Guide for Users Jingwen Yang 2018-11-07

Pacakge Installation

Ance Tran is an R package that performs analyses of transcriptome evolution based on RNA-seq expression data or ChIP-seq TF binding data. Here, we use HNF4A-binding data for 4 mice species as an example to show how Ance Tran works. A convenient way to install package from github is through devtools package:

```
install.packages('devtools')
devtools::install_github("jingwyang/AnceTran")
```

After installation, *AnceTran* can be loaded in the usual way:

```
library('AnceTran')
```

Input Format:

Ance Tran package takes binding score data in certain format:

• Binding score file should be a text file in the matrix shape, Rows correspond to orthologous. Columns correspond to sample names. Sample names are in format of "TaxaName_SubtaxaName_ReplicatesName".

The example files are included in the AnceTran package, which can be found in extdata folder in the package. One can load them in to take a look:

```
BindingScore.table =read.table(system.file('extdata', 'HNF4A_meanIntensity_4Mouse.txt', package = 'AnceTra
```

head(BindingScore.table[,1:5])

##		GeneID	BL6_HNF4A	CAST_HNF4A	SPRET_HNF4A	CAR_HNF4A
##	1	ENSMUSG000000001	244.6250	338.4167	159.0	96.5000
##	2	ENSMUSG000000003	0.0000	41.0000	0.0	0.0000
##	3	ENSMUSG000000028	184.5000	199.6875	289.4	107.0000
##	4	ENSMUSG000000037	0.0000	0.0000	41.0	20.0000
##	5	ENSMUSG0000000049	224.2632	179.7917	191.5	120.1875
##	6	ENSMUSG0000000056	266.2500	317.0769	141.4	204.8333

Construction:

The construction function TFconstruct loads in the BindingScore data file, and wraps them in a list of taxonTF objects (one taxaTF object).

library('AnceTran')
taxa.objects = tTFConstruct(BSFile=system.file('extdata', 'HNF4A_meanIntensity_4Mouse.txt', package = 'An

The construction process takes **several minutes** on a desktop computer depending on data size and hardware performance. Specify "**taxa**" and "**subtaxa**" options in the function when using partial of your data. The construction process will be faster. If you are hesitated to test the *AnceTran*, the package has already bundled a constructed object and you can load the object through:

data(TF.objects)

Data filtering and normalization

We excluded genes whose TF binding score equals to 0 in all species. To account for differences in sequencing depths between species, we quantile-normalized these binding score values across species and also log-transformed the values for the further analysis.

```
library('limma')
TF_table = TFtab(objects = TF.objects, taxa = "all", tf = "all",rowindex = NULL, filtering = FALSE, nor
keep<-rowSums((TF_table == 0)) < ncol(TF_table)
TF_table<-TF_table[keep,]
TF_table<-data.frame(log2(normalizeQuantiles(TF_table[,])+1))</pre>
```

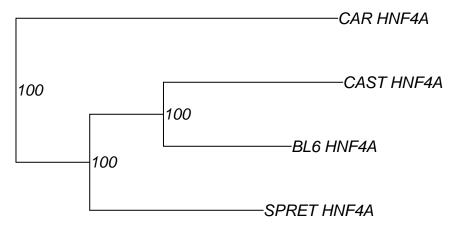
Distance matrix

First, we generate an TF-binding distance matrix of these mice species using sOU method:

```
library('ape')
dismat <- TFdist.sou(bsMat = TF_table)
colnames(dismat)=colnames(TF_table)
rownames(dismat)=colnames(dismat)
dismat</pre>
```

##		BL6_HNF4A	CAST_HNF4A	SPRET_HNF4A	CAR_HNF4A
##	BL6_HNF4A	0.000000	0.000000	0.000000	0
##	CAST_HNF4A	0.3588558	0.000000	0.000000	0
##	SPRET_HNF4A	0.4497102	0.4869901	0.000000	0
##	CAR_HNF4A	0.6862219	0.7693106	0.6649105	0

TF-binding tree building


After the TF-binding distance matrix is created, you can construct character tree by Neighbor-Joining method, and bootstrap values based on re-sampling orthologous genes with replacements can also be generated by boot.phylo function:

```
tf_tree <- NJ(dismat)
tf_tree <- root(tf_tree, outgroup = "CAR_HNF4A", resolve.root = T)
tf_tree <- no0br(tf_tree)
f <- function(xx) {
    mat <- TFdist.sou(t(xx))
    # the distance metrics here should be the same as you specified
    # when you created the TF-binding distance matrix</pre>
```

```
colnames(mat) <- rownames(xx)
rownames(mat) <- colnames(mat)
root(NJ(mat), "CAR_HNF4A", resolve.root = T)
}
bs <- boot.phylo(tf_tree, t(TF_table), f, B = 100)</pre>
```

##
Running bootstraps: 100 / 100
Calculating bootstrap values... done.

tf_tree\$node.label = bs
plot(tf_tree, show.node.label = TRUE)

By now, an TF-binding character tree is successfully constructed.

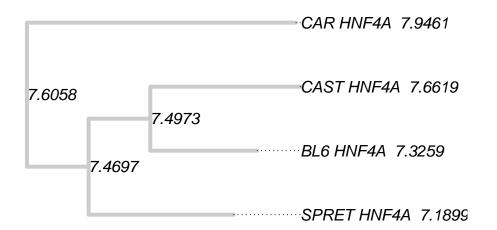
Creating variance co-variance matrix

var_mat <- varMatInv(dismat,TF_table,phy = tf_tree)</pre>

Ancestral TF-binding state estimation

Here, we extract the TF-binding values of gene MUP20 as an example:

mup20_binding <- TF_table[which(rownames(TF_table) == "ENSMUSG00000078672"),]</pre>


Then we infer the TF-binding scores at ancestral nodes of the TF-binding tree:

```
mup20_anc <- aee(mup20_binding, tf_tree, var_mat, select = "all")</pre>
```

Finally, we map these estimations on the 4 mice species tree to give a direct presentation of these values:

```
tf_tree$node.label <- sprintf("%.4f",mup20_anc$est)
tf_tree$tip.label <- paste0(tf_tree$tip.label, " ", sprintf("%.4f", mup20_binding))
plot(tf_tree, edge.color = "grey80", edge.width = 4,show.node.label = T,align.tip.label = T,main="Ances"</pre>
```

Ancestial HNF4A–Binding Estimation of Gene MUP20

