
The complete guide to

Solving Java Application
Errors in Production

Alex Zhitnitsky

Table of Contents

Introduction...Page 2

Chapter 1...Page 3

Keep it Actionable: What’s the Purpose of Using Exceptions? 
Let’s break some myths. Exceptions are mostly ignored (and not that exceptional). This
chapter covers practical tips for producing meaningful and actionable exceptions.

Chapter 2...Page 10

Source Code Crunch: Lessons from Analyzing over 600,000 Java projects 
An overview of exception handling in over 600,000 Java projects. In this chapter you’ll see
data about how exceptions are actually used (and misused).

Chapter 3...Page 17

Production Data Crunch: 1,000 Java Applications, 1 Billion Logged Errors 
Now it’s time to see what happens in production. This chapter introduces the Pareto
logging principle showing that 97% of logged errors originate from 3% of unique events.

Chapter 4...Page 23

Know Your Enemy: The Top 10 Exceptions Types in Production 
In this chapter we dive into the most common exceptions in production, their frequency,
and possible solution strategies. The infamous NullPointerException is obviously #1.

Final Thoughts..Page 30

1All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

Exception handling in production is a dark science. Once your code is deployed, any
minor imperfection or glitch can translate to millions of log events. Especially if you’re
using exceptions as part of the control flow. It’s the least explored subject matter,
with the largest impact on how your application behaves - And the dark patterns
used to handle and solve the errors it produces are quite unpleasant.

That is why we felt the urgency to explore this issue where operations and
developers meet. In this eBook, we present data gathered from over 600,000 Java
projects, and a 1,000 production applications generating over 1 Billion events, with
the new knowledge that it encouraged us to create.

2All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

Introduction

Keep it Actionable: What’s the
Purpose of Using Exceptions?
Exceptions are probably the most misused Java language feature. Here’s why

Let’s break some myths. There is no tooth fairy. Santa isn’t real. TODO comments.
finalfinalversion-final.pdf. Soapless soap. And… Exceptions are in fact exceptions.
The latter might need some more convincing, but we got you covered.

For this chapter, we asked Avishai Ish-Shalom, an experienced systems architect and
a longtime friend of OverOps (most importantly, a big fan of furry hats), to join us for
a quick chat about the current state of exceptions in Java applications. Here’s what
we found out.

Exceptions are by definition far from normal

Let’s kick off with a quote from the official Java documentation: “An exception is an
event that occurs during the execution of a program that DISRUPTS the normal flow
of instructions”. Honest disclosure: we’ve added the caps ourselves.

In practice, the normal flow of instructions in most applications is filled with “normal”
recurrences of these so called “normal” exceptions, that cause “normal” disruptions.

3All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

Chapter 1

https://il.linkedin.com/in/nukemberg
https://il.linkedin.com/in/nukemberg
https://twitter.com/nukemberg
https://twitter.com/nukemberg
https://docs.oracle.com/javase/tutorial/essential/exceptions/
https://docs.oracle.com/javase/tutorial/essential/exceptions/

There’s an increasing high level of noise in most applications, with exceptions
thrown, logged, then indexed and analyzed which… are mostly meaningless.

This operational noise, apart from creating unnecessarily stress on the system,
makes you lose touch with the exceptions that really matter. Imagine an eCommerce
application with a new important exception that started happening, signaling that
something has gone wrong and affected, say, a 100 users that weren’t able to
complete their checkout. Now, cover it up with thousands of useless “normal”
exceptions and try to understand what went wrong.

For example, most applications have a “normal” level of error events. In the following
screenshot, we can see it’s about 4k events per hour:

OverOps’s error analysis dashboard – Error trends

If we’re “lucky”, a new error would show itself as a spike in the graph, like we have
right here with an IllegalStateException occurring hundreds of thousands of times
around 1am (Ouch). We can immediately see what caused a spike.

The green line indicates the total number of events, and the rest of the lines indicate
specific exceptions and logged errors / warnings.

The danger comes from exceptions with only a few, small, but lethal instances that
are buried within the so called “normal” level of exception.

4All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

http://bit.ly/2ggzemz
http://bit.ly/2ggzemz

What at are these “normal” exceptions you’re talking about?

Unlike real errors that require code changes to fix, exceptions today indicate a
plethora of other scenarios that really don’t carry any actionable insights. They only
weigh down on the system.

Consider these 2 scenarios that any experienced developer can anticipate:

1. Business Errors – Anything the user / data might do which the business flow
does not permit. Like any kind of form validation, filling in text inside a phone
number form field, checking out with an empty cart, etc.

2. System Errors – Anything you ask from the OS and it might say no, things
that are out of your control. Like, trying to access a file you don’t have
permissions for.

 

5All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

Real exceptions on the other hand, are things you weren’t aware of when writing the
code, like an OutOfMemoryException, or even a NullPointerException that messes
things up unexpectedly. Issues that require you to take action to resolve them.

Exceptions are designed to crash & burn

Uncaught exceptions kill your thread, and might even crash the whole application or
put it in some “zombie state” when an important thread is dead and the rest are
stuck waiting for it. Some applications know how to handle that, most don’t.

The exception’s main purpose in Java is to help you catch the bug and solve it, not
crossing lines into application logic land. They were meant to help in debugging
which is why they try to contain as much info as possible from the application’s per-
spective.

Another issue this can create is inconsistent state, when the application flow gets…
jumpy, it’s even worse than a goto statement. It has the same shortcomings, with
some twists of its own:

	 1. It breaks the flow of the program
	 2. It’s hard to track and understand what will happen next
	 3. Hard to cleanup, even with finally blocks

4. Heavyweight, carrying all the stack and additional extra data with it 

6All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

Use “error” flows without exceptions

If you try to use an exception to deal with predictable situations that should be han-
dled by application logic, you’re in trouble. The same trouble most Java applications
are in.

Issues that can be expected to happen, aren’t really exceptions by the book. An inter-
esting solution comes from Futures in Scala – handling errors without exceptions.
Scala example from official Scala docs:

Exceptions may be thrown by the code run inside the future, but they are contained
and don’t leak outside. The possibility of failure is made explicit by the Failure(t)
branch and it’s very easy to follow code execution.

In the new Java 8 CompletableFuture feature (of which we also recently wrote), we
can use completeExceptionally() although it’s not as pretty.

The plot thickens with APIs

Let’s say we have a system that uses a library for database access, how would the
DB library expose its errors to the outside world? Welcome to the wild wild west. And
keep in mind the library may still throw generic errors, like
java.net.UnknownHostException or NullPointerException.

One real life example of how this can go wrong is a library that wraps JDBC, and just
throws a generic DBException without giving you a chance to know what’s wrong.
Maybe it’s all just fine and there’s just a connectivity error, or maybe… you actually
need to change some code.

7All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

http://blog.takipi.com/back-to-the-completablefuture-java-8-feature-highlight/
http://blog.takipi.com/back-to-the-completablefuture-java-8-feature-highlight/
https://gist.github.com/tkfx/8ce765cb017a2d4357dbbdc8563b891a#file-scalafuture-scala
https://gist.github.com/tkfx/8ce765cb017a2d4357dbbdc8563b891a#file-scalafuture-scala
https://gist.github.com/tkfx/8ce765cb017a2d4357dbbdc8563b891a#file-scalafuture-scala
https://gist.github.com/tkfx/8ce765cb017a2d4357dbbdc8563b891a#file-scalafuture-scala
https://gist.github.com/tkfx/8ce765cb017a2d4357dbbdc8563b891a#file-scalafuture-scala
https://gist.github.com/tkfx/8ce765cb017a2d4357dbbdc8563b891a#file-scalafuture-scala

A common solution is the DB library using a base exception, say, DBException, from
which library exceptions inherit. This allows the library user to catch all library errors
with one try block. But what about the system errors that may have caused the li-
brary to err? The common solution is to wrap any exception happening inside it. So if
it’s unable to resolve a DNS address, which is more of a system error then a library
error, it will catch it and rethrow this higher level exception – which the user of the li-
brary should know to catch. Try-catch nightmare, with a hint of nested exceptions
wrapping other exceptions.

If we put Actors into the mix, the control flow even gets messier. Async programming
with exceptions is a mess. It can kill an Actor, restart it, a message will be sent to
some other Actor with the original error and you lose the stack.

So… What can you do about it?

Starting from scratch and avoiding unnecessary exceptions is always easier, however
most likely that it’s not the case. With an existing system, like a 5 year old applica-
tion, you’re in for a lot of plumbing work (If you’re lucky, and get managerial approval
to fix the noise).

Ideally we’d want all exceptions to be actionable, meaning, drive actions that would
prevent them from happening again, and not just acknowledge that these things
sometimes happen.

To sum up, un-actionable exceptions cause a lot of mess around:

	 •	 Performance
	 •	 Stability
	 •	 Monitoring / log analysis
	 •	 And… Hide real exceptions that you want to see and act on

8All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

The solution is… doing the hard work of pruning away the noise and creating control
flows that make more sense. Another creative solution is changing the log levels, if
it’s not an actionable exception, don’t log it as an error. That’s only a cosmetic solu-
tion but might get you to 80% of the work.

Ultimately, logs and dashboards are only cosmetics, there’s a need to fix the issue at
its core and avoid unactionable exceptions altogether.

To check out the current state of exceptions and logged errors in your application,
attach the OverOps agent and you’ll have a complete understanding of how code
behaves in your production environment (and how to fix it) in a matter of minutes.
Check it out.

Final Thoughts

The bottom line is, do you have an Exception that doesn’t result in code changes?
You shouldn’t even be wasting time looking at it.

9All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

http://bit.ly/2hdQHxA
http://bit.ly/2hdQHxA

Source Code Crunch: Lessons
from Analyzing over 600,000

Exception handling in over 600,000 Java projects on Github and Sourceforge

Java is one of the few languages that use checked exceptions. They are enforced
during compile time, and require handling of some sort. But… what happens in
practice? Do most developers actually handle anything? And how do they do that?

In this chapter we’ll go over the data from a recent research study by the university of
Waterloo that covered the use of exceptions in over 600,000 Java projects from
GitHub and sourceforge.

Let’s answer some questions.

10All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

Chapter 2

The top 10 exception types in catch clauses

In this instance of the data crunch, the researchers analyzed Java projects on Github
and Sourceforge, looking into the catch clauses and reporting on the findings.

Let’s see how the dataset looks like:

The top 10 exception types in catch clauses, source: “Analysis of Exception Handling
Patterns in Java”

Well well, what do we have here? The research found that checked exceptions
account for almost three times the number of unchecked exceptions in Java
projects. Can’t upset the compiler here.

Another insight is that developers often catch checked exceptions at the top level,
using the Throwable and Exception classes.

To learn more about how checked exceptions are handled, the researchers examined
the Exception and Throwable handlers. 78% of the methods that caught Exception
did not catch any of its subclasses, same as 84% of Throwable.

Meaningless catch clauses.

Next up, let’s find out what’s going on inside these catch clauses.

Maybe there’s hope.

11All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

“Most programmers ignore checked exceptions and leave them  
unnoticed”

Sounds bad? Keep reading. It’s an actual, real, official takeaway from the study.
Many of us had this tingling spidey-sense feeling about checked exceptions, but in
software development it’s unusual to have data that provides a cold hard proof to
issues around actual code style. Apart from personal experiences and qualitative
rather than quantitative type of studies.

The following chart shows the top operations performed in the top 3 checked
exception catch blocks:

Top operations in checked exception catch clauses, source: “Analysis of Exception Handling
Patterns in Java”

We see that log statements and e.printStackTrace() are at the top, making them the
top operations used in checked exception catch blocks, which helps debug the situa-
tion and understand what happened.

Sneaking up on them are the notorious empty catch blocks. Joshua Bloch describes
in “Effective Java” what would ideally happen, “To capture the failure, the detail
message of an exception should contain the values of all parameters and fields that
contributed to the exceptions”. Empty catch blocks are defeating this purpose.

12All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

https://www.amazon.com/Effective-Java-2nd-Joshua-Bloch/dp/0321356683
https://www.amazon.com/Effective-Java-2nd-Joshua-Bloch/dp/0321356683

Another common use case is throwing an unchecked exception that replaces the
checked exception.

Mario Fusco summed it up pretty good on his twitter feed:

But wait, there’s more

Looking at the bigger picture of both checked and unchecked exceptions, only on
Github this time, we see a similar picture with rethrows gaining some more
popularity:

Top operations used in exception handling (Github), source: “Analysis of Exception Handling
Patterns in Java”

13All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

https://twitter.com/mariofusco/
https://twitter.com/mariofusco/

20% of the total (6,172,462) catch blocks are empty. This is quite bad. Connecting
the dots with the fact that exceptions which are higher at the hierarchy are used
more frequently than specific types, the researchers arrived to the conclusion that
“most participants seemed to give a low priority to exception handling as a task, or
included exceptions in their code only when the language forced them to handle
checked exceptions”.

Eventually, the product quality suffers.

What’s going on with the re-throws?

Since throwing exceptions up the call stack hierarchy is the most popular catch
clause operation, the researchers further looked into what kind of conversions are
most popular. The results are summed up in the following table:

Top exception transformations, source: source: “Analysis of Exception Handling Patterns in
Java”

In at #1, transforming Exception to RuntimeException. Most conversions from any
exception type were made to RuntimeException, making checked exceptions
unchecked.

14All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

Exception best practices

In addition to the data crunch and its insights, the article mentions Joshua Bloch’s
guidelines for dealing with exceptions from the famous 2nd edition of his book:
“Effective Java”. We thought it would be a good idea to list them here as well:

1. “Use exceptions only for exceptional scenarios”

Exceptions cause considerable overhead on the JVM, using exceptions for normal
flow control is a source for trouble (Yes, even though many developers abuse it).

2. “Use checked exceptions for recoverable conditions and runtime exceptions for
programming errors”

This implies that if you find a checked exception unrecoverable, it’s ok to wrap it in
an unchecked exception and throw it up the hierarchy for logging and handling.

3. “Avoid unnecessary use of checked exceptions”

Use checked exceptions only when the exception cannot be avoided by properly
coding the API and there’s no alternate recovery step.

4. “Favor the use of standard exceptions”

Using standard exceptions from the already extensive Java API promotes readability.

5. “Throw exceptions appropriate to the abstraction”

As you go higher in the hierarchy, use the appropriate exception type.

6. “Document all exceptions thrown by each method”

No one likes surprises when it comes down to exceptions.

7. “Include failure-capture information in detail messages”

Without information about the state the JVM was in, there’s not much you can do to
solve the exception. Not everyone has OverOps in place to cover their back.

8. “Don’t ignore exceptions”

All exceptions should lead to some action, what else do you need them for?

15All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

https://www.amazon.com/Effective-Java-2nd-Joshua-Bloch/dp/0321356683
https://www.amazon.com/Effective-Java-2nd-Joshua-Bloch/dp/0321356683
https://www.amazon.com/Effective-Java-2nd-Joshua-Bloch/dp/0321356683
https://www.amazon.com/Effective-Java-2nd-Joshua-Bloch/dp/0321356683
http://bit.ly/2hbZz2I
http://bit.ly/2hbZz2I

Whaaaaaat exactly were we looking at here?

The data for this study comes from a research paper by Suman Nakshatri, Maithri
Hegde, and Sahithi Thandra from the David R. Cheriton School of Computer Science
at the University of Waterloo Ontario, Canada.

The researcher team looked through a database of 7.8m Github projects and 700k
Sourceforge projects, extracted the Java projects, and examined the use of catch
blocks with the BOA domain specific language for mining software repositories.

The dataset by the numbers

Final Thoughts

Exceptions should be reserved to exceptional situations, but… other things happen
in practice. Checked exceptions become unchecked, empty catch blocks are all over
the place, control flow is mixed with error flow, there’s lots of noise and critical data
goes missing. It’s a mess.

This was a main motivation to us for building OverOps, a Java agent that monitors
JVMs in production and takes care of filling in the blanks with everything you need to
know about how exceptions behave (and how to solve them).

16All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

http://plg.uwaterloo.ca/~migod/846/current/projects/09-NakshatriHegdeThandra-report.pdf
http://plg.uwaterloo.ca/~migod/846/current/projects/09-NakshatriHegdeThandra-report.pdf
https://www.linkedin.com/in/suman-nakshatri-74316838
https://www.linkedin.com/in/suman-nakshatri-74316838
https://www.linkedin.com/in/maithrihegde
https://www.linkedin.com/in/maithrihegde
https://www.linkedin.com/in/maithrihegde
https://www.linkedin.com/in/maithrihegde
https://www.linkedin.com/in/sahithithandra
https://www.linkedin.com/in/sahithithandra
http://2016.msrconf.org/#/challenge
http://2016.msrconf.org/#/challenge
http://2016.msrconf.org/#/challenge
http://2016.msrconf.org/#/challenge
http://boa.cs.iastate.edu/
http://boa.cs.iastate.edu/
http://bit.ly/2ggvotE
http://bit.ly/2ggvotE

Production Data Crunch: 1,000
Java Applications, 1 Billion

Logged Errors
97% of Logged Errors are Caused by 10 Unique Errors

It’s 2016 and one thing hasn’t changed in 30 years. Dev and Ops teams still rely on
log files to troubleshoot application issues. For some unknown reason we trust log
files implicitly because we think the truth is hidden within them. If you just grep hard
enough, or write the perfect regex query, the answer will magically present itself in
front of you.

Yep, tools like Splunk, ELK and Sumologic have made it faster to search logs but all
these tools suffer from one thing – operational noise. Operational noise is the silent
killer of IT and your business today. It’s the reason why application issues go unde-
tected and take days to resolve.

17All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

Chapter 3

http://land.overops.com/splunkvselk/
http://land.overops.com/splunkvselk/

Log Reality

Here’s a dose of reality, you will only log what you think will break an application, and
you’re constrained by how much you can log without incurring unnecessary
overhead on your application. This is why debugging through logging doesn’t work in
production and why most application issues go undetected.

Let’s assume you do manage to find all the relevant log events, that’s not the end of
the story. The data you need isn’t usually not in there, and leaves you adding
additional logging statements, creating a new build, testing, deploying and hoping
the error happens again. Ouch.

Time for Some Analysis

At OverOps we capture and analyze every error or exception that is thrown by Java
applications in production. Using some cheeky data science this is what I found from
analyzing over 1,000 applications monitored by OverOps.

High-level aggregate findings:

	 •	 Avg. Java application will throw 9.2 million errors/month

	 •	 Avg. Java application generates about 2.7TB of storage/month

	 •	 Avg. Java application contains 53 unique errors/month

	 •	 Top 10 Java Errors by Frequency were

	 	 ◦	 NullPointerException

	 	 ◦	 NumberFormatException

	 	 ◦	 IllegalArgumentException

	 	 ◦	 RuntimeException

	 	 ◦	 IllegalStateException

	 	 ◦	 NoSuchMethodException

	 	 ◦	 ClassCastException

	 	 ◦	 Exception

	 	 ◦	 ParseException

	 	 ◦	 InvocationTargetException 

18All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

http://bit.ly/2gLY1iP
http://bit.ly/2gLY1iP

So there you have it, the pesky NullPointerException is to blame for all thats broken
in log files. Ironically, checking for null was the first feedback I got in my first code
review back in 2004 when I was a java developer.

Right, here are some numbers from a randomly selected enterprise production
application over the past 30 days:

	 •	 25 JVMs

	 •	 29,965,285 errors

	 •	 ~8.7TB of storage

	 •	 353 unique errors

	 •	 Top Java errors by frequency were:

	 	 ◦	 NumberFormatException

	 	 ◦	 NoSuchMethodException

	 	 ◦	 Custom Exception

	 	 ◦	 StringIndexOutOfBoundsException

	 	 ◦	 IndexOutOfBoundsException

	 	 ◦	 IllegalArgumentException

	 	 ◦	 IllegalStateException

	 	 ◦	 RuntimeException

	 	 ◦	 Custom Exception

	 	 ◦	 Custom Exception 

Time for Trouble (shooting)

So, you work in development or operations and you’ve been asked to troubleshoot
the above application which generates a million errors a day, what do you do? Well,
let’s zoom in on when the application had an issue right?

Let’s pick, say a 15 minute period. However, that’s still 10,416 errors you’ll be looking
at for those 15 minutes. You now see this problem called operational noise? This is
why humans struggle to detect and troubleshoot applications today… and it’s not
going to get any easier.

19All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

What if we Just Fixed 10 Errors?

Now, let’s say we fixed 10 errors in the above application. What percent reduction do
you think these 10 errors would have on the error count, storage and operational
noise that this application generates every month?

1%, 5%, 10%, 25%, 50%?

How about 97.3%. Yes, you read that. Fixing just 10 errors in this application would
reduce the error count, storage and operational noise by 97.3%.

The top 10 errors in this application by frequency are responsible for 29,170,210
errors out of the total 29,965,285 errors thrown over the past 30 days.

Take the Crap Out of Your App

The vast majority of application log files contain duplicated crap which you’re paying
to manage every single day in your IT environment.

You pay for:

	 •	 Disk storage to host log files on servers
•	 Log management software licenses to parse, transmit, index and store this
 data over your network

	 •	 Servers to run your log management software
	 •	 Humans to analyze and manage this operational noise 

20All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

The easiest way to solve operational noise is to fix application errors versus ignore
them. Not only will this dramatically improve the operational insight of your teams,
you’ll help them detect more issues and troubleshoot much faster because they’ll ac-
tually see the things that hurt your applications and business.

The Solution

If you want to identify and fix the top 10 errors in your application, download
OverOps for free, stick it on a few production JVMs, wait a few hours, sort the errors
captured by frequency and in one-click OverOps will show you the exact source
code, object and variable values that caused each of them. Your developers in a few
hours should be able to make the needed fixes and Bob will be your uncle.

The next time you do a code deployment in production OverOps will instantly notify
you of new errors which were introduced and you can repeat this process. Here’s two
ways we use OverOps at OverOps to detect new errors in our SaaS platform:

Slack Real-time Notifications which inform our team of every new error introduced in
production as soon as it’s thrown, and a one-click link to the exact root cause
(source code, objects & variable values that caused the error).

21All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

http://bit.ly/2g68ly1
http://bit.ly/2g68ly1
http://bit.ly/2g68ly1
http://bit.ly/2g68ly1

Email Deployment Digest Report showing the top 5 new errors introduced with di-
rect links to the exact root cause.

Final Thoughts

We see time and time again that the top few logged errors in production are pulling
away most of the time and logging resources. The damage these top few events
cause, each happening millions of times, is disproportionate to the time and effort it
takes to solve them.

22All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

Know Your Enemy: The Top 10
Exceptions Types in Production
The Pareto logging principle: 97% of logged error statements are caused by 3% of
unique errors

We received a lot of feedback and questions following the data crunching project in
the previous chapter where we showed that 97% of logged errors are caused by 10
unique errors. By popular demand, this chapter goes a step deeper into the top
exceptions types in over a 1,000 applications that were included in this research.

23All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

Chapter 4

Without Further Ado: The Top Exceptions by Types

To pull out the data, we crunched anonymized stats from over a 1,000 applications
monitored by OverOps’s error analysis micro-agent, and checked what were the top
10 exception types for each company. Then we combined all the data and came up
with the overall top 10 list.

Every production environment is different, R&D teams use different 3rd party libraries,
and also have custom exception types of their own. Looking at the bigger picture,
the standard exceptions stand out and some interesting patterns become visible.

24All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

True story

1. NullPointerException – 70% of Production Environments

Yes. The infamous NullPointerException is in at #1. Sir Charles Antony Richard
Hoare, inventor of the Null Reference was not mistaken when he said:

“I call it my billion-dollar mistake. It was the invention of the null reference in 1965…
This has led to innumerable errors, vulnerabilities, and system crashes, which have
probably caused a billion dollars of pain and damage in the last forty years”.

With a top 10 spot at 70% of the production environments that we looked at, NPEs
take the first place. At OverOps, we actually have a special alert that lets us know
whenever a new NullPointerException is introduced on our system, this is how you
can set it up yourself.

OverOps NPE Monster

25All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

https://www.overops.com/?utm_source=ebook&utm_medium=pdf&utm_content=chapter4.1&utm_campaign=exceptions
https://www.overops.com/?utm_source=ebook&utm_medium=pdf&utm_content=chapter4.1&utm_campaign=exceptions
http://blog.takipi.com/introducing-takipis-new-alerting-engine-get-alerted-on-critical-errors-when-they-matter-the-most/
http://blog.takipi.com/introducing-takipis-new-alerting-engine-get-alerted-on-critical-errors-when-they-matter-the-most/
http://blog.takipi.com/introducing-takipis-new-alerting-engine-get-alerted-on-critical-errors-when-they-matter-the-most/
http://blog.takipi.com/introducing-takipis-new-alerting-engine-get-alerted-on-critical-errors-when-they-matter-the-most/

2. NumberFormatException – 55% of Production Environments

In at #2 is the NumberFormatException which happens when you try to convert a
string to a numeric value and the String is not formatted correctly. It extends IllegalAr-
gumentException which also makes an appearance here at #3.

One easy fix to make sure that the input you’re passing to the parse method passes
these regular expression:

	 1.	 For integer values: “-?\\d+”

	 2.	 For float values: “-?\\d+.\\d+” 

3. IllegalArgumentException – 50% of Production Environments

Next up at #3, IllegalArgumentException, appearing at the top 10 exceptions in 50%
of the production environments in this survey.

An IllegalArgumentException actually saves you from trouble, and thrown when
you’re passing arguments from an unexpected type to your methods. For example,
some method that expects type X and you’re calling it with type Y as an argument.
Once again, an error that’s caused by not checking what you’re sending out as input
to other methods.

IllegalArgumentException OverOps Monster

26All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

4. RuntimeException – 23% of Production Environments

All exception objects in the top 10 list (Apart from Exception) are unchecked and
extend RuntimeException. However, at #4 we’re facing a “pure” RuntimeException,
where Java the language actually doesn’t throw any itself. So what’s going on here?

There are 2 main use cases to explicitly throw a RuntimeException from your code:

	 1.	 Throwing a new “generic” unchecked exception

	 2.	 Rethrows:

◦	 “Wrapping” a general unchecked exception around another exception  
 that extends RuntimeException

	 	 ◦	 Making a checked exception unchecked 

One famous story around checked vs. unchecked and the last use case we
described here comes from Amazon’s AWS SDK which ONLY throws unchecked
exceptions and refuses to use checked exceptions.

OverOps RuntimeExceptionMonster

27All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/java-dg-exceptions.html
http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/java-dg-exceptions.html

5. IllegalStateException – 22% of Production Environments

In at #5, featured at the top 10 exceptions in 22% of over a 1,000 applications
covered in this post is the IllegalStateException.

An IllegalStateException is thrown when you’re trying to use a method in an
inappropriate time, like… this scene with Ted and Robin in the first episode of How I
Met Your Mother.

A more realistic Java example would be if you use URLConnection, trying to do
something assuming you’re not connected, and get “IllegalStateException: Already
Connected”.

6. NoSuchMethodException – 16% of Production Environments

Such Method, Much Confusion. 16% of the production environments in this data
crunch had NoSuchMethodException in their top 10.

Since most of us don’t write code while drunk, at least during day time, this doesn’t
necessarily mean that we’re that delirious to think we’re seeing something that’s not
there. That way the compiler would have caught that way earlier in the process.

This exception is thrown when you’re trying to use a method that doesn’t exist, which
happens when you’re using reflection and getting the method name from some
variable or when you’re building against a version of a class and using a different one
at production.

7. ClassCastException – 15% of Production Environments

A ClassCastException occurs when we’re trying to cast a class to another class of
which it is not an instance. 15% of production environments have it in their top 10
exceptions, quite troublesome.

The rule is that you can’t cast an object to a different class which it doesn’t inherit
from. Nature did it once, when no one was looking, and that’s how we got the… Java
mouse-deer. Yep, that’s a real creature.

28All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

https://www.youtube.com/watch?v=dE-lsrft1c8
https://www.youtube.com/watch?v=dE-lsrft1c8
https://www.youtube.com/watch?v=dE-lsrft1c8
https://www.youtube.com/watch?v=dE-lsrft1c8
https://i.imgflip.com/1568ov.jpg
https://i.imgflip.com/1568ov.jpg
https://en.wikipedia.org/wiki/Java_mouse-deer
https://en.wikipedia.org/wiki/Java_mouse-deer
https://en.wikipedia.org/wiki/Java_mouse-deer
https://en.wikipedia.org/wiki/Java_mouse-deer

8. Exception – 15% of Production Environments

In at #8 is the mother of all exceptions, Exception, DUN DUN DUUUUN (grandmother
is Throwable).

Java never throws plain Exceptions, so this is another case like RuntimeException
where it must be… you, or 3rd party code, that throws it explicitly because:

	 1.	 You need an exception and just too lazy to specify what it actually is.

2.	 Or… More specifically, you need a checked exception to be thrown for  
 some reason 

9. ParseException – 13% of Production Environments

Parsing errors strike again! Whenever we’re passing a string to parse into something
else, and it’s not formatted the way it’s supposed to, we’re hit by a ParseException.
Bummer.

It’s more common than you might have thought with 13% of the production environ-
ments tested in this posted featuring this exception in their top 10.

The solution is… yet again, check yo’ self.

10. InvocationTargetException – 13% of Production Environments

Another exception that’s thrown at us from the world of Java Reflection is the Invoca-
tionTargetException. This one is actually a wrapper, if something goes wrong in an in-
voked method, that exception is then wrapped with an InvocationTargetException.

To get the original exception, you’d have to use the getTargetException method.

We see that 13% of production environments tested in this post had it in their list of
top 10 exceptions. The second exception type here that’s directly related to Java’s re-
flection features.

Conclusion

The world of Java exceptions is indeed quite colorful, and it’s amazing to see how
much impact the top 10 exceptions have on our logs. 97% of all logged errors come
from 10 unique exceptions.

29All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

https://www.youtube.com/watch?v=cphNpqKpKc4
https://www.youtube.com/watch?v=cphNpqKpKc4

Final Thoughts

30All rights reserved to OverOps © 2016

The Complete Guide to Solving Application Errors in Production | OverOps

OverOps is a Java agent designed to monitor your
JVMs in real time without adding excess overhead.

OverOps detects 100% of errors, caught and un-
caught exceptions, HTTP and log errors.

With detailed error analyses, you can see the exact
variable values and code state that led to an error.

We hope that you’ve found this guide useful. The research and insights originate from
our team’s experience building OverOps and supporting thousands of Java
applications in production. The only monitoring tool that provides full state, source,
and stack for every error in production.

Comments or questions? Please get in touch through hello@overops.com

http://bit.ly/2g67z4r
http://bit.ly/2g67z4r
http://bit.ly/2hbYAiK
http://bit.ly/2hbYAiK
mailto:hello@overops.com?subject=The%20Complete%20Guide%20to%20Solving%20Application%20Errors%20in%20Production
mailto:hello@overops.com?subject=The%20Complete%20Guide%20to%20Solving%20Application%20Errors%20in%20Production

