
Capstone-004 Spring 2018
MANAGEMENT INFORMATION SYSTEMS | UNIVERSITY OF NEBRASKA AT OMAHA

Technical Manual

1

Table of Contents
Introduction 3

Purpose 3

Terms/Definitions 3

System Requirements 4

Hardware Requirements 4

Software Requirements 5

Local Environment Installation 5

Install WAMP/MAMP 5

PHPStorm 7

Install GIT 7

Install Composer 8

Install Laravel 9

Application Architecture 10

Set Up TAGG with GitHub Desktop 11

Local Database & Website 11

Development Environment 12

Production Environment 13

Production URL 13

Local Website 13

Database Migrations and Seedings 13

Database Access 14

Integration with Stripe 15

Integration With Amazon Web Service 16

Quality Assurance 18

Automation Environment 18

Installation 18

Setup 19

Selenium Webdriver 19

Method Two - Selenium Scripts using JAR File 20

2

Introduction

The purpose of this document is to describe the architecture, design, technical
dependencies, key configurations and specifications used to develop and deploy the
CharityQ application. Here the recipient is assumed to be proficient in administering and
maintaining the application developed.

Purpose

CharityQ is a platform designed to save business owners their time and money by assisting
with tasks related to charitable giving. The application is intended to contain the following
functionality:

● Standardized Requests - The application is intended to standardize and organize
donation requests to make them easier to process. A standard donation form is
attached to the business website where donation requesters can submit their
requests.

● Assisted Decisions – The application also assists the business user in processing the
requests to decide which organizations they prefer to donate to. Business rules are
determined by the admin user and automatically sort requests based on the
business preferences.

● Communication – Once a decision is made, the system generates an email to the
donation requestor. Email templates for approved and rejected requests are
available and may be edited by the admin user.

● Organization of Donation Information – With all donation requests available within
one application it is easy for a business owner to confirm the business is helping the
organizations that align with the company’s vision. By setting a monthly budget, a
business owner is also able to quickly determine when the company can assist
additional organizations, and when to pass on a donation request.

Terms/Definitions

Terms Definition

Agile
A software development project management methodology that is based on
iterative development; it emphasizes on evolving solutions and client
interaction

AWS S3 Cloud service provided by Amazon Web Service used for file storage.

CharityQ
The application organizations can use to organize and track donation requests
and response to donation requestors.

Composer Used to manage Laravel dependencies

GIT version control system

Heroku
cloud platform based on a managed container system, with integrated data
services and a powerful ecosystem, for deploying and running modern apps.

PHP
Storm

standard development IDE

Pull Send code from the online code repository to the developer’s local machine

Push Send code from the developer’s local system to the online code repository

Selenium Open source programs used to automate the testing of a web application.

Stripe A third-party payment processing service used by the application

3

User Any individual signing in to the CharityQ application

WAMP

Open source applications, combined with Microsoft Windows, which are
commonly used in Web server environments. The WAMP stack provides
developers with the four key elements of a Web server: an operating system,
database, Web server, and Web scripting software.

System Requirements

This section describes the software and hardware required for an individual to administrator
the CharityQ application.

Hardware Requirements

CharityQ is a web browser-based application which can be accessed either through a
browser on a desktop, laptop or a mobile device. It is recommended that the browsers
being used are compatible with HTML5 and CSS3.

Commonly used browsers and the recommended versions:

Internet Explorer: Version 9 and above

Mozilla Firefox: Version 64 or above

Google Chrome: Version 60 or above

Safari: Version 5 or above

Commonly used mobile browsers and the recommended versions:

Safari: Version 5 or above

Google Chrome: 65 or above

For developing the application, an application, database and a web server are needed. To
run these server’s, it is recommended developers have the following requirements installed
or updated on the development environment:

Operating Systems: Windows 8 or higher, Ubuntu 12.0.4, MacOS 10 or higher

A 64-bit computer processor

Software Requirements

For developing the CharityQ application these are some of the required software’s and their
versions:

Server

PHP: Version 7.0

Apache Server: Version 2.4.23

MySQL: Version 5.7.14

Framework

Laravel: Version 5.5

4

Version Control

GitHub Desktop: Version 1.0.9

GitHub: Version 2.11

Development Environment

PHP Storm: Version 2017.3

Local Environment Installation

The following guide is intended for developers at TAGG to help them get their local
environment working and verify they can commit changes to their team repository.

Install WAMP/MAMP

WAMP (MAMP or IOS) will be used for the local environment which can be obtained from
the link: http://www.wampserver.com/en/ . The WAMP server will install Apache2, PHP,
MySQL database, and PhpMyAdmin to manage the local database. WAMP server must be
started and its status can be verified by checking the system tray for the “Green WAMP”
indicator.

WAMP installation can also be verified by going to http://localhost, under WAMP settings.

Click on the phpMyAdmin. This tool to manages the database on the local system. The
opening page should look like this:

http://www.wampserver.com/en/
http://www.wampserver.com/en/
http://localhost/

5

By default, the username is root and there is no password. Click on Go to access the
database of the application.

PHPStorm

PhpStorm by JetBrains will be used as the standard development IDE(Integrated
Development Environment) which can be obtained from the link:
https://www.jetbrains.com/phpstorm/ .

Install GIT

https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/

6

By far, the most widely used modern version control system in the world today is Git. Git is a
mature, actively maintained open source project originally developed in 2005 by Linus
Torvalds, the famous creator of the Linux operating system kernel. A staggering number of
software projects rely on Git for version control, including commercial projects as well as
open source. Developers who have worked with Git are well represented in the pool of
available software development talent and it works well on a wide range of operating
systems and IDEs (Integrated Development Environments).

● Download the latest Git from https://git-for-windows.github.io/

● After successful installation, the Git Setup wizard screen appears. Follow the Next
and Finish prompts to complete the installation using the default options.

● Open Command Prompt (or Git Bash if during installation if it was selected not to use
Git from the Windows Command Prompt).

● Run the following commands to configure the Git username and email using the
following commands, replacing Emma's name with the name on the account. These
details will be associated with any commits that are create:

$ git config --global user.name "Emma Paris"
$ git config --global user.email “emma@gmail.com”

Optional: Install the Git credential helper on Windows

Bitbucket supports pushing and pulling over HTTP to the remote Git repositories on
Bitbucket. When interacting with the remote repository, a username/password combination
is required. Credentials can be stored with the Git Credential Manager for Windows.

Install Composer

The installer will download composer and set up the PATH environment variable, so the
local system can simply call composer from any directory. The composer can be downloaded
from the link: https://getcomposer.org/. There are several methods to download the global
composer, follow the instructions from Download button.

https://git-for-windows.github.io/
https://git-for-windows.github.io/
https://getcomposer.org/
https://getcomposer.org/

7

Install Laravel

The Laravel framework has the following server requirements:

❖ v. PHP >= 7.0.0

❖ v. OpenSSL PHP Extension

❖ v. PDO PHP Extension

❖ v. Mbstring PHP Extension

❖ v. Tokenizer PHP Extension

❖ v. XML PHP Extension

Laravel utilizes Composer to manage its dependencies. So, before using Laravel, make sure
Composer is installed on the machine.

First, download the Laravel installer using Composer:

composer global require "laravel/installer"

Place composer's system-wide vendor bin directory in the $PATH so the Laravel executable
can be located by the system. This directory exists in different locations based on the
operating system; however, some common locations include:

v. MacOS: $HOME/.composer/vendor/bin

v. GNU / Linux Distributions: $HOME/.config/composer/vendor/bin

Once installed, the Laravel new command will create a fresh Laravel installation in the
directory specified. For instance, Laravel new blog will create a directory named blog
containing a fresh Laravel installation with all of Laravel's dependencies already pre-
installed:

laravel new blog

Alternatively, install Laravel by issuing the Composer create-project command in the
terminal:

composer create-project --prefer-dist laravel/laravel blog

Application Architecture

This Laravel project follows MVC architectural pattern, comprises separation of business
logic from presentation associated with GUI.

Three components of MVC pattern:

● Model: It is about the data related logic that a user works with. The data being
transferred between view and controller. It enforces all the business rules on the
related data, by putting the implementation of business rules in model, we can make
sure that nothing in application can make our data invalid.

8

● View: It comprises UI logic of the application. For instance, UI components like
textbox, checkboxes, etc., that a user interacts with. It never handles incoming data
but displays it once available.

● Controller: It acts as interface between Model and View to process all the inputs, act
on the model and decide what action to perform next. It can be anything such as
rendering a view or redirecting to another page.

Set Up TAGG with GitHub Desktop

There are many methods to review, commit and push the code. GitHub Desktop is a
convenient method.

● Download the GitHub Desktop form link: https://desktop.github.com/ to install it on
a local machine.

● Open the application and add a repository.

● If a local repository is already established on GitHub, click on File -> Clone
Repository.

https://desktop.github.com/
https://desktop.github.com/

9

● Select the repository and change the local path to C:\wamp64\www.

● The local path must be in the www folder to connect the project to the local
database.

GitHub Desktop allows the user to choose a branch to work on and create a new branch; To
commit the code, user can simply add comments then click the ‘commit to’ button on the
bottom left and click on Fetch Origin towards the centre on the top, then click the same
button again to push the changes.

Local Database & Website

Log into phpMyAdmin and create TAGG database.

The local website will be https://localhost/tagg/public. This is the home page of CharityQ.

https://localhost/tagg/public

10

Development Environment

Software Name Version

WAMP Server 3.1.0 64bit

Apache Server 2.4.27

Php 7.0.23

MySQL 5.7.19

Laravel 5.5.40

Git 2.14.1. windows.1

GitHub Repo https://github.com/gayanala/tagg

Production Environment

The current production environment connected with Heroku. A cloud platform based on a
managed container system, with integrated data services and a powerful ecosystem, for
deploying and running modern apps. The Heroku developer experience is an app-centric
approach for software delivery, integrated with today’s most popular developer tools and
workflows.

Production URL

The production URL will be https://tagg-uno.herokuapp.com/

Local Website

The URL to access the application on the local machine is https://localhost/tagg/public

Database Migrations and Seedings

Access the Heroku production environment for database migration and seeding:

https://tagg-uno.herokuapp.com/

11

● Log into Heroku at https://dashboard.heroku.com/apps/tagg-uno using an email
address and password.

● Select More

● Select Run console

● In the command window, type ‘bash’

● Click the Run button

Heroku should be connected to the Dyno.

Migrations
Type php artisan migrate in the console window to run a migration,

Seeding
Type php artisan db:seed to seed the database with the initial setup information.
NOTE: seeding the database will delete ALL existing data in the database!!

Database Access

● MySQL Workbench Client is required to access the database or view/update the data
model. Download the software from https://dev.mysql.com/downloads/installer/.

● Open MySQL Workbench
● Click on the + icon next to “MySQL Connections” on the home tab to create a new

database connection.
● On the Setup New Connection screen, enter in the following information:

Connection Name: tagg-uno
Hostname: us-cdbr-iron-east-05.cleardb.net
Port: 3306
Username: b5a9b0d5675a99
Password à Select “Store in Vault” and enter: 759dfc4f
Default Schema: heroku_22e68d30d35242e

Pressing “Test Connection” should result in the following message:

https://dashboard.heroku.com/apps/tagg-uno
https://dashboard.heroku.com/apps/tagg-uno
https://dev.mysql.com/downloads/installer/
https://dev.mysql.com/downloads/installer/

12

If the Test Connection was successful, click OK and then OK again.

A connection should now be listed on the Home tab with the name tagg-uno.

Click tag-uno to connect to the database. All tables will be available on the left side in the
Navigator panel, under SCHEMAS:

Integration with Stripe

Functionality

Stripe Integration will help the business registered to pay for the service based on the
number of locations, choice of plan monthly or annually, coupon (if any) and the
credit/debit card details. The plan auto renews based on the type of plan the business pays
for at the time of payment. The plan auto renews monthly or annually based on the type of
plan selected.

Configuration

● With reference to the cashier documentation provided by Laravel for version 5.5 the
required Cashier package provided by Laravel, created the necessary Database
Migrations for the payment system to work.

13

● On Stripe dashboard, under the API tab a set of test keys and live keys are included
to enable the development and production environment

● These are available in the. env file (environment file) 09640964Plans and business
locations

A unique combination of plan and business locations creates a subscription plan on the
stripe dashboard. A coupon can be created on stripe dashboard which can be provided to
the businesses for promotion purposes.

Integration with Amazon Web Service

AWS S3:

Amazon web services provides a cloud storage named S3. This can be accessed either
through an AWS management console/dashboard or integrated with a web application to
store, read, write and delete files easily. Specifically, for the CharityQ app it helps in saving
the storage of the app itself and provides an easy way to access files.

AWS S3 Configuration:

Laravel’s Filesystem component makes it very easy to work with cloud storage drivers, and
the documentation provided by Amazon does an excellent job of covering how the Storage
facade works. A package must be installed via composer.

Before using the S3 driver, Install the appropriate package via Composer:

● league/flysystem-aws-s3-v3 ~1.0

On the AWS side, set up

● An S3 bucket

● An IAM user

● An IAM policy attached to that user to let it use the bucket

● The AWS Key and Secret belonging to the IAM user

14

The above screen shows the S3 console, where buckets are created to store files.

● Bucket Name: charity-q-files
● Select the region intended to use the bucket. Example: US East (Ohio)
● Set permission levels for the bucket. out of scope for this project
● Specify an ‘I AM User’ to access all the content of the bucket.

In the below screen shot ‘Leslie’ is the user.

Create a basic policy for the user to have the desired level of access. In this example, the
user has complete/full access.

15

● When a new user is created an Access key ID and a Secrete Key (password) are
required. This application has one user ‘Leslie’

● The secrete key and password can be accessed in settings.
● This informant should not be changed because it is used in the. env and config files

of the application.

Quality Assurance

Automation Environment

Installation
All the Automation process from installation to setting up tests is specified below. The
following order needs to be followed for installation and using it to perform QA tests.

Step 1 - Download and install JDK and JRE

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-
2133151.html

Step 2 - Install Eclipse IDE for Java EE Developers

http://www.eclipse.org/downloads/eclipse-packages/

Step 3 - Download the Selenium Client for Java, Standalone Server and Driver Software

http://www.seleniumhq.org/download/

Step 4 -Extract all the files to a specific folder on your local machine

Step 5 - Create a path in C drive as “C/Drivers” and place all the driver software in it

Step 6 – GitHub link for TestTagg project

https://github.com/msreeperumbuduru/TestTAGG.git

Setup

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.eclipse.org/downloads/eclipse-packages/
http://www.eclipse.org/downloads/eclipse-packages/
http://www.seleniumhq.org/download/
http://www.seleniumhq.org/download/
https://github.com/msreeperumbuduru/TestTAGG.git
https://github.com/msreeperumbuduru/TestTAGG.git

16

Make sure all the software listed through Step 1 through Step 3 is configured accurately on
your machine. Open the GitHub link mentioned in Step 6 and download the project into
your eclipse workspace on local machine.

Selenium Web driver

Step 1 - In the IDE, create a new Java Project and import the downloaded project.

Step 2 - Right click on the project and click on properties

Step 3 - Go to Java Build Path -> Libraries -> Add External JAR’s

Navigate to the Folder that has all the JAR files, select all the JAR files and add to the project.
Ensure all the required jars are in place and project shows no errors due to lack of jar files.
Step 4 - Go to Help -> Install New software from the Eclipse menu items

17

Enter Name and Locations as “TestNG”, “http://beust.com/eclipse” and navigate till finish.
Allow Eclipse to restart after installation.
Right click on the project and check for TestNG option. If TestNG is installed successfully,
TestNG will appear in the list as in below screenshot.

Select “Convert to” and select “TestNG Project”. Click finish on the new window. A new
testing.xml file will be generated into the project.

Framework

Step 1 - Basic folder structure is created using Page Object Model.

a. appModules: Contains the Modular action classes for each modular functionality of
the application which can be reused.

b. automation Framework: Contains the customized classes designed for each sprint,
utilizing page objects and modular classes.

http://beust.com/eclipse

18

c. page Objects: Object repository is made for the project for entire application. This
makes adding or deleting of new elements into the application in an easy way.

Step 2 - Constant elements that need to run in the project are declared in the Constant
class. Constant elements in the application are declared single time at one place.

Step 3 - TestNG will allow the code re-utilization efficiently. All the required classes that
needs to run for a sprint or regression can be run in one go. Also, multiple regression suites
can be run at a time and multiple testNG files also can be added to the application.

Step 4 – Select the testNG.xml file, add required classes and methods that needs to run and
click run from Eclipse menu.

Step 5 - Automation tests will run. The results are found in the test-output folder and on
Console.

