
Introduction
In	this	capstone,	you	will	create	an	application	called	TomeRater	that

allows	users	to	read	and	rate	books.

The	purpose	of	this	capstone	is	to	practice	implementing	and	testing

classes	in	Python.	You	will	be	given	specifications	for	methods	for	5

different	classes	that	interact	with	each	other.	To	create	these	methods	you

will	use	your	knowledge	of	lists,	loops,	dictionaries,	strings,	control	flow,

and	of	course,	basic	Python	syntax!	If	you	need	to	refresh	your	memory	of

these	concepts,	go	back	to	these	lessons	in	the	syllabus.

Compared	to	the	other	projects	you	have	completed	this	far,	we	are

requiring	few	restrictions	on	how	you	structure	your	code.	In	addition,

much	of	the	code	you	write	for	later	parts	of	this	project	will	depend	on

how	you	decided	to	implement	earlier	parts.	Therefore,	we	strongly

encourage	you	to	read	through	the	entire	assignment	before	writing

any	code.

Create	a	User
We	will	need	to	keep	track	of	our	users.	We	have	provided	a	skeleton	for	a

User	object	in	TomeRater.py.	Open	this	file	in	your	text	editor.	We	are

going	to	replace	the	 pass 	keywords	you	see,	so	that	these	methods	work.

The	User	class	should	have:

A	constructor	method,	which	takes	in	 self ,	 name ,	and	 email .	It

should	set	instance	variables	 self.name ,	 self.email ,	and

http://tomerater.py/


self.books .

name 	will	be	a	string

email 	will	be	a	string

self.books 	is	an	empty	dictionary	that	will	map	a	Book

object	(which	we	will	create!)	to	this	user’s	rating	of	the

book

A	method	 get_email 	that	returns	the	email	associated	with	this

user

A	method	 change_email 	that	takes	in	a	new	email	and	changes

the	email	associated	with	this	user.	It	should	also	print	a	message

saying	that	this	user’s	email	has	been	updated.

A	 __repr__ 	method	that	returns	a	string	to	print	out	this	user

object	in	a	meaningful	way.	Printing	a	user	named	Stephen

Hawking,	with	an	email	hawking@universe.edu,	with	7	books	read,

might	produce	a	string	like:

User	Stephen	Hawking,	email:	hawking@universe.edu,	books	read

:	7

but	you	can	create	your	own	format	for	a	string	that	is	most	helpful	for	you

to	understand	the	user	object	being	printed.

An	 __eq__ 	method	to	define	comparison	between	users.	A	User

object	should	be	equal	to	another	User	object	if	they	both	have	the

same	name	and	email.

Create	a	Book

mailto:hawking@universe.edu


Our	User	objects	will	be	reading	books.	But	what	is	a	book?	Define	a	Book

object	that	has:

A	constructor	method,	which	takes	in	 self ,	 title ,	and	 isbn .	It

should	set	instance	variables	 self.title 	and	 self.isbn .	It

should	also	set	an	instance	variable	 self.ratings ,	which	will

start	as	an	empty	list.

title 	will	be	a	string

isbn 	will	be	a	number

A	method	 get_title 	that	returns	the	title	of	the	book.

A	method	 get_isbn 	that	returns	the	ISBN	of	the	book

A	method	 set_isbn 	that	takes	in	a	new	ISBN	and	sets	the	book’s

isbn 	to	be	this	new	number.	It	should	also	print	a	message	saying

that	this	book’s	ISBN	has	been	updated.

A	method	called	 add_rating 	that	takes	in	a	 rating 	and	adds	it	to

the	list	 self.ratings .	It	should	only	do	this	if	 rating 	is	a	valid

rating	(at	least	 0 	and	at	most	 4 ).	Otherwise,	it	should	print

"Invalid	Rating" .

An	 __eq__ 	method	to	define	comparison	between	books.	A	Book

object	should	be	equal	to	another	Book	object	if	they	both	have	the

same	title	and	isbn.

Make	a	Fiction	Subclass	of	Book
Books	are	not	all	created	equal.	Let’s	assume	we	have	two	kinds	of	books,

fiction	and	non-fiction.



The	 Fiction 	class	should	inherit	from	Book	and	have	the	following

methods:

A	constructor,	which	takes	in	 self ,	 title ,	 author ,	and	 isbn .	It

should	first	call	the	 __init__ 	of	its	parent	class,	with	 title 	and

isbn .	Then,	it	should	set	the	instance	variable	 self.author .

get_author ,	which	returns	the	author

__repr__ ,	which	will	return	the	string:

{title}	by	{author}

For	example,	the	book	with	title	“Alice	In	Wonderland”	and	author	“Lewis

Carroll”	would	print:

Alice	In	Wonderland	by	Lewis	Carroll

Make	a	Non-Fiction	Subclass	of
Book
The	 Non_Fiction 	class	should	inherit	from	Book	and	have	the	following

methods:

A	constructor,	which	takes	in	 self ,	 title ,	 subject ,	 level 	and

isbn .	It	should	first	call	the	 __init__ 	of	its	parent	class,	with

title 	and	 isbn .	Then,	it	should	set	the	instance	variables

self.subject 	and	 self.level .



subject 	will	be	a	string,	like	 "Geology"

level 	will	be	a	string,	like	 "advanced"

get_subject ,	which	returns	the	subject

get_level ,	which	returns	the	level

__repr__ ,	which	will	return	the	string:

{title},	a	{level}	manual	on	{subject}

For	example,	the	book	with	title	“Society	of	Mind”	about	beginner	Artificial

Intelligence	would	print	out:

Society	of	Mind,	a	beginner	manual	on	Artificial	Intelligence

Give	Books	and	Users	Methods
Now	that	we	have	both	Book	classes	and	User	classes,	we	can	create	more

methods	than	just	ones	that	get	and	set	instance	variables.

For	your	User	class,	add	two	methods:

read_book ,	which	takes	in	 book 	and	an	optional	parameter

rating ,	which	defaults	to	 None .	It	should	add	a	key:value	pair	to

self.books 	where	the	key	is	 book 	and	the	value	is	 rating .

get_average_rating ,	which	iterates	through	all	of	the	values	in

self.books ,	which	are	the	ratings,	and	calculates	the	average

rating.	It	should	return	this	average.



For	your	Book	class,	add	the	method:

get_average_rating ,	which	iterates	through	all	of	the	values	in

self.ratings 	and	calculates	the	average	rating.	It	should	return

this	average.

There	is	one	more	method	we	have	to	add	to	Book	to	make	this	work!	Do

you	remember	how	we	get	the	error	 TypeError:	unhashable	type:

'list' ,	when	we	try	to	create	a	dictionary	with	lists	as	keys?	This	is

because	lists	are	mutable,	and	thus	do	not	have	a	consistent	hash	that	a

dictionary	can	use	to	look	up	the	associated	value.	We	are	trying	to	make	a

dictionary	in	the	User	class	called	 self.books 	that	has	Book	objects	as

keys.	In	order	to	use	a	class	that	we	construct	ourselves,	we	must	make

sure	that	our	object	is	 hashable ,	and	not	 unhashable ,	like	a	list!

To	make	our	Book	hashable,	we	will	add	a	method	 __hash__ 	which	will

return	a	consistent	hash	for	an	instance	of	a	book	object:

def	__hash__(self):

		return	hash((self.title,	self.isbn))

Copy	this	method	into	your	Book	class	so	that	Book	becomes	hashable!	If

you’re	curious,	look	at	the	documentation	to	see	what	the	built-in	method

hash() 	is	doing:	https://docs.python.org/3/library/functions.html#hash

Create	TomeRater
We	have	Users	and	Books,	but	how	do	they	interact?	Now	it’s	time	to

https://docs.python.org/3/library/functions.html#hash


create	the	application	to	store	those	users.	It	is	time	to	create	TomeRater!

Create	a	class	 TomeRater 	that	has	the	following	methods:

A	constructor	that	only	takes	in	 self .	It	should	create:

self.users ,	an	empty	dictionary	that	will	map	a	user’s	email	to

the	corresponding	User	object

self.books ,	an	empty	dictionary	that	will	map	a	Book	object	to

the	number	of	Users	that	have	read	it

create_book ,	which	takes	in	 title 	and	 isbn 	and	creates	a	new

book	with	that	title	and	ISBN.	Returns	this	Book	object.

create_novel ,	which	takes	in	 title ,	 author ,	and	 isbn ,	and

creates	a	new	Fiction	with	that	title,	author	and	ISBN.	Returns	this

Fiction	object.

create_non_fiction ,	which	takes	in	 title ,	 subject ,	 level ,

and	 isbn ,	and	creates	a	new	Non_Fiction	with	that	title,	author

and	ISBN.	Returns	this	Non_Fiction	object.

add_book_to_user ,	which	takes	in	 book ,	 email ,	and	an	optional

parameter	 rating ,	which	defaults	to	 None .	It	should	get	the	user

in	 self.users 	with	the	key	 email .	If	this	user	doesn’t	exist,	it

should	print	out	`“No	user	with	email	{email}!”.	If	the	user	exists,

it	should:

Call	 read_book 	on	this	user,	with	 book 	and	 rating

Call	 add_rating 	on	 book ,	with	 rating

Check	if	the	book	is	in	TomeRater’s	 self.books 	already.	If

it	is	not,	add	the	key	 book 	to	 self.books 	with	a	value	of	1

(because	one	user	has	read	it)

If	 book 	was	already	in	the	catalog,	increase	the	value	of	it



in	 self.books 	by	1,	because	one	more	user	has	read	it.

add_user ,	which	takes	in	 name ,	 email ,	and	an	optional	list	of

Books	 books 	that	defaults	to	 None .	It	should	create	a	new	User

object	from	 name 	and	 email .	Then,	if	 books 	is	provided,	it	should

loop	through	the	list,	and	add	each	Book	to	the	user	(using	the

TomeRater	method	 add_book_to_user )

Create	Some	Analysis	Methods
for	TomeRater
Now,	we	have	an	application	that	keeps	track	of	Users	and	the	Books	they

have	read.	We	should	add	some	methods	to	be	able	to	analyze	our

collection.

Add	these	methods	to	the	 TomeRater 	class:

print_catalog ,	which	iterates	through	all	of	the	keys	in

self.books 	(which	are	Book	objects),	and	prints	them

print_users ,	which	iterates	through	all	of	the	values	of

self.users 	(which	are	the	User	objects),	and	prints	them

most_read_book ,	which	should	iterate	through	all	of	the	books	in

self.books 	and	return	the	book	that	has	been	read	the	most.

Remember	that	the	keys	of	 self.books 	are	Books,	and	the	values

are	how	many	times	they’ve	been	read.

highest_rated_book ,	which	should	iterate	through	all	of	the

books	in	 self.books 	and	return	the	book	that	has	the	highest

average	rating.	Remember	that	the	keys	of	 self.books 	are	Books,

and	you	can	call	 book.get_average_rating() 	on	a	Book	object



book .

most_positive_user ,	which	should	iterate	through	all	of	the

users	in	 self.users 	and	return	the	user	that	has	the	highest

average	rating.	Remember	that	the	values	of	 self.users 	are

Users,	and	you	can	call	 user.get_average_rating() 	on	a	User

object	 user .

Do	Some	Analysis
Open	your	command	line	and	navigate	to	the	TomeRater	directory:

cd	TomeRater

Run	the	file	populate.py,	using	the	command:

python3	-i	populate.py

This	file,	populate.py,	will	create	a	TomeRater	object	called	 Tome_Rater

and	fill	it	with	some	users	and	books.	The	 -i 	flag	will	leave	the	terminal

open	for	you	to	play	with.	You	can	then	run	some	of	your	methods	you

created	in	the	last	section	by	using	syntax	like:

Tome_Rater.most_positive_user()

Go	ahead	and	open	populate.py	in	your	text	editor	as	well	and	look	at	the

objects	that	are	being	created	and	used.	Add	your	own	tests,	to	see	if	your

application	works	the	way	you	expect	it	to!

http://populate.py/
http://populate.py/
http://populate.py/


Get	Creative!
Incredible!	You	have	an	application	that	stores	users	and	books!	You

basically	own	a	startup	now.	To	take	your	project	to	the	next	level,	choose

one	of	the	following	extension	ideas	to	implement:

Add	more	sophisticated	error	testing!	This	could	include:

If	someone	tries	to	add	a	user	with	an	email	that	already

exists	in	TomeRater,	print	out	a	message	telling	them	that

this	user	already	exists

Make	sure	that	books	all	have	unique	ISBNs

Make	sure	that	an	email	address	is	valid	by	checking	if	it

has	an	 @ 	character	and	either	 .com ,	 .edu ,	 .org

Add	some	dunder	methods	to	the	 TomeRater 	class	as	well:

What	should	it	look	like	if	a	 TomeRater 	object	is	printed?

What	would	it	mean	for	two	 TomeRater 	objects	to	be

equal?

Add	more	sophisticated	analysis	methods	like:

get_n_most_read_books ,	which	would	take	in	a	number	 n

and	return	the	 n 	books	that	have	been	read	most,	in

descending	order

get_n_most_prolific_readers ,	which	would	take	in	a

number	 n 	and	return	the	 n 	users	that	have	read	the	most

books,	in	descending	order

Add	a	price	variable	for	each	Book	so	that	you	could	add	methods

to	TomeRater	like:

get_n_most_expensive_books(self,	n) ,	which	would



return	the	 n 	books	with	highest	price

get_worth_of_user(self,	user_email) ,	which	would

return	the	sum	of	the	costs	of	all	the	books	read	by	this	user

Your	own	idea	for	how	to	make	TomeRater	better


