MICHIGAN STATE

Telecoupling Toolbox v2.3 User Guide

Author: Francesco Tonini Email: ftonini@anr.msu.edu (ftonini84@gmail.com) Last Revised: February 22, 2019

CONTENTS

1	INTRO	DUCTION	5
	1.1 Who	Should Use the Telecoupling Toolbox?	6
		or Releases	
	1.2.1	Version 2.3	
	1.2.2	Version 2.2	
	1.2.3	Version 2.1	
	1.2.4	Version 2.0	
	1.2.5	Version 1.7 (beta)	8
	1.2.6	Version 1.6 (beta)	
	1.2.7	Version 1.5 (beta)	9
	1.2.8	Version 1.4 (beta)	9
	1.2.9	Version 1.3 (beta)	9
	1.2.10	Version 1.2 (beta)	9
	1.2.11	Version 1.1 (beta)	.10
	1.2.12	Version 1.0 (beta)	
	1.2.13	Version 1.2 (alpha)	
	1.2.14	Version 1.1 (alpha)	
	1.2.15	Version 1.0 (alpha)	
		or Releases	
	1.3.1	Version 1.7.3 (beta)	
	1.3.2	Version 1.7.2 (beta)	
	1.3.3	Version 1.7.1 (beta)	
	1.3.4	Version 1.2.1 (alpha)	
	1.3.5	Version 1.0.1 (alpha)	
	1.3.6	Version 1.1.2 (alpha)	
	1.3.7	Version 1.0.1 (alpha)	
	1.4 I ne	User Guide	.12
2	GETT	ING STARTED	.13
	2.1 Prer	equisites	13
		Il Python libraries for 3rd party external software	
		norize Google Earth Engine with your Google Account	
		Il the R-ArcGIS Bridge	
		the Telecoupling Toolbox to ArcGIS	
3	TOOL	BOX STRUCTURE	.20
	3.1 Ove	rview	.20
		ems Toolset	
	3.2.Ĭ	Add Systems Interactively	
	3.2.2	Draw Systems from Table	.21
	3.2.3	Network Analysis Grouping	
	3.3 Age	nts Toolset	.26
	3.3.1	Add Agents Interactively	
	3.3.2	Draw Agents from Table	.27

Telecoupling Toolbox v2.3

	rs Toolset	
3.4.1	Draw Radial Flows	
3.4.2	Add Media Information Flows	
3.4.3	Commodity Trade	
	es Toolset	
3.5.1	Add Causes Interactively	
3.5.2	Model Selection (OLS)	
3.5.3	Factor Analysis for Mixed Data	
	ronmental Analysis Toolset	
3.6.1	CO ₂ Emissions	
3.6.2	Forest Carbon Edge Effect (InVEST 3.3.3)	
3.6.3	Habitat Quality (InVEST 3.3.3)	
3.6.4	Habitat Risk Assessment (InVEST 3.3.3)	
3.6.5	Habitat Risk Assessment Preprocessor (InVEST 3.3.3)	
3.6.6	Nutrient Delivery Ratio (InVEST 3.3.3)	
3.6.7	Seasonal Water Yield (InVEST 3.3.3)	59
3.6.8	Sediment Delivery Ratio (InVEST 3.3.3)	62
3.6.9	Coastal Blue Carbon (InVEST 3.3.3)	64
3.6.10	Coastal Blue Carbon Preprocessor (InVEST 3.3.3)	66
3.7 Soci	peconomic Analysis Toolset	67
3.7.1	Cost-Benefit Analysis	67
3.7.2	Crop Production (InVEST 3.3.3)	68
3.7.3	Fisheries Harvest (InVEST 3.3.3)	69
3.7.4	Visitation: Recreation and Tourism Storage and Sequestration (InVEST 3.3.3)	74
3.7.5	Population Count and Density	75
3.7.6	Nutrition Metrics	
3.7.7	Food Security	78
3.8 Futu	re Development	
3.9 Refe	rences	82
3.10 A	cknowledgements	83
	icense & Copyright	
	RIALS	
4.1 SAM	IPLE DATASET	86
4.2 SYS	TEMS TOOLSET	87
4.2.1	Add Systems Interactively	87
4.2.2	Draw Systems from Table	
4.2.3	Network Analysis Grouping	
4.3 AGE	NTS TOOLSET	96
4.3.1	Add Agents Interactively	96
4.3.2	Draw Agents from Table	99
4.4 FLO	WS TOOLSET	
4.4.1	Draw Radial Flows	
4.4.2	Add Media Information Flows	
4.4.3	Commodity Trade	
	ISES TOOLSET	
4.5.1	Add Causes Interactively	
4.5.2	Model Selection (OLS)	
4.5.3	Factor Analysis for Mixed Data	

4.6 ENV	IRONMENTAL ANALYSIS TOOLSET	131
4.6.1	CO ₂ Emissions	
4.6.2	Forest Carbon Edge Effect (InVEST 3.3.3)	
4.6.3	Habitat Quality (InVEST 3.3.3)	
4.6.4	Habitat Risk Assessment (InVEST 3.3.3)	141
4.6.5	Habitat Risk Assessment Preprocessor (InVEST 3.3.3)	145
4.6.6	Nutrient Delivery Ratio (InVEST 3.3.3)	147
4.6.7	Seasonal Water Yield (InVEST 3.3.3)	
4.6.8	Sediment Delivery Ratio (InVEST 3.3.3)	
4.6.9	Coastal Blue Carbon (InVEST 3.3.3)	
4.6.10	Coastal Blue Carbon (InVEST 3.3.3)	
4.7 SOC	IOECONOMIC ANALYSIS TOOLSET	164
4.7.1	Cost-Benefit Analysis	
4.7.2	Crop Production (InVEST 3.3.3)	
4.7.3	Fisheries Harvest (InVEST 3.3.3)	
4.7.4	Visitation: Recreation and Tourism Storage and Sequestration (InVEST 3.3.3)	
4.7.5	Population Count and Density	
4.7.6	Nutrition Metrics	
4.7.7	Food Security	

1 INTRODUCTION

In the past decades, the world has undergone dramatic changes and increased interactions between human and natural systems over large distances often led to unexpected outcomes with profound implications for sustainability (Reid et al., 2010). These increased interactions are a direct consequence of globalization and expansion in human population. Trade, transnational land deals, spread of invasive species, and technology transfer occur quicker and are more prevalent than ever before (Liu et al., 2007). Many subsistence needs, e.g. water and food, historically met by local resources are now being met by increased global trade (Kastner et al., 2011; Konar et al., 2011). Understanding distant interactions is a direct response to international calls for transforming the concept of sustainable development into practice (United Nations Secretary-General's High-level Panel on Global Sustainability, 2012). Several disciplines have studied interactions between distant natural or human systems. For example, atmospheric sciences use the concept of teleconnections to describe environmental interactions among climatic systems over long distances (i.e. change in climate at one location affect other places that are hundreds and thousands of miles away). On the other hand, social scientists have studied economic globalization and socioeconomic interactions between distant human systems.

Telecoupling is an interdisciplinary research umbrella concept that enables natural and social scientists to understand and generate information for managing how humans and nature can sustainably coexist worldwide. The telecoupling framework (Fig. 1) treats each place as a coupled human and natural system, in which humans and natural components interact not only locally but also across temporal and spatial scales. It provides an explicit approach to account for and internalize socieconomic and environmental externalities across space. The framework consists of five major interrelated components: coupled human and natural systems; flows of material, information, and energy among systems; agents that facilitate the flows; causes that drive the flows; and effects that result from the flows. Depending on the direction of flows, systems can be classified as three different types. These include sending systems (e.g. countries other than the trade partners). Spillover systems are those that affect and are affected by the interactions between sending and receiving systems. For more detailed information see Liu et al. (2015, 2016).

To systematically study telecoupling, it is essential to build a comprehensive set of tools for describing and quantifying multiple reciprocal socioeconomic and environmental interactions between a focal area and other areas. The telecoupling toolbox is (a) spatially-explicit, in that it is developed within a geographic information system (GIS) environment to account for the spatial location of the five major components of the telecoupling framework; (b) multi-scale, in that it can describe socio-ecological systems at a very fine scale as well as at a very coarse global scale; (c) extendible, in that it can be expanded to accommodate as many quantitative/qualitative tools and telecoupling case studies as deemed appropriate; (d) modular,

in that it allows the integration of existing tools and software (e.g. InVEST¹) to assess synergies and tradeoffs associated with policies and other local to global interventions; (e) interactive, in that the user can take full advantage of the interactive functionalities offered by the GIS software environment; and (f) open source, in that its source code and documentation is freely available to users in the public and private sectors.

1.1 Who Should Use the Telecoupling Toolbox?

The telecoupling toolbox is designed for a wide audience of users coming from different research disciplines and both the public and private sectors, interested in applying the telecoupling framework to a specific case study. Case studies of telecoupling can range from agricultural production and trade, payments of subsidies for conservation programs, tourism, spread of invasive species, wildlife migration, and many others. The modular design of the toolbox allows the integration of existing tools and software (e.g. InVEST) to assess synergies and tradeoffs associated with policies and other local to global interventions. The toolbox provides a single, integrated environment to help users map systems, agents, and flows at any spatial scale, while offering descriptive and quantitative tools to determine the causes as well as quantifying how changes in socio-ecological systems are likely to lead to changes in the flows of benefits to people over multiple spatial scales and distances. The telecoupling toolbox can be especially useful for exploring the outcomes of alternative management and climate scenarios or evaluating trade-offs and feedbacks between focal area and any other potentially affected area. For example, changes in agricultural crop production caused by either changes in local/global demand or changes in the natural environment (e.g. climate, land-use change) will likely have repercussions on the market price values and have socio-economic feedbacks on revenues and incomes of all partners involved in the trade chains. At the same time, an increased or decreased crop production may have repercussions on carbon sequestration and soil water retention. Users should utilize the telecoupling toolbox to better describe the entire system and entities involved in a given flow of material/energy while accounting for multiple effects and feedback on both the socioeconomic and natural systems at any affected location. Some of the script tools found inside the toolbox can help organizations and stakeholders decide where to best allocate economic resources to ensure their investments are sustainable and secure.

The telecoupling toolbox can help visualize interacting systems, agents involved, and flow routes on a map. At the same time, the integration with multiple external software tools, e.g. InVEST, helps answer questions like:

• Where do goods, information, and ecosystem services originate and where are they consumed?

¹ http://www.naturalcapitalproject.org/invest/

- How do conservation subsidy programs affect the local population, habitat quality, water quality and recreation?
- How will climate change and population expansion impact the natural environment and biodiversity?
- What are the main factors causing the flow of goods, information, or ecosystem services between focal and receiving areas?
- How will an investment to increase local eco-tourism affect the natural environment and benefit the local population?
- What fishery management policies will be the most sustainable?
- How will the natural and scenic views of marine and coastal seascapes be impacted by future construction plans?

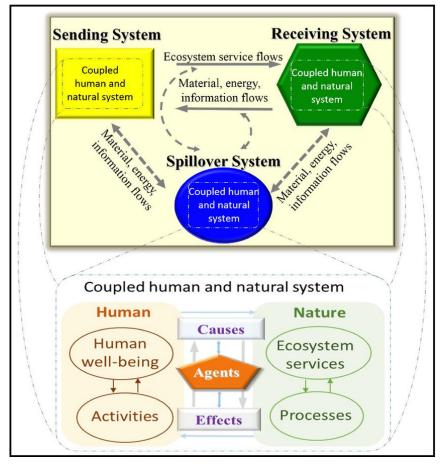


Figure 1. Framing ES in a telecoupling context (adapted from Liu et al. 2013). A "sending" system provides ES to a "receiving" system, and may influence another system (the "spillover" system) in the process. Feedbacks occur among different systems as a result of material energy, and information flows. Each system represents a coupled human and natural system, with two major components: humans and

nature (inset). The human component consists of human well-being (e.g. health), activities (e.g. consumption), and other elements (e.g. population size, not shown). The nature component consists of ES (e.g. clean water), processes (e.g. predation), and other elements (e.g. biodiversity, not shown). The causes, agents, and effects of telecoupling processes, such as flows of ES between systems, may occur within each system. For example, causes may include human activities and ecological processes that affect flows of ES with the facilitation of agents, such as traders and government officials, whereas effects may include impacts of a telecoupling process on ES and human well-being. Arrows indicate the direction of these influences. **NOTE: this figure was taken from Liu et al. (2016)**.

1.2 Major Releases

1.2.1 Version 2.3

This release adds a new tool to the Flows toolset, called *Commodity Trade*. This tool maps the trade of commodities between 2010 and 2014 for a select set of commodities.

1.2.2 Version 2.2

This release adds two new tools to the Environmental Analysis toolset, called *Coastal Blue Carbon* and *Coastal Blue Carbon Preprocessor*, respectively, customized from InVEST (3.3.3). This tools can be used to predict the amount of carbon stored and sequestered over a coastal zone at particular points in time due to changes in land cover.

1.2.3 Version 2.1

This release adds a new tool to the Environmental Analysis toolset, called *Sediment Delivery Ratio*, customized from InVEST (3.3.3). This tool can be used to estimate overland sediment generation and delivery to the stream.

1.2.4 Version 2.0

This release adds a new tool to the Socioeconomic Analysis toolset, called *Food Security*. This tool can be used to estimate rainfall and distance to market within an area of interest.

1.2.5 Version 1.7 (beta)

This release adds a new tool within the Environmental Analysis toolset, called *Seasonal Water Yield*, customized from InVEST (3.3.3). This tool can be used to

estimate the contribution of a pixel in a watershed to baseflow, quickflow, and local recharge.

1.2.6 Version 1.6 (beta)

This release adds a new tool within the Environmental Analysis toolset, called *Fisheries Harvest*, customized from InVEST (3.3.3). This tool can be used to quantify catch volume and economic value.

1.2.7 Version 1.5 (beta)

This release adds a new tool within the Systems toolset, called Network Analysis Grouping, written in R and connected to ArcGIS using the R-Bridge from ESRI. This tool uses network information (i.e. nodes, links, and directions) of units (e.g. countries, areas, administrative units) within a telecoupling system and aggregates them into groups (clusters) based on their network connectivity.

1.2.8 Version 1.4 (beta)

This release adds a new tool within the Environmental Analysis toolset, called *NDR* (*Nutrient Delivery Ratio*), customized from InVEST (3.3.3). This tools can be used to map nutrient sources from watersheds and their transport to the stream.

1.2.9 Version 1.3 (beta)

This release adds a new tool within the Socieconomic Analysis toolset, called *Nutrition Metrics*, a custom tool that estimates the population within an Area of Interest (AOI) by age groups and then calculates the Lower Limit of Energy Requirement (LLER; in kilocalories / day) for age groups within the AOI. NOTE: This tool will only run with Areas of Interest in Africa, Asia, or South America / Central America / Caribbean.

1.2.10 Version 1.2 (beta)

This release adds a new tool within the Socieconomic Analysis toolset, called *Population Count and Density*, a modified version of the Population Density Metrics tool from the Analytical Tools Interface for Landscape Assessments (ATtILA) by the United States Environmental Protection Agency (EPA).

1.2.11 Version 1.1 (beta)

This release adds two new tools, the *Habitat Risk Assessment Preprocessor* and the *Habitat Risk Assessment*, both customized from InVEST (3.3.3). Sample data is now shipped separately from the main code repository to reduce its size. The main toolbox file (.tbx) has been updated to reflect the change in version and development stage as well as naming convention (Telecoupling *Toolbox* instead of *Tools*). The old 'Effect' toolset has now been partitioned into two new toolsets: Environmental Analysis and Socioeconomic Analysis.

1.2.12 Version 1.0 (beta)

This version moves the development stage from *alpha* to *beta* after several months of testing. Some tools might still return errors or have bugs in it, but testing was successful on several different machines and settings. This version updates the InVEST tools to version **3.3.3** and its dependencies such as the PyGeoprocessing library (*updated to version 0.3.2*). All .bat files inside the PyLibs folder have been updated to reflect this change. The main toolbox file (.tbx) has been updated to reflect the change in version and development stage.

1.2.13 Version 1.2 (alpha)

This release eliminates the redundant presence of the "Draw Radial Flows and Nodes" tool (Flows toolset) while incorporating its old functionality into the existing "Draw Radial Flows" tool. The latter can now optionally draw and additional layer on top of the default flow lines, showing nodes at each flow destination, which can then be symbolized according to an attribute (quantity) of interest. The toolbox is still in *alpha* development stage and is being tested for bugs and errors that need to be addressed before releasing a more stable *beta* version.

1.2.14 Version 1.1 (alpha)

This release includes an upgrade in the CO2 emission script tool accounting for number of wildlife units transferred and transportation capacity of the medium used. The tool now allows testing of future CO2 emission scenarios for wildlife transfer compared to current conditions. The toolbox is still in *alpha* development stage and is being tested for bugs and errors that need to be addressed before releasing a more stable *beta* version.

1.2.15 Version 1.0 (alpha)

This is the first version officially released for the Telecoupling Toolbox for ArcGIS. The toolbox is still in *alpha* development stage and is being tested for bugs and errors that need to be addressed before releasing a more stable *beta* version.

1.3 Minor Releases

1.3.1 Version 1.7.3 (beta)

This release adds network analysis metrics (within an output .csv file) to the *Network Analysis Grouping* tool.

1.3.2 Version 1.7.2 (beta)

This release removed the dependence on mosaic data sets from the *Nutrition Metrics* tool. This tool now relies on rasters grouped in a common folder rather than construction of a mosaic data set.

1.3.3 Version 1.7.1 (beta)

This release re-organizes the *Crop Production* and the *Fisheries Harvest* InVEST *3.3.3* tools into the Socioeconomic Analysis toolset.

1.3.4 Version 1.2.1 (alpha)

Fixed bug in the Habitat Quality tool (Effects toolset) potentially producing negative values for habitat quality and degradation output rasters.

1.3.5 Version 1.0.1 (alpha)

Fixed bug in the script tools linked to InVEST (3.3.1) that caused any output vector and raster files to incorrectly align with the input layers. The issue seems to be caused by the way ArcGIS interprets the spatial reference (projection string) of output files saved by the InVEST software. A workaround has been implemented, automatically re-defining the projection of the output layers before showing in the table of content in ArcGIS.

1.3.6 Version 1.1.2 (alpha)

Added output layer name fields in the Cost-Benefit Analysis and Draw Radial Flows tools.

1.3.7 Version 1.0.1 (alpha)

Fixed bug in the script tools linked to InVEST (3.3.1) that caused any output vector and raster files to incorrectly align with the input layers. The issue seems to be caused by the way ArcGIS interprets the spatial reference (projection string) of output files saved by the InVEST software. A workaround has been implemented, automatically re-defining the projection of the output layers before showing in the table of content in ArcGIS.

1.4 The User Guide

This guide will help you understand the basics of the Telecoupling Toolbox. The next chapter shows you the installation process and provides general information about the tools and their interface.

2 GETTING STARTED

2.1 Prerequisites

In order to use the telecoupling toolbox, make sure you have the following required software installed:

- R (3.2.0 or later)
- ArcGIS (10.3.1 or later)
- Python 2.7.x (ArcGIS comes with Python, so no need to install a standalone version of Python!)

NOTE: versions of ArcGIS prior to 10.3.1 may still work with some of our tools but have NOT been tested. ArcGIS Pro has also NOT been tested yet!

Python 2.7.x ships together with ArcGIS and is automatically installed with it. If possible, avoid installing multiple versions of Python on your system as it may create conflicts and errors. If you are using Anaconda, you may need additional settings to make sure you can run the tools smoothly. For more info, check https://pymorton.wordpress.com/2014/06/17/using-arcpy-with-anaconda/.

2.2 Install Python libraries for 3rd party external software

The Telecoupling Toolbox relies on a number of python libraries that are required to run tools that use external software (e.g. InVEST). If you skip this step, tools using any external software will NOT work.

- 1. Although your computer may already have a C++ compiler installed, follow this step and **Download** and **install** the Microsoft Visual C++ Compiler for Python 2.7²
- 2. Follow the instructions below depending on the version of ArcGIS installed on your system:
 - ArcGIS 10.3.1 (standard 32-bit version):
 - \circ Download <u>get-pip.py</u>³

² https://www.microsoft.com/en-us/download/details.aspx?id=44266

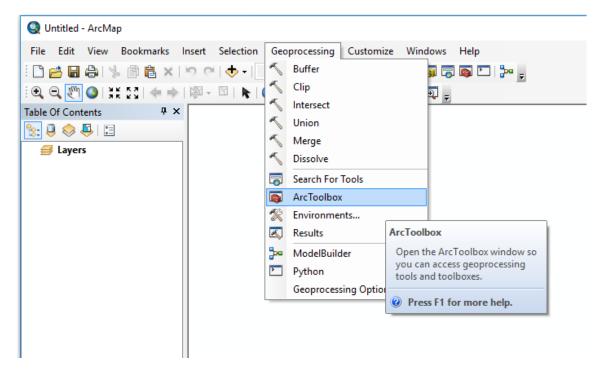
³ https://bootstrap.pypa.io/get-pip.py

- Open the CMD prompt on Windows and type: C:\Python27\ArcGIS10.3\python.exe followed by the full path to get-pip.py (*for example if you downloaded and saved the file on your D:\ drive, the full path would be D:\get-pip.py*)
 - Hit *Enter* to run the command above
 - Open the folder PyLibs found inside the (unzipped) telecoupling project folder
 - Double-click on the ArcGIS103_Py32_libs.bat file
- ArcGIS 10.4.x (standard 32-bit version):
 - Open the folder PyLibs found inside the (unzipped) telecoupling project folder
 - Double-click on the ArcGIS104_Py32_libs.bat file
- ArcGIS 10.5.x (standard 32-bit version):
 - Open the folder PyLibs found inside the (unzipped) telecoupling project folder
 - Double-click on the ArcGIS105_Py32_libs.bat file

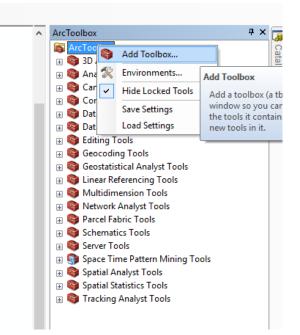
2.3 Authorize Google Earth Engine with your Google Account

(NOTE: this step is at the moment required ONLY if you intend to use the Food Security tool (Socioeconomic Analysis toolset)!)

If you would like to use the Food Security tool inside the Socioeconomic Analysis toolset, you need to make sure to complete a couple of steps first:


- Open the CMD prompt on Windows and type: C:\Python27\ArcGIS10.X\Scripts\earthengine.exe authenticate, replacing ArcGIS10.x with the main version of ArcGIS you are using (e.g. 10.3, 10.4, 10.5)
- A web browser window should automatically open at this point. Select the Google Account you would like to use to authorize earth engine
- Copy the long code on the screen and paste it inside the CMD prompt that you had opened already. This should finish the authorization step and return a message like successfully saved authorization token
- In the same CMD prompt, type C:\Python27**ArcGIS10.X**\python.exe -c "import ee; ee.Initialize()", replacing ArcGIS10.X with the main version of ArcGIS you are using (e.g. 10.3, 10.4, 10.5)

If you do not get any errors, then you are all set!


2.4 Install the R-ArcGIS Bridge

In order to allow interaction between ArcGIS and the R software, you will need to follow the next few steps:

- 1. Open ArcMap (NOTE: make sure you have admin rights on your computer or the next steps will not work!)
- 2. Find and open the Geoprocessing ArcToolbox window (Menu > Geoprocessing > ArcToolbox)

3. Right-click the ArcToolbox folder and select "Add Toolbox..."

4. Browse to the `r-bridge-install-master` folder found inside the unzipped telecoupling project folder and select the `R Integration.pyt` toolbox

Add Toolbox	>	<
Look in: 🛅] r-bridge-install-master 🛛 🗸 🏠 🏹 🗮 🗸 🔛 🖆 🇊 🎕	2
Cing rtools R Integrati	on.pyt	_
Name:	R Integration.pyt Open	
Show of type:	Toolboxes]

5. After the toolbox has been added to the ArcToolbox list, click on it to open it and double-click on the `Install R Bindings` tool to open its interface. Click on OK to run it.

💐 Install R bindings				—		\times
Overwrite Existing Installation?						^
Selected R Version (Set As Default) 3.3.0						
						\sim
	OK	Cancel	Environments.	s	how Help >	·>

If you need more details and information, ESRI has developed a nice Github webpage⁴ with lots of useful documentation on how to install a set of libraries to make sure R and ArcGIS can talk to each other.

2.5 Add the Telecoupling Toolbox to ArcGIS

You are almost done! Now that you installed all Python 3rd party libraries and the R-ArcGIS Bridge, you are ready to use and test the **Telecoupling Toolbox for ArcGIS**.

Follow these steps to add the Toolbox to your ArcMap document:

1. Open ArcMap

2. Right-click on the ArcToolbox folder and select "Add Toolbox"

3. Browse to the unzipped folder of the telecoupling project and select `Telecoupling Toolbox v1.2b.tbx`

⁴ https://github.com/R-ArcGIS/r-bridge-install

Inside the Telecoupling Toolbox you should see 6 toolsets (**agents, causes, environmental analysis, socioeconomic analysis, systems**) and a number of python tool scripts inside each one of them.

Each tool will have a help window associated with it explaining what each parameter is and a general description of the tool. To open the help window, click on the 'show help' button found at the bottom of each tool script after opening it (double-click on the tool script to open the user interface).

🖃 🏟 Telecoupling Toolbox v2.1
🗉 🥎 Agents
Add Agents Interactively
💐 Draw Agents from Table
🖃 🆏 Causes
📑 Add Causes Interactively
💐 Factor Analysis for Mixed Data
💐 Model Selection (OLS)
🖃 🆏 Environmental Analysis
🥞 CO2 Emissions (Wildlife Transfer)
📑 Forest Carbon Edge Effect (InVEST 3.3.3)
💐 Habitat Quality (InVEST 3.3.3)
💐 Habitat Risk Assessment (InVEST 3.3.3)
💐 Habitat Risk Assessment Preprocessor (InVEST 3.3.3)
💐 Nutrient Delivery Ratio (InVEST 3.3.3)
💐 Seasonal Water Yield (InVEST 3.3.3)
Sediment Delivery Ratio (InVEST 3.3.3)
🖃 🦠 Flows
S Add Media Information Flows
💐 Draw Radial Flows
Socioeconomic Analysis
Cost-Benefit Analysis (Wildlife Transfer)
Crop Production (InVEST 3.3.3)
Fisheries Harvest (InVEST 3.3.3)
Food Security
Nutrition Metrics
Population Count and Density Visitation: Researching and Tourism (InVEST 2.2.2)
Visitation: Recreation and Tourism (InVEST 3.3.3)
Systems 3 Add Systems Interactively
Add Systems Interactively Traw Systems from Table
Staw Systems from Table Wetwork Analysis Grouping
Analysis orouping

Telecoupling Toolbox v2.3

That's it! The Telecoupling Toolbox is now added to the ArcToolbox list and you can start using it with the set of sample data (`SampleData_ArcGIS_v2.2.zip`) that can be downloaded at: <u>https://s3.amazonaws.com/telecoupling-toolbox-sample-data/SampleData_ArcGIS_v2.2.zip</u> After unzipping the sample data folder, you will see a mix of GIS (vector, raster) data and tables (.csv) needed as input parameters by the script tools.

3 TOOLBOX STRUCTURE

3.1 Overview

In ArcGIS, tools and script tools are grouped into toolsets, which are then collected into toolboxes. The telecoupling toolbox was developed as a custom geoprocessing ArcGIS toolbox, made of five nested toolsets and their Python/R script tools. Each of the five toolsets corresponds to one component of the telecoupling framework (see Section 1).

3.2 Systems Toolset

The Systems toolset contains script tools that are meant to map and visualize the geographical location of all areas that are interconnected within the telecoupling of interest. Systems are divided in sending, receiving, and spillover. Sending systems (e.g. exporting countries) are those locations where goods, information, or ecosystem services originate from. Receiving systems (e.g. importing countries) are locations that consume goods, information, or ecosystem services. Spillover systems (e.g. countries other than the trade partners) are locations that directly or indirectly affect or are affected by the interactions between sending and receiving systems.

3.2.1 Add Systems Interactively

Interactively add telecoupling system components (i.e. "sending", "receiving", "spillover") with an explicit spatial location to a map. The tool reads the system spatial coordinates from the map and creates a permanent point feature class with a pre-assigned symbology. Upon successfully completing execution, the tool will automatically export the newly created features and their attributes as a .csv table. Use this tool if you do not have a pre-existing table on file with name, description (optional), and spatial coordinates of all telecoupling system components as part of your case study. Upon successfully completing execution, the tool will automatically export the newly created features and their attributes as a .csv table.

Parameter	Explanation	Data Type
Input_Features	Click on the map to add the spatial location of the system components.	Feature Set
	NOTE: the mouse cursor and its pre-assigned symbology should appear as soon as you move it over the map. The system component will be added to the map as a point feature, so make sure to zoom in to the correct spatial location before clicking on it. It is	

	recommended that you type a name and a description (optional) in the Input_Attributes variable after each time you add a system component so that there is a correct one-to-one correspondence between the spatial location and its attributes.	
Input_Attributes	Type in a name and a description (optional) for each system component added to the map in the previous step. Click on the "+" sign to add a new row or "x" to delete. <i>NOTE: The name field needs to be filled out, while the</i> <i>description field is optional. The number of rows needs</i> <i>to equal the number of agents (points) added to the map</i> <i>in the previous step.</i>	Record Set
Add_XY_Coordinates (Optional)	When checked, XY coordinate (Web Mercator by default) fields are added to the system components attribute table.When unchecked (this is the default), no coordinates are added.	Boolean

3.2.2 Draw Systems from Table

Draw telecoupling system components (i.e. "sending", "receiving", "spillover") on the map by uploading a table stored in a local file on disk. The tool reads XY coordinates from the table and creates a permanent point feature class with a pre-assigned symbology. Upon successfully completing execution, the tool will automatically export the newly created features and their attributes as a .csv table. Use this tool if you already have a pre-existing table on file with name, description (optional), and spatial coordinates of all telecoupling system components as part of your case study. Upon successfully completing execution, the tool will automatically export the newly created features and their attributes as a .csv table.

Parameter	Explanation	Data Type
Input_Table	The table containing the name, description (optional), and XY coordinates of each system component.	Table View
X_Field	A numerical field in the input table containing the x coordinates (or longitudes) of each system component.	Field

	NOTE: if the XY coordinate fields are not in the Web Mercator coordinate system, the tool will internally reproject to make sure the system components overlap correctly on the basemap. Although the latter step is not necessary, as ArcGIS Desktop can reproject features on-the-fly, the same will not apply when using the tool as a geoprocessing service consumed within a web application.	
Y_Field	A numerical field in the input table containing the y coordinates (or latitudes) of each system component.	Field
	NOTE: if the XY coordinate fields are not in the Web Mercator coordinate system, the tool will internally reproject to make sure the system components overlap correctly on the basemap. Although the latter step is not necessary, as ArcGIS Desktop can reproject features on-the-fly, the same will not apply when using the tool as a geoprocessing service consumed within a web application.	

3.2.3 Network Analysis Grouping

This tool uses network information (i.e. nodes, links, and directions) of units (e.g. countries, areas, administrative units) within a telecoupling system and aggregates them into groups (clusters) based on their network connectivity. Upon successfully completing execution, the tool will automatically export a new shapefile of the telecoupling system along with their grouping outcomes (cluster number) added in attribute table for each of the clustered unit. A network metrics table (in CSV format) indicating some characteristics of the network will also be generated. Optionally, the tool can generate an output plot (in PDF format) showing the clustering outcome of the network analysis. Examples of network data are migration of population (e.g. immigration, tourists, business travelers, students and etc.) or import/export of goods.

The ESRI R Bridge must be installed for this tool to run. Use this tool If you want to separate countries within a system with network analysis algorithm and add an attribute as group information to the system shapefile.

Parameter	Explanation	Data Type
Nodes_Table	Input .csv file containing a list of all the telecoupling systems (e.g. countries, administrative units) that are to be considered as "nodes" in the network grouping analysis. This table must include a unique identifier attribute for each record as well as attributes specifying both the outgoing and incoming flows. Flow can be represented by number of people traveling, export/import of goods, energy, etc.	File
	NOTE: in some case it might be best to use the natural logarithm of total amount of outgoing/incoming flow, especially when flow quantity is very large. Having large numbers will skew the output results so it is recommended to consider natural log as an option.	
Nodes_Join_Attribute	Attribute field from the input nodes table that will be used to join with telecoupling systems input layer.	Field
Links_Table	 Input .csv file containing a list of all the connections between sending and receiving telecoupling systems (e.g. countries, administrative units) that are to be considered as "links" in the network grouping analysis. This table must include a unique identifier code for both the sending and receiving systems, as well as an attribute specifying the outgoing flow. Flow can be represented by number of people traveling, export/import of goods, energy, etc. NOTE 1: make sure the codes used for the sending and receiving systems match exactly those used in the nodes input table. NOTE 2: make sure the outgoing flow attribute contains the same values used in the nodes input table. Therefore, if you used natural logarithm in the nodes input table, make sure to use the same here. 	File
Telecoupling_Systems_La yer	Input feature layer (e.g. shapefile) representing all the telecoupling sytems (e.g. countries, administrative units) that are to be used in the network grouping analysis.	Shapefile

Telecoupling Toolbox v2.3	User	Guide
Layer_Join_Attribute	Input feature layer (e.g. shapefile) representing all the telecoupling sytems (e.g. countries, administrative units) that are to be used in the network grouping analysis.	Field
Clustering_Algorithm	Input algorithm to be used for the grouping analysis. <i>walktrap</i> : detecting community strucure via short random walks. The idea is that short random walks tend to stay in the same community because there are only a few edges that lead outside a given community. Walktrap runs short random walks and uses the results of these random walks to merge separate communities in a bottom-up manner. <i>spin_glass</i> : this function tries to find communities in graphs via a spin-glass model and simulated annealing. In this model, each node can be in one of c spin states, and the edges specify which pairs of nodes would prefer to stay in the same spin state and which ones prefer to have different spin states. Communities can be defined according to the spin states of nodes after running the model. NOTE: Refer to R igraph package help page for more information about the algorithms. http://igraph.org/r/doc/communities.html	String
Weight_Within_Clusters (Optional)	Input number to ajust the distance between nodes within a cluster.	Double
Weight_Between_Clusters (Optional)	Input number to ajust the distance between nodes between different clusters.	Double
Color_Set (Optional)	Select color sets for different clusters. Demos of color sets: Set3 Set3 Set4 Pastel2 Pastel2 Pastel1 Paired Dark2 Accent	String
	NOTE: plotting options. Default value is Set3.	

	NOTE: plotting options. Default value is 0.05.	
Edge_Width (Optional)	Input number to adjust the width of edges.	Double
	NOTE: plotting options. Default value is 0.08.	
Label_Size (Optional)	Input number to adjust the size of labels.	Double
	NOTE: plotting options. Default value is 0.8.	
Network_Graph_Plot	Output PDF file with a plot delineating grouping outcomes in a network graph.	File
	NOTE: Node colors represent different clusters and node size for the amount of links from each node to others (node degrees). Edge width indicates the weight of links. Red links are links to nodes belonging to other groups, while grey links are links to nodes within the same group.	
Group_Number	Output shapefile representing all telecoupling systems used for the network grouping analysis. The shapefile will include an attribute that represents the group (cluster) number and can be used to color-code the outcome of the analysis on the map.	Shapefile
Network_Metrics_Table	Output CSV file showing network metrics (degree, closeness, and betweenness) calculated for each node. These metrics are node properties that measure the importance or centrality within the network.	File
	<i>Degree</i> : Importance score based purely on the number of edges (links) held by each node. A higher number means a more connected node. It is often considered a measure of direct influence.	
	<i>Closeness</i> : Scores each node based on their 'closeness' to all other nodes within the network. It calculates the shortest paths between all nodes, then assigns each node a score based on its sum of shortest paths. It tells how many direct, 'one hop' connections each node has to other nodes within	

the network. Useful for finding very connected nodes who are likely to hold most information or nodes who can quickly connect with the wider network. Higher values mean less centrality.

NOTE: Closeness centrality can help find good 'broadcasters', but in a highly connected network you will often find all nodes have a similar score.

Betweenness: measures the number of times a node lies on the shortest path between other nodes. This measure shows which nodes act as 'bridges' between nodes in a network. It does this by identifying all the shortest paths and then counting how many times each node falls on one. Useful for finding the nodes that influence the flow around a system. A high betweenness count could indicate someone holds authority over, or controls collaboration between, disparate clusters in a network.

3.3 Agents Toolset

The Agents toolset contains script tools that are meant to map and visualize the geographical location of all entities (e.g. people, households, organizations, etc.) that facilitate the flow of goods, information, or ecosystem services between sending and receiving systems.

3.3.1 Add Agents Interactively

Interactively add telecoupling agents with an explicit spatial location to a map. The tool reads the agent spatial coordinates from the map and creates a permanent point feature class with a preassigned symbology. Upon successfully completing execution, the tool will automatically export the newly created features and their attributes as a .csv table. Use this tool if you do not have a pre-existing table on file with name, description (optional), and spatial coordinates of all telecoupling agents as part of your case study. Upon successfully completing execution, the tool will automatically export the newly created features and their attributes as a .csv table.

Telecou	plina	Toolbox	v2.3
101000	Piiig	100100/	

Parameter	Explanation	Data Type
Input_Features	Click on the map to add the spatial location of the agents. NOTE: the mouse cursor and its pre-assigned symbology should appear as soon as you move it over the map. The system component will be added to the map as a point feature, so make sure to zoom in to the correct spatial location before clicking on it. It is recommended that you type a name and a description (optional) in the Input_Attributes variable after each time you add a system component so that there is a correct one-to-one correspondence between the spatial location and its attributes.	Feature Set
Input_Attributes	Type in a name and a description (optional) for each agent added to the map in the previous step. Click on the "+" sign to add a new row or "x" to delete. <i>NOTE: The name field needs to be filled out, while the</i> <i>description field is optional. The number of rows needs</i> <i>to equal the number of agents (points) added to the map</i> <i>in the previous step.</i>	Record Set
Add_XY_Coordinates (Optional)	When checked, XY coordinate (Web Mercator by default) fields are added to the agents attribute table.When unchecked (this is the default), no coordinates are added.	Boolean

3.3.2 Draw Agents from Table

Draw telecoupling agents on the map by uploading a table stored in a local file on disk. The tool reads XY coordinates from the table and creates a permanent point feature class with a pre-assigned symbology. Upon successfully completing execution, the tool will automatically export the newly created features and their attributes as a .csv table. Use this tool if you already have a pre-existing table on file with name, description (optional), and spatial coordinates of all telecoupling agents as part of your case study. Upon successfully completing execution, the tool will automatically export the newly created features and their attributes as a .csv table.

Telecoupling Toolbox v2.3	Teleco	pupling	Toolbox	v2.3
---------------------------	--------	---------	---------	------

Parameter	Explanation	Data Type
Input_Table	The table containing the name, description (optional), and XY coordinates of each agent.	Table View
X_Field	A numerical field in the input table containing the x coordinates (or longitudes) of each agent.NOTE: if the XY coordinate fields are not in the Web Mercator coordinate system, the tool will internally reproject to make sure the agents overlap correctly on 	Field
Y_Field	A numerical field in the input table containing the y coordinates (or latitudes) of each agent.NOTE: if the XY coordinate fields are not in the Web Mercator coordinate system, the tool will internally reproject to make sure the agents overlap correctly on the basemap. Although the latter step is not necessary, as ArcGIS Desktop can reproject features on-the-fly, the same will not apply when using the tool as a geoprocessing service consumed within a web application.	Field

3.4 Flows Toolset

The Flows toolset contains script tools that are meant to map and visualize the spatial flow of goods, information, or ecosystem services between sending and receiving systems.

3.4.1 Draw Radial Flows

Draw radial flows between two or more telecoupling system components (i.e. "sending", "receiving", "spillover") on the map. Radial flows have a spoke-like pattern where features and places are mapped in nodal form with one place being a common origin or destination. Flows represent the movement of material, energy, or information. Arrows show the direction of the movement. The tool creates a new feature class containing geodetic line features constructed based on the values in a start x-coordinate field, start y-coordinate field, end x-coordinate field, and end y-coordinate field of a table. If desired, the tool will also compute a point vector layer representing nodes at each destination of the radial flows, using the same end x-coordinate field and end y-coordinate field of the attribute table used to produce flow lines. Points (nodes) at flow destinations can be symbolized and rendered as desired by each user to show quantities (attributes) of interest. Use this tool if you already have a pre-existing table on file with (at minimum) spatial coordinates of all the origin and destination points for each flow. If you have the amount of material, energy, or information in the table, use it to show differences in magnitude (e.g. line thickness) between flows.

Parameter	Explanation	Data Type
Input_Table	The table containing records on each flow between an origin and a destination. The input table that can be a text file, CSV file, Excel file, dBASE table, or geodatabase tableNOTE: table attributes should at minimum include XY coordinates of both the origin and destination nodes of the flows.	Table View
Start_X	A numerical field in the input table containing the x coordinates (or longitudes) of the starting points of lines to be positioned in the output coordinate system specified by the Spatial Reference parameter. <i>NOTE: if the coordinate fields are not in the Web</i> <i>Mercator coordinate system, the tool will internally</i> <i>reproject to make sure the system components</i> <i>overlap correctly on the basemap. Although the</i> <i>latter step is not necessary, as ArcGIS Desktop can</i> <i>reproject features on-the-fly, the same will not</i> <i>apply when using the tool as a geoprocessing</i> <i>service consumed within a web application.</i>	Field
Start_Y	A numerical field in the input table containing the y coordinates (or latitudes) of the starting points of lines to be positioned in the output coordinate system specified by the Spatial Reference parameter.	Field

	NOTE: if the coordinate fields are not in the Web Mercator coordinate system, the tool will internally reproject to make sure the system components overlap correctly on the basemap. Although the latter step is not necessary, as ArcGIS Desktop can reproject features on-the-fly, the same will not apply when using the tool as a geoprocessing service consumed within a web application.	
End_X	A numerical field in the input table containing the x coordinates (or longitudes) of the ending points of lines to be positioned in the output coordinate system specified by the Spatial Reference parameter.	Field
	NOTE: if the coordinate fields are not in the Web Mercator coordinate system, the tool will internally reproject to make sure the system components overlap correctly on the basemap. Although the latter step is not necessary, as ArcGIS Desktop can reproject features on-the-fly, the same will not apply when using the tool as a geoprocessing service consumed within a web application.	
End_Y	A numerical field in the input table containing the y coordinates (or latitudes) of the ending points of lines to be positioned in the output coordinate system specified by the Spatial Reference parameter.	Field
	NOTE: if the coordinate fields are not in the Web Mercator coordinate system, the tool will internally reproject to make sure the system components overlap correctly on the basemap. Although the latter step is not necessary, as ArcGIS Desktop can reproject features on-the-fly, the same will not apply when using the tool as a geoprocessing service consumed within a web application.	
ID (Optional)	A field in the input table; this field and the values are included in the output and can be used to join the output features with the records in the input table.	Field

Line_Type (Optional)	The type of geodetic line to construct.	String
	GEODESIC— A type of geodetic line which most accurately represents the shortest distance between any two points on the surface of the earth. The mathematical definition of the geodesic line is quite lengthy and complex and therefore omitted here. This line type is the default. GREAT_CIRCLE—A type of geodetic line which represents the path between any two points along the intersection of the surface of the earth and a plane that passes through the center of the earth. Depending on the output coordinate system specified by the Spatial Reference parameter, in a spheroid-based coordinate system, the line is a great elliptic; in a sphere-based coordinate system, the line is uniquely called a great circle—a circle of the largest radius on the spherical surface. RHUMB_LINE—A type of geodetic line, also known as a loxodrome line, which represents a path between any two points on the surface of a spheroid defined by a constant azimuth from a pole. A rhumb line is shown as a straight line in the Mercator projection.	
	NORMAL_SECTION—A type of geodetic line which represents a path between any two points on the surface of a spheroid defined by the intersection of the spheroid surface and a plane that passes through the two points and is normal (perpendicular) to the spheroid surface at the starting point of the two points. Therefore, the normal section line from point A to point B is different from the one from point B to point A.	
Spatial_Reference (Optional)	The spatial reference of the coordinates found in the input table. On the Spatial Reference Properties dialog box you can Select, Import, or Create a New coordinate system. The default is Web Mercator or the input coordinate system if it is not Unknown.	Spatial Reference
Join_Fields (Optional)	The fields from the join table to be included in the join.	Multiple Value

Telecoupling Toolbox v2.3		User Guide
Create_Destination_Nodes	If checked, a point layer (nodes) is created at each flow destination in addition to a line layer showing flows between locations. These points can be rendered and symbolized according to a specified attribute of interest (e.g. quantities traded). If unchecked (default), only a line layer showing flows between locations will be created.	Boolean
Output_Flows_Layer_Name	Name of the output flows layer	String
Output_Nodes_Layer_Name (Optional)	Name of the output nodes point layer	String

3.4.2 Add Media Information Flows

News media and publication of books and articles heavily contribute to disseminate information on certain topics across the globe. Several online portals let you search through large databases for specific terms or academic publications on a subject of interest. LexisNexis® Academic⁵ is an online research database where college faculty and students can find the critical news, legal and business information needed. For more information, visit the LexisNexis online portal, This telecoupling tool uses a search report file from LexisNexis in HTML format and parses the file to quantify the amount of publications, articles, or media outlets by geographic location (e.g. country). For example, a user may be interested in quantifying how much information about a nature reserve has spread out and where globally. Make sure the provided input feature layer corresponds to the geographic locations (e.g. countries) you are interested in searching within the report file.

Parameter	Explanation	Data Type
Input_Feature	An OGR-supported shapefile or Feature Layer corresponding to the geographic locations (e.g. countries) you are interested in searching within the media report file.	Feature Layer
Location_Field	A field in the input feature layer that will be used as a geographic location to search within the media report file.	Field
Media_Report_File	An HTML file created from a word search on the online LexisNexis portal.	File

⁵ http://www.lexisnexis.com/en-us/products/lexisnexis-academic.page

Telecoupling Toolbox v	2.3	User Guide
Source_Location	Select on the map the geographic location from which information has emanated out. This location should correspond to the term used to search through the LexisNexis online database. <i>NOTE: Make sure to select ONLY a SINGLE source</i>	Feature Set
Merge_With_Existin g_Flow_Layer (Optional)	<i>location on the map.</i> If checked (default), radial flows generated from the media report file will be merged to an existing OGR- supported shapefile or Feature Layer corresponding to other flows of information.	Boolean
Input_Flow_Layer (Optional)	An optional feature layer representing existing radial flows of information that will be merged with the flows layer generated from the media report file. For example, you may have already generated radial flows of information generated by movement of tourists between sending and receiving systems.	Feature Layer
Line_Type (Optional)	 The type of geodetic line to construct. GEODESIC— A type of geodetic line which most accurately represents the shortest distance between any two points on the surface of the earth. The mathematical definition of the geodesic line is quite lengthy and complex and therefore omitted here. This line type is the default. GREAT_CIRCLE—A type of geodetic line which represents the path between any two points along the intersection of the surface of the earth and a plane that passes through the center of the earth. Depending on the output coordinate system specified by the Spatial Reference parameter, in a spheroid-based coordinate system, the line is uniquely called a great circle—a circle of the largest radius on the spherical surface. RHUMB_LINE—A type of geodetic line, also known as a loxodrome line, which represents a path between any two points on the surface of a spheroid defined by a constant azimuth from a pole. A rhumb line is shown as a straight line in the Mercator projection. 	String

• NORMAL_SECTION—A type of geodetic line which represents a path between any two points on the surface of a spheroid defined by the intersection of the spheroid surface and a plane that passes through the two points and is normal (perpendicular) to the spheroid surface at the starting point of the two points. Therefore, the normal section line from point A to point B is different from the one from point B to point A.

3.4.3 Commodity Trade

Commodities move between countries at ever-increasing rates. By exporting and importing commodities, social and biophysical environments may be impacted in a variety of ways. For example, grain imports may curtail usage of water and land resources within an importing country but may have the effect of "outsourcing" resource use to commodity exporting countries.

The Commodity Trade tool maps the movement of commodities between exporting and importing countries for a set of commodities from 2010 to 2014. Commodity data are provided by the Observatory of Economic Complexity

(<u>https://atlas.media.mit.edu/en/</u>). Users choosing to map commodity trade over the course of more than one year (e.g., 2010, 2011, and 2012) are encouraged to enable the *time* feature on the output layer (see the Commodity Trade tutorial in section 4.4.3 for directions to do this) to better visualize shifting trade patterns.

Parameter	Explanation	Data Type
Country	The country of interest. Commodity exports or imports will be mapped for this country.	String
Commodity_Trade_CSV	A CSV file containing commodity trade information. This file is found within the sample data folder.	File
Direction	Direction of flows that will be mapped. Select either Export (flows will be mapped from the country of interest to trade partners in which the selected commodity is exported) or Import	String

	(flows will be mapped from the countries sending the selected commodity to the country of interest).	
Commodity	Commodity flow to be mapped. Select the commodity from the drop-down list.	String
Start_Year	Beginning of period over which commodities will be mapped.	Long
End_Year	End of period over which commodities will be mapped.	Long
Output_Commodity_Flows_Name	Name of output shapefile (do not include spaces in output name).	String
Limit_Output_to_Only_Top_Trade _Partners	Check this box if you would like to limit the output to only the top trade partners of the country of interest.	Boolean
Number_of_Trade_Partners (Optional)	If you have chosen to limit the output to only the top trade partners, please enter the number of top partners.	Long

3.5 Causes Toolset

The Causes toolset contains script tools that are meant to describe or statistically assess the potential leading causes of the flow of goods, information, or ecosystem services between sending and receiving systems.

3.5.1 Add Causes Interactively

Interactively select telecoupling causes from a pre-defined list and add them to the map at a location of interest (preferably linked to one of the telecoupling systems). The tool reads the causes location from the map and creates a permanent point feature class with a pre-assigned symbology. Upon successfully completing execution, the tool will automatically export the newly created features and their attributes as a .csv table. Use this tool if (a) the telecouling causes are merely descriptive or (b) do not have any dataset that can be analyzed with other exploratory statistical tools to help define factors associated with the telecoupling of interest.

Parameter

Explanation

Data Type

Input_Features	Click on the map to add a specific class of causes associated with the telecoupling of interest. Ideally, click on a spatial location that can be easily associated with one of the telecoupling systems, e.g. if the cause originates from a particular systems (sending, receiving, spillover). <i>NOTE: the mouse cursor and its pre-assigned symbology</i> <i>should appear as soon as you move it over the map. Each</i> <i>class of causes is assigned letters that uniquely identify it</i> <i>and this will be added to the map as a point feature.</i> <i>Make sure to zoom in to the desired spatial location</i> <i>before clicking on the map. Type a description in the</i> <i>Describe Causes table for each cause class you added.</i> <i>There must be a one-to-one correspondence between the</i> <i>spatial location of the cause added and its description</i> <i>attribute.</i>	Feature Set
Describe_Causes	Type in a description for each telecoupling cause added to the map in the previous step. Click on the "+" sign to add a new row or "x" to delete.NOTE: The description field is mandatory. The number of rows in this table needs to equal the number of causes (points) added to the map in the previous step.	Record Set

3.5.2 Model Selection (OLS)

Geoprocessing tool for finding properly specified OLS models by exploring all combinations of candidate explanatory variables. This script tool has been slightly modified from the original *Exploratory Regression* GP tool developed by ESRI as part of the Spatial Statistics toolbox. The tool name has been changed but the main functionalities have been maintained. The following documentation is taken "as is" from the original one by ESRI.

• The primary output for this tool is a report file which is written to the Results window. Rightclicking on the Messages entry in the Results window and selecting View will display the Exploratory Regression summary report in a Message dialog box.

• This tool will optionally create a text file report summarizing results. This report file will be added to the table of contents (TOC) and may be viewed in ArcMap by right-clicking on it and selecting Open.

• This tool also produces an optional table of all models meeting your maximum coefficient pvalue cutoff and Variance Inflation Factor (VIF) value criteria. A full explanation of the report elements and table is provided in Interpreting Exploratory Regression Results.

• This tool uses Ordinary Least Squares (OLS) and Spatial Autocorrelation (Global Moran's I). The optional spatial weights matrix file is used with the Spatial Autocorrelation (Global Moran's I) tool to assess model residuals; it is not used by the OLS tool at all.

• This tool tries every combination of the Candidate Explanatory Variables entered, looking for a properly specified OLS model. Only when it finds a model that meets your threshold criteria for Minimum Acceptable Adj R Squared, Maximum Coefficient p-value Cutoff, Maximum VIF Value Cutoff and Minimum Acceptable Jarque-Bera p-value will it run the Spatial Autocorrelation (Global Moran's I) tool on the model residuals to see if the under/over-predictions are clustered or not. In order to provide at least some information about residual clustering in the case where none of the models pass all of these criteria, the Spatial Autocorrelation (Global Moran's I) test is also applied to the residuals for the three models that have the highest Adjusted R2 values and the three models that have the largest Jarque-Bera p-values.

• Especially when there is strong spatial structure in your dependent variable, you will want to try to come up with as many candidate spatial explanatory variables as you can. Some examples of spatial variables would be distance to major highways, accessibility to job opportunities, number of local shopping opportunities, connectivity measurements, or densities. Until you find explanatory variables that capture the spatial structure in your dependent variable, model residuals will likely not pass the spatial autocorrelation test. Significant clustering in regression residuals, as determined by the Spatial Autocorrelation (Global Moran's I) tool, indicates model misspecification. Strategies for dealing with misspecification are outlined in What they don't tell you about regression analysis.

• Because the Spatial Autocorrelation (Global Moran's I) is not run for all of the models tested (see the previous usage tip), the optional Output Results Table will have missing data for the SA (Spatial Autocorrelation) field. Because DBF (.dbf) files do not store null values, these appear as very, very small (negative) numbers (something like -1.797693e+308). For geodatabase tables, these missing values appear as null values. A missing value indicates that the residuals for the associated model were not tested for spatial autocorrelation because the model did not pass all of the other model search criteria.

• The default spatial weights matrix file used to run the Spatial Autocorrelation (Global Moran's I) tool is based on an 8 nearest neighbor conceptualization of spatial relationships. This default was selected primarily because it executes fairly quickly. To define neighbor relationships differently, however, you can simply create your own spatial weights matrix file using the Generate Spatial Weights Matrix File tool, then specify the name of that file for the

Input Spatial Weights Matrix File parameter. Inverse Distance, Polygon Contiguity, or K Nearest Neighbors, are all appropriate Conceptualizations of Spatial Relationships for testing regression residuals.

The spatial weights matrix file is only used to test model residuals for spatial structure. When a model is properly specified, the residuals are spatially random (large residuals are intermixed with small residuals; large residuals do not cluster together spatially).

When there are 8 or less features in the Input Features, the default spatial weights matrix file used to run the Spatial Autocorrelation (Global Moran's I) tool is based on K nearest neighbors where K is the number of features minus 2. In general, you will want to have a minimum of 30 features when you use this tool.

Parameter	Explanation	Data Type
Input_Features	The feature class or feature layer containing the dependent and candidate explanatory variables to analyze.	Feature Set
Dependent_Variable	The numeric field containing the observed values you want to model using OLS.	Field
Candidate_Explanato ry_Variables	A list of fields to try as OLS model explanatory variables.	Multiple Value
Weights_Matrix_File (Optional)	A file containing spatial weights that define the spatial relationships among your input features. This file is used to assess spatial autocorrelation among regression residuals. You can use the Generate Spatial Weights Matrix File tool to create this. When you do not provide a spatial weights matrix file, residuals are assessed for spatial autocorrelation based on each feature's 8 nearest neighbors. Note: The spatial weights matrix file is only used to analyze spatial structure in model residuals; it is not used to build or to calibrate any of the OLS models.	File
Maximum_Number_ of_Explanatory_Vari ables (Optional)	All models with explanatory variables up to the value entered here will be assessed. If, for example, the Minimum Number of Explanatory Variables is 2 and the Maximum Number of Explanatory Variables is 3, the Exploratory Regression tool will try all models with every	Long

	combination of two explanatory variables, and all models	l
	with every combination of three explanatory variables.	
Minimum_Acceptabl	This is the lowest Adjusted R-Squared value you consider	Double
e_Adj_R_Squared	a passing model. If a model passes all of your other search	Double
(Optional)	criteria, but has an Adjusted R-Squared value smaller than	
(optional)	the value entered here, it will not show up as a Passing	
	Model in the Output Report File. Valid values for this	
	parameter range from 0.0 to 1.0. The default value is 0.05,	
	indicating that passing models will explain at least 50	
	percent of the variation in the dependent variable.	
Maximum_Coefficien	For each model evaluated, OLS computes explanatory	Double
t_p_value_Cutoff	variable coefficient p-values. The cutoff p-value you enter	
(Optional)	here represents the confidence level you require for all	
	coefficients in the model in order to consider the model	
	passing. Small p-values reflect a stronger confidence	
	level. Valid values for this parameter range from 1.0 down	
	to 0.0, but will most likely be 0.1, 0.05, 0.01, 0.001, and	
	so on. The default value is 0.05, indicating passing models	
	will only contain explanatory variables whose coefficients	
	are statistically at the 95 percent confidence level (p-	
	values smaller than 0.05). To relax this default you would	
	enter a larger p-value cutoff, such as 0.1. If you are	
	getting lots of passing models, you will likely want to	
	make this search criteria more stringent by decreasing the	
	default p-value cutoff from 0.05 to 0.01 or smaller.	
Maximum_VIF_Valu	This value reflects how much redundancy	Double
e_Cutoff (Optional)	(multicollinearity) among model explanatory variables	
	you will tolerate. When the VIF (Variance Inflation	
	Factor) value is higher than about 7.5, multicollinearity	
	can make a model unstable; consequently, 7.5 is the	
	default value here. If you want your passing models to	
	have less redundancy, you would enter a smaller value,	
N <i>t</i> ¹ A (11)	such as 5.0, for this parameter.	D 11
Minimum_Acceptabl	The p-value returned by the Jarque-Bera diagnostic test	Double
e_Jarque_Bera_p_val	indicates whether the model residuals are normally	
ue (Optional)	distributed. If the p-value is statistically significant	
	(small), the model residuals are not normal and the model is biased. Passing models should have large Jarque-Bera	
	p-values. The default minimum acceptable p-value is 0.1.	
	Only models returning p-values larger than this minimum	
	will be considered passing. If you are having trouble	
	will be considered passing. If you are having trouble	l

	finding unbiased passing models, and decide to relax this criterion, you might enter a smaller minimum p-value such as 0.05.	
Minimum_Acceptabl e_Spatial_Autocorrel ation_p_value (Optional)	For models that pass all of the other search criteria, the Exploratory Regression tool will check model residuals for spatial clustering using Global Moran's I. When the p- value for this diagnostic test is statistically significant (small), it indicates the model is very likely missing key explanatory variables (it isn't telling the whole story). Unfortunately, if you have spatial autocorrelation in your regression residuals, your model is misspecified, so you cannot trust your results. Passing models should have large p-values for this diagnostic test. The default minimum p-value is 0.1. Only models returning p-values larger than this minimum will be considered passing. If you are having trouble finding properly specified models because of this diagnostic test, and decide to relax this search criteria, you might enter a smaller minimum such as 0.05.	Double

3.5.3 Factor Analysis for Mixed Data

Often times, population surveys record a high number of quantitative and qualitative information, whose purpose is to comprehensively describe socioeconomic characteristics associated with the interviewee. In statistical analysis, factor analysis is a useful tool for investigating variable relationships for complex concepts such as socioeconomic status, dietary patterns, or psychological scales. The most common statistical methodologies are principal component analysis/factor analysis for quantitative data, and multiple correspondence analysis (MCA) for qualitative data. Factor analysis of mixed data (FAMD), or factorial analysis of mixed data, is the factorial method devoted to data tables in which a group of individuals is described both by quantitative and qualitative variables. This tool uses the **FactoMineR** and **missMDA** R packages to factor analysis on any combination of continous and categorical variables. The **ESRI R Bridge** must be installed for this tool to run.

Parameter	Explanation	Data Type
Input_Table	A table with attributes corresponding to qualitative and/or quantitative variables.	Table View
Quantitative_Varia bles (Optional)	Select one or more quantitative variables from the input table.	Multiple Value

Telecoupling Toolbox v2.3		User Guide
Qualitative_Variab les (Optional)	Select one or more qualitative variables from the input table	Multiple Value
Supplementary_Qu antitative_Variable s (Optional)	Select one or more supplementary quantitative variables from the input table.	Multiple Value
Supplementary_Qu alitative_Variables (Optional)	Select one or more supplementary qualitative variables from the input table.	Multiple Value
Compute_Missing _Values	If checked, missing values are replaced using PCA (for quantitative only datasets), MCA (for qualitative only datasets), or FAMD (for mixed qualitative and quantitative datasets) imputation. When unchecked, missing values are replaced by their column average.	Boolean
Number_of_Dime nsions	Number of dimensions kept in the results.	Long
Color_Plots_By (Optional)	 String corresponding to the color which are used. Quantitative-only dataset: If "none", no color is used for the individuals; if "ind", a color for each individual ("ind"); if "var", color the individuals based on a categorical variable. Qualitative-only dataset: . If "none", one color is used for the individual, another one for the categorical variables; if "quali", one color is used for each categorical variables; if "var", colors are used according to the different categories of a categorical variable For mixed-data: If "none", no color is used for the individuals; if "ind", one color is used for each individual; if "var", colors are used according to the different categories of a categorical variable 	String
Categorical_Varia ble (Optional)	When "var" is selected, this name corresponds to that of a categorical variable selected from the input table. The variable will be used to color final plots according to its different levels/categories.	Field

Individuals_Selecti on (Optional)	 A selection of the individuals that are drawn: "coord N": select the N elements that have the highest (squared) coordinates on the 2 first dimensions drawn "contrib N": select the N elements that have the highest contribution on the 2 first dimensions drawn "cos2 N": select the N elements that have the highest cos2 on the 2 dimensions drawn "dist N": select the N elements that have the highest distance to the center of gravity 	String
Categories_Selecti on (Optional)	 A selection of the categories that are drawn: "coord N": select the N elements that have the highest (squared) coordinates on the 2 first dimensions drawn "contrib N": select the N elements that have the highest contribution on the 2 first dimensions drawn "cos2 N": select the N elements that have the highest cos2 on the 2 dimensions drawn "dist N": select the N elements that have the highest distance to the center of gravity 	String
Add_Label_to_Ind ividuals (Optional)	When checked, individuals drawn on the plot are labelled.	Boolean
Output_PDF	Creates a PDF containing graphs generated from the plot function in the FactoMineR package. These graphs show individual and/or variable plots using the first two dimensions extracted from the analysis. For quantitative-only datasets, a graph of the eigenvalues associated with the extracted principal components is shown in the last page. For more information about these graphs, consult the documentation for the FactoMineR package.	File

3.6 Environmental Analysis Toolset

The Environmental Analysis toolset contains script tools that are meant to quantify actual or potential environmental effects that are directly or indirectly caused by a flow of goods, information, or ecosystem services between sending and receiving systems.

3.6.1 CO₂ Emissions

Calculate the amount of CO2 emissions associated with each flow segment of material transported between two spatial locations. The tool reads the total length of each linear feature created by the Flows tool and multiplies it with the number of trips needed to transfer wildlife units (derived from number of units to transfer divided by a per-trip transportation capacity, e.g. per-flight) and the amount of CO2 (kilograms) emitted per unit of length (e.g. meters) specified by the user. The tool also allows testing of future CO2 emission scenarios for wildlife transfer compared to current conditions. Make sure the unit of length corresponds to the coordinate system used (e.g. meters in the case of Web Mercator). Use this tool if you have a general estimate of how many kilograms of CO_2 per unit of length (e.g. meters) are associated with the type of transportation flow being considered.

Parameter	Explanation	Data Type
Input_Feature	Input Feature representing the linear flows of material between telecoupling systems across the globe.	Feature Layer
Wildlife_Units	The numeric field containing values for the number of wildlife units to be transferred.	Field
Transportation_Ca pacity	Integer number representing the maximum capacity of the transportation medium (e.g. airplane) used to transfer all wildlife units. NOTE: this tool assumes homogeneity of transporation medium (e.g. same type of airplane), hence the estimates do not account for variations in CO2 emissions caused by multiple carriers or weather conditions (e.g. wind) affecting the transfer.	Long
Units_of_CO2_Em itted	Specify the approximate amount (in kilograms) of CO2 emitted per unit of length. Make sure the unit of length corresponds to the coordinate system used (e.g. meters in the case of Web Mercator).	Double
Input_FeatureSc enario_ (Optional)	Input Feature representing a future scenario of linear flows of material between telecoupling systems across the globe.	Feature Layer

Wildlife_UnitsS cenario_ (Optional)	The numeric field containing values for the number of wildlife units to be transferred under a future scenario.	Field
Transportation_Ca pacityScenario_ (Optional)	Integer number representing the maximum capacity of the transportation medium (e.g. airplane) used to transfer all wildlife units under a future scenario.	Long
	NOTE: this tool assumes homogeneity of transporation medium (e.g. same type of airplane), hence the estimates do not account for variations in CO2 emissions caused by multiple carriers or weather conditions (e.g. wind) affecting the transfer.	
Units_of_CO2_Em ittedScenario_ (Optional)	Specify the approximate amount (in kilograms) of CO2 emitted per unit of length under a future scenario. Make sure the unit of length corresponds to the coordinate system used (e.g. meters in the case of Web Mercator).	Double

3.6.2 Forest Carbon Edge Effect (InVEST 3.3.3)

The InVEST carbon edge model extends the approach of the InVEST carbon model to account for forest carbon stock degradation due to the creation of forest edges. It applies known relationships between carbon storage and distance from forest edge to calculate edge effects in carbon storage, and combines these estimates with carbon inventory data to construct the overall carbon map. The model for edge effects pertains to above-ground carbon only, because edge effects have not been documented for the other carbon pools. For all other carbon pools, and for non-tropical forest classes, or if the model is run without edge effects, it follows the IPCC (2006) inventory approach to assigning carbon storage and sequestration model. To have a more detailed explanation on this model and its parameters, please read the official online InVEST documentation.

Parameter	Explanation	Data Type
Land_Use_Land_Cove	A GDAL-supported raster file, with an integer LULC	Raster
r_Map	code for each cell.	Layer
Biophysical_Table	A CSV table containing model information corresponding to each of the land use classes in the LULC raster input. It must contain the fields 'lucode',	File

	'is_tropical_forest', 'c_above'. If the user selects 'all carbon pools' the table must also contain entries for 'c_below', 'c_soil', and 'c_dead'. See the InVEST Forest Carbon User's Guide for more information about these fields.	
Carbon_Pools_to_Calc ulate	If 'all carbon pools' is selected then the headers 'c_above', 'c_below', 'c_dead', 'c_soil' are used in the carbon pool calculation. Otherwise only 'c_above' is considered.	String
Compute_Forest_Edge _Effects	If selected, will use the Chaplin-Kramer, et. al method to account for above ground carbon stocks in tropical forest types indicated by a '1' in the 'is_tropical_forest' field in the biophysical table.	Boolean
Global_Forest_Carbon _Edge_Regression_M odels (Optional)	A shapefile with fields 'method', 'theta1', 'theta2', 'theta3' describing the global forest carbon edge models. Provided as default data for the model.	Shapefile
Number_of_Nearest_ Model_Points_to_Ave rage (Optional)	Used when calculating the biomass in a pixel. This number determines the number of closest regression models that are used when calculating the total biomass. Each local model is linearly weighted by distance such that the biomass in the pixel is a function of each of these points with the closest point having the highest effect.	Long
Forest_Edge_Biomass _to_Carbon_Conversi on_Factor (Optional)	Number by which to scale forest edge biomass to convert to carbon. Default value is 0.47 (according to IPCC 2006). This pertains to forest classes only; values in the biophysical table for non-forest classes should already be in terms of carbon, not biomass.	Double
Service_Area_of_Inter est (Optional)	This is a set of polygons that will be used to aggregate carbon values at the end of the run if provided.	Shapefile

3.6.3 Habitat Quality (InVEST 3.3.3)

The InVEST Habitat Quality model uses habitat quality and rarity as proxies to represent the biodiversity of a landscape, estimating the extent of habitat and vegetation types across a landscape, and their state of degradation. The model combines maps of land use land cover (LULC) with data on threats to habitats and habitat response. Modeling habitat quality alongside ecosystem services enables users to compare spatial patterns and identify areas where conservation will most benefit natural systems and protect threatened species. This model does

not attempt to place a monetary value on biodiversity. **NOTE:** to have a more detailed explanation on this model and its parameters, please read the official online InVEST documentation.

Parameter	Explanation	Data Type
Current_Land_	A GDAL-supported raster file. The current LULC must have its'	Raster
Cover	own threat rasters, where each threat raster file path has a suffix of _c.	Layer
	Each cell should represent a LULC code as an Integer. The dataset should be in a projection where the units are in meters and the projection used should be defined.	
Future_Land_ Cover (Optional)	Optional. A GDAL-supported raster file. Inputting a future LULC will generate degradation, habitat quality, and habitat rarity (If baseline is input) outputs. The future LULC must have it's own threat rasters, where each threat raster file path has a suffix of _ f .	Raster Layer
	Each cell should represent a LULC code as an Integer. The dataset should be in a projection where the units are in meters and the projection used should be defined. The LULC codes must match the codes in the Sensitivity table.	
Baseline_Land _Cover (Optional)	Optional. A GDAL-supported raster file. If the baseline LULC is provided, rarity outputs will be created for the current and future LULC. The baseline LULC can have it's own threat rasters (optional), where each threat raster file path has a suffix of _b. If no threat rasters are found, degradation and habitat quality outputs will not be generated for the baseline LULC.	Raster Layer
	Each cell should represent a LULC code as an Integer. The dataset should be in a projection where the units are in meters and the projection used should be defined. The LULC codes must match the codes in the Sensitivity table. If possible the baseline map should refer to a time when intensive management of the landscape was relatively rare.	
Folder_Contai ning_Threat_R asters	The selected folder is used as the location to find all threat rasters for the threats listed in the below table.	Folder
Threats_Data	A CSV file of all the threats for the model to consider. Each row in the table is a degradation source and each column contains a	File

	different attribute of each degradation source (THREAT, MAX_DIST, WEIGHT). THREAT: The name of the threat source and this name must match exactly to the name of the threat raster and to the name of it's corresponding column in the sensitivity table. NOTE: The threat raster path should have a suffix indicator (_c, _f, _b) and the sensitivity column should have a prefix indicator (L_). The THREAT name in the threat table should not include either the suffix or prefix.	
	MAX_DIST: A number in kilometres (km) for the maximum distance a threat has an affect.	
	WEIGHT : A floating point value between 0 and 1 for the the threats weight relative to the other threats. Depending on the type of habitat under review, certain threats may cause greater degradation than other threats.	
	DECAY: A string value of either exponential or linear representing the type of decay over space for the threat.	
	See the user's guide for valid values for these columns.	
Accessibility_t o_Threats (Optional)	An OGR-supported vector file. The input contains data on the relative protection that legal / institutional / social / physical barriers provide against threats. The vector file should contain polygons with a field ACCESS . The ACCESS values should range from 0 - 1, where 1 is fully accessible. Any cells not covered by a polygon will be set to 1.	Shapefile
Sensitivity_of_ Land_Cover_T ypes_to_Each_ Threat	A CSV file of LULC types, whether or not they are considered habitat, and, for LULC types that are habitat, their specific sensitivity to each threat. Each row is a LULC type with the following columns: LULC, HABITAT, L_THREAT1, L_THREAT2,	File
	LULC: Integer values that reflect each LULC code found in current, future, and baseline rasters.	

	 HABITAT: A value of 0 or 1 (presence / absence) or a value between 0 and 1 (continuum) depicting the suitability of habitat. L_THREATN: Each L_THREATN should match exactly with the threat names given in the threat CSV file, where the THREATN is the name that matches. This is a floating point value between 0 and 1 that represents the sensitivity of a habitat to a threat. 	
	Please see the user guide for more detailed information on proper column values and column names for each threat.	
Half_Saturatio n_Constant	A positive floating point value that is defaulted at 0.5. This is the value of the parameter k in equation (4). In general, set k to half of the highest grid cell degradation value on the landscape. To perform this model calibration the model must be run once in order to find the highest degradation value and set k for the provided landscape. Note that the choice of k only determines the spread and central tendency of habitat quality cores and does not affect the rank.	Double

3.6.4 Habitat Risk Assessment (InVEST 3.3.3)

The condition of a habitat is a key determinant of the ecosystem services it can provide. For example, multiple stressors including fishing, climate change, pollution and coastal development threaten the ability of coastal ecosystems to provide the valuable goods and services that people want and need. As human activities continue to intensify, so too does the need for quick, clear and repeatable ways of assessing the risks posed by human activities under various management plans. The InVEST habitat risk assessment (HRA) model allows users to assess the risk posed to coastal and marine habitats by human activities and the potential consequences of exposure for the delivery of ecosystem services and biodiversity. The InVEST HRA model is similar to the InVEST biodiversity model in that both models allow users to identify regions on a landscape or seascape where human impacts are highest. While the biodiversity model is intended to be used to assess how human activities impact biodiversity, the HRA model is better suited to screening the risk of current and future human activities to prioritize management strategies that best mitigate risk. We built and tested the HRA model in marine and coastal systems, and discuss it accordingly, but it easily can be applied to terrestrial systems, or mobile species. Risk of human activities (e.g., salmon aquaculture, coastal development, etc.) to habitats (e.g., seagrasses, kelp forests, mangroves, reefs) is a function of the exposure of each habitat to each activity and the consequences for each habitat. Exposure to stressors can arise through direct overlap in space

and time or through indirect effects (i.e. finfish farms in an enclosed bay may degrade water quality and thus impede eelgrass growth throughout the bay, even if the netpens are not situated directly over eelgrass beds). Consequence depends on the effects of activities on habitat area and density, and the ability of habitats to recover from these effects (i.e. through processes such as recruitment and regeneration). Outputs from the model are useful for understanding the relative risk of human activities and climate change to habitats within a study region and among alternative future scenarios. Model outputs can help identify areas on the seascape where human activities may create trade-offs among ecosystem services by posing risk high enough to compromise habitat structure and function. The model can help to prioritize areas for conservation and inform the design and configuration of spatial plans for both marine and terrestrial systems. *NOTE: to have a more detailed explanation on this model and its parameters, please read the official online InVEST documentation*.

Parameter	Explanation	Data Type
Use_Species_ Risk	Checked: calculate the habitat risk assessment using species layers as input	Boolean
	Unchecked (default): calculate the habitat risk assessment using habitat layers as input	
Species_Habita t_Layers_Fold er	This folder should point to a directory containing all of the named habitat or species shapefile layers that you wish to include in this model run. All layers must be projected in the same projection.	Folder
Stressors_Fold er	Folder containing stressors to be overlapped with habitats and/or species. This directory should contain ONLY the stressors desired within this model run. All layers must be projected in the same projection.	Folder
Spatially_Expli cit_Criteria_Fo lder (Optional)	If spatially explicit criteria is desired, this input should point to an outer directory for all spatial criteria. A rigid structure MUST be followed in order for the model to run. Within the outer spatial criteria folder, there MUST be the following 3 folders: Sensitivity, Exposure, and Resilience. Vector criteria may then be placed within the desired folder. Each feature in the shapefiles used MUST include a 'Rating' attribute which maps to a float or int value desired for use as the rating value of that spatial criteria area.	Folder
	• Any criteria placed within the Resilience folder will apply only to a given habitat. They should be named with	

	 the form: habitatname_criterianame.shp. Criteria names may contain more than one word if separated by an underscore. Any criteria placed within the Exposure folder will apply to the overlap between a given habitat and a given stressor. They should be named with the form: habitatname_stressorname_criterianame.shp. Criteria names may contain more than one word if separated by an underscore. 	
	Any criteria placed within the Sensitivity folder will apply to the overlap between a given habitat and a given stressor. They should be named with the form: habitatname_stressorname_criterianame.shp. Criteria names may contain more than one word if separated by an underscore.	
Criteria_Scores _Folder	Folder containing CSV files providing all criteria information for the run of the Habitat Risk Assessment. There are two types of CSVs- habitat overlap CSVs and the stressor buffer CSV. Habitat CSVs will contain not only habitat-specific criteria information, but also all criteria that impact the overlap between that habitat and all applicable stressors. The stressor buffer CSV will be a single file containing the desired buffer for all stressors included in the assessment. Habitat CSVs should be filled out with habitat-specific criteria information as well as any criteria which apply to the overlap of the given habitat and stressors. The Stressor Buffer CSV should be filled out with the desired numerical buffer which can be used to expand a given stressor's influence within the model run. This can be 0 if no buffering is desired for a given stressor, but may NOT be left blank. Any criteria which use spatially explicit criteria (specified by the user during the HRA Preprocessor) will be noted in the CSV by the word 'SHAPE' in the rating column for that habitat, stressor, or combined criteria. The user should still fill in a Data Quality and Weight for these criteria, but should NOT remove the 'SHAPE' string unless they no longer desire to use a spatial criteria for that attribute. When preprocessor is run, the CSVs will contain no numerical ratings, only guidance on how each rating might be filled out.	Folder

The user should use the best available data sources in order to obtain rating information. The column information to be filled out includes the following:

- 1. "Rating"- This is a measure of a criterion's impact on a particular habitat or stressor, with regards to the overall ecosystem. Data may come from a combination of peer-reviewed sources at the global scale and locally available fine-scale data sources. Model inputs and results can be updated as better information becomes available. We provide guidance for well-known criteria on a scale of 0-3, but it should be noted that if information is available on a different scale, this can also be used. It is important to note, however, that all rating information across all CSVs should be on one consistent scale, regardless of what the upper bound is.
- 2. "DQ"- This column represents the data quality of the score provided in the 'Rating' column. Here the model gives the user a chance to downweight less-reliable data sources, or upweight particularly well-studied criteria. While we provide guidance for a scoring system of 1-3, the user should feel free to use any upper bound they feel practical, as long as the scale is consistent. The lower bound, however, should ALWAYS be 1, unless the user wishes to remove the entire criteria score.
- 3. "Weight"- Here the user is given the opportunity to upweight critiera which they feel are particularly important to the system, independent of the source data quality. While we provide guidance for a scoring system from 1-3, the user should feel free to use any upper bound they feel practical, as long as the scale is consistent. The lower bound, however, should ALWAYS be 1 unless the user wishes to remove the entire criteria score.
- 4. (Optional) "E/C"- This column indicates whether the given criteria are being applied to the exposure or the consequence portion of the chosen risk equation. These can be manually changed by the user on a single criterion basis, however, we would strongly recommend against it. If the user desires to change that criterion's allocation, it would be better to change the allocation of the criterion

	within the Resilience, Exposure, Sensitivity categories using the HRA Preprocessor User Interface. By default, any criteria in the Sensitivity or Resilience categories will be assigned to Consequence (C) within the risk equations, and any criteria within the Exposure category will be assigned to Exposure (E) within the risk equation. NOTE:	
	Required ratings data - We recommend users include information about all of the key components of risk (i.e., spatial overlap and other exposure criteria, consequence criteria and the components of consequence, resilience and sensitivity. Nevertheless, the model will produce estimates for risk with only the habitat and stressor spatial layers and no other exposure values (i.e., $E = 0 = no$ score for all other exposure criteria). To produce these estimates, the model does require values for at least one consequence criteria, either sensitivity or resilience. Without this information, the model will return an error message. If the user inputs scores for only sensitivity or resilience, then the consequence score will be based on those data alone. NOTE:	
	Specifying No Interaction Between Habitat and Stressor - As of InVEST 3.3.0 the HRA model will allow users to indicate that a habitat - stressor pair should have no interaction. This essentially means that the model will consider the habitat and stessor have no spatial overlap. This enhancement is to deal with the issue of having fine resolution vector data where the values may share the same pixel space when converted to a raster grid format. To set a habitat - stressor pair to no overlap, simply fill in each criterias "Rating" column with an "NA" value for the given pair. ALL "Rating" values for that pair must be set to "NA" for the model to consider the pair to have no interaction / overlap. If an "NA" value is found, but not all are set, an error message will be presented.	
Resolution_of_ Analysismet ers_	The size in meters that is desired for the analysis of the shapefile layers at a grid cell scale. This will define the width and height of each unique risk grid cell. This must be a whole number. The user should base this size on the resolution of the habitat data	Double

	and scale at which habitats are distributed in space. For example, small patches of seagrasses and kelp are often about 100-200 square meters, which is about the smallest resolution we recommend running the model. If the input habitat data are coarse, then a minimum of 500 meters is better. If you examine your risk outputs and find that the edges of patches of habitat have regular and distinct variation in risk, such that every high and medium risk cell on the edge of habitat patches are border by low risk cells, consider enlargening your resolution. We recommend running the model for the first time at a low resolution (500 m or 1 km) to verify that the model is running properly. Then use a higher resolution in subsequent runs.	
Risk_Equation	This selection chooses the equation that will be used when calculating risk to a given habitat. The user may choose either either a Euclidean risk model, or a Multiplicative risk model. See online documentation of InVEST HRA model for more details.	String
Decay_Equatio n	This selection influences how the "zone of influence" (i.e., buffer distance) of a stressor will be applied to risk. The stressor buffer distance in the stressor buffer CSV can be degraded to provide a more accurate depiction of the influence of a stressor beyond its footprint. The decay equation decays the overall exposure rating (e.g., combined spatial overlap, temporal overlap, intensity, management effectiveness) before the value for E goes into the risk equation. For each pixel, the model uses the value of the decayed exposure score. The options for decay are as follows. "None" will apply the full exposure to the full range of the stressor footprint plus buffer, without any decay. "Linear" and "Exponential" will use the stated equation as a model for decay from the edges of the footprint to the extent of the buffer distance.	String
Maximum_Crit eria_Score	The maximum criteria score is the user-reported highest value assigned to any criteria rating within the assessment. This will be used as the upper bounded value against which all rating scores will be compared. For example, in a model run where the ratings scores vary from 0-3, this would be a 3. If the user chooses to use a different scale for ratings, however, this should be the highest value that could be potentially assigned to a criteria. If the model run is using spatially explicit criteria, this value should	Long

	be the maximum value assigned to either a criteria feature or to a CSV criteria rating.	
Maximum_Ov erlapping_Stre ssors	The is the largest number of stressors that overlap withing the analysis zone. This will be used in order to make determinations of low, medium, and high risk for a given habitat. If the number of overlapping stressors provided is too low, results will likely show more medium and high risk areas than are present. Conversely, if the number of overlapping stressors is too high, it will be difficult for areas to break the threshold to show up as medium or high risk. If unsure how many stressors overlap, we recommend running the overlap analysis tool without weighting.	Long
Subregionss hapefile_	The model will use a subregions shapefile to generate an HTML table of averaged exposure, consequence, and risk values within each subregion by habitat and stressor. In addition, if the Risk Equation chosen is Euclidean, the model will also generate a series of figures which clearly display the exposure-consequence ratings and the resulting risk results for each habitat-stressor combination by subregion. It will also create a figure showing cumulative ecosystem risk for all subregions habitats in the study. Each of the subregion shapefile features MUST contain a 'Name' attribute in order to be properly included in the subregion averaging. If subregion data is not available for the given study region, an AOI for the area could also be used in order to obtain averaged data per habitat-stressor pair. However, the AOI must also contain a 'Name' attribute.	Shapefile

3.6.5 Habitat Risk Assessment Preprocessor (InVEST 3.3.3)

Before running the HRA model, it is necessary to concatenate and rate all applicable criteria information. This can be accomplished by running the Preprocessor tool, then editing the resulting CVSs. If you have already run the model, or have the 'habitat_stressor_ratings' directory from a previous HRA Preprocessor run, you may skip this step and proceed to running the Habitat Risk Assessment tool.

Parameter	Explanation	Data Type
Use_Species_Risk	Checked: calculate the habitat risk assessment using species layers as input	Boolean

	Unchecked (default): calculate the habitat risk assessment using habitat layers as input	
Species_Habitat_Laye rs_Folder	This folder should point to a directory containing all of the named habitat or species shapefile layers that you wish to include in this model run. All layers must be projected in the same projection.	Folder
Stressors_Folder	Folder containing stressors to be overlapped with habitats and/or species. This directory should contain ONLY the stressors desired within this model run. All layers must be projected in the same projection.	Folder
Exposure_Criteria	Choose at least 1 criteria for each category below, and at least 4 total. Exposure criteria apply to the overlap between provided habitats and stressors, or species and stressors being used within this model run. These criteria will be applied to the exposure portion of habitat risk.	Record Set
Consequence_Sensiti vity	Sensitivity criteria apply to the overlap between provided habitats and stressors, or species and stressors being used within this model run. These criteria will be applied to the consequence portion of habitat risk.	Record Set
ConsequenceResilie nce	Resilience criteria apply ONLY to the habitats or species being used within this model run. These criteria will be applied to the consequence portion of habitat risk.	Record Set
Use_Spatially_Explicit _Risk_Scores_in_Shap efile	Checked: checking this box indicates that model should use criteria from provided shapefiles Unchecked (default): do NOT use spatial criteria from provided shapefiles	Boolean
Spatially_Explicit_Crit eria_Folder (Optional)	Each shapefile in the folder directories will need to contain a 'Rating' attribute to be used for calculations in the HRA model. If spatially explicit criteria is desired, this input should point to an outer directory for all spatial criteria. A rigid structure MUST be followed in order for the model to run. Within the outer spatial criteria folder, there MUST be the following 3 folders: Sensitivity, Exposure, and Resilience. Vector criteria may then be placed within the desired folder. Each feature in the shapefiles used MUST include a 'Rating' attribute which	Folder

maps to a float or int value desired for use as the rating value of that spatial criteria area.

- Any criteria placed within the Resilience folder will apply only to a given habitat. They should be named with the form: habitatname_criterianame.shp. Criteria names may contain more than one word if separated by an underscore.
- Any criteria placed within the Exposure folder will apply to the overlap between a given habitat and a given stressor. They should be named with the form: habitatname_stressorname_criterianame.shp. Criteria names may contain more than one word

Any criteria placed within the Sensitivity folder will apply to the overlap between a given habitat and a given stressor. They should be named with the form: habitatname_stressorname_criterianame.shp. Criteria names may contain more than one word if separated by an underscore.

if separated by an underscore.

3.6.6 Nutrient Delivery Ratio (InVEST 3.3.3)

Land use change, and in particular the conversion to agricultural lands, dramatically modifies the natural nutrient cycle. Anthropogenic nutrient sources include point sources, e.g. industrial effluent or water treatment plant discharges, and non-point sources, e.g. fertilizer used in agriculture and residential areas. When it rains or snows, water flows over the landscape carrying pollutants from these surfaces into streams, rivers, lakes, and the ocean. This has consequences for people, directly affecting their health or well-being, and for aquatic ecosystems that have a limited capacity to adapt to these nutrient loads.

One way to reduce non-point source pollution is to reduce the amount of anthropogenic inputs (i.e. fertilizer management). When this option fails, ecosystems can provide a purification service by retaining or degrading pollutants before they enter the stream. For instance, vegetation can remove pollutants by storing them in tissue or releasing them back to the environment in another

form. Soils can also store and trap some soluble pollutants. Wetlands can slow flow long enough for pollutants to be taken up by vegetation. Riparian vegetation is particularly important in this regard, often serving as a last barrier before pollutants enter a stream.

Land-use planners from government agencies to environmental groups need information regarding the contribution of ecosystems to mitigating water pollution. Specifically, they require spatial information on nutrient export and areas with highest filtration. The nutrient delivery and retention model provides this information for non-point source pollutants. The model was designed for nutrients (nitrogen and phosphorous), but its structure can be used for other contaminants (persistent organics, pathogens etc.) if data are available on the loading rates and filtration rates of the pollutant of interest.

NOTE: For all raster inputs for this tool, the projection should be defined and the projection's linear units should be in meters.

Parameter	Explanation	Data Type
DEM	A GIS raster layer, with an elevation value for each cell. Make sure the DEM is corrected by filling in sinks. To ensure proper flow routing, the DEM should extend beyond the watersheds of interest, rather than being clipped to the watershed boundaries.	Raster Layer
Land_Use_Land_Cover	A GIS raster layer, with an integer LULC code for each pixel. The LULC code should be an integer.	Raster Layer
Nutrient_Runoff	A GIS raster dataset representing the spatial variability in runoff potential, i.e. the capacity to transport nutrient downstream. This raster can be defined as a quickflow index (e.g. from the InVEST seasonal water yield model) or simply as annual precipitation.	Raster Layer
Watersheds	A shapefile of polygons. This is a layer of watersheds such that each watershed contributes to a point of interest where water quality will be analyzed. The shapefile must include a field titled <i>ws_id</i> numbered from 0 to N, where N is the total number of watersheds.	Shapefile
Biophysical_Table	A .csv table of land use/land cover (LULC) classes, containing data on water quality coefficients used in this tool. These data are attributes of each LULC class rather than attributes of individual cells in the raster map. Each row in the table is an LULC class while each column	File

	contains a different attribute of each land use/land cover class. The columns must be named as:	
	 <i>lucode</i>: Unique integer for each LULC class (e.g., 1 for forest, 3 for grassland, etc.), must match the LULC raster above. 	
	• <i>LULC_desc</i> (optional): Descriptive name of land use/land cover class.	
	 <i>eff_n</i> (and <i>eff_p</i>): The maximum retention efficiency for each LULC class, varying between zero and 1. The nutrient retention capacity for a given vegetation is expressed as a proportion of the amount of nutrient from upstream. For example, high values (0.6 to 0.8) may be assigned to all natural vegetation types (such as forests, natural pastures, wetlands, or prairie), indicating that 60-80% of nutrient is retained. Suffix _n stands for nitrogen, and _p for phosphorous. 	
	 <i>crit_len_n</i> (and <i>crit_len_p</i>) (in meters): The distance after which it is assumed that a patch of LULC retains nutrient at its maximum capacity. If nutrients travel a distance smaller than the retention length, the retention efficiency will be less than the maximum value eff_x, following an exponential decay. 	
	 proportion_subsurface_n (or proportion_subsurface_p) (optional): The proportion of dissolved nutrients over the total amount of nutrients, expressed as ratio between 0 and 1. By default, this value should be set to 0, indicating that all nutrients are delivered via surface flow. 	
Threshold_Flow_Accu mulation	Integer value defining the number of upstream pixelsLongthat must flow into a pixel before it's considered part of a stream. This is used to generate a stream layer from the DEM. This threshold expresses where hydrologic routing is discontinued, i.e. where retention stops and the remaining pollutant will be exported to the stream.	-

	The default is 1 over the pixel area (in km2), i.e. ~1000 for 30m resolution DEM.	
Borselli_k_Parameter	Calibration parameter that determines the shape of the relationship between hydrologic connectivity (the degree of connection from patches of land to the stream) and the sediment delivery ratio (percentage of soil loss that actually reaches the stream). The default value is 2.	Long
Subsurface_Critical_Le ngth_Phosphorous (and Nitrogen) (in meters)	The distance (traveled subsurface and downslope) after which it is assumed that soil retains nutrient at its maximum capacity. If dissolved nutrients travel a distance smaller than subsubsurface_crit_length, the retention efficiency is lower than the maximum value defined above. Setting this value to a distance smaller than the pixel size will result in the maximum retention efficiency being reached within one pixel only.	Double
Subsurface_Maximum_ Retention_Efficieny_Ph osphorous (and Nitrogen)	The maximum nutrient retention efficiency that can be reached through subsurface flow, a value between 0 and 1. This field characterizes the retention due to biochemical degradation in soils.	Double

3.6.7 Seasonal Water Yield (InVEST 3.3.3)

There is a high demand for tools estimating the effect of landscape management on water supply service (e.g. for irrigation, domestic use, hydropower production). The InVEST seasonal water yield model seeks to provide guidance regarding the contribution of land parcels to the generation of both baseflow and quick flow. The model computes spatial indices that quantifies the relative contribution of a parcel of land to the generation of both baseflow and quick flow.

)11	Data Type
onthly reference evapotranspiration (mm).	Folder
wide path to the folder containing the	
piration rasters. There must be a raster for	
, and rasters must be saved with the month	
g., ET_1.tif). Rasters should be saved as .tif	
	on onthly reference evapotranspiration (mm). ovide path to the folder containing the piration rasters. There must be a raster for n, and rasters must be saved with the month g., ET_1.tif). Rasters should be saved as .tif

Telecoupling Toolbox v2.	3	User Guide
Precipitation_Directory	Maps of monthly precipitation (mm). NOTE: Provide path to the folder containing the precipitation raster. There must be a raster for each month, and rasters must be saved with the month number (e.g., Precip_1.tif). Rasters should be saved as .tif files.	Folder
Digital_Elevation_Mod el_DEM	Digital elevation model.	Raster Layer
Land_Use_Land_ Cover_LULC_Raster	Map of LULC. Each LULC must have a corresponding code in the biophysical table.	Raster Layer
Soil_Group_Raster	Map of SCS soil hydrologic groups (A, B, C, or D), used in combination of the LULC map to compute the CN map. Values are entered as integers, with 1, 2, 3, and 4, corresponding to groups A, B, C, and D, respectively. Soil groups are determined from hydraulic conductivity soil depths. FutureWater has created a global map of hydraulic conductivity available at: http://www.futurewater.eu/2015/07/soil-hydraulic- properties/ One can also find guidance online, e.g.: www.bwsr.state.mn.us/outreach/eLINK/Guidance/HSG _guidance.pdf.	Raster Layer
Watershed_AOI_Shape file	Shapefile delineating the boundary of the area(s) of interest, or watershed to be modeled.	Shapefile
Biophysical_Table	Table comprising, for each LULC type:	File
	CN for each soil type	
	Monthly Kc values CN can be obtained from the USDA handbook: (NRCS- USDA, 2007 Chapter 9). Monthly Kc values can be obtained from the FAO guidelines: Allen et al., 1998.	

Rain_Events_Table	 For water bodies and wetlands that are connected to the stream, CN can be set to 99 (i.e., assuming that those pixels rapidly convey quickflow). NOTE: when the focus is on potential flood effects, CN may be selected to reflect wet antecedent runoff conditions: CN values should then be converted to ARC-III conditions, as per Chapter 10 in NRCA-USDA guidelines (2007). Column names within the csv file must be formatted as follows: CN_A, CN_B, CN_C, CN_D, Kc_1,, Kc_12. Refer to sample data for assistance formatting biophysical table. Table with 12 values of rain events per month. A rain event is defined as >0.1mm. CSV must be formatted 	File
	with two columns, the first titled <i>month</i> and the second titled <i>events</i> . The month column should be numbered 1 to 12, and the events column should indicate the number of rain events in each corresponding month.	
alpha_m_Parameter	Model parameter. Default value: 0.083333	Double
beta_i_Parameter	Model parameter. Default value: 1.0	Double
gamma_Parameter	Model parameter. Default value: 10	Double
Threshold_Flow_ Accumulation	The number of upstream cells that must flow into a cell before it is considered part of a stream, which is used to classify streams in the DEM. Default value: 1000.	Long

References:

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration -Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56. Rome, Italy.

NRCS-USDA, 2007. National Engineering Handbook. United States Department of Agriculture,http://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/water/?cid=st elprdb1043063.

3.6.8 Sediment Delivery Ratio (InVEST 3.3.3)

Erosion and overland sediment retention are natural processes that govern the sediment concentration in streams. Sediment dynamics at the catchment scale are mainly determined by climate (in particular the rain intensity), soil properties, topography, and vegetation; and anthropogenic factors such as agricultural activities or dam construction and operation. The objective of the InVEST sediment delivery model is to map overland sediment generation and delivery to the stream. In a context of global change, such information can be used to study the service of sediment retention in a catchment. This is of particular interest for reservoir management and instream water quality, both of which may be economically valued.

Parameter	Explanation	Data Type
Biophysical Table	A .csv table containing model information corresponding to each of the land use classes. Each row is a land use/land cover class and columns should be named and defined as follows:	File
	lucode (Land use code): Unique integer for each LULC class (e.g., 1 for forest, 3 for grassland, etc.), must match the LULC raster input.	
	usle_c: Cover-management factor for the USLE, a floating point value between 0 and 1.	
	usle_p: Support practice factor for the USLE, a floating point value between 0 and 1.	
DEM	A GIS raster dataset with an elevation value for each cell. Make sure the DEM is corrected by filling in sinks, and if possible compare the output stream maps with hydrographic maps of the area. To ensure proper flow routing, the DEM should extend beyond the watersheds of interest, rather than being clipped to the watershed edge.	Raster Layer
Soil Erodibility	A GIS raster dataset, with a soil erodibility value for each cell. Soil erodibility (K) is a measure of the susceptibility of soil particles to detachment and	Raster Layer

	transport by rainfall and runoff. The units on the index values are ton·ha·h·(ha·MJ·mm)-1	
Rainfall Erosivity Index	A GIS raster dataset, with an erosivity index value for each cell. This variable depends on the intensity and duration of rainfall in the area of interest. The greater the intensity and duration of the rain storm, the higher the erosion potential. The erosivity index is widely used, but in case of its absence, there are methods and equations to help generate a grid using climatic data. The units on the index values are MJ·mm·(ha·h·yr)-1	Raster Layer
IC Parameter	A calibration parameter that determines the shape of the relationship between hydrologic connectivity (the degree of connection from patches of land to the stream) and the sediment delivery ratio (percentage of soil loss that actually reaches the stream). The default value is 0.5.	Double
K Parameter	A calibration parameter that determines the shape of the relationship between hydrologic connectivity (the degree of connection from patches of land to the stream) and the sediment delivery ratio (percentage of soil loss that actually reaches the stream). The default value is 2.	Double
Land Use/Land Cover	LULC is a GIS raster dataset, with an integer LULC code for each cell.	Raster Layer
Max SDR	The maximum SDR that a pixel can reach, which is a function of the soil texture. More specifically, it is defined as the fraction of topsoil particles finer than coarse sand (1000 μ m). This parameter can be used for calibration in advanced studies. Its default value is 0.8.	Double
Threshold Flow Accumulation	The number of upstream cells that must flow into a cell before it is considered part of a stream, which is used to classify streams in the DEM. This threshold directly affects the expression of hydrologic connectivity and sediment export: when a flow path reaches the stream, sediment deposition stops and the sediment exported is assumed to reach the catchment outlet.	Double

Telecoupling Toolbox v2.3		User Guide
Watersheds	A shapefile of polygons. This is a layer of watersheds such that each watershed contributes to a point of interest where water quality will be analyzed. Format: An integer field named 'ws_id' is required, with a unique integer value for each watershed	Shapefile
Drainage (Optional)	A raster with 0s and 1s, where 1s correspond to pixels artificially connected to the stream (by roads, stormwater pipes, etc.). The flow routing will stop at these "artificially connected" pixels, before reaching the stream network.	Raster Layer

3.6.9 Coastal Blue Carbon (InVEST 3.3.3)

Marine and terrestrial ecosystems help regulate Earth's climate by adding and removing greenhouse gases (GHGs) such as carbon dioxide (CO₂) to and from the atmosphere. Coastal marshes, mangroves, and seagrasses, in particular, store large amounts of carbon in their sediments, leaves, and other forms of biomass. In addition to storing carbon, marine ecosystems continually accumulate carbon in their sediments, creating large reservoirs of long-term sequestered carbon. By storing and sequestering carbon, marine ecosystems keep CO_2 out of the atmosphere where it would otherwise contribute to climate change.

Management activities that change the cover of coastal vegetation, such as the restoration of seagrass beds and the clearing of mangrove forests, change the ability of coastal and marine areas to store and sequester carbon.

The InVEST Coastal Blue Carbon model attempts to predict the amount of carbon stored and sequestered over a coastal zone at particular points in time due to changes in land cover. Using an estimate of the monetary social value, or where available, a market price for stored and sequestered carbon, the InVEST Coastal Blue Carbon model also quantifies the marginal value of storage and sequestration.

Parameter	Explanation	Data Type
LULC Lookup Table	A CSV table used to map LULC classes to their values in a raster and to indicate whether or not the LULC class is a coastal blue carbon habitat.	File

LULC Transition Table Carbon Pool Initial Table	Could be generated by the preprocessor. This file must be edited before it can be used by the main model. The left-most column represents the source LULC class, and the top row represents the destination LULC class. The provided CSV table contains information related to the initial conditions of the carbon stock within each of the three pools of a habitat. Biomass includes carbon stored above and below ground. All non-coastal blue carbon habitat LULC classes are assumed to contain no carbon. The values for 'biomass', 'soil', and 'litter' should be given in terms of Megatonnes CO ₂ e /ha.	File File
Carbon Pool Transient Table	The provided CSV table contains information related to the transition of carbon into and out of coastal blue carbon pools. All non-coastal blue carbon habitat LULC classes are assumed to neither sequester nor emit carbon as a result of change. The 'yearly- accumulation' values should be given in terms of Megatonnes of CO ₂ e /ha-yr. The 'half-life' values must be given in terms of years. The 'disturbance' values must be given as a decimal percentage of stock disturbed given a transition occurs away from a particular lulc-class.	File
Baseline Raster	A GDAL-supported raster file representing the landscape/seascape at the initial point of time.	Raster Layer
Year of Baseline	Type in the year of baseline raster file	Long
Transition Raster List	A set of GDAL-supported rasters representing the landscape/seascape at particular points in time. Provided in chronological order.	Raster Layers; Multiple Value
Transition Year List	A set of years that respectively correspond to the provided LULC snapshot rasters. Provided in chronological order.	Long; Multiple Value
Do Economic Analysis	Boolean type of data. If checked, net present value of sequestered carbon will be calculated.	Boolean

Telecoupling Toolbox v2.3		User Guide
Use Price Table	Boolean type of data. If checked, a price table will be used to calculate net present value of sequestered carbon.	Boolean
Price (Optional)	The price per Megatonne CO2e at the base year.	Double
Interest Rate (Optional)	The interest rate on the price per Megatonne CO2e, compounded yearly.	Double
Discount Rate (Optional)	The discount rate on future valuations of sequestered carbon, compounded yearly.	Double
Price Table (Optional)	Only needed when the use price table variable is checked. Can be used in place of price and interest rate inputs. The provided CSV table contains the price per Megatonne CO ₂ e sequestered for a given year, for all years from the original snapshot to the analysis year, if provided.	File
Analysis Year (Optional)	An analysis year extends the transient analysis beyond the transition years. This is used to make projection for a future year based on the status and trend of input data.	Double

3.6.10 Coastal Blue Carbon Preprocessor (InVEST 3.3.3)

Before running the Coastal Blue Carbon model, it is necessary to have tables of LULC transition effect on Carbon emissions, carbon pool initial variables, and carbon accumulation/disturbance transient variables ready in certain structures as main model inputs. This can be accomplished by running the Preprocessor tool, then editing the resulting CSV files. If you have tables edited as required structures, or have them from a previous Preprocessor run, you may skip this step and proceed to running the main Coastal Blue Carbon tool.

Parameter	Explanation	Data Type
LULC Lookup Table	A CSV table used to map LULC classes to their values in a raster, as well as to indicate whether or not the LULC class is a coastal blue carbon habitat.	File
LULC Time Snapshots	A set of GDAL-supported rasters representing the land/seascape at particular points in time. Provided in chronological order.	Raster Layer:

Multiple Value

3.7 Socioeconomic Analysis Toolset

The Socioeconomic Analysis toolset contains script tools that are meant to quantify actual or potential socioeconomic effects that are directly or indirectly caused by a flow of goods, information, or ecosystem services between sending and receiving systems.

3.7.1 Cost-Benefit Analysis

Transfer of wildlife between tourism hot-spot locations (e.g. zoos) has become increasingly common worldwide because of the increased demand for exotic species exhibits. As a natural consequence, this type of business comes with a set of associated costs (e.g. airline transportation, food, maintenance labor) and benefits (e.g. economic revenues from the sale of the wildlife species, food production for feeding purposes, and revenues from tourism). This tool uses estimated costs and revenues associated with a given wildlife transfer (e.g. Panda loan) and telecoupling system involved, and calculates the total returns of investment (returns = total revenues - total costs). New fields showing total costs, revenues, and returns will be added to the feature layer provided as input and can be symbolized like any other quantitative feature attributes. *If you do not have information on certain or all approximate costs/revenues for a given telecoupling system (receiving, sending, spillover), leave the value blank or n/a in the table required by tool as one of the inputs.*

Parameter	Explanation	Data Type
Input_Feature	An OGR-supported shapefile or Feature Layer containing information about all telecoupling systems. The layer should have at minimum a field indicating the name of the system (e.g. country).	Feature Layer
Input_Join_Field	A field in the input feature layer used by the tool to join with the economics table provided by the user.	Field
Economics_Table	A CSV table containing costs and revenues for each telecoupling system. The table should have a field that can be joined to the input feature layer representing all telecoupling systems.	Table View

Telecoupling Toolbox v2.3

Economics_Table_Joi n_Field	A field in the economics CSV table that will be joined to the input feature layer representing all telecoupling systems.	Field
Output_Layer_Name	Name of the output cost-benefit analysis layer	String

3.7.2 Crop Production (InVEST 3.3.3)

Expanding agricultural production and closing yield gaps is a key strategy for many governments and development agencies focused on poverty alleviation and achieving food security. However, conversion of natural habitats to agricultural production sites impacts other ecosystem services that are key to sustaining the economic benefits that agriculture provides to local communities. Intensive agricultural practices can add to pollution loads in water sources, often necessitating future costly water purification methods. Overuse of water also threatens the supply available for hydropower or other services. Still, crop production is essential to human well-being and livelihoods. The InVEST crop production model allows detailed examination of the costs and benefits of this vital human enterprise, allowing exploration of questions such as:

- How would different arrangement or selection of cropping systems compare to current systems in terms of total production? Could switching crops yield higher economic returns or nutritional value?
- What are the impacts of crop intensification on ecosystem services? If less land is used to produce equal amounts of food by increasing intensification, is the net result on ecosystem services production positive or negative?
- How can we evaluate different strategies for meeting increasing food demand while minimizing the impact on ecosystem services?

NOTE: to have a more detailed explanation on this model and its parameters, please read the official online InVEST documentation.

Parameter	Explanation	Data Type
Lookup_Table	Filepath to a CSV table used to convert the crop code provided in the Crop Map to the crop name that can be used for searching through inputs and formatting outputs.	File
Crop_Management _Scenario_Map	A GDAL-supported raster representing a crop management scenario.	Raster Layer

Telecoupling Toolbox v2.3		User Guide
Global_Dataset_Fo lder	The provided folder should contain a set of folders and data specified in the 'Running the Model' section of the model's User Guide.	Folder
Yield_Function	The method used to compute crop yield. Can be one of three: 'observed', 'percentile', and 'regression'.	String
Percentile_Column (Optional)	For percentile yield function, the table column name must be provided so that the program can fetch the correct yield values for each climate bin.	String
Fertilizer_Raster_F older (Optional)	Path to folder that contains a set of GDAL-supported rasters representing the amount of Nitrogen (N), Phosphorous (P2O5), and Potash (K2O) applied to each area of land (kg/ha).	String
Irrigation_Map (Optional)	Filepath to a GDAL-supported raster representing whether irrigation occurs or not. A zero value indicates that no irrigation occurs. A one value indicates that irrigation occurs. If any other values are provided, irrigation is assumed to occur within that cell area.	Raster Layer
Compute_Nutrient _Contents	If checked, calculates nutrition from crop production and creates associated outputs.	Boolean
Crop_Nutrient_Inf ormation (Optional)	Filepath to a CSV table containing information about the nutrient contents of each crop.	File
Compute_Financia l_Analysis	If checked, calculates economic returns from crop production and creates associated outputs.	Boolean
Crop_Economic_I nformation (Optional)	Filepath to a CSV table containing information related to market price of a given crop and the costs involved with producing that crop.	File

3.7.3 Fisheries Harvest (InVEST 3.3.3)

Wild capture fisheries provide a significant source of protein for human consumption and directly employ nearly 40 million fishers worldwide. However, poor harvesting practices and habitat loss and degradation can reduce the ability of ecosystems to support healthy, productive fisheries. The InVEST Fisheries Production model produces estimates of harvest volume and economic value of single-species fisheries. The model is an age- or stage-structured population model, and is presented as a generic model that can be adapted to most species and geographies. Inputs to the model include parameters for life history characteristics (e.g., age at maturity, recruitment, migration and natural mortality rates), behavior of the fishery (e.g., fishing pressure), habitat dependencies (e.g., importance and availability of nursery habitat), and, optionally, economic valuation (e.g., price per unit biomass). The model outputs the volume and economic value of harvest within the area(s) designated by the user. It is best to compare outputs from multiple runs of the model, where each run represents different scenarios of habitat extent, environmental conditions and/or fishing pressure.

Parameter	Explanation	Data Type
Area_of_Interest	The provided shapefile is used to display outputs within the area of interest. The shapefile must contain a column titled "Name", which corresponds to the subregion specified in the Population Parameters CSV file.	Shapefile
Number_of_Steps_for_ Model_Run	The number of time steps the simulation shall execute before completion. Must be a positive integer.	Double
Population_Model_ Type	Specifies whether the classes provided in the Population Parameters CSV file represent ages or stages. If the stage-based model is selected, the Population Parameters CSV File must include a 'Duration' vector alongside the survival matrix that contains the number of time steps that each stage lasts.	String
Population_Classes_are _Sex_Specific	Specifies whether or not the population classes provided in the Population Parameters File are distinguished by sex.	String
Harvest_by_ Individuals_or_Weight	Specifies whether the harvest output values are calculated in terms of number of individuals or in terms of biomass (weight). If 'Weight' is selected, the Population Parameters CSV File must include a 'Weight' vector alongside the survival matrix that contains the weight of each age/stage, as well as sex if the model is sex-specific.	String
Population_Parameters _File_CSV	The provided CSV file should contain all necessary parameters for population groups based on age/stage, sex, and subregion:	File

- Classes (required)- The leftmost column should contain the age/stage names of the given species listed in chronological order. Each name can be an alphanumeric string. If the population classes are sex-specific, all age/stage names of one sex must be listed first, followed below by the age/stage names of the other sex.
- Subregions (required)- The top-most row should contain the subregion names considered by the model. Each name can be an alphanumeric string. If the AOI shapefile is to be provided, the subregion entries must each match a corresponding 'Name' attribute value in a feature of the AOI shapefile. An entry must be provided even if the model is considering only one subregion.
- Survival Rates from Natural Mortality Matrix (required)- Each unique pair of age/stage and subregion should contain a survival rate from natural mortality, expressed as a decimal fraction.
- ExploitationFraction (required)- A row starting in the first column with the label 'ExploitationFraction'. The exploitation fraction is the proportion of the vulnerable population in each subregion that is harvested (0=0% harvested, 1=100% harvested). Each subregion is treated independently (i.e. up to 100% of the vulnerable population in each subregion may be harvested).
- LarvalDispersal- A row starting in the first column labeled

	'LarvalDispersal'. The larval dispersal is the proportion of the cumulative larvae pool that disperses into each subregion. Each subregion column should have a decimal to represent this. Dispersal across all subregions should add up to 1. If larval dispersal isn't provided, larvae will be dispersed equally across all subregions.
•	VulnFishing (required)- A column labeled 'VulnFishing', which is the relative vulnerability to harvest for each class. A decimal value for each class listed in this column is required. The most vulnerable age(s)/stage(s) should have a value of 1.0, indicating full vulnerability.
•	Maturity- A column labeled 'Maturity'. It represents the fraction of that age or stage which is mature and contributes to the spawning stock. A decimal value for each age/stage is required if maturity is included. For classes which do not reproduce, this should be 0.
•	Duration- A column labeled 'Duration'. This column is required for stage-based models. It represents the number of time steps for which an average individual will be in that stage before moving to the next one.
•	Weight- A column which is required if 'Spawners by Weight' or 'Harvest by Weight' is selected. This is the average biomass of an individual of the population at each age/stage expressed in model-agnostic units and is required

for each of the ages/stages listed in the classes

- 72 -

column.

Telecoupling Toolbox v2.3		
Total_Initial_Recruits	The initial number of recruits in the population model at time equal to zero. If the model contains multiple subregions of interest or is distinguished by sex, this value will be first divided into subregions using the LarvalDispersal vector and then further divided evenly by sex of each subregion.	
Recruitment_Function_ Type	This equation will be used to calculate recruitment into each subregion in the area of interest (options: Beverton- Holt or Ricker).	
Spawners_by_ Individuals_or_Weight	Specifies whether the spawner abundance used in the recruitment function should be calculated in terms of number of individuals or in terms of biomass (weight). If 'Weight' is selected, the user must provide a 'Weight' vector alongside the survival matrix in the Population	

Recruitment_Function_ Type	This equation will be used to calculate recruitment into each subregion in the area of interest (options: Beverton- Holt or Ricker).	String
Spawners_by_ Individuals_or_Weight	Specifies whether the spawner abundance used in the recruitment function should be calculated in terms of number of individuals or in terms of biomass (weight). If 'Weight' is selected, the user must provide a 'Weight' vector alongside the survival matrix in the Population Parameters CSV File. The 'Alpha' and 'Beta' parameters provided by the user should correspond to the selected choice.	String
Alpha	Specifies the shape of the stock-recruit curve.	Double
Beta	Specifies the shape of the stock-recruit curve.	Double
Estimate_Migratory_ Patterns	Select this option if you wish to estimate migratory patterns.	Boolean
Migration_Matrix_ CSV_Folder (optional)	 Specify the path to a folder containing a migratory matrix CSV file. Consider the following when formating the migratory CSV file: For each age/stage where migration occurs, there should be a single CSV within the migration directory. The name of the CSV can be anything, but MUST end with an underscore followed by the name of the age or stage. This MUST correspond to an age or stage within the Population Parameters CSV File. For migration from the 'adult' class for example, a migration file might be named 'migration_adult.csv'. The CSV should contain nothing besides subregion names and migration values. The first row and first column should be the names of the subregions in the Population Parameters CSV File, listed in the same order. The columns represent the 	Folder (containing Migration Matrix CSV file)

User Guide

Double

	sources — the subregions FROM which the migration occurs; each column should therefore sum to 1. The rows represent the sinks — the subregions TO which the migration occurs. The cells within the matrix should be a DECIMAL REPRESENTATION of percentage of the source's population which will migrate to the sink.	
Estimate_Harvest_ Value	Select this option if you wish to estimate harvest value.	Boolean
Fraction_of_Harvest_ Kept_After_Processing (optional)	This is the decimal representation of the percentage of harvested catch remaining after post-harvest processing is complete.	Double
Unit_Price (optional)	Specifies the price per harvest unit.	Double

3.7.4 Visitation: Recreation and Tourism Storage and Sequestration (InVEST 3.3.3)

Recreation and tourism are important components of many national and local economies and they contribute in innumerable ways to physical wellbeing, learning, and quality of life. To quantify the value of natural environments, the InVEST recreation model predicts the spread of person-days of recreation, based on the locations of natural habitats and other features that factor into people's decisions about where to recreate. In the absence of empirical data on visitation, we parameterize the model using a proxy for visitation: geotagged photographs posted to the website flickr. Using photographs, the model predicts how future changes to natural features will alter visitation rates and outputs maps showing current and future patterns of recreational use. *NOTE: this computer must have an Internet connection in order to run this model. To have a more detailed explanation on this model and its parameters, please read the official online InVEST documentation.*

Parameter	Explanation	Data Type
Area_of_Interest	An OGR-supported vector file representing the area of interest where the model will run the analysis.	Feature Layer
Start_Year	Year to start PUD calculations, date starts on Jan 1st. Inclusive, must be ≥ 2005 .	String
End_Year	Year to end PUD calculations, date ends and includes Dec 31st. Inclusive, must be <= 2014.	String

Telecoupling Toolbox v2.3		User Guide
Compute_Regression	When checked (default), run a simple regression model using the parameters specified below.	Boolean
Predictor_Table (Optional)	A table that maps predictor IDs to files and their types with required headers of 'id', 'path', and 'type'. The file paths can be absolute, or relative to the table.	File
Scenario_Predictor_Ta ble (Optional)	(<i>NOT REQUIRED</i>) A table that maps predictor IDs to files and their types with required headers of 'id', 'path', and 'type'. The file paths can be absolute, or relative to the table.	File
Grid_the_AOI	When checked (default), overlay grid cells of a given shape type on top of the area of interest. Grid cells will be used to aggregate predictors and counts over the study area.	Boolean
Grid_Type (Optional)	Select the shape of the grid used by the model.	String
Cell_Size (Optional)	The size of the grid units measured in the projection units of the AOI. For example, UTM projections use meters.	Double

3.7.5 Population Count and Density

Human population density varies significantly by location. Areas with high population densities may have more available services, but might also exhibit greater inequalities. On the other hand, low population density may signal availability of resources such as land for agriculture and livestock, but may also suggest limited opportunities for wage employment. The Population Count and Density tool produces estimates of the number of individuals and density within a specified geographic area. Population density is reported as the number of people per km2. Population change can also be computed if population estimates for two time points are provided. This tool is quite versatile and can be used beyond its stated purpose. For example, instead of selecting population counts from different time periods, a user could select fields containing counts of male and female members of a population at a given time. The tool could then be used to show the percentage difference between the number of males and females for the given reporting unit. This tool is a modified version of the Population Density Metrics tool from the Analytical Tools Interface for Landscape Assessments (ATtILA). The ATtILA toolbox is produced by the United States Environmental Protection Agency. *NOTE: This tool assumes that population is distributed evenly throughout each census feature polygon.*

Parameter

Explanation

Data Type

Telecoupling Toolbox v2.3		User Guide
Reporting_Unit_Featur e	The vector polygon dataset that defines the reporting units. Note: The polygon must be in a projection where the units are in meters.	Feature Layer
Reporting_Unit_ID_Fie ld	The field in the Reporting Unit Feature layer that contains the unique ID for each reporting unit. It may be an integer or a string data type.	Field
Census_Feature	The vector polygon dataset that contains population data. Note: The polygon must be in a projection where the units are in meters.	Feature Layer
Population_Field	The field in the Census Feature layer that contains population data.	Field
Output_Feature_Class	The output reporting unit metrics feature class to be created.	Feature Layer
POPCHG (Optional)	Specifies whether population change over time (POPCHG) metrics will be included in the output feature class.	Boolean
	 False – No POPCHG metrics will be included. This is the default. True – POPCHG metrics will be included. 	
Census_T2_Feature (Optional)	The optional vector polygon dataset (Census time 2) that contains population data for the second time point. It may be the same feature layer as Census Feature. Note: The polygon must be in a projection where the units are in meters.	Feature Layer
Census_T2_Field (Optional)	The field in the Census Feature layer that contains population data for the second time point.	Field

3.7.6 Nutrition Metrics

Feeding humanity's growing population relies on knowledge of nutritional needs within the world's most vulnerable locations. To provide information on minimum dietary requirements for vulnerable populations, the Nutrition Metrics tool relies on population estimates for Latin America, Africa, and Asia coupled with algorithms for estimating the minimum dietary energy requirement (MDERs) by age group within an area of interest (AOI). Age groups are separated

by sex and provided in four year intervals (e.g., female 0-4, male 0-4, female 5-9, male 5-9, etc). Population estimates are provided by WorldPop (http://www.worldpop.org.uk/) for the years 2000, 2005, 2010, 2015, and 2020, and algorithms published by the Food and Agriculture Organization of the United Nations (FAO) are used to estimate calorie requirements. The Nutrition Metrics tool produces a report of calorie requirements by age group for an AOI, which the user defines by uploading a shapefile specifying the relevant location. The report includes the number of people by age group within the AOI. It also includes the total daily lower limit of energy requirement (LLER) for each age group in kilocalories per day. From this report, more informed decisions can be made to address questions such as:

- How have population and calorie requirements changed within this location during the past twenty years?
- Is the agricultural production potential within this area sufficient to meet the nutritional needs of the population?
- Do nutritional requirements differ between nearby areas of interest?

For an explanation of the LLER calculation process, refer to the tool's usage information in ArcCatalog. To do this, choose the Nutrition Metrics tool in ArcCatalog by locating it in the catalog tree, then select the Description tab and scroll to the Usage section).

NOTE: This tool relies on population rasters developed by WorldPop (www.worldpop.org). These rasters are downloaded with the Telecoupling Toolbox sample data and are separated by continent.

Parameter	Explanation	Data Type
Area_of_Interest	Shapefile indicating the Area of Interest (AOI). Smaller AOIs will have shorter processing times.	
	If the uploaded shapefile contains more than one feature, all features will be aggregated together. It is therefore recommended that the uploaded shapefile contain only one feature. NOTE: This tool will only run with AOIs in Africa, Asia, or South America / Central America / Caribbean.	
Continent_(continent_o f_area_or_interest)	Folder of rasters (separated by continent) representing information on population and age structures. Select the folder that is consistent with the continent on which the AOI is located.	Folder

	 NOTE: Africa – includes the entire continent from North Africa to the southern extent of sub-Saharan Africa Asia – includes mainland countries between Turkey and China, but excluding all of Russia. Countries off the coast of mainland Asia, including Japan, Taiwan, and those constituting South-East Asia are also included. South America / Central America / Caribbean – includes the entire continent of South America, countries extending southward from Mexico to Panama, as well as the countries of the Caribbean. 	
Year_of_Interest	 The year for which population and LLER estimates will be produced. Options include 2000, 2005, 2010, 2015, and 2020. NOTE: The Africa mosaic dataset does not include a record for the Male 65+ age group in the Year 2020. Thus, '999999999' is returned for both the population and LLER in this age group. 	String
Average_Male_Stature _in_cm_(height)	Average adult male height in the AOI. This must be provided in centimeters (cm). If the average adult male height within the AOI is not known, it is recommended that the average male height within the country where the AOI is located is used.	Double
Average_Female_Statu re_in_cm_(height)	Average adult female height in the AOI. This must be provided in centimeters (cm). If the average adult female height within the AOI is not known, it is recommended that the average female height within the country where the AOI is located is used.	Double

3.7.7 Food Security

The United Nations' Committee on World Food Security defines food security as follows: The condition in which all people, at all times, have physical, social, and economic access to sufficient safe and nutritious food that meets their dietary needs and food preferences for an active and healthy life.

Four pillars of food security exist: availability (supply of food through production, distribution, and exchange), access (affordability and allocation of food), utilization (ability to prepare food of adequate quantity and quality for all household members), and stability (the ability to obtain food over the long-term).

This tool returns food security information at the country-level produced by the Food and Agriculture Organization, and provides a proxy for the 'availability' pillar (ie, total monthly rainfall for each month during the past year (mm)) as well as a proxy for the 'access' pillar (ie, distance to the nearest urban center in meters and kilometers) at the local-level.

Parameter	rameter Explanation	
Point_of_Interest	Add a point to the map window that will represent the location of interest. From this point, rainfall information and distance to the nearest urban center will be calculated.	Feature Set
	Note: It is recommended that the user add a basemap to the map window before placing the point of interest. Basemaps can be added using the Add Data button.	
Country	Choose the country of interest. The country of interest should coincide with the country in which the point of interest was placed.	String
FAO_Food_Security_I ndicator	 Choose the FAO food security indicator of interest (Note: Only one food security indicator can be chosen for each model run). Options include the following: Average dietary energy supply adequacy (%) (3-year average) - The Dietary Energy Suppy (DES) as a percentage of the Average Dietary Energy Requirement (ADER). Each country's average supply of calories for food consumption is normalized by the average dietary energy requirement estimated for its population to provide an index of adequacy of the food supply in terms of calories. Average value of food production (constant I\$ per person) (3-year average) - The indicator expresses the food net production value (in constant 2004-2006 international dollars), as estimated by FAO and published by FAOSTAT, in per capita terms. 	String

Share of dietary energy supply derived from cereals, roots and tubers (%) (3-year average) - The indicator expresses the energy supply (in kcal/caput/day) provided by cereals, roots and tubers as a percentage of the total Dietary Energy Supply (DES) (in kcal/caput/day) calculated from the correponding countries in the FAOSTAT food balance sheets. Average protein supply (g/capita/day) (3-year average) - National average protein supply (expressed in grams per caput per day). Average supply of protein of animal origin (g/capita/day) (3-year average) - National average protein supply (expressed in grams per caput per day). It includes the following groups: meat; offals; animal fats and products; milk and products; eggs, fish, seafood and products; and acquatic products, other. Rail-lines density (per 100 square km of land area) -Rail lines density corresponds to the ratio between the length of railway route available for train service, irrespective of the number of parallel tracks (rail lines, total route in km) with the area of the country. Gross domestic product per capita, PPP (constant **2011 international \$)** - GDP per capita based on purchasing power parity (PPP). PPP GDP is gross domestic product converted to international dollars using purchasing power parity rates. An international dollar has the same purchasing power over GDP as the U.S. dollar has in the United States. GDP at purchaser's prices is the sum of gross value added by all resident producers in the economy plus any product taxes and minus any subsidies not included in the value of the products. It is calculated without making deductions for depreciation of fabricated assets or for depletion and degradation of natural resources. Data are in constant 2011 international dollars.

	 Prevalence of undernourishment (%) (3-year average) - The prevalence of undernourishment expresses the probability that a randomly selected individual from the population consumes an amount of calories that is insufficient to cover her/his energy requirement for an active and healthy life. The indicator is computed by comparing a probability distribution of habitual daily dietary energy consumption with a threshold level called the minimum dietary energy Requirement. Both are based on the notion of an average individual in the reference population. Depth of the food deficit (kcal/capita/day) (3-year average) - The depth of the food deficit indicates how many calories would be needed to lift the undernourished from their status, everything else being constant. The average intensity of food deprivation of the undernourished, estimated as the difference between the average dietary energy requirement and the average dietary energy consumption of the undernourished to provide an estimate of the total food deficit in the country, which is then normalized by the total population. 	
FAO_Food_Security_ CSV	CSV file containing food security information from the FAO. This file is found within the sample data folder.	File
Country_ISO_Code_ CSV	CSV file containing country ISO codes. This file is found within the sample data folder.	File
Population_Shapefile	Shapefile of all settlements with more than 1,000 people per sq km. This is the definition of an "urban area" used by the OECD. This shapefile is found within the sample data folder.	Shapefile
Output_Location	Select the folder where output will be saved.	Folder

3.8 Future Development

Updated and new versions of the telecoupling toolbox are released periodically where new script tools are added or modifications are made to existing tools to fix errors or improve their functionalities. The source code, sample data, and tool documentation are publicly available on Github⁶, a common web-based hosting service for projects that use revision control systems. Although the present toolbox was developed to work within ESRI's ArcGIS software environment, thus limited to the Microsoft Windows platform, we also offer a web-based application, the **GeoApp**⁷, with most of the tools available for the desktop version for ArcGIS. The major advantage of our web-based application is to free up users from the hassle of installing several required software and libraries, while enhancing the responsive and interactive components that are typical of modern web applications. A note on the telecoupling toolbox versioning: integer changes will reflect major changes, e.g. from 1.2 to 2.0. Increments in the digit after the primary decimal indicates major new features (e.g, the addition of a new tool) or major revisions. The third decimal reflects minor feature revisions or bug fixes with no new functionality.

3.9 References

- Kastner, T., Erb, K.-H., and Nonhebel, S. 2011. International wood trade and forest change: A global analysis. *Global Environmental Change* 21(3), pp. 947-956. http://dx.doi.org/10.1016/j.gloenvcha.2011.05.003
- Konar, M., C. Dalin, S. Suweis, N. Hanasaki, A. Rinaldo, and I. Rodriguez-Iturbe. 2011. Water for food: the global virtual water trade network. *Water Resources Research* 47:W05520. http://dx.doi.org/10.1029/2010WR010307
- Liu, J., Dietz, T., Carpenter, S.R., Folke, C., Alberti, M., Redman, C.L., Schneider, S.H., Ostrom, E., Pell, A.N., Lubchenco, J., Taylor, W.W., Ouyang, Z., Deadman, P., Kratz, T., and William Provencher. 2007. Coupled Human and Natural Systems. *AMBIO: A Journal of the Human Environment* 36(8), pp. 639-649. http://dx.doi.org/10.1579/0044-7447(2007)36[639:CHANS]2.0.CO;2
- Liu, J., Hull, V., Batistella, M., DeFries, R., Dietz, T., Fu, F., Hertel, T.W., Izaurralde, R.C., Lambin, E.F., Li, S., Martinelli, L.A., McConnell, W.J., Moran, E.F., Naylor, R., Ouyang, Z., Polenske, K.R., Reenberg, A., de Miranda, R.G., Simmons, C.S., Verburg, P.H., Vitousek, P.M., Zhang, F., and Zhu, C. 2013. Framing sustainability in a telecoupled world. *Ecology and Society* 18, art26. 10.5751/ES-05873-180226

⁶ https://msu-csis.github.io/telecoupling-toolbox/

⁷ https://telecoupling.msu.edu/geo-app/

- Liu, J., Mooney, H., Hull, V., Davis, S.J., Gaskell, J., Hertel, T., Lubchenco, J., Seto, K.C., Gleick, P., Kremen, C., and Li, S. 2015. Systems integration for global sustainability. *Science* 347(6225). 10.1126/science.1258832
- Liu, J., Yang, W., and Li, S. 2016. Framing ecosystem services in the telecoupled Anthropocene. *Frontiers in Ecology and the Environment* 14(1), pp. 27-36. 10.1002/16-0188.1.
- Reid, W.V., Chen, D., Goldfarb, L., Hackmann, H., Lee, Y.T., Mokhele, K., Ostrom, E., Raivio, K., Rockström, J., Schellnhuber, H. J., and Whyte, A. 2010. Earth System Science for Global Sustainability: Grand Challenges. *Science* 330(6006), pp. 916-917. 10.1126/science.1196263
- United Nations Secretary-General's High-level Panel on Global Sustainability. 2012. *Resilient people, resilient planet: a future worth choosing*. United Nations, New York, New York, USA.

3.10 Acknowledgements

The development of the Telecoupling Toolbox has been supported by grants from the National Science Foundation, Michigan State University, and Michigan AgBioResearch.

3.11 License & Copyright

Telecoupling Toolbox ("Software") is the property of Michigan State University ("MSU") and is made available solely for educational or non-commercial use.

Copyright © 2017 Board of Trustees of Michigan State University. All rights reserved

Telecoupling Toolbox ("Software") is the property of Michigan State University ("MSU") and is made

available solely for educational or non-commercial use. Your receipt and use of the Software is governed by the following terms and conditions.

If you are not willing to accept these terms and conditions, please do not download the Software.

Except for third party materials included therein, MSU retains title to the Software, and you shall not obtain any ownership rights in Software.

Portions of Software include intellectual property of ESRI and its licensor and are used under license. Copyright © 2017 ESRI and its licensors . All rights reserved.

Redistribution and use of Software in source and binary forms, with or without modification, are permitted provided that redistributions of the Software include these terms and conditions. YOU UNDERSTAND AND AGREE THAT THE SOFTWARE IS PROVIDED "AS IS", AND MSU DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED WITH REGARD TO SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY PROPRIETARY RIGHTS. MSU ASSUMES NO LIABILITY UNDER THIS AGREEMENT. IN NO EVENT WILL MSU BE LIABLE FOR ANY LOSS OF DATA, LOST PROFITS, COST OF PROCUREMENT OF SUBSTITUTE TECHNOLOGY OR SERVICES OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES ARISING FROM THE USE OF THE SOFTWARE OR OTHERWISE ARISING OUT OF THIS AGREEMENT, HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER FOR BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE) OR OTHERWISE. THIS LIMITATION WILL APPLY EVEN IF MSU HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING THE FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY. You agree that Software will not be disclosed in violation of any applicable export control regulations.

Please include the following notice of attribution in any publications or presentations reporting on your use of the Software:

Telecoupling Toolbox [version_number_here] (https://bitbucket.org/f-tonini/telecouplinggeoapp) developed by Dr. Tonini at Michigan State University.

Other than the notice of attribution described above, neither the name of MSU nor the names of Software developers may be used without prior written permission.

If you have any questions about this agreement, please contact: MSU Technologies msut@msu.edu TEC2017-0047

• This toolbox depends on the R Statistical Computing Software:

© 2017 The <u>R Foundation for Statistical Computing</u>. R is free software and comes with ABSOLUTELY NO WARRANTY. See the <u>COPYRIGHTS</u> file for details.

• This toolbox depends on ESRI software:

© 2017 ESRI. See the Software License and Agreement for details.

• This toolbox depends on InVEST - Natural Capital Project software:

© 2017 NatCap Project. See the <u>Software License and Agreement</u> for details.

4 TUTORIALS

The following tutorials will guide you through examples of potential application of each script tool using the sample data provided with the toolbox (*SampleData_ArcGIS_v2.2.zip*). All ESRI basemaps are by default using a Web Mercator coordinate system, typically found in most online web applications (e.g. Google Maps, Bing Maps). If you decide to use your own background administrative layer that is in a different coordinate system, ArcGIS will automatically re-project any additional layers (including output from geoprocessing tools) on-the-fly to the coordinate system of the first layer in your map.

<u>NOTE</u>: Although ArcGIS projects on-the-fly to avoid projection mismatch, we always encourage the user to have all layers in the same coordinate system appropriate for the scale of analysis and case study.

<u>NOTE</u>: some basic level of proficiency in ArcGIS Desktop is necessary to better follow the tutorial examples shown in Chapter 4.

4.1 SAMPLE DATASET

The sample dataset provided with the telecoupling toolbox has data on six different types of telecoupling: wildlife transfer, tourism (eco-tourism), agricultural trade, industrial trade, conservation subsidies, and information dissemination. Inside the *SampleData_ArcGIS_v2.2* folder, you will also find several other subfolders divided by topic which will be used in some of the following tutorials (Fig. 3).

DISCLOSURE ON DATA USAGE: the sample datasets were either partially modified, or their format changed in some case from the original datasets to protect privacy and sensitive data when deemed appropriate. Use the sample datasets for learning purposes only and under no circumstances data should be used to inform any policy. Please refer to the Telecoupling Toolbox license agreement for more details.

Name	Date modified	Туре
Agents	10/18/2017 9:34 AM	File folder
Causes	10/2/2017 9:34 AM	File folder
📙 Environmental Analysis	10/2/2017 9:36 AM	File folder
	10/2/2017 9:34 AM	File folder
Socioeconomic Analysis	10/2/2017 1:49 PM	File folder
Systems	10/18/2017 9:32 AM	File folder

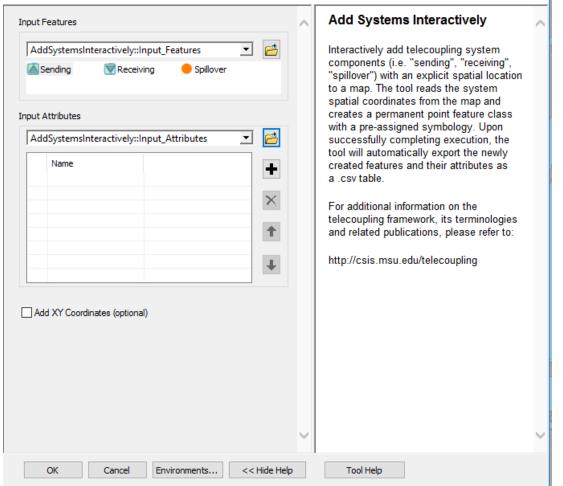
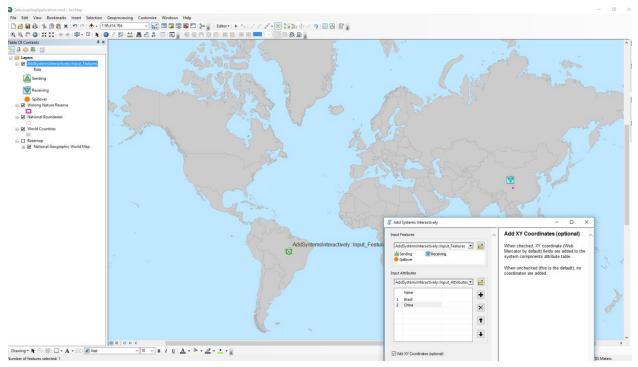

 \times

Figure 3. File structure of the SampleData_ArcGIS_v2.2 folder provided with the telecoupling toolbox.

4.2 SYSTEMS TOOLSET

4.2.1 Add Systems Interactively


3	Add	Systems	Interactively
---	-----	---------	---------------

Once you open the tool (by double-clicking on it) make sure the help window stays open (bottom of the tool interface to hide/open it). The help is there to provide general information about the tool as a whole, as well as describing in detail each single parameter after clicking on it. In some case, the tool help windows will have a nice graphic with it.

The first parameter asks you to select a category for the system you would like to add to the map (sending, receiving, spillover) with its own symbology. Once you select the desired category, move the mouse cursor over the map and you should see the chosen symbol ready to be placed. Make sure to zoom in/out to the extent that best captures your system (e.g. census block, city, province, region, country). Click on the map to mark your system down and type a name in the second parameter of the user interface that best describes your system (e.g. country name, city name, etc). In order to add a name to the second parameter, you need to click on the "+" sign and then start typing in the corresponding line. Repeat the above procedure for all other systems in your case study. Typically, you should have a *minimum of two points* (systems) on the map, one sending and one receiving, or it will not make sense to have a flow between the two. Once you click OK to run the tool, ArcGIS will create a permanent output point feature class and save an output table to your workspace directory with a list of all the systems and names you added to the map. If you wish to add spatial coordinates (in Web Mercator by default) to the attribute table, make sure to check the "Add XY Coordinates" box found in the tool interface.

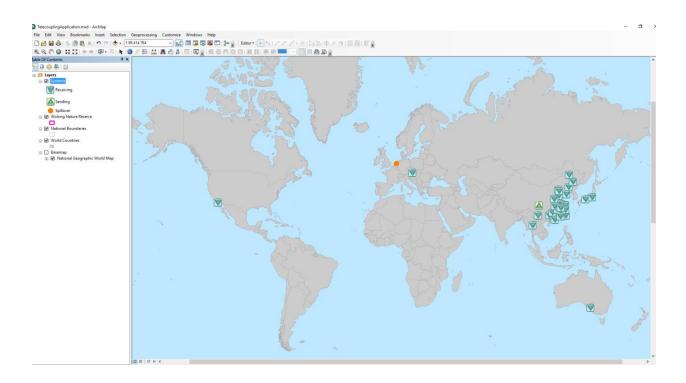
<u>NOTE</u>: In order to change the default workspace location where your output files and layers are created, click on the "Environments..." button at the bottom of the tool interface, then expand the workspace option and set a different path to both the current and scratch folder parameters.

The output .csv table created by the tool in the scratch workspace directory should look something similar to the following figure:

🕅 🗖 S- C						
FI	ILE HON	INSER	T PAGE L	AYOUT F	ORMULAS	DATA
$\begin{array}{c c} & & & \\ & & & \\$						
A1			✓ fx	Role		
	A	В	С	D	E	F
1	A Role	B Name	C POINT_X	D POINT_Y	E	F
1		-	-	POINT_Y	E	F
-	Role	Name	POINT_X	POINT_Y -1236341	E	F
2	Role Sending	Name Brazil	POINT_X -5744568	POINT_Y -1236341	E	F
2	Role Sending	Name Brazil	POINT_X -5744568	POINT_Y -1236341	E	F
2 3 4	Role Sending	Name Brazil	POINT_X -5744568	POINT_Y -1236341	E	F
2 3 4 5	Role Sending	Name Brazil	POINT_X -5744568	POINT_Y -1236341	E	F

4.2.2 Draw Systems from Table

Draw Systems from Table	X
Input Table	Draw Systems from Table Oraw telecoupling system components (i.e. "sending", "receiving", "spillover") on the map by uploading a table stored in a local file on disk. The tool reads XY completing execution, the tool will automatically export the newly created features and their attributes as a .csw table. Tor additional information on the telecoupling framework, its terminologies and related publications, please refer to: http://csis.msu.edu/telecoupling
OK Cancel Environments << Hide Help	Tool Help


Once you open the tool (by double-clicking on it) make sure the help window stays open (bottom of the tool interface to hide/open it). The help is there to provide general information about the tool as a whole, as well as describing in detail each single parameter after clicking on it. In some case, the tool help windows will have a nice graphic with it.

The first parameter asks you to select a table on disk containing records on your telecoupling systems. The table must at least have a column specifying the name of the system (e.g. USA, Chicago, Michigan), the Role of the system (i.e. Sending, Receiving, Spillover), and the spatial coordinates of it. Coordinates can be in any coordinate system, since the tool will automatically re-project them to Web Mercator (by default). The second and third parameter of the tool ask the user to specify which fields (columns) in the chosen table on disk correspond to the X and Y coordinates. Typically, you should have a *minimum of two points* (systems) inside the table, one sending and one receiving, or it will not make sense to have a flow between the two. Once you

click OK to run the tool, ArcGIS will create a permanent output point feature class and add it to the map.

If you are using the sample data provided with the toolbox, you can use any of the .csv tables ending with the word "_Systems" (e.g. /*SampleData_ArcGIS_v2.2/Systems/Draw Systems from Table/wildlife_Systems.csv*).

<u>NOTE</u>: In order to change the default workspace location where your output files and layers are created, click on the "Environments..." button at the bottom of the tool interface, then expand the workspace option and set a different path to both the current and scratch folder parameters.

 \times

4.2.3 Network Analysis Grouping

💐 Network Analysis Grouping

 Nodes Table 				e	^	Network Analysis Grouping	^
 Nodes Join Attribute 						This tool uses network information (i.e. nodes, links, and directions) of units (e.g. countries, areas, administrative units) within a telecoupling	
Links Table						system and aggregates them into groups (clusters) based on their network connectivity. Upon successfully completing execution, the tool will automatically export a new shapefile of the telecoupling system	
Telecoupling Systems La	iyer					along with their grouping outcomes (cluster number) added in attribute table for each of the clustered unit. Optionally, the tool can generate an output plot (in PDF format) showing the clustering outcome of the	
 Layer Join Attribute 						network analysis. Examples of network data are migration of population (e.g. immigration, tourists, business travelers, students and	
Clustering Algorithm walktrap				~		etc.) or import/export of goods.	
 Network Graph Plot 						100	
 Group Number 						00.00	
Network Metrics Table							
× Plotting Options							
					<		~
	ОК	Cancel	Environments	<< Hide Help		Tool Help	

Once you open the tool (by double-clicking on it) make sure the help window stays open (bottom of the tool interface to hide/open it). The help is there to provide general information about the tool as a whole, as well as describing in detail each single parameter after clicking on it. In some case, the tool help windows will have a nice graphic with it.

This tool can be used for network grouping of the nodes under analysis in a telecoupling system based on given network information including nodes, their connected components and in- and out- degrees of the nodes. For example, use the sample dataset within this toolbox for Network Analysis Grouping tool, including nodes.csv, links.csv, and World_countries_2002.shp.

If you are using the sample data provided with the toolbox, browse to the nodes.csv table (*SampleData_ArcGIS_v2.2/Systems/Network Analysis Grouping/nodes.csv*).

The input nodes table should contain telecoupling systems in each record (nodes in the network analysis terminology) and have a unique identifier code tied to it. Make sure your table also has two other columns with the number of outgoing tourists and incoming tourists (in our sample data we took the natural log of this number to avoid issues with node size in the output results).

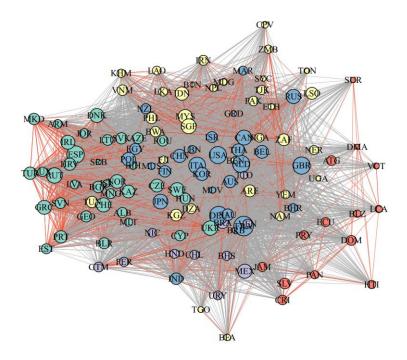
Specify that you want the column attribute called "CODE" as the join attribute for the nodes table.

For the input links table, browse to the links.csv table in our sample data (*SampleData_ArcGIS_v2.2/Systems/Network Analysis Grouping/links.csv*). The table contains a list of all the connections between sending and receiving telecoupling systems (countries in this case) that are to be considered as "links" in the network grouping analysis. This table must include a unique identifier code for both the sending and receiving systems, as well as an attribute specifying the outgoing flow.

NOTE 1: make sure the codes used for the sending and receiving systems match exactly those used in the nodes input table.

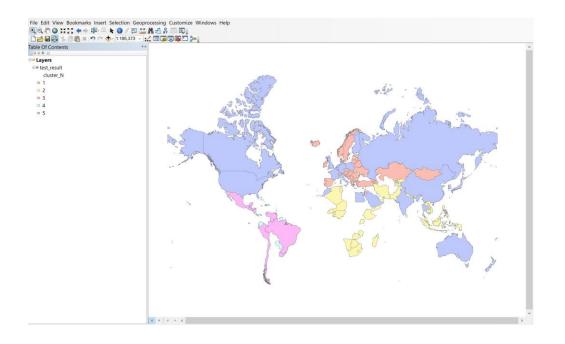
NOTE 2: make sure the outgoing flow attribute contains the same values used in the nodes input table. Therefore, if you used natural logarithm in the nodes input table, make sure to use the same here.

The sample data links.csv shows countries in the tourism network and the amount of tourists heading out from a given country (sender) into a different one (receiver).


The sample shapefile is used as the input telecoupling systems feature layer (*SampleData_ArcGIS_v2.2/Systems/Network Analysis Grouping/World_countries_2002.shp*). The shapefile contains 211 records of countries with "ISO_3_CODE" as one of its attribute. Select this attribute as the Layer Join Attribute that will be matched against the input nodes join attribute to attach a cluster number when the tool is done running.

As a clustering algorithm, you can choose *walktrap* or *spin_glass* (you can choose the default algorithm walktrap here). A pdf file with a plot of the outcome network grouping will be exported if a local directory and file name is offered for the output report file. The tool does not export this report if you leave this output option blank. In the output pdf plot, red lines represent links to nodes out of one's group, while grey lines are links to nodes within one's group.

As output shapefile, browse to a local directory and give it whatever name you prefer. Otherwise, accept the default that ArcGIS fills out for you. We will leave all the plotting options as default, but feel free to modify any or all of them to see how it affects the output network grouping. Simply expand the plotting options and change the values if you wish to.


Click OK to run the tool. Once completed, a pdf file and a .csv file and a shapefile will be exported. The image in the pdf file delineates the clusters in this tourism network. Countries in different clusters are shown in different colors. Countries without information in this system are

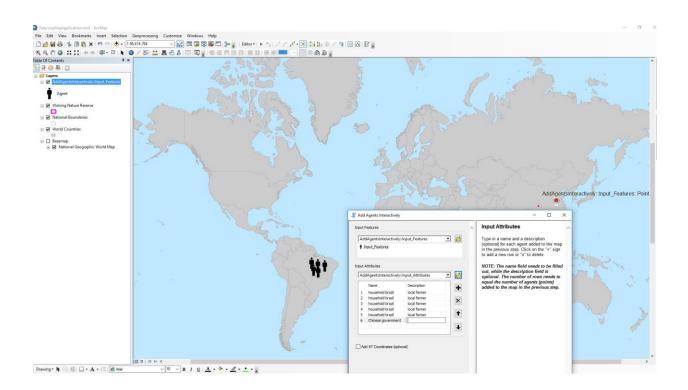
not shown in the plot, and they are also removed for the output feature class. Degree, closeness and betweenness are calculated for each node in the network and put in the table. A new attribute called cluster_N can be found in the attribute table of output feature class shows which clusters are the countries belong to according to the network analysis. You can easily color the map for different clusters or pick specific clusters to show in this map within ArcGIS.

User	Guide
0361	Juiue

	degree	closeness	betweenness
ALB pling Syst	ems Layer 109	0.154135338	20.63002545
ARE	65	0.159326425	9.322103636
ARM	e 94	0.151851852	14.7098935
ATG	30	0.151477833	0.56159059
	nm 215	0.168032787	591.1386095
AUT	138	0.171309192	55.75180001
AZE Graph P	ot (optional 107	0.152605459	20.0273266
BEL	222	0.173239437	707.1005371
BEN umber	90	0.152605459	16.84494106
BFA	37	0.148910412	2.790395562
BGR Matrics	Table 120	0.156091371	31.51261066
BHR	153	0.136971047	67.38083755
BHS	ns 145	0.151851852	76.0193102
BIH	78	0.151851852	5.978454459
BLR	108	0.150366748	13.38024193
BLZ	49	0.154522613	2.871817264
BRA	106	0.168493151	50.95204933
BRB	137	0.152985075	82.70895544

4.3 AGENTS TOOLSET

4.3.1 Add Agents Interactively


💐 Add Agents Interactively		—	<
Input Features	^	Add Agents Interactively	^
AddAgentsInteractively::Input_Features		Interactively add telecoupling agents with an explicit spatial location to a map. The tool reads the agent spatial coordinates from the map and creates a permanent point feature class with a pre-assigned symbology. Upon successfully completing	
AddAgentsInteractively::Input_Attributes		execution, the tool will automatically export the newly created features and their	
Name Description Image: Construction of the second seco		attributes as a .csv table. For additional information on the telecoupling framework, its terminologies and related publications, please refer to: http://csis.msu.edu/telecoupling	
	\sim		\sim
OK Cancel Environments << Hide Help)	Tool Help	

Once you open the tool (by double-clicking on it) make sure the help window stays open (bottom of the tool interface to hide/open it). The help is there to provide general information about the tool as a whole, as well as describing in detail each single parameter after clicking on it. In some case, the tool help windows will have a nice graphic with it.

The first parameter asks you to select agents (e.g. household, organization, governmental departments) you would like to add to the map. Move the mouse cursor over the map and you should see an agent symbol ready to be placed. Make sure to zoom in/out to the extent that best captures your agent size or location. Click on the map to mark your agents down and type a name and (optionally) a description in the second parameter of the tool interface. You can pick a name that best characterizes your agents and add a description of it if deemed necessary. In order to add a new record to the second tool parameter and start typing name/description, you need to click on the "+" sign. Repeat the above procedure for all other agents in your case study and

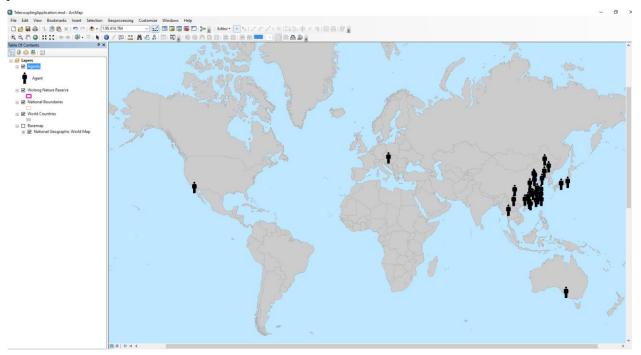
make sure the number of agents on the map corresponds to the number of rows in the table of the tool interface. Once you click OK to run the tool, ArcGIS will create a permanent output point feature class and save an output table to your workspace directory with a list of all the agents names and description you added to the map. If you wish to add spatial coordinates (in Web Mercator by default) to the attribute table, make sure to check the "Add XY Coordinates" box found in the tool interface.

<u>NOTE</u>: In order to change the default workspace location where your output files and layers are created, click on the "Environments..." button at the bottom of the tool interface, then expand the workspace option and set a different path to both the current and scratch folder parameters.

The output .csv table created by the tool in the scratch workspace directory should look something similar to the following figure:

X∎								
FI	LE HOME	INSERT PAGE L	AYOUT F	ORMULAS	DATA	REVIEW	VIEW	
	■ 🔏 Cut □ 📴 Copy 👻	Calibri	* 1 1 *	A [•] A [•] ≡	= = %	· ·	Wrap Te	
Pas	te 🚿 Format P	ainter B I U -	🗄 + 💍	- <u>A</u> - =	= = 6	= 😐 🖽	Merge &	
	Clipboard		Font	ra l		Alignment		
A1	Ŧ	$\times \checkmark f_x$	Name					
	Α	В	С	D	Е	F		
1	Name	Description	POINT_X	POINT_Y				
2	household	local farmer in Brazil	-5663332	-1128941				
3	household	local farmer in Brazil	-5207345	-1610260				
4	household	local farmer in Brazil	-5080683	-1002278				
5	household	local farmer in Brazil	-6195315	-850283				
6	household	local farmer in Brazil	12677444	4013569				
7	dept forestry	None	-5486004	-672955				
8								
9								
10								
11								
**								

4.3.2 Draw Agents from Table


Input Table Image: Comparison of the map by uploading a table stored in a local fipe on disk. The tool reads XY coordinates from the table and creates a permanent point feature class with a pre-assigned symbology. Upon successfully completing execution, the tool will automatically export the newly created features and their attributes as a .csv table. For additional information on the telecoupling framework, its terminologies and related publications, please refer to: http://csis.msu.edu/telecoupling
,

Once you open the tool (by double-clicking on it) make sure the help window stays open (bottom of the tool interface to hide/open it). The help is there to provide general information about the tool as a whole, as well as describing in detail each single parameter after clicking on it. In some case, the tool help windows will have a nice graphic with it.

The first parameter asks you to select a table on disk containing records on your telecoupling agents. The table must at least have a column specifying the name of the agent and a description (this field can be left empty), and the spatial coordinates of it. Coordinates can be in any coordinate system, since the tool will automatically re-project them to Web Mercator (by default). The second and third parameter of the tool ask the user to specify which fields (columns) in the chosen table on disk correspond to the X and Y coordinates. Once you click OK to run the tool, ArcGIS will create a permanent output point feature class and add it to the map.

If you are using the sample data provided with the toolbox, you can use any of the .csv tables ending with the word "_Agents" (e.g. /SampleData_ArcGIS_v2.2/Agents/Draw Agents from Table/wildlife_Agents.csv).

<u>NOTE</u>: In order to change the default workspace location where your output files and layers are created, click on the "Environments..." button at the bottom of the tool interface, then expand the workspace option and set a different path to both the current and scratch folder parameters.

4.4 FLOWS TOOLSET

4.4.1 Draw Radial Flows

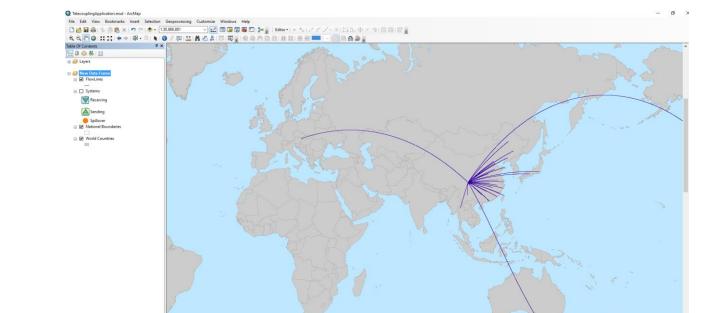
			aw Radial Flows
		6	
rt X		Dra	w radial flows between two or more telecoupling
			tem components (i.e. "sending", "receiving",
rtY			illover") on the map. Radial flows have a spoke-like tern where features and places are mapped in nodal
			n with one place being a common origin or destination
dх			ws represent the movement of material, energy, or
			rmation. Arrows show the direction of the movement.
Y			tool creates a new feature class containing geodetic
		line	features constructed based on the values in a start x
(optional)		COC	rdinate field, start y-coordinate field, end x-coordinate
(optionally			I, and end y-coordinate field of a table. If desired, the
e Type (optional)			will also compute a point vector layer representing
EODESIC			es at each destination of the radial flows, using the ne end x-coordinate field and end y-coordinate field of
atial Reference (optional)			attribute table used to produce flow lines. Points
/GS_1984_Web_Mercator_Auxilia	ary Sphere		des) at flow destinations can be symbolized and
	"Y_ophere		dered as desired by each user to show quantities
n Fields (optional)			ributes) of interest.
			additional information on the telecoupling framework,
		its	erminologies and related publications, please refer to
		http	://csis.msu.edu/telecoupling
Select All Unselect All	Add Field		
Select All Unselect All	Add Field		
Create Destination Nodes	Add Field		
Create Destination Nodes	Add Field		
Create Destination Nodes			
_			
Create Destination Nodes			
Create Destination Nodes			

Once you open the tool (by double-clicking on it) make sure the help window stays open (bottom of the tool interface to hide/open it). The help is there to provide general information about the tool as a whole, as well as describing in detail each single parameter after clicking on it. In some case, the tool help windows will have a nice graphic with it.

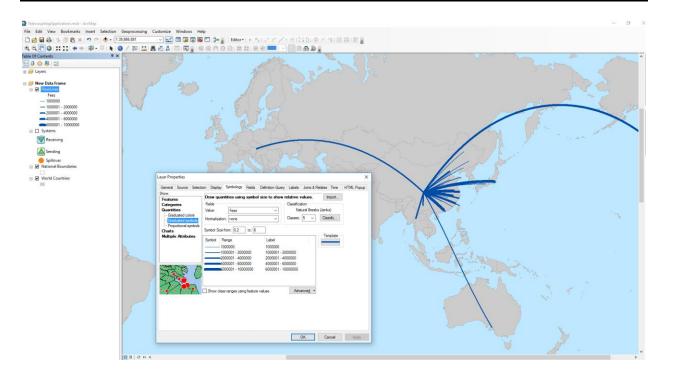
The first parameter asks you to select a table on disk containing records on start and end points of the flow. The next four parameters need the field name (column) of the input table containing

X and Y coordinates of start and end points, respectively. The ID parameter is optional and should only be used in case you have additional columns in the input table with data you would like to use to symbolize the flow lines (e.g. quantitative variables such as the amount of traded goods, or fees paid for the transaction, or a simple categorical label describing the flow). Ideally, you should always have some data on the amount of flow between two points, whether it is material or any other transferred quantity. If you have these additional columns in the input table, as ID parameter select a numerical sequential indicator found in the table that will be used to join the additional columns to the output flow table created by the tool. The Line Type parameter ("GEODESIC" by default) lets you choose what type of flow lines to draw between points. Please refer to the tool description in Section 3 for more details on the options. The Spatial Reference parameter (Web Mercator by default) should correspond to whatever coordinate systems your start and end points in the input table are. For example, if your coordinates in the table are in Geographic Coordinate System WGS 1984, then make sure to change this parameter in the tool interface to match them. NOTE: If you forget this step and run the tool, you may not see any flow lines in output because of a projection mismatch. The last optional parameter, called "Join Field(s)", lets you choose which additional columns from the input table you want be joined to the output flow attribute table.

Once you click OK to run the tool, ArcGIS will create a permanent output line feature class and add it to the map.


If you are using the sample data provided with the toolbox, you can use any of the .csv tables ending with the word "_Flows" (e.g. /*SampleData_ArcGIS_v2.2/Flows/Draw Radial Flows/wildlife_Flows.csv*). Use the column called "FID" as ID parameter, select WGS 1984 as a spatial reference for the spatial coordinates found in the sample table, and choose one or more additional columns that show the quantity of the flow.

<u>NOTE</u>: In order to change the default workspace location where your output files and layers are created, click on the "Environments..." button at the bottom of the tool interface, then expand the workspace option and set a different path to both the current and scratch folder parameters.

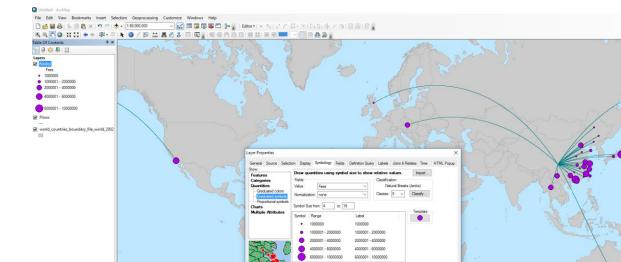

thickness. If you have selected additional variables to represent the flow amount, you can use one of them to improve the visualization of the lines. To do so, right-click on the output flow layer found in the table of content (left-side of the map typically) and select the tab called "symbology". Then, you can select "quantities", and something like "graduated symbols" to show the line thickness proportional to the chosen variable of interest (e.g. flow amount, fees). Choose how many bins you want to group your values and a desired color. The next figure shows you an example using the "*wildlife_Flows.csv*" sample table, where flows have been symbolized proportionally to the amount of fees paid for the wildlife transfer transaction.

Once the output flow feature class has been created, the lines will all have the same color and

Telecoupling Toolbox v2.3

User Guide




User Guide

If in addition you desire to create a point layer with nodes at flow destinations, repeat all the steps above, making sure you check the box next to "Create Destination Nodes". Give a name to the layers and click OK. ArcGIS will create a permanent output point feature class representing destination points of the flows between systems, and add both to the map.

Once the output nodes feature class has been created, the points will all have the same color and size. If you have selected additional variables to represent the flow amount, you can use one of them to improve the visualization of the points. To do so, right-click on the output nodes layer found in the table of content (left-side of the map typically) and select the tab called "symbology". Then, you can select "quantities", and something like "graduated symbols" to show the point size proportional to the chosen variable of interest (e.g. flow amount, fees). Choose how many bins you want to group your values and a desired color. The next figure shows you an example using the "*wildlife_Flows.csv*" sample table, where nodes have been symbolized proportionally to the amount of fees paid for the wildlife transfer transaction.

Telecoupling Toolbox v2.3

4000001 - 6000000 6000001 - 1000000

OK Cancel Apply

Telecoupling Toolbox v2.3

< > D D D H <

4.4.2 Add Media Information Flows

💐 Add Media Information Flows	- 0	×
Input Feature Location Field Media Report File Source Location AddMediaInformationFlows::Source_Location Merge Wth Existing Row Layer (optional) Input Flow Layer (optional) Line Type (optional) GEODESIC	Input Feature An OGR-supported shapefile or Feature Layer corresponding to the geographic locations (e.g. countries) you are interested in searching within the media report file.	<
OK Cancel Environments << Hide Help	Tool Help	

Once you open the tool (by double-clicking on it) make sure the help window stays open (bottom of the tool interface to hide/open it). The help is there to provide general information about the tool as a whole, as well as describing in detail each single parameter after clicking on it. In some case, the tool help windows will have a nice graphic with it.

This tool should be used to map flows of information that disseminate from a source location to other locations globally. For example, the Academic LexisNexis website is often used to search word terms, e.g. "Wolong Nature Reserve", in a vast online database made of academic and scientific articles, books, news media, and magazines just to name some. When using the media information flows tools, the user decides whether to map flows using only the online report generated from LexisNexis, or merge the media flow to an existing flow layer previously generated using the radial flows tools (i.e. Draw Radial Flows, Draw Radial Flows and Nodes). In this tutorial, you will first use LexisNexis to search word terms and generate an HTML report file out of it. If you wish to skip this step and use a pre-generated HTML report, please use the "./Flows/Add Media Flows/LexisNexis.html" file provided with the sample dataset.

Go to the LexisNexis website⁸, and you should see a window similar to the next figure:

< → C ☆ ③	www.lexisnexis.com/hottopic	s/Inacademic/	
👖 Apps 🔺 Bookmark	s 🦲 Blogs 📄 Data Science	🛅 GeoDev 🧰 GIS 🧰 Jobs 🧰 Program	ming 📋 Telecoupling_MSU 🏾 😑 Spotify Web Player 🧯
Use of this service	is subject to Terms and Co	nditions	Source Directory: Find or Browse Create Permane
	LexisNexis® Academic Search		Search by Subject or Topic 🔻
What's New	🔍 wolong nature reser		Search
Video Tutorials	Take a brief survey a	Social Sciences Student Sundary Sundary Sundary Student Research Cour	
Research Guides	Hot Topics Links	Today's Front Page News	
Download Content List	ISIS	Zika Virus	2016 Presidential Election
Academic Knowledge Center	Brexit Columbia and FARC	New York and New Jersey Bombings Supreme Court	National Football League Nobel Prizes
	Search the News U.S. and World News.	 Look up a Legal Case Federal and state cases. 	▼ Get Company Info Over 80 million companies.

Inside the search box, type something like "wolong nature reserve", and click the search button. The result page should list a number of records that were found to contain the searched term:

⁸ http://www.lexisnexis.com/hottopics/lnacademic/

Results Web News

		Results Web News
Show L	st • Search within results	Go
Sort Rele	vance 🔻 🔣 1-25 of 906 🖬	
View Tag	ged Duplicate Options Off	
Select La Powered by	nguage V Disclaimer Google Translate	
	Results	
1.	Wolong National Nature Reserve officially operates in Sichuan China Daily - Africa Weekly, May 12, 2016, 331 words	
□ 2.	Wolong National Nature Reserve officially operates in Sichuan China Daily, May 12, 2016 Thursday, 412 words	
а.	CS Starts Visit to Sichuan Hong Kong Government News, May 10, 2016 Tuesday 6:30 AM EST, 496 words	
□ 4.	Belgium to welcome 2 pandas from China China Daily European Edition, January 13, 2014 Monday, EUROPE, 396 words	
5.	Bear hugs all round for rocked conservation effort Canberra Times (Australia), June 7, 2008 Saturday, A; Pg. B10, 1229 words, The Canberra Times	
6.	Too much to bear: developers eye panda habitat; CONSERVATION Sydney Morning Herald (Australia), March 25, 2006 Saturday, NEWS AND FEATURES; International News; Pg. 22, 943 words, Mary-Anne Toy Herald Correspondent in Wolong, China	
07.	Into the wild China Daily, November 4, 2013 Monday, 145 words	
8.	CS Visits HKSAR-Funded Reconstruction Projects in Sichuan Hong Kong Government News, May 11, 2016 Wednesday 6:30 AM EST, 841 words	
9.	Human Competition Edging Out Those Lovable Icons of Wildlife The New York Times, April 6, 2001 Friday, Section A; Column 5; Foreign Desk; Pg. 6, 342 words, By ANDREW C. REVKIN	
<u> </u>		• 1

In the far right corner of the result page, click on the "Save" icon to open the following window:

Show		🝯 LexisNexis® Academic: Download Documents - Google Chrome — 🗆 🗙	Search within results 60
Sort R	elevance 🔻	- ,	
View T	agged	www.lexisnexis.com/Inacui2api/results/listview/delPrep.do?cisb=22_T24815232705&risb=21_T	Duplicate Options Off 🗾 🖬 🖃 🛄 🐚 🧉
	Language Disclaimer by Google Translate	Download Documents Source: Company Profiles and Directories; US Law	
□ □ 1.	Results Wolong National Nature Reserve China Daily - Africa Weekly, Ma	Reviews and Journals, Combined;Federal & State Court Download Cancel Case	
2.	Wolong National Nature Reserve China Daily, May 12, 2016 Thurs	Word (DOC)	
3.	CS Starts Visit to Sichuan Hong Kong Government News, M		
4.	Belgium to welcome 2 pandas fr China Daily European Edition, Ja		
5.	Bear hugs all round for rocked o Canberra Times (Australia), Jun		
6.	Too much to bear: developers e Sydney Morning Herald (Australi		Mary-Anne Toy Herald Correspondent in Wolong, China
7.	Into the wild China Daily, November 4, 2013		
8.	CS Visits HKSAR-Funded Recons Hong Kong Government News, N		
9.	Human Competition Edging Out The New York Times, April 6, 20	Download delivery is subject to Terms & Conditions . Please review them. The delivered items will show as activity for the Project ID that initiated the Download Cancel	
□ 10.	HK official lauds post-quake effo China Daily, May 13, 2016 Frida	delivery.	
□ 11.	China: Pandas headed for Taiwa BBC Monitoring Asia Pacific - Po	исаг Suppried by BBC worldwide Monitoring, May 30, 2008 Friday, 322 words	-
12.	SAVE THE GIANT BEAR HAVE MA	SERVES DO MORE HARM THAN GOOD TO HABITAT OF THE PANDA; PIONEERING STUDY OF IDE MATTERS WORSE 6, 2001, Friday, NEWS; Pg. 3, 1103 words, Steve Connor	F FLAGSHIP WILDLIFE PARK DISCOVERS THAT INTERNATIONAL EFFORTS TO
	and the second second		

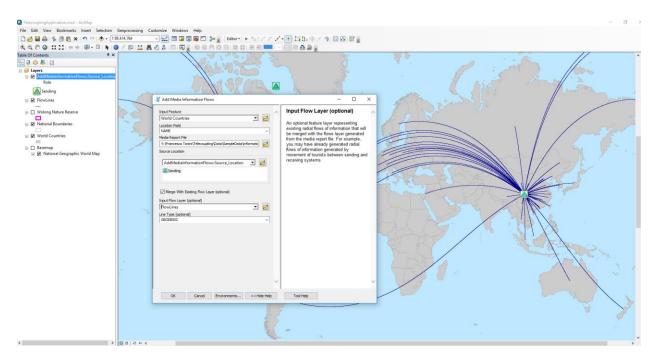
In the "Format" drop-down menu, select HTML. The document range tells you how many records have been found and whether you want to save all of them (default) to the HTML file. If you have too many records, an error message should come up asking to reduce the number of selected documents. In this example, select the second option "Select Items" and type "1-50" as range. Click on the download button and wait to receive a screen that looks like this:

User Guide

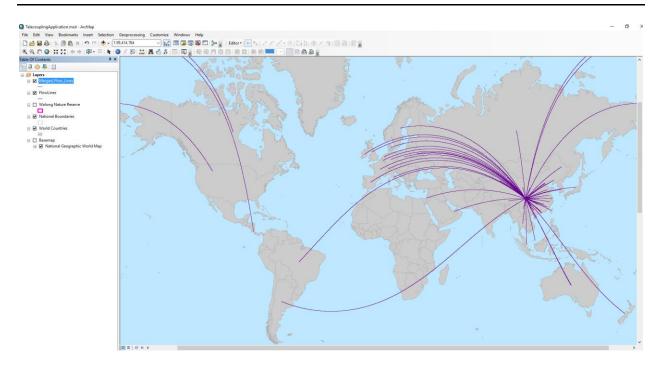
Show	List 🔻	-	Search within results	60
Sort Re	elevance 🔻	🔴 LexisNexis® Aca	zademic: Download Documents - Google Chrome — 🗆 X	
View Ta	agged	 www.lexisnexi 	iis.com/Inacui2api/delivery/DnldWorking.do?delFmt=QDS_EF_HTML&zipDelivery=f. Duplicate Options Off 🔹 🚽	0 🗣
	Language Disclaimer by Google Translate	LexisNex	is Academic	
	Results			
1.	Wolong National Nature Reserve China Daily - Africa Weekly, May		ady to Download	
2.	Wolong National Nature Reserve China Daily, May 12, 2016 Thurs		Company_Profiles_and_Directories_US_Law_Revi2016-10-07_13-40.HTML	
3.	CS Starts Visit to Sichuan Hong Kong Government News, M		Right-click the link above and use your browser menu to save.	
4.	Belgium to welcome 2 pandas fr China Daily European Edition, Ja		Or, click the link above to open the document, then save it using your word processing application.	
5.	Bear hugs all round for rocked c Canberra Times (Australia), June		mated download time:<1 minute(s) based on 56Kbps modem connection.	
6.	Too much to bear: developers ey Sydney Morning Herald (Australi		s:~90 Close Window Mary-Anne Toy Herald Correspondent in Wolong, China	
7.	Into the wild China Daily, November 4, 2013			
8.	CS Visits HKSAR-Funded Reconst Hong Kong Government News, N			
9.	Human Competition Edging Out The New York Times, April 6, 20			
10.	HK official lauds post-quake effo China Daily, May 13, 2016 Frida		S* About LexisNexis® Terms & Conditions My ID Copyright © 2016 LexisNexis®. All rights reserved.	
11.	China: Pandas headed for Taiwar BBC Monitoring Asia Pacific - Pol		y BBC wondwide Monitorning, May 30, 2006 Friday, 322 Words	
□ 12.	SAVE THE GIANT BEAR HAVE MA	DE MATTERS WO	E HARM THAN GOOD TO HABITAT OF THE PANDA; PIONEERING STUDY OF FLAGSHIP WILDLIFE PARK DISCOVERS THAT INTERNATIONAL EFFORTS TO IRSE NEWS: Pa. 3, 1103 words, Steve Connor)

You are now ready to download the HTML report file and save it to your local disk.

If you decided to skip the LexisNexis online word search, continue from this point on. For this tutorial, we are going to merge the media flows obtained from the HTML report file with an existing flow layer. To do this, use the "Draw Radial Flows" tool, and use the "./Flows/Draw Radial Flows/info_Flows.csv" table as input. This table contains records on start and end points for flows of tourists between a sending system (the Wolong Nature Reserve) and all receiving systems (i.e. countries of origin for the tourists). This is just one way information about the nature reserve can be spread to other countries by word of mouth. You can leave all other parameters similar to the example shown, and select "Frequency" as Join Field(s) parameter. Run the tool and you should get something like this:


<u>NOTE</u>: there is no way to quantify how much information (what units?) has been spread by each visiting tourist to their home countries. We acknowledge this may be a simplification but it helps understanding where the flow of information is likely going to. Finally, we chose to assign a "Frequency" equal to one to each single flow of tourist, given the unitless nature of the information amount in this case.

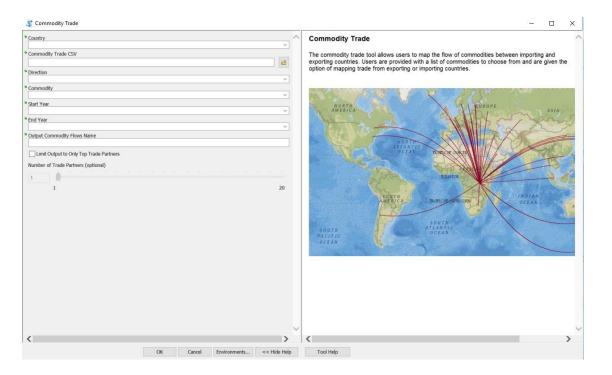
☑ TelecouplingApplication mud ArcMap File Edit View Bookmarks Insert Selection Geoprocessing Customize Windows Help


Telecoupling Toolbox v2.3

Now we are ready to use the "Add Media Information" tool. If you are using the TelecouplingApplication.mxd file, select "World Countries" as the input feature layer for the first parameter of the tool. If you are using a brand new map, then select the "./Flows/Add Media Flows/World_countries_2002.shp" layer. As location field parameter, select an attribute from the input layer that contains the name of a geographical location (e.g. country) that you would like to match against the geographic locations found inside the HTML report file. If you select an attribute with spatial location names that are not found in the report, no media flow layer will be generated and merged to the existing flow layer. Select "NAME" as location field parameter, and browse to the HTML report file saved on disk (if you followed this example step-by-step) or the "./Flows/Add Media Flows/LexisNexis.html" file provided with the sample dataset. Then, the user is asked to select a source location for the media flow by clicking on a location of interest on the map. This location should correspond as close as possible to the one where the information has disseminated from and that you searched on the LexisNexis web portal. In this example, please click on a location corresponding to the wolong nature reserve in China. Make sure the "Merge with Existing Flow Layer" box is checked since we chose to do so in this tutorial. As input flow layer, select the layer previously generated using the Draw Radial Flows tool. As Line type, you can leave the default (GEODESIC) or pick one that you like. Note that you should ideally pick the same line type as the existing flow layer to avoid strange visualization effects.

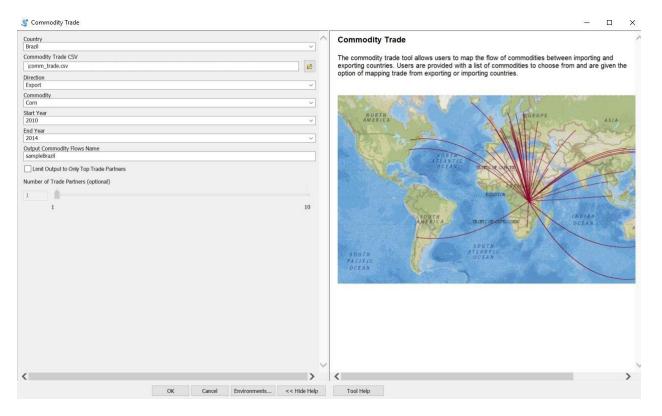
Bit Disk Maximum data Ma Maximum data M <u>NOTE</u>: In order to change the default workspace location where your output files and layers are created, click on the "Environments..." button at the bottom of the tool interface, then expand the workspace option and set a different path to both the current and scratch folder parameters.

Once you click OK to run the tool, the program will start scraping (searching and extracting) the report file for geographical locations and count their frequencies matching them against the values found in the "Location Field" parameter of the tool. ArcGIS will create a permanent output line feature class representing merged information flows between systems and add it to the map.



Once the output flow feature class has been created, the lines will all have the same color and thickness. If you have selected additional variables to represent the flow amount, you can use one of them to improve the visualization of the lines. To do so, right-click on the output flow layer found in the table of content (left-side of the map typically) and select the tab called "symbology". Then, you can select "quantities", and something like "graduated symbols" to show the line thickness proportional to the chosen variable of interest (e.g. frequency). Choose how many bins you want to group your values and a desired color.

User Guide


TelecouplingApplication.mid - ArcMap	-	σ×
File Edit View Bookmarks Insert Selection Geoprocessing (Customize Windows Help	
🗋 🥶 🗃 🍰 🌿 🍈 🏝 🗶 🤊 🗠 🚸 • 🛛 1:95,414,764	▼ 図 目 毎 毎 毎 □ 加索 teter ▼ N 1 / C / - N 13 13 中 / 9 回 8 8 *	
	🖁 🕁 🖈 💷 🖓 💭 🖏 👘 🖬 🗰 🗰 💌 🔛 🔄 📾 📾 🖢 👷	
		the second se
	OK Conot Apply	
		÷
10 B O H <		>

4.4.3 Commodity Trade

After opening the Commodity Trade tool, you will see the above interface. This tool uses data from the Observatory of Economic Complexity (<u>https://atlas.media.mit.edu/en/</u>), which has been cleaned and shipped in the Sample Data folder. All other inputs for the tool are easily provided by the user, as demonstrated below.

In this tutorial, the export of corn from Brazil to the rest of the world will be mapped. Select "Brazil" from the first drop-down list. Then, select the Commodity Trade CSV that was shipped with the Sample Data folder (.*Flows\Commodity Trade\comm_trade.csv*). For Direction, select "Export," and for Commodity, select "Corn." We want to see commodity trade beginning in 2010 and ending in 2014, so select these years for Start Year and End Year, respectively. Finally, name the output flow shapefile "sampleBrazil." The populated interface should look like the below image.

After choosing "OK", your output will look like the following (NOTE: A basemap has been added to ArcMap in the below image).

Users may want to enable the Time feature on their output layer to visualize how trade has changed over time. To do this, right-click on the output layer in the Table of Contents, then select Properties. Next select the Time tab and click "Enable time on this layer." You will also need to select the "time" field. In this case, "year" is the time field, so select "year" from the Time Field drop-down list. See the below image for a visual of what the interface should look like.

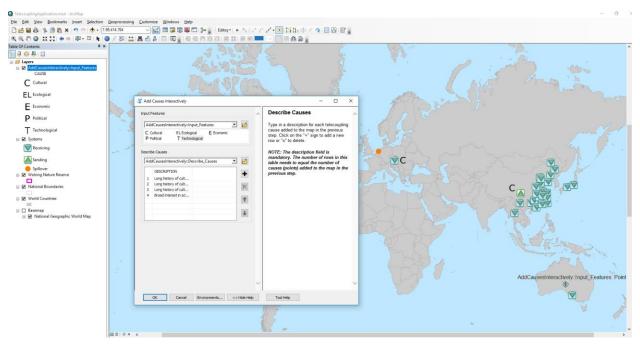
eneral Source Selection	n Display Syn	nbology Fields Defini	tion Query Lat	oels Joins & Relates	Time HTML Popu	p
Enable time on this lay	rer					
Time properties						
Layer Time:	Each featur	re has a single time fie	ld	~		
Time Field:	year		~	Sample: 2010		
	Selected fie	ld is not indexed. Inde	x the fields for	better performance.		
Field Format:	YYYY		~			
Time Step Interval:	1	Years	~			
Layer Time Extent:		To:			Calculate	
	Data ch	anges frequently so ca	lculate time ext	ent automatically.		_
Advanced settings						
Time Zone:	none			~		
	Values a	are adjusted for dayligh	nt savings			
Time Offset:	0.00	Years	~			
Display data cumu	latively					

Once you've clicked OK, open the Time Slider on the toolbar near the top of ArcMap:

From here, you will be able to view commodity trade at each time step, animate a visual of trade over time, and control the speed at which each time step is presented.

4.5 CAUSES TOOLSET

4.5.1 Add Causes Interactively


💐 Add Causes Interactively	– 🗆 X
Input Features	Add Causes Interactively
AddCausesInteractively::Input_Features C C C Political T T C Describe Causes Image: Comparison of the comparison of	Interactively select telecoupling causes from a pre-defined list and add them to the map at a location of interest (preferably linked to one of the telecoupling systems). The tool reads the causes location from the map and creates a permanent point feature class with a pre-assigned symbology. Upon successfully completing execution, the tool will automatically export the newly created features and their attributes as a .csv table. For additional information on the telecoupling framework, its terminologies and related publications, please refer to: http://csis.msu.edu/telecoupling
OK Cancel Environments << Hide Help	Tool Help

Once you open the tool (by double-clicking on it) make sure the help window stays open (bottom of the tool interface to hide/open it). The help is there to provide general information about the tool as a whole, as well as describing in detail each single parameter after clicking on it. In some case, the tool help windows will have a nice graphic with it.

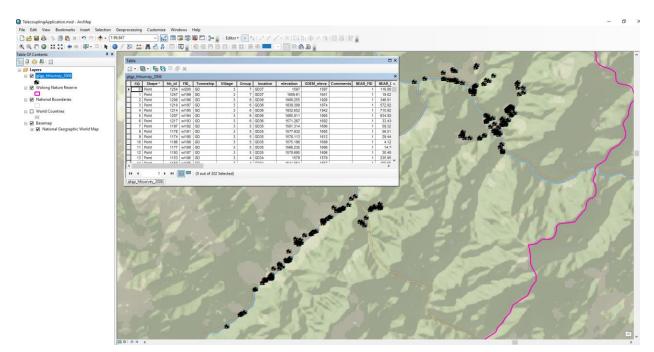
This tool should be used to **qualitatively** describe potential causes of an observed telecoupling flow by choosing within a pre-compiled list of broad causal categories (e.g. cultural, ecological, economic, political, technological). Once you select the category of interest, click on the map near a spatial location that corresponds to the telecoupling systems that is related to chosen cause. For example, a wildlife transfer flow may be instigated by a long history of cultural affinity and fascination with the species within one or more receiving systems (e.g. giant pandas are transferred to zoos in provinces and countries that have a cultural affinity for them). Alternatively, the factor instigating the flow may be solely economic given the anticipated return

of investment from large amounts of tourists visiting the receiving system. After clicking on the map, add an informative description by clicking on the "+" sign of the second interface parameter and typing in the appropriate box. Repeat the above procedure for all other causes you wish to add to describe your telecoupling system and make sure the number of records in the description table corresponds to the number of points previously added to the map. Once you click OK to run the tool, ArcGIS will create a permanent output point feature class and save an output table to your workspace directory with a list of all the casual categories and their description you added to the map.

<u>NOTE</u>: In order to change the default workspace location where your output files and layers are created, click on the "Environments..." button at the bottom of the tool interface, then expand the workspace option and set a different path to both the current and scratch folder parameters.

The output .csv table created by the tool in the scratch workspace directory should look something similar to the following figure:

x∎	⊡ 5 - a	.⇒	
FI	LE HOME	INSERT PAGE LAYOUT FORMULAS DATA RE	VIEW
Pas	• K Cut □ E Copy → te ✓ Format P Clipboard		
A1	. . .	: $\times \checkmark f_x$ cause	
	Α	В	
1	CAUSE	DESCRIPTION	
2	Cultural	Long history of cultural affinity and fascination w/ pandas	
3	Cultural	Long history of cultural affinity and fascination w/ pandas	
4	Cultural	Long history of cultural affinity and fascination w/ pandas	
5	Technological	Broad interest in scientific research on pandas	
6			
7			
8			


4.5.2 Model Selection (OLS)

3 Model Selection (OLS)	- 🗆 ×
Input Features Dependent Variable Candidate Explanatory Variables	Model Selection (OLS) Geoprocessing tool for finding properly specified OLS models by exploring all combinations of candidate explanatory variables.
Select All Unselect All Add Field Weights Matrix File (optional)	Cultural Variables Environmental Socio Socio Economic
	Tests all variable combinations for: 1. Redundancy 2. Completeness 3. Significance 4. Bias 5. Performance
OK Cancel Environments << Hide Help	Tool Help

Once you open the tool (by double-clicking on it) make sure the help window stays open (bottom of the tool interface to hide/open it). The help is there to provide general information about the tool as a whole, as well as describing in detail each single parameter after clicking on it. In some case, the tool help windows will have a nice graphic with it.

This tools, slightly modified from the original ESRI Exploratory Regression script tool, should be used to identify a set of factors that are most associated with a quantitative variable of interest, e.g. amount of cropland owned by local households in China. Factors that are strongly associated with the dependent variables, will be found statistically significant. The relative importance of significant factors can be determined by looking at their estimated OLS regression coefficients. Contrarily to the tool described in the previous section, the user must have a collection of spatial

locations at which the dependent variable and a set of potential factors (explanatory variables) are recorded. For example, use the shapefile found with the provided sample dataset ("./Causes/Model Selection OLS /gtgp_hhsurvey_2006.shp").

This shapefile describes spatial location of local households in the Wolong Nature Reserve, China, and a number of socio-economic variables recorded in 2006 with a targeted household survey including cropland size, household age, median income, educational level, and others. You may be interested in identifying the factors (variables) that are most associated with the amount of crop produced by each household. Select the shapefile as input feature. As a dependent variable, select the "Crop produ" attribute. For the candidates explanatory variables, select "GTGP" (the percentage of cropland enrolled in the Grain-to-Green-Program, subsidies paid by the Chinese government to stimulate conversion of cropland to forest land), "GTBP" (the percentage of cropland enrolled in the Grain-to-Bamboo-Program, subsidies paid by the Chinese government to convert cropland to bamboo land), "Tourism_pa" (does the household have a member who directly participated in tourism activities in 2005?), "Log dista" (log distance to the main road), and "Number_of" (total number of laborers in the household). Leave all other tool options unaltered and click OK to run the tool. If all goes smoothly, the tool identifies which factors best associate with cropland owned for agricultural production among the variables selected. If you open the result window to inspect the results (Menu > Geoprocessing > Results), under "Current Session", right-click the "Message" icon and select "View". A separate window should open showing you the entire process executed by the tool and all the OLS models that have been tested.

×

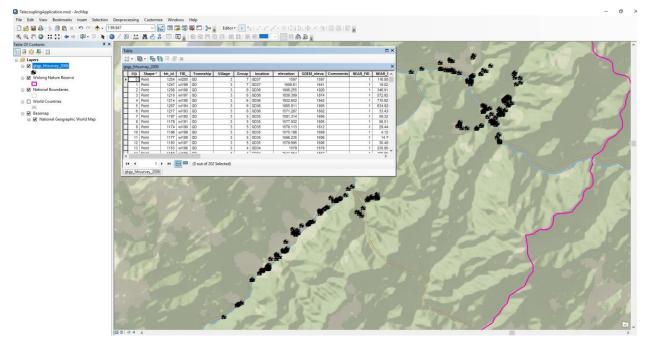
Messages

```
AdjR2 AICc JB K(BP) VIF SA Model
                                                                                                                  ^
0.41 935.05 0.00 0.00 1.31 0.04 -GTGP*** -GTBP*** -TOURISM PA** +NUMBER OF*** +LOG DISTA
      Passing Models
AdjR2 AICc JB K(BP) VIF SA Model
****
************** Exploratory Regression Global Summary (CROP PRODU) **************
            Percentage of Search Criteria Passed
                 Search Criterion Cutoff Trials # Passed % Passed
           Min Adjusted R-Squared > 0.50 31 0 0.00
Max Coefficient p-value < 0.05 31 22 70.97
          Max Coefficient p-value < 0.05
                   Max VIF Value < 7.50
                                           31
31
                                                   31
                                                        100.00
          Max VIF Value < 7.50
Min Jarque-Bera p-value > 0.10
                                                 31
0
7
                                                         0.00
Min Spatial Autocorrelation p-value > 0.10
                                          13
                                                         53.85
     Summary of Variable Significance
Variable % Significant % Negative % Positive
           100.00 100.00
100.00 100.00
                                    0.00
GTGP
                                      0.00
GTBP
               100.00 100.00
100.00 0.00
TOURISM PA
                                      0.00
                         0.00
NUMBER OF
                                    100.00
LOG_DISTA
               43.75
                                    100.00
  Summary of Multicollinearity
Variable
          VIF Violations Covariates
          1.16 0
GTGP
                        -----
GTBP
                  0
                        _____
         1.31
               0
0
0
TOURISM_PA 1.09
                        _____
NUMBER_OF 1.02
                        _____
LOG_DISTA 1.12
                        _____
```

The model summary shows that the most significant factors are all but the distance to the main road. Some factors such as GTGP, GTBP, TOURISM_PA have a negative association, meaning the higher their value, the lower the cropland amount is. In the case of a dummy variable (0-1, yes-no) like TOURISM_PA, this means that a participation of household members in tourism activities in 2005 had a negative effect on the total cropland amount. On the other hand, NUMBER_OF has a positive association with cropland amount, i.e. the more laborers in the household the higher its cropland owned for agricultural production was.

<u>NOTE</u>: In order to change the default workspace location where your output files and layers are created, click on the "Environments..." button at the bottom of the tool interface, then expand the workspace option and set a different path to both the current and scratch folder parameters.

4.5.3 Factor Analysis for Mixed Data


💐 Factor Analysis for Mixed Data	– 🗆 X
Input Table Quantitative Variables (optional) Select All Unselect All Add Field Qualitative Variables (optional)	Factor Analysis for Mixed Data Often times, population surveys record a high number of quantitative and qualitative information, whose purpose is to comprehensively describe socioeconomic characteristics associated with the interviewee. In statistical analysis, factor analysis is a useful tool for investigating variable relationships for complex concepts such as socioeconomic status, dietary patterns, or psychological scales. The most common statistical methodologies are principal component analysis/factor analysis for quantitative data, and multiple correspondence analysis of mixed data, is the factorial analysis of mixed data, is the factorial method devoted to data tables in which a group of individuals is described both by quantitative and qualitative variables. This tool uses the FactoMineR and missMDA R packages to factor analysis on any combination of continous and categorical variables.
Select All Unselect All Add Field Compute Missing Values	
Number of Dimensions	~
OK Cancel Environments << Hide Help	Tool Help

Once you open the tool (by double-clicking on it) make sure the help window stays open (bottom of the tool interface to hide/open it). The help is there to provide general information about the tool as a whole, as well as describing in detail each single parameter after clicking on it. In some case, the tool help windows will have a nice graphic with it.

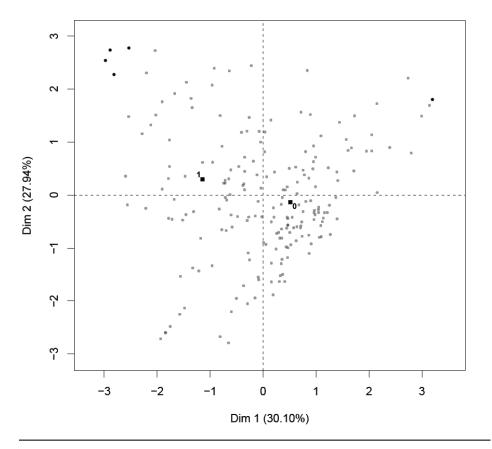
This tools can be used to explore qualitative and quantitative variable relationships in order to identify distinct groups of individuals or variables that may be grouped into a smaller number hidden factors. For example, use the shapefile found with the provided sample dataset ("./Causes/Model Selection OLS/gtgp_hhsurvey_2006.shp").

This shapefile describes spatial location of local households in the Wolong Nature Reserve, China, and a number of socio-economic variables recorded in 2006 with a targeted household survey including crop production, mean household age, median income, educational level, and others. You may be interested in investigating the relationships among a number of quantitative and qualitative variables recorded in this survey, with the goal of comprehensively describe socioeconomic characteristics associated with the interviewees. Select the shapefile as input feature. As quantitative variables, select "*GTGP*" (the percentage of cropland enrolled in the Grain-to-Green-Program, subsidies paid by the Chinese government to stimulate conversion of cropland to forest land), "*GTBP*" (the percentage of cropland enrolled in the Grain-to-Bamboo-Program, subsidies paid by the Chinese government to bamboo land), "*Crop_produ*" (cropland owned by the household for agricultural production in 2005), and "*Number_of*" (total number of laborers in the household). As qualitative variables, select "*Tourism_pa*" (does the household have a member who directly participated in tourism activities in 2005?). Select a name and location on disk where to save an output pdf report file with plots of the factorial analysis. Leave all other tool options unaltered and click OK to run the tool.

Telecoupling Toolbox v2.3

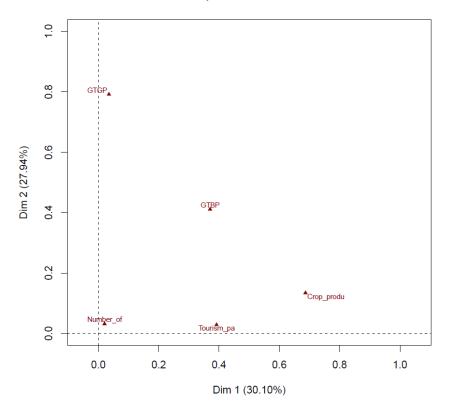
User Guide

Factor Analysis for Mixed Data	– 🗆 X
Input Table	Number of Dimensions
gtgp_hhsurvey_2006 💌 🖻	
Quantitative Variables (optional)	Number of dimensions kept in the results.
id ^	
Household	
☑ GTGP	
☑ GTBP	
Labor_migr	
Crop_produ	
✓ Number_of Adult educ ✓	
<	
Select All Unselect All Add Field	
Qualitative Variables (optional)	
id A	
Household	
GTGP	
GTBP	
Tourism_pa	
Labor_migr	
Crop_produ	
Number_of	
Adult educ Y	
、	
Select All Unselect All Add Field	
Compute Missing Values	
lumber of Dimensions	
þ	
1 10	
Dutput PDF 🛛 🗸 🗸 🗸	~ ~ ~
C:\Users\Francesco Tonini\Desktop\test.pdf	<u> </u>
OK Cancel Environments << Hide Help	Tool Help


<u>NOTE</u>: In order to change the default workspace location where your output files and layers are created, click on the "Environments..." button at the bottom of the tool interface, then expand the workspace option and set a different path to both the current and scratch folder parameters.

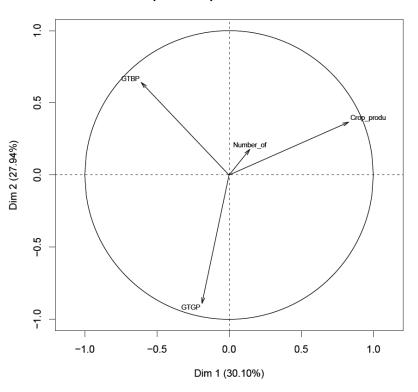
If all goes smoothly, the tool identifies whether distinct groups of household units exist and if any of the variables selected are highly correlated with each other and the first two extracted dimension. If you open the result window to inspect the results (Menu > Geoprocessing > Results), under "Current Session", right-click the "Message" icon and select "View". A separate window should open showing you the entire process executed by the tool and all the estimated scores on the first N dimensions for all the selected variables:

Messages


```
Creating Dataframe from Input Table...
Checking for missing data in the dataset...
... No missing values found in the dataset!
Running Factor Analysis...
Call:
FAMD(base = df, ncp = as.integer(num_fact), graph = FALSE)
Eigenvalues
                            Dim.2
                     Dim.1
                                    Dim.3
                                            Dim.4
                                                    Dim.5
Variance
                     1.505 1.397
                                    1.112
                                           0.699
                                                   0.286
                    30.104 27.945 22.236 13.990
% of var.
                                                   5.726
Cumulative % of var. 30.104 58.048
                                   80.284 94.274 100.000
Individuals (the 10 first)
                     Dim.1
                             ctr
                                  cos2
                                           Dim.2
                                                         cos2
                                                                Dim.3
             Dist
                                                   ctr
          | 2.651 | -2.284 1.716 0.742 | 1.157 0.474 0.190 | -0.172
          | 2.740 | -1.767 1.027 0.416 | 0.538 0.103 0.039 | -1.161
3
            2.711 | 1.726 0.980 0.405 | 1.493 0.790
                                                        0.303 | -0.992
          | 2.076 | 1.605 0.848 0.598 | 0.841 0.251 0.164 | 0.756
4
5
            1.381 | 0.463 0.070 0.112 | -1.180 0.493 0.731 | 0.216
            1.082 | 0.729 0.175 0.454 | -0.508 0.091 0.220 | -0.603
6
          1
          | 0.959 | 0.898 0.266 0.878 | -0.109 0.004 0.013 | 0.058
7
          | 2.935 | -0.964 0.305 0.108 | 2.074 1.524 0.499 | -1.392
8
9
            1.160 | -0.146 0.007 0.016 | -0.398 0.056 0.118 | -0.850
          Т
10
          | 0.893 | 0.195 0.013 0.048 | -0.242 0.021 0.074 | -0.135
            ctr cos2
           0.013 0.004
1
2
           0.601 0.180
3
           0.438 0.134
4
           0.254 0.133
5
           0.021 0.024
6
           0.162
                 0.310
7
           0.002 0.004
8
           0.863 0.225
9
           0.322
                 0.537
10
          0.008 0.023 |
Continuous variables
                                  Dim.2
                                                        Dim.3
            Dim.1
                     ctr
                          cos2
                                          ctr cos2
                                                                ctr
                                                                      cos2
          | -0.188 2.343 0.035 | -0.890 56.656 0.792 | 0.251 5.658 0.063
GTGP
GTBP
          | -0.609 24.614 0.370 | 0.641 29.429 0.411 | -0.114
                                                               1.177
                                                                     0.013
```

Within each extracted dimension, higher values indicate a higher contribution of an individual or variable to the composition of that dimension. If distinct groups of individual units (e.g. households) or variables exist, higher scores will show for different units/variables in separate dimensions. In most cases with a lot of individuals (e.g. > 200 households) it becomes hard to inspect these particular scores, thus it better to have a visual aid in the output plots from the analysis. Individual factor map output, using default options for the graphical parameters in the tool interface, shows a dispersed cloud of points. Therefore, there does not seem to be evidence of a distinct cluster of households based on the chosen socioeconomic variables. The 0-1 labelled squares in the plot show association between the categorical variable "tourism_pa" and the first dimension (positive and negative, respectively). A small group of household units seems to be associated with the 0 value of this variable.

Individual factor map


The graph of the variables shows that "GTGP" is strongly associated with the second dimension, while "crop_produ" and "tourism_pa" have a medium-to-high association with the first dimension.

Graph of the variables

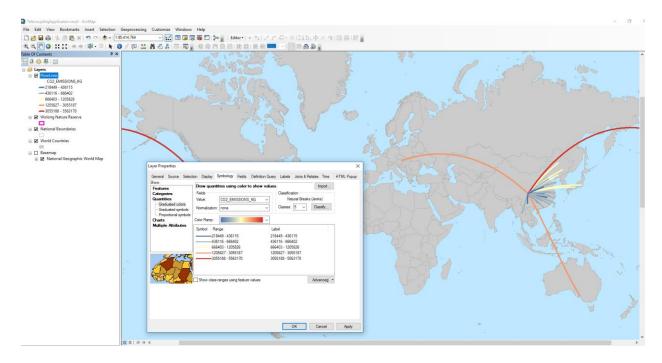
The graph of the quantitative variables on the unit circle, tells which quantitative variables are mostly correlated with each other as well as with the first two dimensions. The "GTBP" has a negative correlation with the first dimension and a positive one with the second one, while the angle almost diagonal to the second quadrant on the top-left, indicates the variable is not well defined in either of those dimensions. The "GTGP" variable shows high negative association with the second dimension, while the "Crop produ" shows a high correlation with the first dimension. Therefore, the first two dimensions are mostly dominated and defined by "GTGP" and "Crop produ". The plot indicates that the lower the percentage of cropland enrolled in the GTGP subsidy program (i.e. household receives less subsidies) the higher the amount of cropland owned by the household for agricultural production. Moreover, "tourism pa" helps defining the first dimension as well, with values of 1 (household members participated in tourism-related activities) negatively associated with it, i.e. higher participation in tourism corresponds to lower cropland amounts dedicated to agriculture. These conclusions are what you would expect, given that households enrolling less cropland in the GTGP program, thus receiving less subsidies, are likely to retain a higher amount of cropland for agriculture. At the same time, if the household income is partially made of tourism-related activities, it is more

likely that they will have less land dedicated to agriculture and more willing to enroll it into the GTGP.

Graph of the quantitative variables

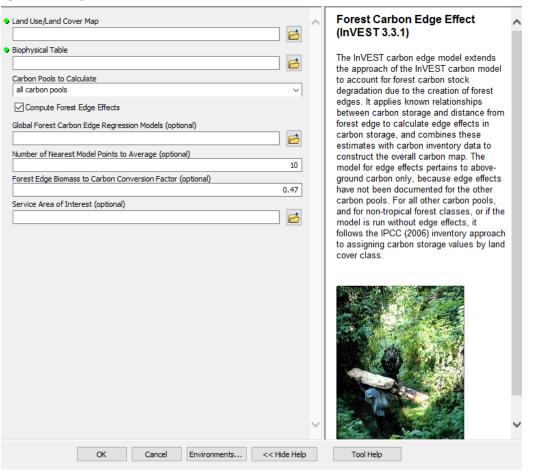
4.6 ENVIRONMENTAL ANALYSIS TOOLSET

4.6.1 CO₂ Emissions


Input Feature Wildlife Units Units of CO2 Emitted Future Scenario	CO2 Emissions Calculate the amount of CO2 emissions associated with each flow segment of material transported between two spatial locations. The tool reads the total length of each linear feature created by the Flows tool and multiplies it with the number of trips needed to transfer wildlife units (derived from number of units to transfer divided by a per-trip transportation capacity, e.g. per-flight) and the amount of CO2 (kilograms) emitted per unit of length (e.g. meters) specified by the user. The tool also allows testing of future CO2 emission scenarios for wildlife transfer compared to current conditions. Make sure the unit of length corresponds to the coordinate system used (e.g. meters in the case of Web Mercator).	^
OK Cancel Environments << Hide Help	Tool Help	2

Once you open the tool (by double-clicking on it) make sure the help window stays open (bottom of the tool interface to hide/open it). The help is there to provide general information about the tool as a whole, as well as describing in detail each single parameter after clicking on it. In some case, the tool help windows will have a nice graphic with it.

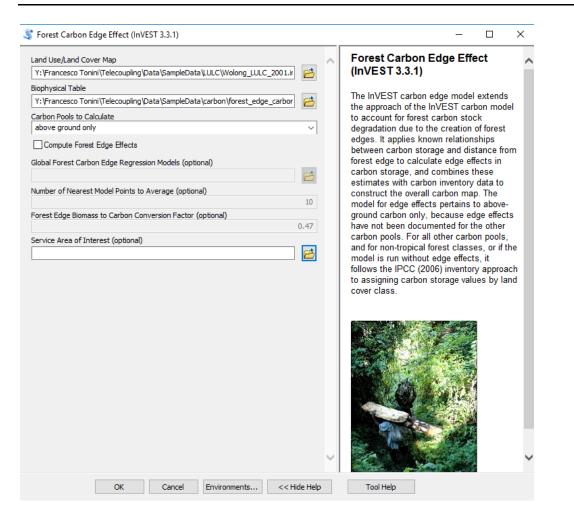
This tool uses the flow layer computed with the <u>Draw Radial Flows</u> tool and calculates the amount of CO_2 emissions based on the length of the flow lines, number of units to transfer, maximum transportation capacity of the medium used, and an estimated amount of CO_2 (kilograms) emitted per unit-length (e.g. meters). For this example, make sure you first computed the radial flows and select that layer as input for the first parameter here. Then, choose a field from the input layer that represents the number of wildlife units that are to be transferred. In the capacity parameter (default = 1) specify the maximum capacity of the transportation medium in terms of units of wildlife. Finally, type in an estimated amount of CO_2 emitted per unit of length


and click OK to run the tool. Once completed, open your flow layer attribute table (right-click on the layer) and make sure there is an extra field with values generated for CO_2 emissions. <u>NOTE</u>: In order to change the default workspace location where your output files and layers are created, click on the "Environments..." button at the bottom of the tool interface, then expand the workspace option and set a different path to both the current and scratch folder parameters.

You can now symbolize the flows by the amount of CO_2 emitted in the atmosphere, as shown in the next figure:

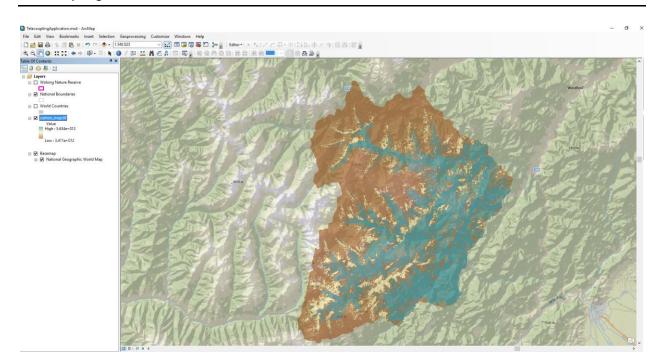
4.6.2 Forest Carbon Edge Effect (InVEST 3.3.3)

💐 Forest Carbon Edge Effect (InVEST 3.3.1)



Once you open the tool (by double-clicking on it) make sure the help window stays open (bottom of the tool interface to hide/open it). The help is there to provide general information about the tool as a whole, as well as describing in detail each single parameter after clicking on it. In some case, the tool help windows will have a nice graphic with it.

NOTE: This model is recommended over the simple carbon storage and sequestration model.


This tool is linked to the InVEST 3.3.3 forest carbon edge effect model. All input parameters that are specified in the ArcGIS tool interface, will be sent to the appropriate InVEST model which then return the results produced back to the main application. In this example, let's use the land use/land-cover raster files from 2001 for the Wolong Nature Reserve area ("./Environmental Analysis/Forest Carbon Edge Effect/Wolong_LULC_2001.img") to calculate above-ground carbon amounts in 2001. The tool also needs a carbon pool table input ("./Environmental

Analysis/Forest Carbon Edge Effect/forest edge carbon lu table 2000.csv") where each land cover type found in the input raster is associated with values of carbon (above, below, dead). This table is very important as it used by the biophysical model to determined total carbon values per pixel. There are multiple carbon grid products on the web (e.g. MODIS NPP). In our case, the table was compiled using MODIS NPP data for the closest year (2000) to our baseline land cover raster (2001). Because the NPP grid has, like in most situations, different spatial resolution and units of measurements from the one needed by the tool, we had to do some pre-processing work to calculate the average amount of above ground carbon found within each class of land cover used. If you are able to obtain data on below-ground or dead carbon, please add it in your table, as this will make your analysis more accurate and account for all carbon pools. Select above-ground only to be calculated (we do not have data on other carbon pools), and uncheck the "Compute Forest Edge Effects" box. This option becomes useful in tropical areas where the model uses a carbon edge regression model to better account for carbon pool near the edge of forest patches. Leave the Service Area of Interest parameter blank, but keep in mind that you can specify a shapefile of an area of interest for which you would like an overall aggregate estimate of carbon. For example, if the shapefile has three different zoning areas, this tool will return an overall aggregate carbon estimate for each of the three zones.

<u>NOTE</u>: In order to change the default workspace location where your output files and layers are created, click on the "Environments..." button at the bottom of the tool interface, then expand the workspace option and set a different path to both the current and scratch folder parameters.

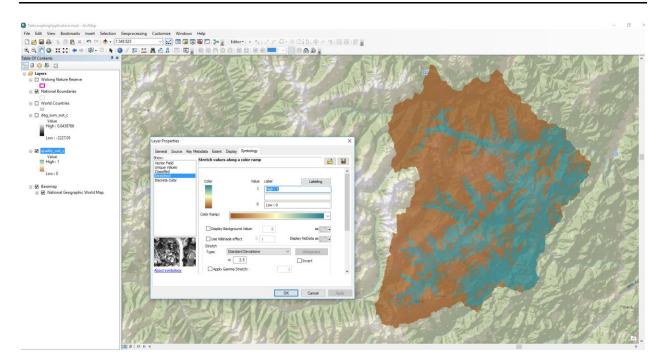
Click OK to run the tool. Once completed, you should have an output raster with estimated above-ground carbon. To improve the visualization of the raster, let's choose a better color ramp using the symbology tab (right-click the raster layer and select Properties). Select a continuous color ramp of your choice. Click on OK and you should see something like the following image:

4.6.3 Habitat Quality (InVEST 3.3.3)

K Habitat Quality (InVEST 3.3.1) Habitat Quality (InVEST 3.3.1) Current Land Cover B The InVEST Habitat Quality model uses Future Land Cover (optional) habitat quality and rarity as proxies to B represent the biodiversity of a landscape, estimating the extent of habitat and Baseline Land Cover (optional) vegetation types across a landscape, and B their state of degradation. The model Folder Containing Threat Rasters combines maps of land use land cover B (LULC) with data on threats to habitats and habitat response. Modeling habitat Threats Data quality alongside ecosystem services B enables users to compare spatial patterns and identify areas where conservation will Accessibility to Threats (optional) B most benefit natural systems and protect threatened species. This model does not Sensitivity of Land Cover Types to Each Threat attempt to place a monetary value on B biodiversity. Half Saturation Constant 0.5 OK << Hide Help Tool Help Cancel Environments...

Once you open the tool (by double-clicking on it) make sure the help window stays open (bottom of the tool interface to hide/open it). The help is there to provide general information about the tool as a whole, as well as describing in detail each single parameter after clicking on it. In some case, the tool help windows will have a nice graphic with it.

This tools is linked to the InVEST 3.3.3 habitat quality model. All input parameters that are specified in the ArcGIS tool interface, will be sent to the appropriate InVEST model which then return the results produced back to the main application. In this tutorial, we will use the Wolong Nature reserve as a study area to investigate habitat quality for giant pandas. The current land cover parameter needs a raster layer. Because giant panda's habitat is mostly forested areas, we will use a simple land cover layer with code equal to 1 for forest and 0 for any other land cover class. Adjust this according to your species of interest. Select "./Environmental Analysis/Habitat


Quality/Wolong_2001_forest.img" as input land cover. Leave future and baseline land cover parameters empty in this tutorial but we recommend to explore these options as well. Specify the folder containing raster layers of each threat to panda's habitat ("./Environmental Analysis/Habitat Quality/threats"). As threats data, select a table that contains all threats you want the model to consider. The table contains information on the each threat's relative importance or weight and its impact across space ("./Environmental Analysis/Habitat Quality/threats_samp.csv"). In our case, we are going to use cropland, roads, and houses as a threat to panda habitat. As accessibility to threats, we are going to select a shapefile that defines zoning in Wolong Nature reserve in 1998, defining core, buffer, and experimental areas for development ("./Environmental Analysis/Habitat Quality/access_1998.shp"). To define the relative sensitivity of each habitat type to each threat, select the table "./Environmental Analysis/Habitat Quality/sensitivity_samp.csv". Leave the half saturation constant with the default value.

<u>NOTE</u>: In order to change the default workspace location where your output files and layers are created, click on the "Environments..." button at the bottom of the tool interface, then expand the workspace option and set a different path to both the current and scratch folder parameters.

Current Land Cover	Sensitivity of Land Cover Types
Y:\Francesco Tonini\Telecoupling\Data\SampleData\habitat_quality\Wolong_20(to Each Threat
Future Land Cover (optional)	A CSV file of LULC types, whether or not the are considered habitat, and, for LULC
Baseline Land Cover (optional)	types that are habitat, their specific sensitivity to each threat. Each row is a LULC type with the following columns:
Y:\Francesco Tonini\Telecoupling\Data\SampleData\habitat_quality\threats	LULC, HABITAT, L_THREAT1, L_THREAT2,
Threats Data	-
Y: \Francesco Tonini \Telecoupling \Data \SampleData \habitat_quality \threats_san	LULC:Integer values that reflect each LULC code found in current, future, and
Accessibility to Threats (optional)	baseline rasters.
Y: \Francesco Tonini \Telecoupling \Data \SampleData \habitat_quality \access_199	
Sensitivity of Land Cover Types to Each Threat	HABITAT: A value of 0 or 1 (presence /
Y: \Francesco Tonini \Telecoupling \Data \SampleData \habitat_quality \sensitivity_f	absence) or a value between 0 and 1 (continuum) depicting the suitability of
Half Saturation Constant 0.5	habitat.
	L_THREATN:Each L_THREATN should match exactly with the threat names given in the threat CSV file, where the THREATN is the name that matches. This is an floating point value between 0 and 1 that represents the sensitivity of a habitat to a threat.
	Please see the users guide for more detailed information on proper column values and column names for each threat.
	· · · · · · · · · · · · · · · · · · ·

Click OK to run the tool. Once completed, you should have an output raster with estimated habitat quality on the current landscape, as well as a raster of relative levels of habitat degradation. Higher numbers for habitat quality indicate better habitat quality vis-a-vis the distribution of habitat quality across the rest of the landscape. Areas on the landscape that are not habitat get a quality score of 0. On the other hand, relative level of habitat degradation get a high score when habitat degradation in a cell is high relative to other cells. The following image shows the habitat quality output, with a different color ramp (right-click raster layer, go to Properties and then change the symbology color ramp if you wish):

User Guide

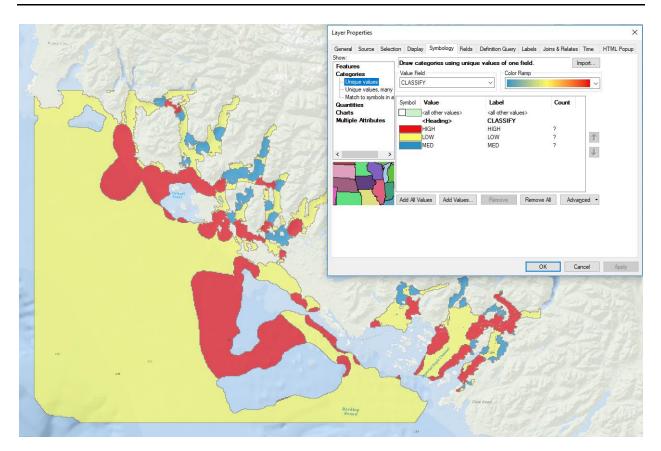
4.6.4 Habitat Risk Assessment (InVEST 3.3.3)

💐 Habitat Risk Assessment (InVEST 3.3.3)	- 🗆 X
Species/Habitat Layers Folder	Habitat Risk Assessment (InVEST 3.3.3)
Stressors Folder Spatially-Explicit Criteria Folder (optional)	The condition of a habitat is a key determinant of the ecosystem services it can provide. For example, multiple stressors including fishing, climate change, pollution and coastal development threaten the ability of coastal ecosystems to provide the valuable goods and services that people want and need. As human
Criteria Scores Folder Resolution of Analysis (meters) 200	activities continue to intensify, so too does the need for quick, clear and repeatable ways of assessing the risks posed by human activities under various management plans. The InVEST habitat risk assessment (HRA) model allows users to assess the risk posed to coastal and marine habitats by human activities
Risk Equation Euclidean Decay Equation None Maximum Criteria Score	and the potential consequences of exposure for the delivery of ecosystem services and biodiversity. The InVEST HRA model is similar to the InVEST biodiversity model in that both models allow users to identify regions on a landscape or seascape where human impacts are highest. While the biodiversity model is intended to be used to assess how human activities impact biodiversity, the HRA model is better suited to screening the risk
Maximum Overlapping Stressors Subregions (shapefile)	of current and future human activities to prioritize management strategies that best mitigate risk. We built and tested the HRA model in marine and coastal systems, and discuss it accordingly, but it easily can be applied to terrestrial systems, or mobile species. Risk of human activities (e.g., salmon
	aquaculture, coastal development, etc.) to habitat (e.g., seagrasses, kelp forests, mangroves, reefs) is a function of the exposure of each habitat to each activity and the consequences for each habitat. Exposure to stressors can arise through direct overlap in space and time or through indirect effects (i.e. finfish farms in an enclosed bay may degrade water quality and thus impede eelgrass growth throughout the bay, even if the netpens are not situated directly over eelgrass beds). Consequence depends on the effects of activities on habitat area and density, and the ability of habitats to recover from these effects (i.e. through processes such as recruitment and regeneration). Outputs from the model are useful for understanding the relative risk of human activities and climate change to habitats within a
OK Cancel Environments << Hide Help	Tool Help

Once you open the tool (by double-clicking on it) make sure the help window stays open (bottom of the tool interface to hide/open it). The help is there to provide general information about the tool as a whole, as well as describing in detail each single parameter after clicking on it. In some case, the tool help windows will have a nice graphic with it.

This tools is linked to the InVEST 3.3.3 habitat risk assessment model. All input parameters that are specified in the ArcGIS tool interface, will be sent to the appropriate InVEST model which then return the results produced back to the main application. In this tutorial, we will use the sample data provided by the InVEST development team. This tools/model will generate a series of risk shapefiles for each habitat/species provided as input, as well as a zipfile with a number of HTML plots and tables. This tutorial assumes you either ran the preprocessor tool to produce scoring criteria for each habitat-stressor pair or that you took the sample data provided and customized the criteria and scores on your own to be used in this tool. The species/habitat layer folder parameter needs you to specify a folder on disk containing a shapefile for each habitat/species of interest. Select the folder inside the sample data folder (*./Environmental*

Analysis/Habitat Risk Assessment/HabitatLayers) and do the same for the stressors folder parameter, which contains a shapefile for each human stressor affecting one or more of the habitat/species layers specified above (*./Environmental Analysis/Habitat Risk Assessment/StressorLayers*). As a criteria scores folder parameter, select the folder that was generated as output in the preprocessor tool. If you have skipped the preprocessor tutorial, then select the folder provided inside the sample data (*./Environmental Analysis/Habitat Risk Assessment/habitat_stressor_ratings_sample*). Choose the resolution of the analysis that will be used internally by the model to generate raster files for habitat-stressor risks. Pick a resolution that makes sense for your analysis. In this case, we will choose 200 meters. Leave default values for both risk and decay equation parameters (see official InVEST model guide for more details on these parameters and how they affect the final results,


http://data.naturalcapitalproject.org/nightly-build/invest-users-

<u>guide/html/habitat_risk_assessment.html</u>). For maximum criteria score type the number 3, and for maximum overlapping stressor type the number 4. The maximum criteria score MUST reflect the scoring system used in your criteria scoring input files. Similarly, the maximum overlapping stressor number MUST equal the number of stressor shapefiles chosen for the analysis. Finally, select a shapefile that represent one or more management areas (subregions) for the case study (./Environmental Analysis/Habitat Risk Assessment/subregions.shp).

User Guide

Click OK to run the tool. Once completed, you should have a list of shapefiles with estimated risk for each habitat/species layer provided as input, plus a zipped file with HTML plots and tables. The risk in each shapefile has been classified into LOW, MEDIUM, HIGH internally by the model. The following image shows the risk output, with a chosen qualitative color ramp (right-click shapefile layer, go to Properties and then change the symbology color ramp if you wish):

User Guide

4.6.5 Habitat Risk Assessment Preprocessor (InVEST 3.3.3)

ecies/Habitat Layers Folder	Habitat Risk Assessment Preprocessor (InVES 3.3.3)
ressors Folder	
posure Criteria	Before running the HAA model, it is necessary to concatenate and rate all applicable criteria information. This can be accomplished by running the Preprocessor tool, then editing the
HabitatRiskAssessmentPre::Exposure_Criteria	resulting CVSs. If you have already run the model, or have the 'habitat stressor ratings' directory from a previous HRA
CRITERIA_NAME	Preprocessor run, you may skip this step and proceed to runn the Habitat Risk Assessment tool.
	×
	†
	J.
isequence: Sensitivity	
HabitatRiskAssessmentPre::Consequence_Sensitivity	
HabitatRiskAssessmentPre::Consequence_Sensitivity	
nsequence: Sensitivity HabitatRiskAssessmentPre::Consequence_Sensitivity CRITERIA_NAME	
HabitatRiskAssessmentPre::Consequence_Sensitivity	
HabitatRiskAssessmentPre::Consequence_Sensitivity	

Once you open the tool (by double-clicking on it) make sure the help window stays open (bottom of the tool interface to hide/open it). The help is there to provide general information about the tool as a whole, as well as describing in detail each single parameter after clicking on it. In some case, the tool help windows will have a nice graphic with it.

This tools is linked to the InVEST 3.3.3 habitat risk assessment preprocessor model. All input parameters that are specified in the ArcGIS tool interface, will be sent to the appropriate InVEST model which then return the results produced back to the main application. In this tutorial, we will use the sample data provided by the InVEST development team. This tools/model helps you generate a spreadsheet-like file with a space to fill out all the rating scores that you want to assign to each human-related stressor on each habitat. If you feel comfortable using the sample ratings file provided with the sample data and customize it, you can skip this preprocessor tool tutorial and simply follow the habitat risk assessment tutorial in the next section. The species/habitat layer folder parameter needs you to specify a folder on disk containing a shapefile for each habitat/species of interest. Select the folder inside the sample data folder (*/Environmental Analysis/Habitat Risk Assessment Preprocessor/HabitatLayers*) and do the same for the stressors folder parameter, which contains a shapefile for each human stressor affecting one or more of the habitat/species layers specified above (*./Environmental Analysis/Habitat Risk Assessment Preprocessor/Layers*). The following three parameters are a list of textual information on what exposure, consequence (sensitivity, resilience) criteria

you would like to account for in your study. For exposure, click on the + sign and type in "Temporal Overlap Rating", "Management Effectiveness", "Intensity Rating". For consequence (sensitivity), select "Frequency of Disturbance", "Change in Area Rating", "Change in Structure Rating". For consequence (resilience), select "Recruitment Rate", "Natural Mortality Rate", "Connectivity Rate", "Recovery Time". Leave the spatially-explicit parameter section unchecked. You can use this (data is also provided in the sample data folder) on your own if you want to generate a scoring table that accounts for spatially-varying stressors on some (or all) of the habitat/species layers provided.

	Habitat Layers Folder	Consequence: Resilience		
\Frai	ncesco Tonini\Telecoupling\Data\SampleData\habitat_risk_asse			
essor	s Folder	Resilience criteria apply ONLY to the habitats or s		
(Frai	ncesco Tonini\Telecoupling\Data\SampleData\habitat_risk_asse	sment\Input\StressorLayer 🖆 used within this model run. These criteria will be a consequence portion of habitat risk.	pplied to the	
osur	e Criteria			
Hab	tatRiskAssessmentPre::Exposure_Criteria	- 🖻		
	CRITERIA_NAME	+		
1	Temporal Overlap R			
	Management Effecti			
3	Intensity Rating			
	Jence: Sensitivity tatRiskAssessmentPre::Consequence_Sensitivity			
пар	tatkiskAssessmentPre::Consequence_Sensitivity			
	CRITERIA_NAME	+		
	Frequency of Distur			
2	Change in Area Rati			
2	Change in Area Rati Change in Structure	×		
2	-	★		
2	-	1		
2	-			
2	-	1		
2 3	Change in Structure	1		
2 3	-			
2 3	Change in Structure	1		
2 3	Change in Structure			

Click OK to run the tool. Once completed, you should have an output folder containing a txt file ("dir_names.txt") and a csv file for each habitat/species provided as input. Double-click one of the files to explore its content and notice how the criteria you chose have automatically been placed in the appropriate slots inside the spreadsheet. At this stage, you have to fill out each cell combination with a scoring value that relates to the exposure level, or consequence for each habitat/species-stressor combination. Please refer to the official InVEST model online guide

(<u>http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/habitat_risk_assessment.html</u>) for examples of criteria scoring.

Name	Date modified	Туре
📄 dir_names.txt	8/14/2017 3:45 PM	Text Document
🔊 eelgrass_ratings.csv	8/14/2017 3:45 PM	Microsoft Excel C
🔊 hardbottom_ratings.csv	8/14/2017 3:45 PM	Microsoft Excel C
🔊 kelp_ratings.csv	8/14/2017 3:45 PM	Microsoft Excel C
🔊 softbottom_ratings.csv	8/14/2017 3:45 PM	Microsoft Excel C
🔊 stressor_buffers.csv	8/14/2017 3:45 PM	Microsoft Excel C

4.6.6 Nutrient Delivery Ratio (InVEST 3.3.3)

💐 Nutrient Delivery Ratio (InVEST 3.3.3)	–
DEM	Nutrient Delivery Ratio (InVEST 3.3.3)
Land Use/Land Cover	The objective of the InVEST nutrient delivery model is to map nutrient sources from watersheds and their transport to the stream. This spatial information can be used to assess the service of nutrient retention by
Nutrient Runoff	natural vegetation. The retention service is of particular interest for surface water quality issues and can be valued in economic or social terms (e.g.
Watersheds	avoided treatment costs, improved water security through access to clean drinking water).
Biophysical Table	Spatial information concerning the export of nutrients from a watershed and areas of high filtration are needed when determining strategies to mitigate water pollution. The nutrient delivery and retention model provides this
Threshold Flow Accumulation	information for non-point source pollutants. The model was designed for nutrients (nitrogen and phosphorous), but its structure can be used for other
Borselli k Parameter	2 contaminants if data are available on the loading rates and filtration rates of the pollutant of interest.
Subsurface Critical Length (Phosphorous)	150 For all raster inputs used in this tool, the projection should be defined and the projection's linear units should be in meters.
Subsurface Maximum Retention Efficiency (Phosphorous)	150
Subsurface Maximum Retention Efficiency (Nitrogen)	0.8
	0.8
	× .
OK Cancel Environments << H	tide Help Tool Help

The above window will open when you double-click the Nutrient Delivery Ratio tool. Helpful instructions in terms of using the tool are provided by clicking on the "Tool Help" button.

This tools is linked to the InVEST 3.3.3 Nutrient Delivery Ratio model. All input parameters that are specified in the ArcGIS tool interface, will be sent to the

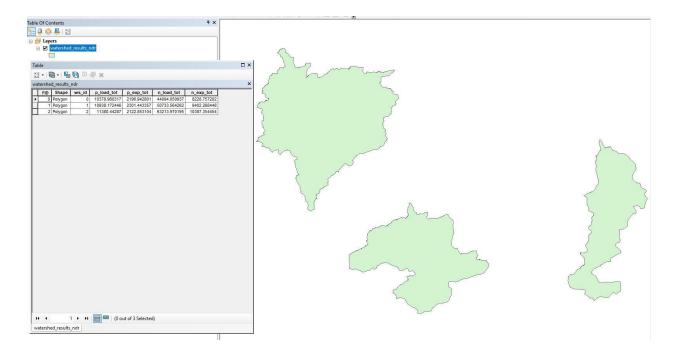
appropriate InVEST model which then returns the results produced back to the main application. In this tutorial, we will use sample data specific to the middle of Michigan in the United States. This tool/model will generate two rasters, one showing how much nitrogen load from each pixel eventually reaches the stream (in kg/pixel), the other showing the same information for phosphorous. The tool also produces a shapefile that aggregates the nutrient model results per watershed for both nitrogen and phosphorous. Opening the attribute table of this shapefile returns information on:

- *n(or p)_load_tot:* kg.yr⁻¹: total nutrient loads (sources) in the watershed, i.e., the sum of the nutrient contribution from all LULC without filtering from the landscape.
- *n(or p)_exp_tot:* kg.yr⁻¹: total nutrient export from the watershed.

For the tool's DEM, select the DEM for Mid-Michigan ("./Environmental Analysis/NDR/dem_MidMich.img"). The Land Use/Land Cover should be a land cover image for this same location in Mid-Michigan ("./Environmental Analysis/NDR/lucc_midmich.img"). Nutrient Runoff is a GIS raster dataset that represents spatial variability of runoff potential. We use a raster of annual precipitation for this model parameter ("./Environmental

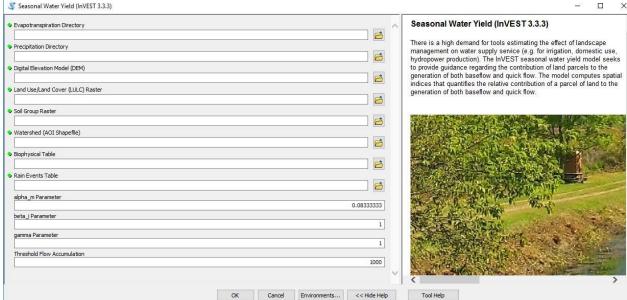
Analysis/NDR/avg_ann_precip_MidMich.img"). For the watershed polygons, select the following sample data: *"./Environmental*

Analysis/NDR/Watersheds_MidMich.shp". The biophysical table includes coefficients for each LULC class for the Mid-Michigan region. Use the following .csv file: "./Environmental Analysis/NDR/biophysical_table_MidMich.csv". The remaining


parameters should be kept at their default values.

Your NDR tool should ultimately be populated as follows:

	User	Guide
--	------	-------


EM		
\dem_MidMich.img	•	8
and Use/Land Cover		
\lucc_midmich.img	· · · · · · · · · · · · · · · · · · ·	B
utrient Runoff		
\avg_ann_precip_MidMich.img	_	B
/atersheds		
\Watersheds_MidMich.shp		8
ophysical Table		
\biophysical_table_MidMich.csv		B
hreshold Flow Accumulation		
	10	000
orselli k Parameter		2
ubsurface Critical Length (Phosphorous)		2
		150
ubsurface Critical Length (Nitrogen)		
		150
ubsurface Maximum Retention Efficiency (Phosphorous)		
		0.8
ubsurface Maximum Retention Efficiency (Nitrogen)		0.8
		010

As mentioned above, the tool's output will include three files. Here we show the aggregated shapefile with its attribute table opened to display the final results.

4.6.7 Seasonal Water Yield (InVEST 3.3.3)

This tools is linked to the InVEST 3.3.3 Seasonal Water Yield model. All input parameters that are specified in the ArcGIS tool interface will be sent to the appropriate InVEST model which then return the results produced back to the main application. In this tutorial, we will focus on a watershed that spans the Brazilian states of Minas Gerais and Espirito Santo before ultimately emptying into the Atlantic Ocean. The output will return spatially-explicit information of quickflow, baseflow, and local recharge, among others, as they relate to the watershed of interest.

When you open the Seasonal Water Yield tool, the interface should appear as the image above. For the Evapotranspiration Directory select the following folder: "./Environmental Analysis/SeasonalWaterYield/ET dir". Similarly, the Precipitation Directory should be specified as follows: "./Environmental Analysis/SeasonalWaterYield/Precip dir". Next, specify the following rasters: a Digital Elevation Model (DEM) raster ("./Environmental Analysis/SeasonalWaterYield/dem 1km.img"), a LULC raster ("./Environmental Analysis/SeasonalWaterYield/lulc 1km.img"), and a Soil Group raster ("./Environmental Analysis/SeasonalWaterYield/sl grp msk reproj reclass.img"). The Watershed AOI shapefile should be specified next ("./Environmental Analysis/SeasonalWaterYield/watershed project.shp"). Finally, specify both the Biophysical Table ("./Environmental Analysis/SeasonalWaterYield/biophysical table swy.csv") as well as the Rain Events Table ("./Environmental Analysis/SeasonalWaterYield/rain events table swy.csv").

Keep the default values for the alpha, beta, gamma, and threshold flow accumulation parameters. Your populated interface should be as follows:

Evapotranspiration Directory	
\ET_dir	
Precipitation Directory	
\Precip_dir	
Digital Elevation Model (DEM)	
\dem_1km.img	
and Use/Land Cover (LULC) Raster	
Vulc_1km.img	
Soil Group Raster	
\sl_grp_msk_reproj_redass.img	
Natershed (AOI Shapefile)	
\watershed_project.shp	
Biophysical Table	
\biophysical_table_swy.csv	
Rain Events Table	
\rain_events_table_swy.csv	
alpha_m Parameter	
	0.08333333
peta_i Parameter	
	1
gamma Parameter	
	1
Threshold Flow Accumulation	
	1000

Click OK to run the tool, and ArcGIS will return nine rasters and one shapefile. The output are as follows:

CN.tif	Raster of curve number values	
QF.tif	Raster of quickflow values (mm)	
L.tif	Raster of local recharge values (mm)	
L_avail.tif	Raster of available local recharge (mm)	
B.tif	Raster of baseflow values (mm); the	
	contribution of a pixel to slow release flow	
B_sum.tif	Raster of the sum of baseflow values (mm)	
	contributed by all upslope pixels	
L_sum.tif	Raster of the sum of local recharge values (mm)	
	contributed by all upslope pixels	
L_sum_avail.tif	Raster of <i>Lsum</i> values (mm) – the available	
	water to a pixel – contributed by all upslope	
	pixels	

Vri.tif	Raster of the values of recharge contribution to the total recharge
aggregated_results.shp	Shapefile specifying the Q_b value (ie, the annual average baseflow in millimeters)

4.6.8 Sediment Delivery Ratio (InVEST 3.3.3)

💐 Sediment Delivery Radio Model		
Biophysical Table		Sediment Delivery Radio Model
DEM		The objective of the InVEST sediment delivery model is to map overland sediment generation and delivery to the stream. In a context of global
Soil Erodibility	8	change, such information can be used to study the service of sediment retention in a catchment. This is of particular interest for reservoir
	6	management and instream water quality, both of which may be economically valued.
Rainfall Erosivity Index		valued.
	8	
IC Parameter	0.5	
	0.5	
K Parameter	2	
Land Use/Land Cover		
	6	
Max SDR		
	0.8	1 - Carl Martin A 3. 1.
Threshold Flow Accumulation	1000	and the second s
Watersheds		and the state of the second
	6	
Drainage (optional)		A CHARLES CARE AND
	6	
<	>	<

Once you open the tool (by double-clicking on it), make sure the help window stays open (bottom of the tool interface to hide/open it). The help is there to provide general information about the tool as a whole, as well as describing in detail each single parameter after clicking on it. In some case, the tool help windows will have a nice graphic with it.

This tool is linked to the InVEST 3.3.3 Sediment Delivery Ratio model. All input parameters that are specified in the ArcGIS tool interface will be sent to the appropriate InVEST model which then return the results produced back to the main application.

The objective of the Sediment Delivery Ratio model is to map overland sediment generation and delivery to the stream. Increases in sediment yield are observed in many places of the world, dramatically affecting water quality and reservoir management. The sediment retention service provided by natural landscapes is of great interest to water managers. Understanding where the

sediments are produced and delivered allow them to design improved strategies for reducing sediment loads. Changes in sediment load can have impacts on downstream irrigation, water treatment, recreation and reservoir performance. In a context of global change, such information can be used to study the service of sediment retention in a catchment. This is of particular interest for reservoir management and instream water quality, both of which may be economically valued.

When you open the Seasonal Water Yield tool, the interface should appear as the image above. If you are using the sample data provided with the toolbox, browse to the folder "./Environmental Analysis/SDR". For Biophysical Table, select the file "./Environmental Analysis/SDR/biophysical_table.csv". Similarly, specify DEM as "./Environmental Analysis/SDR/dem.tif", Soil Erodibility as "./Environmental Analysis/SDR/erodibility.tif", Rainfall Erosivity Index as "./Environmental Analysis/SDR/erosivity.tif", Land Use/Land Cover as "./Environmental Analysis/SDR/landuse_90.tif", and Watersheds as "./Environmental Analysis/SDR/watersheds.shp". Leave IC Parameter, K Parameter, Max SDR and Threshold Flow Accumulation as their default value and skip the optional Drainage parameter. The populated interface should look as the following image.

💐 Sediment Delivery Radio Model					
Biophysical Table					^
\biophysical_table.csv				얻	
DEM					
\Freshwater\dem				8	
Soil Erodibility					
\erodibility				2	
Rainfall Erosivity Index					
\erosivity				8	
IC Parameter					
				0.5	
K Parameter					
				2	
Land Use/Land Cover					
\landuse_90					
Max SDR				0.8	
Threshold Flow Accumulation				0.0	
				1000	
Watersheds					
\watersheds.shp				2	
Drainage (optional)					
				2	
<				>	Ť
	ОК	Cancel	Environments	<< Hide Help)

Click OK to run the tool, and ArcGIS will return and automatically add six rasters and one shapefile on the mapview. The output are as follows:

rkls.tif	Total potential soil loss per pixel in the				
	original land cover without the C or P factors				
	applied from the RKLS equation, equivalent				
	to the soil loss for bare soil.				
sed_export.tif	The total amount of sediment exported from				
	each pixel that reaches the stream.				
sed_retention_index.tif	Raster of local recharge values (mm)				
stream.tif	The pixel level mask of the calculated stream				
	network, useful for interpreting pixel level				
	output and checking the stream network				
	computed by the model.				
usle.tif	Total potential soil loss per pixel in the				
	original land cover calculated from the				
	USLE equation.				
watershed_results_sdr.shp	Table containing biophysical values for each				
_	watershed, with fields as follows:				
	 sed_export (tons/watershed): Total 				
	amount of sediment exported to the				
	stream per watershed. This should be				
	compared to any observed sediment				
	loading at the outlet of the watershed.				
	Knowledge of the hydrologic regime				
	in the watershed and the contribution				
	of the sheetwash yield into total				
	sediment yield help adjust and				
	calibrate this model.				
	• usle_tot (tons/watershed): Total				
	amount of potential soil loss in each				
	watershed calculated by the USLE				
	equation.				
	 sed_retention (tons/watershed): 				
	Difference in the amount of sediment				
	delivered by the current watershed				
	and a hypothetical watershed where				
	all land use types have been cleared				
	to bare soil.				

Telecoupling Toolbox v2.3	User Guide

sed_retention.tif	Map of sediment retention with reference to
	a bare watershed.

4.6.9 Coastal Blue Carbon (InVEST 3.3.3)

💐 Coastal Blue Carbon		- 🗆 ×
LULC Lookup Table	Coastal Blue Carbon	
*LULC Transition Table	Marine and terrestrial ecosystems help regulate Earth's climate removing greenhouse gases (GHGs) such as carbon dioxide (C	CO2) to and from the
*Carbon Pool Initial Table	atmosphere. Coastal marsnes, mangroves, and seagrasses, in amounts of carbon in their sediments, leaves, and other forms o to storing carbon, marine ecosystems continually accumulate ca	of biomass. In addition arbon in their
*Carbon Pool Transient Table	sediments, creating large reservoirs of long-term sequestered c sequestering carbon, marine ecosystems keep CO2 out of the a would otherwise contribute to climate change.	
*Baseline Raster	Management activities that change the cover of coastal vegetation restoration of seagrass beds and the clearing of mangrove fores	
Year Of Baseline	of coastal and marine areas to store and sequester carbon.	
* Transition Raster List	The InVEST Coastal Blue Carbon model attempts to predict the stored and sequestered over a coastal zone at particular points in land cover. Using an estimate of the monetary social value, or market price for stored and sequestered carbon, the InVEST C model also quantifies the marginal value of storage and sequest	in time due to changes r where available, a oastal Blue Carbon
	T Contraction Co	
* Transition Year List		
< OK Cancel En	> ments << Hide Help Tool Help	

Once you open the tool (by double-clicking on it), make sure the help window stays open (bottom of the tool interface to hide/open it). The help is there to provide general information

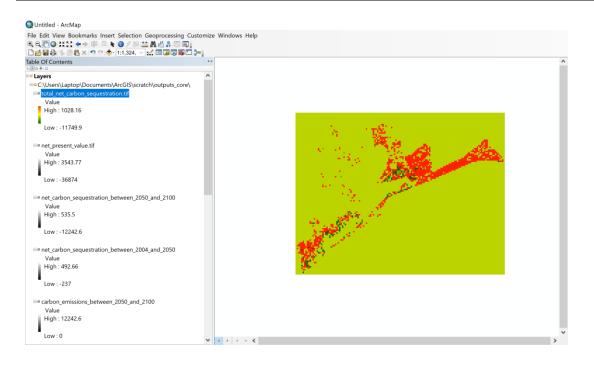
about the tool as a whole, as well as describing in detail each single parameter after clicking on it.

This tool is linked to the InVEST 3.3.3 Coastal Blue Carbon model. All input parameters that are specified in the ArcGIS tool interface will be sent to the appropriate InVEST model which then return the results produced back to the main application.

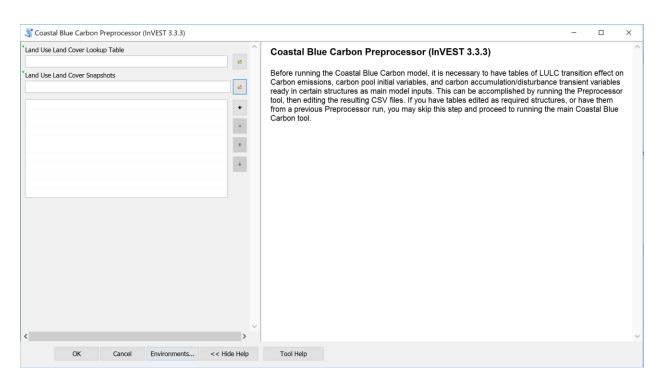
When you open the Coastal Blue Carbon tool, the interface should appear as the image above. If you are using the sample data provided with the toolbox, browse to the folder "./Environmental Analysis/Coastal Blue Carbon". For LULC Lookup Table, select the file "./Environmental Analysis/Coastal Blue Carbon /lulc_lookup.csv". Choose LULC Transition Table as "./Environmental Analysis/Coastal Blue Carbon/ transitions_sample.csv", Carbon Pool Initial Table as "./Environmental Analysis/Coastal Blue Carbon/ carbon_pool_initial_sample.csv", Carbon Pool Transient Table as "./Environmental Analysis/Coastal Blue Carbon/ carbon_pool_initial_sample.csv", Carbon Pool Transient Table as "./Environmental Analysis/Coastal Blue Carbon/ carbon_pool_transient_sample.csv", Baseline Raster as "./Environmental Analysis/Coastal Blue Carbon/ GBJC_2004_mean_Resample.tif", type in Year of Baseline as 2004, which is the year of baseline raster data. Select firstly "./Environmental Analysis/Coastal Blue Carbon/ GBJC_2050_mean_Resample.tif" for the Transition Raster List, and type in 2050 and 2100 for the Transition Year List. Both of the list parameters need to be filled in a chronological order. Leave other parameters as their default value. The populated interface should look as the following two images.

💐 Coastal Blue Carbon

LULC Lookup Table	
\lulc_lookup.csv	8
LULC Transition Table	
\transitions_sample.csv	8
Carbon Pool Initial Table	
\carbon_pool_initial_sample.csv	8
Carbon Pool Transient Table	
\carbon_pool_transient_sample.csv	8
Baseline Raster	
\GBJC_2004_mean_Resample.tif	8
Year Of Baseline	
	2004
Transition Raster List	
	8
\GBJC_2050_mean_Resample.tif	+
\GBJC_2050_mean_Resample.tif \GBJC_2100_mean_Resample.tif	•
	*
	×
	×
	*


ransition Year List		
2050		
2100		+
		×
		+
		Ŧ
nalysis Year (optional)		
conomic Analysis Options		
Do Economic Analysis		
Use Price Table		
rice (optional)		
		10
iterest Rate (optional)		
		3
iscount Rate (optional)		
		6
rice Table (optional)		
		8
		>
		/

Click OK to run the tool, and ArcGIS will return and automatically add eleven rasters (for this sample dataset. The amount of output raster files varies depending on the number of years applied to run the model) on the mapview. The outputs are as follows:


carbon_stock_at_[Yi].tif	Raster of carbon stock for each input year.
	Units: Megatonnes CO ₂ e per Hectare
	For sample dataset (3 files):
	carbon_stock_at_2004.tif
	carbon_stock_at_2050.tif
	carbon_stock_at_2100.tif
carbon_accumulation_be	Raster of carbon accumulation between two
$tween_[Y_i]_and_[Y_{i+1}].ti$	years.
f	Units: Megatonnes CO ₂ e per Hectare
	For sample dataset (2 files):
	carbon_accumulation_between_2004_and_20
	50.tif
	carbon_accumulation_between_2050_and_21
	00.tif

carbon_emissions_betwe en_ $[Y_i]_and_{[Y_{i+1}].tif}$	Raster of carbon emissions between two years.			
	Units: Megatonnes CO ₂ e per Hectare			
	For sample dataset (2 files):			
	carbon_emissions_between_2004_and_2050.t			
	carbon_emissions_between_2050_and_2100.t if			
carbon_net_sequestration	Raster of carbon net sequestration between			
$between_[Y_i]_and_[Y_{i+}]$	two years.			
1].tif	Units: Megatonnes CO ₂ e per Hectare			
	For sample dataset (2 files):			
	carbon_net_sequestration_between_2004_and _2050.tif			
	carbon_net_sequestration_between_2050_and _2100.tif			
Net_present_value.tif	Raster for net present value. Only generated			
	when doing economic analysis.			
	Units: (Currency of Provided Price Table) per			
	Hectare			
total_net_carbon_sequest	Raster of total net carbon sequestration.			
ration.tif	Units: Megatonnes CO ₂ e per Hectare			

The output mapview will look as the following screenshot.

4.6.10 Coastal Blue Carbon (InVEST 3.3.3)

Once you open the tool (by double-clicking on it), make sure the help window stays open (bottom of the tool interface to hide/open it). The help is there to provide general information about the tool as a whole, as well as describing in detail each single parameter after clicking on it.

This tool is linked to the InVEST 3.3.3 Coastal Blue Carbon Preprocessor model. All input parameters that are specified in the ArcGIS tool interface will be sent to the appropriate InVEST model which then return the results produced back to the main application.

When you open the Coastal Blue Carbon Preprocessor tool, the interface should appear as the image above. If you are using the sample data provided with the toolbox, browse to the folder "./Environmental Analysis/Coastal Blue Carbon Preprocessor". For LULC Lookup Table, select the file "./Environmental Analysis/ Coastal Blue Carbon Preprocessor /lulc_lookup.csv". For the Land Use Land Cover Snapshots, select "./Environmental Analysis/Coastal Blue Carbon Preprocessor/ GBJC_2004_mean_Resample.tif", "./Environmental Analysis/Coastal Blue Carbon Preprocessor/ GBJC_2050_mean_Resample.tif", and "./Environmental Analysis/Coastal Blue Carbon Preprocessor/ GBJC_2050_mean_Resample.tif" in sequence. The populated interface should look as the following image.

💐 Coastal Blue Carbon Preprocessor (InVEST 3.3.3)		- 🗆 ×
Land Use Land Cover Lookup Table	^	Land Use Land Cover Lookup Table
C:\Program Files\InVEST_3.3.3_x86\CoastalBlueCarbon\inputs\lulc_lookup.csv	8	· · · · · · · · · · · · · · · · · · ·
Land Use Land Cover Snapshots	2	A CSV table used to map LULC classes to their values in a raster, as well as to indicate whether or not the LULC class is a coastal blue carbon habitat.
C:\Program Files\InVEST_3.3.3_x86\CoastalBlueCarbon\inputs\GBJC_2004_mean_Resample.tif C:\Program Files\InVEST_3.3.3_x86\CoastalBlueCarbon\inputs\GBJC_2050_mean_Resample.tif C:\Program Files\InVEST_3.3.3_x86\CoastalBlueCarbon\inputs\GBJC_2100_mean_Resample.tif	+	
e. (rogram rics).invest_5.5.5_x00 (coastablaccarbon (inputs) (bbc_2100_mean_resumple.ar	×	
	+	
	•	
<	>	
OK Cancel Environments	<< Hide Help	Tool Help

Click OK to run the tool, and you will find three output CSV files in the folder ".*ArcGIS**scratch**outputs_preprocessor*". The outputs are as follows:

carbon_pool_initial_template.csv	Carbon pool initial variables table template. The user must fill in the 'biomass', 'soil', and 'litter' columns with an amount of carbon initially stored in each pool of a lulc-class in terms of Megatonnes CO ₂ e /hectare.
carbon_pool_transient_te mplate.csv	Carbon accumulation/disturbance transient variables table template. The user must fill in all columns except the 'lulc-class' and 'pool' columns.
transitions.csv	LULC transition effect on carbon emissions table template. This transition matrix indicates whether disturbance or accumulation occurs in a transition from one LULC class to another. If the cell is left blank, then no transition of that kind occurs between snapshots. The left-most column represents the source LULC class, and the top row represents the destination LULC class. Depending on the transition type, a cell will be pre- populated with one of the following: (empty), 'NCC' (for no carbon change), 'accum', 'disturb'. It is up to the user to edit the 'disturb' cells with the degree to which distance occurs due to the change. This is done by changing 'disturb' to either 'low-impact-disturb', 'med- impact-disturb', or 'high-impact-disturb'.

4.7 SOCIOECONOMIC ANALYSIS TOOLSET

4.7.1 Cost-Benefit Analysis

💐 Cost-Benefit Analysis

Input Feature	^	Cost-Benefit Analysis	~
Input Join Field	_	The tool can estimate costs and revenues associated with a given set of telecoupling systems that are interconnected by the flow of energy/material.	
Economics Table			
Economics Table Join Field	_		
Output Layer Name			
	\sim		\sim
OK Cancel Environments << Hide He	elp	Tool Help	

Once you open the tool (by double-clicking on it) make sure the help window stays open (bottom of the tool interface to hide/open it). The help is there to provide general information about the tool as a whole, as well as describing in detail each single parameter after clicking on it. In some cases, the tool help windows will have a nice graphic with it.

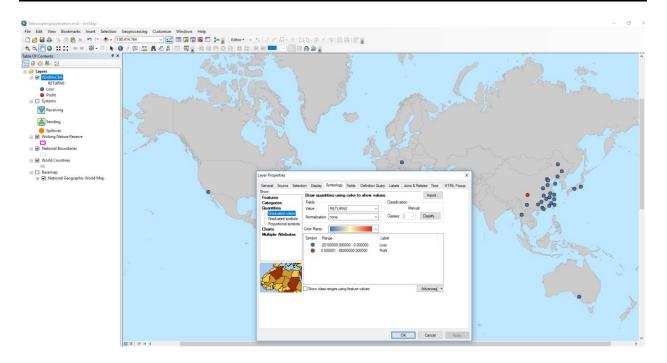
The tool can estimate costs and revenues associated with a given set of telecoupling systems that are interconnected by the flow of energy/material. For example, the transfer of giant pandas from the Wolong Nature reserve to other location worldwide involves cost of transportation, maintenance, feeding material, laborers, as well as revenues from the transaction or from tourism-related activities increased (ideally) after such a transfer just to name some. If you do not have data with respect to one or more of the costs/revenues factors, you might want to collect them or simply use what you have and type "n/a" or leave blank in the appropriate input table

fields. In this tutorial, we will use the financial table found at "./Socioeconomic Analysis/Cost-Benefit Analysis/wildlife_financial_data.csv":

X≣		¢, ±								
F	LE HON	INSER	T PAGE L	AYOUT F	ORMULAS	DATA		/IEW ADD-IN	IS TEA	AM
	A		alibri	- 11	A A ≡	= = 8	יאי ₹יא	rap Text	General	Ŧ
Pas	🖵 🖻 Copy ste • 💞 Forma		в <u>г</u> <u>ч</u> -	🗄 • [💆	• <u>A</u> • =	≡≡ €	Е 🗄 🖽 м	erge & Center 👻	\$ - 9	% * €.0 .00
	Clipboard	G.	F	ont	G.		Alignment	5	i 1	lumber r
A1	. .	: X	√ fx	NAME						
	Α	В	С	D	Е	F	G	н	1	J
1	NAME	cost_per_a	cost_feedin	cost_transp	cost_maint	revenue_fr	revenue_fr	revenue_from	_food_pr	od
2	Wolong	0	n/a	0	n/a	86000000	n/a	n/a		
3	Adelaide	2000000	100000	0	1000000	n/a	n/a	n/a		
4	Beijing	4000000	100000	0	1000000	n/a	n/a	n/a		
5	Benxi	1000000	100000	0	1000000	n/a	n/a	n/a		
6	Chiang Mai	3000000	100000	0	1000000	n/a	n/a	n/a		
7	Fuzhou	5000000	100000	0	1000000	n/a	n/a	n/a		
8	Guangzhou	1000000	100000	0	1000000	n/a	n/a	n/a		
9	Guilin	3000000	100000	0	1000000	n/a	n/a	n/a		
10	Hengyang	1000000	100000	0	1000000	n/a	n/a	n/a		
11	Hongkong	4000000	100000	0	1000000	n/a	n/a	n/a		
12	Jilin	1000000	100000	0	1000000	n/a	n/a	n/a		
13	Jinan	1000000	100000	0	1000000	n/a	n/a	n/a		
14	Kobe	2000000	100000	0	1000000	n/a	n/a	n/a		
15	Kunming	3000000	100000	0	1000000	n/a	n/a	n/a		
16	Nanchang	1000000	100000	0	1000000	n/a	n/a	n/a		
17	Nanjing	3000000	100000	0	1000000	n/a	n/a	n/a		
18	Qiqihar	1000000	100000	0	1000000	n/a	n/a	n/a		
19	San Diego	5000000	100000	0	1000000	n/a	n/a	n/a		
20	Shanghai	6000000	100000	0	1000000	n/a	n/a	n/a		
21	Taiwan	2000000	100000	0	1000000	n/a	n/a	n/a		
22	Tianjin	1000000	100000	0	1000000	n/a	n/a	n/a		
23	Uneco Park	10000000	100000	0	1000000	n/a	n/a	n/a		
24	Vienna	3000000	100000	0	1000000	n/a	n/a	n/a		
25	Washingtor	2000000	100000	0	1000000	n/a	n/a	n/a		
26	Wenling	3000000	100000	0	1000000	n/a	n/a	n/a		
27	Wuhan	2000000	100000	0	1000000	n/a	n/a	n/a		
28	Xiamen	1000000	100000	0	1000000	n/a	n/a	n/a		
29	Xiuning	3000000	100000	0	10000000	n/a	n/a	n/a		
30	Xixiakou	2000000	100000	0	1000000	n/a	n/a	n/a		
31	Zhengzhou	1000000	100000	0	10000000	n/a	n/a	n/a		
32	Holland	0	0	0	0	C	0	100000		
33										

You can use this table and modify it with your own case study if you prefer. As first tool parameter, specify a feature class that contains all your telecoupling systems. If you have not run any of the Systems tools, make sure to do so before running this tool, as it is a required input. In the second parameter, select an attribute from the input systems feature class whose values will be used to join the financial table with. Select NAME as this attribute contains names of all geographic locations that are found within the financial table name attribute. *NOTE: if you do NOT have the exact names in both the systems table and the financial table, or if you have a different number of records between the two tables, the join operation should still complete successfully with a warning message*. Specify the economics table provided with the sample

dataset above and use NAME as a join field. You do NOT need to have the same column labels (NAME) like in this case, as long as you specify which attribute in both tables to use the join on.


<u>NOTE</u>: In order to change the default workspace location where your output files and layers are created, click on the "Environments..." button at the bottom of the tool interface, then expand the workspace option and set a different path to both the current and scratch folder parameters.

Click OK to run the tool and ArcGIS will return a new feature class in output with three new attributes specifying COSTS, REVENUES, and RETURNS.

Tal	ble					-						x
0	- ª -	F 🔂 🖸 🛛	e ×									
Wi	IdlifeCBA											×
	Shape *	NAME	Role	LON	LAT	POINT_X	POINT_Y	COSTS	REVENUES	RETURNS		~
F	Point	Wolong	Sending	103.058077	31.001193	11472372.6538	3632904.0781	0	86000000	86000000		
	Point	Adelaide	Receiving	138.601	-34.929	15428992.7434	-4154236.7088	1210000	0	-12100000		
	Point	Beijing	Receiving	116.39	39.91	12956475.5334	4852872.331	1410000	0	-14100000		
	Point	Benxi	Receiving	123.766667	41.3	13777642.3476	5056692.8088	1110000	0	-11100000		
	Point	Chiang Mai	Receiving	98.9986	18.795	11020473.7412	2130815.2905	1310000	0	-13100000		
	Point	Fuzhou	Receiving	119.31	26.08	13281528.4465	3008992.6645	1510000	0	-15100000		
	Point	Guangzhou	Receiving	113.26	23.13	12608045.5272	2647747.5275	2010000	0	-20100000		
	Point	Guilin	Receiving	110.29	25.27	12277426.6396	2908944.6543	1310000	0	-13100000		
	Point	Hengyang	Receiving	112.6	26.9	12534574.6633	3110983.6162	1110000	0	-11100000		
	Point	Hongkong	Receiving	114.159	22.278	12708121.7495	2544935.3432	1410000	0	-14100000		
Γ	Point	Jilin	Receiving	126.57	43.87	14089707.9497	5445346.3744	1110000	0	-11100000		
Γ	Point	Jinan	Receiving	116.98	36.67	13022154.033	4393208.3209	1110000	0	-11100000		
	Point	Kobe	Receiving	135.2	34.68	15050395.1553	4120479.0079	1210000	0	-12100000		
	Point	Kunming	Receiving	102.705	25.04	11433068.3019	2880658.5234	1310000	0	-13100000		5
<	Doint	Manahana	Dessiving	112 00	20 50	40000700 2004	2224070 0000	1110000	0	1110000	>	
ŀ	• •	1 → H		0 out of 30 Sel	ected)							
W	ildlifeCBA											

At this stage, let's symbolize the point feature class with colors based on the "RETURNS" attribute, to better see the spatial locations of telecoupling systems that have positive or negative returns as a result of the wildlife transfer. *NOTE: values that are found as "n/a" or blank in the economics table, will be ignored in the calculation of the returns and you will get a warning message about it*. Right-click the output layer, go under the Properties and select Quantities > graduated colors. Select the RETURNS field and use as many classification bins as you deem appropriate. In this case, we will select only 2 bins and manually modify the range to have negative values (losses) and positive values (gains) in two different colors like the following figure shows:

User Guide

 \times

4.7.2 Crop Production (InVEST 3.3.3)

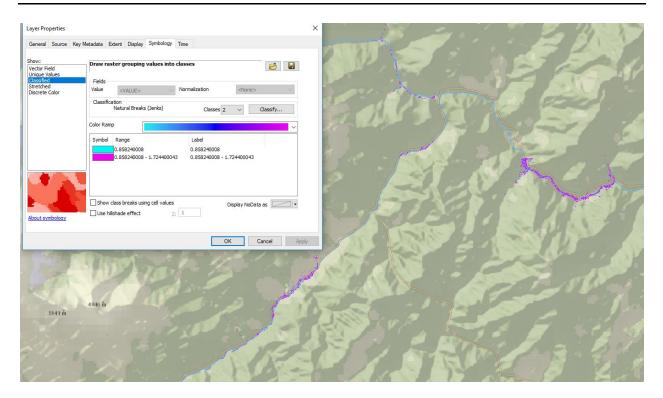
Scrop Production (InVEST 3.3.3)

Lookup Table		\sim	Crop Production (InVEST 3.3.3)	^
Crop Management Scenario Map	6		Expanding agricultural production and closing yield gaps is a key strategy for many governments and development agencies focused on poverty alleviation and achieving food security.	
Global Dataset Folder			However, conversion of natural habitats to agricultural production sites impacts other ecosystem services that are key to sustaining the economic benefits that agriculture provides to local	
Yield Function observed	~		communities. Intensive agricultural practices can add to pollution loads in water sources, often necessitating future costly water	
Percentile Column (optional)			purification methods. Overuse of water also threatens the supply	
yield_95th	\sim		available for hydropower or other services. Still, crop production is	
Fertilizer Raster Folder (optional)	1		essential to human well-being and livelihoods. The InVEST crop production model allows detailed examination of the costs and	
Irrigation Map (optional)	_		benefits of this vital human enterprise, allowing exploration of questions such as:	
	6			
Compute Nutrient Contents			 How would different arrangement or selection of cropping systems compare to current systems in terms of total production? Could switching crops yield higher economic 	
	6		returns or nutritional value?	
Compute Financial Analysis			What are the impacts of crop intensification on ecosystem	
Crop Economic Information (optional)	e*		services? If less land is used to produce equal amounts of food by increasing intensification, is the net result on	l
			ecosystem services production positive or negative?	
			 How can we evaluate different strategies for meeting increasing food demand while minimizing the impact on ecosystem services? 	
				ĺ
		\sim	<	~
OK Cancel Environments << H	ide Help		Tool Help	

Once you open the tool (by double-clicking on it) make sure the help window stays open (bottom of the tool interface to hide/open it). The help is there to provide general information about the tool as a whole, as well as describing in detail each single parameter after clicking on it. In some case, the tool help windows will have a nice graphic with it.

NOTE: At this very moment, this InVEST model is NOT recommended for real decisionmaking as it needs more validation. However, feel free to use it for exploratory and testing purposes.

This tools is linked to the InVEST 3.3.1 crop production model. All input parameters that are specified in the ArcGIS tool interface, will be sent to the appropriate InVEST model which then return the results produced back to the main application. In this example, let's use the crop


management scenario raster file from 2006, for the Wolong Nature Reserve area ("./Environmental Analysis/Crop Production/Wolong_cropland_2006.img"). The main crop produced in this area is cabbage, followed by potatoes and corn (usually in rotation within the same crop field). The crop management map shows areas where cabbage and potatoes are cultivated by local farmers, and areas where no cropland is present. The crop lookup table ("./Environmental Analysis/Crop Production/crop_lookup_table.csv") needs to have a one-to-one correspondence with the codes found in the crop management raster file to work properly. Specify the location of the global raster dataset folder, which contains data for observed yield as well as climate percentile and regression yields used by the InVEST model ("./Environmental Analysis and specify the crop economic information table ("./Environmental Analysis/Crop Production/global_dataset"). Check the box to compute financial analysis and specify the crop economic information table ("./Environmental Analysis/Crop Production/crop_financial_data.csv"). If you wish to calculate the total nutritional content of the chosen crop, check the appropriate box and use the nutrient table (./Environmental Analysis/Crop Production/crop_nutrient_data.csv).

<u>NOTE</u>: In order to change the default workspace location where your output files and layers are created, click on the "Environments..." button at the bottom of the tool interface, then expand the workspace option and set a different path to both the current and scratch folder parameters.

User Guide

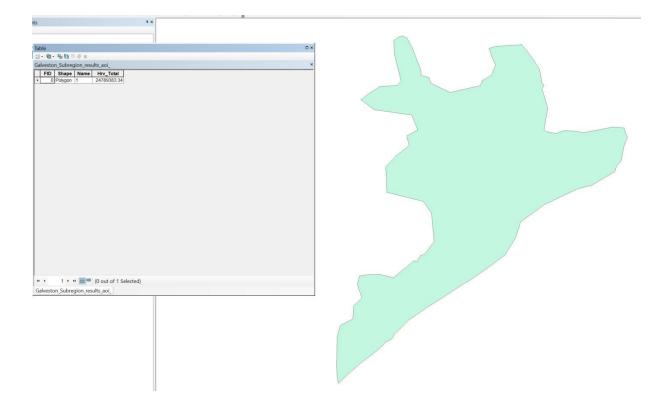
pokup Table		Crop Economic Information (optional)
C: \Users\Francesco Tonini\Desktop\SampleData\crop\crop_lookup_table.csv	6	
rop Management Scenario Map		Filepath to a CSV table containing information related to market
Y: \Francesco Tonini\Telecoupling\Data\SampleData\crop\Wolong_cropland_2006.img	6	price of a given crop and the costs involved with producing that crop.
lobal Dataset Folder		00p.
Y: \Francesco Tonini \Telecoupling \Data \SampleData \crop \global_dataset	6	
ield Function		
observed	~	
ercentile Column (optional)		
yield_95th	~	
ertilizer Raster Folder (optional)		
	6	
rigation Map (optional)		
	6	
Compute Nutrient Contents		
— ·		
rop Nutrient Information (optional)	(F)	
Compute Financial Analysis		
rop Economic Information (optional)		
Y:\Francesco Tonini\Telecoupling\Data\SampleData\crop\crop_financial_data.csv	6	

Click OK to run the tool. Once completed, you should have an output raster with estimated yield and a financial analysis table with total yield, costs, revenues, and returns for the chosen crops. To improve the visualization of the yield raster, let's choose a better color ramp using the symbology tab (right-click the raster layer and select Properties). Select a Classified color ramp of your choice. Click on OK and you should see something like the following image:

4.7.3 Fisheries Harvest (InVEST 3.3.3)

Area of Interest	Fisheries Harvest (InVEST 3 3 3)	
Area of Interest	Fisheries Harvest (InVEST 3.3.3)	
Number of Steps for Model Run	This model produces estimates of harvest volume and economic value (option	onal) of
	100 single-species fisheries within an area of interest specified by the user.	
Population Model Type Age-Based	×	
Population Classes are Sex-Specific		
No	·	
Harvest by Individuals or Weight		
Individuals		
Population Parameters File (CSV)		
Total Initial Recruits	20000	
Recruitment Function Type		
Beverton-Holt	· ·	
Spawners by Individuals or Weight		
Alpha		
Data	605000	
Beta	0.0000009414	
Output Directory		
Migration Parameters		
Estimate Migratory Patterns		
Migration Matrix CSV Folder (optional)		
Valuation Parameters		
Estimate Harvest Value		
Fraction of Harvest Kept After Processing (optional)		
Unit Price (optional)		
and the (daman)		
	~	
<	>	
	OK Cancel Environments << Hide Help Tool Help	

Once you open the tool, be sure to refer to the help window that appears on the right of the tool interface. The help is there to provide general information about the tool as a whole, as well as to describe in detail each single parameter after clicking on it.


This tool is linked to the InVEST 3.3.3 Fisheries model. All input parameters that are specified in the ArcGIS tool interface will be sent to the appropriate InVEST model which then returns the results back to the main application. In this tutorial, we use sample data that were originally provided by InVEST. The data relates to blue crab in Galveston Bay, Texas. The tool will generate a shapefile of the area of interest with harvest volume, as well as a CSV file summarizing the results.

For the shapefile specifying the area of interest, locate the following file in the Sample Data folder: "./Environmental Analysis/FisheriesHarvest/Galveston Subregion.shp". The following file should be used for the Population Parameters CSV File: "./Environmental Analysis/FisheriesHarvest/population params.csv". The output directory should be the location where you would like the output saved. All other parameters should be entered as follows:

📑 Fisheries Harvest (InVEST 3.3.3)

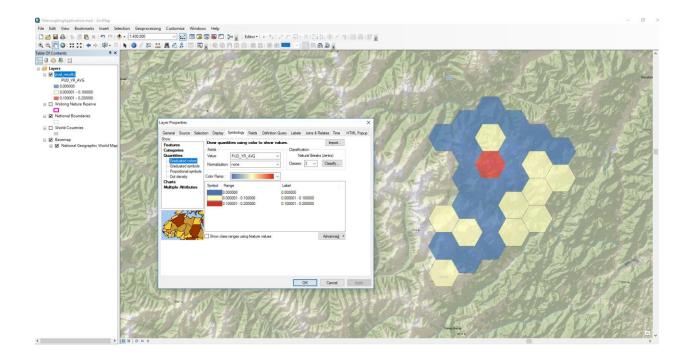
Number of Steps for Model Run Population Model Type Age-Based Population Classes are Sex-Specific No Harvest by Individuals or Weight Individuals Population_parameters File (CSV) Yoopulation_parameters File (CSV) Yoopulation_parameters Total Initial Recruits Spawners by Individuals or Weight Individuals Alpha Goston Beta Output Directory YestOutput Migration Parameters Valuation Parameters	Area of Interest				
Index Age-Based Age-Based Age-Based Age-Based Population Classes are Sex-Specific No No Harvest by Individuals or Weight Individuals Individuals Population Parameters File (CSV) (population_params.csv Individuals Contract Population Type Ricker Spawners by Individuals or Weight Individuals Individuals Spawners by Individuals or Weight Individuals Spawners by Individuals or Weight Individuals Output Directory `testOutput Yaluation Parameters Valuation Parameters Valuation Parameters	\Galveston_Subregion.shp				8
Population Model Type Age Based Age Based Age Based Population Classes are Sex-Specific No No Harvest by Individuals or Weight Individuals Population Parameters File (CSV) Yopulation_params.csv Ital Initial Recruits Ital	Number of Steps for Model Run				
Age-Based Population Classes are Sex-Specific No No Harvest by Individuals or Weight Individuals Population Parameters File (CSV) `population_params.csv Contract of the second secon					100
Population Classes are Sex-Specific No Harvest by Individuals or Weight Individuals Population Parameters File (CSV) (population_params.csv Total Initial Recruits 20000 Recruitment Function Type Ricker Spawners by Individuals or Weight Individuals Alpha 605000 Beta 0.000000041 Output Directory (testOutput Migration Parameters Valuation Parameters Valuation Parameters					
No Harvest by Individuals or Weight Individuals Population Parameters File (CSV) \population_params.csv Total Initial Recruits 20000 Recruitment Function Type Ricker Spawners by Individuals or Weight Individuals Alpha Geta 0.000000041 Output Directory \testOutput Migration Parameters Valuation Parameters					~
Harvest by Individuals or Weight Individuals Population Parameters File (CSV)					~
Individuals Population Parameters File (CSV)					
\population_params.csv Total Initial Recruits 20000 Recruitment Function Type Ricker Spawners by Individuals or Weight Individuals Alpha 605000 Beta 0.00000041: Output Directory \testOutput					~
Total Initial Recruits 20000 Recruitment Function Type Ricker Spawners by Individuals or Weight Individuals Alpha 605000 Beta 0.000000041 Output Directory YtestOutput Migration Parameters Valuation Parameters	Population Parameters File (CSV)				
20000 Recruitment Function Type Ricker Spawners by Individuals or Weight Individuals Alpha 605000 Beta 0.000000041 Output Directory ItestOutput Migration Parameters Valuation Parameters Valuation Parameters	\population_params.csv				6
Recruitment Function Type Ricker Spawners by Individuals or Weight Individuals Alpha 605000 Beta 0.000000041 Output Directory \testOutput Migration Parameters Valuation Parameters Valuation Parameters	Total Initial Recruits				00000
Spawners by Individuals or Weight Individuals Alpha 605000 Beta 0.000000041: Output Directory VestOutput Migration Parameters Valuation Parameters Valuation Parameters					200000
Individuals Alpha Gotomore Alpha Gotomore Gotomo					~
Alpha 605000 Beta 0.000000041 Output Directory \testOutput Migration Parameters Valuation Parameters Valuation Parameters					
605000 Beta 0.000000041: Output Directory \testOutput \testOutput Migration Parameters Valuation Parameters					~
0.00000041 Output Directory \testOutput Migration Parameters Valuation Parameters	Alpha				6050000
0.00000041 Output Directory \testOutput Migration Parameters Valuation Parameters	Beta				
\testOutput Image: Control of Contro					0.0000000414
Migration Parameters Valuation Parameters	Output Directory				
Valuation Parameters	\testOutput				6
< ;	Migration Parameters				
	Valuation Parameters				
	(>
		OK	Const	Facharamant	<< Hide He

The final output will include a CSV file summarizing the results. This file will be saved to the Output Directory specified by the user. The final output will also include a shapefile of the AOI with information related to total harvest volume. This shapefile will also be saved to the Output Directory and will automatically be loaded to the map viewer. The shapefile for the tutorial is shown here:

4.7.4 Visitation: Recreation and Tourism Storage and Sequestration (InVEST 3.3.3)

rea of Interest	^	Visitation: Recreati	
-] 🖆	Tourism (InVEST 3	.3.1)
art Year		Recreation and tourism a	
005		components of many nat	
d Year		economies and they con	
014		innumerable ways to phy	sical wellbeing,
Compute Regression		learning, and quality of lif	
edictor Table (optional)		value of natural environme recreation model predicts	
	2	person-days of recreation	
enario Predictor Table (optional)		locations of natural habit	
	2	features that factor into p about where to recreate.	
Grid the AOI		empirical data on visitatio	
Jana the AUI		parameterize the model (
d Type (optional)		visitation: geotagged pho	
exagon	~	to the website flickr. Usin the model predicts how fi	
l Size (optional)	7000	natural features will alter	
	7000	and outputs maps showing	
		future patterns of recreati	ional use.
			CURRENT
			YEAR: 2010
		TOURISM	Mile.
		LOW HIGH	
		Low	× 30
			10 200
		VISITOR DAYS (# in mil)	2
		EXPENDITURES (mil BZ\$)	230
	· · ·	1	>
			/

Once you open the tool (by double-clicking on it) make sure the help window stays open (bottom of the tool interface to hide/open it). The help is there to provide general information about the tool as a whole, as well as describing in detail each single parameter after clicking on it. In some case, the tool help windows will have a nice graphic with it.


This tools is linked to the InVEST 3.3.3 visitation: recreation and tourism model. All input parameters that are specified in the ArcGIS tool interface, will be sent to the appropriate InVEST model which then return the results produced back to the main application. In this tutorial, we will use the Wolong Nature reserve as a study area to investigate tourist visitation rates from geotagged photographs posted to the website Flickr. *NOTE: this tool should be used keeping in mind that certain areas may have very few to none geotagged photographs on Flickr. If you have a similar situation, please consider using a different tool to study tourism, e.g. linear regression.*

As area of interest select the shapefile of the Wolong Nature reserve boundaries ("./Socioeconomic Analysis/Visitation Rate/Wolong_NatReserve_bnd.shp"). The start year is constrained to be 2005 or later while the end year is constrained to be 2014 or earlier. Uncheck the box that computes regression, since in this example we are not interested in estimating the contribution of socio-ecological factors to the visitation rates, but rather calculate the average visitation rates on the study area between 2005 and 2014. Check the box to grid the AOI, and use hexagon as a grid type to divide our study area and calculate visitation rates within each cell. As cell size you can leave the default or specify a different one (in the units of the coordinate systems used, e.g. meters). In this example, we are choosing 10 km (10,000m) as a cell size.

<u>NOTE</u>: In order to change the default workspace location where your output files and layers are created, click on the "Environments..." button at the bottom of the tool interface, then expand the workspace option and set a different path to both the current and scratch folder parameters.

Sistation: Recreation and Tourism (InVEST 3.3.1)			×
Area of Interest Y:\Francesco Tonini\Telecoupling\Data\SampleData\tourism\visitatior Start Year 2005 End Year 2014 Compute Regression Predictor Table (optional) Scenario Predictor Table (optional) Scenario Predictor Table (optional) Grid the AOI Grid Type (optional) square Cell Size (optional) 10000	^	Cell Size (optional) The size of the grid units measured in the projection units of the AOI. For example, UTM projections use meters.	~
OK Cancel Environments << Hide Help	~	Tool Help	~

Click OK and run the tool. The size of your study area, the chosen cell size, and whether or not to run a regression analysis will greatly affect the computation time for the tool to complete. After the tool is done running, ArcGIS returns a shapefile made of hexagonal grid cells and a csv table with extracted monthly counts of geotagged photograph in the selected time frame. The shapefile can be symbolized with colors representing classes of average visitation rates, e.g. yearly average visitation rate (2005-2014). Right-click the shapefile in the table of content, select Properties, go to the symbology tab to choose Quantities > Graduated colors and use the PUD_YR_AVG field as values:

4.7.5 Population Count and Density

S Population Count and Density	— D X
Reporting unit feature	Population Count and Density
Reporting unit ID field	Calculates population count and density (people per sq km) for each reporting unit polygon and creates an output feature class.
Census feature	In addition to the default metrics, the tool optionally calculates population change over time.
Population field Vutput Feature Class Output Feature Class Census T2 feature (optional) Census T2 field (optional)	
OK Cancel Environments << Hide Help	Tool Help

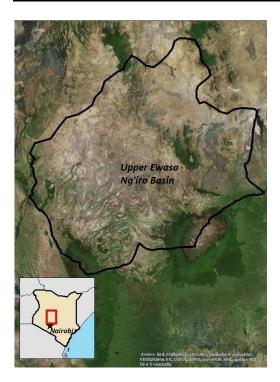
Once you've opened the tool, click the folder icon next to the Reporting unit feature field and navigate to the dataset "ROI_population" within the sample data folder ("./Socioeconomic Analysis/Population Count and Density/ROI_population.shp"). This represents the Republic of Ireland's population from the 2011 Census. Note that this shapefile has linear units of meters. When using this tool, your shapefile must be in a projection where the units are in meters. You've now indicated that the reporting units will be derived from Ireland's administrative boundaries. Next, click the drop-down arrow for the Reporting Unit ID Field and select "County." This will be the level at which population counts and densities will be calculated. For the Census Feature, select the "ROI_population" shapefile again. This identifies the shapefile that provides the population information. For Population Field, select "TOTAL2011" as this column contains the population from the 2011 Census. Finally, for Output Feature Class, select a location where you'd like to save the tool's results.

Your populated tool should look like this:

User Guide

\ROL_population.shp Calculates population count and density (people per sq km) for each reporting unit ID field COUNTY Image: Calculates population count and density (people per sq km) for each reporting unit polygon and creates an output feature class. ROL_population Image: Calculates population count and density (people per sq km) for each reporting unit polygon and creates an output feature class. ROL_population Image: Calculates population count and density (people per sq km) for each reporting unit polygon and creates an output feature class. RoL_population Image: Calculates population to the default metrics, the tool optionally calculates population change over time. PopulationCountDensity_TEST_1 Image: Calculates population to the default metrics. PoPCHG (optional) Image: Calculates population to the default metrics. ensus T2 field (optional) Image: Calculates population to the default metrics. ensus T2 field (optional) Image: Calculates population to the default metrics. Image: Calculates population count and density (people per sq km) for each reporting unit polygon and creates an output feature class. Image: Calculates population count and density (people per sq km) Image: Calculates population to the default metrics. Image: Calculates population count and density (people per sq km) Image: Calculates population to the default metrics. Image: Calculates population count and density (people per sq km)	porting unit feature	Population Count and Density
eporting unit ID field COURTY einsus feature ROL population Opulation field TOTAL2011 Nutput Feature Class PopulationCountDensity. (people per sq km) for each reporting unit polygon and creates an output feature class. In addition to the default metrics, the tool optionally calculates population change over time. POPCHG (optional) ensus T2 feature (optional) ensus T2 field (optional) Calculates population Calculates population Calculates population count and default metrics, the tool optionally calculates population change over time. Calculates population reporting unit polygon and creates an output feature class. In addition to the default metrics, the tool optionally calculates population change over time. Calculates population to the default metrics, the tool optionally calculates population change over time. Calculates population change over time. Calculates population change over time.	\ROI_population.shp	
COUNTY ensus feature ROI_population opulation field TOTAL2011 POPCHG (optional) ensus T2 field (optional) ensus T2 field (optional)		
ROL_population control field c	VITY V	reporting unit polygon and creates an output feature class.
ROL population Composition field Control 2011 Control 201 Contr		In addition to the default metrics, the tool optionally calculates population
ToTAL2011 httput Feature Class PopulationCountDensity_TEST_1 PoPCHG (optional) ensus T2 feature (optional) ensus T2 field (optional)	Ol_population 🗾 🖻	
hutput Feature Class PopulationCountDensity_TEST_1 POPCHG (optional) ensus T2 feature (optional) ensus T2 field (optional)		
PopulationCountDensity_TEST_1 POPCHG (optional) ensus T2 field (optional) ensus T2 field (optional)		
POPCHG (optional) tensus T2 field (optional) tensus T2 field (optional)		
ensus T2 feature (optional)	PopulationCountDensity_TEST_1	
ensus T2 field (optional)	POPCHG (optional)	A DESCRIPTION OF A DESC
ensus T2 field (optional)	nsus T2 feature (optional)	and the second se
ensus T2 field (optional)		
		a fifter an
		LAN AND ON STATEMENT THE PARTY OF PROPERTY AND ADDRESS OF THE OWNER.
		THE THE THE TANK THE THE TANK THE TANK
		The second se

Click OK to run the tool. The tool produces a copy of the shapefile that was used for the Reporting Unit Feature. The attribute table of the returned shapefile contains information on population count, the area of the Reporting Unit ID Field, and the population density within the Reporting Unit ID Field:


					\FC_layer
Т	FID	Shape *	popCount	AREAKM2	popDens
•	0	Polygon	54611.99996	2440.097053	22.381077
	1	Polygon	527611.999218	329.703574	1600.261691
	2	Polygon	265204.999631	623.822958	425.12863
T	3	Polygon	273991.000907	1291.558035	212.139907
1	4	Polygon	206260.99985	352.992788	584.32072
1	5	Polygon	210312.000679	4711.538592	44.637648
1	6	Polygon	95419.000661	5599.645984	17.040184
1	7	Polygon	80559.001801	4735.791807	17.010672
1	8	Polygon	39015.944583	3110.868462	12.541818
1	9	Polygon	122897.001305	2378.050352	51.67973
1	10	Polygon	184135.009453	6648.654823	27.695077
1	11	Polygon	76687.00017	5567.21893	13.774741
1	12	Polygon	86163.999965	5194.282735	16.588238
1	13	Polygon	145319.999604	6373.44436	22.800858
1	14	Polygon	136640.001051	5575.930947	24.505325
1	15	Polygon	117202.941278	9435.604329	12.42135
1	16	Polygon	119229.999148	103.798745	1148.665127
1	17	Polygon	399802.007991	19585.286982	20.413385
1	18	Polygon	145502.000957	12724.636772	11.434668
1	19	Polygon	57106.000183	83.485714	684.021223
1	20	Polygon	134703.00012	7338.107544	18.35664
1	21	Polygon	70324.339131	5598.796203	12.560618
1	22	Polygon	88432.00256	6073.925272	14.559284
1	23	Polygon	46052.999846	110.407546	417.118225
1	24	Polygon	67062.999891	4822.282757	13.906899
1	25	Polygon	75529.000887	141.679958	533.095871
1	26	Polygon	175124.001697	17095.248393	10.244016
1	27	Polygon	31798.528848	4619.486725	6.883563
1	28	Polygon	130638.010453	16080.892721	8.123803
1	29	Polygon	64065.001615	7264.093032	8.819408
1	30	Polygon	65392.999849	5347.253603	12.229268
1	31	Polygon	73183.001484	5578.662877	13.118377

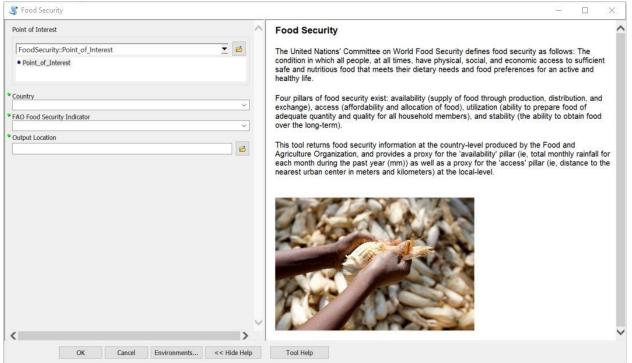
4.7.6 Nutrition Metrics

💐 Nutrition Metrics	- 🗆 X
Area of Interest	Nutrition Metrics
Continent (continent of area of interest)	Estimates the population within an Area of Interest (AOI) by age groups and then calculates the Lower Limit of Energy Requirement (LLER; in kilocalories / day) for age groups within the AOI. NOTE: This tool will only run with Areas of Interest in Africa, Asia, or South America / Central America / Caribbean.
Year of Interest Average Male Stature in cm (height)	Age groups are five year intervals for both males and females. For example, Female 0-4, Female 5-9, Male 0-4, Male 5-9. The final age grouping for both males and females is 65+, which includes all individuals aged 65 and greater.
Average Female Stature in cm (height)	This tool produces a shapefile of the AOI and a DBF file with population and LLER information. LLER is reported in kilocalories per day for the entire AOI for each age group as well as for the population as a whole. Therefore, if the Male 0-4 age group reports a LLER value of 53,650,000, this indicates that within the AOI, a total of 53,650,000kilocalories / day would be needed to feed all of the males in the 0-4 age group (this would need to be divided by the Male 0-4 population if one wanted to estimate kilocalories / person / day). Refer to the Tool Help for details concerning calculation of Lower Limit of Energy Requirement.
¥	×
OK Cancel Environments << Hide Help	Tool Help

After opening the tool, you will have several parameters to populate before the tool will run. As the area of interest, select the shapefile of the Upper Ewaso Ng'iro basin, a river basin on the northern and northwestern slopes of Mount Kenya ("./Socioeconomic Analysis/Nutrition Metrics/EwasoNgiroBasin_EstimatedExtent.shp").

The continent dialogue box requires a folder containing rasters representing the population and age groupings necessary to calculate calorie demand for the area of interest. Select the "AFR" folder ("./Socioeconomic Analysis/Nutrition Metrics/AFR"). Note: folders containing rasters for Africa, Asia, and Latin America are downloaded with the Telecouling Toolbox sample data. For the year of interest, the options are limited to 2000, 2005, 2010, 2015, and 2020. For this exercise, choose 2005. The average adult male and female heights within the Upper Ewaso Ng'iro basin are not known, but the average heights for the country of Kenya are available (in centimeters). Enter 170 for average male stature (in cm) and 158.2 for average female stature (in cm).

Your populated dialogue box should look like this:


Area of Interest	~	Nutrition Metrics
\EwasoNgiroBasin_EstimatedExtent.shp	2	
Continent (continent of area of interest)		Estimates the population within an Area of Interest (AOI) by age groups and then calculates the Lower Limit of Energy Requirement (LLER; in kilocalories / day) for age groups within the AOI. NOTE: This
\AFR	2	tool will only run with Areas of Interest in Africa, Asia, or South America / Central America / Caribbean.
/ear of Interest		·····
2005	~	Age groups are five year intervals for both males and females. For example, Female 0-4, Female 5-9,
Average Male Stature in cm (height)		Male 0-4, Male 5-9. The final age grouping for both males and females is 65+, which includes all individuals aged 65 and greater.
	170	individuals aged of and greater.
Average Female Stature in cm (height)	158.2	This tool produces a shapefile of the AOI and a DBF file with population and LLER information. LLER is
	100.12	reported in kilocalories per day for the entire AOI for each age group as well as for the population as a
		whole. Therefore, if the Male 0-4 age group reports a LLER value of 53,650,000, this indicates that within the AOI, a total of 53,650,000kilocalories / day would be needed to feed all of the males in the 0-
		4 age group (this would need to be divided by the Male 0-4 population if one wanted to estimate
		kilocalories / person / day).
		Refer to the Tool Help for details concerning calculation of Lower Limit of Energy Requirement.
		and the second that a second
	\sim	

Click OK and run the tool. The tool will produce a copy of the shapefile that was used as the AOI as well as a DBF file. The attribute table of the returned shapefile and the DBF file contain information on population size and the lower limit of energy requirements (LLER) for each age group. LLER is reported in kilocalories per day for each age group. For example, in the attribute table below, the male 25-29 age group requires a total of 67,039,375 kcal/day. This is approximately 2,350 kcal/person/day in the male 25-29 age group (calculated as follows: LLER of the male 25-29 age group / total population in the male 25-29 age group).

-	tputTak	_			
Ц	OID	ld	ageGroup	Рор	LLER
	0	0		52384.8	48336488.2336
	1	0	m0004	52091.1	51593453.7294
	2	0	f0509	47460.4	71028382.4453
	3	0	m0509	47145	74282002.0225
	4	0	f1014	36699.4	61094741.5981
	5	0		36441.6	64188158.1978
	6	0	f1519	31223.1	40747761.1555
	7	0	m1519	31018	71355930.8918
	8	0	f2024	29044.1	38122084.8242
	9	0	m2024	28864.9	67775015.9285
	10	0	f2529	28758.1	37746739.0623
	11	0	m2529	28551.6	67039375.1727
	12	0	f3034	24402.6	45595267.648
	13	0	m3034	24197.8	56255155.8197
	14	0	f3539	18115.6	33848295.9805
	15	0	m3539	17951.3	41733236.031
	16	0	f4044	14783.7	27622729.6194
	17	0	m4044	14651.4	34061616.5127
	18	0	f4549	12375	23122170.9967
٦	19	0	m4549	12262.3	28507424.7806
٦	20	0	f5054	9074.62	16955555.9906
٦	21	0	m5054	9009.32	20944914.4654
	22	0	f5559	7341	13716369.8866
	23	0	m5559	7271.35	16904467.3412
	24	0	f6064	5852.8	9626037.46526
	25	0	m6064	5800.18	11035863.4883
	26	0	f65pl	10703.9	17604617.6552
	27	0	m65pl	10597.7	20164020.2762
	28	0	total	654072.871094	1111007877.22
			1		

)

4.7.7 Food Security

To run the Food Security tool, you will need to populate the interface with some information. First, you will want to place the Point of Interest within the map viewer. Below, the Point of Interest has been placed in the northern part of Zambia's North-Western province. To assist in positioning the point in the correct location, a basemap was

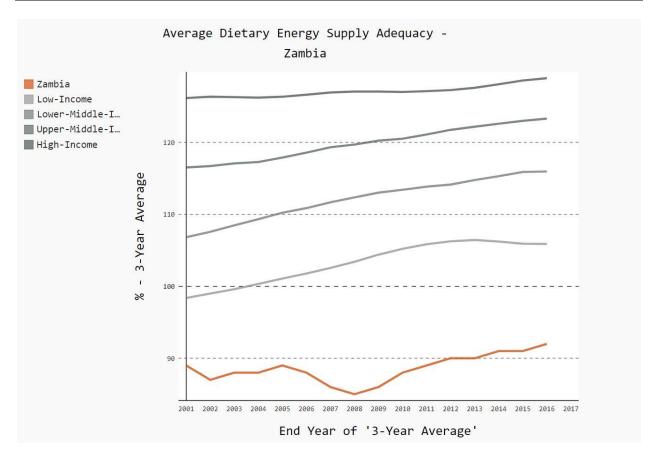
added by clicking on the small dropdown arrow next to the Add Data button (

The remainder of the interface was filled out as follows:

User Guide

Food Security		– – ×	
Point of Interest		Food Security	
podSecurity::Point_of_Interest 🗾 🛃		The United Nations' Committee on World Food Security defines food security as	
Point_of_Interest		follows: The condition in which all people, at all times, have physical, social, and economic access to sufficient safe and nutritious food that meets their dietary needs and food preferences for an active and healthy life.	
Country		Four pillars of food security exist: availability (supply of food through production,	
Zambia ~ FAO Food Security Indicator Average dietary energy supply adequacy (%) (3-year average) ~		distribution, and exchange), access (affordability and allocation of food),	
		utilization (ability to prepare food of adequate quantity and quality for all household members), and stability (the ability to obtain food over the long-term).	
FAO Food Security CSV			
\fao.csv 🛃		This tool returns food security information at the country-level produced by the	
Country ISO Code CSV		Food and Agriculture Organization, and provides a proxy for the 'availability' pillar (ie, total monthly rainfall for each month during the past year (mm)) as well as a	
Viso_codes.csv		proxy for the 'access' pillar (ie, distance to the nearest urban center in meters	
Population Shapefile	Rectard	and kilometers) at the local-level.	
\SEDAC_pop_over1000.shp	8		
Output Location			
\TestOutput	8	Contract and	
(
OK Cancel Environme	ents << Hide Help	Tool Help	

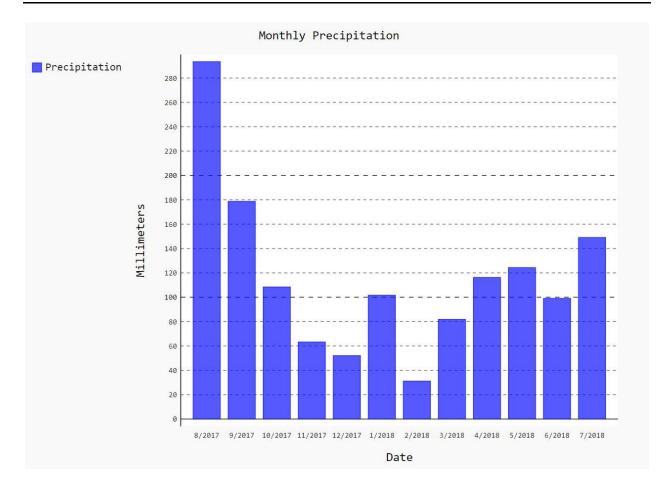
As the above image shows, the Country coincides with the Point of Interest's location. The FAO Food Security Indicator that was selected is "Average dietary energy supply adequacy." To populate the "FAO Food Security CSV" field, open the following file from the sample data folder: "./Socioeconomic Analysis/FoodSecurity/fao.csv". The "Country ISO Code CSV" field should be filled with the following file: "./Socioeconomic Analysis/FoodSecurity/iso_codes.csv". The "Population Shapefile" field should be filled with the following file: "./Socioeconomic Analysis/FoodSecurity/iso_codes.csv". The "Population Shapefile" field should be filled with the following file: "./Socioeconomic Analysis/FoodSecurity/SEDAC non_over1000 shp"


Analysis/FoodSecurity/SEDAC_pop_over1000.shp".

When opening the folder within which the output was saved, you should see the following three files:

DistanceToUrban.txt	8/21/2018 4:18 PM	Text Document
FAO_plot.svg	8/21/2018 4:18 PM	Chrome HTML Document
Rainfall.svg	8/21/2018 4:18 PM	Chrome HTML Document

The DistanceToUrban document, when opened, reveals that the nearest urban center is 278km away from the point of interest and is located at (2964809.1048, -1229271.84643), which is the city of Likasi in the Democratic Republic of the Congo.


The FAO_plot.svg file displays the following information:

User Guide

Average dietary energy supply adequacy is plotted for Zambia along with averages across country income groupings. This provides valuable reference for understanding where the country of interest ranks when compared to other countries. For information describing how country income groupings were formed, refer to this <u>site</u>.

The Rainfall.svg file displays total monthly rainfall at the location of interest for each month during the past year:

