SHARP SERVICE MANUAL

UX-P100 model UX-P200

SELECTION CODE	DESTINATION
UX-P100U (Open LCR)	U.S.A.
UX-P200U	U.S.A.

Illustration: UX-P100U

CONTENTS

CHAPTER 1. GENERAL DESCRIPTION

[1] Specifications 1-1
[2] Operation Panel 1-2
[3] Transmittable documents 1-3
[4] Installation 1-4
[5] Quick setup guide 1-8
[6] Quick reference guide 1-9
[7] Option imaging film specifications (UX-5CR) 1-9
CHAPTER 2. ADJUSTMENTS
[1] Adjustments 2-1
[2] Diagnostics and service soft switch 2-2
[3] Troubleshooting 2-19
[4] Error code table 2-20
CHAPTER 3. MECHANISM BLOCKS
[1] General description 3-1
[2] Disassembly and assembly procedures 3-3
CHAPTER 4. DIAGRAMS
[1] Block diagram 4-1
[2] Wiring diagram 4-2
[3] Point-to-point diagram 4-3
CHAPTER 5. CIRCUIT DESCRIPTION
[1] Circuit description 5-1
[2] Circuit description of control PWB 5-2
[3] Circuit description of TEL/LIU PWB 5-9
[4] Circuit description of power supply PWB 5-12
[5] Circuit description of CIS unit 5-12
CHAPTER 6. CIRCUIT SCHEMATICS AND PARTS LAYOUT
[1] Control PWB circuit 6-1
[2] TEL/LIU PWB circuit 6-9
[3] Power supply PWB circuit 6-11
[4] Operation panel PWB circuit 6-13
[5] Interface PWB circuit 6-15
CHAPTER 7. OPERATION FLOWCHART
[1] Protocol 7-1
[2] Power on sequence 7-2
CHAPTER 8. OTHERS
[1] Service tools 8-1
[2] IC signal name 8-4
[3] Changing the record paper size 8-5
PARTS GUIDE

CAUTION FOR BATTERY REPLACEMENT

(Danish) ADVARSEL!

Lithiumbatteri-Eksplosionsfare ved fejlagtig håndtering. Udskiftning må kun ske med batteri af samme fabrikat og type. Levér det brugte batteri tilbage til leverandoren.
(English)
Caution!
Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the equipment manufacturer.
Discard used batteries according to manufacturer's instructions.

(Finnish)
 VAROITUS

Paristo voi räjähtää, jos se on virheellisesti asennettu. Vaihda paristo ainoastaan laitevalmistajan suosittelemaan tyyppiin. Hävitä käytetty paristo valmistajan ohjeiden mukaisesti.
(French) ATTENTION

Il y a danger d'explosion s'ily a remplacement incorrect de la batterie. Remplacer uniquement avec une batterie du même type ou d'un type recommandé par le constructeur. Mettre au rébut les batteries usagées conformément aux instructions du fabricant.
(Swedish)
VARNING
Explosionsfare vid felaktigt batteribyte. Använd samma batterityp eller en ekvivalent typ som rekommenderas av apparattillverkaren. Kassera använt batteri enligt fabrikantens instruktion.

German)

Achtung
Explosionsgefahr bei Verwendung inkorrekter Batterien.
Als Ersatzbatterien dürfen nur Batterien vom gleichen Typ oder vom Hersteller empfohlene Batterien verwendet werden.
Entsorgung der gebrauchten Batterien nur nach den vom Hersteller angegebenen Anweisungen.

CHAPTER 1. GENERAL DESCRIPTION

[1] Specifications

Automatic dialing:

Imaging film:	Initial starter roll:UX-P100U (included with machine): 32 ft . (10 m) (approx. 30 letter-size pages)
	Initial starter roll:UX-P200U (included with machine): 49 ft . (15 m) (approx. 45 letter-size pages)
	Replacement roll: UX-5CR $164 \mathrm{ft}$. (50 m) roll (one roll yields approx. 150 letter-size pages)
Memory size* :	448 KB (approx. 24 average pages)
Modem speed:	$9,600 \mathrm{bps}$ with automatic fallback to lower speed
Transmission time* :	Approx. 15 seconds
Resolution:	Horizontal: 203 pels/inch (8 dots/mm) Vertical: Standard: 98 lines/inch (3.85 lines/mm) Fine/Halftone: 196 lines/inch (7.7 lines/mm) Super fine: 391 lines/inch (15.4 lines/mm)
Automatic document feeder:	10 pages max. (letter/A4, 20 lb paper)
Recording system:	Thermal transfer recording
Halftone (grayscale):	64 levels
Compression scheme:	MH, MR, MMR
Display:	16-digit LCD display
Applicable telephone line:	Public switched telephone network
Paper tray capacity: (20-lb. paper at room temperature)	Letter: 50 sheets (max. stack height: $5 \text { mm }$ Legal: 5 sheets
Compatibility:	ITU-T (CCITT) G3 mode

Input document size:	Automatic feeding: Width: 5.8 to $8.5^{\prime \prime}$ (148 to 216 mm) Length: 5.5 to 11 " (140 to 279 mm) Manual feeding: Width: 5.8 to $8.5^{\prime \prime}$ (148 to 216 mm) Length: 5.5 to 23.6 " (140 to 600 mm)
Effective scanning width:	8.3" (210 mm) max.
Effective printing width:	8.3" (210 mm) max.
Contrast control:	Automatic/Dark selectable
Reception modes:	TEL/FAX
Copy function:	Single/Multi (99 copies/page)
Telephone function:	Yes (cannot be used if power fails)
Power requirements:	120 V AC, 60 Hz
Operating temperature:	41-95 ${ }^{\circ} \mathrm{F}\left(5-35^{\circ} \mathrm{C}\right)$
Humidity:	Maximum: 85 \% RH
Power consumption:	Stand-by: 3.6 W
	Maximum: 100 W
Dimensions (without attachments):	Width: 12.9" (327 mm) Depth: 7.6" (193 mm) Height: 6.4" (163 mm)
Weight (without attachments):	Approx. $6.2 \mathrm{lbs} .(2.8 \mathrm{~kg})$

* Based on ITU-T (CCITT) Test Chart \#1 at standard resolution in Sharp special mode, excluding time for protocol signals (i.e., ITU-T phase C time only).

[2] Operation panel

1. Display

This displays messages and prompts to help you operate the machine.
2. RESOLUTION / RECEPTION MODE key

When a document is in the feeder, press this key to adjust the resolution for faxing or copying. At any other time, press this key to select the reception mode (an arrow in the display will point to the currently selected reception mode).

3. Left and Right Arrow Keys

Auto-Dial Numbers: When sending a fax or making a phone call, press these keys to scroll through your auto-dial numbers, the "REVIEW CALLS" list (only available if you have Caller ID), and the last number dialed (redial).
FUNCTION key settings: Press the right arrow key after scrolling with the up and down arrow keys to select a FUNCTION key setting.
4. Number keys

Use these keys to dial numbers, and enter numbers and letters when storing auto-dial numbers.

5. Panel Release

Press this release to open the operation panel.

6. STOP key

Press this key to cancel operations before they are completed.

7. COPY/HELP key

When a document is in the feeder, press this key to make a copy of a document. At any other time, press this key to print out the Help List, a quick reference guide to the operation of your fax machine.
8. START/MEMORY key

Press this key after dialing to begin fax transmission. Press this key before dialing to send a fax through memory.
9. FUNCTION key

Press this key to followed by the arrow keys select special functions and setting.
10. OpenLCR key (UX-P100U ONLY)

Press this key to register for OpenLCR service and receive rate information to your fax.
11. UP and DOWN Arrow keys

Enlarge/Reduce setting: When marking a copy of a document, press these keys to select an enlarge/reduce setting.
Volume setting: When a document is not in the feeder, press these keys to change the handset volume when the handset is lifted, the speaker volume when the SPEAKER key has been pressed, or the ringer volume at any other time. FUNCTION key setting: Press these keys after pressing the FUNCTION key to scroll through the FUNCTION MODE settings.
12. SPEAKER key

Press this key to listen to the line and fax tones through the speaker when faxing a document.
Note: This is not a speakerphone. You must pick up the handset to talk with the other party.

[3] Transmittable documents

1. Document Sizes

Normal size	width	$5.8^{\prime \prime}-8.5^{\prime \prime}(148-216 \mathrm{~mm})$
	length	$5.5^{\prime \prime}-11^{\prime \prime}(140-279 \mathrm{~mm})$

WX Use document carrier sheet for smaller documents.

* With special sizes, only one sheet can be fed into the machine at a time. Insert next page into feeder as current page is being scanned.

2. Paper Thickness \& Weight

	10 sheets	1 sheet(Manual)
Paper weight	70 kg	$70 \mathrm{~kg} \sim 135 \mathrm{~kg}$
	21.5 lbs.	$14 \mathrm{lbs} \sim 42 \mathrm{lbs}$.
	$\left(80 \mathrm{~g} / \mathrm{m}^{2}\right)$	$\left(52 \mathrm{~g} / \mathrm{m}^{2} \sim 157 \mathrm{~g} / \mathrm{m}^{2}\right)$
Paper thickness (ref.)	0.1 mm	$0.1 \mathrm{~mm} \sim 0.18 \mathrm{~mm}$
Paper size	LGL $(216 \mathrm{~mm} \times 355.6 \mathrm{~mm})$	
	A4 $(210 \mathrm{~mm} \times 297 \mathrm{~mm})$	
	LTR $(216 \mathrm{~mm} \times 279 \mathrm{~mm})$	
Feeder capacity	A4/LTR: 10 sheets LGL :1 sheet	

3. Document Types

- Normal paper

Documents handwritten in pencil (No. 2 lead or softer), fountain pen, ball-point pen, or felt-tipped pen can be transmitted.

Documents of normal contrast duplicated by a copying machine can also be transmitted.

- Diazo copy (blue print)

Diazo copy documents of a normal contrast may be transmitted.

- Carbon copy

A carbon copy may be transmitted if its contrast is normal.

4. Cautions on Transmitting Documents

- Documents written in yellow, greenish yellow, or light blue ink cannot be transmitted.
- Ink, glue, and correcting fluid on documents must be dry before the documents can be transmitted.
- All clips, staples and pins must be removed from documents before transmission.
- Patched (taped) documents should be copied first on a copier and then the copies used for transmission.
- All documents should be fanned before insertion into the feeder to prevent possible double feeds.

5. Automatic Document Feeder Capacity

Number of pages that can be placed into the feeder at anytime is as follows:

Normal size: max. ADF 10 pages
Special size: single sheet only (manual feed)
NOTES: - When you need to send or copy more pages than the feeder limit, place additional pages in feeder when last page in feeder is being scanned.

- Place additional pages carefully and gently in feeder. If force is used, double-feeding or a document jam may result.

6. Readable Width \& Length

The readable width and length of a document are slightly smaller than the actual document size.

Note that characters or graphics outside the effective document scanning range will not be read.

- Readable width
8.3" (210mm), max.

- Readable length

This is the length of the document sent minus $0.2^{\prime \prime}(5 \mathrm{~mm})$ from the top and bottom edges.

7. Use of Document Carrier Sheet

A document carrier sheet must be used for the following documents.

- Those with tears.
- Those smaller than size $5.8^{\prime \prime}(\mathrm{W}) \times 5.5^{\prime \prime}(\mathrm{L})(148 \mathrm{~mm}(\mathrm{~W}) \times 140 \mathrm{~mm}$ (L)).
- Carbon-backed documents

Make print straight across paper
E.G.

Place the document carrier in the document feeder with the clear film side down

NOTE: To transmit a carbon-backed document, insert a white sheet of paper between the carbon back of the document and the document carrier.

- Those containing an easily separable writing substance (e.g., tracking paper written on with a soft, heavy lead pencil).
NOTES: - When using the document carrier, carefully read the instructions written on the back.
- If the document carrier is dirty, clean it with a soft, moist cloth, and then dry it before using for transmission.
- Do not place more than one document in the carrier at a time.

[4] Installation

1. Site selection

Take the following points into consideration when selecting a site for this model.

ENVIRONMENT

- The machine must be installed on a level surface.
- Keep the machine away from air conditioners, heaters, direct sunlight, and dust.
- Provide easy access to the front, back, and sides of the machine. In particular, keep the area in front of the machine clear, or the original document may jam as it comes out after scanning.
- The temperature should be between $41-95^{\circ} \mathrm{F}\left(5-35^{\circ} \mathrm{C}\right)$.
- The humidity should be between 30% and 85% (without condensation).

ELECTRICITY

AC $120 \mathrm{~V}, 60 \mathrm{~Hz}$, grounded(3-prong) AC outlet is required.

Caution!

- Connection to a power source other than that specified will cause damage to the equipment and is not covered under the warranty.
- If your area experiences a high incidence of lightning or power surges, we recommend that you install a surge protector for the power and telephone lines. Surge protectors can be purchased at most telephone speciality stores.

If the machine is moved from a cold to a warm place...

Condensation may form on the reading glass if machine is moved from a cold to a warm place, this will prevent proper scanning of documents for transmission. Turn on the power and wait approximately 2 hours before using machine.

TELEPHONE JACK

A standard RJ11C single-line wall telephone jack must be located near the machine. This is the telephone jack commonly used in most homes and offices.

- Plugging the fax machine into a jack which is not RJ11C single-line wall telephone jack may result in damage to the machine or your telephone system. If you do not know what kind of jack you have, or need to have one installed, contact the telephone company.

2. Loading the Imaging Film (UX-5CR)

Your fax uses a roll of Imaging Film to create printed text and images. The print head in the fax applies heat to the Imaging Film to transfer ink to the paper. Follow the steps below to load or replace the film.

- The initial starter roll of Imaging Film included with your fax can print about 30 letter-size pages.(UX-P100U)
- The initial starter roll of Imaging Film included with your fax can print about 45 letter-size pages.(UX-P200U)
- When replacing the film, use a roll of Sharp UX-5CR Imaging Film. One roll can print about 150 letter-size pages.

(1) Remove the paper from the Paper Tray and open the Operation Panel (press 1).

If you are loading the Imaging Film for the first time, go to Step 4.

(2) Remove the used film and empty spool.

3) Remove the two green gears from the spools.

DO NOT DISCARD THE TWO GREEN GEARS!

(4) Remove the new roll of Imaging Film from its packaging

- Cut the band that holds rolls together.

(5) Insert the green gears.

Make sure the gears fit into the slots in the ends of the rolls.

(6) Insert the film into the print compartment.

(7) Rotate the front gear as shown until the film is taut.

(8) Close the Operation Panel (press down on both sides to make sure it cliks into place).

3. Assembly and connections

(1) Connect the Handset as shown and place it on the Handset Rest.

- The ends of the Handset Cord are identical, so they will go into either jack.

Make sure the Handset Cord goes into the jack marked with a Handset symbol on the side of the machine!

Use the handset to make ordinary phone calls, or to transmit and receive faxes manually.
(2) Plug the power cord into a $120 \mathrm{~V}, 60 \mathrm{~Hz}$, grounded AC (3-prong) outlet.

- Caution:

Do not plug the power cord into any other kind of outlet. This will damage the machine and is not covered under the warranty.

- The machine does not have a power on/off switch, so the power is turned on and off by simply plugging in or unplugging the power cord.

(3) Insert one end of the line cord into the jack on the back of the machine marked TEL. LINE. Insert the other end into a standard (RJ11C) single-line wall telephone jack.

Dial Mode:

The fax machine is set for tone dialing. If you are on a pulse dial line, you must set the fax machine for pulse dialing. Press the keys on the operation panel as follows:

1. Press $\stackrel{\text { function }}{ }$ once and (1) twice.

OPTION SETTING $\boldsymbol{\nabla}$,
2. Press Θ once and $(\rceil$ twice.

DIAL MODE $\quad \boldsymbol{\nabla}$
3. Press Θ once.

1=TONE, 2=PULSE

The display briefly shows your selection, then:
DISTINCTIVE $\stackrel{\rightharpoonup}{\nabla}$
4. Select the dial mode:

TONE: (1) PULSE: 2
5. Press $\stackrel{\text { STOP }}{\theta}$ to exit.
(4) Attach the Paper Tray and Paper Tray Extension.

Note: The Paper Tray Extension has a top side and a bottom side. If you cannot insert the tabs into the holes, turn the support over.

4. Loading Paperfor Printing

You can load letter or legal size paper in the Paper Tray. The maximum number of sheets is as follows:

Letter size: 50 sheets (20-lb. paper at room temperature; maximum stack height of 5 mm)
Legal size: 5 sheets
(1) Fan the paper, and then tap the edge against a flat surface to even the stack.

(2) Insert the stack of paper into the tray, PRINT SIDE DOWN.

- If paper remains in the tray, take it out and combine it into a single stack with the new paper.
- Be sure to load the paper so that printing takes place on the print side of the paper. Printing on the reverse side may result in poor print quality.

Note: Do not use paper that has already been printed on, or paper that is curled.

Note: If at any time the display shows the alternating messages at right, check the printing paper. If the tray is empty, add paper. If these is paper in the tray, take it out and then reinsert it.

(3) Setting the paper size.

The fax has been set at the factory to scale received faxes to letter size paper. If you loaded legal paper, you must change the paper size setting to LEGAL.

	Display:
1. Press $\stackrel{\text { Function }}{ }$ once and (\triangle twice.	OPTION SETTING ${ }^{\boldsymbol{v}} \boldsymbol{\nu}$
2. Press Θ once and (1) twice.	PAPER SIZE SET $\quad \stackrel{\rightharpoonup}{\boldsymbol{\nabla}}$
3. Press Θ once.	1=LETTER, 2=LEGAL
4. Select the paper size:	The display briefly shows your selection, then:
LETTER: 1 LEGAL: 2	COPY CUT-OFF ${ }^{\boldsymbol{\nabla}} \boldsymbol{\nu}$

5. Press $\stackrel{\text { sTop }}{\ominus}$ to return to the date and time display.
(4) Print contrast setting.

You fax has been set at the factory to print at normal contrast. If desired, you can change the print contrast setting to LIGHT.

	Display:
1. Press $\stackrel{\text { Funcron }}{ }$ once and (1) twice.	OPTION SETTING $\stackrel{\rightharpoonup}{\text { ¢ }}$
2. Press Θ once and (1) 3 times.	PAPER CONTRAST ${ }^{\text {¢ }}$ '
3. Press Θ once.	1: NORMAL

4. Select the print contrast: NORMAL: (1) LIGHT: © ${ }^{2}$

The display briefly shows your selection, then:
PAPER SIZE SET $\boldsymbol{\dagger}$,
5. Press $\stackrel{\text { STOP }}{\otimes}$ to return to the date and time display.

5. Clearing a jammed original document

If the original document doesn't feed properly during transmission or copying, or DOCUMENT JAMMED appears in the display, first try pressing the START/MEMORY key. If the document doesn't feed out, remove it as described below.

Important:

Do not try to remove a jammed document without releasing it as described below. This may damage the feeder mechanism.
(1) Press 1 and slowly open the Operation Panel until it is half open.

(2) Flip up the green levers on each side of the white roller.

(3) Gently and remove the document.

- Be careful not to tear the document.

(4) Flip down the green levers on each side of the white roller. Rotate the front gear until the film is taut, and then close the Operation Panel (press down on both sides to make sure it clicks into place).

6. Clearing jammed printing paper

(1) Open the Operation Panel (press (1)).

(2) Gently pull the jammed paper out of the machine, making sure no torn pieces of paper remain in the print compartment or rollers.

(3) Rotate the front gear until the film is taut, and then close the operation panel (press down on both sides to make sure it clicks into place).

[5] Quick setup guide

1
Connect the Handset

2 Plug the power cord into a 120 V grounded outlet.

3 Connect the telephone line cord to the TEL. LINE jack and a wall telephone jack.
Note: To enter your name and fax number and set the date and time so that they appear at the top of each fax you send, see pages 16-19 of the Operation Manual.

5 Load the Imaging Film.
1.Open the Operation Panel (press(1).

4. Insert the film into the print compartment.

2. Remove the Imaging Film from its packaging. Cut the band that holds the rolls together.

5. Rotate the front spool as shown until the film is taut

3. Insert the Green Gears.

IMPORTANT: Do NOT discard the Green Gears. They are not included with replacement Imaging Film.

6. Close the Operation Panel (press down on both sides to make sure it clicks into place).

6 Loading paper.

Insert the paper print side down.

- GENTLY LOAD PAPER INTO THE PAPER TRAY. - DO NOT FORCE IT DOWN INTO THE FEED SLOT.

Note: If you loaded legal paper, see page 15 of the Operation Manual to change the paper size setting to LEGAL.

7 Select the reception mode for incoming faxes and voice calls:
FAX mode: The machine automatically answers all calls and begins fax reception
TEL mode: Lift the handset when the machine rings.
Press ${ }^{\text {STARTMEIIOPY }}$ to begin fax reception.

[6] Quick Reference Guide

SENDING FAXES

Place your document (up to 10 pages) face down in the document feeder.

Normal Dialing

1. Lift the handset or press ${ }^{\text {SPEAKER }}$
2. Dial the fax number.
3. Wait for the reception tone (if a person answers, ask them to press their Start key).
4. Press staftiliory

Automatic Dialing

1. Press Θ or Θ until the name of the other party appears in the display (if no name was stored, the number will appear).
2. Press $\underset{\sim}{\text { startuelory }}$

Direct Keypad Dialing

1. Dial the fax number.
2. Press staftile

RECEIVING FAXES

 reception mode.

FAX mode: The fax machine automatically answers and receives the incoming document.
TEL mode: Answer all calls (even faxes) by picking up the handset. To begin fax reception, press startieliory

STORING AND CLEARING AUTO DIAL NUMBERS

1. Press Function
once and Θ twice.
2. Enter the full fax/phone number.
3. Press startuliory
4. Enter the name by pressing number keys. (To enter two letters in succession that require the same key, press Θ after entering the first letter.)

SPACE = ${ }^{(1)}$	$\mathrm{G}=$ (4)	$\mathrm{N}=$ (6) (6)	$\mathrm{U}=$ (8) 8)
$\mathrm{A}=$ (2)	$\mathrm{H}=$ (4) (4)	$\mathrm{O}=$ (6) (6) (6)	$v=$ (8) 8 (8)
B = (2) (2)	$I=$ (4) (4) (4)	$\mathrm{P}=7$	$\mathrm{w}=9$
$\mathrm{C}=$ (2) (2) (2)	$J=$ (5)	Q = 7 (7)	$\mathbf{x}=$ (9) (9)
$\mathrm{D}=3$	$K=5$ (5)	$\mathrm{R}=7 \mathrm{7}^{7} 7$	$\mathbf{Y}=$ (9) (9) (9)
$E=$ (3) (3)	$L=$ (5) (5) 5	$\mathrm{S}=$ (7) 7 (7) 7	$\mathbf{Z}=$ (9) (9) 9 (9)
$F=$ (3) 3 (3)	$\mathrm{M}=$ (6)	$\mathrm{T}=8$	

5. Press staatinelory and then STOP

[7] Imaging Film Specifications (UX-5CR)

1. Structure

This article is composed of polyester film coated with heat-resistant layer, matt layer, hot melt ink layer, leader film and paper core. Ink film specification is "DNP standard ink film HC".

(1) Heat Resistant Layer
(2) Base Film
(3) Matt Layer
(4) Hot Melt Ink Layer

2. Details of compositions

2-1. Base Film

Heading	Requirements	Measuring method
Material	Polyethylene- terephthalate	-

2-2. Heat Resistant Layer

Heading	Requirements	Measuring method
Grade	HR Mixer P-5	-

2-3. Matt Layer

Heading	Requirements	Measuring method
Grade	ML Sumi	-

2-4. Hot Melt Ink Layer

Heading	Requirements	Measuring method
Grade	\#507W	-

MEMO

CHAPTER 2. ADJUSTMENTS

[1] Adjustments

General

Since the following adjustments and settings are provided for this model, make adjustments and/or setup as necessary.

1. Adjustments of output voltage (FACTORY ONLY)

1. Install the Power Supply Unit in the machine.
2. Set the recording paper and document.
3. When the document is loaded, power is supplied to the output lines. Confirm that outputs are within the limits below.

Output voltage settings

Output	Voltage limits
+5 V	$4.25 \mathrm{~V} \sim 5.75 \mathrm{~V}$
+24 V	$23.3 \mathrm{~V} \sim 24.7 \mathrm{~V}$

Connector No.	
Pin No.	CNPW
1	+24 V
2	+24 V
3	MG
4	MG
5	DG
6	Vreg $(+5 \mathrm{~V})$

2. IC Protectors replacement

ICPs (IC Protectors) are installed to protect the motor driver circuit. ICPs protect various ICs and electronic circuits from an overcurrent condition.
The location of ICPs are shown below:

(1) FU100 (KAB2402) is installed in order to protect IC's from an overcurrent generated in the motor drive circuit. If FU100 is open, replace it with a new one.

3. Settings

(1) Dial mode selector

DIAL mode (Soft Switch No. SW-B4 DATA No. 3)
(step 1) Select "OPTION SETTING".
KEY :

DISPLAY:
OPTION SETTING $\stackrel{\rightharpoonup}{\boldsymbol{\rightharpoonup}} \boldsymbol{\rightharpoonup}$
NUMBER OF RING ${ }_{\mathbf{\wedge}}{ }^{\boldsymbol{\rightharpoonup}}$
(step 2) Select "DIAL MODE".
KEY:

Push $\boldsymbol{\nabla}$ until DIAL MODE
indicated because the number of
$\boldsymbol{\nabla}$'s changes by the model.
DIAL MODE

1=TONE, 2=PULSE
DISPLAY: \qquad
(step 3) Select, using "1" or "2".
KEY: (1)
DISPLAY: TONE SELECTED
KEY: (2)
DISPLAY: PULSE SELECTED
(step 4) End, using the "STOP" key.
KEY: STOP

4. Volume adjustment

You can adjust the volume of the speaker, handset, and ringer using the UP and DOWN keys.

(1) Speaker

1. Press the SPEAKER key.
2. Press the UP or DOWN until the display shows the desired volume level.

- Press SPEAKER key again to turn off the speaker

(2) Handset

1. When talking through the handset, press UP or DOWN until the display shows the desired volume level.
Display:

- Note: The volume reverts to MIDDLE each time you replace the handset.

(3) Ringer

1. Press the UP or DOWN key. (Make sure SPEAKER key has not been pressed, the handset is not lifted, and a document is not loaded in the feeder.)

- The ringer will ring once at the selected level, then the date and time will reappear in the display.

2. If you selected RINGER OFF: OK?, press START/MEMORY key.

UX-P100U
UX-P200U

[2] Diagnostics and Service Soft Switch

1. Operating procedure

(1) Entering the Diagnostic mode

Press FUNC $\rightarrow 9 \rightarrow \forall \rightarrow 8 \rightarrow \# \rightarrow 7$, and the following display will appear.
ROM Ver. TA01 * (TA02 *) After 2 sec : DIAG MODE
TA01 \mathcal{X} (UX-P100U)
TA02 ※ (UX-P200U)
Then press the START key. Select the desired item with the \forall key or the \#key or select with the Rapid key. Enter the mode with the START key. (Diag•specifications)

If the diag mode cannot be set, repeat the diag mode operation, performing the following operation.
After the power is turned ON and "WAIT A MOMENT" is indicated, press the STOP key.

In relation with the process response (request from Production Engineering) "WAITA MOMENT" clock indication may appear depending on STOP key timing. If the STOP key is held down, "MEMORY CLEAR?" appears.
2. Diagnostic items

ITEM No.	Contents	
1	SOFT SWITCH MODE	Soft switches are displayed and changed. List can be output.
2	ROM \& RAM CHECK	ROM is sum-checked, and RAM is matched. Result list is output.
3	AGING MODE	10 sheets of check patterns are output every 5 minutes per sheet.
4	PANEL KEY TEST	Panel keys are tested. Result list is output.
5	CHECK PATTERN	Check pattern is output.
6	SIGNAL SEND MODE	Various signals of FAX communication are output.
7	MEMORY CLEAR	Back-up memory is cleared, and is set at delivery.
8	SHADING MODE	Shading compensation is performed in this mode.
10	ALL BLACK PRINT	To check the print head, whole dots are printed over the interval of 2 m.
11	ENTRY DATA SEND	Insertion and discharge of document are tested.
12	ENTRY DATA RECEIVE	Registered content is sent.

3. Diagnostic items description

3. 1. Soft Switch mode

Used to change the soft switch settings.
The soft switch which is stored internally is set by using the keys.
The available soft switches are SW-A1 to SW-N3.
The content of soft switches is shown in page 2-5 to 2-18.
The contents are set to factory default settings.

3. 2. ROM \& RAM check

ROM executes the sum check, and RAM executes the matching test. The result will be notified with the number of short sounds of the buzzer as well as by printing the ROM \& RAM check list.
Number of short sounds of buzzer $0 \rightarrow$ No error

$$
\begin{aligned}
1 & \rightarrow \text { ROM error } \\
2 & \rightarrow \text { RAM error (4 Kbyte SRAM or } \\
& 512 \text { Kbyte DRAM) }
\end{aligned}
$$

3. 3. Aging mode

If any document is present, copying will be executed sheet by sheet. If no document is present, the check pattern will be printed sheet by sheet. This operation will be executed at a rate of one sheet per 5 minutes, and will be ended at a total of 10 sheets.

3. 4. Panel Key test

This mode is used to check whether each key operates properly. Press the key on the Operation Panel, and the key will be displayed on the display. Therefore, press all keys. At this time, finally press the STOP key.
When the STOP key is pressed, the keys which are not judged as "pressed" will be printed on the result list.

- LED part of the Contact Image Sensor (CIS) is kept on during the term from when "START" of the panel test mode to end with the STOP key.

3. 5. Check Pattern

This mode is used to check the state of the printing head. It is ended with the following pattern printed on one printing sheet.

3. 6. Signal Send mode

This mode is used to send various signals to the circuit during FAX communication. Every push of START key sends a signal in the following sequence. Moreover, the signal sound is also output to the speaker when the line monitor of the soft switch is on.
[1] No signals
[2] 9600BPS (V.29)
[3] 7200BPS (V.29)
[4] 4800BPS (V27ter)
[5] 2400BPS (V27ter)
[6] 300BPS (FLAG)
[7] 2100Hz (CED)
[8] 1100 Hz (CNG)

3. 7. Memory Clear

This mode is used to clear the backup memory and reset to the default settings.

3. 8. Shading mode

The mode is used for the shading compensation. For reading, set up the special original paper.
The compensation memorizes the reference data of white and black for reading.
Moreover, the memorized data is not erased even if memory clear mode is executed.

3. 9. All Black Print

This mode is used to check the state of the printing head and to intentionally overheat it. Whole dots are printed over the interval of 2 m . If it is overheated or the printing sheet is jammed, press STOP key for the end.

3. 10. Auto Feeder mode

In this mode, a document is inserted and discharged to check the auto feed function.

After this mode is started, set a document, and the document feed will be automatically tested.

3. 11. Entry Data Send

This mode is used to send the registered data to another machine and make the other machine copy the registered content.
Before sending in this mode, it is necessary to set the other machine at the entry data receive mode.

The following, information will be sent to the remote machine:

1. Telephone list data
2. Sender register data
3. Optional setting content
4. Soft switch content
5. Junk fax number list
6. Recording setting list data

3. 12. Entry data receive

In this mode, the registered data sent from the other machine is receiv ed and the received data is registered in the machine. When this mode is used for receiving, the other machine must be in the entry data send mode.

After receiving is completed, the following lists are printed.

1. Telephone list data
2. Sender register data (*)
3. Optional setting list (*)
4. Soft switch content
5. Junk fax number list (*)
6. Recording setting list data (*)
(*): Refer to SETUP LIST

4. How to make soft switch setting

To enter the soft switch mode, press the following key entries in sequence.

5. Soft switch description

- Soft switch

UX-P200U

UX-P100U
UX-P200U

UX-P100U
UX-P200U

UX-P100U
UX-P200U

$\begin{array}{\|l\|} \hline \text { SW } \\ \text { NO. } \end{array}$	$\begin{array}{\|l} \hline \text { DATA } \\ \text { NO. } \end{array}$	ITEM	Switch setting and function		Initial setting	Remarks
			1	0		
$\begin{array}{\|c} \hline \text { SW } \\ \text { I } \\ \text { H1 } \end{array}$	1	Reserved			0	
	2	Reserved			0	
	3	Reserved			0	
	4	Reserved			0	
	5	Reserved			0	
	6	Reserved			0	
	7	Reserved			0	
	8	Reserved			0	
$\begin{array}{\|c} \hline \text { SW } \\ 1 \\ \text { H2 } \end{array}$	1	Reserved			0	
	2	Reserved			0	
	3	Reserved			0	
	4	Reserved			0	
	5	Reserved			0	
	6	Reserved			0	
	7	Reserved			0	
	8	Reserved			0	
$\begin{array}{\|c\|c} \hline \text { SW } \\ 1 \\ \text { I1 } \end{array}$	1	Reserved			0	
	2	Reserved			0	
	3	Reserved			0	
	4	Reserved			0	
	5	Reserved			0	
	6	Reserved			0	
	7	Reserved			0	
	8	Reserved			0	
$\begin{gathered} \text { SW } \\ 1 \\ 12 \end{gathered}$	1	Reserved			0	
	2	Reserved			0	
	3	Reserved			0	
	4	Reserved			0	
	5	Reserved			0	
	6	Reserved			0	
	7	Reserved			0	
	8	Reserved			0	
$\begin{array}{\|c\|} \hline \text { SW } \\ 1 \\ 13 \end{array}$	1	Reserved			0	
	2	Reserved			0	
	3	Reserved			0	
	4	Reserved			0	
	5	Reserved			0	
	6	Reserved			0	
	7	Reserved			0	
	8	Reserved			0	
$\begin{gathered} \text { SW } \\ 1 \\ 14 \end{gathered}$	1	Reserved			0	
	2	Reserved			0	
	3	Reserved			0	
	4	Reserved			0	
	5	Reserved			0	
	6	Reserved			0	
	7	Reserved			0	
	8	Reserved			0	

UX-P100U
UX-P200U

UX-P100U
UX-P200U

$\begin{aligned} & \text { SW } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { DATA } \\ & \text { NO. } \end{aligned}$	ITEM	Switch setting and function		Initial setting	Remarks
			1	0		
$\begin{gathered} \text { SW } \\ \text { I } \\ \text { N2 } \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	LCR long time (UX-P100U only)	Binary input $\text { No. }=\begin{array}{rrrrr} 32 & 16 & 8 & 4 & 2 \\ 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}$	$\begin{aligned} & 1 \\ & 6 \\ & 0 \text { (UX-P100U) } \\ & 0 \text { (UX-P200U) } \end{aligned}$	$\begin{gathered} \hline 0 \\ 0 \\ 0 \\ 100 \mathrm{U}: 1 \\ 200 \mathrm{U}: 0 \\ 0 \\ 0 \end{gathered}$	OPTION (UX-P100U ONLY)
	7	Reserved			0	
	8	Reserved			0	
$\begin{gathered} \text { sW } \\ 1 \\ \text { N3 } \end{gathered}$	1	LCR Time Select (UX-P100U only)	Long	Short	0	$\begin{gathered} \hline \text { OPTION } \\ \text { (UX-P100U } \\ \text { ONLY) } \end{gathered}$
	2	Temporary release of caller ID withhold (UX-P100U only)	Yes	No	$\begin{aligned} & \hline \text { 100U:1 } \\ & \text { 200U:0 } \end{aligned}$	
	3	Connect Japanese center (UX-P100U only)	Connect Japanese center	Connect USA center	0	
	4	OpenLCR debug mode (UX-P100U only)	OpenLCR debug mode ON	OpenLCR debug mode OFF	0	
	5	Reserved			0	
	6	Reserved			0	
	7	Reserved			0	
	8	Reserved			0	

- Soft switch function description

SW-A1 No. 1 Protect from Echo

Used to protect from echo in reception.

SW-A1 No. 2 Forced 4800BPS reception

When line conditions warrant that receptions take place at 4800 BPS repeatedly.

It may improve the success of receptions by setting at 4800BPS.
This improves the receiving document quality and reduces handshake time due to fallback during training.

SW-A1 No. 3 Footer print

When set to "1", the date of reception, the sender machine No., and the page No. are automatically recorded at the end of reception.
SW-A1 No. 4 Length limitation of copy/send/receive
Used to set the maximum page length.
To avoid possible paper jam, the page length is normally limited to 0.6 meter for copy or transmit, and 1 meters for receive.
It is possible to set it to "No limit" to transmit a long document, such as a computer print form, etc. (In this case, the receiver must also be set to no limit.)

SW-A1 No. 5 CSI transmission

(CSI TRANSMISSION) is a switch to set whether the machine sends or does not send the signal (CSI signal) informing its own telephone No. to the remote fax machine when information is received. When "nonsending" is set, the telephone No. is not output on the remote transmitting machine if the remote transmitting machine has the function to display or print the telephone No. of receiving machine, using this CSI signal.

SW-A1 No. 6 DIS receive acknowledgment during G3 transmission

Used to make a choice of whether reception of DIS (NSF) is acknowledged after receiving two DISs (NSFs) or receiving one DIS (two NSFs). It may be useful for overseas communication to avoid an echo suppression problem, if set to 1.
SW-A1 No. 7 Non-modulated carrier for V29 transmission modem
Though transmission of a non-modulated carrier is not required for transmission by the V29 modem according to the CCITT recommendation, it may be permitted to a send non-modulated carrier before the image signal to avoid an echo suppression problem. It may be useful for overseas communication to avoid an echo suppression problem, if set to 1.

SW-A1 No. 8 EOL (End Of Line) detect timer

Used to make a choice of whether to use the 25 -second or 13 -second timer for detection of EOL.
This is effective to override communication failures with some facsimile models that have longer EOL detection.

SW-A2 No. 1 ~ No. 4 Modem speed

Used to set the initial modem speed. The default is 9600BPS.
It may be necessary to program it to a slower speed when frequent line fallback is encountered, in order to save the time required for fallback procedure.

SW-A2 No. 5 Sender's information transmit

(SENDER'S INFORMATION TRANSMISSION) is a switch to set the function to print the content of HEADER PRINT described in the passcode list at the front end of receiver's original when original is sent to the remote machine.
If this switch is set to "NO", the HEADER PRINT is not output at the receiving machine.

SW-A2 No. 6 H2 mode

Used to determine reception of H 2 mode (15 sec transmission mode). When set to OFF, H2 mode reception is inhibited even though the transmitting machine has H 2 mode function.

SW-A2 No. 7 Communication error treatment in RTN sending mode (Reception)

Used to determine communication error treatment when RTN is sent by occurrence of a received image error in G3 reception. When it is set to "1", communication error is judged as no error.

SW-A2 No. 8 CNG transmission

When set to "0", this model allows CNG transmission by pressing the Start key in the key pad dialing mode. When set to "1", CNG transmission in the key pad dialing mode cannot be performed. In either case. CNG transmission can be performed in the auto dial mode.

SW-A3 No. 1, No. 2 CED tone signal interval

For international communication, the 2100 Hz CED tone may act as an echo suppression switch, causing a communication problem.

Though SW-A3 No. 1 and No. 2 are normally set to 0 , this selfing is used to change the time between the CED tone signal to eliminate the communication caused by echo.

SW-A3 No. 3 MR Coding
MR Coding is enable.
SW-A3 No. 4 ~ No. 8 Reserved
Set to "0".
SW-A4 No. 1 ~ No. 5 Signal transmission level
Used to control the signal transmission level in the range of-0dB to31 dB .

SW-A4 No. 6 Protocol monitor (Error print)

If set to " 1 ", protocol is printed at communication error.

SW-A4 No. 7 Protocol monitor

Normally set to "0". If set to "1", communication can be checked, in case of trouble, without using a G3 tester or other tools.
When communication FSK data transmission or reception is made, the data is taken into the buffer. When communication is finished, the data is analysed and printed out. When data is received with the line monitor (SW-A4 No. 8) set to " 1 " the reception level is also printed out.

SW-A4 No. 8 Line monitor

Normally set to " 0 ". If set to " 1 ", the transmission speed and the reception level are displayed on the LCD. Used for line tests.

SW-A5 No. 1, No. 2 Digital line equalization setting (Reception)

Line equalization when reception is to be set according to the line characteristics.
Setting should be made according to distance between the telephone and the telephone company central switching station.
SW-A5 No. 3, No. 4 Digital line equalization setting (Transmission) Line equalization when transmitter is to be set according to the line characteristics.
Setting should be made according to distance between the telephone and the telephone company central switching station.

SW-A5 No. 5, No. 6 Digital cable equalizer setting

(Reception for Caller ID)

Line equalization when reception for CALLER ID is to be set according to the line characteristics.
Setting should be made according to distance between the telephone and the telephone company central switching station.

SW-A5 No. 7 Error criterion

Used to select error criterion for sending back RTN when receiving image data.

SW-A5 No. 8 Anti junk fax check

When using the Anti junk fax function, set to "1".
SW-A6 No. 1 Reserved
Set to "0".

SW-A6 No. 2 End buzzer

Setting this bit to 0 will disable the end buzzer (including the error buzzer/ on-hook buzzer).
SW-A6 No. 3 Disconnect the line when DIS is received in RX mode Bit1 = 0: When DIS signal is received during RX mode, the line is disconnected immediately.

Bit1 = 1: When DIS signal is received during RX mode, the line is disconnected on the next tone.

SW-A6 No. 4 Equalizer freeze control (MODEM)
This switch is used to perform reception operation by fixing the equalizer control of modem for the line which is always in an unfavorable state and picture cannot be received.

* Usually, the control is executed according to the state of line where the equalizer setting is changed always.

SW-A6 No. 5 Equalizer freeze control 7200BPS only

Setting which specifies SW-A3 No. 6 control only in the condition of 7200BPS modem speed.

SW-A6 No. 6 CNG transmission in manual TX mode
When set to "1", fax transmit the CNG signal in case of manual transmission mode (User press the START key after waiting for the fax answering signal from handset or speaker).
SW-A6 No. 7 Initial compression scheme for sharp fax in TX mode
When set to " 0 ", if the other fax is Sharp model, fax transmit the document by H2 mode. When set to "1", even if the other fax is Sharp model, fax transmit the document by MR mode.

SW-A6 No. 8 Modem speed automatic fallback when RX level is under -40dBm

When set to "1", if fax signal level is under -40 dBm during reception, machine selects the slower modem speed automatically.
It is effective when noises occur on the received document due to the long distance communications.

SW-B1 No. 1 ~ No. 4 Recall interval

Choice is made for a redial interval for speed and rapid dial calls. Use a binary number to program this. If set to 0 accidentally, 1 will be assumed.

SW-B1 No. 5 ~ No. 8 Recall times

Choice is made as to how many redials there should be.
SW-B2 No. 1 Dialing pause (sec/pause)
Pauses can be inserted between telephone numbers of direct dial connection. Selection of 4 sec or 2 sec pause is available.
SW-B2 No. 2 Dial tone detection (before auto dial)
Used to set YES/NO of dial tone detection in auto dialing.
SW-B2 No. 3 Reserved
Set to "0".
SW-B2 No. 4 Busy tone detection (after auto dial)
Used to set busy tone detection in auto dialing.
SW-B2 No. 5, No. 6 Waiting time after dialing
This is time waiting for the opponent's signals after dialing.
SW-B2 No. 7, No. 8 Reserved
Set to "0".

SW-B3 No. 6, No. 7 Auto dial mode Delay timer of before line connect
Delay time between the dial key input and line connection under the auto dial mode.

SW-B3 No. 8 Reserved

Set to "0".
SW-B4 No. 1, No. 2 Auto dial mode Delay timer of after line connect Delay time between the line connection and dial data output under the auto dial mode.

SW-B4 No. 3 Dial mode
When using the pulse dial, set to 1 . When using the tone dial, set to 0 .

SW-B4 No. 4 Pulse \rightarrow Tone change function by \ngtr key

When setting to 1 , the mode is changed by pressing the \nless key from the pulse dial mode to the tone dial mode.

SW-B4 No. 5 Dial pulse make/break ratio (\%)
When using the 33% make ratio pulse dial, set to " 0 ". When using the 40% make ratio pulse dial, set to " 1 ".

SW-B4 No. 6, No. 7 Reserved

Set to "0".
SW-B4 No. 8 Recalling fixed only one time when dialing was unsuccessful without detecting busy tone signal
When dialing results in failure since the busy tone cannot be detected, recalling is fixed to one time.
Supplementary explanation
If time-out termination is made when dialing, only single recall is possible even if the setting time of recalls (SW-B1 No. $5-\mathrm{No} .8$) has been set to some times. This soft switch is added in order to meet FCC.
SW-B5 No. 1 ~ No. 5 DTMF signal transmission level (Low)
The transmission level of DTMF signal is adjusted. (lower frequency)
00000: 0dBm
\downarrow
11111: $-15.5 \mathrm{dBm}(-0.5 \mathrm{dBm} \times 31)$
SW-B5 No. 6 ~ No. 8 Reserved
Set to "0".
SW-B6 No. 1 ~ No. 5 DTMF signal transmission level (High)
The transmission level of DTMF signal is adjusted. (higher frequency) 00000: 0dBm
\downarrow
11111: $-15.5 \mathrm{dBm}(-0.5 \mathrm{dBm} \times 31)$

SW-B6 No. 6 Dial tone detection (LCR center call) (UX-P100U ONLY)

 Used to set YES/NO of dial tone detection (calling LCR center).SW-B6 No. 7, No. 8 Reserved
Set to "0".
SW-C1 No. 1, No. 2 Reading slice (Binary)
Used to determine the set value of reading density in standard/fine mode. The standard setting is "00" (Factory setting is "00")

SW-C1 No. 3, No. 4 Reading slice (Half tone)

Used to determine the set value of reading density in half tone mode. The standard setting is "00" (Factory setting is "00")

SW-C1 No. 5 Line density selection

Used to set the transmission mode which is automatically selected when the Resolution key is not pressed. In the copy mode, however, the fine mode is automatically selected unless the Resolution key is manually set to another mode.

SW-C1 No. 6 Reserved

Set to "0".
SW-C1 No. 7 MTF correction in half tone mode
This allows selection of MTF correction (dimness correction) in the half tone mode.
When "NO" (=1) is selected, the whole image becomes soft and mild. Clearness of characters will be reduced. Normally set to "YES" (=0).
SW-C1 No. 8 Reserved
Set to "0".
SW-D1 No. 1 ~ No. 4 Number of rings for auto receive
When the machine is set in the auto receive mode, the number of rings before answering can be selected. It may be set from one to four rings using a binary number. Since the facsimile telephone could be used as an ordinary telephone if the handset is taken off the hook, it should be programmed to the user's choice. If the soft switch was set to 1 , direct connection is made to the facsimile. If a facsimile calling beep was heard when the handset is taken off the hook, press the START key and put the handset on the hook to have the facsimile start receiving. If it was set to 0 accidentally, receive ring is set to 1 .
NOTE: If the machine is set to answer after a large number of rings, it may not be able to receive faxes successfully. If you have difficulty receiving faxes, reduce the number of rings to a maximum of 6 .

SW-D1 No. 5 Automatic switching manual to auto receive mode

This soft switch is used to select whether the machine should switch to the auto receive mode after 5 rings in the manual receive mode or remain in the same way as SW-D1 No. 1, No. 2, No. 3 and No. 4 "0"1"0"1"(5 rings).

SW-D1 No. 6 Reserved

Set to "0".

SW-D1 No. 7, No. 8 Cl detect frequency

Detection frequency of ring signal for auto reception is set.
When set to No. 6=0, No. 7=0, frequency is set to PTT recommendation.
When set to No. $6=0$, No. $7=1$, frequency is set to 11.5 Hz or more. When set to No. $6=1$, No. $7=0$, frequency is set to 13.0 Hz or more. When set to No. $6=1$, No. $7=1$, frequency is set to 20.0 Hz or more.
SW-D2 No. 1 ~ No. 3 Distinctive ringing setting (PATTERN 4 and 5 are for CANADA only)
This function allows reception of services offered by USA and Canada telephone companies in which the customer contracts with the telephone company to have up to 4 telephone numbers (USA) or 6 telephone numbers (Canada) established for one line.
Each telephone number is signalled by a different ringing pattern, and the customer can allocate each number to a specific use.
<Example of use>

	Phone Number	Intended Purpose	Ring Pattern
Ring Pattern	$555-1234$	Voice Calls	Standard
	$555-1235$	Facsimile Calls	Pattern 1
	$555-1236$	Answering Machine	Pattern 2
	$555-1237$	PC Modem	Pattern 3

<Distinctive Ringing Timing Specifications>

1) USA

- Ring Pattern

STANDARD has 5 ring patterns, and DISTINCTIVE has 9 patterns.
Ring patterns (1)~(4) for USA, and (5)~(9) for Canada.
However, to make the setting procedure as easy as possible for the user to understand these patterns are grouped as follows:

- OOptional Setting>

1) RING PATTERN
 RING PATTERN (1)
for USA
for USA for Canada for USA for Canada for USA for Canada for Canada for Canada
2) RING PATTERN 5
3) STANDARD RING
4) OFF SETTING

SW-D2 No. 4 Reserved
Set to "0".
SW-D2 No. 5 Caller ID function
Used for Caller ID function.
SW-D2 No. 6 Caller ID detect during Cl off
Detection of caller ID signal is performed as follows:
0 :First CI OFF only
1:All of CI OFF
SW-D2 No. 7,No. 8 Reserved
Set to "0".
SW-D3 No. 1 ~ No. 5 Cl off detection timer (0-1550ms setting by 50ms step)
Set the minimum time period of Cl signal interruption which affords to be judged as a CI OFF section with 50 ms steps.
(Example)

01110 (50ms ~ 14):
700 ms (Cl interruption>700ms:Judged as a CI OFF section) The section 1 is not judged as a Cl OFF section, the Cl signal A is counted as one signal.
The section 2 is judged as a Cl OFF section, the Cl signal B is considered as the second signal.
00111 (50ms ~ 7):
350ms (Cl interruption>350ms:Judged as a CI OFF section) The section 1 is judged as a CI OFF section, and the Cl signal A is counted as two signals.
The section 2 is judged as a CI OFF section, and the Cl signal B is considered as the third signal.

SW-D3 No. 6 ~ No. 8 Reserved
Set to "0".
SW-E1 No. 1 ~ No. 8 Reserved
Set to "0".
SW-E2 No. 1 ~ No. 8 Reserved
Set to "0".
SW-E3 No. 1 ~ No. 8 Reserved
Set to "0".
SW-F1 No. 1, No. 2 DTMF detect time
Used to set detect time of DTMF (Dual Tone Multi Frequency) used in remote reception $(5 * *)$.

The longer the detect time is, the less the error detection is caused by noises.

SW-F1 No. 3 Protection of remote reception ($5 * *$) detect
Used to set the function of remote reception $(5 * *)$. When set to " 1 ", the remote reception function is disabled.

SW-F1 No. 4 Remote reception with GE telephone
(Corresponding to TEL mode by GE) P. B. X.
"1": Compatible with TEL mode by GE
" 0 ": Not compatible

- When sending $(5 * *)$ for remote reception with a GE manufactured telephone remote reception may not take place because of special specifications in their DTMF.
To overcome this, a soft SW is provided to change the modem setting to allow for remote reception.
- If this soft SW is set to "1", other telephone sets may be adversely affected.

SW-F1 No. 5 ~ No. 8 Remote operation code figure by external TEL (0 ~ 9)
Remote operation codes can be changed from 0 through 9 . If set to greater than 9 , it defaults to 9 . The " $5 * *$ " is not changed.
Ex-7** (Default: $5 * *$)

SW-F2 No. 1 CNG detection in STAND-BY mode

When setting to "1", the CNG signal detection function during stand-by stops.

SW-F2 No. 2, No. 3 Reserved
Set to "0".
SW-F2 No. 4, No. 5 Number of CNG detect (STAND-BY mode) Used for detection of CNG in 1 to 4 pulses.

SW-F2 No. 6 ~ No. 8 Reserved
Set to "0".
SW-G1 No. 1 ~ No. 8 Reserved
Set to "0".
SW-G2 No. 1 ~ No. 8 Reserved
Set to "0".
SW-G3 No. 1 ~ No. 8 Reserved
Set to "0".
SW-H1 No. 1 ~ No. 8 Reserved Set to "0".

SW-H2 No. 1 ~ No. 8 Reserved Set to "0".

SW-I1 No. 1 ~ No. 8 Reserved Set to "0".

SW-I2 No. 1 ~ No. 8 Reserved Set to "0".

SW-I3 No. 1 ~ No. 8 Reserved Set to "0".

SW-I4 No. 1 ~ No. 8 Reserved Set to "0".

SW-I5 No. 1 ~ No. 8 Reserved Set to "0".

SW-I6 No. 1 ~ No. 8 Reserved
Set to "0".
SW-I7 No. 1 ~ No. 8 Reserved Set to "0".

SW-J1 No. 1, No. 2 Reserved
Set to "0".

SW-J1 No. 3 Sender's phone number setting

Used to make a choice of whether the registered sender's phone number can be changed or not. If the switch is set to "1", new registration of the sender's phone number is disabled to prevent accidental wrong input.

SW-J1 No. 4, No. 5 Reserved

Set to "0".
SW-J1 No. 6 Summer time setting
This is used to set YES/NO of automatic clock adjustment for European Summer time.

SW-J1 No. 7, No. 8 Ringer volume
Used to adjust ringing volume.

SW-J2 No. 1, No. 2 Speaker volume (3 stages)
Used to adjust sound volume from a speaker.
SW-J2 No. 3 Reserved
Set to "0".
SW-J2 No. 4, No. 5 Handset receiver volume
Used to adjust sound volume from a handset receiver volume.
SW-J2 No. 6 ~ No. 8 Reserved
Set to "0".
SW-J3 No. 1 Reserved
Set to "0".
SW-J3 No. 2 ~ No. 4 Communication result printout (Transaction report)

Every communication, the result can be output. As usual, it is set to print the timer sending communication error alone. If No. 2: 0 No. 3: 1 No. 4: 0 are set, printing is always on (printed even if it is normally ended).

000: Error, timer and memory sending/receiving
001: Sending
010: Continuous printing
011: Not printed
100: Communication error
SW-J3 No. 5 ~ No. 8 Reserved
Set to "0".
SW-K1 No. 1 ~ No. 8 Reserved
Set to "0".
SW-L1 No. 1 ~ No. 4 Reserved
Set to "0".
SW-L1 No. 5 Cut off mode (COPY mode)
Whether the excessive part is printed on the next recording paper or discarded is selected to copy a document which is longer than the recording paper.

SW-L1 No. 6 A4 Paper enable
The use of recording paper of A4 is enabled.
SW-L1 No. 7 LEGAL and LETTER paper enable
The use of recording paper of LEGAL and LETTER is enabled.
SW-L1 No. 8 Reserved
Set to "0".
SW-L2 No. 1, No. 2 Paper set size
At present size of the recording paper.
SW-L2 No. 3 Automatic reduce of receive
If set to 1 , it is reduced automatically when receiving.
SW-L2 No. 4 ~ No. 6 Print contrast
Used for adjustment of print contrast.
SW-L2 No. 7 Reception reduction ratio in case of memory full
This model is designed so that the print is started according to the setting of SW-L2 No. 3 when reception of one page is completed. However, if the memory is filled with data before completion of reception of one page, the print is started with the reduction ratio which is set with this switch.

SW-L2 No. 8 Reserved
Set to "0".
SW-M1 No. 1 ~ No. 8 Reserved
Set to "0".
SW-M2 No. 1 ~ No. 8 Reserved
Set to "0".

SW-N1 No. 1 ~ No. 6 LCR short time (UX-P100U ONLY)
First time setting transmitting to the openLCR center.
SW-N1 No. 7, No. 8 Reserved
Set to "0".
SW-N2 No. 1 ~ No. 6 LCR long time (UX-P100U ONLY)
Second time setting transmitting to the openLCR center.
SW-N2 No. 7, No. 8 Reserved
Set to " 0 ".
SW-N3 No. 1 LCR Time Select (UX-P100U ONLY)
Used to select LCR short time or LCR long time.
$0: L C R$ short time is selected.
$1:$ LCR long time is selected.
SW-N3 No. 2 Temporary release of caller ID withhold (UX-P100U ONLY)
Used to do temporary release of caller ID withhold.
0:Normal dialing.
1:Release of caller ID withhold before dialing.
SW-N3 No. 3 Connect Japanese center (UX-P100U ONLY)
Used to connect Japanese openLCR center.
0 :Connect USA openLCR center.
1:Connect Japanese openLCR center.
SW-N3 No. 4 OpenLCR debug mode (UX-P100U ONLY)
Used to debug openLCR function.
$0:$ Normal mode.
1:debug mode.
SW-N3 No. 5 ~ No. 8 Reserved
Set to "0".

[3] Troubleshooting

Refer to the following actions to troubleshoot any of the problems mentioned in 1-4.
[1] A communication error occurs.
[2] Image distortion produced.
[3] Unable to do overseas communication.
[4] Communication speed slow due to FALLBACK.

- Increase the transmission level SOFT SWITCH A4-1, 2, 3, 4, 5. May be used in case [1] [2] [3].
- Decrease the transmission level SOFT SWITCH A4-1, 2, 3, 4, 5. May be used in case [3]
- Apply line equalization SOFT SWITCH A5-1, 2. May be used in case [1] [2] [3] [4].
- Slow down the transmission speed SOFT SWITCH A2-1, 2, 3, 4. May be used in case [2] [3].
- Replace the TEL/LIU PWB. May be used in all cases.
- Replace the control PWB. May be used in all cases.
* If transmission problems still exist on the machine, use the following format and check the related matters.

TO:	ATT:	Ref.No.
CC:	ATT:	Date
FM:		Dept
		Sign _

[^0]
[4] Error code table

1. Communication error code table

G3 Transmission

Code	Final received signal	Error Condition (Receiver side)
0	Incomplete signal frame	Cannot recognize bit stream after flag
1	NSF, DIS	Cannot recognize DCS signal by echo etc. Cannot recognize NSS signal (FIF code etc)
2	CFR	Disconnects line during reception (carrier missing etc)
3	FTT	Disconnects line by fall back
4	MCF	Disconnects line during reception of multi page Cannot recognize NSS, DCS signal in the case of mode change
5	PIP or PIN	The line is hung up without replying to telephone request from the receiving party.
6	RTN or RTP	Cannot recognize NSS, DCS signal after transmit RTN or RTP signal.
7	No signal or DCN	No response in receiver side or DCN signal received* (transmitter side)
8	-	Owing to error in some page the error could not be corrected although the specified number of error retransmissions were attempted.
11	-	Error occurred after or while reception by the remote (receiving) machine was revealed to be impossible.
12	-	Error occurred just after fallback.
13	-	Error occurred after a response to retransmission end command was received.

G3 Reception

Code	Final received signal	Error Condition (Receiver side)
0	Incomplete signal frame	Cannot recognize bit stream after flag
1	NSS, DCS	Cannot recognize CFR or FTT signal Disconnects line during transmission (line error)
2	NSC, DTC	Cannot recognize NSS signal (FIF code etc)
3	EOP	Cannot recognize MCF, PIP, PIN, RTN, RTP signal
4	EOM	Cannot recognize MCF, PIP, PIN, RTN, RTP signal in the case of mode change
5	MPS	The line is hung up without replying to communication request.
6	PR1-Q	Cannot recognize PIP, PIN signal in the case of TALK request
7	No signal or DCN	No response in transmitter (cannot recognize DIS signal) or DCN signal received* (receiver side)
8	-	Error occurred upon completion of reception of all pages.
9	-	Error occurred when mode was changed or Transmission/Reception switching was performed.
10	-	Error occurred during partial page or physical page reception.
11	-	Error occurred after or during inquiry from the remote (transmitting) machine as to whether reception is possible or not.
12	-	Error occurred during or just after fallback.
13	-	Error occurred after the retransmission end command was received.

CHAPTER 3. MECHANISM BLOCKS

[1] General description

1. Document feed block and diagram

Fig. 1

2. Document feed operation

1) The original, which is set in the document hopper, feeds automatically when the front sensor is activated. This in turn activates the pulse motor which drives the document supply roller. The document stops when the lead edge is detected by the document sensor.
2) The lead edge of the original is fed a specified number of pulses after the lead edge of the document is detected for the reading process to begin.
3) The trailing edge of the original is fed a specific number of pulses after the trailing edge of the document deactivates the document sensor. The read process then stops and the original is discharged.
4) When the front sensor is in the OFF state (any document is not set up in the hopper guide), the drive will be stopped when the document is discharged.

3. Hopper mechanism

3-1. General view

Fig. 2
The hopper section contains document guides that are used to adjust the hopper to the width of the original document. This ensures that the original feeds straight into the fax machine for scanning.
Document width: 148 mm to 216 mm (A5 longitudinal size to Letter longitudinal size)
NOTE: Adjust the document guide after setting up the document.

3-2. Automatic document feed

1) Use of the paper feed roller and separate plate ensures error-free transport and separation of documents. The plate spring presses the document to the paper feed roller to assure smooth feeding of the document.
2) Document separation method: Separate plate

Fig. 3
3-3. Documents applicable for automatic feed

	10 sheets	1sheet(Manual)
Paper weight	$\begin{aligned} & \hline 70 \mathrm{~kg} \\ & 21.5 \mathrm{lbs} . \\ & \left(80 \mathrm{~g} / \mathrm{m}^{2}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & 70 \mathrm{~kg} \sim 135 \mathrm{~kg} \\ & 14 \mathrm{lbs} \sim 42 \mathrm{lbs} . \\ & \left(52 \mathrm{~g} / \mathrm{m}^{2} \sim 157 \mathrm{~g} / \mathrm{m}^{2}\right) \end{aligned}$
Paper thickness (ref.)	0.1 mm	$0.1 \mathrm{~mm} \sim 0.18 \mathrm{~mm}$
Paper size	LGL ($216 \mathrm{~mm} \times 355.6 \mathrm{~mm}$) A4 ($210 \mathrm{~mm} \times 297 \mathrm{~mm}$) LTR (216 mm x 279 mm)	
Feeder capacity	A4/LTR: 10 sheets LGL : 1 sheet	

NOTE: Double-side coated documents and documents on facsimile recording paper should be inserted manually. The document feed quantity may be changed according to the document thickness.

Documents corresponding to a paper weight heavier than $70 \mathrm{~kg}(81.4 \mathrm{~g} /$ m^{2}) and lighter than $135 \mathrm{~kg}\left(157 \mathrm{~g} / \mathrm{m}^{2}\right)$ are acceptable for manual feed.

Documents heavier than 135 kg in terms of the paper weight must be duplicated on a copier to make it operative in the facsimile.

3-4. Loading the documents

1) Make sure that the documents are of suitable size and thickness, and free from creases, folds, curls, wet glue, wet ink, clips, staples and pins.
2) Place documents face down in the hopper.
i) Adjust the document guides to the document size.
ii) Align the top edge of documents and gently place them into the hopper. The first page under the stack will be taken up by the feed roller to get ready for transmission.
NOTES: 1) Curled edge of documents, if any, must be straightened out.
3) Do not load the documents of different sizes and/or thicknesses together.

Fig. 4

3-5. Documents requiring use of document carrier

1) Documents smaller than $148 \mathrm{~mm}(\mathrm{~W}) \times 140 \mathrm{~mm}(\mathrm{~L})$.
2) Documents thinner than the thickness of 0.06 mm .
3) Documents containing creases, folds, or curls, especially those whose surface is curled (maximum allowable curl is 5 mm).
4) Documents containing tears.
5) Carbon-backed documents. (Insert a white sheet of paper between the carbon back and the document carrier to avoid transfer of carbon to the carrier.)
6) Documents containing an easily separable writing material (e.g., those written with a lead pencil).
7) Transparent documents.
8) Folded or glued documents.

Document in document carrier should be inserted manually into the feeder.

4. Document release

4-1. General

To correct a jammed document or to clean the document running surface, pull the insertion side of document center of the operation panel. To open the upper document guide, the operation panel must be opened first.

5. Recording block

$5-1$. Driving

In the drive mechanism, the rotating force of the pulse motor for both transmission and reception is transmitted to the paper supply roller, the recording paper feed roller and imaging film drive gear through the pulse motor axle gear, reduction gear and planetary gear.

5-2. Recording

This equipment employs the thermal transcription system which uses the thermal head imaging film.

1) Thermal head

The thermal head is composed of 2,016 heating elements in traverse line, and the resolution power is 8 dots $/ \mathrm{mm}$. The maximum speed is 10 $\mathrm{ms} /$ line.

2) Structure of recording mechanism

Recording is achieved by applying a suitable pressure to the thermal head through the imaging film of the recording paper feed roller and the recording paper.
The main scanning is electronically performed, and the sub-scanning is mechanically performed (by sending the recording paper with the recording paper feed roller).

3) Recording paper transfer sequence

a) The recording paper stored in the paper tray ass'y is fed with the PU roller, and is stopped when the P-IN sensor is turned on by sensing its lead edge.
b) Hereafter, the imaging film and recording paper are transferred with the recording paper feed roller, and thermal transcription is performed on the recording paper.
c) After thermal transcription, the imaging film is taken up by the roller on the take-up side, and the recording paper is discharged by the back roller.
Troubleshooting the density unevenness mainly results from the longitu-dinal misalignment of the thermal head to the heater line. Otherwise, the head is in uneven contact with the recording paper feed roller, or the imaging film is wrinkled.

The following items are described as the simplified checking method.
(1) Are the power and signal cables of the thermal head suitably treated?
(2) Does the same symptom appear even if the thermal head pressure spring is replaced?
(3) Is the feed roller of the recording paper concentric? (Density is uneven at intervals.)
(4) Does the same symptom appear even if the thermal head is replaced?
(5) Is the imaging film stained or wrinkled?

5-3. General view

Fig. 5

[2] Disassembly and assembly procedures

- This chapter mainly describes the disassembly procedures. For the assembly procedures, reverse the disassembly procedures.
- Easy and simple disassembly/assembly procedures of some parts and units are omitted. For disassembly and assembly of such parts and units, refer to the Parts List.
- The numbers in the illustration, the parts list and the flowchart in a same section are common to each other.
- To assure reliability of the product, the disassembly and the assembly procedures should be performed carefully and deliberately.

2	Operation panel unit, top cover unit and sub frame unit	Parts list (Fig. 2)					
		No.	Part name	Q'ty	No.	Part name	Q'ty
NOTE: For disassembly of the inside of the unit, refer to the exploded view in the parts guide.		1	Mechanism unit	1	6	Screw (3×12)	
		2	Stopper plate	1	7	Operation panel unit	1
		3	Operation panel unit/		8	Screw (3×10)	2
			top cover unit/ sub frame unit	1	9	Hook	3
		4	Interface PWB cover	1	10	Top cover unit	1
		5	Connector	1	11	Sub frame unit	1

3	CIS unit and thermal head unit

NOTE: For disassembly of the inside of the unit, refer to the exploded view in the parts guide.
Parts list (Fig. 3)

No.	Part name	Q'ty	No.	Part name	Q'ty	
1	Mechanism unit	1	4	Head cover	1	
2	Screw (3×10)	1	5	Thermal head unit	1	
3	CIS unit	1				

Cosers

Fig. 6

CHAPTER 4. DIAGRAMS

[1] Block diagram

UX-P200U

[2] Wiring diagram

[3] Point-to-point diagram

CHAPTER 5. CIRCUIT DESCRIPTION

[1] Circuit description

1. General description

The compact design of the control PWB is obtained by using CONEXANT fax engine in the main control section and high density printing of surface mounting parts. Each PWB is independent according to its function as shown in Fig. 1.

2. PWB configuration

Fig. 1

1) Control PWB

The control PWB controls peripheral PWBs, mechanical parts, transmission, and performs overall control of the unit.
This machine employs a 1-chip modem (SCE209) which is installed on the control PWB.

2) TEL/LIU PWB

This PWB controls connection of the telephone line to the unit.

3) Power supply PWB

This PWB provides voltages of $\mathrm{Vreg}(+5 \mathrm{~V})$ and +24 V to the other PWBs.

4) Panel PWB

The panel PWB allows input of the operation keys.

5) LCD PWB

This PWB controls the LCD display.

6) Interface PWB

This PWB connect control PWB with panel PWB.

3. Operational description

Operational descriptions are given below:

- Transmission operation

When a document is loaded in stand-by mode, the state of the document sensor is sensed via the 1 chip fax engine (SCE209). With depression of the START key in the off-hook state, transmission takes place. Then, the procedure is sent out from the modem and the motor is rotated to move the document down to the scan line. In the scan processor, the signal scanned by the CIS is sent to the internal image processor and the AD converter to convert the analog signal into binary data. This binary data is transferred from the scan processor to the image buffer within the RAM and encoded and stored in the transmit buffer of the RAM. The data is then converted from parallel to serial form by the modem where the serial data is modulated and sent onto the line.

- Receive operation

There are two ways of starting reception, manual and automatic. Depression of the START key in the off-hook mode in the case of manual receive mode, or CI signal detection by the LIU in the automatic receive mode.
First, the SCE209 controls the procedure signals from the modem to be ready to receive data. When the program goes into phase C, the serial data from the modem is converted to parallel form in the modem interface of the 1 chip fax engine (SCE209) which is stored in the receive buffer of the RAM. The data in the receive buffer is decoded software-wise to reproduce it as binary image data in the image buffer. The data is DMA transferred to the recording processor within the SCE209 which is then converted from parallel to serial form to be sent to the thermal head. The data is printed line by line by the SCE209 which is assigned to control the motor rotation and strobe signal.

- Copy operation

To make a copy on this facsimile, the COPY key is pressed when the machine is in stand-by with a document on the document table and the telephone set is in the on-hook state. First, depression of the COPY key advances the document to the scan line. Similar to the transmitting operation, the image signal from the CIS is converted to a binary signal in the DMA mode via the 1 chip fax engine (SCE209) which is then sent to the image buffer of the RAM. Next, the data is transferred to the recording processor in the DMA mode to send the image data to the thermal head which is printed line by line. The copying takes place as the operation is repeated.

[2] Circuit description of control PWB

1. General description

Fig. 2 shows the functional blocks of the control PWB, which is composed of 3 blocks.

Fig. 2 Control PWB functional block diagram

2. Description of each block

(1) Main control block

The main control block is composed of CONEXANT 1 chip fax engine (SCE209), FLASH (2Mbit), DRAM (4Mbit).
Devices are connected to the bus to control the whole unit.

1) SCE209 (IC3) : pin-176 QFP (FAX CONTROLLER)

1 chip fax engine has Internal Integrated Analog (20438) and Internal memory (SRAM : 32kbit).

2) SST39VF020P (IC1): pin-32 TSOP (FLASH)

FLASH of 2Mbit equipped with software for the main CPU.
3) MSM51V4800E (IC2): pin-28 SOJ (DRAM)

Image memory for recording process.

- Memory for openLCR function. (UX-P100U only)
- Memory for recording pixel data without paper.

(2) IC3 (SCE209) Hardware description

1) Integrated Controller (SCC)

The Controller contains an internal MC24 Processor with a 16-MB address space and dedicated circuitry optimized for facsimile image processing and monitoring and for thermal or thermal transfer printer support.
The CPU provides fast instruction (up to 10 MHz clock speed) execution and memory efficient input/output bit manipulation. The CPU connects to other internal functions over an 8 -bit data bus and 24 -bit address bus and dedicated control lines.
The 24 -bit external address bus, 8 -bit data bus, control, status and decoded chip select signals support connection to external ROM, SRAM, DRAM, and FLASH memory.

2) DRAM Controller

The CX06835 includes a DRAM controller with signal and page mode access support which supports fast, normal, or slow refresh time. DRAM memory space is provided in one block up to 4 MB . A maximum of 4 MB of DRAM is supported. This space has a programmble size and starting address. Refresh is performed automatically and is supported in standby mode. CAS and RAS signal support is provided for one-DRAM banks for both 4 -bit and 8 -bit organizations. Access speeds from 50 ns to 70 ns can be supported.

3) DMA Channels

Six internal DMA channels support memory access for scanner, T.4/T.6, and resolution conversion. DMA Channel 2 can be reprogrammed for external access to thermal printing, thermal transfer, or plain paper inkjet printing.

4) External RAM and ROM

Moveable and programmble size external SRAM memory of up to 1 MB , DRAM memory of up to 4 MB , and ROM of up to 2 MB can be directly connected to the SCE209. By using an external address decoder, the size of SRAM and/or ROM can be extened. The ROM stores all the program object code.

5) Flash Memory Controller

The SCE209 includes a flash memory controller that supports NOR, NAND, and Serial NAND-type flash memory. The supported size of NORtype memory is up to 1 MB and the supported size of NAND-type memory is unlimited.

6) Stepper Motor Control

Eight outputs are provided to external current drivers: four to the scanner motor and four to the printer motor. The stepping patterns are programmable and selectable line times are supported. A timeout circuit controls the power control of the motors. The printer or scanner motor outputs can be programmed as GPOs for applications using single motor or paper printers.

7) T.4/T. 6 Compressor/Decompressor

MH, MR and MMR compression and decompression are provided in hardware. T. 4 line lengths of up to 8192 pixels are supported. MMR and Alternating Compression/Decompression (ACD) on a line by line basis provide support for up to three independent compression and decompression processes.

8) Bi-level Resolution Conversion

One independent programmable bi-level 1D-resolution conversion block is provided to perform expansion or reduction on the T. 4 decompressed data and scan image data. Image expansion can be programmed up to 200% and reduction down to 33%. Vertical line ORing and data output bit order reversal is also provided.

9) Printer IF

The Printer Interface provides a standard connection between the SCE209 and a thermal printhead to support thermal printing or thermal transfer. The thermal printer interface consists of programmable data, latch, clock, and up to four strobe signals. Programmable timing supports traditional thermal printers, as well as the latchless split mode printers, and line lengths of up to 2048 pixels. Line times from 5 ms to 40 ms are supported.
The SCE209 includes a thermal ADC (TADC) function utilizing a D/A converter and a comparator to monitor the printhead temperature. External terminating resistors must be supplied; the values are determined by the specific printhead selected.
As an option, plain paper inkjet printing can be supported.

10) TPH Hardware Timer

The TPH hardware timer provides a 500 ms timer that can be re-triggered or reset.

11) Scanner and Video Control

Five programmable control and timing signals support common CCD and CIS scanners. The video control function provides signals for controlling the scanner and for processing its video output. Three programmable control signals (START, CLK1n, and CLK2) provide timing related to line and pixel timing. These are programmable with regard to start time, relative delay and pulse width.
Two video control output siganls (VIDCTL[1:0]) provide digital control for external signal pre-processing circuitry. These signals provide a per pixel period, or per line period, timing with programmable polarity control for each signal.

12) Video Processing

The CX06835 supports two modes of shading correction for scanner data non-uniformity arising from uneven sensor output or uneven illumination. Corrections are provided on either an 8 -pixel group or are applied separately to each pixel. Dark level correction and gamma correction are also provied.
Two-dimensional Error Diffusion/Dithering is performed on halftone images.
The CX06835 includes an 8×8 dither table, which is programmable and stored internally (8 -bit per table entry). The table is arranged in a matrix of 8 rows by 8 columns. The video processing circuit provides mixedmode detection/processing and multi-level Resolution Conversion for the scanner multi-level data. The conversion ratio of the multi-level ResoIution Conversion is fixed to B4-A4 conversion.

13) Operator Panel Interface

Operation Panel functions are supported by the operator output bus OPO[6:0], the operator input bus OP[3:0], and two control outputs (LCDCS and LEDCTRL).
The CX06835 can directly interface to a 28 -key keypad.
A 2 -line LCD display module with 20 characters per line can be supported.

14) Synchronous Serial Interface (SSIF)

One or optionally two Synchronous only Serial Interfaces (SSIF) are built into the CX06835, which allows it to communicate with external peripherals. Each SSIF provides separate siganls for Data (SSTXD, SSRXD), Clock (SSCLK), and Status (SSSTAT). Each SSIF is a duplex, three-wire system. The SSIF may be configured to operate as either a master or a slave interface. The bit rate, clock polarity, clock phase, and data shifting order are programmable.

15) Synchronous/Asynchronous Serial Interface (SASIF)

One or optionally two Synchronous/Asynchronous Serial Interface (SASIF) performs the following:

- Serial-parallel conversion of data received from a peripheral device.
- Parallel-to-serial conversion of data for transmission to a peripheral device.
This interface consists of serial transmit data (SASTXD), serial receive data (SASRXD), and a serial clock(SASCLK). The SASIF includes a programmable bit rate generator for asynchronous and synchronous operations. The data shifting order, data bit number, and the SASCLK polarity are programmable.
The optional SASIF 2 has an additional pin called DSS_AVAIL. This signal can be used to tristate the SASCLK2 and SASTXD2 signals.

16) Real Time Clock (RTC)

The CX06835 includes a battery backup real time clock. The RTC will automatically maintain the proper date and time for 32 years. Leap year compensation is included. A 32.768 kHz or 65.536 kHz crystal is required by the RTC.

17) Tone Generator (ALT_TONE)

The CX06835 provides a programmable tone generator output. The frequency of the tone generator is programmable from 400 Hz to 4 kHz . By using a PWM programmable high frequency as a modulation frequency, the output level can be made programmable.

18) Watchdog Timer

The Programmable Watchdog Timer is intended to guard against firmware lockup on the part of either executive-controlled background tasks or interrupt-driven tasks, and can only be enabled by a sequence of events under control of the Watchdog Control Logic. Once the Watchdog Timer has been enabled, it can not be disabled unless a system reset occurs.

19) Reset and Power Control

The RESETn I/O pin provides an internally generated reset output to external circuits, or it can accept an externally generated reset signal. This reset signal will not reset the RTC. Separate RTC battey power inputs are provided for battery-backup functions. A BATRSTn pin is provided, which resets the RTC circuits and other SCC circuits.

20) Power Up/Down Control

Power Up/Down detection is provided internally. The threshold voltages are:

- Power Up detection level $=2.83 \mathrm{~V}$ to 2.95 V .

An internally generated power down signal controls internal switching between primary and battey power. This control signal is also provied as an output on the PWRDWNn pin. An externally generated power down detector (optional) can be provided as an input on the PWRDWNn pin by setting the INTPWRDWNEn pin.

21) Stand-by and Sleep Modes

Two power saving modes are provided to reduce the power consumption. In stand-by mode, the CPU is functional, but the modem clock is turned off to save power. When this occurs, the modem may be activated by software under different conditions. In sleep mode, the clock is cut off from both the modem and the CPU to increase the power savings.
The system can be activated by paper insertion, key pressing events, and telephone ring detection.

22) Embedded Modem DSP

The embedded modem DSP is a synchronous 9600 bps half-duprex modem with error detection and DTMF generation/reception. It provides data transmission/reception from regular PSTN lines, PBX, or private lines.
The modem can operate at any standard V. 29 data speed up to 9600 bps as well as in V. 21 and V. 23 modes.
The modem is designed for use in Group 3 facsimile machines. It satisfies the requirements specified in ITU-T recommendations V.29, V.27ter,
V. 21 Channel 2, and T. 4 , and meets the signaling requirements of T. 30 . It also performs HDLC framing according to T .30 at all speeds.

Note: For technical details, refer to the FM209/FM214 Designer's Guide, (document 1175).

23) Software and Firmware Support Features

Available software and embedded firmware provides the following:

- Modem support for speeds up to 9600 bps.
- ECM under conditional assembly.
- DRAM memory support under conditional assembly.
- MH, MR and MMR support.
- Page memory receiving.
- 5 ms minimum scan line time.
- Conditional Error Diffusion or Dither table (8x8) support.
- Dark Level Correction support.
- Single motor support.
- 28-key operator panel support.
- Call progress support for Europe and U.S.A.
- Monochrome inkjet print engine support.

SCE209 (IC3) Terminal descriptions

Pin No.	Pin List	I/O	Input Type	Output Type	Pin Description
1	VDDPLL	-	-	-	PLL Power
2	VSSPLL	-	-	-	PLL GND
3	ROMCSn	0	-	13Xs	-
4	SYNC/GPO[20]	0	-	13Xs	-
5	WRn	0	-	13Xs	-
6	RDn	0	-	13Xs	-
7	DEBUGn	I	Hu	-	-
8	TSTCLK	0	-	13Xs	-
9	VSS	-	-	-	Digital GND
10	SXIN	1	Osc0	-	-
11	SXOUT	0	-	Osc0	-
12	OPO[0]/GPO[8]/SMPWRCTRL	0	-	13Xs	-
13	OPO[1]/GPO[9]/PMPWRCTRL	O	-	13Xs	-
14	OPO[2]/GPO[10]/RINGER	OZ	-	13Xs	-
15	OPO[3]/GPO[11]	O	-	13Xs	-
16	OPO[4]/GPO[12]/SSTXD1	0	-	13Xs	-
17	OPO[5]/GPO[13]	0	-	13Xs	-
18	OPO[6]/GPO[14]	O	-	13Xs	-
19	OPI[0]/GPIO[21]/SSRXD1	I/O	Hu	13Xs	-
20	OPI[1]/GPIO[22]/SSSTAT1	I/O	Hu	13Xs	-
21	OPI[2]/GPIO[23]/SSCLK1	I/O	Hu	13Xs	-
22	OPI[3]/GPIO[24]	1/O	Hu	13Xs	-
23	LCDCS/GPO[17]	0	-	1XC	-
24	VDD	-	-	-	Digital Power
25	RASn	0	-	13Xs	-
26	CAS[0]n	O	-	13Xs	-
27	DWRn	O	-	13Xs	-
28	VBAT	-	-	-	RTC Battery Power
29	XIN	I	Osc1	-	-
30	XOUT	0	-	Osc1	-
31	WRPROTn	0	-	1XC	-
32	TEST[1]	1	Hd	-	-
33	TEST[0]	I	Hd	-	-
34	BATRSTn	1	H	-	-
35	INTPWRDWNEn	I	H	-	-
36	PWRDWNn	I/O	H	13Xs	-
37	N.C.	-	-	-	-
38	ADGA	-	VADG	-	PADC Analog GND
39	VREFn/CLREF	I	VR-	-	PADC
40	VIN	1	VA	-	PADC
41	ADGA	-	VADG	-	PADC Analog GND
42	ADVA	-	VADV	-	PADC Analog Power
43	ADXG	-	VXG	-	PADC
44	VREFp	I	VR	-	PADC
45	VSS	-	-	-	VSS Digital GND
46	IVREFn	0	-	VR-	PADC
47	IVREFp	O	-	VR+	PADC
48	VDD	-	-	-	Digital Power
49	THADI	I	Analog	-	TADC
50	VSS	-	-	-	Digital GND
51	GPIO[17]/DSPIRQn	I/O	Hu	13Xs	-
52	GPIO[16]/IRQ[8]	I/O	Hu	13Xs	-
53	GPIO[15]/CS[5]n	I/O	Hu	13Xs	-
54	GPIO[13]/CS[3]n	I/O	Hu	13Xs	-
55	GPIO[37]/IRQ15n/DSPCSn	I	Hu	13Xs	-
56	GPIO[4]/CPCIN/TPHPWRCTRL/DMAREQ	I/O	Hu	13Xs	-
57	STRB[0]	O	-	1XC	-
58	STRB[1]	O	-	1XC	-
59	STRB[2]	O	-	1XC	-
60	STRB[3]	O	-	1XC	-
61	PLAT	0	-	3XC	-
62	PDAT	O	-	2XC	-
63	PCLK/DMAACK	O	-	3XC	-

SCE209 (IC3) Terminal descriptions

Pin No.	Pin List	I/O	Input Type	Output Type	Pin Description
64	VDD	-	-	-	Digital Power
65	GPIO[11]/BE/SERINP/SR4IN	I/O	Hu	13Xs	-
66	GPIO[19]/RDY/SEROUT	I/O	Hu	13Xs	-
67	START	O	-	2XC	-
68	CLK1n/GPO[25]	0	-	13Xs	-
69	CLK2/GPO[24]	0	-	13Xs	-
70	GND	-	-	-	IA GND
71	MCLK	ID	-	-	Main Clock from DSP
72	CTRLI	ID	d	-	Control Data from DSP
73	TESTC	ID	d	-	IA Test
74	SOUT	OD	-	T	Serial Data to DSP
75	SIN	ID	d	-	Serial Data to DSP
76	FSYNC	I/OD	d	-	Frame Sync Signal (IA)
77	POR	IA	d	-	Hardware Reset
78	GND	-	-	-	IA GND
79	LINE_INP	IA	-	-	Analog Input to Line Pre-Amp.
80	MIC_INP	IA	-	-	Positive differential Analog Input to Microphone Pre-Amp.
81	MIC_INM	IA	-	-	Negative differential Analog Input to Microphone Pre-Amp.
82	MIC_BIAS	OA	-	-	2.2 V Nominal DC Bias Source for Electret Microphone
83	BG	OA	-	-	Analog reference Voltage Output
84	VC	OA	-	-	Analog Ground Bias Output
85	AVDD	PWR	-	-	IA Analog Power
86	GND	-	-	-	IA GND
87	LINE_OUTP	OA	-	-	Line Driver Output
88	SPKR_OUTP	OA	-	-	Positive Speaker Driver Output
89	SPKR_OUTM	OA	-	-	Negative Speaker Driver Output
90	DVDD	PWD	-	-	IA Digital Power
91	MODE_0	ID	u	-	Connect to VSS (IA Mode Selection)
92	ICLK	I/OD	-	-	IA Bit Clock Input/Output
93	VSS	-	-	-	VSS Digital GND
94	FCSn[1]/VIDCTL[0]/GPO[23]	0	-	13Xs	-
95	IARESET	0	-	13Xs	DSP to EXTIA POR
96	IACLK	0	-	13Xs	DSP to EXTIA MCLK
97	VDD	-	-	-	Digital Power
98	IA1CLK	I	H	-	DSP from EXTIA ICLK
99	SR3IN/DSPIRQn	I	H	-	DSP from primary EXTIA SOUT/EXT. Modem IRQn
100	SR4OUT	0	-	13Xs	DSP to primary EXTIA SIN
101	SR1IO	0	-	13Xs	DSP to EXTIA CTRL1
102	SA1CLK	I	H	-	DSP from EXTIA FSYNC
103	GPIO[7]/SSRXD2/SASRXD2	I/O	Hu	13Xs	-
104	GPIO[6]/SSTXD2/SASTXD2	I/O	Hu	13Xs	-
105	GPIO[5]/SSCLK2/SASCLK2	I/O	Hu	13Xs	-
106	GPIO[10]/SSSTAT2/DSS_AVAIL	I/O	Hu	13Xs	-
107	VSS	-	-	-	Digital GND
108	RESETn	I/O	Hu	2XC	-
109	GPIO[3]/SASCLK	I/O	Hu	13Xs	-
110	GPIO[2]/SASRXD	I/O	Hu	13Xs	-
111	GPIO[1]/SASTXD	I/O	Hu	13Xs	-
112	GPIO[9]/FRDn	I/O	Hu	13Xs	-
113	GPIO[8]/FWRn	I/O	Hu	13Xs	-
114	A[0]	I/O	Tu	13Xs	CPU Address Bus
115	A[1]	I/O	Tu	13Xs	CPU Address Bus
116	A[2]	I/O	Tu	13Xs	CPU Address Bus
117	A[3]	I/O	Tu	13Xs	CPU Address Bus
118	A[4]	I/O	Tu	13Xs	CPU Address Bus
119	VDD	-	-	-	Digital power
120	A[5]	I/O	Tu	13Xs	CPU Address Bus
121	A[6]	I/O	Tu	13Xs	CPU Address Bus
122	A[7]	I/O	Tu	13Xs	CPU Address Bus
123	A[8]	I/O	Tu	13Xs	CPU Address Bus
124	A[9]	I/O	Tu	13Xs	CPU Address Bus
125	A[10]	I/O	Tu	13Xs	CPU Address Bus
126	A[11]	I/O	Tu	13Xs	CPU Address Bus

SCE209 (IC3) Terminal descriptions

$\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$	Pin List	I/O	$\begin{aligned} & \text { Input } \\ & \text { Type } \end{aligned}$	Output Type	Pin Description
127	A[12]	1/O	Tu	13Xs	CPU Address Bus
128	A[13]	I/O	Tu	13Xs	CPU Address Bus
129	A[14]	1/O	Tu	13Xs	CPU Address Bus
130	A[15]	1/0	Tu	13Xs	CPU Address Bus
131	A[16]	I/O	Tu	13Xs	CPU Address Bus
132	VDD	-	-	-	Digital Power
133	VSS	-	-	-	Digital GND
134	A[17]	I/O	Tu	13Xs	CPU Address Bus
135	A[18]	1/O	Tu	13Xs	CPU Address Bus
136	A[19]	I/O	Tu	13Xs	CPU Address Bus
137	A[20]	I/O	Tu	13Xs	CPU Address Bus
138	A[21]/EYECLK	1/0	Tu	13Xs	CPU Address Bus
139	A[22]/EYESYNC	1/O	Tu	13Xs	CPU Address Bus
140	A[23]/EYEXY	I/O	Tu	13Xs	CPU Address Bus
141	D[0]	I/O	Tu	13Xs	CPU Data Bus
142	D[1]	I/O	Tu	13Xs	CPU Data Bus
143	D[2]	1/O	Tu	13Xs	CPU Data Bus
144	D[3]	I/O	Tu	13Xs	CPU Data Bus
145	D[4]	I/O	Tu	13Xs	CPU Data Bus
146	D[5]	1/O	Tu	13Xs	CPU Data Bus
147	D[6]	1/0	Tu	13Xs	CPU Data Bus
148	D[7]	1/O	Tu	13Xs	CPU Data Bus
149	GPIO[20]/ALTTONE	1/O	Hu	13Xs	-
150	GPIO[26]	I/O	Hu	13Xs	-
151	GPIO[27]	1/O	Hu	13Xs	-
152	GPIO[28]	1/O	Hu	13Xs	-
153	GPO[26]	0	-	13Xs	-
154	GPO[27]	0	-	13Xs	-
155	GPO[28]	0	-	13Xs	-
156	GPO[29]	0	-	13Xs	-
157	GPO[30]/SR3OUT	0	-	13Xs	-
158	GPIO[29]	I/O	Hu	13Xs	-
159	GPIO[31]	1/0	Hu	13Xs	-
160	GPIO[32]	I/O	Hu	13Xs	-
161	VDD	-	-	-	Digital power
162	GPIO[34]	I/O	Hu	13Xs	-
163	GPIO[35]	1/O	Hu	13Xs	-
164	GPIO[36]	I/O	Hu	13Xs	-
165	Vss	-	-	-	Digital GND
166	VDD	-	-	-	Digital Power
167	PM[0]/GPO[0]	0	-	13Xs	-
168	PM[1]/GPO[1]	0	-	13Xs	-
169	PM[2]/GPO[2]	0	-	13Xs	-
170	PM[3]/GPO[3]	0	-	13Xs	-
171	SM[0]/GPO[4]	0	-	13Xs	-
172	SM[1]/GPO[5]	0	-	13Xs	-
173	SM[2]/GPO[6]	0	-	13Xs	-
174	SM[3]/GPO[7]	0	-	13Xs	-
175	REGDMA/GPO[18]/CLKDIV[0]	1/0	T	13Xs	-
176	WAITn/GPO[19]/CLKDIV[1]	I/O	T	13Xs	-

UX-P100U
UX-P200U

(3) Panel control block

The following controls are performed by the SCE209.

- Operation panel key scanning
- Operation panel LCD display
(4) Mechanism/recording control block
- Recording control block diagram (1)

Fig. 3
5-7

(5) Modem block (CX20438)

Integrated Analog Control Resisters for CX20438

The CX20438 IA can be used as a Primary Integrated Analog (PIA) codec or as a Secondary Integrated Analog (SIA) codec, depending on the signal connection with the SCE Controller ASIC device. In the SCE100 product, both the PIA and the SIA are packaged external to the SCE Controller device, whereas in the SCE209, the PIA is packaged with the SCE209 Controller and the SIA is external.
The CX20438 IA provides gain, filtering, internal analog switching, and an internally sourced microphone bias output. The IA is controlled by three control registers and an address register located in internal RAM space which are accessed via the modem interface memory. These registers provide individual controls for the IA's inputs, outputs, gain settings, and switching.
The registers are located in internal DSP RAM. Each bit of each 8-bit IA control register has exactly the same meaning for the PIA and the SIA. The LSB of each 16-bit address contents is used to control the PIA. The MSB of each 16-bit address contents is used to control the SIA.
The following table the PIA/SIA control register RAM access code.

Register	SBRAMx	BRx	Crx	IOx	AREXx	ADDx	PIA Reg *	SIA Reg *
IACR1	0	0	0	0	0	D0	0	1
IACR2	0	0	0	0	0	D4	0	1
IACR3	0	0	0	0	0	D5	0	1
IAADD	0	0	0	0	0	CE	0,1	0,1

NOTES: *Registers to use when $\mathrm{x}=1$. When $\mathrm{x}=2$, add 10 h .

- For changes made to IACR1 tobe effective, the host must write to IAADD with a value of 0002h.
- For changes made to IACR2 tobe effective, the host must write to IAADD with a value of 0006h.
- For changes made to IACR3 tobe effective, the host must write to IAADD with a value of 0007 h .

Configuration default values are shown below.

DEFAULT VALUE			
CONFIGURATION	IACR1	IACR2	IACR3
V.17/V.33	1D9Eh	0008 h	0000 h
V.29	1D9Eh	0008 h	0000 h
V.27ter	1D9Eh	0008 h	0000 h
V.21 Ch. 2	1D9Eh	0008 h	0000 h
V.23/Caller ID	1D9Eh	0008 h	0000 h
Tone Transmit/Detect	1D9Eh	0008 h	0000 h
Voice/Audio Codec	0D16h	0008 h	0000 h
Speakerphone	0D16h	0008 h	0000 h

The following signal flow block diagram is for a signal IA and it applies to both PIA and SIA.

Fig. 4 PIA/SIA Signal Flow Control

[3] Circuit description of TEL/LIU PWB

(1) TEL/LIU block operational description

Fig. 5

2) Circuit description

The TEL/LIU PWB is composed of the following 6 blocks.

1. Speech circuit section
2. Dial transmission section
3. Speaker amplifier section
4. Ringer circuit section
5. Cl detection circuit
6. Signal/DTMF transmission level \& receiving level

3) Block description

1. Speech circuit section

- The receiver volume is an electronic volume type, this model is switched in 3 steps.

2. Dial transmission section

- D.P. transmission: The CML relay is turned on and off for control in the DP calling system. (Refer to the attached sheet.)
- DTMF transmission: It is formed in the modem, and is output.

3. Speaker amplifier section

- Ringer volume :It is controlled by the combination of the attenuator value of the LINE DRIVER in the modem and the ringer sending level sent from the modem.
- Speaker volume :It is controlled by the attenuator value of the LINE DRIVER in the modem.

4. Ringer circuit section

- The ringer sound is formed in the tone of modem when Cl signal is detected. The amplifier circuit drives the speaker of the main body.

5. Cl detection circuit

- Cl is detected by the photo coupler which is integrated in series in the primary side TEL circuit well proven in the existing unit.

6. Signal/DTMF transmission level \& receiving level

- Signal transmission level setting: ATT -8 dB Circuit output: -11 dBm .
- DTMF transmission level setting: HF -2.5 dBm LF -4.5 dBm Thus, set the level.

4) Signal selection

The following signals are used to control the transmission line of TEL/ FAX signal. For details, refer to the signal selector matrix table.
[Control signals from output port]

Signal Name	Description				
CML (The circuit is located in the TEL/LIU PWB.)	Line connecting relay and DP generating relay H: Line make L: Line break				
SP MUTE (The circuit is located in the TEL/LIU PWB.)	Speaker tone mute control signal H: Muting (Power down mode) L: Muting cancel (Normal operation)				
TELMUTE	Handset reception mute control signal H: Muting L : Muting cancel				
RCVOL DTMFMUTE (The circuit is located in the control PWB.)	Handset receiver volume control signal				
	Volume	High	Middle	Low	DTMF sending
	RCVOL	L	H	H	H
	DTMFMUTE	L	L	H	H

Note: The DTMF sending listed above is DTMF signal sending in the handset OFF-HOOK mode.

VOLUME SETTING		LINEOUT A		RCVOL	DTME MUTE
		(HIGH)	(LOW)		
Receiver volume setting	Low			1	1
	High			0	0
	Middle			1	0
DTMF Transmission volume setting (Receiver)	Fixed			1	1
Key buzzer volume setting	Fixed				
Speaker volume setting	Low	1	1		
	Middle	1	0		
	High	0	1		
Ringer volume setting	Low	1	1		
	Middle	1	0		
	High	0	1		
DTMF speaker volume setting	Low	1	1		
	Middle	1	0		
	High	0	1		

UX-P100U
UX-P200U
[Signals for status recognition according to input signals]

Signal Name	Function
$\overline{\mathrm{RHS}}$	H:The handset is in the on-hook state. L: The handset is in the off-hook state.
Cl	Incoming call (Cl) detection signal

[Other signals]

Signal Name	Function
TEL IN	Receiving signal from line or modem
SPOUT	Speaker output signal
TXOUT	Transmission (DTMF) analog signal output from modem
RXIN	Reception (DTMF, others) analog signal input into modem

NO	Signal Name (CNLIUA)	NO	Signal Name (CNLIUA)
1	RHS-	7	RXIN
2	MAG	8	TXOUT
3	$+24 V L$	9	CML
4	MICMUTE	10	PIN
5	TELIN	11	FILM
6	TELMUTE	12	CI-

(Example: SENDING/RECEIVING)

Fig. 6

[4] Circuit description of power supply PWB

1. Block diagram

Fig. 7

2-1. Noise filter circuit

The input noise filter section is composed of L1 and C1, which reduces normal mode noise from the AC line and common mode noise to the AC line.

2-2. Rectifying/smoothing circuit

The AC input voltage is rectified by diode D1, 2, 3, 4 and smoothed by capacitor C 2 to supply DC voltage to the switching circuit section.

2-3. Switching circuit

This circuit includes MOS FET Q1 and the gate drive circuit, and components around Q1.
In this circuit, the DC voltage supplied from the rectifying/smoothing section is converted into high Frequency pulses by ON/OFF repetition of Q1.

2-4. Control circuit

This circuit controls output voltage of +24 V by adjusting ON period of Q1, looking at signal from photo coupler PC1.
In this operation PC1 takes charge of important part.
The over current protection is performed by bringing Q1 to OFF state through detection of voltage of T1 Subwiding.
The over voltage protection is performed by operating the over current protection circuit through detection of Zener diode ZD4 and shortcircuiting of load.

2-5. +5V circuit

DC voltage supplied by rectifying the output of transformer T1 with diode D8, C10.

[5] Circuit description of CIS unit

1. CIS

Cis is an image sensor which puts the original paper in close contact with the full-size sensor for scanning, being a monochromatic type with the pixel number of 1,728 dots and the main scanning density of 8 dots/mm.
It is composed of sensor, rod lens, LED light source, light-conductive plate, control circuit and so on, and the reading line and focus are previously adjusted as the unit.
Due to the full-size sensor, the focus distance is so short that the set is changed from the light weight type to the compact type.

2. Waveforms

The following clock is supplied from SCE209 of the control board, and VO is output.

Fig. 8

CHAPTER 6. CIRCUIT SCHEMATICS AND PARTS LAYOUT

Memory block
$\stackrel{\circ}{*}$

$\stackrel{\circ}{ल}$

$\stackrel{0}{6}$

Video processing/Motor driver/Thermal block

NOTE: \triangle These marks are all safety-cirtical pars

Control PWB parts layout (Top side)

Control PWB parts layout (Bottom side)

[2] TEL/LIU PWB circuit

NOTE: \triangle These marks are all safety-cirtical parts.
F

TEL/LIU PWB parts layout

두

Power supply PWB parts layout (Top side)

Power supply PWB parts layout (Bottom side)

Operation panel PWB parts layout
(Top side)

Operation panel PWB parts layout
(Bottom side)

CHAPTER 7. OPERATION FLOWCHART

[1] Protocol

[2] Power on sequence

CHAPTER 8. OTHERS

[1] Service tools

1. List

NO.	PARTS CODE		DESCRIPTION	Q'TY
PRICE				
RANK				

Extension board unit

TEL/LIU PWB

NO.	PARTS CODE		DESCRIPTION	Q'TY
PRICE RANK				
1	QCNWG203BSCZZ	SPEAKER RELAY CABLE	1	
2	QCNWG206BSCZZ	PANEL RELAY CABLE	AG	
3	QCNWG202BSCZZ	CIS RELAY CABLE	1	
4	QCNWG205BSCZZ	HEAD RELAY CABLE	AT	
5	QCNWG204BSCZZ	CAM SWITCH RELAY CABLE	1	
6	QCNWG242BSCZZ	MOTOR RELAY CABLE	AN	
7	QCNWG201BSCZZ	SENSOR RELAY CABLE	AS	
8	VRS-RE3AA122J	RESISTOR (1W 1.2K $\Omega \pm 5 \%)[R 30]$	1	AG
9	VHPSG206S//-1	PHOTO TRANSISTOR [PH1]	1	AM
10	VHPSG206S//-1	PHOTO TRANSISTOR [PH2]	1	

2. Description

2-1. Relay board unit

1. Remove the TEL/LIU PWB, control PWB and Power Supply PWB from this unit, and mount the relay board unit instead.

- Before connecting the wiring to the relay board unit, set the test PWB switches to the fixed position.

2. The setting is as follows.

- The relay cables are used as one pair.
- The hook switch is manually operated.

The hook switch is operated by the mechanical unit switch and the test PWB switch. When performing installation in the machine unit, set the test PWB switches to the fixed position.

	Mechanical unit	PWB to be tested
	Actual operation with mechanical unit	
Hook SW	ON/OFF operation	
ON-HOOK		
	PWB sensor check	
Hook SW	ON-HOOK	ON/OFF operation

CHECK
CONTROL

PWB

3. Shading paper

The white and black basis is applied to remember the shading waveform. Be sure to perform this operation when replacing the battery or replacing the control PWB. Execute in the shading mode of DIAG mode.

UX-P100U
UX-P200U

[2] IC signal name

CONTROL PWB UNIT

IC1: RH-iX2890AFZZ (SST39VF020P)

IC3: VHiSCE209//-1 (SCE209)

[3] Changing the record paper size

How to change the A4 size and letter size of the record papers

1) It becomes the record paper of the A4 size by installing A4 guide (PGiDM2629XHZZ) which shows in the drawing. Remove A4 guide when you use the record paper of the letter size.

2) Set soft switch SW-L2 No. 1 and the initialization of SW-L2 No. 2 as follows

$\begin{array}{\|l\|} \hline \text { SW } \\ \text { NO. } \end{array}$	$\begin{aligned} & \text { DATA } \\ & \text { NO. } \end{aligned}$	ITEM	Switch setting and function				Initial setting	Remarks
			1		0			
SW		Paper set size		LETTER	LEGAL	A4		OPTION
।	1		No. 1	0	0	1	0	
L2	2		No. 2	0	1	0	0	

MEMO

SELECTION CODE	DESTINATION
UX-P100U (Open LCR)	U.S.A.
UX-P200U	U.S.A.

CONTENTS

1 Cabinet, etc.

2 Top cover/Sub frame

3 Upper cabinet/Document guide upper

4 Drive unit

5 Packing material \& Accessories
Packing material \& Accessories

6 Control PWB unit

7 TEL/LIU PWB unit

8 Power supply PWB unit

9 Operation panel PWB unit

10 Interface PWB unit

- Index

Because parts marked with " $\widehat{\square}$ " are indispensable for the machine safety maintenance and operation, it must be replaced with the parts specific to the product specification.
[1] Cabinet,etc.
 UX-P200U

[2] Top cover/Sub frame

NO.	PARTS CODE	PRICE RANK	NEW MARK	PART RANK	DESCRIPTION
[2] Top cover/Sub frame					
1	GCOVA2448XHSA	AG	N	C	Top cover
2	MSPRC3301XHZZ	AB	N	C	Hopper spring
3	NGERP2318XHZZ	AD		C	Pinion gear
4	PGIDM2619XHSA	AF	N	C	Hopper guide,left
5	PGIDM2620XHSA	AF	N	C	Hopper guide,right
6	LFRM-2227XHZZ	AQ	N	C	Sub frame
7	LFRM-2232XHZZ	AT	N	C	Sub frame plate
8	MLEVP2363XHZZ	AD	N	C	P-IN sensor lever,upper
9	MSPRC3305XHZZ	AB	N	C	Release lever spring
10	MSPRD3302XHZZ	AB	N	C	P-IN sensor lever spring,upper
11	NGERH2580XHZZ	AC	N	C	Reduction gear,15/22Z
12	NGERH2581XHZZ	AC	N	C	Idler gear,25Z
13	NROLR2483XHZZ	AL	N	C	Paper feed roller
14	NROLR2484XHZZ	AL	N	C	PU roller
15	NSFTP2357XHZZ	AG	N	C	Paper feed roller shaft
16	NSFTP2358XHZZ	AG	N	C	PU roller shaft
17	PGIDM2621XHSA	AF	N	C	Release lever
18	LHLDZ2224XHZZ	AL	N	C	RP feed plate holder
19	LPLTG3181XHZZ	AD	N	C	RP separate rubber
20	LPLTP3179XHZZ	AD	N	C	RP separate base
21	LPLTP3180XHZZ	AH	N	C	RP separate plate
22	LPLTP3182XHZZ	AH	N	C	RP feed plate
23	MSPRC3299XHZZ	AB	N	C	RP separate spring
24	MSPRC3300XHZZ	AB	N	C	RP feed spring
25	LBSHP2141XHZZ	AC	N	C	Platen bearing,left
26	LBSHP2142XHZZ	AC	N	C	Platen bearing,right
27	NGERH2579XHZZ	AD	N	C	Platen gear
28	NROLR2485XHZZ	AQ	N	C	Platen roller
29	LBNDJ2006XHZZ	AA		C	Band
30	MSPRC3335XHZZ	AD	N	C	Paper feed roller spring
31	TLABH319DXHZZ	AD	N	D	Imaging film set label
B1	LX-BZ2234XHZZ	AD	N	C	Screw
B2	XEBSD30P10000	AA		C	Screw(3x10)
B3	LX-BZ2222XHZZ	AC		C	Screw

[3] Upper cabinet/Document guide upper
901

NO.	PARTS CODE	$\begin{aligned} & \hline \text { PRICE } \\ & \text { RANK } \\ & \hline \end{aligned}$	NEW MARK	$\begin{aligned} & \hline \text { PART } \\ & \text { RANK } \\ & \hline \end{aligned}$	DESCRIPTION	
[3] Upper cabinet/Document guide upper						
1	GCASP2145XHSA	AM	N	D	Panel case	
2	JBTN-2339XHSA	AF	N	C	12 key	
3	JBTN-2340XHSA	AD	N	C	Start key	[P100]
	JBTN-2340XHSB	AE	N	C	Start key	[P200]
4	JBTN-2341XHSA	AD	N	C	Function key	
5	DCEKP336CXH01	BD	N	E	Operation panel PWB unit	[P100]
	DCEKP336CXH02	BD	N	E	Operation panel PWB unit	[P200]
6	QSW-K0005AWZZ	AC		C	Tact switch	[SW]
7	QSW-M2246AXZZ	AH		C	FRSNS sensor	[SW1]
8	QSW-M2294XHZZ	AE		C	ORGSNS sensor	[SW2]
9	QCNWN487AXHZZ	AL	N	C	Panel cable	
10	RUNTZ2080XH01	BA	N	E	LCD unit	
11	LPLTG2911XHZZ	AE		C	Separate rubber	
12	LPLTP3175XHZZ	AD	N	C	Separate plate	
13	LPLTP3176XHZZ	AD	N	C	Feed plate	
14	MSPRD3293XHZZ	AB	N	C	Separate spring	
15	MSPRT3294XHZZ	AB	N	C	Feed spring	
16	PGIDM2614XHSA	AL	N	C	Document guide upper	
17	PSHEP3660XHZZ	AE	N	C	Separate rubber sheet	
B1	XEBSD20P06000	AA		C	Screw(2x6)	
	(Unit)					
901	DCEKP334CXH01	BF	N	E	Operation panel unit	[P100]
	DCEKP334CXH02	BD	N	E	Operation panel unit	[P200]

NO.	PARTS CODE	PRICE RANK	NEW MARK	PART RANK	DESCRIPTION
[4] Drive unit					
1	CGERH2314XH04	AR	N	C	Slip gear ass'y
2	CLEVP2359XH01	AD	N	C	Planet gear lever ass'y A
3	CLEVP2360XH01	AD	N	C	Planet gear lever ass'y B
4	CLEVP2361XH01	AD	N	C	Planet gear lever ass'y C
5	CLEVP2362XH01	AD	N	C	Planet gear lever ass'y D
6	LFRM-2226XHZZ	AQ	N	C	Drive unit frame
7	LPLTM3190XHZZ	AG	N	C	Motor plate
8	MCAMP2028XHZZ	AE	N	C	Cam
9	MSPRD3298XHZZ	AE	N	C	Cam hold spring
10	NGERH2380XHZZ	AC		C	Reduction gear,17/36Z
11	NGERH2409XHZZ	AB	N	C	Idler gear,23Z
12	NGERH2571XHZZ	AD	N	C	Slip gear
13	NGERH2572XHZZ	AD	N	C	Reduction gear,25/63Z
14	NGERH2573XHZZ	AD	N	C	Reduction gear,20/40Z
15	NGERH2574XHZZ	AD	N	C	Reduction gear,15/30Z
16	NGERH2575XHZZ	AD	N	C	Idler gear,40Z
17	NGERH2576XHZZ	AD	N	C	Idler gear,21Z
18	NGERH2577XHZZ	AD	N	C	Idler gear,20Z
19	NGERH2582XHZZ	AC	N	C	Idler gear,15Z
20	QCNWN483AXHZZ	AD	N	C	Cam switch cable
21	QSW-F2224SCZZ	AE		C	Cam switch
22	RMOTS2175XHZZ	AX	N	B	Motor
B1	XEBSD30P08000	AA		C	Screw(3x8)

[5] Packing material \& Accessories

NO.	PARTS CODE	$\begin{array}{\|l} \hline \text { PRICE } \\ \text { RANK } \\ \hline \end{array}$	NEW MARK	PART RANK		DESCRIPTION	
[6] Control PWB unit							
1	UBATL2049SCZZ	AF		B	Battery(CR2032T23)		[BAT1]
2	VCEAGAOJW227M	AD		C	Capacitor(6.3WV 220رF)		[C1]
3	VCEAGA1EW476M	AA		C	Capacitor(25WV 47 μ F)		[C2]
4	VCEAGAOJW227M	AD		C	Capacitor(6.3WV 220 ${ }^{\text {F }}$)		[C3]
5	VCEAGA1HW106M	AA		C	Capacitor(50WV 10¢F)		[C4]
6	VCEAGA1HW106M	AA		C	Capacitor(50WV 10¢F)		[C5]
7	VCEAGA1EW476M	AA		C	Capacitor(25WV 47 μ F)		[C6]
8	VCEAGA1HW106M	AA		C	Capacitor(50WV 10 $\mu \mathrm{F}$)		[C8]
9	VCEAGA1HW106M	AA		C	Capacitor(50WV 10¢F)		[C9]
10	VCEAGA1HW226M	AB		C	Capacitor(50WV 22 4 F)		[C10]
11	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C100]
12	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C101]
13	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C102]
14	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C103]
15	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C104]
16	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C105]
17	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C107]
18	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C109]
19	VCKYCY1HF104Z	AA		C	Capacitor(50WV 0.1 $\mu \mathrm{F}$)		[C110]
20	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C111]
21	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C112]
22	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C113]
23	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C114]
24	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C115]
25	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C116]
26	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C117]
27	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C118]
28	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C119]
29	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C120]
30	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C121]
31	VCCCCY1HH180J	AA		C	Capacitor(50WV 18PF)		[C122]
32	VCCCCY1HH220J	AA		C	Capacitor(50WV 22PF)		[C123]
33	VCKYCY1HB103K	AA		C	Capacitor(50WV 0.01 $\mu \mathrm{F}$)		[C126]
34	VCKYCY1HB472K	AA		C	Capacitor(50WV 4700PF)		[C127]
35	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C128]
36	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C129]
37	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C130]
38	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C131]
39	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C132]
40	VCCCCY1HH221J	AA		C	Capacitor(50WV 220PF)		[C133]
41	VCKYCY1AF105Z	AC		C	Capacitor(10WV $1 \mu \mathrm{~F}$)		[C134]
42	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C135]
43	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C136]
44	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C137]
45	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C139]
46	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C140]
47	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C141]
48	VCKYCY1AF105Z	AC		C	Capacitor(10WV $1 \mu \mathrm{~F}$)		[C142]
49	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C143]
50	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C144]
51	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C145]
52	VCKYCY1AF105Z	AC		C	Capacitor(10WV $1 \mu \mathrm{~F}$)		[C146]
53	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C147]
54	VCCCCY1HH220J	AA		C	Capacitor(50WV 22PF)		[C148]
55	VCCCCY1HH220J	AA		C	Capacitor(50WV 22PF)		[C149]
56	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C154]
57	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C155]
58	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[C157]
59	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C158]
60	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C159]
61	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C160]
62	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C161]
63	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C162]
64	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C163]
65	VCKYCY1HF104Z	AA		C	Capacitor(50WV 0.1 $\mu \mathrm{F}$)		[C167]
66	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C168]
67	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C169]
68	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C171]
69	VCKYCY1CB104K	AB		C	Capacitor(16WV 0.1 $\mu \mathrm{F}$)		[C172]
70	VCKYCY1AF105Z	AC		C	Capacitor(10WV 1 $\mu \mathrm{F}$)		[C175]
71	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[C176]
72	VCKYCY1CB104K	AB		C	Capacitor(16WV 0.1 $\mu \mathrm{F}$)		[C177]
73	VCKYCY1CB104K	AB		C	Capacitor(16WV 0.1 $\mu \mathrm{F}$)		[C178]
74	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C182]
75	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C183]
76	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C184]
77	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C185]
78	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C186]
79	VCCCCY1HH101J	AA		C	Capacitor(50WV 100PF)		[C187]
80	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C188]

NO.	PARTS CODE	$\begin{array}{\|l\|} \hline \text { PRICE } \\ \text { RANK } \\ \hline \end{array}$	NEW MARK	PART RANK		DESCRIPTION	
[6] Control PWB unit							
81	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C189]
82	VCKYCY1HB102K	AA		C	Capacitor(50WV 1000PF)		[C194]
83	VCCCCY1HH471J	AA		C	Capacitor(50WV 470PF)		[C199]
84	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[C200]
85	QCNCM7014SC0G	AB		C	Connector(7pin)		[CNCIS]
86	QCNCM7014SC0B	AD		C	Connector(2pin)		[CNCSW]
87	QCNCM2508SC1B	AF	N	C	Connector(12pin)		[CNLIUA]
88	QCNCM7014SC0F	AB		C	Connector(6pin)		[CNMT]
89	QCNCM7014SC1F	AD		C	Connector(16pin)		[CNPN]
90	QCNCM7014SC0C	AA		C	Connector(3pin)		[CNPRG]
91	QCNCM2638SC0F	AE	N	C	Connector(6pin)		[CNPW]
92	QCNCM2401SC0B	AA		C	Connector(2pin)		[CNSP]
93	QCNCM7014SC1E	AC		C	Connector(15pin)		[CNTH]
94	VHDHRW0202B-1	AD		B	Diode(HRW0202B)		[D100]
95	VHD1SS355//-1	AB		B	Diode(1SS355)		[D101]
96	VHD1SS355//-1	AB		B	Diode(1SS355)		[D102]
97	QFS-P2010SCZZ	AD		B	IC protector(KAB2402)		[FU100]
98	VHIF002/TA01B	BN	N	B	IC,EPROM(2MB)(TA01B)		[IC1][P100]
99	VHIF002/TA02B	BN	N	B	IC,EPROM(2MB)(TA02B)		[IC1][P200]
100	RH-IX2168SCZZ	BB		B	IC(MSM51V4800E)		[IC2]
101	VHISCE209//-1	BH	N	B	IC(SCE209)		[IC3]
102	VHINJM2113M-1	AG		B	IC(NJM2113M)		[IC4]
103	VHIKID65001AP	AE		B	IC(KID65001AP)		[IC5]
104	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[L100]
105	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[L102]
106	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[L103]
107	VRS-CY1JB150J	AA		C	Resistor(1/16W 15 $2 \pm 5 \%$)		[L104]
108	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[L105]
109	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%)$		[L106]
110	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[L107]
111	VSKTA1504GR-1	AC		B	Transistor(KTA1504GR)		[Q100]
112	VSKRC106S//-1	AD		B	Transistor(KRC106S)		[Q101]
113	VSKRC102S//-1	AB		B	Transistor(KRC102S)		[Q102]
114	VSKRC102S//-1	AB		B	Transistor(KRC102S)		[Q103]
115	VSSI4431DY+-1	AF		B	FET(SI4431DY)		[Q107]
116	VSKRA102S//-1	AD	N	B	Transistor(KRA102S)		[Q108]
117	VSKRC102S//-1	AB		B	Transistor(KRC102S)		[Q109]
118	VRS-HT3DA221J	AB		C	Resistor(2W $220 \Omega \pm 5 \%$)		[R1]
119	VRS-CY1JB562J	AA		C	Resistor(1/16W 5.6K $2 \pm 5 \%$)		R100]
120	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		R101]
121	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R102]
122	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[R103]
123	VRS-CY1JB471J	AA		C	Resistor(1/16W 470 $\pm 5 \%$)		[R104]
124	VRS-CY1JB471J	AA		C	Resistor(1/16W 470 $\pm 5 \%$)		[R105]
125	VRS-CY1JB103J	AA		C	Resistor(1/16W 10K $\Omega \pm 5 \%$)		[R107]
126	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		R111]
127	VRS-CY1JB102J	AA		C	Resistor(1/16W $1 \mathrm{~K} \Omega \pm 5 \%)$		[R112]
128	VRS-CY1JB512J	AA		C	Resistor(1/16W $5.1 \mathrm{~K} \Omega \pm 5 \%$)		[R113]
129	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[R114]
130	VRS-CY1JB203J	AA		C	Resistor(1/16W $20 \mathrm{~K} \Omega \pm 5 \%$)		[R116]
131	VRS-CY1JB102J	AA		C	Resistor(1/16W 1K $\pm \pm 5 \%)$		[R117]
132	VRS-CY1JB124J	AA		C	Resistor(1/16W $120 \mathrm{~K} \Omega \pm 5 \%$)		[R118]
133	VRS-CY1JB203J	AA		C	Resistor(1/10W $20 \mathrm{~K} \Omega \pm 5 \%$)		[R119]
134	VRS-CY1JB224J	AA		C	Resistor(1/16W $220 \mathrm{~K} \Omega \pm 5 \%$)		[R120]
135	VRS-CY1JB103J	AA		C	Resistor(1/16W 10K $\Omega \pm 5 \%$)		[R121]
136	VRS-CY1JB151J	AA		C	Resistor(1/16W $150 \Omega \pm 5 \%$)		[R124]
137	VRS-CY1JB103J	AA		C	Resistor(1/16W 10K $\Omega \pm 5 \%$)		[R125]
138	VRS-CY1JB471J	AA		C	Resistor(1/16W 470 $\pm 5 \%$)		[R126]
139	VRS-CY1JB105J	AA		C	Resistor(1/16W 1M $\Omega \pm 5 \%$)		[R127]
140	VRS-CY1JB102J	AA		C	Resistor(1/16W 1K $\Omega \pm 5 \%$)		[R128]
141	VRS-CY1JB102J	AA		C	Resistor(1/16W 1K $2 \pm 5 \%$)		[R129]
142	VRS-CY1JB121J	AA		C	Resistor(1/16W $120 \Omega \pm 5 \%$)		[R130]
143	VRS-CY1JB102J	AA		C	Resistor(1/16W $1 \mathrm{~K} \Omega \pm 5 \%$)		[R131]
144	VRS-CY1JB102J	AA		C	Resistor(1/16W $1 \mathrm{~K} \Omega \pm 5 \%$)		[R132]
145	VRS-CY1JB104J	AA		C	Resistor(1/16W $100 \mathrm{~K} \Omega \pm 5 \%$)		[R133]
146	VRS-CY1JB000J	AA		C	Resistor(1/16W $0 \Omega \pm 5 \%$)		[R134]
147	VRS-CY1JB103J	AA		C	Resistor(1/16W 10K $\Omega \pm 5 \%$)		[R135]
148	VRS-CY1JB474J	AA		C	Resistor(1/16W $470 \mathrm{~K} \Omega \pm 5 \%$)		[R136]
149	VRS-CY1JB203J	AA		C	Resistor(1/16W $20 \mathrm{~K} \Omega \pm 5 \%$)		[R137]
150	VRS-CY1JB224J	AA		C	Resistor(1/16W $220 \mathrm{~K} \Omega \pm 5 \%$)		R139]
151	VRS-CY1JB513J	AA		C	Resistor(1/16W $51 \mathrm{~K} \Omega \pm 5 \%$)		[R140]
152	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R141]
153	VRS-CY1JB106J	AA		C	Resistor(1/16W 10M $\Omega \pm 5 \%$)		R142]
154	VRS-CY1JB104J	AA		C	Resistor(1/16W 100K $2 \pm 5 \%$)		[R143]
155	VRS-CY1JB104J	AA		C	Resistor(1/16W 100K $\Omega \pm 5 \%$)		[R144]
156	VCKYCY1EF104Z	AA		C	Capacitor(25WV 0.1 $\mu \mathrm{F}$)		[R145]
157	VRS-CY1JB102J	AA		C	Resistor(1/16W 1K $2 \pm 5 \%$)		[R146]
158	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R147]
159	VRS-CY1JB203J	AA		C	Resistor(1/16W $20 \mathrm{~K} \Omega \pm 5 \%$)		[R148]
160	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R149]

NO.	PARTS CODE	$\begin{aligned} & \hline \text { PRICE } \\ & \text { RANK } \end{aligned}$	NEW MARK	PART RANK		DESCRIPTION	
[6] Control PWB unit							
161	VRS-CY1JB223J	AA		C	Resistor(1/16W $22 \mathrm{~K} \Omega \pm 5 \%$)		[R151]
162	VRS-CY1JB222J	AA		C	Resistor(1/16W $2.2 \mathrm{~K} \Omega \pm 5 \%$)		[R152]
163	VRS-CY1JB392J	AA		C	Resistor(1/16W 3.9K $\Omega \pm 5 \%$)		[R154]
164	VRS-CY1JB105J	AA		C	Resistor(1/16W 1M $2 \pm 5 \%$)		[R156]
165	VRS-CY1JB752J	AA		C	Resistor(1/16W 7.5K $\Omega \pm 5 \%$)		[R157]
166	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R160]
167	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R161]
168	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R165]
169	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R166]
170	VRS-CY1JB393J	AA		C	Resistor(1/16W 39K $\Omega \pm 5 \%$)		[R167]
171	VRS-CY1JB124J	AA		C	Resistor(1/16W $120 \mathrm{~K} \Omega \pm 5 \%$)		[R168]
172	VRS-CY1JB102J	AA		C	Resistor(1/16W $1 \mathrm{~K} \Omega \pm 5 \%$)		[R169]
173	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R170]
174	VRS-CY1JB151J	AA		C	Resistor(1/16W $150 \Omega \pm 5 \%$)		[R171]
175	VRS-CY1JB151J	AA		C	Resistor(1/16W $150 \Omega \pm 5 \%$)		[R172]
176	VRS-CY1JB101J	AA		C	Resistor(1/16W $100 \Omega \pm 5 \%$)		[R174]
177	VRS-CY1JB271J	AA		C	Resistor(1/16W $270 \Omega \pm 5 \%$)		[R175]
178	RR-TZ3018SCZZ	AC		B	Block resistor(470 2×4)		[RA1]
179	RR-TZ3018SCZZ	AC		B	Block resistor(470 2×4)		[RA2]
180	RR-TZ3018SCZZ	AC		B	Block resistor(470 2×4)		[RA3]
181	RR-TZ3017SCZZ	AC		B	Block resistor(270תx4)		[RA4]
182	VHIS814A33AUC	AH	N	B	IC(S-814A33AUC-BCX-T2)		[REG1]
183	RCRSP2176SCZZ	AG	N	B	Crystal(32.256MHz)		[X1]
184	RCRSB0297AFZZ	AD		B	Crystal(32.768kHz)		[X2]
185	VHE1N4748A/-1	AC		B	Diode(1N4748A)		[ZD1]
186	VHE02CZ180Y-1	AC		B	(02CZ180Y)		[ZD100]
	(Unit)						
901	DCEKC182RXHZZ	BR	N	E	Control PWB unit(Within ROM)		[P100]
	DCEKC182RXHZA	BR	N	E	Control PWB unit(Within ROM)		[P200]

[7] TEL/LIU PWB unit

1	VHVRA391PV6-1	AE		B	Varistor(RA-391P-V6-2)	[AR1]
2	VCEAGA1HW106M	AA		C	Capacitor(50WV 10¢F)	[C1]
3	VCKYPA1HB222K	AA		C	Capacitor(50WV 2200PF)	[C2]
4	VCKYPA1HB102K	AA		C	Capacitor(50WV 1000PF)	[C3]
5	VCEAGA1HW225M	AA		C	Capacitor(50WV $2.2 \mu \mathrm{~F}$)	[C4]
6	VCEAGA1HW226M	AB		C	Capacitor(50WV 22 4 F)	[C5]
7	VCEAGA1HW475M	AA		C	Capacitor(50WV 4.7 $\mu \mathrm{F}$)	[C6]
8	VCKYPA1HB102K	AA		C	Capacitor(50WV 1000PF)	[C7]
9	VCKYPA1HB221K	AA		C	Capacitor(50WV 220PF)	[C8]
10	VCKYPA1HB102K	AA		C	Capacitor(50WV 1000PF)	[C9]
11	VCKYPA1HB102K	AA		C	Capacitor(50WV 1000PF)	[C10]
12	VCEAGA1HW226M	AB		C	Capacitor(50WV 22 $\mu \mathrm{F}$)	[C11]
13	VCEAGA1HW107M	AA		C	Capacitor(50WV 100 ${ }^{\text {F }}$)	[C12]
14	VCKYPA1HB221K	AA		C	Capacitor(50WV 220PF)	[C13]
15	VCKYPA1HF223Z	AA		C	Capacitor(50WV 0.022 ${ }^{\text {F }}$)	[C14]
16	VCKYPA1HB221K	AA		C	Capacitor(50WV 220PF)	[C15]
17	VCKYPA1HB102K	AA		C	Capacitor(50WV 1000PF)	[C17]
18	VCKYPA1HB103K	AA		C	Capacitor(50WV 0.01 F)	[C18]
19	RC-FZ3024SCZZ	AG		C	Capacitor(250WV 0.82 $\mu \mathrm{F}$)	[C19]
20	RRLYD3433XHZZ	AH		B	Relay(OUAZ-SH-124DZ)	[CML]
21	QCNCW715MAFZZ	AF	N	C	Connector(12pin)	[CNLIUA]
22	VHDDSS133/-1	AA		B	Diode(1SS133)	[D1]
23	VHDDSS133/-1	AA		B	Diode(1SS133)	[D2]
24	VHIKIA324P/-1	AF	N	B	IC(KIA324P)	[IC1]
25	QJAKZ2073SCFB	AD		C	Jack	[MJ1]
26	QJAKZ2079XH0D	AD		C	Jack	[MJTEL]
27	VHPTLP521-1BL	AE		B	Photo coupler(TLP521)	[PC1]
28	VHPSG206S//-1	AG		B	Photo transistor(SG206S)	[PH1]
29	VHPSG206S//-1	AG		B	Photo transistor(SG206S)	[PH2]
30	VSKRC106M//-1	AD	N	B	Transistor(KRC106M)	[Q1]
31	VSKRC106M//-1	AD	N	B	Transistor(KRC106M)	[Q2]
32	VSKTC3198GR-1	AD	N	B	Transistor(KTC3198GR)	[Q3]
33	VSKRC106M//-1	AD	N	B	Transistor(KRC106M)	[Q4]
34	VSKRA102M//-3	AD	N	B	Transistor(KRA102M)	[Q5]
35	VRD-HT2EY102J	AA		C	Resistor(1/4W $1 \mathrm{~K} \Omega \pm 5 \%$)	[R1]
36	VRD-HT2EY273J	AA		C	Resistor(1/4W $27 \mathrm{~K} \Omega \pm 5 \%$)	[R2]
37	VRD-HT2EY332J	AA		C	Resistor(1/4W $3.3 \mathrm{~K} \Omega \pm 5 \%$)	[R3]
38	VRD-HT2EY152J	AA		C	Resistor(1/4W $1.5 \mathrm{~K} \Omega \pm 5 \%$)	[R4]
39	VRD-HT2EY332J	AA		C	Resistor(1/4W $3.3 \mathrm{~K} \Omega \pm 5 \%$)	[R5]
40	VRD-HT2EY332J	AA		C	Resistor(1/4W 3.3K $2 \pm 5 \%$)	[R6]
41	VRD-HT2EY102J	AA		C	Resistor(1/4W $1 \mathrm{~K} \Omega \pm 5 \%$)	[R7]
42	VRD-HT2EY224J	AA		C	Resistor(1/4W $220 \mathrm{~K} \Omega \pm 5 \%$)	[R8]
43	VRD-HT2EY362J	AA		C	Resistor(1/4W $3.6 \mathrm{~K} \Omega \pm 5 \%$)	[R9]
44	VRD-HT2EY133J	AA		C	Resistor(1/4W $13 \mathrm{~K} \Omega \pm 5 \%$)	[R10]
45	VRD-HT2EY332J	AA		C	Resistor(1/4W $3.3 \mathrm{~K} \Omega \pm 5 \%$)	[R11]
46	VRD-HT2EY133J	AA		C	Resistor(1/4W $13 \mathrm{~K} \Omega \pm 5 \%$)	[R12]
47	VRD-HT2EY822J	AA		C	Resistor(1/4W $8.2 \mathrm{~K} \Omega \pm 5 \%$)	[R13]
48	VRD-HT2EY202J	AA		C	Resistor(1/4W $2.0 \mathrm{~K} \Omega \pm 5 \%$)	[R15]
49	VRD-HT2EY151J	AA		C	Resistor(1/4W $150 \Omega \pm 5 \%$)	[R16]

NO.	PARTS CODE	PRICE RANK	$\begin{gathered} \hline \text { NEW } \\ \text { MARK } \end{gathered}$	PART RANK	DESCRIPTION	
[7] TEL/LIU PWB unit						
50	VRD-HT2EY823J	AA		C	Resistor(1/4W 82K $\Omega \pm 5 \%$)	[R17]
51	VRD-HT2EY101J	AA		C	Resistor($1 / 4 \mathrm{~W} 100 \Omega \pm 5 \%$)	[R18]
52	VRD-HT2EY332J	AA		C	Resistor(1/4W 3.3K $\Omega \pm 5 \%$)	[R19]
53	VRD-HT2EY563J	AA		C	Resistor (1/4W $56 \mathrm{~K} \Omega \pm 5 \%$)	[R20]
54	VRD-HT2EY393J	AA		C	Resistor (1/4W 39K $\Omega \pm 5 \%$)	[R21]
55	VRD-HT2EY621J	AA		C	Resistor(1/4W 620 $\pm 5 \%$)	[R22]
56	VRD-HT2EY163J	AA		C	Resistor($1 / 4 \mathrm{~W} 16 \mathrm{~K} \Omega \pm 5 \%$)	[R24]
57	VRD-HT2EY332J	AA		C	Resistor(1/4W 3.3K $2 \pm 5 \%$)	R25]
58	VRD-HT2EY473J	AA		C	Resistor(1/4W $47 \mathrm{~K} \Omega \pm 5 \%$)	[R26]
59	VRD-HT2EY223J	AA		C	Resistor(1/4W $22 \mathrm{~K} \Omega \pm 5 \%$)	[R27]
60	VRD-HT2HY223J	AA		C	Resistor(1/2W $22 \mathrm{~K} \Omega \pm 5 \%$)	[R28]
61	VRS-HT3AA510J	AA		C	Resistor(1W 51 $\Omega \pm 5 \%$)	[R29]
62	VRS-RE3AA122J	AC		C	Resistor(1W 1.2K $\pm 5 \%$)	[R30]
63	QSW-Z2317XHZZ	AF	N	C	Hook switch	[SW1]
64	RTRNI2171XHZZ	AL	N	B	Transformer(12171)	[T1]
65	VHVERZV5D471/	AC		B	Varistor(ERZV5D471)	[VA1]
66	VHVERZV5D471/	AC		B	Varistor(ERZV5D471)	[VA2]
67	VHEMTZJ100B-1	AC		B	Zener diode(MTZJ10B)	[ZD1]
68	VHEMTZJ5R6B-1	AB		B	Zener diode(MTZJ5R6B)	[ZD2]
69	VHEMTZJ100B-1	AC		B	Zener diode(MTZJ10B)	[ZD3]
70	VHEHZ2C1//I-1	AA		B	Zener diode(HZ2C1)	[ZD4]
71	VHEHZ2C1///-1	AA		B	Zener diode(HZ2C1)	[ZD5]
72	VHEHZ27-1//-1	AB		B	Zener diode(HZ27)	[ZD6]
	(Unit)					
901	DCEKL335CXH01	BB	N	E	TEL/LIU PWB unit	
[8] Power supply PWB unit						
1	OCBUGFM224KR/	AF		C	Film capacitor(275WV 2.2 2 F)	[C1]
2	OCBUGA0291ZZI	AL	N	C	Capacitor(200WV 220uF)	[C2]
3	OCBUGCU102JC/	AF	N	C	Ceramic capacitor(1KWV 1000PF)	[C3]
4	OCBUGXGCF102/	AD		C	Capacitor(50WV 1000PF)	[C4]
5	OCBUGXGCF152/	AF		C	Capacitor(50WV 1500PF)	[C5]
6	OCBUEXCAPO00/	AC	N	C	Resistor (1/8W $0 \Omega \pm 5 \%$)	[C6]
7	OCBUGCM103BH/	AD	N	C	Ceramic capacitor(125WV 0.01 F)	[C7]
8	OCBUGA0292ZZI	AL	N	C	Capacitor(35WV 3304F)	[C8]
9	OCBUGA0290ZZI	AK	N	C	Capacitor(16WV 3304F)	C10]
10	0CBUGXGFD104/	AD	N	C	Capacitor(25WV 0.14F)	[12]
11	OCBUGCS152AC/	AD		C	Ceramic capacitor(500WV 1500PF)	[C13]
12	0CBUGCU472BW/	AD		C	Ceramic capacitor(1000WV 4700PF)	[23]
13	0CBUGXGDF271/	AD		C	Capacitor(50WV 270PF)	[24]
14	OCBUGCZ472HF/	AD	N	C	Ceramic capacitor(125WV 4700PF)	C26]
15	0CBUGCZ472HF/	AD	N	C	Ceramic capacitor(125WV 4700PF)	C27]
16	OCBUGCM103BH/	AD	N	C	Ceramic capacitor(125WV 0.014F)	[C28]
17	OCBPKZ0194ZZI	AC		C	Base post ass'y(2pin)	[CNAC]
18	0CBPCZ0307ZZI	AH	N	C	Connector(6pin)	[CNPS]
19	OCBUBC0125DK/	AD		B	Diode(ERA15-06)	[D1]
20	OCBUBC0125DK/	AD		B	Diode(ERA15-06)	[D2]
21	OCBUBC0125DK/	AD		B	Diode(ERA15-06)	[D3]
22	OCBUBC0125DK/	AD		B	Diode(ERA15-06)	[D4]
23	OCBUBY0020AK/	AD		B	Diode(1SS355TE)	[D5]
24	OCBUBC0336AZI	AL		B	Diode(S3L20U-4004P15)	[D7]
25	OCBUBC0093AL	AG	N	B	Diode(ERA84-009)	[D8]
26	OCBUBC0169CL/	AE		B	Diode(ERA22-06V3)	[D9]
27	0CBPJCSX2501/	AH		A	Current fuse(2.5A/125V)	[F1]
28	0CBPZZ0906ZZI	AH		A	Circuit protect chip(4A/72V)	[F3]
29	0CBBFZ89256Z	AD		C	Beads core(BL02RN1)	[FB2]
30	0CBBFZ89633Z	AD		C	Beads inductor(BP53RB052025050)	[FB3]
31	0CBUKZ0790ZZI	AK		C	Filter(19mH/0.5A)	[L1]
32	OCBUZZ0203ZZI	AK	N	C	Inductor(RS908)	[L2]
33	0CBLRZ6803ZP/	AQ	N	C	Heat sink	[MT1]
34	OCBUDC0062MZ/	AG		B	Photo coupler(PS2501-1L)	[PC1]
35	OCBUAG0225AZI	AQ	N	B	FET(FS7KM)	[Q1]
36	OCBUAC0255AM/	AD		B	Transistor(2SC4115S)	
37	OCBUAC0264AK/	AD		B	Transistor(2SC1741AS)	[Q3]
38	OCBUAC0034EL/	AD		B	Transistor(2SC1740S)	[Q4]
39	OCBUEEC225CF/	AC		C	Resistor(1/2W 2.2M $\Omega \pm 5 \%$)	[R1]
40	OCBUEXJAH474/	AC	N	C	Resistor (1/4W 470K $\Omega \pm 5 \%$)	[R2]
41	OCBUEXJAH474/	AC	N	C	Resistor (1/4W 470K $2 \pm 5 \%$)	[R3]
42	OCBUEEB681CT/	AC		C	Resistor (1/8W $680 \Omega \pm 5 \%$)	[R4]
43	OCBUEXCAP272/	AC	N	C	Resistor(1/8W $2.7 \mathrm{~K} \Omega \pm 5 \%$)	[R5]
44	OCBUEXCAP181/	AC	N	C	Resistor(1/8W $180 \Omega \pm 5 \%$)	[R7]
45	0CBUEXCAP473/	AC	N	C	Resistor (1/8W $47 \mathrm{~K} \Omega \pm 5 \%$)	[R8]
46	OCBUEXCAP470/	AC	N	C	Resistor(1/8W 47 $\pm 5 \%$)	[R9]
47	OCBUEFDR12DB/	AE		C	Metal film resistor($1 \mathrm{~W} 0.12 \Omega \pm 5 \%$)	[R10]
48	OCBUEXCAP472/	AC	N	C	Resistor (1/8W $4.7 \mathrm{~K} \Omega \pm 5 \%$)	[R13]
49	OCBUEXCAP102/	AC	N	C	Resistor(1/8W $1 \mathrm{~K} \Omega \pm 5 \%$)	[R14]
50	OCBUEXCAP334/	AC	N	C	Resistor (1/8W $330 \mathrm{~K} \Omega \pm 5 \%$)	[R15]
51	OCBUEXCAP103/	AC	N	C	Resistor(1/8W $10 \mathrm{~K} \Omega \pm 5 \%$)	[R16]
52	OCBUEXCAP332/	AC	N	C	Resistor (1/8W 3.3K 255%)	[R17]
53	OCBUEXJAH332/	AC	N	C	Resistor(1/4W 3.3K $2 \pm 5 \%$)	[R18]

NO.	PARTS CODE	PRICE	NEW	PART	RANK	MARK
RANK						

[8] Power supply PWB unit

PARTS CODE	No.	$\begin{array}{\|l\|} \hline \text { PRICE } \\ \text { RANK } \end{array}$	$\begin{array}{\|l\|} \hline \text { NEW } \\ \text { MARK } \end{array}$	PART RANK
[C]				
CCNWN484AXH01	1-3	AL	N	C
CGERH2314XH04	4-1	AR	N	C
CGERH2566XH01	5-21	AG	N	C
CLEVP2358XH01	1-4	AD	N	C
CLEVP2359XH01	4-2	AD	N	C
CLEVP2360XH01	4-3	AD	N	C
CLEVP2361XH01	4-4	AD	N	C
CLEVP2362XH01	4-5	AD	N	C
CPAKC475CXH01	5-17	AN	N	D
CPLTP3183XHR1	5-20	AM	N	C
CROLR2481XH01	1-5	AQ	N	C
[D]				
DCEKC182RXHZA	1-6	BR	N	E
"	6-901	BR	N	E
DCEKC182RXHZZ	1-6	BR	N	E
	6-901	BR	N	E
DCEKL335CXH01	1-7	BB	N	E
	7-901	BB	N	E
DCEKP334CXH01	3-901	BF	N	E
DCEKP334CXH02	3-901	BD	N	E
DCEKP336CXH01	3-5	BD	N	E
	9-901	BD	N	E
DCEKP336CXH02	3-5	BD	N	E
	9-901	BD	N	E
DCEKP337CXH01	1-8	AF	N	E
	10-901	AF	N	E
DUNTK468BXHFW	5-1	AS	N	E
[G]				
GCABB2393XHSA	1-35	AZ	N	D
GCASP2145XHSA	3-1	AM	N	D
GCOVA2447XHSA	1-46	AF	N	D
GCOVA2448XHSA	2-1	AG	N	C
GLEGG2078XHZZ	1-47	AD	N	C
[H]				
HPNLH2418XHSA	1-62	AH	N	D
HPNLH2418XHSB	1-62	AH	N	D
[J]				
JBTN-2339XHSA	3-2	AF	N	C
JBTN-2340XHSA	3-3	AD	N	C
JBTN-2340XHSB	3-3	AE	N	C
JBTN-2341XHSA	3-4	AD	N	C
[L]				
LBNDJ2006XHZZ	1-17	AA		C
	2-29	AA		C
LBSHP2140XHZZ	1-22	AC	N	C
LBSHP2141XHZZ	2-25	AC	N	C
LBSHP2142XHZZ	2-26	AC	N	C
LBSHP2143XHZZ	1-23	AC	N	C
LFRM-2225XHSA	1-24	AL	N	C
LFRM-2226XHZZ	4-6	AQ	N	C
LFRM-2227XHZZ	2-6	AQ	N	C
LFRM-2232XHZZ	2-7	AT	N	C
LHLDZ2224XHZZ	2-18	AL	N	C
LHLDZ2227XHZZ	1-36	AD	N	C
LHLDZ2228XHZZ	1-37	AD	N	C
LPLTG2911XHZZ	3-11	AE		C
LPLTG3181XHZZ	2-19	AD	N	C
LPLTM3178XHZZ	1-48	AF	N	C
LPLTM3190XHZZ	4-7	AG	N	C
LPLTP3175XHZZ	3-12	AD	N	C
LPLTP3176XHZZ	3-13	AD	N	C
LPLTP3177XHZZ	1-49	AD	N	C
LPLTP3179XHZZ	2-20	AD	N	C
LPLTP3180XHZZ	2-21	AH	N	C
LPLTP3182XHZZ	2-22	AH	N	C
LPLTP3184XHZZ	5-3	AH	N	C
LX-BZ2222XHZZ	2-B3	AC		C
LX-BZ2234XHZZ	2-B1	AD	N	C
LX-BZ2282XHZZ	1-B3	AB		C
[M]				
MCAMP2028XHZZ	4-8	AE	N	C
MLEVP2356XHZZ	1-51	AD	N	C
MLEVP2357XHZZ	1-50	AD	N	C
MLEVP2363XHZZ	2-8	AD	N	C
MSPRC3287XHZZ	1-38	AB	N	C
MSPRC3288XHZZ	1-39	AB	N	C
MSPRC3289XHZZ	1-40	AB	N	C
MSPRC3295XHZZ	1-25	AB	N	C
MSPRC3299XHZZ	2-23	AB	N	C

PARTS CODE	No.	$\begin{array}{\|l\|} \hline \text { PRICE } \\ \text { RANK } \end{array}$	NEW MARK	PART RANK
MSPRC3300XHZZ	2-24	AB	N	C
MSPRC3301XHZZ	2-2	AB	N	C
MSPRC3305XHZZ	2-9	AB	N	C
MSPRC3335XHZZ	2-30	AD	N	C
MSPRD3285XHZZ	1-53	AB	N	C
MSPRD3286XHZZ	1-52	AB	N	C
MSPRD3291XHZZ	1-54	AD	N	C
MSPRD3292XHZZ	1-55	AB	N	C
MSPRD3293XHZZ	3-14	AB	N	C
MSPRD3296XHZZ	1-26	AB	N	C
MSPRD3298XHZZ	4-9	AE	N	C
MSPRD3302XHZZ	2-10	AB	N	C
MSPRD3336XHZZ	1-65	AD	N	C
MSPRP3297XHZZ	1-56	AD	N	C
MSPRT3294XHZZ	3-15	AB	N	C
[N]				
NGERH2380XHZZ	4-10	AC		C
NGERH2409XHZZ	4-11	AB	N	C
NGERH2568XHZZ	5-4	AB	N	C
NGERH2569XHZZ	1-27	AC	N	C
NGERH2570XHZZ	1-28	AD	N	C
NGERH2571XHZZ	4-12	AD	N	C
NGERH2572XHZZ	4-13	AD	N	C
NGERH2573XHZZ	4-14	AD	N	C
NGERH2574XHZZ	4-15	AD	N	C
NGERH2575XHZZ	4-16	AD	N	C
NGERH2576XHZZ	4-17	AD	N	C
NGERH2577XHZZ	4-18	AD	N	C
NGERH2579XHZZ	2-27	AD	N	C
NGERH2580XHZZ	2-11	AC	N	C
NGERH2581XHZZ	2-12	AC	N	C
NGERH2582XHZZ	4-19	AC	N	C
NGERP2318XHZZ	2-3	AD		C
NROLP2332XHZZ	1-29	AD		C
NROLR2482XHZZ	1-30	AR	N	C
NROLR2483XHZZ	2-13	AL	N	C
NROLR2484XHZZ	2-14	AL	N	C
NROLR2485XHZZ	2-28	AQ	N	C
NSFTP2357XHZZ	2-15	AG	N	C
NSFTP2358XHZZ	2-16	AG	N	C
[P]				
PCOVP2130XHZZ	1-41	AE	N	C
PCOVP2131XHSA	1-57	AD	N	C
PCOVP2132XHZZ	1-58	AD	N	C
PGIDM2614XHSA	3-16	AL	N	C
PGIDM2615XHZZ	1-42	AD	N	C
PGIDM2616XHZZ	1-43	AD	N	C
PGIDM2617XHZZ	1-31	AD	N	C
PGIDM2618XHZZ	1-32	AD	N	C
PGIDM2619XHSA	2-4	AF	N	C
PGIDM2620XHSA	2-5	AF	N	C
PGIDM2621XHSA	2-17	AF	N	C
PBRS-2055XHZZ	1-63	AN	N	C
PRBNN2033SC10	5-5	AL	N	S
PRBNN2034SC15	5-5	AQ	N	S
PSHEP3660XHZZ	3-17	AE	N	C
PSHEZ3687XHZZ	1-64	AD	N	C
[Q]				
QACCD2054XHZZ	1-59	AP		B
QCNCM2401SC0B	6-92	AA		C
QCNCM2508SC1B	6-87	AF	N	C
QCNCM2638SC0F	6-91	AE	N	C
QCNCM7014SC0B	6-86	AD		C
QCNCM7014SC0C	6-90	AA		C
QCNCM7014SC0F	6-88	AB		C
QCNCM7014SC0G	6-85	AB		C
QCNCM7014SC1E	6-93	AC		C
QCNCM7014SC1F	6-89	AD		C
	10-1	AD		C
"	10-2	AD		C
QCNCW715MAFZZ	7-21	AF	N	C
QCNWG208BXHZZ	5-6	AF	N	C
QCNWG209BXHOW	5-2	AH	N	C
QCNWN483AXHZZ	4-20	AD	N	C
QCNWN485AXHZZ	1-33	AG	N	C
QCNWN486AXHZZ	1-44	AM	N	C
QCNWN487AXHZZ	1-16	AL	N	C
	3-9	AL	N	C
QCNWN496AXHZZ	1-60	AL	N	C
QFS-P2010SCZZ	6-97	AD		B

PARTS CODE	No.	$\begin{aligned} & \hline \text { PRICE } \\ & \text { RANK } \end{aligned}$	NEW MARK	PART RANK
QJAKZ2073SCFB	7-25	AD		C
QJAKZ2079XH0D	7-26	AD		C
QSW-F2224SCZZ	4-21	AE		C
QSW-K0005AWZZ	3-6	AC		C
	9-1	AC		C
QSW-M2246AXZZ	3-7	AH		C
	9-2	AH		C
QSW-M2294XHZZ	3-8	AE		C
	9-3	AE		C
QSW-Z2317XHZZ	7-63	AF	N	C
[R]				
RC-FZ3024SCZZ	7-19	AG		C
RCRSB0297AFZZ	6-184	AD		B
RCRSP2176SCZZ	6-183	AG	N	B
RDENT2171XHZZ	1-61	BH	N	E
	8-901	BH	N	E
RH-IX2168SCZZ	6-100	BB		B
RHEDZ2065XHZZ	1-45	BP	N	B
RMOTS2175XHZZ	4-22	AX	N	B
RR-TZ3017SCZZ	6-181	AC		B
RR-TZ3018SCZZ	6-178	AC		B
	6-179	AC		B
"	6-180	AC		B
RRLYD3433XHZZ	7-20	AH		B
RTRNI2171XHZZ	7-64	AL	N	B
RUNTZ2080XH01	3-10	BA	N	E
RUNTZ2082XHZZ	1-34	BR	N	B
[S]				
SPAKA465CXHZZ	5-14	AF	N	D
SPAKA466CXHZZ	5-15	AF	N	D
SPAKA467CXHZZ	5-16	AD	N	D
SPAKC468CXHTZ	5-17	AL	N	D
SPAKP474CXHZZ	5-18	AB	N	D
[T]				
TCADZ2891XHZZ	5-10	AF		D
TCADZ3233XHZZ	5-7	AG	N	D
TCADZ3282XHZZ	5-9	AD	N	D
TCADZ3283XHZZ	5-8	AD	N	D
TINSE4228XHTZ	5-11	AE	N	D
TINSE4229XHTZ	5-11	AQ	N	D
TLABH319DXHZZ	2-31	AD	N	D
TLABM201DXHZZ	5-12	AN	N	D
TLABM203DXHZZ	5-12	AN	N	D
[U]				
UBATL2049SCZZ	6-1	AF		B
[V]				
VCCCCY1HH101J	6-17	AA		C
	6-22	AA		C
	6-23	AA		C
"	6-24	AA		C
"	6-26	AA		C
"	6-27	AA		C
"	6-64	AA		C
"	6-66	AA		C
	6-67	AA		C
"	6-75	AA		C
"	6-76	AA		C
	6-77	AA		C
"	6-78	AA		C
"	6-79	AA		C
VCCCCY1HH180J	6-31	AA		C
VCCCCY1HH220J	6-32	AA		C
	6-54	AA		C
	6-55	AA		C
VCCCCY1HH221J	6-40	AA		C
VCCCCY1HH471J	6-83	AA		C
VCEAGAOJW227M	6-2	AD		C
	6-4	AD		C
VCEAGA1EW476M	6-3	AA		C
	6-7	AA		C
VCEAGA1HW106M	6-5	AA		C
	6-6	AA		C
	6-8	AA		C
"	6-9	AA		C
"	7-2	AA		C
VCEAGA1HW107M	7-13	AA		C
VCEAGA1HW225M	7-5	AA		C
VCEAGA1HW226M	6-10	AB		C
	7-6	AB		C
"	7-12	AB		C

PARTS CODE	No.	$\begin{aligned} & \left\|\begin{array}{l} \text { PRICE } \\ \text { RANK } \end{array}\right\| \end{aligned}$	NEW MARK	PART RANK
VCEAGA1HW475M	7-7	AA		C
VCKYCY1AF105Z	6-38	AC		C
VCKYCY1AF105Z	6-39	AC		C
"	6-41	AC		C
"	6-42	AC		C
"	6-45	AC		C
"	6-48	AC		C
"	6-49	AC		C
"	6-50	AC		C
"	6-51	AC		C
"	6-52	AC		C
"	6-53	AC		C
"	6-60	AC		C
"	6-62	AC		C
"	6-63	AC		C
"	6-70	AC		C
VCKYCY1CB104K	6-69	AB		C
	6-72	AB		C
"	6-73	AB		C
VCKYCY1EF104Z	6-18	AA		C
"	6-20	AA		C
"	6-21	AA		C
"	6-25	AA		C
"	6-28	AA		C
"	6-30	AA		C
"	6-35	AA		C
"	6-36	AA		C
"	6-37	AA		C
"	6-43	AA		C
"	6-44	AA		C
"	6-46	AA		C
"	6-47	AA		C
"	6-56	AA		C
"	6-57	AA		C
"	6-68	AA		C
"	6-74	AA		C
"	6-84	AA		C
"	6-156	AA		C
VCKYCY1HB102K	6-11	AA		C
"	6-12	AA		C
"	6-13	AA		C
"	6-14	AA		C
"	6-15	AA		C
"	6-16	AA		C
"	6-29	AA		C
"	6-59	AA		C
"	6-61	AA		C
	6-80	AA		C
"	6-81	AA		C
"	6-82	AA		C
VCKYCY1HB103K	6-33	AA		C
VCKYCY1HB472K	6-34	AA		C
VCKYCY1HF104Z	6-19	AA		C
	6-65	AA		C
VCKYPA1HB102K	7-4	AA		C
"	7-8	AA		C
"	7-10	AA		C
	7-11	AA		C
"	7-17	AA		C
VCKYPA1HB103K	7-18	AA		C
VCKYPA1HB221K	7-9	AA		C
"	7-14	AA		C
"	7-16	AA		C
VCKYPA1HB222K	7-3	AA		C
VCKYPA1HF223Z	7-15	AA		C
VHDDSS133//-1	7-22	AA		B
	7-23	AA		B
VHDHRW0202B-1	6-94	AD		B
VHD1SS355//-1	6-95	AB		B
"	6-96	AB		B
VHEHZ2C1///-1	7-70	AA		B
"	7-71	AA		B
VHEHZ27-1//-1	7-72	AB		B
VHEMTZJ100B-1	7-67	AC		B
"	7-69	AC		B
VHEMTZJ5R6B-1	7-68	AB		B
VHE02CZ180Y-1	6-186	AC		B
VHE1N4748A/-1	6-185	AC		B
VHIF002/TA01B	6-98	BN	N	B
VHIF002/TA02B	6-99	BN	N	B

PARTS CODE	No.	$\begin{aligned} & \text { PRICE } \\ & \text { RANK } \end{aligned}$	NEW MARK	PART RANK
VHIKIA324P/-1	7-24	AF	N	B
VHIKID65001AP	6-103	AE		B
VHINJM2113M-1	6-102	AG		B
VHISCE209//-1	6-101	BH	N	B
VHIS814A33AUC	6-182	AH	N	B
VHPSG206S//-1	7-28	AG		B
"	7-29	AG		B
VHPTLP521-1BL	7-27	AE		B
VHVERZV5D471/	7-65	AC		B
	7-66	AC		B
VHVRA391PV6-1	7-1	AE		B
VRD-HT2EY101J	7-51	AA		C
VRD-HT2EY102J	7-35	AA		C
	7-41	AA		C
VRD-HT2EY133J	7-44	AA		C
	7-46	AA		C
VRD-HT2EY151J	7-49	AA		C
VRD-HT2EY152J	7-38	AA		C
VRD-HT2EY163J	7-56	AA		C
VRD-HT2EY202J	7-48	AA		C
VRD-HT2EY223J	7-59	AA		C
VRD-HT2EY224J	7-42	AA		C
VRD-HT2EY273J	7-36	AA		C
VRD-HT2EY332J	7-37	AA		C
"	7-39	AA		C
"	7-40	AA		C
"	7-45	AA		C
"	7-52	AA		C
"	7-57	AA		C
VRD-HT2EY362J	7-43	AA		C
VRD-HT2EY393J	7-54	AA		C
VRD-HT2EY473J	7-58	AA		C
VRD-HT2EY563J	7-53	AA		C
VRD-HT2EY621J	7-55	AA		C
VRD-HT2EY822J	7-47	AA		C
VRD-HT2EY823J	7-50	AA		C
VRD-HT2HY223J	7-60	AA		C
VRS-CY1JB000J	6-58	AA		C
	6-71	AA		C
"	6-104	AA		C
"	6-105	AA		C
"	6-106	AA		C
"	6-108	AA		C
"	6-109	AA		C
"	6-110	AA		C
"	6-122	AA		C
"	6-129	AA		C
	6-146	AA		C
VRS-CY1JB101J	6-176	AA		C
VRS-CY1JB102J	6-127	AA		C
"	6-131	AA		C
"	6-140	AA		C
"	6-141	AA		C
	6-143	AA		C
"	6-144	AA		C
"	6-157	AA		C
"	6-172	AA		C
VRS-CY1JB103J	6-125	AA		C
	6-135	AA		C
"	6-137	AA		C
"	6-147	AA		C
VRS-CY1JB104J	6-145	AA		C
	6-154	AA		C
	6-155	AA		C
VRS-CY1JB105J	6-139	AA		C
	6-164	AA		C
VRS-CY1JB106J	6-153	AA		C
VRS-CY1JB121J	6-142	AA		C
VRS-CY1JB124J	6-132	AA		C
	6-171	AA		C
VRS-CY1JB150J	6-107	AA		C
VRS-CY1JB151J	6-136	AA		C
	6-174	AA		C
"	6-175	AA		C
VRS-CY1JB203J	6-130	AA		C
"	6-133	AA		C
"	6-149	AA		C
"	6-159	AA		C
VRS-CY1JB222J	6-162	AA		C
VRS-CY1JB223J	6-161	AA		C

PARTS CODE	No.	$\begin{aligned} & \text { PRICE } \\ & \text { RANK } \end{aligned}$	NEW MARK	PART RANK
VRS-CY1JB224J	6-134	AA		C
"	6-150	AA		C
VRS-CY1JB271J	6-120	AA		C
"	6-121	AA		C
"	6-126	AA		C
"	6-152	AA		C
"	6-158	AA		C
"	6-160	AA		C
"	6-166	AA		C
"	6-167	AA		C
"	6-168	AA		C
"	6-169	AA		C
"	6-173	AA		C
	6-177	AA		C
VRS-CY1JB392J	6-163	AA		C
VRS-CY1JB393J	6-170	AA		C
VRS-CY1JB471J	6-123	AA		C
	6-124	AA		C
	6-138	AA		C
VRS-CY1JB474J	6-148	AA		C
VRS-CY1JB512J	6-128	AA		C
VRS-CY1JB513J	6-151	AA		C
VRS-CY1JB562J	6-119	AA		C
VRS-CY1JB752J	6-165	AA		C
VRS-HT3AA510J	7-61	AA		C
VRS-HT3DA221J	6-118	AB		C
VRS-RE3AA122J	7-62	AC		C
VSKRA102M//-3	7-34	AD	N	B
VSKRA102S//-1	6-116	AD	N	B
VSKRC102S//-1	6-113	AB		B
"	6-114	AB		B
"	6-117	AB		B
VSKRC106M//-1	7-30	AD	N	B
	7-31	AD	N	B
"	7-33	AD	N	B
VSKRC106S//-1	6-112	AD		B
VSKTA1504GR-1	6-111	AC		B
VSKTC3198GR-1	7-32	AD	N	B
VSSI4431DY+-1	6-115	AF		B
[X]				
XEBSD20P06000	3-B1	AA		C
XEBSD30P08000	4-B1	AA		C
XEBSD30P10000	1-B1	AA		C
	2-B2	AA		C
XEBSD30P12000	1-B2	AA		C
XWHSN40-08100	1-W1	AA		C
[0]				
0CBBFZ89256Z/	8-29	AD		C
0CBBFZ89633Z/	8-30	AD		C
0CBLRZ6803ZP/	8-33	AQ	N	C
OCBPCZ0307ZZ/	8-18	AH	N	C
0CBPJCSX2501/	8-27	AH		A
0CBPKZ0194ZZ/	8-17	AC		C
0CBPZZ0906ZZ/	8-28	AH		A
OCBUAC0034EL/	8-38	AD		B
0CBUAC0255AM/	8-36	AD		B
0CBUAC0264AK/	8-37	AD		B
0CBUAG0225AZ	8-35	AQ	N	B
0CBUBC0093AL/	8-25	AG	N	B
0CBUBC0125DK/	8-19	AD		B
"	8-20	AD		B
"	8-21	AD		B
"	8-22	AD		B
0CBUBC0169CL/	8-26	AE		B
OCBUBC0336AZ/	8-24	AL		B
0CBUBDBM300D/	8-61	AC		B
0CBUBDDH5R6K/	8-63	AG	N	B
0CBUBXAD270A/	8-59	AD		B
0CBUBXAD4R3C/	8-60	AD		B
0CBUBXAD6R2C/	8-62	AD		B
0CBUBY0020AK/	8-23	AD		B
OCBUDC0062MZ/	8-34	AG		B
0CBUEEB681CT/	8-42	AC		C
0CBUEEC225CF/	8-39	AC		C
OCBUEFDR12DB/	8-47	AE		C
OCBUEFE124DH/	8-54	AC	N	C
OCBUEXCAP000/	8-6	AC	N	C
OCBUEXCAP102/	8-49	AC	N	C
OCBUEXCAP103/	8-51	AC	N	C
OCBUEXCAP181/	8-44	AC	N	C

PARTS CODE	No.	$\begin{aligned} & \hline \text { PRICE } \\ & \text { RANK } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { NEW } \\ \text { MARK } \end{array}$	$\begin{array}{\|l\|} \hline \text { PART } \\ \text { RANK } \end{array}$
0CBUEXCAP272/	8-43	AC	N	C
OCBUEXCAP332/	8-52	AC	N	C
0CBUEXCAP334/	8-50	AC	N	C
OCBUEXCAP470/	8-46	AC	N	C
OCBUEXCAP472/	8-48	AC	N	C
0CBUEXCAP473/	8-45	AC	N	C
OCBUEXEAG222/	8-55	AC	N	C
OCBUEXJAH332/	8-53	AC	N	C
OCBUEXJAH474/	8-40	AC	N	C
	8-41	AC	N	C
OCBUEZ0747ZZ/	8-57	AD	N	B
0CBUFBA222EQ/	8-58	AD	N	B
0CBUGA0290ZZ	8-9	AK	N	C
0CBUGA0291ZZ	8-2	AL	N	C
0CBUGA0292ZZ	8-8	AL	N	C
0CBUGCM103BH/	8-7	AD	N	C
"	8-16	AD	N	C
0CBUGCS152AC/	8-11	AD		C
0CBUGCU102JC/	8-3	AF	N	C
0CBUGCU472BW/	8-12	AD		C
0CBUGCZ472HF/	8-14	AD	N	C
	8-15	AD	N	C
0CBUGFM224KR/	8-1	AF		C
0CBUGXGCF102/	8-4	AD		C
OCBUGXGCF152/	8-5	AF		C
0CBUGXGDF271/	8-13	AD		C
0CBUGXGFD104/	8-10	AD	N	C
0CBUKZ0790ZZ/	8-31	AK		C
0CBUZZ0203ZZ	8-32	AK	N	C
0CB829655049/	8-56	BF	N	B

PARTS CODE	No.	$\begin{array}{\|l\|} \hline \text { PRICE } \\ \text { RANK } \end{array}$	NEW MARK	PART RANK
			-	
	-	-		
	,			
	,			

PARTS CODE	No.	$\begin{array}{\|l\|} \hline \text { PRICE } \\ \text { RANK } \end{array}$	$\begin{array}{\|c\|} \hline \text { NEW } \\ \text { MARK } \end{array}$	PART RANK
		-		
		-		

S- A PP

COPYRIGHT © 2001 BY SHARP CORPORATION

ALL RIGHTS RESERVED.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of the publisher.

[^0]: * Please complete this report before calling the "TAC" hotline if problem still occurs.

