
TeamBallGame Template

Reference Documentation

This template is designed to allow creation of sports simulations and games
which use a team of players, a ball, a field, and goals.

1

GameObjects in SampleScene

GameConfiguration

2

Model

This field contains values and references used in the simulation of the game,
and values which modify the simulation and gameplay. You are able to access
this model anywhere in your own code via:
var model = Simulation.GetModel();

Config

This field contains values and references used in non-gameplay parts of the game, such as
audio clips and particle system prefabs. You are able to access this instance anywhere in your
own code via:
var config = Simulation.GetModel();

Controllers

MetaGameController

This component controls the context switch between the menu and gameplay.

GameController

This component runs the game simulation, initialising the field, reading input
and ticking the main simulation loop.

UICanvas

This is the main menu canvas, built using the Unity UGUI system. It contains a number of
switchable tabs which are placeholders for your own GUI screens.

3

GameplayCanvas

This is the game canvas, it is displayed when the game simulation is running. It displays game
score and a goal notification. You would add any other gameplay UI into this canvas.

Cameras

This is the container for the Cinemachine camera setup, including the dolly track used to move
the camera along the length of the field.

Teams: Home and Away

The team component on these game objects is used to configure the home team and away
team. Each team must be assigned a goal game object from the scene, and a number of field
positions. Field positions are points on the field where a player for the team will be instantiated
when the game starts.

The players array is left empty, and is automatically populated with the players for that team
when the game starts. The team components are available in the BallGameModel.

4

Home Goal and Away Goal

These game objects contains the visual setup of the goal and physics colliders which surround
the center trigger. This prevents entry into the trigger from all sides except the front of the goal.
The trigger has a Goal component, which specified the team which owns the goal, and the point
value of this goal.

Architecture

The code is split into four functional systems.

Mechanics:
The fundamental mechanics of the game are provided by the Mechanics
namespace. This area holds all code required to create events which are used
to derive gameplay. It can update the model and post events, but rarely
subscribes to events. Game mechanics are generally implemented using regular Unity idioms.

Gameplay:
The Gameplay folder/namespace contains events that are triggered by the
Mechanics. This is the area of code a game designer would modify to
implement the rules of the game, creating gameplay. It can post events and
modify the game model. Developers should try and avoid using Unity specific
idioms in this code, just modify the model and post new events.

Model:
The Model folder/namespace contains classes which hold the data required
for the game. Both the Mechanics and the Gameplay systems can access and
modify the model. The model generally does not contain any code apart from
data modification or query methods.

Visual:
The visual namespace typically provides functionality for modifying game
feedback mechanisms, which are not related to mechanics or gameplay. Eg
Visual Effects, Music or Animation code. Visual Systems can subscribe to
events, but generally do not post events or modify the model.

5

Customising Behaviour

There are two ways to create behaviour when an event is fired. The Execute
method of the event class can be modified, or a delegate can be assigned to
the OnExecute event delegate which is fired after the Execute method has run.

6

