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1 Overview1

UQpy (Uncertainty Quantification with Python) is a general purpose Python2

toolbox for modeling uncertainty in the simulation of physical and mathemat-3

ical systems. The code is organized as a set of modules centered around core4

capabilities in Uncertainty Quantification (UQ) as illustrated in Figure 1. The5

modules are distinct, but are designed to be easily extensible (new capabilities6

can be easily added and integrated into the code, see Section 7) and to easily7

call one another.8

The UQpy workflow is simple. Each module, as illustrated in Figure 1,9

contains a set of classes that perform various operations in UQ. A list of the10

current capabilities for each module is provided in Table 1. A list of ex-11

panded capabilities that are currently in development is provided in Table 2.12
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Evaluate model 
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Generation of stochastic 
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StochasticProcess

Figure 1: UQpy modules and their basic architecture.

Modules and Classes in UQpy are invoked using standard Python conventions.13

Because each module is organized into a set of classes, it is straightforward14

to add a new capability to UQpy by simply writing a new class into the ap-15

propriate module (although some care should be taken to ensure consistency16

in input/output naming and data type conventions). Moreover, because of17

its module-class structure, the various classes can easily invoke one-another18

and can be combined in any way the user desires. A simple example of this19

is that the SubsetSimulation class in the Reliability module invokes the20

MCMC class from the SampleMethods module.21

The various classes and modules interface in a straightforward manner22

with computational models of physical or mathematical systems through the23

RunModel module shown in the center of the chart in Figure 1. The RunModel24

module allows UQpy to serve not just as a useful tool for performing UQ oper-25

ations, but also as the driver for a complete uncertainty study - including pre-26

processing operations, submission and execution of computational model eval-27

uations, and monitoring and post-processing of results. Thus, it is amenable to28

performing adaptivity UQ anayses. The RunModel module, detailed in Section29

5.1, is designed to interface with any user-defined third-party computational30
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Table 1: Current UQpy capabilities organized by Module and Class structure.
Module Class Description Version
RunModel RunModel Execute computational model 1.0.0

Distributions Distribution Define a Distribution object in UQpy 2.0.0
Marginals C 2.0.0
Copula Defines dependence models for distributions 2.0.0

SampleMethods MCS Monte Carlo Sampling 1.1.0
LHS Latin Hypercube Sampling 1.1.0
STS Stratified Sampling 1.1.0
MCMC Markov Chain Monte Carlo 1.1.0
IS Importance Sampling 1.3.0
RSS Refined Stratified Sampling 2.0.0

Simplex Uniform Sampling over a simplex element 2.0.0
Transformations Correlate Induces correlation 1.1.0

Decorrelate Removes correlation 1.1.0
Nataf Nataf transformation 1.1.0

InvNataf Inverse Nataf transformation 1.1.0
Surrogates SROM Stochastic Reduced Order Model 1.0.0

Kriging Gaussian Process Regression (Kriging) 2.0.0
Reliability SubsetSimulation Subset Simulation 1.0.0

TaylorSeries
First Order Reliability Method (FORM)

Second Order Reliability Method (SORM)
2.0.0

Inference InfoModelSelection Information Theoretic Model Selection (AIC/BIC) 2.0.0
BayesModelSelection Bayesian Model Selection 2.0.0

MLEstimation Maximum Likelihood Parameter Estimation 2.0.0
BayesParameterEstimation Bayesian Parameter Estimation 2.0.0

Model Model Definition for Model Selection 2.0.0
StochasticProcess SRM Spectral Representation Method 2.0.0

BSRM Bispectral Representation Method 2.0.0
KLE Karhunen-Loéve Expansion 2.0.0

Translation Translation Process 2.0.0
ITAM Iterative Translation Approximation Method 2.0.0

Utilities Diagnostics Diagnostic tools for UQpy objects 2.0.0

model (through Python scripts) or directly with a Python model.31
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Table 2: Future UQpy capabilities organized by Module and Class structure.
Module Class Description Version

SampleMethods LSS Latinized Stratified Sampling 3.0.0
PSS Partially Stratified Sampling 3.0.0
LPSS Latinized Partially Stratified Sampling 3.0.0
LRSS Latinized Refined Stratified Sampling 3.0.0

SparseGrid Sparse Grid Cubature Sampling 3.0.0
QMC Quasi Monte Carlo 3.0.0
HMC Hamiltonian Monte Carlo 3.0.0

Composition Composition Sampling Method 3.0.0
ASGC Adaptive Sparse Grid Collocation 3.0.0

SCAMR
Stochastic Collocation with
Adaptive Mesh Refinement

3.0.0

Surrogates PCE Polynomial Chaos Surrogate 3.0.0
ANN Artificial Neural Network Surrogate 3.0.0
SSC Simplex Stochastic Collocation 3.0.0
VSSC Variance-based Simplex Stochastic Collocation 3.0.0

Grassmann Grassmann Manifold Projection Surrogate 3.0.0
Reliability TRS Targeted Random Sampling 3.0.0

SESS Surrogate Enhance Stochastic Search 3.0.0
AK-MCS Adaptive Kriging Monte Carlo Simulation 3.0.0

Inference KDE Kernel Density Estimation 3.0.0
Optimization EGO Efficient Global Optimization 3.0.0

GA Genetic Algorithms 3.0.0
Sensitivity Sobol Sobol Indices 3.0.0

PCESobol Polynomial Chaos Sobol Indices 3.0.0
DimensionReduction POD Proper Orthogonal Decomposition 3.0.0

DiffMap Diffusion Maps 3.0.0

2 Installing UQpy32

UQpy is written in the Python 3 programming language and requires a Python33

interpreter 3.6+ installed on your computer. UQpy is distributed through the34

Python Package Index, PyPI, and can be installed using a simple pip command35

on the terminal as follows:36

pip install UQpy37

38

Upon installation, the UQpy software modules are installed in the site-39

packages directory of the user’s Python installation. For example, within the40

user’s Python (version 3.6) installation, the installed modules can be found at:41

./lib/python3.6/site-packages/UQpy42

43
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UQpy can be uninstalled in a similar manner using pip:44

pip uninstall UQpy45

2.1 Manual Installation46

Alternatively, UQpy can be installed from GitHub directly by typing the fol-47

lowing commands in the terminal:48

git clone https://github.com/SURGroup/UQpy.git49

cd UQpy/50

python setup.py install51

Direct installation from GitHub is equivalent to pip installation.52

UQpy can be uninstalled using pip as:53

pip uninstall UQpy54

2.2 Developer Installation55

Users interested in developing new capabilities in UQpy may install it as a56

developer. This is achieved by typing the following commands in the terminal:57

git clone https://github.com/SURGroup/UQpy.git58

cd UQpy/59

python setup.py develop60

Installing as a developer allows the user to maintain a local copy of UQpy61

(located in a directory of the user’s choosing) that can be edited – with changes62

being recognized by the UQpy “installation”. Installing as a developer does not63

install the software directly to site-packages as in the installation procedures64

above. Instead, developer installation creates an ‘egg-link’ (UQpy.egg-link)65

in the site-packages that directs UQpy calls to the user’s local, editable copy of66

the software. For more details, see the following link:67

http://setuptools.readthedocs.io/en/latest/setuptools.html#68

development-mode69
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3 License70

UQpy is distributed under the MIT license.71

72

Copyright c©2018 – Michael D. Shields73

74

Permission is hereby granted, free of charge, to any person obtaining a copy75

of this software and associated documentation files (the ”Software”), to deal76

in the Software without restriction, including without limitation the rights to77

use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of78

the Software, and to permit persons to whom the Software is furnished to do79

so, subject to the following conditions:80

81

The above copyright notice and this permission notice shall be included in all82

copies or substantial portions of the Software.83

84

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF85

ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED86

TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A87

PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT88

SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR89

ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN90

ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,91

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE92

OR OTHER DEALINGS IN THE SOFTWARE.93

4 UQpy Modules, Classes, & Functions94

UQpy is currently structured according to eight core modules (see Figure 1),95

each centered around specific functionalities, plus a Utilities module that96

provides support tools for the core modules. Two additional core modules are97

currently under development. The complete list of modules are as follows:98

99

Core Modules100

1. RunModel: This module contains the RunModel class that allows UQpy to101

initiate simulations using Python or third-party computational solvers,102

and monitor and post-process simulation results. See Section 5.1.103

2. SampleMethods: This module contains a set of classes to draw samples104
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from random variables. These samples may be randomly drawn, as in105

Monte Carlo sampling, or they may be deterministically drawn as in106

sparse-grid or quasi-Monte Carlo sampling. The module also contains a107

number of variance reduction techniques.108

3. Inference: This module contains a set of classes and functions to con-109

duct probabilistic inference. The module contains methods that are110

based on Bayesian, frequentist, likelihood, and information theories.111

4. Reliability: This module contains a set of classes to estimate rare112

event probabilities and probability of failure.113

5. Surrogate: This module contains a set of classes for building surrogate114

models, meta-models, or emulators.115

6. StochasticProcess: This module contains a set of classes and functions116

for simulation of stochastic processes and fields.117

7. Transformations: This module contains a set of classes for isoproba-118

bilistic transformations.119

8. Sensitivity: (Coming in Version 3.0.0) This module will contain a set120

of classes for performing global and local sensitivity analysis.121

9. Optimization: (Coming in Version 3.0.0) This module will contain a set122

of classes to perform optimization for stochastic problems.123

Support Modules124

1. Distributions: This module contains a set of classes for defining prob-125

ability distribution objects in UQpy. It contains several supported distri-126

butions and associated functions (e.g. pdf, cdf, moments, random num-127

bers, fit, inverse cdf, log pdf) as well as allowing the user to define custom128

distributions.129

2. Utilities: This module contains a set of classes and functions that are130

used in support of the other modules.131

The following sections detail the classes and functions in each module with132

reference to examples that illustrate their use.133
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5 Core Modules134

5.1 RunModel Module135

The RunModel module is at the heart of UPQpy. It is a powerful module which136

enables UQpy to drive probabilistic computational modeling. This module can137

interact with and call third-party software, which allows batch processing. Us-138

ing the RunModel module only requires familiarity with Python programming139

language and the domain-specific knowledge of the model being evaluated.140

The RunModel module allows parallel computing such that, when processing141

multiple jobs, the jobs can be distributed over multiple processes or threads.142

In the case of cluster computing, where the jobs are performed over multiple143

cores on multiple compute nodes, RunModel is powered by GNU paralleliza-144

tion (see Section 5.1.5). For parallelization across a single compute node or145

workstation, RunModel employs the Python concurrent package when run146

in combination with a Python computational model, and GNU parallel when147

running a third-party software model.148

5.1.1 RunModel Workflows149

Figure 2: RunModel workflows and variables which trigger the different work-
flows.

RunModel class has four basic workflows delineated in two levels. At the first150

level, RunModel can be used in combination with either a Python computa-151

tional model, in which case the model is imported and run directly, or in152
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combination with a third-party software model. When running with a third-153

party software model, RunModel interfaces with the model through text-based154

input files and serves as the “driver” to initiate the necessary calculations. At155

the second level, the jobs that are run by RunModel can either be executed156

in series or in parallel. Within the third-party model parallel execution work-157

flow, there are two cases, which are triggered by the cluster variable. In the158

following sections we will discuss the workflows in detail.159

5.1.2 UQpy.RunModel.RunModel160

The RunModel module consists of a single class, also called RunModel, that can161

be imported using the following command:162

from UQpy.RunModel import RunModel163

The minimum required and optional attributes of the RunModel class depend164

on the desired workflow and are listed below.165

166

For execution of a Python model:167

RunModel Class Attribute Definitions: Python model workflow
Attribute Input/Output Required Optional
samples Input ?
model script Input ?
model object name Input ?
ntasks Input ?
verbose Input ?
model dir Input ?
qoi list Output

168

For execution of a third-party software model:169
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RunModel Class Attribute Definitions: Third-party model workflow
Attribute Input/Output Required Optional
samples Input ?
model script Input ?
input template Input ?
var names Input ?
output script Input ?
output object name Input ?
ntasks Input ?
cores per task Input ?
nodes Input ?
resume Input ?
verbose Input ?
model dir Input ?
cluster Input ?
qoi list Output

170

A brief description of each attribute can be found in the table below:171

RunModel Class Attributes
Attribute Type Options Default
samples list or ndarray None

model script string None

model object name string None

input template string None

var names list None

output script string None

output object name string None

ntasks integer 1

cores per task integer 1

nodes integer 1

resume bool False

verbose bool False

model dir str None

cluster bool False

172

Detailed Description of RunModel Class Attributes:173

174

Input Attributes :175
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• samples:176

Samples to be passed as inputs to the model. Samples can be passed177

either as an ndarray or a list.178

If an ndarray is passed, each row of the ndarray contains one set of179

samples required for one execution of the model. (The first dimension of180

the ndarray is considered to be the number of rows.)181

If a list is passed, each item of the list contains one set of samples required182

for one execution of the model.183

• model script184

The filename (with extension) of the Python script which contains com-185

mands to execute the model. The model script must be present in the186

current working directory from which RunModel is called.187

The model script is used in different ways for the Python and third-party188

software workflows. For further details, see Section 5.1.8.189

• model object name190

In the Python model workflow, model object name specifies the name191

of the function or class within model script that executes the model.192

If there is only one function or class in the model script, then it is not193

necessary to specify model object name. If there are multiple objects194

within the model script, then model object name must be specified.195

model object name is only used with the Python model workflow, which196

imports the model object into the working Python environment. When197

running a third-party software model, RunModel calls the model script198

from the command line and passes an input (i.e., the sample number) to199

the model object. Several approaches are possible to facilitate calling200

the model script and passing an input to the model object. Refer201

Section 5.1.5 for an illustration using the module Fire to do this.202

• input template:203

The name of the template input file which will be used to generate input204

files for each run of a third-party model.205

When operating RunModel with a third-party software model,206

input template must be specified. For details on setting up template207

input files, see Section 5.1.8.208

input template is not used in the Python model workflow.209
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• var names:210

A list of strings containing the names of the variables present in the211

template input file specified by input template.212

If an input template is provided and a list of variable names is not213

passed, i.e. if var names = None, then the default variable names x0,214

x1, x2, ..., xn are created and used by RunModel, where n is the number215

of variables. The number of variables is equal to the shape of the first216

row if samples is passed as an ndarray or the shape of the first item if217

samples is passed as a list.218

For additional details on how variable names are used in the template219

input file to generate run files, see Section 5.1.8.220

var names is not used in the Python model workflow.221

• output script:222

The filename of the Python script which contains the commands to223

process the output from third-party software model evaluation. The224

output script is used to return the output quantities of interest to225

RunModel for subsequent UQpy processing (e.g. for adaptive methods that226

utilize the results of previous simulations to initialize new simulations).227

See Section 5.1.8 for further details.228

output script is not used in the Python model workflow. In the229

Python model workflow, all model postprocessing is handled within230

model script. See Section 5.1.8 for further details.231

If, in the third-party software model workflow, output script = None232

(the default), then RunModel.qoi list is empty and postprocessing233

must be handled outside of UQpy.234

• output object name:235

The name of the function or class that is used to collect the output values236

from third-party software model output files.237

If the object is a class named cls, for example, the quantity of interest238

extracted from the model output must be saved as cls.qoi. If it is a239

function, it should return the output quantity of interest. If there is240

only one function or only one class in output script, then it is not241

necessary to specify output object name. If there are multiple objects242

in output script, then output object name must be specified.243

output object name is not used in the Python model workflow.244
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• ntasks:245

Number of tasks to be run in parallel.246

By default, ntasks = 1 and model evaluations are executed serially.247

Setting ntasks equal to a positive integer greater than 1 will trigger the248

parallel workflow.249

RunModel uses GNU parallel to execute models which require an in-250

put template in parallel and the concurrent module to execute Python251

models in parallel. Further details can be found in Sections 5.1.3 and252

5.1.5.253

• cores per task:254

Number of cores to be used by each task.255

In cases where a third-party model runs across multiple cores in a cluster,256

this optional attribute allocates the necessary resources to each model257

evaluation. RunModel does this by using the SLURM command srun in258

addition to GNU parallel and allocating cores per task number of259

cores per each execution of the model. When a third-party model is run260

in parallel on a machine which does not use SLURM workload manager,261

(typically, a laptop/personal computer), GNU parallel can only specify262

the number of jobs to be executed in parallel and not the number of263

cores to be used for each job.264

cores per task is not used in the Python model workflow.265

• nodes:266

Number of nodes across which to distribute a single task on an HPC267

cluster in the third-party software model parallel workflow.268

If a task needs to be split across more than one compute node, nodes269

must be specified. For example, the Maryland Advanced Research Com-270

puting Center (MARCC), an HPC shared by Johns Hopkins University271

and the University of Maryland, a typical compute node has 24 cores272

and 128 GB of memory. If each task in the parallel job requires more273

resources than that available on a single compute node of the cluster, it274

is necessary to pass in a value for nodes which is greater than 1.275

nodes is passed as an argument to SLURM’s srun command and should276

only be changed by users familiar with the srun. Further details regard-277

ing the SLURM workload manager can be found here https://slurm.278

schedmd.com279

nodes is not used in the Python model workflow.280
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• resume:281

If resume = True, GNU parallel enables UQpy to resume execution of282

any model evaluations that failed to execute in the third-party software283

model workflow.284

To use this feature, execute the same call to RunModel which failed to285

complete but with resume = True. The same set of samples must be286

passed to resume processing from the last successful execution of the287

model.288

resume is not used in the Python model workflow.289

• verbose:290

Set verbose = True if you want RunModel to print status messages to291

the terminal during execution. verbose = False by default.292

• model dir:293

Specifies the name of the sub-directory from which the model will be294

executed and within which output files will be saved.295

model dir = None by default, which results in model execution from296

the Python current working directory. If model dir is passed a string,297

then a new directory is created by RunModel within the current directory298

whose name is model dir appended with a timestamp. See Section 5.1.7299

and Figure 3 for more details.300

• cluster:301

Set cluster = True if executing on an HPC cluster. Setting cluster =302

True enables RunModel to execute the model using the necessary SLURM303

commands. cluster = False by default.304

RunModel is configured for HPC clusters that operate with the SLURM305

scheduler. In order to execute a third-party model with RunModel on an306

HPC cluster, the HPC must support SLURM commands.307

cluster is not used for the Python model workflow.308

Output Attributes :309

• qoi list:310

A list containing the output quantities of interest extracted from the311

model output files by output script. This is a list of length equal to312

the number of simulations. Each item of this list contains the quantity313

of interest from the associated simulation.314
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5.1.3 RunModel: Python model workflow - serial execution315

A common workflow in UQpy is when the computational model being evalu-316

ated is written in Python. This workflow invoked by calling RunModel with-317

out specifying an input template (i.e. input template = None) and setting318

model script to the user-defined Python script containing the model. This319

python model is run serially by setting ntasks = 1.320

UQpy imports the model script and executes the object defined by321

model object name. The structure of the model object should be such that322

it should accept one sample as the input. If the model object is a Class, the323

quantity of interest must be stored as an attribute of the class self.qoi. If324

the model object is a function, it must return the quantity of interest after325

execution. In serial execution, the Python model is run with a different326

sample in every run.327

Samples for how the Python model may be structured are provided below.328

Example: Model object as a class:329

class ModelClass:330

def init (self, input=one sample):331

Execute the model using the input and get the output332

self.qoi = output333

Exampel: Model object as a function:334

def model function(input=one sample):335

Execute the model using the input and get the output336

return output337

5.1.4 RunModel: Python model workflow - parallel execution338

The python model is executed in parallel by setting ntasks equal to the desired339

number of tasks (greater than 1) to be executed concurrently. The model340

should be defined as explained in Section 5.1.3, i.e., in the same way as for341

the serial execution case. RunModel uses the python library concurrent for342

parallel execution of python models, which restricts parallelization to the cores343

available within a single node (if running on a cluster).344

5.1.5 RunModel: Third-party software model workflow - serial execution345

The RunModel class also supports running models using third-party software.346

This worrkflow uses a template input file (input template) to pass347
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information from UQpy to the third-party model, and a Python script to348

process the outputs and collect the results after post-processing.349

350

This workflow operates in three steps as explained in the following.351

352

Step 1:353

UQpy takes the file input template and generates an indexed set of input354

files, one for each set of sample values passed through the samples input.355

For example, if the name of the template input file is input.inp, then UQpy356

generates indexed input files by appending the sample number between357

the filename and extension, as input 1.inp, input 2.inp, ... , input n.inp,358

where n is the number of sample sets in samples. The details of how the359

input template should be structured are discussed in Section 5.1.8. During360

serial execution, one input file is generated, the model is executed, another361

input file is generated, the model is executed, and so on.362

363

Step 2:364

The third-party software model is executed for each set of sample values365

using the indexed model input file generated in Step 1 by calling the Python366

script specified in model script and passing the sample index. This can be367

done either serially or in parallel over multiple processors (which may be368

performed over multiple nodes of an HPC cluster). For serial execution, we369

should set the parameter ntasks = 1.370

371

Step 3:372

For each simulation, the third-party model generates some set of outputs in373

Step 2. The user-defined output script is used to post-process these outputs374

and return them to RunModel in a list form. This script should extract any375

desired quantity of interest from the generated output files, again using the376

sample index to link model outputs to their respective sample sets.377

UQpy imports the output script and executes the object defined by378

output object name. The structure of the output object must be such that379

it accepts, as input, the sample index. If the output object is a Class, the380

quantity of interest must be stored as an attribute of the class self.qoi. If381

the output object it is a function, it must return the quantity of interest after382

execution. More details specifying the structure of output script and the383

associated output object can be found in Section 5.1.8.384

Finally, because UQpy imports the output script and executes it within385

RunModel, the values returned by the output object are directly stored386

according to their sample index in the RunModel attribute qoi list.387
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388

5.1.6 RunModel: Third-party software model workflow - parallel execution389

Parallel execution in RunModel module is carried out by the GNU parallel390

library [14]. GNU parallel is essential and must be installed on the computer391

running the model. Information regarding how to install GNU parallel is392

provided at https://www.gnu.org/software/parallel. For Mac users, a393

simple command394

brew cask install parallel395

can be used for installation. For Linux users,396

sudo apt-get install parallel397

should install the package. Parallel execution is actiavted in runModel398

workflow by setting the parameter ntasks>1. The key difference in therms of399

the workflow is listed below.400

401

Step 1:402

During parallel execution, all required input files are generated prior to model403

execution as opposed to serial execution where input files are generated404

individually for each run.405

406

Step 2:407

GNU parallel divides the total number of jobs into a number of chunks408

specified by the variable ntasks. ntasks number of jobs are executed in409

parallel and this continues until all the jobs finish executing. ote theat410

each job can be executed across multiple CPUs whe cluster=True using the411

SLURM workload manager. This is sepcified by setting cores per task and412

nodes appropriately, details can be seen in Section 5.1.2. Whether in serial413

or parallel, the sample index is used by RunModel to keep track of model414

execution and to link the samples to their corresponding outputs. RunModel415

achieves this by consistently naming all the input files using the sample416

index (see Step 1) and passing the sample index into model script. More417

details on the precise structure of model script are discussed in Section 5.1.8.418

419

Step 3:420

No key difference between the serial and parallel workflow in terms of output421

processing. Output processing in the paralle case is done after all the runs422
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are completed whereas in the serial case it is done after every run.423

424

425

5.1.7 Directory structure during model evaluation426

To execute RunModel, the directory from where RunModel is called must427

contain the necessary files (i.e., model script, input template, and428

output script) along with any other files required for model evaluation.429

These may include, among other things, compiled executable files for430

third-party software that runs locally. There is an option to specify a431

model dir as an input to RunModel. If a model dir is specified, RunModel432

creates a new directory whose name is given by appending a timestamp433

corresponding to the time of executing the model to model dir. All the files434

in the working directory are copied to the newly created model directory as435

illustrated in Figure 3 and this directory becomes the working directory for436

executing the model. If a model dir is not specified, the current directory is437

the working directory for model execution.438

To avoid cluttering the working directory with outputs, RunModel creates439

a directory for each execution of the model and saves the output generated440

during the model execution within the corresponding directory. RunModel441

generates the directory name for the sample as run n timestamp, where n goes442

from 0 to number of samples-1, and timestamp corresponds to the time at443

the beginning of the first simulation of the parallel job. See Figure 4 for an444

illustration.445

Within the directory for each run, RunModel creates a new directory446

InputFiles and deposits the input files generated in Step 1 above into this447

directory. The user’s model script must retrieve the relevant input file during448

the model execution. During model execution, RunModel first copies all449

the files in the working directory to the directory for each sample, executes450

the model, and then deletes all the files copied into this directory from the451

working directory. Any output generated either during model execution or452

during output processing remains in this directory along with the InputFiles453

directory. See Figure 5 for an illustration.454

5.1.8 Files and scripts used by RunModel455

As discussed in the sections above and illustrated in the examples, the456

RunModel class utilizes a python script to execute the computational model457

(model script), a python script to extract the output (output script) and458
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Figure 3: If a model dir is specified, RunModel first copies all files into a
subdirectory of the working directory called model dir timestamp where all
computations will be performed and this directory becomes the working di-
rectory. If model dir is not specified, the current directory is the working
directory.

a template input file (input template). This section is intended to provide a459

closer look at each of these files, their structure, and when/if they are required.460

461

input template:462

• input template is a user-defined file that is is used only when execut-463

ing a third-party software model with RunModel. As the name implies,464

input template serves as a template of the model input file from which465

individual model input files will be generated for each model evaluation.466

The model input file is typically an ASCII text-based file that defines467

all parameters, geometry, material, properties, etc. of the computational468

model. For each individual model evaluation, RunModel will modify this469
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Figure 4: Within the working directory, RunModel creates folders, one for each
sample input to the model. Each folder contains all the output corresponding
to the model run with that input.

template through place-holder variables following a UQpy specific conven-470

tion. This convention is described herein. The place-holder variables are471

replaced by RunModel with numerical values from the samples passed472

as input to RunModel.473

• Place-holders are defined by using < > around the variable name474

within the template input file. The variable names are specified within475

RunModel using the var names input. RunModel scans the text within476

the input template looking for place-holders with each variable name477

and places the values in the appropriate location in the model input file.478

For example, if the user passes var names = [‘var1’] and samples =479

[[5.2], [3.9], [4.4]], RunModel will generate three input files (one480

for each sample). In the first input file, the value of 5.2 replaces the481

place-holder <var1> where ever it appears in the the template input482
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Figure 5: Within each directory corresponding to one sample, RunModel cre-
ates a folder called InputFiles which contains the input file generated using
that sample, and all the outputs generated during the model execution using
that sample.

file. In the second and third input files, <var1> is replaced by 3.9 and483

4.4 respectively.484

As previously stated, if var names = None, RunModel assigns variable485

names as x0, x1, x2, ..., xn.486

Standard python indexing is supported when using the place-holders487

i.e., if var1 is an array, then it is possible to specify, for example,488

<var1[0][2]>, which will then use the corresponding component of var1489

at that location. If var1 is an array and when no specific component of490

var1 is specified within the place-holders, i.e., if in the input template,491

only <var1> is used, then the entire contents of var1 are written in a492

comma-separated format at that location in the input file.493

• When RunModel is executed, it generates one input file for each row /494
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item of samples using the template input file. The names of the input495

files are built by appending an underscore and the sample index between496

the filename and the extension of the template input file. These input497

files are moved to a subdirectory, named InputFiles of the current498

working directory.499

• An example of the usage of a template input follows for a simple Matlab500

model. In this example, three input files are generated for three samples501

of a single variable.502

The template input file is given as:503

matlab model.m

x = <var1>;

y = x^2;

fid = fopen(‘y.txt’,‘w’);

fprintf(fid, ‘%d’, y);

fclose(fid);

504

505

RunModel is called as follows:506

x = RunModel(samples = [[1.1], [2.5], [3.3]], model script507

= ‘matlab model script.py’, input template = ‘matlab model.m’,508

var names = [‘var1’], output script = ‘output.py’,509

output object name = ‘postprocess’, ntasks = 1)510

When RunModel is executed, it then builds three input files as follows:511

512

matlab model 1.m

x = 1.1;

y = x^2;

fid = fopen(‘y.txt’,‘w’);

fprintf(fid, ‘%d’, y);

fclose(fid);

513

514
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matlab model 2.m

x = 2.5;

y = x^2;

fid = fopen(‘y.txt’,‘w’);

fprintf(fid, ‘%d’, y);

fclose(fid);

515

516

matlab model 3.m

x = 3.3;

y = x^2;

fid = fopen(‘y.txt’,‘w’);

fprintf(fid, ‘%d’, y);

fclose(fid);

517

518

These three files serve as input to the model that is evaluated by519

model script, which is discussed next.520

model script:521

model script is the user-defined Python script that runs the computational522

model. It can be employed in two different ways depending on the type of523

model being executed.524

• Python Model: The model script should have defined within it an525

object (either a class object or a function object), specified in RunModel526

by model object name, which contains the computational model itself.527

In such a case, the samples passed to RunModel are passed as inputs to528

the model object. Refer to 5.1.3 for the structure of model script in529

this case.530

• Third-party Software Model: When running a third-party model,531

RunModel does not import model script. Instead, RunModel calls the532

model script through the command line as533

python3 model script(sample index)534

using the Python fire module. Notice the only variable passed into535

model script is the sample index. This is because the samples are being536

passed through the input files. For example, if the model object is passed537
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the sample index n, it should then execute the model using the input file538

whose name is input n.inp, where input template = input.inp.539

An example of the the model script corresponding to execution of a540

Matlab model with input template = matlab model.m, as illustrated541

in the input template example, is given below.542

543

matlab model script.py

import os

import fire

if name == ‘ main ’:

fire.Fire(model)

def model(sample index):

# Copy the input file into the cwd

command1 = "cp ./InputFiles/matlab model "

+ str(index + 1) + ".m ."

# Run the model

command2 = "matlab -nosplash -nojvm -nodisplay

-nodesktop -r ‘run matlab model "

+ str(sample index + 1) + ".m; exit’"

# Rename the output file

command3 = "mv y.txt y " + str(sample index + 1)

+ ".txt"

os.system(command1)

os.system(command2)

os.system(command3)

544

545

In model script file, it is necessary to build the executable commands546

into a function (here called model) so that the sample index can be547

passed into the script – allowing the script to recognize which input file548

to use. Because the executable commands must be built into a function,549

it is necessary to call this function using the Python fire module as550

illustrated in the first two lines of matlab model script.py.551

Again, RunModel is called as follows:552

x = RunModel(samples = [[1.1], [2.5], [3.3]], model script553

= ‘matlab model script.py’, input template = ‘matlab model.m’,554
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var names = [‘var1’], output script = ‘output.py’,555

output object name = ‘postprocess’, ntasks = 1)556

Also notice that the model script must index the name of the output file557

for subsequent postprocessing through the output script as discussed558

next.559

output script:560

• output script is an optional user-defined Python script for post-561

processing model output. Specifically, it is used to extract user-specified562

quantities of interest from third-party model output files and return563

them to RunModel. output script is used only when using RunModel564

with a third-party software model.565

• UQpy imports the output script and executes the object defined by566

output object name. The structure of the output object should be such567

that it accepts only the sample index as the input. If the model object568

is a Class, the quantity of interest must be stored as an attribute of the569

class self.qoi. If it is a function, it must return the quantity of interest570

after execution.571

In summary, if the output object is a class, it should be structured as572

follows:573

class OutputClass:574

def init (self, input=sample index):575

Post-process the output files corresponding the the sample number576

and extract the quantity of interest.577

self.qoi = output578

or if it is a function, it should be structured as follows:579

def output function(input=sample index):580

Post-process the output files corresponding the the sample number581

and extract the quantity of interest.582

return output583

In keeping with the Matlab example illustrated for the input template584

and model script, an example output script is given as follows:585

586
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output.py

def postprocess(sample index):

x = np.loadtxt("y %d.txt" % (sample index + 1))

return x
587

588

Executable Software:589

Often, the working directory will contain an executable software program.590

This is the case when the software does not lie in the user’s path.591

5.1.9 Examples & Template Files:592

Examples illustrating the use of RunModel are provided in the following593

Jupyter notebooks.594

• Matlab Model Example.ipynb:595

In this example, a small set of one dimensional random samples are596

drawn from a standard Normal distribution using the MCS class. Matlab597

is called to return the square of the random variable using the RunModel598

class.599

• Python Model Example.ipynb:600

In this example, a set of 10,000 three-dimensional random sam-601

ples are drawn from a standard Normal distribution using the602

MCS class. Two Python models, python model class.py and603

python model function.py, are called to sum each of the 10,000604

random samples. The first model structures the Python model as a605

class and the second model structures the Python model as a function.606

Both models are run serially and in parallel.607

A number of template scripts for commonly used third-party software ap-608

plications are currently under development. These templates should not be609

considered as fully-functional software models (as is the case with the pro-610

vided examples). Instead, they are meant to provide an initial starting point611

for users interested in linking UQpy with common software.612

• Matlab613

Coming soon. . .614

• Abaqus615

Coming soon. . .616
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• LS-DYNA617

Coming soon. . .618

• OpenSEAS619

Coming soon. . .620

• OpenFOAM621

Coming soon. . .622

• FEAP623

Coming soon. . .624

• SAFIR625

Coming soon. . .626

5.2 SampleMethods Module627

The SampleMethods module consists of classes to draw samples of random628

variables. It is imported in a python script using the following command:629

from UQpy import SampleMethods630

The SampleMethods module has the following classes, each corresponding to631

a different sampling method:632

Class Method
MCS Monte Carlo Sampling
LHS Latin Hypercube Sampling
STS Stratified Sampling
MCMC Markov Chain Monte Carlo
IS Importance sampling
RSS Refined Stratified Sampling
Simplex Uniform Sampling on a Simplex

633

Each class can be imported individually into a python script. For example,634

the MCMC class can be imported to a script using the following command:635

from UQpy.SampleMethods import MCMC636

The following subsections describe each class, their respective inputs and at-637

tributes, and their use.638
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5.2.1 UQpy.SampleMethods.MCS639

Theory640

Monte Carlo sampling (MCS) generates independent random draws from a641

specified probability distribution or distributions. The MCS class utilizes the642

scipy.stats package for many predefined parametric distributions through643

the Distributions class (see Section 6.1). The user may also specify a custom644

distribution as outlined in Section 6.1.645

The advantage of using the MCS class for UQpy operations, as opposed to646

simply generating samples with the scipy.stats package, is that it builds an647

object containing the samples, their distributions, parameters, and variable648

names for integration with other UQpy modules.649

If MCS is used to generate multi-variate random vectors, the com-650

ponents of the vector will be independent and will therefore follow a651

product distribution. To induce correlation between components, use the652

Transformations.Correlate as described in Section 5.7.1.653

654

Using the MCS Class655

The MCS class is imported using the following command:656

from UQpy.SampleMethods import MCS657

The attributes of the MCS class are listed below:658

MCS Class Attribute Definitions
Attribute Input/Output Required Optional
dist name Input ?
dist params Input ?
nsamples Input ?
var names Input ?
verbose Input ?
samples Output

659

A brief description of each attribute can be found in the table below:660
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MCS Class Attributes
Attribute Type Options Default
dist name string

string list
See Distributions Module None

dist params ndarray
list

See Distributions Module None

nsamples integer None

var names string
string list

None

verbose boolean False

samples ndarray

661

Detailed Description of MCS Class Attributes:662

663

Input Attributes :664

• dist name:665

Defines the name of the distribution for each random variable.666

dist name may be a string or a list of strings.667

If dist name[i] is a string, the distribution is matched with one of the668

available distributions in the Distributions module (see Sec. 6.1) or669

the user-defined custom distribution is called (again see Sec. 6.1).670

dist name must be specified. There is no default value.671

• dist params:672

Specifies the parameters for each distribution in dist name.673

Each set of parameters is defined as a numpy array. dist params is a674

list of arrays, with each item in the list corresponding to the associated675

random variable.676

dist params must be specified. There is no default value.677

• nsamples:678

Specifies the number of samples to be generated as an integer.679

nsamples must be specified. There is no default value.680

• var names:681

Specifies the names of the random variables. Variable names are used as682

place-holders within input files for analyses driven by RunModel.683
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var names is optional and should contain a list of strings of the same684

length as the number of random variables.685

var names has no default value.686

• verbose:687

Specifies whether text is written to the terminal declaring the status of688

the MCS evaluation.689

verbose is of boolean type with default verbose = False.690

Output Attributes :691

• samples:692

A numpy array of dimension nsamples × n, where n is the number of693

random variables, containing the generated random samples following694

the specified distribution.695

Examples:696

Two examples illustrating the use of the MCS class are provided in the following697

Jupyter scripts.698

• MCS Example1.ipynb:699

In this example, 1000 2-dimensional samples are drawn from a standard700

normal distribution.701

• MCS Example2.ipynb:702

In this example, 1000 2-dimensional samples are drawn from a custom703

distribution (defined through custom dist.py).704

5.2.2 UQpy.SampleMethods.LHS705

Theory706

Latin hypercube sampling (LHS) belongs to the family of stratified sampling707

techniques and has the advantage that the samples generated are better708

distributed in the parameter space. LHS is perfomed by dividing the the709

range of each random variable into N bins with equal probability mass,710

where N is the required number of samples and then generating one sample711

per bin. Latin hypercube sampling has a faster convergence rate than712

crude Monte Carlo simulation and reduces the variance of statistical estimates.713

714

Using the LHS Class715

LHS is a class for Latin hypercube sampling. The LHS class is imported using716

the following command:717
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from UQpy.SampleMethods import LHS718

The attributes of the LHS class are listed below:719

LHS Class Attribute Definitions
Attribute Input/Output Required Optional
dimension Input ?
dist name Input ?
dist params Input ?
lhs criterion Input ?
lhs metric Input ?
lhs iter Input ?
nsamples Input ?
samplesU01 Output
samples Output

720

A brief description of each attribute can be found in the table below:721

722

LHS Class Attributes
Attribute Type Options Default
dimensions integer dimension = len(dist name)

dist name function/string list See Distributions Module
or

User-defined function
dist params ndarray list
lhs criterion string ‘random’

‘centered’
‘maximin’
‘correlate’

‘random’

lhs metric string ‘braycurtis’, ‘canberra’, ‘chebyshev’
‘cityblock’, ‘correlation’, ‘cosine’

‘dice’,‘euclidean’, ‘hamming’
‘jaccard’, ‘kulsinski’, ‘mahalanobis’

‘matching’, ‘minkowski’, ‘rogerstanimoto’
‘russellrao’, ‘seuclidean’, ‘sokalmichener’

‘sokalsneath’, ‘sqeuclidean’, ‘yule’

‘euclidean’

lhs iter integer iterations = 100
nsamples integer None

samplesU01 ndarray
samples ndarray

723

Detailed Description of LHS Class Attributes:724

725

Input Attributes :726

• dimension:727

A scalar integer value defining the dimension of the random variables.728
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• dist name:729

Defines the distributions for each random variable.730

731

dist name may be a string, a function, or a list of strings/functions.732

733

If dist name[i] is a string, the distribution is matched with with one734

of the available functions in the Distributions module (see Sec. 6.1)735

or the ‘custom dist.py’ (again see Sec. 6.1).736

737

if dist name[i] is a function, it must be defined in the user’s Python738

script and passed directly as a function.739

740

dist name can contain an arbitrary combination of strings and functions.741

742

If dist name is a string or function (or a list of length one) and743

dimension > 1, then dist name is converted into a list of length744

dimension with each variable having the same distribution.745

746

dist name must be specified. There is no default value.747

• dist params:748

Specifies the parameters for each distribution in dist name.749

750

Each set of parameters is defined as a numpy array. dist params is a751

list of arrays, with each item in the list corresponding to the associated752

random variable.753

754

If dist params is an array (or a list of length one), then dist params755

is converted to a list of length dimension with each variable having the756

same parameters.757

758

dist params must be specified. There is no default value.759

• lhs criterion:760

Design criterion for the Latin hypercube samples. The different choices761

available are given below:762
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– ‘random’: Samples are drawn randomly in the Latin hypercube763

strata.764

– ‘centered’: Samples are centered in the Latin hypercube strata.765

– ‘maximin’: The minimum distance between the sample points is766

maximized.767

– ‘correlate’: The correlation among the sample points is minimized.768

• lhs metric:769

Specifies the distance metric to be used in the case of ‘maximin’770

criterion. The choices are the avaialable distance metrics in scipy.771

772

Only required in the case of lhs criterion = ‘maximin’.773

• lhs iter:774

Specifies the number of iterations to be run for deciding the design in the775

case of lhs criterion = ‘maximin’ and lhs criterion = ‘correlate’.776

• nsamples:777

Specifies the number of samples to be generated.778

779

nsamples must be specified. There is no default value.780

Output Attributes :781

• samplesU01:782

A numpy array of dimension nsamples×dimension containing the sam-783

ples generated uniformly on the hypercube [0, 1]dimension.784

• samples:785

A numpy array of dimension nsamples×dimension containing the sam-786

ples following the specified distribution.787

Examples:788

An example illustrating the use of the LHS class is provided in the following789

Jupyter script.790

• LHS.ipynb:791

In this example, 5 2-dimensional samples are drawn using Latin hyper-792

cube sampling with different lhs criterion to illustrate its use.793
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5.2.3 UQpy.SampleMethods.STS794

Theory795

Stratified Sampling is a variance reduction sampling technique, it aims to796

distribute random samples on the complete sample space. Sample space is797

divided into exclusive groups, called strata and samples are generated inside798

each strata using uniform distribution.799

800

Using the STS Class801

STS is a class for stratified sampling. The STS class is imported using the802

following command:803

from UQpy.SampleMethods import STS804

The attributes of the STS class are listed below:805

STS Class Attribute Definitions
Attribute Input/Output Required Optional
dimension Input ?
dist name Input ?
dist params Input ?
sts design Input ?
sts criterion Input ?
input file Input ?
samples Output
samplesU01 Output
strata Output

806

A brief description of each attribute can be found in the table below:807

808

STS Class Attributes
Attribute Type Options Default
dimension integer dimension = len(sts design)

dist name function/string list See Distributions Module
or

User-defined function
dist params ndarray list
sts design int list None

sts criterion string [‘random’, ‘centered’] random
input file string None

samples ndarray
samplesU01 ndarray
strata class object See UQpy.SampleMethods.Strata

809
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Detailed Description of STS Class Attributes:810

811

Input Attributes :812

• dimension:813

A scalar integer value defining the dimension of the random variables.814

It is not required, if sts design is defined.815

• dist name:816

Defines the distributions for each random variable.817

818

dist name may be a string, a function, or a list of strings/functions.819

820

If dist name[i] is a string, the distribution is matched with one of the821

available functions in the Distributions module (see Sec. 6.1) or the822

user defined function (again see Sec. 6.1).823

824

if dist name[i] is a function, it must be defined in the user’s Python825

script and passed directly as a function.826

827

dist name can contain an arbitrary combination of strings and functions.828

829

If dist name is a string or function (or a list of length one) and830

dimension > 1, then dist name is converted into a list of length831

dimension with each variable having the same distribution.832

833

dist name must be specified. There is no default value.834

• dist params:835

Specifies the parameters for each distribution in dist name.836

837

Each set of parameters is defined as a numpy array. dist params is a838

list of arrays, with each item in the list corresponding to the associated839

random variable.840

841

If dist params is an array (or a list of length one), then dist params842

is converted to a list of length dimension with each variable having the843
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same parameters.844

845

dist params must be specified. There is no default value.846

• sts design:847

Specifies the number of strata in each dimension.848

849

sts design specifies a stratification that breaks every dimension equally850

into a specified number of strata of the same size. For more complex851

strata geometries, the strata boundaries can be explicitly defined through852

a text input file. See input file and the corresponding documentation853

in Section 5.2.4.854

STS places one sample in each stratum so the total number of samples855

drawn by STS is the product of the components of sts design.856

857

Example: sts design = [2, 4, 3] specifies a three-dimensional strat-858

ified design with two strata in the first dimension, four strata in the859

second dimension, and three strata in the third dimension for a total of860

2× 4× 3 = 24 samples.861

• sts criterion:862

It is a string specifying the technique used to generate sample inside each863

strata. A sample can be generated randomly or center of each stratum864

can be return as sample. ‘random’ generates sample using uniform dis-865

tribution and ‘centered’ returns the center of each stratum. Default is866

‘random’.867

• input file:868

Specifies the file path of for a text file defining a stratification. See869

Section 5.2.4870

Output Attributes :871

• samples:872

The generated samples. The samples are returned as a numpy array.873

• samplesU01:874

The untransformed samples drawn from the unit hypercube with dimen-875

sion dimension.876
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• strata:877

A class object that defines the strata on the unit hypercube with dimen-878

sion dimension.879

Examples:880

Two examples illustrating the use of the STS class are provided in the following881

Jupyter scripts.882

• STS Example1.ipynb:883

In this example, 25 samples are drawn from an exponential distribution884

using stratified sampling with the strata specified using the sts design885

input for a regular, equal probability stratification.886

• STS Example2.ipynb:887

In this example, 6 samples are drawn from an exponential distribution888

using stratified sampling with the strata specified using an input file889

(‘strata.txt) to create an irregular stratification with unequal probability890

strata.891

5.2.4 UQpy.SampleMethods.Strata892

The Strata class is a supporting class for stratified sampling and its variants.893

The class defines a rectilinear stratification of the unit hypercube. Strata are894

defined by specifying an origin as the coordinates of the stratum corner nearest895

to the origin and a stratum width for each dimension.896

The attributes of the STS class are listed below:897

Strata Class Attribute Definitions
Attribute Input/Output Required Optional
nstrata Input ?
input file Input ?
origins Output
widths Output
weights Output

898

A brief description of each attribute can be found in the table below:899

Strata Class Attributes
Attribute Type Options Default
nstrata int list None

input file string None

origins ndarray
widths ndarray
weights ndarray

900
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Detailed Description of Strata Class Attributes:901

902

Input Attributes :903

• nstrata:904

Specifies the number of strata in each dimension. This is equivalent905

to sts design from the STS class. For additional details, see STS906

documentation in Section 5.2.3.907

908

When calling the Strata class, the user must provide either nstrata or909

a text file defining the strata specified through input file.910

• input file:911

Specifies the file path of for a text file defining a stratification.912

913

When calling the Strata class, the user must provide either nstrata or914

a text file defining the strata specified through input file.915

916

File format: This file must be a space delimited text file having917

2×dimension columns and the number of rows equal to the number918

of strata. The first dimension columns correspond to the coordinates919

in each dimension of the stratum origin. Columns dimension+1 to920

2×dimension correspond to the stratum widths in each dimension.921

For example, to specify stratification with two 2-dimensional strata, the922

text file might contain the following:923

924

0.0 0.0 0.5 1.0925

0.5 0.0 0.5 1.0926

927

The first stratum (row 1) has origin (0.0, 0.0) and has width 0.5 in928

dimension 1 and width 1.0 in dimension 2. The second stratum (row929

2) has origin (0.5, 0.0) and has width 0.5 in dimension 1 and width930

1.0 in dimension 2.931

932

When manually assigning the strata definitions, the user must be careful933

to ensure that the stratification fills the space without overlap. That is,934

each strata that the user defines must be disjoint and the total volume935

of the strata must be equal to one (i.e. it must fill the unit hypercube).936
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An example input file can be found in ‘STS Example2’ in the provided937

example Jupyter scripts.938

Output Attributes :939

• origins:940

Specifies the coordinates of the origin of each stratum.941

• widths:942

Specifies the width in each dimension of each stratum.943

• weights:944

The volume of each stratum (=prod(widths) for each stratum), weights945

are the probabilities assigned to each sample in a stratified sample design.946

5.2.5 UQpy.SampleMethods.MCMC947

Theory948

The goal of Markov Chain Monte Carlo is to draw samples from some proba-949

bility distribution p(x) = p̃(x)
Z

, where p̃(x) is known but Z is hard to compute950

(this will often be the case when using Bayes’ theorem for instance). In order951

to do this, the theory of a Markov chain, a stochastic model that describes952

a sequence of states in which the probability of a state depends only on the953

previous state, is combined with a Monte Carlo simulation method. More954

specifically, a Markov Chain is built and sampled from whose stationary dis-955

tribution is the target distribution p(x). The reader is referred to e.g. [6]956

for more theory about MCMC methods. The Metropolis-Hastings (MH) algo-957

rithm goes as follows:958

• initialize with a seed sample x0959

• walk the chain: for k = 0, ... do:960

– sample candidate x? ∼ Q(·|xk) for a given Markov transition prob-961

ability Q962

– accept candidate (set xk+1 = x?) with probability

α(x?|xk) := min{ p̃(x
?)

p̃(x)
· Q(x|x?)
Q(x?|x)

, 1}

otherwise propagate last sample xk+1 = xk963
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UQpy supports MH along with more advanced algorithms such as Modi-964

fied Metropolis Hastings (MMH, [2]) and the Affine invariant ensemble sam-965

pler ([7]). The transition probability Q is chosen by the user (see inputs966

pdf proposal type and pdf proposal scale), and careful attention must be967

given to that choice as it plays a major role in the accuracy and efficiency968

of the algorithm. Figure 6 shows samples accepted (blue) and rejected (red)969

when trying to sample from a 2d Gaussian distribution using MH, for differ-970

ent scale parameters of the proposal distribution. If the scale is too small, the971

space is not well explored; if the scale is too large, many candidate samples972

will be rejected, yielding a very inefficient algorithm. As a rule of thumb,973

an acceptance ratio of 10%-50% could be targeted (see Diagnostics in the974

Utilities module).975

Figure 6: Sampling from a 2d Gaussian pdf using the MH algorithm and vari-
ous scale parameters of the transition probability Q: in blue are the accepted
draws from the Markov chain, in red the draws that were rejected.

Finally, samples from the target distribution will be generated only when976

the chain has converged to its stationary distribution, after a so-called burn-977

in period. Thus the user would often reject the first few samples (see input978

burn). Also, the chain yields correlated samples; thus to obtain i.i.d. sam-979

ples from the target distribution, the user should keep only one out of jump980

samples (see input jump). This means that the code will perform in total981

burn+jump*nsamples evaluations of the target pdf to yield nsamples i.i.d.982

samples from the target distribution (for the MH algorithm).983

In UQpy, the MCMC class is imported using the following command:984

from UQpy.SampleMethods import MCMC985

The attributes of the MCMC class are listed below:986
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MCMC Class Attribute Definitions
Attribute Input/Output Required Optional
dimension Input ?
pdf proposal type Input ?
pdf proposal scale Input ?
pdf target1 Input ?
log pdf target1 Input ?
pdf target params Input ?
pdf target copula Input ?
pdf target copula params Input ?
pdf target type Input ?
algorithm Input ?
jump Input ?
nsamples Input ?
seed Input ?
nburn Input ?
samples Output
accept ratio Output

987

A brief description of each attribute can be found in the table below:988

989

∗One of pdf target or log pdf target is required.
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MCMC Class Attributes
Attribute Type Options Default
dimension integer dimension = 1
algorithm string ‘MH’

‘MMH’
‘Stretch’

‘MH’

pdf proposal type string ‘Normal’
‘Uniform’

‘Normal’

pdf proposal scale float
float list

if algorithm = ‘MMH’ or ‘MH’:
pdf proposal scale =[1,1,. . . ,1]

if algorithm=‘Stretch’:
pdf proposal scale = 2

pdf target function
string

log pdf target function None

pdf target params float
float list

None

pdf target copula str None

pdf target copula params float
float list

None

pdf target type string ‘marginal pdf’
‘joint pdf’

only used if
algorithm = ‘MMH’

jump integer 1
nsamples integer None

seed ndarray
ndarray list

array(0,0,. . . ,0)
size = 1× dimension

nburn integer 0
samples ndarray
accept ratio float

990

Detailed Description of MCMC Class Attributes:991

992

Input Attributes :993

• dimension:994

A scalar integer value defining the dimension of the random variables.995

• algorithm:996

Specifies the algorithm used to generate samples. UQpy currently sup-997

ports three commonly used algorithms.998

– ‘MH’:999

Metropolis-Hastings algorithm. For a description of the algorithm,1000

see [10, 9, 2].1001

– ‘MMH’:1002

Component-wise modified Metropolis-Hastings algorithm. For a1003

description of the algorithm, see [2].1004
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– ‘Stretch’:1005

Affine invariant ensemble sampler employing “stretch” moves. For1006

a description of the algorithm, see [7].1007

• pdf proposal type:1008

Type of proposal density function. This option is only invoked when1009

algorithm = ‘MH’ or ‘MMH’. UQpy currently supports two types of1010

proposal densities:1011

– ‘Normal’ (default):1012

The proposal density is specified as a normal distribution with mean1013

value equal to the current state of the Markov Chain and standard1014

deviation specified by pdf proposal scale. That is, a new candi-1015

date sample is generated as1016

xi+1 ∼ N(xi, pdf proposal scale).1017

– ‘Uniform’:1018

The proposal density is specified as a uniform distribution with cen-1019

tered at the current state of the Markov Chain with width equal to1020

pdf proposal scale. That is, a new candidate sample is generated1021

as1022

xi+1 ∼ U(xi−pdf proposal scale/2, xi+pdf proposal scale/2).1023

When dimension > 1, pdf proposal type may be specified as a string1024

or a list of strings assigned to each dimension. When pdf proposal type1025

is specified as a string, the same proposal type is specified for all dimen-1026

sions.1027

• pdf proposal scale:1028

Sets the scale of the proposal probability density. The scale1029

of the proposal density depends on both the MCMC algorithm1030

employed (algorithm) and the type of proposal density specified1031

(pdf proposal type).1032

– For algorithm = ‘MH’ or ‘MMH’, this defines either the standard1033

deviation of a normal proposal density or the width of a uniform1034

density. See pdf proposal type above.1035

– For algorithm = ‘Stretch’, this sets the scale of the stretch density1036

g(z) = 1√
z
,∼ z ∈ [1/pdf proposal scale, pdf proposal scale].1037

See [7].1038
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When dimension > 1, pdf proposal scale may be specified as1039

a scalar or a list of values assigned to each dimension. When1040

pdf proposal scale is specified as a scalar, the same scale is specified1041

for all dimensions.1042

• pdf target type:1043

[Use only with algorithm = ‘MMH’]1044

1045

MCMC algorithms use acceptance-rejection based on a ratio of the target1046

probability densities between the current state and the proposed state. In1047

the ‘MH’ algorithm and the ‘Stretch’ algorithm, the ratio of probabilities1048

is computed using the target joint pdf. For the ‘MMH’ algorithm with1049

independent random variables, acceptance/rejection can be computed1050

based on the ratio of the marginals for each dimension. This variable1051

specifies whether to use a ratio of target joint pdf’s or a ratio of target1052

marginal pdf’s in the acceptance-rejection step for each dimension of the1053

‘MMH’ algorithm. This option is not used for the ‘MH’ and ‘Stretch’1054

algorithms.1055

– ‘joint pdf’:1056

Compute the acceptance-rejection using the ratio of the target joint1057

pdf’s. [Always use when random variables are dependent.]1058

– ‘marginal pdf’:1059

Compute the acceptance-rejection using the ratio of target marginal1060

pdf’s in each dimension. [Only use when random variables are in-1061

dependent.]1062

• log pdf target:1063

Specifies the density function p (or equivalently p̃), from which to draw1064

MCMC samples log pdf target can be either:1065

– a function (or list of functions for marginals):1066

The easiest way to define log pdf target is to pass it as a function,1067

or logpdfmethodofaDistributionclassinstance.Thisfunctionmusttakeasinputparameteratleastoneinputx, thepointwheretoevaluatethepdf, andcanadditionallytakeasinputparametersparams, copula params.astring(orlistofstringsformarginals) :1068

1069

Inthiscase, aDistributioninstancewillbecreatedusingp =1070

Distribution(dist name = log pdf target), anditslog pdfmethodwillbecalledtoevaluatelog (p̃(x)).1071

The distribution can also accept a copula. If the1072

built distribution p does not have a log pdf method, an1073

error is raised.1074
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Alternatively to specifying log pdf target, the user can specify1075

pdf target, see following item. However, for stability reasons (pdf1076

values can become very small for unlikely draws), the algorithm always1077

uses log pdfs instead of pdfs, thus, if possible, providing a log pdf1078

function instead of a pdf is preferred. Figure 7 shows how the code1079

checks the existence of a log pdf or pdf callable that is used to evaluate1080

log (p̃(x)).1081

Figure 7: Diagram explaining how the code checks for the existence of the
target distribution, used to evaluate log (p̃(x)).

–• pdf target:1082

Specifies the target probability density function from which to draw1083

MCMC samples, alternative to defining log pdf target. pdf target1084

can be either:1085

– a function (or list of functions for marginals):1086

The easiest way to define pdf target is to pass it as a function,1087

or pdf method of a Distribution class instance. This function1088

must take as input parameter at least one input x, the point where1089

to evaluate the pdf, and can additionally take as input parameters1090

params, copula params.1091
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– a string (or list of strings for marginals):1092

In this case, a Distribution instance will be created using1093

p=Distribution(dist name=pdf target), and its pdf method1094

will be called to evaluate log (p̃(x)). The distribution can also1095

accept a copula. If the built distribution p does not have a log pdf1096

method, an error is raised.1097

When dimension > 1 and pdf target type = ‘marginal pdf’,1098

pdf target may be specified as a string/function or a list of1099

strings/functions assigned to each dimension. When specified as a1100

string/function, the same marginal pdf is specified for all dimensions.1101

• pdf target params:1102

Parameters of the target pdf to be passed as arguments to the function1103

defined by pdf target, log pdf target.1104

• pdf target copula:1105

Copula name of the target pdf if it exists. Used only if pdf target,1106

log pdf target are defined using strings/list of strings.1107

• pdf target copula params:1108

Parameters of the copula of the target pdf to be passed as arguments to1109

the function defined by pdf target, log pdf target.1110

• jump1111

Specifies the number of samples between accepted states of the Markov1112

chain. Setting jump = 1 corresponds to accepting every state. Setting1113

jump = n corresponds to skipping n − 1 states between accepted states1114

of the chain.1115

• nburn1116

Specifies the number of samples at the start of the chain to be discarded1117

as “burn-in.” This option is only applicable for algorithm=‘MMH’ and1118

‘MH’.1119

• nsamples1120

Specifies the number of samples to be generated (not including the dis-1121

carded burn-in states nor the skipped states of the chain). nsamples1122

must be specified. There is no default value.1123

• seed1124

Specifies the initial state of the Markov chain.1125

1126
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For algorithm = ‘MMH’ or ‘MH’, this is a numpy array of size1127

1× dimension. The default is a 1× dimension array of zeros.1128

1129

For algorithm = ‘Stretch’, this is a list of ns points, each defined as1130

numpy arrays with size 1 × dimension, where ns is the size of the en-1131

semble being propagated. [7]. The default value in the table above is1132

not valid for algorithm = ‘Stretch’.1133

Output Attributes :1134

• samples:1135

The generated samples are returned as a numpy array of dimension1136

nsamples× dimension.1137

• accept ratio:1138

Acceptance ratio of the chain, an acceptance ratio between 10 and 50%1139

could be targeted, see Diagnostics.1140

Examples:1141

Two examples illustrating the use of the MCMC class are provided in the follow-1142

ing Jupyter scripts.1143

• MCMC Example1.ipynb:1144

In this example, the three MCMC algorithms are used to generate 10001145

samples from a two-dimensional Rosenbrock pdf. The Rosenbrock pdf is1146

defined as a function directly in the script, using both the pdf target1147

and log pdf target input parameters of the MCMC class.1148

• MCMC Example2.ipynb:1149

In this example, the three MCMC algorithms are used to generate 10001150

samples from a two-dimensional Rosenbrock pdf. The Rosenbrock pdf is1151

passed into the MCMC class as a string.1152

5.2.6 UQpy.SampleMethods.IS1153

Theory1154

Importance sampling (IS) is based on the idea of concentrating the1155

distribution of the sampling points in regions of the input space. This allows1156

to compute expectations Ex∼p [f(x)] where f(x) is small outside of a small1157

region of the input space; thus the need to focus sampling around that1158

small region. To this end, a sample x is drawn from a proposal distribution1159

q(x) and re-weighted to correct for the discrepancy between the sampling1160
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distribution q and the true distribution p. The weight of the sample x is1161

estimated as w(x) = p(x)/q(x), where the quantity p(·)/q(·) is called the1162

likelihood ratio. In the case where p is only known up to a constant, i.e.,1163

one can only evaluate p̃(x), where p(x) = p̃(x)
Z

, IS can be used by further1164

normalizing the weights (self-normalized IS). Figure 8 shows the weighted1165

samples obtained when using IS to estimate a 2d Gaussian target distribution1166

p, sampling from a uniform proposal distribution q.

Figure 8: IS: samples are generated from a uniform distribution, then weighted
to provide an approximation of the target Gaussian distribution.

1167

1168

Using the IS Class1169

The IS class is imported using the following command:1170

from UQpy.SampleMethods import IS1171

The attributes of the IS class are listed below:1172

IS Class Attribute Definitions
Attribute Input/Output Required Optional Type
nsamples Input ? integer
pdf proposal Input ? string, strings list
pdf proposal params Input ? list

list/ndarray list

log pdf target† Input ? string, strings list
function, functions list

pdf target† Input ? string, strings list
function, functions list

pdf target params Input ? list
list/ndarray list

pdf target copula Input ? str
pdf target copula params Input ? list str
samples Output ndarray
weights Output ndarray
unnormalized log weights Output ndarray

1173
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Detailed Description of IS Class Attributes:1174

1175

Input Attributes :1176

• pdf proposal:1177

A string or list of strings providing the names of the proposal distribution1178

(or its independent marginals) from which to sample. The distribution is1179

then built as p=Distribution(dist name=pdf proposal). This distri-1180

bution must have an rvs method, as well as a log pdf (or pdf) method.1181

• pdf proposal params:1182

Parameters of the proposal pdf, used when calling the rvs and log pdf1183

methods of the proposal distribution.1184

• log pdf target: This input defines the log of the target pdf log (p̃(x)),1185

it can either be:1186

– a string or list of strings providing the names of the proposal distri-1187

bution (or its independent marginals), then Distribution will be1188

called. This Distribution instance must have a log pdf method.1189

– a function that evaluates the target pdf, given a matrix of samples1190

x. This function must take in as input parameters at least one input1191

x, namely the samples where to evaluate the log pdf; the function1192

must be able to evaluate the log pdf of several samples at once,1193

i.e., for an input x of size (nsamples, dimension), the function must1194

return nsamples values of the log pdf. Additionally, it can take as1195

inputs the parameters of the density functions params and copula1196

parameters copula params.1197

Alternatively, the target pdf can be defined using pdf target, the reader1198

is referred to Figure 7 from the MCMC class for more detailed explanations1199

on how the code checks for the definition of the target distribution.1200

• pdf target: Alternative to defining log pdf target. This input can1201

either be:1202

– a string or list of strings providing the names of the proposal distri-1203

bution (or its independent marginals), then Distribution will be1204

called. This Distribution instance must have a log pdf or a pdf1205

method.1206

†One of pdf target or log pdf target is required.
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– a function that evaluates the target pdf, given a matrix of samples1207

x. Same comments apply as for log pdf target in this case.1208

• pdf target params:1209

Parameters of the proposal pdf to be passed as arguments the target1210

distribution.1211

• pdf copula:1212

Name of the copula of the target pdf, if it exists, used only if the input1213

pdf target is defined as a list of strings.1214

• pdf target copula params:1215

Parameters of the copula of the target pdf, if it exists, to be passed as1216

arguments the target distribution.1217

• nsamples1218

Specifies the number of samples to be generated. nsamples must be1219

specified, there is no default value.1220

Output Attributes :1221

• samples:1222

The samples of the IS class are returned as a numpy array of dimension1223

nsamples× dimension.1224

• weights:1225

The weights of the IS class are returned as a numpy array of dimension1226

nsamples.1227

• unnormalized weights:1228

The logarithm of the unnormalized weights of the IS class are returned1229

as a numpy array of dimension nsamples.1230

Examples:1231

One example illustrating the use of the IS class are provided in the following1232

Jupyter script.1233

• IS Example1.ipynb:1234

In this example, IS is used to generate 500000 samples from a two-1235

dimensional Rosenbrock pdf from a Uniform proposal distribution. The1236

Rosenbrock pdf is defined as a function directly in the script.1237
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Figure 9: Work flow of RSS class.

5.2.7 UQpy.SampleMethods.RSS1238

Theory1239

This is a sample extension method, which uses random or gradient-based adap-1240

tive approach to reduce the variance of output random variable. This class1241

divides sample domain using either rectangular stratification or voronoi cells.1242

Fig(9) shows the work-flow of RSS class for different inputs attributes.1243

• Refined Stratified Sampling1244

Randomly selects from the strata/cells with maximum weight, see paper1245

[13] for detailed explanation.1246

• Gradient-Enhaced Refined Stratified Sampling
Selects the strata/cells with maximum stratum variance, which is com-
puted using Eq.(1), see [12] for detailed explanation.

σ̂2
j ≈ ∇f(x∗j)

T .Σ.∇f(x∗j).Vj ∀ j (1)

In case of rectangular stratification, selected strata is divided along the1247

maximum width to define new strata. In case of voronoi cells, selected1248

simplex is reduced down to sub-simplex, which is used for refinement.1249

1250

Using the RSS Class1251

The RSS class is imported using the following command:1252
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from UQpy.SampleMethods import RSS1253

The attributes of the RSS class are listed below:1254

RSS Class Attribute Definitions
Attribute Input/Output Required Optional
x Input ?
model Input ?
meta Input ?
cell Input ?
nsamples Input ?
min train size Input ?
step size Input ?
corr model Input ?
corr model params Input ?
reg model Input ?
n opt Input ?
samples Output
values Output

1255

A brief description of each attribute can be found in the table below:1256

1257

RSS Class Attributes
Attribute Type Options Default
x class None

model python script None

meta string Delaunay

Kriging

Delaunay

cell string Rectangular

Voronoi

Rectangular

nsamples int None

min train size int nsamples

step size float 0.005

corr model string
function

Gaussian

corr model params ndarray [1, 1,..., 1]

reg model string Quadratic

n opt int 1

samples ndarray
values ndarray

1258
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Detailed Description of RSS Class Attributes:1259

1260

Input Attributes :1261

• x:1262

A class object generated using STS or RSS class. It contains the infor-1263

mation about coordinates, stratification and weights corresponding to1264

existing samples. This class requires an initial STS design to function.1265

• model1266

A string specifying the python script, which is used to evaluate model1267

at sample points. It is called with RunModel, see section 5.1.3 for de-1268

tailed explanation. It is required for GE-RSS, if model is ‘None’ Refined1269

Stratified Sampling is executed for sample expansion.1270

• meta1271

A string specifying the method used to estimate gradient of function.1272

’Delaunay’ creates a linear interpolator over the domain, whereas,1273

Kriging’ generates an approximate surrogate model. It is only required1274

for GE-RSS method. Default string is Delaunay.1275

• cell1276

A string specifying the stratification of sample space. This class supports1277

two types of stratification, i.e. Rectangular and Voronoi. Default string1278

is Rectangular.1279

• nsamples1280

An integer specifying the final size of extended samples.1281

• min train size1282

An integer specifying the minimum number of samples used to generate1283

local surrogate model to update gradient of the function. Only required1284

if kriging surrogate is used to estimate gradient.1285

• step size1286

A real number defining the step size to calculate the gradient using cen-1287

tral difference method.1288

• corr model1289

A string specifying the correlation model used to create the surrogate1290

model. Only required if kriging surrogate is used to estimate gradient,1291

see section 5.5.2 for details.1292
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• corr model params1293

An array specifying initial values corresponding to hyperparame-1294

ters/scale parameters. Only required if kriging surrogate is used to1295

estimate gradient, see section 5.5.2 for details.1296

• reg model1297

A string specifying the regression model used to create the surrogate1298

model. Only required if kriging surrogate is used to estimate gradient,1299

see section 5.5.2 for details.1300

• n opt1301

Number of times optimization problem is to be solved with different1302

starting point, see section 5.5.2 for details. Here, this is done for only1303

first sample, after that hyperparameter from previous kriging is used as1304

starting point. Default: 11305

Output Attributes :1306

• samples:1307

The samples of the RSS class are returned as a numpy array of dimension1308

nsamples× dimension. Dimension is same as of samples in object x.1309

• values:1310

The values of the RSS class are returned as a numpy array. It is the1311

function value at the sample points evaluated using RunModel.1312

Examples:1313

One example illustrating the use of the RSS class are provided in the following1314

Jupyter script.1315

• RSS Example1.ipynb:1316

This example demonstrate the use of Refined Stratified Sampling with1317

rectilinear stratification through RSS class. First, The STS is used to1318

generate 16 samples using uniform probability distribution. RSS class1319

is used to extend samples to 18 points. Plots illustrates the modified1320

stratification with new samples. Further, samples from RSS class have1321

been used again to expand samples to 100 points.1322

• RSS Example2.ipynb:1323

This example demonstrate the use of Refined Stratified Sampling with1324

voronoi stratification. First, The STS is used to generate 16 samples using1325

uniform probability distribution. RSS class is used to extend samples to1326

18 points. Plots illustrates the modified stratification with new samples.1327
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Further, samples from RSS class have been used again to expand samples1328

to 100 points.1329

• RSS Example3.ipynb:1330

This example illustrate the use of Gradient Enhanced Refined Stratified1331

Sampling with rectilinear stratification. ‘LinearNDInterpolator’ is used1332

to estimate the gradient. RSS class expands the 16 samples from STS1333

class to 200 samples.1334

• RSS Example4.ipynb:1335

This example illustrate the use of Gradient Enhanced Refined Stratified1336

Sampling with rectilinear stratification. ‘Krig’ class is used to estimate1337

the gradient. RSS class expands the 16 samples from STS class to 2001338

samples.1339

• RSS Example5.ipynb:1340

This example illustrate the use of Gradient Enhanced Refined Stratified1341

Sampling with voronoi stratification. ‘Krig’ class is used to estimate1342

the gradient. RSS class expands the 16 samples from STS class to 1001343

samples.1344

• RSS Example6.ipynb:1345

This example illustrate the use of Gradient Enhanced Refined Stratified1346

Sampling with voronoi stratification. ‘Krig’ class is used to estimate1347

the gradient. RSS class expands the 16 samples from STS class to 1001348

samples.1349

5.2.8 UQpy.SampleMethods.Simplex1350

Theory
Edeling et al. [5] discuss the method to generate uniformly distributed sample
inside a simplex, whose coordinates are expressed by ζk and nd is dimension.
First, generate nd independent uniform random variables on [0, 1], i.e. rq, then
compute

Mnd
= ζ0 +

nd∑
i=1

[ i∏
j=1

r
1

nd−j+1

nd−j+1

]
(ζi − ζi−1)

The Mnd
is nd dimensional array defining the coordinates of new sample.1351

Using the Simplex Class1352

The Simplex class is imported using the following command:1353

from UQpy.SampleMethods import Simplex1354
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Figure 10: Random point inside a 2-D Simplex.

The attributes of the Simplex class are listed below:1355

Simplex Class Attribute Definitions
Attribute Input/Output Required Optional
nodes Input ?
nsamples Input ?
samples Output

1356

A brief description of each attribute can be found in the table below:1357

Simplex Class Attributes
Attribute Type Options Default
nodes ndarray/list None

nsamples integer 1

samples ndarray

1358

Detailed Description of Simplex Class Attributes:1359

1360

Input Attributes :1361

• nodes:1362

An array or list defining the coordinates of the vertices of simplex. This1363

is a required attribute, there is no default value.1364

• nsamples1365

Specifies the number of samples to be generated. nsamples must be1366

specified. Default value is 1.1367
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Output Attributes :1368

• samples:1369

The samples of the Simplex class are returned as a numpy array of1370

dimension nsamples × dimension. Dimension is equal to number of1371

vertex - 1.1372

Examples:1373

One example illustrating the use of the Simplex class is provided in the fol-1374

lowing Jupyter script.1375

• Simplex Example1.ipynb:1376

In this example, Simplex class is used to generate 10 samples inside1377

two-dimensional simplex from a Uniform proposal distribution.1378

5.3 Inference Module1379

The goal in inference can be twofold: 1) given a model, parameterized by1380

parameter vector θ, and some data D, learn the value of the parameter vector1381

that best explains the data; 2) given a set of candidate models {mi}i=1:M and1382

some data D, learn which model best explains the data. UQpy supports the1383

following inference algorithms for parameter estimation:1384

• MLEstimation (parameter estimation by maximum likelihood, frequen-1385

tist approach),1386

• BayesParamEstimation (parameter estimation using MCMC or IS,1387

Bayesian approach).1388

and the following algorithms for model selection:1389

• InfoModelSelection (model selection using information theoretic crite-1390

ria),1391

• BayesModelSelection (Bayesian model class selection).1392

The capabilities of UQpy and associated classes are summarized in Fig. 11.1393

5.3.1 UQpy.Inference.Model1394

In all cases, the user must first create, for each model studied, an instance of1395

the class Model, which can be either:1396
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Figure 11: UQpy Inference module.

• a probability model π, where D ∼ π(·|θ); π is a distribution defined1397

using the Distribution module;1398

• a user-defined model h(θ) given in a python script (see requirements in1399

the RunModel section). The associated probabilistic model for inference1400

is defined as D = h(θ) + ε, where the error ε is assumed to be Gaussian1401

with zero mean.1402

The class defines a log like method as a function that evaluates, given a data1403

vector D and a parameter vector θ, the log likelihood of the data ln p(D|θ). For1404

a probability model, D must be of size (n, d) where d is the output dimension1405

of the distribution (e.g., d=2 if π defines a 2-dimensional Gaussian pdf), and1406

n is the number of i.i.d. samples from that distribution. For a python model,1407

D must be a one-dimensional vector.1408

The following table lists the user-defined attributes of the class Model.1409
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1410

Model Class Inputs
Attribute Type Comment
model type str required, ’pdf’ or ’python’
n params int required
model name str required if model type=’pdf’
model script str required if model type=’python’
error covariance float/ndarray default is 1
prior name str/list of str prior used only in Bayesian inference
prior params list/ndarray
prior copula str
prior copula params list
fixed params list

1411

Input Attributes used by both types of models :1412

• n params:1413

n params is the number of parameters in the model to be inferred, it is1414

a required input of the class.1415

• prior name, prior params, prior copula, prior copula params:1416

In a Bayesian analysis, a prior for the parameters θ should be defined,1417

which is done by calling Distribution(dist name=prior name,1418

copula=prior copula). This build Distribution must have a log pdf1419

or a pdf method, which are evaluated using input parameters1420

prior params, prior copula params.1421

• fixed params:1422

The model can also take in as input a vector of fixed parameters, which1423

are not being learnt. In this context, the model is fully parameterized1424

by the vector

{
θ

fixed params

}
, where θ is being learnt during inference1425

(the fixed parameters are appended at the end of the full parameter1426

vector given as an input to the function that computes the data).1427

Input Attributes specific to distribution models :1428

• model name:1429

A probability model will be defined by calling Distribution(dist name=model name),1430

model name can thus be a string that defines a distribution supported1431

within UQpy, or a user-defined distribution. This distribution must1432

have either a log pdf method (preferred), or a pdf method. Very1433
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importantly, these methods should be functions that accept exactly1434

two inputs: x the point where to compute the pdf/log pdf, and params1435

the value of the parameter vector characterizing that distribution.1436

This means for instance that if one wants to define a distribution1437

with a copula and copula parameters, they must define a custom1438

distribution that is parameterized by a single parameter vector that1439

concatenates the parameters of the marginals and the parameters of the1440

copula into a single vector params (an example is provided in the file1441

’bivariate normal gumbel.py’).1442

Input Attributes specific to python models :1443

• model script:1444

For a model defined using RunModel, model script points to the ’.py’1445

file that computes D, given as input a parameter vector θ (input samples1446

of the function defined in model script).1447

• error covariance:1448

The error term is assumed to have zero-mean and a known fixed covari-1449

ance, given by error covariance. error covariance can be a scalar1450

(then data points are i.i.d.) or a full covariance; default is 1.1451

• Inputs to RunModel:1452

Class Model also accepts various input attributes which relate1453

to the definition of the model in the RunModel module, namely,1454

model object name, input template, var names, output script,1455

output object name, ntasks, cores per task, nodes, resume,1456

verbose, model dir, cluster.1457

• model name:1458

This input is not required for a python model, but useful when perform-1459

ing model selection for instance. If this input is None, the model name is1460

built by concatenating the input model script and model object name.1461

The following table describes the output attributes and methods of class1462

Model.1463

Model Class Output Attributes and Methods
Attribute/Method Type
log like function
prior instance of class Distribution

1464
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5.3.2 UQpy.Inference.MLEstimation1465

Computes the maximum likelihood estimator θ̂ of the model, i.e.

θ̂ = argmaxΘ p(D|θ)

For a probabilistic model of the form D = h(θ) + ε, ε ∼ N(0, σ) with σ1466

fixed and known and independent measurements Di, maximizing the likeli-1467

hood is mathematically equivalent to minimizing the sum of squared residuals1468 ∑
i (Di − h(θ))2.1469

When the model is a probability model that possesses a fit method (see1470

Distribution module), this fit method is used to compute the maximum like-1471

lihood parameters. Otherwise, i.e., for python models or distribution models1472

without existing fit methods (custom distribution or distributions with cop-1473

ula for instance), a numerical optimization procedure is performed using the1474

scipy.optimize.minimize module.1475

The following table summarizes the input attributes of the MLEstimation1476

class.1477

MLEstimation Class Inputs
Attribute Type Comment
model instance of class Model required
data ndarray required

method optim string
see input method

of scipy.optimize.minimize
x0 ndarray see scipy.optimize.minimize
bounds list see scipy.optimize.minimize
iter optim int

1478

More details on these input attributes are provided in the following.1479

• model:1480

Model for which to performed inference, should be an instance of class1481

Model.1482

• data:1483

Data D used to perform inference, see section 5.3.1 for details on the size1484

of the data matrix.1485

• method optim, x0, bounds:1486

These inputs are only used when a maximization of the log likelihood1487

is performed using scipy.optimize.minimize (not a fit method), and de-1488

termine some properties of the maximization procedure. The refer to1489
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inputs method, x0 and bounds of the scipy.optimize.minimize module,1490

respectively.1491

• iter optim: iter optim defines the number of times the optimization1492

procedure is run, with random initial guesses (it ignores x0 in this case).1493

The random initial guesses are sampled from the bounds provided by the1494

user (input bounds), or between [0, 1] if no bounds are provided. The1495

identified maximum likelihood parameter vector is the one that yields the1496

maximum log likelihood over all iter optim runs of the maximization1497

procedure.1498

The class returns two outputs attributes, the maximum likelihood estimate1499

of the parameter vector θ̂ and the corresponding value of the log likelihood1500

ln p(D|θ̂).1501

MLEstimation Class Output Attributes
Attribute Type
param ndarray
max log like float

1502

Examples:1503

An example illustrating the use of the MLEstimation class is provided in the1504

Maximum Likelihood Example.ipynb Jupyter script. Three different models1505

are studied:1506

• a probability model with an existing fit method,1507

• a probability model without a fit method (custom distribution or dis-1508

tribution with copulas), which thus requires numerical optimization for1509

maximum likelihood estimation,1510

• a python model defined with RunModel (a regression model).1511

5.3.3 UQpy.Inference.BayesParameterEstimation1512

Given some data D, draws samples from the posterior pdf using Markov Chain
Monte Carlo or Importance Sampling. Via Bayes theorem, the posterior pdf
is as follows:

p(θ|D) =
p(D|θ)p(θ)
p(D)

Note that if no prior is defined in the model, the prior pdf is chosen as un-1513

informative, i.e., p(θ) = 1. UQpy also provides a diagnostics function, see1514

64



Utilities module, which performs some diagnostics on the outputs of the1515

MCMC and IS procedures.1516

The code in BayesParameterEstimation simply defines a log posterior1517

function that evaluates p̃ = p(D|θ)p(θ) ∝ p(θ|D). This function is then pro-1518

vided as the log pdf target input of the MCMC or IS classes.1519

Outputs of the class BayesParameterEstimation are samples from the1520

posterior pdf (weighted samples in the case of IS, if one requires a set of un-1521

weighted samples to represent the posterior pdf, one can use the resample1522

function provided in the Utilities module).1523

The following table summarizes the input attributes of the1524

BayesParameterEstimation class.1525

1526

BayesParameterEstimation Class Inputs
Attribute Type Comment
model instance of class Model required
data ndarray required
sampling method string required, ’MCMC’ or ’IS’
nsamples int
pdf proposal string/list only for IS
pdf proposal params list only for IS
pdf proposal type string/list only for MCMC
pdf proposal scale float/list only for MCMC
algorithm string only for MCMC
jump int only for MCMC
nburn int only for MCMC

seed ndarray
only for MCMC

if None, run ML estimation

1527

More detailed explanations about each input attribute are as follows:1528

• model:1529

Model for which to performed inference, should be an instance of class1530

Model.1531

• data:1532

Data D used to perform inference, see section 5.3.1 for details on the size1533

of the data matrix.1534

• sampling method:1535

’MCMC’(default) to samples from the posterior via Markov Chain Monte1536

Carlo or ’IS’ to perform estimation via Importance Sampling.1537
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• nsamples:1538

Number of generated samples (weighted if IS) from the posterior.1539

• pdf proposal, pdf proposal params:1540

Used only if sampling method is ’IS’. These inputs define the proposal1541

distribution to sample from in Importance Sampling (see IS class in1542

the SamplingMethods module). If no proposal distribution is provided,1543

the algorithm samples from the prior defined for the model. Either a1544

proposal distribution or a prior must be provided.1545

• pdf proposal type, pdf proposal scale, nburn, jump, algorithm,1546

seed:1547

Used only if sampling method is ’MCMC’. These inputs define the1548

inputs to MCMC, see MCMC class in the SamplingMethods module. If no1549

seed is given, maximum likelihood is first performed and the maximum1550

likelihood estimate of the parameter vector is used as the seed for1551

MCMC.1552

The following table summarizes the output attributes of the1553

BayesParameterEstimation class. See the MCMC and IS classes in the1554

SampleMethods module for details.1555

BayesParameterEstimation Class Output Attributes
Attribute Type Comment
samples ndarray, size (nsamples× dim(θ))
weights ndarray, size (nsamples, ) only for IS
accept ratio float only for MCMC

1556

Examples:1557

Examples illustrating the use of the BayesParameterEstimation class are1558

provided in the following Jupyter scripts:1559

• Bayesian parameter estimation MCMC.ipynb1560

• Bayesian parameter estimation IS.ipynb1561

These scripts illustrate Bayesian parameter estimation using MCMC and IS,1562

respectively, for two different models:1563

• a probability model (Gaussian pdf, learn the posterior pdfs of its mean1564

and variance from data),1565

• a python model defined with RunModel (regression model of the form1566

h(θ) = θ1x+ θ2x
2, learn the posterior pdf of θ from data).1567
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The notebooks also illustrate how to use the diagnostics function to check both1568

the MCMC and IS outputs.1569

More complex examples of Inference for parameter estimation:1570

A more complex example illustrating the use of the Inference module for pa-1571

rameter estimation is provided in the Parameter estimation - material homog-1572

enization.ipynb Jupyter script. This example consists in learning the material1573

parameters, Young modulus and Poisson ratio, of the two materials composing1574

a composite microstructure (matrix and fibers), when data is assumed to be1575

measured at the macro level from tensile tests on a specimen. In this exam-1576

ple, the model consists in running two FE codes, one simulating the behavior1577

of the macro specimen, the other the behavior of a representative element of1578

the microstructure. The FE simulations require use of the package Sfepy, the1579

example is inspired from one of the Sfepy examples ([4]). The notebook illus-1580

trates the use of the Model, MLEstimation and BayesParameterEstimation1581

modules of UQpy.1582

5.3.4 UQpy.Inference.InfoModelSelection1583

Model selection refers to the task of selecting a statistical model from a set1584

of candidate models, given some data. A good model is one that is capable1585

of explaining the data well. Given models of same explanatory power, the1586

simplest model should be chosen (Ockam razor). Several simple information1587

theoretic criteria can be used to compute a model’s quality and perform model1588

selection ([3]). UQpy implements three criteria:1589

• Bayesian information criterion (BIC)

BIC = ln(n)k − 2ln(L̂)

• Akaike information criterion (AIC)

AIC = 2k − 2ln(L̂)

• Corrected formula for AIC (AICc), for small data sets

AICc = AIC +
2k(k + 1)

n− k − 1

For all formula above, k is the number of parameters characterizing the model,1590

L̂ is the maximum value of the likelihood function and n the number of data1591
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points. The best model is the one that minimizes the criterion. All three1592

formulas have a model fit term (find the model that minimizes the negative1593

log likelihood) and a penalty term that increases as the number of model1594

parameters (model complexity) increases. A probability can be defined for1595

each model as P (mi) ∝ exp
(
− criterion

2

)
.1596

InfoModelSelection calls MLEstimation to perform maximum likelihood1597

estimation for each model. Thus inputs to MLEstimation can also be provided1598

to InfoModelSelection, as lists of length the number of models. The proce-1599

dure yields several outputs as attributes of the class, such as the fitted maxi-1600

mum likelihood parameters for all models, corresponding log likelihood values,1601

model probabilities and so on (see details below). These outputs are given as1602

lists, either sorted in the order they were given in the input candidate models1603

(if input sorted outputs is set to False), or sorted in descending value of the1604

model probabilities (default).1605

The following table provides a list of the inpiut attributes of that class.1606

1607

InfoModelSelection Class Inputs
Attribute/Method Type Comment
candidate models list of models required
data ndarray required
method string default ’AIC’
sorted outputs boolean default True
x0

list of length
len(candidate models)

inputs of
MLEstimation class

for each model

iter optim

bounds

method optim

1608

The following points provide some explanations about these input param-1609

eters:1610

• candidate models:1611

The list of candidate models, each of them must be an instance of class1612

Model.1613

• data:1614

Data D used to perform inference, see section 5.3.1 for details on the size1615

of the data matrix.1616

• method:1617

Criteria used for model selection: ’AIC’ (default), ’BIC’ or ’AICc’.1618
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• sorted outputs:1619

If set to True (default), the outputs are returned as lists ordered by1620

decreasing values of the model probabilities. If set to False, the outputs1621

are returned as lists ordered in the same way as in candidate models.1622

• x0, iter optim, bounds, method optim:1623

Inputs to the MLEstimation class, see corresponding section. These1624

inputs should be given as lists or length the number of models, ordered1625

in the say way as candidate models.1626

The following table provides a summary of the outputs attributes of the1627

class InfoModelSelection.1628

InfoModelSelection Class Output Attributes
Attribute Type
models list of models
model names list of strings
fitted params list of ndarrays
criteria list of floats
penalty terms list of floats
probabilities list of floats

1629

The following points provide details about the outputs attributes of the1630

class InfoModelSelection. All these outputs are lists of length the number1631

of models, either ordered in the same way as the input list candidate models,1632

or in order of decreasing model probabilities.1633

• models:1634

Instances of class models, same as candidate models but possibly or-1635

dered in a different way.1636

• model name:1637

Names of the models.1638

• fitted params:1639

Maximum likelihood estimate of the parameter vector, for all models.1640

• criteria:1641

Value of the criterion chosen for model selection, see formula in the1642

theory section above.1643

• penalty terms: Each criterion can be written as criterion = −2ln(L̂)+1644

penalty term, where the first term −2ln(L̂) is a data-fit term, while the1645
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penalty term penalizes against complex models. Observing the penalty1646

terms allows the user to understand if a model is chosen because it fits1647

the data better than other models, or if it fits the data in the same way1648

than competing models but is somehow less complex and thus preferred1649

according to Ockam razor.1650

• probabilities:1651

Models probabilities based on data, computed as P (mi) ∝1652

exp
(
− criterion

2

)
for each model mi1653

Examples:1654

An example illustrating the use of the InfoModelSelection class is provided1655

in the Model selection info criteria.ipynb Jupyter script. Two different exam-1656

ples are studied:1657

• selection between three univariate probability models,1658

• selection between three python models (polynomial regression models of1659

different orders).1660

5.3.5 UQpy.Inference.BayesModelSelection1661

In the Bayesian approach to model selection, the posterior probability of each
model is computed as:

P (mi|D) =
p(D|mi)P (mi)∑
j p(D|mj)P (mj)

where the evidence (also called marginal likelihood) p(D|mi) involves an inte-
gration over the parameter space:

p(D|mi) =

∫
Θ

p(D|mi, θ)p(θ|mi)dθ

Currently, calculation of the evidence is performed using the method of the
harmonic mean ([1]):

p(D|mi) =

[
1

B

B∑
b=1

1

p(D|mi, θb)

]−1

where θ1,··· ,B are samples from the posterior pdf of θ. In UQpy, these samples1662

are obtained by running BayesParameterEstimation using MCMC. However,1663
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note that this method is known to yield evidence estimates with large variance.1664

Future releases of UQpy will include more robust methods for computation of1665

model evidences. Also, it is known that results of such Bayesian model selec-1666

tion procedure usually highly depends on the choice of prior for the parameters1667

of the competing models, thus the user should carefully define such priors when1668

creating instances of the Model class.1669

Similarly to the InfoModelSelection class, the BayesModelSelection1670

class takes as inputs the data, candidate models, along with additional in-1671

puts that are lists of length the number of models and define inputs to the1672

MCMC procedure for all models. Additionally, BayesModelSelection takes1673

as input the prior probabilities of the models. The procedure yields outputs1674

such as posterior model probabilities, evidence etc. as lists, either sorted in1675

the same order as given in candidate models or sorted by decreasing model1676

probabilities.1677

1678

BayesModelSelection Class Inputs
Attribute/Method Type Comment
candidate models list of models required
data ndarray required
prior probabilities ndarray default 1

M
for all M models

sorted outputs boolean default True
n samples

lists of length
the number of

candidate models

inputs of class
BayesParameterEstimation

(uses MCMC)

pdf proposal type

pdf proposal scale

algorithm

jump

nburn

seed

1679

The following points provide some explanations about these input param-1680

eters:1681

• candidate models:1682

The list of candidate models, each of them must be an instance of class1683

Model.1684

• data:1685

Data D used to perform inference, see section 5.3.1 for details on the size1686

of the data matrix.1687
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• prior probabilities:1688

Prior model probabilities P (mi) as a list of floats or ndarray, default is1689

a list of 1
M

for all M models.1690

• sorted outputs:1691

If set to True (default), the outputs are returned as lists ordered by1692

decreasing values of the model probabilities. If set to False, the outputs1693

are returned as lists ordered in the same way as in candidate models.1694

• pdf proposal type, pdf proposal scale, algorithm, jump, nburn,1695

seed:1696

Inputs to the BayesParameterEstimation class, see corresponding1697

section. These inputs should be given as lists or length the number of1698

models, ordered in the say way as candidate models.1699

The following table provides a summary of the outputs attributes of the1700

class BayesModelSelection.1701

BayesModelSelection Class Output Attributes
Attribute Type
models list of models
model names list of strings
evidences list of floats
mcmc outputs list of instances of BayesParameterEstimation
probabilities list of floats

1702

The following points provide details about the outputs attributes of the1703

class BayesModelSelection. All these outputs are lists of length the number1704

of models, either ordered in the same way as the input list candidate models,1705

or in order of decreasing model probabilities.1706

• models:1707

Instances of class models, same as candidate models but possibly or-1708

dered in a different way.1709

• model names:1710

Names of the models.1711

• evidences:1712

Value of the evidence p(D|mi) for each model mi.1713

• mcmc outputs: Objects of the class BayesParameterEstimation,1714

which have as attributes both the samples of the posterior pdf for1715
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all models and the acceptance ratio of the chains. See section on1716

BayesParameterEstimation.1717

• probabilities:1718

Value of the posterior probability P (mi|D) for each model mi.1719

Examples:1720

An example illustrating the use of the BayesModelSelection class is provided1721

in the Bayesian model selection.ipynb Jupyter script. The example studied is1722

the selection between three python models (polynomial regression models of1723

different orders). Gaussian priors are assumed for the parameters, rendering1724

the problem tractable, meaning that the true posterior pdfs and values of the1725

evidence for each model can be computed analytically. Analytical results are1726

compared with outputs of the BayesModelSelection algorithm.1727

5.4 Reliability Module1728

Reliability of a structural system refers to the assessment of its failure (i.e1729

the structure no longer satisfies some performance measures), given the model1730

uncertainty in the structural, environmental and load parameters. Given a1731

vector of random variables X = {X1, X2, . . . , Xn} ∈ DX ⊂ Rn, where D is the1732

domain of interest and fX(x) is its joint probability density function then, the1733

probability that the system will fail is defined as1734

Pf = P(g(X) ≤ 0) =

∫
Df

fX(x)dx =

∫
{X:g(X)≤0}

fX(x)dx (2)

where g(X) is the so-called limit-state function. Formulation of reliability1735

methods in UQpy is made on the standard normal space U ∼ N (0, In) which1736

means that a nonlinear isoprobabilistic transformation from the generally1737

non-normal parameter space X ∼ fX(·) is required (see Section 5.7).1738

1739

The Reliability module consists of classes and functions to provide1740

simulation-based estimates of probability of failure from a given user-defined1741

computational model and failure criterion. It is imported in a python script1742

using the following command:1743

from UQpy import Reliability1744

The Reliability module has the following classes, each corresponding to a1745

method for probability of failure estimation:1746
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Class Method
SubsetSimulation Subset Simulation
TaylorSeries FORM/SORM

1747

Each class can be imported individually into a python script. For example,1748

the SubsetSimulation and the TaylorSeries classes can be imported to a1749

script using the following commands:1750

from UQpy.SampleMethods import SubsetSimulation1751

from UQpy.SampleMethods import TaylorSeries1752

The following subsections describe each class, their respective inputs and at-1753

tributes, and their use.1754

5.4.1 UQpy.Reliability.SubsetSimulation1755

In the subset simulation method the probability of failure Pf is approximated1756

by a product of probabilities of more frequent events. That is, the failure1757

event G = {u ∈ Rn : G(u) ≤ 0}, is expressed as the of union of M nested1758

intermediate events G1, G2, · · · , GM such that G1 ⊃ G2 ⊃ · · · ⊃ GM , and1759

G = ∩Mi=1Gi. The intermediate failure events are defined as Gi = {G(u) ≤ bi},1760

where b1 > b2 > · · · > bi = 0 are positive thresholds selected such that1761

each conditional probability P (Gi|Gi−1), i = 2, 3, · · · ,M − 1 equals a target1762

probability value p0. The probability of failure Pf is estimated as:1763

Pf = P
(
∩Mi=1Gi

)
= P (F1)

M∏
i=2

P (Gi|Gi−1) (3)

where the probability P (F1) is computed through Monte Carlo simulations.1764

In order to estimate the conditional probabilities P (Gi|Gi−1), j = 2, 3, · · · ,M1765

generation of Markov Chain Monte Carlo (MCMC) samples from the condi-1766

tional pdf pU(u|Gi−1) is required. In the context of subset simulation, the1767

Markov chains are constructed through a two-step acceptance/rejection cri-1768

terion. Starting from a Markov chain state x and a proposal distribution1769

q(·|x), a candidate sample y is generated. In the first stage, the sample y is1770

accepted/rejected with probability1771

α = min

{
1,
p(y)q(x|y)

p(x)q(y|x)

}
(4)
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and in the second stage is accepted/rejected based on whether the1772

sample belongs to the failure region Gj. Currently UQpy supports the1773

Metropolis-Hastings (MH), the Component-wise Metropolis Hastings (MMH)1774

and the affine invariant ensemble MCMC algorithm (see Section 5.2).1775

1776

The SubsetSimulation class is imported using the following command:1777

from UQpy.Reliability import SubsetSimulation1778

The attributes of the SubsetSimulation class are listed below:1779

SubsetSimulation Class Attribute Definitions
Attribute Input/Output Required Optional
dimension Input ?
nsamples init Input ?
nsamples ss Input ?
p cond Input ?
algorithm Input ?
pdf target type Input ?
pdf target Input ?
pdf target params Input ?
pdf proposal type Input ?
pdf proposal scale Input ?
seed Input ?
model type Input ?
model script Input ?
input script Input ?
output script Input ?
samples Output
g Output
g level Output
pf Output

1780

A brief description of each attribute can be found in the table below:1781

1782
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SubsetSimulation Class Attributes
Attribute Type Options Default
dimension integer dimension = 1
samples init nparray None

nsamples ss integer None

p cond float 0 < p cond < 1 p cond = 0.1
algorithm string ‘MMH’

‘Stretch’
‘MMH’

pdf target type string ‘marginal pdf’
‘joint pdf’

‘marginal pdf’

pdf target function
string

Normal(0, I)

pdf target params float
float list

None

pdf proposal type string ‘Normal’
‘Uniform’

‘Uniform’

pdf proposal scale float
float list

algorithm = ‘MMH’ or ‘MH’
[1,1,. . . ,1]

algorithm=‘Stretch’
2

model type string See UQpy.RunModel See UQpy.RunModel

model script string See UQpy.RunModel See UQpy.RunModel

input script string See UQpy.RunModel See UQpy.RunModel

output script string See UQpy.RunModel See UQpy.RunModel

samples nparray list
g nparray list
g level list
pf float

1783

Detailed Description of SubsetSimulation Class Attributes:1784

1785

Input Attributes :1786

• dimension:1787

A scalar integer value defining the dimension of the random variables.1788

• samples init1789

Specifies the initial samples for subset/level 0. The size of the array1790

samples init must be nsamples ss×dimension. These samples can1791

be generated in any way the user chooses.1792

1793

If samples init is not specified, the subset/level 0 samples are drawn1794

internally in SubsetSimulation using the component-wise Modified1795

Metropolis-Hastings algorithm.1796
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• nsamples ss1797

Specifies the number of samples to be generated in each conditional level1798

(i.e. per subset). nsamples ss must be specified. There is no default1799

value.1800

• p cond1801

Specifies the conditional probability for each subset.1802

1803

The current implementation does not allow for variable conditional1804

probabilities (i.e. setting different conditional probabilities for each1805

level).1806

1807

The current implementation does not allow for the conditional proba-1808

bilities to be defined implicitly by instead specifying the intermediate1809

failure domains explicitly.1810

• algorithm:1811

Specifies the MCMC algorithm used to generate samples in each condi-1812

tional level. SubsetSimulation currently supports two commonly-used1813

algorithms.1814

– ‘MMH’:1815

Component-wise modified Metropolis-Hastings algorithm. For a1816

description of the algorithm, see [2].1817

– ‘Stretch’:1818

Affine invariant ensemble sampler employing “stretch” moves. For1819

a description of the algorithm, see [7].1820

SubsetSimulation currently does not support the conventional1821

Metropolis-Hastings algorithm.1822

• pdf target type:1823

This is used for Markov Chain Monte Carlo (MCMC) sampling from1824

the conditional probability densities in subset simulation. For details,1825

the user is referred to documentation for UQpy.SampleMethods.MCMC in1826

Section 5.2.51827

• pdf target:1828

This is used for Markov Chain Monte Carlo (MCMC) sampling from1829

the conditional probability densities in subset simulation. For details,1830
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the user is referred to documentation for UQpy.SampleMethods.MCMC in1831

Section 5.2.51832

• pdf target params:1833

This is used for Markov Chain Monte Carlo (MCMC) sampling from1834

the conditional probability densities in subset simulation. For details,1835

the user is referred to documentation for UQpy.SampleMethods.MCMC in1836

Section 5.2.51837

• pdf proposal type:1838

This is used for Markov Chain Monte Carlo (MCMC) sampling from1839

the conditional probability densities in subset simulation. For details,1840

the user is referred to documentation for UQpy.SampleMethods.MCMC in1841

Section 5.2.51842

• pdf proposal scale:1843

This is used for Markov Chain Monte Carlo (MCMC) sampling from1844

the conditional probability densities in subset simulation. For details,1845

the user is referred to documentation for UQpy.SampleMethods.MCMC in1846

Section 5.2.51847

• model type1848

This is used to evaluate the model at each sample point using the1849

RunModel class. For details, the user is referred to documentation for1850

UQpy.RunModel in Section 5.1.1851

• model script1852

This is used to evaluate the model at each sample point using the1853

RunModel class. For details, the user is referred to documentation for1854

UQpy.RunModel in Section 5.1.1855

1856

Note that a computational model must be specified using model script.1857

Without this model, SubsetSimulation cannot run.1858

• input script1859

This is used to evaluate the model at each sample point using the1860

RunModel class. For details, the user is referred to documentation for1861

UQpy.RunModel in Section 5.1.1862

• output script1863

This is used to evaluate the model at each sample point using the1864
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RunModel class. For details, the user is referred to documentation for1865

UQpy.RunModel in Section 5.1.1866

Output Attributes :1867

• samples:1868

Contains the sample values from each conditional level as a list of1869

numpy arrays.1870

1871

Each item of the list is a numpy array containing the sam-1872

ples from the corresponding conditional level. For example,1873

SubsetSimulation.samples[0] contains a numpy array of dimension1874

nsamples ss×dimension with the samples from conditional level 0 (i.e.1875

the initial sample set).1876

• g1877

Returns the scalar values of the performance function evaluated by the1878

computational model at each point in samples. g is structured in the1879

same manner as samples (a numpy array list) with each entry equal to1880

the performance function evaluation of the corresponding sample.1881

1882

By convention, failure of a given sample sample[i][j] is defined by1883

g[i][j] < 0, where i indexes the conditional level and j indexes the1884

sample number. For use with SubsetSimulation, the user’s compu-1885

tational model must return a scalar value that follows this convention.1886

The value is passed from RunModel into SubsetSimulation through the1887

attribute RunModel.model eval.QOI as detailed in Section 5.1.1888

• g level1889

Specifies the value of the performance function for each conditional level.1890

g level is structured as a list with each entry of the list equal to the value1891

of the corresponding performance function at the respective conditional1892

level. For example, g level[3] corresponds to the performance function1893

value that defines the third subset.1894

Note that g level is implicitly defined by the samples and p cond. UQpy1895

currently does not support the direct assignment of conditional perfor-1896

mance levels.1897

• pf1898

Probability of failure estimate from subset simulation1899
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SubsetSimulation Examples:1900

Two examples illustrating the use of the MCMC class are provided in the follow-1901

ing Jupyter scripts.1902

• MCMC Example1.ipynb:1903

In this example, the three MCMC algorithms are used to generate 10001904

samples from a two-dimensional Rosenbrock pdf. The Rosenbrock pdf is1905

defined as a function directly in the script.1906

• MCMC Example2.ipynb:1907

In this example, the three MCMC algorithms are used to generate 10001908

samples from a two-dimensional Rosenbrock pdf. The Rosenbrock pdf is1909

defined as a function in the ‘custom pdf.py’ script.1910

5.4.2 UQpy.Reliability.TaylorSeries1911

These reliability methods utilize a Taylor series expansion to approximate the1912

performance function g(X) locally at a design point by simplifying fX(x) and1913

thus, enhancing the solution of the integral in Eq.(2). In this category belong1914

the First Order Reliability Method (FORM) and the Second Order Reliabil-1915

ity Method (SORM). In the context of FORM the performance function is1916

linearized according to1917

G(U) ≈ G(U?) +∇G|U? (U−U?)ᵀ (5)

where U? is expansion point, G(U) is the performance function evaluated in1918

the standard normal space and ∇G|U? is the gradient of G(U) evaluated at1919

U?. The probability failure can be calculated by1920

Pf,form = Φ(−βHL) (6)

where Φ(·) is the standard normal cumulative distribution function and βHL =1921

||U∗|| is the norm of the design point known as Hasofer-Lind reliability in-1922

dex calculated with the Hasofer-Lind-Rackwitz-Fiessler (HLRF) algorithm.1923

In SORM the performance function is approximated by a second-order Taylor1924

series around the design point according to1925

G(U) = G(U?) +∇G|U? (U−U?)ᵀ +
1

2
(U−U?)H(U−U?) (7)

where H is the Hessian matrix of the second derivatives of G(U) evaluated1926

at U∗. After the design point U∗ is identified and the probability of failure1927
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Pf,form is calculated with FORM a correction is made according to1928

Pf,sorm = Φ(−βHL)
n−1∏
i=1

(1 + βHLκi)
− 1

2 (8)

where κi is the i− th curvature.1929

1930

The TaylorSeries class is imported using the following command:1931

from UQpy.Reliability import TaylorSeries1932

The attributes of the TaylorSeries class are listed below:1933

1934

TaylorSeries Class Attribute Definitions
Attribute Input/Output Required Optional
dimension Input ?
dist name Input

see
UQpy.Distribution

class

?

dist params Input
see

UQpy.Distribution

class

?

n iter Input ?
corr Input ?
method Input ?
algorithm Input ?
seed Input ?
model script,
model object name,
input template, var names,
output script,
ntasks, cores per task,
resume, output object name

Input
see

UQpy.RunModel

class

DesignPoint X Output
DesignPoint U Output
Prob FORM Output
Prob SORM Output
HL beta Output
iterations Output

1935

A brief description of each attribute can be found in the table below:1936
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1937

TaylorSeries Class Attributes
Attribute Type Options Default
dimension integer None

dist name see
UQpy.Distribution

class

None

dist params see
UQpy.Distribution

class

None

corr see
UQpy.Transformation

class

np.eye(dimension)

method string ‘FORM’
‘SORM’

None

n iter integer n iter > 0 n iter = 1000
algorithm string ‘HL’

‘(Hasofer-Lind)’
None

seed ndarray np.zeros((1, dimension))

model script,
model object name,
input template, var names,
output script,
ntasks, cores per task,
resume, output object name

see
UQpy.RunModel

class

see
UQpy.RunModel

class

see
UQpy.RunModel

class

DesignPoint X ndarray
DesignPoint U ndarray
Prob FORM float
Prob SORM float
HL beta float
iterations integer

1938

Detailed Description of TaylorSeries Class Attributes:1939

1940

Input Attributes :1941

• dimension:1942

A scalar integer value defining the dimension of the random variables.1943

• dist name1944

Specifies the probability distribution model for each random variable.1945

Details about this attribute can be found in UQpy.Distribution.1946

1947

• dist params1948

Specifies the parameters for each probability model. Details about this1949

attribute can be found in UQpy.Distribution.1950

• corr1951

Specifies the correlation structure of the random vector. If not defined,1952

we assume independent random variables.1953
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corr =


1.0 0.0 . . . 0.0
0.0 1.0 . . . 0.0
...

...
. . .

...
0.0 0.0 . . . 1.0


Details about this attribute can be found in UQpy.Transformation.1954

1955

• method:1956

Specifies the method from the family of Taylor Series expansion.1957

TaylorSeries supports two commonly-used algorithms.1958

– ‘FORM’:1959

First Order Reliability Method.1960

– ‘SORM’:1961

Second Order Reliability Method.1962

• n iter:1963

Maximum number of iterations of the Hasofer-Lind iterative method.1964

• algorithm:1965

Specifies the algorithm used to solve the optimization problem for finding1966

the design point. TaylorSeries currently supports the Hasofer-Lind1967

method.1968

• seed:1969

Specifies the initial point in the original parameter space (not in the stan-1970

dard normal space) of the search algorithm in the Hasofer-Lind method.1971

Output Attributes :1972

• DesignPoint X:1973

Design point in the original parameter space.1974

1975

• DesignPoint U1976

Design point in the standard normal space.1977

1978

• Prob FORM1979

Probability of failure obtained with FORM.1980
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• Prob FORM1981

Probability of failure calculated with SORM (if method=‘SORM’).1982

• HL beta1983

Hasofer-Lind reliability index.1984

• iterations1985

Total number of function calls.1986

TaylorSeries Examples:1987

An examples illustrating the use of the TaylorSeries class is provided in the1988

following Jupyter scripts.1989

• TaylorSeries Example1.ipynb:1990

This benchmark case is a simple structural reliability problem defined1991

in a two-dimensional parameter space consisting of a resistance R and a1992

stress S. The failure happens when the stress is higher than the resis-1993

tance, leading to the following limit-state function:1994

g(X) = R− S (9)

where X = {R, S}. The two random variables are independent and dis-1995

tributed according to the following normal distributions: R ∼ N(5, 0.8)1996

and S ∼ N(2, 0.6).1997

5.5 Surrogates Module1998

The Surrogates module consists of classes and functions to build simplified1999

mathematical expressions to interpolate data and serve as a meta-model, sur-2000

rogate model, or emulator. It is imported in a python script using the following2001

command:2002

from UQpy import Surrogates2003

The Surrogates module has the following classes, each corresponding to a2004

different surrogate model form:2005

Class Method
SROM Stochastic Reduced Order Model
Krig Kriging

2006
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5.5.1 UQpy.Surrogates.SROM2007

Theory2008

SROM takes a set of samples and attributes of a distribution and optimizes the2009

sample probability weights according to the method of Stochastic Reduced2010

Order Models as defined by Grigoriu [8]. This method identifies the weights2011

associated with samples, such that total error between distribution, moments2012

and correlation of random variables is minimized. This method is explained2013

in detail in Grigoriu [8].2014

2015

Using the SROM Class2016

The SROM class is imported using the following command:2017

from UQpy.Surrogates import SROM2018

The attributes of the SROM class are listed below:2019

SROM Class Attribute Definitions
Attribute Input/Output Required Optional
samples Input ?
cdf target Input ?
cdf target params Input ?
properties Input ?
moments Input ?
correlation Input ?
weights error Input ?
weights distribution Input ?
weights moments Input ?
weights correlation Input ?
sample weights Output

2020

A brief description of each attribute can be found in the table below:2021

2022

85



SROM Class Attributes
Attribute Type Options Default
samples ndarray None

cdf target function/string list None

cdf target params ndarray list None

properties boolean list True

False

[True,True,True,False]

moments ndarray list None

correlation ndarray Identity matrix
weights error list [1, 0.2, 0]
weights distribution ndarray list Array of ones with size of samples

weights moments ndarray list
1

moments2

weights correlation ndarray list
sample weights ndarray

2023

Detailed Description of SROM Class Attributes:2024

2025

Input Attributes :2026

• samples:2027

An array or list containing the samples from which to build the Stochastic2028

Reduced Order Model.2029

• cdf target:2030

A list of functions or strings specifying the Cumulative Distribution2031

Functions (CDFs) of the random variables.2032

2033

If cdf target[i] is a string, the distribution is matched with its2034

corresponding cdf (cdf) in the Distributions module (see Sec. 6.1) or2035

the cdf defined by ‘custom dist.py’ (again see Sec. 6.1).2036

2037

if cdf target[i] is a function, it must be defined in the user’s Python2038

script and passed directly as a function.2039

2040

cdf target can contain an arbitrary combination of strings and2041

functions.2042

2043

When dimension > 1, cdf target may be specified as a string/function2044

or a list of strings/functions assigned to each dimension. When specified2045

as a string/function, the same cdf is specified for all dimensions.2046
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• cdf target params:2047

A list of parameters corresponding to each random variable where the2048

parameters for each random variable are assigned as a numpy array.2049

2050

Example: cdf target = [‘Gamma’] and cdf target params =2051

[np.array([2, 1, 3])] , where the random variables have gamma2052

distribution with shape, shift and scale parameters equal to 2, 1 and 32053

respectively.2054

• properties:2055

A boolean list specifying which properties of the distribution are to be2056

included in the objective function. The list is of size 4 with the items of2057

the list defined as follows:2058

1. it CDF: Minimize error in the match to the cumulative distribution2059

function.2060

2. it mean: Minimize error in the first-order moments about the origin.2061

3. variance: Minimize error in the second-order moments about the2062

origin.2063

4. correlation: Minimize error in correlation.2064

‘True’ includes the corresponding property in the objection function and2065

‘False’ excludes it.2066

• moments:2067

A list of numpy arrays specifying the first and second-order moments2068

about the origin for each random variable. SROM supports the following2069

size of moments array:2070

– Array of size 1 × dimension: If error in either, but not both, first2071

or second-order moments is included in SROM.2072

– Array of size 2 × dimension: If error in both first and second-2073

order moments are included in the SROM. The first row contains2074

first-order moments and the second row contains the second-order2075

moments.2076

• correlation:2077

An array specifying the correlations among the random variables. It is2078

defined such that size of array is dimension× dimension.2079
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• weights error:2080

SROM generates sample weights which minimize the error between the2081

cdf, moments, and correlation of the samples and the probability model.2082

weights error specifies weights assigned to each property in the objec-2083

tive function as outlined in [8]. It is a list of size 3 with the items defined2084

as follows:2085

– Item 1: Weight assigned to the cumulative distribution function.2086

– Item 2: Weight assigned to the first and second marginal moments.2087

– Item 3: Weight assigned to the correlation matrix.2088

Default values are set as in [8].2089

• weights distribution:2090

A list of arrays containing weights defining the error in distribution at2091

each sample of the random variables. SROM supports the following options2092

for weights distribution:2093

– None: Default value is defined as an array of the same size as2094

samples with each value equal to 1. For default value, See [8].2095

– Array of size 1 × dimension: Equal weights are assigned to all2096

samples in same dimension.2097

– Arbitrary array of the same size as samples: User specifies all2098

weights explicitly.2099

• weights moments:2100

A list of arrays containing weights defining the error in moments in each2101

dimension. SROM supports the following options for weights moments:2102

– None: Default value is defined as array of the same size as moments2103

with each value equal to the reciprocal of the square of moments.2104

For default value, see [8].2105

– Array of size 1 × dimension: Equal weights are assigned to both2106

moments in same dimension.2107

– Array of size same as moments: User specifies all weights explicitly.2108

• weights correlation:2109

A list of arrays containing the weights defining the error in correlation2110

among random variables. It is define such that the size of the array is2111

the same as correlation. For default value, See [8].2112
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Output Attributes :2113

• sample weights:2114

The generated SROM weights corresponding to samples. The samples2115

are returned as a numpy array with each sampling having a correspond-2116

ing weight.2117

Examples:2118

Two examples illustrating the use of the SROM class are provided in the follow-2119

ing Jupyter scripts.2120

• SROM Example1.ipynb:2121

In this example, the STS is used to generate 16 samples from a two-2122

dimensional Gamma pdf. The Gamma pdf is defined as a function di-2123

rectly in the script. Then, SROM is used to obtain sample weights.2124

• SROM Example2.ipynb:2125

In this example, sample weights are compared when SROM is called us-2126

ing default values for weights distribution and weights moments and2127

when SROM is called with user-defined values for weights distribution2128

and weights moments.2129

• SROM Example3.ipynb:2130

In this example, SROM is used to estimate the distribution of eigenvalues2131

of a spring-mass system, where stiffness of spring is treated as a random2132

variable, which follows gamma distribution. Distribution of eigenvalues2133

obtained by SROM method is compared with the Monte Carlo estimate.2134

5.5.2 UQpy.Surrogates.Krig2135

Theory
Krig class defines an approximate surrogate model or response surface which
can be used to predict function values at unknown location. Kriging gives the
best unbiased linear predictor at the intermediate samples. Krig class gener-
ates a model ŷ that express the response surface as a realization of regression
model and gaussian random process.

ŷ(x) = F(β, x) + z(x)

Regression model (F) is linear combination of ‘p’ chosen scalar basis function.

F(β, x) = β1f1(x) + · · ·+ βpfp(x) = f(x)Tβ
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The random process z(x) have mean zero and covariance is defined through
correlation matrix(R(θ, s, x)), which depends on hyperparameters(θ) and
samples(s).

E
[
z(s)z(x)] = σ2R(θ, s, x)

Hyperparameters are estimate by maximizing the log-likehood function.

log(p(y|x, θ)) = −1

2
yTR−1y − 1

2
log(|R|)− n

2
log(2π)

Once hyperparameters are computed, correlation matrix(R) and basis func-
tions are evaluated at sample points(F ). Then, correlation coefficient(β) and
process variance(σ2) can be computed using following equations.

(F TR−1F )β∗ = F TR−1Y

σ2 =
1

m
(Y − Fβ∗)TR−1(Y − Fβ∗)

The final predictor function can be defined as:

ŷ(x) = f(x)Tβ∗ + r(x)TR−1(Y − Fβ∗)

2136

Using the Krig Class2137

The Krig class is imported using the following command:2138

from UQpy.Surrogates import Krig2139

The attributes of the Krig class are listed below:2140

Krig Class Attribute Definitions
Attribute Input/Output Required Optional
samples Input ?
values Input ?
reg model Input ?
corr model Input ?
corr model params Input ?
bounds Input ?
op Input ?
n opt Input ?
interpolate Output
jacobian Output

2141
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A brief description of each attribute can be found in the table below:2142

2143

Krig Class Attributes
Attribute Type Options Default
samples ndarray/list None

values ndarray/list None

reg model function/string Constant

Linear

Quadratic

None

corr model function/string Exponential

Gaussian

Linear

Cubic

Spherical

Spline

None

corr model params ndarray [1,1,...,1]

bounds list [10−3, 107]
op boolean True
n opt int 1
interpolate function
jacobian function

2144

Detailed Description of Krig Class Attributes:2145

2146

Input Attributes :2147

• samples:2148

An array or list containing the samples from which to build the Kriging2149

surrogate. Size of the array should be m × n, where ‘m’ is number of2150

samples and ‘n’ is dimension of sample space.2151

• values:2152

An array or list of function values evaluated at the samples. Size of the2153

array should be m× q, where ‘q’ is dimension of output space.2154

• reg model:2155

A function or string defining the trend of the model, which defines the2156

basis function. There are three predefined regression model inside the2157

class i.e. ‘Constant’, ‘Linear’ and ‘Quadratic’ regression model.2158

2159
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Constant:

f1(x) = 1 Jf = [On×1]

Linear:

f1(x) = 1, f2(x) = x1, . . . , fn+1(x) = xn

Jf = [On×1 In×n]

Quadratic:

f1(x) = 1

f2(x) = x1, f3(x) = x2, . . . , fn+1(x) = xn

fn+2(x) = x2
1, fn+3(x) = x1x2, . . . , f2n+1(x) = x1xn

f2n+2(x) = x2
2, fn+3(x) = x2x3, . . . , f3n(x) = x2xn

. . . . . . f (n+1)(n+2)
2

= x2
n

Jf = [On×1 In×n H]

where H can be illustrated as:

n = 2 : H =

[
2x1 x2 0
0 x1 2x2

]

n = 3 : H =

2x1 x2 x3 0 0 0
0 x1 0 2x2 x3 0
0 0 x1 0 x2 2x3


2160

This class also support an user defined function.

def reg model(x):

...

return fx, jf

where, fx and jf are value of basis function and it’s Jacobian at sample
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point ‘x’.

fx =
[
f1(x) f2(x) ... fl(x)

]

jf =


∂f1(x)
∂x1

∂f2(x)
∂x1

... ∂fl(x)
∂x1

∂f1(x)
∂x2

∂f2(x)
∂x2

... ∂fl(x)
∂x2

.

.
∂f1(x)
∂xn

∂f2(x)
∂xn

... ∂fl(x)
∂xn


• corr model:

A function or string defining the correlation among the covariates of
model. It explains the how similar are two points. There are six pre-
defined correlation model inside the class i.e. ‘Exponential’, ‘Gaussian’,
‘Linear’, ‘Cubic’, ‘Spherical’ and ‘Spline’.

R(θ, s, x) =
n∏
j=1

Rj(θ, sj − xj)

Name Rj(θ, dj)
Exponential exp(−θj|dj|)
Gaussian exp(−θjd2

j)

Linear max{0, 1− θj|dj|}
Spherical 1− 1.5ζj + 0.5ζ3

j

Cubic 1− 3ζ2
j + 2ζ3

j

Spline ξ(ζj)(10), ζj = |dj|

2161

Predefined correlation functions. Note: dj = sj − xj and2162

ζj = min{1, θj|dj|} for Spherical and Cubic correlation functions2163

ξ(ζj) =


1− 15ζ2

j + 30 ∗ ζ3
j for 0 ≤ ζj ≤ 0.2

1.25(1− ζ)
j
3 for 0.2 ≤ ζj ≤ 1

0 for ζj ≥ 1

(10)
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This class also support an user defined function.

def corr model(x, s, params, dt, dx):

...

if dt:

return rx, drdt

if dx:

return rx, drdx

return rx

where ‘rx’ is an array defining the correlation matrix between ‘x’ and ‘s’.
‘drdt’ and ‘drdx’ are derivative of correlation matrix w.r.t hyperparam-
eter (θ) and sample space (x).

rxij =
n∏
k=1

Rk(xik − sjk)

drdtijk =
∂rxij
∂θk

drdxijk =
∂rxij
∂xk

• corr model params:2164

A numpy array of size 1 × n specifying the starting point of hyper-2165

paramters for Maximum Likelihood Estimator. Default value is an array2166

of all ones.2167

• op:2168

Indicator to solve MLE problem or not. If ‘True’, this class uses2169

scipy.optimize.fmin l bfgs b to solve optimization problem. It is a2170

gradient-based optimization algorithm and uses corr model params as2171

initial point for optimization problem. If ‘False’, corr model params2172

will be directly use as hyperparamters. Default: ‘True’.2173

• n opt:2174

An integer specifying the number of times to estimate maximum likeli-2175

hood estimator with different random starting points. Default value is2176

assigned as 1.2177

• bounds:2178

An array or list of size 2×n, specifying the bounds on hyperparameters.2179
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These bounds are used to generate new random starting points, while2180

estimating maximum likelihood solution. Random samples are generated2181

using log-uniform distribution.2182

Krig Methods :2183

• interpolate:2184

A function which takes samples and returns the value of surrogate model2185

at the sample. If ‘dy’ is True, then this function returns value of surrogate2186

model and mean square error at the sample.2187

K = Krig(samples=S, values=Y, reg model=‘Linear’,2188

corr model=‘Gaussian’)2189

y, mse = K.interpolate(x, dy=True)2190

• jacobian:2191

A function which takes samples and returns the gradient of surrogate2192

model at the samples.2193

K = Krig(samples=S, values=Y, reg model=‘Linear’,2194

corr model=‘Gaussian’)2195

y grad = K.jacobian(x)2196

Examples:2197

Two examples illustrating the use of the Krig class are provided in the follow-2198

ing Jupyter scripts.2199

• Krig Example1.ipynb:2200

In this example, the STS is used to generate 20 samples from a 1-D2201

gamma probability distribution. The function values are evaluated us-2202

ing RunModel. Kriging class is used to create an approximate surro-2203

gate model using linear regression model and gaussian correlation model.2204

Then plot is shown to compare the actual and surrogate model.2205

• Krig Example2.ipynb:2206

In this example, the STS is used to generate 196 samples from a 2-D2207

uniform probability distribution. Kriging class is used to create an ap-2208

proximate surrogate model using quadratic regression model and expo-2209

nential correlation model. Then 3-D plots show the comparison between2210

the actual and surrogate model.2211
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• Krig Example3.ipynb:2212

This example illustrate the use of user-defined regression and correla-2213

tion model. reg model and corr model are functions instead of strings,2214

which uses pre-defined models.2215

5.6 StochasticProcess Module (Coming in V2.0)2216

The StochasticProcess module consists of classes and functions to generate2217

samples of Stochastic Processes from Power Spectrum, Bispectrums and Auto-2218

correlation Functions. The generated Stochastic Processes can be transformed2219

into other random variables. We can import the module into a Python script2220

with the following command2221

from UQpy import StocahsticProcess2222

The StochasticProcess module has the following classes, each corresponding2223

to a different method:2224

Class Method
SRM Spectral Representation Method
BSRM Bispectral Representation Method
KLE Karhunen Louve Expansion
Translate Translate Gaussian into Non-Gaussian
Inverse Translate Translates Non-Gaussian into Gaussian

2225

Each class can be imported individually into a python script. For example,2226

the SRM class can be imported to a script using the following command:2227

from UQpy.StochasticProcess import SRM2228

The following subsections describe each class, their respective inputs and at-2229

tributes, and their use.2230

5.6.1 UQpy.StochasticProcess.SRM (Coming in V2.0)2231

SRM is a class for generating Stochastic Processes by Spectral Representation2232

Method from a prescribed Power Spectral Density Function. The SRM class is2233

imported using the following command:2234

from UQpy.StochasticProcess import SRM2235
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The attributes of the SRM class are listed below:2236

SRM Class Attribute Definitions
Attribute Input/Output Required Optional
nsamples Input ?
S Input ?
dw Input ?
nt Input ?
nw Input ?
case Input ?
g Input ?
samples Output

2237

Description of SRM Class Attributes:2238

2239

Input Attributes :2240

• nsamples:2241

A scalar integer value defining the the number of samples of the Stochas-2242

tic Process to be generated.2243

• S:2244

A numpy array defining the Power Spectral Density to be used for2245

generation of the Stochastic Processes.2246

2247

• dw:2248

The length of the frequency discretisation to be used for the generation2249

of the Stochastic Processes.2250

2251

• nt:2252

Specifies the number of time discretisations of the generated Stochastic2253

Processes.2254

2255

• nw:2256

Specifies the number of frequency discretisations of the Power Spectrum.2257

2258
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• case:2259

A String specifying if it is a univariate or multivariate Stochastic2260

Process. Acceptable values are ’uni’ for one variable case and ’multi’2261

for multi variable case.2262

2263

• g:2264

A numpy array defining the Cross Power Spectral Density. It is only2265

used in the ’multi’ case.2266

2267

Output Attributes :2268

• samples:2269

A numpy array of samples following the Power Spectral Density.2270

Examples:2271

A bunch of example files illustrating the use of the SRM class are provided:2272

• SRM 1D 1V.ipynb:2273

In this example, one-dimensional uni-variate Stochastic Processes are2274

generated.2275

• SRM 1D mV.ipynb:2276

In this example, one-dimensional multi-variate Stochastic Processes are2277

generated.2278

• SRM nD 1V.ipynb:2279

In this example, n-dimensional uni-variate Stochastic Processes are gen-2280

erated.2281

• SRM nD mV.ipynb:2282

In this example, n-dimensional multi-variate Stochastic Processes are2283

generated.2284

5.6.2 UQpy.StochasticProcess.BSRM (Coming in V2.0)2285

BSRM is a class for generating Stochastic Processes by BiSpectral Representa-2286

tion Method from a prescribed Power Spectral Density Function and a Bis-2287

pectral Density Function. The BSRM class is imported using the following2288

command:2289

from UQpy.StochasticProcess import BSRM2290

The attributes of the BSRM class are listed below:2291
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BSRM Class Attribute Definitions
Attribute Input/Output Required Optional
nsamples Input ?
S Input ?
B Input ?
dt Input ?
dw Input ?
nt Input ?
nw Input ?
samples Output

2292

Description of BSRM Class Attributes:2293

2294

Input Attributes :2295

• nsamples:2296

A scalar integer value defining the the number of samples of the Stochas-2297

tic Process to be generated.2298

• S:2299

A numpy array defining the Power Spectral Density to be used for2300

generation of the Stochastic Processes.2301

2302

• B:2303

A numpy array defining the BiSpectral Density to be used for generation2304

of the Stochastic Processes.2305

2306

• dt:2307

The length of the time discretisation to be used for the generation of2308

the Stochastic Processes.2309

2310

• dw:2311

The length of the frequency discretisation to be used for the generation2312

of the Stochastic Processes.2313

2314

• nt:2315

Specifies the number of time discretisations of the generated Stochastic2316

Processes.2317

2318
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• nw:2319

Specifies the number of frequency discretisations of the Power Spectrum.2320

2321

Output Attributes :2322

• samples:2323

A numpy array of samples generated by the BiSpectral Representation2324

Method.2325

Examples:2326

Example files illustrating the use of the BSRM class have been provided:2327

• BSRM 1D.ipynb:2328

In this example, one-dimensional Stochastic Processes are generated by2329

BSRM method.2330

• BSRM nD.ipynb:2331

In this example, n-dimensional Stochastic Processes are generated by2332

BSRM method.2333

5.6.3 UQpy.StochasticProcess.KLE (Coming in V2.0)2334

KLE is a class for generating Stochastic Processes by Karhunen Louve Expan-2335

sion from a prescribed Autocorrelation Function. The BSRM class is imported2336

using the following command:2337

from UQpy.StochasticProcess import KLE2338

The attributes of the KLE class are listed below:2339

KLE Class Attribute Definitions
Attribute Input/Output Required Optional
nsamples Input ?
R Input ?
samples Output

2340

Description of KLE Class Attributes:2341

2342

Input Attributes :2343

• nsamples:2344

A scalar integer value defining the the number of samples of the Stochas-2345

tic Process to be generated.2346
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• R:2347

A numpy array defining the Autocorrelation Function to be used for2348

generation of the Stochastic Processes.2349

2350

Output Attributes :2351

• samples:2352

A numpy array of samples generated by the Karhunen Louve Expansion.2353

Examples:2354

An example files illustrating the use of the KLE class have been provided:2355

• KLE.ipynb:2356

In this example, Stochastic Processes are generated by Karhunen Louve2357

Expansion method.2358

5.6.4 UQpy.StochasticProcess.Translation (Coming in V2.0)2359

Translate is a class for translating Gaussian Stochastic Processes to Non-2360

Gaussian Stochastic Processes. This class returns the non-Gaussian samples2361

along with the distorted Aurocorrelated Function. The Translate class is2362

imported using the following command:2363

from UQpy.StochasticProcess import Translate2364

The attributes of the Translate class are listed below:2365

Translate Class Attribute Definitions
Attribute Input/Output Required Optional
samples g Input ?
R g Input ?
marginal Input ?
params Input ?
samples ng Output
R ng Output

2366

Description of Translate Class Attributes:2367

2368

Input Attributes :2369

• samples g:2370

Numpy array of Gaussian samples to be translated into specified non-2371

Gaussian samples.2372
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• R g:2373

Numpy array providing the Autocorrelation Function of the Gaussian2374

Stochastic Processes.2375

2376

• marginal:2377

The name of the marginal distribution to which to be translated. It2378

must follow the format discussed in the Distributions module.(Examples2379

Jupyter script may be referred for further coherence)2380

• params:2381

The parameters of the marginal distribution to which to be translated. It2382

must follow the format discussed in the Distributions module.(Examples2383

Jupyter script may be referred for further coherence)2384

Output Attributes :2385

• samples ng:2386

Numpy array of the translated Non-Gaussian samples.2387

• R ng:2388

Numpy array of the distorted Non-Gaussian Autocorrelation Function.2389

Examples:2390

An example files illustrating the use of the Translate class have been provided:2391

• Translate.ipynb:2392

In this example, a Gaussian Stochastic Process has been translated into2393

a Uniform[0, 1] process.2394

5.6.5 UQpy.StochasticProcess.InverseTranslation (Coming in V2.0)2395

Inverse Translate is a class for translating Non-Gaussian Stochastic Pro-2396

cesses back to Standard Gaussian Stochastic Processes. This class returns the2397

non-Gaussian samples along with the distorted Aurocorrelated Function. The2398

Translate class is imported using the following command:2399

from UQpy.StochasticProcess import InverseTranslation2400

The attributes of the Translate class are listed below:2401
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Translate Class Attribute Definitions
Attribute Input/Output Required Optional
samples ng Input ?
R ng Input ?
marginal Input ?
params Input ?
samples Output

2402

Description of BSRM Class Attributes:2403

2404

Input Attributes :2405

• samples g:2406

Numpy array of non-Gaussian samples to be translated into standard2407

Gaussian samples.2408

• R ng:2409

Numpy array providing the Autocorrelation Function of the non-2410

Gaussian Stochastic Processes.2411

2412

• marginal:2413

The name of the marginal distribution the Stochastic Process currently2414

follows. It must follow the format discussed in the Distributions mod-2415

ule.(Examples Jupyter script may be referred for further coherence)2416

• params:2417

The parameters of the marginal distribution the Stochastic Process cur-2418

rently follows. It must follow the format discussed in the Distributions2419

module.(Examples Jupyter script may be referred for further coherence)2420

Output Attributes :2421

• samples g:2422

Numpy array of the standard Gaussian samples.2423

• R ng:2424

Numpy array of the Gaussian Autocorrelation Function.2425

Examples:2426

An example files illustrating the use of the Inverse Translate class have been2427

provided:2428

• Inverse Translate.ipynb:2429

In this example, a non-Gaussian Stochastic Process is translated into a2430

standard Gaussian Stochastic Process.2431
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5.7 Transformations2432

Class Method
Correlate Induces correlation
Decorrelate Removes correlation
Nataf Nataf transformation
InvNataf Inverse Nataf transformation

2433

5.7.1 UQpy.SampleMethods.Correlate2434

Correlate is a class for inducing correlation in independent standard normal
random variables. This is done using the standard Cholesy method as follows.
Let Y denote an uncorrelated standard normal random vector and Z denote a
standard normal random vector with positive definite correlation matrix CZ.
Perform the Cholesky decomposition of CZ such that:

CZ = UUT (11)

where U is a lower-triangular matrix.2435

Given the nsamples× dimension array, y, of uncorrelated standard nor-
mal samples, the array z of samples possessing correlation CZ is determined
by:

zT = UyT (12)

The Correlate class is imported using the following command:2436

from UQpy.SampleMethods import Correlate2437

The attributes of the Correlate class are listed below:2438

Correlate Class Attribute Definitions
Attribute Input/Output Required Optional
input samples Input ?
corr norm Input ?
dimension Input ? ?
samples uncorr Output
samples Output

2439

A brief description of each attribute can be found in the table below:2440
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2441

Correlate Class Attributes
Attribute* Type Options Default
input samples ndarray/object SampleMethods object

or
User-defined array

corr norm ndarray User-defined array
dimension integer Inherited from SampleMethods object

or
User-defined scalar

samples uncorr ndarray
samples ndarray

2442

* Note: If input samples is a SampleMethods object, the Correlate object2443

will inherit all attributes of that object.2444

2445

Detailed Description of Correlate Class Attributes:2446

2447

Input Attributes :2448

• input samples:2449

Contains the independent standard normal random samples on which2450

to impose correlation.2451

2452

input samples can be an object (instance of a SampleMethods class)2453

or an array.2454

2455

If input samples is an instance of a SampleMethods class, then2456

the Correlate class inherits all of its attributes and the cor-2457

relation is induced on the samples contained in the attribute2458

input samples.samples.2459

2460

If input samples is a numpy array, then the correlation is induced2461

directly on input samples. The number of samples is given by2462

nsamples=input samples.shape[0].2463

2464

• corr norm:2465

A numpy array containing the correlation matrix C for the random2466

variables.2467

2468
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corr norm must be a symmetric positive definite array of size2469

dimension× dimension and satisfy:2470

corr norm[i, j] = 1 for i = j.2471

0 < corr norm[i, j] < 1 for i 6= j.2472

corr norm[i,j] = corr norm[j,i]2473

• dimension:2474

A scalar integer value defining the dimension of the random variables.2475

2476

If input samples is a SampleMethods object then dimension2477

is not required since input samples already has the attribute2478

input samples.dimension.2479

2480

If input samples is a numpy array, dimension must be specified.2481

Output Attributes :2482

• samples uncorr:2483

A numpy array of dimension nsamples×dimension containing the orig-2484

inal uncorrelated standard normal samples.2485

If input samples is an array then samples uncorr=input samples.2486

2487

if input samples is a SampleMethods object, then2488

samples uncorr=input samples.samples.2489

• samples:2490

A numpy array of dimension nsamples× dimension containing the cor-2491

related standard normal samples with correlation defined in corr norm.2492

Examples:2493

An example illustrating the use of the Correlate class is provided in the2494

following Jupyter script.2495

• Correlate.ipynb:2496

In this example, 1000 2-dimensional standard normal samples are corre-2497

lated according to a specified correlation matrix. The input samples are2498

specified using both the MCS class and as a numpy array generated using2499

scipy.stats.2500
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5.7.2 UQpy.SampleMethods.Decorrelate2501

Decorrelate is a class for removing correlation from a nsamples×dimension
array, z, of standard normal random samples with correlation matrix CZ. This
is performed by simply inverting the expression in Eq. (12) as:

yT = U−1zT (13)

to obtain the nsamples×dimension array, y, of uncorrelated standard2502

normal samples.2503

2504

The Decorrelate class is imported using the following command:2505

from UQpy.SampleMethods import Decorrelate2506

The attributes of the Decorrelate class are listed below:2507

Decorrelate Class Attribute Definitions
Attribute Input/Output Required Optional
input samples Input ?
corr norm Input ?
dimension Input ? ?
samples corr Output
samples Output

2508

A brief description of each attribute can be found in the table below:2509

2510

Decorrelate Class Attributes
Attribute* Type Options Default
input samples ndarray/object Object of class Correlate

or
User-defined array

corr norm ndarray Inherited from Correlate object
or

User-defined array
dimension integer Inherited from Correlate object

or
User-defined scalar

samples corr ndarray
samples ndarray

2511

* Note: If input samples is a Correlate object, the Decorrelate object2512

will inherit all attributes of that object.2513

2514
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Detailed Description of Decorrelate Class Attributes:2515

2516

Input Attributes :2517

• input samples:2518

Contains the correlated standard normal samples whose correlation will2519

be removed.2520

2521

input samples can be an object (instance of the Correlate class) or a2522

numpy array.2523

2524

If input samples is an instance of Correlate, then the Decorrelate2525

class inherits all of its attributes and the decorrelation is performed on2526

the attribute input samples.samples.2527

2528

If input samples is a numpy array, then the decorrelation is performed2529

directly on input samples. The number of samples is given by2530

nsamples=input samples.shape[0].2531

2532

• corr norm:2533

A numpy array containing the correlation matrix C for the random2534

variables.2535

2536

If input samples is an object of the Correlate class, then corr norm2537

is inherited this class.2538

2539

If input samples is a numpy array, then corr norm must be specified.2540

2541

corr norm must be a symmetric positive definite array of size2542

dimension× dimension and satisfy:2543

corr norm[i, j] = 1 for i = j.2544

0 < corr norm[i, j] < 1 for i 6= j.2545

corr norm[i,j] = corr norm[j,i]2546

• dimension:2547

A scalar integer value defining the dimension of the random variables.2548

2549
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If input samples is a Correlate object then dimension may not2550

be required since input samples may already have the attribute2551

input samples.dimension.2552

2553

If input samples is a numpy array, dimension must be specified.2554

Output Attributes :2555

• samples corr:2556

A numpy array of dimension nsamples × dimension containing the2557

original correlated samples.2558

2559

If input samples is an array then samples corr=input samples2560

and if input samples is an object of the Correlate class then2561

samples corr=input samples.samples.2562

• samples:2563

A numpy array of dimension nsamples × dimension containing the un-2564

correlated standard normal samples.2565

Examples:2566

An example illustrating the use of the Decorrelate class is provided in the2567

following Jupyter script.2568

• Decorrelate.ipynb:2569

In this example, 1000 2-dimensional correlated standard normal samples2570

are generated using the Correlate class and using the scipy.stats2571

package. The samples from each are decorrelate using the Decorrelate2572

class.2573

5.7.3 UQpy.SampleMethods.InvNataf2574

InvNataf is a class for transforming standard normal random samples to2575

a prescribed non-Gaussian distribution using the inverse Nataf transformation.2576

2577

Theory
Let Z denote an n-dimensional standard normal random vector and let
Fi(xi), i = 1, . . . , n be the marginal cumulative distribution functions of the
n correlated non-Gaussian random variables Xi. According to the Nataf
transformation, the non-Gaussian random vector, X, following Fi(xi) is
defined component-wise through the transformation:

xi = F−1
i (Φ(zi)) (14)
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where Φ(x) is the standard normal cumulative distribution function.2578

2579

When the random vector Z has correlated components possessing correla-
tion matrix CZ and correlation coefficients ρij between components Zi and Zj,
the transformation in Eq. (14) causes a so-called correlation distortion such
that the correlation coefficient between the non-Gaussian variables Xi and
Xj, denoted ξij, is not equal to the correlation between the Gaussian variables
(ρij 6= ξij). The non-Gaussian correlation coefficient, ξij, can be determined
from the Gaussian correlation coefficient, ρij, through the following integral:

ξij =
1

σXi
σXj

∫ ∞
−∞

∫ ∞
−∞

(
F−1
i (Φ(zi))− µXi

) (
F−1
j (Φ(zj))− µXj

)
φ2(zi, zj; ρij)dzidzj (15)

where φ2(·) is the joint Gaussian pdf.2580

When conducting probabilistic modeling using the inverse Nataf transfor-
mation (particularly when performing the first and second order reliability
method FORM/SORM, see Section ??), it is useful to know the Jacobian of
the transformation in Eq. (14). Let us rewrite Eq. (14) as:

Fi(xi) = Φ(zi) (16)

Taking the derivative of Eq. (16) yields:

∂Fi
∂xi

=
∂

∂xi
(Φ(zi))

fi(xi) =
∂Φ(zi)

∂xi

∂zi
∂xi

fi(xi) =φ(zi)
∂zi
∂xi

Rearranging this equation, we arrive at the Jacobian of the inverse Nataf
transformation with components

Jxi,zi =
∂xi
∂zi

=
φ(zi)

fi(xi)
(17)

The Jacobian of the inverse Nataf transformation is assembled as a diagonal
matrix given by:

Jxz =
∂x

∂z
=

[
φ(zi)

fi(xi)

]
(18)
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It is more common, in practice, to combine the steps of correlating the
variables and mapping them to the non-Gaussian distribution through the
inverse Nataf. In other words, letting y denote an n-dimensional vector of
uncorrelated standard normal random variables, we can express the Jacobian
of the transformation from y to x by:

Jxy =
∂x

∂y
=
∂x

∂z

∂z

∂y
(19)

where, by applying Eqs. (12) and (18), we see that:

Jxy =
∂x

∂y
= U

[
φ(zi)

fi(xi)

]
(20)

where U is the lower triangular matrix resulting from the Cholesky decompo-2581

sition of CZ in Eq. (11).2582

The Jacobian in Eq. (20), which combines the correlation and inverse2583

Nataf steps, is the one computed by the InvNataf class.2584

2585

Using the InvNataf Class2586

The InvNataf class is imported using the following command:2587

from UQpy.SampleMethods import InvNataf2588

The attributes of the InvNataf class are listed below:2589

InvNataf Class Attribute Definitions
Attribute Input/Output Required Optional
input samples Input ?
corr norm Input ?
dist name Input ?
dist params Input ?
dimension Input ? ?
samplesN01 Output
samples Output
corr Output
jacobian Output

2590

A brief description of each attribute can be found in the table below:2591
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2592

InvNataf Class Attributes
Attribute Type Options Default
input samples ndarray/object SampleMethods object

or
User-defined array

None

corr norm ndarray Inherited from SampleMethods object
or

User-defined array

Identity Matrix
Idimension

dimension integer Inherited from SampleMethods object
or

User-defined integer
dist name function/string list name attribute from Distributions class

See Section 6.1
dist params ndarray list See Section 6.1
samplesN01 ndarray
samples ndarray
corr ndarray
jacobian ndarray list

2593

Detailed Description of InvNataf Class Attributes:2594

2595

Input Attributes :2596

• input samples:2597

Contains the samples to be transformed. The samples need to be2598

standard normal samples i.e ∼ N(0, 1).2599

2600

input samples can be a SampleMethods object or a nsamples×2601

dimension numpy array. The inverse Nataf transformation is applied2602

to the samplesN01 object. Depending on the type of input samples,2603

samplesN01 is assigned as follows:2604

– If input samples is a SampleMethods object, then the InvNataf2605

class inherits all the attributes of that object and samplesN01 =2606

input samples.samples2607

2608

– If input samples is an array, then samplesN01 = input samples.2609

2610

If input samples is not provided, then InvNataf calculates the2611

correlation distortion of the standard normal correlation matrix2612

corr norm from Eq. (15).2613

2614

The default value of input samples is None.2615

2616
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• dimension:2617

A scalar integer value defining the dimension of the random variables.2618

2619

If input samples is a SampleMethods object, then dimension may2620

not be required since input samples may already have the attribute2621

input samples.dimension.2622

2623

If input samples is a numpy array, dimension must be specified.2624

• corr norm:2625

A numpy array containing the correlation matrix C for the standard2626

normal random variables.2627

2628

corr norm must be a symmetric positive definite array of size2629

dimension× dimension and satisfy:2630

corr norm[i, j] = 1 for i = j.2631

0 < corr norm[i, j] < 1 for i 6= j.2632

corr norm[i,j] = corr norm[j,i]2633

If input samples is an object of type Correlate then corr norm is2634

inherited from this object.2635

2636

The default value of corr norm is the dimension×dimension identity2637

matrix Idimension.2638

2639

• dist name:2640

Specifies the name of the marginal distribution that each transformed2641

random variable.2642

2643

dist name may be a string or a list of strings of length dimension.2644

2645

For each dimension i, dist name[i] must be a string specifying a2646

distribution defined in the Distributions module (see Sec. 6.1). To2647

use a custom distribution, set dist name[i] = ‘custom dist’ to use the2648

custom distribution assignment option in the Distributions module2649

(again, see Sec. 6.1).2650

2651
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If dist name is a string (or a list of length one) and dimension > 1,2652

then dist name is converted into a list of length dimension with each2653

component having identical distribution name.2654

2655

dist name must be specified. There is no default value.2656

• dist params:2657

Specifies the parameters for each marginal distribution in dist name as2658

defined in the Distributions module (see Sec. 6.1).2659

2660

Each set of parameters is defined as a numpy array. dist params is a2661

list of arrays, with each item in the list corresponding to the associated2662

random variable.2663

2664

If dist params is an array (or a list of length one), then dist params2665

is converted to a list of length dimension with each component having2666

the same parameters.2667

2668

dist params must be specified. There is no default value.2669

Output Attributes :2670

• samplesN01:2671

A numpy array of dimension nsamples × dimension containing the2672

correlated or uncorrelated standard normal samples that have have2673

been transformed.2674

2675

If input samples = None, samplesN01 is not returned.2676

2677

If input samples is a SampleMethods object, then samplesN012678

= SampleMethods.samples. If input samples is an array then2679

samplesN01 = input samples.2680

2681

• samples:2682

A numpy array of dimension nsamples × dimension containing the2683

correlated or uncorrelated transformed samples follwing the prescribed2684

distribution.2685

2686
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If input samples = None, samples is not returned.2687

2688

• corr:2689

A numpy array containing the transformed/distorted correlation matrix.2690

2691

If corr norm = None or corr norm = I, where I is the identity matrix,2692

then corr = corr norm = I.2693

2694

• jacobian:2695

A list of numpy arrays containing the Jacobian of the transformation2696

evaluated at each sample.2697

2698

Examples:2699

Three examples illustrating the use of the Nataf class are provided in the2700

following Jupyter scripts.2701

• InvNataf - Example 1.ipynb:2702

In this example, the InvNataf class is used in order to transform 10002703

samples of 2 uncorrelated standard normal variables to a lognormal and2704

a gamma distribution. The example illustrates the transformation for2705

samples drawn using the MCS class and for samples specified as a numpy2706

array.2707

• InvNataf - Example 2.ipynb:2708

In this example, the InvNataf class is used in order to transform 10002709

samples of 2 correlated standard normal variables to a lognormal and2710

a gamma distribution. The example illustrates the transformation for2711

samples drawn using the MCS class and correlated using the Correlate2712

class and for samples specified as a numpy array.2713

• InvNataf - Example 3.ipynb:2714

In this example, the InvNataf class is used to calculate the correlation2715

distortion for the transformation of two correlated random variables from2716

a standard normal to a lognormal distribution.2717

5.7.4 UQpy.SampleMethods.Nataf2718

Nataf is a class for transforming non-Gaussian random variables to equiva-2719

lent standard normal space. The Nataf class is imported using the following2720

command:2721

115



from UQpy.SampleMethods import Nataf2722

The attributes of the Nataf class are listed below:2723

Nataf Class Attribute Definitions
Attribute Input/Output Required Optional
input samples Input ? ?
dimension Input ? ?
corr Input ?
dist name Input ? ?
dist params Input ? ?
samplesNG Output
samples Output
corr norm Output
jacobian Output

2724

A brief description of each attribute can be found in the table below:2725

Nataf Class Attributes
Attribute Type Options Default
input samples ndarray/object Attribute of class MCS, LHS, STS, Correlate, Nataf

or
User-defined array

None

corr ndarray Attribute of class Nataf

or
User-defined array

dimension integer Attribute of class MCS, LHS, STS, Correlate, Nataf

or
User-defined scalar

dist name function/string list See Distributions Module
or

User-defined function
dist params ndarray list
samplesNG ndarray
samples ndarray
corr norm ndarray
jacobian ndarray list

2726

Detailed Description of Nataf Class Attributes:2727

2728

Input Attributes :2729

• input samples:2730

Contains the samples to be transformed to standard normal samples.2731

2732
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input samples can be an object of type MCS, LHS, STS, Correlate,2733

InvNataf or a numpy array.2734

2735

If input samples is an object of type MCS, LHS, STS, Correlate,2736

Nataf, then the InvNataf class inherits all the attributes of the class2737

and the transformation is performed to the attribute .samples of the2738

class.2739

2740

If input samples is an array then the transformation is performed2741

directly to the input samples. The number of samples is given by2742

nsamples=input samples.shape[0].2743

2744

If input samples is not provided then class Nataf calculates the2745

correlation matrix corr norm in the standard normal space.2746

2747

The default value of input samples is None.2748

2749

• dimension:2750

A scalar integer value defining the dimension of the random variables.2751

• corr:2752

A numpy array showing the correlation coefficients between the2753

non-Gaussian random variables.2754

2755

corr must be an array of size dimension× dimension and satisfy:2756

2757

corr[i, j] = 1 for i = j.2758

corr[i, j] < 1 for i 6= j.2759

2760

if input samples is an object of type Nataf then corr is an attribute2761

of this class.2762

2763

if input samples is an object of type MCS, LHS, STS then corr is set2764

to be the identity matrix I dimension.2765

2766
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• dist name:2767

Defines the name of the marginal distribution that each standard2768

normal random variable will be transformed to.2769

2770

dist name may be a string, a function, or a list of strings/functions.2771

2772

If dist name[i] is a string, the distribution is matched with one of the2773

available functions in the Distributions module (see Sec. 6.1) or the2774

‘custom dist.py’ (again see Sec. 6.1).2775

2776

if dist name[i] is a function, it must be defined in the user’s Python2777

script and passed directly as a function.2778

2779

dist name can contain an arbitrary combination of strings and functions.2780

2781

If dist name is a string or function (or a list of length one) and2782

dimension > 1, then dist name is converted into a list of length2783

dimension with each variable having the distribution.2784

2785

if data is not an object of type MCS, LHS, STS, InvNataf then2786

dist name must be specified. There is no default value.2787

• dist params:2788

Specifies the parameters for each marginal distribution in dist name.2789

2790

Each set of parameters is defined as a numpy array. dist params is a2791

list of arrays, with each item in the list corresponding to the associated2792

random variable.2793

2794

If dist params is an array (or a list of length one), then dist params2795

is converted to a list of length dimension with each variable having the2796

same parameters.2797

2798

if input samples is not an object of type MCS, LHS, STS, InvNataf2799

then dist params must be specified. There is no default value.2800

Output Attributes :2801
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• samplesNG:2802

A numpy array of dimension nsamples × dimension containing the2803

correlated or uncorrelated non-Gaussian samples. It is an output of the2804

class only if data is not None.2805

2806

If input samples is an object of type MCS, LHS, STS, Correlate,2807

InvNataf then samplesNG .samples. If input samples is an array2808

then samplesNG=input samples.2809

2810

• samples:2811

A numpy array of dimension nsamples × dimension containing the2812

correlated or uncorrelated standard normal samples. It is an output of2813

the class only if input samples is not None.2814

2815

• corr norm:2816

A numpy array containing the correlation matrix in the standard2817

normal space.2818

2819

if data is an object of type MCS, LHS, STS, Correlate then corr =2820

corr norm = I dimension.2821

2822

• jacobian:2823

A list containing the jacobian of the transformation for each sample as2824

an numpy array.2825

2826

Examples:2827

An example illustrating the use of the Correlate class is provided in the2828

following Jupyter script.2829

• Nataf - Example 1.ipynb:2830

In this example, Nataf class is used in order to transform 2 correlated2831

lognormal variables to two standard normal random variables.2832

• Nataf - Example 2.ipynb:2833

In this example, Nataf class is used to perform the Iterative Translation2834

Approximation Method (ITAM) [11] to estimate the underlying Gaussian2835

correlation from known values of the correlation for lognormal random2836

variables.2837
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6 Support Modules2838

The modules detailed in Section 4 form the core of UQpy and its primary capa-2839

bilities. In support of these primary modules are two additional modules that2840

provide capabilities that are generally used throughout the primary modules.2841

These two support modules are described herein.2842

6.1 Distributions Module2843

The Distributions module is the structure through which probability dis-2844

tributions and their related operations are defined in UQpy. This includes2845

functions for computing probability densities, cumulative distributions and2846

their inverses, moments, the logarithms of the probability densities as well as2847

parameter estimates for generic data for common distribution types.2848

The Distributions module is imported in a Python script using the fol-2849

lowing command:2850

from UQpy import Distributions2851

The Distributions module contains three classes: The Distribution2852

class, the SubDistribution class, and the Copula class. The Distribution2853

class is the parent class of the module, which calls the SubDistribution and2854

Copula classes as necessary to construct a Distribution object.2855

Distributions in UQpy can generally be categorized in one of three types:2856

1. Marginal distributions for a single random variable; 2. Joint distributions2857

with independent random variables; 3. Joint distributions with dependent2858

random variables and. The user can define a probability distribution object2859

by providing a name (see supported distributions in SubDistribution class2860

or custom distribution) and a dependency structure through the Copula class2861

(optional). This class possesses the following attributes:2862

Distribution Class Attribute Definitions
Attribute Input/Output Type Required
dist name Input string/list *
copula Input string

2863

The SubDistribution class, has the following attribute:2864

SubDistribution Class Attribute Definitions
Attribute Input/Output Type Required
dist name Input string *

2865
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and the following methods:2866

SubDistribution Class Methods
Method Type
pdf function
rvs function
cdf function
icdf function
log pdf function
fit function
moments function

2867

Copulas class having the following attributes:2868

Copulas Class Attribute Definitions
Attribute Input/Output Type Required
copula name Input string *
dist name Input list *

2869

and the following methods:2870

Copula Class Methods
Method Type
pdf function

2871

With the exception of the custom distribution, the SubDistribution class2872

simply repackages certain distributions from the scipy.stats package in a2873

way that is convenient to use within UQpy. A brief description of each attribute2874

of the Distribution class is presented next.2875

Detailed Description of Distribution Class Attributes:2876

2877

Input Attributes :2878

• dist name:2879

A string or a list of strings designating the distribution name (available2880

distributions are shown in the table below) and the distribution type2881

(univariate/multivariate).2882

– If dist name is a string → univariate distribution.2883

– If dist name is a list → multivariate distribution.2884
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dist name must be specified. Distribution does not have a default2885

distribution type.2886

• copula:2887

Defines the dependency between dimensions and in order to use it the2888

dist name should be given as a list. The available copulas are shown in2889

the table below.2890

2891

Supported Copulas in UQpy

Name Parameters
“Gumbel” θ ∈ [1,+∞)

2892

copula is optional. The default copula value is None.2893

Distribution Methods2894

The instantiating of a Distribution object can be made with the following2895

ways:2896

Distribution(name=dist name)2897

Distribution(name=[dist name 1, dist name 2, ...])2898

Distribution(name=[dist name 1, dist name 2, ...],2899

copula=copula)2900

The Distribution object gives access to the following functions: pdf, cdf,2901

icdf, rvs, moments, log pdf, fit.2902

2903

• pdf:2904

A function that returns the probability density function at a specified2905

value or values x. Note that the parameters of the distribution must be2906

passed into the pdf function.2907

2908

If the distribution is univariate (or the special case of multivariate nor-2909

mal) the function is called as follows:2910

Distribution(dist name).pdf(x,params)2911

If the distribution is multivariate the function is called as follows:2912

Distribution([dist name 1,. . .]).pdf(x, [params 1,. . .])2913
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Note that [params 1, params 2, ...] correspond to distribution mod-2914

els [dist name 1, dist name 2,. . .]. In this case, the output of the pdf2915

function is the product of the marginal pdfs2916 ∏
i

Distribution(dist name i).pdf(x[:, i], params i)

where params in both cases is given as a list.2917

• rvs:2918

A function that draws random samples from the specified distribution.2919

Note that the parameters of the distribution must be passed into the2920

rvs function and the number of samples (nsamples) must be specified.2921

2922

For a univariate distribution the function is called as follows:2923

Distribution(dist name).rvs(params, nsamples)2924

If the distribution is multivariate the function is called as follows:2925

Distribution([dist name 1,. . .]).rvs([params 1,. . .], nsamples)2926

In this case the output vector is defined as2927

x[:, i] = Distribution(dist name i).rvs(params i, nsamples)

• cdf:2928

A function that returns the cumulative distribution function at a specified2929

value x. Note that the parameters of the distribution must be passed into2930

the cdf function.2931

2932

For a univariate distribution the function is called as follows:2933

Distribution(dist name).cdf(x,params)2934

If the distribution is multivariate the function is called as follows:2935

Distribution([dist name 1,. . .]).cdf(x, [params 1,. . .])2936

In this case the output is a list with entries the values of cdf calculated at x2937

for every distribution model defined in [dist name 1,dist name 2,. . .].2938

• icdf:2939

A function that returns the inverse cumulative distribution function at2940

a specified value or values x ∈ [0, 1]. Note that the parameters of the2941

distribution must be passed into the icdf function.2942

2943
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For a univariate distribution the function is called as follows:2944

Distribution(dist name).icdf(x,params)2945

If the distribution is multivariate the function is called as follows:2946

Distribution([dist name 1,. . .]).icdf(x, [params 1,. . .])2947

In this case the output is a list with entries the values of icdf calculated at2948

x for every distribution model defined in [dist name 1,dist name 2,. . .].2949

• log pdf:2950

A function that returns the logarithm of the probability density function at2951

a specified value or values x. Note that the parameters of the distribution2952

must be passed into the log pdf function.2953

2954

If the distribution is univariate the function is called as follows:2955

Distribution(dist name).log pdf(x,params)2956

If the distribution is multivariate the function is called as follows:2957

Distribution([dist name 1,. . .]).log pdf(x, [params 1,. . .])2958

In this case, the output of the log pdf function is the sum of the marginal2959

log pdfs2960 ∑
i

Distribution(dist name i).log pdf(x[:, i], params i)

• fit:2961

A function that fits the parameters of the specified distribution to2962

user-specified data y. Note that the parameters of the distribution that are2963

returned follow the conventions of scipy.stats, which for some distributions2964

may be inconsistent with the parameters specified in UQpy.2965

2966

For a univariate distribution the function is called as follows:2967

Distribution(dist name).fit(x,params)2968

If the distribution is multivariate the function is called as follows:2969

Distribution([dist name 1,. . .]).fit(x, [params 1,. . .])2970

In this case the output is a list with entries the values of fit calculated at x2971

for every distribution model defined in [dist name 1, dist name 2,. . .].2972

• moments:2973

A function that returns the mean, variance, skewness, and kurtosis, of a2974

specified distribution. Note that the parameters of the distribution must be2975
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passed into the moments function.2976

2977

For a univariate distribution the function is called as follows:2978

Distribution(dist name).moments(params)2979

If the distribution is multivariate the function is called as follows:2980

Distribution([dist name 1,. . .]).moments([params 1,. . .])2981

In this case the output is a list with entries the values of moments calculated2982

at x for every distribution model defined in [dist name 1,dist name 2,. . .].2983

2984
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Available Distributions in UQpy

Distribution Name Parameters
Beta “beta” [a, b]

a, b > 0, (a < b) ∈ R
Fixed: loc = 0, scale = 1

Binomial “binomial” [n, p]
n ∈ N0, p ∈ [0, 1]

Cauchy “cauchy” [loc, scale]
loc, scale > 0

Chi-Squared “chisquare” [df, loc, scale]
Exponential “exponential” [loc, scale]
Gamma “gamma” [a, loc, scale]

a > 0
Generalized Extreme Value “genextreme” [c, loc, scale]
Inverse Gaussian “inv gauss” [µ, loc, scale]
Laplace “laplace” [loc, scale]

scale > 0
Levy “levy” [loc, scale]

scale > 0
Logistic “logistic” [loc, scale]

scale > 0
Lognormal “lognormal” [σ, loc, µ]

s = σ, loc = loc,
scale = µ, σ > 0

Maxwell-Boltzmann “maxwell” [loc, scale]
scale > 0

Multivariate Normal “mvnormal” [M,C]
mean = M, cov = C

Normal(Gaussian) “normal” or
“gaussian”

[µ, σ]
loc = µ, scale = σ

σ > 0
Pareto “pareto” [b, loc, scale]

b, scale > 0
Rayleigh “rayleigh” [loc, scale]

scale > 0
Truncated Normal “truncnorm” [a, b, loc, scale]

a =
(
clip low−µ

σ

)
, b =

(
clip high−µ

σ

)
loc = µ, scale = σ

Uniform “uniform” [a, b]
loc = a, scale = b− a

b > a

2985

User-defined Distributions:2986
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Other distributions can be easily added by defining the appropriate functions2987

in a python script (.py). These functions must be consistent with those listed2988

in the “Distribution Class Methods” table above.2989

2990

Description of a (.py) script for a custom distribution2991

The user may define custom functions that compute the pdf, cdf, inverse2992

cdf, or log pdf at a specified value for the distribution as well as functions to2993

generate samples, fits the distribution parameters, and returns the moments2994

of the distribution. These functions should be defined within a single python2995

script (.py). For compatibility with UQpy, the name of each function, must2996

be specified as pdf, cdf, icdf, log pdf, fit or moments in accordance2997

with the conventions of the Distribution class. Each function is required2998

to take inputs as prescribed above in the list of Output Attributes for the2999

Distribution class.3000

3001

Examples:3002

An example illustrating the use of the Distribution class with a built-in3003

distribution is provided in the following Jupyter script.3004

• Distributions.ipynb:3005

In this example, we explore the use of the Distribution class with a3006

lognormal distribution.3007

An example illustrating the use of the Distribution class with a custom3008

distribution provided through custom dist.py is provided in the following3009

Jupyter script.3010

• Custom Distribution.ipynb:3011

In this example, we explore the use of the Distribution class with a3012

custom Weibull distribution.3013

6.2 Utilities Module3014

The Utilities module contains functionality for all the supporting methods3015

in UQpy. It is imported in a python script using the following command:3016

from UQpy import Utilities3017

The Utilities module consists of various functions, each used for different3018

purposes and can be called as:3019

from UQpy.Utilities import function3020
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A list of the available functions that can be found in Utilities with a short3021

description and the class in which is used is presented next.3022

3023

List of available functions in module Utilities

Name Description
transform ng to g Transform non-Gaussian to Gaussian rvs
transform g to ng Transform Gaussian to non-Gaussian rvs
itam Iterative Translation Approximation Method
run corr Correlates standard normal variables
run decorr Decorrelates standard normal variables
correlation distortion Evaluate the modified correlation matrix
bi variate normal pdf Evaluate the values of the bi-variate normal pdf
get a plus A supporting function for the nearest pd function

get ps A supporting function for the nearest pd function

get pu A supporting function for the nearest pd function

nearest psd Compute the nearest positive semi definite matrix
nearest pd Find the nearest positive-definite matrix
estimate psd Estimate the Power Spectrum given an ensemble of samples
s to r Transform the power spectrum to an autocorrelation function
r to s Transform the autocorrelation function to a power spectrum
is pd Returns true when input is positive-definite.
resample Resample a set of samples according to their associated weight heightdiagnostics
Perform some diagnostics on outputs of MCMC and IS height

3024

7 Adding new classes to UQpy3025

Adding new capabilities to UQpy is as simple as adding a new class to the3026

appropriate module and importing the necessary packages into the module.3027

Further details will be provided in the future as UQpy coding practices are3028

formally established.3029
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