/\‘/ NetTimeLogic

Universal
Configuration
Manager

Reference Manual

Product Info

Product Manager Sven Meier

Author(s) Sven Mejer

Reviewer(s) -

Version 1.3

Date 15.11.2018

UniversalConfigurationManager Reference Manual 1.3 Page 1 of 20



/ Net Logic

Copyright Notice

Copyright © 2018 NetTimelLogic GmbH, Switzerland. All rights reserved.
Unauthorized duplication of this document, in whole or in part, by any means, is
prohibited without the prior written permission of NetTimelLogic GmbH, Switzer-
land.

All referenced registered marks and trademarks are the property of their respective
owners

Disclaimer

The information available to you in this document/code may contain errors and is
subject to periods of interruption. While NetTimelLogic GmbH does its best to
maintain the information it offers in the document/code, it cannot be held respon-
sible for any errors, defects, lost profits, or other consequential damages arising
from the use of this document/code.

NETTIMELOGIC GMBH PROVIDES THE INFORMATION, SERVICES AND PROD-
UCTS AVAILABLE IN THIS DOCUMENT/CODE "AS IS," WITH NO WARRANTIES
WHATSOEVER. ALL EXPRESS WARRANTIES AND ALL IMPLIED WARRANTIES,
INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE, AND NON-INFRINGEMENT OF PROPRIETARY RIGHTS ARE
HEREBY DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO
EVENT SHALL NETTIMELOGIC GMBH BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, CONSEQUENTIAL, SPECIAL AND EXEMPLARY DAMAGES, OR ANY
DAMAGES WHATSOEVER, ARISING FROM THE USE OR PERFORMANCE OF THIS
DOCUMENT/CODE OR FROM ANY INFORMATION, SERVICES OR PRODUCTS
PROVIDED THROUGH THIS DOCUMENT/CODE, EVEN IF NETTIMELOGIC GMBH
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

IF YOU ARE DISSATISFIED WITH THIS DOCUMENT/CODE, OR ANY PORTION
THEREOF, YOUR EXCLUSIVE REMEDY SHALL BE TO CEASE USING THE DOCU-
MENT/CODE.

UniversalConfigurationManager Reference Manual 1.3 Page 2 of 20



/ Net Logic

Overview

NetTimelogic’'s Universal Configuration Manager is an open source solution for
configuring and supervising all NetTimel.ogic’s IP cores. It allows to configure the
configuration registers of the individual cores and allows to supervise the status of
the cores. Some cores allow real-time monitoring of status information and can
show this in a graph (e.g. PTP). The connection between the host and the target is
done via UART (often USB USART) or 100Mbit Ethernet and has its own protocol
running on it. The GUI can detect all instantiated cores in the systems and their AXI
base addresses at runtime and will provide tabs for the individual cores. The solu-
tion consists of two parts, an FPGA part and a GUI part. The FPGA part allows the
access to the registers, provides information about the cores in the system and
makes a protocol and interface conversion between UART/Ethernet and AXI. The
GUI part is the frontend for the user, it abstracts the communication interface and
the individual registers and does the data presentation. Multiple instances of the
tool can run in parallel and allow configuration and monitoring of multiple systems.
Multiple instances of the same core in a system are handled and can be configured
individually.

Key Features:

. Open Source GUI

. HW/SW co-solution

. Configuration of the cores via UART or Ethernet

. Status monitoring of the cores via UART or Ethernet

. Register access to all AX| addresses in the system (also 3™ party)

. Auto detection of available cores and base addresses

. Proprietary protocol for the UART/Ethernet connection, can also be done

from a terminal (UART only)

. Multiple systems and multiple cores in a system support
. Loading of configurations from a file (plain ASCII)

. Logging of all accesses

. QT based

UniversalConfigurationManager Reference Manual 1.3 Page 3 of 20



/\/ NetTimeLogic

Revision History

This table shows the revision history of this document.

Version Date Revision

0.1 23.02.2017 First draft

1.0 16.08.2017 First release

1.1 17.09.2018 Added Ethernet interface

Changed to QT 5.11.2 and added code part which
1.2 11.10.2018 shall be modified for different QT versions or installa-
tion paths

15.11.2018 Added AXI timeout

Table T Revision History

UniversalConfigurationManager Reference Manual 1.3 Page 4 of 20



// NetTimeLogic

———————————GMBH

Content

1.1 Context Overview 7
1.2 Function 7
1.3 FPGA Architecture 8
1.4 SW Architecture 9

2.1 UART Interface 12
2.2 ETHERNET Interface 12
2.3 Protocol 12
2.31  Write Command and Write Response 13
2.3.2 Read Command and Write Response 14
2.3.3 Connect Command and Connect Response 15
2.3.4 Error Response 15

51 Dynamic Build 18

5.2 Static Build 18

UniversalConfigurationManager Reference Manual 1.3 Page 5 of 20



/\/ NetTimeLogic

Definitions

Definitions

A counter based clock that count in the period of its fre-
Counter Clock ,
quency in nanoseconds

Proportional-Integral servo loop, allows for smooth correc-
Pl Servo Loop

tions
Offset Phase difference between clocks
Drift Frequency difference between clocks
Table 2 Definitions
Abbreviations

Abbreviations

AXI| AMBA4 Specification (Stream and Memory Mapped)

IRQ Interrupt, Signaling to e.g. a CPU

PPS Pulse Per Second

TS Timestamp

Clock

Counter Clock

Ethernet

Testbench

Look Up Table

Flip Flop

Pulse Width Modulation

Random Access Memory

Read Only Memory

Field Programmable Gate Array

Hardware description Language for FPGA’s

Table 3: Abbreviations

UniversalConfigurationManager Reference Manual 1.3 Page 6 of 20



/' NetlimeLogic

1 Introduction

1.1 Context Overview

NetTimelLogic’s Universal Configuration Manager is meant as a solution for config-
uring and supervising all NetTimelLogic’s IP cores. It allows to configure the config-
uration registers of the individual cores and allows to supervise the status of the
cores. The connection between the host and the target is done either via UART
(often USB USART) or T00OMbit Ethernet and has its own protocol running on it.
The solution consists of two parts, an FPGA part and a GUI part. The FPGA part
allows the access to the registers, provides information about the cores in the
system and makes a protocol and interface conversion between UART/Ethernet
and AXI. The GUI part is the frontend for the user, it abstracts the communication
interface and the individual registers and does the data representation. Multiple
instances of the tool can run in parallel and allow configuration and monitoring of
multiple systems. Multiple instances of the same core in a system are handled and
can be configured individually.

Host

AXl4 LiteSlave AX4 Lite Slave AXI4 Lite Slave

UART or__|

ETH

1
=
-1
=
B3
<

Figure 1 Context Block Diagram

1.2 Function

The Universal Configuration Manager allows to read and write registers via an
FPGA configuration block which converts between a proprietary UART/Ethernet
protocol and AXI. It first tries to connect to the configuration core and asks for a
specific acknowledge (if in UART mode also baudrate). If it received the expected
acknowledge it reads the configuration ROM in the configuration core to get the
information about the instantiated cores like base address and instance number.

UniversalConfigurationManager Reference Manual 1.3 Page 7 of 20



/' NetlimeLogic

This register map is then shown and the individual tabs of the instantiated cores
are shown. Then in the individual tabs the registers can be written and read. The
registers are shown as fields with a meaningful value and therefore are abstracted
from the individual addresses and bits.

For some of the cores also an auto-refresh functionality is available which polls the
registers in a fixed interval and updates graphs if available.

1.3 FPGA Architecture

The core is split up into different functional blocks for reduction of the complexity,
modularity and maximum reuse of blocks. The interfaces between the functional
blocks are kept as small as possible for easier understanding of the core.

ConfSlaveCore

UniversalConfigurationManager

Dr*.‘Ax

Figure 2: Architecture Block Diagram

UART or ETHERNET
This block converts the UART or Ethernet data stream into AXIS and vice versa.

Conf Processor

This block parses the protocol data received from the UART/ETH block, converts it
into AX| access and generates responses towards the host via the UART/ETH
block.

AXI interconnect

This block connects the internal Registerset with the AXI Master in the Conf Pro-
cessor and connects to an external AXI interconnect for accessing all other regis-
ters.

Register Set

UniversalConfigurationManager Reference Manual 1.3 Page 8 of 20



// NetTimeLogic

GMBH

This block allows reading the configuration from the Config ROM.

Config ROM
This block stores all the information about the instantiated slaves in the ROM. The
configuration has to be passed to the Conf Slave core via a structure via generics.

1.4 SW Architecture

The core is split up into different functional blocks for reduction of the complexity,
modularity and maximum reuse of blocks. The interfaces between the functional
blocks are kept as small as possible for easier understanding of the core.

Figure 3: Architecture Block Diagram

Main
This block is the programs entry point, the only thing it does is to instantiate a
Universal Configuration Manager class.

UniversalConfigurationManager Reference Manual 1.3 Page 9 of 20



/ Net Logic

Universal Configuration Manager (UCM)

This class has references to all other Tabs, the Communication Lib, the Core Config
and to the Universal Configuration Manager Ul. It is the interconnection block for all
other Tabs.

Universal Configuration Manager Ul
This is the Ul of the UCM, it basically is only the main window of the Ul with an
empty Tab.

Communication Lib

This class gives access to the registers and abstract the underlying protocol and
UART or Ethernet interface. When a connection is opened the library checks with a
connect command if a counterpart is available on this link.

Core Config
This class is a list of the cores as read from the Config ROM.

Config Tab

This class has a reference to the Config Tab UL It is the first of the only Tabs which
are active at the beginning. Its purpose is to open and close a connection to the
target. It lists all available UART ports in the system so the user can choose to
which system he wants to connect. When it opens a connection it immediately
reads the Config ROM in the FPGA. Based on the information in the Config ROM it
adds the corresponding core Tabs to the main window Ul Tab and enables the
tabs. Also the information from the ROM is stored in the Core Config and shown in
the Address Map window. When the connection is closed all Tabs are removed
from the main window Ul Tab and disabled. When the connection is closed, no read
and writes to registers is possible anymore

Config Tab Ul
This is the Ul of the Config Tab, it contains all GUI elements used for the Config
Tab.

Advanced Tab
This class has a reference to the Advanced Tab Ul It is the second of the only Tabs
which are active at the beginning. Its purpose is to log all activities (transfers) in

UniversalConfigurationManager Reference Manual 1.3 Page 10 of 20



/ Net Logic

the system and allows to read and apply a configuration file for stored configs. In
addition, it gives access to any AXI register in the system. Be aware that accessing
an address which is not available (or doesn’t respond) in the system will lead to a
blocking system since there is no timeout on AXI and the AXI master will block the
AXI Bus infinitely. It also allows to load and save config files and to save log files

Advanced Tab Ul
This is the Ul of the Advanced Tab, it contains all GUI elements used for the Ad-
vanced Tab.

CLK Clock Tab, PPS Slave Tab, ... Tab
This class has a reference to the ... Tab Ul. These are the Tabs containing the func-
tionalities according to the cores they represent.

CLK Clock Tab Ul, PPS Slave Tab Ul, ... Tab Ul
This is the Ul of the ... Tab, it contains all GUI elements used for specific core’s
functionality.

UniversalConfigurationManager Reference Manual 1.3 Page 11 of 20



/ Net Logic

2 Interface and Protocol Basics

2.1 UART Interface

For the communication between the FPGA and the Host a UART interface can be
used. Often this UART interface is done via an USB UART. The following parame-
ters are used:

. 1 Start bit

. 8 Data bits

. 1 Stop bit

. No Parity bit

. Baudrate 115200

2.2 ETHERNET Interface

For the communication between the FPGA and the Host also an TOOMbit Ethernet
interface can be used. The following parameters are used:

. 100Mbit only

. Access via Broadcast or Unicast MAC and IP
. IPv4

. TTL: 128

. UDP Port: OxBEEF

Data is encapsulated into a UDP/IPv4 frame as one command per frame. It also
expects ASCII character and does the padding and cut off of the padding.

2.3 Protocol

The protocol run on the UART and Ethernet is a proprietary protocol defined by
NetTimelLogic.

It is a simple protocol with no retransmission and therefore also not failsafe. The
protocol uses ASCII character so it can also be entered directly from a terminal.

A couple of extra characters are used in the Data stream to allow synchronization
of start and end of the commands as well as separation of the individual fields.
The command always starts with a ‘$’ character followed by a two-character com-
mand code. Then individual fields can follow, each field is separated by a ‘,’ charac-
ter. After the fields a ™’ character indicates the end of the command and that a
checksum is followed, the two characters of checksum are followed. The command
is ended with a <CR><LF> (carriage return and line feed) combination. The check-
sum is optional for the host and can be left away, in this case the *’ character is

UniversalConfigurationManager Reference Manual 1.3 Page 12 of 20



/ Net Logic

also left away. The checksum XOR combines all received bytes between the ‘$’ and
* characters (not including) starting with Ox0OO0 as starting value. If a checksum is
present, the checksum is checked and an error is signaled by the FPGA to the host
if the checksum is not correct and the command ignored.

The protocol engine in the FPGA allows empty lines and comments be transferred
also via UART. A comment line starts with “--* characters. This functionality, and
the fact that the checksum is optional can be used if the whole content of a file
containing not only commands but also comments is copied to a terminal. The
Universal Configuration Manager will always send only commands from the host to
the FPGA and always with a checksum.

2.3.1 Write Command and Write Response

The two messages described here are used for writing a register.

The format of the write command looks the following:
$WC,<ADDRESS>,<DATA>*<CHECKSUM><CR><LF>

e.g.: $WC,0x50000000,0x40000001*14

A write command is always issued by the host.

The write command starts with the command identifier of the two characters
“WC”. Following the identifier, the 32bit AX| address to be written in hexadecimal
format is added. Following the address, 32bit of write data in hexadecimal format is
added. Both address and data have to start with “"Ox” followed by 8 hexadecimal

characters.

A write command will always trigger a write response in the FPGA. If something
goes wrong an error response is sent containing an error code.

The format of the write response looks the following:
$WR,<ADDRESS>*<CHECKSUM><CR><LF>

e.g.: $WR,0x50000000*64

UniversalConfigurationManager Reference Manual 1.3 Page 13 of 20



/ Net Logic

A write response is always issued by the FPGA.

The write response starts with the command identifier of the two characters “WR”.
Following the identifier, the 32bit AX| address written in hexadecimal format is
added which is the address which was written in the FPGA (as in the examples,
Ox50000000). The address has to start with “Ox” followed by 8 hexadecimal
characters.

2.3.2 Read Command and Write Response

The two messages described here are used for reading a register.
The format of the read command looks the following:
$RC,<ADDRESS>*<CHECKSUM><CR><LF>

e.g.: $RC,0x50000000*70

A read command is always issued by the host.

The read command starts with the command identifier of the two characters “RC”.
Following the identifier, the 32bit AX| address to be read in hexadecimal format is
added. The address has to start with “Ox” followed by 8 hexadecimal characters.

A read command will always trigger a read response in the FPGA. If something
goes wrong an error response is sent containing an error code.

The format of the read response looks the following:
$RR,<ADDRESS>,<DATA>*<CHECKSUM><CR><LF>
e.g.: $RR,0x50000000,0x00000001*04

A read response is always issued by the FPGA.

The read response starts with the command identifier of the two characters “RR”.
Following the identifier, the 32bit AX| address read in hexadecimal format is added
which is the address which was read in the FPGA (as in the examples,
Ox50000000). Following the address, 32bit of read data read in hexadecimal
format is added. Both address and data have to start with “Ox” followed by 8
hexadecimal characters.

UniversalConfigurationManager Reference Manual 1.3 Page 14 of 20



Net Logic
v

2.3.3 Connect Command and Connect Response

The two messages described here are used for testing the connection, for e.g. to
figure out if a system is connected that supports this protocol.

The format of the connect command looks the following:
$CC*<CHECKSUM><CR><LF>

e.g.: $CC*00

A connect command is always issued by the host.

The connect command starts with the command identifier of the two characters

“cCn.

A connect command will always trigger a connect response in the FPGA. If some-
thing goes wrong an error response is sent containing an error code.

The format of the connect response looks the following:
$CR*<CHECKSUM><CR><LF>
e.g.: $CR* N

A read response is always issued by the FPGA.
The read response starts with the command identifier of the two characters “CR”.

2.3.4Error Response

The error messages described here is used when something goes wrong. It is
always issued as reaction to another command.

UniversalConfigurationManager Reference Manual 1.3 Page 15 of 20



/ Net Logic

The format of the error response looks the following:

$ER,<ERROR CODE>*<CHECKSUM><CR><LF>

e.g.: $ER,OxO0000003*70

An error response is always issued by the FPGA.

The error response starts with the command identifier of the two characters “ER”.

Following the identifier, a 32bit error code in hexadecimal format is added.
The enumeration of the errors as of today is as following:

. Ox00000000: Checksum error

. Ox0000000T:; Unknown command (or error in command)

. Ox00000002: Read error on AXI

. Ox00000003: Write error on AXI

. Ox00000004: Access timeout error on AXI (illegal address, no answer)

UniversalConfigurationManager Reference Manual 1.3 Page 16 of 20



/' NetlimeLogic

3 Delivery Structure

UCM -- UCM
|-Binary -- UCM
| -Doc -- UCM
|-Library -- UCM
| -Tools -- UCM

core folder
binary
documentations
sources

build tools

UniversalConfigurationManager Reference Manual 1.3

Page 17 of 20



/ Net Logic

4 Run

If you do not want to build the application yourself a prebuilt binary is located in
Binary\UniversalConfigurationManager.exe.

5 Build

To build the core there are two possibilities, a static build for redistribution and a
dynamic build which needs that you have the QT runtime installed.

For building the application QT 5.11.2 with MinGW 5.3.0 is used. In principal also
earlier and later QT versions should be able to build the project.

5.1 Dynamic Build

For a dynamic build only two steps are needed:

1. Open the projectin
Library\UniversalConfigurationManager\UniversalConfigurationManager.pro
with QT Creator

2. Just press the run button and it will build and lunch the application

The application can be also started from the MinGW shell

5.2 Static Build

For a static build some additional steps are needed, since first a static library of QT
has to be built. You can either follow the instructions here
https://wiki.gt.io/Building a_ static_Qt for Windows_using MinGW or use the

scripts provided:
1. Open a Windows PowerShell
2. Run the script Tools\windows-build-gt-static.ps1 (This takes several hours: ~4h)

For running the script you need and internet connection, admin rights in the Pow-
erShell and you need 7-Zip to be installed. Also it expects that QT is installed in
C\Qt

Once the static library is built, you can build the application also with a script:
1. Run the script Tools\Ucm_ReleaseScript.bat
2. Run the application from Binary\UniversalConfigurationManager.exe

UniversalConfigurationManager Reference Manual 1.3 Page 18 of 20


https://wiki.qt.io/Building_a_static_Qt_for_Windows_using_MinGW

/ Net Logic

If you have used a different version of QT or if you have used a different installation
location you will need to adapt the Ucm_ReleaseScript.bat file at two locations:

set PATH=C:\Qt\Tools\mingw530 32\bin;%$PATHS
set PATH=C:\Qt\Static\5.11\bin;%$PATH%

UniversalConfigurationManager Reference Manual 1.3 Page 19 of 20



/ Net Logic

A List of tables

Table 1. REVISION HISTOIY oot 4

Table 20 DEfINITIONS oottt 6
Table 3:  ABDIEVIATIONS .ottt 6
B List of figures

Figure . ConteXt BIOCK DIagram .o, 7
Figure 2:  Architecture BIOCK Diagrami. oo, 8
Figure 3:  Architecture BIOCK Diagrami. e, 9

UniversalConfigurationManager Reference Manual 1.3 Page 20 of 20



