
User Guide For Parallel Secondo

May 30, 2012

1 Parallel Secondo Infrastructure

Parallel SECONDO is constructed by coupling simply the Hadoop framework and discrete SECONDO

databases on a computer cluster, as shown in Figure 1. It can be deployed on either a single computer

or a cluster containing tens or even hundreds of computers. Briefly, its two components Hadoop and

discrete SECONDOdatabases coexist in the same system, and each can be used independently. In Hadoop,

nodes are communicated through its HDFS (Hadoop Distributed File System), while each single-node

SECONDOexchanges its data with the others through the PSFS (Parallel SECONDOFile System). Unlike

Hadoop that is deployed by nodes, Parallel SECONDO is deployed by data servers. A data server is the

minimum execution unit of the system, containing a compact SECONDO named Mini-SECONDO and its

database, together with a PSFS node. It is possible that one cluster node may contain several data servers,

especially nodes with multiple hard disks, in which the usercan set a data server on each disk, hence

can take the full advantage of the cluster resources. Duringvarious parallel procedures, a few data are

exchanged among nodes through the HDFS, in order to assign tasks to data servers. At the same time, the

bulk of intermediate query results are exchanged among dataservers through the PSFS.

A particular data server set on the master node is denoted as the master data server, its Mini-SECONDO is

set to be the only entrance to the system, called the master database. Through various PQC (Parallel Query

Converter) operators provided in the master database, a custom parallel query is converted to a Hadoop

job, and then partitioned to tasks. These tasks are processed by data servers in parallel, complying the

scheduling of the Hadoop framework. Different from the other databases in slave data servers, the master

database contains some global and meta data of the whole system, therefore it is also called the meta

1

Slave Node

Master

Node

Hadoop Master Node

Master Data Server

Mini Secondo

Meta

Database

DS Catalog

Parallel

Query

Converter

Slave

Node
Hadoop Slave Node

Slave Data Server

Mini Secondo

Slave

Database

DS Catalog
Partial Secondo

Query

... ...

P

S

F

S

H
D
F
S

Slave Data

Server

Slave Data

Server
...

Hadoop Slave Node

Slave Data

Server

Slave Data

Server
...

Figure 1: The Infrastructure of Parallel Secondo

database.

An identical DS-Catalog is duplicated on every node of the cluster, describing access entries for all data

servers. It is composed by two files, master and slaves, listing data servers by lines with three elements:

IP_Address:PSFS_Location:SecondoPort

For each line, its first element distinguishes nodes by theirIP addresses, while the second and the third

elements tell apart data servers within a same node based on their PSFS locations and Mini-SECONDO

ports. The master file should only contain one data server. Itis possible to use the master also as a slave

data server. In a node with several data servers, the Hadoop applications and the DS-Catalog are only set

in its first data server. The order of these data servers is decided by the DS-Catalog, and the master data

server is always the first one on the master node.

2

2 Hadoop Algebra

SECONDO is composed by algebras, each containing a set of data types and operators. Two algebras are

especially required by the Parallel SECONDO, Hadoop and HadoopParallel. They must be activated before

deploying the system to the cluster. Besides, some other components are also required:

1. Hadoop Package. Hadoop 0.20.2 is used as the underlying framework for Parallel SECONDO, al-

though itself is not included in SECONDO by default. It has to be downloaded by the user, and put

into the $SECONDO_BUILD_DIR/bin. Nonetheless, its installation is not required, and can be

performed automatically along with the deployment of the Parallel SECONDO.

2. Parallel Secondo Auxiliary Utilities. Parallel SECONDO includes a set of bash scripts to manage the

system. They are kept in the Hadoop algebra by default. Thesescripts include at least:

ps-cluster-format: An automatic deployment tool for initializing the ParallelSECONDO environ-

ment of the cluster, including the Hadoop framework.

ps-cluster-uninstall: It performs the opposite function to the above script, removing the Parallel

SECONDO from the cluster, and cleaning up the environment.

ps-secondo-buildMini: It extracts and distributes the Mini-SECONDO base on the current single-

node SECONDOsystem, to all data servers that are listed in the DS-Catalog.

ps-startMonitors: The SECONDOmonitor is a database server process prepared to accept multiple

remote clients visiting the same SECONDO database. In Parallel SECONDO, all SECONDO

monitors have to be started up before processing any parallel queries. Considering there may

exist several data severs in one cluster node, this script helps user to start up monitors on the

current node.

ps-start-AllMonitors: It starts up all data servers’ SECONDOmonitors in the cluster.

ps-stopMonitors: It shuts down data servers’ SECONDOmonitors on the current node.

ps-stop-AllMonitors: It shuts down all data servers’ SECONDOmonitors in the cluster.

ps-startTTY: It starts up a SECONDOtext terminal interface of one Mini-SECONDOon the current

node.

3

ps-startTTYCS: It starts up a SECONDOClient-Server based text terminal interface, and connects

any SECONDOmonitors that has been started up in the cluster.

ps-cluster-queryMonitorStatus: It checks the running status of all SECONDO monitors in the

cluster.

3. Parallel Configuration File. All Parallel SECONDOparameters are set in the file named ParallelSec-

ondoConfigure.ini, and its example file can also be found in the Hadoop algebra.

4. Precast Hadoop Job. Several precast generic Hadoop jobs are prepared for several parallel opera-

tors in SECONDO. Their source files are kept with the Hadoop algebra together, and the jobs are

generated when the algebra is compiled.

4

3 Configuring Parallel Secondo

Parallel SECONDOconfigurations are all set in the file named ParallelSecondoConfig.ini. Its example file

is prepared to deploy the Parallel SECONDO on a single computer, and kept in the Hadoop algebra by

default. After setting all required parameters according to the user’s own environment, this file should be

copied to the $SECONDO_BUILD_DIR/bin, and then read by the ps-cluster-format script.

This file follows the same format as the SecondoConfig.ini file, mainly divided into three sections: hadoop,

cluster and options. The firsthadoop section is prepared for setting up the Hadoop framework. All

parameters listed in this section set uniform Hadoop configurations for all involved nodes. In this way,

the flexibility of the system is restricted, but the new user can set up the Parallel SECONDO quickly

without learning too many details about Hadoop. All parameters are listed by lines, composed of three

elements including the file name, title and value. Each parameter is inserted into the specific file with its

corresponding value.

[fileName]:[title] = [value]

This section is further divided into 4 parts. The first part contains all indispensable parameters prepared

for Parallel SECONDO. The non-advanced user should keep this part unchanged, or else the Parallel

SECONDO may not work correctly. The second part sets IP addresses andports for different Hadoop

daemons. They are also indispensable, although the user should change their values based on his own

cluster, like the master node’s IP address. Besides, daemons’ port numbers can also be changed if the

default values have already been taken by some other programs. The third part indicates the capabil-

ity of the cluster, and the user should also set them based on his own cluster. For example, the option

mapred-site.xml:mapred.tasktracker.map.tasks.maximum limits the number of map tasks running in par-

allel on one node. Usually we set it with double the number of the processor cores, so does the other

option mapred.tasktracker.reduce.tasks.maximum. There are also some other parameters, like thehdfs-

site.xml:dfs.replication telling how many times each HDFS block is replicated on the cluster. If the Paral-

lel SECONDO is deployed into a cluster composed of hundreds of elastic computers, then it is better to set

this parameter with a value more than 1. The last part is prepared for clusters shared by multiple users,

where each user should set their daemons with different portnumbers, including some services set in the

second part.

5

The secondcluster section lists all involved data servers. Each data server isindicated by one line,

and assigned as the master or a slave by the title. The value part contains three elements: IP Address,

Data Server Path and Mini-SECONDO Port. The second element indicates a disk path where all data

server components are kept. This path is created automatically if it does not exist before. Take a cluster

configuration for example:

Master = 192.168.0.1:/Home/dataServer1:11234

Slaves += 192.168.0.1:/Home/dataServer1:11234

Slaves += 192.168.0.1:/Home/dataServer2:12234

In the above example, a small cluster is simulated on one computer with the IP address 192.168.0.1. It

contains two data servers, which are kept in the /Home/dataServer1 and the /Home/dataServer2 respec-

tively. The first one is used as the master, and also as a slave data server. The master Mini-SECONDOcan

be accessed through the port 11234.

The last sectionoptions is prepared for some special cases in the cluster. At present, only one option

named NS4Master (Normal Secondo For Master database) is provided here. If its value is set as true,

then the master node’s default SECONDO, i.e. where the $SECONDO_BUILD_DIR points to, is set

automatically to be the master Mini-SECONDO.

6

4 Mini-Secondo Management

In Parallel SECONDO, one node may contain multiple SECONDO databases, and a cluster may be com-

posed by many computers. Therefore, some regular routine work like starting, stopping, and updating

SECONDO systems are better processed with some auxiliary bash scripts. These auxiliary utilities are

briefly introduced in Section 2, and their names are all started by “ps-”. Each script has a usage explana-

tion, and can be printed with the “-h” argument. Here we only introduce several common operations in

Parallel SECONDO accomplished with these scripts.

4.1 Update Mini-Secondo

The Mini-SECONDO is a compact SECONDOdistribution, it only contains essential components required

to manipulate the slave databases. All of them are built based on the user’s accustomed version, and keep

identical over the whole cluster. In case there is any extension made for SECONDO, like creating new data

types or operators, users can reconstruct the system once, and distribute the update to the whole cluster

immediately.

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManagement

$ ps-stop-AllMonitors

$ ps-secondo-buildMini -c

The ps-secondo-buildMini provides two major arguments: c (cluster) and l (local). If the “-c” argument

is set, then the update will be distributed to every data server of the cluster. In the contrast, if the “-l”

parameter is set, then the new SECONDO is only distributed to all data servers on the current node.

The Mini-SECONDOcontains all essential components a SECONDOdatabase needs. All of them are listed

in a text file named miniSec_list, which is also kept in the Hadoop algebra. Each file or folder in the

single-node SECONDO is listed there with one line. It is possible for the user to change this list according

to his own requirement.

7

4.2 Start Up and Turn Off Mini Secondo Monitors

During parallel procedures, SECONDO databases are accessed through their monitors, which have to all

started up before processing any queries. Considering there are tens or even hundreds of Mini-SECONDO

systems inside a cluster, several utilities are proposed tostart and stop these monitors without visiting

them one after another.

The first script ps-startMonitors starts up all Mini-SECONDOmonitors on the current computer, while the

second script ps-start-AllMonitors visits every node and runs the ps-startMonitors, so as to start up all

monitors on the cluster. In the contrast, the script ps-stopMonitors turns off all Mini-SECONDO monitors

on the current computer, and all monitors on the cluster are shut down with ps-stop-AllMonitors.

4.3 Open Parallel Secondo Interface

In Parallel SECONDO, every Mini-SECONDO can be viewed as a normal SECONDO system and visited

independently. Normally the user only needs to visit the master database, although scripts like ps-

startTTYCS are proposed to access any Mini-SECONDO database inside the system. One cluster node

may contain several Mini-SECONDOdatabases, which are arranged in order, starting from 1, according to

the DS-Catalog. The commands for opening the Parallel SECONDOmain interface are:

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManagement

$ ps-startMonitors

$ ps-startTTYCS -s 1

All Mini-S ECONDO monitors must be started up before running any parallel queries, hence the meta

database can only be visited through its client-server interface. Since the master Mini-SECONDO is always

the first database on the master node, we start up this specificinterface by setting the argument with the

value of 1. Besides, it is also possible to use the graphic Java interface in Secondo to visit the meta

database. The user can open the javagui interface as usual, then connect the indicated database by setting

its host IP and port number in the menu “Server”, and “Setting”.

8

Data Server 1

Data Server N

Data Server 2

Data Server 1

Data Server m

... ...

... ...

... ...

... ...

... ...

... ...

... ...

C

R

N

Figure 2: PS-Matrix

5 Secondo Parallel Query Expression

Here we introduce how to write queries in Parallel SECONDO in executive level language.

5.1 PS-Matrix

In parallel SECONDO, data is distributed over the cluster as PS-Matrix, shown inFigure 2. A Secondo

object is divided into pieces based on two functions,d(x) andd(y) . Thed(x) divides the data intoR

rows, each row can only be kept on one data server. It is possible for d(x) to produce more rows than the

cluster scaleN , and to let data servers contain multiple rows. Afterwards,d(y) divides each row toC

columns. As a result, a PS-Matrix is composed byR×C pieces, but not all pieces contain data. Normally,

PS-Matrix is prepared for distributing large-sized data over the cluster, like relations containing millions

of tuples, while the division functions are hash algorithmsbased on one or several of its attributes.

5.2 Data Type

In Parallel SECONDO, data typeflist is especially proposed for expressing the PS-Matrix. It is designed

as a wrap structure, and able to encapsulate all available SECONDO objects, shown in Table 1. After

a SECONDO object is being divided into a PS-Matrix, piece data are distributed and kept in slave data

9

servers, while only their entry information are kept in the meta database, expressed as aflist object.

SPATIAL points line → FLIST flist(point) flist(segment)
RELATION rel(tuple(T)) → FLIST flist(rel(tuple(T)))
INDEX rtree → FLIST flist(rtree)
TEMPORAL moving → FLIST flist(unit)

Table 1: Flist Data Types

There are two of kinds methods keeping distributed data on slave data servers. The first keeps the partial

data into slave Mini-SECONDOdatabases, saved as normal SECONDOobjects. The second exports data to

the PSFS nodes as disk files. Hereby, there also will be two kinds offlist objects in Parallel SECONDO.

1. Distributed Local Objects (DLO): A DLO divides a large-sized SECONDO object to aN × 1 PS-

Matrix, each row is saved in a slave Mini-SECONDO database, like common SECONDO objects,

called sub-objects. All sub-objects belonging to a same flist share the same name in different slave

databases. Theoretically, DLO flist can wrap all available SECONDOdata types.

2. Distributed Local Files (DLF): Data are divided into aR×C PS-Matrix, and each piece is exported

from SECONDO databases as disk files, saved in PSFS nodes, called sub-files. Sub-files can be

exchanged among data servers during parallel procedures. At present, only tuple relations can be

exported and kept as sub-files, hence DLF flist is prepared fortuple relations only.

Although it is possible to wrap any SECONDO data type with aflist object, there are some data are too

small to be distributed this way. For example, a rectangle query window is used by every slave data server

during a parallel query, but it is not advisable to divide it into smaller pieces which are then distributed

over the cluster, since the rectangle itself is very small. In this case, this rectangle can be simply duplicated

to every data server during the runtime. Apparently, not allSECONDO objects can be duplicated, since

data are delivered as nested-lists, which require a relatively expensive transforming overhead. E.g, a

relation containing one million tuples should not be delivered to every slave, along with the query together.

Therefore, a new data kind calledDELIVERABLE is proposed for parallel SECONDO, and only data

types associated with this kind can be encapsulated into parallel queries, and duplicated to slaves during

the runtime. AllDELIVERABLE data types are listed in Table 2.

10

Type Algebra NumOfFlobs PersistencyMode

1 bool StandardAlgebra 0 Memoryblock-fix-core
2 cellgrid2d TemporalAlgebra 0 Memoryblock-fix-core
3 cluster TopRelAlgebra 0 Memoryblock-fix-core
4 duration DateTimeAlgebra 0 Serialize-fix-core
5 edge GraphAlgebra 0 Memoryblock-fix-core
6 geoid SpatialAlgebra 0 Memoryblock-fix-core
7 gpoint NetworkAlgebra 0 Memoryblock-fix-core
8 ibool TemporalAlgebra 0 Memoryblock-fix-core
9 iint TemporalAlgebra 0 Memoryblock-fix-core
10 instant DateTimeAlgebra 0 Serialize-fix-core
11 int StandardAlgebra 0 Serialize-fix-core
12 ipoint TemporalAlgebra 0 Memoryblock-fix-core
13 ireal TemporalAlgebra 0 Memoryblock-fix-core
14 istring TemporalExtAlgebra 0 Memoryblock-fix-core
15 point SpatialAlgebra 0 Memoryblock-fix-core
16 real StandardAlgebra 0 Serialize-fix-core
17 rect RectangleAlgebra 0 Memoryblock-fix-core
18 rect3 RectangleAlgebra 0 Memoryblock-fix-core
19 rect4 RectangleAlgebra 0 Memoryblock-fix-core
20 rect8 RectangleAlgebra 0 Memoryblock-fix-core
21 string StandardAlgebra 0 Serialize-variable-extension
22 ubool TemporalAlgebra 0 Memoryblock-fix-core
23 uint TemporalAlgebra 0 Memoryblock-fix-core
24 upoint TemporalAlgebra 0 Memoryblock-fix-core
25 ureal TemporalAlgebra 0 Memoryblock-fix-core
26 ustring TemporalExtAlgebra 0 Memoryblock-fix-core
27 vertex GraphAlgebra 0 Memoryblock-fix-core
28 filepath BinaryFileAlgebra 1 Memoryblock-fix-core
29 text FTextAlgebra 1 Memoryblock-fix-core

Table 2: DELIVERABLE data types

11

5.3 Operators

Along with the creation of theflist data type, several operators are proposed to process distributed ob-

jects and parallel queries. Briefly, these operators are divided into three kinds: pipe operators, assistant

operators and hadoop operators.

5.3.1 Pipe Operators

Pipe operators connect single-node SECONDOobjects andflist objects. At present, two operators named

spread andcollect are proposed for this kind, and they can only process DLFflist objects. Sub-objects

are kept in slave databases, and cannot be transferred over nodes, hence they are not supported by this

kind of operators.

spread

stream(tuple(T)) x [fileName: string]

x [filePath: text] x [dupTimes: int]

x AI x [scaleN: int] x [KPAI: bool]

x [AJ] x [scaleM: int] x [KPAJ: bool]

→ flist(stream(tuple(T’)))

spread partitions a SECONDOrelation into a PS-Matrix, distributing pieces into the cluster, and returning

a DLFflist . The relation is first divided to pieces by rows according to the indispensable partition attribute

AI. If another partition attributeAJ is indicated, each piece can be further partitioned, still by rows.

Each piece of the PS-Matrix is exported as sub-files. Both thefileName and the filePath arguments are

optional. If they are not indicated, sub-files are then kept in the default PSFS nodes, and their names are set

by rules. The user is allowed to set the file name and path by himself, although it may cause homonymic

sub-files with different queries.

A sub-file consists of the type and data files. The type file describes the schema of the exported relation,

being produced during the type mapping period and duplicated to every node inside the cluster. Data

files contain tuples’ binary blocks, and all data files kept inone data server share the same type file. The

sub-files are readable with theffeed operator.

12

The PS-Matrix thatspread creates has a scale ofscaleN × scaleM . They also both are optional argu-

ments. The defaultscaleN value is the cluster size, and the defaultscaleM value is 1. Normally, the

partition attributeAI is removed after the query, except the argumentkeepAI is set as true. Same for the

other partition attributeAJ. TheAJ must be different fromAI.

Data files are named as fileName_row_column, row∈ [1, scaleN], and column∈ [1, scaleM]. For the

purpose of fault-tolerance, each partition file is duplicated ondupT ime continuous slave nodes, and the

default value ofdupTime is 1. All duplicated files are kept in PSFS nodes.

collect

flist(stream(T)) x [row: int] x [column: int] -> stream(tuple(T))

Thecollect operator performs the opposite function to thespread. It accepts a DLF kindflist object,

collects required sub-files over the cluster, and returns a tuple stream from sub-files. Both the row and

column arguments are optional arguments, and their defaultvalues are 0, which means the complete row

and column. If there is only one parameter given, then it is viewed as a row number. Only non-negative

integer numbers are accepted as parameters.

By default, this operator reads all sub-files denoted in the given DLF flist. If the optional parameters are

set, then it returns part of the PS-Matrix. For examples:

• collect[1] and collect[1,0] read all sub-files in the first row.

• collect[0,2] reads all sub-files in the second column.

• collect[1,2] reads one piece sub-file in the PS-Matrix, located at the first row and the second column.

• collect[0,0] and collect[] read all sub-files inside the PS-Matrix.

If the required sub-files locate in a remote node, then they are copied to the current node before being

read.

5.3.2 Assistant Operators

All assistant operators cannot be used alone, but have to work with the following hadoop operators.

13

para

flist(T) → T

flist is designed to wrap all available SECONDO data types, and work with various SECONDO operators.

However, it is impossible to let all operators recognize andprocess this new data type. Regarding this

issue, we implement thepara operator to unwrapflist objects and return their embedded data types, in

order to match them with existing sequential operators.

Note there is no value mapping function provided for this operator yet, since it is only prepared for letting

flist objects pass through different operators’ type mapping functions. It is designed this way as there is

no generic data able to express SECONDOobjects with various types. Therefore,para operator can only

work with the hadoop operators that will be introduced later. It is set inside hadoop operators’ interFunc

arguments, which are not evaluated directly in the master database.

TPARA

flist(T) → T

This is a type operator, extracting the internal type from the inputflist object, and delivering it to the

internal function argument as its input parameter. It workssimilar as the abovepara operator, but it can

only be used implicitly.

TPARA2

ANY x flist(T) → T

This is also a type operator , working similar likeTPARA, but it gets the embedded type from the second

flist input instead of the first one.

5.3.3 Hadoop Operators

hadoopMap

flist(T) x [subName: string] x [subPath: text]

14

x [kind: DLO | DLF] x [mapTaskNum: int]

x (interFunc: map (T → T1))

→ flist(T1)

hadoopMap creates aflist object of either DLO or DLF kind, after processing its interFunc by slaves

in parallel, during the map step of the precast Hadoop job. Both subName and subPath are optional

arguments, the default flist kind is DLO, and the mapTaskNum default value is the current cluster size.

The interFunc is expressed as a function argument, and not evaluated in the master node, but delivered

and processed in slaves. Take the creation of a distribute B-Tree as an example. The original sequential

query is:

let dataSCcar_Licence_btree = dataSCcar createbtree[Licence];

This query creates a B-Tree index for a relation called dataSCcar, based on its Licence attribute. The

parallel queries are:

let dataSCcarList = dataScar feed

projectextend[Licence, Type, Model; Journey: .Trip]

spread[;Licence, 10, TRUE;] hadoopMap[; . consume];

let carLicence_btreeList = dataSCcarList

hadoopMap["dataSCcar_Licence_btree"; . createbtree[Licence]];

Here both the dataSCcarList and the carLicence_btreeList are flist objects. The first query distributes

the tuple relation to slaves and returns a DLO flist. It first uses thespread operator to distribute data as

sub-files, and returns a DLFflist object. All SECONDO indexes must be built based on existing relations,

where each tuple has a unique tupleID that is indispensable for index structures. Therefore, the returned

DLF flist is sent to thehadoopMap operator, and lets each slave data server import the local sub-

files to its Mini-SECONDO database, saved as a sub-object. At last, the second query reads the created

dataSCcarList, and uses ahadoopMap to let slaves create their own index by executing the interFunc.

hadoopReduce

15

flist(T) x partAttribute

x [subName: string] x [subPath: text]

x [kind: DLO | DLF] x [reduceTaskNum: int]

x (interFunc: map (T → T1))

→ flist(T1)

T1 and T2 are either rel(tuple) or stream(tuple)

hadoopReduce also takes one flist as the input, delivering and processing its interFunc by slaves in

parallel. However, the interFunc is processed in the reducestep instead of the map step of its precast

Hadoop job. In the map step, the input has to be redistributedbased on the partitionAttribute, hence the

inputflist object must wrap a stream of tuples.

Compared with thehadoopMap operator, this operator needs two additional arguments, partAttribute

and reduceTaskNum. Data are first re-distributed into reduceTaskNum columns based on the partAttribute

in the map step. Then each reduce task collects one column data from the re-distributed PS-Matrix, using

it as the input for the interFunc.

Take the third BerlinMOD query as an example, which can be processed with the following query:

let OBACRres003 =

QueryLicences_Top10_List

hadoopMap[DLF; . feed loopjoin[para(dataSCcar_Licence_btree_List)

para(dataSCcar_List) exactmatch[.Licence] {LL}

projectextendstream[Licence_LL; UTrip: units(.Journey_LL)]

extend[Box: scalerect(bbox(.UTrip), CAR_WORLD_X_SCALE,

CAR_WORLD_Y_SCALE, CAR_WORLD_T_SCALE)]

extendstream[Cell: cellnumber(.Box, CAR_WORLD_GRID)]]]

hadoopReduce[Cell, "Q3_Result", DLF, REDUCE_SCALE

; . para(QueryInstants_Top10_Dup_List) feed {II} product

projectextend[; Licence: .Licence_LL, Instant: .Instant_II,

Pos: val(.UTrip atinstant .Instant_II)]

filter[isdefined(.Pos)]]

collect[]

sort rdup consume;

16

As shown in this example, thehadoopMap operation first selects trajectories by pruning the distributed

B-Tree created before. Result trajectories are decomposedinto units, which are then distributed into

a global cell-grid, by extending a new attribute named Cell.Afterwards, reduce tasks fetch different

intermediate results as their input based on the Cell attribute, and the interFunc is processed by slaves in

parallel during the reduce step.

Note in above examples, interFunc arguments in bothhadoopMap andhadoopReduce operations

include severalflist objects. For each operation, the first flist is set as the input, delivered to the interFunc

by the implicit type operatorTPARA. However, all the leftflist objects have to be quoted by thepara

operator, since operators likeexactmatch andproduct cannot accept anyflist input.

hadoopReduce2

flist(T1) x flist(T2)

x partAttribute1 x partAttribute2

x [subName: string] x [subPath: text]

x [kind: DLO | DLF] x [reduceTaskNum: int]

x (interFunc: map (T1 x T2 → T3))

→ flist(T3)

T1 and T2 are either rel(tuple) or stream(tuple)

This operator is similar as the abovehadoopReduce, except it accepts two flists as the arguments for

the interFunc. Both input are redistributed based their partition attributes respectively, and make queries

more flexible.

17

6 A Tour in Parallel Secondo

In this section, a small example is prepared to demonstrate how to use parallel SECONDO to process

queries like building and searching distributed index, or making a distributed hash-join query.

restore database opt from opt;

open database opt;

let Con_PLZ = 16928;

let SubFile = plz feed spread[;PLZ,6,TRUE;]

let SubRel = SubFile hadoopMap[;. consume];

close database;

In the above queries, the relation plz in database opt is distributed over the cluster. It is first distributed

by spread into a6 × 1 PS-Matrix, with the DLFflist SubFile as the result. Then the SubFile is sent to

hadoopMap, and its sub-files are loaded into slave databases, and the DLO flist SubRel is returned.

Assume this cluster contains two slave data servers, then the SubRel has a2 × 1 PS-Matrix, while each

sub-object contains half of the relation.

open database opt;

let SubBTree = SubRel hadoopMap[; . createbtree[PLZ]];

let ParaResult = SubBTree

hadoopMap[DLF; . para(SubRel) exactmatch[Con_PLZ]] collect[] consume;

close database;

Here thehadoopMap is first used to create a distributed B-Tree over the cluster,returning the DLOflist

SubBTree. Afterwards, anotherhadoopMap is used to prune the distributed B-Trees in every slave. The

selected result is still distributed on slaves, and returned as a DLFflist . Here the Con_PLZ is delivered

automatically to every slave data server, although it is created only in the master database, because its type

int is associated with the DELIVERABLE kind. At last, thecollect operator accumulates all distributed

sub-files created by the formerhadoopMap operation.

open database opt;

query SubRel hadoopMap[DLF

18

; . feed para(SubFile) {n} hashjoin[PLZ, PLZ_n]] collect[] count;

Wrong query, should be forbidden

query SubRel hadoopMap[DLF

; . feed para(SubRel) feed {n} hashjoin[PLZ, PLZ_n]] collect[] count;

query SubFile hadoopReduce[Ort , DLF, 5

; . para(SubFile) {n} hashjoin[PLZ, PLZ_n]] collect[] count;

query SubRel SubFile hadoopReduce2[Ort, Ort, DLF, 5

; . feed .. {n} hashjoin[Ort, Ort_n]] collect[] count;

close database;

Above, we list four parallel queries for processing a same distributed self-hash-join operation, with

hadoopMap, hadoopReduce andhadoopReduce2 operators respectively. The first query fin-

ishes the operation in the map step only. It takes SubRel as the input flist, hence each map task reads one

sub-object from its own Mini-database, and gets the other side from the SubFile quoted with thepara

operator. If a DLF flist is used in the interFunc of a hadoop operator, then all its sub-files will be collected

to that task. Note the second query that uses SubRel in its interFunc cannot get the correct result, as each

map task can only get its own sub-object.

The third query is ahadoopReduce operation, the input SubFile is repartitioned into 5 columns based

on its Ort attribute in its map step. Averagely each reduce task finishes the interFunc with 20% data from

the left side, and the whole data set from the right side.

The last query finishes with thehadoopReduce2 operator, it reads SubRel and SubObj at the same

time. Each map task reads the left side from its database, andreads the right side from the PSFS. Both

side relations are repartitioned by their Ort attribute into 5 pieces. In its reduce step, each task gets 20%

data from both sides.

19

A Setting Up Parallel Secondo On A Single Node

Nowadays, it is common that one commercial computer also hasa powerful computing and storage capa-

bility, with several processors or cores, and several largehard disks. Therefore, it is possible to simulate

a virtual cluster on one computer only, and set the Parallel SECONDO up on it. At present, Parallel SEC-

ONDO provides at least both Ubuntu and Mac OS X platforms. The deployment of Parallel SECONDOon

one computer includes following steps:

1. Prepare the authentication key-pair. Both data servers and the underlying Hadoop platform rely on

security shell as the basic communication level, and it is better to connect shells without password,

even on a single computer. For this purpose, the user should create and set up the authentication

key-pair on the computer with commands:

$ cd $HOME

$ ssh-keygen -t dsa -P ’’ -f ~/.ssh/id_dsa

$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

2. Install SECONDO. The install guide can be found on our website, and the user can install SECONDO

database as usual. After the installation is finished, the user can verify the correctness of the in-

stallation, and then compile the SECONDOsystem. Note both Hadoop and HadoopParallel algebras

must be activated.

$ env | grep "^SECONDO"

SECONDO_CONFIG=.... /secondo/bin/SecondoConfig.ini

SECONDO_BUILD_DIR=... /secondo

SECONDO_JAVA=.... /java

SECONDO_PLATFORM=...

$ cd $SECONDO_BUILD_DIR

$ make

3. Download Hadoop. Go to the official website of Hadoop, and download the Hadoop distribution

with the version of 0.20.2. The downloaded package should beput into the $SECONDO_BUILD_DIR/bin

directory without changing the name.

20

4. Set up the ParallelSecondoConfig.ini according to the current computer. The example file is kept

in the Hadoop algebra’s clusterManagement folder, prepared for setting up Parallel SECONDO

on a single computer with Ubuntu operating system. Detailedexplanations about this file can

be found in Section 3. After all required parameters are set,copy the file also to the $SEC-

ONDO_BUILD_DIR/bin, and initialize the environment with ps-cluster-format.

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManagement

$ cp ParallelSecondoConfig.ini $SECONDO_BUILD_DIR/bin

$ ps-cluster-format

Since this step defines a set of environment variables, the user should start a new shell after the

format is finished. The correctness of the initialization can be checked with the following command:

$ cd $HOME

$ env | grep "^PARALLEL_SECONDO"

PARALLEL_SECONDO_MASTER=.../jeffrey/conf/master

PARALLEL_SECONDO_CONF=.../jeffrey/conf

PARALLEL_SECONDO_BUILD_DIR=.../jeffrey/secondo

PARALLEL_SECONDO_MINIDB_NAME=msec-databases

PARALLEL_SECONDO_MINI_NAME=msec

PARALLEL_SECONDO_PSFSNAME=PSFS

PARALLEL_SECONDO_DBCONFIG=

PARALLEL_SECONDO_SLAVES=.../jeffrey/conf/slaves

PARALLEL_SECONDO_MAINDS=.../jeffrey

PARALLEL_SECONDO=...:...

PARALLEL_SECONDO_DATASERVER_NAME=jeffrey

5. The above steps set up both data servers and Hadoop on the computer. Afterwards, the Namenode

in the Hadoop framework should be formated before starting it.

$ hadoop namenode -format

$ start-all.sh

6. The fourth step only initializes the data servers in the computer, but the Mini-SECONDO systems

are not distributed yet. They are distributed by script ps-secondo-buildMini:

21

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManagement

$ ps-secondo-buildMini -lo

7. Start up mini SECONDOMonitors.

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManagement

$ ps-startMonitors

$ ps-cluster-queryMonitorStatus

The second script is used to check whether all Mini-SECONDOmonitors are started.

8. Open the text interface of the master database.

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManagement

$ ps-startTTYCS -s 1

9. Parallel SECONDO can be closed off by stopping all Mini-SECONDO monitors and the Hadoop

framework.

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManagement

$ ps-stopMonitors

$ stop-all.sh

10. In case the user wants to delete Parallel SECONDO from the computer, script ps-cluster-uninstall

can clean the system completely with one command.

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManagement

$ ps-cluster-uninstall

22

B Setting Up Parallel Secondo In A Cluster

Parallel SECONDOcan also be deployed on a cluster containing tens or even hundreds of computers with

following 10 steps.

1. Create the entrance account for the user on all computers of the cluster, each account should have

at least the same user name, here it is assumed as Jeffrey. This step usually is done by the cluster

manager. Using services like NIS can make this step easier, if the user wants to create the same

account on hundreds of computers.

$ su -

useradd jeffrey

2. Like the setup on the single computer, the user also needs to visit all computers without password.

For this purpose, the authentication key-pair should be created and deployed on all computers. Here

it is better to use services like NFS to let all computers share a same $HOME space, or else the

key-pair must be uploaded to every involved computer.

$ ssh-keygen -t dsa -P ’’ -f ~/.ssh/id_dsa

$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

3. Install all libraries needed by SECONDO on every cluster node, as each data server runs its Mini-

SECONDO independently. Details of installing the environment are explained on our website, re-

garding different operating systems. The installation of SECONDOcan be checked by the following

commands. Only the master node should have the SECONDOsource code, and construct the system

before continuing.

$ env | grep "^SECONDO"

SECONDO_CONFIG=.... /secondo/bin/SecondoConfig.ini

SECONDO_BUILD_DIR=... /secondo

SECONDO_JAVA=.... /java

SECONDO_PLATFORM=...

$ cd $SECONDO_BUILD_DIR

$ make

23

If all four basic Secondo environment variables SECONDO_CONFIG, SECONDO_BUILD_DIR,

SECONDO_JAVA and SECONDO_PLATFORM have already been set like above, and all their val-

ues are available on the computer, then this computer is ableto process any SECONDOapplication.

Particularly, if the operating system is Ubuntu, then by default the line

source .secondorc

is appended at the end of the file $HOME/.bashrc. However, in Parallel SECONDO, this line must

be set above the line

[-z "$PS1"] && return

or else, the parallel Secondo cannot work correctly.

4. Download the hadoop distribution with 0.20.2 version, put its package into $SECONDO_BUILD_DIR/bin,

together with the file ParallelSecondoConfig.ini after it has been set properly according to the prac-

tical cluster, as explained in Section 3. Afterwards, use the format script to initialize the Parallel

SECONDOon the complete cluster.

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManagement

$ ps-cluster-format

5. Start a new shell and check whether all following variables are properly set before continuing.

$ cd $HOME

$ env | grep "^PARALLEL_SECONDO"

PARALLEL_SECONDO_MASTER=.../jeffrey/conf/master

PARALLEL_SECONDO_CONF=.../jeffrey/conf

PARALLEL_SECONDO_BUILD_DIR=.../jeffrey/secondo

PARALLEL_SECONDO_MINIDB_NAME=msec-databases

PARALLEL_SECONDO_MINI_NAME=msec

PARALLEL_SECONDO_PSFSNAME=PSFS

PARALLEL_SECONDO_DBCONFIG=

PARALLEL_SECONDO_SLAVES=.../jeffrey/conf/slaves

PARALLEL_SECONDO_MAINDS=.../jeffrey

PARALLEL_SECONDO=...:...

PARALLEL_SECONDO_DATASERVER_NAME=jeffrey

24

6. Initialize and start up Hadoop with two steps:

$ hadoop namenode -format

$ start-all.sh

All these tools are provided by Hadoop, and the user can checkwhether Hadoop works properly

on the cluster by visiting its web monitors. Usually it takessome time for Hadoop to be started

completely.

7. Distribute the Mini-SECONDO to the whole cluster. Ensure that both the Hadoop and HadoopParal-

lel algebras have been activated in the user’s accustomed SECONDOsystem before constructing the

system. Afterwards, the Hadoop job ParallelSecondo.jar should have been generated and put in the

path $SECONDO_BUILD_DIR/bin, and then the user can distribute Mini-SECONDO to the whole

cluster with the ps-secondo-buildMini script.

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManagement

$ ps-secondo-buildMini -co

8. All involved Secondo Monitors must be started up before running Parallel Secondo, with steps:

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManagement

$ ps-start-AllMonitors

$ ps-cluster-queryMonitorStatus

The second script is used to make sure that all data servers’ Secondo monitors are started.

9. Start up the text interface:

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManagement

$ ps-startTTYCS -s 1

10. Parallel SECONDO can be stopped by turning off all mini Secondo monitors and the Hadoop with

two steps respectively:

$ cd $SECONDO_BUILD_DIR/Algebras/Hadoop/clusterManagement

$ ps-stop-AllMonitors

$ stop-all.sh

25

