

1.1

1.2

1.2.1

1.2.2

1.2.3

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.3.9

2.1

2.1.1

2.1.2

2.1.3

2.2

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

2.2.6

2.2.7

2.2.8

2.2.9

2.2.10

2.2.11

2.3

Table	of	Contents

GETTING	STARTED
About

Introduction

Highlights

What's	in	the	Box

Basic	vs	Pro

Using	Easy	Mobile

Overview

Main	Menu

Global	Settings

Initializing

Scripting	API

Testing

Using	the	Demo	App

Using	PlayMaker	Actions

Requirements

ADVERTISING
Introduction

Ad	Placements

Default	vs	Non-Default	Ads

GDPR	Compliance

Settings

Automatic	Ad	Loading

Default	Ad	Networks

Setup	AdColony

Setup	AdMob

Setup	Chartboost

Setup	Audience	Network

Setup	Heyzap

Setup	ironSource

Setup	MoPub

Setup	Tapjoy

Setup	Unity	Ads

Scripting

2

2.3.1

2.3.2

2.3.3

2.3.4

2.3.5

2.3.6

2.3.7

2.3.8

2.4

3.1

3.2

3.2.1

3.2.2

3.2.3

3.2.4

3.3

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5

3.4

3.4.1

3.4.1.1

3.4.1.2

3.4.2

3.4.2.1

3.4.2.2

3.4.2.3

3.4.2.4

3.4.2.5

3.4.2.6

3.5

4.1

4.2

Working	with	Consent

Banner	Ads

Interstitial	Ads

Rewarded	Ads

Removing	Ads

Manual	Ad	Loading

Working	with	Non-Default	Ads

Ad	Network	Clients

PlayMaker	Actions

GAME	SERVICES
Introduction

Settings

Android-Specific	Setup

Auto	Initialization

Leaderboards	&	Achievements

Constants	Generation

Scripting

Initialization

Leaderboards

Achievements

User	Profile

Sign	Out

Saved	Games

Settings

iOS	Setup

Android	Setup

Scripting

Opening

Writing

Reading

Deleting

Fetching

Built-in	UI

PlayMaker	Actions

GIF
Introduction

Setup

3

4.2.1

4.2.2

4.3

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.4

5.1

5.2

5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

5.2.6

5.2.7

5.3

5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

5.3.6

5.3.7

5.4

5.4.1

5.4.2

5.4.3

5.4.4

5.5

6.1

6.2

6.2.1

Recorder

AnimatedClip

Scripting

Recording

Playback

Exporting	GIF

Disposing	AnimatedClip

Sharing	GIF

PlayMaker	Actions

IN-APP	PURCHASING
Introduction

Settings

Enabling	Unity	IAP

Target	Android	Store

Apple	Ask-To-Buy

Apple	Promotional	Purchases

Receipt	Validation

Product	Management

Constants	Generation

Scripting

Initialization

Obtaining	Product	List

Making	Purchases

Checking	Ownership

Restoring	Purchases

Apple	Ask-To-Buy

Apple	Promotional	Purchases

Advanced	Scripting

Getting	Unity	IAP	Product

Getting	Product	Localized	Data

Getting	Subscription	Info

Working	with	Receipts

PlayMaker	Actions

NATIVE	APIs
Introduction

Native	UI

Scripting

4

6.2.1.1

6.2.1.2

6.3

7.1

7.1.1

7.1.2

7.1.3

7.1.4

7.2

7.2.1

7.2.2

7.2.3

7.2.4

7.2.5

7.3

7.3.1

7.3.2

7.3.3

7.3.4

7.3.5

7.3.6

7.3.7

7.4

8.1

8.1.1

8.1.2

8.1.3

8.1.4

8.2

8.2.1

8.3

8.3.1

8.3.2

8.3.3

8.4

Alerts

Toasts

PlayMaker	Actions

NOTIFICATIONS
Introduction

Understanding	Notifications

Local	vs.	Remote

Notification	Categories

GDPR	Compliance

Settings

Auto	Initialization

Remote	Notification	Setup

Adding	Notification	Resources

Category	Management

Constants	Generation

Scripting

Working	with	Consent

Initialization

Local	Notifications

Remote	Notifications

Handling	Opened	Notifications

Removing	Delivered	Notifications

Badge	Number

PlayMaker	Actions

PRIVACY
Introduction

Consent	Management	System

Consent	Dialog

EEA	Region	Checking

Proposed	Workflow

Settings

Consent	Dialog	Composer

Scripting

EEA	Region	Checking

Working	with	Consent	Dialog

Managing	Global	Consent

PlayMaker	Actions

5

9.1

9.2

9.2.1

9.2.2

9.3

10.1

10.2

10.2.1

10.2.2

10.2.2.1

10.2.2.2

10.3

11.1

11.2

11.3

SHARING
Introduction

Scripting

Screenshot	Capturing

Sharing

PlayMaker	Actions

UTILITIES
Introduction

Store	Review

Settings

Scripting

Rating	Request

Localization

PlayMaker	Actions

Release	Notes

Upgrade	Guide

Troubleshooting

6

Easy	Mobile	Pro	User	Guide
This	document	is	the	official	user	guide	for	the	Pro	version	of	the	Easy	Mobile	plugin	for	Unity	by	SgLib	Games.

Easy	Mobile	Versions
Easy	Mobile	Pro
Easy	Mobile	Basic
Easy	Mobile	Lite	(Free)

Important	Links
Website
API	Reference
Support	Email
Forum

Connect	with	SgLib	Games
Unity	Asset	Store
Facebook
Twitter
YouTube

About

7

http://u3d.as/Dd2
http://u3d.as/184q
http://u3d.as/FN0
http://easymobile.sglibgames.com
http://easymobile.sglibgames.com/api/pro
mailto:support@sglibgames.com?Subject=[EM Pro][YOUR_INVOICE_NUMBER]
https://forum.unity3d.com/threads/easy-mobile-many-in-one-package-for-mobile-games.453496/
https://www.assetstore.unity3d.com/en/#!/search/page=1/sortby=popularity/query=publisher:20993
https://www.facebook.com/sglibgames
https://twitter.com/SglibGames
https://www.youtube.com/channel/UCfNiWpkrQsoXDAMBrjhV9GQ

Introduction
Today	mobile	games	have	many	"de	facto	standard"	features	ranging	from	advertising,	in-app	purchasing,	game
services,	notifications	to	sharing	and	rating	system.	These	are	considered	"necessary	evils"	by	many	developers
though:	required,	but	not	necessarily	fun	to	do.	More	importantly,	it	takes	time	(a	lot)	to	implement	them.	That	means
developers	would	need	to	repeat	the	boring,	time-consuming	task	of	integrating	these	features	in	almost	every	mobile
games	they	are	going	to	build,	instead	of	focusing	their	energy	on	doing	what	we're	all	in	game	development	for:
creating	fun!

Easy	Mobile	is	our	attempt	to	solve	this	problem.	It	is	a	many-in-one	Unity	plugin	that	greatly	simplifies	the
implementation	of	the	de	facto	standard	features	every	mobile	game	needs.	It	is	packed	with	ready-to-use
components	that	you	can	just	"plug"	into	your	project,	and	have	the	necessary	evils	taken	care	of.	We've	been
spending	thousands	of	hours	creating	this	product,	so	you	can	save	that	same	amount	of	time 	and	spend	your	time
on	real	game	development!

Easy	Mobile	supports	two	major	mobile	platforms:	iOS	and	Android.

Highlights
Usability	is	our	number	one	priority	when	designing	Easy	Mobile,	hence	the	name.	Other	top	priorities	including
robustness,	flexibility	and	versatility.	With	that	in	mind,	we	come	up	with	a	product	that	boasts	the	following	highlights:

Cross-platform	API:	Easy	Mobile's	scripting	API	allows	you	to	accomplish	most	tasks	with	only	one	line	of	code.
And	it	is	cross-platform,	which	means	you	can	write	code	once	and	deploy	on	both	iOS	and	Android.

Friendly	Editor:	Easy	Mobile	comes	with	a	simple	yet	powerful	(and	beautiful!)	built-in	editor	that	allows	you	to
easily	control	everything	from	one	place.

Automation:	Much	more	than	a	mere	collection	of	methods,	Easy	Mobile	operates	quietly	in	the	background	and
automates	many	chores	such	as	service	initialization	and	ad	loading.

Modular	Design:	Easy	Mobile’s	functionalities	are	grouped	into	modules	that	can	be	enabled	or	disabled
separately,	so	you	can	use	what	you	want	and	not	be	worried	about	redundancies	or	contradictions	with	existing
code.

Leveraging	Official	SDKs:	Easy	Mobile	leverages	official	3rd-party	SDKs	of	interest,	e.g.	Google	Play	Games
plugin	for	Unity,	integrating	them	with	its	own	code	to	form	a	coherent	system	that	maximizes	usability	and
reliability	-	without	reinventing	the	wheel!

Visual	Scripting :	Easy	Mobile	is	not	only	for	coders	-	it	is	fully	compatible	with	Unity's	most	popular	visual
scripting	plugin	Playmaker,	thanks	to	more	than	100	custom	actions	built-in	to	the	package.

What's	in	the	Box?
This	plugin	is	currently	packed	with	the	following	modules:

Advertising

Supports	most	popular	ad	networks	including	AdColony,	AdMob,	Chartboost,	Facebook	Audience	Network,
Heyzap,	ironSource,	MoPub,	Tapjoy	and	Unity	Ads

Even	more	ad	networks	can	be	used	via	mediation	service	provided	by	AdMob,	Heyzap,	ironSource,	MoPub
or	Tapjoy

1

2

Introduction

8

https://github.com/playgameservices/play-games-plugin-for-unity
https://assetstore.unity.com/packages/tools/visual-scripting/playmaker-368

Automatic	ad	loading

Allows	using	multiple	ad	networks	in	one	build

Allows	different	ad	configurations	for	different	platforms

Allows	having	multiple	placements	of	each	ad	type

User	consent	support	(GDPR	compliant)

Game	Services

Works	with	Game	Center	on	iOS	and	Google	Play	Games	on	Android

Automatic	authentication

Custom	editor	for	easy	management	of	leaderboards	and	achievements

Saved	Games

GIF

Records	screen,	plays	recorded	clips	and	exports	GIF	images

High-performance,	mobile-friendly	GIF	encoder

Giphy	upload	API	for	sharing	GIF	to	social	networks

In-App	Purchasing

Leverages	Unity	In-App	Purchasing	service

Custom	editor	for	easy	management	of	product	catalog

Auto	initialization

Receipt	validation

Apple's	Ask	To	Buy

Apple's	Promotional	Purchases

Native	APIs

Access	to	mobile	native	UI	elements	including	alerts	and	(Android)	toasts

More	native	functionalities	will	be	added	soon

Notifications

Fully-customizable	local	notifications

Compatible	with	OneSignal	and	Firebase	Cloud	Messaging,	free	and	popular	services	for	push	notifications

Supports	notification	channels	and	channel	groups	on	Android	O	and	higher

User	consent	support	(GDPR	compliant)

Privacy

Provides	tools	and	resources	to	help	getting	compliant	with	user	privacy	regulations	such	as	GDPR

Multi-purpose	native	consent	dialog	that	can	act	as	the	common	interface	for	collecting	user	consent	for	all
relevant	services,	instead	of	having	multiple	interfaces	for	various	services

Built-in	system	to	manage	consent	and	communicate	consent	to	relevant	services

3

Introduction

9

https://onesignal.com/
https://firebase.google.com/docs/cloud-messaging/

API	to	check	if	the	current	device	is	in	the	European	Economic	Area	region	(EEA	region,	affected	by	GDPR)

Sharing

Shares	texts,	URLs	and	images	using	the	mobile	native	sharing	functionality
Utilities

Store	Review:	provides	an	effective	way	to	ask	for	reviews	and	ratings	using	the	system-provided	rating
prompt	of	iOS	(10.3+)	and	a	native,	highly	customizable	popup	on	Android

Easy	Mobile:	Basic	vs	Pro
Easy	Mobile	comes	in	2	different	versions:	Basic	and	Pro.	Easy	Mobile	Basic	is	the	lower-price	version	which	contains
most	of	the	core	features	of	the	plugin.	The	Pro	version	is	the	premium	one	and	have	all	features	available.	Below	is	a
feature-comparison	table	of	the	Basic	and	Pro	versions	of	Easy	Mobile.

Introduction

10

Introduction

11

.	We	consider	ourselves	average	developers,	so	this	should	be	true	to	most	indie	developers,	the	main
audience	of	this	product.	↩

.	Easy	Mobile	Pro	only.	↩

.	Easy	Mobile	Pro	only.	↩

1

2

3

Introduction

12

Using	Easy	Mobile

Overview
Using	Easy	Mobile	involves	3	steps:

1.	 Configuring	the	plugin	using	the	built-in	Settings	interface
2.	 Initializing	the	plugin	runtime
3.	 Making	appropriate	API	calls	from	script	(or	using	visual	scripting	actions)

Main	Menu
After	importing	Easy	Mobile,	there	will	be	a	new	menu	added	at	Window	>	Easy	Mobile	from	which	you	can	open	the
Global	Settings	interface	to	configure	modules	as	well	as	access	other	resources.

Global	Settings
The	Global	Settings	interface	is	the	only	place	you	go	to	configure	the	plugin.	Here	you	can	control	everything
including	toggling	module	on	or	off,	providing	ads	credentials,	adding	leaderboards,	creating	a	product	catalog,	etc.

Using	Easy	Mobile

13

All	these	settings	are	stored	in	the	EM_Settings	object,	which	is	a	ScriptableObject	created	automatically	after
importing	the	plugin	and	is	located	at	Assets/EasyMobile/Resources.	You	can	also	access	this	EM_Settings	class
from	script	and	via	its	properties	accessing	each	module	settings	in	runtime.

Using	Easy	Mobile

14

Initializing
You	must	always	initialize	Easy	Mobile	before	using	its	API.

Since	the	initialization	must	be	done	before	the	Easy	Mobile	API	can	be	used,	it	is	advisable	to	do	it	as	soon	as	your
app	launches.	This	will	also	allow	automatic	services	such	as	ad	loading	to	start	soon	and	the	ads	will	be	more	likely
available	when	needed.	Practically,	this	means	attaching	the	initializing	script	to	some	game	object	in	the	first	scene	of
your	app.

To	initialize	simply	call	the	Init	method	of	the	RuntimeManager	class.	This	method	is	a	no-op	if	the	initialization	has
been	done	so	it's	safe	to	be	called	multiple	times.	You	can	also	check	if	Easy	Mobile	has	been	initialized	using	the
IsInitialized	method.

using	UnityEngine;

using	System.Collections;

using	EasyMobile;	//	include	the	Easy	Mobile	namespace	to	use	its	scripting	API

public	class	EasyMobileInitializer	:	MonoBehaviour

{

				//	Checks	if	EM	has	been	initialized	and	initialize	it	if	not.

				//	This	must	be	done	once	before	other	EM	APIs	can	be	used.

				void	Awake()

				{

								if	(!RuntimeManager.IsInitialized())

												RuntimeManager.Init();

				}

}

Scripting	API
After	initializing	Easy	Mobile	you	can	use	its	scripting	API,	which	is	written	in	C#.	Note	that	the	API	is	put	under	the
namespace	EasyMobile	so	you	need	to	add	the	following	statement	to	the	top	of	your	scripts	to	access	it.

//	Put	this	on	top	of	your	scripts	to	use	Easy	Mobile	scripting	API

using	EasyMobile;

Using	Easy	Mobile

15

Easy	Mobile's	API	is	cross-platform	so	you	can	use	the	same	code	for	both	iOS	and	Android.	You	can	find	the
API	reference	here.

Testing
Most	of	Easy	Mobile's	functionalities	are	mobile-specific	which	may	not	work	properly	within	the	Unity	editor.
Therefore	you	should	always	perform	testing	on	actual	iOS	or	Android	devices.

Using	the	Demo	App
Easy	Mobile	comes	with	a	demo	app	that	you	can	use	to	quickly	test	each	module's	operation	after	configuring,	even
before	writing	any	code!	The	demo	app	is	located	at	folder	Assets/EasyMobile/Demo.	Its	scenes	are	in	the	subfolder
Scenes,	you	can	build	all	scenes	or	only	scenes	that	you	want	to	test.	Its	scripts	are	in	the	subfolder	Scripts,	which
you	can	refer	to	for	an	example	of	how	Easy	Mobile	API	can	be	used.

Using	PlayMaker	Actions
Easy	Mobile	is	officially	compatible	with	PlayMaker,	with	more	than	100	custom	actions	ready	to	be	used.	You	can
install	these	actions	from	menu	Window	>	Easy	Mobile	>	Install	PlayMaker	Actions.

When	installing	the	PlayMaker	actions,	a	demo	app	will	also	be	imported	at
Assets/EasyMobile/Demo/PlayMakerDemo.	This	demo	is	a	copy	of	our	main	demo	app,	rebuilt	using	PlayMaker
actions	instead	of	C#	scripts.	You	can	take	it	as	an	example	to	get	an	insight	into	how	Easy	Mobile's	PlayMaker
actions	can	be	used	in	practice.	Apart	from	installing	PlayMaker	(obviously),	you	need	to	do	a	few	more	setup	steps
as	described	below	before	running	this	demo	app.

Installing	the	Unity	UI	add-on	for	PlayMaker

Our	PlayMaker	demo	app	uses	the	Unity	UI	system,	so	you	need	to	install	the	Unity	UI	add-on	for	PlayMaker.

Importing	PlayMakerGlobals

The	demo	app	uses	global	PlayMaker	variables	and	events,	so	you	need	to	import	them	before	running	the	app.

Using	Easy	Mobile

16

http://easymobile.sglibgames.com/api-pro/
https://hutonggames.fogbugz.com/?W1192

If	you	project	is	new	and	doesn't	have	any	PlayMakerGlobals	(in	the	Assets/PlayMaker/Resources	folder),	simply	copy
our	Globals	over	by	these	steps:

Double-click	the	PlayMakerGlobals.unitypackage	in	the	Assets/EasyMobile/Demo/PlayMakerDemo	folder.
Locate	the	newly	created	file	PlayMakerGlobals_EXPORTED.asset	right	under	the	Assets	folder.
Rename	the	file	to	PlayMakerGlobals.asset	and	move	it	to	the	Assets/PlayMaker/Resources	folder.

If	you	project	already	contains	some	global	PlayMaker	variables	and	events	(a	PlayMakerGlobals.asset	file	exists	in
the	folder	Assets/PlayMaker/Resources),	you	can	merge	these	with	our	demo's	Globals	using	PlayMaker's	Import
Globals	tool:	go	to	menu	PlayMaker	>	Tools	>	Import	Globals	and	select	the	PlayMakerGlobals.unitypackage	in	the
Assets/EasyMobile/Demo/PlayMakerDemo	folder.

With	the	PlayMaker	demo	app,	we	perform	the	Easy	Mobile	initialization	using	a	FSM	in	the
DemoHome_PlayMaker	scene	so	you	should	always	build	this	scene	when	using	this	demo	app.

Requirements
Easy	Mobile	requires:

Unity	5.5.5	or	newer.
iOS	8.0	or	newer.
Android	4.0	(API	Level	14)	or	newer.

Using	Easy	Mobile

17

Advertising:	Introduction
The	Advertising	module	helps	you	quickly	setup	and	show	ads	in	your	games.	Here're	some	highlights	of	this	module:

Supports	multiple	networks

This	module	allows	showing	ads	from	most	of	top	ad	networks:	AdColony,	AdMob,	Chartboost,	Facebook
Audience	Network,	Heyzap,	ironSource,	MoPub,	Tapjoy	and	Unity	Ads
Even	more	networks	can	be	used	via	mediation	service	provided	by	AdMob,	Heyzap,	ironSource,	MoPub	or
Tapjoy

Using	multiple	networks	in	one	build

It's	possible	to	use	multiple	ad	neworks	at	the	same	time,	e.g.	use	AdMob	for	banner	ads,	while	using
Chartboost	for	interstitial	ads	and	Unity	Ads	for	rewarded	ads
Different	configurations	for	different	platforms	are	allowed,	e.g.	use	Unity	Ads	for	rewarded	ads	on	Android,
while	using	Chartboost	for	that	type	of	ads	on	iOS

Automatic	ad	loading

Ads	will	be	fetched	automatically	in	the	background;	new	ad	will	be	loaded	if	the	last	one	was	shown

The	table	below	summarizes	the	ad	types	supported	by	Easy	Mobile	for	each	ad	network.

Ad	Network Banner	Ad Interstitial	Ad Rewarded	Ad Mediation

AdColony ◉ ◉

AdMob ◉ ◉ ◉ ◉

Chartboost ◉ ◉

Audience	Network ◉ ◉ ◉

Heyzap ◉ ◉ ◉ ◉

ironSource ◉ ◉ ◉ ◉

MoPub ◉ ◉ ◉ ◉

Tapjoy ◉ ◉ ◉

Unity	Ads ◉ ◉

Ad	Placements
An	ad	placement	in	Easy	Mobile	represents	a	specific	"location"	in	your	app	where	an	ad	is	served.	For	example	the
"GameOver"	placement	can	be	defined	as	the	"location"	in	your	app	where	a	game	is	over,	and	an	ad	is	served.	An	ad
placement	is	normally	associated	with	an	ad	unit	with	a	specific	ad	ID.	Easy	Mobile	has	several	built-in	ad	placements
including	a	default	placement	and	other	placements	such	as	"Startup",	"HomeScreen",	"MainMenu",	etc.	You	can	also
create	more	custom	ad	placements	to	suit	your	needs.

Grouping	ads	into	placements	provides	an	intuitive	way	to	organize	ads	in	your	app	and	simplifies	the	implementation
of	flexible	and	sophisticated	advertising	strategies.	It	allows	having	more	than	one	unit	of	a	certain	ad	type	(banner,
interstitial	or	rewarded	ad)	of	the	same	ad	network.	For	example,	you	can	use	the	default	placement	to	show	normal
AdMob	interstitial	ads	(and	get	paid!),	while	having	a	"Startup"	placement	to	show	AdMob	interstitial	house	ads	(at	app
launch),	thus	creating	a	free	cross-promotion	system	for	your	apps!

Introduction

18

https://support.google.com/admob/answer/3212684?hl=en

Ad	placements	don't	complicate	things	though.	If	you	only	need	a	basic	usage	of	advertising,	you	can	simply
ignore	all	placement	stuff	when	working	with	the	Advertising	API,	and	Easy	Mobile	will	automatically	use	the
default	placement.	Therefore,	it's	only	necessary	to	provide	ad	IDs	associated	with	the	default	placement	when
setting	up	ad	networks	(some	ad	networks	may	not	even	require	such	IDs).	All	other	ad	placements	are	optional
and	you	only	need	to	configure	if	you	want	to	use	any	of	them.

Default	vs	Non-Default	Ads
A	default	ad	of	a	certain	type	is	the	ad	unit	that	belongs	to	the	default	network	for	that	ad	type	at	the	default
placement.	For	example,	if	the	default	interstitial	network	for	the	current	platform	is	AdColony,	then	the	AdColony
interstitial	ad	at	the	default	placement	is	the	default	interstitial	ad.	The	rest	are	considered	non-default	interstitial	ads.
The	same	is	true	for	banner	and	rewarded	ads.

GDPR	Compliance
We	recommend	you	to	read	the	Privacy	chapter	first	to	gain	a	comprehensive	understanding	of	the	tools	and
resources	offered	by	Easy	Mobile	to	help	your	app	get	compliant	with	GDPR,	including	the	consent	dialog	and
the	consent	management	system.

Advertising	is	one	of	those	services	affected	by	the	GDPR,	because	most	ad	providers	collect	user	data	to	serve
personalized	ads.	Most	ad	networks	recommend	requesting	user	consent	for	such	data	usage	and	serve	personalized
or	non-personalized	ads	accordingly.	Easy	Mobile	provides	a	native,	multi-purpose	dialog	for	collecting	user	consent
for	all	ad	networks	or	each	individual	ad	network,	as	well	as	other	relevant	services,	in	a	flexible	manner.	It	also	allows
you	to	flexibily	communicate	the	collected	consent	(apply	the	consent)	to	the	Advertising	module	either	at	the	module
level	or	the	vendor	level.

Allowing	the	user	to	provide	and	manage	consent	for	all	services	via	a	single	interface	(dialog)	is	advisable	in
terms	of	user	experience,	because	the	user	may	find	it	irritating	being	presented	multiple	dialogs	asking
consent	for	various	things.

Consent Description Priority

Module
consent

Common	consent	applied	to	all	supported	ad	networks	in	the	Advertising
module Lower

Vendor
consent Consent	applied	to	an	individual	ad	network,	e.g.	AdMob Higher

Consent	is	normally	applied	during	the	initialization	of	an	ad	network.	Therefore	it	is	important	to	collect	consent
before	initializing	ad	networks.	Practically	this	means	collecting	consent	before	initializing	the	Easy	Mobile	runtime.	If
there's	a	vendor	consent	specified	for	the	current	network,	it	will	be	used.	Otherwise	the	module	consent	will	be	used.
If	neither	was	specified,	the	global	consent	will	be	used.	In	case	no	consent	provided	at	all	levels,	the	ad	network
carries	out	its	initialization	without	applying	any	consent	and	will	serve	personalized	ads	(the	"pre-GDPR"	behavior).
The	table	below	summarizes	how	Easy	Mobile	configures	each	network	according	to	the	provided	consent.

Ad
Network Consent	Granted Consent	Revoked Consent

Unknown

AdColony Setting	GdprRequired	to	'true'	and
GdprConsentString	to	"1"

Setting	GdprRequired	to	'true'	and
GdprConsentString	to	"0"

Do
nothing

AdMob Do	nothing	(keep	serving	personalized
ads	as	normal)

Setting	"npa"	key	to	"1"	when
constructing	AdRequest	to	serve	non-
personalized	ads

Do
nothing

Chartboost Calling Calling Do

Introduction

19

Chartboost Chartboost.restrictDataCollection(false); Chartboost.restrictDataCollection(true); nothing

Audience
Network Do	nothing Do	nothing Do

nothing

Heyzap Calling
HeyzapAds.SetGdprConsent(true);

Calling
HeyzapAds.SetGdprConsent(false);

Do
nothing

ironSource Calling	IronSource.setConsent(true); Calling	IronSource.setConsent(false); Do
nothing

MoPub Calling
MoPub.PartnerApi.GrantConsent();

Calling
MoPub.PartnerApi.RevokeConsent();

Do
nothing

Tapjoy Calling	Tapjoy.SetUserConsent("1"); Calling	Tapjoy.SetUserConsent("0"); Do
nothing

Unity	Ads Calling	SetGdprMetadata(true); Calling	SetGdprMetadata(false); Do
nothing

Reference:

AdColony:	https://github.com/AdColony/AdColony-Unity-SDK-3/wiki/GDPR
AdMob:	https://developers.google.com/admob/unity/eu-consent
Chartboost:	the	C#	source	code	of	the	Chartboost	SDK	for	Unity
Facebook	Audience	Network:	https://developers.facebook.com/docs/audience-network/unity/	(the	documentation
doesn't	mention	anything	about	consent)
Heyzap:	https://developers.heyzap.com/docs/unity_sdk_setup_and_requirements#step-7-adding-user-consent
ironSource:	https://developers.ironsrc.com/ironsource-mobile/android/advanced-settings/#step-1
MoPub:	https://developers.mopub.com/docs/unity/gdpr/
Tapjoy:	https://dev.tapjoy.com/sdk-integration/
Unity	Ads:	https://unityads.unity3d.com/help/legal/gdpr

Introduction

20

https://developers.google.com/admob/unity/eu-consent
https://developers.facebook.com/docs/audience-network/unity/
https://developers.heyzap.com/docs/unity_sdk_setup_and_requirements#step-7-adding-user-consent
https://developers.ironsrc.com/ironsource-mobile/android/advanced-settings/#step-1
https://developers.mopub.com/docs/unity/gdpr/
https://dev.tapjoy.com/sdk-integration/
https://unityads.unity3d.com/help/legal/gdpr

Advertising:	Settings
To	use	the	Advertising	module	you	must	first	enable	it.	Go	to	Window	>	Easy	Mobile	>	Settings,	then	click	the	toggle
to	the	right-hand	side	of	the	Advertising	tab	to	enable	and	start	configuring	the	module.

Automatic	Ad	Loading
Automatic	ad	loading	is	a	handy	feature	of	the	Advertising	module.	It	regularly	checks	for	the	availability	of	ads,	and
performs	loading	if	an	ad	hasn't	been	loaded	or	was	consumed.	With	automatic	ad	loading,	you	can	forget	about
loading	ads	manually	and	rest	assure	that	ads	are	always	ready	whenever	they	are	needed.	You	can	configure	this
feature	in	the	AUTO	AD-LOADING	CONFIG	section.

Settings

21

Auto	Ad-Loading	Mode:
None:	disable	the	auto	ad-loading,	you	can	load	ads	manually	from	script,	see	Manual	Ad	Loading
Load	Default	Ads:	only	default	ads	are	loaded	automatically,	non-default	ads	must	be	loaded	manually
Load	All	Defined	Placements:	this	mode	allows	loading	of	all	placements	(default	and	non-default)	that	are
added	in	the	module	settings,	provided	that	the	placements	are	well	defined,	meaning	that	each	has	a	valid
associated	ID	(where	applicable)	and	the	corresponding	SDK	is	imported;	this	is	the	recommended	option

Ad	Checking	Interval:	change	this	value	to	determine	how	frequently	the	module	should	perform	ads	availability
check,	the	smaller	value	the	more	frequently
Ad	Loading	Interval:	the	minimum	duration	required	between	two	ad	loading	requests

Default	Ad	Networks
You	can	select	default	ad	networks	for	each	platform	in	the	DEFAULT	AD	NETWORKS	section.	You	can	have
different	networks	for	different	ad	types	and	different	selections	for	different	platforms.	If	you	don't	want	to	use	a
certain	type	of	ad,	simply	set	its	network	to	None.

Pay	attention	to	the	warnings	and	import	the	required	plugins	if	you	haven't	already.

Settings

22

Advertising:	Settings	|	Setup	AdColony

Creating	AdColony	Apps	and	Zone	Ids

To	show	ads	from	AdColony	you	need	to	create	apps	and	ad	zones	in	its	clients	portal.	To	access	the	clients	portal,
create	an	account	and	login	to	AdColony	page.

In	the	clients	portal,	select	MONETIZATION	tab,	then	select	the	Apps	sub-tab	and	click	the	Setup	New	App	button.

In	the	opened	page	enter	the	required	information	for	your	new	app,	e.g.	app	name,	platform	and	location.	You	can
also	select	the	ad	types	that	you	would	like	to	allow	in	your	app.	Hit	Create	when	you're	done,	your	app	will	be	created
and	you'll	be	redirected	back	to	the	Apps	page.	Select	your	newly	created	app	to	reveal	its	information,	which	looks
similar	to	the	picture	below.	Note	the	AdColony	App	ID	as	we	will	use	it	later.

Now	your	app	is	ready,	the	next	step	is	to	create	ad	zones	for	it.	Click	the	Setup	New	Ad	Zone	at	the	bottom	of	the
app	edit	page	to	create	a	new	ad	zone.

In	the	Integration	section,	give	your	ad	zone	a	name,	optional	notes	and	set	its	as	active.	Note	the	Zone	ID	as	we'll
use	it	later.

The	Zone	ID	will	appear	once	you	save	your	new	ad	zone.

Setup	AdColony

23

https://www.adcolony.com/

In	the	Creative	Type	section,	select	the	Video	option.

In	the	Zone	Type	section,	select	Preroll/Interstitial	if	you	want	to	use	this	zone	for	interstitial	video	ads.	Otherwise,
select	Value	Exchange/V4VC	to	use	it	for	rewarded	ads.

Setup	AdColony

24

In	the	Options	section,	you	can	set	a	daily	cap	or	a	session	cap	to	limit	the	number	of	ads	served	to	a	user	per	day	or
per	session,	respectively.	In	the	Development	section,	you	can	choose	to	show	test	ads	only	(for	debug	purpose),
don't	forget	to	disable	this	option	when	your	app	is	released.

Now	your	new	ad	zone	is	fully	configured,	click	the	Save	button	to	save	it.	Repeat	the	process	to	create	other	ad
zones	to	suit	your	needs.	Typically,	you'd	want	to	have	2	ad	zones,	one	for	interstitial	ads	and	one	for	rewarded	ads.	If
you're	targeting	multiple	platforms,	create	a	new	app	for	each	platform,	and	for	each	app	create	the	necessary	ad
zones.

Importing	AdColony	Plugin

To	have	your	Unity	app	work	with	AdColony	you	need	to	import	the	AdColony	plugin	for	Unity.	In	the	ADCOLONY
section	of	the	Advertising	module,	click	the	Download	AdColony	Plugin	button	to	to	open	the	download	page.
Download	the	plugin	and	import	it	to	your	project.

Configuring	AdColony

After	importing	the	AdColony	plugin,	the	ADCOLONY	section	will	be	updated	as	below.

Setup	AdColony

25

https://github.com/AdColony/AdColony-Unity-SDK-3

App	ID

In	this	section	you	can	enter	the	app	ID	created	in	the	AdColony	clients	portal	for	each	platform.

Default	Placement

Here	you	can	enter	the	ad	IDs	to	be	used	with	the	default	placement	for	each	platform.	These	are	the	only	ad	IDs
required	if	you	are	not	using	any	custom	placements	in	your	app.	Note	that	you	only	need	to	provide	IDs	for	the	ad
types	you	want	to	use,	e.g.	if	you	only	use	AdColony	interstitial	ads	you	can	leave	the	rewarded	ad	IDs	empty.

Custom	Placements

Here	you	can	optionally	enter	the	ad	IDs	associated	with	non-default	ad	placements	to	be	used	in	your	app.	You	can
have	an	arbitrary	number	of	custom	placements	and	can	use	built-in	placements	or	create	new	placements	for	your
needs.

Ad	Settings

This	section	includes	other	settings	including:

Ad	Orientation:	the	default	ad	orientation	of	your	app.
Show	Rewarded	Ad	PrePopup:	whether	to	show	a	popup	before	a	rewarded	ad	starts.
Show	Rewarded	Ad	PostPopup:	whether	to	show	a	popup	after	a	rewarded	ad	has	finished.

Setup	AdColony

26

Setup	AdColony

27

Advertising:	Settings	|	Setup	AdMob

Importing	AdMob	Plugin

To	show	ads	from	AdMob	you	need	to	import	the	Google	Mobile	Ads	plugin.	In	the	ADMOB	section,	click	the
Download	Google	Mobile	Ads	Plugin	button	to	to	open	the	download	page.	Download	the	plugin	and	import	it	to	your
project.

Configuring	AdMob

After	importing	the	Google	Mobile	Ads	plugin,	the	ADMOB	section	will	be	updated	as	below.

Setup	AdMob

28

https://github.com/googleads/googleads-mobile-unity/releases

App	ID

First	you	need	to	enter	the	required	AdMob	app	ID	for	each	platform.	To	find	the	App	ID	for	your	app	follow	the
instructions	here.

Update	your	AndroidManifest.xml	on	Android	platform

Apart	from	entering	the	app	ID	in	the	Advertising	module	settings,	starting	in	version	17.0.0	of	the	Google
Mobile	Ads	SDK	for	Android,	you	as	an	AdMob	publisher	are	required	to	add	your	AdMob	app	ID	in	your
AndroidManifest.xml	file.	The	added	element	should	look	like	below.

<manifest>

				<application>

								<!--	TODO:	Replace	with	your	real	AdMob	app	ID	-->

								<meta-data

												android:name="com.google.android.gms.ads.APPLICATION_ID"

												android:value="ca-app-pub-################~##########"/>

				</application>

</manifest>

You	can	either	add	this	app	ID	to	the	Assets/Plugins/Android/AndroidManifest.xml	file	if	you	have	one,	or	the
Assets/Plugins/Android/GoogleMobileAdsPlugin/AndroidManifest.xml	file.	In	the	latter	case,	you	may	need	to
repeat	the	process	if	you	re-import	the	GoogleMobileAds	plugin.

To	know	if	you're	using	the	Android	Google	Mobile	Ads	SDK	version	17.0.0	or	newer,	navigate	to	your
Assets/Plugins/Android	folder	and	check	the	version	of	following	files	(in	this	screenshot	we	are	having	version
17.0.0,	yours	may	be	different).

You	can	learn	more	about	this	requirement	here.

Default	Placement

Here	you	can	enter	the	ad	IDs	to	be	used	with	the	default	placement	for	each	platform.	These	are	the	only	ad	IDs
required	if	you	are	not	using	any	custom	placements	in	your	app.	Note	that	you	only	need	to	provide	IDs	for	the	ad
types	you	want	to	use,	e.g.	if	you	only	use	AdMob	banner	ads	you	can	leave	the	interstitial	and	rewarded	ad	IDs
empty.

If	you're	not	familiar	with	AdMob,	follow	the	instructions	here	to	create	ad	units	and	obtain	the	ad	IDs;	an	ad	ID
should	have	the	form	of	ca-app-pub-0664570763252260xxxxxxxxxxx.

Custom	Placements

Here	you	can	optionally	enter	the	ad	IDs	associated	with	non-default	ad	placements	to	be	used	in	your	app.	You	can
have	an	arbitrary	number	of	custom	placements	and	can	use	built-in	placements	or	create	new	placements	for	your
needs.

Targeting	Settings

You	can	provide	targeting	information	for	your	app	in	the	Targeting	Settings	section.	These	settings	will	be	applied	to
all	AdMob	ad	requests	in	your	app.	You	can	learn	more	about	AdMob	ad	targeting	here.

Tag	For	Child	Directed	Treatment:	indicates	whether	you	want	Google	to	treat	your	content	as	child-directed
when	you	make	an	ad	request	for	the	purposes	of	Children's	Online	Privacy	Protection	Act	(COPPA)

Setup	AdMob

29

https://support.google.com/admob/answer/6232340?hl=en
https://ads-developers.googleblog.com/2018/10/announcing-v1700-of-android-google.html
https://support.google.com/admob/answer/2773509
https://developers.google.com/admob/unity/targeting

Extra	Options:	extra	settings	in	form	of	key	value	pairs,	e.g.	for	setting	"max_ad_content_rating"

Using	AdMob	with	the	Designed	for	Families	program

According	to	this	article,	apps	that	join	in	to	Google	Play's	Designed	for	Families	program	can	fall	into	two
categories:

Primarily	child-directed	apps:	if	your	app	is	admitted	to	the	program	as	a	primarily	child-directed	app,
"AdMob	will	automatically	begin	serving	Designed	for	Families-compliant	ads	for	all	ad	requests	coming
from	the	app",	which	means	you	don't	need	to	specify	the	child	directed	setting	in	your	app.
Mixed-audience	apps:	if	your	app	targets	both	child	and	adult	audiences,	you	need	to	set	the	extra	key
"is_designed_for_families"	to	true	and	tag	your	app	for	child-directed	treatment.	You	can	do	that	in	Easy
Mobile	settings	as	below.

Overriding	AdMob	targeting	settings	in	script

You	can	override	AdMob	targeting	settings	in	script	by	setting	the	property
EM_Settings.Advertising.AdMob.TargetingSettings.	All	subsequent	ad	requests	will	be	sent	with	the	new
settings.

Test	Mode

To	enable	AdMob's	test	mode,	simply	check	the	Enable	Test	Mode	option	and	enter	the	IDs	of	your	testing	devices
into	the	Test	Device	Ids	array.

You	can	find	the	ID	of	your	test	device	by	building	and	running	the	Easy	Mobile	demo	app	on	that	device.
Remember	to	add	the	EasyMobile	prefab	to	the	DemoHome	scene	before	starting	the	build.

Android	device	ID

In	Unity,	build	the	Easy	Mobile	demo	app	for	Android	platform
Install	and	run	the	demo	app	on	your	testing	device
Open	Terminal	(Mac)	or	Cmd	(Windows)	and	type	in

adb	logcat	-s	Ads

(if	you're	on	Windows,	you	may	need	to	add	the	Android	SDK	path	to	the	Windows	System	PATH)

In	the	demo	app,	select	ADVERTISING	and	then	click	the	SHOW	BANNER	AD	button
Observe	the	output	logcat	in	the	Terminal/Cmd	and	locate	a	line	similar	to	the	one	in	the	following	image,
the	value	between	the	double	quotes	is	your	device	ID

iOS	device	ID

Setup	AdMob

30

https://support.google.com/admob/answer/6223431?hl=en
https://developer.android.com/distribute/googleplay/families/about.html
https://www.howtogeek.com/118594/how-to-edit-your-system-path-for-easy-command-line-access/

In	Unity,	build	the	Easy	Mobile	demo	app	for	iOS	platform
Open	the	generated	project	in	Xcode	and	run	it	on	your	testing	device
Type	'google'	into	the	filter	box	of	the	Xcode	Console,	and	find	your	device	ID	between	the	double	quotes
as	highlighted	in	the	following	image

Notes	on	Rewarded	Ads

AdMob	only	allows	one	rewarded	ad	to	be	loaded	at	a	time.	That	means	the	loaded	ad	must	be	consumed	before
another	ad	can	be	loaded.	If	you	register	multiple	placements	for	AdMob	rewarded	ad,	only	one	of	them	can	be	used
at	a	time.	The	automatic	ad	loading	feature	favors	the	rewarded	ad	at	the	default	placement	and	will	always	load	it
first.

Building	Notes

The	Google	Mobile	Ads	plugin	for	Unity	employs	CocoaPods	to	automatically	import	the	necessary	frameworks	to	the
generated	Xcode	project	when	an	iOS	build	is	performed	in	Unity.	Therefore	you	need	to	install	CocoaPods	to	your
Mac:	please	go	to	https://cocoapods.org/	for	install	instructions,	as	well	as	for	more	information	about	CocoaPods.
Note	that	you	only	need	to	install	CocoaPods,	everything	else	will	be	done	automatically	by	the	Google	Mobile	Ads
plugin.

Recent	versions	of	the	Google	Play	Services	Resolver	(that	is	bundled	with	Easy	Mobile)	handles	the
installation	of	CocoaPods	for	you	automatically.

When	building	for	iOS	in	Unity,	CocoaPods	will	automatically	create	an	Xcode	workspace	(with	.xcworkspace
extension)	in	the	generated	Xcode	project.	You	should	always	open	this	workspace	instead	of	the	normal	project	file
(with	.xcodeproj	extension).

Setup	AdMob

31

https://cocoapods.org/

Setup	AdMob

32

Advertising:	Settings	|	Setup	Chartboost

Importing	Chartboost	Plugin

To	show	ads	from	Chartboost	you	need	to	import	the	Chartboost	plugin	for	Unity.	In	the	CHARTBOOST	section,	click
the	Download	Chartboost	Plugin	button	to	open	the	download	page.	Download	the	plugin	and	import	it	to	your	project.

Configuring	Chartboost

After	importing	Chartboost	plugin,	the	CHARTBOOST	section	will	be	updated	as	below.

Placements

An	Easy	Mobile's	ad	placement	will	be	directly	translated	into	a	Chartboost's	ad	location	with	the	same	name	in
runtime.	Therefore	if	you	want	to	specify	a	location	when	showing	a	Chartboost	ad,	simply	show	the	ad	with	an	ad
placement	of	the	same	name.	There's	no	need	to	declare	any	ad	IDs	to	be	associated	with	the	placements.

Setup

Click	the	Setup	Chartboost	button	to	open	Chartboost's	dedicated	settings	interface.

Setup	Chartboost

33

https://answers.chartboost.com/hc/en-us/articles/200780379

Provide	the	App	IDs	and	App	Signatures	for	your	targeted	platforms.	Remember	to	click	the	Setup	Android	SDK
button	if	you're	building	for	Android.

To	obtain	the	App	Id	and	App	Signature	you	need	to	add	your	app	to	the	Chartboost	dashboard.	If	you're	not
familiar	with	the	process	please	follow	the	instructions	here.

After	adding	the	app,	go	to	APP	SETTINGS	>	Basic	Settings	to	find	its	App	ID	and	App	Signature.

Android	READ_PHONE_STATE	Permissions

The	Chartboost	SDK	includes	the	READ_PHONE_STATE	permission	on	Android,	to	"handle	video	playback	when
interrupted	by	a	call",	as	stated	in	its	manifest.	READ_PHONE_STATE	permission	requires	your	app	to	have	a
privacy	policy	when	uploaded	to	Google	Play.	Since	this	permission	is	not	mandatory	to	run	the	Chartboost	SDK,	you
can	safely	remove	it	if	you	are	not	ready	to	provide	the	required	privacy	policy.	To	remove	the	permission,	open	the
AndroidManifest.xml	file	located	at	Assets/Plugins/Android/ChartboostSDK	folder,	then	delete	the	corresponding	line
(or	comment	it	out	as	below).

Setup	Chartboost

34

https://answers.chartboost.com/hc/en-us/articles/200797729-Adding-Your-First-App-and-Campaign-

<!--	Exclude	the	READ_PHONE_STATE	permission	because	it	requires	a	privacy	policy	-->

<!--	<uses-permission	android:name="android.permission.android.permission.READ_PHONE_STATE"	/>	-->

Testing	Notes

Please	note	that	to	show	ads	from	Chartboost	you	need	to	either	create	a	publishing	campaign	or	enable	the	Test
Mode	for	your	app.

To	create	a	publishing	campaign	follow	the	instructions	here
To	enable	Test	Mode	follow	the	instruction	here

Building	Notes

If	the	version	of	the	imported	Chartboost	plugin	includes	a	copy	of	android-support-v4.jar,	it	may	create	build	errors	on
Android	platform	due	to	conflict	with	the	com.android.support-v4	library	that	exists	in	the	Assets/Plugins/Android
folder.

To	avoid	this	issue,	remove	the	android-support-v4.jar	in	Assets/Plugins/Android/ChartboostSDK/libs/	folder.

Setup	Chartboost

35

https://answers.chartboost.com/hc/en-us/articles/204930539-Creating-a-Publishing-Campaign
https://answers.chartboost.com/hc/en-us/articles/200780549-Test-Mode

Advertising:	Settings	|	Setup	Audience	Network

Importing	Facebook	Audience	Network	Plugin

To	show	ads	from	Facebook	Audience	Network	you	need	to	import	the	Facebook	Audience	Network	plugin	for	Unity.
In	the	FACEBOOK	AUDIENCE	NETWORK	section,	click	the	Download	FB	Audience	Plugin	button	to	open	the
download	page.	Download	the	plugin	and	import	it	to	your	project.

Configuring	Facebook	Audience	Network

After	importing	Facebook	Audience	Network	plugin,	the	FACEBOOK	AUDIENCE	NETWORK	section	will	be	updated
as	below.

Default	Placement

Here	you	can	enter	the	ad	IDs	to	be	used	with	the	default	placement	for	each	platform.	These	are	the	only	ad	IDs
required	if	you	are	not	using	any	custom	placements	in	your	app.	Note	that	you	only	need	to	provide	IDs	for	the	ad
types	you	want	to	use,	e.g.	if	you	only	use	Audience	Network	banner	ads	you	can	leave	the	interstitial	and	rewarded

Setup	Audience	Network

36

https://developers.facebook.com/docs/audience-network/unity

ad	IDs	empty.

To	create	Audience	Network	ad	units	and	get	the	IDs,	follow	the	instructions	here.

Custom	Placements

Here	you	can	optionally	enter	the	ad	IDs	associated	with	non-default	ad	placements	to	be	used	in	your	app.	You	can
have	an	arbitrary	number	of	custom	placements	and	can	use	built-in	placements	or	create	new	placements	for	your
needs.

Test	Mode

To	enable	test	mode,	simply	check	the	Enable	Test	Mode	option	and	enter	the	test	device	IDs.

Facebook	Audience	Network	testing	instructions	can	be	found	here.

If	your	project	is	still	in	development,	we	strongly	recommend	setting	up	the	testing	mode	properly	to	avoid	"No
fill"	error,	especially	on	iOS.

Android	device	ID

The	device	ID	is	printed	in	the	device	logcat,	you	can	follow	the	instructions	in	the	Setup	AdMob/Test	Mode
section	to	find	it.	Note	that	you	will	need	to	import	the	Google	Mobile	Ads	plugin,	which	is	quite	awkward	if	you
don't	use	it	in	your	project.	However	the	Audience	Network	documentation	is	lacking	on	this	detail	and	using	the
AdMob	plugin	is	the	simplest	workaround	we	know	for	now.

iOS	device	ID

Follow	these	steps	to	find	the	device	ID:

In	Unity,	build	your	project	for	IOS	platform.
Open	the	generated	project	in	XCode.
Open	the	UnityAppController.mm	file.
Import	the	FBAudienceNetwork	header	into	that	file.

Add	this	line	[FBAdSettings	setLogLevel:FBAdLogLevelLog];	into	the	init	method,	before	the	return
statement.

Setup	Audience	Network

37

https://www.facebook.com/help/publisher/1195459597167215
https://developers.facebook.com/docs/audience-network/testing

Run	the	app	on	your	device	and	find	the	ID	in	the	XCode	console.

Setup	Audience	Network

38

Building	Notes

Please	follow	build	instructions	here:	Android,	iOS.

On	Android,	if	you	encounter	the	"Unable	to	convert	classes	into	dex	format"	issue	when	building	your	game,
there	might	be	duplicated	files	in	your	project	and	you	need	to	delete	the	support-xxx	files	in	the
AudienceNetwork	folder.

Setup	Audience	Network

39

https://developers.facebook.com/docs/audience-network/unity#android
https://developers.facebook.com/docs/audience-network/unity#ios

Setup	Audience	Network

40

Advertising:	Settings	|	Setup	Heyzap

Importing	Heyzap	Plugin

To	show	ads	from	Heyzap	you	need	to	import	the	Heyzap	plugin	for	Unity.	In	the	HEYZAP	section,	click	the	Download
Heyzap	Plugin	button	to	open	the	download	page.

In	the	download	page	select	your	preferred	networks	to	use	with	Heyzap	mediation.	The	Heyzap	dynamic
documentation	will	update	automatically	to	reflect	your	selections.

Follow	the	instructions	provided	by	Heyzap	to	download	and	import	its	plugin	as	well	as	other	required	3rd-party
plugins.	Also	go	through	the	Integration	Notes	section	below	to	avoid	problems	that	may	occur	during	the	integration
of	3rd-party	networks.

If	you	haven't	already,	use	Heyzap's	Integration	Wizard	to	setup	the	3rd-party	networks	to	use	with	mediation.

Configuring	Heyzap

After	importing	Heyzap	plugin,	the	HEYZAP	section	will	be	updated	as	below.

Setup	Heyzap

41

https://answers.chartboost.com/hc/en-us/articles/200780379
https://developers.heyzap.com/integration_wizard

Publisher	ID

Here	you	can	enter	the	required	publisher	ID	to	the	Heyzap	Publisher	ID	field.	This	ID	can	be	found	in	the	Account
Details	page	in	the	Heyzap	dashboard.

Placements

An	Easy	Mobile's	ad	placement	will	be	directly	translated	into	a	Heyzap's	ad	tag	that	is	same	to	the	placement	name
in	runtime.	Therefore	if	you	want	to	specify	a	tag	when	showing	a	Heyzap	ad,	simply	show	the	ad	with	an	ad
placement	whose	name	is	the	tag	you	want	to	use.	There's	no	need	to	declare	any	ad	IDs	to	be	associated	with	the
placements.

Test	Mode

The	Heyzap	plugin	comes	with	a	convenient	Test	Suite	that	you	can	use	to	test	the	operation	of	each	mediation
network.	To	use	this	Test	Suite,	simply	check	the	Show	Heyzap	Test	Suite	option	in	the	Test	Mode	section.

Below	is	the	Test	Suite	interface	on	iOS	(it's	similar	on	Android).

Setup	Heyzap

42

http://blog.heyzap.com/post/102474751663/introducing-ad-tags

Mediation	Notes

This	section	discusses	some	notes	that	you	should	take	when	using	Heyzap	mediation	with	various	other	networks.

If	you	use	Heyzap's	mediation	feature	with	other	networks	(AdColony,	AdMob,	Chartboost,	etc.),	you	should	not
import	the	standalone-plugins	of	those	networks,	to	avoid	potential	conflicts.	Instead,	import	their	corresponding
adapter	packages	provided	at	the	Heyzap	download	page.

Facebook	Audience	Network	(Android-specific)

The	Facebook	Audience	Network	package	contains	an	android-support-v4.jar	_file	under	Assets/Plugins/Android
folder.	If	you	project	already	contains	a	support-v4-xx.x.x.aar	file	under	that	same	folder,	feel	free	to	remove	(or
exclude	it	when	importing)	the	jar	file	or	it	will	cause	the	"Unable	to	convert	dex..."	error	when	building	due	to	duplicate
libraries.

AppLovin	(Android-specific)

As	instructed	in	the	Heyzap	documentation,	you	need	to	add	the	AppLovin	SDK	key	to	its	AndroidManifest.xml	file
located	at	Assets/Plugins/Android/AppLovin	folder.	Simply	add	the	following	line	inside	the	<application>	tag	in	the
manifest,	replacing	YOUR_SDK_KEY	with	your	actual	AppLovin	SDK	key.

<meta-data	android:name="applovin.sdk.key"	android:value="YOUR_SDK_KEY"/>

This	manifest	also	includes	the	READ_PHONE_STATE	permission,	which	requires	your	app	to	have	a	privacy	policy
when	uploaded	to	Google	Play.	This	permission	is	not	mandatory	to	run	the	AppLovin	SDK,	therefore	you	can	safely
remove	it	if	you	are	not	ready	to	provide	the	required	privacy	policy.	To	remove	the	permission,	simply	delete	the
corresponding	line	from	the	manifest	or	comment	it	out	as	below.

<!--	Exclude	the	READ_PHONE_STATE	permission	because	it	requires	a	privacy	policy	-->

<!--	<uses-permission	android:name="android.permission.READ_PHONE_STATE"	/>	-->

The	minSdkVersion	Problem	(Android-specific)

The	current	Heyzap	SDK	requires	a	minSdkVersion	of	10,	while	some	other	3rd-party	plugins	may	require	a	version	of
11	or	above.	If	you	get	a	build	error	including	this	line

Unable	to	merge	android	manifests...

and	this	line

Main	manifest	has	<uses-sdk	android:minSdkVersion='x'>	but	library	uses	minSdkVersion='y'

where	x	<	y,	it	means	you	need	to	increase	the	minSdkVersion	of	the	app.	To	do	so	go	to	Edit	>	Project	Settings	>
Player,	then	select	the	Android	settings	tab	and	increase	its	Minimum	API	Level	to	the	required	one	(which	is	'y'	in	this
example).

Setup	Heyzap

43

Setup	Heyzap

44

Advertising:	Settings	|	Setup	ironSource

Importing	ironSource	Plugin

To	show	ads	from	IronSource	you	need	to	import	the	IronSource	plugin.	In	the	IRONSOURCE	section,	click	the
Download	IronSource	Plugin	button	to	to	open	the	download	page.	Download	the	plugin	and	import	it	to	your	project.

Configuring	ironSource

After	importing	the	ironSource	plugin,	the	IRONSOURCE	SETUP	section	will	be	updated	as	below.

App	Key

First	you	need	to	provide	the	app	key	for	each	platform.

Go	to	the	ironSource	dashboard	to	setup	your	app	and	get	the	key.	Then	follow	these	instructions	to	setup
mediation	networks	for	your	project.

Placements

Setup	ironSource

45

https://developers.ironsrc.com/ironsource-mobile/unity/unity-plugin/#step-1
https://platform.ironsrc.com/partners/tour
https://developers.ironsrc.com/ironsource-mobile/unity/mediation-networks-unity/#step-1

Easy	Mobile's	ad	placements	will	be	directly	translated	into	ironSource's	placements	of	the	same	name	in	runtime.	If
you	want	to	specify	a	non-default	placement	when	showing	an	ironSource	ad,	simply	show	the	ad	with	one	of	Easy
Mobile's	built-in	placements	or	create	a	new	placement	for	your	needs.	There's	no	need	to	declare	any	ad	IDs	to	be
associated	with	the	placements.

Note	that	the	placements	you	use	with	Easy	Mobile	must	also	exist	on	ironSource	dashboard,	otherwise	you
have	to	create	them	on	the	dashboard	before	using.	If	you	show	an	ad	with	an	undefined	placement	(the
placement	doesn't	exist	on	ironSource	dashboard)	the	ad	will	be	shown	with	the	default	placement	but
corresponding	ad	event	handlers	will	receive	the	undefined	placement	as	argument,	which	may	cause
unexpected	behaviors.

Advanced	Settings

ironSource	has	an	additional	feature	called	segment	to	help	you	serve	ads	that	target	a	specific	audience,	further
information	can	be	found	here.	To	enable	the	advanced	settings,	simply	check	the	Use	advanced	settings	option	and
enter	required	the	fields.

Adding	IronSourceEventsPrefab

It's	important	to	add	the	IronSourceEventsPrefab	found	at	folder	Asset/IronSource/Prefabs	to	the	first	scene	in	your
app,	otherwise	ironSource	ad	events	won't	be	received	properly.

Mediation	Setup	Notes

In	order	to	integrate	3rd-party	mediation	networks	you	need	to	perform	two	steps.

1.	 Set	up	the	networks	on	the	ironSource	dashboard,	follow	these	instructions.
2.	 Go	to	this	page	and	download	the	mediation	adapters	that	you	want	to	integrate	and	import	them	into	your	Unity

Project.

The	code	to	work	with	ironSource	ads	remains	the	same	whether	you	setup	mediation	or	not.	All	mediating
works	are	done	by	the	ironSource	SDK	and	the	adapters.

AdMob	Network	(Android-specific)

As	of	version	4.2.1	of	the	ironSource’s	adapter	for	AdMob,	you	may	also	need	to	import	the	Google	Mobile	Ads	plugin
into	your	project	to	make	it	work	properly.

Building	Notes

Android

Setup	ironSource

46

https://developers.ironsrc.com/ironsource-mobile/unity/additional-sdk-settings/#step-1
https://developers.ironsrc.com/ironsource-mobile/air/mediation-ad-networks-setup/#step-1
https://developers.ironsrc.com/ironsource-mobile/unity/mediation-networks-unity/#step-1
https://github.com/googleads/googleads-mobile-unity/releases

The	ironSource's	instructions	for	Android	can	be	found	here.

If	you	encounter	the	"No	resource	found	that	matches	the	given	name	(at	'value'	with	value
'@integer/google_play_services_version')"	error,	comment	out	the	following	lines	(177,	178,	179)	in	the	ironSource's
AndroidManifest	that	can	be	found	at	folder	Assets/Plugin/Android/IronSource/AndroidManifest.xml.

iOS

The	ironsource's	intructions	for	iOS	can	be	found	here.

Setup	ironSource

47

https://developers.ironsrc.com/ironsource-mobile/unity/unity-plugin/#step-2
https://developers.ironsrc.com/ironsource-mobile/unity/unity-plugin/#step-3

Advertising:	Settings	|	Setup	MoPub

Importing	MoPub	Plugin

To	show	ads	from	MoPub	you	need	to	import	the	MoPub	plugin	for	Unity.	In	the	MOPUB	ADS	section,	click	the
Download	MoPub	Plugin	button	to	open	the	download	page.

Configuring	MoPub

After	importing	the	MoPub	plugin,	the	MOPUB	ADS	section	will	be	updated	as	below.

Default	Placement

Here	you	can	enter	the	ad	IDs	to	be	used	with	the	default	placement	for	each	platform.	These	are	the	only	ad	IDs
required	if	you	are	not	using	any	custom	placements	in	your	app.	Note	that	you	only	need	to	provide	IDs	for	the	ad
types	you	want	to	use,	e.g.	if	you	only	use	MoPub	banner	ads	you	can	leave	the	interstitial	and	rewarded	ad	IDs
empty.

Setup	MoPub

48

https://github.com/mopub/mopub-unity-sdk

If	you're	not	familiar	with	MoPub,	please	follow	the	instructions	here	to	setup	ad	units	for	your	app.

Custom	Placements

Here	you	can	optionally	enter	the	ad	IDs	associated	with	non-default	ad	placements	to	be	used	in	your	app.	You	can
have	an	arbitrary	number	of	custom	placements	and	can	use	built-in	placements	or	create	new	placements	for	your
needs.

Advanced	Settings

Enable	Location	Passing:	check	this	if	you	want	to	enable	location	support	for	banners	&	interstitials.
Use	Advanced	Setting:	check	this	to	enable	MoPub's	advanced	settings,	including	initialization	with	custom
configurations,	which	can	read	more	about	here.

GDPR	Consent

These	settings	are	only	useful	if	you	want	to	use	the	GDPR	support	features	provided	by	MoPub	(and	thus,
specific	to	MoPub	only).	If	you're	using	the	consent	management	system	and	consent	dialog	provided	by	Easy
Mobile	to	manage	consent	for	the	whole	app	you	should	ignore	these	settings.

Auto	Request	Consent:	check	this	box	if	you	want	the	Mopub's	GDPR	consent	dialog	to	show	automatically
during	initialization.
Force	GDPR	Applicable:	enable	this	to	show	the	MoPub's	GPDR	consent	dialog	in	all	regions	(useful	for
debugging	in	development).

Building	Notes

Android

MoPub	plugin	manually	includes	android-support-v4	jar,	which	is	also	required	by	EasyMobile	(and	many	other
plugins)	and	will	be	fetched	automatically	by	the	Google	Play	Services	Resolver,	therefore	you	need	to	remove	the
duplicated	file	before	starting	building	to	avoid	errors	due	to	duplication.	Navigate	to	Plugins/Android/mopub/libs	and
delete	the	files	there.

Setup	MoPub

49

https://developers.mopub.com/docs/ui/
https://developers.mopub.com/docs/unity/initialization/

iOS

MoPub	plugin	requires	iOS	8.0+	and	Xcode	9.0+.

Mediation	Notes

New	mediation	networks	need	to	be	configured	and	enabled	correctly	in	the	dashboard	before	you	can	show
them	in	your	app.	Follow	this	instruction	to	create	and	setup	new	networks.

In	order	to	integrate	a	3rd-party	network,	you	will	need	to	import	that	network	Unity	plugin	(you	can	also	use	its	native
plugin,	but	it	can	take	some	extra	work,	especially	on	iOS,	so	it's	not	recommended)	and	the	MoPub	adapter	(which
can	be	download	here).

Android

Place	the	adapter	.jar	files	in	Plugins/Android/mopub-support/libs	folder	(directly,	not	in	any	subfolder).

If	the	3rd-party	network	plugin	uses	.jar	files,	place	them	in	Plugins/Android/mopub-support/libs.	If	they're	.aar	files,
place	them	in	Plugins/Android.	For	example:

Setup	MoPub

50

https://developers.mopub.com/docs/ui/networks/
https://github.com/mopub/mopub-unity-mediation

There	may	be	conflicts	between	the	AndroidManifest	of	these	networks	with	the	one	of	Mopub,	causing	build
errors.	In	such	case	you	should	update	the	AndroidManifest	of	those	networks	to	solve	the	conflicts	while
maintaining	the	one	of	Mopub.

iOS

Just	keep	all	the	imported	files	where	they	are.

Setup	MoPub

51

Advertising:	Settings	|	Setup	Tapjoy

Importing	Tapjoy	Plugin

To	show	ads	from	Tapjoy	you	need	to	import	the	Tapjoy	Unity	Plugin.	In	the	TAPJOY	section,	click	the	Download
TapJoy	Plugin	button	to	to	open	the	download	page.	Download	the	plugin	and	import	it	to	your	project.

Configuring	Tapjoy

After	importing	the	Tapjoy	plugin,	the	TAPJOY	section	will	be	updated	as	below.

Before	configuring	Tapjoy	placements	in	Easy	Mobile	settings,	you	have	to	create	them	on	the	Tapjoy
dashboard.	If	you're	not	familiar	with	the	process,	follow	the	instruction	here.	Basically,	you'll	need	to:

Go	to	TapJoy	dashboard	and	create	a	new	app.
Setup	at	least	one	virtual	currency.
Create	some	contents	to	show	in	your	app.
Create	some	placements	and	assign	content	for	them.

Default	Placement

Setup	Tapjoy

52

https://ltv.tapjoy.com/d/sdks
https://dev.tapjoy.com/sdk-integration/unity/getting-started-guide-publishers-unity/
https://ltv.tapjoy.com/
https://dev.tapjoy.com/virtual-currency/#setting_up_virtual_currency_in_the_tapjoy_dashboard

Here	you	can	configure	the	default	placement	for	each	platform.	Note	that	in	the	ID	fields	you	would	enter	the	name	of
the	placements	created	on	the	Tapjoy	dashboard	whose	content	is	relevant	to	the	corresponding	ad	type	(interstitial,
rewarded).	You	only	need	to	provide	placement	names	for	the	ad	types	you	want	to	use,	e.g.	if	you	only	use	Tapjoy
rewarded	ads	you	can	leave	the	interstitial	ad	fields	empty.

Custom	Placements

Here	you	can	optionally	enter	the	Tapjoy	placement	names	associated	with	non-default	placements	to	be	used	in	your
app.	You	can	have	an	arbitrary	number	of	custom	placements	and	can	use	built-in	placements	or	create	new
placements	for	your	needs.

Auto	Reconnect	Settings

Auto	Reconnect:	should	we	reconnect	to	the	server	automatically	until	connected.	If	you	uncheck	it,	players	might
never	be	able	to	connect	to	the	Tapjoy	server	if	they	opened	your	app	when	their	device	is	offline.
Auto	Reconnect	Interval:	auto	reconnect	coroutine	refresh	rate.

Tapjoy	Setup	Interface

Click	the	Open	TapJoy	Setup	Window	button	to	open	the	Tapjoy's	setup	window	(you	can	also	navigate	to	the	menu
Window	>	Tapjoy	and	open	it).	A	window	will	be	opened	as	below.

Setup	Tapjoy

53

Tapjoy	requires	a	TapjoyUnity	GameObject	with	some	components	attached	to	it.	The	_Fix	_button	right	next	to
the	"No	TapjoyUnity	GameObject	in	this	scene"	warning	label	can	create	that	GameObject	for	you,	make	sure	to
add	it	in	the	scene	that	appears	first	in	your	game.
Enter	the	SDK	Key	for	each	platform.
Make	sure	the	Auto-Connect	field	is	checked.

More	details	about	these	settings	can	be	found	here.

Building	Notes

Android

Tapjoy	needs	Google	Play	Services	library	to	work,	but	starting	from	version	11.10.1,	the	Tapjoy	plugin	for	Unity
no	longer	includes	it	in	the	package,	so	make	sure	to	add	it	into	your	game	(you	can	read	about	this	here).
You	need	to	make	sure	your	game	has	a	valid	AndroidManifest.xml	placed	under	Assets/Plugins/Android	(read
more	about	it	here).

Setup	Tapjoy

54

https://dev.tapjoy.com/sdk-integration/unity/getting-started-guide-publishers-unity/
https://dev.tapjoy.com/sdk-integration/unity/getting-started-guide-publishers-unity/#sdk_installation
https://dev.tapjoy.com/sdk-integration/unity/getting-started-guide-publishers-unity/#add_app_permissions_and_activities_for_android

If	there	is	no	AndroidManifest.xml	in	that	folder,	you	will	see	some	"not	found"	warning	labels	like	the	image
above.	Simply	click	the	Generate	Android	Manifest	in	the	TAPJOY	section,	a	valid	file	will	be	created
automatically.
If	you	already	have	a	AndroidManifest	in	the	folder,	but	some	elements	are	missing,	you	can	at	them	via
Tapjoy's	setup	window.	Click	all	the	fix	button	there	(see	the	image	below)	and	Tapjoy	will	do	the	job
automatically.

iOS

After	exporting	your	project	to	XCode,	add	the	following	into	your	Info.plist	file	(read	more	about	it	here).

<key>NSAppTransportSecurity</key>

<dict>

		<!--To	support	localhost	-->

		<key>NSAllowsLocalNetworking</key>

		<true/>

		<!--To	continue	to	work	for	iOS	9	-->

		<key>NSAllowsArbitraryLoads</key>

		<true/>

</dict>

Setup	Tapjoy

55

https://dev.tapjoy.com/faq/app-transport-security-ats-ios-10/

Advertising:	Settings	|	Setup	Unity	Ads

Enabling	Unity	Ads	Service

To	use	Unity	Ads	service,	you	must	first	set	up	your	project	for	Unity	Services.

To	show	ads	from	Unity	Ads	you	need	to	enable	the	corresponding	service.	Easy	Mobile	will	automatically	check	for
the	service's	availability	and	warn	you	to	enable	it	if	needed.	Below	is	the	UNITY	ADS	section	when	Unity	Ads	is	not
enabled.

To	enable	Unity	Ads	switch	the	platform	to	iOS	or	Android,	then	go	to	Window	>	Services	and	select	the	Ads	tab.

Setup	Unity	Ads

56

https://docs.unity3d.com/Manual/SettingUpProjectServices.html

In	the	opened	configuration	window,	click	the	toggle	at	the	right-hand	side	to	enable	Unity	Ads	service.	You	may	need
to	answer	a	few	questions	about	your	game.

Setup	Unity	Ads

57

Configuring	Unity	Ads

The	UNITY	ADS	section	will	be	updated	after	Unity	Ads	has	been	enabled.

Default	Placement

The	ad	IDs	associated	with	the	default	placement	are	prefilled	for	you	automatically.	These	IDs	match	the	default
placement	IDs	generated	by	the	Unity	Ads	service	when	it	is	enabled	and	therefore	cannot	be	changed.

Custom	Placements

Setup	Unity	Ads

58

Here	you	can	optionally	enter	the	ad	IDs	associated	with	non-default	ad	placements	to	be	used	in	your	app.	You	can
have	an	arbitrary	number	of	custom	placements	and	can	use	built-in	placements	or	create	new	placements	for	your
needs.	Note	that	you	must	not	reuse	the	default	placement	IDs	with	these	custom	placements.

Before	entering	the	ad	IDs	for	custom	placements	in	the	Custom	Placements	section,	you	must	create	these
placements	in	the	Unity	Dashboard.	In	the	dashboard	select	your	project,	select	the	Operate	tab,	then	in	the	left
navigation	menu	select	Monetization	>	Placements	and	click	the	ADD	PLACEMENT	button	at	the	top	right
corner.

Testing	Notes

It	is	advisable	to	enable	the	test	mode	of	Unity	Ads	during	development.	This	will	ensure	there's	always	an	ad
returned	whenever	requested.	To	enable	test	mode	simple	check	the	Enable	test	mode	option	in	the	Ads	tab	in	the
Services	window.

Remember	to	disable	this	test	mode	when	creating	your	release	build.

Setup	Unity	Ads

59

Advertising:	Scripting
This	section	provides	a	guide	to	work	with	the	Advertising	module	scripting	API.

You	can	access	the	Advertising	module	API	via	the	Advertising	class	under	the	EasyMobile	namespace.

Working	with	Consent

Module	Consent

The	following	snippet	shows	how	you	grant,	revoke	or	read	the	module-level	consent	of	the	Advertising	module.

//	Grants	the	module-level	consent	for	the	Advertising	module.

Advertising.GrantDataPrivacyConsent();

//	Revokes	the	module-level	consent	of	the	Advertising	module.

Advertising.RevokeDataPrivacyConsent();

//	Reads	the	current	module-level	consent	of	the	Advertising	module.

ConsentStatus	moduleConsent	=	Advertising.DataPrivacyConsent;

Vendor	Consent

The	following	snippet	shows	how	you	grant,	revoke	or	read	the	vendor-level	consent	of	an	individual	network	in	the
Advertising	module.

In	this	example	we	use	AdMob	for	demonstration	purpose,	the	same	code	can	be	used	for	any	other	network.

//	Grants	the	vendor-level	consent	for	AdMob.

Advertising.GrantDataPrivacyConsent(AdNetwork.AdMob);

//	Revokes	the	vendor-level	consent	of	AdMob.

Advertising.RevokeDataPrivacyConsent(AdNetwork.AdMob);

//	Reads	the	current	vendor-level	consent	of	AdMob.

ConsentStatus	admobConsent	=	Advertising.GetDataPrivacyConsent(AdNetwork.AdMob);

Working	with	Banner	Ads
To	show	a	banner	ad	you	need	to	specify	its	position	using	the	BannerAdPosition	enum.	The	banner	will	be	displayed
once	it	is	loaded.

//	Show	banner	ad

Advertising.ShowBannerAd(BannerAdPosition.Bottom);

To	hide	the	current	banner	ad	(it	can	be	shown	again	later):

//	Hide	banner	ad

Advertising.HideBannerAd();

To	destroy	the	current	banner	ad	(a	new	one	will	be	created	on	the	next	banner	ad	showing):

//	Destroy	banner	ad

Advertising.DestroyBannerAd();

Scripting

60

Working	with	Interstitial	Ads
The	method	to	show	an	interstial	ad	requires	it	to	be	already	loaded.	Therefore	you	should	check	for	the	ad's
availability	before	showing	it.

//	Check	if	interstitial	ad	is	ready

bool	isReady	=	Advertising.IsInterstitialAdReady();

//	Show	it	if	it's	ready

if	(isReady)

{

				Advertising.ShowInterstitialAd();

}

An	InterstitialAdCompleted	event	will	be	fired	whenever	an	interstitial	ad	is	closed.	You	can	listen	to	this	event	to	take
appropriate	actions,	e.g.	resume	the	game.

//	Subscribe	to	the	event

void	OnEnable()

{

				Advertising.InterstitialAdCompleted	+=	InterstitialAdCompletedHandler;

}		

//	The	event	handler

void	InterstitialAdCompletedHandler(InterstitialAdNetwork	network,	AdLocation	location)

{

				Debug.Log("Interstitial	ad	has	been	closed.");

}

//	Unsubscribe

void	OnDisable()

{

				Advertising.InterstitialAdCompleted	-=	InterstitialAdCompletedHandler;

}

Working	with	Rewarded	Ads
The	method	to	show	a	rewarded	ad	requires	it	to	be	already	loaded.	Therefore	you	should	check	for	the	ad's
availability	before	showing	it.

//	Check	if	rewarded	ad	is	ready

bool	isReady	=	Advertising.IsRewardedAdReady();

//	Show	it	if	it's	ready

if	(isReady)

{

				Advertising.ShowRewardedAd();

}

A	RewardedAdCompleted	event	will	be	fired	whenever	a	rewarded	ad	has	completed.	You	should	listen	to	this	event
to	reward	the	user	for	watching	the	ad.	Otherwise,	a	RewardedAdSkipped	event	will	be	fired	if	the	ad	is	skipped
before	finishing	(and	the	user	therefore	is	not	entitled	to	the	reward).

//	Subscribe	to	rewarded	ad	events

void	OnEnable()

{

				Advertising.RewardedAdCompleted	+=	RewardedAdCompletedHandler;

				Advertising.RewardedAdSkipped	+=	RewardedAdSkippedHandler;

}

Scripting

61

//	Unsubscribe	events

void	OnDisable()

{

				Advertising.RewardedAdCompleted	-=	RewardedAdCompletedHandler;

				Advertising.RewardedAdSkipped	-=	RewardedAdSkippedHandler;

}

//	Event	handler	called	when	a	rewarded	ad	has	completed

void	RewardedAdCompletedHandler(RewardedAdNetwork	network,	AdLocation	location)

{

				Debug.Log("Rewarded	ad	has	completed.	The	user	should	be	rewarded	now.");

}

//	Event	handler	called	when	a	rewarded	ad	has	been	skipped

void	RewardedAdSkippedHandler(RewardedAdNetwork	network,	AdLocation	location)

{

				Debug.Log("Rewarded	ad	was	skipped.	The	user	should	NOT	be	rewarded.");

}

Removing	Ads

Removing	Ads	without	Updating	Consent

In	some	cases	you	need	to	remove/stop	showing	ads	in	your	game,	e.g.	when	the	user	purchases	the	"Remove	Ads"
product.	To	remove	ads:

//	Remove	ads	permanently

Advertising.RemoveAds();

The	RemoveAds	method	will	destroy	the	banner	ad	if	one	is	being	shown,	and	prevent	future	ads	from	being	loaded
and	shown	except	rewarded	ads,	since	they	are	unobtrusive	and	only	shown	at	the	user	discretion.

Note	that	the	RemoveAds	method	uses	Unity's	PlayerPrefs	to	store	the	ad	removal	status	with	no
encryption/scrambling.

An	AdsRemoved	event	will	be	fired	after	ads	have	been	removed.	You	can	listen	to	this	event	and	take	appropriate
actions,	e.g	update	the	UI.

//	Subscribe	to	the	event

void	OnEnable()

{

				Advertising.AdsRemoved	+=	AdsRemovedHandler;

}

//	The	event	handler

void	AdsRemovedHandler()

{

				Debug.Log("Ads	were	removed.");

				//	Unsubscribe

				Advertising.AdsRemoved	-=	AdsRemovedHandler;

}

You	can	also	check	at	any	time	if	ads	were	removed	or	not.

//	Determine	if	ads	were	removed

bool	isRemoved	=	Advertising.IsAdRemoved();

Removing	Ads	and	Revoke	Consents

Scripting

62

Because	rewarded	ads	are	still	available	after	removing	ads	(for	good	reason!),	it	may	be	desirable	in	some	cases	to
also	revoke	all	consent	granted	to	the	Advertising	module	as	well	as	the	individual	network.	For	example,	you	may
offer	"Remove	Ads"	as	an	in-app	purchase	that	the	user	can	buy	to	remove	intrusive	ads	(i.e.	banner	and	interstitial
ads)	and	stop	the	app	from	collecting	their	personal	data	for	advertising	purpose.	In	such	case,	you	can	call	the
RemoveAds	and	pass	true	to	its	revokeConsents	parameter.	This	parameter	is	optional	and	default	to	false.

//	Remove	ads	permanently	and	also	revoke	the	consent

//	of	the	Advertising	module	and	all	ad	networks	so	that

//	they	stop	collecting	user	data.

Advertising.RemoveAds(true);				//	revokeConsents	passed	as	true

Re-enabling	Ads	after	Removal

Finally,	you	can	also	revoke	the	ad	removing	status	and	allow	ads	to	be	shown	again.

//	Revoke	ad	removing	status	and	allow	showing	ads	again

Advertising.ResetRemoveAds();

Manual	Ad	Loading
With	the	Automatic	Ad	Loading	feature,	you	normally	don't	need	to	worry	about	loading	ads.	However,	if	you	want	to
disable	this	feature	and	control	the	loading	process	yourself,	you	can	do	so	with	manual	ad	loading	in	script.

It	is	advisable	to	load	an	ad	as	far	in	advance	of	showing	it	as	possible	to	allow	ample	time	for	the	ad	to	be
loaded.

To	load	an	interstitial	ad:

//	Load	the	default	interstitial	ad.

Advertising.LoadInterstitialAd();

To	load	a	rewarded	ad:

//	Load	the	default	rewarded	ad.

Advertising.LoadRewardedAd();

Working	with	Non-Default	Ads
Beside	the	default	ads,	you	can	also	show	ads	from	non-default	networks	at	non-default	placements,	thus
implementing	a	more	sophisticated	ad	strategy	in	your	app.	Note	that	each	method	to	load	or	show	ad	always	has	a
variant	that	allows	you	to	specify	the	target	ad	network	and	placement	explicitly.	For	example	there're	2	variants	of	the
LoadInterstitialAd	method.	One	takes	no	argument	and	loads	the	default	interstitial	ad.	The	other	loads	an	interstitial
ad	from	a	specified	network	at	an	arbitrary	placement.

If	you're	using	the	"Load	All	Defined	Placements"	auto	ad-loading	mode,	both	default	and	non-default	ads	are
loaded	automatically	so	you	never	need	to	worry	about	loading	ads.

If	you	have	AdMob	as	the	default	interstitial	ad	network,	you	can	load	and	show	a	non-default	interstitial	ad	like	below.

//	This	method	shows	an	interstitial	ad	from	the	default	network	(i.e.	AdMob	in	this	example)

//	at	the	default	placement.	Default	ads	are	loaded	automatically	unless	Automatic	Ad	Loading	is	disabled.

if	(Advertising.IsInterstitialAdReady())

				Advertising.ShowInterstitialAd();

Scripting

63

//	If	you're	using	the	"Load	All	Defined	Placements"	auto	ad-loading	mode,	non-default	ads	are	loaded	automatic

ally	too.

//	Here	we	show	how	you	can	manually	load	a	non-default	interstitial	ad,	for	illustration	purpose.

//	In	practice,	you	don't	need	to	do	this	unless	the	auto	ad-loading	is	disabled	or	set	to	"Load	Default	Ads"	m

ode.

//	In	this	example,	we'll	load	and	show	an	interstitial	ad	from	AdMob	at	the	custom	placement	Startup.

//	(Note	that	an	interstitial	ad	at	the	default	placement	but	belongs	to	a	non-default	network	

//	would	also	be	considered	a	non-default	ad).

//	You	can,	for	example,	associate	this	placement	with	a	house	ad	unit	to	show	cross-promotion	ads

//	for	other	apps	in	your	portfolio,	thus	having	a	free	cross-promotion	system!

Advertising.LoadInterstitialAd(InterstitialAdNetwork.AdMob,	AdPlacement.Startup);

//	Checks	if	the	AdMob	interstitial	ad	at	placement	Startup	is	ready	and	shows	it.

if	(Advertising.IsInterstitialAdReady(InterstitialAdNetwork.AdMob,	AdPlacement.Startup))

				Advertising.ShowInterstitialAd(InterstitialAdNetwork.AdMob,	AdPlacement.Startup);

//	Likewise,	you	can	check	if	a	non-default	rewarded	ad	is	ready	and	show	it	like	below

//	(assume	that	IronSource	is	not	set	as	the	default	network	for	rewarded	ads).

if	(Advertising.IsRewardedAdReady(RewardedAdNetwork.IronSource,	AdPlacement.HomeScreen))

				Advertising.ShowRewardedAd(RewardedAdNetwork.IronSource,	AdPlacement.HomeScreen);

Ad	Network	Clients
You	can	access	the	underlaying	clients	for	the	supported	ad	networks	using	the	corresponding	properties	of	the
Advertising	class.

//	AdColony	client.

AdColonyClientImpl	adcolonyClient	=	Advertising.AdColonyClient;

//	AdMob	client.

AdMobClientImpl	admobClient	=	Advertising.AdMobClient;

//	Chartboost	client.

ChartboostClientImpl	chartboostClient	=	Advertising.ChartboostClient;

//	Facebook	Audience	Network	client.

AudienceNetworkClientImpl	fbanClient	=	Advertising.AudienceNetworkClient;

//	Heyzap	client.

HeyzapClientImpl	heyzapClient	=	Advertising.HeyzapClient;

//	ironSource	client.

IronSourceClientImpl	ironSrcClient	=	Advertising.IronSourceClient;

//	MoPub	client.

MoPubClientImpl	mopubClient	=	Advertising.MoPubClient;

//	Tapjoy	client.

TapjoyClientImpl	tapjoyClient	=	Advertising.TapjoyClient;

//	Unity	Ads	client.

UnityAdsClientImpl	unityAdsClient	=	Advertising.UnityAdsClient;

From	these	clients	you	can	access	network-specific	events,	e.g	the	OnBannerAdClosed	event	provided	by	the
AdMob.	Events	like	this	are	specific	to	a	certain	ad	network	and	normally	not	available	in	other	networks	which	is	why
they	are	not	exposed	in	the	Advertising	class	(the	Advertising	class	only	exposes	a	common	subset	of	events	that	are
provided	by	all	ad	networks	to	ensure	a	consistent	behavior	across	all	networks).	Note	that	these	network-specific
events	are	only	available	if	the	corresponding	plugin	of	that	network	has	been	imported	to	your	project.	You	can	use
the	scripting	symbols	in	the	below	table	to	wrap	codes	that	access	these	event	to	make	sure	they	only	get	compiled
when	the	plugin	is	available.	These	symbols	are	defined	automatically	by	Easy	Mobile	when	the	corresponding	ad
plugin	is	imported,	except	UNITY_ADS	which	is	defined	by	Unity	when	the	service	is	enabled.

Scripting

64

Ad	Network Symbol

AdColony EM_ADCOLONY

AdMob	(Google	Mobile	Ads) EM_ADMOB

Chartboost EM_CHARTBOOST

Facebook	Audience	Network EM_FBAN

Heyzap	(Fyber) EM_HEYZAP

ironSource EM_IRONSOURCE

MoPub EM_MOPUB

Tapjoy EM_TAPJOY

Unity	Ads UNITY_ADS	(defined	by	Unity)

Scripting

65

Advertising:	PlayMaker	Actions
The	PlayMaker	actions	of	the	Advertising	module	are	group	in	the	category	Easy	Mobile	-	Advertising	in	the
PlayMaker's	Action	Browser.

Please	refer	to	the	AdvertisingDemo_PlayMaker	scene	in	folder
Assets/EasyMobile/Demo/PlayMakerDemo/Modules	for	an	example	on	how	these	actions	can	be	used.

PlayMaker	Actions

66

PlayMaker	Actions

67

Game	Services:	Introduction
The	Game	Services	module	helps	you	quickly	implement	leaderboards	and	achievements	for	your	game.	It	works	with
the	Game	Center	network	on	iOS	and	Google	Play	Games	services	on	Android.	Here're	some	highlights	of	this
module:

Leverages	official	plugins

This	module	is	built	on	top	of	Unity's	GameCenterPlatform	on	iOS	and	Google	Play	Games	plugin	on	Android
GameCenterPlatform	is	one	part	of	the	UnityEngine	itself	while	the	other	is	the	official	Google	Play	Games
plugin	for	Unity,	so	reliability	and	compatibility	can	be	expected

Easy	management	of	leaderboards	and	achievements

Easy	Mobile's	custom	editor	features	a	friendly	interface	that	help	you	easily	add,	edit	or	remove
leaderboards	and	achievements

Introduction

68

https://github.com/playgameservices/play-games-plugin-for-unity

Game	Services:	Settings
To	use	the	Game	Services	module	you	must	first	enable	it.	Go	to	Window	>	Easy	Mobile	>	Settings,	select	the	Game
Services	tab,	then	click	the	right-hand	side	toggle	to	enable	and	start	configuring	the	module.

Android-Specific	Setup

Importing	Google	Play	Games	plugin	for	Unity

As	stated	earlier,	this	module	is	built	on	top	of	Google	Play	Games	Plugin	on	Android.	Therefore	you	need	to	import	it
to	use	the	module	on	this	platform.	Easy	Mobile	will	automatically	detect	the	availability	of	the	plugin	and	prompt	you
to	import	it	if	needed.	Below	is	the	module	settings	interface	after	switching	to	Android	platform	if	the	Google	Play
Games	plugin	hasn't	been	imported.

Settings

69

https://github.com/playgameservices/play-games-plugin-for-unity

Click	the	Download	Google	Play	Games	Plugin	button	to	open	the	download	page,	then	download	the	package	and
import	it	to	your	project.	Once	the	import	completes	the	module	interface	will	be	updated	and	ready	for	you	to	start
with	the	configuration.

Since	we're	not	using	Google	Play	Games	plugin	on	iOS,	the	NO_GPGS	symbol	will	be	defined	for	iOS
platform	automatically	after	the	plugin	is	imported	in	order	to	disable	it.

Setup	Google	Play	Games

To	setup	Google	Play	Games	plugin,	you	need	to	obtain	the	game	resources	from	the	Google	Play	Developer
Console.

The	game	resources	are	available	after	you	configured	your	game	on	the	Google	Play	Developer	Console.	If
you're	not	familiar	with	the	process,	please	follow	the	instructions	on	creating	a	client	ID,	as	well	as
leaderboards	and	achievements.

To	get	the	game	resources,	login	to	your	Google	Play	Developer	Console,	select	Game	services	tabs	then	select	your
game.	Next	go	to	the	Achievements	tab	and	click	on	the	Get	Resources	label	at	the	bottom	of	the	list.

Settings

70

https://developers.google.com/games/services/console/enabling
https://developers.google.com/games/services/common/concepts/leaderboards
https://developers.google.com/games/services/common/concepts/achievements

Copy	all	the	xml	content	from	the	Android	tab.

Settings

71

Go	back	to	Unity,	in	the	GOOGLE	PLAY	GAMES	SETUP	section,	paste	the	obtained	xml	resouces	into	the	Android
XML	Resources	area,	then	click	Setup	Google	Play	Games.

You	can	optionally	provide	a	Web	Client	ID	before	setting	up	Google	Play	Games	if	needed.

After	the	setup	has	completed,	a	new	file	named	EM_GPGSIds	will	be	created	at	Assets/EasyMobile/Generated.	This
file	contains	the	constants	of	the	IDs	of	all	the	leaderboards	and	achievements	in	your	Android	game.

Within	the	GOOGLE	PLAY	GAMES	SETUP	section	there're	other	settings	including:

GPGS	Debug	Log:	check	this	to	enable	Google	Play	Games	debug	log.
GPGS	Popup	Gravity:	use	this	to	control	the	position	of	Google	Play	Games	popups	(e.g.	achievement	popup).

Auto	Initialization
Auto	initialization	is	a	feature	of	the	Game	Services	module	that	initializes	the	service	automatically	when	the	module
starts.	Initialization	is	required	before	any	other	actions	can	be	done,	e.g.	reporting	scores.

During	the	initialization,	the	system	will	try	to	authenticate	the	user	by	presenting	a	login	popup.

On	iOS,	this	popup	will	show	up	when	the	app	gets	focus	(brought	to	foreground)	for	the	first	3	times.	If	the	user
refuses	to	login	all	these	3	times,	the	OS	will	ignore	subsequent	authentication	calls	and	stop	presenting	the	login
popup	(to	avoid	disturbing	the	user).	Otherwise,	if	the	user	has	logged	in	successfully,	future	authentication	will
take	place	silently	with	no	login	popup	presented.
On	Android,	we	employ	a	similar	approach	but	you	can	configure	the	maximum	number	of	authentication
requests	before	ignoring	subsequent	ones.

Settings

72

You	can	configure	the	auto	initialization	feature	within	the	AUTO-INIT	CONFIG	section.

Auto	Init:	uncheck	this	option	to	disable	the	auto	initialization	feature,	you	can	start	the	initialization	manually	from
script	(see	the	Scripting	section)
Auto	Init	Delay:	how	long	after	the	module	start	that	the	initialization	should	take	place
[Android]	Max	Login	Requests:	maximum	number	of	authentication	requests	allowed	on	Android,	before	ignoring
subsequent	ones	(in	case	the	user	refuses	to	login)

"Module	start"	refers	to	the	moment	the	Start	method	of	the	module's	associated	MonoBehavior	(attached	to	the
EasyMobile	prefab)	runs.

Leaderboards	&	Achievements
This	section	provides	a	guide	to	manage	leaderboards	and	managements	for	your	game.

Before	You	Begin

It	is	assumed	that	you	already	configured	your	game	for	the	targeted	gaming	networks,	i.e.	Game	Center	and
Google	Play	Games.	If	you're	not	familiar	with	the	process,	here're	some	useful	links:

Configure	for	Google	Play	Games	(Android)

Creating	a	Client	ID	for	you	game
Adding	leaderboards
Adding	achievements

Configure	for	Game	Center	(iOS)

Adding	leaderboards	and	achievements	in	iTunes	Connect

In	the	LEADERBOARDS	and	ACHIEVEMENTS	you	can	add,	edit	or	remove	leaderboards	and	achievements.

Adding	a	New	Leaderboard	or	Achievement

To	add	a	new	leaderboard	click	the	Add	New	Leaderboard	button	(or	Add	New	Achievement	button	in	case	of	an
achievement).

A	new	empty	leaderboard	(or	achievement)	will	be	added.

Fill	in	the	required	information	of	the	leaderboard	(or	achievement):

Name:	the	name	of	this	leaderboard	(or	achievement),	this	name	can	be	used	when	reporting	scores	to	this

Settings

73

https://developers.google.com/games/services/console/enabling
https://developers.google.com/games/services/common/concepts/leaderboards
https://developers.google.com/games/services/common/concepts/achievements
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/GameKit_Guide/Achievements/Achievements.html

leaderboard	(or	unlocking	this	achievement)
iOS	Id:	the	ID	of	this	leaderboard	(or	achievement)	as	declared	in	iTunes	Connect
Android	Id:	the	ID	of	this	leaderboard	(or	achievement)	as	declared	in	Google	Play	Developer	Console

Google	Play	Games'	leaderboards	and	achievements	have	generated	IDs	which	can	be	difficult	to	memorize
and	cumbersome	to	copy-and-paste,	especially	if	there	are	many	of	them.	Thankfully,	when	you	setup	Google
Play	Games,	the	constants	of	these	IDs	are	generated	automatically	(remember	that	EM_GPGSIds	file?),
allowing	Easy	Mobile	to	show	a	nice	dropdown	of	all	defined	leaderboard	and	achievement	IDs	for	you	to
choose	from.

Removing	a	Leaderboard	or	Achievement

To	remove	a	leaderboard	(or	achievement),	simply	click	the	[-]	button	at	the	right	hand	side.

Arranging	Leaderboards	or	Achievements

You	can	use	the	two	arrow-up	and	arrow-down	buttons	to	move	a	leaderboard	(or	achievement)	upward	or	downward
within	its	array.

Constants	Generation

Settings

74

Constants	generation	is	a	feature	of	the	Game	Services	module.	It	reads	the	names	of	all	the	added	leaderboards	and
achievements	and	generates	a	static	class	named	EM_GameServicesConstants	that	contains	the	constants	of	these
names.	Later,	you	can	use	these	constants	when	reporting	scores	to	a	leaderboard	or	unlocking	an	achievement	in
script	instead	of	typing	the	names	directly,	thus	help	prevent	runtime	errors	due	to	typos	and	the	likes.

To	generate	the	constants	class	(you	should	do	this	after	adding	all	required	leaderboards	and	achievements),	click
the	Generate	Constants	Class	button	within	the	CONSTANTS	CLASS	GENERATION	section.

When	the	process	completes,	a	file	named	EM_GameServicesConstants	will	be	created	at
Assets/EasyMobile/Generated.

Settings

75

Game	Services:	Scripting
This	section	provides	a	guide	to	work	with	the	Game	Services	module	scripting	API.

You	can	access	the	Game	Services	module	API	via	the	GameServices	class	under	the	EasyMobile
namespace.

Initialization
Initialization	is	required	before	any	other	action,	e.g.	reporting	scores,	can	be	done.	It	should	only	be	done	once	when
the	app	is	loaded.	If	you	have	enabled	the	Auto	initialization	feature,	you	don't	need	to	initialize	in	script	(see	Auto
Initialization	section).	Otherwise,	if	you	choose	to	disable	that	feature,	you	can	start	the	initialization	in	a	couple	of
ways.

Managed	initialization:	this	method	respects	the	Max	Login	Requests	value	on	Android	(see	Auto	Initialization
section),	which	means	it	will	ignore	all	subsequent	calls	once	the	user	has	dismissed	the	login	popup	for	a
number	of	time	determined	by	Max	Login	Requests
Unmanaged	initialization:	this	method	simply	initializes	the	module,	on	Android	it	shows	the	login	popup	every
time	as	long	as	the	user	hasn't	been	authenticated

On	iOS,	the	system	automatically	limits	the	maximum	number	of	login	requests	to	3	no	matter	which	method	is
used.

To	use	the	managed	initialization	method:

//	Managed	init	respects	the	Max	Login	Requests	value

GameServices.ManagedInit();

To	use	the	unmanaged	initialization	method:

//	Unmanaged	init

GameServices.Init();

Note	that	the	initialization	should	be	done	early	and	only	once,	e.g.	you	can	put	it	in	the	Start	method	of	a
MonoBehaviour,	preferably	a	singleton	one	so	that	it	won't	run	again	when	the	scene	reloads.

//	Initialization	in	the	Start	method	of	a	MonoBehaviour	script

void	Start()

{

				//	Managed	init	respects	the	Max	Login	Requests	value

				GameServices.ManagedInit();			

				//	Do	other	stuff...

}

A	UserLoginSucceeded	event	will	be	fired	when	the	initialization	completes	and	the	user	logins	successfully.
Otherwise,	a	UserLoginFailed	event	will	be	fired	instead.	You	can	optionally	subscribe	to	these	events	and	take
appropriate	actions	depended	on	the	user	login	status.

//	Subscribe	to	events	in	the	OnEnable	method	of	a	MonoBehavior	script

void	OnEnable()

{

				GameServices.UserLoginSucceeded	+=	OnUserLoginSucceeded;

				GameServices.UserLoginFailed	+=	OnUserLoginFailed;

}

Scripting

76

//	Unsubscribe

void	OnDisable()

{

				GameServices.UserLoginSucceeded	-=	OnUserLoginSucceeded;

				GameServices.UserLoginFailed	-=	OnUserLoginFailed;

}

//	Event	handlers

void	OnUserLoginSucceeded()

{

				Debug.Log("User	logged	in	successfully.");

}

void	OnUserLoginFailed()

{

				Debug.Log("User	login	failed.");

}

You	can	also	check	if	the	module	has	been	initialized	at	any	point	using	the	IsInitialized	method.

//	Check	if	initialization	has	completed	(the	user	has	been	authenticated)

bool	isInitialized	=	GameServices.IsInitialized();

Leaderboards
This	section	focuses	on	working	with	leaderboards.

Show	Leaderboard	UI

To	show	the	default	leaderboard	UI	(the	system	view	of	leaderboards):

//	Show	leaderboard	UI

GameServices.ShowLeaderboardUI();

You	should	check	if	the	initialization	has	finished	(the	user	has	been	authenticated)	before	showing	the	leaderboard
UI,	and	take	appropriate	actions	if	the	user	is	not	logged	in,	e.g.	show	an	alert	or	start	another	initialization	process.

//	Check	for	initialization	before	showing	leaderboard	UI

if	(GameServices.IsInitialized())

{

				GameServices.ShowLeaderboardUI();

}

else

{

				#if	UNITY_ANDROID

				GameServices.Init();				//	start	a	new	initialization	process

				#elif	UNITY_IOS

				Debug.Log("Cannot	show	leaderboard	UI:	The	user	is	not	logged	in	to	Game	Center.");

				#endif

}

To	show	the	UI	of	a	specific	leaderboard,	simply	pass	the	name	of	the	leaderboard	into	the	ShowLeaderboardUI
method.	You	can	also	optionally	specify	the	time	scope:

//	Show	a	specific	leaderboard	UI

GameServices.ShowLeaderboardUI("YOUR_LEADERBOARD_NAME");

//	Show	a	specific	leaderboard	UI	in	the	Week	time	scope

GameServices.ShowLeaderboardUI("YOUR_LEADERBOARD_NAME",	TimeScope.Week);

Scripting

77

Report	Scores

To	report	scores	to	a	leaderboard	you	need	to	specify	the	name	of	that	leaderboard.

It	is	strongly	recommended	that	you	use	the	constants	of	leaderboard	names	in	the	generated
EM_GameServicesConstants	class	(see	Game	Services	Constants	Generation	section)	instead	of	typing	the
names	directly	in	order	to	prevent	runtime	errors	due	to	typos	and	the	likes.

//	Report	a	score	of	100

//	EM_GameServicesConstants.Sample_Leaderboard	is	the	generated	name	constant

//	of	a	leaderboard	named	"Sample	Leaderboard"

GameServices.ReportScore(100,	EM_GameServicesConstants.Sample_Leaderboard);

Load	Local	User's	Score

You	can	load	the	score	of	the	local	user	(the	authenticated	user)	on	a	leaderboard,	to	do	so	you	need	to	specify	the
name	of	the	leaderboard	to	load	score	from	and	a	callback	to	be	called	when	the	score	is	loaded.

//	Put	this	on	top	of	the	file	to	use	IScore

UnityEngine.SocialPlatforms;

//	Load	the	local	user's	score	from	the	specified	leaderboard

//	EM_GameServicesConstants.Sample_Leaderboard	is	the	generated	name	constant

//	of	a	leaderboard	named	"Sample	Leaderboard"

GameServices.LoadLocalUserScore(EM_GameServicesConstants.Sample_Leaderboard,	OnLocalUserScoreLoaded);

//	Score	loaded	callback

void	OnLocalUserScoreLoaded(string	leaderboardName,	IScore	score)

{

				if	(score	!=	null)

				{

								Debug.Log("Your	score	is:	"	+	score.value);

				}

				else

				{

								Debug.Log("You	don't	have	any	score	reported	to	leaderboard	"	+	leaderboardName);

				}

}

Load	Scores

You	can	load	a	set	of	scores	from	a	leaderboard	with	which	you	can	specify	the	start	position	to	load	score,	the
number	of	scores	to	load,	as	well	as	the	time	scope	and	user	scope.

//	Put	this	on	top	of	the	file	to	use	IScore

UnityEngine.SocialPlatforms;

//	Load	a	set	of	20	scores	starting	from	rank	10	in	Today	time	scope	and	Global	user	scope

//	EM_GameServicesConstants.Sample_Leaderboard	is	the	generated	name	constant

//	of	a	leaderboard	named	"Sample	Leaderboard"

GameServices.LoadScores(

				EM_GameServicesConstants.Sample_Leaderboard,

				10,

				20,

				TimeScope.Today,

				UserScope.Global,

				OnScoresLoaded

);

Scripting

78

//	Scores	loaded	callback

void	OnScoresLoaded(string	leaderboardName,	IScore[]	scores)

{

				if	(scores	!=	null	&&	scores.Length	>	0)

				{

								Debug.Log("Loaded	"	+	scores.Length	+	"	from	leadeboard	"	+	leaderboardName);

								foreach	(IScore	score	in	scores)

								{

												Debug.Log("Score:	"	+	score.value	+	";	rank:	"	+	score.rank);

								}

				}

				else

				{

								Debug.Log("No	score	loaded.");

				}

}

You	can	also	load	the	default	set	of	scores,	which	contains	25	scores	around	the	local	user's	score	in	the	AllTime	time
scope	and	Global	user	scope.

//	Put	this	on	top	of	the	file	to	use	IScore

UnityEngine.SocialPlatforms;

//	Load	the	default	set	of	scores

//	EM_GameServicesConstants.Sample_Leaderboard	is	the	generated	name	constant

//	of	a	leaderboard	named	"Sample	Leaderboard"

GameServices.LoadScores(EM_GameServicesConstants.Sample_Leaderboard,	OnScoresLoaded);

//	Scores	loaded	callback

void	OnScoresLoaded(string	leaderboardName,	IScore[]	scores)

{

				if	(scores	!=	null	&&	scores.Length	>	0)

				{

								Debug.Log("Loaded	"	+	scores.Length	+	"	from	leadeboard	"	+	leaderboardName);

								foreach	(IScore	score	in	scores)

								{

												Debug.Log("Score:	"	+	score.value	+	";	rank:	"	+	score.rank);

								}

				}

				else

				{

								Debug.Log("No	score	loaded.");

				}

}

Get	All	Leaderboards

You	can	obtain	an	array	of	all	leaderboards	created	in	the	module	settings	interface:

//	Get	the	array	of	all	leaderboards	created	in	the	Game	Service	module	settings

//	Leaderboard	is	the	class	representing	a	leaderboard	as	declared	in	the	module	settings

//	The	GameServices	property	of	EM_Settings	class	holds	the	settings	of	this	module

Leaderboard[]	leaderboards	=	EM_Settings.GameServices.Leaderboards;

//	Print	all	leaderboard	names

foreach	(Leaderboard	ldb	in	leaderboards)

{

				Debug.Log("Leaderboard	name:	"	+	ldb.Name);

}

Scripting

79

Achievements
This	section	focuses	on	working	with	achievements.

Show	Achievement	UI

To	show	the	achievements	UI	(the	system	view	of	achievements):

//	Show	achievements	UI

GameServices.ShowAchievementsUI();

You	should	check	if	the	initialization	has	finished	(the	user	has	been	authenticated)	before	showing	the	achievements
UI,	and	take	appropriate	actions	if	the	user	is	not	logged	in,	e.g.	show	an	alert	or	start	another	initialization	process.

//	Check	for	initialization	before	showing	achievements	UI

if	(GameServices.IsInitialized())

{

				GameServices.ShowAchievementsUI();

}

else

{

				#if	UNITY_ANDROID

				GameServices.Init();				//	start	a	new	initialization	process

				#elif	UNITY_IOS

				Debug.Log("Cannot	show	achievements	UI:	The	user	is	not	logged	in	to	Game	Center.");

				#endif

}

Reveal	an	Achievement

To	reveal	a	hidden	achievement,	simply	specify	its	name.

As	in	the	case	of	leaderboards,	it	is	strongly	recommended	that	you	use	the	constants	of	achievement	names	in
the	generated	EM_GameServicesConstants	class	instead	of	typing	the	names	directly.

//	Reveal	a	hidden	achievement

//	EM_GameServicesConstants.Sample_Achievement	is	the	generated	name	constant

//	of	an	achievement	named	"Sample	Achievement"

GameServices.RevealAchievement(EM_GameServicesConstants.Sample_Achievement);

Unlock	an	Achievement

To	unlock	an	achievement:

//	Unlock	an	achievement

//	EM_GameServicesConstants.Sample_Achievement	is	the	generated	name	constant

//	of	an	achievement	named	"Sample	Achievement"

GameServices.UnlockAchievement(EM_GameServicesConstants.Sample_Achievement);

Report	Incremental	Achievement's	Progress

To	report	the	progress	of	an	incremental	achievement:

//	Report	a	rogress	of	50%	for	an	incremental	achievement

//	EM_GameServicesConstants.Sample_Incremental_Achievement	is	the	generated	name	constant

//	of	an	incremental	achievement	named	"Sample	Incremental	Achievement"

GameServices.ReportAchievementProgress(EM_GameServicesConstants.Sample_Incremental_Achievement,	50.0f);

Scripting

80

Get	All	Achievements

You	can	obtain	an	array	of	all	achievements	created	in	the	module	settings	interface:

//	Get	the	array	of	all	achievements	created	in	the	Game	Service	module	settings

//	Achievement	is	the	class	representing	an	achievement	as	declared	in	the	module	settings

//	The	GameService	property	of	EM_Settings	class	holds	the	settings	of	this	module

Achievement[]	achievements	=	EM_Settings.GameServices.Achievements;

//	Print	all	achievement	names

foreach	(Achievement	acm	in	achievements)

{

				Debug.Log("Achievement	name:	"	+	acm.Name);

}

User	Profiles
You	can	load	the	profiles	of	friends	of	the	local	(authenticated)	user.	When	the	loading	completes	the	provided
callback	will	be	invoked.

//	Put	this	on	top	of	the	file	to	use	IUserProfile

UnityEngine.SocialPlatforms;

//	Load	the	local	user's	friend	list

GameServices.LoadFriends(OnFriendsLoaded);

//	Friends	loaded	callback

void	OnFriendsLoaded(IUserProfile[]	friends)

{

				if	(friends.Length	>	0)

				{

								foreach	(IUserProfile	user	in	friends)

								{

												Debug.Log("Friend's	name:	"	+	user.userName	+	";	ID:	"	+	user.id);

								}

					}

					else

					{

									Debug.Log("Couldn't	find	any	friend.");

					}

}

You	can	also	load	user	profiles	by	providing	their	IDs.

//	Put	this	on	top	of	the	file	to	use	IUserProfile

UnityEngine.SocialPlatforms;

//	Load	the	profiles	of	the	users	with	provided	IDs

//	idArray	is	the	(string)	array	of	the	IDs	of	the	users	to	load	profiles

GameServices.LoadUsers(idArray,	OnUsersLoaded);

//	Users	loaded	callback

void	OnUsersLoaded(IUserProfile[]	users)

{

				if	(users.Length	>	0)

				{

								foreach	(IUserProfile	user	in	users)

								{

												Debug.Log("User's	name:	"	+	user.userName	+	";	ID:	"	+	user.id);

								}

					}

					else

Scripting

81

					{

									Debug.Log("Couldn't	find	any	user	with	the	specified	IDs.");

					}

}

Sign	Out
To	sign	the	user	out,	simply	call	the	SignOut	method.	Note	that	this	method	is	only	effective	on	Android.

//	Sign	the	user	out	on	Android

GameServices.SignOut();

Scripting

82

Game	Services	|	Saved	Games:	Introduction
Saving	game	data	is	among	the	most	desirable	features	of	video	games	in	general,	and	mobile	games	in	particular.
Nowadays,	it's	not	uncommon	for	a	user	to	own	more	than	one	mobile	device,	be	it	phone	or	tablet.	Being	able	to	start
a	game	on	one	device,	and	then	continue	playing	on	another	device	without	losing	any	progress	brings	a	seamless	-	if
not	natural	-	user	experience.

The	Saved	Games	feature	of	Easy	Mobile	makes	it	possible	-	and	easy	-	to	save	a	player's	game	data	to	the	cloud
and	synchronize	it	across	multiple	devices.	Saving	user	data	to	the	cloud	also	means	that	their	game	progression	is
preserved	and	can	be	restored	in	cases	such	as	reinstallation	or	device	failure.

On	iOS,	the	game	data	is	saved	to	iCloud	via	the	Game	Center	(GameKit)	API.	On	Android,	it	is	saved	to
Google	Drive	via	the	Google	Play	Game	Services	API	(GPGS).

Understanding	Saved	Games
A	saved	game	consists	of	two	parts:

An	unstructured	binary	blob	-	this	can	represent	whatever	data	you	deem	relevant	to	your	game,	and	your	game
is	responsible	for	generating	and	intepreting	it.

Structured	metadata	-	additional	properties	associated	with	the	binary	data	and	provide	information	about	this
data.

The	table	below	describes	common	saved	game	properties.

Property Description

Name A	developer-supplied	short	name	of	the	saved	game

ModificationDate A	timestamp	corresponding	to	the	last	modification	of	the	saved	game

DeviceName [iOS	only]	The	name	of	the	device	that	committed	the	saved	game	data

Description [GPGS	only][Optional]	A	developer-supplied	description	of	the	saved	game

CoverImageURL [GPGS	only]	[Optional]	The	URL	of	the	PNG	cover	image	of	the	saved	game

TotalTimePlayed [GPGS	only][Optional]	A	developer-supplied	value	(in	milisesconds)	representing	the
played	time	of	the	saved	game

IsOpen Whether	the	saved	game	is	"Open".	A	saved	game	can	only	be	read	or	written	to	if	it	is
open.

It's	up	to	you	to	decide	how	and	when	users	can	save	a	game.	Depending	on	your	game	design,	you	might	want	to
allow	only	a	single	saved	game,	or	you	might	want	to	allow	the	player	to	create	multiple	saved	games	with	different
names	(so	they	can,	for	example,	go	back	to	various	checkpoints	and	try	different	actions).

The	Underlying	Cloud	Services
As	mentioned	earlier,	saved	games	are	stored	on	iCloud	(iOS/Game	Center)	and	Google	Drive	(Android/GPGS).
Therefore,	it's	mandatory	that	the	user	has	an	iCloud	or	Google	account	to	use	the	feature	on	the	corresponding
platform.

Saved	Games

83

On	iOS,	the	saved	games	are	tied	to	the	user's	iCloud	account,	not	the	Game	Center	account.
On	Android,	the	Google	Drive	associated	with	the	user's	Google	account	that	was	authenticated	with	GPGS	is
used.

Limitations

iOS	(iCloud/Game	Center) Android	(Google	Drive/GPGS)

No	hard	limit	on	the	number	of	saved	games No	hard	limit	on	the	number	of	saved	games

The	size	of	a	saved	game	data	is	limited	to	the
amount	of	available	space	in	the	user's	iCloud
account)

GPGS	currently	enforce	size	limits	on	binary	data	and
cover	image	sizes	of	3	MB	and	800	KB	respectively.

You	should	always	strive	to	minimize	the	amount	of	data	being	saved.	This	prevents	the	user	from	running	out
of	space	and	decreases	the	amount	of	time	required	to	fetch	or	save	a	game	file.	Also	note	that	the	game
saving	operation	may	fail	if	there's	not	enough	room	in	the	iCloud	or	Google	Drive	account	of	the	user.

Offline	Support
Your	game	can	still	read	and	write	to	a	saved	game	when	the	player's	device	is	offline,	but	will	not	be	able	to	sync	with
the	cloud	services	until	network	connectivity	is	established.	Once	reconnected,	the	synchronization	will	be	done
automatically	and	asynchronously.

Conflict	Resolution
When	a	user	plays	your	game	on	multiple	devices	and	uses	the	saved	games	feature,	it's	not	uncommon	to	have
multiple	saved	games	with	the	same	name	and	from	different	devices,	thus	creating	conflicts.	These	conflicts	typically
occur	when	an	instance	of	your	game	is	unable	to	reach	the	cloud	service	while	attempting	to	sync	the	save	game
data,	or	when	it	updates	the	saved	game	data	on	the	cloud	without	loading	the	latest	data	first.	In	general,	the	best
way	to	avoid	data	conflicts	is	to	always	load	the	latest	data	from	the	cloud	service	when	your	game	starts	up	or
resumes,	and	save	data	to	the	service	with	reasonable	frequency.	However,	it	is	not	always	possible	to	avoid	data
conflicts.	Your	application	should	make	every	effort	to	handle	conflicts	to	preserve	users'	data	as	well	as	maintain	a
good	user	experience.	Fortunately,	the	Saved	Games	API	can	help	you	resolve	these	conflicts	automatically	using
several	default	resolution	strategies.	It	also	provides	relevant	methods	to	help	you	implement	your	own	resolution
strategy	to	better	suit	your	needs.

In	this	GameOn!	-	Saved	Games	In-Depth	(Part	2)	YouTube	video	by	Google	Developers	you	'll	find	in-depth
explanation	on	conflicts	between	saved	games,	how	they	happen,	how	to	resolve	them	as	well	as	other	important
concepts.	The	video	is	dedicated	to	the	Saved	Games	feature	of	Google	Play	Games	Services,	but	the	concepts	are
also	applicable	to	Game	Center.	A	must	watch.

Useful	Links
1.	 Saving	A	Game	-	Game	Center	Programming	Guide
2.	 Saved	Games	-	Google	Play	Game	Services
3.	 GameOn!	-	Saved	Games	In-Depth	(Part	2)	YouTube	video

Saved	Games

84

https://www.youtube.com/watch?v=naQhSkzNGAI
https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/GameKit_Guide/SavedGames/SavedGames.html
https://developers.google.com/games/services/common/concepts/savedgames
https://www.youtube.com/watch?v=naQhSkzNGAI

Saved	Games

85

Game	Services	|	Saved	Games:	Settings
The	Saved	Games	feature	can	be	configured	in	the	SAVED	GAMES	CONFIG	section	in	the	Game	Service	module
settings.

Enable	Saved	Games:	you	must	enable	the	Saved	Games	feature	before	using	it
Conflict	Resolution	Strategy:	the	default	strategy	used	by	the	automatic	conflict	resolution	feature
[Android]	Data	Source:	where	the	game	data	can	be	fetched	from,	only	applicable	on	Android/Google	Play	Game
Services	platform

iOS	Setup
To	use	the	Saved	Games	service	on	iOS,	you	must	enable	the	iCloud	capability	for	your	app	in	the	Xcode	project.
Make	sure	the	iCloud	Documents	service	is	selected.

Also,	for	the	feature	to	function	on	their	iOS	devices,	the	users	must	signed	into	their	iCloud	account	and	have	the
iCloud	Drive	service	enabled	in	the	Settings	app.

Settings

86

Android	Setup
Again,	on	Android	we	employ	the	Saved	Games	feature	provided	by	the	Google	Play	Game	Services.	Therefore,	you
need	to	enable	this	feature	for	your	app	in	the	Google	Play	Console.	Select	your	app,	then	select	the	Game	Services
tab	and	enable	the	feature	in	the	Game	details	tab.

Settings

87

Note	that	you	need	to	wait	at	least	24	hours	after	enabling	the	Saved	Games	service	for	it	to	be	available.
Attempting	to	authenticate	during	this	time	may	cause	the	app	to	crash.

Settings

88

Game	Services	|	Saved	Games:	Scripting
This	section	provides	a	guide	to	work	with	the	Saved	Games	scripting	API	of	the	Game	Services	module.

You	can	access	the	Saved	Games	API	via	the	SavedGames	property	of	the	GameServices	class	under	the
EasyMobile	namespace.

Working	with	saved	games	involves	the	following	operations:

Operation Description

Open

A	saved	game	must	be	opened	before	it	can	be	used	for	read	or	write	operation.	If	you	attempt	to
open	a	non-existing	saved	game,	a	new	one	will	be	created	and	will	be	opened	automatically.
You	must	resolve	any	conflicts	associated	with	a	saved	game	when	opening	it.	You	can	have	the
conflicts	resolved	automatically	using	one	of	the	default	strategies,	or	implement	your	own
strategy	to	resolve	them	manually.

Write Update	the	data	associated	with	a	saved	game,	the	saved	game	must	be	open	before	writing,
and	it	will	be	closed	automatically	after	the	operation	has	finished.

Read Retrieve	the	data	associated	with	a	saved	game,	the	saved	game	must	be	open.

Delete Delete	a	saved	game	from	the	cloud	service

Opening	Saved	Game
You	can	open	a	saved	game	using	either	the	OpenWithAutomaticConflictResolution	or	the
OpenWithManualConflictResolution	method.	Both	methods	open	a	saved	game	with	the	specified	name,	or	create	a
new	one	if	none	exists.	The	saved	game	returned	in	their	callbacks	will	be	open	which	means	it	can	be	used	for	read
or	write	operation.	The	difference	between	the	two	is	whether	saved	game	conflicts,	if	any,	will	be	resolved
automatically	or	manually.

If	the	current	platform	is	Google	Play	Game	Services,	these	methods	use	the	data	source	specified	in	the
module	settings.

Open	With	Automatic	Conflict	Resolution

As	its	name	suggests,	when	opening	a	saved	game	using	this	method,	any	outstanding	conflicts	will	be	resolved
automatically	using	the	resolution	strategy	specified	in	the	module	settings.

//	Put	this	on	top	of	the	script

using	EasyMobile;

//	To	store	the	opened	saved	game.

private	SavedGame	mySavedGame;

//	Open	a	saved	game	with	automatic	conflict	resolution

void	OpenSavedGame()

{

								//	Open	a	saved	game	named	"My_Saved_Game"	and	resolve	conflicts	automatically	if	any.

								GameServices.SavedGames.OpenWithAutomaticConflictResolution("My_Saved_Game",	OpenSavedGameCallback);

}

//	Open	saved	game	callback

void	OpenSavedGameCallback(SavedGame	savedGame,	string	error)

{

								if	(string.IsNullOrEmpty(error))

								{

Scripting

89

																Debug.Log("Saved	game	opened	successfully!");

																mySavedGame	=	savedGame;								//	keep	a	reference	for	later	operations						

								}

								else

								{

																Debug.Log("Open	saved	game	failed	with	error:	"	+	error);

								}

}

Open	With	Manual	Conflict	Resolution

If	the	saved	game	being	opened	has	outstanding	conflicts,	they	will	be	resolved	manually	using	the	specified	conflict
resolution	function.	This	function	must	be	implemented	by	you	and	it	is	where	you	provide	your	custom	conflict
resolution	strategy,	in	case	none	of	the	default	strategies	suits	your	needs.	The	function	will	be	invoked	automatically
when	a	conflict	is	encountered	while	opening	a	saved	game	and	can	be	invoked	multiple	times	if	the	saved	game	has
more	than	one	outstanding	conflict.	Therefore	it	must	be	designed	to	handle	multiple	invocations.

The	conflict	resolution	function	receives	the	Base	and	Remote	versions	of	the	conflicting	saved	game	(please	check
out	this	GameOn!	-	Saved	Games	In-Depth	(Part	2)	YouTube	video	by	Google	Developers	for	an	excellent
explanation	on	the	concepts	of	"base"	and	"remote").	These	passed	saved	games	are	all	open.	If
OpenWithManualConflictResolution	was	invoked	with	prefetchDataOnConflict	set	to	true,	the	binary	data	associated
with	these	saved	games	will	loaded	and	passed	to	the	conflict	resolution	function	too.	Use	the	return	value	of	this
function	to	determine	whether	the	base	or	the	remote	will	be	chosen	as	the	canonical	version	of	the	saved	game.

The	callback	will	be	invoked	when	all	conflicts	(if	any)	have	been	resolved	and	the	operation	finishes.

//	Put	this	on	top	of	the	script

using	EasyMobile;

//	To	store	the	opened	saved	game.

private	SavedGame	mySavedGame;

//	Open	a	saved	game	with	manual	conflict	resolution

void	OpenSavedGame()

{

								//	Open	a	saved	game	named	"My_Saved_Game"	and	resolve	any	outstanding	conflicts	manually	using

								//	the	specified	resolution	function.

								GameServices.SavedGames.OpenWithManualConflictResolution(

																"My_Saved_Game",

																true,								//	prefetchDataOnConflict

																MyConflictResolutionFunction,

																OpenSavedGameCallback

);

}

//	The	conflict	resolution	function.

//	baseGame	and	remoteGame	are	all	open.

//	If	OpenWithManualConflictResolution	was	invoked	with	prefetchDataOnConflict	set	to	true,

//	baseData	and	remoteData	will	contain	the	binary	data	associated	with	baseGame	and	remoteGame	respective.

//	They	will	be	null	otherwise.

//	In	this	function	you	can	perform	required	calculation,	comparison	between	two	versions,	etc.	to	decide

//	which	one	will	be	the	canonical	version	of	the	saved	game.	Use	the	return	value	to	indicate	your	decision.

SavedGameConflictResolutionStrategy	MyConflictResolutionFunction(SavedGame	baseGame,	byte[]	baseData,

																																																																SavedGame	remoteGame,byte[]	remoteData)

{

								{

																//	Perform	whatever	required	calculation,	comparison,	etc.	on	the	two	versions

																//	and	their	associated	data	to	help	you	decide	which	version	should	be	chosen.

																...

																//	After	determining	the	canonical	version,	use	the	return	value	to	indicate	your	choice

																return	SavedGameConflictResolutionStrategy.UseBase;								//	use	the	base	version

																//	If	you	want	to	select	the	remote	version	instead,	just	change	it	to

																//	return	SavedGameConflictResolutionStrategy.UseRemote;

								}

Scripting

90

https://www.youtube.com/watch?v=naQhSkzNGAI

}

//	Open	saved	game	callback

void	OpenSavedGameCallback(SavedGame	savedGame,	string	error)

{

								if	(string.IsNullOrEmpty(error))

								{

																Debug.Log("Saved	game	opened	successfully!");

																mySavedGame	=	savedGame;								//	keep	a	reference	for	later	operations						

								}

								else

								{

																Debug.Log("Open	saved	game	failed	with	error:	"	+	error);

								}

}

In	case	you	want	to	merge	the	data	from	different	versions,	simply	specify	either	the	base	or	the	remote	as	the
chosen	version.	Once	all	conflicts	are	resolved	and	the	saved	has	been	opened	successfully,	perform	a	write
operation	using	the	merge	data.

Writing	Saved	Game	Data
To	commit	new	data	to	a	saved	game,	use	the	WriteSavedGameData	method.	As	mention	earlier,	the	saved	game
must	be	open	before	writing	or	the	operation	will	fail.	When	this	method	completes	successfully,	the	data	is	durably
persisted	to	disk	and	will	eventually	be	uploaded	the	the	cloud	(in	practice,	this	process	happens	very	quickly	unless
the	device	doesn't	have	a	network	connection).	After	the	operation	finishes,	the	saved	game	will	be	closed
automatically.	This	is	to	force	it	to	be	opened	once	again	(thus	resolving	any	outstanding	conflicts)	before	another
commit	can	be	made.

//	Put	this	on	top	of	the	script

using	EasyMobile;

//	Updates	the	given	binary	data	to	the	specified	saved	game

void	WriteSavedGame(SavedGame	savedGame,	byte[]	data)

{

				if	(savedGame.IsOpen)

				{

								//	The	saved	game	is	open	and	ready	for	writing

								GameServices.SavedGames.WriteSavedGameData(

												savedGame,

												data,

												(SavedGame	updatedSavedGame,	string	error)	=>

												{

																if	(string.IsNullOrEmpty(error))

																{

																				Debug.Log("Saved	game	data	has	been	written	successfully!");

																}

																else

																{

																				Debug.Log("Writing	saved	game	data	failed	with	error:	"	+	error);

																}

);

				}

				else

				{

								//	The	saved	game	is	not	open.	You	can	optionally	open	it	here	and	repeat	the	process.

								Debug.Log("You	must	open	the	saved	game	before	writing	to	it.");

				}

}

Beside	the	binary	data,	you	can	also	update	the	metadata	(properties)	of	a	saved	game.	Just	use	the	overloading
version	of	WriteSavedGameData	that	accepts	a	SavedGameInfoUpdate	struct.

Scripting

91

Some	saved	game	properties	are	only	available	on	a	certain	platform,	please	review	the	Game	Service	>
Module	Configuration	>	Saved	Game	section	for	detailed	information.

//	Put	this	on	top	of	the	script

using	EasyMobile;

//	Updates	the	binary	data	AND	the	properties	of	a	saved	game

void	WriteSavedGame(SavedGame	savedGame,	byte[]	data)

{

				if	(savedGame.IsOpen)

				{

								//	The	saved	game	is	open	and	ready	for	writing

								//	Prepare	the	updated	metadata	of	the	saved	game

								SavedGameInfoUpdate.Builder	builder	=	new	SavedGameInfoUpdate.Builder();

								builder.WithUpdatedDescription("New_Description");			

								builder.WithUpdatedPlayedTime(TimeSpan.FromMinutes(30));				//	update	the	played	time	to	30	minutes

								SavedGameInfoUpdate	infoUpdate	=	builder.Build();

								GameServices.SavedGames.WriteSavedGameData(

												savedGame,

												data,

												infoUpdate,				//	update	saved	game	properties

												(SavedGame	updatedSavedGame,	string	error)	=>

												{

																if	(string.IsNullOrEmpty(error))

																{

																				Debug.Log("Saved	game	data	has	been	written	successfully!");

																}

																else

																{

																				Debug.Log("Writing	saved	game	data	failed	with	error:	"	+	error);

																}

);

				}

				else

				{

								//	The	saved	game	is	not	open.	You	can	optionally	open	it	here	and	repeat	the	process.

								Debug.Log("You	must	open	the	saved	game	before	writing	to	it.");

				}

}

Reading	Saved	Game	Data
To	read	a	saved	game	data,	use	the	ReadSavedGameData	method.	The	saved	game	must	be	open	before	reading.
The	callback	will	be	invoked	when	the	operation	finishes	and	will	receive	the	retrieved	data	as	a	byte	array,	which	can
be	empty	if	the	saved	game	has	no	data	committed	previously.

//	Put	this	on	top	of	the	script

using	EasyMobile;

//	Retrieves	the	binary	data	associated	with	the	specified	saved	game

void	ReadSavedGame(SavedGame	savedGame)

{

				if	(savedGame.IsOpen)

				{

								//	The	saved	game	is	open	and	ready	for	reading

								GameServices.SavedGames.ReadSavedGameData(

												savedGame,

												(SavedGame	game,	byte[]	data,	string	error)	=>

												{

																if	(string.IsNullOrEmpty(error))

																{

																				Debug.Log("Saved	game	data	has	been	retrieved	successfully!");

																				//	Here	you	can	process	the	data	as	you	wish.

Scripting

92

																				if	(data.Length	>	0)

																				{

																								//	Data	processing

																								...

																				}

																				else

																				{				

																								Debug.Log("The	saved	game	has	no	data!");

																				}

																}

																else

																{

																				Debug.Log("Reading	saved	game	data	failed	with	error:	"	+	error);

																}

);

				}

				else

				{

								//	The	saved	game	is	not	open.	You	can	optionally	open	it	here	and	repeat	the	process.

								Debug.Log("You	must	open	the	saved	game	before	reading	its	data.");

				}

}

Deleting	Saved	Game
To	delete	a	saved	game,	simply	call	the	DeleteSavedGame	method.

//	Put	this	on	top	of	the	script

using	EasyMobile;

//	Deletes	a	saved	game

void	DeleteSavedGame(SavedGame	savedGame)

{

				GameServices.SavedGames.DeleteSavedGame(savedGame);

}

Fetching	All	Saved	Games
When	implement	the	saved	games	feature	in	your	game,	chances	are	you	will	want	to	show	the	user	a	list	of	existing
saved	games	for	them	to	choose	from.	In	such	case,	you	can	use	the	FetchAllSavedGames	method	to	retrieve	all
know	saved	games.	A	callback	will	be	invoked	when	the	method	completes,	receiving	an	array	of	saved	games	which
can	be	empty	if	no	saved	game	was	created	before.	Note	that	all	the	returned	saved	games	are	NOT	open.

If	the	current	platform	is	Google	Play	Game	Services,	this	method	retrieves	saved	games	from	the	data	source
specified	in	the	module	settings.

//	Put	this	on	top	of	the	script

using	EasyMobile;

//	Fetches	all	know	saved	games.

void	FetchSavedGames()

{

				GameServices.SavedGames.FetchAllSavedGames(

								(SavedGame[]	games,	string	error)	=>

								{

												if	(string.IsNullOrEmpty(error))

												{

																Debug.Log("Fetched	saved	games	successfully!	Got	"	+	games.Length	+	"	saved	games.");

																//	Here	you	can	show	a	UI	to	display	these	saved	games	to	the	user...

Scripting

93

												}

												else

												{

																Debug.Log("Fetching	saved	games	failed	with	error	"	+	error);

												}

								}

);

}

[Android]	Built-in	Saved	Game	UI
On	Android,	the	Saved	Games	feature	of	Google	Play	Game	Services	offers	a	built-in	UI	from	which	the	user	can
open,	select	or	delete	a	saved	games.	You	can	show	this	UI	by	calling	the	ShowSelectSavedGameUI	method.	A
callback	will	be	invoked	when	the	UI	is	closed,	receiving	the	selected	saved	game	if	any.

This	method	is	a	no-op	on	iOS/Game	Center	platform.

//	Put	this	on	top	of	the	script

using	EasyMobile;

//	Shows	the	GPGS	built-in	saved	game	UI.

void	ShowGPGSSavedGameUI()

{

				GameServices.SavedGames.ShowSelectSavedGameUI(

								"Select	Saved	Game",				//	UI	title

								5,								//	maximum	number	of	displayed	saved	games

								true,				//	allow	creating	saved	games					

								true,				//	allow	deleting	saved	games

								(SavedGame	game,	string	error)	=>

								{

												if	(string.IsNullOrEmpty(error))

												{

																Debug.Log("You	selected	saved	game:	"	+	game.Name);

												}

												else

												{

																Debug.Log(error);

												}

								}

);

}

Scripting

94

Game	Services:	PlayMaker	Actions
The	PlayMaker	actions	of	the	Game	Services	module	are	group	in	the	category	Easy	Mobile	-	Game	Services	in	the
PlayMaker's	Action	Browser.

Please	refer	to	the	GameServicesDemo_PlayMaker	scene	in	folder
Assets/EasyMobile/Demo/PlayMakerDemo/Modules	for	an	example	on	how	these	actions	can	be	used.

PlayMaker	Actions

95

Saved	Games

The	PlayMaker	actions	of	the	Saved	Games	feature	are	group	in	the	category	Easy	Mobile	-	Saved	Games	in	the
PlayMaker's	Action	Browser.

Please	refer	to	the	GameServicesDemo_SavedGames_PlayMaker	scene	in	folder
Assets/EasyMobile/Demo/PlayMakerDemo/Modules	for	an	example	on	how	these	actions	can	be	used.

PlayMaker	Actions

96

PlayMaker	Actions

97

GIF:	Introduction
GIF	module	is	available	on	Easy	Mobile	Pro	only.

The	GIF	module	provides	you	convenient	tools	to	record	screen	activities	into	a	short	clip,	play	the	recorded	clip	and
export	it	into	a	GIF	image.	You	can	then	upload	the	GIF	file	to	hosting	sites	like	Giphy	and	finally	share	its	URL	to
social	networks.	In	short,	this	module	helps	you	easily	add	the	GIF	sharing	feature	to	your	game,	which	allows	the
user	to	share	animated	GIF	images	of	the	gameplay,	instead	of	still	screenshots,	to	social	networks	including
Facebook	and	Twitter.	The	following	picture	illustrates	a	typical	workflow	of	such	feature.

Here're	some	highlights	of	this	module:

High	performance,	mobile-friendly	GIF	generator

Low	overhead	screen/camera	recorder
GIF	generation	is	done	in	native	code	(iOS	and	Android)	on	a	separate	thread	to	allow	fast	exporting	while
minimizing	impact	to	the	main	thread.	Export	callbacks	are	still	called	from	main	thread	though,	so	you	can
safely	access	Unity	API	in	the	callback	handlers

Flexible,	fully	controllable	process

You	have	full	control	on	the	sizes,	length,	frame	rate,	loop	mode	and	quality	of	the	exported	GIF
You	can	also	set	the	priority	of	the	exporting	thread	to	best	suit	your	needs

High	quality	GIF

Exported	GIF	employs	GIF89a	format	and	uses	256-color	local	palettes	(one	palette	per	frame)
Frame	image	data	is	LWZ	compressed

Works	in	Unity	editor

GIF	exporting	also	works	in	the	editor,	mostly	for	testing	purpose.	On	mobiles,	the	exporting	is	done	in	native
code,	while	in	editor	it	is	done	in	managed	code	using	an	adapted	version	of	the	Moments	plugin	(see
Acknowledgement)

Easy	GIF	sharing

This	module	also	provides	Giphy	API	for	uploading	GIF	images	to	Giphy,	so	that	they	can	be	shared	and
played	on	major	social	networks	including	Facebook	and	Twitter	using	the	Giphy	hosted	URLs

Acknowledgement
The	recorder	used	in	this	module	is	adapted	from	the	recorder	of	the	Moments	plugin	by	Chman	(Thomas	Hourdel).
Also,	in	Unity	editor,	GIF	generation	is	done	using	an	adapted	version	of	this	plugin.

Introduction

98

https://giphy.com/
https://en.wikipedia.org/wiki/Lempel–Ziv–Welch
https://github.com/Chman/Moments

Introduction

99

GIF:	Setup
This	section	explains	the	various	components,	objects	and	concepts	involved	in	clip	recording,	clip	playing	and	GIF
exporting.	It	also	provides	a	guide	on	creating	and	configuring	relevant	objects	and	components.

Recorder	Component
The	Recorder	component	records	the	content	rendered	by	a	camera	and	returns	the	recorded	clip.	To	start	recording,
simply	add	a	Recorder	component	to	the	camera	that	renders	the	content	you're	interested	in	recording	(normally	this
will	be	the	Main	Camera).	To	add	the	component	to	a	camera,	select	that	camera	in	the	Hierarchy,	then	click	Add
Component	>	Easy	Mobile	>	Recorder.

Once	the	Recorder	component	is	added	to	the	camera,	you	can	start	configuring	it	in	the	inspector	to	determine	how
the	recorded	clip	(and	as	a	result,	the	exported	GIF)	will	be	like.

Auto	Height:	whether	the	clip	height	should	be	computed	automatically	from	the	specified	width	and	the	camera's
aspect	ratio,	which	is	useful	to	make	sure	the	exported	GIF	has	a	correct	aspect	ratio
Width:	the	width	of	the	recorded	clip	in	pixels
Height:	the	height	of	the	recorded	clip	in	pixels
Frames	Per	Second:	the	frame	rate	of	the	clip
Length:	the	clip	length	in	seconds;	the	recorder	automatically	discards	old	content	to	preserve	this	length,	e.g.	if
you	set	this	value	to	3	seconds,	only	last	3	seconds	of	the	recording	will	be	stored	in	the	resulted	clip,	the	rest	will

Setup

100

be	discarded
Estimated	VRam	Usage:	the	estimated	memory	used	for	recording,	calculated	based	on	the	above	settings
Current	State:	the	current	status	of	the	recorder,	which	is	either	Stopped	or	Recording

Now	that	the	recorder	is	configured,	you	can	start	and	stop	its	recording	activity	from	script	(see	the	Scripting
section).	Once	the	recording	is	stopped,	the	recorded	clip	will	be	returned	for	playback	of	GIF	exporting.

Recording	the	UI

To	record	the	UI	(Canvas	content),	you	need	to	set	the	Canvas	Render	Mode	to	World	Space	or	Screen	Space
-	Camera,	and	set	the	Render	Camera	to	the	one	containing	the	Recorder	component	in	the	latter	case.

Recording	multiple	composited	cameras

If	your	scene	contains	multiple	cameras	being	composited	(using	Camera.depth	and	Clear	flags),	you	can	add
the	Recorder	component	to	the	top-most	camera,	so	it	captures	whatever	content	being	composited	and	shown
by	that	camera.

AnimatedClip	Class
Recorded	clips	are	represented	by	the	AnimatedClip	class,	which	has	following	properties:

Width:	the	width	of	the	clip	in	pixels
Height:	the	height	of	the	clip	in	pixels
Frame	Per	Second:	the	frame	rate	of	the	clip
Length:	the	length	of	the	clip	in	seconds
Frames:	an	array	of	frames,	each	frame	is	a	Render	Texture	object

Playback

Easy	Mobile	provides	two	built-in	objects	dedicated	for	playing	recorded	clips:	the	Clip	Player	and	Clip	Player	UI
objects.	You	can	create	them	from	the	context	menu	(as	you	would	with	other	Unity	built-in	objects),	configure	them	in
the	inspector,	and	start	or	stop	their	playing	activity	from	script	(see	the	Scripting	section).

Clip	Player

The	Clip	Player	is	a	non-UI	object,	which	is	basically	a	Quad	object	equipped	with	a	ClipPlayer	component.	It	is	meant
to	be	used	inside	the	game	world.	To	create	a	Clip	Player	object,	right-click	in	the	Hierarchy	window	to	open	the
context	menu,	then	select	Easy	Mobile	>	Clip	Player.

Setup

101

https://docs.unity3d.com/Manual/class-RenderTexture.html

Each	Clip	Player	object	contains	a	ClipPlayer	component.

The	only	parameter	of	this	component	is	the	Scale	Mode,	which	can	take	one	of	3	values:

None:	don't	adjust	the	object	sizes
Auto	Height:	keeps	the	current	height	of	the	object	(the	Y	component	of	its	localScale),	and	adjust	the	width	(the
X	component	of	its	localScale)	to	match	the	aspect	ratio	of	the	clip	being	played
Auto	Width:	keeps	the	current	width	of	the	object	(the	X	component	of	its	localScale),	and	adjust	the	height	(the	Y
component	of	its	localScale)	to	match	the	aspect	ratio	of	the	clip	being	played

Clip	Player	UI

The	Clip	Player	UI,	as	it	name	implies,	is	a	UI	object	living	inside	a	Canvas.	It	is	the	object	to	use	when	you	want	to
play	a	clip	inside	the	UI.	It	is	basically	a	Raw	Image	object	equipped	with	a	ClipPlayerUI	component.	To	create	a	Clip
Player	UI	object,	right-click	in	the	Hierarchy	window	to	open	the	context	menu,	then	select	Easy	Mobile	>	Clip	Player
(UI).

Setup

102

Each	Clip	Player	UI	object	contains	a	ClipPlayerUI	component.

The	only	parameter	of	this	component	is	the	Scale	Mode,	which	can	take	one	of	3	values:

None:	don't	adjust	the	object	sizes
Auto	Height:	keeps	the	current	height	of	the	object	(the	Height	value	in	its	Rect	Transform),	and	adjust	the	width
(the	Width	value	in	its	Rect	Transform)	to	match	the	aspect	ratio	of	the	clip	being	played
Auto	Width:	keeps	the	current	width	of	the	object	(the	Width	value	in	its	Rect	Transform),	and	adjust	the	height
(the	Height	value	in	its	Rect	Transform)	to	match	the	aspect	ratio	of	the	clip	being	played

Custom	Clip	Player

Beside	the	two	built-in	clip	players	provided	by	Easy	Mobile,	you	can	construct	your	own	player	to	serve	your	specific
needs.	To	make	it	consistent	with	other	players,	and	compatible	with	Easy	Mobile	API,	this	player	should	contain	a
script	implementing	the	IClipPlayer	interface,	which	is	responsible	for	applying	the	frames	(RenderTextures)	of	the
clip,	at	the	required	frame	rate,	to	whatever	texture-displaying	component	it	is	equipped	with.

Setup

103

GIF:	Scripting
This	section	provides	a	guide	to	work	with	the	GIF	module	scripting	API.	At	this	stage,	it's	assumed	that	you	have
setup	a	recorder	for	the	camera	you	want	to	record,	and	created	an	appropriate	clip	player	to	play	the	recorded	clip.	If
you're	not	familiar	with	these	concepts,	please	review	the	Setup	section.

You	can	access	the	GIF	module	API	via	the	Gif	class	under	the	EasyMobile	namespace.	As	for	Giphy	API,	use
the	Giphy	class.

Recording
To	start	recording	on	the	created	recorder,	use	the	StartRecording	method.	You	can	do	this	as	soon	as	the	game
starts;	the	recorder	only	stores	a	few	last	seconds	(specified	by	the	Length	parameter	in	the	Recorder	inspector)	of
the	recording,	and	automatically	discards	the	rest.

//	Put	this	on	top	of	the	script

using	EasyMobile;

//	Drag	the	camera	with	the	Recorder	component	to	this	field	in	the	inspector

public	Recorder	recorder;

//	You	can	start	recording	as	soon	as	your	game	starts

//	(suppose	you	have	a	method	named	StartGame,	which	is	called	when	the	game	starts)

void	StartGame()

{

				//	Start	recording!

				Gif.StartRecording(recorder);				

				//	Do	other	stuff...

}

To	stop	recording,	simply	call	the	StopRecording	method,	passing	the	relevant	recorder.	The	method	returns	an
AnimatedClip	object,	which	can	be	played	or	exported	into	a	GIF	image	afterward.	To	continue	the	previous	example:

//	Put	this	on	top	of	the	script

using	EasyMobile;

//	Drag	the	camera	with	the	Recorder	component	to	this	field	in	the	inspector

public	Recorder	recorder;

//	The	recorded	clip

AnimatedClip	myClip;

//	You	can	start	recording	as	soon	as	your	game	starts

//	(suppose	you	have	a	method	named	StartGame,	which	is	called	when	the	game	starts)

void	StartGame()

{

				//	Start	recording!

				Gif.StartRecording(recorder);				

				//	Do	other	stuff...

}

//	A	suitable	time	to	stop	recording	may	be	when	the	game	ends	(the	player	dies)

Scripting

104

//	(suppose	you	have	a	method	named	GameOver,	called	when	the	game	ends)

void	GameOver()

{

				//	Stop	recording

				myClip	=	Gif.StopRecording(recorder);

				//	Do	other	stuff...

}

Playback
To	play	a	recorded	clip	using	a	pre-created	clip	player,	use	the	PlayClip	method.	This	method	receives	as	argument
an	IClipPlayer	interface,	which	is	implemented	by	both	ClipPlayer	and	ClipPlayerUI	classes,	therefore	it	works	with
both	Clip	Player	and	Clip	Player	UI	object.	The	second	argument	is	an	AnimatedClip	object.	Other	arguments	include
an	optional	delay	time	before	the	playing	starts,	and	the	looping	mode.	You	can	pause,	resume	and	stop	the	player
using	the	PausePlayer,	ResumePlayer	and	StopPlayer	methods,	respectively.

To	continue	the	previous	example:

//	Put	this	on	top	of	the	script

using	EasyMobile;

//	Drag	the	camera	with	the	Recorder	component	to	this	field	in	the	inspector

public	Recorder	recorder;

//	Suppose	you've	created	a	ClipPlayerUI	object	(ClipPlayer	will	also	work)

//	Drag	the	pre-created	clip	player	to	this	field	in	the	inspector

public	ClipPlayerUI	clipPlayer;

//	The	recorded	clip

AnimatedClip	myClip;

//	You	can	start	recording	as	soon	as	your	game	starts

//	(suppose	you	have	a	method	named	StartGame,	which	is	called	when	the	game	starts)

void	StartGame()

{

				//	Start	recording!

				Gif.StartRecording(recorder);				

				//	Do	other	stuff...

}

//	A	suitable	time	to	stop	recording	may	be	when	the	game	ends	(the	player	dies)

//	(suppose	you	have	a	method	named	GameOver,	called	when	the	game	ends)

void	GameOver()

{

				//	Stop	recording

				myClip	=	Gif.StopRecording(recorder);

				//	Play	the	recorded	clip!

				PlayMyClip();

}

//	This	method	plays	the	recorded	clip	on	the	created	player,

//	with	no	delay	before	playing,	and	loop	indefinitely.

void	PlayMyClip()

{

				Gif.PlayClip(clipPlayer,	myClip);

}

//	This	method	plays	the	recorded	clip	on	the	created	player,

//	with	a	delay	of	1	seconds	before	playing,	and	loop	indefinitely,

Scripting

105

//	(you	can	set	loop	=	false	to	play	the	clip	only	once)

void	PlayMyClipWithDelay()

{

				Gif.PlayClip(clipPlayer,	myClip,	1f,	true);

}

//	This	method	pauses	the	player.

void	PausePlayer()

{

				Gif.PausePlayer(clipPlayer);

}

//	This	method	un-pauses	the	player.

void	UnPausePlayer()

{

				Gif.ResumePlayer(clipPlayer);

}

//	This	method	stops	the	player.

void	StopPlayer()

{

				Gif.StopPlayer(clipPlayer);

}

Exporting	GIF
To	export	the	recorded	clip	into	a	GIF	image,	use	the	ExportGif	method.	In	the	editor,	the	exported	GIF	file	will	be
stored	right	under	the	Assets	folder;	on	mobile	devices,	the	storage	location	is	Application.persistentDataPath.	You
can	specify	the	filename	and	the	quality	of	the	GIF	image	as	well	as	the	priority	of	the	exporting	thread.	The	quality
setting	accepts	values	from	1	to	100	(inputs	will	be	clamped	to	this	range).	Bigger	values	will	result	in	better	looking
GIFs,	but	will	take	slightly	longer	processing	time;	80	is	generally	a	good	value	in	terms	of	time-quality	balance.	This
method	has	two	callbacks:	one	is	called	repeatedly	during	the	process	and	receives	the	progress	value	(0	to	1),	the
other	is	called	when	the	export	completes	and	receives	the	file	path	of	the	generated	image.	Though	the	GIF
generation	process	is	done	in	a	separate	thread,	these	callbacks	are	guaranteed	to	be	called	from	the	main	thread,	so
you	can	safely	access	all	Unity	API	from	within	them.

In	the	rare	case	that	you	want	to	control	the	looping	mode	of	the	exported	GIF	(the	default	is	loop	indefinitely),	use	the
variant	of	ExportGif	that	has	a	loop	parameter	(note	that	some	GIF	players	may	ignore	this	setting):

loop	<	0:	disable	looping	(play	once)
loop	=	0:	loop	indefinitely
loop	>	0:	loop	a	number	of	times

In	the	following	example,	we'll	export	a	GIF	image	from	the	recorded	clip	returned	after	the	recording	has	stopped.

//	Put	this	on	top	of	the	script

using	EasyMobile;

//	Drag	the	camera	with	the	Recorder	component	to	this	field	in	the	inspector

public	Recorder	recorder;

//	The	recorded	clip

AnimatedClip	myClip;

//	You	can	start	recording	as	soon	as	your	game	starts

//	(suppose	you	have	a	method	named	StartGame,	which	is	called	when	the	game	starts)

void	StartGame()

{

				//	Start	recording!

				Gif.StartRecording(recorder);				

				//	Do	other	stuff...

Scripting

106

https://docs.unity3d.com/560/Documentation/ScriptReference/Application-persistentDataPath.html

}

//	A	suitable	time	to	stop	recording	can	be	when	the	game	ends	(the	player	dies)

//	(suppose	you	have	a	method	named	GameOver,	called	when	the	game	ends)

void	GameOver()

{

				//	Stop	recording

				myClip	=	Gif.StopRecording(recorder);

				//	Export	GIF	image	from	the	resulted	clip

				ExportMyGif();

}

//	This	method	exports	a	GIF	image	from	the	recorded	clip.

void	ExportMyGif()

{

				//	Parameter	setup

				string	filename	=	"myGif";				//	filename,	no	need	the	".gif"	extension

				int	loop	=	0;																	//	-1:	no	loop,	0:	loop	indefinitely,	>0:	loop	a	set	number	of	times

				int	quality	=	80;													//	80	is	a	good	value	in	terms	of	time-quality	balance

				System.Threading.ThreadPriority	tPriority	=	System.Threading.ThreadPriority.Normal;	//	exporting	thread	pri

ority

				Gif.ExportGif(myClip,

																filename,

																loop,

																quality,

																tPriority,

																OnGifExportProgress,

																OnGifExportCompleted);

}

//	This	callback	is	called	repeatedly	during	the	GIF	exporting	process.

//	It	receives	a	reference	to	original	clip	and	a	progress	value	ranging	from	0	to	1.

void	OnGifExportProgress(AnimatedClip	clip,	float	progress)

{

				Debug.Log(string.Format("Export	progress:	{0:P0}",	progress));

}

//	This	callback	is	called	once	the	GIF	exporting	has	completed.

//	It	receives	a	reference	to	the	original	clip	and	the	filepath	of	the	generated	image.

void	OnGifExportCompleted(AnimatedClip	clip,	string	path)

{

				Debug.Log("A	GIF	image	has	been	created	at	"	+	path);

}

Disposing	of	AnimatedClip
Internally,	each	AnimatedClip	object	consists	of	an	array	of	RenderTexture,	a	"native	engine	object"	type,	which	is	not
garbage	collected	as	normal	managed	types.	That	means	these	render	textures	won't	be	"destroyed"	automatically
when	their	containing	clip	is	garbage	collected	(the	clip	object	does	get	collected,	but	the	render	textures	it	references
don't,	thus	creating	memory	leaks).	To	take	care	of	this	issue,	we	have	the	AnimatedClip	implement	the	IDisposable
interface	and	provide	the	Dispose	method	to	release	the	render	textures,	as	Unity	advised.	It's	strongly	recommended
that	you	call	this	Dispose	method,	preferably	as	soon	as	you're	done	with	using	a	clip	(e.g.	after	playing	or	exporting
GIF),	to	make	sure	the	render	textures	are	properly	released	and	not	cause	memory	issues.

We'll	extend	the	OnGifExportCompleted	callback	handler	of	the	previous	example	to	dispose	the	recorded	clip	as
soon	as	we've	generated	a	GIF	image	from	it.

//	This	callback	is	called	once	the	GIF	exporting	has	completed.

//	It	receives	a	reference	to	the	original	clip	and	the	filepath	of	the	generated	image.

Scripting

107

https://docs.unity3d.com/560/Documentation/ScriptReference/RenderTexture.html

void	OnGifExportCompleted(AnimatedClip	clip,	string	path)

{

				Debug.Log("A	GIF	image	has	been	created	at	"	+	path);

				//	We've	done	using	the	clip,	dispose	it	to	save	memory

				if	(clip	==	myClip)

				{

								myClip.Dispose();

								myClip	=	null;

				}

}

Since	version	2.1.0,	we've	updated	AnimatedClip	such	that	it	automatically	releases	the	RenderTexture	object
once	it	is	collected,	thus	avoiding	memory	leaks	even	if	you	forget	to	call	Dispose.	However,	it	can	take	a	long
time	before	a	clip	gets	collected	by	the	garbage	collector,	so	it's	still	a	good	practice	to	dispose	a	clip	as	soon	as
you're	done	using	it	to	avoid	wasting	memory.

Sharing	GIF
Now	that	a	GIF	image	has	been	created,	you	may	want	to	share	it	(because	it's	not	fun	otherwise,	is	it?).	A	common
approach	is	to	first	upload	the	image	to	Giphy,	a	popular	GIF	hosting	site,	and	then	share	the	returned	URL	to	other
social	networks	like	Facebook	and	Twitter,	using	Easy	Mobile's	Native	Sharing	feature	(see	the	Native	Sharing	>
Scripting	section,	in	particular	the	ShareURL	method).

According	to	Giphy	API	documentation,	hosted	Giphy	URLs	are	supported	and	play	on	every	major	social
network.

Upload	to	Giphy

To	upload	a	GIF	image	to	Giphy,	use	the	Upload	method	of	the	Giphy	class.	You	can	upload	a	local	image	on	your
device,	or	an	image	hosted	online,	provided	that	you	have	its	URL.	Before	doing	so,	you'll	need	to	prepare	the	upload
content	by	creating	a	GiphyUploadParams	struct.	In	this	struct	you'll	specify	either	the	file	path	of	the	local	image,	or
the	URL	of	the	online	image	to	upload.	Note	that	if	both	parameters	are	provided,	the	local	file	path	will	be	used	over
the	URL.	Within	this	struct	you	can	also	specify	other	optional	parameters	such	as	image	tags,	the	source	of	the
image	(e.g.	your	website),	or	mark	the	image	as	private	(only	visible	by	you	on	Giphy).	The	Upload	method	has	three
callbacks:	the	first	one	is	called	repeatedly	during	the	upload	process,	receiving	a	progress	value	(0	to	1);	the	second
one	is	called	once	the	upload	has	completed,	receiving	the	URL	of	the	uploaded	image;	and	the	last	one	will	be	called
if	the	upload	has	failed,	receiving	the	error	message.	All	callbacks	are	called	from	the	main	thread.

Giphy	Beta	and	Production	Key

The	Upload	method	has	two	variants:	one	using	Giphy's	public	beta	key,	and	the	other	using	your	own	channel
username	and	production	API	key.	The	public	beta	key	is	meant	to	be	used	in	development	only.	According	to
Giphy	Upload	API	documentation,	it	is	"subject	to	rate	limit	constraints",	and	they	"do	not	encourage	live
production	deployments	to	use	the	public	key".	If	you	have	created	a	Giphy	channel	and	want	to	upload	GIF
images	directly	to	that	channel,	you'll	need	to	request	an	Upload	Production	Key,	then	provide	that	key	and	your
channel	username	to	the	Upload	method.

We'll	extend	the	above	example,	and	modify	the	OnGifExportCompleted	callback	handler	to	upload	the	GIF	image	to
Giphy	once	it	is	created.	We'll	demonstrate	two	cases:	upload	using	the	public	beta	key	and	upload	using	your	own
production	key.

//	This	callback	is	called	once	the	GIF	exporting	has	completed.

//	It	receives	a	reference	to	the	original	clip	and	the	filepath	of	the	generated	image.

void	OnGifExportCompleted(AnimatedClip	clip,	string	path)

{

				Debug.Log("A	GIF	image	has	been	created	at	"	+	path);

Scripting

108

https://giphy.com/
https://github.com/giphy/Giphyapi#overview-1
https://github.com/giphy/Giphyapi#upload-api
https://github.com/giphy/Giphyapi#request-an-upload-production-key

				//	We've	done	using	the	clip,	dispose	it	to	save	memory

				if	(clip	==	myClip)

				{

								myClip.Dispose();

								myClip	=	null;

				}

				//	The	GIF	image	has	been	created,	now	we'll	upload	it	to	Giphy

				//	First	prepare	the	upload	content

				var	content	=	new	GiphyUploadParams();

				content.localImagePath	=	path;				//	the	file	path	of	the	generated	GIF	image

				content.tags	=	"easy	mobile,	sglib	games,	unity";				//	optional	image	tags,	comma-delimited

				content.sourcePostUrl	=	"YOUR_WEBSITE_ADDRESS";				//	optional	image	source,	e.g.	your	website

				content.isHidden	=	false;				//	optional	hidden	flag,	set	to	true	to	mark	the	image	as	private												

				//	Upload	the	image	to	Giphy	using	the	public	beta	key

				UploadToGiphyWithBetaKey(content);

}

//	This	method	uploads	a	GIF	image	to	Giphy	using	the	public	beta	key,

//	no	need	to	specify	any	username	or	API	key	here.

void	UploadToGiphyWithBetaKey(GiphyUploadParams	content)

{

				Giphy.Upload(content,	OnGiphyUploadProgress,	OnGiphyUploadCompleted,	OnGiphyUploadFailed);

}

//	This	method	uploads	a	GIF	image	to	your	own	Giphy	channel,

//	using	your	channel	username	and	production	key.

void	UploadToGiphyWithProductionKey(GiphyUploadParams	content)

{

				Giphy.Upload("YOUR_CHANNEL_USERNAME",	"YOUR_PRODUCTION_KEY",

																				content,

																				OnGiphyUploadProgress,

																				OnGiphyUploadCompleted,

																				OnGiphyUploadFailed);

}

//	This	callback	is	called	repeatedly	during	the	uploading	process.

//	It	receives	a	progress	value	ranging	from	0	to	1.

void	OnGiphyUploadProgress(float	progress)

{

				Debug.Log(string.Format("Upload	progress:	{0:P0}",	progress));

}

//	This	callback	is	called	once	the	uploading	has	completed.

//	It	receives	the	URL	of	the	uploaded	image.

void	OnGiphyUploadCompleted(string	url)

{

				Debug.Log("The	GIF	image	has	been	uploaded	successfully	to	Giphy	at	"	+	url);

}

//	This	callback	is	called	if	the	upload	has	failed.

//	It	receives	the	error	message.

void	OnGiphyUploadFailed(string	error)

{

				Debug.Log("Uploading	to	Giphy	has	failed	with	error:	"	+	error);

}

Display	the	Giphy	Attribution	Marks

To	request	a	Production	Key,	Giphy	require	you	to	display	the	"Powered	by	Giphy"	attribution	marks	whenever	their
API	is	utilized	in	your	app,	and	provide	screenshots	of	your	attribution	placement	when	submitting	for	the	key.	To	take
care	of	this,	we	provide	the	static	IsUsingAPI	boolean	property	inside	the	Giphy	class.	This	property	will	be	true	as
long	as	Giphy	API	is	in	use,	to	let	you	know	when	to	show	their	attribution	marks.	You	can	display	the	attribution	logo
using	an	Image	or	a	Sprite	object,	then	poll	this	property	inside	the	Update()	function,	and	activate	or	deactivate	the
object	accordingly.

You	can	download	Giphy's	official	attribution	marks	here.

Scripting

109

https://github.com/giphy/Giphyapi#request-a-production-key
https://github.com/giphy/Giphyapi#request-a-production-key

//	Drag	the	object	displaying	the	attribution	marks	to	this	field	in	the	inspector

public	GameObject	attribution;

void	Update()

{

				attribution.SetActive(Giphy.IsUsingAPI);

}

Share	Giphy	URLs

After	uploading	your	GIF	image	to	Giphy	and	obtain	its	URL,	you	can	share	this	URL	using	the	ShareURL	method	of
the	MobileNativeShare	class.	In	the	example	below,	we'll	modify	the	OnGiphyUploadCompleted	callback	handler	of
the	previous	example	to	store	the	returned	URL	into	a	global	variable,	which	can	be	used	for	later	sharing.

//	Global	variable	to	hold	the	Giphy	URL	of	the	uploaded	GIF

string	giphyURL;

//	This	callback	is	called	once	the	uploading	has	completed.

//	It	receives	the	URL	of	the	uploaded	image.

void	OnGiphyUploadCompleted(string	url)

{

				Debug.Log("The	GIF	image	has	been	uploaded	successfully	to	Giphy	at	"	+	url);

				//	Store	the	URL	into	our	global	variable

				giphyURL	=	url;

}

//	This	method	shares	the	URL	using	the	native	sharing	utility	on	iOS	and	Android

public	void	ShareGiphyURL()

{

				if	(!string.IsNullOrEmpty(giphyURL))

				{

								MobileNativeShare.ShareURL(giphyURL);

				}

}

Scripting

110

GIF:	PlayMaker	Actions
The	PlayMaker	actions	of	the	GIF	module	are	group	in	the	category	Easy	Mobile	-	Gif	in	the	PlayMaker's	Action
Browser.

Please	refer	to	the	GifDemo_PlayMaker	scene	in	folder	Assets/EasyMobile/Demo/PlayMakerDemo/Modules	for
an	example	on	how	these	actions	can	be	used.

PlayMaker	Actions

111

PlayMaker	Actions

112

In-App	Purchasing:	Introduction
The	In-App	Purchasing	module	helps	you	quickly	setup	and	sell	digital	products	in	your	game.	Here're	some	highlights
of	this	modules:

Leverages	Unity	In-App	Purchasing	service

This	module	is	built	on	top	of	Unity	IAP	service,	a	powerful	service	that	supports	most	app	stores	including
iOS	App	Store,	Google	Play,	Amazon	Apps,	Samsung	GALAXY	Apps	and	Tizen	Store
Unity	IAP	is	tightly	integrated	with	the	Unity	engine,	so	compatibility	and	reliability	can	be	expected

Easy	management	of	product	catalog

Easy	Mobile's	custom	editor	features	a	friendly	interface	that	helps	you	easily	add,	edit	or	remove	products
Receipt	validation

Local	receipt	validation	that	offers	extra	security

Introduction

113

In-App	Purchasing:	Settings
To	use	the	In-App	Purchasing	module	you	must	first	enable	it.	Go	to	Window	>	Easy	Mobile	>	Settings,	select	the	In-
App	Purchasing	tab,	then	click	the	right-hand	side	toggle	to	enable	and	start	configuring	the	module.

Enabling	Unity	IAP
The	In-App	Purchasing	module	requires	Unity	IAP	service	to	be	enabled.	It	will	automatically	check	for	the	service's
availability	and	prompt	you	to	enable	it	if	needed.	Below	is	the	module	settings	interface	when	Unity	IAP	is	disabled.

Settings

114

To	use	Unity	In-App	Purchasing	service,	you	must	first	set	up	your	project	for	Unity	Services.

To	enable	Unity	IAP	service	go	to	Window	>	Services	and	select	the	In-App	Purchasing	tab.

Settings

115

https://docs.unity3d.com/Manual/SettingUpProjectServices.html

In	the	opened	configuration	window,	click	the	toggle	at	the	right-hand	side	or	the	Enable	button	to	enable	Unity	IAP
service.

A	dialog	window	will	appear	asking	a	few	questions	about	your	game	in	order	to	ensure	COPPA	compliance.

Next	click	the	Import	button	to	import	the	Unity	IAP	package	to	your	project.

Settings

116

After	importing,	there	should	be	a	UnityPurchasing	folder	added	under	Assets/Plugins	folder.

Enabling	Unity	IAP	service	will	automatically	enable	the	Unity	Analytics	service	(if	it's	not	enabled	before),	this	is	a
requirement	to	use	Unity	IAP.	Go	back	to	the	Services	panel	and	make	sure	that	both	In-App	Purchasing	and
Analytics	services	are	now	enabled.

Settings

117

After	enabling	Unity	IAP	service,	the	settings	interface	of	the	In-App	Purchasing	module	will	be	updated	and	ready	for
you	to	start	configuring.

Settings

118

Target	Android	Store
If	you're	building	for	Android	platform,	you	need	to	specify	your	target	store.	In	the	[ANDROID]	TARGET	STORE
section	select	your	target	store	from	the	dropdown.

Apple	Ask-To-Buy

Settings

119

Since	iOS	8.0,	Apple	introduces	a	new	parental	control	feature	called	Ask	To	Buy.	Basically,	Ask	To	Buy	purchases
will	defer	for	parental	approval.	When	this	occurs,	the	In-App	Purchasing	module	will	notify	your	app	by	raising	the
PurchaseDeferred	event,	which	you	can	subscribe	to	perform	necessary	actions,	e.g.	updating	your	UI	to	reflect	the
deferred	state	of	the	purchases.

In	the	APPLE	ASK-TO-BUY	section	you	can	check	the	Simulate	Ask-To-Buy	option	to	enable	the	simulation	of	this
feature	in	the	sandbox	environment,	which	is	useful	for	testing	during	development.

This	setting	has	no	effect	on	non-Apple	platforms.

Apple	Promotional	Purchases
Apple	allows	you	to	promote	in-app	purchases	through	your	app’s	product	page.	Unlike	conventional	in-app
purchases,	Apple	promotional	purchases	initiate	directly	from	the	App	Store	on	iOS	and	tvOS.	The	App	Store	then
launches	your	app	to	complete	the	transaction,	or	prompts	the	user	to	download	the	app	if	it	isn’t	installed.

You	can	instruct	the	In-App	Purchasing	module	to	intercept	these	promotional	purchases	by	checking	the	Intercept
Promotional	Purchases	option	in	the	APPLE	PROMOTIONAL	PURCHASES	section.	Once	a	promotional	purchase	is
intercepted,	the	PromotionalPurchaseIntercepted	event	will	be	fired.	You	can	subscribe	to	this	event	and	in	its	handler
perform	necessary	actions	such	as	presenting	parental	gates,	sending	analytics	events,	etc.	before	sending	the
purchase	back	to	Apple	by	calling	the	ContinueApplePromotionalPurchases	method,	which	will	initiate	any	queued-up
payments.	If	you	do	not	enable	this	option,	the	promotional	purchases	will	go	through	immediately	with	the
PurchaseCompleted	or	PurchaseFailed	event	being	fired	according	to	the	purchase	result,	and	the
PromotionalPurchaseIntercepted	will	never	be	raised.

The	Intercept	Promotional	Purchases	setting	has	no	effect	on	non-Apple	platforms.
It	is	vital	to	call	the	ContinueApplePromotionalPurchases	method	in	the	handler	of	the
PromotionalPurchaseIntercepted	event	for	the	purchases	to	be	processed	properly	after	being	intercepted.

Receipt	Validation
The	receipt	validation	feature	provides	extra	security	and	helps	prevent	prevent	fraudulent	users	from	accessing
content	they	have	not	purchased.	This	feature	employs	Unity	IAP's	local	receipt	validation,	which	means	the	validation
takes	place	on	the	target	device,	without	the	need	to	connect	to	a	remote	server.

Receipt	validation	is	available	for	Apple	stores	and	Google	Play	store.	Please	find	more	information	about	Unity
IAP's	receipt	validation	here.

Obfuscating	Encryption	Keys

To	enable	receipt	validation,	you	must	first	create	obfuscated	encryption	keys.	The	purpose	of	this	obfuscating
process	is	to	prevent	a	fraudulent	user	from	accessing	the	actual	keys,	which	are	used	for	the	validation	process.	To
obfuscate	your	encryption	keys,	go	to	Window	>	Unity	IAP	>	Receipt	Validation	Obfuscator.

Settings

120

https://developer.apple.com/library/archive/technotes/tn2259/_index.html#//apple_ref/doc/uid/DTS40009578-CH1-UPDATE_YOUR_APP_FOR_ASK_TO_BUY
https://developer.apple.com/app-store/promoting-in-app-purchases/
https://docs.unity3d.com/Manual/UnityIAPValidatingReceipts.html

In	the	opened	IAP	Obfuscator	window,	paste	in	your	Google	Play	public	key	and	hit	the	Obfuscate	secrets	button.
According	to	Unity	documentation,	this	will	obfuscate	both	Apple's	root	certificate	(bundle	with	Unity	IAP)	and	the
provided	Google	Play	public	key	and	create	two	C#	files	AppleTangle	and	GooglePlayTangle	at
Assets/Plugins/UnityPurchasing/generated.	These	files	are	required	for	the	receipt	validation	process.

To	obtain	the	Google	Play	public	key	for	your	app,	login	to	your	Google	Play	Developer	Console,	select	your
app,	then	navigate	to	the	Services	&	APIs	section	and	find	your	key	under	the	section	labeled	YOUR
LICENSE	KEY	FOR	THIS	APPLICATION.

Note	that	you	don't	need	to	provide	a	Google	Play	public	key	if	you're	only	targeting	Apple	stores.

Enabling	Receipt	Validation

After	creating	the	obfuscated	encryption	keys,	you	can	now	enable	receipt	validation	for	your	game.	Open	the	In-App
Purchasing	module	settings,	then	in	the	RECEIPT	VALIDATION	section	check	the	corresponding	options	for	your
targeted	stores.

Product	Management
In	the	PRODUCTS	section	you	can	easily	add,	edit	or	remove	your	IAP	products.

Adding	a	New	Product

To	add	a	new	product,	click	the	Add	New	Product	button.

A	new	empty	product	will	be	added.

Settings

121

Fill	in	the	required	information	for	your	new	product:

Name:	the	product	name,	can	be	used	when	making	purchases
Type:	the	product	type,	can	be	Consumable,	Non-Consumable	or	Subscription
Id:	the	unified	product	identifier,	you	should	use	this	ID	when	declaring	the	product	on	your	targeted	stores;
otherwise,	if	you	need	to	have	a	different	ID	for	this	product	on	a	certain	store,	add	it	to	the	Store-Specific	Ids
array	(see	below)

Click	More	if	you	need	to	enter	store-specific	IDs	or	fill	in	optional	information	for	your	product.

Price:	the	product	price	string	for	displaying	purpose
Description:	the	product	description	for	displaying	purpose
Store-Specific	Ids:	if	you	need	to	use	a	different	product	ID	(than	the	unified	ID	provided	above)	on	a	certain
store,	you	can	add	it	here

Adding	Store-Specific	ID
To	add	a	new	ID	to	the	Store-Specific	Ids	array,	increase	the	array	size	by	adjusting	the	number	in	the	right-
hand	side	box.	A	new	record	will	be	added	where	you	can	select	the	targeted	store	and	enter	the	corresponding
product	ID	for	that	store.

Below	is	a	sample	product	with	all	the	information	entered	including	the	two	store-specific	IDs.

Settings

122

Removing	a	Product

To	remove	a	product,	simply	click	the	[-]	button	at	the	right	hand	side.

Arranging	Product	List

You	can	use	the	two	arrow-up	and	arrow-down	buttons	to	move	a	product	upward	or	downward	within	the	product	list.

Setup	Products	for	Targeted	Stores

Beside	creating	the	product	list	in	Unity,	you	also	need	to	declare	similar	products	for	your	targeted	stores,	e.g.	if
you're	targeting	iOS	App	Store	you	need	to	create	the	products	in	iTunes	Connect.	If	you're	not	familiar	with	the
process,	you	can	follow	Unity's	instructions	on	configuring	IAP	for	various	stores,	which	also	include	useful	information
about	IAP	testing.

On	Google	Play	store,	both	consumable	and	non-consumable	products	are	defined	as	Managed	product.	If	a
product	is	set	to	Consumable	type	in	Unity,	the	module	will	automatically	handle	the	consumption	of	the	product
once	it	is	bought	and	make	it	available	for	purchase	again.

Constants	Generation
Constants	generation	is	a	feature	of	the	In-App	Purchasing	module.	It	reads	all	the	product	names	and	generates	a
static	class	named	EM_IAPConstants	that	contains	the	constants	of	these	names.	Later,	you	can	use	these	constants
when	making	purchases	in	script	instead	of	typing	the	product	names	directly,	thus	help	prevent	runtime	errors	due	to
typos	and	the	likes.

Settings

123

https://docs.unity3d.com/Manual/UnityIAPAppleConfiguration.html

To	generate	the	constants	class	(you	should	do	this	after	finishing	with	product	editing),	click	the	Generate	Constants
Class	button	within	the	CONSTANTS	CLASS	GENERATION	section.

When	the	process	completes,	a	file	named	EM_IAPConstants	will	be	created	at	Assets/EasyMobile/Generated.

Settings

124

In-App	Purchasing:	Scripting
This	section	provides	a	guide	to	work	with	the	In-App	Purchasing	module	scripting	API.

You	can	access	the	In-App	Purchasing	module	API	via	the	InAppPurchasing	class	under	the	EasyMobile
namespace.

Initialization
The	module	will	automatically	initialize	Unity	IAP	at	start	without	you	having	to	do	anything.	All	further	API	calls	can
only	be	made	after	the	initialization	has	finished.	You	can	check	if	Unity	IAP	has	been	initialized:

//	Check	if	Unity	IAP	has	been	initialized

bool	isInitialized	=	InAppPurchasing.IsInitialized();

Obtaining	Product	List
You	can	obtain	the	array	of	all	products	created	in	the	module	settings	interface:

//	Get	the	array	of	all	products	created	in	the	In-App	Purchasing	module	settings

//	IAPProduct	is	the	class	representing	a	product	as	declared	in	the	module	settings

IAPProduct[]	products	=	InAppPurchasing.GetAllIAPProducts();

//	Print	all	product	names

foreach	(IAPProduct	prod	in	products)

{

				Debug.Log("Product	name:	"	+	prod.Name);

}

Making	Purchases
You	can	purchase	a	product	using	its	name.

It	is	strongly	recommended	that	you	use	the	constants	of	product	names	in	the	generated	EM_IAPConstants
class	(see	IAP	Constants	Generation	section)	instead	of	typing	the	names	directly	in	order	to	prevent	runtime
errors	due	to	typos	and	the	likes.

//	Purchase	a	product	using	its	name

//	EM_IAPConstants.Sample_Product	is	the	generated	name	constant	of	a	product	named	"Sample	Product"

InAppPurchasing.Purchase(EM_IAPConstants.Sample_Product);

A	PurchaseCompleted	event	will	be	fired	if	the	purchase	is	successful,	otherwise,	a	PurchaseFailed	event	will	be	fired
instead.	You	can	listen	to	these	events	and	take	appropriate	actions,	e.g.	grant	the	user	digital	goods	if	the	purchase
has	succeeded.

//	Subscribe	to	IAP	purchase	events

void	OnEnable()

{												

				InAppPurchasing.PurchaseCompleted	+=	PurchaseCompletedHandler;

				InAppPurchasing.PurchaseFailed	+=	PurchaseFailedHandler;

}

//	Unsubscribe	when	the	game	object	is	disabled

Scripting

125

void	OnDisable()

{												

				InAppPurchasing.PurchaseCompleted	-=	PurchaseCompletedHandler;

				InAppPurchasing.PurchaseFailed	-=	PurchaseFailedHandler;

}

//	Purchase	the	sample	product

public	void	PurchaseSampleProduct()

{

				//	EM_IAPConstants.Sample_Product	is	the	generated	name	constant	of	a	product	named	"Sample	Product"

				InAppPurchasing.Purchase(EM_IAPConstants.Sample_Product);

}

//	Successful	purchase	handler

void	PurchaseCompletedHandler(IAPProduct	product)

{

				//	Compare	product	name	to	the	generated	name	constants	to	determine	which	product	was	bought

				switch	(product.Name)

				{

								case	EM_IAPConstants.Sample_Product:

												Debug.Log("Sample_Product	was	purchased.	The	user	should	be	granted	it	now.");

												break;

								case	EM_IAPConstants.Another_Sample_Product:

												Debug.Log("Another_Sample_Product	was	purchased.	The	user	should	be	granted	it	now.");

												break;

								//	More	products	here...

				}

}

//	Failed	purchase	handler

void	PurchaseFailedHandler(IAPProduct	product)

{

				Debug.Log("The	purchase	of	product	"	+	product.Name	+	"	has	failed.");

}

Checking	Ownership
You	can	check	if	a	product	is	owned	by	specifying	its	name.	A	product	is	considered	"owned"	if	its	receipt	exists	and
passes	the	receipt	validation	(if	enabled).

//	Check	if	the	product	is	owned	by	the	user

//	EM_IAPConstants.Sample_Product	is	the	generated	name	constant	of	a	product	named	"Sample	Product"

bool	isOwned	=	InAppPurchasing.IsProductOwned(EM_IAPConstants.Sample_Product);

Consumable	products'	receipts	are	not	persisted	between	app	restarts,	therefore	this	method	only	returns	true
for	those	products	in	the	session	they're	purchased.

In	the	case	of	subscription	products,	this	method	simply	checks	if	a	product	has	been	bought	(subscribed)
before	and	has	a	receipt.	It	doesn't	check	if	the	subscription	is	expired	or	not.

Restoring	Purchases
Non-consumable	and	subscription	products	are	restorable.	App	stores	maintain	a	permanent	record	of	each	user's
non-consumable	and	subscription	products,	so	that	he	or	she	can	be	granted	these	products	again	when	reinstalling
your	game.

Apple	normally	requires	a	Restore	Purchases	button	to	exist	in	your	game,	so	that	the	users	can	explicitly	initiate	the
purchase	restoration	process.	On	other	platforms,	e.g.	Google	Play,	the	restoration	is	done	automatically	during	the
first	initialization	after	reinstallation.

Scripting

126

During	the	restoration	process,	a	PurchaseCompleted	event	will	be	fired	for	each	owned	product,	as	if	the	user
has	just	purchased	them	again.	Therefore	you	can	reuse	the	same	handler	to	grant	the	user	their	products	as
normal	purchases.

On	iOS,	you	can	initiate	a	purchase	restoration	as	below.

//	Restore	purchases.	This	method	only	has	effect	on	iOS.

InAppPurchasing.RestorePurchases();

A	RestoreCompleted	event	will	be	fired	if	the	restoration	is	successful,	otherwise,	a	RestoreFailed	event	will	be	fired
instead.	Note	that	these	events	only	mean	the	success	or	failure	of	the	restoration	itself,	while	the
PurchaseCompleted	event	will	be	fired	for	each	restored	product,	as	noted	earlier.	You	can	listen	to	these	events	and
take	appropriate	actions,	e.g.	inform	the	user	the	restoration	result.

The	RestoreCompleted	and	RestoreFailed	events	are	only	raised	on	iOS.

//	Subscribe	to	IAP	restore	events,	these	events	are	fired	on	iOS	only.

void	OnEnable()

{												

				InAppPurchasing.RestoreCompleted	+=	RestoreCompletedHandler;

				InAppPurchasing.RestoreFailed	+=	RestoreFailedHandler;

}

//	Successful	restoration	handler

void	RestoreCompletedHandler()

{

				Debug.Log("All	purchases	have	been	restored	successfully.");

}

//	Failed	restoration	handler

void	RestoreFailedHandler()

{

				Debug.Log("The	purchase	restoration	has	failed.");

}

//	Unsubscribe

void	OnDisable()

{												

				InAppPurchasing.RestoreCompleted	-=	RestoreCompletedHandler;

				InAppPurchasing.RestoreFailed	-=	RestoreFailedHandler;

}

Apple	Ask-To-Buy
On	iOS	8.0	or	newer,	Ask	To	Buy	purchases	will	defer	for	parental	approval.	You	can	subscribe	to	the
PurchaseDeferred	event	to	acknowledge	when	this	occurs,	and	perform	relevant	actions	such	as	updating	UI	to	reflect
the	deferred	state	of	the	purchase.	When	the	purchase	is	approved	or	rejected,	the	normal	PurchaseCompleted	or
PurchaseFailed	events	will	be	fired.

//	Subscribe	to	Ask	To	Buy	purchases	deferred	event,	this	event	is	fired	on	iOS	only.

void	OnEnable()

{												

				InAppPurchasing.PurchaseDeferred	+=	PurchaseDeferredHandler;

}

//	Unsubscribe.

void	OnDisable()

{

				InAppPurchasing.PurchaseDeferred	-=	PurchaseDeferredHandler;

}

//	This	handler	is	invoked	once	an	Ask	To	Buy	purchase	is	deferred	for	parental	approval.

void	PurchaseDeferredHandler(IAPProduct	product)

Scripting

127

{

				Debug.Log("Purchase	of	product	"	+	product.Name	+	"	has	been	deferred.");

				//	Perform	necessary	actions,	e.g.	updating	UI	to	inform	user	that

				//	the	purchase	has	been	deferred...

}

You	can	simulate	Ask	To	Buy	feature	in	the	sandbox	app	store	for	testing	during	development,	see
Settings/Apple	Ask-To-Buy.

Apple	Promotional	Purchases
If	you	have	enabled	the	Intercept	Promotional	Purchases	option	in	the	In-App	Purchasing	module	settings,	the
PromotionalPurchaseIntercepted	event	will	be	fired	every	time	a	promotional	purchase	is	intercepted.	In	the	handler	of
this	event	you	can	perform	relevant	actions	such	as	presenting	parental	gates,	sending	analytics	events,	etc.	After
that	you	must	call	the	ContinueApplePromotionalPurchases	method	to	continue	the	normal	processing	of	the
purchase.	This	will	initiate	any	queued-up	payments.	Once	the	transaction	is	done,	the	normal	PurchaseCompleted	or
PurchaseFailed	event	will	be	fired	according	to	the	purchase	result.

If	the	Intercept	Promotional	Purchases	option	is	disabled,	the	PromotionalPurchaseIntercepted	event	will	never
occur.

//	Subscribe	to	promotional	purchase	intercepted	event,	this	event	is	fired	on	iOS	only.

void	OnEnable()

{												

				InAppPurchasing.PromotionalPurchaseIntercepted	+=	PromotionalPurchaseInterceptedHandler;

}

//	Unsubscribe.

void	OnDisable()

{

				InAppPurchasing.PromotionalPurchaseIntercepted	-=	PromotionalPurchaseInterceptedHandler;

}

//	This	handler	is	invoked	once	a	promotional	purchase	is	intercepted.

void	PromotionalPurchaseInterceptedHandler(IAPProduct	product)

{

				Debug.Log("Promotional	purchase	of	product	"	+	product.Name	+	"	has	been	intercepted.");

				//	Here	you	can	perform	necessary	actions,	e.g.	presenting	parental	gates,	

				//	sending	analytics	events,	etc.

				//	Finally,	you	must	call	the	ContinueApplePromotionalPurchases	method

				//	to	continue	the	normal	processing	of	the	purchase!

				InAppPurchasing.ContinueApplePromotionalPurchases();

}

You	can	also	use	the	SetAppleStorePromotionVisibility	and	SetAppleStorePromotionOrder	methods	to	respectively
set	the	visibility	of	a	promotional	product	and	the	order	of	visible	promotional	products	on	the	Apple	app	store	of	the
current	device.

Scripting

128

In-App	Purchasing:	Advanced	Scripting
This	section	describes	the	methods	to	accomplish	tasks	beyond	the	basic	ones	such	as	making	or	restoring
purchases.	These	tasks	include	retrieving	product	localized	data,	reading	product	receipts,	refreshing	receipts,	etc.

Most	of	the	methods	described	in	this	section	are	only	available	once	Easy	Mobile's	IAP	module	and	Unity	IAP
service	are	enabled,	which	is	indicated	by	the	definition	of	the	symbol	EM_UIAP.	Therefore,	you	should	always
wrap	the	use	of	these	methods	inside	a	check	for	the	existing	of	this	symbol.

Also,	the	types	exposed	in	these	methods	are	only	available	when	the	Unity	IAP	package	is	imported,	and	you
should	include	the	UnityEngine.Purchasing	and	UnityEngine.Purchasing.Security	namespaces	at	the	top	of
your	script	for	these	types	to	be	recognized.

Getting	Unity	IAP's	Product	Object
The	in-app	products	are	represented	in	Unity	IAP	by	the	Product	class,	which	is	different	from	Easy	Mobile's
IAPProduct	class,	whose	main	purpose	is	for	settings	and	displaying.	This	Product	class	is	the	entry	point	to	access
product-related	data	including	its	metadata	and	receipt,	which	is	populated	automatically	by	Unity	IAP.	To	obtain	the
Product	object	of	an	in-app	product,	call	the	GetProduct	method	with	the	product	name.

#if	EM_UIAP

using	UnityEngine.Purchasing;

#endif

//	Obtain	the	Product	object	of	the	sample	product	and	print	its	data

public	void	GetSampleProduct()

{

				#if	EM_UIAP

				//	EM_IAPConstants.Sample_Product	is	the	generated	name	constant	of	a	product	named	"Sample	Product"

				Product	sampleProduct	=	InAppPurchasing.GetProduct(EM_IAPConstants.Sample_Product);

				if	(sampleProduct	!=	null)

				{

								Debug.Log("Available	To	Purchase:	"	+	sampleProduct.availableToPurchase.ToString());

								if	(sampleProduct.hasReceipt)

								{

												Debug.Log("Receipt:	"	+	sampleProduct.receipt);

								}

				}												

				#endif

}

Getting	Product	Localized	Data
You	can	get	a	product's	metadata	retrieved	from	targeted	app	stores,	e.g.	localized	title,	description	and	price.	This
information	is	particularly	useful	when	building	a	storefront	in	your	game	for	displaying	the	in-app	products.	To	get	the
localized	data	of	a	product,	call	the	GetProductLocalizedData	and	specify	the	product	name.	The	following	example
iterates	through	the	product	list	and	retrieve	the	localized	data	of	each	item.

#if	EM_UIAP

using	UnityEngine.Purchasing;

#endif

Advanced	Scripting

129

//	Iterate	through	the	product	list	and	get	the	localized	data	retrieved	from	the	targeted	app	store.

//	Note	the	check	for	the	EM_UIAP	symbol.

void	PrintProductsMetadata()

{

				#if	EM_UIAP

				//	Get	all	products	created	in	the	In-App	Purchasing	module	settings

				IAPProduct[]	products	=	EM_Settings.InAppPurchasing.Products;

				foreach	(IAPProduct	prod	in	products)

				{

								//	Get	product	localized	data.

								ProductMetadata	data	=	InAppPurchasing.GetProductLocalizedData(prod.Name);

								if	(data	!=	null)

								{

												Debug.Log("Localized	title:	"	+	data.localizedTitle);

												Debug.Log("Localized	description:	"	+	data.localizedDescription);

												Debug.Log("Localized	price	string:	"	+	data.localizedPriceString);

								}		

				}

				#endif

}

Getting	Subscription	Info
You	can	get	a	subscription	product's	information	such	as	expire	date	using	the	GetSubscriptionInfo	method.	Internally,
this	method	uses	Unity	IAP's	SubscriptionManager	class	to	retrieve	the	subscription	data.	The	following	example
iterates	through	the	product	list	and	prints	the	information	of	each	subscription	product.

#if	EM_UIAP

using	UnityEngine.Purchasing;

#endif

//	Iterates	through	all	available	products	and	prints	the	data	of	subscriptions.

public	void	PrintSubscriptionInfo()

{

				#if	EM_UIAP				

				//	Get	all	products	created	in	the	In-App	Purchasing	module	settings.

				IAPProduct[]	products	=	EM_Settings.InAppPurchasing.Products;

				foreach	(IAPProduct	p	in	products)

				{

								//	If	this	is	a	subscription	product.

								if	(p.Type	==	IAPProductType.Subscription)

								{

												//	Get	the	subscription	information	of	the	current	product,

												//	note	that	this	method	takes	the	product	name	as	input.

												SubscriptionInfo	info	=	InAppPurchasing.GetSubscriptionInfo(p.Name);

												if	(info	==	null)

												{

																Debug.Log("The	subscription	information	of	this	product	could	not	be	retrieved.");

																continue;

												}

												//	Prints	subscription	info.

												Debug.Log("Product	ID:	"	+	info.getProductId());

												Debug.Log("Purchase	Date:	"	+	info.getPurchaseDate());

												Debug.Log("Is	Subscribed:	"	+	info.isSubscribed());

												Debug.Log("Is	Expired:	"	+	info.isExpired());

												Debug.Log("Is	Cancelled:	"	+	info.isCancelled());

												Debug.Log("Is	FreeTrial:	"	+	info.isFreeTrial());

												Debug.Log("Is	Auto	Renewing:	"	+	info.isAutoRenewing());

												Debug.Log("Remaining	Time:	"	+	info.getRemainingTime().ToString());

												Debug.Log("Is	Introductory	Price	Period:	"	+	info.isIntroductoryPricePeriod());

												Debug.Log("Introductory	Price	Period:	"	+	info.getIntroductoryPricePeriod().ToString());

												Debug.Log("Introductory	Price	Period	Cycles:	"	+	info.getIntroductoryPricePeriodCycles());

												Debug.Log("Introductory	Price:	"	+	info.getIntroductoryPrice());

Advanced	Scripting

130

https://docs.unity3d.com/Manual//UnityIAPSubscriptionProducts.html

												Debug.Log("Expire	Date:	"	+	info.getExpireDate());

								}

				}

				#endif

}

Working	with	Receipts
This	sections	describes	methods	to	work	with	receipts.	Currently,	Unity	IAP	only	supports	parsing	receipts	from	Apple
stores	and	Google	Play	store.

Note	that	for	the	receipt	reading	methods	to	work,	you	need	to	enable	receipt	validation	feature	(see	the
Receipt	Validation	section).

Apple	App	Receipt

On	iOS,	you	can	get	the	parsed	Apple	App	Receipt	for	your	app	using	the	GetAppleAppReceipt	method.

#if	EM_UIAP

using	UnityEngine.Purchasing;

using	UnityEngine.Purchasing.Security;

#endif

//	Read	the	App	Receipt	on	iOS.	Receipt	validation	is	required.

void	ReadAppleAppReceipt()

{

				#if	EM_UIAP

				if	(Application.platform	==	RuntimePlatform.IPhonePlayer)

				{

								AppleReceipt	appReceipt	=	InAppPurchasing.GetAppleAppReceipt();

								//	Print	the	receipt	content.

								if	(appReceipt	!=	null)

								{

												Debug.Log("App	Version:	"	+	appReceipt.appVersion);

												Debug.Log("Bundle	ID:	"	+	appReceipt.bundleID);

												Debug.Log("Number	of	purchased	products:	"	+	appReceipt.inAppPurchaseReceipts.Length);

								}

				}

				#endif

}

Apple	InAppPurchase	Receipt

On	iOS,	you	can	get	the	parsed	Apple	InAppPurchase	receipt	for	a	particular	product,	using	the	GetAppleIAPReceipt
method	with	the	name	of	the	product.

#if	EM_UIAP

using	UnityEngine.Purchasing;

using	UnityEngine.Purchasing.Security;

#endif

//	Read	the	InAppPurchase	receipt	of	the	sample	product	on	iOS.

//	Receipt	validation	is	required.

void	ReadAppleInAppPurchaseReceipt()

{

				#if	EM_UIAP

				if	(Application.platform	==	RuntimePlatform.IPhonePlayer)

				{

								//	EM_IAPConstants.Sample_Product	is	the	generated	name	constant	of	a	product	named	"Sample	Product".

Advanced	Scripting

131

https://developer.apple.com/library/content/releasenotes/General/ValidateAppStoreReceipt/Chapters/ReceiptFields.html#//apple_ref/doc/uid/TP40010573-CH106-SW1

								AppleInAppPurchaseReceipt	receipt	=	InAppPurchasing.GetAppleIAPReceipt(EM_IAPConstants.Sample_Product);

								//	Print	the	receipt	content.

								if	(receipt	!=	null)

								{

												Debug.Log("Product	ID:	"	+	receipt.productID);

												Debug.Log("Original	Purchase	Date:	"	+	receipt.originalPurchaseDate.ToShortDateString());

												Debug.Log("Original	Transaction	ID:	"	+	receipt.originalTransactionIdentifier);

												Debug.Log("Purchase	Date:	"	+	receipt.purchaseDate.ToShortDateString());

												Debug.Log("Transaction	ID:	"	+	receipt.transactionID);

												Debug.Log("Quantity:	"	+	receipt.quantity);

												Debug.Log("Cancellation	Date:	"	+	receipt.cancellationDate.ToShortDateString());

												Debug.Log("Subscription	Expiration	Date:	"	+	receipt.subscriptionExpirationDate.ToShortDateString())

;

								}

				}

				#endif

}

Google	Play	Receipt

On	Android,	you	can	get	the	parse	GooglePlay	receipt	for	a	particular	product,	using	the	GetGooglePlayReceipt
method	with	the	name	of	the	product.

#if	EM_UIAP

using	UnityEngine.Purchasing;

using	UnityEngine.Purchasing.Security;

#endif

//	Read	the	GooglePlay	receipt	of	the	sample	product	on	Android.

//	Receipt	validation	is	required.

void	ReadGooglePlayReceipt()

{

				#if	EM_UIAP

				if	(Application.platform	==	RuntimePlatform.Android)

				{

								//	EM_IAPConstants.Sample_Product	is	the	generated	name	constant	of	a	product	named	"Sample	Product".

								GooglePlayReceipt	receipt	=	InAppPurchasing.GetGooglePlayReceipt(EM_IAPConstants.Sample_Product);

								if	(receipt	!=	null)

								{

												Debug.Log("Package	Name:	"	+	receipt.packageName);

												Debug.Log("Product	ID:	"	+	receipt.productID);

												Debug.Log("Purchase	Date:	"	+	receipt.purchaseDate.ToShortDateString());

												Debug.Log("Purchase	State:	"	+	receipt.purchaseState.ToString());

												Debug.Log("Transaction	ID:	"	+	receipt.transactionID);

												Debug.Log("Purchase	Token:	"	+	receipt.purchaseToken);

								}

				}

				#endif

}

Refreshing	Apple	App	Receipt

Apple	provides	a	mechanism	to	fetch	a	new	App	Receipt	from	their	servers,	typically	used	when	no	receipt	is	currently
cached	in	local	storage	SKReceiptRefreshRequest.	You	can	refresh	the	App	Receipt	on	iOS	using	the
RefreshAppleAppReceipt	method.	Note	that	this	will	prompt	the	user	for	their	password.

//	Fetch	a	new	Apple	App	Receipt	on	iOS.	This	will	prompt	the	user	for	their	password.

void	RefreshAppleAppReceipt()

{

				if	(Application.platform	==	RuntimePlatform.IPhonePlayer)

				{

								InAppPurchasing.RefreshAppleAppReceipt(SuccessCallback,	ErrorCallback);

Advanced	Scripting

132

https://developer.apple.com/library/ios/documentation/StoreKit/Reference/SKReceiptRefreshRequest_ClassRef/index.html#//apple_ref/occ/cl/SKReceiptRefreshRequest

				}

}

void	SuccessCallback(string	receipt)

{

				Debug.Log("App	Receipt	refreshed	successfully.	New	receipt:	"	+	receipt);

}

void	ErrorCallback()

{

				Debug.Log("App	Receipt	refreshing	failed.");

}

Advanced	Scripting

133

In-App	Purchasing:	PlayMaker	Actions
The	PlayMaker	actions	of	the	In-App	Purchasing	module	are	group	in	the	category	Easy	Mobile	-	In-App	Purchasing
in	the	PlayMaker's	Action	Browser.

Please	refer	to	the	InAppPurchasingDemo_PlayMaker	scene	in	folder
Assets/EasyMobile/Demo/PlayMakerDemo/Modules	for	an	example	on	how	these	actions	can	be	used.

PlayMaker	Actions

134

PlayMaker	Actions

135

Native	APIs:	Introduction
The	Native	APIs	module	allows	access	to	mobile	native	functionalities.	The	first	feature	available	is	native	UI.	More
functionalities	will	be	added	soon.

Introduction

136

Native	APIs	|	Native	UI:	Introduction
The	Native	UI	module	allows	you	to	access	native	mobile	UI	elements	such	as	alerts	and	dialogs.	This	module
requires	no	configuration	and	all	tasks	can	be	done	from	script.

Alerts
Alerts	are	useful	in	providing	the	users	contextual	information,	asking	for	confirmation	or	prompting	them	to	make	a
selection	out	of	several	options.	An	alert	can	have	one,	two	or	three	buttons	with	it.

Below	are	the	three	types	of	alert	on	iOS.

	

And	below	are	the	three	types	of	alert	on	Android.

	

Toasts
Toasts	are	short	messages	displayed	at	the	bottom	of	the	screen.	They	automatically	disappear	after	a	timeout.
Toasts	are	available	on	Android	only.	Below	is	a	sample	toast	message.

Native	UI

137

Native	UI

138

Native	APIs	|	Native	UI:	Scripting
This	section	provides	a	guide	to	work	with	Native	UI	scripting	API.

You	can	access	the	Native	UI	module	API	via	the	NativeUI	class	under	the	EasyMobile	namespace.

Alerts
Alerts	are	available	on	both	iOS	and	Android	platform	and	can	have	up	to	three	buttons.

Simple	(one-button)	alerts	are	useful	in	giving	the	user	contextual	information.	To	show	a	simple	alert	with	the	default
OK	button,	you	only	need	to	provide	a	title	and	a	message	for	the	alert:

//	Show	a	simple	alert	with	OK	button

NativeUI.AlertPopup	alert	=	NativeUI.Alert("Sample	Alert",	"This	is	a	sample	alert	with	an	OK	button.");

You	can	also	show	a	one-button	alert	with	a	custom	button	label.

//	Show	an	alert	with	a	button	labeled	as	"Got	it"

NativeUI.AlertPopup	alert	=	NativeUI.Alert(

				"Sample	Alert",

				"This	is	a	sample	alert	with	a	custom	button.",

				"Got	it"				

);

Two-button	alerts	can	be	useful	when	needing	to	ask	for	user	confirmation.	To	show	a	two-button	alert,	you	need	to
specify	the	labels	of	these	two	buttons.

//	Show	a	two-button	alert	with	the	buttons	labeled	as	"Button	1"	&	"Button	2"

NativeUI.AlertPopup	alert	=	NativeUI.ShowTwoButtonAlert(

				"Sample	Alert",

				"This	is	a	two-button	alert.",

				"Button	1",

				"Button	2"

);

Three-button	alerts	can	be	used	to	present	the	user	with	several	options,	a	typical	usage	of	it	is	to	implement	the	Rate
Us	popup.	To	show	a	three-button	alert,	you	need	to	specify	the	labels	of	the	three	buttons.

//	Show	a	three-button	alert	with	the	buttons	labeled	as	"Button	1",	"Button	2"	&	"Button	3"

NativeUI.AlertPopup	alert	=	NativeUI.ShowThreeButtonAlert(

				"Sample	Alert",

				"This	is	a	three-button	alert.",

				"Button	1",

				"Button	2",

				"Button	3"

);

Whenever	an	alert	is	shown,	a	NativeUI.AlertPopup	object	is	returned,	when	the	alert	is	closed,	this	object	will	fire	an
OnComplete	event	and	then	destroy	itself.	The	argument	of	this	event	is	the	index	of	the	clicked	button.	You	should
listen	to	this	event	and	take	appropriate	action	depending	on	the	button	selected.

//	Show	a	three	button	alert	and	handle	its	OnComplete	event

NativeUI.AlertPopup	alert	=	NativeUI.ShowThreeButtonAlert(

				"Sample	Alert",

				"This	is	a	three-button	alert.",

Scripting

139

				"Button	1",

				"Button	2",

				"Button	3"

);

//	Subscribe	to	the	event

if	(alert	!=	null)

{

				alert.OnComplete	+=	OnAlertCompleteHandler;

}

//	The	event	handler

void	OnAlertCompleteHandler(int	buttonIndex)

{

				switch	(buttonIndex)

				{

								case	0:

												//	Button	1	was	clicked

												break;

								case	1:

												//	Button	2	was	clicked

												break;

								case	2:

												//	Button	3	was	clicked

												break;

								default:

												break;

				}

}

Only	one	alert	popup	can	be	shown	at	a	time.	Any	call	to	show	an	alert	while	another	one	is	being	displayed	will	be
ignored.	You	can	check	if	an	alert	is	being	shown	using	the	IsShowingAlert	method.

//	Check	if	an	alert	is	being	displayed.

bool	isShowingAlert	=	NativeUI.IsShowingAlert();

Toasts
Toast	is	a	short	message	displayed	at	the	bottom	of	the	screen	and	automatically	disappears	after	a	timeout.	Toasts
are	available	only	on	Android	platform.	To	show	a	toast	message:

//	Show	a	sample	toast	message

NativeUI.ShowToast("This	is	a	sample	Android	toast");

Scripting

140

Native	APIs:	PlayMaker	Actions
The	PlayMaker	actions	of	the	Native	APIs	module	are	group	in	the	category	Easy	Mobile	-	Native	APIs	in	the
PlayMaker's	Action	Browser.

Please	refer	to	the	NativeUIDemo_PlayMaker	scene	in	folder
Assets/EasyMobile/Demo/PlayMakerDemo/Modules	for	an	example	on	how	Native	UI	actions	can	be	used.

PlayMaker	Actions

141

PlayMaker	Actions

142

Notifications:	Introduction
The	Notifications	module	helps	you	quickly	implement	notifications	feature	in	your	app.	Here're	some	highlights	of	this
module:

Remote	(push)	notification
The	module	is	currently	compatible	with	OneSignal	and	Firebase	Cloud	Messaging	(FCM).	Both	are	free	and
popular	cross-platform	push	notification	delivery	services.

Local	notification
One-time	and	repeat	notifications.
Fully-customizable	notifications:	sounds,	icons,	badge,	light,	vibration,	lock-screen	visibility,	etc.	(feature
availability	varies	between	iOS	and	Android)
Supports	notification	custom	action	buttons.

Notification	Category

Unifies	Android	notification	category	(channel)	and	iOS	notification	category,	makes	it	easy	to	customize	and
organize	notifications	in	your	app.

Fully	supports	notification	channels	introduced	and	required	since	Android	O,	while	maintaining	backward-
compatibility	with	older	Android	versions,	where	notification	channels	don't	exist.

Fully	supports	notification	channel	groups	introduced	since	Android	O.

Friendly	editor

Makes	it	easy	to	setup	remote	notification	service,	manage	categories,	adding	resources,	etc.

Easy	Mobile's	notification	API	works	on	iOS	10	or	newer	(more	than	95%	of	iOS	devices)	and	Android	API	14	or
newer	(more	than	99%	of	Android	devices).

Understanding	Notifications
A	notification	is	basically	a	message	that	is	displayed	by	the	system	outside	of	your	app's	UI	to	provide	the	user	with
some	timely	information	about	your	app.	The	user	can	open	a	notification	to	bring	your	app	to	foreground	and	take
further	actions	if	they	wish.

If	your	app	is	in	foreground	at	the	moment	the	notification	is	delivered,	then	the	notification	won't	be	posted	(in
other	words,	it	will	be	silenced).	Instead,	its	data	will	be	sent	to	the	app	directly	in	form	of	an	event.

Notifications	appear	to	users	in	different	locations	and	formats,	plus	their	appearance	varies	slightly	between	iOS	and
Android,	and	among	different	versions	of	these	platforms.	Depending	on	the	current	state	of	your	device,	notifications
can	appear	in	the	status	bar	(Android),	the	notification	center	(iOS),	or	the	lock-screen.	Below	are	the	typical
anatomies	of	iOS	and	Android	notifications.

iOS	Notification	Anatomy

Here's	a	typical	iOS	notification	with	basic	details.

Introduction

143

https://onesignal.com/
https://firebase.google.com/docs/cloud-messaging/
https://developer.apple.com/support/app-store/
https://developer.android.com/about/dashboards/index.html

1.	 Small	icon:	provided	by	the	system
2.	 App	name:	provided	by	the	system
3.	 Title:	the	notification	title	provided	by	you
4.	 Subtitle:	the	optional	notification	subtitle	provided	by	you
5.	 Body:	the	main	notification	message	provided	by	you

Android	Notification	Anatomy

Here's	a	typical	Android	notification	with	basic	details.

1.	 Small	icon:	required,	provided	by	you	(if	no	valid	icon	specified,	Easy	Mobile	automatically	uses	the	fallback	icon,
which	is	a	bell)

2.	 App	name:	provided	by	the	system
3.	 Time	stamp:	provided	by	the	system
4.	 Large	icon:	optional,	provided	by	you	(this	is	usually	used	only	for	contact	photos;	do	not	use	it	for	your	app	icon)
5.	 Title:	the	notification	title	provided	by	you
6.	 Body:	the	main	notification	message	provided	by	you

You	can	learn	more	about	iOS	notifications	here	and	Android	notifications	here.

Notification	Custom	Actions

Beside	basic	content,	you	can	optionally	attach	additional	action	buttons	to	the	notification	for	specific	tasks.	Using
unique	action	IDs,	your	app	can	acknowledge	the	action	selected	by	the	user	and	response	accordingly,	e.g.	open	a
particular	UI	for	the	user	to	perform	further	interaction.

A	notification	on	iOS	can	have	up	to	4	action	buttons.	However,	the	number	of	actions	actually	displayed	depends	on
how	and	where	the	notification	is	displayed.	For	example,	banners	display	no	more	than	two	actions.	Here's	an
example	of	an	iOS	notification	with	2	action	buttons,	Action	A	and	Action	B.

Introduction

144

https://developer.apple.com/notifications/
https://developer.android.com/guide/topics/ui/notifiers/notifications.html

A	notification	on	Android	can	have	up	to	3	action	buttons.	Here's	a	typical	Android	notification	with	2	action	buttons,
REPLY	and	ARCHIVE.

On	Android,	Easy	Mobile	supports	notification	actions	on	API	23	or	newer.

Local	Vs.	Remote	Notifications
Local	notifications	are	notifications	scheduled	by	your	app	locally.	Your	app	configures	the	notification	content,
specifies	a	trigger	condition,	and	passes	these	details	to	the	system,	which	then	handles	the	delivery	of	the	notification
when	the	trigger	condition	is	met.

One-time	vs.	Repeat	local	notifications

A	one	time	notification	is	delivered	only	once.	A	repeat	notification	is	delivered	once	every	time	the	repeat
interval	passed.	Both	notification	types	survive	device	reboots.	If	the	delivery	time	is	past	at	the	moment	the
device	has	finished	reboot,	the	notification	will	be	delivered	immediately.

Remote	notifications	are	sent	(pushed)	to	user	devices	from	a	remote	server	(be	it	your	own	server	or	a	3rd	party
server	like	OneSignal's)	via	the	Apple	Push	Notification	service	(APNs)	on	iOS,	or	the	Google	Cloud	Messaging
service	(GCM)	on	Android.

Notification	Categories
Easy	Mobile's	cross-platform	notification	category	unifies	Android	notification	channel/category	and	iOS	notification
category,	providing	a	simple	and	convenient	way	to	customize	and	organize	notifications	in	your	app.	You	can	use
category	to	control	multiple	aspects	of	notifications	including	importance,	light,	vibration,	sound	and	action	buttons
(configuration	varies	between	platforms,	e.g.	importance	and	light	are	Android-only).	All	notifications	posted	to	the
same	category	share	the	same	customization.	Every	time	you	schedule	a	notification,	simply	set	the	category	it
belongs	to	and	all	the	settings	of	that	category	will	be	applied	to	the	notification	automatically.	Using	categories	is
therefore	a	more	intuitive	and	efficient	way	to	customize	and	organize	notifications.	You	can	have	multiple	categories
in	your	app,	each	controls	a	different	type	of	notifications.	For	example,	you	can	have	a	category	dedicated	for	game
event	notifications,	and	another	category	for	user	(chat)	message	notifications.

Notification	Categories	on	iOS

Introduction

145

On	iOS,	cross-platform	categories	automatically	translate	to	native	notification	categories,	taking	only	the	information
on	custom	actions	because	iOS	notification	categories	are	mostly	responsible	for	configuring	custom	actions.	About
the	other	settings	of	the	cross-platform	category,	those	are	applicable	on	iOS	(e.g.	sound)	will	automatically	be
applied	when	a	notification	of	this	category	is	scheduled.

iOS	notification	categories	are	not	visible	to	users.	You	can	learn	more	about	them	here.

Notification	Categories	on	Android

On	Android	8.0	Oreo	(API	level	26),	a	new	feature	is	introduced	which	is	notification	channels/categories.	Starting	in
this	version,	all	notifications	must	be	assigned	to	a	channel	or	it	will	not	appear.	Notification	channels	offer	the	ability
to	group	notifications,	and	allow	users	to	control	the	visual	and	auditory	options	of	each	channel	from	the	Android
system	settings.

The	Android	user	interface	refers	to	channels	as	"categories".

On	Android	8.0	and	newer,	Easy	Mobile's	cross-platform	notification	categories	automatically	translate	to	native
notification	channels.	Most	settings	are	applicable	to	Android	channels,	except	the	custom	actions	(Android
notification	channels	are	not	responsible	for	custom	actions).	When	a	local	notification	is	scheduled,	it	will	be	assigned
to	the	native	notification	channel,	and	the	custom	actions	(if	any)	found	in	its	cross-platform	category	are	automatically
added	when	constructing	the	notification.

On	Android	7.1	(API	level	25)	and	lower,	there're	no	notification	channels.	When	a	local	notification	is	scheduled,
individual	settings	will	be	read	from	its	cross-platform	category	and	applied	automatically	when	constructing	the
notification.

Introduction

146

https://developer.apple.com/library/content/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/SupportingNotificationsinYourApp.html#//apple_ref/doc/uid/TP40008194-CH4-SW26

You	can	learn	more	about	Android	notification	channels/categories	here.

Default	Notification	Category

For	notifications	to	work	consistently	across	iOS	and	Android	platform,	your	app	requires	at	least	one	notification
category.	Easy	Mobile	has	a	built-in	default	category.	If	you're	scheduling	a	local	notification	and	not	specifying	any
category,	then	the	default	one	will	be	used.	This	default	category	can	be	customized	from	the	module	settings,	but	it
cannot	be	removed.

Notification	Category	Groups
You	can	organize	your	notification	categories	into	category	groups.	On	Android	category	groups	directly	translate	to
native	channel	groups.	Below	is	an	example	of	how	notification	channels	are	organized	into	groups	in	the	system
settings	on	Android.

Notification	category	groups	don't	have	any	effect	on	iOS.

GDPR	Compliance
We	recommend	you	to	read	the	Privacy	chapter	first	to	gain	a	comprehensive	understanding	of	the	tools	and
resources	offered	by	Easy	Mobile	to	help	your	app	get	compliant	with	GDPR,	including	the	consent	dialog	and
the	consent	management	system.

Remote	notification	is	one	of	those	services	affected	by	the	GDPR,	because	most	providers	(including	OneSignal	and
Firebase)	need	to	collect	a	device's	unique	identifier	of	one	kind	or	another	to	deliver	messages	to	that	device.
Therefore	it	may	be	advisable	to	get	the	user	consent	(explicit	opt-in)	before	initializing	the	service,	especially	in	EEA

Introduction

147

https://developer.android.com/training/notify-user/channels.html

region.	Easy	Mobile	provides	a	native,	multi-purpose	dialog	which	you	can	use	to	collect	user	consent	for	the	remote
notification	service	as	well	as	other	relevant	services	in	your	app.

Allowing	the	user	to	provide	and	manage	consent	for	all	services	via	a	single	interface	(dialog)	is	advisable	in
terms	of	user	experience,	because	the	user	may	find	it	irritating	being	presented	multiple	dialogs	asking
consent	for	various	things.

Once	the	push	notification	consent	is	collected,	you	can	communicate	it	to	the	Notifications	module	using	the
GrantDataPrivacyConsent	or	RevokeDataPrivacyConsent	methods	(see	Scripting/Working	with	Consent).	The
consent	will	then	be	automatically	forwarded	to	the	selected	remote	notification	service	during	its	initialization.
Therefore	it	is	important	to	collect	the	consent	before	initializing	the	remote	notification	service.	Practically,	this	means
collecting	consent	before	initializing	Easy	Mobile	runtime,	which	will	automatically	initialize	the	remote	notification
service	(provided	that	the	Auto	Initialization	feature	of	the	Notifications	module	is	enabled).	The	next	sections	detail
how	consent	is	applied	to	each	remote	notification	service	when	it	is	used	in	your	app.

Currently	there's	only	module-level	consent	available	to	the	Notifications	module.	Because	consent	is	only
applicable	to	remote	notification	service,	and	only	one	service	can	be	selected	at	a	time,	providing	vendor-level
consent	would	be	irrelevant.	Instead,	the	module-level	consent	(if	any)	will	be	used	for	whichever	service	being
selected.

OneSignal

If	OneSignal	is	selected	as	the	remote	notification	provider	in	your	app,	the	Notifications	module	will	perform
appropriate	actions	according	to	the	specified	consent	before	initializing	OneSignal	service.	The	table	below
summarizes	the	actions	taken	in	each	case.

Consent
Status Actions	Taken

Granted
Calling	OneSignal.SetRequiresUserPrivacyConsent(true);	and
OneSignal.UserDidProvideConsent(true);	to	inform	OneSignal	that	the	consent	was	granted	and
then	initialize	it.

Revoked
Calling	OneSignal.SetRequiresUserPrivacyConsent(true);	and
OneSignal.UserDidProvideConsent(false);	to	inform	OneSignal	that	the	consent	was	not
granted/revoked.

Unknown Do	nothing	regarding	consent.	The	initialization	of	OneSignal	is	carried	out	as	normal	(the	"pre-
GDPR"	behavior).

Reference:	https://documentation.onesignal.com/docs/unity-sdk#section--setrequiresuserprivacyconsent-

Firebase	Cloud	Messaging

Once	the	FCM	SDK	is	imported	into	your	project,	it	will	automatically	perform	initialization	in	runtime,	during	which	it
generates	an	Instance	ID,	which	is	used	as	a	registration	token	within	FCM.	When	an	Instance	ID	is	generated	the
library	will	upload	the	identifier	and	configuration	data	to	Firebase.	Therefore	if	you	want	to	get	an	explicit	opt-in	before
using	FCM,	you	must	disable	its	auto	initialization.	Please	follow	the	instructions	in	the	Prevent	auto	initialization
chapter	in	the	FCM	documentation	for	that	purpose.

If	the	consent	communicated	to	the	Notifications	module	is	Granted,	it	will	automatically	re-enable	FCM	during	the
initialization	process	by	calling	the	following	command:

Firebase.Messaging.FirebaseMessaging.TokenRegistrationOnInitEnabled	=	true;

Summary

Introduction

148

https://documentation.onesignal.com/docs/unity-sdk#section--setrequiresuserprivacyconsent-
https://firebase.google.com/docs/cloud-messaging/unity/client

If	you	want	to	get	an	explicit	opt-in	before	using	FCM,	you	must	disable	its	auto	initialization.	If	the	consent
provided	to	the	Notifications	module	is	Granted,	FCM	will	be	re-enabled	automatically	during	initialization.

If	you	disable	the	FCM	auto	initialization	and	the	consent	provided	to	the	Notifications	module	is	Revoked
or	Unknown,	the	FCM	service	won't	be	re-enabled	and	it	won't	function.

If	you	don't	want	to	get	an	explicit	opt-in	before	using	FCM,	you	can	ignore	all	described	actions.	The	FCM
service	will	be	initialized	automatically	as	normal.

Introduction

149

Notifications:	Settings
To	use	the	Notifications	module	you	must	first	enable	it.	Go	to	Window	>	Easy	Mobile	>	Settings,	select	the
Notifications	tab,	then	click	the	right-hand	side	toggle	to	enable	and	start	configuring	the	module.

Auto	Initialization
Auto	initialization	is	a	feature	of	the	Notifications	module	that	initializes	the	service	automatically	when	the	module
starts.	You	can	configure	this	feature	in	the	AUTO-INIT	CONFIG	section.

On	iOS,	a	popup	will	appear	during	the	first	initialization	following	the	app	installation	to	ask	for	the	user's
permission	to	enable	notifications	for	your	game.

Settings

150

Auto	Init:	uncheck	this	option	to	disable	the	auto	initialization	feature,	you	can	start	the	initialization	manually	from
script	(see	Scripting)

Auto	Init	Delay:	how	long	after	the	module	start	that	the	initialization	should	take	place

"Module	start"	refers	to	the	moment	the	Start	method	of	the	module's	associated	MonoBehavior	(attached	to	the
EasyMobile	prefab)	runs.	If	you	add	the	EasyMobile	prefab	instance	to	the	first	scene	of	your	game	then	this
moment	is	mostly	identical	to	the	launch	time	of	the	app.

Remote	Notification	Setup

Enable	Remote	Notifications

To	enable	remote/push	notifications	for	your	app,	select	a	valid	service	provider	from	the	Push	Notification	Service
dropdown	in	REMOTE	NOTIFICATION	SETUP	section.	Currently	OneSignal	and	Firebase	Cloud	Messaging	services
are	supported.

Setup	OneSignal

Before	You	Begin

Before	setting	up	OneSignal	in	Unity,	you	must	first	generate	appropriate	credentials	for	your	targeted
platforms.	If	you're	not	familiar	with	the	process,	please	follow	the	guides	listed	here.	You	should	also	follow	the
instructions	included	in	that	document	on	performing	necessary	setup	when	building	for	each	platform.

Importing	OneSignal	Plugin

Using	OneSignal	service	requires	the	OneSignal	plugin	for	Unity.	Easy	Mobile	will	automatically	check	for	the
availability	of	the	plugin	and	prompt	you	to	import	it	if	needed.	You	can	click	the	Download	OneSignal	Plugin	button	to
open	the	download	page	for	the	plugin.	Once	it	is	imported	into	Unity	the	settings	interface	will	be	updated	and	ready
for	you	to	start	configuring.

In	fact	all	you	need	to	do	is	enter	your	OneSignal	App	Id.

Settings

151

https://documentation.onesignal.com/docs/unity-sdk-setup
https://github.com/OneSignal/OneSignal-Unity-SDK

Customizing	Notification	Sounds	and	Icons

Here're	the	guides	on	customization	OneSignal	notification	sounds	and	Android	notification	icons:

Customize	OneSignal	Android	Notification	Icons
Customize	OneSignal	Notification	Sounds

Setup	Firebase	Cloud	Messaging

Before	You	Begin

Before	setting	up	Firebase	Cloud	Messaging	in	Unity,	you	will	need	to	create	a	project	in	Firebase	console.	If
you're	not	familiar	with	the	process,	please	follow	this	guide.

Note	that	for	iOS	you	need	to	associate	your	project	with	an	APNs	certificate:

Inside	your	project	in	the	Firebase	console	open	Project	Settings	then	select	the	Cloud	Messaging	tab
Select	the	Upload	Certificate	button	to	upload	your	development	or	production	certificate,	or	both.	For	each
certificate,	select	the	.p12	file	and	provide	password	if	any.	Make	sure	the	bundle	ID	for	this	certificate
matches	the	bundle	ID	of	your	app
Save

After	setting	up	the	project,	download	the	GoogleService-Info.plist	file	(iOS)	or	Google-Services.json	file
(Android)	from	the	console	and	drag	it	into	your	Unity	project	(you	can	place	these	files	anywhere	under	the
Assets	folder	of	your	project).

Importing	Firebase	Messaging	plugin

Using	Firebase	service	requires	the	Firebase	plugin	for	Unity.	Easy	Mobile	will	automatically	check	for	the	availability
of	the	plugin	and	prompt	you	to	import	it	if	needed.	You	can	click	the	Download	Firebase	Plugin	button	to	download
the	Firebase	Unity	SDK.	After	the	downloading	finishes,	unzip	the	downloaded	file	and	import	the	FirebaseMessaging
package	into	your	project.	Once	it	is	imported	into	Unity	the	settings	interface	will	be	updated	and	ready	for	you	to
start	configuring.

Registering	Default	Notification	Topics

Firebase	Cloud	Messaging	has	a	concept	of	topic	messaging,	which	allows	you	to	send	a	message	to	multiple
devices	that	have	opted	into	a	particular	topic.	If	you	want	to	have	some	default	topics	that	every	instance	of	your	app
subscribes	to	when	it's	installed,	you	can	register	them	in	the	settings	interface.	At	the	Firebase	Topics	field	click	the
"+"	button	and	enter	all	the	default	topics	that	you	want.

You	can	learn	more	about	Firebase	topic	messaging	here.

Settings

152

https://documentation.onesignal.com/docs/customize-notification-icons
https://documentation.onesignal.com/docs/customize-notification-sounds
https://console.firebase.google.com/
https://firebase.google.com/docs/unity/setup
https://firebase.google.com/docs/cloud-messaging/ios/certs
https://firebase.google.com/download/unity
https://firebase.google.com/docs/cloud-messaging/unity/topic-messaging

Sending	Notifications	to	Your	App

Firebase	provides	3	ways	to	send	notifications	to	your	app:

1.	 Using	the	notification	composer	in	the	Firebase	Console	-	learn	more	here
2.	 Using	the	Admin	SDK
3.	 Using	HTTP	and	XMPP	Protocols

Customizing	Notification	Sounds	and	Icons

Currently	the	Firebase	notification	composer	doesn't	allow	customizing	the	notification	sound	and	icon	(you	can	only
toggle	sound	on	or	off).	On	iOS,	the	app	icon	will	be	used	as	the	notification	icon.	On	Android,	you	can	setup	a	default
notification	icon	for	Firebase	by	adding	the	following	lines	between	the	<application>	element	of	the
AndroidManifest.xml	file	at	the	Assets/notifications/Plugins/Android	folder.

<meta-data

								android:name="com.google.firebase.messaging.default_notification_icon"

								android:resource="@drawable/firebase_notification_icon"	/>

Then	you	need	to	create	notification	icons	at	appropriate	resolutions	(you	can	use	the	Android	Asset	Studio),	name
them	firebase_notification_icon,	place	them	into	a	res	folder	and	import	the	folder	into	your	Unity	project	using	the
Import	Res	Folder	button	under	the	ANDROID	NOTIFICATION	RESOURCES	section	of	the	settings	interface	(see
chapter	Adding	Notification	Resources).	You	can	also	use	another	name	for	the	icons	as	long	as	the	name	in	the
AndroidManifest.xml	and	the	name	of	the	icon	files	are	same.

If	you're	using	other	methods	to	send	notifications	to	your	app,	you	can	specify	the	notification	icons	and
sounds	in	the	notification	content.	Just	make	sure	that	the	specified	icons	and	sounds	are	available	in	your	app.

iOS	Build	Notes

After	exporting	to	Xcode,	perform	the	following	steps:

In	the	General	tab,	add	the	UserNotifications	framework	into	your	project	if	it	hasn't	been	added	yet.
In	the	Capabilities	tab,	turn	on	Push	Notifications	and	Background	Modes,	then	check	the	Remote	Notifications
box	under	Background	Modes.

Adding	Notification	Resources

Android	Notification	Resources

Settings

153

https://console.firebase.google.com/project/_/notification
https://firebase.google.com/docs/cloud-messaging/send-with-console
https://firebase.google.com/docs/cloud-messaging/admin/
https://firebase.google.com/docs/cloud-messaging/server/

Android	notification	resources	include	notification	icons	and	custom	notification	sounds.

Custom	notification	sounds:	if	you	don't	want	to	use	the	system's	default	notification	sound,	you	can	provide
custom	sounds	to	be	played	when	your	notifications	are	delivered.
Small	notification	icons:	small	icons	or	status	bar	icons	are	required	and	will	be	used	to	represent	notifications
from	your	app	in	the	status	bar.	Starting	with	Android	5,	the	system	forces	small	notification	icons	to	be	all	white
when	your	app	targets	Android	API	21+.	If	you	don't	make	a	correct	icon,	it	will	most	likely	be	displayed	as	the
fallback	icon	(bell)	or	solid	white	icon	in	the	status	bar.
Large	notification	icons:	large	notifications	icons	are	optional	and	will	show	up	at	different	positions	on	the
notification	depending	on	the	Android	version	(see	below	screenshot).	If	you	do	not	specify	a	large	icon,	the	small
icon	will	be	used.

Preparing	Android	Notification	Icons

It's	advisable	to	use	the	Android	Asset	Studio	to	quickly	and	easily	generate	small	icons	with	the	correct	settings.	Note
that	the	default	small	icons	must	be	named	ic_stat_em_default	so	that	Easy	Mobile	can	recognize	it.	Below	is	an
example	of	a	res	folder	containing	the	default	small	icons	generated	by	the	Android	Asset	Studio.	Later	we	will	import
this	folder	to	Unity	so	that	the	icons	can	be	used	in	your	project.

Settings

154

If	you	want	to	have	a	default	large	icon,	create	a	256x256	icon,	name	it	ic_large_em_default	and	place	it	in	the
drawable-xxxhdpi	folder	of	the	same	res	folder	generated	previously.

Non-Default	Notification	Icons

Beside	the	default	icons,	you	can	add	more	custom	icons	which	can	be	used	when	scheduling	different	types	of
notifications.	Just	use	the	Android	Asset	Studio	to	generate	small	icons,	and	create	large	icons	at	the	correct
sizes	(256x256).	Then	merge	them	into	the	same	res	folder	that	contains	the	default	icons,	making	sure	the
icons	go	into	their	correct	subfolders.	When	scheduling	a	notification,	you	can	select	these	custom	icons	using
their	names.

Settings

155

Preparing	Android	Notification	Sounds

To	add	custom	notification	sounds,	create	a	folder	named	raw	inside	the	res	folder	that	contains	the	default
notification	icons	and	place	the	sound	files	there.	Later	these	custom	sounds	can	be	specified	in	your	project	with	their
names.	Below	is	an	example	res	folder	that	contains	default	icons,	custom	icons	and	custom	sounds	for	Android
notifications.

Importing	Android	Notification	Resources

Settings

156

After	constructing	the	res	folder	with	all	the	required	icons	and	sounds,	the	next	step	is	import	the	folder	into	your
Unity	project	so	the	resources	can	be	used	in	your	app.	In	the	ANDROID	NOTIFICATION	RESOURCES	section,	click
the	Import	Res	Folder	button,	then	select	the	generated	res	folder	to	import.	That's	it!

iOS	Notification	Resources

On	iOS,	notification	icons	are	provided	by	the	system,	but	you	can	still	have	custom	notification	sounds.	To	add	a
custom	sound	to	your	iOS	app,	simply	place	the	sound	file	anywhere	in	your	Unity	project,	build	your	project	for	iOS
platform,	and	then	drag	the	sound	file	to	the	Xcode	project	root	(remember	to	select	Copy	items	if	needed	on	the
Xcode	import	dialog).

Notes	on	Notification	Sounds

It's	recommended	to	have	notification	sounds	in	.wav	format	so	that	they	can	be	used	on	both	Android	and	iOS.

Make	sure	sound	names	are	consistent	across	iOS	and	Android.

Notification	sounds	must	be	less	than	30	seconds	to	make	sure	they	can	be	played	on	both	Android	and	iOS.

Category	Management

Settings

157

Notification	Category	Groups

In	the	CATEGORY	GROUPS	section	you	can	add,	edit	or	remove	groups	for	the	notification	categories	in	your	app.

1.	 Group	content:	where	you	fill	in	group	information
2.	 Add	button:	use	this	button	to	add	a	new	group
3.	 Move	up	button:	move	the	group	up,	for	arrangement	purpose
4.	 Delete	button:	use	this	button	to	remove	the	current	group
5.	 Move	down	button:	move	the	group	down,	for	arrangement	purpose

A	category	group	content	includes	following	fields:

Name:	the	group	name,	must	not	be	empty
Id:	the	group	ID,	must	not	be	empty;	a	category	specifies	the	group	it	belongs	to	using	this	ID

Notification	Categories

You	can	manage	the	notification	categories	in	your	app	within	the	CATEGORIES	section.

A	category	content	includes	following	fields:

Name:	category	name,	only	visible	on	Android	devices,	this	is	required

Settings

158

Id:	category	ID,	this	is	required;	a	notification	specifies	the	category	it	belongs	to	using	this	ID
Description:	optional	category	description,	only	visible	on	Android	devices
Group	Id:	the	identifier	of	the	group	this	category	belongs	to
Enable	Badge:	[Android	only]	whether	the	notifications	of	this	category	can	appear	as	badges	in	a	Launcher
application
Importance:	[Android	only]	how	much	interruptive	-	visually	and	audibly	-	the	notifications	of	this	category	should
be
Lights:	[Android	only]	determines	how	the	notification	light	should	be	displayed,	on	devices	that	support	this
feature
Light	Color:	[Android	only]	the	color	of	the	notification	light,	only	configurable	when	Lights	is	set	to	Custom
Vibration:	[Android	only]	determines	how	the	device	should	vibrate	when	a	notification	arrives
Vibration	Pattern:	[Android]	the	vibration	pattern	of	the	device,	only	configurable	when	Vibration	is	set	to	Custom
Lock-screen	Visibility:	[Android	only]	determines	how	notifications	should	be	displayed	on	lock-screen
Sound:	determine	whether	the	default	sound,	or	a	custom	sound,	or	no	sound	at	all	should	be	played	when	a
notification	arrives
Sound	Name:	the	filename	(with	extension)	of	the	custom	notification	sound,	only	configurable	if	Sound	is	set	to
Custom
Action	buttons:	the	custom	action	buttons	to	be	attached	to	the	notifications	of	this	category,	each	action	button
requires	the	following	fields:

Id:	action	ID,	used	to	distinguish	between	actions
Title:	action	title,	used	to	display	the	action	button	on	the	notification

Default	Category

Your	app	must	have	at	least	one	notification	category,	and	Easy	Mobile	provides	a	built-in	default	category.	You	can
customize	it	in	the	Default	Category	sub-section	of	the	CATEGORIES	section.	You	can't	remove	the	default
category.

User	Categories

Beside	the	default	category,	you	can	add	as	many	more	categories	as	you	wish.	We	call	these	user	categories,	and
they	can	be	managed	in	the	User	Categories	sub-section	of	the	CATEGORIES	section.

Settings

159

1.	 Category	content:	where	you	fill	in	category	information
2.	 Add	button:	use	this	button	to	add	a	new	user	category
3.	 Move	up	button:	move	the	category	up,	for	arrangement	purpose
4.	 Delete	button:	use	this	button	to	remove	the	current	user	category
5.	 Move	down	button:	move	the	category	down,	for	arrangement	purpose

Constants	Generation
Constants	generation	is	a	feature	of	the	Notifications	module.	It	reads	the	IDs	of	all	user	categories	added	and
generates	a	static	class	named	EM_NotificationsConstants	that	contains	the	constants	of	these	IDs.	Later,	you	can
use	these	constants	when	scheduling	a	local	notification	in	script	instead	of	typing	the	IDs	directly,	thus	help	prevent
runtime	errors	due	to	typos	and	the	likes.

To	generate	the	constants	class	(you	should	do	this	after	adding	all	required	user	categories),	click	the	Generate
Constants	Class	button	within	the	CONSTANTS	CLASS	GENERATION	section.

When	the	process	completes,	a	file	named	EM_NotificationsConstants	will	be	created	at
Assets/notifications/EasyMobile/Generated.

Settings

160

Notifications:	Scripting
This	section	provides	a	guide	to	work	with	the	Notifications	module	scripting	API.

You	can	access	the	Notifications	module	API	via	the	Notifications	class	under	the	EasyMobile	namespace.

Working	with	Consent
The	following	snippet	shows	how	you	grant,	revoke	and	read	the	module-level	consent	of	the	Notifications	module.

//	Grants	the	module-level	consent	for	the	Notifications	module.

Notifications.GrantDataPrivacyConsent();

//	Revokes	the	module-level	consent	of	the	Notifications	module.

Notifications.RevokeDataPrivacyConsent();

//	Reads	the	current	module-level	consent	of	the	Notifications	module.

ConsentStatus	moduleConsent	=	Notifications.DataPrivacyConsent;

Initialization
Before	notifications	can	be	used,	the	module	needs	to	be	initialized.	This	initialization	should	only	be	done	once	when
the	app	is	loaded,	and	before	any	other	calls	to	the	API	are	made.	If	you	have	enabled	the	Auto	initialization	feature
(see	Module	Configuration	section),	you	don't	need	to	start	the	initialization	from	script.	Otherwise,	if	you	choose	to
disable	that	feature,	you	can	initialize	the	service	using	the	Init	method.

//	Initialize	push	notification	service

Notifications.Init();

Note	that	the	initialization	should	be	done	early	and	only	once,	e.g.	you	can	put	it	in	the	Start	method	of	a
MonoBehaviour,	preferably	a	singleton	so	that	it	won't	run	again	when	the	scene	reloads.

//	Initialization	in	the	Start	method	of	a	MonoBehaviour	script

void	Start()

{

				//	Initialize	push	notification	service

				Notifications.Init();			

				//	Do	other	stuff...

}

You	can	check	if	the	module	has	been	initialized	at	any	point	using	the	IsInitialized	method.

//	Check	if	initialization	has	completed.

bool	isInitialized	=	Notifications.IsInitialized();

Working	with	Local	Notifications

Constructing	a	Notification	Content

Before	scheduling	a	notification,	you	must	first	prepare	its	content.	To	do	this	simply	create	a	new	NotificationContent
object	and	fill	it	with	appropriate	information.

Scripting

161

//	Construct	the	content	of	a	new	notification	for	scheduling.

NotificationContent	PrepareNotificationContent()

{

				NotificationContent	content	=	new	NotificationContent();

				//	Provide	the	notification	title.

				content.title	=	"Demo	Notification";

				//	You	can	optionally	provide	the	notification	subtitle,	which	is	visible	on	iOS	only.

				content.subtitle	=	"Demo	Subtitle";

				//	Provide	the	notification	message.

				content.body	=	"This	is	a	demo	notification.";

				//	You	can	optionally	attach	custom	user	information	to	the	notification

				//	in	form	of	a	key-value	dictionary.

				content.userInfo	=	new	Dictionary<string,	object>();

				content.userInfo.Add("string",	"OK");

				content.userInfo.Add("number",	3);

				content.userInfo.Add("bool",	true);

				//	You	can	optionally	assign	this	notification	to	a	category	using	the	category	ID.

				//	If	you	don't	specify	any	category,	the	default	one	will	be	used.

				//	Note	that	it's	recommended	to	use	the	category	ID	constants	from	the	EM_NotificationsConstants	class

				//	if	it	has	been	generated	before.	In	this	example,	UserCategory_notification_category_test	is	the

				//	generated	constant	of	the	category	ID	"notification.category.test".

				content.categoryId	=	EM_NotificationsConstants.UserCategory_notification_category_test;

				//	If	you	want	to	use	default	small	icon	and	large	icon	(on	Android),

				//	don't	set	the	smallIcon	and	largeIcon	fields	of	the	content.

				//	If	you	want	to	use	custom	icons	instead,	simply	specify	their	names	here	(without	file	extensions).

				content.smallIcon	=	"YOUR_CUSTOM_SMALL_ICON";

				content.largeIcon	=	"YOUR_CUSTOM_LARGE_ICON";

				return	content;

}

Scheduling	Local	Notifications

To	schedule	a	local	notification,	prepare	the	notification	content	and	feed	it	to	the	ScheduleLocalNotification	method.

One-Time	Local	Notifications

You	can	schedule	a	notification	to	be	delivered	at	a	specific	time	(in	the	future).	If	the	specified	time	is	in	the	past,	the
notification	will	be	delivered	immediately.

using	System;				//	to	use	DateTime

//	Schedule	a	notification	to	be	delivered	by	08:08AM,	08	August	2018.

void	ScheduleLocalNotification()

{

				//	Prepare	the	notification	content	(see	the	above	section).

				NotificationContent	content	=	PrepareNotificationContent();

				//	Set	the	delivery	time.

				DateTime	triggerDate	=	new	DateTime(2018,	08,	08,	08,	08,	08);

				//	Schedule	the	notification.

				Notifications.ScheduleLocalNotification(triggerDate,	content);

}

Instead	of	a	trigger	date,	you	can	also	schedule	a	one-time	notification	to	be	delivered	after	some	delay	time.

using	System;

Scripting

162

//	Schedule	a	notification	to	be	delivered	after	08	hours,	08	minutes	and	08	seconds.

void	ScheduleLocalNotification()

{

				//	Prepare	the	notification	content	(see	the	above	section).

				NotificationContent	content	=	PrepareNotificationContent();

				//	Set	the	delay	time	as	a	TimeSpan.

				TimeSpan	delay	=	new	TimeSpan(08,	08,	08);

				//	Schedule	the	notification.

				Notifications.ScheduleLocalNotification(delay,	content);

}

Repeat	Local	Notifications

If	you	want	the	notification	to	repeat	automatically,	schedule	it	to	be	delivered	after	some	delay	time,	and	then	specify
a	fixed	repeat	interval.	Repeat	interval	can	be	one	of	the	following	values:

None:	no	repeat
EveryMinute:	notification	repeats	once	every	minute
EveryHour:	notification	repeats	once	every	hour
EveryDay:	notification	repeats	once	every	day
EveryWeek:	notification	repeats	once	every	week

using	System;

//	Schedule	a	notification	to	be	delivered	after	08	hours,	08	minutes	and	08	seconds,

//	then	repeat	once	every	day.

void	ScheduleRepeatLocalNotification()

{

				//	Prepare	the	notification	content	(see	the	above	section).

				NotificationContent	content	=	PrepareNotificationContent();

				//	Set	the	delay	time	as	a	TimeSpan.

				TimeSpan	delay	=	new	TimeSpan(08,	08,	08);

				//	Schedule	the	notification.

				Notifications.ScheduleLocalNotification(delay,	content,	NotificationRepeat.EveryDay);

}

Managing	Pending	Local	Notifications

Get	Pending	Local	Notifications

To	get	all	pending	(scheduled	but	not	yet	delivered)	local	notifications,	use	the	GetPendingLocalNotifications	method.
The	pending	notifications	will	be	returned	as	an	array	of	NotificationRequest	objects	via	a	callback.	Each	pending
notification	request	is	identified	by	its	request	ID.

//	Gets	all	pending	local	notification	requests.

void	GetPendingLocalNotifications()

{

				Notifications.GetPendingLocalNotifications(GetPendingLocalNotificationsCallback);

}

//	Callback.

void	GetPendingLocalNotificationsCallback(NotificationRequest[]	pendingRequests)

{

				foreach	(var	request	in	pendingRequests)

				{

								NotificationContent	content	=	request.content;								//	notification	content

Scripting

163

								Debug.Log("Notification	request	ID:	"	+	request.id);				//	notification	request	ID

								Debug.Log("Notification	title:	"	+	content.title);

								Debug.Log("Notification	body:	"	+	content.body);

				}

}

Cancel	a	Pending	Local	Notification

To	cancel	a	particular	pending	local	notification,	call	the	CancelPendingLocalNotification	method	with	the	request	ID	of
the	notification	to	be	canceled.	Canceled	notifications	will	no	longer	be	delivered.

//	Cancels	a	pending	local	notification	with	known	request	ID.

Notifications.CancelPendingLocalNotification("REQUEST_ID_TO_CANCEL");

Cancel	All	Pending	Local	Notifications

To	cancel	all	pending	local	notifications,	simply	call	the	CancelAllPendingLocalNotifications	method.

//	Cancels	all	pending	local	notifications.

Notifications.CancelAllPendingLocalNotifications();

Working	with	Remote	Notifications
Remote	notifications	are	sent	from	a	remote	server	and	are	typically	scheduled	from	a	website,	e.g.	OneSignal's
dashboard.	Within	your	app,	you	only	need	to	write	code	to	handle	when	a	remote	notification	is	delivered	and
opened.

Handling	Opened	Notifications
Whenever	a	local	or	remote	notification	is	opened	-	either	by	the	user	tapping	on	it	(default	open	action)	or	selecting
an	action	button	-	your	app	will	be	brought	to	foreground	and	then	a	LocalNotificationOpened	_or	a
RemoteNotificationOpened	event	will	be	raised.	You	can	subscribe	to	these	events	and	take	appropriate	actions
according	to	your	app	design.	It's	recommended	to	subscribe	to	the	events	as	soon	as	your	app	is	loaded,	e.g.	in	the
_OnEnable	method	of	a	MonoBehaviour	script	in	your	first	scene.	Otherwise	you	risk	missing	them.

If	your	app	is	in	foreground	when	a	notification	is	delivered	-	be	it	local	or	remote	-	then	the	notification	is	not
posted	(not	displayed)	and	the	LocalNotificationOpened	or	RemoteNotificationOpened	event	will	be	raised
immediately	as	if	the	notification	was	opened	with	the	default	action.

//	Subscribes	to	notification	events.

void	OnEnable()

{

				Notifications.LocalNotificationOpened	+=	OnLocalNotificationOpened;

				Notifications.RemoteNotificationOpened	+=	OnRemoteNotificationOpened;

}

//	Unsubscribes	notification	events.

void	OnDisable()

{

				Notifications.LocalNotificationOpened	-=	OnLocalNotificationOpened;

				Notifications.RemoteNotificationOpened	-=	OnRemoteNotificationOpened;

}

//	This	handler	will	be	called	when	a	local	notification	is	opened.

void	OnLocalNotificationOpened(LocalNotification	delivered)

{

Scripting

164

				//	The	actionId	will	be	empty	if	the	notification	was	opened	with	the	default	action.

				//	Otherwise	it	contains	the	ID	of	the	selected	action	button.

				if	(!string.IsNullOrEmpty(delivered.actionId))

				{

								Debug.Log("Action	ID:	"	+	delivered.actionId);

				}

				//	Whether	the	notification	is	delivered	when	the	app	is	in	foreground.

				Debug.Log("Is	app	in	foreground:	"	+	delivered.isAppInForeground.ToString());

				//	Gets	the	notification	content.

				NotificationContent	content	=	delivered.content;

				//	Take	further	actions	if	needed...

}

//	This	handler	will	be	called	when	a	remote	notification	is	opened.

void	OnRemoteNotificationOpened(RemoteNotification	delivered)

{

				//	The	actionId	will	be	empty	if	the	notification	was	opened	with	the	default	action.

				//	Otherwise	it	contains	the	ID	of	the	selected	action	button.

				if	(!string.IsNullOrEmpty(delivered.actionId))

				{

								Debug.Log("Action	ID:	"	+	delivered.actionId);

				}

				//	Whether	the	notification	is	delivered	when	the	app	is	in	foreground.

				Debug.Log("Is	app	in	foreground:	"	+	delivered.isAppInForeground.ToString());

				//	Gets	the	notification	content.

				NotificationContent	content	=	delivered.content;

				//	If	OneSignal	service	is	in	use	you	can	access	the	original	OneSignal	payload	like	below.

				//	If	OneSignal	is	not	in	use	this	will	be	null.

				OneSignalNotificationPayload	osPayload	=	delivered.oneSignalPayload;

				//	If	Firebase	Messaging	service	is	in	use	you	can	access	the	original	Firebase

				//	payload	like	below.	If	Firebase	is	not	in	use	this	will	be	null.

				FirebaseMessage	fcmPayload	=	delivered.firebasePayload;

				//	Take	further	actions	if	needed...

}

Handling	Firebase	Notifications	on	Android

On	Android,	if	a	Firebase	notification	arrives	when	your	app	is	not	running	or	is	in	background,	only	the	"data
payload"	will	be	sent	to	the	app,	while	the	"notification	component"	won't	because	it	is	intended	to	be	displayed
to	the	user	only.	Effectively,	the	NotificationContent	associated	with	the	RemoteNotification	object	returned	by
the	RemoteNotificationOpened	event	will	contain	empty	fields	(title,	subtile,	body,	etc.)	with	the	exception	of	the
'userInfo'	field	which	represents	the	data	payload.	If	the	app	is	in	foreground	then	both	the	data	payload	and	the
notification	component	will	be	forwarded	to	the	app.

You	can	learn	more	about	this	here	and	here.

Removing	Delivered	Notifications
Normally	delivered	notifications	are	cleared	automatically	when	they're	opened.	You	can	manually	clear	all	previously
shown	notifications	of	your	app	from	the	notification	center	or	status	bar	with	the	ClearAllDeliveredNotifications
method.

//	Clear	all	delivered	notifications	(local	and	remote).

Notifications.ClearAllDeliveredNotifications();

Scripting

165

https://github.com/firebase/quickstart-unity/issues/80
https://firebase.google.com/docs/cloud-messaging/android/receive#handling_messages

[iOS]	Setting	Application	Icon	Badge	Number
iOS	allows	us	to	get	and	set	the	application	icon	badge	number	directly.	Easy	Mobile	provides	the	following	methods
so	you	can	manage	the	badge	number	when	working	with	notifications	on	iOS.	Note	that	they	don't	have	any	effect	on
Android.

//	Get	iOS	application	icon	badge	number.

int	badgeNumber	=	Notifications.GetAppIconBadgeNumber();

//	Set	iOS	application	icon	badge	number.

Notifications.SetAppIconBadgeNumber(badgeNumber	+	1);				//	increase	the	badge	number	by	1

Scripting

166

Notifications:	PlayMaker	Actions
The	PlayMaker	actions	of	the	Notifications	module	are	group	in	the	category	Easy	Mobile	-	Notifications	in	the
PlayMaker's	Action	Browser.

Please	refer	to	the	NotificationsDemo_PlayMaker	scene	in	folder
Assets/EasyMobile/Demo/PlayMakerDemo/Modules	for	an	example	on	how	these	actions	can	be	used.

PlayMaker	Actions

167

PlayMaker	Actions

168

Privacy:	Introduction
The	Privacy	module	provides	you	convenient	tools	and	resources	to	streamline	the	process	of	getting	compliant	with
user	privacy	directive	and	regulations	such	as	the	General	Data	Privacy	Regulation	(GDPR).	Here're	some	highlights
of	this	modules:

Comprehensive,	flexible	consent	management	system

Multi-level,	prioritized	consent	system	for	flexible	management	of	various	consent-requirable	services	in	your
app
Consent	is	automatically	stored	to	be	persistent	across	app	sessions
Consent	is	automatically	applied/communicated	to	relevant	services	in	runtime

Multi-purpose	built-in	native	consent	dialog

Easy	to	use	dialog	that	can	be	used	as	the	common	interface	for	collecting	user	consent	for	all	relevant
services	(to	avoid	annoying	the	user	with	multiple	popups	asking	consent	for	various	things)
The	dialog	content	and	layout	can	be	flexibly	adapted	to	your	consent	management	needs
The	dialog	can	be	created	from	script	or	by	using	the	built-in	graphical	composer
Native	look	makes	sure	the	dialog	can	visually	fit	into	apps	of	any	graphic	style

Location	detection	tool

Built-in	API	to	check	whether	the	current	device	is	in	the	European	Economic	Area	(EEA)	region,	which	is
regulated	by	the	GDPR

Consent	Management	System

Consent	States

A	consent	can	take	one	of	3	values:	Unknown,	Granted	or	Revoke.

State Description

Unknown The	default	state	of	consent,	which	means	the	user	neither	accepts	nor	denies	the	requested	use
of	their	data.

Granted The	user	allows	permission	to	the	requested	use	of	their	data

Revoked The	user	denies	(or	revokes	a	previously	granted)	permission	to	the	requested	use	of	their	data

A	consent	is	considered	"defined"	if	it	has	a	state	other	than	Unknown.

Consent	Levels	and	Priorities

The	primary	design	target	of	the	consent	system	is	flexibility,	that	it	allows	setting	a	global	consent	or	granular	consent
for	individual	modules	or	services.	Different	consent-levels	have	different	priorities	such	that	the	higher	prioritized
consent	overrides	the	lower	one.	In	other	words,	more	specific	consent	is	prioritized	over	less-specific	one.	The	table
below	summarizes	the	types	of	consent	provided	by	Easy	Mobile.

Type Level Priority Description

Vendor/Provider
Consent

Lowest	(most
specific) Highest Consent	given	to	a	specific	vendor	of	a	certain	service,

e.g.	AdMob's	consent

Module	Consent Medium Medium Consent	given	to	a	certain	module,	e.g.	Advertising
module's	consent

Introduction

169

Global	Consent Highest	(least
specific) Lowest The	common	consent	given	to	the	whole	app

Whenever	a	service	seeks	for	an	applicable	consent,	it	searches	from	the	lowest	level	to	the	highest	level	and	get	the
defined	consent	with	highest	priority.	The	following	pseudo-code	illustrates	the	process:

if	there’s	a	defined	vendor-consent

				Use	vendor-consent

else	if	there’s	a	defined	module-consent

				Use	module-consent

else	if	there’s	a	define	global-consent

				Use	global-consent

else

				Fallback	to	service's	default-behaviour	(the	“pre-GDPR”	behaviour)

ConsentManager	Class

Each	consent	type	is	managed	by	a	corresponding	consent	manager.	Specifically,

The	vendor	consent	is	managed	by	the	client	of	the	corresponding	vendor,	e.g.	AdMob's	consent	is	managed	by
the	Advertising.AdMobClient	object
The	module	consent	is	managed	by	the	corresponding	consent	manager	of	that	module,	e.g.	the	Advertising
module's	consent	is	managed	by	the	AdvertisingConsentManager.
The	global	consent	is	managed	by	the	GlobalConsentManager.

Each	of	these	manager	extends	the	ConsentManager	class,	which	is	an	abstract	class	that	implements	the
IConsentRequirable	interface.	It	provides	an	API	for	following	tasks:

Querying	the	current	state	of	the	managed	consent
Granting	or	revoking	consent
Observing	consent	changes	using	event

The	ConsentManager	stores	the	specified	consent	state	in	PlayerPrefs	so	that	it	persists	across	app	launches.

You	can	create	classes	extending	the	ConsentManager	class	to	manage	consent	for	other	services	in	your	app
that	are	not	governed	by	Easy	Mobile.

Consent	Communication

Specified	consent	(Granted	or	Revoked)	will	be	automatically	communicated	(applied)	to	corresponding	services
during	their	initialization,	which	most	of	the	time	is	done	automatically	during	the	initialization	of	Easy	Mobile	(see
Using	Easy	Mobile	>	Initializing),	unless	you	turned	off	the	auto	initialization	feature	of	these	services	in	the	Settings
interface.	If	the	consent	is	changed	after	the	corresponding	service	has	been	initialized,	that	change	will	be	applied	in
the	next	initialization.	In	such	case	you	should	inform	the	user	accordingly.

Details	on	how	consent	is	applied	for	each	individual	service	can	be	found	in	the	chapter	on	GDPR	of	the
corresponding	module.	Currently,	two	modules	being	affected	are	the	Advertising	and	Notifications	module.

Consent	Dialog
Collecting	user	consent	may	sound	trivial,	but	if	not	done	right	could	negatively	affect	the	user	experience.	A	typical
app	could	incorporate	multiple	consent-requirable	services	such	as	ads,	analytics	and	remote	notifications.	Each
service	may	provide	its	own	interface	to	collect	user	consent,	e.g.	AdMob	provides	the	Consent	SDK	and	the	MoPub

Introduction

170

SDK	offers	a	built-in	dialog	for	the	same	purpose.	However,	it	may	not	be	ideal	to	use	these	vendor-specific	interfaces
because	it	means	the	user	would	be	presented	with	multiple	dialogs	asking	consent	for	different	things,	which	would
not	be	a	great	experience,	to	say	the	least.

To	solve	this	problem,	Easy	Mobile	provides	a	multi-purpose	consent	dialog	that	can	serve	as	a	common	interface	for
collecting	user	consent	for	all	relevant	services	in	your	app.	The	dialog	is	built	from	native	UI	elements	to	give	it	a
mobile-native	look	that	easily	fits	into	your	app	regardless	of	its	graphic	style.

Consent	Dialog	Anatomy

The	following	image	depicts	how	the	consent	dialog	looks	on	Android	and	iOS	(left	to	right).

A	consent	dialog	consists	of	following	parts:

Title	bar:	on	top	of	the	dialog	is	a	title	bar	containing:
Title	(1):	the	title	for	your	dialog
Dismiss	button	(2):	optional	button	that	allows	the	user	to	cancel	the	dialog	without	updating	the	consent,
when	this	button	is	clicked	the	dialog	closes	and	raises	its	Dismissed	event.

Main	content:	the	body	of	the	dialog	is	comprised	of	the	following	element:
Texts	(3)(5):	you	can	use	common	HTML	tags	such	as	,	<i>	to	style	the	text,	as	well	as	using	the	<a>	tag
to	include	hyperlinks,	which	is	useful	for	providing	links	to	privacy	policies.
Toggles	(4):	you	can	optionally	include	toggles	in	your	dialog	asking	the	user	to	provide	granular	consent	for
different	services.	Toggles	can	be	turned	off	by	default,	making	them	a	good	means	for	users	to	provide
explicit	consent	(they	have	to	turn	them	on	explicitly).	Each	toggle	consists	of	a	title,	a	switch	and	a
description	text,	which	is	collapsible.	Similar	to	the	body	text,	you	can	use	common	HTML	tags	such	as	,
<i>	and	<a>	in	this	description	text.	Also,	you	can,	for	example,	make	a	toggle	on	by	default	and	make	it
unclickable	for	a	service	that	is	vital	for	the	operation	of	your	app	to	indicate	the	user	that	consent	for	such
service	is	required	for	continued	use	of	the	app.
Buttons	(6):	whenever	a	button	in	the	dialog	is	clicked,	the	dialog	closes	and	raises	its	Completed	event	with
the	ID	of	the	clicked	button	and	the	current	values	of	the	toggles	if	any.

You	can	construct	consent	dialogs	directly	in	script	or	by	using	the	built-in	consent	dialog	composer	(see
Settings).
You	can	flexibly	interleave	text,	toggles	and	buttons	in	the	body	of	your	consent	dialog	to	achieve	the
desired	layout.

Introduction

171

You	can	have	zero	or	more	toggles,	but	the	dialog	should	always	have	at	least	one	button	otherwise	the
Completed	event	will	never	fire	and	the	dialog	results	(clicked	button	ID,	toggle	values)	won't	be	returned.

Consent	Dialog	Localization

One	of	the	requirement	of	the	GDPR	is	the	the	request	for	consent	must	be	intelligible,	so	it	may	be	desirable	to
localize	the	consent	dialog	into	multiple	languages.	Easy	Mobile's	consent	dialog	was	designed	with	that	in	mind.	All
elements	of	the	consent	dialog	can	be	accessed	and	altered	at	runtime,	making	it	easy	to	localize	them.	A	typical
approach	would	be	using	known	string-patterns	as	placeholders	for	the	texts	in	the	dialog	(e.g	title,	body	texts,	toggle
description,	button	label)	and	replace	them	with	appropriate	localized	texts	in	runtime	before	showing	the	dialog.

You	may	want	to	use	a	dedicated	localization	asset,	which	can	be	easily	found	on	the	Unity	Asset	Store,	for	the
purpose	of	managing	and	selecting	correct	translation	for	the	placeholder	texts.

EEA	Region	Checking
Since	the	GDPR	applies	specifically	to	the	EEA	region,	it	may	be	desirable	to	have	different	behaviors	for	your	app
between	EEA	and	non-EEA	regions,	especially	on	privacy-sensitive	tasks.	To	serve	that	purpose,	Easy	Mobile
provides	a	built-in	validator	to	detect	whether	the	current	device	is	in	EEA	region	or	not.	The	tool	employs	several
different	methods	for	the	test	which	are	summarized	in	the	table	below.

Method Description

Google
Service

Validating	using	the	service	provided	by	Google	at
https://adservice.google.com/getconfig/pubvendors,	requires	an	internet	conection

Telephony Validating	using	the	country	code	obtained	from	the	device's	mobile	carrier	information	(SIM	card
information),	no	connection	required	but	won't	work	without	a	SIM	card

Timezone Validating	using	the	device's	timezone	setting.	No	connection	required;	note	that	this	setting	can
be	changed	by	the	user

Locale Validating	using	the	device's	locale	setting.	No	connection	required;	note	that	this	setting	can	be
changed	by	the	user

The	EEA	region	validator	returns	one	of	the	following	results:	InEEA,	NotInEEA	or	Unknown.	It	allows	you	to	use	all
available	validating	methods	or	a	subset	of	them	in	a	predefined	order	of	priorities.	If	a	higher	prioritized	method	fails,
the	validator	will	use	the	next	method	until	an	explicit	result	(either	an	InEEA	or	NotInEEA	value)	is	determined.	In	the
rare	case	that	all	methods	fail,	the	result	will	be	returned	as	Unknown.	For	example	scripts	on	using	the	EEA	validator
see	the	Scripting	chapter.

The	codes	of	those	countries	currently	included	in	the	EEA	region	are	stored	in	the	EEACountries	enum.

public	enum	EEACountries

{

				None	=	0,

				AT,	BE,	BG,	HR,	CY,	CZ,	DK,	EE,	FI,	FR,	DE,	GR,	HU,	IE,	IT,	LV,	LT,	LU,	MT,	NL,	PL,	PT,	RO,	SK,	SI,	ES

,	SE,	GB,	//	28	member	states.

				GF,	PF,	TF,	//	French	territories	French	Guiana,	Polynesia,	Southern	Territories.

				EL,	UK,		//	Alternative	EU	names	for	GR	and	GB.

				IS,	LI,	NO,	//	Not	EU	but	in	EAA.

				CH,	//	Not	in	EU	or	EAA	but	in	single	market.

				AL,	BA,	MK,	XK,	ME,	RS,	TR	//	Candidate	countries.

}

A	Proposed	Workflow	for	Working	with	Consent

Introduction

172

https://adservice.google.com/getconfig/pubvendors

It's	up	to	you	to	decide	how	your	app	should	react	to	the	GDPR,	including	whether	user	consent	should	be	collected
for	those	services	in	the	app	that	may	be	subject	to	the	regulation.	The	following	proposed	workflow	can	be	optionally
employed	in	the	case	you	decide	to	collect	user	consent	and	configure	relevant	service	with	that	consent.

SgLib	Games	offer	tools	and	information	as	a	resource	to	assist	you	in	getting	compliant	with	the	GDPR,	but	we
don't	offer	legal	advice.	We	recommend	you	contact	your	legal	counsel	to	find	out	how	GDPR	affects	you.

When	building	a	consent	aware	app	using	Easy	Mobile,	following	considerations	can	be	made:

Since	the	consent	is	applied	during	service	initialization,	it's	advisable	to	collect	user	consent	and	forward	it	to
relevant	modules	or	services	before	initializing	the	Easy	Mobile	runtime.
A	consent	dialog	should	be	presented	the	first	time	the	app	launches	to	collect	user	consent	for	all	relevant
services;	this	dialog	should	not	be	dismissible,	as	we	want	the	user	to	specify	explicit	consent	once	before	the
normal	operation	runs.
The	consent	dialog	should	be	accessible	again	(e.g.	via	a	menu	button)	so	that	the	user	can	change	their
consent;	this	dialog	should	reflect	the	current	consent	states	for	each	individual	services	and	should	be
dismissible,	so	the	user	can	leave	it	without	updating	their	consent	in	case	the	dialog	was	opened	unintentionally.
If	the	user	does	change	their	consent,	they	should	be	informed	that	the	changes	will	take	place	during	the	next
app	launch	(the	next	initialization).
It	may	be	advisable	to	only	collect	and	apply	consent	for	devices	in	the	EEA	region,	while	having	a	"pre-GDPR"
behavior	in	other	region	(not	setting	any	consent,	as	what's	normally	done	before	the	GDPR	came	out).
It	may	be	desirable	to	use	a	localization	tool	to	localize	the	consent	dialog	to	languages	in	the	EEA	region.

Since	it's	common	to	have	multiple	consent-requirable	services	in	your	app,	some	of	those	may	be	governed	by	Easy
Mobile	while	others	may	be	not,	we	recommend	having	a	custom	"app	consent"	class	that	represents	the	collection	of
all	consent	given	to	each	individual	service	in	the	app.	This	class	should	have	several	functionalities:

Represents	the	collection	of	consent	given	to	various	services,	specifically	advertising,	analytics	and	notifications
as	in	the	example	script
Forwards	the	collected	consent	to	corresponding	services	using	appropriate	API	provided	by	Easy	Mobile	(and
other	relevant	3rd	party	SDKs	if	any)
Allows	saving	and	retrieving	the	collected	consent	to	and	from	PlayerPrefs	in	form	of	a	JSON	string	(thus	it	is
attributed	as	Serializable)	so	that	we	can	restore	the	consent	values	and	reflect	them	on	the	consent	dialog	when
it	is	shown	again

For	the	purpose	of	explaining	this	proposed	workflow,	we	reuse	the	DemoAppConsent	class	found	in	our	Privacy
demo	scene	as	an	example	of	the	aforementioned	class.

using	System.Collections;

using	System.Collections.Generic;

using	UnityEngine;

using	System;

namespace	EasyMobile.Demo

{

				///	<summary>

				///	This	class	represents	a	collection	of	individual	consents	for

				///	all	3rd-party	services	that	require	consent	in	our	app.

				///	This	class	can	be	used	to	manage	consent	for	any

				///	3rd-party	service,	not	just	those	managed	by	Easy	Mobile.

				///	Note	that	this	class	is	serializable	so	we	can	serialize	it

				///	to	a	JSON	string	and	store	in	PlayerPrefs.

				///	</summary>

				[Serializable]

				public	class	DemoAppConsent

				{

								public	const	string	DemoStorageKey	=	"EM_Demo_AppConsent";

								#region	3rd-party	Services	Consent

								//	The	consent	for	the	whole	Advertising	module.

Introduction

173

								//	(we	could	have	had	different	consents	for	individual	ad	networks,	but	for

								//	the	sake	of	simplicity	in	this	demo,	we'll	ask	the	user	a	single	consent

								//	for	the	whole	module	and	use	it	for	all	ad	networks).

								public	ConsentStatus	advertisingConsent	=	ConsentStatus.Unknown;

								//	The	consent	for	the	whole	Notifications	module.

								//	Note	that	data	consent	is	only	applicable	to	push	notifications,

								//	local	notifications	don't	require	any	consent.

								public	ConsentStatus	notificationConsent	=	ConsentStatus.Unknown;

								//	Since	this	demo	app	also	has	In-App	Purchase,	which	forces	the	use	of

								//	Unity	Analytics,	we	could	have	had	to	ask	a	consent	for	that	too.	However,

								//	according	to	Unity	it's	sufficient	to	provide	the	user	with	an	URL

								//	so	they	can	opt-out	on	Unity	website.	So	we	will	include	that	URL	in	our

								//	consent	dialog	and	not	need	to	ask	and	store	any	explicit	consent	locally.

								//	Here	you	can	add	consent	variables	for	other	3rd	party	services	if	needed,

								//	including	those	not	managed	by	Easy	Mobile...

								#endregion

								///	<summary>

								///	To	JSON	string.

								///	</summary>

								///	<returns>A	<see	cref="System.String"/>	that	represents	the	current	<see	cref="EasyMobile.Demo.AppCo

nsent"/>.</returns>

								public	override	string	ToString()

								{

												return	JsonUtility.ToJson(this);

								}

								///	<summary>

								///	Converts	this	object	to	JSON	and	stores	in	PlayerPrefs	with	the	provided	key.

								///	</summary>

								///	<param	name="key">Key.</param>

								public	void	Save(string	key)

								{

												PlayerPrefs.SetString(key,	ToString());

								}

								///	<summary>

								///	Forwards	the	consent	to	relevant	modules	of	EM.

								///	</summary>

								///	<param	name="consent">Consent.</param>

								///	<remarks>

								///	In	a	real-world	app,	you'd	want	to	write	similar	method

								///	to	forward	the	obtained	consent	not	only	to	relevant	EM	modules

								///	and	services,	but	also	to	other	relevant	3rd-party	SDKs	in	your	app.

								public	static	void	ApplyDemoAppConsent(DemoAppConsent	consent)

								{

												//	Forward	the	consent	to	the	Advertising	module.

												if	(consent.advertisingConsent	==	ConsentStatus.Granted)

																Advertising.GrantDataPrivacyConsent();

												else	if	(consent.advertisingConsent	==	ConsentStatus.Revoked)

																Advertising.RevokeDataPrivacyConsent();

												//	Forward	the	consent	to	the	Notifications	module.

												if	(consent.notificationConsent	==	ConsentStatus.Granted)

																Notifications.GrantDataPrivacyConsent();

												else	if	(consent.notificationConsent	==	ConsentStatus.Revoked)

																Notifications.RevokeDataPrivacyConsent();

												//	Here	you	can	forward	the	consent	to	other	relevant	3rd-party	services	if	needed...

								}

								///	<summary>

								///	Saves	the	give	app	consent	to	PlayerPrefs	as	JSON	using	the	demo	storage	key.

								///	</summary>

								///	<param	name="consent">Consent.</param>

								public	static	void	SaveDemoAppConsent(DemoAppConsent	consent)

								{

												if	(consent	!=	null)

																consent.Save(DemoStorageKey);

Introduction

174

								}

								///	<summary>

								///	Loads	the	demo	app	consent	from	PlayerPrefs,	returns	null	if	nothing	stored	previously.

								///	</summary>

								///	<returns>The	demo	app	consent.</returns>

								public	static	DemoAppConsent	LoadDemoAppConsent()

								{

												string	json	=	PlayerPrefs.GetString(DemoStorageKey,	null);

												if	(!string.IsNullOrEmpty(json))

																return	JsonUtility.FromJson<DemoAppConsent>(json);

												else

																return	null;

								}

				}

}

The	following	pseudo-code	illustrates	the	process	that	should	be	done	at	every	app	launch	to	collect	and	forward
consent	(if	needed)	and	then	initialize	Easy	Mobile	in	a	consent-aware	app.

if	NOT	in	EEA	region																													//	not	affected	by	GDPR

{

				Initialize	Easy	Mobile																							//	no	consent	needed,	go	ahead	with	initialization

}

else																																													//	is	in	EEA	region,	affected	by	GDPR

{

				if	NOT	first	app	launch																						//	consent	should	be	given	already	in	the	1st	launch

				{

								Initialize	Easy	Mobile																			//	go	ahead	with	initialization

				}

				else																																									//	this	is	first	app	launch,	should	ask	for	consent

				{

								Get	the	default	consent	dialog											//	or	create	a	new	one

								Localize	the	consent	dialog														//	if	needed,	preferably	using	a	localization	tool

								Show	non-dismissible	consent	dialog						//	user	can	not	skip	it

								Construct	new	"app	consent"	object							//	consent	collected,	construct	the	object	off	it

								Forward	consent	to	relevant	services					//	using	the	"app	consent"	object

								Save	consent	values																						//	using	the	"app	consent"	object

								Initialize	Easy	Mobile																			//	everything	is	set,	can	now	start	working!

				}

}

As	mentioned	previously,	apart	from	collecting	consent	at	the	first	app	launch	we	also	need	to	provide	a	way	for	the
user	to	access	the	consent	dialog	again	to	update	their	consent	if	needed.	The	simplest	way	is	having	a	menu	button
that	can	open	the	consent	dialog	at	the	user	discretion.	This	dialog	should	reflect	the	current	consent	status	and	is
dismissible.	The	following	pseudo-code	illustrate	the	process	to	handle	such	consent	dialog	opening	button.

if	button	clicked

{

				Get	the	default	consent	dialog															//	or	create	a	new	one

				Localize	the	consent	dialog																		//	if	needed,	preferably	using	a	localization	tool

				if	having	a	stored	consent																			//	check	using	the	"app	consent"	class

				{

								Retrieve	the	stored	consent														//	using	the	"app	consent"	class

								Update	dialog	with	stored	consent								//	reflect	the	current	consent	status

				}

				Show	dismissible	consent	dialog														//	user	can	skip	it	if	opened	unintentionally

				if	consent	is	updated																								//	dialog	is	close	&	consent	has	changed

				{

								Construct	new	"app	consent"	object							//	consent	collected,	construct	the	object	off	it

								Forward	consent	to	relevant	services					//	using	the	"app	consent"	object

								Save	consent	values																						//	using	the	"app	consent"	object

								Show	alert																															//	inform	user	changes	will	be	applied	since	next	app	launch

				}

}

Introduction

175

Please	see	folder	Assets/EasyMobile/Demo/Scripts/PrivacyDemo	for	example	scripts	on	this	subject.

Introduction

176

Privacy:	Settings
The	settings	interface	of	the	Privacy	module	can	be	accessed	from	the	Privacy	tab	at	menu	Window	>	Easy	Mobile	>
Settings.

Default	Consent	Dialog	Composer
There	are	two	ways	to	construct	an	Easy	Mobile	consent	dialog:	building	it	in	script	or	using	the	built-in	graphical
consent	dialog	composer.	The	latter	can	be	found	in	the	Privacy	module	settings	interface.	The	dialog	composed	with
this	composer	is	the	default	consent	dialog	and	can	be	obtained	from	script	using	the
Privacy.GetDefaultConsentDialog()	method	(see	Working	with	Default	Consent	Dialog).

Settings

177

The	composer	consists	of	following	sections:

1.	 Title:	for	editing	the	dialog's	title
2.	 Main	Content:	this	is	where	you	compose	the	main	content	of	the	dialog	by	inserting	texts,	toggles	or	buttons.
3.	 Toogle	List:	this	is	where	you	manage	the	toggles	in	your	dialog,	adding	or	removing	toggles,	setting	their

parameters	such	as	ID,	title,	description,	etc.
4.	 Button	List:	this	is	where	you	manage	the	buttons	in	your	dialog,	adding	or	removing	buttons,	setting	their

parameters	such	as	ID,	label,	colors,	etc.
5.	 Preview:	you	can	use	the	button	in	this	section	to	open	the	preview	scene	for	the	composed	dialog.

Composing	Main	Content

You	can	edit	the	body	of	your	consent	dialog	in	the	Main	Content	section	of	the	composer.

Settings

178

1.	 Enable	Copy	&	Paste:	in	some	versions	of	Unity	we	can't	have	both	text	selection	function	(for	styling	or	inserting
hyperlinks)	and	copy-paste	function	at	the	same	time.	In	such	case	you	can	check	this	option	when	you	want	to
do	copy-paste	and	uncheck	it	to	use	the	toolbar	buttons	(which	require	text	selection).

2.	 Toolbar:	containing	buttons	for	text	styling	(bold,	italic),	inserting	hyperlinks,	inserting	toggles	and	buttons.
3.	 Text	Area:	for	inputing	the	text	that	describes	the	content	of	your	consent	dialog.

Text	Styling

Common	HTML	tags	including		(bold)	and	<i>	(italic)	can	be	used	to	style	the	text.	In	the	composer	you	can	select
a	chunk	of	text	and	use	the	B	or	I	button	on	the	toolbar	to	make	it	bold	or	italic	respectively,	the	appropriate	tag	will	be
added	to	the	text	in	the	below	text	area	automatically.

Inserting	Hyperlinks

It's	important	to	provide	links	to	appropriate	privacy	policy	in	the	consent	dialog,	which	can	be	done	by	inserting
hyperlinks.	To	insert	a	hyperlink,	simply	select	the	appropriate	text	in	the	text	area	and	click	the	hyperlink	button	on
the	toolbar	and	enter	the	appropriate	URL.

Inserting	Toggles

Before	inserting	toggles	to	the	consent	dialog,	you	must	create	them	in	the	Toggle	List	section	first	(see	Managing
Toggles).	Then	select	the	toggle	to	insert	using	its	ID	in	the	toggle	dropdown	on	the	toolbar	and	click	the	Insert	Toggle
button.	A	special	toggle	tag	(e.g.	</EM_CONSENT_TOGGLE.	Id	=	toggle_advertising>)	will	be	inserted	at	the	current
cursor	position	in	the	text	area.	In	runtime,	this	will	be	replaced	by	an	actual	toggle	constructed	with	the	parameters
corresponding	to	the	toggle	ID	in	the	toggle	list.

Settings

179

Inserting	Buttons

Before	inserting	buttons	to	the	consent	dialog,	you	must	create	them	in	the	Button	List	section	first	(see	Managing
Buttons).	Then	select	the	button	to	insert	using	its	ID	in	the	button	dropdown	on	the	toolbar	and	click	the	Insert	Button
button.	A	special	button	tag	(e.g.	</EM_CONSENT_BUTTON.	Id	=	button_ok>)	will	be	inserted	at	the	current	cursor
position	in	the	text	area.	In	runtime,	this	will	be	replaced	by	an	actual	button	constructed	with	the	parameters
corresponding	to	the	button	ID	in	the	button	list.

Your	consent	dialog	must	have	at	least	one	button	so	that	it	can	be	close	with	the	Completed	event.

Managing	Toggles

Toggles	in	your	consent	dialog	can	be	designed	and	managed	in	the	Toggle	List	section.	To	create	a	new	toggle
click	the	plus	button	at	the	top	right	corner.	To	remove	a	toggle	click	the	minus	button	to	the	right	of	that	toggle.

The	following	shows	the	parameters	of	a	toggle.

Settings

180

Id:	the	ID	of	the	toggle.
Title:	the	title	of	the	toggle.
Is	On:	whether	the	toggle	should	be	turned	on	by	default.
Interactable:	whether	the	toggle	is	clickable,	this	value	can	be	changed	from	script	in	runtime.
Toggle	Description:	whether	the	description	should	be	updated	according	to	the	on	off	state	of	the	toggle,	if	this
value	is	false,	the	Toggle	On	Description	will	always	show.
Toggle	On	Description:	the	description	to	be	shown	when	the	toggle	is	on,	or	when	Toggle	Description	is	false.
Toggle	Off	Description:	the	description	to	be	shown	when	the	toggle	is	off	and	Toggle	Description	is	true.

Similar	to	the	main	body	text,	you	can	use	common	HTML	tags	such	as	,	<i>	and	<a>	in	the	Toggle	On
Description	and	Toggle	Off	Description.

Managing	Buttons

Buttons	in	your	consent	dialog	can	be	designed	and	managed	in	the	Button	List	section.	To	create	a	new	button	click
the	plus	button	at	the	top	right	corner.	To	remove	a	button	click	the	minus	button	to	the	right	of	that	button.

Again,	you	consent	dialog	must	have	at	least	one	button	so	the	last	one	won't	be	removable.

The	following	shows	the	parameters	of	a	button.

Id:	the	ID	of	the	button.
Title:	the	text	on	the	button
Interactable:	whether	the	button	is	clickable,	this	value	can	be	changed	from	script	in	runtime.
Title	Color:	the	color	of	the	button	text	in	normal	state	(clickable).
Background	Color:	the	color	of	the	button	body	in	normal	state	(clickable).

Settings

181

Uninteractable	Title	Color:	the	color	of	the	button	text	when	it	is	not	clickable.
Uninteractable	Background	Color:	the	color	of	the	button	body	when	it	is	not	clickable.

Previewing	Consent	Dialog

You	can	preview	the	consent	dialog	while	composing	it	without	having	to	export	a	build	to	a	mobile	device.	In	the
Preview	section	click	the	Run	Preview	Scene	button	to	run	the	Privacy	Demo	scene.

In	the	opened	scene	click	the	DEFAULT	CONSENT	DIALOG	button	to	open	the	default	consent	dialog	which	has	just
been	composed.	The	consent	dialog	in	the	editor	looks	and	functions	similarly	to	its	counterparts	on	iOS	or	Android
and	is	useful	for	quick	verifying	of	your	dialog	design.

Settings

182

Privacy:	Scripting
This	section	provides	a	guide	to	work	with	the	Privacy	module	scripting	API.

EEA	Region	Checking
Easy	Mobile	provides	a	built-in	validator	to	detect	whether	the	current	device	is	in	the	European	Economic	Area	(EEA)
region,	where	the	GDPR	governs.	This	validator	performs	the	region	check	using	the	methods	defined	in	the
EEARegionValidationMethods	enum	(see	Introduction	chapter	for	a	detailed	explanation	of	these	methods):
GoogleService,	Telephony,	Timezone	or	Locale.	It	will	return	one	of	the	following	results:	InEEA,	NotInEEA	or
Unknown.

The	validator	can	use	any	subset	of	the	available	methods,	in	any	order.	To	instruct	it	to	use	a	certain	collection	of
methods	in	a	specific	order,	simply	prepare	a	List	object	containing	the	methods-to-use	in	the	desired	order.	The
validator	will	perform	validating	using	the	provided	methods	in	their	order	in	the	containing	list.	If	a	method	fails	to
return	an	explicit	result	(either	InEEA	or	NotInEEA),	the	next	one	in	the	list	will	be	used	until	a	clear	result	is	found.	If
all	methods	fail,	the	validator	will	return	Unknown	as	the	result.

Validating	Using	Default	Method	List

The	default	EEA	region	validating	method	list	is	defined	as	the	DefaultMethods	variable	of	the	EEARegionValidator
class.	It	employs	all	the	available	methods	in	the	following	order:

1.	 GoogleService
2.	 Telephony
3.	 Timezone
4.	 Locale

To	perform	EEA	region	validation	using	the	default	method	list,	call	the	IsInEEARegion	method	of	the	Privacy	class.
This	method	is	actually	a	wrapper	of	the	ValidateEEARegionStatus	method	of	the	EEARegionValidator	class	so	you
can	also	use	that	method	directly.

using	UnityEngine;

using	EasyMobile;

public	static	class	ExampleEEARegionDetector

{

				//	Checks	if	we're	in	EEA	region.

				public	static	void	Check()

				{

								//	You	can	use	the	method	of	the	Privacy	class.

								Privacy.IsInEEARegion(CheckEEARegionCallback);

								//	You	can	also	do	this.

								//	EEARegionValidator.ValidateEEARegionStatus(CheckEEARegionCallback);

				}

				//	Callback	to	be	invoked	when	the	validation	completes.

				static	void	CheckEEARegionCallback(EEARegionStatus	result)

				{

								if	(result	==	EEARegionStatus.InEEA)

												Debug.Log("We're	in	EEA	region!");

								else	if	(result	==	EEARegionStatus.NotInEEA)

												Debug.Log("We're	not	in	EEA	region!");

								else

												Debug.Log("Result	is	Unknown:	couldn't	determine	if	we're	in	EEA	region	or	not.");

				}

}

Scripting

183

Validating	Using	Custom	Method	List

You	can	instruct	the	validator	to	use	a	custom	list	of	desired	methods	in	the	desired	order.	To	do	so	use	the
ValidateEEARegionStatus	method	of	the	EEARegionValidator	class	but	provide	it	your	custom	method	list.

using	UnityEngine;

using	EasyMobile;

using	System.Collections.Generic;

public	static	class	ExampleEEARegionDetector

{

				//	Checks	if	we're	in	EEA	region	using	custom	method	list.

				public	static	void	CheckWithCustomMethodList()

				{

								//	First	create	a	custom	list	of	methods	in	the	preferred	order.

								var	methodList	=	new	List<EEARegionValidationMethods>()

												{

																EEARegionValidationMethods.Telephony,

																EEARegionValidationMethods.GoogleService,

																EEARegionValidationMethods.Locale,

																EEARegionValidationMethods.Timezone

												};

								//	Validates	using	the	custom	method	list.

								EEARegionValidator.ValidateEEARegionStatus(CheckEEARegionCallback,	methodList);

				}

				//	Callback	to	be	invoked	when	the	validation	completes.

				static	void	CheckEEARegionCallback(EEARegionStatus	result)

				{

								if	(result	==	EEARegionStatus.InEEA)

												Debug.Log("We're	in	EEA	region!");

								else	if	(result	==	EEARegionStatus.NotInEEA)

												Debug.Log("We're	not	in	EEA	region!");

								else

												Debug.Log("Result	is	Unknown:	couldn't	determine	if	we're	in	EEA	region	or	not.");

				}

}

Working	with	Consent	Dialog

Getting	the	Default	Consent	Dialog

You	can	get	the	default	consent	dialog	that	was	composed	using	the	built-in	composer	(see	Consent	Dialog
Composer)	using	the	GetDefaultConsentDialog	method	of	the	Privacy	class.

ConsentDialog	dialog	=	Privacy.GetDefaultConsentDialog();

Localizing	the	Consent	Dialog

You	can	localize	the	main	content	of	the	consent	dialog	by	grabbing	its	Content	property	and	replace	the	placeholder
texts	with	the	appropriate	localized	texts.

//	Replace	placeholder	texts	in	main	content	with	localized	texts.	

//	You	may	need	to	repeat	this	multiple	times	to	replace	all	placeholders.

ddialog.Content	=	dialog.Content.Replace("PLACEHOLDER_TEXT",	"LOCALIZED_TEXT");

To	localize	toggles	in	the	dialog	you	can	iterate	through	the	Toggles	property	and	localize	the	title	and	the	description
texts	of	each	toggle.

Scripting

184

//	Iterate	through	all	toggles	in	the	dialog	and	localize	them.

foreach	(ConsentDialog.Toggle	toggle	in	dialog.Toggles)

{

				//	Localize	the	toggle	title.

				toggle.Title	=	toggle.Title.Replace("PLACEHOLDER_TOGGLE_TITLE",	"LOCALIZED_TOGGLE_TITLE");

				//	Localize	the	toggle	on	description.

				toggle.OnDescription	=	toggle.OnDescription.Replace("PLACEHOLDER_ON_DESCRIPTION",	"LOCALIZED_ON_DESCRIPTION"

);

				//	Localize	the	toggle	off	description	if	needed.

				toggle.OffDescription	=	toggle.OffDescription.Replace("PLACEHOLDER_OFF_DESCRIPTION",	"LOCALIZED_OFF_DESCRIP

TION");

}

To	localize	buttons	in	the	dialog	you	can	iterate	through	the	ActionButtons	property	and	localize	each	button	title.

//	Iterate	through	all	buttons	in	the	dialog	and	localize	them.

foreach	(ConsentDialog.Button	button	in	dialog.ActionButtons)

{

				//	Localize	the	button	text.

				button.Title	=	button.Title.Replace("PLACEHOLDER_BUTTON_TITLE",	"LOCALIZED_BUTTON_TITLE");

}

For	the	sake	of	simplicity,	we	use	sample	strings	in	the	above	example	snippets.	In	a	practical	app	you	may	use
a	dedicated	localization	tool,	as	well	as	checking	toggle	or	button	ID,	to	pick	the	correct	translation	for	each
placeholder	text.

Showing	Consent	Dialog

To	show	a	consent	dialog	simply	call	its	Show	method.	This	method	has	an	optional	'dismissible'	parameter.	You	can
set	it	to	'true'	to	allow	the	user	to	dismiss	the	dialog	using	a	cancel	button	that	is	added	to	the	dialog	automatically.
Otherwise	the	dialog	can	only	be	closed	by	one	of	the	buttons	in	its	content.

//	Shows	the	dialog	and	don't	allow	the	user	to	dismiss	it	(must	provide	explicit	consent).

dialog.Show(false);

Only	one	consent	dialog	can	be	shown	at	a	time.	Attempts	to	show	a	consent	dialog	when	another	is	being	shown	will
be	ignored.	You	can	check	if	there's	any	consent	dialog	being	shown	using	the	IsShowingAnyDialog	method.

//	Checks	if	any	consent	dialog	is	being	shown.

bool	isShowingAnotherDialog	=	ConsentDialog.IsShowingAnyDialog();

Consent	Dialog	Events

A	consent	dialog	has	following	events:

Event Description

ToggleStateUpdated
This	event	is	raised	when	the	value	of	a	toggle	in	the	(being	shown)	consent	dialog
has	been	updated.	You	may	subscribe	to	this	event	if	you	want	to	update	the	dialog
according	to	the	values	of	its	toggles.

Dismissed This	event	is	raised	when	the	dialog	is	dismissed	(closed	by	the	cancel	button)

Completed
This	event	is	raised	when	the	dialog	is	completed	(close	by	one	of	the	action	buttons).
The	handler	of	this	event	will	be	called	with	the	ID	of	the	selected	button	and	the
values	of	the	toggles	in	the	dialog	at	the	time	it	is	closed.

Scripting

185

Updating	Toggles	in	Runtime

You	can	update	the	toggle	value	of	a	being-shown	consent	dialog	using	the	SetToggleIsOn	method	on	the	dialog.

dialog.SetToggleIsOn("TOGGLE_ID",	true);	//	turn	the	toggle	on

You	can	also	change	the	interactability	of	a	toggle	while	the	dialog	is	being	shown	using	the	SetToggleInteractable
method.

dialog.SetToggleInteractable("TOGGLE_ID",	false);			//	make	the	toggle	un-clickable

Updating	Buttons	in	Runtime

In	some	cases,	you	may	want	to	update	the	interactability	of	a	button	on	a	being-shown	consent	dialog,	e.g.	only
make	the	button	clickable	if	a	certain	toggle	is	on.	For	that	purpose	you	can	use	the	SetButtonInteractable	method.

dialog.SetButtonInteractable("BUTTON_ID",	true);				//	make	the	button	clickable

A	Complete	Example

The	following	script	gives	an	example	on	how	to	grab	the	default	consent	dialog,	localize	and	show	it,	as	well	as
handle	its	events.

using	UnityEngine;

using	EasyMobile;

using	System.Collections.Generic;

public	static	class	ExampleConsentDialogDisplayer

{

				static	bool	hasSubscribedEvents	=	false;

				//	Grabs	the	default	consent	dialog,	localizes	and	then	shows	it.

				public	static	void	ShowDefaultConsentDialog()

				{

								//	Grab	the	default	consent	dialog	that	was	built	with	the	composer.

								ConsentDialog	dialog	=	Privacy.GetDefaultConsentDialog();

								//	Replace	placeholder	texts	in	main	content	with	localized	texts.	

								//	You	may	need	to	repeat	this	multiple	times	to	replace	all	placeholders.

								dialog.Content	=	dialog.Content.Replace("PLACEHOLDER_TEXT",	"LOCALIZED_TEXT");

								//	Iterate	through	all	toggles	in	the	dialog	and	localize	them.

								foreach	(ConsentDialog.Toggle	toggle	in	dialog.Toggles)

								{

												//	Localize	the	toggle	title.

												toggle.Title	=	toggle.Title.Replace("PLACEHOLDER_TOGGLE_TITLE",	"LOCALIZED_TOGGLE_TITLE");

												//	Localize	the	toggle	on	description.

												toggle.OnDescription	=	toggle.OnDescription.Replace("PLACEHOLDER_ON_DESCRIPTION",	"LOCALIZED_ON_DES

CRIPTION");

												//	Localize	the	toggle	off	description	if	needed.

												toggle.OffDescription	=	toggle.OffDescription.Replace("PLACEHOLDER_OFF_DESCRIPTION",	"LOCALIZED_OFF

_DESCRIPTION");

												//	Here	you	can	also	set	the	toggle	value	according	to	the

												//	stored	consent	(if	any)	to	reflect	the	current	consent	status.

												//	toggle.IsOn	=	TRUE_OR_FALSE;	

								}

								//	Iterate	through	all	buttons	in	the	dialog	and	localize	them.

								foreach	(ConsentDialog.Button	button	in	dialog.ActionButtons)

								{

												//	Localize	the	button	text.

Scripting

186

												button.Title	=	button.Title.Replace("PLACEHOLDER_BUTTON_TITLE",	"LOCALIZED_BUTTON_TITLE");

								}

								//	Show	the	default	consent	dialog.	If	you	want	to	allow	the	user	to	dismiss	the	dialog

								//	without	updating	their	consent,	pass	'true'	to	the	'dismissible'	argument.	Otherwise

								//	the	dialog	can	only	be	closed	with	one	of	the	action	buttons.

								if	(!ConsentDialog.IsShowingAnyDialog())

								{

												//	Subscribe	to	the	default	consent	dialog	events.

												//	Only	do	this	once.

												if	(!hasSubscribedEvents)

												{

																dialog.ToggleStateUpdated	+=	DefaultDialog_ToggleStateUpdated;

																dialog.Dismissed	+=	DefaultDialog_Dismissed;

																dialog.Completed	+=	DefaultDialog_Completed;

																hasSubscribedEvents	=	true;

												}

												//	Now	shows	the	dialog	and	don't	allow	the	user	to	dismiss	it	(must	provide	explicit	consent).

												dialog.Show(false);

								}

								else

								{

												Debug.Log("Another	consent	dialog	is	being	shown!");

								}

				}

				//	Event	handler	to	be	invoked	when	the	value	of	a	toggle	in	the	consent	dialog	is	updated.

				static	void	DefaultDialog_ToggleStateUpdated(ConsentDialog	dialog,	string	toggleId,	bool	isOn)

				{

								Debug.Log("Toggle	with	ID	"	+	toggleId	+	"	now	has	value	"	+	isOn);

								//	If	there's	a	service	mandatory	to	the	operation	of	your	app,

								//	you	may	disable	all	buttons	until	the	toggle	associated	with	that	service

								//	is	turn	on,	so	that	the	user	can	only	close	the	dialog	once	they	grant	consent	to	that	service.

								if	(toggleId.Equals("MANDATORY_TOGGLE"))

												dialog.SetButtonInteractable("SOME_BUTTON_ID",	true);			//	make	the	button	clickable

				}

				//	Event	handler	to	be	invoked	when	the	consent	dialog	is	dismissed.

				static	void	DefaultDialog_Dismissed(ConsentDialog	dialog)

				{

								Debug.Log("The	consent	dialog	has	been	dismissed!");

				}

				//	Event	handler	to	be	invoked	when	the	consent	dialog	completed.

				static	void	DefaultDialog_Completed(ConsentDialog	dialog,	ConsentDialog.CompletedResults	results)

				{

								//	The	'results'	argument	contains	the	ID	of	clicked	button.

								Debug.Log("The	consent	dialog	has	completed	with	button	ID	"	+	results.buttonId);

								//	The	'results'	argument	also	returns	the	values	of	the	toggles	in	the	dialog.

								foreach	(KeyValuePair<string,	bool>	kvp	in	results.toggleValues)

								{

												Debug.Log("Toggle	with	ID	"	+	kvp.Key	+	"	has	value	"	+	kvp.Value);

												//	Here	you	can	perform	relevant	actions,	e.g.	update	the	consent

												//	for	individual	services	according	to	the	toggle	value...

								}

				}

}

Creating	Consent	Dialog	Programmatically

Apart	from	building	consent	dialog	using	the	graphical	composer,	you	can	construct	a	dialog	completely	from	script,
using	methods	such	as	AppendText,	AppendToggle	and	AppendButton	to	add	texts,	toggles	and	buttons	to	the	dialog
content,	respectively.	The	following	example	shows	how	a	consent	dialog	can	be	constructed	programmatically.

Scripting

187

For	the	sake	of	simplicity	we	use	sample	hard-coded	strings	in	the	example	script.	In	a	practical	app	you	may
use	a	localization	tool	to	pick	the	correct	translation	for	each	text.	Also	you	can	load	the	consent	provided	by	the
user	previously	and	set	the	toggle	values	accordingly	to	reflect	the	current	consent	status.

using	UnityEngine;

using	EasyMobile;

using	System.Collections.Generic;

public	static	class	ExampleConsentDialogDisplayer

{

				//	Constructs	a	consent	dialog	from	script.

				public	static	ConsentDialog	ConstructConsentDialog()

				{

								//	First	create	a	new	consent	dialog.

								ConsentDialog	dialog	=	new	ConsentDialog();

								//	Set	the	title.

								dialog.Title	=	"SOME_CONSENT_DIALOG_TITLE";

								//	Add	the	first	paragraph.

								dialog.AppendText("FIRST_PARAGRAPH_TEXT");

								//	Build	and	append	the	toggle	for	advertising	service	consent.

								ConsentDialog.Toggle	adsToggle	=	new	ConsentDialog.Toggle("ADS_TOGGLE_ID");

								adsToggle.Title	=	"ADS_TOGGLE_TITLE";

								adsToggle.OnDescription	=	"ADS_TOGGLE_ON_DESCRIPTION";

								adsToggle.OffDescription	=	"ADS_TOGGLE_OFF_DESCRIPTION";

								adsToggle.ShouldToggleDescription	=	true;			//	make	the	description	change	with	the	toggle	state.

								adsToggle.IsOn	=	false;					//	make	the	toggle	off	by	default

								//	Append	the	toggle	after	the	1st	paragraph.

								dialog.AppendToggle(adsToggle);

								//	Build	and	append	the	toggle	for	notifications	service	consent.

								ConsentDialog.Toggle	notifsToggle	=	new	ConsentDialog.Toggle("NOTIFS_TOGGLE_ID");

								notifsToggle.Title	=	"NOTIFS_TOGGLE_TITLE";

								notifsToggle.OnDescription	=	"NOTIFS_TOGGLE_ON_DESCRIPTION";

								notifsToggle.ShouldToggleDescription	=	false;			//	use	same	description	for	both	on	&	off	states.

								notifsToggle.IsOn	=	false;	//	make	the	toggle	off	by	default

								//	Append	the	toggle	below	the	previous	toggle.

								dialog.AppendToggle(notifsToggle);

								//	Build	and	append	the	toggle	for	analytics	service	consent.

								ConsentDialog.Toggle	uaToggle	=	new	ConsentDialog.Toggle("ANALYTICS_TOGGLE_ID");

								uaToggle.Title	=	"ANALYTICS_TOGGLE_TITLE";

								uaToggle.OnDescription	=	"ANALYTICS_TOGGLE_ON_DESCRIPTION";

								uaToggle.ShouldToggleDescription	=	false;			//	the	description	won't	change	when	the	toggle	switches	be

tween	on	&	off	states.

								uaToggle.IsInteractable	=	false;	//	not	interactable

								uaToggle.IsOn	=	true;			//	assuming	analytics	is	vital	to	our	app,	make	its	toggle	on	by	default

								//	Append	the	toggle	below	the	previous	toggle.

								dialog.AppendToggle(uaToggle);

								//	Append	the	second	paragraph.

								dialog.AppendText("SECOND_PARAGRAPH_TEXT");

								//	Build	and	append	the	accept	button.

								//	A	consent	dialog	should	always	have	at	least	one	button!

								ConsentDialog.Button	okButton	=	new	ConsentDialog.Button("OK_BUTTON_ID");

								okButton.Title	=	"OK_BUTTON_TITLE";

								okButton.TitleColor	=	Color.white;

								okButton.BodyColor	=	new	Color(66	/	255f,	179	/	255f,	1);

								//	Append	the	button	to	the	bottom	of	the	dialog.

								dialog.AppendButton(okButton);

								return	dialog;

				}

}

Scripting

188

Managing	Global	Consent
You	can	grant	or	revoke	the	global	consent	of	your	app	using	the	GrantGlobalDataPrivacyConsent	and
RevokeGlobalDataPrivacyConsent	methods	of	the	Privacy	class,	respectively.

//	Grants	global	consent.

Privacy.GrantGlobalDataPrivacyConsent();

//	Revokes	global	consent.

Privacy.RevokeGlobalDataPrivacyConsent();

You	can	get	the	current	state	of	the	global	consent	of	your	app	using	the	GlobalDataPrivacyConsent	property	of	the
Privacy	class.

//	Gets	current	global	consent.

ConsentStatus	globalConsent	=	Privacy.GlobalDataPrivacyConsent;

These	APIs	of	the	Privacy	class	are	actually	wrapper	of	those	of	the	GlobalConsentManager,	which	is	the	object	that
actually	manages	the	global	consent.	So	the	above	snippets	are	equivalent	to	the	following	script.

//	Grants	global	consent.

GlobalConsentManager.Instance.GrantDataPrivacyConsent();

//	Revokes	global	consent.

GlobalConsentManager.Instance.RevokeDataPrivacyConsent();

//	Gets	current	global	consent.

ConsentStatus	globalConsent	=	GlobalConsentManager.Instance.DataPrivacyConsent;

You	can	also	acknowledge	when	the	global	consent	is	updated	by	subscribing	to	the	DataPrivacyConsentUpdated
event.

using	UnityEngine;

using	EasyMobile;

public	class	ExampleConsentClass	:	MonoBehaviour

{

				void	OnEnable()

				{

								//	Subscribe.

								GlobalConsentManager.Instance.DataPrivacyConsentUpdated	+=	OnGlobalDataPrivacyConsentUpdated;

				}

				void	OnDisable()

				{

								//	Unsubscribe.

								GlobalConsentManager.Instance.DataPrivacyConsentUpdated	-=	OnGlobalDataPrivacyConsentUpdated;

				}

				void	OnGlobalDataPrivacyConsentUpdated(ConsentStatus	consent)

				{

								if	(consent	==	ConsentStatus.Granted)

												Debug.Log("Global	consent	has	been	granted!");

								else	if	(consent	==	ConsentStatus.Revoked)

												Debug.Log("Global	consent	has	been	revoked!");

								else

												Debug.Log("Global	consent	is	unknown.");

				}

}

Scripting

189

Scripting

190

Privacy:	PlayMaker	Actions
The	PlayMaker	actions	of	the	Privacy	module	are	group	in	the	category	Easy	Mobile	-	Privacy	in	the	PlayMaker's
Action	Browser.

Please	refer	to	the	PrivacyDemo_PlayMaker	scene	in	folder
Assets/EasyMobile/Demo/PlayMakerDemo/Modules	for	an	example	on	how	these	actions	can	be	used.

PlayMaker	Actions

191

PlayMaker	Actions

192

Sharing:	Introduction
The	Sharing	module	helps	you	easily	share	texts	and	images	to	social	networks	including	Facebook,	Twitter	and
Google+	using	the	native	sharing	functionality.	In	addition,	it	also	provides	convenient	methods	to	capture	the
screenshots	to	be	shared.

Below	are	the	sharing	interfaces	on	iOS	and	Android,	respectively.

Introduction

193

Introduction

194

[iOS]	Request	Photo	Library	Access	Permission
Since	iOS	10,	in	order	to	use	the	"Save	Image"	feature	of	the	sharing	utility,	the	app	needs	to	ask	for	user	permission
before	it	can	access	the	photo	library.	Failure	to	do	so	will	cause	the	app	to	crash	as	soon	as	the	user	selects	the
option.	To	request	the	photo	library	access	permission,	you	need	to	add	the	Privacy	-	Photo	Library	Usage
Description	and	Privacy	-	Photo	Library	Additions	Usage	Description	properties	to	the	Info.plist	of	your	Xcode
project.

As	of	this	writing,	out	tests	show	that	on	iOS	10,	the	Privacy	-	Photo	Library	Usage	Description	property	is
required.	While	iOS	11	asks	for	the	Privacy	-	Photo	Library	Additions	Usage	Description	property.
Therefore	it's	recommended	to	add	both	properties	if	your	target	platforms	including	iOS	10	and	above.

In	your	generated	Xcode	project	open	the	Info.plist	file.

Click	the	+	button	on	the	right	of	Information	Property	List	to	add	a	new	key.

Introduction

195

Scroll	down	to	find	the	Privacy	-	Photo	Library	Usage	Description	key.

Enter	a	value	for	the	key,	this	message	will	be	displayed	as	the	app	requests	access	permission	when	the	user
selects	the	"Save	Image"	option.

Repeat	the	process	to	add	the	Privacy	-	Photo	Library	Additions	Usage	Description	property.

Introduction

196

[Android]	Enable	External	Write	Permission
For	this	module	to	function	on	Android,	it	is	necessary	to	enable	the	permission	to	write	to	external	storage.	To	do	so,
go	to	Edit	>	Project	Settings	>	Player,	select	Android	settings	tab,	then	locate	the	Configuration	section	and	set	the
Write	Permission	to	External	(SDCard).

Introduction

197

Sharing:	Scripting
This	section	provides	a	guide	to	work	with	Sharing	module	scripting	API.

You	can	access	the	Sharing	module	API	via	the	Sharing	class	under	the	EasyMobile	namespace.

Screenshot	Capturing
To	capture	the	device's	screenshot,	you	have	a	few	options.

Screenshot	as	PNG	Image

To	capture	and	save	a	screenshot	of	the	whole	device	screen,	simply	specify	the	file	name	to	be	saved.	This
screenshot	will	be	saved	as	a	PNG	image	in	the	directory	pointed	by	Application.persistentDataPath.	Note	that	this
method,	as	well	as	other	screenshot	capturing	methods,	needs	to	be	called	at	the	end	of	a	frame	(when	the	rendering
has	done)	for	it	to	produce	a	proper	image.	Therefore	you	should	call	it	within	a	coroutine	after	WaitForEndOfFrame().

//	Coroutine	that	captures	and	saves	a	screenshot

IEnumerator	SaveScreenshot()

{

				//	Wait	until	the	end	of	frame

				yield	return	new	WaitForEndOfFrame();

				//	The	SaveScreenshot()	method	returns	the	path	of	the	saved	image

				//	The	provided	file	name	will	be	added	a	".png"	extension	automatically

				string	path	=	Sharing.SaveScreenshot("screenshot");

}

You	can	also	captures	and	saves	just	a	portion	of	the	screen:

//	Coroutine	that	captures	and	saves	a	portion	of	the	screen

IEnumerator	SaveScreenshot()		

{		

				//	Wait	until	the	end	of	frame		

				yield	return	new	WaitForEndOfFrame();

				//	Capture	the	portion	of	the	screen	starting	at	(50,	50),

				//	has	a	width	of	200	and	a	height	of	400	pixels.

				string	path	=	Sharing.SaveScreenshot(50,	50,	200,	400,	"screenshot");

}

Screenshot	as	Texture2D

In	some	cases	you	may	want	to	capture	a	screenshot	and	obtain	a	Texture2D	object	of	it	instead	of	saving	to	disk,
e.g.	to	create	a	sprite	from	the	texture	and	display	it	in-game.

//	Coroutine	that	captures	a	screenshot	and	generates	a	Texture2D	object	of	it		

IEnumerator	CaptureScreenshot()		

{		

				//	Wait	until	the	end	of	frame		

				yield	return	new	WaitForEndOfFrame();

				//	Create	a	Texture2D	object	of	the	screenshot	using	the	CaptureScreenshot()	method

				Texture2D	texture	=	Sharing.CaptureScreenshot();

}

Similar	to	the	case	above,	you	can	also	capture	only	a	portion	of	the	screen.

Scripting

198

https://docs.unity3d.com/ScriptReference/Application-persistentDataPath.html

//	Coroutine	that	captures	a	portion	of	the	screenshot	and	generates	a	Texture2D	object	of	it		

IEnumerator	CaptureScreenshot()		

{		

				//	Wait	until	the	end	of	frame		

				yield	return	new	WaitForEndOfFrame();

				//	Create	a	Texture2D	object	of	the	screenshot	using	the	CaptureScreenshot()	method

				//	The	captured	portion	starts	at	(50,	50)	and	has	a	width	of	200,	a	height	of	400	pixels.

				Texture2D	texture	=	Sharing.CaptureScreenshot(50,	50,	200,	400);

}

Note	that	screenshot	capturing	should	be	done	at	the	end	of	the	frame.

Sharing
To	share	an	image	you	also	have	a	few	options.	You	can	also	attach	a	message	to	be	shared	with	the	image.

Due	to	Facebook	policy,	pre-filled	messages	will	be	ignored	when	sharing	to	this	network,	i.e.	sharing
messages	must	be	written	by	the	user.

Share	a	Saved	Image

You	can	share	a	saved	image	by	specifying	its	path.

//	Share	a	saved	image

//	Suppose	we	have	a	"screenshot.png"	image	stored	in	the	persistentDataPath,

//	we'll	construct	its	path	first

string	path	=	System.IO.Path.Combine(Application.persistentDataPath,	"screenshot.png");

//	Share	the	image	with	the	path,	a	sample	message	and	an	empty	subject

Sharing.ShareImage(path,	"This	is	a	sample	message");

Share	a	Texture2D

You	can	also	share	a	Texture2D	object	obtained	some	point	before	the	sharing	time.	Internally,	this	method	will	also
create	a	PNG	image	from	the	Texture2D,	save	it	to	the	persistentDataPath,	and	finally	share	that	image.

//	Share	a	Texture2D

//	sampleTexture	is	a	Texture2D	object	captured	some	time	before

//	This	method	saves	the	texture	as	a	PNG	image	named	"screenshot.png"	in	persistentDataPath,

//	then	shares	it	with	a	sample	message	and	an	empty	subject

Sharing.ShareTexture2D(sampleTexture,	"screenshot",	"This	is	a	sample	message");

Share	a	Text

You	can	share	a	text-only	message	using	the	ShareText	method.	Note	that	Facebook	doesn't	allow	pre-filled	sharing
messages,	so	the	text	will	be	discarded	when	sharing	to	this	particular	network.

//	Share	a	text

Sharing.ShareText("Hello	from	Easy	Mobile!");

Share	a	URL

To	share	a	URL,	use	the	ShareURL	method.	On	networks	like	Facebook	or	Twitter,	a	summary	of	the	page	will	be
shown	if	the	shared	URL	points	to	a	website.	URLs	are	also	useful	to	share	GIF	images	hosted	on	sites	like	Giphy
(see	the	GIF	>	Scripting	section).

Scripting

199

https://giphy.com/

//	Share	a	URL

Sharing.ShareURL("www.sglibgames.com");

Scripting

200

Sharing:	PlayMaker	Actions
The	PlayMaker	actions	of	the	Sharing	module	are	group	in	the	category	Easy	Mobile	-	Sharing	in	the	PlayMaker's
Action	Browser.

Please	refer	to	the	SharingDemo_PlayMaker	scene	in	folder
Assets/EasyMobile/Demo/PlayMakerDemo/Modules	for	an	example	on	how	these	actions	can	be	used.

PlayMaker	Actions

201

PlayMaker	Actions

202

Utilities:	Introduction
The	Utilities	module	is	a	place	to	hold	useful	miscellaneous	features.	The	first	feature	added	to	this	module	is	Store
Review.

Introduction

203

Utilities	|	Store	Review:	Introduction
Ratings	and	reviews	can	have	a	crucial	impact	on	the	performance	of	an	app	on	app	stores.	Therefore	it's	a	common
practice	to	ask	users	for	ratings	when	appropriate.	The	Store	Review	feature	gives	you	an	efficient	way	to	do	that
using	a	native	and	highly	customizable	rating	dialog.

This	rating	dialog	has	different	appearances	and	behaviors	depended	on	the	platform	it	is	being	used.

iOS

iOS	10.3	and	newer

On	iOS	10.3	or	newer,	the	system-provided	rating	dialog	is	employed.	This	dialog	is	built-in	to	iOS	since	its	10.3
release,	and	is	the	preferred	method	to	solicit	user	ratings	on	this	platform.

You	can	find	more	information	about	this	built-in	rating	prompt	at	https://developer.apple.com/ios/human-
interface-guidelines/interaction/ratings-and-reviews/

It's	worth	noting	that	the	Submit	button	on	this	rating	popup	will	be	disabled	while	your	app	is	still	in	sandbox
mode.	It	will	be	functioning	normally	when	the	app	is	actually	live	on	App	Store.

iOS	Before	10.3

On	iOS	older	than	10.3,	a	typical	3-button	alert	is	used	as	the	rating	prompt.	This	is	mainly	for	backward-compatibility
purpose,	since	the	new	built-in	rating	prompt	is	preferred	and	will	be	used	on	the	majority	of	iOS	devices	in	the	near
future,	given	the	high	adoption	rate	of	new	iOS	versions.

Store	Review

204

https://developer.apple.com/ios/human-interface-guidelines/interaction/ratings-and-reviews/

Unlike	the	built-in	dialog,	you	can	customize	the	title,	message	and	button	labels	of	this	alert	to	suit	your	needs.	The
default	behavior	of	this	rating	prompt	is	described	below.

Don't	Ask	Again:	close	and	never	show	this	prompt	again
Remind	Me	Later:	close	this	alert
Rate	Now!:	open	the	"Write	A	Review"	page	of	the	current	app	on	the	App	Store,	the	prompt	will	never	be
displayed	again

Android
On	Android,	we	built	a	native,	custom	alert	that	employs	the	RatingBar	component	to	form	the	rating	dialog.	The
picture	below	illustrates	how	this	dialog	looks	and	behaves.

Store	Review

205

The	idea	is	to	ask	the	user	how	they	would	rate	the	app,	and	the	dialog	will	update	itself	based	on	the	given	rating.
You	can	set	a	"minimum	accepted	rating"	value,	which	is	the	lowest	number	of	stars	expected	for	your	app.	Any	rating
lower	than	this	value	is	considered	a	bad	rating,	and	vice	versa.	If	the	user	is	giving	a	good	rating,	we	will	take	them	to
the	store	to	do	the	actual	rating	and	review.	Otherwise,	we	will	suggest	them	to	send	a	feedback	to	your	support	email
instead.	The	default	behavior	of	this	rating	dialog	is	described	below.	Again,	you	can	discard	this	default	behavior	and
implement	a	custom	one	if	you	wish.

Don't	Ask	Again:	close	and	never	show	this	prompt	again
Not	Now/Cancel:	close	this	prompt
Send	Feedback:	open	email	client	for	the	user	to	send	feedback	to	your	email	address
Rate	Now!:	open	the	product	page	of	the	app	on	the	Google	Play	Store,	the	prompt	will	never	be	displayed	again

On	Android	or	iOS	older	than	10.3,	you	can	discard	the	default	behavior	of	the	rating	dialog	and	give	your	own
behavior	implementation	if	you	wish.

Display	Policy
It	is	up	to	you	to	decide	when	to	show	the	rating	prompt	in	your	game	to	maximize	its	effectiveness	while	maintaining
the	best	user	experience.	Generally,	it	is	advisable	to	not	annoy	the	user	by	asking	repeatedly	or	too	frequently.	For
that	purpose,	the	rating	request	feature	provides	a	few	general	constraints	to	help	regulate	the	display	of	the	rating
prompt.	You	are	free	to	configure	these	values	appropriately	to	suit	your	needs.	These	constraints	include:

Annual	Cap:	the	maxium	number	of	requests	allowed	each	year
Delay	After	Installation:	the	required	waiting	time	(days)	since	app	installation	before	the	first	rating	request	can
be	made
Cooling-Off	Period:	the	minimum	interval	(days)	required	between	two	consecutive	requests

On	iOS	10.3	and	newer	(where	the	built-in	rating	prompt	is	used),	the	Annual	Cap	is	overwritten	by	the	OS	and
will	always	be	set	to	3.

For	the	Delay	After	Installation	constraint	to	function	properly,	it	is	required	that	an	instance	of	the	EasyMobile
prefab	is	added	to	the	first	scene	of	your	game	(so	that	it	can	record	the	installation	timestamp).

Dialog	Content	and	Localization
The	default	content	(texts)	of	the	rating	dialog	can	be	entered	in	the	settings	UI	(see	the	Configuration	section).	This
content	can	be	altered	in	runtime	(see	the	Scripting	section),	so	that	you	can	use	this	feature	in	conjunction	with
another	localization	plugin	to	fully	localize	your	popup.

Store	Review

206

Utilities	|	Store	Review:	Settings
You	can	configure	the	Store	Review	feature	from	the	Utilities	module.	Go	to	Window	>	Easy	Mobile	>	Settings,	then
select	the	Utilities	tab	to	reveal	it.

In	the	[STORE	REVIEW]	REQUEST	DIALOG	CONFIG	section,	you	can	customize	the	appearance,	behavior	and
display	constraints	of	the	rating	dialog.

Settings

207

Default	Dialog	Content:	the	default	texts	of	the	rating	dialog	used	on	Android	and	iOS	older	than	10.3	(on	iOS
10.3	or	newer	this	content	is	governed	by	the	system)
Minimum	Accepted	Rating:	the	lowest	number	of	stars	required	to	be	considered	as	a	good	rating,	you	can	set	it
to	0	to	disable	the	feedback	feature	(accept	all	ratings);	note	that	this	is	only	applicable	on	Android
Support	Email:	your	email	address	for	receiving	feedback
iOS	App	Id:	your	app	Id	on	the	Apple	App	Store,	this	is	required	to	open	the	review	page	of	the	app	on	iOS	older
than	10.3
Annual	Cap:	the	maxium	number	of	requests	allowed	each	year
Delay	After	Installation:	the	required	waiting	time	(days)	since	app	installation	before	the	first	rating	request	can
be	made
Cooling-Off	Period:	the	minimum	interval	(days)	required	between	two	consecutive	requests
Ignore	Constraints	In	Development:	ignore	all	display	constraints	so	the	rating	popup	can	be	shown	every	time	in
Development	builds	(unless	it	was	disabled	before)

Settings

208

Utilities	|	Store	Review:	Scripting
This	section	provides	a	guide	to	work	with	the	Store	Review	scripting	API.

You	can	access	the	Store	Review	API	via	the	StoreReview	class	under	the	EasyMobile	namespace.

Making	Rating	Request
To	show	the	rating	dialog	using	its	default	content	and	retain	its	default	behavior,	use	the	RequestRating	method
without	any	parameter.	Note	that	this	method	is	a	no-op	if	the	rating	dialog	has	been	disabled,	or	one	of	display
constraints	is	not	satisfied.	You	should	call	this	method	when	it	makes	sense	in	the	experience	flow	of	your	app,	to
maximize	the	effectiveness	of	the	request.

On	iOS	10.3	or	newer,	the	actual	display	of	the	rating	dialog	is	governed	by	App	Store	policy.	When	your	app	is
still	in	sandbox/development	mode,	the	dialog	is	always	displayed	for	testing	purpose.	However,	it	won't	be
shown	in	an	app	that	you	distribute	using	TestFlight.

//	Show	the	rating	dialog	with	default	behavior

StoreReview.RequestRating();

To	check	if	the	rating	dialog	has	been	disabled	(because	the	user	selected	Don't	Ask	Again	or	already	gave	a	rating):

//	Check	if	the	rating	dialog	has	been	disabled

bool	isDisabled	=	StoreReview.IsRatingRequestDisabled();

To	get	the	number	of	used	and	remaining	requests	in	the	current	year:

//	Get	the	number	of	requests	used	this	year

int	usedRequests	=	StoreReview.GetThisYearUsedRequests();

//	Get	the	number	of	unused	requests	this	year

int	unusedRequests	=	StoreReview.GetThisYearRemainingRequests();

To	get	the	timestamp	of	the	last	request:

//	Get	the	time	when	the	last	rating	popup	is	shown

DateTime	lastTime	=	StoreReview.GetLastRequestTimestamp();

To	check	if	it's	eligible	to	show	the	rating	dialog	(which	means	it	hasn't	been	disabled	and	all	display	constraints	are
satisfied):

//	Check	if	it's	eligible	to	show	the	rating	dialog	and	then	show	it

if	(StoreReview.CanRequestRating())

{

				StoreReview.RequestRating();

}

Making	Rating	Request	with	Custom	Callback

On	Android	or	iOS	older	than	10.3,	you	can	discard	the	default	behavior	of	the	rating	dialog	and	provide	your	own
implementation	to	suit	your	needs	(again,	on	iOS	10.3	or	newer	we	employ	the	native	rating	prompt	whose	behavior	is
governed	by	the	system	itself).	This	can	be	useful	in	cases	when	you	want	to	perform	additional	tasks	like	recording

Scripting

209

the	number	of	users	who	gave	good	ratings	(maybe	for	analytics	purpose).	To	do	so,	simply	call	the	RequestRating
method	passing	a	callback	in	which	the	custom	behavior	is	implemented.	This	callback	takes	as	input	an	enum	value
representing	the	user	action,	which	you	can	use	to	decide	whatever	action	should	be	taken.	Note	that	you	can	use	the
DisableRatingRequest	method	to	prevent	the	rating	dialog	from	being	displayed	in	the	future,	if	the	user	selects	"Don't
Ask	Again"	option.	Also	note	that	you	can	pass	a	null	RatingDialogContent	object	to	use	the	default	content,	otherwise
create	a	new	object	as	described	in	the	Localized	the	Rating	Dialog	section	above.

From	the	analytics	point	of	view,	it's	worth	noting	that	the	rating	given	in	the	rating	dialog	on	Android	is	merely	a
suggestion	of	how	the	user	would	rate	the	app.	There's	currently	no	reliable	way	to	verify	if	it	is	the	actual	rating
given	on	the	app	stores	or	not.

//	Show	rating	dialog	with	a	callback	for	custom	behavior

//	Passing	null	for	the	RatingDialogContent	parameter	to	use	the	default	content

StoreReview.RequestRating(null,	RatingCallback);

//	The	rating	callback

private	void	RatingCallback(StoreReview.UserAction	action)

{

				switch	(action)

				{

								case	StoreReview.UserAction.Refuse:

												//	Don't	ask	again.	Disable	the	rating	dialog

												//	to	prevent	it	from	being	shown	in	the	future.

												StoreReview.DisableRatingRequest();

												break;

								case	StoreReview.UserAction.Postpone:

												//	User	selects	Not	Now/Cancel	button.

												//	The	dialog	automatically	closes.

												break;

								case	StoreReview.UserAction.Feedback:

												//	Bad	rating,	user	opts	to	send	feedback	email.

												break;

								case	StoreReview.UserAction.Rate:

												//	Good	rating,	user	wants	to	rate.

												break;

				}

}

Localizing	Rating	Dialog
To	localize	the	content	of	the	rating	dialog,	simply	create	a	new	RatingDialogContent	to	hold	the	translated	texts
(which	you	may	obtain	from	a	standard	localization	plugin),	and	pass	it	to	the	RequestRating	method.

//	Create	a	RatingDialogContent	object	to	hold	the	translated	content	of	the	dialog

var	localized	=	new	RatingDialogContent(

												YOUR_LOCALIZED_TITLE	+	RatingDialogContent.PRODUCT_NAME_PLACEHOLDER,

												YOUR_LOCALIZED_MESSAGE	+	RatingDialogContent.PRODUCT_NAME_PLACEHOLDER	+	"?",

												YOUR_LOCALIZED_LOW_RATING_MESSAGE,

												YOUR_LOCALIZED_HIGH_RATING_MESSAGE,

												YOUR_LOCALIZED_POSTPONE_BUTTON_LABEL,

												YOUR_LOCALIZED_REFUSE_BUTTON_LABEL,

												YOUR_LOCALIZED_RATE_BUTTON_LABEL,

												YOUR_LOCALIZED_CANCEL_BUTTON_LABEL,

												YOUR_LOCALIZED_FEEDBACK_BUTTON_LABEL

);

//	Show	the	rating	popup	with	the	localized	texts

StoreReview.RequestRating(localized);

Any	instance	of	RatingDialogContent.PRODUCT_NAME_PLACEHOLDER	(literal	value	"$PRODUCT_NAME")
will	be	automatically	replaced	by	the	actual	product	name	(given	in	PlayerSettings)	by	the	RequestRating
method.

Scripting

210

Scripting

211

Utilities:	PlayMaker	Actions
The	PlayMaker	actions	of	the	Utilities	module	are	group	in	the	category	Easy	Mobile	-	Utilities	in	the	PlayMaker's
Action	Browser.

Please	refer	to	the	UtilitiesDemo_PlayMaker	scene	in	folder
Assets/EasyMobile/Demo/PlayMakerDemo/Modules	for	an	example	on	how	these	actions	can	be	used.

PlayMaker	Actions

212

PlayMaker	Actions

213

Release	Notes

Version	2.1.2

Changes

Advertising	module:
Optimizing	the	implementation	of	LoadAllDefinedPlacements	ad-loading	mode.

Game	Services	module:

Bringing	back	the	option	to	ignore	AndroidMaxLoginRequests	by	setting	it	to	0.
Editor:

Now	the	Inspector	window	is	automatically	focus	when	opening	Easy	Mobile	Settings.

Version	2.1.1

Changes

Advertising	module:
Now	compatible	with	the	latest	version	of	ironSource	SDK	(6.7.12).

Editor:
Upgraded	to	Google	Play	Services	Resolver	version	1.2.95.

Bug	Fixes

Advertising	module:
Fixed	a	bug	where	the	"LoadAllDefinedPlacements"	mode	doesn't	load	ads	at	default	placements	if	some
custom	placements	are	not	properly	defined.

GIF	module:
Fixed	a	bug	where	uploading	to	Giphy	using	a	production	API	key	fails	with	the	"401	Unauthorized"	error.

Version	2.1.0

New	Features

Advertising	module:
Improved	Automatic	Ad	Loading	feature,	now	it	can	either	load	only	default	ads,	or	load	ads	at	all	placements
defined	in	the	module	settings,	which	means	you	can	completely	forget	about	manual	ad	loading	now.

GIF	module:
AnimatedClip	can	now	automatically	release	the	associated	RenderTexture	objects	while	being	garbage
collected,	which	is	useful	to	avoid	memory	leaks	in	case	you	forget	to	call	Dispose.

Changes

Release	Notes

214

Advertising	module:
The	Advertising.IsAutoLoadDefaultAds,	Advertising.EnableAutoLoadDefaultAds	and
Advertising.SetAutoLoadDefaultAds	are	now	deprecated	and	replaced	by	the
Advertising.AutoAdLoadingMode	property.

Bug	Fixes

Notifications	module:
Fixed	a	bug	related	to	applying	consent	during	initializing	OneSignal.
Fixed	irrelevant	warning	message	when	generating	constants	without	having	any	user	categories	defined.

Version	2.0.0

New	Features

Advertising	module:
Added	support	for	Facebook	Audience	Network.
Added	support	for	ironSource.
Added	support	for	Mopub	Ads.
Added	support	for	Tapjoy.
Added	support	for	showing	ads	at	multiple	ad	placements	in	an	app.
Added	consent	support	(GDPR	compliance).

Game	Services	module:
Added	popup	gravity	setting	for	Google	Play	Games	platform.

In-App	Purchasing	module:
Added	a	method	to	get	subscription	product	information	using	Unity	IAP's	SubscriptionManager	class.
Added	support	for	Apple's	Ask-To-Buy	feature.
Added	support	for	Apple's	Promotional	Purchases.
Added	an	option	to	enable	Amazon	store	sandbox	testing.
Added	a	method	to	get	Amazon	user	ID.

Notifications	module:
Added	consent	support	(GDPR	compliance).
Android	local	notifications	are	now	expandable	(Android	4.1	or	newer	only).

Privacy	module:	brand	new	module	introduced	in	version	2.0.0	that	offers	convenient	tools	and	resources	to
help	with	getting	GDPR-compliant	including:

A	comprehensive,	flexible	consent	management	system.
A	native,	multi-purpose,	customizable	consent	dialog	that	can	serve	as	a	common	interface	for	collecting
user	consent	for	all	services	in	an	app.
Easy-to-use	graphical	composer	for	editing	consent	dialog	content.
A	location	checking	tool,	for	detecting	if	the	current	device	is	in	the	European	Economic	Region	(EEA),	which
is	regulated	by	GDPR.

Editor:
Brand	new	redesigned	settings	UI	that	is	cleaner,	friendlier	and	prettier	:)
Brand	new	redesigned	settings	UI,	once	again.	(sorry	we	got	too	excited,	but	the	new	UI	looks	really	cool,
you'll	like	it	:D)

PlayMaker	support:
Added	new	actions	for	initializing	Easy	Mobile	runtime	(for	replacing	the	EasyMobile	prefab,	see	Changes).
Added	new	actions	for	the	Privacy	module	including	granting	and	revoking	consent,	displaying	consent
dialog,	etc.

Release	Notes

215

Added	a	PlayMaker	demo	scene	for	the	Privacy	module.
Added	an	action	for	the	RewardedAdSkipped	event.
Added	actions	for	the	LocalNotificationOpened	and	RemoteNotificationOpened	events.

Changes

Editor:
The	long-time	EasyMobile	prefab	is	now	officially	deprecated.	Easy	Mobile	initialization	can	now	be	done
from	script	using	the	RuntimeManager	class	(see	Initializing).
Upgraded	to	Google	Play	Services	Resolver	version	1.2.89.
The	minimum	required	version	of	Unity	is	now	5.5.5f1.

Bug	Fixes

Notifications	module:
Fixed	a	bug	causing	the	local	repeat	notifications	in	the	Notifications	demo	scene	to	not	function	on	Android
devices	due	to	missing	category	definition	in	the	module	settings.

Utilities	module:
Fixed	a	bug	causing	the	rating	dialog	to	be	dismissible	by	tapping	outside	of	the	popup	and	prevent
subsequent	dialogs	from	being	shown.

PlayMaker	support:
Fixed	the	issue	that	Saved	Games	actions	don't	function	correctly	with	global	variables.

Version	1.3.0

New	Features

Notifications	module:
Added	support	for	Firebase	Cloud	Messaging	as	a	remote	notification	service.
Added	methods	to	get	and	set	application	icon	badge	number	on	iOS.

Changes

Editor:
Build	managing	script	now	uses	IPreProcessBuildWithReport	and	IPostProcessBuildWithReport	interfaces
on	Unity	2018.1.0	and	newer	instead	of	the	deprecated	IPreProcessBuild	and	IPostProcessBuild	interfaces.

Version	1.2.1

Changes

Game	Services	module:
Improved	PlayMaker	actions	for	Saved	Games	API.
Improved	PlayMaker	demo	scene	for	Saved	Games	feature.

Editor:
Updated	to	Google	Play	Services	Resolver	1.2.69.

Release	Notes

216

Version	1.2.0p1

Bug	Fixes

Notifications	module:
Fixed	a	bug	that	may	cause	local	notifications	to	not	be	scheduled	properly	if	the	trigger	date	is	not	specified
in	local	timezone.

Version	1.2.0
This	is	a	major	update	in	which	we're	adding	brand	new	features,	revamping	the	whole	API	as	well	as	fixing	some
known	issues.	We	also	renamed	some	modules	and	revised	related	wording	to	better	present	the	plugin	content.	Most
importantly,	with	this	update	we're	restructuring	the	Easy	Mobile	product	line.	Specifically:

The	existing	Easy	Mobile	version	will	now	be	Easy	Mobile	Pro,	which	is	the	premium	version	and	contains	all	the
available	features	of	the	plugin.	Current	Easy	Mobile	users	therefore	will	own	the	Pro	version	automatically.
A	new	version	named	Easy	Mobile	Basic	will	be	introduced	at	a	lower	price	than	the	Pro	version.	It	will	contain	all
the	core	features	but	without	a	few	advanced	ones	such	as	GIF	and	Saved	Games.	For	details	about	feature
differences	between	Pro	and	Basic	versions	please	see	the	Feature	Comparison	table.
The	Easy	Mobile:	GIF	Tools	version	will	be	deprecated.

New	Features

Game	Services	module:
Added	the	brand	new	feature	Saved	Games,	which	allow	easy	synchronization	of	game	data	to	cloud
services	including	iCloud	(iOS)	and	Google	Drive	(Android).
Allows	specifying	an	optional	the	Web	Client	ID	when	setup	Google	Play	Games.
New	PlayMaker	actions	for	Saved	Games	feature.

Notifications	module:
Added	support	for	fully-customizable	local	notifications.
Fully	compatible	with	Android	8.0	notification	channels	and	channel	groups.
New	PlayMaker	actions	for	local	notifications.

Native	APIs	module:
Native	UI	feature:	added	a	method	to	check	whether	an	alert	is	being	displayed.

Changes

Advertising	module:
Removed	IsShowingBannerAd	and	GetActiveBannerAdNetworks	methods	because	there's	currently	no
reliable	way	to	obtain	this	information	that	would	work	consistently	across	all	the	supported	networks.

Scripting:
Introduced	much	of	code	refactoring	to	enhance	stability,	maintainability,	scalability	and	readability.
Renamed	major	classes	to	make	the	API	more	intuitive;	specifically,	each	module/feature	now	has	a	main
class	with	the	same	name,	where	its	API	can	be	accessed.
Removed	the	feature	that	automatically	disables	debug	logs	in	production	builds.

Editor:
Upgraded	to	Google	Play	Services	Resolver	version	1.2.64.0.

Bug	Fixes

Release	Notes

217

GIF	module:
Fixed	Giphy	upload	error	"401	Unauthorized".

Version	1.1.5p2

New	Features

Advertising	module:
AdManager	class	now	exposes	a	RewardedAdSkipped	event,	which	is	raised	when	a	rewarded	ad	was
closed	before	finishing.

Bug	Fixes

Editor:
Replaced	the	old	Chartboost	SDK	download	URL	with	a	new	working	one.

Version	1.1.5p1

Bug	Fixes

PlayMaker	Actions:
Fixed	a	minor	error	in	the	script	for	MobileNativeShare_CaptureScreenshot	action.

Version	1.1.5

New	Features

Editor:
Incorporated	the	Google	Play	Services	Resolver	for	Unity	plugin	for	Android	dependencies	management.
Added	the	Import	Play	Services	Resolver	item	to	Easy	Mobile	menu	for	manual	import	of	this	resolver	if
needed	(normally	it	will	be	imported	automatically	upon	importing	Easy	Mobile)

Changes

Editor:
Easy	Mobile's	native	code	is	now	statically	included	in	folder	Assets/EasyMobile/Plugins	folder,	rather	than
being	imported	automatically	from	script	into	Assets/Plugins	folder	as	before.	This	enhances	the	plugin's
robustness	as	it	prevents	build	errors	due	to	unintended	removal	of	plugin	files	in	the	Assets/Plugins	folder.
Removed	the	Reimport	Native	Package	item	from	Easy	Mobile	menu	(as	a	result	of	the	above	change).

Bug	Fixes

Native	Sharing	module:
Fixed	a	bug	causing	image	sharing	to	fail	on	Android	7	(Nougat)	and	above.	Image	sharing	on	these
platforms	now	uses	FileProvider	to	comply	with	the	new	Android	security	requirements.

Release	Notes

218

https://github.com/googlesamples/unity-jar-resolver

Notes

*	Since	the	plugin	structure	changes	quite	a	lot	in	this	version,	you	need	to	do	some	cleanup	before	importing	the	new
plugin.	Please	see	the	Upgrade	Guide	section	for	more	details.

Version	1.1.4b

Changes

GIF	module:
Optimized	memory	usage	when	exporting	GIF.

Version	1.1.4a

Bug	Fixes

In-App	Purchasing	module:
Updated	editor	scripts	to	be	compatible	with	UnityIAP	version	1.14.0.

Notes

*	If	you're	upgrading	Easy	Mobile	from	an	existing	project	that	uses	IAP	module,	you	need	to	upgrade	(re-import)
UnityIAP	package	too.	Please	see	the	Upgrade	Guide	section	for	more	details.

Version	1.1.4

New	Features

Game	Service	module:

Added	a	new	method	to	show	the	UI	of	a	specific	leaderboard	in	an	(optional)	time	scope.
In-App	Purchasing	module:

Added	a	new	method	to	get	all	IAP	products	created	in	the	module	settings.
Utilities	module	-	Rating	Request	feature:

Added	new	display	constraints:	delay	after	installation	&	cooling-off	period.

Added	an	option	to	ignore	display	constraints	while	in	development	mode.

Added	new	methods	to	get	the	timestamp	of	the	last	request,	the	number	of	requests	used	in	the	current
year,	etc.

Added	the	ability	to	update	the	dialog	content	in	runtime	for	localization	purposes	(see	the	user	guide	for
details).

Editor:

[Android]	leaderboard	&	achievement	IDs	are	now	sorted	alphabetically	in	the	settings	UI.

Release	Notes

219

We've	now	got	a	little	cute	About	window	where	you	can	quickly	find	out	the	version	of	your	Easy	Mobile	:)

Changes

Game	Service	module:
UserAuthenticated	event	is	now	officially	removed.

Version	1.1.3

New	Features

Introducing	brand	new	PlayMaker	actions!

Easy	Mobile	is	now	compatible	with	PlayMaker,	starting	with	nearly	100	custom	actions	covering	all	modules!
Utilities	module:

Added	new	method	GetAnnualRequestLimit	to	get	the	annual	cap	of	the	rating	request	popup	from	script

Changes

Game	Service	module:
Added	optional	callback	to	ReportScore,	RevealAchievement,	UnlockAchievement	&
ReportAchievementProgress	to	acknowledge	if	the	operation	succeeds	or	not

Bug	Fixes

Editor:

Fixed	a	bug	on	Unity	5.6+	causing	EasyMobile	prefab	instance	to	not	be	detected	properly	if	the	containing
scene	is	not	active	->	a	false	"Easy	Mobile	Instance	Not	Found"	alert	is	shown	before	building

Version	1.1.2

Changes

In-App	Purchasing	module:
Updated	the	receipt	validation	method	to	handle	cases	when	the	input	receipt	is	null	or	empty.

Version	1.1.1

New	Features

In-App	Purchasing	module:
Added	new	methods	to	read	receipts	from	Apple	stores	and	Google	Play	store
Added	a	new	method	to	refresh	Apple	App	Receipt

Release	Notes

220

Version	1.1.0
This	is	a	major	release	with	many	new	features	and	improvements!

New	Features

Introducing	brand	new	module	GIF!

Low	overhead	screen/camera	recorder
Built-in	players	for	playback	of	recorded	clips
High	performance,	mobile-friendly	GIF	image	generator
Giphy	upload	API	for	sharing	GIF	images	to	social	networks

Native	Sharing	module:

Added	ShareText	and	ShareURL	methods	to	MobileNativeShare	class
Editor:

Added	a	new	context	menu	for	creating	EasyMobile	instance	and	other	built-in	objects	in	the	Hierarchy
window
Added	new	item	Reimport	Native	Package	to	Easy	Mobile	menu
[Unity	5.6+]	Added	a	warning	popup	which	is	shown	when	an	iOS	or	Android	build	starts	while	no
EasyMobile	instance	was	added	to	any	scene

Version	1.0.4

New	Features

Game	Service	module:
Added	SignOut	method	to	GameServiceManager	class.

Version	1.0.3
This	update	introduces	important	improvements	and	bug	fixes.

New	Features

Advertising	module:

AdMob	rewarded	ad	is	now	supported

Added	support	for	new	ad	network:	AdColony

Changes

Advertising	module:

Ad	events	are	now	raised	from	main	thread	when	using	AdMob

RewardedAdCompleted	event	is	now	raised	after	the	ad	is	closed,	to	ensure	a	consistent	behavior	across
different	ad	networks

Release	Notes

221

Bug	Fixes

Native	Sharing	module:
Fixed	a	potential	memory	leak	issue	caused	by	the	SaveScreenshot	method	of	the	MobileNativeShare	class

Version	1.0.2

New	Features

Introducing	whole	new	module	Utilities:

The	first	feature	of	this	module	is	Rating	Request,	an	effective	way	to	ask	for	rating	using	a	native	and
highly	customizable	"rate	my	app"	popup.

Game	Service	module:

Updated	GameServiceManager	class,	introducing	new	events	UserLoginSucceeded	and	UserLoginFailed;
_UserAuthenticated	_event	is	now	obsolete.

Version	1.0.1

Changes

Game	Service	module:
Updated	scripts	to	be	compatible	with	version	0.9.37	of	the	Google	Play	Games	plugin	for	Unity.

Version	1.0.0
First	release.

Release	Notes

222

Upgrade	Guide
This	section	describes	the	required	actions	you	may	need	to	take	when	upgrading	to	a	certain	version	of	Easy	Mobile.
Please	visit	this	place	before	upgrading	Easy	Mobile	to	avoid	unnecessary	issues.

Upgrading	to	version	2.1.1

This	version	is	compatible	with	the	ironSource	Unity	SDK	version	6.7.12	which	unfortunately,	makes	it
incompatible	with	older	versions	of	the	ironSource	SDK.	If	you	upgrade	to	this	version	of	Easy	Mobile,	make	sure
you	also	upgrade	the	ironSource	SDK	in	your	project	(if	any)	to	version	6.7.12	or	newer.

Upgrading	to	version	2.0.0

Version	2.0.0	is	a	major	update	which	introduces	lots	of	changes	and	improvements.	To	make	the	product	better,
we	had	to	make	some	necessary	changes	that	break	backward	compatibility.	Therefore	we	recommend	a	clean
upgrade	if	you	are	moving	from	an	older	version	to	Easy	Mobile	Basic	2.0.0	or	newer.	That	means	you	should
remove	the	Assets/EasyMobile	folder	completely	before	importing	the	new	version	and	setup	the	plugin	again	(re-
apply	previous	settings	in	the	Settings	UI).
Version	2.0.0	also	removes	the	longtime	EasyMobile	prefab.	Now	you	no	longer	have	to	add	it	to	the	first	scene
of	your	app.	Instead	you	would	call	the	RuntimeManager.Init	method	(see	Using	Easy	Mobile	>	Initializing).

Upgrading	to	version	1.2.0

Version	1.2.0	is	a	major	update	in	which	Easy	Mobile	has	been	renamed	to	Easy	Mobile	Pro	and	lots	of	improvements
and	modifications	were	introduced,	most	notably	API	changes.	If	you're	upgrading	from	an	older	version	to	1.2.0,	we
strongly	recommend	removing	the	old	version	completely	before	importing	the	new	one	to	avoid	potential	issues.
Please	follow	these	steps:

Backup	the	Assets/EasyMobile/Resources	and	Assets/EasyMobile/Generated	folders	and	save	them	somewhere
safe.
Remove	the	whole	Assets/EasyMobile	folder.
Remove	the	file/folder	named	com.sglib.easymobile.easy-mobile-1.0.2	in	folder	Assets/Plugins/Android.
Import	Easy	Mobile	Pro	1.2.0.
Copy	the	backed	up	Resources	and	Generated	folders	back	to	Assets/EasyMobile	folders.
Go	to	menu	Assets	>	Play	Services	Resolver	>	Android	Resolver	>	Force	Resolve.
If	you're	using	Game	Services	module	on	Android,	run	Setup	Google	Play	Games	once	again	in	the	settings	UI.
Optionally	update	your	scripts	to	fix	warnings	due	to	old	classes	being	deprecated	(they	still	function	normally,
we're	just	introducing	new	classes	with	different	names	to	make	the	API	more	intuitive).

Upgrading	to	version	1.1.5	or	newer

Since	version	1.1.5,	Easy	Mobile	incorporates	the	Google	Play	Services	Resolver	for	Unity	plugin	for	Android
dependencies	management,	as	well	as	moves	all	native	code	into	the	Assets/EasyMobile/Plugins	folder.	If	you're
upgrading	from	an	older	version	to	version	1.1.5	or	newer,	please	remove	the	following	files	before	importing	the	new
package	to	avoid	potential	issues:

Upgrade	Guide

223

Assets/Plugins/Android/easy-mobile.aar.
Assets/Plugins/Android/libs/armeabi-v7a/libeasymobile.so
Assets/Plugins/Android/libs/x86/libeasymobile.so
Assets/Plugins/iOS/libEasyMobile.a

Upgrading	to	version	1.1.4a	or	newer

Since	version	1.14.0,	the	UnityIAP	package	has	made	changes	to	its	API	that	cause	some	conflicts	with	Easy	Mobile
editor	scripts.	We	addressed	this	problem	in	version	1.1.4a.	If	you're	upgrading	from	an	older	version	to	1.1.4a,	and
your	project	uses	the	In-App	Purchasing	module,	you	need	to	upgrade	(re-import)	the	UnityIAP	package	to	version
1.14.0	or	newer	to	avoid	incompatibility	issues.

Upgrading	to	version	1.1.0	or	newer

If	you're	upgrading	from	an	older	version	to	version	1.1.0	or	newer,	you'll	need	to:

1.	 Remove	the	EasyMobile/Demo	folder
2.	 Remove	the	EasyMobile/Script	folder
3.	 Import	the	new	version

Upgrade	Guide

224

Troubleshooting
This	section	describes	known	issues	and	common	solutions	for	them.

App	crashes	when	using	Google	Play	Game	Plugin	with
Unity	2018.2.0	or	newer.

Symptoms

You	are	using	the	Google	Play	Games	Plugin	for	Unity	(GPGS)	version	0.9.50	or	older	(0.9.50	is	the	latest
version	as	of	this	writing,	this	may	or	may	not	apply	to	future	versions).
You	are	building	the	app	with	Unity	2018.2.0	or	newer.
The	app	crash	while	attempting	to	login	to	Google	Play	Games.
The	crashlog	includes	this	line	"Application	ID	(xxxxxxxxxxxxx)	must	be	a	numeric	value."

Resolution

This	is	a	known	issue	of	GPGS.	Please	follow	this	instruction	to	solve	it.

Google	Play	Services	Resolver	gets	stuck	after	importing
OneSignal	SDK

Symptoms

Your	project	is	using	Google	Play	Services	Resolver	1.2.88	or	newer.
The	resolver	worked	correctly	before	importing	OneSignal	plugin,	but	gets	stuck	after	importing	it.

Resolution

Please	follow	OneSignal	instruction	on	solving	this.

Can't	sign	in	to	Google	Play	Games	with	development
builds	created	by	Gradle	build	system

Symptoms

You	have	setup	your	app	to	work	with	Google	Play	Games	via	the	Game	Services	module.
If	you	create	a	non-development	build	using	Gradle	and	try	to	sign	in	to	Google	Play	Games	in	the	app,	the
authentication	succeeds.
If	you	create	a	non-development	or	development	build	using	the	Unity's	internal	build	system,	the	authentication
also	succeeds.
If	you	create	a	development	build	using	the	Gradle	build	system,	the	authentication	always	fails.

Troubleshooting

225

https://github.com/playgameservices/play-games-plugin-for-unity/issues/2013#issuecomment-412073497
https://github.com/OneSignal/OneSignal-Unity-SDK/commit/f60a36a940397dd33121712de40e7194d5a89199

Resolution

The	root	cause	of	the	problem	is	the	default	gradle	config	of	Unity	doesn't	use	the	keystore	specified	in	Play	Settings
(in	other	words,	the	debug	keystore	is	always	used),	causing	Google	Play	Games	authentication	to	fail.	To	address
this	you	need	to:

1.	 Enable	the	'Custom	Gradle	Template'	option	in	Player	Settings	>	Android	Tab	>	Publishing	Settings.
2.	 Add	a	**SIGNCONFIG**	line	to	the	custom	gradle	config	(normally	it	is	at

Assets/Plugins/Android/mainTemplate.gradle)	at	the	debug	buildTypes	config	like	below,	so	that	the	release
keystore	can	be	used	in	development	builds.

SIGN

buildTypes	{

				debug	{

								minifyEnabled	**MINIFY_DEBUG**

								useProguard	**PROGUARD_DEBUG**

								proguardFiles	getDefaultProguardFile('proguard-android.txt'),	'proguard-unity.txt'**USER_PROGUARD**

																	jniDebuggable	true

								SIGNCONFIG			<---	ADD	THIS	LINE

				}

				release	{

								minifyEnabled	**MINIFY_RELEASE**

								useProguard	**PROGUARD_RELEASE**

									proguardFiles	getDefaultProguardFile('proguard-android.txt'),	'proguard-unity.txt'**USER_PROGUARD**

									SIGNCONFIG

					}

}

Easy	Mobile	settings	are	not	saved

Symptoms

You	open	the	Easy	Mobile	global	settings	interface	(Window	>	Easy	Mobile	>	Settings)	and	made	some	changes,
then	close	the	interface.	When	you	re-open	it,	the	changes	are	gone	instead	of	being	saved.

Resolution

Normally,	this	is	because	there	are	more	than	one	Inspector	tabs	being	opened	at	the	same	time.	So	double	check
that	and	make	sure	you	only	have	one	Inspector	tab	in	which	the	Easy	Mobile	settings	interface	is	shown.

UnityAds	Service	is	enabled,	but	shown	as	unavailable	in
Advertising	module	settings

Symptoms

You	have	enabled	UnityAds	from	the	Services	tab	in	Unity,	but	the	Advertising	module	still	shows	that	it	is	unavailable.

Resolution

Troubleshooting

226

1.	 First	of	all	make	sure	that	your	current	active	platform	is	iOS	or	Android,	since	UnityAds	is	not	available	on	other
platforms.	To	switch	platform	go	to	File	>	Build	Settings,	then	select	the	target	platform	and	hit	the	Switch
Platform	button.

2.	 In	UnityAds	settings	panel	(Window	>	Services	>	Ads),	make	sure	the	"Enable	built-in	Ads	extension"	option	in
the	Advanced	section	is	checked.

If	UnityAds	is	still	not	detected	as	available,	perform	the	following	steps:

1.	 Disable	UnityAds	service	in	the	Services	tab.
2.	 Exit	Unity.
3.	 Go	to	the	project	folder,	locate	the	Project	Settings	folder	and	open	it.
4.	 Delete	the	UnityConnectSettings.asset	file	and	the	UnityAdsSettings.asset	file	(if	any).
5.	 Open	Unity	and	enable	UnityAds	service	again.	It	should	be	detected	now.

Errors	upon	importing	Easy	Mobile	due	to	conflicting
versions	of	the	Google	Play	Services	Resolver	plugin

Symptoms

After	importing/upgrading	Easy	Mobile	in	a	project	that	already	contains	the	Google	Play	Services	Resolver	plugin
(the	folder	Assets/PlayServicesResolver	exists):

Troubleshooting

227

You	get	an	error	in	the	console	starting	with	"An	assembly	with	the	same	name	'Google.VersionHandlerImpl'
has	already	been	imported...".

The	Assets/PlayServicesResolver/Editor	contains	multiple	files	with	same	names	but	different	versions.

Resolution

Use	menu	Assets	>	PlayServicesResolver	>	Version	Handler	>	Update.	The	Version	Handler	of	the	Google	Play
Services	Resolver	will	automatically	resolve	the	conflict,	pick	the	appropriate	version	and	remove	the	redundant	files.

Troubleshooting

228

	About
	Introduction
	Using Easy Mobile
	Introduction
	Settings
	Setup AdColony
	Setup AdMob
	Setup Chartboost
	Setup Audience Network
	Setup Heyzap
	Setup ironSource
	Setup MoPub
	Setup Tapjoy
	Setup Unity Ads

	Scripting
	PlayMaker Actions
	Introduction
	Settings
	Scripting
	Saved Games
	Settings
	Scripting

	PlayMaker Actions
	Introduction
	Setup
	Scripting
	PlayMaker Actions
	Introduction
	Settings
	Scripting
	Advanced Scripting
	PlayMaker Actions
	Introduction
	Native UI
	Scripting

	PlayMaker Actions
	Introduction
	Settings
	Scripting
	PlayMaker Actions
	Introduction
	Settings
	Scripting
	PlayMaker Actions
	Introduction
	Scripting
	PlayMaker Actions
	Introduction
	Store Review
	Settings
	Scripting

	PlayMaker Actions
	Release Notes
	Upgrade Guide
	Troubleshooting

