UCLA ENGINEERING

Master of Science in Engineering Online

Engineering 205

Model Based System Engineering

Student User Guide 2:
Papyrus Project, Model, and Diagrams
Export and Imports

Myron Hecht
Version 1.1

September 26, 2015

Copyright © 2015 Myron Hecht

Revision History

Date Version Author Change File Name
9/15/2015 1.0 Myron Hecht Original UG2_Project Model and
Diagrams
9/26/2015 11 Yang Shen and Added figure for file export UG2_Project Model and
Myron Hecht in Section 3 Diagrams2

Table of Contents

R 111 oo 11 Tox {To] 4 OSSP ST PP R TRPRRN 1
2 Creating a Project and MOElooiiiiiii s 1
3 Creating SYSIML DIBQIAMSoiuiiiiiiieiieieieite sttt bbbt n b e bbb 5
3.1 Creating a Package DIagramcc.coeiiiiiiiiiiiieeeee e 5
3.2 USE CaSE DIAGIAIMS ..ottt ettt b bbbt nneab et ebe s 7
3.3 SEOUENCE DIAQIAM.....eiiiieiiiie ettt ettt e e e te e esteesbeeaesseesraenneeneesreentens 9
3.4 RequIrements DIAgIAMScc.vciviiieiieeieiiesie et e steeste s e ste e e e ste e e e steene s e e steeneesneeeas 11
3.5 Showing and Hiding COMPArtmMentsccccooeieerieiieeieeie et 14
4 Model EXPort and IMPOItoooiiiiieeie et 16
4.1 EXPOrting @ MOGEL.......ooiiiii e 16
4.2 MOCEI IMPOITING ..t e bbb 18

List of Figures

Figure 1. Wizard for Opening a Papyrus PrOJECL.........cccoiveiieiieiieci e 1
Figure 2. Selecting SysML as the Language for the Project...........ccocvvveveeieiieve e 2
Figure 3. Eclipse Workbench before switching to Papyrus perspective...........cccocvevevvereevieseene. 3
Figure 4. Another way Of SWItChiNg PErSPECLIVES........c.civiiieiieiieie e 3
Figure 5. Eclipse Workbench with Papyrus perspectivecccoveveieeneciesiee s 4
Figure 6. Selection of the ROOt EIBMENL..........ccooiieiiiiicicce e 5
Figure 7. Package diagram pallet on the Eclipse Workbench, Papyrus perspective. 6
Figure 8. Creating a Package Diagram iN PAPYIUScooueiieieiierieeiieseeseesee e sie e sree e eee e nnas 7
Figure 9. Creating a Use Case Diagram in PapYIUS.........ccciveieiierieiieieese e see e sree e 8
Figure 10. Creating a Use Case Diagram iN PapYTIUS.........cccucvueiieiieiieiieeseeniesieesieeeeseesseeeesseesnas 9
Figure 11. Sequence Diagram with ACtor and USe CaSE...........coereiieriririninieieie e 10
Figure 12. Dialog Box for creating a NEW MESSAGEceverueeririerienreriesiesiesieseeeeee e 11
Figure 13. Completed SysML requirements DIagramccccerereneneneninenieieee e 12
Figure 14. Inserting a requirement ID and text in the property view (with the SysML option

1] [T (=T) IO TSR PP ST PP PRTRPRO 13
Figure 15. Model view of the requirements diagram with only Requirementl visible................ 14
Figure 16. Show/Hide Compartments Initial Dialog BOXcccooeiiiiiiniiiiiiieec e 15
Figure 17. Compartments visible after clicking on the requirement checkboX.............ccccoeee. 15
Figure 18. Project Explorer Tree containing the Papyrus model...........cccooviviiinienencienennn 16
Figure 19. Dialog for Selecting File System (in Mac OS X)cccooiiiiininiiiiieee e 17
Figure 20. Dialog Box for identifying reSources t0 €XPOort.........cccccevverieiieeseeresieeseesieseeseennens 18
Figure 21. Import Model dialog DOX.......c.ccoviiiiiiiiccecce e 19
Figure 22. Dialog Box to identify directory from which to retrieve the model...............c.ccoe... 20
Figure 23. Dialog Box with resources to be imported identified...........c.ccocooveviiiiiiiciciieiee 21
Figure 24. Project Explorer with Imported Model.............cooeiieiiiiiiice e 22
Figure 25. Use Case Diagram from imported model.............ccoooveiiiiiiic e 22

1 Introduction

This assumes that you have successfully installed the Papyrus software and describes the next
steps. Section 2 shows how to create a project file, section 3 describes creating package, use
case, and requirements , and sequence diagrams (primarily to demonstrate linkages with use case
diagrams; a more complete descriptions of sequence diagrams appears in the third user guide),
and Section 4 describes importing and exporting project files.

2 Creating a Project and Model

This section describes how to create a Project and Model in Papyrus. A project is in essence a
file directory into which Papyrus will write the files that store the models. Every project must
have at least one model. Recall the file hierarchy for Eclipse and Papyrus: from the bottom up,
SysML (and UML) model elements and diagrams are contained within Papyrus models which
are contained within Eclipse projects which are finally, contained within the Eclipse workspace.
Therefore, before you can create any diagrams, you need to define a project file and then at least
one model.

The mouse sequence starts from the top menu bar “File” item (upper left most) and is as follows
File > New Project

The following dialog box appears.

o Mew Project — @
Select a wizard
Create a project for a new Papyrus maodel (UML or SysML)
Wizards:
type filter text
- = General
» [= Eclipse Modeling Framework
> = Java
- = Maven
4 = Papyrus
E} Papyrus Project
=F SysML Project
> [= Plug-in Development
- = Examples
"?) < Bac Finish Cancel

Figure 1. Wizard for Opening a Papyrus Project

Select Papyrus Project (not SysML project).

After you press next, the following dialog box pops up.

2 New Papyrus Project =8OR
Select the language of the new diagrams r 5.’
Disgram Language:
UML core:
‘t uML
‘t Profile
P
DSML:
S
o T, il
@ < Back Nest » Finish Cancel

Figure 2. Selecting SysML as the Language for the Project

SysML appears as a "Domain Specific Markup Language™ DSML because it is an extension of
UML into the SysML domain. Select it, click “next”, give it a name, and finish.

Then go back to and select the Papyrus perspective by clicking on the perspective icon.

= Resource - Test Project 1/modell.di - Eclipse
File Edit QQlagram MNavigate Search Papyrus Project Run Window

=1 [EeR =)

Help
D e HIE R R TR A RS SR A R S PRA S e R TR SN Rl = RS SE S les SR
" = - ~: B I | v - Quick Access | @lajlava
[Project Explorer 32 = B | ~) modell.di &2 = g
B&le ~
P
EE Qutline &3 Task List = O
e v
Mo cutline for this editer
¥ Tasks &2 =8
0 itemns
B H Description Resource Path Location Type

[

0 items selected

Figure 3. Eclipse Workbench before switching to Papyrus perspective

The following figure shows another way to switch perspectives, starting with the Window menu

bar item.

£ Open Perspective

##Dsbugi
[an Git
&' Java (default)

&

i‘,JJa‘.'a Browsing
e java Type Hierarchy
~D Papyrus
(@) Planning
“J=Plug-in Development
= Properties View Custemization
[Resource
E0Team Synchronizing
3L XML

oK

Cancel

Figure 4. Another way of switching perspectives

The following figure shows the Eclipse workbench after the perspective change. Note the
appearance of the Model Explorer on the left.

< Papyrus - Test Project 1/modell.di - Eclipse

[F=3 EOH =)
File Edit -9 Diagram MNavigate Search Papyrus Project Run Window Help
e e B Ehy Bat R s SR gt i R SR S E HrB-Briter0-QUrio 9
: - - - - | - - - Quick Access | = | & Java [Resource [~ Papyrus
[Project Explorer 52 = 8 | 7P modell.di 2 = gd
e -
B Model Explorer 52 = g
R EE®EE 7
B2 RootElement
o= Outine &2 & ¥ = B
Mo cutline for this editer [Properties 52 o T=0

Properties are not available,

Figure 5. Eclipse Workbench with Papyrus perspective

3 Creating SysML Diagrams

In order to create diagrams in Papyrus, you must have both created a project and switched to the
Papyrus perspective. Refer to the previous section if you have not completed those steps.

Once you have created a Papyrus project model and switched to the Papyrus perspective, select
the root element in the Model Explorer window. The property window should now show
properties of the root element. The properties window shows UML properties because Papyrus
uses the same repository structure for both UML and SysML. SysML properties are displayed
only for model elements that are extensions of the UML base classes (e.g., requirements or
blocks).

= Papyrus - Test Project 1/modell.di - Eclipse EI@
File Edit <) Diagram Navigate Search Papyrus Project Bun Window Help
e L% IR e e e E R Dot P BB B0 QS S
: - - - - | - - - Quick Access || = | & Java [Resource
[Project Explorer 52 = © 73 modell.di 2 = 8

= <3===> =

» =¥ Test Projectl

B Model Explorer 532 = 0

B ERE L~
RootElement
8= Outline &3 = =0
Mo outline for this editor [Properties 52 =]

Ea RootElement

UML MName RoctElement

Comments | g1

Profile

m

Visibility public =
Advanced isibility F

Location platform:/resource/Test%20Project?201/modell.uml

£ 1 item selected

Figure 6. Selection of the Root Element

3.1 Creating a Package Diagram

You can create diagrams only when you are in the Papyrus perspective and have selected the root
element. See the immediately previous description if you have not done so.

Once you have selected the root element in the Model Explorer window, go to the Papyrus menu
item. Perform the following mouse sequence

PAPYRUS>New Diagram>Package Diagram.

The package diagram pallet will appear on the right as shown in the following figure.

S Papyrus - Test Project 1/modell.di - Eclipse =)
File Edit < Diagram [Navigste Search Papyrus Project Run Window Help
=g . e Hi- T R EET - IE ?{U;Evu‘;vgu:nﬂvgvﬁv%>vﬁv Eé}v vﬁv':ﬁ;v@v%v'b 5 -
= = = - ‘ = = = Quick Access i | %’Ja'.'a l5 Resource
[Project Explorer 5% = 08 ~) modelldi &2 = O
= & - ~ | &3 Palette i3
(=5 Test Projectl REEIEL
2 Nodes P
=1 Cemrment
{7} Constraint
&4 DurationObser...
Model
B3 Package

B Model Explorer 52 = g8
SR ET®E G

» B2 RootElement

Bt TimeObservati...

q

5 Edges @0
,';:, Abstraction
&~ ContainmentLi...
" Dependency
0 Link
%, Packagelmport

B Packsgel 2

EE Outline i3 = 0
- [T Properties 52 M =08
s - &
B2 RootElement
UML MName RootElement =
Comments URI 3
Profile -
Style Vigibility public o
= Location platform:/resource/Test%20Project%201/madell.uml hd
o — T T o = T : =

Figure 7. Package diagram pallet on the Eclipse Workbench, Papyrus perspective.

Note that the pallet has two sections, Nodes and Edges. Nodes are symbols and edges are
connectors or relations. Also note that not all nodes and edges are visible on the pallet (this
screen shot is at a fairly low resolution). Up and down arrows that enable you to scroll through
the other elements appear in the pallet sections when you move the mouse to either the top or the
bottom of each section.

Drag two packages on to the canvas and connect them with a containment edge (circle with a
plus symbol). Then, in the Model Explorer window, click on the right pointing arrow to the left
of the root element link and see Diagram 1 and Packagel as shown in the following figure.
Clicking on the right pointing arrow of Packagel will enable you to see Package?2

S Papyrus - Test Project 1/modell.di - Eclipse = IE“&/

File Edit <9 Diagram [Navigste Search Papyrus Project Run Window
e L T T TR R R P

m

P
R ol A1 Thd = REECR S R A

- - - vi ‘ - - - i | %’ Java [Resource
I Project Explorer &2 = 0O 7P *modell.di &2 = 0
= <}==:>| - | 53 Palette

[
» =5 Test Projectl k&S -8-
@

[0 Packagel o Nodes

= Comment

{7} Constraint

&4 DurstionObser...
Model

B3 Package

Bt TimeObservati...

B Model Explorer 2 = 0
=S EREE <

5] Edges
4 |E2 ReotElement| . $ Edge: £
4 [Packagel £3 Package2 Ll i Asbstraction
B3 Packaged

& ContainmentLi...
f; Diagram Packagel - Dependency
% Link

= | % Packagelmport

7
B Packagel 2

0= Outline 52 = 8
_] Properties 5% f = 8
5@ - ”
Ea RootElement
UML Mame RootElement i
Comments | pp 3
Profile
Ad 4 Visibility public -
Ivances
Location platform:/resource/Test%20Project%201/modell.uml -
21 1 item selected
e __ T T — ——

Figure 8. Creating a Package Diagram in Papyrus

3.2 Use Case Diagrams

As was the case with the package diagram, you must have the Papyrus perspective open. You
must have also selected an element in the Model Explorer window that will “own” the diagram.
However, it need not be the root element (note that not every model element in the model
explorer can contain a diagram). For the purposes of this document, we did select root element
and opened a Use Case diagram with the following mouse sequence

Papyrus>New Diagram>Use Case Diagram

The following figure shows the result.

S Papyrus - Test Project 1/modell.di - Eclipse = IE“&/

File Edit <9 Diagram [Navigste Search Papyrus Project Run Window
e L T T TR R R P

1| Ii

P
R ol A1 Thd = REECR S R A

- I = v ‘ - - - Quick Access i | &) Java [y Resource
I Project Explorer &2 = 0O 7P *modell.di &2 = 0
= <«’==:>| e v “ | 57 Palette [
» =5 Test Projectl k&S -8-
&5 Nodes @0
B3 Package
=] Subject
% Actor
o Use Case
{7} Constraint
B Model Explorer 2 = 0 & Children P

= <‘}==(> i= E ﬁ & = &= Extension Point
RootEl t
4 B3 ReotElemen & Links -
4 [Packagel
£ Package2 / Association
®2 Diagram Packagel A Generalization

gs Diagram UseCaseDiagram o Dependency

A : Abstraction

a = ol L2 ' & Realization
B Packagel | g2 UseCaseDiagraml 52
0= Outline 52 = 8
5 — [Properties 3 =8
9%€ Diagram UseCaseDiagram1
Style Current theme #J Papyrus Theme =
Advanced
Diagram style sheets @ Model style sheets @@
| [| -
gs 1 item selected 3
[_— me— T EE—— | —

Figure 9. Creating a Use Case Diagram in Papyrus

Create the use case diagram shown in the following figure by dragging an actor (stick figure)
from the pallet, and then dragging an oval (called a “use case” in this figure; we use the term
“behavior” for the oval and reserve the term “use case” to refer to the combination of the actor
and the behavior) and then used an association to connect them. Their designations were
UseCase 1 and Actorl. Repeat the actions to create a second actor and use case called Actor2
and UseCase2 which are visible on the figure below. Drag a package on the canvass, expand it,
and then drag another actor and use case and connect them as well.

= Papyrus - Test Project 1/modell.di - Eclipse

=1 [EeR =)

File Edit -9 Diagram MNavigate Search Papyrus Project Run Window Help
I E Y R R e e el e H-B-B8-ittr-0-Qu-ic 5
- - - - - - - Quick Access || = | & Java [Resource
75 5 Project Explorer 2 = O 7P *modell.di 51 = g
Oz =S = “ | 53 Palette I
- =¥ Test Project1 Ty ® G5 -5 -
o Modes
E] o4 Children
> UseCased 2 Links P
% v /" Association
Actor2 Generalization
WTE?Q']-‘ [# ~" Dependency

B Model Explorer 52 = B
0% = R

4 B3 RectElement

q

i Abstraction
7 Realization

i Usage

4 £ Packagel = UseCase2-1 B2 PackageMerge
4 [Packaged — Eia
% Actor? ~q. Packagelmport
on
& ysecas i Includ
{ A usecased acto Actor2-1 o Include
o UseCased C’: Extend
-5 Pd[lfagﬁl-l {?} Constrained
{ A usecazed-1 ac Elemgnt
© UseCasel-1 B Packagel | g2 UseCaseDiagraml &2
% Actor2-1
& Diagram UseCaseDiz | = Properties 57 | J Model Validation " ¥ = 8
Eé Dia n Packagel
. B% «£Pack fodeil ! ¥& Diagram UseCaseDiagraml
> B3 =M i -
Style Mame JseCaseDiagraml
General View Type 2 Default Papyrus Viewpeint :: UseCase Diagram
Advanced N |-
Owner 3 Packagel ILI IEI
Root element E=1 RootElement |7| |§| i

Figure 10. Creating a Use Case Diagram in Papyrus

Because we created this diagram under the root element, all the model elements (symbols) on the
diagram appeared under the root element in the model tree. This is not a good practice. A better
structure would be to place the entire Use Case diagram into Packagel; Package 2-1, Actor2, the
association, and UseCase2 into Package2; and Actor2-1, the association, and UseCase2-1 into
Package 2-1. We first created new packages on the model explorer by right clicking on the root
element and adding a new element through the drop down menus. We then dragged the elements
in the model tree into the target packages. To drag an item to the intended target parent, you
have to be sure that the intended parent is highlighted (underlined).

Another way to change the parent (actually, the owner in this case) is to change the Owner in the
Property View (the window under the canvas)

3.3 Sequence Diagram

Although we present sequence diagrams in the context of Internal Block Diagrams later in this
course, they can be used to represent interactions between actors and behaviors (use cases) as
well. To create a Sequence diagram for Actor2-1 and UseCase2-1, the same prerequisites as
were discussed for the Use Case diagram above apply. The procedure for creating a new
diagram is also similar. The mouse sequence is as follows:

Papyrus>New Diagram>Sequence Diagram

Add Actor2-1 and Use-Case 2-1 by dragging them onto the canvas from the model tree. They
should appear on the diagram as lifelines as shown on the following figure.

B Model Explorer 52 = O
A T

4 2 RootElement :
a4 3 Packagel :

4 [Packagel 1

% Actord i
|

|

1

|

|

3 Statelnvariant

B ————— & Edges 0

& Papyrus - Test Project 1/modell.di - Eclipse EI@
File Edit “J Diagram Mavigate Search Papyrus Preject Run Window Help
G ErHERIPE S RS- Wy EEBFrE -0
- - - = | A~ g Quick Access (17 | & Java [Resource
5 75 Project Explorer £2 = O | 72 "modell.di 53 = 0
g= = <‘===P | ¥ o = * |53 Palette [
- = Test Projectl | i :A(ItDrZ-l ‘ | i :UseICase2-l % [CRECRRY 3
: o Modes 0
H UBzesvanon
: |— Gate
i E] Signall() =l Einteraction
I Operand
: EllInteractionUse
i T Lifeline
|
1
|
I

Ef Signal2)
/" Contextlink

B Message Sync

B, Message Async
s/ A_usecasel_acto +--Message Reply
o UseCase?
4 B Package2 1 il -+ Message Create
./ A_usecsse2-1_ac |, = b —x Message Delete
ESuliseCaned,] EE, Packagel |$8 UseCazeDiagraml ﬁ SeqDiagraml i3
% Actor2-1
Signall] Properties 52 s i |
Signal2
] Interactionl El Interactionl
= " .
g& Diagram UseCaseDi: " -
5 Diagram SeqDiagrar UML Name Interactionl =
T Disg iDiag E
f; Diagram Packagel Comments Is abstract true @ falze Iz active true (@ falze
. B ryw |
En . Profile Is leaf true @ false Is reentrant @ true false
" Style R
Visibility public - Specification <Undefined> |...| |ru:| -
< i 3 = « I 3

Figure 11. Sequence Diagram with Actor and Use Case

Work around note: In one case, | attempted to drag the actors onto the diagram to create lifelines
but it didn't work so we created one lifeline using a lifeline item from the pallet. Then we I
added actor2-1 and then deleted the "starter” lifeline and added Use-Case 2-1

Create an asynchronous signal by dragging the Message Async line (edge) from the pallet to the
actor | then dragged one end to the use case. Then a "create new message" dialog box shown in
the following figure appeared. The dialog gives you the options of using an existing element
(signal or operation), creating a new one, or selecting no element. 1 chose to create a new signal.

10

) ==

Create a new Message

© fSeliect 3n exsting element

filter out all signals which are not receivable

Create a new element
Type: Signal
MName:

Owner of the created element: | <Package> Package2-1

@ oK Ganeel

Figure 12. Dialog Box for creating a new message

Workaround Note: You have to be careful with the connection but when the mouse is over the
right place, the "prohibited” (circle with a slash) symbol disappeared and I could left upon the
button. Try zooming in (increasing the magnification) if you are having difficulty. You can do
this by pressing “control” simultaneously with moving the mouse wheel (or slide control on a
touch control pad of a laptop computer)

3.4 Requirements Diagrams

Package, use case, and sequence diagrams are common to both SysML and UML. We will not
create our first SysML-unique diagram: the Requirements diagrams as shown in the following
figure

11

= Papyrus - Test Project 1/modell.di - Eclipse

Eile
Twmbos . EREE

- - - -

[Project Explorer 82 = O

— = G -
o= =

> [Test Project1

B Model Explorer 52 = B
0 G ERE L T
4 B3 RectElement -
4 [Packagel
4 [Packaged
% Actor2
/" A_usecasel g
O UseCased
4 B9 Package2-1
/A _usecasel-1]
O UseCase?-1 |=
% Actor2-1
Signall
Signal2
A Satisfys <Ab
.] Interactionl
22 Diagram UseCas
T Diagram SeqDiac
> =Requirements Requ
fé Diagram Packagel
[E Diagram Requiremer
(om b

Edit <) Diagram DNavigate Search Papyrus
DE PSR v

Project Run Window Help
LT

| A~ - F -

Quick Access

~¥ *modell.di 51

«Requirements
{text=Requirementl text shall, id=001..|
Requirementl

B BB b0 -%ic -
: ﬁl%’]a‘.’a LC,RE:ourcr:

«Requirements

Requirement2

{text=Requirement2 shall , id=00..,

O UseCase2-1 | .-~

Satisfyl
«Satisfys

4 i

B Packagel 38 UseCaseDiagraml | T SeqDiagraml | B Requirementsl 52
[T Properties &%

4 Connector true

= L

Appearance ne

Rulers And Grid ine width E
Advanced Line color @

4 [

Figure 13. Completed SysML requirements Diagram

=1 [EeR =)

|
| 53 Palette I
[@& &5 -8B
of Modes £
3 Package
Requirement
[E1 Preblem
[Rationale

=1 Comment

n

{?} Constraint
& Ez\ge:: 0
A Derive
& Decompose
?:;, Packagelmport
- Realization
A2, Satisfy
A Verify

3 e Link_

1

@E*E - =9

Create a Requirements Diagram by selecting RootElement on model explorer, then

Papyrus>New Diagram>Requirements diagram

Create Requirement 1 by dragging a requirement node onto the canvass. In the properties view
with the SysML (not UML) tab pressed as shown in the figure below, enter the requirement ID
and text. You use the SysML tab because the requirements diagram is a SysML extension of a
UML base class but is not a part of UML.

12

= Papyrus - Test Project 1/modell.di - Eclipse [E=1 E=R(5

File Edit “J Diagram Mavigate Search Papyrus Project Run Window Help

Tmb e EREEE s B 3~ — - Hiw ol v ga e = v W dn e ooow Bl Hl~Bl~ B~ 0~@G- = -
- - - - | - - - Quick Access || = | & Java [Resource
75 5 Project Explorer 2 = O 7P *modell.di 51 = g
Oz = q:?; = | 53 Palette I
> [Test Project1 [y @ €0 -8 -
«Requirements Ealiodcs “
{text=Requirementl text shall, id=001.. [Package
Requirementl E Requirement
[E1 Preblem
«Requirements o éc\ge-: o 0
{text=Requirement2 shall , id=00.., S .
B Model Explorer 32 = B _ -7 Requirement2 4, Derive
== -7 Decompose
oG E R T 7 -
a B3 RootElement =~ lm — ez == m - ~r, Packagelmport

4 [Packagel

) Packagel B, Packegel |38 UseCaseDiagreml | T SeqDiagraml | B Requirementsl 52
] ackag

% Actor2 [T Properties &% | f Model Validation Z-?-:’ ¥ =aa
/" A_usecasel g
O UseCased Requirementl
4 B9 Package2-1 d 0L I Requir it s
A usecose1 UML d ame Lequirement
2 UseCase?-1 |=| | Comments Text Requirement] text shall
% Actor2-1 SysML =
=7 Signall -
'gna Profile
Signal2
A, «Satisfyn <AH Style Iz abstract Dtrue @ false Is leaf Dtrue @ falze
3 El‘ Interactionl Appearance Master <Undefined>
g Diagram UseCass Rulers And Grid
™ iy
T Diagram SeqDiag Advanced Derived Derived from

> =Requirements Requ
fé Diagram Packagel

[E Diagram Requiremer

4 [»

UmL

Figure 14. Inserting a requirement ID and text in the property view (with the SysML option selected)

Next, create a second requirement and use a decompose relationship (one of the “edges” on the
diagram pallet) to connect to the first. We now want to link this requirement to another element
of the model that doesn’t appear on the diagram. Let’s use UseCase2-1. Drag UseCase2-1 from
the model explorer window onto the canvas and used a satisfy relationship to connect it to
requirement 2. This should show you the importance of the Model Explorer — it is your view
into the model repository that is independent of the diagram on the canvas. When you look at
the model explorer, you should see the following

13

B Model Explorer 53 05 =B = O
4 [=1 RootElement B
4 07 Packagel
4 B3 Package?
% Actor?
. A_usecasel_actor?
0 UseCasel
4 B3 Package2-1
. A_usecasel-1_actor2-1
0 UseCased-1
% Actor2-1
Signall
Signal2
2 «Satisfys <Abstraction> Satisfiyl
+ B Interactionl
gf Diagram UszeCaseDiagraml
'E’ Diagram SeqDiagraml
4 «Requirements Requirementl
«Requirement= Requirement2
B2, Diagram Packagel
& Diagram Requirernentsl

m

Figure 15. Model view of the requirements diagram with only Requirementl visible

You have to "expand" Requirementl by clicking on the right facing arrow in order to display
Requirement2. This is because Requirement 2 is a "child" of requirement 1. For the sake of
neatness and organization, you can now put this in its own package.

Selecting and editing items on the model explorer using the Properties View will change the
property throughout the model. Similarly, if you want to delete an element entirely from a
model, delete it in the Model Explorer. If you want to delete it only from a diagram, then bring
up the diagram on the canvas and perform the deletion.

Workaround Note: | experienced a bug in Papyrus. The requirement would not display the text
and the 1D when | entered it. To solve that problem, | entered a command to display the
compartments, then, because the expanded blocks was so large, | suppressed them again.
However, the text remained. The procedure for hiding and displaying compartments is described
in the next section.

3.5 Showing and Hiding Compartments

Many SysML model elements have “compartments” that are used to store additional properties.
To save space on a diagram, Papyrus (as well as most other SysML modeling tools) do not show
them by default. However you do can control the display of compartments. We’ll demonstrate
this with the requirements diagram.

Select a requirement, then
Right Click>Filters>Show/Hide Compartments

The Filters menu item is about the 5th one down on the pop-up menu that displays after right
clicking on the requirement.

14

After that mouse sequence, Papyrus displays the following

S Show/Hide compartments =] I@

Choose the compartments to show,

Compartments To Display Display Compartment Title
i [1 & <<Requirement>> =Class> Requirement2

Select All] ’ Deselect All] ’Eropagate selecticn to elements of samet)rpe]

@ [ok][cancet |

Figure 16. Show/Hide Compartments Initial Dialog Box

Select the checkbox and then click on the right facing arrow on the left to reveal all the
compartments. This is how the resultant display looks

S Show/Hide compartments = [[-=
P

Choose the compartments to show.

Compartments To Display Display Compartment Title
4 [«<Requirement>» <Class> Requirement2

B attributes

= operations

E nested classifiers

= InfermationCompartment

B symbel

E Decoration Node true

E Bazic Compartment true

= «Requirements

KRR ORRRERR

Select All] [Deselect All] IEropagata selection to elements of samatypel

@. [QK] [Cancel I

Figure 17. Compartments visible after clicking on the requirement checkbox

15

Select all, and then click OK. The requirement block expands (and may take up most of the
canvas with all compartments displayed. Repeat the mouse sequence to get to the show/hide
compartments again, and then deselect all. You should get the requirement ID and part of the
text as shown above.

4 Model Export and Import

In order to enable another Papyrus user to use your model, it is necessary to export it from the
workspace and for the other user to import it. The procedures are described below.

4.1 Exporting a Model
Go to the Project Explorer view. Select the project and the model within the project

5 Project Explorer &3

4 = Test Project 1
. @ modell

Figure 18. Project Explorer Tree containing the Papyrus model

Then, to export, execute the following mouse sequence

File>Export

and get the following dialog box.

16

=) Export - B

Select A
Export resources to the local file system. H

Select an export destination:

type filter text

4 (= General ~
S Ant Buildfiles
[Archive File
[Preferences

» (= Install

» = Java

> = Papyrus

» = Plug-in Development v

@ < Back Finish Cancel

Figure 19. Dialog for Selecting File System (in Mac OS X)

Then select File System and the “Next” button

Select the “resources” (in essence, files). Select all of the items shown in the figure below.

Enter the destination directory (i.e., the directory to which you want the files exported) and then
click on the “Finish button,

17

2 Epon olee=
File system —
Export rescurces to the local file system,
1
[B (= Test Projectl K] .project
P modell.di
= modell.notation
&) modell.uml
Filter Types... | [SelectAll | [Deselect Al
To directory: Ch\Users\myron' Documents'Eclipse Model Exports -
Options
[] Overwrite existing files without warning
() Create directory structure for files
@ Create only selected directories
P ; -

Figure 20. Dialog Box for identifying resources to export

Note: In order to get the "Finish” button, you have to enter a directory

4.2 Model Importing

To demonstrate the procedure, we are going to re-import the model we just exported, but in order
not to lose our original model, create a new project if necessary using the procedure described in
section 2 (e.g., Test Project 2)

Then execute the following mouse sequence
File>Import>General>File System

The following dialog box appears

18

Select

Irnport rescurces from the local file system into an existing project.

Select an import source:

| type filter text

4 [General
‘E' Archive File

|7} File Systern |
[} Preferences
B = Git
[+ = Install
= Maven
[= Oomph
B = Papyrus
[» (= Plug-in Developrment
[= Run/Debug
[+ (= Tasks

I = Team
r oo, WAl

(£ Existing Projects into Workspace

[»

Cancel

Figure 21. Import Model dialog box

You then get the following dialog box

19

S Import =[O sl
File system —
Seurce must not be empty. L /

From directory: - Browse...

Filter Types... Select All Deselect All
Opticns

[Qverwrite existing rescurces without warning

[Create top-level folder

Figure 22. Dialog Box to identify directory from which to retrieve the model

Then enter the source directory (which, in our case, was the directory that we just exported,
hence the name "Eclipse Model Exports") and the following four directories appear. Click the
check box. Papyrus will then select all of the subdirectories. Enter the name of the destination
folder (a new project in our case) and then press finish. Answer yes to the question that appears
next

20

S Import o o]

File system Iﬁ

Import rescurces from the local file system.
-
From directory: Ch\Users\myron\Documents\Eclipse Model Exports - Browse...
(= Eclipse Model Exports |X] .project
“Pmodell.di
= modell.notation
#] modell.uml
Filter Types... || Select All | [Deselect Al
Into folder: Test Project2
Options

[T] Qverwrite existing rescurces without warning

[C] Create top-level folder

® MNest > [Finizh] ’ Cancel

Figure 23. Dialog Box with resources to be imported identified.

The model should be imported and you should see the following into the project explorer

21

H"_‘, Project Explorer &3

4 = Test Project1
4 =) modell
“P di
|=| notaticn
&) urmnl
4 =5 Test Project?
4 7P modell
~2 di
|=| notaticn
&) umnl

Figure 24. Project Explorer with Imported Model

Double click on the copy of modell in Test Project2 and you should see the root element. You

can then expand the root element to see the model hierarchy unfold. After you see the
UseCaseDiagraml icon, double click and it should open.

[Project Explorer 52 #~J modell.di 53

a (= Test Project1
4 7Y modell
~P di

[£| notation

&) uml
a (= Test Project2
4 |~% modell _

m

-3 di Actor2

s

B Model Explorer 52 = B8
EEElEeg ~
a [= RootElement
4 7 Packagel
» B3 Package?
> B3 Packagel-1
>] Interactionl
28 Diagram UseCaseDiagraml
H‘ Diagram SeqDiagraml
3 «Requirements Requirementl
*En Dizgram Packagel
B Diagram Requi
o Moot

ol

m
O UseCase2

B3 Package2-1

% o UseCase2-1

Actor2-1

Figure 25. Use Case Diagram from imported model

22

= B8
L2 Palette [
NEEHLT

o Modes W%

A

[0 Package
=] Subject
% Actor
0 Use Case
{7} Constraint
= Comment
o Children %
Extension Point
o Links 40
/ Association
A Generalization
" Dependency
i Abstraction
- Rezlizaticn
i Usage
3;:) PackageMerge

27 Packagelmport

