
January 5, 2015

The Ultimate
Guide To Building
Database - Driven

Apps with Go

Page 2

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

Table of Contents

●● Introduction												 3

●● What is database/sql?											 4

●● Your First database/sql Program									 6

●● Using a sql.DB												 8

●● Fetching Result Sets											 12

●● Modifying Data With db.Exec()									 21

●● Using Prepared Statements										 23

●● Working With Transactions 										 30

●● Error Handling												 34

●● Using Built-In Interfaces										 36

●● Database Drivers											 40

●● Common Pitfalls												 41

●● Conclusion												 43

Abstract

The database/sql package is Go’s lightweight standard interface for relational databases,

with support for backend drivers, prepared statements and transactions. Although it is not

complicated, it is different from database interfaces in other languages, and learning to

use it properly takes time. This eBook contains years of collected wisdom from experts

and is the fastest way to learn how to connect to a database from Go programs. After

reading this book, you’ll know how to use database/sql properly, avoiding many mistakes

and ensuring high performance and correct code.

http://vividcortex.com/

Page 3

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

Introduction
Congratulations! You’ve discovered the ultimate resource for writing

database-driven applications in the Go programming language.

Using Go to access databases brings you all the benefits of Go itself,

plus an elegant database interface and a vibrant community of users

and developers writing high-quality, open-source database drivers

for you to use.

What is Go, and why would you use it? Go is a modern language in

the C family. It is elegant, simple, and clear to write and read, which

makes it maintainable. It includes a garbage collector to manage

memory for you. Its built-in features make it easy to write concurrent

programs. These include goroutines, which you can think of as

lightweight threads, and mechanisms to communicate amongst

goroutines. At the same time, Go is strongly typed and compiles to

self-contained binaries free of external dependencies, and is high-

performance and efficient in terms of CPU and memory usage.

Go is an excellent choice for systems programming, where you

might otherwise choose Java, C or C++ for performance reasons.

Typical tasks are building API servers, web servers and other high-

performance networked systems, system utilities, databases, and

micro-services architectures (APIs and services).

Go is also very popular for tasks where you would otherwise use

dynamic scripting languages such as Python and Ruby, which give

you simplicity, clarity and flexibility but not high performance. Go

gives you many of the best features of these languages, and some

properties not present in any of them.

Along with all of these benefits, Go includes a standard library of

code for tasks such as encryption, networking, filesystem access,

and database access. The database access library is called

database/sql, and like the rest of Go, is elegant and minimal, with

just enough batteries included. It does heavy lifting and repetitive

tasks for you, such as connection pooling and retries on errors. But

it doesn’t bury its internals in abstractions, so your code remains

explicit and magic-free.

http://vividcortex.com/

Page 4

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

Go’s database/sql library has excellent documentation and clear

source code but leaves a great deal of learning to the user.

Fortunately, you’ve found this book, which will save you a huge

amount of time and mistakes! Contained within this book is years of

collected wisdom from many experienced programmers, distilled to

just what you need to know, when you need to know it.

A note: as of the time of writing, Go 1.4 has just been released. If

that’s an old version by the time you read this, you should be aware

that there may be changes.

Congratulations on choosing Go and database/sql, and on finding

this book. Let’s get started right away!

database/sql is a package of functionality that’s included in Go’s

standard library. It is the idiomatic, official way to communicate

with a row-oriented database. Loosely speaking, it is designed for

databases that are relational, or similar to relational databases (many

non-relational databases work just fine with it too).

database/sql provides much the same functionality for Go that you’d

find in ODBC, Perl’s DBI, Java’s JDBC, and similar. However, it is not

designed exactly the same as those, and you should be careful not

to assume your knowledge of other database interfaces applies

directly in Go.

The database/sql package handles non-database-specific aspects of

database communication. These are tasks that have to be handled

in common across many databases, so they’re factored out into a

uniform interface for you to use. Database-specific functionality is

provided by drivers, which aren’t part of the standard library. Many

excellent drivers are available in open-source form, and we will

discuss those later.

To a large extent, database/sql is database-agnostic. The benefits of

using it are that your code will be as decoupled from the underlying

What is database/sql?

http://vividcortex.com/

Page 5

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

database as possible, enabling easier portability and ensuring your

code doesn’t get cluttered. This leads to better maintainability and

understandability.

The database/sql package is very idiomatic and Go-ish, following the

Go philosophy of not hiding things behind too much abstraction. As

a programmer, you’ll be in direct control over resource management,

including memory management (although, like other things in Go,

that is a very small burden due to the language design).

What is it not? The primary thing you should be aware of is that it

is definitely not an ORM (object-relational mapper) or other similar

abstraction. Go, as a language, isn’t really oriented towards the type

of programming that ORMs provide, and although there are some

third-party libraries that attempt to provide ORM-like functionality

and convenience helpers (e.g. populating structs with rows from the

database), all of them fall short for various reasons.

The database/sql package provides several types for you, each of

which embodies a concept or set of concepts:

DB. The sql.DB type represents a database. Unlike in many other

programming languages, it doesn’t represent a connection to a

database, but rather the database as an object you can manipulate.

Connections are managed in an internal connection pool and are

not exposed to you directly. This allows you to use databases that

are actually connectionless, such as shared-memory or embedded

databases, through the same abstraction without worrying about

exactly how you communicate with them.

Results. There are several data types that embody the results of

database interactions: a sql.Rows for fetching multi-row results from a

query, a sql.Row for a single-row result, and sql.Result for examining

the effects of statements that modify the database.

Statements. A sql.Stmt represents a statement such as DDL,

DML, and the like. You can interact with them directly as prepared

statements, or indirectly by using convenience functions on the

sql.DB variable itself.

The package follows the
Go philosophy of not hiding
things behind abstraction.
As a programmer, you’ll
be in direct control over
resource management.

“

http://vividcortex.com/

Page 6

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

Transactions. A sql.Tx represents a transaction with specific

properties, in exchange for bypassing many of the usual

conveniences such as the connection pool.

We’ll see how to use all these data types, and the abstractions they

present, in the following sections. Let’s get started with a quick-start:

a “hello, world” program!

Your First database/sql
Program
This section presents a quick introduction to the major functionality

of database/sql in the form of a fully functioning Go program! Before

you begin, ensure you have access to a MySQL database, as we’ll

use MySQL for our examples in this book. If you don’t have an

instance of MySQL that’s appropriate for testing, you can get one in

seconds with the MySQL Sandbox utility.

Create a new Go source file, hello_mysql.go, with the following

source code (download). You may need to adjust the connection

parameters as needed to connect to your testing database. Note

also that the example assumes the default test database exists and

your user has rights to it:

package	
 main	
 	
 	

	

import	
 (

	
 	
 	
 	
 	
 "database/sql"	

	
 	
 	
 	
 	
 "log"	

	
 	
 	
 	
 	
 _	
 "github.com/go-­‐sql-­‐driver/mysql"	

)	
 	
 	

	

func	
 main()	
 {	

	
 	
 	
 	
 	
 db,	
 err	
 :=	
 sql.Open("mysql",	
 "root:@tcp(:3306)/test")	

	
 	
 	
 	
 	
 if	
 err	
 !=	
 nil	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 log.Fatal(err)	

	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 defer	
 db.Close()	

	

	
 	
 	
 	
 	
 	
 _,	
 err	
 =	
 db.Exec(

	
 	
 	
 	
 	
 	
 	
 	
 	
 "CREATE	
 TABLE	
 IF	
 NOT	
 EXISTS	
 test.hello(world	
 varchar(50))")	

	
 	
 	
 	
 	
 if	
 err	
 !=	
 nil	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 log.Fatal(err)	

	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 res,	
 err	
 :=	
 db.Exec(

	
 	
 	
 	
 	
 	
 	
 	
 	
 "INSERT	
 INTO	
 test.hello(world)	
 VALUES('hello	
 world!')")	

	
 	
 	
 	
 	
 if	
 err	
 !=	
 nil	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 log.Fatal(err)	

	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 rowCount,	
 err	
 :=	
 res.RowsAffected()	

	
 	
 	
 	
 	
 if	
 err	
 !=	
 nil	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 log.Fatal(err)	

	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 log.Printf("inserted	
 %d	
 rows",	
 rowCount)	

	

	
 	
 	
 	
 	
 rows,	
 err	
 :=	
 db.Query("SELECT	
 *	
 FROM	
 test.hello")	

	
 	
 	
 	
 	
 if	
 err	
 !=	
 nil	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 log.Fatal(err)	

	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 for	
 rows.Next()	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 var	
 s	
 string	

	
 	
 	
 	
 	
 	
 	
 	
 	
 err	
 =	
 rows.Scan(&s)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 err	
 !=	
 nil	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 log.Fatal(err)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 log.Printf("found	
 row	
 containing	
 %q",	
 s)	

	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 rows.Close()	

}	

	

http://vividcortex.com/
http://mysqlsandbox.net/
https://gist.github.com/xaprb/dcd83a45c6beed2d6bb7

Page 7

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

package	
 main	
 	
 	

	

import	
 (

	
 	
 	
 	
 	
 "database/sql"	

	
 	
 	
 	
 	
 "log"	

	
 	
 	
 	
 	
 _	
 "github.com/go-­‐sql-­‐driver/mysql"	

)	
 	
 	

	

func	
 main()	
 {	

	
 	
 	
 	
 	
 db,	
 err	
 :=	
 sql.Open("mysql",	
 "root:@tcp(:3306)/test")	

	
 	
 	
 	
 	
 if	
 err	
 !=	
 nil	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 log.Fatal(err)	

	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 defer	
 db.Close()	

	

	
 	
 	
 	
 	
 	
 _,	
 err	
 =	
 db.Exec(

	
 	
 	
 	
 	
 	
 	
 	
 	
 "CREATE	
 TABLE	
 IF	
 NOT	
 EXISTS	
 test.hello(world	
 varchar(50))")	

	
 	
 	
 	
 	
 if	
 err	
 !=	
 nil	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 log.Fatal(err)	

	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 res,	
 err	
 :=	
 db.Exec(

	
 	
 	
 	
 	
 	
 	
 	
 	
 "INSERT	
 INTO	
 test.hello(world)	
 VALUES('hello	
 world!')")	

	
 	
 	
 	
 	
 if	
 err	
 !=	
 nil	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 log.Fatal(err)	

	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 rowCount,	
 err	
 :=	
 res.RowsAffected()	

	
 	
 	
 	
 	
 if	
 err	
 !=	
 nil	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 log.Fatal(err)	

	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 log.Printf("inserted	
 %d	
 rows",	
 rowCount)	

	

	
 	
 	
 	
 	
 rows,	
 err	
 :=	
 db.Query("SELECT	
 *	
 FROM	
 test.hello")	

	
 	
 	
 	
 	
 if	
 err	
 !=	
 nil	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 log.Fatal(err)	

	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 for	
 rows.Next()	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 var	
 s	
 string	

	
 	
 	
 	
 	
 	
 	
 	
 	
 err	
 =	
 rows.Scan(&s)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 err	
 !=	
 nil	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 log.Fatal(err)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 log.Printf("found	
 row	
 containing	
 %q",	
 s)	

	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 rows.Close()	

}	

	

Run your new Go program with go run hello_mysql.go. It’s safe to run

it multiple times. As you do, you should see output like the following

as it continues to insert rows into the table:

Desktop $ go run hello_mysql.go

2014/12/16 10:57:03 inserted 1 rows

2014/12/16 10:57:03 found row containing "hello world!"

Desktop $ go run hello_mysql.go

2014/12/16 10:57:05 inserted 1 rows

2014/12/16 10:57:05 found row containing "hello world!"

2014/12/16 10:57:05 found row containing "hello world!"

Desktop $ go run hello_mysql.go

2014/12/16 10:57:07 inserted 1 rows

2014/12/16 10:57:07 found row containing "hello world!"

2014/12/16 10:57:07 found row containing "hello world!"

2014/12/16 10:57:07 found row containing "hello world!"

http://vividcortex.com/

Page 8

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

●● You imported database/sql and loaded a driver for MySQL.

●● You created a sql.DB with a call to sql.Open(), passing the

driver name and the connection string.

●● You used Exec() to create a table and insert a row, then inspect

the results.

●● You used Query() to select the rows from the table, rows.Next()

to iterate over them, and rows.Scan() to copy columns from the

current row into variables.

●● You used .Close() to clean up resources when you finished

with them.

Let’s dig into each of these topics, and more, in detail. We’ll begin

with the sql.DB itself and see what it is and how it works.

As mentioned previously, a sql.DB is an abstraction of a database.

(A common mistake is to think of it as a connection to a database.)

It exposes a set of functions you use to interact with the database.

Internally, it manages a connection pool for you (a very important

topic in this book), and handles a great deal of tedious and repetitive

work for you, all in a way that’s safe to use concurrently from multiple

goroutines.

The intent of a sql.DB is that you’ll create one object to represent

each database you’ll use, and keep it for a long time. Because it

Congratulations! You’ve written your first program to interact with a

MySQL server using Go. What might surprise you is that the code

you’ve just run is not some kind of overly simplified, silly example.

It is very similar to the code you’ll use in production systems under

high load, including error handling. We’ll explore much of this code

in further sections of this book and learn more about what it does.

For now, we’ll just mention a few highlights:

Using a sql.DB

http://vividcortex.com/

Page 9

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

has a connection pool, it’s not meant to be created and destroyed

continually. You should make your single sql.DB available to all the

code that needs it.

To create a sql.DB, as we saw in the previous section, you need to

import a driver. We’ll cover drivers in more detail later. For now it’s

enough to note that drivers are usually imported for side effects

only. That’s why we bind their import name to the _ anonymous

variable, so their namespace isn’t usable from your code. All told,

the necessary imports you need in your program’s main file are as

follows:

Again we’re using our favorite MySQL driver as an example.

You only need to import the driver once in one file, typically main.go

or the equivalent (if you use some custom wrapper around database

functionality, you’d likely import the driver inside that wrapper library).

From here on, you’ll interact with the database/sql types, and it will

interact with the library on your behalf, so you don’t need access to

the driver directly. Behind the scenes, drivers use an init() function

to register themselves with the database/sql package.

Now, to actually create an instance of a sql.DB, you use sql.Open()

with two arguments. The first is the driver’s name. This is the string

that the driver registers with database/sql, and is typically the same

as its package name to avoid confusion.

The second argument is the connection string, or DSN (data source

name) as some people call it. This is driver-specific and has no

meaning to database/sql. It is merely passed to the driver you

identify. It might include a TCP connection endpoint, a Unix socket,

username and password, a filename, or anything else you can think

of. Check the driver’s documentation for details.

import (

 "database/sql"

 _ "github.com/go-sql-driver/mysql"

)

A sql.DB is not a
connection to a database.

It’s an abstraction that
represents the database

itself.

“

http://vividcortex.com/

Page 10

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

How The Connection Pool Works

At this point you might think you have a connection to a database,

but you don’t. You have only created an object and associated it with

a driver. The database/sql package relies on the driver to create and

manage individual connections, and keeps a pool of them. The pool

is initially empty, and connections are created lazily when needed.

The connection pool is vitally important to understand because it

affects your program’s behavior greatly. That’s why we are including

details about it early in this book.

The way the pool works is fairly simple in concept. When you call

a function that requires access to the underlying database, the

function first asks for a connection from the pool. If there’s a free

one, the pool gives it to the function. Otherwise it opens a new one.

The connection is then owned by the function. When the function

completes, it either returns the connection to the pool, or passes

ownership of the connection to an object, which will release it back

to the pool when it is finished.

The specific functions you can call and how they’re handled follow,

assuming a sql.DB variable named db:

●● db.Ping() returns the connection to the pool immediately.

●● db.Exec() returns the connection to the pool immediately, but

the returned Result object has a reference to the connection, so

it may be used later for inspecting the results of the Exec().

●● db.Query() passes ownership of the connection to a sql.Rows

object, which releases it back to the pool when you’ve fully

iterated all the rows or when .Close() is called.

●● db.QueryRow() passes the connection to a sql.Row, which

releases it when .Scan() is called.

●● db.Begin() passes the connection to a sql.Tx, which releases it

when .Commit() or .Rollback() is called.

http://vividcortex.com/

Page 11

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

Configuring the Connection Pool

Given that every connection is lazy-loaded as needed, how are you

to validate that you can really use your sql.DB after creating it with

sql.Open()? That is what db.Ping() is for. Idiomatic code looks like

this:

Now you know that your db variable is really ready to use, because

Ping() has created a single connection and returned it to the pool.

The above code, by the way, is not really idiomatic in one regard.

Usually you’d do something more intelligent than just fatally logging

an error. But in this book we’ll always show log.Fatal(err) as a

placeholder for real error handling.

A consequence of the connection pool is that you do not need to

check for or attempt to handle connection failures. If a connection

fails when you perform an operation on the database, database/sql

will take care of it for you. Internally, it retries up to 10 times when a

connection in the pool is discovered to be dead. It simply fetches

another from the pool or opens a new one. This means that your

code can be clean and free of messy retry logic.

Early versions of Go didn’t offer much control over the connection

pool, but in Go version 1.2.1 and later, there are options to control

it. (There was a bug in version 1.2’s connection pool; use at least

version 1.2.1). These are as follows:

db, err := sql.Open("driverName", "dataSourceName")

if err != nil {

 log.Fatal(err)

}

defer db.Close()

err = db.Ping()

if err != nil {

 log.Fatal(err)

}

http://vividcortex.com/

Page 12

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

The key things to notice about the connection pool are that,

depending on how you use connections and how you’ve configured

the pool, it’s possible to have a few undesired behaviors:

Most of the time, how you use the sql.DB influences these behaviors

more than how you configure the pool. We’ll explore this throughout

this book. For now, let’s move on to our next topic, fetching results

from the database and doing useful things with them!

1.	 Lots of connection thrash, leading to extra work and latency.

2.	 Too many connections open to the database, leading to errors.

3.	 Blocking while waiting for a connection.

4.	 Operations can fail if the pool has 10 or more dead connections,

due to the built-in limit of 10 retries.

●● db.SetMaxOpenConns(n int). This sets the maximum number of

connections the pool will open to the database. This includes

connections that are in-use as well as connections that are idle

in the pool. If you make a call that requests a connection from

the pool, and there isn’t a free one and the limit is reached, then

your call will block, potentially for a long time. The default limit is

0, which means unlimited.

●● db.SetMaxIdleConns(n int) sets the number of connections that

will be kept idle in the pool after being released. The default is

0, which means that connections are not kept idle in the pool at

all: they are closed when released from service. This can lead to

a lot of connections being closed and opened rapidly, which is

probably not what you want.

Fetching Result Sets
The database/sql library provides specific functions intended for

queries that return results: db.Query() and db.QueryRow(). We’ve

already seen an example of the former, and we’ll cover the latter in

this section as well.

Understanding the built-in
connection pooling and

hard-coded 10 automatic
retries is key to learning
how to use database/sql

well.

“

http://vividcortex.com/

Page 13

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

1.	 Get a connection from the pool

2.	 Execute the query

3.	 Transfer ownership of the connection to the result set

As described previously, executing db.Query() with a SQL query will

do the following:

The result set, a sql.Rows variable that is traditionally called rows if no

more descriptive name is needed, is then a cursor over the results.

Each row is fetched with a call to rows.Next(), beginning with the first

one. The cursor is initially positioned before the first row.

To repeat the earlier example:

There are a few things to know about this code, and we’ll examine it

outside-in, beginning with iterating over the rows with rows.Next().

rows,	
 err	
 :=	
 db.Query("SELECT	
 *	
 FROM	
 test.hello")	

if	
 err	
 !=	
 nil	
 {	

	
 	
 	
 	
 log.Fatal(err)	
 	

}	
 	

for	
 rows.Next()	
 {	

	
 	
 	
 	
 var	
 s	
 string	

	
 	
 	
 	
 err	
 =	
 rows.Scan(&s)	
 	

	
 	
 	
 	
 if	
 err	
 !=	
 nil	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 log.Fatal(err)	
 	

	
 	
 	
 	
 }	
 	

	
 	
 	
 	
 log.Printf("found	
 row	
 containing	
 %q",	
 s)	
 	

}	
 	

rows.Close()	

	

Iterating Over Rows In A Result

The rows.Next() function is designed for use in a for loop as shown.

When it encounters an error, including io.EOF which signals the

end of the rows has been reached, it will return false. In normal

operation, you’ll usually iterate over all the rows until the last one,

which will exit the loop.

But what if you don’t exit the loop normally? What if you intentionally

break out of it or return from the function? If this happens, your

results won’t be fetched and processed completely, and the

http://vividcortex.com/

Page 14

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

However, if the enclosing function is long-lived and you’re

repeatedly querying in a loop, then you should not defer closing the

rows. You should do it explicitly just before breaking out of the loop.

In fact, as a general rule, you should call rows.Close() as early as you

possibly can, to free the resources as soon as possible. This may

require a little thought and analysis of your code, in more complex

cases.

There are multiple reasons not to defer in a long-lived function:

connection might not be released back to the pool. Handling rows

correctly requires thinking about this possibility. Your goal should be

that rows.Close() is always called to release its connection back to

the pool. If it isn’t, then the connection will never go back into the

pool, and this can cause serious problems manifested as a “leakage”

of connections. If you’re not careful you can easily cause server

problems or reach your database server’s maximum number of

connections, causing downtime or unavailability.

How do you prevent this? First, you’ll be happy to know that if the

loop terminates due to rows.Next() returning false, whether normally

or abnormally, rows.Close() is automatically called for you, so in

normal operation you won’t reserve connections from the pool in

these cases.

The remaining cases are an early return or breaking out of the loop.

What you should do in these cases depends on the circumstances.

If you will return from the enclosing function when processing ends,

you should use defer rows.Close(). This is the idiomatic way to

ensure that “must-run” code indeed always runs when the function

returns. And it’s also idiomatic (and important for correctness) to

place such a cleanup call immediately after the resource is created.

Our modified code would then look like this:

rows, err := db.Query("SELECT * FROM test.hello")

if err != nil {

 log.Fatal(err)

}

defer rows.Close()

You should call
rows.Close() as early as
you possibly can, to free
the resources as soon as

possible.

“

http://vividcortex.com/

Page 15

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

With result set cleanup behind us, let’s look at handling cases where

the result set’s loop exits abnormally. We’ve seen that the normal

reason for it to exit is when the loop encounters an io.EOF error,

making rows.Next() return false. Anytime rows.Next() finds an error,

it saves the error internally for later inspection, and exits the loop.

You can then examine it with rows.Err(). We didn’t show this in the

examples above, but in real production code you should always

check for an error after exiting the loop:

for rows.Next() {

 // process the rows

}

if err = rows.Err(); err != nil {

 log.Fatal(err)

}

1.	 The deferred code won’t execute for a potentially long time. You

need it to execute ASAP to clean up its resources right away.

2.	 The deferred function, and the variables it refers to, consumes

memory. If the function is really long-lived then this is a memory

leak.

The io.EOF error is a special case that is handled inside

rows.Err(). You do not need to handle this explicitly in your code;

rows.Err() will just return nil so you won’t see it.

That pretty much concludes everything you need to know about

looping over the rows, except for one small detail: handling errors

from rows.Close(). Interestingly, this function does return an error,

but it’s a good question what can be done with it. If it doesn’t make

sense for your code to handle it (and we haven’t seen a case where

it does), then you can feel free to ignore it or just log it and continue.

Fetching A Single Row

Fetching a single row is a very common task that’s awkward with

the code shown previously. You’d have to write a loop, check that

http://vividcortex.com/

Page 16

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

How rows.Scan() Works

the loop actually had some rows, and so forth. Fortunately, there’s

db.QueryRow() that can do this for you. It executes a query that’s

expected to return zero or one rows, and returns a sql.Row object

that is scannable. The usual idiom is to chain the query and scan

together, like this:

Using rows.Scan() and its single-row variant is actually a fairly

involved subject. Under the hood, it does quite a bit of work for you.

If you know what it’s doing, you can use it to great effect.

The arguments to rows.Scan() are destinations into which the

columns from the row should be stored. Often these will be

straightforward pointers to variables, dereferenced with the &

operator:

As you can see, the idiomatic usage is a little different from before.

Internally, the sql.Row object holds either an error from the query, or

a sql.Rows from the query. If there’s an error, then .Scan() will return

the deferred error. If there’s none, then .Scan() will work as usual,

except that if there was no row, it returns a special error constant,

sql.ErrNoRows. You can check for this error to determine whether the

call to .Scan() actually executed and copied values from the row into

your destination variables.

var	
 s	
 string	
 	

err	
 =	
 db.QueryRow("select	
 *	
 from	
 hello.world	
 limit	
 1").Scan(&s)	
 	

if	
 err	
 !=	
 nil	
 {	

	
 	
 	
 	
 if	
 err	
 ==	
 sql.ErrNoRows	
 {	
 	

	
 	
 	
 	
 	
 	
 	
 	
 //	
 special	
 case:	
 there	
 was	
 no	
 row	
 	

	
 	
 	
 	
 }	
 else	
 {	
 	

	
 	
 	
 	
 	
 	
 	
 	
 log.Fatal(err)	
 	

	
 	
 	
 	
 }	
 	

}	
 	

log.Println("found	
 a	
 row",	
 s)	

	

var var1, var2 string

err = rows.Scan(&var1, &var2)

Simplify your code by
letting Scan() handle type

conversion for you.

“

http://vividcortex.com/

Page 17

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

The argument types are the empty interface, interface{}, which as

you know is satisfied by any type in Go. In most cases, Go copies

data from the row into the destinations you give. There are special

cases where the copy can be avoided if you want, but you have to

use *sql.RawBytes types to do that, and the memory is owned by

the database and has a limited lifetime of validity. If you need this

behavior, you should read the documentation and the source code

to learn more about how it works, but most people won’t need it. In

common usage, you will end up with a copy of the data, which you

own and can use as you please. Note that you can’t use

*sql.RawBytes with db.QueryRow().Scan() due to an internal limitation

in database/sql.

The database/sql package will examine the type of the destination,

and will convert values in many cases. This can help make your

code, especially your error-handling code, much smaller. For

example, suppose we have a column of numbers, but for some

reason it’s not numeric, it is instead a VARCHAR with numbers in ASCII

format. We could scan the column into a string variable, convert it

into a number, and check errors at each step. But we don’t need

to, because database/sql can do it for us. If we pass, say, a float64

destination variable into the call, Scan() will detect that we are trying

to scan a string into a number, call strconv.ParseFloat() for us, and

return any errors.

Another special case with scanning is when values are NULL in the

database. A NULL can’t be scanned into an ordinary variable, and you

can’t pass a nil into rows.Scan(). Instead, you must use a special

type as the scan destination. These types are defined in database/

sql for many common types, such as sql.NullFloat64 and so forth.

If you need a type that isn’t defined, you can look to see whether

your driver provides one, or copy/paste the source code to make

your own; it’s only a few lines of code. After scanning, you can check

whether the value was valid or not, and get the value if it was. (If you

don’t care, you can just skip the validity check; reading the value will

give the underlying type’s zero-value.)

Putting it all together, a more complex call to rows.Scan() might look

like the following:

http://vividcortex.com/

Page 18

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

The call to rows.Scan() will fail with the following error, illustrating that

the last column was automatically converted to a float, but it failed:

However, since the arguments are handled in order, the rest of the

scans would have succeeded, and by removing the call to

log.Fatal() we can see that with the following lines of code:

sql: Scan error on column index 4: converting string "not-a-float" to

a float64: strconv.ParseFloat: parsing "not-a-float": invalid syntax

var	
 (
 	

	
 	
 	
 	
 s1	
 string	
 	

	
 	
 	
 	
 s2	
 sql.NullString	
 	

	
 	
 	
 	
 i1	
 int	
 	

	
 	
 	
 	
 f1	
 float64	
 	

	
 	
 	
 	
 f2	
 float64

	
 	
)	

//	
 Suppose	
 the	
 row	
 contains	
 ["hello",	
 NULL,	
 12345,	
 "12345.6789",	
 "not-­‐a-­‐float"]	

err	
 =	
 rows.Scan(&s1,	
 &s2,	
 &i1,	
 &f1,	
 &f2)	
 	

if	
 err	
 !=	
 nil	
 {	
 	

	
 	
 	
 	
 log.Fatal(err)	
 	

}	

	

err = rows.Scan(&s1, &s2, &i1, &f1, &f2)

log.Printf("%q %#v %d %f %f", s1, s2, i1, f1, f2)

"hello" sql.NullString{String:"", Valid:false} 12345 12345.678900
0.000000

The result is:

This illustrates that the s2 variable’s Valid field is false and its String

field is empty, as expected. Your code could inspect this variable and

handle that as desired:

if s2.Valid {

 // use s2.String

}

http://vividcortex.com/

Page 19

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

cols, err := rows.Columns()

if err != nil {

 log.Fatal(err)

}

Sometimes you’re querying something that might return an unknown

number of columns with unknown names and types. Imagine that

you’re doing a SELECT * inside a backup program, for example. Or

perhaps you’re querying something that has different columns in

different versions of the server, such as SHOW FULL PROCESSLIST in

MySQL.

The database/sql package provides a way to get the column names,

and therefore the number of columns, but doesn’t directly provide a

way to get their types. To get the column names, use rows.Columns().

It returns an error, so check that:

Now you can do something useful with the results. In the simplest

case, when you know the columns and types but you expect a

variable number of them to be used in different scenarios, you

can write something like the following code. Suppose that you get

at most 5 columns but in some cases fewer, and they are of type

uint64, string, string, string, uint32. Define a slice of interface{}

with valid variables (not nil pointers) that handles the largest case,

then pass the appropriate sized slice of that to Scan():

What If You Don’t Know The Columns?

dest := []interface{}{

 new(uint64),

 new(string),

 new(string),

 new(string),

 new(uint32),

}

err = rows.Scan(dest[:len(cols)])

http://vividcortex.com/

Page 20

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

If you don’t know the columns or the data types, you need to resort

to sql.RawBytes.

After scanning, you can examine the vals slice. For each element

you should check whether it’s nil, and use type introspection and

type assertions to figure out the type of the variable and handle it.

The resulting code is usually not very pretty, but when dealing with

unknown data that’s about the best you can do.

cols, err := rows.Columns()

vals := make([]interface{}, len(cols))

for i, _ := range cols {

 vals[i] = new(sql.RawBytes)

}

for rows.Next() {

 err = rows.Scan(vals...)

}

The database/sql package doesn’t have any functionality to cope

with a query that returns more than one result set. This can range

from a non-issue to a showstopper. A lot depends on the database

and the driver implementation, but database/sql itself is designed for

a query to return a single result set, and is not capable of fetching

the next result set or handling changes in columns after the first row

is fetched.

In MySQL, at least, this also makes it awkward to call stored

procedures, even those that don’t return multiple result sets. The

reason is that MySQL’s network protocol enters multi-statement

mode for this scenario even when only a single result set will be

returned, and if you execute a CALL XXX.YYY statement you’ll get the

following error:

Working With Multiple Result Sets
And Multiple Statements

http://vividcortex.com/

Page 21

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

Similarly, some databases allow multiple statements to be sent in a

single query, perhaps semicolon-delimited or the like.

But database/sql is not built for this, so the resulting behavior is

undefined. For example, the following may execute one or both

statements, or just throw an error, depending on the driver and

database.

Error 1312: PROCEDURE XXX.YYY can’t return a result set in the
given context.

_, err := db.Exec("DELETE FROM tbl1; DELETE FROM tbl2")

Thus far you’ve been working mostly with db.Query() and

db.QueryRow(), but you’ve seen db.Exec() in action a few times. This

is the method you should use for statements that don’t return rows.

Here’s an example:

The db.Exec() call returns a sql.Result, which you can use to get

the number of rows affected, as shown. You can also use it to fetch

the auto-increment ID of the last-inserted row, although support for

that varies by driver and database. In PostgreSQL, for example, you

should use INSERT RETURNING and db.QueryRow() to fetch the desired

value as a result set.

Modifying Data With
db.Exec()

res,	
 err	
 :=	
 db.Exec("DELETE	
 FROM	
 hello.world	
 LIMIT	
 1")	
 	

if	
 err	
 !=	
 nil	
 {	
 	

	
 	
 	
 	
 log.Fatal(err)	
 	

}	
 	

rowCnt,	
 err	
 :=	
 res.RowsAffected()	
 	

if	
 err	
 !=	
 nil	
 {	
 	
 	

	
 	
 	
 	
 log.Fatal(err)	
 	

}	
 	

log.Println("deleted	
 rows:",	
 rowCnt)	

	

http://vividcortex.com/

Page 22

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

The problem is that although the first value returned from the

method is assigned to the _ variable and is inaccessible to the

program after that, it’s still really assigned, with all the usual

consequences. And it won’t go away until it’s garbage collected.

Worse, the connection that’s bound to it will never be returned to the

connection pool. This is a good way to “leak” connections and run

the server out of available connections.

In addition to the above, there are some more subtleties you should

know about the Result. Go guarantees that the database connection

that was used to create the Result is the same one used for

LastInsertId() and RowsAffected(), and that it’s taken out of the pool

for these operations and locked. But beyond that, it’s an interface

type, and the exact behavior will be dependent on the underlying

database and the driver’s provided implementation.

For example:

●● MySQL can use a BIGINT UNSIGNED as an auto-increment column,

so it’s possible for the last-inserted row’s column to be too large

to fit in int64, the returned type defined by LastInsertId().

●● The MySQL driver we prefer doesn’t make an extra round-trip

to the database to find out the last-inserted value and number

of rows affected. This information is returned from the server in

the wire protocol, and stored in a struct, so there’s no need for

it. (The connection is still taken out of the pool and locked, then

put back, even though it’s not used. This is done by database/

sql, not the driver. So even though this function doesn’t access

the database, it may still block waiting if its connection is busy.)

There’s a vitally important difference between db.Exec() and

db.Query(), and it isn’t just a matter of being pedantic. As mentioned

earlier in this book, db.Exec() releases its connection back to the

pool right away, whereas db.Query() keeps it out of the pool until

rows.Close() is called. The following code ignores the returned rows,

and will cause problems:

_, err := db.Query("DELETE FROM hello.world LIMIT 1")

You should always use
Exec() for statements that

do not return rows.

“

http://vividcortex.com/

Page 23

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

●● Whether LastInsertId() and RowsAffected() return errors is

driver-specific. In the MySQL driver, for example, they will never

return an error. You should not rely on driver-specific details like

this, though. Adhere to the contract that is publicly promised in

the database/sql interface: functions that return errors should be

checked for errors.

●● Some of the behavior of these functions varies between

databases or implementations. For example, suppose a

database driver provides RowsAffected() but implements it by

making a query to the underlying database (e.g. needlessly

calling SELECT LAST_INSERT_ID() in MySQL instead of using the

values returned in the protocol). As mentioned, the original

connection will be used, so to that extent the behavior will

be correct, but what if other work has been done on that

connection in the meantime? You’d be subject to a race

condition. This is an area where you’ll need to know the actual

implementation you’re working with.

In general, the database drivers we’ve seen and worked with are

well implemented and you don’t need to worry about these finer

points most of the time. But we want you to be aware of the details

regardless.

Now let’s see how to use prepared statements!

Although we haven’t discussed or shown it yet, database/sql is

rather heavily oriented towards prepared statements.

What is a prepared statement? It is a statement that’s sent in a

partially-completed form to the server, with placeholders for values

that will be filled in later. Now the statement is ready to be executed,

hence the name “prepared.”

The meaning of “prepared” is system-dependent, but typically the

server evaluates the skeleton statement for validity and makes sure

it’ll be OK to execute. For example, it will usually check that all of the

Using Prepared Statements

http://vividcortex.com/

Page 24

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

Prepared statements can be confusing sometimes,

because some languages’ drivers and database

interfaces emulate this behavior but don’t really use

server-side prepared statements per se. For example,

in the Perl DBI, the default behavior with the MySQL

driver is to show what looks like prepared statements

to the programmer, but use so-called “client-side

prepared statements” instead (which are really nothing

of the sort). In practice this basically means that the

DBI interface is concatenating strings and quoting

them before sending the full SQL to the server, and

prepared statements don’t enter the picture at all.

Various database abstraction layers in many languages

do similar things, usually without really making it visible

to the programmer. If this isn’t confusing enough, there

are even more confusing scenarios, such as MySQL’s

so-called SQL interface to prepared statements,

which has flummoxed many otherwise smart people

(including driver authors) into doing strange things.

Go’s database/sql handles prepared statements as first-class

citizens, and has a sql.Stmt type for them. In fact, database/sql

prefers to use prepared statements, and a lot of the interface you’ve

seen thus far in this book will use them if you just add parameters

to your method calls. For example, let’s add a parameter and

placeholder to our INSERT from earlier:

databases and tables mentioned exist and the user has privileges

to access them, and may also partially plan the query’s execution.

The server then sends back a statement identifier, which is typically

bound to the specific connection that was used to prepare the

statement (e.g. the statement is not valid for other connections). The

statement can then be executed multiple times by sending a special

command with the statement identifier and any parameters to be

used.

The database/sql package
uses prepared statements
transparently. By knowing

how it works, you’ll be
able to control it as you

wish.

“

http://vividcortex.com/

Page 25

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

See what we did there? We removed the literal hello world! from

the SQL and put a ? placeholder in its place, then called the method

with the value as a parameter. Under the hood, Go handles this as

follows:

1.	 It treats parameter 0 as the statement, and prepares it with the

server.

2.	 It executes the resulting prepared statement with the rest of the

parameters (in this case just one).

3.	 It closes the prepared statement.

Prepared statements have their benefits:

●● They are convenient; they help you avoid code to quote and

assemble SQL.

●● They guard against SQL injection and other attacks by avoiding

quoting vulnerabilities, so they enhance security.

●● There may be driver-specific, protocol-specific, and database-

specific performance and other enhancements. For example, in

MySQL, prepared statements use the so-called binary protocol

for sending parameters to the server, which can be more

efficient than sending them as ASCII.

●● They can reward you with additional efficiency by eliminating

repeated SQL parsing, execution plan generation, and so on.

Some of these benefits apply no matter how many times statements

are executed, but some are only beneficial if a statement will be

repeatedly re-executed. As a result, you should be aware of the

automatic use of prepared statements when you call functions such

as db.Query() and db.Exec() with more than one parameter.

In addition to behind-the-scenes use of prepared statements, you

res, err := db.Exec(

 "INSERT INTO test.hello(world) VALUES(?)", "hello world!")

http://vividcortex.com/

Page 26

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

can prepare statements explicitly. In fact, to reuse them and gain

some of the benefits mentioned above, you must prepare them

explicitly. Use the db.Prepare() function for that. The result is a

sql.Stmt variable:

Now you can repeatedly execute the statement with parameters as

desired. The stmt variable’s method signatures match those you’ve

been using thus far on the db variable. In this case we’ll use

stmt.Exec():

stmt, err := db.Prepare("INSERT INTO test.hello(world) VALUES(?)")

if err != nil {

 log.Fatal(err)

}

for _, str := range []string{"hello1", "hello2", "hello3"} {

 res, err := stmt.Exec(str)

 if err != nil {

 log.Fatal(err)

 }

}

A couple of anti-patterns with prepared statements arise fairly often:

●● Single-use prepared statements. This is potentially wasteful

unless you really want to do it for some reason, e.g. the

convenience of avoiding quoting and SQL concatenation

yourself. Be aware that every one-off prepared statement at

least triples the number of network round-trips you actually

make to the backend database: prepare, execute, and close. As

you’ll see in the next section, it can be even worse than this.

●● Re-preparing in a loop. This is just a magnification of the

previous point. Make sure you prepare outside the loop, and

execute inside of it!

Although we didn’t show it in our sample code above, it’s a good

idea to close prepared statements when you’re done with them.

You can just call stmt.Close() when you are finished, or you can

http://vividcortex.com/

Page 27

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

Because database/sql handles a connection pool for you without

exposing you to connections directly, the relationship between

prepared statements and connections also has to be managed for

you behind the scenes. This is worth knowing about, because it has

consequences for performance and resource utilization, especially at

high concurrency.

When you prepare a statement with db.Prepare() and get a stmt

in return, what really happens is that the statement is prepared on

some connection in the pool, but the connection is then released

back to the pool. The statement remembers the connection it used.

When you execute the statement, it tries to get that connection, but

if it’s busy, it will re-prepare the statement on another connection,

adding this connection to the list of remembered statements. If you

re-execute the statement again and all of the connections on which it

was previously prepared are busy, it’ll prepare the statement on yet

another connection, and so on.

So what’s really happening behind the scenes is that a given

statement might be prepared on many different connections,

and thus from the database server’s point of view, the number of

prepared statements may be much larger than the number of

sql.Stmt variables you’ve created in your code.

This situation happens most under high load, when lots of

connections are busy, leading to lots of re-preparing. In the worst

cases, the authors have seen statements appear to “leak” due to

being re-prepared as many times as there are connections. When

combined with bugs that lead to connections not being returned

to the pool as previously discussed, it’s even possible to exceed

the maximum number of statements the server will permit to be

prepared at one time.

defer stmt.Close(). Either way, keep in mind the same types of

considerations we discussed previously with rows.Close().

The Relationship Between Statements
And Connections

http://vividcortex.com/

Page 28

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

Another subtlety of prepared statements is that it’s quite likely

that at least some prepared statements will be prepared and then

immediately re-prepared upon execute, due to the statement’s

original connection being returned to the pool and grabbed by

another user during the interval between db.Prepare() and stmt.

Exec(). If you use a network traffic capture inspection tool such as

VividCortex, you’ll be able to verify this. For example, in one of the

VividCortex blog posts we analyzed single-use prepared statements.

Careful inspection reveals that the count of Prepare() actually

exceeds the count of Exec() by a small margin, which is expected

due to the phenomenon just mentioned.

Another consequence of how the pool handles connections and

prepared statements is that you do not need to explicitly handle

problems with prepared statements being invalidated by, for

example, a failed connection that was killed or timed out server-side.

The connection pool will handle this for you transparently. In other

words you shouldn’t write any logic to re-prepare statements, just

like you don’t need to write any logic to re-connect to the database.

There are up to 10 retries hidden within database/sql.

Sometimes it’s better to send plaintext SQL to the server than to

prepare statements. Why would you want to do this?

1.	 The statement has no parameters.

2.	 The statement won’t be reused, so the prepare/execute/close

cycle is wasteful tripling of network round-trips and extra latency

for the client.

3.	 The database server doesn’t support prepared statements.

This is the case for Sphinx and MemSQL, for example, both of

which support the MySQL wire protocol but not the prepared

statement features of it.

Go’s database/sql package does allow you to bypass the use of

prepared statements, and send the query in a one-shot form as plain

text, but the driver needs to support it too. Most drivers the authors

Avoiding Prepared Statement Usage

http://vividcortex.com/
https://vividcortex.com/blog/2014/11/19/analyzing-prepared-statement-performance-with-vividcortex/

Page 29

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

are familiar with do offer this support. The driver simply needs to

implement Go’s driver.Execer and driver.Queryer interfaces.

The other crucial part of avoiding prepared statements is under

control of you, the programmer. To avoid prepared statements, you

should do the following:

●● Don’t explicitly prepare a statement with db.Prepare(),

obviously.

●● Don’t call functions such as db.Query() with more than one

argument.

The latter requirement may mean that you’ll have to build statements

yourself by concatenating SQL and quoting values. (You might find

fmt.Sprintf() with the %q placeholder to be useful for this.) If you

do this, be careful to avoid SQL injection attack vectors. The best

way to do this is by validating your inputs. The authors do this with

API parameter-handling frameworks that are wrappers around Go’s

standard flag library, so parameters are strongly typed.

Parameter syntax is up to the driver and/or the backend database,

and database/sql doesn’t know about it. It is therefore variable

depending on which backend database you’re using. Here’s a quick

list of several popular databases and how they handle it:

●● MySQL uses question-mark parameters ? that must be matched

by an equal number of values during statement execution.

●● PostgreSQL uses numbered parameters $1, $2 and so on.

These can be reused within the statement, so the number of

values you pass in during execution might differ from the total

number of placeholders. For example, SELECT $1, $2, $2 FROM

mytable would be executed with only 2 values.

●● Oracle uses named parameters preceded by colons, such as

:user.

●● SQLite accepts both MySQL’s and PostgreSQL’s syntax.

Prepared Statement Parameter Syntax

http://vividcortex.com/

Page 30

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

Transactions in database/sql are top-level data types like statements

and results. And like all the others, you’ll need to know how they

work to avoid tripping over their subtleties. But before we dig into

them, let’s discuss the wrong way to work with transactions. The

following code will not do the right thing:

Working With Transactions

_, err = db.Exec("BEGIN")

_, err = db.Exec("UPDATE account SET balance = 100 WHERE user = 83")

_, err = db.Exec("COMMIT")

Why? Because of the underlying connection pool. There’s no

guarantee those statements were executed on the same connection.

You could have started a transaction (and left it open and idle!) on

one connection, updated the account table on another connection,

and committed some other connection’s in-flight transaction. Don’t

do this!

Creating statefulness and binding things to a single connection is

exactly what a sql.Tx is for, and that’s what you should do instead.

The essence is as follows:

●● You create a sql.Tx with db.Begin().

●● It removes exactly one connection from the pool and keeps it

until it’s finished.

●● The driver is instructed to start a transaction on that connection.

●● The connection, its transaction, and the tx variable are coupled,

but the tx and the db are disconnected from each other.

●● The lifetime of the transaction and the tx ends with tx.Commit()

or tx.Rollback() and the variable is invalid after that.

Let’s dig into these and see how transactions work. First, after you

use db.Begin() to create the sql.Tx, you should operate solely on

the tx variable, and ignore the db for anything that needs to work

The database is not
in a transaction. The

transaction only includes
the sql.Tx object.

“

http://vividcortex.com/

Page 31

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

tx, err := db.Begin()

// ...

_, err = db.Exec("UPDATE account SET balance = 100 WHERE user = 83")

// ...

err = tx.Commit()

within the transaction. This is because the db isn’t in a transaction,

the tx is! This is a common source of confusion for programmers.

Code like the following is another buggy anti-pattern:

The programmer might not realize it, but the UPDATE did not happen

within the context of the transaction. Instead of db.Exec(), the

code should use tx.Exec(). Study this if it’s confusing, because it’s

important. On the database server, the transaction is scoped to a

single connection; in the code, the connection is bound to the tx

variable and not available through the db anymore. When you call

methods on the db, you’re operating on a different connection, which

doesn’t participate in the transaction.

The tx variable, as we’ve seen previously with prepared statements,

has all the familiar methods with the same signatures: Query(),

Exec(), and so on. There’s even a tx.Prepare() to prepare

statements that are bound solely to the transaction. However,

prepared statements work differently within a tx. A sql.Stmt,

when associated with a sql.Tx, is bound to the one and only

one underlying connection to the database, so there’s no auto-

repreparing on different connections.

To elucidate this a bit further, a stmt that was prepared from a db

is invalid on the tx, and a stmt that was prepared from a tx is valid

only on the tx. There is a way to “clone” a stmt into the scope of the

tx by using tx.Stmt() but this seems a bit kludgey at the moment,

because in the current implementation, it results in the statement

being reprepared even if it has already been prepared on the tx’s

connection.

Within the scope of a tx, the usual implicit logic of retrying 10 times

also is disabled. You’ll need to be prepared to retry statements or

http://vividcortex.com/

Page 32

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

There’s No Concurrency Within A
Transaction

There’s another thing you should know about working with a

sql.Tx. Because there’s only a single connection, you have to do

all of your operations serially, finishing every database interaction

before beginning a new one. This is in contrast to what you can do in

the usual non-transactional connection-pooled code you might write.

For example, the following excerpted code is just fine in normal

usage without a transaction:

This is okay because when you’re working with a db variable, the

inner statement will remove a new connection from the pool and use

it, so the loop will effectively use (at least) two connections. (Inside

the loop, the first connection is busy fetching rows for the loop, so

it’s not available for the QueryRow() to use.)

In the scope of a tx, however, that won’t work:

If you do that, you’ll be trying to start a new query on the tx’s

rows,	
 _	
 :=	
 db.Query("SELECT	
 id	
 FROM	
 master_table")	
 	

for	
 rows.Next()	
 {	
 	

	
 	
 	
 	
 var	
 mid,	
 did	
 int	
 	

	
 	
 	
 	
 rows.Scan(&mid)	
 	

	
 	
 	
 	
 db.QueryRow("SELECT	
 id	
 FROM	
 detail_table	
 WHERE	
 master	
 =	
 ?",	
 mid).Scan(&did)	

}	

	

rows,	
 _	
 :=	
 tx.Query("SELECT	
 id	
 FROM	
 master_table")	
 	

for	
 rows.Next()	
 {	
 	

	
 	
 	
 	
 var	
 mid,	
 did	
 int	
 	

	
 	
 	
 	
 rows.Scan(&mid)	
 	

	
 	
 	
 	
 tx.QueryRow("SELECT	
 id	
 FROM	
 detail_table	
 WHERE	
 master	
 =	
 ?",	
 mid).Scan(&did)	
 //	
 BOOM	
 	

}	

	

restart the entire transaction yourself, as appropriate for the scenario.

This is meat-and-potatoes behavior for transactional databases,

naturally. You’ve always needed to be ready to handle deadlocks

and rollbacks when dealing with transactions. And of course a

transaction can’t be started on one connection and continued on

another in most databases.

http://vividcortex.com/

Page 33

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

connection, but it’s busy in row-fetching mode and that won’t work.

Our example is rather silly and could be replaced by a JOIN, and

doesn’t even need to be in a transaction for that matter because it’s

not modifying any data, but hopefully you see the point. Within the

scope of a tx, you have to finish each statement before you start the

next one.

On the other hand, a corollary also holds. If you need to do some

inner-loop fetching within the context of a tx, but it doesn’t need to

participate in the transaction itself for some reason, you could use

the db to perform it instead. Just be careful that your code doesn’t

ambush some other programmer later!

There’s another, more subtle, way that you can cause concurrent

access to connections in a way that is out-of-sync with the backend

driver and network protocol. This is by deferring execution of things

like stmt.Close(), causing them to occur after the tx releases its

connection back to the pool. If this happens, the deferred call could

happen while another operation is using the connection. Here’s an

example, which omits error handling and detail for brevity:

To avoid this problem, ensure you Close() all transaction-related

resources before finishing the transaction. This is actually a bug in

database/sql and may be fixed by the time you read this.

tx,	
 _	
 :=	
 db.Begin()	
 	

defer	
 tx.Rollback()	
 	

stmt,	
 _	
 :=	
 tx.Prepare("INSERT....")	
 	

defer	
 stmt.Close()	
 //	
 will	
 execute	
 when	
 func	
 returns	
 	

//	
 Use	
 stmt	
 	

tx.Commit()	
 //	
 the	
 connection	
 is	
 returned	
 to	
 the	
 pool	
 	

return	
 	
 	
 	
 	
 	
 //	
 stmt.Close()	
 executes,	
 but	
 conn	
 might	
 already	
 be	
 in-­‐use	
 again	

	

Sometimes you want the guarantee that your statements are bound

to a single connection, but you don’t want to actually create a

transaction against the database. Why would you want this? Here are

some sample reasons:

1.	 Connection-specific state, such as temp tables or user-defined

Using Transactions For Convenience

http://vividcortex.com/
https://github.com/golang/go/issues/4459

Page 34

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

Error Handling

variables, or setting the current database with USE or similar.

2.	 Limiting concurrency and avoiding unwanted connections to the

database.

3.	 Explicit locks.

4.	 The use of database-specific extensions of behaviors.

If this is necessary, you can take advantage of a sql.Tx as a way

to access one and only one underlying connection. If you don’t

want the transaction that comes along with it, you could commit it

by calling tx.Exec("COMMIT") or similar. We’d normally advise you

not to mingle transaction-related SQL commands with database/

sql function calls related to transactions, but it might work for you.

Whether this causes problems is dependent on your driver and

backend database. Some databases communicate whether the

connection has an active transaction by a signal in the network

protocol, and some drivers might respect that and throw an error.

The authors remember vaguely a distant past experience with a

database and driver (in another language) that would throw an error

when trying to finish a transaction that wasn’t open anymore. Caveat

emptor.

Another possibility would be to create a new db variable with

sql.Open() and set its pool size and max idle connections to 1. Used

judiciously, this should have the same effect, but it’s not something

we’d recommend scattering widely throughout your codebase,

nor would we recommend doing this at high speed. Opening and

closing database connections rapidly makes some databases (and

operating systems’ networking stacks) very unhappy.

An alternative, also not recommended particularly highly, would be

to use your database driver directly instead of through the

database/sql interface. That is beyond the scope of this book, so

we’re just tossing it out there for you to consider.

Idiomatic error handling in Go is to explicitly and immediately check

http://vividcortex.com/

Page 35

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

But what if the database’s language is not set to English, and error

codes are returned in Elbonian? Oops. Plus, string-matching like this

is just a code smell.

The solution for this depends on the driver and the database.

Although some databases return ANSI-standard error codes for

some operations, these really are not specific enough for use in

most applications. Instead, it’s better to deal with the database’s own

error codes, which are usually very granular and allow you to isolate

exactly what happened.

To do this, you’ll have to import the driver and use a type assertion to

get access to the driver-specific struct underlying the error, like this

example using the MySQL driver:

for an error after every function call that can return an error, and it’s

no different in database/sql. However, for the sake of brevity, we’ve

omitted some error handling in several code listings thus far.

In general, all of the method calls we’ve seen to this point can return

an error, even when we didn’t show it. There is one place, however,

where you should check for an error that isn’t returned by a function

call: after the rows.Next() loop. We covered the usage of rows.Err()

previously.

The other special consideration for error-checking is how to inspect

and handle errors that the database returns. You might find yourself

doing string-matching, for example, to try to catch errors such as a

deadlock:

if strings.Contains(err.Error(), "Deadlock found") {

 // Handle the error

}

if driverErr, ok := err.(*mysql.MySQLError); ok {

 if driverErr.Number == 1213 {

 // Handle the error

 }

}

In general, as with all
Go code, you should

always check and handle
all returned errors

immediately.

“

http://vividcortex.com/

Page 36

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

if driverErr, ok := err.(*mysql.MySQLError); ok {

 if driverErr.Number == mysqlerr.ER_LOCK_DEADLOCK {

 // Handle the error

 }

}

That’s better, but still has a code smell. What’s that magic number

1213? It’s much better to use a defined list of error numbers. Alas,

the driver we like doesn’t have such a list in it, for various reasons.

Fortunately, VividCortex provides one at github.com/VividCortex/

mysqlerr. Now the code can be cleaned up more:

Much better. In the most popular PostgreSQL driver, you can use

driver-provided types and a driver-provided error list too.

Using Built-In Interfaces
As with all of Go’s standard library, database/sql uses interfaces

heavily to make the magic happen without creating tight coupling

between bits of code. And these standard interfaces can be used to

great advantage in your own code. There are two interfaces that are

involved in passing data into the database and retrieving it back:

●● driver.Valuer influences how values are transformed as they

are sent to the database.

●● sql.Scanner influences how values are transformed upon

retrieval.

You can think of these as filters you can insert into the process of

reading and writing from the database.

Why would you want this? As a simple example, suppose you

want to ensure that all string values of a certain type are always

lowercased when sent to the database, and just in case mixed-

case data is present in the database somehow, you also want to

lowercase it when reading from the database. We can create a

http://vividcortex.com/
https://github.com/VividCortex/mysqlerr
https://github.com/VividCortex/mysqlerr

Page 37

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

data type, let’s say LowercaseString, that enforces these things

transparently and keeps the programmer’s code clean and simple.

This is an overly simplistic example, but the general idea is that we’re

inserting a strings.ToLower() into the process of reading and writing

the data. Now, you’d use these types in your code, instead of the

string type, as parameters when inserting data and as destination

variables when scanning. Here’s a complete code sample you can

examine (download):

package	
 main	
 	
 	

	

import	
 (
 	

	
 	
 	
 	
 "database/sql"	
 	

	
 	
 	
 	
 "database/sql/driver"	
 	

	
 	
 	
 	
 "errors"	
 	

	
 	
 	
 	
 _	
 "github.com/go-­‐sql-­‐driver/mysql"	
 	

	
 	
 	
 	
 "log"	
 	

	
 	
 	
 	
 "strings"	
 	

)	
 	
 	

	

type	
 LowercaseString	
 string	
 	
 	

	

//	
 Implements	
 driver.Valuer.	
 	

func	
 (ls	
 LowercaseString)	
 Value()	
 (driver.Value,	
 error)	
 {	
 	

	
 	
 	
 	
 return	
 driver.Value(strings.ToLower(string(ls))),	
 nil	
 	

}	
 	
 	

	

//	
 Implements	
 sql.Scanner.	
 Simplistic	
 -­‐-­‐	
 only	
 handles	
 string	
 and	
 []byte	
 	

func	
 (ls	
 *LowercaseString)	
 Scan(src	
 interface{})	
 error	
 {	
 	

	
 	
 	
 	
 var	
 source	
 string	
 	

	
 	
 	
 	
 switch	
 src.(type)	
 {	
 	

	
 	
 	
 	
 case	
 string:	
 	

	
 	
 	
 	
 	
 	
 	
 	
 source	
 =	
 src.(string)	
 	

	
 	
 	
 	
 case	
 []byte:	
 	

	
 	
 	
 	
 	
 	
 	
 	
 source	
 =	
 string(src.([]byte))	
 	

	
 	
 	
 	
 default:	
 	

	
 	
 	
 	
 	
 	
 	
 	
 return	
 errors.New("Incompatible	
 type	
 for	
 LowercaseString")	
 	

	
 	
 	
 	
 }	
 	

	
 	
 	
 	
 *ls	
 =	
 LowercaseString(strings.ToLower(source))	
 	

	
 	
 	
 	
 return	
 nil	
 	

}	
 	
 	

	

func	
 main()	
 {	
 	

	
 	
 	
 	
 db,	
 err	
 :=	
 sql.Open("mysql",	
 	

	
 	
 	
 	
 	
 	
 	
 	
 "root:@tcp(:3306)/test")	
 	

	
 	
 	
 	
 if	
 err	
 !=	
 nil	
 {	
 	

	
 	
 	
 	
 	
 	
 	
 	
 log.Fatal(err)	
 	

	
 	
 	
 	
 }	
 	

	
 	
 	
 	
 defer	
 db.Close()	
 	

	

	
 	
 	
 	
 	
 _,	
 err	
 =	
 db.Exec(
 	

	
 	
 	
 	
 	
 	
 	
 	
 "CREATE	
 TABLE	
 IF	
 NOT	
 EXISTS	
 test.hello(world	
 varchar(50))")	
 	

	
 	
 	
 	
 if	
 err	
 !=	
 nil	
 {	
 	

	
 	
 	
 	
 	
 	
 	
 	
 log.Fatal(err)	
 	

	
 	
 	
 	
 }	
 	

	

http://vividcortex.com/
https://gist.github.com/xaprb/7f00a77e89b87ce205ed

Page 38

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

If you run this code, it will print out the following:

As you can see, both rows are apparently lowercased. But if you

look in the database, you’ll see a different picture:

	
 	
 	
 	
 	
 _,	
 err	
 =	
 db.Exec("DELETE	
 FROM	
 test.hello")	
 	

	
 	
 	
 	
 if	
 err	
 !=	
 nil	
 {	
 	

	
 	
 	
 	
 	
 	
 	
 	
 log.Fatal(err)	
 	

	
 	
 	
 	
 }	
 	

	

	
 	
 	
 	
 //	
 Insert	
 a	
 row	
 that's	
 not	
 lowercased,	
 and	
 one	
 that	
 is.	
 	

	
 	
 	
 	
 var	
 normalString	
 string	
 =	
 "I	
 AM	
 UPPERCASED	
 NORMAL	
 STRING"	
 	

	
 	
 	
 	
 var	
 lcString	
 LowercaseString	
 =	
 "I	
 AM	
 UPPERCASED	
 MAGIC	
 STRING"	
 	

	

	
 	
 	
 	
 	
 _,	
 err	
 =	
 db.Exec("INSERT	
 INTO	
 test.hello	
 VALUES(?),	
 (?)",	
 normalString,	
 lcString)	
 	

	
 	
 	
 	
 if	
 err	
 !=	
 nil	
 {	
 	

	
 	
 	
 	
 	
 	
 	
 	
 log.Fatal(err)	
 	

	
 	
 	
 	
 }	
 	

	

	
 	
 	
 	
 rows,	
 err	
 :=	
 db.Query("SELECT	
 *	
 FROM	
 test.hello")	
 	

	
 	
 	
 	
 if	
 err	
 !=	
 nil	
 {	
 	

	
 	
 	
 	
 	
 	
 	
 	
 log.Fatal(err)	
 	

	
 	
 	
 	
 }	
 	

	
 	
 	
 	
 defer	
 rows.Close()	
 	

	
 	
 	
 	
 for	
 rows.Next()	
 {	
 	

	
 	
 	
 	
 	
 	
 	
 	
 var	
 s1	
 LowercaseString	
 	

	
 	
 	
 	
 	
 	
 	
 	
 err	
 =	
 rows.Scan(&s1)	
 	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 err	
 !=	
 nil	
 {	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 log.Print(err)	
 	

	
 	
 	
 	
 	
 	
 	
 	
 }	
 	

	
 	
 	
 	
 	
 	
 	
 	
 log.Print(s1)	
 	

	
 	
 	
 	
 }	
 	

}	

	

$ go run lowercase.go

2014/12/17 16:08:14 i am uppercased normal string

2014/12/17 16:08:14 i am uppercased magic string

mysql> select * from test.hello;

+-------------------------------+

| world |

+-------------------------------+

| I AM UPPERCASED NORMAL STRING |

| i am uppercased magic string |

+-------------------------------+

http://vividcortex.com/

Page 39

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

This is because when we inserted into the database, we used

one normal string variable, which got inserted as-is, and one

LowercaseString variable, which got lowercased on the way into

the database. But while reading these rows back, we used a

LowercaseString as a destination variable, and both of the rows

were transformed to lowercase, so the program printed them out in

lowercase.

This is a very simple example. Real-world examples include much

more useful things, such as:

●● Enforcing validation of data that must be formatted in a specific

way.

●● Transforming data into a uniform format.

●● Compressing and decompressing data transparently.

●● Encrypting and decrypting data transparently.

Here’s a sample implementation of gzip compression and

decompression, courtesy of Jason Moiron’s blog:

type	
 GzippedText	
 []byte	
 	
 	

	

func	
 (g	
 GzippedText)	
 Value()	
 (driver.Value,	
 error)	
 {	
 	

	
 	
 	
 	
 b	
 :=	
 make([]byte,	
 0,	
 len(g))	
 	

	
 	
 	
 	
 buf	
 :=	
 bytes.NewBuffer(b)	
 	

	
 	
 	
 	
 w	
 :=	
 gzip.NewWriter(buf)	
 	

	
 	
 	
 	
 w.Write(g)	
 	

	
 	
 	
 	
 w.Close()	
 	

	
 	
 	
 	
 return	
 buf.Bytes(),	
 nil	
 	

}	
 	
 	

	

func	
 (g	
 *GzippedText)	
 Scan(src	
 interface{})	
 error	
 {	
 	

	
 	
 	
 	
 var	
 source	
 []byte	
 	

	
 	
 	
 	
 //	
 let's	
 support	
 string	
 and	
 []byte	
 	

	
 	
 	
 	
 switch	
 src.(type)	
 {	
 	

	
 	
 	
 	
 case	
 string:	
 	

	
 	
 	
 	
 	
 	
 	
 	
 source	
 =	
 []byte(src.(string))	
 	

	
 	
 	
 	
 case	
 []byte:	
 	

	
 	
 	
 	
 	
 	
 	
 	
 source	
 =	
 src.([]byte)	
 	

	
 	
 	
 	
 default:	
 	

	
 	
 	
 	
 	
 	
 	
 	
 return	
 errors.New("Incompatible	
 type	
 for	
 GzippedText")	
 	

	
 	
 	
 	
 }	
 	

	
 	
 	
 	
 reader,	
 _	
 :=	
 gzip.NewReader(bytes.NewReader(source))	
 	

	
 	
 	
 	
 defer	
 reader.Close()	
 	

	
 	
 	
 	
 b,	
 err	
 :=	
 ioutil.ReadAll(reader)	
 	

	
 	
 	
 	
 if	
 err	
 !=	
 nil	
 {	
 	

	
 	
 	
 	
 	
 	
 	
 	
 return	
 err	
 	
 	

	
 	
 	
 	
 }	
 	

	
 	
 	
 	
 *g	
 =	
 GzippedText(b)	
 	

	
 	
 	
 	
 return	
 nil	
 	

}	

	

Learning how the sql.
Scanner and driver.Valuer
interfaces work will take

your usage of database/sql
to a completely new level
of power and elegance.

“

http://vividcortex.com/
http://jmoiron.net/blog/built-in-interfaces/

Page 40

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

Now the GzippedText type can be used just as easily as a []byte

in your source code. At VividCortex, we use similar techniques to

transparently encrypt all of our customers’ sensitive data when we

insert it into our databases. You can read more about that on our

blog post about encryption.

Database Drivers
We’ve alluded several times to third-party database drivers, but what

are they, really? And what do they do? It would be great to write a

manual for how to create a driver, but that’s a little out of scope for

this book. Instead we’ll cover what they do (briefly) and how they

work, and list some good open-source ones you might be interested

in.

In brief, the driver’s responsibilities are:

1.	 To open a connection to the database and communicate

over it. The driver need not implement any kind of pooling or

caching of connections, because database/sql does that itself.

The connection must support preparing statements, beginning

transactions, and closing.

2.	 To implement Rows, an iterator over an executed query’s results.

3.	 To implement an interface for examining an executed

statement’s results.

4.	 To implement prepared statements that can be executed and

closed.

5.	 To implement transactions that can be committed or rolled back.

6.	 To implement bidirectional conversions between values as

provided by the database and values in Go.

Drivers can optionally implement a few nice-to-have functionalities

as well, most of which signal that the driver and database support a

fast-path operation for specific things (such as querying the database

directly without using a prepared statement).

http://vividcortex.com/
https://vividcortex.com/blog/2014/11/11/encrypting-data-in-mysql-with-go/
https://vividcortex.com/blog/2014/11/11/encrypting-data-in-mysql-with-go/

Page 41

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

Drivers become available by registering themselves with

database/sql via the sql.Register() call. They register under the

name you’ll use in sql.Open(). This is done with an init() function,

similar to the following:

This init function executes when the package is imported:

You can find a list of loaded drivers by calling sql.Drivers(), by the

way. Here are some of the drivers that seem to be good quality and

idiomatic Go code:

●● MySQL: github.com/go-sql-driver/mysql

●● PostgreSQL: github.com/lib/pq

You can find more drivers on the Go wiki page for drivers.

If your application is tightly bound to the underlying database (as

most are), you’ll likely want to get to know your preferred driver well.

For example, if you use the PostgreSQL driver we just mentioned,

you might be interested in some of the extra bits it exports, such as

a NullBool type and helpful error-handling functionality. Be sure to

read your driver’s documentation carefully to learn about all these

little goodies.

func init() {

 sql.Register("mysql", &MySQLDriver{})

}

import _ "github.com/go-sql-driver/mysql"

As you’ve seen, although the surface area of database/sql is pretty

small, there’s a lot you can do with it. That includes a lot of places

you can trip up and make a mistake. This section is dedicated to

all the mistakes we’ve made, in hopes that you won’t make them

yourself.

Common Pitfalls

Be sure to spend
some time learning

your preferred driver
thoroughly, so you can take
advantage of everything it

offers.

“

http://vividcortex.com/
https://github.com/go-sql-driver/mysql
https://github.com/lib/pq
https://github.com/golang/go/wiki/SQLDrivers

Page 42

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

Deferring inside a loop. A long-lived function with a query inside a

loop, and defer rows.Close() inside the loop, will cause both memory

and connection usage to grow without bounds.

Opening many db objects. Make a global sql.DB, and don’t open

a new one for, say, every incoming HTTP request your API server

should respond to. Otherwise you’ll be opening and closing lots of

TCP connections to the database. It’s a lot of latency, load, and TCP

connections in TIME_WAIT status.

Not doing rows.Close() when done. Forgetting to close the rows

variable means leaking connections. Combined with growing load

on the server, this likely means running into max_connections errors

or similar. Run rows.Close() as soon as you can, even if it’ll later be

run again (it’s harmless). Chain db.QueryRow() and .Scan() together

for the same reason.

Single-use prepared statements. If a prepared statement isn’t

going to be used more than once, consider whether it makes sense

to assemble the SQL with fmt.Sprintf() and avoid parameters and

prepared statements. This could save two network round-trips, a lot

of latency, and potentially wasted work.

Prepared statement bloat. If code will be run at high concurrency,

consider whether prepared statements are the right solution,

since they are likely to be reprepared multiple times on different

connections when connections are busy.

Cluttering the code with strconv or casts. Scan into a variable of

the type you want, and let .Scan() convert behind the scenes for

you.

Cluttering the code with error-handling and retry. Let database/sql

handle connection pooling, reconnecting, and retry logic for you.

Forgetting to check errors after rows.Next(). Don’t forget that the

rows.Next() loop can exit abnormally.

Using db.Query() for non-SELECT queries. Don’t tell Go that you

want to iterate over a result set if there won’t be one, or you’ll leak

connections.

http://vividcortex.com/

Page 43

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

Assuming that subsequent statements use the same connection.

Run two statements one after another and they’re likely to run on

two different connections. Run LOCK TABLES tbl1 WRITE followed by

SELECT * FROM tbl1 and you’re likely to block and wait. If you need a

guarantee of a single statement being used, you need to use a

sql.Tx.

Accessing the db while working with a tx. A sql.Tx is bound to a

transaction, but the db is not, so access to it will not participate in the

transaction.

Being surprised by a NULL. You can’t scan a NULL into a variable

unless it is one of the NullXXX types provided by the database/sql

package (or one of your own making, or provided by the driver).

Examine your schema carefully, because if a column can be NULL,

someday it will be, and what works in testing might blow up in

production.

Passing a uint64 as a parameter. For some reason the Query(),

QueryRow(), and Exec() methods don’t accept parameters of

type uint64 with the most significant bit set. If you start out small

and eventually your numbers get big, they could start failing

unexpectedly. Convert them to strings with fmt.Sprint() to avoid

this.

We hope you’ve enjoyed this book and that it helps you avoid lost

time and other problems. After we learned database/sql through

much production usage and reading of its source code, we wanted

to give that knowledge to the world of Go programmers. If you have

any suggestions for improvements, please write to us at

info@vividcortex.com.

Conclusion

http://vividcortex.com/
mailto:info%40vividcortex.com?subject=

Page 44

Copyright © 2015 VividCortex Inc. www.vividcortex.com | info@vividcortex.com

VividCortex is SaaS database performance intelligence for your

systems. The database is the heart of most applications, but it’s also

the part that’s hardest to scale, manage, and optimize even as it’s

growing 50% year over year. VividCortex has developed a suite of

unique technologies that significantly eases this pain for the entire IT

department. Unlike traditional monitoring, we measure and analyze

the system’s work and resource consumption. This leads directly to

better performance for IT as a whole, at reduced cost and effort.

If you are interested in the benefits of effective database and

resource monitoring, sign up for a free trial today. A look at what is

actually happening on your servers will most certainly surprise you.

Installation is simple and will take you far less time than reading this

eBook.

About VividCortex:

http://vividcortex.com/
https://app.vividcortex.com/sign-up%3Futm_source%3Dsite%26utm_medium%3Dblog

