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1. Introduction 

Model-assisted probability of detection (MAPOD) [1, 2] is an important terminology in nondestructive 

testing (NDT) area [3], not only because it describes the reliability of detecting system, but also it can 

greatly reduce the required experimental information. 

MAPOD calculation has been widely applied to varieties of NDT areas, such as ultrasonic testing, eddy 

current testing, and x-ray based testing. Researchers, such as J. Aldrin [4, 5], J. Knopp [6], and R. Miorreli 

[7], have made great progress and improvements. However, as far as the authors know, most of the MAPOD 

calculations have to rely on commercial software, such as CIVA. Due to these reasons, the authors decide 

to develop this open-source MAPOD framework, aiming at providing convenient tools to the NDT 

researchers. 

This open-source MAPOD framework is developed using python, which makes it cross-platform, 

although some necessary python modules are still needed. More details on prerequisites are shown in 

Chapter 1. Basic mathematical theories, such as linear regression, “ahat vs. a” plots, and probability of 

detection (POD) calculation, are given in Chapter 2. Chapter 3 has some test cases to demonstrate the 

process, and validate the results with MIL-HDBK-1823 [8, 9], officially verified software by Department 

of Defense, United States. Researchers, who have sufficient background in POD calculation or only want 

to make practical application to their research, can feel free to go through the associated document, User 

Guide, directly. 

The Computational Design (CODE) lab would like to thank the center of nondestructive evaluation 

(CNDE) for funding this program. In addition, we also want to say thanks to all the colleagues, Dr. Jiming 

Song, Dr. William Meeker, Dr. Ronald Roberts, Dr. Leonard Bond, etc. for providing physics-based NDT 

simulation models, valuable ideas and suggestions. 

 

2. Operation environment 

2.1 Python on Linux / Windows systems 

This open-source framework is constructed using python, which is well known for its cross-platform 

capability. Therefore, the users can run it on any systems. The authors wrote and tested the code on python 

v2.7, Window x64 local desktop and laptop machine. 

2.2 Suggested compiler and necessary modules 

The code is written within Enthought Canopy compiler, which is very powerful and convenient for 

integrating python toolboxes. Users simply select Package Manager under the toolbar Tools, to add any 

necessary modules. In this work, authors are trying to avoid using additional modules as much as possible. 

The necessary modules and corresponding utilizations are: 

collections: the module ‘OrderedDict’ is used to specify random inputs with statistical distributions 

pyDOE: randomly generate sample points, using latin hypercube sampling (LHS) sheme 

numpy: various numerical operations, such as numpy.array 

pandas: read data frame from excel file 

matplotlib.pyplot: view imported data, generate “ahat vs. a” plots, and POD curves 

sys: sys.exit() used when incorrect data format is provided 

mlab: link python with Matlab, making Matlab a callable module for python 

sklearn: linear_model of sklearn is implemented, in particular, the linear_model.LinearRegression and 

linear_model.LassoLarsCV are utilized for linear regression 

math: used for calculating factorial of integral values 

scipy.stats: used for generating normally distributed sample points 
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3.  Mathematical theories 

This chapter will talk about least squares method and maximum likelihood method for linear regression 

in Section 3.1.  In Section 3.2 linear regression will be applied to “ahat vs. a” regression, followed by POD 

calculation. Section 3.3 has the details on the calculation of confidence interval. 

3.1 Linear regression 

3.1.1 Introduction 

Linear regression [10] is a statistical method that allows us to summarize and study relationships 

between two continuous or quantitative variables: one variable, denoted x, is named as independent variable 

or predictor, while the other one, denoted y, is named as dependent variable or response. The linear 

relationship between x and y is usually given as: 

 

0 1 ,y x  = +  +      (1) 

 

where ꞵ0 is the intercept of the regression line, ꞵ1 is the slope of the regression line, ɛ is random error 

following a zero-mean and constant-standard deviation Normal distribution: 

 
2~ (0, ).Normal        (2) 

 

Due to this random error, which may come from operation system or other noises, the observed value 

varies slightly each time even at the same x value. And the prediction using estimated parameters usually 

represents the expected value of y at that x location (Fig. 1). 

 
Figure 1. Linear regression line on random observations. 

As shown above, the only unknowns in linear regression problems are ꞵ0, ꞵ1, and σɛ, which can be solved 

by various methods. Among all these methods, least squares (LS) method and maximum likelihood (ML) 

method are the most commonly used. We will discuss both of LS and ML methods, and also their 

relationship, in the following sections. 
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3.1.2 Least squares method 

As shown in Eqn. 1, the linear relation is constructed using β0, β1, and σε. It can be converted as: 

 

0 1( ),y x  = − +       (3) 

 

which is the residual between observed values and estimation from linear regression line. A widely used 

method for estimating the coefficients is least squares method [11], which minimizes the sum of the squared 

of residual at each observed value: 

 

( ) ( )
2 2

0 11 1
min( ) min min ( ) .

n n

i i ii i
S y x  

= =
= = − +             (4) 

 

Taking the first-order derivative of Eqn. 4 about the coefficients β0 and β1 as 0, it is straightforward to 

obtain 

 

( ) ( )

( )
1

1 2

1

ˆ ,

n

i ii

n

ii

x x y y

x x
 =

=

− −
=

−




         (5) 

 

and 

 

0 1
垐 ,y x = −       (6) 

 

where x  and y  are mean values of x and y, respectively, and 0̂  and 1̂  are the estimates of β0 and β1, 

respectively. 

Since the expected value of ε 

 

  ( )0 1 0.E E Y X  = − + =       (7) 

 

From Eqn. 4, it is straightforward to obtain 

 

( )
22

0 11
( ) / .

n

i ii
E y x n  

=
  = − +               (8) 

 

Therefore, the standard deviation of ε is 

 

 ( ) ( )
2 22

0 11
( ) / ,

n

i ii
E E y x n    

=
 = − = − +       (9) 

 

which is actually of the format of the root mean squared error (RMSE). 

The Eqn. 4 can be solved by many optimization method, such as Newton method, pattern search or OLS 

method within python. However, in this code we aim at avoiding prerequisite modules as much as possible, 

so Eqn. 5, 6, and 9 are packed. And please remember the expression in these three equations, because we 

will compare them with those estimated from maximum likelihood method, to prove that they are the same 

under this situation. 
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3.1.3 Maximum likelihood method 

Now let’s review the assumption made in linear regression: 

1. The distribution of X is arbitrary. 

2. If X = x, the Y = β0 + β1x + ε, for some coefficients, β0 and β1 and some random noise variable ε. 

3. ε ~ N(0, σε
2), and is independent of X. 

4. ε is independent across observations. 

Based on these assumptions, the response Y is independent across observations, conditional on the 

predictor X. Besides, the noise variable ε has zero mean and constant variance, and follows the Normal 

distribution. Therefore, the conditional probability density function of Y for each x, given arbitrary number 

of data sets, (x1, y1), (x2, y2), …, (xn, yn), can be written as 

 

( )
( )( )

2
0 1

222

0 1
2

1 1

1
| ; , , .

2

y xi in n

i i

i i

p y x e

 







  


− +

= =

=              (10) 

 

For any estimates on unknown parameters, β0, β1, and σε, the pdf becomes 

 

( )
( )( )

2
垐
0 1

2ˆ22

0 1
2

1 1

1垐| ; , , ,
ˆ2

y xi in n

i i

i i

p y x e

 







  


− +

= =

=              (11) 

 

which is called likelihood, a function of the parameter values. For the convenience of calculation, usually 

it is taken as log-likelihood, 

 

( ) ( )2 2

0 1 0 1

1

垐 垐垐, , log | ; , , ,
n

i i

i

L p y x      
=

=           (12) 

 

and so, 

 

( ) ( )
2

2

0 1 0 12
1

1垐 垐垐, , log 2 log ( ) .
ˆ2 2

n

i i

i

n
L n y x 



      
 =

= − − − − +   (13) 

 

We can maximize Eqn. 13 to get the best estimates on unknowns. This method is called maximum 

likelihood [12]. Any optimization methods can be used to maximize Eqn. 13, like what was mentioned 

above for least squares method. We can still use the same method, taking first-order derivative of Eqn. 13 

and setting it as 0, to obtain 

 

( ) ( )

( )
1

1 2

1

ˆ ,

n

i ii

n

ii

x x y y

x x
 =

=

− −
=

−




         (14) 

 

0 1
垐 ,y x = −       (15) 
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( )
2

0 11
( ) / .

n

i ii
y x n  

=
= − +             (16) 

 

It is obvious that the estimation equations above are the same as Eqn. 5, 6, and 9. Therefore, in the 

framework, we code up the numerical expression of unknown parameters, directly, without having to claim 

which method it comes from. The authors prefer to maximum likelihood method, because it is more 

convenient and straightforward to compute Fisher information matrix and apply Wald method for 

confidence intervals on “ahat vs. a” plots and POD curves. More details on this type of confidence interval 

calculation are given in Section 2.3.2.  

3.2 POD calculation 

3.2.1 Background 

The concept of POD was initially developed to quantitatively describe the detection capabilities of NDT 

systems, starting from pioneering work since the late 1960’s for the aerospace industry. POD curves have 

been widely generated through various NDT equipment, such as ultrasound, eddy currents, magnetic 

particle inspection and radiography, focusing on different quantities of interests. A commonly used term is 

“90% POD” and “90% POD with 95% confidence interval”, which are written as a90 and a90/95, respectively. 

POD curves were initially only based on experiments, however, to save computational budgets it can be 

enhanced by utilizing physics-based computational models, which is known as the MAPOD methodology. 

Here in current work, POD is performed using linear regression method. 

3.2.2 “ahat vs. a” regression based POD 

For signal response data, much more information is supplied in the signal for analysis than is in hit/miss 

data. Here, POD function is generated from the correlation of “ahat vs. a” data [8, 9]. And through reviews 

on experiments data, it shows a log-log scale between ahat and a: 

 

0 1
ˆln ln ,a a  = + +       (17) 

 

where the coefficients ꞵ0 and ꞵ1 can be determined by the maximum likelihood method, and the ε has a 

Normal distribution with zero mean and standard deviation σε, N(0, σε). This standard deviation can be 

determined by the residuals of the observed data, as shown in Section 2.1. 

The POD can be obtained as the probability that the obtained signal lies above arbitrary user-defined 

threshold: 

 

0 1
ˆln ( ln )

( ) 1 ,thresholda a
POD a



 



 − +
= −  

 

         (18) 

 

where Φ is the standard normal distribution function. 

From Eqn. 18, it is straightforward to obtain: 

 

0

1

1

ˆln
ln

( ) ,

thresholda
a

POD a










− 
− 

 = 
 
  

       (19) 
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which is a cumulative log-normal distribution function with mean μ and standard deviation σ given by: 

 

0

1

ˆln
,thresholda 




−
=      (20) 

 

1

,


=        (21) 

 

where the parameters ꞵ0, ꞵ1, and σε can be obtained by least squares method, maximum likelihood method 

or the numerical expression discussed in Section 2.1.  

3.3 Confidence interval 

In statistics, especially when uncertainty exists in NDT system, it is impossible to specify a value to a 

variable with 100% certainty. POD requires two numerical values, alower and aupper, depending on the sample 

set, and varying for each random set. The interval within alower and aupper is called a “confidence interval” 

[8, 9], which is usually expressed as: 

 

( ) ,lower upperP a a a const  =          (22) 

 

where the const is the “confidence level”, alower is called the “lower confidence limit” and aupper is called the 

“upper confidence limit”. In POD calculation, only lower confidence limit is used. If confidence level is set 

as 95%, the interpretation is based on repeated sampling, meaning if samples of the same size are drawn 

repeatedly from a population and a confidence interval is calculated from each sample, then we can expect 

95% of these different intervals to contain the true value. 

In POD calculation, the defect size a90 meaning the 90% probability to be detected is always considered 

within application of POD or framework of design. To take the uncertainty into account, the upper bounds 

of 95% confidence interval is considered, written as a90/95. Note that these two values are not characteristic 

properties of an NDT system, but rather are calculated from the particular random results. 

There are various methods, such as bootstrap, Wald method, and likelihood ratio method, existing in the 

area of confidence interval calculation. In this work, we will talk about bootstrap due to its simplicity, and 

Wald method due to efficiency. In current version of the framework, we select to pack up the Wald method. 

Bootstrap method is introduced here as a comparison on the POD results in Section 3. 

3.3.1 Bootstrap 

Brad Efron invented a revolutionary new statistical procedure called the bootstrap [13, 14], in 1979. 

This is a computer-intensive procedure that substitutes fast computation for theoretical mathematics. The 

main benefit of the bootstrap is the confidence intervals on parameters without having to make unreasonable 

assumptions. 

The idea of bootstrap is simple: 

(1) Gather the sample data set (x1, y1), (x2, y2), … (xn, yn), and use it to estimate the unknown parameters, θ. 

(2) Draw a new random sample of size n, with replacement, from the sample data set, and estimate the 

unknowns. 

(3) Repeat step (2) as many times as necessary or user-defined arbitrary number of times, e.g. 1,000. 

(4) Put the 1000 additional estimates on unknown parameters into an ascending order, separately. 
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(5) Confidence intervals can be obtained, based on the ordered sets of estimates. For example, 95% lower 

confidence interval is the 975th value, 
*

975̂  while 95% upper confidence interval is the 25th value, 
*

25̂ . 

(6) This step is optional. We can calculate pivot confidence interval, following the formula 

 
*

975
垐2 ,lowerCI  = −      (23) 

 
*

25
垐2 ,upperCI  = −      (24) 

 

where ̂  is the estimate on θ from the original set, CIlower and CIupper are lower and upper confidence 

interval, respectively. 

The samples obtained from step 2 and 3, are called bootstrap samples. And each of newly generated 

bootstrap samples approximates the original set of data, making the new estimates on θ approximate the 

results from original set. This approximating distribution is used to set confidence interval. 

3.3.2 Wald method 

Wald method [15, 16] is a well-known likelihood-based procedure for calculating confidence interval, 

and usually performs well in large samples. For a location-scale distribution or for a distribution which can 

be transformed to a location-scale distribution, the Wald confidence interval is easy to compute for 

quantiles. Therefore, it is suitable for exponential, Weilbull, and lognormal distributions. The MIL-HDBK-

1823, the officially used POD software from the department of defense (DOD), United State, also utilizes 

this method for calculation of confidence interval. 

A. Fisher information 

In mathematical statistics, Fisher information [17] is used for measuring the amount of information that 

an observable random variable X carries about an unknown parameter θ of a distribution that models X. 

Formally, it is the expected value of the observed information. Observed information is the negative of the 

second derivative, the Hessian matrix, of the “log-likelihood” (the logarithm of the likelihood function). 

Suppose that we observe random variables, X1, X2, …, Xn, independently and identically distributed with 

density f(X; θ), where θ is assumed to be a n-dimensional vector. The log-likelihood of the parameters θ 

given the data X1, X2, …, Xn is 

 

1 2 1
( | , ,..., ) log ( | ).

n

n ii
l X X X f X

=
=θ θ     (25) 

 

Then the observed information matrix can be obtained as 

 
2 2 2

2
1 2 11

2 2 2

2
2 1 21

2 2 2

2
1 2

...

...
( ) ( ).

... ... ... ...

...

n

n

p p n

J l

   

   

    

  
   

  
   

  
    

 
 
 

=  
 
 
 
 

θ θ     (26) 

 

With observed information matrix ready, the Fisher information can be obtained 
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( )( )( ) .I E J=θ θ             (27) 

 

B. Wald method 

As mentioned above, Wald method is widely used for the calculation of confidence interval, and is 

simple to apply. Based on the Lawless’ general procedure for a location-scale distribution, computational 

details for confidence interval using Wald method is given as follows. 

Let xp be the quantile of a location-scale distribution with parameter u and b respectively, while wp is 

the quantile of the same distribution with u = 0, and b = 1. Then, xp = u + wpb which we can estimate by 

 

ˆ垐 ,p px u w b= +       (28) 

 

using maximum likelihood (ML) estimates û  and b̂ . The pivotal quantity is 

 

ˆ
,

ˆ( )

p p

p

p

x x
Z

se x

−
=       (29) 

 

where 

 

( )
1/2

2 垐垐 ?( ) var( ) var( ) 2 cov( , ) ,p p pse x u w b w u b= + +    (30) 

 

where the variance and covariance terms come from the asymptotic covariance matrix for ˆˆ( , )u b , which is 

the inverse of Fisher’s observed information matrix, ˆˆ( , )I u b , evaluated at ˆˆ( , )u b . The diagonal elements of 

1ˆˆ( ( , ))I u b −
give the variances and the off-diagonal elements give the covariance. 

Due to assumption of the asymptotic normality of maximum likelihood estimates, Zp is approximately 

N(0, 1). Let Z be a N(0, 1) random variable and zα be the value such that 

 

( ) .P Z z  =      (31) 

 

A Wald 100(1 - α)% CI for xp is given by 

 

( )
2 2

垐 垐( ), ( ) .p p p px z se x x z se x + −     (32) 
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Figure 2. “ahat vs. a” regression, within bounded lines. 

C. Application on “ahat vs. a” regression and POD curves 

As mentioned in [8, 9], “ahat vs. a” regression is constructed with a regression line (the solid), 

surrounded by two sets of nearly parallel bounds (dotted lines), as shown in Fig. 2. 

The innermost set is the 95% confidence bounds on the line itself. The outer set of dotted lines is called 

the 95% prediction bounds. A new response value is expected to be contained by these bounds in 95 of 100 

similar situations. Usually these sets of lines go further at both ends, meaning less confidence in the solid 

line as we get further from the centroid of the data. For linear regression problem, we obtain the estimates 

on the intercept and slope of the solid line, also with uncertainties on those estimates. Near the centroid the 

uncertainty in the slope has little influence, but becomes increasingly influential away from the centroid, 

resulting in this “dog-bone” confidence bounds. 

The estimated response, ŷ , is given by the regression equation 

 

0 1
垐ˆ .y x = +       (33) 

 

Based on the variance of a sum, the variance on ŷ  can be expressed as 

 
2

0 1 0 0 1 1
垐 垐 垐ˆvar( ) var( ) var( ) 2 cov( , ) var( ),y x x x     = + = + +   (34) 

 

from which the 95% Wald confidence bounds on ŷ  can be constructed as 

 

ˆ0.95 0 1
垐垐 ?1.645 1.645 var( ).yy y se x y  = =  = +     (35) 

 

The 95% prediction bounds can be constructed following the same process, except that the variance of 

the random residual also needs to be included 
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2垐var ( ) var( ) .total y y = +     (36) 

 

The variances and covariance terms in Eqn. 34 can be obtained from the inverse matrix of Fisher 

information. The distribution of model response, y, has the same format of Eqn. 10, and the corresponding 

log-likelihood follows Eqn. 13. Thus, the resulted Fisher information matrix is 

 

( )

1

2 2

2

1 1

2 2

垐

0 1 垐

2
ˆ

0

垐 ˆ, , 0 ,

0 0

n

ii

n n

i ii i

X
n

X X

n

I

 

 



 

  



  

=

= =

 
 
 
  =

 
 
 
 

    (37) 

 

then the covariance matrix has the format of 

 

( )
00 01 02

0 1 10 11 12

20 21 22

垐 ˆ, , .

V V V

Var V V V

V V V

  

 
 

=  
 
 

    (38) 

 

When applying the Wald method to POD curves, the covariance matrix on ̂  and ̂ is can be calculated 

from Eqn. 38 

 

( )
 

 

2
1 1

2 2
1 1

21 1
ˆ 00 01 11 01 20 12 11ˆ

21 1
01 20 12 11 22 21 11垐

垐 垐 垐2
垐, .

垐 垐 垐2

V V V V V V V
Var

V V V V V V V

 

 

    
 

    

  + + − − +  =
  − − + − +  

             (39)  

 

With these information ready, it is still not that straightforward because POD curve is actually a 

curriculum density function of a log-normal distribution, which is not location-scale. However, the log 

format of the random variable follows the normal distribution. Therefore, we can generate the lower 

confidence interval on this corresponding normal distribution, ( )垐,N   , then take the exponential value of 

the results, due to the monotone characteristics of log-normal distribution [18, 19]. 

4. Polynomial Chaos Expansions 

4.1 Generalized format 

The polynomial chaos expansions (PCE) [20] method has the generalized format of: 

 

1

( ) ( ),i i

i

Y M 


=

= =X Ψ X                                                          (40) 

 

where, X∈ℝM is a vector with random independent components, described by a probability density function 

fX, Y ≡ M(X) is a map of X, i is the index of ith polynomial term, Ψ is multivariate polynomial basis, and α 

is corresponding coefficient of basis function. In practice, the total number of sample points needed does 

not have to be infinite, instead, a truncated form of the PCE is used 
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1

( ) ( ) ( ),
P

PC

i i

i

M M 
=

 =X X Ψ X                        (41) 

 

where, MPC(X) is the approximate truncated PCE model, P is the total number of sample points needed, 

which can be calculated as 

 

( )!
,

! !

p n
P

p n

+
=                          (42) 

 

where, p is the required order of PCE, and n is the total number of random variables. 

4.2 Solving for coefficients 

Since a polynomial basis has the characteristics of orthonormality, the equation can be solved by taking 

the expectation of Eqn. 40 multiplied by Ψj, 

 

[ ( ) ( )],i iE M =  X X            (43) 

 

which is called quadrature method [21]. This method works well for low-dimensional problems, but suffers 

the “curse of dimensionality”. 

Another method is to treat the model response as a summation of PCE prediction and corresponding 

residual 

 

1

( ) ( ) ( ) ( ) ,
P

PC T

P i i P P

i

M M    
=

= + = +  +X X Ψ X α Ψ X                      (44) 

 

where, εp is the residual between M(X) and MPC(X), which is to be minimized in least-squares methods. 

Then the initial problem can be converted to a least-squares minimization problem 

 

ˆ arg min [ ( ) ( )].TE M=  −α α X X                   (45) 

 

The first method, used for solving this problem above and applied in this work, is called ordinary least-

squares (OLS) [22], with the coefficients obtained by solving 

 
1ˆ ( ) ,T T−=α A A A Y              (46) 

 

where Y is vector of model response, Aji = Ψi(xj), j = 1, …, n, i = 1, …, P. 

The second method used for solving Eqn. 45, is the least-angle regression sparse (LARS) [23, 24], 

adding one more regularization term to favor low-rank solution [25] 

 

1
ˆ arg min [ ( ) ( )] || || ,TE M = − +α α ψ x x α                        (47) 

 

where λ is a penalty factor, ||α||1 is L1 norm of the coefficients of PCE. 

The LARS [26] algorithm is based on the sparsity-of-effects principle, meaning that only low-order 

relationship among inputs are important. These two types of methods solving for least-squares minimization 

problem are very efficient in calculation, and can accept an arbitrary number of sample points. 

The mean value of PCE is 
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1[ ( )] ,PC PCE M = =X        (48) 

 

where α1 is the coefficient of the constant basis term Ψ1 = 1. The standard deviation of PCE is 

 

2 2

2

[( ( ) ) ] ,
P

PC PC PC

i

i

E M  
=

= − =X      (49) 

 

where it is the summation on coefficients of non-constant basis terms only. 
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