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Foreword

I

Jim has given round six of these lectures on volatility modeling at the
Courant Institute of New York University, slowly purifying these notes. I
witnessed and became addicted to their slow maturation from the first time
he jotted down these equations during the winter of 2000, to the most recent
one in the spring of 2006. It was similar to the progressive distillation of
good alcohol: exactly seven times; at every new stage you can see the text
gaining in crispness, clarity, and concision. Like Jim’s lectures, these chapters
are to the point, with maximal simplicity though never less than warranted
by the topic, devoid of fluff and side distractions, delivering the exact subject
without any attempt to boast his (extraordinary) technical skills.

The class became popular. By the second year we got yelled at by the
university staff because too many nonpaying practitioners showed up to the
lecture, depriving the (paying) students of seats. By the third or fourth year,
the material of this book became a quite standard text, with Jim G.’s lecture
notes circulating among instructors. His treatment of local volatility and
stochastic models became the standard.

As colecturers, Jim G. and I agreed to attend each other’s sessions, but
as more than just spectators—turning out to be colecturers in the literal
sense, that is, synchronously. He and I heckled each other, making sure
that not a single point went undisputed, to the point of other members of
the faculty coming to attend this strange class with disputatious instructors
trying to tear apart each other’s statements, looking for the smallest hole in
the arguments. Nor were the arguments always dispassionate: students soon
got to learn from Jim my habit of ordering white wine with read meat; in
return, I pointed out clear deficiencies in his French, which he pronounces
with a sometimes incomprehensible Scottish accent. I realized the value of
the course when I started lecturing at other universities. The contrast was
such that I had to return very quickly.

II

The difference between Jim Gatheral and other members of the quant
community lies in the following: To many, models provide a representation

xxi



xxii FOREWORD

of asset price dynamics, under some constraints. Business school finance
professors have a tendency to believe (for some reason) that these provide
a top-down statistical mapping of reality. This interpretation is also shared
by many of those who have not been exposed to activity of risk-taking, or
the constraints of empirical reality.

But not to Jim G. who has both traded and led a career as a quant. To
him, these stochastic volatility models cannot make such claims, or should
not make such claims. They are not to be deemed a top-down dogmatic
representation of reality, rather a tool to insure that all instruments are
consistently priced with respect to each other–that is, to satisfy the golden
rule of absence of arbitrage. An operator should not be capable of deriving
a profit in replicating a financial instrument by using a combination of other
ones. A model should do the job of insuring maximal consistency between,
say, a European digital option of a given maturity, and a call price of
another one. The best model is the one that satisfies such constraints while
making minimal claims about the true probability distribution of the world.

I recently discovered the strength of his thinking as follows. When, by
the fifth or so lecture series I realized that the world needed Mandelbrot-style
power-law or scalable distributions, I found that the models he proposed of
fudging the volatility surface was compatible with these models. How? You
just need to raise volatilities of out-of-the-money options in a specific way,
and the volatility surface becomes consistent with the scalable power laws.

Jim Gatheral is a natural and intuitive mathematician; attending his lec-
ture you can watch this effortless virtuosity that the Italians call sprezzatura.
I see more of it in this book, as his awful handwriting on the blackboard is
greatly enhanced by the aesthetics of LaTeX.

—Nassim Nicholas Taleb1

June, 2006

1Author, Dynamic Hedging and Fooled by Randomness.



Preface

E ver since the advent of the Black-Scholes option pricing formula, the
study of implied volatility has become a central preoccupation for both

academics and practitioners. As is well known, actual option prices rarely
if ever conform to the predictions of the formula because the idealized
assumptions required for it to hold don’t apply in the real world. Conse-
quently, implied volatility (the volatility input to the Black-Scholes formula
that generates the market price) in general depends on the strike and the
expiration of the option. The collection of all such implied volatilities is
known as the volatility surface.

This book concerns itself with understanding the volatility surface; that
is, why options are priced as they are and what it is that analysis of stock
returns can tell as about how options ought to be priced.

Pricing is consistently emphasized over hedging, although hedging and
replication arguments are often used to generate results. Partly, that’s
because pricing is key: How a claim is hedged affects only the width of the
resulting distribution of returns and not the expectation. On average, no
amount of clever hedging can make up for an initial mispricing. Partly, it’s
because hedging in practice can be complicated and even more of an art
than pricing.

Throughout the book, the importance of examining different dynamical
assumptions is stressed as is the importance of building intuition in general.
The aim of the book is not to just present results but rather to provide
the reader with ways of thinking about and solving practical problems
that should have many other areas of application. By the end of the book,
the reader should have gained substantial intuition for the latest theory
underlying options pricing as well as some feel for the history and practice
of trading in the equity derivatives markets. With luck, the reader will also
be infected with some of the excitement that continues to surround the
trading, marketing, pricing, hedging, and risk management of derivatives.

As its title implies, this book is written by a practitioner for practitioners.
Amongst other things, it contains a detailed derivation of the Heston
model and explanations of many other popular models such as SVJ, SVJJ,
SABR, and CreditGrades. The reader will also find explanations of the
characteristics of various types of exotic options from the humble barrier
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xxiv PREFACE

option to the super exotic Napoleon. One of the themes of this book
is the representation of implied volatility in terms of a weighted average
over all possible future volatility scenarios. This representation is not only
explained but is applied to help understand the impact of different modeling
assumptions on the shape and dynamics of volatility surfaces—a topic of
fundamental interest to traders as well as quants. Along the way, various
practical results and tricks are presented and explained. Finally, the hot topic
of volatility derivatives is exhaustively covered with detailed presentations
of the latest research.

Academics may also find the book useful not just as a guide to the current
state of research in volatility modeling but also to provide practical context
for their work. Practitioners have one huge advantage over academics: They
never have to worry about whether or not their work will be interesting to
others. This book can thus be viewed as one practitioner’s guide to what is
interesting and useful.

In short, my hope is that the book will prove useful to anyone interested
in the volatility surface whether academic or practitioner.

Readers familiar with my New York University Courant Institute lecture
notes will surely recognize the contents of this book. I hope that even
aficionados of the lecture notes will find something of extra value in the
book. The material has been expanded; there are more and better figures;
and there’s now an index.

The lecture notes on which this book is based were originally targeted
at graduate students in the final semester of a three-semester Master’s
Program in Financial Mathematics. Students entering the program have
undergraduate degrees in quantitative subjects such as mathematics, physics,
or engineering. Some are part-time students already working in the industry
looking to deepen their understanding of the mathematical aspects of their
jobs, others are looking to obtain the necessary mathematical and financial
background for a career in the financial industry. By the time they reach the
third semester, students have studied financial mathematics, computing and
basic probability and stochastic processes.

It follows that to get the most out of this book, the reader should have
a level of familiarity with options theory and financial markets that could
be obtained from Wilmott (2000), for example. To be able to follow the
mathematics, basic knowledge of probability and stochastic calculus such as
could be obtained by reading Neftci (2000) or Mikosch (1999) are required.
Nevertheless, my hope is that a reader willing to take the mathematical
results on trust will still be able to follow the explanations.



Preface xxv

HOW THIS BOOK IS ORGANIZED

The first half of the book from Chapters 1 to 5 focuses on setting up the
theoretical framework. The latter chapters of the book are more oriented
towards practical applications. The split is not rigorous, however, and
there are practical applications in the first few chapters and theoretical
constructions in the last chapter, reflecting that life, at least the life of a
practicing quant, is not split into neat boxes.

Chapter 1 provides an explanation of stochastic and local volatility;
local variance is shown to be the risk-neutral expectation of instantaneous
variance, a result that is applied repeatedly in later chapters. In Chapter 2,
we present the still supremely popular Heston model and derive the Heston
European option pricing formula. We also show how to simulate the Heston
model.

In Chapter 3, we derive a powerful representation for implied volatility
in terms of local volatility. We apply this to build intuition and derive some
properties of the implied volatility surface generated by the Heston model
and compare with the empirically observed SPX surface. We deduce that
stochastic volatility cannot be the whole story.

In Chapter 4, we choose specific numerical values for the parameters
of the Heston model, specifically ρ = −1 as originally studied by Heston
and Nandi. We demonstrate that an approximate formula for implied
volatility derived in Chapter 3 works particularly well in this limit. As
a result, we are able to find parameters of local volatility and stochastic
volatility models that generate almost identical European option prices.
We use these parameters repeatedly in subsequent chapters to illustrate the
model-dependence of various claims.

In Chapter 5, we explore the modeling of jumps. First we show why
jumps are required. We then introduce characteristic function techniques
and apply these to the computation of implied volatilities in models with
jumps. We conclude by showing that the SVJ model (stochastic volatility
with jumps in the stock price) is capable of generating a volatility surface
that has most of the features of the empirical surface. Throughout, we build
intuition as to how jumps should affect the shape of the volatility surface.

In Chapter 6, we apply our work on jumps to Merton’s jump-to-ruin
model of default. We also explain the CreditGrades model. In passing, we
touch on capital structure arbitrage and offer the first glimpse into the less
than ideal world of real trading, explaining how large losses were incurred
by market makers.

In Chapter 7, we examine the asymptotic properties of the volatility
surface showing that all models with stochastic volatility and jumps generate
volatility surfaces that are roughly the same shape. In Chapter 8, we show
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how the dynamics of volatility can be deduced from the time series properties
of volatility surfaces. We also show why it is that the dynamics of the
volatility surfaces generated by local volatility models are highly unrealistic.

In Chapter 9, we present various types of barrier option and show how
intuition may be developed for these by studying two simple limiting cases.
We test our intuition (successfully) by applying it to the relative valuation of
barrier options under stochastic and local volatility. The reflection principle
and the concepts of quasi-static hedging and put-call symmetry are presented
and applied.

In Chapter 10, we study in detail three actual exotic cliquet transactions
that happen to have matured so that we can explore both pricing and
ex post performance. Specifically, we study a locally capped and globally
floored cliquet, a reverse cliquet, and a Napoleon. Followers of the financial
press no doubt already recognize these deal types as having been the cause
of substantial pain to some dealers.

Finally, in Chapter 11, the longest of all, we focus on the pricing
and hedging of claims whose underlying is quadratic variation. In so
doing, we will present some of the most elegant and robust results in
financial mathematics, thereby explaining in part why the market in volatility
derivatives is surprisingly active and liquid.

—Jim Gatheral
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CHAPTER 1
Stochastic Volatility
and Local Volatility

I n this chapter, we begin our exploration of the volatility surface by intro-
ducing stochastic volatility—the notion that volatility varies in a random

fashion. Local variance is then shown to be a conditional expectation of
the instantaneous variance so that various quantities of interest (such as
option prices) may sometimes be computed as though future volatility were
deterministic rather than stochastic.

STOCHASTIC VOLATILITY

That it might make sense to model volatility as a random variable should
be clear to the most casual observer of equity markets. To be convinced,
one need only recall the stock market crash of October 1987. Nevertheless,
given the success of the Black-Scholes model in parsimoniously describing
market options prices, it’s not immediately obvious what the benefits of
making such a modeling choice might be.

Stochastic volatility (SV) models are useful because they explain in a
self-consistent way why options with different strikes and expirations have
different Black-Scholes implied volatilities—that is, the ‘‘volatility smile.’’
Moreover, unlike alternative models that can fit the smile (such as local
volatility models, for example), SV models assume realistic dynamics for
the underlying. Although SV price processes are sometimes accused of being
ad hoc, on the contrary, they can be viewed as arising from Brownian
motion subordinated to a random clock. This clock time, often referred to
as trading time, may be identified with the volume of trades or the frequency
of trading (Clark 1973); the idea is that as trading activity fluctuates, so
does volatility.

1



2 THE VOLATILITY SURFACE
�

0.
2

�
0.

1
0.

0
0.

1

FIGURE 1.1 SPX daily log returns from December 31, 1984, to December 31,
2004. Note the −22.9% return on October 19, 1987!

From a hedging perspective, traders who use the Black-Scholes model
must continuously change the volatility assumption in order to match
market prices. Their hedge ratios change accordingly in an uncontrolled
way: SV models bring some order into this chaos.

A practical point that is more pertinent to a recurring theme of this
book is that the prices of exotic options given by models based on Black-
Scholes assumptions can be wildly wrong and dealers in such options are
motivated to find models that can take the volatility smile into account
when pricing these.

In Figure 1.1, we plot the log returns of SPX over a 15-year period;
we see that large moves follow large moves and small moves follow small
moves (so-called ‘‘volatility clustering’’). In Figure 1.2, we plot the frequency
distribution of SPX log returns over the 77-year period from 1928 to 2005.
We see that this distribution is highly peaked and fat-tailed relative to the
normal distribution. The Q-Q plot in Figure 1.3 shows just how extreme
the tails of the empirical distribution of returns are relative to the normal
distribution. (This plot would be a straight line if the empirical distribution
were normal.)

Fat tails and the high central peak are characteristics of mixtures of
distributions with different variances. This motivates us to model variance
as a random variable. The volatility clustering feature implies that volatility
(or variance) is auto-correlated. In the model, this is a consequence of the
mean reversion of volatility.∗

∗Note that simple jump-diffusion models do not have this property. After a jump,
the stock price volatility does not change.
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FIGURE 1.2 Frequency distribution of (77 years of) SPX daily log returns compared
with the normal distribution. Although the −22.9% return on October 19, 1987, is
not directly visible, the x-axis has been extended to the left to accommodate it!

FIGURE 1.3 Q-Q plot of SPX daily log returns compared with the normal
distribution. Note the extreme tails.
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There is a simple economic argument that justifies the mean reversion
of volatility. (The same argument is used to justify the mean reversion of
interest rates.) Consider the distribution of the volatility of IBM in 100 years
time. If volatility were not mean reverting (i.e., if the distribution of volatility
were not stable), the probability of the volatility of IBM being between 1%
and 100% would be rather low. Since we believe that it is overwhelmingly
likely that the volatility of IBM would in fact lie in that range, we deduce
that volatility must be mean reverting.

Having motivated the description of variance as a mean reverting
random variable, we are now ready to derive the valuation equation.

Derivation of the Valuation Equation

In this section, we follow Wilmott (2000) closely. Suppose that the stock
price S and its variance v satisfy the following SDEs:

dSt = µt St dt + √
vt St dZ1 (1.1)

dvt = α(St, vt, t) dt + η β(St, vt, t)
√

vtdZ2 (1.2)

with

〈
dZ1 dZ2

〉 = ρ dt

where µt is the (deterministic) instantaneous drift of stock price returns, η

is the volatility of volatility and ρ is the correlation between random stock
price returns and changes in vt. dZ1 and dZ2 are Wiener processes.

The stochastic process (1.1) followed by the stock price is equivalent
to the one assumed in the derivation of Black and Scholes (1973). This
ensures that the standard time-dependent volatility version of the Black-
Scholes formula (as derived in Section 8.6 of Wilmott (2000) for example)
may be retrieved in the limit η → 0. In practical applications, this is a key
requirement of a stochastic volatility option pricing model as practitioners’
intuition for the behavior of option prices is invariably expressed within the
framework of the Black-Scholes formula.

In contrast, the stochastic process (1.2) followed by the variance is very
general. We don’t assume anything about the functional forms of α(·) and
β(·). In particular, we don’t assume a square root process for variance.

In the Black-Scholes case, there is only one source of randomness, the
stock price, which can be hedged with stock. In the present case, random
changes in volatility also need to be hedged in order to form a riskless
portfolio. So we set up a portfolio � containing the option being priced,
whose value we denote by V(S, v, t), a quantity −� of the stock and
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a quantity −�1 of another asset whose value V1 depends on volatility.
We have

� = V − � S − �1 V1

The change in this portfolio in a time dt is given by

d� =
{

∂V
∂t

+ 1
2

v S2 ∂2V
∂S2 + ρ η v β S

∂2V
∂v ∂S

+ 1
2

η2vβ2 ∂2V
∂v2

}
dt

− �1

{
∂V1

∂t
+ 1

2
v S2 ∂2V1

∂S2 + ρ η v β S
∂2V1

∂v ∂S
+ 1

2
η2 v β2 ∂2V1

∂v2

}
dt

+
{

∂V
∂S

− �1
∂V1

∂S
− �

}
dS

+
{

∂V
∂v

− �1
∂V1

∂v

}
dv

where, for clarity, we have eliminated the explicit dependence on t of the
state variables St and vt and the dependence of α and β on the state variables.
To make the portfolio instantaneously risk-free, we must choose

∂V
∂S

− �1
∂V1

∂S
− � = 0

to eliminate dS terms, and

∂V
∂v

− �1
∂V1

∂v
= 0

to eliminate dv terms. This leaves us with

d� =
{

∂V
∂t

+ 1
2

v S2 ∂2V
∂S2 + ρ η v β S

∂2V
∂v∂S

+ 1
2

η2 vβ2 ∂2V
∂v2

}
dt

− �1

{
∂V1

∂t
+ 1

2
v S2 ∂2V1

∂S2 + ρηv β S
∂2V1

∂v∂S
+ 1

2
η2 v β2 ∂2V1

∂v2

}
dt

= r � dt

= r(V − �S − �1V1) dt

where we have used the fact that the return on a risk-free portfolio must
equal the risk-free rate r, which we will assume to be deterministic for our
purposes. Collecting all V terms on the left-hand side and all V1 terms on
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the right-hand side, we get

∂V
∂t + 1

2 v S2 ∂2V
∂S2 + ρη v β S ∂2V

∂v∂S + 1
2η2vβ2 ∂2V

∂v2 + rS ∂V
∂S − rV

∂V
∂v

=
∂V1
∂t + 1

2 v S2 ∂2V1
∂S2 + ρη vβ S ∂2V1

∂v∂S + 1
2η2vβ2 ∂2V1

∂v2 + rS ∂V1
∂S − rV1

∂V1
∂v

The left-hand side is a function of V only and the right-hand side is a
function of V1 only. The only way that this can be is for both sides to
be equal to some function f of the independent variables S, v and t. We
deduce that

∂V
∂t

+ 1
2

v S2 ∂2V
∂S2 + ρ η v β S

∂2V
∂v ∂S

+ 1
2

η2 v β2 ∂2V
∂v2 + r S

∂V
∂S

− r V

= − (
α − φ β

√
v
) ∂V

∂v
(1.3)

where, without loss of generality, we have written the arbitrary function f
of S, v and t as

(
α − φ β

√
v
)
, where α and β are the drift and volatility

functions from the SDE (1.2) for instantaneous variance.

The Market Price of Volatility Risk φ(S, v, t) is called the market price of
volatility risk. To see why, we again follow Wilmott’s argument.

Consider the portfolio �1 consisting of a delta-hedged (but not vega-
hedged) option V. Then

�1 = V − ∂V
∂S

S

and again applying Itô’s lemma,

d�1 =
{

∂V
∂t

+ 1
2

v S2 ∂2V
∂S2 + ρ η v β S

∂2V
∂v ∂S

+ 1
2

η2 v β2 ∂2V
∂v2

}
dt

+
{

∂V
∂S

− �

}
dS +

{
∂V
∂v

}
dv
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Because the option is delta-hedged, the coefficient of dS is zero and we are
left with

d�1 − r �1 dt

=
{

∂V
∂t

+ 1
2

vS2 ∂2V
∂S2 + ρηvβS

∂2V
∂v∂S

+ 1
2

η2vβ2 ∂2V
∂v2 − rS

∂V
∂S

− r V
}

dt

+ ∂V
∂v

dv

= β
√

v
∂V
∂v

{
φ(S, v, t) dt + dZ2

}

where we have used both the valuation equation (1.3) and the SDE (1.2)
for v. We see that the extra return per unit of volatility risk dZ2 is given
by φ(S, v, t) dt and so in analogy with the Capital Asset Pricing Model, φ is
known as the market price of volatility risk.

Now, defining the risk-neutral drift as

α′ = α − β
√

v φ

we see that, as far as pricing of options is concerned, we could have started
with the risk-neutral SDE for v,

dv = α′ dt + β
√

v dZ2

and got identical results with no explicit price of risk term because we are
in the risk-neutral world.

In what follows, we always assume that the SDEs for S and v are in risk-
neutral terms because we are invariably interested in fitting models to option
prices. Effectively, we assume that we are imputing the risk-neutral measure
directly by fitting the parameters of the process that we are imposing.

Were we interested in the connection between the pricing of options
and the behavior of the time series of historical returns of the underlying, we
would need to understand the connection between the statistical measure
under which the drift of the variance process v is α and the risk-neutral
process under which the drift of the variance process is α′. From now on,
we act as if we are risk-neutral and drop the prime.

LOCAL VOLATILITY

History
Given the computational complexity of stochastic volatility models and
the difficulty of fitting parameters to the current prices of vanilla options,
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practitioners sought a simpler way of pricing exotic options consistently
with the volatility skew. Since before Breeden and Litzenberger (1978), it
was understood (at least by floor traders) that the risk-neutral density could
be derived from the market prices of European options. The breakthrough
came when Dupire (1994) and Derman and Kani (1994)∗ noted that
under risk neutrality, there was a unique diffusion process consistent with
these distributions. The corresponding unique state-dependent diffusion
coefficient σL(S, t), consistent with current European option prices, is known
as the local volatility function.

It is unlikely that Dupire, Derman, and Kani ever thought of local
volatility as representing a model of how volatilities actually evolve. Rather,
it is likely that they thought of local volatilities as representing some kind of
average over all possible instantaneous volatilities in a stochastic volatility
world (an ‘‘effective theory’’). Local volatility models do not therefore really
represent a separate class of models; the idea is more to make a simplifying
assumption that allows practitioners to price exotic options consistently
with the known prices of vanilla options.

As if any proof were needed, Dumas, Fleming, and Whaley (1998) per-
formed an empirical analysis that confirmed that the dynamics of the implied
volatility surface were not consistent with the assumption of constant local
volatilities.

Later on, we show that local volatility is indeed an average over instan-
taneous volatilities, formalizing the intuition of those practitioners who first
introduced the concept.

A Brief Review of Dupire’s Work

For a given expiration T and current stock price S0, the collection
{C (S0, K, T)} of undiscounted option prices of different strikes yields the
risk-neutral density function ϕ of the final spot ST through the relationship

C (S0, K, T) =
∫ ∞

K
dST ϕ (ST , T; S0) (ST − K)

Differentiate this twice with respect to K to obtain

ϕ (K, T; S0) = ∂2C
∂K2

∗Dupire published the continuous time theory and Derman and Kani, a discrete time
binomial tree version.
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so the Arrow-Debreu prices for each expiration may be recovered by twice
differentiating the undiscounted option price with respect to K. This process
is familiar to any option trader as the construction of an (infinite size)
infinitesimally tight butterfly around the strike whose maximum payoff
is one.

Given the distribution of final spot prices ST for each time T conditional
on some starting spot price S0, Dupire shows that there is a unique risk
neutral diffusion process which generates these distributions. That is, given
the set of all European option prices, we may determine the functional
form of the diffusion parameter (local volatility) of the unique risk neutral
diffusion process which generates these prices. Noting that the local volatility
will in general be a function of the current stock price S0, we write this
process as

dS
S

= µt dt + σ (St, t; S0) dZ

Application of Itô’s lemma together with risk neutrality, gives rise to a partial
differential equation for functions of the stock price, which is a straightfor-
ward generalization of Black-Scholes. In particular, the pseudo-probability
densities ϕ (K, T; S0) = ∂2C

∂K2 must satisfy the Fokker-Planck equation. This
leads to the following equation for the undiscounted option price C in terms
of the strike price K:

∂C
∂T

= σ 2 K2

2
∂2C
∂K2 + (rt − Dt)

(
C − K

∂C
∂K

)
(1.4)

where rt is the risk-free rate, Dt is the dividend yield and C is short for
C (S0, K, T).

Derivation of the Dupire Equation

Suppose the stock price diffuses with risk-neutral drift µt (= rt − Dt) and
local volatility σ (S, t) according to the equation:

dS
S

= µt dt + σ (St, t) dZ

The undiscounted risk-neutral value C (S0, K, T) of a European option with
strike K and expiration T is given by

C (S0, K, T) =
∫ ∞

K
dST ϕ (ST , T; S0) (ST − K) (1.5)
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Here ϕ (ST, T; S0) is the pseudo-probability density of the final spot at time
T. It evolves according to the Fokker-Planck equation:

1
2

∂2

∂S2
T

(
σ 2S2

T ϕ
)

− S
∂

∂ST
(µ ST ϕ) = ∂ϕ

∂T

Differentiating with respect to K gives

∂C
∂K

= −
∫ ∞

K
dST ϕ (ST , T; S0)

∂2C
∂K2 = ϕ (K, T; S0)

Now, differentiating (1.5) with respect to time gives

∂C
∂T

=
∫ ∞

K
dST

{
∂

∂T
ϕ (ST , T; S0)

}
(ST − K)

=
∫ ∞

K
dST

{
1
2

∂2

∂S2
T

(
σ 2S2

Tϕ
)

− ∂

∂ST
(µ ST ϕ)

}

(ST − K)

Integrating by parts twice gives:

∂C
∂T

= σ 2 K2

2
ϕ +

∫ ∞

K
dST µ ST ϕ

= σ 2 K2

2
∂2C
∂K2 + µ (T)

(
−K

∂C
∂K

)

which is the Dupire equation when the underlying stock has risk-neutral
drift µ. That is, the forward price of the stock at time T is given by

FT = S0 exp

{∫ T

0
dt µt

}

Were we to express the option price as a function of the forward price

FT = S0 exp
{∫ T

0 µ(t)dt
}∗

, we would get the same expression minus the drift
term. That is,

∂C
∂T

= 1
2

σ 2 K2 ∂2C
∂K2

∗From now on, µ(T) represents the risk-neutral drift of the stock price process,
which is the risk-free rate r(T) minus the dividend yield D(T).
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where C now represents C (FT , K, T). Inverting this gives

σ 2(K, T, S0) =
∂C
∂T

1
2 K2 ∂2C

∂K2

(1.6)

The right-hand side of equation (1.6) can be computed from known Euro-
pean option prices. So, given a complete set of European option prices
for all strikes and expirations, local volatilities are given uniquely by
equation (1.6).

We can view equation (1.6) as a definition of the local volatility function
regardless of what kind of process (stochastic volatility for example) actually
governs the evolution of volatility.

Local Volatility in Terms of Implied Volatility

Market prices of options are quoted in terms of Black-Scholes implied
volatility σBS (K, T; S0). In other words, we may write

C (S0, K, T) = CBS (S0, K, σBS (S0, K, T) , T)

It will be more convenient for us to work in terms of two dimensionless
variables: the Black-Scholes implied total variance w defined by

w (S0, K, T) := σ 2
BS (S0, K, T) T

and the log-strike y defined by

y = log
(

K
FT

)

where FT = S0 exp
{∫ T

0 dt µ(t)
}

gives the forward price of the stock at time
0. In terms of these variables, the Black-Scholes formula for the future value
of the option price becomes

CBS (FT , y, w) = FT
{
N

(
d1

) − eyN
(
d2

)}

= FT

{
N

(
− y√

w
+

√
w

2

)
− eyN

(
− y√

w
−

√
w

2

)}
(1.7)

and the Dupire equation (1.4) becomes

∂C
∂T

= vL

2

{
∂2C
∂y2 − ∂C

∂y

}
+ µ (T) C (1.8)
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with vL = σ 2 (S0, K, T) representing the local variance. Now, by taking
derivatives of the Black-Scholes formula, we obtain

∂2CBS

∂w2 =
(

−1
8

− 1
2 w

+ y2

2 w2

)
∂CBS

∂w

∂2CBS

∂y∂w
=

(
1
2

− y
w

)
∂CBS

∂w

∂2CBS

∂y2 − ∂CBS

∂y
= 2

∂CBS

∂w
(1.9)

We may transform equation (1.8) into an equation in terms of implied
variance by making the substitutions

∂C
∂y

= ∂CBS

∂y
+ ∂CBS

∂w
∂w
∂y

∂2C
∂y2 = ∂2CBS

∂y2 + 2
∂2CBS

∂y∂w
∂w
∂y

+ ∂2CBS

∂w2

(
∂w
∂y

)2

+ ∂CBS

∂w
∂2w
∂y2

∂C
∂T

= ∂CBS

∂T
+ ∂CBS

∂w
∂w
∂T

= ∂CBS

∂w
∂w
∂T

+ µ (T) CBS

where the last equality follows from the fact that the only explicit dependence
of the option price on T in equation (1.7) is through the forward price
FT = S0 exp

{∫ T
0 dt µ (t)

}
. Equation (1.4) now becomes (cancelling µ (T) C

terms on each side)

∂CBS

∂w
∂w
∂T

= vL

2

{
−∂CBS

∂y
+ ∂2CBS

∂y2 − ∂CBS

∂w
∂w

∂y
+ 2

∂2CBS

∂y∂w
∂w

∂y

+ ∂2CBS

∂w2

(
∂w
∂y

)2

+ ∂CBS

∂w
∂2w
∂y2

}

= vL

2
∂CBS

∂w

{
2 − ∂w

∂y
+ 2

(
1
2

− y
w

)
∂w
∂y

+
(

−1
8

− 1
2w

+ y2

2w2

) (
∂w
∂y

)2

+ ∂2w
∂y2

}
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Then, taking out a factor of ∂CBS
∂w and simplifying, we get

∂w
∂T

= vL

{

1 − y
w

∂w
∂y

+ 1
4

(
−1

4
− 1

w
+ y2

w2

) (
∂w
∂y

)2

+ 1
2

∂2w
∂y2

}

Inverting this gives our final result:

vL =
∂w
∂T

1 − y
w

∂w
∂y + 1

4

(
− 1

4 − 1
w + y2

w2

) (
∂w
∂y

)2 + 1
2

∂2w
∂y2

(1.10)

Special Case: No Skew∗

If the skew ∂w
∂y is zero, we must have

vL = ∂w
∂T

So the local variance in this case reduces to the forward Black-Scholes
implied variance. The solution to this is, of course,

w (T) =
∫ T

0
vL (t) dt

Local Variance as a Conditional Expectation
of Instantaneous Variance

This result was originally independently derived by Dupire (1996) and
Derman and Kani (1998). Following now the elegant derivation by Derman
and Kani, assume the same stochastic process for the stock price as in equa-
tion (1.1) but write it in terms of the forward price Ft,T = St exp

{∫ T
t ds µs

}
:

dFt,T = √
vtFt,TdZ (1.11)

Note that dFT,T = dST . The undiscounted value of a European option with
strike K expiring at time T is given by

C (S0, K, T) = E
[
(ST − K)+

]

∗Note that this implies that ∂
∂KσBS (S0, K, T) is zero.
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Differentiating once with respect to K gives

∂C
∂K

= −E [θ (ST − K)]

where θ (·) is the Heaviside function. Differentiating again with respect to
K gives

∂2C
∂K2 = E [δ (ST − K)]

where δ(·) is the Dirac δ function.
Now a formal application of Itô’s lemma to the terminal payoff of the

option (and using dFT,T = dST) gives the identity

d (ST − K)+ = θ (ST − K) dST + 1
2

vT S2
T δ (ST − K) dT

Taking conditional expectations of each side, and using the fact that Ft,T is
a martingale, we get

dC = dE
[
(ST − K)+

] = 1
2

E

[
vT S2

T δ (ST − K)
]

dT

Also, we can write

E

[
vTS2

T δ (ST − K)
]

= E [vT |ST = K ]
1
2

K2
E [δ (ST − K)]

= E [vT |ST = K ]
1
2

K2 ∂2C
∂K2

Putting this together, we get

∂C
∂T

= E [vT |ST = K ]
1
2

K2 ∂2C
∂K2

Comparing this with the definition of local volatility (equation (1.6)), we
see that

σ 2(K, T, S0) = E [vT |ST = K ] (1.12)

That is, local variance is the risk-neutral expectation of the instantaneous
variance conditional on the final stock price ST being equal to the strike
price K.



CHAPTER 2
The Heston Model

I n this chapter, we present the most well-known and popular of all stochas-
tic volatility models, the Heston model, and provide a detailed derivation

of the Heston European option valuation formula, implementation of which
follows straightforwardly from the derivation. We also show how to dis-
cretize the Heston process for Monte Carlo simulation and with some
appreciation for the complexity and expense of numerical computations,
suggest a main reason for the Heston model’s popularity.

THE PROCESS

The Heston model (Heston (1993)) corresponds to choosing α(S, vt, t) =
−λ (vt − v) and β(S, v, t) = 1 in equations (1.1) and (1.2). These equations
then become

dSt = µt St dt + √
vt St dZ1 (2.1)

and

dvt = −λ (vt − v) dt + η
√

vt dZ2 (2.2)

with

〈
dZ1 dZ2

〉 = ρ dt

where λ is the speed of reversion of vt to its long-term mean v.
The process followed by the instantaneous variance vt may be recognized

as a version of the square root process described by Cox, Ingersoll, and
Ross (1985). It is a (jump-free) special case of a so-called affine jump
diffusion (AJD) that is roughly speaking a jump-diffusion process for which
the drifts and covariances and jump intensities are linear in the state vector,

15
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which is {x, v} in this case with x = log(S). Duffie, Pan, and Singleton
(2000) show that AJD processes are analytically tractable in general. The
solution technique involves computing an ‘‘extended transform’’, which in
the Heston case is a conventional Fourier transform.

We now substitute the above values for α(S, v, t) and β(S, v, t) into the
general valuation equation (1.3). We obtain

∂V
∂t

+ 1
2

v S2 ∂2V
∂S2 + ρ η v S

∂2V
∂v ∂S

+ 1
2

η2 v
∂2V
∂v2 + r S

∂V
∂S

− r V

= λ(v − v)
∂V
∂v

(2.3)

In Heston’s original paper, the price of risk is assumed to be linear in the
instantaneous variance v in order to retain the form of the equation under
the transformation from the statistical (or real) measure to the risk-neutral
measure. In contrast, as in Chapter 1, we assume that the Heston process,
with parameters fitted to option prices, generates the risk-neutral measure
so the market price of volatility risk ϕ in the general valuation equation (1.3)
is set to zero in equation (2.3). Since we are only interested in pricing, and
we assume that the pricing measure is recoverable from European option
prices, we are indifferent to the statistical measure.

THE HESTON SOLUTION FOR EUROPEAN OPTIONS

This section follows the original derivation of the Heston formula for the
value of a European-style option in Heston (1993) pretty closely but with
some changes in intermediate definitions as explained later on.

Before solving equation (2.3) with the appropriate boundary conditions,
we can simplify it by making some suitable changes of variable. Let K be
the strike price of the option, T time to expiration, Ft,T the time T forward
price of the stock index and x := log

(
Ft,T/K

)
.

Further, suppose that we consider only the future value to expiration
C of the European option price rather than its value today and define
τ = T − t. Then equation (2.3) simplifies to

−∂C
∂τ

+ 1
2

v C11 − 1
2

v C1 + 1
2

η2 v C22 + ρ η v C12 − λ(v − v) C2 = 0

(2.4)

where the subscripts 1 and 2 refer to differentiation with respect to x and v
respectively.
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According to Duffie, Pan, and Singleton (2000), the solution of equa-
tion (2.4) has the form

C(x, v, τ ) = K
{
ex P1(x, v, τ ) − P0(x, v, τ )

}
(2.5)

where, exactly as in the Black-Scholes formula, the first term in the brack-
ets represents the pseudo-expectation of the final index level given that
the option is in-the-money and the second term represents the pseudo-
probability of exercise.

Substituting the proposed solution (2.5) into equation (2.4) implies that
P0 and P1 must satisfy the equation

−∂Pj

∂τ
+ 1

2
v
∂2Pj

∂x2 −
(

1
2

− j
)

v
∂Pj

∂x
+ 1

2
η2v

∂2Pj

∂v2 + ρηv
∂2Pj

∂x∂v

+ (a − bjv)
∂Pj

∂v
= 0 (2.6)

for j = 0, 1 where

a = λ v, bj = λ − j ρ η

subject to the terminal condition

lim
τ→0

Pj(x, v, τ ) =
{

1 if x > 0
0 if x ≤ 0

:= θ (x) (2.7)

We solve equation (2.6) subject to the condition (2.7) using a Fourier
transform technique. To this end define the Fourier transform of Pj through

P̃(u, v, τ ) =
∫ ∞

−∞
dx e−i u x P(x, v, τ )

Then

P̃(u, v, 0) =
∫ ∞

−∞
dx e−i u x θ (x) = 1

i u

The inverse transform is given by

P(x, v, τ ) =
∫ ∞

−∞

du
2π

ei u x P̃(u, v, τ ) (2.8)
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Substituting this into equation (2.6) gives

−∂P̃j

∂τ
− 1

2
u2 v P̃j −

(
1
2

− j
)

i u v P̃j

+ 1
2

η2 v
∂2P̃j

∂v2 + ρ η i u v
∂P̃j

∂v
+ (a − bj v)

∂P̃j

∂v
= 0 (2.9)

Now define

α = −u2

2
− i u

2
+ i j u

β = λ − ρ η j − ρ η i u

γ = η2

2

Then equation (2.9) becomes

v

{

α P̃j − β
∂P̃j

∂v
+ γ

∂2 P̃j

∂v2

}

+ a
∂P̃j

∂v
− ∂P̃j

∂τ
= 0 (2.10)

Now substitute

P̃j(u, v, τ ) = exp {C(u, τ ) v + D(u, τ ) v} P̃j(u, v, 0)

= 1
i u

exp {C(u, τ ) v + D(u, τ ) v}

It follows that

∂P̃j

∂τ
=

{
v

∂C
∂τ

+ v
∂D
∂τ

}
P̃j

∂P̃j

∂v
= D P̃j

∂2P̃j

∂v2 = D2 P̃j

Then equation (2.10) is satisfied if

∂C
∂τ

= λ D

∂D
∂τ

= α − β D + γ D2

= γ (D − r+)(D − r−) (2.11)
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where we define

r± = β ±
√

β2 − 4αγ

2γ
=:

β ± d
η2

Integrating (2.11) with the terminal conditions C(u, 0) = 0 and D(u, 0)
= 0 gives

D(u, τ ) = r−
1 − e−d τ

1 − g e−d τ

C(u, τ ) = λ

{

r−τ − 2
η2 log

(
1 − g e−d τ

1 − g

)}

(2.12)

where we define

g := r−
r+

Taking the inverse transform using equation (2.8) and performing the
complex integration carefully gives the final form of the pseudo-probabilities
Pj in the form of an integral of a real-valued function.

Pj(x, v, τ ) = 1
2

+ 1
π

∫ ∞

0
du Re

{
exp{Cj(u, τ ) v + Dj(u, τ ) v + i u x}

i u

}

(2.13)

This integration may be performed using standard numerical methods.
It is worth noting that taking derivatives of the Heston formula with

respect to x or v in order to compute delta and vega is extremely straight-
forward because the functions C(u, τ ) and D(u, τ ) are independent of x
and v.

A Digression: The Complex Logarithm in the Integration (2.13)

In Heston’s original paper and in most other papers on the subject, C(u, τ )
is written (almost) equivalently as

C(u, τ ) = λ

{

r+τ − 2
η2 log

(
e+d τ − g

1 − g

)}

(2.14)
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The reason for the qualification ‘‘almost’’ is that this definition coincides
with our previous one only if the imaginary part of the complex logarithm
is chosen so that C(u, τ ) is continuous with respect to u. It turns out
that taking the principal value of the logarithm in (2.14) causes C(u, τ ) to
jump discontinuously each time the imaginary part of the argument of the
logarithm crosses the negative real axis. The conventional resolution is to
keep careful track of the winding number in the integration (2.13) so as to
remain on the same Riemann sheet. This leads to practical implementation
problems because standard numerical integration routines cannot be used.
The paper of Kahl and Jäckel (2005) concerns itself with this problem and
provides an ingenious resolution.

With our definition (2.12) of C(u, τ ), however, it seems that whenever
the imaginary part of the argument of the logarithm is zero, the real part
is positive; plotted in the complex plane, it seems that the argument of the
logarithm never cuts the negative real axis. It follows that with our definition
of C(u, τ ), taking the principal value of the logarithm seems to lead to a
continuous integrand over the full range of integration. Unfortunately,
a proof of this result remains elusive so it must retain the status of a
conjecture.

DERIVATION OF THE HESTON
CHARACTERISTIC FUNCTION

To anyone other than an option trader, it may seem perverse to first derive
the option pricing formula and then impute the characteristic function: The
reverse might appear more natural. However, in the context of understand-
ing the volatility surface, option prices really are primary and it makes just
as much sense for us to deduce the characteristic function from the option
pricing formula as it does for us to deduce the risk-neutral density from
option prices.

By definition, the characteristic function is given by

φT(u) := E[eiuxT |xt = 0]

The probability of the final log-stock price xT being greater than the strike
price is given by

Pr(xT > x) = P0(x, v, τ )

= 1
2

+ 1
π

∫ ∞

0
du Re

{
exp{C(u, τ ) v + D(u, τ ) v + i u x}

iu

}
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with x = log(St/K) and τ = T − t. Let the log-strike k be defined by k =
log(K/St) = −x. Then, the probability density function p(k) must be given by

p(k) = −∂P0

∂k

= 1
2π

∫ ∞

−∞
du′ exp{C(u′, τ ) v + D(u′, τ ) v − i u′ k}

Then

φT(u) =
∫ ∞

−∞
dk p(k) ei u k

= 1
2π

∫ ∞

−∞
du′ exp{C(u′, τ ) v + D(u′, τ ) v}

∫ ∞

−∞
du ei(u−u′)k

=
∫ ∞

−∞
du′ exp{C(u′, τ ) v + D(u′, τ ) v} δ(u − u′)

= exp{C(u, τ ) v + D(u, τ ) v} (2.15)

SIMULATION OF THE HESTON PROCESS

Recall the Heston process

dS = µ Sdt + √
v S dZ1

dv = −λ(v − v) dt + η
√

v dZ2 (2.16)

with

〈
dZ1 dZ2

〉 = ρ dt

A simple Euler discretization of the variance process

vi+1 = vi − λ (vi − v) �t + η
√

vi
√

�t Z (2.17)

with Z ∼ N(0, 1) may give rise to a negative variance. To deal with this
problem, practitioners generally adopt one of two approaches: Either the
absorbing assumption: if v < 0 then v = 0, or the reflecting assumption: if
v < 0 then v = −v. In practice, with the parameter values that are required
to fit equity index option prices, a huge number of time steps is required to
achieve convergence with this discretization.
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Milstein Discretization

It turns out to be possible to substantially alleviate the negative variance
problem by implementing a Milstein discretization scheme.

Specifically, by going to one higher order in the Itô-Taylor expansion∗
of v(t + �t), we arrive at the following discretization of the variance process:

vi+1 = vi − λ (vi − v) �t + η
√

vi
√

�t Z + η2

4
�t

(
Z2 − 1

)
(2.18)

This can be rewritten as

vi+1 =
(√

vi + η

2

√
�t Z

)2 − λ (vi − v) �t − η2

4
�t

We note that if vi = 0 and 4 λ v/η2 > 1, vi+1 > 0 indicating that the fre-
quency of occurrence of negative variances should be substantially reduced.
In practice, with typical parameters, even if 4 λ v/η2 < 1, the frequency
with which the process goes negative is substantially reduced relative to the
Euler case.

As it is no more computationally expensive to implement the Milstein
discretization (2.18) than it is to implement the Euler discretization (2.17),
the Milstein discretization is always to be preferred. Also, the stock process
should be discretized as

xi+1 = xi − vi

2
�t +

√
vi �t W

with xi := log(Si/S0) and W ∼ N(0, 1), E[Z W] = ρ; if we discretize the
equation for the log-stock price x rather than the equation for the stock
price S, there are no higher order corrections to the Euler discretization.

An Implicit Scheme We follow Alfonsi (2005) and consider

vi+1 = vi − λ (vi − v) �t + η
√

vi
√

�t Z

= vi − λ (vi+1 − v) �t + η
√

vi+1
√

�t Z

−η
(√

vi+1 − √
vi

) √
�t Z + higher order terms

We note that

√
vi+1 − √

vi = η

2

√
�t Z + higher order terms

∗See Chapter 5 of Kloeden and Platen (1992) for a discussion of Itô-Taylor expan-
sions.
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and substitute (noting that E[Z2] = 1) to obtain the implicit discretization

vi+1 = vi − λ (vi+1 − v) �t + η
√

vi+1
√

�t Z − η

2
�t (2.19)

Then
√

vi+1 may be obtained as a root of the quadratic equation (2.19).
Explicitly,

√
vi+1 =

√
4 vi + �t

[
(λ v − η2/2) (1 + λ �t) + η2 Z2

] + η
√

�t Z

2 (1 + λ �t)

If 2 λ v/η2 > 1, there is guaranteed to be a real root of this expression so
variance is guaranteed to be positive. Otherwise, there’s no guarantee and
this discretization doesn’t work.

Given that Heston parameters in practice often don’t satisfy
2 λ v/η2 > 1, we are led to prefer the Milstein discretization, which is
in any case simpler.

Sampling from the Exact Transition Law

As Paul Glasserman (2004) points out in his excellent book on Monte Carlo
methods, the problem of negative variances may be avoided altogether by
sampling from the exact transition law of the process. Broadie and Kaya
(2004) show in detail how this may be done for the Heston process but their
method turns out also to be very time consuming as it involves integration
of a characteristic function expressed in terms of Bessel functions.

It is nevertheless instructive to follow their argument. The exact solution
of (2.16) may be written as

St = S0 exp
{
−1

2

∫ t

0
vs ds + ρ

∫ t

0

√
vs dZs +

√
1 − ρ2

∫ t

0

√
vs dZ⊥

s

}

vt = v0 + λ v t − λ

∫ t

0
vs ds + η

∫ t

0

√
vs dZs

with

〈
dZs dZ⊥

s

〉 = 0

The Broadie-Kaya simulation procedure is as follows:

■ Generate a sample from the distribution of vt given v0.
■ Generate a sample from the distribution of

∫ t
0 vs ds given vt and v0.
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■ Recover
∫ t

0
√

vs dZs given
∫ t

0 vs ds, vt and v0.
■ Generate a sample from the distribution of St given

∫ t
0

√
vs dZs and∫ t

0 vs ds.

Note that in the final step, the distribution of
∫ t

0
√

vs dZ⊥
s is normal with

variance
∫ t

0 vs ds because dZ⊥
s and vs are independent by construction.

Andersen and Brotherton-Ratcliffe (2001) suggest that processes like
the square root variance process should be simulated by sampling from
a distribution that is similar to the true distribution but not necessarily
the same; this approximate distribution should have the same mean and
variance as the true distribution.

Applying their suggested approach to simulating the Heston process,
we would have to find the means and variances of

∫ t
0

√
vs dZs,

∫ t
0 vs ds, vt

and v0.

Why the Heston Model Is so Popular

From the above remarks on Monte Carlo simulation, the reader can get
a sense of how computationally expensive it can be to get accurate values
of options in a stochastic volatility model; numerical solution of the PDE
is not much easier. The great difference between the Heston model and
other (potentially more realistic) stochastic volatility models is the existence
of a fast and easily implemented quasi-closed form solution for European
options. This computational efficiency in the valuation of European options
becomes critical when calibrating the model to known option prices.

As we shall see in subsequent chapters, although the dynamics of the
Heston model are not realistic, with appropriate choices of parameters,
all stochastic volatility models generate roughly the same shape of implied
volatility surface and have roughly the same implications for the valuation
of nonvanilla derivatives in the sense that they are all models of the joint
process of the stock price and instantaneous variance. Given the relative
cheapness of Heston computations, it’s easy to see why the model is so
popular.



CHAPTER 3
The Implied Volatility Surface

I n Chapter 1, we showed how to compute local volatilities from implied
volatilities. In this chapter, we show how to get implied volatilities

from local volatilities. Using the fact that local variance is a conditional
expectation of instantaneous variance, we can estimate local volatilities
generated by a given stochastic volatility model; implied volatilities then
follow. Given a stochastic volatility model, we can then approximate the
shape of the implied volatility surface.

Conversely, given the shape of an actual implied volatility surface, we
find we can deduce some characteristics of the underlying process.

GETTING IMPLIED VOLATILITY
FROM LOCAL VOLATILITIES

Model Calibration

For a model to be useful in practice, it needs to return (at least approximately)
the current market prices of European options. That implies that we need
to fit the parameters of our model (whether stochastic or local volatility
model) to market implied volatilities. It is clearly easier to calibrate a model
if we have a fast and accurate method for computing the prices of European
options as a function of the model parameters. In the case of stochastic
volatility, this consideration clearly favors models such as Heston that have
such a solution; Mikhailov and Nögel (2003), for example, explain how to
calibrate the Heston model to market data.

In the case of local volatility models, numerical methods are usually
required to compute European option prices and that is one of the potential
problems associated with their implementation. Brigo and Mercurio (2003)
circumvent this problem by parameterizing the local volatility in such a
way that the prices of European options are known in closed-form as
superpositions of Black-Scholes-like solutions.

25
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Yet again, we could work with the European option prices directly in
a trinomial tree framework as in Derman, Kani, and Chriss (1996) or we
could maximize relative entropy (of missing information) as in Avellaneda,
Friedman, Holmes, and Samperi (1997). These methods are nonparametric
(assuming actual option prices are used, not interpolated or extrapolated
values); they may fail because of noise in the prices and the bid/offer spread.

Finally, we could parameterize the risk-neutral distributions as in
Rubinstein (1998) or parameterize the implied volatility surface directly
as in Shimko (1993) or Gatheral (2004). Although these approaches look
straightforward given that we know from Chapter 1 how to get local
volatility in terms of implied volatility, they are very difficult to implement
in practice. The problem is that we don’t have a complete implied volatility
surface, we only have a few bids and offers per expiration. To apply a para-
metric method, we need to interpolate and extrapolate the known implied
volatilities. It is very hard to do this without introducing arbitrage. The
arbitrages to avoid are roughly speaking, negative vertical spreads, negative
butterflies and negative calendar spreads (where the latter are carefully
defined).

In what follows, we concentrate on the implied volatility structure of
stochastic volatility models so as not to worry about the possibility of
arbitrage, which is excluded from the outset.

First, we derive an expression for implied volatility in terms of local
volatilities. In principle, this should allow us to investigate the shape of
the implied volatility surface for any local volatility or stochastic volatility
model because we know from equation (1.12) how to express local variance
as an expectation of instantaneous variance in a stochastic volatility model.

Understanding Implied Volatility

In Chapter 1, we derived an expression (1.10) for local volatility in terms
of implied volatility. An obvious direct approach might be to invert that
expression and express implied volatility in terms of local volatility. How-
ever, this kind of direct attack on the problem doesn’t yield any easy results
in general although Berestycki, Busca, and Florent (2002) were able to invert
(1.10) in the limit of zero time to expiration.

Instead, by exploiting the work of Dupire (1998), we derive a general
path-integral representation of Black-Scholes implied variance. We start by
assuming that the stock price St satisfies the SDE

dSt

St
= µtdt + σt dZt

where the volatility σt may be random.
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For fixed K and T, define the Black-Scholes gamma

�BS(St, σ (t)) := ∂2

∂S2
t

CBS(St, K, σ (t), T − t)

and further define the ‘‘Black-Scholes forward implied variance’’ function

vK,T (t) = E
[
σ 2

t S2
t �BS(St, σ (t)) |F0

]

E
[
S2

t �BS(St, σ (t)) |F0
] (3.1)

where

σ 2(t) := 1
T − t

∫ T

t
vK,T(u) du (3.2)

Path-by-path, for any suitably smooth function f (St, t) of the random
stock price St and for any given realization {σt} of the volatility process, the
difference between the initial value and the final value of the function f (St, t)
is obtained by antidifferentiation. Then, applying Itô’s lemma, we get

f (ST , T) − f (S0, 0) =
∫ T

0
df

=
∫ T

0

{
∂f
∂St

dSt + ∂f
∂t

dt + σ 2
t

2
S2

t
∂2f

∂S2
t

dt
}

(3.3)

Under the usual assumptions, the nondiscounted value C(S0, K, T) of
a call option is given by the expectation of the final payoff under the
risk-neutral measure. Then, applying (3.3), we obtain:

C (S0, K, T) = E
[
(ST − K)+ |F0

]

= E [CBS (ST , K, σ (T), 0) |F0 ]

= CBS (S0, K, σ (0), T)

+ E

[∫ T

0

{
∂CBS

∂St
dSt + ∂CBS

∂t
dt + 1

2
σ 2

t S2
t
∂2CBS

∂S2
t

dt
}∣∣
∣
∣∣
F0

]

Now, of course, CBS (St, K, σ (t), T − t) must satisfy the Black-Scholes
equation (assuming zero interest rates and dividends) and from the definition
of σ (t), we obtain:

∂CBS

∂t
= −1

2
vK,T (t) S2

t
∂2CBS

∂S2
t
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Using this equation to substitute for the time derivative ∂CBS
∂t , we obtain:

C (S0, K, T) = CBS (S0, K, σ (0), T)

+ E

[∫ T

0

{
∂CBS

∂St
dSt + 1

2

{
σ 2

t − vK,T (t)
}

S2
t
∂2CBS

∂S2
t

dt
}∣
∣
∣∣
∣
F0

]

= CBS (S0, K, σ (0), T)

+ E

[∫ T

0

1
2

{
σ 2

t − vK,T (t)
}

S2
t
∂2CBS

∂S2
t

dt

∣
∣∣
∣
∣
F0

]

(3.4)

where the second equality uses the fact that St is a martingale.
In words, the last term in equation (3.4) gives the expected realized

profit on a sale of a call option at an implied volatility of σ , delta-hedged
using the deterministic forward variance function vK,T when the actual
realized volatility is σt.

From the definition (3.2) of vK,T(t), we have that

E

[
S2

t �BS(St, σ (t)) |F0

]
vK,T (t) = E

[
σ 2

t S2
t �BS(St, σ (t)) |F0

]

so the second term in equation (3.4) vanishes and from the definition of
implied volatility, σ (0) is the Black-Scholes implied volatility at time 0 of
the option with strike K and expiration T (i.e., the Black-Scholes formula
must give the market price of the option).

Explicitly,

σBS(K, T)2 = σ (0)2 = 1
T

∫ T

0

E
[
σ 2

t S2
t �BS(St) |F0

]

E
[
S2

t �BS(St) |F0
] dt (3.5)

Equation (3.5) expresses implied variance as the time-integral of expected
instantaneous variance σ 2

t under some probability measure.
The interpretation of equation (3.5) is that to compute the Black-

Scholes implied volatility of an option, we need to average the possible
realized volatilities over all possible scenarios, in particular over all possible
paths of the underlying stock. Each such scenario is weighted by the gamma
of the option; the profitability of the delta hedger in any time interval is
directly proportional to the gamma and the difference between ‘‘expected
instantaneous variance’’ (or local variance) and realized instantaneous vari-
ance. In particular, at inception of the delta hedge, there is only one possible
stock price (the then stock price) and only paths that end at the strike price
need be included in the average because gamma elsewhere is precisely zero.
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Following Lee (2005), we may rewrite (3.5) more elegantly as

σBS(K, T)2 = σ (0)2 = 1
T

∫ T

0
E

Gt [σ 2
t ] dt (3.6)

thus interpreting the definition (3.1) of v(t) as the expectation of σ 2
t with

respect to the probability measure Gt defined, relative to the pricing measure
P, by the Radon-Nikodym derivative

dGt

dP
:= S2

t �BS(St, σ (t))

E
[
S2

t �BS(St, σ (t)) |F0
]

Note in passing that equations (3.1) and (3.5) are implicit because the
gamma �BS(St) of the option depends on all the forward implied variances
vK,T (t).

Special Case (Black-Scholes) Suppose σt = σ (t), a function of t only. Then

vK,T (t) = E
[
σ (t)2S2

t �BS(St) |F0
]

E
[
S2

t �BS(St) |F0
] = σ (t)2

The forward implied variance vK,T(t) and the forward variance σ (t)2 coin-
cide. As expected, vK,T(t) has no dependence on the strike K or the option
expiration T.

Interpretation In order to get better intuition for equation (3.1), first recall
how to compute a risk-neutral expectation:

E
P [

f (St)
] =

∫
dSt p (St, t; S0) f (St)

We get the risk-neutral pdf of the stock price at time t by taking the
second derivative of the market price of European options with respect to
strike price.

p (St, t; S0) = ∂2C (S0, K, t)
∂K2

∣
∣
∣∣
K=St

Then from equation (3.6) we have

vK,T (t) = E
Gt

[
σ 2

t

]

= E
P
[
σ 2

t
dGt

dP

]
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=
∫

dSt q (St; S0, K, T) E
P
[
σ 2

t |St

]

=
∫

dSt q (St; S0, K, T) vL(St, t) (3.7)

where we further define

q (St, t; S0, K, T) := p (St, t; S0) S2
t �BS(St)

E
[
S2

t �BS(St) |F0
]

and vL(St, t) = E
P
[
σ 2

t |St
]

is the local variance.
We see that q (St, t; S0, K, T) looks like a Brownian Bridge density for

the stock price: p (St, t; S0) has a delta function peak at S0 at time 0 and
�BS(St) has a delta function peak at K at expiration T.

For convenience in what follows, we now rewrite equation (3.7) in
terms of xt := log (St/S0):

vK,T (t) =
∫

dxt q (xt, t; xT , T) vL(xt, t) (3.8)

Figure 3.1 shows how q (xt, t; xT , T) looks in the case of a 1-year
European option struck at 1.3 with a flat 20% volatility. We see that
q (xt, t; xT , T) peaks on a line, which we will denote by x̃t, joining the stock
price today with the strike price at expiration. Moreover, the density looks
roughly symmetric around the peak. This suggests an expansion around the
peak x̃t, at which the derivative of q (xt, t; xt, T) with respect to xt is zero.
Then we write

q (xt, t; xT , T) ≈ q(x̃t, t; xT , T) + 1
2

(xt − x̃t)
2 ∂2q

∂x2
t

∣
∣∣
∣
xt=x̃t

(3.9)

In practice, the local variance vL(xt, t) is typically not so far from linear in
xt in the region where q (xt, t; xT , T) is significant, so we may further write

vL(xt, t) ≈ vL(x̃t, t) + (xt − x̃t)
∂vL

∂xt

∣∣
∣
∣
xt=x̃t

(3.10)

Substituting (3.9) and (3.10) into the integrand in equation (3.8) gives

vK,T (t) ≈ vL(x̃t, t)

and we may rewrite equation (3.5) as

σBS(K, T)2 ≈ 1
T

∫ T

0
vL(x̃t) dt (3.11)
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FIGURE 3.1 Graph of the pdf of xt conditional on xT = log(K) for a 1-year
European option, strike 1.3 with current stock price = 1 and 20% volatility.

In words, equation (3.11) says that the Black-Scholes implied variance of an
option with strike K is given approximately by the integral from valuation
date (t = 0) to the expiration date (t = T) of the local variances along the
path x̃t that maximizes the Brownian Bridge density q (xt, t; xT , T).

Of course in practice, it’s not easy to compute the path x̃t. Nevertheless,
we now have a very simple and intuitive picture for the meaning of Black-
Scholes implied variance of a European option with a given strike and
expiration: It is approximately the integral from today to expiration of local
variances along the most probable path for the stock price conditional on
the stock price at expiration being the strike price of the option.

LOCAL VOLATILITY IN THE HESTON MODEL

From equations (2.1) and (2.2) with xt := log (St/K) and µ = 0, we have

dxt = −vt

2
dt + √

vt dZt
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dvt = −λ(vt − v)dt + ρη
√

vt dZt +
√

1 − ρ2η
√

vt dWt (3.12)

where dWt and dZt are orthogonal. Eliminating
√

vtdZt, we get

dvt = −λ (vt − v) dt + ρ η

(
dxt + 1

2
vt dt

)
+

√
1 − ρ2 η

√
vt dWt (3.13)

Our strategy will be to compute local variances in the Heston model and
then integrate local variance from valuation date to expiration date to
approximate the BS implied variance using equation (3.11).

First, consider the unconditional expectation v̂s of the instantaneous
variance at time s. Solving equation (3.13) gives

v̂s = (v0 − v) e−λ s + v

Then define the expected total variance to time t through the relation

ŵt :=
∫ t

0
v̂sds = (v0 − v)

{
1 − e−λt

λ

}
+ v t

Finally, let ut := E[vt |xT] be the expectation of the instantaneous variance
at time t conditional on the final value xT of x.

Ansatz

Ansatz means here, ‘‘Let’s just suppose this were true so that we can
proceed.’’ Without loss of generality, assume x0 = 0. Then

E[xs |xT ] = xT
ŵs

ŵT

where ŵt := ∫ t
0 ds v̂s is the expected total variance to time t. To see that this

ansatz is at least a plausible approximation, note that

E (xs) = E(xT)
ŵs

ŵT
= − ŵT

2
ŵs

ŵT
= − ŵs

2

In fact, if the process for xt were a conventional Brownian Bridge process,
the result would be true but in this case, the ansatz is only an approximation
which is reasonable when |xT | is small (i.e. not too far from at-the-money).



The Implied Volatility Surface 33

Building on the ansatz, we may take the conditional expectation of
(3.13) to get:

dut = −λ(ut − v)dt + ρη

2
utdt + ρη

xT

ŵT
dŵt

+
√

1 − ρ2η
√

vt E[dWt |xT ] (3.14)

If the dependence of dWt on xT is weak or if
√

1 − ρ2 is very small, we may
drop the last term to get

dut ≈ −λ′(ut − v′)dt + ρη
xT

ŵT
v̂tdt

with λ′ = λ − ρη/2, v′ = vλ/λ′. The solution to this equation is

uT ≈ v̂′
T + ρη

xT

ŵT

∫ T

0
v̂s e−λ′(T−s)ds (3.15)

with v̂′
s := (

v − v′) e−λ′ s + v′.
From equation (1.12), we know that the local variance σ 2(K, T, S0) =

E [vT |ST = K ]. Then, equation (3.15) gives us an approximate but sur-
prisingly accurate formula for local variance within the Heston model (an
extremely accurate approximation when ρ = ±1). We see that in the Heston
model, local variance is approximately linear in x = log

( F
K

)
.

In summary, we have made two approximations: the ansatz and drop-
ping the last term in equation (3.14). For reasonable parameters, equation
(3.15) gives good intuition for the functional form of local variance and
when ρ = ±1, as we will see in Chapter 4, it is almost exact. Peter Friz has
shown that equation (3.15) is in fact exact to first order in η whether or
not the ansatz holds or

√
1 − ρ2 is small. Given this, equation (3.15) can

also be shown to agree with the general perturbative expansions of Lewis
(2000).

IMPLIED VOLATILITY IN THE HESTON MODEL

Now, to get implied variance in the Heston model, following our earlier
explanation as summarized in equation (3.11), we need to integrate the
Heston local variance along the most probable stock price path joining the
initial stock price to the strike price at expiration (the one which maximizes
the Brownian Bridge probability density).
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Using our earlier notation, the Black-Scholes implied variance is given by

σBS(K, T)2 ≈ 1
T

∫ T

0
σ 2

x̃t,tdt = 1
T

∫ T

0
ut(x̃t)dt (3.16)

where {x̃t} is the most probable path (as defined earlier).
Recall that the Brownian Bridge density q (xt, t; xT , T) is roughly sym-

metric and peaked around x̃t, so E [xt − x̃t |xT ] ≈ 0. Applying the ansatz
once again, we obtain

x̃t = E [x̃t |xT ] = E [x̃t − xt |xT ] + E [xt |xT ] ≈ ŵt

ŵT
xT

We substitute this expression back into equations (3.15) and (3.16)
to get

σBS(K, T)2 ≈ 1
T

∫ T

0
ut(x̃t)dt

≈ 1
T

∫ T

0
v̂

′
tdt + ρη

xT

ŵT

1
T

∫ T

0
dt

∫ t

0
v̂s e−λ′(t−s)ds (3.17)

The Term Structure of Black-Scholes Implied Volatility
in the Heston Model

The at-the-money term structure of BS implied variance in the Heston model
is obtained by setting xT = 0 in equation (3.17). Performing the integration
explicitly gives

σBS(K, T)2
∣
∣∣
K=FT

≈ 1
T

∫ T

0
v̂

′
tdt = 1

T

∫ T

0

[(
v − v′) e−λ′ t + v′

]
dt

= (
v − v′) 1 − e−λ′ T

λ′ T
+ v′ (3.18)

We see that in the Heston model, the at-the-money Black-Scholes implied
variance

σBS(K, T)2
∣
∣∣
K=FT

→ v

(the instantaneous variance) as the time to expiration T → 0 and as T → ∞,
the at-the-money Black-Scholes implied variance reverts to v′.
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The Black-Scholes Implied Volatility Skew in the Heston Model

It is possible (but not very illuminating) to integrate the second term of
equation (3.17) explicitly. Even without doing that, we can see that the
implied variance skew in the Heston model is approximately linear in the
correlation ρ and the volatility of volatility η.

In the special case where v0 = v, the implied variance skew has a
particularly simple form. Then v̂s = v and ŵt = v t. The most probable path
x̃t ≈ t

T xT is exactly a straight line in log-space between the initial stock
price on valuation date and the strike price at expiration. Performing the
integrations in equation (3.17) explicitly, we get

σBS(K, T)2 ≈ ŵ′
T

T
+ ρη

xT

T2

∫ T

0
dt

1
T

∫ t

0
e−λ′(t−s)ds

= ŵ′
T

T
+ ρη

xT

λ′T





1 −

(
1 − e−λ′T

)

λ′T





(3.19)

From equation (3.19), we see that the implied variance skew ∂
∂xt

σBS

(K, T)2 is independent of the level of instantaneous variance v or long-term
mean variance v. In fact, this remains approximately true even when v �= v.
It follows that we now have a fast way of calibrating the Heston model to
observed implied volatility skews. Just two expirations would in principle
allow us to determine λ′ and the product ρη. We can then fit the term
structure of volatility to determine the long-term mean variance v and the
instantaneous variance v0. The curvature of the skew (not discussed here)
would allow us to determine ρ and η separately.

We note that as we increase either the correlation ρ or the volatility of
volatility η, the skew increases.

Also, the very short-dated skew is independent of λ and T:

∂

∂xt
σBS(K, T)2 = ρη

1
λ′T





1 −

(
1 − e−λ′T

)

λ′T





→ ρη

2
as T → 0

and the long-dated skew is inversely proportional to T:

∂

∂xt
σBS(K, T)2 = ρη

1
λ′T





1 −

(
1 − e−λ′T

)

λ′T





∼ ρη

λ′T
as T → ∞
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FIGURE 3.2 Graph of the SPX-implied volatility surface as of the close on
September 15, 2005, the day before triple witching.

Finally, increasing η causes the curvature of the implied volatility skew
(related to the kurtosis of the risk-neutral density) to increase, but we
haven’t shown that here.

THE SPX IMPLIED VOLATILITY SURFACE

Up to this point, we have concentrated on understanding the shape of
the implied volatility surface as implied by a stochastic volatility model—in
particular the Heston model. However, we still have no idea whether implied
volatilities produced by the Heston model look like implied volatilities in
the market.

To get a sense of what an actual implied volatility surface looks like,
Figure 3.2 shows the surface resulting from a nonlinear (SVI) fit to observed
implied variance as a function of k for each expiration on September 15,
2005, the day before the September triple-witching day.∗

∗A triple-witching day is a day on which both index option contracts and index
futures contracts expire.
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Another Digression: The SVI Parameterization

Gatheral (2004) presents the following ‘‘stochastic volatility inspired’’ (SVI)
parameterization of the volatility smile. For each expiration, we write

σ 2
BS(k) = a + b

{
ρ (k − m) +

√
(k − m)2 + σ 2

}
(3.20)

where the coefficients a, b, ρ, σ , and m depend on the expiration.
This parameterization has a number of appealing properties, one of

which is that it is relatively easy to eliminate calendar spread arbitrage.
Thus, in an SVI fit, the functional form (3.20) is fitted to all expirations
simultaneously subject to the constraint that there should be no arbitrage
between expiration slices. Total implied variance may then be interpolated
between slices to give a smooth surface. In this case, Stineman monotonic
spline interpolation (Stineman 1980) was used.

Those readers skeptical as to whether the nice-looking surface in
Figure 3.2 could really be a good fit may refer to the plot in Figure 3.3
to see fits to individual option bid and offer implied volatilities.

From the SVI fit, we impute the at-the-money forward variance levels
and skews listed in Table 3.1. (Recall that by at-the-money skew, we mean
∂
∂kσBS(k, T)2 where k is the log-strike).

Skew is plotted as a function of time in Figure 3.4. Just looking at the
pattern of the points, we would suspect that a simple functional form should
be able to fit. However, the solid and dashed lines show the results of fitting
the approximate formula

ρ η
1

λ′T





1 −

(
1 − e−λ′T

)

λ′T





(3.21)

to the observed skews. The solid line takes all points into account; the
dashed line drops the first three expirations from the fit. We can see that
the fitting function is too stiff to fit the observed pattern of variance skews;
there is no choice of λ′ that will allow us to fit the skew observations. The
fact that the observed variance skew increases significantly faster as T → 0
than the skew implied by a stochastic volatility model may indicate that
jumps need to be included in a complete model. We will explore this further
in Chapter 5.

In Figure 3.5, we see that on this particular date, our simple formula
fits the data pretty well. It should be emphasized that this is not always the
case; in general, the term structure of volatility can be quite intricate at the
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FIGURE 3.3 Plots of the SVI fits to SPX implied volatilities for each of the eight
listed expirations as of the close on September 15, 2005. Strikes are on the x-axes
and implied volatilities on the y-axes. The black and grey diamonds represent bid
and offer volatilities respectively and the solid line is the SVI fit.
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TABLE 3.1 At-the-money SPX variance levels and skews as of the close on
September 15, 2005, the day before expiration.

Expiration Time to Expiry ATM Variance ATM Skew

Sep-05 1 day 0.0109 −0.0955
Oct-05 1 month 0.0123 −0.1601
Nov-05 2 months 0.0149 −0.1372
Dec-05 3 months 0.0161 −0.1221
Mar-06 6 months 0.0183 −0.0945
Jun-06 9 months 0.0195 −0.0815
Dec-06 15 months 0.0209 −0.0679
Jun-07 21 months 0.0220 −0.0594
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�0.08

�0.06

ATM skew

FIGURE 3.4 Graph of SPX ATM skew versus time to expiry. The solid line is a fit
of the approximate skew formula (3.21) to all empirical skew points except the
first; the dashed fit excludes the first three data points.

short end.

σBS(K, T)2
∣
∣∣
K=FT

≈ (
v − v′) 1

λ′T





1 −

(
1 − e−λ′T

)

λ′T





+ v′

So, sometimes it’s possible to fit the term structure of at-the-money volatility
with a stochastic volatility model, but it’s never possible to fit the term
structure of the volatility skew for short expirations. That’s one reason
why practitioners prefer local volatility models: a stochastic volatility model
with time-homogeneous parameters cannot fit market prices! Perhaps an
extended stochastic volatility model with correlated jumps in stock price and
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FIGURE 3.5 Graph of SPX ATM variance versus time to expiry. The solid line is a
fit of the approximate ATM variance formula (3.18) to the empirical data.

volatility such as in Matytsin (1999) might fit better. But how would traders
choose their input parameters? How would the SPX index book trader
choose his volatility of volatility parameter—or worse, the correlation
between jumps in stock price and jumps in volatility?

A Heston Fit to the Data

In Table 3.2, we list Heston parameters obtained from a fit to the September
15, 2005, SPX volatility surface graphed in Figure 3.2. On this par-
ticular date, the fitted Heston parameters were not so different from
the BCC parameters. This is not usual and fitted Heston parameters in
general move slowly over time. For example, the Heston volatility of
volatility parameter η is found to increase as the general volatility level
increases.

TABLE 3.2 Heston fit to the
SPX surface as of the close on
September 15, 2005.

v 0.0174
v 0.0354
η 0.3877
ρ −0.7165
λ 1.3253
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A good way to judge how well the Heston model fits the empirical
implied volatility surface is to compare the two volatility surfaces graphi-
cally. We see from Figure 3.6 that the smile generated by the Heston model
is far too flat relative to the empirical implied volatility surface. For longer
expirations, however, the fit isn’t bad.
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FIGURE 3.6 Comparison of the empirical SPX implied volatility surface with the
Heston fit as of September 15, 2005. From the two views presented here, we can
see that the Heston fit is pretty good for longer expirations but really not close for
short expirations. The paler upper surface is the empirical SPX volatility surface
and the darker lower one the Heston fit. The Heston fit surface has been shifted
down by five volatility points for ease of visual comparison.
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Final Remarks on SV Models and Fitting the Volatility Surface

It’s quite clear from Figures 3.4 and 3.6 that the Heston model doesn’t fit
the observed implied volatility surface for short expirations, although the fit
is not bad for longer expirations. Moreover, as we shall see in Chapter 7,
all stochastic volatility models generate roughly the same shape of volatility
surface. It follows that if we are looking for a model that fits options prices,
we will need to look beyond stochastic volatility models.



CHAPTER 4
The Heston-Nandi Model

I n Chapter 3, we derived approximate formulas for local and implied
volatilities in the Heston model. In this chapter, we compute local and

implied volatilities for a particular choice of Heston parameters for which
equation (3.15) gives a very good approximation to the true local volatil-
ity. This provides us with a specific set of Heston parameters and local
volatilities that we use in subsequent chapters to study the impact of mod-
eling assumptions on the valuation of various kinds of options, confident
that both local volatility and Heston models generate the same European
option prices.

LOCAL VARIANCE IN THE HESTON-NANDI MODEL

Following the derivation in Chapter 3, we see that if ρ = −1, the formula
presented for local variance should be pretty good (modulo some ansatz-
related error). In this case, because ρ = −1, the Heston process is only
one-factor and the SDE can be written as

dx = − v
2

dt + √
v dZ

dv = −λ (v − v) dt − η
√

vdZ

The choice ρ = −1 was originally studied by Heston and Nandi (1998)
as the preference-free continuous time limit of a discrete GARCH option
pricing model previously introduced by them. Their model was preference-
free because there is only one source of randomness. So all volatility risk
can be eliminated by appropriately delta hedging with stock; there is no
volatility risk premium in this case.

Although the Heston model is only one factor in this special case, it is
certainly not Markov in the stock price. That’s because the instantaneous
volatility is a deterministic function of the entire history of the stock price

43
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and in general, computing an expectation under the risk-neutral measure
requires knowledge of the volatility. To see this clearly, we can rewrite the
SDE for v as

dv = −λ′ (v − v′) dt − η dx

with λ′ = λ + η/2, v′ = v λ/λ′. Note also that although zero instanta-
neous variance may be attainable depending on the value of the para-
meters, it can never be negative. In particular, local variance can never be
negative.

From equation (3.11), local variance in this special case is given by

vloc(xT , T) = v̂′
T − η

xT

wT

∫ T

0
v̂s e−λ′(T−s)ds

= (v − v′)e−λ′T + v′ − η xT

{
1 − e−λ′T

λ′T

}

(4.1)

The whole expression must be bounded below by zero—all stock prices
above the critical stock price at which the local variance reaches zero are
unattainable.

A NUMERICAL EXAMPLE

In order to assess the accuracy of the approximate local volatility formula
(3.15), while also exploring some properties of the Heston-Nandi model,
we fix Heston parameters as follows:

v = 0.04

v = 0.04

λ = 10

η = 1

ρ = −1 (4.2)

We will use these parameters repeatedly in Heston computations throughout
the rest of the book.
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The Heston-Nandi Density
To get the Heston-Nandi probability density p(k, T) for a given expiration
T, we invert the Heston characteristic function φT(u),

p(k, T) = 1
2 π

∫ +∞

−∞
du φT(u) e−i u k

with

φT(u) = exp{C(u, τ ) v + D(u, τ ) v}
from equation (2.15).

Computing p(k, T) numerically with T = 0.1 years and the above
parameters generates the plot shown in Figure 4.1. It’s easy to see from this
plot that stock prices above some critical stock price are unattainable in
the Heston-Nandi model; there is a critical strike price above which call
options have zero value. This observation alone makes the Heston-Nandi
model look rather unrealistic.

Computation of Local Volatilities
From Chapter 3, local variance (the square of local volatility) is obtained
from the Dupire equation (1.4) as the ratio of a calendar spread (time
derivative) to a butterfly (probability density). We have already computed
the density p(k, T) so it only remains for us to compute the calendar spread.
This we may do by differentiating the Heston call value with respect to the
time to expiration τ . From equation (2.5),

∂τ C(x, v, τ ) = K
{
ex ∂τ P1(x, v, τ ) − ∂τ P0(x, v, τ )

}

with the Pj(·) are from equation (2.13).

�0.3 �0.25 �0.2 �0.15 �0.1 �0.05 0.05
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FIGURE 4.1 The probability density for the Heston-Nandi model with our
parameters and expiration T = 0.1.
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Inverting equation (1.4) then leads to

vloc(xt, τ ) = 2
∂τ c(xt, τ )
p(k, τ )

(4.3)

with

c(x, τ ) := C(x, v, τ )
K

Figure 4.2 shows the results of computing local volatility in the
Heston-Nandi model using the exact (but possibly numerically inaccurate)
formula (4.1) and the approximate (but numerically accurate) formula (4.3).

Computation of Implied Volatilities

The reader may or may not be convinced by the close agreement between
the approximate and exact local volatilities plotted in Figure 4.2. For one
thing, it’s unclear whether errors at low strikes are due to the inaccuracy of
the approximation or numerical inaccuracy in the computation of the exact
local volatilities.

The proof of the pudding is in the eating: All we need is for the prices
of European options to agree. We therefore compute European option
prices using the Heston formula (2.13) and again by solving the local
volatility valuation equation numerically∗ with local volatilities given by
equation (4.1). Explicitly, the numerical PDE to be solved for an option
with strike K and expiration T is

∂V
∂t

+ 1
2

v(S, t) S2 ∂2V
∂S2 = 0

subject to the boundary condition V(ST , T) = (ST − K)+ where, from
equation (4.1),

v(S, t) = (v − v′)e−λ′T + v′ − η log(S/S0)

{
1 − e−λ′T

λ′T

}

In Figure 4.3, we see again that agreement is very close.

∗The solution of option pricing problems using numerical PDE techniques is covered
extensively in Tavella and Randall (2000).
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FIGURE 4.2 Comparison of approximate formulas with direct numerical
computation of Heston local variance. For each expiration T, the solid line is the
numerical computation and the dashed line is the approximate formula.
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FIGURE 4.3 Comparison of European implied volatilities from application of the
Heston formula (2.13) and from a numerical PDE computation using the local
volatilities given by the approximate formula (4.1). For each expiration T, the solid
line is the numerical computation and the dashed line is the approximate formula.
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DISCUSSION OF RESULTS

From the results of our computation, we can see that the local volatility
model and the stochastic volatility model price European options almost
identically. Thus we have created a toy set of market parameters that will
allow us to compare the effects of stochastic volatility and local volatility
assumptions on the valuation of various claims, confident that European
options are almost identically priced under both sets of assumptions. An
additional implicit (but reasonable) assumption will be that when we make
such a comparison, any difference in valuation can be primarily ascribed to
the difference in dynamical assumptions rather than to this special choice of
parameters than makes computations particularly easy.

We note too that both the Heston model and its local volatility equiv-
alent are single-factor, depending only on stock prices. However, the two
models are clearly not equivalent: in the local volatility model, volatilities
are known in advance and in the stochastic volatility case, volatilities are
uncertain. The consequences of this fundamental difference between the two
models will become clear as we proceed to value various exotic options in
succeeding chapters.

In other words, to value an option, it’s not enough just to fit all the
European option prices, we also need to assume some specific dynamics for
the underlying.



CHAPTER 5
Adding Jumps

I n this chapter, we first explain why it is that jumps need to be modeled.
Then we show how they are conventionally modeled. We will see that

introducing jumps has very little effect on the shape of the volatility surface
for longer-dated options; the impact on the shape of the volatility surface is
all at the short-expiration end. In passing, we derive explicit characteristic
functions for the popular SVJ and SVJJ models. We will see in particular
that the SVJ model succeeds in generating a volatility surface that has most
of the observed features of the empirical surface with fewer parameters than
the SVJJ model.

WHY JUMPS ARE NEEDED

In Chapter 3, we indicated the possibility that jumps might explain why the
skew is so steep for very short expirations and why the very short-dated
term structure of skew is inconsistent with any stochastic volatility model.
Another indication that jumps might be necessary to explain the volatility
surface comes from Table 5.1. There, we see that there is a 5-cent bid for a
1,160 put which is over 67 points out-of-the-money expiring the following
morning.∗ Historically, about 40% of the variance of SPX is from overnight
moves and the at-the-money volatility at the time was about 10%. With
these parameters, a 67 point move corresponds to around 13.7 standard
deviations. The probability of a normally distributed variable making such
a move is zero (to about 40 decimal places). And these 5-cent bids are only
bids; one might suppose that actual trades would take place somewhere
between the bid and the offer. Similarly, there is a 5-cent bid for a call
struck at 1,250, about 23 points out-of-the-money. That’s only about 4.7

∗Recall that the final payoff of SPX options is set at the opening of trading on the
following day (September 16 in this case).

50
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TABLE 5.1 September 2005 expiration option prices as of the close on September
15, 2005. Triple witching is the following day. SPX is trading at 1227.73.

Strike Call Bid Call Ask Put Bid Put Ask

1160 66.70 68.70 0.05 0.25
1170 56.70 58.70 0.05 0.35
1175 51.70 53.70 0.05 0.10
1180 46.70 48.70 0.10 0.30
1190 36.70 38.70 0.10 0.15
1195 31.70 33.70 0.05 0.20
1200 26.70 28.70 0.15 0.25
1205 21.70 23.70 0.25 0.30
1210 16.80 18.60 0.30 0.40
1215 11.90 13.70 0.30 0.45
1220 8.00 8.80 0.65 0.75
1225 3.90 4.20 1.10 1.90
1230 1.50 2.00 2.80 4.20
1235 0.35 0.50 6.70 8.30
1240 0.15 0.25 11.40 13.20
1245 0.15 0.70 16.40 18.00
1250 0.05 0.10 21.30 22.70

standard deviations; but even the probability of a normally distributed
variable making that much smaller move is just over one in a million.
Diffusions just can’t generate the size of moves over very short timescales
that would be able to generate any value for such options.

High bids for options that would require an extreme move to end up
in-the-money are just another manifestation of the extreme short-end smile
in the SPX market just prior to expiration. From the perspective of a trader,
the explanation is straightforward: Large moves do sometimes occur and
it makes economic sense to bid for out-of-the-money options—at the very
least to cover existing risk.

To make this concrete, in Figure 5.1, we superimpose observed implied
volatilities with the implied volatility smile generated by the Heston model
with Sep05 SPX parameters from Table 3.1.∗ We note in particular that
the Heston smile is flat and completely inconsistent with the empirically
observed smile.

On reflection, it is easy to see why extreme short-end skews are incom-
patible with stochastic volatility; if the underlying process is a diffusion and
volatility of volatility is reasonable, volatility should be near constant on a

∗For details of the SVI parameterization of the volatility smile see Gatheral (2004).
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FIGURE 5.1 Graph of the September 16, 2005, expiration volatility smile as of the
close on September 15, 2005. SPX is trading at 1227.73. Triangles represent bids
and offers. The solid line is a nonlinear (SVI) fit to the data. The dashed line
represents the Heston skew with Sep05 SPX parameters.

very short timescale. Then returns should be roughly normally distributed
and the skew should be quite flat.

JUMP DIFFUSION

Derivation of the Valuation Equation

As in Wilmott (2000), we assume the stock price follows the SDE

dS = µS dt + σS dZ + (J − 1)S dq (5.1)

where the Poisson process

dq =
{

0 with probability 1 − λ(t) dt
1 with probability λ(t) dt

When dq = 1, the process jumps from S to JS. We assume that the Poisson
process dq and the Brownian motion dZ are independent.

As in the stochastic volatility case, we derive a valuation equation by
considering the hedging of a contingent claim. We make the (unrealistic)
assumption at this stage that the jump size J is known in advance.
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Whereas in the stochastic volatility case, the second risk factor to be
hedged was the random volatility, in this case, the second factor is the
jump. So once again, we set up a portfolio � containing the option being
priced whose value we denote by V(S, v, t), a quantity −� of the stock and
a quantity −�1 of another asset whose value V1 also depends on the jump.

We have

� = V − � S − �1 V1

The change in this portfolio in the time interval dt is given by

d� =
{

∂V
∂t

+ 1
2

σ 2 S2 ∂2V
∂S2

}
dt − �1

{
∂V1

∂t
+ 1

2
σ 2 S2 ∂2V1

∂S2

}
dt

+
{

∂V
∂S

− �1
∂V1

∂S
− �

}
dSc

+ {
V(JS, t) − V(S, t) − �1(V1(JS, t) − V1(S, t)) − �(J − 1)S

}
dq

where Sc(t) is the continuous part of S(t) (adding back all the jumps that
occurred up to time t).

To make the portfolio instantaneously risk free, we must choose

∂V
∂S

− �1
∂V1

∂S
− � = 0

to eliminate dS terms, and

V(JS, t) − V(S, t) − �1(V1(JS, t) − V1(S, t)) − �(J − 1)S = 0

to eliminate dq terms. This leaves us with

d� =
{

∂V
∂t

+ 1
2

σ 2 S2 ∂2V
∂S2

}
dt − �1

{
∂V1

∂t
+ 1

2
σ 2 S2 ∂2V1

∂S2

}
dt

= r � dt

= r(V − �S − �1V1) dt

where we have used the fact that the return on a risk-free portfolio must
equal the risk-free rate r which we will assume to be deterministic for our
purposes. Collecting all V terms on the left-hand side and all V1 terms on
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the right-hand side, we get

∂V
∂t + 1

2σ 2 S2 ∂2V
∂S2 + rS ∂V

∂S − rV

δV − (J − 1)S ∂V
∂S

=
∂V1
∂t + 1

2σ 2 S2 ∂2V1
∂S2 + rS ∂V1

∂S − rV1

δV1 − (J − 1)S ∂V1
∂S

where we have defined δV := V(JS, t) − V(S, t).
Continuing exactly as in the stochastic volatility case, the left-hand side

is a function of V only and the right-hand side is a function of V1 only. The
only way that this can be is for both sides to be equal to some function of
the independent variables S and t, which we will suggestively denote by −λ.
We deduce that

∂V
∂t

+ 1
2

σ 2 S2 ∂2V
∂S2 + rS

∂V
∂S

− rV

+ λ(S, t)
{

V(JS, t) − V(S, t) − (J − 1)S
∂V
∂S

}
= 0 (5.2)

To interpret λ(S, t), consider the value P of an asset that pays $1 at time
T if there is no jump and zero otherwise. Our assumption that the jump
process is independent of the stock price process implies that

∂P
∂S

= 0

Also, we must have P(JS, t) = 0. Substituting into equation (5.2) gives

∂P
∂t

− rP − λ(S, t) P = 0

Since (by assumption) P is independent of S, so must λ be and the solution
is P(t) = exp

{
− ∫ T

t (r + λ(t′)) dt′
}
. We immediately recognize λ(t) as the

hazard rate of the Poisson process (the pseudo-probability per unit time
that a jump occurs). We emphasize pseudo-probability because this is in no
sense the actual probability (whatever that means) that a jump will occur.
It is the value today of a financial asset.

Uncertain Jump Size

To derive equation (5.2), we assumed that we knew in advance what the
jump size would be. Of course this is neither realistic nor practical. Jump
diffusion models typically specify a distribution of jump sizes. How would
this change equation (5.2)?
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It is easy to see that adding another jump with a different size would
require one more hedging asset in the replication argument. Allowing the
jump size to be any real number with some distribution would require an
infinite number of hedging assets. We see that in this case, the replication
argument falls apart: Such jump diffusion models have no replicating hedge.

This is the major drawback of jump diffusion models. There is no
replicating portfolio and so there is no self-financing hedge even in the limit
of continuous trading. However, looking on the bright side, if we believe
in jumps (as we must given the empirical evidence), options are no longer
redundant assets that may be replicated using stocks and bonds and by
extension, option traders can be seen to have genuine social value.

To extend equation (5.2) to the case of jumps of uncertain size, we
assume that the risk-neutral process is still jump diffusion with jumps
independent of the stock price. Under the risk-neutral measure, the expected
return of any asset is the risk-free rate. Taking expectations of equation
(5.1), we find that

E[dS] = r S dt = µ S dt + E[J − 1] S λ(t) dt

It follows that the risk-neutral drift is given by µ = r + µJ with

µJ = −λ(t) E[J − 1]

Just as in the derivation of the Black-Scholes equation, we must have
E[dV] = r V dt. Applying Itô’s lemma and taking expectations under the
risk-neutral measure give

E[dV] = r V dt

=
{

∂V
∂t

+ r S
∂V
∂S

+ 1
2

σ 2 S2 ∂2V
∂S2

}
dt

+ λ(t) E[V(JS, t) − V(S)] dt + µJ S
∂V
∂S

dt

Rearranging, we obtain the following equation for valuing financial assets
under jump diffusion:

∂V
∂t

+ 1
2

σ 2 S2 ∂2V
∂S2 + rS

∂V
∂S

− rV

+ λ(t)
{

E [V(JS, t) − V(S, t)] − E [J − 1] S
∂V
∂S

}
= 0 (5.3)
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Once again for emphasis, the expectations in equation (5.3) are under
the risk-neutral measure. In order to value derivative assets, we concern
ourselves only with the values that the market assigns to claims that pay in
the event of a jump; actual probabilities don’t enter at all.

CHARACTERISTIC FUNCTION METHODS

Unlike the partial differential equations (PDEs) we are used to solving in
derivatives valuation problems, equation (5.3) is an example of a partial
integro-differential equation (PIDE). The integration over all possible jump-
sizes introduces nonlocality. Such equations can be solved using extensions
of numerical PDE techniques but the most natural approach is to use Fourier
transform (characteristic function) methods.

First, we review Lévy processes.

Lévy Processes
With constant hazard rate λ, the logarithmic version of the jump diffusion
process (5.1) for the underlying asset is an example of a Lévy process.

Definition A Lévy process is a continuous in probability, càdlàg stochas-
tic process x(t), t > 0 with independent and stationary increments and
x(0) = 0.

It turns out that any Lévy process can be expressed as the sum of a linear
drift term, a Brownian motion, and a jump process. This plus the indepen-
dent increment property leads directly to the following representation for
the characteristic function.

The Lévy-Khintchine Representation If xt is a Lévy process, and if the Lévy
density µ(χ ) is suitably well behaved at the origin, its characteristic function
φT(u) := E

[
eiuxT

]
has the representation

φT(u) = exp
{

iuωT − 1
2

u2 σ 2T + T
∫ [

eiuχ − 1
]
µ(χ ) dχ

}
(5.4)

To get the drift parameter ω, we impose that the risk-neutral expectation of
the stock price be the forward price. With our current assumption of zero
interest rates and dividends, this translates to imposing that

φT(−i) = E [exT ] = 1

Here,
∫

µ(χ ) dχ = λ, the Poisson intensity or mean jump arrival rate, also
known as the hazard rate.
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Examples of Characteristic Functions for Specific Processes
Before proceeding to solve equation (5.3) for a particular specification of
the jump process, we exhibit some examples of characteristic functions for
processes with which we are already familiar.

Example 1: Black-Scholes The characteristic function for a exponential
Brownian motion with volatility σ is given by

φT(u) = E

[
eiuxT

]
= exp

{
−1

2
u(u + i)σ 2T

}

We can get this result by performing the integration explicitly or directly
from the Lévy-Khintchine representation.

Example 2: Heston The Heston process is very path-dependent; increments
are far from independent and it is not a Lévy process. However, we have
already computed its characteristic function. From Chapter 2, we see that
the characteristic function of the Heston process is given by (2.15)

φT(u) = exp {C(u, T) v + D(u, T) v}
with C(u, T) and D(u, T) as defined there.

Example 3: Merton’s Jump Diffusion Model Finally, this is the case we are
really interested in. The jump-size J is assumed to be lognormally distributed
with mean log-jump α and standard deviation δ so that the stock price
follows the SDE

dS = µS dt + σS dZ + (eα+δε − 1)S dq

with ε ∼ N(0, 1). Then

µ(χ ) = λ√
2πδ2

exp
{
− (χ − α)2

2δ2

}

By applying the Lévy-Khintchine representation (5.4), we see that the
characteristic function is given by

φT(u) = exp
{

iuωT − 1
2

u2 σ 2T + T
∫ [

eiuχ − 1
] λ√

2πδ2

exp
{
− (χ − α)2

2δ2

}
dχ

}

= exp
{

iuωT − 1
2

u2 σ 2T + λT
(
eiuα−u2δ2/2 − 1

)}
(5.5)
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To get ω, we impose φT(−i) = 1 so that

exp
{
ωT + 1

2
σ 2T + λT

(
eα+δ2/2 − 1

)}
= 1

which gives

ω = −1
2

σ 2 − λ
(
eα+δ2/2 − 1

)

Unsurprisingly, we get the lognormal case back when we set α = δ = 0.
Alternatively, we can get the characteristic function for jump diffusion

directly by substituting φT(u) = eψ(u) T into equation (5.3). With y ∼ N(α, δ),
we obtain

ψ(u) = −1
2

u(u + i)σ 2 − λ
{
E

[
eiuy − 1

]
+ iu E [ey − 1]

}

= −1
2

u(u + i)σ 2 − λ
{(

eiuα−u2 δ2/2 − 1
)

+ iu
(
eα+δ2/2 − 1

)}

which gives an expression for φT(u) identical to the one already derived in
equation (5.5).

Computing Option Prices from the Characteristic Function

It turns out (see Carr and Madan (1999) and Lewis (2000)) that it is quite
straightforward to get option prices by inverting the characteristic function
of a given stochastic process if it is known in closed form.

The formula we will use is a special case of formula (2.10) of Lewis. As
usual, we assume zero interest rates and dividends:

C(S, K, T) = S −
√

SK
1
π

∫ ∞

0

du

u2 + 1
4

Re
[
e−iukφT (u − i/2)

]
(5.6)

with k = log
(K

S

)
. We now proceed to prove this formula.

Proof of (5.6)

A covered call position has the payoff min[ST , K] where ST is the stock
price at time T and K is the strike price of the call. Consider the Fourier
transform of this covered call position G(k, τ ) with respect to the log-strike
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k := log (K/F) defined by

Ĝ(u, τ ) =
∫ ∞

−∞
eiukG(k, τ ) dx

Denoting the current time by t and expiration by T, and setting interest
rates and dividends to zero as usual, we have that

1
S

Ĝ(u, T − t) =
∫ ∞

−∞
eiuk

E

[
min[exT , ek)+]|xt = 0

]
dk

= E

[∫ ∞

−∞
eiuk min[exT , ek)+] dk

∣∣
∣∣ xt = 0

]

= E

[∫ xT

−∞
eiukek dk +

∫ ∞

xT

eiukexT dk

∣
∣∣
∣ xt = 0

]

= E

[
e(1+iu)xT

1 + iu
− e(1+iu)xT

iu

∣
∣∣
∣
∣
xt = 0

]

only if 0 < Im [u] < 1!

= 1
u(u − i)

E

[
e(1+iu)xT

∣
∣
∣ xt = 0

]

= 1
u(u − i)

φT(u − i)

by definition of the characteristic function φT(u). Note that the transform
of the covered call value exists only if 0 < Im[u] < 1. It is easy to see that
this derivation would go through pretty much as above with other payoffs
though it is key to note that the region where the transform exists depends
on the payoff.

To get the call price in terms of the characteristic function, we express
it in terms of the covered call and invert the Fourier transform, integrating
along the line Im[u] = 1/2.∗ Then

C(S, K, T) = S − S
1

2π

∫ ∞+i/2

−∞+i/2

du
u(u − i)

φT(u − i) e−iku

= S − S
1

2π

∫ ∞

−∞

du
(u + i/2)(u − i/2)

φT(u − i/2) e−ik(u+i/2)

∗That’s why we chose to express the call in terms of the covered call whose transform
exists in this region. Alternatively, we could have used the transform of the call price
and Cauchy’s Residue Theorem to do the inversion.
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= S −
√

SK
1
π

∫ ∞

0

du

u2 + 1
4

Re
[
e−iukφT (u − i/2)

]

with k = log
(K

S

)
.

Computing Implied Volatility

Equation (5.6) allows us to derive an elegant implicit expression for the
Black-Scholes implied volatility of an option in any model for which the
characteristic function is known.

Substituting the characteristic function for the Black-Scholes process
into (5.6) gives

CBS(S, K, T) = S −
√

SK
1
π

∫ ∞

0

du

u2 + 1
4

Re
[
e−iuke

− 1
2

(
u2+ 1

4

)
σ2

BST
]

Then, from the definition of implied volatility, we must have

∫ ∞

0

du

u2 + 1
4

Re
[
e−iuk

(
φT (u − i/2) − e

− 1
2

(
u2+ 1

4

)
σ2

BST
)]

= 0 (5.7)

Equation (5.7) gives us a simple but implicit relationship between the
implied volatility surface and the characteristic function of the underlying
stock process. In particular, we may efficiently compute the structure of
at-the-money implied volatility and the at-the-money volatility skew in
terms of the characteristic function (at least numerically) without having to
explicitly compute option prices.

Computing the At-the-Money Volatility Skew

Assume φT does not depend on spot S and hence not on k. (This is the case
in all examples we have in mind.) Then differentiating (5.7) with respect to
k and evaluating at k = 0 give

∫ ∞

0
du

{
u Im [φT(u − i/2)]

u2 + 1
4

+ 1
2

∂wBS

∂k

∣
∣∣
∣
k=0

e
− 1

2

(
u2+ 1

4

)
wBS(0,T)

}

= 0

Then, integrating the second term explicitly, we get

∂σBS

∂k

∣∣
∣
∣
k=0

= −e
σ2
BST
8

√
2
π

1√
T

∫ ∞

0
du

u Im [φT(u − i/2)]

u2 + 1
4

(5.8)
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Example 1: Black-Scholes

Im [φT(u − i/2)] = Im
[
e
− 1

2

(
u2+1/4

)
σ2T

]
= 0

Then, in the Black-Scholes case,

∂σBS(k, T)
∂k

∣∣
∣∣
k=0

= 0 ∀T > 0

Example 2: Merton’s Jump Diffusion Model (JD) Write

φT(u) = e− 1
2 u(u+i)σ2T eψ(u)T

with ψ(u) = −λiu
(
eα+δ2/2 − 1

)
+ λ

(
eiuα−u2δ2/2 − 1

)

Then

Im [φT(u − i/2)] = e
− 1

2

(
u2+ 1

4

)
σ2T

Im
[
eψ(u−i/2)T

]

How Jumps Impact the Volatility Skew

By substituting the jump diffusion characteristic function (5.5) into our
expressions (5.7) and (5.8) for the implied volatility and ATM volatility
skew respectively, we can investigate the impact of jumps on the volatility
surface for various numerical choices of the parameters.

Skew Behavior under Jump Diffusion as T → 0 Consider the value of an
option under jump diffusion with a short time �T to expiration. Because
the time to expiration is very short, the probability of having more than
one jump is negligible. Because the jump is independent of the diffusion,
the value of the option is just a superposition of the value conditional on
the jump and the value conditional on no jump. Without loss of gener-
ality, suppose the stock price jumps down from S to JS when the jump
occurs. Then

CJ(S, K, �T) ≈ (1 − λ�T) CBS(SeµJ�T, K, �T) + λ�T C(JS, K, �T)

= CBS(SeµJ�T , K, �T) + O(�T) (5.9)

where J is the size of the jump, CJ(.) represents the value of the option under
jump diffusion and µJ = −λ(eα+δ2/2 − 1) is the adjustment to the risk-neutral
drift for jumps. Here, we neglected the second term in equation (5.9) by
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assuming that the mean jump is downward and the probability of the option
being in-the-money is negligibly small after the jump.

We want to compute the at-the-money variance skew

∂σ 2
BS

∂k

∣
∣∣
∣
∣
k=0

To do this note that

∂CJ

∂k
= ∂CBS

∂k
+ ∂CBS

∂σBS

∂σBS

∂k

so

∂σBS

∂k

∣
∣
∣∣
k=0

=
[
∂CJ

∂k
− ∂CBS

∂k

] (
∂CBS

σBS

)−1
∣∣
∣∣
∣
k=0

Now, for an at-the-money option,

∂CBS

σBS

∣∣
∣
∣
k=0

≈ S√
2π

√
�T

and from equation (5.9)

1
S

[
∂CJ

∂k
− ∂CBS

∂k

]∣
∣
∣∣
k=0

≈ −N
(

+ µJ�T

σ
√

�T
− 1

2
σ

√
�T

)
+ N

(
−1

2
σ

√
�T

)

≈ − 1√
2π

µJ

σ

√
�T

Then, for small �T,

∂σ 2
BS

∂k

∣
∣∣
∣
∣
k=0

≈ −2 µJ (5.10)

We see that in a jump diffusion model, if the mean jump size is
sufficiently large relative to its standard deviation, the at-the-money variance
skew is given directly by twice the jump compensator µJ.

To see how well these approximate computations explain Figures 5.2
and 5.3, the characteristic time T∗ and the time zero skew ψ0 for each choice
of parameters are presented in Table 5.3.
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TABLE 5.2 Parameters used to generate Figures 5.2
and 5.3.

σ λ α δ

Solid 0.2 0.5 −0.15 0.05
Dashed 0.2 1.0 −0.07 0.00
Long-dashed 0.2 1.0 −0.07 0.05

�0.4 �0.2 0.2 0.4
Log�strike

0.22

0.24

0.26

0.28

0.3

BS Volatility

FIGURE 5.2 The 3-month volatility smile for various choices of jump diffusion
parameters.

The Decay of Skew Due to Jumps We can see from Figure 5.3 that the
volatility skew decays very rapidly in a jump diffusion model beyond a
certain time to expiration. To estimate this characteristic time, we note that
prices of European options depend only on the final distribution of stock
prices and if the jump size is of the order of only one standard deviation
σ

√
T, a single jump has little impact on the shape of this distribution. From

the discussion in the previous section, we know that the T → 0 skew is
given by the jump compensator µJ. We can generate a given µJ either with
frequent small jumps or with infrequent big jumps. If there are many small
jumps, returns will be hard to distinguish from normal over a reasonable
time interval. On the other hand, if there are infrequent big jumps and time
to expiration is sufficiently short, below some characteristic time T∗ say,
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0.2 0.4 0.6 0.8 1
T

�0.14

�0.12

�0.1

�0.08

�0.06

�0.04

�0.02

ATM Variance Skew

FIGURE 5.3 The term structure of ATM variance skew for various choices of jump
diffusion parameters.

TABLE 5.3 Interpreting Figures 5.2 and 5.3.

σ λ α δ T∗ ψ0

Solid 0.2 0.5 −0.15 0.05 0.69 −0.133
Dashed 0.2 1.0 −0.07 0.00 0.34 −0.135
Long-dashed 0.2 1.0 −0.07 0.05 0.33 −0.133

we should be able to detect the presence of the jump in the final return
distribution. We compute T∗ by equating

−
(
eα+δ2/2 − 1

)
≈ σ

√
T∗

To see this explicitly, Figure 5.4 shows the terminal return distributions
for various expirations corresponding to the solid-line parameters from
Table 5.2:

σ = 0.2; λ = 0.5; α = −0.15; δ = 0.05.

We see that as time to expiration T increases, the return distribution looks
more and more normal so that at the characteristic time T∗, it’s hard to tell
that there is a jump.
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T � 6 months T � 8 months

T � 2 months T � 4 months

FIGURE 5.4 As time to expiration increases, the return distribution looks more and
more normal. The solid line is the jump diffusion pdf and for comparison, the
dashed line is the normal density with the same mean and standard deviation. With
the parameters used to generate these plots, the characteristic time T∗ = 0.67.

Summarizing the results, we note that the jump compensator (or
expected move in the stock price due to jumps) drives the skew in the
short-expiration limit while the decay of ATM skew is driven by the
expected jump size.

STOCHASTIC VOLATILITY PLUS JUMPS

Stochastic Volatility Plus Jumps in the Underlying Only (SVJ)
Because jumps generate a steep short-dated skew that dies quickly with time
to expiration and stochastic volatility models don’t generate enough skew
for very short expirations but more or less fit for longer expirations (see
Chapter 3), it is natural to try to combine stock price jumps and stochastic
volatility in one model.

Suppose we add a simple Merton-style lognormally distributed jump
process to the Heston process so that

dS = µ S dt + √
v S dZ1 + (

eα+δ ε − 1
)

S dq

dv = −λ(v − v) dt + η
√

v dZ2
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with
〈
dZ1 dZ2

〉 = ρ dt, ε ∼ N(0, 1) and as in the jump diffusion case, the
Poisson process

dq =
{

0 with probability 1 − λJ dt
1 with probability λJ dt

where λJ is the jump intensity (or hazard rate). By substitution into the
valuation equation, it is easy to see that the characteristic function for this
process is just the product of Heston and jump characteristic functions.
Specifically,

φT(u) = eC(u,T) v+D(u,T) v eψ(u)T

with ψ(u) = −λJiu
(
eα+δ2/2 − 1

)
+ λJ

(
eiuα−u2δ2/2 − 1

)
and C(u, T), D(u, T)

are as before.
Again, we may substitute this functional form into equations (5.7)

and (5.8) to get the implied volatilities and at-the-money volatility skew
respectively for any given expiration.

Figure 5.5 plots the at-the-money variance skew corresponding to the
Bakshi-Cao-Chen SVJ model fit together with the sum of the Heston and
jump diffusion at-the-money variance skews with the same parameters (see
Table 5.4). We see that (at least with this choice of parameters), not only
does the characteristic function factorize but the at-the-money variance
skew is almost additive. One practical consequence of this is that the
Heston parameters can be fitted fairly robustly using longer dated options
and then jump parameters can be found to generate the required extra skew
for short-dated options. Figure 5.6 plots the at-the-money variance skew
corresponding to the SVJ model vs the Heston model skew for short-dated
options, highlighting the small difference.

However in the SVJ model, after the stock price has jumped, the
volatility will stay unchanged because the jump process is uncorrelated with
the volatility process. This is inconsistent with both intuition and empirically
observed properties of the time series of asset returns; in practice, after a large
move in the underlying, implied volatilities always increase substantially
(i.e., they jump).

Some Empirical Fits to the SPX Volatility Surface

There are only four parameters in the jump diffusion model: the volatility
σ , λJ, α and δ so it’s not in principle difficult to perform a fit to option
price data. The SVJ model obviously fits the data better because it has more
parameters and it’s not technically that much harder to perform the fit.
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2 4 6 8 10

�0.15

�0.125

�0.1

�0.075

�0.05

�0.025

FIGURE 5.5 The solid line is a graph of the at-the-money variance skew in the SVJ
model with BCC parameters vs. time to expiration. The dashed line represents the
sum of at-the-money Heston and jump diffusion skews with the same parameters.

0.2 0.4 0.6 0.8 1

�0.15

�0.125

�0.1

�0.075

�0.05

�0.025

FIGURE 5.6 The solid line is a graph of the at-the-money variance skew in the SVJ
model with BCC parameters versus time to expiration. The dashed line represents
the at-the-money Heston skew with the same parameters.

Various authors, for example, Andersen and Andreasen (2000) and
Duffie, Pan, and Singleton (2000), have fitted JD and SVJ models to SPX
data. Their results are summarized in Table 5.4.

Note first that these estimates all relate to different dates so in principle,
we can’t expect the volatility surfaces they generate to be the same shape.
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Nevertheless, the shape of the SPX volatility surface doesn’t really change
much over time so it does make some sense to compare them.

A Note on the AA Estimate The one estimate that sticks out is obviously the
AA JD fit with a huge expected jump size of −0.8898. At first sight, it might
seem disconcerting that imputing jump parameters from implied volatility
surfaces could give rise to such wildly different parameter estimates. On
closer inspection of the Andersen and Andreasen (2000) paper however,
the AA jump size estimate turns out to have been driven by requiring the
fit to match the 10-year volatility skew and as pointed out earlier, for the
characteristic time T∗ to be of the order of 10 years, we need a huge jump
size. However, the overall AA fit of JD to the implied volatility surface is
very poor; JD is completely misspecified and we can confidently reject JD
with AA parameters.

Stochastic Volatility with Simultaneous Jumps in Stock Price
and Volatility (SVJJ)
As we noted earlier in our discussion of the SVJ model, it is unrealistic to
suppose that the instantaneous volatility wouldn’t jump if the stock price
were to jump. Conversely, adding a simultaneous upward jump in volatility
to jumps in the stock price allows us to maintain the clustering property
of stochastic volatility models: Recall that ‘‘large moves follow large moves
and small moves follow small moves.’’

In Matytsin (1999) and Matytsin (2000), Andrew Matytsin describes a
model that is effectively SVJ with a jump in volatility: jumps in the stock
price are accompanied by a jump v 	→ v + γv in the instantaneous volatility.
In that case, the characteristic function is

φT(u) = exp
{
Ĉ(u, T) v + D̂(u, T) v

}
(5.11)

with C(u, T) and D(u, T) given by

Ĉ(u, T) = C(u, T) + λJ T
[
eiuα−u2δ2/2I(u, T) − 1 − i u

(
eα+δ2/2 − 1

)]

D̂(u, T) = D(u, T)

where

I(u, T) = 1
T

∫ T

0
eγvD(u,t)dt

= − 2γv

p+p−

∫ −γvD(u,T)

0

e−zdz
(1 + z/p+)(1 + z/p−)
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and

p± = γv

η2 (β − ρηui ± d)

In the limit γv → 0, we have I(u, T) → 1 and by inspection, we retrieve
the SVJ model. Also, in the limit T → 0, I(u, T) → 1 and in that limit,
the SVJJ characteristic function is identical to the SVJ characteristic func-
tion. Alternatively, following our earlier heuristic argument, the short-dated
volatility skew is a function of the jump compensator only and this com-
pensator is identical in the SVJ and SVJJ cases. Intuitively, when the stock
price jumps, the volatility jumps but this has no effect in the T → 0 limit
because by assumption, an at-the-money option is always out-of-the-money
after the jump and its time value is zero no matter what the volatility is.

On the other hand, in the T → ∞ limit, the skew should increase
because the effective volatility of volatility increases due to (random) jumps
in volatility.

By substituting the SVJJ characteristic function (5.11) into equation
(5.8) for the implied volatility skew with the BCC parameters plus a
variance jump of γv = 0.1, we obtain the graphs shown in Figures 5.7 and
5.8. We note that the term structure of volatility skew is in accordance
with our intuition. In particular, adding a jump in volatility doesn’t help
explain extreme short-dated volatility skews. However relative to stochastic

2 4 6 8 10

�0.16

�0.14

�0.12

�0.08

�0.06

�0.04

�0.02

FIGURE 5.7 The solid line is a graph of the at-the-money variance skew in the SVJJ
model with BCC parameters versus time to expiration. The short-dashed and
long-dashed lines are SVJ and Heston skew graphs respectively with the same
parameters.
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�0.075
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�0.025

FIGURE 5.8 This graph is a short-expiration detailed view of the graph shown in
Figure 5.7.

volatility and SVJ models, it does reduce the volatility of volatility required
to fit longer-dated volatility skews even if that comes at the expense of
a seemingly even more unreasonable estimate for the average stock price
jump.

SVJ Fit to the September 15, 2005, SPX Option Data

In Table 5.5, we list Heston parameters obtained from a fit to the Septem-
ber 15, 2005, SPX volatility surface graphed in Figure 3.2.

As in Chapter 3, a good way to see how well the SVJ model fits the
empirical implied volatility surface overall is to compare the two volatility
surfaces graphically. We see from Figure 5.9 that in contrast to the Heston

TABLE 5.5 SVJ fit to the SPX
surface as of the close on
September 15, 2005.

v 0.0158
v 0.0439
η 0.3038
ρ −0.6974
λ 0.5394
λJ 0.1308
δ 0.0967
α −0.1151
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0.50.2500.250.5

Log strike k0.5

1

1.5

�0.5

�0.25

0

0.25

0.5

Log�strike k
0.5

1

1.5

Time to expiry

Time to expiry

FIGURE 5.9 Comparison of the empirical SPX implied volatility surface with the
SVJ fit as of September 15, 2005. From the two views presented here, we can see
that in contrast to the Heston case, the major features of the empirical surface are
replicated by the SVJ model. The paler upper surface is the empirical SPX volatility
surface and the darker lower one the SVJ fit. The SVJ fit surface has again been
shifted down by five volatility points for ease of visual comparison.
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case graphed in Figure 3.6, the SVJ model succeeds in generating a volatility
surface that has the main features of the empirical surface although the fit is
not perfect. Again, for longer expirations, the fit is pretty good.

Why the SVJ Model Wins

We have already remarked that SVJ fits the observed implied volatility
surface reasonably well in contrast to the Heston model. The reader might
wonder whether making dynamics more reasonable by including jumps in
volatility as in the SVJJ model might generate surfaces that fit even better.
Sadly, we can see from Figures 5.7 and 5.8 that not only does the SVJJ
model have more parameters than the SVJ model, but it’s harder to fit to
observed option prices. The SVJ model thus emerges as a clear winner in
the comparison between Heston, SVJ and SVJJ models.



CHAPTER 6
Modeling Default Risk

I t’s clear from Chapter 5 that jumps are required to explain the shape
of the implied volatility surface. In the single-stock case, there is a much

more direct and obvious explanation for the volatility skew: default risk.
We shall see that if the credit spread—and so default risk—is high, implied
volatility skews can be extreme.

MERTON’S MODEL OF DEFAULT

As we have come to expect, Wilmott (2000) gives an excellent introduction
to the modeling of default risk. There are two broad types of default
risk model used by practitioners: so-called structural models and so-called
reduced form models. I found the following useful description by Jabairu
Stork on Wilmott.com:

A structural model (of firm default) postulates that default occurs
when some economic variable (like firm value) crosses some barrier
(like debt value), typically using a contingent claims model to
support this assertion and to find the probability of default. Both
H-W and Creditgrades∗ are models of this form.

A reduced form model models default as a random occur-
rence—there is no observable or latent variable which triggers the
default event, it just happens. The Duffie and Singleton (1999)
model is a reduced form model. These models are easy to calibrate,
but because they lack any ability to explain why default happens,
I think they make most people nervous. Basically, you estimate an
intensity for the arrival of default (possibly as a function of time,
possibly as a stochastic process, possibly as a function of other
things.)

∗See Finkelstein (2002) and Lardy (2002).

74
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The model introduced in Merton (1974) is the simplest possible
example of a reduced form model. It supposes that there some proba-
bility λ(t) per unit time of the stock price jumping to zero (the hazard
rate), whereupon default occurs. Jumps are independent of the stock price
process. Then, contingent claims must satisfy the jump diffusion valuation
equation (5.3) with E[J] = 0. It is particulary straightforward to value a
call option because for a call, V(SJ, t) = 0. Substitution into equation (5.3)
gives

∂V
∂t

+ 1
2

σ 2 S2 ∂2V
∂S2 + rS

∂V
∂S

− rV − λ(t)
{

V − S
∂V
∂S

}
= 0 (6.1)

We immediately recognize equation (6.1) as the Black-Scholes equation
with a shifted interest rate r + λ. Its solution is of course the Black-Scholes
formula with this shifted rate.

The meaning of this shifted rate is particularly clear if we assume no
recovery (in the case of default) on the issuer’s bonds so that B(JS, t) = 0.
Then, the risky bond price B(t, T) must also satisfy equation (6.1) with the
solution

B(t, T) = e− ∫ T
t (r(s)+λ(s))ds

We identify the shifted rate r + λ with the yield (risk-free rate plus credit
spread) of a risky bond. The situation is a little more complicated (but not
too much more) if we allow some recovery R on default.

Intuition

It may at first seem surprising that the Black-Scholes formula could be a
solution of an equation that has a jump to zero (the so-called jump to ruin)
in it. There is an economic reason for this, however.

Recall that the derivation of the Black-Scholes formula involves the
construction of a replicating portfolio for a call option involving just
stock and risk-free bonds. Suppose instead, we were to construct this
portfolio using stock and risky bonds. So long as there is no jump
to ruin, the derivation goes through as before and the portfolio is self-
financing. If there is a jump to ruin, assuming no recovery on the bond,
both the bond and the stock jump to zero—the portfolio is still self-
financing!

What would happen if we were to hedge a short call option position
using stock and risk-free bonds following the standard Black-Scholes hedg-
ing recipe (as most practitioners actually do)? We would be long stock and
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short risk-free bonds and, in the case of default, the call would end up
worthless, the stock would be worthless, and we would get full recovery on
our risk-free bonds. In other words, on default, we would have a windfall
gain. On the other hand, relative to hedging with risky bonds, we would
forego the higher carry (or yield).

Implications for the Volatility Skew

All issuers of stock have some probability of defaulting. There is a very active
credit derivative market that prices default-risk (see Default-Risk.com for
background). Black-Scholes implied volatilities are computed by inserting
the risk-free rate into the Black-Scholes formula. However, as we just
showed, in Merton’s model, call option prices are correctly obtained by
substituting the risky rate into the Black-Scholes formula. This induces a
skew that can become extremely steep for short-dated options on stocks
whose issuers have high credit spreads.

In Figure 6.1, we graph the implied volatility for various issuer credit
spreads assuming that options are correctly priced using the Merton
model. We see that the downside skew that the model generates can be
extreme.

�0.3 �0.2 �0.1 0.1 0.2 0.3
Log�strike

0.25

0.3

0.35

0.4

Implied Volatility

FIGURE 6.1 Three-month implied volatilities from the Merton model assuming a
stock volatility of 20% and credit spreads of 100 bp (solid), 200 bp (dashed) and
300 bp (long-dashed).
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CAPITAL STRUCTURE ARBITRAGE

Capital structure arbitrage is the term used to describe the fashion for
arbitraging equity claims against fixed income and convertible claims. At
its most sophisticated, practitioners build elaborate models of the capital
structure of a company to determine the relative values of the various
claims—in particular, stock, bonds, and convertible bonds. At its simplest,
the trader looks to see if equity puts are cheaper than credit derivatives and
if so buys the one and sells the other. To understand this, we review put-call
parity.

Put-Call Parity

We saw previously that in the Merton model the value of an equity call
option is given by the Black-Scholes formula for a call with the risk-free
rate replaced by the risky rate. What about put options? To make the
previous arguments work, the put option would need to be worthless
after the jump to ruin occurs. That would be the case if the put in
question were to be written by the issuer of the stock. In that case, when
default occurs, assuming zero recovery, the put options would also be
worth nothing. So the Black-Scholes formula for a put with the risk-free
rate replaced by the risky rate does value put options written by the
issuer.

What about put options written by some default-free counterparty (for
example, an exchange)? When default occurs, this put option should be
worth the strike price. We already know how to value a call written by a
default-free counterparty; by definition, the issuer of a stock cannot default
on a call on his or her own stock, so the value of a call written by the issuer
of the stock equals the value of a call written by a default-free counterparty.
We obtain the value of a put by put-call parity: using risk-free bonds in the
case of the default-free counterparty and risky bonds in the case of the risky
counterparty.

Denoting the value of a risk-free put, call and bond by P0, C0, and B0
and the value of risky claims on the issuer (I) of the stock by PI, CI, and BI,
we obtain

P0 = C0 + KB0 − S (from put-call parity with risk-free bonds)

= CI + KB0 − S (risk-free and issuer-written calls have the same value)

= PI + S − KBI + KB0 − S (from put-call parity with risky bonds)

= PI + K(B0 − BI)
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As we would expect, the risk-free put is worth more than the risky put.
The excess value is equal to the difference in risky and risk-free bond prices
(times the strike price). With maturity-independent rates and credit spreads
for clarity and setting t = 0, we obtain

B0 − BI = e−rT
(
1 − e−λT

)

which is just the discounted probability of default in the Merton model.
In words, the extra value is the strike price times the (pseudo-) probability
that default occurs. This payoff is also more or less exactly the payoff of a
default put in the credit derivatives market.

The Arbitrage

Referring back to Figure 6.1, we see that the downside implied volatility
skew can be extreme for stocks whose issuers have high credit spreads.
Equity option market makers (until recently at least) made do with heuristic
rules to determine whether a skew looked reasonable or not; implied
volatility skews of the magnitude shown in Figure 6.1 seemed just too
extreme to be considered reasonable. Taking advantage of the market
maker’s lack of understanding, the trader buys an equity option on the
exchange at a ‘‘very high’’ (but, of course, insufficiently high) implied
volatility and sells a default put on the same stock in the credit derivatives
market locking in a risk-free return.

This actually happened and hedge funds were able to lock in risk-free
gains for a period of time. During this period, market makers saw what
were to them extremely steep volatility skews get even steeper and they lost
money.

Ultimately, skews became so steep that the hedge funds made money
risk-free the other way round—through put spreads. A popular trade for
a hedge fund was to buy one at-the-money put and sell two puts struck at
half the current stock price. As we can see from Figure 6.2, this strategy has
only positive payoffs so if this can be traded flat or for a net credit, it is a
pure arbitrage.

The life of a market maker is not a happy one—it seems that graduate
degree level understanding is required to avoid getting arbitraged!

We see that there is a lower bound to the price of a put given by the
credit default swap market and an upper bound given by spread arbitrage.
To make this more concrete, consider the upper and lower bounds for a 0.5
strike one-year option with credit spreads of 100 bp, 200 bp and 300 bp
displayed in Table 6.1.
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FIGURE 6.2 Payoff of the 1 × 2 put spread combination: buy one put with strike
1.0 and sell two puts with strike 0.5.

TABLE 6.1 Upper and lower arbitrage bounds
for one-year 0.5 strike options for various credit
spreads (at-the-money volatility is 20%).

Credit Spread (bp) Lower Bound Upper Bound

250 0.0123 0.0398
500 0.0244 0.0398
750 0.0361 0.0398

Assuming 20% at-the-money volatility, the upper bound is computed
as half the value of an at-the-money option which is 0.0398 in each case.
On the other hand, the lower bounds are just the present value of the
strike price∗ times the probability of default. We see that the lower bound
increases steadily towards the upper bound as the credit spread increases for
fixed at-the-money implied volatility. It’s easy to see how a market maker
could have exceeded the upper bound given the steady increase in skews.

LOCAL AND IMPLIED VOLATILITY
IN THE JUMP-TO-RUIN MODEL

As noted already, the value of a call option is given by the Black-Scholes
formula with the interest rate shifted by the hazard rate.

∗We are still assuming zero rates so the PV factor is always one.
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We recall formula (1.6) for local volatility from Chapter 1:

σ 2
loc(K, T, S) =

∂C
∂T

1
2 K2 ∂2C

∂K2

(6.2)

Because the Black-Scholes formula C for a call option is linearly
homogenous in the stock price S and the strike price K, we have the
relation

C = S
∂C
∂S

+ K
∂C
∂K

It follows that

K2 ∂2C
∂K2 = S2 ∂2C

∂S2

Also, in the jump-to-ruin case with zero interest rates and dividends, we
have

∂C
∂T

= 1
2

σ 2 S2 ∂2C
∂S2 + λ S

∂C
∂S

− λ C

where σ is the volatility (diffusion coefficient) and λ is the hazard rate.
Rewriting this in terms of derivatives with respect to K gives

∂C
∂T

= 1
2

σ 2 K2 ∂2C
∂K2 − λ K

∂C
∂K

Substituting into equation (6.2) gives

σ 2
loc(K, T, S) = σ 2 − λ

K ∂C
∂K

1
2 K2 ∂2C

∂K2

= σ 2 + 2 λ σ
√

T
N(d2)
N′(d2)

with

d2 = log S/K + λ T

σ
√

T
− σ

√
T

2
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For very low strikes K/S � 1, we have d2 � 0 and

N(d2) ≈ 1

N′(d2) = 1√
2π

e−d2
2/2

Then, for very low strikes,

σ 2
loc(K, T, S) ≈ σ 2 + 2 λ σ

√
T

√
2π e+d2

2/2

Figure 6.3 shows a typical jump-to-ruin local variance surface. From
Chapter 3, we know that implied variance (volatility squared) is a gamma-
weighted average of local variances. It follows that implied volatility in
the jump-to-ruin model increases very fast as the strike decreases from
at-the-money and tends to the constant σ for high strikes—exactly con-
sistent with Figure 6.1 and quite different from the stochastic volatility
case.
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FIGURE 6.3 Local variance plot with λ = 0.05 and σ = 0.2.
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THE EFFECT OF DEFAULT RISK ON OPTION PRICES

To make the foregoing a little more concrete, consider the implied volatilities
of January-05 options on GT (Goodyear Tire and Rubber) as of October
20, 2004.

We noted earlier that the price of a European call option in the
Merton jump-to-ruin model is given by the Black-Scholes formula with
a shifted interest rate. Our experiment is to find the shifted rate and
constant volatility that generate prices closest to the European option
prices∗ computed using these implied volatilities (i.e., the best fit parameters
of the Merton model).

We find the best fit parameters:

λ = 0.01934

σ = 0.3946

With these parameters, we may compute call option prices and compute the
standard (risk-free) Black-Scholes implied volatilities. The results are shown
in Table 6.2.

In fact, because GT credit spreads are very high, the Merton model fits
the left wing of the volatility skew very well as shown in Figure 6.4.

TABLE 6.2 Implied volatilities for January 2005 options on GT as of October 20,
2004 (GT was trading at 9.40). Merton vols are volatilities generated from the
Merton model with fitted parameters.

Strike Bid Vol. Ask Vol. Merton Vol.

2.50 147.2% 145.2%
5.00 73.6% 88.3% 85.8%
7.50 48.3% 58.2% 51.2%
10.00 38.1% 45.0% 43.1%
12.50 41.2% 48.1% 41.5%
15.00 51.2% 54.3% 40.9%
17.50 64.5% 66.5% 40.6%
20.00 77.3% 40.0%
25.00 94.7% 40.0%
30.00 108.3% 40.0%

∗Note that traded options are American. We are making the reasonable assumption
here that American implied volatilities are close to European implied volatilities.



Modeling Default Risk 83

�1 �0.5 0.5 1
Log strike

0.2

0.4

0.6

0.8

1

1.2

1.4

Implied Vol

FIGURE 6.4 The triangles represent bid and offer volatilities and the solid line is
the Merton model fit.

However, the Merton model produces a skew that is a little too steep for
low strikes and as predicted generates no right wing (high strike structure)
at all and that’s just not consistent with the data. As we are by now well
aware from our study of stochastic volatility, the positively sloped right
wing in the empirically observed volatility surface reflects uncertainty in the
future level of volatility; the flat right wing in the Merton model reflects its
deterministic volatility assumption.

Finally, we might ask whether or not the fitted parameters are realistic.
The volatility estimate σ = 39.46% is clearly realistic from inspection of
the implied volatilities. To see that the hazard rate estimate of λ = 0.01934
is also realistic, we note that the fair price of a zero coupon bond of GT
(assuming zero rates) should be given by

Pt = e−λ t R + (1 − e−λ t)

where R is the recovery rate. With Bloomberg’s standard assumed recovery
rate of 0.4, the credit spread of this bond would be found by solving

Pt = e−ct = e−λ t R + (1 − e−λ t)

With the above choices of λ and R, we obtain

c = 4.58%
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This compares with the 5-year credit default swap (CDS) rate of over 5%
for GT; the derived credit spread is almost certainly too high for 3-month
paper. However, the main point remains: most of the volatility skew for
stocks with high credit spreads can be ascribed to default risk.

THE CREDITGRADES MODEL

If Merton’s jump-to-ruin model is the prototypical reduced form model,
then the prototypical structural model is the one due to Black and Scholes
(1973) and Merton (1974) that models equity as a call option on the value
of a company. The value of the company V is assumed to diffuse with no
jumps. Debt is then equivalent to a call writer’s position of long V and short
the call on V. There is then a very natural connection between the stock
price and stock volatility; as the stock price declines, the company gets more
leveraged and stock volatility increases, exactly as observed empirically.
Obviously, this generates an implied volatility skew too.

The one big practical problem with this simple model is that there is no
way to generate significant short-dated credit spreads; default occurs when
the value of the company hits a certain level below the current value and
for short times, there is insufficient time for the V process to diffuse to the
barrier. Finkelstein (2002) and Lardy (2002) resolve this by making the level
of the default barrier uncertain. This extra feature is even intuitive: Who
would claim to know exactly what level V would have to reach for default
to occur? For example American Airlines (AMR) currently has negative
book value but has an enterprise value of over $13 billion.

Model Setup
V is assumed to evolve as a driftless geometric Brownian motion, so

dVt

Vt
= σ dW

where σ is the volatility of firm value V.
The level of V at which the company defaults is given by L D where D is

today’s value of its debt (per share) and L is the recovery rate. As discussed
above, it is further assumed that the recovery rate L is a lognormally
distributed random variable with mean L and standard deviation λ so that

L D = L D eλ Z−λ2/2

where Z ∼ N(0, 1). The random variable Z is assumed to be independent
of Wt.
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Survival Probability

Define

Xt := σ Wt − λ Z − σ 2 t
2

− λ2

2

Then Xt is normally distributed with

E [Xt] = −σ 2

2

(
t + λ2

σ 2

)

Var [Xt] = σ 2
(

t + λ2

σ 2

)

This leads us to approximate X with a Brownian motion X̂ with drift −σ 2/2
and variance σ 2 that starts at 0 at the time −�t := −λ2/σ 2 with X̂−�t = 0.
Obviously X isn’t really a Brownian motion with drift but its moments
agree with those of X̂ for t ≥ 0.

Default occurs when

V = V0 eσ Wt−σ2 t/2 = L D = L D eλ Z−λ2/2

or equivalently when

Xt = log

(
L D
V0

)

− λ2

Since X̂ is a Brownian motion with drift, the probability of survival (or the
probability of not hitting the default barrier) is given by the Black-Scholes-
like formula

Pt = N
(

−At

2
+ log d

At

)
− d N

(
−At

2
− log d

At

)

with

d = V0 eλ2

L D
; A2

t = σ 2 t + λ2

Since Pt is the probability of survival up to time t, it may be estimated
directly from the prices of risky instruments such as bonds and credit
default swaps (CDS).
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As an aside, we could avoid approximating X with X̂ by computing
the survival probability conditional on a given default barrier level L
and integrating over the distribution of barrier levels. This gives rise to an
expression for the survival probability that contains the cumulative bivariate
density but is numerically little different in practice.

Equity Volatility
The stock price S is approximately related (neglecting the time value of the
option) to the firm value V via

V ≈ L D + S

Then

σ ∼ δV
V

≈ δS
S + L D

= δS
S

S
S + L D

∼ σS
S

S + L D

where σS is the stock volatility. We see that as the stock price rises, keeping
σ fixed, the volatility σS of the stock declines. Conversely, as the stock price
S approaches zero, the stock volatility increases as 1/S.

Model Calibration
We end up with the following model in terms of market observables

Pt = N
(

−At

2
+ log d

At

)
− d N

(
−At

2
− log d

At

)
(6.3)

with

d = S0 + L D

L D
eλ2; A2

t =
(

σ ∗
S

S∗

S∗ + L D

)2

t + λ2

where S∗ is some reference stock price and σ ∗
S the stock volatility at

that price.
In the technical document Finger (2002), L and λ are derived from

historical recovery data and D is from balance sheet data. With sufficiently
many bonds, we could also impute all of the parameters from the term
structure of credit spreads (or equivalently, the term structure of the survival
probability Pt). Getting L, λ and D from company and industry data rather
than from the term structure of credit spreads would theoretically enable us
to identify rich and cheap claims.

From our perspective however, we content ourselves with the realization
that once again, credit spreads are explicitly related to the volatility skew,
only this time in the context of a more realistic model.



CHAPTER 7
Volatility Surface Asymptotics

F rom the discussion so far, the reader might wonder to what extent the
results derived and the fits shown are tied to the precise form of the

dynamics assumed. In this chapter, we investigate the shape of the volatility
surface for very generic models of the stochastic volatility with jumps type.
We see that, in fact, all such models generate volatility surfaces with a
similar shape. In particular, we will see that it’s practically impossible to
deduce anything about the specific form of the volatility dynamics from a
single observation of the volatility surface.

SHORT EXPIRATIONS

We start by rewriting our original general stochastic volatility SDEs (1.1)
and (1.2) in terms of the log-moneyness x := log (F/K) and under the risk
neutral measure, specializing to the case where α and β do not depend on S
or t.

dx = − v
2

dt + √
v dZ1

dv = α (v) dt + η
√

vβ (v) dZ2 (7.1)

We may rewrite

dZ2 = ρdZ1 + ϕ dZ∗
1

with ϕ =
√

1 − ρ2 and
〈
dZ∗

1, dZ1
〉 = 0. Eliminating

√
vdZ1, we get

dv = α (v, t) dt + ρη β (v, t)
{
dx + v

2
dt
}

+ ϕη β (v)
√

v dZ∗
1

87
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Then,

E[v + dv|dx] = v + α (v) dt + ρη β (v)
{
dx + v

2
dt
}

so for small times to expiration (relative to the variation of α(v) and β(v)),
we have

vloc(x, t) = E [vt |xt = x ]

≈ v0 +
[
α(v0) + ρη

v0

2
β(v0)

]
t + ρηβ(v0) x (7.2)

The coefficient of x (the slope of the skew) here agrees with that derived by
Lee (2001) using a perturbation expansion approach.

To extend the result to implied volatility, we need the following
lemma:

Lemma The local volatility skew is twice as steep as the implied volatility
skew for short times to expiration.

Proof From Chapter 3, we know that Black-Scholes implied total variance
is the integral of local variance along the most probable path from the stock
price on the valuation date to the strike price at expiration. This path is
approximately a straight line (see Figure 7.1).

Also, from equation (7.2), we see that the slope of the local variance
skew is a roughly constant β(v0) for short times. The BS implied variance
skew, being the average of the local variance skews, is one half of the local
variance skew. Formally,

σBS(K, T)2 ≈ 1
T

∫ T

0
vloc(x̃t, t)dt

≈ const. + 1
T

∫ T

0
ρηβ(v0)x̃tdt

≈ const. + 1
T

∫ T

0
ρηβ(v0)xT

t
T

dt

= const. + 1
2

ρηβ(v0) xT
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FIGURE 7.1 For short expirations, the most probable path is approximately a
straight line from spot on the valuation date to the strike at expiration. It follows
that σ 2

BS

(
k, T

) ≈ [
vloc(0, 0) + vloc(k, T)

]
/2 and the implied variance skew is roughly

one half of the local variance skew.

where x̃ represents the ‘‘most probable’’ path from the stock price at time
zero to the strike price at expiration. ��

We conclude that for short times to expiration, the BS implied variance
skew is given by

∂

∂x
σBS(x, t)2 = ρη

2
β(v0) (7.3)

Recall that in the Heston model, β(v) = 1 we see that equation (7.3)
is consistent with the short-dated volatility skew behavior that we derived
earlier in Chapter 7 for the Heston model.

THE MEDVEDEV-SCAILLET RESULT

It turns out that we can do much better than the heuristic argument of
Chapter 5 to compute the contribution of jumps in the limit of small time
to expiration. In a working paper, Medvedev and Scaillet (2004) develop a
perturbation expansion for small times to expiration τ and fixed normalized
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log-strike z defined as

z := k
σBS(k, τ )

√
τ

First specializing their result to the case where the underlying process is
a diffusion of the form

dSt

St
= σt dZ1

dσt = a (σt) dt + b (σt) dZ2 (7.4)

we find that the implied volatility I has the following short-term asymptotics
(with σ = σ0)

I(z, τ , σ ) = σ + I1(z; σ )
√

τ + I2(z; σ ) τ + O(τ
√

τ )

where I1 and I2 are functions of z and the instantaneous volatility σ = √
v

only:

I1(z; σ ) = ρ b(σ ) z
2

I2(z; σ ) = 1
6

{
b(σ )2 (1 − ρ2)

σ
+ ρ2 b(σ ) ∂σ b(σ )

}
z2

+ a(σ )
2

+ ρ σ b(σ )
4

+ 1
24

ρ2 b(σ )2

σ

+ 1
12

b(σ )2

σ
− 1

6
ρ2 b(σ ) ∂σ b(σ ) (7.5)

We note that the limit of implied volatility as the log-strike k → 0
and the time to expiration τ → 0 is just the instantaneous volatility σ .
So although critics of stochastic volatility models love to point out that
instantaneous volatility is not observable and that this is a deficiency of such
models, we see that this deficiency is not a major limitation in practice. In
liquid option markets, the implied volatility surface is typically very smooth
and we can extrapolate to the zero expiration, at-the-money strike limit
with little uncertainty.

To compute the short-dated volatility skew, we substitute

z = k
I(z, τ ; σ )

√
τ
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into (7.5) and take the limit τ → 0 in order to obtain

∂I
∂k

∣∣
∣
∣
k=0

→ ρ b(σ )
2 σ

(7.6)

which proves our earlier result (7.3) derived using heuristic methods.
We note that the short-dated volatility skew is not explicitly time-

dependent; it depends only on the form of the SDE for volatility.
In contrast, as we shall see, local volatility models imply short-dated

skews that decay rapidly as time advances. So even if we find a stochastic
volatility model and a local volatility model that price all European options
identically today, forward-starting options (i.e., options whose strikes are to
be set some time in the future) cannot possibly be priced identically by these
two models. Both models fit the options market today, but the volatility
surface dynamics implied by the two models are quite different.

Equations (7.3) and (7.6) suggest a wild generalization: perhaps all
stochastic volatility models, whether analytically tractable or not, generate
the same BS implied volatility skew up to a factor of β(v), not just in the
limit τ → 0 but for all τ ≥ 0. Later on, we will investigate the behavior
of the volatility skew at long expirations and present further evidence that
makes this claim more plausible.

The SABR Model

Pat Hagan’s well-known SABR (or ‘‘stochastic alpha beta rho’’) model
(Hagan, Kumar, Lesniewski, and Woodward 2002) has dynamics

dSt = σt St
β dZ1

dσt = χ σt dZ2

with 〈dZ1 dZ2〉 = ρ dt.
Volatility does not mean revert in the SABR model, so it is only good

for short expirations. Nevertheless the model has the virtue of having an
exact expression for the implied volatility smile in the short-expiration limit
τ → 0. The resulting functional form can be used to fit observed short-dated
implied volatilities and the model parameters α, β, and ρ thereby extracted.
In the special case β = 1, the SABR implied volatility formula (2.17a) of
Hagan, Kumar, Lesniewski, and Woodward (2002) reduces to

σBS(k) = σ0
y

f (y)

{
1 +

[
1
4

ρ χ σ0 + 2 − 3ρ2

24
χ2
]

τ + O(τ 2)
}

(7.7)
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with

y := −χ
k
σ0

and

f (y) = log

{√
1 − 2 ρ y + y2 + y − ρ

1 − ρ

}

Note that the lognormal SABR formula (7.7) factorizes with one factor
depending only on y and the other factor depending only on τ . Taylor-
expanding (7.7) to second order in y and first order in τ (i.e., with y ∼ √

τ )
gives

σBS(k, τ ) = σ0

{
1 − 1

2
ρ y + 2 − 3 ρ2

12
y2

+
[

1
4

ρ χ σ0 + 2 − 3ρ2

24
χ2
]

τ + O(τ
√

τ )
}

Substituting a(σ ) = 0 and b(σ ) = χ σ0 into equation (7.5) give

I1(z; σ0) = 1
2

ρ χ σ0 z

I2(z; σ0) = 1
6

χ2 σ0 z2 + 1
4

ρ χ σ 2
0 + 1

24
ρ2 χ2 σ0 + 1

12
χ2 σ0 − 1

6
ρ2 χ2 σ0

Then, noting that

χ z
√

τ = χ
k

σBS
= −y

σ0

σBS
= −y

(
1 + 1

2
ρ y

)
+ O(y3)

we obtain

σBS(k, τ ) = σ0 + I1(z; σ0)
√

τ + I2(z; σ0) τ + O(τ
√

τ )

= σ0

{
1 − 1

2
ρ y + 2 − 3 ρ2

12
y2

+
[

1
4

ρ χ σ0 + 2 − 3ρ2

24
χ2
]

τ + O(τ
√

τ )
}
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We see that the Medvedev-Scaillet formula (7.5) gives precisely the same
result as the SABR implied volatility formula (7.7) for small τ .

Finally, we note that the SABR formula implies that

∂σBS

∂k

∣
∣∣
∣
k=0

= ρ

2

which is a special case of the general result (7.6) with β(v) = √
v and

η = 2 χ . To see this, apply Itô’s lemma to the SABR volatility process to
obtain

dv = χ2 v dt + 2 χ v dZ

with v = σ 2.

INCLUDING JUMPS

Medvedev and Scaillet’s (2004) main result is a more complicated expression
for models that include jumps in the stock price. The authors note that
adding jumps in volatility would make the model more realistic but as we
also noted earlier, there is no contribution to the shape of the volatility
surface from the jump in volatility for very short expirations.

Specifically, consider the stochastic volatility with jump model

dSt

St
= σt dZ1 + J(σt) dqt

dσt = a (σt) dt + b (σt) dZ2 (7.8)

The jump term dq is a standard Poisson process with intensity λJ(σt) and
J(σt) is a (−1, ∞)-valued random variable with density f sampled at each
jump. As before, the jump compensator µJ is given by

µJ = λJ

∫ +∞

−1
f (x) dx

In this model, short-dated implied volatilities are given by

I(z, τ , σ ) = σ + Ĩ1(z; σ )
√

τ + Ĩ2(z; σ ) τ + O(τ
√

τ )

where Ĩ1 and Ĩ2 are given by

Ĩ1(z; σ ) = I1(z; σ ) − µJ g(z) + ηJ h(z)
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Ĩ2(z; σ ) = I2(z; σ ) + 1
2 σ

(
µJ g(z) − ηJ h(z)

)2 z2

−
{

−µJ σ

2
− σ λJ +

µ2
J

σ
+ µJ b(σ ) ρ

2 σ

}

g(z) z

−
{

ηJ σ

2
+ σ χJ − µJ ηJ

σ
− ηJ b(σ ) ρ

2 σ

}
h(z) z

+ ρ b(σ ) µJ

2 σ
− ρ ∂σ b(σ ) µJ

2
+

µ2
J

2 σ
− σ µJ

2
− λJ σ (7.9)

where ηJ = λJ
∫∞

0 x f (x) dx, χ = λJ
∫∞

0 f (x) dx are respectively the positive
part of the jump compensator and the probability of an upwards jump and

g(z) = N(−z)
N′(z)

; h(z) = 1
N′(z)

As expected, all jump-related terms (with subscript J) vanish if there are no
jumps.

Corollaries

In a jump diffusion model (with volatility deterministic), the limit of the
implied volatility skew as τ → 0 is given by

∂I
∂k

∣
∣∣
∣
k=0

→ −µJ

σ

To get this result, note that g′(0) = 1 and h′(0) = 0. The result is exactly
consistent with our earlier heuristic derivation in Chapter 5.

In the SVJ model, the limit of the implied volatility skew as τ → 0 is
given by

∂I
∂k

∣
∣
∣∣
k=0

→ ρ b(σ )
2 σ

− µJ

σ

This is consistent with our earlier observation that the jump and stochas-
tic volatility effects on the at-the-money variance skew are approximately
additive. In fact we have

∂vBS

∂k

∣∣
∣∣
k=0

→ ρ b(σ ) − 2 µJ as τ → 0

so they are exactly additive at τ = 0!
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LONG EXPIRATIONS: FOUQUE,
PAPANICOLAOU, AND SIRCAR

Fouque, Papanicolaou, and Sircar (1999) and Fouque, Papanicolaou, and
Sircar (2000) show using a perturbation expansion approach that in any
stochastic volatility model where volatility is mean-reverting, Black-Scholes
implied volatility can be well approximated by a simple function of log-
moneyness and time to expiration for long-dated options. In particular, they
study a model where the log-volatility is an Orenstein-Uhlenbeck process
(log-OU for short). That is,

dx = −σ 2

2
dt + σ dZ1

d log(σ ) = −λ[ log(σ ) − log(σ ) ]dt + ξ dZ2

They find that the slope of the BS implied volatility skew is given (for large
λ T) by

∂

∂x
σBS(x, T) ≈ ρ ξ

λ T
(7.10)

To recast this in terms of v to be consistent with the form of the generic
process we wrote down in equation (7.1), we note that (considering random
terms only), dv ∼ 2 σ dσ and in the log-OU model,

dσ ∼ ξ σdZ2

So

dv ∼ 2 ξ v dZ2

Then β(v) as defined in equation (7.1) is given by

η β(v) = 2ξ
√

v

and, from equation (7.10), the BS implied variance skew is given by

∂

∂x
σBS(x, T)2 ≈ 2 ρ ξ

√
v

λ T
= ρ η β(v)

λ T

Looking back at equation (3.19), we see that the Heston skew (where
β(v) = 1) has the same behavior for large λ T. We now have enough evidence
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to make our generalization more plausible: It seems that both for long and
short expirations, the skew behavior may be identical for all stochastic
volatility models up to a factor of β(v). Supposing this claim were true,
what would be the natural way to interpolate the asymptotic skew behaviors
between long and short expirations?

Clearly, the most plausible interpolation function between short expi-
ration and long expiration volatility skews is the one we already derived for
the Heston model in Chapter 3 and

∂

∂x
σBS(x, T)2 ≈ ρ η β(v)

λ′ T





1 −

(
1 − e−λ′T

)

λ′ T





(7.11)

with λ′ = λ − 1
2 ρ η β(v).

SMALL VOLATILITY OF VOLATILITY: LEWIS

Lewis (2000) performs perturbation expansions of implied volatility with
respect to the volatility of volatility parameter (assumed small) in any
stochastic volatility model of the form (7.1) for general choices of β(v).

According to equation (3.14) on p 143 of Lewis (2000), we have

vBS(k, t) = β0(v, t) + β1(v, t) k + β2(v, t) k2 + O(η)3

where

β0(v, t) = v + 1
2

η

t
J(1) +

η2

[
J(2)

t
− 1

2
J(3)

v t2

(
1 + 1

4
v t
)

− J(4)

v t2

(
1 − 1

4
v t
)

+ (J(1))2

v2 t3

(
3
4

+ 1
16

v t
)]

β1(v, t) = η

vt2 J(1) + η2

[

− J(4)

v t2 − (J(1))2

v2 t3

]

β2(v, t) = η2

[
1
2

J(3)

v2 t3 + J(4)

v2 t3 − 5
4

(J(1))2

v3 t4

]

(7.12)
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Example 4 on page 144 of Lewis (2000) deals with the case of most
interest to us:

dv = −λ (v − v) dt + η vφ dZ

For this volatility process, in the special case v = v, we have

J(1) = v1/2+φt
ρ

λ

{
1 − 1 − e−λt

λt

}

J(3) = v2φ ρ

2λ3

{
3
2

+ λt + 2e−λt − 1
2

e−2λt
}

J(4) = v2φ ρ2

λ3

(
1
2

+ φ

)
{−2 + λt + (2 + λt) e−λt}

Substituting back into equation (7.12) gives

∂vBS

∂k

∣
∣
∣∣
k=0

= ρ η vφ−1/2

λ t

{
1 − 1 − e−λt

λt

}
+ O(η2)

and we see that (7.11) is not only plausible but is exactly correct to first
order in the volatility of volatility η.

EXTREME STRIKES: ROGER LEE

In a beautiful paper, Roger Lee (2004) shows that implied variance is
bounded above by a function linear in the log-strike k = log(K/F) as
|k| → ∞. Moreover, he shows how to relate the gradients of the wings
of the upper bound of the implied variance skew to the maximal finite
moments of the underlying process.

Specifically, let q∗ := sup
{
q : E S−q

T < ∞
}

and

β∗ := lim sup
k→−∞

σ 2
BS(k, T) T

|k|

Then β∗ ∈ [0, 2],

q∗ = 1
2

(
1√
β∗ −

√
β∗

2

)2
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and inverting this, we obtain β∗ = g(q∗) with

g(x) = 2 − 4
[√

x2 + x − x
]

Also let p∗ := sup
{
p : E S1+p

T < ∞
}

and

α∗ := lim sup
k→+∞

σ 2
BS(k, T) T

|k|

Then α∗ ∈ [0, 2],

p∗ = 1
2

(
1√
α∗ −

√
α∗

2

)2

and as for the left wing, it follows that α∗ = g(p∗).
Lee’s derivation assumes only the existence of a Martingale measure: It

makes no assumptions on the distribution of underlying returns. His result
is completely model independent.

Denote the (cumulative) distribution function of the returns x of the
underlying by F(x). Benaim and Friz (2006) go on to show that Roger
Lee’s upper bound (lim sup) may be replaced by a limit provided that
log [1 − F(x)] and log [F(−x)] respectively satisfy some technical conditions
that are in fact satisfied in most models of practical interest. If so, we may
write for the right tail

σBS(k, T)2 T
k

∼ g

(

−1 − log
[
1 − F(k)

]

k

)

as k → ∞ (7.13)

and for the left tail

σBS(−k, T)2 T
k

∼ g
(− log F(−k)

k

)
as k → ∞ (7.14)

So, by direct substitution of the tail behavior of the distribution F of
underlying returns into equations (7.13) and (7.14), we can deduce the full
tail behavior of the smile, not just Lee’s upper bound. Moreover, the tail
behavior of the distribution is known for a large class of models.

The connection between the Lee and Benaim-Friz results becomes clear
when we note that in most models of practical interest, the limits exist,

q∗ = lim
k→∞

{
− log F(−k)

k

}
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and

p∗ = lim
k→∞

{

−1 − log
[
1 − F(k)

]

k

}

Example: Black-Scholes

In the Black-Scholes case with time to expiration T and volatility σ ,

1 − F(k) =
∫ ∞

k

1√
2 π σ 2 T

e−y2/(2σ2 T) dy ∼ 1√
2 π

e−k2/(2 σ2 T)

k
as k → ∞

Then

log
[
1 − F(k)

] ∼ − k2

2 σ 2 T
as k → ∞

and

σBS(k, T)2 T
k

∼ g
(

−1 + k
2 σ 2 T

)
∼ 2 σ 2 T

2 k
as k → ∞

It follows that

σBS(k, T)2 ∼ σ 2 as k → ∞

in trivial agreement with the Black-Scholes flat volatility smile. Note that
we obtain the full limiting behavior from the Benaim-Friz result; in the
Black-Scholes case, all moments are finite, p∗ = q∗ = ∞ and the lim sup
result does not exclude behavior ∼ k/ log(k) for example.

Stochastic Volatility Models

Drăgulescu and Yakovenko (2002) compute the tail behavior of the Heston
cumulative distribution function and find it to be linear in |k|. It follows
from Benaim and Friz that the tail behavior of σ 2

BS(k, T) must also be linear
in |k|. As noted by Drăgulescu and Yakovenko, qualitatively similar results
from other authors suggest that linearity in the tails is a generic feature of
stochastic volatility models, not just the Heston model.
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ASYMPTOTICS IN SUMMARY

It’s quite clear from the results presented here that the general shape of the
volatility surface doesn’t depend very much on the specific choice of model.
Any stochastic volatility with jump model should generate a similar shape
of volatility surface with appropriate numerical choices of the parameters.



CHAPTER 8
Dynamics of the Volatility Surface

I n Chapter 7, we saw that all stochastic volatility models have essentially
the same implications for the shape of the volatility surface. At first it might

seem that it would be hard to differentiate between models. That would
certainly be the case if we were to confine our attention to the shape of the
volatility surface today. However, if instead we were to study the dynamics
of the volatility skew—in particular, how the observed volatility skew
depends on the overall level of volatility, we would be able to differentiate
between models.

DYNAMICS OF THE VOLATILITY SKEW
UNDER STOCHASTIC VOLATILITY

Empirical studies of the dynamics of the volatility skew show that ∂
∂kσ (k, t)

is approximately independent of volatility level over time. Translating this
into a statement about the implied variance skew, we get

∂

∂k
σBS(k, t)2 = 2 σBS(k, t)

∂

∂k
σBS(k, t) ∼

√
v(k, t).

Comparing this with equation (7.11), we see that this in turn implies that
β(v) ∼ √

v. Referring back to the definition of β(v) (7.1), we conclude that v
is approximately lognormal in contrast to the square root process assumed
by Heston. This makes intuitive sense given that we would expect volatility
to be more volatile if the volatility level is high than if the volatility level
itself is low.

Does it matter whether we model variance as a square root process or
as lognormal? In certain cases it does. After all, we are using our model
to hedge and the hedge should approximately generate the correct payoff
at the boundary. If the payoff that we are hedging depends (directly or
indirectly) on the volatility skew, and our assumption is that the variance

101



102 THE VOLATILITY SURFACE

skew is independent of the volatility level, we could end up losing a lot of
money if that’s not how the market actually behaves.

Is any stochastic volatility model better than none at all? The answer
here has to be yes because, whereas having the wrong stochastic volatility
model will cause the hedger to generate a payoff corresponding to a skew
that may be off by a factor of 1.5 if volatility doubles, having only a local
volatility model will cause the hedger to generate a payoff that corresponds
to almost no forward skew at all. We now show this.

DYNAMICS OF THE VOLATILITY SKEW
UNDER LOCAL VOLATILITY

Empirically, the slope of the volatility skew decreases with time to expi-
ration. From the above, in the case of mean-reverting stochastic volatility,
the term structure of the BS implied variance skew will look something like
equation (7.11). In particular, the slope of the volatility skew decays over
time according to the time behavior of the coefficient

1
λ′T





1 −

(
1 − e−λ′T

)

λ′T






Recall from Chapter 1 the formula (1.10) for local volatility in terms of
implied volatility:

vloc =
∂w
∂T

1 − k
w

∂w
∂k + 1

4

(
− 1

4 − 1
w + k2

w

2
)

(
∂w
∂k

)2 + 1
2

∂2w
∂k2

Differentiating with respect to x and considering only the leading term in
∂w
∂k (which is small for large T), we find

∂vloc

∂k
≈ ∂

∂T
∂w
∂k

+ 1
w

∂w
∂T

∂w
∂k

That is, the local variance skew ∂vloc
∂k decays with the BS implied total

variance skew ∂w
∂k .

To get the forward volatility surface from the local volatility surface
in a local volatility model, we integrate over the local volatilities from
the (forward) valuation date to the expiration of the option along the
most probable path joining the current stock price to the strike price using
the trick presented in Chapter 3. It is obvious that the forward implied
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volatility surface is substantially flatter than today’s because the forward
local volatility skews are all flatter.

Contrast this with a stochastic volatility model where implied volatility
skews are approximately time-homogeneous. In other words, local volatility
models imply that future BS implied volatility surfaces will be flat (relative
to today’s) and stochastic volatility models imply that future BS implied
volatility surfaces will look like today’s.

STOCHASTIC IMPLIED VOLATILITY MODELS

Many authors including Brace, Goldys, Klebaner, and Womersley (2001),
Cont and da Fonseca (2002), Ledoit, Santa-Clara, and Yan (2002) and
Schönbucher (1999) have looked at models that allow the entire implied
volatility surface to diffuse. It turns out that if the underlying price process
is assumed continuous (with no jumps), the statics and dynamics of the
implied volatility surface are highly constrained.

In particular, nondiscounted option prices are risk-neutral expectations
of future cashflows and as such must be martingales. Changes in the call
price reflect changes in the underlying and changes in implied volatility.
Imposing the martingale constraint

E[dCt] = 0

gives a tight relationship between the various sensitivities and many results
such as equation (7.3) follow immediately from this.

More recently, Durrleman (2005) showed how to extract the dynamics
of instantaneous variance from the dynamics of the observed implied
volatility surface in the limit of very short expirations and very close to
at-the-money. Conversely, given a stochastic volatility model, he showed
how to deduce the shape of the implied volatility surface in that same
neighborhood. However, to get these impressive results, one has to assume
continuity of the underlying price process but as we have seen earlier, jumps
in the underlying are needed to explain the shape of the implied volatility
surface. Moreover, as noted by Cont, da Fonseca, and Durrleman (2002)
and as observed by any option trader, there appear to be jumps in the
implied volatility surface too.

DIGITAL OPTIONS AND DIGITAL CLIQUETS

Applying our insights to the valuation of actual derivative contracts, we
choose to study digital options because their valuation involves the volatility
skew directly.
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Valuing Digital Options

A digital (call) option D(K, T) pays 1 if the stock price ST at expiration T is
greater than the strike price K and zero otherwise. It may be valued as the
limit of a call spread as the spread between the strikes is reduced to zero.

D(K, T) = −∂C(K, T)
∂K

(8.1)

where C(K, T) represents the price of a European call option with strike K
expiring at time T.

To see that its price is very sensitive to the volatility skew, we rewrite the
European call price in equation (8.1) in terms of its Black-Scholes implied
volatility σBS(K, T).

D(K, T) = − ∂

∂K
CBS (K, T, σBS(K, T))

= −∂CBS

∂K
− ∂CBS

∂σBS

∂σBS

∂K

To get an idea of the impact of the skew in practice, consider our usual
idealized market with zero interest rate and dividends and a one-year digital
option struck at-the-money. Suppose further that at-the-money volatility is
25% and the volatility skew (typical of SPX for example) is 3% per 10%
change in strike. Its value is given by

D(1, 1) = −∂CBS

∂K
− ∂CBS

∂σBS

∂σBS

∂K

= N
(
−σ

2

)
− vega × skew

= N
(
−σ

2

)
+ 1√

2π
e− d2

1
2 × 0.3

≈ N
(
−σ

2

)
+ 0.4 × 0.3

If we had ignored the skew contribution, we would have got the price of the
digital option wrong by 12% of notional!

Digital Cliquets

Here is part of a definition of the word cliquet from the Dictionary of
Financial Risk Management (Gastineau and Kritzman 1999):
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FIGURE 8.1 Illustration of a cliquet payoff. This hypothetical SPX cliquet resets
at-the-money every year on October 31. The thick solid lines represent nonzero
cliquet payoffs. The payoff of a 5-year European option struck at the October 31,
2000, SPX level of 1429.40 would have been zero.

The French like the sound of ‘‘cliquet’’ and seem prepared to
apply the term to any remotely appropriate option structure.
(1) Originally a periodic reset option with multiple payouts or
a ratchet option (from vilbrequin à cliquet—ratchet brace). Also
called Ratchet Option . . .

Since the word is originally French, here is an elegant definition
of the ‘‘Effet-cliquet’’ from the French Web site http://lexique-financier.
actufinance.fr:

Mécanisme qui permet de figer une performance même si l’actif
correspondant baisse par la suite.∗

The payoff of a hypothetical cliquet contract is shown in Figure 8.1.
For our purposes, a cliquet is just a series of options whose strikes are set

on a sequence of future dates. In particular, a digital cliquet is a sequence of

∗Mechanism that permits a profit to be locked in even if the underlying subsequently
declines.
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digital options whose strikes will be set (usually) at the prevailing stock price
on the relevant reset date. Denoting the set of reset dates by {t1, t2, . . . , tn},
the digital cliquet pays Coupon × θ

(
Sti − Sti−1

)
at ti where θ (.) represents

the Heaviside function.
One can see immediately that the package consisting of a zero coupon

bond together with a digital cliquet makes a very natural product for a
risk-averse retail investor—he or she typically gets an above-market coupon
if the underlying stock index is up for the period (usually a year) and a
below-market coupon (usually zero) if the underlying stock index is down.
Not surprisingly, this product was and is very popular and as a result, many
equity derivatives dealers have digital cliquets on their books.

From the foregoing, the price of a digital cliquet may vary very sub-
stantially depending on the modeling assumptions made by the seller. Those
sellers using local volatility models will certainly value a digital cliquet at
a lower price than sellers using a stochastic volatility (or more practically,
those guessing that the forward skew should look like today’s). Perversely
then, those sellers using an inadequate model will almost certainly win
the deal and end up short a portfolio of misvalued forward-starting digi-
tal options. Or even worse, a dealer could have an appropriate valuation
approach but be pushed internally by the salespeople to match (mistaken)
competitors’ lower prices.

How wrong could the price of the digital cliquet be? Consider the
example of a (not unrealistic) five-year deal that has a 6% coupon annually
if the underlying exceeds the prior annual setting and zero otherwise.
Neglecting the first coupon (because we suppose that all dealers can price a
digital which sets today), the error could be up to 12% of the sum of the
remaining coupons (48%) or 5.76% of Notional. A pricing error of this
magnitude is a big multiple of the typical margin on such a trade and would
cause the dealer a substantial loss.



CHAPTER 9
Barrier Options

B arrier options are important building blocks for structured products, but
their valuation can be highly model dependent. Consequently much has

been written on the subject, notably by Taleb (1996), Wilmott (2000) and
Carr and Chou (1997).

Despite all the existing literature, convincing barrier option solutions are
thin on the ground. In fact, prices quoted for certain kinds of barrier option
can vary so much between dealers that customers can sometimes cross the
bid-offer (that is, buy on one dealer’s offer and sell on another dealer’s bid
for a profit). So there is still plenty of scope for the ambitious modeler.

By considering two limiting cases, we see that barrier option values
are not always very model dependent. However, the valuation of certain
types of barrier options can be extremely model dependent. Developing
intuition is therefore particularly important not only to be able to estimate
the value of a barrier options but also to know whether the output of a
model should be trusted or not. Accordingly, we will use the insights gained
from earlier chapters to understand the relative pricing of various types of
barrier options under stochastic and local volatility dynamics.

As usual, we suppose that European options of all strikes and expirations
are traded in the market and our objective is to price barrier options
consistently with these European option prices.

DEFINITIONS

A knock-out option is an option that becomes worthless when a prespecified
‘‘barrier’’ level is reached.

A live-out option is a special case of a knock-out option that is
significantly in-the-money when it knocks out.

A knock-in option is an option that can only be exercised if a barrier
level is reached prior to exercise. Obviously, a knock-in option is just a
portfolio of short a knock-out option and long a European.
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An amount of money paid to a barrier option buyer if the barrier is hit
is termed a rebate. This rebate may be paid when the barrier is hit or at
expiration.

LIMITING CASES

Limit Orders

Suppose we sell a knock-out call option with barrier B equal to the strike
price K below the current stock price S. Suppose further that we hedge
this position by buying one stock per option and we charge S0 − K as the
premium. If interest rates and dividends are zero, it is clear that this hedge is
perfect. To see this, suppose first that the barrier is never hit: The buyer of
the knock-out call option exercises the option and we deliver the stock. Net
proceeds are −(ST − K) + (S0 − K) + (ST − S0) = 0. On the other hand, if
the barrier is hit, we lose S0 − K on our purchase of stock which is perfectly
offset by the premium we charged.

In this special case, a knock-out option has no optionality whatsoever.
Delta is one, gamma is zero, and vega is zero. The result is completely model
independent; the only requirement is to have no carry on the stock for this
construction to work.

Now consider what this portfolio really is. So long as the stock price
remains above the barrier level, we are net flat. When the barrier is hit, the
option knocks out and we are left long of the stock we bought to hedge.
This is exactly the portfolio we would have if the option buyer had left
us a stop-loss order to sell stock if the price ever reached the barrier level
B. There is however a big difference between the two contracts—a barrier
option like this guarantees execution at the barrier level but a conventional
stop-loss order would get filled at the earliest opportunity after the barrier
is hit (usually a bit below the barrier). If we could really trade continuously
as models conventionally assume, there would be no difference between the
two contracts. In the real world, a knock-out option needs to be priced
more highly than the model price to compensate for the risk of the stock
price gapping through the barrier level. Practitioners compensate for gap
risk when pricing options by moving the barrier by some amount related to
the expected gap in the stock price when the barrier is hit.

In summary, in this special case when K = B < S0, the price of a knock-
out call is given by the difference S0 − K between the current stock price
and the strike price plus a bit to compensate for gap risk.

Now, if the strike price K and the barrier level B are not equal but not
so far apart with B ≤ K ≤ S0, it is natural to expect that neither gamma
nor vega would be very high relative to the European option with the same
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strike K. Nor would we expect the price of such a knock-out option to be
very sensitive to the model used to value it (assuming of course that this
model prices consistently with all European options). Investigation shows
that this is indeed the case.

European Capped Calls

The next limiting case we consider is that of the European capped call.
This option is a call struck at K with barrier B > S0 such that if the stock
price reaches B before expiration, the option expires and pays out intrinsic
of B − K.

If the barrier is far away from the current stock price S0, the price of
such an option cannot be very different from the price of a conventional
European option. To see this, consider a portfolio consisting of a long
European option struck at K (not too different from S0) and short the
capped call. If the barrier is not hit, this portfolio pays nothing. If the
barrier is hit, the portfolio will be long a European option and short cash
in the amount of the intrinsic value B − K. The time value of this European
option cannot be very high because, by assumption, B � S0 and moreover,
the barrier is most likely to be hit close to expiration. Since the value of the
capped call must be close to the value of a conventional European call, the
value of the capped call cannot be very model dependent and should be well
approximated by a model using Black-Scholes assumptions (no volatility
skew) and the implied volatility of the corresponding European option.

With this understanding of the pricing of capped calls, we are in a
position to develop intuition for the pricing of live-out calls. To get a
live-out call from a capped call, we need only omit the rebate at the barrier.
We would then have a call option struck at K that goes deep-in-the-money
as the stock price approaches the barrier B � K and knocks out when the
stock price reaches B (with no rebate). So to get intuition for the pricing and
hedging of live-out options, we need only study the pricing and hedging of
the rebate (or one-touch option).

THE REFLECTION PRINCIPLE

We suppose that the stock price is driven by a constant volatility stochastic
process with zero log-drift. That is

dx = σdZ (9.1)

with x := log (S/K).
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In this special case, there is a very simple relationship between the price
of a European binary option struck at B and the value of the one-touch
option struck at B.

Consider the realization of the zero log-drift stochastic process (9.1)
given by the solid line in Figure 9.1. From the symmetry of the problem, the
dashed path has the same probability of being realized as the original solid
path. We deduce that the probability of hitting the barrier B is exactly twice
the probability of ending up below the barrier at expiration. Putting this
another way, the value of a one-touch option is precisely twice the value of
a European binary put.

To make this result appear plausible note that an at-the-money barrier
has 100% chance of getting hit but there is only 50% chance of ending
up below the barrier at expiration in this special case. Guessing at a
generalization, we might suppose that the ratio of the fair value of a one-
touch option should be given by B(S0)−1 where B(K) represents the value of
a European binary put struck at K.

If this guess were correct, for the Heston-Nandi model and parameters
of Chapter 4 (v = 0.04, v = 0.04, λ = 10, η = 1, ρ = −1), where B(S0) =
0.54614, the ratio of the one-touch price to the European binary price
should be around B(S0)−1 = 1.831. Figure 9.2 shows how this ratio is, as
Taleb (1996) emphasizes, very sensitive to modeling assumptions. Although
our guess is pretty accurate for the local volatility case, it is very inaccurate
in the stochastic volatility case.

For comparison, consider the effect of modeling assumptions on the
price of a European binary call. Figure 9.3 shows that modeling assumptions

FIGURE 9.1 A realization of the zero log-drift stochastic process and the
reflected path.
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FIGURE 9.2 The ratio of the value of a one-touch call to the value of a European
binary call under stochastic volatility and local volatility assumptions as a function
of strike. The solid line is stochastic volatility and the dashed line is local volatility.
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FIGURE 9.3 The value of a European binary call under stochastic volatility and
local volatility assumptions as a function of strike. The solid line is stochastic
volatility and the dashed line is local volatility. The two lines are almost
indistinguishable.

have no effect—the price of a European binary is independent of modeling
assumptions and depends only on the given prices of conventional European
options (being a limit of a call spread in this case).

Finally, we graph the value of the one-touch option as a function of strike
under stochastic volatility and local volatility assumptions in Figure 9.4.
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FIGURE 9.4 The value of a one-touch call under stochastic volatility and local
volatility assumptions as a function of barrier level. The solid line is stochastic
volatility and the dashed line is local volatility.

THE LOOKBACK HEDGING ARGUMENT

A closely related useful hedging argument originally given by Goldman,
Sosin, and Gatto (1979) is used to estimate the price and hedge portfolio
of a lookback option. For our purposes, we define a lookback call to be an
option that pays (S̃ − K)+ at expiration where S̃ is the maximum stock price
over the life of the option and K is the strike price.

Once again, assuming zero log-drift and constant volatility, suppose we
hedge a short position in this lookback call by holding two conventional
European options struck at K. If the stock price never reaches K, both the
lookback and the European option expire worthless. If and when the stock
price does reach K and increases by some small increment �K, the value of
the lookback option must increase by �K (since K + �K is now the new
maximum). The new lookback option must pay �K + (S̃ − (K + �K))+−
the payoff of another lookback option with a higher strike price plus a fixed
cashflow �K.

Assuming we were right to hedge with two calls in the first place,
the new hedge portfolio must be two calls struck at K + �K. So we must
rebalance our hedge portfolio by selling two calls struck at K and buying
two calls struck at K + �K. The profit generated by rebalancing is

2 C(K + �K, K) − 2 C(K + �K, K + �K) ≈ −2
∂C
∂K

∣
∣∣
∣
S=K

�K
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= 2 N
(
d2

)∣∣
S=K

= �K

using the fact that N
(
d2

)∣∣
S=K = 1/2 when the log-drift is zero.

The profit generated by rebalancing is exactly what is needed to generate
the required payoff of the lookback option and our hedge is perfect.

One-Touch Options Again

Now reconsider the value of a one-touch call option struck at B. It is the
probability that the maximum stock price is greater than B. We can generate
this payoff by taking the limit of a lookback call spread as the difference
between the strikes gets very small. Because a lookback call has the same
value as two European calls, a lookback call spread must have the same
value as two European call spreads. Put another way, a one-touch option is
worth two European binary options when the log-drift is zero.

PUT-CALL SYMMETRY

We now assume zero interest rates and dividends and constant volatility
again (as opposed to zero log-drift). In this case, by inspection of the
Black-Scholes formula, we have

C
(

B2

S
, K

)
= K

S
P

(
S,

B2

K

)

From one of the many references containing closed-form formulas for
knock-out options, we may deduce that

DO (S, K, B) = C (S, K) − S
B

C
(

B2

S
, K

)

= C (S, K) − K
B

P
(

S,
B2

K

)

where DO(.) represents the value of a down-and-out call.
By letting S = B in the above formula, we see that DO (B, K, B) = 0

as we would expect. So, in this special case, there is a static hedge for a
down-and-out call option that consists of long a European call with the same
strike and short K

B European puts struck at the reflection of the log-strike in
the log-barrier (K′ = B2/K).
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The reason this static hedge works is that the value of the call we are
long always exactly offsets the value of the put we are short when the stock
price reaches the barrier B.

A special case of this special case is when B = K. In this case, we have

DO (S, K, K) = C (S, K) − P (S, K) = S − K

and we see again that there is no optionality—the down-and-out call option
is worth only intrinsic value and has the same payoff as a portfolio of long
the stock and short K bonds as we argued before.

QUASISTATIC HEDGING AND QUALITATIVE VALUATION

We can generalize the static hedging procedure of the previous section to
other cases where interest rates, dividends and volatility have arbitrary
structure. Although there is no exact static hedge in the general case, we
can construct a portfolio that has rather small payoffs under all reasonable
scenarios.

A sophisticated version of this procedure known as the Lagrangian
Uncertain Volatility Model is described by Avellaneda, Levy, and Parás
(1995). In this model, volatility is bounded but uncertain; volatility is
assumed to be high when the portfolio is short gamma and low when the
portfolio is long gamma (worst case). Thus, different prices are generated
depending on whether an option position is long or short (a bid-offer spread
is generated). By minimizing the bid-offer spread of a given portfolio of
exotic options (such as barrier options) and European options with respect
to the weights of the European options, we can determine an optimal
hedge and the minimal bid-offer spread that would be required to guarantee
profitability assuming that volatility does indeed remain within the assumed
bounds.

More practically, we can use the quasi-static hedging idea to determine
the impact of modeling assumptions on the valuation of any given barrier-
like claim. The idea is to first determine what the quasistatic hedge looks
like, then figure out how this hedge behaves under various future stock price
and volatility scenarios—a sort of mental Monte Carlo simulation. We now
illustrate this approach with a few examples.

Out-of-the-Money Barrier Options

For concreteness, suppose we sell a call with strike K that knocks out at
B < K. In this case, the quasistatic hedge portfolio is long a European call
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FIGURE 9.5 Values of knock-out call options struck at 1 as a function of barrier
level. The solid line is stochastic volatility; the dashed line is local volatility.

with strike K and short an out-of-the money European put (with strike B2/K
in the zero log-drift case).

If the barrier is never hit, the hedge is obviously good. On the other hand,
if the barrier is hit, the value of the then out-of-the-money European call
and out-of-the-money European put in the hedge portfolio depend on the
then volatility skew. From our discussion of volatility surface dynamics in
Chapter 8, we know that with the Heston-Nandi parameters of Chapter 4,
the skew will be flatter (less negative) under local volatility than under
stochastic volatility. We conclude that when the barrier is hit, the hedge
portfolio will be worth more under local volatility than under stochastic
volatility. However, both options will be out-of-the-money so we don’t
expect the skew effect to be very big. We therefore guess that the pricing
of a call that knocks out out-of-the-money would be a little lower under
local volatility (because the net expected hedging cost is lower) than under
stochastic volatility. This guess is supported by the graphs in Figures 9.5
and 9.6.

One-Touch Options

Recall that a one-touch call option pays some prespecified amount of money
if an upside barrier is hit. Suppose we sell such a one-touch call option
struck at B > S. The quasi-static hedge portfolio should be (approximately)
long a strip of European binary call options struck at B. Once again, if
the barrier is never hit, the hedge is obviously fine. With the Heston-Nandi
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FIGURE 9.6 Values of knock-out call options struck at 0.9 as a function of barrier
level. The solid line is stochastic volatility; the dashed line is local volatility.

parameters of Chapter 4,∗ the skew when the barrier is hit will be flatter (less
negative) under local volatility than under stochastic volatility. It follows
that the binary call options will be worth more under stochastic volatility.
That is, on average the one-touch option costs less to hedge under stochastic
volatility than under local volatility and so its upfront valuation should
be lower under stochastic volatility. This qualitative argument explains the
graph shown in Figure 9.4.

Live-Out Options

As before, we model a live-out call as a capped call minus a one-touch.
Once again, we guess that the value of the capped call should be pretty
much identical under stochastic and local volatility modeling assumptions.
On the other hand, from our previous discussion, with the Heston-Nandi
parameters of Chapter 4, we expect the value of the one-touch option to be
lower under stochastic volatility than under local volatility.

We conclude that with these parameters, a live-out call should be worth
more under stochastic volatility than under local volatility. This guess is
supported by the graph in Figure 9.7. Note that the difference in valuation
between the two modeling assumptions can be very substantial.

∗The implication here and in what follows is that where some result is shown to
hold for this special choice of parameters that make computations easy, there is
every reason to suppose that the same result holds more generally for any choice of
stochastic volatility dynamics and parameters.
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FIGURE 9.7 Values of live-out call options struck at 1 as a function of barrier level.
The solid line is stochastic volatility; the dashed line is local volatility.

Lookback Options

Suppose now that we sell a lookback call option struck at K > S. The hedge
is roughly two European call options struck at K. If the stock price never
reaches K, the hedge is fine. If and when the stock price reaches K, we need
to sell our two European calls with strike K and buy two new calls with
strike K + �K. Equivalently, we need to sell two call spreads. Once again,
with the Heston-Nandi parameters of Chapter 4, the skew will be more
negative under stochastic volatility than under local volatility. We therefore
earn more for our call spreads under stochastic volatility than under local
volatility. We conclude that with these parameters, a lookback call option
should be valued lower under stochastic volatility than under local volatility
assumptions. This guess is supported by the graph in Figure 9.8. On closer
examination, we see that the ratio of the stochastic volatility value to the
local volatility value decreases with increasing strike. That’s because on
average the higher the strike, the greater the time elapsed between inception
and the first rebalancing operation.

ADJUSTING FOR DISCRETE MONITORING

A practical point that is worth noting is that the discreteness effect for
barrier options is very significant. Often barrier option contracts specify
that the barrier is only to be monitored at the market close. How can we
estimate the magnitude of the effect of this on the value of a barrier option?
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FIGURE 9.8 Values of lookback call options as a function of strike. The solid line is
stochastic volatility; the dashed line is local volatility.

We can get an idea of the order of magnitude of the correction using our
newly acquired intuition for lookback options. Without loss of generality,
suppose a given discrete (up-) barrier option is monitored daily and consider
the day on which the discrete maximum is first reached. It is highly likely that
the continuous maximum was reached on the same day. At the beginning
of that day, the expected difference between the maximum reached and the
final stock price is a lookback option that is worth approximately twice a
1-day European option or

2
σ

√
�T√
2π

≈ 0.8 σ
√

�T

Then, denoting the fair value of discretely monitored and continuously
monitored options with up-barrier B by Ṽ(B) and V(B) respectively, we have

Ṽ (B) ≈ V
(
B e0.8 σ

√
�T

)

In fact, Broadie, Glasserman, and Kou (1999) prove the following
theorem:

Let V(B) be the price of a continuous barrier option, and Vm(B) be the
price of an otherwise identical barrier option with m monitoring points.
Then we have the approximation

Vm(B) = V(B e±βσ
√

T/m) + o(1/
√

m)
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with + for an up option and − for a down option, where the constant

β = −ζ (1/2)√
2π

≈ 0.5826

and ζ is the Riemann zeta function.
The idea of the proof is to estimate the amount by which the discretely

monitored stock price overshoots the barrier level (as it must in general) the
first time it exceeds it. The amount of overshoot is given approximately by
B e±βσ

√
T/m − B.

The difference in price between a discretely monitored barrier option
and its continuously monitored equivalent is often substantial. For example,
with σ = 0.32 and daily monitoring (

√
�T ≈ 1/16), the adjustment would

be around 0.32×0.6
16 = .012 (1.2% of the barrier level).

Discretely Monitored Lookback Options

One might guess from the previous result that the expected difference
between the continuous maximum and the discrete maximum might be
approximated by the same number. Broadie, Glasserman, and Kou (1999)
prove that this is indeed the case. In their paper they show that

E[ŜT] = E[S̃T] e−β σ
√

�T (9.2)

where Ŝ is the discrete maximum, S̃ is the continuous maximum and �T is
the monitoring interval.

An at-the-money lookback (or hindsight) option L̂(S0, T) pays the
discrete maximum minus the initial stock price. We can rewrite equa-
tion (9.2) as

L̂(S0, T) = E[ŜT − S0]

= E[S̃T] e−β σ
√

�T − S0

= L̃(S0 e−β σ
√

�T , T) − S0

(
1 − e−β σ

√
�T

)

where L̃ is the equivalent continuously monitored option. Similar adjust-
ments for other types of lookback option are given in the (Broadie,
Glasserman, and Kou 1999).



120 THE VOLATILITY SURFACE

PARISIAN OPTIONS

As described in Taleb (1996), continuously monitored barrier options can
tempt either the option buyer or seller to influence the underlying stock price
(‘‘barrier wars’’). Discretely monitored options suffer from similar problems.
One way to retain the benefits of barrier options while minimizing the risk
of manipulation is to specify that in order for the option to knock-in (or out
as the case may be), the underlying stock price must stay outside the barrier
for a minimum period of time referred to as a window. In this case, the
option is called a Parisian option. As a further advantage, Parisian options
have much less extreme greeks than their non-Parisian counterparts.

Parisian-style features are common in convertible bonds and whenever
the size of a derivative is large relative to the liquidity of the underlying stock.

With the usual constant parameter assumptions, Parisian options can
be valued in almost-closed form by applying some results on the excursion
process of Brownian motion (see for example Chapter 12 of Revuz and
Yor (1999)). However in the general case, as in most other barrier option
valuation problems, the most natural valuation approach is numerical PDE
as described for example by Tavella and Randall (2000).

SOME APPLICATIONS OF BARRIER OPTIONS

Ladders

Consider a strip of capped calls with strikes Bi strictly increasing and greater
than the initial stock price S0. The cap of the option with strike Bi is Bi+1
so a rebate of Bi+1 —Bi is paid when the barrier at Bi+1 is hit. The buyer of
such an option locks in his gain each time a barrier is crossed. This gain is
not lost if the stock price subsequently falls. Not surprisingly, this structure
is very popular with retail investors. In the limit where the caps are very
close to the strikes, a ladder approximates a lookback option (every time
the stock price increases, the gain is locked in) and the value of the ladder
would be approximately twice the value of a European option. Typically
though, barriers would be every 10% or so and the value of the ladder
would be around 1.5 times the value of the corresponding European option.

Ranges

Another popular investment is one that pays a high coupon for each day
that the stock price remains within a range but ceases paying a coupon as
soon as one of the boundaries is hit. This is a just a one-touch double barrier
construction.
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CONCLUSION

Barrier option values can be very sensitive to modeling assumptions and
prices must be adjusted to take this into account. Nevertheless, by under-
standing limiting cases that are well understood, we can gain a good
qualitative understanding of the appropriate valuation and hedge portfolio
for any given barrier option. Market practitioners are often reluctant to
quote on any barrier option given the potential valuation uncertainty and
the hedging complexity. What we have shown is that this reluctance is not
always justified—sometimes a barrier option is much less risky and easier
to price than its European equivalent.



CHAPTER 10
Exotic Cliquets

T he most obvious example of a forward-skew dependent claim is a cliquet.
We already saw two examples of simple cliquet contracts in Chapter 8.

As we noted there, a cliquet is a sequence of cliquettes, forward-starting
options whose terms are set on the reset dates. The simplest and perhaps
most common kind of cliquet is just a strip of forward-starting at-the-money
European calls.

In this chapter, we look at some examples of exotic cliquet contracts. To
make the discussion more concrete, we will take as our models three specific
bonds issued by Mediobanca S.p.A.: a Locally Capped Globally Floored
Cliquet, a Reverse Cliquet, and a Napoleon. It seems that Mediobanca
has issued many different types of structured bond and the Mediobanca
website (http://www.mediobanca.it) has a virtual treasure trove of well-
written documents for the collector of exotic structures. Moreover, some of
these deals have matured so that we can examine their ex post performance.

LOCALLY CAPPED GLOBALLY FLOORED CLIQUET

The ‘‘Mediobanca Bond Protection 2002–2005’’ (ISIN IT0003391353) has
the Dow Jones EURO STOXX 50 index as underlying and offers guaranteed
principal redemption plus an annual coupon payable on December 2 of each
year given by

max

[{
12∑

t=1

min (max (rt, −0.01) , +0.01)

}

, MinCoupon

]

where MinCoupon = 0.02 and each monthly return rt is given by

rt = St − St−1

St−1
− 1

122
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where St is the level of the EURO STOXX 50 index on the tth monthly
reset date. The annual coupon is therefore capped at 12% and floored at
2%, hence the name locally capped, globally floored cliquet that is given to
this type of structure.

According to the document, coupons are paid on December 2 of each
year. The valuation dates t are the second day of each month except that
the final valuation date for each coupon is November 25, one week before
the coupon is paid.

If it weren’t for the guaranteed minimum annual coupon, this particular
Mediobanca deal would reduce to a simple strip of 1-month at-the-money
call spreads (or equivalently put spreads according to taste). The minimum
annual coupon acts as the global floor and each monthly return is capped at
the local cap of 1%. Our intuition tells us that despite the global floor, this
structure should behave as a strip of call spreads; adding a global floor is
roughly equivalent to raising the lower strike of each spread. We would guess
that the structure should be very sensitive to forward skew assumptions.
Thus our prediction would be that a local volatility assumption would
substantially underprice the deal because it generates forward skews that
are too flat (the more negative the skew, the greater the value of a call spread).

Valuation under Heston and Local Volatility Assumptions
In order to get a sense for the dependency of the valuation of this cliquet
on modeling assumptions, we may generate Monte Carlo paths under
both Heston and local volatility assumptions with the parameters from
Chapter 4.∗ Note that there is no suggestion that the Heston-Nandi param-
eters of Chapter 4 would have generated option prices remotely close to
those obtaining on the issue date of the bond (December 2, 2002). All we
are trying to do is to isolate the effect of modeling assumptions.

Figure 10.1 shows the value of this structure for different values of the
minimum coupon (MinCoupon in the formula) in the Heston model with
Heston-Nandi parameters:

v = 0.04; v = 0.04; λ = 10; η = 1; ρ = −1

and under local volatility with the Heston local volatility approximation
from Chapter 4:

vloc(xT , T) = max

[

(v − v′)e−λ′T + v′ − η xT

{
1 − e−λ′T

λ′T

}

, 0

]

∗Recall that these two sets of assumptions generate almost identical European option
prices.
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FIGURE 10.1 Value of the ‘‘Mediobanca Bond Protection 2002–2005’’ locally
capped and globally floored cliquet (minus guaranteed redemption) as a function of
MinCoupon. The solid line is stochastic volatility; the dashed line is local volatility.

with λ′ = λ + η/2, v′ = v λ/λ′. As usual, we assume zero interest rates and
dividends.

We see that our intuition is justified. The actual structure has
minCoupon = 2%; at that point, the expected coupon under Heston is
3.53% and the expected coupon under local volatility is only 2.55%, which
corresponds to an upfront valuation difference of 3 × 0.98 = 2.94% with
our usual assumption of zero rates and dividends. Relative to the profit
of the provider of the exotic option component, 3.0% is a big number: It
may well be more than his entire profit! The maximum coupon payable
is 12% per year so the local volatility and Heston expected coupons must
agree when minCoupon = 12% and from Figure 10.1, we see that they do.
When minCoupon = −1% on the other hand, the structure is just a strip
of European call spreads and the sensitivity to forward volatility skew (and
so to the difference between Heston and local volatility assumptions) is
maximized.

Performance

The historical performance of this bond is shown schematically in
Figure 10.2.

The estimated historical bond coupons in Table 10.1 reflect the effective
diversification that comes from averaging over 12 more-or-less independent
capped and floored returns—they are rather close to the risk-free rate.∗ In

∗Note that these are only estimates. The Calculation Agent always has the final say.
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FIGURE 10.2 Historical performance of the ‘‘Mediobanca Bond Protection
2002–2005’’ locally capped and globally floored cliquet. The dashed vertical lines
represent reset dates, the solid lines coupon setting dates and the solid horizontal
lines represent fixings.

TABLE 10.1 Estimated ‘‘Mediobanca Bond
Protection 2002–2005’’ coupons.

Fixing Date Coupon

11/25/2003 3.91%
11/25/2004 3.55%
11/25/2005 4.14%

fact, the 3-year euro annual swap rate on the issue date (December 2, 2002)
was 3.59%. It is pretty hard for an investor to make or lose much money in
a structure like this.

REVERSE CLIQUET

The ‘‘Mediobanca 2000–2005 Reverse Cliquet Telecommunicazioni’’ (ISIN
IT0001458600) has a basket of telecommunication stocks as underlying and
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offers guaranteed principal redemption plus a final premium P given by

P = max

[

0, MaxCoupon +
10∑

i=1

min [0, ri]

]

where each semi-annual return ri is given by

ri = basketi − basketi−1

basketi

and MaxCoupon = 100%.
We note that as in all such structures, principal is guaranteed but the

coupons depend on the performance of some underlying index. In this
case, there is no real periodic coupon. Instead (and this is also typical), a
return is computed periodically and added to the final redemption amount.
The maximum redemption amount achievable in this case is given by
Principal + MaxCoupon = 200%.

Without the guaranteed redemption feature, this Mediobanca structure
would reduce to a simple strip of 6-month at-the-money puts; an investor
would be short the strip of puts. The structure is termed a reverse cliquet
because only negative returns contribute to the final payoff. It is therefore
fair to assume that there would be very little skew dependence in the
valuation. In fact, this is not typical and in general, each cliquette in a
reverse cliquet has a local cap and local floor as in our previous example.
The guaranteed redemption amount acts as a global floor.

Valuation under Heston and Local Volatility Assumptions

Figure 10.3 shows the value of this structure for different values of the
maximum payoff (coupon in the formula) under Heston and local volatility
assumptions with Heston-Nandi parameters exactly as before. We see that
our intuition is justified. There is not a huge difference between a stochastic
volatility and a local volatility valuation of the deal. With MaxCoupon =
100% as per the deal terms, the expected redemption amount is 43.9% in
the Heston case and 42.0% in the local volatility case.

On closer examination, we note that the valuation of the deal is con-
sistently higher under stochastic volatility than under local volatility. That’s
because although the investor is short at-the-money puts, he is also long the
global floor which acts like a strip of out-of-the-money puts. This global
floor is worth more under stochastic volatility than under local volatility
reflecting the flatter forward volatility skews in a local volatility world.
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FIGURE 10.3 Value of the Mediobanca reverse cliquet (minus guaranteed
redemption) as a function of MaxCoupon. The solid line is stochastic volatility; the
dashed line is local volatility.

Performance

The historicalperformance of this bond is shownschematically inFigure 10.4.
The extra data included prior to issuance of the deal in 2000 is to provide
historical context. We see that as of the issue date, global telecommunications
stocks had dropped substantially from their peak reached earlier in the year.
One can imagine that the average investor might not have predicted that the
basket of telecom stocks would have dropped a further 70% from inception
to today, an 83% drop at the worst point. The investor would have been
better off heeding the trader adage: ‘‘don’t try to catch a falling knife.’’

Although at maturity the deal paid no more than the guaranteed
principal, this is very substantially more than the investor would have got
if he had held on to the underlying basket of telecommunications stocks.
Moreover, the deal did have substantial upside unlike the capped and floored
cliquet that we examined earlier. Again, for reference the euro 5-year annual
swap rate was 5.73% on the issue date of May 18, 2000.

NAPOLEON

The payoff of the ‘‘Mediobanca 2002–2005 World Indices Euro Note Serie
46’’ (ISIN IT0003487524) again has guaranteed principal and pays an
annual coupon given by

couponi = max [0, MaxCoupon + r̃i]
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FIGURE 10.4 Historical performance of the ‘‘Mediobanca 2000–2005 Reverse
Cliquet Telecommunicazioni’’ reverse cliquet. The vertical lines represent reset
dates, the solid horizontal lines represent fixings and the vertical grey bars represent
negative contributions to the cliquet payoff.

where r̃i is the average of the worst (most negative) monthly returns of
three global stock indices—SPX, EURO STOXX 50, and NIKKEI 225 and
MaxCoupon = 10%. Specifically,

r̃i := inf
ti−1<tj<ti

rj.

Each cliquette has extreme dependence on the skew at the time the
strike is set so the whole structure is extremely dependent on forward skew.
The more negative the volatility skew, the greater the value of downside
puts reflecting in turn the greater expected magnitude of downside moves
and the lower the value of the structure. Our previous intuition would
therefore lead us to predict that the Napoleon should be worth substantially
less under stochastic volatility (with more negative returns on average) than
under local volatility.

Valuation under Heston and Local Volatility Assumptions
Figure 10.5 shows the risk-neutral expected value of the Napoleon coupon
for different values of the maximum annual coupon (MaxCoupon in the
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FIGURE 10.5 Value of (risk-neutral) expected Napoleon coupon as a function of
MaxCoupon. The solid line is stochastic volatility; the dashed line is local volatility.

formula) computed as usual under Heston and local volatility assumptions
with Heston-Nandi parameters from Chapter 4. As before, we assume zero
interest rates and dividends.

This time, our previous intuition fails! Depending on the value of
MaxCoupon the Heston Napoleon valuation can be higher or lower than
the local volatility valuation. With MaxCoupon = 10% as in the deal terms,
the expected Napoleon coupon is almost identical under the two sets of
assumptions: 1.74% in each case.

The Napoleon-expected coupon is high at low volatility and low at
high volatility with a lot of volatility convexity. Volatility convexity is
underpriced in the local volatility model relative to stochastic volatility and
in this case, the underpricing of volatility convexity may be the dominant
effect. The Napoleon structure also has the feature that as the underlying
falls, the expected coupon decreases and vega decreases—if the current
return is negative enough for the coupon floor to be hit, future volatility can
have no further effect. Maybe this cross-effect is more highly priced in the
stochastic volatility model than in the local volatility model?

The moral of the story is clear: Intuition is well and good when
the structure is familiar and well understood. But if a structure is either
unfamiliar or not well understood, one should always look at the sen-
sitivity of pricing to modeling assumptions as we have just done here.
It’s not enough to just compute sensitivity to model parameters within
a given modeling framework: modeling assumptions themselves must be
stressed.
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Performance

The historical performance of the EURO STOXX 50 component of this
Napoleon bond is shown schematically in Figure 10.6.

Referring to Table 10.2, we see that the estimated bond coupons are
actually rather close to the risk-free rate, 3-year euro annual swap rate of
3.26% as of the issue date (December 20, 2002). Although the Napoleon
structure appears to offer the investor the possibility of a very high coupon,
the investor would have to be very lucky not to have one large negative
monthly return out of twelve during a given coupon period. On the other
hand, we shouldn’t forget that principal is guaranteed; all of these complex
cliquet structures are basically conservative for the investor.

Investor Motivation

The reader might wonder what it is that motivates an investor to consider
one of these exotic cliquet structures. Cliquet deals were and continue to
be targeted at European retail investors who were accustomed to investing
in high-yielding government bonds. Of course, with the advent of the
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FIGURE 10.6 Historical performance of the STOXX 50 component of the
‘‘Mediobanca 2002–2005 World Indices Euro Note Serie 46’’ Napoleon. The light
vertical lines represent reset dates, the heavy vertical lines coupon setting dates, the
solid horizontal lines represent fixings and the thick grey bars represent the
minimum monthly return of each coupon period.
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TABLE 10.2 Worst monthly returns and estimated Napoleon coupons. Recall that
the coupon is computed as 10% plus the worst monthly return averaged over the
three underlying indices.

Date r̃STOXX50 r̃SPX r̃NIKKEI225 Est. Coupon

12/20/2003 −7.61% −5.69% −11.61% 1.70%
12/20/2004 −6.62% −4.26% −9.12% 3.33%
12/20/2005 −3.09% −3.91% −6.36% 5.55%

euro and the global decline in yields, government bonds are no longer
high yielding. One can surmise that these essentially conservative principal-
guaranteed deals offer these investors the same security as a bond with the
possibility of a high coupon. Although these structures are complex from
the valuation and hedging perspective, they are not so hard to explain to a
retail investor.

More on Napoleons

Although cliquet bonds are in general conservative deals for investors, they
can be very hard to manage for the ultimate hedgers of the exotic option
component. In the cases of locally capped globally floored and reverse
cliquets, at least the hedger can roughly visualize what the structure is in
terms of strips of forward-starting options. On the other hand, there doesn’t
seem to be any such neat (even approximate) decomposition of a Napoleon
into conventional options.

In fact, exotic option traders at the time (2002 to 2003) that the
Napoleon structure was popular were smart enough to realize that local
volatility models were inappropriate because, as we keep noting, forward
skews are too flat. However, the most common valuation technique wasn’t
stochastic volatility—it was the so-called independent increment technique.
While to avoid arbitrage, returns must be uncorrelated, this technique effec-
tively assumes that returns are independent of each other—even squared
returns! Forward skews are roughly correct because 1-month returns are
drawn (in Monte Carlo for example) from the 1-month risk-neutral distri-
bution. However, forward volatility levels are deterministic and volatility
convexity is underpriced.

It follows that the independent increment technique substantially under-
prices the Napoleon and since the lowest price invariably gets the deal, it
was precisely those traders that were using the wrong model that got the
business. Ironically, had those exotic traders used local volatility assump-
tions to price Napoleons, they would have lost less money. The importance
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of trying out different modeling assumptions cannot be overemphasized.
Intuition is always fallible!

In a February 2004 RISK magazine article, Jeffery (2004) describes the
situation well giving a sense of some of the pain suffered by exotic option
traders.



CHAPTER 11
Volatility Derivatives

I n this final chapter, we will investigate the pricing and hedging of claims
that have realized volatility or variance (quadratic variation) as underlying.

Although one might expect these recently developed instruments to be the
most exotic and hard to price and hedge of all, it turns out that in some
respects they are among the safest and easiest. Certainly some of the most
elegant and robust constructions so far are to be found in this chapter.

SPANNING GENERALIZED EUROPEAN PAYOFFS

As usual, we assume that European options with all possible strikes and
expirations are traded. In the spirit of the paper by Carr and Madan
(1998), we now show that any twice-differentiable payoff at time T may
be statically hedged using a portfolio of European options expiring at
time T.

From Breeden and Litzenberger (1978), we know that we may write the
pdf of the stock price ST at time T as

p(ST , T; St, t) = ∂2C̃(St, K, t, T)
∂K2

∣
∣∣
∣
∣
K=ST

= ∂2P̃(St, K, t, T)
∂K2

∣
∣∣
∣
∣
K=ST

where C̃ and P̃ represent undiscounted call and put prices respectively.
Then the value of a claim with a generalized payoff g(ST) at time T is

given by

E
[
g(ST)

∣∣ St
] =

∫ ∞

0
dK p(K, T; St, t) g(K)

=
∫ F

0
dK

∂2P̃
∂K2 g(K) +

∫ ∞

F
dK

∂2C̃
∂K2 g(K)

133



134 THE VOLATILITY SURFACE

where F represents the time-T forward price of the stock. Integrating by
parts twice and using the put-call parity relation C̃(K) − P̃(K) = F − K give

E
[
g(ST)

∣∣ St
] = ∂P̃

∂K
g(K)

∣
∣∣
∣
∣

F

0

−
∫ F

0
dK

∂P̃
∂K

g′(K) + ∂C̃
∂K

g(K)

∣
∣∣
∣
∣

∞

F

−
∫ ∞

F
dK

∂C̃
∂K

g′(K)

= g(F) −
∫ F

0
dK

∂P̃
∂K

g′(K) −
∫ ∞

F
dK

∂C̃
∂K

g′(K)

= g(F) − P̃(K)g′(K)
∣∣
∣
F

0
+
∫ F

0
dK P̃(K) g′′(K)

− C̃(K)g′(K)
∣
∣∣
∞
F

+
∫ ∞

F
dK C̃(K) g′′(K)

= g(F) +
∫ F

0
dK P̃(K) g′′(K) +

∫ ∞

F
dK C̃(K) g′′(K) (11.1)

By letting t → T in equation (11.1), we see that any European-style twice-
differentiable payoff may be replicated using a portfolio of European options
with strikes from 0 to ∞ with the weight of each option equal to the second
derivative of the payoff at the strike price of the option. This portfolio of
European options is a static hedge because the weight of an option with a
particular strike depends only on the strike price and the form of the payoff
function and not on time or the level of the stock price. Note further that
equation (11.1) is completely model independent.

Example: European Options

By using Dirac delta functions, we can extend the previous result to payoffs
that are not twice-differentiable. Consider, for example, the portfolio of
options required to hedge a single call option with payoff (ST − L)+. In this
case g′′(K) = δ(K − L) and equation (11.1) give

E
[
(ST − L)+

] = (F − L)+ +
∫ F

0
dK P̃(K) δ(K − L)

+
∫ ∞

F
dK C̃(K) δ(K − L)
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=
{

(F − L) + P̃(L) if L < F
C̃(L) if L ≥ F

= C̃(L)

with the last step following from put-call parity as before. In other words,
the replicating portfolio for a European option is just the option itself.

Example: Amortizing Options
A useful variation on the payoff of the standard European option is given
by the amortizing option with strike L with payoff

g(ST) = (ST − L)+

ST

Such options look particularly attractive when the volatility of the underlying
stock is very high and the price of a standard European option is prohibitive.
The payoff is effectively that of a European option whose notional amount
declines as the option goes in-the-money. Then

g′′(K) =
{
− 2L

ST
3 θ (ST − L) + δ(ST − L)

ST

}∣∣∣
∣
ST=K

Without loss of generality (but to make things easier), suppose L > F. Then
substituting into equation (11.1) gives

E

[
(ST − L)+

ST

]
=
∫ ∞

F
dK C̃(K) g′′(K)

= C̃(L)
L

− 2L
∫ ∞

L

dK
K3 C̃(K)

and we see that an amortizing call option struck at L is equivalent to a
European call option struck at L minus an infinite strip of European call
options with strikes from L to ∞.

The Log Contract

Now consider a contract whose payoff at time T is log(ST/F). Then g′′(K) =
− 1/ST

2
∣
∣∣
ST=K

and it follows from equation (11.1) that

E

[
log
(

ST

F

)]
= −

∫ F

0

dK
K2 P̃(K) −

∫ ∞

F

dK
K2 C̃(K)
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Rewriting this equation in terms of the log-strike variable k := log (K/F),
we get the promising-looking expression

E

[
log
(

ST

F

)]
= −

∫ 0

−∞
dk p(k) −

∫ ∞

0
dk c(k) (11.2)

with

c(y) := C̃(Fey)
Fey

; p(y) := P̃(Fey)
Fey

representing option prices expressed in terms of percentage of the strike
price.

VARIANCE AND VOLATILITY SWAPS

We now revert to our usual assumption of zero interest rates and dividends.
In this case, F = S0 and applying Itô’s lemma path by path

log
(

ST

F

)
= log

(
ST

S0

)

=
∫ T

0
d log (St)

=
∫ T

0

dSt

St
−
∫ T

0

σSt
2

2
dt (11.3)

The second term on the rhs of equation (11.3) is immediately recognizable
as half the total variance (or quadratic variation) WT := 〈x〉T over the
period {0, T}. The first term on the rhs represents the payoff of a hedging
strategy which involves maintaining a constant dollar amount in stock (if
the stock price increases, sell stock; if the stock price decreases, buy stock so
as to maintain a constant dollar value of stock). Since the log payoff on the
lhs can be hedged using a portfolio of European options as noted earlier,
it follows that the total variance WT may be replicated in a completely
model-independent way so long as the stock price process is a diffusion. In
particular, volatility may be stochastic or deterministic and equation (11.3)
still applies.
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Now taking the risk-neutral expectation of (11.3) and comparing with
equation (11.2), we obtain

E

[∫ T

0
σ 2

St
dt

]

= −2 E

[
log
(

ST

F

)]

= 2

{∫ 0

−∞
dk p(k) +

∫ ∞

0
dk c(k)

}

(11.4)

We see explicitly that, as originally noted by Dupire (1992) and then by
Derman, Kamal, Kani, and Zou (1996), the fair value of total variance is
given by the value of an infinite strip of European options in a completely
model independent way so long as the underlying process is a diffusion.

Variance Swaps

Although trading in variance and volatility swaps really only began in the
late 1990s, there is already a significant literature describing these contracts
and the practicalities of hedging them including articles by Chriss and
Morokoff (1999) and Demeterfi, Derman, Kamal, and Zou (1999).

In fact, a variance swap is not really a swap at all but a forward contract
on the realized annualized variance. The payoff at time T is

N × A ×
{

1
N

N∑

i=1

{
log
(

Si

Si−1

)}2

−
{

1
N

log
(

SN

S0

)}2
}

− N × Kvar

where N is the notional amount of the swap, A is the annualization factor
and Kvar is the strike price. Annualized variance may or may not be defined
as mean-adjusted in practice so the corresponding drift term in the above
payoff may or may not appear.

From a theoretical perspective, the beauty of a variance swap is that
it may be replicated perfectly assuming a diffusion process for the stock
price as shown in the previous section. From a practical perspective, market
operators may express views on volatility using variance swaps without
having to delta hedge.

Variance swaps took off as a product in the aftermath of the LTCM
meltdown in late 1998 when implied stock index volatility levels rose to
unprecedented levels. Hedge funds took advantage of this by paying variance
in swaps (selling the realized volatility at high implied levels). The key to
their willingness to pay on a variance swap rather than sell options was that
a variance swap is a pure play on realized volatility—no labor-intensive
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delta hedging or other path dependency is involved. Dealers were happy
to buy vega at these high levels because they were structurally short vega
(in the aggregate) through sales of guaranteed equity-linked investments to
retail investors and were getting badly hurt by high implied volatility levels.

Variance Swaps in the Heston Model

Recall that in the Heston model, instantaneous variance v follows the
process:

dv(t) = −λ(vt − v)dt + η
√

vt dZ

It follows that the expectation of the total variance WT is given by

E [WT] = E

[∫ T

0
vt dt

]

=
∫ T

0
v̂t dt

= 1 − e−λT

λ
(v − v) + vT

The expected annualized variance is given by

1
T

E [WT] = 1 − e−λT

λT
(v − v) + v

We see that the expected variance in the Heston model depends only on v, v
and λ. It does not depend on the volatility of volatility η. Since the value of
a variance swap depends only on the prices of European options, it cannot
depend on the specific dynamics assumed (local or stochastic volatility, for
example).

Dependence on Skew and Curvature

We know that the implied volatility of an at-the-money forward option in
the Heston model is lower than the square root of the expected variance
(just think of the shape of the implied distribution of the final stock price
in Heston). In practice, we start with a strip of European options of a given
expiration and we would like to know how we should expect the price of a
variance swap to relate to the at-the-money-forward implied volatility, the
volatility skew and the volatility curvature (smile).
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It turns out that there is a very elegant exact expression for the fair
value of variance. Define

z(k) = d2 = − k

σBS(k)
√

T
+ σBS(k)

√
T

2

Intuitively, z measures the log-moneyness of an option in implied standard
deviations. Then

E[WT] =
∫ ∞

−∞
dz N′(z) σ 2

BS(z)T (11.5)

To see this formula is plausible, it is obviously correct when there is no
volatility skew. We now proceed to prove it.

Proof of Equation (11.5)∗ As usual, the undiscounted European call option
price is given by

C = F
{

N
(

− k√
w

+
√

w
2

)
− ekN

(
− k√

w
−

√
w

2

)}

where k := log(K/F) is the log-strike.
Differentiating wrt the strike K we obtain

∂C
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∂
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w
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Then with the notation

d1 = − k√
w

+
√

w
2
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w

−
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w
2

and differentiating again wrt K, we obtain

∂2C
∂K2 = 1

K
∂

∂k

{
−N

(
− k√

w
−

√
w

2

)
+ N′

(
− k√

w
−

√
w

2

)
∂
√

w
∂k

}

= N′ (d2
)

K

{
−∂d2

∂k

(
1 + d2

∂
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w
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}

∗This particularly neat proof is due to Chiyan Luo.
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As discussed earlier, the fair value of a variance swap under diffusion
may be obtained by valuing a contract that pays 2 log (ST/F) at maturity T.
Brute-force calculation leads to

2E

[
log

ST

F

]
= 2

∫ ∞

0
dK log

(
K
F

)
∂2C
∂K2

= 2
∫ ∞

−∞
dk k N′ (d2

)
{
−∂d2

∂k

(
1 + d2

∂
√

w
∂k

)
+ ∂2√w

∂k2

}

= 2
∫ ∞

−∞
dk N′ (d2

)
{
−k

∂d2

∂k
− ∂

√
w

∂k

}

=
∫ ∞

−∞
dk N′ (d2

) ∂d2

∂k
w

which recovers equation (11.5) as required. 	

Now consider the following simple parameterization of the BS implied

variance skew:

σ 2
BS(z) = σ 2

0 + α z + β z2

Substituting into equation (11.5) and integrating, we obtain

E[WT] = σ 2
0 T + βT

We see that skew makes no contribution to this expression, only the
curvature contributes. The intuition for this is simply that increasing the
skew does not change the average level of volatility, but increasing the
curvature β increases the prices of puts and calls in equation (11.2) and
always increases the fair value of variance.

The Effect of Jumps
Let xt denote the return of a compound Poisson process so that

xT =
NT∑

i

yi

with the yi iid and NT a Poisson process with mean λ T. Define the quadratic
variation as

〈x〉T =
NT∑

i

∣
∣yi
∣
∣2
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Then

E [〈x〉T] = E [NT] E

[∣
∣yi
∣
∣2
]

= λ T
∫ T

0
y2 µ(y) dy

Also

E [xT] = λ T
∫ T

0
y µ(y) dy

and

E

[
xT

2
]

= λ T
∫ T

0
y2 µ(y) dy + (λ T)2

(∫ T

0
y µ(y) dy

)2

So

E [〈x〉T] = E

[
xT

2
]

− E [xT]2 = Var [xT]

That is, expected quadratic variation is just the variance of the terminal
distribution for compound Poisson processes! We know this result is correct
for Black-Scholes with constant volatility, but obviously it’s not true in
general (for example in the Heston model).

We can express the first two moments of the final distribution in terms
of strips of European options using equation (11.1) as follows:

E [xT] = E
[
log(ST/F)

] = −
∫ 0

−∞
dk p(k) −

∫ ∞

0
dk c(k)

E

[
xT

2
]

= E

[
log2(ST/F)

]
= −

∫ 0

−∞
dk 2 k p(k) −

∫ ∞

0
dk 2 k c(k)

So, for a compound Poisson process, if we know European option prices,
we may compute expected quadratic variation (i.e., compute the value of a
variance swap) by computing the variance of the terminal distribution.

On the other hand, if the underlying process is a diffusion, we may
compute expected quadratic variation using equation (11.4) in terms of the
log-strip

E [〈x〉T] = −2 E [xT] = 2

{∫ 0

−∞
dk p(k) +

∫ ∞

0
dk c(k)

}

So, if the underlying process is compound Poisson, we have one way
of computing E [〈x〉T] and if the underlying process is a diffusion we have
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another. In reality, we’re not sure what the underlying process is so we
would like to know how much difference the choice of underlying process
makes.

To compute this, we first note that from the definition of characteristic
function,

E
[
log (ST/F)

] = −i
∂

∂u
φT(u)

∣
∣∣
∣
u=0

Also note that if jumps are independent of the continuous process as they
are in both the Merton and SVJ models, the characteristic function may be
written as the product of a continuous part and a jump part

φT(u) = φC
T (u) φ

J
T(u)

where the superscripts C and J refer to the continuous and jump parts
respectively. From the Lévy-Khintchine representation of Chapter 5,

−i
∂

∂u
φ

J
T(u)

∣
∣∣
∣
u=0

= λ T
∫ T

0

(
1 + y − ey) µ(y) dy

On the other hand, we already showed above that

E

[
〈xJ〉T

]
= λ T

∫ T

0
y2 µ(y) dy

It follows that the difference between the fair value of a variance swap and
the value of the log-strip is given by

E [〈x〉T] + 2 E [xT] = 2 λ T
∫ T

0

(
1 + y + y2/2 − ey

)
µ(y) dy

Noting that the expression 1 + y + y2/2 is just the first three terms in
the Taylor expansion of ey, we conclude that the error introduced by valuing
a variance swap using the log-strip of equation (11.4) is of the order of the
jump-size cubed. If there are no jumps of course, the log-strip values the
variance swap correctly.
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Example: Lognormally Distributed Jumps with Mean α and Standard
Deviation δ In this case

E [〈x〉T] + 2 E [xT] = λT
(
α2 + δ2

)
+ 2λT

(
1 + α − eα+δ2/2

)

= −1
3

λTα
(
α2 + 3δ2

)
+ higher order terms

Putting α = −0.09, δ = 0.14 and λ = 0.61, from Bakshi, Cao, and Chen
(1997), we get an error of only 0.00122427 per year on a 1-year variance
swap, which at 20% volatility corresponds to 0.30% in volatility terms.

Volatility Swaps

Realized volatility 
T is the square root of realized variance VT := 〈x〉T/T
and we know that the expectation of the square root of a random variable
is less than (or equal to) the square root of the expectation. The difference
between

√
VT and 
T is known as the convexity adjustment.

Figure 11.1 shows how the payoff of a variance swap compares with
the payoff of a volatility swap.

Intuitively the magnitude of the convexity adjustment must depend on
the volatility of realized volatility. Note that volatility does not have to be
stochastic for realized volatility to be volatile; realized volatility 
T varies
according to the path of the stock price even in a local volatility model.

In general, there is no replicating portfolio for a volatility swap and the
magnitude of the convexity adjustment is model dependent. We will now
compute the convexity adjustment in the Heston model.

0.15 0.2 0.25 0.3 0.35 0.4
�T

�0.2

�0.15

�0.1

�0.05

0.05

0.1

Payoff

FIGURE 11.1 Payoff of a variance swap (dashed line) and volatility swap (solid
line) as a function of realized volatility 
T . Both swaps are struck at 30% volatility.
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Convexity Adjustment in the Heston Model

To proceed, we use the following trick:

E

[√
WT

]
= 1

2
√

π

∫ ∞

0

1 − E
[
e−ψWT

]

ψ3/2 dψ (11.6)

We recognize that

E

[
e−ψWT

]
= E

[

exp

{

−ψ

∫ T

0
vt dt

}]

is formally identical to the expression for the value of a bond in the CIR
model. Then from Cox, Ingersoll, and Ross (1985), we find that the Laplace
transform of the total variance WT = ∫ T

0 vt dt is given by

E

[
e−ψWT

]
= A e−ψvB

where

A =
{

2φ e(φ+λ)T/2

(φ + λ)(eφT − 1) + 2φ

}2λv/η2

B = 2 (eφT − 1)
(φ + λ)(eφT − 1) + 2φ

with φ =
√

λ2 + 2ψη2.
With some tedious algebra, we may verify that

E [WT] = − ∂

∂ψ
E

[
e−ψWT

]∣∣
∣∣
ψ=0

= 1 − e−λT

λ
(v − v) + vT

as we found earlier by direct integration of the Heston SDE.
Computing the integral in equation (11.6) numerically using the Heston-

Nandi parameters (v = 0.04, v = 0.04, λ = 10.0, η = 1.0) of Chapter 4, we
get the graph of the convexity adjustment as a function of time to expiration
shown in Figure 11.2.
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FIGURE 11.2 Annualized Heston convexity adjustment as a function of T with
Heston-Nandi parameters.
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FIGURE 11.3 Annualized Heston convexity adjustment as a function of T with
Bakshi, Cao, and Chen parameters.

Using Bakshi, Cao and Chen (1997) parameters (v = 0.04, v = 0.04, λ =
1.15, η = 0.39), we get the graph of the convexity adjustment as a function
of time to expiration shown in Figure 11.3.

To get intuition for what is going on here, compute the limit of the
variance of VT as T → ∞ with v = v using
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var [WT] = E

[
WT

2
]

− {E [WT]}2

= ∂2

∂ψ2 E

[
e−ψWT

]∣∣
∣
∣
ψ=0

−
{

∂

∂ψ
E

[
e−ψWT

]∣∣
∣
∣
ψ=0

}2

= vT
η2

λ2 + O(T0)

Then, as T → ∞, the standard deviation of annualized variance has the
leading order behavior

√
v/T η/λ. The convexity adjustment should be of

the order of the standard deviation of annualized volatility over the life of
the contract. From the last result, we expect this to scale as η/λ. Comparing
Bakshi, Cao and Chen (BCC) parameters with Heston-Nandi parameters,
we deduce that the convexity adjustment should be roughly 3.39 times
greater with BCC parameters and that’s what we see in the graphs.

VALUING VOLATILITY DERIVATIVES

Suppose the underlying process is a diffusion and that there is zero corre-
lation between moves in the underlying and moves in volatility. With these
assumptions, Carr and Lee (2005) show that any volatility derivative whose
payoff is a function of the quadratic variation 〈x〉T may in principle be
valued in terms of European options with expiration T. Friz and Gatheral
(2005) present a practical algorithm for doing this. We now proceed to
follow their reasoning.

Fair Value of the Power Payoff

Recall from equation (11.1) that generalized payoffs may be spanned
according to

E [g(ST) ] = g(F) +
∫ F

0
dK P̃(K, T) g′′(K)

+
∫ ∞

F
dK C̃(K, T) g′′(K) (11.7)

where C̃ and P̃ represent undiscounted call and put prices respectively and
F represents the time-T forward price of the stock. With the substitution
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g(ST) = Sp
T , we obtain the replicating portfolio for a power payoff:

E

[
Sp

T

]
= Fp + p (p − 1)

∫ F

0
dK P̃(K, T) Kp−2

+ p (p − 1)
∫ ∞

F
dK C̃(K, T) Kp−2

Define the log-strike k := log(K/F). Then

E

[
Sp

T

]
= Fp

{

1 + p (p − 1)
∫ 0

−∞
dk p̂(k) ep k

+ p (p − 1)
∫ ∞

0
dk ĉ(k) ep k

}
(11.8)

where p̂(k) and ĉ(k) denote the prices of puts and calls respectively in terms
of percentage of strike.

If there is zero correlation between moves in the underlying and volatility
moves, put-call symmetry holds, so that p̂(k) = e−k ĉ(−k). We can then
rewrite equation (11.8) as

E

[
Sp

T

]
= Fp

{
1 + 2 p (p − 1)

∫ ∞

0
dk ek/2 ĉ(k) cosh (p − 1/2) k

}

The Laplace Transform of Quadratic Variation under Zero Correlation

Under their assumptions of diffusion and zero correlation between spot
moves and volatility moves, Carr and Lee (2005) derive an expression
for the Laplace transform (moment generating function) of the quadratic
variation WT := 〈x〉T in terms of the fair value (11.8) of the power payoff.
Since we know the replicating strip for the power payoff, it follows that we
know the replicating strip for quadratic variation.

Following Carr and Lee, note that conditional on a particular realiza-
tion of the volatility process (volatility path), under their zero-correlation
assumption, the log-stock price

xT =
∫ T

0
σt dWt − 1

2
〈x〉T

is normally distributed with mean −〈x〉T/2 and variance 〈x〉T . It follows
that

E
[
ep xT

] = E

[
e(p2/2−p/2) 〈x〉T

]
=: E

[
eλ 〈x〉T ]
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with λ = p2/2 − p/2. Inverting this, we obtain the moment generating
function as

E
[
eλ〈x〉T ] = E

[
ep(λ)xT

]

with p(λ) = 1/2 ±√1/4 + 2 λ.
From equation (11.8), we then have that

E
[
eλ〈x〉T ] = 1 + p(λ) (p(λ) − 1)

{∫ 0

−∞
dk p̂(k) ep(λ) k

+
∫ ∞

0
dk ĉ(k) ep(λ) k

}
(11.9)

or alternatively

E
[
eλ〈x〉T ] = 1 + 2 p(λ) (p(λ) − 1)

∫ ∞

0
dk ek/2 ĉ(k) cosh (p(λ) − 1/2) k

Noting that p(λ) (p(λ) − 1) = 2 λ, we may simplify further to obtain

E
[
eλ〈x〉T ] = 1 + 4 λ

∫ ∞

0
dk ek/2 ĉ(k) cosh (p(λ) − 1/2) k (11.10)

The fair value of an exponential quadratic-variation (realized volatility)
payoff follows immediately from equation (11.10). By taking derivatives,
the fair value of any positive integral power of quadratic variation also
follows. As a check, consider the fair value of the first power of quadratic
variation—expected realized total variance. We have

E [ 〈x〉T ] = ∂

∂λ
E
[
eλ〈x〉T ]

∣∣
∣
∣
λ=0

= ∂

∂λ

{
1 + 4 λ

∫ ∞

0
dk ek/2 ĉ(k) cosh (p(λ) − 1/2) k

}∣∣∣
∣
λ=0

= 4
∫ ∞

0
dk ek/2 ĉ(k) cosh (p(0) − 1/2) k

= 4
∫ ∞

0
dk ek/2 ĉ(k) cosh k/2
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= 2
∫ ∞

0
dk ĉ(k)

{
1 + ek

}

= 2

{∫ ∞

0
dk ĉ(k) +

∫ 0

−∞
dk p̂(k)

}

which agrees exactly with our earlier result (11.4).
In principle, since we have an explicit expression for the moment

generating function (mgf ) of realized variance, we know its entire terminal
(time T) pseudo-probability distribution and we may compute the fair value
of any European-style claim on realized variance—knowing only market
prices of European options! Unfortunately, the analogue of the replicating
option strip for variance swaps doesn’t exist for generic volatility derivatives.
Friz and Gatheral (2005) show that although it’s easy to write down a formal
expression, the weights of the options in the strip are undefined.

The Fair Value of Volatility under Zero Correlation

After the variance swap, the next simplest claim to analyze is the volatil-
ity swap. Friz and Gatheral (2005) show that under the zero-correlation
assumption,

E

[√
〈x〉T

]
=

√
2 π ĉ(0) +

√
2
π

∫ ∞

0
dk ek/2 I1

(
k
2

)
ĉ(k) (11.11)

where In(·) represents a modified Bessel function of the first kind.
That the at-the-money option should have a delta-function weight

should come as no surprise as we are already familiar with the extremely
accurate approximation

ĉ(0) ≈ σBS
√

T√
2 π

(11.12)

for at-the-money forward European options.
To see just how dominant the contribution of the at-the-money forward

European option is, consider a 1-year flat volatility smile with σBS(k, 1) =
0.2, ∀k. The first term in (11.11) evaluates to 0.1997 and the continuous
strip of options with Bessel function weights to 0.0003. The total must of
course give 0.2, which is the fair value of volatility when the volatility smile
is flat (no convexity adjustment).

The formula (11.11) was originally derived from direct integration.
Peter Friz subsequently provided the following more enlightening derivation
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of the weights by imposing that in the flat-smile Black-Scholes case where
σBS(k) = σ ∀k, the value of the volatility swap should equal the implied
volatility σ .

Proof In the flat smile case (without loss of generality we choose τ = 1),
we may write

∫ ∞

0
dk
{√

π

2
F′ (k/2

)+
√

2π δ
(
k
) }

ek/2 cBS(k; σ ) = σ (11.13)

for some F to be found with F(0) = 1. From integration by parts, we find
that

∫ ∞

0
dk
{√

π

2
F′ (k/2

)+
√

2 π δ
(
k
)
}

ek/2cBS(k; σ )

= −
√

2π

{∫ ∞

0
dk F

(
k/2
) ∂

∂k

[
ek/2cBS(k; σ )

]}

Then differentiating each side of (11.13) with respect to σ we obtain

−
√

2π

{∫ ∞

0
dk F

(
k/2
) ∂

∂k

[
ek/2 ∂

∂σ
cBS(k; σ )

]}
= 1 (11.14)

for every choice of σ . That is, the vega of the option strip must be 1 no
matter what the implied volatility is.

By taking explicit derivatives of the Black-Scholes formula, recalling
our definition cBS(k; σ ) := exp(−k) CBS(k, σ ), we obtain

∂

∂k

[
ek/2 ∂

∂σ
cBS(k; σ )

]
= − 1√

2 π

k
σ 2 exp

(
− k2

2 σ 2

)
e−σ2/8

With v := σ 2, substitution into (11.14) and rearranging give

∫ ∞

0
dk F

(
k/2
) k

v
exp

(
− k2

2 v

)
= ev/8

Now expand F(k) in powers of k as

F(k) =
∞∑

m=0

αm km



Volatility Derivatives 151

and integrate term-by-term to obtain

∞∑

m=0

αm

(v
2

)m/2 (m
2

)
! =

∞∑

n=0

( v
8

)n 1
n!

Equating powers of v and solving for αm leads to

F
(
k
) =

∞∑

m=0

(
k2/4

)m

(m!)2 .

which we recognize this as the Bessel function I0(k). Finally we recall that
the option weights in the options strip (11.13) are given by F′(k/2) and
note that

I1(k) = ∂kI0(k)

to complete the proof. 	


Replication of Volatility Swaps Even though we can express the fair value
of volatility as the value of a weighted strip of European options (in the zero
correlation case), the volatility replication strategy differs fundamentally
from the variance replication strategy. In the variance case, we trade a strip
of options at inception and thereafter rebalance daily only in the underlying
and then only to maintain a constant dollar amount of the underlying in the
hedge portfolio. In contrast, in the volatility case we have to continuously
maintain a position in the at-the-money option: Each day, we sell the entire
position, which is no longer at-the-money, and buy a new one. Unlike the
variance strategy, this strategy is clearly not practical—the option bid-offer
would kill the hedger.

Despite the fact that the zero-correlation assumption is completely
unrealistic, at least in equity markets, the Carr-Lee result is tantalizing. For
example, we’d like to know how tightly the prices of European options
(which are assumed to be known) constrain the fair value of a volatility
derivative.

A Simple Lognormal Model

Assume that log
(√〈x〉T

)
is normally distributed with mean µ and variance

s2. Then log (〈x〉T) is also normally distributed with mean 2 µ and variance
4 s2. Volatility and variance swap values are given by respectively

E[
√

〈x〉T] = eµ+s2/2; E [〈x〉T] = e2µ+2s2
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Solving for µ and s2 gives

s2 = 2 log




√

E [〈X〉T]

E

[√〈X〉T

]



 ; µ = log






E

[√〈X〉T

]2

√
E [〈X〉T]






and the convexity adjustment is given by

√
E [〈X〉T] − E

[√
〈X〉T

]
=
(
es2/2 − 1

)
E

[√
〈X〉T

]

Incidentally, this simple lognormal assumption seems very reasonable; the
empirical distribution of implied volatility changes looks lognormal and as
noted in Chapter 8, the dynamics of the volatility skew are consistent with
approximately lognormal volatility dynamics.

It follows that calls on variance may be valued using a Black-Scholes
style formula:

E [〈x〉T − K]+ = e2µ+2s2
N(d̃1) − K N(d̃2) (11.15)

with

d̃1 = − 1
2 log K + µ + 2s2

s

d̃2 = − 1
2 log K + µ

s
.

In this simple lognormal model, the variance and volatility swap values
(or equivalently the variance swap value plus the convexity adjustment) are
all that is required to fix the values of all options on variance. Moreover, at
least for the major equity indexes, there is a tight market in variance swaps
and a somewhat less liquid market in the convexity adjustment.

A Heston Example Suppose the true dynamics of the underlying were Heston
(recall that lognormal volatility is a much more realistic assumption) with
BCC parameters

λ = 1.15, ρ = 0, σ 2
0 = σ 2 = 0.04, η = 0.39.

We showed earlier how to compute the value of a volatility swap in
terms of the Heston parameters. We can also easily compute the values of
calls on variance in terms of the Heston parameters. Given the values of
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the variance and the volatility swap, we can also apply equation (11.15) to
value the same calls on variance. How big is the error from applying the
simple variance call formula?

In Figure 11.4, we compare prices of variance calls obtained from
the approximate formula with those obtained from a direct numerical
integration using the closed-form Heston characteristic function of realized
variance.

Obviously, the two approaches must agree at zero strike because then we
have just a variance swap. It’s not clear how big the valuation error really is
away from zero strike. To get a better sense for the error, in Figure 11.5, we
compare the density we get by inverting the Heston characteristic function
numerically and the approximate lognormal density with mean 2 µ and
variance 4 s2.

We see that agreement is pretty close. And if agreement is so close in
the Heston case where we believe the dynamics to be unrealistic, how much
better should the agreement be when the underlying volatility dynamics are
lognormal (the more realistic case)?

We conclude that the values of T-maturity volatility derivatives are in
practice tightly constrained by the prices of expiration-T European options.
To make the argument even more explicit, we fit our preferred stochastic
volatility model (lognormal let’s say) to the prices of European options,
we set the correlation ρ to zero (this does not affect the value of volatility
derivatives), compute the value of the volatility swap using (11.11) and
apply our lognormal variance call option formula (11.15), confident that

0.05 0.1 0.15 0.2
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0.01

0.02

0.03

0.04

Variance Call

FIGURE 11.4 Value of 1-year variance call versus variance strike K with the BCC
parameters. The solid line is a numerical Heston solution; the dashed line comes
from our lognormal approximation.
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FIGURE 11.5 The pdf of the log of 1-year quadratic variation with BCC
parameters. The solid line comes from an exact numerical Heston computation; the
dashed line comes from our lognormal approximation.

the result will be robust to the specific parameters. The only constraint is
that the fit to expiration-T European prices should be good.

Options on Volatility: More on Model Independence

We have argued so far that given the prices of European options of all
strikes and expirations, the values of options on variance should be tightly
constrained. The extent to which this is true and even how this claim should
be precisely stated are as yet unresolved questions.

Elegant work by Bruno Dupire (Dupire 2005) shows how a mode-
independent lower bound for calls on realized variance may be obtained
by considering the delta hedging of a portfolio of European call options.
The idea is to hedge in business time defined as the timescale of realized
quadratic variation; the options are rehedged each time quadratic variation
increases by a given amount. Unlike conventional delta hedging in (atomic)
clock time, assuming no jumps, this hedging strategy guarantees profits on
a short option position if realized volatility is below implied volatility (the
volatility implied by the initial sale price). Conversely, the hedged option
position is guaranteed to lose if realized volatility is higher than implied
at inception. Losses are insured against by buying an option on quadratic
variation. The hedger ends up short a portfolio of European options and
long an option on realized variance with only positive payoffs. This portfolio
must be worth at least zero, and a model-independent, lower bound on the
price of an option on variance follows. In the same work, Dupire shows
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how solutions to the Skorokhod embedding problem can generate effective
upper and lower bounds on the price of an option on variance constrained
by known prices of European options.∗

Returning to the lower bound, it has been conjectured† that the min-
imum possible value of an option on variance is the one generated from
a local volatility model fitted to the volatility surface. Clearly options on
variance have value even in a local volatility model because realized variance
depends on the realized path of the stock price from inception to expiration.
Given that local variance is a risk-neutral conditional expectation of instan-
taneous variance, it seems obvious that any other model would generate
extra fluctuations of the local volatility surface relative to its initial state.

Between these model-independent upper and lower bounds, it seems
reasonable to suppose that the fair value of an option on variance is closest
to that given by a stochastic volatility model. We have spent much of this
book arguing that local volatility models have unrealistic dynamics, so it’s
easy to reject the lower bound as representing fair value. On the other
hand, the upper bound could represent some wild dynamics of the volatility
surface. In practice, volatility surfaces are very well behaved. For example,
Cont and da Fonseca (2002) do principal components analysis on time
series of volatility surfaces and find that nearly all of the variance can be
explained by three modes of fluctuation, which we may term volatility level,
skew, and curvature. According to Cont and Fonseca, a staggering 94%
of the variance of SPX volatility surface is explained by the first principal
component which by inspection is roughly a change in level (i.e., a change
in instantaneous volatility in our context).

Forde (2006) makes further progress by generalizing the Carr-Lee result
to local-stochastic volatility models of the type

dS = σ (S)
√

v dZ

where σ (S) is some deterministic function of S (a local volatility function)
and v is stochastic but independent of Z. He shows how given a local
volatility function σ (S), the law of quadratic variation can be recovered
from the smile at a single expiration by considering the prices of certain
eigenfunction contracts. Such local stochastic volatility models are now
standard in the foreign exchange markets where tight bid-ask spreads on
claims such as one-touch options exclude plain stochastic volatility models.
As mentioned earlier in Chapter 9, bid-ask spreads on one-touch equity
options are not yet tight (to say the least) so the same pressure to add a

∗Strictly speaking, the upper bound has only the status of a conjecture.
†It seems that Bruno Dupire is close to a formal proof.
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local volatility component is not felt. In addition, the at-the-money volatility
skew in equity markets is in general much more pronounced than in FX
markets. This fact combined with empirical observations of volatility surface
dynamics leads equity derivative modelers to generate skew from nonzero
correlation between stock returns and volatility changes rather than from
an explicit local volatility function.

LISTED QUADRATIC-VARIATION BASED SECURITIES

The VIX Index

In 2004, the CBOE listed futures on the VIX—an implied volatility index.
Originally, the VIX computation was designed to mimic the implied volatil-
ity of an at-the-money 1-month option on the OEX index. It did this by
averaging volatilities from eight options (puts and calls from the closest to
ATM strikes in the nearest and next to nearest months). To facilitate trading
in the VIX, the definition of the index was changed. Here is an excerpt from
the FAQ section on the CBOE website:

‘‘How is VIX being changed? Three important changes are being
made to update and improve VIX: 1. The New VIX is calcu-
lated using a wide range of strike prices in order to incorporate
information from the volatility skew. The original VIX used only
at-the-money options. 2. The New VIX uses a newly developed
formula to derive expected volatility directly from the prices of
a weighted strip of options. The original VIX extracted implied
volatility from an option-pricing model. 3. The New VIX uses
options on the S&P 500 Index, which is the primary U.S. stock
market benchmark. The original VIX was based on S&P 100 Index
(OEX) option prices.

Why is the CBOE making changes to the VIX? CBOE is
changing VIX to provide a more precise and robust measure of
expected market volatility and to create a viable underlying index
for tradable volatility products.

The New VIX calculation reflects the way financial the-
orists, risk managers and volatility traders think about—and
trade—volatility. As such, the New VIX calculation more closely
conforms to industry practice than the original VIX methodology.
It is simpler, yet it yields a more robust measure of expected volatil-
ity. The New VIX is more robust because it pools information from
option prices over a wide range of strike prices thereby capturing
the whole volatility skew, rather than just the volatility implied by
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at-the-money options. The New VIX is simpler because it uses a
formula that derives the market expectation of volatility directly
from index option prices rather than an algorithm that involves
backing implied volatilities out of an option-pricing model. The
changes also increase the practical appeal of VIX. As noted previ-
ously, the New VIX is calculated using options on the S&P 500
index, the widely recognized benchmark for U.S. equities, and the
reference point for the performance of many stock funds, with
over $800 billion in indexed assets. In addition, the S&P 500 is
the domestic index most often used in over-the-counter volatility
trading. This powerful calculation supplies a script for replicating
the New VIX with a static portfolio of S&P 500 options. This
critical fact lays the foundation for tradable products based on the
New VIX, critical because it facilitates hedging and arbitrage of
VIX derivatives. CBOE has announced plans to list VIX futures
and options in Q4 2003, pending regulatory approval. These will
be the first of an entire family of volatility products.

This explanation is intriguing. To see what the CBOE means, consider
the VIX definition (converted to our notation) as specified in the CBOE
white paper (CBOE 2003):

VIX2 = 2
T

∑

i

�Ki

K2
i

Qi(Ki) − 1
T

[
F

K0
− 1
]2

(11.16)

where Qi is the price of the out-of-the-money option with strike Ki and K0
is the highest strike below the forward price F.

We recognize the VIX formula (11.16) as a straightforward discretiza-
tion of equation (11.4) making clear the reason why the CBOE implies that
the new index permits replication of volatility.

To see this, we start with the log-strip formula (11.4) for valuing
variance. Rewriting it in terms of strikes rather than log-strikes, and noting
from CBOE (2003) that K0 is defined to be the first strike below the index
level F, we obtain (with obvious notation)

VIX2 T
2

=
∫ F

0

dK
K2 P(K) +

∫ ∞

F

dK
K2 C(K)

=
∫ K0

0

dK
K2 P(K) +

∫ ∞

K0

dK
K2 C(K) +

∫ F

K0

dK
K2 (P(K) − C(K))

=:
∫ ∞

0

dK
K2 Q(K) +

∫ F

K0

dK
K2 (K − F)
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≈
∫ ∞

0

dK
K2 Q(K) + 1

K2
0

∫ F

K0

dK (K − F)

=
∫ ∞

0

dK
K2 Q(K) − 1

K2
0

(K0 − F)2

2

One possible discretization of this last expression is

VIX2 = 2
T

∑

i

�Ki

K2
i

Qi(Ki) − 1
T

[
F

K0
− 1
]2

as in the VIX specification (11.16).

VXB Futures

Volume on VXB futures (the VXB index is defined to be 10 times the VIX)
has been negligible. For example, as of December 8, 2004, the December
VXB future had been trading an average of 155 contracts per day. At the
then price of 132.30, that corresponds to roughly $2 million of notional per
day. In contrast, Dec04 SPX futures were trading around 50,000 contracts
corresponding to around $15 billion of notional per day.

As a practical indication of how the replicating strip (11.4) is associated
with expected variance, settlement is on the Wednesday before the third
Friday based on the opening prices of options expiring in the following
month, the third Friday being the day on which the payoffs of SPX options
are set.

A Subtlety VXB futures settle based on the square root of the value of the
replicating strip (i.e., on volatility rather than variance) so there must be a
convexity adjustment. However, this isn’t exactly the same as the convexity
adjustment

√
E[WT] − E[

√
WT]

that we computed earlier.
As of the valuation date, the convexity adjustment relevant to the VXB

futures contract is given by

√
E[Wt,T] − E

[√
Et[Wt,T]

]
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where t is the settlement date, T is the expiration date of options in the strip
and the expectation is computed as of some valuation date prior to t.

As before, we can easily compute E[Wt,T] from strips of options expiring
at times t and T respectively but we need a model to compute E

[√
Et[Wt,T]

]
.

One obvious question is where the market prices this convexity adjust-
ment. As of December 8, 2004, the spot VXB was at 132.30. Computing
the expected forward variances E[Wt,T] from market prices of options we
obtain the empirical convexity adjustments shown in Table 11.1.

The next question is what the VXB futures are worth theoretically.

VXB Convexity Adjustment in the Heston Model To compute the VXB con-
vexity adjustment in the Heston model, we first note that expected 1-month
expected total variance Wt,T given the instantaneous variance vt is

f (v) = E[Wt,T] = (v − v)
1 − e−λ τ

λ
+ v τ

with τ = T − t.
Then

E

[√
Wt,T

]
=
∫ ∞

0
q(v|v0)

√
f (v) dv (11.17)

where q(v|v0) is the pdf of instantaneous variance v given the initial
variance v0.

Computing the integral in equation (11.17) numerically using Heston
parameters from a fit to December 8, 2004, data, we get the graph of
the convexity adjustment as a function of time to expiration shown in
Figure 11.6.

We see that for the two futures maturities listed in Table 11.1, the Heston
convexity adjustments were respectively around 7.4 and 8.6 points—not so
different from the empirically observed numbers.

TABLE 11.1 Empirical VXB convexity adjustments as of December 8, 2004.

Expiry VXB Price Fwd Variance Convexity Adjustment

Spot 132.30 132.30 0.00
Jan-05 144.20 149.09 4.89
Feb-05 153.30 159.63 6.33
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FIGURE 11.6 Annualized Heston VXB convexity adjustment as a function of t with
Heston parameters from December 8, 2004, SPX fit.

Dupire’s Method for Valuing VXB Futures Recall that roughly speaking, at
maturity T1, a VXB future pays

√
ET1 [〈x〉T1,T2 ] =: Y

where 〈x〉T1,T2 = 〈x〉T2 − 〈x〉T1 between times T1 and T2. Also, by definition,

Et[Y]2 = Et[Y2] − Vart[Y]

Dupire (2005) notes that the convexity adjustment is given precisely by the
variance of VXB futures themselves. Since VXB futures trade, the variance
Vart[Y] may be estimated historically from the time series of futures prices.

The fair value of the VIX future is then given by

Et[Y] =
√

Et[Y2] − Vart[Y]

Knock-on Benefits

Although VXB futures contracts haven’t been very successful by usual
futures standards, they have contributed to stimulating the OTC market to
very substantially tighten spreads. Now SPX variance swaps can be traded
from six months to five years with bid-offer spreads of as little as 0.5 vol.
points. Single-stock variance swaps are also now actively quoted; for the
top 50 U.S. single stock names, bid-offer spreads are around 2.5 vol. points
at the time of writing.
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SUMMARY

Although volatility derivatives are a relatively recent innovation, they are
already widely traded, not least because from a practical perspective, valu-
ation is well understood. We saw that although the standard variance swap
valuation approach assumes diffusion, the existence of reasonably sized
jumps wouldn’t change the valuation by much. We also saw that although
the relationship between the valuation of options on variance and European
option prices is currently only partially understood, it’s pretty clear from
a practical perspective how to value them. From a theoretical perspective,
there are surely further connections to be made between the valuation of
volatility derivatives and the dynamics of the underlying process.



Postscript

D ear reader, having got this far, I hope that you have gained some
useful insights into volatility surface modeling and applications of the

resulting models. It should be apparent to you, not least from the list of
references, that research in financial mathematics continues apace with more
researchers getting involved each year.

This is no doubt part of a wider trend where mathematics is rapidly
finding new applications in every facet of life from the hard sciences such as
physics and biology to the softer sciences such as economics and sociology.
What may be less obvious is that there is flow in the other direction, from
applications to pure and applied mathematics. Financial applications often
motivate new results in probability theory and stochastic analysis, just as
the latest theories in physics often motivate new results in branches of pure
mathematics such as topology and algebraic geometry. Obviously financial
applications also motivate the invention of new or enhanced numerical
computation schemes.

The moral of all this is that even though it may seem that everything
in financial mathematics is reasonably well understood and that there is
nothing much left to do, there is always more to do. What may be an
adequate approximation for practical purposes today may not be tomorrow
as market liquidity increases and bid-offer spreads continue their inexorable
decline. A numerical scheme that may not be practical today may become
so tomorrow as computing power increases. So I say to those readers who
may hesitate to get involved because they feel they are too late, get involved,
there’s plenty more to do!
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