
                                         

 
 
 
 

Turbulence Models and Their 
Application to Complex Flows 

 
R. H. Nichols 

University of Alabama at 
Birmingham 

 
 

Revision 4.01 
 
 

 
 



                                         

CONTENTS          Page 
 
1.0 Introduction          

1.1 An Introduction to Turbulent Flow     1-1 
1.2 Transition to Turbulent Flow     1-4 
1.3 Statistical Concepts for Turbulent Flow Analysis  1-9 
1.4 Turbulent Length and Time Scales    1-13 
1.5 Vorticity and Strain Tensors     1-14 
1.6 Classification of Turbulence Models    1-15 
References         1-17 
 

2.0 Classical Turbulence Closure Methodologies     
2.1 Reynolds Averaging       2-1 
2.2 Favre Averaging       2-4  
2.3 Boussinesq Approximation      2-5 
References         2-7 
    

3.0 Turbulent Boundary Layer and Shear Layer Theory 
3.1 Boundary Layer Theory      3-1 
3.2 Shear Layer Theory       3-7 
References         3-10 

 
4.0 Algebraic Turbulence Models      

4.1 Inner Eddy Viscosity Model     4-1 
4.2 Cebeci-Smith Model      4-1 
4.3 Baldwin-Lomax Model      4-2 
4.4 Wake and Jet Model      4-4 
4.5 Algebraic Model Shortcomings     4-4 
4.6 Grid Sensitivity for a Flat Plate with Adiabatic Walls  4-6 
4.7 Grid Sensitivity for an Axisymmetric Bump   4-10 
4.8 Grid Sensitivity for a Flat Plate with Heat Transfer  4-14 
4.9 Grid Sensitivity for a Nozzle with Heat Transfer   4-18 
4.10 Summary        4-21 
Baldwin-Lomax Application Hints      4-22 
References         4-22 

 
5.0 One-Equation Turbulence Models      

5.1 Theory        5-1 
5.2 Spalart-Allmaras Model      5-1 
5.3 Rotation/Streamline Curvature Corrections   5-3 
5.4 Grid Sensitivity for a Flat Plate with Adiabatic Walls  5-6 
5.5 Grid Sensitivity for an Axisymmetric Bump   5-10 
5.6 Grid Sensitivity for a Flat Plate with Heat Transfer  5-13 
5.7 Grid Sensitivity for a Nozzle with Heat Transfer   5-17 
5.8 Summary        5-20 
Spalart-Allmaras Application Hints     5-20 



                                         

References         5-20 
 
6.0 Two-Equation Turbulence Models      

6.1 Theory        6-1 
6.2 Traditional k-ε Models      6-3 
6.3 k-ω Models        6-6 
6.4 SST Model        6-7 
6.5 RNG Model        6-9 
6.6 Numerical Implementation      6-10 
6.7 Compressibility Correction for Shear Layers   6-10 
6.8 Initializing Turbulence Values for a Given Profile Shape 6-13 
6.9 Rotation and Curvature Correction    6-15 
6.10 Grid Sensitivity for a Flat Plate with Adiabatic Walls  6-16 
6.11 Grid Sensitivity for an Axisymmetric Bump   6-19 
6.12 Grid Sensitivity for a Flat Plate with Heat Transfer  6-22 
6.13 Grid Sensitivity for a Nozzle with Heat Transfer   6-26 
6.14 Summary        6-29 
Two-Equation Model Application Hints     6-30 
References         6-30 
 

7.0 Reynolds and Algebraic Stress Models     
7.1 Reynolds Stress Models      7-1 
7.2 Algebraic Stress Models      7-5 
7.3 Grid Sensitivity for a Flat Plate with Adiabatic Walls  7-7 
7.4 Grid Sensitivity for an Axisymmetric Bump   7-12 
RSM and ASM Model Application Hints     7-18 
References         7-18 
 

8.0 Large Eddy Simulation       
8.1 The Filtering Operation      8-1 
8.2 Derivation of the LES Equations     8-4 
8.3 Smagorinski Model       8-7 
8.4 Dynamic Smagorinski Model     8-8 
8.5 k-Equation Model       8-8 
8.6 Inflow Turbulence Boundary Condition    8-9 
8.7 Other LES References      8-10 
8.8 Spatial Mixing Layer Example     8-10 
References         8-13 

 
9.0 Hybrid RANS/LES Turbulence Models      

9.1 Theory        9-1 
9.2 Circular Cylinder       9-4 
9.3 WICS Bay        9-13 
9.4 Delayed Detached Eddy Simulation (DDES)   9-25 
9.5 Summary        9-30 
Hybrid RANS/LES Application Hints     9-31 



                                         

References         9-31 
 

10.0 Wall Function Boundary Conditions      
10.1 Theory        10-1 
10.2 Grid Sensitivity for a Flat Plate with Adiabatic Walls  10-7 
10.3 Grid Sensitivity for an Axisymmetric Bump   10-10 
10.4 Grid Sensitivity for a Flat Plate with Heat Transfer  10-12 
10.5 Grid Sensitivity for a Nozzle with Heat Transfer   10-17 
Wall Function Application Hints      10-20 
References         10-20 
 

11.0 Boundary Layer Transition Simulation      
11.1 Transition Models Based on Stability Theory   11-2 
11.2 Transition Models with Specified Transition Onset  11-2 
11.3 Transition Models with Onset Prediction Capability  11-6 
11.4 Transition Models with Onset Prediction Capability  11-10 
References         11-14 
 



1-1                                  

1.0 Introduction 
 

Some basic knowledge of turbulence and an understanding of how turbulence 
models are developed can help provide insight into choosing and applying these 
models to obtain reasonable engineering simulations of turbulent flows.  This 
effort is directed at production users of Computational Fluid Dynamics (CFD) and 
attempts to provide the basic information required to choose and use currently 
available turbulence modeling techniques.  The limitations of each modeling 
technique and application tips are also provided.   
 
It is believed that the Navier-Stokes equations can be used to fully describe 
turbulent flows, but current limitations in computational horsepower have made 
the direct solution of the Navier-Stokes equations impractical for all but very 
simple flows at low Reynolds numbers.  This is because current computers do 
not allow for the resolution of the wide range of length and time scales 
associated with turbulence.  Many complex fluid dynamic applications are 
directed at determining time-averaged quantities, and hence it is desirable to find 
a means to obtain these mean quantities short of solving the full unsteady 
Navier-Stokes equations for all of the length and time scales associated with the 
turbulence.   
 
The quest for the ultimate turbulence model has been ongoing for nearly a 
century now.  Early turbulence models were empirically derived algebraic 
relations.  As computers developed and numerical simulation evolved differential 
equation based transport type turbulence models became the turbulence 
simulation methodology of choice.  It should always be remembered that 
transport models are empirically calibrated.  The use of transport type turbulence 
models has become standard practice for most engineering applications.  Many 
current researchers are now solving the unsteady Navier-Stokes equations for 
large-scale, or grid realized, turbulence and modeling the smaller, or subgrid, 
turbulent scales that cannot be captured on the computational grid. Although the 
ultimate general-purpose turbulence model has yet to be developed, turbulence 
modeling has matured to the point that reasonably accurate results can be 
obtained for a wide range of engineering applications with the current class of 
computers.  As computer technology continues to improve both the role and the 
form of turbulence models will continue to evolve.  
 
1.1  An introduction to Turbulent Flow 
 
An understanding of what constitutes turbulent flow is required before proceeding 
to discuss turbulence modeling.  Turbulence can be parameterized by several 
nondimensional quantities.  The most often used is Reynolds number.  Reynolds 
number represents the ratio of inertial forces to viscous forces.  The viscous 
forces dominate at low Reynolds numbers and disturbances are damped rapidly.  
These disturbances begin to amplify as Reynolds number is increased and 
eventually transition into fully turbulent flows.  Launder1 gives the following 



1-2                                  

definition for turbulent flow:  “At moderate Reynolds numbers the restraining 
effects of viscosity are too weak to prevent small, random disturbances in a 
shear flow from amplifying.  The disturbances grow, become non-linear and 
interact with neighboring disturbances.  This mutual interaction leads to a 
tangling of vorticity filaments.  Eventually the flow reaches a chaotic, non-
repeating form describable only in statistical terms.  This is turbulent flow.”   
 
Turbulence is a three-dimensional unsteady viscous phenomenon that occurs at 
high Reynolds number.  Turbulence is not a fluid property, but is a property of the 
flow itself.  Turbulent flow can be highly nonlinear and is random in nature.  
Turbulent disturbances can be thought of as a series of three-dimensional eddies 
of different sizes that are in constant interaction with each other.  This model of 
turbulence is Lagrangian in nature, with these turbulent flow structures being 
transported downstream by the mean flow.  These structures exist for a limited 
amount of time before they are dissipated away by molecular viscosity.  An 
example of the fluid structures that appear in a turbulent flow can be seen in the 
wake of a circular cylinder in Fig. 1.1a and the boundary layer in Fig. 1.1b. 

 
 

Figure 1.1a Turbulent structures in the wake of a circular cylinder. 
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Figure 1.1b Turbulent structures in a boundary layer. 
 
Turbulence is diffusive in nature.  The rates of mass and momentum transfer are 
much higher in a turbulent flow than in a laminar flow.  This diffusiveness can be 
a highly desirable property for enhancing the mixing of physical and/or chemical 
properties within a flow.  The diffusive nature of turbulence also causes boundary 
layers and shear layers to become much thicker than their laminar counterparts, 
which is often an undesirable result of turbulent flow.   A generic turbulent kinetic 
energy spectrum that indicates how the turbulent energy is partitioned among the 
various size eddies is shown in Fig 1.2.  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
The wave number is inversely proportional to the turbulent length scale.  It can 
be seen in Fig 1.2 that most of the turbulent kinetic energy is in the large 
turbulent length scales (or low wave numbers).  The large scale eddies take 
kinetic energy from the mean flow in the energy production region of the turbulent 
spectrum.  Smaller eddies feed off of the larger energy producing eddies in the 
inertial range.  Here the turbulence is essentially in equilibrium and the transfer of 
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Figure 1.2  Turbulent energy spectrum. 
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energy by inertial forces is the dominant process.  At the small-scale end of the 
turbulent spectrum the eddies become so small that viscous dissipation converts 
the kinetic energy into heat. 
 
As mentioned earlier, it is generally accepted that the Navier-Stokes equations 
can be used to directly simulate turbulent flows.  This type of fluid modeling is 
called Direct Numerical Simulation (DNS).  Direct numerical simulation of the 
turbulent energy cascade using the Navier-Stokes equations requires that the 
grid spacing be smaller than the smallest turbulent length scale.  For a typical 
full-scale aircraft, the smallest length scale of the turbulence may be of the order 
of 10-6 times smaller than the aircraft reference length.  More than 1018 grid 
points would be required to discretize this example.  Since engineering problems 
of this size are impractical at this time, some model of the turbulence is required 
so that engineering answers may be obtained for large-scale fluid problems.  
 
For many engineering applications the length and time scales of the turbulence 
are much smaller than the length and time scales of the problem of interest.  This 
tends to simplify the modeling of turbulence and remove the need to treat the 
unsteady aspects of the turbulent flow since they occur at time scales much 
smaller than those of interest.   When the turbulent and problem scales become 
of the same size the modeling becomes more difficult.  
 
1.2 Transition to Turbulent Flow 
 
Laminar-turbulent transition is an extraordinarily complicated process.  The 
following is a quick summary of the process.  More detail can be found in 
Schlichting2.  The process begins by transforming external disturbances into 
internal instability oscillations in the boundary layer or shear layer.  A laminar 
boundary layer or shear layer is susceptible to disturbances from both the free 
stream and the body surface.  The ability of external disturbances to penetrate 
the boundary layer or shear layer and then be amplified is defined as the 
receptivity of the boundary layer.  The free stream disturbances may include 
acoustic waves, particles in the flow, transported vorticity from upstream in the 
flow, and pressure, density, or temperature fluctuations.  Surface disturbances 
include the roughness of the body or motion of the body.  Many of these 
disturbances eventually get damped by viscosity. The transition process starts 
when a disturbance in the boundary layer or shear layer is no longer damped but 
gets amplified.  This results in the formation Tollmien-Schlichting waves which 
are the first mode instability of the flow. While these waves travel downstream, 
three dimensional waves and vortices begin to develop. At certain points in the 
boundary layer, small irregularly shaped turbulent spots will occur and will be 
convected in a wedge shaped region as shown in the Figure.1.3.  These spots, 
known as Emmons spots, appear at random locations on the plates at irregular 
time intervals.  As these spots move downstream, they grow and eventually fuse 
with each other to encompass the entire boundary layer or shear layer.  This 
process eventually leads to fully developed turbulent flow.   
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Figure 1.3  Growth of turbulent spots in a flat plate boundary layer. 
 
The transition mechanism mentioned above is known as natural transition.  
Flows with strong free stream disturbances can “by-pass” the mechanism of 
formation of Tollmien-Schlichting waves and form turbulent spots directly from 
the influence of the free stream disturbances. This is called as by-pass 
turbulence3.  For compressible flows, most notably flows with a Mach number of 
2.2 or greater, Mack4,5 showed that multiple modes of instability exist.  For flows 
between M=2.2 and M=4.5, the first mode of the instability, known as the viscous 
instability, is the most unstable.  As the Mach number increases beyond 4.5, the 
second mode, known as the inviscid instability, becomes the most unstable 
mode. This second mode includes acoustical disturbances that are characterized 
by very large fluctuations in pressure and temperature. 
 
Boundary layer stability theory seeks to predict the receptivity of the boundary 
layer in terms the critical Reynolds number for a flow.  The critical Reynolds 
number is defined as the Reynolds number at which the disturbances in a 
laminar boundary layer begin to amplify and the flow becomes turbulent.  
According to this theory, the fluid motion is decomposed into a time-averaged 
mean flow component and a fluctuating component.  
 

uUU ′+=              (1.1) 
 
Here the overbar signifies a time averaged quantity and the prime is used for 
perturbation quantities.  If the quantities in the Navier-Stokes equations are 
decomposed as in Eq. 1.1 and the mean flow quantities are subtracted out, the 
two-dimensional incompressible Navier-Stokes equations become  
 

Laminar Transitional Turbulent 
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Eq. 1.2 has three equations and three unknown disturbances ,, vu ′′  and p′ .  If a 
periodic disturbance is assumed then the solution can be expressed as a Fourier 
series.  This solution is linear, so solutions may be summed up.  Note this is only 
valid for very small amplitudes for the disturbances.  For two-dimensional flow, 
the stream-function can be defined as 
 
Ψ(x,y,t) = Φ(y)ei(α x-β t)

                    (1.3) 
 

Where 
λ
πα 2

=  is the wave number and λ is the wavelength of the disturbance 

and iir βββ += , where fr πβ 2=  ( f  is the disturbance frequency) and  iiβ  is 
the amplification factor for the disturbance.  The ratio of β/α is  
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Here rc  is the propagation velocity in the x-direction and is known as the phase 
velocity.  The imaginary part, ic , is the degree of damping if ic  is positive and is 
the degree of amplification if ic  is negative. 
 
Substituting the expressions from Eq. 1.3 into Eq. 1.2  
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Eq. 1.6 is called the Orr-Sommerfeld equation.  The equation is shown in 
nondimensional form.  The terms on the left side represent the inertia terms.  The 
terms on the right side represent the viscous terms from the Navier-Stokes 
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equations.   Here the Reynolds number (Re) is define as Re=
ν
δU  where δ  is the 

boundary layer thickness.   
 
Solving the Orr-Sommerfeld equations first requires a steady state fully laminar 
solution of the Navier-Stokes equations.  The pressure and velocity from the 
laminar solution are used as inputs to the Orr-Sommerfeld equations.  An 
example solution of the Orr-Somerfield is shown in Fig. 1.4.  The vertical axis is 
the ratio of the shear layer thickness to the wavelength of the disturbance.  The 
horizontal axis is the Reynolds number based on the shear layer thickness.   
 

 
 

Figure 1.4  Example solution to the Orr-Sommerfield equation. 
 

The curve shown in Fig. 1.4 is the neutral stability curve.  Disturbances are 
amplified in the crosshatched region, while they are damped in the region outside 
the curve.  The Reynolds number at which disturbances are first amplified is 
called the critical Reynolds number (Rcrit).  For Reynolds numbers below Rcrit, 
disturbances are damped.  As the Reynolds number increases above Rcrit, 
almost all disturbances are amplified and turbulent flow occurs. 
 
The effect of pressure gradient is shown in Fig. 1.5.  The “0” curve represents no 
pressure gradient, the “-5” curve represents an adverse pressure gradient, and 
the “+4” curve represents a favorable pressure gradient.  An adverse pressure 
gradient causes transition to occur more rapidly, while a favorable pressure 
gradient delays the onset of transition.  
 

 

Re
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Figure 1.5  Effect of pressure gradient on boundary layer stability. 
 
Transition locations in boundary layer flows are generally characterized by two 
parameters: Rex and Reθ.  Rex is the Reynolds number based on distance from 
the leading edge.  Reθ is the Reynolds number based on the momentum 
thickness defined as 
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Here δ is the boundary layer height and the subscript e denotes the edge of the 
boundary layer.  Fig. 1.6 shows the transition process on the skin friction on a flat 
plate.  The skin friction changes by almost an order of magnitude during the 
transition process. 
 

Re
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Figure 1.6  Skin friction along a flat plate. 
 
1.3 Statistical Concepts for Turbulent Flow Analysis 
 
Several statistical moments are used to describe turbulent flows.  This section 
will review those most often associated with modeling turbulence.  These 
statistics are usually performed on ensembles of discrete observations in both 
experimental and computational analysis of turbulent flows.  The first moment is 
the mean or average and is defined as 
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Here the average is taken of n discrete observations.  The higher moments are 
defined relative to the mean.  The second moment, or variance, is defined as  
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The variance provides information on the spread of the data away from the 
mean.  The third moment, or skewness, is given by 
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Skewness gives the amount of time the signal is above or below the mean.  The 
fourth moment, or kurtosis, is defined by 
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Kurtosis gives the amount of time the signal is away from the mean.  A simple 
example of these moments can be constructed using sine waves.  Four cases 
are defined as 
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The four signals are shown in Fig. 1.7. 
 

 
 

Figure 1.7  Example signals for statistical analysis. 
 

The statistical moments for these four cases are shown in Table 1.1. 
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Case Mean σ2 S K 

1 0.0 0.5 0.0 1.5 
2 0.5 0.125 0.0 1.5 
3 0.0 1.0 0.0 2.25 
4 0.5 0.625 0.759 1.98 

 
Table 1.1  Statistical moments for four test signals. 

 
Signals that are symmetric about the mean such as Case 1 and 3 have a zero 
mean and skewness.  Case 4 is the only signal that produces a nonzero 
skewness. 
 
Time ensembles must be statistically stationary for the moments to have any 
meaning.  A statistically stationary flow is defined as a flow in which statistical 
parameters do not depend on the interval in time used to evaluate them.  An 
example pressure signal is given in Figure 1.8. 
 

 
 

Figure 1.8  Unsteady pressure measurement. 
 

It is very difficult to determine if the signal is stationary by visual inspection.  Four 
overlapping data windows of 4096 samples each are used to assess whether this 
flow is stationary.  The overlapped windowing technique is effective if at least two 

Window 2 Window 4 

Window 3 Window 1 
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of the windows are completely independent as is the case for Window 1 and 
Window 4.  The number of windows and the number of samples in each window 
is generally determined by the number of total samples available in the signal.  
Fourier transforms are useful for transforming the signal between the time 
domain and the frequency domain.  The Fourier transform of the four data 
windows and the average of the four transforms are shown in Figure 1.9. 
 

 
Figure 1.9  Fourier transform of pressure signal. 

 
Sound pressure level is proportional to the log of the variance of the pressure 
signal.  The Fourier transforms for the individual windows show a large amount of 
disagreement.  This is due to the discreet nature of the transform and the limited 
number of samples in each window.  The statistical moments and the frequency 
of the maximum spectral peak for each of the data windows and the average of 
the windows are shown in Table 1.2.  The maximum error in Table 1.2 is defined 
as the error between the individual data windows and the window average.  This 
signal is reasonably stationary for the moments examined.  It should be noted 
that demonstrating that a signal is stationary with respect to a given moment 
does not assure that the signal is stationary for higher moments.  The windowing 
technique can be applied to both experimental and computational data.  This 
technique can be used to assess “convergence” for unsteady computations6. 
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 Average 
Pressure 

σ S K Frequency of 
Peak SPL (hz) 

Window 1 1.2980 0.20586 0.33207 2.3974 433.63 

Window 2 1.2957 0.20787 0.36906 2.4891 461.61 

Window 3 1.3003 0.20163 0.29161 2.3725 447.62 

Window 4 1.2865 0.20218 0.29161 2.5564 461.61 

Window 
Average 

1.2952 0.02044 0.32309 2.4539 451.12 

Max Error 0.66% 1.71% 14.23% 4.18% 3.88% 

 
Table 1.2  Statistics from pressure signal data windows. 

 
1.4 Turbulent Length and Time Scales 
 
It is useful to quantify the range of length and time scales associated with a 
turbulent flow.   These estimates of the maximum and minimum eddy length and 
time scales can be used in selecting the appropriate computational grid spacing 
and time step for a given problem. 
 
Turbulent scales are defined in terms of the turbulent kinetic energy (k), turbulent 
dissipation (ε), and the kinematic viscosity (ν).  The turbulent kinetic energy and 
turbulent dissipation will be derived in Chap. 2.  These two quantities are usually 
associated with the larger scales of turbulence.  From dimensional analysis, the 
large scale, or turbulence producing, eddies (see Fig. 1.2) have length scales 
characterized by 
 

ε

2
3

kL =            (1.13) 

 
The large scale eddies have time scales of the order of 
 

ε
k

=Τ            (1.14) 

 
The smallest scale, or dissipative, eddies (the Kolmogorov scale) have length 
and time scales given by 
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The ratio of the smallest to largest eddy length and time scales is then 
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where Rt is the turbulent Reynolds number (k2/(νε)).  These relationships indicate 
that the range of turbulent scales may span orders of magnitude for high 
Reynolds number flows.  Since these turbulent length scales are much smaller 
than the physical scales (i.e. wing chord, channel height) associated with a flow 
of interest, it is easy to see that large amounts of grid points would be required to 
fully simulate a high Reynolds number turbulent flow.  
 
1.5  Vorticity and Strain Tensors   
 
Two tensors that are often used in the development of turbulence models are the 
vorticity and strain tensors.  The vorticity tensor is defined as 
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The trace of the vorticity tensor (the sum of the diagonal elements) is equal to 
zero since Ω11=Ω22=Ω33=0.  The largest magnitudes of vorticity typically occur 
near the wall in a boundary layer and in the core of a vortex.  The strain tensor is 
defined as 
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The trace of the strain is U

r
•∇ , which is zero for steady incompressible flows.  

The largest magnitudes of strain also occur near the wall in a boundary layer.  
The magnitude of the strain is almost zero in the core of a vortex.  For typical 
boundary layers and shear layers the magnitude of the vorticity is equal to the 
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magnitude of the strain since only one of the cross derivatives will dominate both 
tensors. 
 
1.6  Classification of Turbulence Models 
 
Turbulence models can be classified by what turbulent scales they choose to 
model and what scales they choose to simulate by solving the unsteady Navier-
Stokes equations on a computational grid.  The traditional Reynolds Averaged 
Navier-Stokes (RANS) use a time averaging process to remove the necessity of 
simulating all of the scales of the turbulence spectrum.  The RANS approach 
uses one length scale to characterize the entire turbulent spectrum, as shown in 
Fig 1.10.   
 
The use of a single length scale places a tremendous burden on the turbulence 
modeler since it can be difficult to find one length scale that is appropriate for all 
cases.  When this can be accomplished the flow can be treated as a steady flow 
since all the unsteadiness is assumed to occur at scales below the computational 
grid size and are handled by the turbulence model. This allows for the use of time 
marching numerical algorithms with large numerical dissipation since the object 
of the calculation is to dissipate all wavelengths (whether they are of physical or 
numerical origin) of the unsteady flow during the convergence process.  
Numerical algorithms that converge to a steady state solution rapidly may not be 
suited for unsteady flow simulations because these algorithms contain large 
amounts of numerical dissipation and may overdamp the actual flow.   The RANS 
approach is discussed in more detail in Chapter 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RANS 

LES 

Figure 1.10  Region of the turbulent energy spectrum 
modeled by different turbulence model approaches. 
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Direct numerical simulation (DNS)7 attempts to simulate all of the scales of 
turbulence and model nothing.  The grid resolution and the maximum allowable 
time step for a DNS calculation must be small enough to capture the Kolmogorov 
scales (Eq. 1.15 and 1.16) of the turbulent flow.  The inverse relationship of these 
scales with Reynolds number shown in Eq. 1.17 and 1.18 indicate that the grids 
must become increasingly fine as Reynolds number is increased.  A DNS 
solution is inherently unsteady, so it must be run for long periods to assure that 
the resulting solution is statistically stationary and free from the initial conditions 
provided to start the computation.  The numerical algorithm used in the DNS 
solution process must have very low numerical dissipation in order to allow all the 
wavelengths of the turbulent flow to naturally persist.  The numerical dissipation 
must be much smaller than the molecular viscosity or it will manifest itself as an 
increase in the effective molecular viscosity, and subsequently as a decrease in 
the effective Reynolds number8.  Most of the higher order numerical algorithms 
currently used in DNS are only valid on computational grids that contain uniform 
spacing.  Grid stretching tends to reduce the order of the numerical algorithm and 
increase the numerical dissipation of the algorithm.  The requirement of nearly 
uniform grids with small cell sizes leads to extremely large numerical grids even 
for small Reynolds numbers.  DNS computations also require a model for the 
inflow free stream disturbances.  For channel flows, the inflow turbulence can be 
obtained by recycling the outflow turbulence.  To date DNS calculations have 
only been performed for low Reynolds numbers and simple geometries. 
 
Large Eddy Simulation (LES) is an attempt to move beyond DNS by modeling 
only the smallest turbulent scales in a problem9,10,11 as can be seen in Fig. 1.10.  
LES will be discussed in detail in Chapter 7.  The smaller turbulent scales are 
more nearly isotropic, so they may be modeled with fairly simple turbulence 
models.  Hence a simple turbulence model is used to simulate the “sub-grid” 
turbulence (turbulent scales that can not be realized on the computational grid) 
and the Navier-Stokes equations are solved for the remaining scales.  This 
requires a spatial filtering of the turbulence spectrum.  Like DNS, LES solutions 
are unsteady, and care must be taken to choose a numerical algorithm with low 
numerical dissipation or a decrease in effective Reynolds number will be seen in 
the calculation.  LES solutions must also be run a large number of time steps to 
eliminate starting transients and to allow the solution to become statistically 
stationary.  While LES allows for simulating much higher Reynolds numbers than 
DNS for the same computational resources, it is still not capable of simulating 
flight Reynolds numbers with reasonable engineering turn-around times.  LES 
has been found useful for many lower Reynolds number applications such as 
combustion calculations where the chemical reactions are driven by the unsteady 
turbulent mixing of the fuel and the oxidizer.  
 
Recently a new class of turbulence models has arisen for unsteady high 
Reynolds flows.  These turbulence models are called hybrid RANS/LES models 
and will be discussed in detail in Chapter 8.  These hybrid turbulence models are 
extensions of the LES models in which modified RANS turbulence models are 
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used as sub-grid models for the Navier-Stokes equations.  The goal for most 
applications is to use RANS to calculate the boundary layer where extremely 
small turbulent scales are present and use an LES like model to simulate the 
smaller turbulent scales away from the body.  Hence the large scale turbulent 
structures away from the body are simulated by the unsteady Navier-Stokes 
equations.  These models serve as a bridge between traditional RANS models 
and LES models as shown in Fig. 1.9.  This allows for coarser grids than LES 
since the RANS-type sub-grid model is valid for non-isotropic scales of 
turbulence.  These models require some sort of spatial filtering to determine the 
local value for the sub-grid turbulent viscosity.  Hybrid RANS/LES models do not 
need the extremely low numerical dissipation required by DNS and LES and 
hence can be robust and easy to implement. 
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2.0 Classical Turbulence Closure Methodologies 
 
The direct numerical solution of the Navier-Stokes equations for high Reynolds 
numbers flow requires a grid fine enough to capture all of the turbulent length 
scales and a time step small enough to capture the entire turbulent spectrum.  
The computational requirements for such calculations are well beyond the 
current state of computers.  Obviously, some approximations to the Navier-
Stokes equations are required to allow practical engineering solutions to high 
Reynolds number flow problems.  Two averaging techniques used to simplify the 
Navier-Stokes equations are Reynolds and Favre averaging.  Both of these 
approaches will be discussed in this chapter.  Both of these approaches results 
in time-averaged correlation terms that must be modeled to close the equation 
set. 
 
Two other methods of closure are large eddy simulation (LES) and hybrid 
RANS/LES modeling.  Both of these techniques use spatial filtering to decide 
what turbulent scales should be modeled and what scales can be simulated.  
LES will be discussed in detail in Chapter 8.  The hybrid approach will be 
discussed in Chapter 9.  
 
2.1  Reynolds Averaging 
 
Osborne Reynolds1 suggested that for a statistically stationary flow (see Chapter 
1) the variables in the Navier-Stokes equations could be decomposed into time-
averaged and turbulent-fluctuation terms. The velocity can then be written as 
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where the average velocity U  is defined as  
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Note that the time scale of the integration T must be much larger than the 
turbulent time scales discussed in Chapter 1 or the flow will not be statistically 
stationary. 
 
In the Reynolds averaging process the unsteady behavior of the turbulent flow is 
replaced by steady-state correlations terms that must then be calibrated with 
turbulent flow measurements.  This has the advantage of significantly reducing 
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the computer time requirements for obtaining engineering quality values of 
steady state variables.  It is often difficult to obtain empirical correlations that are 
valid for a wide range of turbulent flows, and hence the Reynolds Averaged 
Navier-Stokes (RANS) turbulence models must often be tuned to a particular 
class of flows. 
 
Assuming that fluctuations in density ( ρ′ ), viscosity ( μ′ ), and thermal 
conductivity ( Tκ ′ ) are negligible (which is often not the case for high speed and 
reacting flows) and applying Reynolds averaging to the Navier-Stokes equations 
yields 
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Note that the turbulent kinetic energy (k) has been included in the definition of 
total energy ( E ).  The Reynolds averaging has introduced new unknown 
correlations k, ''

jiuu , ''eui , '''
jii uuu , and ''

ijiu σ .   
 
When the velocity correlation ''

jiuu is multiplied by the density ρ  it represents the 
transport of momentum due to the fluctuating (i.e. turbulent) motion of the fluid.  
The term ''

jiuuρ  is the transport of xi momentum in the direction of xj (or vice 
versa).  This term acts as a stress on the fluid and is therefore called turbulent or 
Reynolds stress.  In most regions of a turbulent flow, the turbulent stresses are 

much larger than their laminar counter parts ⎟
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j
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Uν .  The Reynolds stress is a 

symmetric tensor.  The trace of the stress tensor is two times the turbulent kinetic 
energy, and is coordinate system independent.  The off diagonal terms of the 
Reynolds stresses are coordinate system dependent.  The velocity-energy 
correlation ρ ''eui  can be thought of as a turbulent heat flux.  The '''

jii uuuρ  triple 

correlation represents turbulent transport or diffusion.  The ''
ijiu σ  term is the 

turbulent dissipation. 
 
Closure of the equation set requires correlations be developed for these new 
terms.  These terms are often difficult to measure experimentally.  The turbulent 
dissipation, ''

ijiu σ , includes correlations of the perturbed velocity and spatial 
derivatives of the perturbed velocity.  This quantity cannot be measured 
experimentally.  Transport equations can be developed for the turbulent stresses 
and turbulent dissipation to close the system.  This approach to closure is called 
Reynolds Stress Modeling (RSM) and will be discussed in Chapter 6.  A 
simplified approach to modeling the turbulent stresses in which the RSM 
equations are replaced with algebraic relationships is called Algebraic Stress 
Modeling (ASM) and will also be discussed in Chapter 6. 
 
The Reynolds stresses must meet certain constraints to be physically plausible. 
Schumann2 introduced the realizability constraint.  This constraint specifies that 
all the component energies of the turbulent kinetic energy (the diagonal terms of 
the Reynolds stress tensor) remain non-negative and all off-diagonal 
components of the Reynolds stress tensor satisfy Schwartz’s inequality.  This 
can be written as 
 

0'' ≥iiuu             (2.12) 
 

0
2'''''' ≥− jijjii uuuuuu          (2.13) 

 



2-4                                  

( )
( ) 0'

3
'
1

'
2

'
2

'
3

'
2

'
2

'
1

'
3

'
1

'
3

'
1

'
3

'
2

'
3

'
3

'
2

'
1

'
2

'
1

2'
3

'
2

'
3

'
3

'
2

'
2

'
1

'
1

≥−

+−−⎟
⎠
⎞⎜

⎝
⎛ −

uuuuuuuuuu

uuuuuuuuuuuuuuuuuu
    (2.14) 

 
 
2.2 Favre Averaging  
 
Reynolds averaging for compressible flows produces a very complicated set of 
equations because the fluctuations of density, pressure, and temperature must 
also be accounted for.  Favre3 averaging or Favre3 filtering has been used to 
simplify the equations set.  Favre averaging is a density weighted averaging 
process in space. The Favre filter can be defined for any variable as 
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Note that the over bar signifies a time averaged quantity, and the tilde represents 
a Favre filtered quantity.  Other auxiliary relations include 
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Thus, using Favre averaging, 
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The equivalent expression using Reynolds averaging would yield 
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Note that under these definitions the Reynolds average perturbation 0=′u , but 
the Favre averaged perturbation 0≠′′u . 
 
Applying this filtering operation to the Navier-Stokes equations, and assuming 
that the filtering commutes with the derivative operation, yields 
 



2-5                                  

( ) 0~ =
∂
∂

+
∂
∂

i
i

U
xt

ρρ          (2.20) 

 

( ) ( ) ( )jiji
ji

ji
j

ji
j

i

xx
Puu

x
UU

xt
U σσρρρ ′′+

∂
∂

+
∂
∂

−=′′′′
∂
∂

+
∂
∂

+
∂

∂ ~~~~
   (2.21) 

 

( )

( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
′′∂

+
∂
∂

∂
∂

−′′+′′
∂
∂

+
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛ ′′′′′′+′′′′+′′

∂
∂

+
∂

+
∂

∂

j
T

j
T

j
ijiiji

j
iji

j

iijjiij
j

j
j

x
T

x
T

x
Uu

x
U

x

uuuuuUeu
x

HU
xt

E

κκσσσ

ρρρρρ

~~~~

2
1~~~~

    (2.22) 

 
For almost all flows ijij σσ ′′>>~ , and hence the ijσ ′′  terms are usually neglected.  
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neglected.  The Favre averaged equations are similar in appearance to the 
incompressible Reynolds averaged Navier-Stokes equations, but the correlations 
are not the same.  Favre averaging should only be used in flows with large 
density fluctuations such as in combustion or hypersonic flow.  In other cases 
the simpler Reynolds averaging should be used. 
 
2.3  Boussinesq Approximation 

 
Boussinesq4 suggested that the turbulent stresses can be treated in an 
analogous form to the viscous stresses in laminar flows.  The Reynolds stresses 
are modeled as  
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The Boussinesq approximation states that the Reynolds stresses are 

proportional to the local mean flow strain rate ⎟
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(μt) is the proportionality factor for the Boussinesq approximation.  This is 
sometimes called a local equilibrium assumption since the turbulent stresses are 
assumed to be proportional to the mean flow strain rates.  The last term in Eq. 
2.23 was added so that the normal stresses would sum to the turbulent kinetic 
energy (k).  The Boussinesq approximation reduces the turbulence modeling 
process from finding the six turbulent stress components as discussed above to 
determining an appropriate value for the eddy viscosity.   
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The eddy viscosity is a property of the flow field and not a property of the fluid.  
The eddy viscosity can vary significantly form point to point within the flow, and 
also from flow to flow.  The eddy viscosity concept was developed assuming a 
relationship or analogy exists between molecular motion and turbulent motion.  
Although turbulent eddies can be thought of as discrete lumps of fluid that collide 
and exchange energy, they are not rigid bodies and their mean free paths are not 
small compared to the eddy size, and hence turbulence does not really satisfy 
the constraints of kinetic gas theory.  In spite of the theoretical weakness of the 
eddy viscosity concept, it does produce reasonable results for a large number of 
flows. 
 
The eddy viscosity concept has been successful in the prediction of flows in 
which the shear stress ( ''

jiuuρτ = ) is the turbulent stress of greatest importance.  
This class of flows includes simple shear layers and attached boundary layers.  
The eddy viscosity is introduced as a scalar in Eq. 2.23 so that the eddy viscosity 
is the same for all stress components.  The assumption of isotropic eddy 
viscosity is a simplification that limits the performance of this class of turbulence 
models in complex flows.  
 
In a direct analogy to the turbulent momentum transport defined by the 
Boussinesq approximation (Eq. 2.23), the turbulent heat or mass transport is 
often assumed to be proportional to the gradient of the transported quantity 
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where Γ is the turbulent diffusivity of heat or mass.  Like the eddy viscosity, Γ is 
not a property of the fluid but is a function of the flow.  Reynolds analogy 
between heat or mass transport and momentum transport suggests that Γ is 
proportional to the eddy viscosity 
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where σt is the turbulent Prandtl or Schmidt number.  Experiments have shown 
that the σt varies little throughout a flow field and hence it is usually taken as a 
constant.   
 
Using the Boussinesq approximation and the assumption of a constant turbulent 
Prandtl number, the Reynolds averaged Navier-Stokes equations (Eq. 2.4, 2.5, 
and 2.6) can be written as 
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where k is the turbulent kinetic energy.  The turbulent kinetic energy is often 
ignored in the definition of total energy (Eq. 2.31).  Under the assumption of a 
constant turbulent Prandtl number (Prt), the equation set is closed once the eddy 
viscosity is defined.  Some common approaches to defining eddy viscosity 
models are discussed in Chapters 3, 4, and 5. 
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3.0 Turbulent Boundary Layer and Shear Layer Theory 

 
A brief review of simple theory for turbulent boundary layers and shear layers will 
aid in the understanding of the development and calibration of turbulence 
models.  Most of these relationships are based on empirical correlations of the 
shape of the velocity profile across the boundary layer or shear layer.  This 
shape can be used in conjunction with the Navier-Stokes equations to back out 
relationships for the turbulent stresses or the eddy viscosity. 
 
3.1 Boundary Layer Theory 
 
Turbulent boundary layers are usually described in terms of several 
nondimensional parameters.  The boundary layer thickness, δ, is the distance 
from the wall at which viscous effects become negligible and represents the edge 
of the boundary layer.  Two integral parameters across the velocity profile are the 
displacement thickness *δ  and the momentum thickness θ.   
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The integration is performed normal to the wall and the subscript e is used to 
denote the edge of the boundary layer at y=δ.  The displacement thickness is a 
measure of the increased thickness of a body due to the velocity defect of the 
boundary layer.  The momentum thickness is the distance that, when multiplied 
by the square of the free-stream velocity, equals the integral of the momentum 
defect across the boundary layer.   
 
If a simple power law velocity profile as shown in Eq. 3.3 is assumed and the flow 
is incompressible, the relationships in Eqs. 3.4-3.7 can be obtained from 
approximations of the Navier-Stokes equations. 
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Cf is called the skin friction.  The distance from the leading edge in the 
streamwise direction is given by x.  Both the boundary layer growth rate and the 
skin friction decrease as the Reynolds number increases.   
 
Reynolds analogy can be used to develop a relationship for heat transfer.  
Reynolds analogy says that the ratio of the shear stress to the heat transfer is a 
constant near the wall.  Thus the Nusselt number can be defined as   
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Here h is the heat transfer coefficient, k is the thermal conductivity, and Pr is the 
Prandtl number.   This relationship is independent of the equation used to 
determine skin friction.  
 
The power law relationship is not extremely accurate, but is useful for developing 
some useful turbulent boundary layer relationships.  A more accurate relationship 
for skin friction for adiabatic incompressible flow on a flat plate is given by White 
and Christoph1 
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This relationship is only applicable in the turbulent region of a boundary layer, 
and does not apply in the laminar or transitional regions of the boundary layer.  
The skin friction is affected by a number of parameters, including pressure 
gradient, surface roughness, compressibility, and surface heat transfer.  Adverse 
pressure gradients cause the skin friction to be reduced as the boundary layer is 
pushed toward separation.  Boundary layer separation occurs when the skin 
friction becomes negative.  High values of skin friction are an indication of a very 
stable (i.e. difficult to separate) boundary layer.  Unfortunately high values of skin 
friction also equate to high values of viscous drag.  The effect of both 
compressibility and heat transfer on the flat plate turbulent skin friction are shown 
in Fig. 3.1.  Both a hot wall and compressibility tend to reduce the skin friction 
over the incompressible adiabatic value. 
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Figure 3.1  Effect of compressibility and heat transfer on the skin friction on a flat 

plate. 
 
As mentioned above, the power law relationship in Eq. 3.3 is not very accurate.   
Better approximations of the velocity profile shape are generally written in terms 
of the parameters u+ and y+ defined as 
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and uτ is the friction velocity 
 

w

wu
ρ
τ

τ =           (3.12) 

 
The subscript w denotes the value at the wall and τw is the wall shear stress 
defined by  
 



3-4                                  

w
w y

u
∂
∂

= μτ           (3.13) 

 
The boundary layer velocity profile can be divided into four regions.  The 
incompressible velocity profile in each of the subregions regions of the inner 
region shown in Fig. 3.2 is given by 
 
Laminar sublayer 0 < y+ < 5  u+ = y+     (3.14) 
 
Buffer layer  5 < y+ < 30  u+ = 5 ln y+ - 3.05   (3.15) 
 

Log layer  30 < y+ < 1000 u+ = 
κ
1  ln y+ + B   (3.16) 

 
The values of κ, the von Karmen constant, and B are often debated, but are 
generally accepted to be 0.4 and 5.5 respectively.  The log layer is also called 
the law of the wall.   

 
 

Figure 3.2  Boundary layer regions. 
 
The y+ value where the profile transitions from the inner to the outer profile varies 
with the Reynolds number and the pressure gradient.  The outer region is much 
more sensitive to pressure gradient.  Clauser’s2 equilibrium parameter β  is often 
used to characterize the pressure gradient. 
 

 Sublayer Log Layer Wake Buffer 
 Layer 

 Inner Region 
 Outer 
Region 
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          (3.17) 

 
Coles3 introduced the wake function W given by 
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The velocity profile in the outer region is given by 
 

⎟
⎠
⎞

⎜
⎝
⎛Π

++= ++

δκκ
yWByu ln1         (3.19) 

 
where Π is given by 
 

( ) 75.05.08.0 +=Π β          (3.20) 
 
Spalding4 proposed a composite form for the incompressible velocity profile 
given by 
 

( ) ( )
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White and Christoph1 give a law of the wall velocity profile that includes the 
effects of compressibility, heat transfer, and pressure gradient.  
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Where ( ) 2/12 4Γ+Θ=Q  and ( ) 2/11 ++= yαφ .   The values of +

0y  and +
0u  are taken 

as 6 and 10 respectively.  The parameters Θ, Γ, and α represent the effects of 
heat transfer, compressibility, and pressure gradient respectively. 
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Here qw is the wall heat transfer (
w

w y
Tk

∂
∂ ), μw is the wall viscosity, Tw is the wall 

temperature, ρw is the wall density, r is the recovery factor (normally taken as the 
Prandtl number to the one third power), kw is the wall thermal conductivity, and cp 
is the specific heat at constant pressure.  
 
It is not obvious what effect each of the parameters defined in Eqs. 3.23-25 has 
on the velocity profile.  Fig. 3.3 shows the effect of an adverse pressure gradient 
and compressibility has on the velocity profile. 
 

 
Figure 3.3  Effect of adverse pressure gradient and compressibility on boundary 

layer profile shape. 
 

The boundary layer thickens and the skin friction decreases as the pressure 
gradient is increased.  Compressibility also causes the skin friction to decrease.   
Heat transfer effects are shown in Fig. 3.4. 
 

 Increasing α 

 Increasing Γ 
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Figure 3.4  Effect of wall heat transfer on boundary layer profile shape. 

 
A cold wall (wall temperature less than the adiabatic wall temperature) creates a 
thinner boundary layer and increases the skin friction.  A hot wall (wall 
temperature greater than the adiabatic wall temperature) thickens the boundary 
layer and decreases the skin friction. 
 
The temperature distribution within the inner part of the boundary layer boundary 
layer is given by the Crocco-Busemann equation 
 

( )( )21 ++ Γ−Θ+= uuTT w         (3.26) 
 
where Θ is defined in Eq. 3.23  and Γ is defined in Eq. 3.24.  For adiabatic wall 
cases, β =0 and the Crocco-Busemann equation reduces to 
 

( )
⎟
⎠
⎞

⎜
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w u

2
r11TT γ         (3.27) 

 
The pressure is assumed to be constant in the normal direction from the wall in 
the inner part of the boundary layer.  Density distributions can be defined based 
on the temperature distribution and the equation of state.  
 
3.2 Shear Layer Theory 
 
A free shear layer is always initiated from a surface of some kind.  The boundary 
layer profile remains for a short period.  If no external pressure gradient is 
present, the shear layer will eventually become self-similar.  A self-similar profile 
is one in which the profile shape remains unchanged as you move downstream if 

Increasing Θ 
(Cold Wall)

Decreasing Θ 
(Hot Wall)
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the profile is defined in terms of similarity variables.  Chapman and Korst5 
suggested the similarity variable for two-dimensional shear layers  
 

x
yση =            (3.28) 

 
where x is the downstream distance from the origin of the shear layer, y is the 
normal distance across the shear layer (y=0 denotes the center of the shear 
layer, and σ is the shear layer spread rate parameter.  Brown and Roshko6 
suggested using  
 

ωδ
5.0* yy

y
−

=           (3.29) 

 
where the vorticity thickness δω is defined as 
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Here U1 is the velocity at the high speed edge of the shear layer and U2 is the 
velocity at the low speed edge of the shear layer.  Chapman and Korst5 
suggested that the velocity profile was given by 
 

[ ])(15.0
21

* ηerf
UU

uu +=
−

=        (3.30) 

 
where erf is the error function.  This profile shape is valid for both laminar and 
turbulent shear layers.  Samimy and Elliot7 obtained Laser Doppler Velocimeter 
(LDV) data on a shear layer.  Measurements were made at several downstream 
locations between the trailing edge of the splitter plate and a station 210 mm 
downstream of the splitter plate.  The flow parameters are given in Table 3.1.  
Eq. 3.30 is plotted with data in Fig. 3.5.   
 

T0, K P01, 
kPa 

M1 M2 Mc U1, 
m/sec 

U2/U1 ρ2/ρ1 δ1, mm

291.0 314.0 1.80 0.51 0.52 479.5 0.355 0.638 8.0 

Table 3.1  Flow parameters for the spatial mixing-layer case 
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Figure 3.5  Shear layer velocity profile. 

 
The shear layer thickness is given by 
 

σ
xb =            (3.31) 

 
The shear layer spread parameter (σ) is affected by compressibility.  The 
accepted value for subsonic flow issuing into quiescent air is σ=11.  This value 
will increase as compressibility effects become greater, and will cause the shear 
layer to become thinner.  Experimental values8 for σ for two-dimensional jets 
issuing into quiescent air are shown in Fig. 3.6.   
 

 
 

Figure 3.6  Shear layer spread parameter for jet issuing into quiescent air. 
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Subsonic spread parameter experimental results8 as a function of velocity ratio 
are shown in Fig. 3.7. 
 

 
 

Figure 3.7  Shear layer spread parameter for subsonic jets. 
 

This indicates that the shear layer will become thinner as the ratio of the 
velocities of the two streams increases. 
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4.0 Algebraic Turbulence Models 

 
4.1 Inner Eddy Viscosity Model 
 
Most of the earliest turbulence models were based on Prandtl’s mixing length 
hypothesis.  Prandtl1 suggested that the eddy viscosity could be represented by 
 

y
uLmt ∂
∂

= 2ρμ                                                                                          (4.1) 

 
The Prandtl mixing length relates the eddy viscosity to the local mean velocity 
gradient.  The secret to successful applications of the mixing length hypothesis is 
to find some general method of defining the mixing length.  Most algebraic 
models divide the boundary layer into an inner and outer region as described in 
Chapter 3.  The inner layer includes the viscous sublayer, the buffer layer, and 
part of the fully turbulent log region.  The outer layer includes the remaining part 
of the log layer and the wake region.  The eddy viscosity in the inner layer follows 
Prandtl's form and is given by 
 
( ) Ω= 2

minnert Lρμ          (4.2) 
 
where the mixing length Lm is given by 
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where y is the distance normal to the wall, κ is the von Karmen constant, and the 
vorticity Ω is defined as 
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−
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=Ω           (4.4) 

 
4.2  Cebeci-Smith Model 
 
Cebeci-Smith2 suggested that the outer eddy viscosity be expressed as 
 
( ) *δραμ eoutert u=          (4.5) 
 
Here α is usually assigned a value of 0.0168 for flows where the Reynolds 
number based on momentum thickness (Reθ) is greater than 5000, δ* is the 
displacement thickness, and ue is the velocity at the edge of the boundary layer. 
The final eddy viscosity is  
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( ) ( )[ ]outertinnertt μμμ ,min=         (4.6) 

 
This model is fairly simple, but it requires knowledge of the conditions at the edge 
of the boundary layer and the boundary layer thickness.  These quantities are not 
always easy to calculate in complicated flows with a Navier-Stokes code since it 
is often difficult to define where the boundary layer edge actually occurs. 
 
4.3  Baldwin-Lomax Model 
 
Baldwin-Lomax3 developed a form of the outer eddy viscosity that did not require 
knowledge of the conditions at the edge of the boundary layer.  This model has 
become quite popular for CFD applications.  The eddy viscosity in the outer layer 
is defined as  
 
( ) klebwakecpoutert FFKCρμ =         (4.7) 
 
where Fwake contains the mixing length term and Fkleb is the Klebanoff 
intermittency factor.  These terms are defined as  
 

{ }max
2

maxmaxmax /,min FUyCFyF diffwkwake =       (4.8) 
 
The quantities Fmax and ymax are taken from the maximum of the F function 
defined as 
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and Udiff is given by 
 

( ) ( )min
22

max
22 VUVUU diff +−+=       (4.10) 

 
The F function is calculated along a line normal to the wall.  The F function for a 
typical attached boundary layer is shown in Fig. 4.1.   
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Figure 4.1  The F function (Eq. 4.9) for an attached boundary layer. 

 
The Klebanoff intermittency factor4 is used to reduct the eddy viscosity to zero at 
the outer edge of the boundary layer.  The Klebanoff intermittency factor is given 
by 
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The final eddy viscosity is  
 

( ) ( )[ ]outertinnertt μμμ ,min=         (4.12) 
 
The constants used in the Baldwin-Lomax model are 
 

068.0,4.0,0.1,3.0,6.1,26 ======+ KCCCA wkklebcp κ     (4.13) 
 
Algebraic models work well for flows that can be characterized by a single length 
scale such as attached boundary layers or simple shear layers.  The Baldwin-
Lomax model determines the appropriate mixing length from the location of the 
peak in the F function.  For simple flows there will only be one peak in the F 
function.  In more complicated flows with multiple shear layers such as separated 
boundary layers or wall jets the F function will contain multiple peaks.  When 
multiple peaks are present it becomes difficult to automatically choose the proper 
peak to use, if a single peak can be used to model the turbulent flow.  Degani 
and Schiff5 recommended a procedure to automatically select the first significant 
peak in the F function.  This modification to the search procedure for the peak 
has been shown to improve the performance of the Baldwin-Lomax for high 
angle-of-attack flows with cross-flow separation.  

F 

y (Fmax,ymax) 
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4.4  Wake and Jet Model 
 
The Baldwin-Lomax model has been modified for use in wakes and jets (Ref. 6).  
First, Udiff in Eq. 4.11 is redefined as  
 

( ) ( ) max
22

max
22

ydiff VUVUU +−+=       (4.14) 
 
The exponential term in the definition of F(y) (Eq. 4.9) is set to zero yielding 
 

Ω= yyF )(           (4.15) 
 
The Fwake function (Eq. 4.8) is redefined to be 
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The ymax location in Eq. 4.16 is defined to be the location where 

max
Ω occurs.  

Finally the Klebanoff intermittency factor Fkleb (Eq. 4.11) is rewritten as  
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This wake formulation will work for individual simple shear layers.  If multiple 
shear layers are present, the user must partition the flow and apply the 
turbulence model to each shear layer individually.  This can easily become 
impractical for complicated geometries. 
 
4.5  Algebraic Model Shortcomings 
 
The flow in a two-dimensional channel with a circular arc bump contraction can 
be used to demonstrate two shortcomings of the Baldwin-Lomax turbulence 
models.  These shortcomings are the model’s tendency to switch Fmax peaks and 
the lack of any transport terms in the turbulence model.  Fig. 4.2 shows the 
geometry and the eddy viscosity contours for both the Baldwin-Lomax and 
Spalart-Allmaras turbulence models.  The eddy viscosity predicted by the 
Baldwin-Lomax is seen to reduce itself almost to zero at the start of the bump.  
The Spalart-Allmaras one-equation transport turbulence model (discussed in the 
next section) predicts a much smoother distribution of eddy viscosity on the 
bump.  The reason for the anomaly in the Baldwin-Lomax model can be seen in 
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Fig. 4.3.  The location of the Fmax peak moves very close to the wall at the start of 
the bump (x=0) and rises back to its original level at the bump trailing edge (x=1).  
The relative magnitude of the Fmax peak is also shown if Fig. 4.3, and is seen to 
increase in the region of the bump.    The eddy viscosity is proportional to the 
product of the distance of the peak off the wall and the magnitude of the peak, 
and is seen to decrease in the region above the bump because the Fmax peak has 
moved very near the wall.  The sudden switching of the Fmax peak causes the 
turbulence level to be greatly reduced in the favorable pressure gradient region 
near the bump leading edge.  If the Baldwin-Lomax model included transport 
terms, then the higher upstream values of eddy viscosity would be transported 
downstream at the beginning of the bump, and the Baldwin-Lomax predicted 
eddy viscosity distribution would not demonstrate the discontinuous behavior it 
shows here.  

 
 

Figure 4.2  Eddy viscosity contours for a circular arc bump in a two-dimensional 
channel for two different turbulence models. 
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Figure 4.3  Distance above the wall of the Fmax peak and the Fmax value for a two-
dimensional channel with a circular arc bump. 

 
4.6  Grid Sensitivity for a Flat Plate with Adiabatic Wall 
 
The initial wall spacing of the computational grid and the grid-stretching ratio (the 
ratio of the change in grid spacing normal to the wall) can affect the accuracy of 
the Baldwin-Lomax model.  Figure 4.4 shows the sensitivity of the skin friction to 
initial wall spacing for a flat plate.  The grid-stretching ratio was 1.2 for all these 
cases.  The plots include the theoretical skin friction curves of White and of 
Spalding. 
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Figure 4.4   Flat plate skin friction predictions for the Baldwin-Lomax turbulence 

model  for varying initial wall grid point spacings. 
 

The calculated boundary layer is seen to become fully turbulent around a length 
Reynolds number (Rex) of 1x106.  The results for y+=0.2 and y+=1 are virtually 
identical indicating a grid independent solution.  The y+=5 solution shows some 
small divergence from the y+=1 solution at the lower length Reynolds numbers 
while the y+=10 solution shows large differences from the other solutions.   
 
Predicted velocity profiles for the flat plate boundary layer for various initial wall 
grid point spacings are shown in Fig. 4.5.  The velocity profile shows little effect 
of the initial spacing for all but the y+=10 profile.  All of the profiles but the y+=10 
profile are in good agreement with the theoretical profile from Spalding.  Note 
that the theoretical profile does not include the law-of-the wake (see Chapter 3), 
and hence the predicted profiles diverge from the theoretical profile in the wake 
region of the boundary layer.  The predicted eddy viscosity for various initial wall 
spacings is shown in Fig. 4.6. 
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Figure 4.5  Flat plate boundary layer profiles predicted by the Baldwin-Lomax 

turbulence model for varying initial wall grid point spacings. 
 

 
Figure 4.6  Eddy viscosity distribution predicted by the Baldwin-Lomax turbulence 

model for varying grid initial wall spacings. 
 

Here again it is seen that the y+=0.2 and the y+=1.0 results are almost identical.  
The y+=5 and y+=10 results show the solutions are no longer grid independent at 
larger wall spacings. 
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The effect of grid stretching ratio on skin friction for a flat plate is shown in Fig. 
4.7.  All of these solutions used an initial wall spacing of y+=1. 

 
Figure 4.7  The effect of grid stretching ratio on the skin friction for a flat plate 

boundary layer using the Baldwin-Lomax turbulence model. 
 

There seems to be very little effect of grid stretching for this case indicating that 
the initial wall spacing is the more critical parameter for skin friction predictions 
for flat plates with the Baldwin-Lomax turbulence model.  This is also the case for 
the velocity profile, as seen in Fig. 4.8.   The eddy viscosity does change as the 
stretching ratio increases as shown in Fig. 4.9.  It is interesting to note that a 
wide range of eddy viscosity distributions have little effect on skin friction and the 
velocity profile for a flat plate boundary layer.  This insensitivity to the absolute 
eddy viscosity level is probably a major reason why the eddy viscosity concept 
has worked so well in practice. 
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Figure 4.8  The effect of grid stretching ratio on the velocity profile for a flat plate 

boundary layer using the Baldwin-Lomax turbulence model. 
 

 
Figure 4.9  The effect of grid stretching ratio on the eddy viscosity distribution for 

a flat plate boundary layer using the Baldwin-Lomax turbulence model. 
 
4.7  Grid Sensitivity for Axisymmetric Bump 
 
A second example of the grid sensitivity of the Baldwin-Lomax turbulence model 
that includes a pressure gradient is the NASA Ames transonic axisymmetric 
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bump experiment (Ref. 7).  The geometry is shown in Fig. 4.10.  The model 
consisted of a sharp-lipped hollow cylinder with a 15.2 cm outer surface 
diameter.  The bump was a circular arc 20.3 cm long and 1.9 cm high that begins 
60.3 cm downstream of the cylinder leading edge.  The upstream intersection of 
the bump and cylinder was faired with a circular arc.  The test was run at a Mach 
number of 0.875 and a chord Reynolds number of 2.67x106.  

c=20.3 cm 

h=1.9 cm 

D=15.2 cm 

M=0.875 Shock 

Recirculation 

Figure 4.10  Geometry for the transonic axisymmetric bump. 

The effect of initial grid spacing on the pressure coefficient distribution along the 
bump is shown in Fig. 4.11.  The stretching ratio was 1.2 for these cases. The 
pressure coefficient seems to be relatively insensitive to the initial grid spacing, 
with the y+=10 and y+=20 curves being slightly displaced from the other curves.   
The velocity distribution at the aft junction of the bump and the cylinder (x/c=1) is 
shown in Fig. 4.12.   The y+=20 solution predict a larger velocity in the reverse 
flow region than the other solutions.  Grid stretching effects on the pressure 
coefficient distribution along the bump is shown in Fig. 4.13.  The initial grid 
spacing was 1.2 for these cases.  The pressure distribution coefficient changes 
slightly as the grid-stretching ratio is increased to 1.5.  The solution in the 
separated region differs greatly for a grid-stretching ration of 2.0.  The effect on 
the velocity distribution at x/c=1 is shown in Fig. 4.14.  As with increasing initial 
grid spacing, increasing the grid spacing increases the size and the magnitude of 
the separated flow region.    
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Figure 4.11  The effect of initial grid wall spacing on the pressure coefficient for 

the axisymmetric bump using the Baldwin-Lomax turbulence model. 

 
Figure 4.12  The effect of initial grid wall spacing on the velocity distribution at 
x/c=1 for the axisymmetric bump using the Baldwin-Lomax turbulence model. 
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Figure 4.13  The effect of grid stretching on the pressure coefficient for the 

axisymmetric bump using the Baldwin-Lomax turbulence model. 

 
Figure 4.14  The effect of grid stretching on the velocity profile at x/c=1 for the 

axisymmetric bump using the Baldwin-Lomax turbulence model. 
  
The results for the Ames axisymmetric bump indicate that the grid-stretching ratio 
is a critical parameter when pressure gradients are present in the flow.  The 
stretching ratio should probably be kept between 1.2 and 1.3 to assure that the 
grid can capture the pressure gradient effects.  This is true in both structured and 
unstructured grids. 
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4.8  Grid Sensitivity for a Flat Plate with Heat Transfer 
 
Calculating heat transfer accurately can be more difficult than predicting skin 
friction.  This can be seen in the subsonic flat plate example when the wall 
temperature is specified to be 1.5 times the free-stream temperature.  The 
sensitivity of the skin friction and heat transfer result with varying initial grid wall 
spacing is shown in Fig. 4.15 and Fig. 4.16.  The grid stretching ratio was fixed at 
1.2 for these results.  Both the skin friction and heat transfer seem to be relatively 
insensitive to the wall spacing for wall spacings less than y+=5 when no pressure 
gradient is present. 

 
Figure 4.15  The effect of wall spacing on the skin friction on a flat plate with heat 

transfer using the Baldwin-Lomax turbulence model. 
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Figure 4.16  The effect of wall spacing on the heat transfer (Stanton number) on 

a flat plate using the Baldwin-Lomax turbulence model. 
 

The velocity and temperature profiles for a length Reynolds number (Rex) of 
1.0x107 are shown in Fig. 4.17 and 4.18 respectively.  Both the velocity and 
temperature profiles are relatively insensitive to wall spacing for this model when 
no pressure gradient is present. 

 
Fig. 4.17  The effect of wall spacing on the velocity profile on a flat plate with heat 

transfer using the Baldwin-Lomax turbulence model. 
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Fig. 4.18  The effect of wall spacing on the temperature profile on a flat plate with 

heat transfer using the Baldwin-Lomax turbulence model. 
 

Grid stretching effects on skin friction and heat transfer predictions are shown in 
Fig. 4.19 and 4.20.  The effect of grid stretching on the velocity and temperature 
profiles is shown in Fig. 3.22 and 3.23 respectively.  The initial wall spacing was 
held at y+=0.1 for these calculations.  The results reach a grid independent result 
for a stretching ratio of less than 1.3. 

 
Figure 4.19  The effect of grid stretching on the skin friction on a flat plate with 

heat transfer using the Baldwin-Lomax turbulence model. 
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Figure 4.20  The effect of grid stretching on heat transfer (Stanton number) on a 

flat plate using the Baldwin-Lomax turbulence model. 

 
Figure 4.21  The effect of grid stretching on the velocity profile on a flat plate with 

heat transfer using the Baldwin-Lomax turbulence model. 
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Figure 4.22  The effect of grid stretching on the temperature profile on a flat plate 

with heat transfer using the Baldwin-Lomax turbulence model. 
 
4.9  Grid Sensitivity for a Nozzle with Heat Transfer 
 
Flow through a supersonic nozzle with a constant temperature wall can serve as 
a test case for evaluating the performance of the turbulence model in the 
presence of strong pressure gradients.  Back, Massier, and Gier8 measured the 
wall pressure distribution and heat transfer for a converging-diverging nozzle with 
a throat diameter of 0.0458 meters and an exit diameter of 0.1227 meters.  High-
pressure air was heated by the internal combustion of methanol and flowed along 
a cooled constant area duct with a length of 0.4572 meters and a diameter of 
0.355 meters before entering the nozzle.  The nozzle geometry and boundary 
conditions are shown in Fig. 4.23.  The gas could be treated as a calorically 
perfect gas with a ratio-of-specific heats (γ) of 1.345.  The nozzle exit Mach 
number was approximately 2.5.  The molecular viscosity and thermal conductivity 
were assumed to vary according to Sutherland’s law.   
 

 
 

 
 

Figure 4.23  Nozzle geometry. 
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The initial wall spacing was varied with a grid stretching ratio of 1.2 in the 
boundary layer.  The grid spacing was held constant in the core of the nozzle.  
Comparisons of the predicted and measured pressure along the nozzle are 
shown in Fig. 4.24 for varying initial wall spacings.   The throat is located at 
x=0.091 meters.  The pressure distribution is seen to be insensitive to the initial 
wall spacing.  The heat transfer at the wall is shown in Fig. 4.25.  The results are 
in poor agreement with the data and are quite sensitive to the initial wall spacing, 
especially for wall spacing greater than y+=1. 

 
Figure 4.24  The effect of wall spacing on the pressure distribution for a 
supersonic nozzle with heat transfer using the Baldwin-Lomax turbulence model.  

 
Figure 4.25  The effect of wall spacing on the wall heat transfer distribution for a 
supersonic nozzle using the Baldwin-Lomax turbulence model. 
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The poor performance of the Baldwin-Lomax model for this case is due to the 
difficulty in choosing the proper Fmax peak as was described in Section 4.5.  The 
F function at the nozzle throat is shown in Fig. 4.26.  Notice that multiple peaks 
are present in the function.  It is extremely difficult to predict which, if any, of 
these three peaks is the proper value for this case.  The eddy viscosity 
distribution at the nozzle throat is shown in Fig. 4.27.  The Spallart-Allmaras eddy 
viscosity distribution is included in Fig. 4.26 for comparison.  The Baldwin-Lomax 
eddy viscosity is much lower than the Spalart-Allmaras distribution and is seen to 
cut off prematurely.  This low value of eddy viscosity results in a low prediction of 
the wall heat transfer.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.26  The F function at the nozzle throat. 
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Fig. 4.27  The eddy viscosity distribution at the nozzle throat. 

 
4.10  Summary 

 
Algebraic turbulence models were popular in the 1970’s and 1980’s because of 
their simplicity and robustness.  As Navier-Stokes CFD applications became 
more complex in the 1990’s these models began to lose popularity because of 
accuracy limitations for flows that contain multiple shear layers or boundary layer 
separation.  The difficulties encountered when multiple peaks occur in the F 
function have been demonstrated.  These models have also lost favor in 
unstructured grid applications since they require a velocity profile over multiple 
grid points aligned with the flow for successful application.   
 
The eddy viscosity predicted by an algebraic turbulence model is only a function 
of the local velocity profile used to generate the F function.  Thus the eddy 
viscosity relates directly to the local instantaneous vorticity field of that profile and 
cannot model the transport of turbulence by the flow.  This makes these models 
a poor choice for unsteady flows and for flows where turbulent transport is 
important. 
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Baldwin-Lomax Application Hints 
 

1. The Baldwin-Lomax model requires that the F function be well 
defined.  This normally requires that at least three points be located 
within the sublayer (y+<10).  The first point off the wall should be 
located about y+<5 for pressure distributions, y+<2 to obtain 
reasonable skin friction values, and y+<0.5 for heat transfer.   The grid 
stretching normal to the wall should not exceed 1.3.  Improved heat 
transfer results can be obtained by using a constant spacing for the 
first three cells off the wall. 

2. In order to reduce the probability of finding a second peak well off the 
wall, it is usually good to limit the number of points over which the F 
function is calculated. 

3. Care should be taken not to divide viscous regions such as boundary 
layers when dividing the computational domain for blocked or chimera 
applications since the entire velocity profile is required to properly 
define the Fmax and Udiff quantities. 
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5.0  One-Equation Turbulence Models 
 
5.1  Theory 
 
The general form for all transport turbulence models is similar to the form of a 
species equation in reacting flows  
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where Z is a general turbulence variable.  The terms on the left hand side of Eq. 
5.1 represent the convective transport of Z.  The first term on the right hand side 
of Eq. 5.1 is the diffusion of Z assuming a gradient-diffusion model.  The 
functions P(Z) and D(Z) on the right hand side of Eq. 5.1 represent the production 
and destruction of Z.  The production function for turbulence models are usually 
functions of the eddy viscosity and the fluid strain or vorticity.  A functional 
relationship between Z and the eddy viscosity is required to complete the model.  
Several one-equation transport models for turbulence have appeared over the 
years.  The most popular one-equation models have been the Baldwin-Barth1 
model and the Spalart-Allmaras model2.   The Spalart-Allmaras model will be 
discussed in some detail here. 
 
5.2  Spalart-Allmaras Model 
 
The Spalart-Allmaras turbulence model was derived using empirical 
relationships, dimensional analysis, and Galilean invariance.  The goal was to 
produce a turbulent transport model that was fast, numerically stable, and 
reasonably accurate for both shear layers and boundary layers.  The model uses 
a turbulence variable ν~  that has the dimensions of viscosity.  The model can be 
written as  
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where the production term is given by 
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and the dissipation is given by 
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Here Ω is the magnitude of the vorticity, d is the distance to the nearest wall, and 
fv2 and fw are given by 
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and the remaining functions are given by 
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The remaining constants are given in Table 5.1. 
 

Cb1 Cb2 σ κ Cw1 Cw2 Cν1 
0.1355 0.622 2/3 0.41 σκ /)1(/ 2

2
1 bb CC ++  0.3 7.1 

 
Table 5.1  Coefficients for the Spalart-Allmaras model. 

 
The eddy viscosity is defined as 
 

1
~

vt fνν =           (5.11) 
 
The original model also includes a boundary layer transition model.  The trip 
function can be used for simple geometries, but is difficult to apply for complex 
geometries and is usually omitted. The turbulent transition location can also be 
fixed by setting the production term to zero in the region of the flow upstream of 
the desired transition location. 
 
The wall boundary condition is 0~ =ν .  At free stream boundaries, ν~  is set to a 
small number, generally ν/10.  The turbulence variable ν~  is usually limited to be 
greater than the free stream value in the field so that it will not go negative.  The 
model will self-initialize from this small value of ν~  in the freestream.  The 
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numerical implementation for implicit algorithms is discussed in detail in Ref. 2.  
Generally the convective terms are treated with upwind differencing.  The 
diffusion term is treated with central differencing.  The full source term jacobians 

(
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~
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)~(
∂

∂
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∂ DP  ) should be used in implicit formulations.  When the r function 

becomes large, the fw function becomes a constant, so r can be clipped at a 
value of 10 to avoid numerical overflow problems. 
 
The Spalart-Allmaras model suffers from a deficiency common to transport type 
models in that it fails to predict the reduction in shear layer growth rate with 
increasing jet Mach number.  The model will predict the incompressible shear 
layer growth rate regardless of the jet Mach number.  Paciorri and Sabetta3 
suggest a compressibility correction for this model. 
 
5.3  Rotation/Streamline Curvature Corrections 
 
Conventional linear eddy viscosity models have difficulty predicting flows with 
large system rotation or streamline curvature.  The Spalart-Allmaras model falls 
into this category.  The vorticity reaches a local maximum in the core of a vortex 
causing the eddy viscosity to increase rapidly.  This leads to excessive 
dissipation of the vortex core.  To remedy this problem the production term (Eq. 
5.3) be modified by multiplying by a correction factor4. 
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where Fr1(r*) is a correction for rotational flow given  
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where |S| is the magnitude of the strain.  The strain is defined as  
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The magnitude of the strain is given by 
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The ε in Eq. (8) is a small number used as a threshold value so that the 
turbulence model returns to its baseline form in areas of low vorticity and strain 
such as near free stream boundaries.  The ε value can be defined as 
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Where Uref and Lref are the reference velocity and length scale for the calculation 
respectively. 
 
This correction form implies that curvature effects are a function of the ratio of the 
local strain magnitude and vorticity magnitude.  The strain goes to zero in the 
core of a vortex while the vorticity reaches a local maximum.  Thus Eq. (5.13) 
converts the production term of the SA model into a dissipation term in the vortex 
core region if Cvor is greater than one.  Ref. 4 recommended Cvor=2.  The 
modified form of the production term has almost no effect in boundary layers and 
shear layers since the magnitude of the strain and the magnitude of the vorticity 
are almost equal for these flows and the correction term goes to zero.  This 
correction is generally referred to as the approximate Spalart-Allmaras rotational 
correction (ASARC). 
  
Shur, et al.5 introduced a correction to the Spalart-Allmaras turbulence model for 
rotating and curved flows.  The correction is applied to the production term in a 
manner similar to the ASARC correction.  The correction has the form 
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The remaining term D is define as  
 

( )222 5.0 Ω+= SD          (5.20) 
 
The recommended values for the constants are cr1=1.0, cr2=12.0 and cr3=1.0.  
The Lagrangian derivative of the strain tensor in Eq. (5.19) is included to obtain 
the proper value for the curvature correction.  This term makes the correction 
expensive and cumbersome to implement.  Some implementations of this 
correction ignore the contribution of the time derivative of the Lagrangian 
derivative and the reference frame rotation to simplify the coding.  This is referred 
as the SARC correction. 
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An example of the standard SA, SARC, and ASARC models applied to flow in a 
u-duct6 is shown in Fig. 5.1.  The distance along the wall is denoted by s.  The 
standard SA model under-predicts the pressure coefficient and the skin friction at 
the exit of the u-bend.  Both the SARC and ASARC models improve the 
comparison with data. 
 

 
 

Figure 5.1.  Pressure coefficient and skin friction on the outer wall of a u-duct.. 
 
The standard SA model also overdamps the flow in the core of a vortex.  This 
tends to cause vortices to be damped out prematurely in vortex dominated flows 
such as wing or rotor tip vortices.  The production term for the SA model (Eq. 5.3) 
is based on the vorticity magnitude.  The vorticity magnitude reaches a local 
maximum in a vortex core, hence the model tends to produce much more eddy 
viscosity than is required to properly simulate the flow in the vortex core.   
 
The SARC and ASARC correction terms are negligible in simple shear layers 
and boundary layers and do not affect the model since the magnitude of the 
strain is approximately equal to the magnitude of the vorticity.  The correction 
term transforms the production term into a dissipation term in the core of a vortex 
where the magnitude of the strain is zero.  This additional dissipation tends to 
reduce the eddy viscosity in the core of the vortex and significantly improves the 
simulation of vortex dominated flows.  The wing tip vortex on a NACA 0012 wing4 
tip at an angle-of-attack of 10o is shown in Fig. 5.2 for both the original and 
modified SA production terms.  The tangential velocity predicted by the modified 
SA models is in much better agreement with the data.  Fig. 5.2b also includes 
results for the hybrid RANS/LES Detached Eddy Simulation (DES) models that 
are discussed in Chapter 9. 
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Figure 5.2a  Axial velocity for a NACA 0012 wing tip vortex. 

 

 
 

 
Fig. 5.2b  Vortex tangential velocity. 

 
5.4  Grid Sensitivity for a Flat Plate with Adiabatic Walls 
 
The initial wall spacing of the computational grid and the grid-stretching ratio can 
affect the accuracy of the Spalart-Allmaras model.  Figure 5.3 shows the 
sensitivity of the skin friction to initial wall spacing for a flat plate.  The grid-
stretching ratio was 1.2 for all these cases.  The plots include the theoretical skin 
friction curves of White and of Spalding. 
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The boundary layer is seen to become fully turbulent around a length Reynolds 
number (Rex) of 1x106.  The results for y+=0.2 and y+=1 are virtually identical 
indicating a grid independent solution.  The y+=5 solution show some small 
divergence from the y+=1 solution at the lower length Reynolds numbers while 
the y+=10 solution shows large differences from the other solutions.  
 
 
Predicted velocity profiles for the flat plate boundary layer for various initial wall 
grid point spacings are shown in Fig. 5.4.  The velocity profile shows little effect 
of the initial spacing for all but the y+=10 profile.  All of the profiles but the y+=10 
profile are in good agreement with the theoretical profile from Spalding.  Note 
that the theoretical profile does not include the law-of-the wake (see Chapter 3), 
and hence the predicted profiles diverge from the theoretical profile in the wake 
region of the boundary layer.  The predicted eddy viscosity for various initial wall 
spacings is shown in Fig. 5.5. 
 

 
Figure 5.3  Flat plate skin friction predictions for the Spalart-Allmaras turbulence 

model  for varying initial wall grid point spacings. 
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Figure 5.4  Flat plate boundary layer profiles predicted by the Spalart-Allmaras 

turbulence model for varying initial wall grid point spacings. 
 

 
Figure 5.5  Eddy viscosity distribution predicted by the Spalart-Allmaras 

turbulence model for varying grid initial wall spacings. 
 

Here again it is seen that the y+=0.2 and the y+=1.0 results are almost identical.  
The y+=5 and y+=10 results show the solutions are no longer grid independent at 
larger wall spacings. 
 
The effect of grid stretching ratio on skin friction for a flat plate is shown in Fig. 
5.6.  All of these solutions used an initial wall spacing of y+=1. 
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There seems to be very little effect of grid stretching for these cases indicating 
that the initial wall spacing is the more critical parameter for skin friction 
predictions for flat plates with the Spalart-Allmaras turbulence model.  This is 
also the case for the velocity profile, as seen in Fig. 5.7.   The eddy viscosity 
does change as the stretching ratio increases as shown in Fig. 5.8.  It is 
interesting to note that a wide range of eddy viscosity distributions have little 
effect on skin friction and the velocity profile for a flat plate boundary layer. 
 

 
Figure 5.6  The effect of grid stretching ratio on the skin friction for a flat plate 

boundary layer using the Spalart-Allmaras turbulence model. 
 

 
Figure 5.7  The effect of grid stretching ratio on the velocity profile for a flat plate 

boundary layer using the Spalart-Allmaras turbulence model. 
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Figure 5.8  The effect of grid stretching ratio on the eddy viscosity distribution for 

a flat plate boundary layer using the Spalart-Allmaras turbulence model. 
 
5.5  Grid Sensitivity for and Axisymmetric Bump 
 
A second example of the grid sensitivity of the Spalart-Allmaras turbulence model 
that includes a pressure gradient is the NASA Ames transonic axisymmetric 
bump experiment described in the previous chapter.  The effect of initial grid 
spacing on the pressure coefficient distribution along the bump is shown in Fig. 
5.9.  The stretching ratio was 1.2 for these cases. The pressure coefficient 
seems to be relatively insensitive to the initial grid spacing for y+<10.  The y+=20 
result shows a significant difference from the other results in regions where a 
pressure gradient is present.   The velocity distribution at the aft junction of the 
bump and the cylinder (x/c=1) is shown in Fig. 5.10.   The y+=20 solution predict 
a larger velocity in the reverse flow region than the other solutions.  Grid 
stretching effects on the pressure coefficient distribution along the bump is 
shown in Fig. 5.11.  The initial grid spacing was 1.2 for these cases.  The 
pressure distribution coefficient changes slightly as the grid-stretching ratio is 
increased to 1.5.  The solution in the separated region differs greatly for a grid-
stretching ration of 2.0.  The effect on the velocity distribution at x/c=1 is shown in 
Fig. 5.12.  As with increasing initial grid spacing, increasing the grid spacing 
increases the size and the magnitude of the separated flow region.    
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Figure 5.9  The effect of initial grid wall spacing on the pressure coefficient for the 

axisymmetric bump using the Spalart-Allmaras turbulence model. 

 
Figure 5.10  The effect of initial grid wall spacing on the velocity distribution at 
x/c=1 for the axisymmetric bump using the Spalart-Allmaras turbulence model. 
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Figure 5.11  The effect of grid stretching on the pressure coefficient for the 

axisymmetric bump using the Spalart-Allmaras turbulence model. 

 
Figure 5.12  The effect of grid stretching on the velocity profile at x/c=1 for the 

axisymmetric bump using the Spalart-Allmaras turbulence model. 
 
As was seen with the Baldwin-Lomax model, grid stretching is a critical 
parameter for this turbulence model when adverse pressure gradients are 
present.  Care should be taken to keep the grid-stretching ratio between 1.2 and 
1.3. 
 



5-13                                  

5.6  Grid Sensitivity for a Flat Plate with Heat Transfer 
 
Calculating heat transfer accurately can be more difficult than predicting skin 
friction.  This can be seen in the subsonic flat plate example when the wall 
temperature is specified to be 1.5 times the free-stream temperature.  The 
sensitivity of the skin friction and heat transfer result with varying initial grid wall 
spacing is shown in Fig. 5.13 and Fig. 5.14.  The grid stretching ratio was fixed at 
1.2 for these results.  Both the skin friction and heat transfer seem to be relatively 
insensitive to the wall spacing for initial wall spacings less than y+=1. 

 
Figure 5.13  The effect of wall spacing on the skin friction on a flat plate with heat 

transfer using the Spalart-Allmaras turbulence model. 
 

The effect of wall spacing on the velocity and temperature profiles for a length 
Reynolds number (Rex) of 1.0x107 is shown in Fig. 5.15 and 5.16 respectively.  
The profiles are relatively insensitive to wall spacing for initial wall spacings less 
than y+=1.0. 
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Figure 5.14  The effect of wall spacing on the heat transfer (Stanton number) on 

a flat plate using the Spalart-Allmaras turbulence model. 
 

 
Fig. 5.15  The effect of wall spacing on the velocity profile for a flat plate with 

heat transfer using the Spalart-Allmaras turbulence model. 
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Fig. 5.16  The effect of wall spacing on the temperature profile for a flat plate with 

heat transfer using the Spalart-Allmaras turbulence model. 
 

Grid stretching effects on skin friction and heat transfer predictions are shown in 
Fig. 5.17 and 5.18.  The effect on velocity and temperature profiles for a length 
Reynolds number (Rex) of 1.0x107 are shown in Fig. 5.19 and 5.20.  The initial 
wall spacing was held at y+=0.1 for these calculations.  The results reach a grid 
independent result for stretching ratios of less than 1.3. 

 
Figure 5.17  The effect of grid stretching on the skin friction on a flat plate with 

heat transfer using the Spalart-Allmaras turbulence model. 
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Figure 5.18  The effect of grid stretching on heat transfer (Stanton number) on a 

flat plate using the Spalart-Allmaras turbulence model. 

 
Figure 5.19  The effect of grid stretching on the velocity profile on a flat plate with 

heat transfer using the Spalart-Allmaras turbulence model. 
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Figure 5.20  The effect of grid stretching on the temperature profile on a flat plate 

with heat transfer using the Spalart-Allmaras turbulence model. 
 

5.7  Grid Sensitivity for a Nozzle with Heat Transfer 
 
Flow through a supersonic nozzle with a constant temperature wall can serve as 
a test case for evaluating the performance of the turbulence model in the 
presence of strong pressure gradients.  Details of the geometry and boundary 
conditions for the converging-diverging supersonic nozzle are given in Chapter 4.  
High-pressure air was heated by the internal combustion of methanol and flowed 
along a cooled constant area duct before entering the nozzle.  The gas could be 
treated as a calorically perfect gas with a ratio-of-specific heats (γ) of 1.345.  The 
nozzle exit Mach number was 2.5.  The molecular viscosity and thermal 
conductivity were assumed to vary according to Sutherland’s law. 
 
The grid initial wall spacing was varied and the grid stretching ratio was held at 
1.2 in the boundary layer.   A uniform grid was used in the nozzle core.  
Predicted wall pressure distribution results for varying initial wall spacings are 
shown in Fig. 5.21.  The pressure distribution is seen to be insensitive to the 
initial wall spacing.  Predicted wall heat transfer is shown in Fig. 5.22.  The 
results are somewhat sensitive to the initial wall spacing for values of y+ less than 
one.  The predicted results diverge rapidly from the data for wall spacing greater 
than y+=1.  
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Figure 5.21  The effect of wall spacing on the pressure distribution for a 
supersonic nozzle  with heat transfer using the Spalart-Allmaras turbulence 
model. 

 
Figure 5.22  The effect of wall spacing on the wall heat transfer for a supersonic 
nozzle using the Spalart-Allmaras turbulence model. 

 
The grid stretching ratio was varied in the boundary layer while the initial grid 
spacing held at y+=0.5.   A uniform grid was used in the nozzle core.  Predicted 
wall pressure distribution results for varying initial wall spacings are shown in Fig. 
5.23.  The pressure distribution is seen to be insensitive to the grid stretching 
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ratio.  Predicted wall heat transfer is shown in Fig. 5.24.  The results are 
insensitive to the grid stretching ratios less than 1.3.  The predicted results 
diverge slightly from the data for grid stretching ratios greater than 1.3. 

 
Figure 5.23  The effect of grid stretching ratio on the pressure distribution for a 
supersonic nozzle with heat transfer using the Spalart-Allmaras turbulence 
model. 

 
Figure 5.24  The effect of grid stretching ratio on the wall heat transfer for a 
supersonic nozzle using the Spalart-Allmaras turbulence model. 
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5.8  Summary 
 
The Spalart-Allmaras turbulence model is a very stable and generally reasonably 
accurate model for a wide range of turbulent flows.  The model is relatively easy 
to implement in both structured and unstructured Navier-Stokes codes.  One 
drawback is the model requires the calculation of the distance to the nearest wall 
for all field points.  This can be an expensive computation, especially for 
unstructured grid codes.  The model has been used extensively for three-
dimensional geometries and is well documented.  The model has been used with 
some success for some unsteady flows.  The example given here are for 
subsonic and supersonic flows.  An excellent validation source for hypersonic 
flows can be found in Ref. 7. 
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Spalart-Allmaras Application Hints 
 

1. The first point off the wall should be located about y+=1 to obtain 
reasonable skin friction values and about y+=0.5 for heat transfer.   
The grid stretching normal to the wall should not exceed 1.3.   

2. The eddy viscosity should be limited so that it will not run away in 
some complex applications.  Generally a limit of νt/ν=200,000 is 
acceptable. 

3. Care should be taken not to divide viscous regions such as boundary 
layers when dividing the computational domain for blocked or overset 
applications since the model requires the distance from the nearest 
wall. 

4. This model tends to smear out three-dimensional vortical flows.  
Rotation and curvature corrections (SARC and ASARC) can 
significantly improve the results. 

5. The model can overdamp some unsteady flows. 
6. The model contains no corrections for compressibility and will 

overpredict the growth rate of high speed shear layers.  
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6.0 Two-Equation Turbulence Models 
 

Two-equation turbulence models have been used for almost fifty years.  There 
are a tremendous number of these models in the literature.  Most of these 
models solve a transport equation for turbulent kinetic energy (k) and a second 
transport equation that allows a turbulent length scale to be defined.  The most 
common forms of the second transport equation solve for turbulent dissipation (ε) 
or turbulent specific dissipation (ω).  Some of these two-equation models are 
valid down to the wall (low Reynolds number models) and some are only valid 
outside the inner region of the boundary layer (high Reynolds number models).  
All of these models have their own strengths and weaknesses.  Several of the 
currently popular models are described in this chapter. 

 
6.1  Theory 
 
A transport equation for turbulent kinetic energy can be derived from Navier-
Stokes equations and has the form 
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The left hand side of Eq. 6.1 contains the temporal change and convective terms 
for the turbulent kinetic energy.  The first term on the right hand side of Eq. 6.1 is 
the diffusive transport of the turbulent stresses (Dk).  The second term on the 
right hand side of Eq. 6.1 is the production of turbulent kinetic energy (Pk).  The 
last term on the right hand side of Eq. 6.1 represents the dissipation of turbulent 
kinetic energy (ε).   All of the terms on the right hand side must be modeled.  
Applying the Boussinesq approximation (Eq. 2.22) the production term becomes 
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The last term in Eq. 6.2 is zero for incompressible flow since the divergence of 

the velocity (
i

i

x
U

∂
∂ ) is zero.  This term is also neglected in many compressible flow 

applications since it can cause numerical difficulties near strong shocks and 
expansions.  Sij is the strain rate defined as  
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Kato and Launder1 suggested redefining the production term as  
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ijijtk SP Ω=υ           (6.4) 

 
Where Ωij is the vorticity defined as 
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The purpose of this modification is to reduce the tendency of many two-
equation models to overpredict the turbulent production in regions with large 
normal strain, i.e. regions with strong acceleration or deceleration.  This 
correction is often used in stagnation regions such as at the leading edge of a 
wing or blade. 
 
The diffusion term can be modeled using the gradient-diffusion approximation as  
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where σk can be thought of as a turbulent Schmidt number. 
 
Relationships for the eddy viscosity (νt) and the turbulent dissipation (ε) are 
required for closure. The square root of the turbulent kinetic energy can be used 
to represent a velocity scale for the large-scale turbulent motion.  Using this in an 
eddy viscosity relationship yields 
 

Lkt ≈ν           (6.7) 
 
where L is a turbulent length scale.  A relationship for the turbulent length scale 
of the large scale eddies is given in Eq. 1.13.  Using this definition of the 
turbulent length scale in Eq. 6.7 produces 
 

ε
ν μ

2kCt =           (6.8) 

 
where Cμ is a constant.  The system of equations would be closed with a 
relationship for the turbulent dissipation (ε). 
 
The two features that distinguish different two equation models are the treatment 
of the wall and the form of the turbulent dissipation equation.  It is possible to 
derive a transport equation for turbulent dissipation from the Navier-Stokes 
equations, but the equation contains fluctuating correlation terms that cannot be 
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easily modeled.  Turbulent dissipation cannot be measured directly 
experimentally, but must be inferred from measurements of other correlations.   
Because of the difficulty in deriving a turbulent dissipation equation based on 
physics, turbulence modelers have traditionally resorted to using a transport 
equation with empirically determined production and dissipation terms.  The two 
most popular equations used to close the turbulence model are based on the 
dissipation ε2 and a turbulence variable ω defined by Wilcox3 as 
 

kCμ

εω =            (6.9) 

 
The eddy viscosity for the Wilcox formulation is 
 

ω
ν k
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6.2  Traditional k-ε Models 
 
The standard form of the ε transport equation is 
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The production and dissipation terms of the dissipation equation are formed from 
the production and dissipation terms of the turbulent kinetic energy equation 
scaled by ε /k and multiplied by empirically determined constants and wall 
damping functions (Cε1fε1 and Cε2 fε2).  An additional damping term must be 
included for the eddy viscosity in the k-ε equations for applications near walls so 
that k and ε will have the proper behavior in the near wall region. 
 
The constants Cε1, Cε2, and Cμ  are empirically determined from comparisons with 
experimental data.  In grid-generated turbulence the diffusion term and the 
production term in Eq. 6.1 and Eq. 6.11 are negligible and Cε2 can be determined 
from the measured rate of decay of the turbulent kinetic energy k behind the grid.  
The value of Cε2 was found to lie between 1.8 and 2.0.  For shear-layers in local 
equilibrium (production=dissipation), Eqs. 6.1 and 6.8 can be combined to 
produce 
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Measurements in equilibrium flows suggest that Cμ~0.09.  In the near-wall region 
of the logarithmic region of a boundary layer turbulent production and dissipation 



6-4                                  

are approximately equal and the convection of ε is negligible.  Under these 
assumptions Eq. 6.11 reduces to  
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εε σ

κ
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2

21 −=          (6.13) 

 
Note that all of these empirical constants are defined for near equilibrium 
conditions, and thus are not truly valid when production and dissipation are not of 
the same size.  This is often a source of numerical difficulties when solving these 
models and leads to the use of ad hoc relationships to control the behavior of the 
turbulence model for cases when production is much greater than dissipation. 
 
The general form of the eddy viscosity relationship for low Reynolds number 
models is 
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Many k-ε turbulence transport models exist.  The coefficients of some of the more 
popular are shown in Table 6.1.  The wall damping functions are shown in Table 
6.2. 
 

Model Cε1 Cε2 σk σε Cμ  κ 
Standard  1.44 1.92 1.0 1.3 0.09 0.43 
Jones-

Launder2 
1.45 1.92 1.0 1.3 0.09 0.43 

Chien4 1.35 1.80 1.0 1.3 0.09 0.42 
Speziale5 1.47 1.83 1.0 1.56 0.09 0.41 

 
Table 6.1  Coefficients for low Reynolds number k-ε models. 
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Table 6.2  Wall damping functions for low Reynolds number k-ε models. 
 
The last column of Table 6.1 also contains the von Karman constant (κ) 
calculated from Eq. 6.10.  All of the models shown here produce κ values slightly 
above the usually accepted value of 0.4-0.41 with the exception of the Speziale 
model. 
 
The wall boundary condition for the turbulent kinetic energy is  
 

0=wallk            (6.15) 
 
Since the turbulent kinetic energy is zero at the wall, then the eddy viscosity is 
also zero at the wall.  A wall boundary condition for the dissipation (ε) can be 
found from the turbulent kinetic energy equation 
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This boundary condition can produce numerical stability problems, so Speziale4 
suggested the boundary condition be replaced with the form 
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The turbulent kinetic energy is usually assigned to the free stream turbulence 
level at free stream boundaries if it is known.  If the free stream turbulence level 
is not known, then the turbulent kinetic energy is set to a small number at the free 
stream boundary.  The eddy viscosity is also set to a small number at free stream 
boundaries. 
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Once the free stream turbulent kinetic energy and eddy viscosity are known, the 
free stream value of turbulent dissipation may be calculated from the definition of 
eddy viscosity.   
 
6.3  k-ω Model 
 
Using Wilcox’s formulation, a transport equation for ω can be written as 
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The ω transport equation is essentially the ε  transport equation (Eq. 6.11) with 
the addition of a cross diffusion term of the form 
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The k-ω models are derived for wall bounded flows and require no additional wall 
damping terms when used in boundary layer flows.  The coefficients for Eq. 6.19 
are given in Table 6.3. 
 

β σω Cμ κ 
0.075 2 0.09 0.41 

 
Table 6.3  Coefficients for the k-ω model. 

 
The wall boundary condition for the turbulent kinetic energy is also given by Eq. 
6.15.  The definition of ω (Eq. 6.9) suggests that ω should go to infinity at the wall 
since the turbulent kinetic energy (k) is going to zero.  Wilcox, based on 
asymptotic arguments, suggested that ω be given the value 
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at the wall. Here Δy is the normal distance to the first point off the wall.  The 
following free stream boundary conditions are recommended 
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The k-ω model has been shown to be sensitive to the free stream value of ω 
chosen.  
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6.4 SST Model 
 
In practice, the k-ε models are generally more accurate in shear type flows and 
are well behaved in the far field.   The k-ω models are more accurate and much 
more numerically stable in the near wall region.   Recognizing that each model 
has its strength and weakness and that the forms of the equations are similar, 
Menter6 suggested a blended model that is a k-ω model near the wall and 
transitions to a k-ε model away from the wall.  The model has the form 
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The coefficients are blended forms of the two baseline models.  The blending 
function F1 is defined as  
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Here y is the normal distance to the wall and CDkω is the positive portion of the 
cross-diffusion term 
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The coefficients σk, σω, γ, and β in Eq. 6.23 are computed with the general form 
 

( ) 2111 1 φφφ FF −+=          (6.27) 
 
where the φ1 corresponds to coefficients from the k-ω model and φ2 corresponds 
to coefficients of the k-ε model.  The eddy viscosity is calculated from 
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where F2 is given by 
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Here Ω is the magnitude of the vorticity vector.  The first term in the denominator 
of Eq. 6.28 comes from the traditional definition of eddy viscosity for a k-ω model 
(Eq. 6.10).  The second term in the denominator represents an attempt to 
improve the performance of the model for adverse pressure gradients and comes 
from a one equation turbulence modeled developed by Bradshaw7 based on a 
relationship for shear stress in a boundary layer similar to Eq. 6.12 
 

kavu 1'' =−           (6.31) 
 
The second term in the denominator of Eq. 6.28 reduces the eddy viscosity in the 
logarithmic and wake region of the boundary layer when adverse pressure 
gradients are present.  The use of the shear stress relationship of Eq. 6.31 in the 
definition of the eddy viscosity (Eq. 6.28) has given rise to calling this model the 
shear stress transport (SST) model.  
 
The coefficients used with the SST model are given Tables 6.4 and 6.5. 
 

 β σk σω γ 
Set 1 
k-ω 

0.075 0.85 0.5 

μ

ω

μ

κσβ
CC

2
11 −  

Set 2 
k-ε 

( )12 −εμ CC  1 0.857 11 −εC  

 
Table 6.4  SST model functions. 

 
Cε1 Cε2 Cμ κ a1 

1.44 1.92 0.09 0.41 0.31 
 

Table 6.5  SST model coefficients. 
 
The boundary conditions for SST model are the same as the k-ω model.  The 
SST model is relatively insensitive to the free stream value of ω. 
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6.5  RNG Model 
 
One of the major criticisms of the k-ε model is that it is not derived from the 
Navier-Stokes equations in any systematic fashion.  Yakhot and Orszag8 applied 
Renormalization Group (RNG) methods to derive the k-ε equations.  In this 
approach, an expansion is made about an equilibrium state with known Gaussian 
statistics using the correspondence principle that the effects of the mean strains 
can be represented by a random force.  Bands of high wave numbers (small 
scales) are systematically removed and space is rescaled in a manner analogous 
to that used in phase transitions.  The successive removal of larger scales 
ultimately leads to a k-ε model of the form 
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where R is defined as  
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The parameter ζ is the ratio of the turbulent to mean strain time scale.  The 
remaining constants are given in Table 6.6. 
 

Cε1 Cε2 Cμ σk σe 
1.42 1.68 0.085 0.719 0.719 

 
Table 6.6  RNG model coefficients. 

 
The RNG model is similar to the traditional k-ε model with the exception of the 
additional term R and the lower value of Cε2.  These two differences decrease 
both the rate of production of turbulent kinetic energy and the rate of dissipation 
of ε, leading to lower values of the eddy viscosity.  In free shear flows, ζ (and 
thus R) is zero.  The model presented is the high Reynolds number form.  The 
additional terms required for the low Reynolds form can be found in Ref. 9. 
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6.6  Numerical Implementation 
 
The flux terms on the right hand side of Eqs. 6.1, 6.11, and 6.19 are usually 
treated with upwind differences.  The diffusion terms are generally treated with 
central differences.  The turbulent kinetic energy production term Pk is limited to 
be less than 20ε in the turbulent kinetic energy source term to keep the model 
from “running away” in complex flows.  The maximum value of eddy viscosity is 
also capped (normally < 2x105ν) to limit non-physical behavior of the model.  The 
turbulent quantities (k, ε, and ω) are limited to be positive in the field.  The exact 
source term Jacobian term can be used for the ε or ω equations for implicit 
computations.  Use of the exact source term for the Jacobian of the turbulent 
kinetic energy equation usually results in numerical instability.  It is 
recommended that the turbulent kinetic energy source term Jacobian be replaced 
with 
 

 TKE source term Jacobian = 
k

Pk ε+
− 2      (6.36) 

 
The two equations need not be solved fully coupled, and can be lagged from the 
mean flow equations.  For time accurate implicit solutions the turbulence 
equations should be solved within a Newton iteration loop with the mean flow 
equations to assure that the solution is locally converged at each time step. 
 
6.7  Compressibility Correction for Shear Layers 
 
The standard k-ε and k-ω turbulence models will over predict the mixing for high-
speed compressible shear layers.  The models tend to predict the incompressible 
growth rate for the shear layer rather than decreasing the growth rate as 
compressible effects increase.  A common method of correcting the k-ε model for 
this effect is given in Ref. 10.  The compressible turbulent kinetic energy equation 
is written as 
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where 
 

εαε 2
1 tc M=           (6.38) 

 
Mt is the turbulent Mach number defined as 
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The last term in Eq. 6.37 represents the pressure dilatation.  This term is 
modeled as 
 

2
3

2
2"" ttk MMPdp ρεαρα +−=        (6.40) 

 
Based on direct numerical simulation, the recommended values for the constants 
in Eqs. 6.38 and 6.40 are  
 

2.0,4.0,0.1 321 === ααα         (6.41) 
 
The compressibility correction must also be included in the SST model since the 
SST model reduces to the standard k-ε model away from the wall.  A method for 
incorporating the compressibility correction on the SST model is given in Ref. 11.  
Further corrections for high temperature jet flows are described in Ref. 12. 
 
The need for a compressibility correction can be seen in predictions of the 
supersonic axisymmetric jet shear layer of Eggers13.  The jet exit Mach number 
was 2.22 and the jet exit static pressure was matched to the quiescent outer air.  
Fig. 6.1 shows the predicted and measured axial velocity on the jet centerline.  
Fig. 6.2 contains velocity comparisons at various downstream locations in the jet. 

 
Figure 6.1.  Centerline axial velocity for the Ref. 12 jet. 
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Figure 6.2a.  Velocity profile at X/R=25 for the Ref. 12 jet. 

 
Figure 6.2b.  Velocity profile at X/R=50 for the Ref. 12 jet. 
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Figure 6.2c.  Velocity profile at X/R=100 for the Ref. 12 jet. 

 
Without the compressibility correction all of the turbulence models predict a faster 
growth rate than is seen in the experimental data.  The SST model with the 
compressibility correction is seen to do a good job for accounting for the 
compressibility effect. 
 
6.8  Initializing Turbulence Values for a Given Profile Shape 

 
There is really no unique way to construct turbulence variables for a given 
velocity profile shape for an inflow boundary condition for transport type 
turbulence models.  Here are two simple approaches.  Often a combination of 
these approaches is required in real world applications.   
 
One approach is to specify a turbulent intensity and a turbulent length scale for a 
given profile.  The turbulent intensity is specified as a percentage (a) of the local 
time-averaged fluid velocity 
 

Uau =′           (6.42) 
 
The turbulent intensity is normally less than twenty per cent of the mean flow 
velocity.  A turbulent length scale (L) must then be specified.   Some typical 
choices are shown in Table 6.7. 
 

Flow Boundary 
Layer 

Plane Jet Round Jet Plane 
Wake 

Pipe 

L 0.41δ 0.53δ 0.44δ 0.95δ 0.25D 
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Table 6.7  Typical values for the turbulent length scale L. 
 

In Table 6.7, δ is defined as the distance between points where the velocity 
differs from the free stream velocity by one percent of the maximum velocity 
difference across the layer.  For symmetrical flows and boundary layers, δ is the 
distance from the symmetry plane or wall to the one percent point at the outer 
edge.  D is the internal pipe diameter. 
 
The turbulent kinetic energy can be found from 
 

( )22

2
3

2
3 aUuk =′=          (6.43) 

 
The turbulent length scale is related to the eddy viscosity by the Kolmogorov-
Prandtl expression 
 

LkCt ρμ μ=          (6.44) 
 
The traditional definition of eddy viscosity for two-equation turbulence models is 
given by 
 

ε
ρμ μ

2kCt =           (6.45) 

 
Thus the turbulent dissipation is defined as 
 

L
k 2/3

=ε           (6.46) 

 
Although this method is relatively simple to implement, it is not very accurate for 
boundary layers and looses meaning for complex velocity profile shapes. 
 
The second method takes advantage of the turbulence equilibrium assumption 
(turbulent production = turbulent dissipation).  This requires an estimate of the 
eddy viscosity along the profile.  The eddy viscosity profile can be obtained from 
a simple algebraic turbulence model such as Baldwin-Lomax or a one-equation 
turbulence model such as Spalart-Allmaras.   
The turbulent dissipation is then given by 
 

kP=ε            (6.47) 
 
Finally, the turbulent kinetic energy is obtained from the definition of eddy 
viscosity in Eq. (6.45) 
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ρ
εμ

μC
k t=           (6.48) 

 
This method works well for general applications and can be useful for starting k-ε 
models.  These models often have difficulties generating eddy viscosity when a 
solution is started from a uniform free stream condition. 
 
6.9  Rotation and curvature correction 
 
A rotational and curvature correction for the SST model can also be formulated in 
a manner similar to the SARC and ASARC corrections used in the SA one-
equation model.  The correction has a much smaller effect because the SST 
uses strain rather than vorticity in the definition of the production term.  The 
production term used in both the k and ω equations (Eq. 6.22 and 6.23) is 
redefined as 

  
( )rrFSSP rijijtk

~*,1μ=          (6.49) 
 
The corrections defined in Eq. (5.13) and Eq. (5.18) are used with Eq. (6.49) to 
provide a general three-dimensional rotation and curvature correction for the SST 
model in this study.  The Eq. (5.13) and Eq. (5.18) corrections are limited 
0.0<Fr1<1.25 for the two equation model application.  The SST model with the 
Eq. (5.13) correction is called the ASSTRC model and the SST model with the 
Eq. (5.18) correction is named the SSTRC model. 
 
An example of the standard SST, SSTRC, and ASSTRC models applied to flow 
in a u-duct13 is shown in Fig. 6.3.  The distance along the wall is denoted by s.  
The standard SST model slightly under-predicts the pressure coefficient and the 
skin friction at the exit of the u-bend.  Both the SARC and ASARC models 
improve the comparison with data. 
 

 
 

Figure 6.3.  Pressure coefficient and skin friction on the outer wall of a u-duct.. 
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6.10  Grid Sensitivity for a Flat Plate with Adiabatic Walls 
 
The initial wall spacing of the computational grid and the grid-stretching ratio can 
affect the accuracy of the SST model.  Figure 6.4 shows the sensitivity of the skin 
friction to initial wall spacing for a flat plate.  The grid-stretching ratio was 1.2 for 
all these cases.  The plots include the theoretical skin friction curves of White and 
of Spalding. 

 
Figure 6.4  Flat plate skin friction predictions for the SST turbulence model  for 

varying initial wall grid point spacings. 
 
The boundary layer is seen to become fully turbulent around a length Reynolds 
number (Rex) of 1x106.  The results for y+=0.2 and y+=1 are virtually identical 
indicating a grid independent solution.  The y+=5 solution show some small 
divergence from the y+=1 solution at the lower length Reynolds numbers while 
the y+=10 solution shows large differences from the other solutions.   The SST 
model tends to be more sensitive to initial grid wall spacing than the Spalart-
Allmaras or Baldwin-Lomax models.  
 
Predicted velocity profiles for the flat plate boundary layer for various initial wall 
grid point spacings are shown in Fig. 6.5.  The velocity profile shows little effect 
of the initial spacing for all but the y+=10 profile.  All of the profiles but the y+=10 
profile are in good agreement with the theoretical profile from Spalding.  Note 
that the theoretical profile does not include the law-of-the wake (see Fig. 3.2), 
and hence the predicted profiles diverge from the theoretical profile in the wake 
region of the boundary layer.  The predicted eddy viscosity for various initial wall 
spacings is shown in Fig. 6.6. 
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Figure 6.5  Flat plate boundary layer profiles predicted by the SST turbulence 

model for varying initial wall grid point spacings. 
 

 
Figure 6.6  Eddy viscosity distribution predicted by the SST turbulence model for 

varying grid initial wall spacings. 
 
Here again it is seen that the y+=0.2 and the y+=1.0 results are almost identical.  
The y+=5 and y+=10 results show the solutions are no longer grid independent at 
larger wall spacings. 
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The effect of grid stretching ratio on skin friction for a flat plate is shown in Fig. 
6.7.  All of these solutions used an initial wall spacing of y+=1. 

 
Figure 6.7  The effect of grid stretching ratio on the skin friction for a flat plate 

boundary layer using the SST turbulence model. 
 
There seems to be very little effect of grid stretching for this case indicating that 
the initial wall spacing is the more critical parameter for skin friction predictions 
for flat plates with the SST turbulence model.  This is also the case for the 
velocity profile, as seen in Fig. 6.8.   The eddy viscosity does change as the 
stretching ratio increases as shown in Fig. 6.9.  It is interesting to note that a 
wide range of eddy viscosity distributions have little effect on skin friction and the 
velocity profile for a flat plate boundary layer. 
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Figure 6.8  The effect of grid stretching ratio on the velocity profile for a flat plate 

boundary layer using the SST turbulence model. 

 
Figure 6.9  The effect of grid stretching ratio on the eddy viscosity distribution for 

a flat plate boundary layer using the SST turbulence model. 
 

6.10  Grid Sensitivity for an Axisymmetric Bump 
 
A second example of the grid sensitivity of the SST turbulence model that 
includes a pressure gradient is the NASA Ames transonic axisymmetric bump 
experiment described in the Baldwin-Lomax Chapter 4.  The effect of initial grid 
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spacing on the pressure coefficient distribution along the bump is shown in Fig. 
6.10.  The stretching ratio was 1.2 for these cases. The pressure coefficient 
seems to be relatively insensitive to the initial grid spacing, with the y+=10 and 
y+=20 curves being slightly displaced from the other curves.   The velocity 
distribution at the aft junction of the bump and the cylinder (x/c=1) is shown in 
Fig. 6.11.   The y+=20 solution predict a larger velocity in the reverse flow region 
than the other solutions.  Grid stretching effects on the pressure coefficient 
distribution along the bump is shown in Fig. 6.12.  The initial grid spacing was 1.2 
for these cases.  The pressure distribution coefficient changes slightly as the 
grid-stretching ratio is increased to 1.5.  The solution in the separated region 
differs greatly for a grid-stretching ration of 2.0.  The effect on the velocity 
distribution at x/c=1 is shown in Fig. 6.13.  As with increasing initial grid spacing, 
increasing the grid spacing increases the size and the magnitude of the 
separated flow region.    

 
Figure 6.10  The effect of initial grid wall spacing on the pressure coefficient for 

the axisymmetric bump using the SST turbulence model. 



6-21                                  

 
Figure 6.11  The effect of initial grid wall spacing on the velocity distribution at 

x/c=1 for the axisymmetric bump using the SST turbulence model. 

 
Figure 6.12  The effect of grid stretching on the pressure coefficient for the 

axisymmetric bump using the SST turbulence model. 
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Figure 6.13  The effect of grid stretching on the velocity profile at x/c=1 for the 

axisymmetric bump using the SST turbulence model. 
 
As was seen with the Baldwin-Lomax model and the Spalart-Allmaras model, 
grid stretching is a critical parameter for this turbulence model when adverse 
pressure gradients are present.  Care should be taken to keep the grid-stretching 
ratio between 1.2 and 1.3. 
 
6.12  Grid Sensitivity for a Flat Plate with Heat Transfer 
 
Calculating heat transfer accurately can be more difficult than predicting skin 
friction.  This can be seen in the subsonic flat plate example when the wall 
temperature is specified to be 1.5 times the free-stream temperature.  The 
sensitivity of the skin friction and heat transfer result with varying initial grid wall 
spacing is shown in Fig. 6.14 and Fig. 6.15.  The grid stretching ratio was fixed at 
1.2 for these results.  Both the skin friction and heat transfer seem to be relatively 
insensitive to the wall spacing for wall spacings less than y+=0.1. 
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Figure 6.14  The effect of wall spacing on the skin friction on a flat plate with heat 

transfer using the SST turbulence model. 

 
Figure 6.15  The effect of wall spacing on the heat transfer (Stanton number) on 

a flat plate using the SST turbulence model. 
 

Profiles of velocity and temperature at a length Reynolds number (Rex) of 1x107 
are shown in Fig. 6.16 and 6.17 respectively.  The results are relatively 
insensitive to the wall spacing for initial wall spacings of y+>5. 
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Figure 6.16  The effect of wall spacing on the velocity profile on a flat plate with 

heat transfer using the SST turbulence model. 

 
Figure 6.17  The effect of wall spacing on the temperature profile on a flat plate 

with heat transfer using the SST turbulence model. 
 

Grid stretching effects on skin friction and heat transfer predictions are shown in 
Fig. 6.18 and 6.19.  The velocity and temperature profiles for a length Reynolds 
number (Rex) of 1x107 are shown in Fig. 6.20 and 6.21.  The initial wall spacing 
was held at y+=0.1 for these calculations.  The results reach a grid independent 
result for stretching ratios less than 1.3. 
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Figure 6.18  The effect of grid stretching on the skin friction on a flat plate with 

heat transfer using the SST turbulence model. 

 
Figure 6.19  The effect of grid stretching on heat transfer (Stanton number) on a 

flat plate using the SST turbulence model. 
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Figure 6.20  The effect of grid stretching on the velocity profile on a flat plate with 

heat transfer using the SST turbulence model. 

 
Figure 6.21  The effect of grid stretching on the temperature profile on a flat plate 

with heat transfer using the SST turbulence model. 
 
6.13  Grid Sensitivity for a Nozzle with Heat Transfer 
 
Flow through a supersonic nozzle with a constant temperature wall can serve as 
a test case for evaluating the performance of the turbulence model in the 
presence of strong pressure gradients.  Details of the geometry and boundary 
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conditions for the converging-diverging supersonic nozzle are given in Chapter 4.  
High-pressure air was heated by the internal combustion of methanol and flowed 
along a cooled constant area duct before entering the nozzle.  The gas could be 
treated as a calorically perfect gas with a ratio-of-specific heats (γ) of 1.345.  The 
nozzle exit Mach number was 2.5.  The molecular viscosity and thermal 
conductivity were assumed to vary according to Sutherland’s law. 
 
The grid initial wall spacing was varied and the grid stretching ratio was held at 
1.2 in the boundary layer.   A uniform grid was used in the nozzle core.  
Predicted wall pressure distribution results for varying initial wall spacings are 
shown in Fig. 6.22.  The pressure distribution is seen to be insensitive to the 
initial wall spacing.  Predicted wall heat transfer is shown in Fig. 6.23.  The 
results are somewhat sensitive to the initial wall spacing for values of y+ less than 
one.  The predicted results diverge rapidly from the data for wall spacing greater 
than y+=1. 
 

 
Figure 6.22  The effect of wall spacing on the pressure distribution for a 
supersonic nozzle  with heat transfer using the SST turbulence model. 
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Figure 6.23  The effect of wall spacing on the wall heat transfer for a supersonic 
nozzle using the SST turbulence model. 
 
The grid stretching ratio was varied in the boundary layer while the initial grid 
spacing held at y+=0.5.   A uniform grid was used in the nozzle core.  Predicted 
wall pressure distribution results for varying initial wall spacings are shown in Fig. 
6.24.  The pressure distribution is seen to be insensitive to the grid stretching 
ratio.  Predicted wall heat transfer is shown in Fig. 6.25.  The results are 
insensitive to the grid stretching ratios less than 1.3.  The predicted results 
diverge slightly from the data for grid stretching ratios greater than 1.3. 
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Figure 6.24  The effect of grid stretching ratio on the pressure distribution for a 
supersonic nozzle with heat transfer using the SST turbulence model. 
 

 
Figure 6.25  The effect of grid stretching ratio on the wall heat transfer for a 
supersonic nozzle using the SST turbulence model. 
 
6.14  Summary 
 
Two-equation models have been the industry standard for many years.  These 
models have been used for a wide variety of internal and external flows.  Many 
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variants are available that have been tuned for specific classes of flows.  These 
models are more difficult to implement than are the one-equation models and can 
often be less numerically stable.  For these reasons many code developers have 
avoided two-equation models.  The examples given here are mainly for subsonic 
and supersonic applications.  An excellent summary of hypersonic validation of 
these models can be found in Ref. 15. 
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7.0 Reynolds and Algebraic Stress Models 
 
 
7.1 Reynolds Stress Models 

 
One means of obtaining closure for the Reynolds or Favre averaged Navier-
Stokes equations is to investigate higher moments of the equations themselves.  
Transport equations for each of the Reynolds stresses can be derived from the 
momentum equations.  These equations are called the second moment 
equations.  The second moment equations can be obtained by multiplying the 
momentum equations by Uj and then Reynolds averaging the resulting 
equations.  The incompressible form of the second moment equation is 
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The first term on the right hand side of Eq. 7.1 is the turbulent production term.  
The second term on the right hand side is the diffusion of the Reynolds stresses.  
The third term on the right side is called the pressure strain.  The pressure strain 
term redistributes energy among the turbulent stress components.  The last term 
on the right hand side is the turbulent dissipation.  The balance of these source 
terms is critical to the proper simulation of a turbulent flow.  The second moment 
equations produce a host of new unknowns and higher order correlations that 
must be modeled in order to close the system.  These higher order correlations 
are difficult, and in many cases impossible, to determine from experimental 
measurements.  Direct Numerical Simulation (DNS) has been used to determine 
these quantities in many cases.  Unfortunately DNS is restricted to low Reynolds 
numbers and simple geometries at the present time, so the data base for 
determining these higher order correlations, whether experimentally or 
numerically generated, is limited.   Eq. 7.1 may be rewritten as 
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The production term is defined using the exact form  
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Molecular diffusion also follows the exact definition 
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There are several models suggested for the turbulent diffusion.  Daly and 
Harlow1 suggested 
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Hanjalic and Launder2 used the form 
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Mellor and Herring3 suggests 
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Many models for the pressure-strain term have been developed since the 
pioneering work of Launder, Reece, and Rodi4.  A general form is given by 
 

( )ikjkjkik

ijmnmnikjkjkik

ijijmnmnkjikijij

WbWbkC

SbSbSbkC

kSCbbbbCbC

++

⎟
⎠
⎞

⎜
⎝
⎛ −++

+⎟
⎠
⎞

⎜
⎝
⎛ −′+−=Π

4

3

211

3
2

3
1

δ

δε

     (7.8) 

 
where the stress anisotropy tensor is given by 
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The strain rate tensor is defined as 
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and the rotation tensor is given by 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
−

∂
∂

=
i

j

j

i
ij x

u
x
uW

2
1          (7.11) 

 
If the turbulence is assumed to be locally isotropic (i.e. the same amount of 
turbulent energy is dissipated by each of the turbulent energy components 2'

iu ) 
then the dissipation term in Eq. 7.1 can be reduced to  
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where ε is the total rate of energy dissipation.   
 
A transport equation for the dissipation must also be solved to close the system 
of equations.  The dissipation equation can be written as 
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The first term on the right hand side of Eq. 7.13 is the production of dissipation.  
The second term represents the dissipation of the dissipation.  The last two terms 
are the molecular and turbulent diffusion of dissipation respectively.  The 
production of dissipation is given by 
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The dissipation equation turbulent diffusion term is modeled by  
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Typical values for the constants in the above equations for the Launder-Reece-
Rodi4 (LRR), Gibson-Launder5 (GL) and Speziale-Sarker-Gatski6 (SSG) RSM 
models are 
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Model 1C  1C ′  2C  3C  4C  sC  1εC  2εC  εC  
LRR 1.5 0.0 0.4 0.6 0.0 0.25 1.44 1.92 0.15
GL 3.6 0.0 0.8 1.2 1.2 0.11 1.44 1.92 0.11

SSG 3.4+1.8P/ε 4.2 0.8-1.3(bijbij)1/2 1.25 0.4 0.11 1.44 1.83 0.11
 

Table 7.1  Coefficients for three Reynolds stress models. 
 
A system of seven transport equations (six Reynolds stress components and one 
turbulent dissipation equation) must be solved at each time step to provide the 
Reynolds stresses for the Navier-Stokes equations.   The above correlations 
must be further modified when applied in the presence of a wall, and hence many 
of these models utilize wall functions (see Chapter 10) to avoid the complications 
and the additional grid points introduced by the presence of the wall.   
 
The Reynolds stresses produced by these models must meet certain constraints 
for the models to be applicable to a large range of problems without significant 
tuning.  Two of the more important constraints are tensor invariance and 
realizability.  Tensor invariance requires the replaced terms to have the same 
tensor form as the original terms.  This will insure that the modeled terms 
transform properly in different coordinate systems.  Schumann7 introduced the 
realizability constraint.  This constraint requires the equation for the turbulent 
stresses to have the property that all the component energies of the turbulent 
kinetic energy (the diagonal terms of the Reynolds stress tensor) remain non-
negative and all off-diagonal components of the Reynolds stress tensor satisfy 
Schwartz’s inequality.  This can be written as 
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The modeling of the right hand side source terms in Eq. 7.2 can often cause 
numerical stability problems with the second moment closure models.  The 
difficulty in deriving a turbulent dissipation equation was discussed in Chap. 6 
and is a source of weakness in this approach of modeling turbulence as well a 
weakness in the application of two-equation turbulence models.  Because of the 
numerical stability problems, the extra computational time requirements, and the 
limited improvement in solution accuracy over lower order models (Ref. 8), 
second moment closure is not commonly used for many complex CFD problems 
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today.  Some cases where second moment closures have shown improvement 
over lower order models can be found in Ref. 9. 
 
7.2 Algebraic Stress Models 
 
Under certain assumptions the Reynolds stress transport equations (Eq. 7.1, 7.2) 
can be reduced to a system of algebraic equations that require knowledge of the 
turbulent kinetic energy (k) and the turbulent dissipation (ε).  This class of 
turbulence models is called an Algebraic Stress Model (ASM).  ASM models 
reduce the closure problem to solving two transport equations and a system of 
algebraic equations.  This is significantly faster than solving the full Reynolds 
stress transport equations set.  The algebraic equations include most of the 
models and assumptions that were used to solve the full equation set.  Rodi10  
suggested that the transport of ''

jiuu  is proportional to the transport of the 

turbulent kinetic energy k, the proportionality factor being the ratio ''
jiuu /k (which 

is not a constant).  This yields 
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Equation 7.19 is valid when the temporal and spatial change in ''

jiuu /k is small 

compared with the change of ''
jiuu  itself.  The algebraic stress model of Rodi is 

given by 
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A more recent algebraic stress model derived by Abid, Morrison, Gatski, and 
Speziale11 (AMGS) is given by  
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where 
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The remaining coefficients for the model of Rodi and AMGS are given in Table 
7.2. 
 

Model C1 C2 C3 C4 C5 
Rodi 1.5 0.0 0.6 0.0 0.0 

AMGS 6.8 0.36 1.25 0.40 1.88 
 

Table 7.2  Coefficients for the ASM models of Rodi and AMGS 
 
Rodi’s model in Eq. 7.20 does not include the necessary terms to be valid near 
walls and requires wall functions (described in Chapter 10).  The AMGS model is 
valid down to the wall.    
 
The solution obtained from an ASM model is not independent of the choice of 
model used to provide k and ε.  The pressure coefficient on the Ames 
axisymmetric bump for a free stream Mach number of 0.875 is shown for the 
AMGS ASM model using a k-ω and k-ε two equation models for closure in Fig. 
7.1.  The velocity distribution at the trailing edge of the bump is shown in Fig. 7.2.  
Note the solutions are quite different for the same ASM model. 
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Figure 7.1   Pressure coefficient distribution for the axisymmetric bump at 
M=0.875. 

 

 
 

Figure 7.2   Velocity Distribution at the trailing edge of the bump for the 
axisymmetric bump at M=0.875. 

 
 
7.3  Grid Sensitivity for a Flat Plate with Adiabatic Walls 
 
The initial wall spacing of the computational grid and the grid-stretching ratio can 
affect the accuracy any turbulence model.  Figure 7.2 shows the sensitivity of the 
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skin friction to initial wall spacing for a flat plate for the SSG RSM model.  Flat 
plate results for the AMGS ASM model are shown in Fig. 7.3.  The grid-stretching 
ratio was 1.2 for all these cases.  The plots include the theoretical skin friction 
curve of White.  The boundary layer is seen to become fully turbulent around a 
length Reynolds number (Rex) of 1x106 for both models.  These models are 
relatively insensitive to wall spacing below a y+=10.   
 
 

 
 

Figure 7.3  Flat plate skin friction predictions for the SSG RSM turbulence model  
for varying initial wall grid point spacings. 

 



7-9                                  

 
 

Figure 7.4  Flat plate skin friction predictions for the AMGS ASM turbulence 
model  for varying initial wall grid point spacings. 

 
Predicted velocity profiles for the flat plate boundary layer for various initial wall 
grid point spacings are shown in Fig. 7.5 and 7.6.  The velocity profile shows little 
effect of the initial spacing for all but the y+=10 profile for the ASM model.   
 

 
Figure 7.5  Flat plate boundary layer profiles predicted by the SSG RSM 

turbulence model for varying initial wall grid point spacings. 
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Figure 7.6  Flat plate boundary layer profiles predicted by the AMGS ASM 

turbulence model for varying initial wall grid point spacings. 
 
The effect of grid stretching ratio on skin friction for a flat plate is shown in Fig. 
7.7 and 7.8  All of these solutions used an initial wall spacing of y+=1. 

 

 
 

Figure 7.7  The effect of grid stretching ratio on the skin friction for a flat plate 
boundary layer using the SSG RSM turbulence model. 
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Figure 7.8  The effect of grid stretching ratio on the skin friction for a flat plate 

boundary layer using the AMGS ASM turbulence model. 
 
The RSM model shows little sensitivity to grid stretching below a ration of 2.  The 
model has difficulty converging as can be seen by the spikes in the solution.  The 
ASM solution shows sensitivity beginning at a ration of 1.5.   The boundary layer 
profile predicted by both of these models show the same sensitivities to skin 
friction as the skin friction.  This can be seen in Fig.7.9 and Fig. 7.10. 
 

 
 

Figure 7.9  The effect of grid stretching ratio on the velocity profile for a flat plate 
boundary layer using the SSG RSM turbulence model. 
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Figure 7.10  The effect of grid stretching ratio on the velocity profile for a flat plate 
boundary layer using the AMGS ASM turbulence model. 

 
7.4  Grid Sensitivity for an Axisymmetric Bump 
 
A second example of the grid sensitivity of these turbulence models that includes 
a pressure gradient is the NASA Ames transonic axisymmetric bump experiment 
described in the Baldwin-Lomax Chapter 4.  The effect of initial grid spacing on 
the pressure coefficient distribution along the bump for the RSM and ASM 
models is shown in Fig. 7.11 and Fig. 7.12.  The stretching ratio was 1.2 for 
these cases. The pressure coefficient seems to be relatively insensitive to the 
initial grid spacing for the ASM model, with the y+=10 and y+=20 curves being 
slightly displaced from the other curves.   The velocity distribution at the aft 
junction of the bump and the cylinder (x/c=1) are shown in Fig. 7.13 and 7.14.   
The trends are similar to those seen with the pressure coefficient .   
 
Grid stretching effects on the pressure coefficient distribution along the bump is 
shown in Fig. 7.15 and Fig. 7.16.  The initial grid spacing was 1.2 for these 
cases.  Both models show sensitivity to grid stretching ration in the separated 
flow region.  The velocity profiles shown in Fig. 7.17 and 7.18 show a sensitivity 
to stretching ratio.   The sensitivity of the Reynolds shear stress predicted by the 
SSG RSM model to both initial wall spacing and grid stretching ratio is shown in 
Fig. 7.19 and Fig. 7.20.  The shear stress prediction is shown to be extremely 
sensitive to stretching ratio.  
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Figure 7.11  The effect of initial grid wall spacing on the pressure coefficient for 
the axisymmetric bump using the SSG RSM turbulence model. 

 

 
 

Figure 7.12  The effect of initial grid wall spacing on the pressure coefficient for 
the axisymmetric bump using AMGS ASM turbulence model. 
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Figure 7.13  The effect of initial grid wall spacing on the velocity distribution at 
x/c=1 for the axisymmetric bump using the SSG RSM turbulence model. 

 

 
 

Figure 7.14  The effect of initial grid wall spacing on the velocity distribution at 
x/c=1 for the axisymmetric bump using the AMGS ASM turbulence model. 
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Figure 7.15  The effect of grid stretching on the pressure coefficient for the 
axisymmetric bump using the SSG RMS turbulence model. 

 

 
 

Figure 7.16  The effect of grid stretching on the pressure coefficient for the 
axisymmetric bump using the AMGS ASM turbulence model. 
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Figure 7.17  The effect of grid stretching ratio on the velocity distribution at x/c=1 
for the axisymmetric bump using the SSG RSM turbulence model. 

 

 
 

Figure 7.18  The effect of grid stretching ratio on the velocity distribution at x/c=1 
for the axisymmetric bump using the AMGS ASM turbulence model. 
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Figure 7.19  The effect of initial wall spacing on the shear stress distribution at 
x/c=1 for the axisymmetric bump using the SSG RSM turbulence model. 

 

 
 

Figure 7.20  The effect of grid stretching ratio on the shear stress distribution at 
x/c=1 for the axisymmetric bump using the SSG RSM turbulence model. 

 
 
 



7-18                                  

 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter 7 References: 
 
1. Daly, B. and Harlow, F., “Transport Equations of Turbulence,” Physics of 

Fluids, 1970, pp. 2634-2649. 
2. Hanjalic, K. and Launder, B., “Contribution Towards a Reynolds-Stress 

Closure for Low-Reynolds-Number Turbulence,” Journal of Fluid Mechanics, 
Vol. 74, 1976, pp. 593-610. 

3. Mellor, G. and Herring, H., “A Survey of the Mean Turbulent Field Closure 
Models,” AIAA Journal, Vol. 11, 1973, pp. 590-599. 

4. Launder, B., Reece, G., and Rodi, W., “Progress in the development of a  
Reynolds-Stress Turbulence Closure,” Journal of Fluid Mechanics, 1975, Vol. 
68, Part 3, pp. 537-566. 

5. Gibson, M. and Launder, B., “On the Calculation of Horizontal, Turbulent, 
Free Shear Flows under Gravitational Influence,” Journal of Heat Transfer, 
Vol. 98, 1976, pp. 81-87. 

6. Speziale, C., Sarker, S., and Gibson, T., “Modeling the Pressure-Strain 
Correlation of Turbulence: An Invariant Dynamical Systems Approach,” 
Journal of Fluid Mechanics, Vol. 227, 1991, pp. 245-272. 

7. Schumann, U., “Realizability of Reynolds Stress Turbulence Models,” Physics 
of Fluids, Vol. 20, pp. 721-725, 1977. 

8. Leschziner, M., Batten, P. and Craft, T., “Reynolds-Stress Modeling of 
Transonic Afterbody Flows,” The Aeronautical Journal, June 2001, pp. 297-
306. 

9. Nallasamy, M., “Turbulence Models and Their Applications to the Prediction 
of Internal Flows: A Review,” Computers and Fluids, Vol. 15, pp. 151-194, 
1987. 

10. Rodi, W., “Turbulence Models and Their Application in Hydraulics – A State of 
the Art Review,” International Association for Hydraulic Research, 2nd Ed., 
Feb. 1984. 

11. Abid, R., Morrison, J., Gatski, T., and Speziale, C., “Prediction of 
Aerodynamic Flows with a New Explicit Algebraic Stress Model,” AIAA 
Journal, Vol. 34, No. 12, Dec. 1996. 

RSM and ASM Model Application Hints 
 

1. RSM models generally suffer from numerical stability issues.  This is 
due to the complexity of the modeled terms.  This is the primary 
reason that these models are not regularly used in large scale 
applications. 

2. ASM models are sensitive to the transport equations used to obtain 
k and ε.  These models are generally less numerical stable than 
traditional two-equation models. 

3. The choice of the pressure strain term is critical to the performance 
of both RSM and ASM models.  More complex pressure strain 
models are generally more accurate but less numerically stable. 
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8.0 Large Eddy Simulation 
 

Theoretically the Navier-Stokes equations can be used to simulate turbulent 
flows.  The computational grid used in such a simulation would have to be fine 
enough to allow the smallest turbulent length scales to be realized and the 
computational time step would have to be small enough to simulate the highest 
frequencies of the turbulent spectrum.  In practice such computations are 
prohibitively expensive for high Reynolds numbers.  The Reynolds averaged 
Navier-Stokes (RANS) equations were derived assuming that all of the 
unsteadiness due to the turbulent nature of the flow could be modeled with 
empirically derived correlations.  This reduces the time and length scales that 
must be simulated, but also limits the applicability of the simulation for unsteady 
flows.  Large eddy simulations (LES) were developed to extend the simulation of 
unsteady flows beyond DNS.  The desired result of an LES computation is to 
obtain a DNS equivalent solution for the large-scale turbulence on a much 
coarser grid than is required for DNS.  An LES simulation requires: 
 

1. A grid fine enough to discretize the small nearly isotropic scales of the 
turbulence 

2. A low dissipation numerical scheme 
3. A filter function to determine the division of the turbulent spectrum into 

grid realized and subgrid regions 
4. A subgrid turbulence model 

 
A true LES simulation is more than a high Reynolds number computation run 
without a turbulence model.  Although the resulting solution from such a 
simulation may resemble turbulent flow, the resulting solution will most likely not 
represent an equivalent DNS solution. 
 
8.1  The Filtering Operation 
The filtering operation is critical to LES.  Consider a filtering operation with a 
uniform characteristic filter width Δ (which implies isotropic grid elements).  
Leonard1 defined the following filter in physical space 
 

∫
∞

∞−
−= ξξφξφ dxGx )()()(         (8.1) 

 
Note that in this chapter the over bar represents a filtered quantity, not a time 
averaged quantity as in the previous chapters.  The filtering operation is a spatial 
operation as opposed to the Reynolds averaging operation discussed in Chapter 
2 that is a temporal operation.  The original function φ  is then decomposed into a 
filtered field (or grid resolved) and a “subgrid” term 
 

φφφ ′+=           (8.2) 
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The function G defined in Eq. 8.1 is the “filter function”.  The filter function may be 
any function defined on an infinite domain that satisfies the following 
requirements (Ref. 1): 
 
1.  )()( ξξ GG =−  
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One important and useful feature of this choice of filter is 
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Three common filters are 
 

Spectral cutoff filter:  
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Box filter:   
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The spectral cutoff filter is normally applied in spectral space as 
 

)(ˆ)(ˆ)(ˆ kkGk ϕϕ =          (8.8) 
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The constant C in the Gaussian filter (Eq. 8.5) is somewhat arbitrary, and values 
from 2 to 6 have been used in practice.   Note that the box filter (Eq. 8.6) is valid 
on both finite and infinite domains.  For this reason box filters are often used to 
relate DNS to LES for physical space numerical schemes.  
 
There are advantages to using spectral and pseudo-spectral solution 
methodologies for LES.  The first advantage is that the approximate field, which 
is discrete in spectral space, is a finite sum of continuous functions in physical 
space.  Thus the approximate field, the spectral filter, and their derivatives are 
continuous functions in physical space.  The spectral filters defined in Eqs. 8.8 
and 8.9 have the following additional useful properties  
 

φφ =             (8.10) 
 

0=′φ            (8.11) 
 
This says that filtering a grid resolved quantity yields the original grid resolved 
quantity and that the spectral filter of a subgrid quantity is equal to zero.   
 
Another advantage of the spectral approach is that derivatives yield an exact 
value for the approximate field.  In other words, if one is approximating a function 
using N Fourier modes, then as long as one has at least 2(N+1) points in 
physical space, it does not matter if one has 20 or 20 million points: the value of 
the derivative at any given point is the same.  Therefore one can take a flow field 
generated with a spectral DNS code, filter and coarsen the solution, and produce 
a flow field which satisfies the governing equations for LES. 
 
There are drawbacks to spectral filters.  First, they have limited applicability in 
realistic flow situations because of boundary constraints.  Also, spectral filters are 
non-positive (i.e. the filter function is negative at some points in space).  The 
latter condition results in a subgrid stress tensor that does not satisfy the 
Reynolds stress realizability conditions outlined in Chapter 2.   
 
Both Gaussian filters (Eq. 8.5) and box filters (Eq. 8.6) are positive functions, and 
thus the Reynolds stress realizability conditions outlined in Chapter 2 will be 
satisfied on the resulting subgrid stress tensor.  Unfortunately Eq. 8.10 and Eq. 
8.11 are not valid for these filters.  Furthermore, if a spatial numerical solver is to 
be used the filter must also be discretized.  Therefore it is necessary to examine 
the discretized system that is solved in the actual code because discrete systems 
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sometimes have different properties than the original continuous systems from 
which they were derived. 
 
8.2 Derivation of the LES Equations  
The Favre averaged or filtered Navier-Stokes equations were derived in Chapter 
2.  The Favre filter can be defined for any variable as 
 

ρ
ρφφ =

~           (8.12) 

 
Note that the over bar signifies a spatially filtered quantity, and the tilde 
represents a Favre filtered, or grid resolved, quantity.  Thus the Favre filter may 
be thought of as a density weighted filter in space.  Applying this filtering 
operation to the Navier-Stokes equations, and assuming that the filtering 
commutes with the derivative operation, the LES equations are 
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The resolved viscous stress tensor in Eqn. 8.14 takes the form 
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The viscosity and thermal conductivity is assumed to be calculated from the 
Favre averaged temperature (T~ ).  The total energy ( E~ ) is defined as 
 

sgs
ji kuueE ++= ~~

2
1~~          (8.17) 

 
The subgrid kinetic energy, ksgs, is defined as the effect of the subgrid scales on 
the kinetic energy of the resolved field 
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Finally, the LES equation of state is 
 

TRp ~ρ=           (8.19) 
 
As with Reynolds averaging, the filtering operation produces terms that must be 
modeled in order to close the equation set.  The LES momentum equation, Eqn. 

8.14, contains two such terms.  The first, ( )ijij
jx

ττ ~−
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∂ , represents the difference 

in the viscous terms between Favre and “straight” filtering.  The second term, 
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The LES energy equation, Eq. 8.15, contains four subgrid terms.  The first term, 
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convection term.  The third term, ( )ijjijj
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∂ , is a viscous subgrid term 

similar to the term in the LES momentum equation.  This term represents the 
transfer of energy due to subgrid viscous forces.  The fourth term, 
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~κκ , is a heat flux subgrid term.  The subgrid kinetic energy, ksgs, 

used in the definition of the Favre filtered total energy in Eq. 8.7 must also be 
defined for closure. 

The subgrid stress tensor, sgs
ijτ  is usually treated in a similar manner as the 

Boussinesq approximation for the RANS equations (Chapter 2) 
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In the above equation, ijS~ represents the resolved rate of strain tensor 
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Note that a subgrid eddy viscosity, νt, has been introduced in Eq. 8.21.  The 
subgrid eddy viscosity accounts for the turbulence that cannot be resolved on the 
computational grid. 

Introducing the subgrid stress tensor into Eq. 8.14 and assuming that the straight 
filtered stress tensor is equal to the Favre filtered stress tensor ( )ijij ττ ~=  the LES 
momentum equation becomes 
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The LES energy equation (Eq. 8.15) can be further simplified as follows.  Using 
the definition of total enthalpy 

ρ
pEH +=           (8.24) 

two of the subgrid terms can be combined to form 
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This term can then be modeled with an eddy diffusion model as 
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where Δ is the local grid spacing and ce is an empirical coefficient.  The thermal 

conductivity term, ⎟⎟
⎠
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iii x
T

x
T

x

~
~κκ , is neglected based on the assumption that 

the thermal conductivity is locally constant and that the Favre filtering is 
equivalent to the straight filtering.  The viscous transport term is modeled as 
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This term is generally small and is often neglected in practice. 

Thus the modeled LES energy equation may now be written as 

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
∂
∂

+
∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

Δ
∂
∂

=+
∂
∂

+
∂

∂

iii

sgs

i

i

ijj

i

sgs
e

i
i

i

x
T

xx
k

x

x
u

x
Hkc

x
upE

xt
E

~
~~

~~~~~

κμ

τ
ρρρ

    (8.28) 

Inspection of the modeled LES equations (Eqs. 8.13, 8.23, and 8.28) shows that 
these equations are quite similar to the RANS equations incorporating the 
Boussinesq approximation derived in Chapter 2.  It should be noted that the time 
averaging process used to derive the RANS equations and the spatial filtering 
operations used to derive the LES equations are quite different, and hence the 
terms in the two equation sets are not the same. 

Three things are required to close the modeled LES equations: 

1.  The subgrid turbulent kinetic energy ksgs  

2.  The subgrid eddy viscosity νt 

3.  The empirical coefficient in the energy equation, ce 

 
8.3  Smagorinsky Model 

As with the RANS equations, there are numerous models for the LES eddy 
viscosity.  One of the earliest models for the LES eddy viscosity was proposed by 
Smagorinski2 and is given by 

( ) ( ) 2
12 ~~2 ijijgst SSC Δ=ν         (8.29) 

where Cs is the Smagorinsky coefficient and Δg is the local grid spacing.  This 
model ignores the subgrid kinetic energy ksgs.  The Smagorinsky model provides 
a simple closure for the LES equations and has been used effectively for a 
number of applications.  But, like its algebraic counterpart in the RANS regime, it 
has been shown to be lacking in simulating complex turbulent flows.  The 
Smagorinsky model is not valid near walls, and a wall damping term (Ref. 3) is 
often added to the model.  The wall-damped form is given by 
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( )( ) ( ) 2
1225/ ~~21 ijij

y
gst SSeC

+−−Δ=ν        (8.30) 

The coefficient Cs must be defined for this model.  In practice no universal value 
of Cs exist.  

 
8.4  Dynamic Smagorinsky Model 

Several investigators have attempted to dynamically calculate Cs based on 
equating the highest wave number resolved turbulent stresses with the subgrid 
stress.  One dynamic LES closure model outlined in Ref. 4 can be described as 
follows.  The subgrid stress tensor is written as 

 
( ) )~()~(, 2 uSuStxC ij

sgs
ij Δ−=τ       (8.31) 

 
where C(x,t) is the Smagorinsky coefficient to be determined dynamically and Δ is 
the grid spacing. For this purpose a second spatial filter, called the test-filter, of 
width larger than the grid filter is introduced. We choose the test-filter scale 

Δ=Δ 2 . This filter generates a second set of resolvable-scale fields (denoted by 
( ) ). Then, the dynamic SGS model of the ijτ  at the grid filter and of the ijT  at the 
test-filter are written as: 
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A least squares method is developed to predict C(x,t)  as: 
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( )( )mnmnmnmn
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1),(      (8.33) 

 
with ( / 3) 2 2a

ij ij ij kk ij ijC C= − = − +l l lδ α β .  

 
8.5  k-Equation Model 
Another approach to closing the LES equations is to introduce a transport 
equation for the subgrid kinetic energy, ksgs.  The exact subgrid kinetic energy 
equation may be written 
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This equation contains several subgrid terms.  The equation is modeled in a 
similar manner as the RANS turbulent kinetic energy equation.  The modeled 
equation is 
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where the terms on the right-hand-side are the diffusion, production, and 
dissipation of the subgrid kinetic energy respectively.  An algebraic expression 
for the dissipation is generally used instead of a transport equation as in two-
equation RANS turbulence models.  The turbulent viscosity is given by 

Δ= sgs
t kcνν           (8.36) 

The LES energy equation dissipation coefficient cε and the eddy viscosity 
coefficient cν are determined dynamically by equating the highest wave number 
resolved turbulent properties with the subgrid properties.  The dynamic process 
for determining these coefficients is described in detail in Ref. 5. 
 
8.6  Inflow Turbulence Boundary Condition 
 
Flows that include a developing boundary layer at the inflow plane of a simulation 
require a boundary condition that includes the specification of the inflow velocity 
fluctuations.  Soteriou and Ghoniem6 show the development of an 
incompressible mixing layer with and without perturbation at the inflow plane.  
Compared to the perturbed case, the development of the mixing layer without 
perturbation is delayed significantly.  This is because disturbances within the 
boundary layer are amplified and lead to the Kelvin-Helmholtz instability that 
eventually causes the shear layer to roll up.  If these disturbances are not 
present in the boundary layer, then the shear layer will develop more slowly until 
disturbances are generated through minute numerical errors. 
 
Several approaches have been taken to add the perturbations to the inflow.  The 
simplest approach is to add “white noise” to the velocity at the inflow plane as 
was done by Comte et al7.  This approach is somewhat unphysical in that the 
perturbations have no correlation in space or time.  A second approach is to add 
perturbations at discreet frequencies as was done by Soteriou and Ghoniem6.  
This can be effective for studying forced flows, but it must be remembered that 
turbulence is broadband and does not confine itself to discrete frequencies.  A 
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third approach to this problem is to attempt to reconstruct the unsteady flow at 
the inflow using correlations for the perturbations.  One example of this can be 
found in Ref. 5, in which a box of frozen turbulence is generated and saved.  This 
box is scaled and applied as perturbations at the inflow of the simulation. 
 
8.6  Other LES References 
LES methods are still evolving as researches investigate methods for simulating 
the near-wall flow physics and methods to improve the performance of the 
subgrid models used in LES simulations.  Fureby, et al8, provide a good 
summary of the LES methods currently being employed and investigated.  Ref. 9 
includes a wide range of experimental test cases for validation of LES 
simulations. 
  
8.7  Spatial Mixing-Layer Example 
The mixing layer experiment of Samimy and Elliot8 can be used to demonstrate 
the behavior of LES models.  The data is also included in Ref. 10.  The 
experimental setup had an upper supersonic stream and a lower subsonic 
stream mixing at a matched static pressure.  Laser Doppler Velocimeter (LDV) 
measurements were made at several downstream locations between the trailing 
edge of the splitter plate and a station 210 mm downstream of the splitter plate.  
The flow parameters are given in Table 8.1. 

 

T0, K P01, 
kPa 

M1 M2 Mc U1, 
m/sec 

U2/U1 ρ2/ρ1 δ1, mm

291.0 314.0 1.80 0.51 0.52 479.5 0.355 0.638 8.0 

Table 8.1  Flow parameters for the spatial mixing-layer case 

The solutions were run for 30,000 time steps to wash out initial transients and 
then statistics were taken over the next 60,000 time steps.  The time step used 
was 5.0x10-8 seconds.  The flow solver used for these calculations was 4th order 
in space and 2nd order in time.  The computational grid dimensions were 181 x 
121 x 61.  The inflow plane perturbations were specified using the “box of 
turbulence” approach from Ref. 5.  Further details of the experiment and the 
computations can be found in Ref. 10.  

All of the turbulence models investigated predict roughly the same mixing-layer 
thickness for this case as shown in Fig 8.1.  The Hybrid k-ε model in Fig. 8.1 is 
the multi-scale hybrid RANS/LES turbulence model described in Chapter 9.  The 
DES model is the Spalart-Allmaras DES hybrid model that is also described in 
Chapter 9.  The traditional RANS models (k-ε and Spalart-Allmaras) have the 
worst agreement with the experimental data. 
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Figure 8.1  Mixing-layer thickness 

The streamwise velocity 210 mm downstream of the splitter plate is shown in Fig. 
8.2.  Again all of the models are in reasonable agreement with the experimental 
data. 

 

 

Figure 8.2  Nondimensional streamwise velocity at x=210 mm 
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The streamwise turbulence intensity, Reynolds stress, streamwise velocity 
fluctuation skewness, and streamwise velocity fluctuation flatness at x=210 mm 
are shown in Fig. 8.3-8.6.   The performance of the traditional RANS models is 
seen to deteriorate as the order of the turbulent velocity fluctuation correlation 
increases.  The LES and hybrid RANS/LES models are all in reasonable 
agreement with the experimental data. 

 

Figure 8.3  Streamwise turbulence intensity at x=210 mm 

 

Figure 8.4  Reynolds stress profiles at x=210 mm 
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Figure 8.5  Stream wise velocity fluctuation skewness at x=210 mm 

 

Figure 8.6  Streamwise velocity fluctuation flatness at x=210 mm. 
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9.0 Hybrid RANS/LES Models 

 
9.1  Theory 
 
Several investigators have noted a limitation with RANS turbulence models when 
applied to unsteady flows.  The turbulence models produce too much eddy 
viscosity and over-damp the unsteady motion of the fluid.  The problem is 
inherent in the construction of the turbulence models because of the assumption 
that all scales of the unsteady motion of the fluid are to be captured and modeled 
by the turbulence model.   
 
One approach to overcoming the shortcomings of RANS models applied to 
unsteady flows is to spatially filter the RANS turbulence models such that the 
eddy viscosity does not include the energy of grid resolved turbulent scales.  The 
spatially filtered RANS turbulence model may be thought of as a subgrid model 
for very large turbulent eddies.  This class of turbulence models has been called 
hybrid RANS/LES models because they incorporate aspects of both forms of 
turbulence modeling.  It is desirable that the spatial filter function chosen not 
degrade the performance of the turbulence model when the largest turbulent 
scales present are below the resolution of the grid as is often the case in current 
aircraft CFD applications. 
  
There are two possibilities for developing hybrid models from existing RANS 
models.  A first approach would be to modify the production or dissipation source 
terms for existing turbulence model differential equations to include additional 
terms to adjust the local eddy viscosity so that it does not include the grid 
realized contribution.  This means that the turbulence quantities normally 
transported by the RANS turbulence model will be created or destroyed based on 
the local grid resolution.  
 
A second approach would be to solve the existing RANS turbulence model in the 
normal manner and then filter the results to determine the level of eddy viscosity 
that will be used in the solution of the Navier-Stokes equations.  This approach is 
somewhat simpler to develop since it requires no tuning of the differential 
transport equations and can be easily extended to different RANS turbulence 
models.   
 
Both approaches have been applied to unsteady flows.  One example of the first 
form of a hybrid RANS/LES turbulence model based on the Spalart-Allmaras 
one-equation turbulence model can be found in Ref. 1.  The standard Spalart-
Allmaras turbulence model contains a destruction term for eddy viscosity that is 
inversely proportional to the square of the distance from the wall (d).  Ref. 1 
suggests replacing the wall distance (d) in the destruction term with  
 

( )gDES LCdd ,min~
=                       (9.1) 
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where CDES is a constant of O(1) and Lg is a grid length scale defined by 
 
 ( )zyxLg ΔΔΔ= ,,max          (9.2) 
 
where Δx, Δy, and Δz are the local grid lengths.  For two-dimensional or 
axisymmetric problems, the out of plane direction is simply ignored in defining the 
local grid length.  The modified destruction term has the effect of decreasing the 
eddy viscosity in regions of tight grid spacing.  This modification causes the 
Spalart-Allmaras RANS turbulence model to behave like a Smagorinsky LES 
turbulence model (see Chapter 8) when the grid spacing (Lg) is less than the 
distance from the wall, which is generally the case outside of the boundary layer.  
Note that the transition from RANS to LES does not include any turbulent length 
scale dependence, but is solely a function of the local grid spacing.  Ref. 1 
introduces the term Detached-Eddy Simulation (DES) to describe this model.  
DES has been applied to a number of unsteady flow problems including flow over 
a sphere2, flow over a delta wing3 and flow over an aircraft4.  
 
A similar modification to an SST two-equation model is given by Strelets5.  In this 
hybrid model the dissipation term (ε) in the turbulent kinetic energy equation (k) is 
replaced by 
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where 
 

εωβ

2
3

*

kkLt ==          (9.4) 

 
( ) DESKWDESKEDES CFCFC 111 +−=        (9.5) 

 
here ω is the specific dissipation, β *=0.09, CDESKE=0.61, and CDESKW=0.78.  The 
turbulent dissipation ε defined in Eq. 9.3 is effectively increased when the grid 
size length scale Lg (Eq. 9.2) is less than the turbulent length scale Lt (Eq. 9.4).   
This causes the eddy viscosity to be reduced in these regions.  Unlike the one-
equation SA-DES model, this model does include a dependency on the local 
turbulent length scale.  The turbulent length scale used in this model is a function 
of the filtered (subgrid) turbulent quantities.  This model behaves like a k-
equation LES subgrid model when the turbulent length scale is greater than the 
grid length scale, and the dissipation equation is decoupled from the kinetic 
energy equation in this region. 
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Nichols and Nelson6 give an example of the second approach for developing a 
hybrid RANS/LES turbulence model which they have designated a multi-scale 
model.  The method was implemented in conjunction with the SST two-equation 
turbulence model and is termed a multi-scale model. The turbulent length scale 
used in this effort is defined by  
 

( )                    /,/0.6max 2/3
RANSRANStRANSt kL εν Ω=       (9.6) 

 
where νtRANS is the unfiltered (large scale) eddy viscosity and Ω is the local mean 
flow vorticity.  This length scale is a mixture of the traditional turbulent scale 
definition for two-equation turbulence models ( 2/3

RANSk /εRANS) and the definition 
usually associated with algebraic turbulence models ((νtRANS/Ω)1/2).  The turbulent 
length scale definition could be easily adapted to other types of turbulence 
models.  The subgrid turbulent kinetic energy is defined as 
 

                                                dRANSLES fkk =      (9.7) 
 
The damping function is defined as  
 

( )( )( ) 2/5.02tanh1 −Λ+= πdf        (9.8) 
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where Lg is defined in Eq. 9.2.  The eddy viscosity is then calculated from 
 

( )                                 1 tLESddtRANSt ff ννν −+=      (9.10) 
 
where the LES based subgrid eddy viscosity is given by  
 

                                     ),0854.0min( tRANSνν LESgtLES kL=
    (9.11) 

 
The multi-scale hybrid model behaves like a traditional SST model on the RANS 
end of the spectrum and transitions to a nonlinear k-equation model on the LES 
end of the spectrum.  The transition function in Eq. 9.10 was chosen to allow a 
smooth transition from the standard RANS turbulence model to the LES subgrid 
model.  This hybrid RANS/LES approach can easily be extended to other RANS 
turbulence models with little to no alteration providing that a length scale can be 
derived for that model and a value for the turbulent kinetic energy can be 
approximated by that model.  The multi-scale hybrid model, like the SST-DES 
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model, transitions from RANS to LES as a function of the ratio of the local 
turbulent length scale predicted by the RANS model and the local grid spacing 
rather than being a function of the grid spacing alone as is the case for the 
Spalart-Allmaras DES model.  
 
Nelson and Nichols evaluated the Spalart-Allmaras DES and the multi-scale 
hybrid turbulence models as subgrid turbulence models for LES applications in 
Ref. 7.  The hybrid models were applied to a high-speed shear layer using a true 
LES flow solver.   The results indicate that the hybrid models perform as well as 
more complicated LES subgrid models for this application.  Nichols8 investigated 
these three hybrid RANS/LES models applied to a circular cylinder and a generic 
weapons bay.  These results are shown in the following sections. 
 
9.2  Circular Cylinder 
Unsteady three-dimensional calculations were performed for the vortex shedding 
from a circular cylinder for M=0.2 and Red=8x106.  Three computational grids 
were used in the simulation: 
 
 Fine – 401x201x201 
 Mid – 201x101x101 
 Coarse – 101x51x51 
 
The mid and coarse level grids were constructed by removing every other point 
from the fine and mid level grids respectively.  The grids have a span of ten 
cylinder diameters.  Periodic boundary conditions were applied at the side planes 
of the grid.  The initial wall spacing was 2x10-4 diameters for the fine grid, which 
corresponds to a y+ of about 20.  Wall function boundary conditions were used in 
the calculations.   
 
Calculations with three different time steps were run on the mid grid with the 
multi-scale hybrid turbulence model to determine an acceptable time step for this 
simulation.   The results are shown in Fig. 9.1.  The primary shedding frequency 
for this example is just less than 60 Hz (Strouhal number=0.28).  These solutions 
correspond to 50, 200, and 800 time steps per shedding cycle.  The results from 
the largest time scale are quite different from the smaller time step results.  The 
spectral peak predicted with the large time step occurs at a much lower 
frequency than the peak predicted using the smaller time steps.  Based on these 
results all subsequent simulations were performed using the 9.0E-4 second time 
step with 200 time steps per shedding cycle. 
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Figure 9.1.  Normal force power spectral density for 3 different time steps using 
the SST-MS model on the medium grid. 

 
The data in Ref. 9 was obtained using both air (γ=1.4) and Freon (γ=1.13) as a 
test medium.  Calculations were performed on the medium grid with the SST-MS 
hybrid model to assess the affect of test medium.  The normal force spectral 
results are shown in Fig. 9.2.  This indicates that the test medium is not an 
important factor at the conditions of this study.  All subsequent solutions were 
performed using air as the test medium.  
 

 
 

Figure 9.2.  Normal force power spectral density for air and Freon using the SST-
MS hybrid model. 
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The calculations were run 10,000 iterations and the final 4096 time steps were 
statistically analyzed.  The centerline plane of the three grids is shown in Fig. 9.3.  
 

   
 
         Fine Grid                 Medium Grid   Coarse Grid 

 
Figure 9.3.  Cylinder grid centerline. 

 
A comparison of the normal force power spectral density for the three hybrid 
models, the Spalart-Allmaras model, and the SST model for the medium grid are 
shown in Fig. 9.4.  The hybrid models show similar trends in that they all have a 
rather broad spectral peak at a Strouhal number of about 0.28.  The two RANS 
models have a much narrower spectral peak at a similar Strouhal number.  The 
RANS models have much lower energy away from the peak.  This is an 
indication that the RANS models are providing too much damping of the 
unsteady solutions. 

 
Figure 9.4.  Normal force power spectral density on the medium grid. 
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Instantaneous x-vorticity isosurfaces computed with the SST-DES hybrid 
turbulence model are shown in Fig. 9.5 for all three grids.  The turbulent structure 
in the wake of the cylinder is clearly evident in the fine grid solution.  The 
turbulent structure is reduced in the mid grid solution.  There is very little 
structure present in the coarse grid solution. 
 

         
            Fine Grid                                Medium Grid   Coarse Grid 
 
Figure 9.5.  Instantaneous vorticity isosurfaces colored by Mach number for the 

SST-DES hybrid turbulence model. 
 

Instantaneous contours of Mach number and eddy viscosity for the SA-DES, 
SST-DES, and SST-MS hybrid turbulence models computed on the three grid 
levels are shown in Figs. 9.6-9.11.   
 

   
 

 a.  Fine   b.  Mid         c.  Coarse 
 

Figure 9.6.  Instantaneous Mach number contours for the SA-DES hybrid 
turbulence model. 
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 a.  Fine   b.  Mid   c.  Coarse 
 

Figure 9.7.  Instantaneous eddy viscosity contours for the SA-DES hybrid 
turbulence model. 

 

   
 
 a.  Fine   b.  Mid   c.  Coarse 
 

Figure 9.8.  Instantaneous Mach number contours for the SST-DES hybrid 
turbulence model. 

 

   
 
 a.  Fine   b.  Mid   c.  Coarse 
 

Figure 9.9.  Instantaneous eddy viscosity contours for the SST-DES hybrid 
turbulence model. 
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 a.  Fine   b.  Mid   c.  Coarse 
 

Figure 9.10.  Instantaneous Mach number contours for the SST-MS hybrid 
turbulence model. 

 

   
 
 a.  Fine   b.  Mid   c.  Coarse 
 

Figure 9.11.  Instantaneous eddy viscosity contours for the SST-MS hybrid 
turbulence model. 

 
All three hybrid turbulence models have similar trends on the three grid levels.  
Significant turbulent structure can be seen in the fine grid solutions with both 
large-scale and small-scale turbulent structure present.  The mid level solutions 
have large-scale structure present, but the smaller turbulent scales are absent.  
The mid level grids also have structure that appears to be more periodic than 
does the fine grid solution.  The coarse level solutions show almost no turbulent 
structure and produce an almost steady state wake away from the cylinder.  The 
level of eddy viscosity in the wake differs for the three turbulent models.  The 
eddy viscosity for the SA-DES model shown in Fig. 9.7 indicates that this model 
effectively shuts off the eddy viscosity outside the boundary layer.  The eddy 
viscosity for the SST-DES and the SST-MS models is reduced as the grid is 
refined as would be expected for these models.  The SST-DES model tends to 
predict higher levels of eddy viscosity in the wake region than does the SST-MS 
model.  The SST-DES model also predicts higher eddy viscosities along the 
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edges of the wake than either the SA-DES or SST-MS models.  Both the SST-
DES and SST-MS models are tending toward a RANS type solution in the far 
wake of the coarse grid solution.   
 
The ratio of the turbulent length scale to the local grid length scale for the SST-
MS model is shown in Fig. 9.12 for the three grid levels. 
 

   
 
 a.  Fine   b.  Mid   c.  Coarse 

Figure 9.12.  Instantaneous ratio of turbulent length scale to the grid length scale 
for the SST-MS hybrid turbulence model. 

 
The length scale ratio seems to scale with the grid refinement for the mid to fine 
grid results, which indicates that the turbulent length scales predicted on the mid 
and fine grids are similar.   The mid level grid results in a length scale ratio of 
greater than two for most of the wake region.  This is the desired performance 
trend with grid refinement for hybrid turbulence models.  The coarse grid results 
do not seem to continue the scaling trend. 
 
The power spectral densities (PSD) of the axial normal force coefficient are 
shown in Figs. 9.13-9.15 for the three hybrid turbulence models.  The mid and 
fine level grid results are in general agreement for the SA-DES hybrid model.  
The location and intensity of the primary spectral peak is still varying with the 
SST-DES and SST-MS hybrid models.   This may be due to the fact that the 
SST-DES and SST-MS hybrid models use a ratio of the local turbulent length 
scale to the local grid length scale to determine the subgrid eddy viscosity, while 
the SA-DES model only uses the local grid length scale.  The coarse grid 
solutions are seen to be significantly different and the energy is contained in 
narrower peaks for all of the hybrid models.  
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Figure 9.13.  Power spectral density of the normal force coefficient for the SA-
DES hybrid model. 

 

 
 

Figure 9.14.  Power spectral density of the normal force coefficient for the SST-
DES hybrid model. 
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Figure 9.15.  Power spectral density of the normal force coefficient for the SST-
MS hybrid model. 

 
The average integrated drag coefficient (Cd), standard deviation of  the lift 
coefficient (σ(Cl)), and the peak lift coefficient Strouhal number (St) for the 3 
hybrid models computed on the three grid levels are shown in Table 9.1.  The 
mid and fine level grid results are in general agreement with each other and the 
experimental data9,10,11.  The results are also in reasonable agreement with the 
Ref. 12 results obtained at a Reynolds number of 3.0x106. 
 

Model Grid Average Cd σ(Cl) St 
SA Coarse 0.266 0.163 0.232 

SST Coarse 0.192 0.103 0.244 
SA-DES Coarse 0.298 0.253 0.232 

SST-DES Coarse 0.216 0.171 0.250 
SST-MS Coarse 0.196 0.115 0.250 

SA Mid 0.511 0.428 0.281 
SST Mid 0.517 0.520 0.281 

SA-DES Mid 0.626 0.186 0.256 
SST-DES Mid 0.589 0.274 0.293 
SST-MS Mid 0.556 0.135 0.281 
SA-DES Fine 0.518 0.182 0.281 

SST-DES Fine 0.590 0.212 0.256 
SST-MS Fine 0.585 0.238 0.268 

DATA Ref. 9  0.505-0.540 0.0575-0.0770 0.306-0.308 
DATA Ref. 10  0.79 - 0.27 
DATA Ref. 11  - - 0.29 

SA-DES Ref. 12  0.41-0.51 0.06-0.13 0.33-0.35 
 
Table 9.1  Force coefficient and Strouhal number predictions on the 3D circular 

cylinder. 
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9.3  WICS Bay 
 
Unsteady Navier-Stokes calculations were also performed for the WICS 
(Weapons Internal Carriage and Separation) L/D=4.5 weapons bay13 for M=0.95 
and Re=2.5x106/ft.  The wind tunnel data were obtained in the AEDC four-foot 
transonic wind tunnel.  The weapons bay was 18 in. long, 4 in. wide, and 4 in. 
deep.  The computational geometry was a flat plate that extended 15 in. 
upstream of the bay to match the experiment and 25 in. downstream of the bay.  
The sides of the computational grid extended 50 in. on either side of the bay 
centerline.  The full bay geometry was modeled using wall functions.  The wall 
spacing was chosen as 0.0075 in., which corresponds to a y+ of 50 on the 
upstream plate.  This wall spacing was used for all the grids in the grid 
refinement study.  
 

Grid resolution effects were investigated by modifying the bay grid and the grids 
in the vicinity of the bay grid.  The grids upstream and to the sides of the bay 
were not modified.  Details of the grid systems and grid spacings used in this 
study are shown in Table 9.2.  The centerline plane of the three bay grids is 
shown in Figure 9.16.    
 

Grid Total 
Points 

Bay Grid 
Dimensions

Bay Grid 
Δxmax

Bay Grid 
Δymax 

Bay Grid 
Δzmax

Fine 1.8x106 121x61x61 0.3 in. 0.1 in. 0.1 in. 
Medium 1.1x106 71x41x41 0.6 in. 0.2 in. 0.2 in. 
Coarse 7.9x105 61x31x31 0.75 in. 0.3 in. 0.3 in. 

 
Table 9.2.  Parameters for the grid refinement study. 

 
A time step study was performed using the SST-MS hybrid model and the 
medium grid set.  Time steps of 8.0x10-6 seconds to 8.0x10-5 seconds were 
evaluated.  A time step of 8.0x10-6 seconds corresponds to 260 time steps per 
cycle for the primary spectral mode of the cavity at 480 hz.  The calculations 
were run 2000 steps to remove the initial transients and all unsteady results were 
processed over the last 8192 time steps.  The results are compared to data (Ref. 
12) for the K16 and K18 transducer locations in the bay in Fig. 9.17.  K16 is 
located on the bay ceiling centerline 0.275 inches from the back wall.  K18 is 
located on the bay back wall centerline 0.725 inches from the bay opening. 
 
The sound pressure levels predicted by the hybrid turbulence models includes 
only the contribution of the grid resolved turbulent scales.  Subgrid turbulent 
energy, which includes most of the energy in the boundary layer, is not included.  
Thus the spectrum predicted using the hybrid models should have lower energy 
at higher frequencies (i.e. should have a more rapid roll off) than the 
experimental data. 
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Figure 9.16.  Centerline plane of the bay grids. 

 
 
 

 
Figure 9.17a.  Sound pressure level spectra at the K16 location for varying time 

step. 
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Figure 9.17b.  Sound pressure level spectra at the K18 location for varying time 

step. 
 

The agreement with the measured spectra is seen to improve at the higher 
frequencies as the time step is reduced.  The solution with the largest time step 
predicts the primary spectral peaks at too low a frequency.  The solution with the 
smallest time step provides reasonable agreement for the first four spectral 
peaks.  The solution using 1.6x10-5 second time step has reasonable agreement 
with the first three spectral peaks. All subsequent solutions were performed using 
the 1.6x10-5 second time step. 
 
A comparison of the sound pressure level for the three hybrid models, the 
Spalart-Allmaras model, and the SST model for the medium grid are shown in 
Fig. 9.18.  The hybrid models show similar trends throughout the spectral range.  
The two RANS models predict the first two spectral peaks, but are well below the 
data away from the peaks. This is an indication that the RANS models are 
providing too much damping of the unsteady solutions. 
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Figure 9.18a.  Sound pressure level spectra at the K16 location for the medium 

grid. 
 

 
Figure 18b.  Sound pressure level spectra at the K18 location for the medium 

grid. 
 
Instantaneous Mach number and eddy viscosity contours on the bay centerline 
are shown in Figs. 9.19-9.21. 
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 a.  Fine   b.  Medium      c. Coarse 
 
Figure 9.19a.  Instantaneous Mach number contours on the bay centerline using 

the SA-DES hybrid model. 
 

   
 
 a.  Fine    b.  Medium   c. Coarse 
 
Figure 9.19b.  Instantaneous eddy viscosity contours on the bay centerline using 

the SA-DES hybrid model. 
 

   
 
 a.  Fine    b.  Medium   c. Coarse 
 
Figure 9.20a.  Instantaneous Mach number contours on the bay centerline using 

the SST-DES hybrid model. 
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 a.  Fine    b.  Medium   c. Coarse 
 
Figure 9.20b.  Instantaneous eddy viscosity contours on the bay centerline using 

the SST-DES hybrid model. 
 

   
 
 a.  Fine   b.  Medium   c. Coarse 
 
Figure 9.21a.  Instantaneous Mach number contours on the bay centerline using 

the SST-MS hybrid model. 
 

   
 
 a.  Fine   b.  Medium   c. Coarse 
 
Figure 9.21b.  Instantaneous eddy viscosity contours on the bay centerline using 

the SST-MS hybrid model. 
 
The turbulent structure shown in the Mach number contours is seen to 
dramatically increase with grid resolution for all three hybrid models.  The shear 
layer is seen to grow and then burst as it traverses the bay.  The eddy viscosity 
decreases with increasing grid resolution as is expected for all three hybrid 
models.  The SST-DES hybrid model has the largest levels of eddy viscosity, and 
the maximum eddy viscosity is located in the shear layer.  The ratio of the 
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turbulence length scale to the grid length scale (Lt/Lg) for the SST-MS model is 
shown in Fig. 9.22.  The contours scale with the grid refinement as is expected 
for this model.   
 
The time averaged pressure coefficient on the bay ceiling is shown in Fig. 9.23 
for the three hybrid models.  The sound pressure level on the bay ceiling is 
shown in Fig. 9.24.  The solutions are similar for the three models for both of 
these properties.  There is some sensitivity to grid density for the average 
pressure coefficient on the downstream end of the ceiling.  The medium and fine 
grids produce similar results for the sound pressure.  The coarse grid sound 
pressure is only slightly different from the finer grids.  This indicates that average 
pressure coefficient and sound pressure level are not overly sensitive to grid 
density. 
 

 
Fine 

     
Medium 

 
Coarse 

Figure 9.22.  Instantaneous ratio of turbulent length scale to the grid length scale 
contours on the bay centerline using the SST-MS hybrid model. 
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Figure 9.23a.  Average pressure coefficient on the WICS ceiling using the SA-

DES model. 

 
Figure 9.23b.  Average pressure coefficient on the WICS ceiling using the SST-

DES model. 
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Figure 9.23c.  Average pressure coefficient on the WICS ceiling using the SST-

MS model. 

 
Figure 9.24a.  Sound pressure level on the WICS ceiling using the SA-DES 

model. 
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Figure 9.24b.  Sound pressure level on the WICS ceiling using the SST-DES 

model. 

 
 

Figure 9.24c.  Sound pressure level on the WICS ceiling using the SST-MS 
model. 

 
The sound pressure level spectra at the K16 and K18 locations for the three 
hybrid models are shown in Figs. 9.25-9.27.  The medium and fine grid spectra 
are in reasonable agreement with the first three spectral peaks for all three hybrid 
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models.  The coarse grid spectra are not quite as good, but are not totally 
unacceptable.  The fine grid solutions underpredict the primary spectral peak, 
while the coarse and medium grids generally overpredict the primary spectral 
peak.  Spectral results seem to be more sensitive to grid density than the time 
averaged quantities. 
 

 
Figure 9.25a.  Sound pressure level spectrum at the K16 location using the SA-

DES model. 

 
Figure 9.25b.  Sound pressure level spectrum at the K18 location using the SA-

DES model. 
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Figure 9.26a.  Sound pressure level spectrum at the K16 location using the SST-

DES model. 

 
Figure 9.26b.  Sound pressure level spectrum at the K18 location using the SST-

DES model. 
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Figure 9.27a.  Sound pressure level spectrum at the K16 location using the SST-

MS model. 

 
Figure 9.27b.  Sound pressure level spectrum at the K18 location using the SST-

MS model. 
 
9.4  Delayed Detached Eddy Simulation (DDES) 
 
Hybrid RANS/LES models were developed to provide a RANS solution in the 
boundary layer along a body and to transition to LES away from the body.  The 
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functions used to transition from RANS to LES in these hybrid models can 
transition too early and lead to solutions that are neither LES nor RANS.  This 
usually occurs in small pockets of separated flow such as a shock induced 
separation on an airfoil.  If the grid is fine enough and the turbulent intensities are 
high enough in this region the hybrid model will begin to reduce the eddy 
viscosity level.  The reduced level may not be low enough to allow the flow to 
become unsteady.  Recently a correction has been proposed for the DES models 
to force the models to remain turbulent in the boundary layer.  The new 
formulation is called Delayed Detached Eddy Simulation (DDES). 
 
The DDES14 version of the SA model modifies Eq. (9.1) to force the modified wall 
distance parameter to equal the distance from the wall further into the boundary 
layer.  This delays the transition from RANS to LES.  The new modified distance 
function is given by 
 

( )Δ−−= DESd Cdfdd ,0max
~         (9.12) 
 
where 
 

[ ]( )38tanh1 dd rf −≡          (9.13) 
 
and 
 

22dS
r t
d

κ
νν +

≡           (9.14) 

 
fd is designed to be 1 in the LES region where rd << 1, and 0 elsewhere.  rd can 
be thought of as a ratio of the turbulent length scale defined by St /ν  and the 
wall distance d.   This length scale ratio will work for simple turbulent flows, but 
may have difficulty in more complicated flows since the eddy viscosity is a 
transported quantity while the strain is a locally derived quantity. It is not difficult 
to imagine flows where a large value of eddy viscosity is transported into a region 
of relatively small strain.  This could cause the DDES model to transition from 
LES to RANS mode away from the body. 

 
A DDES version of the SST model15 can be derived by replacing Lg in Eq. (9.3) 
with a wall corrected grid length scale Lgcor defined as 
 

( )gtDtgcor LLfLL −−=         (9.15) 
 

where 
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Here d is the distance to the wall.  The turbulent dissipation in the turbulent 
kinetic energy equation is effectively increased when the grid size length scale Lg 
is less than the turbulent length scale Lt.  The wall correction increases the size 
of Lgcor near the wall and causes the turbulence model to remain in RANS mode 
in the near wall region without regard to the local grid size in the boundary layer.   
Note that the turbulent length scale used here is based on the ratio of the 
transported turbulent quantities k and ω only. 
 
The pressure distribution for the transonic flow over a NACA 001216 wing test can 
be used to show the benefit of the DDES correction.  The free-stream Mach 
number was 0.799, the angle-of-attack was 2.26 degrees, and the Reynolds 
number based on chord was 9x106.  A 381x81 two dimensional grid was used for 
this study with 301 points on the airfoil.  

  
The pressure coefficient on the airfoil is shown in Fig. 9.28.  All of the solutions 
were run in an unsteady mode, but all of the models produced steady state 
solutions for this case.  The SA and SST RANS model produce similar results for 
this case.  The SA DES model moves the shock on the upper surface upstream 
and produces a weak shock on the lower surface.  This is due to a decrease in 
eddy viscosity in the boundary layer.  The SA DDES model produces a solution 
that is closer to the SA model result.  The SST DES model moves the shock well 
upstream on the upper surface and produces a shock on the lower surface.  The 
SST DDES model produces a solution similar to the SA DDES model.  
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Figure 9.28a  Pressure coefficient for a NACA 0012 airfoil for SA models. 

 

 
 

Figure 9.28b  Pressure coefficient for a NACA 0012 airfoil for SST models. 
  

The SA DES and SA DDES model modified wall distance ( d
~ ) is shown in Fig. 

9.29 for the separated flow region behind the shock at x/c=0.75 on the wing 
upper surface.  The boundary layer edge is approximately at z/c=0.045.  Note 
that dd =

~   for the SA model.  The SA DDES model is seen to delay the transition 
to LES to a much larger distance from the wall than does the SA DES model.  
The effective turbulent length scale used for transitioning the SST DES and SST 
DDES models at the same location is shown in Fig. 9.30.  The SST DES is seen 
to transition very near the wall.  The SST DDES modified turbulent length scale 
moves the RANS to LES transition much further away from the wall. 
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Figure 9.29  Wall distance parameter for the SA, SA DES, and SA DDES 
turbulence models. 

 

 
 

L 
 

Figure 9.30  Turbulent length scale for the SST, SST DES and SST DDES 
turbulence models. 
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9.5  Summary 
 
These simulations indicate a fundamental difficulty in verification and validation 
for unsteady flows.  As the grid is refined, smaller scale turbulent structures are 
resolved in the solution.  This process will continue until the grid is refined below 
the Komologrov scale and all of the turbulent scales are grid resolved.  The 
limiting grid refinement case cannot be approached with current computing 
hardware for most real world high Reynolds problems of interest.  Comparison of 
statistical quantities derived from the unsteady solutions can be made to assure 
that the important features of the unsteady flow have been captured with a given 
grid, but the nature of the statistical analysis makes it difficult to assess whether 
a true “grid convergence” has been achieved. 
 
The time step study indicated that about 200 time steps per primary shedding 
cycle were required for temporal accuracy with the SST-MS hybrid model.  Using 
a larger time step causes the primary spectral peak to occur at a lower frequency 
than predicted with the smaller time step and than is seen in the data. 
 
The simulations on the mid and fine grid systems are in good general agreement 
indicating that a level of grid convergence can be achieved for the large turbulent 
scales.  The turbulent length scale to grid length scale ratio was greater than two 
in the wake region of the cylinder and in the bay.  This may serve as a rule of 
thumb for grid resolution for hybrid model applications.  Although the primary 
shedding frequency for the cylinder is approximately right for the coarse grid, the 
integrated forces and the spectral shape are quite different from the mid and fine 
grid solutions.  This indicates that these turbulence models can produce solutions 
that appear to capture the relevant physics, but not capture the physical details of 
the flow.  The coarse grid solutions were totally non-physical. 
 
The hybrid RANS/LES turbulence models are relatively new and will need to be 
exercised for a wide variety of problems to determine their accuracy before they 
become an accepted tool for fluid modelers.  They seem to offer much for 
unsteady flow applications, but issues such as grid sensitivity need to be further 
addressed.  Hopefully more effort will go into these models in the near future so 
that they can be matured for use in everyday applications. 
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10.0 Wall Function Boundary Conditions 
 

Turbulent transport models that are applicable all the way to the wall are called 
low Reynolds number turbulence models since they are valid at low turbulent 
Reynolds numbers (ρk2/(με)).  Low Reynolds number models require tight grid 
spacing near the wall to resolve the large gradients in velocity, temperature, and 
turbulent quantities near the wall.  This can lead to large grid requirements for 3D 
Navier-Stokes applications.  The stability of a numerical algorithm is limited by 
the smallest cell size in a grid, so the small cells near the wall can severely 
restrict the maximum allowable time step for a problem.  The near-wall 
turbulence damping terms are generally expressed in exponential functions.  This 
can lead to difficulties in converging the numerical solution in the near wall 
region. 
 
Turbulence models that do not include wall correction terms in the differential 
equations are called high Reynolds number turbulence models.  High Reynolds 
number turbulence models rely on empirically derived algebraic models of the 
near-wall region of the boundary layer to provide boundary condition information 
to the mean flow Navier-Stokes equations at the first point off the wall.  These 
empirically derived relationships are called wall functions.  Since the high 
gradient region near the wall is modeled with these empirical relationships, the 
first point off the all may be placed much farther away than with low Reynolds 
number models.  This reduces the number of points required to discretize a flow 
field and increases the maximum allowable time step. 
 
Wall functions have been used by turbulence modelers for a number of years.  
Wall functions were a matter of necessity during the years before computers 
began to mature, and are still a convenient and efficient means of modeling 
many turbulent flows.  Most wall function implementations are based on empirical 
relations for incompressible adiabatic flows.  Some implementations include a 
decoupled relation for the temperature distribution in the lower portion of the 
boundary layer that allows the wall functions to be applied to flows with heat 
transfer at the wall.  The wall function boundary condition formulation developed 
here is based on a coupled velocity and temperature boundary layer profile that 
is applicable to incompressible flows, compressible flows, and flows with heat 
transfer.  The wall functions described here are compatible with most transport 
type turbulence models. 
 
10.1  Theory 
 
There are six fundamental assumptions used in the development of wall function 
boundary conditions for compressible flows: 
 

1. Analytical expressions are available for the velocity and temperature 
profiles in the lower part of the boundary layer. 
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2. Analytical expressions are available for the turbulent transport 
variables at the first point off the wall. 

3. The pressure is constant in the lower part of the boundary layer. 

4. The shear stress ( ( )
y
u

tw ∂
∂

+== μμττ ) is constant in the lower part of 

the boundary layer. 

5. The heat transfer ( ( )
y
Tkkqq tw ∂

∂
+== ) is constant in the lower part of 

the boundary layer. 
6. There are no chemical reactions (i.e. the chemistry is frozen) in the 

lower part of the boundary layer. 
 
Several empirical relationships for the velocity in a boundary layer are available 
for use in wall function boundary conditions.  A typical boundary layer velocity 
profile is shown in Fig. 3.2.  The simplest profile form is the adiabatic 
incompressible universal law-of-the-wall 
 

( ) Byu += ++ log1
κ

                   (10.1) 

 
where u+  and y+ are defined in Eqs. 3.10 and 3.11.   The universal law-of-the-
wall is valid for the y+ range of about 30<y+<1000.  The velocity in the sublayer 
(0<y+<10) is given by 
 

++ = yu           (10.2) 
        
The sublayer must be blended with the law-of-the-wall to cover the interim 
region.  Spalding1 suggested a unified form valid for the log layer and the 
sublayer as well as the transition region.  This form is given by 
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Note that the 

+− uBee κκ  term in Eq. 10.3 is a restatement of the incompressible 
adiabatic law-of-the-wall (Eq. 10.1).  The constants κ and B are generally taken 
as 0.4 and 5.5 respectively.  The wall function boundary condition can be tuned 
for such effects as surface roughness by tuning the κ and B constants (Ref. 2).  
Compressibility and heat transfer effects can be included by replacing the 
incompressible adiabatic law-of-the-wall term in Spalding’s equation (Eq. 10.3) 
with the outer velocity form of White and Christoph3.  White and Christoph’s outer 
velocity is given by 
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The nondimensional parameter Γ models compressibility effects and the 
parameter β models heat transfer effects.  The outer velocity form of White and 
Christoph reduces to the standard law-of-the-wall (Eq. 10.1) for incompressible 
adiabatic flow.  Eq. 10.3 can then be written as  
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where 
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The temperature distribution within the boundary layer is given by the Crocco-
Busemann equation 
 

( )( )2
w uu1TT ++ Γ−+= β         (10.8) 

 
For adiabatic wall cases, β =0 and the Crocco-Busemann equation reduces to 
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The wall shear stress for adiabatic flows is determined as follows: 
 

1. Set the velocity at the wall to zero for non-moving body problems or to 
the grid velocity for moving body problems. 

2. Given the velocity and temperature at the first point off the wall, solve 
Eq. 10.9 for the wall temperature (Tw). 

3. Extrapolate the pressure from the first point off the wall and solve for 
the wall density (ρw) using the equation of state. 

4. Iteratively solve Eq. 10.6 for the wall shear stress in the wall coordinate 
system. 

5. Rotate the stress tensor into the computational coordinate system and 
replace the viscous flux calculation at the wall for cell-centered 
algorithms or at the half node for node-centered algorithms. 

 
The wall shear stress and the heat transfer for constant temperature wall flows 
are determined by: 
 

1. Set the velocity at the wall to zero for non-moving body problems or to 
the grid velocity for moving body problems. 

2. Extrapolate the pressure from the first point off the wall and solve for 
the wall density using the equation of state with the given wall 
temperature. 

3. Iteratively solve Eq. 10.6 and Eq. 10.8 for the wall shear stress and 
heat transfer in the wall coordinate system. 

4. Rotate the stress tensor and the heat transfer vector into the 
computational coordinate system and replace the viscous flux 
calculation at the wall for cell-centered algorithms or at the half node 
for node-centered algorithms. 

 
One approach to introducing the wall function corrected wall shear stress and 
heat transfer into the calculation of the viscous fluxes has been to calculate an 
“effective wall eddy viscosity” so that the discrete shear stress at the first half 
point off the wall given by 
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yields the correct value of the wall shear stress.  Unfortunately this approach 
introduces errors into the energy equation since the slope of the temperature 
derivative will not be calculated correctly (i.e. a separate effective wall eddy 
viscosity would be required for the temperature).   
 
Sondak and Pletcher4 describe a procedure to perform a transformation of the 
stresses for generalized coordinate systems.  Although this transformation is 
much more general than the effective wall eddy viscosity approach and 
introduces no error in the energy equation, it is also much more complex.  In their 
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transformation the wall function generated wall shear stress is assumed to be in 
the wall coordinate system, i.e. a system aligned with velocity vector at the first 
point off the wall and the normal vector to the wall.  This is not always the case 
for separated flows, but the assumption seems to produce reasonable results 
even when the flow is separated.  
 
Another method of correcting the computational shear stress at the wall with the 
wall function value is to calculate the ratio of the magnitude of the computed wall 
shear stress to the wall function value and then scaling the computed values by 
this ratio.  This is equivalent to performing the transformation of Sondak and 
Pletcher4, and is much simpler to apply.  The temperature derivative at the wall 
may be treated in a similar manner.   
 
Once the wall shear stress has been determined the turbulence transport 
variables must be determined at the first point off the wall.  The eddy viscosity at 
the first point off the wall for incompressible adiabatic flow can be found using the 
constant stress assumption to be 
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The equivalent form of the eddy viscosity for compressible flows with heat 
transfer can also be found using the constant stress assumption.  The eddy 
viscosity is given by 
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where 1w+μ  is the molecular viscosity at the first point off the wall and +

+

∂
∂

y
ywhite  is 

given by 
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Eq. 10.12 reduces to Eq. 10.11 for adiabatic incompressible flows.  The values of 
the transport model turbulence variables at the first point off the wall must also be 
defined.  The values for the Spalart variable ν~  is given by 
 

3
1

34 ~~
vtt Cμνμν +=         (10.14) 

 
The turbulent kinetic energy and turbulent dissipation at the first point off the wall 
for k-ε models are given by 
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The turbulent kinetic energy and specific turbulent dissipation at the first point off 
the wall for k-ω models are given by 
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The two level model for ω in Eqs. 8.17-8.20 was suggested by Veiser, Esch, and 
Menter5. 
 
Most upwind flow solvers require no further modifications than the inclusion of 
the corrected wall stress and heat transfer in the viscous flux calculations.  The 
smoothers used with central difference algorithms require some additional 
modifications.  The fourth-order smoother used to maintain numerical stability will 
produce excessive dissipation at the wall when wall functions are employed 
because of the large velocity difference between the wall and the first point off 
the wall.  To prevent this from occurring, the smoother should be modified as 
follows.  The standard form of the explicit fourth-order smoother in the ξ 
computational direction is 
 

[ ]ξξξ ψ ΛΔ∇Δ )4(t         (10.21) 
 
where 
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where Δt is the time step, Δξ is the central difference operator, and ψ(4) is the 
explicit fourth-order smoothing coefficient.  The second derivative term Λξ is 
normally set to zero at the wall for viscous calculations.  This term is also set to 
zero at the first point off the wall when wall functions are used.  This effectively 
turns the fourth-order smoothing off at the first point off the wall and reduces it 
significantly at the second point off the wall. 
 
Once the wall shear stress is calculated using wall functions, the y+ value of the 
first point off the wall is known.  It is a simple matter to automatically switch 
between the wall functions and integrating to the wall based on the local value of 
y+.  The turbulence model chosen should contain the low Reynolds number terms 
required for the model to be valid in the near wall region if automatic switching is 
implemented.  Automatic switching offers advantages in complex configurations 
since computational grid points can be saved by using the larger wall function 
wall spacings on non-essential portions of the geometry and integrating to the 
wall where high quality skin friction or heat transfer is required.  Automatic 
switching is also useful in grid sequencing or multigrid algorithms where the wall 
functions can provide an improved estimate of the wall shear stresses and heat 
transfer on the coarse mesh solutions. 
 
Two examples of wall function applications for the Spalart-Allmaras and the SST 
turbulence models are included here.  Other example of wall function 
applications for structured and unstructured grids are given in Ref. 6 and Ref. 7 
respectively. 
 
10.2  Grid Sensitivity for a Flat Plate with Adiabatic Walls 
 
The predicted and theoretical values for the skin friction distribution on an 
adiabatic flat with varying initial grid wall spacings using are shown in Fig. 10.1 
for the Spalart-Allmaras turbulence model and in Fig. 10.2 for the SST turbulence 
model.  The y+=1 results did not use wall functions and are included for 
reference.  All the results shown here used a grid-stretching ratio of 1.2.  The wall 
function predictions of skin friction are very similar for both turbulence models.  
The models are in reasonable agreement for length Reynolds numbers (Rex) 
above 1.0x106.  Velocity profiles for the two turbulence models are shown in Fig. 
10.3 and 10.4.  Again the y+=1.0 results were not run with wall functions and are 
included for reference.  The velocity profiles are in reasonable agreement for all 
of the wall spacings run here. 
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Figure 10.1  Flat plate skin friction predictions for the Spalart-Allmaras turbulence 

model  with wall functions for varying initial wall grid point spacings. 

 
Figure 10.2  Flat plate skin friction predictions for the SST turbulence model  with 

wall functions for varying initial wall grid point spacings. 



10-9                                  

 
Figure 10.3  Flat plate velocity profile predictions for the Spalart-Allmaras 

turbulence model  with wall functions for varying initial wall grid point spacings. 

 
Figure 10.4  Flat plate velocity profile predictions for the SST turbulence model  

with wall functions for varying initial wall grid point spacings. 
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10.3  Grid Sensitivity for an Axisymmetric Bump 
 
A second application of wall functions for adiabatic flows with pressure gradients 
is the Ames axisymmetric bump described in Chapter 5.  Both the Spalart-
Allmaras and the SST models were run with varying initial grid wall spacings.  
Results for the pressure coefficient for the Spalart-Allmaras model and the SST 
model are shown in Fig. 10.5 and 10.6 respectively.  Results for the velocity 
distribution at x/c=1.0 (the trailing edge of the bump) are shown for the Spalart-
Allmaras and the SST models in Fig. 10.7 and 10.8 respectively.   The y+=1.0 
results were not run with wall functions and are included for reference.  For both 
the pressure coefficient distribution and the velocity profile at x/c=1.0 the results 
for each model are similar.  The results tend to start to diverge for y+=200.  The 
wall functions provide reasonable results in the shock induce separated flow 
region. 

 
Figure 10.5  Pressure coefficient predictions for the Ames axisymmetric bump for 
the Spalart-Allmaras turbulence model  with wall functions for varying initial wall 

grid point spacings. 
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Figure 10.6  Pressure coefficient predictions for the Ames axisymmetric bump for 

the SST turbulence model  with wall functions for varying initial wall grid point 
spacings. 

 
Figure 10.7  Velocity distribution at x/c=1.0 for the Ames axisymmetric bump for 
the Spalart-Allmaras turbulence model  with wall functions for varying initial wall 

grid point spacings. 
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Figure 10.8  Velocity distribution at x/c=1.0 for the Ames axisymmetric bump for 
the SST turbulence model  with wall functions for varying initial wall grid point 

spacings. 
 
10.4  Grid Sensitivity for a Flat Plate with Heat Transfer 
 
Calculating heat transfer accurately can be more difficult than predicting skin 
friction.  This can be seen in the subsonic flat plate example when the wall 
temperature is specified to be 1.5 times the free-stream temperature.  The 
sensitivity of the skin friction and heat transfer result with varying initial grid wall 
spacing is shown in Fig. 10.9 and Fig. 10.10 for the Spalart-Allmaras model and 
in Fig. 10.11 and 10.12 for the SST model.  The y+=0.1 results were not run with 
wall functions and are included for comparison.  The grid stretching ratio was 
fixed at 1.2 for these results.  Both the skin friction and heat transfer seem to be 
relatively insensitive to the wall spacing for the wall spacings presented here. 



10-13                                  

 
Figure 10.9  The effect of wall spacing on the skin friction on a flat plate with heat 

transfer using the Spalart-Allmaras turbulence model. 

 
Figure 10.10  The effect of wall spacing on the heat transfer (Stanton number) on 

a flat plate using the Spalart-Allmaras turbulence model. 
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Figure 10.11  The effect of wall spacing on the skin friction on a flat plate with 

heat transfer using the SST turbulence model. 

 
Figure 10.12  The effect of wall spacing on the heat transfer (Stanton number) on 

a flat plate using the SST turbulence model. 
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Profiles of velocity and temperature at a length Reynolds number (Rex) of 1x107 
are shown in Fig. 10.13 and 10.14 respectively for the Spalart-Allmaras model 
and in Fig. 10.15 and 10.16 for the SST model.  Again the y+=0.1 results were 
not run with wall functions and are included for comparison purposes.  The wall 
function results are in reasonable agreement for all wall spacings investigated for 
both turbulence models.   
 

 
Figure 10.13  The effect of wall spacing on the velocity profile on a flat plate with 

heat transfer using the Spalart-Allmaras turbulence model and wall functions. 
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Figure 10.14  The effect of wall spacing on the temperature profile on a flat plate 

with heat transfer using the Spalart-Allmaras turbulence model and wall 
functions. 

 
Figure 10.15  The effect of wall spacing on the velocity profile on a flat plate with 

heat transfer using the SST turbulence model and wall functions. 
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Figure 10.16  The effect of wall spacing on the temperature profile on a flat plate 
with heat transfer using the SST turbulence model and wall functions. 
 
10.5  Grid Sensitivity for a Nozzle with Heat Transfer 
 
Flow through a supersonic nozzle with a constant temperature wall can serve as 
a test case for evaluating the performance of the wall function formulation in the 
presence of strong pressure gradients.  Details of the geometry and boundary 
conditions for the converging-diverging supersonic nozzle are given in Chapter 5.  
High-pressure air was heated by the internal combustion of methanol and flowed 
along a cooled constant area duct before entering the nozzle.  The gas could be 
treated as a calorically perfect gas with a ratio-of-specific heats (γ) of 1.345.  The 
nozzle exit Mach number was 2.5.  The molecular viscosity and thermal 
conductivity were assumed to vary according to Sutherland’s law. 
 
The grid stretching ratio used in this study was 1.2.  Comparisons of the 
predicted and measured pressure along the nozzle are shown in Fig. 10.17 for 
the Spalart-Allmaras model and in Fig. 10.18 for the SST model.  The results for 
a wall spacing of y+=0.1 were not run with wall functions and are included for 
reference.  The pressure distribution is seen to be insensitive to the wall spacing.  
The wall heat transfer is shown in Fig. 10.19 for the Spalart-Allmaras model and 
in Fig. 10.20 for the SST model.  The SST results for heat transfer are much less 
sensitive to the initial wall spacing than are the Spalart-Allmaras results.  The 
heat transfer predictions are adequate for many applications even for an initial 
wall spacing of y+=100. 
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Figure 10.17  The effect of wall spacing on the pressure distribution for a 
supersonic nozzle  with heat transfer using the Spalart-Allmaras turbulence 
model and wall functions. 

 

 
Figure 10.18  The effect of wall spacing on the pressure distribution for a 
supersonic nozzle  with heat transfer using the SST turbulence model and wall 
functions. 
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Figure 10.19  The effect of wall spacing on the heat transfer distribution for a 
supersonic nozzle  with heat transfer using the Spalart-Allmaras turbulence 
model and wall functions. 

 
Figure 10.20  The effect of wall spacing on the heat transfer distribution for a 
supersonic nozzle  with heat transfer using the SST turbulence model and wall 
functions. 
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Wall Function Application Hints 
 

1. The first point off the wall should not exceed y+=100.  A good rule of thumb 
is to place the first point off the wall at y+=50. 

2. Wall functions should not generally be used for calculations requiring 
highly accurate friction drag or heat transfer.  

3. Note that the computational domain for the turbulence variables does not 
include the first point off the wall when using wall functions since it is 
prescribed by the boundary condition.  

4. Post processing of terms that depend on the velocity or temperature 
gradient at the wall must include the wall function in order to match the wall 
velocity or temperature gradient used in the calculation. 
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11.0 Boundary Layer Transition Simulation 
 
The transition of a boundary layer from laminar to turbulent impacts the 
characteristics of a flow field, but its underlying physics has yet to be well 
understood. The lack of a validated boundary layer transition simulation 
capability is a major source of error for many applications, such as Reynolds 
number scaling of wind tunnel results to flight, hypersonic flight, and high altitude 
turbine engine propulsion. In spite of the large amount of turbulence transition 
data available, no empirical method has been formulated that can reliably predict 
transition for a variety of flight conditions and geometries. Though current efforts 
using Direct Numerical Simulations are interesting and have shown promising 
results, their use in production applications on real geometries is still years away. 
 
One method for predicting the onset of transition is the use of the boundary layer 
stability theory described in Chapter 1. This methodology has a number of 
shortcomings:  
 

1) The method cannot be used for simulating bypass transition. 
2) The method can only be used to predict the onset of transition and not for 

modeling the transition region or the fully developed turbulent flow region.  
There is no way to directly use the results of this method to obtain a 
solution for the entire transitional flow field. 

3) The method requires a highly converged steady-state laminar flow solution 
to the Navier-Stokes equations.  This can be difficult to obtain for many 
configurations, especially if large scale flow separation is present. 

 
Probably the most popular method for simulating transition is the use of 
Reynolds-Averaged Navier-Stokes (RANS) CFD codes with a low Reynolds 
number turbulence model. The RANS equations are solved either directly or in 
conjunction with some empirical correlations. The use of low Reynolds number 
RANS models has proven unreliable in predicting the change in skin friction and 
heat transfer within the transition region. No model of this type performs 
satisfactorily under the influence of free-stream turbulence intensity and pressure 
gradients. It is extremely difficult to obtain the correct location of the onset of 
transition with this class of models. Recently methods have been developed for 
simulating boundary layer transition that utilize additional transport equations for 
intermittency or for a disturbance kinetic energy. These models rely heavily on 
empirical functions to predict the onset and extent of the transition region. 
Transport based transition models are of current interest because they can be 
easily coupled to existing transport equation turbulence models and can be used 
on complex configurations. 
 
Turbulence transition models have been broadly categorized in two groups: 
models based on stability theory and models not based on stability theory. 
Models not based on stability theory are further divided into two groups: models 
with specified transition onset and models with onset prediction capability. 
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11.1 Transition Models Based on Stability Theory 
 
The en method proposed by Smith and Gamberoni1 and Van Ingen2, based on 
linear stability theory, is one of the most popular methods available for transition 
prediction. There are three steps in the application of the en method. The first 
step involves the computing of the laminar velocity and temperature profiles at 
different stream wise locations for the given flow. In the second step, the 
amplification rates of the most unstable waves are calculated for each profile by 
using the en method. In the third step, these amplification rates are used to 
calculate the transition location. There are several problems with the en method. 
The major criticisms that the en method has received is that it was developed 
based on the linear stability theory with an assumption that the flow is locally 
parallel. The value of the ‘n’ factor for transition is not universal and needs to be 
determined based on experimental data. This value varies from one wind tunnel 
to the next. 
 
The linear Parabolized Stability Equations (PSE) method addresses the non-
parallel effects neglected in the linear stability theory and assumes that the mean 
flow, amplitude functions and wave number (α) are dependent upon the stream 
wise distance (x). A further development of the linear PSE, known as the 
nonlinear PSE, incorporates the nonlinear effects that have been neglected in the 
linear stability theory. Methods based on the stability theory have one major 
drawback - they need to track the growth of the disturbance amplitude along a 
streamline. This limitation poses a significant problem for three-dimensional flow 
simulations where the streamline direction is not aligned with the grid. Coupling 
of such methods with CFD codes requires an unrealistically high grid density to 
yield the boundary layer data with the required level of accuracy. These methods 
also require a well-converged steady-state solution, which may not be obtainable 
for real-world problems involving local flow separation. The main advantage of 
these methods is that they give the correct treatment of the surface curvature. 
Some different techniques have been employed to use these stability-based 
methods more efficiently3.  One method is to generate a database of the solution 
of the linear stability equation for different velocity profiles in advance. The local 
flow stability can then be determined quickly based on the local velocity 
calculated from CFD codes. The validity of these models is limited to the range of 
velocity profiles available in the database. 
 
11.2 Transition Models With Specified Transition Onset 
 
The transition region models in this section are unable to predict the location of 
the transition. The transition location is determined from empirical data or results 
from an en computation. The transition region is modeled by modifying existing 
turbulence models. In Ref. 4, six transition models were implemented into the 
commercial Navier-Stokes code GASP. These six models were the Baldwin-
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Lomax model, the Wilcox k-ω model, the Schmidt and Patankar low-Re k-ε 
model which had a production term modified for modeling transition, the Warren, 
Harris and Hasan one-equation model, the algebraic transition model developed 
at ONERA/CERT, and the linear combination transition model developed by Dey 
and Narasimha. These models were used to simulate hypersonic experimental 
cases that included transition on a cone at Mach 65, a compression ramp at 
Mach 10.086, and five flared cone test cases at Mach 7.937,8. Out of the five 
flared cones used there were two with favorable pressure gradients, two with 
adverse gradients, and one with a zero pressure gradient. 
 
1) Baldwin-Lomax algebraic turbulence model: 
The Baldwin-Lomax model was used to predict the transition region by turning off 
the turbulence model for the laminar region by setting the eddy viscosity equal to 
zero and then just turning it on at the transition point. It was found that in most of 
the cases this model adequately predicted the peak heat transfer, but under 
predicted the transition length. 
 
2) Warren, Harris and Hassan (WHH) one-equation model: 
This model attempts to include the effect of second mode disturbances in 
addition to the first mode9. The transitional stress, incorporating both modes, is 
calculated by using the following formula for the eddy viscosity length scale ( μl ) 
 

( )[ ] t
SMTS llll μμ Γ+−Γ−= 1         (11.1) 

 
Where TSl  and SMl  are the length scale contributions from the first and second 

modes, respectively, which are calculated from experimental correlations. tlμ  is 
the turbulent length scale, and � is the intermittency factor. The intermittency of 
the flow is defined as the fraction of the time that the flow is turbulent. The 
expression for intermittency used here was developed by Dhawan and 
Narasimha10 and is given by 
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Where xt is the location of transition onset, � is the stream wise distance 
between points where � = 0.25 and � = 0.75. The applicability of this equation 
has been confirmed for hypersonic flows. The model was used to simulate cases 
in which the first mode disturbances dominate the transition process (M < 4) and 
cases in which the second modes are dominant (M > 4) in Ref. 9. In all cases, 
the model performed satisfactorily. This model was later implemented in GASP4 
and again was found to be quite accurate. 
 
3) Wilcox k-ω turbulence model11,12: 
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The low Re k-ω model developed by Wilcox was used to predict the transition 
region. The prediction of the transition region was obtained by tripping the 
boundary layer at a given point by decreasing the value of the dissipation so as 
to destabilize the boundary layer and cause transition. The application of this 
model in Ref. 4 showed that it was not very easy to trip the boundary layer at the 
desired location due to the sensitivity to the initial conditions. This model 
predicted a short transition length and over-predicted the peak heat transfer for 
some cases. 
 
4) Schmidt and Patankar production term modifications13: 
Schmidt and Patankar have developed modifications to the production term in 
the turbulent kinetic energy (TKE) equation of the Lam and Bremhorst k-ε 
model14. These modifications limited the production of the kinetic energy. For the 
use of this model, a trial and error method was needed to make transition occur 
at the desired position by varying the inlet conditions. The results did not 
compare well to the experimental cases in Ref. 4, and the method was found to 
be very sensitive to the grid spacing near the wall. Due to the defects in this 
model a few modifications were suggested in Ref. 4. Since it was found that the 
model was difficult to trigger turbulence transition, a spot with high TKE was 
introduced into the boundary layer. This spot then grew and caused transition to 
take place. In order to improve the prediction of the length of the transition 
region, an exponential function was used for the maximum allowable production 
of TKE. These modifications improved the results for some cases but gave worse 
results for other cases. 
 
5) Algebraic transition model15,16: 
The algebraic transition region model was developed at ONERA/CERT and is 
described in Arnal15,16. The form of the model of Singer et al.17,18 was 
implemented in Ref. 4. This model predicts transition by multiplying the eddy 
viscosity by a transition function before adding it to the fluid viscosity. This 
function was found to be related to the momentum thickness growth. As a result, 
in test cases with severe adverse pressure gradients, where the momentum 
thickness decreases, the model did not produce transition. Theoretically this 
model should be compatible with any turbulence model. However, it was found 
that this model did not perform well with two equation models. In Ref. 4 the 
model was used with the Baldwin-Lomax model. Corrections to the calibration of 
the transition function for high speed flows were also suggested in Ref. 4. The 
new model predicted the cases tested better than the original model. 
 
6) Linear combination transition model10: 
This model was developed by Dey and Narasimha19 and is based on the concept 
that the transition flow is a combination of the laminar and turbulent flow fields. 
The contribution from laminar and turbulent values is proportioned based on the 
intermittency factor developed by Dhawan and Narasimha10 mentioned above. 
This model requires that a complete laminar flow simulation be run first. This 
simulation is followed by a turbulent one, with the turbulent boundary layer 
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starting at the point of transition. The model then uses these two solutions to 
generate the transitional solution. For example, the mean velocity (U) and skin 
friction coefficient (Cf) are given by 
 

( ) TL UUU Γ+Γ−= 1          (11.3) 
 

( ) fTfLf CCC Γ+Γ−= 1         (11.4) 
 
In the above equations the subscripts L and T stand for values in the laminar and 
turbulent boundary layers, respectively. The peak heat transfer was not predicted 
in the test cases simulated in Ref. 4. The main difficulty in getting accurate 
results with this model was that one of the modeling constants needs to be 
modified from case to case to obtain good results. Many researchers such as 
Abid20 have used the intermittency function from the linear combination model as 
an algebraic transition region function to proportion the amount of the eddy 
viscosity added to the fluid viscosity. The results using this method were found to 
be very similar to the linear combination model mentioned above, but there are 
some noticeable differences4. The transition length was always under-predicted. 
For the cases with no pressure gradient and adverse pressure gradients, the 
heat transfer predicted at the end of transition and through the turbulent region 
was significantly high. 
 
In addition to the above models, efforts have been conducted to modify existing 
turbulence models for turbulence transition. In Ref. 21, the performance of the 
Spalart Allmaras (S-A)22 and the Baldwin-Barth (B-B)23 one-equation models and 
three two-equation models for simulating hypersonic transition were evaluated. 
The two equation models assessed in Ref. 21 included a low Re k-ε model with 
the modifications of Nagano and Hishida24, the hybrid k-ω model of Menter 
(SST)25, and the Wilcox k-ω model26. The Sandia Advanced Code for 
Compressible Aerothermodynamics Research and Analysis (SACCARA) was 
used to evaluate these models in Ref. 21 using two flow cases. The first case 
was the flow over a flat plate at Mach 8 with flow conditions corresponding to an 
altitude of 15 km, where a perfect gas was assumed. The second flow case 
considered was the flow over a re-entry flight vehicle at Mach 20 and an altitude 
of 24.4 km, where real gas effects need to be taken into account. The method 
employed in Ref. 21 to specify transition from laminar to turbulent flow was as 
follows. The turbulence transport equations were solved over the entire domain, 
with a transition plane specified by the user. Upstream of this plane, the effective 
viscosity was simply the laminar value whereas at downstream the effective 
viscosity was the sum of the laminar and turbulent viscosities. An advantage of 
this approach was that the turbulence transport equations were solved over the 
whole domain, thus promoting turbulent behavior downstream of the transition 
plane. On the other hand, if the turbulence source terms were simply turned on 
after the transition plane, the turbulence model might not transition to turbulent 
flow until farther downstream, depending on the free stream turbulence level. 
However, a disadvantage of the approach was that a discontinuity in the total 
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viscosity (laminar plus turbulent) could occur at the transition plane. All models 
except the S-A model and the low Re k-ε model predicted the transition at the 
correct location for the flat plate case at Mach 8. For these two models, the free 
stream turbulence values needed to be increased. All the models tested in Ref. 
21 provided the correct skin friction levels for this case. For the reentry flight 
vehicle, the wall heat flux predicted by the S-A model, the SST model, and the 
Wilcox k-ω model were found to be in reasonable agreement with the 
experimental data. The B-B and the Low Re k-ε model greatly over-predicted the 
heat flux in the turbulent region. 
 
11.3 Transition Models with Onset Prediction Capability 
 
These models not only simulate the characteristic of the transition region, but 
also predict the onset of transition.  
 
1) k-ζ turbulence/transition model: 
The k-ζ turbulence model27 was used to study the effect of high disturbance 
environments (HIDE) on the transitional simulations carried out in conventional 
hypersonic facilities. Since HIDE cannot be described by linear stability theory, a 
minimum heat flux criterion was used to determine onset of transition. This is 
done by assuming initial transition onset points and employing linear interpolation 
for interior points. After running a few iterations, the minimum heat flux criterion is 
employed to find the locations where the wall heat flux is a minimum. The 
solution is independent of the initial guess as long as the initial transition points 
are ahead of the actual locations. This approach is similar to the WHH model 
mentioned above. In this case, the eddy viscosity was modified using the formula 
 

( ) tnte μμμ Γ+Γ−= 1          (11.5) 
 

ntμ  is the eddy viscosity due to the non-turbulent fluctuations, and can be 
calculated as 
 

ntnt kτρμ 09.0=          (11.6) 
 
where τnt is the non-turbulent time scale. In addition, the dissipation time scale in 
the turbulent kinetic energy equation was also chosen as the combination of time 
scales of turbulent and non-turbulent fluctuations. The time scale for calculating 
the eddy viscosity and the dissipation time scale were derived for three different 
transition mechanisms: cross flow instabilities, second mode instabilities, and 
HIDE. These three mechanisms were selected because they were believed to be 
responsible for transition over 3D bodies in conventional hypersonic wind 
tunnels28. The simulations were performed on an elliptic cone at the Mach 
number of 7.93 and were compared with experimental results. It was concluded 
from the results that HIDE had a higher impact on the transition mechanism than 
the other two mechanisms. The main disadvantage of this model is that it does 
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not solve the non-turbulent fluctuations using transport equations, which limits 
the flexibility of this method. Also, this model requires an initial guess for the 
transition location. 
 
2) Papp and Dash model29: 
Papp and Dash proposed a concept analogous to that of the WHH model was 
used.  The SSGZ-J k-ε model developed by So et al.30 was implemented with 
compressibility corrections for hypersonic flows. An additional transport equation 
was solved for the non-turbulent fluctuations. The non-turbulent fluctuations 
included the first- and second-mode mechanisms. The location of the onset of 
transition31 was said to be the minimum distance along the surface for 

11Re ≥≡
ν
ν

μ

lt
t C

, where Cμ is the turbulent viscosity coefficient (0.09), ν is the fluid 

kinematic viscosity, and νlt is the eddy viscosity due to the non-turbulent 
fluctuations which can be calculated as 
 

ntllt kC τν μ=           (11.6) 
 
where τnt is the viscosity time scale obtained for different transition mechanisms, 
and kl is the laminar turbulent kinetic energy, which is obtained from a transport 
equation in the Papp and Dash model29. This model was incorporated into a 
Reynolds-Averaged Navier-Stokes (RANS) flow solver by multiplying the 
turbulent eddy viscosity by the intermittency before adding to the fluid viscosity. 
In all cases simulated, the transition onset was properly obtained. However, in 
some cases the peak in heat transfer was not reproduced correctly. This has 
been attributed to the algebraic nature of the intermittency function used. This is 
the biggest disadvantage of the model. 
 
3) Suzen and Huang model [32]: 
This model uses a transport equation for the intermittency factor. This equation 
not only reproduces the intermittency distribution of Dhawan and Narasimha10, 
but also gives a realistic variation of the intermittency in the cross-stream 
direction. The intermittency transport equation includes source terms from two 
different models: the Steelant and Dick model33 and the Cho and Chung model34. 
The model is incorporated into the Navier-Stokes solvers by simply multiplying 
the eddy viscosity obtained from the turbulence calculations with the 
intermittency factor. The Menter’s shear stress transport (SST25) model was used 
to calculate the turbulent quantities. The onset of transition was determined by 
comparing the local Reynolds number with a transition onset Reynolds number 
(Reθ) calculated using the correlation of Huang and Xiong35, where Reθ is a 
function of the free stream turbulent intensity and the acceleration parameter. 
This model was tested for zero- and variable-pressure gradient flows with 
different free stream turbulence intensities.  The numerical result showed good 
agreement with the experimental data of Savill36,37.  This model is not a single 
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point model since it uses the free stream turbulence intensity value to calculate 
the transition onset Reynolds number, which requires global parameters. 
 
4) Walters and Leylek model38: 
This model is based on the concept that bypass transition is caused by very high 
amplitude stream wise fluctuations. These fluctuations are very different from 
turbulent fluctuations. Mayle and Schulz39 proposed a second kinetic energy 
equation to describe these fluctuations. This kinetic energy was called laminar 
kinetic energy kL. In the near-wall region, the turbulent kinetic energy (TKE, kT) 
was split into small-scale energy and large scale energy. The small-scale energy 
(kT,s) contributes directly to the turbulence production, and the large-scale energy 
(kT,l) contributes to the production of laminar kinetic energy. These two energies 
can be calculated from the kT based on the turbulent length scale. The eddy 
viscosities based on both scales are calculated from the respective-scale kinetic 
energies. For the onset of transition, a parameter is calculated from kT, the 
kinematic viscosity and the wall distance. When this parameter exceeds a certain 
threshold, transition is assumed to start. The onset of transition is associated with 
the reduction of kL and the consequent increase of kT (indicating the breakdown 
of laminar fluctuations into turbulence). This model was incorporated into a 
RANS flow solver for the calculation of the total eddy viscosity and eddy thermal 
diffusivity to account for contributions from the small-scale as well as large-scale 
turbulent kinetic energies. For all test cases simulated, the model responded 
correctly to increases in the free stream intensity. It yielded reasonable results for 
cases with high pressure gradients and streamline curvatures. Advantages of this 
method are that it is very simple to implement it into the existing CFD codes 
since it is based on a RANS framework. This is a single point transition model 
meaning that it requires only local information, which makes this method easily 
applicable to unstructured and parallel computations. The low-Re k-ε models are 
typically not calibrated for transition prediction, but provide the transition location 
as a by-product of their viscous sublayer formulation. Since this transition model 
is developed based on the low-Re k-ε model, the embedded viscous sublayer 
formulation coupled with the added transition prediction capability cannot be 
calibrated independently. Hence, a change in the transition formulation would 
affect the solution in the fully turbulent region. In addition, it is generally observed 
that these models are not flexible enough to sufficiently cover the wide range of 
transition mechanisms observed in reality40,41. 
 
5) Local Correlation Based Transition Model (γ − Reθ model or LCTM) 40,41: 
This model is based on the vorticity Reynolds number.  The vorticity Reynolds 
number is an extremely important parameter and is a local property and can be 
easily calculated in CFD codes. The maximum value of the vorticity Reynolds 
number in a boundary layer profile is directly proportional to the momentum 
thickness Reynolds number. The vorticity Reynolds number is used in triggering 
transition instead of directly using the momentum thickness Reynolds number. 
This model solves a transport equation for intermittency and also a transport 
equation for the Reynolds number based on the transition onset momentum 
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thickness. The first transport equation includes two terms that control production. 
These are Flength, a parameter which controls the length of transition zone, and 
Reθc which is the momentum thickness Reynolds number at the point where the 
intermittency starts to increase in the boundary layer. These two variables are 
calculated from empirical functions of the transition momentum thickness 
Reynolds number ( tθRe ). A second transport equation is required to solve for 

tθRe  and to include the non-local influence of the turbulence intensity, which 
varies with the free stream turbulence kinetic energy and the free stream velocity. 
In the case of flows with boundary layer separation, this transition model is 
modified so that the intermittency is allowed to exceed the unity when the 
boundary layer separates. This event results in larger production of kinetic 
energy leading to correct prediction of reattachment41. This model is applied by 
modifying the production and destruction terms of the original SST model using 
the intermittency. The model was validated with many complicated 2D and 3D 
configurations. In all cases, good agreement with the experimental data was 
obtained. This model offers two main advantages: 1) it is based on local 
variables; 2) it is very flexible and can be used for any mechanism as long as the 
empirical correlation can be formulated. However, the empirical correlations used 
with this model are proprietary. 
 
6) The model of Lodefier et al.42: 
This model is also based on the concept of pre-transitional fluctuations similar to 
the Walters and Leylek model. However, this model uses the concept of 
intermittency to describe the transition region. The intermittency equation used 
was proposed by Steelant and Dick43. The production term of this intermittency 
equation was modified by multiplying it with a new factor which is used to locate 
the start of transition. This factor is zero before the start of transition and rapidly 
goes to unity after the onset point. Similar to LCTM, the vorticity Reynolds 
number is used in triggering transition instead of directly using the momentum 
thickness Reynolds number ( tθRe ). Unlike LCTM, the equation used to calculate 
the critical value of tθRe  for transition is calculated from the local free stream 
turbulence intensity and not from a transport equation. The empirical correlation 
used for tθRe does not include a pressure gradient term. The model is 
incorporated into the SST model both by multiplying the eddy viscosity with the 
intermittency and by modifying the production terms of the k and ω equations. 
These modifications are used to ensure that the turbulence quantities have small 
non-zero values at the start of transition as in the concept of pre-transitional 
fluctuations. The main disadvantage of this model is that it uses the free stream 
intensity to determine the onset of transition, which makes the model non-local 
unlike LCTM. 
 
7) Model of Lian and Shyy44: 
This model was developed for simulation of flow around the wing of a micro air 
vehicle (MAV). The approach used in this model was to couple an 
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incompressible RANS solver with the en method. The k-ω model of Wilcox [11] 
was selected for modeling turbulence in the RANS solver. This coupling is 
accomplished as follows. The computation is started with the solution of the 
RANS equations; however, the eddy viscosity is not added to the effective 
viscosity. The boundary layer parameters required for the solution of the en 
method are extracted from the Navier-Stokes solutions to evaluate the 
amplification factor. Once the threshold value of the n-factor is reached, the flow 
is allowed to become turbulent by multiplying the eddy viscosity with the 
intermittency factor and adding it to the effective viscosity. The intermittency in 
this case is calculated from an empirical formula. The en method employed in this 
case is based on the assumptions that the initial disturbance is small and that the 
boundary layer is thin. 
 
8) Model of Arthur and Atkin3: 
This method is based on linear stability theory (en method) applied within a RANS 
framework. The overall process is as follows. The viscous flow over the 
configuration of interest is first calculated with an initial guess of the transition 
onset location. A series of pressure distributions is extracted from the RANS 
solution at different “line- of-sight” positions across the span. These pressure 
distributions are fed into a boundary layer code to predict the boundary layer 
parameters with great accuracy and fidelity. The stability analysis, together with 
some “n” factor criterion is conducted to yield the transition location. This 
information is then passed onto the RANS solver for further solution. This 
process is continued until the transition location and the pressure distribution are 
converged. For flows with high pressure gradients, it was found that the predicted 
transition location can move upstream more easily than downstream during the 
iteration process. Thus, for this method it is essential that the initial guess is 
downstream of the final, predicted transition location. The method does not have 
any intermittency model to predict the nature of the region of transition. 
 
11.4 LCTM Applied to a Flat Plate 
 
The LCTM method solves two additional transport equations for the intermittency 
(γ) and the transition momentum thickness Reynolds number ( tθRe ).  The 
intermittency equation can be written as 
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The intermittency equation source term is given by 
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where S is the strain rate.  This term is designed to be zero in the laminar 
boundary layer and active everywhere the local vorticity Reynolds number 
exceeds the local transition onset criteria.  The vorticity Reynolds number is 
defined as 
 

Ω=
μ
ρ

ν

2
Re y           (11.9) 

 
where Ω is the vorticity magnitude.  The vorticity Reynolds number is assumed to 
be proportional to the momentum thickness Reynolds number 
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Fonset is defined as follows 
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( )0,max 32 onsetonsetonset FFF −=              (11.14) 

 
where RT is defined as (ρk)/(μω).  The two functions, Flength and Reθc must still be 
defined.  Reθc is the critical Reynolds number where the intermittency first starts to 
increase in the boundary layer.  This occurs upstream of the transition Reynolds 
number, Reθt, because the turbulence must grow to a large enough level to 
trigger transition before any change in the laminar profile can be seen.  Hence 
Reθc is the location where turbulence starts to grow and Reθt is the location where 
the velocity profile first departs from a laminar profile.  Flength is an empirical 
correlation that controls the length of the transition region.  Both Reθc and Flength 
are defined as functions of a second transport equation variable tθRe . 
 
The destruction/relaminarzation source term is defined as 
 

( )122 −Ω= γγργ eturba cFcE                 (11.15) 
 
where  
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The constants for this equation are ce1=1.0, ce2=50.0, ca1=2.0, ca2=0.06, and 
σf=1.0. 
 
The transport equation for tθRe  is 
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Outside the boundary layer, the source term Pθt is designed to force the 
transported scalar tθRe  to match the local value of Reθt calculated from an 
empirical correlation.  The source term is defined as 
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Here t is a time scale defined as 
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The blending function Fθt is defined as  
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where 
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The Fwake function ensures that the wake function is not active in wake regions 
downstream of an airfoil. 
 
The system of equations is closed except for the empirical relationships for Flength, 
Reθc, and Reθt.  The first two functions are considered proprietary by the 
developers.  The relationship for Reθt is given by 
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Tu is the turbulence intensity defined as 
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where k is the turbulent kinetic energy.  F(λθ) is an empirical relationship for the 
effect of pressure gradient given by 
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where λθ is defined as 
 

ds
dU

U
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Note this is only valid for -0.1<λθ<0.1.  For a zero pressure gradient case, λθ=0 
and F(λθ)=1.  The remaining two correlation functions are assumed to be 
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The LCTM is used to predict the skin friction on a low speed flat plate for free 
stream turbulence intensities of 0.3, 0.9, 3.3, and 6.5 percent in Fig. 11.1.  The 
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Model does an excellent job of predicting the onset and length of the transition 
region for all but the highest free stream turbulence level.   The Tu=6.5 case may 
need more grid refinement near the leading edge of the plate to adequately 
resolve the transition process. 
 

 
Figure 11.1  Skin friction for a flat plate predicted using LCTM. 
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