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RStudio is a free and open-source integrated development environment (IDE) for R, a 
programming language for statistical computing and graphics. Working in RStudio, you can easy 
install R packages, such as the Tidyverse packages for data science. These packages (i.e. dplyr, 
tidyr, ggplot2, etc.) facilitate data cleaning, analysis and visualization. R can also be used to 
analyze non-quantitative data, such as texts. In this workshop we will use the tidytext package 
(as well as others) to analyze and visualize written works, such as novels and song lyrics. 

1. Getting Started 
To begin, we need to open RStudio and create a new script. 

• Go to File → New File → R Script 

For this workshop, you will be using the following packages: 

1. dplyr 
2. tidytext 
3. gutenbergr 
4. ggplot2 
5. ggthemes 
6. stringr 
7. tidyr 

If you have not worked with these packages in RStudio before, you will need to install them. To 
install these packages in RStudio: 

• click select the Packages tab in the bottom right window 
• click Install 
• type in the names of the packages above (separated by a space or a comma) 
• click Install 

 
 



2. Manually Loading Text & Creating a Data Frame 
Text can be entered into RStudio manually and transformed into a data frame for analysis. You 
can separate multiple lines of text by separating each line with a comma ( , ). Go to your script 
window and type in the following code chunk: 

text <- c("The time has come,' the Walrus said,",	
          "To talk of many things:",	
          "Of shoes — and ships — and sealing-wax —",	
          "Of cabbages — and kings —",	
          "And why the sea is boiling hot —",	
          "And whether pigs have wings.'")	
	
text	

Next, you will need to transform the value text into a tibble (data frame), which will allow you to 
perform text analysis. For this, you will use the dplyr package that you installed earlier. To use an 
installed package, you need to first load it into your R session. To load dplyr, run the following: 

library(dplyr)	

 

3. Text Tokenization 
In order to perform more analysis on this text, we want to convert the data frame so that we 
have one token (in this case, a word) per document per row, a process called tokenization. 
Tokenizing text will retain the line number, remove punctuation, and default all words to 
lowercase characters.1 For this, we will be using the tidytext package. 

Load the tidytext package into the session, as we did with dplyr. 

library(tidytext)	

Then, run the following to tokenize: 

text_df %>% 	
  unnest_tokens(word, text)	

You can replace the data in your environment with this new tibble by running the following: 

text_df <- text_df %>%	
  unnest_tokens(word, text)	

																																																								
1 If you would like to retain the original case of the text, you can include an additional argument (to_lower = 
FALSE). 



	
text_df	

This is the format in which we can begin to analyze texts using R. In the next section, we will work 
with a larger text, and begin to perform some basic analyses and visualizations. 

 

4. Analyzing Mary Shelley’s Frankenstein (1831) 
Project Gutenberg is a free database of eBooks, predominately texts for which the U.S. copyright 
has expired. These ebooks are available in a variety of formats, including Plain Text UTF-8, which 
we can easily use for text analysis in R. Each e-book has its own unique e-book number, which 
we can use with the package gutenbergr to automatically load the text into an RStudio 
environment. In this section, we will load and analyze the text of Mary Shelley’s Frankenstein (e-
book # 42324). 

Begin by loading the gutenbergr package into the session, as we did with dplyr and tidytext. 

library(gutenbergr)	

Then, run the following: 

frankenstein <- gutenberg_download(c(42324))	

If you look at the first few rows, you see that this also includes the novel’s front matter (i.e. title 
page, publishing info, introduction, etc.). If you were to examine the last rows, you would also 
see it includes additional publishing information and the transcriber’s notes. Since we’re only 
interested in analyzing Shelley’s novel, it would be useful to remove these rows. 

Run the following to remove the front matter (rows 1-237) and back matter (rows 7620-7631): 

frankenstein <- frankenstein[-c(1:237, 7620:7631), ]	

Now we’re ready to tokenize. During this process, we can add an additional argument to order 
the words according to the word count. Run the following to create a new tibble with the 
tokenized text, ordered according to word count: 

tidy_frankenstein <- frankenstein %>%	
  unnest_tokens(word, text) %>%	
  count(word, sort = TRUE)	
	
tidy_frankenstein	

**Question 1: Which two (2) words appear most frequently in Frankenstein? How many 
times do they each appear? 

You may have noticed that these top used words don’t tell you too much about the text of 
Frankenstein. These types of words are called stop words (i.e. ‘the’, ‘of’, ‘to’, etc.). We can 



remove these types of words from our analysis by using the anti_join function. Luckily, you won’t 
have to come up with a whole list of these words yourself; RStudio includes a preloaded package 
with a data frame, stop_words, which contains English stop words compiled from three different 
lexicons.2 

To remove the stop words from the tidy_frankenstein tibble, you must first load the stop_words 
data frame: 

data("stop_words")	

Now, you can remove the stop words from your data frame: 

tidy_frankenstein <- tidy_frankenstein %>%	
  anti_join(stop_words)	

**Question 2: Now, which two (2) words appear most frequently? How many times do they 
each appear? 

 

5. Visualizing Mary Shelley’s Frankenstein (1831) 
We are now ready to plot the text of Frankenstein. To do this we will use the packages ggplot2 
and ggthemes. These packages are used to create data graphics, according to the Grammar of 
Graphics. This allows you to easily manipulate the design of your graphs, and to create the most 
visually appealing data visualizations in R. 

First, we are going to plot the most commonly used words in Frankenstein. To do this, first load 
ggplot2 and ggthemes into your session. 

library(ggplot2)	
library(ggthemes)	

Next, run the following to plot the words in Frankenstein that appear more than 50 times: 

tidy_frankenstein %>%	
  filter(n > 50) %>%	
  mutate(word = reorder(word, n)) %>%	
  ggplot(aes(word, n)) + 	
  geom_col(fill = "darkred") + 	
  theme_fivethirtyeight() +	
  xlab(NULL) + 	
  ylab("Word Count") +	
  coord_flip() +	
  ggtitle("Word Usage in Frankenstein")	

																																																								
2 Datasets of stop words for other languages are also available online and can be loaded into R as needed. 



This code chunk first calls the dataset that we would like to plot, then filters the dataset to only 
words that appear more than 50 times in the novel and orders the data according to the number 
of mentions. Then it calls ggplot, and plots word on the x-axis and n (word count) on the y-axis. 
Geom_col tells R to use a bar chart with the value of the y variable (here, n), while the function 
fill = “darkred” colors in the bars.3 theme_fivethirtyeight is a pre-set design from the package 
ggthemes, which we then manipulate with the subsequent arguments to adjust the x-axis labels 
and y-axis labels, change the graph into a horizontal format, and add an appropriate title. 

**Question 3: How many words appear more than 50 times in Frankenstein? 

 

6. Sentiment Lexicons 
One type of textual analysis that can be conducted using R is sentiment analysis in which the 
emotions of a given text or set of texts is examined. To conduct sentiment analysis, we can use 
sentiment lexicons. There are three lexicons that can be used for general sentiment analysis on 
English-language texts: AFINN (Finn Årup Nielsen), bing (Bing Liu et. Al) and nrc (Saif Mohammad 
and Peter Turney). These lexicons assign scores for positive and negative sentiment, and also 
emotions such as joy, anger, fear, etc. 

• nrc categorizes words as positive, negative, anger, anticipation, disgust, fear, joy, 
sadness, surprise and trust. 

• bing categorizes words as positive or negative. 
• AFINN assigns words a numeric score between -5 and 5, where the negative scores 

indicate negative sentiment and positive scores indicate positive sentiment. 

All three of these lexicons are included in the sentiments dataset, and tidytext provides the 
function get_sentiments( ), which can be used to call specific lexicons. To call the bing lexicon, 
for example, run the following: 

get_sentiments("bing")	

Now, call the AFINN sentiment lexicon. 

get_sentiments("afinn")	

**Question 4: What sentiment schore is assigned to “abhorrent”? 

Finally, call the nrc lexicon. 

get_sentiments("nrc")	

**Question 5: What sentiments are associated with “abandon”? 

																																																								
3 Additional codes for colors can be found here. 



These sentiment lexicons can be joined with your tokenized text(s) to conduct sentiment analysis 
by using the inner_join function from the dplyr package. 

Run the following code chunk to create a new data frame connecting the bing sentiment lexicon 
to the tidy_frankenstein tibble you created earlier. 

frankenstein_bing <- tidy_frankenstein %>%	
  inner_join(get_sentiments("bing"))	

frankenstein_bing	

**Question 6: Which three (3) words from the bing lexicon appear most frequently in 
Frankenstein? How many times do they each appear and what sentiment is associated with 
each one? 

Now, let’s use ggplot2 to produce a horizontal bar chart showing positive and negative word 
usage in Frankenstein usiong the Bing et al. sentiment lexicon. 

frankenstein_bing %>%	
  filter(n > 25) %>%	
  mutate(word = reorder(word, n)) %>%	
  ggplot(aes(word, n, fill=sentiment)) + 	
  theme_fivethirtyeight() +	
  geom_col() + 	
  xlab(NULL) + 	
  coord_flip() +	
  ylab("Word Count") +	
  ggtitle("Word Usage in Frankenstein", subtitle = "Sentiment Analysis Using 
Bing et al.")	

We can also use the nrc sentiment lexicon to get a better insight into how specific emotions play 
a role in a given text by filtering the data and joining it to your tokenized text. To see how fear 
appears in Frankenstein, run the following code chunks: 

nrc_fear <- get_sentiments("nrc") %>%	
  filter(sentiment == "fear")	
	
nrc_fear	

tidy_frankenstein %>%	
  inner_join(nrc_fear)	

**Question 7: How many words associated with fear appear in Frankenstein? Which fear word 
appears most frequently? 

Repeat this process looking at the words associated with disgust. 

nrc_disgust <- get_sentiments("nrc") %>%	
  filter(sentiment == "disgust")	
	
nrc_disgust	



tidy_frankenstein %>%	
  inner_join(nrc_disgust)	

**Question 8: How many words associated with disgust appear in Frankenstein? Which 
disgust word appears most frequently? 

 

7. Comparing Sentiment Lexicons 
In performing sentiment analysis, it might be useful to compare how the use of a given lexicon 
impacts the analysis. In this section we will explore how the AFINN, bing, and nrc lexicons 
compare when we examine the narrative arc of Frankenstein. First, we will divide the text of 
Frankenstein into its narrative sections4 using the package stringr. We will then use the tidyr 
package to bind the sections to the different sentiment lexicons while manipulating the nrc and 
bing sentiment lexicons to match the numeric scoring used by the AFINN lexicon. 

First, load the stringr and tidyr packages into your session. 

library(stringr)	
library(tidyr)	

Then, run the following code chunk to section off the text of Frankenstein according to each 
letter or chapter. 

frankenstein_sections <- frankenstein %>%	
  mutate(section = 	
           cumsum(str_detect(text,regex("^chapter|letter [\\divxlc]",	
                                        ignore_case = TRUE)))) %>%	
  ungroup()%>%	
  unnest_tokens(word, text) %>%	
  anti_join(stop_words)	

frankenstein_sections	

Now, run the following to create a tibble summarizing the total sentiment score (according to 
the AFINN lexicon) per section of Frankenstein. 

frankenstein_afinn <- frankenstein_sections %>%	
  inner_join(get_sentiments("afinn")) %>%	
  group_by(index = section) %>%	
  summarize(sentiment = sum(score)) %>%	
  mutate(method = "AFINN")	

																																																								
4 If you’ve not read Frankenstein, the first parts of the book are organized as a series of written letters, while the 
remainder of the book is organized into chapters. 



frankenstein_afinn	

Next, create a tibble joining the bing and nrc lexicons to frankenstein_sections, and converting 
the binary values “positive” and “negative” to a numeric score comparable to the AFINN lexicon. 

frankenstein_bingnrc <- bind_rows(frankenstein_sections %>%	
                                    inner_join(get_sentiments("bing")) %>%	
                                    mutate(method = "Bing et al."),	
                                  frankenstein_sections %>%	
                                    inner_join(get_sentiments("nrc") %>%	
                                                 filter(sentiment %in%	
                                                          c("positive",	
                                                            "negative"))) %>%	
                                    mutate(method = "NRC")) %>%	
  count(method, index = section, sentiment) %>%	
  spread(sentiment, n, fill = 0) %>%	
  mutate(sentiment = positive - negative)	

frankenstein_bingnrc	

Now we can plot the frankenstein_afinn and frankenstein_bingnrc tibbles together using 
ggplot2. 

bind_rows(frankenstein_afinn, 	
          frankenstein_bingnrc) %>%	
  ggplot(aes(index, sentiment, fill = method)) + 	
  geom_col(show.legend = FALSE) +	
  facet_wrap(~method, ncol = 1, scales = "free_y") +	
  geom_smooth() +	
  theme_fivethirtyeight() +	
  xlab("Index") + 	
  ylab("Sentiment Score") +	
  ggtitle("Sentiment in Frankenstein per Chapter", subtitle = "Comparing Lexi
cons")	

**Question 9: Which lexicon gives the final chapter of Frankenstein the most negative score? 

**Question 10: Which lexicon is shows the most positive reading of Frankenstein? 

Discrepancies among sentiment scores can be due to the ways in which sentiment is categorized 
in or scored, as well as which words appear or do not appear in each lexicon. To understand these 
lexicons further, you can count the number of positive and negative words included in each. To 
look further into nrc, run the following: 

get_sentiments("nrc") %>%	
  filter(sentiment %in% c("positive",	
                          "negative")) %>%	
  count(sentiment)	

Now, examine bing. 



get_sentiments("bing") %>%	
  count(sentiment)	

**Question 11: Which lexicon includes more negative words? How many negative words does 
it include 

It is also useful to know how much each word contributes to the overall sentiment of the book. 
To do this, we can create and plot a tibble joining a given lexicon to the text and creating a 
variable n to indicate the word count. 

To create the tibble, run the following code chunk: 

frank_bingcounts <- frankenstein_sections %>%	
  inner_join(get_sentiments("bing")) %>%	
  count(word, sentiment, sort = TRUE) %>%	
  ungroup()	

frank_bingcounts	

To plot: 

frank_bingcounts %>%	
  group_by(sentiment) %>%	
  top_n(20) %>%	
  ungroup() %>%	
  mutate(word = reorder(word, n)) %>%	
  ggplot(aes(word, n, fill = sentiment)) +	
  geom_col(show.legend = FALSE) + 	
  facet_wrap(~sentiment, scales = "free_y") + 	
  coord_flip() +	
  theme_fivethirtyeight() +	
  ggtitle("Words' Contribution to Sentiment in Frankenstein", subtitle = "Usi
ng the Bing et. al Lexicon")	

Now, let’s plot the contrubution to sentiment that positive and negative words in Frankenstein 
have using the nrc lexicon. (Note: you will have to include a filter to only include the categories 
“positive” and “negative.”) 

Create the tibble: 

frank_nrccounts <- frankenstein_sections %>%	
  inner_join(get_sentiments("nrc")) %>%	
  filter(sentiment %in% c("positive",	
                          "negative")) %>%	
  count(word, sentiment, sort = TRUE) %>%	
  ungroup()	

frank_nrccounts	

Plot: 



frank_nrccounts %>%	
  group_by(sentiment) %>%	
  top_n(20) %>%	
  ungroup() %>%	
  mutate(word = reorder(word, n)) %>%	
  ggplot(aes(word, n, fill = sentiment)) +	
  geom_col(show.legend = FALSE) + 	
  facet_wrap(~sentiment, scales = "free_y") + 	
  coord_flip() +	
  theme_fivethirtyeight() +	
  ggtitle("Words' Contribution to Sentiment in Frankenstein", subtitle = "Usi
ng the NRC Lexicon")	

 

8. Analyzing Queen Lyrics 
In this section we will experiment with using sentiment analysis on song lyrics. To begin, we will 
import the Queen.csv file containing all of the lyrics to songs by the band Queen. 

First, load the Queen.csv file into your environment. 

queen <- read.csv("https://raw.githubusercontent.com/kayleealexander/TidyText
/master/Queen.csv", stringsAsFactors = FALSE)	
	
queen	

Next, we will need to tokenize the lyrics, and group them per song. 

queen <- queen %>%	
  group_by(song) %>%	
  ungroup()%>%	
  unnest_tokens(word, text)	
	
queen	

Now let’s count the most common words in Queen lyrics. Create a tibble for words in Queen 
lyrics, sorted by word count and with stop words removed. 

tidy_queen <- queen %>%	
  count(word, sort = TRUE) %>%	
  anti_join(stop_words)	

tidy_queen	

**Question 12: Which two (2) words appear most commonly in Queen lyrics? How often are 
they used? 



Song lyrics often include words such as “yeah” and “hey,” which you might want to exclude from 
your analysis.5 You can create a custom stop words list by running the following: 

lyric_stop_words <- bind_rows(data_frame(word = 	
                                           c("yeah","baby","hey", "la","oooh"
,	
                                             "ah","ooh"),	
                                         lexicon = c("custom")), stop_words)	
	
lyric_stop_words	

Use the anti_join() function to remove your custom stop words from tidy_queen. 

tidy_queen <- tidy_queen %>%	
  anti_join(lyric_stop_words)	

tidy_queen	

Now, use ggplot2 to plot the most common words in Queen lyrics that are used more than 60 
times. 

tidy_queen %>%	
  filter(n > 60) %>%	
  mutate(word = reorder(word, n)) %>%	
  ggplot(aes(word, n)) + 	
  theme_fivethirtyeight() +	
  geom_col() + 	
  xlab(NULL) + 	
  coord_flip() +	
  ggtitle("Word Frequency in Queen Lyrics")	

 

9. Analyzing Sentiment in Queen Lyrics 

Now that we have an overview of the data, we can begin to apply some sentiment analysis. Use 
the inner_join() function to create a new tibble connecting the queen dataframe to both the 
AFINN lexicon and your existing tidy_queen dataframe. 

queen_afinn <- queen %>%	
  inner_join(get_sentiments("afinn")) %>%	
  inner_join(tidy_queen)	

queen_afinn	

																																																								
5 Sometimes it is useful to first visualize the most frequently occurring words in your dataset to identify these types 
of words that you might want to exclude. This is just a selection of some that appeared in this dataset. 



Now, plot this new tibble using ggplot2 to create a horizontal bar chart showing all words in 
Queen lyrics occurring more than 30 times, ordered on word count and filled according to their 
AFINN sentiment score. 

queen_afinn %>%	
  filter(n > 30) %>%	
  mutate(word = reorder(word, n)) %>%	
  ggplot(aes(word, fill=score)) + 	
  geom_bar() + 	
  xlab(NULL) + 	
  coord_flip() +	
  theme_fivethirtyeight() + 	
  ggtitle("Word Frequency and Sentiment in Queen Songs", subtitle = "Using th
e AFINN Lexicon")	

Now, let’s create a data frame summarizing the AFINN sentiment score per song. 

queen_songs <- queen_afinn %>%	
  group_by(index = song) %>%	
  summarize(sentiment = sum(score))	

Then, plot this new data frame using ggplot2. 

queen_songs %>%	
  mutate(index = reorder(index, sentiment)) %>%	
  ggplot(aes(index, sentiment, fill = sentiment)) + 	
  geom_col() +	
  theme_fivethirtyeight() +	
  xlab(NULL) +	
  ylab("Total Sentiment Score") +	
  ylim(-100,200) +	
  theme(axis.text.x=element_blank(),	
        axis.line.y = element_line(),	
        panel.grid = element_blank()) +	
  ggtitle("Songs by Queen", 	
          subtitle = "Sentiment Analysis Using the AFINN Lexicon")	

We now see each song represented by a bar along the x-axis, with the y-axis value representing 
the total AFINN score per Queen song (sum of the scores given for each word in the song). It is 
difficult, however, to see which bars represent which songs. Let’s explore the data to get some 
insight: 

• Click on queen_songs in the list of Data in your Global Environment. 
• This pulls up a window showing your data frame. 
• Sort the songs according to their sentiment score by clicking the arrows in the upper 

right corner of the cell with the column name sentiment. 

You can now see the songs ordered according to their sum sentiment score. We can use this view 
to get a better insight into which songs in our visualization are represented in which areas of the 
graph. We can then add annotations to the graph to show the highest and lowest scoring songs, 



as well as the more neutral scoring songs to help the viewer understand better what the graph 
might represent. 

Order the songs according to their sentiment scores by clicking on the arrows in the upper right 
corner of the column name. 

**Question 13: Which song received a sentiment score of twelve (12)? 

Annotations need to be added to the graph by specifying the coordinates at which you would like 
them to appear. You can adjust the coordinates easily by playing with the values in order to get 
the text situated at the precise point you’d like it to. To add annotations (text and arrows) for the 
highest, lowest, and most neutral Queen songs to your visualization, run the following (see next 
page): 

  



queen_songs %>%	
  mutate(index = reorder(index, sentiment)) %>%	
  ggplot(aes(index, sentiment, fill = sentiment)) + 	
  geom_col() + 	
  theme_fivethirtyeight() +	
  xlab(NULL) +	
  ylab("Total Sentiment Score") +	
  ylim(-100,200) +	
  theme(axis.text.x=element_blank(),	
        axis.line.y = element_line(),	
        panel.grid = element_blank()) +	
  ggtitle("Songs by Queen", 	
          subtitle = "Sentiment Analysis Using the AFINN Lexicon") +	
  annotate("text", label = "''How Funny Love Is''", 	
           size = 3, color = "black", fontface = 2,	
           x = 160, y = 150) +	
  annotate("segment", x = 178, xend = 190, y = 150, yend = 150, 	
           colour = "red", 	
           size=.5, arrow=arrow(length = unit(.1, "inches"))) +	
  annotate("text", label = "''Liar''", 	
           size = 3, color = "black", fontface = 2,	
           x = 18, y = -78) +	
    annotate("segment", x = 13, xend = 1, y = -78, yend = -78, 	
           colour = "red", 	
           size=.5, arrow=arrow(length = unit(.1, "inches"))) +	
  annotate("text", label = "''Some Day One Day''", 	
           size = 3, color = "black", fontface = 2,	
           x = 82, y = 53) +	
      annotate("segment", x = 83, xend = 83, y = 45, yend = 1, 	
           colour = "red", 	
           size=.5, arrow=arrow(length = unit(.1, "inches"))) +	
  annotate("text", label = "''A Kind of Magic''", 	
           size = 3, color = "black", fontface = 2,	
           x = 77, y = -50) +	
      annotate("segment", x = 77, xend = 77, y = -45, yend = -1, 	
           colour = "red", 	
           size=.5, arrow=arrow(length = unit(.1, "inches")))	

The visualization has now been reproduced with 8 annotations (4 arrows, 4 texts). The size, style, 
and position of each annotation can be adjusted by changing the values within the parenthesis 
for size, color, fontface, x, xend, y, and yend. Feel free to adjust these settings, or add additional 
annotations to the chart based on the data frame. 


