


1.1

1.1.1

1.1.2

1.1.3

1.2

1.2.1

1.2.2

1.3

1.3.1

1.4

Table	of	Contents
Getting	Started

Introduction

Requirements

Using	Easy	Mobile

Notification

Module	Configuration

Scripting

Native	Sharing

Scripting

Release	Notes

2



Easy	Mobile	Lite	User	Guide
This	document	is	the	official	user	guide	for	Easy	Mobile	Lite,	the	stripped	down	version	of
Easy	Mobile,	a	Unity	plugin	by	SgLib	Games.

Important	Links

Get	the	Full	Version
Online	Documentation
Demo	APK
Easy	Mobile	Lite	on	Unity	Asset	Store

Connect	with	SgLib	Games

Unity	Asset	Store
Facebook
Twitter
YouTube

Getting	Started

3

http://u3d.as/Dd2
https://sglibgames.gitbooks.io/easy-mobile-lite-user-guide/content/
https://play.google.com/apps/testing/com.sglib.easymobile
http://u3d.as/FN0
https://www.assetstore.unity3d.com/en/#!/search/page=1/sortby=popularity/query=publisher:20993
https://www.facebook.com/sglibgames
https://twitter.com/SglibGames
https://www.youtube.com/channel/UCfNiWpkrQsoXDAMBrjhV9GQ


Introduction
Easy	Mobile	is	our	attempt	to	create	a	many-in-one	Unity	package	that	greatly	simplifies	the
implementation	of	de	facto	standard	features	of	mobile	games	including	advertising,	in-app
purchasing,	game	service,	notification	and	native	mobile	functionality.	It	does	so	by	providing
a	friendly	editor	for	setting	up	and	managing	things,	and	a	cross-platform	API	which	allows
you	to	accomplish	most	tasks	with	only	one	line	of	code.	It	also	leverages	official	plugins
wherever	possible,	e.g.	Google	Play	Games	plugin	for	Unity,	to	ensure	reliability	and
compatibility	without	reinventing	the	wheel.

Easy	Mobile	Lite	is	the	stripped	down	version	of	Easy	Mobile	and	contains	two	modules:

Notification

Compatible	with	OneSignal,	a	free	and	popular	service	for	push	notifications

Native	Sharing

Shares	texts	and	images	to	social	networks	using	the	native	sharing	functionality

Introduction

4

https://github.com/playgameservices/play-games-plugin-for-unity
https://onesignal.com/


Requirements
Unity	5.3.0	or	above.

Requirements

5



Using	Easy	Mobile
Using	Easy	Mobile	involves	3	tasks:

Configure	the	plugin	using	the	built-in	Settings	interface
Make	sure	an	instance	of	the	EasyMobile	prefab	is	added	to	your	first	scene
Make	appropriate	API	calls	from	script

Configuration

After	importing	Easy	Mobile,	there	will	be	a	new	menu	added	at	Window	>	Easy	Mobile	from
which	you	can	access	the	Settings	interface	and	configure	various	modules	of	the	plugin.

Using	Easy	Mobile

6



The	Settings	interface	is	the	only	place	you	go	to	configure	the	plugin.	Here	you	can	enable
or	disable	modules,	provide	ads	credentials,	add	leaderboards,	create	a	product	catalog,
etc.

All	these	settings	are	stored	in	the	EM_Settings	object,	which	is	a	ScriptableObject	created
automatically	after	importing	the	plugin	and	is	located	at	Assets/EasyMobile/Resources.	You
can	also	access	this	EM_Settings	class	from	script	and	via	its	properties	accessing	each
module	settings	in	runtime.

EasyMobile	Prefab

For	the	plugin	to	function	properly	it	is	required	that	the	EasyMobile	prefab	is	added	to	one
of	the	game	scenes.	The	prefab	is	automatically	created	when	importing	the	plugin	and	is
located	at	its	root	folder.	It	will	handle	tasks	like	initialization	and	automatic	ad	loading.

Using	Easy	Mobile

7



It	is	advisable	to	add	the	EasyMobile	prefab	to	the	first	scene	in	your	game	so	that	the
modules	have	time	to	initialize	before	you	actually	use	them.	Likewise,	this	will	allow	the
automatic	ad	loading	process	to	start	soon	and	the	ads	will	be	more	likely	available
when	needed.

Scripting

Easy	Mobile	API	is	written	in	C#	and	is	put	under	the	namespace	EasyMobile.	Therefore,
you	need	to	add	the	following	statement	to	the	top	of	your	script	in	order	to	access	its	API
methods.

using	EasyMobile;

Easy	Mobile's	API	is	cross-platform	so	you	can	use	the	same	codebase	for	both	iOS
and	Android.

Testing	Using	the	Demo	App

Easy	Mobile	comes	with	a	demo	app	that	you	can	use	to	quickly	test	each	module'	s
operation	after	configuring.	The	demo	app	is	contained	in	folder	Assets/EasyMobile/Demo.
To	use	the	demo	app,	you	need	to	add	the	EasyMobile	prefab	to	the	demo	scene	before
building	it.

Using	Easy	Mobile

8



Notification
The	Notification	module	helps	you	quickly	setup	you	game	for	receiving	push	notifications.	It
is	compatible	with	OneSignal,	a	free,	popular	cross-platform	push	notification	delivery
service.

Notification

9

https://onesignal.com/


Module	Configuration
To	use	the	Notification	module	you	must	first	enable	it.	Go	to	Window	>	Easy	Mobile	>
Settings,	select	the	Notification	tab,	then	click	the	right-hand	side	toggle	to	enable	and	start
configuring	the	module.

Import	OneSignal	Plugin

Using	OneSignal	service	requires	OneSignal	plugin	for	Unity.	Easy	Mobile	will	automatically
check	for	the	availability	of	the	plugin	and	prompt	you	to	import	it	if	needed.	Below	is	the
module	settings	interface	when	OneSignal	plugin	hasn't	been	imported.

Click	the	Download	OneSignal	Plugin	button	to	open	the	download	page,	then	download	the
package	and	import	it	to	your	project.	Once	the	import	completes	the	settings	interface	will
be	updated	and	ready	for	you	to	start	configuring.

Module	Configuration

10

https://github.com/OneSignal/OneSignal-Unity-SDK


Setup	OneSignal

Before	You	Begin

Before	setting	up	OneSignal	in	Unity,	you	must	first	generate	appropriate	credentials	for
your	targeted	platforms.	If	you're	not	familiar	with	the	process,	please	follow	the	guides
listed	here.	You	should	also	follow	the	instructions	included	in	that	document	on
performing	necessary	setup	when	building	for	each	platform.

In	the	ONESIGNAL	SETUP	section,	enter	your	OneSignal	App	ID.

Auto	Initialization

Auto	initialization	is	a	feature	of	the	Notification	module	that	initializes	the	service
automatically	when	the	module	starts.	You	can	configure	this	feature	in	the	AUTO-INIT
CONFIG	section.

On	iOS,	a	popup	will	appear	during	the	first	initialization	following	the	app	install	to	ask
for	the	user's	permission	to	receive	push	notifications	for	your	game.

Auto	Init:	uncheck	this	option	to	disable	the	auto	initialization	feature,	you	can	start	the
initialization	manually	from	script	(see	Scripting	section)

Module	Configuration

11

https://documentation.onesignal.com/docs/unity-sdk-setup


Auto	Init	Delay:	how	long	after	the	module	start	that	the	initialization	should	take	place

"Module	start"	refers	to	the	moment	the	Start	method	of	the	module's	associated
MonoBehavior	(attached	to	the	EasyMobile	prefab)	runs.

Module	Configuration

12



Scripting
This	section	provides	a	guide	to	work	with	the	Notification	API.

You	can	access	all	the	Notification	API	methods	via	the	NotificationManager	class
under	the	EasyMobile	namespace.

Initialization

Before	receiving	push	notifications,	the	service	needs	to	be	initialized.	This	initialization
should	only	be	taken	once	when	the	app	is	loaded,	and	before	any	other	calls	to	the	API	are
made.	If	you	have	enabled	the	Auto	initialization	feature	(see	Module	Configuration
section),	you	don't	need	to	start	the	initialization	from	script.	Otherwise,	if	you	choose	to
disable	that	feature,	you	can	initialize	the	service	using	the	Init	method.

//	Initialize	push	notification	service

NotificationManager.Init();

Note	that	the	initialization	should	be	done	early	and	only	once,	e.g.	you	can	put	it	in	the	Start
method	of	a	MonoBehaviour,	preferably	a	singleton	one	so	that	it	won't	run	again	when	the
scene	reloads.

//	Initialization	in	the	Start	method	of	a	MonoBehaviour	script

void	Start()

{

				//	Initialize	push	notification	service

				NotificationManager.Init();			

				//	Do	other	stuff...

}

The	NotificationOpened	Event

A	NotificationOpened	event	will	be	fired	whenever	a	push	notification	is	opened	and	your
app	is	put	to	foreground.	You	can	listen	to	this	event	and	take	appropriate	actions,	e.g.	take
the	user	to	the	store	page	of	your	game	to	download	an	update	when	it's	available.

You	should	subscribe	to	this	event	as	early	as	possible,	preferably	as	soon	as	your	app
is	loaded,	e.g.	in	the	OnEnable	method	of	a	MonoBehaviour	script	in	your	first	scene.

Scripting

13



//	Subscribe	to	the	event

void	OnEnable()

{

					NotificationManager.NotificationOpened	+=	OnNotificationOpened;

}

//	The	event	handler

void	OnNotificationOpened(string	message,	string	actionID,	Dictionary<string,	object>	

additionalData,	bool	isAppInFocus)

{

					Debug.Log("Push	notification	received!");

					Debug.Log("Message:	"	+	message);

					if	(additionalData	!=	null)

					{

										//	Check	if	a	new	update	is	available,	suppose	we	use

										//	a	key	called	"newUpdate"	to	signal	the	availability	of	one

										if	(additionalData.ContainsKey("newUpdate"))

										{

															//	Here	you	should	ask	the	users	if	they	want	to	update

															//	and	open	the	download	page	if	they	do...

										}

					}

}

//	Unsubscribe

void	OnDisable()

{

					NotificationManager.NotificationOpened	-=	OnNotificationOpened;

}

Scripting

14



Native	Sharing
The	Native	Sharing	module	helps	you	easily	share	texts	and	images	to	social	networks
including	Facebook,	Twitter	and	Google+	using	the	native	sharing	functionality.	In	addition,	it
also	provides	convenient	methods	to	capture	the	screenshots	to	be	shared.

Below	are	the	sharing	interfaces	on	iOS	and	Android,	respectively.

	

Enable	External	Write	Permission	on	Android

For	this	module	to	function	on	Android,	it	is	necessary	to	enable	the	permission	to	write	to
external	storage.	To	do	so,	go	to	Edit	>	Project	Settings	>	Player,	select	Android	settings	tab,
then	locate	the	Configuration	section	and	set	the	Write	Permission	to	External	(SDCard).

Native	Sharing

15



Native	Sharing

16



Scripting
This	section	provides	a	guide	to	work	with	Native	Sharing	API.

You	can	access	all	the	Native	Sharing	API	methods	via	the	MobileNativeShare	class
under	the	EasyMobile	namespace.

Capture	Screenshots

To	capture	the	device's	screenshot,	you	have	a	few	options.

Capture	and	Save	a	Screenshot	as	PNG	Image

To	capture	and	save	a	screenshot	of	the	whole	device	screen,	simply	specify	the	file	name
to	be	saved.	This	screenshot	will	be	saved	as	a	PNG	image	in	the	directory	pointed	by
Application.persistentDataPath.	Note	that	this	method,	as	well	as	other	screenshot	capturing
methods,	needs	to	be	called	at	the	end	of	a	frame	(when	the	rendering	has	done)	for	it	to
produce	a	proper	image.	Therefore	you	should	call	it	within	a	coroutine	after
WaitForEndOfFrame().

//	Coroutine	that	captures	and	saves	a	screenshot

IEnumerator	SaveScreenshot()

{

				//	Wait	until	the	end	of	frame

				yield	return	new	WaitForEndOfFrame();

				//	The	SaveScreenshot()	method	returns	the	path	of	the	saved	image

				//	The	provided	file	name	will	be	added	a	".png"	extension	automatically

				string	path	=	MobileNativeShare.SaveScreenshot("screenshot");

}

You	can	also	captures	and	saves	just	a	portion	of	the	screen:

//	Coroutine	that	captures	and	saves	a	portion	of	the	screen

IEnumerator	SaveScreenshot()		

{		

				//	Wait	until	the	end	of	frame		

				yield	return	new	WaitForEndOfFrame();

				//	Capture	the	portion	of	the	screen	starting	at	(50,	50),

				//	has	a	width	of	200	and	a	height	of	400	pixels.

				string	path	=	MobileNativeShare.SaveScreenshot(50,	50,	200,	400,	"screenshot");

}

Scripting

17

https://docs.unity3d.com/ScriptReference/Application-persistentDataPath.html


Capture	a	Screenshot	into	a	Texture2D

In	some	cases	you	may	want	to	capture	a	screenshot	and	obtain	a	Texture2D	object	of	it
instead	of	saving	to	disk,	e.g.	to	create	a	sprite	from	the	texture	and	display	it	in-game.

//	Coroutine	that	captures	a	screenshot	and	generates	a	Texture2D	object	of	it		

IEnumerator	CaptureScreenshot()		

{		

				//	Wait	until	the	end	of	frame		

				yield	return	new	WaitForEndOfFrame();

				//	Create	a	Texture2D	object	of	the	screenshot	using	the	CaptureScreenshot()	metho

d

				Texture2D	texture	=	MobileNativeShare.CaptureScreenshot();

}

Similar	to	the	case	above,	you	can	also	capture	only	a	portion	of	the	screen.

//	Coroutine	that	captures	a	portion	of	the	screenshot	and	generates	a	Texture2D	objec

t	of	it		

IEnumerator	CaptureScreenshot()		

{		

				//	Wait	until	the	end	of	frame		

				yield	return	new	WaitForEndOfFrame();

				//	Create	a	Texture2D	object	of	the	screenshot	using	the	CaptureScreenshot()	metho

d

				//	The	captured	portion	starts	at	(50,	50)	and	has	a	width	of	200,	a	height	of	400

	pixels.

				Texture2D	texture	=	MobileNativeShare.CaptureScreenshot(50,	50,	200,	400);

}

Note	that	screenshot	capturing	should	be	done	at	the	end	of	the	frame.

Sharing

To	share	an	image	you	also	have	a	few	options.	You	can	also	attach	a	message	to	be
shared	with	the	image.

Due	to	Facebook	policy,	pre-filled	messages	will	be	ignored	when	sharing	to	this
network,	i.e.	sharing	messages	must	be	written	by	the	user.

Share	a	Saved	Image

You	can	share	a	saved	image	by	specifying	its	path.

Scripting

18



//	Share	a	saved	image

//	Suppose	we	have	a	"screenshot.png"	image	stored	in	the	persistentDataPath,

//	we'll	construct	its	path	first

string	path	=	Path.Combine(Application.persistentDataPath,	"screenshot.png");

//	Share	the	image	with	the	path,	a	sample	message	and	an	empty	subject

MobileNativeShare.ShareImage(path,	"This	is	a	sample	message",	"");

Share	a	Texture2D

You	can	also	share	a	Texture2D	object	obtained	some	point	before	the	sharing	time.
Internally,	this	method	will	also	create	a	PNG	image	from	the	Texture2D,	save	it	to	the
persistentDataPath,	and	finally	share	that	image.

//	Share	a	Texture2D

//	sampleTexture	is	a	Texture2D	object	captured	some	time	before

//	This	method	saves	the	texture	as	a	PNG	image	named	"screenshot.png"	in	persistentDa

taPath,

//	then	shares	it	with	a	sample	message	and	an	empty	subject

MobileNativeShare.ShareTexture2D(sampleTexture,	"screenshot",	"This	is	a	sample	messag

e",	"");

Scripting

19



Release	Notes

Version	1.0.0

First	release.

Release	Notes

20


	Getting Started
	Introduction
	Requirements
	Using Easy Mobile

	Notification
	Module Configuration
	Scripting

	Native Sharing
	Scripting

	Release Notes

