User Guide For Parallel Secondo

May 30, 2012

1 Parallel Secondo Infrastructure

Parallel S coNDoO is constructed by coupling simply the Hadoop framework aistrdte SCONDO
databases on a computer cluster, as shown in Figure 1. lteaefdoyed on either a single computer
or a cluster containing tens or even hundreds of computergfly its two components Hadoop and
discrete EcoNDOdatabases coexist in the same system, and each can be usgehidently. In Hadoop,
nodes are communicated through its HDFS (Hadoop Distrib#ie System), while each single-node
SECONDOexchanges its data with the others through the PSFS (R&8alieoNnDo File System). Unlike
Hadoop that is deployed by nodes, Parallet®NnDois deployed by data servers. A data server is the
minimum execution unit of the system, containing a compaxt@&Do named Mini-E£CoNDO and its
database, together with a PSFS node. It is possible thatiosteicnode may contain several data servers,
especially nodes with multiple hard disks, in which the usan set a data server on each disk, hence
can take the full advantage of the cluster resources. Dwmigus parallel procedures, a few data are
exchanged among nodes through the HDFS, in order to assiksittadata servers. At the same time, the

bulk of intermediate query results are exchanged amongseat@rs through the PSFS.

A particular data server set on the master node is denotdgtasdster data server, its MinESONDOIs

set to be the only entrance to the system, called the mad#dyatze. Through various PQC (Parallel Query
Converter) operators provided in the master database,tancysarallel query is converted to a Hadoop
job, and then partitioned to tasks. These tasks are pratdssdata servers in parallel, complying the
scheduling of the Hadoop framework. Different from the otli@abases in slave data servers, the master

database contains some global and meta data of the whokargysterefore it is also called the meta

Master
Node

Mini Secondo ¢:>
— kY
Meta Parallel

Database Query
Converter

Master Data Server

l—i Hadoop Slave Node >

Slave Data Slave Data
Server Server

Hadoop Master Node

WMo I

Node [oo Savioe
Hadoop Slave Node >
Node P de | >

Slave Data Server

Mini Secondo
Slave

Database

Slave Data Slave Data %
Server Server

Slave Node

Figure 1: The Infrastructure of Parallel Secondo

database.

An identical DS-Catalog is duplicated on every node of thester, describing access entries for all data

servers. Itis composed by two files, master and slaves)distata servers by lines with three elements:

| P_Addr ess: PSFS_Locat i on: SecondoPor t

For each line, its first element distinguishes nodes by tiReaddresses, while the second and the third
elements tell apart data servers within a same node basdterPSFS locations and MiniERONDO
ports. The master file should only contain one data servég.pidssible to use the master also as a slave
data server. In a node with several data servers, the Hagmbigations and the DS-Catalog are only set
in its first data server. The order of these data servers ideldy the DS-Catalog, and the master data

server is always the first one on the master node.

2 Hadoop Algebra

SECONDOIs composed by algebras, each containing a set of data typesperators. Two algebras are
especially required by the ParalletSonDO, Hadoop and HadoopParallel. They must be activated before

deploying the system to the cluster. Besides, some othepaoemts are also required:

1. Hadoop Package. Hadoop 0.20.2 is used as the underlgingeiork for Parallel ScoNDQ, al-
though itself is not included inEBcoNDO by default. It has to be downloaded by the user, and put
into the $SECONDO_BUILD_DIR/bin. Nonetheless, its inlstébn is not required, and can be

performed automatically along with the deployment of thealPel SECONDO.

2. Parallel Secondo Auxiliary Utilities. ParalleeSoNnDoincludes a set of bash scripts to manage the

system. They are kept in the Hadoop algebra by default. T¢wgss include at least:

ps-cluster-format: An automatic deployment tool for initializing the Paral&gCcONDO environ-

ment of the cluster, including the Hadoop framework.

ps-cluster-uninstall: It performs the opposite function to the above script, reimpthe Parallel

SEcoNDoOfrom the cluster, and cleaning up the environment.

ps-secondo-buildMini: It extracts and distributes the MiniEBONDO base on the current single-

node E£CoNDoOsystem, to all data servers that are listed in the DS-Catalog

ps-startMonitors: The SEcoNDOMoNitor is a database server process prepared to acceflmult
remote clients visiting the sameeSoONDO database. In ParallelEEONDO, all SECONDO
monitors have to be started up before processing any pegiakeies. Considering there may
exist several data severs in one cluster node, this scrips liser to start up monitors on the

current node.
ps-start-AllMonitors: It starts up all data serversEBoNDOmMonitors in the cluster.
ps-stopMonitors: It shuts down data serverseSONDO monitors on the current node.
ps-stop-AllMonitors: It shuts down all data serversESEoNDOmonitors in the cluster.

ps-startTTY: It starts up a BconDoOtext terminal interface of one Mini48.oNDoOon the current

node.

ps-startTTYCS: It starts up a 8conDOClient-Server based text terminal interface, and connects

any SECONDOmonitors that has been started up in the cluster.

ps-cluster-queryMonitorStatus: It checks the running status of alESONDO monitors in the

cluster.

3. Parallel Configuration File. All ParallelE® oNDO parameters are set in the file named ParallelSec-

ondoConfigure.ini, and its example file can also be foundéntthdoop algebra.

4. Precast Hadoop Job. Several precast generic Hadooprplpsegpared for several parallel opera-
tors in SEcoNDO. Their source files are kept with the Hadoop algebra togethrat the jobs are

generated when the algebra is compiled.

3 Configuring Parallel Secondo

Parallel SconDoconfigurations are all set in the file named ParallelSecond&@.ini. Its example file
is prepared to deploy the ParalleESoONDO on a single computer, and kept in the Hadoop algebra by
default. After setting all required parameters accordmthe user’'s own environment, this file should be

copied to the $SECONDO_BUILD_DIR/bin, and then read by thelpster-format script.

This file follows the same format as the SecondoConfig.inifiilainly divided into three sections: hadoop,
cluster and options. The firstadoop section is prepared for setting up the Hadoop framework. All
parameters listed in this section set uniform Hadoop cordignns for all involved nodes. In this way,
the flexibility of the system is restricted, but the new usen set up the ParallelEERONDO quickly
without learning too many details about Hadoop. All pararsetre listed by lines, composed of three
elements including the file name, title and value. Each patamis inserted into the specific file with its

corresponding value.
[fileNane]:[title] = [val ue]

This section is further divided into 4 parts. The first pamtains all indispensable parameters prepared
for Parallel S$conDoO. The non-advanced user should keep this part unchangedseothee Parallel
SECONDO may not work correctly. The second part sets IP addressepantsl for different Hadoop
daemons. They are also indispensable, although the useldstitange their values based on his own
cluster, like the master node’s IP address. Besides, dagmort numbers can also be changed if the
default values have already been taken by some other pregrdime third part indicates the capabil-
ity of the cluster, and the user should also set them basedsoowm cluster. For example, the option
mapred-site.xml: mapred.tasktracker.map.tasks.maximum limits the number of map tasks running in par-
allel on one node. Usually we set it with double the numberhef pirocessor cores, so does the other
option mapred.tasktracker.reduce.tasks.maximum. There are also some other parameters, likehtlie-
sitexml: dfs.replication telling how many times each HDFS block is replicated on thistelr. If the Paral-

lel SEcoNDOIs deployed into a cluster composed of hundreds of elastigpoters, then it is better to set
this parameter with a value more than 1. The last part is peepfr clusters shared by multiple users,
where each user should set their daemons with differentmuonbers, including some services set in the

second part.

The secondcluster section lists all involved data servers. Each data servardisated by one line,
and assigned as the master or a slave by the title. The valueqdains three elements: IP Address,
Data Server Path and MiniE8ONDO Port. The second element indicates a disk path where all data
server components are kept. This path is created autorhaiitia does not exist before. Take a cluster

configuration for example:

Master = 192.168.0. 1:/Hone/ dataServer1: 11234
Sl aves += 192.168. 0. 1: / Hone/ dat aServer 1: 11234
Sl aves += 192.168. 0. 1:/ Hone/ dat aSer ver 2: 12234

In the above example, a small cluster is simulated on one atanpvith the IP address 192.168.0.1. It
contains two data servers, which are kept in the /Home/datagl and the /Home/dataServer2 respec-
tively. The first one is used as the master, and also as a sé&esérver. The master MinEBONDO can

be accessed through the port 11234.

The last sectioroptions is prepared for some special cases in the cluster. At presalyt one option
named NS4Master (Normal Secondo For Master database) vglpdohere. If its value is set as true,
then the master node’s defauleS&oNDQ, i.e. where the $SECONDO_BUILD_DIR points to, is set

automatically to be the master MinESONDO.

4 Mini-Secondo Management

In Parallel $£coNDO, one node may contain multipleESONDO databases, and a cluster may be com-
posed by many computers. Therefore, some regular routimk kke starting, stopping, and updating
SECONDO systems are better processed with some auxiliary bashtscrifhese auxiliary utilities are
briefly introduced in Section 2, and their names are allsthloly “ps-". Each script has a usage explana-
tion, and can be printed with the “-h” argument. Here we onlydduce several common operations in

Parallel $conDO accomplished with these scripts.

4.1 Update Mini-Secondo

The Mini-SECONDO is a compact 8conDodistribution, it only contains essential components resgli

to manipulate the slave databases. All of them are builtdaseghe user’'s accustomed version, and keep
identical over the whole cluster. In case there is any eidamaade for ECONDO, like creating new data
types or operators, users can reconstruct the system amtalistribute the update to the whole cluster

immediately.

$ cd $SECONDO BUI LD DI R/ Al gebr as/ Hadoop/ cl ust er Managenent
$ ps-stop-All Mnitors

$ ps-secondo-buildMni -c

The ps-secondo-buildMini provides two major argumentsclaster) and | (local). If the “-¢” argument
is set, then the update will be distributed to every dataesenf the cluster. In the contrast, if the “-I”

parameter is set, then the ne®@NDOIs only distributed to all data servers on the current node.

The Mini-SECONDO contains all essential componentsec®NDOdatabase needs. All of them are listed
in a text file named miniSec_list, which is also kept in the bfagl algebra. Each file or folder in the
single-node 8conDoIs listed there with one line. It is possible for the user tarie this list according

to his own requirement.

4.2 Start Up and Turn Off Mini Secondo Monitors

During parallel procedures,EBONDO databases are accessed through their monitors, which bale t
started up before processing any queries. Considering Hrertens or even hundreds of MinE&ONDO
systems inside a cluster, several utilities are proposedatd and stop these monitors without visiting

them one after another.

The first script ps-startMonitors starts up all MinESoNDO monitors on the current computer, while the
second script ps-start-AllMonitors visits every node andsrthe ps-startMonitors, so as to start up all
monitors on the cluster. In the contrast, the script psidtoptors turns off all Mini-SECONDO monitors

on the current computer, and all monitors on the cluster lamedown with ps-stop-AllMonitors.

4.3 Open Parallel Secondo Interface

In Parallel $CONDQ, every Mini-SECONDO can be viewed as a hormakESONDO system and visited
independently. Normally the user only needs to visit the tatadatabase, although scripts like ps-
startTTYCS are proposed to access any MiBESNDO database inside the system. One cluster node
may contain several Mini4ScoNDO databases, which are arranged in order, starting from braicg to

the DS-Catalog. The commands for opening the Paraiteldibo main interface are:

$ cd $SECONDO BUI LD DI R/ Al gebr as/ Hadoop/ cl ust er Managenent
$ ps-startMnitors
$ ps-startTTYCS -s 1

All Mini-S ECONDO monitors must be started up before running any paralleligsiehence the meta
database can only be visited through its client-serverfate. Since the master MiniESONDOIs always

the first database on the master node, we start up this spetéfitace by setting the argument with the
value of 1. Besides, it is also possible to use the graphia dserface in Secondo to visit the meta
database. The user can open the javagui interface as umraannect the indicated database by setting

its host IP and port number in the menu “Server”, and “Setting

. - - Data Server 1,

P4

Data Server 2 |

R Yy - - Data Server N |

Data Server 1,

¥y o . - . """ - Data Server m
.
| .

Figure 2: PS-Matrix

5 Secondo Parallel Query Expression

Here we introduce how to write queries in Parallelc®NDo in executive level language.

5.1 PS-Matrix

In parallel SECONDO, data is distributed over the cluster as PS-Matrix, showRigure 2. A Secondo
object is divided into pieces based on two functiod&;) andd(y) . Thed(z) divides the data intd?
rows, each row can only be kept on one data server. It is dedsibd(x) to produce more rows than the
cluster scaleV, and to let data servers contain multiple rows. Afterwartlg,) divides each row t@”
columns. As a result, a PS-Matrix is composediby C' pieces, but not all pieces contain data. Normally,
PS-Matrix is prepared for distributing large-sized datarahe cluster, like relations containing millions

of tuples, while the division functions are hash algoritfmased on one or several of its attributes.

5.2 Data Type

In Parallel S$CONDQ, data typeflist is especially proposed for expressing the PS-Matrix. leisighed
as a wrap structure, and able to encapsulate all availabeoSD0 objects, shown in Table 1. After

a SECONDO object is being divided into a PS-Matrix, piece data arerithisted and kept in slave data

servers, while only their entry information are kept in thetendatabase, expressed & object.

SPATIAL points line — FLIST flist(point) flist(segment)
RELATION rel(tuple(T)) — FLIST flist(rel(tuple(T)))

INDEX rtree — FLIST flist(rtree)
TEMPORAL moving — FLIST flist(unit)

Table 1: Flist Data Types

There are two of kinds methods keeping distributed dataaresiata servers. The first keeps the partial
data into slave Mini-BcoNDoOdatabases, saved as normatc®NDo objects. The second exports data to

the PSFS nodes as disk files. Hereby, there also will be twaskififlist objects in Parallel SconDO.

1. Distributed Local Objects (DLO): A DLO divides a largeail SSCONDO object to aN x 1 PS-
Matrix, each row is saved in a slave MinESONDO database, like commonES8ONDO objects,
called sub-objects. All sub-objects belonging to a samedfiare the same name in different slave

databases. Theoretically, DLO flist can wrap all availalie SNDOdata types.

2. Distributed Local Files (DLF): Data are divided intdRax C' PS-Matrix, and each piece is exported
from SECONDO databases as disk files, saved in PSFS nodes, called subSildsfiles can be
exchanged among data servers during parallel procedurtestegent, only tuple relations can be

exported and kept as sub-files, hence DLF flist is preparetlifibe relations only.

Although it is possible to wrap anyE®ONDO data type with &list object, there are some data are too
small to be distributed this way. For example, a rectangbrywindow is used by every slave data server
during a parallel query, but it is not advisable to dividenitol smaller pieces which are then distributed
over the cluster, since the rectangle itself is very smalthis case, this rectangle can be simply duplicated
to every data server during the runtime. Apparently, noSaltoNDO objects can be duplicated, since
data are delivered as nested-lists, which require a relgtiexpensive transforming overhead. E.g, a
relation containing one million tuples should not be delagkto every slave, along with the query together.
Therefore, a new data kind call&ELIVERABLE is proposed for parallel E2ONDO, and only data
types associated with this kind can be encapsulated intl@lgueries, and duplicated to slaves during

the runtime. AIIDELIVERABLE data types are listed in Table 2.

10

| Type | Algebra | NumOfFlobs| PersistencyMode | | |

1 bool StandardAlgebra 0 Memoryblock-fix-core
2 | cellgrid2d | TemporalAlgebra 0 Memoryblock-fix-core
3 cluster TopRelAlgebra 0 Memoryblock-fix-core
4 | duration DateTimeAlgebra 0 Serialize-fix-core
5 edge GraphAlgebra 0 Memoryblock-fix-core
6 geoid SpatialAlgebra 0 Memoryblock-fix-core
7 gpoint NetworkAlgebra 0 Memoryblock-fix-core
8 ibool TemporalAlgebra 0 Memoryblock-fix-core
9 iint TemporalAlgebra 0 Memoryblock-fix-core
10| instant DateTimeAlgebra 0 Serialize-fix-core
11 int StandardAlgebra 0 Serialize-fix-core
12 ipoint TemporalAlgebra 0 Memoryblock-fix-core
13 ireal TemporalAlgebra 0 Memoryblock-fix-core
14| istring TemporalExtAlgebra 0 Memoryblock-fix-core
15 point SpatialAlgebra 0 Memoryblock-fix-core
16 real StandardAlgebra 0 Serialize-fix-core
17 rect RectangleAlgebra 0 Memoryblock-fix-core
18 rect3 RectangleAlgebra 0 Memoryblock-fix-core
19 rect4 RectangleAlgebra 0 Memoryblock-fix-core
20 rect8 RectangleAlgebra 0 Memoryblock-fix-core
21 string StandardAlgebra 0 Serialize-variable-extension
22 ubool TemporalAlgebra 0 Memoryblock-fix-core
23 uint TemporalAlgebra 0 Memoryblock-fix-core
24 | upoint TemporalAlgebra 0 Memoryblock-fix-core
25 ureal TemporalAlgebra 0 Memoryblock-fix-core
26 | ustring | TemporalExtAlgebra 0 Memoryblock-fix-core
27| vertex GraphAlgebra 0 Memoryblock-fix-core
28 | filepath BinaryFileAlgebra 1 Memoryblock-fix-core
29 text FTextAlgebra 1 Memoryblock-fix-core

Table 2: DELIVERABLE data types

11

5.3 Operators

Along with the creation of thelist data type, several operators are proposed to procesdudisttiob-
jects and parallel queries. Briefly, these operators aréetivinto three kinds: pipe operators, assistant

operators and hadoop operators.

5.3.1 Pipe Operators

Pipe operators connect single-nodecC®NDO objects andiist objects. At present, two operators hamed
spread andcollect are proposed for this kind, and they can only process PBisE objects. Sub-objects
are kept in slave databases, and cannot be transferred ades,rhence they are not supported by this

kind of operators.

spread

stream(tuple(T)) x [fileNane: string]
x [filePath: text] x [dupTines: int]
X Al x [scaleN int] x [KPAlI: bool]
x [AJ] x [scaleM int] x [KPAJ: bool]
— flist(stream(tuple(T)))

spread partitions a EcoNDoOrelation into a PS-Matrix, distributing pieces into thestkr, and returning
a DLF flist. The relation is first divided to pieces by rows accordindhihdispensable partition attribute

Al. If another partition attributéJ is indicated, each piece can be further partitioned, stilidws.

Each piece of the PS-Matrix is exported as sub-files. BottfitaBlame and the filePath arguments are
optional. If they are not indicated, sub-files are then kephé default PSFS nodes, and their names are set
by rules. The user is allowed to set the file name and path bgdifiralthough it may cause homonymic

sub-files with different queries.

A sub-file consists of the type and data files. The type file iless the schema of the exported relation,
being produced during the type mapping period and duplicedeevery node inside the cluster. Data
files contain tuples’ binary blocks, and all data files kepbire data server share the same type file. The

sub-files are readable with tliteed operator.

12

The PS-Matrix thaspread creates has a scale @fale N x scaleM. They also both are optional argu-
ments. The defaultcale N value is the cluster size, and the defaudt:ie M value is 1. Normally, the
partition attributeAl is removed after the query, except the arguniespAl is set as true. Same for the

other partition attributéJ. The AJ must be different fronAl.

Data files are named as fileName_row_column, e\, scaleN], and columne [1, scaleM]. For the
purpose of fault-tolerance, each partition file is dupkcabndupTime continuous slave nodes, and the

default value oflupTime is 1. All duplicated files are kept in PSFS nodes.

collect
flist(stream(T)) x [row int] x [colum: int] -> stream(tuple(T))

The collect operator performs the opposite function to #prread. It accepts a DLF kindlist object,

collects required sub-files over the cluster, and returngke tstream from sub-files. Both the row and
column arguments are optional arguments, and their defalules are 0, which means the complete row
and column. If there is only one parameter given, then itésveid as a row number. Only non-negative

integer numbers are accepted as parameters.

By default, this operator reads all sub-files denoted in thergDLF flist. If the optional parameters are

set, then it returns part of the PS-Matrix. For examples:

e collect[1] and collect[1,0] read all sub-files in the firstwo
e collect[0,2] reads all sub-files in the second column.
e collect[1,2] reads one piece sub-file in the PS-Matrix, ledat the first row and the second column.

e collect[0,0] and collect[] read all sub-files inside the F&trix.

If the required sub-files locate in a remote node, then theycapied to the current node before being

read.

5.3.2 Assistant Operators

All assistant operators cannot be used alone, but have towsith the following hadoop operators.

13

para
flist(T) —» T

flist is designed to wrap all availableeSONDO data types, and work with variou£80ONDO operators.
However, it is impossible to let all operators recognize prmtess this new data type. Regarding this
issue, we implement thpara operator to unwraglist objects and return their embedded data types, in

order to match them with existing sequential operators.

Note there is no value mapping function provided for thisrap yet, since it is only prepared for letting
flist objects pass through different operators’ type mappingtfans. It is designed this way as there is
no generic data able to expresscC®NDO objects with various types. Therefofgara operator can only
work with the hadoop operators that will be introduced lateis set inside hadoop operators’ interFunc
arguments, which are not evaluated directly in the mastbdae.

TPARA

flist(T) —» T

This is a type operator, extracting the internal type from ithput flist object, and delivering it to the
internal function argument as its input parameter. It waiksilar as the abovpara operator, but it can
only be used implicitly.

TPARA2

ANY x flist(T) — T

This is also a type operator , working similar [[HEEPARA,, but it gets the embedded type from the second

flist input instead of the first one.

5.3.3 Hadoop Operators

hadoopMap

flist(T) x [subNane: string] x [subPath: text]

14

X [kind: DLO| DLF] x [mapTaskNum int]
X (interFunc: map (T — T1))
— flist(T1)

hadoopMap creates dlist object of either DLO or DLF kind, after processing its interl€ by slaves

in parallel, during the map step of the precast Hadoop jobth BabName and subPath are optional
arguments, the default flist kind is DLO, and the mapTaskNefauwt value is the current cluster size.
The interFunc is expressed as a function argument, and abiaged in the master node, but delivered
and processed in slaves. Take the creation of a distribuleeB-as an example. The original sequential

query is:

| et dataSCcar_Licence_btree = dataSCcar createbtree[Licence];

This query creates a B-Tree index for a relation called data® based on its Licence attribute. The

parallel queries are:

| et dataSCcarlLi st = dataScar feed
proj ect extend[Li cence, Type, Model; Journey: .Trip]
spread[; Li cence, 10, TRUE;] hadoopMap[; . consune];

| et carLicence_btreeList = dataSCcarLi st

hadoopMap["dat aSCcar _Li cence_btree"; . createbtree[Licence]];

Here both the dataSCcarlList and the carLicence_btreekésfi@at objects. The first query distributes
the tuple relation to slaves and returns a DLO flist. It firsgsuthespread operator to distribute data as
sub-files, and returns a DLffist object. All SEcoNDOiIndexes must be built based on existing relations,
where each tuple has a unique tuplelD that is indispensablidex structures. Therefore, the returned
DLF flist is sent to thehadoopMap operator, and lets each slave data server import the lotal su
files to its Mini-SEcCONDO database, saved as a sub-object. At last, the second quely ttee created

dataSCcarlList, and usedhadoopMap to let slaves create their own index by executing the intecku

hadoopReduce

15

flist(T) x partAttribute
X [subName: string] x [subPath: text]
X [kind: DLO| DLF] x [reduceTaskNum int]
X (interFunc: map (T — T1))

— flist(T1)

Tl and T2 are either rel (tuple) or strean(tuple)

hadoopReduce also takes one flist as the input, delivering and processmmterFunc by slaves in
parallel. However, the interFunc is processed in the redtiepe instead of the map step of its precast
Hadoop job. In the map step, the input has to be redistribbéesgd on the partitionAttribute, hence the

input flist object must wrap a stream of tuples.

Compared with thdhadoopMap operator, this operator needs two additional argumentsAtiabute
and reduceTaskNum. Data are first re-distributed into re@askNum columns based on the partAttribute
in the map step. Then each reduce task collects one colurarirdat the re-distributed PS-Matrix, using

it as the input for the interFunc.

Take the third BerlinMOD query as an example, which can beggsed with the following query:

| et OBACRres003 =
QueryLi cences_ToplO Li st
hadoopMap[DLF; . feed | oopjoin[para(dataSCcar_Licence_btree_List)
par a(dat aSCcar _Li st) exactmatch[.Licence] {LL}
proj ect ext endstreaniLi cence_LL; UTrip: units(.Journey_LL)]
ext end[Box: scal erect (bbox(. UTrip), CAR WORLD X SCALE
CAR WORLD Y _SCALE, CAR WORLD T _SCALE)]
ext endstreani Cel | : cel | nunmber (. Box, CAR WORLD GRID)]]]
hadoopReduce[Cel |, "@_Result", DLF, REDUCE SCALE
; . para(Querylnstants ToplO Dup_List) feed {I1} product
proj ectextend[; Licence: .Licence_LL, Instant: .lnstant_II,
Pos: val (. UTrip atinstant .Instant_I1)]
filter[isdefined(.Pos)]]
collect[]

sort rdup consune;

16

As shown in this example, tHeadoopMap operation first selects trajectories by pruning the distatd
B-Tree created before. Result trajectories are decompiosedinits, which are then distributed into
a global cell-grid, by extending a new attribute named Célfterwards, reduce tasks fetch different
intermediate results as their input based on the Cell at&jtand the interFunc is processed by slaves in

parallel during the reduce step.

Note in above examples, interFunc arguments in hetHoopMap andhadoopReduce operations
include severaflist objects. For each operation, the first flist is set as the jmmlivered to the interFunc
by the implicit type operatcT PARA. However, all the lefiflist objects have to be quoted by thara

operator, since operators likxactmatch andproduct cannot accept angist input.

hadoopReduce2

flist(T1) x flist(T2)
X partAttributel x partAttribute2
X [subName: string] x [subPath: text]
X [kind: DLO| DLF] x [reduceTaskNum int]
X (interFunc: map (T1 x T2 — T3))
— flist(T3)

Tl and T2 are either rel (tuple) or strean(tuple)

This operator is similar as the abosadoopReduce, except it accepts two flists as the arguments for
the interFunc. Both input are redistributed based theititpar attributes respectively, and make queries

more flexible.

17

6 A Tour in Parallel Secondo

In this section, a small example is prepared to demonstrateth use parallel SCONDO to process

queries like building and searching distributed index, aking a distributed hash-join query.

restore database opt from opt;

open dat abase opt;

l et Con_PLZ = 16928;

l et SubFile = plz feed spread[; PLZ, 6, TRUE;]
| et SubRel = SubFile hadoopMap[;. consune];

cl ose dat abase;

In the above queries, the relation plz in database opt islaistd over the cluster. It is first distributed
by spread into a6 x 1 PS-Matrix, with the DLFflist SubFile as the result. Then the SubFile is sent to
hadoopMap, and its sub-files are loaded into slave databases, and tie/ld SubRel is returned.
Assume this cluster contains two slave data servers, ttee8ibRel has & x 1 PS-Matrix, while each

sub-object contains half of the relation.

open dat abase opt;
| et SubBTree = SubRel hadoopMap[; . createbtree[PLZ]];
| et ParaResult = SubBTree
hadoopMap[DLF; . para(SubRel) exactmatch[Con_PLZ]] collect[] consune;

cl ose dat abase;

Here thehadoopMap is first used to create a distributed B-Tree over the clustturning the DLOflist
SubBTree. Afterwards, anothbadoopMap is used to prune the distributed B-Trees in every slave. The
selected result is still distributed on slaves, and rewime a DLFflist. Here the Con_PLZ is delivered
automatically to every slave data server, although it iatex@ only in the master database, because its type
int is associated with the DELIVERABLE kind. At last, tlellect operator accumulates all distributed

sub-files created by the formhadoopMap operation.

open dat abase opt;

query SubRel hadoopMap[DLF

18

; . feed para(SubFile) {n} hashjoin[PLZ, PLZ n]] collect[] count;

Wong query, should be forbidden
query SubRel hadoopMap[DLF
feed para(SubRel) feed {n} hashjoin[PLZ, PLZ n]] collect[] count;

query SubFil e hadoopReduce[] Ot , DLF, 5
; . para(SubFile) {n} hashjoin[PLZ, PLZ n]] collect[] count;

query SubRel SubFile hadoopReduce?] Ot, Ot, DLF, 5
; . feed .. {n} hashjoin[Ot, Ot _n]] collect[] count;

cl ose dat abase;

Above, we list four parallel queries for processing a sanstriduted self-hash-join operation, with
hadoopMap, hadoopReduce and hadoopReduce2 operators respectively. The first query fin-
ishes the operation in the map step only. It takes SubRelsisiplut flist, hence each map task reads one
sub-object from its own Mini-database, and gets the othdw Biom the SubFile quoted with thmara
operator. If a DLF flist is used in the interFunc of a hadoopratme, then all its sub-files will be collected
to that task. Note the second query that uses SubRel in @dHmbhc cannot get the correct result, as each

map task can only get its own sub-object.

The third query is dadoopReduce operation, the input SubFile is repartitioned into 5 colsrbased
on its Ort attribute in its map step. Averagely each redusk fimishes the interFunc with 20% data from

the left side, and the whole data set from the right side.

The last query finishes with thkadoopReduce2 operator, it reads SubRel and SubObj at the same
time. Each map task reads the left side from its databasereaus the right side from the PSFS. Both
side relations are repartitioned by their Ort attribut® itpieces. In its reduce step, each task gets 20%

data from both sides.

19

A Setting Up Parallel Secondo On A Single Node

Nowadays, it is common that one commercial computer als@ lpasverful computing and storage capa-
bility, with several processors or cores, and several lagge disks. Therefore, it is possible to simulate
a virtual cluster on one computer only, and set the Paralleld Do up on it. At present, Paralleles-
ONDO provides at least both Ubuntu and Mac OS X platforms. Theayepént of Parallel ScoNDOON

one computer includes following steps:

1. Prepare the authentication key-pair. Both data servetdhe underlying Hadoop platform rely on
security shell as the basic communication level, and it fiebéo connect shells without password,
even on a single computer. For this purpose, the user shoetdecand set up the authentication

key-pair on the computer with commands:

$ cd $HOVE
$ ssh-keygen -t dsa -P '’ -f ~/.ssh/id_dsa

$ cat ~/.ssh/id _dsa.pub >> ~/.ssh/authorized keys

2. Install S conDpo. The install guide can be found on our website, and the useinstall S conDO
database as usual. After the installation is finished, tlee can verify the correctness of the in-
stallation, and then compile th&eSonDo system. Note both Hadoop and HadoopParallel algebras

must be activated.

$ env | grep "~SECONDO'

SECONDO_CONFI G=. ... /secondo/ bi n/ SecondoConfi g. i ni
SECONDO BUI LD DI R=... /secondo

SECONDO _JAVA=. ... /java

SECONDO_PLATFORME. . .

$ cd $SECONDO BUI LD DI R

$ make

3. Download Hadoop. Go to the official website of Hadoop, aodrdoad the Hadoop distribution
with the version of 0.20.2. The downloaded package shoufalibimto the $SSECONDO_BUILD_DIR/bin

directory without changing the name.

20

4. Set up the ParallelSecondoConfig.ini according to theeaticomputer. The example file is kept
in the Hadoop algebra’s clusterManagement folder, prebéoe setting up Parallel ScONDO
on a single computer with Ubuntu operating system. Detad@planations about this file can
be found in Section 3. After all required parameters are agpy the file also to the $SEC-

ONDO_BUILD_DIR/bin, and initialize the environment witls{luster-format.

$ cd $SECONDO BUI LD_DI R/ Al gebr as/ Hadoop/ cl ust er Managenent
$ cp Parall el SecondoConfig.ini $SECONDO BUI LD DI R/ bin

$ ps-cluster-formt

Since this step defines a set of environment variables, thedmwuld start a new shell after the

format is finished. The correctness of the initialization ba checked with the following command:

$ cd $HOVE

$ env | grep ""PARALLEL_SECONDO'
PARALLEL_SECONDO MASTER=.../jeffrey/conf/master
PARALLEL SECONDO CONF=.../jeffrey/conf
PARALLEL_SECONDO BUI LD DI R=.../jeffrey/secondo
PARALLEL SECONDO M NI DB_NAME=nsec- dat abases
PARALLEL_SECONDO M NI _NAME=nsec

PARALLEL _SECONDO_PSFSNAMVE=PSFS

PARALLEL _SECONDO DBCONFI G=

PARALLEL_SECONDO SLAVES=. ../jeffrey/conf/sl aves
PARALLEL_SECONDO MAI NDS=.../jeffrey

PARALLEL _SECONDO=. .. :...

PARALLEL SECONDO DATASERVER NAME=S ef f r ey

5. The above steps set up both data servers and Hadoop omtipaiten. Afterwards, the Namenode

in the Hadoop framework should be formated before starting i

$ hadoop nanenode -fornmat

$ start-all.sh

6. The fourth step only initializes the data servers in theoter, but the Mini-E&CONDO systems

are not distributed yet. They are distributed by script g@seado-buildMini:

21

$ cd $SECONDO BUI LD DI R/ Al gebr as/ Hadoop/ cl ust er Managenent

$ ps-secondo-buildMni -1o

7. Start up mini &CoNDO Monitors.

$ cd $SECONDO BUI LD_DI R/ Al gebr as/ Hadoop/ cl ust er Managenent
$ ps-startMonitors

$ ps-cluster-queryhbnitorStatus
The second script is used to check whether all MiBeSNDO monitors are started.

8. Open the text interface of the master database.

$ cd $SECONDO BUI LD DI R/ Al gebr as/ Hadoop/ cl ust er Managenent
$ ps-startTTYCS -s 1

9. Parallel &conDO can be closed off by stopping all MiniE®ONDO monitors and the Hadoop

framework.

$ cd $SECONDO BUI LD_DI R/ Al gebr as/ Hadoop/ cl ust er Managenent
$ ps-stopMonitors
$ stop-all.sh

10. In case the user wants to delete Parallet &vpo from the computer, script ps-cluster-uninstall

can clean the system completely with one command.

$ cd $SECONDO BUI LD_DI R/ Al gebr as/ Hadoop/ cl ust er Managenent

$ ps-cluster-uninstall

22

B Setting Up Parallel Secondo In A Cluster

Parallel S$conDoOcan also be deployed on a cluster containing tens or evenréadmof computers with

following 10 steps.

1. Create the entrance account for the user on all computtéin® aluster, each account should have
at least the same user name, here it is assumed as Jeffreyst&piusually is done by the cluster
manager. Using services like NIS can make this step eabite user wants to create the same

account on hundreds of computers.

$ su -

useradd jeffrey

2. Like the setup on the single computer, the user also needsit all computers without password.
For this purpose, the authentication key-pair should bateteand deployed on all computers. Here
it is better to use services like NFS to let all computers steasame $HOME space, or else the

key-pair must be uploaded to every involved computer.

$ ssh-keygen -t dsa -P '’ -f ~/.ssh/id_dsa

$ cat ~/.ssh/id _dsa.pub >> ~/.ssh/authorized keys

3. Install all libraries needed byeE®ONDO on every cluster node, as each data server runs its Mini-
SEcoNDO independently. Details of installing the environment axplaned on our website, re-
garding different operating systems. The installation BESNDO can be checked by the following
commands. Only the master node should have thedBibosource code, and construct the system

before continuing.

$ env | grep "~SECONDO'

SECONDO_CONFI G=. ... /secondo/ bi n/ SecondoConfi g. i ni
SECONDO BUI LD DI R=... /secondo

SECONDO_JAVA=. ... /java

SECONDO_PLATFORME. . .

$ cd $SECONDO BU LD DI R

$ nmake

23

If all four basic Secondo environment variables SECONDONEQS, SECONDO_BUILD_DIR,
SECONDO_JAVA and SECONDO_PLATFORM have already beenlsetlbove, and all their val-
ues are available on the computer, then this computer is@alplecess any SCONDO application.

Particularly, if the operating system is Ubuntu, then byadéfthe line

source .secondorc

is appended at the end of the file SHOME/.bashrc. Howeveramlel SECONDQ, this line must

be set above the line

[-z "$PS1"] && return
or else, the parallel Secondo cannot work correctly.

4. Download the hadoop distribution with 0.20.2 versiort,ifmpackage into $SECONDO_BUILD_DIR/bin,
together with the file ParallelSecondoConfig.ini after i& baen set properly according to the prac-
tical cluster, as explained in Section 3. Afterwards, useftimat script to initialize the Parallel

SECONDOON the complete cluster.

$ cd $SECONDO BUI LD_DI R/ Al gebr as/ Hadoop/ cl ust er Managenent

$ ps-cluster-formt

5. Start a new shell and check whether all following variatdee properly set before continuing.

$ cd $HOVE

$ env | grep ""PARALLEL_SECONDO'
PARALLEL_SECONDO MASTER=.../jeffrey/conf/master
PARALLEL SECONDO CONF=.../jeffrey/conf
PARALLEL_SECONDO BUI LD DI R=.../jeffrey/secondo
PARALLEL SECONDO M NI DB_NAME=nsec- dat abases
PARALLEL_SECONDO M NI _NAME=nsec

PARALLEL _SECONDO_PSFSNAMVE=PSFS

PARALLEL _SECONDO DBCONFI G=

PARALLEL_SECONDO SLAVES=. ../jeffrey/conf/sl aves
PARALLEL_ SECONDO MAI NDS=.../jeffrey
PARALLEL_SECONDO=. . . : ...

PARALLEL_SECONDO DATASERVER NAME=Sj ef f r ey

24

6. Initialize and start up Hadoop with two steps:

$ hadoop nanenode -fornmat

$ start-all.sh

All these tools are provided by Hadoop, and the user can ciwbgther Hadoop works properly
on the cluster by visiting its web monitors. Usually it talssmme time for Hadoop to be started

completely.

7. Distribute the Mini-&coNDoto the whole cluster. Ensure that both the Hadoop and HadoapP
lel algebras have been activated in the user’s accustormed o system before constructing the
system. Afterwards, the Hadoop job ParallelSecondo.jaulshhave been generated and put in the
path $SECONDO_BUILD_DIR/bin, and then the user can distatMini-SECONDO to the whole
cluster with the ps-secondo-buildMini script.

$ cd $SECONDO BUI LD DI R/ Al gebr as/ Hadoop/ cl ust er Managenent

$ ps-secondo-buil dM ni -co

8. Allinvolved Secondo Monitors must be started up beforeimig Parallel Secondo, with steps:

$ cd $SECONDO BUI LD_DI R/ Al gebr as/ Hadoop/ cl ust er Managenent
$ ps-start-All Monitors
$ ps-cluster-queryhbnitorStatus

The second script is used to make sure that all data servecsn8o monitors are started.

9. Start up the text interface:

$ cd $SECONDO BUI LD DI R/ Al gebr as/ Hadoop/ cl ust er Managenent
$ ps-startTTYCS -s 1

10. Parallel EcoNnDoO can be stopped by turning off all mini Secondo monitors ardHadoop with

two steps respectively:

$ cd $SECONDO BUI LD_DI R/ Al gebr as/ Hadoop/ cl ust er Managenent
$ ps-stop-AllMnitors
$ stop-all.sh

25

