™

Moneris

BE PAYMENT READY

Java - Moneris Gateway API - Integration Guide

Version: 1.2.3

Copyright © Moneris Solutions, 2018

All rights reserved. No part of this publication may be reproduced,
stored in retrieval systems, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of Moneris Solutions Corporation.

Moneris Gateway API - Integration Guide

Security and Compliance

Your solution may be required to demonstrate compliance with the card associations’ PCI/CISP/PABP
requirements. For more information on how to make your application PCI-DSS compliant, contact the
Moneris Sales Center and visit https://developer.moneris.com to download the PCI_DSS Imple-
mentation Guide.

All Merchants and Service Providers that store, process, or transmit cardholder data must comply with
PCI DSS and the Card Association Compliance Programs. However, certification requirements vary by
business and are contingent upon your "Merchant Level" or "Service Provider Level".

The card association has some data security standards that define specific requirements for all organ-
izations that store, process, or transmit cardholder data. As a Moneris client or partner using this
method of integration, your solution must demonstrate compliance to the Payment Card Industry Data
Security Standard (PCI DSS) and/or the Payment Application Data Security Standard (PA DSS). These
standards are designed to help the cardholders and merchants in such ways as they ensure credit card
numbers are encrypted when transmitted/stored in a database and that merchants have strong access
control measures.

Non-compliant solutions may prevent merchant boarding with Moneris. A non-compliant merchant can
also be subject to fines, fees, assessments or termination of processing services.

For further information on PCI DSS & PA DSS requirements, visit http://www.pcisecuritystandards.org.

Confidentiality

You have a responsibility to protect cardholder and merchant related confidential account information.
Under no circumstances should ANY confidential information be sent via email while attempting to dia-
gnose integration or production issues. When sending sample files or code for analysis by Moneris staff,
all references to valid card numbers, merchant accounts and transaction tokens should be removed and
or obscured. Under no circumstances should live cardholder accounts be used in the test environment.

November 2018

http://www.pcisecuritystandards.org/

Moneris Gateway API - Integration Guide

Changes inv1.2.3

This version adds information about passing Offlinx™ data for the Card Match pixel tag via Unified
API transactions.

November 2018

Table of Contents

Security and CompliancCe .. 2
Confidentiality ... L 2
ChaNges IN V.2, 3 3
1 About This Documentation L 10
1o PUIPOSE L 10
Getting Help il 10

1.2 Who Is This Guide FOr? . 11

2 Basic Transaction Set L 12
2.1 Basic Transaction Type Definitions L 12

2.2 PUIChaSE .. 14

2.3 Pre-Authonization ... 19

2.4 Pre-Authorization Completion ... 25

2.5 Re-AUthONZatioN .. 28

2.6 FOrCe POSt . 30

2.7 Purchase CormeCtion 33

2.8 RefUNG 35

2.9 Independent RefUNd 37
2.10 Card Verification with AVS and CV D .. e 39
211 BatCh ClOS e ..o 43
2,12 Open Totals ... 45

3 Credential on File .. 48
3.1 About Credential On File 48

3.2 Credential on File Info Object and Variables 48

3.3 Credential on File Transaction Types L 48

3.4 Initial Transactions in Credential on File L 49

3.5 Vault Tokenize Credit Card and Credential onFile 49

3.6 Credential on File and Converting Temporary TOKENS 49

3.7 Card Verification and Credential on File Transactions 50
3.7.1 Whento Use Card Verification With COF 50

3.7.2 Credential on File and Vault Add Token 50

3.7.3 Credential on File and Vault Update Credit Card 51

3.7.4 Credential on File and Vault Add Credit Card 51

3.7.5 Credential on File and Recurring Billing 51

A VAUt 52
4.1 About the Vault Transaction Set 52

4.2 Vault Transaction TYPeS ... il 52
4.2.1 Administrative Vault Transaction types 52

4.2.2 Financial Vault Transaction types 54

4.3 Vault Administrative Transactions 54
4.3.1 Vault Add Credit Card — ResAddC C e 54

4311 Vault Data Key 58

4.3.1.2 Vault Encrypted Add Credit Card —EncResAddCC 58

4.3.2 Vault Temporary Token Add —ResTempAdd, 61

4.3.3 Vault Update Credit Card —ResUpdateCC 63

4.3.3.1 Vault Encrypted Update CC - EncResUpdateCC o] 67

4.3.4 Vault Delete - ResDeletel 70

4.3.5 Vault Lookup Full - ResLookupFull . . 72

4.3.6 Vault Lookup Masked - ResLookupMasked 73

4.3.7 Vault Get Expiring - ResGetEXpIriNg L 75

4.3.8 Vault Is Corporate Card - ReslscorporateCard 76

4.3.9 Vault Add Token — ResAddToken 77
4.3.10 Vault Tokenize Credit Card —ResTokenizeCC 81

4.4 Vault Financial Transactions 85
4.4.1 Customer D Changes oo 85
4.4.2 Purchase with Vault —ResPurchaseCC L 86
4.4.3 Pre-Authorization with Vault —ResPreauthCC 91
4.4.4 Vault Independent Refund CC - ResIndRefundCC 96
4.4.5 Force Post with Vault - ResForcePostCC L 98
4.4.6 Card Verification with Vault — ResCardVerificationCC 101

4.5 Hosted ToKenization 105
5 INTERAC® Online Payment 106
5.1 About INTERAC® Online Payment Transactions o i i, 106
5.2 Other Documents and ReferencCes 106
5.3 Website and Certification Requirements 107
5.3.1 Things to provide to MONeNiS .. L 107
5.3.2 Certification PrOCESS oo i L 107
5.3.3 Client Requirements . 108
5.3.4 Delay s ... 108

5.4 Transaction Flow for INTERAC® Online Payment 109
5.5 Sending an INTERAC® Online Payment Purchase Transaction 110
5.5.1 Fund-Guarantee Request L 110
5.5.2 Online Banking Response and Fund-Confirmation Request _............................... 111

5.6 INTERAC® Online Payment Purchase 111
5.7 INTERAC® Online Payment Refund 114
5.8 INTERAC® Online Payment Field Definitions 116
6 Mag Swipe Transaction Set 119
6.1 Mag Swipe Transaction Type Definitions 119
6.1.1 Encrypted Mag Swipe Transactions 120

6.2 Mag SWipe PUIChase 120
6.2.1 Encrypted Mag Swipe PUIChase L 123

6.3 Mag Swipe Pre-Authorization 125
6.3.1 Encrypted Mag Swipe Pre-Authorization 127

6.4 Mag Swipe Completion 130
6.5 Mag Swipe Force Post ... il 132
6.5.1 Encrypted Mag Swipe Force Post 134

6.6 Mag Swipe Purchase CormeCtion 137
6.7 Mag Swipe RefUNG ... 138
6.8 Mag Swipe Independent Refund 140
6.8.1 Encrypted Mag Swipe Independent Refund 143

T Level 28 TransactioNs L 146
7.1 About Level 2/3 Transactions 146
7.2 Level 2/3 Visa Transactions 146
7.2.1 Level 2/3 Transaction Types for Visa L 146
7.2.2 Level 2/3 Transaction Flow for Visa 148
7.2.3 VS Completion 148
7.2.4 VS Purchase ComeCtion 153
7.2.5 VS FOrCe PoOSt 155
7.2.6 VS RefUNG .. 160
7.2.7 VS Independent RefUnd 164
T.2.8 VS COMPaAIS e 169
7.2.8.1 VS Purcha - Corporate Card CommonData 170

7.2.8.2 VS Purchl-Line ltem Details 175

7.2.8.3 Sample Code for VS Corpais 178

7.3

7.4

8 MPI
8.1
8.2
8.3
8.4
8.5
8.6

Level 2/3 MasterCard Transactions e 180

7.3.1 Level 2/3 Transaction Types for MasterCard 180
7.3.2 Level 2/3 Transaction Flow for MasterCard 182
7.3.3 MC Completion ... 182
7.3.4 MC Force PoSt ... 184
7.3.5 MC Purchase CorreCtion 186
7.3.6 MC RefUNG ... 188
7.3.7 MC Independent Refund L 190
7.3.8 MC Corpais - Corporate Card Common Data with Line Iltem Details 193
7.3.8.1 MC Corpac - Corporate Card CommonData 194
7.3.8.2 MC Corpal -Line ltem Details 201
7.3.8.3 Tax Array Object - MC COrpais ... 204
7.3.8.4 Sample Code for MC COorpaiso 206
Level 2/3 American Express Transactions oL 209
7.4.1 Level 2/3 Transaction Types for AmeX ... 209
7.4.2 Level 2/3 Transaction FIOw for AMEX e 211
7.4.3 Level 2/3 Data Objects in AMeX ... 212
7.4.3.1 About the Level 2/3 Data Objects for Amex 212
7.4.3.2 Defining the AxLevel23 Object 212
Table 1 Ob ECt 213

Table 1 - Setting the N1Loop Object 214
Table 1 - Setting the AxRef Object 216
Table 2 ObJCt 217

Table 2 - Setting the AxIt1Loop Object 218
Table 2 - Setting the AxIt106s Object 221
Table 2 - Setting the AXTxXi Object L 221
Table 3 ObjeCt ... il 225

Table 3 - Setting the AXTxi Object 226
T.4.4 AX CompPletion ... 229
T.4.5 AXFOrCE POSt .. 232
7.4.6 AXPuUrchase ComeCtion 236
T4 7 AX REIUNG 238
7.4.8 AXIndependent Refund 242
__ 246
About MP I TransacCtions ... 246
3-D Secure Implementations (VbV, MCSC, SafeKey) 246
Activating VbV and MC S C . 247
Activating AmexX SafeKey 247
Transaction Flow for MP 247
M TranSaCtioNS . 248
8.6.1 VbV, MCSC and SafeKey Responses 249
8.6.2 MpiTxn Request Transaction 251
8.6.2.1 TXN Response and Creatingthe Popup 253
8.6.3 Vault MPI Transaction — ResMpiTXN 253
8.6.4 MPI ACS Request Transaction 255
8.6.4.1 ACS Response and Forminga Transaction 257
8.6.5 Purchase with 3-D Secure—cavvPurchase 257
8.6.5.1 Purchase with 3-D Secure and Recurring Billing _.......... 266
8.6.6 Pre-Authorization with 3-D Secure —cavvPreauth 268
8.6.7 Cavv Result Codes for Verified by Visa L 274
8.6.8 Vault Cavv Purchase 275

O e-Fraud ToOlS 281
9.1 Address Verification ServiCe 283
9.1.1 About Address Verification Service (AVS) 283

9.1.2 AVS INfO ObJECt .. 283

9.1.3 AVS ReSPONSE COUES L 284

9.1.4 AVS Sample Code 287

9.2 Card Validation Digits (CV D) ... L 288
9.2.1 About Card Validation Digits (CVD) ... e 288

9.2.2 Transactions Where CVD Is Required 288

9.2.3 CVD Info Object ... 289

9.2.4 CVD ResUlt Codes L 290

9.2.5 Sample Purchase with CVD Info Object 290

9.3 Transaction Risk Management Tool 291
9.3.1 About the Transaction Risk Management Tool 291

9.3.2 Introduction to QUEIIES L 291

0.3.3 SESSION QUEIY o oL 292

9.3.3.1 Session Query Transaction Flow __ 298

9.3.4 Attribute QUENY 299

9.3.4.1 Attribute Query Transaction Flow 303

9.3.5 Handling Response Information L 303

9.3.5.1 TRMT Response Fields 304

9.3.5.2 Understanding the Risk Score il 307

9.3.5.3 Understanding the Rule Codes, Rule Names and Rule Messages 308

9.3.5.4 Examples of Risk ReSpONSe L 315

S S S ON QUETY L 315

AtbULE QUEIY L 316

9.3.6 Inserting the Profiling Tags Into Your Website 316

9.4 Encorporating All Available Fraud Tools e, 318
9.4.1 Implementation Options for TRMT . 318

9.4.2 Implementation ChecKlist 318

9.4.3 Making a DeCisioN . L 320

10 Apple Pay In-App and on the Web Integration 321
10.1 About Apple Pay In-App and on the Web Integration 321
10.2 About API Integration of Apple Pay ... il 321
10.2.1 Transaction Types ThatUse Apple Pay 321

10.3 Apple Pay In-App Process FIoWS .. L 322
10.4 Cavv Purchase — Apple Pay L 323
10.5 Cavv Pre-Authorization — Apple Pay 327

T O X L 332
11,1 What Is @ PixXel Tag? o 332
11.2 Offlinx™ and AP Transactions L 332

12 ConVvenieNCe Fee 333
12.1 About Convenience Fee . .. 333
12.2 Purchase with Convenience Fee 333
12.3 Convenience Fee Purchase w/ Customer Information 336
12.4 Convenience Fee Purchase with VbV, MCSC and Amex SafeKey 339

13 Recurring Billing ... 343
13.1 About Recurring Billing 343
13.2 Purchase with Recurring Billing 343
13.3 Recurring Billing Update 346
13.4 Recurring Billing Response Fields and Codes 350
13.5 Credential on File and Recurring Billing ... o o .. 351

14 Customer Information .. . 353

14.1 Using the Customer Information Object 353

14.1.1 Custlnfo Object — Miscellaneous Properties 354
14.1.2 Custlnfo Object — Billing and Shipping Information ... 354
14.1.2.1 Set Methods for Billing and Shipping Info 355

14.1.2.2 Using Hash Tables for Billing and Shipping Info 355

14.1.3 Custlnfo Object — Item Information 355
14.1.3.1 Set Methods for Item Information 356

14.1.3.2 Using Hash Tables for Item Information 356

14.2 Customer Information Sample Code o . 356
15 Status CheCK ... 359
15.1 About Status CheCK 359
15.2 Using Status Check Response Fields L 359
15.3 Sample Purchase with Status Check 360
16 Visa CheCKoUt L 361
16.1 About Visa CheCkouUt L 361
16.2 Transaction Types - Visa CheCKoUt 361
16.3 Integrating Visa Checkout Lightbox 362
16.4 Transaction Flow for Visa Checkout 363
16.5 Visa Checkout PUrChase 364
16.6 Visa Checkout Pre-Authorization ... L 366
16.7 Visa Checkout Completion ... 368
16.8 Visa Checkout Purchase Correction 370
16.9 Visa Checkout RefUnd 372
16.10 Visa Checkout Information 374
17 Testing a Solution ... 377
17.1 About the Merchant Resource Center 377
17.2 Logging In to the QA Merchant Resource Center, 377
17.3 Test Credentials for Merchant Resource Center 377
17.4 Getting a Unique Test Store ID and APl ToKen 379
17.5 Processing a TransaCtion 381
17,51 OVEIVIEW 381
17.5.2 HttpsPostRequest Ob et L 382
17.5.3 Receipt ObjeCt . il 383
17.6 Testing INTERAC® Online Payment Solutions 384
17.7 Testing MPI SolUtions 385
17.8 Testing Visa CheckouUt 386
17.8.1 Creating a Visa Checkout Configuration for Testing 387
17.9 Test Card NUMEIS L 387
17.9.1 Test Card Numbers forLevel 2/3 . 388
17.9.2 Test Cards for Visa Checkout 388
17.10 Simulator HOSt . .o 388
18 Moving to Production 391
18.1 Activating a Production Store Account ... 391
18.2 Configuring a Store for Production 391
18.2.1 Configuring an INTERAC® Online Payment Store for Production 392
18.2.1.1 Completing the Certification Registration-Merchants 392
18.2.1.2 Third-Party Service/Shopping Cart Provider 393

18.3 Receipt RequiremMents L 394
18.3.1 Certification Requirements .. L 394
Appendix A Definitions of Request Fields 395
A.1 Definitions of Request Fields — Credential on File 405
A.2 Definition of Request Fields —ReCUrming 406

A.3 Definition of Request Fields forLevel 2/3-Visa 407

A.4 Definition of Request Fields for Level 2/3-MasterCard i 416

A.5 Definition of Request Fields forLevel 2/3-AmeX L 426
A.6 Definition of Request Fields — Offlinx ™ . 436
Appendix B Definitions of Response Fields 437
Appendix C Error MesSages 451
Appendix D Process Flow for Basic Pre-Auth, Re-Auth and Completion Transactions ... 453
Appendix E Merchant Checklists for INTERAC® Online Payment Certification Testing 454
Appendix F Third-Party Service Provider Checklists for INTERAC® Online Payment Cer-
tification TeStiNg ... 458
Appendix G Merchant Checklists for INTERAC® Online Payment Certification 463
Appendix H INTERAC® Online Payment Certification Test Case Detail_............... 466
H.1 Common Validations 466
H. 2 Test Cases . il 466
H.3 Merchant front-end test case values 470
Copyright NOICe 475

Trademarks .. 475

1 About This Documentation

1.1 Purpose

This document describes the transaction information for using the Java API for sending credit card trans-
actions. In particular, it describes the format for sending transactions and the corresponding responses
you will receive.

This document contains information about the following features:

« Basic transactions

e MPI —Verified by Visa, MasterCard Secure Code and American Express SafeKey
o INTERAC® Online Payment

o Vault

e MSR (Magnetic Swipe Reader) and Encrypted MSR
o Apple Pay and Android Pay In-App

o Transaction Risk Management Tool

« Convenience fee

o Visa Checkout

o MasterCard MasterPass

o Level 2/3 Transactions

Getting Help

Moneris has help for you at every stage of the integration process.

Contact our Client Ifyou are already working | If your application is already live
Integration Specialists: with an integration spe- and you need production support,
cialist and need technical contact Moneris Customer Service:

clientintegrations@moneris.com development assistance
’

contact our eProducts
Technical Consultants: 1-866-319-7450

onlinepayments@moneris.com
Hours: Monday — Friday, 8:30am

to8pmET

1-866-319-7450 Available 24/7

eproducts@moneris.com

Hours: 8am to 8pm ET

For additional support resources, you can also make use of our community forums at

http://community.moneris.com/product-forums/

November 2018 Page 10 of 476

Moneris Gateway API - Integration Guide

1.2 Who Is This Guide For?

The Moneris Gateway API - Integration Guide is intended for developers integrating with the Moneris
Gateway.

This guide assumes that the system you are trying to integrate meets the requirements outlined below
and that you have some familiarity with the Java programming language.

System Requirements

o [[[Undefined variable GlobalVariables.ProgramminglLanguageMinimumRequired]]] or above
o Port 443 open for bi-directional communication
o Web server with a SSL certificate

Page 11 of 476 November 2018

2 Basic Transaction Set

o 2.1 Basic Transaction Type Definitions
e 2.2 Purchase

e 2.3 Pre-Authorization

e 2.4 Pre-Authorization Completion

e 2.5 Re-Authorization

e 2.6 Force Post

e 2.7 Purchase Correction

o 2.8 Refund

e 2.9 Independent Refund

e 2.10 Card Verification with AVS and CVD
e 2.11 Batch Close

e 2.12 Open Totals

2.1 Basic Transaction Type Definitions
The following is a list of basic transactions that are supported by the Moneris Java API.

Purchase
Verifies funds on the customer’s card, removes the funds and prepares them for deposit into
the merchant’s account.

Pre-Authorization
Verifies and locks funds on the customer’s credit card. The funds are locked for a specified
amount of time based on the card issuer.

To retrieve the funds that have been locked by a Pre-Authorization transaction so that they
may be settled in the merchant’s account, a Completion transaction must be performed. A
Pre-Authorization transaction may only be "completed" once.

Completion
Retrieves funds that have been locked (by either a Pre-Authorization or a Re-Authorization
transaction), and prepares them for settlement into the merchant’s account.

Re-Authorization
If a Pre-Authorization transaction has already taken place, and not all the locked funds were
released by a Completion transaction, a Re-Authorization allows you to lock the remaining
funds so that they can be released by another Completion transaction in the future.

Re-Authorization is necessary because funds that have been locked by a Pre-Authorization
transaction can only be released by a Completion transaction one time. If the Completion
amount is less than the Pre-Authorization amount, the remaining money cannot be "com-
pleted".

Force Post
Retrieves the locked funds and prepares them for settlement into the merchant’s account.

This is used when a merchant obtains the authorization number directly from the issuer by a
third-party authorization method (such as by phone).

Purchase Correction
Restores the fullamount of a previous Purchase, Completion or Force Post transaction to the
cardholder's card, and removes any record of it from the cardholder's statement.

November 2018 Page 12 of 476

Moneris Gateway API - Integration Guide

This transaction is sometimes referred to as "void".

This transaction can be used against a Purchase or Completion transaction that occurred
same day provided that the batch containing the original transaction remains open. When
using the automated closing feature, Batch Close occurs daily between 10 and 11pm Eastern
Time.

Refund
Restores all or part of the funds from a Purchase, Completion or Force Post transaction to the
cardholder's card. Unlike a Purchase Correction, there is a record of both the initial charge
and the refund on the cardholder's statement.

Independent Refund
Credits a specified amount to the cardholder’s credit card. The credit card number and expiry
date are mandatory.

Itis not necessary for the transaction that you are refunding to have been processed via the
Moneris Gateway

Card Verification
Verifies the validity of the credit card, expiry date and any additional details (such as the Card
Verification Digits or Address Verification details). It does not verify the available amount or
lock any funds on the credit card.

Recur Update
Alters characteristics of a previously registered Recurring Billing transaction.

This transaction is commonly used to update a customer’s credit card information and the
number of recurs to the account.

Recurring billing is explained in more detail in Section 1 (page 1). The Recur Update transaction
is specifically discussed in Section 1.2 (page 1),

Batch Close
Takes the funds from all Purchase, Completion, Refund and Force Post transactions so that
they will be deposited or debited the following business day.

For funds to be deposited the following business day, the batch must close before 11pm
Eastern Time.

Open Totals
Returns the details about the currently open batch.

This transaction is similar to the Batch Close. The difference is that it does not close the batch
for settlement.

Page 13 of 476 November 2018

2 Basic Transaction Set

2.2 Purchase

Purchase transaction object definition

Purchase purchase = new Purchase();

HttpsPostRequest object for Purchase transaction

HttpsPostRequest mpgReq = new HttpsPostRequest();
mpgReq.SetTransaction (purchase) ;
Purchase transaction values

Table 1: Purchase transaction object mandatory values

Order ID String | 50-character alpha- purchase.SetOrderId(order id);
numeric
Amount String | 10-character decimal purchase.SetAmount (amount) ;
Credit card number | String | 20-character alpha- purchase.SetPan (pan) ;
numeric
Expiry date String | 4-character alpha- purchase.SetExpdate (expiry_
numeric date);
(YYMM format)
E-commerce indic- String | 1-character alpha- purchase.SetCryptType (crypt) ;
ator numeric

November 2018 Page 14 of 476

Moneris Gateway API - Integration Guide

Table 2: Purchase transaction object optional values

Status Check Boolean | true/false mpgReq.SetStatusCheck
(status_check);
Card Match ID String 50-character alpha- purchase.SetCmId
numeric (transaction_id);
NOTE: Applies to Off-
linx™ only; must be
unique value for each
transaction
Customer inform- Object N/A purchase.SetCustInfo
ation (customer) ;
AVS Object N/A purchase.SetAvsInfo
(avsCheck) ;
CvD Object N/A purchase.SetCvdInfo
(cvdCheck) ;
NOTE: When storing
credentials on the ini-
tial transaction, the
CVD object must be
sent; for subsequent
transactions using
stored credentials,
CVD can be sent with
cardholder-initiated
transactions only—
merchants must not
store CVD
information.
Convenience fee Object N/A purchase.SetConvFeelnfo
(convFeelInfo);
NOTE: This variable
does not apply to Cre-
dential on File trans-
actions.
Recurring billing Object | N/A purchase.SetRecur (recurring_
cycle);

Page 15 0f 476

November 2018

2 Basic Transaction Set

Table 2: Purchase transaction object optional values

Dynamic descriptor String 20-character alpha- purchase
numeric .SetDynamicDescriptor

(dynamic_descriptor) ;

Wallet indicator? String 3-character alpha- purchase.SetWalletIndicator
numeric (wallet indicator);

NOTE: For basic
Purchase and Preau-
thorization, the wallet
indicator applies to
Visa Checkout and
MasterCard Master-
Pass only. For more,
see Appendix A Defin-
itions of Request
Fields

Credential on File Info | Object N/A purchase.SetCofInfo (cof);

cof

s N

NOTE: This is a nested
object within the
transaction, and
required when storing
or using the cus-
tomer's stored cre-
dentials. The
Credential on File Info
object has its own
request variables, lis-
ted in blue in the
table below, "Cre-
dential on File Object
Request Variables".

1Available to Canadian integrations only.

November 2018 Page 16 of 476

Moneris Gateway API - Integration Guide

Credential on File Transaction Object Request Fields

Issuer ID String | 15-character alpha- cof.SetIssuerId ("VALUE_FOR_
numeric ISSUER ID");

NOTE: This variable is

required for all mer- variable length

NOTE: For a list and explanation of the

chant-intiated trans- possible values to send for this variable,
actions following the see Definitions of Request Fields — Cre-
first one; upon sending dential on File

the first transaction,
the Issuer ID value is
received in the trans-
action response and
then used in sub-
sequent transaction

requests.
Payment Indicator String 1-character alphabetic | cof.SetPaymentIndicator
("PZ&YDdEDJT__INI)ICZ&T()R_}]AIJJE");

NOTE: For a list and explanation of the
possible values to send for this variable,
see Definitions of Request Fields — Cre-
dential on File

Payment Inform- String 1-character numeric cof.SetPaymentInformation

ation ("PAYMENT INFO VALUE");

NOTE: For a list and explanation of the

possible values to send for this variable,
see Definitions of Request Fields — Cre-
dential on File

Sample Purchase

using System;

using System.Collections.Generic;
using System.Text;

using Moneris;

namespace CanadaPurchaseConsoleTest

{

class CanadaPurchaseTest

{

public static void Main(string[] args)
{

string order id = "Test" + DateTime.Now.ToString("yyyyMMddhhmmss") ;
string store id = "store5";

string api token = "yesguy";

Page 17 of 476 November 2018

2 Basic Transaction Set

Sample Purchase

string amount = "5.00";

string pan = "4242424242424242";

string expdate = "1901"; //YYMM format
string crypt = "7";

string processing country code = "CA";
bool status_check = false;

CofInfo cof = new CofInfol();
cof.SetPaymentIndicator ("U") ;
cof.SetPaymentInformation ("2");
cof.SetIssuerId("12345678901234");
Purchase purchase = new Purchase();
purchase.SetOrderId(order id);

purchase. SetAmount (amount) ;
purchase.SetPan (pan) ;
purchase.SetExpDate ("2011") ;
purchase.SetCryptType (crypt) ;
purchase.SetDynamicDescriptor ("2134565") ;
//purchase.SetWalletIndicator (""); //Refer to documentation for details
purchase.SetCofInfo (cof) ;

//Optional - Set for Multi-Currency only

//setAmount must be 0.00 when using multi-currency
//purchase.SetMCPAmount ("500") ; //penny value amount 1.25 = 125
//purchase.SetMCPCurrencyCode ("840"); //ISO-4217 country currency number
HttpsPostRequest mpgReq = new HttpsPostRequest() ;
mpgReq.SetProcCountryCode (processing country code);

mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);

mpgReq.SetApiToken (api_ token);

mpgReq.SetTransaction (purchase) ;

mpgReq. SetStatusCheck (status check) ;

mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WritelLine ("BankTotals = " + receipt.GetBankTotals());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime());
Console.WritelLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("IsVisaDebit = " + receipt.GetIsVisaDebit()):;
Console.WritelLine ("HostId = " + receipt.GetHostId());
Console.WriteLine ("MCPAmount = " + receipt.GetMCPAmount());
Console.WriteLine ("MCPCurrencyCode = " + receipt.GetMCPCurrencyCode()) ;
Console.WriteLine ("IssuerId = " + receipt.GetIssuerId()):;

Console.ReadLine() ;

}

catch (Exception e)
{

Console.WriteLine (e) ;

November 2018 Page 18 of 476

Moneris Gateway API - Integration Guide

Sample Purchase

- e e e

2.3 Pre-Authorization

Things to Consider:

« Ifa Pre-Authorization transaction is not followed by a Completion transaction, it must
be reversed via a Completion transaction for 0.00. See "Pre-Authorization Completion"
on page 25

o APre-Authorization transaction may only be "completed" once. If the Completion
transaction is for less than the original amount, a Re-Authorization transaction is
required to collect the remaining funds by another Completion transaction. See Re-
Authorization (page 28).

e Foraprocess flow, see "Process Flow for Basic Pre-Auth, Re-Auth and Completion Trans-
actions" on page 453

Pre-Authorization transaction object definition

PreAuth preauth = new PreAuth():;

HttpsPostRequest object for Pre-Authorization transaction

HttpsPostRequest mpgReq = new HttpsPostRequest() ;

mpgReqg.SetTransaction (preauth) ;

Pre-Authorization transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 3: Pre-Authorization object required values

Order ID String 50-character alpha- preauth.SetOrderId(order
numeric id) ;

Amount String 9-character decimal preauth.SetAmount (amount) ;

Credit card number String 20-character numeric preauth.SetPan (pan) ;

Expiry date String 4-character numeric preauth.SetExpdate (expiry_

Page 19 of 476 November 2018

2 Basic Transaction Set

Table 3: Pre-Authorization object required values (continued)

date) ;

E-Commerce indicator

String

1-character alpha-
numeric

preauth.SetCryptType (crypt) ;

Table 4: Pre-Authorization object optional values

NOTE: When storing
credentials on the ini-
tial transaction, the
CVD object must be
sent; for subsequent
transactions using
stored credentials,
CVD can be sent with
cardholder-initiated
transactions only—
merchants must not
store CVD
information.

Status Check Boolean | true/false mpgReq.SetStatusCheck
(status_check);
Dynamic descriptor String 20-character alpha- preauth.SetDynamicDescriptor
numeric (dynamic_descriptor) ;
Card Match ID String 50-character alpha- preauth.SetCmId (transaction
numeric id);
NOTE: Applies to Off-
linx™ only; must be
unique value for each
transaction
Customer inform- Object N/A preauth.SetCustInfo
ation (customer) ;
AVS Object N/A preauth.SetAvsInfo
(avsCheck) ;
CvD Object N/A preauth.SetCvdInfo

(cvdCheck) ;

November 2018

Page 20 of 476

Moneris Gateway API - Integration Guide

Customer ID String 50-character alpha- preauth.SetCustlId(cust_id);
numeric

Wallet indicator? String 3-character alpha- preauth.SetWalletIndicator

) R} numeric (wallet indicator);

NOTE: For basic
Purchase and Preau-
thorization, the wallet
indicator applies to
Visa Checkout and
MasterCard Master-
Pass only. For more,
see Appendix A Defin-
itions of Request
Fields

Credential on File Info | Object N/A cof.SetCofInfo (cof);

cof

NOTE: This is a nested
object within the
transaction, and
required when storing
or using the cus-
tomer's stored cre-
dentials. The
Credential on File Info
object has its own
request variables, lis-
ted in blue in the
table below, "Cre-
dential on File Object
Request Variables".

1Available to Canadian integrations only.

Page 21 of 476 November 2018

2 Basic Transaction Set

Credential on File Transaction Object Request Fields

Issuer ID String | 15-character alpha- cof.SetIssuerId ("VALUE_FOR_
numeric ISSUER ID");

NOTE: This variable is

required for all mer- variable length

NOTE: For a list and explanation of the

chant-intiated trans- possible values to send for this variable,
actions following the see Definitions of Request Fields — Cre-
first one; upon sending dential on File

the first transaction,
the Issuer ID value is
received in the trans-
action response and
then used in sub-
sequent transaction

requests.
Payment Indicator String 1-character alphabetic | cof.SetPaymentIndicator
("PZ&YDdEDJT__INI)ICZ&T()R_}]AIJJE");

NOTE: For a list and explanation of the
possible values to send for this variable,
see Definitions of Request Fields — Cre-
dential on File

Payment Inform- String 1-character numeric cof.SetPaymentInformation

ation ("PAYMENT INFO VALUE");

NOTE: For a list and explanation of the

possible values to send for this variable,
see Definitions of Request Fields — Cre-
dential on File

Sample Pre-Authorization

using System;

using System.Collections.Generic;
using System.Text;

using Moneris;

namespace CanadaPurchaseConsoleTest

{

class CanadaPreauthTest

{

public static void Main(string[] args)
{

string store id = "store5";

string api token = "yesguy";

string order id = "Test" + DateTime.Now.ToString("yyyyMMddhhmmss") ;

November 2018 Page 22 of 476

Moneris Gateway API - Integration Guide

Sample Pre-Authorization

string amount = "5.00";

string pan = "4242424242424242";

string expdate = "0412";

string crypt = "7";

string processing country code = "CA";

bool status_check = false;

CofInfo cof = new CofInfol();

cof.SetPaymentIndicator ("U") ;

cof.SetPaymentInformation ("2");
cof.SetIssuerId("12345678901234");

PreAuth preauth = new PreAuth();

preauth.SetOrderId(order_id);

preauth.SetAmount (amount) ;

preauth.SetPan (pan) ;

preauth. SetExpDate (expdate) ;

preauth.SetCryptType (crypt) ;

//preauth.SetWalletIndicator (""); //Refer to documentation for details
preauth.SetCofInfo (cof) ;

//Optional - Set for Multi-Currency only

//setAmount must be 0.00 when using multi-currency
//preauth.SetMCPAmount ("500"); //penny value amount 1.25 = 125
//preauth.SetMCPCurrencyCode ("840"); //IS0-4217 country currency number
HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq. SetProcCountryCode (processing country code) ;

mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);

mpgReq.SetApiToken (api_ token) ;

mpgReq. SetTransaction (preauth) ;

mpgReq.SetStatusCheck (status_check) ;

mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WritelLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("TransType = " + receipt.GetTransType());
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut ());
Console.WritelLine ("IsVisaDebit = " + receipt.GetIsVisaDebit()):;
//Console.Writeline ("StatusCode = " + receipt.GetStatusCode());
//Console.WriteLine ("StatusMessage = " + receipt.GetStatusMessage());
Console.WriteLine ("MCPAmount = " + receipt.GetMCPAmount()) ;
Console.WriteLine ("MCPCurrencyCode = " + receipt.GetMCPCurrencyCode()) ;
Console.WritelLine ("IssuerId = " + receipt.GetIssuerId());

Console.ReadLine () ;

}

catch (Exception e)

{

Console.WriteLine (e);

}

Page 23 of 476 November 2018

2 Basic Transaction Set

Sample Pre-Authorization

}

}

}

using System;

using System.Collections.Generic;
using System.Text;

using Moneris;

namespace CanadaPurchaseConsoleTest
{

class CanadaPreauthTest

{

public static void Main(string[] args)

{

string store id = "store5";

string api token = "yesquy";

string order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;
string amount = "5.00";

string pan = "4242424242424242";

string expdate = "0412";

string crypt = "7";

string processing country code = "CA";

bool status_check = false;

CofInfo cof = new CofInfol();

cof.SetPaymentIndicator ("U") ;

cof.SetPaymentInformation ("2");

cof.SetIssuerId("168451306048014");

PreAuth preauth = new PreAuth();

preauth.SetOrderId(order_id);

preauth.SetAmount (amount) ;

preauth.SetPan (pan) ;

preauth. SetExpDate (expdate) ;

preauth.SetCryptType (crypt) ;

//preauth.SetWalletIndicator (""); //Refer to documentation for details
preauth.SetCofInfo (cof) ;

//Optional - Set for Multi-Currency only

//setAmount must be 0.00 when using multi-currency
//preauth.SetMCPAmount ("500"); //penny value amount 1.25 = 125
//preauth.SetMCPCurrencyCode ("840"); //IS0-4217 country currency number
//preauth.SetCmId ("8nAK8712sGaRrkls56"); //set only for usage with Offlinx - Unique max 50
alphanumeric characters transaction id generated by merchant
HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq.SetProcCountryCode (processing country code);

mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);

mpgReq.SetApiToken (api token);

mpgReq.SetTransaction (preauth) ;

mpgReq.SetStatusCheck (status check) ;

mpgReq. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("CardType = " + receipt.GetCardType());
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WritelLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());

November 2018 Page 24 of 476

Moneris Gateway API - Integration Guide

Sample Pre-Authorization

Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("IsVisaDebit = " + receipt.GetIsVisaDebit());
//Console.WriteLine ("StatusCode = " + receipt.GetStatusCode());
//Console.WriteLine ("StatusMessage = " + receipt.GetStatusMessage());
Console.WriteLine ("MCPAmount = " + receipt.GetMCPAmount());
Console.WriteLine ("MCPCurrencyCode = " + receipt.GetMCPCurrencyCode()) ;
Console.WritelLine ("IssuerId = " + receipt.GetIssuerId());

Console.ReadLine () ;
}
catch (Exception e)
{

Console.WriteLine (e) ;

}

}
}
}

2.4 Pre-Authorization Completion

Things to Consider:

o Completion is also known as "capture" or "pre-authorization completion".

o APre-Authorization or Re-Authorization transaction can only be completed once. Refer
to the Re-Authorization transaction (page 28 for more information on how to perform
multiple Completion transactions.

o To reverse the fullamount of a Pre-Authorization transaction, use the Completion trans-
action with the amount setto 0. 00.

o To process this transaction, you need the order ID and transaction number from the ori-
ginal Pre-Authorization transaction.

o Fora process flow, see "Process Flow for Basic Pre-Auth, Re-Auth and Completion Trans-
actions" on page 453

Completion transaction object

Completion completion = new Completion();

HttpsPostRequest object for Completion transaction

HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq.SetTransaction (completion) ;

Page 25 0of 476 November 2018

2 Basic Transaction Set

Completion transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 5: Completion transaction object mandatory values

Order ID String 50-character completion.SetOrderId (order
alphanumeric id);
Completion Amount String 9-character decimal completion.SetCompAmount (comp
P amount) ;
Transaction number String 255-character completion.SetTxnNumber (txn
alphanumeric number) ;
E-Commerce indicator |2tring 1-character completion.SetCryptType

alphanumeric

(crypt);

Table 6: Completion transaction optional values

Status Check Boolean | true/false mpgReq. SetStatusCheck
(status_check);
Customer ID String 50-character alpha- completion.SetCustId(cust_
numeric +d);
Dynamic descriptor String 20-character alpha- completion
numeric . SetDyr'lamchesclzrlptor
(dynamic descriptor);
Shipping indicator?! String 1-character alpha- completion.SetShipIndicator

numeric

(ship indicator);

Sample Basic Pre-Authorization Completion

namespace Moneris
{
using System;

{

{

public static void Main(stringl]

string store id = "store5";

public class TestCanadaCompletion

args)

1Available to Canadian integrations only.

November 2018

Page 26 of 476

Moneris Gateway API - Integration Guide

Sample Basic Pre-Authorization Completion

string api token = "yesguy";

string order id = "Test20160815041528";

string amount = "2.00";

string txn number = "118149-0 10";

string crypt = "7";

string cust id = "my customer id";

string dynamic descriptor = "my descriptor";

string ship indicator = "F";

string processing country code = "CA";

bool status check = false;

Completion completion = new Completion();
completion.SetOrderId(order id);

completion. SetCompAmount (amount) ;
completion.SetTxnNumber (txn number) ;
completion.SetCryptType (crypt) ;
completion.SetCustId(cust id);
completion.SetDynamicDescriptor (dynamic descriptor) ;
//completion.SetShipIndicator (ship indicator); //optional
//Optional - Set for Multi-Currency only
//setAmount must be 0.00 when using multi-currency

//completion.SetMCPAmount ("300"); //penny value amount 1.25
//completion.SetMCPCurrencyCode ("840"); //ISO-4217 country currency number

HttpsPostRequest mpgReq = new HttpsPostRequest();
mpgReq. SetProcCountryCode (processing country code) ;

= 125

mpgReq. SetTestMode (true); //false or comment out this line for production transactions

mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api_ token) ;

mpgReq. SetTransaction (completion) ;
mpgReq.SetStatusCheck (status_check) ;
mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WritelLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("TransType = " + receipt.GetTransType());
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut ());
Console.WritelLine ("IsVisaDebit = " + receipt.GetIsVisaDebit()):;
Console.WriteLine ("MCPAmount = " + receipt.GetMCPAmount());
Console.WriteLine ("MCPCurrencyCode = " + receipt.GetMCPCurrencyCode()) ;

Console.ReadLine() ;

}

catch (Exception e)

{

Console.WriteLine (e);

}

— e

Page 27 of 476

November 2018

2 Basic Transaction Set

2.5 Re-Authorization

For a process flow, Process Flow for Basic Pre-Auth, Re-Auth and Completion Transactions (page 453),

Re-Authorization transaction object definition

ReAuth reauth = new ReAuth();

HttpsPostRequest object for Re-Authorization transaction

HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq.SetTransaction (reauth) ;

Re-Authorization transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 7: Re-Authorization transaction object mandatory values

Order ID String 50-character alpha- reauth.SetOrderId (order
numeric id)7;

Original order ID String 50-character alpha- reauth.SetOrigOrderId(orig_
numeric order_id);

Amount String 9-character decimal reauth.SetAmount (amount) ;

Transaction number String 255-character variable | reauth.SetTxnNumber (txn_
character number) ;

E-Commerce indicator | String 1-character alpha- reauth.SetCryptType (crypt);
numeric

Table 1 Re-Authorization transaction optional values

Customer ID String 50-character alpha- reauth.SetCustId(cust_id);
numeric
Status check Boolean | true/false mpgReq.SetStatusCheck

(status_check);

Dynamic descriptor String 20-character alpha- reauth.SetDynamicDescriptor
numeric (dynamic_descriptor);

November 2018 Page 28 of 476

Moneris Gateway API - Integration Guide

Table 1 Re-Authorization transaction optional values

NOTE: When storing
credentials on the ini-
tial transaction, the
CVD object must be
sent; for subsequent
transactions using
stored credentials,
CVD can be sent with
cardholder-initiated
transactions only—
merchants must not
store CVD
information.

Customer inform- Object N/A reauth.SetCustInfo

ation (customer) ;

AVS Object N/A reauth.SetAvsInfo (avsCheck);
CvD Object N/A reauth.SetCvdInfo (cvdCheck) ;

Sample Re-Authorization

namespace Moneris

{

using System;

public class TestCanadaReauth

{

public static void Main(string[] args)
{

string store id = "store5";

string api token = "yesguy";

string order id = "mvt2713557ss83ss9ssdfsdfsdf";
string orig order id = "mvt3525350028";
string amount = "1.00";

string txn number = "113457-0 10";
string crypt = "8";

string dynamic descriptor = "123456";
string cust id = "my customer id";
string processing country code = "CA";
bool status check = false;

ReAuth reauth = new ReAuth();
reauth.SetOrderId(order id);
reauth.SetCustId(cust id);
reauth.SetOrigOrderId(orig_order id);
reauth.SetTxnNumber (txn number) ;
reauth.SetAmount (amount) ;
reauth.SetCryptType (crypt) ;
reauth.SetDynamicDescriptor (dynamic descriptor);

HttpsPostRequest mpgReq = new HttpsPostRequest() ;
mpgReq.SetProcCountryCode (processing country code);
mpgReq. SetTestMode (true); //false or comment out this line

for production transactions

Page 29 of 476

November 2018

2 Basic Transaction Set

Sample Re-Authorization

mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq
try

{
Receipt

Console

Console

Console
Console

Console
Console

Console
Console
Console
}
{

Console

}

— e e

Console.

Console.
Console.

Console.

Console.

Console.

Console.

Console.
Console.

SetStoreld(store id);
SetApiToken (api_ token);
SetTransaction (reauth) ;
SetStatusCheck (status check) ;

.Send () ;

receipt = mpgReq.GetReceipt () ;

WriteLine ("CardType = " + receipt.GetCardType());
.WriteLine ("TransAmount = " + receipt.GetTransAmount());
WriteLine ("TxnNumber = " + receipt.GetTxnNumber());
WriteLine ("ReceiptId = " + receipt.GetReceiptId());
.WriteLine ("TransType = " + receipt.GetTransType());
WriteLine ("ReferenceNum = " + receipt.GetReferenceNum());
.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
.WriteLine ("ISO = " + receipt.GetISO());

WriteLine ("BankTotals = " + receipt.GetBankTotals());
.WriteLine ("Message = " + receipt.GetMessage());
.WriteLine ("AuthCode = " + receipt.GetAuthCode());
WriteLine ("Complete = " + receipt.GetComplete());
.WriteLine ("TransDate " + receipt.GetTransDate());
WriteLine ("TransTime = " + receipt.GetTransTime()) ;
.WriteLine ("Ticket = " + receipt.GetTicket());

.WriteLine ("TimedOut = " + receipt.GetTimedOut ());
WriteLine ("IsVisaDebit = " + receipt.GetIsVisaDebit());

ReadLine () ;

catch (Exception e)

WriteLine (e);

2.6 Force Post

Things to Consider:

« This transaction is an independent completion where the original Pre-Authorization
transaction was not processed via the same Moneris Gateway merchant account.

o lItis not required for the transaction that you are submitting to have been processed via
the Moneris Gateway. However, a credit card number, expiry date and original author-

zation number are required.

o Force Post transactions are not supported for UnionPay

ForcePost transaction object definition

ForcePost

forcepost = new ForcePost();

HttpsPostRequest object for ForcePost transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () :;

November 2018

Page 30 of 476

Moneris Gateway API - Integration Guide

mpgReq.SetTransaction (forcepost) ;

Force Post transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 8: Force Post transaction object mandatory values

Order ID String | 50-character alpha- forcepost.SetOrderld(order_
numeric id);

Amount String | 9-character decimal forcepost.SetAmount (amount) ;

Credit card number String 20-character numeric forcepost.SetPan (pan) ;

Expiry date String 4-character numeric forcepost.SetExpdate (expiry_

date) ;

Authorization code String | 8-character alpha- forcepost.SetAuthCode (auth_
numeric code) ;

E-Commerce indicator | String 1-character alpha- forcepost.SetCryptType
numeric (crypt);

Table 9: Force Post transaction optional values

Customer ID String 50-character alpha- forcepost.SetCustld (cust_
numeric +d) i
Dynamic descriptor String 20-character alpha- forcepost
numeric .SetDynamicDescriptor
(dynamic_descriptor) ;
Status Check Boolean | true/false mpgReq. SetStatusCheck

(status_check);

Sample Basic Force Post

using System;
namespace Moneris
{

{

{

public class TestCanadaForcePost

public static void Main(stringl]

args)

string order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;

Page 31 0f476

November 2018

2 Basic Transaction Set

Sample Basic Force Post

string cust id = "my customer id";
string store id = "moneris";
string api token = "hurgle";
string amount = "59.00";

string pan = "4242424242424242";
string expdate = "1901"; //YYMM format
string auth code = "88864";

string crypt = "7";
string dynamic descriptor = "my descriptor";
string processing country code = "CA";

bool status_check = false;

ForcePost forcepost = new ForcePost();
forcepost.SetOrderId(order id);
forcepost.SetCustId(cust id);

forcepost.SetAmount (amount) ;

forcepost.SetPan (pan) ;

forcepost.SetExpDate (expdate) ;
forcepost.SetAuthCode (auth code) ;
forcepost.SetCryptType (crypt) ;
forcepost.SetDynamicDescriptor (dynamic descriptor);
HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq. SetProcCountryCode (processing country code) ;
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld (store id);
mpgReq.SetApiToken (api token);

mpgReq. SetTransaction (forcepost) ;
mpgReq.SetStatusCheck (status_check) ;

mpgReq.Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId())
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum())
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket()):
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("CorporateCard = " + receipt.GetCorporateCard());
Console.WriteLine ("IssuerId = " + receipt.GetIssuerId());
//Console.WriteLine ("MessageId = " + receipt.GetMessageId());

Console.ReadLine () ;
}

catch (Exception e)

{

Console.WriteLine (e);

}

— e

November 2018 Page 32 of 476

Moneris Gateway API - Integration Guide

2.7 Purchase Correction

Things to Consider:

o Purchase correction is also known as "void" or "correction".
o To process this transaction, you need the order ID and the transaction number from
the original Completion, Purchase or Force Post transaction.

Purchase Correction transaction object definition

PurchaseCorrection purchasecorrection = new PurchaseCorrection();

HttpsPostRequest object for Purchase Correction transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () :;

mpgReq.SetTransaction (purchasecorrection);

Purchase Correction transaction object values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 10: Purchase Correction transaction object mandatory values

Order ID String 50-character alpha- purchasecorrection

numeric .SetOrderId(order id);
Transaction number String 255-character variable | purchasecorrection

character .SetTxnNumber (txn number) ;
E-Commerce indicator | String 1-character alpha- purchasecorrection

numeric .SetCryptType (crypt) ;

Table 11: Purchase Correction transaction optional values

Status Check Boolean | true/false mpgReq. SetStatusCheck
(status_check) ;
Customer ID String 50-character alpha- purchasecorrection.SetCustId
numeric (cust_id);
Dynamic descriptor String 20-character alpha- purchasecorrection
numeric .SetDy@amchesgrlptor
(dynamic descriptor) ;

Page 33 0f 476

November 2018

2 Basic Transaction Set

Sample Purchase Correction

namespace Moneris

{

using S
public
{
public
{
string
string
string
string
string
string
string
bool st
Purchas
purchas
purchas
purchas
purchas
purchas
HttpsPo
mpgReq.
mpgReq
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
try

{
Receipt

Console.

Console

Console.

Console
Console

Console.

Console
Console

Console.

Console
Console
Console
Console

Console.

Console
Console

Console.
Console.

}

ystem;
class TestCanadaPurchaseCorrection

static void Main(string[] args)

store_id = "store5";

api token = "yesguy";

order id = "Test20150723031154";

txn_number = "165745-0_10";

crypt = "8";

dynamic_descriptor = "123456";

processing country code = "CA";

atus_check = false;

eCorrection purchasecorrection = new PurchaseCorrection();
ecorrection.SetOrderId(order id);
ecorrection.SetTxnNumber (txn number) ;
ecorrection.SetCryptType (crypt) ;
ecorrection.SetDynamicDescriptor (dynamic descriptor) ;
ecorrection.SetCustId("my customer id");

stRequest mpgReq = new HttpsPostRequest () ;
SetProcCountryCode (processing country code);

.SetTestMode (true); //false or comment out this line for production transactions

SetStoreld(store id);

SetApiToken (api_token);
SetTransaction (purchasecorrection) ;
SetStatusCheck (status check) ;
Send () ;

receipt = mpgReq.GetReceipt () ;

WriteLine ("CardType = " + receipt.GetCardType());
.WriteLine ("TransAmount = " + receipt.GetTransAmount());
WriteLine ("TxnNumber = " + receipt.GetTxnNumber());
.WriteLine ("ReceiptId = " + receipt.GetReceiptId());
.WritelLine ("TransType = " + receipt.GetTransType());
WriteLine ("ReferenceNum = " + receipt.GetReferenceNum());
.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
.WriteLine ("ISO = " + receipt.GetISO());

WriteLine ("BankTotals = " + receipt.GetBankTotals());
.WritelLine ("Message = " + receipt.GetMessage());
.WriteLine ("AuthCode = " + receipt.GetAuthCode());
.WriteLine ("Complete = " + receipt.GetComplete());
.WriteLine ("TransDate " + receipt.GetTransDate());
WriteLine ("TransTime = " + receipt.GetTransTime()) ;
.WriteLine ("Ticket = " + receipt.GetTicket());

.WriteLine ("TimedOut = " + receipt.GetTimedOut ());
WriteLine ("IsVisaDebit = " + receipt.GetIsVisaDebit());

ReadLine () ;

catch (Exception e)

{

Console

}

— e

WriteLine (e);

November 2018 Page 34 of 476

Moneris Gateway API - Integration Guide

2.8 Refund

To process this transaction, you need the order ID and transaction number from the original Com-
pletion, Purchase or Force Post transaction.

Refund transaction object definition

Refund refund = new Refund();

HttpsPostRequest object for Refund transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (refund) ;

Refund transaction object values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 12: Refund transaction object mandatory values

Order ID String | 50-character alpha- refund.SetOrderId(order_id);
numeric

Amount String | 9-character decimal refund.SetAmount (amount) ;

Transaction number String 255-character variable | refund.SetTxnNumber (txn_
character number) ;

E-Commerce indicator | String 1-character alpha- refund.SetCryptType (crypt);
numeric

Table 13: Refund transaction optional values

Status Check Boolean | true/false mpgReq.SetStatusCheck
(status_check) ;

Sample Refund

namespace Moneris

{

using System;

public class TestCanadaRefund

{

public static void Main(string[] args)
{

string store id = "storel";

Page 35 0f476 November 2018

2 Basic Transaction Set

Sample Refund

string api token = "yesguy";

string amount = "1.00";

string crypt = "7";

string dynamic descriptor = "123456";

string custid = "mycust9";

string order id = "mvt3230836758";

string txn_number = "21964-0_10";

string processing country code = "CA";

bool status check = false;

Refund refund = new Refund();

refund. SetTxnNumber (txn number) ;
refund.SetOrderId(order id);

refund. SetAmount (amount) ;

refund. SetCryptType (crypt) ;
refund.SetCustId(custid);

refund. SetDynamicDescriptor (dynamic descriptor);
HttpsPostRequest mpgReq = new HttpsPostRequest() ;
mpgReq.SetProcCountryCode (processing country code);

mpgReq. SetTestMode (true); //false or comment out this line for production transactions

mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api_ token);
mpgReq.SetTransaction (refund) ;

mpgReq. SetStatusCheck (status check) ;
mpgReq. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WritelLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WritelLine ("BankTotals = " + receipt.GetBankTotals());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime());
Console.WritelLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut ());

Console.ReadLine () ;
}
catch (Exception e)
{

Console.WriteLine (e);

}

— e

November 2018

Page 36 of 476

Moneris Gateway API - Integration Guide

2.9 Independent Refund

Things to Consider:
o Because of the potential for fraud, permission for this transaction is not granted to all
accounts by default. Ifit is required for your business, it must be requested via your
account manager.

Independent Refund transaction object definition

IndependentRefund indrefund = new IndependentRefund() ;

HttpsPostRequest object for Independent Refund transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (indrefund) ;

Independent Refund transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 14: Independent Refund transaction object mandatory values

Order ID String | 50-character alpha- indrefund.SetOrderlId(order_
numeric id);

Amount String | 9-character decimal indrefund.SetAmount (amount) ;

Credit card number String 20-character alpha- indrefund.SetPan (pan);
numeric

Expiry date String | 4-character alpha- indrefund.SetExpdate (expiry_
numeric date) ;
(YYMM format)

E-Commerce indicator | String 1-character alpha- indrefund.SetCryptType
numeric (crypt);

Page 37 of 476 November 2018

2 Basic Transaction Set

Table 15: Independent Refund transaction optional values

Customer ID String 50-character alpha- indrefund.SetCustld (cust_
numeric id);

Dynamic descriptor String 20-character alpha- indrefund
numeric .SetDynamicDescriptor

(dynamic_descriptor);

Status Check Boolean | true/false mpgReqg.SetStatusCheck
(status_check) ;

Sample Independent Refund

namespace Moneris

{

using System;

public class TestCanadalndependentRefund
{

public static void Main(string[] args)

{
string order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;

string store id = "store5";

string api_token = "yesguy";
string cust id = "my customer id";
string amount = "20.00";

string pan = "4242424242424242";

string expdate = "1901"; //YYMM

string crypt = "7";

string processing country code = "CA";

bool status check = false;

IndependentRefund indrefund = new IndependentRefund() ;
indrefund.SetOrderId(order id);
indrefund.SetCustId(cust id);

indrefund.SetAmount (amount) ;

indrefund.SetPan (pan) ;

indrefund.SetExpdate (expdate) ;

indrefund. SetCryptType (crypt) ;
indrefund.SetDynamicDescriptor ("123456") ;
HttpsPostRequest mpgReq = new HttpsPostRequest() ;
mpgReq.SetProcCountryCode (processing country code);
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld (store id);
mpgReq.SetApiToken (api token);
mpgReq.SetTransaction (indrefund) ;
mpgReq.SetStatusCheck (status check) ;

mpgReq. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("CardType = " + receipt.GetCardType()):
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId())
Console.WriteLine ("TransType = " + receipt.GetTransType());

November 2018 Page 38 of 476

Moneris Gateway API - Integration Guide

Sample Independent Refund

Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WritelLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WritelLine ("BankTotals = " + receipt.GetBankTotals());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime());
Console.WritelLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("IsVisaDebit = " + receipt.GetIsVisaDebit());

Console.ReadLine () ;

}

catch (Exception e)

{

Console.WriteLine (e);

}

— e e

2.10 Card Verification with AVS and CVD

Things to Consider:

o The Card Verification transaction is only supported by Visa, MasterCard and Discover

o For some Credential on File transactions, Card Verification with AVS and CVD is used as
a prior step to get the Issuer ID used in the subsequent transaction

o For Card Verification, CVD is supported by Visa, MasterCard and Discover.

o For Card Verification, AVS is supported by Visa, MasterCard and Discover.

o When testing Card Verification, please use the Visa and MasterCard test card numbers
provided in the MasterCard Card Verification and Visa Card Verification tables available
in CVD & AVS (E-Fraud) Simulator.

o For a full list of possible AVS & CVD result codes refer to the CVD and AVS Result Code
tables.

Card Verification object definition

CardVerification cardVerification = new CardVerification();

HttpsPostRequest object for Card Verification transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (cardVerification);

Page 39 0of 476 November 2018

2 Basic Transaction Set

Card Verification transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 16: Card Verification transaction object mandatory values

NOTE: When storing
credentials on the ini-
tial transaction, the
CVD object must be
sent; for subsequent
transactions using
stored credentials, CVD
can be sent with card-
holder-initiated trans-
actions only—
merchants must not
store CVD information.

Order ID String | 50-character alpha- cardverification.SetOrderId
numeric (Order_id) ;

Credit card number String 20-character alpha- cardvVerification.SetPan
numeric (pan) ;

Expiry date String 4-character alpha- cardVerification.SetExpdate
numeric (expiry date);
(YYMM format)

E-commerce indicator | String 1-character alpha- cardvVerification
numeric .SetCryptType (crypt) ;

AVS Object | N/A cardVerification.SetAvsInfo

(avsCheck) ;
CvD Object | N/A cardVerification.SetCvdInfo

(cvdCheck) ;

November 2018

Page 40 of 476

Moneris Gateway API - Integration Guide

Table 17: Basic Card Verification transaction object optional values

cof

Credential on File Info

NOTE: This is a nested

action, and required
when storing or using
the customer's stored
credentials. The Cre-
dential on File Info
object has its own
request variables, lis-
ted in blue in the table
below, "Credential on
File Object Request
Variables".

object within the trans-

Object

N/A

cardVerification.SetCofInfo
(cof) ;

Credential on File Transaction Object Request Fields

ation

Issuer ID String | 15-character alpha- cof.SetIssuerld ("VALUE_FOR_
) numeric ISSUER ID");

NOTE: This variable is .

required for all mer- variable length NOTE: For a list and explanation of the

chant-intiated trans- possible values to send for this variable,

actions following the see Definitions of Request Fields — Cre-

first one; upon sending dential on File

the first transaction,

the Issuer ID value is

received in the trans-

action response and

then used in sub-

sequent transaction

requests.

Payment Indicator String 1-character alphabetic | cof.SetPaymentIndicator

("PAYMENT INDICATOR VALUE");

NOTE: For a list and explanation of the
possible values to send for this variable,
see Definitions of Request Fields — Cre-
dential on File

Payment Inform- String 1-character numeric cof.SetPaymentInformation

("PAYMENT INFO VALUE") ;

Page 41 of 476

November 2018

2 Basic Transaction Set

NOTE: For a list and explanation of the
possible values to send for this variable,
see Definitions of Request Fields — Cre-
dential on File

Sample Card Verification

namespace Moneris

{

using System;

public class TestCanadaCardVerficiation

{

public static void Main(string[] args)

{

string store id = "store5";

string api token = "yesguy";

string order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;
string pan = "4242424242424242";

string expdate = "1901"; //YYMM format

string crypt = "7";

string processing country code = "CA";

bool status_check = false;

AvsInfo avsCheck = new AvsInfo();
avsCheck.SetAvsStreetNumber ("212") ;
avsCheck.SetAvsStreetName ("Payton Street");

avsCheck.SetAvsZipCode ("M1IMIM1") ;

CvdInfo cvdCheck = new CvdInfo();

cvdCheck.SetCvdIndicator ("1") ;

cvdCheck.SetCvdvalue ("099") ;

CofInfo cof = new CofInfo();

cof.SetPaymentIndicator ("U") ;

cof.SetPaymentInformation ("2");

cof.SetIssuerId("12345678901234");

CardVerification cardVerification = new CardVerification();
cardVerification.SetOrderId(order id);
cardVerification.SetPan (pan) ;
cardVerification.SetExpDate (expdate) ;
cardVerification.SetCryptType (crypt) ;
cardVerification.SetAvsInfo (avsCheck) ;
cardVerification.SetCvdInfo (cvdCheck)
cardVerification.SetCofInfo (cof);
HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq. SetProcCountryCode (processing country code) ;

mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);

mpgReq.SetApiToken (api_ token) ;

mpgReq.SetTransaction (cardvVerification) ;

mpgReq.SetStatusCheck (status_check) ;

mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

7

Console.WriteLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId());

November 2018 Page 42 of 476

Moneris Gateway API - Integration Guide

Sample Card Verification

Console.WriteLine ("TransType = " + receipt.GetTransType());
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket()):
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut ());
Console.WriteLine ("IsVisaDebit = " + receipt.GetIsVisaDebit());
Console.WriteLine ("IssuerId = " + receipt.GetIssuerId()):;

Console.ReadLine () ;

}

catch (Exception e)

{
Console.WriteLine (e);

}

— e

2.11 Batch Close

Batch Close transaction object definition

BatchClose batchclose = new BatchClose () ;

HttpsPostRequest object for Batch Close transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (batchclose) ;

Batch Close transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 18: Batch Close transaction object mandatory values

register) number provided by Moneris)

ECR (electronic cash String | No limit (value batchclose.SetEcrno (ecr_no);

Sample Batch Close

namespace Moneris

{

Page 43 of 476

November 2018

2 Basic Transaction Set

Sample Batch Close

using System;

public class TestCanadaBatchClose

{

public static void Main(string[] args)

{

string store id = "store5";

string api token = "yesquy";

string ecr no = "66013455"; //ecr within store
string processing country code = "CA";

bool status check = false;

BatchClose batchclose = new BatchClose();
batchclose.SetEcrno (ecr no) ;

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq. SetProcCountryCode (processing country code) ;

mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld (store id);

mpgReq.SetApiToken (api token);

mpgReq. SetTransaction (batchclose) ;

mpgReq.SetStatusCheck (status_check) ;

mpgReq.Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

if ((receipt.GetReceiptId()) .Equals ("Global Error Receipt"))
{

Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WritelLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("TransType = " + receipt.GetTransType()) ;
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = null");

Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WritelLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut ());

}

else

{

foreach (string ecr in receipt.GetTerminallIDs())
{

Console.WriteLine ("ECR: " + ecr);

foreach (string cardType in receipt.GetCreditCards (ecr))
{

Console.WriteLine ("\tCard Type: " + cardType);
Console.WriteLine ("\t\tPurchase: Count = "

+ receipt.GetPurchaseCount (ecr, cardType)

+ " Amount ="

+ receipt.GetPurchaseAmount (ecr,

cardType)) ;

Console.WriteLine ("\t\tRefund: Count = "

+ receipt.GetRefundCount (ecr, cardType)

+ " Amount = "

+ receipt.GetRefundAmount (ecr, cardType));

November 2018 Page 44 of 476

Moneris Gateway API - Integration Guide

Sample Batch Close

Console.WriteLine ("\t\tCorrection: Count = "
+ receipt.GetCorrectionCount (ecr, cardType)
+ " Amount = "

+ receipt.GetCorrectionAmount (ecr,
cardType)) ;

}

}

}

Console.ReadLine () ;

}

catch (Exception e)

{

Console.WriteLine (e);

}

}
}
}

2.12 Open Totals

OpenTotals transaction object definition

OpenTotals opentotals = new OpenTotals();

HttpsPostRequest object for Open Totals transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () :;

mpgReq.SetTransaction (opentotals) ;

Open Totals transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 19: Open Totals transaction object mandatory values

ECR (electronic cash String No limit (value

register) number provided by Moneris)

opentotals.SetEcrno (ecr no);

Sample Open Totals

namespace Moneris

{

using System;

public class TestCanadaOpenTotals

{

public static void Main(string[] args)
{

string store id = "store5";

Page 45 of 476

November 2018

2 Basic Transaction Set

Sample Open Totals

string api token = "yesguy";

string ecr no = "66013455";

//string ecr no = "66013455";

string processing country code = "CA";

OpenTotals opentotals = new OpenTotals();
opentotals.SetEcrno (ecr_no);

HttpsPostRequest mpgReq = new HttpsPostRequest();
mpgReq. SetProcCountryCode (processing country code) ;

mpgReq. SetTestMode (true); //false or comment out this line for production transactions

mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api_ token) ;

mpgReq. SetTransaction (opentotals) ;
mpgReq. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;
if ((receipt.GetReceiptId()) .Equals ("Global Error Receipt") ||
receipt.GetReceiptId() .Equals ("") ||
receipt.GetReceiptId() .Equals ("null")
{

Console.WritelLine ("CardType = null ");

Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("TransType = " + receipt.GetTransType());
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = null");

Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());

}

else

{

foreach (string ecr in receipt.GetTerminalIDs())
{

Console.WriteLine ("ECR: " + ecr);

foreach (string cardType in receipt.GetCreditCards (ecr))
{

Console.WriteLine ("\tCard Type: " + cardType) ;
Console.WriteLine ("\t\tPurchase: Count = "

+ receipt.GetPurchaseCount (ecr, cardType)

+ " Amount = "

+ receipt.GetPurchaseAmount (ecr,

cardType)) ;

Console.WriteLine ("\t\tRefund: Count = "

+ receipt.GetRefundCount (ecr, cardType)

+ " Amount ="

+ receipt.GetRefundAmount (ecr, cardType));
Console.WriteLine ("\t\tCorrection: Count = "
+ receipt.GetCorrectionCount (ecr, cardType)

+ " Amount = "

+ receipt.GetCorrectionAmount (ecr,

cardType)) ;

November 2018

Page 46 of 476

Moneris Gateway API - Integration Guide

Sample Open Totals

— e

Console.ReadLine () ;

}

catch (Exception e)

{

Console.WriteLine (e);

}

— e

Page 47 of 476 November 2018

3 Credential on File

o 3.1 About Credential on File

o 3.2 Credential on File Info Object and Variables

¢ 3.3 Credential on File Transaction Types

e 3.4 Initial Transactions in Credential on File

o 3.5 Vault Tokenize Credit Card and Credential on File

o 3.7 Card Verification and Credential on File Transactions

3.1 About Credential on File

When storing customers' credit card credentials for use in future authorizations, or when using these cre-
dentials in subsequent transactions, card brands now require merchants to indicate this in the trans-
action request.

In the Moneris API, this is handled by the Moneris Gateway via the inclusion of the Credential on File info
object and its variables in the transaction request.

While the requirements for handling Credential on File transactions relate to Visa, Mastercard and Dis-
cover only, in order to avoid confusion and prevent error, please implement these changes for all card
types and the Moneris system will then correctly flow the relevant card data values as appropriate.

While in the testing phase, we recommend that you test with Visa cards because implementation for the
other card brands is still in process.

NOTE: If either the first transaction or a Card Verification authorization is declined when
attempting to store cardholder credentials, those credentials cannot be stored —therefore
the merchant must not use the credential for any subsequent transactions.

3.2 Credential on File Info Object and Variables

The Credential on File Info object is nested within the request for the applicable transaction types.
Object:

cof
Variables in the cof object:

Payment Indicator
Payment Information
Issuer ID

For more information, see Definitions of Request Fields — Credential on File,

3.3 Credential on File Transaction Types

The Credential on File Info object applies to the following transaction types:

November 2018 Page 48 of 476

Moneris Gateway API - Integration Guide

Purchase

Pre-Authorization

Purchase with 3-D Secure —cavvPurchase
Purchase with 3-D Secure and Recurring Billing
Pre-Authorization with 3-D Secure — cavvPreauth
Purchase with Vault —ResPurchaseCC
Pre-Authorization with Vault —ResPreauthCC
Card Verification with AVS and CVD

Card Verification with Vault — ResCardVerificationCC
Vault Add Credit Card — ResAddCC

Vault Update Credit Card — ResUpdateCC

Vault Add Token —ResAddToken

Vault Tokenize Credit Card — ResTokenizeCC
Recurring Billing

3.4 Initial Transactions in Credential on File

When sending an initial transaction with the Credential on File Info object, i.e., a transaction request
where the cardholder's credentials are being stored for the first time, it is important to understand the
following:

You must send the cardholder's Card Verification Digits (CVD)

Issuer ID will be sent without a value on the initial transaction, because it is received in the
response to that initial transaction; for all subsequent merchant-intiated transactions and all
administrative transactions you send this Issuer ID

The payment information field should always be set to a value of 0 on the first transaction
The payment indicator field should be set to the value that is appropriate for the transaction

3.5 Vault Tokenize Credit Card and Credential on File

When you want to store cardholder credentials from previous transactions into the Vault, you use the
Vault Tokenize Credit Card transaction request. Credential on File rules require that only previous trans-
actions with the Credential on File Info object can be tokenized to the Vault.

For more information about this transaction, see 4.3.10 Vault Tokenize Credit Card — ResTokenizeCC,

3.6 Credential on File and Converting Temporary Tokens

In the event you decide to convert a temporary token representing cardholder credentials into a per-
manent token, these credentials become stored credentials, and therefore necessary to send Credential
on File information.

For Temporary Token Add transactions where you subsequently decide to convert the temporary token
into a permanent token (stored credentials):

Page 49 of 476

November 2018

3 Credential on File

1. Send atransaction request that includes the Credential on File Info object to get the Issuer ID; this
can be a Card Verification, Purchase or Pre-Authorization request

2. After completing the transaction, send the Vault Add Token request with the Credential on File
object (Issuer ID only) in order to convert the temporary token to a permanent one.

3.7 Card Verification and Credential on File Transactions

In the absence of a Purchase or Pre-Authorization, a Card Verification transaction is used to get the
unique Issuer ID value (issuerld) that is used in subsequent Credential on File transactions. Issuer ID is a
variable included in the nested Credential on File Info object.

For all first-time transactions, including Card Verification transactions, you must also request the card-
holder's Card Verification Details (CVD). For more on CVD, see 9.2 Card Validation Digits (CVD),

For a complete list of these variables, see each transaction type or Definitions of Request Fields — Cre-
dential on File

The Card Verification request, including the Credential on File Info object, must be sent immediately prior
to storing cardholder credentials.

For information about Card Verification, see 2.10 Card Verification with AVS and CVD,

3.7.1 When to Use Card Verification With COF

If you are not sending a Purchase or Pre-Authorization transaction (i.e., you are not charging the cus-
tomer immediately), you must use Card Verification (or in the case of Vault Add Token, Card Verification
with Vault) first before running the transaction in order to get the Issuer ID.

Transactions this applies to:

Vault Add Credit Card — ResAddCC
Vault Update Credit Card — ResUpdateCC
Vault Add Token —ResAddToken
Recurring Billing transactions, if:
o the first transaction is set to start on a future date

3.7.2 Credential on File and Vault Add Token

For Vault Add Token transactions:

1. Send Card Verification with Vault transaction request including the Credential on File object to get

the Issuer ID
2. Send the Vault Add Token request including the Credential on File object (with Issuer ID only;

other fields are not applicable)

For more on this transaction type, see 4.3.9 Vault Add Token —ResAddToken,

November 2018 Page 50 of 476

Moneris Gateway API - Integration Guide

3.7.3 Credential on File and Vault Update Credit Card

For Vault Update Credit Card transactions where you are updating the credit card number:

1. Send Card Verification transaction request including the Credential on File object to get the
Issuer ID

2. Send the Vault Update Credit Card request including the Credential on File Info object (Issuer ID
only).

For more on this transaction type, see 4.3.3 Vault Update Credit Card — ResUpdateCC,

3.7.4 Credential on File and Vault Add Credit Card

For Vault Add Credit Card transactions:

1. Send Card Verification transaction request including the Credential on File object to get the
Issuer ID
2. Send the Vault Add Credit Card request including the Credential on File Info object (Issuer ID only)

For more on this transaction type, see 4.3.1 Vault Add Credit Card — ResAddCC,

3.7.5 Credential on File and Recurring Billing

NOTE: The value of the payment indicator field must be R when sending Recurring Billing
transactions.

For Recurring Billing transactions which are set to start immediately:

1. Send a Purchase transaction request with both the Recurring Billing and Credential on File info
objects

For Recurring Billing transactions which are set to start on a future date:

1. Send Card Verification transaction request including the Credential on File info object to get the
Issuer ID
2. Send Purchase transaction request with the Recur and Credential on File info objects included

For updating a Recurring Billing series where you are updating the card number (does not apply if you are
only modifying the schedule or amount in a recurring series):

1. Send Card Verification request including the Credential on File info object to get the Issuer ID
2. Send a Recurring Billing Update transaction

For more information about the Recurring Billing object, see Definition of Request Fields — Recurring.

Page 51 of 476 November 2018

4 Vault

o 4.1 About the Vault Transaction Set

e 4.2 Vault Transaction Types

e 4.3 Vault Administrative Transactions
e 4.4 Vault Financial Transactions

o 4.5 Hosted Tokenization

4.1 About the Vault Transaction Set

The Vault feature allows merchants to create customer profiles, edit those profiles, and use them to pro-
cess transactions without having to enter financial information each time. Customer profiles store cus-
tomer data essential to processing transactions, including credit and signature debit.

The Vault is a complement to the recurring payment module. It securely stores customer account inform-
ation on Moneris secure servers. This allows merchants to bill customers for routine products or services
when an invoice is due.

4.2 Vault Transaction Types

The Vault APl supports both administrative and financial transactions.

4.2.1 Administrative Vault Transaction types

ResAddCC
Creates a new credit card profile, and generates a unique data key which can be obtained
from the Receipt object.

This data key is the profile identifier that all future financial Vault transactions will use to asso-
ciate with the saved information.

EncResAddCC
Creates a new credit card profile, but requires the card data to be either swiped or manually
keyed in via a Moneris-provided encrypted mag swipe reader.

ResTempAdd
Creates a new temporary token credit card profile. This transaction requires a duration to be
set to indicate how long the temporary token is to be stored for.

During the lifetime of this temporary token, it may be used for any other vault transaction
before it is permanently deleted from the system.

ResUpdateCC
Updates a Vault profile (based on the data key) to contain credit card information.

All information contained within a credit card profile is updated as indicated by the submitted
fields.

EncResUpdateCC
Updates a profile (based on the data key) to contain credit card information. The encrypted
version of this transaction requires the card data to either be swiped or manually keyed in via
a Moneris-provided encrypted mag swipe reader.

November 2018 Page 52 of 476

Moneris Gateway API - Integration Guide

ResDelete
Deletes an existing Vault profile of any type using the unique data key that was assigned when

the profile was added.

It is important to note that after a profile is deleted, the information which was saved within
can no longer be retrieved.

ResLookupFull
Verifies what is currently saved under the Vault profile associated with the given data key. The

response to this transaction returns the latest active data for that profile.

Unlike ResLookupMasked (which returns the masked credit card number), this transaction
returns both the masked and the unmasked credit card numbers.

ResLookupMasked
Verifies what is currently saved under the Vault profile associated with the given data key. The

response to this transaction returns the latest active data for that profile.

Unlike ResLookupFull (which only returns both the masked and the unmasked credit card
numbers), this transaction only returns the masked credit card number.

ResGetExpiring
Verifies which profiles have credit cards that are expiring during the current and next calendar

month. For example, if you are processing this transaction on September 30, then it will
return all cards that expire(d) in September and October of this year.

When generating a list of profiles with expiring credit cards, only the masked credit card num-
bers are returned.

This transaction can be performed no more than 2 times on any given calendar day, and it
only applies to credit card profiles.

Reslscorporatecard
Determines whether a profile has a corporate card registered within it.

After sending the transaction, the response field to the Receipt object's getCorporateCard
method is either true or false depending on whether the associated card is a corporate

card.

ResAddToken
Converts a Hosted Tokenization temporary token to a permanent Vault token.

Atemporary token is valid for 15 minutes after it is created.

ResTokenizeCC
Creates a new credit card profile using the credit card number, expiry date and e-commerce

indicator that were submitted in a previous financial transaction. A transaction that was pre-
viously done in Moneris Gateway is taken, and the card data from that transaction is stored
in the Moneris Vault.

As with ResAddCC, a unique data key is generated and returned to the merchant via the
Receipt object. This is the profile identifier that all future financial Vault transactions will use to
associate with the saved information.

Page 53 0of 476 November 2018

4 Vault

4.2.2 Financial Vault Transaction types

ResPurchaseCC
Uses the data key to identify a previously registered credit card profile. The details saved
within the profile are then submitted to perform a Purchase transaction.

ResPreauthCC
Uses the data key to identify a previously registered credit card profile. The details within the
profile are submitted to perform a Pre-Authorization transaction.

ResIndRefundCC
Uses the unique data key to identify a previously registered credit card profile, and credits a
specified amount to that credit card.

ResMpiTxn
Uses the data key (as opposed to a credit card number) in a VBV/SecureCode Txn MPI trans-
action. The merchant uses the data key with ResMpiTxn request, and then reads the
response fields to verify whether the card is enrolled in Verified by Visa or MasterCard
SecureCode. Retrieves the vault transaction value to pass on to Visa or MasterCard.

After it has been validated that the data key is is enrolled in 3-D Secure, a window appears in
which the customer can enter the 3-D Secure password. The merchant may initiate the form-
ing of the validation form getMpiInLineForm(),

For more information on integrating with MonerisMPI, refer to 8 MPI

4.3 Vault Administrative Transactions

Administrative transactions allow you to perform such tasks as creating new Vault profiles, deleting exist-
ing Vault profiles and updating profile information.

Some Vault Administrative Transactions require the Credential on File object to be sent with the issuer ID
field only.

4.3.1 Vault Add Credit Card — ResAddCC

ResAddCC transaction object definition

ResAddCC resaddcc = new ResAddCC();

HttpsPostRequest object for ResAddCC transaction

HttpsPostRequest mpgReq = new HttpsPostRequest() ;

mpgReq. SetTransaction (resaddcc) ;

ResAddCC transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

November 2018 Page 54 of 476

Moneris Gateway API - Integration Guide

Table 20: Vault Add Credit Card transaction object mandatory values

Credit card number String 20-character alpha- resaddcc.SetPan (pan) ;
numeric

Expiry date String 4-character alpha- resaddcc.SetExpdate (expiry
numeric date);

(YYMM format)

E-commerce indicator | String 1-character alpha- resaddcc.SetCryptType
numeric (crypt);

Credential on File Info | Object | N/A resaddcc.SetCofInfo (cof);

cof

r N

NOTE: This is a nested
object within the trans-
action, and required
when storing or using
the customer's stored
credentials. The Cre-
dential on File Info
object has its own
request variables, lis-
ted in blue in the table
below, "Credential on
File Object Request
Variables".

Table 21: Vault Add Credit Card transaction optional values

Customer ID String 50-character alpha- resaddcc.SetCustId(cust_id);
numeric
AVS information Object | N/A resaddcc.SetAvsInfo

(avsCheck) ;

Email address String | 30-character alpha- resaddcc.SetEmail (email) ;
numeric

Page 55 of 476 November 2018

4 Vault

Table 21: Vault Add Credit Card transaction optional values

Phone number String | 30-character alpha- resaddcc. SetPhone (phone) ;
numeric

Note String | 30-character alpha- resaddcc.SetNote (note) ;
numeric

Data key format String 2-character alpha- resaddcc.SetDataKeyFormat
numeric (data key format)

Credential on File Transaction Object Request Fields

Issuer ID String 15-character alpha- cof.SetIssuerld ("VALUE_FOR_
numeric ISSUER ID");

NOTE: This variable is

required for all mer- variable length

NOTE: For a list and explanation of the

chant-intiated trans- possible values to send for this variable,
actions following the see Definitions of Request Fields — Cre-
first one; upon sending dential on File

the first transaction,
the Issuer ID value is
received in the trans-
action response and
then used in sub-
sequent transaction
requests.

Sample Vault Add Credit Card

namespace Moneris

{

using System;

using System.Text;

using System.Collections;

public class TestCanadaResAddCC
{

public static void Main(string[] args)
{

string store id = "store5";
string api token = "yesguy";
string pan = "4242424242424242";
string expdate = "1912";

string phone = "0000000000";
string email = "bob@smith.com";
string note = "my note";

November 2018 Page 56 of 476

Moneris Ga

teway API - Integration Guide

Sample Vault Add Credit Card

string
string
string

cust_id = "customerl";
crypt type = "7";
data_key format = "0";

string processing country code = "CA";

bool st
AvsInfo
avsChec
avsChec
avsChec
CofInfo
cof.Set
ResAddC
resaddc
resaddc
resaddc
resaddc
resaddc
resaddc
resaddc
resaddc
resaddc
//resad
resaddc
HttpsPo
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
try

{
Receipt

Console.

Console
Console

Console.

Console
Console

Console.

Console
Console
Console
Console

Console.

Console
Console

Console.

Console

Console.

Console
Console

Console.
Console.

}
catch (

{

Console

atus_check = false;

avsCheck = new AvsInfol();
k.SetAvsStreetNumber ("212") ;

k.SetAvsStreetName ("Payton Street");
k.SetAvsZipCode ("M1MIM1") ;

cof = new CofInfol();
IssuerId("168451306048014");

C resaddcc = new ResAddCC() ;

c.SetPan (pan) ;

c.SetExpDate (expdate) ;
c.SetCryptType (crypt type);

c.SetCustId(cust id);

c.SetPhone (phone) ;

c.SetEmail (email) ;

c.SetNote (note) ;

c.SetAvsInfo (avsCheck) ;

c.SetGetCardType ("true") ;
dcc.SetDataKeyFormat (data key format); //optional
c.SetCofInfo(cof);
stRequest mpgReq = new HttpsPostRequest () ;
SetProcCountryCode (processing country code);

SetTestMode (true); //false or comment out this line for production transactions
SetStoreld(store id);

SetApiToken (api token);

SetTransaction (resaddcc) ;

SetStatusCheck (status_check) ;

Send () ;

receipt = mpgReq.GetReceipt () ;

WriteLine ("DataKey = " + receipt.GetDataKey());

.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
.WriteLine ("Message = " + receipt.GetMessage());

WriteLine ("TransDate = " + receipt.GetTransDate());
.WritelLine ("TransTime = " + receipt.GetTransTime());
.WriteLine ("Complete = " + receipt.GetComplete());

WriteLine ("TimedOut " + receipt.GetTimedOut()) ;

.WriteLine ("ResSuccess = " + receipt.GetResSuccess());
.WriteLine ("PaymentType = " + receipt.GetPaymentType()) ;
.WriteLine ("Cust ID = " + receipt.GetResDataCustId());
.WritelLine ("Phone = " + receipt.GetResDataPhone()) ;

WriteLine ("Email = " + receipt.GetResDataEmail()) ;

.WriteLine ("Note = " + receipt.GetResDataNote());

.WriteLine ("MaskedPan = " + receipt.GetResDataMaskedPan()) ;
WritelLine ("Exp Date = " + receipt.GetResDataExpdate());
.WriteLine ("Crypt Type = " + receipt.GetResDataCryptType())
WriteLine ("Avs Street Number = " + receipt.GetResDataAvsStreetNumber ());
.WriteLine ("Avs Street Name = " + receipt.GetResDataAvsStreetName()) ;
.WritelLine ("Avs Zipcode = " + receipt.GetResDataAvsZipcode());
WriteLine ("IssuerId = " + receipt.GetIssuerId());

ReadLine () ;

Exception e)

.WriteLine (e);

Page 57 of 476 November 2018

4 Vault

Sample Vault Add Credit Card

- e e e

Vault response fields

For a list and explanation of (Receipt object) response fields that are available after sending this Vault
transaction, see Definitions of Response Fields (page 437).

4.3.1.1 Vault Data Key

The ResAddCC sample code includes the following instruction from the Receipt object:

Console.WriteLine ("DataKey = " + receipt.GetDataKey())

The data key response field is populated when you send a Vault Add Credit Card — ResAddCC (page 54),
Vault Encrypted Add Credit Card — EncResAddCC (page 58), Vault Tokenize Credit Card — ResTokenizeCC
(page 81), Vault Temporary Token Add —ResTempAdd (page 61) or Vault Add Token — ResAddToken

(page 77) transaction. It is the profile identifier that all future financial Vault transactions will use to asso-
ciate with the saved information.

The data key is a maximum 28-character alphanumeric string.

4.3.1.2 Vault Encrypted Add Credit Card — EncResAddCC

Vault Encrypted Add Credit Card transaction object definition

EncResAddCC encresaddcc = new EncResAddCC () ;

HttpsPostRequest object for Vault Encrypted Add Credit Card transaction

HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq. SetTransaction (encresaddcc) ;

Vault Encrypted Add Credit Card transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

November 2018 Page 58 of 476

Moneris Gateway API - Integration Guide

Table 22: Vault Encrypted Add Credit Card transaction object mandatory values

Encrypted Track2 data | String | 40-character numeric encresaddcc.SetEncTrack2
(enc_track2);

Device type String 30-character alpha- encresaddcc.SetDeviceType
numeric (device type);

E-commerce indicator | String 1-character alpha- encresaddcc.SetCryptType
numeric (crypt) ;

Table 23: Vault Encrypted Add Credit Card transaction optional values

Customer ID String | 50-character alpha- encresaddcc.SetCustld (cust_
numeric id);
AVS information Object | Notapplicable. Click encresaddcc.SetAvsInfo

hereSee 9.1 (page 283). | (@vsCheck);

Email address String | 30-character alpha- encresaddcc.SetEmail (email) ;
numeric

Phone number String | 30-character alpha- encresaddcc.SetPhone (phone) ;
numeric

Note String | 30-character alpha- encresaddcc.SetNote (note) ;
numeric

Data key format! String | 2-character alpha- encresaddcc.SetDataKeyFormat
numeric (data_key format)

Sample Vault Encrypted Add Credit Card

namespace Moneris

{

using System;

public class TestCanadaEncResAddCC

{

public static void Main(string[] args)

{

/******************* REQUEST VARIABLES*~k***~k*************************/

1Available to Canadian integrations only.

Page 59 of 476 November 2018

4 Vault

Sample Vault Encrypted Add Credit Card

string store id = "store5";

string api token = "yesquy";

string order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;
string cust id = "nga";

string amount = "1.00";

string device type = "idtech bdk";
string crypt = "7";

string enc_track2 = "ENCRYPTEDTRACK2DATA";
string data key format = "0";
string processing country code = "CA";

bool status_check = false;

EncResAddCC encresaddcc = new EncResAddCC () ;
encresaddcc.SetEncTrack2 (enc_track2) ;
encresaddcc.SetDeviceType (device type);
encresaddcc.SetCryptType (crypt) ;
encresaddcc.SetCustId(cust id);

encresaddcc.SetNote ("Just a note");

encresaddcc.SetEmail ("example@test.com") ;
encresaddcc.SetPhone ("866-319-7450") ;
//encresaddcc.SetDataKeyFormat (data key format); //optional

/*************** Address Verification Service **********************/
AvsInfo avsCheck = new AvsInfo();

avsCheck.SetAvsStreetNumber ("212") ;

avsCheck.SetAvsStreetName ("Payton Street");

avsCheck.SetAvsZipCode ("M1MIM1") ;

encresaddcc.SetAvsInfo (avsCheck) ;

HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq.SetProcCountryCode (processing country code);
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api token);

mpgReq. SetTransaction (encresaddcc) ;
mpgReq.SetStatusCheck (status check) ;

mpgReq. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("DataKey = " + receipt.GetDataKey());

Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("Message = " + receipt.GetMessage());

Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Complete = " + receipt.GetComplete());

Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());

Console.WriteLine ("ResSuccess = " + receipt.GetResSuccess());
Console.WriteLine ("PaymentType = " + receipt.GetPaymentType());
//ResolveData

Console.WriteLine ("\nCust ID = " + receipt.GetResDataCustId());
Console.WriteLine ("Phone = " + receipt.GetResDataPhone()) ;

Console.WritelLine ("Email = " + receipt.GetResDataEmail());
Console.WriteLine ("Note = " + receipt.GetResDataNote()) ;

Console.Writeline ("MaskedPan = " + receipt.GetResDataMaskedPan());
Console.WriteLine ("Exp Date = " + receipt.GetResDataExpdate()) ;
Console.WriteLine ("Crypt Type = " + receipt.GetResDataCryptType());
Console.WritelLine ("Avs Street Number = " + receipt.GetResDataAvsStreetNumber ()) ;
Console.WriteLine ("Avs Street Name = " + receipt.GetResDataAvsStreetName()) ;

November 2018 Page 60 of 476

Moneris Gateway API - Integration Guide

Sample Vault Encrypted Add Credit Card

Console.WriteLine ("Avs Zipcode = " + receipt.GetResDataAvsZipcode());
Console.ReadLine() ;

}

catch (Exception e)

{

Console.WriteLine (e);

}

— e

Vault response fields

For a list and explanation of (Receipt object) response fields that are available after sending this Vault
transaction, see Definitions of Response Fields (page 437).

4.3.2 Vault Temporary Token Add — ResTempAdd

Creates a new temporary token credit card profile. This transaction requires a duration to be set to indic-
ate how long the temporary token is to be stored for.

During the lifetime of this temporary token, it may be used for any other Vault transaction before it is per-
manently deleted from the system.

Things to Consider:

o The duration, or lifetime, of the temporary token can be set to be a maximum of 15
minutes.

Vault Temporary Token Add transaction object definition

ResTempAdd resTempAdd = new ResTempAdd() ;

HttpsPostRequest object for Vault Temporary Token Add transaction

HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq. SetTransaction (resTempAdd) ;

Vault Temporary Token Add transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Page 61 of 476 November 2018

4 Vault

Table 24: Vault Temporary Token Add transaction object mandatory values

maximum 15 minutes

Credit card number String 20-character numeric resTempAdd.SetPan (pan) ;

Expiry date String 4-character numeric resTempAdd.SetExpdate
(expiry date);

Duration String | 3-character numeric resTempAdd.SetDuration

(duration) ;

E-commerce indicator String 1-character alpha-
numeric

resTempAdd.SetCryptType
(crypt);

Table 25: Vault Temporary Token Add transaction optional values

Data key format?! String 2-character alpha-
numeric

resTempAdd.SetDataKeyFormat
(data_key format)

Sample Vault Temporary Token Add

namespace Moneris

{

using System;

using System.Text;

using System.Collections;

public class TestCanadaResTempAdd

{

public static void Main(string[] args)
{

string store id = "storel";

string api token = "yesguy";

string pan = "5454545454545454";
string expdate = "1901"; //YYMM format
string crypt type = "7";

string duration = "900";
string data key format = "0";
string processing country code = "CA";

bool status check = false;

ResTempAdd resTempAdd = new ResTempAdd () ;
resTempAdd. SetPan (pan) ;

resTempAdd. SetExpDate (expdate) ;

resTempAdd. SetDuration (duration) ;

resTempAdd. SetCryptType (crypt_type) ;
//resTempAdd.SetDataKeyFormat (data key format); //optional
HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq.SetProcCountryCode (processing country code);

1Available to Canadian integrations only.

November 2018

Page 62 of 476

Moneris Gateway API - Integration Guide

Sample Vault Temporary Token Add

mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);

mpgReq.SetApiToken (api_ token) ;

mpgReq. SetTransaction (resTempAdd) ;

mpgReq.SetStatusCheck (status_check) ;

mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("DataKey = " + receipt.GetDataKey());
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime())
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("ResSuccess = " + receipt.GetResSuccess());
Console.WritelLine ("PaymentType = " + receipt.GetPaymentType());
Console.WriteLine ("MaskedPan = " + receipt.GetResDataMaskedPan());
Console.WritelLine ("Exp Date = " + receipt.GetResDataExpdate());

Console.ReadLine () ;
}
catch (Exception e)
{

Console.WriteLine (e);

}

— e e

Vault response fields

For a list and explanation of (Receipt object) response fields that are available after sending this Vault
transaction, see Definitions of Response Fields (page 437).

4.3.3 Vault Update Credit Card — ResUpdateCC

Updates a Vault profile (based on the data key) to contain credit card information. All information con-
tained within a credit card profile is updated as indicated by the submitted fields.

Things to Consider:

o This will update a profile to contain Credit Card information by referencing the profile’s
unique data key. If the profile which is being updated was already a Credit Card profile,
allinformation contained within it will simply be updated as indicated by the submitted
fields. This means that all fields are optional, and only those fields that are submitted
will be updated.

o To update a specific field on the profile, only set that specific element using the cor-
responding set method.

Page 63 0of 476 November 2018

4 Vault

Vault Update Credit Card transaction object definition

ResUpdateCC resUpdateCC = new ResUpdateCC() ;

HttpsPostRequest object for Vault Update Credit Card transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (resUpdateCC) ;

Vault Update Credit Card transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 26: Vault Update Credit Card transaction object mandatory values

Data key String | 25-character alpha- resUpdateCC.SetData (data_
numeric key):

Optional values that are submitted to the ResUpdateCC object are updated. Unsubmitted optional val-
ues (with one exception) remain unchanged. This allows you to change only the fields you want.

If a profile contains AVS information, but a Vault Update Credit Card transaction is submitted without an
AVS Info object, the existing AVS Info details are deactivated and the new credit card information is
registered without AVS.

Table 27: Vault Update Credit Card transaction optional values

Credit card number String 20-character alpha- resUpdateCC.SetPan (pan) ;
numeric
Expiry date String | 4-character alpha- resUpdateCC.SetExpdate

numeric (expiry date);

(YYMM format)

E-commerce indicator | String 1-character alpha- resUpdateCC.SetCryptType
numeric (crypt);

Customer ID String 50-character alpha- resUpdateCC.SetCustId(cust
numeric id);

AVS information Object | n/a resUpdateCC.SetAvsInfo

(avsCheck) ;

Email address String | 30-character alpha- resUpdateCC.SetEmail (email);
numeric

November 2018 Page 64 of 476

Moneris Gateway API - Integration Guide

Phone number String 30-character alpha- resUpdateCC.SetPhone (phone) ;
numeric

Note String 30-character alpha- resUpdateCC.SetNote (note) ;
numeric

Credential on File Info | Object | N/A resUpdateCC.SetCofInfo (cof);

cof

NOTE: This is a nested
object within the trans-
action, and required
when storing or using
the customer's stored
credentials. The Cre-
dential on File Info
object has its own
request variables, lis-
ted in blue in the table
below, "Credential on
File Object Request
Variables".

Credential on File Transaction Object Request Fields

Issuer ID String | 15-character alpha- cof.SetIssuerld("VALUE_FOR_
numeric ISSUER_ID");

NOTE: This variable is

required for all mer- variable length

NOTE: For a list and explanation of the

chant-intiated trans- possible values to send for this variable,
actions following the see Definitions of Request Fields — Cre-
first one; upon sending dential on File

the first transaction,
the Issuer ID value is
received in the trans-
action response and
then used in sub-
sequent transaction
requests.

Sample Vault Update Credit Card

namespace Moneris

{

Page 65 of 476 November 2018

4 Vault

Sample Vault Update Credit Card

using System;

using System.Text;

using System.Collections;

public class TestCanadaResUpdateCC

{

public static void Main(string[] args)

{

string store id = "storel";

string api token = "yesguy";

string data key = "cIjurYyhGCAiGuCKdp94AspET7";
string pan = "4242424242424242";

string expdate = "1901";

string phone = "0000000000";

string email = "bob@smith.com";

string note = "my note";

string cust id = "customerl";

string crypt type = "7";

string processing country code = "CA";

bool status_check = false;

AvsInfo avsCheck = new AvsInfo();
avsCheck.SetAvsStreetNumber ("212") ;
avsCheck.SetAvsStreetName ("Payton Street");
avsCheck.SetAvsZipCode ("M1IMIM1") ;

CofInfo cof = new CofInfo();
cof.SetIssuerId("168451306048014") ;
ResUpdateCC resUpdateCC = new ResUpdateCC() ;
resUpdateCC.SetDataKey (data_ key);
resUpdateCC.SetAvsInfo (avsCheck) ;
resUpdateCC.SetCustId(cust_id);
resUpdateCC.SetPan (pan) ;
resUpdateCC.SetExpDate (expdate) ;
resUpdateCC. SetPhone (phone) ;
resUpdateCC.SetEmail (email) ;

resUpdateCC. SetNote (note) ;
resUpdateCC.SetCryptType (crypt type) ;
resUpdateCC.SetCofInfo (cof) ;
HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq. SetProcCountryCode (processing country code) ;

mpgReq. SetTestMode (true); //false or comment out this line for production transactions

mpgReq.SetStoreld (store id);
mpgReq.SetApiToken (api token);

mpgReq. SetTransaction (resUpdateCC) ;
mpgReq.SetStatusCheck (status_check) ;
mpgReq.Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt();

Console.WriteLine ("DataKey = " + receipt.GetDataKey());
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut ());
Console.WriteLine ("ResSuccess = " + receipt.GetResSuccess());
Console.WriteLine ("PaymentType = " + receipt.GetPaymentType());
Console.WriteLine ("Cust ID = " + receipt.GetResDataCustId());
Console.WritelLine ("Phone = " + receipt.GetResDataPhone()) ;
Console.WriteLine ("Email = " + receipt.GetResDataEmail());
November 2018 Page 66 of 476

Moneris Gateway API - Integration Guide

Sample Vault Update Credit Card

Console.WriteLine ("Note = " + receipt.GetResDataNote()) ;

Console.WritelLine ("MaskedPan = " + receipt.GetResDataMaskedPan()) ;
Console.WriteLine ("Exp Date = " + receipt.GetResDataExpdate());
Console.WriteLine ("Crypt Type = " + receipt.GetResDataCryptType());
Console.WritelLine ("Avs Street Number = " + receipt.GetResDataAvsStreetNumber ()) ;
Console.WriteLine ("Avs Street Name = " + receipt.GetResDataAvsStreetName()) ;
Console.WritelLine ("Avs Zipcode = " + receipt.GetResDataAvsZipcode());

Console.ReadLine () ;

}

catch (Exception e)

{

Console.WriteLine (e);

}

— e

Vault response fields

For a list and explanation of (Receipt object) response fields that are available after sending this Vault
transaction, see Definitions of Response Fields (page 437).

4.3.3.1 Vault Encrypted Update CC - EncResUpdateCC

Vault Encrypted Update CC transaction object definition

EncResUpdateCC encresupdatecc = new EncResUpdateCC() ;

HttpsPostRequest object for Vault Encrypted Update CC transaction

HttpsPostRequest mpgReq = new HttpsPostRequest() ;

mpgReq. SetTransaction (encresupdatecc) ;

Vault Encrypted Update CC transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 28: Vault Encrypted Update CC transaction object mandatory values

Data key String | 25-character alpha- encresupdatecc.SetData (data_
numeric key):
Encrypted Track2 data | String Variable length encresupdatecc.SetEncTrack?

(enc_track2);

Device type String 30-character alpha- encresupdatecc.SetDeviceType
numeric (device type);

Page 67 of 476 November 2018

4 Vault

Optional values that are submitted to the ResUpdateCC object are updated, while unsubmitted optional
values (with one exception) remain unchanged. This allows you to change only the fields you want.

The exception is that if you are making changes to the payment type, all of the variables in the optional
values table below must be submitted.

If you update a profile to a different payment type, it is automatically deactivated and a new credit card
profile is created and assigned to the data key. The only values from the prior profile that will remain
unchanged are the customer ID, phone number, email address, and note.

EXAMPLE: |f 3 profile contains AVS information, but a ResUpdateCC transaction is sub-
mitted without an AVSInfo object, the existing AVSInfo details are deactivated and the new
credit card information is registered without AVS.

Table 29: Vault Encrypted Update CC transaction optional values

numeric

E-commerce indicator String 1-character alpha- encresupdatecc.SetCryptType
numeric (crypt) ;

Customer ID String 50-character alpha- encresupdatecc.SetCustId
numeric (cust_id);

AVS information Object | Not applicable. Click encresupdatecc.SetAvsInfo
hereSee 9.1 (page 283). | (@vsCheck)

Email address String 30-character alpha- encresupdatecc.SetEmail
numeric (email);

Phone number String 30-character alpha- encresupdatecc.SetPhone
numeric (phone) ;

Note String 30-character alpha- encresupdatecc.SetNote

(note) ;

Sample Vault Encrypted Update CC - CA

namespace Moneris
{
using System;

{

{

public static void Main(stringl]

string store id = "store5";

public class TestCanadaEncResUpdateCC

args)

/******************* REQUEST VARIABLES*******************************/

November 2018

Page 68 of 476

Moneris Ga

teway API - Integration Guide

Sample Vault Encrypted Update CC - CA

string
string
string
string
string
string
string
string
bool st

EncResU
encresu
encresu
encresu
encresu
encresu
encresu
encresu
encresu

/******

AvsInfo
avsChec
avsChec
avsChec
encresu
HttpsPo
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.

try

{
Receipt
Console
Console

Console.

Console
Console
Console
Console

Console.

Console
//Resol

Console.

Console

Console.

Console
Console

Console.

Console
Console

Console.

Console

Console.

api token = "yesguy";

order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;
cust_id = "nga";

device type = "idtech bdk";

crypt = "7";

enc_track2 = "ENCRYPTEDTRACK2DATA";

processing country code = "CA";

data key = "gF5IpsWD3s42r2TZxZyecE9Gs";

atus check = false;

pdateCC encresupdatecc = new EncResUpdateCC() ;
pdatecc.SetDataKey (data key) ;
pdatecc.SetCustId(cust id);

pdatecc.SetNote ("Just a note2");
pdatecc.SetEmail ("examplel@test.com") ;
pdatecc.SetPhone ("866-319-7450") ;
pdatecc.SetEncTrack2 (enc_track2) ;
pdatecc.SetDeviceType (device type);
pdatecc.SetCryptType (crypt) ;

* ok kkkkkkk Address Verification Service **********************/
avsCheck = new AvsInfo();

k.SetAvsStreetNumber ("3300") ;

k.SetAvsStreetName ("Bloor Street");

k.SetAvsZipCode ("M2X2X2") ;

pdatecc.SetAvsInfo (avsCheck) ;

stRequest mpgReq = new HttpsPostRequest();
SetProcCountryCode (processing country code);

SetTestMode (true); //false or comment out this line for production transactions
SetStoreld(store id);

SetApiToken (api token);

SetTransaction (encresupdatecc) ;

SetStatusCheck (status_check) ;

Send () ;

receipt = mpgReq.GetReceipt () ;

.WritelLine ("DataKey = " + receipt.GetDataKey());

.WriteLine ("ResponseCode = " + receipt.GetResponseCode ()) ;
WriteLine ("Message = " + receipt.GetMessage());

.WritelLine ("TransDate = " + receipt.GetTransDate());
.WriteLine ("TransTime = " + receipt.GetTransTime());
.WriteLine ("Complete = " + receipt.GetComplete());

.WriteLine ("TimedOut = " + receipt.GetTimedOut());

WriteLine ("ResSuccess = " + receipt.GetResSuccess());
.WriteLine ("PaymentType = " + receipt.GetPaymentType());
veData

WriteLine ("\nCust ID = " + receipt.GetResDataCustId());
.WriteLine ("Phone = " + receipt.GetResDataPhone()) ;

WriteLine ("Email = " + receipt.GetResDataEmail());

.WriteLine ("Note = " + receipt.GetResDataNote());

.WritelLine ("MaskedPan = " + receipt.GetResDataMaskedPan()) ;
WriteLine ("Exp Date = " + receipt.GetResDataExpdate());
.WriteLine ("Crypt Type = " + receipt.GetResDataCryptType());
.WritelLine ("Avs Street Number = " + receipt.GetResDataAvsStreetNumber ());
WriteLine ("Avs Street Name = " + receipt.GetResDataAvsStreetName ());
.WritelLine ("Avs Zipcode = " + receipt.GetResDataAvsZipcode());
ReadLine () ;

Page 69 of 476 November 2018

4 Vault

Sample Vault Encrypted Update CC - CA

}

catch (Exception e)

{

Console.WriteLine (e);

}

— e

Vault response fields

For a list and explanation of (Receipt object) response fields that are available after sending this Vault
transaction, see Definitions of Response Fields (page 437).

4.3.4 Vault Delete - ResDelete

[NOTE: After a profile has been deleted, the details can no longer be retrieved. }

Vault Delete transaction object definition

ResDelete resDelete = new ResDelete (data key);

HttpsPostRequest object for Vault Delete transaction

HttpsPostRequest mpgReq = new HttpsPostRequest() ;

mpgReqg.SetTransaction (resDelete) ;

Vault Delete transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 30: Vault Delete transaction object mandatory values

Data key String | 25-character alpha- resDelete.SetData(data_key);
numeric

Sample Vault Delete

namespace Moneris
{

using System;
using System.Text;

November 2018 Page 70 of 476

Moneris Gateway API - Integration Guide

Sample Vault Delete

using System.Collections;

public class TestCanadaResDelete

{

public static void Main(string[] args)

{

string store id = "store5";

string api token = "yesquy";

string data key = "PJVKJjtEmclFvFyjxHE4EwBMxi";
string processing country code = "CA";

bool status check = false;

ResDelete resDelete = new ResDelete (data_key);

HttpsPostRequest mpgReq = new HttpsPostRequest();
mpgReq.SetProcCountryCode (processing country code);

mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);

mpgReq.SetApiToken (api token) ;

mpgReq.SetTransaction (resDelete) ;

mpgReq.SetStatusCheck (status_check) ;

mpgReqg. Send () ;

try
{
Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("DataKey = " + receipt.GetDataKey());

Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WritelLine ("Message = " + receipt.GetMessage());

Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WritelLine ("Complete = " + receipt.GetComplete());

Console.WriteLine ("TimedOut = " + receipt.GetTimedOut ());

Console.WriteLine ("ResSuccess = " + receipt.GetResSuccess());
Console.WriteLine ("PaymentType = " + receipt.GetPaymentType());
//ResolveData

Console.WritelLine ("Cust ID = " + receipt.GetResDataCustId());
Console.WriteLine ("Phone = " + receipt.GetResDataPhone());

Console.WriteLine ("Email = " + receipt.GetResDataEmail());
Console.WritelLine ("Note = " + receipt.GetResDataNote());

Console.WriteLine ("MaskedPan = " + receipt.GetResDataMaskedPan());
Console.WritelLine ("Exp Date = " + receipt.GetResDataExpdate());
Console.WriteLine ("Crypt Type = " + receipt.GetResDataCryptType());
Console.WritelLine ("Avs Street Number = " + receipt.GetResDataAvsStreetNumber()) ;
Console.WritelLine ("Avs Street Name = " + receipt.GetResDataAvsStreetName()) ;
Console.WriteLine ("Avs Zipcode = " + receipt.GetResDataAvsZipcode()) ;

}

catch (Exception e)

{

Console.WritelLine (e);

}

— e

Vault response fields

For a list and explanation of (Receipt object) response fields that are available after sending this Vault
transaction, see Definitions of Response Fields (page 437).

Page 71 of 476 November 2018

4 Vault

4.3.5 Vault Lookup Full - ResLookupFull

Vault Lookup Full transaction object definition

ResLookupFull resLookupFull = new ResLookupFull (data key);

HttpsPostRequest object for Vault Lookup Full transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (resLookupFull) ;

Vault Lookup Full transaction values

Table 31: Vault Lookup Full transaction object mandatory values

Data key String | 25-character alpha- resLookupFull.SetData (data_
numeric key) i

Sample Vault Lookup Full

namespace Moneris

{

using System;

using System.Text;

using System.Collections;

public class TestCanadaResLookupFull

{

public static void Main(string[] args)

{

string store id = "storel";

string api_token = "yesguy";

string data key = "pi3ZMZoTTM8pLMOwuwws2KBxw";
string processing country code = "CA";

bool status check = false;

ResLookupFull resLookupFull = new ResLookupFull (data key);
HttpsPostRequest mpgReq = new HttpsPostRequest() ;
mpgReq.SetProcCountryCode (processing country code);
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld (store id);
mpgReq.SetApiToken (api token);
mpgReq.SetTransaction (resLookupFull) ;
mpgReq.SetStatusCheck (status check) ;

mpgReq. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("DataKey = " + receipt.GetDataKey());
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode())
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.Writeline ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());

November 2018 Page 72 of 476

Moneris Gateway API - Integration Guide

Sample Vault Lookup Full

Console.WriteLine ("ResSuccess = " + receipt.GetResSuccess());
Console.WritelLine ("PaymentType = " + receipt.GetPaymentType());
Console.WriteLine ("Cust ID = " + receipt.GetResDataCustId());
Console.WriteLine ("Phone = " + receipt.GetResDataPhone());

Console.WriteLine ("Email = " + receipt.GetResDataEmail());
Console.WriteLine ("Note = " + receipt.GetResDataNote());
Console.WriteLine ("Pan = " + receipt.GetResDataPan()) ;

Console.WritelLine ("MaskedPan = " + receipt.GetResDataMaskedPan());
Console.WritelLine ("Exp Date = " + receipt.GetResDataExpdate());
Console.WriteLine ("Crypt Type = " + receipt.GetResDataCryptType());
Console.WritelLine ("Avs Street Number = " + receipt.GetResDataAvsStreetNumber()) ;
Console.Writeline ("Avs Street Name = " + receipt.GetResDataAvsStreetName()) ;
Console.WriteLine ("Avs Zipcode = " + receipt.GetResDataAvsZipcode()) ;

Console.ReadLine () ;
}

catch (Exception e)

{

Console.WriteLine (e) ;

}

}
}
}

Vault response fields

For a list and explanation of (Receipt object) response fields that are available after sending this Vault
transaction, see Definitions of Response Fields (page 437).

4.3.6 Vault Lookup Masked - ResLookupMasked

Vault Lookup Masked transaction object definition

ResLookupMasked resLookupMasked = new ResLookupMasked() ;

HttpsPostRequest object for Vault Lookup Masked transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (resLookupMasked) ;

Vault Lookup Masked transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 32: Vault Lookup Masked transaction object mandatory values

Data key String 25-character alpha-
numeric

Page 73 of 476 November 2018

4 Vault

Sample Vault Lookup Masked - CA

namespa
{

using S
using S
using S
public
{
public
{
string
string
string
string
bool st
ResLook
resLook
HttpsPo
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
try

{
Receipt
Console
Console

Console
Console

Console

Console
Console

Console
Console

Console
Console
Console
Console

}
{
Console

}

}
}
}

Console.

Console.

Console.

Console.

Console.

Console.
Console.

ce Moneris

ystem;

ystem.Text;

ystem.Collections;

class TestCanadaResLookupMasked

static void Main(string[] args)

store_id = "storel";

api_token = "yesguy";

data key = "pi3ZMZoTTM8pLMOwuwws2KBxw";
processing country code = "CA";

atus_check = false;

upMasked resLookupMasked = new ResLookupMasked() ;
upMasked.SetData (data_key) ;

stRequest mpgReqg = new HttpsPostRequest () ;
SetProcCountryCode (processing country code);
SetTestMode (true); //false or comment out this line for production transactions
SetStoreld(store id);

SetApiToken (api_token) ;

SetTransaction (resLookupMasked) ;
SetStatusCheck (status check) ;

Send () ;

receipt = mpgReq.GetReceipt () ;

.WriteLine ("DataKey = " + receipt.GetDataKey());

.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
WritelLine ("Message = " + receipt.GetMessage());

.WritelLine ("TransDate = " + receipt.GetTransDate());
.WriteLine ("TransTime = " + receipt.GetTransTime()) ;

WriteLine ("Complete = " + receipt.GetComplete());

.WriteLine ("TimedOut = " + receipt.GetTimedOut());

WriteLine ("ResSuccess = " + receipt.GetResSuccess());
.WriteLine ("PaymentType = " + receipt.GetPaymentType());
.WriteLine ("Cust ID = " + receipt.GetResDataCustId()) ;
WriteLine ("Phone = " + receipt.GetResDataPhone()) ;

.WriteLine ("Email = " + receipt.GetResDataEmail())

.WriteLine ("Note = " + receipt.GetResDataNote());

WriteLine ("MaskedPan = " + receipt.GetResDataMaskedPan()) ;
.WriteLine ("Exp Date = " + receipt.GetResDataExpdate());
.WritelLine ("Crypt Type = " + receipt.GetResDataCryptType()) ;
.WriteLine ("Avs Street Number = " + receipt.GetResDataAvsStreetNumber ()) ;
.WriteLine ("Avs Street Name = " + receipt.GetResDataAvsStreetName()) ;
WriteLine ("Avs Zipcode = " + receipt.GetResDataAvsZipcode());
ReadLine () ;

catch (Exception e)

.WriteLine (e);

Vault response fields

For a list and explanation of (Receipt object) response fields that are available after sending this Vault

transaction,

see Definitions of Response Fields (page 437).

November 2018 Page 74 of 476

Moneris Gateway API - Integration Guide

4.3.7 Vault Get Expiring - ResGetExpiring

Vault Get Expiring transaction object definition

ResGetExpiring resGetExpiring = new ResGetExpiring();

HttpsPostRequest object for Vault Get Expiring transaction

HttpsPostRequest mpgReq = new HttpsPostRequest() ;

mpgReq.SetTransaction (resGetExpiring) ;

Vault Get Expiring transaction values

ResGetExpiring transaction object mandatory values: None.

Sample Vault Get Expiring - CA

namespace Moneris

{

using System;

using System.Text;

using System.Collections;

public class TestCanadaResGetExpiring
{

public static void Main(string[] args)
{

string store id = "storel";
string api token = "yesguy";
string processing country code = "CA";

bool status_check = false;

ResGetExpiring resGetExpiring = new ResGetExpiring();
HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq. SetProcCountryCode (processing country code) ;
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld (store id);
mpgReq.SetApiToken (api token);

mpgReq. SetTransaction (resGetExpiring) ;
mpgReq.SetStatusCheck (status_check) ;

mpgReq.Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt();

Console.WriteLine ("DataKey = " + receipt.GetDataKey());
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("ResSuccess = " + receipt.GetResSuccess());
Console.WriteLine ("PaymentType = " + receipt.GetPaymentType());
//ResolveData

foreach (string dataKey in receipt.GetDataKeys ()
{

Console.WriteLine ("\nDataKey = " + dataKey);

Console.WritelLine ("Payment Type = " + receipt.GetExpPaymentType (dataKey)) ;
Console.WriteLine ("Cust ID = " + receipt.GetExpCustId(dataKey));
Console.WriteLine ("Phone = " + receipt.GetExpPhone (dataKey)) ;

Page 75 of 476 November 2018

4 Vault

Sample Vault Get Expiring - CA

Console.WriteLine ("Email = " + receipt.GetExpEmail (dataKey)) ;
Console.WriteLine ("Note = " + receipt.GetExpNote (dataKey)) ;

Console.WriteLine ("Masked Pan = " + receipt.GetExpMaskedPan (dataKey)) ;
Console.Writeline ("Exp Date = " + receipt.GetExpExpdate (dataKey));
Console.WriteLine ("Crypt Type = " + receipt.GetExpCryptType (dataKey)) ;
Console.WriteLine ("Avs Street Number = " + receipt.GetExpAvsStreetNumber (dataKey)) ;
Console.WritelLine ("Avs Street Name = " + receipt.GetExpAvsStreetName (dataKey)) ;
Console.WriteLine ("Avs Zipcode = " + receipt.GetExpAvsZipCode (dataKey)) ;

}

Console.ReadLine() ;

}

catch (Exception e)

{

Console.WriteLine (e);

}

— e

Vault response fields

For a list and explanation of (Receipt object) response fields that are available after sending this Vault
transaction, see Definitions of Response Fields (page 437).

4.3.8 Vault Is Corporate Card - ReslscorporateCard
Vault Is Corporate Card transaction object definition

ResIscorporatecard resIscorporatecard = new ResIscorporatecard();

HttpsPostRequest object for Vault Is Corporate Card transaction

HttpsPostRequest mpgReq = new HttpsPostRequest() ;

mpgReq.SetTransaction (resIscorporatecard) ;

Vault Is Corporate Card transaction values

Table 33: Vault Is Corporate Card transaction object mandatory values

Data key String | 25-character alpha- resIscorporatecard.SetData
numeric (data_key);

Sample Vault Is Corporate Card - CA

namespace Moneris

{

using System;

November 2018 Page 76 of 476

Moneris Gateway API - Integration Guide

Sample Vault Is Corporate Card - CA

using System.Text;

using System.Collections;

public class TestCanadaResIscorporatecard
{

public static void Main(string[] args)

{

string store id = "storel";

string api token = "yesguy";

string data key = "eLgsADfwgHDxIpJGOvLnELx01";
string processing country code = "CA";

bool status_check = false;

ResIscorporatecard resIscorporatecard = new ResIscorporatecard();
resIscorporatecard.SetData (data_key) ;

HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq.SetProcCountryCode (processing country code);

mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);

mpgReq.SetApiToken (api token);

mpgReq.SetTransaction (resIscorporatecard) ;
mpgReq.SetStatusCheck (status check) ;

mpgReq. Send () ;

try
{
Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("DataKey = " + receipt.GetDataKey());
Console.WriteLine ("CorporateCard = " + receipt.GetCorporateCard());
Console.WritelLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut ());
Console.WritelLine ("ResSuccess = " + receipt.GetResSuccess());
Console.WriteLine ("PaymentType = " + receipt.GetPaymentType());

Console.ReadLine () ;
}
catch (Exception e)
{

Console.WriteLine (e);

}

— e

Vault response fields

For a list and explanation of (Receipt object) response fields that are available after sending this Vault
transaction, see Definitions of Response Fields (page 437).

4.3.9 Vault Add Token — ResAddToken

This transaction is used to convert a temporary token into a permanent token for storage in the Moneris
Vault

Page 77 of 476 November 2018

4 Vault

Things to Consider:

L]

o Ifyouintend to store the token for use in future transactions (i.e., Credential on File
transactions), first you must send either a Vault financial transaction (Purchase
with Vault or Pre-Authorization with Vault) or a Card Verification with Vault in order to
get the Issuer ID

o The Vault Add Token request uses the Issuer ID to indicate that it is referencing stored
credentials

Vault Add Token transaction object definition

ResAddToken resAddToken = new ResAddToken (data key, crypt type);

HttpsPostRequest object for Vault Add Token transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (resAddToken) ;

Vault Add Token transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 34: Vault Add Token transaction object mandatory values

Data key String 28-character alpha- resAddToken.SetData (data
numeric key) i

E-commerce indicator | String 1-character alpha- resAddToken.SetCryptType
numeric (crypt);

Credential on File Info | Object | N/A resaddcc.SetCofInfo (cof);

cof

NOTE: This is a nested
object within the trans-
action, and required
when storing or using
the customer's stored
credentials. The Cre-
dential on File Info
object has its own
request variables, lis-
ted in blue in the table
below, "Credential on
File Object Request
Variables".

November 2018 Page 78 of 476

Moneris Gateway API - Integration Guide

Table 35: Vault Add Token transaction optional values

Customer ID String 50-character alpha- #esAddToken .SetCustId(cust
numeric id);

AVS information Object | N/A resAddToken.SetAvsInfo

(avsCheck) ;

Email address String 30-character alpha- resAddToken.SetEmail (email) ;
numeric

Phone number String 30-character alpha- resAddToken.SetPhone (phone) ;
numeric

Note String 30-character alpha- resAddToken.SetNote (note) ;
numeric

Data key format?! String 2-character alpha- resAddToken. SetDataKeyFormat
numeric (data key format)

Credential on File Transaction Object Request Fields

Issuer ID String | 15-character numeric cof.SetIssuerld("VALUE_FOR_
ISSUER ID");

variable length

NOTE: This variable is

required for all mer- NOTE: For a list and explanation of the
chant-intiated trans- possible values to send for this variable,
actions following the see Definitions of Request Fields — Cre-
first one; upon sending dential on File

the first transaction,
the Issuer ID value is
received in the trans-
action response and
then used in sub-
sequent transaction
requests.

Sample Vault Add Token

namespace Moneris

{

1Available to Canadian integrations only.

Page 79 of 476 November 2018

4 Vault

Sample Vault Add Token

using System;

using System.Text;

using System.Collections;

public class TestCanadaResAddToken

{

public static void Main(string[] args)
{

string store id = "moneris";

string api token = "hurgle";

string data key = "ot-A8R8m9sjsUgltcyTIDNmOVug9";
string expdate = "1602";

string phone = "0000000000";

string email = "bob@smith.com";
string note = "my note";
string cust id = "customerl";

string crypt type = "7";

string data key format = "0";

string processing country code = "CA";

bool status_check = false;

AvsInfo avsCheck = new AvsInfo();
avsCheck.SetAvsStreetNumber ("212") ;
avsCheck.SetAvsStreetName ("Payton Street");
avsCheck.SetAvsZipCode ("M1IMIM1") ;

CofInfo cof = new CofInfo();
cof.SetIssuerId("168451306048014") ;

ResAddToken resAddToken = new ResAddToken (data key, crypt type);
resAddToken. SetExpDate (expdate) ;
resAddToken.SetCustId(cust_id);

resAddToken. SetPhone (phone) ;

resAddToken.SetEmail (email) ;

resAddToken. SetNote (note) ;

resAddToken.SetAvsInfo (avsCheck) ;
resAddToken.SetCofInfo (cof) ;
//resAddToken.SetDataKeyFormat (data key format); //optional
HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq.SetProcCountryCode (processing country code);

mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld (store id);

mpgReq.SetApiToken (api token);

mpgReq. SetTransaction (resAddToken) ;
mpgReq.SetStatusCheck (status check) ;

mpgReq. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("DataKey = " + receipt.GetDataKey());
Console.WritelLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
Console.WritelLine ("ResSuccess = " + receipt.GetResSuccess());
Console.WriteLine ("PaymentType = " + receipt.GetPaymentType());
Console.WriteLine ("Cust ID = " + receipt.GetResDataCustId());
Console.WriteLine ("Phone = " + receipt.GetResDataPhone());
Console.WriteLine ("Email = " + receipt.GetResDataEmail());
Console.WritelLine ("Note = " + receipt.GetResDataNote());
Console.WriteLine ("MaskedPan = " + receipt.GetResDataMaskedPan());

November 2018 Page 80 of 476

Moneris Gateway API - Integration Guide

Sample Vault Add Token

Console.WriteLine ("Exp Date = " + receipt.GetResDataExpdate());
Console.WritelLine ("Crypt Type = " + receipt.GetResDataCryptType());
Console.WriteLine ("Avs Street Number = " + receipt.GetResDataAvsStreetNumber()) ;
Console.WritelLine ("Avs Street Name = " + receipt.GetResDataAvsStreetName()) ;
Console.WritelLine ("Avs Zipcode = " + receipt.GetResDataAvsZipcode());
Console.ReadLine () ;

}

catch (Exception e)

{

Console.WriteLine (e) ;

}

— e

Vault response fields

For a list and explanation of (Receipt object) response fields that are available after sending this Vault
transaction, see Definitions of Response Fields (page 437).

4.3.10 Vault Tokenize Credit Card — ResTokenizeCC

Creates a new credit card profile using the credit card number, expiry date and e-commerce indicator
that were submitted in a previous financial transaction. Previous transactions to be tokenized must have
included the Credential on File Info object.

The Issuer ID received in the previous transaction response is sent in the Vault Tokenize Credit Card
request to reference that this is a stored credential.

Basic transactions that can be tokenized are:

e Purchase
e Pre-Authorization
o Card Verification

The tokenization process is outlined below :

T

o Lookup order 10 o)

.E and ransaction |- Send tokenization Racaie vault o) Store vault oken
= o r request to Monerls taken

i mba

= y

] T

@

5 Recaiva raquast e Lmjjk;l:si;ard ﬁm:;:::g :::mmr] Fiaturm vault token

=

Figure 1: Tokenize process diagram

Page 81 of 476 November 2018

4 Vault

Vault Tokenize Credit Card transaction object definition

ResTokenizeCC resTokenizeCC = new ResTokenizeCC();

HttpsPostRequest object for Vault Tokenize Credit Card transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (resTokenizeCC) ;

Vault Tokenize Credit Card transaction values

These mandatory values reference a previously processed credit card financial transaction. The credit
card number, expiry date, and e-commerce indicator from the original transaction are registered in the
Vault for future financial Vault transactions.

Table 36: Vault Tokenize Credit Card transaction object mandatory values

OrderID String 50-character alpha- resTokenizeCC.SetOrderId
numeric (order_id);

Transaction number String 255-character alpha- resTokenizeCC.SetTxnNumber
numeric (txn_number) ;

Table 37: Vault Tokenize Credit Card transaction optional values

Customer ID String | 50-character alpha- resTokenizeCC.SetCustId
numeric (cust_id);

Email address String | 30-character alpha- resTokenizeCC.SetEmail
numeric (email) ;

Phone number String | 30-character alpha- resTokenizeCC.SetPhone
numeric (phone) ;

Note Str|ng 30-character alpha- resTokenizeCC.SetNote (note) ;
numeric

November 2018 Page 82 of 476

Moneris Gateway API - Integration Guide

AVS information Object | N/A resTokenizeCC.SetAvsInfo
(avsCheck) ;

Data key format! String | 2-character alpha- resTokenizeCC
numeric .SetDataKeyFormat (data key
format)
Credential on File Info | Object | N/A resTokenizeCC.SetCofInfo
(cof);
cof

NOTE: This is a nested
object within the trans-
action, and required
when storing or using
the customer's stored
credentials. The Cre-
dential on File Info
object has its own
request variables, lis-
ted in blue in the table
below, "Credential on
File Object Request
Variables".

Credential on File Transaction Object Request Fields

Issuer ID String | 15-character alpha- cof.SetIssuerId ("VALUE_FOR_
numeric ISSUER_ID");

NOTE: This variable is

required for all mer- variable length

NOTE: For a list and explanation of the

chant-intiated trans- possible values to send for this variable,
actions following the see Definitions of Request Fields — Cre-
first one; upon sending dential on File

the first transaction,
the Issuer ID value is
received in the trans-
action response and
then used in sub-
sequent transaction
requests.

1Available to Canadian integrations only.

Page 83 0f 476 November 2018

4 Vault

Any field that is not set in the tokenize request is not stored with the transaction. That is, Moneris Gate-

way does not automatically take the optional information that was part of the original transaction.

The ResolveData that is returned in the response fields indicates what values were registered for this pro-

file.

Sample Vault Tokenize Credit Card

namespace Moneris

{

using System;

using System.Text;

using System.Collections;

public class TestCanadaResTokenizeCC

{

public static void Main(string[] args)

{

string store id = "storel";

string api_token = "yesguy";

string order id = "1000189096";

string txn number = "880416-0 10";

string phone = "0000000000";

string email = "bob@smith.com";

string note = "my note";

string cust id = "customerl";

string data key format = "0";

string processing country code = "CA";

bool status check = false;

AvsInfo avsCheck = new AvsInfol();
avsCheck.SetAvsStreetNumber ("212") ;
avsCheck.SetAvsStreetName ("Payton Street");
avsCheck.SetAvsZipCode ("M1MIM1") ;

CofInfo cof = new CofInfol();
cof.SetIssuerId("168451306048014");

ResTokenizeCC resTokenizeCC = new ResTokenizeCC() ;
resTokenizeCC.SetOrderId(order id);
resTokenizeCC.SetTxnNumber (txn number) ;
resTokenizeCC.SetCustId(cust id);

resTokenizeCC. SetPhone (phone) ;
resTokenizeCC.SetEmail (email) ;
resTokenizeCC.SetNote (note) ;
resTokenizeCC.SetAvsInfo (avsCheck) ;
resTokenizeCC.SetCofInfo (cof) ;
//resTokenizeCC.SetDataKeyFormat (data_key format); //optional
HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq. SetProcCountryCode (processing country code);
mpgReq.SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld (store id);
mpgReq.SetApiToken (api token);

mpgReq. SetTransaction (resTokenizeCC) ;
mpgReq.SetStatusCheck (status_check) ;
mpgReq.Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("DataKey = " + receipt.GetDataKey());
Console.WritelLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Complete = " + receipt.GetComplete());

November 2018 Page 84 of 476

Moneris Gateway API - Integration Guide

Sample Vault Tokenize Credit Card

Console.WriteLine ("TimedOut = " + receipt.GetTimedOut ());

Console.WritelLine ("ResSuccess = " + receipt.GetResSuccess());
Console.WriteLine ("PaymentType = " + receipt.GetPaymentType());
//ResolveData

Console.WriteLine ("Cust ID = " + receipt.GetResDataCustId());
Console.WriteLine ("Phone = " + receipt.GetResDataPhone());

Console.WritelLine ("Email = " + receipt.GetResDataEmail());
Console.WriteLine ("Note = " + receipt.GetResDataNote());

Console.WriteLine ("MaskedPan = " + receipt.GetResDataMaskedPan());
Console.WritelLine ("Exp Date = " + receipt.GetResDataExpdate());
Console.WriteLine ("Crypt Type = " + receipt.GetResDataCryptType())
Console.WritelLine ("Avs Street Number = " + receipt.GetResDataAvsStreetNumber ()) ;
Console.WritelLine ("Avs Street Name = " + receipt.GetResDataAvsStreetName()) ;
Console.WriteLine ("Avs Zipcode = " + receipt.GetResDataAvsZipcode());

Console.ReadLine() ;

}

catch (Exception e)

{
Console.WriteLine (e);

}

— e

Vault response fields

For a list and explanation of (Receipt object) response fields that are available after sending this Vault
transaction, see Definitions of Response Fields (page 437).

4.4 Vault Financial Transactions

After a financial transaction is complete, the response fields indicate all the values that are currently
saved under the profile that was used.

4.4.1 Customer ID Changes

Some financial transactions take the customer ID as an optional value. The customer ID may or may not
already be in the Vault profile when the transaction is sent. Therefore, it is possible to change the value of
the customer ID by performing a financial transaction

The table below shows what the customer ID will be in the response field after a financial transaction is
performed.

Table 38: Customer ID use in response fields

No No Customer ID not used in transaction

No Yes Passed in

Page 85 0of 476 November 2018

4 Vault

Yes No Profile

Yes Yes Passed in

4.4.2 Purchase with Vault — ResPurchaseCC

Purchase with Vault transaction object definition

ResPurchaseCC resPurchaseCC = new ResPurchaseCC() ;

HttpsPostRequest object for Purchase with Vault transaction

HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq.SetTransaction (resPurchaseCC) ;

Purchase with Vault transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 39: Purchase with Vault transaction object mandatory values

Data key String 25-character alpha- resPurchaseCC.SetData (data
numeric key);
Order ID String 50-character alpha- resPurchaseCC.SetOrderId
numeric (order 1id);
Amount String 9-character decimal resPurchaseCC.SetAmount
(amount) ;

November 2018 Page 86 of 476

Moneris Gateway API - Integration Guide

cof

NOTE: This is a nested
object within the trans-
action, and required
when storing or using
the customer's stored
credentials. The Cre-
dential on File Info
object has its own
request variables, lis-
ted in blue in the table
below, "Credential on
File Object Request
Variables".

E-commerce indicator | String 1-character alpha- resPurchaseCC.SetCryptType
numeric (crypt);
Credential on File Info | Object | N/A cof.SetCofInfo (cof);

Table 40: Purchase with Vault transaction optional values

Status Check Boolean | true/false mpgReq.SetStatusCheck
(status_check) ;
Expiry date String 4-character numeric resPurchaseCC.SetExpdate
(expiry date);
YYMM format.
(Note that this is
reversed from the
date displayed on the
card, which is MMYY)
Customer ID String 50-character alpha- resPurchaseCC.SetCustId
numeric (cust_id);
Dynamic descriptor String 20-character alpha- resPurchaseCC
numeric .SetDynamicDescriptor
(dynamic_descriptor) ;
Customer information | Object N/A resPurchaseCC.SetCustInfo

(customer) ;

Page 87 of 476

November 2018

4 Vault

AVS information Object N/A resPurchaseCC.SetAvsInfo
(avsCheck) ;

CVD information Object N/A resPurchaseCC.SetCvdInfo
(cvdCheck) ;

NOTE: When storing
credentials on the ini-
tial transaction, the
CVD object must be
sent; for subsequent
transactions using
stored credentials,
CVD can be sent with
cardholder-initiated
transactions only—
merchants must not
store CVD
information.

Recurring billing Object N/A resPurchaseCC.SetRecur
(recurring cycle);

November 2018 Page 88 of 476

Moneris Gateway API - Integration Guide

Credential on File Transaction Object Request Fields

Issuer ID

String 15-character a|pha_ cof.SetIssuerId/("VALUE_FOR_
numeric ISSUER_ID") ;

required for all mer-
chant-intiated trans-

the first transaction,
the Issuer ID value is

action response and
then used in sub-
sequent transaction
requests.

NOTE: This variable is

actions following the
first one; upon sending dential on File

received in the trans-

variable length NOTE: For a list and explanation of the

possible values to send for this variable,
see Definitions of Request Fields — Cre-

Payment Indicator String 1-character alphabetic | cof.SetPaymentIndicator

("PAYMENT INDICATOR VALUE");

NOTE: For a list and explanation of the
possible values to send for this variable,
see Definitions of Request Fields — Cre-
dential on File

Payment Inform-
ation

String | 1-character numeric cof.SetPaymentInformation
("PAYMENT INFO VALUE");

NOTE: For a list and explanation of the

possible values to send for this variable,
see Definitions of Request Fields — Cre-
dential on File

Sample Purchase with Vault

{

using System;

{

{

string order id

namespace Moneris

using System.Text;
using System.Collections;
public class TestCanadaResPurchaseCC

public static void Main(string[] args)

string store id = "storel";

string api token = "yesguy";

string data key = "eLgsADfwgHDxIpJGOvLnELx01";

string amount = "1.00";

string cust_id = "customerl"; //if sent will be submitted, otherwise cust_id from profile will be

= "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;

Page 89 of 476

November 2018

4 Vault

Sample Purchase with Vault

used

string crypt type = "1";

string descriptor = "my descriptor";
string processing country code = "CA";

bool status check = false;

CofInfo cof = new CofInfol();
cof.SetPaymentIndicator ("U");
cof.SetPaymentInformation ("2");
cof.SetIssuerId("12345678901234");

ResPurchaseCC resPurchaseCC = new ResPurchaseCC();
resPurchaseCC.SetDataKey (data_key) ;
resPurchaseCC.SetOrderId (order_id);
resPurchaseCC.SetCustId(cust id);

resPurchaseCC. SetAmount (amount) ;
resPurchaseCC.SetCryptType (crypt type) ;
resPurchaseCC. SetDynamicDescriptor (descriptor) ;
resPurchaseCC.SetCofInfo (cof);
//resPurchaseCC.SetExpDate ("1511"); //optional - use for temp token only
HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq. SetProcCountryCode (processing country code);
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld (store id);
mpgReq.SetApiToken (api token);

mpgReq. SetTransaction (resPurchaseCC) ;
mpgReq.SetStatusCheck (status check) ;

mpgReq. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("DataKey = " + receipt.GetDataKey());
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("TransType = " + receipt.GetTransType());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WriteLine ("CardType = " + receipt.GetCardType()):
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut ());
Console.WritelLine ("ResSuccess = " + receipt.GetResSuccess());
Console.WritelLine ("PaymentType = " + receipt.GetPaymentType());
Console.WriteLine ("IsVisaDebit = " + receipt.GetIsVisaDebit());
Console.WritelLine ("IssuerId = " + receipt.GetIssuerId());
Console.WriteLine ("Cust ID = " + receipt.GetResDataCustId());
Console.WriteLine ("Phone = " + receipt.GetResDataPhone()) ;
Console.WriteLine ("Email = " + receipt.GetResDataEmail());
Console.WritelLine ("Note = " + receipt.GetResDataNote());
Console.WriteLine ("Masked Pan = " + receipt.GetResDataMaskedPan()) ;
Console.WriteLine ("Exp Date = " + receipt.GetResDataExpdate());
Console.WriteLine ("Crypt Type = " + receipt.GetResDataCryptType());
Console.WritelLine ("Avs Street Number = " + receipt.GetResDataAvsStreetNumber()) ;
Console.WriteLine ("Avs Street Name = " + receipt.GetResDataAvsStreetName());
Console.WritelLine ("Avs Zipcode = " + receipt.GetResDataAvsZipcode());

Console.ReadLine () ;

November 2018 Page 90 of 476

Moneris Gateway API - Integration Guide

Sample Purchase with Vault

}

catch (Exception e)

{

Console.WriteLine (e);

}

— e

Vault response fields

For a list and explanation of (Receipt object) response fields that are available after sending this Vault
transaction, see Definitions of Response Fields (page 437).

4.4.3 Pre-Authorization with Vault — ResPreauthCC

Pre-Authorization with Vault transaction object definition

ResPreauthCC resPreauthCC = new ResPreauthCC() ;

HttpsPostRequest object for Pre-Authorization with Vault transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (resPreauthCC) ;

Pre-Authorization with Vault transaction values

Table 41: Pre-Authorization with Vault transaction object mandatory values

Data key String 25- character alpha- resPreauthCC.SetData (data_
numeric key) ;
Order ID String 50-character alpha- resPreauthCC.SetOrderId
numeric (order id);
Amount String 9-character decimal resPreauthCC.SetAmount
(amount) ;

Page 91 of 476 November 2018

4 Vault

Table 41: Pre-Authorization with Vault transaction object mandatory values (continued)

cof

NOTE: This is a nested
object within the trans-
action, and required
when storing or using
the customer's stored
credentials. The Cre-
dential on File Info
object has its own
request variables, lis-
ted in blue in the table
below, "Credential on
File Object Request
Variables".

E-commerce indicator | String 1-character alpha- resPreauthCC.SetCryptType
numeric (crypt);
Credential on File Info | Object | N/A resPreauthCC.SetCofInfo

(cof);

Table 42: Pre-Authorization with Vault transaction optional values

mpgReq.SetStatusCheck (status_

Status Check Boolean | true/false
check) ;
. . resPreauthCC.SetExpdate

Expiry date String 4 chara?cter alpha (expiry date);
numeric
(YYMM format)

Customer ID String 50-character alpha- ii??reauthcc Sercustidlenst
numeric ’

November 2018 Page 92 of 476

Moneris Gateway API - Integration Guide

resPreauthCC.SetCustInfo

Customer inform- Object N/A
) (customer) ;
ation
AVS information Object N/A resPreauthCC.SetAvsInfo
(avsCheck) ;
CVD information Object N/A resPreauthCC.SetCvdInfo

(cvdCheck) ;

NOTE: When storing
credentials on the ini-
tial transaction, the
CVD object must be
sent; for subsequent
transactions using
stored credentials,
CVD can be sent with
cardholder-initiated
transactions only—
merchants must not
store CVD
information.

Page 93 of 476 November 2018

4 Vault

Credential on File Transaction Object Request Fields

Issuer ID String | 15-character alpha- cof.SetIssuerId ("VALUE_FOR_
numeric ISSUER_ID");

NOTE: This variable is .

required for all mer- variable length NOTE: For a list and explanation of the

chant-intiated trans- possible values to send for this variable,

actions following the see Definitions of Request Fields — Cre-

first one; upon sending dential on File

the first transaction,

the Issuer ID value is

received in the trans-

action response and

then used in sub-

sequent transaction

requests.

Payment Indicator String | 1-character alphabetic | cof.SetPaymentIndicator

("PAYMENT_INDICATOR_VALUE");

NOTE: For a list and explanation of the
possible values to send for this variable,
see Definitions of Request Fields — Cre-
dential on File

Payment Inform- String 1-character numeric cof.SetPaymentInformation

ation ("PAYMENT INFO_VALUE");
NOTE: For a list and explanation of the
possible values to send for this variable,
see Definitions of Request Fields — Cre-
dential on File

Sample Pre-Authorization with Vault

namespace Moneris
{

using System;
using System.Text;

using System.Collections;
public class TestCanadaResPreauthCC

{

public static void Main(string[] args)

{
string order id =
string store id =

string api token =

"Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;
"storel";
"yesguyﬂ ,.

string data key = "YeMnLZ81i2p02gbwSB8i8Q02Fo";

string amount = "1.00";
string cust_id = "customerl"; //if sent will be submitted, otherwise cust_id from profile will be
November 2018 Page 94 of 476

Moneris Gateway API - Integration Guide

Sample Pre-Authorization with Vault

used

string crypt type = "1";

string dynamic_descriptor = "my descriptor";
string processing country code = "CA";

bool status check = false;

CofInfo cof = new CofInfol();
cof.SetPaymentIndicator ("U");
cof.SetPaymentInformation ("2");
cof.SetIssuerId("12345678901234");

ResPreauthCC resPreauthCC = new ResPreauthCC() ;
resPreauthCC.SetDataKey (data_ key) ;
resPreauthCC.SetOrderId (order id);
resPreauthCC.SetCustId(cust_id);

resPreauthCC. SetAmount (amount) ;
resPreauthCC.SetCryptType (crypt type);
resPreauthCC.SetDynamicDescriptor (dynamic descriptor) ;
resPreauthCC.SetCofInfo (cof) ;

HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq. SetProcCountryCode (processing country code) ;

mpgReq.SetTestMode (true); //false or comment out this line for production transactions

mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api_token) ;

mpgReq. SetTransaction (resPreauthCC) ;
mpgReq.SetStatusCheck (status_check) ;
mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("DataKey = " + receipt.GetDataKey());
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId())
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WriteLine ("CardType = " + receipt.GetCardType()):;
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("ResSuccess = " + receipt.GetResSuccess());
Console.WritelLine ("PaymentType = " + receipt.GetPaymentType());
Console.WritelLine ("IsVisaDebit = " + receipt.GetIsVisaDebit()):;
Console.WriteLine ("IssuerId = " + receipt.GetIssuerId()):;
Console.WriteLine ("Cust ID = " + receipt.GetResDataCustId());
Console.WriteLine ("Phone = " + receipt.GetResDataPhone());
Console.WritelLine ("Email = " + receipt.GetResDataEmail());
Console.WriteLine ("Note = " + receipt.GetResDataNote());
Console.WriteLine ("Masked Pan = " + receipt.GetResDataMaskedPan()) ;
Console.WritelLine ("Exp Date = " + receipt.GetResDataExpdate());
Console.WriteLine ("Crypt Type = " + receipt.GetResDataCryptType()) ;
Console.WritelLine ("Avs Street Number = " + receipt.GetResDataAvsStreetNumber ()) ;
Console.WriteLine ("Avs Street Name = " + receipt.GetResDataAvsStreetName());
Console.WriteLine ("Avs Zipcode = " + receipt.GetResDataAvsZipcode());

Console.ReadLine() ;

}

Page 95 of 476

November 2018

4 Vault

Sample Pre-Authorization with Vault

catch (Exception e)
{

Console.WriteLine (e);

}

}
}
}

Vault response fields

For a list and explanation of (Receipt object) response fields that are available after sending this Vault
transaction, see Definitions of Response Fields (page 437).

4.4.4 Vault Independent Refund CC - ResindRefundCC

Vault Independent Refund transaction object definition

ResIndRefundCC resIndRefundCC = new ResIndRefundCC () ;

HttpsPostRequest object for Vault Independent Refund transaction

HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq. SetTransaction (resIndRefundCC) ;

Vault Independent Refund transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 43: Vault Independent Refund transaction object mandatory values

Data key String | 25-character alpha- resIndRefundCC.SetData (data
numeric key) ;

Order ID String 50-character alpha- resIndRefundCC.SetOrderId
numeric (order id);

Amount String 9-character decimal resIndRefundCC.SetAmount

(amount) ;

E-commerce indicator String 1-character alpha- resIndRefundCC.SetCryptType

numeric (crypt);

November 2018 Page 96 of 476

Moneris Gateway API - Integration Guide

Table 44: Vault Independent Refund transaction optional values

Customer ID String 50-character alpha- resIndRefundCC.SetCustlId
numeric (cust_id);
Expiry date String 4-character alpha- resIndRefundCC.SetExpdate

numeric (expiry date);

(YYMM format)

Status Check Boolean | true/false mpgReqg.SetStatusCheck
(status_check) ;

Dynamic descriptor String 20-character alpha- resIndRefundCC
numeric .SetDynamicDescriptor

(dynamic_descriptor) ;

Sample Vault Independent Refund

namespace Moneris

{

using System;

using System.Text;

using System.Collections;

public class TestCanadaResIndRefundCC

{

public static void Main(string[] args)

{

string order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;

string store id = "storel";

string api token = "yesquy";

string data key = "qJD5kCZiCjsfabKH7WuxoHyZx";
string amount = "1.00";

string cust id = "customerl";

string crypt type = "1";

string processing country code = "CA";

bool status_check = false;

ResIndRefundCC resIndRefundCC = new ResIndRefundCC () ;
resIndRefundCC.SetOrderId(order id);
resIndRefundCC.SetCustId(cust_id);

resIndRefundCC. SetAmount (amount) ;
resIndRefundCC.SetCryptType (crypt type);
resIndRefundCC.SetData (data_key) ;

HttpsPostRequest mpgReq = new HttpsPostRequest();
mpgReq. SetProcCountryCode (processing country code) ;
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api_ token) ;

mpgReq.SetTransaction (resIndRefundCC) ;
mpgReq.SetStatusCheck (status_check) ;

mpgReqg. Send () ;

try

{

Page 97 of 476 November 2018

4 Vault

Sample Vault Independent Refund
Receipt receipt = mpgReq.GetReceipt () ;
Console.WritelLine ("DataKey = " + receipt.GetDataKey());
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId())
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WritelLine ("ResponseCode = " + receipt.GetResponseCode())
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime());
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("ResSuccess = " + receipt.GetResSuccess());
Console.WriteLine ("PaymentType = " + receipt.GetPaymentType());
Console.WritelLine ("IsVisaDebit = " + receipt.GetIsVisaDebit()):;
Console.WriteLine ("Cust ID = " + receipt.GetResDataCustId());
Console.WriteLine ("Phone = " + receipt.GetResDataPhone()) ;
Console.WriteLine ("Email = " + receipt.GetResDataEmail());
Console.WriteLine ("Note = " + receipt.GetResDataNote()) ;
Console.WritelLine ("Masked Pan = " + receipt.GetResDataMaskedPan()) ;
Console.WriteLine ("Exp Date = " + receipt.GetResDataExpdate()) ;
Console.WriteLine ("Crypt Type = " + receipt.GetResDataCryptType());
Console.WritelLine ("Avs Street Number = " + receipt.GetResDataAvsStreetNumber ()) ;
Console.WriteLine ("Avs Street Name = " + receipt.GetResDataAvsStreetName());
Console.WritelLine ("Avs Zipcode = " + receipt.GetResDataAvsZipcode());
Console.ReadLine () ;
}
catch (Exception e)
{
Console.WriteLine (e);
}
}
}
}

Vault response fields

For a list and explanation of (Receipt object) response fields that are available after sending this Vault

transaction, see Definitions of Response Fields (page 437).

4.4.5 Force Post with Vault - ResForcePostCC

Force Post with Vault transaction object definition

ResForcePostCC resForcePostCC = new ResForcePostCC() ;

HttpsPostRequest object for Force Post with Vault transaction

HttpsPostRequest mpgReq = new HttpsPostRequest() ;

mpgReq.SetTransaction (resForcePostCC) ;

November 2018

Page 98 of 476

Moneris Gateway API - Integration Guide

Force Post with Vault transaction object values

Table 1 Force Post with Vault transaction object mandatory values

Amount String 9-character decimal resForcePostCC.SetAmount
(amount) ;

Data key String 25-character alpha- resForcePostCC.SetData (data
numeric key) ;

Authorization code String 8-character alpha- resForcePostCC.SetAuthCode
numeric (auth code);

E-commerce indicator String 1-character alpha- resForcePostCC.SetCryptType
numeric (crypt);

Table 2 Force Post with Vault transaction object optional values

Customer ID String 50-character alpha- resForcePostCC.SetCustld
numeric (cust_id);

Dynamic Descriptor String 20-character alpha- resForcePostCC
numeric .SetDynamicDescriptor

(dynamic_descriptor);

Status Check Boolean | true/false mpgReq. SetStatusCheck
(status_check);

Sample Force Post with Vault

namespace Moneris

{

using System;

using System.Text;

using System.Collections;

public class TestCanadaResForcePostCC

{

public static void Main(string[] args)

{

string order id = "Test" + DateTime.Now.ToString("yyyyMMddhhmmss") ;

string store id = "storel";

string api_token = "yesguy";

string data key = "eLgsADfwgHDxIpJGOvLnELx01";

string amount = "1.00";

string cust _id = "customerl"; //if sent will be submitted, otherwise cust id from profile will be
used

string auth code = "245465";
string crypt type = "7";

Page 99 of 476 November 2018

4 Vault

Sample Force Post with Vault

string descriptor = "my descriptor";

string processing country code = "CA";

bool status_check = false;

ResForcePostCC resForcePostCC = new ResForcePostCC();
resForcePostCC.SetDataKey (data key) ;
resForcePostCC.SetOrderId(order id);
resForcePostCC.SetCustId(cust id);

resForcePostCC. SetAmount (amount) ;
resForcePostCC.SetAuthCode (auth code) ;
resForcePostCC.SetCryptType (crypt type);
resForcePostCC.SetDynamicDescriptor (descriptor) ;
HttpsPostRequest mpgReq = new HttpsPostRequest();
mpgReq.SetProcCountryCode (processing country code);
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api token) ;
mpgReq.SetTransaction (resForcePostCC) ;
mpgReq.SetStatusCheck (status_check) ;

mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("DataKey = " + receipt.GetDataKey());
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WritelLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime())
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
Console.WritelLine ("ResSuccess = " + receipt.GetResSuccess());
Console.WriteLine ("PaymentType = " + receipt.GetPaymentType());
Console.WritelLine ("IsVisaDebit = " + receipt.GetIsVisaDebit()):;
Console.WriteLine ("Cust ID = " + receipt.GetResDataCustId());
Console.WriteLine ("Phone = " + receipt.GetResDataPhone());
Console.WritelLine ("Email = " + receipt.GetResDataEmail());
Console.WriteLine ("Note = " + receipt.GetResDataNote());
Console.WritelLine ("Masked Pan = " + receipt.GetResDataMaskedPan()) ;
Console.WritelLine ("Exp Date = " + receipt.GetResDataExpdate());
Console.WriteLine ("Crypt Type = " + receipt.GetResDataCryptType())
Console.WritelLine ("Avs Street Number = " + receipt.GetResDataAvsStreetNumber ()) ;
Console.WriteLine ("Avs Street Name = " + receipt.GetResDataAvsStreetName());
Console.WriteLine ("Avs Zipcode = " + receipt.GetResDataAvsZipcode());

Console.ReadLine() ;

}

catch (Exception e)

{
Console.WriteLine (e);

}

— e

November 2018 Page 100 of 476

Moneris Gateway API - Integration Guide

4.4.6 Card Verification with Vault — ResCardVerificationCC

Things to Consider:

« This transaction type only applies to Visa, Mastercard and Discover transactions

o The card number and expiry date for this transaction are passed using a token, as rep-
resented by the data key value

o When using a temporary token (e.g., such as with Hosted Tokenization) and you intend
to store the cardholder credentials, this transaction must be run prior to running the
Vault Add Token transaction

Card Verification with Vault object definition

CardVerification rescardverify = new CardVerification();

HttpsPostRequest object for Card Verification with Vault transaction

HttpsPostRequest mpgReqg

mpgReq.SetTransaction (rescardverify) ;

Card Verification with Vault transaction values

new HttpsPostRequest();

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 45: Card Verification with Vault transaction object mandatory values

Order ID String 50-character alpha- rescardverify.SetOrderId
numeric (order_id);
Data key String 25-character alpha- rescardverify
numeric .SetDataKeyFormat (data_ key
format)
E-commerce indicator | String 1-character alpha- rescardverify.SetCryptType

numeric

(crypt);

Page 101 of 476

November 2018

4 Vault

Table 45: Card Verification with Vault transaction object mandatory values

AVS Object | N/A rescardverify.SetAvsInfo
(avsCheck) ;

CvD Object | N/A rescardverify.SetCvdInfo
(cvdCheck) ;

Credential on File Info | Object | N/A rescardverify.SetCofInfo

(cof) ;
cof

NOTE: This is a nested
object within the trans-
action, and required
when storing or using
the customer's stored
credentials. The Cre-
dential on File Info
object has its own
request variables, lis-
ted in blue in the table
below, "Credential on
File Object Request
Variables".

November 2018 Page 102 of 476

Moneris Gateway API - Integration Guide

Credential on File Transaction Object Request Fields

Issuer ID String | 15-character alpha- cof.SetIssuerId ("VALUE_FOR_
numeric ISSUER ID");

NOTE: This variable is

required for all mer- variable length

NOTE: For a list and explanation of the

chant-intiated trans- possible values to send for this variable,
actions following the see Definitions of Request Fields — Cre-
first one; upon sending dential on File

the first transaction,
the Issuer ID value is
received in the trans-
action response and
then used in sub-
sequent transaction

requests.
Payment Indicator String 1-character alphabetic | cof.SetPaymentIndicator
("PZ&YDdEDJTl_IIJD]:CZ&TWDP{_V?&L[JE");

NOTE: For a list and explanation of the
possible values to send for this variable,
see Definitions of Request Fields — Cre-
dential on File

Payment Inform- String 1-character numeric cof.SetPaymentInformation

ation ("PAYMENT INFO VALUE");

NOTE: For a list and explanation of the

possible values to send for this variable,
see Definitions of Request Fields — Cre-
dential on File

Sample Card Verification with Vault

namespace Moneris

{

using System;

public class TestResCardVerificationCC
{

public static void Main(string[] args)
{

string store id = "store5";

string api token = "yesquy";

string data key = "V6F9PJKAXQ]6vKiCMNriWbsyJ2";
string order id = "Test P 033333 6";

string cust id = "Customerl";
string crypt = "7";
string processing country code = "CA";

bool status_check = false;

Page 103 of 476 November 2018

4 Vault

Sample Card Verification with Vault

/*************** Address Verification Service **********************/
AvsInfo avsCheck = new AvsInfol();

avsCheck.SetAvsStreetNumber ("212") ;

avsCheck.SetAvsStreetName ("Payton Street");

avsCheck.SetAvsZipCode ("M1IMIM1") ;

/****************** Card Validation Digits *************************/

CvdInfo cvdCheck = new CvdInfo();

cvdCheck.SetCvdIndicator ("1");

cvdCheck.SetCvdvalue ("099") ;

/*************** Credential on Flle *************************************/
CofInfo cof = new CofInfol();

cof.SetPaymentIndicator ("U");

cof.SetPaymentInformation ("2");

cof.SetIssuerId("12345678901234");

ResCardVerificationCC rescardverify = new ResCardVerificationCC() ;
rescardverify.SetDataKey (data key);
rescardverify.SetOrderId(order id);
rescardverify.SetCustId(cust id);
//rescardverify.SetExpDate ("1612"); //for use with Temp Tokens only
rescardverify.SetCryptType (crypt) ;

rescardverify.SetAvsInfo (avsCheck) ;

rescardverify.SetCvdInfo (cvdCheck) ;

rescardverify.SetCofInfo (cof) ;

HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq. SetProcCountryCode (processing country code) ;

mpgReq.SetTestMode (true); //false or comment out this line for production transactions

mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api_token) ;

mpgReq. SetTransaction (rescardverify);
mpgReq.SetStatusCheck (status_check) ;
mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WritelLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;

Console.WriteLine ("ReceiptId
Console.WriteLine ("TransType =

" + receipt.GetReceiptId());
" + receipt.GetTransType());

Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum())
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WritelLine ("BankTotals = " + receipt.GetBankTotals());
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket()):
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
Console.WritelLine ("IsVisaDebit = " + receipt.GetIsVisaDebit()):;
Console.WriteLine ("IssuerId = " + receipt.GetIssuerId()):;

Console.ReadLine() ;

}

catch (Exception e)

{

Console.WriteLine (e);

November 2018

Page 104 of 476

Moneris Gateway API - Integration Guide

Sample Card Verification with Vault

// end TestResCardVerificationCC

- e e e

4.5 Hosted Tokenization

Moneris Hosted Tokenization is a solution for online e-commerce merchants who do not want to handle
credit card numbers directly on their websites, yet want the ability to fully customize their check-out web
page appearance.

When an hosted tokenization transaction is initiated, the Moneris Gateway displays (on the merchant’s
behalf) a single text box on the merchant’s checkout page. The cardholder can then securely enter the
credit card information into the text box. Upon submission of the payment information on the checkout
page, Moneris Gateway returns a temporary token representing the credit card number to the mer-
chant. This is then used in an API call to process a financial transaction directly with Moneris to charge
the card. After receiving a response to the financial transaction, the merchant generates a receipt and
allows the cardholder to continue with online shopping.

For more details on how to implement the Moneris Hosted Tokenization feature, see the Hosted Solu-
tions Integration Guide. The guide can be downloaded from the Moneris Developer Portal
(https://developer.moneris.com),

Page 105 of 476 November 2018

5 INTERAC® Online Payment

e 5.1 About INTERAC® Online Payment Transactions

e 5.2 Other Documents and References

o 5.3 Website and Certification Requirements

e 5.4 Transaction Flow for INTERAC® Online Payment

o 5.5 Sending an INTERAC® Online Payment Purchase Transaction
e 5.6 INTERAC® Online Payment Purchase

e 5.7 INTERAC® Online Payment Refund

e 5.8 INTERAC® Online Payment Field Definitions

5.1 About INTERAC® Online Payment Transactions

The INTERAC® Online Payment method offers cardholders the ability to pay using online banking. This
payment method can be combined with the Moneris Gateway API solution to allow online payments
using credit and debit cards.

INTERAC® Online Payment transactions via the APl require two steps:
1. The cardholder guarantees the funds for the purchase amount using their online banking pro-
cess.
2. The merchant confirms the payment by sending an INTERAC® Online Payment purchase request
to Moneris using the API.

Any of the transaction objects that are defined in this section can be passed to the HttpsPostRequest
connection object defined in Section 17.5 (page 381)here,

INTERAC® Online Payment transactions are available to Canadian integrations only.

5.2 Other Documents and References

INTERAC® Online Payment is offered by Acxsys Corporation, which is also a licensed user of the Interac
logo. Refer to the following documentation and websites for additional details.

INTERAC® Online PaymentMerchant Guideline

Visit the Moneris Developer Portal (https://developer.moneris.com) to access the latest documentation
and downloads.

This details the requirements for each page consumers visit on a typical INTERAC® Online Payment mer-
chant website. It also details the requirements that can be displayed on any page (that is, requirements
that are not page-specific).

Logos

Visit the Moneris Developer Portal (https://developer.moneris.com) to access the logos and downloads.

November 2018 Canada Only Page 106 of 476

Moneris Gateway API - Integration Guide

5.3 Website and Certification Requirements

5.3.1 Things to provide to Moneris

Refer to the Merchant Guidelines referenced in Section 5.2 for instructions on proper use of logos and
the term "INTERAC® Online Payment". You need to provide Moneris with the following registration
information:

Merchant logo to be displayed on the INTERAC® Online Payment Gateway page
e In both French and English
e 120 x 30 pixels
e Only PNG format is supported.

e Merchant business name
e In both English and French
¢ Maximum 30 characters.

o List of all referrer URLs. That is, URLs from which the customer may be redirected to the INTERAC®
Online Payment gateway.

o List of all URLs that may appear in the IDEBIT_FUNDEDURL field of the https form POST to the
INTERAC® Online Payment Gateway.

o List of all URLs that may appear in the IDEBIT_NOTFUNDEDURL field of the https form POST to the
INTERAC® Online Payment Gateway.

Note that if your test and production environments are different, provide the above information for
both environments.

5.3.2 Certification process

Test cases

Allindependent merchants and third-party service/shopping cart providers must pass the certification
process by conducting all the test cases outlined in Appendix E (page 454) and "Third-Party Service Pro-
vider Checklists for INTERAC® Online Payment Certification Testing" on page 458 respectively. This is

required after you have completed all of your testing.

Any major changes to your website after certification (with respect to the INTERAC® Online Payment func-
tionality) require the site to be re-certified by completing the test cases again.

Appendix H (page 466) is the Certification Test Case Detail showing all the information and requirements
for each test case.

Page 107 of 476 Canada Only November 2018

5 INTERAC® Online Payment

Screenshots

You must provide Moneris with screenshots of your check-out process showing examples of approved
and declined transactions using the INTERAC® Online Payment service.

Checklists

To consistently portray the INTERAC Online service as a secure payment option, you must complete the
respective Merchant Requirement checklist inAppendix E (page 454) or Appendix F (page 458)accordingly.
The detailed descriptions of the requirements in these checklists can be found in the INTERAC® Online
Payment Merchant Guidelines document referred to in 5.2 (page 106). If any item does not apply, mark it
as "N/A".

After completion, fax or email the results to the Moneris Integration Support help desk for review before
implementing the change into the production environment.

5.3.3 Client Requirements

Checklists

As a merchant using an INTERAC® Online Payment-certified third-party solution, your clients must com-
plete the Merchant Checklists for INTERAC® Online Payment Certification form (Appendix G, page 463).
They will not be required to complete any of the test cases.

Your clients must also complete the Merchant Requirement checklist (Appendix G, page 463). Ensure that
your product documentation properly instructs your clients to fax or email the results to the Moneris
Integration Support helpdesk for registration purposes.

Screenshots

Your clients must provide Moneris with screenshots of their check-out process that show examples of
approved and declined transactions using INTERAC® Online Payment.

5.3.4 Delays

Note that merchants that fall under the following category codes listed in Table 46 may experience delays
in the certification or registration process of up to 7 days.

Table 46: Category codes that might introduce certification/registration delays

4812 Telecommunication equipment including telephone sales
4829 Money transfer—merchant

5045 Computers, computer peripheral equipment, software
5732 Electronic sales

6012 Financial institution—merchandise and services

6051 Quasi cash—merchant

November 2018 Canada Only Page 108 of 476

Moneris Gateway API - Integration Guide

6530 Remote stored value load—merchant
6531 Payment service provider—money transfer for a purchase
6533 Payment service provider—merchant—payment transaction

5.4 Transaction Flow for INTERAC® Online Payment

Merchant Website Moneris

Figure 2: INTERAC® Online Payment transaction flow diagram

1. Customer selects the INTERAC® Online Payment option on the merchant's web store.
2. Merchant redirects the customer to the IOP gateway to select a financial institution (issuer) of
choice. This step involves form-posting the following required variables over the HTTPS protocol:

« IDEBIT_MERCHNUM
« IDEBIT_AMOUNT!?

« IDEBIT_CURRENCY

o IDEBIT_FUNDEDURL

o IDEBIT_NOTFUNDEDURL

« IDEBIT_MERCHLANG

o IDEBIT_VERSIONIDEBIT_TERMID - optional
« IDEBIT_INVOICE - optional

o IDEBIT_MERCHDATA - optional

3. Customer selects an issuer, and is directed to the online banking site. Customer completes the
online banking process and guarantees the funds for the purchase.

IThis value is expressed in cents. Therefore, $1 is input as 100

Page 109 of 476 Canada Only November 2018

5 INTERAC® Online Payment

4. Depending on the results of step 5.4, the issuer re-directs the customer through the IOP Gate-
way to either the merchant's non-funded URL (4a) or funded URL (4b). Both URLs can appear on
the same page. The funded/non-funded URLs must validate the variables posted back according
to 5.8 (page 116) before continuing.

5.4 shows the variables that are posted back in the re-direction.

If the customer is directed to the non-funded URL, return to step 5.4 and ask for another means
of payment.

If the customer is directed to the funded URL, continue to the next step.

5. Merchant sends an INTERAC® Online Payment purchase request to Moneris Gateway while dis-
playing the "Please wait...." message to the customer. This should be done within 30 minutes of
receiving the response in step 5.4.

6. Moneris' processing host sends a request for payment confirmation to the issuer.

The issuer sends a response (either approved or declined) to Moneris host.

8. Moneris Gateway relays the response back to the merchant. If the payment was approved, the
merchant fulfills the order.

~

Table 47: Funded and non-funded URL variables

IDEBIT_TRACK2 IDEBIT_VERSION
IDEBIT_ISSCONF IDEBIT_ISSLANG
IDEBIT_ISSNAME IDEBIT_TERMID (optional)

IDEBIT_INVOICE (optional)

IDEBIT_MERCHDATA (optional)

5.5 Sending an INTERAC® Online Payment Purchase Transaction

5.5.1 Fund-Guarantee Request

After choosing to pay by INTERAC® Online Payment, the customer is redirected using an HTML form post
to the INTERAC® Online PaymentGateway page. Below is a sample code that is used to post the request
to the Gateway.

<form action='from Section 9' method='post'>

<input type='text' name='IDEBIT INVOICE' value=’your unique invoice number'>
<input type='text' name='IDEBIT AMOUNT' value='100'> <!— ($1.00) use cent values instead of

dollar.cent format ->

<input type='text' name='IDEBIT MERCHNUM' value='from Moneris Solutions’>

<input type='text' name='IDEBIT CURRENCY' value='CA'>

<input type='text' name='IDEBIT FUNDEDURL' value='your funded url'>

<input type='text' name='IDEBIT NOTFUNDEDURL' value='your not funded url'>

<input type='text' name='IDEBIT ISSLANG' value='en'>

<input type='text' name='IDEBIT VERSION' value='1l'>

<input type="submit" name="Submit" value="Submit to Gateway">

</form>

November 2018 Canada Only Page 110 of 476

Moneris Gateway API - Integration Guide

5.5.2 Online Banking Response and Fund-Confirmation Request

The response variables are posted back in an HTML form to either the funded or non-funded URL that
was provided to INTERAC®.

The following variables must be validated (5.8, page 116):

o IDEBIT_TRACK2

o IDEBIT_ISSCONF
o |IDEBIT_ISSNAME
o IDEBIT_VERSION
o IDEBIT_ISSLANG
« IDEBIT_INVOICE

Note that IDEBIT_ISSCONF and IDEBIT_ISSNAME must be displayed on the client’s receipt that is gen-
erated by the merchant.

After validation, IDEBIT_TRACK2 is used to form an IDebitPurchase transaction that is sent to Moneris
Gateway to confirm the fund.

If the validation fails, redirect the client to the main page and ask for a different means of payment.

If the validation passes, an IDebitPurchase transaction can be sent to Moneris Gateway.

5.6 INTERAC® Online Payment Purchase

INTERAC® Online Payment Purchase transaction object definition

IDebitPurchase IOP_Txn = new IDebitPurchase();

HttpsPostRequest object for INTERAC® Online Payment Purchase transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (IOP_Txn) ;

INTERAC® Online Payment Purchase transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 48: INTERAC® Online Payment transaction object mandatory values

Order ID String | 50-character alpha- I0P_Txn.SetOrderId (order_
numeric id);

Amount String | 9-character decimal IOP_Txn.SetAmount (amount) ;

Track2 data String | 40-character alpha- IOP_Txn.SetTrack2 (track2);

Page 111 of 476 Canada Only November 2018

5 INTERAC® Online Payment

Table 48: INTERAC® Online Payment transaction object mandatory values

numeric

Table 49: INTERAC® Online Payment Purchase transaction optional values

Customer ID String | 50-character alphanumeric | IOP_Txn.SetCustId(cust_id);
Dynamic String | 20-character alphanumeric | IOP_Txn.SetDynamicDescriptor
descriptor (dynamic_descriptor);

Customer Object |[Not applicable. Click hereSee | IOP_Txn.SetCustInfo (customer) ;
information Section 14 (page 353).

Sample INTERAC® Online Payment Purchase

namespace Moneris

{

using System;

public class TestCanadalDebitPurchase
{

public static void Main(string[] args)

{

string store id = "store5";

string api_ token = "yesguy";

string order id = "Test" + DateTime.Now.ToString("yyyyMMddhhmmss") ;
string cust id = "Lance Briggs 55";

string amount = "5.00";

string track2 = "5268051119993326=0609AAAAAAAAAAAAA000";

string processing country code = "CA";

bool status_check = false;

/********************* Bllllng/Shlpplng variables ****************************/
string first name = "Bob";

string last name = "Smith";

string company name = "ProLine Inc.";

string address = "623 Bears Ave";

string city = "Chicago";

string province = "Illinois";

string postal code = "MIM2M1";

string country = "Canada";

string phone = "777-999-7777";

string fax = "777-999-7778";

string taxl = "10.00";

string tax2 = "5.78";

string tax3 = "4.56";

string shipping cost = "10.00";

/********************* Order Line Item Variables ***‘k‘k***********************‘k/
string[] item description = new string[] { "Chicago Bears Helmet", "Soldier Field Poster" };
string[] item quantity = new string([] { "1", "1" };

string[] item product code = new string([] { "CB3450", "SF998s" };

string[] item extended amount = new string[] { "150.00", "19.79" };
/********************** Customer Information Object **************************/

November 2018 Canada Only Page 112 of 476

Moneris Gateway API - Integration Guide

Sample INTERAC® Online Payment Purchase

CustInfo customer = new CustInfo();

/********************** Set Customer Bllllng Informatlon *********‘k***‘k********/
customer.SetBilling (first name, last name, company name, address, city,
province, postal code, country, phone, fax, taxl, tax2,

tax3, shipping cost);

/******************** Set Customer Shlpplng Information ***********************/
customer.SetShipping (first name, last name, company name, address, city,
province, postal code, country, phone, fax, taxl, tax2,

tax3, shipping cost);

/***k****k**‘k*k****k************** Order Llne Items ****k‘k*‘k***********************/
customer.SetItem(item description([0], item quantity[O],

item product code[0], item extended amount[0]);

customer.SetItem(item description([1l], item quantity[1l],

item product code[l], item extended amount([1]);

/************************** Request *************************/

IDebitPurchase IOP_Txn = new IDebitPurchase();

IOP_Txn.SetOrderId(order id);

IOP_Txn.SetCustId(cust id);

IOP_Txn.SetAmount (amount) ;

IOP Txn.SetIdebitTrack2 (track2);

IOP_Txn.SetCustInfo (customer) ;

//IOP_Txn.SetDynamicDescriptor ("dynamicdescriptorl");

HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq. SetProcCountryCode (processing country code) ;

mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);

mpgReq.SetApiToken (api_ token) ;

mpgReq.SetTransaction (IOP Txn) ;

mpgReq.SetStatusCheck (status_check) ;

mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WritelLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("TransType = " + receipt.GetTransType());
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut ());

Console.ReadLine () ;
}
catch (Exception e)
{

Console.WriteLine (e);

}

— e

Page 113 0of 476 Canada Only November 2018

5 INTERAC® Online Payment

5.7 INTERAC® Online Payment Refund

To process this transaction, you need the order ID and transaction number from the original INTERAC®
Online Payment Purchase transaction.

INTERAC® Online Payment Refund transaction object definition

IDebitRefund refund = new IDebitRefund();

HttpsPostRequest object for INTERAC® Online Payment Refund transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (refund) ;

INTERAC® Online Payment Refund transaction object values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 50: INTERAC® Online Payment Refund transaction object mandatory variables

Order ID String | 50-character alpha- refund.SetOrderld(order_id);
numeric

Amount String | 9-character decimal refund.SetAmount (amount) ;

Transaction number String | 255-character alpha- refund.SetTxnNumber (txn_
numeric number) ;

Table 51: INTERAC® Online Payment Refund transaction optional values

Customer ID String 50-character alpha- refund.SetCustId(cust_id);
numeric
Status Check Boolean | true/false mpgReq. SetStatusCheck
(status_check) ;

Sample code

Sample INTERAC® Online Payment Refund

namespace Moneris

{

using System;

public class TestCanadalDebitRefund
{

public static void Main(string[] args)

November 2018 Canada Only Page 114 of 476

Moneris Gateway API - Integration Guide

Sample INTERAC® Online Payment Refund

{

string store id = "storeb5";

string api token = "yesguy";

string order id = "Test20150625014816";
string amount = "5.00";

string txn number = "113524-0 10";
string processing country code = "CA";

bool status_check = false;

IDebitRefund refund = new IDebitRefund();
refund.SetOrderId(order id);

refund.SetAmount (amount) ;

refund. SetTxnNumber (txn number) ;

HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq. SetProcCountryCode (processing country code) ;
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld (store id);
mpgReq.SetApiToken (api token);

mpgReq. SetTransaction (refund) ;
mpgReq.SetStatusCheck (status_check) ;

mpgReq.Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt();

Console.WriteLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId())
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum())
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket()):
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());

Console.ReadLine () ;

}

catch (Exception e)

{

Console.WriteLine (e);

}

— e

Page 115 of 476 Canada Only November 2018

5 INTERAC® Online Payment

5.8 INTERAC® Online Payment Field Definitions

Table 52: Field Definitions

IDEBIT_ 5-14 Numbers and uppercase letters
MERCHNUM This field is provided by Moneris. For example, 0003MONMPGXXXX.
IDEBIT_TERMID |8 Numbers and uppercase letters
Optional field
IDEBIT_ 1-12 Numbers
AMOUNT
Amount expressed in cents (for example, 1245 for $12.45) to charge to the card.
IDEBIT_ 3 "CAD" or "USD"
CURRENCY : :
National currency of the transaction.
IDEBIT_INVOICE |1-20 ISO-8859-1 encoded characters restricted to:
o Uppercase and lowercase
o Numbers
« AAAAEEEETTIOUCOUCadaae¢e6TiouGUYC
e Spaces
o #S L) _/ = ? @ '
Optional field
Can be the Order ID when used with Moneris Gateway fund confirmation trans-
actions.
IDEBIT_ 1024 ISO-8859-1 restricted to single-byte codes, hex 20 to 7E (consistent with
MERCHDATA US-ASCIl and 1SO-8859-1 Latin-1).
Note that the following character combinations may not be accepted in
the IDEBIT_MERCHDATA field:
o "/ %2R, "/ %2E", "/ %2E%2E", "\\%2E%2E", "\\%2E.",
|I\\.%2Ell’ ll\\%ZE%ZEII’ I|&#||' ll<lll |I%3CII’ ll>||' ll%3Ell
Free form data provided by the merchant that will be passed back unchanged to the
merchant once the payment has been guaranteed in online banking.
This may be used to identify the customer, session or both.
November 2018 Canada Only Page 116 of 476

Moneris Gateway API - Integration Guide

Table 52: Field Definitions (continued)

IDEBIT_ 1024 ISO-8859-1 restricted to single-byte codes, restricted to:
FUNDEDURL
o Uppercase and lowercase letters
e Numbers
o« ;/?7:@&=+S5,-_.1~V* ()%
Https address to which the issuer will redirect cardholders after guaranteeing the
fund through online banking.
IDEBIT_ 1024 ISO-8859-1, restricted to single-byte codes, restricted to:
NOTFUNDEDURL
o Uppercase and lowercase letters
e Numbers
o ;/?@&=+S5,-_.1"* ()%
Https address to which the issuer redirects cardholders after failing or canceling the
online banking process.
IDEBIT_ 2 “en” or “fr”
MERCHLANG

Customer's current language at merchant.

IDEBIT_VERSION

3

Numbers

Initially, the valueis 1.

IDEBIT_ISSLANG

2

llen ” O r. llfrll

Customer’s current language at issuer.

IDEBIT_TRACK2 |37 ISO-8859-1 (restricted to single-byte codes), hex 20 to 7E (consistent with
US-ASCIl and ISO-8859-1 Latin-1)
Value returned by the issuer. It includes the PAN, expiry date, and transaction ID.
IDEBIT_ISSCONF |15 ISO-8859-1 encoded characters restricted to:

o Uppercase and lowercase letters

o Numbers

« AAAAEEEETTIOUCOUCadaae¢e6TiouGUYC
e Spaces

° #S.,-/=?@I

Confirmation number returned from the issuer to be displayed on the merchant’s
confirmation page and on the receipt.

Page 117 of 476

Canada Only November 2018

5 INTERAC® Online Payment

Table 52: Field Definitions (continued)

IDEBIT_ 30 ISO-8859-1 encoded characters restricted to:
ISSNAME
o Uppercase and lowercase letters
o Numbers
e« AAAAEEEETTOUCOUCada5e¢66Ti6UNUYC
e Spaces
. #S.,-/=?(@‘I
Issuer name to be displayed on the merchant’s confirmation page and on the
receipt.
November 2018 Canada Only Page 118 of 476

6 Mag Swipe Transaction Set

e 6.1 Mag Swipe Transaction Type Definitions
e 6.2 Mag Swipe Purchase
e 6.2.1 Encrypted Mag Swipe Purchase
e 6.3 Mag Swipe Pre-Authorization
e 6.3.1 Encrypted Mag Swipe Pre-Authorization
e 6.4 Mag Swipe Completion
e 6.5 Mag Swipe Force Post
e 6.5.1 Encrypted Mag Swipe Force Post
e 6.6 Mag Swipe Purchase Correction
e 6.7 Mag Swipe Refund
o 6.8 Mag Swipe Independent Refund
e 6.8.1 Encrypted Mag Swipe Independent Refund

Mag Swipe transactions allow customers to swipe a credit card and submit the Track2 details.

These transactions support the submission of Track2 as well as a manual entry of the credit card number
and expiry date. If all three fields are submitted, the Track2 details are used to process the transaction.

6.1 Mag Swipe Transaction Type Definitions

Purchase
Verifies funds on the customer’s card, removes the funds and prepares them for deposit into
the merchant’s account.

Pre-Authorization
Verifies and locks funds on the customer’s credit card. The funds are locked for a specified
amount of time based on the card issuer.

To retrieve the funds that have been locked by a Pre-Authorization transaction so that they
may be settled in the merchant’s account, a Completion transaction must be performed. A
Pre-Authorization may only be "completed" once.

Completion
Retrieves funds that have been locked (by a Mag Swipe Pre-Authorization transaction), and
prepares them for settlement into the merchant’s account.

Force Post
Retrieves the locked funds and prepares them for settlement into the merchant’s account.

This is used when a merchant obtains the authorization number directly from the issuer by a
third-party authorization method (such as by phone).

Purchase Correction
Restores the full amount of a previous Mag Swipe Purchase or Mag Swipe Completion trans-
action to the cardholder's card, and removes any record of it from the cardholder's state-
ment. The order ID and transaction number from the original transaction are required, but
the credit card does not need to be re-swiped.

This transaction can be used against a Purchase or Completion transaction that occurred
same day provided that the batch containing the original transaction remains open. When
using the automated closing feature, Batch Close occurs daily between 10 and 11 pm Eastern
Time.

November 2018 Page 119 of 476

Moneris Gateway API - Integration Guide

This transaction is sometimes referred to as "void".

Refund
Restores all or part of the funds from a Mag Swipe Purchase or Mag Swipe Completion trans-
action to the cardholder's card. Unlike a Purchase Correction, there is a record of the refund.

Independent Refund
Credits a specified amount to the cardholder’s credit card.

This does not require a previous transaction (such as Mag Swipe Purchase) to be logged in the
Moneris Gateway. However, a credit card must be swiped to provide the Track2 data.

6.1.1 Encrypted Mag Swipe Transactions

Encrypted Mag Swipe transactions allow the customer to swipe or key in a credit card using a Moneris-
provided encrypted mag swipe reader, and submit the encrypted Track2 details.

The encrypted mag swipe reader can be used for processing:

o Swiped card-present transactions
o Manually keyed card-present transactions
o Manually keyed card-not-present transactions.

Encrypted Mag Swipe transactions are identical to the regular Mag Swipe transactions from the cus-
tomer's perspective. However, the card data must be swiped or keyed in via a Moneris-provided encryp-
ted mag swipe reader. Contact Moneris for more details.

Only Mag Swipe Purchase and Mag Swipe Pre-Authorization have encrypted versions. Their explanations
appear in this document as subsections of the regular (unencrypted) Mag Swipe Purchase and Mag
Swipe Pre-Authorization transactions respectively.

6.2 Mag Swipe Purchase

Mag Swipe Purchase transaction object definition

Track2Purchase trackZpurchase = new Track2Purchase();

HttpsPostRequest object for Mag Swipe Purchase transaction

HttpsPostRequest mpgReq = new HttpsPostRequest() ;

mpgReq. SetTransaction (track2purchase) ;

Mag Swipe Purchase transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Page 120 of 476 November 2018

6 Mag Swipe Transaction Set

Table 53: Mag Swipe Purchase transaction object mandatory values

Order 1D String | 50-character alpha- track2purchase.SetOrderTId
numeric (order id);
Amount String 9-character decimal track2purchase.SetAmount
(amount) ;
Credit card number String | 20-character numeric | track2purchase.SetPan(pan);
OR OR oR
Track2 data 40-character numeric track2purchase.SetTrack?
(track2) ;
Expiry date String 4-character alpha- track2purchase.SetExpdate
numeric (expiry date);
(YYMM format)
POS code String | 2-character numeric track2purchase.SetPosCode
(pos_code) ;

Table 54: Mag Swipe Purchase transaction optional values

AVS information Object N/A track2purchase.SetAvsInfo
(avsCheck) ;

Customer ID String 50-character alpha- track2purchase.SetCustld
numeric (cust_id);
CVD information Object N/A track2purchase.SetCvdInfo
(cvdCheck) ;
Dynamic descriptor String 20-character alpha- trackZpurchase

.SetDynamicDescriptor
(dynamic_descriptor) ;

numeric

Status Check Boolean | true/false mpgReq. SetStatusCheck
(status_check);

Sample Mag Swipe Purchase

namespace Moneris

{

November 2018 Page 121 of 476

Moneris Gateway API - Integration Guide

Sample Mag Swipe Purchase

using System;

using System.Text.RegularExpressions;

public class TestCanadaTrack2Purchase

{

public static void Main(string[] args)

{

string store id = "storel";

string api token = "yesguy";

string order id = "Test" + DateTime.Now.ToString("yyyyMMddhhmmss") ;
string cust id = "LBriggs";

string amount = "1.00";
string track2 = "";
//string track2 = ";5258968987035454=060610154540010601012";

string pan = "4242424242424242";

string exp date = "1903"; //must send '0000' if swiped
string pos code = "00";

string processing country code = "CA";

bool status check = false;

Track2Purchase track2purchase = new Track2Purchase();
track2purchase.SetOrderId(order id);
track2purchase.SetCustId(cust_id);
track2purchase.SetAmount (amount) ;
track2purchase.SetTrack2 (track2) ;
track2purchase.SetPan (pan) ;
track2purchase.SetExpdate (exp date);
track2purchase.SetPosCode (pos_code) ;

HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq.SetProcCountryCode (processing country code);

mpgReq. SetTestMode (true); //false or comment out this line for production transactions

mpgReq.SetStoreld (store id);
mpgReq.SetApiToken (api token);

mpgReq. SetTransaction (track2purchase) ;
mpgReq.SetStatusCheck (status check) ;
mpgReq. Send () ;

try

{

Receipt receipt = mpgReqg.GetReceipt () ;

Console.WriteLine ("CardType = " + receipt.GetCardType());
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WritelLine ("BankTotals = " + receipt.GetBankTotals());
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket()):
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
//Console.WriteLine ("StatusCode = " + receipt.GetStatusCode());
//Console.WriteLine ("StatusMessage = " + receipt.GetStatusMessage());

Console.ReadLine() ;

}

catch (Exception e)

{

Console.WriteLine (e);

Page 122 of 476

November 2018

6 Mag Swipe Transaction Set

Sample Mag Swipe Purchase

- e e e

6.2.1 Encrypted Mag Swipe Purchase

Encrypted Mag Swipe Purchase transaction object definition

EncTrack2Purchase encpurchase = new EncTrack2Purchase();

HttpsPostRequest object for Encrypted Mag Swipe Purchase transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () :;

mpgReq.SetTransaction (encpurchase) ;

Encrypted Mag Swipe Purchase transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 55: Encrypted Mag Swipe Purchase transaction object mandatory values

Order ID String 50-character alpha- encpurchase.SetOrderId
numeric (order id);
Amount String 9-character decimal encpurchase.SetAmount
(amount) ;
Encrypted Track2 data String n/a encpurchase.SetEncTrack?2

(enc_track2);

POS code String 2-character numeric encpurchase.SetPosCode (pos_
code) ;
Device type String 30-character alpha- encpurchase.SetDeviceType

numeric (device type);

November 2018 Page 123 of 476

Moneris Gateway API - Integration Guide

Table 56: Encrypted Mag Swipe Purchase transaction optional values

Customer ID String 50-character alpha- encpurchase.SetCustld (cust_
numeric id);
Status Check Boolean | true/false mpgReq. SetStatusCheck

(status_check);

AVS information Object Not applicable. Click encpurchase.SetAvsInfo
hereSee 9.1 (page (avsCheck) ;
283).

Dynamic descriptor String 20-character alpha- encpurchase
numeric .SetDynamicDescriptor

(dynamic_descriptor) ;

Sample Encrypted Mag Swipe Purchase

namespace Moneris

{

using System;

using System.Text.RegularExpressions;
public class TestCanadaEncTrack2Purchase
{

public static void Main(string[] args)

{

string store id = "store5";

string api token = "yesguy";

string order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;
string cust id = "LBriggs";

string amount = "1.00";

string pos_code = "00";

string device type = "idtech bdk";

string processing country code = "CA";

bool status check = false;

string dynamic descriptor = "my descriptor";

string enc_track2 = "ENCRYPTEDTRACK2DATA";
EncTrack2Purchase encpurchase = new EncTrack2Purchase() ;
encpurchase.SetOrderId(order id);
encpurchase.SetCustId(cust_id);
encpurchase.SetAmount (amount) ;

encpurchase.SetEncTrack2 (enc_track2) ;
encpurchase.SetPosCode (pos code) ;
encpurchase.SetDeviceType (device type);
encpurchase.SetDynamicDescriptor (dynamic descriptor);
AvsInfo avsCheck = new AvsInfo();
avsCheck.SetAvsStreetNumber ("212") ;
avsCheck.SetAvsStreetName ("Payton Street");
avsCheck.SetAvsZipCode ("M1IMIM1") ;

encpurchase.SetAvsInfo (avsCheck) ;

HttpsPostRequest mpgReq = new HttpsPostRequest() ;
mpgReq. SetProcCountryCode (processing country code) ;
mpgReq. SetTestMode (true); //false or comment out this line for production transactions

Page 124 of 476 November 2018

6 Mag Swipe Transaction Set

Sample Encrypted Mag Swipe Purchase

mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
try

{
Receipt

Console

Console
Console

Console
Console

Console
Console
Console
Console

Console
Console

Console

}

{

Console

}

— e

Console.

Console.

Console.

Console.

Console.

Console.

SetStoreld(store id);
SetApiToken (api_ token);
SetTransaction (encpurchase) ;
SetStatusCheck (status check) ;
Send () ;

receipt = mpgReq.GetReceipt () ;

WriteLine ("CardType = " + receipt.GetCardType());
.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
WriteLine ("TxnNumber = " + receipt.GetTxnNumber());
.WriteLine ("ReceiptId = " + receipt.GetReceiptId());
.WriteLine ("TransType = " + receipt.GetTransType());
WriteLine ("ReferenceNum = " + receipt.GetReferenceNum());
.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
.WriteLine ("BankTotals = " + receipt.GetBankTotals());
WriteLine ("Message = " + receipt.GetMessage());

.WriteLine ("AuthCode = " + receipt.GetAuthCode());
.WriteLine ("Complete = " + receipt.GetComplete());
.WriteLine ("TransDate = " + receipt.GetTransDate());
.WriteLine ("TransTime = " + receipt.GetTransTime());
WriteLine ("Ticket = " + receipt.GetTicket());

.WriteLine ("TimedOut = " + receipt.GetTimedOut());
.WriteLine ("MaskedPan = " + receipt.GetMaskedPan()) ;
WritelLine ("CardLevelResult = " + receipt.GetCardLevelResult ())
.WritelLine ("AVS Response = " + receipt.GetAvsResultCode()) ;

catch (Exception e)

WriteLine (e);

’

6.3 Mag Swipe Pre-Authorization

Mag Swipe Pre-Authorization transaction object definition

Track2PreAuth track2preauth = new Track2PreAuth();

HttpsPostRequest object for Mag Swipe Pre-Authorization transaction

HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq.SetTransaction (track2preauth) ;

Mag Swipe Pre-Authorization transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

November 2018

Page 125 of 476

Moneris Gateway API - Integration Guide

Table 57: Mag Swipe Pre-Authorization transaction object mandatory values

. .SetOrderId
Order ID String | 50-character alpha- trackzpreauth.SetOrder
. (order id);
numeric -
. . .SetA t
Amount String 9-character decimal trackzpreauth.SetAmoun
(amount) ;

. . . .SetP ;
Credit card number String 20-character numeric trackZpreauth.SetPan (pan)
OR OR OR
Track2 data 40-character numeric track2preauth.SetPan (pan) ;

. . track2preauth.SetExpdate
Expiry date String 4charz?cteralpha (expiry date);

numeric -
(YYMM format)
. . .SetPosCod
POS code String | 2-character numeric zzgz};?preauth etPosCode (pos_

Table 58: Mag Swipe Pre-Authorization transaction optional values

Customer ID String 50-character alpha- track2preauth.SetCustld
numeric (cust_id);

Dynamic descriptor String 20-character alpha- track2preauth
numeric .SetDynamicDescriptor

(dynamic descriptor);

Status Check Boolean | true/false mpgReq.SetStatusCheck
(status_check);

Sample Mag Swipe Pre-Authorization

namespace Moneris

{

using System;

using System.Text.RegularExpressions;
public class TestCanadaTrack2Preauth

{

public static void Main(string[] args)
{

string store id = "storel";

string api token = "yesguy";

string order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;
string cust id = "LBriggs";

string amount = "5.00";

Page 126 of 476 November 2018

6 Mag Swipe Transaction Set

Sample Mag Swipe Pre-Authorization

//string track2 = ";5258968987035454=06061015454001060101?";
string track2 = "";

string pan = "4242424242424242";

string exp = "1906"; //must send '0000' if swiped
string pos_code = "00";

string processing country code = "CA";

bool status check = false;

Track2PreAuth track2preauth = new Track2PreAuth();
track2preauth.SetOrderId (order_ id);
track2preauth.SetCustId(cust id);
track2preauth.SetAmount (amount) ;
track2preauth.SetTrack?2 (track?2) ;
track2preauth.SetPan (pan) ;
track2preauth.SetExpdate (exp) ;
track2preauth.SetPosCode (pos_code) ;
HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq. SetProcCountryCode (processing country code);

mpgReq.SetStoreld (store id);
mpgReq.SetApiToken (api token);

mpgReq. SetTransaction (track2preauth) ;
mpgReq.SetStatusCheck (status_check) ;
mpgReq.Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("CardType = " + receipt.GetCardType()):
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId())
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime())
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
//Console.Writeline ("StatusCode = " + receipt.GetStatusCode());
//Console.WritelLine ("StatusMessage = " + receipt.GetStatusMessage());

Console.ReadLine () ;
}
catch (Exception e)
{

Console.WriteLine (e);

}

— e

mpgReq.SetTestMode (true); //false or comment out this line for production transactions

6.3.1 Encrypted Mag Swipe Pre-Authorization

Encrypted Mag Swipe Pre-Authorization transaction object definition

EncTrack2PreAuth enctrack2preauth = new EncTrack2PreAuth();

November 2018

Page 127 of 476

Moneris Gateway API - Integration Guide

HttpsPostRequest object for Encrypted Mag Swipe Pre-Authorization transaction

HttpsPostRequest mpgReq = new HttpsPostRequest() ;

mpgReq.SetTransaction (enctrack2preauth) ;

Encrypted Mag Swipe Pre-Authorization transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 59: Encrypted Mag Swipe Pre-Authorization transaction object mandatory values

Order ID String | 50-character alpha- enctrack2preauth.SetOrderId
numeric (order_id);

Amount String 9-character decimal enctrackZpreauth.SetAmount
(amount) ;

Credit card number String 20-character numeric enctrackZpreauth.SetPan
(pan) ;

OR OR

Encrypted Track2 n/a OR
enctrack2preauth

.SetEncTrack2 (enc_track2);

POS code String 2-character numeric enctrackZpreauth.SetPosCode
(pos_code) ;

Device type String 30-character alpha- enctrackZpreauth
numeric .SetDeviceType (device type);

Table 60: Encrypted Mag Swipe Pre-Authorization transaction optional values

Customer ID String 50-character alpha- enctrack2preauth.SetCustlId
numeric (cust_id);

mpgReq.SetStatusCheck (status_

Status Check Boolean | true/false
check) ;

Sample Encrypted Mag Swipe Pre-Authorization

namespace Moneris

{

using System;

using System.Text.RegularExpressions;
public class TestCanadaEncTrack2Preauth

Page 128 of 476 November 2018

6 Mag Swipe Transaction Set

Sample Encrypted Mag Swipe Pre-Authorization

{

public
{

string
string
string
string
string
string
string
string

static void Main(string[] args)

store_id = "storeb5";

api token = "yesquy";

order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;
cust_id = "LBriggs";

amount = "5.00";

pos _code = "00";

device type = "idtech bdk";

processing country code = "CA";

bool status check = false;

string
string

enc_track2 = "ENCRYPTEDTRACK2DATA";
descriptor = "nga";

EncTrack2PreAuth enctrack2preauth = new EncTrack2PreAuth () ;
enctrack2preauth.SetOrderId(order_id);

enctrac
enctrac
enctrac
enctrac
enctrac
enctrac
HttpsPo
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
try

{
Receipt

Console.

Console
Console

Console.

Console
Console

Console.

Console
Console
Console
Console

Console.

Console
Console

Console.

Console

Console.

Console

}

k2preauth.SetCustId(cust id);
k2preauth.SetAmount (amount) ;
k2preauth.SetEncTrack2 (enc track2);
k2preauth.SetPosCode (pos_code) ;
k2preauth.SetDeviceType (device type);
k2preauth.SetDynamicDescriptor (descriptor) ;
stRequest mpgReq = new HttpsPostRequest () ;
SetProcCountryCode (processing country code);
SetTestMode (true); //false or comment out this line for production transactions
SetStoreld(store id);
SetApiToken (api token);

SetTransaction (enctrack2preauth) ;
SetStatusCheck (status_check) ;

Send () ;

receipt = mpgReq.GetReceipt () ;

WriteLine ("CardType = " + receipt.GetCardType());
.WriteLine ("TransAmount = " + receipt.GetTransAmount ());
.WritelLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
WriteLine ("ReceiptId = " + receipt.GetReceiptId());
.WritelLine ("TransType = " + receipt.GetTransType());
.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
WriteLine ("ResponseCode = " + receipt.GetResponseCode());
.WriteLine ("ISO = " + receipt.GetISO());

.WriteLine ("BankTotals = " + receipt.GetBankTotals());
.WriteLine ("Message = " + receipt.GetMessage());
.WriteLine ("AuthCode = " + receipt.GetAuthCode());
WriteLine ("Complete = " + receipt.GetComplete());
.WritelLine ("TransDate = " + receipt.GetTransDate());
.WriteLine ("TransTime = " + receipt.GetTransTime()) ;
WriteLine ("Ticket = " + receipt.GetTicket());

.WriteLine ("TimedOut = " + receipt.GetTimedOut());

WriteLine ("MaskedPan " + receipt.GetMaskedPan());
.WritelLine ("CardLevelResult = " + receipt.GetCardLevelResult());

catch (Exception e)

{

Console

}

— e

.WriteLine (e);

November 2018 Page 129 of 476

Moneris Gateway API - Integration Guide

6.4 Mag Swipe Completion

Mag Swipe Completion transaction object definition

Track2Completion track2completion = new Track2Completion () ;

HttpsPostRequest object for Mag Swipe Completion transaction

HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq.SetTransaction (track2completion) ;

Mag Swipe Completion transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 61: Mag Swipe Completion transaction object mandatory values

. k2 leti .SetOrderId
Order ID String 50-character alpha- trackzcompletion raer
. (order id);
numeric -
. . . i . SetTxnNumber
Transaction number String 255-character variable track2completion
(txn number) ;
character -
. . . k2 leti .SetCompAmount
Completion Amount String 9-character decimal trackzcompletion pamou
(comp_amount) ;
. . i .SetPosCode
POS code String 2-character numeric track2completion
(pos_code) ;

Table 62: Mag Swipe Completion transaction optional values

Customer ID String 50-character alpha- track2completion.SetCustId
numeric (cust_id);
Status Check Boolean | true/false mpgReq. SetStatusCheck

(status_check);

Dynamic descriptor String 20-character alpha- trackZcompletion
numeric .SetDynamicDescriptor

(dynamic_descriptor);

Sample Mag Swipe Completion

namespace Moneris
{

using System;

Page 130 of 476 November 2018

6 Mag Swipe Transaction Set

Sample Mag Swipe Completion

public class TestCanadaTrack2Completion
{

public static void Main(string[] args)
{

string store id = "storel";

string api_token = "yesguy";

string order id = "Test20150625035422";
string txn number = "87028-0_10";

string amount = "1.00";
string pos_code = "00";
string dynamic_descriptor = "123456";
string processing country code = "CA";

bool status check = false;

Track2Completion track2completion = new Track2Completion();
track2completion.SetOrderId(order_id);
track2completion.SetTxnNumber (txn_ number) ;
track2completion.SetAmount (amount) ;
track2completion.SetPosCode (pos_code) ;
track2completion.SetDynamicDescriptor (dynamic descriptor);
HttpsPostRequest mpgReq = new HttpsPostRequest();
mpgReq.SetProcCountryCode (processing country code);

mpgReq. SetTestMode (true); //false or comment out this line for production transactions

mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api token) ;
mpgReq.SetTransaction (track2completion) ;
mpgReq.SetStatusCheck (status_check) ;
mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("TransType = " + receipt.GetTransType())
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum())
Console.WritelLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WritelLine ("BankTotals = " + receipt.GetBankTotals());
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WritelLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut());
//Console.WriteLine ("StatusCode = " + receipt.GetStatusCode());
//Console.WriteLine ("StatusMessage = " + receipt.GetStatusMessage());

Console.ReadLine() ;

}

catch (Exception e)
{

Console.WriteLine (e) ;

}

— e

November 2018

Page 131 of 476

Moneris Gateway API - Integration Guide

6.5 Mag Swipe Force Post

Mag Swipe Force Post transaction object definition

Track2ForcePost track2forcePost = new Track2ForcePost () ;

HttpsPostRequest object for Mag Swipe Force Post transaction

HttpsPostRequest mpgReqg =

mpgReq.SetTransaction (track2forcePost) ;

new HttpsPostRequest();

Mag Swipe Force Post transaction mandatory arguments

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 63: Mag Swipe Force Post transaction object mandatory values

Order ID String 50-character alpha- track2forcePost.SetOrderId
numeric (order id);
Amount String 9-character decimal track2forcePost.SetAmount
(amount) ;
Credit card number String 20-character numeric track2forcePost.SetPan (pan) ;
OR OR OR
Track2 data 40-character numeric track2forcePost.SetTrack?2
(track2);
Expiry date String 4-character alpha- tracll<2 forcePost.SetExpdate
numeric (expiry date);
(YYMM format)
POS code String 2-character numeric track2forcePost.SetPosCode
(pos_code) ;
Authorization code String 8-character alpha- track2forcePost.SetAuthCode
numeric (auth_code) ;
Page 132 0of 476 November 2018

6 Mag Swipe Transaction Set

Table 64: Mag Swipe Force Post transaction optional values

Customer ID String 50-character alpha- track2forcePost.SetCustld
numeric (cust_id);
Status Check Boolean | true/false mpgReq. SetStatusCheck

(status_check);

Dynamic descriptor String 20-character alpha- track2forcePost
numeric .SetDynamicDescriptor

(dynamic descriptor);

Sample Mag Swipe Force Post

namespace Moneris

{

using System;

public class TestCanadaTrack2ForcePost
{

public static void Main(string[] args)

{

string store id = "storel";

string api token = "yesguy";

string order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;
string amount = "10.00";

string track2 = "";

string pan = "4242424242424242";
string expiry date = "1212";

string pos code = "00";
string auth code = "AU4R6";
string processing country code = "CA";

bool status_check = false;

Track2ForcePost track2forcePost = new Track2ForcePost () ;
track2forcePost.SetOrderId(order id);
track2forcePost.SetAmount (amount) ;
track2forcePost.SetTrack2 (track2) ;
track2forcePost.SetPan (pan) ;
track2forcePost.SetExpdate (expiry date);
track2forcePost.SetPosCode (pos_code) ;
track2forcePost.SetAuthCode (auth_code) ;

HttpsPostRequest mpgReq = new HttpsPostRequest();
mpgReq. SetProcCountryCode (processing country code) ;
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api_ token) ;

mpgReq.SetTransaction (track2forcePost) ;
mpgReq.SetStatusCheck (status_check) ;

mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId());

November 2018 Page 133 of 476

Moneris Gateway API - Integration Guide

Sample Mag Swipe Force Post

Console.WriteLine ("TransType = " + receipt.GetTransType());
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WritelLine ("BankTotals = " + receipt.GetBankTotals()):;
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket()):
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
//Console.WriteLine ("StatusCode = " + receipt.GetStatusCode());
//Console.WriteLine ("StatusMessage = " + receipt.GetStatusMessage());

Console.ReadLine() ;

}

catch (Exception e)

{
Console.WriteLine (e);

}

— e

6.5.1 Encrypted Mag Swipe Force Post

The Encrypted Mag Swipe Force Post is used when a merchant obtains the authorization number directly
from the issuer using a phone or any third-party authorization method. This transaction does not
require that an existing order be logged in the Moneris Gateway. However, the credit card must be
swiped or keyed in using a Moneris-provided encrypted mag swipe reader, and the encrypted Track2
details must be submitted. There are also optional fields that may be submitted such as cust _idand
dynamic_descriptor

To complete the transaction, the authorization number obtained from the issuer must be entered.

Encrypted Mag Swipe Force Post transaction object definition

EncTrack2Forcepost enctrack2fp = new EncTrack2Forcepost();

HttpsPostRequest object for Encrypted Mag Swipe Force Post transaction

HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq.SetTransaction (enctrack2fp) ;

Page 134 of 476 November 2018

6 Mag Swipe Transaction Set

Encrypted Mag Swipe Force Post transaction object values

Table 1 Encrypted Mag Swipe Force Post transaction object mandatory values

Order ID String | 50-character alpha- enctrack2fp.SetOrderId
numeric (order_id);
Amount String 9-character decimal enctrack2fp.SetAmount
(amount) ;
Encrypted Track2 data | String | n/a enctrack2fp.SetEncTrack2

(enc_track2);

POS Code String | 2-character numeric enctrack2fp.SetPosCode (pos_
code) ;
Device type String | 30-character alpha- enctrack2fp.SetDeviceType
numeric (device type);

Authorization Code String 8-character alpha- enctrack2fp.SetAuthCode

numeric (auth_code) ;

Table 2 Encrypted Mag Swipe Force Post transaction object optional values

Status Check Boolean | true/false mpgReq. SetStatusCheck
(status_check);

Customer ID String 50-character alpha- enctrack2fp.SetCustld(cust_
numeric id);

Dynamic descriptor String 20-character alpha- enctrack2fp
numeric .SetDynamicDescriptor

(dynamic_descriptor) ;

Sample Encrypted Mag Swipe Force Post

namespace Moneris

{

using System;

public class TestCanadaEncTrack2Forcepost

{

public static void Main (string[] args)

{

string store id = "store5";

string api token = "yesquy";

string order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;

November 2018 Page 135 of 476

Moneris Gateway API - Integration Guide

Sample Encrypted Mag Swipe Force Post

string cust id = "my customer id";
string amount = "5.00";
string pos code = "00";

string device type = "idtech bdk";
string auth code = "123456";

string processing country code = "CA";
bool status check = false;
string descriptor = "my descriptor";

string enc track2 = "ENCRYPTEDTRACK2DATA";
EncTrack2Forcepost enctrack2fp = new EncTrack2Forcepost () ;
enctrack2fp.SetOrderId(order id);
enctrack2fp.SetCustlId(cust_id);
enctrack2fp.SetAmount (amount) ;
enctrack2fp.SetEncTrack2 (enc_track2);
enctrack2fp.SetPosCode (pos_code) ;
enctrack2fp.SetDeviceType (device type);
enctrack2fp.SetAuthCode (auth code) ;
enctrack2fp.SetDynamicDescriptor (descriptor) ;
HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq. SetProcCountryCode (processing country code);
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld (store id);
mpgReq.SetApiToken (api token);
mpgReq.SetTransaction (enctrack2fp) ;
mpgReq.SetStatusCheck (status check) ;

mpgReq. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("CardType = " + receipt.GetCardType());
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime())
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("MaskedPan = " + receipt.GetMaskedPan()) ;
Console.WritelLine ("CardLevelResult = " + receipt.GetCardLevelResult());

}
catch (Exception e)
{

Console.WriteLine (e);

}

— e

Page 136 of 476 November 2018

6 Mag Swipe Transaction Set

6.6 Mag Swipe Purchase Correction

Mag Swipe Purchase Correction transaction object definition

Track2PurchaseCorrection track2void = new Track2PurchaseCorrection () ;

HttpsPostRequest object for Mag Swipe Purchase Correction transaction

HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq.SetTransaction (track2void) ;

Mag Swipe Purchase Correction transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 65: Mag Swipe Purchase Correction transaction object mandatory values

Order ID String | 50-character alpha- trackZpurchasecorrection
numeric .SetOrderId(order id);

Transaction number String 255-character alpha- track2purchasecorrection
numeric .SetTxnNumber (txn number) ;

Table 66: Mag Swipe Purchase Correction transaction optional values

Customer ID String 50-character alpha- trackZpurchasecorrection
numeric .SetCustId(cust id);

Status Check Boolean | true/false mpgReq. SetStatusCheck
(status_check);

Sample Mag Swipe Purchase Correction

namespace Moneris

{

using System;

public class TestCanadaTrack2PurchaseCorrection
{

public static void Main(string[] args)
{

string store id = "storel";

string api_token = "yesguy";

string order id = "Test20150625030621";
string txn number = "86949-0_10";
string dynamic descriptor = "123456";
string cust id = "my customer id";
string processing country code = "CA";

November 2018 Page 137 of 476

Moneris Gateway API - Integration Guide

Sample Mag Swipe Purchase Correction

bool status check = false;

Track2PurchaseCorrection track2void = new Track2PurchaseCorrection () ;
track2void.SetOrderId(order id);

track2void.SetCustId(cust id);

track2void.SetTxnNumber (txn number) ;
track2void.SetDynamicDescriptor (dynamic descriptor);

HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq. SetProcCountryCode (processing country code) ;

mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);

mpgReq.SetApiToken (api_ token) ;

mpgReq. SetTransaction (track2void) ;

mpgReq.SetStatusCheck (status_check) ;

mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WritelLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("TransType = " + receipt.GetTransType())
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WritelLine ("BankTotals = " + receipt.GetBankTotals());
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WritelLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut ());
//Console.WriteLine ("StatusCode = " + receipt.GetStatusCode());
//Console.Writeline ("StatusMessage = " + receipt.GetStatusMessage());

Console.ReadLine () ;
}
catch (Exception e)
{

Console.WriteLine (e);

}

— e

6.7 Mag Swipe Refund

Mag Swipe Refund transaction object definition

Track2Refund track2refund = new Track2Refund() ;

HttpsPostRequest object for Mag Swipe Refund transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (track2refund) ;

Page 138 of 476 November 2018

6 Mag Swipe Transaction Set

Mag Swipe Refund transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 67: Mag Swipe Refund transaction object mandatory values

Order ID String 50-character alpha- track2refund.SetOrderId
numeric (order 1id);
Amount String 9-character decimal track2refund.SetAmount
(amount) ;
Transaction number String 255-character alpha- track2refund.SetTxnNumber
numeric (txn_number) ;

Table 68: Mag

Swipe Refund transaction optional values

Customer ID String 50-character alpha- track2refund.SetCustId(cust
numeric id);
Status Check Boolean | true/false mpgReq. SetStatusCheck
(status_check);
Dynamic descriptor String 20-character alpha- trackZrefund
numeric .SetDynamicDescriptor
(dynamic_descriptor);

Sample Mag Swipe Refund

namespace Moneris

{

using System;

{

public static void Main (string[]
{

string store id = "storel";
string api token = "yesguy";
string

string txn_number = "87017-0_10";
string amount = "1.00";

string dynamic descriptor =
string cust id = "customer id";
string processing country code =

bool status check = false;

track2refund.SetOrderId(order id)
track2refund. SetAmount (amount) ;
track2refund.SetCustId(cust id);

public class TestCanadaTrack2Refund

order id = "Test20150625035152"; //will prompt user for input

"123456";

Track2Refund track2refund = new Track2Refund() ;

args)

"CA";

’

November 2018

Page 139 of 476

Moneris Gateway API - Integration Guide

Sample Mag Swipe Refund

track2refund.SetTxnNumber (txn number) ;
track2refund.SetDynamicDescriptor (dynamic descriptor);
HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq. SetProcCountryCode (processing country code);
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld (store id);
mpgReq.SetApiToken (api token);

mpgReq.SetTransaction (track2refund) ;
mpgReq.SetStatusCheck (status check) ;

mpgReq. Send () ;

try

{

Receipt receipt = mpgReqg.GetReceipt () ;

Console.WriteLine ("CardType = " + receipt.GetCardType());
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId())
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime())
Console.WritelLine ("Ticket = " + receipt.GetTicket());
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
//Console.WriteLine ("StatusCode = " + receipt.GetStatusCode());
//Console.WriteLine ("StatusMessage = " + receipt.GetStatusMessage());

Console.ReadLine () ;

}

catch (Exception e)

{
Console.WriteLine (e);

}

— e

6.8 Mag Swipe Independent Refund

NOTE: If you receive a TRANSACTION NOT ALLOWED error, it may mean the Mag
Swipe Independent Refund transaction is not supported on your account. Contact Moneris
to have it temporarily (re-)enabled.

Mag Swipe Independent Refund transaction object definition

Track2IndependentRefund track2indrefund = new Track2IndependentRefund() ;

Page 140 of 476 November 2018

6 Mag Swipe Transaction Set

HttpsPostRequest object for Mag Swipe Independent Refund transaction
HttpsPostRequest mpgReq = new HttpsPostRequest() ;

mpgReq.SetTransaction (track2indrefund) ;

Mag Swipe Independent Refund transaction values

Table 69: Mag Swipe Independent Refund transaction object mandatory values

Order ID String 50-character alpha- track2indrefund
numeric .SetOrderId (order
id) ;
Amount String 9-character decimal track2indrefund
.SetAmount
(amount) ;
Credit card number String 20-character numeric track2indrefund
.SetPan (pan) ;
Track2 data String 40-character numeric track2indrefund
.SetTrack?2
(track2) ;
Expiry date String 4-character alpha- track2indrefund
numeric .SetExpdate
(expiry date);
(YYMM format)
POS code String 2-character numeric track2indrefund
.SetPosCode (pos__
code) ;

Table 70: Mag Swipe Independent Refund transaction optional values

Customer ID String 50-character alpha- trackZindrefund
numeric .SetCustId(cust _id);
Dynamic descriptor String 20-character alpha- trackZindrefund
numeric .SetDynamicDescriptor
(dynamic_descriptor) ;
Status Check Boolean true/false mpgReq.SetStatusCheck
(status_check);

Sample Mag Swipe Independent Refund

namespace Moneris

{

using System;

public class TestCanadaTrack2IndependentRefund

November 2018 Page 141 of 476

Moneris Gateway API - Integration Guide

Sample Mag Swipe Independent Refund

{

public static void Main(string[] args)

{

string store id = "storel";

string api token = "yesquy";

string order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;
string cust id = "Ced Benson32";

string amount = "5.00";

string track2 = "";

string pan = "4242424242424242";

string exp = "1903"; //must send '0000' if swiped
string pos code = "00";

string processing country code = "CA";

bool status_check = false;

Track2IndependentRefund track2indrefund = new Track2IndependentRefund() ;
track2indrefund.SetOrderId(order id);
track2indrefund.SetCustId(cust id);
track2indrefund.SetAmount (amount) ;
track2indrefund.SetTrack?2 (track2) ;
track2indrefund. SetPan (pan) ;

track2indrefund. SetExpdate (exp) ;
track2indrefund.SetPosCode (pos_code) ;
HttpsPostRequest mpgReq = new HttpsPostRequest();
mpgReq. SetProcCountryCode (processing country code) ;
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api_ token) ;
mpgReq.SetTransaction (track2indrefund) ;
mpgReq.SetStatusCheck (status_check) ;

mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WritelLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("TransType = " + receipt.GetTransType());
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut ());
//Console.WriteLine ("StatusCode = " + receipt.GetStatusCode());
//Console.Writeline ("StatusMessage = " + receipt.GetStatusMessage());

Console.ReadLine() ;

}

catch (Exception e)

{

Console.WriteLine (e);

}

— e

Page 142 of 476 November 2018

6 Mag Swipe Transaction Set

6.8.1 Encrypted Mag Swipe Independent Refund

The Encrypted Mag Swipe Independent Refund credits a specified amount to the cardholder’s credit
card. The Encrypted Mag Swipe Independent Refund does not require an existing order to be logged in
the Moneris Gateway. However, the credit card must be swiped using the Moneris-provided encrypted
mag swipe reader to provide the encrypted track2 details.

There are also optional fields that may be submitted such as cust_id and dynamic_descriptor, The
transaction format is almost identical to Encrypted Mag Swipe Purchase and Encrypted Mag Swipe
PreAuth.

NOTE:

The Encrypted Mag Swipe Independent Refund transaction may not be supported on
your account. This may yield a TRANSACTION NOT ALLOWED error when attempting the
transaction.

To temporarily enable (or re-enable) the Independent Refund transaction type, contact
Moneris

Encrypted Mag Swipe Independent Refund transaction object definition

EncTrack2IndependentRefund encindrefund = new EncTrack2IndependentRefund();

HttpsPostRequest object for Encrypted Mag Swipe Independent Refund transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (encindrefund) ;

Encrypted Mag Swipe Independent Refund transaction object values

Table 1 Encrypted Mag Swipe Independent Refund transaction object mandatory values

Order ID String 50-character alpha- encindrefund.SetOrderId
numeric (order 1id);
Amount String 9-character decimal encindrefund.SetAmount
(amount) ;
Encrypted Track 2 data | String n/a encindrefund.SetEncTrack?
(enc_track2);

November 2018 Page 143 of 476

Moneris Gateway API - Integration Guide

Device Type String 30-character alpha- encindrefund.SetDeviceType
numeric (device type);
POS Code String 2-character numeric encindrefund.SetPosCode (pos_
code) ;

Table 2 Encrypted Mag Swipe Independent Refund transaction object optional values

Status Check Boolean | true/false mpgReq.SetStatusCheck
(status_check) ;
Customer ID String 50-character alpha- encindrefund.SetCustld(cust
numeric id);

Sample Encrypted Mag Swipe Independent Refund

namespace Moneris

{

using System;

public class TestCanadaEncTrack2IndependentRefund
{

public static void Main(string[] args)

{

string store id = "store5";

string api_token = "yesguy";

string order id = "Test" + DateTime.Now.ToString("yyyyMMddhhmmss") ;
string cust id = "my customer id";

string amount = "5.00";

string pos_code = "00";

string device type = "idtech bdk";

string processing country code = "CA";
string enc_track2 = "ENCRYPTEDTRACK2DATA";

string descriptor = "nga";
EncTrack2IndependentRefund encindrefund = new EncTrack2IndependentRefund() ;

encindrefund.
encindrefund.
encindrefund.
encindrefund.
encindrefund.
encindrefund.

encindrefund

SetOrderId(order id);
SetCustId(cust_id);
SetAmount (amount) ;
SetEncTrack2 (enc_track2) ;
SetPosCode (pos_code) ;
SetDeviceType (device type);

.SetDynamicDescriptor (descriptor) ;

HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
try

{

Receipt receipt =

SetProcCountryCode (processing country code) ;
SetTestMode (true) ;
SetStoreId(store id);
SetApiToken (api_token);
SetTransaction (encindrefund) ;
Send () ;

//false or comment out this line for production transactions

mpgReq.GetReceipt () ;

Page 144 of 476

November 2018

6 Mag Swipe Transaction Set

Sample Encrypted Mag Swipe Independent Refund

Console.WriteLine ("CardType = " + receipt.GetCardType());
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WritelLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime())
Console.WritelLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("MaskedPan = " + receipt.GetMaskedPan()) ;
Console.WritelLine ("CardLevelResult = " + receipt.GetCardLevelResult());

}
catch (Exception e)
{

Console.WriteLine (e);

}

— e

November 2018 Page 145 of 476

7 Level 2/3 Transactions

e 7.1 About Level 2/3 Transactions

e 7.2 Level 2/3 Visa Transactions

e 7.3 Level 2/3 MasterCard Transactions

e 7.4 Level 2/3 American Express Transactions

7.1 About Level 2/3 Transactions

The Moneris Gateway API supports passing Level 2/3 purchasing card transaction data for
Visa, MasterCard and American Express corporate cards.

All Level 2/3 transactions use the same Pre-Authorization transaction as described in the topic Pre-
Authorization (page 19).

7.2 Level 2/3 Visa Transactions

e 7.2.1 Level 2/3 Transaction Types for Visa
7.2.2 Level 2/3 Transaction Flow for Visa
7.2.3 VS Completion

7.2.5 VS Force Post

e 7.2.4 VS Purchase Correction

e 7.2.6 VS Refund

e 7.2.7 VS Independent Refund

7.2.8 VS Corpais

7.2.1 Level 2/3 Transaction Types for Visa

This transaction set includes a suite of corporate card financial transactions as well as a transaction that
allows for the passing of Level 2/3 data. Please ensure that Visa Level 2/3 support is enabled on your mer-
chant account. Batch Close, Open Totals and Pre-authorization are identical to the transactions outlined
in the section Basic Transaction Set (page 12).

o When the Pre-authorization response contains CorporateCard equal to true then you can submit
the Visa transactions.

o IfCorporateCard is false then the card does not support Level 2/3 data and non Level 2/3 trans-
action are to be used. If the card is not a corporate card, please refer to the section 2 Basic Trans-
action Set for the appropriate non-corporate card transactions.

NOTE: This transaction set is intended for transactions where Corporate Card is true and
Level 2/3 data will be submitted. If the credit card is found to be a corporate card but you do

November 2018 Page 146 of 476

Moneris Gateway API - Integration Guide

ot wish to send any Level 2/3 data then you may submit Visa transactions using the basic
ransaction set outlined in 2 Basic Transaction Set.

Pre-authorization— (authorization/pre-authorization)
Pre-authorization verifies and locks funds on the customer’s credit card. The funds are locked
for a specified amount of time, based on the card issuer. To retrieve the funds from a preauth
so that they may be settled in the merchant account a capture must be performed. Cor-
porateCard will return as true if the card supports Level 2/3.

VS Completion — (Capture/Pre-authorization Completion)
Once a Pre-authorization is obtained the funds that are locked need to be retrieved from the
customer’s credit card. The capture retrieves the locked funds and readies them for set-
tlement into the merchant account. Prior to performing a VS Completion, a Pre-authorization
must be performed. Once the transaction is completed, VS Corpais must be used to process
the Level 2/3 data.

VS Force Post — (Force Capture/Pre-authorization Completion)
This transaction is an alternative to VS Completion to obtain the funds locked on Pre-auth
obtained from IVR or equivalent terminal. The VS Force Post retrieves the locked funds and
readies them for settlement in to the merchant account. Once the transaction is completed,
VS Corpais must be used to process the Level 2/3 data.

VS Purchase Correction (Void, Correction)
VS Completion and VS Force Post can be voided the same day* that they occur. A
VS Purchase Correction must be for the fullamount of the transaction and will remove any
record of it from the cardholder statement.

VS Refund - (Credit)
A VS Refund can be performed against a VS Completion to refund any part or all of the trans-
action. Once the transaction is completed, VS Corpais must be used to process the Level 2/3
data.

VS Independent Refund — (Credit)
AVS Independent Refund can be performed against a purchase or a capture to refund any
part, or all of the transaction. Independent refund is used when the originating transaction
was not performed through Moneris Gateway. Once the transaction is completed, VS Corpais
must be used to process the Level 2/3 data.

e N

NOTE: the Independent Refund transaction may or may not be supported on your
account. If you receive a transaction not allowed error when attempting an inde-
pendent refund, it may mean the transaction is not supported on your account. If you
wish to have the Independent Refund transaction type temporarily enabled (or re-
enabled), please contact the Service Centre at 1-866-319-7450.

| J

VS Corpais — (Level 2/3 Data)
VS Corpais will contain all the required and optional data fields for Level 2/3 Business to Busi-
ness data. VS Corpais data can be sent when the card has been identified in the Pre-author-
ization transaction request as being a corporate card.

Page 147 of 476 November 2018

7 Level 2/3 Transactions

* AVS Purchase Correction can be performed against a transaction as long as the batch that contains the
original transaction remains open. When using the automated closing feature, the batch close occurs
daily between 10—11 pm EST.

7.2.2 Level 2/3 Transaction Flow for Visa

Pre-authorization/Completion Transaction Flow

Purchase Correction Transaction Flow

7.2.3 VS Completion

Once a Pre-authorization is obtained, the funds that are locked need to be retrieved from the customer’s
credit card. This VS Completion transaction is used to secure the funds locked by a pre-authorization
transaction and readies them for settlement into the merchant account.

NOTE: Once you have completed this transaction successfully, to submit the complete sup-
plemental level 2/3 data, please proceed to VS Corpais.

VS Completion transaction object definition

VsCompletion vsCompletion = new VsCompletion();

HttpsPostRequest object for VS Completion transaction object

HttpsPostRequest mpgReq = new HttpsPostRequest() ;

mpgReq. SetTransaction (vsCompletion) ;

November 2018 Page 148 of 476

Moneris Gateway API - Integration Guide

VS Completion transaction object values

Table 1 VS Completion transaction object mandatory values

numeric

Order ID String 50-character alpha- vsCompletion.SetOrderld
numeric (order id);
Completion amount String 9-character decimal vsCompletion.SetCompAmount
(comp_amount) ;
Transaction number String 255-character alpha- vsCompletion.SetTxnNumber
numeric (txn_number) ;
E-Commerce Indicator | String 1-character alpha- vsCompletion.SetCryptType

(crypt);

Table 2 Visa - Corporate Card Common Data - Level 2 Request Fields

Y National Tax

12-character decimal

vsCompletion
.SetNationalTax
(national tax);

Must reflect
the amount of
National Tax
(GST or HST)
appearing on
the invoice.

Minimum - 0.01
Maximum -
999999.99.
Must have 2
decimal places.

Y Merchant

VAT Registration/Single
Business Reference

20-character alpha-
numeric

vsCompletion
.SetMerchantVatNo
(merchant vat no);

Merchant’s Tax
Registration
Number

must be
provided if tax
is included on
the invoice

NOTE: Must
not be all

spaces or all
zeroes

Page 149 of 476

November 2018

7 Level 2/3 Transactions

C Local Tax

12-character decimal

vsCompletion
.SetLocalTax
(local tax);

Must reflect
the amount of
Local Tax (PST
or QST) appear-
ing on the
invoice

If Local Tax
included then
must not be all
spaces or all zer-
oes; Must be
provided if
Local Tax (PST
or QST) applies

Minimum =
0.01

Maximum =
999999.99

Must have 2
decimal places

C Local Tax (PST or QST)
Registration Number

15-character alpha-
numeric

vsCompletion
.SetLocalTaxNo
(local tax no);

Merchant's
Local Tax
(PST/QST) Regis-
tration Number

Must be
provided if tax
is included on
the invoice; If
Local Tax
included then
must not be all
spaces or all zer-
oes

Must be
provided if
Local Tax (PST
or QST) applies

C Customer

ber

VAT Registration Num-

13-character alpha-
numeric

vsCompletion
.SetCustomerVatNo

(customer vat no);

If the Cus-
tomer’s Tax
Registration

November 2018

Page 150 of 476

Moneris Gateway API - Integration Guide

Number
appears on the
invoice to sup-
port tax
exempt trans-
actions it must
be provided
here

C Customer Code/Cus- 16-character alpha- vsCompletion Value which the
tomer Reference Iden- | numeric -SetCri (cri); customer may
tifier (CRI) choose to
provide to the
supplier at the
point of sale —
must be
provided if
given by the
customer

N Customer Code 17-character alpha- vsCompletion Optional cus-
numeric -SetCustomerCode tomer code
(customer_code) ; field that will
not be passed
along to Visa,
but will be
included on
Moneris report-

ing

N Invoice Number 17-character alpha- vsCompletion Optional
numeric -SetInvoiceNumber invoice number
(invoice number) ; field that will
not be passed
along to Visa,
but will be
included on
Moneris report-

ing

*Y = Required, N = Optional, C = Conditional

Sample VS Completion

namespace Moneris

{

using System;

Page 151 of 476 November 2018

7 Level 2/3 Transactions

Sample VS Completion

using System.Collections;

using System.Text;

public class TestVsCompletion

{

public static void Main(string[] args)

{

string store id = "moneris";
string api token = "hurgle";
string processing country code = "CA";

bool status check = false;

string order id="ord-210916-15:14:46";
string comp amount="5.00";

string txn number = "19002-0_11";
string crypt="7";

string national tax = "1.23";

string merchant vat no = "gstnolll";
string local tax = "2.34";

string customer vat no = "gstno999";

string cri = "CUST-REF-002";

string customer code="ccvsfp";

string invoice number="invsfp";

string local_ tax no="ltaxno";

VsCompletion vsCompletion = new VsCompletion();
vsCompletion.SetOrderId(order id);
vsCompletion.SetCompAmount (comp amount) ;
vsCompletion.SetTxnNumber (txn number) ;
vsCompletion.SetCryptType (crypt) ;
vsCompletion.SetNationalTax (national tax);
vsCompletion.SetMerchantVatNo (merchant vat no);
vsCompletion.SetLocalTax (local tax);
vsCompletion.SetCustomerVatNo (customer vat no);
vsCompletion.SetCri (cri);
vsCompletion.SetCustomerCode (customer code) ;
vsCompletion.SetInvoiceNumber (invoice number) ;
vsCompletion.SetLocalTaxNo (local tax no);
HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq. SetProcCountryCode (processing country code) ;

mpgReq. SetTestMode (true); //false or comment out this line for production transactions

mpgReq.SetStoreld (store id);
mpgReq.SetApiToken (api token);

mpgReq. SetTransaction (vsCompletion) ;
mpgReq.SetStatusCheck (status_check) ;
mpgReq.Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt();

Console.WriteLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId())
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());
Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
November 2018 Page 152 of 476

Moneris Gateway API - Integration Guide

Sample VS Completion

Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
Console.WritelLine ("CavvResultCode = " + receipt.GetCavvResultCode());

Console.ReadLine () ;

}

catch (Exception e)

{

Console.WriteLine (e) ;

}

— e

7.2.4 VS Purchase Correction

The VS Purchase Correction (also known as a "void") transaction is used to cancel a transaction that was
performed in the current batch. No amount is required because a void is always for 100% of the original
transaction. The only transaction that can be voided using VS Purchase Correction is a VS Completion or
VS Force Post. To send a void the order_id and txn_number from the VS Completion/VS Force Post are
required.

VS Purchase Correction transaction object definition

VsPurchaseCorrection vsPurchaseCorrection = new VsPurchaseCorrection();

HttpsPostRequest object for VS Purchase Correction transaction

HttpsPostRequest mpgReq = new HttpsPostRequest() ;
mpgReq.SetTransaction (vsPurchaseCorrection) ;
VS Purchase Correction transaction object values

Table 1 VS Purchase Correction transaction object mandatory values

Order ID String | 50-character alpha- vsPurchaseCorrection
numeric .SetOrderId(order id);

Transaction number String | 255-character alpha- vsPurchaseCorrection
numeric .SetTxnNumber (txn number) ;

E-Commerce Indicator | String 1-character alpha- vsPurchaseCorrection
numeric .SetCryptType (crypt) ;

Page 153 of 476 November 2018

7 Level 2/3 Transactions

Sample VS Purchase Correction

namespace Moneris

{

using S
using S
using S
public
{

public
{

string
string
string
bool st

string
string
string
VsPurch
vsPurch,
vsPurch
vsPurch,
HttpsPo
mpgReq.
mpgReq
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
try

{
Receipt

Console.

Console

Console.

Console
Console

Console.

Console
Console

Console.

Console
Console
Console
Console

Console.

Console
Console

Console.
Console.

}

ystem;

ystem.Collections;

ystem.Text;

class TestVsPurchaseCorrection

static void Main(string[] args)

store_id = "moneris";
api_token = "hurgle";
processing country code = "CA";

atus_check = false;

order id="Test20170116050230";

txn number = "39016-0_11";

crypt="7";

aseCorrection vsPurchaseCorrection = new VsPurchaseCorrection();
aseCorrection.SetOrderId (order id);
aseCorrection.SetTxnNumber (txn number) ;
aseCorrection.SetCryptType (crypt) ;

stRequest mpgReq = new HttpsPostRequest () ;
SetProcCountryCode (processing country code);

.SetTestMode (true); //false or comment out this line for production transactions

SetStoreld(store id);

SetApiToken (api_token);
SetTransaction (vsPurchaseCorrection) ;
SetStatusCheck (status check) ;

Send () ;

receipt = mpgReq.GetReceipt () ;

WriteLine ("CardType = " + receipt.GetCardType());
.WriteLine ("TransAmount = " + receipt.GetTransAmount());
WriteLine ("TxnNumber = " + receipt.GetTxnNumber());
.WriteLine ("ReceiptId = " + receipt.GetReceiptId());
.WritelLine ("TransType = " + receipt.GetTransType());
WriteLine ("ReferenceNum = " + receipt.GetReferenceNum());
.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
.WriteLine ("ISO = " + receipt.GetISO());

WriteLine ("BankTotals = " + receipt.GetBankTotals());
.WritelLine ("Message = " + receipt.GetMessage());
.WriteLine ("AuthCode " + receipt.GetAuthCode()) ;
.WriteLine ("Complete = " + receipt.GetComplete());
.WritelLine ("TransDate = " + receipt.GetTransDate());
WriteLine ("TransTime = " + receipt.GetTransTime()) ;
.WriteLine ("Ticket = " + receipt.GetTicket());

.WriteLine ("TimedOut = " + receipt.GetTimedOut ());
WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode());

ReadLine () ;

catch (Exception e)

{

Console

}

— e

WriteLine (e);

November 2018 Page 154 of 476

Moneris Gateway API - Integration Guide

7.2.5 VS Force Post

The VS Force Post transaction is used to secure the funds locked by a pre-authorization transaction per-
formed over IVR or equivalent terminal. When sending a force post request, you will need Order ID,
Amount,Credit Card Number, Expiry Date, E-commerce Indicator and the Authorization Code received in
the pre-authorization response.

NOTE: Once you have completed this transaction successfully, to submit the complete sup-
plemental level 2/3 data, please proceed to VS Corpais.

VS Force Post transaction object definition

VsForcePost vsForcePost = new VsForcePost ();

HttpsPostRequest object for VS Force Post transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (vsForcePost) ;

VS Force Post transaction object values

Table 1 VS Force Post transaction object mandatory values

Order ID String | 50-character alpha- vsForcePost.SetOrderId
numeric (order_id);
Amount String 9-character decimal vsForcePost.SetAmount
(amount) ;
Credit card number String 20-character numeric vsForcePost.SetPan (pan);
Expiry Date String 4-character numeric vsForcePost.SetExpdate

(expiry date);
YYMM format

Authorization code String 8-character alpha- vsForcePost.SetAuthCode
numeric (auth code);

E-commerce Indicator | String 1-character alpha- vsForcePost.SetCryptType
numeric (crypt) ;

Page 155 of 476 November 2018

7 Level 2/3 Transactions

Table 2 VS Force Post transaction object optional values

Customer ID

String

50-character alpha-

numeric

vsForcePost.SetCustId(cust

id);

Table 3 Visa - Corporate Card Common Data - Level 2 Request Fields

Y National Tax

12-character decimal

vsForcePost
.SetNationalTax

(national tax);

Must reflect
the amount of
National Tax
(GST or HST)
appearing on
the invoice.

Minimum -
0.01 Maximum
-999999.99.
Must have 2
decimal places.

Y Merchant
VAT Registration/Single
Business Reference

20-character alpha-
numeric

vsForcePost
.SetMerchantVatNo
(merchant vat no);

Merchant’s Tax
Registration
Number

must be
provided if tax
is included on
the invoice

NOTE: Must
not be all

spaces or all
zeroes

C Local Tax

12-character decimal

vsForcePost
.SetLocalTax
(local tax);

Must reflect
the amount of
Local Tax (PST
or QST) appear-
ing on the
invoice

If Local Tax
included then

November 2018

Page 156 of 476

Moneris Gateway API - Integration Guide

must not be all
spaces or all zer-
oes; Must be
provided if
Local Tax (PST
or QST) applies

Minimum =
0.01

Maximum =
999999.99

Must have 2
decimal places

C Local Tax (PST or QST)
Registration Number

15-character alpha-
numeric

vsForcePost
.SetLocalTaxNo
(local tax no);

Merchant's
Local Tax
(PST/QST)
Registration
Number

Must be
provided if tax
isincluded on
the invoice; If
Local Tax
included then
must not be all
spaces or all zer-
oes

Must be
provided if
Local Tax (PST
or QST) applies

C Customer

ber

VAT Registration Num-

13-character alpha-
numeric

vsForcePost
.SetCustomerVatNo

(customer vat no);

Ifthe Cus-
tomer’s Tax
Registration
Number
appears on the
invoice to sup-
port tax
exempt trans-
actions it must
be provided
here

Page 157 of 476

November 2018

7 Level 2/3 Transactions

C Customer Code/Cus- 16-character alpha- vsForcePost Value which
tomer Reference lden- | numeric -SetCri (cri); the customer
tifier (CRI) may choose to
provide to the
supplier at the
point of sale —
must be
provided if
given by the
customer

N Customer Code 17-character alpha- vsForcePost Optional cus-
numeric -SetCustomerCode tomer code
(customer code); field that will
not be passed
along to Visa,
but will be
included on
Moneris report-

ing

N Invoice Number 17-character alpha- vsForcePost Optional
numeric -SetInvoiceNumber invoice number
(invoice number) ; field that will
not be passed
along to Visa,
but will be
included on
Moneris report-

ing

*Y = Required, N = Optional, C = Conditional

Sample VS Force Post

namespace Moneris

{

using System;

using System.Collections;

using System.Text;

public class TestVsForcePost

{

public static void Main(string[] args)

{

string store id = "moneris";
string api_token = "hurgle";
string processing country code = "CA";

bool status_check = false;

string order id="Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;

November 2018 Page 158 of 476

Moneris Gateway API - Integration Guide

Sample VS Force Post

string cust id="CUST13343";
string amount="5.00";

string pan="4242424254545454";
string expiry date="2012"; //YYMM
string auth code="123456";

string crypt="7";

string national tax = "1.23";

string merchant vat no = "gstnolll";
string local tax = "2.34";

string customer vat no = "gstno999";

string cri = "CUST-REF-002";

string customer code="ccvsfp";

string invoice number="invsfp";

string local tax no="ltaxno";

VsForcePost vsForcePost = new VsForcePost () ;
vsForcePost.SetOrderId(order id);
vsForcePost.SetCustId(cust id);
vsForcePost.SetAmount (amount) ;
vsForcePost.SetPan (pan) ;
vsForcePost.SetExpDate (expiry date);
vsForcePost.SetAuthCode (auth code) ;
vsForcePost.SetCryptType (crypt) ;
vsForcePost.SetNationalTax (national tax);
vsForcePost.SetMerchantVatNo (merchant vat no);
vsForcePost.SetLocalTax (local tax);
vsForcePost.SetCustomerVatNo (customer vat no);
vsForcePost.SetCri (cri) ;
vsForcePost.SetCustomerCode (customer code) ;
vsForcePost.SetInvoiceNumber (invoice number) ;
vsForcePost.SetLocalTaxNo (local tax no) ;
HttpsPostRequest mpgReq = new HttpsPostRequest();
mpgReq. SetProcCountryCode (processing country code) ;

mpgReq. SetTestMode (true); //false or comment out this line for production transactions

mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api_ token) ;

mpgReq. SetTransaction (vsForcePost) ;
mpgReq.SetStatusCheck (status_check) ;
mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WritelLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("TransType = " + receipt.GetTransType())
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode());
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WritelLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut ());
Console.WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode());

Console.ReadLine () ;

Page 159 of 476

November 2018

7 Level 2/3 Transactions

Sample VS Force Post

}

catch (Exception e)

{

Console.WriteLine (e);

}

— e

7.2.6 VS Refund

VS Refund will credit a specified amount to the cardholder’s credit card. A refund can be sent up to the
full value of the original VS Completion or VS Force Post. To send a VS Refund you will require the Order
ID and Transaction Number from the original VS Completion or VS Force Post.

NOTE: Once you have completed this transaction successfully, to submit the complete sup-
plemental level 2/3 data, please proceed to VS Corpais.

VS Refund transaction object definition

VsRefund vsRefund = new VsRefund();

HttpsPostRequest object for VS Refund transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (vsRefund) ;

VS Refund transaction object values

Table 1 VS Refund transaction object mandatory values

Order ID String | 50-character alpha- vsRefund.SetOrderld(order
numeric id);

Transaction number String 255-character alpha- vsRefund.SetTxnNumber (txn_
numeric number) ;

Amount String | 9-character decimal vsRefund.SetAmount (amount) ;

E-Commerce Indicator | String 1-character alpha- vsRefund.SetCryptType
numeric (crypt);

November 2018 Page 160 of 476

Moneris Gateway API - Integration Guide

Table 2 Visa - Corporate Card Common Data - Level 2 Request Fields

National Tax

12-character decimal

vsRefund
.SetNationalTax
(national tax);

Must reflect
the amount of
National Tax
(GST or HST)
appearing on
the invoice.

Minimum -
0.01 Maximum
-999999.99.
Must have 2
decimal places.

Merchant
VAT Registration/Single
Business Reference

20-character alpha-
numeric

vsRefund
.SetMerchantVatNo
(merchant vat no);

Merchant’s Tax
Registration
Number

must be
provided if tax
isincluded on
the invoice

NOTE: Must
not be all

spaces or all
zeroes

Local Tax

12-character decimal

vsRefund
.SetLocalTax

(local tax);

Must reflect
the amount of
Local Tax (PST
or QST) appear-
ing on the
invoice

If Local Tax
included then
must not be all
spaces or all zer-
oes; Must be
provided if
Local Tax (PST
or QST) applies

Minimum =
0.01

Page 161 of 476

November 2018

7 Level 2/3 Transactions

Maximum =
999999.99

Must have 2
decimal places

Local Tax (PST or QST)
Registration Number

15-character alpha-
numeric

vsRefund
.SetLocalTaxNo
(local tax no);

Merchant's
Local Tax
(PST/QST)
Registration
Number

Must be
provided if tax
isincluded on
the invoice; If
Local Tax
included then
must not be all
spaces or all zer-
oes

Must be
provided if
Local Tax (PST
or QST) applies

Customer
VAT Registration Num-
ber

13-character alpha-
numeric

vsRefund
.SetCustomerVatNo

(customer vat no);

Ifthe Cus-
tomer’s Tax
Registration
Number
appears on the
invoice to sup-
port tax
exempt trans-
actions it must
be provided
here

Customer Code/Cus-
tomer Reference Iden-
tifier (CRI)

16-character alpha-
numeric

vsRefund
.SetCri(cri);

Value which
the customer
may choose to
provide to the
supplier at the
point of sale —
must be
provided if
given by the

November 2018

Page 162 of 476

Moneris Gateway API - Integration Guide

customer

N Customer Code 17-character alpha- vsRefund Optional cus-
numeric -SetCustomerCode tomer code
(customer_code) ; field that will
not be passed
along to Visa,
but will be
included on
Moneris report-

ing

N Invoice Number 17-character alpha- vsRefund Optional
numeric -SetInvoiceNumber invoice number
(invoice number) ; field that will
not be passed
along to Visa,
but will be
included on
Moneris report-

ing

*Y = Required, N = Optional, C = Conditional

Sample VS Refund

namespace Moneris

{

using System;

using System.Collections;

using System.Text;

public class TestVsRefund

{

public static void Main(string[] args)

{

string store id = "moneris";
string api token = "hurgle";
string processing country code = "CA";

bool status_check = false;

string order id="Test20170116043144";
string amount="5.00";

string txn_number = "39011-0_11";
string crypt="7";

string national tax = "1.23";

string merchant vat no = "gstnolll";
string local tax = "2.34";

string customer vat no = "gstno999";
string cri = "CUST-REF-002";

string customer code="ccvsfp";
string invoice number="invsfp";
string local tax no="ltaxno";

Page 163 of 476 November 2018

7 Level 2/3 Transactions

Sample VS Refund

VsRefund vsRefund = new VsRefund() ;
vsRefund.SetOrderId(order id);

vsRefund. SetAmount (amount) ;

vsRefund. SetTxnNumber (txn number) ;

vsRefund. SetCryptType (crypt) ;
vsRefund.SetNationalTax (national tax);

vsRefund. SetMerchantVatNo (merchant vat no);
vsRefund.SetLocalTax (local tax);

vsRefund. SetCustomerVatNo (customer vat no);
vsRefund. SetCri (cri);
vsRefund.SetCustomerCode (customer code) ;
vsRefund.SetInvoiceNumber (invoice number) ;
vsRefund.SetLocalTaxNo (local tax no);
HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq.SetProcCountryCode (processing country code);
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api token);

mpgReq. SetTransaction (vsRefund) ;
mpgReq.SetStatusCheck (status check) ;

mpgReq. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("CardType = " + receipt.GetCardType());
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WritelLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime());
Console.WritelLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode()) ;

Console.ReadLine() ;

}

catch (Exception e)

{

Console.WriteLine (e);

}

— e

7.2.7 VS Independent Refund

VS Independent Refund will credit a specified amount to the cardholder’s credit card. The independent
refund does not require an existing order to be logged in the Moneris Gateway; however, the credit card
number and expiry date will need to be passed. The transaction format is almost identical to a pre-author-
ization.

November 2018 Page 164 of 476

Moneris Gateway API - Integration Guide

NOTE: Once you have completed this transaction successfully, to submit the complete sup-
plemental level 2/3 data, please proceed to VS Corpais.

VS Independent Refund transaction object definition

VsIndependentRefund vsIndependentRefund = new VsIndependentRefund() ;

HttpsPostRequest object for VS Independent Refund transaction
HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq.SetTransaction (vsIndependentRefund) ;

VS Independent Refund transaction object values

Table 1 VS Independent Refund transaction object mandatory values

Order ID String | 50-character alpha- vsIndependentRefund
numeric .SetOrderId(order id);
Amount String | 9-character decimal vsIndependentRefund

.SetAmount (amount) ;

Credit card number String 20-character numeric vsIndependentRefund.SetPan
(pan) ;
Expiry date String 4-character numeric vsIndependentRefund

.SetExpdate (expiry date);
YYMM format

E-commerce indicator | String | 1-character alpha- vsIndependentRefund
numeric .SetCryptType (crypt) ;

Table 2 VS Independent Refund transaction object optional values

Customer ID String 50-character alpha- vsIndependentRefund
numeric .SetCustId(cust_id);

Table 3 Visa - Corporate Card Common Data - Level 2 Request Fields

Y National Tax 12-character decimal | vsIndependentRefund | Must reflect
.SetNationalTax the amount of

(national tax);

Page 165 of 476 November 2018

7 Level 2/3 Transactions

National Tax
(GST or HST)
appearing on
the invoice.

Minimum -
0.01 Maximum
-999999.99.
Must have 2
decimal places.

Y Merchant 20-character alpha- vsIndependentRefund | Merchant’s
VAT Registration/Single | numeric -SetMerchantvatNo Tax Regis-
Business Reference (merchant_vat_no); tration Num-

ber
must be

provided if tax
isincluded on
the invoice

NOTE: Must
not be all

spaces or all
zeroes

C Local Tax 12-character decimal | vsIndependentRefund | Must reflect
.SetLocalTax (local the amount of
tax); Local Tax (PST
or QST) appear-
ing on the
invoice

If Local Tax
included then
must not be all
spaces or all
zeroes; Must
be provided if
Local Tax (PST
or QST) applies

Minimum =
0.01

Maximum =
999999.99

November 2018 Page 166 of 476

Moneris Gateway API - Integration Guide

Must have 2
decimal places

C Local Tax (PST or QST) 15-character alpha- vsIndependentRefund | Merchant's
Registration Number numeric -SetLocalTaxNo Local Tax
(local tax no); (PST/QST)
Registration
Number
Must be

provided if tax
isincluded on
the invoice; If
Local Tax
included then
must not be all
spaces or all
zeroes

Must be
provided if
Local Tax (PST
or QST) applies

C Customer 13-character alpha- vsIndependentRefund | |fthe Cus-
VAT Registration Num- | numeric -SetCustomervatNo tomer’s Tax
ber (customer_vat_no); Registration
Number
appears on the
invoice to sup-
port tax
exempt trans-
actions it must
be provided
here

C Customer Code/Cus- 16-character alpha- vsIndependentRefund | Value which
tomer Reference Iden- | numeric -SetCri (cri); the customer
tifier (CRI) may choose to
provide to the
supplier at the
point of sale —
must be
provided if
given by the
customer

Page 167 of 476 November 2018

7 Level 2/3 Transactions

N Customer Code 17-character alpha- vsIndependentRefund | QOptional cus-
numeric -SetCustomerCode tomer code
(customer_code) ; field that will

not be passed
along to Visa,
but will be
included on
Moneris
reporting

N Invoice Number 17-character alpha- vsIndependentRefund | Qptional
numeric .SetInvoiceNumber invoice num-

(invoice number) ; ber field that

will not be
passed along
to Visa, but will
be included on
Moneris
reporting

*Y = Required, N = Optional, C = Conditional

Sample VS Independent Refund

namespace Moneris

{

using System;

using System.Collections;

using System.Text;

public class TestVsIndependentRefund

{

public static void Main(string[] args)
{

string store id = "moneris";
string api token = "hurgle";
string processing country code = "CA";

bool status check = false;

string order id="Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;
string cust id="CUST13343";

string amount="5.00";

string pan="4242424254545454";

string expiry date="2012"; //YYMM

string crypt="7";

string national tax = "1.23";

string merchant vat no = "gstnolll";

string local tax = "2.34";

string customer vat no = "gstno999";

string cri = "CUST-REF-002";

string customer code="ccvsfp";

string invoice number="invsfp";

string local tax no="ltaxno";

VsIndependentRefund vsIndependentRefund = new VsIndependentRefund() ;

November 2018 Page 168 of 476

Moneris Gateway API - Integration Guide

Sample VS Independent Refund

vsIndependentRefund.SetOrderId(order id);
vsIndependentRefund.SetCustId(cust id);
vsIndependentRefund.SetAmount (amount) ;
vsIndependentRefund. SetPan (pan) ;
vsIndependentRefund.SetExpDate (expiry date);
vsIndependentRefund.SetCryptType (crypt) ;
vsIndependentRefund.SetNationalTax (national tax);
vsIndependentRefund.SetMerchantVatNo (merchant vat no);
vsIndependentRefund.SetLocalTax (local tax);
vsIndependentRefund.SetCustomervVatNo (customer vat no);
vsIndependentRefund.SetCri (cri);
vsIndependentRefund.SetCustomerCode (customer code);
vsIndependentRefund.SetInvoiceNumber (invoice number) ;
vsIndependentRefund.SetLocalTaxNo (local tax no);
HttpsPostRequest mpgReq = new HttpsPostRequest();
mpgReq. SetProcCountryCode (processing country code) ;
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api_ token) ;

mpgReq. SetTransaction (vsIndependentRefund) ;
mpgReq.SetStatusCheck (status_check) ;

mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WritelLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("TransType = " + receipt.GetTransType()) ;
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WritelLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut ());
Console.WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode());

Console.ReadLine () ;
}

catch (Exception e)

{

Console.WritelLine (e);

}

— e

7.2.8 VS Corpais

VS Corpais will contain all the required and optional data fields for Level 2/3 Purchasing Card Addendum
data. VS Corpais data can be sent when the card has been identified in the Pre-authorization transaction

requestas b

In addition t

eing a corporate card.

o the Order ID and Transaction number, this transaction also contains two objects:

Page 169 of

476 November 2018

7 Level 2/3 Transactions

e VS Purcha—Corporate Card Common Data

e VS Purchl-Line Item Details

VS Corpais request must be preceded by a financial transaction (VS Completion, VS Force Post, VS
Refund, VS Independent Refund) and the Corporate Card flag must be set to “true” in the Pre-author-

ization response.

VS Corpais transaction object definition

VsCorpais vsCorpais = new VsCorpais();

HttpsPostRequest object for VS Corpais transaction

HttpsPostRequest mpgReqg =

mpgReq.SetTransaction (vsCorpais) ;

VS Corpais transaction object values

new HttpsPostRequest();

Table 1 VS Corpais transaction object mandatory values

Order ID String 50-character alpha- vsCorpais.SetOrderId(order_
numeric id);
Transaction number String | 255-character alpha- vsCorpais.SetTxnNumber (txn_
numeric number) ;
vsPurcha Object | n/a VsPurcha vsPurcha = new
VsPurcha () ;
For a list of the vari- vsCorpais.SetVsPurch
ables that appear in (vsPurcha, vsPurchl) ;
this object, see the
table below
vsPurchl Object | n/a VsPurchl vsPurchl = new
VsPurchl () ;
For a list of the vari-
ables that appear in vsCorpais.SetVsPurch
this object, see the (vsPurcha, vsPurchl) ;
table below

*Y = Required, N = Optional, C = Conditional

7.2.8.1 VS Purcha - Corporate Card Common Data

VS Corpais transactions use the VS Purcha object to contain Level 2 data.

November 2018

Page 170 of 476

Moneris Gateway API - Integration Guide

Table 1 Corporate Card Common Data - Level 2 Request Fields - VSPurcha

C Buyer Name 30-character vsPurcha.SetBuyerName Buyer/Recipient
alphanumeric (buyer name) ; Name
NOTE: Name

required by CRA on
transactions >$150

C Local Tax Rate 4-character vsPurchaSetLocalTaxRate | |ndicates the
decimal (local tax_rate); detailed tax rate
applied in rela-
tionship to a local
tax amount

EXAMPLE: 8% PST
should be 8.0

Minimum =0.01

Maximum =99.99

NOTE: Must be
provided if Local
Tax (PST or QST)

applies.
N Duty Amount 9-character vsPurchaSetDutyAmount Duty on total pur-
decimal (duty_amount) ; chase amount

A minus sign
means 'amount is a
credit’, plus sign or
no signh means
'‘amount is a debit'

maximum without
sign is 999999.99

N Invoice Discount 1-character vsPurcha Indicates how the

Treatment numeric . S?tDiscountTreatment merchant is man-
(discount treatment) ; aging discounts

Must be one of the
following values:

0 - if no invoice level
discounts apply for this

Page 171 of 476 November 2018

7 Level 2/3 Transactions

invoice

1-if Tax was cal-
culated on Post-Dis-
count totals

2 - if Tax was cal-
culated on Pre-Discount

totals
N Invoice Level Dis- | 9-character vsPurcha.SetDiscountAmt | Amount of dis-
count Amount decimal (discount_amt); count (if provided

at the invoice level
according to the
Invoice Discount
Treatment)

Must be non-zero
if Invoice Discount
Treatmentis 1 or 2

Minimum amount
is 0.00 and max-
imum is 999999.99

C Ship To Postal 10-character vsPurcha The postal code or
Code/ Zip Code | alphanumeric -SetShipToPostalCode zip code for the
(ship_to_pos_code); destination where
goods will be
delivered

NOTE: Required if
shipment is
involved

Full alpha postal
code - Valid
ANA<space>NAN
format required if
shipping to an
address within

Canada
C Ship From Postal | 10-character VSPurCf}a The postal code or
Code / Zip Code | alphanumeric -SetShipFromPostalCode | zjp code from

(ship from pos code); which items were

shipped

For Canadian

November 2018 Page 172 of 476

Moneris Gateway API - Integration Guide

addresses,requires
full alpha postal
code for the mer-
chant with Valid
ANA<space>NAN
format

C Destination 2-character alpha- | vsPurcha.SetDesCouCode Code of country
Country Code numeric (des_cou_code) ; where purchased
goods will be
delivered

Use ISO 3166-1
alpha-2 format

NOTE: Required if
it appears on the
invoice for an inter-
national trans-

action
Y Unique VAT 25-character vsPurcha.SetVatRefNum Unique Value
Invoice Refer- alphanumeric (vat_ref num); Added Tax Invoice
ence Number Reference Number

Must be populated
with the invoice
number and this
cannot be all
spaces or zeroes

Y Tax Treatment 1-character alpha- | vsPurcha Must be one of the
numeric -SetTaxTreatment (tax_ following values:
treatment) ;
0 = Net Prices with tax
calculated at line item
level;

1 = Net Prices with tax
calculated at invoice
level;

2 = Gross prices given
with tax information
provided at line item
level;

3 = Gross prices given
with tax information
provided at invoice
level;

Page 173 of 476 November 2018

7 Level 2/3 Transactions

4 = No tax applies
(small merchant) on
the invoice for the
transaction

N Freight/Shipping | 9-character vsPurcha Freight charges on

Amount (Ship decimal .SetFreightAmount total purchase
Amount) (freight amount);

If shipping is not
provided as a line
item it must be
provided here, if
applicable

Signed monetary
amount:

Minus (-) sign
means 'amount is a
credit’,

Plus (+) sign or no
sign means
'amount is a debit'

Maximum without
sign is 999999.99

C GST HST Freight 4-character vsPurcha Rate of GST

Rate decimal -SetGstHstFreightRate (excludes PST) or
(gst_hst freight rate); HST charged on the
shipping amount
(in accordance with
the Tax Treatment)

If Freight/Shipping
Amount is
provided then this
(National GST or
HST) tax rate must
be provided.

Monetary amount,
maximum is 99.99.
Such as 13% HST is
13.00

C GST HST Freight 9-character vsPurcha ' Amount of GST
Amount decimal -SetGsthstFreightAmount | (excludes PST)or
(gst_hst_freight HST charged on the

November 2018 Page 174 of 476

Moneris Gateway API - Integration Guide

amount) ; shipping amount

If Freight/Shipping
Amount is
provided then this
(National GST or
HST) tax amount
must be provided if
taxTreatmentis O
or2

Signed monetary
amount: maximum
without sign is
999999.99.

7.2.8.2 VS Purchl - Line Item Details

VS Corpais transactions use the VS Purchl object to contain Level 3 data.
Line Item Details for VS Purchl

string[] item com code = {"X3101", "X84802"};

string[] product code = {"CHR123", "DDSK200"};
string[] item description = {"Office Chair", "Disk Drive"};
string[] item quantity = {"3", "1"};

string[] item uom = {"EA", "EA"};

string[] unit cost = {"0.20", "0.40"};

string[] vat tax amt = {"0.00", "0.00"};

string[] vat tax rate = {"13.00", "13.00"};

string[] discount treatmentL = {"0", "O0"};

string[] discount amtL = {"0.00", "0.00"};

Setting VS Purchl Line Item Details

vsPurchl.SetVsPurchl (item com code[0], product code[0], item description[0],
item quantity[0], item uom[0], unit cost[0], vat tax amt[0], vat tax rate[0],
discount treatmentL[0], discount amtL[0]);

vsPurchl.SetVsPurchl (item com code[l], product code[l], item description[l],
item quantity[1l], item uom[l], unit cost[1l], vat tax amt[1l], vat tax ratel[l],
discount treatmentL[1l], discount amtL[1]);

Page 175 of 476 November 2018

7 Level 2/3 Transactions

Table 1 Corporate Card Common Data - Level 3 Request Fields - VSPurchl

C [tem Commodity
Code

12-character alpha-
numeric

item_com_code

Line item Comod-
ity Code (if this
field is not sent,
then Product Code
must be sent)

Y Product Code

12-character alpha-
numeric

product_code

Product code for
this line item — mer-
chant’s product
code, man-
ufacturer’s

product code or
buyer’s product
code

Typically this will
be the SKU or iden-
tifier by which the
merchant tracks
and prices the item
or service

This should always
be provided for
every line item

Y Item Description

35-character alpha-
numeric

item_description

Line item descrip-
tion

Y Item Quantity

12-character decimal

item_quantity

Quantity invoiced
for this line item

Up to 4 decimal
places supported,
whole numbers
are accepted

Minimum =0.0001

Maximum =
999999999999

Y Item Unit of
Measure

2-character alpha-
numeric

item_uom

Unit of measure

Use ANSI X-12 EDI
Allowable Units of
Measure and

November 2018

Page 176 of 476

Moneris Gateway API - Integration Guide

Codes

Y Item Unit Cost

12-character decimal

unit_cost

Line item cost per
unit

2-4 decimal places
accepted

Minimum =0.0001

Maximum =
999999.9999

N VAT Tax Amount

12-character decimal

vat_tax_amt

Any value-added
tax or other sales
tax amount

Must have 2
decimal places

Minimum =0.01

Maximum =
999999.99

N VAT Tax Rate

4-character decimal

vat_tax_rate

Sales tax rate

EXAMPLE: 8% PST
should be 8.0

maximum 99.99

1-character numeric

discount_treatmentL

Must be one of the
following values:

0 if no invoice level dis-
counts apply for this
invoice

1 if Tax was calculated
on Post-Discount totals

2 if Tax was calculated
on Pre-Discount totals

Y Discount Treat-
ment

C Discount
Amount

12-character decimal

discount_amtL

Amount of dis-
count, if provided
for this line item
according to the
Line ltem Discount

Page 177 of 476

November 2018

7 Level 2/3 Transactions

Treatment

Must be non-zero
if Line Item Dis-
count Treatment is
lor2

Must have 2
decimal places

Minimum =0.01
Maximum =
999999.99
7.2.8.3 Sample Code for VS Corpais
Sample VS Corpais

namespace Moneris

{

using System;

using System.Collections;

using System.Text;

public class TestVsCorpais

{

public static void Main(string[] args)

{

string store id = "moneris";

string api token = "hurgle";

string processing country code = "CA";

bool status check = false;

string order id="ord-160916-15:31:39";

string txn number="18306-0_ 11";

string buyer name = "Buyer Manager";

string local tax rate = "13.00";

string duty amount = "0.00";

string discount treatment = "0";

string discount amt = "0.00";

string freight amount = "0.20";

string ship to pos code = "M8X 2W8";

string ship from pos code = "M1K 2Y7";

string des cou code = "CAN";

string vat_ref num = "VAT12345";

string tax treatment = "3";//3 = Gross prices given with tax information provided at invoice level

string gst_hst freight amount = "0.00";

string gst_hst freight rate = "13.00";

string[] item com code = {"X3101", "X84802"};

string[] product code = {"CHR123", "DDSK200"};

string[] item description = {"Office Chair", "Disk Drive"};

string[] item quantity = {"3", "1"};

string[] item uom = {"EA", "EA"};

string[] unit cost = {"0.20", "0.40"};

November 2018 Page 178 of 476

Moneris Gateway API - Integration Guide

Sample VS Corpais

string(
string|
string[
string|

] vat tax amt = {"0.00", "0.00"};
] vat tax rate = {"13.00", "13.00"};
] discount treatmentL = {"0", "O0"};

] discount amtL = {"0.00", "0.00"};

//Create and set VsPurcha

VsPurcha vsPurcha = new VsPurcha();
vsPurcha.SetBuyerName (buyer name) ;
vsPurcha.SetLocalTaxRate (local tax rate);
vsPurcha.SetDutyAmount (duty amount) ;
vsPurcha.SetDiscountTreatment (discount treatment);
vsPurcha.SetDiscountAmt (discount amt);
vsPurcha.SetFreightAmount (freight amount);
vsPurcha.SetShipToPostalCode (ship to pos code) ;
vsPurcha.SetShipFromPostalCode (ship from pos code) ;
vsPurcha.SetDesCouCode (des _cou code) ;
vsPurcha.SetVatRefNum(vat ref num);
vsPurcha.SetTaxTreatment (tax treatment);
vsPurcha.SetGstHstFreightAmount (gst _hst freight amount);
vsPurcha.SetGstHstFreightRate (gst _hst freight rate);

//Creat

e and set VsPurchl

VsPurchl vsPurchl = new VsPurchl ();
vsPurchl.SetVsPurchl (item com code[0], product code[0], item description([0], item quantity[O],
item uom[0], unit cost[0], vat tax amt[0], vat tax rate[0], discount treatmentL[0], discount amtL

[01);

vsPurchl.SetVsPurchl (item com code[l], product code[l], item description[l], item quantity[1],
item uom[1l], unit cost[1l], vat tax amt([1l], vat tax rate[l], discount treatmentL[1l], discount amtL

[11) 7

VsCorpa
vsCorpa
vsCorpa
vsCorpa
HttpsPo
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
try

{
Receipt
Console
Console
Console
Console
Console
Console

Console.

Console
Console

Console.

Console

Console.

Console
Console
Console
Console

is vsCorpais = new VsCorpais();
is.SetOrderId(order id);

is.SetTxnNumber (txn_number) ;

is.SetVsPurch (vsPurcha, vsPurchl);

stRequest mpgReq = new HttpsPostRequest () ;
SetProcCountryCode (processing country code) ;
SetTestMode (true); //false or comment out this line for production transactions
SetStoreld(store id);
SetApiToken (api token);

SetTransaction (vsCorpais) ;

SetStatusCheck (status_check) ;

Send () ;

receipt = mpgReq.GetReceipt () ;

.WriteLine ("CardType = " + receipt.GetCardType());
.WritelLine ("TransAmount = " + receipt.GetTransAmount());
.WritelLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
.WriteLine ("ReceiptId = " + receipt.GetReceiptId());
.WriteLine ("TransType = " + receipt.GetTransType());
.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
WriteLine ("ResponseCode = " + receipt.GetResponseCode());
.WriteLine ("ISO = " + receipt.GetISO());

.WriteLine ("BankTotals = " + receipt.GetBankTotals());
WriteLine ("Message = " + receipt.GetMessage());
.WriteLine ("AuthCode = " + receipt.GetAuthCode());
WriteLine ("Complete = " + receipt.GetComplete());
.WriteLine ("TransDate = " + receipt.GetTransDate());
.WriteLine ("TransTime = " + receipt.GetTransTime());
.WriteLine ("Ticket = " + receipt.GetTicket());

.WriteLine ("TimedOut = " + receipt.GetTimedOut());

Page 179 of 476 November 2018

7 Level 2/3 Transactions

Sample VS Corpais

Console.WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode()) ;
Console.ReadLine() ;

}

catch (Exception e)

{

Console.WriteLine (e);

}

— e

7.3 Level 2/3 MasterCard Transactions

7.3.1 Level 2/3 Transaction Types for MasterCard

7.3.2 Level 2/3 Transaction Flow for MasterCard

e 7.3.3 MC Completion

e 7.3.4 MC Force Post

e 7.3.5 MC Purchase Correction

e 7.3.6 MC Refund

e 7.3.7 MCIndependent Refund

e 7.3.8 MC Corpais - Corporate Card Common Data with Line Item Details

7.3.1 Level 2/3 Transaction Types for MasterCard

This transaction set includes a suite of corporate card financial transactions as well as a transaction that
allows for the passing of Level 2/3 data. Please ensure MC Level 2/3 processing support is enabled on

your merchant account. Batch Close, Open Totals and Pre-authorization are identical to the transactions
outlined in the section Basic Transaction Set (page 12).

When the Preauth response contains CorporateCard equal to true then you can submit the MC trans-
actions.

If CorporateCard is false then the card does not support Level 2/3 data and non Level 2/3 transaction are
to be used. If the card is not a corporate card, please refer to section 4 for the appropriate non-corporate
card transactions.

NOTE: This transaction set is intended for transactions where Corporate Card is true and
Level 2/3 data will be submitted. If the credit card is found to be a corporate card but you do
not wish to send any Level 2/3 data then you may submit MC transactions using the trans-
action set outlined in Basic Transaction Set (page 12).

November 2018 Page 180 of 476

Moneris Gateway API - Integration Guide

Pre-auth — (authorization/pre-authorization)
The pre-auth verifies and locks funds on the customer’s credit card. The funds are locked for a
specified amount of time, based on the card issuer. To retrieve the funds from a pre-auth so
that they may be settled in the merchant account a capture must be performed. Level 2/3
data submission is not supported as part of a pre-auth as a pre-auth is not settled. When Cor-
porateCard is returned true then Level 2/3 data may be submitted.

MC Completion — (Capture/Preauth Completion)
Once a Pre-authorization is obtained the funds that are locked need to be retrieved from the
customer’s credit card. The capture retrieves the locked funds and readies them for set-
tlement in to the merchant account. Prior to performing an MCCompletion a Pre-auth must
be performed.

MC Force Post — (Force Capture/Preauth Completion)
This transaction is an alternative to MC Completion to obtain the funds locked on Preauth
obtained from IVR or equivalent terminal. The MC Force Post requires that the original Pre-
authorization’s auth code is provided and it retrieves the locked funds and readies them for
settlement in to the merchant account.

MC Purchase Correction — (Void, Correction)
MC Completions can be voided the same day* that they occur. Avoid must be for the full
amount of the transaction and will remove any record of it from the cardholder statement. *
An MC Purchase Correction can be performed against a transaction as long as the batch that
contains the original transaction remains open. When using the automated closing feature
batch close occurs daily between 10— 11 pm EST.

MC Refund - (Credit)
A MC Refund can be performed against an MC Completion or MC Force Post to refund an
amount less than or equal to the amount of the original transaction.

MC Independent Refund — (Credit)
A MC Indpendent Refund can be performed against an completion to refund any part, or all
of the transaction. Independent refund is used when the originating transaction was not per-
formed through Moneris Gateway. Please note, the MC Independent Refund transaction
may or may not be supported on your account. If you receive a transaction not allowed error
when attempting an MC Independent Refund, it may mean the transaction is not supported
on your account. If you wish to have the MC Independent Refund transaction type tem-
porarily enabled (or re-enabled), please contact the Service Centre at 1-866-319-7450.

MC Corpais Common Line Item — (Level 2/3 Data)
MC Corpais Common Line Item will contain the entire required and optional data field for
Level 2/3 data. MCCorpais Common Line Item data can be sent when the card has been iden-
tified in the transaction request as being a corporate card. This transaction supports multiple
data types and combinations:

o Purchasing Card Data:
o Corporate card common data with Line Item Details

Page 181 of 476 November 2018

7 Level 2/3 Transactions

7.3.2 Level 2/3 Transaction Flow for MasterCard

Pre-authorization/Completion Transaction Flow

Purchase Correction Transaction Flow

7.3.3 MC Completion

The MC Completion transaction is used to secure the funds locked by a pre-authorization transaction.
When sending a capture request you will need two pieces of information from the original pre-author-
ization—the Order ID and the transaction number from the returned response.

Once you have completed this transaction successfully, to submit the complete sup-
plemental level 2/3 data, please proceed to MC Corpais.

MC Completion transaction object definition

McCompletion mcCompletion = new McCompletion();

HttpsPostRequest object for MC Completion transaction

HttpsPostRequest mpgReq = new HttpsPostRequest() ;

mpgReq.SetTransaction (mcCompletion) ;

MC Completion transaction object values

Table 1 MC Completion transaction object mandatory values

Order ID String 50-character alpha- mcCompletion.SetOrderId
numeric (order id);
Completion amount String | 9-character decimal mcCompletion.SetCompAmount
(comp_amount) ;
Transaction number String 255-character alpha- mcCompletion.SetTxnNumber
numeric (txn_ number) ;

November 2018 Page 182 of 476

Moneris Gateway API - Integration Guide

Merchant reference String 19-character alpha- mcCompletion
number numeric .SetMerchantRefNo (merchant
ref no);
E-commerce indicator | String 1-character alpha- mcCompletion.SetCryptType
numeric (crypt) ;

Sample MC Completion

namespace Moneris

{

using System;

using System.Collections;

using System.Text;

public class TestMcCompletion

{

public static void Main(string[] args)

{

string store id = "moneris";
string api token = "hurgle";
string processing country code = "CA";

bool status check = false;

string order id="Test20170112020548";

string comp amount="5.00";

string txn number="660117311792017012140548199-0_11";
string crypt="7";

string merchant ref no = "319038";

McCompletion mcCompletion = new McCompletion() ;
mcCompletion.SetOrderId (order id);
mcCompletion.SetCompAmount (comp amount) ;
mcCompletion.SetTxnNumber (txn number) ;
mcCompletion.SetCryptType (crypt) ;
mcCompletion.SetMerchantRefNo (merchant ref no);
HttpsPostRequest mpgReq = new HttpsPostRequest() ;
mpgReq.SetProcCountryCode (processing country code);
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api token) ;

mpgReq. SetTransaction (mcCompletion) ;
mpgReq.SetStatusCheck (status_check) ;

mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.Writeline ("BankTotals = " + receipt.GetBankTotals());

Page 183 of 476 November 2018

7 Level 2/3 Transactions

Sample MC Completion

Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.Writeline ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime())
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode()) ;

Console.ReadLine () ;

}

catch (Exception e)
{

Console.WriteLine (e);

}

}
}
}

7.3.4 MC Force Post

MC Force Post transaction is used to secure the funds locked by a pre-authorization transaction per-
formed over IVR or equivalent terminal’. When sending a force post request, you will need order _id,
amount, pan (card number), expiry date, crypt type and the authorization code received in the pre-
authorization response.

MC Force Post transaction object definition

McForcePost mcforcepost= new McForcePost () ;

HttpsPostRequest object for MC Force Post transaction

HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq.SetTransaction (mcforcepost) ;

MC Force Post transaction object values

Table 1 MC Force Post transaction object mandatory values

OrderID String 50-character alpha- mcforcepost.SetOrderId
numeric (order id);
Amount String 9-character decimal mcforcepost.SetAmount
(amount) ;
Credit card number String 20-character alpha- mcforcepost.SetPan (pan);

November 2018 Page 184 of 476

Moneris Gateway API - Integration Guide

numeric
Expiry date String 4-character alpha- mcforcepost.SetExpdate
numeric (expiry date);

(YYMM format)

Authorization code String 8-character alpha- mcforcepost.SetAuthCode
numeric (auth_code) ;

E-commerce indicator | String 1-character alpha- mcforcepost.SetCryptType
numeric (crypt);

Merchant reference String 19-character alpha- mcforcepost.SetMerchantRefNo

number numeric (merchant ref no);

Table 2 MC Force Post transaction object optional values

Customer ID String | 50-character alpha- mcforcepost.SetCustld(cust
numeric +d);

Sample MC Force Post

namespace Moneris

{

using System;

using System.Collections;

using System.Text;

public class TestMcForcePost

{

public static void Main(string[] args)

{

string store id = "moneris";
string api token = "hurgle";
string processing country code = "CA";

bool status_check = false;

string order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;
string cust id = "CUST13343";

string amount = "5.00";

string pan = "5454545442424242";

string expiry date = "1912"; //YYMM

string auth code = "123456";

string crypt = "7";

string merchant ref no = "319038";

McForcePost mcforcepost new McForcePost () ;
mcforcepost.SetOrderId(order id);

Page 185 of 476 November 2018

7 Level 2/3 Transactions

Sample MC Force Post

mcforcepost.SetCustId(cust id);
mcforcepost.SetAmount (amount) ;
mcforcepost.SetPan (pan) ;
mcforcepost.SetExpDate (expiry date);
mcforcepost.SetAuthCode (auth_code) ;
mcforcepost.SetCryptType (crypt) ;
mcforcepost.SetMerchantRefNo (merchant ref no);
HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq. SetProcCountryCode (processing country code);
mpgReq.SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api token);

mpgReq. SetTransaction (mcforcepost) ;
mpgReq.SetStatusCheck (status_check) ;

mpgReq.Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("CardType = " + receipt.GetCardType()):
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WritelLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId())
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime())
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode()) ;

Console.ReadLine() ;

}

catch (Exception e)

{

Console.WriteLine (e);

}

— e

7.3.5 MC Purchase Correction

The MC Purchase Correction (void) transaction is used to cancel a transaction that was performed in the
current batch. No amount is required because a void is always for 100% of the original transaction. The
only transaction that can be voided is completion. To send a void, the Order ID and Transaction Number
from the MC Completion or MC Force Post are required.

MC Purchase Correction transaction object definition

McPurchaseCorrection mcpurchasecorrection = new McPurchaseCorrection();

November 2018 Page 186 of 476

Moneris Gateway API - Integration Guide

HttpsPostRequest object for MC Purchase Correction transaction

HttpsPostRequest mpgReq = new HttpsPostRequest() ;

mpgReqg.SetTransaction (mcpurchasecorrection) ;

MC Purchase Correction transaction object values

Table 1 MC Purchase Correction transaction object mandatory values

Order ID String 50-character alpha- mcpurchasecorrection
numeric .SetOrderId(order id);

Transaction number String 255-character alpha- mcpurchasecorrection
numeric .SetTxnNumber (txn number) ;

E-commerce indicator | String 1-character alpha- mcpurchasecorrection
numeric .SetCryptType (crypt) ;

Sample MC Purchase Correction

namespace Moneris

{

using System;

using System.Collections;

using System.Text;

public class TestMcPurchaseCorrection
{

public static void Main(string[] args)

{

string store id = "moneris";
string api token = "hurgle";
string processing country code = "CA";

bool status check = false;

string order id="Test20170112020548";

string txn number="660117311792017012140548199-0_11";

string crypt="7";

McPurchaseCorrection mcpurchasecorrection = new McPurchaseCorrection() ;
mcpurchasecorrection.SetOrderId(order id);
mcpurchasecorrection.SetTxnNumber (txn_number) ;
mcpurchasecorrection.SetCryptType (crypt) ;

HttpsPostRequest mpgReq = new HttpsPostRequest() ;
mpgReq.SetProcCountryCode (processing country code);

mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld (store id);

mpgReq.SetApiToken (api token);

mpgReq. SetTransaction (mcpurchasecorrection) ;

mpgReq. SetStatusCheck (status check) ;

mpgReq. Send () ;

try

Page 187 of 476 November 2018

7 Level 2/3 Transactions

Sample MC Purchase Correction

{
Receipt receipt = mpgReq.GetReceipt () ;
Console.WriteLine ("CardType " + receipt.GetCardType());

Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId())
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime())
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode()) ;

Console.ReadLine() ;

}

catch (Exception e)

{

Console.WriteLine (e);

}

}
}
}

7.3.6 MC Refund

The MC Refund will credit a specified amount to the cardholder’s credit card. A refund can be sent up to
the full value of the original capture. To send a refund you will require the Order ID and Transaction Num-
ber from the original MC Completion or MC Force Post.

MC Refund transaction object definition

McRefund mcRefund = new McRefund() ;

HttpsPostRequest object for MC Refund transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (mcRefund) ;

November 2018 Page 188 of 476

Moneris Gateway API - Integration Guide

MC Refund transaction object values

Table 1 MC Refund transaction object mandatory values

Order ID String | 50-character alpha- mcRefund.SetOrderId (order_
numeric td);

Amount String | 9-character decimal mcRefund.SetAmount (amount) ;

Transaction number String | 255-character alpha- mcRefund.SetTxnNumber (txn_
numeric number) ;

E-commerce indicator | String 1-character alpha- mcRefund.SetCryptType
numeric (crypt) ;

Merchant reference String 19-character alpha- mcRefund.SetMerchantRefNo

number numeric (merchant_ref no);

Sample MC Refund

namespace Moneris

{

using System;

using System.Collections;

using System.Text;

public class TestMcRefund

{

public static void Main(string[] args)

{

string store id = "moneris";
string api_token = "hurgle";
string processing country code = "CA";

bool status_check = false;

string order id="Test20170112020548";

string amount="5.00";

string txn number="660117311792017012140548199-0 11";
string crypt="7";

string merchant ref no = "319038";

McRefund mcRefund = new McRefund();
mcRefund.SetOrderId (order id);

mcRefund.SetAmount (amount) ;

mcRefund. SetTxnNumber (txn_number) ;

mcRefund. SetCryptType (crypt) ;
mcRefund.SetMerchantRefNo (merchant ref no);
HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq. SetProcCountryCode (processing country code) ;
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld (store id);
mpgReq.SetApiToken (api token);

Page 189 of 476 November 2018

7 Level 2/3 Transactions

Sample MC Refund

}

{

}

— e

Console.

mpgReq. SetTransaction (mcRefund) ;
mpgReq.SetStatusCheck (status_check) ;
mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("TransType = " + receipt.GetTransType())
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WritelLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WritelLine ("BankTotals = " + receipt.GetBankTotals());
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WritelLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode());
Console.ReadLine () ;

catch (Exception e)

WritelLine (e) ;

7.3.7 MC

Independent Refund

MC Independent Refund is used when the originating transaction was not performed through Moneris
Gateway and does not require an existing order to be logged in the Moneris Gateway; however, the
credit card number and the expiry date will need to be passed. The transaction format is almost identical
to a purchase or a pre-authorization.

NOTE: Independent refund transactions are not supported on all accounts. If you receive a
transaction not allowed error when attempting an independent refund transaction, it may
mean the feature is not supported on your account. To have Independent Refund trans-
action functionality temporarily enabled (or re-enabled), please contact the Mon-
erisCustomer Service Centre at 1-866-319-7450.

Once you have completed this transaction successfully, to submit the complete sup-
plemental level 2/3 data, please proceed to MC Corpais.

November 2018

Page 190 of 476

Moneris Gateway API - Integration Guide

MC Independent Refund transaction object definition

McIndependentRefund mcindrefund = new McIndependentRefund() ;

HttpsPostRequest object for MC Independent Refund transaction

HttpsPostRequest mpgReq = new HttpsPostRequest() ;

mpgReq.SetTransaction (mcindrefund) ;

MC Independent Refund transaction object values

Table 1 MC Independent Refund transaction object mandatory values

Order ID String | 50-character alpha- mcindrefund.SetOrderld
numeric (order_id);
Amount String | 9-character decimal mcindrefund.SetAmount
(amount) ;
E-commerce indicator | String 1-character alpha- mcindrefund.SetCryptType
numeric (crypt);
Credit card number String | 20-character numeric mcindrefund.SetPan (pan);
Expiry date String | 4-character numeric mcindrefund.SetExpdate
(expiry date);
(YYMM format)
Merchant reference String | 19-character alpha- mcindrefund.SetMerchantRefNo
number numeric (merchant_ref no);

Table 2 MC Independent Refund transaction object optional values

Customer ID String | 50-character alpha- mcindrefund.SetCustId(cust_
numeric +d);

Sample MC Independent Refund

namespace Moneris

{

using System;

using System.Collections;
using System.Text;

Page 191 of 476 November 2018

7 Level 2/3 Transactions

Sample MC Independent Refund

public class TestMcIndependentRefund
{
public static void Main(string[] args)

{

string store id = "moneris";
string api_token = "hurgle";
string processing country code = "CA";

bool status_check = false;

string order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;
string cust id = "CUST13343";

string amount = "5.00";

string pan = "5454545442424242";

string expiry date = "1912"; //YYMM

string crypt = "7";

string merchant ref no = "319038";

McIndependentRefund mcindrefund = new McIndependentRefund() ;
mcindrefund.SetOrderId(order id);
mcindrefund.SetCustId(cust id);

mcindrefund. SetAmount (amount) ;

mcindrefund. SetPan (pan) ;
mcindrefund.SetExpDate (expiry date);

mcindrefund. SetCryptType (crypt) ;
mcindrefund.SetMerchantRefNo (merchant ref no);
HttpsPostRequest mpgReq = new HttpsPostRequest() ;
mpgReq.SetProcCountryCode (processing country code);

mpgReq. SetTestMode (true); //false or comment out this line for production transactions

mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api_ token);

mpgReq. SetTransaction (mcindrefund) ;
mpgReq. SetStatusCheck (status check) ;
mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WritelLine ("BankTotals = " + receipt.GetBankTotals());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime());
Console.WritelLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode());

Console.ReadLine() ;

}

catch (Exception e)

{

Console.WriteLine (e);

}

— e

November 2018

Page 192 of 476

Moneris Gateway API - Integration Guide

7.3.8 MC Corpais - Corporate Card Common Data with Line Item Details

This transaction example includes the following elements for Level 2 and 3 purchasing card corporate
card data processing:

o Corporate Card Common Data (MC Corpac)
o only 1set of MC Corpac fields can be submitted
o this data set includes data elements that apply to the overall order, e.g., the total overall
taxes

o Line Item Details (MC Corpal)
e 1-998 counts of MC Corpal line items can be submitted
o This data set includes the details about each individual item or service purchased

The MC Corpais request must be preceded by a financial transaction (MC Completion, MC Force Post,
MC Refund, MC Independent Refund) and the Corporate Card flag must be set to “true” in the Preau-
thorization response. The MC Corpais request will need to contain the Order ID of the financial trans-
action as well as the Transaction Number.

In addition, MC Corpais has a tax array object that can be sent via the Tax fields in MC Corpac and
MC Corpal. For more about the tax array object, see 7.3.8.3 Tax Array Object - MC Corpais,

For descriptions of the Level 2/3 fields, please see Definition of Request Fields for Level 2/3 - MasterCard
(page 416).

MC Corpais transaction object definition

McCorpais mcCorpais = new McCorpais();

HttpsPostRequest object for MC Corpais transaction

HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq.SetTransaction (mcCorpais) ;

MC Corpais transaction object values

Table 1 MC Corpais transaction object mandatory values

Order ID String 50-character alpha- I“.ﬂCCOrpaiS .SetOrderId(order
numeric id);

Transaction number String 255-character alpha- mcCorpais.SetTxnNumber (txn_
numeric number) ;

MCCorpac Object | n/a mcCorpac.SetMcCorpac

Page 193 of 476 November 2018

7 Level 2/3 Transactions

(mcCorpac) ;

mcCorpais.SetMcCorpal
(mcCorpal) ;

MC Corpal Object | n/a

*Y = Required, N = Optional, C = Conditional

7.3.8.1 MC Corpac - Corporate Card Common Data

Table 1 Corporate Card Common Data - Level 2 Request Fields - MCCorpac

Austin- 15-char- mcCorpac . The Austin-Tetra Number

Tetra acter alpha- | -SetAustinTetraNumber assigned to the card

Number numeric (austin_tetra number); acceptor

NAICS 15-char- mcCorpac. SetNaicsCode North American Industry

Code acter alpha- | (naics_code); Classification System

numeric (NAICS) code assigned to

the card acceptor

Customer | 25-char- mcCorpac.SetCustomerCodel A control number, such as

Code acter alpha- | (customer codel c); purchase order number,

numeric project number, depart-

ment allocation number or
name that the purchaser
supplied the merchant
Left-justified; may be
spaces

Unique 17-char- mcCorpac . Unigue number associated

Invoice acter alpha- | -SetUniquelnvoiceNumber with the individual trans-

Number numeric (unique_invoice number c); action provided by the mer-
chant

Com- 15-char- mcCorpac. SetCommodityCode Code assigned by the mer-

modity acter alpha- | (commodity code); chant that best categorizes

Code numeric the item(s) being pur-
chased

Order 6-character | mcCorpac.SetOrderDate The date the item was

Date numeric (order date_c); ordered

November 2018 Page 194 of 476

Moneris Gateway API - Integration Guide

YYMMDD
f NOTE: |f present, must con-
ormat tain a valid date
N Cor- 20-char- mcCorpac . Contains a corporation’s
poration acter alpha- | -SetCorporationVatNumber value added tax (VAT) num-
VAT Num- numeric (corporation vat number c); ber
ber
N Customer | 20-char- mcCorpac Contains the VAT number
VAT Num- | acteralpha- | -SetCustomervVatNumber for the customer / card-
ber numeric (customer_vat_number_c); holder used to identify the
customer when purchasing
goods and services from
the merchant
N | Freight 12-char- mcCorpac. SetFreightAmountl The freight on the total pur-
Amount acter (freight amount c); chase
decimal)
Must have 2 decimals
Minimum = 0.00 Maximum
=999999.99
N Duty 12-char- mcCorpac.SetDutyAmountl The duty on the total pur-
Amount acter (duty_amount_c); chase
decimal)
Must have 2 decimals
Minimum = 0.00
Maximum =999999.99
N Destin- 3-character | mcCorpac . . . State or Province of the
ation alpha- -SetDestinationProvinceCode | country where the goods
State / numeric (destination province_ will be delivered
Province code); e . -
Code Left justified with trailing
spaces
EXAMPLE: ONT = Ontario
N Destin- 3-character | mcCorpac . The country code where
ation alpha- -SetDestinationCountryCode | gqoods will be delivered
Country numeric (destination country code);
Code Left justified with trailing
spaces

Page 195 of 476

November 2018

7 Level 2/3 Transactions

I1SO 3166-1 ISO 3166-1 alpha-3 format
alpha-3
format EXAMPLE: CAN = Canada
N | Ship From | 10-char- mcCorpac. SetShipFromPosCode | The postal code or zip code
Postal acter alpha- | (ship_from pos_code); from which items were
Code numeric shipped
ANA NAN Full alpha postal code -
format Valid ANA<space>NAN
format
N | Destin- 10-char- mcCorpac.SetShipToPosCode The postal code or zip code
ation acter alpha- | (ship_to_pos_code c); where goods will be
Postal numeric delivered
Code
Full alpha postal code -
Valid ANA<space>NAN
format if shipping to an
address within Canada
N Author- 36-char- mcCorpac . Name of an individual or
ized acter alpha- | -SetAuthorizedContactName company contacted for
Contact numeric (authorized contact_name_ company authorized pur-
Name c) i chases
N Author- 17-char- mcCorpac . Phone number of an indi-
ized acter alpha- | -SetAuthorizedContactPhone | yidual or company con-
Contact numeric (authorized_contact_phone); | tacted for company
Phone authorized purchases
N Additional | 40-char- mCCOrpa{J . Information pertaining to
Card acter alpha- | -SetadditionalCardAcceptorD | the card acceptor
Acceptor numeric ata(additional card
Data acceptor data);
N Card 8-character | mcCorpac Various classifications of
Acceptor | alpha- -SetCardhcceptorType (card | pysiness ownership char-
Type numeric acceptor_type); acteristics
This field takes 8 char-
acters. Each character rep-
resents a different
component, as follows:
November 2018 Page 196 of 476

Moneris Gateway API - Integration Guide

1st character represents
‘Business Type’ and con-
tains a code to identify the
specific classification or
type of business:

1. Corporation
2. Not known
3. Individual/Sole Pro-

prietorship

4. Partnership

5. Asso-
ciation/Estate/Trust

6. Tax Exempt Organ-
izations (501C)

7. International Organ-
ization

8. Limited Liability Com-
pany (LLC)

9. Government Agency

2nd character represents
'Business Owner Type'.
Contains a code to identify
specific characteristics
about the business owner.

1 - No application
classification

2 - Female business
owner

3 - Physically han-
dicapped female
business owner

4 - Physically han-
dicapped male busi-
ness owner
0-Unknown

3rd character represents
'Business Certification
Type'. Contains a code to
identify specific char-
acteristics about the busi-

Page 197 of 476

November 2018

7 Level 2/3 Transactions

ness certification type,
such as small business, dis-
advantaged, or other cer-
tification type:

1 - Not certified

2 -Small Business
Administration (SBA)
certification small
business

3 - SBA certification
as small dis-
advantaged busi-
ness

4 - Other gov-
ernment or agency-
recognized cer-
tification (such as
Minority Supplier
Development Coun-
cil)

5 - Self-certified small
business

6 - SBA certification
as small and other
government or
agency-recognized
certification

7 - SBA certification
as small dis-
advantaged busi-
ness and other
government or
agency-recognized
certification

8 - Other gov-
ernment or agency-
recognized cer-
tification and self-cer-
tified small business
A - SBA certification

November 2018

Page 198 of 476

Moneris Gateway API - Integration Guide

as 8(a)

B - Self-certified
small disadvantaged
business (SDB)

C - SBA certification
as HUBZone
0-Unknown

4th character represents
'Business Racial/Ethnic
Type'. Contains a code
identifying the racial or eth-
nic type of the majority
owner of the business.

1 - African American
2 - Asian Pacific
American
3-Subcontinent
Asian American

4 - Hispanic Amer-
ican

5 - Native American
Indian

6 - Native Hawaiian
7 - Native Alaskan
8 - Caucasian
9-0Other
0-Unknown

5th character represents
'Business Type Provided
Code'

Y - Business typeis
provided.

N - Business type
was not provided.
R - Card acceptor
refused to provide
business type

6th character represents
'Business Owner Type

Page 199 of 476

November 2018

7 Level 2/3 Transactions

Provided Code'

Y - Business owner
type is provided.

N - Business owner
type was not
provided.

R - Card acceptor
refused to provide
business type

7th character represents
'Business Certification Type
Provided Code'

Y - Business cer-
tification type is
provided.

N - Business cer-
tification type was
not provided.

R - Card acceptor
refused to provide
business type

8th character represents
'Business Racial/Ethnic
Type’

Y - Business
racial/ethnic type is
provided.

N - Business
racial/ethnic type
was not provided.
R - Card acceptor
refused to provide
business racial/eth-
nic type

N Card 20-char- mcCorpac US federal tax ID number or
Acceptor | acteralpha- | -SetCardAcceptorTaxTd(card_ | yalue-added tax (VAT)ID
November 2018

Page 200 of 476

Moneris Gateway API - Integration Guide

TaxID numeric acceptor tax id c);
N Card 25-char- mcCorpac Code that facilitates card
Acceptor | acteralpha- | -SetCardAcceptorReferenceNu | jcceptor/corporation com-

mber (card acceptor
reference number) ;

Reference | numeric munication and record

Number keeping
N Card 20-char- mcCorpac Value added tax (VAT) num-
Acceptor | acteralpha- | -SetCardAcceptorvVatNumber ber for the card acceptor
VAT Num- | numeric (card_acceptor_vat_number_ | |ocation
ber c)i
Used to identify the card
acceptor when collecting
and reporting taxes
C | Tax Upto6 mcCorpac.SetTax (tax_c); Can have up to 6 arrays
arrays containing different tax

details

NOTE: |f you use this vari-
able, you must fill in all the
fields of tax array mentioned
below.

7.3.8.2 MC Corpal - Line Item Details

MC Corpal Object - Line Item Details

mcCorpal.SetMcCorpal (customer codel 1[0], line item date 1[0], ship date 1[0],
order datel 1[0], medical services ship to health industry number 1[0], con-
tract number 1[0],medical services adjustment 1[0], medical services product
number qualifier 1[0], product codel 1[0], item description 1[0], item quant-
ity 1[0], unit cost 1[0], item unit measure 1[0], ext item amount 1[0], dis-
count amount 1[0], commodity code 1[0], type of supply 1[0], vat ref num 1[0],
tax 1[0]);

Table 1 Line Item Details - Level 3 Request Fields - MC Corpal

N Customer Code 25-character alpha- customer codel 1 A control number,
numeric such as purchase
order number, pro-
ject number,
department alloc-

Page 201 of 476 November 2018

7 Level 2/3 Transactions

ation number or
name that the pur-
chaser supplied
the merchant

N Line Item Date

6-character numeric

YYMMDD format

line item date 1

The purchase date
of the line item ref-
erenced in the
associated Cor-
porate Card Line
Item Detail

Fixed length 6
Numeric, in
YYMMDD format

N Ship Date

6-character numeric

YYMMDD format

ship date 1

The date the mer-
chandise was
shipped to the des-
tination

Fixed length 6
Numeric, in
YYMMDD format

N Order Date

6-character numeric

YYMMDD format

order datel 11

The date the item
was ordered

Fixed length 6-char-
acter numeric, in
YYMMDD format

Y Product Code

12-character alpha-
numeric

product codel 11

Line item Product
Code

Contains the non-
fuel related
product code of
the individual item

purchased
Y Item Description | 35-character alpha- item description 11 | Line Item descrip-
numeric tion
Contains the
November 2018 Page 202 of 476

Moneris Gateway API - Integration Guide

description of the
individual item pur-
chased

Y Item Quantity

12-character alpha-
numeric

item quantity 11

Quantity of line
item

Up to 5 decimal
places supported

Minimum amount
is 0.0 and max-
imum is
9999999.99999

Y Unit Cost

12-character decimal

unit cost 11

Line item cost per
unit.

Must contain a
minimum of 2
decimal places, up
to 5 decimal places
supported.

Minimum amount
is 0.00001 and max-
imum is
999999.99999

Y Item Unit Meas-
ure

12-character alpha-
numeric

item unit measure

11

The line item unit
of measurement
code

ANSI X-12 EDI
Allowable Units of
Measure and
Codes

Y Extended Item
Amount

9-character decimal

ext item amount 11

Contains the indi-
vidual item
amount that is nor-
mally calculated as
price multiplied by
quantity

Must contain 2
decimal places

Minimum amount

Page 203 of 476

November 2018

7 Level 2/3 Transactions

is 0.00 and max-
imum is 999999.99

N Discount 9-character decimal discount_amount_11 Contains the item
Amount discount amount

Must contain 2
decimal places

Minimum amount
is 0.00 and max-
imum is 999999.99

N Commodity 15-character alpha- commodity code 11 Code assigned to
Code numeric the merchant that
best categorizes
the item(s) being
purchased

C Tax Up to 6 arrays tax 1 Can haveupto6
arrays containing
different tax details
—see Tax Array
Request Fields
table below for
each field descrip-
tion

NOTE: |f you use
this variable, you
must fill in all the
fields of tax array
mentioned below.

7.3.8.3 Tax Array Object - MC Corpais

The tax array object is used when you use the Tax field of both MC Corpac and MC Corpal. If you use the
tax array object, all of the array fields must be sent.

Setting the tax array differs slightly between the two objects.
Setting tax array for MC Corpac
string[] tax _amount ¢ = { "1.19", "1.29"};

string[] tax rate c = { "6.0", "7.0"};

string[] tax type c { "GST", "PST"};

November 2018 Page 204 of 476

Moneris Gateway API - Integration Guide

string[] tax id ¢ = { "gstl298", "pstl298"};
string[] tax included in sales c = { "Y", "N"};

McTax tax ¢ = new McTax();

tax c.SetTax(tax amount c[0], tax rate c[0], tax type c[0], tax id c[0], tax_

included in sales c[0]);

Setting tax array for MC Corpal

//Tax Details for Items

string[] tax amount 1 = {"0.52", "1.48"};

string[] tax rate 1 = {"13.0", "13.0"};

string[] tax type 1 {"HST", "HST"}:;
string[] tax id 1 = {"hstl1298", "hstl1298"};
string[] tax included in sales 1 = {"Y", "Y"};

McTax[] tax 1 = new McTax[2];

tax 1[1].SetTax(tax amount 1[1], tax rate 1[1], tax type 1[1l], tax id 1[1],

tax included in sales 1[1]);

Table 1 MC Corpais Tax Array Request Fields

tax_amount c/tax
amount 1

Y Tax Amount 12-character decimal

Contains detail tax
amount for pur-
chase of goods or
services

Must be 2 decimal
places. Minimum
amount is 0.00 and
maximum is
999999.99

tax rate c/tax
rate 1

Y Tax Rate 5-character decimal

Contains the
detailed tax rate
applied in rela-
tionship to a spe-
cific taxamount

EXAMPLE: 5% GST
should be ‘5.0’ or
or 9.975% QST
should be ‘9.975’

Page 205 of 476

November 2018

7 Level 2/3 Transactions

May contain up to
3 decimals, min-
imum 0.001, max-
imum up to 9999.9

Y Tax Type 4-character alpha- tax_type c/tax_ Contains tax type,
numeric type 1 such as

GST,QST,PST,HST

Y Tax D 20-character alpha- tax_id c/tax_id 1 Provides an iden-

numeric tification number

used by the card
acceptor with the
tax authority in
relationship to a

specific tax
amount, such as
GST/HST number
Y Taxincluded in 1-character alpha- tax_included_in_ This is the indicator
sales indicator numeric sales_c/tax_ used to reflect addi-

included_in_sales_1 | tjonaltax capture
and reporting

Valid values are:

Y = Tax included in
total purchase amount

N = Tax not included in
total purchase amount

7.3.8.4 Sample Code for MC Corpais

Sample MC Corpais - Corporate Card Common Data with Line Item Details

namespace Moneris

{

using System;

using System.Collections;

using System.Text;

public class TestMcCorpaisCommonLineItem
{

public static void Main(string[] args)

{

string store id = "moneris";
string api token = "hurgle";
string processing country code = "CA";

bool status check = false;

November 2018 Page 206 of 476

Moneris Gateway API - Integration Guide

Sample MC Corpais - Corporate Card Common Data with Line Item Details

string order id="ord-200916-13:29:27";

string txn number="66011731632016264132927986-0_11";
string customer codel c ="CustomerCodel23";

string card_acceptor_tax_id_c ="UrTaxId";//Merchant tax id which is mandatory
string corporation vat number c ="cvnl23";

string freight amount c ="1.23";

string duty amount c ="2.34";

string ship to pos code ¢ ="MIR 1W5";

string order date c ="141211";

string customer vat number c ="customervn231";
string unique invoice number c ="uin567";

string authorized contact name c ="John Walker";
//Tax Details

string[] tax amount c = { "1.19", "1.29"};

string[] tax rate ¢ = { "6.0", "7.0"};

string[] tax type c = { "GST", "PST"};

string[] tax id ¢ = { "gstl1298", "pstl298"};

string[] tax included in sales ¢ = { "Y", "N"};

//Item Details

string[] customer codel 1 = {"customer code", "customer code2"};
string[] line item date 1 = {"150114", "150114"};

string[] ship date 1 = {"150120", "150122"};

string[] order datel 1 = {"150114", "150114"};

string[] medical services ship to health industry number 1 = {null, null};
string[] contract number 1 = {null, null};

string[] medical services adjustment 1 = {null, null};
string[] medical services product number qualifier 1 = {null, null};
string[] product codel 1 = {"pcll", "pcl2"};

string[] item description 1 = {"Good item", "Better item"};
string[] item quantity 1 = {"4", "5"};

string[] unit cost 1 ={"1.25", "10.00"};

string[] item unit measure 1 = {"EA", "EA"};

string[] ext item amount 1 ={"5.00", "50.00"};

string[] discount amount 1 ={"1.00", "50.00"};

string[] commodity code 1 ={"cCodell", "cCodel2"};

string[] type of supply 1 = {null, null};

string[] vat ref num 1 = {null, null};

//Tax Details for Items

string[] tax amount 1 = {"0.52", "1.48"};

string[] tax rate 1 = {"13.0", "13.0"};

string[] tax type 1 = {"HST", "HST"};

string[] tax id 1 = {"hst1298", "hst1298"};

string[] tax included in sales 1 = {"Y", "Y"};

//Create and set Tax for McCorpac

McTax tax c = new McTax();
tax c.SetTax(tax amount c[0], tax rate c[0], tax type c[0], tax id c[0], tax included in sales c

[01);

tax_c.SetTax(tax_amount c[l], tax rate c[1], tax type c[l], tax id c[1l], tax included in sales c

[11);
//Create
McCorpac

mcCorpac.
mcCorpac.
mcCorpac.
mcCorpac.
mcCorpac.
mcCorpac.
mcCorpac.

and set McCorpac for common data - only set values that you know
mcCorpac = new McCorpac/() ;

SetCustomerCodel (customer codel c);
SetCardAcceptorTaxTd(card acceptor tax id c);
SetCorporationVatNumber (corporation vat number c);
SetFreightAmountl (freight amount c);
SetDutyAmountl (duty amount c);
SetShipToPosCode (ship to pos code c);
SetOrderDate (order date c);

Page 207 of 476

November 2018

7 Level 2/3 Transactions

Sample MC Corpais - Corporate Card Common Data with Line Item Details

mcCorpac.SetCustomerVatNumber (customer vat number c);
mcCorpac.SetUniquelnvoiceNumber (unique invoice number c);
mcCorpac.SetAuthorizedContactName (authorized contact name c);
mcCorpac.SetTax (tax c);

//Create and set Tax for McCorpal

McTax[] tax 1 = new McTax[2];

tax 1[0] = new McTax();

tax 1[0].SetTax(tax amount 1[0], tax rate 1[0], tax type 1[0], tax id 1[0], tax included in sales
1[01);

tax 1[1] = new McTax();

tax 1[1].SetTax(tax amount 1[1], tax rate 1[1], tax type 1[1], tax id 1[1], tax included in sales
1011

//Create and set McCorpal for each item

McCorpal mcCorpal = new McCorpal () ;

mcCorpal.SetMcCorpal (customer codel 1[0], line item date 1[0], ship date 1[0], order datel 1[0],
medical services ship to health industry number 1[0], contract number 1[0],

medical services adjustment 1[0], medical services product number qualifier 1[0], product codel 1
[0], item description 1[0], item quantity 1[0],

unit cost 1[0], item unit measure 1[0], ext item amount 1[0], discount amount 1[0], commodity
code 1[0], type of supply 1[0], vat ref num 1[0], tax 1[0]);
mcCorpal.SetMcCorpal (customer codel 1[1], line item date 1[1], ship date 1[1], order datel 1[1],
medical services ship to health industry number 1[1], contract number 1[1],

medical services adjustment 1[1], medical services product number qualifier 1[1], product codel 1
[1], item description 1[1], item quantity 1[1],

unit cost 1[1], item unit measure 1[1], ext item amount 1[1], discount amount 1[1], commodity
code 1[1], type of supply 1[1], vat ref num 1[1], tax 1[1]);

McCorpais mcCorpais = new McCorpais() ;

mcCorpais.SetOrderId(order id);

mcCorpais.SetTxnNumber (txn_number) ;

mcCorpais.SetMcCorpac (mcCorpac) ;

mcCorpais.SetMcCorpal (mcCorpal) ;

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq. SetProcCountryCode (processing country code);

mpgReq.SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld (store id);

mpgReq.SetApiToken (api token);

mpgReq. SetTransaction (mcCorpais) ;

mpgReq.SetStatusCheck (status_check) ;

mpgReq.Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("CardType = " + receipt.GetCardType()):
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ()) ;
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId())
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime())
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode()) ;

November 2018 Page 208 of 476

Moneris Gateway API - Integration Guide

Sample MC Corpais - Corporate Card Common Data with Line Item Details

Console.ReadLine () ;

}

catch (Exception e)
{

Console.WritelLine (e) ;

}

}
}
}

7.4 Level 2/3 American Express Transactions

e 7.4.1 Level 2/3 Transaction Types for Amex
e 7.4.2 Level 2/3 Transaction Flow for Amex
e 7.4.4 AX Completion

e 7.4.5 AX Force Post

e 7.4.6 AX Purchase Correction

o 7.4.7 AX Refund

e 7.4.8 AXIndependent Refund

7.4.1 Level 2/3 Transaction Types for Amex

This transaction set includes a suite of corporate card financial transactions as well as a transaction that
allows for the passing of Level 2/3 data. Please ensure American Express Level 2/3 processing support is
enabled on your merchant account. Batch Close, Open Totals and Pre-authorization are identical to the
transactions outlined in the section Basic Transaction Set (page 12),

o When the Pre-authorization response contains CorporateCard equal to true then you can submit
the AX transactions.

o If CorporateCard is false then the card does not support Level 2/3 data and non Level 2/3 trans-
action are to be used. If the card is not a corporate card, please refer to 2 Basic Transaction Set for
the appropriate non-corporate card transactions.

NOTE: This transaction set is intended for transactions where Corporate Card is true and
Level 2/3 data will be submitted. If the credit card is found to be a corporate card but you do
not wish to send any Level 2/3 data then you may submit AX transactions using the trans-
action set outlined in the section Basic Transaction Set (page 12).

Page 209 of 476 November 2018

7 Level 2/3 Transactions

Pre-authorization — (authorization)
The preauth verifies and locks funds on the customer’s credit card. The funds are locked for a
specified amount of time, based on the card issuer. To retrieve the funds from a pre-auth so
that they may be settled in the merchant account a capture must be performed. Cor-
porateCard will return as true if the card supports Level 2/3.

AX Completion — (Capture/Pre-authorization Completion)
Once a Pre-authorization is obtained the funds that are locked need to be retrieved from the
customer’s credit card. The capture retrieves the locked funds and readies them for set-
tlement in to the merchant account. Prior to performing an AXCompletion a Preauth must be
performed.

AX Force Post — (Force Capture/Pre-authorization Completion)
This transaction is an alternative to AX Completion to obtain the funds locked on a Pre-author-
ization obtained from IVR or equivalent terminal. The capture retrieves the locked funds and
readies them for settlement in to the merchant account.

AX Purchase Correction — (Void, Correction)
AX Completion and AX Force Post can be voided the same day* that they occur. A void must
be for the fullamount of the transaction and will remove any record of it from the cardholder
statement. * An AX Purchase Correction can be performed against a transaction as long as
the batch that contains the original transaction remains open. When using the automated
closing feature, the batch close occurs daily between 10—11 pm EST.

AX Refund — (Credit)
An AX Refund can be performed against an AX Completion and AX Force Post to refund any

part, or all of the transaction.

AX Independent Refund — (Credit)
An AX Independent Refund can be performed against a purchase or a capture to refund any
part, or all of the transaction. Independent refund is used when the originating transaction
was not performed through Moneris Gateway. Please note, the Independent Refund trans-
action may or may not be supported on your account. If you receive a transaction not
allowed error when attempting an independent refund, it may mean the transaction is not
supported on your account. If you wish to have the AX Independent Refund transaction type
temporarily enabled (or re-enabled), please contact the Service Centre at 1-866-319-7450.

November 2018 Page 210 of 476

Moneris Gateway API - Integration Guide

7.4.2 Level 2/3 Transaction Flow for Amex

Preauth & Admin End Of Day
Completion Flow Transactions

Was the
Preauth processed

Batch Close Open Totals

on adifferent

account?

Preauth

- |

/ill adde ndum
(L23) data be —
submitted?

Capture /
Completion or

Force post Yes

Wasthe
Preauth processed
on a different

account?
AXForce post AXCompletion
Includ: Includ:
Purchasing 123
Refund Flow > Data

I= & correction
needed?

Was the
urchase /Capture
processed
on a different

account?

Iz the transaction
in an Open Batch?

AX
Inde pendent
Refund

AXPurchase
Correct

Page 211 0f 476 November 2018

7 Level 2/3 Transactions

7.4.3 Level 2/3 Data Objects in Amex

e 7.4.3.1 About the Level 2/3 Data Objects for Amex
o 7.4.3.2 Defining the AxLevel23 Object

e Table10bject

e Table 2 Object

e Table 3 Object

7.4.3.1 About the Level 2/3 Data Objects for Amex

Many of the Level 2/3 transaction requests using American Express also include a mandatory data object
called AxLevel23. AxLevel23 is also comprised of other objects, also described in this section.

The Level 2/3 data objects within this section apply to all of the following transactions and are passed as
part of the transaction request for:

e AX Completion

e« AX Force Post

o AX Refund

o AXIndependent Refund

Things to Consider:
o Please ensure the addendum data below is complete and accurate.
o Please ensure the math on quantities calculations, amounts, discounts, taxes, etc. prop-
erly adds up to the overall transaction amount. Incorrect amounts will cause the trans-
action to be rejected.

7.4.3.2 Defining the AxLevel23 Object

AxLevel23 object definition
AxLevel23 level23 = new AxLevel23();

The AXLevel23 object itself has three objects, Tablel, Table2 and Table3, all of which are mandatory.

Table 1 AxLevel23 Object

Y Tablel Object AxTablel tablel = Refer below for fur-
new AxTablel(); ther breakdown
level23.SetTablel and definition of

tablel

November 2018 Page 212 of 476

Moneris Gateway API - Integration Guide

(tablel) ;

Y Table2 Object AxTable2 table2 = Refer below for fur-
new AxTable2(); ther breakdown
level23.SetTable? ant?l dZEﬁ”'t'O” of
(table2) ; table

Y Table3 Object AxTable3 table3 = Refer below for fur-
new AxTable3(); ther breakdown
level23.SetTable3 and definition of

table3

(table3);

*Y = Required, N = Optional, C = Conditional

Table 1 Object

Table 1 contains the addendum data heading information. Contains information such as identification
elements that uniquely identify an invoice (transaction), the customer name and shipping address.

Table 1 object definition

AxTablel tablel = new AxTablel () ;

Table 1 AxLevel23 object - Table 1 object fields

C Purchase Order | 22-character alpha- tablel.SetBig04 The cardholder sup-
Number numeric (big04); plied Purchase Order
Number, which is
entered by the mer-
chant at the point-of-
sale

This entry is used in
the State-
ment/Reporting pro-
cess and may include
accounting inform-
ation specific to the
client

NOTE: This element
is mandatory, if the
merchant’s customer
provides a Purchase
Order Number.

Page 213 of 476 November 2018

7 Level 2/3 Transactions

N Release Number | 30-character alpha- tablel.SetBig05 Anumber that iden-
numeric (big05); tifies a release
against a Purchase
Order previously
placed by the parties
involved in the trans-

action

N Invoice Number | 8-character alpha- tablel -SetBigl0 Contains the Amex

numeric (bigl0); invoice/reference

number

N NiLoop Object tablel.SetNlLoop Refer below for fur-

(nlLoop) ther breakdown and

definition of N1Loop
object

*Y = Required, N = Optional, C = Conditional
Table 1 also has its own objects:

o NllLoop object
o AxRefobject

Table 1 - Setting the N1Loop Object

The N1Loop data set contains the Requester names. It can also optionally contain the buying group, ship
from, ship to and receiver details.

A minimum of at least 1 n1lLoop must be set. Up to 5 n1Loop can be set.

N1lLoop object definition
nlLoop.SetNlLoop (nl101, nl02, n301, n401, n402, n403, axRefl);

Table 1 AxLevel23 object - Table 1 object - N1Loop object fields

Y Entity Identifier 2-character alpha- nlol Supported values:

Code numeric
R6 - Requester

(required)

BG - Buying Group
(optional)

SF - Ship From
(optional)

ST - Ship To (optional)

November 2018 Page 214 of 476

Moneris Gateway API - Integration Guide

40 - Receiver (optional)

nl02

15-character alpha-
numeric

Y Name 40-character alpha- n101 n102
numeric code meaning
R6 Requester
Name
BG Buying Group
Name
SF Ship
From Name
ST Ship To Name
40 Receiver Name
N Address 40-character alpha- n301 Address
numeric
N City 30-character alpha- n401 City
numeric
N State or Province | 2-character alpha- n402 State or province
numeric
N Postal Code n403 Postal Code

N AxRef

Object

AxRef axRefl =
AxRef () ;

new

Refer below for fur-
ther breakdown
and definition of
AxRef object.

This object con-
tains the customer
postal code (man-
datory) and cus-
tomer reference
number (optional)

A minimum of 1
axRefl must be
set; maximum of 2
axRefl’s may be
set

*Y = Required, N = Optional, C = Conditional

Page 215 of 476

November 2018

7 Level 2/3 Transactions

Table 1 - Setting the AxRef Object

Setting AXRef object

AxRef axRefl = new AxRef ();

string[] ref0l = {"4C", "CR"}; //Reference ID Qualifier

string[] ref02 {"M5T3A5", "16802309004"}; //Reference ID
axRefl.SetRef (ref01[0], ref02[0]);

axRefl.SetRef (ref01[1], refO02[1]);

Table 1 AxLevel23 object - Table 1 object - AxRef object fields

Y Reference 2-character alpha- ref0l This element may con-
Identification numeric tain the following qual-
Qualifier ifiers for the

corresponding occur-
rences of the N1Loop:

n101 refO1
value denotation

R6 Supported val-
ues:

4C -Shipment
Destination
Code (man-
datory)

CR - Customer

Reference
Number (con-
ditional)
BG n/a
SF n/a
ST n/a
40 n/a
Y Reference 15-character alpha- ref02 This field must be pop-
Identification numeric ulated for each refO1

provided

November 2018 Page 216 of 476

Moneris Gateway API - Integration Guide

ref01 ref02 denota-
value tion

4c This element must

(n101 contain the Amex

value= Ship-to Postal Code

R6) of the destination
wherethe com-
modity was shipped.
Ifthe Ship-to Postal
Codeis unavailable,
the postal code of
themerchant loc-
ation wherethe
transaction took
place may be sub-
stituted.

CR This element must
(n101 contain the Amex
value= Card member Refer-
R6): ence Number (e.g.,
purchase order, cost
center, project num-
ber, etc.) that cor-
responds to this
transaction, if
provided by the
Cardholder.

This information
may be displayed in
the state-
ment/reporting pro-
cess and may include
client-specific
accounting inform-
ation.

*Y = Required, N = Optional, C = Conditional

Table 2 Object

Table 2 includes the transaction’s addendum detail. It contains transaction data including reference
codes, debit or credit and tax amounts, line item detail descriptions, shipping information and much
more. All transaction data in an invoice relate to a single transaction and cardholder account number.
Table 2 object definition

AxTable?2 table2 = new AxTable2();

Page 217 of 476 November 2018

7 Level 2/3 Transactions

Table 1 AxLevel23 object - Table 2 object fields

N Itlloop Object table2.SetItlLoop Refer below for fur-
(itlLoop); ther breakdown
and definition of
object details.

*Y = Required, N = Optional, C = Conditional

Table 2 - Setting the AxIt1Loop Object

The AxItlLoop data defines the baseline item data for the invoice. This data is defined for each item/ser-
vice purchased and included within this invoice. This data set contains basic transaction data, including
guantity, unit of measure, unit price and goods/services reference information.

e Aminimum of 1itlLoop required
e Amaximum of 999 itlLoop’s supported

AxitlLoop object definition
AxItlLoop itlLoop = new AxItlLoop():;

itlLoop.SetItlLoop (1t102[0], it103[0], it104[0], itl05[0], itl06s[0], txi[O],
pam05([0], pid05[0]);

itlLoop.SetItlLoop (itl102[1], it103[1], 1t104[1], itl105[1], itlO6s[1l], txi[l],
pam05([1], pid05[1]);

Table 1 AxLevel23 object - Table 2 object - AxItlLoop object fields

Y Line Item Quant- | 10-character decimal it102 Quantity of line
ity Invoiced item

Up to 2 decimal
places supported

Minimum amount
is 0.0 and max-

imum is
9999999999
Y Unit or Basis for 2-character alpha- it103 The line item unit
Measurement numeric of measurement
Code code

Must contain a

November 2018 Page 218 of 476

Moneris Gateway API - Integration Guide

code that specifies
the units in which
the valueis
expressed or the
manner in which a
measurement is
taken

each, E5=inches

EXAMPLE: EA = |

See ANSI X-12 EDI
Allowable Units of
Measure and
Codes for the list
of codes

Y Unit Price 15-character decimal it104 Line item cost per
unit

Must contain 2
decimal places

Minimum amount
is 0.00 and max-
imum is 999999.99

N Basis or Unit 2-character alpha- it105 Code identifying
Price Code numeric the type of unit
price for an item

EXAMPLE: DR =
dealer, AP =
advise price

See ASC X12
004010 Element
639 for list of codes

N AxIt106s object it106s Refer below for fur-
ther breakdown
and definition of
object details.

N AxTxi object txi Refer below for fur-
ther breakdown
and definition of

Page 219 of 476 November 2018

http://ecomgx17.ecomtoday.com/edi/EDI_4010/el639.htm
http://ecomgx17.ecomtoday.com/edi/EDI_4010/el639.htm
http://ecomgx17.ecomtoday.com/edi/EDI_4010/el639.htm
http://ecomgx17.ecomtoday.com/edi/EDI_4010/el639.htm
http://ecomgx17.ecomtoday.com/edi/EDI_4010/el639.htm
http://ecomgx17.ecomtoday.com/edi/EDI_4010/el639.htm
http://ecomgx17.ecomtoday.com/edi/EDI_4010/el639.htm

7 Level 2/3 Transactions

object details

A maximum of 12
AXxTxi (tax inform-
ation data sets)
may be defined

NOTE: that if line
item level tax
information is pop-
ulated in AxTxi in
Table2, then tax
totals for the
entire invoice
(transaction) must
be entered in

Table3.
Y Line Item Exten- 8-character decimal pamO05 Contains the indi-
ded Amount vidual item

amount that is nor-
mally calculated as
price multiplied by
quantity

Must contain 2
decimal places

Minimum amount
is 0.00 and max-
imum is 99999.99

Y Line Item Descrip- | 80-character alpha- pid05 Line Item descrip-
tion numeric tion

Contains the
description of the
individual item pur-
chased

This field pertain to
each line item in
the transaction

*Y = Required, N = Optional, C = Conditional

November 2018 Page 220 of 476

Moneris Gateway API - Integration Guide

Table 2 - Setting the AxIt106s Object

AxItl1l06s[] itl1l06s = {new AxItl06s (), new AxItl1l06s (), new AxItl1l06s (), new
AxItl106s (), new AxItl1l06s() };

string[] 1it10618
qualifier

{"MG", "MG", "MG", "MG", "MG"}; //Product/Service ID

string[] 1t10719 {"DJFR4", "JFJ49", "FEF33", "FEE43", "DISCOUNT"};
//Product/Service ID (corresponds to 1t10618)

Table 1 AxLevel23 object - Table 2 object - AxIt106s object fields

N Product/Service | 2-character alpha- itl0és Supported values:
ID Qualifier numeric [0].SetItl0618
(1t10618[01); MG - Manufacturer’s
Part Number
it106s .
[1].SetTt10618 VC - Supplier Catalog

N
(it10618[1]); umber

SK - Supplier Stock
Keeping Unit Number

UP - Universal Product
Code

VP — Vendor Part Num-
ber

PO — Purchase Order
Number

AN — Client Defined

Asset Code

N Product/Service . it10719 - itl06s Product/Service ID
ID It10618 size/type | [0]-SetItl0719 corresponds to the
ve ~0character (1£10719001) 7 preceding qualifier
alphanumeric | 1t106s defined by it10618

PO le-f]haracter. [}iigsigt]1-07?9 The maximum
Fpnanamert (4 [11)7 length depends on

Other 30-character

the qualifier
defined in it10618

alphanumeric

*Y = Required, N = Optional, C = Conditional

Table 2 - Setting the AxTxi Object

Table 2 AxiTxi object definition

//Create Table 2 with details

string[] txi0Ol GST = {"GS", "Gs", "GS", "GS", "GS"}; //Tax type code

Page 221 of 476 November 2018

7 Level 2/3 Transactions

string[] txi02 GST = {"0.70", "1.75", "1.00", "0.80","0.00"}; //Monetary
amount

string[] txi03 GST = {"5.0", "5.0", "5.0", "5.0","5.0"}; //Percent

string[] txiO6_GST = {"", ", "", """, ""}; //Tax exempt code

string[] txi0Ol1 PST = {"PG", "PG", "PG","PG","PG"}; //Tax type code

string[] txi02 PST = {"0.80", "2.00", "1.00", "0.80","0.00"}; //Monetary
amount

string[] txi0O3_PpST = {("7.0", "7.0", "7.0", "7.0","7.0"}; //Percent

string[] txiO6_PST = {"", ", "m", """, "r}; //Tax exempt code

AxTxi[] txi = {new AxTxi(), new AxTxi(), new AxTxi(), new AxTxi(), new AxTxi

OR¥
txi[0]
txi[0]
txi[1]
txi[1]
txi[2]
txi[2]
txi[3]
txi[3]
txi[4]

txi[4]

.SetTxi (txi01 GST[O],
.SetTxi (txi01 PST[O],
.SetTxi (txi01 GST[1],
.SetTxi (txi01 PST[1],
.SetTxi (txi01 GST[2],
.SetTxi (txi01 PST[2],
.SetTxi (txi01 GST[3],
.SetTxi (txi01 PST[3],
.SetTxi (txi01 GST[4],

.SetTxi (txi01 PST[4],

txi02 GST[0],
txi02_ PST[0],
txi02 GST[1],
txi02 PST[1],
txi02 GST[2],
txi02 PST[2],
txi02 GST[3],
txi02_ PST[3],
txi02 GST[4],

txi02 PST[4],

txi03 GST[0],
txi03 PST[0],
txi03 GST[1],
txi03 PST[1],
txi03 GST[2],
txi03 PST[2],
txi03 GST[3],
txi03 PST[3],
txi03 GST[4],

txi03 PST[4],

txi06 _GST[O0]);
txi06_PST[O0]);
txi06 _GST[1]);
txi06_PST[1]);
txi06 _GST[2]);
txi06_PST[2]);
txi06 _GST[3])
txi06_PST[3]);
txi06_GST[4]);

txi06_PST[4]);

Table 1 AxLevel23 object - Table 2 object - AxiTxi object fields

txi0l

Tax Type code

2-character alphanumeric

Tax type code
applicable to
Canada and US
only

For Canada, this
field must contain
a code that spe-
cifies the type of
tax

If txiO1 is used,

November 2018

Page 222 of 476

Moneris Gateway API - Integration Guide

then txi02, txi03 or
txi06 must be pop-
ulated

Valid codes include
the following:

CT — County/Tax
(optional)

CA — City Tax
(optional)

EV — Environmental
Tax (optional)

GS — Good and Ser-
vices Tax (GST)
(optional)

LS — State and Local
Sales Tax (optional)

LT — Local Sales Tax
(optional)

PG — Provincial Sales
Tax (PST) (optional)

SP — State/Provincial
Tax a.k.a. Quebec
Sales Tax (QST)
(optional)

ST — State Sales Tax
(optional)

TX — All Taxes
(required)

VA — Value-Added Tax
a.k.a. Canadian Har-
monized Sales Tax
(HST) (optional)

C Monetary txi02 6-character decimal This element may
Amount contain the mon-
etary taxamount
that corresponds
to the Tax Type
Code in txi01

NOTE:
If txi02 is used in
mandatory occur-

Page 223 of 476 November 2018

7 Level 2/3 Transactions

rence txi01=TX, txi02
must contain the
totaltax amount
applicableto the
entire invoice (trans-
action)

If taxes are not
applicable for the
entire invoice (trans-
action), txi02 must
be 0.00.

The maximum
value that can be
entered in this
field is “9999.99”,
which is $9,999.99
(CAD)

A debit is entered
as: 9999.99

A credit is entered
as: —9999.99

C Percent txio3 10-character decimal Contains the tax
percentage (in
decimal format)
that corresponds
to the tax type
code defined in
txiol

Up to 2 decimal
places supported

C Tax Exempt Code | txi06 1-character alphanumeric | This element may
contain the Tax
Exempt Code that
identifies the
exemption status
from sales and tax
that corresponds
to the Tax Type
Code in txi01

Supported values:
1-Yes (Tax Exempt)

2 — No (Not Tax
Exempt)

November 2018 Page 224 of 476

Moneris Gateway API - Integration Guide

4 — Not Exempt/For
Resale

A — Labor Taxable,
Material Exempt

B — Material Taxable,
Labor Exempt

C— Not Taxable

F — Exempt (Goods /
Services Tax)

G — Exempt (Provincial
Sales Tax)

L — Exempt Local Ser-
vice

R — Recurring Exempt

U — Usage Exempt

*Y = Required, N = Optional, C = Conditional

Table 3 Object

Table 3 includes the transaction addendum summary. It contains the total invoice (transaction) amount,
sales tax, freight and/or handling charges and invoice summary information, including total line items,
number of segments in the invoice, and the transaction set control number (a.k.a., batch number).

Table 3 object definition

AxTable3 table3 = new AxTable3();

Table 1 AxLevel23 object - Table 3 object fields

C AXTxi Object table3.SetTxi Refer below for fur-
(taxTbl3) ; ther breakdown
and definition of
object details.

-

NOTE: if line item
level tax inform-

ation is populated
in AXTxi in Table2,
then tax totals for
the entire invoice

Page 225 of 476 November 2018

7 Level 2/3 Transactions

(transaction) must
be entered in
Table3. A max-
imum of 10
AxTxi’s may be set
in Table3.

*Y = Required, N = Optional, C = Conditional

Table 3 - Setting the AxTxi Object

The mandatory tax information data set must contain the total tax amount applicable to the entire
invoice (transaction) which includes all line items identified in Table2. If taxes are not applicable for the
entire invoice (transaction), then txi02 must be set to 0.00.

Tax totals must be entered in this mandatory tax information segment in Table 3, even if line item detail
level tax data is reported in Table 2.

At least one occurrence of txi02, txi03 or txi06 is required.

Table 3 AxiTxi object definition

AxTxi taxTbl3 = new AxTxi();
taxTbl3.SetTxi ("GS", "4.25","5.0",""); //sum of GST taxes
taxTbl3.SetTxi ("PG", "4.60","7.0","™); //sum of PST taxes

taxTbl3.SetTxi ("TX", "8.85","13.0",""); //sum of all taxes

Table 1 AxLevel23 object - Table 3 object - AxiTxi object fields

C Tax Type code txiol 2-character alphanumeric | Taxtype code
applicable to
Canada and US
only

For Canada, this
field must contain
a code that spe-
cifies the type of
tax

If txiO1 is used,
then txi02, txi03 or
txi06 must be pop-
ulated

November 2018 Page 226 of 476

Moneris Gateway API - Integration Guide

Valid codes include
the following:

CT — County/Tax
(optional)

CA — City Tax
(optional)

EV — Environmental
Tax (optional)

GS — Good and Ser-
vices Tax (GST)
(optional)

LS — State and Local
Sales Tax (optional)

LT — Local Sales Tax
(optional)

PG — Provincial Sales
Tax (PST) (optional)

SP — State/Provincial
Tax a.k.a. Quebec
Sales Tax (QST)
(optional)

ST — State Sales Tax
(optional)

TX — All Taxes
(required)

VA - Value-Added Tax
a.k.a. Canadian Har-
monized Sales Tax
(HST) (optional)

C Monetary txi02 6-character decimal This element may
Amount contain the mon-
etary taxamount
that corresponds
to the Tax Type
Codein txi0l1

~

NOTE:

If txi02 is used in
mandatory occur-
rence txi01=TX, txi02
must contain the
totaltax amount
applicableto the
entire invoice (trans-

_action))

Page 227 of 476 November 2018

7 Level 2/3 Transactions

If taxes are not
applicable for the
entire invoice (trans-
action), txi02 must
be 0.00.

The maximum
value that can be
entered in this
field is “9999.99”,
which is $9,999.99
(CAD)

A debit is entered
as: 9999.99

A credit is entered
as: —9999.99

C Percent txi03 10-character decimal Contains the tax
percentage (in
decimal format)
that corresponds
to the tax type
code defined in
txiol

Up to 2 decimal
places supported

C Tax Exempt Code | txi06 1-character alphanumeric | This element may
contain the Tax
Exempt Code that
identifies the
exemption status
from sales and tax
that corresponds
to the Tax Type
Code in txi01

Supported values:
1-Yes (Tax Exempt)

2 — No (Not Tax
Exempt)

4 — Not Exempt/For
Resale

A — Labor Taxable,
Material Exempt

November 2018 Page 228 of 476

Moneris Gateway API - Integration Guide

B — Material Taxable,
Labor Exempt

C— Not Taxable

F — Exempt (Goods /
Services Tax)

G — Exempt (Provincial
Sales Tax)

L — Exempt Local Ser-
vice

R — Recurring Exempt

U — Usage Exempt

*Y = Required, N = Optional, C = Conditional

7.4.4 AX Completion

The AX Completion transaction is used to secure the funds locked by a pre-authorization transaction.
When sending a capture request you will need two pieces of information from the original pre-author-
ization —the Order ID and the transaction number from the returned response.

AX Completion transaction object definition

AxCompletion axCompletion = new AxCompletion ()

HttpsPostRequest object for AX Completion
HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq.SetTransaction (axCompletion) ;

AX Completion transaction object values

Table 1 AX Completion transaction object mandatory values

Order ID String 50-character alpha- axCompletion.SetOrderld
numeric (order_id);
Completion amount String 9-character decimal axCompletion.SetCompAmount
(comp amount) ;
Transaction number String 255-character alpha- axCompletion.SetTxnNumber
numeric (txn_number) ;

Page 229 of 476 November 2018

7 Level 2/3 Transactions

E-commerce indicator String 1-character alpha- axCompletion.SetCryptType
numeric (crypt);
Level 2/3 Data Object | n/a axCompletion.SetAxLevel23
(level23);

Sample AX Completion

namespace Moneris

{

using System;

using System.Collections;

using System.Text;

public class TestAxCompletion

{

public static void Main(string[] args)

{

string store id = "moneris";
string api token = "hurgle";
string processing country code = "CA";

bool status check = false;

string order id="ord-210916-12:06:38";
string comp amount="62.37";

string txn number = "18924-0 11";
string crypt="7";

//Create Table 1 with details

string nl101 = "R6"; //Entity ID Code

string nl02 = "Retailing Inc. International"; //Name

string n301 = "919 Oriole Rd."; //Address Line 1

string n401 = "Toronto"; //City

string n402 = "On"; //State or Province

string n403 = "HIT6W3"; //Postal Code

string[] ref0l = {"4C", "CR"}; //Reference ID Qualifier
string[] ref02 = {"M5T3A5", "16802309004"}; //Reference ID
string big04 = "P07758545"; //Purchase Order Number

string big05 = "RN0049858"; //Release Number

string bigl0 = "INV99870E"; //Invoice Number

AxRef axRefl = new AxRef();

axRefl.SetRef (ref01[0], ref02[0]);

axRefl.SetRef (ref01[1], ref02[1]);

AxNlLoop nlLoop = new AxNlLoop();

nlLoop.SetNlLoop (nl10l, nl02, n301, n401, n402, n403, axRefl);
AxTablel tablel = new AxTablel();

tablel.SetBig04 (big04) ;
tablel.SetBig05 (big05) ;
tablel.SetBigl0 (bigl0) ;
tablel.SetNlLoop (nlLoop) ;

//Create Table 2 with details

//the sum of the extended amount field (pam05) must equal the level 1 amount field

string[] itl102 = {"1", "1", "1", "1", "1"}; //Line item quantity invoiced

string[] itl103 = {"EA", "EA", "EA", "EA", "EA"}; //Line item unit or basis of measurement code

November 2018 Page 230 of 476

Moneris Gateway API

- Integration Guide

Sample AX Completion

string[] 1t104 = {"10.00", "25.00", "8.62", "10.00", "-10.00"}; //Line item unit price
string[] itl105 = {"", "", ", "v, "v}. //Line item basis of unit price code
string[] 1tl10618 = {"MG", "MG", "MG", "MG", "MG"}; //Product/Service ID qualifier
string[] it10719 = {"DJFR4", "JFJ49", "FEF33", "FEE43", "DISCOUNT"}; //Product/Service ID
(corresponds to it10618)
string[] txi01 GST = {"GS", "GS", "GS", "GS", "GS"}; //Tax type code
string[] txi02 GST = {"0.70", "1.75", "1.00", "0.80","0.00"}; //Monetary amount
string[] txi03 GST = {"", "", "", "" ""}; //Percent
string[] txi06_GST = {"",6 ", 6 "w, "w "}, //Tax exempt code
string[] txiOl PST = {"PG", "PG", "PG","PG","PG"}; //Tax type code
string[] txi02 PST = {"0.80", "2.00", "1.00", "0.80","0.00"}; //Monetary amount
string[] txi03 PpST = {"", "",6 "", 6 "" ""}; //Percent
string[] txi0O6 PST = {"", "",6 "", "w "r}; //Tax exempt code
string[] pam05 = {"11.50", "28.75", "10.62", "11.50", "-10.00"}; //Extended line-item amount
string[] pid05 = {"Stapler", "Lamp", "Bottled Water", "Fountain Pen", "DISCOUNT"}; //Line item
description
AxItl106s[] itl06s = {new AxItl06s(), new AxItl06s(), new AxItl06s(), new AxItl06s(), new AxItl06s
0O}
it106s[0].SetIt10618(it10618[0]);
it106s[0].SetItl10719(it10719[01);
it106s[1].SetItl10618(it10618[1]);
it106s[1].SetItl10719(it10719[1]);
it106s[2].SetItl10618(it10618[2]);
it106s[2].SetItl10719(it107191[2]);
it106s[3].SetItl10618(it10618[31);
it106s[3].SetItl10719(it107191[3]);
it106s[4].SetIt10618(it10618[4]);
it106s[4].SetItl10719(it107191[4]);
AxTxi[] txi = {new AxTxi(), new AxTxi(), new AxTxi(), new AxTxi(), new AxTxi()};
txi[0].SetTxi (txi01 GST[0], txi02 GST[0], txi03 GST[0], txi06 GST[0]
txi[0].SetTxi (txi01 PST[0], txi02 PST[0], txi03 PST[O], txiO6_PST[O]),
txi[1].SetTxi (txi01 GST[1], txi02 GST[1], txi03 GST[1l], txi06 GSTI[1]);
txi[1l].SetTxi (txi01 PST([1], txi02 PST[1], txi03 PST[1], txiO6 PSTI[1]);
txi[2].SetTxi (txi01 GST[2], txi02 GST[2], txi03 GST[2], txi06 GST[2]);
txi[2].SetTxi (txi01 PST[2], txi02 PST[2], txi03 PST[2], txi06 PST[2]);
txi[3].SetTxi (txi01 GST[3], txi02 GST[3], txi03 GST[3], txi06 GST[3]);
txi[3].SetTxi (txi01 PST[3], txi02 PST[3], txi03 PST[3], txi06 PST[3]);
txi[4].SetTxi (txi01 GST[4], txi02 GST[4], txi03 GST[4], txi06 GST[4]);
txi[4].SetTxi (txi01 PST[4], txi02 PST[4], txi03 PST[4], txi06 PST[4]);
AxItlLoop itlLoop = new AxItlLoop();
itlLoop.SetItlLoop (it102[0], 1t103[0], itl104[0], itl05[0], itl06s[0], txi[0], pam05[0], pid05[0]);
itlLoop.SetItlLoop (it102[1], itl03[1], itl1l04[1], itl05[1], itlO06s[1l], txi[l], pamO05[1], pid05[1]);
itlLoop.SetItlLoop (it102([2], 1tl103[2], itl04[2], itl05[2], itl06s[2], txi[2], pam05[2], pid05[2]);
itlLoop.SetItlLoop (it102([3], 1tl103[3], itl04[3], itl05[3], itl06s[3], txi[3], pam05[3], pid05[3]);
itlLoop.SetItlLoop (1it102[4], it103[4], itl04[4], 1itl105[4], itl06s[4], txi[4], pam05[4], pid05[4]);
AxTable?2 table2 = new AxTable2();
table2.SetItlLoop (itlLoop) ;
//Create Table 3 with details
AxTxi taxTbl3 = new AxTxi();
taxTbl3.SetTxi ("GS", "4.25","","™); //sum of GST taxes
taxTbhl3.SetTxi ("PG", "4.60","",""); //sum of PST taxes
Page 231 of 476 November 2018

7 Level 2/3 Transactions

Sample AX Completion

taxTbl3.SetTxi ("TX", "8.85","","™); //sum of all taxes
AxTable3 table3 = new AxTable3();
table3.SetTxi (taxTbl3) ;

//Create and Set Level23 Object

AxLevel23 level23 = new AxLevel23();
level23.SetTablel (tablel) ;

level23.SetTable2 (table?) ;

level23.SetTable3 (table3) ;

AxCompletion axCompletion = new AxCompletion();
axCompletion.SetOrderId(order id);
axCompletion.SetCompAmount (comp amount) ;
axCompletion.SetTxnNumber (txn number) ;
axCompletion.SetCryptType (crypt) ;
axCompletion.SetAxLevel23 (level23) ;
HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq. SetProcCountryCode (processing country code);
mpgReq.SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld (store id);
mpgReq.SetApiToken (api token);

mpgReq. SetTransaction (axCompletion) ;
mpgReq.SetStatusCheck (status_check) ;
mpgReq.Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("CardType = " + receipt.GetCardType()):
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId())
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime())
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode());

Console.ReadLine() ;

}

catch (Exception e)

{

Console.WriteLine (e);

}

— e

7.4.5 AX Force Post

The AX Force Post transaction is used to secure the funds locked by a pre-authorization transaction per-
formed over IVR or equivalent terminal. When sending an AX Force Post request, you will need the order
ID, amount, credit card number, expiry date, authorization code and e-commerce indicator.

November 2018 Page 232 of 476

Moneris Gateway API - Integration Guide

AX Force Post transaction object definition

AxForcePost axForcePost =

HttpsPostRequest object for AX Force Post transaction

HttpsPostRequest mpgReqg =

new AxForcePost () ;

mpgReq.SetTransaction (axForcePost) ;

AX Force Post transaction object values

new HttpsPostRequest();

Table 1 AX Force Post transaction object mandatory values

Order ID String 50-character alpha- axForcePost.SetOrderId
numeric (order id);

Amount String 9-character decimal axForcePost.SetAmount

(amount) ;

Credit card number String 20-character alpha- axForcePost.SetPan (pan) ;
numeric

Expiry date String 4-character alpha- axForcePost.SetExpdate
numeric (expiry date);
(YYMM format)

Authorization code String 8-character alpha- axForcePost.SetAuthCode
numeric (auth code);

E-commerce indicator | String 1-character alpha- axForcePost.SetCryptType
numeric (crypt);

Level 2/3 Data Object | n/a axForcePost.SetAxLevel23

(level23d);

Table 2 AX Force Post transaction object optional values

Customer ID

String

50-character alpha-
numeric

axForcePost.SetCustId(cust

id);

Page 233 of 476

November 2018

7 Level 2/3 Transactions

Sample AX Force Post

namespace Moneris

{

using System;

using System.Collections;

using System.Text;

public class TestAxForcePost

{

public static void Main(string[] args)

{

string store id = "moneris";
string api token = "hurgle";
string processing country code = "CA";

bool status check = false;

string order id="Test" + DateTime.Now.ToString("yyyyMMddhhmmss") ;
string cust id="CUST13343";

string amount="62.37";

string pan="373269005095005";

string expiry date="2012"; //YYMM

string auth code="123456";

string crypt="7";

//Create Table 1 with details
string nl101 = "R6"; //Entity ID Code

string nl02 = "Retailing Inc. International"; //Name
string n301 = "919 Oriole Rd."; //Address Line 1
string n401 = "Toronto"; //City

string n402 = "On"; //State or Province

string n403 = "HIT6W3"; //Postal Code

string[] ref0l = {"4C", "CR"}; //Reference ID Qualifier
string[] ref02 = {"M5T3A5", "16802309004"}; //Reference ID
string big04 "PO7758545"; //Purchase Order Number

string big05 = "RN0049858"; //Release Number

string biglO "INV99870E"; //Invoice Number

AxRef axRefl new AxRef ();

axRefl.SetRef (ref01[0], ref02[0]);

axRefl.SetRef (ref01[1], ref02[1]);

AxNlLoop nlLoop = new AxNlLoop();

nlLoop.SetNlLoop (nl10l, nl02, n301, n401, n402, n403, axRefl);
AxTablel tablel = new AxTablel ();

tablel.SetBig04 (big04) ;
tablel.SetBig05 (big05) ;
tablel.SetBiglO (biglO) ;
tablel.SetN1lLoop (nlLoop) ;

//Create Table 2 with details
//the sum of the extended amount field (pam05) must equal the level 1 amount field

string[] it102 = {"1", "1", "1", "1", "1"}; //Line item quantity invoiced

string[] itl103 = {"EA", "EA", "EA", "EA", "EA"}; //Line item unit or basis of measurement code
string[] itl104 = {"10.00", "25.00", "8.62", "10.00", "-10.00"}; //Line item unit price
string[] itl105 = {"", "", "", "", "}, //Line item basis of unit price code

string[] itl10618 = {"MG", "MG", "MG", "MG", "MG"}; //Product/Service ID qualifier

string[] 1t10719 = {"DJFR4", "JFJ49", "FEF33", "FEE43", "DISCOUNT"}; //Product/Service ID
(corresponds to it10618)

string[] txiOl1 GST = {"Gs", "GS", "GS", "GS", "GS"}; //Tax type code
string[] txi02 GST = {"0.70", "1.75", "1.00", "0.80","0.00"}; //Monetary amount

November 2018 Page 234 of 476

Moneris Gateway API - Integration Guide

Sample AX Force Post

string[] txi03 GST = {"", ", "",6 "" ""}; //Percent
string[] txi0O6 GST = {"", "",6 "", """ ""}; //Tax exempt code
string[] txiOl1 PST = {"PG", "PG", "PG","PG","PG"}; //Tax type code
string[] txi02 PST = {"0.80", "2.00", "1.00", "0.80","0.00"}; //Monetary amount
string[] txi03_PST = {"", "",6 "", "" ""}; //Percent
string[] txi0O6 PST = {"", "",6 "", "w "v}; //Tax exempt code
string[] pam05 = {"11.50", "28.75", "10.62", "11.50", "-10.00"}; //Extended line-item amount
string[] pid05 = {"Stapler", "Lamp", "Bottled Water", "Fountain Pen", "DISCOUNT"}; //Line item
description
AxItl06s[] 1tl1l06s = {new AxItl06s(), new AxItl06s(), new AxItl06s(), new AxItl06s(), new AxItl06s
01}:
it106s[0].SetIt10618(1it10618[017);
it106s[0].SetItl10719(it10719[0]);
it106s[1].SetItl0618(1it10618[11);
it106s[1].SetItl0719(it10719[11);
it106s[2].SetItl10618(it10618[2]);
it106s[2].SetItl10719(it10719[2]);
it106s[3]1.SetItl10618(it10618[3]);
1t106s[3].SetItl10719(1t107191[31);
1it106s[4].SetIt10618(it10618[4]);
1it106s[4].SetItl0719(1it10719141);
AxTxi[] txi = {new AxTxi (), new AxTxi (), new AxTxi (), new AxTxi (), new AxTxi()};
txi[0].SetTxi (txi01 GST[0], txi02 GST[0], txi03 GST[0], txi06 GSTI[O0]
txi[0].SetTxi (txi01 PST[0], txi02 PST[0], txi03 PST[O], txiO6_PST[O]),
txi[1].SetTxi (txi01 GST[1], txi02 GST[1], txi03 GST[1], txi06 GST[1]);
txi[1l].SetTxi (txi01 PST([1], txi02 PST[1], txi03 PST[1], txiO6 PST[1]);
txi[2].SetTxi (txi01 GST[2], txi02 GST[2], txi03 GST[2], txi06 GSTI[2]);
txi[2].SetTxi (txi01 PST[2], txi02 PST[2], txi03 PST[2], txi06 PST[2]);
txi[3].SetTxi (txi01 GST[3], txi02 GST[3], txi03 GST[3], txi06 GSTI[3]);
txi[3].SetTxi (txi01 PST[3], txi02 PST[3], txi03 PST[3], txi06 PST[3]);
txi[4].SetTxi (txi01l GST[4], txi02 GST[4], txi03 GST[4], txi06 GST[4]);
txi[4].SetTxi (txi01 PST[4], txi02 PST[4], txi03 PST[4], txiO6 PST[4]);
AxItlLoop itlLoop = new AxItlLoop();
itlLoop.SetItlLoop (itl102[0], 1t103[0], itl04[0], 1itl05[0], itl0e6s[0], txi[0], pam05[0], pPid05[0]);
itlLoop.SetItlLoop(itl102[1], itl03[1], itl04[1], itl05[1], itlOe6s[l], txi[l], pam05[1], pid05[1]);
itlLoop.SetItlLoop(it102[2], 1t103[2], 1tl04[2], itl05[2], itl06s[2], txi[2], pam05[2], pid05[2]1);
itlLoop.SetItlLoop (it102[3], 1tl03[3], itl04[3], 1itl05[3], itl06s[3], txi[3], pam05[3], pid05[3]);
itlLoop.SetItlLoop(it102[4], 1t103[4], 1t104[4], itl105[4], itl06s[4], txi[4], pam05[4], pid05[4]);
AxTable2 table2 = new AxTable2();
table2.SetItlLoop (itlLoop) ;
//Create Table 3 with details
AxTxi taxTbl3 = new AxTxi();
taxTbl3.SetTxi ("GS", "4.25","",""™); //sum of GST taxes
taxTbl3.SetTxi ("PG", "4.060","","™); //sum of PST taxes
taxTbl3.SetTxi ("TX", "8.85","","™); //sum of all taxes
AxTable3 table3 = new AxTable3();
table3.SetTxi (taxTbl3) ;
AxLevel23 level23 = new AxLevel23();
level23.SetTablel (tablel) ;
level23.SetTable2 (table?) ;
level23.SetTable3 (table3);
AxForcePost axForcePost = new AxForcePost();
Page 235 of 476 November 2018

7 Level 2/3 Transactions

Sample AX Force Post

axForcePost.SetOrderId(order id);
axForcePost.SetCustId(cust id);
axForcePost.SetAmount (amount) ;
axForcePost.SetPan (pan) ;
axForcePost.SetExpDate (expiry date);
axForcePost.SetAuthCode (auth_code) ;
axForcePost.SetCryptType (crypt) ;
axForcePost.SetAxLevel23 (level23) ;

HttpsPostRequest mpgReq = new HttpsPostRequest() ;
mpgReq.SetProcCountryCode (processing country code);
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api_ token);

mpgReq. SetTransaction (axForcePost) ;

mpgReq. SetStatusCheck (status check) ;

mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WritelLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WritelLine ("BankTotals = " + receipt.GetBankTotals());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime());
Console.WritelLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode());

Console.ReadLine() ;

}

catch (Exception e)

{

Console.WriteLine (e);

}

— e

7.4.6 AX Purchase Correction

The AX Purchase Correction (Void) transaction is used to cancel a transaction that was performed in the
current batch. No amount is required because a void is always for 100% of the original transaction. The
only transaction that can be voided using AX Purchase Correction is AX Completion and AX Force Post.
To send an AX Purchase Correction the Order ID and transaction number from the AX Completion or AX
Force Post are required.

November 2018 Page 236 of 476

Moneris Gateway API - Integration Guide

AX Purchase Correction transaction object definition

AxPurchaseCorrection axPurchaseCorrection = new AxPurchaseCorrection();

HttpsPostRequest object for AX Purchase Correction transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (axPurchaseCorrection) ;

AX Purchase Correction transaction object values

Table 1 AX Purchase Correction transaction object mandatory values

Order ID String 50-character alpha- axPurchaseCorrection
nhumeric .SetOrderId(order id);

Transaction number String 255-character alpha- axPurchaseCorrection
numeric .SetTxnNumber (txn number) ;

E-commerce indicator | String 1-character alpha- axPurchaseCorrection
numeric .SetCryptType (crypt) ;

AX Purchase Correction

namespace Moneris

{

using System;

using System.Collections;

using System.Text;

public class TestAxPurchaseCorrection
{

public static void Main(string[] args)

{

string store id = "moneris";
string api_token = "hurgle";
string processing country code = "CA";

bool status_check = false;

string order id="Test20170119104952";

string txn number = "660117311852017019104953104-0_11";

string crypt="7";

AxPurchaseCorrection axPurchaseCorrection = new AxPurchaseCorrection();
axPurchaseCorrection.SetOrderId(order_ id);
axPurchaseCorrection.SetTxnNumber (txn number) ;
axPurchaseCorrection.SetCryptType (crypt) ;

HttpsPostRequest mpgReq = new HttpsPostRequest() ;

mpgReq. SetProcCountryCode (processing country code) ;

mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);

mpgReq.SetApiToken (api token) ;

mpgReq. SetTransaction (axPurchaseCorrection);

Page 237 of 476 November 2018

7 Level 2/3 Transactions

AX Purchase Correction

mpgReq.SetStatusCheck (status check) ;
mpgReq. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("CardType " + receipt.GetCardType());
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode " + receipt.GetAuthCode()) ;
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime())
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut " + receipt.GetTimedOut());
Console.WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode()) ;
Console.ReadLine () ;

}

catch (Exception e)

{

Console.

}

}
}
}

WriteLine (e);

7.4.7 AX Refund

The AX Refund will credit a specified amount to the cardholder’s credit card. A refund can be sent up to
the full value of the original AX Completion or AX Force Post. To send an AX Refund you will require the
Order ID and transaction number from the original AX Completion or AX Force Post.

AX Refund transaction object definition

AxRefund axRefund = new AxRefund();

HttpsPostRequest object for AX Refund transaction

HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq.SetTransaction (axRefund) ;

November 2018

Page 238 of 476

Moneris Gateway API - Integration Guide

AX Refund transaction object values

Table 1 AX Refund transaction object mandatory values

Order ID String 50-character alpha- axRefund.SetOrderId (order_
numeric 1d);

Transaction number String 255-character alpha- axRefund.SetTxnNumber (txn_
numeric number) ;

Amount String 9-character decimal axRefund.SetAmount (amount) ;

E-commerce indicator | String 1-character alpha- axRefund.SetCryptType
numeric (crypt);

Level 2/3 Data Object | n/a axRefund.SetAxLevel23

(level23);

Sample AX Refund

namespace Moneris

{

using System;

using System.Collections;

using System.Text;

public class TestAxRefund

{

public static void Main(string[] args)

{

string store id = "moneris";
string api token "hurgle";
string processing country code = "CA";

bool status check = false;

string order id="ord-210916-12:06:38";
string amount="62.37";

string txn number = "18924-4 11";
string crypt="7";

//Create Table 1 with details
string nl0l = "R6"; //Entity ID Code

string nl02 = "Retailing Inc. International"; //Name
string n301 = "919 Oriole Rd."; //Address Line 1
string n401 = "Toronto"; //City

string n402 = "On"; //State or Province

string n403 = "H1T6W3"; //Postal Code

string[] ref0l = {"4C", "CR"}; //Reference ID Qualifier
string[] ref02 = {"M5T3A5", "16802309004"}; //Reference ID
string big04 = "P0O7758545"; //Purchase Order Number

string big05 = "RN0049858"; //Release Number

string biglO0 "INV99870E"; //Invoice Number

AxRef axRefl = new AxRef();

Page 239 of 476 November 2018

7 Level 2/3 Transactions

Sample AX Refund

axRefl.SetRef (re
axRefl.SetRef (re
AxN1Loop nlLoop
nlLoop.SetN1lLoop
AxTablel tablel
tablel.SetBig04 (
tablel.SetBig05 (
tablel.SetBiglO (
tablel.SetNlLoop

//Create Table 2
//the sum of the

f01[0], ref02
f01[1], ref02
= new AxN1Loo
(n101, nl02,

= new AxTable
big04) ;
big05) ;
bigl0) ;
(nlLoop) ;

with details
extended amo

[01)
[])
p ()7

n301,
107

n401l, n402, n403, axRefl);

unt field

(pam05) must equal the level 1 amount field

string[] it102 = {"1", "1", "1", "1", "1"}; //Line item quantity invoiced
string[] it103 = {"EA", "EA", "EA", "EA", "EA"}; //Line item unit or basis of measurement code
string[] it104 = {"10.00", "25.00", "8.62", "10.00", "-10.00"}; //Line item unit price
string[] itl105 = {"", "", ", "", ""}. //Line item basis of unit price code
string[] it10618 = {"MG", "MG", "MG", "MG", "MG"}; //Product/Service ID qualifier
string[] it10719 = {"DJFR4", "JFJ49", "FEF33", "FEE43", "DISCOUNT"}; //Product/Service ID
(corresponds to it10618)
string[] txiOl GST = {"GS", "Gs", "Gs", "GS", "GS"}; //Tax type code
string[] txi02 GsT = {"0.70", "1.75", "1.00", "0.80","0.00"}; //Monetary amount
string[] txi03 GST = {"", "", "", "" ""}; //Percent
string[] txiO6_GST = {"", "",6 "", "" ""}; //Tax exempt code
string[] txiOl PST = {"PG", "PG", "PG","PG","PG"}; //Tax type code
string[] txi02 PST = {"0.80", "2.00", "1.00", "0.80","0.00"}; //Monetary amount
string[] txi03 PST = {"", "",6 "", "" "v}; //Percent
string[] txi06_PST = {"", "m,6 "mw, "w "}, //Tax exempt code
string[] pam05 = {"11.50", "28.75", "10.62", "11.50", "-10.00"}; //Extended line-item amount
string[] pid05 = {"Stapler", "Lamp", "Bottled Water", "Fountain Pen", "DISCOUNT"}; //Line item
description
AxItl1l06s[] 1tl1l06s = {new AxItl106s(), new AxIt106s(), new AxItl06s(), new AxItl06s(), new AxItl06s
01}:
it106s[0].SetIt10618(it10618[01]);
it106s[0].SetItl10719(it107191[0]);
it106s[1].SetItl10618(it10618[1]);
itl106s[1].SetItl10719(it10719[1]1);
it106s[2].SetIt10618(it10618[2]);
it106s[2].SetItl10719(itl107191[2]);
it106s[3].SetItl10618(it10618[3]);
it106s[3]1.SetItl10719(it107191[3]);
it106s[4].SetItl10618(it10618[4]);
it106s[4].SetIt10719(1it10719[4]);
AxTxi[] txi = {new AxTxi(), new AxTxi(), new AxTxi(), new AxTxi(), new AxTxi()};
txi[0].SetTxi (txi01 GST[0], txi02 GST[0], txi03 GST[0], txi06 GST[0]
txi[0].SetTxi (txi01 PST[0], txi02 PST[O0], txi03 PST[O], tXiO67PST[O]),
txi[1].SetTxi (txi01 GST[1], txi02 GST[1], txi03 GST[1], txi06 GST[1]);
txi[1].SetTxi (txi01 PST[1], txi02 PST[1], txi03 PST[1], txi06 PST[1]);
txi[2].SetTxi (txi01 GST[2], txi02 GST[2], txi03 GST[2], txi06 GST[2]);
txi[2].SetTxi (txi01 PST([2], txi02 PST[2], txi03 PST[2], txiO6 PST[2]);
txi[3].SetTxi (txi01 GST[3], txi02 GST[3], txi03 GST[3], txi06 GST[3]);
txi[3].SetTxi (txi01 PST[3], txi02 PST[3], txi03 PST[3], txi06 PST[3]);
November 2018 Page 240 of 476

Moneris Ga

teway API - Integration Guide

Sample AX Refund

txi[4].
txi[4].
AxItlLo

itlLoop.
itlLoop.
itlLoop.
itlLoop.
itlLoop.

AxTable
table2.
//Creat
AxTxi t
taxTbl3
taxTbl3
taxTbl3
AxTable
table3.

//Creat
AxLevel
level23
level23
level23
AxRefun
axRefun
axRefun
axRefun
axRefun
axRefun
HttpsPo
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
try

{
Receipt

Console.

Console
Console
Console
Console

Console.

Console
Console

Console.

Console

Console.

Console
Console
Console
Console
Console

Console.

Console

}

SetTxi (txi01 GST[4], txi02 GST[4], txi03 GST[4], txi06 GST[4]);

SetTxi (txi01 PST[4], txi02 PST[4], txi03 PST[4], txi06 PST[4]);

op itlLoop = new AxItlLoop();

SetItlLoop(itl102[0], 1t103[0], itl1l04[0], 1tl1l05[0], itl06s[0], txi[0], pam05[0], pPid05[0]
SetItlLoop(itl102[1], itl03[1], itl04[1], itl05[1], itlO0eés[l], txi[l], pam05[1], pPid05[1]
SetItlLoop(itl02[2], 1tl03[2], itl04[2], 1itl05[2], itlO06s[2], txi[2], pam05[2], pid05[2]);
SetItlLoop (it102[3], 1tl103[3], 1itl1l04[3], 1tl05[3], itl06s[3], txi[3], pam05[3], pid05[3])
SetItlLoop (itl102[4], 1tl103[4], itl1047[4]1, 1itl05[4], itl0e6s[4], txi[4], pam05[4], pid05[4]
2 table2 = new AxTable2();

SetItlLoop (itlLoop) ;

e Table 3 with details

axTbl3 = new AxTxi();

.SetTxi ("GS", "4.25","",""); //sum of GST taxes

.SetTxi ("PG", "4.60","","™); //sum of PST taxes

.SetTxi ("TX", "8.85","",""); //sum of all taxes

3 table3 = new AxTable3();

SetTxi (taxTbl3) ;

e and Set Level23 Object

23 level23 = new AxLevel23();

.SetTablel (tablel) ;

.SetTable?2 (table2) ;

.SetTable3 (tablel);

d axRefund = new AxRefund();
d.SetOrderId(order id);

d.SetAmount (amount) ;

d.SetTxnNumber (txn_number) ;

d.SetCryptType (crypt) ;

d.SetAxLevel23 (level23);

stRequest mpgReqg = new HttpsPostRequest () ;
SetProcCountryCode (processing country code);
SetTestMode (true); //false or comment out this line for production transactions
SetStoreld(store id);
SetApiToken (api_ token);

SetTransaction (axRefund) ;
SetStatusCheck (status check) ;

Send () ;

receipt = mpgReq.GetReceipt () ;

WritelLine ("CardType = " + receipt.GetCardType());
.WriteLine ("TransAmount = " + receipt.GetTransAmount ());
.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
.WriteLine ("ReceiptId = " + receipt.GetReceiptId());
.WriteLine ("TransType = " + receipt.GetTransType());
WriteLine ("ReferenceNum = " + receipt.GetReferenceNum());
.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
.WriteLine ("ISO = " + receipt.GetISO());

WriteLine ("BankTotals = " + receipt.GetBankTotals());
.WriteLine ("Message = " + receipt.GetMessage());

WriteLine ("AuthCode = " + receipt.GetAuthCode());
.WriteLine ("Complete = " + receipt.GetComplete());
.WritelLine ("TransDate = " + receipt.GetTransDate());
.WritelLine ("TransTime = " + receipt.GetTransTime()) ;
.WriteLine ("Ticket = " + receipt.GetTicket());

.WriteLine ("TimedOut = " + receipt.GetTimedOut ());
WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode());

.ReadLine () ;

Page 241 of 476 November 2018

7 Level 2/3 Transactions

Sample AX Refund

catch (Exception e)

{

Console.WriteLine (e);

}

}
}
}

7.4.8 AX Independent Refund

The AX Independent Refund will credit a specified amount to the cardholder’s credit card. The inde-
pendent refund does not require an existing order to be logged in the Moneris Gateway; however, the
credit card number and expiry date will need to be passed.

AX Independent Refund transaction object definition

AxIndependentRefund axIndependentRefund = new AxIndependentRefund();

HttpsPostRequest object for AX Independent Refund transaction
HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (axIndependentRefund) ;

AX Independent Refund transaction object values

Table 1 AX Independent Refund transaction object mandatory values

Order ID String 50-character alpha- axIndependentRefund
.SetOrderId(order id);

numeric
Amount String 9-character decimal axIndependentRefund
.SetAmount (amount) ;
Credit card number String | 20-character alpha- axIndependentRefund.SetPan
numeric (pan);
Expiry date String 4-character alpha- axIndependentRefund
numeric .SetExpdate (expiry date);

(YYMM format)

E-commerce indicator | String 1-character alpha- axIndependentRefund
numeric .SetCryptType (crypt) ;

November 2018 Page 242 of 476

Moneris Gateway API - Integration Guide

Table 2 AX Independent Refund transaction object optional values

Customer ID String 50-character alpha- axIndependentRefund
numeric .SetCustId(cust_id);

Sample AX Independent Refund

namespace Moneris

{

using System;

using System.Collections;

using System.Text;

public class TestAxIndependentRefund

{

public static void Main (string[] args)

{

string store id = "moneris";
string api token = "hurgle";
string processing country code = "CA";

bool status_check = false;

string order id="Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;
string cust id="CUST13343";

string amount="62.37";

string pan="373269005095005";

string expiry date="2012"; //YYMM

string crypt="7";

//Create Table 1 with details
string nl101 = "R6"; //Entity ID Code

string nl02 = "Retailing Inc. International"; //Name
string n301 = "919 Oriole Rd."; //Address Line 1
string n401 = "Toronto"; //City

string n402 = "On"; //State or Province

string n403 = "HIT6W3"; //Postal Code

string[] ref0l = {"4C", "CR"}; //Reference ID Qualifier
string[] ref02 = {"M5T3A5", "16802309004"}; //Reference ID
string big04 = "PO7758545"; //Purchase Order Number

string big05 = "RN0049858"; //Release Number

string bigl0 = "INV99870E"; //Invoice Number

AxRef axRefl = new AxRef();

axRefl.SetRef (ref01[0], ref02[0]);
axRefl.SetRef (ref01[1], ref02[1]);
AxNl1Loop nlLoop = new AxNI1Loop();

nlLoop.SetNlLoop (nl10l, nl02, n301, n401, n402, n403, axRefl);
AxTablel tablel = new AxTablel ();

tablel.SetBig04 (big04) ;

tablel.SetBig05 (big05) ;

tablel.SetBiglO (bigl0) ;

tablel.SetNlLoop (nlLoop) ;

//Create Table 2 with details

//the sum of the extended amount field (pam05) must equal the level 1 amount field

string[] it102 = {"1", "1", "1", "1", "1"}; //Line item quantity invoiced

string[] it103 = {"EA", "EA", "EA", "EA", "EA"}; //Line item unit or basis of measurement code
string[] itl104 = {"10.00", "25.00", "8.62", "10.00", "-10.00"}; //Line item unit price

Page 243 of 476 November 2018

7 Level 2/3 Transactions

Sample AX Independent Refund

string[] itl105 = {"", "", "", "', ""}; //Line item basis of unit price code

string[] it10618 = {"MG", "MG", "MG", "MG", "MG"}; //Product/Service ID qualifier

string[] 1t10719 = {"DJFR4", "JFJ49", "FEF33", "FEE43", "DISCOUNT"}; //Product/Service ID
(corresponds to it10618)

string[] txiOl GST = {"GS", "Gs", "GsS", "GS", "GS"}; //Tax type code

string[] txi02 GST = {"0.70", "1.75", "1.00", "0.80","0.00"}; //Monetary amount

string[] txi03_GST = {"", "", "", "",""}; //Percent

string[] txi0O6 GST = {"", "",6 "", "" ""}; //Tax exempt code

string[] txiOl1 PST = {"PG", "PG", "PG","PG","PG"}; //Tax type code

string[] txi02 PST = {"0.80", "2.00", "1.00", "0.80","0.00"}; //Monetary amount

string[] txi03_PST = {"", "m,6 "", "w, ""}; //Percent

string[] txiO6 PST = {"",6 ", 6 "", "w ""}; //Tax exempt code

string[] pam05 = {"11.50", "28.75", "10.62", "11.50", "-10.00"}; //Extended line-item amount
string[] pid05 = {"Stapler", "Lamp", "Bottled Water", "Fountain Pen", "DISCOUNT"}; //Line item
description

AxItl06s[] itl06s = {new AxIt1l06s(), new AxItl06s(), new AxItl06s(), new AxItl06s(), new AxItl06s
01}:

it106s[0].SetIt10618(1it10618[01]);

it106s[0].SetItl10719(it107191[0]);

it106s[1].SetIt10618(1it10618[11);

it106s[1].SetIt10719(it10719[1]);

it106s[2].SetItl0618(1t10618[2]);

it106s[2].SetItl0719(it10719[21);

it106s[3].SetIt10618(it10618[3]);

1t106s[3].SetItl10719(1t107191[31]);

it106s[4].SetIt10618(it10618[4]);

1t106s[4].SetItl10719(1t10719141);

AxTxi[] txi = {new AxTxi(), new AxTxi(), new AxTxi(), new AxTxi (), new AxTxi()};

txi[0].SetTxi (txi01 GST[0], txi02 GST[0], txi03 GST[0], txi06 GSTI[O0]

txi[0].SetTxi (txi01 PST[0], txi02 PST[O0], txi03 PST[O], txiO6_PST[O]),

txi[1].SetTxi (txi01 _GST[1], txiOZ_GST[l], txi03 _GST[1], tXiO6_GST[l]),

txi[1].SetTxi (txi01 PST[1], txi02 PST[1], txi03 PST[1], txiO6 PST[1]);

txi[2].SetTxi (txi01 GST[2], txi02 GST[2], txi03 GST[2], txi06 GST[2]);

txi[2].SetTxi (txi01 PST[2], txi02 PST[2], txi03 PST[2], txi06 PST[2]);

txi[3].SetTxi (txi01 GST[3], txi02 GST[3], txi03 GST[3], txi06 GSTI[3]);

txi[3].SetTxi (txi01 PST[3], txi02 PST[3], txi03 PST[3], txiO6 PST[3]);

txi[4].SetTxi (txi01 GST[4], txi02 GST[4], txi03 GST[4], txi06 GST[4]);

txi[4].SetTxi (txi01 PST([4], txi02 PST[4], txi03 PST[4], txiO6 PST[4]);

AxItlLoop itlLoop = new AxItlLoop();

itlLoop.SetItlLoop(it102[0], 1t103[0], 1tl1l04[0], itl05[0], itl06s[0], txi[0], pam05[0], pid05[01);
itlLoop.SetItlLoop (itl102[1], itl03[1], itl04[1], itl05[1], itlOe6s[l], txi[l], pam05[1], pid05[1]);
itlLoop.SetItlLoop(itl102([2], 1t103[2], 1itl04[2], itl05[2], itl06s[2], txi[2], pam05[2], pid05[2]1);
itlLoop.SetItlLoop (itl102[3], 1tl03[3], itl04[3], 1tl05[3], itl06s[3], txi[3], pam05[3], pid05[3]);
itlLoop.SetItlLoop (it102[4], 1itl103[4], itl1047[4]1, itl05[4], itl0e6s[4], txi[4], pam05[4], pid05[4]);

AxTable2 table2 new AxTable2();
table2.SetItlLoop (itlLoop) ;
//Create Table 3 with details
AxTxi taxTbl3 = new AxTxi();
taxTbl3.SetTxi ("GS", "4.25","","™);
taxTbl3.SetTxi ("PG", "4.60","","™);
taxTbl3.SetTxi ("TX", "8.85","","");

//sum of GST
//sum of PST
//sum of all

taxes
taxes
taxes

November 2018

Page 244 of 476

Moneris Gateway API - Integration Guide

Sample AX Independent Refund

AxTable3 table3 = new AxTable3();

table3.

SetTxi (taxTbl3) ;

//Create and Set Level23 Object

AxLevel
level23
level23
level23

23 level23 = new AxLevel23();
.SetTablel (tablel);
.SetTable?2 (table2) ;
.SetTable3 (table3);

AxIndependentRefund axIndependentRefund = new AxIndependentRefund();
axIndependentRefund.SetOrderId(order id);
axIndependentRefund.SetCustId(cust id);

axIndependentRefund. SetAmount (amount) ;
axIndependentRefund. SetPan (pan) ;
axIndependentRefund.SetExpDate (expiry date);
axIndependentRefund.SetCryptType (crypt) ;
axIndependentRefund. SetAxLevel23 (level23) ;
HttpsPostRequest mpgReq = new HttpsPostRequest() ;
mpgReq.SetProcCountryCode (processing country code);
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api_ token);
mpgReq. SetTransaction (axIndependentRefund) ;
mpgReq. SetStatusCheck (status check) ;
mpgReq. Send () ;
try
{
Receipt receipt = mpgReq.GetReceipt () ;
Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WritelLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());
Console.WritelLine ("BankTotals = " + receipt.GetBankTotals());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime());
Console.WritelLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut ());
Console.WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode());
Console.ReadLine() ;
}
catch (Exception e)
{
Console.WriteLine (e);
}
}
}
}

Page 245 of 476 November 2018

8 MPI

o 8.1 About MPI Transactions

o 8.2 3-D Secure Implementations (VbV, MCSC, SafeKey)
o 8.3 Activating VbV and MCSC

o 8.4 Activating Amex SafeKey

o 8.5 Transaction Flow for MPI

e 8.6 MPI Transactions

8.1 About MPI Transactions

The Moneris Gateway can enable transactions using the 3-D Secure protocol via Merchant Plug-In (MPI)
and Access Control Server (ACS) .

Moneris Gateway supports the following 3-D Secure implementations:

o Verified by Visa (VbV)
e Mastercard Secure Code (MCSC)
o American Express SafeKey (applies to Canadian integrations only)

8.2 3-D Secure Implementations (VbV, MCSC, SafeKey)

Verified by Visa (VbV), MasterCard Secure Code (MCSC) and American Express SafeKey are programs
based on the 3-D Secure Protocol to improve the security of online transactions.

These programs involve authentication of the cardholder during an online e-commerce transaction.
Authentication is based on the issuer’s selected method of authentication.

The following are examples of authentication methods:

¢ Risk-based authentication
o Dynamic passwords
o Static passwords.

Some benefits of these programs are reduced risk of fraudulent transactions and protection against
chargebacks for certain fraudulent transactions.

Additional eFraud features

To further decrease fraudulent activity, Moneris also recommends implementing the following features:

o AVS: Address Verification Service (page 283)
o CVD: Card Validation Digits ().

November 2018 Page 246 of 476

Moneris Gateway API - Integration Guide

8.3 Activating VbV and MCSC

To integrate Verified by Visa and/or MasterCard Secure Code transaction functionality in your system,
call Moneris Sales Support to have Moneris enroll you in the program(s) and enable the functionality on
your account.

8.4 Activating Amex SafeKey

To Activate Amex SafeKey transaction functionality with your system via the Moneris Gateway API:

1.

8.5

Enrollin the SafeKey program with American Express

at: https://network.americanexpress.com/ca/en/safekey/index.aspx

Call your Moneris sales centre at 1-855-465-4980 to get Amex SafeKey functionality enabled on
your account.

Transaction Flow for MPI

Cardholder browser Merchant website

Visa Maoneris MPI

Figure 3: Transaction flow diagram

Cardholder enters the credit card number and submits the transaction information to the mer-
chant.

Upon receiving the transaction request, the merchant calls the MonerisMPI APl and passes a
TXN type request. For sample code please refer to MpiTxn Request Transaction (page 251),

The Moneris MPI receives the request, authenticates the merchant and sends the transaction
information to Visa, MasterCard or American Express.

Visa/MasterCard/Amex verifies that the card is enrolled and returns the issuer URL.

Moneris MPI receives the response from Visa, MasterCard or Amex and forwards the inform-
ation to the merchant.

The MonerisMPI APl installed at the merchant receives the response from the Moneris MPI.

If the responseis "Y" for enrolled, the merchant makes a call to the API, which opens a popup/in-
line window in the cardholder browser.

Ifthe response is “N” for not enrolled, a transaction could be sent to the processor identifying it
as VBV/MCSC/SafeKey attempted with an ECI value of 6.

Page 247 of 476 November 2018

8 MPI

Ifthe responseis “U” for unable to authenticate or the response times out, the transaction can
be sent to the processor with an ECl value of 7. The merchant can then choose to continue with
the transaction and be liable for a chargeback, or the merchant can choose to end the trans-
action.

7. The cardholder browser uses the URL that was returned from Visa/MasterCard/Amex via the mer-
chant to communicate directly to the bank. The contents of the popup are loaded and the card-
holder enters the PIN.

8. Theinformation is submitted to the bank and authenticated. A response is then returned to the
client browser.

9. Theclient browser receives the response from the bank, and forwards it to the merchant.

10. The merchant receives the response information from the cardholder browser, and passes an
ACS request type to the Moneris MPI API.

11. Moneris MPI receives the ACS request and authenticates the information. The Moneris MPI then
provides a CAVV value (getCavv()) and a crypt type (getMpiEciO) to the merchant.

Ifthe getSuccess() of the response is “true”, the merchant may proceed with the cavv purchase
or cavv preauth.

If the getSuccess() of the response is “false” and the getMessage() is “N”, the transaction must be
cancelled because the cardholder failed to authenticate.

If the getSuccess() of the response is “false” and the getMessage is “U”, the transaction can be
processed as a normal purchase or PreAuth; however in this case the merchant assumes liability
of a chargeback.

If the response times out, the transaction can be processed as a normal purchase or PreAuth;
however in this case the merchant assumes liability of a chargeback.

12. The merchant retrieves the CAVV value, and formats a cavv purchase or a cavv preauth request
using the method that is normally used. As part of this transaction method, the merchant must
pass the CAVV value and the crypt type.

8.6 MPI Transactions

Any of the transaction objects that are defined in this section can be passed to the HttpsPostRequest
connection object defined in Section 17.5 (page 381)here,

TXN
Sends the initial transaction data to the Moneris MPI to verify whether the card is enrolled.

The browser returns a PARes as well as a success field.

ACS
Passes the PARes (received in the response to the TXN transaction) to the Moneris MPI API.

Cavv Purchase
After receiving confirmation from the ACS transaction, this verifies funds on the customer’s
card, removes the funds and prepares them for deposit into the merchant’s account.

Cavv Pre-Authorization
After receiving confirmation from the ACS transaction, this verifies and locks funds on the cus-
tomer’s credit card. The funds are locked for a specified amount of time based on the card
issuer.

November 2018 Page 248 of 476

Moneris Gateway API - Integration Guide

To retrieve the funds that have been locked by a Pre-Authorization transaction so that they
may be settled in the merchant’s account, a basic Completion transaction (Page 25) must be
performed. A PreAuthorization transaction may only be "completed" once.

NOTE: Cavv Purchase and Cavv Pre-Authorization transactions are also used to process
Apple Pay and Android Pay transactions. For further details on how to process these wallet
transactions, please refer to 10 Apple Pay In-App and on the Web Integration.

8.6.1 VbV, MCSC and SafeKey Responses

For each transaction, a crypt type is sent to identify whether it is a VbV-, MCSC- or SafeKey-authenticated
transaction. Below are the tables defining the possible crypt types as well as the possible VARes and
PARes responses.

Table 71: Crypt type definitions

o Fully authenticated

o There s a liability shift,
and the merchant is pro-
tected from chargebacks

Fully authenticated
There is a liability shift,
and the merchant is pro-

tected from chargebacks.

Fully authenticated
There is a liability shift,
and the merchant is pro-
tected from chargebacks.

e VbV has been attempted

o There s a liability shift,
and the merchant is pro-
tected from certain
chargebacks on fraud-
ulent transactions

MCSC has been attemp-
ted

There is a liability shift,
and the merchant is pro-
tected from certain
chargebacks on fraud-
ulent transactions

SafeKey has been attemp-
ted

There is a liability shift,
and the merchant is pro-
tected from certain
chargebacks on fraud-
ulent transactions

« Non-VbV transaction

« No liability shift

e Merchant is not pro-
tected from chargebacks

Non-MCSC transaction
No liability shift
Merchant is not pro-
tected from chargebacks

Non-SafeKey transaction
No liability shift
Merchant is not pro-
tected from chargebacks

Page 249 of 476

November 2018

8 MPI

Table 72: VERes response definitions

The card/issuer is not enrolled.
Sent as a normal Purchase/PreAuth transaction with a crypt type of 6.

The card type is not participating in VbV/MCSC/SafeKey. It could be corporate
card or another card plan that Visa/MasterCard/Amex excludes.
Proceed with a regular transaction with a crypt type of 7 or cancel the transaction.

The card is enrolled.
Proceed to create the VbV/MCSC/SafeKey inline window for cardholder authen-
tication. Proceed to PARes for crypt type.

Table 73: PARes response definitions

Attempted to verify PIN, and will receive a CAVV.
Send as a cavv_purchase/cavv_preAuth, which returns a crypt type of 6.

Fully authenticated, and will receive a CAVV.
Send as a cavv_purchase/cavv_preAuth which will return a crypt type of 5.

Failed to authenticate. No CAVV is returned.

Cancel transaction.

Merchant may proceed with a crypt type of 7 although this is strongly dis-
couraged.

Table 74: 3-D Secure/CAVV transaction handling

Y Send a CAVV transaction

N Cancel transaction. Authentication failed or high-risk
transaction.

A Send a CAVV transaction
n/a Send a regular transaction with a crypt type of 7
n/a Send a regular transaction with a crypt type of 6

November 2018

Page 250 of 476

Moneris Gateway API - Integration Guide

8.6.2 MpiTxn Request Transaction

MpiTxn transaction object definition

MpiTxn mpiTxn = new MpiTxn () ;

HttpsPostRequest object for MpiTxn transaction

HttpsPostRequest mpgReq = new HttpsPostRequest() ;

mpgReq.SetTransaction (mpiTxn) ;

MpiTxn transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 75: MpiTxn transaction object mandatory values

XID String | 20-character alpha- mpiTxn.SetXid (xid);
numeric

Credit card number String 20-character numeric mpiTxn.SetPan (pan) ;

Expiry date String | 4-character alpha- mpiTxn.SetExpdate (expiry
numeric date);

(YYMM format)

Amount String | 9-character decimal mpiTxn.SetAmount (amount) ;

Must contain at least 3
digits including two
penny values.

MD String 1024-character alpha- mpiTxn.SetMD (MD) ;
numeric
Merchant URL String N/A mpiTxn.SetMerchantUrl
(merchantUrl) ;
Accept String N/A mpiTxn.SetAccept (accept) ;
User Agent String N/A mpiTxn.SetUserAgent
(userAgent) ;

Page 251 of 476 November 2018

8 MPI

Sample MpiTxn Request

namespace Moneris

{

using System;

using System.Text;

public class TestCanadaMpiTxn

{

public static void Main(string[] args)

{

string store id = "moneris";
string api token = "hurgle";
string amount = "1.00";

Random r = new Random() ;

StringBuilder sb = new StringBuilder();
for(int i1=0; i< 20; i++)

{

sb.Append (r.Next (0,9)) ;

}

string xid = sb.ToString() ;

//string MD = xid + "mycardinfo" + amount;

string MD = "x1d=99999999999999992464& pan=4242424242424242& expiry=1511&amount=1.00";

string merchantUrl = "https://YOUR MPI_RESPONSE_ URL";

string accept = "text/html,application/xhtml+xml,application/xml;g=0.9, image/webp, */*;g=0.8";

string userAgent = "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36

Chrome/43.0.2357.130 Safari/537.36";
string processing country code = "CA";
string pan = "4242424242424242";
string expdate = "1511";

bool status check = false;

MpiTxn mpiTxn = new MpiTxn () ;
mpiTxn.SetXid (xid) ;
mpiTxn.SetPan (pan) ;
mpiTxn.SetExpDate (expdate) ;
mpiTxn.SetAmount (amount) ;
mpiTxn.SetMD (MD) ;
mpiTxn.SetMerchantUrl (merchantUrl) ;
mpiTxn.SetAccept (accept) ;
mpiTxn.SetUserAgent (userAgent) ;

//***‘k***‘k****************OPTIONAL VARIABLES*************************‘k*

HttpsPostRequest mpgReq = new HttpsPostRequest();
mpgReq.SetProcCountryCode (processing country code);

(KHTML, like Gecko)

mpgReq. SetTestMode (true); //false or comment out this line for production transactions

mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api token) ;
mpgReq.SetTransaction (mpiTxn) ;

mpgReq.SetStatusCheck (status_check) ;

mpgReqg. Send () ;

/***‘k****************‘k* REQUEST ****‘k***‘k********‘k***‘k**/
try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("MpiMessage = " + receipt.GetMpiMessage());
Console.WriteLine ("MpiSuccess = " + receipt.GetMpiSuccess());
if (receipt.GetMpiSuccess () == "true")

{

Console.WritelLine (receipt.GetInLineForm()) ;

}

Console.ReadLine () ;

}

catch (Exception e)

November 2018

Page 252 of 476

Moneris Gateway API - Integration Guide

Sample MpiTxn Request

{

Console.WriteLine (e);

}

}

} // end TestResMpiTxn
}

8.6.2.1 TXN Response and Creating the Popup

The TXN request returns a response with one of several possible values. The get Message method of the
response object returns “Y”, “U”, or “N”.

N
Purchase or Pre-Authorization can be sent as a crypt type of 6 (attempted authentication).

Y
A call to the API to create the VBV form is made.

U
(Returned for non-participating cards such as corporate cards)

Merchant can send the transaction with crypt_type 7. However, the merchant is liable for
chargebacks.

8.6.3 Vault MPI Transaction — ResMpiTxn
Vault MPI Transaction transaction object definition

ResMpiTxn resMpiTxn = new ResMpiTxn () ;

HttpsPostRequest object for Vault MPI Transaction transaction

HttpsPostRequest mpgReq = new HttpsPostRequest() ;

mpgReqg.SetTransaction (resMpiTxn) ;

Vault MPI Transaction transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 76: Vault MPI Transaction transaction object mandatory values

Data key String 25-character alpha- resMpiTxn.SetData (data_key);
numeric

XID String | 20-character alpha- resMpiTxn.SetXid(xid);
numeric

Amount String | 9-character decimal resMpiTxn.SetAmount (amount) ;

Page 253 of 476 November 2018

8 MPI

Table 76: Vault MPI Transaction transaction object mandatory values (continued)

MD String 1024-character alpha- resMpiTxn.SetMD (MD) ;
numeric
Merchant URL String n/a resMpiTxn.SetMerchantUrl

(merchantUrl) ;

Accept String n/a resMpiTxn.SetAccept (accept) ;

User Agent String n/a resMpiTxn.SetUserAgent
(userAgent) ;

Expiry date String | 4-character alpha- resMpiTxn.SetExpdate (expiry
numeric date);

(YYMM format)

Sample Vault MPI Transaction

namespace Moneris

{

using System;

using System.Text;

using System.Collections;

public class TestCanadaResMpiTxn

{

public static void Main(string[] args)

{

string store id = "store5";

string api_ token = "yesguy";

string data key = "SzSrdoyObt8UFXOtgS88wFAy7";
string amount = "1.00";

Random r = new Random() ;

StringBuilder sb = new StringBuilder();
for (int 1=0; i< 20; i++)

{

sb.Append (r.Next (0,9));

}

string xid = sb.ToString();

string MD = xid + "mycardinfo" + amount;

string merchantUrl = "www.mystoreurl.com";
string accept = "true";

string userAgent = "Mozilla";

string processing country code = "CA";

bool status check = false;

ResMpiTxn resMpiTxn = new ResMpiTxn () ;
resMpiTxn.SetData (data key);
resMpiTxn.SetXid (xid) ;
resMpiTxn.SetAmount (amount) ;
resMpiTxn.SetMD (MD) ;
resMpiTxn.SetMerchantUrl (merchantUrl) ;

November 2018 Page 254 of 476

Moneris Gateway API - Integration Guide

Sample Vault MPI Transaction

resMpiTxn.SetAccept (accept) ;

resMpiTxn.SetUserAgent (userAgent) ;

//************************OPTIONAL VARIABLES***************************
HttpsPostRequest mpgReq = new HttpsPostRequest();
mpgReq.SetProcCountryCode (processing country code);

mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);

mpgReq.SetApiToken (api token) ;

mpgReq.SetTransaction (resMpiTxn) ;

mpgReq.SetStatusCheck (status_check) ;

mpgReqg. Send () ;

/***‘k***‘k************** REQUEST ****‘k***‘k************‘k**/

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("MpiMessage = " + receipt.GetMpiMessage());
Console.WriteLine ("MpiSuccess = " + receipt.GetMpiSuccess());
if (receipt.GetMpiSuccess () == "true")

{

Console.WritelLine (receipt.GetInLineForm()) ;
}

Console.ReadLine () ;

}

catch (Exception e)

{
Console.WriteLine (e);
}

}

} // end TestResMpiTxn
}

Vault response fields

For a list and explanation of (Receipt object) response fields that are available after sending this Vault
transaction, see Definitions of Response Fields (page 437).

8.6.4 MPI ACS Request Transaction

MPI ACS Request transaction object definition

MpiAcs mpiAcs = new MpiAcs();

HttpsPostRequest object for MPI ACS Request transaction

HttpsPostRequest mpgReq = new HttpsPostRequest() ;

mpgReq. SetTransaction (mpiAcs) ;

MPI ACS Request transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Page 255 of 476 November 2018

8 MPI

Table 77: MPI ACS Request transaction object mandatory values

XID String ZO'CharaCter alpha- NOTE: Is the concatenated 20-character
numeric prefix that forms part of the variable MD
Amount String | 9-character decimal mpiAcs.SetAmount (amount);

Must contain at least 3
digits including two
penny values.

MD String 1024-character alpha- mpiAcs.SetMD (MD) ;
numeric
PARes String n/a mpiAcs.SetPaRes (PaRes) ;

Sample MPI ACS Request - CA

namespace Moneris

{

using System;

public class TestCanadaMpiAcs

{

public static void Main(string[] args)

{

string store id = "moneris";
string api token = "hurgle";
string amount = "1.00";

string xid = "12345678910111214005";

string MD = xid + "mycardinfo" + amount;

string PaRes = "PaRes String";

string processing country code = "CA";

bool status_check = false;

MpiAcs resMpiAcs = new MpiAcs();

resMpiAcs.SetPaRes (PaRes) ;

resMpiAcs.SetMD (MD) ;

//*~k***~k******************OPTIONAL VARIABLES***************************
HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq.SetProcCountryCode (processing country code);
mpgReq.SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld (store id);

mpgReq.SetApiToken (api token);

mpgReq.SetTransaction (resMpiAcs) ;

mpgReq.SetStatusCheck (status_check) ;

mpgReq. Send () ;

/********************** REQUEST *‘k**********************/
try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("MpiMessage = " + receipt.GetMpiMessage()) ;
Console.WriteLine ("MpiSuccess = " + receipt.GetMpiSuccess());

November 2018 Page 256 of 476

Moneris Gateway API - Integration Guide

Sample MPI ACS Request - CA

if (receipt.GetMpiSuccess() == "true")

{

Console.WriteLine ("Cavv = " + receipt.GetMpiCavv());
Console.WritelLine ("Crypt Type = " + receipt.GetMpiEci());
}

else

{

Console.WriteLine ("Message = " + receipt.GetMessage());
}

}

catch (Exception e)

{

Console.WriteLine (e) ;

}

}
}
}

8.6.4.1 ACS Response and Forming a Transaction

The ACS response contains the CAVV value and the e-commerce indicator. These values are to be passed
to the transaction engine using the Cavv Purchase or Cavv Pre-Authorization request. Please see the doc-
umentation provided by your payment solution.

Outlined below is how to send a transaction to Moneris Gateway.

if (mpiRes.getSuccess () .equals ("true"))
{
//Send transaction to host using CAVV purchase or CAVV preauth, refer to sample
//code for Moneris Gateway. Call mpiRes.getCavv() to obtain the CAVV value.
//1If you are using preauth/capture model, be sure to call getMessage() so the
//value can be stored and used in the capture transaction after on to protect
//your chargeback liability. (e.g. getMPIMessage()= A = crypt type of 6 for
//follow on transaction and getMPIMessage() = Y = crypt type of 5 for follow on
//transaction.
}
else
{
if (mpiRes.getMessage () .equals (™N”))
{
//Do not send transaction as the cardholder failed authentication.
}
else
{
//Optional to send transaction using the mpg API. In this case merchant
//assumes liability.

}

8.6.5 Purchase with 3-D Secure — cavvPurchase

The Purchase with 3-D Secure transaction follows a 3-D Secure MPI authentication. After receiving con-
firmation from the MPI ACS transaction, this Purchase verifies funds on the customer’s card, removes
the funds and prepares them for deposit into the merchant’s account.

To perform the 3-D Secure authentication, the Moneris MPI or any 3rd party MPl may be used.

Page 257 of 476 November 2018

8 MPI

This transaction can also be used to process an Apple Pay transaction. This transaction is applicable only
if choosing to integrate directly to Apple Wallet (if not using the Moneris Apple Pay SDK). Please refer to
10 Apple Pay In-App and on the Web Integration for more details on your integration options.

Refer to Apple's developer portal for details on integrating directly to the wallet to retrieve the payload
data.

Purchase with 3-D Secure transaction object definition

CavvPurchase cavvPurchase = new CavvPurchase();

HttpsPostRequest object for Purchase with 3-D Secure transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (cavvPurchase) ;

Cavv Purchase transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 78: Purchase with 3-D Secure transaction object mandatory values

Order ID String 50-character alpha- cavvPurchase.SetOrderId
numeric (order 1id);
Amount String 9-character decimal cavvPurchase.SetAmount
(amount) ;
Credit card number String | 20-character alpha- cavvPurchase.SetPan (pan) ;
numeric

November 2018 Page 258 of 476

Moneris Gateway API - Integration Guide

Table 78: Purchase with 3-D Secure transaction object mandatory values

Expiry date String 4-character alpha- cavvPurchase.SetExpdate
numeric (expiry date);

(YYMM format)

CAVV Str[ng 50-character alpha- cavvPurchase.SetCavv (cavv) ;
r N numeric

NOTE: For Apple Pay
Caw Purchase and
Cavv Pre-Authorization
transactions, CAVV
field contains the
decrypted cryptogram.
For more, see
Appendix A Definitions
of Request Fields,

E-commerce indicator | String 1-character alpha- cavvPurchase.SetCryptType
(crypt) ;

r) numeric
NOTE: For Apple Pay
Caw Purchase and
Cavv Pre-Authorization
transactions, the E-
commerce indicator is
a mandatory field con-
taining the value
received from the
decrypted payload or a
default value of 5. If
you get a 2-character
value (e.g.,. 05 or 07)
from the payload,
remove the initial 0
and just send us the
2nd character. For
more, see Appendix A
Definitions of Request
Fields,

Page 259 of 476 November 2018

8 MPI

Table 1 INTERAC® e-Commerce Fields — Required for Apple Pay and Google Pay Only

Network

NOTE: This request
variable is mandatory
for INTERAC® e-Com-
merce transactions con-
ducted via Apple Pay,
and is not for use with
credit card trans-
actions.

String

alphabetical

cavvPurchase.setNetwork
(network) ;

Data Type

NOTE: This request
variable is mandatory
for INTERAC® e-Com-
merce transactions con-
ducted via Apple Pay,
and is not for use with
credit card trans-
actions.

String

3-character alpha-
numeric

cavvPurchase.setDataType
(data type);

Table 2 Purchase with 3-D Secure transaction object optional values

NOTE: Applies to Off-
linx™ only; must be
unique value for each
transaction

Status Check Boolean | true/false mpgReq. SetStatusCheck
(status_check) ;
Customer ID String 50-character alpha- cavvPurchase.SetCustId(cust
numeric id);
Dynamic descriptor String 20-character alpha- cavvPurchase
numeric . SetDyI.lamchesE:rlptor
(dynamic descriptor) ;
Card Match ID String 50-character alpha- cavvPurchase.SetCmId

numeric

(transaction_id);

November 2018

Page 260 of 476

Moneris Gateway API - Integration Guide

Customer inform- Object N/A cavvPurchase.SetCustInfo
(customer) ;

ation

AVS Object N/A cavvPurchase.SetAvsInfo
(avsCheck) ;

CvD Object N/A cavvPurchase.SetCvdInfo
(cvdCheck) ;

Convenience fee Object N/A cavvPurchase.SetConvFeelInfo

(convFeelInfo) ;

NOTE: Not applicable
when processing
Apple Pay trans-
actions.

Page 261 of 476 November 2018

8 MPI

Recurring billing Object N/A cavvPurchase.SetRecur
(recurring cycle);

recur

NOTE: For sample
code for a Purchase
with 3-D Secure includ-
ing the Recurring
Billing Info Object,

see 8.6.5.1 Purchase
with 3-D Secure and
Recurring Billing.

Wallet indicator String 3-character alpha- cavvPurchase
numeric .SetWalletIndicator (wallet

indicator);

NOTE: For Cawv
Purchase and Caw
Pre-Authorization, wal-
let indicator applies to
Apple Pay or Android
Pay only. For more,
see Appendix A Defin-
itions of Request
Fields

Credential on File Info | Object N/A cof.SetCofInfo (cof);

cof

s N

NOTE: This is a nested
object within the
transaction, and
required when storing
or using the cus-
tomer's stored cre-
dentials. The
Credential on File Info
object has its own
request variables, lis-
ted in blue in the
table below, "Cre-
dential on File Object
Request Variables".

November 2018 Page 262 of 476

Moneris Gateway API - Integration Guide

Credential on File Transaction Object Request Fields

Issuer ID String 15-character alpha- cof.SetIssuerld ("VALUE_FOR_
numeric ISSUER _ID");

NOTE: This variable is

required for all mer- variable length

NOTE: For a list and explanation of the

chant-intiated trans- possible values to send for this variable,
actions following the see Definitions of Request Fields — Cre-
first one; upon sending dential on File

the first transaction,
the Issuer ID value is
received in the trans-
action response and
then used in sub-
sequent transaction

requests.
Payment Indicator String 1-character alphabetic | cof.SetPaymentIndicator
" PAYMENT_INDICATOR_VALUE")

NOTE: For a list and explanation of the
possible values to send for this variable,
see Definitions of Request Fields — Cre-
dential on File

Payment Inform- String 1-character numeric cof.SetPaymentInformation

ation ("PAYMENT INFO VALUE");

NOTE: For a list and explanation of the
possible values to send for this variable,
see Definitions of Request Fields — Cre-
dential on File

Recurring Billing Info Object Request Fields

Number of Recurs String The number of times that the
) transaction must recur
num_recurs numeric, 1-99
Period String Number of recur units that
,) must pass between recurring
period numeric, 1-999 billings
Start Date String Date of the first future recurring

Page 263 of 476 November 2018

8 MPI

start_date YYYY/MM/DD billing transaction

This value must be a date in the
future

If an additional charge is to be
made immediately, the value of
Start Now must be set to true

Start Now String If a single charge is to be made
against the card immediately,
set this value to true; the
amount to be billed imme-
diately may differ from the
amount billed on a regular
basis thereafter

start_now true/false

Ifthe billing is to start in the
future, set this value to false

When set to false, use Card Veri-
fication prior to sending the
Purchase with Recur and Cre-
dential on File objects

Recurring Amount String Amount of the recurring trans-

) action
recur_amount 9-character decimal; Up to 6

digits (dollars) + decimal point This is the amount that will be
+ 2 digits (cents) after the billed on the Start Date and
decimal point then billed repeatedly based on
the interval defined by Period
and Recur Unit

EXAMPLE:
123456.78

Recur Unit String Unit to be used as a basis for

. the interval
recur_unit day, week, month or eom

Works in conjunction with
Period to define the billing fre-
quency

Possible values are:
day

week

November 2018 Page 264 of 476

Moneris Gateway API - Integration Guide

month

eom (end of month)

Sample Purchase with 3-D Secure - cavvPurchase

namespace Moneris

{

using System;

using System.Collections;

public class TestCanadaCavvPurchase

{

public static void Main(string[] args)

{

string store id = "store5";

string api_token = "yesguy";

string order id = "Test" + DateTime.Now.ToString("yyyyMMddhhmmss") ;
string cust id = "CUS887H67";

string amount = "10.42";

string pan = "4242424242424242";

string expdate = "1901"; //YYMM

string cavv = "AAABBJGOVhIOVNniQEjRWAAAAAAA=";

string dynamic_descriptor = "123456";
string wallet indicator = "APP";
string processing country code = "CA";

string crypt type = "5";

bool status check = false;

CofInfo cof = new CofInfo();

cof.SetPaymentIndicator ("U");

cof.SetPaymentInformation ("2") ;

cof.SetIssuerId("168451306048014");

CavvPurchase cavvPurchase = new CavvPurchase();
cavvPurchase.SetOrderId(order id);

cavvPurchase.SetCustId(cust id);

cavvPurchase.SetAmount (amount) ;

cavvPurchase.SetPan (pan) ;

cavvPurchase.SetExpDate (expdate) ;

cavvPurchase.SetCavv (cavv) ;

cavvPurchase.SetCryptType (crypt type); //Mandatory for AMEX cards only
cavvPurchase.SetDynamicDescriptor (dynamic_descriptor) ;
//cavvPurchase.SetNetwork ("Interac"); //set only for Interac e-commerce
//cavvPurchase.SetDataType ("3DSecure"); //set only for Interac e-commerce
//cavvPurchase.SetWalletIndicator (wallet indicator); //set only wallet transactions e.g. APPLE PAY
//cavvPurchase.SetCmId ("8nAK8712sGaAkls56"); //set only for usage with Offlinx - Unique max 50
alphanumeric characters transaction id generated by merchant
cavvPurchase.SetCofInfo (cof);

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq. SetProcCountryCode (processing country code) ;

mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld (store id);

mpgReq.SetApiToken (api_token) ;

mpgReq. SetTransaction (cavvPurchase) ;

mpgReq.SetStatusCheck (status_check) ;

mpgReqg. Send () ;

try

{

Page 265 of 476 November 2018

8 MPI

Sample Purchase with 3-D Secure - cavvPurchase

}

{

}

— e

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("TransType = " + receipt.GetTransType())
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WritelLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut ());
Console.WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode());
Console.WriteLine ("IssuerId = " + receipt.GetIssuerId()):;

Console.ReadLine () ;
catch (Exception e)

Console.WriteLine (e);

8.6.5.1 Purchase with 3-D Secure and Recurring Billing

The example below illustrates the Purchase with 3-D Secure when also sending the Recurring Billing Info
object in the transaction.

Purchase with 3-D Secure and Recurring Billing

{

public
{

public
{

string
string
string
string
string
string
string
string
string
string
string
string

namespace Moneris

using System;
using System.Collections;

class TestCanadaCavvPurchase
static void Main(string[] args)

store_id = "storeb";

api_token = "yesguy";

order id = "Test" + DateTime.Now.ToString("yyyyMMddhhmmss") ;
cust id = "CUS887H67";

amount = "10.42";

pan = "4242424242424242";

expdate = "1901"; //YYMM

cavv = "AAABBJgOVhIOVniQEjRWAAAAAAA=";

dynamic descriptor = "123456";
wallet indicator = "APP";
processing country code = "CA";
crypt type = "5";

bool status_check = false;

November 2018

Page 266 of 476

Moneris Gateway API - Integration Guide

Purchase with 3-D Secure and Recurring Billing

/***‘k***‘k************‘k**** Recur Variables *‘k*‘k*‘k***‘k********‘k***‘k***‘k***‘k***/

string recur unit = "month"; //eom = end of month
string start now = "true";

string start date = "2018/02/25";

string num recurs = "12";

string period = "1";

string recur amount = "30.00";

/‘k'k*********************** Recur Object Optionl *‘k'k**‘k'k***********************/

Recur recurring cycle = new Recur (recur unit, start now, start date,
num recurs, period, recur amount);

/************************* Recur Object OptlonZ ******************************/
Hashtable recur hash = new Hashtable();

recur_hash.Add ("recur unit", recur unit);
recur_hash.Add ("start now", start now);

recur hash.Add("start date", start date);
recur_hash.Add ("num recurs", num recurs);

recur hash.Add ("period", period);

recur_hash.Add ("recur amount", recur amount);

Recur recurring cycle2 = new Recur (recur hash);

CofInfo cof = new CofInfo();

cof.SetPaymentIndicator ("R");

cof.SetPaymentInformation ("2");

cof.SetIssuerId("168451306048014");

CavvPurchase cavvPurchase = new CavvPurchase();
cavvPurchase.SetOrderId(order id);

cavvPurchase.SetCustId(cust id);

cavvPurchase.SetAmount (amount) ;

cavvPurchase.SetPan (pan) ;

cavvPurchase.SetExpDate (expdate) ;

cavvPurchase.SetCavv (cavv) ;

cavvPurchase.SetCryptType (crypt type); //Mandatory for AMEX cards only
cavvPurchase.SetDynamicDescriptor (dynamic descriptor);
//cavvPurchase.SetNetwork ("Interac"); //set only for Interac e-commerce
//cavvPurchase.SetDataType ("3DSecure"); //set only for Interac e-commerce

//cavvPurchase.SetWalletIndicator (wallet indicator); //set only wallet transactions e.g. APPLE PAY

cavvPurchase.SetRecur (recurring cycle);
cavvPurchase.SetCofInfo (cof) ;

HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq. SetProcCountryCode (processing country code);

mpgReq.SetTestMode (true); //false or comment out this line for production transactions

mpgReq.SetStoreld (store id);
mpgReq.SetApiToken (api token);

mpgReq. SetTransaction (cavvPurchase) ;
mpgReq.SetStatusCheck (status_check) ;
mpgReq.Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("CardType = " + receipt.GetCardType()):

Console.WriteLine ("TransAmount
Console.WriteLine ("TxnNumber =
Console.WriteLine ("ReceiptlId =
Console.WriteLine ("TransType =

= " + receipt.GetTransAmount()) ;
" + receipt.GetTxnNumber ()) ;
" + receipt.GetReceiptId());
" + receipt.GetTransType());

Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());

Page 267 of 476

November 2018

8 MPI

Purchase with 3-D Secure and Recurring Billing

Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode()) ;
Console.WriteLine ("IssuerId = " + receipt.GetIssuerId()):;

Console.ReadLine() ;

}

catch (Exception e)

{

Console.WriteLine (e);

}

— e

8.6.6 Pre-Authorization with 3-D Secure — cavvPreauth

The Pre-Authorization with 3-D Secure transaction follows a 3-D Secure MPI authentication. After receiv-
ing confirmation from the MPI ACS transaction, this Pre-Authorization verifies funds on the customer’s
card, removes the funds and prepares them for deposit into the merchant’s account.

To perform the 3-D Secure authentication, the Moneris MPI or any 3rd party MPl may be used.

This transaction can also be used to process an Apple Pay transaction. This transaction is applicable only
if choosing to integrate directly to Apple Wallet (if not using the Moneris Apple Pay SDK). Please refer to
10 Apple Pay In-App and on the Web Integration for more details on your integration options.

Refer to Apple's developer portal for details on integrating directly to the wallet to retrieve the payload
data.

Pre-Authorization with 3-D Secure transaction object definition

CavvPreAuth cavvPreauth = new CavvPreAuth();

HttpsPostRequest object for Pre-Authorization with 3-D Secure transaction

HttpsPostRequest mpgReq = new HttpsPostRequest() ;

mpgReqg.SetTransaction (cavvPreauth) ;

Pre-Authorization with 3-D Secure transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

November 2018 Page 268 of 476

Moneris Gateway API - Integration Guide

Table 79: Pre-Authorization with 3-D Secure object mandatory values

Order ID String | 50-character alpha- cavvPreauth.SetOrderld
numeric (order_id);
Amount String | 9-character decimal cavvPreauth.SetAmount

(amount) ;

Credit card number String 20-character numeric cavvPreauth.SetPan (pan) ;
Cardholder Authentic- | String 50-character alpha- cavvPreauth.SetCavv (cavv) ;
ation Verification numeric

Value (CAVV)

NOTE: For Apple Pay
Cavwv Purchase and
Cavwv Pre-Authorization
transactions, CAVV
field contains the
decrypted cryptogram.
For more, see
Appendix A Definitions
of Request Fields,

Expiry date String 4-character numeric cavvPreauth.SetExpdate
(expiry date);

E-commerce indicator | String 1-character alpha- cavvPreauth.SetCryptType
numeric (crypt);

NOTE: For Apple Pay
Cavwv Purchase and
Cavwv Pre-Authorization
transactions, the E-
commerce indicator is
a mandatory field con-
taining the value
received from the
decrypted payload or a
default value of 5. If
you get a 2-character
value (e.g.,. 05 or 07)
from the payload,
remove the initial 0
and just send us the
2nd character. For
more, see Appendix A
Definitions of Request
Fields,

Page 269 of 476 November 2018

8 MPI

Table 1 INTERAC® e-Commerce Fields — Required for Apple Pay and Google Pay Only

Network

NOTE: This request
variable is mandatory
for INTERAC® e-Com-
merce transactions con-
ducted via Apple Pay,
and is not for use with
credit card trans-
actions.

String

alphabetical

cavvPurchase.setNetwork
(network) ;

Data Type

NOTE: This request
variable is mandatory
for INTERAC® e-Com-
merce transactions con-
ducted via Apple Pay,
and is not for use with
credit card trans-
actions.

String

3-character alpha-
numeric

cavvPurchase.setDataType
(data type);

Table 2 Pre-Authorization with 3-D Secure object optional values

NOTE: Applies to Off-
linx™ only; must be
unique value for each
transaction

Status Check Boolean | true/false mpgReq.SetStatusCheck
(status_check);
Customer ID String 50-character alpha- cavvPreauth.SetCustld (cust_
numeric id);
Dynamic descriptor String 20-character alpha- cavvPreauth
numeric .SetDynamicDescriptor
(dynamic descriptor);
Card Match ID String 50-character alpha- cavvPreauth.SetCmld

numeric

(transaction id);

November 2018

Page 270 of 476

Moneris Gateway API - Integration Guide

AVS Object N/A cavvPreauth.SetAvsInfo
(avsCheck) ;

CvD Object N/A cavvPreauth.SetCvdInfo
(cvdCheck) ;

Wallet indicator String 3-character alpha- cavvPreauth
numeric .SetWalletIndicator (wallet

indicator);

NOTE: For Caw
Purchase and Caw
Pre-Authorization, wal-
let indicator applies to
Apple Pay or Android
Pay only. For more,

see Appendix A Defin-
itions of Request
Fields

Credential on File Info | Object N/A cof.SetCofInfo (cof);

cof

NOTE: This is a nested
object within the
transaction, and
required when storing
or using the cus-
tomer's stored cre-
dentials. The
Credential on File Info
object has its own
request variables, lis-
ted in blue in the
table below, "Cre-
dential on File Object
Request Variables".

Page 271 of 476 November 2018

8 MPI

Credential on File Transaction Object Request Fields

Issuer ID String | 15-character alpha- cof.SetIssuerId ("VALUE_FOR_
numeric ISSUER_ID");

NOTE: This variable is .

required for all mer- variable length NOTE: For a list and explanation of the

chant-intiated trans- possible values to send for this variable,

actions following the see Definitions of Request Fields — Cre-

first one; upon sending dential on File

the first transaction,

the Issuer ID value is

received in the trans-

action response and

then used in sub-

sequent transaction

requests.

Payment Indicator String | 1-character alphabetic | cof.SetPaymentIndicator

("PAYMENT_INDICATOR_VALUE");

NOTE: For a list and explanation of the
possible values to send for this variable,
see Definitions of Request Fields — Cre-
dential on File

Payment Inform- String 1-character numeric cof.SetPaymentInformation

ation ("PAYMENT INFO_VALUE");
NOTE: For a list and explanation of the
possible values to send for this variable,
see Definitions of Request Fields — Cre-
dential on File

Sample Pre-Authorization with 3-D Secure — cavvPreauth

namespace Moneris

{

using System;

using System.Collections;

public class TestCanadaCavvPreauth

{

public static void Main(string[] args)
{

string store id = "storeb5";

string api_token = "yesguy";

string cust id = "CUS887H67";

string amount = "10.42";

string pan = "4242424242424242";
string expdate = "1911"; //YYMM format

string order id = "Test" + DateTime.Now.ToString("yyyyMMddhhmmss") ;

November 2018

Page 272 of 476

Moneris Gateway API - Integration Guide

Sample Pre-Authorization with 3-D Secure — cavvPreauth

string cavv = "AAABBJgOVhIOVniQEJjRWAAAAAAA=";

string dynamic descriptor = "123456";
string wallet indicator = "APP";
string processing country code = "CA";

string crypt type = "5";

bool status_check = false;

CofInfo cof = new CofInfol();
cof.SetPaymentIndicator ("U") ;
cof.SetPaymentInformation ("2");
cof.SetIssuerId("168451306048014");

CavvPreAuth cavvPreauth = new CavvPreAuth();
cavvPreauth.SetOrderId(order id);
cavvPreauth.SetCustId(cust id);
cavvPreauth.SetAmount (amount) ;
cavvPreauth. SetPan (pan) ;

cavvPreauth.SetExpDate (expdate) ;
cavvPreauth.SetCavv (cavv) ;
cavvPreauth.SetCryptType (crypt type); //Mandatory for AMEX cards only
cavvPreauth.SetDynamicDescriptor (dynamic descriptor);

//cavvPreauth.SetWalletIndicator (wallet indicator); //set only wallet transactions e.g. APPLE PAY
//cavvPreauth.SetCmId ("8nAK8712sGarAkls56"); //set only for usage with Offlinx - Unique max 50

alphanumeric characters transaction id generated by merchant
cavvPreauth.SetCofInfo (cof) ;

HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq.SetProcCountryCode (processing country code);
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api token);
mpgReq.SetTransaction (cavvPreauth) ;

mpgReq. SetStatusCheck (status check) ;

mpgReq. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("CardType = " + receipt.GetCardType());
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WritelLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime())
Console.WritelLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode()) ;
Console.WritelLine ("IssuerId = " + receipt.GetIssuerId());

Console.ReadLine () ;
}

catch (Exception e)

{

Console.WriteLine (e);

}

Page 273 of 476 November 2018

8 MPI

Sample Pre-Authorization with 3-D Secure — cavvPreauth

8.6.7 Cavv Result Codes for Verified by Visa

Table 80: CAVV result codes for VbV

0 CAVV authentication results | For this transaction, you may not receive pro-

invalid

tection from chargebacks as a result of using VbV
because the CAVV was considered invalid at the
time the financial transaction was processed.

Check that you are following the VbV process cor-
rectly and passing the correct data in our trans-
actions.

CAVV failed validation;
authentication

Provided that you have implemented the VbV
process correctly, the liability for this transaction
should remain with the Issuer for chargeback
reason codes covered by Verified by Visa.

CAVV passed validation;
authentication

The CAVV was confirmed as part of the financial
transaction. This transaction is a fully authen-
ticated VbV transaction (ECI 5)

CAVV passed validation;
attempt

The CAVV was confirmed as part of the financial
transaction. This transaction is an attempted
VbV transaction (ECI 6)

CAVV failed validation;
attempt

Provided that you have implemented the VbV
process correctly the liability for this transaction
should remain with the Issuer for chargeback
reason codes covered by Verified by Visa.

CAVV failed validation;
attempt (US issued cards
only)

Please check that you are following the VbV pro-
cess correctly and passing the correct data in
your transactions.

Provided that you have implemented the VbV
process correctly the liability for this transaction
should be the same as an attempted transaction
(ECI 6)

November 2018

Page 274 of 476

Moneris Gateway API - Integration Guide

Table 80: CAVV result codes for VbV (continued)

8 CAVV passed validation; The CAVV was confirmed as part of the financial
attempt (US issued cards transaction. This transaction is an attempted
only VbV transaction (ECI 6)

9 CAVV failed validation; Please check that you are following the VbV pro-
attempt (US issued cards cess correctly and passing the correct data in our
only) transactions.

Provided that you have implemented the VbV
process correctly the liability for this transaction
should be the same as an attempted transaction

(ECI 6)
A CAVV passed validation; The CAVV was confirmed as part of the financial
attempt (US issued cards transaction. This transaction is an attempted
only) VbV transaction (ECI 6)
B CAVV passed validation; The CAVV was confirmed as part of the financial
information only, no liability | transaction. However, this transaction does not
shift qualify for the liability shift. Treat this transaction

the same as an ECI 7.

8.6.8 Vault Cavv Purchase

Vault Cavv Purchase transaction object definition

ResCavvPurchaseCC resCavvPurchaseCC = new ResCavvPurchaseCC{();

HttpsPostRequest object for Vault Cavv Purchase transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (resCavvPurchaseCC) ;

Page 275 of 476 November 2018

8 MPI

Vault Cavv Purchase transaction details

Table 81: Vault Cavv Purchase transaction object mandatory values

Data Key String 25-character alpha- resCavvPurchaseCC.SetData
numeric (data_key);

Order ID String 50-character alpha- resCavvPurchaseCC.SetOrderId
numeric (order id);

Amount String 9-character decimal resCavvPurchaseCC.SetAmount

(amount) ;

Cardholder Authentic- | String 50-character alpha- resCavvPurchaseCC.SetCavv

ation Verification Value numeric (cavv) ;

(CAVY)

E-commerce indicator | String 1-character alpha- resCavvPurchaseCC
numeric .SetCryptType (crypt) ;

Table 82: Vault Cavv Purchase transaction object optional values

Customer ID String 50-character alpha- resCavyPurchaseCC.SetCustId
numeric (cust_id);
Status Check Boolean | true/false mpgReq. SetStatusCheck
(status_check) ;
Expiry date String 4-character alpha- resCavvPurchaseCC.SetExpdate
numeric (expiry date);
(YYMM format)

Sample Vault Cavv Purchase

namespace Moneris

{

using System;

using System.Text;

using System.Collections;

public class TestCanadaResCavvPreauthCC
{

public static void Main(string[] args)

November 2018 Page 276 of 476

Moneris Ga

teway API - Integration Guide

Sample Vault Cavv Purchase

{
string
string
string
string
string
string
used
string
string
string
bool st
ResCavv
resCavv
resCavv
resCavv
resCavv
resCavv
//resCa
HttpsPo
mpgReq.
mpgReq
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
try

{
Receipt
Console
Console

Console.

Console
Console

Console.

Console

Console.

Console
Console

Console.

Console
Console

Console.

Console

Console.

Console
//Resol
Console
Console
Console

Console.

Console
Console
Console
Console

Console.

Console

Console.

store_id = "storel";

api_token = "yesguy";

data key = "4INQR1A8ocxD0oafSz50LADXy";

order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;

amount = "1.00";

cust_id = "customerl"; //if sent will be submitted, otherwise cust id from profile will be

cavv = "AAABBJgOVhIOVniQEJjRWAAAAAAA";

expdate = "1911";

processing country code = "CA";

atus check = false;

PreauthCC resCavvPreauthCC = new ResCavvPreauthCC () ;
PreauthCC.SetOrderId(order id);
PreauthCC.SetDataKey (data key);
PreauthCC.SetCustId(cust id);

PreauthCC. SetAmount (amount) ;
PreauthCC.SetCavv (cavv) ;

vvPreauthCC.SetExpDate (expdate); //mandatory for temp token only
stRequest mpgReq = new HttpsPostRequest();
SetProcCountryCode (processing country code);

.SetTestMode (true); //false or comment out this line for production transactions

SetStoreld(store id);

SetApiToken (api_token) ;
SetTransaction (resCavvPreauthCC) ;
SetStatusCheck (status check) ;
Send () ;

receipt = mpgReq.GetReceipt () ;

.WriteLine ("DataKey = " + receipt.GetDataKey());

.WriteLine ("ReceiptId = " + receipt.GetReceiptId());

WriteLine ("ReferenceNum = " + receipt.GetReferenceNum());
.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
.WriteLine ("AuthCode = " + receipt.GetAuthCode());

WriteLine ("Message = " + receipt.GetMessage());

.WritelLine ("TransDate = " + receipt.GetTransDate());

WriteLine ("TransTime = " + receipt.GetTransTime());
.WriteLine ("TransType = " + receipt.GetTransType());
.WritelLine ("Complete = " + receipt.GetComplete());

WriteLine ("TransAmount = " + receipt.GetTransAmount());
.WritelLine ("CardType = " + receipt.GetCardType());

.WriteLine ("TxnNumber = " + receipt.GetTxnNumber()) ;

WriteLine ("TimedOut = " + receipt.GetTimedOut());

.WritelLine ("ResSuccess = " + receipt.GetResSuccess());
WriteLine ("PaymentType = " + receipt.GetPaymentType()) ;
.WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode());
veData

.WriteLine ("Cust ID = " + receipt.GetResDataCustId());
.WriteLine ("Phone = " + receipt.GetResDataPhone())

.WriteLine ("Email = " + receipt.GetResDataEmail());

WriteLine ("Note = " + receipt.GetResDataNote());

.WritelLine ("Masked Pan = " + receipt.GetResDataMaskedPan()) ;
.WritelLine ("Exp Date = " + receipt.GetResDataExpdate()) ;
.WriteLine ("Crypt Type = " + receipt.GetResDataCryptType());
.WritelLine ("Avs Street Number = " + receipt.GetResDataAvsStreetNumber ());
WriteLine ("Avs Street Name = " + receipt.GetResDataAvsStreetName ());
.WritelLine ("Avs Zipcode = " + receipt.GetResDataAvsZipcode());
ReadLine () ;

Page 277 of 476 November 2018

8 MPI

Sample Vault Cavv Purchase

}

catch (Exception e)

{

Console.WriteLine (e);

}

— e

8.6.9 Vault Cavv Pre-Authorization

Vault Cavv Pre-Authorization transaction object definition

ResCavvPreauthCC resCavvPreauthCC = new ResCavvPreauthCC() ;

HttpsPostRequest object for Vault Cavv Pre-Authorization

HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq.SetTransaction (resCavvPreauthCC) ;

Vault Cavv Pre-Authorization transaction details

Table 83: Vault Cavv Pre-Authorization object mandatory values

Data Key String | 25-character alpha- resCavvPreauthCC.SetData
numeric (data_key)

Order ID String | 50-character alpha- resCavvPreauthCC.SetOrderId
numeric (order_id);

Amount String | 9-character decimal resCavvPreauthCC.SetAmount

(amount) ;

CAWV String | 50-character alpha- resCavvPreauthCC.SetCavv
numeric (cavv);

E-commerce indicator | String 1-character alpha- resCavvPreauthCC
numeric .SetCryptType (crypt) ;

November 2018 Page 278 of 476

Moneris Gateway API - Integration Guide

Table 84: Vault Cavv Pre-Authorization object optional values

Customer ID String 50-character resCavvPreauthCC.SetCustId
alphanumeric (cust_id);
Status Check Boolean | true/false mpgReq.SetStatusCheck

(status_check);

Expiry date String 4-character numeric resCavvPreauthCC.SetExpdate
(expiry date);

Sample Vault Cavv Pre-Authorization

namespace Moneris

{

using System;

using System.Text;

using System.Collections;

public class TestCanadaResCavvPreauthCC

{

public static void Main(string[] args)

{

string store id = "storel";

string api token = "yesguy";

string data key = "4INQR1A8ocxD0oafSz50LADXy";
string order id = "Test" + DateTime.Now.ToString("yyyyMMddhhmmss") ;

string amount = "1.00";
string cust id = "customerl"; //if sent will be submitted, otherwise cust id from profile will be
used

string cavv = "AAABBJgOVhIOVniQEJRWAAAAAAA";

string expdate = "1911";

string processing country code = "CA";

bool status_check = false;

ResCavvPreauthCC resCavvPreauthCC = new ResCavvPreauthCC() ;
resCavvPreauthCC.SetOrderId(order id);

resCavvPreauthCC. SetDataKey (data_key) ;
resCavvPreauthCC.SetCustId(cust id);
resCavvPreauthCC. SetAmount (amount) ;
resCavvPreauthCC. SetCavv (cavv) ;
//resCavvPreauthCC.SetExpDate (expdate); //mandatory for temp token only
HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq.SetProcCountryCode (processing country code);
mpgReq.SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld (store id);

mpgReq.SetApiToken (api token);

mpgReq. SetTransaction (resCavvPreauthCC) ;
mpgReq.SetStatusCheck (status_check) ;

mpgReq. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("DataKey = " + receipt.GetDataKey());
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;

Page 279 of 476 November 2018

8 MPI

Sample Vault Cavv Pre-Authorization

Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WriteLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("ResSuccess = " + receipt.GetResSuccess());
Console.WritelLine ("PaymentType = " + receipt.GetPaymentType());
Console.WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode());
//ResolveData

Console.WritelLine ("Cust ID = " + receipt.GetResDataCustId());
Console.WriteLine ("Phone = " + receipt.GetResDataPhone());
Console.WriteLine ("Email = " + receipt.GetResDataEmail());
Console.WritelLine ("Note = " + receipt.GetResDataNote());
Console.WriteLine ("Masked Pan = " + receipt.GetResDataMaskedPan());
Console.WritelLine ("Exp Date = " + receipt.GetResDataExpdate());
Console.WriteLine ("Crypt Type = " + receipt.GetResDataCryptType());
Console.WriteLine ("Avs Street Number = " + receipt.GetResDataAvsStreetNumber());
Console.WritelLine ("Avs Street Name = " + receipt.GetResDataAvsStreetName()) ;
Console.WriteLine ("Avs Zipcode = " + receipt.GetResDataAvsZipcode());
Console.ReadLine () ;

}

catch (Exception e)

{

Console.

}

— e

WriteLine (e);

November 2018

Page 280 of 476

9 e-Fraud Tools

o 9.1 Address Verification Service
e 9.2 Card Validation Digits (CVD)
o 9.3 Transaction Risk Management Tool

November 2018 Page 281 of 476

9.1 Address Verification Service

e 9.1.1 About Address Verification Service (AVS)
e 9.1.2 AVS Info Object

e 9.1.3 AVS Response Codes

e 9.1.4 AVS Sample Code

9.1.1 About Address Verification Service (AVS)

Address Verification Service (AVS) is an optional fraud-prevention tool offered by issuing banks whereby a
cardholder's address is submitted as part of the transaction authorization. The AVS address is then com-
pared to the address kept on file at the issuing bank. AVS checks whether the street number, street
name and zip/postal code match. The issuing bank returns an AVS result code indicating whether the
data was matched successfully. Regardless of the AVS result code returned, the credit card is authorized
by the issuing bank.

The response that is received from AVS verification is intended to provide added security and fraud pre-
vention, but the response itself does not affect the completion of a transaction. Upon receiving a
response, the choice to proceed with a transaction is left entirely to the merchant. The responses is not a
strict guideline of whether a transaction will be approved or declined.

The following transactions support AVS:

e Purchase (Basic and Mag Swipe)
e Pre-Authorization (Basic)

e Re-Authorization (Basic)

e ResAddCC (Vault)

o ResUpdateCC (Vault)

Things to Consider:

o AVSis supported by Visa, MasterCard, American Express, Discover and JCB.

o When testing AVS, you must only use the Visa test card numbers 4242424242424242 or
4005554444444403, and the amounts described in the Simulator eFraud Response
Codes document available at the Moneris developer portal (https://developer-
.moneris.com).

o StoreID “store5” is set up to support AVS testing.

9.1.2 AVS Info Object

AVSInfo object definition

AvsInfo avsCheck = new AvsInfol();

November 2018 Page 283 of 476

Moneris Gateway API - Integration Guide

Transaction object set method

<transaction>.setAvsInfo (avsCheck) ;

AVS street num-
ber

Table 1 AVS Info Object — Required Fields

String

19-character alpha-
numeric

NOTE: this char-
acter limitis a
combined total
allowed for

AVS street number
and AVS street
name

avsCheck.SetAvsStreetNumber
(|1212");

Cardholder street
number

AVS street name

String

19-character alpha-
numeric

NOTE: this char-
acter limit is the
combined total
allowed for

AVS street number
and AVS street
name

avsCheck.SetAvsStreetName
("Payton Street");

Cardholder street
name

AVS zip/postal
code

String

9-character alpha-
numeric

avsCheck.SetAvsZipCode
("M1MIM1") ;

Cardholder zip/-
postal code

9.1.3 AVS Response Codes

Below is a full list of possible AVS response codes. These can be returned when you call the

receipt.GetAvsResultCode () method.

Page 284 of 476

November 2018

Table 85: AVS result codes

A Street address matches, zip/postal code Address matches, zip/- | Billing address
does not. Acquirer rights not implied. postal code does not. | matches, zip/postal
code does not.

B Street address matches. Zip/Postal code not | N/A N/A

verified due to incompatible formats.
(Acquirer sent both street address and zip/-
postal code.)

C Street address not verified due to incom- N/A N/A

patible formats. (Acquirer sent both street
address and zip/postal code.)

D Street address and zip/postal code match. | N/A Customer name incor-
rect, zip/postal code
matches

E N/A N/A Customer name incor-
rect, billing address and
zip/postal code match

F (Applies to UK only) Street address and zip/- | N/A Customer name incor-

postal code match. rect, billing address
matches.

G Address information not verified for inter- N/A N/A

national transaction. Any of the following
may be true:

e Issueris notan AVS participant.

o AVS data was present in the request,
butissuer did not return an AVS res-
ult.

o Visa performs AVS on behalf of the
issuer and there was no address
record on file for this account.

I Address information not verified. N/A N/A

K N/A N/A Customer name
matches.

L N/A N/A Customer name and
postal code match.

N/A | N/A Customer name and

zip/postal code match.
November 2018 Page 285 of 476

Moneris Gateway API - Integration Guide

Table 85: AVS result codes (continued)

M Street address and zip/postal code match. | N/A Customer name, billing
address, and zip/postal
code match.

N No match. Neither address nor Billing address and

postal code matches. postal code do not
Also used when acquirer requests AVS but match.

sends no AVS data.

0 N/A N/A Customer name and
billing address match

P Postal code matches. Acquirer sent both N/A N/A
postal code and street address, but street
address not verified due to incompatible

formats.

R Retry: System unavailable or timed out. Retry. System unable to | Retry. System unavail-
Issuer ordinarily performs AVS, but was process. able.
unavailable.

The code R is used by Visa when issuers are
unavailable. Issuers should refrain from
using this code.

S N/A AVS currently not sup- | AVS currently not sup-
ported. ported.
T N/A Nine-digit zip/postal N/A

code matches, address
does not match.

U Address not verified for domestic trans- No data from Information is unavail-
action. One of the following is true: Issuer/Authorization able.
system.

o Issueris not an AVS participant

o AVS data was present in the request,
but issuer did not return an AVS res-
ult

o Visa performs AVS on behalf of the
issuer and there was no address
record on file for this account.

Page 286 of 476 November 2018

Table 85: AVS result codes (continued)

w Not applicable. If present, replaced with ‘2’ | For US Addresses, nine- | Customer name, billing

by Visa. Available for U.S. issuers only. digit zip/postal code address, and zip/postal
matches, address does |[code are all correct.
not. For addresses out-
side the US, zip/postal
code matches, address
does not.

X N/A For US addresses, nine- | N/A

digit zip/postal code
and address match. For
addresses outside the
US,zip/postal code and
address match.

Y Street address and zip/postal code match. |For US addresses, five- | Billing address and zip/-

digit zip/postal code postal code match.
and address match.

z Zip/postal code matches, but street address | For U.S. addresses, five- | Postal code matches,
either does not match or street address was | digit zip code matches, |billing address does not
not included in request. address does not match.

match.

9.1.4 AVS Sample Code

This is a sample of Java code illustrating how AVS is implemented with a Purchase transaction. Purchase

object information that is not relevant to AVS has been removed.

For more about Purchase transactions, see 2.2 Purchase,

Sample Purchase with AVS information

AvsInfo avsCheck = new AvsInfo();
avsCheck.SetAvsStreetNumber ("212") ;
avsCheck.SetAvsStreetName ("Payton Street");
avsCheck.SetAvsZipCode ("M1IMIM1") ;
avsCheck.SetAvsEmail ("test@host.com") ;
avsCheck. SetAvsHostname ("hostname") ;
avsCheck.SetAvsBrowser ("Mozilla") ;
avsCheck.SetAvsShiptoCountry ("CAN") ;
avsCheck.SetAvsShipMethod ("G") ;
avsCheck.SetAvsMerchProdSku ("123456") ;
avsCheck.SetAvsCustIp("192.168.0.1");
avsCheck.SetAvsCustPhone ("5556667777") ;

Purchase
purchase.

purchase = new Purchase();
SetAvsInfo (avsCheck) ;

November 2018

Page 287 of 476

9.2 Card Validation Digits (CVD)

e 9.2.1 About Card Validation Digits (CVD)

e 9.2.3 CVD Info Object

e 9.2.4 CVD Result Codes

9.2.5 Sample Purchase with CVD Info Object

9.2.1 About Card Validation Digits (CVD)

The Card Validation Digits (CVD) value is an additional number printed on credit cards that is used as an
additional check when verifying cardholder credentials during a transaction.

The response that is received from CVD verification is intended to provide added security and fraud pre-
vention, but the response itself does not affect the completion of a transaction. Upon receiving a
response, the choice whether to proceed with a transaction is left entirely to the merchant. The
responses is not a strict guideline of which transaction will approve or decline.

The following transactions support CVD:

e Purchase (Basic, Vault and Mag Swipe)
o Pre-Authorization (Basic and Vault)
o Re-Authorization

Things to Consider:

o CVDis only supported by Visa, MasterCard, American Express, Discover, JCB and
UnionPay.

e For UnionPay cards, the CVD response will not be returned; the issuer will approve or
decline based on the CVD result.

o When testing CVD, you must only use the Visa test card numbers 4242424242424242 or
4005554444444403, and the amounts described in the Simulator eFraud Response
Codes document available at the Moneris developer portal (https://developer-
.moneris.com).

o Teststore_id “store5” is set up to support CVD testing.

9.2.2 Transactions Where CVD Is Required
The Card Validation Digits (CVD) object is required in transaction requests in the following scenarios:

« Initial transactions when storing cardholder credentials in Credential on File scenarios; subsequent
follow-on transactions do not use CVD
e Any Purchase, Pre-Authorization or Card Verification where you are not storing cardholder cre-

dentials

November 2018 Page 288 of 476

Moneris Gateway API - Integration Guide

9.2.3 CVD Info Object

NOTE: The CVD value must only be passed to the Moneris Gateway. Under no cir-
cumstances may it be stored for subsequent uses or displayed as part of the receipt inform-

ation.

CvdInfo object definition

CvdInfo cvdCheck

new CvdInfol();

Transaction object set method

transaction.setCvdInfo (cvdCheck) ;

Table 1 CVD Info Object — Required Fields

CVD indicator

String

1-character
numeric

cvdCheck.SetCvdIndicator
('ll'l);

Indicates presence
of CVD

Possible values:

0: CVD value is delib-
erately bypassed or is
not provided by the mer-
chant.

1: CVD value is present.

2: CVD value is on the
card, but is illegible.

9: Cardholder states that
the card has no CVD
imprint.

CVD value

String

4-character
numeric

cvdCheck.SetCvdvalue
("099")’.

CVD value located
on credit card

NOTE: The CVD
value must only be
passed to the Mon-
eris Gateway.
Under no cir-
cumstances may it
be stored for sub-
sequent uses or dis-
|__played as part of

Page 289 of 476

November 2018

ation.

{ the receipt inform- |

9.2.4 CVD Result Codes

M Match

N No match

P Not processed

S CVD should be on the card, but Merchant has

indicated that CVD is not present

U Issuer is not a CVD participant

Y Match for Amex/JCB only

D Invalid security code for Amex or JCB only
Other Invalid response code

9.2.5 Sample Purchase with CVD Info Object

This is a sample of Java code illustrating how CVD is implemented with a Purchase transaction. Purchase
object information that is not relevant to CVD has been removed.

Sample Purchase with CVD Information

CvdInfo cvdCheck = new CvdInfo();
cvdCheck.setCvdIndicator ("1") ;
cvdCheck.setCvdvalue ("099") ;

Purchase purchase = new Purchase();
purchase.setCvdInfo (cvdCheck) ;

November 2018 Page 290 of 476

9.3 Transaction Risk Management Tool

e 9.3.1 About the Transaction Risk Management Tool
e 9.3.2 Introduction to Queries

e 9.3.3 Session Query

e 9.3.4 Attribute Query

e 9.3.6 Inserting the Profiling Tags Into Your Website
e 9.3.6 Inserting the Profiling Tags Into Your Website

The Transaction Risk Management Tool (TRMT) is available to Canadian integrations only.

9.3.1 About the Transaction Risk Management Tool

The Transaction Risk Management Tool provides additional information to assist in identifying fraud-
ulent transactions. To maximize the benefits from the Transaction Risk Management Tool, it is highly
recommended that you:

o Carefully consider the business logic and processes that you need to implement surrounding the
handling of response information the Transaction Risk Management Tool provides.

o Implement the other fraud tools available through Moneris Gateway (such as AVS, CVD, Verified
by Visa, MasterCard SecureCode and American Express SafeKey).

9.3.2 Introduction to Queries
There are two types of transactions associated with the Transaction Risk Management Tool (TRMT):

o Session Query (page 292)
o Attribute Query (page 299)

The Session Query and Attribute Query are used at the time of the transaction to obtain the risk assess-
ment.

Moneris recommends that you use the Session Query as much as possible for obtaining your risk assess-
ment because it uses the device fingerprint as well as other transaction information when providing the
risk scores.

To use the Session Query, you must implement two components:
o Tags on your website to collect the device fingerprinting information

e Session Query transaction.

If you are not able to collect the necessary information for the Session Query (such as the device fin-
gerprint), then use the Attribute Query.

November 2018 Canada Only Page 291 of 476

Moneris Gateway API - Integration Guide

9.3.3 Session Query

Once a device profiling session has been initiated upon a client device, the Session Query APl is used at
the time of the transaction or even to obtain a device identifier or ‘fingerprint’, attribute list and risk
assessment for the client device.

Session Query transaction object definition

SessionQuery sq = new SessionQuery();

HttpsPostRequest object for Session Query transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () :;

mpgReq.SetTransaction (sq) ;

Session Query transaction values

Table 86: Session Query transaction object mandatory values

Session ID String | 9-character decimal sq.SetSessionld(session_id);

Permitted characters: [a-z], [A-Z],
0'91 —

Web server session identifier generated when device profiling was initiated.

Service type String | 9-character decimal sq.SetServiceType (service_type);

Which output fields are returned.

session --returns IP and device related attributes.

Event type String | payment sq.SetEventType (service_ type);

Defines the type of transaction or event for reporting purposes.

payment - Purchasing of goods/services.

Credit card String | 20-character numeric sq.SetPan (pan) ;

number (PAN) No spaces or dashes

Most credit card numbers today are 16 digits, but some 13-digit numbers are still
accepted by some issuers. This field has been intentionally expanded to 20 digits in
consideration for future expansion and potential support of private label card ranges.

Page 292 of 476 Canada Only November 2018

Table 86: Session Query transaction object mandatory values (continued)

Account
address street
1

String | 32-character alphanumeric

sg.SetAccountAddressStreetl
("3300 Bloor St W");

First portion of the street address component of the billing address.

Account String | 32-character alphanumeric sg.SetAccountAddressStreet2 ("4th
Address street Flr West Tower");

2 Second portion of the street address component of the billing address.

Account String |50-character alphanumeric sq.SetAccountAddressCity

address city

("Toronto") ;

The city component of the billing address.

Account String | 64-character alphanumeric sq.SetAccountAddressState
address state/- ("Ontario™);

province The state/province component of the billing address.

Account String | 2-character alphanumeric sq.SetAccountAddressCountry

address coun-
try

("CA") ,.

ISO2 country code of the billing addresses.

Account String | 8-character alphanumeric sq.SetAccountAddresszip
address ZIP/- ("M8X2X2") ;

postal code ZIP/postal code of the billing address.

Shipping String | 32-character alphanumeric sq.SetAccountAddressStreetl

address street
1

("3300 Bloor St W");

First portion of the street address component of the shipping address.

Shipping String |32-character alphanumeric sq.SetAccountAddressStreet2 ("4th
address street Flr West Tower");

2 Second portion of the street address component of the shipping address.

Shipping String |50-character alphanumeric sq.SetAccountAddressCity

address city

("Toronto") ;

City component of the shipping address.

Shipping String | 64-character alphanumeric sq.SetAccountAddressState

address state/- ("Ontario™);

province The state/province component of the shipping address.

November 2018 Canada Only Page 293 of 476

Moneris Gateway API - Integration Guide

Table 86: Session Query transaction object mandatory values (continued)

Shipping String | 2-character alphanumeric sq.SetAccountAddressCountry
address coun- ("CA");

try ISO2 country code of the account address country.

Shipping String | 8-character alphanumeric sq.SetAccountAddressZip
address ZIP ("M8X2X2") ;

The ZIP/postal code component of the shipping address.

Local attribute

sqg.SetLocalAttribl ("a") ;

String | 255-character alphanumeric

1-5

These five attributes can be used to pass custom attribute data. These are used if you
wish to correlate some data with the returned device information.

Transaction
amount

String | 255-character alphanumeric sq.SetTransactionAmount ("1.00");

Must contain 2 decimal places

The numeric currency amount.

Transaction
currency

sg.SetTransactionCurrency
("840"),‘

String | 10-character numeric

The currency type that the transaction was denominated in. If TransactionAmount is
passed, the TransactionCurrency is required.

Values to be used are:

e CAD-124
USD -840

Table 87: Session Query transaction object optional values

Account login

sg.SetAccountLogin ("13195417-8CA0-46cd-960D-
14C158E4DBB2") ;

255-character
alphanumeric

String

The Account Login name.

Password String | 40-character sq.SetPasswordHash
The input must be a SHA-2 hash of the password in hexadecimal format. Used to check
if it is on a watch list.

Page 294 of 476 Canada Only November 2018

Table 87: Session Query transaction object optional values (continued)

Account num-
ber

String

255-character
alphanumeric

sq.SetAccountNumber ("3E17A905-AC8A-4c8d-A417~-
3DADA2A55220") ;

The account number for the account.

Account name

String

255-character
alphanumeric

sg.SetAccountName ("4590FCCO-DF4A-44d9-A57B~
AF9DE98B84DD") ;

Account name (or concat

enation of first and last name of account holder).

Account email

String

100-character
alphanumeric

sg.SetAccountEmail ("3CAE72EF-6B69-4a25-93FE~
2674735E78E8QRtest.threatmetrix.com") ;

The email address entere

risk account email id.

d into the form for this contact. Used to check if this is a high

Account tele-
phone

String

32-character
alphanumeric

Contact telephone number including country and city codes. All whitespace is

removed.

Must be in format: 0..9,<space>,(,),[,] braces must be matched.

Address street
1

String

32-character
alphanumeric

The first portion of the st

reet address component of the account address.

Address street
2

String

32-character
alphanumeric

The second portion of the street address component of the account address.

Address city

String

50-character
alphanumeric

The city component of the account address.

Address state/-
province

String

64-character
alphanumeric

The state/province component of the account address

Address coun-
try

String

2-character
alphanumeric

The 2 character 1ISO2 country code of the account address country

November 2018

Canada Only Page 295 of 476

Moneris Gateway API - Integration Guide

Table 87: Session Query transaction object optional values (continued)

Address ZIP

String

8-character
alphanumeric

The ZIP/postal code of the account address.

Ship Address
Street 1

String

32-character
alphanumeric

The first portion of the st

reet address component of the shipping address

Ship Address
Street 2

String

32-character
alphanumeric

The second portion of the street address component of the shipping address

Ship Address
City

String

50-character
alphanumeric

The city component of the shipping address

Ship Address
State/Province

String

64-character
alphanumeric

The state/province component of the shipping address

Ship Address
Country

String

2-character
alphanumeric

The 2 character 1ISO2 country code of the shipping address country

Ship Address
ZIP

String

8-character
alphanumeric

The ZIP/postal code of the shipping address

ute 1-8

CC Number String | 255-character
Hash alphanumeric

This is a SHA-2 hash (in hexadecimal format) of the credit card number.
Custom Attrib- [String [255-character

alphanumeric

These 8 attributes can be used to pass custom attribute data which can be used within

the rules.

Page 296 of 476

Canada Only November 2018

Sample Session Query - CA

namespace Moneris

{

using System;

using System.Collections;

public class TestCanadaRiskCheckSession
{

public static void Main(string[] args)

{

string store id = "moneris";

string api token = "hurgle";

string order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;
string session id = "abcl23";

string service type = "session";

//string event type = "LOGIN";

string processing country code = "CA";

bool status_check = false;

SessionQuery sg = new SessionQuery();
sq.SetOrderId(order id);

sq.SetSessionld(session_id);
sq.SetServiceType (service type);

sq.SetEventType (service type);

//sq.SetPolicy ("");

//sq.SetDeviceId ("4EC40DE5-0770-4fa0-BE53-981C067C598D") ;
sq.SetAccountLogin ("13195417-8CA0-46cd-960D-14C158E4DBB2") ;
sq.SetPasswordHash ("489c830£10£7¢c601d30599%9a0deafb66e64d2aab0a") ;
sg.SetAccountNumber ("3E17A905-AC8A-4c8d-A417-3DADA2A55220") ;
sg.SetAccountName ("4590FCCO-DF4A-44d9-A57B-AFODE98B84DD") ;
sg.SetAccountEmail ("3CAE72EF-6B69-4a25-93FE-2674735E78E8Q@test.threatmetrix.com") ;
//sq.SetAccountTelephone ("5556667777") ;

sq.SetPan ("4242424242424242") ;
//sq.SetAccountAddressStreetl ("3300 Bloor St W");
//sq.SetAccountAddressStreet2 ("4th Flr West Tower");
//sq.SetAccountAddressCity ("Toronto") ;
//sq.SetAccountAddressState ("Ontario") ;
//sq.SetAccountAddressCountry ("CA") ;
//sq.SetAccountAddresszip ("M8X2X2") ;
//sq.SetShippingAddressStreetl ("3300 Bloor St W");
//sq.SetShippingAddressStreet2 ("4th Flr West Tower");
//sq.SetShippingAddressCity ("Toronto") ;
//sq.SetShippingAddressState ("Ontario") ;
//sq.SetShippingAddressCountry ("CA") ;
//sq.SetShippingAddressZip ("M8X2X2") ;
//sq.SetLocalAttribl ("a") ;

//sq.SetLocalAttrib2 ("b") ;

//sq.SetLocalAttrib3 ("c");

//sq.SetLocalAttrib4 ("d");

//sq.SetLocalAttrib5 ("e") ;
//sq.SetTransactionAmount ("1.00") ;
//sq.SetTransactionCurrency ("840") ;

//set SessionAccountInfo

sq.SetTransactionCurrency ("CAN") ;

HttpsPostRequest mpgReq = new HttpsPostRequest();
mpgReq.SetProcCountryCode (processing country code);

mpgReq. SetTestMode (true); //false or comment out this line for production transactions

mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api token) ;
mpgReq.SetTransaction (sq) ;
mpgReq.SetStatusCheck (status_check) ;
mpgReqg. Send () ;

November 2018 Canada Only

Page 297 of 476

Moneris Gateway API - Integration Guide

Sample Session Query - CA

try

{

Hashtable results = new Hashtable();
string[] rules;

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());

// results = receipt.GetResult();

//Iterate through the response

// IDictionaryEnumerator r results.GetEnumerator () ;

// while (r.MoveNext())

// A

// Console.WriteLine (r.Key.ToString() + " = " + r.Value.ToString());
!/}

//Iterate through the rules that were fired

rules = receipt.GetRules();

for (int i = 0; i < rules.Length; i++)

{

Console.WriteLine ("RuleName = " + rules[i]);

Console.WriteLine ("RuleCode = " + receipt.GetRuleCode (rules[i]));
Console.WriteLine ("RuleMessageEn = " + receipt.GetRuleMessageEn (rules[i]));
Console.WriteLine ("RuleMessageFr = " + receipt.GetRuleMessageFr (rules[i]))
}

Console.ReadLine () ;

}

catch (Exception e)

{

Console.WriteLine (e) ;

}

}

} // end TestRiskCheckSession

}

’

9.3.3.1 Session Query Transaction Flow

Cardholder
browser

Threatmetrix eselectPlus

Figure 4: Session Query transaction flow

1. cCardholder logs onto the merchant website.
2. When the page has loaded in the cardholder's browser, special tags within the site allow inform-
ation from the device to be gathered and sent to ThreatMetrix as the device fingerprint.

The HTML tags should be placed where the cardholder is resident on the page for a couple of
seconds to get the broadest data possible.

3. Customer submits a transaction.

Page 298 of 476 Canada Only November 2018

4. Merchant’s web application makes a Session Query transaction to the Moneris Gateway using

the same session id that was included in the device fingerprint. This call must be made within 30

minutes of profiling (2).

Moneris Gateway submits the Session Query data to ThreatMetrix.

6. ThreatMetrix uses the Session Query data and the device fingerprint information to assess the
transaction against the rules. A score is generated based on the rules.

7. The merchant uses the returned device information in its risk analysis to make a business
decision. The merchant may wish to continue or cancel with the cardholder’s payment trans-
action.

v

9.3.4 Attribute Query

The Attribute Query is used to obtain a risk assessment of transaction-related identifiers such as the
email address and the card number. Unlike the Session Query, the Attribute Query does not require the
device fingerprinting information to be provided.

AttributeQuery transaction object definition

AttributeQuery ag = new AttributeQuery () ;

HttpsPostRequest object for AttributeQuery transaction
HttpsPostRequest mpgReq = new HttpsPostRequest () ;

Attribute Query transaction values

Table 88: Attribute Query transaction object mandatory values

Service type String | N/A ag.SetServiceType (service type);

Which output fields are returned.

session --returns IP and device related attributes.

Device ID String | 36-character alphanumeric aqg.SetDeviceId("");

Unique device identifier generated by a previous call to the ThreatMetrix session-
query API.

Credit card String | 20-character numeric aq.SetPan (pan) ;

number
No spaces or dashes

Most credit card numbers today are 16 digits, but some 13-digit numbers are still
accepted by some issuers. This field has been intentionally expanded to 20 digits in
consideration for future expansion and potential support of private label card ranges.

November 2018 Canada Only Page 299 of 476

Moneris Gateway API - Integration Guide

Table 88: Attribute Query transaction object mandatory values (continued)

IP address

String

64-character alphanumeric

ag.SetIPAddress ("192.168.0.1");

True IP

address. Results will be returned a

strue_ip_geo, true_ip_score and so on.

IP forwarded

String

64-character alphanumeric

ag.SetIPForwarded
("192.168.1.0");

The IP address of the proxy. If the IPAddress is supplied, results will be returned as

proxy_i

Ifthe IP Address is not supplied, this IP address will be treated as the true IP address
and results will be returned as true_ip_geo, true_ip_score and so on

p_geo and proxy_ip_score.

Account String | 32-character alphanumeric aq.SetAccountAddressStreetl
address street ("3300 Bloor St W");
1 First portion of the street address component of the billing address.
Account String | 32-character alphanumeric ag.SetAccountAddressStreet2 ("4th
Address Street Flr West Tower");
2 Second portion of the street address component of the billing address.
Account String | 50-character alphanumeric aq.SetAccountAddressCity
address city ("Toronto") ;

The city component of the billing address.
Account String | 64-character alphanumeric aq.SetAccountAddressState
address state/- ("Ontario") ;
province The state component of the billing address.
Account String | 2-character alphanumeric ag.SetAccountAddressCountry
address coun- ("CA") ;
try ISO2 country code of the billing addresses.
Account String | 8-character alphanumeric ag.SetAccountAddressZip
address zip/- ("M8X2X2") ;
postal code Zip/postal code of the billing address.
Shipping String | 32-character alphanumeric aqg.SetShippingAddressStreetl
address street ("3300 Bloor St W");
1 Account address country
Shipping String | 32-character alphanumeric aq.SetShippingAddressStreet2
Address Street ("4th Flr West Tower");
2 Second portion of the street address component of the shipping address.
Page 300 of 476 Canada Only November 2018

Table 88: Attribute Query transaction object mandatory values (continued)

Shipping String | 50-character alphanumeric aq.setShippingAddressCity
Address City ("Toronto") ;

City component of the shipping address.

Shipping String | 64-character alphanumeric aqg.setShippingAddressState
Address ("Ontario") ;

State/Province State/P

rovince component of the shipping address.

Shipping String | 2-character alphanumeric aq.setShippingAddressCountry
Address Coun- ("CA™);

try ISO2 country code of the account address country.

Shipping String [8-character alphanumeric

Address zip/-

postal code The zip/postal code component of the shipping address.

Sample Attribute Query

namespace Moneris

{

using System;

using System.Collections;

public class TestRiskCheckAttribute

{

public static void Main(string[] args)

{

string store id = "moneris";

string api token = "hurgle";

string order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;
string service type = "session";

string processing country code = "CA";

bool status_check = false;

AttributeQuery ag = new AttributeQuery() ;
aq.SetOrderId(order id);

aqg.SetServiceType (service type);

ag.setDeviceId("");

ag.setAccountLogin ("13195417-8CA0-46cd-960D-14C158E4DBB2") ;
aqg.setPasswordHash ("489c830£10£7¢c601d30599%9a0deaf66e64d2aab0a™) ;
aqg.setAccountNumber ("3E17A905-AC8A-4c8d-A417-3DADA2A55220") ;
ag.setAccountName ("4590FCCO-DF4A-44d9-A57B-AF9DE98B84DD") ;
ag.setAccountEmail ("3CAE72EF-6B69-4a25-93FE-2674735E78E8@test. threatmetrix.com") ;
//aq.setCCNumberHash ("4242424242424242") ;

//aqg.setIPAddress ("192.168.0.1");

//aq.setIPForwarded ("192.168.1.0");
ag.setAccountAddressStreetl ("3300 Bloor St W");
ag.setAccountAddressStreet2 ("4th Flr West Tower");
ag.setAccountAddressCity ("Toronto") ;

ag.setAccountAddressState ("Ontario") ;
aq.setAccountAddressCountry ("CA") ;

ag.setAccountAddresszip ("M8X2X2") ;

November 2018 Canada Only Page 301 of 476

Moneris Gateway API - Integration Guide

Sample Attribute Query

ag.setShippingAddressStreetl ("3300 Bloor St W");
ag.setShippingAddressStreet2 ("4th Flr West Tower");
ag.setShippingAddressCity ("Toronto") ;
ag.setShippingAddressState ("Ontario") ;
aqg.setShippingAddressCountry ("CA") ;
ag.setShippingAddresszip ("M8X2X2") ;
HttpsPostRequest mpgReq = new HttpsPostRequest();
mpgReq. SetProcCountryCode (processing country code) ;
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api_ token) ;
mpgReq.SetTransaction (aq) ;

mpgReq.SetStatusCheck (status_check) ;

mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Hashtable results = new Hashtable();

string[] rules;

Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());

results = receipt.GetResult () ;

//Iterate through the response

IDictionaryEnumerator response = results.GetEnumerator();

while (response.MoveNext ())

{

Console.WritelLine (response.Key.ToString() + " = " + response.Value.ToString());
}

//Iterate through the rules that were fired

rules = receipt.GetRules();

for (int i = 0; i < rules.Length; i++)

{

Console.WriteLine ("RuleName = " + rules[i]);

Console.WriteLine ("RuleCode = " + receipt.GetRuleCode (rules[i]));
Console.WritelLine ("RuleMessageEn = " + receipt.GetRuleMessageEn (rules[i]));
Console.WritelLine ("RuleMessageFr = " + receipt.GetRuleMessageFr (rules[i]));

}

Console.ReadLine () ;

}

catch (Exception e)

{

Console.WriteLine (e);

}

}

} // end TestRiskCheckAttribute
}

Page 302 of 476 Canada Only November 2018

9.3.4.1 Attribute Query Transaction Flow

Cardholder 1— Merchant
browser website
2 5
+—3
Threathl et rix e5electPlus

Figure 5: Attribute query transaction flow

1. Cardholderlogs onto merchant website and submits a transaction.

2. The merchant’s web application makes an Attribute Query transaction that includes the session
ID to the Moneris Gateway.

3. Moneris Gateway submits Attribute Query data to ThreatMetrix.

4. ThreatMetrix uses the Attribute Query data to assess the transaction against the rules. A score is
generated based on the rules.

5. The merchant uses the returned device information in its risk analysis to make a business
decision. The merchant may wish to continue or cancel with the cardholder's payment trans-
action.

9.3.5 Handling Response Information

When reviewing the response information and determining how to handle the transaction, it is recom-
mended that you (either manually or through automated logic on your site) use the following pieces of
information:

o Risk score

o Rules triggered (such as Rule Codes, Rule Names, Rule Messages)

o Results obtained from Verified by Visa, MasterCard Secure Code, AVS, CVD and the financial trans-
action authorization

o Response codes for the Transaction Risk Management Transaction that are included by auto-
mated processes.

November 2018 Canada Only Page 303 of 476

Moneris Gateway API - Integration Guide

9.3.5.1 TRMT Response Fields

Table 89: Receipt object response values for TRMT

Response
Code

String 3-character alpha- receipt.GetResponseCode () ;
numeric

001 —Success

981 — Data error

982 — Duplicate Order ID

983 —Invalid Transaction

984 — Previously asserted

985 — Invalid activity description
986- Invalid impact description

987 — Invalid Confidence description

988 - Cannot find Previous

Message

String N/A receipt.GetMessage () ;

Response message

Event type

String N/A

Type of transaction or event returned in the response.

OrgID

String N/A

ThreatMetrix-defined unique transaction identifier

Policy

String N/A

Policy used for the Session Query will be returned with the return request. If the Policy
was not included, then the Policy name default is returned.

Policy score

String N/A

The sum of all the risks weights from triggered rules within the selected policy in the
range [-100...100]

Request dur-
ation

String N/A

Length of time it takes for the transaction to be processed.

Page 304 of 476 Canada Only November 2018

Table 89: Receipt object response values for TRMT (continued)

Request ID

String

N/A

Unique number and will always be returned with the return request.

Request res- | String N/A
ult See 9.3.5.1 (page 304).
Review String N/A
status
The transaction status based on the assessments and risk scores.
Risk rating | String N/A

The rating based on the assessments and risk scores.

Service type

String

N/A

The service type will be returned in the attribute query response.

ID

Session ID String N/A
Temporary identifier unique to the visitor will be returned in the return request.
Summary String N/A
risk score Based on all of the returned values in the range [-100 ... 100]
Transaction |String N/A

This is the transaction identifier and will always be returned in the response when sup-

plied as input.
Unknown String N/A
session) —)
If present, the valueis "yes". It indicates the session ID that was passed was not found.
Table 90: Response code descriptions
001 |Success
981 |Dataerror
982 |Duplicate order ID
983 [Invalid transaction
984 | Previously asserted
985 | Invalid activity description
November 2018 Canada Only Page 305 of 476

Moneris Gateway API - Integration Guide

986 [Invalid impact description

987 |Invalid confidence description

988 | Cannot find previous

Table 91: Request result values and descriptions

fail_duplicate_entities_of _same_type

More than one entity of the same was specified,
e.g. password_hash was specified twice.

fail_incomplete

ThreatMetrix was unable to process the request
due to incomplete or incorrect input data

fail_invalid_account_number

The format of the supplied account number was
invalid

fail_invalid_characters

Invalid characters submitted

fail_invalid_charset

The value of character set was invalid

fail_invalid_currency_code

The format of the currency_code was invalid

fail_invalid_currency_format

The format of the currency_format was invalid

fail_invalid_telephone_number

Format of the supplied telephone number was
invalid

fail_access

ThreatMetrix was unable to process the request
because of API verification failing

fail_internal_error

ThreatMetrix encountered an error while pro-
cessing the request

fail_invalid_device_id

Format of the supplied device_id was invalid

fail_invalid_email_address

Format of the supplied email address was invalid

fail_invalid_fuzzy device _id

The format of fuzzy_device_id was invalid

fail_invalid_ip_address_parameter

Format of a supplied ip_address parameter was
invalid

fail_invalid_parameter

The format of the parameter was invalid, or the

Page 306 of 476

Canada Only

November 2018

value is out of boundary

fail_invalid_sha_hash The format of a parameter specified as a sha hash
was invalid, sha hash included shal/2/3 hash

fail_invalid_submitter_id The format of the submitter id was invalid or the
value is out of boundary

fail_no_policy_configured No policy was configured against the org_id

fail_not_enough_params Not enough device attributes were collected dur-
ing profiling to perform a fingerprint match

fail_parameter_overlength The value of the parameter was overlength

fail_temporarily_unavailable Request failed because the service is temporarily
unavailable

fail_too_many_instances_of same_parameter Multiple values for some parameters which only

allow one instance

fail_verification API query limit reached
success ThreatMetrix was able to process the request suc-
cessfully

9.3.5.2 Understanding the Risk Score

For each Session Query or Attribute Query, a score with a value between -100 and +100 is returned based
on the rules that were triggered for the transaction.

Table 92 defines the risk scores ranges.

Table 92: Session Query and Attribute Query risk score definitions

-100to -1 A lower score indicates a higher probability that the transaction is fraudulent.
0 Neutral transaction
1to 100 A higher score indicates a lower probability that the transaction is fraudulent.

Note: All e-commerce transactions have some level of risk associated with them.
Therefore, it is rare to see risk score in the high positive values.

November 2018 Canada Only Page 307 of 476

Moneris Gateway API - Integration Guide

When evaluating the risk of a transaction, the risk score gives an initial indicator of the potential risk that
the transaction is fraudulent. Because some of the rules that are evaluated on each transaction may not
be relevant to your business scenario, review the rules that were triggered for the transaction before
determining how to handle the transaction.

9.3.5.3 Understanding the Rule Codes, Rule Names and Rule Messages

The rule codes, rule names and rule messages provide details about what rules were triggered during the
assessment of the information provided in the Session or Attribute Query. Each rule code has a rule
name and rule message. The rule name and rule message are typically similar. Table 93 provides addi-
tional information on each rule.

When evaluating the risk of a transaction, it is recommended that you review the rules that were
triggered for the transaction and assess the relevance to your business. (That is, how does it relate to the
typical buying habits of your customer base?)

If you are automating some or all of the decision-making processes related to handling the responses,
you may want to use the rule codes. If you are documenting manual processes, you may want to refer to
the more user-friendly rule name or rule message.

Table 93: Rule names, numbers and messages

White lists

DeviceWhitelisted WLO001 Device White Listed

Device is on the white list. This indicates that the device has
been flagged as always "ok".

Note: This rule is currently not in use.

IPWhitelisted WL002 IP White Listed

IP address is on the white list. This indicates the device has
been flagged as always "ok".

Note: This rule is currently not in use.

EmailWhitelisted WL003 Email White Listed

Email address is on the white list. This indicates that the
device has been flagged as always "ok".

Note: This rule is currently not in use.

Event velocity

2DevicePayment EV003 2 Device Payment Velocity

Multiple payments were detected from this device in the
past 24 hours.

Page 308 of 476 Canada Only November 2018

Table 93: Rule names, numbers and messages (continued)

2IPPaymentVelocity

EV006 2 IP Payment Velocity

Multiple payments were detected from this IP within the
past 24 hours.

2ProxyPaymentVelocity EV008 2 Proxy Payment Velocity
The device has used 3 or more different proxies during a 24
hour period. This could be a risk or it could be someone
using a legitimate corporate proxy.

Email

3EmailPerDeviceDay

EMO001 3 Emails for the Device ID in 1 Day

This device has presented 3 different email IDs within the
past 24 hours.

3EmailPerDeviceWeek

EMO002 3 emails for the Device ID in 1 week

This device has presented 3 different email IDs within the
past week.

3DevciePerEmailDay

EMO003 3 Device Ids for email address in 1 day

This email has been presented from three different devices
in the past 24 hours.

3DevciePerEmailWeek

EMO004 3 Device Ids for email address in 1 week

This email has been presented from three different devices
in the past week.

EmailDistanceTravelled

EMO05 Email Distance Travelled

This email address has been associated with different phys-
ical locations in a short period of time.

3EmailPerSmartIDHour

EMO06 3 Emails for SmartID in 1 Hour

The SmartlD for this device has been associated with 3 dif-
ferent email addresses in 1 hour.

GlobalEMailOverOneMonth

EMO007 Global Email over 1 month

The e-mail address involved in the transaction over 30 days
ago. This generally indicates that the transaction is less
risky.

Note: This rule is set so that it does not impact the policy
score or risk rating.

ComputerGeneratedEmailAddress

EMO008 Computer Generated Email Address

November 2018

Canada Only Page 309 of 476

Moneris Gateway API - Integration Guide

Table 93: Rule names, numbers and messages (continued)

This transaction used a computer-generated email address.

Account Number

3AccountNumberPerDeviceDay

ANOO1

3 Account Numbers for device in 1 day

This device has presented 3 different user accounts within

the past 24 hours.

3AccountNumberPerDeviceWeek

ANO002

3 Account Numbers for device in 1
week

This device has presented 3 different user accounts within

the past week.

3DevciePerAccountNumberDay

ANOO3

3 Device IDs for account numberin 1
day

This user account been used from three different devices in

the past 24 hours.

3DevciePerAccountNumberWeek

ANOO4

3 Device IDs for account numberin 1
week

This card number ha

s been used from three different
devices in the past week.

AccountNumberDistanceTravelled

ANOO5

Account Number distance travelled

This card number has been used from a number of phys-
ically different locations in a short period of time.

Credit card/payments

3CreditCardPerDeviceDay

CP001

3 credit cards for device in 1 day

This device has used

three credit cards within 24 hours.

3CreditCardPerDeviceWeek

CP002

3 credit cards for device in 1 week

This device has used

three credit cards within 1 week.

3DevicePerCreditCardDay

CP0O03

3 device ids for credit card in 1 day

This credit card has been used on three different devices in

24 hours.

3DevciePerCreditCardWeek

CP00O4

3 device ids for credit card in 1 week

This credit card has been used on three different devices in 1

week.

Page 310 of 476

Canada Only

November 2018

Table 93: Rule names, numbers and messages (continued)

CredtCardDistanceTravelled

CP005 Credit Card has travelled

The credit card has been used at a number of physically dif-
ferent locations in a short period of time.

CreditCardShipAddressGeoMismatch

CP0O06 Credit Card and Ship Address do not
match

The credit card was issued in a region different from the Ship
To Address information provided.

CreditCardBillAddressGeoMismatch

CP007 Credit Card and Billing Address do not

match

The credit card was issued in a region different from the
Billing Address information provided.

CreditCardDeviceGeoMismatch

CP008 Credit Card and device location do not

match

The device is located in a region different from where the
card was issued.

CreditCardBINShipAddressGeoMismatch

CP009 Credit Card issuing location and Ship-

ping address do not match

The credit card was issued in a region different from the Ship
To Address information provided.

CreditCardBINBillAddressGeoMismatch

CPO10 Credit Card issuing location and Billing

address do not match

The credit card was issued in a region different from the
Billing Address information provided.

CreditCardBINDeviceGeoMismatch

CPO11 Credit Card issuing location and loc-

ation of the device do not match

The device is located in a region different from where the
card was issued.

TransactionValueDay

CP012 Daily Transaction Value Threshold

The transaction value exceeds the daily threshold.

TransactionValueWeek

CP013 Weekly Transaction Value Threshold

The transaction value exceeds the weekly threshold.

Proxy rules

3ProxyPerDeviceDay PX001 3 Proxy Ips in 1 day
This device has used three different proxy servers in the past
24 hours.

November 2018 Canada Only Page 311 of 476

Moneris Gateway API - Integration Guide

Table 93: Rule names, numbers and messages (continued)

AnonymousProxy

PX002 Anonymous Proxy IP

This device is using an anonymous proxy

UnusualProxyAttributes

PX003 Unusual Proxy Attributes

This transaction is coming from a source with unusual proxy
attributes.

AnonymousProxy

PX004

Anonymous Proxy

This device is connecting through an anonymous proxy con-
nection.

HiddenProxy

PX005 Hidden Proxy

This device is connecting via a hidden proxy server.

OpenProxy PX006 Open Proxy
This transaction is coming from a source that is using an
open proxy.

TransparentProxy PX007 Transparent Proxy

This transaction is coming from a source that is using a trans-
parent proxy.

DeviceProxyGeoMismatch

PX008 Proxy and True GEO Match

This device is connecting through a proxy server that didn’t
match the devices geo-location.

ProxyTruelSPMismatch

PX009 Proxy and True ISP Match

This device is connecting through a proxy server that
doesn’t match the true IP address of the device.

ProxyTrueOrganizationMismatch

PX010 Proxy and True Org Match

The Proxy information and True ISP information for this
source do not match.

DeviceProxyRegionMismatch

PX011 Proxy and True Region Match

The proxy and device region location information do not
match.

ProxyNegativeReputation

PX012 Proxy IP Flagged Risky in Reputation

Network

This device is connecting from a proxy server with a known
negative reputation.

Page 312 of 476

Canada Only November 2018

Table 93: Rule names, numbers and messages (continued)

SatelliteProxyISP

PX013 Satellite Proxy

This transaction is coming from a source that is using a satel-
lite proxy.

GEO

DeviceCountriesNotAllowed

GEOO01 True GEO in Countries Not Allowed
blacklist

This device is connecting from a high-risk geographic loc-
ation.

DeviceCountriesNotAllowed

GE002 True GEO in Countries Not Allowed
(negative whitelist)

The device is from a region that is not on the whitelist of
regions that are accepted.

DeviceProxyGeoMismatch

GEOQ03 True GEO different from Proxy GEO

The true geographical location of this device is different from
the proxy geographical location.

DeviceAccountGeoMismatch

GE004 Account Address different from True
GEO

This device has presented an account billing address that
doesn't match the devices geolocation.

DeviceShipGeoMismatch

GEOQ05 Device and Ship Geo mismatch

The location of the device and the shipping address do not
match.

DeviceShipGeoMismatch

GEO06 Device and Ship Geo mismatch

The location of the device and the shipping address do not
match.

Device

SatellitelSP

DVO001 Satellite ISP

This transaction is from a source that is using a satellite ISP.

MidsessionChange

DV002 Session Changed Mid-session

This device changed session details and identifiers in the
middle of a session.

November 2018

Canada Only Page 313 0of 476

Moneris Gateway API - Integration Guide

Table 93: Rule names, numbers and messages (continued)

LanguageMismatch

DV003

Language Mismatch

The language of the
guage spoken in the

user does not match the primary lan-
location where the True IP is registered.

NoDevicelD

DV004

No Device ID

No device ID was available for this transaction.

Dial-upConnection

DVO005

Dial-up connection

This device uses a less identifiable dial-up connection.

DeviceNegativeReputation

DVO006

Device Blacklisted in Reputational Net-
work

This device has a known negative reputation as reported to

the fraud network.

DeviceGlobalBlacklist

DVvO007

Device on the Global Black List

This device has been
problem devices.

flagged on the global blacklist of known

DeviceCompromisedDay

DV008

Device compromised in last day

This device has been
hours.

reported as compromised in the last 24

DeviceCompromisedHour

DV009

Device compromised in last hour

This device has been
hour.

reported as compromised in the last

FlashImagesCookiesDisabled

DVv010

Flash Images Cookies Disabled

Key browser functions/identifiers have been disabled on

this device.

FlashCookiesDisabled

DVO011

Flash Cookies Disabled

Key browser functions/identifiers have been disabled on

this device.

FlashDisabled

DV012

Flash Disabled

Key browser functions/identifiers have been disabled on

this device.

ImagesDisabled

DVO013

Images Disabled

Key browser functions/identifiers have been disabled on

this device.

Page 314 of 476

Canada Only

November 2018

Table 93: Rule names, numbers and messages (continued)

CookiesDisabled DV014 Cookies Disabled
Key browser functions/identifiers have been disabled on
this device.

DeviceDistanceTravelled DVO015 Device Distance Travelled

a short period of time.

The device has been used from multiple physical locations in

PossibleCookieWiping DVO016 Cookie Wiping
This device appears to be deleting cookies after each ses-
sion.

PossibleCookieCopying DV017 Possible Cookie Copying

This device appears to be copying cookies.

PossibleVPNConnection DV018 Possibly using a VPN Connection

This device may be using a VPN connection

9.3.5.4 Examples of Risk Response

Session Query

Sample Risk Response - Session Query

<?xml version="1.0"?>

<response>

<receipt>

<ResponseCode>001</ResponseCode>
<Message>Success</Message>

<Result>

<session_id>abcl23</session_id>
<unknown_session>yes</unknown_session>
<event_type>payment</event_type>

<service type>session</service type>

<policy score>-25</policy score>
<transaction_ id>riskcheck42</transaction_id>
<org id>11lkue096</org id>

<request_ 1d>91C1879B-33D4-4D72-8FCB-B60A172B3CAC</request_id>
<risk_rating>medium</risk_rating>
<request_result>success</request_result>
<summary risk score>-25</summary risk score>
<Policy>default</policy>
<review_status>review</review_ status>
</Result>

<Rule>
<RuleName>ComputerGeneratedEMail</RuleName>
<RuleCode>UN001</RuleCode>

November 2018 Canada Only Page 315 of 476

Moneris Gateway API - Integration Guide

Sample Risk Response - Session Query

<RuleMessageEn>Unknown Rule</RuleMessageEn>
<RuleMessageFr>Regle Inconnus</RuleMessageFr>
</Rule>

<Rule>

<RuleName>NoDeviceID</RuleName>
<RuleCode>DV004</RuleCode>
<RuleMessageEn>No Device ID</RuleMessageEn>
<RuleMessageFr>null</RuleMessageFr>

</Rule>

</receipt>

</response>

Attribute Query

Sample Risk Response - Attribute Query

<?xml version="1.0"7?>

<response>

<receipt>

<ResponseCode001</ReponseCode>

<Message = Success</Message>

<Result>

<org_id>11kue096</org_id>

<request id>443D7FB5-CC5C-4917-A57E-27EAC824069C</request_id>
<service type>session</service type>

<risk rating>medium</risk rating>

<summary risk score>-25</summary risk score>
<request result>success</request result>
<policy>default</policy>

<policy score>-25</policy score>
<transaction_ id>riskcheckl9</transaction_id>
<review status>review</review status>
</Result>

<Rule>
<RuleName>ComputerGeneratedEMail</RuleName>
<RuleCode>UN001</RuleCode>
<RuleMessageEn>Unknown Rule</RuleMessageEn>
<RuleMessageFr>Regle Inconnus</RuleMessageFr>
</Rule>

<Rule>

<RuleName>NoDeviceID</RuleName>
<RuleCode>DV004</RuleCode>

<RuleMessageEn>No Device ID</RuleMessageEn>
<RuleMessageFr>null</RuleMessageFr>

</Rule>

</receipt>

</response>

9.3.6 Inserting the Profiling Tags Into Your Website

Place the profiling tags on an HTML page served by your web application such that ThreatMetrix can col-
lect device information from the customer’s web browser. The tags must be placed on a page that a vis-

itor would display in a browser window for 3-5 seconds (such as a page that requires a user to input

Page 316 of 476 Canada Only November 2018

data). After the device is profiled, a Session Query may be used to obtain the detail device information
for risk assessment before submitting a financial payment transaction.

There are two profiling tags that require two variables. Those tags are org_idand session_id, ses-
sion_id must match the session ID value that is to be passed in the Session Query transaction. The
valid org_idvalues are:

11kue096
QA testing environment.

Ibhqgxa7
Production environment.

Below is an HTML sample of the profiling tags.

NOTE: Your site must replace <my session id> inthe sample code with a unique alpha-
numeric value each time you fingerprint a new customer.

<p style="background:url (https://h.online-metrix.net/fp/clear.png?org id=11kue096&session id=<my
session_id>&m=1)">
</p>

<img src="https://h.onlinemetrix.net/fp/clear.png?org id=1lkue096&session id=<my session id>&m=2" alt=""
>

<script src="https://h.onlinemetrix.net/fp/check.js?org id=1lkuel096&session id=<my session id>"
type="text/javascript">
</script>

<object type="application/x-shockwave-flash"

data="https://h.onlinemetrix.net/fp/fp.swf?org id=11kue096&session id=<my session id>"
width="1" height="1" id="obj id">

<param name="movie"
value="https://h.onlinemetrix.net/fp/fp.swf?org id=11kue096&session id=<my session id>" />
<div></div>

</object>

November 2018 Canada Only Page 317 of 476

9.4 Encorporating All Available Fraud Tools

e 9.4.1 Implementation Options for TRMT
e 9.4.2 Implementation Checklist
e 9.4.3 Making a Decision

To minimize fraudulent activity in online transactions, Moneris recommends that you implement all of
the fraud tools available through the Moneris Gateway. These are explained below:

Address Verification Service (AVS)
Verifies the cardholder's billing address information.

Verified by Visa, MasterCard Secure Code and Amex SafeKey (VbV/MCSC/SafeKey)
Authenticates the cardholder at the time of an online transaction.

Card Validation Digit (CVD)
Validates that cardholder is in possession of a genuine credit card during the transaction.

Note that all responses that are returned from these verification methods are intended to provide added
security and fraud prevention. The response itself does not affect the completion of a transaction. Upon
receiving a response, the choice to proceed with a transaction is left entirely to the merchant.

9.4.1 Implementation Options for TRMT

Option A

Process a Transaction Risk Management Tool query and obtain the response. You can then decide
whether to continue with the transaction, abort the transaction, or use additional efraud features.

If you want to use additional efraud features, perform one or both of the following to help make your
decision about whether to continue with the transaction or abort it:

o Process a VbV/MCSC/SafeKey transaction and obtain the response. The merchant then makes the
decision whether to continue with the transaction or to abort it.

o Process a financial transaction including AVS/CVD details and obtain the response. The merchant
then makes a decision whether to continue with the transaction or to abort it.

Option B

1. Process a Transaction Risk Management Tool query and obtain the response.

Process a VbV/MCSC/SafeKey transaction and obtain the response.

Process a financial transaction including AVS/CVD details and obtain the response.
Merchant then makes a one-time decision based on the responses received from the eFraud
tools.

HwnN

9.4.2 Implementation Checklist

The following checklists provide high-level tasks that are required as part of your implementation of the
Transaction Risk Management Tool. Because each organization has certain project requirements for
implementing system and process changes, this list is only a guideline, and does not cover all aspects of
your project.

November 2018 Page 318 of 476

Moneris Gateway API - Integration Guide

Download and review all of the applicable APIs and Integration Guides

Please review the sections outlined within this document that refers to the following feature

Table 94: APl documentation

Transaction Risk Management Tool Integration Implementing or updating your integration for the
Guide (Section #) Transaction Risk Management Tool
Moneris MP| — Verified by Visa/MasterCard Implementing or updating Verified by Visa, Master-

SecureCode/American Express SafeKey —Java API | Card SecureCode or American Express SafeKey
Integration Guide

Basic transaction with VS and CVD (Section#) Implementing or updating transaction processing,
AVS or CVD

Design your transaction flow and business processes

When designing your transaction flow, think about which scenarios you would like to have automated,
and which scenarios you would like to have handled manually by your employees.

The “Understand Transaction Risk Management Transaction Flow” and Handling Response Information
(page 303) sections can help you work through the design of your transaction and process flows.

Things to consider when designing your process flows:

e Processes for notifying people within your organization when there is scheduled maintenance for
Moneris Gateway.

o Handling refunds, canceled orders and so on.

o Communicating with customers when you will not be shipping the goods because of suspected
fraud, back-ordered goods and so on.

Complete your development and testing

o The Moneris Gateway API - Integration Guide provides the technical details required for the devel-
opment and testing. Ensure that you follow the testing instructions and data provided.

If you are an integrator

o Ensure that your solution meets the requirements for PCI-DSS/PA-DSS as applicable.
¢ Send an email to eproducts@moneris.com with the subject line “Certification Request”.
o Develop material to set up your customers as quickly as possible with your solution and a Moneris
account. Include information such as:
o Steps they must take to enter their store ID or APl token information into your solution.

Page 319 of 476 November 2018

mailto:eproducts@moneris.com?subject=Certification Request

o Any optional services that you support via Moneris Gateway (such as TRMT, AVS, CVD,
VBV/MCSC/SafeKey and so on) so that customers can request these features.

9.4.3 Making a Decision

Depending on your business policies and processes, the information obtained from the fraud tools (such
as AVS, CVD, VbV/MCSC/SafeKey and TRMT) can help you make an informed decision about whether to
accept a transaction or deny it because it is potentially fraudulent.

If you do not want to continue with a likely fraudulent transaction, you must inform the customer that
you are not proceeding with their transaction.

If you are attempting to do further authentication by using the available fraud tools, but you have
received an approval response instead, cancel the financial transaction by doing one of the following:

« Ifthe original transaction is a Purchase, use a Purchase Correction or Refund transaction. You will
need the original order ID and transaction number.
« Ifthe original transaction is a Pre-Authorization, use a Completion transaction for $0.00.

November 2018 Page 320 of 476

10 Apple Pay In-App and on the Web Integration

e 10.1 About Apple Pay In-App and on the Web Integration10.1 About Apple Pay In-App and on the
Web Integration

o 10.2 About API Integration of Apple Pay

e 10.3 Apple Pay In-App Process Flows10.3 Apple Pay In-App Process Flows

o 10.4 Cavv Purchase —Apple Pay 10.4 Cavv Purchase —Apple Pay

e 10.5 Cavv Pre-Authorization — Apple Pay

10.1 About Apple Pay In-App and on the Web Integration

The Moneris Gateway enables merchants to process in-app or on the web payment methods in mobile
applications and the Safari web browser on Apple devices via Apple Pay.

Moneris Solutions offers two processing and integration methods for Apple Pay. Merchants can choose
to use one of two methods:

« Software Development Kit (SDK), or
o API

While both methods provide the same basic payment features, there are differences in their imple-
mentations.

This guide only deals with the APl method; for detailed information about the SDK method of integ-
ration, see the Moneris Developer Portal at https://developer.moneris.com.

10.2 About API Integration of Apple Pay

An APl integration works to provide a communication link between the merchants’ server and Moneris’
server. APls are required to complete any transaction, and therefore the APIs for Apple Pay are also
included within an SDK integration.

If the merchant chooses to use only an APl integration, the merchant must decrypt payload information
themselves before sending the decrypted information to the Moneris Gateway to be processed. Because
this process is complicated, Apple recommend only businesses with expertise and a previously integ-
rated payment processing system use APls instead of SDKs.

10.2.1 Transaction Types That Use Apple Pay

In the Moneris Gateway API, there are two transaction types that allow you to process decrypted trans-
action payload information with Apple Pay:

e 10.4 Cavv Purchase —Apple Pay 10.4 Cavv Purchase — Apple Pay
o 10.5 Cavv Pre-Authorization — Apple Pay

November 2018 Page 321 of 476

Moneris Gateway API - Integration Guide

NOTE: INTERAC® e-Commerce functionality is currently available using the Cavv
Purchase transaction type only.

Once you have processed the initial transaction using Cavv Purchase or Cavv Pre-Authorization, if
required you can then process any of the following transactions:

o Refund (page 35)
o Pre-Authorization Completion (page 25)
e Purchase Correction (page 33)

10.3 Apple Pay In-App Process Flows

For both APl and SDK methods of mobile in-app integration, the merchant’s iOS app uses Apple’s PassKit
Framework to request and receive encrypted payment details from Apple. When payment details are
returned in their encrypted form, they can be decrypted and processed by the Moneris Gateway in one
of two ways: SDK or API.

@ API SDK @

Apple Pay & Apple Pay &
Android Pay N f Android Pay
B B
wr| @ | @ |are

Decrypts and
Process

Merchant Server @
Decrypts Moneris Server
Moneris Server @
Process

Steps in the Apple Pay In-App and on the Web payment process

API

1. Merchant’s mobile application or web page requests and receives the encrypted payload.
2. Encrypted payload is sent to the merchant’s server, where it is decrypted.

Page 322 of 476 November 2018

10 Apple Pay In-App and on the Web Integration

3. Moneris Gateway receives the decrypted payload from the merchant’s server, and processes the
Cavv Purchase — Apple Pay (page 323)Cavv Purchase — Apple Pay (page 323) or Cavv Pre-Author-
ization — Apple Pay (page 327)Cavv Pre-Authorization — Apple Pay (page 327) transaction.

a. Please ensure the wallet indicator is properly populated with the correct value (APP for
Apple Pay In-App or APW for Apple Pay on the Web).

SDK

1. Merchant's mobile application or web page requests and receives the encrypted payload.
2. Encrypted payload is sent from the merchant’s server to the Moneris Gateway, and the payload is
decrypted and processed.

This guide only deals with the APl method; for detailed information about the SDK method of integ-
ration, see the Moneris Developer Portal at https://developer.moneris.com.

10.4 Cavv Purchase — Apple Pay

The Cavv Purchase for Apple Pay transaction follows a 3-D Secure model but it does not require an MPI.
Once the Apple Pay payload has been decrypted, this Purchase verifies funds on the customer’s card,
removes the funds and prepares them for deposit into the merchant’s account.

For Apple Pay processing, this transaction is only applicable if choosing to integrate directly to the Apple
Wallet (if not using the Moneris Apple Pay SDK). Please refer to 10 Apple Pay In-App and on the Web
Integration for more details on your integration options.

Refer to Apple's Developer Portal for details on integrating directly to Apple Wallet to retrieve the pay-
load data.

CavvPurchase transaction object definition

CavvPurchase cavvPurchase = new CavvPurchase();

HttpsPostRequest object for Cavv Purchase transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (cavvPurchase) ;

Cavv Purchase transaction values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

November 2018 Page 323 of 476

Moneris Gateway API - Integration Guide

Table 95: Cavv Purchase transaction object mandatory values

Order ID String | 50-character alpha- cavvPurchase.SetOrderld
numeric (order_id);
Amount String 9-character decimal cavvPurchase.SetAmount

(amount) ;

Credit card number String 20-character alpha- cavvPurchase.SetPan(pan) ;
numeric
Expiry date String 4-character alpha- cavvPurchase.SetExpdate

numeric (expiry date);

YYMM format

CAWV String 100-character alpha- cavvPurchase.SetCavv (cavv) ;
numeric

NOTE: For Apple Pay
Cavwv Purchase and
Cavwv Pre-Authorization
transactions, CAVV
field contains the
decrypted cryptogram.
For more, see
Appendix A Definitions
of Request Fields,

E-commerce indicator | String 1-character alpha- cavvPurchase.SetCryptType
numeric (crypt);

NOTE: For Apple Pay
Cavwv Purchase and
Cavwv Pre-Authorization
transactions, the E-
commerce indicator is
a mandatory field con-
taining the value
received from the
decrypted payload or a
default value of 5. If
you get a 2-character
value (e.g.,. 05 or 07)
from the payload,
remove the initial 0
and just send us the
2nd character. For
more, see Appendix A
Definitions of Request
Fields,

Page 324 of 476 November 2018

10 Apple Pay In-App and on the Web Integration

Table 1 CavvPurchase transaction object optional values

Status Check Boolean | true/false mpgReq.SetStatusCheck
(status_check) ;

Customer ID String 50-character alpha- cavvPurchase.SetCustld (cust_
numeric +d)
Dynamic descriptor String 20-character alpha- cavvPurchase
numeric .SetDynamicDescriptor
(dynamic_descriptor) ;
Card Match ID String 50-character alpha- cavvPurchase.SetCmId
numeric (transaction id);
NOTE: Applies to Off-
linx™ only; must be
unique value for each
transaction
Customer information | Object N/A cavvPurchase.SetCustInfo
(customer) ;
Network String alphabetical cavvPurchase.setNetwork
(network) ;
NOTE: This request
variable is mandatory
for INTERAC® e-Com-
merce transactions
conducted via Apple
Pay, and is not for use
with credit card trans-
actions.
Data Type String 3-character alpha- cavvPurchase.setDataType
numeric (data_type) ;

NOTE: This request
variable is mandatory
for INTERAC® e-Com-
merce transactions
conducted via Apple
Pay, and is not for use
with credit card trans-
actions.

November 2018 Page 325 of 476

Moneris Gateway API - Integration Guide

Sample Cavv Purchase for Apple Pay

namespace Moneris

{

using System;

using System.Collections;

public class TestCanadaCavvPurchase

{

public static void Main(string[] args)

{

string store id = "store5";

string api token = "yesquy";

string order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;
string cust id = "CUS887H67";

string amount = "10.42";

string pan = "4242424242424242";

string expdate = "1901"; //YYMM

string cavv = "AAABBJgOVhIOVniQEJRWAAAAAAA=";

string dynamic descriptor = "123456";

string wallet indicator = "APP";

string processing country code = "CA";

string crypt type = "5";

bool status check = false;

CofInfo cof = new CofInfol();

cof.SetPaymentIndicator ("U");

cof.SetPaymentInformation ("2");

cof.SetIssuerId("168451306048014") ;

CavvPurchase cavvPurchase = new CavvPurchase();
cavvPurchase.SetOrderId (order id);

cavvPurchase.SetCustId(cust id);

cavvPurchase.SetAmount (amount) ;

cavvPurchase.SetPan (pan) ;

cavvPurchase.SetExpDate (expdate) ;

cavvPurchase.SetCavv (cavv) ;

cavvPurchase.SetCryptType (crypt type); //Mandatory for AMEX cards only
cavvPurchase.SetDynamicDescriptor (dynamic descriptor);
//cavvPurchase.SetNetwork ("Interac"); //set only for Interac e-commerce
//cavvPurchase.SetDataType ("3DSecure"); //set only for Interac e-commerce

//cavaurchase.SetWalletIndicator(wallet_indicator); //set only wallet transactions e.g. APPLE PAY

//cavvPurchase.SetCmId ("8nAK8712sGaAkls56"); //set only for usage with Offlinx - Unique max 50
alphanumeric characters transaction id generated by merchant
cavvPurchase.SetCofInfo (cof) ;

HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq.SetProcCountryCode (processing country code);

mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);

mpgReq.SetApiToken (api token);

mpgReq.SetTransaction (cavvPurchase) ;

mpgReq.SetStatusCheck (status check) ;

mpgReq. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("CardType = " + receipt.GetCardType());
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WritelLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Page 326 of 476 November 2018

10 Apple Pay In-App and on the Web Integration

Sample Cavv Purchase for Apple Pay

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime())
Console.WritelLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode()) ;
Console.WritelLine ("IssuerId = " + receipt.GetIssuerId());

Console.ReadLine () ;
}

catch (Exception e)

{

Console.WriteLine (e);

}

— e

10.5 Cavv Pre-Authorization — Apple Pay

The Cavv Pre-Authorization for Apple Pay transaction follows a 3-D Secure model but it does not require
an MPI. Once the Apple Pay payload has been decrypted, this Pre-Authorization verifies funds on the cus-
tomer’s card, and holds the funds. To prepare the funds for deposit into the merchant’s account please
process a Pre-Authorization Completion transaction.

For Apple Pay processing, this transaction is only applicable if choosing to integrate directly to the Apple
Wallet (if not using the Moneris Apple Pay SDK). Please refer to 10 Apple Pay In-App and on the Web
Integration for more details on your integration options.

Refer to Apple's Developer Portal for details on integrating directly to Apple Wallet to retrieve the pay-
load data.

NOTE: INTERAC® e-Commerce functionality is currently available using the Cavv
Purchase transaction type only.

Cavv Pre-Authorization transaction object definition

CavvPreAuth cavvPreauth = new CavvPreAuth () ;

HttpsPostRequest object for Cavv Pre-Authorization transaction

HttpsPostRequest mpgReq = new HttpsPostRequest() ;

mpgReq.SetTransaction (cavvPreauth) ;

November 2018 Page 327 of 476

Moneris Gateway API - Integration Guide

Cavv Pre-Authorization transaction values

Table 96: Cavv Pre-Authorization object mandatory values

Order ID String 50-character alpha- cavvPreauth.SetOrderId
numeric (order 1id);
Amount String 9-character decimal cavvPreauth.SetAmount

(amount) ;

Credit card number String 20-character numeric cavvPreauth.SetPan (pan) ;
Cardholder Authentic- | String 50-character alpha- cavvPreauth.SetCavv (cavv) ;
ation Verification numeric

Value (CAWV)

r N

NOTE: For Apple Pay
Cawv Purchase and
Cavv Pre-Authorization
transactions, CAVV
field contains the
decrypted cryptogram.
For more, see
Appendix A Definitions
of Request Fields,

Expiry date String 4-character numeric cavvPreauth.SetExpdate
(expiry date);

E-commerce indicator | String 1-character alpha- cavvPreauth.SetCryptType
numeric (crypt) ;

NOTE: For Apple Pay
Cawv Purchase and
Cawv Pre-Authorization
transactions, the E-
commerce indicator is
a mandatory field con-
taining the value
received from the
decrypted payload or a
default value of 5. If
you get a 2-character
value (e.g.,. 05 or 07)
from the payload,
remove the initial 0
and just send us the
2nd character. For
more, see Appendix A
Definitions of Request
Fields,

Page 328 of 476 November 2018

10 Apple Pay In-App and on the Web Integration

Table 1 Cavv Pre-Authorization object optional values

Status Check Boolean | true/false mpgReq.SetStatusCheck
(status_check) ;

Customer ID String 50-character alpha- cavvPreauth.SetCustld(cust_
numeric id);
Dynamic descriptor String 20-character alpha- cavvPreauth
numeric .SetDynamicDescriptor
(dynamic_descriptor) ;
Card Match ID String 50-character alpha- cavvPreauth.SetCmId
numeric (transaction id);
NOTE: Applies to Off-
linx™ only; must be
unique value for each
transaction
Network String alphabetical cavvPurchase.setNetwork
(network) ;
NOTE: This request
variable is mandatory
for INTERAC® e-Com-
merce transactions
conducted via Apple
Pay, and is not for use
with credit card trans-
actions.
Data Type String 3-character alpha- cavvPurchase.setDataType
) R numeric (data_type);

NOTE: This request
variable is mandatory
for INTERAC® e-Com-
merce transactions
conducted via Apple
Pay, and is not for use
with credit card trans-
actions.

Sample Cavv Pre-Authorization for Apple Pay

namespace Moneris

November 2018 Page 329 of 476

Moneris Gateway API - Integration Guide

Sample Cavv Pre-Authorization for Apple Pay

{

using System;

using System.Collections;

public class TestCanadaCavvPreauth

{

public static void Main(string[] args)

{

string store id = "store5";

string api token = "yesguy";

string order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;
string cust id = "CUS887H67";

string amount = "10.42";

string pan = "4242424242424242";

string expdate = "1911"; //YYMM format
string cavv = "AAABBJgOVhIOVniQEjRWAAAAAAA=";

string dynamic_descriptor = "123456";
string wallet indicator = "APP";
string processing country code = "CA";

string crypt type = "5";

bool status check = false;

CofInfo cof = new CofInfo();
cof.SetPaymentIndicator ("U") ;
cof.SetPaymentInformation ("2") ;
cof.SetIssuerId("168451306048014");

CavvPreAuth cavvPreauth = new CavvPreAuth();
cavvPreauth.SetOrderId(order id);
cavvPreauth.SetCustId(cust id);
cavvPreauth.SetAmount (amount) ;
cavvPreauth.SetPan (pan) ;

cavvPreauth.SetExpDate (expdate) ;
cavvPreauth.SetCavv (cavv) ;
cavvPreauth.SetCryptType (crypt type); //Mandatory for AMEX cards only
cavvPreauth.SetDynamicDescriptor (dynamic descriptor);

//cavvPreauth.SetWalletIndicator (wallet indicator); //set only wallet transactions e.g. APPLE PAY
//cavvPreauth.SetCmId ("8nAK8712sGaRAkls56"); //set only for usage with Offlinx - Unique max 50

alphanumeric characters transaction id generated by merchant
cavvPreauth.SetCofInfo (cof) ;

HttpsPostRequest mpgReq = new HttpsPostRequest();
mpgReq.SetProcCountryCode (processing country code);

mpgReq. SetTestMode (true); //false or comment out this line for production transactions

mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api token) ;
mpgReq.SetTransaction (cavvPreauth) ;
mpgReq.SetStatusCheck (status_check) ;
mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("TransType = " + receipt.GetTransType());
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WritelLine ("ResponseCode = " + receipt.GetResponseCode())
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WritelLine ("BankTotals = " + receipt.GetBankTotals());
Console.WriteLine ("Message = " + receipt.GetMessage());

Page 330 of 476

November 2018

10 Apple Pay In-App and on the Web Integration

Sample Cavv Pre-Authorization for Apple Pay

Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WritelLine ("Complete = " + receipt.GetComplete());
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WritelLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut ());
Console.WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode());
Console.WriteLine ("IssuerId = " + receipt.GetIssuerId()):;

Console.ReadLine () ;

}

catch (Exception e)
{

Console.WriteLine (e) ;

}

— e

November 2018 Page 331 of 476

Moneris Gateway API - Integration Guide

11 Offlinx™

e What s a Pixel Tag?
o Offlinx™ and API Transactions

11.1 What s a Pixel Tag?

A pixel tag is a piece of code that goes on a web page and requests an image file (a tiny transparent image
or pixel) when loaded, which, while not visible to the user, allows Offlinx™ to gather relevant information

about the user.
The data collected by our pixel tag is:

o Anonymous (not personally identifiable) and compliant with privacy standards
o Secure — utilizes SSL communication to transmit the data securely
« Not shared with anyone

11.2 Offlinx™ and API Transactions

The Offlinx™ Card Match pixel tag feature can be implemented via the Unified APl with the Card Match
ID variable, which corresponds to the Transaction ID in Offlinx™. The Card Match ID must be a unique
value for each transaction.

For more information about the Offlinx™ solution, consult the Offlinx™ Pixel Tag Setup Guide available
from your account/service manager.

APl transactions where this applies:

e Purchase

e Pre-Authorization

¢ Purchase with 3-D Secure — cavvPurchase

o Pre-Authorization with 3-D Secure — cavvPreauth
e Cavv Purchase —Apple Pay

o Cavv Pre-Authorization — Apple Pay

Page 332 of 476 November 2018

12 Convenience Fee

12.1 About Convenience Fee

e 12.2 Purchase with Convenience Fee

e 12.3 Convenience Fee Purchase w/ Customer Information

12.4 Convenience Fee Purchase with VbV, MCSC and Amex SafeKey

12.1 About Convenience Fee

The Convenience Fee program was designed to allow merchants to offer the convenience of an altern-
ative payment channel to the cardholder at a charge. This applies only when providing a true "con-
venience" in the form of an alternative payment channel outside the merchant's customary face-to-face
payment channels. The convenience fee will be a separate charge on top of what the consumer is paying
for the goods and/or services they were given, and this charge will appear as a separate line item on the
consumer’s statement.

NOTE: The Convenience Fee program is only offered to certain supported Merchant Cat-
egory Codes (MCCs). Please speak to your account manager for further details.

12.2 Purchase with Convenience Fee

NOTE: Convenience Fee Purchase with Customer Information is also supported.

Convenience Fee Purchase transaction object definition

Purchase purchase = new Purchase();

HttpsPostRequest object for Convenience Fee Purchase transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (purchase) ;

Convenience Fee Purchase transaction object values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

November 2018 Page 333 of 476

Moneris Gateway API - Integration Guide

Table 1 Convenience Fee Purchase transaction object mandatory values

Convenience Fee Object | n/a purchase.SetConvFeelInfo
(convFeelInfo);

Order ID String | 50-character alpha- purchase.SetOrderId (order_
numeric id);

Amount String 9-character decimal purchase.SetAmount (amount) ;

Credit card number String 20-character numeric purchase.SetPan (pan);

Expiry date String 4-character numeric purchase.SetExpdate (expiry_
YYMM format date);

E-commerce indicator | String 1-character alpha- purchase.SetCryptType
numeric (crypt);

Convenience fee String | 9-character decimal -SetConvFeeInfo (convfee

amount amount) ;

Table 2 Convenience Fee Purchase transaction object optional values

Customer ID String | 50-character alpha- purchase.SetCustld(cust_id);
numeric

Dynamic descriptor String 20-character alpha- purchase
numeric .SetDynamicDescriptor

(dynamic_descriptor) ;

AVS information Object purchase.SetAvsInfo
(avsCheck) ;

CVD information Object purchase.SetCvdInfo
(cvdCheck) ;

Sample Purchase with Convenience Fee

namespace Moneris

{

using System;

public class TestCanadaConvFeePurchase

{

Page 334 of 476 November 2018

12 Convenience Fee

Sample Purchase with Convenience Fee

public static void Main(string[] args)

{

string store id = "monca00392";

string api token = "qYdISUhHiOdfTrl1CLNpN";
string order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;
string amount = "5.00";

string pan = "4242424242424242";

string expdate = "1602"; //YYMM format

string crypt = "7";

string convenience fee = "1.00";

string processing country code = "CA";

bool status check = false;

ConvFeeInfo convFeeInfo = new ConvFeeInfol();
convFeelInfo.SetConvenienceFee (convenience_ fee);

Purchase purchase = new Purchase();
purchase.SetOrderId(order id);

purchase. SetAmount (amount) ;

purchase.SetPan (pan) ;

purchase.SetExpDate (expdate) ;
purchase.SetCryptType (crypt) ;
purchase.SetConvFeelInfo (convFeeInfo) ;
HttpsPostRequest mpgReq = new HttpsPostRequest();
mpgReq. SetProcCountryCode (processing country code) ;

mpgReq. SetTestMode (true); //false or comment out this line for production transactions

mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api_ token) ;

mpgReq. SetTransaction (purchase) ;
mpgReq.SetStatusCheck (status_check) ;
mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WritelLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WritelLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("TransType = " + receipt.GetTransType());
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket()):
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("CfSuccess = " + receipt.GetCfSuccess());
Console.WriteLine ("CfStatus = " + receipt.GetCfStatus());
Console.WritelLine ("FeeRmount = " + receipt.GetFeeAmount());
Console.WriteLine ("FeeRate = " + receipt.GetFeeRate());
Console.WritelLine ("FeeType = " + receipt.GetFeeType());
//Console.WriteLine ("CardLevelResult = " + receipt.GetCardLevelResult());
//Console.WriteLine ("StatusCode = " + receipt.GetStatusCode());
//Console.WriteLine ("StatusMessage = " + receipt.GetStatusMessage());

Console.ReadLine () ;

}

catch (Exception e)

{

November 2018

Page 335 of 476

Moneris Gateway API - Integration Guide

Sample Purchase with Convenience Fee

Console.WriteLine (e);
}
}
}
}

12.3 Convenience Fee Purchase w/ Customer Information

Convenience Fee Purchase with Customer information transaction object definition

Purchase purchase = new Purchase();

HttpsPostRequest object for Convenience Fee Purchase with Customer Info transaction

HttpsPostRequest mpgReq = new HttpsPostRequest() ;

mpgReq. SetTransaction (purchase) ;

Convenience Fee Purchase with Customer information transaction object values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 1 Convenience Fee Purchase w/ Customer Info transaction object mandatory values

Convenience Fee Object | n/a purchase.SetConvFeelnfo
(convFeelInfo);

Order ID String 50-character alpha- purchase.SetOrderId (order_
numeric id);

Amount String 9-character decimal purchase.SetAmount (amount) ;

Credit card number String 20-character numeric purchase.SetPan (pan) ;

Expiry date String 4-character numeric purchase.SetExpdate (expiry_
YYMM format date);

E-commerce indicator | String 1-character alpha- purchase.SetCryptType
numeric (crypt);

Convenience fee String 9-character decimal purchase.SetConvFeelnfo

amount (convfee amount) ;

Page 336 of 476 November 2018

12 Convenience Fee

Table 2 Convenience Fee Purchase w/ Customer Info transaction object optional values

Customer ID String | 50-character alpha- purchase.SetCustld(cust_id);
numeric

Dynamic descriptor String 20-character alpha- purchase
numeric .SetDynamicDescriptor

(dynamic_descriptor) ;

Customer information | Object | n/a purchase.SetCustInfo
(customer) ;

AVS information Object | n/a purchase.SetAvsInfo
(avsCheck) ;

CVD information Object | n/a purchase.SetCvdInfo
(cvdCheck) ;

Sample Convenience Fee Purchase with Customer Information

namespace Moneris

{

using System;

public class TestCanadaConvFeePurchaseCustInfo
{

public static void Main(string[] args)

{

string store id = "monca00392";

string api token = "qYdISUhHiOdfTrl1CLNpN";
string order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;
string amount = "5.00";

string pan = "4005554444444403";

string expdate "1602"; //YYMM format

string crypt = "7";

string cust id = "my customer id";

string convenience fee = "1.00";

string processing country code = "CA";

bool status check = false;

ConvFeeInfo convFeeInfo = new ConvFeeInfo();
convFeelnfo.SetConvenienceFee (convenience fee);

Purchase purchase = new Purchase();
purchase.SetOrderId(order id);
purchase.SetCustId(cust id);
purchase.SetAmount (amount) ;
purchase.SetPan (pan) ;
purchase.SetExpDate (expdate) ;
purchase.SetCryptType (crypt) ;
purchase.SetConvFeeInfo (convFeeInfo) ;
/********************* Bllllng/Shlpplng Variables ***************************‘k/
string first name = "Bob";

string last name = "Smith";

string company name = "ProLine Inc.";
string address = "623 Bears Ave";

November 2018 Page 337 of 476

Moneris Gateway API - Integration Guide

Sample Convenience Fee Purchase with Customer Information

string city = "Chicago";

string province = "Illinois";
string postal code = "MIM2M1";

string countr§ = "Canada";
string phone = "777-999-7777";
string fax = "777-999-7778";

string taxl = "10.00";
string tax2 = "5.78";
string tax3 = "4.56";
string shipping cost = "10.00";

/***‘k‘k***‘k************ Order Line Ttem variables ***‘k‘k************************/

string[] item description = new string[] { "Chicago Bears Helmet", "Soldier Field Poster" };
string[] item quantity = new string[] { "1", "1" };

string[] item product code = new string([] { "CB3450", "SF998s" };

string[] item extended amount = new string[] { "150.00", "19.79" };
/********************** Customer Information Object **************************/
CustInfo customer = new CustInfo();

/********************** Set Customer Bllllng Information **********************/
customer.SetBilling (first name, last name, company name, address, city,
province, postal code, country, phone, fax, taxl, tax2,

tax3, shipping cost);

/***‘k***‘k************ Set Customer Shlpplng Information ‘k***‘k***‘k**************/
customer.SetShipping (first name, last name, company name, address, city,
province, postal code, country, phone, fax, taxl, tax2,

tax3, shipping cost);

/***************************** order Line Items ******************************/
customer.SetItem(item description[0], item quantity[O],

item product code[0], item extended amount[0]);

customer.SetItem(item description(l], item quantity[1],

item product code[l], item extended amount[1]);

purchase.SetCustInfo (customer) ;

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq. SetProcCountryCode (processing country code);

mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld (store id);

mpgReq.SetApiToken (api token);

mpgReq.SetTransaction (purchase) ;

mpgReq.SetStatusCheck (status check) ;

mpgReq. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("CardType = " + receipt.GetCardType());
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ());
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId())
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WritelLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime())
Console.WritelLine ("Ticket = " + receipt.GetTicket());
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("CfSuccess = " + receipt.GetCfSuccess());
Console.WritelLine ("CfStatus = " + receipt.GetCfStatus());

Page 338 0f 476 November 2018

12 Convenience Fee

Sample Convenience Fee Purchase with Customer Information

Console.WritelLine ("FeeRmount = " + receipt.GetFeeRmount());
Console.WritelLine ("FeeRate = " + receipt.GetFeeRate());
Console.WriteLine ("FeeType = " + receipt.GetFeeType())
//Console.WriteLine ("CardLevelResult = " + receipt.GetCardLevelResult());
//Console.Writeline ("StatusCode = " + receipt.GetStatusCode());
//Console.WriteLine ("StatusMessage = " + receipt.GetStatusMessage());
Console.ReadLine () ;

}

catch (Exception e)

{

Console.WriteLine (e);

}

— e

12.4 Convenience Fee Purchase with VbV, MCSC and Amex SafeKey

Convenience Fee Purchase with VbV/MCSC/SafeKey transaction object definition

CavvPurchase cavvPurchase = new CavvPurchase/();

HttpsPostRequest object for Convenience Fee Purchase w/ VbV/MCSC/SafeKey transaction

HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq.SetTransaction (cavvPurchase) ;

Convenience Fee Purchase with VbV/MCSC/SafeKey transaction object values

For a full description of mandatory and optional values, see Appendix A Definitions of Request Fields

Table 1 Convenience Fee Purchase with VbV, MCSC, SafeKey - Required Fields

Convenience Fee Object | N/A cavvPurchase.SetConvFeelInfo
(convFeelInfo);
Order ID String 50-character alpha- cavvPurchase.SetOrderId
numeric (order_id) ;
Amount String 9-character decimal cavvPurchase.SetAmount
(amount) ;
Credit card number String | 20-character numeric cavvPurchase.SetPan (pan) ;
Expiry date String 4-character numeric cavvPurchase.SetExpdate
YYMM format (expiry date);
E-Commerce indicator | String 1-character alpha- cavvPurchase.SetCryptType
(crypt);

November 2018

Page 339 of 476

Moneris Gateway API - Integration Guide

numeric
Cardholder Authentic- | String | 50-character alpha- cavvPurchase.SetCavv (cavv);
ation Verification Value numeric
(CAWV)
Convenience fee String | 9-character decimal -SetConvFeeInfo (convfee
amount amount) ;

Table 2 Convenience Fee Purchase with VbV, MCSC, SafeKey - Optional Values

Status Check Boolean | true/false mpgReq. SetStatusCheck
(status_check);

Customer ID String 50-character alpha- cavvPurchase.SetCustld (cust_
numeric id);

Dynamic descriptor String 20-character alpha- cavvPurchase
numeric .SetDynamicDescriptor

(dynamic_descriptor) ;

E-commerce indicator String 1-character numeric cavvPurchase.SetCryptType
(crypt) ;

Customer Information | Object N/A cavvPurchase.SetCustInfo
(customer) ;

AVS Information Object N/A cavvPurchase.SetAvsInfo

(avsCheck) ;

CVD Information Object N/A cavvPurchase.SetCvdInfo
(cvdCheck) ;

Sample Purchase with VbV/MCSC/SafeKey

namespace Moneris

{

using System;

using System.Collections;

public class TestCanadaConvFeeCavvPurchase
{

public static void Main(string[] args)

Page 340 of 476 November 2018

12 Convenience Fee

Sample Purchase with VbV/MCSC/SafeKey

{

string store id = "monca00392";

string api token = "gqYdISUhHiOdfTrl1CLNpN";

string order id = "Test" + DateTime.Now.ToString("yyyyMMddhhmmss") ;
string cust id = "B Urlac 54";

string amount = "10.42";

string pan = "4005554444444403";

string expdate = "1901"; //YYMM format

string cavv = "AAABBJgOVhIOVniQEjRWAAAAAAA";

string crypt type = "5";

string convenience fee = "1.00";
string dynamic descriptor = "my descriptor";
string processing country code = "CA";

bool status_check = false;

AvsInfo avsCheck = new AvsInfo();
avsCheck.SetAvsStreetNumber ("212") ;
avsCheck.SetAvsStreetName ("Payton Street");
avsCheck.SetAvsZipCode ("M1IMIM1") ;

CvdInfo cvdCheck = new CvdInfo();
cvdCheck.SetCvdIndicator ("1");
cvdCheck.SetCvdvalue ("099") ;

ConvFeeInfo convFeeInfo = new ConvFeeInfol();
convFeelInfo.SetConvenienceFee (convenience fee);
CavvPurchase cavvPurchase = new CavvPurchase();
cavvPurchase.SetOrderId(order id);
cavvPurchase.SetCustId(cust id);
cavvPurchase.SetAmount (amount) ;
cavvPurchase.SetPan (pan) ;
cavvPurchase.SetExpDate (expdate) ;
cavvPurchase.SetCavv (cavv) ;
cavvPurchase.SetCryptType (crypt type); //Mandatory for AMEX cards only
cavvPurchase.SetDynamicDescriptor (dynamic descriptor);
cavvPurchase.SetAvsInfo (avsCheck) ;
cavvPurchase.SetCvdInfo (cvdCheck) ;
cavvPurchase.SetConvFeeInfo (convFeeInfo) ;
HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq. SetProcCountryCode (processing country code) ;
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld (store id);
mpgReq.SetApiToken (api token);

mpgReq. SetTransaction (cavvPurchase) ;
mpgReq.SetStatusCheck (status_check) ;

mpgReq.Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId())
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());

November 2018 Page 341 of 476

Moneris Gateway API - Integration Guide

Sample Purchase with VbV/MCSC/SafeKey

Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("Avs Response = " + receipt.GetAvsResultCode()) ;
Console.WriteLine ("Cvd Response = " + receipt.GetCvdResultCode());
//Console.WriteLine ("CardLevelResult = " + receipt.GetCardLevelResult());
Console.WriteLine ("CavvResultCode = " + receipt.GetCavvResultCode()) ;
Console.WriteLine ("CfSuccess = " + receipt.GetCfSuccess());
Console.WritelLine ("CfStatus = " + receipt.GetCfStatus());
Console.WriteLine ("FeeRmount = " + receipt.GetFeeAmount());
Console.WritelLine ("FeeRate = " + receipt.GetFeeRate());
Console.WritelLine ("FeeType = " + receipt.GetFeeType());
//Console.WriteLine ("StatusCode = " + receipt.GetStatusCode());
//Console.WriteLine ("StatusMessage = " + receipt.GetStatusMessage());
Console.ReadLine () ;

}

catch (Exception e)

{

Console.

}

— e

WritelLine (e) ;

Page 342 of 476

November 2018

13 Recurring Billing

« 1 About Recurring Billing

e 13.2 Purchase with Recurring Billing

o 13.3 Recurring Billing Update

o 1 Recurring Billing Response Fields and Codes
« 13.5 Credential on File and Recurring Billing

13.1 About Recurring Billing

Recurring Billing allows you to set up payments whereby Moneris automatically processes the trans-
actions and bills customers on your behalf based on the billing cycle information you provide.

Recurring Billing series are created by sending the Recurring Billing object in these transactions:

e Purchase
e Purchase with Vault
e Purchase with 3-D Secure (cavvPurchase)

You can modify a Recurring Billing series after it has been created by sending the Recurring Billing Update
administrative transaction.

NOTE: Alternatively, if you prefer to manage recurring series on your own merchant sys-
tem, you can send the periodic payments as basic Purchase transactions with the e-com-
merce indicator (crypt type)value = 2 and with the Credential on File info object
included.

13.2 Purchase with Recurring Billing

Recurring Billing Info Object Definition

Recur recurring cycle = new Recur(recur_unit, start now, start date, num_
recurs, period, recur_ amount);

Transaction object set method

<transaction>.SetRecur (recurring cycle);

Recurring Billing Info Object Request Fields

Number of Recurs String The number of times that the

] transaction must recur
num_recurs numeric, 1-99

Period String Number of recur units that

November 2018 Page 343 of 476

Moneris Gateway API - Integration Guide

period

numeric, 1-999

must pass between recurring
billings

Start Date

start date

String

YYYY/MM/DD

Date of the first future recurring
billing transaction

This value must be a date in the
future

If an additional charge is to be
made immediately, the value of
Start Now must be set to true

Start Now

start now

String

true/false

If a single charge is to be made
against the card immediately,
set this value to true; the
amount to be billed imme-
diately may differ from the
amount billed on a regular
basis thereafter

If the billing is to start in the
future, set this value to false

When set to false, use Card Veri-
fication prior to sending the
Purchase with Recur and Cre-
dential on File objects

Recurring Amount

recur_ amount

String

9-character decimal; Up to 6
digits (dollars) + decimal point
+ 2 digits (cents) after the
decimal point

EXAMPLE:
123456.78

Amount of the recurring trans-
action

This is the amount that will be
billed on the Start Date and
then billed repeatedly based on
the interval defined by Period
and Recur Unit

Recur Unit

recur_unit

String

day, week, month or eom

Unit to be used as a basis for
the interval

Works in conjunction with
Period to define the billing fre-
quency

Possible values are:

Page 344 of 476

November 2018

13 Recurring Billing

day
week
month

eom (end of month)

Sample Purchase with Recurring Billing

namespace Moneris

{

using System;

using System.Collections;

public class TestCanadaPurchaseRecur

{

public static void Main(string[] args)

{

string store id = "store5";

string api token = "yesguy";

string order id = "Test" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;
string amount = "10.00";

string pan = "4242424242424242";
string expiry date = "1901"; //YYMM format
string crypt = "7";

/************************* Recur Varlables ****~k***~k*************************/

string recur_unit = "month"; //eom = end of month
string start now = "true";

string start date = "2016/07/28";

string num recurs = "12";

string period = "1";

string recur amount = "30.00";

string processing country code = "CA";

bool status check = false;

/************************* Recur Object 0ptlonl ******************************/
Recur recurring cycle = new Recur (recur unit, start now, start date,

num recurs, period, recur amount);

/************************* Recur Object OptlonZ ******************************/
Hashtable recur hash = new Hashtable();

recur hash.Add("recur unit", recur unit);

recur_hash.Add("start_now", start now);

recur_hash.Add ("start date", start date);

recur_hash.Add ("num_recurs", num_recurs);

recur hash.Add("period", period);

recur_hash.Add ("recur amount", recur amount);

Recur recurring cycle2 = new Recur (recur hash);

/************************ Transactional object *****************‘k**‘k‘k**‘k‘k**‘k‘k*/

Purchase purchase = new Purchase (order id, amount, pan, expiry date, crypt);
/******************************* Set Recur ***********************************/
purchase.SetRecur (recurring cycle);

CofInfo cof = new CofInfo();

cof.SetPaymentIndicator ("R") ;

cof.SetPaymentInformation ("2");

cof.SetIssuerId("168451306048014") ;

purchase.SetCofInfo (cof) ;

/**************************** Https POSt Request ***************************/
HttpsPostRequest mpgReq = new HttpsPostRequest() ;
mpgReq.SetProcCountryCode (processing country code);

November 2018

Page 345 of 476

Moneris Gateway API - Integration Guide

Sample Purchase with Recurring Billing

mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld(store id);

mpgReq.SetApiToken (api_ token) ;

mpgReq. SetTransaction (purchase) ;

mpgReq.SetStatusCheck (status_check) ;

mpgReqg. Send () ;

/******************************* ReCElpt ***********************************/

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("CardType = " + receipt.GetCardType()):
Console.WritelLine ("TransAmount = " + receipt.GetTransAmount ());
Console.WritelLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId())
Console.WritelLine ("TransType = " + receipt.GetTransType());
Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime())
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("Recur Success = " + receipt.GetRecurSuccess());
Console.WriteLine ("IsVisaDebit = " + receipt.GetIsVisaDebit()):;
Console.WritelLine ("IssuerId = " + receipt.GetIssuerId());

Console.ReadLine () ;
}
catch (Exception e)
{

Console.WriteLine (e) ;

}

— e

13.3 Recurring Billing Update

After you have set up a Recurring Billing transaction series, you can change some of the details of the
series as long as it has not yet completed the preset recurring duration (i.e., it hasn’t terminated yet).

Before sending a Recurring Billing Update transaction that updates the credit card number, you must
send a Card Verification request. This requirement does not apply if you are only updating the schedule

oramount.

Things to Consider:

o When completing the update recurring billing portion please keep in mind that the
recur bill dates cannot be changed to have an end date greater than 10 years from

Page 346 of 476 November 2018

13 Recurring Billing

today and cannot be changed to have an end date end today or earlier.

Recurring Billing Update transaction object definition

RecurUpdate recurUpdate = new RecurUpdate () ;

HttpsPostRequest object for Recurring Billing Update transaction
HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (recurUpdate) ;

Recurring Billing Update transaction values

Table 1 Recurring Billing Update — Basic Required Fields

Order ID String recurUpdate.setCustId(cust_
id) ;
order_id 50-character alphanumeric

Table 2 Recurring Billing Update — Basic Optional Fields

Customer ID String recurUpdate.setCustId(cust
id);

cust_id 50-character alphanumeric

Credit card number String recurUpdate.SetPan (pan) ;

pan 20-character alphanumeric

Expiry date String recurUpdate.setExpdate
(expiry date);

expiry_date YYMM

Table 3 Recurring Billing Update — Recurring Billing Required Fields

Recurring String recurUpdate.SetRecurAmount Changes the
(recur_ amount) ; amount that is

November 2018 Page 347 of 476

Moneris Gateway API - Integration Guide

amount

recur_ amount

9-character decimal;
Up to 6 digits
(dollars) + decimal
point + 2 digits
(cents) after the
decimal point

EXAMP-
LE:

123456.-
78

billed recurrently

The change takes
effect on the next
charge

Add number of
recurs

add_ num

String

numeric, 1-999

recurUpdate.SetAddNumRecurs
(add_num) ;

Adds to the given
number of recur-
ring transactions
to the current
(remaining) num-
ber

This can be used if
a customer
decides to extend
a membership or
subscription

Cannot be used to
decrease the cur-
rent number of
recurring trans-
actions; use
Change number of
recurs instead

Change number
of recurs

total num

String

numeric, 1-999

recurUpdate.SetTotalNumRecurs
(total num);

Replaces the cur-
rent (remaining)
number of recur-
ring transactions

Hold recurring
billing

hold

String

true/false

recurUpdate.SetHold (hold) ;

Temporarily
pauses recurring
billing

While a trans-
action is on hold,
it is not billed for
the recurring
amount; however,
the number of
remaining recurs
continues to be
decremented dur-

Page 348 of 476

November 2018

13 Recurring Billing

ing that time

Terminate recur- | String recurUpdate.SetTerminate Terminates recur-
ring transaction (terminate); ring billing
true/false

terminate NOTE: After it
has been ter-
minated, a
recurring
transaction
cannot be
reactivated; a
new purchase
transaction
with recurring
billing must
be submitted.

Sample Recurring Billing Update

namespace Moneris

{

using System;

public class TestCanadaRecurUpdate

{

public static void Main (string[] args)

{

string store id = "store5";

string api token = "yesquy";

string order id = "Test20150625013553";
string cust id = "antonio";

string recur_amount = "1.50";

string pan = "4242424242424242";
string expiry date = "1901";

//string add num = "";

//string total num = "";

//string hold = "";

//string terminate = "";

string processing country code = "CA";

bool status check = false;

CofInfo cof = new CofInfo();
cof.SetIssuerId("139X3130ASCXAS9") ;
RecurUpdate recurUpdate = new RecurUpdate () ;
recurUpdate.SetOrderId(order_id);
recurUpdate.SetCustId(cust_id);
recurUpdate.SetRecurAmount (recur_amount) ;
recurUpdate.SetPan (pan) ;
recurUpdate.SetExpDate (expiry date);
//recurUpdate.SetAddNumRecurs (add_num) ;
//recurUpdate.SetTotalNumRecurs (total num);
//recurUpdate.SetHold (hold) ;
//recurUpdate.SetTerminate (terminate) ;

November 2018 Page 349 of 476

Moneris Gateway API - Integration Guide

Sample Recurring Billing Update

recurUpdate.SetCofInfo (cof) ;

HttpsPostRequest mpgReq = new HttpsPostRequest();
mpgReq. SetProcCountryCode (processing country code) ;
mpgReq. SetTestMode (true); //false or comment out this line for production transactions
mpgReq.SetStoreld (store id);

mpgReq.SetApiToken (api_token) ;

mpgReq. SetTransaction (recurUpdate) ;
mpgReq.SetStatusCheck (status_check) ;

mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId());

Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WritelLine ("Message = " + receipt.GetMessage());

Console.WriteLine ("Complete = " + receipt.GetComplete());

Console.WriteLine ("TransDate = " + receipt.GetTransDate());

Console.WritelLine ("TransTime = " + receipt.GetTransTime());

Console.WriteLine ("TimedOut = " + receipt.GetTimedOut());

Console.WriteLine ("RecurUpdateSuccess = " + receipt.GetRecurUpdateSuccess());
Console.WriteLine ("NextRecurDate = " + receipt.GetNextRecurDate()) ;
Console.WriteLine ("RecurEndDate = " + receipt.GetRecurEndDate());

Console.ReadLine () ;

}

catch (Exception e)

{
Console.WriteLine (e);
}

}

}

13.4 Recurring Billing Response Fields and Codes

Table 97 outlines the response fields that are part of recurring billing. Some are available when you set up
recurring billing (such as with a Purchase transaction), and some are available when you update an exist-
ing transaction with the Recurring Billing transaction.

Receipt object definition

Receipt receipt = mpgReq.GetReceipt () ;

Table 97: Recurring Billing response fields

Transaction object with Recurring Billing response fields

Response String | 3-character numeric receipt.GetResponseCode () ;
code

See Table 98: for a description of possible response codes.

Page 350 of 476 November 2018

13 Recurring Billing

Table 97: Recurring Billing response fields

Recur success | String [TBD receipt.GetRecurSuccess () ;

Indicates whether the transaction successfully registered

Recur update object response fields

Recur update |String | true/false receipt.GetRecurUpdateSuccess () ;
success Indicates whether the transaction successfully updated.

Next recur String | yyyy-mm-dd format receipt.GetNextRecurDate () ;

date Indicates when the transaction will be billed again.

Recur end String | yyyy-mm-dd format receipt.GetRecurEndDate () ;

date

Indicates when the Recurring Billing Transaction will end.

The Recur Update response is a 3-digit numeric value. The following is a list of all possible responses after
a Recur Update transaction has been sent.

Table 98: Recur update response codes

001 Recurring transaction successfully updated (optional: terminated)
983 Cannot find the previous transaction

984 Data error: (optional: field name)

985 Invalid number of recurs

986 Incomplete: timed out

null Error: Malformed XML

13.5 Credential on File and Recurring Billing

NOTE: The value of the payment indicator field must be R when sending Recurring Billing
transactions.

For Recurring Billing transactions which are set to start immediately:

November 2018 Page 351 of 476

Moneris Gateway API - Integration Guide

1. Send a Purchase transaction request with both the Recurring Billing and Credential on File info
objects

For Recurring Billing transactions which are set to start on a future date:

1. Send Card Verification transaction request including the Credential on File info object to get the
Issuer ID
2. Send Purchase transaction request with the Recur and Credential on File info objects included

For updating a Recurring Billing series where you are updating the card number (does not apply if you are
only modifying the schedule or amount in a recurring series):

1. Send Card Verification request including the Credential on File info object to get the Issuer ID
2. Send a Recurring Billing Update transaction

For more information about the Recurring Billing object, see Definition of Request Fields —Recurring,

Page 352 of 476 November 2018

14 Customer Information

e 14.1 Using the Customer Information Object
e 14.2 Customer Information Sample Code

An optional add-on to a number of transactions the Customer Information object. The Customer Inform-
ation object offers a number of fields to be submitted as part of the financial transaction, and stored by
Moneris. These details may be viewed in the future in the Merchant Resource Center.

The following transactions support the Customer Information object :

e Purchase (Basic, Interac Debit and Vault)
e Pre-Authorization (Basic and Vault)
o Re-Authorization (Basic)

The Customer Information object holds three types of information:

o Miscellaneous customer information properties
o Billing/Shipping information
o Item information

Things to Consider:
o Ifyou send characters that are not included in the allowed list, these extra transaction

details may not be stored.
« Allfields are alphanumeric and allow the following characters: a-zA-Z09 _-:. @ S=/
e All French accents should be encoded as HTML entities, such as é.
o The data sent in Billing and Shipping Address fields will not be used for any address veri-

fication.

14.1 Using the Customer Information Object

e 14.1.1 CustInfo Object — Miscellaneous Properties
e 14.1.2 Custinfo Object —Billing and Shipping Information
e 14.1.3 CustIinfo Object — Item Information

In addition to instantiating a transaction object and a connection object (as you would for a normal trans-
action), you must instantiate a Custinfo object.

Any transaction that supports Custinfo has a setCustinfo method. This is used to write the customer
information to the transaction object before writing the transaction object to the connection object.

Custinfo object definition

CustInfo customer = new CustInfo();

November 2018 Page 353 of 476

Moneris Gateway API - Integration Guide

Transaction object set method

<transaction>.SetCustInfo (customer) ;

14.1.1 Custinfo Object — Miscellaneous Properties

While most of the customer information data is organized into objects, there are some values that are
properties of the Custinfo object itself. They are explained in the table below.

Table 99: Custinfo object miscellaneous properties

Email String | 60-character alphanumeric | customer.SetEmail (email);
Address

Instructions | String | 100-character alphanumeric |customer.SetInstructions (note);

14.1.2 Custinfo Object — Billing and Shipping Information

Billing and shipping information is stored as part of the Custinfo object. They can be written to the object
in one of two ways:

o Using set methods

o Using hash tables

Whichever method you use, you will be writing the information found in the table below for both the
billing information and the shipping information.

All values are alphanumeric strings. Their maximum lengths are given in the Limit column.

Table 100: Billing and shipping information values

First name 30 "first_name"

Last name 30 "last_name"
Company name 50 "company_name"
Address 70 |"address"

City 30 "city"
Province/State 30 "province"
Postal/Zip code 30 "postal_code"
Country 30 "country"

Page 354 of 476 November 2018

14 Customer Information

Table 100: Billing and shipping information values (continued)

Phone number (voice) 30 "phone"
Fax number 30 |"fax"
Federal tax 10 "tax1"
Provincial/State tax 10 |"tax2"

County/Local/Specialty tax |10 | "tax3"

Shipping cost 10 "shipping_cost"

14.1.2.1 Set Methods for Billing and Shipping Info

The billing information and the shipping information for a given Custinfo object are written by using the
customer.SetBilling () and customer.SetShipping () methods respectively:

customer.SetBilling (first name, last name, company name, address, city,
province, postal code, country, phone, fax, taxl, tax2, tax3, shipping cost);

customer.SetShipping (first name, last name, company name, address, city,
province, postal code, country, phone, fax, taxl, tax2, tax3, shipping cost);

Both of these methods have the same set of mandatory arguments. They are described in the Billing and
shipping information values table in 14.1.2.1 Set Methods for Billing and Shipping Info,

For sample code, see 14.2 Customer Information Sample Code,

14.1.2.2 Using Hash Tables for Billing and Shipping Info

Writing billing or shipping information using hash tables is done as follows:
1. Instantiate a Custinfo object.
2. Instantiate a hash table object. (The sample code uses a different hash table for billing and ship-
ping for clarity purposes. However, the skillful developer can re-use the same one.)
3. Build the hash table using put methods with the hash table keys found in the Billing and shipping
information values table in 14.1.2 Custinfo Object — Billing and Shipping Information,
4. Callthe Custinfo object's setBilling/setShipping method to pass the hash table information to

the Custinfo object
5. Callthe transaction object's setCustinfo method to write the Custinfo object (with the billing/-

shipping information to the transaction object.

For sample code, see 14.2 Customer Information Sample Code,

14.1.3 Custinfo Object — Item Information

The CustInfo object can hold information about multiple items. For each item, the values in the table
below can be written.

All values are strings, but note the guidelines in the Limits column.

November 2018 Page 355 of 476

Moneris Gateway API - Integration Guide

Table 101: Item information values

Item name 45-character alphanumeric "name"

Item quantity 5-character numeric "quantity"

Item product code | 20-character alphanumeric "product_code"

Item extended 9-character decimal with at least 3 digits and 2 penny values. "extended_

amount amount"
0.01-999999.99

One way of representing multiple items is with four arrays. This is the method used in the sample code.
However, there are two ways to write the item information to the Custinfo object:

o Set methods
o Hash tables

14.1.3.1 Set Methods for Item Information

All the item information found in the Item information values table in 14.1.3 Custinfo Object — Item
Information is written to the Custinfo object in one instruction for a given item. Such as:

customer.setlItem(item description, item quantity, item product code, item
extended amount) ;

For sample code (showing how to use arrays to write information about two items), see 14.2 Customer
Information Sample Code,

14.1.3.2 Using Hash Tables for Item Information

Writing item information using hash tables is done as follows:

1. Instantiate a Custinfo object.

2. Instantiate a hash table object. (The sample code uses a different hash table for each item for clar-
ity purposes. However, the skillful developer can re-use the same one.)

3. Build the hash table using put methods with the hash table keys in the Item information values
table in 14.1.3 CustIinfo Object — Item Information,

4. Call the CustInfo object's setitem method to pass the hash table information to the Custinfo
object

5. Callthe transaction object's setCustinfo method to write the Custinfo object (with the item
information to the transaction object.

For sample code that shows how to use arrays to write information about two items, see 14.2 Customer
Information Sample Code,

14.2 Customer Information Sample Code

Below are two examples of a Basic Purchase Transaction with Customer Information. Both samples start
with the same declaration of variables, as shown.

Page 356 of 476 November 2018

14 Customer Information

Values that are not involved in the Customer Information feature are not shown.

Note that the two items ordered are represented by four arrays, and the billing and shipping details are

the same.

Declaring the variables (common to both methods)

string first name = "Bob";

string last name = "Smith";

string company name = "ProLine Inc.";
string address = "623 Bears Ave";
string city = "Chicago";

string province = "Illinois";

string postal code = "MIM2M1";

string country = "Canada";

string phone = "777-999-7777";

string fax = "777-999-7778";

string taxl = "10.00";
string tax2 = "5.78";
string tax3 = "4.56";

string shipping cost = "10.00";

/‘k****************‘k*** Order Line Item variables ‘k****************************/

string[] item description = new string[] { "Chicago Bears Helmet", "Soldier Field Poster" };

[
string[] item quantity = new string[] { "1", "1" };

string[] item product code = new string[] { "CB3450", "SF998s" };
string[] item extended amount = new string[] { "150.00", "19.79" };

Sample Purchase with Customer Information — Set method version

CustInfo customer = new CustInfol();

/********************** Set Customer Bllllng Information **********************/
customer.SetBilling (first name, last name, company name, address, city,
province, postal code, country, phone, fax, taxl, tax2,

tax3, shipping cost);

/******************** Set Customer Shlpplnq InformatiOn ***********************/
customer.SetShipping (first name, last name, company name, address, city,
province, postal code, country, phone, fax, taxl, tax2,

tax3, shipping cost);

/***************************** Order Line Items **'k***'k***********************/
customer.SetItem(item description([0], item quantity[O],

item product code[0], item extended amount[0]);

customer.SetItem(item description(1l], item quantity[1],

item product code[l], item extended amount[1]);

Sample Purchase with Customer Information — Hash table version

CustInfo customer2 = new CustInfo();

/******************************* Bllllng Hashtable *****‘k********************‘k/
Hashtable b = new Hashtable(); //billing hashtable

b.Add ("first name", first name);

b.Add("last name", last name);

b.Add ("company name", company name);

b.Add ("address", address);

b.Add ("city", city);

November 2018

Page 357 of 476

Moneris Gateway API - Integration Guide

Sample Purchase with Customer Information — Hash table version

.Add ("province", province);

.Add ("postal code", postal code);

.Add ("country", country);

.Add ("phone", phone);

.Add ("fax", fax);

JAdd ("taxl", taxl); //federal tax

LAdd ("tax2", tax2); //prov tax

.Add ("tax3", tax3); //luxury tax

.Add ("shipping cost", shipping cost); //shipping cost
customer2.SetBilling (b) ;
/‘k***‘k************************* Shlppll’lg Hashtable **‘k************************/
Hashtable s = new Hashtable(); //shipping hashtable
s.Add ("first name", first name);

.Add("last _name", last name);

.Add ("company name", company name) ;

.Add ("address", address);

Add("eity", city) s

.Add ("province", province);

.Add ("postal code", postal code);

.Add ("country", country);

.Add ("phone", phone) ;

JAdd ("fax", fax);

.Add ("taxl", taxl); //federal tax

.Add ("tax2", tax2); //prov tax

LAdd ("tax3", tax3); //luxury tax

s.Add ("shipping cost", shipping cost); //shipping cost
customer2.SetShipping(s) ;

/***‘k***‘k************‘k***‘k Order Line Iteml Hashtable **‘k***‘k****************‘k/
Hashtable il = new Hashtable(); //item hashtable #1
il.Add("name", item description[0]);
il.Add("gquantity", item quantity[0]);

il.Add ("product code", item product code[0]);
il.Add("extended amount", item extended amount[0]);
customer?2.SetItem(il) ;

/‘k************************ Order Line Itemz Hashtable ***‘k**********************/
Hashtable i2 = new Hashtable(); //item hashtable #2
i2.Add ("name", "item2's name");

i2.Add ("quantity", "7");

i2.Add ("product code", "item2's product code");

i2.Add ("extended amount", "5.01");
customer2.SetItem(i2);

O 00000000

n n n n nh L n n n n o n

Page 358 of 476 November 2018

15 Status Check

e 15.1 About Status Check
o 15.2 Using Status Check Response Fields
¢ 15.3 Sample Purchase with Status Check

15.1 About Status Check

Status Check is a connection object value that allows merchants to verify whether a previously sent trans-
action was processed successfully.

To submit a Status Check request, resend the original transaction with all the same parameter values,
but set the status check value to either true or false,

Once set to “true”, the gateway will check the status of a transaction that has an order_id that matches
the one passed.

o Ifthetransaction is found, the gateway will respond with the specifics of that transaction.
« Ifthe transaction is not found, the gateway will respond with a not found message.

Onceitis set to “false”, the transaction will process as a new transaction.

For example, if you send a Purchase transaction with Status Check, include the same values as the ori-
ginal Purchase such as the order ID and the amount.

The feature must be enabled in your merchant profile. To have it enabled, contact Moneris.

Things to Consider:
o The Status Check request should only be used once and immediately (within 2 minutes)

after the last transaction that had failed.
o The Status Check request should not be used to check openTotals & batchClose

requests.
o Do not resend the Status Check request if it has timed out. Additional investigation is

required.

15.2 Using Status Check Response Fields

After you have used the connection object to send a Status Check request, you can use the Receipt
object to obtain the information you want regarding the success of the original transaction.

The status response fields related to the status check are Status Code and Status Message.

Possible Status Code response values:

e 0-49: successful transaction
e 50-999: unsuccessful transaction.

November 2018 Page 359 of 476

Moneris Gateway API - Integration Guide

Possible Status Message respons

Found: Status code is 0-49
o Not found or Null: Status c

If the Status Message is Found, a
action.

evalues:

ode is 50-999)

Il other response fields are the same as those from the original trans-

If the Status Message is Not found, all other response fields will be Null.

15.3 Sample Purchase with Status Check

Sample Purchase transaction with Status Check

using System;
using System.Collections.Gen
using System.Text;
using Moneris;
namespace CanadaPurchaseCons
{
class CanadaPurchaseTest
{
public static vo
{

Purchase

HttpsPos
mpgReq. S
mpgReq. S
mpgReq. S
mpgReq. S
mpgReq. S
mpgReq. S
mpgReq. S
try

{

}
catch (E

{

purchase.
purchase.
purchase.
purchase.
purchase.

eric;

oleTest

id Main(string[] args)

purchase = new Purchase();
SetOrderId ("order");
SetAmount ("1.00") ;

SetPan ("4242424242424242") ;
SetExpDate ("2202") ;
SetCryptType ("1") ;

tRequest mpgReq = new HttpsPostRequest();
etProcCountryCode ("CA") ;

etTestMode (true) ;

etStoreId("storel");

etApiToken ("yesguy") ;

etTransaction (purchase) ;

etStatusCheck (true) ;

end () ;

Receipt receipt mpgReq.GetReceipt () ;

Console.WriteLine ("StatusCode " + receipt.GetStatusCode());
Console.WriteLine ("StatusMessage = " + receipt.GetStatusMessage());
Console.ReadLine () ;

xception e)

Console.WriteLine (e

):

Page 360 of 476

November 2018

16 Visa Checkout

o 16.1 About Visa Checkout

o 16.2 Transaction Types - Visa Checkout
o 16.3 Integrating Visa Checkout Lightbox
e 16.4 Transaction Flow for Visa Checkout
o 16.5 Visa Checkout Purchase

o 16.6 Visa Checkout Pre-Authorization

e 16.7 Visa Checkout Completion

o 16.8 Visa Checkout Purchase Correction
o 16.9 Visa Checkout Refund

o 16.10 Visa Checkout Information

16.1 About Visa Checkout

Visa Checkout is a digital wallet service offered to customers using credit cards. Visa Checkout func-
tionality can be integrated into the Moneris Gateway via the API.

16.2 Transaction Types - Visa Checkout

Below is a list of transactions supported by the Visa Checkout API, other terms used for the transaction
type are indicated in brackets.

VdotMePurchase (sale)
Call to Moneris to obtain funds on the Visa Checkout callId and ready them for deposit
into the merchant’s account. It also updates the customer’s Visa Checkout transaction his-
tory.

VdotMePreAuth (authorisation / pre-authorization)
Call to Moneris to verify funds on the Visa Checkout callid and reserve those funds for
your merchant account. The funds are locked for a specified amount of time, based on the
card issuer. To retrieve the funds from this call so that they may be settled in the merchant’s
account, a VdotMeCompletion must be performed. It also updates the customer’s Visa
Checkout transaction history.

VdotMeCompletion (Completion / Capture)
Call to Moneris to obtain funds reserved by VdotMePreAuth call. This transaction call
retrieves the locked funds and readies them for settlement into the merchant’s account. This
call must be made typically within 72 hours of performing VdotMePreAuth, It also updates
the customer’s Visa Checkout transaction history.

VdotMePurchaseCorrection (Void / Purchase Correction)
Call to Moneris to void the VdotMePurchases and VdotMeCompletions the same day* that
they occurred on. It also updates the customer’s Visa Checkout transaction history.

VdotMeRefund (Credit)
Call to Moneris to refund against a VdotMePurchase orVdotMeCompletion to refund
any part, or all of the transaction. It also updates the customer’s Visa Checkout transaction
history.

November 2018 Page 361 of 476

Moneris Gateway API - Integration Guide

VdotMelnfo (Credit)
Call to Moneris to obtain cardholder details such as, name on card, partial card number,
expiry date, shipping and billing information.

16.3 Integrating Visa Checkout Lightbox

1. Usingthe API Key you obtained when you configured your Visa Checkout store, create Visa Check-
out Lightbox integration with JavaScript by following the Visa documentation, which is available
on Visa Developer portal:

Visa Checkout General Information (JavaScript SDK download)
https://developer.visa.com/products/visa_checkout

Getting Started With Visa checkout
https://developer.visa.com/products/visa_checkout/guides#fgetting started

Adding Visa Checkout to Your Web Page
https://developer.visa.com/products/visa_checkout/guides#fadding to page

Submitting the Consumer Payment Request
https://developer.visa.com/products/visa_checkout/guides#fsubmitting csr

2. Ifyou get a payment success event from the resulting Visa Lightbox JavaScript, you will have to
parse and obtain the callid from their JSON response. The additional information is obtained
using VvdotMeInfo.

Once you have obtained the callid from Visa Lightbox, you can make appropriate Visa Checkout VdotMe
transaction call to Moneris to process your transaction and obtain your funds.

NOTE: During Visa Checkout testing in our QA test environment, please use the API key
that you generated in the Visa Checkout configuration for the V. Init call in your
JavaScript.

Page 362 of 476 November 2018

https://developer.visa.com/products/visa_checkout
https://developer.visa.com/products/visa_checkout/guides#getting_started
https://developer.visa.com/products/visa_checkout/guides#adding_to_page
https://developer.visa.com/products/visa_checkout/guides#submitting_csr

16 Visa Checkout

16.4 Transaction Flow for Visa Checkout

VISA Checkout Process — Successful Process

Your Shopping Page

Moneris Solutions

-H\-\.
{ Yourcustomer proceeds to \I
'\ checkout
-

]

alidate Merchant

lawvaScri pt V.nit call to Visa

Generates and dizplays Visa
Chedout button for customer

redentialzand D

> VIHEET

.

True

Vica Checkout Pay

Wisa Checkout Sign In

Visa Checkout Payment Success|

and Continue

Event — Parse and obtain callid |

k. J

Wdothe Transaction call along

with callid to Moneris

s —.
|"r b
[Display Transaction Responsze \

Process Payment

\ from Moneris

N %

November 2018

Page 363 of 476

Moneris Gateway API - Integration Guide

16.5 Visa Checkout Purchase

VdotMePurchase transaction object definition

VdotMePurchase vmepurchase = new VdotMePurchase();

HttpsPostRequest for VdotMePurchase transaction

HttpsPostRequest mpgReq = new HttpsPostRequest();
mpgReq.SetTransaction (vmepurchase) ;
VdotMePurchase transaction object values

Table 1 VdotMePurchase transaction object mandatory values

Order ID String | 50-character alpha- vmepurchase.SetOrderId
numeric (order_id);
CallID String | 20-character numeric vmepurchase.SetCallld(call_
id) ;
Amount String 9-character decimal vmepurchase.SetAmount
(amount) ;
E-commerce indicator | String 1-character alpha- vmepurchase.SetCryptType
numeric (crypt) ;

Table 2 VdotMePurchase transaction object optional values

Dynamic String 20-character |vmepurchase.SetDynamicDescriptor

descriptor alphanumeric | (dynamic_descriptor);

Status check |Boolean true/false mpgReq. SetStatusCheck (status_
check) ;

Sample VdotMePurchase

using System;

using System.Collections.Generic;
using System.Text;

using Moneris;

namespace Moneris

{

class TestCanadaVdotMePurchase

{

public static void Main(string[] args)

{

Page 364 of 476 November 2018

16 Visa Checkout

Sample VdotMePurchase

string store id = "store2";

string api token = "yesquy";

string cust id = "Joe Doe";

string order id = "VmeOrder" + DateTime.Now.ToString ("yyyyMMddhhmmss") ;
string amount = "8.00";

string crypt type = "7";

string call id = "2374837188642083454";

string dynamic_descriptor = "inv123";

string processing country code = "CA";

bool status check = false;

VdotMePurchase vmepurchase = new VdotMePurchase() ;
vmepurchase.SetOrderId(order_id);
vmepurchase.SetCustId(cust id);
vmepurchase.SetAmount (amount) ;
vmepurchase.SetCallId(call id);
vmepurchase.SetCryptType (crypt type) ;
vmepurchase.SetDynamicDescriptor (dynamic_ descriptor);
HttpsPostRequest mpgReq = new HttpsPostRequest () ;
mpgReq. SetProcCountryCode (processing country code) ;

mpgReq.SetTestMode (true); //false or comment out this line for production transactions

mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api_token) ;

mpgReq. SetTransaction (vmepurchase) ;
mpgReq.SetStatusCheck (status_check) ;
mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WritelLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId())
Console.WriteLine ("TransType = " + receipt.GetTransType());
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WritelLine ("BankTotals = " + receipt.GetBankTotals());
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket()):
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
Console.WritelLine ("StatusCode = " + receipt.GetStatusCode());
Console.WriteLine ("StatusMessage = " + receipt.GetStatusMessage());

Console.WriteLine ("\r\nPress the enter key to exit");
Console.ReadLine () ;

}

catch (Exception e)

{

Console.Writeline (e);

}

— e

November 2018

Page 365 of 476

Moneris Gateway API - Integration Guide

16.6 Visa Checkout Pre-Authorization

VdotMePreAuth isvirtually identical to the VdotMePurchase with the exception of the transaction
type name.

Ifthe order could not be completed for some reason, such as an order is cancelled, made in error or not
fulfillable, the VdotMePreAuth transaction must be reversed within 72 hours.

To reverse an authorization, perform a VdotMeCompletion transaction for $0.00 (zero dollars).

VdotMePreAuth transaction object definition

VdotMePreauth vMePreauthRequest = new VdotMePreauth() ;

HttpsPostRequest object for VdotMePreAuth transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (vMePreauthRequest) ;

VdotMePreAuth transaction object values

Table 1 VdotMePreAuth transaction object mandatory values

Amount String 9-character decimal vDotMeReauthRequest
.SetAmount (amount) ;

CallID String 20-character numeric vDotMeReauthRequest
.SetCallIld(call id);

Order ID String 50-character alpha- vDotMeReauthRequest
numeric .SetOrderId(order id);

E-commerce indicator | String 1-character alpha- vDotMeReauthRequest
numeric .SetCryptType (crypt) ;

Table 2 VdotMePreAuth transaction object optional values

Customer ID String 50-character alpha- vMePreauthRequest.SetCustId
(cust_id);

numeric
Dynamic descriptor String 20-character alpha- vDotMeReauthRequest
numeric .SetDynamicDescriptor

(dynamic_descriptor) ;

Page 366 of 476 November 2018

16 Visa Checkout

Sample VdotMePreAuth

using S

ystem;

namespace Moneris

{

class TestCanadaVdotMePreauth

{
public
{
string
string
string
string
string
string
string
string
bool st
VdotMeP
vMePrea
vMePrea
vMePrea
vMePrea
vMePrea
HttpsPo
mpgReq.
mpgReq.
mpgReq.
mpgReq
mpgReq.
mpgReq.
mpgReq.
try

{
Receipt
Console

Console.

Console
Console

Console.

Console
Console

Console.

Console
Console
Console
Console

Console.

Console
Console

Console.

Console

Console.

Console

Console.

}

static void Main(string[] args)

store_id = "store2";
api token = "yesguy";
amount = "5.00";

crypt _type = "7";

order id = "VmeOrder" + DateTime.Now.ToString ("yyyyMMddhhmmss");
call id = "2336392495138357172";

cust_id = "my customer id";

processing country code = "CA";

atus_check = false;

reauth vMePreauthRequest = new VdotMePreauth() ;
uthRequest.SetOrderId(order id);

uthRequest.SetAmount (amount) ;

uthRequest.SetCallld(call id);

uthRequest.SetCustId(cust id);
uthRequest.SetCryptType (crypt type) ;

stRequest mpgReq = new HttpsPostRequest();
SetProcCountryCode (processing country code) ;

SetTestMode (true); //false or comment out this line for production transactions
SetStoreId(store id);

.SetApiToken (api_token) ;

SetTransaction (vMePreauthRequest) ;
SetStatusCheck (status_check);
Send () ;

receipt = mpgReq.GetReceipt () ;

.WriteLine ("CardType = " + receipt.GetCardType());
WriteLine ("TransAmount = " + receipt.GetTransAmount ());
.WritelLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
.WriteLine ("ReceiptId = " + receipt.GetReceiptId());
WriteLine ("TransType = " + receipt.GetTransType());
.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
.WriteLine ("ResponseCode = " + receipt.GetResponseCode ()) ;
WriteLine ("ISO = " + receipt.GetISO());

.WritelLine ("BankTotals = " + receipt.GetBankTotals());
.WriteLine ("Message = " + receipt.GetMessage());
.WriteLine ("AuthCode = " + receipt.GetAuthCode());
.WritelLine ("Complete = " + receipt.GetComplete());
WriteLine ("TransDate = " + receipt.GetTransDate());
.WritelLine ("TransTime = " + receipt.GetTransTime());
.WriteLine ("Ticket = " + receipt.GetTicket());

WriteLine ("TimedOut = " + receipt.GetTimedOut());
.WriteLine ("StatusCode = " + receipt.GetStatusCode()) ;
WriteLine ("StatusMessage = " + receipt.GetStatusMessage());

.WriteLine ("\r\nPress the enter key to exit");
ReadLine () ;

catch (Exception e)

{

Console

}

— e

.WriteLine (e);

November 2018 Page 367 of 476

Moneris Gateway API - Integration Guide

16.7 Visa Checkout Completion

The VdotMeCompletion transaction is used to secure the funds locked by a VdotMePreAuth trans-

action.

You may also perform this transaction at $0.00 (zero dollars) to reverse a VdotMePreauth transaction
that you are unable to fuffill.

VdotMeCompletion transaction object definition

VdotMeCompletion vmecompletion = new VdotMeCompletion();

HttpsPostRequest object for VdotMeCompletion transaction

HttpsPostRequest mpgReqg =

mpgReq.SetTransaction (vmecompletion) ;

VdotMeCompletion transaction object values

new HttpsPostRequest();

Table 1 VdotMeCompletion transaction object mandatory values

Order ID String 50-character alpha- vmecompletion.SetOrderld
numeric (order_id);
Transaction number String 255-character alpha- vmecompletion.SetTxnNumber
numeric (txn number) ;
Completion amount String 9-character decimal vmecompletion.SetCompAmount
(comp_amount) ;
E-commerce indicator String 1-character alpha- vmecompletion.SetCryptType

numeric

(crypt);

Table 2 VdotMeCompletion transaction object optional values

Customer ID String | 50-character alpha- vmecompletion.SetCustld
numeric (cust_id);
Dynamic descriptor String 20-character alpha- vmecompletion

numeric

.SetDynamicDescriptor
(dynamic descriptor);

Sample VdotMeCompletion

using System;

Page 368 of 476

November 2018

16 Visa Checkout

Sample VdotMeCompletion

namespa
{

class T
{
public
{
string
string
string
string
string
string
string
string
string
string
bool st
VdotMeC
vmecomp
vmecomp
vmecomp
vmecomp
vmecomp
vmecomp
vmecomp
HttpsPo
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
try

{
Receipt
Console

Console.

Console
Console

Console.

Console
Console
Console
Console

Console.

Console
Console

Console.

Console

Console.

Console
Console

Console.

Console
Console
}
catch (
{

ce Moneris
estCanadaVdotMeCompletion
static void Main(string[] args)
store id = "store2";

api_token = "yesguy";

order id = "VmeOrder20150626023358";
txn number = "737541-0 10";

comp_amount = "1.00";

ship indicator = "P";

crypt type = "7";

cust_id = "mycustomerid";
dynamic_descriptor = "inv 123";
processing country code = "CA";

atus check = false;

ompletion vmecompletion = new VdotMeCompletion () ;
letion.SetOrderId(order id);
letion.SetTxnNumber (txn number) ;
letion.SetAmount (comp amount) ;
letion.SetCryptType (crypt type);
letion.SetDynamicDescriptor (dynamic descriptor);
letion.SetCustId(cust id);
letion.SetShipIndicator (ship indicator);
stRequest mpgReq = new HttpsPostRequest () ;
SetProcCountryCode (processing country code) ;
SetTestMode (true); //false or comment out this line for production transactions
SetStoreId(store_id);

SetApiToken (api_token);

SetTransaction (vmecompletion) ;

SetStatusCheck (status_check) ;

Send () ;

receipt = mpgReq.GetReceipt () ;

.WritelLine ("CardType = " + receipt.GetCardType());
WriteLine ("TransAmount = " + receipt.GetTransAmount());
.WritelLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;

.WriteLine ("ReceiptId
WriteLine ("TransType =

" + receipt.GetReceiptId());
" + receipt.GetTransType());

.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum()) ;
.WriteLine ("ResponseCode = " + receipt.GetResponseCode ()) ;
.WriteLine ("ISO = " + receipt.GetISO());

.WriteLine ("BankTotals = " + receipt.GetBankTotals());
WritelLine ("Message = " + receipt.GetMessage());
.WriteLine ("AuthCode = " + receipt.GetAuthCode());
.WriteLine ("Complete = " + receipt.GetComplete());
WriteLine ("TransDate = " + receipt.GetTransDate());
.WriteLine ("TransTime = " + receipt.GetTransTime());
WriteLine ("Ticket = " + receipt.GetTicket());

.WriteLine ("TimedOut = " + receipt.GetTimedOut());
.WriteLine ("StatusCode = " + receipt.GetStatusCode()) ;
WriteLine ("StatusMessage = " + receipt.GetStatusMessage()) ;
.WriteLine ("\r\nPress the enter key to exit");
.ReadLine () ;

Exception e)

November 2018 Page 369 of 476

Moneris Gateway API - Integration Guide

Sample VdotMeCompletion

Console.WriteLine (e);

}

}
}
}

16.8 Visa Checkout Purchase Correction

VdotMePurchaseCorrection is used to cancela VdotMeCompletion gor VdotMePurchase trans-
action that was performed in the current batch. No other transaction types can be corrected using this
method.

No amount is required because it is always for 100% of the original transaction.

VdotMePurchaseCorrection transaction object definition

VdotMePurchaseCorrection vDotMePurchaseCorrection = new
VdotMePurchaseCorrection () ;

HttpsPostRequest object for VdotMePurchaseCorrection transaction

HttpsPostRequest mpgReq = new HttpsPostRequest() ;

mpgReq.SetTransaction (vDotMePurchaseCorrection) ;

VdotMePurchaseCorrection transaction object values

Table 1 VdotMePurchaseCorrection transaction object mandatory values

Order ID Stnng 50_character alpha_ VDOtMePurChaseCOrreCtiOn
.SetOrderId(order id);

numeric
Transaction number String 255-character alpha- vDotMePurchaseCorrection
numeric .SetTxnNumber (txn number) ;

Table 2 VdotMePurchaseCorrection transaction object optional values

Customer ID String 50-character alpha- vDotMePurchaseCorrection
numeric .SetCustId(cust_id);

Status check Boolean | true/false mpgReq. SetStatusCheck
(status_check);

Page 370 of 476 November 2018

16 Visa Checkout

Sample VdotMePurchaseCorrection

using S

ystem;

using Moneris;
namespace ACME

{

class TestCanadaVdotMePurchaseCorrection

{
public
{
string
string
string
string
string
string
string
bool st
VdotMeP
vDotMeP
vDotMeP
vDotMeP
vDotMeP
HttpsPo
mpgReq.
mpgReq
mpgReq.
mpgReq.
mpgReq.
mpgReq.
mpgReq.
try

{
Receipt

Console.

Console

Console.

Console
Console

Console.

Console
Console

Console.

Console
Console
Console
Console

Console.

Console
Console

Console.

Console

Console.
Console.

}

static void Main (string[] args)

store id = "store2";

api token = "yesquy";

order id = "VmeOrder20150626022834";
txn_number = "737534-0_10";

crypt type = "7";

cust_id = "my customer id";
processing country code = "CA";
atus_check = false;

urchaseCorrection vDotMePurchaseCorrection = new VdotMePurchaseCorrection();

urchaseCorrection.SetOrderId(order id);
urchaseCorrection.SetCustId(cust id);
urchaseCorrection.SetTxnNumber (txn number) ;
urchaseCorrection.SetCryptType (crypt type);
stRequest mpgReq = new HttpsPostRequest () ;
SetProcCountryCode (processing country code);

SetStoreld(store id);

SetApiToken (api_token);

SetTransaction (vDotMePurchaseCorrection) ;
SetStatusCheck (status check) ;

Send () ;

receipt = mpgReq.GetReceipt () ;

WriteLine ("CardType = " + receipt.GetCardType());
.WriteLine ("TransAmount = " + receipt.GetTransAmount());
WriteLine ("TxnNumber = " + receipt.GetTxnNumber());
.WriteLine ("ReceiptId = " + receipt.GetReceiptId());
.WritelLine ("TransType = " + receipt.GetTransType());
WriteLine ("ReferenceNum = " + receipt.GetReferenceNum());
.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
.WriteLine ("ISO = " + receipt.GetISO());

WriteLine ("BankTotals = " + receipt.GetBankTotals());
.WritelLine ("Message = " + receipt.GetMessage());
.WriteLine ("AuthCode = " + receipt.GetAuthCode());
.WriteLine ("Complete = " + receipt.GetComplete());
.WritelLine ("TransDate = " + receipt.GetTransDate());
WriteLine ("TransTime = " + receipt.GetTransTime()) ;
.WriteLine ("Ticket = " + receipt.GetTicket());

.WriteLine ("TimedOut = " + receipt.GetTimedOut ());
WriteLine ("StatusCode = " + receipt.GetStatusCode());
.WritelLine ("StatusMessage = " + receipt.GetStatusMessage());

WriteLine ("\r\nPress the enter key to exit");
ReadLine () ;

catch (Exception e)

{

Console

}

— e

.WriteLine (e);

.SetTestMode (true); //false or comment out this line for production transactions

November 2018

Page 371 of 476

Moneris Gateway API - Integration Guide

16.9 Visa Checkout Refund

VdotMeRefund will credit a specified amount to the cardholder’s credit card and update their Visa Check-
out transaction history. Arefund can be sent up to the full value of the original VdotMeCompletion or
VdotMePurchase,

VdotMeRefund transaction object definition

VdotMeRefund vDotMeRefundRequest = new VdotMeRefund() ;

HttpsPostRequest object for VdotMeRefund transaction

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq.SetTransaction (vDotMeRefundRequest) ;

VdotMeRefund transaction object values

Table 1 VdotMeRefund transaction object mandatory values

Order ID String 50-character alpha- vDotMeRefundRequest

nhumeric .SetOrderId(order id);
Amount String 9-character decimal vDotMeRefundRequest

.SetAmount (amount) ;

Transaction number String 255-character alpha- vDotMeRefundRequest

numeric .SetTxnNumber (txn number) ;
E-commerce indicator | String 1-character alpha- vDotMeRefundRequest

humeric .SetCryptType (crypt) ;

Table 2 VdotMeRefund transaction object optional values

Customer ID String 50-character alpha- vDotMeRefundRequest
numeric .SetCustId(cust_id);
Dynamic descriptor String 20-character alpha- vDotMeRefundRequest
numeric .SetDygamchesgrlptor
(dynamic descriptor);
Status check Boolean | true/false mpgReq. SetStatusCheck
(status_check);

Page 372 of 476 November 2018

16 Visa Checkout

Sample VdotMeRefund

using System;

using Moneris;

namespace ACME

{

class TestCanadaVdotMeRefund

{

public static void Main(string[] args)
{

string store id = "store2";

string api token = "yesquy";

string order id = "VmeOrder20150626023725";
string txn number = "737545-0_10";

string amount = "1.00";

string crypt type = "7";

string dynamic descriptor = "inv 123";
string cust id = "my customer id";
string processing country code = "CA";

bool status check = false;

VdotMeRefund vDotMeRefundRequest = new VdotMeRefund() ;
vDotMeRefundRequest.SetOrderId (order id);
vDotMeRefundRequest.SetAmount (amount) ;
vDotMeRefundRequest.SetCustId(cust_id);
vDotMeRefundRequest.SetTxnNumber (txn number) ;
vDotMeRefundRequest.SetCryptType (crypt type) ;
vDotMeRefundRequest.SetDynamicDescriptor (dynamic descriptor);
HttpsPostRequest mpgReq = new HttpsPostRequest () ;

mpgReq. SetProcCountryCode (processing country code) ;

mpgReq.SetTestMode (true); //false or comment out this line for production transactions

mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api_token) ;

mpgReq. SetTransaction (vDotMeRefundRequest) ;
mpgReq.SetStatusCheck (status_check) ;
mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("CardType = " + receipt.GetCardType());
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WritelLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("TransType = " + receipt.GetTransType());
Console.WritelLine ("ReferenceNum = " + receipt.GetReferenceNum())
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode()) ;
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WritelLine ("BankTotals = " + receipt.GetBankTotals());
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete());
Console.WritelLine ("TransDate = " + receipt.GetTransDate());
Console.WritelLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket()):
Console.WritelLine ("TimedOut = " + receipt.GetTimedOut());
Console.WriteLine ("StatusCode = " + receipt.GetStatusCode());
Console.WriteLine ("StatusMessage = " + receipt.GetStatusMessage());

Console.WriteLine ("\r\nPress the enter key to exit");
Console.ReadLine () ;

}

catch (Exception e)

{

November 2018

Page 373 of 476

Moneris Gateway API - Integration Guide

Sample VdotMeRefund

Console.WriteLine (e);
}
}
}
}

16.10 Visa Checkout Information

VdotMeInfo will get customer information from their Visa Checkout wallet. The details returned are

dependent on what the customer has stored in Visa Checkout.

VdotMelnfo transaction object definition

VdotMeInfo vmeinfo = new VdotMeInfol();

HttpsPostRequest object for VdotMelnfo transaction

HttpsPostRequest mpgReq = new HttpsPostRequest();

mpgReq.SetTransaction (vmeinfo) ;

VdotMelnfo transaction object values

Table 1 VdotMelnfo transaction object mandatory values

CallID String 20-character numeric

vmeinfo.SetCallIld(call id);

Sample VdotMelnfo

using System;

using System.Collections.Generic;
using System.Text;

namespace Moneris

{

public class TestCanadaVdotMeInfo

{

public static void Main(string[] args)
{

string store id = "storel2";

string api_token = "yesguy";

string call id = "5840726785406561048";
string processing country code = "CA";
bool status check = false;

VdotMeInfo vmeinfo = new VdotMeInfo () ;
vmeinfo.SetCallId(call id);

mpgReq.SetStoreld(store id);
mpgReq.SetApiToken (api_ token) ;

HttpsPostRequest mpgReq = new HttpsPostRequest();
mpgReq. SetProcCountryCode (processing country code) ;
mpgReq. SetTestMode (true); //false or comment out this line for production transactions

Page 374 of 476

November 2018

16 Visa Checkout

Sample VdotMelnfo

mpgReq. SetTransaction (vmeinfo) ;
mpgReq.SetStatusCheck (status_check) ;
mpgReqg. Send () ;

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WritelLine ("Response Code: " + receipt.GetResponseCode()) ;

Console.WriteLine ("Response Message: " + receipt.GetMessage());

Console.WriteLine ("Currency Code: " + receipt.GetCurrencyCode());

Console.WriteLine ("Payment Totals: " + receipt.GetPaymentTotal());

Console.WriteLine ("User First Name: " + receipt.GetUserFirstName()) ;

Console.WritelLine ("User Last Name: " + receipt.GetUserLastName ()) ;

Console.WritelLine ("Username: " + receipt.GetUserName ());

Console.WriteLine ("User Email: " + receipt.GetUserEmail());

Console.WritelLine ("Encrypted User ID: " + receipt.GetEncUserId());

Console.WritelLine ("Creation Time Stamp: " + receipt.GetCreationTimeStamp());
Console.WriteLine ("Name on Card: " + receipt.GetNameOnCard());

Console.WritelLine ("Expiration Month: " + receipt.GetExpirationDateMonth()) ;
Console.WritelLine ("Expiration Year: " + receipt.GetExpirationDateYear());
Console.WriteLine ("Last 4 Digits: " + receipt.GetLastFourDigits());

Console.WritelLine ("Bin Number (6 Digits): " + receipt.GetBinSixDigits()):;
Console.WriteLine ("Card Brand: " + receipt.GetCardBrand());

Console.WritelLine ("Card Type: " + receipt.GetVdotMeCardType ()) ;

Console.WriteLine ("Billing Person Name: " + receipt.GetPersonName ()) ;

Console.WriteLine ("Billing Address Line 1: " + receipt.GetBillingAddressLinel());
Console.WriteLine ("Billing City: " + receipt.GetBillingCity()):;

Console.WriteLine ("Billing State/Province Code: " + receipt.GetBillingStateProvinceCode());
Console.WriteLine ("Billing Postal Code: " + receipt.GetBillingPostalCode());
Console.WriteLine ("Billing Country Code: " + receipt.GetBillingCountryCode());
Console.WriteLine ("Billing Phone: " + receipt.GetBillingPhone());

Console.WriteLine ("Billing ID: " + receipt.GetBillingId());

Console.WriteLine ("Billing Verification Status: " + receipt.GetBillingVerificationStatus()):;
Console.WriteLine ("Partial Shipping Country Code: " + receipt.GetPartialShippingCountryCode())
Console.WritelLine ("Partial Shipping Postal Code: " + receipt.GetPartialShippingPostalCode()) ;
Console.WriteLine ("Shipping Person Name: " + receipt.GetShippingPersonName ());
Console.WritelLine ("Shipping Address Line 1: " + receipt.GetShipAddressLinel());
Console.WritelLine ("Shipping City: " + receipt.GetShippingCity()):

Console.WriteLine ("Shipping State/Province Code: " + receipt.GetShippingStateProvinceCode());
Console.WriteLine ("Shipping Postal Code: " + receipt.GetShippingPostalCode());
Console.WriteLine ("Shipping Country Code: " + receipt.GetShippingCountryCode()) ;
Console.WritelLine ("Shipping Phone: " + receipt.GetShippingPhone());

Console.WriteLine ("Shipping Default: " + receipt.GetShippingDefault());

Console.WriteLine ("Shipping ID: " + receipt.GetShippingId()):;

Console.WritelLine ("Shipping Verification Status: " + receipt.GetShippingVerificationStatus());
Console.WritelLine ("isExpired: " + receipt.GetIsExpired()):

Console.WriteLine ("Base Image File Name: " + receipt.GetBaseImageFileName());
Console.WritelLine ("Height: " + receipt.GetHeight());

Console.WriteLine ("Width: " + receipt.GetWidth());

Console.WriteLine ("Issuer Bid: " + receipt.GetIssuerBid());

Console.WritelLine ("Risk Advice: " + receipt.GetRiskAdvice());

Console.WriteLine ("Risk Score: " + receipt.GetRiskScore());

Console.WriteLine ("AVS Response Code: " + receipt.GetAvsResponseCode ()) ;
Console.WriteLine ("CVV Response Code: " + receipt.GetCvvResponseCode ());

Console.WriteLine ("\r\nPress the enter key to exit");
Console.ReadLine () ;

}

catch (Exception e)

{

Console.WriteLine (e);

November 2018 Page 375 of 476

Moneris Gateway API - Integration Guide

Sample VdotMelnfo

- e e e

Page 376 of 476

November 2018

17 Testing a Solution

o 17.1 About the Merchant Resource Center

e 17.2 Logging In to the QA Merchant Resource Center
o 17.3 Test Credentials for Merchant Resource Center
e 17.4 Getting a Unique Test Store ID and APl Token

e 17.5 Processing a Transaction

e 17.6 Testing INTERAC® Online Payment Solutions

e 17.7 Testing MPI Solutions

o 17.8 Testing Visa Checkout

o 1 Test Cards

e 17.10 Simulator Host

17.1 About the Merchant Resource Center

The Merchant Resource Center is the user interface for Moneris Gateway services. There is also a
QA version of the Merchant Resource Center site specifically allocated for you and other developers to
use to test your APl integrations with the gateway.

You can access the Merchant Resource Center in the test environment at:
https://esqa.moneris.com/mpg (Canada)

The test environment is generally available 24/7, but 100% availability is not guaranteed. Also, please be
aware that other merchants are using the test environment in the Merchant Resource Center. Therefore,
you may see transactions and user IDs that you did not create. As a courtesy to others who are testing,
we ask that you use only the transactions/users that you created. This applies to processing Refund
transactions, changing passwords or trying other functions.

17.2 Logging In to the QA Merchant Resource Center
To log in to the QA Merchant Resource Center for testing purposes:

1. Go to the Merchant Resource Center QA website at https://esqa.moneris.com/mpg

2. Enter your username and password, which are the same email address and password you use to
log in to the Developer Portal

3. Enter your Store ID, which you obtained from the Developer Portal's My Testing Credentials as
described in Test Credentials for Merchant Resource Center (page 377)

17.3 Test Credentials for Merchant Resource Center

For testing purposes, you can either use the pre-existing test stores in the Merchant Resource Center, or
you can create your own unique test store where you will only see your own transactions. If you want to
use the pre-existing stores, use the test credentials provided in the following tables with the cor-
responding lines of code, as in the examples below.

November 2018 Page 377 of 476

Moneris Gateway API - Integration Guide

Example of Corresponding Code For Canada:

string store id = "storeb";
string api token = "yesguy";
string processing country code = "CA";

mpgReq.SetTestMode (true) ;

Table 102: Test Server Credentials - Canada

storel yesguy demouser password

store2 yesguy demouser password

store3 yesguy demouser password

stored yesguy demouser password

store5 yesguy demouser password

monca00392 | yesguy demouser password Use this store to
test Convenience
Fee transactions

moncaqagtl | mgtokenguyl demouser password Use this store to
test Token Shar-
ing

moncaqagt2 | mgtokenguy?2 demouser password Use this store to
test Token Shar-
ing

moncaqagt3 | mgtokenguy3 demouser password Use this store to
test Token Shar-
ing

monca01428 | mcmpguy demouser password Use this store to
test MasterCard
MasterPass

Alternatively, you can create and use a unique test store where you will only see your own
transactions. For more on this, see Getting a Unique Test Store ID and API Token (page 379)

Page 378 of 476 November 2018

17 Testing a Solution

17.4 Getting a Unique Test Store ID and API Token

Transactions requests via the API will require you to have a Store ID and a corresponding API token.For
testing purposes, you can either use the pre-existing test stores in the Merchant Resource Center, or you
can create your own unique test store where you will only see your own transactions.

To get your unique Store ID and API token:

1. Loginto the Developer Portal at https://developer.moneris.com

In the My Profile dialog, click the Full Profile button

Under My Testing Credentials, select Request Testing Credentials

Enter your Developer Portal password and select your country

Record the Store ID and API token that are given, as you will need them for logging in to the Mer-
chant Resource Center (Store ID) and for API requests (APl token).

vk wnN

Alternatively, you can use the pre-existing test stores already set up in the Merchant Resource Center as
described in Test Credentials for Merchant Resource Center (page 377).

November 2018 Page 379 of 476

17.5 Processing a Transaction

e« 1.1 Overview
o 1.2 HttpsPostRequest Object
o 1.3 Receipt Object

17.5.1 Overview

There are some common steps for every transaction that is processed.
1. Instantiate the transaction object (e.g., Purchase), and update it with object definitions that
refer to the individual transaction.
2. |nstantiate the HttpsPostRequest connection object and update it with connection information,
host information and the transaction object that you created in step 17.5

Section 17.5 (page 381) provides the HttpsPostRequest connection object definition. This object
and its variables apply to every transaction request.

3. Invoke the HttpsPostRequest object's send () method.
4. |nstantiate the Receipt object, by invoking the HttpsPostRequest object's get Receipt method.
Use this object to retrieve the applicable response details.

Some transactions may require steps in addition to the ones listed here. Below is a sample Purchase
transaction with each major step outlined. For extensive code samples of other transaction types, refer
to the Java API ZIP file.

NOTE: For illustrative purposes, the order in which lines of code appear below may differ
slightly from the same sample code presented elsewhere in this document.

using System; Include all necessary
using System.Collections.Generic; classes.

using System.Text;
using Moneris;

string order id = "Test" + DateTime.Now.ToString("yyyyMMddhhmmss") ; Define all mandatory

string amount = "5.00"; values for the trans-

string pan = "4242424242424242"; . . _

string expdate = "1901"; //YYMM format aCt_Ion ObJECt prop

string crypt = "7"; erties.

string processing country code = "CA";

string store id = "store5"; Define all mandatory

string api token = "yesquy"; values for the con-
nection object prop-
erties.

Purchase purchase = new Purchase(); Instantiate the trans-
purchase.SetOrderId (order id); . .
purchase.SetAmount (amount)_; action ObJGCt and
purchase.SetPan (pan) ; assign values to prop-
purchase.SetExpdate (expdate) ; erties.
purchase.SetCryptType (crypt) ;
purchase.SetDynamicDescriptor ("2134565") ;

November 2018 Page 381 of 476

Moneris Gateway API - Integration Guide

HttpsPostRequest mpgReq = new HttpsPostRequest() ;
mpgReq.SetProcCountryCode (processing country code);

mpgReq. SetTestMode (true) ; //false or comment out this line for production
transactions

mpgReq.SetStoreld(store id);

Instantiate connection
object and assign val-
ues to properties,
including the trans-

mpgReq.SetApiToken (api_ token) ;
mpgReq. SetTransaction (purchase) ;
mpgReq.SetStatusCheck (status_check) ;

action object you just
created.

try

{

Receipt receipt = mpgReq.GetReceipt () ;

Console.WriteLine ("CardType = " + receipt.GetCardType())
Console.WriteLine ("TransAmount = " + receipt.GetTransAmount());
Console.WriteLine ("TxnNumber = " + receipt.GetTxnNumber ()) ;
Console.WriteLine ("ReceiptId = " + receipt.GetReceiptId());
Console.WriteLine ("TransType = " + receipt.GetTransType());

Instantiate the Receipt
object and use its get
methods to retrieve
the desired response
data.

Console.WriteLine ("ReferenceNum = " + receipt.GetReferenceNum());
Console.WriteLine ("ResponseCode = " + receipt.GetResponseCode());
Console.WriteLine ("ISO = " + receipt.GetISO());

Console.WriteLine ("BankTotals = " + receipt.GetBankTotals());
Console.WriteLine ("Message = " + receipt.GetMessage());
Console.WriteLine ("AuthCode = " + receipt.GetAuthCode());
Console.WriteLine ("Complete = " + receipt.GetComplete()) ;
Console.WriteLine ("TransDate = " + receipt.GetTransDate());
Console.WriteLine ("TransTime = " + receipt.GetTransTime());
Console.WriteLine ("Ticket = " + receipt.GetTicket());
Console.WriteLine ("TimedOut = " + receipt.GetTimedOut ());
Console.WriteLine ("IsVisaDebit = " + receipt.GetIsVisaDebit()) ;

Console.ReadLine() ;

}

catch

{
Console.WritelLine (e) ;

}

(Exception e)

o e o

17.5.2 HttpsPostRequest Object

The transaction object that you instantiate becomes a property of this object when you call its set trans-
action method.
HttpsPostRequest Object Definition

HttpsPostRequest mpgReq = new HttpsPostRequest () ;

After instantiating the HttpsPostRequest object, update its mandatory and optional values as outlined in
the following values tables.

Page 382 of 476 November 2018

Table 103: HttpsPostRequest object mandatory values

Processing String 2-character alphabetic mpgReq.setProcCountryCode
country code (processing country code);

CA for Canada, Us for USA.

Test mode Boolean true/false mpgReq.setTestMode (true) ;

Set to true when in test mode. Set to false (or comment out entire line) when in pro-
duction mode.

Store ID String 10-character alphanumeric |mpgReq.setStoreld(store_id);

Unique identifier provided by Moneris upon merchant account set up.

See 17.1 About the Merchant Resource Center for test environment details.

AP| Token String 20-character alphanumeric |mpgReq.setApiToken (api_token);

Unique alphanumeric string assigned upon merchant account activation. To locate your
production API token, refer to the Merchant Resource Center Admin Store Settings.

See 17.3 Test Credentials for Merchant Resource Center for test environment details.

Transaction |Object Not applicable mpgReq.setTransaction
(transaction) ;

This argument is one of the numerous transaction types discussed in the rest of this
manual. (Such as Purchase, Refund and so on.) This object is instantiated in step 1
above.

Table 1 HttpsPostRequest object optional values

Status Check |Boolean |true/false |mpgReq. setStatusCheck (status_check);

See Appendix A Definitions of Request Fields.

NOTE: while this value belongs to the HttpsPostRequest object, it is only supported by some trans-
actions. Check the individual transaction definition to find out whether Status Check can be used.

17.5.3 Receipt Object

After you send a transaction using the HttpsPostRequest object's send method, you can instantiate a
receipt object.

November 2018 Page 383 of 476

Moneris Gateway API - Integration Guide

Receipt Object Definition

Receipt receipt = mpgReq.GetReceipt () ;

For an in-depth explanation of Receipt object methods and properties, see Appendix B Definitions of
Response Fields,

17.6 Testing INTERAC® Online Payment Solutions

Acxsys has two websites where merchants can post transactions for testing the fund guarantee porting
of INTERAC® Online Payment transactions. The test IDEBIT MERCHNUM value is provided by Moneris
after registering in the test environment.

After registering, the following two links become accessible:

e Merchant Test Tool
o Certification Test Tool

Merchant Test Tool

https://merchant-test.interacidebit.ca/gateway/merchant_test processor.do

This URL is used to simulate the transaction response process, to validate response variables, and to
properly integrate your checkout process.

When testing INTERAC® Online Payment transactions, you are forwarded to the INTERAC® Online Pay-
ment Merchant Testing Tool. A screen appears where certain fields need to be completed.

For an approved response, do not alter any of the fields except for the ones listed here.

IDEBIT_TRACK2
To form a track2 when testing with the Moneris Gateway, use one of these three numbers:

3728024906540591206=01121122334455000
5268051119993326=01121122334455000000
453781122255=011211223344550000000000

IDEBIT_ISSNAME
RBC

IDEBIT_ISSCONF
123456

For a declined response, provide any other value as the IDEBIT_TRACK?2. Click Post to Merchant,

Whether the transaction is approved or declined, do not click Validate Data, This will return validation
errors.

Certification Test Tool

https://merchant-test.interacidebit.ca/gateway/merchant_certification processor.do

This URL is used to complete the required INTERAC® Online Payment Merchant Front-End Certification
test cases, which are outlined in Appendix E (page 454) and Appendix F (page 458).

Page 384 of 476 November 2018

To confirm the fund that was guaranteed above, an INTERAC® Online Payment Purchase must be sent to
the Moneris Gateway QAusing the following test store information:

Host: esga.moneris.com
Store ID: store3
API Token: yesguy

You can always log into the Merchant Resource Center to check the results using the following inform-
ation:

URL: https://esqa.moneris.com/mpg
Store ID: store3

Note that all response variables that are posted back from the IOP gateway in step 5.4 of 5.4 must be val-
idated for length of field, permitted characters and invalid characters.

17.7 Testing MPI Solutions

When testing your implementation of the Moneris MPI, you can use the Visa/MasterCard/Amex PIT (pro-
duction integration testing) environment. The testing process is slightly different than a production envir-
onment in that when the inline window is generated, it does not contain any input boxes. Instead, it
contains a window of data and a Submit button. Clicking Submit [oads the response in the testing win-
dow. The response will not be displayed in production.

NOTE: MasterCard SecureCode and Amex SafeKey may not be directly tested within our
current test environment. However, the process and behavior tested with the Visa test
cards will be the same for MCSC and SafeKey.

When testing you may use the following test card numbers with any future expiry date. Use the appro-
priate test card information from the tables below: Visa and MasterCard use the same test card inform-
ation, while Amex uses unique information.

Table 104: MPI test card numbers (Visa and MasterCard only)

4012001037141112|Y true TXN - Call function to create inLine window.
ACS —Send CAVV to Moneris Gateway using either the Cavv

4242424242424242 Purchase or the Cavv Pre-Authorization transaction.

4012001038488884 | U NA Send transaction to Moneris Gateway using either the basic
Purchase or the basic Pre-Authorization transaction. Set crypt_
type=7.

November 2018 Page 385 of 476

Moneris Gateway API - Integration Guide

Table 104: MPI test card numbers (Visa and MasterCard only) (continued)

Send transaction to Moneris Gateway using either the basic
Purchase or the basic Pre-Authorization transaction.

4012001038443335

N

NA

Set crypt_type =6.

4012001037461114

Y

false

Card failed to authenticate. Merchant may chose to send trans-
action or decline transaction. If transaction is sent, use crypt

type=7.

Table 105: MPI test card numbers (Amex only)

375987000000062 |U Not N/A TXN = Call function to create inLine window.
required ACS —Send CAVV to Moneris Gateway using either the
Cavv Purchase or the Cavv Pre-Authorization trans-
action.Set crypt_type=7.
375987000000021 |Y Yes: false Card failed to authenticate. Merchant may chose to
test13fail send transaction or decline transaction. If transaction
is sent, use crypt type=7.
375987000000013 | N Not N/A Send transaction to Moneris Gateway using either the
required basic Purchase or the basic Pre-Authorization trans-
action. Set crypt_type =6.
374500261001009 |Y Yes: true Card failed to authenticate. Merchant may choose to
test09 send transaction or decline transaction. Set crypt_
type =5.
VERes

Theresult U, Y or N is obtained by using getMessage().

PARes

The result “true” or “false” is obtained by using getSuccess().

To access the Merchant Resource Center in the test environment go to https://esqa.moneris.com/mpg.

Transactions in the test environment should not exceed $11.00.

17.8 Testing Visa Checkout

In order to test Visa Checkout you need to:

Page 386 of 476

November 2018

1. Create a Visa Checkout configuration profile in the Merchant Resource Center QA environment at
https://esqa.moneris.com/mpg. To learn more about this, see "Creating a Visa Checkout Con-

figuration for Testing" below.

2. Obtain a Lightbox APl key to be used for Lightbox integration. To learn more about this, see "Integ-

rating Visa Checkout Lightbox" on page 362.

3. Fortest card numbers specifically for use when testing Visa Checkout, see "Test Cards for Visa

Checkout" on the next page

17.8.1 Creating a Visa Checkout Configuration for Testing

Once you have a test store created, you need to activate Visa Checkout in the QA environment.

To activate Visa Checkout in QA:

Eall e

17.9 Test Card Numbers

Log in to the the QA environment at https://esqa.moneris.com/mpg
In the Admin menu, select Visa Checkout

Complete the applicable fields

Click Save.

Because of security and compliance reasons, the use of live credit and debit card numbers for testing is

strictly prohibited. Only test credit and debit card numbers are to be used.

To test general transactions, use the following test card numbers:

Table 106: General test card numbers

Mastercard 5454545454545454

Visa 4242424242424242

Amex 373599005095005

JCB 3566007770015365

Diners 36462462742008

Track2 5258968987035454=06061015454001060101?
Discover 6510000000000182

UnionPay 6250944000000771

November 2018 Page 387 of 476

Moneris Gateway API - Integration Guide

17.9.1 Test Card Numbers for Level 2/3

When testing Level 2/3 transactions, use the card numbers below.

Mastercard 5454545442424242
Visa 4242424254545454
Amex 373269005095005

17.9.2 Test Cards for Visa Checkout

Table 1 Test Cards Numbers - Visa Checkout

Visa 4005520201264821 (without card art)
Visa 4242424242424242 (with card art)
MasterCard 5500005555555559

American Express 340353278080900

Discover 6011003179988686

17.10 Simulator Host

The test environment has been designed to replicate the production environment as closely as possible.
One major difference is that Moneris is unable to send test transactions onto the production author-
ization network. Therefore, issuer responses are simulated. Additionally, the requirement to emulate
approval, decline and error situations dictates that certain transaction variables initiate various response
and error situations.

The test environment approves and declines transactions based on the penny value of the amount sent.
For example, a transaction made for the amount of $9.00 or $1.00 is approved because of the .00 penny
value.

Transactions in the test environment must not exceed $11.00.

For a list of all current test environment responses for various penny values, please see the Test Envir-
onment Penny Response Table available at https://developer.moneris.com,

Page 388 of 476 November 2018

NOTE: These responses may change without notice. Check the Moneris Developer Portal
(https://developer.moneris.com) regularly to access the latest documentation and down-
loads.

November 2018 Page 389 of 476

18

Moving to Production

o 18.1 Activating a Production Store Account
« 18.2 Configuring a Store for Production

o 18.3 Receipt Requirements

o 1 Getting Help

18.1 Activating a Production Store Account

The steps below outline how to activate your production account so that you can process production
transactions.

W

Obtain your activation letter/fax from Moneris.

Go to [[[Undefined variable URLs.ActivationCanadal]].

Input your store ID and merchant ID from the letter/fax and click Activate,

Follow the on-screen instructions to create an administrator account. This account will grant you
access to the Merchant Resource Center.

Log into the Merchant Resource Center at https://www3.moneris.com/mpg using the user cre-
dentials created in step 18.1,

Proceed to ADMIN and then STORE SETTINGS,

Locate the API token at the top of the page. You will use this APl token along with the store ID
that you received in your letter/fax and to send any production transactions through the API.

When your production store is activated, you need to configure your store so that it points to the pro-
duction host. To learn how do to this, see Configuring a Store for Production (page 391)

NOTE: For more information about how to use the Merchant Resource Center, see the Mon-
eris Gateway Merchant Resource Center User's Guide, which is available at
https://developer.moneris.com.

18.2 Configuring a Store for Production

After you have completed your testing and have activated your production store, you are ready to point
your store to the production host.

To configure a store for production:

1.
2.

w

Change the test mode set method from true to false.

Change the Store ID to reflect the production store ID that you received when you activated your
production store. To review the steps for activating a production store, see Activating a Pro-
duction Store Account (page 391).

Change the API token to the production token that you received during activation.

If you haven't done so already, change the code to reflect the correct processing country (Canada
for most merchants). For more on this, see

The table below illustrates the steps above using the relevant code (and where X is an alphanumeric char-

acter).

November 2018 Page 391 of 476

Moneris Gateway API - Integration Guide

1 No string changes for this item, only set Set method for production:
method is altered:

mpgReq. SetTestMode (false) ;
mpgReq.SetTestMode (true) ;

2 String: String for Production:

string store id = "storeb"; string store id = "MONXXXXXXXX";

Associated Set Method:

mpgReq.SetStoreld(store id);

3 String: String for Production:

string api_token = "yesguy"; string api token = "XXXX";

Associated Set Method:

mpgReq.SetApiToken (api token);

18.2.1 Configuring an INTERAC® Online Payment Store for Production

Before you can process INTERAC® Online Payment transactions through your web site, you need to com-
plete the certification registration process with Moneris, as described below. The production IDEBIT_
MERCHNUM value is provided by Moneris after you have successfully completed the certification.

Acxsys’ production INTERAC® Online PaymentGateway URL is https://g-
ateway.interaconline.com/merchant_processor.do,

To access the Moneris Moneris Gateway production gateway URL, use the following:

Store ID: Provided by Moneris
API Token: Generated during your store activation process.

Processing country code: CA

The production Merchant Resource Center URL is https://www3.moneris.com/mpg/

18.2.1.1 Completing the Certification Registration - Merchants

To complete the certification registration, fax or email the information below to our Integration Support
helpdesk:

Page 392 of 476 November 2018

18 Moving to Production

Merchant logo to be displayed on the INTERAC® Online Payment Gateway page
¢ In both French and English
o 120 x 30 pixels
e Only PNG format is supported.

Merchant business name
¢ In both English and French
¢ Maximum 30 characters.

List of all referrer URLs. That is, URLs from which the customer may be redirected to the INTERAC®
Online Payment gateway.

List of all URLs that may appear in the IDEBIT_FUNDEDURL field of the https form POST to the
INTERAC® Online Payment Gateway.

List of all URLs that may appear in the IDEBIT_NOTFUNDEDURL field of the https form POST to the
INTERAC® Online Payment Gateway.

18.2.1.2 Third-Party Service/Shopping Cart Provider

In your product documentation, instruct your clients to provide the information below to the Moneris
Gateway Integration Support helpdesk for certification registration:

Merchant logo to be displayed on the INTERAC® Online Payment Gateway page
e In both French and English
e 120 x 30 pixels
e Only PNG format is supported.

Merchant business name
¢ In both English and French
e Maximum 30 characters.

List of all referrer URLs. That is, URLs from which the customer may be redirected to the INTERAC®
Online Payment gateway.

List of all URLs that may appear in the IDEBIT_FUNDEDURL field of the https form POST to the
INTERAC® Online Payment Gateway.

List of all URLs that may appear in the IDEBIT_NOTFUNDEDURL field of the https form POST to the
INTERAC® Online Payment Gateway.

See 5.3.3, page 108 for additional client requirements.

November 2018 Page 393 of 476

Moneris Gateway API - Integration Guide

18.3 Receipt Requirements

Visa and MasterCard expect certain details to be provided to the cardholder and on the receipt when a
transaction is approved.

Receipts must comply with the standards outlined within the Integration Receipts Requirements. For all

the receipt requirements covering all transaction scenarios, visit the Moneris Developer Portal at
https://developer.moneris.com,

Production of the receipt must begin when the appropriate response to the transaction request is
received by the application. The transaction may be any of the following:

o Sale (Purchase)

o Authorization (PreAuth, Pre-Authorization)

o Authorization Completion (Completion, Capture)
o Offline Sale (Force Post)

o Sale Void (Purchase Correction, Void)

o Refund.

The boldface terms listed above are the names for transactions as they are to be displayed on receipts.
Other terms used for the transaction are indicated in brackets.

18.3.1 Certification Requirements

Card-present transaction receipts are required to complete certification.

Card-not-present integration
Certification is optional but highly recommended.

Card-present integration
After you have completed the development and testing, your application must undergo a cer-
tification process where all the applicable transaction types must be demonstrated, and the
corresponding receipts properly generated.

Contact a Client Integration Specialist for the Certification Test checklist that must be com-
pleted and returned for verification. (See "Getting Help" on page 1 for contact details.) Be sure
to include the application version of your product. Any further changes to the product after
certification requires re-certification.

After the certification requirements are met, Moneris will provide you with an official cer-
tification letter.

Page 394 of 476 November 2018

Appendix A Definitions of Request Fields

This appendix deals with values that belong to transaction objects. For information on values that
belong to the (HttpsPostRequest) connection object, see "Processing a Transaction" on page 381,

NOTE:
Alphanumeric fields allow the following characters: a-z A-Z0-9 _-:. @ spaces
All other request fields allow the following characters: a-zA-Z09 _-:. @ $=/

Note that the values listed in Appendix A are not mandatory for every transaction. Check the transaction
definition. If it says that a value is mandatory, a further description is found here.

Table 107: Request fields

General transaction values

Order ID String 50-character string order_id;
alphanumeric

Merchant-defined transaction identifier that must be unique for every Purchase,
PreAuth and Independent Refund transaction. No two transactions of these types
may have the same order ID.

For Refund, Completion and Purchase Correction transactions, the order ID must
be the same as that of the original transaction.

The last 10 characters of the order ID are displayed in the “Invoice Number” field
on the Merchant Direct Reports. However only letters, numbers and spaces are
sent to Merchant Direct.

A minimum of 3 and a maximum of 10 valid characters are sent to Merchant
Direct. Only the last characters beginning after any invalid characters are sent. For
example, if the order ID is 1234-567890, only 567890 is sent to Merchant Direct.

If the order ID has fewer than 3 characters, it may display a blank or 0000000000 in
the Invoice Number field.

November 2018 Page 395 of 476

Moneris Gateway API - Integration Guide

Table 107: Request fields (continued)

Amount String 9-character decimal string amount;

Transaction amount. Used in a number of transactions. Note that this is different
from the amount used in a Completion transaction, which is an alphanumeric
value.

This must contain at least 3 digits, two of which are penny values.

The minimum allowable value is $0.01, and the maximum allowable value is 999
999.99. Transaction amounts of $0.00 are not allowed.

Credit card number | String 20-character numeric |string pan;
(no spaces or dashes)

Most credit card numbers today are 16 digits, but some 13-digit numbers are still
accepted by some issuers. This field has been intentionally expanded to 20 digits
in consideration for future expansion and potential support of private label card
ranges.

Expiry date String 4-character numeric |string expiry date;

(YYMM format)

Note: This is the reverse of the date displayed on the physical card, which is
MMYY.

Page 396 of 476 November 2018

Appendix A Definitions of Request Fields

Table 107: Request fields (continued)

E-Commerce
indicator

String 1-character alpha- string crypt;
numeric

: Mail Order / Telephone Order—Single

: Mail Order / Telephone Order—Recurring

: Mail Order / Telephone Order—Instalment

: Mail Order / Telephone Order—Unknown classification

: Authenticated e-commerce transaction (VbV/MCSC/SafeKey)

: Non-authenticated e-commerce transaction (VbV/MCSC/SafeKey)
: SSL-enabled merchant

: Non-secure transaction (web- or email-based)

O 00 N O Uu B W N B

: SET non-authenticated transaction

NOTE:

When processing a Cavv Purchase or Pre-Authorization for Apple
Pay or Android Pay transactions whereby the merchant is using
their own API to decrypt the payload, this field is mandatory.

For Apple Pay or Android Pay, send the value returned in the
ecilndicator or 3dsEcilndicator respectively. If the value is not
present, please send the value as 5. If you get a 2-character value
(e.g.,. 05 or 07) from the payload, remove the initial 0 and just
send us the 2nd character.

Supported values for Apple Pay and Android Pay are:
5: Authenticated e-commerce transaction

7: SSL-enabled merchant

Completion
Amount

String 9-character decimal string comp_amount;

Amount of a Completion transaction. This may not be equal to the amount value
(described on page 395), which appeared in the original Pre-Authorization
transaction.

November 2018

Page 397 of 476

Moneris Gateway API - Integration Guide

Table 107: Request fields (continued)

Shipping Indicator? | String 1-character alpha- string ship_indicator;
numeric

Used to identify completion transactions that require multiple shipments, also
referred to as multiple completions. By default, if the shipping indicator is not
passed, all completions are listed as final completions. To indicate that the
completion is to be left open by the issuer as supplemental shipments or
completions are pending, a value of P is submitted.

Possible values:

P =Partial

F =Final
Transaction num- | String 255-character string txn number;
ber alphanumeric

Used when performing follow-on transactions. (That is, Completion, Purchase Cor-
rection or Refund.) This must be the value that was returned as the transaction
number in the response of the original transaction.

When performing a Completion, this value must reference the Pre-Authorization.
When performing a Refund or a Purchase Correction, this value must reference
the Completion or the Purchase.

Authorization code | String 8-character alpha- string auth_code;
numeric

Authorization code provided in the transaction response from the issuing bank.
This is required for Force Post transactions.

ECR number String 8-character alpha- string ecr_no;
numeric

Electronic cash register number, also referred to as TID or Terminal ID.

MPI transaction values

1Available to Canadian integrations only.

Page 398 of 476 November 2018

Appendix A Definitions of Request Fields

Table 107: Request fields (continued)

XID String 20-character alpha- string xid;
numeric
Can also be used as your order ID when using Moneris Gateway. Fixed length —
must be exactly 20 characters.
MD (Merchant String 1024-character alpha- | string MD;
Data) numeric
Information to be echoed back in the response.
Merchant URL String Variable length string merchantUrl;
URL to which the MPI response is to be sent.
Accept String Variable length string accept;
MIME types that the browser accepts
User Agent String Variable length string userAgent;
Browser details
PARes String Variable length (Not shown)
Value passed back to the APl during the TXN, and returned to the MPI when an
ACS request is made.
Cardholder String 50-character alpha- string cavv;
Authentication Veri- numeric
IEZ:/I?/;] Value Value provided by the Moneris MPI or by a third-party MPI. It is part of a Verified
by Visa/MasterCard SecureCode/American Express SafeKey transaction.
NOTE: For Apple Pay and Android Pay Cavwv Purchase and Cavv Pre-Authorization transactions,
CAVV field contains the decrypted cryptogram.

Vault transaction values

November 2018

Page 399 of 476

Moneris Gateway API - Integration Guide

Table 107: Request fields (continued)

Data key String 28-character alpha- string data_key;
numeric

Profile identifier that all future financial Vault transactions (that is, they occur after
the profile was registered by a Vault Add Credit Card- ResAddCC, Vault Encrypted
Add Credit Card - EncResAddCC, Vault Tokenize Credit Card - ResTokenizeCC,
Vault Add Temporary Token - ResTempAdd or Vault Add Token - ResAddToken
transaction) will use to associate with the saved information.
The data key is generated by Moneris, and is returned to the merchant (via the
Receipt object) when the profile is first registered.

Duration String 3-character numeric |string duration;

Amount of time the temporary token should be available, up to 900 seconds.

Data key format?!

String 2-character alpha- string data_key format;
numeric

This field will specify the data key format being returned. If left blank, Data Key
format will default to 25-character alphanumeric.

Valid values:

no value sent or 0 = 25-character alpha-numeric Data Key

By using the following values, a unique token is generated specifically for the PAN
that is presented for tokenization. Any subsequent tokenization requests for the
same PAN will result in the same token

0U = 25-character alpha-numeric Data Key, Unique

Mag Swipe transaction values

1Available to Canadian integrations only.

Page 400 of 476

November 2018

Appendix A Definitions of Request Fields

Table 107: Request fields (continued)

POS code

String 20-character numeric |string pos_code;

Under normal presentment situations, the value is 00.

If a Pre-Authorization transaction was card-present and keyed-in, then the
POS code for the corresponding Completion transaction is 71.

In an unmanned kiosk environment where the card is present, the value is 27.

If the solution is not “merchant and cardholder present”, contact Moneris for the
proper POS code.

Track2 data

String 40-character string track2;
alphanumeric

Retrieved from the mag stripe of a credit card by swiping it through a card reader,
or the "fund guarantee" value returned by the INTERAC® Online Payment system.

Encrypted track2
data

String Variable length string enc_track2;

String that is retrieved by swiping or keying in a credit card number through a
Moneris-provided encrypted mag swipe card reader. It is part of an encrypted
keyed or swiped transaction only. This string must be retrieved by a specific
device. (See below for the list of current available devices.)

Device type

String 30-character alpha- string device_type;
numeric

Type of encrypted mag swipe reader that was read the credit card. This must be a
Moneris-provided device so that the values are properly encrypted and
decrypted.

This field is case-sensitive. Available values are:

"idtech_bdk"

November 2018

Page 401 of 476

Moneris Gateway API - Integration Guide

Note that the values listed in Appendix A are not supported by every transaction. Check the transaction
definition. If it says that a value is optional, a further description is found here.

Table 108: Optional transaction values

General transaction values

Customer ID String 30-character alphanumeric string cust_id;

This can be used for policy number, membership number, student ID, invoice num-
ber and so on.

This field is searchable from the Moneris Merchant Resource Center.

Status Check String true/false string status_check;

See.
Dynamic String 20-character alphanumeric string dynamic_descriptor;
descriptor

Combined with merchant's busi-
ness name cannot exceed 25 char-
acters.

Merchant-defined description sent on a per-transaction basis that will appear on the
credit card statement appended to the merchant’s business name.

Page 402 of 476 November 2018

Appendix A Definitions of Request Fields

Table 108: Optional transaction values (continued)

Wallet
indicatorl

Phone number

String

3-character alphanumeric

string wallet indicator;

Optional value to indicate when the credit card details were collected from a wallet
such as Apple Pay, Android Pay, Visa Checkout, MasterCard MasterPass.

This field is applicable to Apple Pay and Android Pay transactions whereby the mer-
chant is using their own API to decrypt the payload. This is a mandatory field for
these types of Apple Pay and Android Pay transactions.

o Apple Pay and Android Pay wallet indicator is applicable to Cavv Purchase —
Apple Pay and Cavv Pre-Authorization — Apple Pay
o Visa Checkout and MasterCard MasterPass wallet indicator is applicable to

basic Purchase and Pre-Authorization

Possible values are:

APP = Apple Pay In-App

APW = Apple Pay on the Web
ANP = Android Pay In-App

VCO = Visa Checkout

MMP = MasterCard MasterPass

NOTE: Please note that if this field is included to indicate Apple Pay or Android Pay, then Con-

venience Fee is not supported.

String

Vault transaction values

30-character alphanumeric

string phone;

Phone number of the customer. Can be sent in

file.

when creating or updating a Vault pro-

Email address

String

30-character alphanumeric

string email;

Email address of the customer. Can be sent in when creating or updating a Vault pro-

file.

Additional
notes

String

30-character alphanumeric

string note;

This optional field can be used for supplementary information to be sent in with the
transaction. This field can be sent in when creating or updating a Vault profile.

For information about Customer Information request fields see 14 Customer Information

1Available to Canadian integrations only.

November 2018

Page 403 of 476

Moneris Gateway API - Integration Guide

For information about Address Verification Service (AVS) request fields see 9.1 Address Verification Ser-
vice

For information about Card Validation Digits (CVD) request fields see
For information about Recurring Billing request fields see Appendix A Recurring Billing,
For information about Convenience Fee request fields see Appendix A Convenience Fee,

For information about Level 2/3 Visa, Level 2/3 MasterCard and Level 2/3 American Express, see A.3 Defin-
ition of Request Fields for Level 2/3 - Visa, A.5 Definition of Request Fields for Level 2/3 - Amex

Page 404 of 476 November 2018

Appendix A Definitions of Request Fields

A.1 Definitions of Request Fields — Credential on File

Issuer ID String 15-character alpha- Unique identifier for the cardholder's
numeric stored credentials

NOTE: This variable is . .
respizadl e ell e Variable length Sent back in the responsg from the
dramifiaied i card brand when processing a Cre-
actions following the dential on File transaction
first one; upon sending
the first transaction, If the cardholder's credentials are
the Issuer ID value is being stored for the first time, you
received in the trans-

) must save the Issuer ID on your sys-
action response and .)
e s fin Sulbs tem to use in subsequent Credential
sequent transaction on File transactions (applies to mer-
requests. chant-initiated transactions only)

Payment Indicator String 1-character alphabetic Indicates the intended or current use
of the credentials
Possible values for first transactions:
C - unscheduled credential on file (first trans-
action only)
R - recurring
Possible values for subsequent trans-
actions:
R - recurring
U - unscheduled merchant-initiated trans-
action
Z - unscheduled cardholder-initiated trans-
action

Payment Information String 1-character numeric Describes whether the transaction is

the first or subsequent in the series

Possible values are:

0 - first transaction in a series (storing pay-
ment details provided by the cardholder)

2 - subsequent transactions (using previously
stored payment details)

November 2018

Page 405 of 476

Moneris Gateway API - Integration Guide

A.2 Definition of Request Fields — Recurring

Recurring Billing Info Object Request Fields

Number of Recurs

num_ recurs

String

numeric, 1-99

The number of times that the
transaction must recur

Period

period

String

numeric, 1-999

Number of recur units that
must pass between recurring
billings

Start Date

start date

String

YYYY/MM/DD

Date of the first future recurring
billing transaction

This value must be a date in the
future

If an additional charge is to be
made immediately, the value of
Start Now must be set to true

Start Now

start now

String

true/false

If a single charge is to be made
against the card immediately,
set this value to true; the
amount to be billed imme-
diately may differ from the
amount billed on a regular
basis thereafter

If the billing is to start in the
future, set this value to false

When set to false, use Card Veri-
fication prior to sending the
Purchase with Recur and Cre-
dential on File objects

Recurring Amount

recur_amount

String

9-character decimal; Up to 6
digits (dollars) + decimal point
+ 2 digits (cents) after the
decimal point

Amount of the recurring trans-
action

This is the amount that will be
billed on the Start Date and
then billed repeatedly based on
the interval defined by Period
and Recur Unit

Page 406 of 476

November 2018

Appendix A Definitions of Request Fields

EXAMPLE:
123456.78

Recur Unit

recur unit

String

day, week, month or eom

the interval

quency

day
week

month

Unit to be used as a basis for

Works in conjunction with
Period to define the billing fre-

Possible values are:

eom (end of month)

A.3 Definition of Request Fields for Level 2/3 - Visa

Table 1 Visa - Corporate Card Common Data - Level 2 Request Fields

Y National Tax

12-character decimal

TRANSACTIONNAME
.SetNationalTax
(national tax);

Must reflect the
amount of
National Tax
(GST or HST)
appearing on
the invoice.

Minimum -0.01
Maximum -
999999.99.
Must have 2
decimal places.

Y Merchant
VAT Registration/Single

20-character alpha-
numeric

TRANSACTIONNAME
.SetMerchantVatNo

Merchant’s Tax
Registration

Business Reference (merchant_vat _no)i | Nymber
Number
must be
provided if tax is
included on the
invoice
November 2018 Page 407 of 476

Moneris Gateway API - Integration Guide

NOTE: Must
not be all

spaces or all
zeroes

C Local Tax 12-character decimal | TRANSACTIONNAME Must reflect the
-SetLocalTax amount of Local
(local tax); Tax (PST or QST)
appearing on
the invoice
If Local Tax

included then
must not be all
spaces or all zer-
oes; Must be
provided if Local
Tax (PST or QST)
applies

Minimum =0.01

Maximum =
999999.99

Must have 2
decimal places

C Local Tax (PST or QST) 15-character alpha- TRANSACTIONNAME Merchant's
Registration Number numeric -SetLocalTaxNo Local Tax
(local tax no); (PST/QST) Regis-

tration Number

Must be
provided if tax is
included on the
invoice; If Local
Tax included
then must not
be all spaces or
all zeroes

Must be
provided if Local
Tax (PST or QST)
applies

Page 408 of 476 November 2018

Appendix A Definitions of Request Fields

Customer
VAT Registration Num-
ber

13-character alpha-
numeric

TRANSACTIONNAME
.SetCustomerVatNo
(customer vat no);

If the Cus-
tomer’s Tax
Registration
Number
appears on the
invoice to sup-
port tax exempt
transactions it
must be
provided here

Customer Code/Cus-
tomer Reference Iden-
tifier (CRI)

16-character alpha-
numeric

TRANSACTIONNAME
.SetCri(cri);

Value which the
customer may
choose to
provide to the
supplier at the
point of sale —
must be
provided if
given by the cus-
tomer

Customer Code

17-character alpha-
numeric

TRANSACTIONNAME
.SetCustomerCode
(customer code);

Optional cus-
tomer code field
that will not be
passed along to
Visa, but will be
included on
Moneris report-

ing

Invoice Number

17-character alpha-
numeric

TRANSACTIONNAME
.SetInvoiceNumber
(invoice number) ;

Optional invoice
number field
that will not be
passed along to
Visa, but will be
included on
Moneris report-

ing

*Y = Required, N = Optional, C = Conditional

Table 2 Visa - Corporate Card Common Data- Level 2 Request Fields (VSPurcha)

Buyer Name buyer_name 30-character alpha- Buyer/Receipient
numeric Name
November 2018 Page 409 of 476

Moneris Gateway API - Integration Guide

*only required by
CRA if transaction is
>$150

C*

Local tax rate

local_tax rate

4-character decimal

Indicates the
detailed tax rate
applied in rela-
tionship to a local
taxamount

EXAMPLE: 8% PST
should be 8.0.

maximum 99.99

*Must be provided
if Local Tax (PST or
QST) applies.

Duty Amount

duty_amount

9-character decimal

Duty on total pur-
chase amount

A minus sign
means 'amount is a
credit', plus sign or
no sign means
'amount is a debit’

maximum without
sign is 999999.99

Invoice Discount
Treatment

discount_treatment

1-character numeric

Indicates how the
merchant is man-
aging discounts

Must be one of the
following values:

0 - if no invoice level
discounts apply for this
invoice

1-if Tax was cal-
culated on Post-Dis-
count totals

2 - if Tax was cal-
culated on Pre-Discount
totals

Page 410 of 476

November 2018

Appendix A Definitions of Request Fields

Invoice Level Dis-
count Amount

discount_amt

9-character decimal

Amount of dis-
count (if provided
at theinvoice level
according to the
Invoice Discount
Treatment)

Must be non-zero if
Invoice Discount
Treatmentis 1 or 2

Minimum amount
is 0.00 and max-
imum is 999999.99

C*

Ship To Postal
Code/ Zip Code

ship_to_pos_code

10-character alpha-
numeric

The postal code or
zip code for the des-
tination where
goods will be
delivered

*Required if ship-
ment is involved

Full alpha postal
code - Valid
ANA<space>NAN
format required if
shipping to an
address within
Canada

Ship From Postal
Code/ Zip Code

ship_from_pos_code

10-character alpha-
numeric

The postal code or
zip code from
which items were
shipped

For Canadian
addresses,requires
full alpha postal
code for the mer-
chant with Valid
ANA<space>NAN
format

C*

Destination Coun-
try Code

des_cou_code

2-character alphanumeric

Code of country
where purchased
goods will be

November 2018

Page 411 of 476

Moneris Gateway API - Integration Guide

delivered

Use ISO 3166-1
alpha-2 format

NOTE: Required if
it appears on the
invoice for an inter-
national trans-
action

Y Unique VAT
Invoice Refer-
ence Number

vat_ref_num

25-character alpha-
numeric

Unique Value
Added Tax Invoice
Reference Number

Must be populated
with the invoice
number and this
cannot be all
spaces or zeroes

Y Tax Treatment

tax_treatment

1-character numeric

Must be one of the
following values:

0 = Net Prices with tax
calculated at line item
level;

1 = Net Prices with tax
calculated at invoice
level;

2 = Gross prices given
with tax information
provided at line item
level;

3 = Gross prices given
with tax information
provided at invoice
level;

4 = No tax applies
(small merchant) on

the invoice for the trans-
action

N Freight/Shipping
Amount (Ship
Amount)

freight_amount

9-character decimal

Freight charges on
total purchase

If shipping is not
provided as a line

Page 412 of 476

November 2018

Appendix A Definitions of Request Fields

item it must be
provided here, if
applicable

Signed monetary
amount: minus
sign means
'amount is a credit’,
plus sign or no sign
means 'amount is a
debit', maximum
without sign is
999999.99

C GST HST Freight
Rate

gst_hst_freight_rate

4-character decimal

Rate of GST
(excludes PST) or
HST charged on the
shipping amount
(in accordance with
the Tax Treatment)

If Freight/Shipping
Amount is
provided then this
(National GST or
HST) tax rate must
be provided.

Monetary amount,
maximum is 99.99.
Such as 13% HST is
13.00

C GST HST Freight
Amount

gst_hst_freight_
amount

9-character decimal

Amount of GST
(excludes PST) or
HST charged on the
shipping amount

If Freight/Shipping
Amount is
provided then this
(National GST or
HST) tax amount
must be provided if
taxTreatmentis O
or2

Signed monetary

November 2018

Page 413 of 476

Moneris Gateway API - Integration Guide

amount: maximum
without sign is
999999.99.

Table 3 Visa - Line Item Details - Level 3 Request Fields (VSPurchl)

C | Item Commodity
Code

item_com_code

12-character alpha-
numeric

Line item Com-
modity Code (if this
field is not sent,
then productCode
must be sent)

Y Product Code

product_code

12-character alpha-
numeric

Product code for
this line item —mer-
chant’s product
code, man-
ufacturer’s product
code or buyer’s
product code

Typically this will be
the SKU or iden-
tifier by which the
merchant tracks
and prices the item
or service

This should always
be provided for
every line item

Y Item Description

item_description

35-character alpha-
numeric

Line item descrip-
tion

Y I[tem Quantity

item_quantity

12-character decimal

Quantity invoiced
for this line item

Up to 4 decimal
places supported,
whole numbers are
accepted

Minimum = 0.0001

Page 414 of 476

November 2018

Appendix A Definitions of Request Fields

Maximum =
999999999999

Y Item Unit of item_uom 2-character alphanumeric | Unit of Measure

Measure
Use ANSI X-12 EDI

Allowable Units of
Measure and
Codes

Y Item Unit Cost unit_cost 12-character decimal Line item cost per
unit

2-4 decimal places
accepted

Minimum =0.0001

Maximum =
999999.9999

N | VAT Tax Amount vat_tax_amt 12-character decimal Any value-added
tax or other sales
taxamount

Must have 2
decimal places

Minimum =0.01

Maximum =
999999.99

N | VAT Tax Rate vat_tax_rate 4-character decimal Sales tax rate

EXAMPLE: 8% PST
should be 8.0

maximum 99.99

Y Discount Treat- discount_treatmentL 1-character numeric Must be one of the
ment following values:

0 if no invoice level dis-
counts apply for this
invoice

1if Tax was calculated
on Post-Discount totals

November 2018 Page 415 of 476

Moneris Gateway API - Integration Guide

2 if Tax was calculated
on Pre-Discount totals.

C Discount Amount

discount_amtL

12-character decimal Amount of dis-
count, if provided
for this line item
according to the
Line Item Discount
Treatment

Must be non-zero if
Line Item Discount
Treatmentis 1 or 2

Must have 2
decimal places

Minimum =0.01

Maximum =
999999.99

A.4 Definition of Request Fields for Level 2/3 - MasterCard

Table 1 Objects - Level 2/3 MasterCard

MCCorpac

Corporate Card Common data

MCCorpal

Line Item Details

Table 2 MasterCard - Corporate Card Common Data (MCCorpac) - Level 2 Request Fields

N | AustinTetraNumber Austin- 15-character | Merchant’s Austin-Tetra Num-
Tetra Num- | alpha- ber
ber numeric
N NaicsCode NAICS Code | 15-character | North American Industry Clas-
alpha- sification System (NAICS) code
numeric assigned to the merchant
N CustomerCode Customer 25-character | Acontrol number, such as pur-
Code alpha- chase order number, project
Page 416 of 476 November 2018

Appendix A Definitions of Request Fields

numeric

number, department alloc-
ation number or name that
the purchaser supplied the
merchant. Left-justified; may
be spaces

N UniquelnvoiceNumber Unique 17-character Unique number associated
Invoice alpha- with the individual transaction
Number numeric provided by the merchant
N | CommodityCode Com- 15-character | Code assigned by the mer-
modity alpha- chant that best categorizes
Code numeric the item(s) being purchased
N | OrderDate Order Date | 6-character The date the item was
numeric ordered. If present, must con-
tain a valid date in the format
YYMMDD.
N CorporationVatNumber Cor- 20-character | Contains a corporation’s value
poration alpha- added tax (VAT) number
VAT Num- numeric
ber
N CustomerVatNumber Customer 20-character | Contains the VAT number for
VAT Num- alpha- the customer/cardholder
ber numeric used to identify the customer
when purchasing goods and
services from the merchant
N FreightAmount Freight 12-character | The freight on the total pur-
Amount decimal chase. Must have 2 decimals
N DutyAmount Duty 12-character | The duty on the total pur-
Amount decimal chase, Must have 2 decimals
N DestinationProvinceCode Destination | 3-character State or Province of the coun-
State/ alpha- try where the goods will be
Province numeric delivered. Left justified with
Code trailing spaces. e.g., ONT -
Ontario
N DestinationCountryCode Destination | 3-character The country code where
Country alpha- goods will be delivered. Left
Code numeric justified with trailing spaces.

e.g., CAN -Canada

November 2018

Page 417 of 476

Moneris Gateway API - Integration Guide

ShipFromPosCode Ship From 10-character | The postal code or zip code
Postal alpha- from which items were
Code numeric shipped

ShipToPosCode Destination | 10-character | The postal code or zip code
Postal alpha- where goods will be delivered
Code numeric

AuthorizedContactName Authorized | 36-character | Name of an individual or com-
Contact alpha- pany contacted for company
Name numeric authorized purchases

AuthorizedContactPhone Authorized 17-character Phone number of an indi-
Contact alpha- vidual or company contacted
Phone numeric for company authorized pur-

chases

AdditionalCardAcceptordata Additional 40-character Information pertaining to the
Card alpha- card acceptor
Acceptor numeric
Data

CardAcceptorType Card 8-character Various classifications of busi-
Acceptor alpha- ness ownership characteristics
Type numeric

This field takes 8 characters.
Each character represents a
different component, as fol-
lows:

1st character represents ‘Busi-
ness Type’ and contains a
code to identify the specific
classification or type of busi-
ness:

1. Corporation
2. Not known
3. Individual/Sole Pro-

prietorship

4. Partnership

5. Asso-
ciation/Estate/Trust

6. Tax Exempt Organ-
izations (501C)

7. International Organ-
ization

Page 418 of 476 November 2018

Appendix A Definitions of Request Fields

8. Limited Liability Com-
pany (LLC)
9. Government Agency

2nd character represents 'Busi-
ness Owner Type'. Contains a
code to identify specific char-
acteristics about the business
owner.

1 - No application clas-
sification

2 - Female business
owner

3 - Physically han-
dicapped female busi-
ness owner

4 - Physically han-
dicapped male business
owner

0-Unknown

3rd character represents 'Busi-
ness Certification Type'. Con-
tains a code to identify specific
characteristics about the busi-
ness certification type, such as
small business, dis-
advantaged, or other cer-
tification type:

1 - Not certified

2 -Small Business
Administration (SBA)
certification small busi-
ness

3 - SBA certification as
small disadvantaged
business

4 - Other government
or agency-recognized
certification (such as
Minority Supplier Devel-
opment Council)

November 2018 Page 419 of 476

Moneris Gateway API - Integration Guide

5 - Self-certified small
business

6 - SBA certification as
smalland other gov-
ernment or agency-
recognized certification
7 - SBA certification as
small disadvantaged
business and other gov-
ernment or agency-
recognized certification
8 - Other government
or agency-recognized
certification and self-cer-
tified small business

A - SBA certification as 8
(a)

B - Self-certified small
disadvantaged busi-
ness (SDB)

C - SBA certification as
HUBZone

0-Unknown

4th character represents 'Busi-
ness Racial/Ethnic Type'. Con-
tains a code identifying the
racial or ethnic type of the
majority owner of the busi-
ness.

1 - African American

2 - Asian Pacific Amer-
ican

3-Subcontinent Asian
American

4 - Hispanic American
5 - Native American
Indian

6 - Native Hawaiian

7 - Native Alaskan

8 - Caucasian
9-Other

Page 420 of 476 November 2018

Appendix A Definitions of Request Fields

0-Unknown

5th character represents 'Busi-
ness Type Provided Code'

Y - Business type is
provided.

N - Business type was
not provided.

R - Card acceptor
refused to provide busi-
ness type

6th character represents 'Busi-
ness Owner Type Provided
Code'

Y - Business owner type
is provided.

N - Business owner type
was not provided.

R - Card acceptor
refused to provide busi-
ness type

7th character represents 'Busi-
ness Certification Type
Provided Code'

Y - Business certification
typeis provided.

N - Business cer-
tification type was not
provided.

R - Card acceptor
refused to provide busi-
ness type

8th character represents 'Busi-
ness Racial/Ethnic Type’

Y - Business racial/eth-
nic type is provided.

N - Business racial/eth-
nic type was not

November 2018 Page 421 of 476

Moneris Gateway API - Integration Guide

provided.

R - Card acceptor
refused to provide busi-
ness racial/ethnic type

N | CardAcceptorTaxid Card 20-character | US Federal tax ID number for
Acceptor alpha- value added tax (VAT) ID.
Tax ID numeric

N | CardAc- Card 25-character | Code that facilitates card

ceptorReferenceNumber Acceptor alpha- acceptor/corporation com-

Reference numeric munication and record keep-
Number ing

N CardAcceptorVatNumber Card 20-character | Value added tax (VAT) number
Acceptor alpha- for the card acceptor location
VAT Num- numeric used to identify the card
ber acceptor when collecting and

reporting taxes

C- | Tax Tax upto6 Can have up to 6 arrays con-

* arrays tains different tax details. See
Tax Array below for each field
description.

*This field is conditionally man-
datory — if you use this array,
you must fillin all tax array
fields as listed in the Tax Array
Request Fields below.

Table 3 MasterCard - Line Item Details (MCCorpal) - Level 3 Request Fields

N CustomerCode Customer Code 25-character alpha- A control number,
numeric such as purchase
order number, pro-
ject number,
department alloc-
ation number or
name that the pur-

Page 422 of 476 November 2018

Appendix A Definitions of Request Fields

chaser supplied the
merchant. Left-jus-
tified; may be
spaces

N LineltemDate

Line Item Date

6-character numeric

The purchase date
of the line item ref-
erenced in the asso-
ciated Corporate
Card Line Item
Detail.

YYMMDD format

N ShipDate

Ship Date

6-character numeric

The date the mer-
chandise was
shipped to the des-
tination.

YYMMDD format

N OrderDate

Order Date

6-character numeric

The date the item
was ordered

YYMMDD format

Y ProductCode

Product Code

12-character alpha-
numeric

Line item Product
Code (if this field is
not sent, then
itemComCode)

If the order has a
Freight/Shipping
line item, the pro-
ductCode value
has to be
“Freight/Shipping”

If the order has a
Discount line item,
the productCode
value has to be
“Discount”

Y ItemDescription

I[tem Description

35-character alpha-
numeric

Line Item descrip-
tion

Y ItemQuantity

Item Quantity

12-character alpha-

Quantity of line

November 2018

Page 423 of 476

Moneris Gateway API - Integration Guide

numeric

item

Y UnitCost

Unit Cost

12-character decimal

Line item cost per
unit.

Must contain a
minimum of 2
decimal places, up
to 5 decimal places
supported.

Minimum amount
is 0.00001 and max-
imum is
999999.99999

Y ItemUnitMeasure

Item Unit Measure

12-character alpha-
numeric

The line item unit
of measurement
code

Y ExtltemAmount

Extended Item
Amount

9-character decimal

Contains the indi-
vidual item
amount that is nor-
mally calculated as
price multiplied by
quantity

Must contain 2
decimal places

Minimum amount
is 0.00 and max-
imum is 999999.99

N DiscountAmount

Discount Amount

9-character decimal

Contains the item
discount amount

Must contain 2
decimal places

Minimum amount
is 0.00 and max-
imum is 999999.99

N CommodityCode

Commodity Code

15-character alpha-
numeric

Code assigned to
the merchant that
best categorizes
the item(s) being
purchased

Page 424 of 476

November 2018

Appendix A Definitions of Request Fields

C* | Tax Tax Up to 6 arrays Can haveupto6
arrays contains dif-
ferent tax details.
See Tax Array
below for each field
description.

*This field is con-
ditionally man-
datory — if you use
this array, you
must fill in all tax
array fields as listed
in the Tax Array
Request Fields
below.

Table 4 Tax Array Request Fields - MasterCard Level 2/3 Transactions

M | tax_amount Tax Amount 12-character decimal Contains detail tax
amount for pur-
chase of goods or
service

Must be 2 decimal
places

Maximum
999999.99

M | tax_rate Tax Rate 5-character decimal Contains the
detailed tax rate
applied in rela-
tionship to a spe-
cific taxamount

EXAMPLE: 5% GST
should be ‘5.0" or
or 9.975% QST
should be ‘9.975’

May contain up to
3 decimals, min-
imum 0.001, max-

November 2018 Page 425 of 476

Moneris Gateway API - Integration Guide

imum up to 9999.9

numeric

M | tax_type Tax Type 4-character alphanumeric | Contains tax type
such as
GST,QST,PST,HST

M | tax_id Tax ID 20-character alpha- Provides an iden-

tification number
used by the card
acceptor with the
tax authority in rela-
tionship to a spe-
cific tax amount
such as GST/HST
number

M | tax_included_in_
sales

Tax included in sales
indicator

1-character alphanumeric

This is the indicator
used to reflect addi-
tional tax capture
and reporting.

Valid values are:

Y = Tax included in total
purchase amount

N = Tax not included in
total purchase amount

A.5 Definition of Request Fields for Level 2/3 - Amex

Table 1 Amex- Level 2/3 Request Fields - Table 1 - Heading Fields

C big04

Purchase Order Num-
ber

22-character alpha-
numeric

The cardholder sup-
plied Purchase Order
Number, which is
entered by the mer-
chant at the point-of-
sale

This entry is used in
the State-
ment/Reporting pro-
cess and may include

Page 426 of 476

November 2018

Appendix A Definitions of Request Fields

accounting inform-
ation specific to the
client

Mandatory if the mer-
chant's customer
provides a Purchase
Order Number

N | big05

Release Number

30-character alpha-
numeric

Anumber that iden-
tifies a release
against a Purchase
Order previously
placed by the parties
involved in the trans-
action

N | bigl0

Invoice Number

8-character alpha-
numeric

Contains the Amex
invoice/reference
number

Y n101

Entity Identifier Code

2-character alpha-
numeric

Supported values:

‘R6’ - Requester
(required)

‘BG’ - Buying Group
(optional)

‘SF’ - Ship From
(optional)

‘ST’ - Ship To (optional)

‘40’ - Receiver (optional)

Y n102

Name

40-character alpha-
numeric

n101 n102
code meaning

R6 Requester
Name

BG Buying Group
Name

SF Ship
From Name

ST Ship To Name

40 Receiver Name

November 2018

Page 427 of 476

Moneris Gateway API - Integration Guide

N | n301 Address 40-character alpha- Address
numeric
N | n401 City 30-character alpha- City
numeric
N | n402 State or Province 2-character alpha- State or Province
numeric
N | n403 Postal Code 15-character alpha- Postal Code
numeric
Y ref01 Reference Iden- 2-character alpha- This element may
tification Qualifier numeric contain the following
qualifiers for the cor-
responding occur-
rences of the
N1lLoop:
n101 refO1
value denotation
R6 Supported val-
ues:
4C -Shipment
Destination
Code (man-
datory)
CR - Customer
Reference
Number (con-
ditional)
BG n/a
SF n/a
ST n/a
40 n/a
Y ref02 Reference lden- 15-character alpha- VR is the Vendor
tification numeric ID Number, other
codes describe the
following:

Page 428 of 476

November 2018

Appendix A Definitions of Request Fields

refO1 ref02
code denotation

4Cc Ship to Zip or
Canadian
PostalCode
(required)

CR Cardmember
Reference
Number
(optional)

Table 2 Amex - Level 2/3 Request Fields - Table 2 - Detail Fields

Y | itl02

Line Item Quantity
Invoiced

10-character decimal

Quantity of line
item.

Up to 2 decimal
places supported.

Minimum amount
is 0.0 and max-
imum is
9999999999.

Y | itl03

Unit or Basis for Meas-
urement Code

2-character alphanumeric

The line item unit of
measurement code

Must contain a
code that specifies
the units in which
the valueis
expressed or the
manner in which a
measurement is
taken

each, E5=inches

EXAMPLE: EA = |

See ANSI X-12 EDI
Allowable Units of
Measure and
Codes for the list of
codes

November 2018

Page 429 of 476

http://ecomgx17.ecomtoday.com/edi/EDI_4010/el639.htm
http://ecomgx17.ecomtoday.com/edi/EDI_4010/el639.htm
http://ecomgx17.ecomtoday.com/edi/EDI_4010/el639.htm
http://ecomgx17.ecomtoday.com/edi/EDI_4010/el639.htm

Moneris Gateway API - Integration Guide

Y it104

Unit Price

15-character decimal

Line item cost per
unit

Must contain 2
decimal places

Minimum amount
is 0.00 and max-
imum is 999999.99

N | it105

Basis or Unit Price
Code

2-character alphanumeric

Code identifying
the type of unit
price for an item

EXAMPLE: DR =
dealer, AP = advise
price

See ASC X12 004010
Element 639 for list
of codes

N | it10618

Product/Service ID
Qualifier

2-character alphanumeric

Supported values:

‘MG’ - Manufacturer’s
Part Number

‘VC' - Supplier Catalog
Number

‘SK’ - Supplier Stock
Keeping Unit Number

‘UP’ - Universal Product
Code

‘VP’ — Vendor Part Num-
ber

‘PO’ — Purchase Order
Number

‘AN’ — Client Defined
Asset Code

N | it10719

Product/Service ID

it10719 -

it10618 size/type

vC 20-character
alphanumeric

PO 22-character
alphanumeric

Product/Service ID
corresponds to the
preceding qualifier
defined in it10618

The maximum
length depends on

Page 430 of 476

November 2018

http://ecomgx17.ecomtoday.com/edi/EDI_4010/el639.htm
http://ecomgx17.ecomtoday.com/edi/EDI_4010/el639.htm

Appendix A Definitions of Request Fields

it10719 - the qualifier
size/type defined in it10618

it10618

Other 30-character
alphanumeric

C | txi01 Tax Type code 2-character alphanumeric | Supported values:

‘CA’ — City Tax
(optional)

‘CT’ — County/Tax
(optional)

‘EV’ — Environmental
Tax (optional)

‘GS’ — Good and Ser-
vices Tax (GST)
(optional)

‘LS’ — State and Local
Sales Tax (optional)

‘LT" — Local Sales Tax
(optional)

‘PG’ — Provincial Sales
Tax (PST) (optional)

‘SP’ — State/Provincial
Tax a.k.a. Quebec Sales
Tax (QST) (optional)

‘ST’ — State Sales Tax
(optional)

‘TX' — All Taxes
(required)

‘VA’ — Value-Added Tax
a.k.a. Canadian Har-
monized Sales Tax
(HST) (optional)

C | txi02 Monetary Amount 6-character decimal This element may
contain the mon-
etary taxamount
that corresponds
to the Tax Type
Code in txi01

NOTE:
If txi02 is used in man-
datory occurrence

November 2018 Page 431 of 476

Moneris Gateway API - Integration Guide

y

txi01=TX, txi02 must
contain the total tax
amount applicable to
the entire invoice
(transaction)

If taxes are not applic-
able for the entire
invoice (transaction),
txi02 must be 0.00.

The maximum
value that can be
entered in this field
is “9999.99”, which
is $9,999.99 (CAD)

Adebit is entered
as: 9999.99

A credit is entered
as: —9999.99

C txio3 Percent 10-character decimal Contains the tax
percentage (in
decimal format)
that corresponds
to the tax type
code defined in
txiol

Up to 2 decimal
places supported

C | txi06 Tax Exempt Code 1-character alphanumeric | This element may
contain the Tax
Exempt Code that
identifies the
exemption status
from sales and tax
that corresponds
to the Tax Type
Code in txi01

Supported values:
1-Yes (Tax Exempt)

2 — No (Not Tax
Exempt)

4 — Not Exempt/For
Resale

Page 432 of 476 November 2018

Appendix A Definitions of Request Fields

A — Labor Taxable,
Material Exempt

B — Material Taxable,
Labor Exempt

C— Not Taxable

F — Exempt (Goods /
Services Tax)

G — Exempt (Provincial
Sales Tax)

L — Exempt Local Ser-
vice

R — Recurring Exempt

U — Usage Exempt

Y pam05

Line Item Extended
Amount

8-character decimal

Contains the indi-
vidual item amount
that is normally cal-
culated as price mul-
tiplied by quantity

Must contain 2
decimal places

Minimum amount
is 0.00 and max-
imum is 99999.99

Y pid05

Line Item Description

80-character alpha-
numeric

Line Item descrip-
tion

Contains the
description of the
individual item pur-
chased

This field pertain to
each line item in
the transaction

November 2018

Page 433 of 476

Moneris Gateway API - Integration Guide

Table 3 Amex - Level 2/3 Request Fields - Table 3 - Summary Fields

C | txio1 Tax Type code 2-character alphanumeric | Supported values:

‘CA’ — City Tax
(optional)

‘CT’ — County/Tax
(optional)

‘EV’ — Environmental
Tax (optional)

‘GS’ — Good and Ser-
vices Tax (GST)
(optional)

‘LS’ — State and Local
Sales Tax (optional)

‘LT" — Local Sales Tax
(optional)

‘PG’ — Provincial Sales
Tax (PST) (optional)

‘SP’ — State/Provincial
Tax a.k.a. Quebec Sales
Tax (QST) (optional)

‘ST’ — State Sales Tax
(optional)

‘TX" — All Taxes
(required)

‘VA’ — Value-Added Tax
a.k.a. Canadian Har-
monized Sales Tax
(HST) (optional)

C | txi02 Monetary Amount 6-character decimal This element may
contain the mon-
etary taxamount
that corresponds
to the Tax Type
Codein txi0l1

NOTE:

If txi02 is used in man-
datory occurrence
txi01=TX, txi02 must
contain the total tax
amount applicable to
the entire invoice
(transaction)

If taxes are not applic- |

Page 434 of 476 November 2018

Appendix A Definitions of Request Fields

able for the entire
invoice (transaction),
txi02 must be 0.00.

The maximum
value that can be
entered in this field
is “9999.99”, which
is $9,999.99 (CAD)

A debit is entered
as: 9999.99

A credit is entered
as: —9999.99

C | txi03 Percent 10-character decimal Contains the tax
percentage (in
decimal format)
that corresponds
to the tax type
code defined in
txiol

Up to 2 decimal
places supported

C | txi06 Tax Exempt Code 1-character alphanumeric | Supported values:
1-Yes (Tax Exempt)

2 — No (Not Tax
Exempt)

4 — Not Exempt/For
Resale

A — Labor Taxable,
Material Exempt

B — Material Taxable,
Labor Exempt

C— Not Taxable

F — Exempt (Goods /
Services Tax)

G — Exempt (Provincial
Sales Tax)

L — Exempt Local Ser-
vice

November 2018 Page 435 of 476

Moneris Gateway API - Integration Guide

R — Recurring Exempt

U — Usage Exempt

A.6 Definition of Request Fields — Offlinx™

Applies to Offlinx™ integration only

Card Match ID

String

50-character alphanumeric

Corresponds to the Transaction

ID used for the Offlinx™ Card
Match Pixel Tag, a unique identifier
created by the merchant

Must be unique value for each trans-
action

Page 436 of 476

November 2018

Appendix B Definitions of Response Fields

Table 109: Receipt object response values

General response fields

Card type String 2-character receipt.GetCardType () ;
alphabetic (min. 1)

Represents the type of card in the transaction, e.g., Visa, Mastercard.

Possible values:

e V=Visa

e M =Mastercard

e« AX =American Express
e DC =Diner's Card

e NO = Novus/Discover

e SE =Sears

e D=Debit

« C1=JCB
Transaction String 9-character receipt.GetTransAmount () ;
amount decimal

Transaction amount that was processed.

Transaction num- [String 255-character receipt.GetTxnNumber () ;
ber alphanumeric

Gateway Transaction identifier often needed for follow-on transactions (such as
Refund and Purchase Correction) to reference the originally processed transaction.

Receipt ID String 50-character receipt.GetReceiptId();
alphanumeric

Order ID that was specified in the transaction request.

Transaction type |String 2-character receipt.GetTransType ();
alphanumeric

e 0=Purchase

e 1=Pre-Authorization
e 2=Completion

o 4=Refund

« 11=Void

November 2018 Page 437 of 476

Moneris Gateway API - Integration Guide

Table 109: Receipt object response values (continued)

Reference number

String 18-character receipt.GetReferenceNum() ;

numeric

Terminal used to process the transaction as well as the shift, batch and sequence
number. This data is typically used to reference transactions on the host systems,
and must be displayed on any receipt presented to the customer.

This information is to be stored by the merchant.
Example: 660123450010690030

e 66012345: Terminal ID

e 001: Shift number

e 069: Batch number
o 003: Transaction number within the batch.

Response code

String 3-character receipt.GetResponseCode () ;

numeric

e <50: Transaction approved
e 2>50: Transaction declined
o Null: Transaction incomplete.

For further details on the response codes that are returned, see the Response
Codes document at https://developer.moneris.com.

ISO String 2-character receipt.GetISO() ;
numeric
ISO response code
Bank totals Object receipt.GetBankTotals () ;
Response data returned in a Batch Close and Open Totals request. See "Definitions
of Response Fields" on the previous page.
Message String 100-character receipt.GetMessage () ;

alphanumeric

Response description returned from issuer.

The message returned from the issuer is intended for merchant information only,
and is not intended for customer receipts.

Page 438 of 476

November 2018

Appendix B Definitions of Response Fields

Table 109: Receipt object response values (continued)

Authorization String 8-character receipt.GetAuthCode () ;
code alphanumeric

Authorization code returned from the issuing institution.

Complete String true/false receipt.GetComplete () ;

Transaction was sent to authorization host and a response was received

Transaction date |String Format: yyyy-mm- | receipt.GetTransDate () ;
dd

Processing host date stamp

Transaction time | String Format: ##:##:## |receipt.GetTransTime ();

Processing host time stamp

Ticket String N/A receipt.GetTicket () ;

Reserved field.

Timed out String true/false receipt.GetTimedOut () ;

Transaction failed due to a process timing out.

Is Visa Debit String true/false receipt.GetIsVisaDebit();

Indicates whether the card processed is a Visa Debit.

Batch Close/Open Totals response fields

Processed card String N/A receipt.GetCreditCards (ecr);
types Array

Returns all of the processed card types in the current batch for the terminal ID/ECR
Number from the request.

Terminal IDs String 8-character alpha- | receipt.GetTerminallIDs () ;
numeric

Returns the terminal ID/ECR Number from the request.

Purchase count | String 4-character receipt.GetPurchaseCount (ecr,
cardType) ;

numeric

Indicates the # of Purchase, Pre-Authorization Completion and Force Post trans-
actions processed. If none were processed in the batch, then the value returned
will be 0000.

November 2018 Page 439 of 476

Moneris Gateway API - Integration Guide

Table 109: Receipt object response values (continued)

Purchase amount

receipt.GetPurchaseAmount (ecr,
cardType) ;

String 11-character alpha-

numeric

Indicates the dollar amount processed for Purchase, Pre-Authorization Completion
or Force Post transactions. This field begins with a + and is followed by 10 numbers,
the first 8 indicate the amount and the last 2 indicate the penny value.

EXAMPLE: +0000000000 = 0.00 and +0000041625 = 416.25

Refund count

receipt.GetRefundCount (ecr,
cardType) ;

4-character
numeric

String

Indicates the # of Refund or Independent Refund transactions processed. If none
were processed in the batch, then the value returned will be 0000.

Refund amount

receipt.GetRefundAmount (ecr,
cardType) ;

11-character alpha-
numeric

String

Indicates the dollar amount processed for Refund, Independent Refund or ACH
Credit transactions. This field begins with a + and is followed by 10 numbers, the
first 8 indicate the amount and the last 2 indicate the penny value.

Example, +0000000000 = 0.00 and +0000041625 = 416.25

Correction count

receipt.GetCorrectionCount (ecr,
cardType) ;

4-character
numeric

String

Indicates the # of Purchase Correction transactions processed. If none were pro-
cessed in the batch, then the value returned will be 0000.

Correction
amount

Recurring billing
success

receipt.GetCorrectionAmount
(ecr,cardType) ;

String 11-character alpha-

numeric

Indicates the dollar amount processed for Purchase Correction transactions. This
field begins with a + and is followed by 10 numbers, the first 8 indicate the amount
and the last 2 indicate the penny value.

EXAMPLE: +0000000000 = 0.00 and +0000041625 = 416.25

Recurring Billing Response Fields (see Appendix A, page 1)

receipt.GetRecurSuccess () ;

String true/false

Indicates whether the recurring billing transaction has been successfully set up for
future billing.

Page 440 of 476

November 2018

Appendix B Definitions of Response Fields

Table 109: Receipt object response values (continued)

Recur update suc-
cess

receipt.GetRecurUpdateSuccess() ;

String true/false

Indicates recur update success.

Next recur date

String yyyy-mm-dd receipt.GetNextRecurDate () ;

Indicates next recur billing date.

Recur end date

Status code

String yyyy-mm-dd receipt.GetRecurEndDate () ;

Indicates final recur billing date.

Status Check response fields (see)

String 3-character alpha- | receipt.GetStatusCode () ;

numeric

e <50: Transaction found and successful
e >50: Transaction not found and not successful

NOTE: the status code is only populated if the connection object's Status Check property is set to
true,

Status message

AVS result code

CVD result code

receipt.GetStatusMessage () ;

String found/not found

e Found: 0<Status Code<49
e Not Found or null: 50 < Status Code < 999.

NOTE: The status message is only populated if the connection object's Status Check property is
set to true,

AVS response fields (see 9.1, page 283)

String 1-character alpha- | receipt.GetAvsResultCode () ;

numeric

Indicates the address verification result. For a full list of possible response codes
refer to Section Appendix B.

CVD response fields (see)

String 2-character alpha- | receipt.GetCvdResultCode () ;

numeric

Indicates the CVD validation result. The first byte is the numeric CVD indicator sent
in the request; the second byte is the response code. Possible response codes are

shown in Appendix B

MPI response fields (see "MPI" on page 1)

November 2018

Page 441 of 476

Moneris Gateway API - Integration Guide

Table 109: Receipt object response values (continued)

Type

String 99-character alpha-

numeric

VERes, PARes or error defines what type of response you are receiving .

Success

receipt.GetMpiSuccess();

Boolean [true/false

True if attempt was successful, false if attempt was unsuccessful.

Message

100-character receipt.GetMpiMessage () ;

alphabetic

String

MPI TXN transactions can produce the following values:

¢ Y: Create VBV verification form popup window.
o N:Send purchase or preauth with crypt type 6
o U:Send purchase or preauth with crypt type 7.

MPI ACS transactions can produce the following values:

e YorA:(Also receipt.getMpiSuccess () =true) Proceed with cavv pur-
chase or cavv preauth.

o N: Authentication failed or high-risk transaction. It is recommended that you
do not to proceed with the transaction.
Depending on a merchant’s risk tolerance and results from other methods
of fraud detection, transaction may proceed with crypt type 7.

o Uortime out: Send purchase or preauth as crypt type 7.

Term URL

255-character
alphanumeric

String

URL to which the PARes is returned

MD

1024-character
alphanumeric

String

Merchant-defined data that was echoed back

ACS URL

255-character
alphanumeric

String

URL that will be for the generated pop-up

Page 442 of 476

November 2018

Appendix B Definitions of Response Fields

Table 109: Receipt object response values (continued)

MPI CAVV

String 28-character alpha-| receipt.GetMpiCavv () ;

numeric

VbV/MCSC/American Express SafeKey authentication data

MPI E-Commerce |String 1-character alpha-
Indicator numeric
CAVV result code | String 1-character alpha- | receipt.GetCavvResultCode () ;

numeric

Indicates the Visa CAVV result. For more information, see 8.6.7 Cavv Result Codes
for Verified by Visa.

o 0=CAVV authentication results invalid

e 1=CAVV failed validation; authentication

e 2=CAVV passed validation; authentication

o 3=CAVV passed validation; attempt

o 4=CAVV failed validation; attempt

o 7=CAVV failed validation; attempt (US issued cards only)

o 8=CAVV passed validation; attempt (US issued cards only)

o The CAVV result code indicates the result of the CAVV validation.

MPI inline form

Data key

receipt.GetInLineForm()) ;

Vault response fields (see 4.1, page 52)

String 28-character alpha-| receipt.GetDataKey () ;

numeric

The data key response field is populated when you send a Vault Add Credit Card —
ResAddCC (page 54), Vault Encrypted Add Credit Card — EncResAddCC (page 58),
Vault Tokenize Credit Card — ResTokenizeCC (page 81), Vault Temporary Token Add
—ResTempAdd (page 61) or Vault Add Token — ResAddToken (page 77) transaction.
It is the profile identifier that all future financial Vault transactions will use to asso-
ciate with the saved information.

Vault payment
type

String cc receipt.GetPaymentType () ;

Indicates the payment type associated with a Vault profile

Expiring card's String cc receipt.GetExpPaymentType () ;

Payment type - - - -
Indicates the payment type associated with a Vault profile. Applicable to Vault Get
Expiring transaction type.

November 2018 Page 443 of 476

Moneris Gateway API - Integration Guide

Table 109: Receipt object response values (continued)

Vault masked PAN

String

20-character
numeric

receipt.GetResMaskedPan () ;

Returns the

first 4 and/or last 4

of the card number saved in the profile.

Expiring card's
Masked PAN

String

20-character
numeric

receipt.GetExpMaskedPan () ;

Returns the first 4 and/or last 4 of the card number saved in the profile. Applicable
to Vault Get Expiring transaction type.

Vault success

String

true/false

receipt.GetResSuccess () ;

Indicates whether Vault transaction was successful.

Vault customer ID

String

30-character alpha-
numeric

receipt.GetResDataCustId()

’

Returns the customer ID saved in the profile.

Expiring card's cus-
tomer D

String

30-character alpha-
numeric

receipt.GetExpCustId() ;

Returns the customer ID saved in the profile. Applicable to Vault Get Expiring trans-

action type.

Vault phone num-
ber

String

30-character alpha-
numeric

receipt.GetResDataPhone () ;

Returns the phone number saved in the profile.

Expiring card's
phone number

String

30-character alpha-
numeric

receipt.GetExpPhone () ;

Returns the phone number saved in the profile. Applicable to Vault Get Expiring

transaction

type.

Vault email
address

String

30-character alpha-
numeric

receipt.GetResDataEmail () ;

Returns the email address saved in the profile.

Page 444 of 476

November 2018

Appendix B Definitions of Response Fields

Table 109: Receipt object response values (continued)

Expiring card's
email address

String 30-character alpha-| receipt.GetExpEmail () ;

numeric

Returns the email address saved in the profile. Applicable to Vault Get Expiring
transaction type.

Vault note

receipt.GetResDataNote () ;

String 30-character alpha-

numeric

Returns the note saved in the profile.

Expiring card's
note

String 30-character alpha-| receipt.GetExpNote () ;

numeric

Returns the note saved in the profile. Applicable to Vault Get Expiring transaction
type.

Vault expiry date

A-character receipt.GetResDataExpdate () ;

numeric

String

Returns the expiry date of the card number saved in the profile. YYMM format.

Expiring card's
expiry date

4-character receipt.GetExpExpdate () ;

numeric

String

Returns the expiry date of the card number saved in the profile. YYMM format.
Applicable to Vault Get Expiring transaction type.

Vault E-commerce
indicator

1-character receipt.GetResDataCryptType () ;

numeric

String

Returns the e-commerce indicator saved in the profile.

Expiring card's E-
commerce indic-
ator

1-character receipt.GetExpCryptType () ;

numeric

String

Returns the e-commerce indicator saved in the profile. Applicable to Vault Get Expir-
ing transaction type.

Vault AVS street
number

receipt.GetResDataAvsStreetNumber () ;

String 19-character alpha-

numeric

Returns the AVS street number saved in the profile. If no other AVS street number
is passed in the transaction request, this value will be submitted along with the fin-
ancial transaction to the issuer.

November 2018

Page 445 of 476

Moneris Gateway API - Integration Guide

Table 109: Receipt object response values (continued)

Expiring card's
AVS street num-
ber

String 19-character alpha-| receipt .GetExpAvsStreetNumber () ;

numeric

Returns the AVS street number saved in the profile. If no other AVS street number
is passed in the transaction request, this value will be submitted along with the fin-
ancial transaction to the issuer. Applicable to Vault Get Expiring transaction type.

Vault AVS street
name

String 19-character alpha- receipt.GetResDataAvsStreetName () ;

numeric

Returns the AVS street name saved in the profile. If no other AVS street number is
passed in the transaction request, this value will be submitted along with the fin-
ancial transaction to the issuer.

Expiring card's
AVS street name

String 19-character alpha- receipt.GetExpAvsStreetName () ;

numeric

Returns the AVS street name saved in the profile. If no other AVS street number is
passed in the transaction request, this value will be submitted along with the fin-
ancial transaction to the issuer. Applicable to Vault Get Expiring transaction type.

Vault AVS ZIP
code

9-character alpha- receipt.GetResDataAvsZipcode () ;

numeric

String

Returns the AVS zip/postal code saved in the profile. If no other AVS street number
is passed in the transaction request, this value will be submitted along with the fin-
ancial transaction to the issuer.

Expiring card's
AVS ZIP code

receipt.GetExpAvsZipcode () ;

String 9-character alpha-

numeric

Returns the AVS zip/postal code saved in the profile. If no other AVS street number
is passed in the transaction request, this value will be submitted along with the fin-
ancial transaction to the issuer. Applicable to Vault Get Expiring transaction type.

Vault credit card
number

20-character receipt.GetResPan() ;

numeric

String

Returns the full credit card number saved in the Vault profile. Applicable to Vault
Lookup Full transaction only.

Corporate card

Masked credit
card number

receipt.GetCorporateCard() ;

String true/false

Indicates whether the card associated with the Vault profile is a corporate card.

Encrypted Mag Swipe response fields (see 6, page 119)

String 20-character alpha-| receipt.GetMaskedPan () ;

numeric

Page 446 of 476

November 2018

Appendix B Definitions of Response Fields

Table 109: Receipt object response values (continued)

Convenience fee
success

Convenience Fee response fields (see Appendix A, page 1)

String true/false receipt.GetCfSuccess () ;

Indicates whether the Convenience Fee transaction processed successfully.

Convenience fee
status

String 2-character alpha- | receipt.GetCfStatus();
numeric

Indicates the status of the merchant and convenience fee transactions. The
CfStatus field provides details about the transaction behavior and should be ref-
erenced when contacting Moneris Customer Support.

Possible values are:

e lor1F —Completed 1st purchase transaction

e 20r 2F—Completed 2nd purchase transaction

e« 3—Completed void transaction

e 4Aor 4D —Completed refund transaction

e 70r7F —Completed merchant independent refund transaction
o 8o0r 8F — Completed merchant refund transaction

e 90r9F —Completed 1st void transaction

e 10o0r 10F — Completed 2nd void transaction

e 11A or 11D — Completed refund transaction

Convenience fee
amount

String 9-character receipt.GetFeeAmount () ;
decimal

The expected Convenience Fee amount. This field will return the amount submitted
by the merchant for a successful transaction. For an unsuccessful transaction, it will
return the expected convenience fee amount

Convenience fee
rate

String 9-character receipt.GetFeeRate () ;
decimal

The convenience fee rate that has been defined on the merchant’s profile. For
example:

1.00 — a fixed amount or

10.0 - a percentage amount

November 2018

Page 447 of 476

Moneris Gateway API - Integration Guide

Table 109: Receipt object response values (continued)

Convenience fee |String AMT/PCT receipt.GetFeeType () ;
type

The type of convenience fee that has been defined on the merchant’s profile.
Available options are:

AMT - fixed amount

PCT — percentage

Table 110: Financial transaction response codes

<50 Transaction approved
>50 Transaction declined
NULL Transaction was not sent for authorization

For more details on the response codes that are returned, see the Response Codes document available
at https://developer.moneris.com

Table 111: Vault Admin Responses
[[code [~ oespton]
001 Successfully registered CC details.
Successfully updated CC details.
Successfully deleted CC details.
Successfully located CC details.
Successfully located # expiring cards.

(NOTE: # = the number of cards located)

983 Cannot find previous

986 Incomplete: timed out
987 Invalid transaction

988 Cannot find expiring cards
Null Error: Malformed XML

Page 448 of 476 November 2018

Appendix B Definitions of Response Fields

November 2018 Page 449 of 476

Appendix C Error Messages

Error messages that are returned if the gateway is unreachable

Global Error Receipt
You are not connecting to our servers. This can be caused by a firewall or your internet con-
nection.

Response Code = NULL
The response code can be returned as null for a variety of reasons. The majority of the time,
the explanation is contained within the Message field.

When a ‘NULL’ response is returned, it can indicate that the issuer, the credit card host, or the
gateway is unavailable. This may be because they are offline or because you are unable to con-
nect to the internet.

A ‘NULL’ can also be returned when a transaction message is improperly formatted.

Error messages that are returned in the Message field of the response

XML Parse Error in Request: <System specific detail>
An improper XML document was sent from the API to the servlet.

XML Parse Error in Response: <System specific detail>
An improper XML document was sent back from the servlet.

Transaction Not Completed Timed Out
Transaction timed out before the host responds to the gateway.

Request was not allowed at this time
The host is disconnected.

Could not establish connection with the gateway: <System specific detail>
Gateway is not accepting transactions or server does not have proper access to internet.

Input/Output Error: <System specific detail>
Servlet is not running.

The transaction was not sent to the host because of a duplicate order id
Tried to use an order id which was already in use.

The transaction was not sent to the host because of a duplicate order id
Expiry Date was sent in the wrong format.

Vault error messages

Can not find previous
Data key provided was not found in our records or profile is no longer active.

Invalid Transaction
Transaction cannot be performed because improper data was sent.

or
Mandatory field is missing or an invalid SEC code was sent.

Malformed XML
Parse error.

Incomplete
Timed out.

or
Cannot find expiring cards.

November 2018 Page 451 of 476

Appendix D Process Flow for Basic Pre-Auth, Re-Auth
and Completion Transactions

Merchant processes
Authorization
transaction.
Amount=5100.00

Fully reverse
transation?

Merchant processes
Completion
transaction for
partial amount (such
as 580.00)

Merchant processes . Merchant processes
_ . Moneris system = X
Completion B Completion
transaction. . = .nt transaction.

Amount = 50.00 SEMETIEET Amount 2 $100.00

Complete
remaining
armount?

Merchant processes
Re-Authorization
transactrion for

remaining amount.

(in this case, 520.00)

Merchant processes
Completion
transaction.

Amount 2520.00

November 2018 Page 453 of 476

Appendix E Merchant Checklists for INTERAC® Online
Payment Certification Testing

Merchant Information

Name and URL Merchant Name (English)

Homepage URL (English)

Merchant Name (French)

Homepage URL (French)

Number Merchant Number

Transaction fee cat- | Government

egory
Education

(Circle one)
General

Checklist for Front-End Tests

Ol |IN|O|UV | [WIN |

[
o

[y
[N

=
N

[
w

=
o

[
(%))

November 2018 Canada Only Page 454 of 476

Moneris Gateway API - Integration Guide

16

17

18

19

20

21

22

23

24

25
26
27

28

29

30

31

32

33

34

35

36

37

38

39

Merchant Requirements

Table 112: Checklist for web display requirements

Checkout page

Page 455 of 476 Canada Only November 2018

Appendix E Merchant Checklists for INTERAC® Online Payment Certification Testing

Table 112: Checklist for web display requirements (continued)

Displays the INTERAC Online design (logo), wordmark (text "INTERAC Online) or
both

Design and Wordmark Requirements (any page)

Other payment option logos:

o Displays the INTERAC Online design (logo) if the merchant displays the
trademarks or logos of other payment options.

o Design is equal in size and no less prominent than other payment
option trademarks.

INTERAC wordmark:

o INTERAC is always either in capital letters or italics (as in "the INTERAC
Online service")

e Inthefirst use of the INTERAC Online wordmark, INTERAC is followed by
the ® notation in superscript. For example, "Interac®" (English) or
<<Interac™P>> (French).

o Onthesame page as the first occurence of the wordmark, the following
language-appropriate footnote appears:

o ®Trademark of Interac Inc. Used under licence"
. MP Margue de commerce d'Interac Inc. Utilisée sous licence

Version of design

Uses the two-colour design on the web:

o Horizontal version—height no shorter than 25 pixels (width-to-height
ratio of 2:37:1)

o Vertical version—width no narrower than 30 pixels (widteh-to-height
ratio of 1:1:37)

"Learn more" information

Provides consumers with a link to www.interaconline.com/learn (preferably on
the checkout page)

Confirmation page

States that the transaction is successful

Displays the financial institution's name and confirmation number

Provides ability to print

November 2018 Canada Only Page 456 of 476

Moneris Gateway API - Integration Guide

Table 112: Checklist for web display requirements (continued)

Error page

Indicates that payment was unsuccsessful

States that the order is cancelled or displays other payment options

Timeout message
Is displayed if consumer has less than 30 minutes to complete payment

Payment

Displays the total in Canadian dollars

Table 113: Checklist for security/privacy requirements

Uses no less than 128-bit SSL encryption when collecting personal information

Protects consumer information in accordance with applicable federal and provincial privacy
legislation

Adheres to the Canadian Code of Practice for Consumer Protection in Electronic Commerce

Provided screenshots

Checkout page (where customer selects INTERAC Online option)

Confirmation page (one of the test case 1, 2, or 3)

Error page (test case 4)

Page 457 of 476 Canada Only November 2018

Appendix F Third-Party Service Provider Checklists for
INTERAC® Online Payment Certification Testing

Third-Party Service Provider Information

Name English

French

Merchant Web | Solution Name

Application

Version

Acquirer

Interaconline.com/Interacenlgne.com Web Site Listing Information

See http://www.interaconline.com/merchants_thirdparty.php for examples.

English contact inform-
ation

5 lines maximum. 35 characters/line maximum. For example, contact name
and title, department, telephone, web site, email.

English logo

File type: PNG. Maximum size: 120x120 pixels.

French contact inform-
ation

5 lines maximum. 35 characters/line maximum. For example, contact name
and title, department, telephone, web site, email.

French logo

File type: PNG. Maximum size: 120x120 pixels.

November 2018

Canada Only Page 458 of 476

Moneris Gateway API - Integration Guide

Table 114: Checklist for front-end tests

O |0 [(IN|JOjUunn |~ |WI[IN|F

=
o

[y
=

[y
N

=
w

=
S

[
Ul

=
(o)}

=
~N

=
0o

=
o

N
o

N
[y

N
N

N
w

N
N

N
(9]

N
(o))

N
~N

N
(o]

N
Yo

Page 459 of 476 Canada Only November 2018

Appendix F Third-Party Service Provider Checklists for INTERAC® Online Payment Cer-
tification Testing

Table 114: Checklist for front-end tests

30

31

32

33

34

35

36

37

38

39

Merchant Requirements

Table 115: Checklist for web display requirements

Checkout page

Displays the INTERAC Online design (logo), wordmark (text "INTERAC Online) or
both

Design and Wordmark Requirements (any page)

Other payment option logos:

o Displays the INTERAC Online design (logo) if the merchant displays the
trademarks or logos of other payment options.

o Design is equal in size and no less prominent than other payment
option trademarks.

November 2018 Canada Only Page 460 of 476

Moneris Gateway API - Integration Guide

Table 115: Checklist for web display requirements (continued)

INTERAC wordmark:

o INTERAC is always either in capital letters or italics (as in "the INTERAC
Online service")

o Inthefirst use of the INTERAC Online wordmark, INTERAC is followed by
the ® notation in superscript. For example, "Interac®" (English) or
<<Interac™P>> (French).

e On the same page as the first occurence of the wordmark, the following
language-appropriate footnote appears:

o ®Trademark of Interac Inc. Used under licence"
« M Marque de commerce d'Interac Inc. Utilisée sous licence

Version of design

Uses the two-colour design on the web:

« Horizontal version—height no shorter than 25 pixels (width-to-height
ratio of 2:37:1)

o Vertical version—width no narrower than 30 pixels (widteh-to-height
ratio of 1:1:37)

"Learn more" information

Provides consumers with a link to www.interaconline.com/learn (preferably on
the checkout page)

Confirmation page

States that the transaction is successful

Displays the financial institution's name and confirmation number

Provides the ability to print

Error page

Indicates that payment was unsuccsessful

States that the order is cancelled or displays other payment options

Timeout message

Is displayed if consumer has less than 30 minutes to complete payment

Payment

Displays the total in Canadian dollars

Page 461 of 476

Canada Only November 2018

Appendix F Third-Party Service Provider Checklists for INTERAC® Online Payment Cer-
tification Testing

Table 116: Checklist for security/privacy requirements

Uses no less than 128-bit SSL encryption when collecting personal information

Protects consumer information in accordance with applicable federal and provincial privacy
legislation

Adheres to the Canadian Code of Practice for Consumer Protection in Electronic Commerce

Table 117: Checklist for required screenshots

Provided screenshots

Checkout page (where customer selects INTERAC Online option)

Confirmation page (one of the test case 1, 2, or 3)

Error page (test case 4)

November 2018 Canada Only Page 462 of 476

Appendix G Merchant Checklists for INTERAC® Online
Payment Certification

Merchant Information

Name and URL Merchant Name (English)

Homepage URL (English)

Merchant Name (French)

Homepage URL (French)

Number Merchant Number

Transaction fee cat- | Government

egory
Education
(Circle one)
General
Third-party service | Company name
provider
Service provider's Solution name
merchant web
application Version

Merchant Requirements

Table 118: Checklist for web display requirements

Checkout page

Displays the INTERAC Online design (logo), wordmark (text "INTERAC Online) or
both

Design and Wordmark Requirements (any page)

Other payment option logos:

o Displays the INTERAC Online design (logo) if the merchant displays the
trademarks or logos of other payment options.

o Designis equalin size and no less prominent than other payment
option trademarks.

November 2018 Canada Only Page 463 of 476

Moneris Gateway API - Integration Guide

Table 118: Checklist for web display requirements (continued)

INTERAC wordmark:

o INTERAC is always either in capital letters or italics (as in "the INTERAC
Online service")

o Inthefirst use of the INTERAC Online wordmark, INTERAC is followed by
the ® notation in superscript. For example, "Interac®" (English) or
<<Interac™P>> (French).

e On the same page as the first occurence of the wordmark, the following
language-appropriate footnote appears:

o ®Trademark of Interac Inc. Used under licence"
« MP Marque de commerce d'Interac Inc. Utilisée sous licence

Version of design

Uses the two-colour design on the web:

« Horizontal version—height no shorter than 25 pixels (width-to-height
ratio of 2:37:1)

o Vertical version—width no narrower than 30 pixels (widteh-to-height
ratio of 1:1:37)

"Learn more" information

Provides consumers with a link to www.interaconline.com/learn (preferably on
the checkout page)

Confirmation page

States that the transaction is successful

Displays the financial institution's name and confirmation number

Provides ability to print

Error page

Indicates that payment was unsuccsessful

States that the order is cancelled or displays other payment options

Timeout message

Is displayed if consumer has less than 30 minutes to complete payment

Payment

Displays the total in Canadian dollars

Page 464 of 476 Canada Only November 2018

Appendix G Merchant Checklists for INTERAC® Online Payment Certification

Table 119: Checklist for security/privacy requirements

Uses no less than 128-bit SSL encryption when collecting personal information

Protects consumer information in accordance with applicable federal and provincial privacy
legislation

Adheres to the Canadian Code of Practice for Consumer Protection in Electronic Commerce

Provided screenshots

Checkout page (where customer selects INTERAC Online option)

Confirmation page (one of the test case 1, 2, or 3)

Error page (test case 4)

November 2018 Canada Only Page 465 of 476

Appendix H INTERAC® Online Payment Certification
Test Case Detail

¢ H.1 Common Validations
e H.2 Test Cases
¢ H.3 Merchant front-end test case values

H.1 Common Validations

The Merchant sends a request to the INTERAC Online Merchant Test Tool, which validates the fields as fol-
lows:

« All mandatory fields are present.

« Allfields are valid according to their definition in the INTERAC Online Functional Specifications
(including field lengths, valid characters and so on).

e Merchant number is that of a valid registered merchant.

o Funded URL matches one of the merchant's registered funded URLs that were provided during
merchant registration.

e The not funded URL matches one of the merchant's registered Not Funded URLs that were
provided during merchant registration.

o No additional fields are present.

H.2 Test Cases

Table 120: Cases 1-3

Objective To test that the merchant can do all of the following:

« Send avalid request to the Gateway page

« Receive a valid confirmation of funding from the Issuer Online Banking applic-
ation

o Issue arequest for purchase completion to the acquirer

« Receive an approved response from the acquirer.

Pre-requisites | None

Configuration | Merchant sends form posts to the Merchant Test Tool, which in turn responds to
either the Funded or Not Funded URL.

The Merchant is connected to an acquirer emulator, which can be set to confirm any
request for payment confirmation. (That is, the back-end process of sending a 0200
Message to the issuer is emulated to always accept the purchase request).

Specialtools |None
required

November 2018 Canada Only Page 466 of 476

Moneris Gateway API - Integration Guide

Table 120: Cases 1-3 (continued)

Input data
requirements

Acquirer must have registered the merchant using the administration system, and
have supplied the following:

o |IDEBIT_FUNDEDURL(S)
« IDEBIT_NOTFUNDEDURL(S)
e HTTP REFERERURL(S)

Data will be provided by the Merchant Test Tool.

Execution
strategy

Initiate a payment at the merchant. The two least significant digits of the dollar amount
must be equal to the test case number. For example, if you are executing test case 3,
the format of the amount must be ### ### #03.##.

Expected out-
come

The merchant indicates to the customer that the purchase was completed and
presents a confirmation screen that includes (depending on the test case) the correct
amount, the issuer name and the issuer confirmation number.

Test case 1

e Issuer name: 123Bank

¢ Issuer confirmation number: CONF#123
Test case 2

« Issuer name: Bank E3@éits.,-/=?@'

o lIssuer confirmation number: #S.,-/=?@'UPdn9
Test case 3

e Issuername: B
Issuer confirmation number: C

Applicable « Merchant Test Tool logs
logs o Screen capture of the merchant's confirmation page.
Table 121: Case 4
Objective To test that the merchant handles a rejection in response to the acquirer

Pre-requisites

None

Configuration

Same as test cases 1-3 except that the acquirer emulator must be set to decline the
request for mayment confirmation. (That is, to emulate the scenario in which an issuer
sends a delcine in the 0210 response to the acquirer's 0200 message.)

Page 467 of 476

Canada Only November 2018

Appendix H INTERAC® Online Payment Certification Test Case Detail

Table 121: Case 4 (continued)

Special tools | None
required
Input data Acquirer must have registered the merchant using the administration system, and

requirements

have supplied the following:

« IDEBIT_FUNDEDURL(S)
o |IDEBIT_NOTFUNDEDURL(S)
o HTTP REFERERURL(S)

Data will be provided by the Merchant Test Tool.

Execution
strategy

Initiate a payment at the merchant for any amount where the two least significant dol-
lar digits are 04. (That is, of the form ### #i# #04.##.)

Expected out-
come

The merchant indicates to the customer that the purchase was declined. Neither the
issuer name nor the issuer confirmation number are displayed.

Applicable
logs

Merchant Test Tool logs

Table 122: Cases 5-22

Objective

To test that a merchant safely handles redirections to the Funded URL with invalid
data, and treats the transaction as funded.

Pre-requisites

None

Configuration

None.

The acquirer emulator is not needed because the merchant does not submit any
requests for payment confirmation.

Specialtools |None
required
Input data Acquirer must have registered the merchant using the administration system, and

requirements

have supplied the following:

o |IDEBIT_FUNDEDURL(S)
« IDEBIT_NOTFUNDEDURL(S)
e HTTP REFERERURL(S)

Data will be provided by the Merchant Test Tool.

Execution Initiate a payment at the merchant. The two least significant digits of the dollar amount

strategy must be equal to the test case number. For example, if you are executing test case 13,
the format of the amount must be ### ### #13.##.

November 2018 Canada Only Page 468 of 476

Moneris Gateway API - Integration Guide

Table 122: Cases 5-22 (continued)

Expected out-
come

The merchant indicates to the customer that the purchase was declined. Neither the
issuer name nor the issuer confirmation number are displayed.

Applicable Merchant Test Tool logs
logs
Table 123: Case 23
Objective To test that a merchant can receive a valid redirection from the issuer that indicates the
payment was not funded.
Pre-requisites | None
Configuration | None.

The acquirer emulator is not needed because the merchant does not submit any
requests for payment confirmation.

Special tools | None
required
Input data Acquirer must have registered the merchant using the administration system, and

requirements

have supplied the following:

« IDEBIT_FUNDEDURL(S)
« |IDEBIT_NOTFUNDEDURL(S)
o HTTP REFERERURL(S)

Data is provided by the Merchant Test Tool.

Execution
strategy

Initiate a payment at the merchant for any amount where the two least significant dol-
lar digits are 23. (That is, of the form #### #i# #23.##.)

Expected out-
come

The merchant indicates to the customer that the purchase was declined. Neither the
issuer name nor the issuer confirmation number are displayed.

Applicable
logs

Merchant Test Tool logs

Table 124: Cases 24-39

Objective

To test that a merchant safely handles redirections to the Not Funded URL with invalid
data, and treats the transaction as not funded.

Pre-requisites

None

Configuration

None.

The acquirer emulator is not needed because the merchant does not submit any
requests for payment confirmation.

Page 469 of 476

Canada Only November 2018

Appendix H INTERAC® Online Payment Certification Test Case Detail

Table 124: Cases 24-39 (continued)

requirements

Special tools | None
required
Input data Acquirer must have registered the merchant using the administration system, and

have supplied the following:

« IDEBIT_FUNDEDURL(S)
o |IDEBIT_NOTFUNDEDURL(S)
o HTTP REFERERURL(S)

Data is provided by the Merchant Test Tool.

Execution
strategy

Initiate a payment at the merchant. The two least significant digits of the dollar amount
must be equal to the test case number. For example, if you are executing test case 27,
the format of the amount must be ### ### #27.##.

Expected out-
come

The merchant indicates to the customer that the purchase was declined. Neither the
issuer name nor the issuer confirmation number are displayed.

Applicable
logs

Merchant Test Tool logs

H.3 Merchant front-end test case values

These values are automatically sent by the INTERAC Online Merchant Test Tool. They are provided here
for reference only.

Table 125: Test cases 1 and 4—Funded URL

Redirection URL Funded
ISSLANG en
TRACK2 3728024906540591206=12010123456789XYZ
ISSCONF CONF#123
ISSNAME 123Bank
INVOICE (Same as supplied by merchant)
MERCHDATA (Same as supplied by merchant)
VERSION 1
Table 126: Test case 2—Funded URL
Redirection URL Funded
ISSLANG en

November 2018 Canada Only Page 470 of 476

Moneris Gateway API - Integration Guide

Table 126: Test case 2—Funded URL

TRACK2 5268051119993326=29129999999999999000
ISSCONF #S.,-/=?@'UPdn9

ISSNAME 987Bank Ea&é&i#ts.,-/=?@'Aduliyc

INVOICE (Same as supplied by merchant)
MERCHDATA (Same as supplied by merchant)

VERSION 1

Table 127: Test case 3—Funded URL

Redirection URL Funded

ISSLANG fr

TRACK2 453781122255=1001ABC11223344550000000
ISSCONF C

ISSNAME B

INVOICE (Same as supplied by merchant)
MERCHDATA (Same as supplied by merchant)

VERSION 123

Table 128: Test cases 5-22—invalid fields, Funded URL

5 missing field IDEBIT_INVOICE (missing)
6 missing field IDEBIT_MERCHDATA (missing)
7 missing field IDEBIT_ISSLANG (missing)
8 missing field IDEBIT_TRACK?2 (missing)
9 missing field IDEBIT_ISSCONF (missing)
10 [missing field IDEBIT_ISSNAME (missing)
11 [missing field IDEBIT_VERSION (missing)
12 [missing field IDEBIT_TRACK2, IDEBIT_ (missing)
ISSCONF, IDEBIT_ISSNAME

13 [wrongvalue IDEBIT_INVOICE XXX

14 [wrongvalue IDEBIT_MERCHDATA XXX
Page 471 of 476 Canada Only November 2018

Appendix H INTERAC® Online Payment Certification Test Case Detail

Table 128: Test cases 5-22—invalid fields, Funded URL (continued)

15 [invalid value IDEBIT_ISSLANG de

16 |[valuetoo long IDEBIT_TRACK2 3728024906540591206=12010123456789XYZA

17 |invalid check IDEBIT_TRACK2 3728024906540591207=12010123456789XYZ
digit

18 |field too long IDEBIT_ISSCONF Too long confirm

19 [invalid character | IDEBIT_ISSCONF CONF<123

20 |field too long IDEBIT_ISSNAME Very, very, very long issuer name

21 |invalid character | IDEBIT_ISSNAME 123<Bank

22 |invalid value IDEBIT_VERSION 2

Table 129: Test case 23—valid data, Not Funded URL

Redirection URL Not funded

ISSLANG en

INVOICE (Same as supplied by merchant)
MERCHDATA (Same as supplied by merchant)
VERSION 1

Table 130: Test cases 5-22—invalid fields, Funded URL

24 | missing field IDEBIT_INVOICE (missing)

25 | missing field IDEBIT_MERCHDATA (missing)

26 | missing field IDEBIT_ISSLANG (missing)

27 | IDEBIT_TRACK2is IDEBIT_TRACK?2 3728024906540591206=12010123456789XYZ
present and valid

28 |[IDEBIT_ISSCONF is IDEBIT_ISSCONF CONF#123
present and valid

29 |[IDEBIT_ISSNAME is IDEBIT_ISSNAME 12Bank
present and valid

30 | missing field IDEBIT_VERSION (missing)

November 2018 Canada Only Page 472 of 476

Moneris Gateway API - Integration Guide

Table 130: Test cases 5-22—invalid fields, Funded URL (continued)

31 |wrongvalue IDEBIT_INVOICE XXX

32 |invalid value IDEBIT_INVOICE invalid </html> tricky data

33 |wrongvalue IDEBIT_MERCHDATA XXX

34 |invalid value IDEBIT_MERCHDATA <2000 characters in the range hex 20-7E

35 [invalid value IDEBIT_ISSLANG de

36 |invalid IDEBIT_ IDEBIT_TRACK?2 INVALIDTRACK?, incorrect format and too
TRACK2 is present long

37 |invalid IDEBIT_ IDEBIT_ISSCONF Too long confirm
ISSCONF is present

38 |invalid IDEBIT _ IDEBIT_ISSNAME Very, very, very long issuer name
ISSNAME is present

39 [invalid value IDEBIT_VERSION 2

Page 473 of 476 Canada Only November 2018

Copyright Notice
Copyright © November 2018 Moneris Solutions, 3300 Bloor Street West, Toronto, Ontario, M8X 2X2

All Rights Reserved. This manual shall not wholly or in part, in any form or by any means, electronic,
mechanical, including photocopying, be reproduced or transmitted without the authorized, written con-
sent of Moneris Solutions.

This document has been produced as a reference guide to assist Moneris client’s hereafter referred to as
merchants. Every effort has been made to the make the information in this reference guide as accurate
as possible. The authors of Moneris Solutions shall have neither liability nor responsibility to any person
or entity with respect to any loss or damage in connection with or arising from the information contained
in this reference guide.

Trademarks

Moneris and the Moneris Solutions logo are registered trademarks of Moneris Solutions Corporation.

Any software, hardware and or technology products named in this document are claimed as trademarks
or registered trademarks of their respective companies.

Printed in Canada.

10987654321

November 2018 Page 475 of 476

	Security and Compliance
	Confidentiality

	Changes in v1.2.3
	1 About This Documentation
	1.1 Purpose
	Getting Help
	1.2 Who Is This Guide For?

	2 Basic Transaction Set
	2.1 Basic Transaction Type Definitions
	2.2 Purchase
	2.3 Pre-Authorization
	2.4 Pre-Authorization Completion
	2.5 Re-Authorization
	2.6 Force Post
	2.7 Purchase Correction
	2.8 Refund
	2.9 Independent Refund
	2.10 Card Verification with AVS and CVD
	2.11 Batch Close
	2.12 Open Totals

	3 Credential on File
	3.1 About Credential on File
	3.2 Credential on File Info Object and Variables
	3.3 Credential on File Transaction Types
	3.4 Initial Transactions in Credential on File
	3.5 Vault Tokenize Credit Card and Credential on File
	3.6 Credential on File and Converting Temporary Tokens
	3.7 Card Verification and Credential on File Transactions
	3.7.1 When to Use Card Verification With COF
	3.7.2 Credential on File and Vault Add Token
	3.7.3 Credential on File and Vault Update Credit Card
	3.7.4 Credential on File and Vault Add Credit Card
	3.7.5 Credential on File and Recurring Billing

	4 Vault
	4.1 About the Vault Transaction Set
	4.2 Vault Transaction Types
	4.2.1 Administrative Vault Transaction types
	4.2.2 Financial Vault Transaction types

	4.3 Vault Administrative Transactions
	4.3.1 Vault Add Credit Card – ResAddCC
	4.3.1.1 Vault Data Key
	4.3.1.2 Vault Encrypted Add Credit Card – EncResAddCC

	4.3.2 Vault Temporary Token Add – ResTempAdd
	4.3.3 Vault Update Credit Card – ResUpdateCC
	4.3.3.1 Vault Encrypted Update CC - EncResUpdateCC

	4.3.4 Vault Delete - ResDelete
	4.3.5 Vault Lookup Full - ResLookupFull
	4.3.6 Vault Lookup Masked - ResLookupMasked
	4.3.7 Vault Get Expiring - ResGetExpiring
	4.3.8 Vault Is Corporate Card - ResIscorporateCard
	4.3.9 Vault Add Token – ResAddToken
	4.3.10 Vault Tokenize Credit Card – ResTokenizeCC

	4.4 Vault Financial Transactions
	4.4.1 Customer ID Changes
	4.4.2 Purchase with Vault – ResPurchaseCC
	4.4.3 Pre-Authorization with Vault – ResPreauthCC
	4.4.4 Vault Independent Refund CC - ResIndRefundCC
	4.4.5 Force Post with Vault - ResForcePostCC
	4.4.6 Card Verification with Vault – ResCardVerificationCC

	4.5 Hosted Tokenization

	5 INTERAC® Online Payment
	5.1 About INTERAC® Online Payment Transactions
	5.2 Other Documents and References
	5.3 Website and Certification Requirements
	5.3.1 Things to provide to Moneris
	5.3.2 Certification process
	5.3.3 Client Requirements
	5.3.4 Delays

	5.4 Transaction Flow for INTERAC® Online Payment
	5.5 Sending an INTERAC® Online Payment Purchase Transaction
	5.5.1 Fund-Guarantee Request
	5.5.2 Online Banking Response and Fund-Confirmation Request

	5.6 INTERAC® Online Payment Purchase
	5.7 INTERAC® Online Payment Refund
	5.8 INTERAC® Online Payment Field Definitions

	6 Mag Swipe Transaction Set
	6.1 Mag Swipe Transaction Type Definitions
	6.1.1 Encrypted Mag Swipe Transactions

	6.2 Mag Swipe Purchase
	6.2.1 Encrypted Mag Swipe Purchase

	6.3 Mag Swipe Pre-Authorization
	6.3.1 Encrypted Mag Swipe Pre-Authorization

	6.4 Mag Swipe Completion
	6.5 Mag Swipe Force Post
	6.5.1 Encrypted Mag Swipe Force Post

	6.6 Mag Swipe Purchase Correction
	6.7 Mag Swipe Refund
	6.8 Mag Swipe Independent Refund
	6.8.1 Encrypted Mag Swipe Independent Refund

	7 Level 2/3 Transactions
	7.1 About Level 2/3 Transactions
	7.2 Level 2/3 Visa Transactions
	7.2.1 Level 2/3 Transaction Types for Visa
	7.2.2 Level 2/3 Transaction Flow for Visa
	7.2.3 VS Completion
	7.2.4 VS Purchase Correction
	7.2.5 VS Force Post
	7.2.6 VS Refund
	7.2.7 VS Independent Refund
	7.2.8 VS Corpais
	7.2.8.1 VS Purcha - Corporate Card Common Data
	7.2.8.2 VS Purchl - Line Item Details
	7.2.8.3 Sample Code for VS Corpais

	7.3 Level 2/3 MasterCard Transactions
	7.3.1 Level 2/3 Transaction Types for MasterCard
	7.3.2 Level 2/3 Transaction Flow for MasterCard
	7.3.3 MC Completion
	7.3.4 MC Force Post
	7.3.5 MC Purchase Correction
	7.3.6 MC Refund
	7.3.7 MC Independent Refund
	7.3.8 MC Corpais - Corporate Card Common Data with Line Item Details
	7.3.8.1 MC Corpac - Corporate Card Common Data
	7.3.8.2 MC Corpal - Line Item Details
	7.3.8.3 Tax Array Object - MC Corpais
	7.3.8.4 Sample Code for MC Corpais

	7.4 Level 2/3 American Express Transactions
	7.4.1 Level 2/3 Transaction Types for Amex
	7.4.2 Level 2/3 Transaction Flow for Amex
	7.4.3 Level 2/3 Data Objects in Amex
	7.4.3.1 About the Level 2/3 Data Objects for Amex
	7.4.3.2 Defining the AxLevel23 Object
	Table 1 Object
	Table 1 - Setting the N1Loop Object
	Table 1 - Setting the AxRef Object

	Table 2 Object
	Table 2 - Setting the AxIt1Loop Object
	Table 2 - Setting the AxIt106s Object
	Table 2 - Setting the AxTxi Object

	Table 3 Object
	Table 3 - Setting the AxTxi Object

	7.4.4 AX Completion
	7.4.5 AX Force Post
	7.4.6 AX Purchase Correction
	7.4.7 AX Refund
	7.4.8 AX Independent Refund

	8 MPI
	8.1 About MPI Transactions
	8.2 3-D Secure Implementations (VbV, MCSC, SafeKey)
	8.3 Activating VbV and MCSC
	8.4 Activating Amex SafeKey
	8.5 Transaction Flow for MPI
	8.6 MPI Transactions
	8.6.1 VbV, MCSC and SafeKey Responses
	8.6.2 MpiTxn Request Transaction
	8.6.2.1 TXN Response and Creating the Popup

	8.6.3 Vault MPI Transaction – ResMpiTxn
	8.6.4 MPI ACS Request Transaction
	8.6.4.1 ACS Response and Forming a Transaction

	8.6.5 Purchase with 3-D Secure – cavvPurchase
	8.6.5.1 Purchase with 3-D Secure and Recurring Billing

	8.6.6 Pre-Authorization with 3-D Secure – cavvPreauth
	8.6.7 Cavv Result Codes for Verified by Visa
	8.6.8 Vault Cavv Purchase
	8.6.9 Vault Cavv Pre-Authorization

	9 e-Fraud Tools
	9.1 Address Verification Service
	9.1.1 About Address Verification Service (AVS)
	9.1.2 AVS Info Object
	9.1.3 AVS Response Codes
	9.1.4 AVS Sample Code

	9.2 Card Validation Digits (CVD)
	9.2.1 About Card Validation Digits (CVD)
	9.2.2 Transactions Where CVD Is Required
	9.2.3 CVD Info Object
	9.2.4 CVD Result Codes
	9.2.5 Sample Purchase with CVD Info Object

	9.3 Transaction Risk Management Tool
	9.3.1 About the Transaction Risk Management Tool
	9.3.2 Introduction to Queries
	9.3.3 Session Query
	9.3.3.1 Session Query Transaction Flow

	9.3.4 Attribute Query
	9.3.4.1 Attribute Query Transaction Flow

	9.3.5 Handling Response Information
	9.3.5.1 TRMT Response Fields
	9.3.5.2 Understanding the Risk Score
	9.3.5.3 Understanding the Rule Codes, Rule Names and Rule Messages
	9.3.5.4 Examples of Risk Response
	Session Query
	Attribute Query

	9.3.6 Inserting the Profiling Tags Into Your Website

	9.4 Encorporating All Available Fraud Tools
	9.4.1 Implementation Options for TRMT
	9.4.2 Implementation Checklist
	9.4.3 Making a Decision

	10 Apple Pay In-App and on the Web Integration
	10.1 About Apple Pay In-App and on the Web Integration
	10.2 About API Integration of Apple Pay
	10.2.1 Transaction Types That Use Apple Pay

	10.3 Apple Pay In-App Process Flows
	10.4 Cavv Purchase – Apple Pay
	10.5 Cavv Pre-Authorization – Apple Pay

	11 Offlinx™
	11.1 What Is a Pixel Tag?
	11.2 Offlinx™ and API Transactions

	12 Convenience Fee
	12.1 About Convenience Fee
	12.2 Purchase with Convenience Fee
	12.3 Convenience Fee Purchase w/ Customer Information
	12.4 Convenience Fee Purchase with VbV, MCSC and Amex SafeKey

	13 Recurring Billing
	13.1 About Recurring Billing
	13.2 Purchase with Recurring Billing
	13.3 Recurring Billing Update
	13.4 Recurring Billing Response Fields and Codes
	13.5 Credential on File and Recurring Billing

	14 Customer Information
	14.1 Using the Customer Information Object
	14.1.1 CustInfo Object – Miscellaneous Properties
	14.1.2 CustInfo Object – Billing and Shipping Information
	14.1.2.1 Set Methods for Billing and Shipping Info
	14.1.2.2 Using Hash Tables for Billing and Shipping Info

	14.1.3 CustInfo Object – Item Information
	14.1.3.1 Set Methods for Item Information
	14.1.3.2 Using Hash Tables for Item Information

	14.2 Customer Information Sample Code

	15 Status Check
	15.1 About Status Check
	15.2 Using Status Check Response Fields
	15.3 Sample Purchase with Status Check

	16 Visa Checkout
	16.1 About Visa Checkout
	16.2 Transaction Types - Visa Checkout
	16.3 Integrating Visa Checkout Lightbox
	16.4 Transaction Flow for Visa Checkout
	16.5 Visa Checkout Purchase
	16.6 Visa Checkout Pre-Authorization
	16.7 Visa Checkout Completion
	16.8 Visa Checkout Purchase Correction
	16.9 Visa Checkout Refund
	16.10 Visa Checkout Information

	17 Testing a Solution
	17.1 About the Merchant Resource Center
	17.2 Logging In to the QA Merchant Resource Center
	17.3 Test Credentials for Merchant Resource Center
	17.4 Getting a Unique Test Store ID and API Token
	17.5 Processing a Transaction
	17.5.1 Overview
	17.5.2 HttpsPostRequest Object
	17.5.3 Receipt Object

	17.6 Testing INTERAC® Online Payment Solutions
	17.7 Testing MPI Solutions
	17.8 Testing Visa Checkout
	17.8.1 Creating a Visa Checkout Configuration for Testing

	17.9 Test Card Numbers
	17.9.1 Test Card Numbers for Level 2/3
	17.9.2 Test Cards for Visa Checkout

	17.10 Simulator Host

	18 Moving to Production
	18.1 Activating a Production Store Account
	18.2 Configuring a Store for Production
	18.2.1 Configuring an INTERAC® Online Payment Store for Production
	18.2.1.1 Completing the Certification Registration - Merchants
	18.2.1.2 Third-Party Service/Shopping Cart Provider

	18.3 Receipt Requirements
	18.3.1 Certification Requirements

	Appendix A Definitions of Request Fields
	A.1 Definitions of Request Fields – Credential on File
	A.2 Definition of Request Fields – Recurring
	A.3 Definition of Request Fields for Level 2/3 - Visa
	A.4 Definition of Request Fields for Level 2/3 - MasterCard
	A.5 Definition of Request Fields for Level 2/3 - Amex
	A.6 Definition of Request Fields – Offlinx™

	Appendix B Definitions of Response Fields
	Appendix C Error Messages
	Appendix D Process Flow for Basic Pre-Auth, Re-Auth and Completion Transactions
	Appendix E Merchant Checklists for INTERAC® Online Payment Certification Testing
	Appendix F Third-Party Service Provider Checklists for INTERAC® Online Payment Certification Testing
	Appendix G Merchant Checklists for INTERAC® Online Payment Certification
	Appendix H INTERAC® Online Payment Certification Test Case Detail
	H.1 Common Validations
	H.2 Test Cases
	H.3 Merchant front-end test case values

	Copyright Notice
	Trademarks

