
4/21/2018 The Ultimate Guide to Modern CMake

https://rix0r.nl/blog/2015/08/13/cmake-guide/ 1/7

The Ultimate Guide to Modern CMake
13 August 2015

CMake is a great tool for managing a C++ system’s build. It builds quickly, supports
the major use cases, and is quite flexible. The problem is, it’s too flexible, and for
people used to writing Makefiles themselves, it’s not always obvious what CMake
commands and properties you should be using. If you’re used to just splatting
some compiler flags into the CXX_FLAGS environment variable, you might just do
that in CMake as well, even though it supports better ways to manage your build.

It occurred to me recently that I need a gold standard reference for laying out a
CMake project. There are a lot of “CMake tutorial” style articles out there, but
they’re of the form add_executable , add_include_directories , bam done.
However, those projects are not easily portable, and their libraries are not easily
reused in different contexts.

Instead, I want CMake to do proper dependency management for me. I don’t want
to be managing include directories (especially transitive include directories!), linker
command lines and all that jazz. And I want to be able to import my libraries So I
made this page to refer myself and others to in the future, so we can have a single
point of truth and reference for these docs.

Most of this is gleaned from Daniel Pfeifer’s presentation and the CMake docs.

Requirements
I have a number of requirements on my build:

I want to define nothing more than modules, and dependencies between
modules. CMake should automatically figure out transitive dependencies and
set up the include paths and linker paths correctly. If I’m not using Boost, but
my dependency is, and I have to think about that, I’ve lost.
When I define my module, without extra effort I want it to:

Package correctly using CPack.
Install correctly into /usr/local .
Install 64-bit libraries into the correct directories on all platforms (be it
lib64 or gnu-linux-x86_64).

Be transitively linkable with nothing more than target_link_libraries()
in the SAME CMake build.
Be transitively linkable with nothing more than and import command and
target_link_libraries() when imported from an external CMake file.

I don’t want too many CMakeLists files; I’ll lose track of them, and having a
zillion open is just annoying. I’ll prefer to have one CMakeLists file per
component, not necessarily per directory.
A library’s public header files should be namespaced into a directory (i.e.,
include <mylib/header.h> –it’s the only way to stay sane.

To achieve all this, we’ll need to:

Organize our source tree into a directory per module, with a CMakeLists per
module. We’ll use a parent CMakeLists file to tie all modules together, but this
top-file should be OPTIONAL and only be taking care of bringing all required
modules/dependencies into scope.
Make a distinction between public and private headers for a library. We’ll put
the public headers in a directory called include/mylib such that we can just
add that include directory to our search path to be able to include the
headers as <mylib/header.h> .
We’re going to be using imported targets for libraries that don’t have a CMake
file. That means, no longer are we going to find_package a dependency and
poke the include paths and library names directly into our own project.

Directory layout
Obviously we’re going to be wanting an out-of-source build, so I’ll start with a top-
level src directory. That way I can make a build directory next to it.

/

 build/ <-- out-of-source build

 src/

 CMakeLists.txt

 mylibrary/

 CMakeLists.txt

2016
» With Canon, you can't. A story of hor...

2015
» The Ultimate Guide to Modern CMake

2014
» Model-View-Whatever
» How I would design palm rejection

2013
» Conway's Game of Life in the Lambda C...
» The downside of being a generalist
» Turning 3 pallets into a table
» Lunch Boot Camp: Algorithmics
» Language Workbench Challenge 2013: Cl...
» Writing Tips

rix0r.nlrix0r.nl

http://www.slideshare.net/DanielPfeifer1/cmake-48475415
https://cmake.org/Wiki/CMake/Tutorials/Exporting_and_Importing_Targets
https://cmake.org/cmake/help/v3.2/prop_tgt/INTERFACE_INCLUDE_DIRECTORIES.html#prop_tgt:INTERFACE_INCLUDE_DIRECTORIES
https://rix0r.nl/blog/2016/02/11/with-canon-you-cant-a-story-of-horrible-customer-support
https://rix0r.nl/blog/2015/08/13/cmake-guide
https://rix0r.nl/blog/2014/07/15/model-view-whatever
https://rix0r.nl/blog/2014/01/26/how-i-would-design-palm-rejection
https://rix0r.nl/blog/2013/05/29/game-of-life-lambda-calculus
https://rix0r.nl/blog/2013/05/26/the-downside-of-being-a-generalist
https://rix0r.nl/blog/2013/05/05/pallet-table
https://rix0r.nl/blog/2013/04/23/boot-camp-algorithmics
https://rix0r.nl/blog/2013/04/15/lwc-2013-clojure
https://rix0r.nl/blog/2013/03/23/writing-tips
https://rix0r.nl/

4/21/2018 The Ultimate Guide to Modern CMake

https://rix0r.nl/blog/2015/08/13/cmake-guide/ 2/7

 include/

 mylibrary/

 mylibrary.h

 src/

 lib.cpp

 frob.cpp

 test/

 testlib.cpp

 myapp/

 CMakeLists.txt

 src/

 myapp.cpp

 quux.cpp

 libs/

 (buildable 3rd party libs that you want to vend for

 convenience)

 libfoo/

 CMakeLists.txt

 ...

Top-level CMakeLists.txt
The top-level CMake file is there to bring all modules into scope. That means,
adding the subdirectories for all CMake projects in this tree, and finding external
libraries and turning them into imported targets.

At LEAST 2.8 but newer is better

cmake_minimum_required(VERSION 3.2 FATAL_ERROR)

project(myproject VERSION 0.1 LANGUAGES CXX)

Must use GNUInstallDirs to install libraries into correct

locations on all platforms.

include(GNUInstallDirs)

Include Boost as an imported target

find_package(Boost REQUIRED)

add_library(boost INTERFACE IMPORTED)

set_property(TARGET boost PROPERTY

 INTERFACE_INCLUDE_DIRECTORIES ${Boost_INCLUDE_DIR})

Some other library that we import that was also built using CMake

and has an exported target.

find_package(MyOtherLibrary REQUIRED)

Targets that we develop here

enable_testing()

add_subdirectory(liblib)

add_subdirectory(app)

Library
This file has the most going on, because it needs to be the most flexible.

Define library. Only source files here!

project(liblib VERSION 0.1 LANGUAGES CXX)

add_library(lib

 src/lib.cpp

 src/frob.cpp)

Define headers for this library. PUBLIC headers are used for

compiling the library, and will be added to consumers' build

paths.

target_include_directories(lib PUBLIC

 $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>

 $<INSTALL_INTERFACE:include>

 PRIVATE src)

If we have compiler requirements for this library, list them

here

target_compile_features(lib

 PUBLIC cxx_auto_type

 PRIVATE cxx_variadic_templates)

rix0r.nlrix0r.nl

https://rix0r.nl/

4/21/2018 The Ultimate Guide to Modern CMake

https://rix0r.nl/blog/2015/08/13/cmake-guide/ 3/7

Program
Define an executable

add_executable(app

 src/app.cpp

 src/quux.cpp)

Define the libraries this project depends upon

target_link_libraries(app

 lib)

Commands to run
cd build

Building

cmake ../src && make

Testing

make test

ctest --output-on-failure

Building to a different root directory

cmake -DCMAKE_INSTALL_PREFIX=/opt/mypackage ../src

Importing external libraries
If the library you’re importing was not built with CMake, you’ll define an imported
target somewhere in your top-level CMake file (or perhaps in an included file if you
have a lot of them). For example, this is how you import the Boost header library
and a compiled Boost library:

Depend on a library that we defined in the top-level file

target_link_libraries(lib

 boost

 MyOtherLibrary)

'make install' to the correct locations (provided by GNUInstallDirs)

install(TARGETS lib EXPORT MyLibraryConfig

 ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}

 LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}

 RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}) # This is for Windo

install(DIRECTORY include/ DESTINATION ${CMAKE_INSTALL_INCLUDEDIR})

This makes the project importable from the install directory

Put config file in per-project dir (name MUST match), can also

just go into 'cmake'.

install(EXPORT MyLibraryConfig DESTINATION share/MyLibrary/cmake)

This makes the project importable from the build directory

export(TARGETS lib FILE MyLibraryConfig.cmake)

Every library has unit tests, of course

add_executable(testlib

 test/testlib.cpp)

target_link_libraries(testlib

 lib)

add_test(testlib testlib)

find_package(Boost REQUIRED iostreams)

add_library(boost INTERFACE IMPORTED)

set_property(TARGET boost PROPERTY INTERFACE_INCLUDE_DIRECTORIES ${Boo

add_library(boost-iostreams SHARED IMPORTED)

set_property(TARGET boost-iostreams PROPERTY INTERFACE_INCLUDE_DIRECTO

set_property(TARGET boost-iostreams PROPERTY IMPORTED_LOCATION ${Boost_

rix0r.nlrix0r.nl

https://rix0r.nl/

4/21/2018 The Ultimate Guide to Modern CMake

https://rix0r.nl/blog/2015/08/13/cmake-guide/ 4/7

If, on the other hand, the external library you need was built with CMake and it was
following this guide (i.e., cleanly defined its own headers and sources, and it was
exported), then you can simply do this:

CMakeLists

find_package(MyLibrary)

Build like this:

cmake ../src -DMyLibrary_DIR=/path/to/mylibrary/build

Passing the MyLibrary_DIR is not necessary if you

'make install'ed the project.

In case of an external target, obviously CMake can’t track the binary to its sources
so won’t automatically rebuild your external project.

A short note on transitive dependencies: if the library you EXPORT depends on any
targets, those targets will be recorded in the MyLibraryConfig.cmake file by
name. This means that if you import this target into a separate project file, that
project must have targets with the same name. So when importing an external
target, you’ll need to have find_package() d its dependencies already.

I currently don’t know of any way to hide these transitive dependencies from
consumers. At work, we integrate CMake into a bigger build/dependency
management system, and we post-process the generated xxxConfig.cmake
files to insert additonal find_package() commands into the config files
themselves. This works, but requires a postprocessing step that may not be
easily achievable if you don’t have a bigger build orchestration framework to
hook into. Also, it requires that the target name and the config file name are
exactly the same (whereas in my example up there the target name was lib
but the config file name was MyLibrary). On the other hand, that seems like
good practice anyway.

Integrating code generators
Goals:

We want to rebuild the generation tool on-demand.
Generated files go in the build tree, not the source tree.

Leading to something like this:

add_custom_command(

 OUTPUT file.output

 COMMAND tool --options "${CMAKE_CURRENT_SOURCE_DIR}/file.gen"

 MAIN_DEPENDENCY file.gen

 DEPENDS tool)

Both for source files and header files

add_library(target

 ...

 file.output)

For headers

target_include_directories(target

 ...

 PRIVATE ... ${CMAKE_CURRENT_BINARY_DIR})

The tool’s cwd is CMAKE_CURRENT_BINARY_DIR so source file paths must be
qualified with ${CMAKE_CURRENT_SOURCE_DIR} in the command.

If you don’t have an existing target to add the generated files to, create a custom
target just for adding the dependency:

Packaging
I won’t need to learn deeply about this part for my job (just yet), so I don’t have a
lot of tips here. Instead, I’ll link to guides other people have written:

Packaging Windows projects with an NSIS installer, by Paul Tsouchlos

add_custom_target(flow-diagram ALL DEPENDS ${CMAKE_CURRENT_BINARY_DIR}

rix0r.nlrix0r.nl

BlogBlog EssaysEssays CodeCode AboutAbout

https://github.com/DeveloperPaul123/CMakeInstallExample
https://rix0r.nl/
https://rix0r.nl/blog/index.html
https://rix0r.nl/essays/index.html
https://rix0r.nl/code/index.html
https://rix0r.nl/about/index.html

4/21/2018 The Ultimate Guide to Modern CMake

https://rix0r.nl/blog/2015/08/13/cmake-guide/ 5/7

← Previous Blog Next →

8 Comments rix0r.nl Login1

 Share⤤ Sort by Best

LOG IN WITH OR SIGN UP WITH DISQUS

Name

 Join the discussion…

?

 • Reply •

derp_cookies • 7 months ago

see more

There's a number of things misleading or wrong about this article:

1. There is no add_include_directories. Perhaps you meant
target_include_directories?

2. In you second example under "Importing external libraries", you
should be doing: find_package(lib CONFIG). If you don't do this, CMake
will first search for a module package (e.g. FindMyLibrary.cmake). If it
can't find one, *then* it does config package mode.

3. When installing targets, you should specify `INCLUDES
DESTINATION` so that the INTERFACE_INCLUDE_DIRECTORIES
property is populated for the import targets.

4. You are explicitly specifying BUILD_INTERFACE and
INSTALL_INTERFACE when you call target_include_directories(). IIRC,
this is only required if your relative include path is actually different
between building and installing. In your example, it's `include` for both.
So you can just do:

6△ ▽

 • Reply •

Michael Steffens • 10 days ago

see more

> derp_cookies

I'm really struggling to understand these improvements.

Regarding 3.: Works, but I don't notice any difference when
importing the project. What is the purpose of
INTERFACE_INCLUDE_DIRECTORIES? Why does it need to
be populated?

Regarding 4.: If I follow your suggestion I end up like

https://stackoverflow.com/q...

and the suggestion to use the interface expressions rix0r.nl
already did.

Regarding 5.: In what way is this idomatic and what is the
benefit? It works, but I end up with two files in
share/MyLibrary/cmake, one including the other. What do I gain
this way? Could you point to any recommendation by CMake
supporting your suggestion? At least

△ ▽

derp_cookies • 9 days ago> Michael Steffens

3.: If your library has an include directory, this specifies to
downstream targets which paths to use for searching for
your headers when included by those downstream
projects. Read more here: https://cmake.org/cmake/hel...

4. In the SO post you linked, the OP is using an absolute
path in `target_include_directories()`. In this article, only a
relative path is needed (see my example from my first

t) I thi th th i l ti * d* t diff t

 Recommend

Share ›

Share ›

Like Share 20 people like this. Sign Up to see what your friends like.
rix0r.nlrix0r.nl

https://rix0r.nl/blog/2014/07/15/model-view-whatever
https://rix0r.nl/blog/
https://rix0r.nl/essays/2015/08/25/model-checking-for-the-working-man-mf
https://disqus.com/home/forums/rix0r/
https://disqus.com/home/inbox/
https://disqus.com/by/derp_cookies/
https://rix0r.nl/blog/2015/08/13/cmake-guide/#comment-3516344258
https://disqus.com/by/disqus_surcpRFUon/
https://rix0r.nl/blog/2015/08/13/cmake-guide/#comment-3848841773
https://rix0r.nl/blog/2015/08/13/cmake-guide/#comment-3516344258
https://disq.us/url?url=https%3A%2F%2Fstackoverflow.com%2Fquestions%2F25676277%2Fcmake-target-include-directories-prints-an-error-when-i-try-to-add-the-source%3AJv5Ey5cjeIqw0fIb3-PcO4V8jHI&cuid=1955460
http://disq.us/url?url=http%3A%2F%2Frix0r.nl%3Az_mG-62iIRg6R9O5MAOjndbxdi4&cuid=1955460
https://disqus.com/by/derp_cookies/
https://rix0r.nl/blog/2015/08/13/cmake-guide/#comment-3850705336
https://rix0r.nl/blog/2015/08/13/cmake-guide/#comment-3848841773
https://disq.us/url?url=https%3A%2F%2Fcmake.org%2Fcmake%2Fhelp%2Flatest%2Fprop_tgt%2FINTERFACE_INCLUDE_DIRECTORIES.html%3A2Dq8gwTCzwEjat4cz6H1uPakbP8&cuid=1955460
https://disqus.com/by/derp_cookies/
https://disqus.com/by/disqus_surcpRFUon/
https://disqus.com/by/derp_cookies/
https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Frix0r.nl%2Fblog%2F2015%2F08%2F13%2Fcmake-guide%2F&display=popup&ref=plugin&src=like&kid_directed_site=0
https://www.facebook.com/ad_campaign/landing.php?campaign_id=137675572948107&partner_id=rix0r.nl&placement=like_plugin&extra_1=https%3A%2F%2Frix0r.nl%2Fblog%2F2015%2F08%2F13%2Fcmake-guide%2F&extra_2=CN
https://rix0r.nl/

4/21/2018 The Ultimate Guide to Modern CMake

https://rix0r.nl/blog/2015/08/13/cmake-guide/ 6/7

 • Reply •

see more

post). In this case the path is relative *and* not different
between the build tree and install location. So
`INSTALL_INTERFACE` need not be explicitly set.

5. Idiomatic here just means "The way CMake does
things". The reason why it seems pointless in your case is
because the Config.cmake file *only* includes the
Targets.cmake file and doesn't do anything else. But the
Config.cmake file allows you to perform additional logic
beyond defining targets, such as fulfilling dependencies
(i d i th fi d k () ll d h)

△ ▽

 • Reply •

Michael Steffens • 9 days ago

see more

> derp_cookies

Wow, thanks for this insightful and helpful
response! Yes, you are absolutely right about the
lack of consistent guidance, of course I upvoted
your issue at Kitware.

To be honest, rix0r.nl's blogpost comes so close to
what I was looking for and enabled a big leap in
improving my CMake configurations. But there are
gaps apparently, and I think with your latest
response to 5. (to me, not to him) you actually
solve his (and my) issue at the bottom of
"Importing external libraries".

Some minor comments:

4.: I'm afraid, no. Even when using exactly your

target_include_directories(... PUBLIC include
PRIVATE src)

△ ▽

 • Reply •

John Parker • 24 days ago

The title is somewhat misleading. It's probably an ultimate
guide/placeholder just for you. May be it's just helpful if you can start the
article with a disclaimer that it's not for beginners.
△ ▽

 • Reply •

Michael Steffens • 9 days ago> John Parker

I disagree. The scope of this guide is *exactly* what a beginner
is looking for. Can't see any corner case requirement involved,
nothing should be rocket science. Finding it well written and
structured and superior to all official tutorials or "works-for-me"
kind of guides I found elsewhere.

Has its shortcomings (see derp_cookies comments), but
definitely the right direction. See also

https://gitlab.kitware.com/...

and consider an upvote, if you agree!
△ ▽

 • Reply •

Evgeny Danilenko • 5 months ago

Hello again rix0r :D
I came to reference your CMakeLists structure to get boost unit tests
working, but i kept getting undefined reference to main for the boost
library. My CMakeLists.txt is not 1:1 with yours although the Boost parts
were. Anyways the way i fixed my issue was by changing this part
find_package(Boost REQUIRED) to find_package(Boost
COMPONENTS unit_test_framework REQUIRED)

and then linking them with the lib target_link_libraries(lib boost
${Boost_LIBRARIES})
without Boost_LIBRARIES it wont work. at least for me.

Thanks again for this tutorial.
△ ▽

Share ›

Share ›

Share ›

Share ›

Share ›

rix0r.nlrix0r.nl

https://disqus.com/by/disqus_surcpRFUon/
https://rix0r.nl/blog/2015/08/13/cmake-guide/#comment-3851365395
https://rix0r.nl/blog/2015/08/13/cmake-guide/#comment-3850705336
http://disq.us/url?url=http%3A%2F%2Frix0r.nl%3Az_mG-62iIRg6R9O5MAOjndbxdi4&cuid=1955460
https://disqus.com/by/disqus_CHFyrvN43V/
https://rix0r.nl/blog/2015/08/13/cmake-guide/#comment-3827312420
https://disqus.com/by/disqus_surcpRFUon/
https://rix0r.nl/blog/2015/08/13/cmake-guide/#comment-3851380507
https://rix0r.nl/blog/2015/08/13/cmake-guide/#comment-3827312420
https://disq.us/url?url=https%3A%2F%2Fgitlab.kitware.com%2Fcmake%2Fcmake%2Fissues%2F17282%3AI-RXRpG9LrLn-35EIN6GgvVyhWM&cuid=1955460
https://disqus.com/by/evgeny_danilenko/
https://rix0r.nl/blog/2015/08/13/cmake-guide/#comment-3615695907
https://disqus.com/by/disqus_surcpRFUon/
https://disqus.com/by/disqus_CHFyrvN43V/
https://disqus.com/by/disqus_surcpRFUon/
https://disqus.com/by/evgeny_danilenko/
https://rix0r.nl/

4/21/2018 The Ultimate Guide to Modern CMake

https://rix0r.nl/blog/2015/08/13/cmake-guide/ 7/7

The downside of being a
generalist
2 comments • 5 years ago

Avatar
Johan Johansson — Being a
generalist is very good for
management positions, because …

Model-View-Whatever
1 comment • 4 years ago

Avatar
Egbert — We coded
www.izooble.com with Model-View-
Nothing, using React. Most …

ALSO ON RIX0R.NL

 • Reply •

Antonio Maiorano • a year ago

Hi, thanks for this great blog post, it's actually quite hard to find anything
good about modern cmake out there. I do have one question, though: is
it really good practice declaring external libs as imported targets in the
top-most CMakeLists as you do for boost? By doing this, it makes "liblib"
a CMake project that cannot be built on its own, which I thought was
bad practice.
Shouldn't "liblib" use FindTarget or something to find boost, which
perhaps is configured to export a cmake file? I've been trying to find
more info on how to do this, but it's not easy.
△ ▽

Subscribe✉ Add Disqus to your siteAdd DisqusAddd Privacy🔒

Share ›

rix0r.nlrix0r.nl

https://disqus.com/
http://disq.us/?url=http%3A%2F%2Frix0r.nl%2Fblog%2F2013%2F05%2F26%2Fthe-downside-of-being-a-generalist%2F&key=e7XTi4srrznT7OPU4C4HSg
http://disq.us/?url=http%3A%2F%2Frix0r.nl%2Fblog%2F2013%2F05%2F26%2Fthe-downside-of-being-a-generalist%2F&key=e7XTi4srrznT7OPU4C4HSg
http://disq.us/?url=http%3A%2F%2Frix0r.nl%2Fblog%2F2014%2F07%2F15%2Fmodel-view-whatever%2F&key=qJWDN_TwtpjTE6YmUnszhw
http://disq.us/?url=http%3A%2F%2Frix0r.nl%2Fblog%2F2014%2F07%2F15%2Fmodel-view-whatever%2F&key=qJWDN_TwtpjTE6YmUnszhw
https://disqus.com/by/amaiorano/
https://rix0r.nl/blog/2015/08/13/cmake-guide/#comment-3000950597
https://publishers.disqus.com/engage?utm_source=rix0r&utm_medium=Disqus-Footer
https://help.disqus.com/customer/portal/articles/466259-privacy-policy
https://disqus.com/by/amaiorano/
https://rix0r.nl/

