Essential Skills—Made Easy!

= UNIX System
mmm Administration

UNIX System

Administration:
A Beginner’s Guide

This page intentionally left blank.

UNIX System

Administration:
A Beginner’s Guide

Steve Maxwell

McGraw-Hill/Osborne

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

McGraw-Hill/Oshorne 27

L Divgston of The Metrow HIl Contharnies
Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of
America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be
reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher.

0-07-222833-4

The material in this eBook also appears in the print version of this title: 0-07-219486-3

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occur-
rence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark
owner, with no intention of infringement of the trademark. Where such designations appear in this book, they
have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for
use in corporate training programs. For more information, please contact George Hoare, Special Sales, at
george_hoare @mcgraw-hill.com or (212) 904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all
rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act
of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse
engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish
or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your
own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work
may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES
OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE
OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED
THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WAR-
RANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation
will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for
any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no cir-
cumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, conse-
quential or similar damages that result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatso-
ever whether such claim or cause arises in contract, tort or otherwise.

DOI: 10.1036/0072228334

This page intentionally left blank.

About the Author

Steve Maxwell has been actively involved with UNIX and computer networking
for the last 20 years. He has worked for a number of companies, institutions,
and organizations in a variety of capacities that have included network design,
software development, and training. Recently, Steve decided that it was time

to join another start-up company, and he now works at FineGround Networks,
Inc., where he is responsible for ensuring that the company delivers quality
software products. Steve welcomes your feedback on any aspect of this book—
please send comments, questions, and suggestions to simaxwell@worldnet.att.net.

About the Technical Reviewers

John Tiso is a senior consultant for NIS, a Boston-based integrator of Sun
Microsystems and Cisco Systems. He has a B.S. degree from Adelphi University
and is certified in UNIX from HP, Sun, and IBM. John is also a Cisco CCIE
(CCIE #5162), MCSE, and MCNE. He has published papers in several leading
technical journals, such as Element K and SysAdmin, and has served as a technical
editor for a variety of books. John can be reached at johnt@jtiso.com.

Jim Minatel is a freelance writer and editor with more than 13 years of publishing
experience in mathematics, statistics, and computing. He has authored and
co-authored several books about the Internet and World Wide Web in the early
Netscape era, and most recently served as Editor in Chief for two magazines for
networking professionals and IT managers. He holds undergraduate degrees in
mathematics and physics, and an M.S. in mathematics.

For more information about this title, click here.

Contents

ACKNOWLEDGMENTS. . . . e xvii
INTRODUCTION . ..o e Xix
1 Introduction to UNIX e 1
1. Uncover the History of the UNIX System 2
2. Explore the Elements of a Computer System 3
3. Show the UNIX Timeline 7
AT&T Invents UNIXo 7
BSDIsBorn 8

The System V Releasesoiiiiininina.. 8
AT&T/SunDeal 9

The Internet WOrmouiitii e, 9

OSF/ L 9

Mach .. 10

Linux Is Introduced 10

Red Hat 10
Versions of UNIX Todayoiiiiniiiinniinenaenn.. 10
Why UNIX Is Popular 11
Modular UNIX 15
TheKernel 15

4. Discover the Roles of the UNIX System Administrator 18
Support the Network L. 19

vii

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

vili UNIX System Administration: A Beginner’s Guide

Handle Peripherals 19
Manage System Upgrades, 20
Actively Monitor System Security 20
Maintain System Accounts 21
Advance Your Knowledge 21
Teacher 22
Politician 22

Parent 23

Police Officer 23
Friend 24
Mastery Check 25
2 Basic UNIX Commandscouuiiiinaiiinneinneennaa.. 27
1. Explore the UNIX Shell 28
2. Investigate Basic UNIX Commands ooviun... 31
CAL ottt 34

date ... 35
hostname 37

find ... 38

IS 42
SINES ... 49

DS 52

L0 4 o 59
Project 2-1 62
Mastery Check 63
3 Using System Administration Tools 65
1. Managing Solaris Using Admintool 67
AddaNew User, 67

UNIX Account Example 72
Modifyinga Usert 73
Deletinga Userttt 74
Adding a New Groupoiuiininiiinan.. 76
Modifyinga Group 79
Deleting a Groupoouiiinii i 79

2. Manage Linux Accounts with Userconf 80
Add aNew USerttt 80
Modifyinga Usert 86

Delete an Existing User iiao... 88
Adding a New GIoupoiuuiiiinniiinaiaaan.. 90

3. Manage HP-UX Using SAM 92
AddaNew User 94
Modifying a Useroiiiiiiiti i 98

Delete an Existing User i, 99

Contents
Adding a New Groupiiiiniii . 101
Deleting an Existing Group 103
4. Set Up Better Account Security 105
Expiring a Password Using Admintool 106
Expiring a Password Using Userconf 106
Expiring a Password Using SAM 107
Regular Password Changes Using Admintool 109
Regular Password Changes Using Userconf 110
Turning Off an Account Using Admintool 111
Turning Off an Account Using Userconf 113
Automatic Account Expiration Using Userconf 114
Mastery Check 116
Software Package Management Tools 117
1. Discover Solaris Package Tools 119
pkginfo ... 119
pkgadd ... 123
pRgrm . 124
2. Discover HP-UX Package Tools 126
SWHSt .o 126
swinstall 130
Project 4-1 130
SWICIIIOVE . . o\ttt e it ettt e 133
Project4-2 133
3. Discover Linux Package Tools 136
Project 4-3 137
Mastery Check 139
Maintaining UNIX Users 141
1. Discover the fetc/passwd File 142
2. Discover the /etc/group File L. 146
3. Discover the /etc/shadow File 149
4. Explore UNIX Account Tools 152
PasSWA . .. 153
PWCK 156
GIPCK 159
useradd ... 159
userdel ... 161
USermMOd 162
groupadd 163
groupdel 164
GroupmOd 164
logins 164

1x

X UNIX System Administration: A Beginner’s Guide

Project 5-1 166
Mastery Check 168
File Systems, Disks,and Tools 171
1. Explore a UNIX File Systemo, 172
2. Uncover a Disk Partition 176
3. Determine a Mounted File System 179
Creating a New File System i, 180
Using the Solaris Format Tool 180
Using the Linux fdisk Tool 186
4. Createa New File System 187
Checking the New File System 188
Mounting UNIX File Systems 191
Unmounting a UNIX File System 193
Project 6-1 193
Mastery Check 195
System Security 197
1. Define a Security Policy 199
2. Maintain System Patches o i 200
3. Uncover System Hardening 201
Elimination of Unnecessary Services 201
Configuration System Profiles 202
3. Investigate Security Tools i 205
The NMAP Tool 206
Project 7-1 218
The Secure Shell Facility i 220
SSh L 222
T 223
ssh-keygen 223
ssh-agent/ssh-add 225
TheSudo Tool 226
Project 7-2 228
Mastery Check 229
Backup and Restoreo 231
1. Define Backup Elements 232
User Perspective 233
Density and Form Factor 233
Network Bandwidth 235
Remote Sites 236
Backup Methods 236
2. Explore Backup Tools i 238

dump .. 238

10

Contents
dd .o 240
TESTOTE . .o ittt it e 240
- 241
Project 8-1 243
Mastery Check 244
System Operationsiiuiuiiit 247
1. Determine the BOOt Processouiiiinninnenneon.. 248
2. Explore the Shutdown Process 249
Halting the System 251
Rebooting the System 252
Normal System Shutdown 255
Determining When the System Was Halted 256
3. Uncover UNIX Operating Levels 257
The Default Run Level 261
List the Current Run Level 261
Single-User Modet 262
Boot to Single-User Mode i, 263
Project O-1 263
Mastery Check 265
The TCP/IP Suite i 267
1. Uncover the General Seven-Layer OSI Network Model 270
Application Layer 270
Presentation Layer 270
Session Layer 271
Transport Layer 271
Network Layer 271
DataLink Layer i 271
Physical Layer 271
2. Discover the TCP/IP Protocol Architecture 272
Process Layer Services 273
End-User Tools i 274
Additional Protocols 274
System SEIVICESttt 275
Additional Services 280
Host-to-Host Layer 281
Internet Layer 292
Internet Control Message Protocol 299
3. Discover the Address Resolution Protocol 304
Packet Format, 306
ARP Cache 307
Data Link Address Format 308

Mastery Check 312

x1i

Xii UNIX System Administration: A Beginner’s Guide

11 Basic Network Tools 315
1. Explore the Network Address Table on a UNIX System Usingarp 316
Displaying the ARP Cache 317
Deletingan ARP Cache 321
Adding an ARP Cache Entry 322

2. Control Network Interfaces Using Ifconfig 324
Listing Available Interfaces 325
Controlling Interface State 328
Modifying Interface Parameters 329
Special Configurations Parameters 331
Logical Interfaces 332

3. Monitor Network Operations using Netstat 334
Displaying Active Network Sessions 335
Displaying Interface Information 340
Display Routing Information 342
Display Multicast Information 344
Display Protocol Statistics 345

4. Verify Network Connectivity Using Ping 346
Determine System Availability 347

Show Basic Network Performance 350
Additional Command Options 354

5. Gather Network Information with Lanscan 356
Project 11-1 357
Mastery Check 358
12 Advanced Network Tools 361
1. Monitor Network Traffic with the tcpdump Tool 362
Operating Modesouniiniiniii e, 364
Display Optionsuuiiuiiii i, 368

Using Packet Filters 371
Address Primitives 372
Protocol Primitives 374
OPperators 375
Miscellaneous Primitives 377
Qualifiers 378
Tepdump Command Examples 379

2. Execute the traceroute Command to Show Network Connectivity 382
Reading Outputttt 384
Changing Characteristics i . 387
Display Optionsoiuiiuiiii i, 389

3. Verify Basic Operations Using the landiag Command 390
Project 12-1 392

Mastery Check 393

13

14

15

16

Contents
Overview of SNMP 395
1. Discover SNMP Basics i 397
SNMP Applicationsiiuiiiiiiii. 399
2.Uncover MIBs 399
Object TYPeS ..ottt e 401
Sample MIB Objectt 404
SNMP Tables 406
Accessing Objects 410
Standard and Private MIBs 410
SNMP Communities, 411
3. Explore SNMP Versionso.uiuniiineininnennennan. 412
SNMP Protocol Operationouiuiinninno... 416
SNMP Response Codesiiiiiiiiiiinaa... 422
Transmission of an SNMP Message 423
Comnnectionless Protocol 424
4. Investigate SNMP Master and Subagent 424
Mastery Check 427
Using the Domain Name Systemcoviuninnenn... 431
1. Discover How the Domain Name System Works 432
2. Explore Both DNS Server and Client Components 435
Domain Files 435
Processes 442
DNSTools ... 444
Explore DNS Client Componentscouuiunenn... 449
Project 14-1 451
Mastery Check 452
Using NIS ... 453
1. Overview of Network Information Services 454
2. Discover NIS Components 456
Databases 456
Processes 457
Tools 458
3.Setting Upa NIS Server 463
Project 15-1 463
4. Configure a NIS Client 466
5. Setting Up a Secondary NIS Serverc..cooun... 467
Mastery Check 469
SNMP System Management Tools 471
1. Discover Elements of System Management 472
System Heartbeat 473

System Up/Down Messagesooouoo... 473

xiii

Xiv UNIX System Administration: A Beginner’s Guide

System Process Activity 474
Network Information 474
System Configuration Control 474

2. Explore the UCD SNMP Package 475
Common Command-Line Options 476
Environment Variables 482

3. Use the UCD Magement Tools i, 482
Snmpdelta Command i 482
Snmpget Command 483
Snmpgetnext Commandl 485
Snmpnetstat Command o 486
Snmpset Tool 491
Snmpstatus Tool 496
Snmptable Tool 497
Snmptest Tool 497
Snmptranslate Tool i 498
Snmptrap Tool 499
Snmptrapd Server 500
Snmpwalk Tool 502
Snmpbulkwalk Tool 505
Mastery Check 507
17 Using Network File System 511
Versions of NFS 512

1. NFS Server Uncoveredc.uiiniiininninninnennon.. 513
The nfsd Processt 513

The lockd PTOCeSS . ..o\ vii i 514

The statd Processiuiiie i, 515

The mountd Processiiueiiininan.. 515

2. Mounting Remote File System 515
The dfstab/export Files 516
Share/Export File Options 517

3. Exploring NFSTools i 519
eXPOTtS .. 519
share/unShare (Solaris Only) 520
showmount 521

IfSSEAL © oot 522

4. Configuring NFS Clients 526
5. Controlling the File System Mount Table 528
Mastery Check 531
18 File Transfer Protocol 533
1. Explore a Sample FTP Session oo, 535
Obtaining a Directory Listing 537

Configuration Options ... 539

19

20

21

Contents

Retrievinga File 539
SendingaFile 540
Monitoring File Transfers 541
2. Discover FTP Commands, 542
3. Controlling FTP ACCeSS\ v ittt 543
4. Configure Anonymous FTP 546
Setting Up Anonymous ACCESSt . 548
5.Log FTP Activity 549
Enable FTP logging 549
Enable the syslog Facility 551
Project 18-1 553
Mastery Check 554
Important System Administration Tasks/Information 555
1. Communicate with Users on the System 556
2. Increase System SWap SPaceiiiii 558
ListSwap Space 558
Add More Swap Space 559
3. Control ROOLACCeSS . ..ottt 560
4. Display System Configuration Information 561
The /proc Directoryc.iiiuiiiinnina... 564
Project 10-1 ... o 568
Mastery Check 569
Using DHCP 571
1. Use The Solaris DHCP Configuration Manager 574
Starting the Solaris DHCP Configuration Manager 574
Configuring DHCP Services for the First Time 575
Using the Configuration Manager 583
Adding IP Addresses to the DHCP Server 585
2. Configure DHCP Clentsoouuiuneiennnann.. 593
Manual DHCP Configurationcivo... 593
Set Up Automatic and Permanent DHCP Configuration 594
Obtain DHCP Agent Status Information 595
Configuration of DHCP Clients 596
Viewing Network Information on Windows 598
Mastery Check 604
Using rdist 607
1. Create an rdist Distribution File for Synchronizing Files 609
2. Debug an rdist Configuration 611
3. Investigate rdist Commands i 612
Task Notifications 614
Excluding Files 616

Invoking Commands i 617

XV

XVi UNIX System Administration: A Beginner’s Guide

4. Explore an rdist Example 618
Project 21-1 620
Mastery Check 623

A Answers to Mastery Checks L i 625
Module 1: Introduction to UNIX 626

Module 2: Basic UNIX Commands 626

Module 3: Using System Administration Tools 626

Module 4: Software Package Management Tools 627

Module 5: Maintaining UNIX Users 627

Module 6: File Systems, Disks, and Tools 628

Module 7: System Security 628

Module 8: Backup and Restore 629

Module 9: System Operationsc..cooo... 629

Module 10: The TCP/IP Suite, 629

Module 11: Basic Network Tools 630

Module 12: Advanced Network Tools 630

Module 13: Overview of SNMP 631

Module 14: Using Domain Name System 632

Module 15: Using NIS 632

Module 16: SNMP System Management Tools 632

Module 17: Using Network File System 633

Module 18: File Transfer Protocol 633

Module 19: Important System Administration Tasks/Information .. 634

Module 20: Using DHCP 634

Module 21: Using rdisto 635

B ToolsataGlance 637
C Overview of MIB-II i 641
Discover MIB-I1 642
System GIroupt 643

Interfaces Groupo 647

Acknowledgments

wish to thank my darling wife, Nita, known also as my better half, corporate

buddy, main squeeze, partner in crime, and overall the best companion I have
ever known. You truly are a gift from above! To JC for again talking and walking
with (and sometimes carrying) me when you were the only one that could help.

I also wish to thank the McGraw-Hill production staff for their

outstanding efforts in preparing the manuscript for production. Thanks go
to Lisa Wolters-Broder for handing the many details of chapter preparation
and to Emma Acker for coordinating the book process. Special thanks to
Franny Kelly, my acquistitions editor, for managing the Osborne UNIX series
and coordinating the fine art of book publishing. Thanks also to John Tiso for
reviewing the manuscript and providing critical feedback. Thanks to Jim Minatel
for adding important book elements to the chapters! Finally, special thanks to
Sam Yu for reviewing elements of the manuscript.

xvii
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Introduction

his book addresses the fundamentals of UNIX system administration and

focuses on the important elements of maintaining a small, medium, or large
network of UNIX systems. It tells you everything you need to know to be
a successful system administrator or manager. Even non-networked environments
are covered so that you are prepared to address the many different issues and
problems that are typically encountered with them.

Enterprise networks (or clusters) of UNIX systems have become the critical
link and key component of the information landscape for corporate America.
UNIX systems have been deployed within every corporate function and within
a broad section of businesses and markets. This widespread acceptance and
deployment means that UNIX systems are now more on the critical path than
ever before. In many corporations and institutions, a system failure or network
outage can have serious implications for the organization’s ability to conduct
standard business activities or communicate with their customers or key partners.
In the financial community as well as other market segments, even a relatively
small system failure or outage can result in significant financial impact or have
other far-reaching implications.

Many of today’s corporate and institutional UNIX sites are characterized
by significant growth in the diversity and the total number of systems installed.
In these heterogeneous computing environments, it is difficult to effectively

Xix
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

XX UNIX System Administration: A Beginner’s Guide

manage the many different computer systems and peripherals because much

of the system administration tasks are done in an ad-hoc manner, or lack
comprehensive tools. Sometimes tasks must even be done manually. A critical
system or network failure can significantly impact the use of corporate services
and affect the day-to-day operations of an organization. Many systems have
also been deployed with very little regard for their manageability or upgrade
capabilities. This makes the tasks of the system administrator that much harder
due to the added requirements of legacy systems, where key system tools are
not available with the basic system.

This book will give you the knowledge of important tools, step-by-step
procedures, and the skills necessary to effectively administer UNIX systems. It
is meant to be very practical in nature, and focuses on only the more important
elements to system administration, not esoteric subjects that have little relevance
to the important issues faced by today’s UNIX administrator.

Audience

The primary audience for this book is the beginning system administrator or
network manager, as the title suggests. If you already know the difference
between the netstat and mount commands, then this book might not be
up to your speed. On the other hand, if you have used some of these commands
before, but don’t really understand the bigger picture, or if you want additional
information about the commands or options, then this book will help guide
you. The book focuses more on how to use software tools and administration
procedures than on lengthy descriptions of operating system design or system
architecture. However, where appropriate, some theory of operation and/or
design is provided to ensure that you fully understand the mechanics of critical
services or functions.

UNIX Versions

All of the tools discussed in this book and the examples provided are from
Solaris and Linux, with some tools that are also based on the HP-UX operating
system. Because many of the UNIX tools are available across a wide variety of
versions of UNIX, you will have little difficulty adapting and using the tools in
other environments.

Module 1

Introduction
to UNIX

Critical Skills
1.1 Uncover the History of the UNIX System

1.2 Explore the Elements of a Computer System
1.3 Show the UNIX Timeline
1.4 Discover the Roles of the UNIX System Administrator

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

2 UNIX System Administration: A Beginner’s Guide

Before you jump in and type your first UNIX command, you’ll benefit from
understanding some general background on how computer architecture is
organized. When you combine that knowledge with a brief history of UNIX and
what features UNIX provides, yow'll begin to understand some of the advantages
UNIX provides over other operating systems. From there, you are ready to learn
what a UNIX system administrator does, and you'll see not all of those duties are
technical. So to start at the most basic level, you want to know what UNIX is.

1.1 Uncover the History
of the UNIX System

The UNIX system was introduced more than 30 years ago and is still one of the
most widely used and popular operating systems to this day. UNIX is used in
businesses, universities, institutions, and even individual homes to support a
variety of applications and functions. UNIX is quite universal and is used all
over the world by many different types of people for a host of different purposes.
UNIX is supported on a wide range of computer systems—from a single personal
computer to very large, high-end workstations and servers and even mainframe
class systems.

Certainly as expected, UNIX has gone through a myriad of changes and
modifications, which involved a large number of individuals, institutions,
and companies. UNIX has improved in many significant ways and as a result is
much more functional and provides a large pool of applications, tools, utilities,
and other software. The UNIX operating system has been ported to pretty much
every major computing platform and system architecture popular within
the computer industry. UNIX is available for just about all general-purpose
computer systems.

Typically, UNIX can be found on many common computer platforms and
users have direct interaction with the operating system. However, many turnkey
systems simply use UNIX to support one or more applications. The users of
these specialized systems generally interact with the application, but not UNIX
itself. It is very possible that many users of UNIX systems do not actually know
they are using UNIX, because their view of the system is restricted to the
application running on top of the operating system. UNIX has also found its
way and gained popularity in the embedded world, which means, like the

Module 1: Introduction to UNIX 3

turnkey approach, UNIX is hidden from the user community. The embedded
world contains a plethora of devices like cameras, controllers, handheld
devices, and just about anything else that supports a computer processor, and
UNIX can be used to provide a scalable, flexible system that can expand as the
device’s capabilities improve over time.

UNIX is constantly being improved, refined, and retooled. In other words,
it is still going through changes and enhancements. That is the beauty of
UNIX; like a fine wine, it gets better with age! As a system administrator, you
will be able to grow with UNIX—as it gets better, so will you as you become
more familiar with the system and specific tools. UNIX is many things to many
people. For the software writer, UNIX is a development platform to build
software. For general users of the system, it is using whatever applications they
need to accomplish their job. For the administrator, it is a system that changes
and must be maintained and improved over time. However, with these changes
comes challenges, and as a system administrator you will need to maintain your
knowledge of UNIX on a consistent basis in order to be effective.

1.2 Explore the Flements
of a Computer System

Every general-purpose computer system, no matter where it was designed or
manufactured, can be divided into functional areas or different modules so that
it can be explained and understood. Today, there is a large selection of computers
on the market. However, despite many different “brands” of systems, many
of them are based on a small number of common components and computer
architecture types. For example, in the personal computer space, the Intel
Pentium processor (and various clones) is one of the most popular throughout
the world. Despite this popularity, other computer systems such as the Apple
Macintosh and others continue to flourish. Generally speaking, every time a
dealer or maker sells a computer, it is shipped with both an operating system
and a set of applications. Without such software, the computer system would be
virtually useless because the user would have no way to interact with the system.
Figure 1-1 shows a diagram of the typical computer system, which contains
the different functional areas or modules within a computer. At the highest
level, applications are designed and written to accomplish very specific business
functions for users. At the lowest level, we have the physical hardware of the

4 UNIX System Administration: A Beginner’s Guide

’ Applications ’

’ Operating System ’

’ Hardware Platform ’

Figure 1-1 A diagram of the typical computer system

computer. At this level all of the hardware-related services are available, such
as connecting to a network, saving information to secondary storage (that is,
hard disk drive), accessing the CPU, and so forth. Typically, these functions
are very specific to the type or architecture of the system as well as the different
kind of peripheral devices used. For instance, the way memory is allocated for
applications can be somewhat different for the different types of computers
available on the market today.

An operating system or OS can be generally described as software that
provides an interface layer for applications so that they can interact with the
hardware components of the computer. Some examples of popular operating
systems include the Macintosh OS, Windows 2000, Palm OS, and UNIX. Although
each of the operating systems mentioned are different in design and may contain
alternative user interfaces, they all provide most of the same basic features. At
the middle layer or operating system level, many of the hardware functions are
made available for the upper application level. For example, many computers today
come with a DVD or CD drive that can be used to view movies or play compact
discs (CDs) on the computer. The computer provides the ability to play music
though the internals of the system. However, in order to listen to your favorite
music CDs, the operating system must provide some user application that permit
access and control of the DVD or CD drive. The application must provide the
ability to play, stop, skip between tracks, eject the disc, and so forth when
necessary. Thus, the software application must control the hardware in order
for the user to experience the full use of the hardware. Additional examples of
operating system support for hardware include control and access to peripheral
devices such as printers, modems, networks, computer monitors, keyboard,
pointing devices, etc.

Module 1: Introduction to UNIX 5

It is important to note that not all hardware functions are always completely
supported by the operating system—or even with certain applications. This
can be due to several factors such as operating system vendors not wishing to
support proprietary hardware designs or even functional defects within the
computer hardware itself. However, sometimes, one of the most common reasons
is that hardware development improvements are not completely synchronized
with operating system releases. In other words, when new computers are sold
and provide newer features and functions, the operating system may not
completely support these improvements because the software may have been
released before the hardware. In this case, the hardware wasn’t available while
the software was being written. As a result, the operating system vendor
might release a “patch” or upgrade, which is a smaller subset of software
(also sometimes called a module) that gives the operating system the means
to exploit the desired new hardware feature. Patches and/or upgrades are also
used to address software defects or other problems within the operating system.
The user must install the new software in order for the operating system to
support the new hardware. Generally speaking, because operating systems
are quite complex, certain patches have been known to cause additional or
unanticipated problems. This is where things can get quite interesting, because
a specific patch may be needed to support some application, but at the same
time it also causes some other problem, which must be addressed as well—
possibly by yet another patch or upgrade!

The operating system provides a set of core functions for applications such
as memory management, peripheral access, device interfaces, process scheduling,
and the like. Figure 1-2 contains a pictorial view of a typical operating system.
Each area of the operating system (or module) is responsible for that aspect
of the system, but is usually controlled by a single master program or process.
Instead of applications talking directly to hardware devices, the operating system
layer is defined to make it easier for application designers and writers to produce
less complex software. For example, consider an application that must have
the capability of producing reports to an output device such as a laser printer.
Without an operating system, the application must support the required
functionality by printing to these types of devices. Also, given that many different
kinds of laser printers are available on the market, it is very difficult to support
each of the manufacturers’ models within an application. To remedy this situation,
the operating system can provide a database of laser printers’ description types
and applications can simply use one of the predefined templates.

6 UNIX System Administration: A Beginner’s Guide

Applications User Interface

Master Program

Memory | Peripheral | Device Process
Management| Access Interfaces | | Scheduling

Figure 1-2 Diagram of a typical operating system

As you can see from the figure, many low-level functions are supported
within a typical operating system. Also, of equal importance is the user
interface that is provided. The user interface usually comes in two different
flavors for most operating systems: command line and graphical. The graphical
user interface (GUI) also makes the operating system more “user friendly” by
insulating the details or automating specific tasks or functions. The GUI is
typically used by new users or even by experienced users that choose not to
use the command line. The GUI provides a windowing system or some other
graphical elements to represent functions and tasks within the operating
system. For instance, should the user wish to delete one or more files, a series
of file and/or folder icons are displayed and the user simply selects the files
they wish to remove and uses the appropriate menu item.

The alternative interface, typically called the “command line”, provides a single
“prompt” to the system. Generally, the user must know more details about
the system in order to use this interface, which is usually used to bypass the

Module 1: Introduction to UNIX

? Ask the Expert

> Question Why does the operating system layer make it easier
for programmers to write applications to use computer hardware
resources?

Answer Because most personal computers on the market use an
open architecture (the hardware specifications are public and many
vendors can produce various components) there are thousands of
different hard drives, memory modules, video cards, and motherboards
and other components that should all work together if you assemble
them into a system. Very few programmers or application vendors
would have the resources to write code to interact directly with each
of these different pieces of hardware. So, the operating system includes
the programming so it can interface with any one of thousands of hard
drives, but an application programmer can write just one set of code to
access any hard drive throughout the operating system.

GUI to accomplish a very specific task. A “power user” sometimes uses this
method. Power users are individuals who have mastered the system and can
typically use the system without the GUI.

1.3 Show the UNIX Timeline

The UNIX operating system has a long and varied history, which is one of the
major reasons why it is alive and well today. The history behind UNIX and
the many individuals and organizations that helped mold and shape its past
can be quite detailed. As an alternative to providing a rather mundane detailed
listing involving all of the historical events surrounding UNIX, a time line

and description showing the most significant and key events will be provided
instead. Figure 1-3 shows this time line and each of the major events is
described below.

AT&T Invents UNIX

AT&T invented UNIX back in the early 1970s to support their internal
development efforts and to integrate a scalable operating system within their

UNIX System Administration: A Beginner’s Guide

Mach Introduced
Solaris Introduced

BSD is Born OSF/1 Introduced

Ultrix Introduced Redhat Ships
1970 2000

AT&T Invents UNIX Internet Worm

SunOS Introduced
ATT/Sun Venture

Linux Introduced

Figure 1-3 The UNIX timeline

communication products. They also released a version of UNIX to corporations
and universities, which supported software development, text processing, and
other user-level applications. One particularly popular release of UNIX was
known as the Programmer Work Bench (PWB). This release provided a wide
variety of development and text processing tools, which became very popular
in the university community.

BSD Is Born

The University of California at Berkeley was contracted by the government to
port AT&T UNIX to the Digital VAX architecture. The subsequent release of
this version of UNIX became known as the Berkeley Standard Distribution (BSD)
release. The BSD operating system introduced many new features and tools,
which played an important role in the future of UNIX. BSD added important
networking features such as TCP/IP networking facilities and virtual memory
support. Among some of the most popular tools included are the Vi editor, a
program called more, the termcap terminal facility and many others. The “r”
family of utilities that provides networking capabilities between UNIX systems
and users was also introduced with BSD.

The System V Releases

AT&T released several major operating system versions of UNIX, which became
known as “System V”. Several large computer manufacturers licensed these

Module 1: Introduction to UNIX 9

operating systems and provided ports to their own computer hardware platforms.
It was these ports (plus software from BSD) that later would become UNIX
products such as AIX, HP-UX, and Solaris.

AT&T/Sun Deal

Due to industry pressures and other important factors, both AT&T and Sun
Microsystems formed a partnership where Sun would port the System V release
of UNIX onto Sun computer systems. At that time, Sun supported both Motorola-
and Sparc-based computer systems. Over time, however, Sun discontinued
support for Motorola-based computers and focused quite heavily on their Sparc
systems. The porting effort by Sun resulted in the formation of the Solaris
operating system that we have today. Prior to the System V port, Sun used the
BSD release of UNIX, which was called Sun OS. Over time the Sun OS release
was discontinued and Solaris became the dominant operating system. Solaris
incorporates AT&T System V, Sun-specific software enhancements, plus BSD
packages and tools. Today, Solaris is one of the most popular UNIX operating
system in the world.

The Internet Worm

Although the Internet worm of 1988 had much to do with system and network
security, it also involved UNIX in a significant way since this security attack
demonstrated the vulnerabilities of the UNIX operating system and networking
infrastructure of the Internet at that time. The Worm was responsible for
infecting many UNIX systems and used the Internet as the connecting medium.
It was so virulent that is caused many systems to crash due to the high CPU
load that the software consumed when running. Despite the fact that the Worm
didn’t actually corrupt data files on the systems it penetrated, it did cause major
problems since each of the operating systems of the infected systems had to be
reinstalled. This was no small task for system administrators. This was certainly
a major issue for many since automatic software installation wasn’t as good as it
is today and many installations were done manually. As a result of the Worm,
UNIX and the Internet became more secure.

OSF/1

Due to the activities surrounding the AT&T/Sun partnership, several prominent
computer manufactures (HP, Digital Equipment Corporation (DEC), IBM,

10 UNIX System Administration: A Beginner’s Guide

and others) decided to attempt to even the playing field by forming a new
organization called the Open Software Foundation (OSF). The organization
was tasked with developing a version of UNIX that would compete with the
AT&T/Sun operating system. The product that ultimately was developed was
called OSF/1, which was based on the Mach operating system. DEC, among
other computer companies, offered the OSF/1 release to their customers. Due
to the popularity of the AT&T/Sun operating system, and changes within the
UNIX industry, OSF/1 was never widely adopted.

Mach

The Mach operating system, developed at Carnegie Mellon University, was
derived from a port of the BSD version of UNIX and introduced in 1985. Mach
provided much needed support for multiprocessors and also included other
important improvements. Several ports of Mach were made by different computer
manufactures, and for a time Mach enjoyed some popularity, but in the long
run the operating system wasn’t widely adopted.

Linux Is Introduced

Back in 1985, Touvus Linus introduced a version of UNIX for the Intel
processor—Linux. Today, Linux (and the variations) stands as a pinnacle
of the open source movement and the achievement of many individuals who
have contributed to the Linux effort.

Red Hat

Released in 1995, the Red Hat Linux operating system combines several aspects
of the Linux system in a popular package. The Red Hat operating system provides
a host of important features, contains many third-party tools and utilities, and
is one of the most popular Linux variants available today.

Versions of UNIX Today

With most things in life, where there is active competition the best will ultimately
survive and triumph. This is the case with several different versions or flavors

Module 1: Introduction to UNIX

of UNIX. Although many different versions exist, a common design and/or code
base is present in most of them. Also, two major kinds of UNIX operating system
software markets exist today. The commercial market is where customers
generally have to pay for the operating system software and generally may not
get any source code (well, not for free anyway!). The other market is also
commercial, but is considered open source. Open source means that you get full
access to the source code of the system or programs and can make changes or
modifications to that source code as long as you maintain the rights of the
original software owner.

Today, the UNIX leaders include Solaris, Linux, HP-UX, AIX, and SCO.

Why UNIX Is Popular

Many people ask why UNIX is so popular or why it is used so much, in so many
different ways and in so many computing environments. The answer lies with
the very nature of UNIX and the model that was used to design, build, and
continuously improve the operating system.

Availability of Source Code

One of the most significant points of UNIX is the availability of source code for
the system. (For those new to software, source code contains the programming
elements that, when passed through a compiler, will produce a binary program—
which can be executed.) The binary program contains specific computer
instructions, which tells the system “what to do.” When the source code is
available, it means that the system (or any subcomponent) can be modified
without consulting the original author of the program. Access to the source
code is a very positive thing and can result in many benefits. For example, if
software defects (bugs) are found within the source code, they can be fixed
right away—without perhaps waiting for the author to do so.

Another great reason is that new software functions can be integrated into
the source code, thereby increasing the usefulness and the overall functionality
of the software. Having the ability to extend the software to the user’s requirements
is a massive gain for the end user and the software industry as a whole. Over
time, the software can become much more useful. One downside to having
access to the source code is that it can become hard to manage, because it is
possible that many different people could have modified the code in unpredictable
(and perhaps negative) ways. However, this problem is typically addressed by

11

12 UNIX System Administration: A Beginner’s Guide

having a “source code maintainer,” which reviews the source code changes
before the modifications are incorporated into the original version.

Another downside to source code access is that individuals may use this
information with the goal in mind of compromising system or component
security. The Internet Worm of 1988 is one such popular example. The author,
who was a graduate student at Cornell University at the time, was able to
exploit known security problems within the UNIX system to launch a software
program that gained unauthorized access to systems and was able to replicate
itself to many networked computers. The Worm was so successful in attaching
and attacking systems that it caused many of the computers to crash due to the
amount of resources needed to replicate. Although the Worm didn’t actually
cause significant permanent damage to the systems it infected, it opened the
eyes of the UNIX community about the dangers of source code access and
security on the Internet as a whole.

Flexible Design

UNIX was designed to be modular, which makes it a very flexible architecture.
The modularity helps provide a framework that makes it much easier to
introduce new operating system tools, applications, and utilities, or to help

in the migration of the operating system to new computer platforms or other
devices. Although some might argument that UNIX isn’t flexible enough for
their needs, it is quite adaptable and can handle most requirements. This is
evidenced by the fact that UNIX runs on more general computer platforms
and devices than any other operating system.

GNU

The GNU project, started in the early 1980s, was intended to act as a
counterbalance to the widespread activity of corporate greed and adoption

of license agreements for computer software. The “GNU is not UNIX” project
was responsible for producing some of the world’s most popular UNIX software.
This includes the Emacs editor and the gcc compiler. They are the cornerstones
of the many tools that a significant number of developers use every day.

Open Software

UNIX is open, which basically means that no single company, institution, or
individual owns UNIX—nor can it be controlled by a central authority. However,
the UNIX name remains a trademark. Anyone using the Internet may obtain

Module 1: Introduction to UNIX

open source software, install it, and modify it, and then redistribute the software
without ever having to shell out any money in the process. The open source
movement has gained great advances and has clearly demonstrated that quality
software can, in fact, be free. Granted, it is quite true that certain versions of
UNIX are not open, and you do indeed need to pay to use these operating systems
in the form of an end-user licensing agreement. Generally speaking, vendors
that charge for UNIX represent only a portion of the total number of UNIX
releases available within the UNIX community.

Programming Environment

UNIX provides one of the best development environments available by providing
many of the important tools software developers need. Also, there are software
tools such as compilers and interpreters for just about every major programming
language known in the world. Not only can one write programs in just about
any computer language, UNIX also provides additional development tools such
as text editors, debuggers, linkers, and related software. UNIX was conceived
and developed by programmers for programmers, and it stands to reason that it
will continue to be the programmer’s development platform of choice now and
in the future.

Availability of Many Tools
UNIX comes with a large number of useful applications, utilities, and programs,
which many people consider to be one of UNIX’s greatest strengths. They are
collectively known or commonly referred to as UNIX “tools,” and they cover
a wide range of functions and purposes. One of the most significant aspects of
UNIX is the availability of software to accomplish one or more very specific
tasks. You will find throughout this text that the concept of tools is quite
universal and is used repeatedly. This book not only discusses the subject of
system administration but also provides detailed descriptions of UNIX-based
tools. As a system administrator, you will come to depend on certain tools to
help you do your job. Just as construction workers rely on the tools they use,
so too will the administrator rely on the software that permits them to handle
a wide range of functions, tasks, issues, and problems.

There are tools to handle many system administration tasks that you
might encounter. Also, there are tools for development, graphics manipulation,
text processing, database operations—just about any user- or system-related

13

14 UNIX System Administration: A Beginner’s Guide

requirement. If the basic operating system version doesn’t provide a particular
tool that you need, chances are that someone has already developed the tool
and it would be available via the Internet.

Hint
There are several popular Web sites that contain a large collection of public

domain and open source tools and applications that are available. These links
can be found in an appendix of this book.

System Libraries

A system library is a collection of software that programmers use to augment
their applications. UNIX comes with quite a large collection of functions

or routines that can be accessed from several different languages to aid the
application writer with a variety of tasks. For example, should the need arise
to sort data, UNIX provides several different sort functions.

Well Documented
UNIX is well documented with both online manuals and with many reference
books and user guides from publishers. Unlike some operating systems, UNIX
provides online main page documentation of all tools that ship with the system.
Also, it is quite customary that open source tools provide good documentation.
Further, the UNIX community provides journals and magazine articles about

@ UNIX, tools, and related topics of interest.

I

1-Minute Drill

@® Why is source code availability a valuable advantage to UNIX users?

@® What are some downsides of source code availability?

® Users can modify the code to fit their own needs, such as fixing bugs immediately or implementing
new features.

® Tracking and managing multiple versions of code changes can be difficult. Source code availability makes
it easier for unscrupulous users to exploit programming errors, particularly relating to security. (However,
source code availability means users can patch these bugs quickly, even if the original author or vendor
isn’t available to patch them.)

Module 1: Introduction to UNIX 15

Modular UNIX

Like all operating systems, UNIX can be divided into functional areas
(components) where each part is responsible for a given set of services.
This modularity is what gives UNIX its appeal and why it is one of the most
popular operating systems in the world. Figure 1-4 shows the overall picture
of where the individual components of the UNIX system fit together. Each of
the major elements is described in more detail below.

The Kernel

Perhaps the most critical element of the operating system, the kernel is
responsible for many of the operating system tasks and services that applications
and users require. The Kernel is the main program that interfaces with all
hardware components, supports the execution of applications, and provides
an environment for users. Very little can be done on a UNIX system without
accessing some Kernel function or resource. It is the controlling entity of

Shell

Tools and Utilities
Application Programming
Interfaces (APIs)

Kernel

Figure 1-4 UNIX operating system picture

16 UNIX System Administration: A Beginner’s Guide

the system. The kernel itself consists of several parts. From a high-level
standpoint, the kernel performs the following services and functions:

Interfaces with the computer hardware Using modules called device
drivers, the kernel uses these software components to talk directly to
hardware-level devices. For example, when an application wants to write
data to a secondary storage device such as a hard drive, the kernel “calls” the
driver to write the information specific to that device. Thus, for every hard-
ware device, the kernel must have an associated driver. Since every hardware
device (such as a disk drive or sound card, for example) is vendor specific,
the kernel driver must also be vendor and/or product specific. However,
there are times when a common driver will support a family of products
or devices. This driver concept is used extensively throughout the system;
interfaces to all hardware components use this approach. Some additional
examples of drivers include serial port drivers, printer port drivers,
keyboard and mouse drivers, video display drivers, sound drivers, and
network interface drivers.

Provides time-sharing services The kernel is responsible for providing
the resources necessary to handle multiple users, applications, and other
processes in what seems like a concurrent, real-time fashion. In other words,
UNIX supports a time-share model where users and applications run all

at the same time regardless of the underlying hardware characteristics.
Computers that support a single processor are said to be uniprocessor
machines, while multiprocessor machines contain more than one processor.
Thus, UNIX supports concurrent logins of different users and these
users may execute different applications or software all at the same time.
However, this reality is an illusion; the kernel makes it appear to the users
that everything is happening in a concurrent fashion, but the hardware may
not support parallel processing or concurrent processing. The kernel was
designed to provide this service regardless of the physical processing
characteristics of the machine in question. When the kernel is running on a
machine that supports more than one processor, the effects are pretty much
the same—multiple users and applications can run in a concurrent fashion.

Module 1: Introduction to UNIX

Implements security model The kernel supports the notion of users and
profiles. All users must be defined on the system before they are permitted
to access or log in to the system, and each user has a particular profile.
User accounts contain information about the user and are used to track
the users’ activities once they are on the system. The kernel ensures that
security between users and between the system and users is always
maintained. For example, it is not possible for one user to delete the files
of another user if the first user protects his or her files. Similarly, a user
will not be able to delete or remove system-related files unless the
administrator permits such activity.

Hint

Within UNIX, a special account, called the superuser, is defined. Known as the
“root” account, this is the one login that is usually set up by default on most
systems to have unrestricted access to every service or file within the system.
There isn’t any service, file, directory, or information that the superuser can’t
access. Typically, the system administrator becomes the superuser and uses
this account on a regular basis.

APls

UNIX provides a large number of application programming interfaces (APIs),
which help programmers write applications or tools that help to take advantage
of the system. Using UNIX APIs makes it easier to write programs and helps
software to integrate with the system.

The Shell

UNIX provides a mechanism for a user to log in to the system using what is
known as a command-line prompt or shell. The shell is a command interpreter,
which takes what the user types in and executes commands, manipulates files,
and so forth on behalf of the user. A large number of different shells are
available for UNIX, and users have the ability to customize the shell to suit
their own personal preferences.

17

18 UNIX System Administration: A Beginner’s Guide

1.4 Discover the Roles of the
UNIX System Administrator

The job of the system administrator is one of the best in the entire world! It
basically means that you look after the computer systems, and in some cases
the network that interconnects those systems as well. The phrase “looking
after” actually can mean quite a number of different things. From the system
administrator point of view, they are totally responsible for not only the
successful operation of the computers themselves—including the hardware,
operating system, and applications—but must also ensure that the users of
those systems are happy and are using the systems to their full extent. This is
a tall order considering the sheer number of users that systems can support
and also because users have different requirements and individual needs.

From a technical standpoint, the systems administrator will handle one or
more of the following depending on the size, organization structure, and type
of company in which they are employed:

Manage the computer hardware This includes dealing with hardware-
related problems such as faulty or failed system boards, disk drives,
CPUs, printers, and so forth. Also, if the hardware is covered by a vendor
maintenance contract, you will need to handle the details of maintaining
the coverage and managing the vendor relationship when problems occur.
You might need to “watch over” their activity when they are on-site to
ensure that they address the real problem or don’t cause problems in other
areas. For example, they might replace the wrong disk drive when multiple
drives are contained within a single system.

System backups You will be responsible for ensuring that regular
backups/archiving of the important system and critical data files are

done. This is perhaps one of the most important functions of the system
administrator and should not be overlooked from a job duty standpoint.
It is also one of the most boring parts of being a system administer!
Successful administrators typically will automate the backup function

so that they might spend more time on more interesting tasks. With the
deployment of specialized network backup systems, storage area networks
(SANs), and other backup solutions, ensuring correct backup procedures
have never been so easy.

Module 1: Introduction to UNIX

Maintain system capacities Typically, memory, CPU, and disk storage
are the key components that are upgraded when the user base of the systems
increases or the system application functions are expanded. The most
common is that the disk storage might need to be upgraded more often
due to increasing data processing or the addition of users.

Support the Network

With the ever-increasing dependence on computer networking and with the
growth of the largest network (the Internet), administrators are continuously
faced with handling network-related issues and problems. As a result,
administrators not only need to understand their systems but the network
and associated components as well. With this in mind, the administrator must
“bone up” on the networking protocols, devices, and particular network
applications. For example, having a very good understanding of TCP/IP can
come in handy when dealing with interaction between applications or general
network communication problems related to the Internet or a local network.
You might also need to handle hardware-related problems within the network,
such as dealing with failed network components, misconfigured devices, cabling
problems, and so forth. This might include dealing with Internet service
providers (ISPs) or phone companies, depending on how the network topology
and Internet services have been implemented.

Handle Peripherals

In many cases, the administrator will be required to handle the support of
associated devices that might be used with the primary systems. These devices
might include printers, modems, scanners, and just about anything else that
could be used with a UNIX system. Often, systems are purchased with these
add-on devices at the same time, but sometimes they are not—in which case,
the administrator must integrate or install one or more of the peripheral
devices. Printers are one such example, where they might be obtained after the
primary UNIX system was installed. With this in mind, the administrator must
ensure that the UNIX system is configured to use the printers correctly. If
the printer is going to be shared across a number of different systems, the
configuration must be replicated to each system supporting the printer. Equally
important, the printer devices must be set up and configured to work with the
UNIX systems as well. Thus, not only must the administrator understand UNIX,

19

20 UNIX System Administration: A Beginner’s Guide

but she or he must also have the ability to learn how other devices function and
be able to configure them. Don’t be alarmed—no administrator is expected to
know every type of device that can be integrated with a UNIX system. Rather,
the administrator must be able to learn how to do this when necessary, with the
aid of product manuals, technical support, and other resources.

Manage System Upgrades

Due to the nature of computer technology and the need to support more
functions and perhaps more users, the administrator might be asked to perform
certain (if not all) system upgrades. This will include installing more memory,
disk storage, CPUs, updating the computer firmware, and a host of other
hardware-related tasks. If the UNIX systems are covered under a vendor
maintenance support agreement, the vendor may perform some of the upgrades.
For instance, the firmware, which is used to handle lower-level system functions
and diagnostics, might be upgraded automatically by the system vendor.

Upgrades are not just made to the hardware components of the system, but
also to the operating system, applications, tools, or utilities. Sometimes, dealing
with software upgrades can be more difficult than the hardware due to the
dependencies on different software components. For example, if the operating
system was upgraded to a newer version, it might cause one or more applications
to not function correctly. Normally, application vendors do a good job of
testing their software on different operating system releases to avoid these types
of problems. However, no vendor can guarantee that their product will never
crash or experience problems, regardless of which particular operating system
release is being used.

Actively Monitor System Security

In certain organizations, the system administrator is responsible for handling
all aspects of system security. This includes, for example, ensuring that external
attacks (say, from the Internet) as well as internal ones (from local users) are
prevented as much as possible. There are many aspects of system security—
from running monthly security reports to installing security patches. The most
important component of security is being prepared when security-related issues
or problems strike. Just as when natural disasters hit a particular city, so too

it is very important to be prepared. For example, if it becomes necessary to

Module 1: Introduction to UNIX = 21

restore user files due to corruption caused by a malicious program, these files
must be restored quickly and accurately. Further, it will be very important

to take steps to prevent security problems in the first place. For example, if
one or more security vulnerabilities have been found with a software module,
application, or utility that is currently being used on the system, that software
should be upgraded in order to minimize any potential security risk.

If you demonstrate a positive security model and communicate the need for
security, others will follow. The administrator has to set the stage and promote
security as a way of life for all users of the system. For example, you might need
to teach users not to leave their workstations logged in while they are away for
extended periods of time. The users of the system will help to implement and
conform to specific security rules, policies, and procedures that you define. In
larger companies or organizations, security might rest with a particular security-
centric group, which is not typically a part of those that administer the systems.
However, the individuals within the security department must work hand in
hand with the administrator to ensure that specific policies and security
measures are implemented on a system wide-basis.

Maintain System Accounts

As part of general security and administration of UNIX, you will need to maintain
a close eye on user accounts, which is the primary way to control access to the
system. UNIX uses a system account files to permit users to gain access to
the system, and it will be your direct responsibility to ensure that only authorized
users are permitted access and that they are set with the correct profiles and
access parameters. Also, it will be important that you delete user profiles when
employees leave or move to another part of the company, or you might need to
adjust user profiles as user access policies change.

Advance Your Knowledge

Believe it or not, you will be asked to learn new technologies, products,
applications, and perhaps a host of other interesting subjects related to your
job. You will be most valuable to your organization when you know just as
much as (or even more than) the vendors that provide your products and
systems. You will need to attend professional development classes, vendor-
offered training, and other training programs and courses. Also, depending on
the company, you might need to seek one or more vendor certification programs,

22 UNIX System Administration: A Beginner’s Guide

such as from Red Hat or Sun Microsystems. Also, you may need to supplement
your understanding and technology knowledge by reading great books (such as
from this series!!), trade magazines, journals, and other publications. Further,
you might need to attend special conferences and trade shows to gain more
insight into a particular technology or product, or to learn more about a vendor.

As you can see, being a system administrator means handling many technical
details of the computer systems within your environment. One very interesting
aspect of this is that should the computer environment contain different versions
of UNIX, in what we call a heterogeneous network, this can complicate the
administrator’s job to some degree. In general, UNIX is fairly standard, but
different vendors provide unique tools just for their platform. As a result, it
might be difficult to do certain tasks the same way across different vendors’
UNIX machines. However, in most cases this isn’t a problem because many
of the tools work the same way for most different flavors of UNIX.

The successful administrator not only handles the details of the system but
also in certain cases must be a teacher, police officer, politician, parent, and
friend, and have good organizational skills and a cheerful disposition. Bear in
mind that not all of these skills are absolutely necessary, since many companies
define the job of system administrator in different ways. As a result, different
skills and tasks may be required.

Teacher

As an administrator, you will find yourself showing the users how to use the
system and perhaps giving classes on a wide range of subjects related to the use
or operation of a particular application or system capability. For example, new
users might not know how to log in and access certain applications in order for
them to complete their jobs. You might also need to show experienced users the
best way to archive their files or how to use a new system utility or a recently
installed application.

Politician

Being an administrator means that you must handle and solve a large number of
problems. In certain cases, this might require you to be a politician due to the
issues and people involved. Some of these problems can be a conflict between one
or more users or can be related to how the system is supported or maintained.
The system administrator usually deals with many individuals at all levels of the

Module 1: Introduction to UNIX = 23

company. For example, they may deal with administrative assistants, technical
staff, managers, and vice presidents, as well as outside customers, suppliers,
and vendors. As a result, good negotiation and people skills are necessary.

Parent

Sometimes users can be like children, and they require a strong parent to rein
them in. For instance, some users insist that they keep every file they ever used,
and as a result the system disks are filled to capacity. This can be unacceptable
behavior if every user did this because of the amount of time and trouble caused
by having to clean up after these users. Also, since the administrator knows the
system, they might need to give advice to users about how best to solve or
address some particular issue or problem. For instance, a user might need to
obtain a large amount of data for a particular purpose and it must be transferred
from one system to another. In this case, you might need to step in and provide
assistance.

Police Officer

Sometimes being a politician or parent isn’t enough; you might need to become
a police officer to enforce some general rules of behavior or exercise critical
control of the system. For example, you will need to restrict physical access

to the computer system to only those individuals that require it. A curious

user attempting to fix a hardware-related problem could spell disaster for the
administrator, given the complexity and sensitivity of hardware components.
Another good example is system security—should the administrator detect
unauthorized access to the system, then the administrator must take immediate
action to protect the integrity of the system and users. It might, for example,
mean that users are audited to ensure they are not doing bad things on

the system.

4
Hint
Generally, security measures are more successful if they are planned in advance

before you need them. For example, user audit trails are most useful when
they capture bad behavior when it is happening.

24 UNIX System Administration: A Beginner’s Guide

Friend

If the above duties aren’t enough, you might actually need to be a friend to
your users. For example, one user might be working on a critical project that
requires you to help them with a system-related problem (such as the printer
not functioning correctly) at an unpopular time—say, during the weekend or
in the wee hours of the morning. You might have the option to tell the user to
wait until the official workday starts or handle the issue on the spot. In general,
users are good-natured and happy individuals, but other times they might be
nasty, outrageous, and demanding. It may be in your best interest to help the
individual because you want to be helpful, and that is expected. As with most
things in life, a simple smile and thick skin (for really difficult users) can go

a long way to ensure that a bad situation goes smoothly.

Also, goodwill can flow in both directions. If you help users out of tough
situations, they might help you in turn at some point in the future! You may
find that having friends on the “inside” can work in your favor. Sometimes,
the job of system administrator isn’t very popular because you might need to
make some decisions that affect users in a negative or unpleasant way. Take,
for example, the moment you need to bring the system down for some critical
maintenance task. You will need to ask all the users to log off the system, and
this can be an unpopular thing to do since users might not want to log off—
because, for example, they have their own deadline or other things they must
complete, and this downtime can cause them pain. However, having users who
understand can help to bolster your position about the system outage and
smooth things over for users that might not fully appreciate your need to bring
the system down when it is not convenient for them—they may come to realize
that in the long run it is in their best interest.

The bottom line is that being a system administrator sometimes requires
that one be both technical and have a reasonable knack for dealing with
individuals (users) and all levels of management. Certainly this is the ideal
situation, but the world is full of situations that are far from perfection. As a
result, many successful administrators don’t need to deal with the softer side,
but more the technical. Conversely, some administrators work within teams
where they might not be handling the day-to-day tasks, but rather deal with
more of the management aspects of the job. As you can see, your mileage may
vary and the exact system administrator requirements will be different depending
on the company or the exact job position.

Module 1: Introduction to UNIX

[|Mastery Check

1.

Name the three functional areas or layers of any computer system,
regardless of brand.

. Which UNIX component interacts with the system hardware?

A. Kernel
B. APIs
C. Shell

D. Hardware Administrator

. Which of the following is not a key reason for UNIX’s popularity?

A. Flexible design

B. Proprietary software
C. GNU

D. Well documented

A is a collection of software that programmers use to

augment their applications.

. Which of the following is not a function of the UNIX kernel?

1. Interfaces with the computer hardware
2. Provides time-sharing services
3. Implements security model

4. Maintains system capacities

. The UNIX is responsible for regular backups/archiving

of important system and critical data files.

25

This page intentionally left blank.

Module 2

Basic UNIX
Commands

Critical Skills
2.1 Explore the UNIX Shell

2.2 Investigate Basic UNIX Commands

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

28 UNIX System Administration: A Beginner’s Guide

his module provides an introduction into using the standard shell and some

of the basic operating system tools that administrators will need to know to
help them maintain UNIX systems. As the system administrator, you will need
to learn about a variety of utilities and tools to help accomplish administrative
tasks and make your job easier. It will be important that you get familiar with
many of the commands within this module and you are encouraged to try
running these programs within your own environment just so that you get a
feel for the behavior and to begin learning the many program parameters and
command-line options.

2.1 Explore the UNIX Shell

The shell is a rather unique component of the UNIX operating system since it

is one of the primary ways to interact with the system. It is typically through
the shell that users execute other commands or invoke additional functions.
The shell is commonly referred to as a command interpreter and is responsible
for executing tasks on behalf of the user. Figure 2-1 shows a pictorial view of
how the shell fits with the UNIX system. As you can see, the shell operates within
the framework just like any other program. It provides an interface between the
user, the operating system functions, and ultimately the system Kernel.

|
}

Shell <

(sh, csh, bash, etc.)
Script 2

v

Unix Tools, Utilities,
and Applications

!

Kernel

Figure 2-1 | The UNIX shell

Module 2: Basic UNIX Commands 29

Another powerful feature of the UNIX shell is the ability to support the
development and execution of custom shell scripts. The shell contains a mini
programming language that provides a lightweight way to develop new tools
and utilities without having to be a heavyweight software programmer. A UNIX
shell script is a combination of internal shell commands, regular UNIX
commands, and some shell programming rules.

UNIX supports a large number of different shells, and also many of the
popular ones are freely available on the Internet. Also, many versions of UNIX
come with one or more shells and as the system administrator, you can install
additional shells when necessary and configure the users of the system to use
different shells, depending on specific preferences or requirements. Table 2-1
below lists many of the popular shells and a general description of each.

Once a user has logged into the system, the default shell prompt appears
and the shell simply waits for input from the user. Thus, logging into a Solaris
system as the root user for example, the standard Bourne shell prompt will be

#

The system echoes this prompt to signal that it is ready to receive input from
the keyboard. At this point, this user is free to type in any standard UNIX
command, application, or custom script name and the system will attempt to
execute or run the command. The shell assumes that the first argument given

Shell Name General Description

Sh Standard Bourne shell, which is one of the most popular shells
around.

Csh Standard shell with C like language support.

Bash GNU Bourne-Again shell that includes elements from the Korn
shell and C shell.

Tcsh Standard C shell with command-line editing and filename
completion capabilities.

Ksh The Korn shell combines the best features of the Bourne and C

shells and includes powerful programming tools.

Zsh Korn shell like, but also provides many more features such as
built-in spell correction and programmable command completion.

Table 2-1 Descriptions of Different UNIX Shells

30 UNIX System Administration: A Beginner’s Guide

on the command line is a program or a special character sequence that is
interpreted by the shell as a command. UNIX supports a large number of
commands, which can be classified into several different groupings that include
generic user-level commands, superuser-level commands, and built-in shell
commands.

User-level commands are those programs that can be run by any user,
regardless of their access level or other user account parameters. The date
command is one such example; generally speaking, no special permission is
required to display the local date and time with the command. UNIX contains a
very large number of these types of commands and they are usually contained
within standard directories such as /usr/bin or /usr/local/bin.

Hint

Anyone can peruse these directories to obtain a list of the all the available
commands contained within the locations. However, the administrator can
define restricted users, which can’t access common directories or execute a
generic program, but this is something the administrator must purposely do.

The superuser commands, which can be found in several different system
directories (/usr/bin/usr/sbin, and so forth) are those that require
system-level or privileged access to invoke or execute. For instance, the format
program is used to format storage media such as disk drives. Typically, this type
of administration function is restricted and can’t be invoked by typical UNIX
users due to the destructive nature of the command; it can completely delete
all information from a storage device. Thus, only the superuser can run this
command. UNIX provides a special account called the superuser account,
or also known as root, which is used to permit system or administrative
access. The UNIX administrator will use this account when performing system
maintenance and other important administrative tasks. The superuser account
is a sacred cow—it provides complete and total access to all aspects of the system,
and this account must be guarded at all times; only the administrator will use this
account, and it is usually protected by a secret password.

The built-in shell commands are defined as those functions, which are
not part of the UNIX command set, but instead are interpreted and supported
directly by the shell. They are not stand-alone programs such as date, but are
executed within the shell. For example, the set command, which is used to
define environment variables, is one such internal command. An environment
variable, for example, is one way to pass a program a parameter, which can be

used to control the behavior of the software to achieve some desired result. For
example, you can use an environment variable to contain the user’s default
printer, so that any application can use this information to print to the correct

output device.

Module 2: Basic UNIX Commands

2.2 Investigate Basic UNIX

Commands

As you will see in this book, UNIX comes with a large number of commands
that fall under each of the categories listed above for both the generic user and
the system administrator. It is quite hard to list and explain all of the available
UNIX functions and/or commands in a single book. Therefore, a review of some
of the more important user-level commands and functions has been provided
and subsequent modules provide a more in-depth look at system-level
commands. All of the commands discussed below can be run by generic users
and of course by the system administrator. However, one or more subfunctions

of a command may be availa

Table 2-2 provides a list of standard commands, which are available across
many different versions of UNIX. For example, if we wanted to get a listing of all
the users that are currently logged into the system, the who command can be used.

UNIX Command
cat

date
hostname
find

grep

Is

more

ps

strings
uname
who

ble only to the system administrator.

Meaning

Show the content of file.

Show system date and time.
Display name of system.

Search for a specific file.

Search a file for specified pattern.
List files in a directory.

Another command to show content of file.

Show status of processes.
Show strings within a file.
Show system-related information.
Show current users on the system.

Table 2-2 Basic UNIX Commands

31

32 UNIX System Administration: A Beginner’s Guide

Thus,

who

will produce a list of the login names for all users presently on the system, such as

bill pts/1 Sep 9 06:41 (pebbles)
root pts/10 Sep 9 09:11 (fred)
sjmaxwell pts/2 Sep 9 08:02 (wilma)

You can find this command (and, of course, many others) on Linux, HP-UX,
Solaris, AIX, and many other versions of UNIX. However, depending on the
version of UNIX, the output might slightly be different. Naturally, this output
shouldn’t really match what is displayed when you execute this command on one
of your systems since the environment and users will be quite different. Despite
this, the command displays basically the same information regardless of which
UNIX system it is executed on. The who command is very interesting because
it shows when the users were logged into the system and from which terminal,
and, if networking services is active, the name of the computer system that the
user originated the connection from. In the example above, bill is logged in
from a system called pebbles, while root and sjmaxwell (yes, that is me!)
are from the systems known as fred and wilma, respectively. Knowing and
understanding commands like who (and many others) makes it much easier
to administer UNIX-based systems. Next to the login name is the terminal
associated with that login. In the example, pts followed by a number indicates
the terminal device number. When a real terminal or network connection is made
to the system, a terminal (real or pseudo if network) is assigned automatically by
the system to the user that logged into the system.

Like most UNIX commands, the who utility provides a number of command-
line arguments, which control the behavior and output of the program. However,
it is not necessary to know all of these arguments to use the basic functions.
Having said that, one of the more useful functions of this program is to identify
the username of the current shell. In other words, which user account am 1
logging under? Using the command

who am 1
root pts/8 Dec 27 15:21 (dhcpclient-202)

Module 2: Basic UNIX Commands

will display the login username and other information. This is most useful if
you have started to use a terminal or login session and you don’t know which
user is in fact logged into the system.

Finally, another important function of the who command is to report the
system run mode with the use of the —r option. This argument displays the
current system run level, which can be multiuser, single user, or some
additional level as defined in the /etc/inittab file. See Module 9
for additional information. Thus,

who -r
run-lTevel 3 Dec 8 10:41 3 0 S

shows that the system is at run level 3, which is the multiuser mode that the
system typically uses during normal everyday operations.

Those new to operating systems find it strange that UNIX doesn’t provide
positive acknowledgement, with some kind of printed message of successful

execution of a command. For example, when the user removes a file using the rm
command, the system doesn’t respond with a specific message when it is finished,

but instead simply removes the file and returns the shell prompt. Thus, when

rm records.dat
#

is run, it removes the records . dat file and issues the shell prompt again.

Hint

The command didn‘t respond by displaying a successful message other than
displaying the prompt again. Alternatively, the user could check to see if the
command did what it was supposed to do. For instanced by running the
following command:

1s records.dat
records.dat: No such file or directory «————— Error Message
#

When the 1s command is used against a nonexisting file, it produces an error

message because the file could not be found. Seasoned UNIX administrators

don’t typically check that certain commands were in fact executed because should

33

34 UNIX System Administration: A Beginner’s Guide

any type of error have occurred during the execution of the rm command, it
would have issued a message stating that a problem had been encountered. For
example, if the records . dat couldn’t be removed because of a file permission
problem, a message would be generated that gives a clue to the problem:

rm records.dat
rm: records.dat not removed: Permission denied
#

Generally speaking, most UNIX commands give some kind of error/status
message when a problem has been encountered.

cat

The cat command will display the content of one or more text-based files. It
is considered “more-lite” since it doesn’t support fancy scrolling functions like
the more command. The cat program is a fairly simple-minded tool, which
supports a small number of command-line options. However, the most useful
ones are listed in Table 2-3. Note that the above error message typically
wouldn’t be displayed if the command was run by the superuser.

Option Definition

-n Number each line of output.

-b Same as -n, but don’t number blank lines.

-u When displaying text, don’t use buffering (Solaris and
HP-UX only).

-s Don't display an error when attempting to process nonexisting
files (Solaris only).

-v Display non-printable characters in visual form.

--help Display list of supported command-line options
(Linux only).

Table 2-3 Cat Command-Line Options

Module 2: Basic UNIX Commands

To show the contents of a sample /etc/passwd file with associated line
numbers, issue the following command:

-n option to number directory and
output lines filename to list

cat -n /etc/passwd

—» 1 root:x:0:1:Super-User:/:/sbin/sh
2 smaxwell:x:0:1:Super-User:/:/usr/bin/bash
3 daemon:x:1:1::/:
4 bin:x:2:2::/usr/bin:
5 sys:x:3:3::/:
6 adm:x:4:4:Admin:/var/adm:
7 Tp:x:71:8:Line Printer Admin:/usr/spool/lp:
8 uucp:x:5:5:uucp Admin:/usr/1lib/uucp:
9 nuucp:x:9:9:uucp Admin:/var/spool/uucppublic:/usr/Tib/uucp/uucico

10 Tisten:x:37:4:Network Admin:/usr/net/nls:

11 nobody:x:60001:60001:Nobody:/:

12 noaccess:x:60002:60002:No Access User:/:

13 nobody4:x:65534:65534:Sun0S 4.x Nobody:/:

14 syu:x:100:111::/home/syu:/bin/sh

15 anonymous:x:101:1::/home/anonymous:/bin/sh

16 anonymou:x:102:1::/home/anonymou:/bin/sh

17 samc:x:20001:10:Mr Sam Clinton:/homes/samc:/bin/sh

18 stevem:x:20003:10:Mr. Steve Maxwell:/homes/stevem:/usr/bin/bash
19 anitat:x:20004:102:Ms. Anita Tognazzini:/homes/anitat:/bin/sh
20 samyu:x:20005:10:Mr Samual Yu:/homes/samyu:/bin/sh

Numbers at beginning of each line are from -n
option, not part of the /etc/passwd file

The cat program can be used to display any UNIX file. However, it is not
that practical for displaying other types of files such as a software program or
binary file. Why? Because programs or other binary data can’t be displayed in a
meaningful way like text can be. A UNIX tool such as strings is more suited
for this purpose.

date

The date command is used to display the system date and time. Also,
sometimes it is necessary to alter the date or time on the system, and the
command can be used for this purpose as well. Typing the command

date

35

36 UNIX System Administration: A Beginner’s Guide

will show output formatting like the following:

Thu Dec 27 16:59:15 PST 2001

As with most UNIX commands, the date command supports different
command-line options and arguments, which can be used to alter what is
displayed or to control additional functions. For example, to alter the date and
time on the system, and set it to November 5, 2005 at 9:30 AM, the administrator
can use the following command:

11 This denotes the month of the year

05 This denotes the date of the month
date 110509302005 «—— 09 This denotes the hour of the day

Sat Nov 5 09:30:00 PST 2005 30 This denotes the minute of the hour
2005 This denotes the year

When the date command is given a correctly formatted date string, it
assumes that the system date should be altered and echoes back the new date.
Due to security concerns, only the superuser (root account) may alter the date
and/or time settings.

6? Ask the Expert

< Question Why can only the superuser alter the date or time settings?

Answer Well, the view from many system administrators is that
typical users shouldn’t be able to alter the date because it could impact
the system in negative and unexpected ways. For example, some
software license keys are coded to expire on some future date. If
someone changes the date and advances the clock, it could invalidate
the licenses and stop these software packages from operating. Also,
changing the date vicariously can cause problems when files and
directories are created or modified, because they pick up time stamp
information that is not accurate. It could lead, for example, to files
having a future or past date that is in conflict with reality. Also,
consider if an order entry system application is running on a system
where the date was advanced significantly. This action will negatively
impact the ability to handle delivery dates and schedules because of the
incorrect date and time information.

Module 2: Basic UNIX Commands

hostname
The hostname command shows the name of the host when it is typically
attached to a network. However, a UNIX system can have a valid hostname
without networking services actually configured or when the system is not
attached to a network. This name can either be a fully qualified domain name
(FQDN) or another name known as a host alias. The FQDN is what has been
defined within the Domain Name System (DNS) server for that particular
system. An alias is simply another name for the FQDN and can be used
interchangeably with the fully qualified name.

To display the hostname of a system, type the following:

hostname

If the hostname is defined, a string is displayed as in the following example:

pebbles.home.com

In this case, the hostname pebbles . home . com is the defined system
name, and it is this name that should be used when accessing the system over
the network. For example, if the administrator wants to determine if the system
is reachable from another node on the network, this hostname can be used with
the ping command. See Module 11 for additional information on this network
command. Thus,

ping pebbles.home.com
pebbles.home.com is alive

shows that the system is available on the network.

o
Hint
This name is known as a fully qualified name because it contains both the
hostname and the domain name. As previously suggested, the hostname may
also be the system alias. Thus, a hostname of pebbles would be just as valid
or correct.

The hostname command can also be used to name the host or rename
the host if it already has a defined system name. However, on Solaris and other
systems, just running this command doesn’t permanently alter the name of the

37

38 UNIX System Administration: A Beginner’s Guide

machine across system reboots, nor does it completely change the name of
the machine. In other words, using this command on the command line only
alters the name of the system until the system is rebooted, and without additional
@ steps would cause the system to not function correctly on the network.
I

1-Minute Drill

@® Asa UNIX system administrator, why don’t you need to check to see
if a command executed after issuing it?

@® Why isn’t the cat command appropriate for listing the contents of
program files?

find

The £ind command is used to search the UNIX system for specific files and/or
directories. This command is very useful to recursively search a file system
when you don’t know exactly where a file (or group of files) is located. One
very practical use of this command is to clean up file systems by removing
unneeded files and thus reclaiming disk space. Additional practical uses include

Identifying files that contain possible security concerns or problems
Identifying very large files that consume much disk space
Identifying files that are owned by specific users

Identifying files that haven’t been accessed in a long time and can be
archived off the system

To search for specific files—for example, all files named core—use the
following command:

find / -name core

@® You don’t need to check to see if a command executed because if it didn’t, UNIX will return an error
message.

® The cat command only displays text characters properly and doesn’t handle special characters in program
files well.

Module 2: Basic UNIX Commands 39

and if one or more core files are found, a list of files will be produced as
shown in the following example:

/home/sjmaxwell1/bin/tools/core
/tmp/corel
/usr/local/utils/core
/var/stream/bin/core

When attempting to clean up disk space, files with the name of core are
particularly useful to locate and remove because they tend to be rather larger
in size. Generally, core files are generated as a result of a binary program that
has stopped under some abnormal condition. The file contains program data
and other information that is useful for tracking down software problems.
Unfortunately, core files can hang around within a file system soaking up
large amounts of disk space and without some kind of cleaning process can
cause a file system to become full and subsequently unusable.

The output of this command shows a series of fully qualified files, each
matching the file string arguments shown in the £ ind command. In this case,
a total of four files have been found. The output of the command is very helpful
when additional inspection of the files is necessary. For example, you can further
examine the file using the 1s command with the —al options. The 1s command
shows several very useful aspects of a UNIX file as discussed below. Thus, to
see the amount of space the file uses, use the following command:

filesize

1s -al /var/stream/bin/core
-rw------- 1 root other 678876 Jun 29 16:34
/var/stream/bin/core

In our example, we wanted to see the amount of disk space the file consumed.
In this case, the file is using approximately 678K (that is 678,000 bytes, or
more than half of a megabyte) of disk.

The arguments and syntax of the £ind command include the following:

find path expression

The path argument tells £ind where to begin searching and will
recursively descend the specified path until it reaches the last directory. Many
times, the / (root) file system is specified, thus telling £ind to start at the

40 UNIX System Administration: A Beginner’s Guide

highest level within the system. The £ind command will continue to search
each additional mounted file system (because each mounted file system from /)
in order.

The expression argument includes two components: directives and
associated arguments. Directives are action verbs, which tell £ind what to do
or modify an action or behavior. Table 2-4 shows these directives and any
associated command arguments.

Command Definition

-atime Checks to see if the file was accessed by n number of days.

-cpio Writes the current file on the specified device in the 5120-byte
record format known as cpio (Solaris only).

-ctime Checks to see if the file’s status was changed n days ago.

-depth Controls how directories are searched.

-exec Executes a command once a file is found.

-follow Causes £ind to follow symbolic iinks.

-fstype Search for a file that belongs to a specific file system.

-group Search for a file that belongs to a specific group ID.

-help Display appreciated help on command-line arguments
(Linux only).

-inum Search for a file that contains a specific inode number.

-links Search for a file that has n number of file links.

-local Searches for a file that is on a local file system (Solaris and
HP-UX only).

-Is Prints current path name and any associated stats.

-mount Restricts the search to a specific mounted file system.

-mtime Checks to see if the file’s data was changed n days ago.

-name Search for a file with a specified name.

-newer Search for a file that has been modified more recently than file
argument.

-nogroup Search for a file with the group name not contained with the
/etc/group system file.

-nouser Search for a file with the owner not contained with the
/etc/passwd system file.

-ok Prompts the user to input a positive response to continue with
the specific £ind command.

-perm Searches for a file that contains a specific file permission pattern.

Table 2-4 Find Action Commands

Command
-path

-print

-prune
-size
-type

-user
-xdev

Module 2: Basic UNIX Commands

Definition
Same as -name, but the full path is used instead of the name
string (HP-UX only).

Causes £ind to print the current path name and is the default
option in some versions of UNIX.

Stops £ind from entering a directory hierarchy.

Searches for a file that is n blocks long using 512 bytes per block.

Searches a specific type of file such as block special, character
special, directory, or plain file.

Search a specific file owned by a given system user.
Same as the -mount command.

Table 2-4 Find Action Commands (continued)

Sometimes, it is not desirable to search every file system, but instead to
scan only a specific one. In this case, use the —-mount option to restrict the
scan operation to only a single file system tree. For example, the command

find /var -mount -name core -print

/core

will search the /var file system for all occurrences of the filename core.

? Ask the Expert

> Question Why would you want to search just a specified file system?

Answer One of the biggest reasons is that you may not want to
search file systems that are mounted over the network from other
systems such as NFS volumes. Searching on remote file systems can
take longer if traffic on the network is high or even if the remote system
is overloaded. Even if the remote file system is relatively fast, it just may
not make sense to search a file system due to other considerations such
as it is a NFS read-only file system or in the case of locally mounted
read-only file system contained on a CD-ROM. Searching the contents
of a CD-ROM that contains product documentation when you are
looking for example, user files is totally a waste of time.

41

42 UNIX System Administration: A Beginner’s Guide

Now that we have a command that searches for core files, let’s assume we
would like to remove those files when they are found. The following command
will accomplish this task:

find / -name core -atime +10 -exec rm {} \;

It searches the system looking for core files that haven’t been accessed for
at least 10 days and once it finds one, it will remove it.

Is

The 1s command is used to list files and/or directories within one or more file
systems. The basic syntax includes

1s [options] [file/directory]

Like other UNIX commands, the 1s program has a fairly large number of
command-line options. However, only the most useful ones are presented in
this section. These options are described and summarized in Table 2-5, and
some of them are explained below.

Option Definition

-a List all files within a directory, including . and . .

-b Display nonprinting characters in octal format.

-C Use modification time when displaying files in sort order.

-C Multicolumn output.

-d If the file is a directory, list only its name not its subdirectories
or subfiles.

-F Mark each directory with a trailing “/“ character, an “*“ if file
executable, “@” if symbolic link, and “|“ if FIFO.

-i For each file/directory, list its corresponding i-node number.

-l Give more verbose output, which includes more information
about file/directory attributes.

Table 2-5 1s Command-Line Options

Module 2: Basic UNIX Commands 43

Option Definition

-L If the file is a symbolic link, list the referenced file—not the link itself.
-R Recursively descend and list each subdirectory.

-t Sort by time stamp information instead of by filename.

-u Use last file access time when displaying in sort order.

-1 Display one line for each file shown.

Table 2-5 Is Command-Line Options (continued)

Issuing this command in the current directory will list all files and/or
directories contained with that directory. Thus, if the administrator was
within the /usr directory, issuing the command would yield the following
sample output:

1s

411ib games Tocal per15_readme snadm

S5bin include mai’l platform spool

X java man preserve src

bin javal.l net proc tmp

ccs javal.2 news pub uch

demo kernel old sadm ucbinclude
dict kvm openwin sbin ucblib

dt Tib perl5 share xXpg4

The output above includes both individual files and directories, but it is
difficult to draw a distinction between them because no additional information
is provided. To solve this problem, we can use the -1 option, which shows a
long listing of file and directory attributes. Thus, running the above command
using this option produces the following:

The d at the beginning of this
line shows this is a directory

1s -1

total 132

drwxr-xr-x 2 root bin 1024 Mar 16 2001 41ib

Trwx rwxrwx 1 root root 5 Mar 16 2001 5bin -> ./bin
T rwxrwx rwx 1 root root 9 Mar 16 2001 X -> ./openwin

gdrwxr-xr-x 4 root bin 8704 Jul 13 15:03 bin

44 UNIX System Administration: A Beginner’s Guide

drwxr-xr-x
drwxr-xr-x
Trwxrwxrwx
drwxrwxr-x
drwxr-xr-x
drwxr-xr-x
Trwx rwxrwx
drwxrwxr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
Trwxrwxrwx
Trwx rwxrwx
drwxr-xr-x
Trwxrwxrwx
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
-rw-r--r--
drwxr-xr-x
Trwx rwxrwx
drwxr-xr-x
Trwxrwxrwx
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
Trwxrwxrwx
Trwxrwxrwx
Trwx rwxrwx
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

=

N

U
VUABRRARHRPUOUVORWHUHUONRRARHEORNONOR WNO R A

[y

root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
root
ro