ON EXCEPTION clause is invoked (if there is one).

You can unlock a record using the UNLOCKRECORD statement, which has syntax similar
to that of the LOCKRECORD statement. The UNLOCKRECORD statement can also
include ON EXCEPTION or NOT ON EXCEPTION clauses.

If the compiler control option MUSTLOCK is TRUE and the FD statement for a file
assigns a BUFFERSHARING value of SHARED or EXCLUSIVELYSHARED, then the
COBOL85 compiler generates extra code for any WRITE statements that write to that
file. This extra code checks to see whether the program has previously locked the
record being written to. If not, then the program incurs an error. If the program has
specified a file status data item, a USE procedure, or an INVALID KEY clause, then the
error is nonfatal and control returns to the program. Otherwise the error is fatal and the
program is discontinued.

Using Shared Files

19–22 8600 0494–506

Note that this special feature of the WRITE statement is enabled only if the FD
statement includes the BUFFERSHARING assignment. If the BUFFERSHARING value is
altered by a CHANGE ATTRIBUTE statement in the program, the behavior of the WRITE
statement is not affected by the change.

For detailed explanations of these COBOL85 features, refer to the COBOL ANSI-85
Programming Reference Manual, Volume 1: Basic Implementation.

Record Locking for Direct I/O Files

Direct I/O is a technique that allows a program to create and control a private buffer for
file I/O. The program creates a buffer by declaring a direct array. The application
program is responsible for initiating and monitoring the transfer of information between
the physical file and the direct array.

The BUFFERSHARING file attribute must have a value of NONE for direct I/O files. If
multiple programs access the same physical disk file through direct I/O, each direct array
exists independently. Changes made to the contents of one direct array are not
propagated to other direct arrays.

Further, changes made through direct I/O have no effect on the file buffers of processes
that access the file through normal I/O. This problem exists even if the processes using
normal I/O have set BUFFERSHARING = SHARED.

Note: If multiple processes update the same disk file through different logical files,
then either all the processes should use direct I/O or all the processes should use normal
I/O. It is not possible to reliably coordinate the updating of buffers if a file is accessed by
both direct I/O and normal I/O.

The system does support the use of record locking with direct I/O files, by way of the
same MCPSUPPORT procedures mentioned previously. You can use this record locking
feature effectively for cases where multiple processes all use direct I/O to update the
same physical disk file. However, you must take measures to ensure that the contents
of any direct arrays used to access a file are kept properly updated.

For example, suppose a certain record in a file stores the current balance in a customer's
account. Suppose also that you want a program to use direct I/O to increase the account
balance by $10. In order to ensure accurate results, you should design the program to
follow these steps:

1. Secure an exclusive lock on the record.

2. Read the latest contents of the record into the direct array. This is necessary
because another process might have updated the record since it was last read by
this process.

3. Wait for the read operation to complete.

4. Update the data in the direct array to reflect the $10 increase.

5. Write the updated data from the direct array to the physical file. This write is
necessary to make the results of the action visible to other processes that do not
share this direct array.

 Using Shared Files

8600 0494–506 19–23

6. Wait for the write operation to complete.

7. Remove the exclusive lock from the record.

Using the EXCLUSIVE File Attribute

If a file is used by multiple processes, but the processes access the file only occasionally,
then you may find it convenient to simply ensure that only one of those processes has
the file open at any given time. When each process closes the file, the system updates
the physical file with any outstanding changes that are stored in the file buffers. These
changes are therefore visible to the next process that opens the file.

The simplest method of ensuring exclusive access to a physical file is to create the file
with the default PROTECTION value, which is TEMPORARY. The file is not entered in
the directory and therefore is not visible to other processes. Later, the process can close
the file with LOCK, thus entering the file in the directory and making it available to other
processes. If another process attempts to access the file before it is locked, the process
is suspended with a “NO FILE” condition. When the file is locked, the process resumes.

Another method of securing exclusive access to a file is by setting the EXCLUSIVE file
attribute to TRUE before opening the file. The EXCLUSIVE file attribute specifies that no
other process can have the physical file open at the same time as this process.

If a process sets EXCLUSIVE to TRUE and then opens a file, then any other process that
attempts to open that physical file is suspended until this process closes it. If a process
sets EXCLUSIVE and attempts to open a physical file that is already in use by another
process, the process is suspended until the other process closes the file. In either case,
the RSVP message displayed is “WAITING ON: <file title>.”

It is possible for multiple processes to be waiting to open the same physical file with
EXCLUSIVE = TRUE. When the file becomes available, one of the waiting processes
opens the file and the other processes continue to wait. It is not possible to predict
which of the waiting processes will succeed in opening the file first.

If it is not desirable for the program to be suspended until the file becomes available, the
process can attempt a conditional open operation instead. This can be achieved by using
an open statement with the AVAILABLE option set or by interrogating the AVAILABLE
file attribute. If another process is currently using the file with EXCLUSIVE = TRUE, the
conditional open operation fails and returns a result reporting the reason for the failure.
(The results are documented in the AVAILABLE file attribute description in the File
Attributes Programming Reference Manual.) The process then continues executing
normally.

Exclusive files are best suited to situations where a single body of information is to be
transmitted from one process to another. An extended dialogue between processes
cannot be implemented efficiently by this method, because it requires repeated file open
and close operations. Each file open or close operation is an expensive operation that
consumes many times the resources required to access an event or perform a simple
read or write operation.

Using Shared Files

19–24 8600 0494–506

Avoiding Nonpreferred Methods

If you do not use the BUFFERSHARING or EXCLUSIVE file attributes, then any number
of logical files with separate buffers can be linked to the same physical disk file at the
same time. However, you should be aware that this type of disk file sharing involves
complexities of synchronization that are extremely difficult to resolve. When different
buffers are used it is not possible to predict the order in which read and write operations
submitted by different processes will be executed.

Some programmers have mistakenly believed that each SEEK statement to record
number -1 causes the physical file to be updated with the contents of the file buffers.
Although this statement sometimes has the desired effect, it is not and never has been a
reliable method of flushing the buffers.

A newer feature is the SYNCHRONIZE file attribute. When SYNCHRONIZE is set to
OUT, the system updates the physical file before completing any given WRITE
statement. This technique can help reduce the data loss caused by a program failure or
system halt/load. However, you should be aware that SYNCHRONIZE does not provide
any buffer updating for READ statements.

For example, suppose that two separate processes access a physical file through
separate buffers with SYNCHRONIZE set to OUT. The first process issues a WRITE
statement, during which the physical file is updated. The first process then uses an
event variable to signal the second process that it can read the file. The second process
issues a READ statement, but the read statement may reflect outdated contents of the
file buffers rather than the current contents of the physical file.

Because of these and other problems, the concurrent use of physical disk files through
separate buffers is not recommended.

Synchronizing Access on Shared Disk Families

You can use the SHARE (Shared Family) system command to enable multiple hosts to
share the same disk family. (A host is either an A Series system or the MCP
environment of a ClearPath system.) One of the hosts is designated as the master host,
and only programs on the master host can create new files, expand existing files, or
modify file attributes of files on the share family. For a full description of the SHARE
command and its effects, refer to the System Commands Operations Reference Manual.

The shared families feature can be a convenient way of making code files available for
execution by multiple hosts or for making files available for reading by programs on
multiple hosts.

 Using Shared Files

8600 0494–506 19–25

The shared families feature also allows existing rows of a file to be rewritten by
programs on any of the sharing hosts. However, such updating by programs on multiple
hosts can result in timing issues that go beyond those previously discussed in this
section. For instance:

• The methods of synchronization discussed under “Using Shared Logical Files” apply
only to processes that are running on the same host.

• Most of the synchronization methods discussed under “Synchronizing Access with
Separate Logical Files” depend on the use of the BUFFERSHARING file attribute or
the EXCLUSIVE file attribute. However, programs are not permitted to set either of
these attributes for files on shared families.

• It is possible to use direct I/O files on shared families, together with record locking
through the MCPSUPPORT procedure RECORDLOCKER. However, the record
locking affects only processes on a single host. It does nothing to prevent concurrent
access by processes running on different hosts.

Given these limitations, it is generally best to avoid application architectures in which
processes running on separate hosts are responsible for updating the same file on a
shared family during the same period.

Using Shared Files

19–26 8600 0494–506

8600 0494–506 20–1

Section 20
Using Core-to-Core (CRCR) and Storage
Queue (STOQ)

Core-to-core (CRCR) and storage queue (STOQ) are two methods of transmitting EBCDIC
text between processes. The primary difference between these two methods is that
CRCR communicates data synchronously, while STOQ communicates data
asynchronously. Another difference is that CRCR data is always received in the order
that it is sent, while STOQ data can optionally be received in a different order.

COBOL85 programs can use CRCR or STOQ by using special forms of the SEND and
RECEIVE statements in that language. Programs written in other languages can use
CRCR or STOQ through calls on procedures in the EVASUPPORT library.

This section emphasizes the use of CRCR through EVASUPPORT procedure calls, but
also gives examples of the corresponding COBOL85 statements. For complete details
on the COBOL85 syntax, refer to the COBOL ANSI-85 Programming Reference Manual,
Volume 1: Basic Implementation.

CRCR and STOQ are modeled on features that were originally implemented for V Series
systems. For information about migrating applications from V Series systems, refer to
the EVA Application Programs Transition Guide.

This section first describes the CRCR and STOQ features separately. This section then
describes procedure result values and operations interfaces that apply to both CRCR and
STOQ.

Using CRCR
Core-to-core (CRCR) is a method for synchronously communicating EBCDIC text
between two processes. CRCR transfers information directly from a variable in one
process to a variable in another process, without using any intermediate storage area.
The data transfer occurs only when both processes acknowledge that they are prepared
for the exchange.

The processes communicating through CRCR must be located on the same host system.

Using Core-to-Core (CRCR) and Storage Queue (STOQ)

20–2 8600 0494–506

How CRCR Processes Interlock

In order for information to be transferred through CRCR, the sending process and the
receiving process must interlock. This interlocking is a temporary linkage established by
the operating system. The system interlocks two processes if one is attempting a send
operation, the other is attempting a receive operation, and the program name of each
process matches that requested by the other process.

Once the interlock occurs, the system transfers the data from one process to the other
and then removes the interlock. If the same two processes exchange information
repeatedly, the system repeats the steps of matching the processes and establishing an
interlock each time.

In practice, the two processes are unlikely to issue the send and receive requests at
exactly the same moment. Therefore, the first of the two processes to submit its
request enters a waiting state until the matching process submits the matching request.
However, you can control which process does the waiting by making one of the two
processes do a conditional send or receive request.

If you do not wish for a CRCR process to enter a waiting state, you can design the
process to set the No Wait flag in the send or receive request. When you set this flag,
the process abandons the send or receive operation and continues executing if the
matching process is not ready to interlock.

Alternatively, you can design a CRCR process to execute a WAIT statement that waits on
a list of events. The list of events can include the predeclared events CRCR_INPUT and
CRCR_OUTPUT, which notify the process when a matching process submits a send or
receive request. By looping repeatedly on such a complex wait statement, a process can
handle both CRCR communications and a variety of other transactions as they occur.

The No Wait flag or the complex wait strategy should be used for only one of the two
matching CRCR processes. One of the two CRCR processes must submit a simple send
or receive request and enter a waiting state, or no interlock can ever occur.

Using CRCR Through Library Calls

Programs in languages other than COBOL85 can perform CRCR send and receive
operations by calling the CRCR_SEND and CRCR_RECV procedures in the EVASUPPORT
system library. These procedures each receive four parameters, which must be declared
in the following order: program name, program name length, message data, and No Wait
flag. These procedures also return a real value indicating the procedure result.

Program Name (EBCDIC Array)

Stores the name of the matching CRCR program. The value must be a file title of up to
256 characters in length. It is not necessary to terminate the value with a period.

If the program name does not include a usercode, the system prefixes the program
name with the same usercode as the process executing the statement.

 Using Core-to-Core (CRCR) and Storage Queue (STOQ)

8600 0494–506 20–3

The system compares the program name with the NAME task attribute of possible
matching processes. Any ON <family> clause on either side is ignored in the
comparison. Otherwise, the program name and the NAME task attribute must be an
exact match in order for interlock to occur.

There is one exception to the requirement for exact matches. In a CRCR_RECV
invocation, the program name specified can be all blank characters. This type of
invocation is referred to as a global receive operation. In such a case, the process
interlocks with any other process that is attempting a send operation.

Note that the reverse capability, a global send operation, does not exist. If the program
name for a send operation is all blanks, the process waits indefinitely and the send
operation is never completed.

Program Name Length (Integer)

The user program must use this parameter to specify the length of the program name, in
units of characters.

Message Data (EBCDIC Array)

Stores or receives the message data.

The variable declared in the sending process can be of a different type than the variable
declared in the receiving process. However, the system does not perform any data
translation. The data received is a bit image of the data that was sent.

The size of the variable is limited only by the amount of memory required by the sending
and receiving processes. If the receiving variable cannot hold all the data that is sent, the
system truncates the data and sends what can fit. If the receiving variable is larger than
the sending variable, the system left-justifies the data and adds blank fill to the right.

No Wait Flag (Real)

A real variable that indicates whether the user program is willing to wait for the interlock
to occur.

An interlock can be delayed if the matching process is not currently running or has not
executed its send or receive operation yet. By default, the user program becomes
suspended if the matching process is not ready, and resumes executing when the
interlock occurs.

However, by setting bit [00:01] of the No Wait flag, the user program can indicate that
the send or receive operation should be abandoned if the matching process is not ready
to interlock. The user program continues running and can attempt the send or receive
operation again later.

Procedure Result (Real)

CRCR_SEND and CRCR_RECV each return a real value indicating the result of the
requested operation. The format of this value is described under “Handling the CRCR or
STOQ Result” later in this section.

Using Core-to-Core (CRCR) and Storage Queue (STOQ)

20–4 8600 0494–506

Using CRCR in ALGOL

The following is an example of an ALGOL program that invokes the CRCR_RECV and
CRCR_SEND procedures.

BEGIN
EBCDIC ARRAY CRCR_PGM_NAME [0:255];
INTEGER CRCR_PGM_NAME_LEN;
EBCDIC ARRAY CRCR_DATA [0:19999];
REAL CRCR_FLAGS, RESULT_STATUS;

LIBRARY EVASUPPORT (LIBACCESS = BYFUNCTION,
 FUNCTIONNAME = "EVASUPPORT.");
 REAL PROCEDURE CRCR_RECV (CRCR_PGM_NAME,
 CRCR_PGM_NAME_LEN,
 CRCR_DATA,
 CRCR_FLAGS);
 EBCDIC ARRAY CRCR_PGM_NAME [*];
 INTEGER CRCR_PGM_NAME_LEN;
 EBCDIC ARRAY CRCR_DATA [0];
 REAL CRCR_FLAGS;
 LIBRARY EVASUPPORT;

 REAL PROCEDURE CRCR_SEND (CRCR_PGM_NAME,
 CRCR_PGM_NAME_LEN,
 CRCR_DATA,
 CRCR_FLAGS);
 EBCDIC ARRAY CRCR_PGM_NAME [*];
 INTEGER CRCR_PGM_NAME_LEN;
 EBCDIC ARRAY CRCR_DATA [0];
 REAL CRCR_FLAGS;
 LIBRARY EVASUPPORT;

REPLACE CRCR_DATA[0] BY "DATA MESSAGE";
REPLACE CRCR_PGM_NAME[0] BY "(USER)PROGRAM/NAME";
CRCR_PGM_NAME_LEN:= 18;
CRCR_FLAGS:= 0; % WAIT FOR HOOKUP

CRCR_SEND(CRCR_PGM_NAME, CRCR_PGM_NAME_LEN,
 CRCR_DATA, CRCR_FLAGS);

REPLACE CRCR_DATA[0] BY " " FOR SIZE(CRCR_DATA);
REPLACE CRCR_PGM_NAME[0] BY "(USER)PROGRAM/NAME";
CRCR_PGM_NAME_LEN:= 18;
CRCR_FLAGS:= 0; % WAIT FOR HOOKUP

CRCR_RECV(CRCR_PGM_NAME, CRCR_PGM_NAME_LEN,
 CRCR_DATA, CRCR_FLAGS);

END.

 Using Core-to-Core (CRCR) and Storage Queue (STOQ)

8600 0494–506 20–5

Using CRCR in COBOL74

The following rules apply to the data items passed as parameters to CRCR_SEND or
CRCR_RECV in COBOL74:

• The program name length parameter must be a level 77 item of type PIC S9(11)
BINARY.

• The message data parameter must be of either level 77 or level 01. If a level 01 item
is used, all subordinate items are passed as part of the message data.

• The flag parameter and the result status must be level 77 items of type REAL.

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 RESULT-STATUS REAL.
77 CRCR-PGM-NAME-LEN PIC S9(11) BINARY.
77 CRCR-FLAGS REAL.
01 CRCR-PGM-NAME PIC X(256) WITH LOWER-BOUNDS.
01 CRCR-DATA PIC X(20000).

PROCEDURE DIVISION.
BEGIN-PARA.
 CHANGE ATTRIBUTE LIBACCESS OF "EVASUPPORT"
 TO BYFUNCTION.
 MOVE "(EVAENG)OBJECT/TEST/CRCR/ALGOL ON MISC."
 TO CRCR-PGM-NAME.
 MOVE 39 TO CRCR-PGM-NAME-LEN.
 CALL "CRCR_RECV OF EVASUPPORT"
 USING CRCR-PGM-NAME, CRCR-PGM-NAME-LEN,
 CRCR-DATA, CRCR-FLAGS
 GIVING RESULT-STATUS.
 CALL "CRCR_SEND OF EVASUPPORT"
 USING CRCR-PGM-NAME, CRCR-PGM-NAME-LEN,
 CRCR-DATA, CRCR-FLAGS
 GIVING RESULT-STATUS.
STOP RUN.

Using CRCR Through COBOL85 Statements

In COBOL85, the SEND statement follows one of the following formats:

SEND <program name> FROM <variable name>

SEND <program name> FROM <variable name> ON EXCEPTION <statement>

SEND <program name> FROM <variable name> NOT ON EXCEPTION <statement>

Using Core-to-Core (CRCR) and Storage Queue (STOQ)

20–6 8600 0494–506

Similarly, the RECEIVE statement follows one of the following two formats:

RECEIVE <program name> INTO <variable name>

RECEIVE <program name> INTO <variable name> ON EXCEPTION <statement>

RECEIVE <program name> INTO <variable name> NOT ON EXCEPTION <statement>

The following are explanations of the various portions of these statements:

• The program name stores the name of the matching program. The program name
must be an alphanumeric literal or a variable, such as a DISPLAY item.

• The variable name refers to a variable that stores or receives the message data. The
variable specified must be an alphanumeric data item, such as a DISPLAY item.

• The ON EXCEPTION clause specifies an action to be taken if the matching process is
not ready to participate in the CRCR send or receive operation. If there is no ON
EXCEPTION clause, the process waits until the matching process is ready. Using
the ON EXCEPTION clause is equivalent to setting the No Wait flag in a CRCR_SEND
or CRCR_RECV procedure invocation.

• The NOT ON EXCEPTION clause specifies an action to be taken if the CRCR
statement finishes successfully.

For further information about the contents of program names and variable names, refer
to the discussion of the program name and message data parameters under “Using
CRCR Through Library Calls” earlier in this section.

Following is a COBOL85 program that uses CRCR constructs.

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
 01 CRCR-PGM-NAME PIC X(256).
 01 CRCR-DATA PIC X(2000).
PROCEDURE DIVISION.
BEGIN-PARA.
 MOVE "(JASMITH)OBJECT/TEST/CRCR/ALGOL ON MISC."
 TO CRCR-PGM-NAME.
 MOVE "TEST DATA TEST DATA TEST DATA "
 TO CRCR-DATA.
 SEND CRCR-PGM-NAME FROM CRCR-DATA.

 MOVE "(JASMITH)OBJECT/TEST/CRCR/ALGOL ON MISC."
 TO CRCR-PGM-NAME.
 RECEIVE CRCR-PGM-NAME INTO CRCR-DATA.
STOP RUN.

 Using Core-to-Core (CRCR) and Storage Queue (STOQ)

8600 0494–506 20–7

Using STOQ
Storage queues (STOQs) are a medium that processes can use to store information in
memory for later retrieval by other processes. Any number of processes can share the
same STOQ. A single process could also use a STOQ for temporary storage.

Each message sent to a STOQ simply remains there until a process signals its readiness
to receive that message. Further, a single STOQ can store multiple messages. These
features make it possible for STOQ applications to run in parallel without having to
synchronize the sending or receiving of messages.

The applications that use STOQs can specify whether each message should be sent to,
or received from, the top or bottom of a STOQ. This flexibility makes it simple for you to
implement last in, first out (LIFO) or first in, first out (FIFO) communications
mechanisms.

STOQ applications can also subdivide each STOQ into subqueues with distinct names.
Applications can then send messages to, or receive messages from, the top or bottom of
each subqueue.

An inquiry mechanism provides a rapid means of determining the number of messages in
a STOQ or a subqueue without disturbing any elements.

The programs communicating through STOQs must reside on the same host system.

The following pages present an overview of STOQ communications and describe how to
perform STOQ communications through the library interface or through COBOL85
statements.

Creating and Using STOQs

To use STOQ communications, a program must first declare a STOQ parameter block. A
STOQ parameter block serves as a buffer for the data in a single send operation or
receive operation. A program can reuse the same STOQ parameter block for successive
operations, provided that the program reinitializes the data in the parameter block
appropriately each time. The same STOQ parameter block can be reused even for
operations that involve different STOQs.

It is not necessary for a program to explicitly create or link to a STOQ. Before each send
or receive operation, the program simply stores the STOQ name in the appropriate
portion of the STOQ parameter block. If the STOQ specified by a send operation does
not yet exist, the system creates the STOQ at that point. Any process can thereafter
access the same STOQ by specifying the same STOQ name for a send or receive
operation.

The STOQ grows one message longer after each send operation. Each receive operation
removes a message from the STOQ and decreases the length of the STOQ by one.

A STOQ can continue to exist even after the process or processes that sent messages
to it have terminated. The messages placed in the STOQ by those processes remain in
the STOQ until received by another process or processes. The STOQ itself continues to

Using Core-to-Core (CRCR) and Storage Queue (STOQ)

20–8 8600 0494–506

exist until the next halt/load, even if it no longer contains any messages and is not in use
by any process.

An operator can use the WQ (Display STOQ Count) command in MARC to display the
number of messages in a STOQ. An operator can also purge messages from a STOQ
with the RQ (Remove STOQ Entries) command in MARC. For details, refer to “Operator
Interfaces to CRCR and STOQ” later in this section.

While a STOQ can store multiple messages, memory constraints limit the possible size
of a STOQ. If a process attempts to send a message to a STOQ that is full, the process
is then suspended unless it has set the No Wait flag for the send operation.

Similarly, if the STOQ or subqueue specified for a receive operation is empty, the
receiving process is suspended unless it has set the No Wait flag for the receive
operation.

A program can use the events STOQ_INPUT or STOQ_OUTPUT to detect when a STOQ
is ready for a send or receive operation. For details, refer to “Waiting for CRCR or STOQ
Events” later in this section.

A receive operation can specify a partial subqueue name. Such an operation returns the
first message whose subqueue name begins with that partial subqueue name. For
example, a receive operation that specifies a subqueue named OPS could receive a
message from subqueues named OPS, OPSCON, OPSREP, or OPSPOD.

Using STOQ Through Library Calls

Application programs can perform STOQ communications by invoking three procedures
in the EVASUPPORT system library: STOQ_SEND, STOQ_RECV, and STOQ_POLL.
Before invoking these procedures, each application program must declare and initialize a
STOQ parameter block.

Declaring a STOQ Parameter Block

A STOQ parameter block stores the following information, in the following order:

• The name of the STOQ. The STOQ name is always six characters long, and should
be left-justified and blank filled if necessary to attain the six-character length. The
STOQ name can contain any EBCDIC characters, including embedded blanks and
nonprinting values. The name cannot consist entirely of null characters.

• The length of the subqueue name, in characters. This value must be in the range 0
to 99. A length of 0 indicates that there is no subqueue name.

• The subqueue name, if any. The subqueue name can contain any EBCDIC
characters, including embedded blanks and nonprinting values. The name cannot
consist entirely of null characters.

 Using Core-to-Core (CRCR) and Storage Queue (STOQ)

8600 0494–506 20–9

• The length of the message data, in characters. This value must be in the range 0 to
9999. A length of 0 indicates that there is no message data.

− For send operations, this value must be stored in advance by the application
program.

− For receive operations, the caller stores a value that determines the maximum
message size to be received. After a receive, the system sets the value to the
actual size of the message received. If this actual message size value is larger
than the maximum message size value stored by the caller, the message will be
truncated to the caller’s maximum message size. The caller should restore the
maximum message size value prior to each receive.

− For poll operations, this value is returned by the system and reflects the number
of messages in the specified STOQ or subqueue.

• The message data. The maximum length for message data is 9999 bytes. The
message data can contain any EBCDIC characters, including embedded blanks and
nonprinting values.

− For send operations, this value must be stored in advance by the application
program.

− For receive operations, this value is returned by the system.

− For poll operations, this field is not used.

Send, Receive, and Poll Operations

The three EVASUPPORT procedures STOQ_SEND, STOQ_RECV, and STOQ_POLL each
receive two parameters: a STOQ parameter block and a flag variable. The STOQ
parameter block was described in the previous subsection.

The flag variable is a real variable with the following significant fields:

Field Value and Meaning

[01:01] Indicates whether the top or bottom of the STOQ is used for the operation.

• 0

The bottom of the STOQ or subqueue is used.

• 1

The top of the STOQ or subqueue is used.

[00:01] The No Wait flag. Indicates whether to wait or to abandon the STOQ operation if
a delay is encountered. A delay occurs for a STOQ_SEND if the specified STOQ
is full. A delay occurs for a STOQ_RECV if there are no messages in the specified
STOQ or subqueue.

• 0

The process waits until the send or receive operation can be completed.

• 1

The process abandons the operation and proceeds to the next statement.

Using Core-to-Core (CRCR) and Storage Queue (STOQ)

20–10 8600 0494–506

Additionally, the STOQ_SEND, STOQ_RECV, and STOQ_POLL procedures each return a
real value. The application program can inspect this result to determine whether errors
occurred in the operation. Refer to “Handling the CRCR or STOQ Result” later in this
section.

Using STOQ in ALGOL

For ALGOL programs, the STOQ parameter block can be declared as an EBCDIC array.
In this array,

• The first six bytes store the STOQ name.

• The next byte stores the two-digit subqueue name length in packed decimal form.

• The next 0 to 99 bytes store the subqueue name (depending on the value of the
subqueue name length specified in the previous byte).

• The next two bytes store the four-digit message data length in packed decimal form.

• The next 0 to 9999 bytes store the message data.

The following ALGOL program includes statements to define a STOQ parameter block
and invokes the STOQ_SEND, STOQ_RECV, and STOQ_POLL procedures.

BEGIN

EBCDIC ARRAY STOQ_BLOCK [0:9999];

REAL STOQ_FLAGS, RESULT_STATUS;

LIBRARY EVASUPPORT (LIBACCESS = BYFUNCTION,
 FUNCTIONNAME = "EVASUPPORT.");
 REAL PROCEDURE STOQ_RECV (STOQ_BLOCK, STOQ_FLAGS);
 EBCDIC ARRAY STOQ_BLOCK [0];
 REAL STOQ_FLAGS;
 LIBRARY EVASUPPORT;

 REAL PROCEDURE STOQ_SEND (STOQ_BLOCK, STOQ_FLAGS);
 EBCDIC ARRAY STOQ_BLOCK [0];
 REAL STOQ_FLAGS;
 LIBRARY EVASUPPORT;

 REAL PROCEDURE STOQ_POLL (STOQ_BLOCK, STOQ_FLAGS);
 EBCDIC ARRAY STOQ_BLOCK [0];
 REAL STOQ_FLAGS;
 LIBRARY EVASUPPORT;

REPLACE STOQ_BLOCK[0] BY "QUEUE1", % QUEUE NAME
 48"09", % SUB QUEUE NAME LEN
 "SUBQUEUE1", % SUB QUEUE NAME
 48"0012", % DATA LENGTH
 "DATA MESSAGE"; % DATA
STOQ_FLAGS.[1:1]:= 0; % INSERT AT BOTTOM OF STOQ

 Using Core-to-Core (CRCR) and Storage Queue (STOQ)

8600 0494–506 20–11

STOQ_FLAGS.[0:1]:= 0; % WAIT FOR SPACE
STOQ_SEND(STOQ_BLOCK, STOQ_FLAGS);

REPLACE STOQ_BLOCK[0] BY 48"00" FOR 10000;
REPLACE STOQ_BLOCK[0] BY "QUEUE1", % QUEUE NAME
 48"09", % SUB QUEUE NAME LEN
 "SUBQUEUE1", % SUB QUEUE NAME
 48"0000"; % CLEAR FOR RECV
STOQ_FLAGS.[1:1]:= 1; % RECEIVE FROM TOP OF STOQ
STOQ_FLAGS.[0:1]:= 0; % WAIT FOR MESSAGE
STOQ_RECV(STOQ_BLOCK, STOQ_FLAGS);

REPLACE STOQ_BLOCK[0] BY 48"00" FOR 10000;
REPLACE STOQ_BLOCK[0] BY "QUEUE1", % QUEUE NAME
 48"00", % SUB QUEUE NAME LEN
 48"0000"; % CLEAR FOR POLL
STOQ_FLAGS:= 0; % CLEAR - NOT USED FOR POLL
STOQ_POLL(STOQ_BLOCK, STOQ_FLAGS);

END.

Using STOQ in COBOL74

For COBOL74 programs, the STOQ parameter block must be a group item. All
subordinate items are passed to STOQ.

All subqueue names used with that STOQ parameter block must be the same length as
the subordinate item declared to store the subqueue name. One simple way to handle
this requirement is by padding all subqueue names with blanks to bring them to the
same length. An alternative would be to declare a different STOQ parameter block for
use with each subqueue name of a given length.

The subqueue name item should be declared with the number of digits specified by the
subqueue name length item. Thus in the following example, STOQ-SUBQ-LENGTH is
declared with a value of 6, and STOQ-SUBQ is declared as PIC X(6).

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 RESULT-STATUS REAL.
77 STOQ-STATUS REAL.
01 STOQ-BLOCK.
 03 STOQ-QUEUE PIC X(6).
 03 STOQ-SUBQ-LENGTH PIC 9(2) COMP VALUE 6.
 03 STOQ-SUBQ PIC X(6).
 03 STOQ-DATA-LENGTH PIC 9(4) COMP.
 03 STOQ-DATA PIC X(9999).

PROCEDURE DIVISION.
BEGIN-PARA.

Using Core-to-Core (CRCR) and Storage Queue (STOQ)

20–12 8600 0494–506

 MOVE "QUEUE1" TO STOQ-QUEUE.
 MOVE "SUBQ01" TO STOQ-SUBQ.
 MOVE "HELLO THERE" TO STOQ-DATA.
 MOVE 11 TO STOQ-DATA-LENGTH.
 CHANGE ATTRIBUTE LIBACCESS OF "EVASUPPORT"
 TO BYFUNCTION.

 CALL "STOQ_SEND OF EVASUPPORT"
 USING STOQ-BLOCK, STOQ-STATUS
 GIVING RESULT-STATUS.
 CALL "STOQ_RECV OF EVASUPPORT"
 USING STOQ-BLOCK, STOQ-STATUS
 GIVING RESULT-STATUS.
 CALL "STOQ_POLL OF EVASUPPORT"
 USING STOQ-BLOCK, STOQ-STATUS
 GIVING RESULT-STATUS.
 STOP RUN.

Using STOQ Through COBOL85 Statements

COBOL85 supports STOQ communications through various language extensions. It is
not necessary for a COBOL85 program to import procedures from the EVASUPPORT
library.

STOQ parameter blocks are declared in COBOL85 in the same way as in COBOL74. The
STOQ parameter block must be a group item. All subordinate items are passed as part
of the STOQ parameter block.

All subqueue names used with that STOQ parameter block must be the same length as
the subordinate item declared to store the subqueue name. One simple way to handle
this requirement is by padding all subqueue names with blanks to bring them to the
same length. For example, all subqueue names used with the following STOQ
parameter block should be padded with blanks to bring them to 10 characters in length:

01 STOQ-BLOCK.
 03 STOQ-QUEUE PIC X(6).
 03 STOQ-SUBQ-LENGTH PIC 9(2) COMP VALUE 10.
 03 STOQ-SUBQ PIC X(10).
 03 STOQ-DATA-LENGTH PIC 9(4) COMP.
 03 STOQ-DATA PIC X(9999).

The subqueue name item should be declared with the number of digits specified by the
subqueue name length item. Thus in the preceding example, STOQ-SUBQ-LENGTH is
declared with a value of 10, and STOQ-SUBQ is declared as PIC X(10).

In COBOL85, the SEND statement for a STOQ follows one of the following two formats:

SEND TO <top or bottom> <STOQ parameter block>.

SEND TO <top or bottom> <STOQ parameter block> ON EXCEPTION <statement>.

 Using Core-to-Core (CRCR) and Storage Queue (STOQ)

8600 0494–506 20–13

In COBOL85, the RECEIVE statement for a STOQ follows one of the following two
formats:

RECEIVE FROM <top or bottom> <STOQ parameter block>.

RECEIVE FROM <top or bottom> <STOQ parameter block>
 ON EXCEPTION <statement>.

RECEIVE FROM <top or bottom> <STOQ parameter block>
 NOT ON EXCEPTION <statement>.

In the preceding statements,

• The <top or bottom> clause consists of the keyword TOP or BOTTOM and specifies
the end of the STOQ or subqueue at which the message should be inserted.

• The <STOQ parameter block> clause is the identifier of a STOQ parameter block
declared in the program.

• The ON EXCEPTION clause specifies a statement to be executed if the SEND or
RECEIVE statement cannot be completed immediately. A SEND statement incurs a
delay if the specified STOQ is full. A RECEIVE statement incurs a delay if there are
no messages in the specified STOQ or subqueue.

If there is no ON EXCEPTION clause and a delay occurs, the process waits until the
SEND or RECEIVE statement can be completed.

• The NOT ON EXCEPTION clause specifies an action to be taken if the SEND or
RECEIVE statement finishes successfully.

To poll the message count in a STOQ, the syntax is:

ACCEPT <STOQ parameter block> MESSAGE COUNT.

The following COBOL85 program declares a STOQ parameter block and uses the SEND,
RECEIVE, and ACCEPT statements.

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 STOQ-BLOCK.
 03 STOQ-QUEUE PIC X(6).
 03 STOQ-SUBQ-LENGTH PIC 9(2) COMP.
 03 STOQ-SUBQ PIC X(6).
 03 STOQ-DATA-LENGTH PIC 9(4) COMP.
 03 STOQ-DATA PIC X(9999).

PROCEDURE DIVISION.
BEGIN-PARA.
 MOVE "QUEUE1" TO STOQ-QUEUE.
 MOVE 6 TO STOQ-SUBQ-LENGTH.
 MOVE "SUBQ01" TO STOQ-SUBQ.
 MOVE 11 TO STOQ-DATA-LENGTH.

Using Core-to-Core (CRCR) and Storage Queue (STOQ)

20–14 8600 0494–506

 MOVE "HELLO THERE" TO STOQ-DATA.
 SEND TO TOP STOQ-BLOCK.
 ACCEPT STOQ-BLOCK MESSAGE COUNT.
 DISPLAY STOQ-DATA-LENGTH.
 RECEIVE FROM TOP STOQ-BLOCK ON EXCEPTION GO ERR-HANDLER.
 STOP RUN.

ERR-HANDLER.
 DISPLAY "ERROR OCCURRED".
 STOP RUN.

Waiting On CRCR or STOQ Events
Programs written in ALGOL or COBOL85 can use predeclared variables to detect events
related to CRCR or STOQ communications. These predeclared variables can be used
only in WAIT and WAITANDRESET statements. These predeclared variables are not
available in other languages.

The following are the ALGOL names of these predeclared events and explanations of
when the system causes them. The COBOL85 names for these events are the same
except that hyphens (–) are substituted for the underscores (_).

CRCR_INPUT <program
name>

Caused when the specified program is ready to send CRCR
data to this program.

CRCR_OUTPUT <program
name>

Caused when the specified program is ready to receive
CRCR data from this program.

STOQ_INPUT <STOQ
parameter block>

Caused when a message appears in a specified STOQ.

STOQ_OUTPUT <STOQ
parameter block>

Caused when storage space is available to send a new
message in a specified STOQ.

The following paragraphs present examples of ALGOL and COBOL85 statements that
use these events.

CRCR and STOQ Events in ALGOL

The following ALGOL program fragment demonstrates the use of CRCR and STOQ
events in a WAIT statement:

REPLACE PROGNAME BY "OBJECT/EPSILON";
EVORDER:= 1;
DONE:= FALSE;
WHILE NOT DONE DO
BEGIN
 EVT:= WAITANDRESET (CRCR_INPUT "OBJECT/DELTA",
 CRCR_OUTPUT PROGNAME,
 STOQ_INPUT STOQ_ALPHA,
 STOQ_OUTPUT STOQ_BETA,
 MYSELF.ACCEPTEVENT) [EVORDER];

 Using Core-to-Core (CRCR) and Storage Queue (STOQ)

8600 0494–506 20–15

 CASE EVT OF
 BEGIN
 1: %... Call the CRCR_RECV procedure
 2: %... Call the CRCR_SEND procedure
 3: %... Call the STOQ_RECV procedure
 4: %... Call the STOQ_SEND procedure
 5: DONE:= TRUE;
 END;
 EVORDER:= * + 1;
 IF EVORDER > 4 THEN
 EVORDER:= 1;
END;

In this example, the WAIT statement waits on several different events: CRCR_INPUT,
CRCR_OUTPUT, STOQ_INPUT, STOQ_OUTPUT, and MYSELF.ACCEPTEVENT.

The STOQ_INPUT and STOQ_OUTPUT events in the WAIT statement refer to the STOQ
parameter blocks STOQALPHA and STOQBETA, declared previously in the program. The
statements that initialize STOQALPHA and STOQBETA are omitted from the example.

The EVORDER variable specified in the WAIT statement indicates the first event to be
tested for a HAPPENED state. Because the EVORDER value is changed after each WAIT
statement, the WAIT statement tests a different event first each time it is executed.
This technique prevents starvation problems, as discussed in “Preventing Starvation
Problems” in Section 16, “Using Events and Interlocks.”

CRCR and STOQ Events in COBOL85

The following COBOL85 program fragment demonstrates the use of CRCR and STOQ
events in a WAIT statement. This example performs the same functions as the
preceding ALGOL example.

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
 01 STOQALPHA.
 03 STOQ-QUEUE PIC X(6).
 03 STOQ-SUBQ-LENGTH PIC 9(2) COMP VALUE 6.
 03 STOQ-SUBQ PIC X(6).
 03 STOQ-DATA-LENGTH PIC 9(4) COMP.
 03 STOQ-DATA PIC X(9999).
 01 STOQBETA.
 03 STOQ-QUEUE PIC X(6).
 03 STOQ-SUBQ-LENGTH PIC 9(2) COMP VALUE 6.
 03 STOQ-SUBQ PIC X(6).
 03 STOQ-DATA-LENGTH PIC 9(4) COMP.
 03 STOQ-DATA PIC X(9999).
 77 DONE BINARY PIC 9(11).
 77 PROGNAME PIC X(256).
 77 EVT REAL.

Using Core-to-Core (CRCR) and Storage Queue (STOQ)

20–16 8600 0494–506

 77 EVORDER BINARY PIC 9(11).
 77 DELTA-INPUT PIC X(2000).
 77 PROGNAME-OUTPUT PIC X(2000).

PROCEDURE DIVISION.
WAITLOOP SECTION.
P1.
* The statements to initialize the STOQ blocks STOQALPHA & STOQBETA
* are omitted from this example
MOVE 0 TO DONE.
WAIT UNTIL CRCR-INPUT "OBJECT/DELTA"
 CRCR-OUTPUT PROGNAME
 STOQ-INPUT STOQALPHA
 STOQ-OUTPUT STOQBETA
 ATTRIBUTE ACCEPTEVENT OF MYSELF
 USING EVORDER
 GIVING EVT.

IF EVT = 1
 RECEIVE "OBJECT/DELTA" INTO DELTA-INPUT
ELSE IF EVT = 2 THEN
 SEND PROGNAME FROM PROGNAME-OUTPUT
ELSE IF EVT = 3 THEN
 RECEIVE FROM TOP STOQALPHA
ELSE IF EVT = 4 THEN
 SEND TO TOP STOQBETA
ELSE
 MOVE 1 TO DONE
END-IF.

COMPUTE EVORDER = EVORDER + 1.
IF EVORDER IS > 1
 MOVE 1 TO EVORDER
END-IF.
IF DONE IS = 0 THEN
 GO WAITLOOP.
STOP RUN.

 Using Core-to-Core (CRCR) and Storage Queue (STOQ)

8600 0494–506 20–17

Handling the CRCR or STOQ Result
The EVASUPPORT library procedures used for CRCR or STOQ communications each
return a real value that follows the same format. CRCR and STOQ applications can use
this value to determine whether each requested action succeeded or failed.

The following are the procedures that return a value in this format:

• CRCR_RECV

• CRCR_SEND

• STOQ_POLL

• STOQ_RECV

• STOQ_SEND

This procedure result is divided into the following fields:

Field Value and Meaning

[47:32] This field is reserved for future use.

[15:04] If an invalid parameter was detected, this field indicates which parameter
was in error. A value of 1 indicates the first parameter; a value of 2 indicates
the second parameter, and so on.

This field is used only if field [0:1] stores a 1, meaning that the function was
not successful.

[11:01]

• 0

The failure is nonfatal.

• 1

The failure is fatal. In this case, the system terminates the user program
before the user program reads the procedure result. However, you can
read the procedure result value in program dumps to determine why the
fault occurred.

Type of operation. [10:01]

 • 0

STOQ operation.

• 1

CRCR operation.

Using Core-to-Core (CRCR) and Storage Queue (STOQ)

20–18 8600 0494–506

Field Value and Meaning

This field indicates the specific error that occurred. To interpret the meaning
of this field, the calling program must first interrogate field [11:01] to
determine whether the error was fatal, and field [10:01] to determine
whether the error was related to STOQ or CRCR.

[09:06]

 For nonfatal CRCR errors, the following are the possible values and their
meanings:

• 1

No matching partner was available for the operation.

• 2

Insufficient memory available for CRCR data.

• 3

Maximum number of CRCR users reached.

For nonfatal STOQ errors, the following are the possible values and their
meanings:

• 1

No receive queue entry found for STOQ.

• 2

No memory available for STOQ data.

• 3

No queue slots available for STOQ data.

For fatal CRCR errors, the following are the possible values and their
meanings:

• 1

CRCR tables corrupted.

• 2

Invalid CRCR parameter. Field [15:04] specifies which parameter
incurred the error.

• 3

No usercode.

• 4

The program attempted a global send operation (that is, a CRCR_SEND
operation with the program name parameter left blank). The global form
is valid only for RECEIVE operations.

 For fatal STOQ errors, the following are the possible values and their
meanings:

 • 1

The STOQ tables are corrupted.

• 2

An invalid parameter was passed to a STOQ procedure. Field [15:04]
specifies which parameter incurred the error.

 Using Core-to-Core (CRCR) and Storage Queue (STOQ)

8600 0494–506 20–19

Field Value and Meaning

[03:03] This field is reserved for future use.

[00:01]

• 0

The function was successful.

• 1

The function was not successful.

If bits [11:08] are interrogated as a single field, then the possible values fall into the
following ranges:

1 to 63 Nonfatal STOQ error

64 to 127 Nonfatal CRCR error

128 to 191 Fatal STOQ error

192 to 255 Fatal CRCR error

Using Core-to-Core (CRCR) and Storage Queue (STOQ)

20–20 8600 0494–506

Result Handling in ALGOL

The following is an example of how an ALGOL program could detect errors by using the
result returned by CRCR and STOQ functions.

EBCDIC ARRAY CRCR_PGM_NAME [0:255];
INTEGER CRCR_PGM_NAME_LEN;
EBCDIC ARRAY CRCR_DATA [0:19999];
REAL CRCR_FLAGS, RESULT_STATUS;

LIBRARY EVASUPPORT (LIBACCESS = BYFUNCTION,
 FUNCTIONNAME = "EVASUPPORT.");
 REAL PROCEDURE CRCR_RECV (CRCR_PGM_NAME,
 CRCR_PGM_NAME_LEN,
 CRCR_DATA,
 CRCR_FLAGS);
 EBCDIC ARRAY CRCR_PGM_NAME [*];
 INTEGER CRCR_PGM_NAME_LEN;
 EBCDIC ARRAY CRCR_DATA [0];
 REAL CRCR_FLAGS;
 LIBRARY EVASUPPORT;

REPLACE CRCR_DATA[0] BY "DATA MESSAGE";
REPLACE CRCR_PGM_NAME[0] BY "(USER)PROGRAM/NAME";
CRCR_PGM_NAME_LEN:= 18;
CRCR_FLAGS:= 0; % WAIT FOR HOOKUP

IF BOOLEAN(RESULT_STATUS:=
 CRCR_RECV(CRCR_PGM_NAME, CRCR_PGM_NAME_LEN,
 CRCR_DATA, CRCR_FLAGS))
 THEN
 IF BOOLEAN(RESULT_STATUS.[10:1]) THEN
 DISPLAY("CRCR ERROR")
 ELSE
 DISPLAY("STOQ ERROR");

Because fatal errors cause the program to be terminated, the program does not need to
check whether the error returned is fatal or nonfatal.

Result Handling in COBOL74

The following is an example of how a COBOL74 program could detect errors by using
the result returned by the CRCR and STOQ functions.

WORKING-STORAGE SECTION.
 77 RESULT-STATUS REAL.
 77 CRCR-PGM-NAME-LEN PIC S9(11) BINARY.
 77 CRCR-FLAGS REAL.
 01 CRCR-PGM-NAME PIC X(256) WITH LOWER-BOUNDS.
 01 CRCR-DATA PIC X(20000).
 77 ERRBOOL REAL.

 Using Core-to-Core (CRCR) and Storage Queue (STOQ)

8600 0494–506 20–21

 77 ERRTYPE REAL.
PROCEDURE DIVISION.
BEGIN-PARA.
 CHANGE ATTRIBUTE LIBACCESS OF "EVASUPPORT"
 TO BYFUNCTION.
 CALL "CRCR_RECV OF EVASUPPORT"
 USING CRCR-PGM-NAME, CRCR-PGM-NAME-LEN,
 CRCR-DATA, CRCR-FLAGS
 GIVING RESULT-STATUS.
 MOVE RESULT-STATUS TO ERRBOOL [00:00:01].
 MOVE RESULT-STATUS TO ERRTYPE [10:00:01].
 IF ERRBOOL = 1
 IF ERRTYPE = 1
 GO TO CRCR-ERROR
 ELSE
 GO TO STOQ-ERROR.

In the preceding example, CRCR-ERROR and STOQ-ERROR are names of error-handling
sections located elsewhere in the program.

Because fatal errors cause the program to be terminated, the program does not need to
check whether the error returned is fatal or nonfatal.

Operations Interfaces to CRCR and STOQ
The following MARC commands allow an operator to monitor or intervene in CRCR and
STOQ communications:

• RQ (Remove STOQ Entries)

• WQ (Display STOQ Count)

• WY (Display Process Status)

Note: The RQ, WQ, and WY commands described here can be used only in MARC.
Unlike system commands, they cannot be entered at an ODT or submitted through the
DCKEYIN function.

User programs can also invoke these commands by calling procedures in the
EVASUPPORT library. No special privileges are needed in order to call these procedures.

The following pages explain how to use these commands, either through MARC or
through library calls.

Clearing a STOQ

You can clear the messages from STOQs by using the RQ command or the STOQ_RQ
library procedure.

Using Core-to-Core (CRCR) and Storage Queue (STOQ)

20–22 8600 0494–506

Using the RQ (Remove STOQ Entries) Command in MARC

The RQ command has the following forms:

Form Function

RQ <queue name> Removes all messages from the STOQ with the specified queue
name.

RQ = Removes all messages from all STOQs currently in memory.

The following are an example RQ command and the response to that command:

RQ MSGQA

 MSGQA REMOVED

Using the STOQ_RQ Library Procedure

The following are the ALGOL declarations for the STOQ_RQ library procedure:

LIBRARY EVASUPPORT (LIBACCESS = BYFUNCTION,
 FUNCTIONNAME = "EVASUPPORT.");

PROCEDURE STOQ_RQ(DATA_ARRAY);
 EBCDIC ARRAY DATA_ARRAY[0];
 LIBRARY EVASUPPORT;

The parameter DATA_ARRAY serves the following two purposes:

• The user program initializes this array with the STOQ name or an equal sign (=). The
STOQ name must be six characters long, padded with blanks if necessary. Similarly,
the equal sign must be left-justified and padded with five blanks.

• The system returns the response to the STOQ_RQ action in this same array.

The response returned in DATA_ARRAY consists of one or more entries that have the
following format:

Length Content

6 bytes The STOQ name

3 bytes The number of messages that were in the queue. This is a six-digit number
stored in packed decimal form.

3 bytes The number of user programs that are waiting on this STOQ. This is a six-
digit number stored in packed decimal form.

The final entry is followed by a null character (48"00").

 Using Core-to-Core (CRCR) and Storage Queue (STOQ)

8600 0494–506 20–23

Polling a STOQ

You can display the number of messages in STOQs by using the WQ command or the
STOQ_WQ library procedure.

Using the WQ (Display STOQ Count) Command in MARC

The WQ command has the following forms:

Form Function

WQ <queue name> Displays the message count for the STOQ with the specified
queue name.

WQ = Displays the message counts for all STOQs currently in memory.

The following is an example WQ command:

WQ MSGQA

The following response indicates that there are seven messages waiting in MSGQA:

MSGQA 7

The following response indicates that there no messages waiting in MSGQA, but a
program has issued a receive request for that STOQ and is waiting for a message to
arrive.

MSGQA 0 (WTG)

Using Core-to-Core (CRCR) and Storage Queue (STOQ)

20–24 8600 0494–506

Using the STOQ_WQ Library Procedure

The following are the ALGOL declarations for the STOQ_WQ library procedure:

LIBRARY EVASUPPORT (LIBACCESS = BYFUNCTION,
 FUNCTIONNAME = "EVASUPPORT.");

PROCEDURE STOQ�WQ(WQDATA);
 EBCDIC ARRAY WQDATA[0];
 LIBRARY EVASUPPORT;

The parameter WQDATA serves the following two purposes:

• The user program initializes this array with the STOQ name or an equal sign (=).

• The system returns the response to the STOQ_WQ action in this same array.

The parameter WQDATA serves two purposes. The user program should initialize this
array with a six-byte queue name or an equal sign (=). The system also returns the
response to the STOQ_WQ action in this array. The response consists of one or more
entries that have the following format:

Length Content

6 bytes The STOQ name

3 bytes The number of messages that were in the queue. This is a six-digit number
stored in packed decimal form.

3 bytes The number of user programs that are waiting on this STOQ. This is a six-
digit number stored in packed decimal form.

1 byte For the process associated with the following mix number, specifies the
STOQ operation the process is waiting on. A value of 0 indicates a send
operation, and a value of 1 indicates a receive operation.

5 bytes The mix number of a process waiting on this STOQ.

The last two fields are repeated for each process that is waiting on this STOQ. Then the
overall format is repeated for the next STOQ, if any. The final entry is followed by a null
character (48"00").

 Using Core-to-Core (CRCR) and Storage Queue (STOQ)

8600 0494–506 20–25

Displaying Status of CRCR or STOQ Operations

You can display the number of messages in STOQs by using the WY command or the
STOQ_WY library procedure.

Using the WY (Display Process Status) Command in MARC

To display the CRCR or STOQ communications status of a particular process, enter a
command of the following form in MARC:

WY <mix number>

The WY command displays an extra line called the IPC State for any process that meets
one of the following criteria:

• The process is using a WAIT statement to wait on one of the events CRCR_INPUT,
CRCR_OUTPUT, STOQ_INPUT, or STOQ_OUTPUT.

• The process attempted a send or receive operation using CRCR or STOQ, and is
waiting for the operation to complete.

The following is an example of the WY command output for a process waiting on a
receive operation or the STOQ_INPUT event relative to the STOQ named QUEUE1:

Status of Task 9069\9109 AT 13:56:45
Priority: 50
Origination: MP021/OCJFM_1/CANDE/2/CANDE/1 (LSN 1018)
MCS: SYSTEM/CANDE
Usercode: DELTA1
Stack State: Waiting on an event
Program name: (CPB)OBJECT/UTP/STOQ/RECV/TOPQ/WAIT ON EVAMCP
IPC State: WTG STOQ RECV QUEUE1

If the process is using a WAIT statement to wait on multiple events, at least one of
which is a CRCR or STOQ event, then the IPC Status line displays WTG COMPLEX WAIT
and is followed by lines listing the individual CRCR or STOQ events. The following is an
example of the IPC portion of this display:

IPC State: -WTG COMPLEX WAIT-
WTG STOQ RECV QUEONE
WTG CRCR RECV (DELTA1)OBJECT/CWT/SEND/ONE
WTG CRCR SEND (DELTA1)OBJECT/CWT/RECV/TWO

Using Core-to-Core (CRCR) and Storage Queue (STOQ)

20–26 8600 0494–506

If you enter the WY command without a mix number, the output displays abbreviated
information about all the user processes on the system. CRCR and STOQ status
information is displayed for those processes waiting on CRCR or STOQ events. In the
following output example, processes 9113 and 8996 are waiting on CRCR and STOQ
events:

Response returned at 20:10:42

 JOB# MIX# Pr (UC)Name/ Status
 ==== ==== == ===
 7179/6903 99 (OPCON)*SYSTEM/DELTA/REFIT
 8699/8715 80 *CANDE/STACK02
 6954/6954 80 *SYSTEM/CANDE
 9110/9113 50 (DELTA1)(CPB)OBJECT/CWT/WAIT ON EVAMCP
 WTG COMPLEX WAIT
 WTG STOQ RECV QUEONE
 WTG CRCR RECV (EVAENG)OBJECT/CWT/SEND/ONE
 6955/6981 80 *SYSTEM/COMS
 6955/6978 80 COMS/INPUT
 6955/6979 80 COMS/TANK
 8962/8996 50 (DELTA1)(CPB)OBJECT/UTP/CRCR/RECV/WAIT ON EVAMCP
 WTG CRCR RECV (EVAENG)OBJECT/UTP/CRCR/SEND/WAIT

The MARC WY command should not be confused with the Y (Status Interrogate) system
command. The differences are as follows:

• At an ODT, the commands Y, WY, and WHY each invoke the Y (Status Interrogate)
system command. This command does not give any specific information about the
use of CRCR or STOQ by a process.

• In MARC, the commands Y, WY, and WHY each invoke the MARC WY command.
This command displays IPC Status information if the process is waiting on CRCR or
STOQ communications.

Using the EVA_WY Library Procedure

The following are the ALGOL declarations for the EVA_WY library procedure:

LIBRARY EVASUPPORT (LIBACCESS = BYFUNCTION,
 FUNCTIONNAME = "EVASUPPORT.");

PROCEDURE EVA�WY(MIX�NUM, RESULT�ARRAY);
 VALUE MIX�NUM;
 INTEGER MIX�NUM;
 ARRAY RESULT�ARRAY[0];
 LIBRARY EVASUPPORT;

 Using Core-to-Core (CRCR) and Storage Queue (STOQ)

8600 0494–506 20–27

The following are explanations of the parameters:

MIX_NUM

The user program uses this parameter to specify the process that is being interrogated.

RESULT_ARRAY

The system uses this parameter to return information to the user about the specified
process or processes. The following format is repeated for each process that is reported
on:

Word Field Value and Meaning

0 47:02 Type of action

• 1

Core-to-core

• 2

Storage queue

• 3

Complex wait. This value indicates that the process is waiting
on one or more of the following events: CRCR_INPUT,
CRCR_OUTPUT, STOQ_INPUT, or STOQ_OUTPUT.

45:01 Send or receive indication

 • 0

Send for CRCR or STOQ

• 1

Receive for CRCR or STOQ

 15:16 Mix number of the process

1 Length in bytes of program name for CRCR or queue Name for
STOQ. For complex wait entries, this word is unused.

2 through
N

 Program name for CRCR or queue name for STOQ. For complex
wait entries, this word is unused.

N is the number of the last word in this entry. The value of N
depends on the program name length specified in Word 1.

If the program name does not end at a word boundary, the
remainder of word N is unused. The next entry, if any, starts at
word N + 1.

Using Core-to-Core (CRCR) and Storage Queue (STOQ)

20–28 8600 0494–506

8600 0494–506 21–1

Section 21
Using ONC+ Remote Procedure Call
(RPC)

Remote Procedure Call (RPC) enables processes to execute procedures on remote hosts
over a network. ONC+ RPC is one of a family of distributed services known as the Open
Network Computing Plus (ONC+) architecture. ONC+ has been widely accepted as a
standard for distributed computing.

ONC+ RPC applications are divided into a server program, which provides procedures,
and a client program, which invokes procedures in the server program. ONC+ RPC
server programs serve a purpose similar to server library programs, in that both types of
programs provide procedures for use by other programs. However, server libraries and
their clients must reside on the same host, whereas ONC+ RPC applications can be
distributed across multiple hosts in a multivendor environment.

ONC+ RPC for ClearPath MCP programs can operate as a client, as a server, or as both a
client and a server.

ONC+ RPC isolates a program completely from the network transport, meaning that no
changes to the application are needed if new transports are added to a system.
Currently, ONC+ RPC for ClearPath MCP supports the following network transports
provided by Transmission Control Protocol/Internet Protocol (TCP/IP), release level 32.0
or later:

• Transmission Control Protocol (TCP)

• User Datagram Protocol (UDP)

You can use the NETPATH task attribute to specify which of these network transports is
to be used for a particular application. The possible values of this attribute are "TCP" and
"UDP".

Using ONC+ Remote Procedure Call (RPC)

21–2 8600 0494–506

ONC+ RPC applications on A Series systems can be developed in the C and ALGOL
programming languages. You can develop C language ONC+ RPC applications in either
of the following ways:

• By using the RPCGEN stub compiler. First, you use the RPC language to describe
the interfaces between the client and server. You then use the RPCGEN stub
compiler to process the RPC code. RPCGEN creates several output files, including
user-modifiable client and server skeleton files. These files contain calls on portal
routines, which provide the application programming interface for ONC+ RPC. You
can then modify these files and write the remainder of the application in C.

• By using direct calls on portal routines. You can bypass the stub compiler by coding
calls on the portal routines yourself. You write these calls in C, rather than in RPC
language.

You can develop ALGOL language ONC+ RPC applications by making calls on
ONCRPCSUPPORT library procedures. The file SYMBOL/ONC/RPC/INTERFACE contains
code to make development easier. You can use the $INCLUDE compiler option to
include the contents of this file in your program.

For detailed information about how to implement ONC+ RPC applications, refer to the
ONC+ Remote Procedure Call (RPC) for MCP/AS Installation and Programming Guide.

8600 0494–506 A–1

Appendix A
Related Product Information

The following documents provide information that is directly related to the primary
subject of this publication.

EVA Application Programs Transition Guide (3957 6145)

This guide describes those areas of the V Series application programs that must be
modified or filtered to obtain equivalent source code. This guide is intended for V Series
system programmers at sites where transition to an enterprise server system is
anticipated.

MCP/AS ALGOL and MCP Interfaces to POSIX Features Programming
Reference Manual (7011 8351)

This manual describes how to access POSIX features in programs that are not written in
C language. Two basic interface methods are described: ALGOL include file functions
and client library procedures that import objects from the MCPSUPPORT library. The
ALGOL include file defines a subset of POSIX functions that can be used only in ALGOL
programs. Client library procedures can be used by any programming language that
supports the use of libraries. This manual is written for systems programmers.

MCP/AS Binder Programming Reference Manual (8600 0304)

This manual describes the functions and applications of the Binder, an efficiency tool that
reduces the need to recompile an entire program when only a portion of the program has
been modified. This manual is written for programmers who are familiar with
programming language concepts and terms.

MCP/AS C Programming Reference Manual, Volume 1: Basic
Implementation (8600 2268)

This manual describes the C programming language. It includes descriptions of syntax,
status messages, the preprocessor, compiling system, binding system, and run-time
library. Extensions such as compiler control options and the library facility are also
documented. This manual is written for systems and applications programmers.

MCP/AS C Programming Reference Manual, Volume 2: Headers and
Functions (8600 2278)

This manual describes the C headers in detail, and the functions, macros, and types
defined in those headers. This manual is written for systems and applications
programmers.

Related Product Information

A–2 8600 0494–506

MCP/AS CANDE Operations Reference Manual (8600 1500)

This manual describes how CANDE operates to allow generalized file preparation and
updating in an interactive, terminal-oriented environment. This manual is written for a
wide range of computer users who work with text and program files.

MCP/AS FORTRAN 77 Programming Reference Manual (3957 6053)

This manual describes the implementation of FORTRAN77 (the designation for the
American National Standard Programming Language FORTRAN, ANSI X3.9-1978.) It
describes the various options, control statements, and extensions used with this
compiler. This manual is written for programmers.

MCP/AS Menu-Assisted Resource Control (MARC) Operations Guide
(8600 0403)

This guide provides an overview of MARC, a description of the menu structure, and
information on how to use help text, commands, security features, and Communications
Management System (COMS) windows from MARC. The guide also explains how to run
programs from MARC, how to customize MARC to meet user needs, and how to use
MARC in a multinational environment. This guide is written for a wide audience, ranging
from experienced system administrators to end users with no previous knowledge of
MARC.

MCP/AS Pascal Programming Reference Manual, Volume 1: Basic
Implementation (8600 0080)

This manual describes the basic features of the Pascal language. This manual is written
for programmers who are familiar with programming concepts.

MCP/AS POSIX User's Guide (7011 8328)

This guide describes the basic concepts of the POSIX interface, including process control
and file management. It also describes specifically how the POSIX.1 interface is
implemented and used on the enterprise server. This guide is written for programmers
and any user who wants to understand the POSIX interface.

MCP/AS Report Program Generator (RPG) Programming Reference
Manual, Volume 1: Basic Implementation (8600 0544)

This manual describes the basic features of the RPG programming language, including
both RPG I and RPG II dialects. This manual is written for application programmers who
are familiar with programming concepts.

MCP/AS Security Features Operations and Programming Guide
(8600 0528)

This guide describes the security features available to users and provides instructions for
their use. This guide is written for users who are responsible for maintaining the security
of their individual programs and data.

MCP/AS System Administration Guide (8600 0437)

This guide provides the reader with information required to make decisions about
system configuration, peripheral configuration, file management, resource use, and other

 Related Product Information

8600 0494–506 A–3

matters related to system administration. This guide is written for users with some, little,
or no experience who are responsible for making decisions about system administration.

ONC+ Remote Procedure Call (RPC) for MCP/AS Installation and
Programming Guide (8600 2383)

This guide describes the facilities for implementing distributed applications. All utilities,
options, and library functions in this guide reflect ONC+ Release 1.1.

Unisys e-@ction Application Development Solutions ALGOL Programming
Reference Manual, Volume 1: Basic Implementation (8600 0098)

This manual describes the basic features of the Extended ALGOL programming
language. This manual is written for the applications programmer or systems analyst
who is experienced in developing, maintaining, and reading ALGOL programs.

Unisys e-@ction Application Development Solutions COBOL ANSI-74
Programming Reference Manual, Volume 1: Basic Implementation
(8600 0296)

This manual describes the basic features of the standard COBOL ANSI-74 programming
language, which is fully compatible with the American National Standard, X3.23-1974.
This manual is written for programmers who are familiar with programming concepts.

Unisys e-@ction Application Development Solutions COBOL ANSI-85
Programming Reference Manual, Volume 1: Basic Implementation
(8600 1518)

This manual describes the basic features of the COBOL ANSI-85 programming language.
This manual is written for programmers who are familiar with programming concepts.

Unisys e-@ction Application Development Solutions DCALGOL
Programming Reference Manual (8600 0841)

This manual describes the Data Communications ALGOL (DCALGOL) language. This
language is designed to support the implementation of message control systems (MCSs)
and other resource monitoring and controlling programs that require access to special
operating system interfaces. This manual is written for systems programmers.

Unisys e-@ction ClearPath Enterprise Servers Distributed Systems
Services Operations Guide (8600 0122)

This guide describes the capabilities and features of distributed systems services and
how to use them. It is intended for system operators, system administrators, and
general computer users.

Unisys e-@ction ClearPath Enterprise Servers File Attributes Programming
Reference Manual (8600 0064)

This manual contains information about each file attribute and each direct I/O buffer
attribute. The manual is written for programmers and operations personnel who need to
understand the functionality of a given attribute. The I/O Subsystem Programming Guide
is a companion manual.

Related Product Information

A–4 8600 0494–506

Unisys e-@ction ClearPath Enterprise Servers I/O Subsystem Programming
Guide (8600 0056)

This guide contains information about how to program for various types of peripheral
files and how to program for interprocess communication, using port files. This guide is
written for programmers who need to understand how to describe the characteristics of
a file in a program. The File Attributes Programming Reference Manual is a companion
manual.

Unisys e-@ction ClearPath Enterprise Servers MCP System Interfaces
Programming Reference Manual (8600 2029)

This manual describes selected library objects exported from the MCPSUPPORT library,
and describes the ARCHIVESUPPORT, BILLINGSUPPORT, and TAPEMANAGER
libraries. This manual is written for system programmers who want to write programs
that interface with the system software.

Unisys e-@ction ClearPath Enterprise Servers MultiLingual System
Administration, Operations, and Programming Guide (8600 0288)

This guide describes how to use the MLS environment, which encompasses many
products. The MLS environment includes a collection of operating system features,
productivity tools, utilities, and compiler extensions. The guide explains how these
products are used to create application systems tailored to meet the needs of users in a
multilingual or multicultural business environment. It explains, for example, the
procedures for translating system and application output messages, help text, and user
interface screens from one natural language to one or more other languages; for
instance, from English to French and Spanish. This guide is written for international
vendors, branch systems personnel, system managers, programmers, and customers
who wish to create customized application systems.

Unisys e-@ction ClearPath Enterprise Servers Print System and Remote
Print System Administration, Operations, and Programming Guide
(8600 1039)

This guide describes the features of the Print System and provides a complete
description of its command syntax. This guide is written for programmers, operators,
system administrators, and other interactive users of Menu-Assisted Resource Control
(MARC) and CANDE.

Unisys e-@ction ClearPath Enterprise Servers Security Administration
Guide (8600 0973)

This guide describes system-level security features and suggests how to use them. It
provides administrators with the information necessary to set and implement effective
security policy. This guide is written for system administrators, security administrators,
and those responsible for establishing and implementing security policy.

Unisys e-@ction ClearPath Enterprise Servers System Commands
Operations Reference Manual (8600 0395)

This manual gives a complete description of the system commands used to control
system resources and work flow. This manual is written for systems operators and
administrators.

 Related Product Information

8600 0494–506 A–5

Unisys e-@ction ClearPath Enterprise Servers System Log Programming
Reference Manual (8600 1807)

This manual describes the format and contents of all the Major Type and Minor Type
entries of the system log. It also contains information about controlling the log contents
and about writing log analysis programs.

Unisys e-@ction ClearPath Enterprise Servers System Operations Guide
(8600 0387)

This guide describes concepts and procedures required to operate most Unisys systems.
Sections 1 and 2 contain information and procedures that can be done by novice
operators. Section 3 contains operations and procedures that require more advanced
operations experience. This guide is written for operators responsible for operating the
enterprise server, especially operators with little or no experience.

Unisys e-@ction ClearPath Enterprise Servers System Software Utilities
Operations Reference Manual (8600 0460)

This manual provides information on the system utilities BARS, CARDLINE, CDFORMAT,
COMPARE, DCAUDITOR, DCSTATUS, DUMPALL, DUMPANALYZER, FILECOPY,
FILEDATA, HARDCOPY, INTERACTIVEXREF, ISTUTILITY, LOGANALYZER, LOGGER,
PATCH, PCDRIVER, PRINTCOPY, RLTABLEGEN, SORT, XREFANALYZER, and the
V Series conversion utilities. It also provides information on KEYEDIO support, Peripheral
Test Driver (PTD), and mathematical functions. This manual is written for applications
programmers, system support personnel, and operators.

Unisys e-@ction ClearPath Enterprise Servers Task Attributes
Programming Reference Manual (8600 0502)

This manual describes all the available task attributes. It also gives examples of
statements for reading and assigning task attributes in various programming languages.
The Task Management Programming Guide is a companion manual.

Unisys e-@ction ClearPath Enterprise Servers Work Flow Language (WFL)
Programming Reference Manual (8600 1047)

This manual presents the complete syntax and semantics of WFL. WFL is used to
construct jobs that compile or run programs written in other languages and that perform
library maintenance such as copying files. This manual is written for individuals who have
some experience with programming in a block-structured language such as ALGOL and
who know how to create and edit files using CANDE or the Editor.

Unisys e-@ction Transaction Server for ClearPath MCP Programming
Guide (8600 0650)

The guide explains how to write online, interactive, and batch application programs that
run under the Transaction Server. This guide is written for experienced applications
programmers with knowledge of data communication subsystems.

Related Product Information

A–6 8600 0494–506

8600 0494–506 Index–1

Index

A

A (Active Mix Entries) system command, 6-5
and Automatic Display mode, 3-22

A Series Open Systems Interconnection (See
Open Systems Interconnection)

abnormal termination, 1-5
messages describing, 10-2
preventing, 10-11

ABORT option
DELINKLIBRARY function, 18-52
of DELINKLIBRARY statement

protecting from errors, 10-12, 10-14
ABORTED task state value, in WFL, 6-4
ABORTONLY value

JOBSUMMARY task attribute, 10-5
absolute pathnames, 9-8
ACCEPT MESSAGE COUNT statement

in COBOL85, 20-13
ACCEPT statement, 3-34

and AX task attribute in IPC, 14-1
ACCEPTEVENT task attribute, 3-35
access mode

for exported data
in server libraries, 18-13

for imported and exported data
connection libraries, 18-61

for imported data
in client programs, 18-19

ACCESS MODE MISMATCH error message
client and server libraries, 18-25, 18-48

access to ancestral processes
Operations Center environment, 3-20

access to task attributes
from Operations Center, 3-19

ACCESSCODE task attribute, 5-5
and file security, 5-10
and remote process, 12-8

accessing information
from Operations Center, 3-18

accidental entry, 17-4 (See also thunks)
ACCOUNTING (Resource Accounting) system

command, 10-4
accounting, processor usage, 7-4

ACCUMIOTIME task attribute, 9-20
and shared logical files, 19-13

ACCUMPROCTIME task attribute, 7-3, 7-5
activation records, 8-6
ACTIVE

STATUS task attribute value, 6-3, 6-10
WFL task state value, 6-4

active coroutines, 2-3
actor file security, 19-10
ACTOR parameter

of CHANGE procedures
synonym for MYSELF, 18-80

actual parameters, 17-1
ACTUALNAME clause

in import declarations, 18-110
ADD statement, in WFL

entering in CANDE, 3-4
initiates LIBRARY/MAINTENANCE, 4-9
privileged status of, 5-18

addressing environment, 15-1
direct, 17-2
extended, 17-2

ADM (Automatic Display Mode) system
command, 3-22, 6-5

and ODT files, 3-25
sources for submitting, 3-28

A-DS termination message, 10-3
ALGOL, 4-15

accessing task attributes in, 4-17
communication through global

objects, 15-4
compound statements in, 1-8
EPILOG procedures, 10-19
example of connection block TYPE

declaration, 18-143, 18-144
example of EXPORT list, 18-142
example of library and client

programs, 18-157
example of LIBRARY declaration, 18-141
example of SINGLE LIBRARY declaration

of the connection library
type, 18-141

EXCEPTION procedures, 10-20
initiating compilations in, 4-16

Index

Index–2 8600 0494–506

initiating interactive processes in, 4-17
initiating processes in, 4-16
initiating utilities in, 4-16
interprocess communication in, 4-18
ISVALID function, 18-25
library features

connection libraries, 18-32
LINKLIBRARY function, 18-23
parameter passing modes, 18-129
parameter types, 18-114
typed library procedures, 18-112

LOCK function, for interlocks, 16-25
LOCKSTATUS function

for interlocks, 16-27
port files in

example program, 19-4
preventing critical block exits in, 2-11
PROGRAMDUMP statement in, 10-26
READLOCK function, 16-28
restarting processes written in, 4-18
simple blocks in, 1-8
structuring programs written in, 4-15
submitting WFL jobs in, 4-17
support of HC files, 19-6
support of HY files, 19-6
SYMBOL/POSIX/ALGOL/PROPERTIES

file, 5-29
toggling between real and saved

identities, 5-29
UNLOCK function

for interlocks, 16-26
USERDATA function, 5-14

alias (See local alias usercodes)
ALIVE stack state, 6-6
ALLOW statement, in COBOL, 16-17

and general enables, 16-17
ancestors, 2-17
ANYOTHERCLASSOK usercode attribute, 4-6
Anytime

Write property of library attribute, 18-74
ANYTYPE parameter, 18-126
application

distributed
models, 18-139

application architectures
linking libraries, 18-140

application distribution
three-tier model, 18-140
two-tier model, 18-139

APPROVAL library attribute, 18-75
and direct library linkage, 18-76

APPROVAL procedures
and library linkages, 18-76
connection libraries, 18-44

ARCHIVE command, in WFL
and nonprivileged processes, 5-10
and privileged processes, 5-13

ARCHIVE statement, in WFL
privileged status of, 5-18

array parameters
in libraries, 18-127
in tasking, 17-29

arrays
checkpointing with

CHECKPOINTARRAY, 11-25
asynchronous processes, 2-2

and critical block exits, 2-9
using events for synchronization of, 16-2
using interlocks for synchronization

of, 16-24
AT <hostname>

in a WFL job, 12-2
use in CANDE, 12-12
used to prefix system commands, 12-11

attaching an interrupt, 16-16
attributes

job queue, 4-6
attributes

file, 9-2
print, 9-14
task, 1-3

AUTOLINK library attribute, 18-78
and connection libraries, 18-41

automatic display mode, 3-22
and ODT files, 3-25

AUTORECOVERY operating system
option, 11-4

AUTORESTORE task attribute, 6-13, 9-6
AUTORM operating system option, 19-17

used to prevent process suspension, 6-15
AUTOSWITCHTOMARC task attribute, 3-16
availability state

EVENT_STATUS result, 16-7
AVAILABLE file attribute, 6-12
available memory, 8-1
available state, of an event, 16-2

accessing, 16-3
determining ownership, 16-6
testing, 16-6

AX (Accept) system command, 3-34
queuing of multiple commands, 3-34
sources for submitting, 3-29, 3-30

AX task attribute
in IPC, 14-1

 Index

8600 0494–506 Index–3

B

BACKUP option, of OPTION task
attribute, 9-10

BACKUP utility
initiating from ODT, 3-22
initiating from WFL, 4-9

BACKUPBYJOBNR operating system
option, 9-13

BACKUPFAMILY task attribute, 9-15
BACKUPKIND file attribute, 9-10
bad GO TO (See GO TO statement)
BADINITIATE process status, 6-3
BASICSERVICE, 19-2
BDBASE option, 2-20

effect on MYJOB task variable, 2-21
effect on printing, 9-16

BDMSALGOL, 4-15
BDNAME task attribute, 9-15

and PRINTDISPOSITION file attribute, 9-9
BEGIN JOB statement

in WFL
entering from Operations Center, 3-17

BEGIN...END groups, in ALGOL, 1-8
Binder

and COBOL program structure, 4-21
and STACKHISTORY task attribute

value, 10-10
bound-in procedures considered

internal, 1-7
providing tasking capabilities with, 4-31

block structure, 1-8
blocks, 1-8
BLOCKSIZE file attribute

and file sharing, 19-19
BLOCKSTRUCTURE file attribute

and BUFFERSHARING, 19-19
BNA Version 2, support of port files, 19-1
BOJ message, 2-18
BOT message, 2-18
bound-in procedures, 4-31
BR (Breakout) system command, 11-19,

11-20, 11-21
sources for submitting, 3-31

broadcast write statement, 19-2
buffers (See file buffers)
BUFFERSHARING file attribute, 19-19
buzz loop, 16-18
BY CALLING clause

dynamic provision, 18-101

BYFUNCTION
LIBACCESS library attribute

mnemonic value, 18-36, 18-91
BYINITIATOR

LIBACCESS library attribute
mnemonic value, 18-36, 18-91

link to the originating library, 18-91
BYTITLE

LIBACCESS library attribute
mnemonic value, 18-36, 18-92

C

C
and POSIX tasking, 4-31
library features

library program example, 18-167
parameters, 18-115

tasking capabilities of, 4-31
toggling between real and saved

identities, 5-30
C (Completed Mix Entries) system

command, 6-5
and Automatic Display mode, 3-22
and CANDE sessions, 3-5
and MARC sessions, 3-12
sources for submitting, 3-28
termination types displayed, 10-1

CALL statement
in ALGOL, 4-16
in COBOL, 4-22
in COBOL85, ambiguous, 4-24

call-by-name parameters, 17-3
call-by-reference parameters, 17-4
call-by-value parameters, 17-3
call-by-value-result parameters, 17-5
CALLCHECKPOINT procedure, 11-9

CPTYP parameter, 11-9
UTYP parameter, 11-9

CANCEL statement, 18-31
CANCEL WARNING, SHARED LIBRARY

WAS DELINKED message, 18-31
CANDE

and MCSNAME task attribute, 3-8
control commands, 3-2
initiating and controlling processes in, 3-1
initiating compilations in, 3-3
initiating dependent processes in, 3-1
initiating interactive processes in, 3-8
initiating utilities in, 3-3
meaning of EXCEPTIONTASK, 3-7

Index

Index–4 8600 0494–506

monitoring and controlling processes
in, 3-4

parameter passing from, 3-7
programming considerations for, 3-7
saving commands for later use in, 3-7
schedule session, 3-7
submitting WFL jobs in, 3-4
task attribute access, 3-5

CANDEGETMSG usercode attribute, 3-5
CATALOG statement, in WFL

privileged status of, 5-18
causes, of abnormal termination

external, 10-34
internal, 10-34

causing an event
and resetting the event, 16-9
directly, 16-8
implicitly, 16-9
partially, 16-9

CD-ROM
retention of backup files on, 9-13

CENTRALSUPPORT task attribute, 9-20
CHANGE granulated privilege, 5-15
CHANGE library attribute, 18-79

and client processes, 18-29
and server libraries, 18-29
connection libraries, 18-46

CHANGE procedures, 18-79
and library linkages, 18-79

CHANGE statement, in WFL
and WFL job restarts, 11-5
privileged status of, 5-18

CHANGESEC granulated privilege, 5-15
CHARGE task attribute, 5-5

and remote process, 12-8
checkpoint

invoking a, 11-8
CHECKPOINT ABORTED message, 11-15
checkpoint facility, 11-6

CALLCHECKPOINT procedure, 11-9
compared with CHECKPOINTARRAY

procedure, 11-25
device option, 11-8
displaying status of, 11-19
disposition option, 11-9
file recovery and, 11-7
information stored by, 11-7
invoking from a program, 11-7
operator initiation, 11-19
output files, 11-12
restarting a task checkpointed by, 11-21
restrictions, 11-13
result value, 11-14

checkpoint function
CPTYP parameter, 11-9
UTYP parameter, 11-9

CHECKPOINT statement, 11-8
CHECKPOINTARRAY procedure, 11-25
circular connections, 18-146
circular provision, 18-102
CLASS

task attribute, 4-7
usercode attribute, 4-7

CLASSLIST usercode attribute, 4-6
client libraries, 1-2

client programs
import declarations, 18-18

definition, 18-1
client library process, 18-1
client process, 1-2
client programs, 18-18

delinkage, 18-30
explicit linkage, 18-23
import declarations, 18-18
importing data, 18-19

access mode, 18-19
initiating libraries, 18-26

explicitly, 18-28
implicitly, 18-26

library declarations, 18-20
linkage, 18-21

implicit, 18-22
linking to connection libraries, 18-67
matching objects, 18-24
monitoring linkage, 18-29

CLUSAGE library attribute, 18-84
COBOL, 4-21

accessing task attributes in, 4-25
ANSI run units

and SHAREDBYRUNUNIT option, 18-6
block structure, 1-8
DETACH statement, 4-26
entering procedures in, 4-23
example of EXPORT list, 18-143
example of LIBRARY declaration, 18-141
external procedure structure, 4-22
initiating compilations in, 4-24
initiating interactive processes in, 4-25
initiating processes in, 4-22
initiating utilities in, 4-24
interprocess communication in, 4-26
invoking programs written in, 4-26
preventing critical block exits in, 2-11
structuring programs written in, 4-21
submitting WFL jobs in, 4-25

 Index

8600 0494–506 Index–5

terminating processes from, 4-26
using coroutines in, 4-23

COBOL74 (See also COBOL)
initiating program dumps in, 10-26
library features

examples, 18-173
parameter passing mode, 18-129
parameter types, 18-117
sharing properties of, 18-7

port files
example program, 19-3

special parameter handling, 17-9
tasking parameters

arrays and bound procedures, 17-35
COBOL85 (See also COBOL)

ACCEPT message count statement, 20-13
and FILELOCKTLIMIT system

command, 19-21
block structure, 1-8
CALL statements, ambiguous, 4-24
initiating program dumps in, 10-26
libraries

local variables, 18-8
library features

examples, 18-176
parameter types, 18-118

LOCKRECORD statement, 19-21
MUSTLOCK compiler option, 19-21
record locking, 19-21
UNLOCKRECORD statement, 19-21

code
reusing, 1-11

binding, 1-11
compile-time options, 1-11
libraries, 1-11

code files (See object code files)
code segment dictionaries, 8-2, 8-3

and object code file privileges, 8-4
Command and Edit (CANDE), 1-4
communications files, 19-1
compilations

determining success of
interactively, 10-2
programmatically, 10-8

initiating
from ALGOL, 4-16
from CANDE, 3-3
from COBOL, 4-24
from MARC, 3-10
from ODT, 3-22
from Operations Center, 3-18
from WFL, 4-9

COMPILE statement
in CANDE, 3-3
in WFL

entering at ODT, 3-21
entering from Operations Center, 3-17

COMPILE STATUS (Information for Compiler
Task) command, 3-29

COMPILEDOK WFL task state value, 6-4
COMPILER option, of MP system

command, 5-6
compiler security status, 5-20
COMPLETED task state value, in WFL, 6-4
COMPLETEDOK task state value, in WFL, 6-4
complex expressions

and call-by-name parameters, 17-4
and call-by-reference parameters, 17-5

complex wait, 16-11
composite library, 18-69
compound statements, 1-8
Conditional Procure statements, 16-22
CONDITIONAL value

JOBSUMMARY task attribute, 10-5
CONN_INDEX parameter

of CHANGE procedure, 18-81
connection

referenced by THIS function, 18-63
connection blocks, 18-33

PROLOG and EPILOG procedures, 18-52
versus procedure blocks, 1-9

connection libraries, 1-2, 18-1
and dynamic provision, 18-102
and OWN objects, 18-67
assigning library attributes, 18-35
attributes, 18-73
connection objects, 18-57
declaring, 18-33
definition, 18-32
delinking, 18-51
DELINKLIBRARY function, 18-51
EPILOG procedures, 18-53
establishing connections, 18-34
exporting data

access mode, 18-61
general features, 18-32
global objects, 18-55
importing and exporting data, 18-60
initiating

explicitly, 18-50
implicitly, 18-49

ISVALID function, 18-49
linking

client programs to, 18-67
directly, 18-41

Index

Index–6 8600 0494–506

implicitly, 18-41
server libraries to, 18-100
to server libraries, 18-69

linking together, 18-34
LINKLIBRARY function, 18-41, 18-72
local objects, 18-59
matching procedures, 18-48
one-way, 18-147
PROLOG and EPILOG procedures, 18-52
PROLOG procedures, 18-52
READYCL function, 18-39
requesting and responding library, 18-35
requesting library, 18-34
responding library, 18-34
scaling, 18-146
SHAREDBYRUNUNIT, 18-44
SHARING option, 18-43
STATE attribute, 18-45
THIS function, 18-63
THISCL function, 18-64
two-way, 18-146
UNREADYCL function, 18-51

connection objects
connection libraries, 18-57

connections
definition, 18-33
establishing, 18-34
linking, 18-37

CONNECTIONS library attribute, 18-85
consecutive programs

in COBOL85, 4-22
continuable coroutines, 2-3
CONTINUE statement, 2-4

implicit
and WFL jobs, 2-4

implicit
and PARTNER task attribute, 2-6

in COBOL, 4-23
in remote task, 12-4

control (See flow of control)
control libraries, 18-5
CONTROL option, of MP system

command, 5-6
control points, 1-5
control programs

immunity from scheduling, 7-2
priority status, 7-2

CONTROLCARD function, in DCALGOL, 4-18
and WFL execution modes, 4-3

CONTROLCARD independent runner, 4-3
CONVENTION task attribute, 9-20

COPY statement, in WFL
and WFL job restarts, 11-5
effect on object code file privileges, 5-8
entering at ODT, 3-21
entering from Operations Center, 3-17
entering in CANDE, 3-4
initiates LIBRARY/MAINTENANCE, 4-9
privileged status of, 5-18
SERIALNO option, 6-13

copy_to_ptr_t procedure, in C, 18-172
CORE task attribute, 8-5
core-to-core (CRCR), 20-1

displaying status, 20-25
in ALGOL, 20-4
in COBOL74, 20-5
in COBOL85, 20-5
interlocks, 20-2
library calls, 20-2
MARC commands for, 20-21
message data parameter, 20-3
No Wait flag, 20-3
procedure result, 20-3, 20-17

in ALGOL, 20-20
in COBOL74, 20-20

program name length parameter, 20-3
program name parameter, 20-2
waiting on events, 20-14

in ALGOL, 20-14
in COBOL85, 20-15

coroutines, 2-3
active, 2-3
and block structure, 2-5
and critical block exits, 2-9
and remote tasking, 12-4
benefits of, 2-3
continuable, 2-3
creating, 2-3
in ALGOL, 4-16
in COBOL, 4-23

cousins, 2-17
CPTYP parameter

CALLCHECKPOINT procedure, 11-9
CRCR (See core-to-core)
CRCR_INPUT predeclared event, 20-14
CRCR_OUTPUT predeclared event, 20-14
CRCR_RECV procedure, 20-2
CRCR_SEND procedure, 20-2
CREATEFILE granulated privilege, 5-15
CREATIONDATE file attribute

and MCS privileges, 5-24
CREATIONTIME file attribute

and MCS privileges, 5-24

 Index

8600 0494–506 Index–7

critical block, 2-9
in ALGOL, 2-11
in COBOL, 2-11
in WFL, 2-12

CRITICAL BLOCK EXIT error message, 2-9
critical objects, 2-7

and critical block definition, 2-9
CU (Core Usage) system command, 3-29
CURRENT CIRCULAR LIBRARY REFERENCE

STRUCTURE error message, 18-109
current directory, 9-8
CURRENTDIRECTORY task attribute, 9-8
CURRENTRECORDLENGTH file attribute

and shared logical files, 19-14

D

DA (Dump Analyzer) system command, 3-22
data

exporting
from server libraries, 18-11
matching data types, 18-130

importing
to client programs, 18-19

data communications (See also ODT files;
remote files)

message tanking, 9-16
suppressing messages, 9-18

data specifications, in WFL, 4-11
and CANDE WFL command, 3-4
and MARC WFL command, 3-10
and remote task, 12-4
stored in job file, 2-19

DBS (Database Stack Entries)
compared to other mix commands, 6-5

DBS (Database Stack Entries) system
command, 3-28

DCALGOL, 4-15
CONTROLCARD function, 4-18
DCKEYIN function, 4-18

and security administrator status, 5-19
DCWRITE function, 9-17

and MCS privileges, 5-21
EPILOG procedures, 10-19
EXCEPTION procedures, 10-20
GETSTATUS function, 4-18

and nonprivileged status, 5-10
and ODT status, 5-19

MCS capabilities, 5-20

SETSTATUS function, 4-18
and security administrator status, 5-19

USERDATA function, 5-14
DCALGOL queues

and events, 16-14
primary queue, 5-21

DCKEYIN function, in DCALGOL
and security administrator status, 5-19

DCWRITE function, in DCALGOL
and tasking status, 5-25
assigning a station to a file, 9-17
initializing primary queue, 5-21

D-DS termination message, 10-3
debugging libraries, 18-156
declarations

effect on security of shared files, 19-10
import server libraries, 18-18
library, 18-20
scope, 15-1

declared external procedures, 1-7
declared remote-file programs, in Transaction

Server, 9-17
declarer file security, 19-10
default

property of library attributes, 18-74
defaults, established by job queue

attributes, 4-5
delinkage scaling, 18-146
DELINKEVENT library attribute, 18-86
delinking connection libraries, 18-51
DELINKLIBRARY function

connection libraries, 18-51
server libraries, 18-30

DELINKLIBRARY statement
error protection, 10-12, 10-14

delta character, 3-25
delta character, and ODT files, 3-25
dependent processes, 2-7

and critical block exit, 2-9
as tasks, 2-18
communication with parent, 2-8
flow of control, 2-8

DEPENDENTSPECS file attribute, 19-18
DEPTASKACCOUNTING task attribute, 10-4
descendants, 2-17
detaching an interrupt, 16-16
DIALOGPRIORITY file attribute, 19-2
direct addressing environment, 17-2
direct I/O

required for HC files, 19-6
direct linkage

and APPROVAL library attribute, 18-76

Index

Index–8 8600 0494–506

and FUNCTIONNAME library
attribute, 18-88

and INTERFACENAME library
attribute, 18-89

and LIBACCESS library attribute, 18-92
and TITLE library attribute, 18-98
connection libraries, 18-34, 18-41, 18-72
server libraries, 18-24

direct provision in libraries, 18-99
direct window programs, in Transaction

Server, 9-17
DIRECT, value of PRINTDISPOSITION, 9-9,

9-10
DIRECTDLP, value of

PRINTDISPOSITION, 9-9
directory (See disk directory; library

directories)
DIRECTPS, value of

PRINTDISPOSITION, 9-10
DIRECTRECORDLOCKER procedure, of

MCPSUPPORT library, 19-21
DIRECTRECORDLOCKTEST procedure, of

MCPSUPPORT library, 19-21
disabling an interrupt

general disable, 16-17
specific disable, 16-16

DISALLOW statement, in COBOL, 16-17
and general disables, 16-17

discontinued processes
and interlocks, 16-28

discriminants, in Pascal arrays, 17-32
disk directory, 19-17

entering a file in, 19-17
disk families, 9-4
disk files, 9-4

automatically restoring missing files, 9-6
disk directory, 19-17
limiting usage, 9-7
matching physical files, 19-18
separate logical files, 19-17
shared logical files, 19-8
specifying current directory, 9-8
specifying family substitution for, 9-4

disk files, in WFL, 4-12
disk resource control (DRC) system, 9-7

and WFL job restarts
and checkpoint failures, 11-18
effects of forcing job initiation, 11-5

DISPLAY messages
creating, 3-32
suppressing, 9-19

DISPLAYONLYTOMCS
control option, in CANDE, 3-6, 9-19
session option, in CANDE, 3-6, 9-19
task attribute, 3-32, 9-19

setting CANDE defaults, 3-6
DL (Disk Location) system command

specifying backup family, 9-11
DMALGOL, 4-15

EXCEPTION procedures, 10-20
DO command, in CANDE, 3-7
DONTCARE sharing option

connection libraries, 18-44
server libraries, 18-7

DONTPRINT, value of
PRINTDISPOSITION, 9-10

DONTWAIT option
connection libraries, 18-38
DELINKLIBRARY function, 18-52
LINKLIBRARY function

and direct linkage, 18-24, 18-42
client/server linkages, 18-23

DONTWAITFORFILE option, of LINKLIBRARY
function

and direct linkage, 18-24, 18-42
client/server linkages, 18-23
connection libraries, 18-38

DQ (Default Queue) system command, 4-7
DRC system (See disk resource control

system)
DS (Discontinue) system command, 6-9

and interlocks, 16-26
and ISOLATED procedures, 10-18, 18-132
protecting a process from

ISOLATED procedures, 10-18
MP command, 10-18
TRY statement, 10-13

sources for submitting, 3-27, 3-29, 3-30,
3-31

DS messages, 10-2
DSABLE option, of LOCK statement, 16-26

and ISOLATED procedures, 18-133
DSSSUPPORT library

and TASKING/MESSAGE/HANDLER, 12-13
and unsupported task attributes, 12-14
as MYJOB for remote tasks, 12-5

DUMP (Dump Memory) system
command, 6-11, 10-27

dump analysis for a running process, 10-32
sources for submitting, 3-29

DUMPANANLYZER utility
initiating from an ODT, 3-22

dumps (See program dumps)
DUP LIBRARY message, 19-18

 Index

8600 0494–506 Index–9

DUPLICATED file attribute, 19-17
DURATION compiler option, in C, 18-5
dynamic provision

connection libraries, 18-102
in libraries, 18-101

dynamic remote-file programs, in Transaction
Server, 9-17

E

E-DS termination message, 10-3
elapsed time

displaying, 7-5
interrogating programmatically, 7-5

ELAPSEDLIMIT task attribute
and program dumps, 10-34
inheritance in process family, 2-24
job queuing, 4-6

ELAPSEDTIME task attribute, 7-5
elements, in Pascal arrays, 17-32
enabling an interrupt

general enable, 16-17
specific enable, 16-16

entering procedures, 1-6
entering system commands

from Operations Center, 3-18
EOJ termination message, 10-2
EOJ, value of PRINTDISPOSITION, 9-10
EOT termination message, 10-2
EOT, value of PRINTDISPOSITION, 9-10
EPILOG procedures, 10-19, 16-21

and A-DS termination type, 10-3
in connection blocks, 18-53
interaction with TRY statements, 10-24

error handling
for library procedures, 18-138

errors
abnormal termination

preventing, 10-11
EVA_WY procedure

in EVASUPPORT library, 20-26
EVASUPPORT library

CRCR_RECV procedure, 20-2
CRCR_SEND procedure, 20-2
EVA_WY procedure, 20-26
STOQ_RQ procedure, 20-22
STOQ_WQ procedure, 20-24

event usage
EVENT_STATUS result, 16-7

EVENT_STATUS
MCP library procedure, 18-56
procedure, 16-7
result

availability state, 16-7
event usage, 16-7
happened state, 16-7
stack number, 16-7

events, 16-2
and access modes, 18-63
and discontinued processes, 16-21
available state of, 16-2

accessing, 16-3
determining ownership, 16-6
testing, 16-6

causing
and resetting, 16-9
directly, 16-8
implicitly, 16-9
partially, 16-9

declaring, 16-2
efficiency considerations, 16-18
happened state of, 16-2

accessing, 16-8
duration, 16-13
testing, 16-12

implicitly declared, 16-13
interrupts, 16-14

attaching or detaching, 16-16
declaring, 16-15
enabling or disabling, 16-16
waiting for, 16-18

liberating, 16-4
partially, 16-5

procuring
conditionally, 16-4
unconditionally, 16-4

resetting
after causing, 16-9
after waiting on, 16-11
directly, 16-9

starvation of, 16-19
waiting on, 16-10

and resetting, 16-11
for time period, 16-10

waiting on multiple events, 16-11
events, in WFL, 4-12
EXC PROC TIME error message, 7-3
EXCEPTION procedures, 10-20, 16-21,

18-145
interaction with TRY statements, 10-24

exception task, 2-21

Index

Index–10 8600 0494–506

EXCEPTIONEVENT task attribute
and critical block exits

in ALGOL, 2-11
in COBOL, 2-12

sing in monitoring offspring, 6-7
EXCEPTIONTASK task attribute

meaning for CANDE session offspring, 3-7
meaning for MARC session offspring, 3-15
meaning for processes initiated from

ODT, 3-24
meaning for processes initiated from

Operations Center, 3-20
EXCLUSIVE file attribute, 19-23
exclusive locks, 19-20
EXCLUSIVELYSHARED value

of BUFFERSHARING file attribute, 19-19
EXECUTE granulated privilege, 5-15
executing of object code files, 1-2
EXIT PROGRAM statement, in COBOL, 2-4,

4-23
explicit linkage

connection libraries, 18-34
server libraries, 18-23

export lists, 18-4
export objects, 18-1

linking to import objects, 18-99
exported data

from server libraries, 18-11
in connection libraries, 18-60
matching data types, 18-130

exported procedures
error handling, 18-138

exporting objects
server libraries, 18-4

expressions, in parameter passing
complex expression

effect on call-by-name parameter, 17-4
effect on call-by-reference

parameter, 17-5
simple expression

effect on call-by-name parameter, 17-4
effect on call-by-reference

parameter, 17-5
thunks

created for call-by-name parameter, 17-4
not created for call-by-reference

parameter, 17-4
extended addressing environment, 17-2
external causes, of abnormal

termination, 10-34
external procedure structure

in COBOL, 4-22

external procedures, 1-7
declared external procedures, 1-7
passed external procedures, 1-7

external processes, 1-7
and library procedures, 18-135
capabilities of, 2-1

F

FA (File Attributes) system command, 3-30
families (See disk families; process families)
FAMILY job queue attribute, 4-7
family substitution, 9-4
FAMILY task attribute

and remote process, 12-8
and shared logical files, 19-8
and task initiation, 5-26
interrogating with USERDATA, 5-27

FAMILYNAME file attribute, 9-3, 9-4
faults, recovery from

and signals mechanism, in C, 10-16
and the ON statement

in ALGOL, 10-16
and the RESTART task attribute, 10-17
TRY statement, 10-12

F-DS termination message, 10-3
FETCH task attribute, 3-33
file attributes, 9-2

of shared logical files, 19-14
file buffers

and file sharing, 19-18
and SEEK to -1, 19-24
and SYNCHRONIZE file attribute, 19-24

file equations, 9-2
compared with FAMILY task attribute, 9-6
in MARC sessions, 3-14

FILEACCESSRULE task attribute
and privileged status, 5-13
and security of shared files, 19-10

FILEACCOUNTING task attribute, 10-4
FILECARDS task attribute

and printing, 9-14
FILECLOSE, value of

PRINTDISPOSITION, 9-10
FILEDATA utility

initiating from ODT, 3-22
FILEEQUATE screen, in MARC, 3-14
FILELOCKTLIMIT system command, 19-21
FILENAME file attribute

and printing, 9-15
and subfile matching, 19-2

 Index

8600 0494–506 Index–11

FILEOPEN, value of
PRINTDISPOSITION, 9-10

files
guard files, 5-12
in interprocess communication, 19-1
logical, 19-7
permanent, 19-17
physical, 19-7
private, 5-11
public, 5-11
remote (See remote files)
security restrictions, 5-10
sharing, 19-1
synchronizing access to, 19-9
temporary, 19-17

FIX statement, in ALGOL, 16-4
flow of control

affected by dependency, 2-8
between related processes, 2-2
in a program, 1-8

FM (Form Message) system command, 3-30
FOREIGN TASK INITIATION FAILED error

message, 12-4, 12-5
formal parameters, 17-1
FORTRAN77

block structure, 1-8
call-by-reference parameter in, 17-5
CONTROL libraries in, 18-5
DEBUG PROGRAMDUMP statement

in, 10-26
library features

examples, 18-180
parameter passing mode, 18-129
parameter types, 18-119
typed procedures, 18-112

tasking capabilities of, 4-31
forward reference declarations

in ALGOL, 15-4
FR (Final Reel) system command, 6-14

sources for submitting, 3-30
FREE statement, in ALGOL, 16-5
free_t procedure, in C, 18-168
FREEZE FAILED, TASK TYPE NOT PROCESS

OR RUN message, 18-28
FREEZE statement, 18-4
FROZEN

stack state, 6-6
STATUS task attribute value, 6-3

FS (Force Schedule) system command
and WFL job restarts, 11-5
sources for submitting, 3-27, 3-29

FUNCTION <function name> IS NOT
DEFINED message, 18-22, 18-41

FUNCTION, in Pascal, 1-8
FUNCTIONNAME library attribute, 18-87

and direct library linkage, 18-88
for connection libraries, 18-36

G

GETEGID procedure, in ALGOL, 5-30
getegid() function, in C, 5-30
GETEUID procedure, in ALGOL, 5-30
geteuid() procedure, in ALGOL, 5-30
GETGID procedure, in ALGOL, 5-30
getgid() function, in C, 5-30
GETSTATUS function

in DCALGOL
and nonprivileged status, 5-10
and ODT status, 5-19

GETSTATUS granulated privilege, 5-15
GETUID procedure, in ALGOL, 5-30
getuid() function, in C, 5-30
GIVING clause

in COBOL74, 18-117
in COBOL85, 18-118

global file assignments, in WFL, 4-11
and remote processes, 12-4

global objects
blocks, 1-9
connection libraries, 18-55
in interprocess communication, 15-1
server libraries, 18-9

globally declared objects, in WFL, 4-12
GLOBINT, 18-56
GO TO statement

and EXCEPTION procedures, 10-20
and interrupts, 16-15, 16-18
and TRY statements, 10-14
effect on process stack size, 8-7

GOINGAWAY task attribute value, 6-3
GOINGAWAY value of STATUS task

attribute, 6-10
granulated privileges, 5-15

capabilities associated with privileged
status, 5-15

CHANGE, 5-15
CHANGESEC, 5-15
CREATEFILE, 5-15
descriptions, 5-15
disabling the PU option, 5-7
EXECUTE, 5-15
GETSTATUS, 5-15
GSDIRECTORY, 5-15

Index

Index–12 8600 0494–506

IDC, 5-15
LOCALCOPY, 5-15
LOGINSTALL, 5-15
LOGOTHERS, 5-15
object code file, 5-6
option

MP system command, 5-7
READ, 5-15
REMOVE, 5-16
SETSTATUS, 5-16
SYSTEMUSER, 5-16
USERDATA, 5-16
WRITE, 5-16

group codes
and GROUP file attribute, 5-12
and GROUPCODE task attribute, 5-5
and privileged processes, 5-13
and SECURITYMODE file attribute, 5-11
and SUPPLEMENTARYGRPS task

attribute, 5-5
toggling between real and saved, 5-28

GROUP file attribute, 5-12
and privileged processes, 5-13

GROUPCODE task attribute, 5-5, 5-29
and file access rights, 5-11
and REALGROUPCODE, 5-29
and remote tasking, 12-8
and SAVEDGROUPCODE, 5-29

GS character, and ODT files, 3-25
GSDIRECTORY granulated privilege, 5-15
guard files, 5-12

and file declarer security, 19-13

H

halt/loads, process recovery after, 11-1
happened state, 16-2

accessing, 16-8
duration of, 16-13
EVENT_STATUS result, 16-7
testing, 16-12

HC files, 19-6
heap, in C programs, 18-116
heap_to_ptr_t procedure, in C, 18-116, 18-168
HI (Cause EXCEPTIONEVENT) system

command, 3-33
sources for submitting, 3-29

history, of processes, 10-1
HISTORYCAUSE task attribute, 10-7

and DS messages, 10-2
HISTORYREASON task attribute, 10-7

HISTORYTYPE task attribute, 10-7
and DS messages, 10-2

HOLDING stack state, 6-6
host control (HC) files, 19-6
HOST NOT REACHABLE error message, 12-5
Host Services, 12-1

and task attribute support, 12-14
host usercodes

and MARC sessions, 12-12
and nonusercoded status, 5-17
and remote processes, 12-7
and system commands, 12-11

HOSTNAME task attribute
use in remote tasking, 12-3

hosts
local, 12-1
remote, 12-1

HSFILECOPY file attribute
and MCS privileges, 5-24

HU (Host Usercode) system command (See
host usercodes)

HY files (See HYPERchannel files)
HYPERchannel (HY) files, 19-6

I

I/O accounting
and shared logical files, 19-13

I/O errors
recovery from, 10-12

I/O TIME EXCEEDED, 9-20
I/O usage, 9-1

accumulated I/O time
displaying, 7-4
interrogating programmatically, 7-5

default usercode for files, 9-1
disk files, 9-4
limiting, 9-20
localization, 9-20
modifying file attributes, 9-2
printing, 9-9

IB (Instruction Block) system command, 3-32
sources for submitting, 3-29

ID (Initialize Data Comm) system command
and MCS status, 5-21

IDC granulated privilege, 5-15
identity

assuming temporarily, 5-26
I-DS termination message, 10-3
IL (Ignore Label) system command, 6-13

 Index

8600 0494–506 Index–13

ILLEGAL HOST-TO-HOST TRANSFER OF
TASK error message, 12-4

ILLEGAL OWN ARRAY error message, 18-15
ILLEGAL TASK ATTRIBUTE OR ATTRIBUTE

VALUE error message, 12-4
ILLEGAL VISIT error message, 2-4
IMDSED parameter

of CHANGE procedure, 18-83
implicit continue

and PARTNER task attribute, 2-6
and WFL jobs, 2-4

implicit library linkage, 18-22
implicit linkage

connection libraries, 18-34, 18-41
import declarations

server libraries, 18-18
import objects, 18-1

linking to export objects, 18-99
imported data

in client programs, 18-19
in connection libraries, 18-60

imported library procedures (See library
procedures)

imported procedures
error handling, 18-138

importing linkage classes
determining, 18-152

importing process, 18-2
inclusion, 2-1
INCOMPATIBLE SYSTEM TYPE error

message and WFL restarts, 11-4
independent processes, 2-7

and critical block exit, 2-9
as jobs, 2-18
communication with parent, 2-8
flow of control, 2-8

indexes, in Pascal arrays, 17-32
indirect or implicit connections, 18-146
indirect provision in libraries, 18-99
INHERITMCSSTATUS task attribute, 5-24
initial presence-bit operations, 8-3
initiating processes, 5-26

from interactive sources, 3-1
from programming languages, 4-1
object code files, 1-2
procedures, 1-6

INITPBIT (See also initial presence-bit
operations)

in TI command display, 7-5
INITPBITCOUNT task attribute, 7-5
INITPBITTIME task attribute, 7-5
input queues

of port subfiles, 19-2

INPUTEVENT file attribute, 19-2
instances

of a connection library, 18-35
and SHARING option, 18-43

of a server library, 18-6
of an object code file, 1-2

instruction blocks, in WFL, 3-32
interactive tasking, 1-4
INTERFACENAME library attribute, 18-67,

18-89
and composite libraries, 18-70
and direct library linkage, 18-89
for connection libraries, 18-36, 18-37

interlock arrays, 16-25
interlocks, 16-24

acquiring, 16-25
and discontinued processes, 16-28
and imported events, 18-13, 18-63
and readlocks, 16-28
and signals, 16-25
CRCR processes, 20-2
declaring, 16-25
interrogating, 16-27
locking, 16-25
releasing, 16-26
status, 16-27
unlocking, 16-26

internal causes, of abnormal
termination, 10-34

internal names
of files, 9-2
of libraries, 18-90
of printer backup files, 9-11, 9-12

internal processes, 1-6
capabilities of, 2-1

internationalization (See localization)
interprocess communication (IPC), 13-1

server library global objects, 18-9
using events, 16-2
using global objects, 15-1
using HC files, 19-6
using interlocks, 16-24
using libraries, 18-1
using ONC+ RPC, 21-1
using parameters, 17-1
using port files, 19-1
using task attributes, 14-1

interprocess communication features, 1-1
interprocess relationships, 2-1
INTERRUPTIBLE option

of LOCK statement, 16-25
of WAIT statement, 16-12

Index

Index–14 8600 0494–506

interrupts, 16-14
attaching or detaching, 16-16
declaring, 16-15
efficiency considerations, 16-19
enabling or disabling, 16-16, 16-17
waiting for, 16-18

intersystem control (ISC) hardware, 19-6
INTNAME file attribute, 9-2

and printer backup file titling, 9-11, 9-12
INTNAME library attribute, 18-90
INUSE task state value, in WFL, 6-4
INVALID OPERATOR error message, 17-27
IOTIME job queue attribute, 4-6
IPC (See interprocess communication)
IPC state, in WY command

CRCR or STOQ processes, 20-25
ISC hardware (See intersystem control

hardware)
isolated procedures, 10-18, 18-132

and DS system command, 10-18, 18-132
and DSABLE statements, 18-132
and process stacks, 18-132
and ST system command, 10-18, 18-132
example of, 18-135

ISVALID function
connection libraries, 18-49
server libraries, 18-25

J

J (Job and Task Display) system
command, 2-18

and STATUS task attribute, 6-5
sources for submitting, 3-28

job, 2-18
controlling a task, 4-13
restarting WFL, 4-13

job attribute list, in WFL, 4-10
job description file

moving to a different host, 11-4
job files, 2-18

of WFL jobs, 2-19
job logs, 10-4
job numbers, 2-19
job queue attributes, 4-6
job queues, 4-4

and remote job transfer, 12-3
changes affecting job restart, 11-5
scheduling job initiation, 4-8

job rollouts, 11-2

job summaries, 10-4
controlling contents of, 10-4
controlling printing of, 10-5
saving as a disk file, 10-6

JOB/HANDLER/<local hostname>, in mix
display, 12-2

JOBDESC file
moving to a different host, 11-4

JOBFILE/CONVERTER independent
runner, 10-5

JOBNUMBER task attribute
and CANDE sessions, 3-5
and MARC sessions, 3-13

JOBRESTART independent runner
and job restarts after a halt/load, 11-22

JOBSUMMARY task attribute, 10-5

K

kind
property of library attributes, 18-73

KIND file attribute, 19-18
KLEENUP procedure, 18-56

L

LABEL (Label ODT) system command, 3-24
LABEL tape file attribute, 6-14
LANGUAGE task attribute, 9-20
languages

choosing for system messages, 9-20
other user, 4-31

languages, using multiple, 1-12
LASTRECORD file attribute

and shared logical files, 19-14
LASTSUBFILE file attribute

and shared logical files, 19-14
LC (Log Comment) system command, 10-4
LEVEL compiler control option

and COBOL74 libraries, 18-16
lexical level, 1-9
LG (Log for Mix Number) system

command, 10-5
LIBACCESS library attribute

affect on connection library, 18-92
and direct library linkage, 18-92
for connection libraries, 18-36
libraries, 18-91
mnemonic values, 18-91

 Index

8600 0494–506 Index–15

liberating an event, 16-4
partially, 16-5

LIBERROR attribute
libraries, 18-93

LIBPARAMETER library attribute, 18-94
and dynamic provision, 18-101

libraries, 18-1 (See also client libraries;
connection libraries; server libraries)

ALGOL
ACTUALNAME clause, 18-110
dynamic provision, 18-101
examples, 18-141, 18-142, 18-143,

18-144, 18-157, 18-159, 18-163
parameter types, 18-114
procedure types, 18-112

and checkpoints
not checkpointable, 11-13
recovering libraries used by

checkpointed tasks, 11-8
and MP (Mark Program) system

command, 18-149
attributes

APPROVAL, 18-75
AUTOLINK, 18-21, 18-78
CHANGE, 18-79
CLUSAGE, 18-84
CONNECTIONS, 18-85
DELINKEVENT, 18-86
FUNCTIONNAME, 18-20, 18-87
INTERFACENAME, 18-21, 18-67, 18-89
INTNAME, 18-90
LIBACCESS, 18-20, 18-91
LIBERROR, 18-93
LIBPARAMETER, 18-21, 18-94
SINGLE, 18-95
STATE, 18-96
TITLE, 18-20, 18-97

C
examples, 18-167
parameter types, 18-115

circular, 18-147
circular connections, 18-146
client, 18-140
client programs

ACTUALNAME clauses, 18-110
COBOL74

examples, 18-173
parameter types, 18-117

COBOL85
examples, 18-176
naming export objects, 18-111
parameter types, 18-118

connection, 18-143
client state information, 18-144
connection block TYPE

declarations, 18-144
converted from circular, 18-147
examples, 18-33

IMPORTING and EXPORTING
modifiers, 18-148

exported functionality, 18-142, 18-143
indirect or implicit, 18-146
interface definition, 18-143
loops, 18-147
middleware strategies, 18-144
one-way import/export

relationship, 18-147
program modularity, 18-142, 18-143
robustness, 18-142
type declaration, 18-143

connection block
TYPE declaration, 18-141

connection vs client, 18-142
connection vs server, 18-143
debugging facilities, 18-156
declaration of, 18-140
delinking, 18-146
design issues, 18-146
displaying clients of, 18-131
distributed applications, 18-139
error handling, 18-138
exporting data

from connection libraries, 18-60
from server libraries, 18-11

FORTRAN77
examples, 18-180
parameter types, 18-119

global declaration
reasons, 18-146

implementation strategy, 18-142
import and export paths, 18-146
importing data

to client programs, 18-19
to connection libraries, 18-60

importing process, 18-2
ISVALID function, 18-25
linkage

class value, 18-153
status control, 18-145
type matching, 18-112

linkages, 18-139
linking

client libraries, 18-140
client strategies, 18-140

Index

Index–16 8600 0494–506

design, 18-139
import and export objects, 18-99

locking protocol, 18-145
modifiers

IMPORTING or EXPORTING, 18-147
NEWP parameter types, 18-120
nonresumable, 18-151
parameter passing

array lower bounds matching, 18-127
parameter type matching, 18-113
passing mode matching, 18-128

Pascal
examples, 18-181
parameter types, 18-122

procedures (See library procedures)
program privileges, 18-149
provision

circular, 18-102
dynamic, 18-101

security, 18-149
support libraries, 18-87
system libraries, 18-155
system performance

negative effects on, 18-146
system trace information, 18-156
task attributes of, 18-136
thawing, 6-10
trusted, 18-151
two-way connections, 18-146
UCF reporting, 18-156
useful task attributes

LIBRARY, 18-137
LIBRARYSTATE, 18-137
LIBRARYUSERS, 18-137
STATUS, 18-137

LIBRARIES option of the OPTION task
attribute, 18-156

libraries, in WFL, 4-12
library, 1-2
library attributes, 18-20

APPROVAL, 18-75
AUTOLINK, 18-78
CHANGE, 18-79
CLUSAGE, 18-84
CONNECTIONS, 18-85
DELINKEVENT, 18-86
descriptions, 18-73
FUNCTIONNAME, 18-87
INTERFACENAME, 18-89
INTNAME, 18-90
LIBACCESS, 18-91
LIBERROR, 18-93
LIBPARAMETER, 18-94

properties of
default, 18-74
kind, 18-73
read, 18-74
type, 18-74
write, 18-74

SINGLE, 18-95
STATE, 18-96
TITLE, 18-97
TRUSTED, 18-152

LIBRARY ATTRIBUTES NOT CHANGEABLE
error message, 18-151

library cancelation errors
recovery from, 10-12, 10-14

LIBRARY DID NOT FREEZE
<library name> error message, 18-28

LIBRARY DID NOT FREEZE error message
connection libraries, 18-50

library directories, 18-156
LIBRARY INITIATED IN INCOMPATIBLE

LINKAGE CLASS warning, 18-152
library instances

server libraries, 18-6
library linkage

aliases for objects, 18-110
between connection libraries and server

libraries, 18-67
connection libraries, 18-34
direct

and APPROVAL library attribute, 18-76
and FUNCTIONNAME library

attribute, 18-88
and INTERFACENAME library

attribute, 18-89
and LIBACCESS library attribute, 18-92
and TITLE library attribute, 18-98
connection libraries, 18-41, 18-72
server libraries, 18-24

linking export and import objects, 18-99
mechanism, 18-26
type matching, 18-112

library linkage mechanism
connection libraries, 18-49

library objects, 18-1
available, 18-142
exporting linkage class, 18-153

library parameters
ANYTYPE parameter, 18-126
matching array lower bounds, 18-127
matching parameter types, 18-113
matching passing mode, 18-128

 Index

8600 0494–506 Index–17

library procedures
as a type of external procedure, 1-7
error handling, 18-138
inclusion properties of, 2-1
matching typed procedures, 18-112

library process
trusted status, 18-152

library provision, 18-99
circular, 18-102

library templates, 18-156
LIBRARY WAS NOT INITIATED message

connection libraries, 18-50
server libraries, 18-27

LIBRARY/MAINTENANCE, initiated by COPY
and ADD statements, 4-9

LIBRARYSTATE task attribute, 18-152
connection libraries, 18-51

LIBS (Library Task Entries) system
command, 6-5, 18-5

sources for submitting, 3-28
LIBTRACE (Library Trace) system

command, 18-156
limits (See resource usage)
LINEINFO compiler option, 8-2, 10-8
LINES job queue attribute, 4-6
linkage (See library linkage)
LINKAGE CLASS VIOLATION IN LIBRARY

<name>, 18-155
LINKAGE CLASS VIOLATION message

client and server libraries, 18-25, 18-48
linkage classes

exported library object, 18-153
importing, 18-153

determining, 18-152
of libraries, 18-151

LINKCLASS
export list modifier, 18-153
support library attribute, 18-152
support library attribute, 18-150
value to function name, 18-153

linking libraries
design strategies, 18-139

linking process, 18-69
LINKLIBRARY function, 18-23

for connection libraries, 18-41, 18-72
for server libraries, 18-24

LIST compiler option, 10-8
LJ (Log to Job) system command, 10-4
local alias usercodes, 12-7
local hosts, 12-1
local operator, 12-1
local processes, 12-1

local variables
in exported procedures

connection libraries, 18-59
server libraries, 18-8

LOCALCOPY granulated privilege, 5-15
localization, 9-20
LOCK checkpoint disposition, 11-9
LOCK function

for interlocks, 16-25
and imported events, 18-13, 18-63

LOCK statement, in COBOL
used for conditional procures, 16-4
used for unconditional procures, 16-4

LOCKED attribute
controlling a task from a job, 4-13

LOCKED option
of MP (Mark Program) command, 10-18

LOCKED task attribute, 14-1
and events, 16-14

LOCKEDFILE file attribute
prevents removal of backup files, 9-13

LOCKRECORD <file name> statement
in COBOL85, 19-21

locks
for records in a shared disk file, 19-20

LOCKSTATUS function
for interlocks, 16-27

LOG (Analyze Log) system command, 3-22
LOG statement, in WFL

initiates LOGANALYZER utility, 4-9
LOGANALYZER utility

and process history, 10-6
initiating from WFL, 4-9
used in estimating the working set, 8-5

LOGGING (Logging Options) system
command, 10-4

logging of process history, 10-4
logical files, 19-7

sharing, 19-8
and file attributes, 19-14
and I/O accounting, 19-13
disk files, 19-17
examples, 19-15
security rules, 19-9

synchronizing access, 19-18
LOGINSTALL granulated privilege, 5-15
LOGOTHERS granulated privilege, 5-15
LOGSELECT usercode attribute, 10-5
LP (Locked Program) system command

sources for submitting, 3-30
LPBDONLY operating system option, 9-10

Index

Index–18 8600 0494–506

M

main memory, 8-1
MAKEUSER utility, 5-4

assigning privilege status to usercode
with, 5-14

use by nonprivileged processes, 5-10
use by privileged processes, 5-13

malloc_t procedure, in C, 18-168, 18-172
MARC (See Menu-Assisted Resource

Control)
matching library, 18-34
MAX (Maximums) system command, 3-12

and session numbers, 3-5, 5-2
MAXIOTIME task attribute, 9-20

and program dumps, 10-34
inheritance in process family, 2-24
job queuing, 4-6

MAXLINE task attribute
job queuing, 4-6

MAXLINES task attribute
and program dumps, 10-34
inheritance in process family, 2-24

MAXPROCTIME task attribute, 7-3
and program dumps, 10-34
inheritance in process family, 2-24
job queuing, 4-6

MAXSUBFILES file attribute, 19-2
MAXWAIT task attribute

and program dumps, 10-34
MCP library procedure

EVENT_STATUS, 18-56
MCPINIT support library attribute, 18-150
MCPSUPPORT library

CHECKPOINTARRAY procedure, 11-25
DIRECTRECORDLOCKER

procedure, 19-21
DIRECTRECORDLOCKTEST

procedure, 19-21
RECORDLOCKER procedure, 19-21
RECORDLOCKTEST procedure, 19-21
toggling between real and saved

identities, 5-30
MCS (See message control system)
MCS status, 5-20

compared to tasking status, 5-24
how acquired by a process, 5-21
inheritance, 5-24
priority, 5-21
privileges, 5-21

MCS window programs, in Transaction
Server, 9-17

MCSNAME task attribute
and CANDE, 3-8
and MARC sessions, 3-15

memory
presence-bit operations, 8-3
stack size limits, 8-6
thrashing, 8-2
usage, 8-1

available memory, 8-1
code segment dictionaries, 8-2
main memory, 8-1
overlayable memory, 8-2
PIBs, 8-2
process stacks, 8-2
save memory, 8-2
TABs, 8-2
virtual memory, 8-1

MEMORY_MODEL compiler control record,
in C, 18-116

Menu-Assisted Resource Control
(MARC), 1-4

and AUTOSWITCHTOMARC task
attribute, 3-16

initiating compilations in, 3-10
initiating dependent processes in, 3-9
initiating interactive processes in, 3-12,

3-16
initiating processes from, 3-9
initiating utilities in, 3-10
meaning of EXCEPTIONTASK, 3-15
meaning of MYJOB, 3-15
meaning of MYSELF, 3-15
meaning of PARTNER, 3-15
monitoring and controlling other processes

in, 3-12
monitoring and controlling your own

processes in, 3-10
passing parameters from, 3-14
submitting WFL jobs in, 3-10
task attribute access, 3-13

message control system (MCS)
assuming identity of a user, 5-26
security status of, 5-20
status, 5-20

compared to tasking status, 5-24
messages

abnormal termination messages, 10-2
display in CANDE sessions, 3-4
suppressing, 9-18

MESSAGESEARCHER statement, in ALGOL
and NEWP, 9-20

middleware strategies, 18-144

 Index

8600 0494–506 Index–19

MISSING OBJECT <object name> IN
LIBRARY message

server libraries
client and server libraries, 18-25, 18-48

mix, 5-1
displaying, 6-5

mix number, 5-1
of CANDE sessions, 3-5
of MARC sessions, 3-12

MIXLIMIT job queue attribute, 4-5
modules, methods of sharing, 1-11
monitoring and controlling processes

from Operations Center, 3-18
MOREBACKUPFILES security option, 9-12
MOVE (Move Job/Pack) system

command, 3-27
MOVE statement, in WFL

privileged status of, 5-18
MP (Mark Program) system command, 5-6

and code segment dictionary sharing, 8-4
and compiler status, 5-20
and libraries, 18-149
and TRY statement, 10-13
protecting programs from DS

commands, 10-18
MPID task attribute, 5-1
MQ (Make or Modify Queue) system

command, 4-4
MSG (Display Messages) system command

and Automatic Display mode, 3-22
and DISPLAY messages, 9-19
sources for submitting, 3-28

MSG session option, in CANDE, 3-5
MU (Make User) system command, 5-14
MultiLingual System

task attributes related to, 9-20
MUSTLOCK compiler option

in COBOL85, 19-21
mutual exclusion, 18-60

using events for, 16-3
MX (Mix Entries) system command, 6-5

sources for submitting, 3-28
MYJOB task variable, 2-21

in imported library procedures, 18-136
meaning for MARC session offspring, 3-15
meaning for processes initiated from

ODT, 3-24
meaning for processing initiated from

Operations Center, 3-20
MYSELF task variable, 2-21

in APPROVAL procedures, 18-75
in CHANGE procedures, 18-80
in imported library procedures, 18-136

MYUSE file attribute
and tape files, 6-13

N

NAME task attribute, 5-6
and FAMILY task attribute, 5-26
and file security, 5-10
and USERCODE task attribute, 5-26

N-DS termination message, 10-3
nested programs

in COBOL85, 4-21
nesting, 1-9
NETPATH task attribute, 21-1
NEVERUSED value of STATUS task

attribute, 6-3
NEW_STATE parameter

of CHANGE procedure, 18-82
NEWFILE file attribute, 19-18

effect on default usercode, 9-1
NEWP

connection libraries, 18-32
EPILOG procedures, 10-19
EXCEPTION procedures, 10-20
ISVALID function, 18-25
library features

LINKLIBRARY function, 18-23
parameter passing mode, 18-129
parameter types, 18-120

LOCK function
for interlocks, 16-25

LOCKSTATUS function
for interlocks, 16-27

READLOCK function, 16-28
support of HC files, 19-6
support of HY files, 19-6
TRY statement, 10-12
UNLOCK function

for interlocks, 16-26
NF (No File) system command

sources for submitting, 3-30
NO FETCH STATEMENT error message, 3-33
NO FILE message

and AUTORESTORE task attribute, 9-7
and NEWFILE file attribute, 19-18
and ODT files, 3-24
and remote tasks, 12-4
and temporary files, 19-23

NO LIBRARY message
and library linkage, 18-22, 18-41

NOFETCH option, 3-33

Index

Index–20 8600 0494–506

NOJOBSUMMARYIO task attribute, 10-5
NON - EXTERNAL RUN error message, 2-1
NON ANCESTRAL TASK REFERENCE error

message, 2-22
NON OWNER WRITE ACCESS OF A

PRIVATE TASK error message, 2-23
noninitial presence-bit operations, 8-3
nonprivileged status, 5-10

of a process, 5-10
nonresumable libraries, 18-151
nonselective read statement, 19-2
nonusercoded status, 5-17
normal termination, 1-5
NOSUMMARY option

of OPTION task attribute, 10-5
NOTOK (Do Not Reactivate) system

command, 3-30
NOW, value of PRINTDISPOSITION, 9-10

O

OBJECT <name> LINKAGE CLASS
VIOLATION IN LIBRARY
<name>, 18-155

OBJECT <object name> ACCESS MODE
MISMATCH error message

client and server libraries, 18-25, 18-48
OBJECT <object name> LINKAGE CLASS

VIOLATION IN LIBRARY message
client and server libraries, 18-25, 18-48

object code files, 1-2
granulated privileges, 5-6
instances of, 1-2
privileged status, 5-6
privileges assigned to, 5-6
security administrator status, 5-6
tasking status, 5-6

objects
methods of sharing, 13-2

O-DS termination message, 10-3
ODT (See operator display terminal)
ODT files, 3-24
ODT status, 5-19
ODT-DLPs, 3-21
OF (Optional File) system command, 3-30
offspring, 2-9
OK (Reactivate) system command, 6-11

and FETCH messages, 3-33
sources for submitting, 3-30, 3-31

ON command in Transaction Server, 9-18
ON RESTART statement, in WFL, 11-3

ON statement
in ALGOL, 10-16
interaction with TRY statement, 10-24

ON TASKFAULT statement, in WFL, 10-8
ONC+ RPC, 21-1
one-at-a-time access

and events, 16-3
ONEONLY support library attribute, 18-150
OP (Options) system command

AUTORECOVERY operating system
option, 11-4

AUTORM operating system option
and disk file sharing, 19-18

BACKUPBYJOBNR operating system
option, 9-13

LPBDONLY operating system option, 9-10
NOFETCH operating system option, 3-33
PDTODISK operating system option, 10-30
SERIALNUMBER operating system

option, 6-13
OP control command, in CANDE

DISPLAYONLYTOMCS option, 3-6
Open Network Computing Plus (ONC+)

RPC, 21-1
Open Systems Interconnection (OSI), 19-1
operating system options

AUTORECOVERY, 11-4
AUTORM, 19-17
BACKUPBYJOBNR, 9-13
LPBDONLY, 9-10
NOFETCH, 3-33
PDTODISK, 10-30
SERIALNUMBER, 6-13

Operations Center, 1-4, 3-17
access to ancestral processes, 3-20
access to task attributes, 3-19
command execution, 3-17
command menu, 3-18
command toolbar, 3-18
initiating compilations, 3-18
initiating programs, 3-17
monitor processes, 3-17
monitoring and controlling processes, 3-18
programming considerations, 3-19
receiving parameters, 3-19
standard views, 3-18
submitting WFL jobs, 3-17
tasking capabilities, 3-17

operator display terminal (ODT), 1-4, 3-21
accessing task attributes at, 3-23
initiating compilations at, 3-22
initiating interactive processes at, 3-24
initiating programs at, 3-21

 Index

8600 0494–506 Index–21

initiating utilities at, 3-22
monitoring and controlling processes

at, 3-22
ODT files, 3-24
receiving parameters from, 3-23
submitting WFL jobs at, 3-21

operators
local, 12-1
remote, 12-1

OPTION task attribute
and TRY statement, 10-16
BACKUP option, 9-10
BDBASE option, 2-20

printing effects, 9-16
LIBRARIES option, 18-156
NOSUMMARY option, 10-5
private process option, 2-23

and CANDE, 3-7
and MARC, 3-15

program dump options, 10-27
TODISK option, 10-28
TOPRINTER option, 10-28

options, system (See operating system
options)

ORDERLY option
DELINKLIBRARY function, 18-52

OT (Inspect Stack Cell) system command
and stack number, 5-3
sources for submitting, 3-29

OTHERPBIT (See also noninitial presence-bit
operations)

in TI command display, 7-5
OTHERPBITCOUNT task attribute, 7-5
OTHERPBITTIME task attribute, 7-5
OU (Output Unit) system command, 6-13

sources for submitting, 3-31
outer block, 1-9
output queues

of port subfiles, 19-2
of remote files, 9-16

OUTPUTEVENT file attribute, 19-2
OUTPUTMESSAGEARRAY feature of ALGOL

and NEWP, 9-20
overlay, 8-2
OWN clause

in server library procedures, 18-15
OWN objects

and connection libraries, 18-67
OWNER file attribute, 5-12
OWNER parameter

of CHANGE procedures
different from MYSELF, 18-76

OWNER status, of usercode attributes, 5-10

P

paragraphs, in COBOL, 1-8
parameters (See also library parameters;

tasking parameters)
actual, 17-1
critical block affected by, 2-10
formal, 17-1
in interprocess communication, 17-1
passing connections, 18-65
passing from CANDE sessions, 3-7
passing from MARC sessions, 3-14
passing from Operations Center, 3-19
passing modes, 17-3

call-by-name, 17-3
call-by-reference, 17-4
call-by-value, 17-3
read-only, 17-6
specifying, 17-6

scope of, 17-1
parameters, in WFL, 4-12
parent, 2-7

as owner of critical block, 2-9
PARENT PROCESS TERMINATED error

message, 2-9, 2-17
and RESTART task attribute, 10-17
protection from termination, 10-13

partner process, 2-5
accessing task attributes of, 2-23

PARTNER task attribute
accessing task attributes of the partner

process, 2-23
in coroutine discussion, 2-5
meaning for MARC session offspring, 3-15
meaning for processes initiated from

ODT, 3-24
meaning for processes initiated from

Operations Center, 3-20
PARTNEREXISTS task attribute, of remote

task, 12-4
Pascal

block structure, 1-8
CONST clause, 17-6
library features

examples, 18-181
LINKLIBRARY function, 18-23
parameter passing mode, 18-129
parameter types, 18-122

tasking capabilities of, 4-31
tasking parameters

arrays, 17-31

Index

Index–22 8600 0494–506

passed external procedures, 1-7
inclusion properties of, 2-1

passing mode, 17-3
call-by-name, 17-3
call-by-reference, 17-4
call-by-value, 17-3

PATHNAME file attribute, 9-8
pathnames

relative and absolute, 9-8
PB (Print Backup) system command, 3-22
PB statement, in WFL

initiates BACKUP utility, 4-9
P-bit operations (See presence-bit

operations)
PDEF command, in CANDE, 3-6
P-DS termination message, 10-3
PDTODISK operating system option, 10-30
PERFORM statement, in COBOL, 1-8

effect on process stack size, 8-7
performing tasks

from Operations Center, 3-18
permanent files, 19-17
permanent libraries, 18-4
PF (Print Fetch) system command, 3-33

sources for submitting, 3-28, 3-29
physical files, 19-7
PIB (process information block), 8-2
port files, 19-1

ALGOL example, 19-4
COBOL74 example, 19-3

port files, in WFL, 4-12
port providers, 19-1
portal routines

ONC+ RPC, 21-2
POSIX

file searching rules, 9-8
POSIX_INTEGERIDS procedure, in

MCPSUPPORT, 5-30
POSIX_SETIDS procedure, in

MCPSUPPORT, 5-30
PQ (Purge Queue) system command, 3-28
PR (Priority) system command, 7-2

sources for submitting, 3-28, 3-30
presence-bit operations, 8-3

displaying counts and times of, 7-5
measuring programmatically, 7-5

primary library
dynamic provision, 18-101

primary queue, of an MCS, 5-21
PRIMITIVE RUN statement

sources for submitting, 3-27
PRIMITIVE RUN system command

entering from Operations Center, 3-17

primitive system commands, in MARC, 3-12
print attributes, 9-14
print request, 9-13
PRINT statement, in WFL, 9-14

entering in CANDE, 3-4
privileged status of, 5-18

Print System, 9-9
PRINTDEFAULTS task attribute, 9-14
PRINTDISPOSITION file attribute, 9-15

interaction with BDBASE tasks, 2-20
printing, 9-9

backup file media, 9-9
backup file titling, 9-11
controlling programmatically, 9-13
queuing print requests, 9-13
submitting print requests, 9-13

PRIORHISTORY task attribute
and TRY statement, 10-14

PRIORHISTORYCAUSE task attribute
and TRY statement, 10-14

PRIORHISTORYREASON task attribute
and TRY statement, 10-14

PRIORHISTORYTYPE task attribute
and TRY statement, 10-14

priority, 7-1
of message control systems, 5-21

PRIORITY task attribute, 7-2
inheritance in process family, 2-24
job queuing, 4-6

private files, 5-11
private processes, 2-23
PRIVATE sharing option

connection libraries, 18-43
server libraries, 18-6

privileged status
of a process, 5-13
of an object code file, 5-6
of an object code file

transparency, 5-7
privileged transparent status, 5-7
PRIVILEGES segments, in USERDATAFILE

and nonprivileged processes, 5-10
and privileged processes, 5-13

procedure entrance, 1-6
procedure initiation, 1-6
procedures

as a type of block, 1-8
bound-in, 4-31
effect on critical block definition, 2-10
EPILOG, 16-21
EXCEPTION, 16-21
external, 1-7
in COBOL, 1-8

 Index

8600 0494–506 Index–23

internal, 1-6
passed as parameters, 17-2
typed, in ALGOL, 4-15

process
dependency, 2-7
importing linkage class, 18-153
security classes, 5-9

process families, 2-17
access to task variables within, 2-21
ancestor, 2-17
cousin, 2-17
descendants, 2-17
familial relationships, 2-17
inheritance of resource limits, 2-24
jobs and tasks, 2-18
members, 2-17
offspring, 2-9
parent, 2-9
siblings, 2-17
special types of jobs, 2-19

process history, 10-1
process information block (PIB), 8-2
process stacks, 8-2

activation records, 8-6
and ISOLATED procedures, 10-18, 18-132
size limits on, 8-6

PROCESS statement
in ALGOL, 4-16
in COBOL, 4-22
in WFL, 4-9

entering at ODT, 3-21
entering from Operations Center, 3-17

processes
active, 6-3
as executions of object code files, 1-2
asynchronous, 2-2
attributes (See task attributes)
communication with other processes, 13-1
coroutines, 2-3
dependent, 2-7
discontinued, 16-21
external (See external processes)
history, 10-1

internal versus external causes, 10-34
programmatic access to, 10-7

independent, 2-7
initiating, 5-26

from interactive sources, 3-1
from programming languages, 4-1

internal, 1-6, 2-1
in-use, 6-1
local, 12-1

memory components
code segment dictionary, 8-2
PIB, 8-2
process stack, 8-2
TAB, 8-2

methods of synchronizing access, 13-5
operator communication with, 3-32

AX command, 3-34
DISPLAY statement, 3-32
FETCH specification, 3-33
HI command, 3-33
instruction blocks, 3-32
SW command, 3-35

partner (See partner process)
priority, 7-1
private, 2-23
related, 2-17
relationships, 2-1
remote (See remote processes)
resource usage

displaying, 7-4
measuring programmatically, 7-5

restarting, 11-1
resuming, 6-11
scheduled

preventing scheduling, 6-11
scheduled, 6-3
security class, 5-9
states, 6-1
suspended, 6-3

preventing suspension, 6-12
suspending and resuming, 6-11

synchronous, 2-2
terminating, 6-9
unrelated, 2-17
variables (See task variables)

processor usage accounting, 7-4
displaying, 7-4
measuring programmatically, 7-5

processors, controlling usage of, 7-1
PROCESSTIME job queue attribute, 4-6
procuring an event

conditionally, 16-4
unconditionally, 16-4

program behavior
modifying, 1-10

program dumps, 10-26
analyzing for a running process, 10-32
and external causes, 10-34
and internal causes, 10-34
and resource limits, 10-34
and the task file, 10-30
and TRY statement, 10-16

Index

Index–24 8600 0494–506

compared with RPG symbolic
dumps, 10-33

directing to disk or printer, 10-28
displayed by Y command, 10-33
operator-caused, 10-27
PROGRAMDUMP statement, 10-26

PROGRAMDUMP statement, 10-26
dump analysis for a running process, 10-32

PROGRAMDUMPING stack state, 6-7
programmatic tasking, 1-5
programming considerations

programs run from Operations
Center, 3-19

programs, 1-2
PROLOG procedures, 18-52
PROTECTED clause

EXCEPTION procedures, 10-20
TRY statement, 10-13

PROTECTION file attribute, 19-17
used to secure exclusive access, 19-23

provision (See also library provision)
of library objects, 18-99

PU option, of MP system command, 5-6
PU status, of usercode attributes, 5-13
public files, 5-11
PURGE checkpoint disposition, 11-9

Q

QACTIVE queue attribute
and MCS status, 5-21

Q-DS termination message, 10-3
QF (Queue Factors) system command, 4-4
QFACTMATCHING operating system

compile-time option, 4-7
QUEUEDAX system option, 3-34

and AX task attribute, 3-34
queues (See DCALGOL queues; input

queues; job queues; output queues)
queuing

of AX commands, 3-34

R

R-DS termination message, 10-3
read

property of library attributes, 18-74
READ granulated privilege, 5-15
readlocks

and interlocks, 16-28

READONLY access mode
exported data, 18-61

server libraries, 18-13
imported data

client programs, 18-19
read-only parameters, 17-6
READWRITE access mode

exported data, 18-61
server libraries, 18-13

imported data
client programs, 18-19

ready queue, 7-1
time, displaying for a process, 7-4

READY stack state, 6-6
READYCL function, 18-39

reversing effects of, 18-40
READYQ, in TI command display, 7-4
REALGROUPCODE task attribute, 5-29
REALUSERCODE task attribute, 5-29
REASON parameter

of CHANGE procedure, 18-82
RECEIVE statement

in COBOL85
in CRCR communications, 20-6
in STOQ communications, 20-13

RECEIVED BY CONTENT clause
and COBOL74 libraries, 18-16

record locking, 19-20
direct I/O files, 19-22
with COBOL85 statements, 19-21
with MCPSUPPORT procedures, 19-21

RECORDLOCKER procedure, of
MCPSUPPORT library, 19-21

RECORDLOCKTEST procedure, of
MCPSUPPORT library, 19-21

related processes, 2-17
relative pathnames, 9-8
remote files

and job restarts, 11-3
and MARC sessions, 3-12, 3-16
and ODTs, 3-24
and WFL, 4-10
effects of TANKING task attribute on, 9-16

remote hosts, 12-1
remote operator, 12-1
Remote Procedure Call (RPC), 21-1
remote processes, 12-1

interacting with, 12-10
logging of, 12-9
resource limits for, 12-9
tasks, 12-3
user identity problems of, 12-6

remote tasking, 12-1

 Index

8600 0494–506 Index–25

remote-file programs, in Transaction
Server, 9-17

REMOTEUSER entry, in USERDATAFILE
and remote processes, 12-6
and remote system commands, 12-11

REMOVE granulated privilege, 5-16
REMOVE statement, in WFL

privileged status of, 5-18
requesting library, 18-34
REQUIRES FETCH message, 3-33
RERUN statement, in WFL, 11-22

entering at ODT, 3-21
entering from Operations Center, 3-17
privileged status of, 5-18
sources for submitting, 3-31

resetting an event
after a wait, 16-11
directly, 16-9

RESIDENT file attribute, 6-12
RESOURCE task attribute

inheritance in process family, 2-24
resource usage

limits
and job queues, 4-5
for remote processes, 12-9
inheritance in process family, 2-24

measuring programmatically, 7-5
responding library, 18-34
RESTART (Restart Jobs) system

command, 11-5
restart messages, 11-23
RESTART statement, in WFL

sources for submitting, 3-31
RESTART task attribute, 10-17
RESTARTED task attribute, 11-3
restarting jobs and tasks, 11-1

checkpointing arrays only, 11-25
general checkpoint facility, 11-6
WFL job restarts, 11-2, 11-5

RESTORE statement, in WFL
privileged status of, 5-18

RESTRICT (Set Restrictions) system
command, 5-8

security administrator status, 5-19
RESUME command in Transaction Server,

effect on tanking, 9-18
resuming processes, 6-11
reusing task variables, 6-11
RM (Remove) system command, 19-18

sources for submitting, 3-31
rollouts

for WFL jobs, 11-2

RP (Resident Program) system command
and object code file privileges, 8-4

RPC (Remote Procedure Call), 21-1
RPCGEN, 21-2
RPG

symbolic dumps for, 10-33
tasking, capabilities of, 4-31

RQ (Remove STOQ Entries) command
in MARC, 20-22

RSVP messages
and remote processes, 12-10

and data specifications, 12-4
display in CANDE sessions, 3-4
display in MARC sessions, 3-11
DUP LIBRARY message, 19-18
language displayed in, 9-20
NO FILE message

and AUTORESTORE task attribute, 9-7
and FA command, 9-3
and ODT files, 3-24

NO LIBRARY message
during library linkage, 18-22, 18-41

REQUIRES FETCH message, 3-33
WAITING ON AN EVENT message, 6-7
WAITING ON message

and EXCLUSIVE file attribute, 19-23
RUN screen, in MARC, 3-9
RUN statement

at the ODT, 3-22
in ALGOL, 4-16
in CANDE, 3-1
in COBOL, 4-22
in MARC, 3-9
in WFL, 4-9
in WFL

entering from Operations Center, 3-17
sources for submitting, 3-27

RUN statement, in WFL
entering at ODT, 3-21

run unit
ANSI COBOL

and SHAREDBYRUNUNIT option, 18-6

S

S (Scheduled Mix Entries) system
command, 6-5

and Automatic Display mode, 3-22
sources for submitting, 3-28

save memory, 8-2
restricting use of, 8-7

Index

Index–26 8600 0494–506

SAVEBACKUPFILE print attribute
prevents removal of backup files, 9-13

SAVEDGROUPCODE task attribute, 5-29
SAVEDUSERCODE task attribute, 5-29
SAVEMEMORYLIMIT task attribute, 8-8

and program dumps, 10-34
inheritance in process family, 2-24
job queuing, 4-6

SAVEVIOLCOUNT usercode attribute
and TRY statement, 10-12

SB (Substitute Backup) system
command, 9-11

scaling, 18-146
SCHEDULE command, in CANDE, 3-7
SCHEDULED

stack state, 6-6
STATUS task attribute value, 6-3
WFL task state value, 6-4

scheduled processes, 6-3
effect of task attributes, 8-4
immunity of control programs, 7-2
preventing scheduling, 6-11

schemata, in Pascal, 17-32
scope of declarations, 15-1
scrubbing disk areas, 6-7
S-DS termination message, 10-3
SEARCHRULE file attribute

and current directories, 9-8
SECADMIN

option, of MP system command, 5-6
system option, 5-20
usercode attribute, 5-20

secondary library
dynamic provision, 18-101

SECOPT (Security Options) system
command, and tape security, 5-12

sections, in COBOL, 1-8
Secure Accountability Facility

and backup files, 9-11, 9-12
tape volume security, 5-12

Secure Identification Facility
security administrator status, 5-19

security
compiler status, 5-20
errors, recovery from, 10-12
file restrictions, 5-10
for shared logical files, 19-9
MCS status, 5-20
nonprivileged status, 5-10
nonusercoded status, 5-17
object code file privileges, 5-6
ODT status, 5-19
of libraries, 18-149

privileged status, 5-13
security administrator status, 5-19
SYSTEMUSER status, 5-19
tasking status, 5-24
violations, recovery from, 10-12

security administrator status, 5-19
of an object code file

transparency, 5-7
of an object code file, 5-6

security administrator transparent status, 5-7
Security Services for ClearPath MCP

UNITNO file attribute restrictions, 3-25,
6-14

SECURITY statement, in WFL
privileged status of, 5-18

security status
determining for a process, 18-152

SECURITYGUARD file attribute, 5-11
SECURITYMODE file attribute, 5-11

SETGROUPCODE subattribute, 5-28
SETUSERCODE subattribute, 5-28

SECURITYTYPE file attribute, 5-11
and libraries, 18-151

SECURITYUSE file attribute, 5-11
SEEK statement

and file buffers, 19-24
SELECTED stack state, 6-6
selection procedure

dynamic provision, 18-101
SEND statement

in COBOL85
in CRCR communications, 20-5
in STOQ communications, 20-12

SENSITIVEDATA file attribute, 19-17
separate programs

inclusion properties of, 2-1
initiating, 1-7

SERIALNO attribute, of tape files, 6-13
and unlabeled tapes, 6-14

SERIALNUMBER operating system
option, 6-13

server libraries, 1-2, 18-1, 18-142
ALGOL

internal tasks as libraries, 18-8
OWN clause restrictions, 18-15

attributes, 18-73
C

automatic freeze, 18-5
CANCEL statement, 18-31
CHANGE attribute, 18-29
client programs, 18-18

library declarations, 18-20

 Index

8600 0494–506 Index–27

COBOL74
automatic freeze, 18-5
export objects, 18-4
restrictions, 18-16
sharing properties, 18-7

control, 18-5
creating, 18-3
declaration, 18-20
DELINKLIBRARY function, 18-30
DONTCARE, 18-7
explicit linkage, 18-23
exporting data, 18-11

access mode, 18-13
exporting objects, 18-4

effects on global variables, 18-9
effects on local variables, 18-8

FREEZE statement, 18-4
initiating, 18-26

explicitly, 18-28
implicitly, 18-26

instances of, 18-6
internal tasks, ability to freeze, 18-8
linkage

creating, 18-21
delinking, 18-30
implicit, 18-22

linking
connection libraries to, 18-69
directly, 18-24
to connection libraries, 18-100

LINKLIBRARY function, 18-23, 18-24
matching objects, 18-24
monitoring linkage, 18-29
OWN objects, restrictions on use, 18-15
permanent, 18-4
private, 18-6
resuming, 18-17
scope of objects, 18-8
server library programs, 18-3
SHAREDBYALL, 18-6
SHAREDBYRUNUNIT, 18-6
SHARING option, 18-6
strategies, 18-142
temporary, 18-4
thawing, 18-17

server library process, 18-1
session

in CANDE, 3-1
in MARC, 3-9

session number, 5-1
session numbers, 5-2

and MARC
inheritance by JOBNUMBER, 3-13

and MAX (Maximums) system
command, 3-5, 3-12

compared to mix numbers, 5-2
in CANDE

in system command displays, 3-5
in MARC, 3-9

in system command displays, 3-12
up to 5 digits, 3-12

in CANDE, 3-5
SET statement, in ALGOL, 16-9
SETGID procedure, in ALGOL, 5-30
setgid() function, in C, 5-30
SETGROUPCODE subattribute, 5-28
SETSTATUS function, in DCALGOL

and security administrator status, 5-19
SETSTATUS granulated privilege, 5-16
SETUID procedure, in ALGOL, 5-30
setuid() function, in C, 5-30
SETUPINTERCOM function, in DCALGOL

and tasking status, 5-25
SETUSERCODE subattribute, 5-28
SHARE (Shared Family) system

command, 19-24
shared disk families

synchronizing access, 19-24
shared files, 19-1
shared locks, 19-20
shared logical files

and file attributes, 19-14
and I/O accounting, 19-13
examples, 19-15
security rules for, 19-9

SHARED value
of BUFFERSHARING file attribute, 19-19

SHAREDBYALL library sharing option
server libraries, 18-6

SHAREDBYALL sharing option
connection libraries, 18-43

SHAREDBYRUNUNIT library sharing option
server libraries, 18-6

SHAREDBYRUNUNIT sharing option
connection libraries, 18-44

sharing files
disk files, 19-17

SHARING option
and explicit initiation

connection libraries, 18-50
connection libraries, 18-43

SHAREDBYRUNUNIT, 18-44
server libraries, 18-6

DONTCARE, 18-7
PRIVATE, 18-6

Index

Index–28 8600 0494–506

SHAREDBYALL, 18-6
SHAREDBYRUNUNIT, 18-6

siblings, 2-17
signals

and interlocks, 16-25
and interrupts, 16-12
and LOCK statements, 16-25
and wait statements, 16-12
in C

and fault recovery, 10-16
simple array parameters, 18-127

in tasking, 17-29
simple blocks, 1-8

compared to other ALGOL program
structures, 4-15

simple expressions
and call-by-name parameters, 17-4
and call-by-reference parameters, 17-5

SINGLE keyword
connection libraries

versus SHAREDBYALL, 18-44
SINGLE library attribute, 18-95
SL (Support Library) system command, 18-87
SNTX termination message, 10-2
SO command, in CANDE, 3-5
SORT facility, and checkpoints, 11-13
SORTING stack state, 6-7
source files, 1-2
SOURCEKIND task attribute, 5-8

of processes run from ODTs, 3-24
SQ (Show Queue) system command, 3-28
ST (Stop) system command, 6-11

and ISOLATED procedures, 10-18, 18-132
and WFL job restarts, 11-3
sources for submitting, 3-30

STACK EXTENDED log entry, 8-6
stack number, 5-1, 5-3

and interlocks, 16-28
EVENT_STATUS result, 16-7

STACK OVERFLOW error message, 8-7
stack state, in Y command output, 6-6

versus other measures of stack state, 6-1
STACKHISTORY task attribute, 10-8
STACKLIMIT task attribute

and program dumps, 10-34
and stack overflows, 8-7

stacks (See process stacks)
STACKSIZE task attribute

and stack stretches, 8-6
effect on process scheduling, 8-5

standard form
and USERDATA function 3, 5-26

STANDARD option
of LIBTRACE system command, 18-156

START statement
in CANDE, 3-4
in MARC, 3-11
in MARC, 3-10
in WFL

entering from Operations Center, 3-17
privileged status of, 5-18

sources for submitting, 3-27
START statement, in WFL

entering at ODT, 3-21
STARTTIME (Start Time) system

command, 4-8
sources for submitting, 3-28

STARTTIME task attribute, 4-8
in CANDE, 3-4

in WFL command, 3-4
in MARC, 3-10

starvation of events, 16-19
STATE file attribute

and shared logical files, 19-14
STATE library attribute, 18-96

connection libraries, 18-45
returned in NEW_STATE parameter, 18-82

station transfer, 12-5
STATIONNAME task attribute

and CANDE tasks, 3-8
and HOSTNAME file attribute, 12-5
and MARC tasks, 3-16
in ALGOL programs, 4-17
in COBOL programs, 4-25
in WFL jobs, 4-10

status
process status, 6-1
security status (See security)

STATUS task attribute, 6-3
assignments TERMINATED

protection from, 10-13
protection from TERMINATED

assignments, 10-13
using to prevent ALGOL critical block

exits, 2-11
using to prevent COBOL critical block

exits, 2-11
STOPPED task state value, in WFL, 6-4
STOPPOINT task attribute, 10-11
STOQ (See storage queues)
STOQ_INPUT predeclared event, 20-14
STOQ_OUTPUT predeclared event, 20-14
STOQ_RQ procedure

in EVASUPPORT library, 20-22

 Index

8600 0494–506 Index–29

STOQ_WQ procedure
in EVASUPPORT library, 20-24

storage queues (STOQs), 20-7
clearing a STOQ, 20-21
creating, 20-7
displaying status, 20-25
EVASUPPORT procedures, 20-9
in ALGOL, 20-10
in COBOL74, 20-11
in COBOL85, 20-12
library interface, 20-8
MARC commands for, 20-21
parameter block, 20-7
polling the message count, 20-23
procedure result, 20-17

in ALGOL, 20-20
in COBOL74, 20-20

STOQ parameter block, 20-8
waiting on events, 20-14

in ALGOL, 20-14
in COBOL85, 20-15

structure blocks
versus procedure blocks, 1-9

stub compiler (RPCGEN)
and ONC+ RPC, 21-2

subfile index, 19-2
subfiles, 19-2
subroutines, 1-6
SUMLOG, 10-4
SUPERUSER capability, 12-7
SUPPLEMENTARYGRPS task attribute, 5-5

and file access rights, 5-11
and remote tasking, 12-8

support libraries, 18-87
attributes, 18-149

SUPPRESSED value
JOBSUMMARY task attribute, 10-5

SUPPRESSWARNING system
command, 9-19

SUPPRESSWARNING task attribute, 9-18
SUSPENDED process status, 6-3
suspended processes, 6-3

preventing suspension, 6-12
suspending and resuming, 6-11

SW (Switches) system command, 3-35
sources for submitting, 3-29

SW1 through SW8 task attributes, 3-35, 14-1
SYMBOL/POSIX/ALGOL/PROPERTIES

file, 5-29
symbolic dumps, 10-33
synchronization

of file access by multiple processes, 19-9

using events for, 16-2
using interlocks for, 16-24

SYNCHRONIZE file attribute
and file buffers, 19-24

synchronous processes, 2-2
SYSOPS (System Options) system command

and AX task attribute, 3-34
QUEUEDAX option, 3-34

system commands
entering from CANDE, 3-5
entering from MARC, 3-12
entering from Operations Center, 3-18
equivalents in CANDE, MARC, and

ODT, 3-26
system files, security status of, 5-12
system libraries, 18-155

security attributes of, 18-150
system log, 10-4

and process history, 10-6
system options (See operating system

options)
system performance

negative effects on, 18-146
SYSTEM/MARC/COMMANDER, 3-15
SYSTEMFILE support library attribute, 18-150
SYSTEMUSER granulated privilege, 5-16
SYSTEMUSER status, 5-19

and remote processes, 12-7
and remote system commands, 12-11

T

TAB (task attribute block), 8-2
tank files, 9-16
tanking mode, for remote files, 9-16
tape files

and serial numbers, 6-13
security, 5-12

volume changes and ODT status, 5-18
security

volume changes by nonprivileged
processes, 5-10

unlabeled, 6-14
TARGET task attribute, 14-1
task, 2-18

controlling from a job, 4-13
task attribute block (TAB), 8-2
task attributes, 1-3

Host Services support of, 12-14
inheritance, 3-19

affected by process inclusion, 2-1

Index

Index–30 8600 0494–506

between processes, 1-5
from interactive sources, 1-4

interprocess communication using, 14-1
limits

inheritance in process family, 2-24
of a MARC session, 3-13
recovery from errors, 10-12
synonymous with process attributes, 2-18

TASK command, in MARC, 3-10
task equations, 1-4

in CANDE, 3-6
in MARC sessions, 3-14

task file, 10-30
of RPG processes, 10-33

task state expression, in WFL, 6-4, 10-7
and compilations, 10-8

task variables, 1-5
effect on critical block definition, 2-10
reusing, 6-11
synonymous with process variables, 2-18

task window, in MARC, 3-12
TASKATTR screen, in MARC, 3-14
TASKFAULT statement, in WFL, 10-8
TASKFILE task attribute

and program dumps, 10-31
tasking, 1-3

across multihost networks, 12-1
advantages of, 1-10

increasing application performance, 1-13
increasing programmer

productivity, 1-10
reducing operator intervention, 1-10

basic concepts, 1-2
history and diagnostics, 10-1
I/O usage controls, 9-1
interactive sources for, 3-1
interprocess relationships, 2-1
limitations of, 1-14
memory usage controls, 8-1
process identity, 5-1
process privileges, 5-1
process status monitoring, 6-1
processor usage controls, 7-1
programmatic, 1-5
programming languages for, 4-1
restarting processes, 11-1

tasking features, 1-1
tasking mode, in MARC, 3-9
TASKING option, of MP system

command, 5-6
tasking parameters, 17-1

arrays, 17-29
dimensions and elements, 17-29

lower bounds, 17-29
passing to bound COBOL74

subprograms, 17-35
passing to Pascal, 17-31

matching types, 17-8
passing mode conflicts, 17-27
using, 17-7

tasking status, 5-24
of an object code file, 5-6

transparency, 5-7
tasking transparent status, 5-7
TASKING/MESSAGE/HANDLER, 12-13

as exception task of remote task, 12-5
TASKING/STATE/CONTROLLER, 12-13
TASKPORT, 12-9
TASKSTATUS screen, in MARC, 3-9, 3-10
TASKSTRING task attribute, 14-1
TASKVALUE task attribute

and MARC, 3-9
in interprocess communication, 14-1
of compilations, 10-8

TASKVIEW screen, in MARC, 3-11
TASKWARNINGS task attribute, 9-19
TCP/IP (See Transmission Control

Protocol/Internet Protocol)
TDIR (Tape Directory) system command, 3-22
TEMPFILELIMIT task attribute, 9-7

and program dumps, 10-34
inheritance in process family, 2-24
job queuing, 4-6

TEMPFILEMBYTES task attribute, 9-7
templates, of libraries (See library templates)
temporarily assuming an identity, 5-26
temporary files, 19-17
temporary libraries, 18-4
TERM (Terminal) system command (See

terminal usercodes)
effect on WFL jobs submitted from an

ODT, 3-23
effects on AT (At Remote Host) system

command, 12-11
effects on remote WFL jobs, 12-7

terminal communications (See data
communications)

terminal usercodes, 12-7, 12-11
and nonusercoded status, 5-17
inherited from ODT, 3-23
inheriting, 3-19

TERMINATED process status, 6-3
termination

abnormal, 1-5
messages, 10-2
preventing, 10-11

 Index

8600 0494–506 Index–31

causing a process to terminate, 6-9
normal, 1-5

Test and Debug System (TADS)
effect on code segment dictionaries, 8-4

THAW (Thaw Frozen Library) system
command, 6-11

thawing a library, 6-10
THIS function

connection libraries, 18-63
THISCL function

connection libraries, 18-64
thrashing, 8-2
thunks, 17-4

and COBOL programs, 4-22
effect on critical block definition, 2-10
never created for call-by-value

parameters, 17-3
TI (Times) system command, 7-4

sources for submitting, 3-29
Timed Wait statements, 16-21
TIMESTAMP file attribute

and MCS privileges, 5-24
TITLE file attribute, 19-18

and file security, 5-11
and shared logical files, 19-8
default usercode for, 9-1

TITLE library attribute, 18-97
and direct library linkage, 18-98
for connection libraries, 18-36

TO BE CONTINUED stack state, 6-7
TODISK program dump option, 10-28
TOO MANY BACKUP FILES error

message, 9-12
TOPRINTER program dump option, 10-28
Transaction Server

MARC transaction processor, 3-9
output tanking, 9-17

translation, 9-20
Transmission Control Protocol/Internet

Protocol (TCP/IP), 19-1
network transport for ONC+ RPC, 21-1

transparent object code file privileges, 5-7
trusted libraries, 18-151
trusted status, determining, 18-152
TRUSTED support library attribute, 18-150,

18-152
TRY statement

alternate error code, 10-15
and program dumps, 10-16
conditions protected against, 10-12

PROTECTED clause, 10-13
determining error cause, 10-14
in NEWP, 10-12

including multiple statements, 10-14
interaction with EPILOG procedures, 10-24
interaction with EXCEPTION

procedures, 10-24
interaction with ON statement, 10-24
interactions between statements, 10-21
multiple ELSE clauses, 10-15
optimizing performance, 10-15
PROTECTED clause, 10-13
unsafe form, 10-13
used as expression, 10-15

two-way connections, 18-146
type

property of library attributes, 18-74
TYPE, 18-25, 18-48
TYPE Declarations

and critical blocks, 2-10
TYPE OR PARAMETER MISMATCH message

and ANYTYPE parameter, 18-126
typed procedures

and libraries, 18-112
in ALGOL, 4-15

U

UCF (See User Communication Form)
UDP/IP

network transport for ONC+ RPC, 21-1
UID usercode attribute, 5-30
UIP-DLPs, 3-21
UL (Unlabeled) system command, 6-14

sources for submitting, 3-31
unbounded array parameters, 18-127

in tasking, 17-29
UNCONDITIONAL value

JOBSUMMARY task attribute, 10-5
UNITNO file attribute

and ODT files, 3-25
and tape files, 6-14
restrictions, 3-25, 6-14

UNKNOWN FILE/STATION error
message, 3-24

UNKNOWN HOST SPECIFIED error
message, 12-2

UNLOCK function
for interlocks, 16-26

UNLOCK statement, in COBOL, 16-5
UNLOCKRECORD statement

in COBOL85, 19-21
UNREADYCL function, 18-51
unrelated processes, 2-17

Index

Index–32 8600 0494–506

UNSAFE block directive
and TRY statement, 10-13

UP LEVEL ATTACH error message, 16-16
UP LEVEL TASK ASSIGNMENT error

message, 2-22
UQ (Unit Queue) system command, 4-6
User Communication Form (UCF)

and library traces, 18-156
User Datagram Protocol (UDP/IP)

network transport for ONC+ RPC, 21-1
USER entry, in USERDATAFILE

and remote processes, 12-6
and remote system commands, 12-11

USER ERROR - NO USERCODE error
message, 12-8

USER SAVE MEMORY LIMIT EXCEEDED
error message, 8-8

USER statement, in WFL, 5-14
USERBACKUPNAME file attribute, 9-15
usercode attributes

and related task attributes, 5-4
USERCODE task attribute, 5-4, 5-29

and REALUSERCODE, 5-29
and SAVEDUSERCODE, 5-29
and task initiation, 5-26
supplies default usercode for files, 9-1

USERCODEDBACKUP security option, 9-11,
9-12

usercodes
and file security, 5-10
assuming temporarily, 5-26
attributes

and CANDE sessions, 3-5
and MARC sessions, 3-13
CANDEGETMSG, 3-5

attributes, inheriting, 3-19
creating, 5-13
host (See host usercodes)
local alias, 12-7
nonusercoded processes, 5-17
of an ODT, 12-7
of remote processes, 12-6
privileged status, 5-14
terminal (See terminal usercodes)
toggling between real and saved, 5-28

USERDATA function, 5-14
and MCS privileges, 5-22
function 1 (Examine User Entry), 5-27
function 3 (Validate

Usercode/Password), 5-26
and MCS status, 5-22

USERDATA granulated privilege, 5-16
USERDATAFILE, protected status of, 5-14

USING clause
and COBOL74 library parameters, 18-16

utilities
initiating from ODT, 3-22
initiating in CANDE, 3-3
initiating in MARC, 3-10

UTILITY command, in CANDE, 3-2
UTYP parameter

CALLCHECKPOINT procedure, 11-9

V

VIOLATIONLIMIT usercode attribute
and TRY statement, 10-12

virtual memory, 8-1
VOLUME statement, in WFL

privileged status of, 5-18
VOLUME statement, in WFL, privileged

status of, 5-18

W

W (Waiting Mix Entries) system
command, 6-5

and Automatic Display mode, 3-22
and FETCH messages, 3-33
prompts the operator, 6-12
sources for submitting, 3-28

WAIT option
DELINKLIBRARY function, 18-52

WAITFORFILE option, of LINKLIBRARY
function

and direct linkage, 18-24, 18-42
client/server linkages, 18-23
connection libraries, 18-38

Waiting For Library (Mix <mix number>) to
Freeze message, 18-27

WAITING ON AN EVENT stack state, 6-7
waiting on events, 16-10

and signals, 16-12
for time period, 16-10
INTERRUPTIBLE option, 16-12
multiple events, 16-11
preventing starvation problems

when, 16-19
with reset, 16-11

WAITING ON message, 19-23
WAITLIMIT task attribute, 16-10

and program dumps, 10-34

 Index

8600 0494–506 Index–33

inheritance in process family, 2-24
job queuing, 4-6

WARNINGS file attribute, 9-19
WFL (See Work Flow Language)
WFL command

in CANDE, 3-4
in MARC, 3-10

and TASKSTATUS screen, 3-11
in MARC, 3-10
sources for submitting, 3-27

WFL compiler, 4-3
WFL input, 4-2
WFL job (See Work Flow Language)
WFLSUPPORT system library, 4-3
While not linked

Write property of library attribute, 18-74
While not ready

Write property of library attribute, 18-74
Work Flow Language (WFL), 4-1

accessing task attributes in, 4-10
and A-DS termination type, 10-3
and job queues, 4-4
and Q-DS termination message, 10-3
ARCHIVE command

and nonprivileged processes, 5-10
and privileged processes, 5-13

communication through global
objects, 15-2

critical blocks, 2-12
initiating compilations in, 4-9
initiating dependent processes in, 4-9
initiating interactive processes in, 4-10
initiating utilities in, 4-9
instruction blocks in, 3-32
interprocess communication in, 4-12
job rollouts, 11-2
jobs written in, 2-19
networks, transferring jobs across, 12-2
PRINT statement, 9-14
responding to error conditions in, 4-11
restarting

automatically, 11-2
disk resource control effects, 11-5
job side effects, 11-3
manually, 11-5
reasons for failure, 11-4
task side effects, 11-3

structuring jobs written in, 4-8
submitting jobs, 4-2

from ALGOL, 4-17
from an ODT, 3-21
from CANDE, 3-4
from COBOL, 4-25

from MARC, 3-10
from Operations Center, 3-17
from WFL, 4-10

task state expression, 6-4
using file equations in, 4-11

working directory (See current directory)
working set, 8-4
WQ (Display STOQ Count) command

in MARC, 20-23
write

property of library attributes, 18-74
WRITE granulated privilege, 5-16
write-protected disks

retention of backup files on, 9-13
WY (Display Process Status) command

in MARC, 20-25

Y

Y (Status Interrogate) system command
and CANDE sessions, 3-5
and checkpoint status, 11-20
and MARC sessions, 3-12
and RSVP messages, 6-7
displaying clients of a library

process, 18-131
displaying program dump status, 10-33
for completed processes, 10-1
sources for submitting, 3-28, 3-29
stack states displayed, 6-6
Waiting For Library to Freeze

message, 18-27
YOURHOST file attribute, 19-2
YOURNAME file attribute, 19-2

Z

ZIP statement
in ALGOL, 4-17
in DCALGOL, 4-18
in RPG, 4-31

Index

Index–34 8600 0494–506

Special Characters

??RUN (Run Code File) system
command, 3-21, 3-27

??SECAD (Security Administrator) system
command, 5-20

?-DS termination message, 10-3
__copy_to_ptr_t procedure, in C, 18-172
__free_t procedure, in C, 18-168
__heap_to_ptr_t procedure, in C, 18-116,

18-168
__malloc_t procedure, in C, 18-168, 18-172

.

86000494-506
8 6 0 0 0 4 9 4 – 5 0 6

	Documentation Notes
	Table of Contents
	Table of Figures
	Table of Tables
	Section 1. Understanding Basic Tasking Concepts
	About This Guide
	Tasking Concepts
	Programs and Processes
	Task Attributes
	Interactive Tasking
	Programmatic Tasking
	Process Termination
	Internal and External Processes
	Program Structure

	Advantages of Tasking
	Simplifying System Operations
	Increasing Programmer Productivity
	Improving Application Performance

	Limitations of Tasking

	Section 2. Understanding Interprocess Relationships
	Inclusion
	Flow of Control
	Synchronous Processes
	Asynchronous Processes
	Coroutines

	Dependency
	Communications Effects
	Flow of Control Effects – Synchronization
	Flow of Control Effects – Critical Blocks
	Process Families
	Familial Relationships
	Jobs and Tasks
	Special Types of Jobs
	Accessing Task Variables
	Setting Resource Limits

	Section 3. Tasking from Interactive Sources
	CANDE
	CANDE Tasking Capabilities
	Initiating Dependent Processes from CANDE
	Initiating Compilations from CANDE
	Initiating Utilities from CANDE
	Submitting WFL Jobs from CANDE
	Monitoring and Controlling Processes in CANDE
	Access to Task Attributes in CANDE
	Saving CANDE Commands for Later Use

	CANDE Programming Considerations
	Receiving Parameters from CANDE
	Access to Ancestral Processes in CANDE
	Communicating with CANDE Terminals

	MARC
	MARC Tasking Capabilities
	Initiating Dependent Processes from MARC
	Initiating Compilations from MARC
	Initiating Utilities from MARC
	Submitting WFL Jobs from MARC
	Monitoring Processes Initiated from MARC
	Monitoring Other Processes in MARC
	Communicating with Interactive Processes in MARC
	Access to Task Attributes in MARC

	MARC Programming Considerations
	Receiving Parameters from MARC
	Access to Ancestral Processes in MARC
	Communicating with MARC Terminals

	Operations Center
	Operations Center Tasking Capabilities
	Submitting WFL Jobs from Operations Center
	Initiating Processes from Operations Center
	Initiating Compilations from Operations Center
	Monitoring and Controlling Processes from Operations Center
	Access to Task Attributes from Operations Center

	Operations Center Programming Considerations
	Receiving Parameters from Operations Center
	Access to Ancestral Processes in the Operations Center
	Communicating with Operations Center

	ODT
	ODT Tasking Capabilities
	Submitting WFL Jobs from an ODT
	Initiating Processes from an ODT
	Initiating Compilations from an ODT
	Initiating Utilities from an ODT
	Monitoring and Controlling Processes at an ODT
	Access to Task Attributes from an ODT

	ODT Programming Considerations
	Receiving Parameters from an ODT
	Access to Ancestral Processes in the ODT Environment
	Communicating with an ODT

	Tasking Command Equivalents
	Communicating with an Operator
	Displaying Information to Operators
	Accepting Information from Operators
	Accepting Input from HI Commands
	Accepting Input from AX Commands
	Accepting Input from SW Commands

	Section 4. Tasking from Programming Languages
	Work Flow Language (WFL)
	Submitting WFL Input
	Selecting the Queue for a Job
	Specifying a Start Time
	Structuring the WFL Job
	Initiating Dependent Processes from WFL
	Initiating Compilations from WFL
	Initiating Utilities from WFL
	Initiating Interactive Processes from WFL
	Submitting Other WFL Jobs
	Access to Task Attributes in WFL
	Using File Equations in WFL
	Responding to Error Conditions in WFL
	Communicating with Other Processes in WFL
	Controlling a Task from a Job
	Restarting WFL Jobs
	WFL Example

	ALGOL
	Structuring an ALGOL Program
	Initiating Processes from ALGOL
	Initiating Compilations from ALGOL
	Initiating Utilities from ALGOL
	Initiating Interactive Processes from ALGOL
	Submitting WFL Jobs from ALGOL
	Access to Task Attributes in ALGOL
	Communicating with Other Processes from ALGOL
	Restarting ALGOL Processes
	DCALGOL Features
	ALGOL Examples

	COBOL
	Structuring a COBOL Program
	Initiating Processes from COBOL
	Using Coroutines in COBOL
	Entering Individual COBOL Procedures
	Resolving Ambiguous CALL Statements in COBOL85
	Initiating Compilations from COBOL
	Initiating Utilities from COBOL
	Initiating Interactive Processes from COBOL
	Submitting WFL Jobs from COBOL
	Access to Task Attributes in COBOL
	Invoking COBOL Programs
	Communicating with Other Processes from COBOL
	Terminating Processes from COBOL Programs
	COBOL Examples

	Other Languages

	Section 5. Establishing Process Identity and Privileges
	Process Identity
	Mix Number, Session Number, Stack Number, and MPID Attribute
	Usercode, Access Code, Charge Code, and Group Code
	Name
	Object Code File
	Originating Source

	Process Security Classes
	Nonprivileged Status
	Privileged Status
	Granulated Privileges
	Nonusercoded Status
	ODT Status
	SYSTEMUSER Status
	Security Administrator Status
	Compiler Status
	Message Control System Status
	Tasking Status

	Process Identity and Process Initiation
	Temporarily Assuming an Identity
	Real, Saved, and Effective Process Identities
	Using SETUSERCODE and SETGROUPCODE
	Understanding Real and Saved Identities
	Toggling between Identities

	Section 6. Monitoring and Controlling Process Status
	Understanding Process Status
	STATUS Task Attribute
	WFL Task State Expression
	Mix Display Commands
	Y (Status Interrogate) Stack States

	Monitoring Changes in Process Status
	Controlling Process Status
	Terminating a Process
	Thawing a Library
	Suspending and Resuming Processes
	Preparing a Task Variable for Reuse
	Preventing Process Scheduling
	Preventing Process Suspension
	Checking File Residence
	Using AUTORESTORE for Disk Files
	Identifying Tape Files
	Using UNITNO and OMITTEDEOF for Unlabeled Tape Files
	Using the AUTORM Option
	Using the ORGUNIT Value for ODT Files
	Using Conditional ACCEPT Statements

	Section 7. Controlling Processor Usage
	Controlling Process Priority
	Limiting Processor Usage
	Understanding Processor Usage Accounting

	Section 8. Controlling Process Memory Usage
	Understanding Process Memory Usage
	Main Memory and Virtual Memory
	Process Components
	Presence-Bit Operations

	Controlling Code Segment Dictionary Sharing
	Controlling Process Scheduling
	Preventing Stack Stretches
	Protecting against Stack Overflow
	Restricting Save Memory Usage

	Section 9. Controlling Process I/O Usage
	Establishing the Default Usercode for Disk Files
	Modifying File Attributes
	Controlling Disk File Usage
	Specifying Family Substitution
	Preventing File Duplications
	Automatically Restoring Missing Disk Files
	Limiting Disk Usage
	Specifying a Current Directory

	Controlling Printing
	Default Handling of Printer Output
	Storing Printer Backup Files Temporarily
	Titling of Printer Backup Files
	Submitting Print Requests
	Selecting Print Requests

	Programmatic Control Over Printing
	Other Print-Related Task Attributes

	Controlling Message Tanking
	Suppressing Unwanted System Messages
	Localization
	Limiting I/O Usage

	Section 10. Determining Process History
	Understanding Termination Messages
	Using Log Information
	Specifying the Information to Be Logged
	Controlling Job Summary Printing
	Saving the Job Summary File
	Analyzing the System Log

	Programmatically Interrogating Process History
	Determining the Type of Termination
	Determining Whether a Compilation Was Successful
	Responding to Task Failures
	Determining Where a Fault Occurred

	Protecting a Process from Abnormal Terminations
	Preventing All Abnormal Terminations
	Protection against Most Conditions
	Protection against All Conditions
	Including Multiple Statements
	Determining the Cause of the Error
	Using TRY as an Expression
	Providing Alternate Sets of Error Handling Code
	Optimizing Performance
	Triggering Program Dumps

	Protecting a Process from Faults
	Retrying a Failed Task
	Protecting a Process from Operator DS (Discontinue) Commands
	Protecting Procedures from DS and ST Commands
	Performing Cleanup during an Abnormal Termination
	Interactions between Error Recovery Statements
	Multiple TRY Statements
	TRY Statements and Library Delinkage
	TRY Statements and ON Statements
	TRY Statements, EPILOG Procedures, and EXCEPTION Procedures

	Controlling Program Dumps
	Using Program Statements to Control Program Dumps
	Using Operator Commands to Control Program Dumps
	Controlling the Program Dump Destination
	Using the Task File
	Analyzing a Program Dump from a Running Process
	Determining Whether a Dump is In Progress
	Causing Symbolic Dumps for RPG Processes
	Effect of Resource Limits on Program Dumps
	Understanding Internal and External Causes

	Section 11. Restarting Jobs and Tasks
	Designing WFL Jobs for Automatic Restarts
	Preventing Job Side Effects
	Preventing Task Side Effects
	Understanding Job Restart Failure
	Understanding Disk Resource Control Effects

	Manually Restarting WFL Jobs
	Checkpoint Facility
	Programmatically Invoked Checkpoints
	Storing Information with a Checkpoint
	Planning for File Recovery
	Planning for Library Recovery
	Invoking the Checkpoint
	Creating Output Disk Files with a Checkpoint
	Restrictions on the Use of Checkpoints
	Determining Eligibility for Checkpoints
	Determining Whether the Checkpoint Succeeded

	Operator-Invoked Checkpoints
	Programmatically Preventing Operator Checkpoints
	Displaying the Checkpoint Status
	Invoking a Checkpoint Interactively
	Canceling a Checkpoint Interactively
	Operator Actions after the Checkpoint

	Restarting a Checkpointed Task
	Restarting Checkpointed Tasks Automatically
	Initiating a Restart Explicitly

	Using the CHECKPOINTARRAY Procedure

	Section 12. Tasking across Multihost Networks
	Submitting Remote WFL Jobs
	Running a Local WFL Job on a Remote Host
	Submitting a WFL Job Stored on a Remote Host
	Meeting Remote Job Queue Requirements

	Initiating Non-WFL Remote Processes
	Specifying the Remote Host
	Limitations on a Non-WFL Remote Process
	Host Availability
	Initiating Processes from a Remote Session
	Interrogating the Remote Ancestry of a Process

	Preventing User Identity Problems
	Usercode Identity
	Accesscode and Charge Validation
	Family and Group Code Identity

	Logging of Remote Processes
	System Log Entries
	Job Summaries for Remote Processes

	Resource Limits for Remote Processes
	Interacting with Remote Processes
	Viewing Remote Process Messages
	Local Operator Control of Remote Processes
	MARC Control of Remote Processes
	CANDE Control of Remote Processes
	Visibility of Remote Processes to Remote Operators
	TASKING/MESSAGE/HANDLER and TASKING/STATE/CONTROLLER
	Using Host Services-Supported Task Attributes

	Section 13. Understanding Interprocess Communication
	Methods of Sharing Objects
	Methods of Synchronizing Access

	Section 14. Using Task Attributes
	Section 15. Using Global Objects
	Communication through Global Objects in WFL
	Communication through Global Objects in ALGOL

	Section 16. Using Events and Interlocks
	Using Events
	Declaring Events
	Accessing the Available State
	Procuring an Event Unconditionally
	Procuring an Event Conditionally
	Liberating an Event
	Partially Liberating an Event
	Testing the Availability of an Event
	Determining the Ownership of an Event

	Accessing the Happened State
	Causing an Event
	Implicitly Causing an Event
	Causing and Resetting an Event
	Partially Causing an Event
	Resetting an Event
	Waiting on an Event
	Waiting on Time
	Waiting on and Resetting an Event
	Waiting on Multiple Events
	Waiting for POSIX Signals
	Testing the Happened State
	Duration of the Happened State

	Using Implicitly Declared Events
	Using Interrupts
	Declaring Interrupts
	Attaching or Detaching an Interrupt
	Enabling or Disabling an Interrupt
	Using General Disable and Enable Statements
	Waiting for Interrupts

	Efficiency Considerations
	Buzz Loops
	Preventing Excessive Interrupt Overhead
	Preventing Starvation Problems

	Discontinued Processes and Events
	Using EPILOG and EXCEPTION Procedures
	Using Timed Wait Statements
	Using Conditional Procure Statements
	Determining Whether to Liberate an Event

	Example of Event Usage

	Using Interlocks
	Declaring Interlocks and Interlock Arrays
	Locking an Interlock
	Unlocking Interlocks
	Interrogating the Interlock Status
	Discontinued Processes and Interlocks
	Replacing Readlocks with Interlocks

	Section 17. Using Parameters
	Determining the Scope of Parameters
	Parameter Passing Modes
	Call-by-Value Parameters
	Call-by-Name Parameters
	Call-by-Reference Parameters
	Read-Only Parameters
	Specifying the Passing Mode

	Using Tasking Parameters
	Matching Each Parameter Type
	Resolving Passing Mode Conflicts
	Passing Arrays
	Matching Dimensions and Elements
	Matching Unbounded Arrays
	Matching Pascal Arrays
	Passing COBOL74 Arrays to Bound Procedures

	Section 18. Using Libraries
	Introducing Libraries
	Creating Server Library Programs
	Exporting Objects
	Freezing the Library
	Controlling Server Library Sharing
	Initiating Internal Server Library Processes
	Using Server Library Objects
	Local Objects in Server Libraries
	Global Objects in Server Libraries
	Exported Data in Server Libraries
	Restrictions on OWN Objects in Server Libraries

	Restrictions on COBOL74 Libraries
	Monitoring Server Library Linkage
	Thawing and Resuming Server Libraries

	Creating Client Programs
	Importing Procedures to Client Programs
	Importing Data to Client Programs
	Specifying Client Libraries
	Linking to Server Libraries
	Implicitly Linking to Server Libraries
	Explicitly Linking to Server Libraries
	Directly Linking to Server Libraries
	Matching Client and Server Library Objects

	Initiating Server Library Processes
	Implicitly Initiating a Server Library
	Explicitly Initiating a Server Library

	Monitoring Client Process Linkage
	Delinking from Server Libraries

	Creating Connection Library Programs
	Declaring a Connection Library
	Establishing Connections
	Explicitly Linking Connection Libraries
	Assigning Connection Library Attributes
	Using LINKLIBRARY for the Requesting Library
	Using READYCL for the Responding Library

	Implicitly Linking Connection Libraries
	Directly Linking Connection Libraries
	Controlling Connection Library Sharing
	Approving a Connection
	Monitoring Connection State
	Matching Connection Library Objects
	Initiating Connection Libraries
	Implicitly Initiating a Connection Library
	Explicitly Initiating a Connection Library

	Unreadying a Connection Library
	Delinking Connection Libraries
	Using PROLOG and EPILOG Procedures

	Using Connection Library Objects
	Global Objects in Connection Libraries
	Connection Objects in Connection Libraries
	Local Objects in Connection Libraries
	Exported and Imported Data in Connection Libraries
	Predeclared Objects: THIS and THISCL
	Referencing the Connection with THIS
	Referencing the Connection Library with THISCL

	Passing Connections as Parameters
	Restrictions on OWN Objects in Connection Libraries

	Linking Connection Libraries, Server Libraries, and Client Programs
	Linking a Client Library to a Connection Library
	Linking a Connection Library to a Server Library
	Linking to a Connection Library in a Server Library Program
	Directly Linking Client, Server, and Connection Libraries

	Using Library Attributes
	APPROVAL
	AUTOLINK
	CHANGE
	CLUSAGE
	CONNECTIONS
	DELINKEVENT
	FUNCTIONNAME
	INTERFACENAME
	INTNAME
	LIBACCESS
	LIBERROR
	LIBPARAMETER
	SINGLE
	STATE
	TITLE

	Methods of Providing Objects
	Direct Provision
	Indirect Provision
	Dynamic Provision
	Circular Provision
	Understanding Circular Linkage and Circular Provision
	Example 1: Circular Provision of a Single Procedure
	Example 2: Circular Linkage without Circular Provision
	Example 3: Circular Linkage Including a Connection Library
	Example 4: Circular Linkage with an Extra Connection Library Linkage
	Example 5: Noncircular Linkage Involving Connection Libraries
	Example 6: Circular Linkage with a Connection Library as Client

	Restrictions on Circular Linkage and Circular Provision

	Matching the Object Name

	Type Matching
	Matching Procedure Types
	Matching Parameter Types
	ALGOL Parameter Types
	C Parameter Types
	COBOL74 Parameter Types
	COBOL85 Parameter Types
	FORTRAN77 Parameter Types
	NEWP Parameter Types
	Pascal Parameter Types

	Using the ANYTYPE Parameter
	Matching Array Lower Bounds
	Matching Parameter-Passing Mode
	Matching Data Types

	Determining Which Clients Are Linked to a Library
	Understanding Library Process Structure
	Process Stacks
	Using Isolated Procedures in Libraries
	Library Task Attributes
	Error Handling

	Design Strategies for Linking Libraries
	Technical Architectures
	Client Strategies
	Server Strategies
	Middleware Strategies

	Factors Affecting System Performance
	Delinkage Overuse
	Hazards of Circular Connections

	Security Considerations for Libraries
	Privileges of the Importing Process
	Support Library Attributes
	Nonresumable Libraries
	Restricting Access to a Library Code File
	Using Linkage Classes

	Library Debugging
	Server Library Examples
	ALGOL Library: OBJECT/FILEMANAGER/LIB
	ALGOL Client Program #1
	ALGOL Library: OBJECT/SAMPLE/LIBRARY
	ALGOL Library: OBJECT/SAMPLE/DYNAMICLIB
	ALGOL Client Program #2
	ALGOL Circular Client Programs
	ALGOL Incorrect Circular Libraries
	C Library and ALGOL Client Program
	C Client Program Passing Array to ALGOL Library
	C Client Program Passing File to ALGOL Library
	COBOL74 Library: OBJECT/SAMPLE4
	COBOL74 Library: OBJECT/SAMPLE5
	COBOL74 Client Program
	COBOL85 Libraries and Client Program
	FORTRAN77 Library and Client Program
	Pascal Library

	Connection Library Example

	Section 19. Using Shared Files
	Sharing Communications Files
	Using Port Files
	Using Host Control (HC) Files
	Using HYPERchannel (HY) Files

	Sharing Other Kinds of Files
	Using Shared Logical Files
	Specifying the File Location
	Synchronizing Access with Shared Logical Files
	Establishing Access Rights
	Understanding I/O Accounting
	Understanding File Attribute Access
	File Sharing Examples

	Accessing Disk Files Through Separate Logical Files
	Entering a File in the Directory
	Matching Physical Files
	Synchronizing Access with Separate Logical Files
	Using the BUFFERSHARING File Attribute
	Using the EXCLUSIVE File Attribute
	Avoiding Nonpreferred Methods
	Synchronizing Access on Shared Disk Families

	Section 20. Using Core-to-Core (CRCR) and Storage Queue (STOQ)
	Using CRCR
	How CRCR Processes Interlock
	Using CRCR Through Library Calls
	Using CRCR Through COBOL85 Statements

	Using STOQ
	Creating and Using STOQs
	Using STOQ Through Library Calls
	Using STOQ Through COBOL85 Statements

	Waiting On CRCR or STOQ Events
	CRCR and STOQ Events in ALGOL
	CRCR and STOQ Events in COBOL85

	Handling the CRCR or STOQ Result
	Result Handling in ALGOL
	Result Handling in COBOL74

	Operations Interfaces to CRCR and STOQ
	Clearing a STOQ
	Polling a STOQ
	Displaying Status of CRCR or STOQ Operations

	Section 21. Using ONC+ Remote Procedure Call (RPC)
	Appendix A. Related Product Information
	Index
	Master Glossary

