
Overture Technical Report Series
No. TR-007
March 2019

VDMJ Tool Support: User Guide
by

Nick Battle
Fujitsu Services

Lovelace Road, Bracknell,
Berkshire. RG12 8SN, UK

Copyright © Fujitsu Services 2019

VDMJ Tool Support: User Guide

 0. Document Control

 0.1. Table of Contents

 0. Document Control... 2

 0.1. Table of Contents.. 2

 0.2. References... 2

 0.3. Document History... 3

 0.4. Copyright.. 3

 1. Introduction... 4

 1.1. VDM.. 4

 2. Using VDMJ.. 5

 2.1. Starting VDMJ... 5

 2.2. Command Line Recall...8

 2.3. Source File Formats..8

 2.4. Parsing, Type Checking, and Proof Obligations..9

 2.5. The Interpreter.. 10

 2.5.1. Suppressing Runtime Checks...18

 2.6. Debugging... 19

 2.6.1. Single-threaded Debugging..19
 2.6.2. VDM++ Multi-threaded Debugging..22
 2.6.3. VDM-RT Debugging and the VDMJC Client..24

 2.7. Sessions... 28

 2.8. Standard Libraries...30

 3. VDMJUnit Testing... 31

 4. Combinatorial Testing... 35

 4.1. Debugging Tests...38

 4.2. Filtering Tests... 41

 5. Annotations... 44

 5.1. Overview... 44

 5.2. Syntax... 44

 6. Internationalization (I18N)...45

 7. The vdmj.properties File..46

 8. Appendix A: The shmem Example..48

 9. Appendix B: Supported Character Sets...53

 0.2. References

[1] Wikipedia entry for The Vienna Development Method,
http://en.wikipedia.org/wiki/Vienna_Development_Method

[2] Wikipedia entry for Specification Languages,
http://en.wikipedia.org/wiki/Specification_language

[3] The VDM Portal, http://www.vdmportal.org/twiki/bin/view

Issue 2.1 Copyright © Fujitsu Services 2019 Page 2 of 53

VDMJ Tool Support: User Guide

[4] The VDMTools VDM-SL Language Manual,
http://www.vdmtools.jp/uploads/manuals/langmansl_a4E.pdf

[5] The VDMTools VDM++ Language Manual,
http://www.vdmtools.jp/uploads/manuals/langmanpp_a4E.pdf

[6] Validated Designs for Object-oriented Systems, by John Fitzgerald et. al.,
http://www.vdmbook.com/

[7] User Manual for the Overture Combinatorial Testing Plug-in, by Peter Gorm Larsen and
Kenneth Lausdahl.

[8] Overture, Open-source Tools for Formal Modelling, http://www.overturetool.org/
[9] VDMJ Project, SourceForge, https://sourceforge.net/projects/vdmj/
[10] VDMJ Design Specification, Nick Battle.
[11] Combinatorial Testing for VDM++. Peter Gorm Larsen, Kenneth Lausdahl, and Nick Battle,

SEFM-2010.
[12] JUnit Test Framework, http://en.wikipedia.org/wiki/JUnit
[13] The rlwrap manual page, http://linux.die.net/man/1/rlwrap
[14] VDMJ Annotations Guide, 15/02/19.

 0.3. Document History

Issue 0.1 10/10/08 First release.

Issue 0.2 17/10/08 Added threaded debugging.

Issue 0.3 07/11/08 Added the create command, and comments from PGL.

Issue 0.4 26/11/08 Added I18N section, Appendix B and overture option.

Issue 0.5 27/02/09 Added PO generation section, and some new commands.

Issue 0.6 21/04/09 Added the Combinatorial Testing section, and -o libraries

Issue 0.7 04/06/09 Added explanation of hit conditional breakpoints.

Issue 0.8 17/09/09 Added VDM-RT changes and the VDMJC description.

Issue 0.9 14/10/09 Minor changes.

Issue 0.10 30/10/09 Minor changes.

Issue 0.11 09/12/09 Added GPL copyright section.

Issue 1.0 15/01/13 Update for Overture 1.0.0 release and misc corrections

Issue 1.1 18/02/13 Added VDMJUnit section.

Issue 1.2 30/12/15 Updated for VDMJ 3.1.1

Issue 1.3 03/02/16 Added command line recall section

Issue 1.4 08/04/16 Added runtrace ranges

Issue 1.5 29/06/16 Added the runalltraces command

Issue 2.0

Issue 2.1

26/07/17

14/03/19

Updated for VDMJ version 4

Updated for 4.3.0 annotations.

 0.4. Copyright

Copyright © 2019, Fujitsu Services Ltd.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

Issue 2.1 Copyright © Fujitsu Services 2019 Page 3 of 53

http://www.vdmbook.com/
http://linux.die.net/man/1/rlwrap
http://en.wikipedia.org/wiki/JUnit
https://sourceforge.net/projects/vdmj/
http://www.overturetool.org/

VDMJ Tool Support: User Guide

 1. Introduction

VDMJ [9] provides computer based tool support for the VDM-SL, VDM++ and VDM-RT specification
languages, written in Java. The tool includes a parser, a type checker, an interpreter, a debugger, a
proof obligation generator and a JUnit test framework. It is a command line tool only, though it is
integrated with the Overture Eclipse GUI [8].

 1.1. VDM

To quote from [1] and [2]:

A specification language is a formal language used in computer science. Unlike most programming
languages, which are directly executable formal languages used to implement a system, specification
languages are used during systems analysis, requirements analysis and systems design.

Specification languages are generally not directly executed. They describe the system at a much
higher level than a programming language. Indeed, it is considered as an error if a requirement
specification is cluttered with unnecessary implementation detail, because the specification is meant to
describe the what, not the how.

The Vienna Development Method (VDM) is one of the longest-established Formal Methods for the
development of computer-based systems. Originating in work done at IBM's Vienna Laboratory in the
1970s, it has grown to include a group of techniques and tools based on a formal specification
language - the VDM Specification Language (VDM-SL). It has an extended form, VDM++, which
supports the modelling of object-oriented and concurrent systems. Support for VDM includes
commercial and academic tools for analyzing models, including support for testing and proving
properties of models and generating program code from validated VDM models. There is a history of
industrial usage of VDM and its tools and a growing body of research in the formalism has led to
notable contributions to the engineering of critical systems, compilers, concurrent systems and in logic
for computer science.

Issue 2.1 Copyright © Fujitsu Services 2019 Page 4 of 53

VDMJ Tool Support: User Guide

 2. Using VDMJ

 2.1. Starting VDMJ

VDMJ is contained entirely within one jar file. The jar file contains a MANIFEST that identifies the
main class to start the tool, so the minimum command line invocation is as follows:

$ java -jar vdmj-4.3.0.jar
VDMJ: You must specify either -vdmsl, -vdmpp or -vdmrt

Usage: VDMJ <-vdmsl | -vdmpp | -vdmrt> [<options>] [<files or dirs>]
-vdmsl: parse files as VDM-SL
-vdmpp: parse files as VDM++
-vdmrt: parse files as VDM-RT
-path: search path for files
-strict: use strict grammar rules
-v: show VDMJ jar version
-r <release>: VDM language release
-w: suppress warning messages
-q: suppress information messages
-i: run the interpreter if successfully type checked
-p: generate proof obligations and stop
-e <exp>: evaluate <exp> and stop
-c <charset>: select a file charset
-t <charset>: select a console charset
-o <filename>: save the type checked specification
-default <name>: set the default module/class
-pre: disable precondition checks
-post: disable postcondition checks
-inv: disable type/state invariant checks
-dtc: disable all dynamic type checking
-measures: disable recursive measure checking
-annotations: enable annotation processing
-log <filename>: enable real-time event logging
-remote <class>: enable remote control
-verbose: display detailed startup information

Notice that the error indicates that the tool must be invoked with either the -vdmsl, -vdmpp or -vdmrt
option to indicate the VDM dialect and parser required. The -r option can be used to indicate the
language release, currently classic or vdm10. The default is vdm10.

Normally, a specification will be loaded by identifying all of the VDM source files to include. If a
directory is given, all the relevant source files within that directory will be loaded. The -path option may
occur zero or more times, and defines alternative directories to search for files. At least one source file
must be specified unless the -i option is used, in which case the interpreter can be started with no
specification. Source files can be in a variety of document formats, as well as plain text (see section
2.2).

The parser allows some flexibility by default, but the -strict option will raise warnings for constructs in a
specification which are strictly not legal. This is good for increasing compatibility with other tools.

If no -i option is given, the tool will parse and type check the specification files only, giving any errors
and warnings on standard output, then stop. Warnings can be suppressed with the -w option. The -q
option can be used to suppress the various information messages printed (this doesn’t include errors
and warnings).

The -p option will run the proof obligation generator and then stop, assuming the specification has no
type checking errors.

For batch execution, the -e option can be used to identify a single expression to evaluate in the
context of the loaded specification, assuming the specification has no type checking errors.

Issue 2.1 Copyright © Fujitsu Services 2019 Page 5 of 53

VDMJ Tool Support: User Guide

The -c and -t options allow the file and console character sets to be defined, respectively. This is to
allow specifications written in languages other than the default for your system to be used (see section
4).

The -o option allows a parsed and type checked specification to be saved to a file. Such files are
effectively libraries, and can be can be re-loaded without the parsing/checking overhead.

The -default option sets the default class or module name, otherwise the default is simply the first
class or module encountered by the parser in the file list.

The -pre, -post, -inv, -dtc and -measures options can be used to disable precondition, postcondition,
invariant, dynamic type checking and recursive measure checking, respectively. By default, all these
checks are performed. The -annotations option enables annotation processing, which by default is
disabled.

The -log option is for use with -vdmrt, and causes real-time events from the model to be written to the
file name given. These are useful with the Overture Eclipse GUI, which has a plugin to display timing
diagrams [8].

The -remote option is for enabling the remote control of a VDMJ process by another system, typically
a test generator or a user interface. See section 3.2 of the VDMJ Design Specification [10] for details.

The -verbose option gives more detailed timing information in version 4.

In addition to these command line options, various settings can be added to a vdmj.properties file (see
section 5).

If flat.def contains a simple VDM-SL specification of the factorial function, called “f”, the following
illustrate ways to test the specification, with user input shown in bold:

$ cat flat.def

functions

f: int -> int
 f(a) == if a < 2 then 1 else a * f(a-1)
 pre a > 0

$ java -jar vdmj-4.1.0.jar -v
VDMJ version = 4.1.0 build 170724

$ java -jar vdmj-4.1.0.jar -vdmsl flat.def
Parsed 1 module in 0.189 secs. No syntax errors
Warning 5012: Recursive function has no measure in 'DEFAULT' (flat.def) at
line 3:1
Type checked 1 module in 0.058 secs. No type errors and 1 warning

$ java -jar vdmj-4.1.0.jar -vdmsl -q -w flat.def
<quiet!>

$ java -jar vdmj-4.1.0.jar -vdmsl -verbose -w flat.def
Parsed 1 module in 0.076 secs. No syntax errors
Loaded ast-tc.mappings in 0.171 secs
Mapped 38 nodes with ast-tc.mappings in 0.002 secs
Type checked 1 module in 0.005 secs. No type errors and suppressed 1
warning

$ java -jar vdmj-4.1.0.jar -vdmsl -w -e "f(10)" flat.def
Parsed 1 module in 0.189 secs. No syntax errors

Issue 2.1 Copyright © Fujitsu Services 2019 Page 6 of 53

VDMJ Tool Support: User Guide

Type checked 1 module in 0.018 secs. No type errors and suppressed 1
warning
Initialized 1 module in 0.095 secs.
3628800
Bye

$ java -jar vdmj-4.1.0.jar -vdmsl -e "f(10)" -q -w flat.def
3628800

$ java -jar vdmj-4.1.0.jar -vdmsl -i -w flat.def
Parsed 1 module in 0.198 secs. No syntax errors
Type checked 1 module in 0.018 secs. No type errors and suppressed 1
warning
Initialized 1 module in 0.125 secs.
Interpreter started
> print f(10)
= 3628800
Executed in 0.023 secs.
> quit
Bye

$ java -jar vdmj-4.1.0.jar -vdmsl -p -w flat.def
Parsed 1 module in 0.182 secs. No syntax errors
Type checked 1 module in 0.023 secs. No type errors and suppressed 1
warning
Generated 1 proof obligation:

Proof Obligation 1: (Unproved)
f: function apply obligation in 'DEFAULT' (flat.def) at line 4:38
(forall a:int & (a > 0) =>
 (not (a < 2) =>
 pre_f((a - 1))))

$ java -jar vdmj-4.1.0.jar -vdmsl -e "f(0)" -w flat.def
Parsed 1 module in 0.181 secs. No syntax errors
Type checked 1 module in 0.027 secs. No type errors and suppressed 1
warning
Initialized 1 module in 0.086 secs.
Error 4055: Precondition failure: pre_f in 'DEFAULT' (console) at line 1:1
Execution: Error 4055: Precondition failure: pre_f in 'DEFAULT' (console)
at line 1:1
 a = 0
In root context of f(a) in 'DEFAULT' (console) at line 1:1
In root context of module scope
Bye

$ java -jar vdmj-4.1.0.jar -vdmsl -pre -e "f(0)" -w flat.def
Parsed 1 module in 0.22 secs. No syntax errors
Type checked 1 module in 0.024 secs. No type errors and suppressed 1
warning
Initialized 1 module in 0.097 secs.
1
Bye

$ java -jar vdmj-4.1.0.jar -vdmsl -w -o flat.lib flat.def
Parsed 1 module in 0.192 secs. No syntax errors
Type checked 1 module in 0.02 secs. No type errors and suppressed 1 warning
Saved 1 module to flat.lib in 0.108 secs.
$ java -jar vdmj-4.1.0.jar -vdmsl flat.lib -e "f(10)"
Loaded 1 module from flat.lib in 0.192 secs
Initialized 1 module in 0.129 secs.

Issue 2.1 Copyright © Fujitsu Services 2019 Page 7 of 53

VDMJ Tool Support: User Guide

3628800
Bye

 2.2. Command Line Recall

VDMJ does not automatically provide command line recall – the ability to quickly retrieve and perhaps
change a previously entered command. But this feature can conveniently be added, either in Linux or
Cygwin on Windows, by using the rlwrap command to start java [13]. For example:

$ rlwrap java -jar vdmj-4.1.0.jar -vdmsl -i MATH.java
Parsed 1 module in 0.189 secs. No syntax errors
Type checked 1 module in 0.013 secs. No type errors
Initialized 1 module in 0.031 secs.
Interpreter started
> p exp(1)
= 2.718281828459045
Executed in 0.018 secs.
> p exp(2)
= 7.38905609893065
Executed in 0.003 secs.
> p exp(1) <-- Two up-arrows recalled this line
= 2.718281828459045
Executed in 0.002 secs.
> p exp(2) <-- CTRL-R followed by (2 found this line
= 7.38905609893065
Executed in 0.003 secs.
>

The commands themselves are written to a file called .java_history in your home directory, which
means that commands can be retrieved across VDMJ sessions. The location of the history file can be
changed by setting the $RLWRAP_HOME environment variable. See [13] for details.

 2.3. Source File Formats

VDM source files can be presented to VDMJ in a variety of formats and encodings. The embedding of
a specification in another document (typically a design or requirement document) is useful as it allows
a single controlled source to be maintained1. The following formats are supported:

 Plain text. This is default format. Source files can be read using a variety of character
encodings, as indicated by the -c command line option.

 LaTeX. Source files may be written in LaTeX so that they can subsequently be typeset to
produce high quality printed documentation or PDF files. VDMJ will ignore any LaTeX markup,
parsing only the text between markers \begin{vdm_al} and \end{vdm_al}. There can be
several such marked sections in one document.

To preserve line number information, the lines outside of the VDM blocks are considered as
blank lines in the specification. This means that errors reported on a given line will accurately
reflect the line number in the LaTeX source document, but certain commands in VDMJ (like
coverage) will show the blank lines in their output.

Note that the start of a LaTeX source file has to be recognizable as LaTeX so that the parser
can distinguish it from plain text. To achieve this, the first line in the file must be a LaTeX
\document, \section, \subsection or a %comment. It is possible to parse LaTeX files
containing different character encodings by using the -c command line option.

1 This also supports Literate Programming – see http://en.wikipedia.org/wiki/Literate_programming

Issue 2.1 Copyright © Fujitsu Services 2019 Page 8 of 53

VDMJ Tool Support: User Guide

 Word .doc. Source files may be written in MS Word. The actual VDM source must be marked
with %%VDM%% around the source lines, with each marker on a line by itself. All the sections
marked this way will be extracted from the document by the parser. However, unlike the
LaTeX parser, the lines outside of these blocks are ignored and do not play a part in the line
numbering. This means that it can be difficult to tie an error message location to the line in the
Word document, though the VDMJ save command will write the extracted source into a plain
file, which helps. The support of international character sets in .doc files is limited, though files
in plain ASCII will work. The preferred MS format for international character sets is .docx. The
VDM source can appear in any font, and can have styles applied to the text (bold etc), all of
which will be ignored by the parser.

 Word .docx. More recent versions of MS Word will save files in OOXML files with a .docx
extension, and these are accepted by the VDMJ parser. The same marker technique and
limitations apply as for .doc files, except that the support of international character sets is sane
in .docx – the character encoding used for a .docx file is embedded in the file itself, and so
there is no need to specify this via the -c option. The save command will write out the plain
extracted source.

 Open Document Format. Various modern word processors can write files in ODF format (for
example, OpenOffice and Koffice). These files have the extension .odt, and they are accepted
by the VDMJ parser. The same marker techniques apply as for .docx files. The save
command will write out the plain extracted source. Support for international character sets is
provided, again without the need for the -c option.

Apart from plain text and LaTeX files (which are the default), VDMJ will recognise the various
supported file formats above from the source file name extension: .doc, .docx or .odt.

It is occasionally useful to conditionally include source, depending on the dialect of VDM that is being
parsed, or other environmental flags. To enable this, the VDMJ parser includes an #ifdef convention,
and will conditionally include or exclude lines when parsing plain text or LaTeX files. The symbols
VDM_SL, VDM_PP and VDM_RT are pre-defined, depending on the dialect of the parser. Other
symbols are taken from Java system properties (eg. set with the -D java executable flag). For
example:

#ifdef VDM_SL
values

sl:nat = 123;
#else
instance variables
#ifdef VDM_PP

pp:int := 123;
#else

rt:int := 321;
#endif
#endif

As with LaTeX files, lines that are excluded with #ifdefs are present as blank lines in the parsed
specification, which enables line numbering to be accurate. It is not possible to use #ifdefs with
specifications that are embedded in other file formats.

 2.4. Parsing, Type Checking, and Proof Obligations

All specification files loaded by VDMJ are parsed and type checked automatically. There are no type
checking options; the type checker always uses "possible" semantics. If a specification does not
parse and type check cleanly, the interpreter cannot be started and proof obligations cannot be
generated (though warnings are allowed).

All warnings and error messages are printed on standard output, even with the -q option.

Issue 2.1 Copyright © Fujitsu Services 2019 Page 9 of 53

VDMJ Tool Support: User Guide

The Java program will return with an exit code of zero if the specification is clean (ignoring warnings).
Parser or type checking errors result in an exit code of 1. The interpreter and PO generator always
exit with a code of zero.

 2.5. The Interpreter

Assuming a specification does not contain any parse or type checking errors, the interpreter can be
started by using the -i command line option.

The interpreter is an interactive command line tool that allows expressions to be evaluated in the
context of the specification loaded. The interpreter prompt is “>”. The following illustrates some of the
interactive interpreter commands (explanation below. The shmem source code is in Appendix A):

$ java -jar vdmj-4.1.0.jar -vdmsl -i shmem.vdm
Parsed 1 module in 0.337 secs. No syntax errors
Warning 5000: Definition 'i' not used in 'M' (shmem.vdm) at line 129:7
Type checked 1 module in 0.109 secs. No type errors and 1 warning
Initialized 1 module in 0.091 secs.
Interpreter started

> help
modules - list the loaded module names
default <module> - set the default module name
state - show the default module state
print <expression> - evaluate expression
runtrace <name> [start test [end test]] - run CT trace(s)
debugtrace <name> [start test [end test]] - debug CT trace(s)
savetrace [<file> | off] - save CT trace output
seedtrace <number> - seed CT trace random generator
runalltraces [<name>] - run all CT traces in class/module name
assert <file> - run assertions from a file
init - re-initialize the global environment
env - list the global symbols in the default environment
pog [<function/operation>] - generate proof obligations
break [<file>:]<line#> [<condition>] - create a breakpoint
break <function/operation> [<condition>] - create a breakpoint
trace [<file>:]<line#> [<exp>] - create a tracepoint
trace <function/operation> [<exp>] - create a tracepoint
remove <breakpoint#> - remove a trace/breakpoint
list - list breakpoints
coverage clear|write <dir>|merge <dir>|<filenames> - handle line coverage
latex|latexdoc [<files>] - generate LaTeX line coverage files
word [<files>] - generate Word HTML line coverage files
files - list files in the current specification
set [<pre|post|inv|dtc|measures|annotations> <on|off>] - set runtime checks
reload - reload the current specification files
load <files or dirs> - replace current loaded specification files
save [<file>] - generate Word/ODF source extract files
quit - leave the interpreter

> modules
M (default)

> state
Q4 = [mk_M(<FREE>, 0, 9999)]
rseed = 87654321
Memory = mk_Memory(87654321, [mk_M(<FREE>, 0, 9999)], [mk_M(<FREE>, 0,
9999)])
Q3 = [mk_M(<FREE>, 0, 9999)]

> print rand(100)
= 71

Issue 2.1 Copyright © Fujitsu Services 2019 Page 10 of 53

VDMJ Tool Support: User Guide

Executed in 0.0 secs.

> print rand(100)
= 44
Executed in 0.0 secs.

> state
Q4 = [mk_M(<FREE>, 0, 9999)]
rseed = 566044643
Memory = mk_Memory(566044643, [mk_M(<FREE>, 0, 9999)], [mk_M(<FREE>, 0,
9999)])
Q3 = [mk_M(<FREE>, 0, 9999)]

> init
Cleared all coverage information
Global context initialized

> state
Q4 = [mk_M(<FREE>, 0, 9999)]
rseed = 87654321
Memory = mk_Memory(87654321, [mk_M(<FREE>, 0, 9999)], [mk_M(<FREE>, 0,
9999)])
Q3 = [mk_M(<FREE>, 0, 9999)]

> print rand(100)
= 71
Executed in 0.0 secs.

> print rand(100)
= 44
Executed in 0.0 secs.

> env
QuadrantLen2 = (nat1 * nat1 * Quadrant -> nat)
BestFit = (nat1 ==> bool)
inc = (() ==> ())
QuadrantLen0 = (Quadrant -> nat)
MQuadrantLen = (M * Quadrant -> nat)
add = (nat1 * nat1 * Quadrant -> Quadrant)
rand = (nat1 ==> nat1)
sizeof = (M -> nat1)
MAXMEM = 10000
delete = (M * Quadrant -> Quadrant)
inv_M = (M +> bool)
CHUNK = 100
FirstFit = (nat1 ==> bool)
least = (nat1 * nat1 -> nat1)
TryFirst = (nat ==> nat)
pre_DeleteOne = (Memory +> bool)
pre_add = (nat1 * nat1 * Quadrant +> bool)
spacefor = (nat1 * Quadrant -> nat1)
inv_Memory = (Memory +> bool)
fragments = (Quadrant -> nat)
combine = (Quadrant -> Quadrant)
seed = (nat1 ==> ())
DeleteOne = (() ==> ())
bestfit = (nat1 * Quadrant -> nat1)
Reset = (() ==> ())
QuadrantLen = (nat1 * Quadrant -> nat)
main = (nat1 * nat1 ==> seq of ((<BEST> | <FIRST> | <SAME>)))
TryBest = (nat ==> nat)
init_Memory = (Memory +> bool)

> pog
Generated 56 proof obligations:

Issue 2.1 Copyright © Fujitsu Services 2019 Page 11 of 53

VDMJ Tool Support: User Guide

Proof Obligation 1: (Unproved)
sizeof: subtype obligation in 'M' (shmem.vdm) at line 38:1
(forall m:M &
 (((m.stop) - (m.start)) + 1) > 0)

Proof Obligation 2: (Unproved)
spacefor: recursive function obligation in 'M' (shmem.vdm) at line 48:1
...

Proof Obligation 54: (Unproved)
main: state invariant obligation in 'M' (shmem.vdm) at line 239:11
-- After result := (result ^ [<BEST>])
let mk_Memory(-, q3, q4) = Memory in (((len q3) > 0) and ((len q4) > 0))

Proof Obligation 55: (Unproved)
main: state invariant obligation in 'M' (shmem.vdm) at line 240:11
-- After result := (result ^ [<FIRST>])
let mk_Memory(-, q3, q4) = Memory in (((len q3) > 0) and ((len q4) > 0))
>

This example shows a VDM-SL specification called shmem.vdm being loaded. The help command
lists the interpreter commands available. Note that several of them regard the setting of breakpoints,
which is covered in the next section.

The modules command lists the names of the modules loaded from the specification. In this example
there is only one, called “M”. One of the modules is identified as the default; names in the default
module do not need to be qualified (so you can say print xyz rather than print M`xyz). The default
module can be changed with the default command (or the -default command line option).

The state command lists the content of the default module’s state. This can be changed by
operations, as can be seen by the two calls to rand which change the rseed value in the state (a
pseudo-random number generator). The init command will re-initialize the state to its original value,
illustrated by the fact that two subsequent calls to rand return the same results as the first two did.

The print command can be used to evaluate any expression.

The env command lists all the values in the global environment of the default module. This shows the
functions, operations and constant values defined in the module. Note that it includes invariant,
initialization and pre/postcondition functions.

The pog command (proof obligation generator) generates a list of proof obligations for the
specification.

The assert command (illustrated below) can take a list of assertions from a file, and execute each of
them in turn, raising an error for any assertion which is false. The assertions in the file must be simple
boolean expressions, one per line:

$ cat rand.assertions
rand(100) = 71
rand(100) = 44
$

$ java -jar vdmj-4.1.0.jar -vdmsl -i shmem.vdm
Parsed 1 module in 0.339 secs. No syntax errors
Warning 5000: Definition 'i' not used in 'M' (shmem.vdm) at line 129:7
Type checked 1 module in 0.059 secs. No type errors and 1 warning
Initialized 1 module in 0.08 secs.
Interpreter started
>
> assert rand.assertions
PASSED all 2 assertions from rand.assertions
> assert rand.assertions
FAILED: rand(100) = 71
FAILED: rand(100) = 44

Issue 2.1 Copyright © Fujitsu Services 2019 Page 12 of 53

VDMJ Tool Support: User Guide

FAILED 2 and passed 0 assertions from rand.assertions
> init
Cleared all coverage information
Global context initialized
> assert rand.assertions
PASSED all 2 assertions from rand.assertions
> quit
Bye

The example is an assertion file which states that the first and second invocations of the rand
operation will return 71 and 44 respectively. This is seen to be true the first time the assertions are
run, but (having changed the state) the second time they are executed, both assertions fail (the actual
pseudo-random values returned are different). Using the init command resets the state, so the
assertions work correctly again.

The files command will list the file names that comprise the current loaded specification. The reload
command will re-parse and check the specification files currently loaded. The load command will
replace the currently loaded specification with a new set of files. Note that if there are any errors in the
parse or type check of the files, the interpreter will exit after reload or load.

If the files currently loaded are changed outside VDMJ, an indication will be printed between command
prompts, until the reload or load commands are used to refresh the files:

>
File test.vpp has changed
>
File test.vpp has changed
> reload
Parsed 1 class in 0.0 secs. No syntax errors
Type checked 1 class in 0.0 secs. No type errors
Initialized 1 class in 0.0 secs.
Interpreter started
>
>

The save command will extract VDM source from MS Word or ODF source files and write it to a plain
text file. This is useful when debugging sources embedded in these formats, since line number
information does not relate to the source's position in the original document.

> files
sortingWithCombineSubfamily.odt
> save
Extracted source written to sortingWithCombineSubfamily.odt.vdmsl
>

The set command allows you to change the runtime checks in force (this is the same as the -pre,
-post, -inv, -dtc, -measures and -annotations command line options). Using the command without
arguments will list the current settings.

> set
Preconditions are enabled
Postconditions are enabled
Invariants are enabled
Dynamic type checks are enabled
Measure checks are enabled
Annotations are enabled
>

Most of the interpreter commands for a VDM++ specification are the same as for VDM-SL, with the
following differences:

Issue 2.1 Copyright © Fujitsu Services 2019 Page 13 of 53

VDMJ Tool Support: User Guide

$ java -jar vdmj-4.1.0.jar -vdmpp -i
Initialized 1 class in 0.183 secs.
Interpreter started
> help
classes - list the loaded class names
default <class> - set the default class name
create <id> := <exp> - create a named variable
print <expression> - evaluate expression
runtrace <name> [start test [end test]] - run CT trace(s)
debugtrace <name> [start test [end test]] - debug CT trace(s)
savetrace [<file> | off] - save CT trace output
seedtrace <number> - seed CT trace random generator
runalltraces [<name>] - run all CT traces in class/module name
assert <file> - run assertions from a file
init - re-initialize the global environment
env - list the global symbols in the default environment
pog [<function/operation>] - generate proof obligations
break [<file>:]<line#> [<condition>] - create a breakpoint
break <function/operation> [<condition>] - create a breakpoint
trace [<file>:]<line#> [<exp>] - create a tracepoint
trace <function/operation> [<exp>] - create a tracepoint
remove <breakpoint#> - remove a trace/breakpoint
list - list breakpoints
coverage clear|write <dir>|merge <dir>|<filenames> - handle line coverage
latex|latexdoc [<files>] - generate LaTeX line coverage files
word [<files>] - generate Word HTML line coverage files
files - list files in the current specification
set [<pre|post|inv|dtc|measures> <on|off>] - set runtime checks
reload - reload the current specification files
load <files or dirs> - replace current loaded specification files
save [<files>] - generate Word/ODF source extract files
quit - leave the interpreter
>

The classes command replaces the modules command, but is similar in that it lists the names of the
classes loaded, identifying the default. The default command is used to change the default class.
There is no state command because VDM++ objects contain state within instances of themselves as
instance variables. The state values for any object can be printed with the print command. The init
and env commands do the same thing, re-initializing static class members and printing the names and
types of public static values accessing from the global context. The create command can be used to
create a new (synthetic) public static of a given name, which can then be used in further evaluations.

The following example illustrates:

$ cat test.vpp
class A

instance variables
 si:int;
 sj:int;
 public static sk:int := 123;

operations

public op: int * int ==> int
 op(i, j) ==
 (si := i;
 sj := j;
 sk := i + j;
 return sk;
);

public static test: () ==> int

Issue 2.1 Copyright © Fujitsu Services 2019 Page 14 of 53

VDMJ Tool Support: User Guide

 test() == let a = new A() in a.op(1, 2);

end A

$ java -jar vdmj-4.1.0.jar -vdmpp -i test.vpp
Parsed 1 class in 0.236 secs. No syntax errors
Warning 5001: Instance variable 'si' is not initialized in 'A' (test.vpp)
at line 4:3
Warning 5001: Instance variable 'sj' is not initialized in 'A' (test.vpp)
at line 5:3
Type checked 1 class in 0.02 secs. No type errors and 2 warnings
Initialized 1 class in 0.052 secs.
Interpreter started
> classes
A (default)
> state
Command not available in this context
> p new A()
= A{#1, si:=undefined, sj:=undefined, sk:=123}
Executed in 0.026 secs.
> env
test() = (() ==> int)
sk = 123
> p test()
= 3
Executed in 0.0070 secs.
> env
test() = (() ==> int)
sk = 3
> p new A().op(123,456)
= 579
Executed in 0.0090 secs.
> env
test() = (() ==> int)
sk = 579
> create a := new A()
> env
test() = (() ==> int)
sk = 579
a = A{#4, si:=undefined, sj:=undefined, sk:=579}
> p a.op(111,222)
= 333
Executed in 0.0020 secs.
> env
test() = (() ==> int)
sk = 333
a = A{#4, si:=111, sj:=222, sk:=333}
> quit
Bye

Executing a specification written in the VDM-RT dialect is essentially the same as with VDM++. There
is one additional command, log, which is used to indicate where real-time events from the interpreter
should be sent:

> help
classes - list the loaded class names
threads - list active threads
default <class> - set the default class name
create <id> := <exp> - create a named variable
log [<file> | off] - log RT events to file
...

Issue 2.1 Copyright © Fujitsu Services 2019 Page 15 of 53

VDMJ Tool Support: User Guide

By default, event logging is turned off. But logging can be enabled to the console by using log with no
arguments, or to a file using log <filename>. Logging can subsequently be turned off again by using
log off. For example, the following can be used to see the real time events for the initialization of a
VDM-RT specification:

> log
RT events now logged to the console

> init
Cleared all coverage information
ThreadCreate -> id: 1 period: false objref: nil clnm: nil cpunm: 0 time:
0
ThreadSwapIn -> id: 1 objref: nil clnm: nil cpunm: 0 overhead: 0 time: 0
DeployObj -> objref: 1 clnm: "A" cpunm: 0 time: 0
OpRequest -> id: 1 opname: "A(nat)" objref: 1 clnm: "A" cpunm: 0 async:
false time: 0
OpActivate -> id: 1 opname: "A(nat)" objref: 1 clnm: "A" cpunm: 0 async:
false time: 0
OpCompleted -> id: 1 opname: "A(nat)" objref: 1 clnm: "A" cpunm: 0 async:
false time: 0
DeployObj -> objref: 2 clnm: "A" cpunm: 0 time: 0
OpRequest -> id: 1 opname: "A(nat)" objref: 2 clnm: "A" cpunm: 0 async:
false time: 0
OpActivate -> id: 1 opname: "A(nat)" objref: 2 clnm: "A" cpunm: 0 async:
false time: 0
OpCompleted -> id: 1 opname: "A(nat)" objref: 2 clnm: "A" cpunm: 0 async:
false time: 0
CPUdecl -> id: 1 expl: true sys: "SYS" name: "cpu1" time: 0
CPUdecl -> id: 2 expl: true sys: "SYS" name: "cpu2" time: 0
DeployObj -> objref: 6 clnm: "SYS" cpunm: 0 time: 0
DeployObj -> objref: 1 clnm: "A" cpunm: 1 time: 0
DeployObj -> objref: 2 clnm: "A" cpunm: 2 time: 0
BUSdecl -> id: 1 topo: {1,2} name: "bus" time: 0
ThreadSwapOut -> id: 1 objref: nil clnm: nil cpunm: 0 overhead: 0 time: 0
ThreadKill -> id: 1 cpunm: 0 time: 0
Global context initialized
>

> log off
RT event logging disabled

Testing a specification by evaluating expressions is useful, but it is not certain that this will exercise all
parts of the specification. To help determine the coverage of the tests executed against a specification,
VDMJ keeps a record of which parts of of the specification have been executed. The overall code
coverage can then be displayed with the coverage command, as the following example illustrates.

class A
functions
public f: int * int -> real

f(x, y) ==
x / y

pre x < y;

operations
public g: int * int ==> real

g(x, y) ==
return x + y

end A

Parsed 1 class in 0.2 secs. No syntax errors

Issue 2.1 Copyright © Fujitsu Services 2019 Page 16 of 53

VDMJ Tool Support: User Guide

Type checked 1 class in 0.0080 secs. No type errors
Initialized 1 class in 0.0050 secs.
Interpreter started
> coverage
Test coverage for coverage.vpp:

 class A
 functions
 public f: int * int -> real
 f(x, y) ==
- x / y
- pre x < y;

 operations
 public g: int * int ==> real
 g(x, y) ==
- return x + y

 end A

Coverage = 0%
>

> p new A().f(1,2)
= 0.5
Executed in 0.036 secs.
>
> coverage
Test coverage for test.vpp:

 class A
 functions
 public f: int * int -> real
 f(x, y) ==
+ x / y
+ pre x < y;

 operations
 public g: int * int ==> real
 g(x, y) ==
- return x + y

 end A

Coverage = 66%
>

The coverage command displays the source code of the loaded specification (by default, all source
files are listed), with “+” and “-” signs in the left hand column indicating lines which have been
executed or not, respectively. In the example above, there are only three executable lines. Initially,
none of them have been executed, and they all show a “-” sign in the left hand column. After the
execution of the “f” function, its lines (including the precondition) are labelled “+”, and the percentage
coverage of the source file is displayed.

Typically, the testing of a specification will be incremental, and so it is convenient to be able to “save”
the coverage achieved in each test session, and subsequently merge the results together. This can be
achieved with the write <dir> and merge <dir> options to the coverage command. The write option
saves the current coverage information in <dir> for each specification file loaded; the merge option
reads this information back, and merges it with the current coverage information. For example, each
day's test coverage could be written to a separate “day” directory, and then all the days merged
together for review of the overall coverage at the end.

Detailed coverage information is available with the latex and latexdoc commands. These write LaTeX
files with parts of the specification highlighted where they have not been executed. The LaTeX output

Issue 2.1 Copyright © Fujitsu Services 2019 Page 17 of 53

VDMJ Tool Support: User Guide

also contains a table of percentage cover by module/class and the number of times functions and
operations were hit during the execution. The latexdoc command is the same, except that output files
are wrapped in LaTeX document headers. The LaTeX output files are written to the same directory as
source files, one per source file, with the extension .tex.

> latex
Latex coverage written to coverage.vpp.tex
>

Similarly, the word command will write detailed coverage information in MS Word HTML format. These
files are standard HTML (and can be opened with a browser), but they use various styles which allow
them to be read by MS Word, so you can open the files with the program as if they were normal .doc
files.

> word
Word HTML coverage written to coverage.vpp.doc
>

Coverage information is reset when a specification is loaded or initialized, or when the command
coverage clear is executed, otherwise coverage is cumulative. If several files are loaded, the coverage
for just one source file can be listed with coverage <file>, latex <file> or word <file>.

 2.5.1. Suppressing Runtime Checks

By default, the interpreter will evaluate all preconditions, postconditions, state and type invariants,
perform dynamic type checking when values are manipulated in a specification, and check measures
for recursive functions. These checks are valuable, and form an important part of the verification of a
specification, which is why they are performed by default.

However, the checks also take a certain amount of processing power and result in a slower evaluation
of expressions or tests. If you are certain that a specification will not violate the checks, you can use
the -pre, -post, -inv, -dtc, -measures and -annotatoins options to selectively control them. These can
either be passed on the command line to VDMJ, or issued at any time via the set command.

The -pre and -post options suppress the evaluation of both function and operation pre- and
postconditions. The -inv option suppresses the evaluation of type invariants, state invariants (in VDM-
SL) and class invariants (in VDM++ and VDM-RT). The -dtc option (dynamic type checking) is
equivalent to -inv plus suppression of the checks that occur whenever a value of one type is assigned
to another (eg. in parameter passing, result returns, in "let" definitions and binds, variable initializers
etc). The -measures option suppresses recursive function measure checking. The -annotations option
controls annotation processing (see below); if this option is changed, the specification must be re-
parsed using the reload command afterwards.

Issue 2.1 Copyright © Fujitsu Services 2019 Page 18 of 53

VDMJ Tool Support: User Guide

 2.6. Debugging

 2.6.1. Single-threaded Debugging

As well as evaluating expressions and displaying the value of state variables, the interpreter is able to
stop execution part way through an evaluation, and allow the evaluation to be single-stepped or
traced, and intermediate values displayed.

Debugging is always enabled in VDMJ, so to perform debugging it is only necessary to set breakpoints
or tracepoints. A breakpoint stops execution at a statement or expression, and enters a command line
state where single-stepping can be performed; a tracepoint on a statement or expression does not
stop execution, but prints out the value of an expression and carries on.

Using the class A example from section 2.4, we can stop on the op operation as follows:

> break op
Created break [1] in 'A' (test.vpp) at line 12:3
12: (si := i;
> p test()
Stopped break [1] in 'A' (test.vpp) at line 12:3
12: (si := i;
[MainThread-7]> help
step - step one expression/statement
next - step over functions or operations
out - run to the return of functions or operations
...
load <files> - replace current loaded specification files
quit - leave the interpreter
[MainThread-7]> stack
Stopped at break [1] in 'A' (test.vpp) at line 12:3
 j = 2
 i = 1
 self = A{#1, si:=undefined, sj:=undefined, sk:=123}
In object context of op(i, j) in 'A' (test.vpp) at line 19:34
In context of let statement in 'A' (test.vpp) at line 19:15
In class context of test() in 'A' (console) at line 1:1
In root context of global static scope
[MainThread-7]> source
7:
8: operations
9:
10: public op: int * int ==> int
11: op(i, j) ==
12:>> (si := i;
13: sj := j;
14: sk := i + j;
15: return sk;
16:);
17:
[MainThread-7]> down
In context of let statement in 'A' (test.vpp) at line 19:15
[MainThread-7]> stack
Stopped at break [1] in 'A' (test.vpp) at line 12:3
 a = A{#1, si:=undefined, sj:=undefined, sk:=123}
In context of let statement in 'A' (test.vpp) at line 19:15
In class context of test() in 'A' (console) at line 1:1
In root context of global static scope
[MainThread-7]> print a
a = A{#1, si:=undefined, sj:=undefined, sk:=123}
[MainThread-7]> step

Issue 2.1 Copyright © Fujitsu Services 2019 Page 19 of 53

VDMJ Tool Support: User Guide

Stopped in 'A' (test.vpp) at line 13:5
13: sj := j;
[MainThread-7]> step
Stopped in 'A' (test.vpp) at line 14:5
14: sk := i + j;
[MainThread-7]> step
Stopped in 'A' (test.vpp) at line 15:5
15: return sk;
[MainThread-7]> step
= 3
Executed in 83.143 secs.
> list
break [1] in 'A' (test.vpp) at line 12:3
12: (si := i;
> break op i < 10
Created break [2] when "i < 10" in 'A' (test.vpp) at line 12:3
12: (si := i;
> print new A().op(1,2)
Stopped break [2] when "i < 10" in 'A' (test.vpp) at line 12:3
12: (si := i;
[MainThread-8]> continue
= 3
Executed in 21.217 secs.
> print new A().op(100,200)
= 300
Executed in 0.0020 secs.
>

Breakpoints can either be set on an operation name (in the default module or class, or using a fully
qualified name), or at a specific line in the default file or a specific file using [<file>:]<line>. Optionally,
after giving the location of a breakpoint, you can specify a boolean condition which will be evaluated
whenever the breakpoint is reached, and only stops if it is true. It is also possible to conditionally stop
at a breakpoint after a number of "hits" of that breakpoint. For example:

> break 12 = 4
Created break [1] when "= 4" in 'A' (test.vpp) at line 12:3
12: (si := i;
> break 12 > 4
Created break [2] when "> 4" in 'A' (test.vpp) at line 12:3
12: (si := i;
> break 12 >= 4
Created break [3] when ">= 4" in 'A' (test.vpp) at line 12:3
12: (si := i;
> break 12 mod 4
Created break [4] when "mod 4" in 'A' (test.vpp) at line 12:3
12: (si := i;
> break 12 i > j or i+j > 10
Created break [5] when "i > j or i+j > 10" in 'A' (test.vpp) at line 12:3
12: (si := i;
>

The first four examples would stop at line 12 of the specification when the hit count (the number of
times the breakpoint is reached since the current execution started) is precisely four; when it is greater
than four; when it is four or greater; and when the hit count modulo 4 is zero (ie. 4, 8, 12, etc)
respectively. The last breakpoint stops on line 12 when i is greater than j or the sum of i and j is
greater than 10.

The other debugger commands are fairly standard, and do what you would expect. You can display
the call stack, move up and down stack frames and evaluate expressions when a breakpoint is
reached. You can examine the source for the current breakpoint. You can use step (or next or out, to
step over and out of functions/operations). You can list and remove breakpoints by number.

Issue 2.1 Copyright © Fujitsu Services 2019 Page 20 of 53

VDMJ Tool Support: User Guide

Tracepoints are similar to breakpoints, except there is an implicit continue command after they have
printed the value of the expression they contain. The trace expression is evaluated and printed before
the expression or statement is executed, for example:

> trace 14 mk_(i, j, sk)
Created trace [1] show "mk_(i, j, sk)" in 'A' (test.vpp) at line 14:5
14: sk := i + j;
> p test()
mk_(i, j, sk) = mk_(1, 2, 123) at [1]
= 3
Executed in 0.0040 secs.
>

Note that new breakpoints and tracepoints can be set when stopped in the debugger (ie. when the
command prompt is “[thread-name-n]>”). Setting a trace or breakpoint at the same location as an
existing one replaces the existing one silently.

Some commonly used commands can be abbreviated to a single letter: s for step, n for next, o for out,
p for print, c for continue.

As well as at breakpoints, the debugger is also entered when a specification raises runtime faults. This
simulates the existence of a breakpoint at the point of failure, and allows the stack environment to be
examined to see what caused the problem. Of course any attempt to continue the specification
execution, including single stepping commands, will not work as the specification has terminated –
these cause the debugger to exit back to the normal command line state instead.

> p new A().f(-1,0)
Error 4134: Infinite or NaN trouble in 'A' (coverage.vpp) at line 5:11
Stopped in 'A' (coverage.vpp) at line 5:11
5: x / y
[MainThread-7]> source
1: class A
2: functions
3: public f: int * int -> real
4: f(x, y) ==
5:>> x / y
6: pre x < y;
7:
8: operations
9: public g: int * int ==> real
10: g(x, y) ==
11: return x + y
[MainThread-7]> p x
x = -1
[MainThread-7]> p y
y = 0
[MainThread-7]> continue
Runtime: Error 4134: Infinite or NaN trouble in 'A' (coverage.vpp) at line
5:11
>

The examples above are all inside a single module or class called "A", and by default all variable
names are implicitly qualified with that name, so you don't have to type "A`x" to refer to a variable.
However, when debugging more complex multi-class specifications, the debugger may break in a
class that is different to the current default. Therefore, the debugger automatically sets the default
class or module to the one the breakpoint is located in. At the end of a debugging session, the default
class or module remains as the one set by the last breakpoint – it can be changed with the "default"
command.

Issue 2.1 Copyright © Fujitsu Services 2019 Page 21 of 53

VDMJ Tool Support: User Guide

 2.6.2. VDM++ Multi-threaded Debugging

The examples in section 2.5.1 cover the debugging of a simple specification, either one written in
VDM-SL, or one in VDM++ with no object threads. Therefore there is a single thread of control and the
breakpoint prompt is always the same (usually [MainThread-7] – the number is decided by Java).

VDM++ specifications can create multiple threads, and the debugger provides some support for multi-
threaded debugging. VDM-RT specifications can give even more information about threading (see
2.4.3 for a discussion of the more powerful VDMJC debugging client).

The basic principles and most debugging commands for multi-threaded debugging are the same as
the single threaded case. There is an extra command available, “threads”, which displays the status of
all active threads.

When a breakpoint is reached, all threads will be suspended. Single stepping will then advance the
currently scheduled thread, while the others remain suspended until the scheduler selects them. Using
the “continue” command will resume the current thread and allow another thread to be controlled from
the console. There is a race to gain control of the console at a breakpoint. When this happens, single
stepping may flip to one of the other threads, which can be confusing. The current thread name is
always shown in the debugger prompt.

If any thread encounters a runtime error, then all threads are aborted. If the main thread terminates, all
threads are aborted.

The following debug session illustrates some of the issues – the specification contains three threads
which print out their thread IDs every 1000 ticks (see the listing at the end of the section):

> break op
Created break [1] in 'A' (threads.vpp) at line 5:9
5: (
> p new A().run()
Stopped in 'A' (threads.vpp) at line 14:27
14: while true do skip
[MainThread-7]> threads
PeriodicThread-9 (RUNNABLE)
PeriodicThread-10 (RUNNABLE)
MainThread-7 (RUNNABLE)
PeriodicThread-8 (RUNNING)
PeriodicThread-11 (RUNNABLE)
[MainThread-7]> c
Stopped break [1] in 'A' (threads.vpp) at line 5:9
5: (
[PeriodicThread-8]> c
Thread 8...
Stopped in 'A' (threads.vpp) at line 14:27
14: while true do skip
[MainThread-7]> c
Stopped break [1] in 'A' (threads.vpp) at line 5:9
5: (
[PeriodicThread-9]> c
Thread 9...
Stopped in 'A' (threads.vpp) at line 14:27
14: while true do skip
[MainThread-7]> c
Stopped break [1] in 'A' (threads.vpp) at line 5:9
5: (
[PeriodicThread-10]> c
Thread 10...
Stopped in 'A' (threads.vpp) at line 14:27
14: while true do skip
[MainThread-7]> c
Stopped break [1] in 'A' (threads.vpp) at line 5:9
5: (

Issue 2.1 Copyright © Fujitsu Services 2019 Page 22 of 53

VDMJ Tool Support: User Guide

[PeriodicThread-11]> c
Thread 11...
Stopped in 'A' (threads.vpp) at line 14:27
14: while true do skip
[MainThread-7]> c
Stopped break [1] in 'A' (threads.vpp) at line 5:9
5: (
[PeriodicThread-12]> c
Thread 12...
Stopped in 'A' (threads.vpp) at line 14:27
14: while true do skip
[MainThread-7]> remove 1
Cleared break [1] in 'A' (threads.vpp) at line 5:9
5: (
[MainThread-7]> c
Stopped break [1] in 'A' (threads.vpp) at line 5:9
5: (
[PeriodicThread-13]> c
Thread 13...
Thread 14...
Thread 15...
Thread 16...
Thread 17...

The operation, “op”, calls the IO class to print out its thread ID, followed by a skip statement. This is
then executed periodically by three periodic threads (see specification below). The periodic threads
each call op and create another periodic thread to run 1000 ticks later.

The breakpoint on “op” first stops thread 8 as the “threads” command shows, but thread 7 has
grabbed the console. Behind the scenes, the periodic threads 9, 10 and 11 are suspended – they just
don’t have control of the console. So a series of “continue” commands cycles through the threads that
are have been suspended, and follows the resource scheduler as it swaps the various threads. The
“threads” command reveals the state of the threads at any time.

After the breakpoint is removed, one more continue catches thread 13 (which was trying to acquire the
console), and thereafter the periodics act as expected, printing out successive thread IDs.

This bizarre looking control sequence is necessary to avoid a debugging session producing a different
outcome (by a different thread ordering) to a real execution. The threaded resource scheduling is
deterministic in VDMJ, and that determinism is preserved in the debugger.

operations
public op: () ==> ()

op() ==
(

IO`printf("Thread %s...", [threadid]);
skip

);

public run: () ==> ()
run() ==
(

startlist({new A(), new A(), new A()});
while true do skip

);

thread
periodic (1000)(op)

Issue 2.1 Copyright © Fujitsu Services 2019 Page 23 of 53

VDMJ Tool Support: User Guide

 2.6.3. VDM-RT Debugging and the VDMJC Client

The VDM-RT dialect is specialized for the specification of distributed multi-processor real-time
systems. This means that, while the majority of the language is the same as VDM++, there are special
constructs which allow a VDM-RT specification to define the CPU and BUS topology of the system, as
well as the deployment of VDM objects to CPUs.

Debugging VDM-RT specifications is therefore almost always about multi-threaded debugging, and
the weaknesses of the console-based multi-threaded debugging are even more problematic than they
are for threaded VDM++ (see 2.4.2).

To counter these problems, and to provide better multi-threaded debugging for GUI based systems,
VDMJ includes an alternative method to control the execution and debugging of a specification. This
uses a remote control protocol (the client and the interpreter are in different processes). A separate
client called VDMJC (VDMJ Client) is provided to act as an initiator, to pass user commands to the
interpreter using the remote protocol and to display results from multiple threads.

Running the VDMJC client is very easy compared to all the confusing options for VDMJ itself

$ java -jar vdmjc-4.1.0.jar <-vdmsl | -vdmpp | -vdmrt> [command]

The behaviour can be changed by settings in a vdmjc.properties file (which must be on the classpath),
rather than by passing lots of command line options. But by default, the client looks for the VDMJ jar
file in the current directory.

Properties for the VDMJ client

vdmj.jar = ../core/vdmj/target/vdmj-4.1.0.jar
vdmj.jvm = -Xmx1024m

You can use VDMJC for any VDM dialect, but it is most effective for VDM++ and VDM-RT with
threads. After starting the client, the dialect is displayed for information, but no VDMJ interpreter is
running. The help command will always show you what you can do:

Dialect is VDM_RT
> help
Loading and starting:
 load [<files>]
 eval [<files>]
 dbgp
 quiet
 help
 ls | dir
 q[uit]

Use 'help <command>' for more help
>

To load a specification, starting an instance of VDMJ, you use the load command:

> load vice.vpp
Parsed 2 classes in 0.312 secs. No syntax errors
Warning 5000: Definition 'i' not used in 'A' (vice.vpp) at line 73:13
Warning 5000: Definition 'i' not used in 'A' (vice.vpp) at line 80:13
Type checked 4 classes in 0.016 secs. No type errors and 2 warnings
[Id ?: STARTING]>
Standard output redirected to client

Issue 2.1 Copyright © Fujitsu Services 2019 Page 24 of 53

VDMJ Tool Support: User Guide

Standard error redirected to client
[Id 1: STARTING]>

The connection between the client and the VDMJ instance is completely asynchronous, so it is
possible for VDMJ to "say something" while you are typing, and for you to type commands while VDMJ
is operating. Notice in the example above that there are two prompts. The first is immediately after
VDMJ has started, where the client does not know the main thread's ID. Then commands are sent to
redirect the input and output back to the VDMJC client, which causes the main thread to identify itself
as ID 1, and the prompt is repeated.

Simple evaluations can then be performed in the usual way using the print command:

[Id 1: STARTING]> p new A().Get()
[Id 1: RUNNING]>
new A().Get() = 100
[Id 1: STOPPED]>

Notice that the prompt changed to indicate that VDMJ was running, but then the result was returned
and the prompt indicated that the evaluation had stopped. This is another example of the
asynchronicity of the client and interpreter. If the evaluation had taken a very long time, the client could
examine the threads that were running, and switch between them as individual threads reach a
breakpoint and so on. This is much more flexible than the command line debugger described in
section 2.5.1.

Note that the final state of the system is STOPPED rather than STARTING now. This reflects the way
the remote debugging protocol works2. It expects to have a single "main" evaluation that is STARTING
at the start of the session, then RUNNING or BREAK at breakpoints, finally reaching the STOPPED
state at the end. This does not mean that further evaluations cannot be performed however:

[Id 1: STOPPED]> p obj1
[Id 1: RUNNING]>
obj1 = A{#2, val:=0}

[Id 1: STOPPED]> p obj1.Set(123)
[Id 1: RUNNING]>
obj1.Set(123) = ()
[Id 1: STOPPED]>

[Id 1: STOPPED]> p obj1
[Id 1: RUNNING]>
obj1 = A{#2, val:=123}
[Id 1: STOPPED]>

This example shows a (static) object's value being printed, followed by a call to Set(123) which is an
async VDM-RT operation. This creates a new async thread, though no message is seen on the client
unless that new thread stops (eg. at a breakpoint).

async public Set: nat ==> ()
Set(n) == val := n;

To illustrate threaded debugging, we use the factorial example from the CSK VDM++ manual.

[Id 1: STARTING]> break 35
Breakpoint [1] set
[Id 1: STARTING]> p new Factorial().factorial(2)
[Id 1: RUNNING]>

2 The protocol is the Xdebug protocol, called DBGP. This is a standard protocol and allows VDMJ to be integrated with Eclipse.

Issue 2.1 Copyright © Fujitsu Services 2019 Page 25 of 53

VDMJ Tool Support: User Guide

[Id 1: BREAK]>
New thread: Id 8: STARTING
[Id 1: BREAK]>
Stopped at in 'Multiplier'
(/home/nick/eclipse.overture/VDMJTests/factorial.vpp) at line 59:35
59: per giveResult => #fin (doit) > #act (giveResult);
[Id 1: BREAK]>
Stopped at break [1] in 'Multiplier'
(/home/nick/eclipse.overture/VDMJTests/factorial.vpp) at line 35:9
35: if i = j then result := i
[Id 1: BREAK]> threads
Id 1: BREAK
Id 8: BREAK
[Id 1: BREAK]> thread 8
[Id 8: BREAK]> p i
[Id 8: BREAK]>
i = 1
[Id 8: BREAK]> p j
[Id 8: BREAK]>
j = 2
[Id 8: BREAK]> c
[Id 8: RUNNING]> thread 1
[Id 1: BREAK]> c
[Id 1: RUNNING]>
[Id 1: BREAK]>
New thread: Id 9: STARTING
[Id 1: BREAK]>
Stopped at in 'Multiplier'
(/home/nick/eclipse.overture/VDMJTests/factorial.vpp) at line 59:35
59: per giveResult => #fin (doit) > #act (giveResult);
Stopped at in 'Multiplier'
(/home/nick/eclipse.overture/VDMJTests/factorial.vpp) at line 59:35
59: per giveResult => #fin (doit) > #act (giveResult);
[Id 1: BREAK]>
Stopped at break [1] in 'Multiplier'
(/home/nick/eclipse.overture/VDMJTests/factorial.vpp) at line 35:9
35: if i = j then result := i
[Id 1: BREAK]> threads
Id 1: BREAK
Id 8: BREAK
Id 9: BREAK
[Id 1: BREAK]> thread 9
[Id 9: BREAK]> p j
[Id 9: BREAK]>
j = 1
[Id 9: BREAK]> c
[Id 9: RUNNING]> thread 8
[Id 8: BREAK]> c
[Id 8: RUNNING]>
Thread stopped: Id 9: STOPPED
[Id 8: RUNNING]> thread 1
[Id 1: BREAK]> c
[Id 1: RUNNING]>
[Id 1: BREAK]>
New thread: Id 10: STARTING
[Id 1: BREAK]>
Stopped at in 'Multiplier'
(/home/nick/eclipse.overture/VDMJTests/factorial.vpp) at line 59:35
59: per giveResult => #fin (doit) > #act (giveResult);
Stopped at in 'Multiplier'
(/home/nick/eclipse.overture/VDMJTests/factorial.vpp) at line 59:35
59: per giveResult => #fin (doit) > #act (giveResult);
[Id 1: BREAK]>
Stopped at break [1] in 'Multiplier'
(/home/nick/eclipse.overture/VDMJTests/factorial.vpp) at line 35:9

Issue 2.1 Copyright © Fujitsu Services 2019 Page 26 of 53

VDMJ Tool Support: User Guide

35: if i = j then result := i
[Id 1: BREAK]> threads
Id 1: BREAK
Id 8: BREAK
Id 10: BREAK
[Id 1: BREAK]> thread 10
[Id 10: BREAK]> c
[Id 10: RUNNING]> thread 8
[Id 8: BREAK]> c
[Id 8: RUNNING]>
Thread stopped: Id 10: STOPPED
[Id 8: RUNNING]> thread 1
[Id 1: BREAK]> c
[Id 1: RUNNING]>
Thread stopped: Id 8: STOPPED
new Factorial().factorial(2) = 2
[Id 1: RUNNING]>
[Id 1: STOPPED]>

Notice that now, the threads' creation and destruction are visible in the client because the threads are
stopping and may need to interact with the user.

Line 35 is the important "decision point" in the algorithm where the recursion either continues and forks
another pair of Multiplier threads, or returns the result from this level. The first breakpoint is when there
are only two threads: the main thread 1, and the first Multiplier thread, 8. The threads command shows
that both threads have stopped because of the breakpoint, and the thread 8 command switches the
debugger's context to the thread that has stopped. From there, the stack and the local variables can
be printed, expressions evaluated etc. Each thread must then be continued by hand. The evaluation
stops twice more at the same breakpoint, and each time we switch to the thread concerned, print out a
value and continue all threads. Eventually the final result is printed, as expected.

This is confusing, as with the simple command line debugger. But with VDMJC, as with a GUI, you
can switch to any thread context you wish at any time.

Similarly, tracepoints can be used to display variables without stopping:

[Id 1: STOPPED]> trace 35 mk_(i,j)
[Id 1: STOPPED]>
Created trace [2] show "mk_(i,j)" in 'Multiplier' at line 35:9
35: if i = j then result := i
[Id 1: STOPPED]> p new Factorial().factorial(3)
[Id 1: RUNNING]>
[Id 11: RUNNING] mk_(i,j) = mk_(1, 3) at [2]
[Id 1: RUNNING]>
[Id 12: RUNNING] mk_(i,j) = mk_(1, 2) at [2]
[Id 13: RUNNING] mk_(i,j) = mk_(3, 3) at [2]
[Id 14: RUNNING] mk_(i,j) = mk_(1, 1) at [2]
new Factorial().factorial(3) = 6
[Id 1: STOPPED]>
[Id 15: RUNNING] mk_(i,j) = mk_(2, 2) at [2]
[Id 1: STOPPED]>

Notice that here again, the asynchronous nature of the link to VDMJ means that the final mk_(2,2)
output happens to arrive after the print of the final result. This is not because any of the factorial
operations are asynchronous, but because by chance, the interleaving of the output from the multiple
threads arrived that way – the VDMJC client will not interleave output on a single line, so messages
from separate threads are always distinct.

To finish a VDMJ session, use the quit command:

[Id 1: STOPPED]> quit
Terminating VDMJ process

Issue 2.1 Copyright © Fujitsu Services 2019 Page 27 of 53

VDMJ Tool Support: User Guide

>

This returns to the original VDMJC prompt, as no specification is now loaded. It does not leave the
client immediately (a further quit will do that).

The other way to start a specification from this point is to use the eval command rather than load. This
is very similar, except an expression is prompted for at the start, and it is executed via the run
command, the result appearing on standard output. There is no real advantage to using this from the
command line, but it is useful for GUI debuggers which want to create a session related to the
evaluation of a single specific expression, and get the result.

> eval factorial.vpp
Evaluate: new Factorial().factorial(4)
Parsed 2 classes in 0.328 secs. No syntax errors
Type checked 4 classes in 0.015 secs. No type errors and 4 warnings
[Id 1: STARTING]>
Standard output redirected to client
Standard error redirected to client
[Id 1: STARTING]> run
[Id 1: RUNNING]>
stdout: 24
[Id 1: STOPPED]>

 2.7. Sessions

The state of a specification (ie. the state sections in a VDM-SL specification, or the static instance
variables of VDM++ and VDM-RT specifications) is initialized once when the specification is loaded,
and is modified thereafter by operation calls, for example using the print <expression> from the
command prompt. The state can be restored to its initial state at any time using the init command.

For VDM++ and VDM-RT specifications, the state of any background threads, the CPUs they are
allocated to, the BUSses that connect them, and the messages waiting to be sent between them are
also maintained between command line calls. Though again, the init command can be used to clear all
threads, CPUs, BUSses and messages, and reset the system to its initial state.

This leads to the concept of a session, where an interactive sequence of command line operations
moves the model between states, just as though the user was a (very slow!) component in the system
making operation calls. A session starts when the model is initialized (or re-initialized). Note that, while
the command prompt is waiting for the user to type the next print command, the thread scheduling and
normal BUS activity of the model is suspended - in effect, "time" in the simulation is stopped until the
user types the next print expression, which allows the model to evolve until that expression has
completed.

For example, consider the following VDM++ specification:

class A
instance variables
 iv:int := 0;

operations
 private inc: () ==> ()
 inc() == iv := iv + 1;

 public get: () ==> int
 get() == return iv;

 private run: () ==> ()
 run() == while true do inc();

 public static go: A ==> ()
 go(a) == start(a);

Issue 2.1 Copyright © Fujitsu Services 2019 Page 28 of 53

VDMJ Tool Support: User Guide

sync
 per inc => #fin(get) > #fin(inc);
 per get => #fin(get) = #fin(inc);

thread
 run();

end A

The model has a single instance variable, iv, which is incremented by the private inc operation, which
is called in an infinite loop by the run operation, which in turn is the body of a thread. The thread is
started by a static go operation. Permission predicates in the sync section mean that the inc operation
can only be called once the get operation has "seen" each particular value of iv. So to test this model,
we have to call go, and then make successive calls to get. The background thread will continue
running in between calls within the session. For example:

Parsed 1 class in 0.829 secs. No syntax errors
Type checked 1 class in 0.064 secs. No type errors
Initialized 1 class in 0.128 secs.
Interpreter started
> create a := new A()
> p a
= A{#1, iv:=0}
Executed in 0.0050 secs.
> threads
No threads running
> p a.get()
= 0
Executed in 0.012 secs.
> threads
No threads running
> p go(a)
= ()
Executed in 0.017 secs.
> threads
ObjectThread-10 (RUNNABLE)
> p a
= A{#1, iv:=1}
Executed in 0.0060 secs.
> threads
ObjectThread-10 (WAITING)
> p a.get()
= 1
Executed in 0.019 secs.
> threads
ObjectThread-10 (RUNNABLE)
> p a
= A{#1, iv:=2}
Executed in 0.0080 secs.
> threads
ObjectThread-10 (WAITING)

This illustrates a single session. Initially there are no threads running, as the threads command shows.
The call to go(a) creates a thread for object a and successive calls to a.get() return the value of the iv
state variable. The thread continues to run in the background between calls to a.get().

Note that immediately after a call to get, the thread is in state RUNNABLE. This is because as soon as
the get operation has been called, its #fin counter is incremented and the thread is then immediately
RUNNABLE as it now passes the permission predicate. However, execution returns to the command
line immediately after the get operation so the thread scheduler will not actually run the thread (ie. call
inc) until the next get(a) call (or any other operation that resumes the model). If we resume the model
with a simple print a command, the background thread resumes but finds that after the increment it

Issue 2.1 Copyright © Fujitsu Services 2019 Page 29 of 53

VDMJ Tool Support: User Guide

must wait for the next get call, and so enters state WAITING as expected.

 2.8. Standard Libraries

There are three standard libraries available to VDMJ: IO, MATH and VDMUtil. These enable the
interpreter to call out to standard library functions in Java, for example to read data from a file or to
perform various mathematical functions.

To use a library, your specification must include one or more of the VDM source files for the library.
These provide a bridge from VDM to the native Java library, using the facilities for making native calls
built into VDMJ (see [10]). The VDM library source files were originally written by CSK Systems Inc. as
part of VDMTools, but they are distributed freely with the Overture project.

For example, the following simple VDM function calls the sine function from the MATH library,
assuming the VDM-SL source is located in stdlib/MATH.vdm. Note that the test uses the constant
MATH`pi.

functions
sin: real -> real
sin(radians) == MATH`sin(radians);

$ java -jar vdmj-4.1.0.jar -vdmsl -i test.vdm stdlib/MATH.vdm
Parsed 2 modules in 0.282 secs. No syntax errors
Type checked 2 modules in 0.016 secs. No type errors
Initialized 2 modules in 0.062 secs.
Interpreter started
> p sin(MATH`pi/4)
= 0.7071067811865475
Executed in 0.016 secs.
>

Note that the -path command line option can be useful to specify the location of a common library
folder that includes the standard library VDM sources. Library sources can then be referred to without
the path prefix.

Issue 2.1 Copyright © Fujitsu Services 2019 Page 30 of 53

VDMJ Tool Support: User Guide

 3. VDMJUnit Testing

Section 2.6 describes the debugging of specifications using features built into the command line tools,
either directly in VDMJ or indirectly using the VDMJC client. But once a specification is working, it is
also possible to automatically execute batches of tests by using VDMJUnit, which adds VDM
interpreter support to the Java JUnit 4 framework [12].

JUnit tests are written in Java, and are usually executed as part of an automated build of a larger
system, or executed piecemeal in a development IDE. The JUnit framework allows Java classes and
methods to be annotated to identify them as tests, and then provides the means to execute all of the
tests in a give class or package, reporting any errors encountered.

The VDMJUnit package includes base classes that provide tests with the means to load a
specification from file(s), (re)initialize them, and make test evaluations against the specification loaded,
including tests which look for specific runtime errors, such as invariant failures.

Here is a minimal example:

public class SpecTest extends VDMJUnitTestPP
{

@BeforeClass
public static void start() throws Exception
{

setRelease(Release.VDM_10);
readSpecification("test.vpp");

}

@Before
public void setUp()
{

init();
}

@Test
public void test() throws Exception
{

assertEquals(10, runInt("new A().f(9)"));
}

}

Where the file "test.vpp" might contain the following VDM class definition:

class A
functions

public f: nat -> nat
f(i) == i + 1
pre i < 10;

end A

Since this test is of a VDM++ class, the JUnit test class extends VDMJUnitTestPP; similar base
classes are provided for VDM-SL and VDM-RT.

@BeforeClass is a standard JUnit 4 annotation which indicates that this static method is to be
executed once before all tests in the class. This is used to execute the setRelease and
readSpecification methods, inherited from VDMJUnitTestPP, which loads the file name(s) passed, and
parses and type checks them using the VDM10 language extensions. There must be no parse or type
checking errors. The readSpecification method takes a varargs list of filenames or directories which
are located relative to the Java classpath. Directories are searched (shallow) for all VDM source files.
It is permissible to pass no files and evaluate bare expressions in the tests (like "1+1"), but the
readSpecification method must always be called, and called only once per test class.

Issue 2.1 Copyright © Fujitsu Services 2019 Page 31 of 53

VDMJ Tool Support: User Guide

The @Before annotation is also from JUnit 4, and indicates that this method should be executed
before each test defined in the class. The init method shown initializes the specification (eg. setting the
state data back to the original settings). Without an @Before method to do this, tests will see the effect
of earlier tests on the specification state (which may be useful). If the specification is not initialized per
test, then it must be initialized once in the @BeforeClass method, after the specification is loaded.

Lastly, the @Test annotation identifies test methods, in this example a test asserting that a particular
expression should produce a given (integer) value. The string argument to runInt can be any valid
VDM expression that returns an integer value. The simpler run method returns a raw VDMJ Value
object, which can return arbitrarily complex values (sets, records, objects etc).

A method called assertVDM is provided to make assertions about VDM values by using VDM
expressions. This can be useful if it is too difficult to unpick the Value objects returned, when a VDM
expression would be far simpler. The methods set a “RESULT” variable from the value passed in (or
as a result of evaluating the expression passed), and this should be used to create a boolean VDM
assertion expression. Assertion expressions can use global constants defined in the specification.

@Test
public void one() throws Exception
{

run("setValue(123)");
assertVDM("getValue()", "RESULT = 123");

try
{

Value r = run("getValue()");
assertVDM("Testing!", r, "RESULT = 456");
fail("Expected failure");

}
catch (AssertionError e)
{

assertEquals(e.getMessage(), "Testing!");
}

}

Tests can catch and check exceptions if they believe a VDM runtime error should occur, for example:

@Test
public void one() throws Exception
{

try
{

create("object", "new A()");
run("object.f(100)");
fail("Expecting precondition failure");

}
catch (ContextException e)
{

// Error 4055: Precondition failure: pre_f in 'A' at line 5:11
assertEquals(4055, e.number);
assertEquals("A", e.location.module);
assertEquals("test.vpp", e.location.file.getName());
assertEquals(5, e.location.startLine);
assertEquals(11, e.location.startPos);

}
}

In this case, a VDMJ ContextException contains all of the information about the error that occurred,
which can be checked by the test. Note that an init call should be made after an error to reset the
specification to a known state, perhaps in the @Before method.

It is also possible to execute combinatorial tests from within the VDMJUnit framework (see section 4).

Issue 2.1 Copyright © Fujitsu Services 2019 Page 32 of 53

VDMJ Tool Support: User Guide

As with the command line, all the tests generated from a trace may be executed, or a contiguous
range of tests, or a reduced subset of the tests. Three runTrace methods are provided, as follows:

@Test
public void one() throws Exception
{

assertTrue(runTrace("T1"));
}

@Test
public void two() throws Exception
{

assertTrue(runTrace("T1", 1, 3));
}

@Test
public void three() throws Exception
{

assertTrue(runTrace("T1", 0.5, TraceReductionType.RANDOM, 123));
}

The first method executes all the tests generated from the "T1" trace. The second method runs a
range of tests from those generated (tests are numbered from 1). The third method reduces the
number of tests generated to 50% (ie. 0.5) using a RANDOM reduction technique, seeded with the
value 123 (for reproducible results). There is a description of test reduction in section 4.2.

In all three cases, if all of the tests pass, the runTrace method returns true else false. Note that
INCONCLUSIVE results are regarded as a failure. The expansion of the individual test cases,
including test numbers and the output from each test execution, is sent to stdout in the same format as
they are from the command line (see section 4).

The VDMJUnitTest framework provides the following methods to tests:

• setRelease(Release) to specify the language release to parse. The default is VDM classic.

• readSpecification([Charset], file/dirs...) to parse and type check specification files.

• init to (re)initialize a loaded specification.

• setDefault(Name) to set the default module or class name.

• create(Name, Expr) for VDM++ and VDM-RT only, to create temporary object values

• run(Expr) to parse and evaluate the expression and return a VDMJ Value.

• runInt(Expr) same as run, but return a long.

• runReal(Expr) same as run, but return a double.

• runBool(Expr) same as run, but return a boolean.

• runTrace(Name) run all the tests from the named combinatorial trace.

• runTrace(Name, first, last) run the specific test range from a trace.

• runTrace(Name, subset, method, seed) run a subset of tests, reduced by the given method.

• assertVDM([Message], Value, VDM assertion) test value against a VDM assertion

• assertVDM([Message], Expr, VDM assertion) test VDM expression against VDM assertion

Note that a Java Charset can be passed to readSpecification, if the files are not in the default
character encoding for your locale. See the Javadocs for full details.

A subclass of the VDMJ Value class is returned from the run method, which allows any value to be

Issue 2.1 Copyright © Fujitsu Services 2019 Page 33 of 53

VDMJ Tool Support: User Guide

returned. Such Value objects either have fields or getter methods to allow them to be examined,
though note that many Value subtypes contain other Values – for example, a SetValue contains a set
of Values, and a RecordValue contains a map of String field names to Values. Values can be
converted to Java primitives using (for example) the boolValue or realValue methods.

To execute JUnit tests with VDMJUnit, you need to have the VDMJ jar as well as the Junit 4 and
VDMJUnit jars on the classpath.

Although VDMJUnitTestSL and related classes are intended to be used with JUnit tests, the same
methods can be used in stand-alone Java applications. For example, the following code will load a
specification and execute an expression passed from the command line.

public class NonJUnitExample extends VDMJUnitTestSL
{

public static void main(String[] args) throws Exception
{

new NonJUnitExample().execute(args);
}

public void execute(String[] args) throws Exception
{

setRelease(Release.VDM_10);
readSpecification(args[0]);
init();
System.out.println(run(args[1]));

}
}

Issue 2.1 Copyright © Fujitsu Services 2019 Page 34 of 53

VDMJ Tool Support: User Guide

 4. Combinatorial Testing

Creating a comprehensive set of tests for VDM specifications can be a very time consuming process.
To try to make the generation of test cases simpler, VDMJ supports a VDM language extension (for all
dialects) known as Combinatorial Testing [7].

The idea behind combinatorial testing is that classes or modules can be tested by making a sequence
of calls on the interface of the class/module, but that the number of sensible sequences of operation
calls is too great to be written out by hand, requiring automatic generation support.

To provide this, a class or module may define a "traces" section that defines an arbitrary number of
trace specifications. Each of these is a pattern which expands into a number of operation call
sequences to be made against one or more instances of the classes under test (which is usually not
the class with the traces definition).

For example:

class Tested
instance variables

total:int := 0;

operations
public op1: () ==> int

op1() == (total := total + 1; return total;)

end Tested

class Tester
instance variables

obj:Tested := new Tested();

traces
test1: obj.op1();
test2: obj.op1(); obj.op1(); obj.op1();

end Tester

This defines a class called Tester which is designed to test the class Tested. Notice that the Tester
creates an instance of the object to be tested (obj) and that this object is referenced in the trace
clauses, where a sequence of operation calls are specified. VDMJ provides a runtrace command to
execute such traces.

If this specification is loaded into the VDMJ interpreter, the following output is produced:

> runtrace Tester`test1
Generated 1 tests
Test 1 = obj.op1()
Result = [1, PASSED]
Executed in 0.013 secs.
All tests passed

> runtrace Tester`test2
Generated 1 tests
Test 1 = obj.op1(); obj.op1(); obj.op1()
Result = [1, 2, 3, PASSED]
Executed in 0.01 secs.
All tests passed

Each test first prints out the sequences of calls they will make. Both traces only produce one test
sequence so they are both called "Test 1", but there can be several (see below). Then each test

Issue 2.1 Copyright © Fujitsu Services 2019 Page 35 of 53

VDMJ Tool Support: User Guide

sequence is executed, printing out a sequence of results from the operation steps, followed by a
verdict on how the test sequence completed.

Suppose, based on the tests above, that the Tested class was really designed to have the op1
operation called a number of times in sequence. We've tested one call, and three calls. But what about
testing two, or a hundred and two, and everything in between? Rather than specifying all these test
cases individually, combinatorial testing allows you to specify repetition patterns for operation calls.
So, for example, if test2 is changed to

test2: obj.op1(){1,5}

That indicates that the op1 call is to be made once, then twice, then three times and so on, up to five
times – ie. this single trace specification actually describes five separate tests:

> runtrace Tester`test2a
Generated 5 tests
Test 1 = obj.op1()
Result = [1, PASSED]
Test 2 = obj.op1(); obj.op1()
Result = [1, 2, PASSED]
Test 3 = obj.op1(); obj.op1(); obj.op1()
Result = [1, 2, 3, PASSED]
Test 4 = obj.op1(); obj.op1(); obj.op1(); obj.op1()
Result = [1, 2, 3, 4, PASSED]
Test 5 = obj.op1(); obj.op1(); obj.op1(); obj.op1(); obj.op1()
Result = [1, 2, 3, 4, 5, PASSED]
Executed in 0.02 secs.
All tests passed

Notice that now there are five tests listed, Test 1 to Test 5, and that they each has one more op1 call
than the previous test. Note also that the object being tested has been initialized between each test –
since the results start at 1 every time.

Far more complicated test specifications can be given, involving several different pattern types, each
of which expand into multiple tests. These are described in more detail in [7], but the following
illustrates a combination of patterns:

test3:
let x in set {1,...,10} be st x mod 2 = 0 in

let y = x + 1 in
(obj.op1(); obj.op2(x,y){1,2} | obj.op1())

When this is executed, the 'x' takes all the values 2, 4, 6, 8 and 10; for each value of x, y takes the
value of x+1; and then the bracketed set of operations are called, with an op1 followed by either one
and two calls to op2, or a single call to op1. So that's five values for x and y, with three alternative call
sequences for each, making 15 test sequences in all. If op2 adds its two arguments to the running
total, we get:

> runtrace Tester`test3
Generated 15 tests
Test 1 = obj.op1(); obj.op2(2, 3)
Result = [1, 6, PASSED]
Test 2 = obj.op1(); obj.op2(2, 3); obj.op2(2, 3)
Result = [1, 6, 11, PASSED]
Test 3 = obj.op1(); obj.op1()
Result = [1, 2, PASSED]
Test 4 = obj.op1(); obj.op2(4, 5)
Result = [1, 10, PASSED]
Test 5 = obj.op1(); obj.op2(4, 5); obj.op2(4, 5)

Issue 2.1 Copyright © Fujitsu Services 2019 Page 36 of 53

VDMJ Tool Support: User Guide

Result = [1, 10, 19, PASSED]
Test 6 = obj.op1(); obj.op1()
Result = [1, 2, PASSED]
Test 7 = obj.op1(); obj.op2(6, 7)
Result = [1, 14, PASSED]
Test 8 = obj.op1(); obj.op2(6, 7); obj.op2(6, 7)
Result = [1, 14, 27, PASSED]
Test 9 = obj.op1(); obj.op1()
Result = [1, 2, PASSED]
Test 10 = obj.op1(); obj.op2(8, 9)
Result = [1, 18, PASSED]
Test 11 = obj.op1(); obj.op2(8, 9); obj.op2(8, 9)
Result = [1, 18, 35, PASSED]
Test 12 = obj.op1(); obj.op1()
Result = [1, 2, PASSED]
Test 13 = obj.op1(); obj.op2(10, 11)
Result = [1, 22, PASSED]
Test 14 = obj.op1(); obj.op2(10, 11); obj.op2(10, 11)
Result = [1, 22, 43, PASSED]
Test 15 = obj.op1(); obj.op1()
Result = [1, 2, PASSED]
Executed in 0.055 secs.
All tests passed

If a sequence of operations causes a postcondition failure in a class, then it is certain that there is a
problem with the specification – it should not be possible to provoke a post condition failure with a set
of legal calls (ie. ones which pass the preconditions and type invariants). On the other hand, if a
sequence of operations violates a precondition, or a type or class invariant, then it is possible that the
specification has a problem, but it is also possible that the test itself is at fault (passing illegal values).

The combinatorial testing environment indicates the exit status of the test in the verdict returned in the
last item of the results (all PASSED above). So if pre/post/invariant conditions are violated during a
test, this may be set to FAILED or INDETERMINATE. If a test fails, then any subsequent test which
starts with the same sequence of calls as the entire failed sequence will also fail. These tests are
filtered out of the remaining test sequence automatically, and not executed.

For example, if we add a post condition to the op2 operation, saying that the running total must be less
than 10, we get the following behaviour for test3:

class Tested
...

public op2: int * int ==> int
op2(x, y) == (total := total + x + y; return total;)
post total < 10;

...

> runtrace Tester`test3
Generated 15 tests
Test 1 = obj.op1(); obj.op2(2, 3)
Result = [1, 6, PASSED]
Test 2 = obj.op1(); obj.op2(2, 3); obj.op2(2, 3)
Result = [1, 6, Error 4072: Postcondition failure: post_op2 in 'Tested'
(test.vpp) at line 14:20, FAILED]
Test 3 = obj.op1(); obj.op1()
Result = [1, 2, PASSED]
Test 4 = obj.op1(); obj.op2(4, 5)
Result = [1, Error 4072: Postcondition failure: post_op2 in 'Tested'
(test.vpp) at line 14:20, FAILED]
Test 5 = obj.op1(); obj.op2(4, 5); obj.op2(4, 5)
Test 5 FILTERED by test 4
Test 6 = obj.op1(); obj.op1()
Result = [1, 2, PASSED]
...

Issue 2.1 Copyright © Fujitsu Services 2019 Page 37 of 53

VDMJ Tool Support: User Guide

Notice that the error message is included in the result sequence, and that tests 2 and 4 fail.
Furthermore, the system knows that test 5 would fail as it starts with the same sequence that failed in
test 4, so this is filtered from the run (it is listed, but not executed).

For large test runs, it can be useful to redirect the output to a file rather than let it scroll past on the
screen. This can be done with the savetrace command.

> savetrace outputfile
runtrace output redirected to outputfile
> runtrace Tester`test3
Trace output sent to outputfile
Executed in 0.111 secs.
Some tests failed or indeterminate
> savetrace off
runtrace output is not redirected
>

For specifications with large numbers of trace definitions, it can be useful to run all of the traces, or all
of the traces defined in a particular module or class, in one go. This can be done with the runalltraces
command, which optionally takes a pattern argument to select module or class names.

> runalltraces

runtrace A`T
Generated 1 tests in 0.019 secs.
Test 1 = op()
Result = [(), PASSED]
Executed in 0.0070 secs.
All tests passed

runtrace B`T
Generated 1 tests in 0.0 secs.
Test 1 = op()
Result = [(), PASSED]
Executed in 0.0010 secs.
All tests passed
>

 4.1. Debugging Tests

When tests are producing failures, it is obviously desirable to be able to debug the tests as one would
any other expression evaluation. Breakpoints set in the specification will be honoured when a
combinatorial test sequence is expanded and executed (see 2.4), but by default the execution of a
combinatorial test will run all of the tests that are expanded from the trace statement. To permit more
precise debugging, it is possible to pass a single test number to the runtrace command, which will
cause just one test to be executed – and therefore debugged in isolation. For example:

traces
T1: let x in set {111, 222} in obj.op(x){1, 3}

> runtrace Tester`T1 -- run everything, as before
Generated 6 tests
Test 1 = obj.op(111)
Result = [111, PASSED]
Test 2 = obj.op(111); obj.op(111)
Result = [111, 222, PASSED]
Test 3 = obj.op(111); obj.op(111); obj.op(111)
Result = [111, 222, 333, PASSED]
Test 4 = obj.op(222)

Issue 2.1 Copyright © Fujitsu Services 2019 Page 38 of 53

VDMJ Tool Support: User Guide

Result = [222, PASSED]
Test 5 = obj.op(222); obj.op(222)
Result = [222, 444, PASSED]
Test 6 = obj.op(222); obj.op(222); obj.op(222)
Result = [222, 444, 666, PASSED]
Executed in 0.02 secs.
All tests passed

> runtrace Tester`T1 5 -- just run test 5
Generated 6 tests
Test 5 = obj.op(222); obj.op(222)
Result = [222, 444, PASSED]
Excluded 5 tests
Executed in 0.005 secs.
All tests passed

> break op
Created break [1] in 'Tested' (test.vpp) at line 10:18
10: op(a) == (total := total + a; return total;);
> runtrace Tester`T1 5
Generated 6 tests
Stopped break [1] in 'Tested' (test.vpp) at line 10:18
10: op(a) == (total := total + a; return total;);
[CTMainThread-396]> p total
total = 0
[CTMainThread-396]> c
Stopped break [1] in 'Tested' (test.vpp) at line 10:18
10: op(a) == (total := total + a; return total;);
[CTMainThread-396]> p total
total = 222
[CTMainThread-396]> p a
a = 222
[CTMainThread-396]> c
Test 5 = obj.op(222); obj.op(222)
Result = [222, 444, PASSED]
Excluded 5 tests
Executed in 41.841 secs.
All tests passed

> runtrace Tester`T1 8
Error: Trace Tester`T1 only has 6 tests

Unlike the regular runtime, when a set of combinatorial tests are being executed, any exceptions (for
example postcondition failures) are regarded as the "final result" of one test and evaluation moves
onto the next test in the set. Normally an exception would halt execution and trap into the debugger.
This means that although you can set breakpoints and step through a test as above, you cannot
simply let a complex test run and expect it to trap into the debugger when it hits an exception.

For example, consider the following simple test. This will produce a division by zero error when it is
executed, and that becomes the result of the test rather than halting the execution.

class A
operations

public op: int * int ==> ()
op(a, b) == let - = a/b in skip;

end A

class B
instance variables

obj:A := new A();

traces

Issue 2.1 Copyright © Fujitsu Services 2019 Page 39 of 53

VDMJ Tool Support: User Guide

T: let x in set {-1, 0, 1} in obj.op(1, x);

end B

If we simply run the B`T test, this will produce a result with a divide by zero error in the 2nd test:

> runtrace B`T
Generated 3 tests
Test 1 = obj.op(1, -1)
Result = [(), PASSED]
Test 2 = obj.op(1, 0)
Result = [Error 4134: Infinite or NaN trouble in 'A' (test.vpp) at line
4:26, FAILED]
Test 3 = obj.op(1, 1)
Result = [(), PASSED]
Executed in 0.014 secs.
Some tests failed or indeterminate
>

So we might try to set a breakpoint on the operation, re-run just the second test and step into the
evaluation.

> break op
Created break [1] in 'A' (test.vpp) at line 4:17
4: op(a, b) == let - = a/b in skip;
> runtrace B`T 2
Generated 3 tests
Stopped break [1] in 'A' (test.vpp) at line 4:17
4: op(a, b) == let - = a/b in skip;
[CTMainThread-400]> n
Test 2 = obj.op(1, 0)
Result = [Error 4134: Infinite or NaN trouble in 'A' (test.vpp) at line
4:26, FAILED]
Excluded 2 tests
Executed in 10.305 secs.
Some tests failed or indeterminate
>

Unfortunately, because the exception is treated as the final result of the test, this does not trap into the
debugger when the exception occurs. Instead, the exception string is simply recorded with the
previous step return values and given as the overall result of the test. So to run combinatorial tests in a
mode where exceptions do trap into the debugger, you can start them with a different command:
debugtrace. In this mode, we don't need the breakpoint to let us "step up to" the error, we can just let it
run until it fails, and traps into the debugger.

> remove 1
Cleared break [1] in 'A' (CT.vpp) at line 4:17
4: op(a, b) == let - = a/b in skip;
> debugtrace B`T 2
Generated 3 tests
Stopped in 'A' (test.vpp) at line 4:26
4: op(a, b) == let - = a/b in skip;
[CTMainThread-11]> p a
a = 1
[CTMainThread-11]> p b
b = 0
[CTMainThread-11]> stack
Stopped [CTMainThread-11] in 'A' (test.vpp) at line 4:26
In context of let statement in 'A' (test.vpp) at line 4:17

self = A{#1}
b = 0

Issue 2.1 Copyright © Fujitsu Services 2019 Page 40 of 53

VDMJ Tool Support: User Guide

a = 1
In object context of op(a, b) in 'B' (test.vpp) at line 13:35
In object context of B() in 'B' (test.vpp) at line 8:7
In root context of public static environment
[CTMainThread-11]> c
Test 2 = obj.op(1, 0)
Result = [Error 4134: Infinite or NaN trouble in 'A' (test.vpp) at line
4:26, FAILED]
Excluded 2 tests
Executed in 49.197 secs.
Some tests failed or indeterminate
>

 4.2. Filtering Tests

Part of the power of the combinatorial testing feature is that it can automatically generate and execute
very large sets of tests. On the other hand, very large sets of tests can take a very long time to
execute, so it is sometimes desirable to reduce the number of tests generated in the early stages of
testing. Problems can then be corrected and the reduced set of tests can be re-executed quickly to
test the fixes before the full set of tests are executed.

Consider the following trace definition:

traces
T: let x in set {1, ..., 20} in op(x){1,6};

That generates 120 tests...

> runtrace T
Generated 120 tests
Test 1 = op(1)
Result = [(), PASSED]
Test 2 = op(1); op(1)
Result = [(), (), PASSED]
Test 3 = op(1); op(1); op(1)
Result = [(), (), (), PASSED]
Test 4 = op(1); op(1); op(1); op(1)
Result = [(), (), (), (), PASSED]
...
Test 117 = op(20); op(20); op(20)
Result = [(), (), (), PASSED]
Test 118 = op(20); op(20); op(20); op(20)
Result = [(), (), (), (), PASSED]
Test 119 = op(20); op(20); op(20); op(20); op(20)
Result = [(), (), (), (), (), PASSED]
Test 120 = op(20); op(20); op(20); op(20); op(20); op(20)
Result = [(), (), (), (), (), (), PASSED]
Executed in 0.163 secs.
All tests passed
>

You can see how a similar trace could generate thousands or millions of tests. The simplest way to
reduce the number of tests executed is to specify a range of test numbers to run. For example:

> runtrace T 100 110
Generated 120 tests
Test 100 = op(17); op(17); op(17); op(17)
Result = [18, 18, 18, 18, PASSED]
Test 101 = op(17); op(17); op(17); op(17); op(17)
Result = [18, 18, 18, 18, 18, PASSED]
Test 102 = op(17); op(17); op(17); op(17); op(17); op(17)
Result = [18, 18, 18, 18, 18, 18, PASSED]

Issue 2.1 Copyright © Fujitsu Services 2019 Page 41 of 53

VDMJ Tool Support: User Guide

Test 103 = op(18)
Result = [19, PASSED]
Test 104 = op(18); op(18)
Result = [19, 19, PASSED]
Test 105 = op(18); op(18); op(18)
Result = [19, 19, 19, PASSED]
Test 106 = op(18); op(18); op(18); op(18)
Result = [19, 19, 19, 19, PASSED]
Test 107 = op(18); op(18); op(18); op(18); op(18)
Result = [19, 19, 19, 19, 19, PASSED]
Test 108 = op(18); op(18); op(18); op(18); op(18); op(18)
Result = [19, 19, 19, 19, 19, 19, PASSED]
Test 109 = op(19)
Result = [20, PASSED]
Test 110 = op(19); op(19)
Result = [20, 20, PASSED]
Excluded 109 tests
Executed in 0.012 secs.
All tests passed
>

Notice that the tests executed include the range specified, and that as a result 109 of the 120 tests
were excluded. This method of trace reduction is useful if a very large number of tests need to be
executed, and it is convenient to (say) execute one million per day, and check the results.

Another way to reduce the number of tests executed is the filter command. This is a global setting that
applies to all combinatorial tests. The simplest way to use the command is to specify a percentage of
the tests you want to run – say 10%.

> filter 10
Trace filter currently 10.0% RANDOM (seed 0)
> runtrace T
Generated 120 tests, reduced to 12
Test 5 = op(1); op(1); op(1); op(1); op(1)
Result = [(), (), (), (), (), PASSED]
Test 41 = op(7); op(7); op(7); op(7); op(7)
Result = [(), (), (), (), (), PASSED]
Test 43 = op(8)
Result = [(), PASSED]
Test 56 = op(10); op(10)
Result = [(), (), PASSED]
Test 62 = op(11); op(11)
Result = [(), (), PASSED]
Test 70 = op(12); op(12); op(12); op(12)
Result = [(), (), (), (), PASSED]
Test 71 = op(12); op(12); op(12); op(12); op(12)
Result = [(), (), (), (), (), PASSED]
Test 78 = op(13); op(13); op(13); op(13); op(13); op(13)
Result = [(), (), (), (), (), (), PASSED]
Test 82 = op(14); op(14); op(14); op(14)
Result = [(), (), (), (), PASSED]
Test 92 = op(16); op(16)
Result = [(), (), PASSED]
Test 103 = op(18)
Result = [(), PASSED]
Test 109 = op(19)
Result = [(), PASSED]
Excluded 108 tests
Executed in 0.039 secs.
All tests passed
>

Notice that now we only generate 12 tests (10% of 120). The 12 we get are selected at random from
the 120, so you can see the first one is number 5, then 41, and the last two are 103 and 109. If you run

Issue 2.1 Copyright © Fujitsu Services 2019 Page 42 of 53

VDMJ Tool Support: User Guide

the test again you will get precisely the same selection of tests. This is important, because you want
the selection to be repeatable while you are testing. The seed for the random number generator can
be changed using the seedtrace command:

> seedtrace 12345
Seed now set to 12345
> filter 10
Trace filter currently 10% RANDOM (seed 12345)
>

A random selection of tests is a simple way to reduce the set, but it runs the risk of eliminating entire
"classes" of tests that are trying to check particular behaviour. Therefore the filtering has several other
ways to reduce the number of tests, in addition to the default random method. These are based on the
"shapes" of the tests, which considers the sequence of the names of the operations and functions
called. By preserving at least one test of every shape in the full test set, the reduction can give a more
representative result (though it may not be able to achieve the reduction percentage requested).

> filter shapes_novars
Trace filter currently 10% SHAPES_NOVARS (seed 12345)
> runtrace T
Generated 120 tests
Test 1 = op(1)
Result = [(), PASSED]
Test 2 = op(1); op(1)
Result = [(), (), PASSED]
Test 3 = op(1); op(1); op(1)
Result = [(), (), (), PASSED]
Test 4 = op(1); op(1); op(1); op(1)
Result = [(), (), (), (), PASSED]
Test 5 = op(1); op(1); op(1); op(1); op(1)
Result = [(), (), (), (), (), PASSED]
Test 6 = op(1); op(1); op(1); op(1); op(1); op(1)
Result = [(), (), (), (), (), (), PASSED]
Test 71 = op(12); op(12); op(12); op(12); op(12)
Result = [(), (), (), (), (), PASSED]
Test 78 = op(13); op(13); op(13); op(13); op(13); op(13)
Result = [(), (), (), (), (), (), PASSED]
Test 82 = op(14); op(14); op(14); op(14)
Result = [(), (), (), (), PASSED]
Test 92 = op(16); op(16)
Result = [(), (), PASSED]
Test 103 = op(18)
Result = [(), PASSED]
Test 109 = op(19)
Result = [(), PASSED]
Excluded 108 tests
Executed in 0.045 secs.
All tests passed

> filter
Usage: filter %age | RANDOM | SHAPES_NOVARS | SHAPES_VARNAMES |
SHAPES_VARVALUES
Trace filter currently 10% SHAPES_NOVARS (seed 0)
>

Notice that in the random 10% reduction (giving 12 tests) no tests were selected that had three op
calls. There are tests with three op calls, but this "shape" is missed entirely. By changing the filter to
use shapes, a different set of tests is selected and this time those with all shapes are represented.
The first new instance of every shape will be present in the selected tests, plus a random selection of
tests to achieve the filter percentage reduction requested.

The other reduction options additionally consider "let" variable names and their values when identifying
shapes. See [11].

Issue 2.1 Copyright © Fujitsu Services 2019 Page 43 of 53

VDMJ Tool Support: User Guide

 5. Annotations

 5.1. Overview

Annotations were introduced in VDMJ version 4.3.0 as a means to allow a specifier to affect the tool’s
behaviour without affecting the meaning of the specification. The idea is similar to the notion of
annotations in Java, which can be used to affect the Java compiler, but do not alter the runtime
behaviour of a program.

VDMJ provides some standard annotations, but the intent is that specifiers can create new
annotations and add them to the VDMJ system easily.

Full details of VDMJ annotation support is in the Annotation Guide [14].

 5.2. Syntax

Annotations are added to a specification as comments, either block comments or one-line comments.
This is so that other VDM tools will not be affected by the addition of annotations, and emphasises the
idea that annotations do not alter the meaning of a specification.

An annotation must be present at the start of a comment, and has the following default syntax:

‘@’, identifier, [‘(‘, expression list, ‘)’]

So for example, an operation in a VDM++ class could be annotated as follows:

class A
operations
 -- @Override
 public add: nat * nat ==> nat
 add(a, b) == ...

Or the value of variables can be traced during execution as follows:

functions
 add: nat * nat +> nat
 add(a, b) ==
 /* @Trace(a, b) */ a + b;

Issue 2.1 Copyright © Fujitsu Services 2019 Page 44 of 53

VDMJ Tool Support: User Guide

 6. Internationalization (I18N)

Often, a VDM specification will simply be written and executed in the default locale, and the character
set and input/output methods of the user's editor and VDMJ's parser and interactive console will work
together naturally.

However, sometimes a specification must be included that has been written in a different locale. VDM
keywords always use the Latin character set, but user defined names and strings may be localized
(eg. in Greek, Japanese or Cyrillic, or there may be currency symbols or accented characters in the
specification). This means that the character set and encoding used in the specification file must be
understood by the VDMJ parser, and the console (in the interpreter) must be able to display the
specification's characters.

For example, a specification may be written in Japanese and saved to a file using "Shift JIS" encoding.
If this is parsed with VDMJ's default options with a UK locale, the following error is likely:

$ java -jar vdmj-4.1.0.jar -vdmpp -w bankaccount.vpp
Error 1009: Unexpected character '?' (code 0x2039) in 'bankaccount.vpp'
(bankaccount.vpp) at line 1:8
Parsed 0 classes in 0.031 secs. Found 1 syntax error

Here the parser has failed fairly early on the first line, probably shortly after the keyword "class" where
the Japanese name of a class appears. Because we know that the file is Shift JIS encoded, we can
tell the parser to read it using the option "-c SJIS":

$ java -jar vdmj-4.1.0.jar -vdmpp -w -c SJIS bankaccount.vpp
Parsed 1 class in 0.39 secs. No syntax errors
Type checked in 0.032 secs. No type errors and suppressed 1 warning

Now the Japanese characters have been read correctly, and turned into Java's internal representation
for all characters (Unicode). But there is still a problem if this specification is interpreted, because the
names cannot be displayed in the console (which uses the default locale still):

$ java -jar vdmj-4.1.0.jar -vdmpp -w -i -c SJIS bankaccount.vpp
Parsed 1 class in 0.219 secs. No syntax errors
Type checked in 0.031 secs. No type errors and suppressed 1 warning
Initialized 1 class in 0.0 secs.
Interpreter started
> env
????`inv_??(????`??) = (????`?? +> bool)
>

Here the environment cannot be displayed because the name of the function involved is not
displayable in the default locale. There is a separate option to set the console's character set, -t. For
example, if the console is UTF8 (Unicode), this would be set as follows:

$ java -jar vdmj-4.1.0.jar -vdmpp -i -c SJIS -t UTF8 bankaccount.vpp
Parsed 1 class in 0.235 secs. No syntax errors
Warning 5001: Instance variable is not initialized: 銀行口座` 所有者 in '銀行口
座' (bankaccount.vpp) at line 10:5
Type checked in 0.047 secs. No type errors and 1 warning
Initialized 1 class in 0.0 secs.
Interpreter started
> env
銀行口座`inv_数字(銀行口座`数字) = (銀行口座` 数字 +> bool)
>

Appendix B lists the character set names that may be used with -c or -t.

Issue 2.1 Copyright © Fujitsu Services 2019 Page 45 of 53

VDMJ Tool Support: User Guide

 7. The vdmj.properties File

The command line options described in section 2.1 could typically be different from run to run. But
some settings are so constant that they are more conveniently held in an optional properties file. By
creating this file and changing the settings, all subsequent executions of VDMJ will be affected.

The properties file is called "vdmj.properties" and must be in a directory on the Java classpath (eg. the
same directory as the VDMJ jar). If the file is not present, or an entry is missing from the file, then the
default value is used (shown for each name below).

The default vdmj.properties file is as follows:

#
Settings for VDMJ. These override defaults in the code.
#

The tab stop for source files.
(default 4)
parser.tabstop = 4

The tabstop is used by the parser and error reporting system to accurately report location information
for syntax and runtime errors. If this value does not match the tabstop set in the editor you use, then
the column number for errors will be incorrect on lines with tabs.

The maximum number of expansions for "+" and "*" trace patterns.
(default 5)
traces.max.repeats = 5

Combinatorial testing has "+" and "*" repeat patterns which produce an arbitrary number of iterations
of the statement(s) being repeated. In practice, the tool has to decide how many iterations to make.
This property defines the number.

The default duration for RT statements
(default 2)
rt.duration.default = 2

All statements in a VDM-RT specification have a duration, so time is guaranteed to move forward by
this amount after ever statement is executed (unless a surrounding duration or cycles statement
prevents it). This property defines the default duration. This may eventually be extended to allow
different durations for different statement types, such as "rt.duration.assignment = 5".

The default timeslice (statements executed) for the FCFS policy
(default 10)
scheduler.fcfs.timeslice = 10

With VDM-RT, the first-come first-served (FCFS) scheduling policy allows every thread to run for a
fixed timeslice before scheduling the next one. A timeslice is defined in terms of statements executed,
so this property means that the default FCFS timeslice is run 10 statements or expressions.

The vCPU/vBUS timeslice
(default 10000)
scheduler.virtual.timeslice = 10000

Virtual CPUs need to do as much work as possible in a timeslice, as they are intended to feed the rest
of the system with events. Therefore they have a separate timeslice, which is larger than the default.

The timeslice variation (+/- jitter ticks)
(default 0)
scheduler.jitter = 0

To avoid perfectly deterministic execution (and so reveal synchronization problems that worked "by

Issue 2.1 Copyright © Fujitsu Services 2019 Page 46 of 53

VDMJ Tool Support: User Guide

luck") it is possible to add a random amount of jitter to each timeslice. By default this is zero, which
produces deterministic execution.

Enable transactional variable updates
(default false)
rt.duration.transactions = false

VDM-RT has the concept of transaction variable updates, where changes made to a variable in a
thread are only visible to that thread until a timestep is completed. This is problematic for many
specifications, and is disabled by default. This property enables it.

Enable InstVarChange RT log entries.
(default false)
rt.log.instvarchanges = false

VDM-RT can optionally log instance variable changes to the log file. By default this is not done, as it
adds to the size of the log files, but it is useful to enable this when debugging.

Enable extra diagnostics for guards etc.
(default false)
diags.guards = false

Debugging a multi-threaded specification can be extremely difficult. This property turns on extra
diagnostics (sent to stderr for VDM++, or the RT log file for VDM-RT) which indicate when guards are
tested, block or pass.

Enable extra RT log diagnostics for timesteps.
(default false)
diags.timestep = false

Debugging VDM-RT specifications can similarly be difficult from a timing point of view. This property
turns on extra diagnostics, that are sent to the RT log, indicating when each thread is waiting to move
time and by how much.

Issue 2.1 Copyright © Fujitsu Services 2019 Page 47 of 53

VDMJ Tool Support: User Guide

 8. Appendix A: The shmem Example

The following is the source of the shmem.vdm example used in section 2.4. It models the behaviour of
the 32-bit shared memory quadrants of HP-UX, using a record type M to represent a block of memory
which is either <FREE> or <USED>, and a sequence of M records to represent a Quadrant. The
specification output indicates which allocation policy, first-fit or best-fit (or neither), produces the most
memory fragmentation.

> p main(5,100)
= [<FIRST>, <SAME>, <FIRST>, <BEST>, <FIRST>]
Executed in 19.73 secs.

module M
exports all
definitions
types

Quadrant = seq of M;
--inv Q ==
-- forall a in set elems Q &
-- (not exists b in set elems Q \ {a} &
-- (b.start >= a.start and b.start <= a.stop) or
-- (b.stop >= a.start and b.stop <= a.stop));

M :: type : <USED> | <FREE>
 start: nat
 stop : nat
inv mk_M(-, a, b) == (b >= a)

state Memory of
 rseed: nat
 Q3: Quadrant
 Q4: Quadrant
inv mk_Memory(-, q3, q4) == len q3 > 0 and len q4 > 0
init q ==
 q = mk_Memory(87654321,
 [mk_M(<FREE>, 0, MAXMEM-1)],
 [mk_M(<FREE>, 0, MAXMEM-1)])

end

values

MAXMEM = 10000;
CHUNK = 100;

functions

sizeof: M -> nat1
sizeof(m) ==
 m.stop - m.start + 1;

least: nat1 * nat1 -> nat1
least(a, b) ==
 if a < b
 then a
 else b;

spacefor: nat1 * Quadrant -> nat1
spacefor(size, Q) ==

Issue 2.1 Copyright © Fujitsu Services 2019 Page 48 of 53

VDMJ Tool Support: User Guide

 cases Q:
 [] -> MAXMEM + 1,
 [h] ^ tail -> if h.type = <FREE> and sizeof(h) >= size
 then sizeof(h)
 else spacefor(size, tail)
 end
measure QuadrantLen;

QuadrantLen: nat1 * Quadrant -> nat
QuadrantLen(-,list) ==
 len list;

bestfit: nat1 * Quadrant -> nat1
bestfit(size, Q) ==
 cases Q:
 -- as we're looking for the smallest
 [] -> MAXMEM + 1,
 [h] ^ tail -> if h.type = <FREE> and sizeof(h) >= size
 then least(sizeof(h), bestfit(size, tail))
 else bestfit(size, tail)
 end
measure QuadrantLen;

add: nat1 * nat1 * Quadrant -> Quadrant
add(size, hole, Q) ==
 cases Q:
 [h] ^ tail -> if h.type = <FREE> and sizeof(h) = hole
 then if hole = size
 then [mk_M(<USED>, h.start, h.stop)] ^ tail
 else [mk_M(<USED>, h.start, h.start + size - 1),
 mk_M(<FREE>, h.start + size, h.stop)] ^ tail
 else [h] ^ add(size, hole, tail),
 others -> Q
 end
pre hole >= size
measure QuadrantLen2;

QuadrantLen2: nat1 * nat1 * Quadrant -> nat
QuadrantLen2(-,-,list) ==
 len list;

combine: Quadrant -> Quadrant
combine(Q) ==
 cases Q:
 [h1, h2] ^ tail ->
 if h1.type = <FREE> and h2.type = <FREE>
 then combine([mk_M(<FREE>, h1.start, h2.stop)] ^ tail)
 else [h1] ^ combine(tl Q),
 others -> Q
 end
measure QuadrantLen0;

QuadrantLen0: Quadrant -> nat
QuadrantLen0(list) ==
 len list;

delete: M * Quadrant -> Quadrant
delete(item, Q) ==
 if hd Q = item
 then combine([mk_M(<FREE>, item.start, item.stop)] ^ tl Q)
 else [hd Q] ^ delete(item, tl Q)
 measure MQuadrantLen;

MQuadrantLen: M * Quadrant -> nat
MQuadrantLen(-,list) ==

Issue 2.1 Copyright © Fujitsu Services 2019 Page 49 of 53

VDMJ Tool Support: User Guide

 len list;

fragments: Quadrant -> nat
fragments(Q) ==
 card {x | x in set elems Q & x.type = <FREE>} - 1;

operations

seed: nat1 ==> ()
seed(n) ==
 rseed := n;

inc: () ==> ()
inc() ==
 for i = 1 to rseed mod 7 + 3
 do
 rseed := (rseed * 69069 + 5) mod 4294967296;

rand: nat1 ==> nat1
rand(n) ==
 (inc();
 return rseed mod n + 1;
);

FirstFit: nat1 ==> bool
FirstFit(size) ==
 (let q4 = spacefor(size, Q4)
 in
 if q4 <= MAXMEM
 then Q4 := add(size, q4, Q4)
 else let q3 = spacefor(size, Q3)
 in
 if q3 <= MAXMEM
 then Q3 := add(size, q3, Q3)
 else return false;
 return true;
);

BestFit: nat1 ==> bool
BestFit(size) ==
 (let q4 = bestfit(size, Q4)
 in
 if q4 <= MAXMEM
 then Q4 := add(size, q4, Q4)
 else let q3 = bestfit(size, Q3)
 in
 if q3 <= MAXMEM
 then Q3 := add(size, q3, Q3)
 else return false;
 return true;
);

Reset: () ==> ()
Reset() ==
 (Q3 := [mk_M(<FREE>, 0, MAXMEM-1)];
 Q4 := [mk_M(<FREE>, 0, MAXMEM-1)];
);

DeleteOne: () ==> ()
DeleteOne() ==
 (if rand(2) = 1
 then let i = rand(len Q3)
 in
 if Q3(i).type = <USED>
 then Q3 := delete(Q3(i), Q3)

Issue 2.1 Copyright © Fujitsu Services 2019 Page 50 of 53

VDMJ Tool Support: User Guide

 else DeleteOne()
 else let i = rand(len Q4)
 in
 if Q4(i).type = <USED>
 then Q4 := delete(Q4(i), Q4)
 else DeleteOne()
)
pre (exists m in set elems Q3 & m.type = <USED>) or
 (exists m in set elems Q4 & m.type = <USED>);

TryFirst: nat ==> nat
TryFirst(loops) ==
 (dcl count:int := 0;

 while count < loops and FirstFit(rand(CHUNK))
 do
 (if count > 50
 then DeleteOne();
 count := count + 1;
);

 -- return count;
 return fragments(Q3) + fragments(Q4);
);

TryBest: nat ==> nat
TryBest(loops) ==
 (dcl count:int := 0;

 while count < loops and BestFit(rand(CHUNK))
 do
 (if count > 50
 then DeleteOne();
 count := count + 1;
);

 -- return count;
 return fragments(Q3) + fragments(Q4);
);

main: nat1 * nat1 ==> seq of (<BEST> | <FIRST> | <SAME>)
main(tries, loops) ==
 (dcl result: seq of (<BEST> | <FIRST> | <SAME>) := [];

 for i = 1 to tries
 do
 (dcl best:int, first:int;

 Reset();
 seed(i);
 best := TryBest(loops);

 Reset();
 seed(i);
 first := TryFirst(loops);

 if best = first
 then result := result ^ [<SAME>]
 elseif best > first
 then result := result ^ [<BEST>]
 else result := result ^ [<FIRST>];
);

 return result;
)

Issue 2.1 Copyright © Fujitsu Services 2019 Page 51 of 53

VDMJ Tool Support: User Guide

end M

Issue 2.1 Copyright © Fujitsu Services 2019 Page 52 of 53

VDMJ Tool Support: User Guide

 9. Appendix B: Supported Character Sets

The following character set names are supported by the -c and -t command line options by default.
Extra charsets can be added by including the lib/charsets.jar file in the JRE. See
http://java.sun.com/javase/6/docs/technotes/guides/intl/encoding.doc.html for more information.

The values in [braces] are aliases. The list is printed whenever an unknown character set name is
passed as an argument:

IBM00858 [cp858, ccsid00858, 858, cp00858]
IBM437 [ibm-437, windows-437, cspc8codepage437, 437, ibm437, cp437]
IBM775 [ibm-775, cp775, ibm775, 775]
IBM850 [ibm-850, cp850, 850, cspc850multilingual, ibm850]
IBM852 [ibm852, csPCp852, 852, ibm-852, cp852]
IBM855 [cspcp855, 855, ibm855, ibm-855, cp855]
IBM857 [csIBM857, 857, ibm-857, cp857, ibm857]
IBM862 [ibm-862, ibm862, csIBM862, cp862, cspc862latinhebrew, 862]
IBM866 [866, ibm-866, ibm866, csIBM866, cp866]
ISO-8859-1 [csISOLatin1, IBM-819, iso-ir-100, 8859_1, ISO_8859-1, l1,
ISO8859-1, ISO_8859_1, cp819, ISO8859_1, latin1, ISO_8859-1:1987, 819,
IBM819]
ISO-8859-13 [8859_13, iso8859_13, iso_8859-13, ISO8859-13]
ISO-8859-15 [IBM923, 8859_15, ISO_8859-15, ISO-8859-15, L9, ISO8859-15,
ISO8859_15_FDIS, 923, LATIN0, csISOlatin9, LATIN9, csISOlatin0, IBM-923,
ISO8859_15, cp923]
ISO-8859-2 [iso-ir-101, csISOLatin2, ibm-912, 8859_2, l2, ISO_8859-2,
ibm912, 912, ISO8859-2, latin2, iso8859_2, ISO_8859-2:1987, cp912]
ISO-8859-4 [iso-ir-110, iso8859-4, ibm914, ibm-914, l4, csISOLatin4, 914,
8859_4, latin4, ISO_8859-4, ISO_8859-4:1988, iso8859_4, cp914]
ISO-8859-5 [cp915, ISO8859-5, ibm915, ISO_8859-5:1988, ibm-915, 8859_5,
915, cyrillic, iso8859_5, ISO_8859-5, iso-ir-144, csISOLatinCyrillic]
ISO-8859-7 [iso8859-7, sun_eu_greek, csISOLatinGreek, 813, ISO_8859-7,
ISO_8859-7:1987, ibm-813, greek, greek8, iso8859_7, ECMA-118, iso-ir-126,
8859_7, cp813, ibm813, ELOT_928]
ISO-8859-9 [ISO_8859-9, 920, iso8859_9, csISOLatin5, l5, 8859_9, latin5,
ibm920, iso-ir-148, ISO_8859-9:1989, ISO8859-9, cp920, ibm-920]
KOI8-R [cskoi8r, koi8_r, koi8]
KOI8-U [koi8_u]
US-ASCII [cp367, ascii7, ISO646-US, 646, csASCII, us, iso_646.irv:1983,
ISO_646.irv:1991, IBM367, ASCII, default, ANSI_X3.4-1986, ANSI_X3.4-1968,
iso-ir-6]
UTF-16 [utf16, UTF_16, UnicodeBig, unicode]
UTF-16BE [X-UTF-16BE, UTF_16BE, ISO-10646-UCS-2, UnicodeBigUnmarked]
UTF-16LE [UnicodeLittleUnmarked, UTF_16LE, X-UTF-16LE]
UTF-32 [UTF_32, UTF32]
UTF-32BE [X-UTF-32BE, UTF_32BE]
UTF-32LE [X-UTF-32LE, UTF_32LE]
UTF-8 [UTF8, unicode-1-1-utf-8]
windows-1250 [cp1250, cp5346]
windows-1251 [ansi-1251, cp5347, cp1251]
windows-1252 [cp1252, cp5348]
windows-1253 [cp1253, cp5349]
windows-1254 [cp1254, cp5350]
windows-1257 [cp1257, cp5353]
x-IBM737 [cp737, ibm-737, 737, ibm737]
x-IBM874 [cp874, ibm874, 874, ibm-874]
x-UTF-16LE-BOM [UnicodeLittle]
X-UTF-32BE-BOM [UTF_32BE_BOM, UTF-32BE-BOM]
X-UTF-32LE-BOM [UTF_32LE_BOM, UTF-32LE-BOM]

Issue 2.1 Copyright © Fujitsu Services 2019 Page 53 of 53

http://java.sun.com/javase/6/docs/technotes/guides/intl/encoding.doc.html

	0. Document Control
	0.1. Table of Contents
	0.2. References
	0.3. Document History
	0.4. Copyright

	1. Introduction
	1.1. VDM

	2. Using VDMJ
	2.1. Starting VDMJ
	2.2. Command Line Recall
	2.3. Source File Formats
	2.4. Parsing, Type Checking, and Proof Obligations
	2.5. The Interpreter
	2.5.1. Suppressing Runtime Checks

	2.6. Debugging
	2.6.1. Single-threaded Debugging
	2.6.2. VDM++ Multi-threaded Debugging
	2.6.3. VDM-RT Debugging and the VDMJC Client

	2.7. Sessions
	2.8. Standard Libraries

	3. VDMJUnit Testing
	4. Combinatorial Testing
	4.1. Debugging Tests
	4.2. Filtering Tests

	5. Annotations
	5.1. Overview
	5.2. Syntax

	6. Internationalization (I18N)
	7. The vdmj.properties File
	8. Appendix A: The shmem Example
	9. Appendix B: Supported Character Sets

