EB5001

Stock Analysis using Big Data Engineering
for Analytics

FINANCIAL
OPPORTUNITY

REUEF

TEAM 1

ANURAG CHATTERJEE (A0178373U)
BHUJBAL VAIBHAV SHIVAJI (A0178321H)
GOH CHUNG TAT KENRICK(A0080891Y)

LIM PIER (A0178254X)

LIU THEODORUS DAVID LEONARDI (A0178263X)
TEO WEI KIN DARREN (A0178197L)

TSAN YEE SOON (A0178316Y)

Contents

O (=T o UL A V2T Yo 4 =
PN 21120 EY & I L=Tel o a o] FoT o 1o Y o For- o IR
3 INStAllatioNs @Nd SEE-UP ciioueiiiii it e e e s e e s sarteeeeserraeeesanns
3.1 INSTAIIING JDK .ottt e e e e e e et e e e e e e e e e e e s s s s aabtsbaaeeaaaaeeesesasnsssssaaseeeaaesesannnsnes
3.2 INSTAIIING HDFS ... ettt e et e e e e e e e e e e s e s et abtaaeaeeeeaeeseeesannssssasaseeaaaeseesannsnes
3.3 INSEAIIING SPATK...ceeeeeeee et e e e e e e e e s et r e e e e e eaeeeeeesnnsasbaaaeeeaaaeseeaannnns
3.4 Y=y T o N O - o [PSR
3.5 INstalling Kafka @and ZOOKEEPETcccivcuiiiii ittt et e e e e e e e e e s e
351 Creating Kafka topiCS cuvvuuiiiiiiiiiee e

3.6 Setting up and starting the real-time data ProducCerscccovviiriiiiei e
3.6.1 Producer fOr IEX data.....cuee ittt s
3.6.2 Producer for StOCKTWILS data........eeeiviieiiiieeiie et

3.7 SEttING UP SPArK JODS ..ttt e s e e e e e araeae s
3.8 INSTAIIING REAIS ..ttt e e e e e e e e e e e s e s e anbtaaeaeeeeaeeeeeesannssssasaseeaaaesesannnnnes

3.9 Visualizing USING QUIK SENSEvviiiiiiiie ettt e s e e s s st e e e e s b ee e e s esasreeesesnnes

1 Executive summary

The objective of the document is to introduce the Big data landscape, describe the functionalities of the
various components as part of this project and then lay down the steps that need to be performed to
install and set up the components so that the solution that has been built can be realized.

2 Big data technologies landscape

The overall landscape looks like the below in terms of Big data technologies and the proposed

functionalities.

Real Time Stock Twits

Figure 1 Big data technologies landscape

Distributed
Columner
Database

A Real Time Stream

SprK Processing
Streaming

Real time outputs

‘#(‘Z Injestion -

Spa

Streaming

@

Qlik’ Sense

Serving Data Ponds

AMCHE(A/

Descriptive analytics, |
predictive analytics,
ELT and archival jobs |

- %ﬁ

SpQr MLIib

There are 2 real-time data producers which fetch data from 2 different REST APIs. The stock quote API
provides updates on the real time price of the stocks from IEX and the stock twits API provides tweets
related to the stock. The producers continuously fetch responses from these APIs and push the retrieved

JSON to Kafka topics. The data from the Kafka topics are then processed by Spark streaming jobs in real-
time. There are 2 category of jobs, one that perform real-time aggregations and visualize in a console
and other that pushes to Cassandra. The data at rest in Cassandra are then processed by 2 categories of
Spark batch jobs. The first category performs aggregations on the static data and the other category
performs batch machine learning. The results from these batch jobs are saved in separate tables in
Cassandra. A separate batch job performs archival by routinely converting the data stored in Cassandra
to Parquet files. Qlik Sense is used to visualize the results of the batch processing into a dashboard using
the Cassandra connector. The below sections focus on setting up the various components to realize the
above landscape end to end.

3 Installations and set-up

These installation steps are tested on a machine with 32GB of memory running on Ubuntu 18.04.

3.1 Installing JDK

$ sudo apt install openjdk-8-jdk

You should see the following message after you check the java version.

$ jJava -version

openjdk version "1.8.0 191"

OpenJDK Runtime Environment (build 1.8.0 191-8ul91-bl2-2ubuntu0.18.10.1-b12)
OpenJdDK 64-Bit Server VM (build 25.191-bl2, mixed mode)

Set the path and JAVA_HOME variable, add the following commands to ~/.bashrc file.

export JAVA HOME="/usr/lib/jvm/java-8-openjdk-amd64/jre/bin/java"
export PATH=S$SPATH:S$JAVA HOME/bin

3.2 Installing HDFS

Install Hadoop 3.1.2 by executing this commands:

cd /opt

sudo wget https://www-eu.apache.org/dist/hadoop/common/hadoop-3.1.1/hadoop-3.1.1.tar.gz .
sudo tar -zxvf hadoop-3.1.l.tar.gz

sudo 1ln -s Hadoop-3.1.1 hadoop

Uy A Uy Uy

and add this entries to ~/.bashrc file

export HADOOP HOME=/opt/hadoop
export PATH="$ HADOOPiHOME/bin: SPATH"

Hadoop HDFS is used by Archival script to archive old data (older than 10 year) based on UNIX
timestamp information as Parquet files with Snappy compression.

3.3 Installing Spark

Install Spark 2.3.3 by executing these commands:

cd /opt

sudo wget https://www-us.apache.org/dist/spark/spark-2.3.3/spark-2.3.3-bin-hadoop2.7.tgz .
sudo tar -zxvf spark-2.3.3-bin-hadoop2.7.tgz

sudo ln -s spark-2.3.3-bin-hadoop2.7 spark

Uy i 0

and add this entries to ~/.bashrc file

export SPARK HOME=/opt/spark
export PATH="$SPARK7HOME/bin:$PATH"

3.4 Setting up Cassandra

In order to run the Cassandra 3.11.4, we need to install docker on Ubuntu machine based on this
guideline: https://www.digitalocean.com/community/tutorials/how-to-install-and-use-docker-on-
ubuntu-18-04.

You need to assign Cassandra broadcast IP address to your private IP address.

$ ip addr show

Example: Private IP = 172.30.0.172

export CASSANDRA IP ADDRESS=172.30.0.172

Then run the Cassandra docker container by executing these bash commands.
$ mkdir -p /mnt/data/var/lib/cassandra

$ docker run --name cassandra-server --network cda -d -e
CASSANDRAiBROADCASTiADDRESS="${CASSANDRAfIPiADDRESS}" -p 7000:7000 -p 9042:9042 -v
/mnt/data/var/lib/cassandra:/var/lib/cassandra cassandra:3.11.4

3.5 Installing Kafka and Zookeeper

This section is on the instructions to install Apache Kafka and the dependencies required. The required
dependency is Zookeeper. The version that we have used for Apache Kafka and Zookeeper are as shown
below:

- ZooKeeper 3.4.6 (ZooKeeper-3.4.6.tar.gz)
- Apache Kafka 1.1.1 (Apache Kafka 1.1.1)

We will download Zookeeper using the following command and install using the command line.

cd opt/

sudo wget https://archive.apache.org/dist/zookeeper/zookeeper-3.4.6/zookeeper-3.4.6.tar.gz
sudo 1ln -s /opt/zookeeper-3.4.6 /opt/zookeeper

cd zookeeper

mkdir data

Uy O A Uy Uy

Upon installing Zookeeper, we will create the configuration file for Zookeeper to initialize properly.

$ vim conf/zoo.cfqg
tickTime=2000
dataDir=/path/to/zookeeper/data
clientPort=2181

initLimit=5

syncLimit=2

The command code will initialize the Zookeeper server and if the initialization is successful, the
command will be similar to the one as shown below.

$ bin/zkServer.sh start
$ JMX enabled by default
$ Using config: /Users/../zookeeper/bin/../conf/zoo.cfg

$ Starting zookeeper ... STARTED

To check if the Zookeeper is working properly, we can run the following command to check if Zookeeper
is working. If it is working, we will be able to see that it is connected as shown below.

$ bin/zkCli.sh
Connecting to localhost:2181

WATCHER: :
WatchedEvent state:SyncConnected type: None path:null
[zk: localhost:2181 (CONNECTED) 0]

After installing, we will continue to work on installing Kafka. As mentioned, the version we have used for
this project is Apache Kafka 1.1.1. The following commands will download Apache Kafka and install it.

cd opt/

sudo wget https://archive.apache.org/dist/kafka/1.1.1/kafka 2.11-1.1.1.tgz
tar -zxf kafka 2.12-2.1.0.tgz

sudo 1ln -s /opt/kafka 2.12-2.1.0 /opt/kafka

cd kafka

Uy 0 Uy Uy Uy

You can start the server by giving the following command.

$ bin/kafka-server-start.sh config/server.properties

After starting the command, if Kafka were to run smoothly, we will be able to see the following response
on the screen.

$ bin/kafka-server-start.sh config/server.properties
[2016-01-02 15:37:30,410] INFO KafkaConfig values:
request.timeout.ms = 30000

log.roll.hours = 168

inter.broker.protocol.version = 0.9.0.X

log.preallocate = false
security.inter.broker.protocol = PLAINTEXT

3.5.1 Creating Kafka topics
The following command will create the topic stockquotes for the Kafka producer. The first command will
be for the stockquotes. The second command will be for the stocktwits.

$ sudo SKAFKA HOME/bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1
--partitions 1 --topic stockquotes

$ sudo SKAFKA HOME/bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1
--partitions 1 --topic stocktwits
3.6 Setting up and starting the real-time data producers

We have got 2 different producers for streaming the data from 2 different data sources to 2 Kafka topics
created as per section 3.5.1

$ sudo SKAFKA HOME/bin/kafka-console-producer.sh --broker-list localhost:9092 —topic stockquotes

3.6.1 Producer for IEX data

The python script named “iex_producer.py” will act as a producer and will take date time in epoch
format as a command line parameter. This Python file will request the data from
“https://api.iextrading.com/1.0/stock/AAPL/ “ URL and transmit the response to the topic called
“stockquotes” created as per section 3.5.1. The command for starting the producer is

$ python iex producer.py 20190415

APl response format to be transmitted to the “stockquotes” topic is shown below.

dreamteam@pier-XPS-8930: ~/Documents

File Edit View Search Terminal Help

Pushed for offset: 19

09:50:00

09:50

{'date': '20190415', 'minute': '09:50', 'label': '09:50 AM', 'high': 199.01, 'low': 198.875, 'average'

198.953, 'volume': 1917, 'notional': 381392.975, 'numberOfTrades': 22, 'marketHigh': 199.03, 'market
Low': 198.87, 'marketAverage': 198.96, 'marketVolume': 70522, 'marketNotional': 14031077.3975, 'market
NumberOfTrades': 376, 'open': 198.92, 'close': 198.99, 'marketOpen': 198.9, 'marketClose': 199.01, 'ch
angeOverTime': -0.0005074000020095004, 'marketChangeOverTime': 0.000981058033356082}

Pushed for offset: 20

09:51:00
09:51

3.6.2 Producer for StockTwits data
In order to ingest StockTwits data, please run Ingestion-StockTwits-Producer.jar with parameters:

e Topic name: stock-twits
e Stock ticker: "AAPL", "MSFT", "GOOG", etc
e Redis Host IP Address: 127.0.0.1 since we host Redis server locally

$ jJava -jar Ingestion-StockTwits-Producer.jar stock-twits AAPL 127.0.0.1

objc[1l4636]: Class JavalaunchHelper is implemented in both
/Library/Java/JavaVirtualMachines/jdk1.8.0 144.jdk/Contents/Home/bin/java (0x10369e4c0) and
/Library/Java/JavaVirtualMachines/jdk1.8.0 144.jdk/Contents/Home/jre/lib/libinstrument.dylib
(0x1037224e0) . One of the two will be used. Which one is undefined.

SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".

SLF4J: Defaulting to no-operation (NOP) logger implementation

SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.

Pull stock tweets from https://api.stocktwits.com/api/2/streams/symbol/AAPL.json?since=150025459
since ID: 150025574, max ID: 150027266

Publish AAPL stock tweets: id AAPL-150027266

Publish AAPL stock tweets: id AAPL-150027168

Publish AAPL stock tweets: id AAPL-150027146

Publish AAPL stock tweets: id AAPL-150026955

Publish AAPL stock tweets: id AAPL-150026876

Publish AAPL stock tweets: id AAPL-150026822

Publish AAPL stock tweets: id AAPL-150026445

Publish AAPL stock tweets: id AAPL-150026408

Publish AAPL stock tweets: id AAPL-150026303

Publish AAPL stock tweets: id AAPL-150026279

Publish AAPL stock tweets: id AAPL-150026257

Publish AAPL stock tweets: id AAPL-150026234

Publish AAPL stock tweets: id AAPL-150026212

Publish AAPL stock tweets: id AAPL-150026193

Publish AAPL stock tweets: id AAPL-150026190

Publish AAPL stock tweets: id AAPL-150026163

Publish AAPL stock tweets: id AAPL-150026103

Publish AAPL stock tweets: id AAPL-150026044

Publish AAPL stock tweets: id AAPL-150026021

Publish AAPL stock tweets: id AAPL-150025870
Publish AAPL stock tweets: id AAPL-150025839
Publish AAPL stock tweets: id AAPL-150025824
Publish AAPL stock tweets: id AAPL-150025720
Publish AAPL stock tweets: id AAPL-150025663
Publish AAPL stock tweets: id AAPL-150025647
Publish AAPL stock tweets: id AAPL-150025636
Publish AAPL stock tweets: id AAPL-150025632
Publish AAPL stock tweets: id AAPL-150025618
Publish AAPL stock tweets: id AAPL-150025577
Publish AAPL stock tweets: id AAPL-150025574
Message sent successfully

3.7 Setting up Spark jobs

The different Scala projects as per different task have been created and converted into “jar” format. The
commands for executing jars can be given as follows. All the JARs are uploaded to Google drive and are
available in this link: https://drive.google.com/drive/folders/1kYnwePOWGCPd1lyesRgAtZUrtLXoCqqg-g.

$ spark-submit Streaming-Spark-StockwithUnixTS.jar localhost:9092 groupl stockquotes

This is a consumer Spark-Streaming job which will get the messages from “stock-twits” topic and insert
them in Cassandra table.

$ spark-submit SparkStreaming.jar

This is a consumer Spark-Streaming job which will get messages from “stockquotes” topic and perform
moving average for messages received for 10 seconds.

$ spark-submit BatchML.jar 18.136.251.110 9042

This is a batch job which will use Spark-Machine Learning to predict the marketAverage price.

$ spark-submit StockTwitAnalytics.jar

This is a batch job which will do batch aggregations on stock-twits data.

$ spark-submit StockQuoteAggregatesBatch.jar
This is a batch job which will do batch aggregations on |EX data.

3.8 Installing Redis

We run Redis 5.0.4 by executing these commands:
$ mkdir -p /mnt/data/var/lib/redis/data

$ docker run --name redis-server --network cda -v /mnt/data/var/lib/redis/data:/data -p 6379:6379
-d redis:5.0.4 redis-server --appendonly yes

3.9 Visualizing using Qlik Sense

1) Install Qlik Sense Desktop from the URL below: https://www.qlik.com/us/try-or-buy/download-
alik-sense

2) ltisrequired to setup a free Qlik Sense account

3) Once installed, paste the gvf file into the directory below

|| > ThisPC > Documents > Qlik > Sense > Apps

~
A Name
55
? || DataPrepAppCache
! precedents
s * l] Search
its »* [Big_Data.qvf

4)
downloads

5) Setup the ODBC connector

Download the Qlik Sense & Cassandra connector: https://academy.datastax.com/quick-

ODBC Data Source Administrator (64-bit)

|
User DSN System DSN File DSN Drivers Tracing Connection Pooling Al

DataStax Cassandra ODBC Driver DSN Setup

Data Source Name: |
System Data Sources: | |
Name Platform Driver
Amazon Redshit ODBCDSN ~ 64bt Amazon Redshit (64) Host: [18.138.251110 |
bigdatacass 64bit DataStax Cassandra ODBC Driver: Port: | 3042 |
DataStax Cassandra ODBC DSN 64bit DataStax Cassandra ODBC Driver
Default keyspace: | |
Authentication
N0 v
User name: l
| Password: ‘
An ODBC System data source stores information about how to connec|
A System data source s visible to all users of this computer. including | Encrypt key file password for:
() Current user only (©) All users of this machine
. = - -
| Cancs
v2.5.7.1012 (64 bit) [et [[ok][concel |

6) The below shows how the Qlik Sense ODBC was initially setup (not required if the qvf file is

pasted into the app folder in step 3)

Create new connection (ODBC)

32+it) 64-bit

Amazon Redshift ODBC DSN I
ner nen

Username

Password

Name

[bigdatacass

