Version 1.1.0

User Guide

(c) Copyright Celestial 2013

1 of 41

Table of Contents

[N oo [t o] o FU PP 4
Lo o YU [V=Y =] [o] o PP 4
GettiNg StarTeA. ... i e 4

IMmporting Parley iNtO UNILYo 5
Opening the Example project in UNity......coooiiiiiiii e 6
Opening The Example Project In Parl@y ..o 7

Exploring The Example Project In Parley........coooiii e, 7
=T =T o o PP 9
DT (o T T PP TPTP PP 10

Dialog, Conversation Edit. ..o 10
Dialog ChoiCe Edit... i 11
[LU TS 12
QUESTE Bl e 12
QuESt Objective Edit.. ... 13

HOW it @ll TieS tOGEENET .. e e 14
OpPEN the 1gQ SCENE. ... e 14
ALtaChed QUESE GUIL . e e e e aaaeas 15
Attached Conversation & GUI......c.oi i e 16
Adding all the quests to the SCeNE........cciiiii 17

Yol] o) X PP 18
[Yo [ot f o o PP 18
SaAMPIE SOUICE FIlES. . e e 18
Standard SOUICE FIleS. ... 18
FUIl Version SOUICE fil@S. ... e 19

LTS T =1 PP 21
D1 1=] Lo T PP 21

DiIalogStarte. ..o e 21
DIalOgENAEd. .. .o 21
QUESEGUIADSIIACE. . e 21
(O LU LTy 3 o= = 21
QUESTSENAEA. ... e e 22

[0 XA o Yo I PP PPRPRRRN 23

How to interact with Parley from your SCriptS.........cooiiiiiiiiiiiiie e, 23
Creating a GameEvent from SCript......ccoiiiiiii e 23
Sending a Message to the player object........coociviiiiii 24
Creating listeners for GameEVeNntS.o 25
How to set up Environmental Information............ccoiiii 27

How to use the Save/Load SyStem......cciiiiiiiiii 28
What Parley Needs Saved.... ..o 28
How we have implements Save in the example.......cocooviii e, 29
How to modify Parley to save into your load/save solution............................ 31

How to create a Dialog that spans multiple NPC'S.........ccooiiiiiiiiniicee, 32
Designing the Spanned Dialogs. ... 32
Implementing the Spanned Dialogs......ccocoviiiiiiii e 33

How to build your own Dialog GUIi......cuuieeiiiiiiiiiciie e 33

How the Dialog and the Dialog Gui classes interact............cocooviviiiiiiiiiinennn, 33

DialogGUIADSTIACE. . et 34
IMLEENOMS. ...t et e e et e e e et e e e e e tt e e e e e eaaeeeeeettaaeeeetraeeeeannnns 35
How to purchase and Register Parley..........oooiiiii e 36
PUIChasSing Parl@y ... e 37
Entering your producCt COA@.o e 37

RV =T =3 Lo 1 PP 39
Free Version VS FUll VEISION........iii i 39
RV <1 €= Lo o T A O PSPPSRI 39
VEISION L. L. 0. 40
Parley APPlICAtION. 40
PN Y SO DS ittt 40

3o0f4l

Introduction

This guide is a brief overview of how the different parts of Parley fit together. It
does not cover things like design consideration or scripting examples. That will be
covered in online documents and videos.

This is meant to give you a 20min introduction to how to navigate and work with
Parley.

NOTE: Parley requires Java.

Know your version

The full version includes all features.
The lite version does NOT include quest and save/load features.
The free version is a try out only and as such has very limited features.

Getting Started

Project Location:

C:\Users\Neo'\Documents\ParleyTest Browse...

Import the following packages:

[C] Character Controller, unityPackage

[T Glass Refraction {Pro Only).unityPackage
[Image Effects (Pro Only).unityPackage
[Light Cookies unityPackage

[] Particles.unityPackage
[C] Physic Materials.unityPackage i
= S

We will start by building a new unity Project. You can of course create this project
in any folder of your choosing. We don’t recommend you go right to importing into
your own excising project but rather that you first get familiar with Parley in a

sandbox.

4 of 41

Importing Parley into Unity

Once Unity is started you will need to import the Unity Parley package that you
downloaded.

_ » Neo » MyDocuments b ParleyUnityProject Search Parl

Organize ¥ New folder]
¢ F Name Date modified
T Favorites
m S B Desktop | €0 ParleyUnityScriptsAndExample.unitypackage 3/6/2013 5:34 PM
L i Downloads
Scene iow uy .
5 Recent Places
Wireframe Open
Delete
4 Libraries
Import [¥ Documents
Impott & Music L
Export =] Pictures 1
Find Re 5] Subversion
Select [E Videos No preview available.
Refresh
e) Homegroup
L 8 Computer
Sync M &, Local Disk (C:)

€ Network

1% BLUEPRINT-PC

BRYAN-PC

8 CHANELPC < I] v

File name: ParleyUnityScriptsAndExample.unitypackage - | unitypackage (*.unitypackage)

Scene [WWETEr (FTO UTIY] [.
| Wireframe || Ree | |) || gizmesT T WiretraTTE :|| Ree Gizmos ~ | (@Al

You will be asked what you want to import into your newly created project.

[importing package

Items to Import [[Preview
M€ 1ga.unity Hien |
[New Terrain asset e]
W& Parlay Assets e
(&5 Parlay Assets/Gui { HEwW |
|l Parlay Assets/Gui/background.png wa
|l Parlay Assets/Gui/backaroundover png w0z
| Parlay Assets/Gui/base.png o=
E Parlay Assets/Gui/ParleyBasic.guiskin { HEwW |
& Parlay Assets/Scripts e |
Parlay Assets/Scripts/Conversation.cs e |
Parlay Assets/Scripts/Dialag.cs o]
Parlay Assets/Scripts/DialogGui.cs { HEwW |
[NEW)

[NEW)

[nEw)

{ HEW |

[NEW)

wo

[new)

{ HEW |

[NEW)

[NEW)

Parlay Assets/Scripts/Objective.cs
Parlay Assets/Scripts/Option.cs
Parlay Assets/Scripts/Parley cs
Parlay Assets/Scripts/Quest.cs
Parlay Assets/Scripts/QuestGui cs
Sgiggle
& Saigale/Birdie
Sqigale/Birdie/birdie_merged.obj
Sqiggle/Birdie/Materials

|l Saiggle/Birdie/Materials/birdie2 jpg

@ Saigale/Birdie/Materials/headusOBlexporthat.mat o]
Sqiggle/BridgeBump.cs {(NEW |
Sgiggle/CharacterMator js e |
Sqiggle/Enviroment (HEW |

& Saiggle/Enviroment/Materials e

0 Sqgiggle/Enviroment/Materials/bridaematerial.mat { HEwW |

qiggle/Envirar ials/defaultMat.mat o

@ Saiggle/Enviror ials/headusOB: tMat.mat g

|l Saigale/Enviroment/Materials/nest.jpg o]

) Saiggle/Enviroment/Materials/nest_material.mat Fien |

|l Saiggle/Enviroment/Materials/rock2.png { HEW |

U Saiggle/Envirement/Materials/rock_material mat e

@ Saigale/Enviroment/Materials/scary_material.mat o] L_/

|l Saiggls/Enviroment/Materials/scary_tree.jpg (e s

EEMEEREEEENEEAEREENERNEEEEE QR R ER D

50f41

Import all the parts for now, Latter you will only need to import the Parley specific
folders. Sqiggle is a really simple example game. More of an example then a
game.

Opening the Example project in Unity

@ Project

4 Aszets » Sgiggle » Scenes

v 1gg.unity

In the root you will see a folder called Sqgiggle. Open it and then open the Scenes
folder. There you will find two example scenes, open the Igg scene.

@ project

Assets » Parley » 01 Iggs Big Ady

= -'n_: :|| 15 |E :|.'.' A '.| '|":._-'-"

== 01 Introduction

The Parley project has two levels of folders. These are a way to compartmentalize
your dialog and quests. The first level is called the Act level and the 2" |level is
called the scene. We recommend that you keep every scene's events quests and
dialogs completely separate from the next.

6 of 41

Opening The Example Project In Parley
ment Terrain Window Help

@ Local Start Editor Shift+Alt+P
Lser Guide
Forums

: Pick Working Folder

Parley can be started from within unity. Simply click on the Parley tab. You may
need to tell Parley where to look for your parley data first, point it towards your
Parley folder in the root of your project. After that you can start the editor.

Exploring The Example Project In Parley

(£, Parley CAUsers\Neo\Documents\ParleyTest\Assets\Sqiggle\p:

File Act Scene Dialog Quest Adout

mping.

Parley legends
prevents dialog
completes objective
objective ofa quest
starts a quest or objective
leads to new dialog
leads to dialog option

returns to previous dialog
dialog

dialog option

quest

quest objective

optional quest objective

J

What you see above is the Parley workspace. Its has been built with speed and

convenience in mind. It will take a little while to get the general idea of how to

work with it. Here are a few tips.

7 of 41

Always keep in mind that you can only build dialog and quests in a Scene and a
Scene can only be built in an Act. Scenes and Acts are in fact nothing more then
sub folders in the workspace

1. The anchor dialog. This is the starting dialog for any conversation with this
character. To create new dialogs just double click on an empty space.

2. Choice this is one of the choices for the dialog. You create choices by right
clicking on the dialog and dragging to an empty space. You can choose the
destination of this choices by left clicking on it and dragging to the dialog
you want it to lead go to.

File Ac Scene Dialog Quest About

Parley legends

prevents dialog
completes objective
objective ofa quest
starts a quest or objective
leads to new dialog

leads to dialog option
returns to previous dialog

dialog

dialog option
quest

quest objective

optional quest objective

Each scene has both quests and dialogs.

1. The current list of quests in this scene. You can select multiples quests at
once and see how they interrelate (click and drag or ctrl click to select
multiple dialogs and quests). Each quests location on the screen is recorder
separately per Dialog.

2. A selected quest in the scene. Its Objectives are hanging from it on the
green lines. The darker blue objective is in fact optional.

Left clicking will generally move object on the screen. Try holding Control down
and left clicking before you drag to move the object and all its children. (Choices
for Dialog's and Objectives for Quests) at once. If you hold Control Shift down and
drag it will drag the while Dialog and all its children at once.

8 of 41

If you left click from a dialog to another you are establishing a return path. An
option to return back to the previous dialog will be presented in game.

Legend

Item Name Description
Red Prevents A red arrow pointing to a dialog or an objective indicates that that
Arrows |Dialog objective or dialog will be nullified by the one pointing to it. This is
because the item pointed from has Quest Event that is listed on the other
item as requirement with an ! In front. The ! Means that the requirement is
that the even has not happened.
This can be useful to exclude certain dialogs under conditions. Choices will
not be shown if there dialog is not yet available.
Yellow |Completes |This indicates that the Dialog in question in fact fires a trigger that will
Arrows |Objective complete the Objective. Of course quest objectives can be completed by
the game firing events into Parley as well as Dialog choices.
Green |Quest The green arrows link a Quest with its Objectives. You can create an
Arrows |Objective Objective by right clicking on the Quest and dragging into an open space.
Cyan Starts A Quest and Objectives can have Requirements. The blue line shows how a
Arrows |Quest or Dialog or Objective or Quest's completion can be the requirement for
Objective another to start.
Purple |Dialog The purple arrow connects a Dialog to the Choices that will be give to the
Arrows |Choice player. Right clicking on a dialog and dragging into an open space will
create a new Choice.
Brown |Return The brow arrow connects Dialogs back to there parent Dialog (although
Arrow there is no specific limitation that they should have to go to a previous
dialog its recommend). To create a return path right-click on a Dialog and
drag your mouse to the previous Dialog you want to return to.
This is a short cut to creating a return path in a conversation for your
player.
Light Dialog This is a single dialog in the dialog tree. Double clicking on an open space
Blue will allow you to create a new Dialog. Double clicking on the Dialog will
Box allow you to edit it.
There will always be one Dialog with a Circle on the top. That is the anchor
dialog for that tree.
Purple |Choice The purple box is a choice for a dialog. The choice will only be shown to
Box the player if the destination dialog's requirements are met.
Green |Quest Green boxes are the quests. You can view as many quests at once as you
Box want. The quests relate to various dialogs and often to other game
triggers. You can create a new quests from the Quest Menu.
Each quest will be located in a different place in relation to each Dialog
this is to allow you to manage the view to suit yourself.
To edit a quest double click on it.
Blue Objective This is a quest objective. To create quest objectives right-click on the quest
Box & and drag the mouse to an open spot. To edit objectives double click on
Dark them.
Blue
Box

9 of 41

Dialog

Dialog, Conversation Edit

Environmental Requirement[gold<50

TEXY | would like to tell you all about the =<name= tell you what if you collect 50 gold

pieces from around the litle island. | will tell you.|

Repeat Text| | phack but you don't seam to have my 50 gold. You only have <gold= gold go

collect more from around the island and | will tell you what you want to know.

[T once [Falithrough

Quest E\«'ent[v

Player Event| ShowGold W

Quest Requirement[!D0neLearningSkils.!LearnAboutSquigIes W

Cancel Done

When you double click on a Dialog Conversation you will get the above box.

If you look carefully at the above test you will see the word <name> this will
collect the word name form the environmental information interface and inject it

in place.

Text This is the first text that will be played to the player when this
Conversation is viewed.

Repeat Text If the conversation is viewed a 2™ time this text will be displayed. If this
is left blank the first text will be used each time.

Once This will make sure that this conversation is only ever seen once. After its
been seen the choice that lead to it will no longer be available in the
previous conversation.

Fallthrough The fallthrough flag indicating that this Conversations should be skipped

if there is only one active Options from it. This will show if there are no
active options or more then one.

Quest Event

This event is triggered into the quest's when this dialog is viewed.

Player Event

This is broadcast onto the player object in game as a message. You will
need to implement a method by Exactly the same name on a script on
the Object in the scene tagged as “player”.

If the above example the Player event showGold is sent to the object

Tagged as Player in the scene. The Player object must implement a
method that looks as follows.

public void ShowGold () {
showgold=true;

}

When this Conversation is viewed for the first time this event is fired. It is

not fired additional times.

10 of 41

Quest Requirement

This is the comma separated list of requirements for this Conversation to
be visible. For example you could make a dialog visible after a quest has
been completed. Or perhaps one objective that would then lead the
player to the next one. For example.

!DonelearningSkils, !LearnAboutSquigles

This would mean there are two quest triggers that will be monitored for
this dialog. Both Donel.earningSkils and LearnAboutSquigles must not
have happened (indicated by the ! Proceeding the name). If the
gameevent does not have the ! It means it must have happened.

Environmental
Requirements

This is a string set of conditions that must be met for this Conversation
to be viewed. The value of the term gold will be asked for from the
currently registered parleyEnviromentInfo if none if registered all
conditions will come back as false.

Conditions can any of the following comparisons.
« = Will evaluate if the two values are Equal (can also be ==
* > Will evaluate if the term on the left is greater then the term on the right
* < Will evaluate if the term on the left is less then the term on the right
» >= Will evaluate if the term on the left is greater or equal to the term on

the right

* <= Will evaluate if the term on the left is less or equal to the term on the
right

» = Will evaluate if the two terms are not equal (can also be <>)

The terms can be Integers, Floats or Strings. To show a String value in
parley wrap the string s “” or '. The Parley string's do not accept escape
characters. So to inject a ' in a string your string should be “don't”

To learn more got to the How to set up Environmental Information
section.

Dialog Choice Edit

Choice] vhat Am|.

Cancel Done

The choice edit its fairly simple. Its the describtibn of the choice that will be made
from the previous dialog.

11 of 41

Quests

Quest Edit

Find Qut Skills
Ask Chirps aboutthe skills you can use, then try each skill

Well done you now ready to leave the home and make your way to your mom

| learnt all about my skills and how to use them for my big adventure. Now its
time to find my way to mom

o0
-

Name

The unique string name for this Quest.

Description

The original description of the Quest.

Hand In Description

The hand in description of the Quest. The standard parley GUI's do not use
this. This would be used if you implements a very basic quest engine and
didn’t want any dialogs. Normally the hand in's would be handled in a
Dialog.

After Description

This is the description of the quest once it is completed.

Level Optional limitation based on Player Level. This is only used if choose. Its
aimed at a RPG game but could also be used to other aspect. Like player
class choice etc.

XP This value (if not zero) will be send via SendMessage to the player object
“GetXP(int xp)”

EP This value (if not zero) will be send via SendMessage to the player object

“GetEP(int ep)”

Quest Event

This event is triggered into the quest's when this quest completes.

Player Event

This is broadcast onto the player object in game as a message when the
quest finishes. You will need to implement a method by Exactly the same
name on a script on the Object in the scene tagged as “player”.

Quest Requirement

See above for some examples of how the Quest Requirements works.

12 of 41

Quest Objective Edit

Namef ring oyt sklls

Description

Ask Chirps aboutthe skills you can use, then try each skill.

Hand In Description] .z gone you now ready to leave the home and make your way to your mom

After DESCAPUON, | |2arnt all about my skills and how to use them for my big adventure. Mow its

time to find my way to mom

XP| 0]

EP| 0 |
Quest Event| DonelearningSkils | W
Player Event SlupElmadcastingJumps) W

Quest Requiremem[Started W

Cancel Done

Description

The description of the Objective. If you include <count> in your description
it will be replaced with the current value of count.

After Description

This is the description of the Objective once it is completed.

Count A counter for how many times the Objective Event must happen before this
is considered completed.

XP This value (if not zero) will be send via SendMessage to the player object
“GetXP(int xp)”

EP This value (if not zero) will be send via SendMessage to the player object

“GetEP(int ep)”

Quest Event

This event is triggered into the quest's when this Objective completes.

Player Event

This is broadcast onto the player object in game as a message when the
quest finishes. You will need to implement a method by Exactly the same
name on a script on the Object in the scene tagged as “player”.

Quest Requirement

See above for some examples of how the Quest Requirements works.

Optional

The quest will be considered completed even if this Objective was not. This
is why Objectives have independent XP values.

13 of 41

How it all ties together

Ok so now you have a Unity project and you have the Parley workspace. You
should be able to tab between each. Don’t forget if you make changes to the
Parley dialogs you will need to save (CTRL-S or save from the menu) before you
will be able to see the changes in Unity.

Open the lgg Scene

ot Component Temain Window Help

> 1 »

.= #5Scene | : w=| =Hierarchy | == © Inspec
g = | -| || | create - Al Q Ig
camera

¥ enviroment

bridge

bridgeColider

light

terrain

water

¥ home

» birdie_merged

Camera

¥ nest_model

headusOBlexport

» rockz

@ Project a
= | &% *

(©LAll Materials
(1 All Models
(LAl Prefabs
L All Scripts

et:

VEaParlay Assets
EGui

& Scripts

¥ & Sqiggle

» & Birdie '
& Enviroment ® ST
>&lgg

¥ EaParley

(5501 Iggs Big Adventure
{501 Introduction
>l Terrain Assets

Open the Igg Scene you should see something similar to the above screen shot.

14 of 41

Attached Quest Gui

(> [11 [»] [Lovers - J[asalt -]
.= © Inspector | =
) ™ [iag []Static +
camera Tag | Player 4| Layer |Default |
¥ enviroment
Brdgs Model | Select [Revert [Open |
bridgeColider ¥ .~ Transform @ %,
light Position
terrain X [-9.851984 | ¥ 1.487502 |z -10.19408
i i Rotation
¥ home T I
P birdie_merged X |n | EEEER lz[o ‘
Camera Bear
T
¥ nest_madel X [L | lz 1]
headusBlexport ¥ » [Animation [ES
¥ rock2 Animation None {Animation Clip) [}
P rock3 ¥ Animations
T play Automatically
Animate Physics O
Culling Type Always Animate H
¥ 4k M character Controller 2,
= Slope Limit 10
1 Project .= r : ‘
| Craste =| (&) 4% | * Step Offset 0.3 |
¥ ‘Favorites Assets » Parlay Assets » Scripts | SKin Width 0.08]
(©L Al Materials Min Move Distance 0]
(T All Models A 1 Center
%ﬁ“” PGl i Pt x o | ¥ [0.52 Iz o]
LAl seripts it | W Radius 0.3]
VESAssets Conversari Dialag Height 1 |
<] % | i | %).|| Gizmos = ¥ Parlay Assets - _7 b |ls| M Third Person Controller (Script) el
I" \ » @ [Third Person Camera (Script) #,
cripts s i = 2 =
¥ || M 1gg Script (Script) B,
= { [
T?é‘é“r it Lt Script IggScript o
irdie
» & Enviroment Dialog@ui Objective Waterlevel 0.7
> lgg = o .
vEararley 1 L1 QuestGui
1 1 i
¥ 501 Iggs Big Adventure i i BLESE i : i
G501 Introduction i L Quest Skin = ParleyBasic (GUISkin)o
»&a Terrain Assets : - el (o 2o S Gy
Option Parley Show Quests Action ShowQuests
- | Add Companent
4
i i
Quest QuestGui

If you look at the scene you will see an object called igg. This is our main player

object. We have attached to igg a QuestGui script. This script will show the quest
when the Show Quests Action is pressed from the Input system.

You can customize this Gui or even completely build you own fairly easily.

15 of 41

Attached Conversation & Gui

(> [11 [>] [lovers -] [asot <]
me = | = Hierarchy == © Inspector Ee=
| zall - [birdie_merged [Jstatic +
L Tag | Untagged 3| Layer |Default i
v 14
S Model [Selst | Rever [Open]
bridgeCalider ¥ .~ Transform g %
light Position
terrain X [-90.22478 | ¥ -6.547314 | Z 41.0296]
vh LI Rotation
ome T
5 X |0 Y 0 Z 0
birdie_merged || | L | L ‘
1 Scale
Camera
¥ nest_model X [L | lz 1]
headusoBlexport ¥ & o Animation =
¥ rock2 Animation None {Animation Clip) [}
A » Animations
> igg Play Automatically
Animate Physics -
Culling Type Always Animate v
¥ |y Mcapsule Collider @ %
Is Trigger
£ Project : d.= f‘ﬂl L] : : .
| Create <| (T)| 4 | % | % | | Materia 'None (Phvsic Material)]
¥ /Favorites Assets - Sqiggle » Parley ~ 01 Iggf E€NtEr
(©) Al Materials - x [0 | ¥ (0.5 Iz o]
(L All Models . | | Radius f0.5]
Cg}au Prefabs e | Height 0 ‘
LAl Scripts | o on, Direction [Vahods +)
¥ G Assets Chirps Chirps ¥ [&| M pialog (Script) @ =
¥ Parlay Assets N Script Dialog o
& Gui N N @) conversation Asset
Gl Scripts [— | Description Chirps
¥ &3 Sqigale :‘i““"" Key Triggered
¥ EBirdie Restart Dialog Each Time [
& Materials Find Out Sk Find Out Sk Teiguer Inpit Key Quest
& Enviroment Dialog Class DialogGui
»Ealag Dialog Range 4.5
YEararley Dialog Skin Il ParleyBasic (GUISkin)o
v &501 Iggs Big Adventure Dialog Camera #hCamera (Camera)]
> Dialog Size
> Terrain Assets Characters Per Second 50

Add Component

As you can see we have a NPC called Chirps. We attached a Dialog script to him.
We also have to specify a Dialog Range and a Input Trigger Key.

We can specify a dialog camera too. This will be the camera used during the
dialog (make sure the camera is inactive to start with). After the dialog ends the

camera will reset back to its origin.

16 of 41

Adding all the quests to the Scene.

[Layers -] [4 Split -]
= .= © Inspector =
Maximize on Play | Stats | Gizmos |~ = & [camera Clstatic +
! Tag [MainCamera 3| Layer [Default &l
¥ enviroment
bridge ¥ .~ Transform £,
bridgeCalider Position
light X [7.747889 | ¥ [4.717431 | 2 [-2 912395
terrain Rotation
water X [10.48379 | ¥ [237.6484 | z [359.9643]
¥ home Scale
¥ birdie_merged :
Camera X0 REE jz []
¥ nest_model ¥ ¢ ¥ camera 2
headusOBJexport Clear Flags [Salid Calar 4]
- Background E—
o A Culling Mask r— :
igg
Projection [Perspective ™
Field of View s, [0
Clipping Planes
B3 Project d.— Mear[03 | Far 1000]
| create -| (&) & | % |+ | nNormalized view Port Rect
¥ [Favorites Assets » Sgiggle » Parley » 011gg| X [0 [y [o]
(0 Al Materials w 1 HT ‘
O All Models . |
(LAl Prefabs . Depth [T]
i | absqu
LAl scripts b - Rendering Path [Use Player Settings]
¥ Assets Chirps Chirps Target Texture 'None (Render Texture)] e
= vESParlay Assets = IHE Lt [
& Gui . | ¥ L MGuUlLayer [FES
ﬁ_SC”P“ @""“"’;‘, ¥ w MFlare Layer #*
'é‘:?:e =t ¥ () ¥ Audio Listener 2,
G Materials Find Out Sk Find Out 5k b e [Skybox %,
»EaEnvirement ¥ || M Mouse Look (Script) g
=1 ¥ [0 MParley (Script) *
¥&aParley Script Parley o
Yﬁul Iggs Big Adventure ¥ Quest List
& 01 Introduction Size a,
& Terrain Assets 2 Element 0 B Find Out Skills.gst o

[Add Component I

On a suitable object in the Scene. In this case we selected the camera. You need
to add the Parley script. There should only be one added to any scene. If you want
quests to persist between Unity scenes you will need to make the object they

attached to persist.

In the object is a list of all quests. You need to drag the quests from the Parley
folder into the list. This uses the text asset version of the quest not the Parley
binary file version (witch includes additional information such as position in

display etc.).

17 of 41

Scripts

Introduction

Scripts are how you bind your game to the Parley Quests and Dialogs. From scripts
you can add quest event listeners and generate quest events yourself. In fact not
only can you do these things but this is the most valuable aspect of Parley.

Your scripts will allow the soft binding between your game and the Parley quests
and dialogs. Giving you better control of the structures whilst leaving you with fine
control points for the specific parts.

Sample Source Files

There are the script samples in Parley. All are in the Sqiggle folder.

lggScript.cs lgg is the main character script. This script will show various ways the the
player object can interact with Parley. Including player events triggering
quest events and some of the standard events that are called.

BridgeBump.cs The bridge object has a collider in front of it that causes it to fall over when
Igg touches it. This collider needs to turn on at a certain time in the quest
events.

Looking at this script you will see how to register for a Quest trigger.

Collectltems.cs This is a collect item helper. Its not strictly speaking part of Parley but is
useful for the demo and assists with the Save/Load of all collectable items
status.

Standard Source Files

In Parley there are two groups of supplied scripts. The first are supplied with the Free Edition the 2™
set is supplied with the Professional Edition.

Conversation.cs This class represents the specific Converstaion within a Dialog. Each
blue box in the Parley editor becomes a Conversation with a list of
Options.

Dialog.cs This class is the Full Dialog class. You attach this to the object that you

want to represent the Dialog in the scene. You then link the Dialog and
decide what Input to use to bring up the Dialog. Additionally the Dialog
can have an attached Camera and an operational radius.

You also decide which class to bring up when Dialog is triggered. The
default is DialogGui, but you can replace that with your own.

There is no limitations to how many GameObjects can have the same
dialog attached. So Doors, chests standard NPC's can all share one
dialog.

DialogGuiAbstract.cs This is a base class for all Dialog GUIs to extend it handles most of the

18 of 41

behaviors required for a Dialog to function leaving the display and
input aspects for the implementing class to do. The class
DialogGuiBasic is the standard extension of this class.

DialogGuiBasic.cs

This is the default Dialog Gui. You can easily write a replacement and
even have different versions in your game. Don’t think of a Dialog as
only been a human to human dialog. It could be used for computer
terminals, and even trigger various other interactions lick mail boxes
etc.

Objective.cs

Objectives are the Class representing Quest Objectives. Each Quest
will have a list of Objectives.

Option.cs Options are the choices that can be made from any dialog. Options
have text and a destination id that allows the system to know which
Conversation to show when that option is selected.

Parley.cs This is the primary Scene singleton. This should be added to an object

in the Scene and only added once. Once added all the Quests for the
scene need to be dragged into the list.

ParleyEnviromentinfo.cs

This is a callback interface that must be registered with the Parley
singletons once your scene starts. This is how Parley will get game
information from the rest of the game. This information is injected into
the Dialog's and is also used as a Dialog trigger.

Quest.cs

This is the class that holds the Quest information in game. This class
holds a list of Objectives.

QuestGuiAbstract.cs

This is the base class for Quest GUIs to extend it handles the trigger
events for keypress but leaves the actual display aspects to an
implementation class.

QuestGuiBasic.cs

The QuestGuiBasic is the default Quest dialog supplied with Parley. You
must assign this to a game object. Most Often the player object. When
the input key is pressed the Gui will show all the current and
completed quests.

You can replace this with your own version.

Full Version Source files

PackUnpackable.cs

This is a basic interface used by the Save Load mechanism. This
must be implemented but Class and Objects that can be saved
and loaded. We use the term pack unpack as we don't expect to
always create a class as much as adjust its current values to
match those that it had when it was packed.

PackUnpackableBehaviour.cs |This is the extension of PackUnpack that should be implemented

by Scripts that are attached to GameObjects whose stat needs to
be saved and loaded.

ParleySaveload.cs

This is a Helper Class for saving and loading a Parley scene. You
can use it as par tof your own Save/Load solution or you can use it
as your compelte save load by extending some of your game
objects and scripts to be compatible with these structures.

SaveloadGui.cs

This is a base implementation of a save load gui. This allows for a
number of save load slots and creates files in the app data folder.

19 of 41

SaveloadTransform.cs

This extends PackUnpackableBehaviour and also has some static
helper methods to assist with the packing and unpacking of
Transforms and RigidBodies. These helper methods can be called
from any class.

PackTransform(Transform packTransform, StreamPacker sp)
UnpackTransform(Transform packTransform, StreamUnpacker
su)

PackRigidbody (Rigidbody rb, StreamPacker sp)
UnpackRigidbody (Rigidbody rb, StreamUnpacker su)

StreamPacker.cs This is the StreamPacker class. A stream is wrapped with this to
allows for the convenient packing of values into the stream.
StreamUnpacker.cs This is the StreamUnpacker class. A stream is wrapped with this to

allows for the convenient unpacking of values from the stream.

20 of 41

Messages

This is a reference list of the general messages sent by Parley at various times to
objects. Of course you will extend this list as you create new functions to call from
the Player events system.

Dialog

DialogStarted

Message DialogStarted(Dialog dialog)
From QuestsGui.cs
To Player

This is fired by a Dialog into the Player object to let the player object know that a
Dialog has started. The player object will then be responsible for suspending any
activities or pausing time while the dialog is open.

DialogEnded

Message DialogEndde (Dialog dialog)
From QuestsGui.cs
To Player

This is fired by a Dialog into the Player object to let the player object know that a
Dialog has finished. The player object will then be responsible for resuming any
activities or un-pausing time.

QuestGuiAbstract

QuestsStarted

Message QuestsStarted
From QuestGuiAbstract.cs
To gameObject

This is fired when the QuestGuiAbstract starts. Its fired onto the gameObject the
GUIl is attached to. This would generally be the player but could be any object that
would always be in the scene.

This is useful to suspend any activated or even pause the game itself.

21 of 41

QuestsEnded

Message QuestsEnded
From QuestQuestGuiAbstractsGui.cs

To gameObject

This is fired when the QuestGuiAbstract end. Its fired onto the gameObject the GUI
is attached to. This would generally be the player but could be any object that
would always be in the scene.

This is useful to resume any paused or disabled actions.

22 of 41

How too's

How to interact with Parley from your scripts

Parley is designed to be easy to build with and easy to Integrate to. Essentially
there are a few different types of Communication.

Creating a GameEvent from script

Ifs critical that you can effect quest's as the player plays the game. You should
already have an idea of what sort of GameEvents to create. For example you
could create an event for each monsters death, players death. Create a zone that
when the player passes will fire an event into the system. Even an event every
time the player makes a level.

You must map these out early in your design phase. We cant possibly cover good
all the different design methodologies, but it is worth saying that a OO approach
with standardized events that can Easily be picked up on by the Quest and Dialog
designers would be useful.

A quest will only listen to events once its active. So for example if you need to Kkill
4 of a specific monster. The quest objective will not be counting them off until the
quest is completed.

Anyway once you have your code and know when and where the event will be
written you need to send it into the Parley system.

To send an event you need to get access to the Singleton of Parley and execute
the TriggerQuestEvent method as seen in the code example below.

// The code below fires a Quest Event "Jump" into Parley

Parley.GetInstance () .TriggerQuestEvent ("Jump") ;

You can fire events into Parley with impunity. One issue worth keeping track of in
the GameEvent names. They are case sensitive so be careful to manage them
well. We recommend a shared spread sheet with each GameEvent listed and its
basic reason. You could prefix all in game GameEvents with _ or even GME_ this
will help make sure no in game GameEvents and Parley GameEvents clash.
Clashing like that could cause all manner of strange behaviors.

23 of 41

Sending a Message to the player object

Sometimes you will want the Parley system to call into the game code. This is
done via the PlayerEvents. A player event is simply a broadcast message to the
GameObject with the tag Player.

If you take a look at the Conversation editor below you will notice the Player Event
is configured as Remove50Gold.

Now you see =name= you a Sguiggle, a liltle creature that grows in eggs and
hatches able to talk and move around.

You fai|rlywlnerable in your early life so be very carefull of deep water and falling
too far,

| -

LearnAboutSquigles
Remove50Gold

In the script IggScript.cs you will see the following method.

public void Removeb50Gold() {
gold-=50;
}

When this dialog is sent the first time this method will be called. After that the
PlayerEvent will be skipped.

24 of 41

You can also avoid using a method. Simply access the variable by configuring the
Player Events.

Mow you see <name= you are a Sguiggle, a little creature that grows in eggs and
hatches able to talk and move around.

You are fairly vulnerable in your early life so be very carefull of deep water and
falling too far.

LearnAboutSquigles

gold=gold-10]

Creating listeners for GameEvents

At times it may be necessary to Listen for GameEvents and fire a specific piece of
code. This will work for game events triggered from within Parley and even
GameEvents Triggered from your own scripts. Below is the code example of how
to register a listener for a GameEvent.

void Start () {

// Get the singleton instance of Parley and call Add us a Listener.
// Parameter one is our gameObject, 2 is the QuestEvents name and the last
// 1s the message to send to this Object. (The message method can be in a
// different script on this GameObject)
Parley.GetInstance () .AddTriggerListener (

gameObject,

"LearntAboutKnocking",

"ActivateBridgeBump") ;

// This is the message method that will be called.
public void ActivateBridgeBump () {
bumpon=true;

}

25 of 41

In the GameObject Start method the script registers with Parley for the
GameEvent LearntAboutKnocking. When that event is fired the
BroadcastMessage ActivateBridgeBump IS fired into the gameObject.

A few things to note here. The gameObject need not be the one that is been
scripted on you can register from one object to any other. This could be useful for
things like Player spawn points. Create a trigger player dies and the GameObject
last added as a Trigger will get the message. The 2" thing teats noteworthy is that
these events are once only triggers.

In future version we will be adding persistent trigger listeners and also
replacement triggers, meaning that only one Trigger of a GameEvent and Message
combination can exist at any time and new ones should replace the old once.

Any scripts that want to use the Singleton access to Parley

must be listed to fire after the Parley script. Failure to do so
may result in a null pointer exception.

26 of 41

How to set up Environmental Information

The last way to get information between Parley and your game is via the
ParleyEnviromentInfo interface.

public interface ParleyEnviromentInfo/{
object GetEnviromentInfo(string key);

}

This is an optional element to Parley but a remarkable strong one. This interface
allows Parley to look into your game data. It currently uses this data for two
things. To display tagged information in Conversation dialogs and to make choices
on the availability of Conversation Dialogs. See the Environmental Requirements
section on Conversations for more information on how to configure these
requirements.

For an example of such an interface take a look at the sample code file
lggScript.cs. The implementation is a bit simplistic but will give you a good idea.

void Start () {
restartLocation=transform.localPosition;
// Register this instance and the ParleyEnviromentInfo provider
Parley.GetInstance () .SetParleyEnviromentInfo (this);

/** This method will return the environmental data. For now we are simply
returning the name, gold and mushrooms.

name as configured in the
Object in Unity. This could be used with far more versatility
/
public object GetEnviromentInfo (string key) {
if (key.Equals("name")) {
return name;
}else if (key.Equals ("gold")) {
return gold;
}else if (key.Equals ("mushrooms")) {
return mushrooms;
}
return null;

}

*
*
* If a dialog string has <name> in it that string will be replaced with the
*
*
*

27 of 41

Care has been taken in the design of Parley not to call this method too often. This
means that variables that are change during conversation will not update in the
Conversation display, but has the benefit of not putting a huge strain on your
code to evaluate variables all the time.

The only types expected from the GetEnviromentInfo method are string,int
and float. Returning any other type could lead to unexpected results and errors.

How to use the Save/Load system

The save load solution is provided as an example of how to build a save load
solution using Parley. The system provided could in face be used for your game, or
you could adapt Parley to interface with your excising system.

Parley has a raw format self serializing binary save solution. Or to put it bluntly a
really simplistic raw data save solution.

To completely cover the Load and Save we will need to understand a few things.
Firstly what Parley needs saved specifically. How we implement a save in the
code. How you can extend that Save for your Game and How you would modify
the Parley system to save into your current Save/Load solution.

What Parley needs Saved

Parley has 3 groups of data that need to be saved. The first two are easy to
access the third requires some effort on your part in the way you design your
solution.

GameEvents

Parley keeps a HashSet<string> of all game events ever fired. These are used to
test dialogs and see if they are now active. A Dialog reset each time its accessed
so storing these events is the way to keep state.

To retrieve and set the current set you can use the following two functions.

public HashSet<string> GetQuestEventSet () {
return questEventsSet;

}

public void SetQuestEventSet (HashSet<string> questEventsSet) {
this.questEventsSet=questEventsSet;

}

Quests

All quests current state needs to be stored. Each quest and its Objectives. All the
data is public and you can see the LoadSave example of what to preserve.

28 of 41

To get a list of all the Quests you need to access the following functions in Parley.

public List<Quest> GetQuests () {
return quests;

}

To load quests you need to retrieve the list clear it and then add all the quests you
reload.

Dialogs

Dialogs present the most difficult aspect since each time you allocate a Dialog on
a GameObject it creates a new instance of that Dialog. Meaning you can have
multiple instances and each has its own state of show only once and has been
seent

In our example we add the Objects with Dialog to the LoadSave list. Since the
Dialog already extends the PackUnpackableBehaviour class the Dialog's are
automatically Packed and Unpacked in sequence.

How we have implements Save in the example

A few tips on building a Load Save solution. Don't delete Objects in the Scene and
try not to create any that are not just for short term effect. If you have a scene
where all the Objects always exists in some form (even if disabled) then you do
not have to create geometry in order to move between states.

Even if you don't like our suggestion it needs to be understood to make sense of
the Load Save features implements into the sample game.

We have a single SavelLoadGui.cs script added to the main player. That script has
added to it all the Objects that need to save and load.

Each object added extends PackUnpackableBehaviour oOr one or more of its
children objects do. This makes it easy to add multiple objects. Take a look at the
sample and you will see we did not need to add each and every collectable in the
game only the single object Collectables that has all collectables as children.

The array in SavelLoadGui is critical since it determines the sequence that objects
are written and read in. This guarantees that so long as each object creates and
reads the correct amount of data the load and save will always work.

1 We are planning to add support for Static dialogs meaning that the one instance will be shared between all the
GameObjects that show it. This will be a StaticDialog.cs script and not a significant change to Parley itself.

29 of 41

Script || QuestGui o]
P Quest Size
Quest Skin I=/ParleyBasicBlue (&
Show Quests Summary [
Show Quests Action Fire2
v @ [¥ Save Load Gui (Script) @ %
Script @SaueLoadGui o}
Menu Skin I~ ParleyBasicBlue (1o
¥ Packable Objects
Size 6
Element 0 igg o]
Element 1 bridge o]
Element 2 bridgeColider o]
Element 3 collectables o}
Element 4 camera o}
Element 5 birdie_merged o]

[Add Component]

- £

If you look closely at the image above you can see we have added 6 items to our
Load Save. The Load Save system takes care of Parley Quests and Game Events
the rest is up to us.

Below is a table describing how each of these elements is saved out and what
information is preserved. You will need the scripts provided with the sample
project as you go through this information to make better sense of it.

igg

Igg is out main character. If you look at the script IggScript.cs you will see that it
extends PackUnpackableBehaviour looking further down to the Pack and Unpack
methods you will see how Igg writes and reads its data including the Transform.
One element we don’t manage is the ThirdPersonController. This means that
sometimes on Load Igg will face the wrong way.

In a serious project you would want to manage ALL the data but for our example
its OK to leave it out. Mostly because we didn’t really want to write our own
ThirdPersonController for now.

bridge

Bridge is a simple class we don’t need to write a specific load and save class. We
simply add SavelLoadTransform.cs to the bridge. This will save the transform and
the rigidbody of the object. It should be noted here that there is one additional
piece of information we don’t save that’s the UseGravity flag. We manage that
from the bridgeColider since that’s the source of the change anyway.

bridgeColider

The bridge collider turns itself off and also turns the gravity on the bridge on

when its struck at the right time in the quest chain. The BridgeBump.cs script
extends PackUnpackableBehaviour the same as igg. But in this case we only
need to preserve on bool flag. When we loaded we either need to disable the
bridgeColider and enable gravity on the bridge or vice versa.

collectables

All the collectables in the level are sub elements of collectables. This makes it
much easier for us to manage the save and load of all collectables. Just like with
the bridgeColider coins and mushrooms do not delete themselves they simply
turn off when collected. This means a load can turn them back on without an
hassles of creating a complete new geometry.

Each collectable has the script Collectltems.cs added to it. This script extends
PackUnpackableBehaviour and only remembers if the object was activated or not.

Camera

Just like the bridge the camera only needs a very simply load and save. We attach
the SaveloadTransform.cs to the camera. In this case it will only save and load
the transform since there is no rigidbody attached.

birdie_merged

This is the only item in the sample game with Dialog attached. Just like with the
collectables it might be easier if you add all Dialog items to a single parent or at

30 of 41

least in groups to make the process of load and save easier to configure. The
Dialog script attached to the GameObject already extends
PackUnpackableBehaviour and will write out the Dialog instances current values.

The last thing to look at is the Gui itself that presents a few load and save slots.
The saved games are stored in the following places.

Windows

System.Environment.GetEnvironmentVariable ("APPDATA")+"\\Igg";

that translates to

C:\Users\{youruser}\AppData\Roaming\Igg

MAC

System.Environment.GetEnvironmentVariable ("HOME")+"/Igg";

that most often translates to

/Users/{youruser}/Igg

How to modify Parley to save into your load/save solution

To make Parley save and load with your own save load solution you can approach
it from three different angels.

Binary

You can call the Parley load and save methods with your stream at a safe point in
your own process. So long as all the Dialogs are registers with the save load
mechanism everything will serialize out.

Blob

You can create a byte array stream and then call the Parley load ans saves as
above. This blog you would then be responsible for saving into your own store
somehow. This method can be useful also if you mean to change scenes and have
the old scenes state remembered.?

Custom

Since each of the classes mentioned earlier make there information publicly
available. There is no reason you can not roll you own XML or JSON save
mechanism. Just remember to record the three critical things listed at the

2 That is to say that a binary array of each scene saved into a static class that then saves each scene out and loads it back in
would be useful for a world where you want various scenes to persists for the player.

31 of 41

beginning of the section.

How to create a Dialog that spans multiple NPC's

Sometimes its necessary to have one dialog link to another. That is why you can
view multiple dialogs at once. In part to see how they interact through game
events but also to make them pass the conversation control over. There is a set of
Dialog's in the example game between Larry, Darryl and Darryl that shows how to
create dialogs that span multiple characters.

Designing the Spanned Dialogs

Dialog

Chirps

Wolf

WrnAderman

The first thing you need to do is select the dialogs you want to create links
between. You can CTRL-Left click to select multiple dialogs from the dialog list.

Once selected your view should look as below.

and this is my — p—
1 my other Hi Larry, whats up? 1

Your brothers dont talk much.

Hi Darryl 1
2

5
Hi "And Darryl"
3

Thanks
Darryl blushes and looks away.

Erm ok then

32 of 41

You will notice that each Dialog in the list has a slightly different color this is to
help you identify them in the view once they are selected. Once you have a few
dialogs selected you might notice they overlap in the view. You will need to move
the Dialogs around to make sure you can clearly see all of them at once. You can
move the full dialog by holding CNTRL-SHIFT-Leftclick and drag any element of the
dialog to move everything linked to it.

Once your view is neat you create links between items exactly the same way you
would for a single dialog. However when a link connects two elements from
different dialogs the arrow is a thick outline to help see that this is a cross dialog
link.

You should be aware that cross dialog links can only be seen when both the
dialogs are selected and as such will be invisible when you select only the one
dialog. You can link Options to Conversations in another dialog and the Return
from a Conversation to a conversation in another Dialog.

If you look carefully at the above image you will notice that one set of
conversation and options is outlines in white with the top most one in Yellow. The
yellow shows the currently selected item while the white outline show the
currently selected dialog set. This helps to know which dialog you are working on
as well as knowing which dialog you will create a new conversation for if you
double click in the open area.

You should not use spanned dialogs on multiple npc's

because they are identified in parley by name and it can not
then distinguish between the different version in the scene.

Implementing the Spanned Dialogs

You dont need to do anything special in Unity to create the spanned dialogs. Each
dialog will identify the linked one from the central Parley singleton and link there.
It would however make sense to make sure the characters are close enough for
the Dialog to seam sensible. One example when it wont seam odd is if the Dialogs
are supposedly done over a comms system. If that’s the case each person could
chat comfortably at any time.

How to build your own Dialog Gui

How the Dialog and the Dialog Gui classes interact

Although Parley comes with a Dialog system we really recommend you build your
own to suit your game. You might even need more the one dialog gui.

33 0f 41

Before you code your own DialogGui there are a few concepts you should be
aware of. Parley doesn’t keep a DialogGui's attached to objects all the time.
Rather it creates the DialogGui when the player is close enough and the
appropriate key is pressed. When this happens the Dialog adds the DialogGui
class to the current object and after it removes it. The DialogGui class name is
entered on the Dialog as seen below.

v @ ¥ Dialog (Script) #,
Script @ Dialog @
Conversation Asset El ply.Chirps @
Description Chirps
Key Triggered)

Restart Dialog Each Time)
Trigger Input Key Fire
Dialog Class DialogGuiBasic

Dialog Range

Dialog Skin I~ FantasySkin (GUISkio
Dialog Camera ¥ Camera (Camera) o
¥ Dialog Size
X 800
Y 371
Dialog Portrait “'Birdielcon @

Characters Per Second 200

You type the name of the DialogGui implementing class in the Dialog Class
parameter. That class is initialized and added to the gameQObject. Then the
DialogStarted is broadcast to the gameObject. Latter when the user closes the
Dialog the DialogEnded message is broadcast. Keep in mind that the
implementing class will call DialogGuiAbstract to close and DialogGuiAbstract will
still broadcast this message.

Once done Dialog will remove the Implementation gui class from the object.

You don’t have to use the DialogGui classes this way. If you
create an implementation that needs to be visible always

you can attach it to the GameObject and leave the
DialogClass empty. The DialogStarted and DialogEnded
messages will still be fired into the GameObject.

DialogGuiAbstract

Before you try create your own DialogGui solution you should understand the
DialogGuiAbstract class and how to work with it. Whilst you could rewrite a lot of
whats in DialogGuiAbstract we strongly suggest using Polymorphism and extends
DialogGuiAbstract. That way should you get a newer version of Parley your
implementation will update without you having to rewrite a lot of code.?

Your dialog Gui can take any shape you want. It could be an interaction between

3 We will try keep the interfaces between Abstract classes and there implementing children as backwards compatible as
we possible can. Even assuming there is a change it should still be less work to rework the interfacing between the two
classes then building a complete replacement.

34 of 41

the character and a NPC and Item on the ground or even a Door. Graphical
implementations can be any shape or form you choose.

To start building your own DialogGui implementation you need to create a class
that extends DialogGuiAbstract. We will use the DialogGuiBasic to show you how
this is done.

using UnityEngine;
using System.Collections.Generic;

public class DialogGuiBasic : DialogGuiRbstract {

public void Start () {
}

public void OnGUTI () {
}

Now we have a DialogGui class that extends DialogGuiAbstract.

As you can see this is a normal MonoBehavior class and as such it attaches to the
GameObject the Dialog is on.

Next we need to understand the methods inside DialogGuiAbstract.

Methods

Below is a list of all the methods you need to use from DialogGuiAbstract to build
your own DialogGui class

/**

* Start Dialog is called from Dialog as the trigger to get the DialogGui

* going.

*

* This is broadcast into he GameObject after the DialogGui class is created
* and added to the GameObject. You should not need to use extends or alter
* this method if you are using the DialogGuiAbstract as your base.

*

*

This broadcasts DialogStarted into the GameObject after it is called.

*/
public void StartDialog(Dialog dialog);

* %

End Dialog is called by you when the Player decides to End the Dialog.

Either through a close button or by moving too far away. Any number of situations.
You can casually call EndDialog from within your code all Dialog end cleanup
code should be added to your method implementing DialogEnded.

L S S N

*/
public void EndDialog() ;

/**
* Select option will be called by you when the player chooses one of the currently available

* Conversation Options.
*

* You will get a list of these Options from GetCurrentConversationOptions when one is

35 0f 41

* chosen call this method.
*

*
/
protected void SelectOption (Option 0);

/~k~k
* This returns the currently active Dialog instance.
*

*/
protected Dialog GetDialog() ;

/**

* This returns the currently active Conversation instance.

*

* Don’t get the Text from here since it would be raw without any of the Environmental
* information embedded yet.

*

*

/

protected Conversation GetCurrentConversation();

/~k~k

* This returns all the current Options available at this stage in the Dialog.

*

* These need to presented to the user.
*

*/
protected List<Option> GetCurrentConversationOptions();

/**
* This instructs the DialogGui to go back to the Return Dialog as defined in
*

* You only need to use this if HasReturnConversation returns true.
*

*/
protected void GotoReturnConversation();

/**

* This returns a boolean letting you know if this Dialog has a return dialog.

*
*/
protected bool HasReturnConversation();

/~k~k

This returns the current conversation Text.
All environmental information is embedded into this text already. The text
player moves away from this Conversation and back the text will refresh.

/
protected string GetConversationText () ;

*
*
*
* so the information embedded will be static after the choice was first made.
*
*
*

the Parley editor.

does not update live,
However if the

Take a look at DialogGuiBasic to see how these tie together to create a full

DialogGui.

How to purchase and Register Parley

You may find that the restrictions on the Free version of Parley don’t meet your
needs and you would like to support us and upgrade your product.

36 of 41

Purchasing Parley

To purchase Parley you need to go to the Celestial web site at http://www.celestial-
games.com/parley.html

(Games Forums e Contact

Buy NOW

Buy Parley now. Your purchase will include.

All upgrades to future versions of Version 1. Access to email technical

support. Sample game built with Parley
g0

On the page you will see the Add to Cariﬂpurc}iase button.

Click add to cart and follow the on screen instructions. Once you have finished
you will receive an Email from us with you product code in. You need to enter this
code in Parley.

Entering your product code

Go to the About menu and select Register.

funity\Assets\SgiggletParley .
Dialog Quest

About

Hello <na you might be a
li Y ust

37 of 41

http://www.celestial-games.com/parley.html
http://www.celestial-games.com/parley.html

The following screen will come up.

Enter the details from your email into the boxes and click register. You must be
online for this to complete. But you will not need to be online each time you use
Parley after you have finished registering it.

X
someone@someplace.com

THE-SECRET-CODE-THAT-WAS-MAILED-TO-ME

You will also receive a link to download the Full Unity package that includes the
save and load system of Parlay.

Good luck and once again Thank you for your support.

38 of 41

Versions

Free Version vs Full Version

Feature Free Version| Full Version
Acts Unlimited Unlimited
Scenes Unlimited Unlimited
Dialogs 3/Scene Unlimited
Conversations per Dialog 4 Unlimited
Options Per Conversation 3

Quests 2/Scene Unlimited
Objectives Per Quest 2 Unlimited
Save Load structures - Included

Version 1.0.1

* Added the Yellow Pin icon on the top of anchor dialogs.

* Added a number on bottom right of each Option and Objective showing its
display order.

* Now you can swap the order of all Options and Objectives right click
dragging between them.

+ Dialog's available only under certain environmental conditions.
* Add a confirm on exit if there are unsaved changes.

* Added the fall through flag on Dialogs with only one option.

+ Create the default Conversation in a new Dialog.

» Created a Free edition that is limited to 8 Conversations in a Dialog, 4
Options per Conversation and 5 Objectives Quest

* Add save and Load scripts for Quests as well as Quest
* Removed Level from Quests is made redundant by the Information system

+ Added a complete Save/Load set of functions and tools to the Parley Sample
project.

39 of 41

Version 1.1.0

Parley Application

Made the selection of Dialogs table driven not Tabs and allowed multiple
Dialogs to be seen at once.

Show the connections between Dialogs when multiple are selected
Create a FULL dialog and move when CNTRL-SHIFT is pressed
Conversations can now return to conversations in another dialog.

Options can now link to conversations in another dialog.

Test Scene and Act names for validity before creating them.

Test Dialog and Quest names for validity before creating them.

Table of Dialogs render the selected Dialog in the same color as the scene

Player functions now take parameters and allow multiple functions to be
called at once on Dialogs

Player functions enhancements carried across to Quest and Objectives

Entire dialog highlights when one conversation or option is selected and
new conversations are created as past of that dialog.

Selected color changed from white to yellow and made thicker.

Parley Scripts

Improvements to the Dialog GUI split out a base class and implement a
better BasicGUI

Add a character image to the Dialog GUI
Fixed an error in the Save/Load for saving arrays that are null

Changed the order of Conversation Events and option active evaluation to
better facilitate cross dialog conversations.

BasicGui works with GUILayout now making it more flexible.
Quest gui split into abstract and basic classes.
QuestBasicGui works with GUILayout now making it more flexible.

40 of 41

Version 1.1.1

Parley Application

- Made it so that Environmental Information can be read and set via player
commands. gold=gold-5;

- Removed the Email registration

- Created an execution command for Win and Mac

- Brought Parley to the MAC

Parley Scripts

- Fixed an error in save load that was saving items twice.

- Made it so that Environmental Information can be read and set via player
commands.

- Changed a few interfaces to protected in dialog

- Added a dialog gizmo for objects with a dialog on them

- Brought the Parley solution into Unity so its accessible from a menu

- Made Parley configurable from within Unity (dictionary path and Parley scripts
Path)

41 of 41

	Introduction
	Know your version
	Getting Started

	Importing Parley into Unity
	Opening the Example project in Unity
	Opening The Example Project In Parley

	Exploring The Example Project In Parley
	Legend
	Dialog
	Dialog, Conversation Edit
	Dialog Choice Edit

	Quests
	Quest Edit
	Quest Objective Edit

	How it all ties together
	Open the Igg Scene
	Attached Quest Gui
	Attached Conversation & Gui
	Adding all the quests to the Scene.

	Scripts
	Introduction
	Sample Source Files
	Standard Source Files
	Full Version Source files

	Messages
	Dialog
	DialogStarted
	DialogEnded

	QuestGuiAbstract
	QuestsStarted
	QuestsEnded

	How too's
	How to interact with Parley from your scripts
	Creating a GameEvent from script
	Sending a Message to the player object
	Creating listeners for GameEvents
	How to set up Environmental Information

	How to use the Save/Load system
	What Parley needs Saved
	How we have implements Save in the example
	How to modify Parley to save into your load/save solution

	How to create a Dialog that spans multiple NPC's
	Designing the Spanned Dialogs
	Implementing the Spanned Dialogs

	How to build your own Dialog Gui
	How the Dialog and the Dialog Gui classes interact
	DialogGuiAbstract
	Methods

	How to purchase and Register Parley
	Purchasing Parley
	Entering your product code

	Versions
	Free Version vs Full Version
	Version 1.0.1
	Version 1.1.0
	Parley Application
	Parley Scripts

