User Manual: Using RPM with TSAT

July 20, 2018

Contents
1 Introduction to TSAT
1.1 Imterface Layout
1.2 Python Interface
1.3 Tools Introduction
1.3.1 Motif Discovery
1.3.2 Anomaly Detection
1.3.3 Representative Pattern Mining - RPM
1.4 Overview

2 Motif Discovery

2.1 Fileformat
2.2 Guide to Motif Discovery

2.2.1 Guess SAX Parameters

2.2.2 0Options
2.3 Rule Pruning

2.3.1 Clustering Technique

2.3.2 Greedy Rule Pruning
2.4 Python Interface

3 Anomaly Detection
3.1 Guide to Anomaly Detection
3.2 Python Interface
4 Time Series Classification using RPM

4.1 File formats
4.2 Training the Modelo
4.3 Testing oL
4.4 Testing Unlabeled Data o
4.5 Saving a Trained RPM Model oo
4.6 Loading an RPM Model
4.7 Settings

4.7.1 Dynamic Time Warping o

4.7.2 Tterations Lo
4.8 Python Interface o

5 FAQs

46

1 Introduction to TSAT

TSAT or the Time Series Analysis Tool is a software application that has enhanced the capa-
bilities of GrammarViz 2.0 and 3.0 [1, 2, 3]. TSAT has three main features:

Supervised Classification Using labeled time series train an algorithm to classify unknown
time series

Motif Discovery Finding repeated patterns within a time series

Anomaly Detection Finding rarely repeated patterns within a time series

1.1 Interface Layout

The main method for interacting with TSAT in this user guide will be through the graphical
user interface, or the GUL. When TSAT is started the GUI should look like that in Figure 1.

PAA|4 Alphabet:|4 & Slide window Exact ' MINDIST lterations |5

Grarmmar rules (searchin st by clicking inta st and pressing CTRL-F) Rule subsequences, narmalzed

rammar rules | Regularized rules | Rules periodicity | TSAT anomalies | RPM Representative Classes| RPM Classification | RPM Time Series Results

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

[« il [

Figure 1: Initial state of the TSAT Graphical User Interface (GUI).

There are eleven regions in the main GUI used to set parameters, load files, and analyze
results. The nine main regions in the GUI have a rectangular outline around them with a label.
They include: “Data Source”, “SAX Parameters”, “Numerosity reduction”, “Run GI”, “Run
RPM”, “Data display”, “Grammar rules”, “Rule Subsequences, normalized”, and “Workflow
management.” The other two regions are the top menu bar (with “File”, “Settings”, and “Help”)
and the text area at the bottom of the GUI. Presently, the items under “Help” do not have any
meaningful functionality. The text area at the bottom of the GUI is used to log useful information
about the state of GUIL. That text area may also be referred to as the logging area.

1.2 Python Interface

In addition to a Graphical User Interface, TSAT also has a python interface. This interface
consists of wrappers of the major functionality of TSAT’s GUI.

The python interface is found in the python directory as python/tsail.py. In order for the
python interface to work, the TSAT jar must be located in:
/target/tsat-0.0.1-SNAPSHOT-jar-with-dependencies. jar
If it is not there, either its alternative location must be set within tsail.py by editing within
tsail.py the following variable to the correct location:

TSAT_JAR_LOCATION = "../target/tsat-0.0.1-SNAPSHOT-jar-with-dependencies. jar"

or TSAT can be recompiled by running;:

mvn package -Psingle

which will generate the jar file in the correct location:
/target/tsat-0.0.1-SNAPSHOT-jar-with-dependencies. jar

In the python directory in TSAT you can run python and then type:

import tsail

Then you can call the functions like

tsail.buildMotifs(pathToTimeseries, outputFile, window_size=30, word_size=6,
alphabet_size=4, strategy="EXACT", threshold=0.01, numworkers=2)

tsail .RRA(pathToTimeseries, outputFile, window_size=30, word_size=6,
alphabet_size=4, threshold=0.01, discords_num=5)

tsail.RPMTrainTest(pathToTraining, pathToTest, outputFile, num_iters)

tsail .RPMTrain(pathToTraining, outputFile, num_iters)

tsail .RPMTest (pathToTest, modelFile, num_iters)

For motifs, anomaly detection and representative pattern matching respectively. In each of
the chapters on Motif Discovery, Anomaly detection, and Time Series Classification there are
instructions on how to use these functions. Examples of their usage are also provided within
tsail.py.

1.3 Tools Introduction

TSAT provides implementations of a number of algorithms used to analyze time series including
Representative Pattern Mining (RPM) to perform time series classification, Motif Discovery to
find repeating patterns, and Discord Discovery to detect anomalies.

1.3.1 Motif Discovery

A motif is a reoccurring pattern within a time series (an example motif is shown in Figure 4) and
both anomaly detection and representative pattern mining build from this concept. In order to
identify motifs within a time series TSAT first converts the time series into a string (a sequence
of words) and then performs context free grammar induction (GI). Specifically TSAT executes
two main algorithms SAX (Symbolic Aggregate Approximation) with numerosity reduction and
a user chosen GI algorithm either Sequitur or Re-Pair [2, 4, 5]. The motifs are then defined as

the subsequences in the time series defined by the grammar rules. TSAT allows the user to
explore the motifs by sorting by how frequently the rule is used in the root rule (labeled RO in
TSAT).

SAX SAX converts the time series into a string, or a sequence of characters. It does this
by using a fixed size sliding window over the time series and performing Piecewise Aggregate
Approximation (PAA) on each window and converting those values into words. This is called
subsequence discretization [6].

First SAX splits the time series up into smaller time series by only looking at a fixed size
window, or subsequence extraction as seen in Figure 2. So, if the time series is of length 1000
and the window length is 100 then each time series that SAX looks at is of length 100. SAX uses
a sliding window with a step size of one. This means that the first time series given the same
example spans from timestep 1 to 100 and the second time series is 2 to 101 and so there will
be 999 different time series of length 100. The formula is n — w + 1 where n is the length of the
time series and w is the length of the sliding window (the window length).

-

30 - A

104 extracted subsequences

0- — » sliding window positions

L
0 100 200 300

Figure 2: Subsequence extraction from a sliding window. Adopted from:
http://grammarviz2.github.io/grammarviz2_site/morea/assets/sax-error.png

Then for each sliding window time series, PAA produces a word by first performing z-
normalization on the values. This means converting the time series values to values with a
mean and standard deviate of approximately 0 and 1 respectively. However, so as to not amplify
the “under-threshold-noise” there is a z-normalization threshold value so that if the input
time series’ standard deviation is less than this value the z-normalization will not be applied.
Then the algorithm splits the window up into m equal sized segments called the PAA size and
for each of the segments it computes the mean value.

SAX maps each mean value to a letter in the alphabet and produces a word (a sequence
of letters/characters). The number of characters, a, available in the alphabet is chosen by
the user (the alphabet size). Since the values of z-normalized time series follow the Normal
distribution [7], the breakpoints for each character can be determined by making a equal-sized
areas under the Normal curve using lookup tables (illustrated along the y-axis in Figure 3).
Then for each of the windows we have created a word. Figure 3 shows the process of converting
a time series (without any sliding window) into a SAX word. It should be pointed out that the
“observation that normalized subsequences have highly Gaussian distribution, is not critical to

http://grammarviz2.github.io/grammarviz2_site/morea/assets/sax-error.png

correctness of any of the algorithms that use SAX, including the ones in this work. A pathological
dataset that violates this assumption will only affect the efficiency of the algorithms” [8].

C
\C c €

e ' M
[edl :

40 60 80 100 120

Figure 3: “A time series is discretized by first obtaining a PAA approximation and then using
predetermined breakpoints to map the PAA coefficients into SAX symbols. In the example
above, with n = 128, w = 8 and a = 3, the time series is mapped to the word baabccbe.” Both
the figure and the included caption are from [9].

Numerosity Reduction The list of words produced using this procedure is also compressed
using numerosity reduction. Numerosity reduction reduces the size of this list of words by skip-
ping duplicate words. Additionally, “numerosity reduction makes motif discovery more robust,
as we are matching patterns based on their shapes, even if they do not have the exact same
lengths” [10]. For example, a time series S}

S1 = aacy aacy abes abby acds aacg aacy aacg abey . . .
is converted to the much smaller string using numerosity reduction:
S2 = aac; abes abby acds aacg abeg

where the subscripts are the window numbers.

Grammar Induction GI Then grammar induction is used to produce grammar rules, the
motifs, from the SAX string. Both Sequitur and Re-Pair are context free grammar induction
algorithms that are included in TSAT. TSAT uses Sequitur as its default. However, there are
a number of differences according to [11]:

e Sequitur implementation is slower than Re-Pair

Sequitur tends to produce more rules, but Sequitur rules are less frequent than Re-Pair
rules

Sequitur rule-corresponding subsequences vary in length more

Sequitur rules usually cover more points than Re-Pair

Sequitur rule coverage depth is lower than that of Re-Pair

A simple example (not a time series) of a context free grammar is to take the following string
“a rose is a rose is a rose” this can be converted to the following grammar rules:

S — BBA
A — Bis
B — a rose

Where S is the root rule, meaning that no rule uses this rule and A and B are grammar rules
that are used in S. Also, note that the grammar forms a hierarchy and therefore will not contain
cycles. As the above example illustrates the lengths of the motifs can be of varying lengths as
the rule may contain other rules (note that in an actual time series each word would be the same
length).

Datafile; [/home/drew/Desktop/TSATtutorial/ecgag0s_1.tt Browse | Rowlimit (o=all): [0 Loaddata| | Load model
P st fiy—

SAX parammeters
Window:(170 PAA:|4 Alphabet:|4 Guess | @ Slide window [Global normalizaton | | & OFF ® Exact (C MINDIST Discretize lterations |5

Data display: shoning rule subsequences

~a.0
a2
caa
-as
-as
5.0

Values

5.2

A e

100 200 200 400 500 oo 700 200 9060 1.000 1.100 1.200 1.200 1.400 1.500 1.600 1.700 1.200 1.500 2.000 2.100 2.300 2.300 2.400

Time. (zoom: select with mouse;: panning: Ctrl+mouse)
Rule subsequences, normaized

Grarmmar rules (searchin st by cliking into st and pressing CTRLF)

Grammar rules | Regularized rules | Rules periodicity | TSAT anomalies | RPM Representative Classes| RPM Classification | RPM Time Series Results as

R# Level FrequencyinR0 + Rule Expanded Rule Used Mean length Min-max length Al | a0

= T 3 CDCDTDCC DoCT CoCDTUtC Dote 3 o7 zuTe T

25 2 3R4R32 bebb beeb bbeb cbeb cbbb ¢ 2 254251-256 s

1 1 2R6 bbeb bbec beee bbee bbeb bbdb bbeb b.. 2 218213 - 224 o

3 1 2R15R5 cbeb cbee bbeebbbe bebe 2 217209 - 225 23

7 1 2R19 bbeb cbdb cbeb bbeb 2 194193-196 20

9 1 2bdbc bdbb bebbecbb bdbe bdbb bebb cebb 2 192186 -198

10 1 2 dbbb cbbb cbbc dbbb cbbb cbbe 2 194193 -196 e

1 1 2Rsbecc bbbcbebe beee 2 182178 - 186 10

13 1 2R30cccbebebdbeh bebbbecb cecb cbeb dbch 2 203198 - 209 o

14 2 2R32R23 ccbe bebe bbb bbec bbeb 2 197197 -198

17 1 2R25bccc bebbbeceb bbeb cbeb cbbb c. 2 256254 - 258 @

21 2 2R24R28 bbccbebebdbebebebebb b, 2 233231-235 5

22 1 2 cbbb cbbe cbbb cbbe 2 192189 -196

27 1 2R32 bbbc ccbe bebe bbbe 2 197197 -198 0

29 1 2bbce R18R20 bbee bbeb cbeb ebee bbee 2 211211-212 ap

0 0 0R1bccc R2R3R4 RS Ré... bece bbee bbb bbdb bbb b 0 2,299.2299 - 2299 5 0 2 4 e =@ 100 1 0 18 1m0 200 220 290 280 280

Workfon ranagement: load > process > display
Grammar rules Rule length histogram Cluster rules Prune rules Rules density Find anomalies Save chart

e with Ssteings: SAX window: trus, SAX pas: trus, SAX slphabst: trus, sliding window:trus, num reduction:trus, norm threshold: trus, G slo: Ssquitur, grammar filensme: truz |
Sequitur, sliding window trus, global normslization false, nunerosity reduction EXACT, SAX window 170, PAA 4, Alphabet 4

14:29:44 model: processed data, bro:

[«] 1l D

Figure 4: Example motif found using TSAT with the subsequences highlighted in the Data
Display and shown in the Rules Subsequences areas.

Setting the Parameters One example motif found by TSAT in ECG data is shown in
Figure 4. There are only three parameters, alphabet size, PAA length, and window size. Past
studies have empirically shown that an alphabet size of 3 or 4 will work in most settings and that
the PAA length depends on the data. The PAA length (also known as word size) tends to be a
smaller value for smooth and slow changing time series and a larger value for more complex time
series [8]. “Note however, that grammar induction step effectively mitigates improper sliding
window selection” [12].

1.3.2 Anomaly Detection

TSAT also implements two anomaly detection algorithms taking an exact approach and an
approximate approach [13]. Specifically the Rare Rule Anomaly (RRA) algorithm and the

7

rule density curve algorithm. Each method uses the grammar rules generated by Sequitur
or Re-Pair to extract the corresponding subsequences in the time series. However, each method
uses these subsequences in a different way.

RRA defines anomalous subsequences as discords or the subsequences whose euclidean dis-
tance (normalized by the subsequence length) to their nearest non-self match is the largest. A
subsequence is a non-self match with another subsequence if their subsequences do not overlap.

The approximate anomaly detection method is implemented using the rule density curve.
The value at each point in the rule density curve is the number of grammar rules that span or
“cover” the corresponding point in the time series. Therefore, “rule density curve intervals that
contain minimal values correspond to time series anomalies” [13].

Both the exact and approximate methods can find variable length anomalies. However, “if
the time series under analysis has low regularity (an issue that impacts the grammars hierarchy)
or the discretization parameters are far from optimal and regularities are not conveyed into the
discretized space, the rule density based anomaly discovery technique may fail to output true
anomalies” [13]. Therefore, using the exact approach is preferable.

Setting the Parameters The best advice is from [13]:

Specifically, we found that the rule density curve facilitates the discovery of patterns
that are much shorter than the window size, whereas the RRA algorithm naturally
enables the discovery of longer patterns. Second, we observed that when the selection
of discretization parameters is driven by the context, such as using the length of a
heartbeat in ECG data, a weekly duration in power consumption data, or an observed
phenomenon cycle length in telemetry, sensible results are usually produced.

1.3.3 Representative Pattern Mining - RPM

Univariate multiclass supervised time series classification is implemented in TSAT with Rep-
resentative Pattern Mining or RPM [14]. RPM works by identifying an optimal sliding
window size, PAA size, and alphabet length for each class and it identifies the motifs that match
the class it belongs to more so than the other classes. RPM then refines the set of motifs to the
most representative and uses them to perform time series classification.

Here are some definitions to a few common machine learning terms that you may encounter:

Attribute An attribute, variable, or feature is a value that is used to describe the data point.
For example, a time series is an attribute.

Class A class or label is the name used to describe a set of attributes. In classification the goal
is to classify examples as belonging to a particular class or to assign a label.

Example An example is the set of attributes used to describe a single data point.

Univariate Univariate, single attribute, or single feature means that each example is represented
by a single attribute. This means a single time series in time series classification is defined
to be an example.

Multivariate Multivariate, multi-attribute, or a feature vector means that each example is
represented by multiple attributes.

Supervised Classifier An algorithm that creates a model representation from a set of labeled
examples in order to classify unlabeled examples. Some example classification algorithms
are, Support Vector Machine, Random Forest, Logistic Regression, AdaBoost, or Naive
Bayes.

Training Data The set of labeled examples used by the supervised classifier to create a model
representation in order to make predictions.

Test Data The set of labeled examples that are independent from the training data and that
are used to assess the performance of the classifier.

Validation Data The data that is held out and usually used to tune parameters.

F1 Measure Or F1 score is defined as 2 - PECISION - recall . Where
precision + recall

true positives

precision = — —
true positives + false positives

and o
true positives
recall =

true positives + false negatives

. Where in a binary class true positives mean that a classifier correctly labeled an example,
false positive means that a classifier labeled an example as this class when it was the other
class, and false negative means it was this class when labeled the other class.

The way RPM works is to identify the motifs that are most representative of each class and
use them to classify new time series. In order for RPM to identify representative patterns it first
identifies the most frequent patterns or motifs within each class. It does so by concatenating
the time series that are within the same class and performing motif discovery as discussed in
Section 1.3.1. RPM takes care to avoid motifs that span concatenated time series by ignoring
these subsequences.

However, because these are the most frequent motifs does not mean they are the most repre-
sentative or class discriminative. Therefore, RPM first reduces the number of motifs by removing
similar patterns. Then it selects the most representative patterns from this set of candidate pat-
terns. For example, the most representative patterns in the ECGFiveDays dataset are seen in
Figure 5.

To identify the most representative patterns RPM uses a correlation-based feature selection
algorithm. To perform feature selection RPM first creates feature vectors for each example time
series. The features for each class are calculated as the distance a given time series example is to
each of the candidate patterns. TSAT implements both Euclidean distance and Dynamic Time
Warping (DTW) distance algorithms (DTW is discussed in Section 4.7.1). The two dimensional
feature vectors for the ECGFiveDays dataset are plotted in Figure 6.

ECGFiveDays class #1 ECGFiveDays class #2
best representative pattern best representative pattern

25+

34

0.0 4
0-

-2.54

5.0

T u T T T T
0 50 100 0 50 100

Figure 5: “Two classes from the ECGFiveDays dataset and the best representative patterns” [14].
Image taken from [14].

Train instances of ECGFiveDays dataset in the
representative patterns feature space

0.11 4

0.09 -

o

o

&
[}

0.03

Distance to the second pattern

0.00 o

O.IDS 0.66 O.E)Q 0.11
Distance to the first representative pattern

Classes: Class #1 Class #2

Figure 6: “Transformed data of train data from ECGFiveDays” [14]. Image taken from [14].

This distance feature vector is then used as the training data to a supervised classifier. TSAT
uses Random Forest as the supervised classifier.

In order to set the optimal sliding window size, PAA size, and alphabet length (the SAX
Parameter Combinations SPCs) for each class, RPM implements the DIRECT (Dividing Rect-
angles) parameter optimization algorithm. The error function is one minus the F1 measure from
a five fold cross validation on the validation data. DIRECT will output the best SPCs so far
therefore leaving it to the user to decide the number of iterations of the algorithm to perform.
Leaving the number of iterations to the user is useful as running DIRECT it time intensive as it
must perform the motif discovery and training the classifier for each new SPC. The number of
iterations is discussed in more detail in Section 4.7.2.

10

1.4 Overview

The rest of the user manual will go over in detail how to perform motif discovery (Section 2),
anomaly detection (Section 3), and time series classification (Section 4) using TSAT’s GUL

2 Motif Discovery

Here the manual will go over the steps on how to format the time series and perform motif
discovery in TSAT. How motif discovery works in TSAT is discussed in Section 1.3.1 in detail.

2.1 File format

In order to perform motif discovery in TSAT the time series must be formatted in a way that
TSAT can read. TSAT requires that the time series be stored in a file where each line in the file
contains one entry coresponding to a single time step in the time series. There must not be any
missing lines. For example a correct file might look like:

-5.3

2.3

4

42

2.2 Guide to Motif Discovery

Step 1 (Figure 7) Click “Browse” and browse for the time series data file and click “OK”
when file is selected or “Cancel” if you wish to quit browsing. Then click the “Load data” button
in the data source section and the time series will be displayed in the Data display section.

11

Datafile. Browse| Row limit (o=all): [0
Sax paramstars Numrosty radution Run Gl RunREM
Window:|170 | PAA4 | Alphabet:|4 & slide window [] Global normalizaton | | © OFF ® Exact O MINDIST Iteratiens |5
D ata display

New Folder Rename File

/home/drew/Desktop/TSATtutorial | +

| |Folders Eiles P
Grammar ruls (sasrch in st by cicking nto st and pressing CTRLE) | ./ = EEETEEEIIN - b rus subssquences, normaiasd
T G - F1a61eb07f1e13da453ddd
MRepresentative Classes 1 Cery grammanviz2 pdf L
Grammar rules Regularized rul§ \pandora/ rmyanomaly. txt L

mydataModel.txt
mydatatest. txt
mydatatrain. txt

Selection: fhome /drew/Desktop/TSATtutorial
ecq0606_1.txt

Filter:
AllFiles v

© Cancel | | 0K

Worldlon management: load > process > display

05:38:34 view: rumning Time Series Analysis Tool: TSAT demo

Figure 7: Click “Browse” — select file and click “OK” — click “Load data”.

Step 2 (Figure 8) Set the SAX parameters, “Window”, “PAA”, and “Alphabet” manually in
the “SAX Parameters” section and then click “Discretize” in the “Run GI” section to produce
the motifs. How to set the SAX parameters is discussed in Section 1.3.1.

home/drew/Desktop/TSATtutorial/ecgn60s 1.6t

paal4 Aphabet:|a Guess | @ Slide window] Global normalizator

no: Cerl+mouse)

Figure 8: Set SAX Parameters and click “Discretize”.

Step 3 (Figure 9) Evaluate results by clicking on the grammar rules in the “Grammar Rules”
tab and seeing the subsequences highlighted in the “Data Display” section and graphed in the
“Rule Subsequence” section. Each grammar rule row has nine column values: R#, Level, Fre-
quency in RO, Rule, Expanded Rule, Used, Mean Length, and Min-max length. These values

correspond to:

12

R# The rule number where rule number 0 is the root grammar rule.
Level The grammar level or the distance from the root rule.

Frequency in RO The number of times this rule is used in the root rule.
Rule The actual grammar rule.

Expanded Rule The grammar rule that has its non-terminal symbols replaced with the termi-
nal symbols.

Used The number of times that rule is used by other rules.
Mean Length The average length of the subsequence that this rule spans.

Min-max Length The minimum and the maximum length that the rule spans in the time
series.

A selected rule or motif found by TSAT is shown in Figure 9. Note that multiple rules can
be selected by holding the ctrl key and clicking on the rules or holding shift and using the arrow
keys to move up and down.

Figure 9: List of motifs found by TSAT in the “Grammar Rules” tab. Click on each rule to
highlight them in the Data display and graph the subsequence in Rule Subsequence section.
Multiple rules can be selected by holding the ctrl key and clicking on the rules or holding shift
and using the arrow keys to move up and down.

Additionally, note that by clicking “Save chart” in the “Workflow management” section
TSAT will save a png image of the data display area to a file located in the same directory
as the jar file with a file name corresponding to yyyyMMddhhmmssSS.png.

Also, by clicking the “Rule length histogram” button in the “Workflow management” section
TSAT will display a histogram of the rule lengths in Data Display area.

13

2.2.1 Guess SAX Parameters

Rather than manually trying different SAX parameters, TSAT has built in functionality to guess
what it perceives as optimal parameters based on user defined range. This method uses the
Re-Pair grammar induction algorithm and the entire process is beyond the scope of this manual
but is described in detail in [15].

Step 1 (Figure 10) After loading the dataset from Step 1 in the previous section and instead
of setting the SAX parameters manually, click “Guess.” This will change the “Data Display” to
read “Select the time series interval for guessing.” Next, Press and hold the left mouse button
and drag the mouse across the time series until the desired subsequence of the time series is
highlighted and then release the mouse button. Note that the selected subsequence should be
free of anomalies and noise otherwise the guess may produce biases in the results.

Data source
Datafile: |/home/drew/Desktap/TSATtutorial/ecgias_1.bxt Browse | Row limit (0=all): |0 Loaddata Loadmodel
SAX parameters MNumerosity reduction Run GI Run RPM
Window: 170 | PAA 4 | Alphabet: 4 || Guess | @ Slide window (] Global normalizaton) OFF @ Exact () MINDIST Iterations |5
Select the timeseries interval for quessing
4.0
4.2
4.4
4.6
4.8
$ -5.0
=
w -3.2
=
-5.4
56 |
-5.8
-6.0
-6.2
-6.4 1
a 100 200 300 400 500 600 J00 800 900 1,000 1,100 1,200 1,300 1400 1,500 1,600 1,700 1,800 1,500 2,000 2,100 2,200 2,300 2400
Time. (zoom: select with mouse; panning: Ctrl+mouse)
Grammar rules (search in list by dicking into list and pressing CTRL-F) Rule subsequences, normalized
RPM Representative Classes RPM Classification RPM Time Series Results
Grammar rules Regularized rules Rules periodicity TSAT anomalies
Workflow management: load = process = display
i5. 55, &5 GUSC, prUCSeSSG Gsie, DrGSULESCING ChEris <
16:57:54 view: load data action performed
16:57: 54 model: loaded 2299 points from /home/drew/Desktop/TSATtutorial/=cglERE 1. txt
16:57:57 view: starting the guessing params dialog
-
[4] Il o]

Figure 10: Click “Guess” and then select time series subsequence by clicking and dragging
without anomalies or noise. The green highlighted region is the selected region.

Step 2 (Figure 11) After releasing the mouse button a dialog will appear with the title “Sam-
pler interval and parameter ranges verification.” Here you may adjust the values as appropriate
and then click “OK” otherwise if you wish to cancel press “Cancel.”

14

Data source

Data File:

Select the timeseries interval for guessing

4.0
4.2
4.4
4.6
4.8
-5.0
-5.2

Values

-5.4
-5.6

Samplinginterval range:

Minimal cover threshold:

0,98

210

A

J/home/drew/Desktop/TSATtutorial/fecadéns_1.bxt Browse | Row limit (0=all): [0 Load data | |Load model
SAX parameters Numerosity reduction Run GI Run RPM
Window: 170 | PA&|4 | Alphabet: 4 | Guess B slide window [[] Global normalizaton) OFF @ Exact () MINDIST scretize Iterations |5 i Tes

M /

-6.2

-6.4

15900 2000 2100 2,200 2300 2400

Window range and step: |10 200 10

Grammar rudes (sesrch n s by clcking o lst and pressing CTRLF) range and step: 5 0 y inces, normalized
RPM Representative Classes |

Grammar rules Regularized

o cguiarze rﬂ Alphabet range and step: |2 10 1

Ok | |Cancel

Workflaw management: load > process > display

16,05, £3 NUUEL. prUlessed Udle, DrUSULEsLiNy ChEris
16:57: 54 view: load data action performed

-
16:57:54 model: loaded 2299 points from /home/drew/Desktop/TSATtutorisl/ecg@606_1. txt
16:57:57 view: starting the gusssing params dislog

-

Kl i

Figure 11: Adjust the range values as appropriate to your time series. Note that the larger the
range the longer it will take to search.

Step 4 (Figure 12) If you have pressed “OK” then the process will beginning and if you wish
to stop it press “stop!” and TSAT will stop searching for the SAX parameters. Otherwise after a
period of time the values in the “SAX Parameters” section will be replaced with the parameters
that guessing mechanism found.

15

Time Series Analysis Tool: TSAT

Data source

Datafile: |/home/drew/Desktop/TSATtutoral/ecgdsns_1.txt Browse | Row limit (0=all}: |0 Load data| Load model

SAX parameters Numeresity reduction Run GI Run RPM

Window:|80 | PAAY3 | Alphabet:|8 | Guess B |Slide window|[] Global normalizaton) OFF ® Exact () MINDIST Discretize lterations |5

Data display

4.0 |
42|
4.4 |
a6 |
-dB
=0

Values

5.2 {
5.4 |

5.6 {
S8 |
5.0 |
6.2 |

€4 : : : : : : : : : L : ; .] : :
0 100 200 300 400 500 600 700 800 900 1,000 1,100 1.200 1,300 1400 1,500 1.600 1700 1,800 1.900 2.000 2,100 2,200 2,300 2400
Time. {zoom: select with mouse; panning: Ctri+mouse)

Grammar rules (search in list by dicking inta list and pressing CTRL-F) Rule subsequences, narmalized
RPM Representative Classes RPM Classification RPM Tirne Series Results
Grammar rules Regularized rules Rules periodicity TSAT anomalies

Workflow managerment: load > pracess = display

5. 05 £5 WOUSL. proCEsSeu Gald, OrOSulesiing ChEris

16:57:54 view: load datz action performed =
16:57:54 modsl: loaded 2299 points from /home/drew/Desktop/TSATtutarial/ecg0S06_1. txt
16:57:57 view: starting the guessing params dizleg

-

[4] Il [»]

Figure 12: The inferred SAX parameters are filled in the “SAX parameters” section.

2.2.2 Options

The settings for motif discovery are is accessed by clicking the menu item “Settings” and then
under that click “TSAT options” in order to open the settings. There are a number of settings
including choice of grammar induction, normalization threshold, and location for the output.

Grammar Induction The default grammar induction algorithm is Sequitur. However, Re-
PAIR is also an option.

Then click on the “GI Implementation” tab and the option for RePAIR is presented. Click
on the desired radio button and then click “save” to keep your selection or click “cancel” to quit.

Normalization Threshold The normalization threshold is default value of 0.05 is usually
appropriate but is adjustable under the “Options” tab.

Output Currently the Output tab does not affect the location of output files other than for
the Rule density curve filename.

16

2.3 Rule Pruning

TSAT provides two means for pruning the motifs or the rules: clustering and a greedy pruning
algorithm. Pruning is useful in order to gain better visual insight into the motifs of the time
series that are of importance. This section assumes that the desired time series has been loaded
and discretization has been performed following Section 1.3.1.

2.3.1 Clustering Technique

The clustering method prunes the motifs by classifying the subsequences by length and removing
the overlapping in the same length range. This technique is accessed by clicking on the “Cluster
rules” button in the Workflow management section of the GUI.

Once clicked you are asked for “threshold for length” and a “threshold for overlap.” The
threshold for overlap is not actually currently used.

However the value for the threshold length is used and the subsequences with the length
difference within threshold: “threshouldLength” will be classified as a class with the function
“classifyMotifs(double)”, i.e. 1-100 and 101-205 will be classified as a class when the threshold
is 0.1, because the length difference is 5, which is less than the threshold (0.1 * 100 = 10). If two
sub-sequences within one class share a common part which is more than the threshold: “thre-
souldCom”, one of them will be removed by the function “removeOverlappingInSimiliar(double)”.
i.e. 1-100 and 21-120.

Once finished the results are presented in the “Regularized rules” tab in “Grammar Rules”
section.

2.3.2 Greedy Rule Pruning

The other approach to rule pruning uses a greedy algorithm following a greedy solution of
minimum-cardinality set cover problem (an NP-hard problem). This is an attempt to find the
smallest set of rules which cover the most of the input time series in a greedy fashion. According
to [16]:

The intuition behind this algorithm is simple — since our task in hand is to find
maximally repeated and minimally-overlapping subsequences (which we consider the
most informative), at each iteration, as the best candidate we select the rule which
covers the most of the uncovered-so-far time series span thus naturally provides the
most information about its structure.

This functionality is experimental still. However, it can be used after discretization by clicking
“Prune rules” in the “Workflow management” section of the GUI. This will update the “Grammar
rules” tab in the “Workflow management” section with the pruned rules.

2.4 Python Interface

The python interface for motif discovery is accessed via the buildMotifs function that has the
function signature:

tsail.buildMotifs(pathToTimeseries, outputFile, window_size=30, word_size=6,
alphabet_size=4, strategy="EXACT", threshold=0.01, numworkers=2)

17

The parameters are as follows:
pathToTimeseries The path as a string to the location of the time series data
outputFile The name of the file that the motifs will be written to.
window _size The SAX parameter for the window size with a default value of 30.

word_size This is the same as the PAA value and indicates the length of the SAX words. Default
word length is 6.

alphabet _size This is the same as Alphabet and indicates the number of characters or symbols
that can be chosen. Default value is 4.

strategy This is the numerosity reduction strategy to be used. The default value of EXACT
should be used in most cases. Other valid values are NONE and MINDIST.

threshold SAX normalization threshold meaning that if the input time series’ standard de-
viation is less than this value the z-normalization will not be applied. Default value of
0.01.

numworkers This is the number of threads to use when running SAX. The default value is 2.

For buildMotifs it returns a dictionary where you can index the motifs (or rules generated by
Sequitur).

<returned dict> is the GrammarRules object that was returned as a result of the call to
buildMotifs and has a rules map indexed by the integer rule number starting at ‘0.

https://github.com/jMotif/GI/blob/master/src/main/java/net/seninp/gi/logic/GrammarRules.
java

<returned dict>[‘rules’] [‘rule number’] will give you a GrammarRuleRecord for a particular
rule_number:

https://github.com/jMotif/GI/blob/master/src/main/java/net/seninp/gi/logic/GrammarRuleRecord.
java

The list of members accessible in each GrammarRuleRecord follows:

/* The rule number in Sequitur grammar. */
private int ruleNumber;

/* The rule string, this may contain non-terminal symbols. */
private String ruleString;

/* The expanded rule string, this contains only terminal symbols. */
private String expandedRuleString;

/* The indexes at which the rule occurs in the discretized time series. */
private ArrayList<Integer> timeSeriesOccurrencelIndexes = new ArrayList<Integer>();

/* This rule intervals on the original time series. */

18

https://github.com/jMotif/GI/blob/master/src/main/java/net/seninp/gi/logic/GrammarRules.java
https://github.com/jMotif/GI/blob/master/src/main/java/net/seninp/gi/logic/GrammarRules.java
https://github.com/jMotif/GI/blob/master/src/main/java/net/seninp/gi/logic/GrammarRuleRecord.java
https://github.com/jMotif/GI/blob/master/src/main/java/net/seninp/gi/logic/GrammarRuleRecord.java

private ArrayList<RuleInterval> rulelntervals;

/* The rule use frequency - how many time that rule is used by other rules. */
private int ruleUsageFrequency;

/* The rule level in the hierarchy */
private int rulelevel;

/* The rule’s minimal length. */
private int minLength;

/* The rule’s maximal length. */
private int maxLength;

/* The rule mean length - i.e. mean value of all subsequences corresponding to the
rule. */
private Integer meanLength;

/* The rule mean period - i.e. the mean length of intra-rule intervals. */
private double period;

/* The rule period error. */
private double periodError;

/* The rule yield - how many terminals it produces in extended form. */
private int ruleYield;

For example, <returned dict>[‘rules’][‘1’] will give you the grammarRuleRecord for rule 1.
The values within the GrammarRuleRecord can then be accessed as you do a python dictionary.
Also, note that rulelntervals is an array of:
https://github.com/jMotif/GI/blob/32£58578£f5a0b184fc836£9d397aa0bfc8e68eeb/src/main/
java/net/seninp/gi/logic/Rulelnterval. java
To access this you just do:
<returned dict>[‘rules’] [‘1’] [‘rulelIntervals’] [<‘rule_interval_index’>]
For example, <returned dict>[‘rules’][‘1’] [‘ruleIntervals’][0]
Each Rulelnterval has the following properties:

public int id; // the corresponding rule id

public int startPos; // interval start

public int endPos; // interval stop

public double coverage; // coverage or any other sorting criterion

19

https://github.com/jMotif/GI/blob/32f58578f5a0b184fc836f9d397aa0bfc8e68ee6/src/main/java/net/seninp/gi/logic/RuleInterval.java
https://github.com/jMotif/GI/blob/32f58578f5a0b184fc836f9d397aa0bfc8e68ee6/src/main/java/net/seninp/gi/logic/RuleInterval.java

3 Anomaly Detection

3.1 Guide to Anomaly Detection

This section assumes that you have already performed the steps from Section 2 and have loaded a time
series and have produced the motifs. This section will cover both the approximate and exact forms of
anomaly detection using rule density and the Rare Rule Anomaly detection algorithm.

Rules Density After following the steps in Section 2 of loading the dataset and identifying the motifs
click the “Rules Density” button in the “Workflow management” section of the GUI. Once clicked the
results will be displayed in the Data display. White corresponds to a zero density indicating an anomaly
and the darker the color blue the less likely an anomaly exists in that subsequence. The rule density is
displayed in Figure 13.

Time Series Analysis Tool: TSAT

r Data source
Data file: |/hor‘ne/drew/DesktODFSATtutorial/ecgﬂﬁﬂﬁj bt 1 |Browse | Row limit (0=all}: |D I |Load data] | Load modell
- SAX pararnster Nurnerasity reduction Run GI Run RPM
Window:| 170 I PAA:| 4 l ALphabet:| 4 l| Guess @ Slide window [] Global normalizaton { I OFF ® Exact () MINDIST { | Discretize | { lterations ‘ } Train| | Test
- Data display: showing grammar rules density, coverage count strategy: COUNT
-4.0
-45
4
] -5.0
m
= -5.5
-6.0
8O0 900 1,000 1100 1,200 1,300 1,400 1,500 1.600 1,700 1,800 1,900 2,000 2,100 2,200 2,300 2,400
Time. (zoom: select with mouse; panning: Ctrl+mouse)
- Grammar rules (search in list by clicking inta list and pressing CTRL-F) ~ Rule subsequences,
RPM Representative Classes RPM Classification RPM Time Series Results
Grammar rules Regularized rules Rules periodicity TSAT anomalies
| R#t | Level | FreguencyinRo | Rule | ExpandedRule |Used| Meanlength | Min-maxlength ||
0 0 0R1 bcccR2R3.. bececbbeebbeb bbd... 0 2,299 2299 - 2299
1 1 2Rsbbebbbec beccbbecbbebbbd., 2 218213- 224 L)
2 2 2R8R12R31 bcbe bdbe bebbbec... 2 273272- 275
3 1 2R15R5 cbeb cbeebbee bbb... 2 217 209 -225
4 1 4R30bbcbR26 bebb becb bbeb cbe.., 2 229222-235
5 1 gbbbcbebe bbbc bebe 6 181175-193
6 1 3bccebbee bb... bcccbbee bbeb bbdb 2 187182-193
7 1 2R19bbch cbdb cbeb bbeb 2 194193 -1%96
8 1 2bcbe bdbe bebe bdbe 3 177173-179
Fat A Abdb - b AL b bdb - bdbb bbb oL £t A0S AOr Ano ~
~Waorkflow management: load = process > display
| Grammar rules | | Rule length histogram | | Cluster rules | | Prune rules J Rules density | Find anomalies || Save chart J Save model
L Ir Y CONCTOCLET. CONCIGT LT, TORNATG DT SISO WAL SELINgS, SRA WLNGOW. LrUS, SAA pad. LrUS, SAA SUPNEDEC. LrUS, SULOLng WONGOT. DTS, T Feeut CIon LTS, ToTi, CHresnieie, Tros, Ui Gty Seau
17:17:58 model: setting up GI with params: aslgorithm: Sequitur, sliding window true, global normalization false, numerosity reduction EXACT, SAX window 170, PAA 4, Alphabet 4 =
17:17:58 model: processed data, broadcasting charts
17:17:53 view: display density plet action performed

4 »

Figure 13: Rule density plot in the Data display area.

By clicking on “Settings” and then “TSAT options” menu items and a dialog window will appear
and you can choose a coverage strategy in the “Coverage Strategy” tab (shown in Figure 14). Changing
the coverage strategy will change how the rule density is calculated.

20

[Data source

Data file: |_/home/drew/Desktop/TSATtutorial/ecgtlﬁ[ls_‘l‘txt | |Browse | Row limit (0=all): |_E| | |Load data | |Load model |
- SAX parameter o - Nurmerosity reduction Run Gl Run RPM
Window:|1TD ‘ PAA:|4 ‘ ALphabet:‘4 |,Quess‘§ Slide window () Global normalizaton | | & OFF ® Exact O MINDIST {,Discretize, {Iterations |Z| Train | | Test

- Data display: showing grammar rules density. coverage count strategy: LEVEL

Values

Coverage Strategy | Glimplementation | Output | Options

 Set the rule coverage stratagy

@ rule count (i.e. coverage classic)|

1800 2,400

) rule level increment 1,500 2,000 2100 2,200 2,300

—~ -
) rule occurrence increment

- Grammar rules (search in st by clicking into list and pres: . e subsequences,
) rule yield (number of words in expanded form) increment
RPM Representative Classes
) product of level and occurrence increment
Grammar rules

| R# | Level | FrequencyinRO

0 0 0R1bc

1 1 2 Ré bbi

2 2 2R8R1

3 1 2R15R

Save | | Cancel

4 1 4R30b E= e =)

5 1 8bbbc

6 i 3bcccbbeckb.. c 2 187182 -193

7 1 2R19bbcb cbdb cbcbbbeb 2 194193 -196

8 i 9bcbcbdbe bebebdbe 3 177 173-179

) P Ak koAb b bdbe bdbb bbb ek - AmmAns Ano
Warkflow management: load > process = display

| Grammarrules || Rulelengthhistograrm || Clusterrules || Prunerules || Rulesdensity || Findanomalies || Savechart Save model

Tro I %S VISW uIspUey GENSILy FUOC SCCIOn pErTeTTES —
17:15:45 view: options menu action performed =
17:19:49 view: displsy density plet action performed -
17:47:57 view: options menu action performed =
Ia] i Dol

Figure 14: Changing the coverage strategy.

Rare Rule Anomaly Detection The exact strategy for finding anomalies in TSAT is by using
the Rare Rule Anomaly detection algorithm. This is done by clicking “Find anomalies” in the “Workflow
management” section and then clicking on the “T'SAT anomalies” tab in the “Grammar rules” section.
The top 10 anomalies will be listed in the table in the “T'SAT anomalies” tab. Rank, Position, Length,
NN Distance, and Grammar Rule are the columns. Also, when an anomaly is clicked on, the subsequence
is highlighted in the Data display and shown in the Rule subsequences section. Multiple anomalies can
be selected by holding Ctrl and then clicking. The anomaly in the data is shown in Figure 15.

Rank The smaller the value the more anomalous the subsequence.
Position The start location of the anomaly.
Length The length of the subsequence containing the anomaly.

NN Distance The distance to the closest subsequence. The larger this value is the smaller the value
Rank is.

Grammar Rule The grammar rule that corresponds to the anomaly. Can return to the Grammar
Rules tab and find the rule based on this number.

21

Time Series Analysis Tool: TSAT

Data source

Datafile: |/home/drew/Desktop/TSATtutoral/ecgdsns_1.txt Browse | Row limit (0=all}: |0 Load data| Load model
SAX parameters Numeresity reduction Run GI Run RFM

window:(140 | PAA:4 | Alphabet:|4 | Guess Slide window [Global normalizaton) OFF ® Exact () MINDIST Discretize lterations |5 Train| | Test

Data display: showing anomaly

4.0
I
4.5
&
5 5.0
z
5.5
-6.0
] 100 200 300 400 500 600 700 200 S00 1,000 1,100 1,200 1,200 1,400 1,500 1,600 1,700 1,200 1,900 2,000 2,100 2,200 2,200 2,400
Time. (zoom: select with mouse; panning: Ctrl+mouse)
Grammar rules (search in list by dlicking into list and prassing CTRL-F) Rule subssquences, normaslized
. N e N AT . 45
RPM Representative Classes RPM Classification RPM Tirne Series Results 10
Grammar rules Regularized rules Rules periodicity TSAT anomalies a5
Rank Position Length NN Distance Grammar Rule 30
I T I T | | =
1 2,062 157 0.02188 31 20
2 1,158 142 0.00862 8 L3
3 1,320 152 0.00856 12 2l
4 879 166 0.00806 20 05
5 580 174 0.00756 33 0o
[1,835 159 0.00737 10 -0.5
7 2 161 0.00630 31 1o
8 1,608 144 0.00589 25|12 -15
n a s P o= 0 20 40 &0 80 100 120 140 160
Workflow managerment: load > pracess = display
Grammar rules Rule length histogram Cluster rules Prune rules Rules density Find anomalies Save chart Save model
- SRASEGITOT TOUNG ISCOrGT POSITION £, CENGU I5L, W GISUSNS © DUSSUISSSSIioIRrY, SUepeu (InS IS, GISISS Catis igeo =
13 SAXSequitur: found discord: position 1668, length 144, NN distance 0.00589204495104368, clapsed time: 1ms, distance calls: 959
157: 3 SAXSequitur: found discord: position 251, length 166, NN distance 0.004509429484417187, clapsed time: 1ms, distance calls: 596
17:57:36 view: SAXSequitur: discords found in 1ms
-
[4] Il [»]

Figure 15: Rare Rule Anomalies listed in “TSAT anomalies” tab.

3.2 Python Interface

The function signature for calling anomaly detection using the Rare Rule Anomaly algorithm is:

RRA(pathToTimeseries, outputFile, window_size=30, word_size=6, alphabet_size=4,
threshold=0.01, discords_num=5)

With the following parameter definitions: The parameters are as follows:
pathToTimeseries The path as a string to the location of the time series data
outputFile The name of the file that the motifs will be written to.
window _size The SAX parameter for the window size with a default value of 30.

word _size This is the same as the PAA value and indicates the length of the SAX words. Default
word length is 6.

alphabet_size This is the same as Alphabet and indicates the number of characters or symbols that
can be chosen. Default value is 4.

threshold SAX normalization threshold meaning that if the input time series’ standard deviation is
less than this value the z-normalization will not be applied. Default value of 0.01.

22

discords_num This is the number of discords to report. The default value is 5.

Which returns a dictionary holding the discord record.

returned dict = RRA(...)

When calling RRA you are returned a dictionary representation of DiscordRecords:

https://github.com/jMotif/SAX/blob/27607baa823df21a10d10e80827f£dd15090cbd9/src/main/
java/net/seninp/jmotif/sax/discord/DiscordRecords. java

Which is a list of DiscordRecord based on:

https://github.com/jMotif/SAX/blob/660e837edf1c8058eac6ef05185¢c7£83e12£3689/src/main/
java/net/seninp/jmotif/sax/discord/DiscordRecord. java

So, a DiscordRecord can be accessed by doing <returned _dict>[‘discords’] [0]

Each DiscordRecord has the following properties:

/** The discord id (used when wrapped by RRA). */
private int ruleld;

/** The discord position. */
private int position;

/** The discord length. */
private int length;

/** The NN distance. */
private double nnDistance;

/** The payload - auxiliary variable. */
pay y
private String payload;

/** The info string - auxiliary variable. */
private String info;

For example, length of the DiscordRecord 0 can be accessed as: <returned_dict>[‘discords’] [0] [‘length’]

4 Time Series Classification using RPM

TSAT implements Representative Pattern Mining or RPM (see Section 1.3.3 for more details) to perform
time series classification. In order to perform time series classification you will need a training and a
test dataset containing time series data.

The standard method to train a supervised learning classifier is to take the labeled dataset and
split it into two datasets, training and testing data. One common way to split the data is to have 80%
training and 20% testing.

Training Data Training data is the primary data and will be used to create a model that can
identify similar patterns in new, unlabeled, data. This data must have a label for each time series so
that RPM can learn what the labels can look like. This is where the bulk of the data should be set
aside for as RPM will need many samples to find representative patterns.

Testing Data Testing data is a small subset of the data usually from the same source as the training
data, but not found in the training data. This set of data will be used to test the model that RPM

23

https://github.com/jMotif/SAX/blob/27607baa823df21a10d10e80827ffdd15090cbd9/src/main/java/net/seninp/jmotif/sax/discord/DiscordRecords.java
https://github.com/jMotif/SAX/blob/27607baa823df21a10d10e80827ffdd15090cbd9/src/main/java/net/seninp/jmotif/sax/discord/DiscordRecords.java
https://github.com/jMotif/SAX/blob/660e837edf1c8058eac6ef05185c7f83e12f3689/src/main/java/net/seninp/jmotif/sax/discord/DiscordRecord.java
https://github.com/jMotif/SAX/blob/660e837edf1c8058eac6ef05185c7f83e12f3689/src/main/java/net/seninp/jmotif/sax/discord/DiscordRecord.java

made for accuracy or to predict labels for unlabeled test data.

Splitting data into a training and a test set is beyond the scope of this manual and is not done by
TSAT. The goal of this section is to first detail the proper file formats for training and testing data in
Section 4.1. Then the proper procedures to train (Section 4.2) and test (Section 4.3)are presented step
by step along then with a number of other useful features.

4.1 File formats

File formatting is very important in TSAT and especially when using RPM. If the file is not in the correct
format TSAT will not be able to read the file and may produce unexpected results or error messages.
The data may be formatted by column, row, or following the ARFF file format. Additionally, the labels
for the time series may be any string excluding white space and “?” as this is reserved for unknown
values in test data.

Figure 16: Examples of RPM Data

1.0000000e+000 1.0000000e+000 1.0000000e+000

©oON

80 122880 122880 0 0 _g

-1

oNoNoNoNoNoNON SN}
cNoNoNoNoRNONONe l\V}

-4.
5.
.4284310e-001
-8.
-9.
-8.
-2.
-1.
.2503934e+000
-9.
-9.
-9.

6427649e-001
5504787e-001

6589548e-001
3639631e-001
1726995e-001
6361216e-001
2580483e+000

1830825e-001
2210226e-001
8448828e-001

-8.
-6.
-1.
-1.
-1.
-1.
-1.
-8.
-1.
-8.
-1.
-1.

9697208e-001
8568553e-001
3513818e+000
4586668e+000
1653456e+000
4039293e+000
8217996e+000
3160109e-001
0163124e+000
0353040e-001
2595048e+000
1392341e+000

-4.
-5.
-3.
-6.
-6.
-2.
-2.
-9.
-4,
-7.
-3.
-9.

6469596e-001
6773891e-001
2022764e-002
3504562e-001
0282554e-001
6685628e-001
6706128e-001
3104230e-001
4938186e-001
2134200e-001
9727192e-001
6212589e-001

cNoNoRoNoNoRoNoNo R
oNoNoNoNoNoNoNoNo N
ocNoNoNoNoNoNoNoNo N
loNoNoNoNoNoNoNoN N

0 122880 0 0 O
(a) Example 1

-1.2880511e+000 -8.7865203e-001 4206/669e+000

(b) Example 2

-1.

Column Formatted Data The data files are simple text files that store the time series data with
one entry per column, with a space delimiter, with each row representing a time step in the time series
data. With RPM compatible data the first row in the file starts with a “#” with rest of the row
containing the label for each time series rather then the time series values. If the file is missing this row
RPM will not be enabled in TSAT. Examples of column formatted RPM compatible data can be seen
in figure 16. Another thing to keep in mind is that in this format the time series must all be the same
length.

Row Formatted Data Another acceptable format is the row format. This format is especially
useful when the time series are not all the same length as each row or time series may have its own
length. In this format the first line of the file is a “#” followed by a new line. Starting on the second
line, each line starts with the label followed by the corresponding time series (each value separated by
a space). There should be no empty lines. For example,

#
1-56.3-235 ...
1231531 ...

two 23 3 4 200 ...
two 42 3 4 102 ...

In this example the labels are “1” and “two” and the time series follow after the labels.

24

ARFF Formatted data A standard format for many public time series datasets is the ARFF file
format. For example, http://timeseriesclassification.com/dataset.php has a number of time
series in ARFF format that can be used in TSAT. ARFF files are more complicated than both the
column and row formats, but is more widely used outside TSAT. Here is an abbreviated example ARFF
file:

@relation Adiac

@attribute attO numeric
Qattribute attl numeric

Q@attribute target 1,2,...

@data
1.3749,1.2894,1.2043,1.1194,1.0347, ... 1
1.7257,1.7001,1.6611,1.6089,1.5319,

The ARFF file begins with the name of the dataset Adiac by using the ARFF formatting by
putting it after the @relation element. After the name of the dataset each timestep is listed as an
attribute @attribute <timestepName> numeric where you can choose what to name each timestep.
After listing the timesteps as attributes the labels are listed as the target attribute @attribute target
{1, 2, ...} where these are the labels for the time series. Finally, the time series data is in comma
separated value (CSV) format following the @data line. Each value in a time series is separated by a
comma on a single line and the last value on the line is the label for the time series.

Unknown Test Data In column, row, or ARFF format when predicting unlabeled test data, the
test data must be labeled as “?” (note that there must only be test data that is labeled with a “?7).
For example, a row formatted test dataset might be:

#

? -5.3-235 ...
? 231531

? 23 34 200 ...

As can be seen the label is “?” and the time series follows after the label. When training there must
always be more than one example from each class label and there must be more than one label.

4.2 Training the Model

Once you have the data in the proper format, training RPM can begin.

Step 1 First click on the “Browse” button under the “Data Sources” section of the window, as seen
in figure 17.

25

http://timeseriesclassification.com/dataset.php

Time Series Analysis Tool: TSAT

~Data source

Datafile: | | [ﬁrowsej Row limit (o=all): |0 | |Load data | |Load model
I SAX parameter = = Nurmerosity reduction Run GI Run RPM

Window:|1?[l | PAA:|4 | ALphabet:|4 Guess O Slide window [] Global normalizaton {Q OFF @ Exact (J MINDIST { Discretize {Iterations \Z\ Train || Test

rData display

- Rule subsequences,

- Grammar rules (search in list by clicking into list snd pressing CTRL-F)
RPM Representative Classes RPM Classification RPM Time Series Results
Grammar rules Regularized rules Rules periodicity TSAT anomalies
[Workflow management: load > process > display
Crammar rules Rule length histogram Clusterrules Prune rules Rules density Find anomalies Save chart Save model

13:10:57 wiew: running Time Series Analysis Tool: TSAT demo

[

Figure 17: Open TSAT

Step 2 This should bring up the file browser prompt in figure 18. Using this prompt select the file
containing the training set in the RPM compatible format, figure 19.

26

rData source

Datafile: | | |Browse | Rowlimit (o=all): [0 | |Load data | | Load model
- SAX parameter Numerasity reduction Run GI Run RPM

Window:|1TD ‘ PAA:‘!! | Alphabet:‘tt Cuess M slide window [Global normalizaton {D OFF @® Exact () MINDIST { Discretize ’VIterations [5 | |Train| | Test

r Data display

Select Data File l

| New Folder | De

- Grammar rules (search in list by ciicking into list and pressing CTRL-F)

RPM Representative Classes RPM Classification RPM Time 54 /home/drew/Desktop/TSATtutorial/CBF |
)
G I i iodicity
rammar rules Regularized rules Rules periodicity _Tj IEoldecs | [Eiles
Vi = |[CBF_TEST_TSAT
Wi CBF_TEST WEKA

CBF_TRAIN_TSAT

| |CBF_TRAIN_TSAT_LETTER! :

(e —)
Selection: fhome/drew/Desktop/TSATtutorial/CBF
|CBF_TRAIN_TSAT

Filter:
| AllFiles [v]
 Workflow management: load > process » display | © Cancel . =
Crarnmar rules Rule length histogram Cluster rules Prune rules Ruld —— L" bdel

13:10:57 wiew: running Time Series Analysis Tool: TSAT demo

[«]

Figure 18: Open the file browser prompt

Select Data File

| New Folder | Delete File | Rename File |

/home/drew,Desktop/TSATtutorial/CBF | + |

|Folders | |Eiles |
J -/ CBF_TEST_TSAT =
Wi CBF_TEST_WEKA

CBF_TRAIN_TSAT
CBF_TRAIN_TSAT_LETTERY:

< D
Selection: /home/drew/Desktop/T3ATtutorial/CBF
|CRF_TRAIN_TSAT

Filter:
AlLFiles

e A

| €@ Cancel | i oK

Figure 19: Browser prompt

27

Step 3 After selecting the file press the button labeled “Load Data” and TSAT will load the data
and the graphs will be populated, and if the data is found to be RPM compatible data then the “Train”
button should become available. The text field labeled “Row Limit” allows the user to limit the number
of rows that are read in from file, for example if the file contains 100 rows the user could limit it to the
first 50.

Time Series Analysis Tool: TSAT

Data source

Datafile: |/home/drew/Desktop/TSATtutorial/CBF/CBF_TRAIN_TSAT Browse || Row limit (0=all): Load data | | Load model

SAX parameters Nurmerosity reduction Run Gl Run RPM

window:|170 | PAA|4 | Alphabet:|4 | Guess | B Slide window [[] Global normalizaton) OFF @ Exact () MINDIST Discretize lterations 5 Train

Data display
2.5 7

3.0
2.5 |
2.0
1.5
1.0
0.5

Values

0.0
0.5
-1.0
-1.5
2.0

-2.5 | . - - - - - - - - - . L . . . -
0 5 10 15 20 25 30 35 a0 as 50 55 50 65 70 75 80 a5 30 a5 100 105 110 115 120 125 130

Time. (zoom: select with mouse; panning: Ctrl+mouse)

Grammar rules (search in list by dicking inta list and pressing CTRL-F) Rule subsequences, narmalized
RPM Representative Classes RPM Classification RPM Time Series Results

Grammar rules Regularized rules Rules periodicity TSAT anomalies

Warkflow management: load > process > display

12:46: 06 view: load dats action performed

12:46:00 modsl: losded 128 points from /home/drew/Desktop/TSATtutorisl/CBF/CBF_TRATN_TSAT =
12:46:05 modsl: loaded 122 points from /home/drew/Desktop/TSATtutorizl/CBF/CBF_TRAIN_TSAT
-

[« T D

Figure 20: Loaded data

28

Hitting this button will begin the training phase of RPM, this can take some time depending on the
data and the number of iterations RPM will run. The text field labeled “Iterations” sets the maximum
number of iterations RPM will go, this prevents RPM from running for to long trying to refine the
model. Once the training is complete the tab “RPM Representative Classes” will become populated
with patterns RPM thinks be represent the labels given. The fields “Window”, “PAA”, and “Alphabet”
will also be populated with the values RPM believes are the best fit for the data to aid in further analysis.

(] Time Series Analysis Tool: TSAT

Data source

Datafile: |/home/drew/Desktop/TSATtutorial/CBF/CBF_TRAIN_TSAT Browse | Row limit (0=all): |0 Load data | | Load model
SAX parameters Numerosity reduction Run GI Run RPM
window:| 23 | PAA5 | Alphabet: 11 ||Guess | B Slide window (] Global normalizaton | | & OFF ® Exact O MINDIST Discretize terations |5 in|| Test
Dats display
@
@
=
g
l:j 5 1o 1‘5 20 2‘5 3‘0 325 4.0 45 5‘0 55 6‘0 5‘5 70 7‘5 8‘0 8‘5 9‘0 a5 160 165 1lo 1i5 1z0 léS 1z0
Time. (zoom: select with mouse; panning: Ctrl+mouse)
Grammar rules (search in list by clicking inta list snd prassing CTRL-F) Rule subsequences, normalized
Crammar rules Reqularized rules Rules periodicity TSAT anomalies
RPM Representative Classes | RPM Classification RPM Time Series Results
Pattern ||Classes Representative Patterns =
(1] 1.0000000e+000 [-0.99133601, -0.88708673, -1.109881, -0.7687248, -1.0102962, -0.84653606, -1.3277464, -0.7 ‘
1 1.0000000e+000 [0.52286438, 0.76806246, 0.027951249, 0,53486554, 1.1600764, 0.67329933, 0.51511586, 0.73
2 1.0000000e+000 [-0.44938186, -0.721342, -0.39727192, -0,96212589, -1.4206669, -0,78343411, -0.46238569, -
3 1.0000000e+000 [-1.6126185, -1.3361607, -1.8873141, -1.6757601, -0.84046076, -1.3367653, -1.4637242, -1.3(0
4 1.0000000e+000 [-1.3090239, -1.124379, -1.2461759, -1.6359913, -1.4760013, -1.27784, -1.1442174, -1.39928(
5 1.0000000e+000 [-1.3361607, -1,8873141, -1.6757601, -0.84046076, -1.3367653, -1.4637242, -1,3090239, -1.14
6 3.0000000e+000 [1.4215092, 1.977175, 2.5777637, 1.7979973, 2.0809778, 2.4283404, 2.0555506, 1.8967239, 1.
7 3.0000000e+000 [1.8451293, 1.5379286, 2.57594682, 1.7858915, 0.77811844, 1.4365508, 1.3661197, 0.98004482
] D
Workflow rmanagement: load = procass = display
Save model
T2 e O VISR, TTeIf WOUSL tiIOT BT OTED =
:48:05 modsl: Training...
05 wiew: RPM Handler: Starting RPM Training in Background
187 view: RPM Handler: Finished RPM Training in Background
[4] i]

Figure 21: Representative Classes after Training

29

Selecting the patterns will display their graph on the right hand side of the window, multiple patterns
can be selected.

Time Series Analysis Tool: TSAT

Data source

Datafile: | /home/drew/Desktop/TSATtutorial/CBF/CBF_TRAIN_TSAT Browse | Row limit (0=all): |0 Load data | |Load model
SAX parameters Murnerasity reduction Run GI Run RPM

Window:|29 | PAA|5 | Alphabet: 11 | Guess Slide window] Global nermalizaton () OFF @® Exact () MINDIST Discretize lterations |5 Train| | Test
Dats display

@
v
3
S
o 5 1o 15 20 25 30 35 40 45 50 55 60 65 J0 75 80 85 S0 95 100 105 110 115 1zo0 125 130
Time. (zoom: select with mouse; panning: Ctrl+mouse)
Grammar rules isearch in list by dlicking into list and pressing CTRL-F) Rule subsequences, normalized
Grammar rules Reqularized rules Rules periodicity TSAT anomalies 15
RPM Representative Classes RPM Classification RPM Time Series Results 1o
Pattern |Classes Representative Patterns I~
0 1,0000000+000 [-0.99133601, -0.88708673, -1.109881, -0,7687248, -1.0102962, -0.84699606, -1,3277464, —U.}I ‘ 02
anoooar [ol) 00764 [29 [Be. 07+
0.0
2 .0000000e+000 |[-0.44938186, -0.721342, -0.397271592, -0.9621258%, -1.4206665, -0.78343411, -0.46238569, -
B .0000000e+000 |[-1.6126185, -1.3361607, -1.8873141, -1.6757601, -0.84046076, -1.3367653, -1.4637242, -1.3(0.5
4 T.ououuiUe+uou [-1.5090255, -1.124579, -1, 246717559, -1.635599 5, -1.4760075, -1.47 /84, -1. 1442774, -1, 3579260
5 1.0000000e+000 [-1.3361607, -1.8873144, -1.6757601, -0.84046076, -1.3367653, -1.4637242, -1.3090239, -1.12 -10
6 3.0000000e+000 [1.4215092, 1.977175, 2.5777637, 1.7979973, 2.0809778, 2.4283404, 2.0555508, 1.8957239, 1..
7 3.0000000e+000 [1,8451293, 1.5379286, 2.5794682, 1.7858915, 0.77511844, 1.4365508, 1.3661197, 0.98004482- || 5
])] » o 5 10 15 20 25 30
Warkflow management: load = pracess > display
GCrammar rules Rule length histogran Clusterrules Prune rules es density Find anomalies Save chart Save model
Lorwlws VASW. LrELn MOUSL SULLON PErTOMEG
12:42:05 model: Training... L~
12:42:85 wiew: RPM Handler: Starting RPM Training in Background —
12:48: 87 view RPM Handler: Finished RPM Training in Background =
] I Dl

Figure 22: Representative pattern preview

4.3 Testing

Once the model has be trained it should be tested for accuracy, this will use a smaller dataset in the
RPM compatible format to measure how well the model does.

Step 1 Click the “Test” button and a file browser prompt will appear, depending on how large the
dataset is this may take a moment.

30

[Data source
Datafile: |/home/drew/DesktoDﬁSATtutoriaL/CBF/CBFiTRAINiTSAT | | Browse | Row limit (0=all): |D | |Load data| | Load model |
r SAX parameter Numerasity reduction Run Gl Run RPM
Window:|29 | PAA:‘ | Alphabet:|11 |,guess‘§ Slide window [] Clobal normalizaton {O OFF @ Exact () MINDIST {,Discretize‘ {Iterations [5 | ,T[ain‘-
- Data display
w
@
=]
=
| Mew Folder | Delete File |RenameFile |
/home/drew/Desktop/TSATtutorial/CBF | + |
a 5 10 15 20 25 30 35 a0 a5 50 55 &0 65 70 — 130
Time. {zoom: select with mouse; pan| Folders | |Files |
A o T A
- Grammar rules {search in list by clicking irto list and pressing CTRL-F) = / / CBF_S _
Grammar rules Regularized rules Rules periodicity 18 CBF_TRAIN_TSAT
RPM Representative Classes RPM Classification RPI Time 58 CBF_TRAIN_TSAT_LETTERY: x\
|Pattern ||Classes |Representative Patterns 1
0 1.0000000e+000 [-0.99133601, -0.88708673, -1.109881, -0.7687248, -1.0102962, -0.846996 =
1 1.0000000e+000 [0.52286438, 0.76806246, 0.027951249, 0.53486554, 1.1600764, 0.6732993 - (4T D
2
2 |1.0000000e+000 Selection: /home/drew/Desktop/TSATtutorial/CBF
3 |1.0000000e+000 ‘
4 1.0000000e+000 [-1.3090239, -1.124379, -1.24571759, ~1.6359913, -1.4760013, -1.27784, -1.4 | CBF_TEST_TSAT
5 1.0000000e+000 [-1.3361607, -1.8873141, -1.6757601, -0.84046076, -1.3367653, -1.4637244 Filter:
3 3.0000000e+000 [1.4215092,1.977175, 2,5777637, 1.7979973, 2.0809778, 2.4283404, 2,055 I 'll
7 3.0000000e+000 [1.8451293, 1.5379286, 2.5794682, 1,7858915, 0.77811844, 1.4365508, 1,34 ALFiles LX)
a3 j JE—— 30
 Werkflam management: laad > pracess > display | @ Cancel | | 70K
Gramrnar rules Rule length histogram Cluster rules Prune rules FiuLew‘
Lo we wo wowEL. TreLEG
12:48: 05 view: RPM Handler: Starting RPM Training in Background
12:48:07 view: RPM Handler: Finished RPM Training in Background
12:50: 36 view: test model action performed
[4] I

Figure 23: Testing the RPM model

31

Once the testing is complete the tab labeled “RPM Classification” will be populated. This provides

statistics on the effectiveness of the model by reporting the number of samples that were incorrectly
labeled by the model.

Time Series Analysis Tool: TSAT

Data source

Datafile: | /home/drew/Desktop/TSATtutorial/CBF/CBF_TRAIN_TSAT Browse | Row limit (0=all): |0 Load data | |Load model

SAX parameters Nurnerosity reduction Run GI Run RPM

window:| 29 | PAA|5 | Alphabet: 11 | Guess | & Slide window [Global normalizaton | | © OFF @ Exact () MINDIST Discretize Iterations |5 Train | | Test

Data display

0 5 10 15 20 25 20 EE] 40 45 s0 55 &0 &5 70 75 20 a5 30 5 100 105 1l0 115 120 125 130
Time. (zoom: select with mouse; panning: Ctrl+mouse)

Grammar rules (search in list by dicking inta list and pressing CTRL-F) Rule subsequences, narmalized
Grammar rules Regularized rules Rules periodicity TSAT anomalies 15
RPM Representative Classes RPM Classification RPM Time Series Results 1ol
Classes Statistics (Wrong Label/Total Labeled)
2,0000000e+000 0/298 03
3.0000000e+000 31/302 !
1.0000000e+000 10/300)
-0.5
-10
-15
[} 5 10 15 20 25 20

Warkflow management: load > process > display

Save model

e %6, Or VIEW. AFF AENOLEr. FLALSiea AR TPELiig I et AgronnG

12:50: 36 view test modsl action performed =
12:51:52 modsl: Testing Modsl using /home/drew/Desktop/TSATtutorisl /CBF/CBF_TEST_TSAT
12:51:52 model: Finished testing see tabs labeled RPM Classification and RPM Time Series Results for result info

-

[« i]

Figure 24: The results from the testing

Additionally, under the “RPM Time Series Results” tab shows the list of time series that were
predicted incorrectly along with the the actual class the time series belongs, the predicted class, time
series ID, and the time series. Shown in Figure 25.

32

Time Series Analysis Tool: TSAT

Data source

Datafile: |/home/drew/Desktop/TSATtutorial/CBF/CBF_TRAIN_TSAT Browse | Row limit (0=all): |0 Load data | | Load model
SAX parameters Numerosity reduction Run GI Run RPM

window:|23 | PAA5 | Alphabet: 11 | Guess | B Slide window [] Global normalizaton | | & OFF ® Exact O MINDIST Discretize Iterations |5 Train | | Test |
Data display

@
@
=
g
l:J 5 1o 1‘5 20 2‘5 3‘0 35 11.0 45 5‘0 55 6‘0 5‘5 TO0 7‘5 8‘0 8‘5 9‘0 as 160 165 1lo 1i5 1z0 léi 1z0
Time. (zoom: select with mouse; panning: Ctrl+mouse)
Grammar rules (search in list by dicking into list and pressing CTRL-F) Rule subsequences, normalized
Grammar rules Regularized rules Rules periodicity TSAT anomalies 15
RPIM Representative Classes RPM Classification I RPM Time Series Results | 10
D Actual Class Predicted Tirne Series =
61.0000000e+000 3.0000000e+000 -0.39144482, -0.60802221, -... | ‘ 02
491.0000000e+000 2.0000000e+000 -2.1302089, -3.2286908, -2.3... | aol
691.0000000e+000 2,0000000e+000 -2.4546972, -2,657907, -2.11...
102 1.0000000e+000 3.0000000e+000 -0.36569942, -0.94609904, -... .05
127 1.0000000e+000 3.0000000e+000 -1.9813499, -2.4229464, -1.7...
1361.0000000e+000 3.0000000e+000 -0.4449341, -0.67365455, -0.... -Lo
163 1.0000000e+000 3.0000000e+000 -1.4359821, -0.0880%646, -0....
1651.0000000e+000 2.0000000e+000 -2.145283, -1.8862426, -2.02... | H H H
261 1.0000000e+000 3.00000N0e+0N1 -N.76010474. -N.86197N3A. -... |~ o g i & bl 23 £l

Workflow management: load > process > display
Save model
RSO CE T FISSa RET TTE T T BECRGO0nG —
test model action performed
: Testing Medel using /home/drew/Desktop/TSATtutorial /CEF/CBF_TEST_TSAT. ..
: Finished testing see tabs labeled RPM Classification and RPM Time Series Results for result info
-

[4] Il D]

Figure 25: The results from the testing

4.4 Testing Unlabeled Data

Using the same method for loading the test data when the data is labeled we can see the results for
unlabeled data. Here the test data labels are all question marks so the results will consist of the
probability that the test example is in each of the different training classes and the predicted label.
For example, in figure 26 the solid box has the label probability for each class and dashed box has the
predicted class label.

33

Browse | Row limit (0=all): |0 Loaddata| | Load model

duction Fun RPM

MINDIST

Alphabet:{9 Guess | @ Slide window (] Global normalizaton lterations (5 | Train | [Test

Values

o s 10 1s 20 25 =0 as a0 as so ss so es 70 75 =0 as 20 o5 100 105 110 115 120 125 130
Tima. (zoom: salact with mouss; panning: Ctrl+mousa)

st by clting it st andl pressing CTRL-F) Rule subsequences. nermalized
les | Rules periodicity | TSAT anomalies | RPM Representative Classes | RPM Classification| RPM Time Series Results
D Akl cted Time Series
-
nstance Number 1 redmig s

1

L}
3 1
4 1
5 1
° 1
3 1
9 1
10 L}
11 1
12 0.75,0.21, € 1
13 0.04,0.03,0.93,
14 002,091,007 : 2W.5003329, -061170
5 a 5521762, -0,78864179, -0.994502
1 A e 045521762, -0.78861

Wordiom mansgement: load > process > diplay
Save model

op/TSATtutorial/CBF/CBF_TEST_WEKA

Figure 26: Solid box highlights the probability that the time series was in each of the different
class labels and the dashed box highlights the predicted label.

4.5 Saving a Trained RPM Model

Creating a model can take some time and there for being able to save the model for later uses is a useful
feature. Saving the RPM model will generate a file that can be loaded in later for further testing. One
thing to note is that the saved model does not contain the training data however the training data is
still needed when doing testing there for a copy of the training data must be retained.

Step 1 Once a model has been trained up clicking the save model button, as in figure 27, a file
browser prompt will appear.

34

Time Series Analysis Tool: TSAT

Data source

Datafile: |/home/drew/Desktop/TSATtutorial/CBF/CBF_TRAIN_TSAT Browse | Row limit (0=all): |0 Load data | | Load model
SAX parameters Nurmerosity reduction Run GI Run RPM

Window:|29 | PA&|S | Alphabet: 11 | Guess | Slide window [] Global normalizaton | | © OFF @ Exact O MINDIST Discretize lterations |5 | | Train | | Test |
Data display

@
@
=
g
o] 5 1o 15 20 25 20 35 40 45 50 55 &0 65 TO0 75 20 85 S0 as 100 105 1lo 115 1z0 125 1z0
Time. (zoom: select with mouse; panning: Ctrl+mouse)
Grammar rules (search in list by dicking into list and pressing CTRL-F) Rule subsequences, normalized
Grammar rules Regularized rules Rules periodicity TSAT anomalies 15
RPM Representative Classes RPM Classification RPM Time Series Results 10
D Actual Class Predicted Tirne Series =
61.0000000e+000 3.0000000e+000 -0.39144482, -0.60802221, -... | ‘ 02
491.0000000e+000 2.0000000e+000 -2.1302089, -3.2286908, -2.3... | 0o
691.0000000e+000 2,0000000e+000 -2.4546972, -2,657907, -2.11...
102 1.0000000e+000 3.0000000e+000 -0.36569942, -0.94609904, -... .05 |
127 1.0000000e+000 3.0000000e+000 -1.9813499, -2.4229464, -1.7...
1361.0000000e+000 3.0000000e+000 -0.4449341, -0.67365455, -0.... -Lo
163 1.0000000e+000 3.0000000e+000 -1.4359821, -0.0880%646, -0....
1651.0000000e+000 2.0000000e+000 -2.145283, -1.8862426, -2.02... 13
261 1.0000000e+000 3.0000000e+000 -0.76010474. -N.86197086. -... |~ o 5 10 15 20 25 30

Workflow management: load > process > display

e e Gr WiEW AT RENOUET TIISIEG ACT TSI L BeCRgTOunS
36 view test model action performed =
:52 model: Testing Model using /home/drew/Desktop/TSATtutorial /CEF/CEF_TEST_TSAT. ..
:52 modsl: Finished testing see tabs labeled RPM Classification and RPM Time Series Results for result info
-
[4] Il D]

Figure 27: Saving the RPM model

35

Step 2 With the file browser prompt select a location to save the model and give it a name, then
click the “OK” button to save the model.

Data source
Datafile: | /home/drew/Desktop/TSATtutorial/CBF/CBF_TRAIN_TSAT Browse | Rowlimit (0=all): (0 Loaddata| Loadmodel
SAX parameters Mumerosity reduction Run GI Run RPM
Window:|29 | PAA:|S | Alphabet:|11 || Guess | Slide window] Global normalizaton) OFF ® Exact (! MINDIST Discretize lterations |5 Train| | Test
Data display
3
2
$ 1
=
[
a
New Folder || Delete File | Rename File
2
J/home/drew/Desktop/TSATtutorial/CBF | = . |
a 5 10 15 20 25 30 35 40 45 50 55 60 65 70 130
Time. (zoom: select with mouse; parg Folders Files
Grammar rules [searchin list by clicking into list and prassing CTRL-F) | ~ [CBF_TEST_TSAT o =
1./ CBF_TEST_WEKA i
Grammar rules Regularized rules Rules periodicity T CBF_TRAIN_TSAT
RPM Representative Classes RPM Classification RPM Time 5S¢ CBF_TRAIN_TSAT_LETTER? "'\\/\
D Actual Class Predicted Tin
&6 1.0000000e+000 3.0000000e+000 -0.39144483 1=
491.0000000e+000 2.0000000e+000 -2.13020889, = (A7 D
691.0000000e+000 2.0000B00E+000 _2'4545972; Selection: /home/drew/Desktop/TSATtutorial/CBF
1021.0000000e+000 3,0000000e+000 -0.36569942
127 1.0000000e+000 3.0000000€+000 -1.3813439,] |CBF_Modell
1361.0000000e+000 3,0000000e+000 -0.4445341, Filter:
1631.0000000e+000 3.0000000e+000 -1.4359821, .
165 1,0000000&+000 2,0000000&+000 -2.145283, - AlLFiles =
264 4_0000000E+000 3.0000000E+000 -0.76010474 . -
Warkflow mansgerment: load = process = display - © Cancel o/ OK =

Grammar rules Rule length histogram Cluster rules Prune rules 3.,!%Model

L1Z. 39,50 VAIeW. L=l WOOSL &0LLON PR OO

12:51:52 model: Testing Model using /home/drew/Desktop/TSATtutorial /CBF/CBF_TEST_TSAT =
12:51:52 model: Finished testing see tsbs labsled RPM Classificstion and RPM Time Series Results for result info
13:06:05 view: save model action performed

-

[4] i [»]

Figure 28: Saving the RPM model to file

36

4.6 Loading an RPM Model

When a model has already been saved, simply loading the will allow for further testing. When loading
a model the software will look for the original training data from where it was when it was originally
trained. If the data is not there then the software will ask for the location of the data.

Step 1 First click on the “Browse” button under the “Data Sources” section of the window, as seen
in figure 29.

x Time Series Analysis Tool: TSAT

Data source

|Data file: [] Browse | Row limnit (0=all): |0 Load data | |Load mode
SAX parameters Numerosity reduction Run GI Run RPM
window:[170 | PAA:|4 | Alphabet:|4 | Guess B Slide window [[] Global normalizaton) OFF @ Exact () MINDIST Discretize lterations 5 Train | | Test
Data display
Grarmmar rules (search in list by dicking into list snd pressing CTRL-F) Ruls subssquances, normalizad
RPM Representative Classes RPM Classification RPM Time Series Results
Grammar rules Regularized rules Rules periodicity TSAT anomalies

Workflow management: load > process > display

13:02:20 view: running Time Series Analysis Tool: TSAT demo -

[T D]

Figure 29: Loading a model

37

Step 2 This should being up the file browser prompt in figure 30. Using this prompt select the
previously saved model.

[Data source

Data file: | | |Browse | Row limit (0=all): \:D | [Load data| |Load model

- SAX parameter

Window:|EJ PAA|Z| ALphabet:|z

) OFF ® Exact () MINDIST

Guess @ slide window (] Global normalizaton Discretize lterations |_5 \ Train | | Test

"Numerosity reduction "Run Gl "Run RPM

r Data display

-]
Select Data File

- Grammar rules (search in list by dlicking irto list and pressing CTRL-F)

] |MewFolder| De llz |RenameFile |
RPM Representative Classes RP M Classification RP M Time §] /home/drew/Desktop,/ TSATtutorial/CBF B
G L Regularized rul Rul jodicity pr
rammar rules egularized rules ules periodicity J [Folders . .
Vi = F_Model 2
i CBF_TEST TSAT

CBF_TEST_WEKA
_| CBF_TRAIN_TSAT :
CBF_TRAIN_TSAT_LETTERS

- (AT i D

Selection: /home/drew/Desktop/TSATtutorial/CBF
[CBF_Model

Filcer:
Al Files

J o]

r Warlflow management: load > process > display

€ Cancel g EEE |
Grarmmar rules Rule length histogram Cluster rules Prune rules Ruld — bdel

13:08:20 view: running Time Series Analysis Tool: TSAT demo

[«] I

Figure 30: Open the file browser prompt

38

Step 3 Once the model has been selected, click the “Load Model” button and the model will be
loaded into TSAT. If the data is not found during the loading step TSAT will ask for the location of
the data using a file browser prompt, like in figure 32, simple provide the data and the model will finish
loading.

x Time Series Analysis Tool: TSAT

Data source
Datafile: |/home/drew/Desktop/TSATtutorial/CBF/CBF_Madel |Browse| Row limit (0=all): |0 Load data || Load model
SAX parameters Nurnerosity reduction Run GI Run RPM
Window:|170 | PAA 4 | Alphabet:|4 | Cuess B Slide window [C) Global normalizaton ©) OFF @ Exact () MINDIST Discretize lterations |5 Train | | Test
Data display
Grammar rules (search in list by clicking inta list and pressing CTRL-F) Rule subsequences, narmalized
RPM Representative Classes RPM Classification RPM Time Series Results
Grammar rules Regularized rules Rules periodicity TSAT anomalies

Workflow management: load = process > display

(=]

13:02:20 wiew: running Time Series Anzlysis Tool: TSAT demo a
13:11:35 model: set file /home/drew/Desktop/TSATtutorial /CEF/CEF_Model as current data source

[i]

Figure 31: Model loaded

39

Data source

Datafile: | /home/drew/Desktop/TSATtutorial/CBF/CBF_Model Browse | Row limit (0=all): 0 Load data | |Load model

SAX parameters Numerosity reduction Run Gl Run RPM
window:| 29 | PAA|S | Alphabet:{11 & slide window (] Global normalizaton 1 OFF (@ Exact (7 MINDIST lterations |5
Dats display

Values

New Folder Rename File

. /home/drew | = .

6 5 1‘0 1‘5 2‘0 2‘5 3‘0 3.5 4‘0 4‘5 50 5‘5 &0 5‘5 70 1z0
Time. (zoom: select with mouse; pan| Folders Files
Grammar rules (search in list by clicking into list and pressing CTRL-F) — / 3 gglii}?[;)t(;) conf 3 B
RPM Representative Classas RPM Classification RPM Time 54 2016basedbenchmark/ DTWForVectare.tar.gz
Grammar rules Regularized rules Rules periodicity 14 Android/ SingleAgentBiasVar.pdf
| AndroidStudioProjects/ berlin52.tsp

ArduinoCreatefgent-1.1/ bias-variance-plot.png
ClionProjects/ - biasvariancetradeoff pdf |-
v DG D

Selection: /home/drew

[

Filter:
AlLFiles v
Workflow managemert: load > process > display 9 @ Cancel | |RfOK S 1™

13:15: 23 model: set file fhome/drew/Desktop/TSATtutorial /CBF/CBF Model as current data source
13:15:25 view: load model action performed
13:15: 25 model: Loading Model from /home/drew/Desktop/TSATtutorial /CEF/CEF Model. . .

15,10, 15 WUGEL. COSULY (UGS | EON F OO/ S e DEeR L UR 3R 1 LU DT L /LB DU LS LE LB (OO .
a
-

[a] i]

Figure 32: Missing training data file browser prompt

4.7 Settings

There are a few options that can be changed when using RPM in TSAT, some of them have already
been mentioned and will be covered again.

4.7.1 Dynamic Time Warping

Dynamic Time Warping, or DTW, is a method of measuring distance between two time series, this
means how similar or different they are to each other. By default RPM uses Euclidean distance which
is a simple and fast measurement, however it does not do well when the similar patterns between time
series occur at different positions. This is where DTW comes in, it can handle temporal shifts in patterns
and, depending on the data, can vastly improve the accuracy of the model. There is a cost however,
DTW is a much slower operation and is very expensive to run so it is left as an option for the user.
DTW also has another parameter called “Window” which can have dramatic effects on DTW both
in how long it takes to run and its accuracy. The window size basically limits how far DTW will go to
try to accurately try to match the two time series. A smaller window will stop DTW from trying to
over match them and will take less time to compute. A larger window will take much longer to compute
but can allow DTW to match patterns that are father apart. Choosing a good window size can be
highly dependent on the data and what is being compared, and therefore some experimentation may
be needed to find a good window size. There are a few good rules when choosing a window size, for one

40

a window size greater then 10 will usually give bad results so 10 is considered a good starting point.
Often for the more common types of data a 3-5 window size can be much better option with significant
speed ups. Note DTW’s window should not be confused with the Window size in the SAX parameters
section of the main window, these are two different and distinct uses of the word window.

41

Step 1 To change between Euclidean distance and DTW first open the settings menu:
“Settings” — “TSAT options” or press Ctrl4+p. This will bring up the settings menu in figure 33.

—

Data source

Data file: Browse | Row lmit (0=all): |0 Load data | |Load model
SAX parameters Numerosity reduction Run GI Run RFM

Window:|170 | PAA:|4 | Alphabet:|4 | Gusss @ Slide window [Global normalizaton) OFF (@ Exact (MINDIST Discretize lterations |5 Train | | Test
Data display

s

Coverage Strategy|| Gl Implementation | Qutput | Options

Set the rule coverage strategy

Grammar rules (search in st by dicking into list and prass| @® rule count (i.e. coverage classic) L <Lbsequences, normalized

ol i — .

RPIM Representative Classes ® miElerdEen

Grammar rules Regul =)
4 | O rule occurrence increment

O rule yield (number of words in expanded form) increment

) product of level and eccurrence increment

Save | | Cancel

Workflow ransgement: load = process = display

13:17:44 view: running Time Series Analysis Tool: TSAT demo -
13:18:07 view: options menu action performed

[Il]

Figure 33: TSAT Settings Dialog

42

Step 2 Now click on the “Options” tab.

[Data source

Data File: [I |Browse| Row limmit (0=all): |0 Load data | |Load model
r SAX parameter Numerosity reduction Run Gl Run RPM

Window:|170 PAA:m Alphabet:m GCuess @ Slide window [Global normalizaton {O OFF ® Exact () MINDIST { Discretize {Iterations 5 Train | | Test
- Data display

Coverage Strategy | Gl Implementation Outputllomions ‘l

~ SAX Option:

- Grammar rules (sesrch in list by clicking into list and preé Normalization threshold: [0-05]

e subsequences,

RPM Representative Classes J

Grammar rules Reguu
r Distance Option:
@® Fuclidean
) Dynamic Time Warping Windowr: -
| Save | |Cancel]
- Warkflom managsment: load > process > display
Grammar rules Rule length histogram Cluster rules Prune rules Rules density Find anomalies Save chart Save model
13:17:44 view: running Time Series Analysis Tool: TSAT demo a
13:18- @7 view options menu action parfaormed
-
4

Figure 34: TSAT Settings Dialog Options

43

Step 3 Now select the “Dynamic Time Warping” option and the desired “Window” then click save.

r Data source

Datafile: |

| |Browse | Rowlimit (0=all): |0 | |Load data| |Loadmodsl

[SAX parameter

Mumerosity reduction Run G| Run RPM
Window:‘ﬂﬂ | PAA:‘4 |Alphabet:|4 Cuess @ Slide window (] Global normalizaton {OOFF ® Exact) MINDIST { Discretize {Iterations |5_| Train | | Test

[Data display

Coverage Strategy | Glimplementation | Qutput| Options
- SAX Option:

- Grammar rules (search in list by dlicking into list and presé Normalization threshold: | 0.05 e subsequances,

RPM Representative Classes J

Grammar rules Regu

- Distance Option

) Euclidean

@® Dynamic Time Warping| Window: |10 :

| Save | | Cancel |

[Workflow managemert: load = process > display

Grammar rules Rule length histogram Cluster rules Prune rules Rules density Find anomalies San

T
)

chart Save model

1L
f
f

13:17:44 view: running Time Series Analysis Tool: TSAT demo
13:18:07 view: options menu action performed

[+]

Figure 35: TSAT Settings Dialog Options DTW

44

4.7.2 Iterations

During the operation of RPM it goes though a step that gets repeated many times. This step only stops
under two conditions, a minimum threshold is met or if the maximum number of iterations are reached.
The iterations setting found under the “Run RPM” section of the main window in TSAT is how the
user can control the maximum number of iterations, figure 36. The number of iterations can have an
effect on how accurate the model can get, however the more iterations RPM runs through the longer
it will take to complete. This becomes a balance between the quality of the model and the how long
the training phase will take. It should also should be noted that RPM can stop before the maximum
number of iterations is met if the model has reached an ideal state. However, this does not mean that
all models will or even can reach an ideal state before the maximum number of iterations is reached,
indeed some data sets may never return a model that meets the requirements. As RPM runs through
the iterations the model should get better but the amount it gets better by can be come increasingly
insignificant and therefore adding another 10 iterations may not add any significant results to the model.
The only way to know if adding more iterations will improve the model is by experimentation which
would involve training multiple times, increasing the maximum number of iterations every run until the
testing results return no significant improvements.

(] Time Series Analysis Tool: TSAT

Data source

Datafile: [|] Browse | Row limit (0=all}: |0

SAX parameters Numerosity reduction Run GI Run RPM

window:[170 | PAA:|4 | Alphabet:| 4 & slide window [[] Global normalizaton) OFF ® Exact () MINDIST

Data display

Grammar rules (search in list by clicking irto list and pressing CTRL-F) Rule subsequences, normalized
RPM Representative Classes RPM Classification RPM Time Series Results

Grammar rules Regularized rules Rules periodicity TSAT anornalies

Workflow ransgernent: load = process = display

13:17:44 view running Time Series Anslysis Teol: TSAT demo -
13:18:67 view optiens menu action performed

(4] i]

Figure 36: TSAT RPM Iteration Setting

45

4.8 Python Interface

There are three functions: RPMTrainTest, RPMTrain, and RPMTest and they can be called external
from tsail.py as:

tsail .RPMTrainTest (pathToTraining, pathToTest, outputFile, num_iters)
tsail.RPMTrain(pathToTraining, outputFile, num_iters)
tsail .RPMTest (pathToTest, modelFile, num_iters)

With parameters:
pathToTraining The path to the file containing the training time series data.

pathToTest The path to the file containing the testing time series data.

outputFile The name of the file that will be used for writing the returned json object and the serialized
model file which can be used as input to RPMTest.

num_iters The number of RPM iterations to run.

modelFile The filename of the serialized model file. Either saved from the GUI or generated by
RPMTrainTest or RPMTrain.

For RPMTrainTest both training and testing will be output whereas in RPMTrain and RPMTest
they each do exactly either training or testing.

The training output is an array of:

https://github.com/dwicke/TSAT/blob/72498ab66795e221ebbe26fbc65b0f1566169cab6/src/main/
java/edu/gmu/grammar/patterns/TSPattern. java

TSPattern has the following properties that are accessible via the returned json object:

private int frequency; // The number of times this pattern is used

private double[] patternTS; // the time series pattern

private double error = 0; // the pattern’s error rate.

private String label; // The class label for the pattern

private int fromTS; // the index for the time series.

private int startP; // the patterns start position in the concatenated data.

The test output is a 2D array of strings for each instance we have the value corresponding to
[[“inst#’, ‘actual class’, ‘predicted class’, ‘timeSeries’]]
The test output when the data input is unlabeled is a 2D array of strings where for each instance

we have:
[[‘inst#’, ‘comma separated list of the probabilities of being in the particular class’,
‘predicted class’, ‘timeSeries’]]

When running RPMTrainTest you will generate three files as output instead of 1.

<outputfileName>.train <outputfileName>.test <outputfileName>

Files with the .train and .test extensions are the json of the python dictionaries as discussed in
previous sections. The last file can be imported into TSAT GUI as it is the same as the saved model in
TSAT. Example usage of all three functions are contained within tsail.py.

5 FAQs

When training there must always be more than one example from each class label and there must be
more than one label.

46

https://github.com/dwicke/TSAT/blob/72498ab66795e221eb6e26fbc65b0f156169ca66/src/main/java/edu/gmu/grammar/patterns/TSPattern.java
https://github.com/dwicke/TSAT/blob/72498ab66795e221eb6e26fbc65b0f156169ca66/src/main/java/edu/gmu/grammar/patterns/TSPattern.java

Installation This tutorial assumes that you are running Ubuntu 16.04 with Java 1.8 or greater
installed.

git clone https://github.com/dwicke/TSAT.git

cd TSAT

mvn package -Psingle

This will create tsat-0.0.1-SNAPSHOT-jar-with-dependencies.jar in the target directory. You can
execute the jar and run the GUI by double clicking on it after changing its permissions:
chmod +x tsat-0.0.1-SNAPSHOT-jar-with-dependencies. jar

To run the GUI from a shell you can do:

$ java -Xmx2g -jar target/tsat-0.0.1-SNAPSHOT-jar-with-dependencies. jar

The -Xmx2g allocates max of 2Gb of memory for the software.

References

[1] P. Senin, J. Lin, X. Wang, T. Oates, S. Gandhi, A. P. Boedihardjo, C. Chen, and S. Frankenstein,
“Time series anomaly discovery with grammar-based compression,” in Proc. EDBT (Brussels,
Belgium, March 2015), pp. 481-492, 2015.

[2] P. Senin, J. Lin, X. Wang, T. Oates, S. Gandhi, A. P. Boedihardjo, C. Chen, S. Frankenstein,
and M. Lerner, “Grammarviz 2.0: a tool for grammar-based pattern discovery in time series,” in
Machine Learning and Knowledge Discovery in Databases, pp. 468-472, Springer, 2014.

[3] P. Senin, J. Lin, X. Wang, T. Oates, S. Gandhi, A. P. Boedihardjo, C. Chen, and S. Franken-
stein, “Grammarviz 3.0: Interactive discovery of variable-length time series patterns,” ACM Trans.
Knowl. Discov. Data, vol. 12, pp. 10:1-10:28, Feb. 2018.

[4] C. G. Nevill-Manning and I. H. Witten, “Identifying hierarchical structure in sequences: A linear-
time algorithm,” Journal of Artificial Intelligence Research, vol. 7, pp. 67-82, 1997.

[5] N. J. Larsson and A. Moffat, “Off-line dictionary-based compression,” Proceedings of the IEEE,
vol. 88, no. 11, pp. 1722-1732, 2000.

[6] J. Lin, E. Keogh, S. Lonardi, and P. Patel, “Finding motifs in time series,” in Proc. of the 2nd
Workshop on Temporal Data Mining, pp. 53-68, 2002.

[7] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation of time series, with impli-
cations for streaming algorithms,” in Proceedings of the 8th ACM SIGMOD workshop on Research
issues in data mining and knowledge discovery, pp. 2-11, ACM, 2003.

[8] E. Keogh, J. Lin, and A. Fu, “Hot sax: Finding the most unusual time series subsequence: Algo-
rithms and applications,” in Proc. ICDM, pp. 440-449, 2004.

[9] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing sax: a novel symbolic representation of
time series,” Data Mining and knowledge discovery, vol. 15, no. 2, pp. 107-144, 2007.

[10] Y. Li, J. Lin, and T. Oates, “Visualizing variable-length time series motifs,” in Proceedings of the
2012 SIAM international conference on data mining, pp. 895-906, STAM, 2012.

[11] https://github.com/jMotif/GI/blob/master/README.md. [Accessed June 14th 2018].

47

https://github.com/jMotif/GI/blob/master/README.md

[12] https://grammarviz2.github.io/grammarviz2_site/morea/motif/experience-ml.html.
[Accessed June 14th 2018].

[13] P. Senin, J. Lin, X. Wang, T. Oates, S. Gandhi, A. P. Boedihardjo, C. Chen, and S. Frankenstein,
“Time series anomaly discovery with grammar-based compression.,” in EDBT, pp. 481-492, 2015.

[14] X. Wang, J. Lin, P. Senin, T. Oates, S. Gandhi, A. P. Boedihardjo, C. Chen, and S. Frankenstein,
“Rpm: Representative pattern mining for efficient time series classification.,” in EDBT, pp. 185—
196, 2016.

[15] https://grammarviz2.github.io/grammarviz2_site/morea/optimization/reading-
ol.html. [Accessed June 19th 2018].

[16] https://grammarviz2.github.io/grammarviz2_site/morea/optimization/reading-
ol.html. [Accessed July 20th 2018].

48

https://grammarviz2.github.io/grammarviz2_site/morea/motif/experience-m1.html
https://grammarviz2.github.io/grammarviz2_site/morea/optimization/reading-o1.html
https://grammarviz2.github.io/grammarviz2_site/morea/optimization/reading-o1.html
https://grammarviz2.github.io/grammarviz2_site/morea/optimization/reading-o1.html
https://grammarviz2.github.io/grammarviz2_site/morea/optimization/reading-o1.html

	Introduction to TSAT
	Interface Layout
	Python Interface
	Tools Introduction
	Motif Discovery
	Anomaly Detection
	Representative Pattern Mining - RPM

	Overview

	Motif Discovery
	File format
	Guide to Motif Discovery
	Guess SAX Parameters
	Options

	Rule Pruning
	Clustering Technique
	Greedy Rule Pruning

	Python Interface

	Anomaly Detection
	Guide to Anomaly Detection
	Python Interface

	Time Series Classification using RPM
	File formats
	Training the Model
	Testing
	Testing Unlabeled Data
	Saving a Trained RPM Model
	Loading an RPM Model
	Settings
	Dynamic Time Warping
	Iterations

	Python Interface

	FAQs

