

User Guide

Volume II
Copyright © 2003 – Criterion Software Ltd.

User Guide

II-2 11 February 2004

Contact Us

Criterion Software Ltd.
For general information about RenderWare Graphics e-mail info@csl.com.

Developer Relations
For information regarding Support please email devrels@csl.com.

Sales
For sales information contact: rw-sales@csl.com

Acknowledgements
Contributors RenderWare Graphics Development and Documentation

Teams

The information in this document is subject to change without notice and does not represent a commitment on the part
of Criterion Software Ltd. The software described in this document is furnished under a license agreement or a non-
disclosure agreement. The software may be used or copied only in accordance with the terms of the agreement. It is
against the law to copy the software on any medium except as specifically allowed in the license or non-disclosure
agreement. No part of this manual may be reproduced or transmitted in any form or by any means for any purpose
without the express written permission of Criterion Software Ltd.

Copyright © 1993 - 2003 Criterion Software Ltd. All rights reserved.

Canon and RenderWare are registered trademarks of Canon Inc. Nintendo is a registered trademark and NINTENDO
GAMECUBE a trademark of Nintendo Co., Ltd. Microsoft is a registered trademark and Xbox is a trademark of Microsoft
Corporation. PlayStation is a registered trademark of Sony Computer Entertainment Inc. All other trademark mentioned
herein are the property of their respective companies.

mailto:info@csl.com
mailto:devrels@csl.com
mailto:rw-sales@csl.com

Table of Contents

Part C - Animation libraries... 11

Chapter 15 - Skinning ... 13
15.1 Introduction ..14
15.2 Creating Skinning Data...15

15.2.1 Attaching the RpSkin plugin.. 15
15.2.2 Creating the RpSkin data.. 15
15.2.3 Node IDs.. 19
15.2.4 Destroying the RpSkin data .. 20
15.2.5 Querying the RpSkin data... 20

15.3 Using Skinning ..21
15.3.1 The RpSkin Object ... 21

15.4 Examples..23

Chapter 16 - Fundamental Types for Animation .. 24
16.1 Introduction ..25
16.2 Quaternions ..26

16.2.1 Usage .. 26
16.3 Spherical Linear Interpolation..30

16.3.1 Applications .. 30
16.3.2 Usage .. 31

16.4 Summary..33
16.4.1 Quaternions.. 33
16.4.2 Spherical Linear Interpolation ... 33

Chapter 17 - The Animation Toolkit... 37
17.1 Introduction ..38
17.2 Creating an Interpolation Schemes ..39
17.3 Creating Animation Data...41

17.3.1 The API.. 41
17.3.2 The Animation Keyframe Structure .. 41
17.3.3 Keyframe Ordering .. 42
17.3.4 Streaming Animation Data.. 43
17.3.5 Sub-Animations .. 43

17.4 Using RtAnim At Runtime..44
17.4.1 Concepts of Running Animations ... 44
17.4.2 The Interpolator .. 44
17.4.3 Applying and Running a Basic Animation .. 46
17.4.4 Animation CallBacks .. 46
17.4.5 Blending Between Animations ... 47

17.5 Sub-Interpolator Animations ...49
17.6 Delta Animations ...51
17.7 Procedural Animation ...52

User Guide

II-4 11 February 2004

17.7.1 Procedural Modification of Source Animation Data 52
17.7.2 Procedural Modification of Interpolated Keyframes 52

17.8 Summary ...53

Chapter 18 - The Hierarchical Animation Plugin.. 57
18.1 Introduction..58
18.2 Creating HAnim Data ...59

18.2.1 Hierarchy Structure Overview ... 59
18.2.2 Creating A Hierarchy.. 60
18.2.3 Tagging RwFrames .. 63

18.3 Using HAnim At Runtime ..64
18.3.1 Finding a Hierarchy in a Model .. 64
18.3.2 Setting Up a Hierarchy For Use ... 64
18.3.3 Concepts of Running Animations ... 66
18.3.4 Applying and Running a Basic Animation .. 66

18.4 Features Inherited from RtAnim ..68
18.4.1 Blending Between Animations ... 68
18.4.2 Sub Hierarchy Animations .. 68
18.4.3 Delta Animations... 70
18.4.4 Overloaded Interpolation Schemes .. 70

18.5 Procedural Animation ...71
18.5.1 Procedural Modification of the Matrix Array... 71
18.5.2 Procedural Modification of RwFrames ... 71

18.6 Compressed Keyframes ..73
18.7 Summary ...74

Chapter 19 - The UV Animation Plugin .. 75
19.1 Introduction..76

19.1.1 This Document.. 77
19.1.2 Other Resources ... 78

19.2 Basic UV Animation Usage ..79
19.2.1 Attaching the Plugins ... 79
19.2.2 Loading the UV Animation Dictionary ... 79
19.2.3 Loading the 3D Object ... 80
19.2.4 Obtaining a List of Materials to Animate ... 80
19.2.5 Animating the Material... 81

19.3 Creating and Applying UV Animations In Code...82
19.3.1 Creating a UV Animation .. 82
19.3.2 Setting up the Animation.. 83
19.3.3 Managing the Lifetime of the Animation ... 84
19.3.4 Using the Appropriate Effect on the Material 84
19.3.5 Setting the UV Animation on the Material ... 84
19.3.6 Accessing the Interpolators .. 85

19.4 Summary ...86

Chapter 20 - Morphing .. 87
20.1 Introduction..88

 Table of Contents

RenderWare Graphics 3.7 II-5

20.1.1 What Morphing Is .. 88
20.1.2 What Morphing is Not .. 88
20.1.3 Basic Concepts.. 89
20.1.4 Strengths and Weaknesses... 89
20.1.5 Other Documents .. 90

20.2 Morphing Structures...91
20.2.1 Geometry ... 91
20.2.2 Atomic ... 91
20.2.3 Morph Targets... 92
20.2.4 Interpolators... 92

20.3 How to Morph a Geometry ..94
20.3.1 Before Adding a Morph Animation.. 94
20.3.2 How To Set Up Morph Data... 94
20.3.3 Animating the Morph ... 96
20.3.4 Effects and Variations .. 96
20.3.5 Destruction... 96

20.4 The Morph Example ...97
20.5 Summary..99

Chapter 21 - Delta Morphing ... 101
21.1 Introduction .. 102

21.1.1 Morphing & Delta Morphing .. 102
21.1.2 DMorphing.. 102
21.1.3 Animation... 102
21.1.4 Examples ... 103

21.2 Basic DMorph Usage... 104
21.2.1 Loading a pre-built example ... 104
21.2.2 Animating... 105

21.3 RpGeometry and RpDMorphTargets.. 106
21.3.1 RpGeometry ... 106
21.3.2 Adding RpDMorphTargets ... 106
21.3.3 Saving DMorph RpGeometry ... 107
21.3.4 Direct control of DMorph Values .. 107
21.3.5 Transforming RpGeometry with RpDMorphTargets Attached................ 108
21.3.6 Destroying RpDMorphTargets.. 109

21.4 Animation ... 110
21.4.1 Creating Frames.. 110
21.4.2 Saving Animations... 111
21.4.3 Editing and Querying Frame Sequences.. 111
21.4.4 Loop CallBacks.. 111
21.4.5 Running an Animation.. 112
21.4.6 Destroying Frames .. 112

21.5 Summary.. 113
21.5.1 Delta Morphing ... 113
21.5.2 Basic Usage .. 113
21.5.3 RpGeometry and RpDMorphTargets ... 113
21.5.4 RpDMorphAnimation .. 114

User Guide

II-6 11 February 2004

Part D - Special Effects Libraries..115

Chapter 22 - The Material Effects Plugin ..117
22.1 Introduction.. 118

22.1.1 How RpMatFX Works.. 118
22.1.2 RpMatFX Features ... 118

22.2 Using Material Effects... 119
22.2.1 Selecting The Effect... 119
22.2.2 Initializing Effect Data.. 119
22.2.3 Enabling the Effects Renderer ... 128

22.3 Examples.. 130
22.3.1 A Bump Mapping Example .. 130

22.4 Summary ... 132
22.4.1 Supported Effects.. 132
22.4.2 Extended Objects .. 132

Chapter 23 - Lightmaps..133
23.1 Introduction.. 134

23.1.1 What are lightmaps?.. 134
23.1.2 Why use lightmaps? .. 135
23.1.3 What are the costs of lightmaps? .. 136
23.1.4 When not to use lightmaps? ... 136
23.1.5 Compatibility .. 137
23.1.6 Other documents .. 137

23.2 Lightmap functionality overview .. 139
23.3 Lightmap-related data objects... 140

23.3.1 Lighting Sessions .. 140
23.3.2 Lightmaps .. 142
23.3.3 World Sectors ... 143
23.3.4 Atomics.. 144
23.3.5 Materials .. 144
23.3.6 Area Lights... 145

23.4 Creating and using lightmaps .. 148
23.4.1 Lightmap creation ... 148
23.4.2 Lightmap illumination .. 149
23.4.3 Rendering with lightmaps... 151
23.4.4 Saving and reloading lightmap data... 151
23.4.5 Postprocessing lightmaps ... 151
23.4.6 Host Generation.. 152

23.5 The lightmaps example .. 153
23.5.1 Starting the example ... 154
23.5.2 The menu options ... 154
23.5.3 Options and issues .. 158
23.5.4 Troubleshooting .. 160

23.6 Importing Lightmaps.. 162
23.6.1 Manual Conversion .. 162

23.7 Summary ... 165

 Table of Contents

RenderWare Graphics 3.7 II-7

Chapter 24 - PTank ... 167
24.1 Introduction .. 168

24.1.1 What is a Particle?... 168
24.1.2 What Are Particles Used For? .. 168
24.1.3 What Is the Particle Tank?.. 170
24.1.4 What Particles Are Not ... 170
24.1.5 Other Documents .. 171

24.2 The Main Concepts... 172
24.2.1 The Particle .. 172
24.2.2 The Particle Tank... 177
24.2.3 RpPTankLockStruct.. 178
24.2.4 RpPTankFormatDescriptor .. 178
24.2.5 Locking and Unlocking ... 179

24.3 How to Use Particles Step by Step ... 183
24.3.1 Initialization.. 183
24.3.2 Defining Particles .. 183
24.3.3 Animation... 185

24.4 Examples.. 187
24.5 Troubleshooting... 188
24.6 Summary.. 189

Chapter 25 - Standard Particles .. 191
25.1 Introduction .. 192
25.2 The RpPrtStd Plugin ... 193

25.2.1 The Emitter .. 193
25.2.2 The Particle .. 193
25.2.3 The Emitter And Particle Classes ... 194
25.2.4 The Property Table .. 195
25.2.5 The Emitter And Particle CallBacks... 196

25.3 Basic Usage .. 198
25.3.1 Creation And Destruction.. 198
25.3.2 Updating .. 202
25.3.3 Rendering... 204
25.3.4 Streaming .. 204

25.4 Standard Properties ... 207
25.5 Summary.. 208

Chapter 26 - B-splines and Bézier Patches .. 209
26.1 Introduction .. 210

26.1.1 Other Documents .. 210
26.2 B-splines .. 211

26.2.1 Introduction.. 211
26.2.2 What Are B-splines? .. 211
26.2.3 Some Features of B-splines .. 212
26.2.4 Why Use B-splines? ... 215
26.2.5 How RenderWare Graphics Processes Two-dimensional B-spline Curves.
 216

User Guide

II-8 11 February 2004

26.2.6 Spline Summary ... 219
26.3 3D Bézier Patches.. 220

26.3.1 Introduction ... 220
26.3.2 What Are Patches? .. 220
26.3.3 Why Use Patches? ... 221
26.3.4 How RenderWare Graphics Handles Patches 222
26.3.5 How To Use Patches .. 227
26.3.6 Example Code... 237
26.3.7 Summary ... 238

26.4 Bézier Toolkit .. 239
26.4.1 Introduction ... 239
26.4.2 Data Types... 240
26.4.3 Quad Patch from Tri Patch.. 241
26.4.4 Surface Points to Control Points and Back... 242
26.4.5 Forward Differencing ... 243
26.4.6 Patch Tangents and Normals .. 247
26.4.7 Toolkit Summary... 249

26.5 Summary ... 250

Part E - World Management Libraries...251

Chapter 27 - Collision Detection...253
27.1 Introduction.. 254

27.1.1 Plugins & Toolkits .. 254
27.2 Detecting Collisions.. 255

27.2.1 The RpCollision Plugin.. 255
27.2.2 The RtIntersection Toolkit .. 255

27.3 Picking ... 257
27.3.1 The RtPick Toolkit.. 257

27.4 Static Geometry Intersections ... 259
27.4.1 Collisions with World Triangles .. 259
27.4.2 Collisions with World Sectors .. 261
27.4.3 Collisions with World Atomics.. 261

27.5 Atomic & Geometry Intersections .. 262
27.5.1 Collision Data ... 262
27.5.2 Performing Collision Tests .. 262
27.5.3 Example... 264

27.6 Summary ... 265
27.6.1 APIs .. 265
27.6.2 Hints & Tips.. 265

Chapter 28 - Potentially Visible Sets ..267
28.1 Introduction.. 268

28.1.1 What are Potentially Visible Sets?.. 268
28.1.2 The APIs .. 268
28.1.3 Applications for PVS functionality .. 268
28.1.4 Reasons for NOT using PVS data ... 269

 Table of Contents

RenderWare Graphics 3.7 II-9

28.2 Building PVS Data .. 270
28.2.1 Using the PVS Converter .. 270
28.2.2 Using the PVS Editor.. 270
28.2.3 Using RpPVS... 270
28.2.4 Using RtSplinePVS... 273
28.2.5 Generation Progress CallBacks .. 274

28.3 Using PVS Data ... 276
28.3.1 Unhooking the PVS Subsystem.. 276
28.3.2 PVS Runtime Utility Functions ... 277
28.3.3 Writing Your Own PVS Render CallBack Function 278

28.4 Summary.. 279
28.4.1 Potentially Visible Sets ... 279
28.4.2 Generating PVS Data ... 279
28.4.3 Rendering... 280

Chapter 29 - Geometry Conditioning .. 281
29.1 Introduction .. 282

29.1.1 Examples ... 282
29.1.2 Other Documentation... 283

29.2 Overview .. 284
29.3 API Details.. 285

29.3.1 Setting up a Geometry Conditioning Pipeline..................................... 285
29.3.2 Setting up Geometry Conditioning Parameters 286
29.3.3 UserData CallBacks.. 288

29.4 Advanced API Details ... 289
29.4.1 The Basics .. 289
29.4.2 Allocating Data.. 289
29.4.3 Custom Pipelines... 289
29.4.4 Utilities and tools... 292

29.5 Summary.. 295

Index .. 297

Part C

Animation
libraries

Chapter 15

Skinning

Chapter 15- Skinning

II-14 11 February 2004

15.1 Introduction
Skinning provides a means to animate a model while reducing the "folding"
and "creasing" of polygons as the model animates.

The process begins by defining a bone hierarchy in a model. The bone
hierarchy is linked to the model's mesh, so that animating the bone
hierarchy animates the mesh's vertices.

Up to four bones affect each vertex in the skin mesh. Each bone has a
weighting value to determine how much influence it has in proportion to
the others.

Skinning is supported by RpSkin and is covered in this chapter. RpHAnim,
which implements a full-featured hierarchical animation system, also relies
on RpSkin to provide skinning support for its own animation system.
Details of using RpHAnim are covered in The Hierarchical Animation Plugin
Chapter.

The RpSkin plugin uses the RpHAnim hierarchy to define how the bones of
the model move. These bones are linked to vertices within an atomic with a
matching structure so that animating the bones also animates the atomic.

It is important to understand that the hierarchy is a distinct entity,
separate from the atomic. If their respective structures match, multiple
hierarchies can be attached to a single skinned model. Similarly, multiple
models can also use the same hierarchy.

 Creating Skinning Data

RenderWare Graphics 3.7 II-15

15.2 Creating Skinning Data
Skinning data involves the generation of two sets of data:

1. The RpSkin data resides in an rwID_CLUMP chunk in a RenderWare
Graphics binary stream, saved using the streaming of the RpGeometry
that the RpSkin is attached to. This defines the relationship between the
bone hierarchy and the skin.

2. The RtAnimAnimation animation data is stored in an
rwID_HANIMANIMATION chunk in a binary stream. This defines the
animation keyframes that each bone takes during its animation.

Any number of RtAnimAnimation animations can be applied to a single
RpHAnimHierarchy controlling the skin's bones, providing that the bone
hierarchy itself remains the same. This is because RtAnimAnimation
animations are not explicitly linked to model data. So, as long as the model
to which the animation is applied has a matching structure, the data will
be valid.

It is possible to apply different animations to a hierarchy.

15.2.1 Attaching the RpSkin plugin

Before skinning is supported, the RpSkin plugin must be attached by
calling the function RpSkinPluginAttach(). This registers the RpSkin
extension to an RpGeometry (automatic streaming, constructor extension,
and cloning functions with RenderWare Graphics).

15.2.2 Creating the RpSkin data

In most situations, the skinning data will be created at the model export
stage. The key function for this purpose is RpSkinCreate().

This function takes the following parameters:

• The number of vertices in the skin.

• The number of bones in the skin.

• An array of vertex weights, one per vertex.

• An array of vertex indices, one per vertex.

• An array of inverse matrices.

These parameters are explained below.

Chapter 15- Skinning

II-16 11 February 2004

Number of vertices

To reserve memory for the skin, the number of vertices in the skin
(normally equal to the number of vertices in the geometry mesh that is
going to be skinned) is passed as a parameter.

Number of Bones

This value is extracted from the modeler when using the RenderWare
Graphics exporter. This value is used as the array size for the array of
inverse bone matrices. (See the RpSkin overview in the API Reference
details of platform specific limitations.)

For models that requires more bones than could be supported at once by
the target platform, it is necessary for them to be split into smaller groups.
Each group would require only a subset of the bones in the model that
would fit into the target platform. The function,
RtSkinSplitAtomicSplitGeometry(), can split a skin model into groups
where each group would require a given number of bones.

Vertex Weights

An array of RwMatrixWeights is passed to RpSkinCreate() as a
parameter. The array length is determined as the number of vertices for
which the skinning data is being created.

Each RwMatrixWeights structure is made up of four RwReals. Each
represents the weight of the corresponding bone in the array of vertex
indices.

A weight may contain a value in the range 0.0 to 1.0. The sum of the four
weights affecting the vertex should be 1.0 under normal conditions and,
although values not totaling 1.0 give an officially undefined result,
experience has shown that others can have interesting results.

Processing of weights for a bone will stop when the first weighting of 0.0 is
found, and we assume that there are no more bones affecting the vertex. All
the unused weights should be set to 0.0. The vertex weights must therefore
be arranged such that all valid weights are first in the RwMatrixWeights
structure and all zero weights are last. This can be done by sorting the
weights into descending order. The vertex indices should reflect this sorted
order.

The weights in the vertex weights array must be arranged in the same order
as the vertices in the atomic.

Bone Vertex Indices

Each vertex can be affected by up to four bones, and the bone ID of each of
the four bones are stored in here. The RwUInt32 contains four packed
RwUInt8 values, each one of which contains an integer 0 to 255, so the
maximum number of bones supported in a skeleton is 256.

 Creating Skinning Data

RenderWare Graphics 3.7 II-17

The following macro will pack the indices into the bone vertex:

#define PACK(b1, b2, b3, b4) ((b4 << 24) + (b3 << 16) + \

 (b2 << 8) + b1)

Inverse Bone Matrices

The transformation from skin space to bone space, required at run-time for
modifying vertex positions, is achieved by transforming the vertex position
by the Inverse Bone Matrix (IBM). Since the root of the hierarchy is attached
to the mesh in an RwFrame hierarchy, the IBM is the inverse of the overall
transformation matrix—the Local Transformation Matrix (LTM)—from the
mesh to the bone.

The RpSkinCreate() function requires an array of IBMs, stored in bone
order. The length of the array is determined from the number of bones.

Within the hierarchy, RwFrames are stored for each bone node, indicating
the transformation of that bone with respect to its parents.

The run-time procedure then performs the following operations:

1. Transforms vertex positions from their object space (skin space) into
bone space using the IBMs.

2. Performs the key-frame based animation for that frame, which
transform the vertex positions back into skin space in its animated
pose.

3. The model is then rendered.

The inverse bone matrices are RwMatrix's. There should be one per bone,
i.e. the same number as you are passing to the numBones parameter of
RpSkinCreate().The inverse bone matrices describe the transformation
matrix from "the root" bone in the hierarchy to "each" bone in the
hierarchy.

To find the inverse bone matrix, one requires the transformation matrix
from the bone to the root bone.

For instance for bone 3 this is obtained by:

(The results from each of the following 4 steps is shown on the diagrams.)

1. finding the transformation matrix from the world origin to the root
bone,

root bone (0) O <<<---

 / \ TRANSFORMATION A

 / \

 (1) O ------- 0 (world origin)

 / \

 / \

 (2) O (3) O

Chapter 15- Skinning

II-18 11 February 2004

2. inverting this to find the transformation matrix from the root bone to
the world origin,

 root bone (0) O ------

 / \ TRANSFORMATION B

 / \

 (1) O ---->>> 0 (world origin)

 / \

 / \

 (2) O (3) O

3. multiplying this by the LTM of bone 3 to find the transformation from
the root bone to bone 3,

 root bone (0) O

 /

 /

 (1) O ------- 0 (world origin)

 / \ /

 / \ / BONE 3 LTM

 (2) O (3) O <<<---

 root bone (0) O ------

 / \ TRANSFORMATION C

 / \

 (1) O | 0 (world origin)

 / \ /

 / \ /

 (2) O (3) O <<<---

4. inverting this to find the transformation from bone 3 to the root bone.

 root bone (0) O <<<---

 / \ TRANSFORMATION D

 / \

 (1) O | 0 (world origin)

 / \ /

 / \ /

 (2) O (3) O ------

The following code calculates the inverse bone matrix if you have the world
transformation matrix for each bone. Calculate for each bone in turn.

{

 /*

 * INPUTS: node is a structure with the current

 * bone world transformation stored in

 * a frame root is a structure with the

 * root bone world transformation stored

 * in a frame.

 * OUTPUT: ibm is a pointer to the inverse bone

 Creating Skinning Data

RenderWare Graphics 3.7 II-19

 * matrix of the current node.

 */

 RwMatrix *invHierarchyRootMatrix;

 RwMatrix *rootRelativeMatrix;

 RwMatrix *LTM;

 RwMatrix *rootLTM;

 /* Calculate & store the inverse bone matrix *

 * within the hierarchy */

 invHierarchyRootMatrix = RwMatrixCreate();

 rootRelativeMatrix = RwMatrixCreate();

 LTM = RwFrameGetLTM(node->frame);

 rootLTM = RwFrameGetLTM(root->frame);

 RwMatrixInvert(invHierarchyRootMatrix, rootLTM);

 RwMatrixMultiply(rootRelativeMatrix,

 LTM,

 invHierarchyRootMatrix);

 RwMatrixInvert(ibm, rootRelativeMatrix);

 RwMatrixDestroy(invHierarchyRootMatrix);

 RwMatrixDestroy(rootRelativeMatrix);

}

15.2.3 Node IDs

The array of nodes in RpHAnim equates to the array of bones in RpSkin. The
node IDs are usually generated automatically by the RenderWare Graphics
exporter for the modeling package. An artist can, however, override the
defaults and use their own IDs for a particular node (which relate directly
to the bones). This facility makes it easier for programmers to locate any
bones that require special treatment, as would be the case for many
procedural animation techniques.

The node IDs must be unique within the hierarchy. Normally, a modeling
package will supply unique bone IDs, but in the event that they are not
tagged, unique IDs should be created dynamically within the exporter by
default.

Assigning Node IDs within a Modeling Package

Support for RpSkin and RpHAnim is available for both the 3ds max and
Maya modeling packages. As each modeling package has a different user
interface, package-specific details on tagging objects can be found within
the appropriate Artist Guide for your preferred package.

Chapter 15- Skinning

II-20 11 February 2004

Extracting the Node ID at Run-time

The RpHAnimIDGetIndex() function returns the index from an
RpHAnimHierarchy for a particular node ID. This index maps directly into
the skin to bone matrix array. The skin to bone matrix array is retrieved
with RpSkinGetSkinToBoneMatrices(). (Elements of the matrix array are
of type RwMatrix.)

15.2.4 Destroying the RpSkin data

The RpSkin data is destroyed with RpSkinDestroy(), all internal and
platform specific data is cleaned up automatically.

15.2.5 Querying the RpSkin data

The following functions give read-only access to the RpSkin data.

RpSkinGetNumBones() return the number of bones in the RpSkin.

RpSkinGetVertexBoneWeights() return the array of vertex bone weights
(RwMatrixWeights *) in the RpSkin.

RpSkinGetVertexBoneIndices() return the array of packed vertex bone
indices (RwUInt32 *) in the RpSkin.

RpSkinGetSkinToBoneMatrices() return the array of skin to bone
matrices (RwMatrix *) in the RpSkin.

 Using Skinning

RenderWare Graphics 3.7 II-21

15.3 Using Skinning
When using skinning, there are three main objects to deal with:

• The RpSkin object

• The RpHAnimHierarchy object

• The RtAnimAnimation object

The use of RpHAnimHierarchy objects and RtAnimAnimation objects is
described in The Hierarchical Animation Plugin Chapter.

15.3.1 The RpSkin Object

The RpSkin object contains the skinning data. The vertex weights, vertex
indices and IBMs are all used by the skin rendering pipeline.

The RpSkin object should be attached to an RpGeometry with
RpSkinGeometrySetSkin(). The RpGeometry vertices match up to the
skinning vertex information in the RpSkin.

The RpSkin object attached to an RpGeometry can be retrieved with
RpSkinGeometryGetSkin().

When an RpGeometry is streamed in as part of rwID_CLUMP chunk, any
attached RpSkin will also be streamed in. Likewise, any attached RpSkin
will automatically be streamed out with an RpGeometry.

It is possible that there will be multiple RpAtomics referencing the same
RpGeometry instance. So the skin's animation data is attached to the
RpAtomic instead of the RpGeometry. The hierarchy is attached to the
atomic with RpSkinAtomicSetHAnimHierarchy(). An RpAtomic's
presently attached hierarchy can be retrieved with
RpSkinAtomicGetHAnimHierarchy().

Attaching the RpSkin to an RpGeometry, and then attaching an
RpHAnimHierarchy to the RpAtomic referencing the RpGeometry, has fully
setup the data required for skinning the mesh. However the rendering
pipeline attached to the RpAtomic needs to be overloaded with a custom
skinning pipeline. The default rendering pipeline knows nothing about the
skinning data extension.

The RpSkinType enumeration lists the different rendering pipeline types
available within the RpSkin plugin. At present these are:

• rpSKINTYPEGENERIC – pipeline renders generic skinned geometry.

• rpSKINTYPEMATFX – pipeline renders material effected skinned
geometry.

Chapter 15- Skinning

II-22 11 February 2004

• rpSKINTYPETOON – pipeline renders toon shaded skinned geometry.

✎ Toon shading is available through the Toon plugin that is part of the FX Pack.

A skinned rendering pipeline is attached to the RpAtomic with
RpSkinAtomicSetType(). The type of the present skinning pipeline can be
queried from an RpAtomic with RpSkinAtomicGetType().

✎

RpSkin Libraries: rpskin.lib, rpskinmatfx.lib, and rpskintoon.lib

There are three versions of the RpSkin libraries in the RenderWare Graphics SDK. They
are both fully featured versions on the RpSkin plugin, and they contain identical APIs.
However, because the rendering pipelines are large we've taken the step to compile
different versions of the plugin so that the user can select precisely the pipelines they will
be using.

The rpskin.lib library only contains the rpSKINTYPEGENERIC pipeline.

Whereas the rpskinmatfx.lib library contains both the rpSKINTYPEGENERIC and
rpSKINTYPEMATFX pipelines.

Finally the rpskintoon.lib library contains both the rpSKINTYPEGENERIC and
rpSKINTYPETOON pipelines.

Only one of the skinning libraries should be used in an application at once.

✎

RpSkin & RpPatch

The RpPatch plugin also supports skinned patch meshes. The RpPatchMeshes
are used with the skinning plugin in a very similar ways to RpGeometrys.

RpPatchMeshSetSkin() should be used instead of RpSkinGeometrySetSkin(),
and

RpPatchMeshGetSkin() should be used instead of RpSkinGeometryGetSkin().

Once the RpPatchMesh has been attached to the RpAtomic (in place of an
RpGeometry), the correct skinning patch rendering pipeline must be
attached to the RpAtomic. There are two skinning patch rendering
pipelines in the RpPatch plugin:

• rpPATCHTYPESKIN – pipeline renders skinned patches.

• rpPATCHTYPESKINMATFX – pipeline renders skinned material effected patches.

The RpPatch pipelines are attched with RpPatchAtomicSetType() instead of
RpSkinAtomicSetType().

For more details on using the skinning patch pipeline please read The B-
splines and Bézier Patches Chapter.

 Examples

RenderWare Graphics 3.7 II-23

15.4 Examples
The core skinning features exposed by RpSkin are used by the RpHAnim
examples listed below.

• hanim1

• hanim2

• hanim3

• hanim4

• hanimkey

• hanimsub

Chapter 16

Fundamental
Types for

Animation

 Introduction

RenderWare Graphics 3.7 II-25

16.1 Introduction
The RenderWare Graphics SDK contains support for quaternions (RtQuat),
which provide functionality for orienting keyframes, and spherical linear
interpolators (RtSlerp), which provide functionality for interpolating
smoothly between these keyframes.

This chapter does not attempt to give an in-depth description of
quaternions and Slerps, concentrating instead on detailing the support
provided for them.

For further information on these subjects, see the resources listed in the
Recommended Reading appendix.

Chapter 16- Fundamental Types for Animation

II-26 11 February 2004

16.2 Quaternions
The RtQuat toolkit exposes support for quaternions.

A quaternion consists of four elements; a real value and three imaginary
values. Together, these can represent both scaling and rotation transforms,
with the advantage that operations always produce orthogonal results—i.e.,
there is no shearing created by rounding errors, such as can occur when
using matrices alone.

Quaternions are compact, compared to the nine values needed for a matrix,
so they are useful on platforms where memory is at a premium or where
the architecture favors smaller data structures.

The rtquat.h header file needs to be included and its library linked
against.

16.2.1 Usage

Creation

Quaternions are small enough to be declared as automatic variables . They
are initialized, rather than being declared as pointers and being allocated
memory. For this reason, they don't need constructor or destructor
functions and the RtQuat structure is transparent and can be addressed
directly.

An RtQuat structure contains two elements:

• real – an RwReal value representing the real value

• imag – an RwV3d vector representing the imaginary values

These can be modified directly if required, although an RtQuatInit()
function is provided by the API for convenience.

The following code fragment shows a unit quaternion being created and
initialized:

RtQuat myQuat;

...

RtQuatInit(&myQuat, 0.5f, 0.5f, 0.5f, 0.5f);

 Quaternions

RenderWare Graphics 3.7 II-27

Rotations

Quaternions are usually used to perform rotations. To this end, the RtQuat
API includes the RtQuatRotate() to initialize a quaternion using a vector
which represents the axis of rotation, and an angle representing the
rotation itself.

Conversely, the RtQuatQueryRotate() function will return the axis and
angle from a given quaternion.

Scaling

The length, or modulus, of a quaternion represents the scale. Although only
rotation is usually required of a quaternion, the RtQuatScale() function is
provided to allow the application to re-scale a quaternion, into a new
quaternion.

Transforming Vectors

A quaternion rotation is often applied to a vector array. For this purpose,
the RtQuat API provides the RtQuatTransform() function, which applies
the transformation represented by a quaternion to an array of vectors.

Chapter 16- Fundamental Types for Animation

II-28 11 February 2004

API

The RtQuat toolkit provides a full-featured API and includes a number of
quaternion operations. The operations and matching functions names are
listed in the table below:

FUNCTION PURPOSE

RtQuatAssign() Copies one quaternion to another.
RtQuatConjugate() Negates the imaginary parts of a

quaternion.
RtQuatConvertToMatrix() Takes a quaternion and converts it

to the equivalent matrix.
RtQuatConvertFromMatrix() Takes a matrix and returns the

equivalent quaternion.
RtQuatAdd() Adds two quaternions together,

producing a third. (A=B+C)
RtQuatSub() Calculates the difference between

two quaternions. (A=B-C)
RtQuatIncrement() Increments a quaternion by

another. (Equivalent to A+=B)
RtQuatDecrement() Decrements a quaternion by

another. (Equivalent to A-=B)
RtQuatIncrementRealPart() Increments the real part of a

quaternion by a specified real
value.

RtQuatDecrementRealPart() Decrements the real part of a
quaternion by a specified real
value.

RtQuatMultiply() Calculates the (non-commutative)
product of two quaternions.

RtQuatNegate() Negates a quaternion to the
additive inverse.

RtQuatModulus() Returns the modulus—the scaling
component—of a quaternion.

RtQuatModulusSquared() Returns the square of the modulus
of a quaternion.

RtQuatExp() Calculates the exponential of a
quaternion.

RtQuatPow() Calculates the power of a
quaternion.

RtQuatLog() Calculates the logarithm of a
quaternion.

 Quaternions

RenderWare Graphics 3.7 II-29

RtQuatQueryRotate() Determines the rotation
represented by a quaternion. The
rotation is returned as a unit vector
along the axis of rotation, and an
angle of rotation.
The rotation component has two
possible descriptions since a
rotation about an axis of theta
degrees is equivalent to a rotation
about an axis pointing in the
opposite direction by an angle of
360°-theta in the reverse direction.
The rotation with the smaller angle
is returned.

RtQuatRotate() Builds a rotation quaternion from
the given axis and angle of rotation.

RtQuatScale() Scales a quaternion by the
specified factor.

RtQuatSquareRoot() Calculates the square root of the
specified quaternion.

RtQuatTransformVectors() Uses the given quaternion
describing a transformation and
applies it to the specified array of
vectors. The results are then placed
in another array (which may be the
same array as the source).

RtQuatUnitConvertToMatrix() Converts from a unit quaternion to
a matrix.

RtQuatUnitExp() Calculates the exponential of a unit
quaternion.

RtQuatUnitLog() Calculates the logarithm of a unit
quaternion.

RtQuatUnitPow() Calculates the power of a unit
quaternion.

RtQuatReciprocal() Reciprocates a quaternion to its
multiplicative inverse.

The RtSlerp toolkit exposes support for spherical linear interpolations—so-
called "Slerps". The rtslerp.h header file needs to be included and its
library linked against.

This toolkit works closely with quaternions so it also requires RtQuat to be
linked in to your application.

Chapter 16- Fundamental Types for Animation

II-30 11 February 2004

16.3 Spherical Linear Interpolation

16.3.1 Applications

Slerps are used to spherically interpolate between two quaternions—each
typically representing a key-frame orientation. This is a common
requirement in animations where linear interpolation is not always
appropriate—animating skinned models, for example.

The primary use for both quaternions and Slerps is interpolating rotations
in animation. Quaternions are often used together with spherical linear
interpolators to interpolate rotations along an arc; the result is generally
more "natural" than a linear interpolation.

RenderWare Graphics supports Slerps through the RtSlerp toolkit, which
is covered in Section 1.3 of this chapter.

Why not use Morph Targets?

Morph target animation uses linear interpolation exclusively. This means
that the interpolated frames created between one key-frame and the next
are always positioned in a straight line. This is great for animating, say, a
spaceship. But many situations call for interpolating in an arc, rather than
a straight line.

A simple example is an analog clock face. The following sequence shows
how the hands would move if linear interpolation is used between the two
keyframes:

1st key-frame 2nd key-frame
Linearly interpolated frames

Because Slerps interpolate the animation along an arc rather than a
straight line, the clock face above would be animated as shown below. (The
frames are said to have been "Slerped", which is an abbreviation for
"Spherical-linearly interpolated").

 1st key-frame 2nd key-frame
"Slerped frames"

 Spherical Linear Interpolation

RenderWare Graphics 3.7 II-31

The most common use of Slerps is for skinned animations based around
virtual "bones". In such animations, the bones must be animated such that
the paths describe curves in space, rather than lines—i.e. the bones
maintain their length throughout the interpolation.

16.3.2 Usage

Creation

Slerps are represented by the RtSlerp object. This object is transparent
and defined as follows:

• angle – The angle, in degrees, between source and destination. (RwReal).

• axis – The axis of rotation for the Slerp. (RwV3d).

• endMat – The end matrix. (RwMatrix *).

• matRefMask – Flags specifying which matrices are not managed by the
Slerp object. (RwInt32).

• startMat – The start matrix. (RwMatrix *).

• useLerp – If TRUE then linear interpolations will be used. (RwBool).

The constants listed below are used with the matRefMask element:

• rtSLERPREFNONE – Both start and end matrices are copied into the
structure rather than accessed by reference.

• rtSLERPREFSTARTMAT – The start matrix is referenced and should be
destroyed by the application when no longer required. The end matrix is
copied.

• rtSLERPREFENDMAT – The end matrix is referenced and should be
destroyed by the application when no longer required. The start matrix
is copied.

• rtSLERPREFALL – Both start and end matrices are referenced and
should be destroyed by the application when no longer required.

Accessing by reference is usually the preferred option, but it should be
noted that it is usually necessary for Slerp objects to persist across
rendering cycles, so that they can be used to continue the interpolation.
Copying of matrices requires more memory, but does have the advantage
that persistent Slerps may be easier to maintain using this method.

Creating a valid Slerp usually requires two calls:

• The first is to RtSlerpCreate(). This function takes one argument
defining the flags for the matRefMask property of the Slerp. One of the
constants listed above should be used for this.

Chapter 16- Fundamental Types for Animation

II-32 11 February 2004

• Secondly, the Slerp needs to be initialized with valid data using
RtSlerpInitialize(). This takes a pointer to a Slerp object and
pointers to the two key-frame matrices that are to be used. These
matrices will be either copied to, or referenced by, the Slerp object
according to the flags set in RtSlerpCreate().

✎ RtSlerpCreate() must be called before RtSlerpInitialize() in order to ensure the
flags are set. If this is not done, the result is undefined.

Caches

Two caching structures are exposed by the RtSlerp toolkit:
RtQuatSlerpCache and RtQuatSlerpArgandCache. These are used
internally by the API to improve performance—either method can be
selected.

Full documentation of these structures can be found in the API Reference.

The required cache must be setup before the Slerp can be used for
interpolation. The relevant functions are RtQuatSetupSlerpCache() and
RtQuatSetupSlerpArgandCache().

Performing Spherical Linear Interpolations

With all the requisite structures initialized, it is now possible to perform the
spherical linear interpolation. Two functions are available for this purpose:

• RtQuatSlerp(), which uses the RtQuatSlerpCache and

• RtQuatSlerpArgand(), which makes use of the
RtQuatSlerpArgandCache() instead.

 Summary

RenderWare Graphics 3.7 II-33

16.4 Summary
The RenderWare Graphics SDK contains support for quaternions (RtQuat)
and spherical linear interpolators (RtSlerp).

16.4.1 Quaternions

• The RtQuat toolkit exposes support for quaternions, which represent
both rotation and scaling.

• A quaternion consists of four elements: one real part, and three
imaginary parts.

• Morph target animation uses linear interpolation exclusively.

• Quaternions are often used together with spherical linear
interpolators—also known as Slerps—to interpolate rotations along an
arc. The result generally appears more natural than a linear
interpolation. Slerps are implemented by the RtSlerp toolkit.

• The RpHAnim plugin uses the RtQuat toolkit to implement rotational
animation.

16.4.2 Spherical Linear Interpolation

• The RtSlerp toolkit exposes support for Slerps.

• Slerps are represented by the RtSlerp object.

Chapter 17

The Animation
Toolkit

Chapter 17- The Animation Toolkit

II-38 11 February 2004

17.1 Introduction
The animation toolkit (RtAnim) provides support for keyframe based
animation systems.

RtAnim works off two main objects: RtAnimInterpolator and
RtAnimAnimation. The interpolator holds the state of the animation during
playback, while the animation contains the actual animation data.

As RtAnim does not have any knowledge about the data being animated, it
will refer to the animated objects as nodes.

Animation data takes the form of a series of keyframes for each node in an
RtAnimInterpolator, each describing the state of that node at a specific
point in time. Smooth animation results from interpolation between
keyframe pairs.

The state held by the interpolator is an array of interpolated keyframes
along with references to the current keyframe pairs in the animation that
are being interpolated. This last array is exposed for more advanced uses
such as allowing procedural animation at the keyframe level.

RtAnim supports overloaded keyframe schemes. This allows a user to
register a block of functions for processing a user-defined keyframe
structure allowing the system to be used on any type of animation.

 Creating an Interpolation Schemes

RenderWare Graphics 3.7 II-39

17.2 Creating an Interpolation Schemes
In order to play specific types of animation, either higher order or optimized
types, you need to define a new interpolation scheme.

Implementing an interpolation scheme comprises the definition of a
structure for your keyframe data and a number of functions allowing the
animation system to process your keyframes. Once these functions are
defined they can be registered with the RtAnim toolkit and then all the
standard animation functions can be used.

To fully describe an interpolation scheme you need to implement all the
functions, that are contained in the RtAnimInterpolatorInfo structure,
that deal with your keyframe type. The structure is defined as follows:

struct RtAnimInterpolatorInfo

{

 RwInt32 typeID;

 RwInt32 keyFrameSize;

 RtAnimKeyFrameApplyCallBack keyFrameApplyCB;

 RtAnimKeyFrameBlendCallBack keyFrameBlendCB;

 RtAnimKeyFrameInterpolateCallBack keyFrameInterpolateCB;

 RtAnimKeyFrameAddCallBack keyFrameAddCB;

 RtAnimKeyFrameMulRecipCallBack keyFrameMulRecipCB;

 RtAnimKeyFrameStreamReadCallBack keyFrameStreamReadCB;

 RtAnimKeyFrameStreamWriteCallBack keyFrameStreamWriteCB;

 RtAnimKeyFrameStreamGetSizeCallBack keyFrameStreamGetSizeCB;

};

The types and usage of the structure members are as follows:

RwInt32 typeID: This is an ID that should uniquely identify your
interpolation scheme and will be used to link animations to their
appropriate interpolation scheme. It is suggested that developers construct
unique IDs using MAKECHUNKID(vendorID, typeID).

RwInt32 keyframeSize: This defines the size of the keyframe data in
bytes. It is used so that the generic animation functions know how to step
through an array of keyframe data. Because the interpolator also caches
animation keyframes it is given a maximum keyframe size at creation. This
maximum size must be greater than or equal to the keyframe size of the
interpolation scheme to use the animation on that interpolator.

void keyFrameApplyCB(void * result, void * voidIFrame): This
function should cast the voidIFrame pointer into the interpolated keyframe
type it supports and convert the interpolated frame into the required result
type storing the result in the result pointer. As RtAnim does not have any
knowledge about the resulting data format, it’s your responsibility to create
an apply function that will go through the interpolated keyframe and apply
the change to the animation data. This callback is only provided as a way to
manage different keyframe types being applied to the same type of
destination data.

Chapter 17- The Animation Toolkit

II-40 11 February 2004

void keyFrameBlendCB(void * pVoidOut, void * pVoidIn1, void *
pVoidIn2, RwReal fAlpha): This function should cast the pVoidIn1 and
pVoidIn2 pointers to the supported interpolated keyframe type and store a
blend from pVoidIn1 to pVoidIn2, based on fAlpha, in the interpolated
keyframe pointed to by pVoidOut. This is for the purpose of blending the
states of two RtAnimInterpolator objects into a third.

void keyFrameInterpolateCB(void * pVoidOut, void * pVoidIn1,
void * pVoidIn2, RwReal time): This function should cast the
pVoidIn1 and pVoidIn2 pointers to the supported keyframe type and
interpolate between the two based on time; the result should be stored in
the interpolated keyframe pointed to by pVoidOut.

void keyFrameAddCB(void * pVoidOut, void * pVoidIn1, void *
pVoidIn2): This function should cast the pVoidIn1 and pVoidIn2
pointers to the supported interpolated keyframe type and store the sum of
the keyframes in the interpolated keyframe pointed to by pVoidOut. This is
used for delta animations where the states of two RtAnimInterpolator
objects are added together.

void keyFrameMulRecipCB(void * pVoidFrame, void * pVoidStart):
This function should cast the pVoidFrame and pVoidStart pointers to the
supported keyframe type and then multiply pVoidFrame by the reciprocal
of pVoidStart. This is intended to convert the pVoidFrame keyframe into a
delta from pVoidStart.

RtAnimanimation * keyFrameStreamReadCB(RwStream * stream,
RtAnimanimation * Animation): This function should read an array of
keyframes from the stream. The number of keyframes and the memory to
store them is passed in via the Animation pointer.

RwBool keyFrameStreamWriteCB(RtAnimation * Animation, RwStream
* stream): This function should write the keyframes in the Animation out
to the supplied stream.

RwInt32 keyFrameStreamGetSizeCB(RtAnimation * Animation) : This
function should return the size of the keyframe data in the Animation in
bytes.

Once these functions have been defined and added to the
RtAnimInterpolatorInfo structure they can be registered with the
RtAnim toolkit using RtAnimRegisterInterpolationScheme passing in
the structure. Once registered RtAnim can support creation and usage of
keyframes based on the new type ID.

An example of the creation and use of an interpolation schemes is shown in
the Anim example. This demonstrates a scheme that animates light colors
and radius.

 Creating Animation Data

RenderWare Graphics 3.7 II-41

17.3 Creating Animation Data
An RtAnimAnimation object represents an animation and is streamed out
to a separate file, usually with the .ANM extension, that holds the animation
data. This defines the animation keyframes that are used to animate nodes.

Any number of RtAnimAnimation animations can be applied to a single
node, providing that the topology of the nodes itself remains the same. This
is because RtAnimAnimation animations are not explicitly linked to model
data, but simply rely upon a matching structure. So, as long as the model
to which the animation is applied has a matching structure, the data will
be valid.

Multiple animations are either applied sequentially or using various
blending techniques described later.

17.3.1 The API

The function used to create an RtAnimAnimation structure is
RtAnimAnimationCreate().

This function requires the following parameters:

• An interpolation scheme type ID.

• The number of keyframes.

• Flags (for future expansion/customization).

• The duration of the animation (the time elapsed between the first and
last keyframes).

An RtAnimAnimtion structure is returned that contains a void *
pFrames pointer with enough memory allocated for the number of keyframes
requested with a keyframe size based on the interpolation scheme type ID.

17.3.2 The Animation Keyframe Structure

Each keyframe must contain the following elements at the start of their
structure:

• Previous keyframe pointer.

• Time at which the keyframe occurs in the animation.

These elements are defined by the RtAnimKeyFrameHeader structure. This
allows standard operations to be applied to keyframes without knowledge of
any specific overloaded interpolation scheme.

Chapter 17- The Animation Toolkit

II-42 11 February 2004

The previous keyframe pointer is to allow the animation to be played
backwards efficiently. This pointer points to the previous keyframe for the
node that this keyframe will be applied to. See details in the following
section on keyframe ordering.

17.3.3 Keyframe Ordering

The keyframe data does not contain an explicit link to the node it will be
applied to. Instead, it is determined implicitly from the ordering of the
keyframes in the array. For data cache coherence, the keyframes are sorted
in time order.

Each and every node has a keyframe at the beginning and end of the
animation. Then there are optional additional keyframes in-between. The
first keyframe is stored for each node in turn, then the second for each
node in turn. These are used to initialize the first interpolation for each
node.

The following tables show an example animation sequence (top), with the
order in which the keyframes would be stored (bottom):

NODE NUMBER (TIME)
0.0

1.2 2.1 2.9 3.2 4.0

0 A B C D
1 E F G H
2 I J K L
3 M N

KEYFRAME TIME NOTES

A 0.0 Initial keyframe (Node 0)
E 0.0 Initial keyframe (Node 1)
I 0.0 Initial keyframe (Node 2)
M 0.0 Initial keyframe (Node 3)
B 2.1 Second keyframe (Node 0)
F 2.1 Second keyframe (Node 1)
J 1.2 Second keyframe (Node 2)
N 4.0 Second keyframe (Node 3)
K 2.9 Interpolation I to J ends. J to K begins. (Node 2)
C 3.2 Interpolation A to B ends. B to C begins. (Node 0)
G 3.2 Interpolation E to F ends. F to G begins. (Node 1)
L 4.0 Interpolation J to K ends. K to L begins. (Node 2)
D 4.0 Interpolation B to C ends. C to D begins. (Node 0)
H 4.0 Interpolation F to G ends. G to H begins. (Node 1)

Keyframe Sorting

An unordered array of keyframes may be sorted in a conventional way
using the following as primary and secondary sort keys:

 Creating Animation Data

RenderWare Graphics 3.7 II-43

1. The time of the previous keyframe for the node

2. The node index

17.3.4 Streaming Animation Data

Once completed, the RtAnimAnimation structure is then written to disk
using the RtAnimAnimationStreamWrite() or
RtAnimAnimationWrite() functions. This either writes an animation into
a generic RwStream or writes an .ANM file to a specified filename.

As long as the same node organization is present, .ANM files can be applied
to one or more data structures.

For example, when using Hanim, if two clumps, representing different
humanoid characters, have the same node interpolator, then both clumps
could share keyframe sequences.

17.3.5 Sub-Animations

Sub-animations can be treated almost exactly like normal animations at
runtime and the animation data for them is usually exported in a similar
way to the export of a normal animation. In order to process data for a sub-
animation simply follow the same process as for a normal animation but
only process keyframes for nodes contained within the sub animation.

Chapter 17- The Animation Toolkit

II-44 11 February 2004

17.4 Using RtAnim At Runtime

17.4.1 Concepts of Running Animations

Once you have an RtAnimAnimation loaded you can create an
RtAnimInterpolator and run a simple animation. It is important to
understand the main stages of updating the animation in order to optimize
runtime performance.

The RtAnimInterpolator holds an array of interpolated keyframes, one for
each node of the animation. As well as storing the interpolated data values,
each of these reference the current start and end keyframes from the
original animation that are currently being used for the interpolation.

An interpolator is normally updated by ‘adding time’ to advance it forwards
through an animation. This will update the current references to keyframe
pairs for each node if any of them have expired, and will also generate
interpolated data values according to the current scheme. In some
situations, an interpolator may be updated as the result of blending the
states of two other interpolators. Either way, when the processing is
complete, the interpolated keyframe data may be applied to the animated
object.

17.4.2 The Interpolator

The interpolator holds the current state of the animation as well as the
array of interpolated keyframes.

struct RtAnimInterpolator

{

 RtAnimAnimation *pCurrentAnim;

 RwReal currentTime;

 void *pNextFrame;

 RtAnimCallBack pAnimCallBack;

 void *pAnimCallBackData;

 RwReal animCallBackTime;

 RtAnimCallBack pAnimLoopCallBack;

 void *pAnimLoopCallBackData;

 RwInt32 maxKeyFrameSize;

 RwInt32 currentKeyFrameSize;

 RwInt32 numNodes;

 RwBool isSubInterpolator;

 RwInt32 offsetInParent;

 RtAnimInterpolator *parentAnimation;

 RtAnimKeyFrameApplyCallBack keyFrameApplyCB;

 RtAnimKeyFrameBlendCallBack keyFrameBlendCB;

 RtAnimKeyFrameInterpolateCallBack keyFrameInterpolateCB;

 RtAnimKeyFrameAddCallBack keyFrameAddCB;

};

 Using RtAnim At Runtime

RenderWare Graphics 3.7 II-45

The types and usage of the structure members are as follows:

RtAnimAnimation *pCurrentAnim: Holds the pointer to the animation
currently played by the interpolator.

RwReal currentTime: Current time of the animation, normally this is
between 0.0f and the animation’s duration.

void *pNextFrame: This holds the pointer to the next keyframe, as the
keyframes are stored by time order, the interpolator uses this behavior to
ensure quick access to the next keyframe.

RtAnimCallBack pAnimCallBack: This callback function can be called at a
certain time while the animation is running, enabling you to perform
specific actions.

void *pAnimCallBackData: Void pointer to some data that you can pass
to the animation callback.

RwReal animCallBackTime: Trigger time for the animation callback.

RtAnimCallBack pAnimLoopCallBack: This callback function is called
whenever an interpolator reaches the end of the animation, enabling
control over playing of the animation (by default an interpolator will loop
indefinitely).

void *pAnimLoopCallBackData: Void pointer to some data that you can
pass to the animation loop callback.

RwInt32 maxKeyFrameSize: Maximum size, in bytes, of keyframes usable
on this animation (set at creation time). It is used at creation time to ensure
that if the animation attached to the interpolator changes to one with a
different keyframe size, the interpolator has enough memory to store it.

RwInt32 currentKeyFrameSize: Size of keyframes in the current
animation in bytes.

RwInt32 numNodes: Number of nodes driven by the animation.

RwBool isSubInterpolator: States if the interpolator is a normal or a
sub-interpolator. (See Sub-Interpolator Animations.)

Creating the Interpolator

The function used to create an RtAnimInterpolator structure is
RtAnimInterpolatorCreate().

This function requires the following parameters:

• The number of nodes to be supported by that interpolator.

• The maximum size of keyframe to be supported by that interpolator.

An RtAnimInterpolator structure is returned.

Chapter 17- The Animation Toolkit

II-46 11 February 2004

17.4.3 Applying and Running a Basic Animation

The first step is to call RtAnimInterpolatorSetCurrentAnim. This applies
the animation to the interpolator and initializes the interpolator state to
zero time in the animation. At this stage the array of interpolated keyframes
will be initialized to the first keyframe of the animation.

It should be noted that all animations have an interpolation scheme
associated with them (based on their type ID), and each scheme knows the
size of its keyframe data. If you try to apply an animation to an interpolator
where the animation keyframe size is greater than the maximum keyframe
size specified when the interpolator was created then the assignment will
fail. If the assignment succeeds it will also update the interpolation scheme
functions that the interpolator will use to run the animation.

To move forwards and backwards through the animation you call
RtAnimInterpolatorAddAnimTime or RtAnimInterpolatorSubAnimTime
respectively. These calls ensure for each node that the pairs of start and
end keyframes are set to the correct keyframes for interpolation and will
then interpolate to the correct time. After these calls, the interpolator will
have a correct set of interpolated keyframes for the current time.

Another function allowing you to move through the animation is
RtAnimInterpolatorSetCurrentTime. This will involve an extra function
call and merely calculates the offset and calls
RtAnimInterpolatorAddAnimTime or RtAnimInterpolatorSubAnimTime.
Hence if possible calculate the offset and call the
RtAnimInterpolatorAddAnimTime or RtAnimInterpolatorSubAnimTime
functions directly.

These animation functions mentioned are generic and will work regardless
of the animation scheme used by the animation you are trying to play.

17.4.4 Animation CallBacks

Two different callbacks are available when running an animation. These are
set by calling RtAnimInterpolatorSetAnimCallBack and
RtAnimInterpolatorSetAnimLoopCallBack.

RtAnimInterpolatorSetAnimCallBack will setup a callback to be called
at a specific time in an animation. The function takes a callback pointer, a
time and a pointer to user data to be passed into the callback. An example
of using this callback would be in a walk cycle if you wanted a callback
triggered at the times when the characters feet contact the floor.

RtAnimInterpolatorSetAnimLoopCallBack sets up a callback to be
called every time the animation loops. This function takes just the callback
pointer and user data pointer. This is equivalent to always setting a
standard callback at time == duration of the current animation.

 Using RtAnim At Runtime

RenderWare Graphics 3.7 II-47

Both these callbacks are called during animation update functions such as
RtAnimInterpolatorAddAnimTime. In each case the animation update will
occur before the callback is called, i.e. if an update is taking an animation
to time == 2.0 seconds and your callback was at 1.9 seconds, the animation
state will be at 2.0 seconds when the callback is executed.

The return state of the RtAnimCallBack type is a pointer to the
interpolator. If the return from the callback is NULL, the callback will be
disabled and will not be called again until it is reset with one of the set
callback functions.

17.4.5 Blending Between Animations

The simplest example of blending between animations is a transfer from
one animation to another where the end state of animation 1 and start
state of animation 2 are not common. In this case you perform a blend to
interpolate from a state in animation 1 to a state from animation 2.

A common way to initialize the blend is to use one of the callbacks specified
earlier, either a loop callback to blend from the end of the animation or
possibly a standard callback if you want to blend before the animation
ends.

Blending RtAnimInterpolator requires at least two RtAnimInterpolator
structures and more commonly three. Each interpolator holds state in an
animation. Hence we require a state to blend from, a state to blend to and
an interpolator to hold the state of the blend result. We'll call these
interpolators In1, In2 and Out.

Although each interpolator doesn't require an attached animation, the
process of attaching an animation also sets up the blending functions used
for an interpolator (since they are linked to keyframe type). A newly created
interpolator has no blending functions setup but they can be initialized by
calling RtAnimInterpolatorSetKeyFrameCallBacks passing in the ID of
the interpolation scheme you wish to use.

Before starting the blend ensure that In1 and In2 hold the state you wish to
blend from and to. It's perfectly valid for this state to change further
through the blend but no updates will occur because of the blend calls.

To blend between the two interpolators call RtAnimInterpolatorBlend
passing in the two interpolators and an alpha value where 0.0 results in
In1 and 1.0 will result in In2. The result of the blend will be stored in Out.

The result of the blend can then be used as the input to another blend. As
a result an almost unlimited number of animations can be blended
together. This can be used to create complex animations from a small
selection of base animations.

✎ As stated before, you can perform blending with two interpolators where the output
interpolator is one of the input interpolators. This would however overwrite the input
interpolator state potentially requiring regeneration.

Chapter 17- The Animation Toolkit

II-48 11 February 2004

There is an example of blending included in the RenderWare Graphics SDK.
HAnim1 demonstrates blending from the end of one animation to the start
of a second animation using an RpHAnim animation.

 Sub-Interpolator Animations

RenderWare Graphics 3.7 II-49

17.5 Sub-Interpolator Animations
Sub-interpolators appear and act just like standard interpolators. However
they can be used to efficiently update sub-groups of nodes in an
RtAnimInterpolator. Typically this scheme is used where the nodes
represent a hierarchy of objects.

To be able to use sub-interpolator animation requires two major steps. One
is to create animations that fit the sub-interpolator and the second is to
create the sub-interpolator itself.

To create a sub-interpolator you need to know the array index of the root
node of the sub-interpolator you want to create. Once you have the index
call RtAnimInterpolatorCreateSubInterpolator that takes the following
parameters:

• pParentInterpolator – An RtAnimInterpolator containing the branch
you want to create the sub-interpolator within.

• startNode – This is the array index in the parent interpolator of the node
you want to be the root of the sub-interpolator. This is used to calculate
offsets into the parent interpolators structures.

• numNode –The number of nodes the sub-interpolator needs to hold. The
numNode added to the startNode index should be less or equal than the
total number of node in the parent interpolator.

• MaxKeyframeSize – This allows you to set a different maximum keyframe
size in the sub-interpolator from the parent interpolator. Passing in –1
will use the same size as the parent.

The return value is an RtAnimInterpolator pointer, which will appear
just like a normal interpolator except that its isSubInterpolator will be
set to TRUE.

To use a sub-interpolator simply use it in the same way you would for a
normal interpolator. However note that when applying the interpolators to
the result data, the sub-interpolator application usually happens after the
main interpolator. Because of this, the sub-interpolator will overwrite any
animation applied by the main interpolator.

Sub-interpolators can be blended together like any standard interpolator
using the RtAnimInterpolatorBlend assuming the topology of the sub-
interpolators matches. However sub-interpolators can also be blended with
an interpolator with the same topology as their parent interpolator (i.e. the
one they were created from). To perform these blend operations use the
function RtAnimInterpolatorBlendSubInterpolator. This function
allows a sub-interpolator and parent interpolator to be blended together
with the output interpolator matching either the parent or sub-interpolator.

Chapter 17- The Animation Toolkit

II-50 11 February 2004

In the case where the interpolator matches the parent, all nodes present in
the sub-interpolator will be blended into the output interpolator, and all
nodes present only in the parent interpolator will be copied to the output
interpolator.

Where the output interpolator matches the topology of the sub-interpolator
, just the nodes present in the sub-interpolator will be blended into the
output interpolator.

This extended support means you do not need to have all the parent
interpolator animations duplicated as sub-interpolator animations. One
example of this would be a case where you have a cyclic walk animation for
the parent interpolator and want to blend it's state for the characters leg
with a sub interpolator animation representing just the leg kicking.

The HAnimSub example in the RenderWare Graphics SDK demonstrates the
use of sub interpolator animations using an RpHAnim animation.

 Delta Animations

RenderWare Graphics 3.7 II-51

17.6 Delta Animations
Delta animations work well when you want to add a number of small effects
to a basic animation. It's necessary to take the deltas from a common state
in the animation to ensure they can be used together.

In order to make a delta animation you simply need to pass in an
animation, the number of nodes in the animation and a time within the
animation to calculate a delta from. This will convert all the keyframes to be
deltas from the state at the given time. For example

RtAnimAnimationMakeDelta(animation, 43, 0.0f);

This would change the animation animation so that it represents an
animation of delta positions based on its state at time 0.0. This process
operates on the data in place so the original animation will be destroyed.
Because this process can be time consuming it is sensible to convert all the
animations offline and stream them out to disk. A delta animation appears
identical to a normal animation so must be identified as a delta by the
application.

To use a delta animation you then run the delta animation on an
RtAnimInterpolator to get it to the state you require. At this stage the
deltas will be held in the interpolated keyframe array on the delta
interpolator. This can then be added to the state of any other interpolator
using the function RtAnimInterpolatorAddTogether. It is also possible to
use all the different blending and sub-interpolator techniques on delta
animations and then add the result of more complex operations to other
interpolators at the end.

The HAnim2 example in the RenderWare Graphics SDK demonstrates the
use of delta animations using an RpHAnim animation.

Chapter 17- The Animation Toolkit

II-52 11 February 2004

17.7 Procedural Animation
Procedural animation in RtAnim can be done at one of two different stages.
In each case there are requirements relating to what stage of the animation
update you're up to. The two stages are source animation data and
interpolated keyframe data.

17.7.1 Procedural Modification of Source Animation
Data

Procedurally modifying the source animation data requires knowledge of
the ordering of keyframe data in the animations (see the section on creating
RtAnim data for details). Given an RtAnimAnimation object a user can
retrieve its typeID using RtAnimAnimationGetTypeID. This allows them to
look up the interpolation scheme information using
RtAnimGetInterpolatorInfo, which includes the keyframe size of the
scheme. Using this you can step through animation keyframes and modify
them as required.

Animation source data needs to be modified before performing any
animation updates and can be mixed with other procedural updates which
happen later in the process.

17.7.2 Procedural Modification of Interpolated
Keyframes

Procedural modification of interpolated keyframes needs to happen between
calling RtAnimInterpolatorAddAnimTime and using the interpolator,
either for blending operations or rebuilding the animated data. To modify
the interpolated keyframes with the source data, you need to retrieve
information about the interpolation scheme to find out how to deal with the
keyframes. The interpolated keyframes can be accessed from any
interpolator and can be the result of adding time to an interpolator or the
result of blending interpolators together.

The macro rtANIMGETINTERPFRAME() takes an interpolator and a node
index in that interpolator, and returns a void * pointer to the interpolated
keyframe for that specific node. This keyframe data can be modified and the
results then used in further blending operations or used for rendering
following an update of the animated data.

The HAnim3 example included in the RenderWare Graphics SDK
demonstrates applying node translations procedurally in the interpolated
keyframes using an RpHanim animation.

 Summary

RenderWare Graphics 3.7 II-53

17.8 Summary
This chapter has dealt with running the RtAnim animation system.

It has dealt with the three major steps involved in the process of creating,
setting up and using animation data, and also the extended features
available for use from the RtAnim toolkit to achieve better results.

The basic features were:

• Creating an Interpolation Schemes through the implementation of
customized keyframe types and interpolation schemes.

• Creating animation data, comprising the creation of both the topological
interpolator structure and the animation data that fits that structure.

• Using the animation data at runtime including blending together
multiple animations to achieve a greater effect.

The extended features described were:

• Using Delta animation to add details and effects to animations.

• Procedurally modifying the animations, both by modifying the source
data and modifying the state held with the RtAnim structures.

Chapter 18

The Hierarchical
Animation Plugin

Chapter 18- The Hierarchical Animation Plugin

II-58 11 February 2004

18.1 Introduction
The Hierarchical Animation (HAnim) plugin manages the animation of a
hierarchically linked set of nodes related by matrix transformations. These
nodes may represent anything, but in the common use of RpHAnim they are
used to represent an animating hierarchy of objects. These objects may be
animated rigidly or may be bones used for skinned animation supported by
RpSkin.

The way in which RpHAnim works is based on RtAnim, using three base
objects: the RpHAnimHierarchy, RtAnimInterpolator and
RtAnimAnimation. The hierarchy holds a description of the topology, which
will be animated, the interpolator holds the state during animation, and the
RtAnimAnimation holds the actual animation data.

Animation data takes the form of a series of keyframes for each node in a
RpHAnimHierarchy, each describing the state of that node at a specific
point in time. Smooth animation results from interpolation between
keyframe pairs.

The state held by the interpolator is in the form of three arrays of keyframes
and an optional (present by default) array of matrices. The matrix array
holds the result of keyframe to matrix conversions performed during
animation updates. This array can be used to drive RenderWare Graphics
skinning through RpSkin.

The hierarchy can also be attached to sets of RwFrames allowing the
animation system to drive standard RenderWare Graphics RwFrame
hierarchies allowing rigid body animation as well as skinned object
animation.

RpHAnim also support overloaded keyframe schemes through RtAnim. This
allows a user to register a block of functions for processing a user defined
keyframe structure allowing the system to be extended beyond quaternion
and translation animation.

As RpHAnim is based on RtAnim which provides the base keyframing
services, it is recommended that you read the RtAnim chapter before
proceeding to RpHAnim.

 Creating HAnim Data

RenderWare Graphics 3.7 II-59

18.2 Creating HAnim Data
Creating HAnim data is comprised of two distinct stages:

1. Creating data describing the hierarchical structure of the nodes in a
RpHAnimHierarchy structure. This data is attached to a RwFrame within
a RpClump, and is streamed out as part of an rwID_CLUMP chunk in a
RenderWare Graphics binary stream.

2. Creating the RtAnimAnimation data that represents the animation and is
streamed out to an rwID_HANIMANIMATION chunk in a binary stream.
This defines the animation keyframes that are used to animate a
hierarchy of nodes.

Attaching a hierarchy to an RwFrame not only allows it to be streamed out,
but allows any parents of the RwFrame to effectively provide the LTM for the
root of the hierarchy, so that the hierarchy objects can be moved around in
a world as a whole.

Any number of RtAnimAnimation animations can be applied to a single
node hierarchy, providing that the topology of the node hierarchy itself
remains the same. This is because RtAnimAnimation animations are not
explicitly linked to model data, but simply rely upon a matching
hierarchical structure. So, as long as the model to which the animation is
applied has a matching structure, the data will be valid.

Multiple animations are either applied sequentially or using various
blending techniques described later.

18.2.1 Hierarchy Structure Overview

The RpHAnimHierarchy structure represents a number of inter-linked
components. These include the topology of the hierarchy nodes, the
connection to a RwFrame for positioning in a world, the state of an
animation and the connection to optional RwFrames to allow rigid body
animation. These connections are shown in the diagram below.

Chapter 18- The Hierarchical Animation Plugin

II-60 11 February 2004

RwFrame structure RpHAnimHierarchy

(logical structure)

Optional matrix
array (LTMs)

(physical structure)

[LINK] provides: 1) Streaming mechanism
2) LTM access
3) Access to associated RwFrame hierarchy

Skinning can use M (optimal) or F.

M0

M1

M2

M3

M4

M5

M6

F Parents (provide LTM)
[LINK]

 F

F1

 F2

 F3

F4

 F5

F6

F

node 0

node 1
node 2
node 3

node 4
node 5

node 6

Attach

Attach

runtime
orphan
frames
option

optional
frame
heirarchy

Hierarchy Overview

18.2.2 Creating A Hierarchy

In most situations, the hierarchical structure will be created at the model
export stage. The key function for this purpose is
RpHAnimHierarchyCreate().

This function takes the following parameters:

• The number of nodes in the hierarchy

• An array of node topology flags

• An array of node IDs

• Hierarchy creation flags

• The maximum keyframe size allowed in the hierarchy

These parameters are explained below.

Number of Nodes

This value is extracted from the modeler when using the RenderWare
Graphics exporter. It is used as the array size for the arrays of per-node
data such as topology flags and IDs.

 Creating HAnim Data

RenderWare Graphics 3.7 II-61

Node Topology Flags

The node topology flags define the hierarchical structure of the nodes
within a RpHAnimHierarchy object. They are traversed depth-first using a
stack-based method.

Each node is therefore associated with a pair of flags representing a push
state and a pop state. These flags can be either TRUE or FALSE, and the
combination of flags is used to correctly traverse the hierarchy during
animation:

• A push flag is set for all nodes except those, which are considered the
last sibling of a common parent. The root node is considered to be the
last sibling at its own level and therefore no push flag is present.

• A pop flag is set for all leaf nodes only—i.e. those which do not have any
child nodes.

The following table shows the possible combinations and their flags.

HAS CHILDREN IS LAST SIBLING FLAGS

FALSE FALSE PUSH|POP

FALSE TRUE POP

TRUE FALSE PUSH

TRUE TRUE NO FLAGS

These provide enough information at run-time to traverse the tree correctly.

The following diagram shows an example node hierarchy, with the node
topology flags listed in the table alongside:

NODE FLAGS
0 0

1 PUSH

2 PUSH/POP

3 0

4 PUSH/POP

5 POP

6 0

7 POP

Node 0 (root)

Node 1 Node 6

Node 2 Node 3 Node 7

Node 4 Node 5

Chapter 18- The Hierarchical Animation Plugin

II-62 11 February 2004

Node IDs

Node IDs are usually generated automatically by the RenderWare Graphics
exporter for the modeling package. An artist can, however, override the
defaults and use their own IDs for particular nodes—a facility that makes it
easier for programmers to locate any nodes that require special treatment,
as would be the case for many procedural animation techniques.

The Node IDs must be unique within the hierarchy represented by a
RpHAnimHierarchy object. Normally, a modeling package will supply
unique node IDs, but in the event that they are not tagged, unique IDs will
be created dynamically within the exporter by default.

Assigning Node IDs within a Modeling Package

Support for RpHAnim is available for both the 3ds max and Maya modeling
packages. As each modeling package has a different user interface,
package-specific details on tagging objects can be found within the
appropriate Artist Guide for your preferred package.

Hierarchy Creation Flags

The RpHAnimHierarchy flags are split into two categories, creation only
flags and general flags. The creation only flags should only be used when
creating a hierarchy, these are:

• rpHANIMHIERARCHYSUBHIERARCHY (internal use only)

• rpHANIMHIERARCHYNOMATRICES causes the hierarchy to store no
matrix array; this saves on memory if you only want to animate
RwFrames. A hierarchy setup with the rpHANIMHIERARCHYNOMATRICES
flag can still be used to animated a skinned object. In this case the
RpSkin plugin will extract the matrices from the RwFrames, this will
result in a slight performance hit compared to having a matrix array.

The general flags are:

• rpHANIMHIERARCHYUPDATEMODELLINGMATRICES

• rpHANIMHIERARCHYUPDATELTMS

• rpHANIMHIERARCHYLOCALSPACEMATRICES

The first two flags describe which elements of RwFrames should be updated
during animation see section 18.3.2 Setting Up a Hierarchy For Use for
further details on the usage of these flags. The last flag defines whether the
matrix array should calculate world space transform matrices or matrices
local to the hierarchy root.

 Creating HAnim Data

RenderWare Graphics 3.7 II-63

Maximum Keyframe Size

This value specifies the maximum size of a keyframe in the animation
schemes to be used on this hierarchy. It is required so that efficient one
block memory allocation can be made for the hierarchy.

Attaching to an RwFrame for Streaming

An RpHAnimHierarchy can be attached to an RwFrame to allow it to be
streamed out into an rwID_CLUMP binary stream chunk. It should be
attached to the RwFrame representing the first node in the hierarchy, use
RpHAnimFrameGetHierarchy(). A RwFrame can only have one hierarchy.

18.2.3 Tagging RwFrames

RpHAnimFrameSetID, stores an RwInt32 on each RwFrame. These IDs can
be set to match up to the node IDs passed into
RpHAnimHierarchyCreate() allowing the RpHAnimHierarchy to drive the
update of RwFrames at run time if required.

Chapter 18- The Hierarchical Animation Plugin

II-64 11 February 2004

18.3 Using HAnim At Runtime

18.3.1 Finding a Hierarchy in a Model

Almost all the animation functions drive the state of an RpHAnimHierachy.
The hierarchies will either come from an rwID_CLUMP chunk which has
been loaded from a binary stream, procedurally setup as already described
or will be created from an existing RpHAnimHierarchy.

The most common starting point will be from an rwID_CLUMP chunk
exported by the RenderWare Graphics exporters into a binary stream. On
these models the RpHAnimHierarchy will usually be attached to the first
child RwFrame off the RpClump’s RwFrame. The safest way to get access to
the hierarchy is to use RwFrameForAllChildren() calling
RpHAnimFrameGetHierarchy() to find an attached hierarchy.

18.3.2 Setting Up a Hierarchy For Use

Flags

Using RpHAnimHierarchySetFlags() you can modify the way in which a
hierarchy behaves during animation updates. These flags are a subset of
those passed into RpHAnimHierarchyCreate(), and are the ones which
can validly be changed at runtime.

rpHANIMHIERARCHYUPDATEMODELLINGMATRICES updates the modeling
matrices of any RwFrames attached to the RpHAnimHierarchy.

rpHANIMHIERARCHYUPDATELTMS updates the LTM of any RwFrames attached
to the RpHAnimHierarchy. This update is done in such a way that the
standard RwFrame resynchronization will not occur unless further user
changes are made.

The choice of which matrices in RwFrames to update is determined by the
application's use of the results, depending on the presence and the type of
any modifications applied to the RwFrames after animation.

When no modifications are made to a hierarchy between animation and
usage of RwFrames in rendering, the best performance will be obtained
using rpHANIMHIERARCHYUPDATELTMS only.

If you are going to modify RwFrames, forcing hierarchies to be
resynchronized, it is important to update the modeling matrices. Otherwise
the resynchronized hierarchies will contain the wrong LTMs.

 Using HAnim At Runtime

RenderWare Graphics 3.7 II-65

If most of the nodes, or any root nodes are modified, only use
rpHANIMHIERARCHYUPDATEMODELLINGMATRICES, as most of the LTMs will
need to be resynchronized anyway. But, if only a few subordinate RwFrames
(procedural inverse kinematics (IK) on arms/legs etc.) are updated, use
both flags, so that only the updated RwFrames will be resynchronized.

See section 17.7 Procedural Animation for more details.

✎
Attaching an object to the node of a RpHAnimHierarchy

If you want to attach child frames to frames attached to a RpHAnimHierarchy then you
should either create the hierarchy with the
rpHANIMHIERARCHYUPDATEMODELLINGMATRICES flag set and the
rpHANIMHIERARCHYUPDATELTMS flag not set or create the RpHAnimHierarchy with the
rpHANIMHIERARCHYUPDATELTMS flag set and use RwFrameUpdateObjects() to force the
resynchronization of the child LTMs.

rpHANIMHIERARCHYLOCALSPACEMATRICES makes the hierarchy matrix array
updates happen in the local space to hierarchy root.

✎

rpHANIMHIERARCHYLOCALSPACEMATRICES and RwFrame updates

When the local space matrices flag is applied to an RpHAnimHierarchy as well as the
hierarchy matrix array being calculated in local space updates to RwFrames will also be in
local space.

The matrix array is generally used for the purposes of skinning using RpSkin and that
plugin will deal with local space or non-local space matrices correctly. However RwFrames
are often used for rendering rigid bodies.

RwFrame Linking

In order to use the features of RpHAnim allowing RwFrames to be updated
the hierarchy must be attached to a set of RwFrames. At creation time an
array of node IDs should have been created that match up to the IDs stored
on the RwFrames using RpHAnimFrameSetID. Using these IDs RpHAnim can
automatically set up pointers from the RpHAnimHierarchy to the RwFrames
and at update time will update the RwFrames based upon the hierarchy
flags.

The simplest functions to use are RpHAnimHierarchyAttach() and
RpHAnimHierarchyDetach(). These functions will link up all matching
nodes and RwFrames between the hierarchy and the RwFrame it has been
linked to (using RpHAnimFrameSetHierarchy()).

If you only require specific RwFrames to be updated based on their nodes
you can use RpHAnimHierarchyAttachFrameIndex() and
RpHAnimHierarchyDetachFrameIndex(). These take an index into the
array of per node data stored in a hierarchy and attach that node to its
corresponding RwFrame. The RwFrame will be found by traversing the
hierarchy of RwFrames which the RpHAnimHierarchy has been linked to
(using RpHAnimFrameSetHierarchy())

The index into the per node arrays can be retrieved using the function
RpHAnimIDGetIndex() which takes the ID of a node and returns the array
index.

Chapter 18- The Hierarchical Animation Plugin

II-66 11 February 2004

Using this index to access the per node data provides the ability to overload
the RwFrame and hence rigid body animation linking. You can assign a
completely individual RwFrame to a node by simply setting the per node
data RwFrame pointer to point to the RwFrame you have created. The node
information is in the structure member called pNodeInfo within the
hierarchy. This is an array of the structure RpHAnimNodeInfo which
contains an RwFrame pointer.

If you have used one of the attach functions e.g.
RpHAnimHierarchyAttach() to attach the nodes to RwFrames contained in
the original RpClump you can also use this structure access to attach
RpAtomics, RpLights etc. to the RwFrame which is being animated.

18.3.3 Concepts of Running Animations

Once you have an RpHAnimHierarchy and one or more RtAnimAnimations
loaded you can run a simple animation by applying it and adding time. It is
important to understand the main stages of updating the animation in
order to optimize runtime performance. The RpHAnimHierarchy holds an
array of output matrices and also a RtAnimInterpolator that holds 3
arrays of keyframe data.

The process of updating animation involves adding time and blending
between different hierarchies, all of which update the start, end and
interpolated keyframes. At the end of processing the calling
RpHAnimHierarchyUpdateMatrices() will update the output matrix array
and any attached RwFrames based on the interpolated keyframes now
stored in the RpHAnimHierarchy.

18.3.4 Applying and Running a Basic Animation

The first step is calling RpHAnimHierarchySetCurrentAnim(), this applies
the animation to the hierarchy and initializes the hierarchy state and the
attached interpolator state to zero time in the animation. At this stage the
array of interpolated keyframes will be initialized to the first keyframe of the
animation. By completing the update with
RpHAnimHierarchyUpdateMatrices() and rendering the hierarchy this
would result in the starting position of the animation.

It should be noted that all animations have an interpolation scheme
associated with them (based on their type ID), and each scheme knows the
size of its keyframe data. If you try to apply an animation to a hierarchy
where the animation keyframe size is greater than the maximum keyframe
size specified when the hierarchy was created then the assignment will fail.
If the assignment succeeds it will also update the interpolation scheme
functions that the hierarchy will use to run the animation.

 Using HAnim At Runtime

RenderWare Graphics 3.7 II-67

To move forwards and backwards through the animation you call
RpHAnimHierarchyAddAnimTime() or RpHAnimHierarchySubAnimTime()
respectively. These calls ensure for each node that the pairs of start and
end keyframes are set to the correct keyframes for interpolation and will
then interpolate to the correct time. After these calls, the hierarchy will
have a correct set of interpolated keyframes for the current time. These
keyframes are then used to update the matrices with a call to
RpHAnimHierarchyUpdateMatrices(). At this point rendering the scene
will correctly render all skins/rigid objects bound to the hierarchy.

Another function allowing you to move through the animation is
RpHAnimHierarchySetCurrentAnimTime(). This will involve an extra
function call and merely calculates the offset and calls
RpHAnimHierarchyAddAnimTime() or RpHAnimHierarchySubAnimTime().
Hence, if possible, calculate the offset and call the
RpHAnimHierarchyAddAnimTime() / RpHAnimHierarchySubAnimTime()
functions directly.

These animation functions mentioned are generic and will work regardless
of the animation scheme used by the animation you are trying to play. The
RpHAnimKeyFrame type which is supplied by default with RpHAnim also has
optimized version of the add time functions called
RpHAnimHierarchyHAnimKeyFrameAddAnimTime() respectively. These will
only work if the animation type is rpHANIMSTDKEYFRAMETYPEID. Similar
overloaded add/subtract functions could be written for custom keyframe
schemes.

Chapter 18- The Hierarchical Animation Plugin

II-68 11 February 2004

18.4 Features Inherited from RtAnim
As HAnim is a based on RtAnim, it inherits and expands features provided
by RtAnim.

The attached RpInterpolator can be accessed through the currentAnim
member of an RpHAnimHierarchies.

As the basic principles of the following features are already explained in
RtAnim, only the HAnim’s specific points are included in this section. Please
be sure to read RtAnim’s corresponding sections.

18.4.1 Blending Between Animations

The simplest example of blending between animations is a transfer from
one animation to another where the end pose of animation 1 and start pose
of animation 2 are not common. In this case you perform a blend to
interpolate from a state in animation 1 to a state from animation 2.

To perform this blending you might need to create additional hierarchies,
by calling RpHAnimHierarchyCreateFromHierarchy() which, given an
input hierarchy, will generate a new hierarchy with a matching structure.
You can, however, modify the maximum keyframe size during this creation
so that you can create smaller hierarchies than the ones streamed in. This
can save memory if you initially run complex interpolation schemes (say for
cut-scenes) but then switch to a simpler system for in game animation.

There is an example of blending included in the RenderWare Graphics SDK.
HAnim1 demonstrates blending from the end of one animation to the start
of a second animation.

18.4.2 Sub Hierarchy Animations

Sub hierarchies appear and act just like standard hierarchies. However
their matrix array is shared with that of their parent. Thus by applying
animation first to the parent hierarchy and then the sub hierarchy you can
run different animations on parts of the hierarchy. After animation the
main hierarchy contains a copy of the entire state and can be used for
skinning or rigid body rendering without any special behavior.

To create a sub hierarchy you need to know the array index of the root node
of the sub hierarchy you want to create. Assuming you know the ID of the
root node you can call RpHAnimIDGetIndex() to retrieve the index. Once
you have the index call RpHAnimHierarchyCreateSubHierarchy() which
takes the following parameters:

• pParentHierarchy – An RpHAnimHierarchy containing the branch you
want to sub hierarchy.

 Features Inherited from RtAnim

RenderWare Graphics 3.7 II-69

• startNode – This is the array index in the parent hierarchy of the node
you want to be the root of the sub hierarchy. This is used to calculate
offsets into the parent hierarchy’s structures.

• flags – These are the same flags as passed into
RpHAnimHierarchyCreate() and allow you to have modified flags from
the parent hierarchy. Thus allowing things like RwFrame updates from
only sub hierarchies.

• MaxKeyframeSize – This allows you to set a different maximum keyframe
size in the sub hierarchy from the parent hierarchy. Passing in –1 will
use the same size as the parent.

The return value is an RpHAnimHierarchy pointer which will appear just
like a normal hierarchy except that it will contain the
rpHANIMHIERARCHYSUBHIERARCHY flag.

To use a sub hierarchy simply use it in the same way you would for a
normal hierarchy, however ensure that the final
RpHAnimHierarchyUpdateMatrices() call on the sub hierarchy happens
after the main hierarchy. The fact that this is called last means that it
overwrites any animation applied by the main hierarchy.

Sub hierarchies can be blended together like any standard hierarchy using
the RpHAnimHierarchyBlend() assuming the topology of the sub
hierarchies matches. However sub hierarchies can also be blended with a
hierarchy with the same topology as their parent hierarchy (i.e. the one
they were created from). To perform these blend operations use the function
RpHAnimHierarchyBlendSubHierarchy(). This function allows a sub
hierarchy and parent hierarchy to be blended together with the output
hierarchy matching either the parent or sub-hierarchy. In the case where
the hierarchy matches the parent all nodes present in the sub hierarchy
will be blended into the output hierarchy, and all nodes present only in the
parent hierarchy will be copied to the output hierarchy. Where the output
hierarchy matches the topology of the sub hierarchy all nodes present in
the sub hierarchy will be blended into the output hierarchy. This extended
support means you do not need to have all the parent hierarchy animations
duplicated as sub hierarchy animations. One example of this would be a
case where you have a walk cycle animation for the parent hierarchy and
want to blend it's state for the characters leg with a sub hierarchy
animation representing just the leg kicking.

The HAnimSub example in the RenderWare Graphics SDK demonstrates the
use of sub hierarchy animations.

✎
Sub hierarchy systems will only function correctly if the parent hierarchy either has a
matrix array (rpHANIMHIERARCHYNOMATRICES flag is not present) or if it is updating
RwFrame modeling matrices. This is achieved by calling RpHAnimHierarchyAttach() and
ensuring that the rpHANIMHIERARCHYUPDATEMODELLINGMATRICES flag is present.

Chapter 18- The Hierarchical Animation Plugin

II-70 11 February 2004

18.4.3 Delta Animations

Delta animations work well when you want to add a number of small effects
to a basic animation. It's necessary to take the deltas from a common pose
in the animation to ensure they can be used together.

RpHAnimHierarchyUpdateMatrices() should never be necessary on
hierarchies running delta animations unless you want to use a matrix
representation of the deltas for some other purpose.

The HAnim2 example in the RenderWare Graphics SDK demonstrates the
use of delta animations with RpHAnim.

18.4.4 Overloaded Interpolation Schemes

In order to customize HAnim for specific types of animation, either higher
order or optimized types, you can define new interpolation schemes.

The default interpolation scheme provided by HAnim is based on
RpHAnimKeyFrame keyframe type, providing support for frame hierarchy
animations.

struct RpHAnimKeyFrame

{

 RpHAnimKeyFrame *prevFrame;

 RwReal time;

 RtQuat q;

 RwV3d t;

};

prevFrame: Pointer to the previous keyframe for the current node, needed
by RtAnim to run the animation.

time: Time of the keyframe, needed by RtAnim to run the animation.

q: Rotation, stored as a quaternion.

t: Translation, stored as a 3d vector.

When creating a new interpolation scheme for HAnim, ensure that you
don’t use an ID of 0x1 (defined as rpHANIMSTDKEYFRAMETYPEID) as it is the
default interpolation scheme ID.

If your scheme overloads the keyFrameApplyCB as well, you’ll be able to
use RpHAnimHierarchyUpdateMatrices() to apply the animation to the
RwFrame hierarchy.

An example of overloaded interpolation schemes is shown in the HAnimKey
example. This shows a scheme which stores only rotations at each node
and retrieves the base node offset from RpSkin data. This allows animation
of character skeletons (which require no bone translations, assuming rigid
bones) to be performed with large data savings. Under this scheme different
scaled characters can also share animations.

 Procedural Animation

RenderWare Graphics 3.7 II-71

18.5 Procedural Animation
Procedural animation in HAnim can be done at one of 4 different stages. In
each case there are requirements relating to what stage of the animation
update you're up to. The 4 stages are source animation data, interpolated
keyframe data, matrix array data and post animating RwFrames.

The modification of the animation data and the interpolated keyframe is
covered in the RtAnim user guide.

18.5.1 Procedural Modification of the Matrix Array

To modify a hierarchy in the matrix array you must first call
RpHAnimUpdateHierarchyMatrices() to ensure the matrices are up to
date. The only real exception to this is if you wish to fill in the entire matrix
array yourself. It's important to know that the matrices in the array are
stored in one of two different spaces based on whether the
rpHANIMHIERARCHYLOCALSPACEMATRICES flag is set. If the flag is set then
the matrices are relative to the root node of the hierarchy whereas if not set
then they are world space transforms for the nodes (equivalent to an
RwFrames LTM).

To modify the matrices call RpHAnimHierarchyGetMatrixArray() to get
access to a RwMatrix array indexed based on the index returned by
RpHAnimIDGetIndex(). These matrices should be treated just like normal
RwMatrix objects and using the same RenderWare Graphics API functions.

The HAnim3 example included in the RenderWare Graphics SDK
demonstrates applying node scaling procedurally in the matrix array.

✎ The matrices stored in an RpHAnimHierarchy matrix array are only ever used by RpSkin
to render skinned objects. If you also require rigid bound objects to be affected by
procedural animation you must also update any attached RwFrame objects.

18.5.2 Procedural Modification of RwFrames

Any attached RwFrames will be updated during a call to
RpHAnimHierarchyUpdateMatrices(). This call will update either
modeling matrices and/or LTMs based on the update flags stored in the
hierarchy. If you don't attach all the RwFrames in a hierarchy then updating
modeling matrices will not function correctly since at the time when
RenderWare Graphics resynchronizes the hierarchy old data from modeling
matrices may be used to resynchronize the LTMs. If only LTMs are being
updated then any procedural modifications need to avoid flagging RwFrames
as dirty to prevent resynchronization. This process is not generally advised
unless you are certain it is required.

To update the frames as with other update methods get access to the
RwFrames through the RpHAnimHierarchy structures pNodeInfo array first
using RpHAnimIDGetIndex() to get an array index into the structures.

Chapter 18- The Hierarchical Animation Plugin

II-72 11 February 2004

These updates will affect all rigid bound atomics and also skinned atomics
that are bound to an RpHAnimHierarchy with the
rpHANIMHIERARCHYNOMATRICES flag set.

 Compressed Keyframes

RenderWare Graphics 3.7 II-73

18.6 Compressed Keyframes
The toolkit RtCmpKey provides an alternative scheme for storing the
keyframe data. RtCmpKey uses the structure, RtCompressedKeyFrame. This
structure is similar to RpHAnimKeyFrame except the rotation and
translation are stored in 16-bit fixed point format rather than in 32-bit
floating point.

struct RtCompressedKeyFrame

{

 RtCompressedKeyFrame *prevFrame;

 RwReal time;

 RwUInt16 qx;

 RwUInt16 qy;

 RwUInt16 qz;

 RwUInt16 qw;

 RwUInt16 tx;

 RwUInt16 ty;

 RwUInt16 tz;

};

prevFrame: Pointer to the previous keyframe for the current node, needed
by RtAnim to run the animation.

time: Time of the keyframe, needed by RtAnim to run the animation.

qx, qy, qz, qw: Rotation, stored as a quaternion using 16-bit integers.

tx, ty, tz: Translation, stored using 16-bit integers.

The function, RtCompressedKeyFrameCompressFloat(), is provided to
compress the 32-bit floating points values to 16-bit fixed points.

RtCmpKey’s own animation callbacks must be used if
RtCompressedKeyFrame is used in place RpHAnimKeyFrame during
animation.

RtCmpKey provides a trade off between memory usage and performance.
Using compressed keyframes will reduce memory usage but the penalty is
the extra compression and decompression time.

Chapter 18- The Hierarchical Animation Plugin

II-74 11 February 2004

18.7 Summary
This chapter has dealt with running the HAnim animation system for
animating both rigid bodies and skinned models.

It has dealt with the process of setting up and using animation data, and
using the extended features of the HAnim plugin to achieve better results:

• How to create a hierarchy, by using the node flag to represent the
topology, and the hierarchies flags to change their type and behavior.

• How to tag an ID to an RwFrame to ease the link between frames and
hierarchy.

• How to load and play a hierarchical animation.

• The extended features described were:

• Blending multiple animations at runtime to add details and new effects.

• Creating and using sub-hierarchies to apply different animation to
different part of a hierarchy.

• Creating and using delta animations to add effects and details to
animations.

• Overloading the interpolation schemes to add higher order or optimized
interpolation scheme.

• Procedurally modifying the animations, both by modifying the source
data and modifying the state held with the HAnim hierarchical
structures.

• Compressed keyframes can be used to reduce memory usage but will
require compression and decompression time.

Chapter 19

The UV
Animation Plugin

Chapter 19- The UV Animation Plugin

II-76 11 February 2004

19.1 Introduction
UV coordinates may be used to describe the way a texture maps over the
geometry of a 3D object.

When rendering, it’s sometimes desirable to change the UV coordinates that
were assigned by the artist when they textured the object in an art package.
Effects, such as flowing textures over an object, could therefore be
achieved.

Modifying individual UV coordinates is a costly operation; modifying entire
groups of coordinates one by one would be particularly expensive.

RenderWare Graphics’ RpMatFX plugin provides an efficient method of
applying a change simultaneously to all UVs used by a texture rendering
operation. This is done on a per-material basis.

The RpUVAnim plugin provides a convenient method for storing animations
of these changes, and attaching those animations to materials.

The animations may be stored within dictionaries, which are streamed
independently of the materials. The dictionaries are managed using
RenderWare Graphics’ RtDict toolkit.

Streaming a material does not stream the attached UV animation; only a
reference is read or written.

When a material with a UV animation reference is read in, RpUVAnim tries
to match the reference against an animation in the current UV animation
dictionary. It also stores the current state of the animation with each
material.

Multiple animations may be attached to any one material and
independently played.

RpUVAnim uses the generic dictionary library, RtDict, to store dictionaries
of UV animations.

A simplified view of the situation is shown below.

 Introduction

RenderWare Graphics 3.7 II-77

✎
UV Animation & Modeling Packages

Artists usually specify UV animations for a material during modeling. The RenderWare
Graphics modeling package exporters support this process—detailed documentation can
be found in the particular Artists Guide relevant to the modeling package.

UV animations created in the modeling packages can be previewed in the Visualizer.

19.1.1 This Document

This document describes basic and advanced usage of the UV animation
plugin.

Section 19.2 details how to set up the plugin, and play back animations
that were saved from the exporters.

Section 19.3 goes into more detail about the internals of the animations,
describing how to set them up in code and directly apply them to materials.

Current UV Animation Dictionary

UV Animation

Keyframes

0

1

…

…

UV Animation

Keyframes

0

1

…

Material

MatFX Extension

UV transform

UVAnim Extension

UV animation

animation state

UV animation

animation state

…

Chapter 19- The UV Animation Plugin

II-78 11 February 2004

19.1.2 Other Resources

API Reference:

− RpUVAnim plugin

− RtAnim toolkit

− RtDict toolkit

− RpMatFX plugin

• uvanim example

• The Animation Toolkit chapter of the User Guide

• The Dictionaries Toolkit chapter of the User Guide

• The Material Effects Plugin chapter of the User Guide, specifically the
sections on applying single and dual pass UV transforms

• RenderWare Graphics’ artists guides

 Basic UV Animation Usage

RenderWare Graphics 3.7 II-79

19.2 Basic UV Animation Usage
The UV animation plugin extends RpMaterials. It can store references to
up to eight separate UV animations on each material.

The simplest way to create and use UV animations in RenderWare Graphics
is via the 3dsmax and Maya exporters. The exporters support the creation
and attachment of UV animations to materials.

The animations themselves are saved out to a separate dictionary. This
dictionary must be loaded before the materials, that attach to the
animations inside that dictionary, are loaded.

This section explains how to load and display UV-animated objects or
scenes that were created with the exporters.

19.2.1 Attaching the Plugins

Before using any features of RpUVAnim, the world, material effects and UV
animation plugins must be attached:

if (!RpWorldPluginAttach())

{

 return FALSE;

}

if (!RpMatFXPluginAttach())

{

 return FALSE;

}

if (!RpUVAnimPluginAttach())

{

 return FALSE;

}

19.2.2 Loading the UV Animation Dictionary

The exporters can save out the UV animation dictionary inside an .rws file
with the objects that use it, or in a separate .uva file containing the
dictionary on its own.

After opening a stream containing the dictionary, find and load the
dictionary:

if (!RwStreamFindChunk(stream, rwID_UVANIMDICT, 0, 0))

{

 return FALSE;

}

RtDict *uvdict = RtDictSchemaStreamReadDict(

 RpUVAnimGetDictSchema(),

 stream);

Chapter 19- The UV Animation Plugin

II-80 11 February 2004

Note the usage of RpUVAnimGetDictSchema() to access the schema for UV
animation dictionaries.

After loading the dictionary, set it as the current UV animation dictionary.
This enables RpUVAnim to link animation references on materials to the
animations in the dictionary you have just loaded:

RtDictSchemaSetCurrentDict(RpUVAnimGetDictSchema(), uvdict);

Remember that on shutdown you will have to destroy the dictionary that
you loaded earlier:

RtDictDestroy(uvDict);

Consult the RtDict documentation for more details on how to use
dictionaries.

19.2.3 Loading the 3D Object

Any 3D object that uses materials (worlds, clumps, atomics) may have UV
animation references set on it. These will automatically be loaded and
linked to the current UV animation dictionary.

For example, a clump with UV animations on some materials is loaded
exactly as you would any other clump:

RpClump *clump=RpClumpStreamRead(stream);

19.2.4 Obtaining a List of Materials to Animate

You will need to obtain a list of materials that have UV animations in order
to animate them.

Functions that may be of use here are:

• RpWorldForAllMaterials

• RpWorldForAllClumps

• RpClumpForAllAtomics

• RpAtomicGetGeometry

• RpGeometryForAllMaterials

• RpMaterialUVAnimExists

✎
The uvanim example demonstrates how to obtain a list of materials from clumps, atomics
and worlds. This is fairly easy; but be careful not to include the same material twice in the
list. You will need to call RpMaterialUVAnimExists to determine if the material has an
animation on it, as the example assumes all materials should be animated.

 Basic UV Animation Usage

RenderWare Graphics 3.7 II-81

19.2.5 Animating the Material

At this point, you should be able to access individual materials that have
UV animations set on them. Making the material animate is then trivial.

Use RpMaterialUVAnimAddAnimTime to move the animation forward in
time:

RpMaterialUVAnimAddAnimTime(material, deltaTime);

This doesn’t modify the transform applied to the material. That is done with
the RpMaterialUVAnimApplyUpdate function.

RpMaterialUVAnimApplyUpdate(material);

✎
RpMaterialUVAnimApplyUpdate makes assumptions on how to combine multiple
animations together, and how to animate both single and dual pass UV transform effects.

You could write and use your own function if your situation is more complex, for example
when using multitexturing effects.

Chapter 19- The UV Animation Plugin

II-82 11 February 2004

19.3 Creating and Applying UV
Animations In Code
This section describes how a UV animation can be created and set on a
material directly in code.

You might want to do this if you want more direct control of the animation
creation and application.

✎ The same setup and animation guidelines detailed in section 19.2 apply.

19.3.1 Creating a UV Animation

UV animations may be created with RpUVAnimCreate, which returns a
pointer to an RpUVAnim:

RwUInt32 nodeIndexToUVChannelMap = {0, 1};

RpUVAnim *myAnim = RpUVAnimCreate(

 “MyAnim”, /* name */

 2, /* numNodes */

 20, /* numFrames */

 10.0f, /* duration */

 nodeIndexToUVChannelMap,

 rpUVANIMLINEARKEYFRAMES,

 /* keyframeType */);

✎
RpUVAnim is a typedef of RtAnimAnimation. It shares the same structure, but stores some
custom data.

One of the custom pieces of data is a reference count. RpUVAnim is a reference counted
type.

The parameters numNodes, numFrames and duration are the same as those
specified for RtAnimAnimationCreate. Consult the RtAnim documentation
for more details on initializing animations, animation nodes and keyframe
management.

Each node of a UV animation controls a single output matrix. In the default
implementation of RpMaterialUVAnimApplyUpdate, these matrices are
combined, as determined by the nodeIndexToUVChannelMap stored in the
animation. The combination is done by premultiplication of the interpolated
matrices.

Regardless of how many output channels are specified in
nodeIndexToUVChannelMap, only two output matrices are constructed by
RpMaterialUVAnimApplyUpdate. These matrices are then copied to the
single and dual pass UV transforms of the material.

 Creating and Applying UV Animations In Code

RenderWare Graphics 3.7 II-83

The figure below details this process.

19.3.2 Setting up the Animation

After you’ve created the animation as, as described in section 19.3.1, you’ll
need to initialize the individual keyframes in the correct order. The RtAnim
toolkit user guide chapter describes how to do this, and the uvanim
example has sample code.

RpUVAnim provides a RpUVAnimKeyFrameInit utility function to assist you
in setting up keyframes.

Material

MatFX Extension Data

Single
Pass

Dual Pass
Transform

UV Animation Extension Data

Interpolator
(animation state)

Matrix 0

Matrix 1

Matrix 2

UV Animation

Node 0

Node 1

Node 2

Node to Channel Map
 Channel 0

Channel 1

Channel 2

Node 0

Node 1

Node 2

Combine to form channel
transform matrices

Matrix 0

Matrix 1
Matrix 2

Chapter 19- The UV Animation Plugin

II-84 11 February 2004

19.3.3 Managing the Lifetime of the Animation

Every animation you create needs to be destroyed, using
RpUVAnimDestroy, when you are finished with it:

RpUVAnimDestroy(myAnim);

You could also assign your animation to a UV animation dictionary, and
then destroy it. This transfers ownership of the animation to the dictionary;
the animation will be finally destroyed when the dictionary is destroyed:

RtDict *dict = RtDictSchemaGetCurrentDict(RpUVAnimGetDictSchema());

RtDictAddEntry(dict, myAnim);

RpUVAnimDestroy(myAnim);

✎ Since RpUVAnim is reference counted, a ‘copy’ of myAnim is now owned by the dictionary.

19.3.4 Using the Appropriate Effect on the Material

In order for the UV animation to actually affect the material it is placed on,
that material must first have been set with the appropriate UV
transformation effect. Either single or dual pass UV transformation effects
may be applied:

RpMatFXMaterialSetEffects(material, rpMATFXEFFECTUVTRANSFORM);

or

RpMatFXMaterialSetEffects(material,

 rpMATFXEFFECTDUALUVTRANSFORM);

The atomic or world sector that uses the material must also have effects
enabled:

RpMatFXAtomicEnableEffects(atomic);

or

RpMatFXWorldSectorEnableEffects(sector);

19.3.5 Setting the UV Animation on the Material

The UV animation material extension has slots for up to eight UV
animations per material.

An animation may be placed in a slot with the RpMaterialSetUVAnim
function:

if (!RpMaterialSetUVAnim(material, anim, 0 /* slot */)

{

 return FALSE;

}

✎ To update the single and dual pass channels, RpMaterialUVAnimApplyUpdate goes over
the animation in each slot. It accumulates matrices for each channel as determined by the
nodeToChannelMap, supplied on creation of the animation.

 Creating and Applying UV Animations In Code

RenderWare Graphics 3.7 II-85

19.3.6 Accessing the Interpolators

RpUVAnim stores an interpolator for each animation slot in its extension to
materials. This is used to store the interpolated state of the animation
during playback.

If you require full control over the interpolators used to apply the
animations, you can access them with the
RpMaterialUVAnimGetInterpolator function. The
RpMaterialUVAnimSetInterpolator function can be used to set the
interpolators.

This could be useful if you want to share the same interpolator between
multiple materials, possibly for efficiency reasons.

✎ You don’t need to manage the lifetime of interpolators you place in animation slots.
RpUVAnim will destroy them for you when the material is destructed.

But, if you’ve applied the same interpolator to multiple materials,
RtAnimInterpolatorDestroy will be called multiple times, as will RpUVAnimDestroy.
This would be erroneous. So, in this case, you will need to destroy the interpolator
yourself and reset the interpolator in the UV animation slots to NULL.

Chapter 19- The UV Animation Plugin

II-86 11 February 2004

19.4 Summary
The UV animation plugin, RpUVAnim, provides a way of applying animations
to the UV coordinates of a material.

RpMaterial objects are extended with necessary data for supporting UV
animations.

UV animations may be stored in dictionaries. Dictionaries of UV animations
can be loaded. Materials can then be streamed in and locate UV animations
in a preloaded dictionary. The UV animations can then be played back in
an RtAnimAnimation–based manner.

UV animations can be also be created directly, and applied to materials.

Chapter 20

Morphing

Chapter 20- Morphing

II-88 11 February 2004

20.1 Introduction
The chapter covers the data structures that describe morph sequences. The
RpMorph plugin executes this data when it drives the morphing process.
The chapter describes the morphing data held in the RpAtomic and
RpGeometry, and the structures RpMorphTarget, RpInterpolator, and
RpMorphInterpolator. It describes how to implement morphing, from
preliminaries, to destruction, with some variations on morphing, and it
discusses the "morph" example.

20.1.1 What Morphing Is

RenderWare Graphics supports animation in morphing, delta morphing,
rigid body animation and skinning. Morphing is the simplest of these, and
is implemented primarily in the RpMorph plugin. Morphing changes an
object from one pre-defined shape to another pre-defined shape by simple
linear interpolation. This is shown in the example,
RW\Graphics\examples\morph, which shows the world stretching from a
globe into one of three egg-shapes and back, in six consecutive morph
interpolations.

Morphing works well for animating the objects being destroyed like racing
cars crashing, objects being crushed or stretched like cushions or bean
bags, objects being deformed like a ball when it bounces, or a simple
cartoon character in movement.

The start and end states of morph interpolations are called "morph targets"
in RenderWare Graphics, but they are sometimes known as "keyframes" so
morphing is also referred to as "keyframe interpolation animation" or
"keyframe animation".

20.1.2 What Morphing is Not

RenderWare Graphics supports other forms of animation distinct from
morphing.

Rigid body animation, in RpHAnim, is different from morphing because it
changes the relative positions of objects. Rigid body animation works
efficiently when it animates a foot that moves relative to a shin, when the
shin moves relative to a thigh which moves relative to a body. Morphing
works well for objects that change their shape.

Skinning, in RpSkin, combines elements of rigid body animation and
elements of morphing to represent the way that skin stretches over solid
forms.

 Introduction

RenderWare Graphics 3.7 II-89

Delta morphing, in RpDMorph, supports changes between multiple shapes
at the same time. It is used to change the expression of a sad face into a
surprised face that is also sad. It uses one shape for the sad face, and
changes it into the a blend of the shape for a surprised face and the shape
for a sad face. Morphing is different from delta morphing in that morphing
allows changes between no more than two states.

20.1.3 Basic Concepts

Two of the structures that support morphing are defined outside the
RpMorph plugin. The RpMorphTargets are part of RpGeometry, and
RpInterpolators are part of the RpAtomic. Both belong to the RpWorld
plugin. The array of RpMorphInterpolators is added to the RpGeometry
by the plugin.

Start
morph
target

End
morph
target

Morphing is a linear interpolation between two shapes

In RenderWare Graphics, morphing requires a single starting state and a
single end state at any given time. These are called "morph targets", as in
the illustration above. Intermediate states are interpolated between them.
The interpolation is always linear.

20.1.4 Strengths and Weaknesses

This means that morphing is not well suited for imitating the movement of
the hands of a clock because they follow curved paths, and because the
image of each hand rotates. Morphing can not represent either effect. The
clock face animation could only be approximated by RpMorph in a number
of small consecutive morphs between several positions and this would use
up memory to store every position. Rigid body animation would be more
appropriate.

Morphing can animate between single shapes; a face into a smiling face, or
a face into a frown. The RpDMorph plugin was written to interpolate multiple
shapes.

Morphing is not limited to simple transformations. Once the vertices of an
object and its triangles are defined in a geometry, the form can be morphed
into any other form defined by the same vertices and triangles. And a
geometry can be morphed successively between a sequence of its morph
targets to make up more complicated animation effects.

✎ It should be noted that RenderWare Graphics Bézier patches are not compatible with
morphing.

Chapter 20- Morphing

II-90 11 February 2004

20.1.5 Other Documents

• See the API reference for details of the code for RpMorph and
RpWorld.

• This chapter assumes you are familiar with the concepts of
geometries, atomics, clumps and streaming from their
descriptions in this User Guide. They can be found in the
Chapters on World and Static Models, Dynamic Models and
Serialization.

• Rigid body animation, delta morphing and skinning can be found
in the Chapters on The Hierarchical Animation Plugin, on
Skinning, and on Delta Morphing respectively.

 Morphing Structures

RenderWare Graphics 3.7 II-91

20.2 Morphing Structures
Some of the basic data used for morphing is built into the RpGeometry and
RpAtomic objects of the World plugin. The geometry may contain an array
of morph targets, the static states, between which the morphs are
interpolated. An atomic using such a geometry contains values that specify
the current state of morph interpolation for a particular instance of the
object.

The RpMorph plugin provides a morph animation system by extending the
RpGeometry and RpAtomic objects, to specify a sequence of interpolations
between specific morph targets, and the current position within such a
sequence.

20.2.1 Geometry

Each RpGeometry stores the number of its morph targets. It may hold one
or more. There must be at least two morph targets if we are to morph
between them. So when a geometry specifies that it has only one morph
target this indicates that it cannot support morphing.

The RpMorph plugin adds animation extension animation data to
geometries, and the extension data holds a pointer to the geometry's morph
targets. The morph targets are held in an array, so they are addressed by
their index numbers. The morph targets can be used in any combination so
that morphs can be defined between any two of them, and any morph
target can be used in many morphs.

RpGeometry also has an array of RpMorphInterpolators in its
animation extension data (the appended data managed by the
RpMorph plugin). As it is an array, the interpolators are addressed by their
index numbers. Each RpMorphInterpolator defines an animation from
one morph target to another in a specified number of seconds. The
interpolators are linked in one or more sequences that describe an
animation through a series of morph targets. Each interpolator points to
the next one in the sequence.

20.2.2 Atomic

An RpAtomic holds three relevant data items:

• a pointer to its geometry, so it refers to its geometry's morph targets and
the morph animation sequence.

• an RpInterpolator driven by RpMorph that is used to store the current
interpolation state. The RpMorph plugin updates this as an animation
progresses.

Chapter 20- Morphing

II-92 11 February 2004

• the current position within the animation. (The animation is defined by
a sequence of RpMorphInterpolators in the geometry). Different
atomics sharing a geometry may be at a different points in the
animation.

20.2.3 Morph Targets

Morph target structures are part of a geometry. An RpMorphTarget is an
opaque structure that contains:

• an array of vertices that determine the shape of the morph target. The
order of the vertices corresponds to the order of the geometry's own
vertex array. The colors, textures, triangle array and other data are held
in the geometry and map to the same vertex order. The geometry can
hold more shapes for its vertices by adding more morph targets to its
array.

• a morph target may also have an array of normal vectors at each vertex,
but this is optional.

• a morph target has a bounding sphere that encloses all the vertices in
their current positions. This can be used for calculating the effects of
light, for collision detection, for culling and for clip tests.

20.2.4 Interpolators

There are two types of interpolator used by the RpMorph plugin:
RpMorphInterpolator, used by the geometry, and RpInterpolator used
by the atomic.

RpInterpolator

The RpInterpolator is part of the atomic. It is opaque and holds the data
for the atomic's current morph. Most importantly it stores the 'time' field,
that represents the current point in the morph's duration between the two
current morph targets. The RpMorph plugin updates the time field.

If the developer chooses to use the morph target data without RpMorph's
animation facilities then the RpInterpolator API Set and Get functions
can be used to update an interpolator directly.

RpMorphInterpolator

The RpMorphInterpolator does not hold any current state information (as
the RpInterpolator does) but instead it defines parameters for a single
morph interpolation. The parameters will be copied across to the
RpInterpolator at the appropriate time. So RpMorphInterpolator
contains

• a pointer to its starting morph target

 Morphing Structures

RenderWare Graphics 3.7 II-93

• a pointer to its end morph target

• and its duration in seconds (also called its "scale" or "time")

• a pointer to the next RpMorphInterpolator in sequence, or to itself if
there is none.

An array of RpMorphInterpolators is added to the geometry when the
morph plugin is present. The array stores definitions of single morphs. It
allows each interpolator to link on to another. The morph plugin reads this
data automatically rendering a sequence of images from one morph to
another.

Chapter 20- Morphing

II-94 11 February 2004

20.3 How to Morph a Geometry
This section deals with preliminaries to implementing a morph
interpolation. It describes how morphing data is normally imported from a
modeling package, and how the timing is added using API functions. It
describes how the interpolation data is made to move, and how movements
can be varied and finally, how the extra data is destroyed.

20.3.1 Before Adding a Morph Animation

RpMorph relies on the RpWorld plugin being attached.

Morphing is one of the simplest forms of animation. It is not compatible
with the more complicated delta morphing or with skinning, and does not
support Bézier patches.

The header file rpmorph.h must be appended to the #include list.

RpMorphPluginAttach() must be called to attach the RpMorph plugin.

20.3.2 How To Set Up Morph Data

Setting up Morph Data with a Modeling Package

RenderWare Graphics supports the 3ds max or Maya modeling packages,
and either of them can be used to create and preview a morph. The Artists
Guides for the packages will explain how to export ".rws" files, that contain
morphing clumps, using RenderWare Graphics' exporters. The exporters
translate the data from the package for streaming into RenderWare
Graphics.

This process replaces some of the developer's tasks. The function
RpClumpStreamRead() loads the data and unpacks it into

• a clump

• its atomic

• the atomic's geometry

• the geometry's morph targets

• and the geometry's morph interpolators.

 How to Morph a Geometry

RenderWare Graphics 3.7 II-95

This is how it is done in the "Morph" example:

if(stream)

{

 RpClump *clump = NULL;

 if(RwStreamFindChunk(stream, rwID_CLUMP, NULL, NULL))

 clump = RpClumpStreamRead(stream);

 RwStreamClose(stream, NULL);

This loads all the data from the clump down to the morph targets. Note that
the example streams from the legacy .dff file type that contains a single
clump.

✎
The meaning of “legacy” file types is that in the future, RenderWare Graphics exporters
may not export to these file types. However, the binary format of these files continue to be
supported, and RenderWare Graphics 3.5 and 3.6 will continue to read them. There is no
need to re-export existing DFF/BSP/etc. artwork as RWS files.

Modifying the Data with the API

Once the exporter has translated the data from the graphics package into
internal data structures, the objects are ready to be animated and
rendered. The following functions are needed only if the developer wants to
alter the behavior of the data from the graphics package.

Sometimes the application will need to replace the exported interpolations,
to modify them or to create an animation programmatically. For instance, it
might want to animate waves onto a sea using its own algorithm. These
functions are exposed for this purpose.

RpMorphGeometryCreateInterpolators() reserves space for the number
of interpolators required, destroying any interpolators already in place. The
number of morph interpolators is passed as a parameter.

RpMorphGeometrySetInterpolator() is called once for each morph
interpolator and fills or alters all the interpolator's data fields. It sets the
interpolator's "next" pointer to the next interpolator in the sequence or to
the first, if this is the last morph interpolator in the array.

RpMorphGeometrySetNextInterpolator() is provided to override the
default behavior of RpMorphGeometrySetInterpolator(). It sets or alters
the "next" pointer. The "next" pointer determines which morph interpolator
in the array of morph interpolators will be executed after this one.

Intercepting the Interpolator Sequence

The callback will be used only in exceptional cases, but if it is needed, this
is the point to set the callback function, RpMorphGeometrySetCallBack().
It is used to set the callback function that will be executed at the end of
each interpolator to trigger some effect or variation.

Chapter 20- Morphing

II-96 11 February 2004

20.3.3 Animating the Morph

RpMorphAtomicSetCurrentInterpolator() sets the animation to the
start at the morph interpolator whose index is passed as a parameter. This
will usually be zero. Then RpMorphAtomicSetTime() is called to set the
time, usually zero, within the initial morph interpolator. Now the morph
atomic is ready to be rendered.

When updating before rendering a new frame, the function
RpMorphAtomicAddTime() is called to update the time field in the
interpolator and advance to the next interpolator in the sequence when
appropriate.

20.3.4 Effects and Variations

The RpMorphInterpolator structure is small, and the most efficient way
to vary morph animations is to define them as new sequences of morph
interpolators. For instance, it is generally more efficient to add an
interpolator to reverse a simple morph than it is to swap the start and end
morph targets and re-run it.

It is sometimes desirable for a morph to begin slowly, continue at speed
and then slow down to its end. This can be done by representing the start
and end of the sequence by slower morph interpolators that operate
between intermediate morph targets.

In the section above, the geometry's callback function could be set. The
callback function is called automatically when each interpolation is
completed, and the default callback function simply moves on to the next
morph interpolator. The developer can write an alternative callback
function to detect a moment in a particular action and trigger an extra
effect, and the RpGeometrySetCallback() function will select it.

20.3.5 Destruction

If all the structures are set in place correctly, from the clump to the atomic,
the geometry and their animation extensions holding morph targets and
morph interpolators, then the RpClumpDestroy function will destroy all of
them in the right order.

 The Morph Example

RenderWare Graphics 3.7 II-97

20.4 The Morph Example
The RenderWare Graphics example RW\Graphics\examples\morph shows
a globe constantly changing shape between its default shape and one of
three transformations of itself. The transformations are used because they
are easy to produce in example code, not because RpMorph is limited to
morphing between transformations.

The Morph example reads in the file "world.dff" in the function
RpClumpStreamRead() as described above. The data is read in from the file
stream. It may also be helpful to note in the code, that the function
RpClumpForAllAtomics() calls the callback function that updates the
geometry with the state for the present frame.

Two screen shots of the Morph example

The up and down cursor keys on a PC target can be used to select the
"Morph speed" item. In this state, dragging the mouse or analogue
controller rotates the globe demonstrating that the morph is interpolating
in 3D. This operation calls the function ClumpRotate().

The "Morph targets" value at the top right of the window shows that there
are four morph targets. The "Start target" and "End target" values at the
bottom right during the animation will show that the morph targets are
numbered 0 to 3. The morph target "0" is the most frequent. It is the
default, spherical shape of the earth. All the interpolations morph to or
from morph target 0.

The six morph "Interpolators" are numbered 0 to 5 in the field labeled
"Interpolator". The globe stretches from its spherical shape (morph target 0)
in interpolators 0, 2 and 4, when the "Start Target" is always "0".
Conversely when the earth is contracting back to its spherical shape, the
"End target" is "0" and the "Interpolator" is 1,3 or 5.

The duration value of each interpolator is shown as the "Scale". Each
"Interpolator", 0-5, adopts its own duration each time it is executed.

Chapter 20- Morphing

II-98 11 February 2004

The "Value" represents the point in time at which each successive
interpolation has reached. It increments up to the current value of "Scale".
Many of these values, especially this one, will be easier to read if the cursor
keys are used to select "Morph speed" to slow down the time scale below
"1.0".

 Summary

RenderWare Graphics 3.7 II-99

20.5 Summary
The RpMorph plugin supports animations built up from linear interpolation
between start and end states known as morph targets. Morph targets are
variations on the shape of a geometry, and are defined as arrays of vertices
that correspond directly with the vertex arrays of their respective
geometries.

In an animation sequence, the transition between states is defined by an
RpMorphInterpolator over a specified duration, and the vertices are
recalculated internally. Each interpolator is stored in an array in a
geometry and the interpolation is linear.

The geometry's RpMorphInterpolator array holds the data for one or more
interpolation sequences. Each sequence can consist of a single
interpolation or a series of consecutive interpolations in which the same
morph target that ends one interpolation also begins the next one.

The morphing process implemented by RpMorph is integral to the
RpGeometry and to RenderWare Graphics' rendering process.

Morphing is appropriate for linear changes. Rotation and curved paths
would have to be approximated by joining sequences of morphs together
and other forms of animation in RenderWare Graphics may be more
appropriate.

Chapter 21

Delta Morphing

Chapter 21- Delta Morphing

II-102 11 February 2004

21.1 Introduction
This chapter describes Delta Morphing or "DMorphing" which is supported
by the RpDMorph plugin and describes the facilities it provides. (Much of the
chapter refers to dynamic models, RpClumps and RpGeometry objects,
which are covered in the Dynamic Models chapter.)

In this section, DMorphing is introduced. In Section 21.2 basic DMorph
usage is covered and an example loading a pre-built model is presented. In
Section 21.3, geometry (RpGeometry) and DMorph targets
(RpDMorphTarget) are introduced. Animation (RpDMorphAnimation) is
covered in Section 21.4, and the chapter is summarized in Section 21.5.

21.1.1 Morphing & Delta Morphing

Morphing is used to generate the intermediate frames needed to seamlessly
morph one geometry to match another. For example, changing a facial
expression from a frown to a smile. In use, the developer specifies starting
and ending target objects and then functions are used to generate
interpolated new geometry data from these two targets over time.

DMorphing differs in that there are a number of targets, which may be
applied to a base geometry. In RenderWare Graphics, this can be used to
generate combinations of RpGeometry. For example, changing a facial
expression from a frown to a smile, with a hint of a grin. In the process, the
base RpGeometry has one or more "delta morph targets" (RpDMorphTarget)
(or "deltas" for short) applied to it. The RpDMorphTargets can overlap and
morph any combination of the base RpGeometry's vertex components:
positions, normals, prelight colors and texture coordinates.

21.1.2 DMorphing

In RenderWare Graphics, DMorphing also differs from normal morphing in
the way the targets are stored internally. The base RpGeometry and
RpDMorphTargets are created in the exporter or procedurally – where each
is, initially, an absolute and complete model. The RpDMorphTargets are
stored as a plugin extension of the base RpGeometry data, and are
compressed by excluding sequences of vertices where the delta is zero. As
such it makes it much more efficient in terms of memory usage.

21.1.3 Animation

Although it is possible to directly manipulate the amounts that each
RpDMorphTarget is applied to the base RpGeometry, a standard animation
system is provided where a series of keyframes can be applied to each
RpDMorphTarget and used to animate the system over time.

 Introduction

RenderWare Graphics 3.7 II-103

21.1.4 Examples

The example, found in examples/dmorph,, will be used in this chapter to
illustrate the features provided by the DMorph plugin’s API. The example
uses two different RpGeometry objects to illustrate the two ways in which
RpDMorphTargets can be used – a human face which is animated, and a
curved surface which can be manipulated – both have a base RpGeometry
and two RpDMorphTargets.

DMorph Example

Chapter 21- Delta Morphing

II-104 11 February 2004

21.2 Basic DMorph Usage
Before any of the plugin’s features can be used, the plugin should be
attached using RpDMorphPluginAttach(). Note, DMorphing is fully
compatible with the skinning and matfx plugins, but it is not compatible
with the (normal) morphing plugin.

In this section, we shall assume that we have a pre-built DMorph example,
complete with RpGeometry, RpDMorphTargets and an RpDMorphAnimation
– such as the face in the example.

21.2.1 Loading a pre-built example

It is useful to realize that RpGeometry and its RpDMorphTargets are
separate from any animation (in fact, DMorphing can be achieved without
any explicit animation).

New exports of DMorph models will be contained within an .rws file by
default. This encapsulates the clump and DMorph animation legacy file
types described below, each of which may be streamed using the
RenderWare Graphics binary stream API.

✎
The meaning of “legacy” file types is that in the future, the RenderWare Graphics
exporters may not export to these file types. However, the binary format of these files
continues to be supported, and this version of RenderWare Graphics will read them. There
is no need to re-export existing DFF/BSP/etc. artwork as RWS files.

Geometry

A clump contains the base RpGeometry and all of its associated
RpDMorphTargets. RpClumpStreamRead() can be used to load this, after
finding the rwID_CLUMP chunk header. The legacy .dff file type is used to
store this clump.

Animation

The details of the frame are stored in the legacy file type .dma and can be
loaded using RpDMorphAnimationRead() – internally, this opens an
RwStream on the file, finds the DMorph animation chunk header
(rwID_DMORPHANIMATION) and then calls
RpDMorphAnimationStreamRead() before closing the RwStream. The
animation is stored as an RpDMorphAnimation.

Before any DMorphing can take place, the RpDMorphAnimation has to be
set onto the RpAtomic using RpDMorphAtomicSetAnimation() (note, this
is only applicable where the RpAtomic has RpGeometry with
RpDMorphTargets attached). (RpDMorphAtomicGetAnimation() can be
used to get the animation.)

In the DMorph example, the face is a pre-built example:

 Basic DMorph Usage

RenderWare Graphics 3.7 II-105

 /*

 * Load DMorphing animation file...

 */

 <BaseAnimation> =

 RpDMorphAnimationRead(RWSTRING("./models/face.dma"));

21.2.2 Animating

The RpAtomic has an animation interpolator which is set to the initial
frame in the RpDMorphAnimation for each RpDMorphTarget, and the
interpolation times are set to zero. The DMorph values are set to those at
the start of the animation.

The animation can subsequently be advanced during run-time with
RpDMorphAtomicAddTime().

In the example, the face is animated over time. In addition to the basic
DMorph usage described here, the animation settings of the face can be
controlled by the user. (This is discussed further in 21.4 Animation.)

 /*

 * Update the animation of the atomic...

 */

 RpDMorphAtomicAddTime(<atomic>, <deltaTime>);

Chapter 21- Delta Morphing

II-106 11 February 2004

21.3 RpGeometry and RpDMorphTargets

21.3.1 RpGeometry

An RpGeometry can be created in the exporter for involved or complex
geometries, or procedurally for relatively simple or regular geometries such
as cubes, spheres and surfaces, etc. The base RpGeometry is created as
any normal RpGeometry, and is given one morph target using
RpGeometryGetMorphTarget() (note the difference between “morph target”
and “delta morph target” – remember DMorphing is not compatible with
normal morphing). Each of the "to-be" deltas are also generated in this way
– exactly as the base RpGeometry. However, only the base RpGeometry
should be put in an RpClump.

For convenience, RpDMorphTargetGetBoundSphere() can be used to get
the bounding sphere of the RpDMorphTarget. The bounding sphere is
returned as if the RpDMorphTarget had been fully applied to the base
RpGeometry.

In the example, the curved surface is generated procedurally. Three similar
geometry objects are created all of which, necessarily, have the same
number of vertices. The base RpGeometry is a flat surface, and the two
RpDMorphTargets are curved along one of the x and z axes.

21.3.2 Adding RpDMorphTargets

To attach the deltas, RpDMorphGeometryCreateDMorphTargets() is called
with the base RpGeometry and creates space for a number of
RpDMorphTargets. Each target can then be added to the base RpGeometry
using RpDMorphGeometryAddDMorphTarget(). With this function, the
delta is assigned an RpDMorphTarget index and the vertex data which is to
be morphed: vertices, normals, prelight colors and texture coordinates.
These also have to be passed in the flag field, which can be logically or'd
together; the flags are: rpGEOMETRYPOSITIONS, rpGEOMETRYNORMALS,
rpGEOMETRYPRELIT, rpGEOMETRYTEXTURED.

To pass the vertex positions of an RpGeometry object,
RpMorphTargetGetVertices() can be used on
RpGeometryGetMorphTarget() for the RpGeometry object in question.
(Likewise, similar functions exist to obtain the normals, prelight colors and
texture coordinates.)

In the example, the surface has vertices and normals:

 /*

 * Add DMorph targets to the base surface geometry...

 */

 RpGeometry and RpDMorphTargets

RenderWare Graphics 3.7 II-107

 RwV3d *verts;

 RwV3d *norms;

 /* create space for 2 delta morph target */

 RpDMorphGeometryCreateDMorphTargets(<BaseGeom>, 2);

 verts = RpMorphTargetGetVertices

 (RpGeometryGetMorphTarget(<DeltaGeom>, 0));

 norms = RpMorphTargetGetVertexNormals

 (RpGeometryGetMorphTarget(<DeltaGeom>, 0));

 if (!RpDMorphGeometryAddDMorphTarget (<BaseGeom>, 0,

 verts, norms, NULL, NULL,

 rpGEOMETRYPOSITIONS | rpGEOMETRYNORMALS))

 {

 <Error>

 }

 . . .

The flags define which elements should be DMorphed and are queried using
RpDMorphTargetGetFlags() on an RpDMorphTarget, which can be
obtained from the base RpGeometry with
RpDMorphGeometryGetDMorphTarget().

For convenience, RpDMorphTargets can be named using
RpDMorphTargetSetName() (or they can be named in the exporter). With
the face example, labels of “rage” and “smile” could be used. An
RpDMorphTarget name can then be retrieved later using
RpDMorphTargetGetName().

21.3.3 Saving DMorph RpGeometry

Once everything has been generated and attached, we can save the
RpGeometry with its RpDMorphTargets using RpClumpStreamWrite().

21.3.4 Direct control of DMorph Values

Whether generated procedurally or pre-built, the number of
RpDMorphTargets of an RpGeometry can be obtained using
RpDMorphGeometryGetNumDMorphTargets(). This is useful when used in
conjunction with RpDMorphAtomicGetDMorphValues() for directly
controlling the DMorph values. The latter function returns a pointer to an
array of RwReals that are the contributions that each RpDMorphTarget has
on the base RpGeometry – and thus the values can be overwritten directly
to alter the DMorphed RpGeometry. (It may also be done in combination
with a standard DMorph animation, see 21.4 Animation.)

Chapter 21- Delta Morphing

II-108 11 February 2004

The contributions that each RpDMorphTarget applies is normally in the
range [0, 1], where a value of zero means that no contribution is being
applied, while a value of one means that the entire contribution is being
applied. However, the value may be set out of this range, including negative
values.

Note, you need to call RpDMorphAtomicInitialize() to overload the
RpAtomic so that it can be DMorphed – otherwise the object will remain
rigid. However, this function is called automatically when DMorph enabled
RpGeometry is loaded.

In the example, the DMorph values can be controlled directly by the user to
alter the shape of the curved surface:

 /*

 * Alters the surface contributions...

 */

 RwInt32 max = RpDMorphGeometryGetNumDMorphTargets(

 RpAtomicGetGeometry(<atomic>));

 RwReal *dlist;

 RwInt32 i;

 dlist = RpDMorphAtomicGetDMorphValues(<atomic>);

 for (i=0; i<max; i++)

 {

 dlist[i] = <contrib_array>[i];

 }

21.3.5 Transforming RpGeometry with
RpDMorphTargets Attached

Transforming the RwFrame of the base RpGeometry will successfully
transform the RpGeometry and its associated RpDMorphTargets.

However, if RpGeometryTransform() is called (to transforms the
RpGeometry's RpMorphTarget vertices, see the Dynamic Models chapter),
then RpDMorphGeometryTransformDMorphTargets() can be used to apply
the specified transformation matrix equally to all RpDMorphTargets defined
on the base RpGeometry transforming both the vertex position deltas and
vertex normal deltas.

 RpGeometry and RpDMorphTargets

RenderWare Graphics 3.7 II-109

21.3.6 Destroying RpDMorphTargets

An RpDMorphTarget can be removed from an RpGeometry object using
RpDMorphGeometryRemoveDMorphTarget() (freeing up the data created
with RpDMorphCreateDMorphTargets() and creating room for a new
RpDMorphTarget to be added). Note, if the target was applying a
contribution to the base geometry when it was removed, that influence will
remain intact. To remedy this, the DMorph value should be directly set to
zero before removal.

All RpDMorphTargets can be destroyed with
RpDMorphGeometryDestroyDMorphTargets().

Chapter 21- Delta Morphing

II-110 11 February 2004

21.4 Animation

21.4.1 Creating Frames

An animation takes "delta morph animation" in the form of a series of
frames that are associated with each RpDMorphTarget. An
RpDMorphTarget can have an RpDMorphAnimation created with
RpDMorphAnimationCreate(). For each animation one or more keyframe
sequences can be created using RpDMorphAnimationCreateFrames(). The
function must be called for every RpDMorphTarget that is to be controlled
by the RpDMorphAnimation. (Some sequences may be left absent for
RpDMorphTargets which are unused or which are to be procedurally
controlled externally.)

Each frame can then be set using RpDMorphAnimationFrameSet() whose
arguments are:

Anim A pointer to the RpDMorphAnimation object

DMorphTargetIndex The index to identify the RpDMorphTarget

FrameIndex The index to identify the frame

StartValue The contribution of the delta to the base RpGeometry
at the start of the frame

EndValue The contribution of the delta to the base RpGeometry
at the end of the frame

Duration The duration of the frame in seconds

NextFrame The index of the next frame

Alternatively, the last four arguments can be set individually with:
RpDMorphAnimationFrameSetStartValue(),
RpDMorphAnimationFrameSetEndValue(),
RpDMorphAnimationFrameSetDuration() and
RpDMorphAnimationFrameSetNext(), respectively. The values can be
obtained using the "get" version of these functions.

Finally, the animation is set onto the RpAtomic using
RpDMorphAtomicSetAnimation().

In the example, the face has a number of frames per RpDMorphTarget. The
user can increase or decrease the duration of the frames as a group, and
can control each RpDMorphTarget independently:

 /*

 * Change durations of the face animation...

 */

 RwUInt32 frames;

 Animation

RenderWare Graphics 3.7 II-111

 RwUInt32 i;

 frames = RpDMorphAnimationGetNumFrames(<BaseAnimation>, 0);

 for (i=0; i<frames; i++)

 {

 RpDMorphAnimationFrameSetDuration(

 FaceBaseAnimation, 0, i, <duration>);

 }

21.4.2 Saving Animations

Once everything has been setup, an RpDMorphAnimation can be saved
using RpDMorphAnimationWrite(). (This internally calls
RpDMorphAnimationStreamGetSize() and
RpDMorphAnimationStreamWrite().)

21.4.3 Editing and Querying Frame Sequences

RpDMorphAtomicSetAnimFrame() will set the specified RpDMorphTarget to
the start of a particular frame in an RpDMorphAnimation. (A value of
rpDMORPHNULLFRAME may be specified for the frame index, which effectively
disconnects a particular DMorphTarget from the RpDMorphAnimation.)

RpDMorphAtomicGetAnimFrameTime() can be used to get the interpolated
time within the current animation frame of the specified RpDMorphTarget –
zero at the start of the frame and equal to the frame duration at the end.
Similarly, RpDMorphAtomicSetAnimFrameTime() is used to set the
interpolation time within the current animation frame for a particular
RpDMorphTarget.

RpDMorphAtomicGetAnimTime() is used to obtain the total amount of time
added to the animation of a delta morph atomic. (It is impossible to set the
absolute animation time directly – but this can be achieved using
RpDMorphAtomicSetAnimation() and then adding the appropriate time
with RpDMorphAtomicAddTime().)

21.4.4 Loop CallBacks

RpDMorphAtomicSetAnimLoopCallBack() is used to set an RpAtomic
callback that will be called whenever an RpDMorphAnimation loops during
RpDMorphAtomicAddTime(). The function can be retrieved using
RpDMorphAtomicGetAnimLoopCallBack(). (There is no default callback.)

Chapter 21- Delta Morphing

II-112 11 February 2004

21.4.5 Running an Animation

RpDMorphAtomicAddTime() is used to advance the animation of a DMorph
RpAtomic by the given amount of time (an animation must have already
been attached with RpDMorphAtomicSetAnimation()).

It is not possible to play an animation backwards, and adding negative time
will produce invalid results. Note that if the animation loops, the time
returned by this function does not reset to zero. It is the total time added to
the animation including loops.

21.4.6 Destroying Frames

RpDMorphAnimationDestroyFrames() destroys the keyframe sequence in
an RpDMorphAnimation corresponding to a particular RpDMorphTarget.

RpDMorphAnimationDestroy() destroys an RpDMorphAnimation and any
keyframe sequences it contains.

 Summary

RenderWare Graphics 3.7 II-113

21.5 Summary

21.5.1 Delta Morphing

• Delta morphing has a number of targets (RpDMorphTarget) that can be
applied to a base geometry (RpGeometry).

• Each target contributes to the overall RpGeometry.

• Targets can overlap.

• It is possible to DMorph vertex positions, normals, prelight colors, and
texture coordinates.

The example, DMorph, demonstrates basic usage, RpGeometry &
RpDMorphTarget and RpDMorphAnimation.

21.5.2 Basic Usage

Delta morphing can be considered two-part. The RpGeometry and
RpDMorphTargets, and the RpDMorphAnimation.

With a pre-built model:

• It can be loaded with RpClumpStreamRead().

• Its animation is loaded using RpDMorphAnimationRead().

In general:

• RpDMorphAtomicSetAnimation() is used to set the RpDMorphAnimation
onto the atomic.

• The RpDMorphAnimation can be run using RpDMorphAtomicAddTime()
at run-time.

21.5.3 RpGeometry and RpDMorphTargets

For the RpDMorphTarget:

• RpDMorphGeometryCreateDMorphTargets() creates space for a number
of RpDMorphTargets.

• RpDMorphTargets are added using
RpDMorphGeometryAddDMorphTarget().

DMorph values can be controlled directly using
RpDMorphAtomicGetDMorphValues() which returns the array of
contributions from each RpDMorphTarget.

Chapter 21- Delta Morphing

II-114 11 February 2004

21.5.4 RpDMorphAnimation

• An RpDMorphAnimation is created using RpDMorphAnimationCreate().

• Frames can be added to each RpDMorphAnimation with
RpDMorphAnimationCreateFrames().

• Frames are set using RpDMorphAnimationFrameSet().

• Finally, RpDMorphAtomicSetAnimation() is used to set-up the whole
system.

Part D

Special Effects
Libraries

Chapter 22

The Material
Effects Plugin

Chapter 22- The Material Effects Plugin

II-118 11 February 2004

22.1 Introduction
The Material Effects plugin, RpMatFX, provides a set of off-the-shelf material
effects which can be applied to materials used by atomics and world
sectors.

This chapter explains the features provided by this plugin and how to use
them.

22.1.1 How RpMatFX Works

The RpMatFX plugin exposes a high-level API to a set of off-the-shelf effects
pipelines. The high-level API hides the complexities of setting up the effects,
which differs widely from platform to platform.

22.1.2 RpMatFX Features

The RpMatFX plugin supports four effects:

• Environment mapping

• Bump mapping

• Combined environment & bump mapping

• Dual-pass texture mapping

• Single pass with texture coordinate transformation

• Dual pass with texture coordinate transformation in each pass

These effects can be applied to a material used by either an atomic or world
sector object. Different materials can have different effects enabled, so an
atomic might, for example, be rendered with materials supporting both
environment mapping and dual-pass texture mapping.

✎
Material Effects & Modeling Packages

Artists usually specify the effect(s) required for a specific model during the export stage.
The RenderWare Graphics modeling package exporters support this process—detailed
documentation can be found in the particular Artists Guide relevant to the modeling
package.

 Using Material Effects

RenderWare Graphics 3.7 II-119

22.2 Using Material Effects
The Material Effects plugin works on RpMaterial objects rendered within
atomics or world sectors.

The procedure for using RpMatFX is a four-step process:

1. Select the desired effect and apply it to the material

2. Initialize any additional data for the effect

3. Enable the RpMatFX renderer for the atomic or world sector which
uses the material

4. Render the scene

The following sections will cover each step in more detail.

22.2.1 Selecting The Effect

The RpMatFX API exposes the RpMatFXMaterialSetEffects() function to
select the required effect. This must be the first function called when
setting up an effect on a material.

The RpMatFXMaterialSetEffects() function requires a pointer to the
RpMaterial object that is to have the effect applied to it, as well as a flag
which defines the effect to apply. The flag settings are listed in the table
below:

FLAG EFFECT

rpMATFXEFFECTBUMPMAP Enables bump mapping on the
chosen material.

rpMATFXEFFECTENVMAP Enables environment mapping on
the chosen material.

rpMATFXEFFECTBUMPENVMAP Enables both bump and
environment mapping on the
chosen material.

rpMATFXEFFECTDUAL Enables dual pass texturing
rpMATFXEFFECTUVTRANSFORM Enables uv transformation
rpMATFXEFFECTDUALUVTRANSFORM Enables dual uv transformation for

two passes

22.2.2 Initializing Effect Data

Once an effect has been chosen, any additional data needed to implement
that effect—additional texture maps, bump maps, etc.—need to be set up
so the effect can be rendered.

Chapter 22- The Material Effects Plugin

II-120 11 February 2004

The initialization steps vary depending on the effect selected, so this section
looks at each of the effects in turn.

The effects supported are:

• Bump mapping

• Environment mapping

• Bump & environment mapping

• Dual-pass texture mapping

• UV transformation

• Dual-pass UV transformations

Bump Mapping

The bump mapping effect renders a second bump texture over a base
texture such that the illusion of a bumpy surface is created. An example is
shown in the screenshot below.

A bump mapped model

Each bump mapped material requires the following properties to be
initialized:

• A bump map texture defining the 'bumpiness'

• The definition of the light direction for the bump map

• The bump map coefficient, which defines the intensity of the bump
mapping

 Using Material Effects

RenderWare Graphics 3.7 II-121

The RpMatFXMaterialSetupBumpMap() function is used to set up the
bump mapping effect's properties for each material in one call. In addition
to this setup function, the properties also have individual access functions,
which are useful if you need to modify a material effect property after it has
already been initialized:

Setting Bump Mapping Properties

The functions described below are used to set the bump map properties for
a material.

• RpMatFXMaterialSetBumpMapTexture() – sets the bump map texture;

• RpMatFXMaterialSetBumpMapFrame() – sets the bump map lighting
direction, (represented by an RwFrame object). If this property is left
undefined, the frame is derived from the current camera's at vector;

• RpMatFXMaterialSetBumpMapCoefficient() – sets the bump map's
coefficient.

Retrieving Bump Mapping Properties

The functions described below are used to retrieve the bump map
properties for a material.

• RpMatFXMaterialGetBumpMapTexture() – returns the material's
current bump map texture;

• RpMatFXMaterialGetBumpMapFrame() – returns the material's current
bump map lighting direction as an RwFrame object;

• RpMatFXMaterialGetBumpMapCoefficient() – returns the material's
bump map coefficient.

Bumped Textures

When a bump map texture is set, the RpMatFX plugin integrates it into the
alpha channel of the base texture. The resulting, combined, texture is
called a bumped texture and a pointer to it is obtained with a call to
RpMatFXMaterialGetBumpedTexture().

The two textures used for bump mapping are converted into one internal
texture. To supply RenderWare with combined textures, you should store
the intensity of the bump-texture in the alpha channel of the base texture,
and save the texture with a name that is constructed from the interleaved
characters of the base and the bump texture. For example, if you had a
base texture called base.png and a bump-map called bump.png the
combined textures would be called bbausmep.png. Put this texture in the
texture path and it will be loaded and used. You will no longer need the two
original textures.

Chapter 22- The Material Effects Plugin

II-122 11 February 2004

Environment Mapping

The environment mapping effect creates the illusion of a reflective surface
by mapping an environment texture—a texture containing an image of the
material's surroundings—onto the material.

Variations on the effect can be created by using different images for the
environment texture. For example, a texture that contains only highlights
can be used to create the effect of a glossy surface.

An environment mapped object

Each environment mapped material requires the following properties to be
initialized:

• The environment map texture

• An RwFrame which defines the environment map's projection. If this is
not defined, a default frame object is generated which always faces the
current camera

• A flag defining whether the frame buffer's alpha channel should be used
when applying the environment map

• An environment map coefficient, which defines how reflective the
material is, i.e. the intensity of the environment map

As with the bump mapping effect, each property also supports individual
access functions.

Setting Environment Mapping Properties

The functions described below are used to set the environment map
properties for a material.

 Using Material Effects

RenderWare Graphics 3.7 II-123

• RpMatFXMaterialSetEnvMapTexture() – sets the environment map
texture

• RpMatFXMaterialSetEnvMapFrame() – sets the environment mapping
projection (an RwFrame object)

• RpMatFXMaterialSetEnvMapFrameBufferAlpha() – a boolean value,
which should be set to TRUE if the frame buffer's alpha channel is to be
used

• RpMatFXMaterialSetEnvMapCoefficient() – sets the environment
map coefficient

Retrieving Environment Mapping Properties

The functions described below are used to retrieve the environment map
properties for a material.

• RpMatFXMaterialGetEnvMapTexture() – returns the environment map
texture

• RpMatFXMaterialGetEnvMapFrame() – returns the environment
mapping projection

• RpMatFXMaterialGetEnvMapFrameBufferAlpha() – returns TRUE if the
frame buffer's alpha channel will be used

• RpMatFXMaterialGetEnvMapCoefficient() – returns the environment
map coefficient

Chapter 22- The Material Effects Plugin

II-124 11 February 2004

Bump & Environment Mapping

This effect combines both bump mapping and environment mapping
effects, covered in detail above. This effect is achieved by combining both
bump and environment mapping effects. The property setup process is
performed by calling both the RpMatFXMaterialSetupBumpMap() and
RpMatFXMaterialSetupEnvMap() functions.

The property access functions are also identical to those described earlier
in the bump mapping and environment mapping sections.

An object with both environment and bump mapping

 Using Material Effects

RenderWare Graphics 3.7 II-125

Dual-Pass Texture Mapping

An object with dual-pass texturing.
(The overlaid 'RW' text is the second texture.)

This effect works by combining the material's own texture with a second
texture according to specified combination flags.

The setup function is RpMatFXMaterialSetupDualTexture() and sets the
following properties:

• The second texture (the first is defined by the RpMaterial object)

• The blend function for the source data

• The blend function for the target data

Blend Functions

The two blend functions determine how the two textures are blended with
the data in the frame buffer. They are defined by the RwBlendFunction
enumeration. A brief description of each flag follows—see the Blending
section in the Immediate Modes chapter for a complete description of the
blending system.

• rwBLENDNABLEND – "Not A Blend" – no blending is performed

• rwBLENDZERO – RGBA channels set to zero

• rwBLENDONE – RGBA channels are set to 1

• rwBLENDSRCCOLOR – Source RGBA only

• rwBLENDINVSRCCOLOR – Inverse of source RGBA only

Chapter 22- The Material Effects Plugin

II-126 11 February 2004

• rwBLENDSRCALPHA – Source alpha only on all channels

• rwBLENDINVSRCALPHA – Inverse source alpha only on all channels

• rwBLENDDESTALPHA – Destination alpha only on all channels

• rwBLENDINVDESTALPHA – Inverse destination alpha only on all channels

• rwBLENDDESTCOLOR – Destination RGBA values only

• rwBLENDINVDESTCOLOR – Inverse destination RGBA only

• rwBLENDSRCALPHASAT – Source alpha (saturated)

Each dual-pass effect property has its individual access functions.

Setting dual-pass effect properties

The functions described below are used to set the dual-pass effect
properties for a material.

• RpMatFXMaterialSetDualTexture() – sets the second texture. The
first texture is the one already contained within the RpMaterial object.

• RpMatFXMaterialSetDualBlendModes() – sets both blending
functions.

Retrieving dual-pass effect properties

The functions described below are used to set the dual-pass effect
properties for a material.

• RpMatFXMaterialGetDualTexture() – returns a pointer to the second
texture.

• RpMatFXMaterialGetDualBlendModes() – returns the settings of the
two blending functions.

 Using Material Effects

RenderWare Graphics 3.7 II-127

Single and dual-pass with UV Transformation

An object with dual pass texturing and UV transformations.
(This is the same object as in the previous image with a shear transform
applied to the first pass UVs, and a scale applied to the second pass UVs.)

These effects provide an efficient way to apply a transformation to the
texture coordinates during rendering so that textures may be translated,
rotated, stretched, scaled, or sheared. The application may animate the
transformation by updating the transformation matrix each frame.

Once either of the effects rpMATFXEFFECTUVTRANSFORM, or
rpMATFXEFFECTDUALUVTRANSFORM has been enabled, the UV
transformation matrices may be set with the function
RpMatFXMaterialSetUVTransformMatrices(). This takes two matrix
pointers:

• The transformation matrix to be applied to the first pass UVs.

• The transformation matrix to be applied to the second pass UVs. (Only
applicable when using the dual pass effect)

If either of the matrices are set to NULL, then an identity transform will be
assumed. Otherwise, the matrices must be created by the application.

For the dual-pass uv transformations, the second pass texture and
blending mode can be set as with the standard dual-pass effect, using
RpMatFXMaterialSetDualTexture(), and
RpMatFXMaterialSetDualBlendModes().

Transform Matrices

Although the matrices are of type RwMatrix, the transformation is two
dimensional, so only the subset of the matrix elements that affect X and Y
coordinates are relevant:

Chapter 22- The Material Effects Plugin

II-128 11 February 2004

(pos)
(at)
(up)

(right)

0
000
0
0

yx

yx

yx

PP

UU
RR

The transformed texture coordinates are:

yyy

xxx

PvUuRv
PvUuRu

++=
++=

'
'

The matrix values may be initialized directly (remembering to apply the
RwMatrixUpdate() function), or may be constructed using the RwMatrix
functions for scaling, translating, and rotating matrices. Rotations should
be about the z-axis.

Retrieving UV-transform effect properties

• RpMatFXMaterialGetUVTransformMatrices() – returns pointers to
the UV transform matrices.

22.2.3 Enabling the Effects Renderer

Once the data for the effect has been initialized for a material, the RpMatFX
renderer needs to be enabled for the atomic or world sector that contains
the material.

If this operation is not performed, the additional effects data will be ignored
and the material rendered using only the basic RpMaterial data.

Enabling the effects renderer on an atomic or world sector only needs to be
performed once, regardless of how many RpMatFX-extended materials it
contains.

Enabling Effects on an Atomic

To enable material effects for an atomic which contains an RpMatFX-
extended material, call: RpMatFXAtomicEnableEffects(), passing the
relevant atomic as a parameter.

Enabling Effects on a World Sector

To enable material effects for a world sector use:
RpMatFXWorldSectorEnableEffects(), passing the relevant atomic as a
parameter.

 Using Material Effects

RenderWare Graphics 3.7 II-129

Rendering

Once the effects have been enabled on the relevant atomics and world
sectors, rendering of the affected materials is performed automatically.

The Material Effects plugin's own renderer detects materials with RpMatFX
data as they pass through RenderWare Graphics' rendering pipeline. When
one is found, the plugin temporarily substitutes its own rendering pipeline
to render these materials, reverting to the normal rendering pipeline for
normal materials.

Chapter 22- The Material Effects Plugin

II-130 11 February 2004

22.3 Examples
The following example shows how to set up an atomic containing a bump
mapped material, then render it. Only relevant code fragments are shown.

✎ A complete RpMatFX example is provided with the SDK's examples folder, named matfx1.

22.3.1 A Bump Mapping Example

Preparation

As was discussed in section 1.2.2, each bump mapped material requires
the following properties to be set:

• A bump map texture defining the 'bumpiness';

• A definition of the light direction for the bump map;

• A bump map coefficient.

The RpMatFXMaterialSetupBumpMap() function is used to set the required
data for each material.

A number of objects are involved in this example. The first is the atomic
object which contains the model with the material which will contain our
bump map.

RpAtomic *myAtomic;

Next, there's the material itself and the bump map texture which will be
applied to it.

RpMaterial *myMaterial;

RwTexture *bumpTexture;

In addition, the bump map texture will also need a frame. This frame
determines the direction of the bump map's lighting. This lighting gives us
the effect of a bumpy surface, even though the surface is really flat.

RwFrame *bumpLighting; /* bump map lighting direction */

It should be noted that this light, which behaves similarly to directional
lighting, is not a real light: it only affects the bump map on this particular
material.

Other lights that impinge on this object will light the model as usual, but
you will need to modify the bump map lighting to match in order to
maintain the illusion.

Finally, we need a bump coefficient, which is defined as an RwReal, (defined
here as 0.77, but it could be any value). This determines how bumpy the
surface will appear to be. A low value gives only a slightly bumpy surface
whereas a larger value produces a bumpier effect.

 Examples

RenderWare Graphics 3.7 II-131

RwReal bumpCoefficient = 0.77; /* bump coefficient */

For the purpose of this example, these objects are assumed to have been
already initialized with valid data.

Initializing the Material Effect

With the objects defined and initialized, the first step in the initialization
process is to set the desired effect for the material.

RpMatFXMaterialSetEffects(myMaterial, rpMATFXEFFECTBUMPMAP);

This tags the material as a bump mapped material, but we still need to
initialize the necessary data the bump map.

RpMatFXMaterialSetupBumpMap(myMaterial,

bumpTexture,

bumpLighting,

bumpCoefficient);

Enabling Effects on the Atomic

For the purposes of this example, the RpMaterial object represented by
myMaterial is assumed to be already contained within the atomic named
myAtomic.

In order for the bump mapped material to render with the RpMatFX
renderer, the atomic it is contained within must be enabled for material
effects rendering:

RpMatFXAtomicEnableEffects(myAtomic);

Rendering the Effect

The Material Effects plugin hooks into the RenderWare Graphics rendering
engine, so rendering of the atomic containing our bump mapped material
can be performed using either:

RpAtomicRender(myAtomic);

or, if the atomic has been added to an RpWorld object, (named myWorld, in
the example below) by a call to:

RpWorldRender(myWorld);

This completes the example.

Chapter 22- The Material Effects Plugin

II-132 11 February 2004

22.4 Summary
The Material Effects plugin, RpMatFX, provides a set of off-the-shelf material
effects which can be applied to materials used by atomics and world
sectors.

22.4.1 Supported Effects

The RpMatFX plugin supports six effects:

• Environment mapping

• Bump mapping

• Environment & bump mapping

• Dual-pass texture mapping

• Single pass with texture coordinate transformation

• Dual pass with texture coordinate transformation

22.4.2 Extended Objects

Materials

The Material Effects plugin works by extending RpMaterial objects with
necessary data for its supported effects.

The data must be set up prior to rendering, using the appropriate
RpMatFXEffectSetup...() function.

Atomics & World Sectors

RpMatFX hooks into RpAtomic and RpWorldSector object rendering, so a
material must be used in either—or both—objects in order for it to be
rendered.

The RpMatFX plugin will only hook into the renderer for an atomic or world
sector by a call to either RpMatFXAtomicEnableEffects() or
RpMatFXWorldSectorEnableEffects(), respectively. These functions
enable the effects on the objects passed.

Chapter 23

Lightmaps

Chapter 23- Lightmaps

II-134 11 February 2004

23.1 Introduction
This chapter describes the creation and use of lightmaps. These are
RwTextures, which are used to store pre-calculated lighting information -
the brightness of static light incident on the static surfaces in a scene. This
chapter covers their pros and cons, describing the process of creating
lightmaps, importing, and of using them at run-time. The chapter provides
concepts and examples of use, rather than detailed API specifications,
which may be found in the API Reference. It provides a step-by-step guide
to adding lightmaps to an application, describing the data objects involved.
Much of this is done with reference to the Lightmaps example.

23.1.1 What are lightmaps?

Lightmaps are applied to static geometry (usually encoded as
RpWorldSectors, though sometimes RpGeometrys) as a second texturing
pass. While the base texture specifies the color-dependent reflectivity of
geometry, the lightmap instead specifies the intensity of static light incident
to the surface. The final, displayed color of a surface at a point is thus
determined as the base texture color multiplied by the sum of the lightmap
color and the interpolated dynamic vertex lighting color. This combination
allows detailed, high-quality static lighting to be combined cheaply with
lower-quality dynamic lighting.

✎ The base texture specifies diffuse (direction-independent) reflectivity and the lightmap
similarly specifies a direction-independent sum of the light incident on a surface.

Part of a lightmap showing the distribution of light on a single wall,
lit by one light source

For lightmapped geometry, given that it is rendered with two texture
passes, two UV values are required per vertex. The second set of UV values
is used to map each polygon in the scene to a unique area in one of the
scene's lightmaps (a scene's static lighting may be stored in one or many
lightmaps, depending upon a developer's wishes). Hence, any given texel in
a lightmap is used only once in the scene (at only one sample point). They
are not tiled, as base textures often are – in terms of memory usage. This is
offset by the fact that, whereas base textures need to be of a fairly high
resolution, light levels usually change gradually and hence lightmaps are
usually of a significantly lower resolution.

 Introduction

RenderWare Graphics 3.7 II-135

✎
A 'lumel' is one element of a lightmap. This is analogous to a 'texel' as an element of a
texture, or a 'pixel' as an element of a monitor or TV screen. A lumel records, in one RGBA
value, the color and intensity of the light incident at one sample point on a surface (note
that the 'A' component of the RGBA value is ignored or used internally by the plugin).

A lightmap as generated by the Lightmaps example. (Notice the shadow of
the vase - this area of the lightmap must map to the floor polygons beneath

the vase.)

23.1.2 Why use lightmaps?

Lightmaps are used to reduce the processing required to render a scene at
run-time. The basic lighting equations used to calculate lightmaps are no
different from those used in the standard dynamic vertex lighting
algorithms in RenderWare Graphics. Lightmaps do, however, provide some
improvements to the quality of static lighting, beyond that feasible for
dynamic vertex lighting. For instance, they sample lighting more uniformly
and at a higher frequency across surfaces. Shadowing is also detected and
anti-aliasing may be performed (as well as additional processes, if the
lightmap illumination process is overloaded, such as the filtering of light
through translucent objects).

Whilst lightmaps provide only static lighting information, they allow
computationally expensive lighting calculations to be performed offline (at
some point in the content-creation toolchain) such that only a few, dynamic
light sources need be taken into account at run-time (with other techniques
potentially providing dynamic shadows). The present speed of graphics
processors and the quality of graphics that players now expect mean that it
is for the most part not feasible to dynamically calculate high-quality
lighting quickly enough for real-time games. This point is clearly illustrated
by the Lightmaps example; it takes potentially several minutes for the
lighting in a particular view to be calculated, yet once these calculations are
complete, the user is able to navigate the same environment interactively.

Chapter 23- Lightmaps

II-136 11 February 2004

23.1.3 What are the costs of lightmaps?

Rendering geometry with lightmaps will naturally incur a fill-rate penalty,
owing to the second pass of texturing (though this will generally be a small
penalty on multitexture-enabled hardware).

Lightmaps can also occupy a significant amount of memory. On some
systems, extra time may be required to transfer the lightmap to texture
memory. The size of lightmaps, however, is controllable by the developer
and lightmaps will in general be of a significantly lower resolution and bit-
depth than base textures. The RtLtMap toolkit attempts to map static
surfaces into lightmaps as efficiently as possible, to avoid wasting lightmap
space.

23.1.4 When not to use lightmaps?

Lightmaps encode static lighting information only, hence they are not of
much use when a scene is lit entirely by dynamically varying light-sources.
Lightmaps cannot represent the illumination from moving lights, the effects
of light on moving objects, nor illuminations or shadows from moving
objects. This does not, however preclude the combination of static lighting,
encoded in lightmaps, and dynamic vertex lighting. The Lightmaps example
illustrates the use of a moving light source: it applies the moving light over
the pre-calculated light-mapped surfaces.

Lightmaps inevitably suffer from aliasing, being a
discrete sampling of a continuous function

 Introduction

RenderWare Graphics 3.7 II-137

Lightmaps may produce ugly 'banding' artifacts when light values vary
slowly across a surface that has a very smooth (or absent) base texture. For
example, if a lamp hangs below a plain white ceiling, circular banding
around the light will be quite obvious. At the opposite end of the spectrum,
individual texels may be particularly clear in lightmaps with sharp color
gradients (this is simply aliasing, the 'jaggies' familiar to all 3D graphics
developers). Both of these artifacts may be countered by careful tweaking of
base textures, lighting or lightmap resolution.

Lightmaps with low color gradients will generally cause visible banding
artifacts when applied to plain surfaces.

23.1.5 Compatibility

The RpLtMap plugin renders lightmapped objects, and to do so it uses two
texture passes during rasterization. It is not compatible with the RpMatFX
plugin (so lightmapped objects may not use 'material effects' and material
effects objects may not be lightmapped).

23.1.6 Other documents

• The API Reference provides technical details for the functions and data
structures of the RpLtMap plugin, the RtLtMap toolkit and the
RtLtMapCnv toolkit, as well as providing platform-specific information.

Chapter 23- Lightmaps

II-138 11 February 2004

• The book "3D Games: Real-Time Rendering and Software Technology,
Volume 1", by A. Watt and F. Policarpo, provides useful background
reading on lightmapping and real-time 3D graphics programming in
general.

• The pages listed below contain lightmap tutorials. A web search may
yield further information.
www.flipcode.com/tutorials/tut_lightmaps.shtml
http://polygone.flipcode.com/tut_lightmap.htm
www.delphi3d.net/articles/viewarticle.php?article=lightmapping.htm
http://members.net-tech.com.au/alaneb/lightmapping_tutorial.html

http://www.flipcode.com/tutorials/tut_lightmaps.shtml
http://polygone.flipcode.com/tut_lightmap.htm
http://www.delphi3d.net/articles/viewarticle.php?article=lightmapping.htm
http://members.net-tech.com.au/alaneb/lightmapping_tutorial.html

 Lightmap functionality overview

RenderWare Graphics 3.7 II-139

23.2 Lightmap functionality overview
The RenderWare Graphics API divides the use of lightmaps into two stages;
the creation of lightmaps and the use of lightmaps. Both stages use the
RpLtMap plugin. The first stage uses the additional functions of the
RtLtMap and RtLtMapConv toolkit.

The toolkit RtLtMap is used during lightmap creation, when:

• Lightmaps are allocated

• The static surfaces in a scene are mapped to areas in lightmaps

• The color and intensity of incident light for each texel is calculated and
stored in the lightmaps

Alternatively, RtLtMapCnv can be used to import external lightmaps by,

• External lightmaps are generated by other packages and exported with
the lightmapped objects.

• Internal lightmaps are allocated.

• The static surfaces in a scene are mapped to areas in internal
lightmaps.

• The internal lightmaps are generated by converting the external
lightmaps.

At run-time, the RpLtMap plugin provides functionality to:

• Load lightmaps from disk and associate them with the appropriate
scene objects

• Apply the appropriate parts of the lightmaps as second-pass textures to
their respective surfaces in the scene

• Extends world sectors, atomics and materials.

• The following sections in this chapter will cover the above three
processes, splitting the descriptions into three phases:

• A description of the data objects involved in generating and using
lightmaps

• A step-by-step guide to adding lightmaps to an application, covering
generation, importing and use of lightmaps

• A review of the Lightmaps example (which illustrates all of the points
covered in this chapter) and an introduction to the various options and
possibilities for developers using lightmaps

Chapter 23- Lightmaps

II-140 11 February 2004

23.3 Lightmap-related data objects
This section introduces the various data objects involved in the creation
and use of lightmaps. It will also cover many API functions related to these
objects (though some functions may instead be covered in the following
section). The objects and functions that are described here are either pre-
existing RenderWare Graphics objects or are defined by the RtLtMap
toolkit. The RpLtMap plugin only uses pre-existing RenderWare Graphics
objects.

Here is a summary list of the objects covered in this section:

• The RtLtMapLightingSession holds the data about a lightmap, and
this data is necessarily used when creating a lightmap.

• The existing RwTexture object is used to encode lightmaps (so there is
no actual RtLtMapLightMap object).

• RpWorldSectors are extended with plugin data to contain lightmaps
and define lighting properties of each sector.

• RpAtomics are extended with plugin data to contain lightmaps and
define lighting properties of each atomic.

• RpMaterials are extended with plugin data to define lighting properties
for surfaces tagged with specific materials.

• The RtLtMapAreaLightGroup describes one or more area lights. This
may be used, optionally, during lightmap illumination.

These are covered in order below, giving a summary of related functions.

23.3.1 Lighting Sessions

The RtLtMapLightingSession structure holds information used to
manage the lighting of a scene. It specifies the objects to be lit, the lights
used to light them and the methods used during lighting calculations. A
lighting 'session' may be time-sliced such that lighting may be performed
incrementally, and this structure will track lighting progress through a
session.

The RtLtMapLightingSession structure is used widely in the RtLtMap
toolkit. Here is a list of the functions that make use of it:

• RtLtMapLightMapsCreate()

• RtLtMapLightMapsDestroy()

• RtLtMapIlluminate()

 Lightmap-related data objects

RenderWare Graphics 3.7 II-141

• RtLtMapImagesPurge()

• RtLtMapLightMapsClear()

• RtLtMapAreaLightGroupCreate()

• RtLtMapTexDictionaryCreate()

The values in a RtLtMapLightingSession should be initialized by the
function RtLtMapLightingSessionInitialize(). Only the scene's
RpWorld must be specified before the RtLtMapLightingSession can be
used. The members of the structure will now be listed, in three groups.

Scene specification

The following members are used to specify the scene (the objects that are to
be lit and the lights that will illuminate them):

• world: a pointer to the world

• camera: a pointer to a camera (or NULL), the frustum of which
determines which surfaces are to be illuminated

• sectorList: a pointer to an array of world sectors to be illuminated (or
NULL)

• numSectors: the number of sectors in the array

• atomicList: a pointer to an array of atomics to be illuminated (or NULL)

• numAtomics: the number of atomics in the array

Progress tracking

The following members are used to track the progress of scene illumination,
if it is performed incrementally, in 'slices' (performed via calls to
RpLtMapIlluminate()):

• totalObj: the number of all the objects in the current scene (note that
this value is automatically calculated when RpLtMapIlluminate() is
called). An object being either a RpWorldSector or a RpAtomic

• startObj: the starting object which to begin the next illumination slice.

• numObj: the number of objects to illuminate during the next
illumination slice.

Chapter 23- Lightmaps

II-142 11 February 2004

Callback functions

The RtLtMapLightingSession holds addresses for three callback
functions which, when non-NULL, may be used to override the default
functionality invoked within RtLtMapIlluminate():

• sampleCallBack: an RtLtMapIlluminateSampleCallBack. If NULL,
RtLtMapDefaultSampleCallBack will be used. This callback performs
lighting for groups of samples in objects being lit – see the API reference
documentation for further details.

• visCallBack: an RtLtMapIlluminateVisCallBack. If NULL,
RtLtMapDefaultVisCallBack will be used. This callback determines
the visibility (zero, partial or full) between every light source and every
sample in the scene - see the API reference documentation for further
details.

• progressCallBack: an RtLtMapIlluminateProgressCallBack. If
NULL, it will be ignored. This is called at five points during the
illumination process, to provide feedback on progress to the user – see
the API reference documentation for further details.

✎ The Lightmaps example does not use custom callback functions.

23.3.2 Lightmaps

A 'lightmap' is just a RwTexture, where the value of each texel specifies the
intensity and color of light incident at a sample point on the surface of an
object in the scene. The function RtLtMapLightMapsCreate() is used to
create lightmaps, for the objects specified by an RtLtMapLightingSession
structure. Depending on the global or per-material (see the section on
materials, below) lightmap density settings for these objects, a single
lightmap may cover the surface of one or many objects. The function
RtLtMapLightMapsDestroy() destroys the lightmaps attached to objects
specified in an RtLtMapLightingSession structure.

✎
For PlayStation2, lightmaps are specified slightly differently (they are in fact inverted
'darkmaps'). For further details, see the API reference documentation for
RtLtMapSkyLightMapMakeDarkMap() and
RtLtMapSkyLightingSessionProcessBaseTextures().

The process that calculates the light that falls on each sample point in the
scene is the RtLtMapIlluminate() function. This will be dealt with in
further detail later on in this document.

 Lightmap-related data objects

RenderWare Graphics 3.7 II-143

Lightmap management functions

Lightmap textures are square and have a default side length given by the
value rpLTMAPDEFAULTLIGHTMAPSIZE. This value may be overridden using
the function RtLtMapLightMapSetDefaultSize(), the value passed to
which will be used in the next call to RpLtMapLightMapsCreate().

The names (and filenames, if saved to disk individually) of lightmap
textures consist of a prefix and a counter, in the form "ltmp0000",
"ltmp0001", "ltmp0002" and so on. The prefix and count may be accessed
by the functions RtLtMapSetDefaultPrefixString(),
RtLtMapGetDefaultPrefixString(), RtLtMapSetLightMapCounter()
and RtLtMapGetLightMapCounter(). The name of a lightmap may be
altered after it has been created, using the function RwTextureSetName().

To clear lightmaps after they have been calculated, the function
RtLtMapLightMapsClear() is provided. If its second parameter is NULL, it
clears the lightmaps back to a black and white checkerboard pattern,
whereas if it contains the address of an RGBA value, the lightmaps will be
cleared to this color.

23.3.3 World Sectors

The RpWorldSector object is extended by the RpLtMap plugin, to contain
lightmap-related data. Flags within this data, of type RtLtMapObjectFlags,
may be accessed by through the functions
RtLtMapWorldSectorGetFlags() and RtLtMapWorldSectorSetFlags().

Here is a summary of the RtLtMapObjectFlags:

• rtLTMAPOBJECTLIGHTMAP: this object is to be lightmapped

• rtLTMAPOBJECTVERTEXLIGHT: this object's vertex prelight colors should
be lit within RtLtMapIlluminate()

• rtLTMAPOBJECTNOSHADOW: this object does not cast shadows (probably
so that dynamic shadows may be used later)

The default size of the lightmap created for an RpWorldSector is given by
the value rpLTMAPDEFAULTLIGHTMAPSIZE. This default may be changed by
the function RtLtMapLightMapSetDefaultSize(). The function
RtLtMapWorldSectorSetLightMapSize() may be used to set lightmap
size for an individual RpWorldSector (this should be used before
RtLtMapLightMapsCreate() is called).

The function RtLtMapWorldSectorGetNumSamples() returns the number
of sample points, corresponding to lightmap texels and vertex prelight
colors (the world sector's flags determine which may be present), in the
specified world sector.

Chapter 23- Lightmaps

II-144 11 February 2004

RtLtMapWorldSectorLightMapClear() may be used to clear the lightmap
for an RpWorldSector to the default black and white pattern, or to a
specific color (note that this affects all the objects which use this lightmap).
The lightmap may be destroyed with the function
RtLtMapWorldSectorLightMapDestroy(), though its memory will only be
released if it is not still in use by other objects.

23.3.4 Atomics

The RpAtomic object is extended by the RpLtMap plugin, to contain
lightmap-related data. It contains the same extension data as does the
RpWorldSector object and equivalent API functions are available for
accessing this data in atomics (for example, use
RtLtMapAtomicGetFlags(), instead of RtLtMapWorldSectorGetFlags(),
to access an atomic's flags).

23.3.5 Materials

The RpMaterial object is extended by the RpLtMap plugin, to contain
lightmap-related data. Flags within this data, of type
RtLtMapMaterialFlags, may be accessed by through the functions
RtLtMapMaterialGetFlags() and RtLtMapMaterialSetFlags(). These
flags define how materials will interact with light in a scene.

Here is a summary of the RtLtMapMaterialFlags:

• rtLTMAPMATERIALLIGHTMAP: surfaces using this material should be
lightmapped

• rtLTMAPMATERIALAREALIGHT: surfaces using this material emit light

• rtLTMAPMATERIALNOSHADOW: surfaces using this material do not block
light (will not cast shadows)

• rtLTMAPMATERIALSKY: surfaces using this material block everything
except directional light (such that light from the sun and sky may be
represented as directional lights, even in the presence of 'sky polygons'
enclosing the world)

• rtLTMAPMATERIALFLATSHADE: surfaces using this material will be flat
shaded, using polygon normals rather than vertex normals

• rtLTMAPMATERIALVERTEXLIGHT: surfaces using this material will be lit
at the vertices.

For further details, see the API reference documentation.

API functions used to modify material extension data will be described in
the following section on area lights, to which all of these functions pertain.

 Lightmap-related data objects

RenderWare Graphics 3.7 II-145

23.3.6 Area Lights

An "area light" emits light from a two-dimensional area, as opposed to a
"point light", which emits light from a zero-dimensional point. Area lights
include fluorescent panels, the sky and lamp bulbs in diffusing shades.
Point lights include candles, the sun and lamp bulbs without diffusing
shades (assuming that each is viewed from far enough away, relative to
their size!).

An Area Light emits light from an area

The function RtLtMapAreaLightGroupCreate() allocates memory for the
RtLtMapAreaLightGroup structure, and fills it with data defining one or
more area lights - these being identified by the flags (of type
RtLtMapMaterialFlags) of materials used by the objects specified by the
RtLtMapLightingSession structure passed to the function. Internally,
area lights are represented as sets of point lights, at uniformly spaced
sample points - these are very similar to standard RpLights, though they
only emit light from the surface's front side. The function
RtLtMapAreaLightGroupDestroy() destroys the area light structure,
releasing its memory.

The illumination from each sub-light within an area light decreases by the
inverse square law over distance. Given this, there will be, for any area
light, a distance, or radius, over which it is strong enough to noticeably
illuminate other surfaces – this is the Region Of Influence (ROI) of the light.
In the interests of efficiency, the RtLtMap toolkit will attempt to avoid
applying the effects of an area light source to any surfaces outside its ROI.

Chapter 23- Lightmaps

II-146 11 February 2004

The ROI of all area lights may be adjusted by a global modifier, which
effectively brightens or dims all area lights. The functions
RtLtMapGetAreaLightRadiusModifier() and
RtLtMapSetAreaLightRadiusModifier() are used to read and write this
global modifier value. Area light ROI may also be adjusted on a per-material
basis (area lights are defined by the surfaces whose materials are flagged to
emit light), with the functions
RtLtMapMaterialGetAreaLightRadiusModifier() and
RtLtMapMaterialSetAreaLightRadiusModifier().

The RGBA value (alpha being ignored) of the light being emitted from area
lights of a given material can be adjusted using the functions
RtLtMapMaterialGetAreaLightColor() and
RtLtMapMaterialSetAreaLightColor(). The magnitude of this color
vector will affect an area light's ROI, though in order to obtain maximum
precision in the specification of the light's hue, it is best to keep the
magnitude large and to scale the light's brightness using
RtLtMapMaterialSetAreaLightRadiusModifier().

The ROI of an area light is calculated based upon the estimated visual error
caused by ignoring the light's influence outside of this region. The 'cut-off'
error value may be adjusted using the functions
RtLtMapGetAreaLightErrorCutoff() and
RtLtMapSetAreaLightErrorCutoff().

Different densities of sub-lights within an area light

The world-space density of the point lights that represent area lights is
passed as a parameter to RtLtMapAreaLightGroupCreate(). This may be
multiplied by global or per-material modifiers, which may be adjusted using
the functions RtLtMapGetAreaLightDensityModifier(),
RtLtMapSetAreaLightDensityModifier(),
RtLtMapMaterialGetAreaLightDensityModifier() and
RtLtMapMaterialSetAreaLightDensityModifier(). The higher the
density of sample points within an area light, the more accurate the
resultant lighting will be (the smoother the soft shadows you will get), but
the longer it will take to calculate the lighting solution.

✎
The number of samples (sub-lights) within an area light affects only the quality of the
resultant lighting solution, it does not affect the brightness of the area light source – so
whilst there are more sub-lights constituting the area light, each one is commensurately
dimmer.

 Lightmap-related data objects

RenderWare Graphics 3.7 II-147

The larger an area light is, the more sample points it will have on its
surface; the increase is a function of the area of the light (so doubling its
length will quadruple the number of sample points). The value of an
increase in the number of samples, however, diminishes as the number of
existing samples increases. The function
RtLtMapSetMaxAreaLightSamplesPerMesh() sets a sensible limit to this
increase, capping the number of samples which may be created by a given
area light mesh. RtLtMapGetMaxAreaLightSamplesPerMesh() retrieves
that limit.

Chapter 23- Lightmaps

II-148 11 February 2004

23.4 Creating and using lightmaps
This section provides a step-by-step guide to creating and then using
lightmaps, covering the export of data from a modeling package, calculation
of lightmap UV coordinates, illumination of lightmaps, rendering with
lightmaps and saving and reloading lightmap data.

23.4.1 Lightmap creation

Lightmap creation is performed in two stages: the export of lightmap-
specific data from a modeling package and the creation of lightmaps (and
calculation of per-vertex lightmap UV coordinates) in a RenderWare
Graphics application (such as the lightmap example).

Exporting lightmaps-compliant data

In order for the RtLtMap toolkit to calculate per-vertex lightmap UV
coordinates for world sectors and atomics, the exporter must export a
second set of per-vertex UV coordinates, initialized to specific values (which
are calculated on the basis of information that only the modeling package
has access to). To enable this, ensure the "Generate RtLtMap UVs" option is
enabled before exporting an atomic or world.

✎ This option enables the export of the necessary data for RtLtMap to generate the
lightmaps itself. It should not be confused with the option to export lightmaps generated
by the application.

Setting up the plugin and toolkit

For an application to load or save lightmap data and to render geometry
with lightmaps, the RpLtMap plugin must be attached -
RpLtMapPluginAttach() should be called, after RwEngineInit() and
RpWorldPluginAttach() and before RwEngineOpen(). The header
rpltmap.h should be included in application code and the RpLtMap library
linked into the application.

For an application to create and/or illuminate lightmaps, the RtLtMap and
RtBary toolkits must be linked into the application, in addition to the
RpLtMap plugin. The header rtltmap.h should be included.

Creating lightmaps

Once the RpWorld and/or RpAtomics (correctly exported, as above)
constituting a scene have been loaded from disk, lightmaps must be
created for them and their per-vertex lightmap UV coordinates must be set
up.

 Creating and using lightmaps

RenderWare Graphics 3.7 II-149

In order to create lightmaps for a scene, an RtLtMapLightingSession
structure should be set up to specify the lightmapped objects therein. This
structure should be allocated and then initialized with the function
RtLtMapLightingSessionInitialize(), which sets up a pointer to the
scene's RpWorld (the only value which must be specified before the
RtLtMapLightingSession can be used to create lightmaps for the scene).

The function RtLtMapLightMapsCreate() is used to create the lightmaps
for a scene and to set up per-vertex lightmap UV coordinates. This takes an
RtLtMapLightingSession, density value and color value as parameters.
The density may be worked out by trial and error (it depends upon the
desired world-space resolution of lightmaps in the scene), but the lightmap
example uses a simple calculation (involving the world's bounding box) to
automatically determine a sensible value.

The color value merely specifies the color to which to clear the newly
created lightmaps (if this parameter is NULL, the default black and white
checkerboard pattern will be used).

Here is some example code, illustrating the above points:

{
 RtLtMapLightingSession lightingSession;

 RpWorld *world;

 /* ...Stream RpWorldStreamRead into variable 'world'... */

 RtLtMapLightingSessionInitialize(&lightingSession, world);

 RtLtMapLightMapsCreate(&lightingSession, 100.0f, NULL);
}

At this stage the scene may be rendered (see the following section on
rendering with lightmaps for details). Assuming the lightmaps have not
been cleared to a user-specified color, the lightmaps should be visible as a
uniform checkerboard pattern modulating the world's base textures. The
higher the density value passed to RtLtMapLightMapsCreate(), the
smaller the cells of this pattern will be. This will be more clearly visible if
point sampling is used for the lightmap textures (see the API reference
documentation for RpLtMapSetRenderStyle() for details).

23.4.2 Lightmap illumination

Once lightmaps have been created and mapped to world geometry, their
texels must be set to values representing the intensity of static light
incident at sample points on the surfaces of the lightmapped objects in the
scene. The function RtLtMapIlluminate() is used to achieve this.

Chapter 23- Lightmaps

II-150 11 February 2004

This function determines visibility between every light and every sample
point in the scene (as specified by a RtLtMapLightingSession), in addition
to evaluating a light falloff equation for each such pair. Depending upon the
number of lights, the number of sample points and the complexity of the
occluding geometry in the scene, it may take a very long time for this
process to complete. Hence, it may be useful to perform lighting in slices
(as described in the 23.3.1 Lighting Sessions section introducing lighting
sessions) and/or to use a RtLtMapIlluminateProgressCallBack (which
may be specified in the RtLtMapLightingSession) to keep track of lighting
progress.

Super Sampling

Lightmaps can be generated at a higher resolution and down sampled to a
lower resolution for display. This can produced better quality lightmaps due
to the higher sampling resolution without needing similar higher resolution
lightmaps for display.

Supersampling is selected during illumination. RtLtMapIlluminate()
contains a parameter, SuperSample, which is used to select the
supersample value. This sets the sampling resolution to be a scale factor of
the lightmap's resolution.

Area Lights

RtLtMapIlluminate() takes a pointer to a RtLtMapAreaLightsGroup,
specifying area lights to be used during illumination. Several such
structures may be chained together, so that (for example) if several worlds
are connected together by portals, the area lights from all of the worlds may
be taken into account during illumination.

Here is some example code demonstrating the creation and use of area
lights:

{

 RtLtMapAreaLightGroup *areaLights;

 RtLtMapSetAreaLightDensityModifier(0.5f);

 RtLtMapSetAreaLightRadiusModifier(2.0f);

 RtLtMapSetAreaLightErrorCutoff(4);

 areaLights = RtLtMapAreaLightGroupCreate(&lightingSession, 0);

 RtLtMapIlluminate(&lightingSession, areaLights, 1);

 RtLtMapAreaLightGroupDestroy(areaLights);
}

 Creating and using lightmaps

RenderWare Graphics 3.7 II-151

23.4.3 Rendering with lightmaps

Once lightmaps have been created for objects in a scene (whether this was
performed during the current application execution or whether the objects
and lightmaps have been loaded from disk), they may be rendered using the
usual object rendering functions without modification. The lightmap
rendering pipeline is automatically assigned to objects when
RtLtMapLightMapsCreate() is called, or when objects are loaded from
disk and are found to contain lightmapping extension data.

23.4.4 Saving and reloading lightmap data

Once lightmaps have been created for a scene, the objects in that scene
should be saved to disk so that their lightmap extension data and the
second set of per-vertex UV coordinates are stored.

Additionally, the lightmaps themselves must be stored. The function
RtLtMapTexDictionaryCreate() may be used to create a platform-
dependent texture dictionary containing all of the lightmaps used by the
objects specified by an RtLtMapLightingSession. This may be saved
directly, as one file, or the lightmaps may be converted into platform-
independent RwImages and saved individually. If the latter approach is
chosen, the names of the image files must be the same as the names of the
lightmap textures (retrieved using RwTextureGetName()), because these
names are used when atomics and world sectors are loaded from disk, to
determine which lightmap is used by which object.

The grouping of lightmaps is up to the user, lightmaps could be stored in
the same texture dictionary as the scene's base textures if desired. All that
is important is that the lightmaps are available when the scene's objects are
loaded from file, either in the current texture dictionary (already loaded
from disk) or as image files on the current image search path.

Fully functional file loading code is provided in the lightmap example, in
the function _loadWorld(), in lightmaps.c.

23.4.5 Postprocessing lightmaps

Lightmaps on the PlayStation 2 uses a proprietary, two-pass algorithm, to
render full-color lightmapped objects. This method gives better performance
than a four-pass algorithm but requires post processing of the lightmaps
and the objects' base texture.

Firstly, the texels of the lightmaps needs to be inverted. This is performed
by the functions RtLtMapLightingSessionLightMapProcess() and
RtLtMapSkyLightMapMakeDarkMap().

Secondly, a 'luminance' value needs to be computed and stored in the
alpha component of the object's base texture's texel. This would be produce
an inverted display on a PC but would appear correct on the PlayStation 2.
Likewise, non-processed lightmaps will appear inverted on PlayStation 2.

Chapter 23- Lightmaps

II-152 11 February 2004

The function, RtLtMapSkyLightingSessionBaseTexureProcess() is used
to compute and store the 'luminance' value. Two methods are available to
compute this value.

RtLtMapSkyLumCalcSigmaCallBack() computes the luminance value
using the three components of the RGB texels and is more suitable for
fairly evenly lit scenes.

RtLtMapSkyLumCalcMaxCallBack() uses the maximum of the RGB
components to compute the value. This function is better suited for scenes
with sharp changes from well lit to very dark regions.

23.4.6 Host Generation

Lightmaps can be generated on a host platform, normally a PC, for use on a
different target platform. In such situations, the exported texture dictionary
must either be in the target platform's format or a platform independent
format. Care must be taken when exporting the lightmap texture dictionary
to ensure the lightmap's raster format is in the platform's optimal format.

The raster format on a PC may not necessary be suitable for the target
platform. This can lead to incorrect lighting or pixelated images.

A second effect of using a different host to generate the lightmaps is the
image may appear darker. This is normally due to an incorrect gamma
setting in the objects' base texture.

 The lightmaps example

RenderWare Graphics 3.7 II-153

23.5 The lightmaps example
The Lightmaps example demonstrates most of the functionality of the
RpLtMap plugin and RtLtMap toolkit. It can load a freshly exported world
and/or atomics and generate, illuminate and store lightmaps for them. Its
menu also provides access to many tweakable settings, such that, by
experimentation, the user may come to better understand the way
lightmaps work and the various quality/performance tradeoffs involved.

The artist or developer may wish to use this example to generate the
lightmaps for a particular game scene. It can be amended fairly easily, to
tailor the lightmaps for a more specific use, but it is provided primarily to
demonstrate how to write code to create and use lightmaps in a
RenderWare Graphics application.

Example: A view of the example scene, showing freshly created lightmaps

Chapter 23- Lightmaps

II-154 11 February 2004

23.5.1 Starting the example

To start, launch the example in the usual way. The camera in its default
state will show a view of a circular world as seen from above.

Example: Screen at launch

The application window may at first appear to be largely dark gray, since
the scene is rendered with fogging enabled. To get a better view of the
example scene, move carefully in towards it. To do this, remove the menu
and readme text; on the PC press the spacebar, twice; on other platforms
refer to the platform specific txt file for commands. Then press the "up"
key, a few times to move the camera down to the floor of the world you are
looking at –press the "down" key to back up if you go too far. Once you are
close to the floor, drag the mouse up the screen to tilt the camera from
looking straight down to looking horizontally.

At this point, lit items in the world are visible. Notice the dynamic light that
passes over the central vase every five seconds. Note that this vase is
vertex-lit rather than being lightmapped – it will still be lit during the
lightmap illumination process. A couple of appropriate-looking materials in
the scene are set up to be area light sources.

The default scene can be overridden by drag'n'dropping a BSP or DFF onto
the viewer on a PC (or by passing a filename as a command-line parameter
on a console). Note that the textures for a scene should be stored in a
directory of the same name as the scene's BSP (excluding the ".BSP"
extension). Currently the example does not support loading .RWS files.

23.5.2 The menu options

At this point it is worth displaying the menu again and looking at the
options, and reading the details of the help file. They can be displayed by
pressing the spacebar. This section will provide a brief description for each
of the menu options.

 The lightmaps example

RenderWare Graphics 3.7 II-155

FPS is used in other examples and merely toggles the display of the
framerate in the upper right corner of the display window.

Camera Speed is used to modify the movement speed of the camera.
Pressing the "left" key, or its equivalent, while this menu item is selected,
will halve the camera's movement speed, whilst pressing the "right" key, or
its equivalent, will double the camera's movement speed. This affords rapid
movement around large scenes as well as precise positioning with respect
to detailed geometry.

Lightmap creation

Create Lightmaps allocates lightmaps for the geometry currently in view,
calculating per-vertex lightmap UV coordinates and initializing lightmaps to
a black and white checkerboard pattern – these being performed through a
call to RtLtMapLightMapsCreate().

Clear Lightmaps calls the function RtLtMapLightMapsClear(), which
clears the scene's lightmaps back to a checkerboard pattern, if they have
been partially or fully illuminated.

Destroy Lightmaps calls the function RtLtMapLightMapsDestroy(), which
releases the memory of the scene's lightmaps. The scene's geometry no
longer references lightmaps and will no longer be rendered using the
lightmap pipelines, so the checkerboard pattern (or static lighting) will
disappear.

Lightmap Density alters the density of lightmap samples (texels) in world-
space. This density value is passed to RtLtMapLightMapsCreate() when
lightmaps are next created. Higher densities produce higher-quality
lighting, but will also require longer processing times.

Higher and lower density lightmaps

Lightmap Size calls RtLtMapAtomicSetLightMapSize(), which sets the
size (resolution) of lightmap textures. This value is passed to
RtLtMapLightMapsCreate() when lightmaps are next created. This
function is provided to allow the developer to choose between few, large
lightmaps or many, small lightmaps.

Chapter 23- Lightmaps

II-156 11 February 2004

Lightmap Supersample specifies the supersampling value during lightmap
illumination. This value sets the sampling resolution by scaling the
lightmaps texture resolution.

Lightmap illumination

Lighting initiates the illumination process for the areas of lightmapped
geometry that are visible in the current view. The progress of this lighting
'session' is displayed, as a percentage completion value in the center of the
view window. The initial view is cached, so that the camera may be moved
during illumination. The lighting calculations may also be paused and
resumed any number of times by re-executing this menu option.

Cancel Lighting cancels the current illumination calculations, if any are in
progress. The next time the Lighting menu option is activated, a new
lighting 'session' will be initiated.

Area Lights toggles the use of area lights during lightmap illumination
calculations. If area lights are not to be used, the second parameter of
RtLtMapIlluminate() is set to NULL when it is called; otherwise an
RtLtMapAreaLightGroup pointer is passed, describing the area lights in
the scene. The RtLtMapAreaLightGroup is created, by a call to
RtLtMapAreaLightGroupCreate(), the first time that this menu option is
toggled to TRUE.

RpLights toggles the use of the RpLights in the scene during lightmap
illumination calculations. The use of these lights is activated and
deactivated by toggling their RpLightFlags between lighting and not
lighting atomics and world sectors.

Jitter Lights calls LightJitterCB(), to "jitter" each of the RpLights in the
scene. In this context, to jitter means to process a single light as if it
occupied a small range of positions or angles (in practice, this means
replacing the light with multiple, dimmer lights). The purpose of this is to
soften shadows cast by these lights, the softness being proportional to the
distance from the occluding object casting the shadow. To see the jittered
lights directly, select the Draw Lights option, described below. Once lights
have been jittered, they cannot be unjittered. Jitter is not part of the
Lightmap API, but the function in the example shows the developer how the
effect may be coded.

File handling

Save Images saves the lightmaps as individual, platform-independent image
files.

Save TexDict saves the lightmaps and the normal textures into a single
texture dictionary file. The dictionary can be in platform independent or
platform dependent form.

 The lightmaps example

RenderWare Graphics 3.7 II-157

Save Objects saves the scene's objects (world and/or atomics) to disk, with
any new lightmap UV coordinates or lightmap plugin data that may have
been created during the execution of the example. (This option assumes
that your files are write-enabled.)

Display options

Render Style cycles between displaying lightmaps, base textures and the
combination of both. If Destroy Lightmaps has removed the lightmaps (or if
lightmaps have not yet been created), this option can show only the base
textures.

Point Sample toggles the filtering mode of the scene's lightmap textures
between point sampling and bilinear interpolated. Bilinear interpolation will
always be used in a product, but point sampling shows lightmap texels as
rectangles so that the layout of the lightmaps in the scene is more clearly
visible.

Dynamic Lighting toggles the use of one ambient and one moving point light
source. Both of these lights are dynamic – they are not used during
lightmap illumination, but rather are dynamically combined with the static
lighting represented by the lightmaps. The dynamic lights can be seen
through the use of the Draw Lights option, described below. The effect of
the point light is seen on the floor and walls in its ROI and it affects the
central vase every five seconds or so.

Draw Lights toggles the rendering of visible 3D representations for the
scene's RpLights. If you back out of the world, you can see the directional
lights outside the world that simulate sky light and the single (much
brighter) directional light that simulates light from the sun. They are
suspended high above the floor of the world, as illustrated in the screen
shot below.

• The two white 'target' symbols () represent the static point light (1) and
the moving dynamic point light (2).

• The large 3D arrow (3) represents the sun's directional light, and
emanates from the image of the sun on the hemispherical sky.

• The four dark, barely visible, 3D arrows (4a-4d) show where four of the
multiple directional light sources for the sky area light are placed.

• The cone (5) represents a spotlight.

• The dark gray box is the world's bounding box, drawn in the color of the
scene's single ambient light source.

Chapter 23- Lightmaps

II-158 11 February 2004

 4a 4b 3 4c 4d

 5 1 2

Draw Wireframe cycles between displaying no wireframe geometry,
displaying wireframe bounding boxes for the scene's world sectors and
displaying the world's triangles in wireframe in addition to the bounding
boxes.

23.5.3 Options and issues

This section provides some further illustration of the issues involved with
some of the options available when creating and using lightmaps.

Jittering

There is no function in the toolkit or plugin to jitter lights automatically.
The Lightmaps example includes a function that demonstrates how to
achieve this effect. It replaces a single, bright light source with several dull
light sources, randomly displaced in angle or position (depending upon
light type). As shown in the images below, the effect is to soften shadow
edges, in proportion to the distance from the occluding object casting the
shadow.

 The lightmaps example

RenderWare Graphics 3.7 II-159

The shadow in front of the vase on the left reveals the texels of the light map.
The jittered version to the right tends to hide them.

Varying lightmap resolution

It may be beneficial to vary lightmap resolution in different parts of a scene
(for example, to provide detailed shadows in small areas, or to cover large
areas without consuming huge amounts of texture memory). However,
where lightmapped surfaces of different resolutions share a border, there is
often an ugly visual discontinuity so this should be avoided if at all
possible.

The image on the left depicts an area of varying lightmap resolution. The
image on the right shows the resultant visual discontinuity.

Moving lights and pre-lights

The shadows of moving lights and/or objects cannot be represented using
lightmaps. These shadows must be displayed using different means (such
as projected textures, projected polygons or stencil-buffer shadow
silhouette planes).

At run-time, pre-light values and the light from dynamic lights are added to
lightmap values. In the Lightmaps example, the central vase uses pre-light
vertex lighting rather than lightmaps to achieve a very similar effect (due to
the high resolution of the vase geometry).

Chapter 23- Lightmaps

II-160 11 February 2004

Point Sampling

The images below demonstrate the visual difference between bilinearly-
filtered and point-sampled lightmap textures.

The image on the left shows a point-sampled lightmap, with individual texels
clearly visible. The lightmap on the right uses bilinear interpolation

Switchable lightmaps

Under certain circumstances, it may be useful to generate two or more
versions of the lightmap covering a sub-section of a scene. Such alternative
versions may be swapped simply at run-time (using
RpLtMapWorldSectorSetLightMap()), to give the effect of, for example, a
light being switched on and off.

Overloaded illumination callbacks

As is described in greater detail in the API Reference documentation, two
callbacks may be overloaded during the lightmap illumination process – the
sample callback and visibility callback. The latter, for instance, may be
modified to implement light filtering, such that geometry (or even
volumetric fog) can act as a color-sensitive filter to light, rather than
blocking it entirely. Effects such as light coloration through a stained-glass
window, attenuation and diffusion due to light scattering within fog, or
reflections from specular surfaces, can all be implemented by overloading
the visibility callback.

23.5.4 Troubleshooting

The use of lightmaps to encode static lighting has its limitations, but it is
well worth the extra work of designing game environments to conceal
awkward shadows and orienting objects and lightmaps into alignment.
Occasionally the edges of texels will be very obvious. A small area of high-
resolution lightmap may help conceal them, or bilinear interpolation may
be effective enough.

 The lightmaps example

RenderWare Graphics 3.7 II-161

Lightmap density may be automatically scaled during lightmap creation, if
it is found that all of the polygons of a single atomic or world sector cannot
be packed into one lightmap. When this happens, the lightmap's world-
space sample density is halved and the packing is retried. The result is
that, on the surfaces of this object, lightmap texels will be twice as wide as
on other surfaces. This can be rectified by increasing lightmap size or by
decreasing the initial world-space lightmap sample density.

It is recommended to use grainy rather than smooth base textures with
lightmaps. Smooth base textures make the transitions between lighting
values in lightmaps much more pronounced (usually appearing as ugly
banding).

Try to align texels with shadows and with objects that mask light. In the
screen shot above, the shadow of the skylight is much more acceptable
because it is aligned with the texels in the lightmap, in comparison with the
shadow of the vase, which is diagonal and its jagged edges are obtrusive.
This improvement is not due to any actual anti-aliasing process, though
result often suffices anyway.

Light "Jittering", as described elsewhere in this section, can be used to
further reduce aliasing artifacts at hard shadow edges.

✎
On PlayStation 2 if previously-opaque objects begin to be rendered translucently, this is
because base textures have been processed for lightmapping (affecting their alpha
channel) yet the objects are no longer being rendered using the lightmaps pipeline. If,
alternatively, lightmaps produce overly dark or 'burned-looking' results, then this base
texture processing has not been done. See the PlayStation 2 API Reference documentation
for further details.

Chapter 23- Lightmaps

II-162 11 February 2004

23.6 Importing Lightmaps
Lightmaps can be generated externally and imported for use in
RenderWare.

3ds max and Maya both have the ability to generate lightmaps. These
lightmaps can be exported, just like materials and geometry, for use in
RenderWare. For more information on how to export lightmaps, see the
relevant Artist Guide for these packages.

To render these lightmaps, the lightmap plugin, RpLtMap, must be
attached. Lightmaps exported by these packages are identical to those
generated internally, so the setup procedure to render them is the same.

23.6.1 Manual Conversion

Lightmaps exported from 3ds max and Maya are converted automatically as
part of the export process. If manual conversion is required, such as
importing from a custom format or other sources, the RtLtMapCnv toolkit
can be used.

RtLtMapCnv only performs the conversion of the external lightmaps.
RtLtMap is required to create the internal lightmaps and assign the internal
UV lightmap co-ordinates.

To import external lightmaps into RenderWare you need to:

• Export the external lightmaps, geometry and associate data.

• Create the internal lightmaps.

• Convert the lightmaps.

Exporting external lightmaps

Exporting a lightmap object involves exporting the lightmap textures and
the object itself.

The lightmap textures can be exported as normal images, such as a
Window bitmap images, or into a RwTextDictionary.

The lightmapped object is exported in the same way as a standard
RenderWare object, but with additional properties attached. The user must
provide the additional properties as additional input for the export process.
For more information on how to export objects to RenderWare, see the
World & Static Model chapter of the User Guide.

The additional properties are provided in two parts. The first part is in three
RpUserDataArrays. These arrays are used to the.

• U component of the UV lightmap co-ordinate per vertex.

 Importing Lightmaps

RenderWare Graphics 3.7 II-163

• V component of the UV lightmap co-ordinate per vertex.

• lightmap’s name reference per triangle.

• The second part is a second set of UV texture co-ordinates. These are
not used to store texture co-ordinates but, instead, the alignment axis
of the vertices. This is, essentially, the major axis of the vertex’s parent
triangle’s face normal.

• The encoding scheme for the alignment axis is:

• 0.0 represent the +ve X axis.

• 0.1 represent the +ve Y axis.

• 0.2 represent the +ve Z axis.

• 0.3 represent the –ve X axis.

• 0.4 represent the –ve Y axis.

• 0.5 represent the –ve Z axis.

• If a vertex is shared, but its parents’ major axis is different, then the
vertex must split.

Creating the internal lightmaps

Creating the internal lightmaps for conversion follows the same process as
creating lightmaps for illumination.

A lighting session needs to be initialized using
RtLtMapLightingSessionInitialize() for the RpWorld containing the
imported lightmap data. The lightmaps for the RpWorld and any attached
RpAtomics are then created using RtLtMapLightMapsCreate().

During lightmap creation, the triangles are mapped onto internal lightmaps
to generate RenderWare’s own UV lightmap co-ordinates. The triangles may
not necessary re-use the imported UV lightmap co-ordinates and may be
re-scale and re-orientated.

Converting the lightmaps

Once the internal lightmaps have been created and new UV lightmap co-
ordinates are generated for the triangles, the imported lightmaps are ready
for conversion.

Unlike lightmap generation, lightmap conversion is a single pass and does
not involve multiple ‘illumination slice’. A second difference is RpWorld
lightmaps and RpAtomic lightmaps are converted individually.

Chapter 23- Lightmaps

II-164 11 February 2004

A lightmap conversion session, RtLtMapCnvWorldSession, must first be
initialized using RtLtMapCnvWorldSessionCreate(). A similar function,
RtLtMapCnvAtomicSessionCreate(), creates a conversion session,
RtLtMapCnvAtomicSession, for a RpAtomic. RtLtMapCnvWorldSession
and RtLtMapAtomicSession are used to parameterized the conversion
session. See the RtLtMapCnv API reference for more information.

The functions, RtLtMapCnvWorldConvert() and
RtLtMapCnvAtomicConvert(), are used to perform the conversion process
for RpWorld and RpAtomic respectively. These take the appropriate
conversion session and a sample factor parameter. The sample factor is
synonymous to super sampling in lightmap illumination. The internal
lightmaps can be generated from a larger source image. The size of the
source image can be a multiple of size larger, determined by the sample
factor.

The external lightmaps are read in as required during conversion using the
RwTextureRead(). The location of the external lightmaps is set by
RwImageSetPath().

After successfully converted the external lightmaps into internal form, the
external data can be destroyed using
RtLtMapCnvWorldSectorCnvDataDestroy() and
RtLtMapCnvAtomicCnvDataDestroy(). The conversion sessions can also
be destroyed using RtLtMapCnvWorldSessionDestroy() and
RtLtMapCnvAtomicSessionDestroy().

Likewise, the external lightmap images can also removed.

 Summary

RenderWare Graphics 3.7 II-165

23.7 Summary
This chapter has covered many aspects of lightmaps; their purpose and
mechanism, their strengths and weaknesses and costs and benefits, as well
as techniques for their creation, importing and use in a RenderWare
Graphics application.

It describes lightmaps as RwTextures, mapped to the surfaces of
RpGeometrys and RpWorldSectors in a scene by a second set of per-vertex
UV coordinates. Using dual-pass rendering, this second texture is applied
over the base texture for each surface, providing the appearance of detailed
and realistic static lighting.

The lightmap toolkit provides routines to map surfaces into lightmaps and
to light an entire scene, calculating the light values for each lumel (texel of
a lightmap) and to storing them in the scene's lightmaps. The lightmap
created by this process can then be loaded by the lightmap plugin later,
and used in rendering the objects in the world.

The strength of this approach is that the time-consuming calculation of the
brightness and color of light over the world can be performed once, as an
offline process, imposing little run-time overhead.

Lightmaps for PlayStation 2 must be postprocessed into darkmaps before
they can be used, otherwise the rendered image will appear inverted.

The lightmaps example is covered in detail, which demonstrates, visually
and in code, the majority of the functionality of the lightmap plugin and
toolkit.

And finally, lightmaps can be generated in a third party package and
exported for use in RenderWare.

Chapter 24

PTank

Chapter 24- PTank

II-168 11 February 2004

24.1 Introduction
This Chapter introduces the RpPTank plugin and the concepts of the
particle and the particle tank. It describes the way they save processing
time by side-stepping the usual 3D processes of RenderWare Graphics, and
it explains how to use them.

24.1.1 What is a Particle?

In RenderWare Graphics a particle is a 2D shape.

It may have a single color that may have degrees of transparency. It may
have an image or texture applied to it by UV coordinates.

It is very similar to a sprite in early computer games.

A particle can be scaled up or down; it can be moved, even animated.

It does not exist as a separate data structure; it is integral to the particle
tank.

24.1.2 What Are Particles Used For?

It is often unnecessary to use RenderWare Graphics' usual 3D graphics
capability. The memory required for a geometry, and the processing time
required for each frame can be wasted on simple, dramatic or fleeting
effects, and particles are good when transient, fast moving, small or flat
images are required.

Particles are good for transient effects

An RpPTank particle can represent a moving rock. Particles can be scaled,
so the image can get bigger as the rock approaches. The image can rotate.
This is enough to convey rocks tumbling down a cliff or missiles hurled
through the air.

 Introduction

RenderWare Graphics 3.7 II-169

One particle in two sizes represents two tumbling rocks

In some games, objects explode in a cloud. This sudden event requires only
one image expanded rapidly. RpPTank particles can reduce their opacity
(their alpha value) to disappear like a cloud and they can be scaled and
rendered very quickly.

A single scaled particle can represent a crash or an explosion adequately

Flames can be conveyed by a series of semi-transparent images in front of
the burning object. Particles provide the simple 2D animation that this
effect needs, and 3D processing is not necessary. But particles can be
displayed behind as well as in front of the burning object, so they can
suggest 3D flames very effectively.

Tiny objects like feathers, snowflakes and sparkling highlights can be
displayed, moved and replaced or removed very efficiently as particles,
without any of the complexity of 3-D calculations.

Particles are suited to cartoon-like transparent images

Simple ghosts, apparitions and specters require images that are bold but
transparent, scaled, moving, and front-facing. If these images do not need
to be articulated they can be rendered easily by particles.

The implementation of PTank allows the developer to store and animate
data conveniently in simple ways. Controlling the movements of particles
through space is a task for another plugin, like RpPrtStd.

Chapter 24- PTank

II-170 11 February 2004

24.1.3 What Is the Particle Tank?

The particle tank is a collection of particles. The word "tank" is used to
suggest a container for particles.

Particles can be animated to represent feathers

The format of the particle tank or RpPTank is flexible. It can be organized as
a structure or an array format and its data contents vary according to the
image it conveys. Similar particles, like a flurry of feathers, or a sequence of
transparent disks to represent smoke might be stored in the same RpPTank.

Transparent disk particles can represent smoke

Particle tanks can hold particles of very different types, and several
contrasting particle tanks can be active at the same time.

24.1.4 What Particles Are Not

Particles are not sophisticated or complicated. They are a simpler form of
representation than RenderWare Graphics provides for 3D worlds and
animated objects.

 Introduction

RenderWare Graphics 3.7 II-171

A particle is not three dimensional. It is a flat image like a sprite. So, by
default, it is rendered as if it is parallel to the near Z plane, facing the
camera. As a result, if the camera moves, the particle appears to turn to
face the camera. Alternatively it must appear to be the same from all view
points, like a glowing sphere.

The RpPTank plugin could be used to manipulate letters and titles and
move them around the screen, but the Rt2d toolkit manipulates letters is
designed to achieve these effects more easily.

Particles are suited to transient effects, like sparkle

Particles are also known for realistically representing galaxies, waterfalls,
trees, vegetation and foliage, roman candles, rockets and other fireworks,
realistic cloud formations, crowds and snow storms. These require not only
particles, but a means to control their movements and interactions, and
that is beyond the scope of RpPTank.

24.1.5 Other Documents

Little background knowledge is required for this topic.

• The API Reference gives a description of this plugin, each of its data
structures and functions.

• Other concepts used in this Chapter are described elsewhere. Textures
and their coordinates, colors and plotting modes are covered in The
Material Effects Plugin, and Immediate Mode chapters.

• RpPTank interfaces with routines that differ widely across platforms. Be
sure to consult the appropriate platform-dependent API Reference.

Chapter 24- PTank

II-172 11 February 2004

24.2 The Main Concepts
The concepts of a particle and the way it is stored in a PTank are central to
this plugin. To use it, the developer also needs to understand the descriptor
of the PTank's structure and its locking mechanism. They are described
here.

24.2.1 The Particle

Particles are only defined in the particle tank, and there are two formats for
the particle tank and several optional data fields that define it.

The definition structure, RpPTankFormatDescriptor holds a flag field. Two
flags represent the PTank's data "organization". The other flags represent
specific items of data. The preprocessor "PTank Data flag" values that follow
represent the items of data that may be included. These values are passed
to the RpPTankAtomicCreate() function to create the respective arrays.

Many of the following flags that describe a particle have an almost identical
name containing the letter "L" for "lock" (rpPTANKLFLAG) in place of "D" for
"data" (rpPTANKDFLAG). This similar set of flags is used with
RpPTankAtomicLock() to lock, read and write the arrays created by the
RpPTankAtomicCreate() function. The corresponding flags for locking and
for creation are very closely related, so they are described together in the
rest of this section on The Particle.

Flags for Spatial Description

• rpPTANKDFLAGPOSITION reserves space for a 3D point that will define
the position of each particle. rpPTANKLFLAGPOSITION is used to lock,
read and write it. The matrix value also contains position data, so this
flag is not compatible with rpPTANKDFLAGMATRIX. If a particle has no
position it must have a matrix to hold the equivalent position data and
the debug version will assert if neither is present.

• rpPTANKDFLAGUSECENTER reserves space for vectors to position and
rotate the particle by the center point specified by the function
RpPTankAtomicSetCenter() rather than its default center or origin.
(There is a shared value and there is no equivalent flag to lock, read and
write shared values.)

 The Main Concepts

RenderWare Graphics 3.7 II-173

• rpPTANKDFLAGMATRIX reserves space for a 3D RwMatrix to orient the
plane of each particle. rpPTANKLFLAGMATRIX is used to lock, read and
write it. By default the particle is plotted straight onto the view. This
has the effect that it is facing the camera. (If there is more than one
camera, it is facing every camera from every angle at the same time.)
Setting the values of this matrix allows the particle to be reoriented, for
example, like a door swinging on hinges. The RwMatrix contains
position data, so it is not compatible with rpPTANKDFLAGPOSITION. and
it contains dimension data, so it is not compatible with
rpPTANKDFLAGSIZE.

• rpPTANKDFLAGCNSMATRIX reserves space for only a single shared or
'constant' 3D matrix to orient all the particles. (There is no equivalent
flag to lock, read and write a constant.)

• rpPTANKDFLAGSIZE reserves space for a 2D vector that stores the
dimensions of the rectangle for each particle. rpPTANKLFLAGSIZE is
used to lock, read and write it. In essence, a particle is rectangular
because it is defined in two dimensions. Applying other effects, in
particular, applying an RwTexture can give it the appearance of any 2D
shape within its rectangle.

• rpPTANKDFLAG2DROTATE reserves space for a real value to express the
degree of 2D rotation, of the particle from its default orientation, in
radians, clockwise, from –pi to pi. rpPTANKLFLAG2DROTATE is used to
lock, read and write the rotation value.

• rpPTANKDFLAGCNS2DROTATE reserves space for only a single shared or
"constant", real variable by which all the particles will be rotated. (There
is no equivalent flag to lock, read and write a constant.)

• rpPTANKDFLAGNORMAL reserves space for a normal 3D vector.
rpPTANKLFLAGNORMAL is used to lock, read and write it.

• rpPTANKDFLAGCNSNORMAL reserves space for only a single shared or
"constant" 3D normal vector for all the particles. (There is no equivalent
flag to lock, read and write a constant.)

Color Flags

• rpPTANKDFLAGCOLOR reserves space for an RGBA value for each
particle. rpPTANKLFLAGCOLOR is used to lock, read and write it. The
effect of the RGBA value is subject to the plotting mode. This flag
operates differently from the others in the PTank because, by default, a
shared color is created with the PTank. The rpPTANKDFLAGCOLOR flag
overrides the default behavior and creates individual values in place of
the shared one.

• rpPTANKDFLAGVTXCOLOR reserves space for an RGBA color for each
vertex. rpPTANKLFLAGVTXCOLOR is used to lock, read and write it.

Chapter 24- PTank

II-174 11 February 2004

• rpPTANKDFLAGCNSVTXCOLOR reserves space for only a single shared or
"constant" RGBA variable for all the particles. (There is no equivalent
flag to lock, read and write a constant.)

Texture Coordinate Flags

• rpPTANKDFLAGVTX2TEXCOORDS reserves space for two coordinates
representing the top left and bottom right texture coordinates.
rpPTANKLFLAGVTX2TEXCOORDS is used to lock, read and write them.

• rpPTANKDFLAGCNSVTX2TEXCOORDS reserves space for only a single pair
of shared or "constant" vertices for the top left and bottom right texture
coordinates. (There is no equivalent flag to lock, read and write a
constant.)

• rpPTANKDFLAGVTX4TEXCOORDS reserves space for four texture UVs
corresponding to the four corners of the quadrilateral defined by the
particle. rpPTANKLFLAGVTX4TEXCOORDS is used to lock read and write it.

• rpPTANKDFLAGCNSVTX4TEXCOORDS reserves space for a single group of
four shared or "constant" UV coordinates that apply to all the particles
in the PTank. (There is no equivalent flag to lock, read and write a
constant.)

Organization Flags

• rpPTANKDFLAGSTRUCTURE reserves space for a flag to indicate that the
PTank's organization is an array of structures. The flag exists in all
PTanks, so there is no need to reserve space for it, and there is no
equivalent flag to lock, read or write it. This setting is incompatible with
that below, so both flags may not be set at the same time. But if neither
is set RpPTank decides which organization to use, depending upon the
current platform.

• rpPTANKDFLAGARRAY indicates that the PTank's organization is a
structure of arrays. The flag exists in all PTanks, so there is no need to
reserve space for it, and there is no equivalent flag to lock, read or write
it. This setting is incompatible with that above, so both flags may not be
set at the same time. But if neither is set RpPTank decides which
organization to use, depending upon the current platform.

Several of these flags are incompatible. There follows a summary of groups
of flags that are incompatible, and it is helpful to consider why they are
incompatible. The reasons are all covered above, and the distinction
between the shared, CNS values and the individual values is explained later
under this heading on The Particle.

These flags and flag-pairs are mutually incompatible:

rpPTANKDFLAGCNSVTX2TEXCOORDS

 The Main Concepts

RenderWare Graphics 3.7 II-175

rpPTANKDFLAGVTX2TEXCOORDS
rpPTANKLFLAGVTX2TEXCOORDS

rpPTANKDFLAGCNSVTX4TEXCOORDS

rpPTANKDFLAGVTX4TEXCOORDS
rpPTANKLFLAGVTX4TEXCOORDS

These flags and flag-pairs are mutually incompatible:

rpPTANKDFLAGCOLOR
rpPTANKLFLAGVTXCOLOR

rpPTANKDFLAGVTXCOLOR
rpPTANKLFLAGVTXCOLOR

rpPTANKDFLAGCNSVTXCOLOR

The flags and flag-pairs opposite each other in these two columns are
incompatible:

rpPTANKDFLAGARRAY rpPTANKDFLAGSTRUCTURE

rpPTANKDFLAGNORMAL rpPTANKDFLAGCNSNORMAL

rpPTANKLFLAGNORMAL rpPTANKLFLAGCNSNORMAL

rpPTANKDFLAG2ROTATE rpPTANKDFLAGCNS2ROTATE
rpPTANKLFLAG2ROTATE rpPTANKLFLAGCNS2ROTATE

rpPTANKDFLAGMATRIX rpPTANKDFLAGPOSITION

rpPTANKLFLAGMATRIX rpPTANKLFLAGPOSITION

rpPTANKDFLAGMATRIX rpPTANKDFLAGSIZE

rpPTANKLFLAGMATRIX rpPTANKLFLAGSIZE

This flag alone is compatible with all others:
rpPTANKDFLAGUSECENTER

In the debug version, incompatible flag settings will cause an assert.

A further distinction between the flags used in creating a PTank is that one
value, "position", always applies to all particles, some values are shared
between all particles and some can be either shared or independent. The
table below summarizes these differences.

Chapter 24- PTank

II-176 11 February 2004

INDEPENDENT
VALUES

VALUES THAT MAY
BE EITHER
INDEPENDENT OR
SHARED

SHARED VALUES

position size vertex alpha
 orientation matrix blend mode (1)
 normal vector blend mode (2)
 2D rotation an RwTexture
 color an RwMaterial
 vertex colors the UseCenter values
 vertex 2 coordinates
 vertex 4 coordinates

One last distinction between these flags is that the names of shared values
contain the letters "CNS" for constant or "shared". For each "CNS" variable
there is an equivalent non-CNS value indicating that an independent value
is given to each particle. The two settings are incompatible. For instance,
the PTank can have one color for all particles or individual colors for each
particle, but not both. It may have one size for all, or individual sizes for
each, but not both.

Because of this flexibility it is possible for the developer to make a mistake
and address an individual value, like the color of the tenth particle, when
there is only a single color, stored as a shared value. The RpPTank warns
about these errors in one of two ways.

• If the developer addresses an individual particle's value, the address of
the value must be found from RpPTankAtomicLock() and
RpPTankAtomicLock() returns NULL when it is asked for the address of
a non-existent value.

• If the developer addresses an shared value, the data must be returned
from a Get function. Each of the functions that get shared values return
NULL if their values do not exist.

So it is worth checking the return values of all these functions.

The RpPTank is most efficient when it stores similar particles, but the
developer may maintain very different particles by adding multiple
RpPTanks, with a different organizations and different data.

 The Main Concepts

RenderWare Graphics 3.7 II-177

24.2.2 The Particle Tank

A particle tank, or RpPTank, is an extended RpAtomic. Its Create function,
RpPTankAtomicCreate(), appends space to the atomic to hold the data
used to store particles. There is an equivalent RpPTankAtomicDestroy()
that destroys the atomic. Because it is an atomic, it has location and a
bounding sphere within the RpWorld and this allows the sprites stored in
the PTank to be processed for visibility and rendering in the same system as
the rest of RenderWare Graphics. This means that particles can be masked
or hidden completely like other objects.

A particle may be placed behind and in front of objects in the RpWorld

Because a PTank is an atomic, it is necessary to be able to test whether a
particular atomic is also a PTank, and the function RpAtomicIsPTank()
returns TRUE if it is a PTank.

The particle tank simply contains the data for a fixed maximum number of
particles. The maximum number is returned by
RpPTankAtomicGetMaximumParticlesCount() and is set by the
RpPTankAtomicCreate() function. But sometimes the application may not
use the maximum number of particles in the PTank to avoid processing
particles that are not seen. In such cases, the functions
RpPTankAtomicGetActiveParticlesCount() and
RpPTankAtomicSetActiveParticlesCount() can be used to get and set
the lower value.

Some effects, like explosions and lightening strikes appear only briefly, so
they should be considered for rendering only when their visual effect is
required. The developer can switch them off by setting their number of
active particles to zero and switch them on again by restoring the number
of active particles. This saves processing time, and the function
RpPTankAtomicGetActiveParticlesCount() is provided for this purpose.

The PTank is platform specific, so RpPTankAtomicCreate() takes a third
parameter for platform-specific flags. Refer to a platform-specific API
Reference for details of this parameter.

The PTank has one of two formats depending on the setting of the two flags
listed above:

• rpPTANKDFLAGSTRUCTURE - array of structures

Chapter 24- PTank

II-178 11 February 2004

• rpPTANKDFLAGARRAY - structure of arrays

The diagram below represents four particles. They consist only
of a vector and a color each. They are stored as an array of
structures, "Structure Organization" and as a structure of
arrays "Array Organization":

xyz rgba

xyz rgba

xyz rgba

xyz rgbaxyz xyz xyz xyz rgba rgba rgba rgba

A PTank formatted as an array of structures,
right. (Structure Organized.)

A PTank formatted as a structure of arrays,
below. (Array Organized.)

Some platforms will perform significantly faster in one format than the
other, so both formats are supported.

The function RpPTankAtomicGetDataFormat() returns the format
descriptor, described below. It contains the flags field to show which of the
two formats the PTank is in, together with settings to record which data it
contains. But if the developer chose to allow PTank to adopt the more
efficient format and set neither of the format flags, the Get Format function
returns the flags for the format that the PTank actually adopted.

24.2.3 RpPTankLockStruct

The RpPTankLockStruct contains a pointer to data. The pointer is a
pointer to an RwUInt8, but this type is chosen because it can be typecast
and used for any other data type.

The other field in the lock structure is the "stride" of the data to be read or
written. If the PTank is organized as an array of structures, the stride is
equal to the size of the structure, in bytes. If the PTank is a structure of
arrays, it is the size of the elements in the target array, in bytes. The value
is used to step through the items of the target data.

The data pointer of the RpPTankLockStruct is passed to the
RpPTankAtomicLock() function, which fills it with the address of the target
data. The target data can then be read or written directly.

24.2.4 RpPTankFormatDescriptor

The RpPTankFormatDescriptor contains three RwUInt32s :

• the integer, dataFlags, contains the format flags that define whether it is
to be a structure of arrays or an array of structures, and defines which
data fields are to be included

 The Main Concepts

RenderWare Graphics 3.7 II-179

• the integer, numClusters, the number of items of data in a particle. The
data items are defined by the data flags that define a particle's contents
and may include color, normal vector, position and matrix

• the integer, stride, is set to zero if the PTank is formatted in arrays. If it
is formatted as an array of structures, the "stride" holds the size of the
structure.

24.2.5 Locking and Unlocking

RenderWare Graphics usually requires the developer to

1. lock the data that is used for rendering before altering it

2. use the Get and Set functions to read or alter it

3. unlock it.

If you have locked data with the rpPTANKLOCKWRITE flag, the PTank has to
re-instance the data for the current platform before rendering. So the
developer should not use the Lock command needlessly. If it is accessed for
reading only, it can be accessed with rpPTANKLOCKREAD to avoid this
overhead.

The PTank plugin follows the same three steps, but the structure of the
PTank makes it more efficient for the lock function to return a pointer to
the locked data. So the second item in the sequence above is to address the
data directly.

For this reason the PTank has many more values to be accessed than it has
Set and Get functions. Under the heading The Particle above, there is a
series of pre-processor constants that reserve space for various data items
when a PTank is created. Each of the "rpPTankLFLAG…" constants listed
there can be passed to the RpPTankAtomicLock() function to retrieve the
address of its data so that the data must be read or written directly,
without using Set and Get functions.

Whether the PTank uses Array Organization or Structure Organization, the
developer can write code to read and write regardless of the organization.

Chapter 24- PTank

II-180 11 February 2004

using a ptr to "position"

position
ptr xyz
ptr + stride xyz
ptr + stride + stride xyz

color
rgba
rgba
rgba

tex coord 4
uvuvuvuv
uvuvuvuv
uvuvuvuv

PTank in Array Organization

Accessing PTank values in Array Organization

In the diagram above, the RpPTankAtomicLock() function has supplied a
pointer ("ptr") to the first item of the position array. In "array organization"
this is a pointer to an array of positions. The value "stride" is the size of the
"xyz" vector, with any platform-specific padding.

In the diagram below, the same approach is used to read colors rather than
positions. Only the initial value of the pointer is different.

using a ptr to "color"

position
xyz
xyz
xyz

color
ptr rgba
ptr + stride rgba
ptr + stride + stride rgba

tex coord 4
uvuvuvuv
uvuvuvuv
uvuvuvuv

PTank in Array Organization

Accessing PTank values in Array Organization

 The Main Concepts

RenderWare Graphics 3.7 II-181

The diagram below illustrates "Structure Organization", and the pointer
refers to the first instance of the position in an array of structures. The
value "stride" is the size of the structure, including any platform-dependent
padding. So the value of the pointer, plus the value of stride is the address
of the second position.

using a ptr to "position"

 array of structs

ptr xyz
rgba
uvuvuvuv

ptr + stride xyz
rgba
uvuvuvuv

ptr + stride + stride xyz
rgba
uvuvuvuv

PTank in Structure Organization

Accessing PTank values in Structure Organization

The same method works for colors, as illustrated, since the pointer points
to the first color item, and pointer plus stride points to the second color
item. And the same method can be applied to the four UV coordinates.

using a ptr to "color"

 array of structs

xyz
ptr rgba

uvuvuvuv

xyz
ptr + stride rgba

uvuvuvuv

xyz
ptr + stride + stride rgba

uvuvuvuv

PTank in Structure Organization

Accessing PTank values in Structure Organization

Chapter 24- PTank

II-182 11 February 2004

This means of addressing the data allows the developer to use the same
code to calculate the pointer whether the PTank is an array of structures or
a structure of arrays.

loop

 read the data at pointer (or write it)

 pointer += stride

end loop

This saves the developer duplicating code. But it allows the organization of
the RpPTank to be determined automatically when the RpPTank is created,
without the developer having to be aware which format was applied. If the
RpPTankAtomicCreate() function is called without either the
rpPTANKDFLAGSTRUCTURE or the rpPTANKDFLAGARRAY format flags being
set, the format is chosen automatically. In this case, the developer need not
know which organization is used, but the code will still address it correctly.

The advanced user may need to know whether the data is "structure
organized" or "array organized". The answer can be found through the
function RpPTankAtomicGetDataFormat() which returns the values in the
RpPTankFormatDescriptor. The RpPTankFormatDescriptor contains the
dataFlags and the dataFlags include the flags rpPTANKDFLAGSTRUCTURE
and rpPTANKDFLAGARRAY. If the developer did not set these values in the
RpPTankAtomicCreate() function, the RpPTank will have set them
automatically, so the organization flags returned by
RpPTankAtomicGetDataFormat() will accurately return the organization.

 How to Use Particles Step by Step

RenderWare Graphics 3.7 II-183

24.3 How to Use Particles Step by Step
These are the steps the developer needs to introduce particles into a
developing application.

24.3.1 Initialization

• Append the header file ptank.h to the list of included files.

• Insert RpPTankPluginAttach() after RwEngineInit() and after
attaching the World plugin, but before RwEngineOpen().

• Use the function RpPTankAtomicCreate() to create a PTank.

• Set the number of particles that will be active with
RpPTankAtomicSetActiveParticlesCount().

24.3.2 Defining Particles

The function RpPTankAtomicLock() supplies a pointer to the data to write
(or read) through the second parameter, called "dst" in the API Reference of
the Lock command. The data pointer and the "stride" are supplied as
elements of the dst structure.

RpPTankAtomicLock(pTank, &dst, rpPTANKDFLAGPOSITION,

 rpPTANKLOCKWRITE);

Loop through the PTank particles using the data pointer and adding
"stride" to it at each iteration, as described under the previous heading. In
this case, the data is a 3D vector and is cast to an RwV3d *, and it is
transformed according to the state of other parameters.

if(dst.data)

 {

 RwV3dTransformPoints((RwV3d*) dst.data,

 &PositionsList[i], 1, Im3DmeshMatrix);

Write the required data to the address at dst.data.

 dst.data += dst.stride;

 }

Chapter 24- PTank

II-184 11 February 2004

The next step is to set the bounding sphere of the atomic. The developer
may be used to using the function RpMorphTargetCalcBoundingSphere()
but this is not suitable for particles. It is a safe starting point to set the
sphere to be big enough to include everything. This will be inefficient and
will have to be adjusted later. Also, particles usually present special effects
and they are usually transient, so you will need to tune the bounding
spheres for each effect. As there is only one bounding sphere for each
PTank, you should consider grouping the particles by their position, in
different PTanks. The bounding sphere is set with the function
RpMorphTargetSetBoundingSphere().

Finally unlock the PTank so that it can be used in the rendering process.

 RpPTankAtomicUnlock(pTank);

As a minimum the user will have to define a position, a color and a size.
This will define a visible rectangle in space.

There are other functions to define the particles displayed:

When a particle has to rotate (in 2D) the developer will often want to specify
the point around which it will turn. This point will also be taken as its
origin when it is positioned. RpPTankAtomicConstantSetCenter() sets
this value but it will apply to all particles in the PTank.

The function RpPTankAtomicConstantSetMatrix() sets a single matrix
value that defines the orientation of all its particles to the screen. If there is
a matrix for an individual particle it can be accessed with the
RpPTankAtomicLock() function using rpPTANKDFLAGMATRIX.

 1 2 3

1. Rotation of a particle to represent a falling leaf
2. Matrix changes to give 3D rotation

3. Matrix changed on two particles to animate a butterfly.

The function RpPTankAtomicSetConstantRotate() sets the angle of
rotation (in radians) for all the particles in the PTank. If there is a rotation
value for each particle in the PTank it can be accessed by the Lock function
passing the constant rpPTANKDFLAGROTATE.

 How to Use Particles Step by Step

RenderWare Graphics 3.7 II-185

The function RpPTankAtomicSetTexture() sets the RwTexture, which
may represent any 2D image for a given particle within the PTank. This can
be used to used to display images from artists' tools on the particles. The
alpha value can be used to make them partially transparent, or to alter the
visible outline of the particle. (This method is implied in the two leaves and
the butterfly in the illustration above.)

Separate areas of an RwTexture can be applied successively to a particle to
animate its image

The function RpPTankAtomicSetConstantVtx2TexCoords() sets the UV
values to be given to the top left and bottom right coordinates of the
particle. An RwTexture will be applied to its surface with the coordinate
values given as parameters mapped to points 0,0 and 1,1 on the particle.
This can be used to map different section of the texture successively to the
particle, rather like displaying successive frames of a film, for animation.

The function RpPTankAtomicSetConstantVtx4TexCoords() sets the UV
values to be given to the four corner coordinates of the particle. An
RwTexture will be applied to its surface with the coordinate values given as
parameters mapped to points 0:0, 0:1, 1:0 and 1:1 on the particle. This too
can be used for animation but is better used to stretch the texture out of its
default, 1:1 aspect ratio.

The function RpPTankAtomicSetConstantVtxColor() passes an array of
four colors for the four corners of the particle. The color between is blended
in proportion to its distance from each corner.

The function RpTankAtomicSetVertexAlpha() sets the opacity of all the
particles in a PTank, and is useful for setting the transparency of smoke,
clouds and ghosts.

24.3.3 Animation

For some effects the user may want simple animation.

An particle can be moved by updating its position. If its size is updated it
will appear to get bigger or smaller, and therefore to move to or away from
the camera.

Chapter 24- PTank

II-186 11 February 2004

Position and rotation can be updated to give animation

If an image needs to be rotated like a scimitar thrown across the field of
view, this can be achieved by updating the position and rotation value of
the particle alone.

A particle can be rotated out of screen-alignment like turning a page of a
book. A few useful effects may be achieved this way.

The vertex alpha value (or opacity value) of a particle can be altered to
make it appear slowly like a ghost, or to make it disappear, like rising
smoke, or the cloud that represents an explosion. The vertex alpha makes
the whole particle increasingly more transparent or opaque, between its
RGBA values and total transparency. It is addressed by the function
RpPTankAtomicSetVtxAlpha(), and affects all particles in the PTank.

Flames can be animated as a series of images using RwTextures

An effect rather like movie film animation can be achieved by producing an
RwTexture that resembles a film, consisting of successive images, like the
frames of a movie. A particle is rendered with successive areas of the
texture mapped to its UV coordinates. This is similar to projecting
successive frames of a movie onto it, with the extra feature that the image
can have transparency and adopt shapes other than a rectangle. This
approach is useful for effects like flames, sparkle and specters.

 Examples

RenderWare Graphics 3.7 II-187

24.4 Examples
The examples of RpPTank provided are "ptank2" and "ptank3".

"Ptank2" displays particles arranged as if on the surface of a rotating
doughnut. All the particles in the example are identical. The user may
change several parameters interactively from the menu and some from the
code. It also adds the ability to rotate the particles and allows the user to
alter their control parameters.

"Ptank3" is also based on the previous example and adds RwTexture to the
particles and the user can adjust their parameters interactively.

Chapter 24- PTank

II-188 11 February 2004

24.5 Troubleshooting
• Use the debug version of the code. It will give an rwDEBUGASSERT when

it finds potential conflicts, like incompatible flag settings.

• If values are written to particles but have no effect, or garbage values
are returned, remember that PTank values exist in alternative forms.
They may exist either as a single value shared by all the particles in the
PTank, or as independent values for each particle in the PTank. Some
values don't exist in all PTanks. If the developer addresses non-existent
values nothing will happen and nothing will crash. But the constant
values are address via functions that return NULL if invalid values are
addressed, and all independent values are accessed via the Lock
function. The Lock function will return NULL if it is asked for the
address of a non-existent value. So make sure that these return values
are checked.

• Some functions take pointers to an array of colors or vertices. If the
array has too few elements the results will be unpredictable.

• Particles will not be rendered if they are outside the bounding sphere on
their PTank. Bounding spheres need to be set by the developer, not by
RpMorphTargetCalcBoundingSphere() when using particles. To see if
the bounding sphere is clipping a particle, define an enormous
bounding sphere for the particle's PTank.

 Summary

RenderWare Graphics 3.7 II-189

24.6 Summary
Particles are simple, flat images, like sprites. They are much simpler to
render than images that need the full 3D rendering processing. But they do
exist in space in RpWorld and will be masked by objects in front of them.

Particles can be scaled, rotated, positioned and moved. They can have a
texture applied to them. Their whole image can have a transparency level,
so they can appear or disappear gradually, and their texture image can
have transparency levels so they can appear as different shapes.

Particles are good for fleeting effects like explosions and for fast-moving or
small objects that don't justify detailed 3D rendering.

The PTank or Particle Tank, is the object that stores particles. PTanks can
have varied formats. Some values are held in common between all the
particles in a PTank other values are stored independently for each particle.
Multiple PTanks can be used at the same time to support widely different
particles appearing concurrently.

There are two major variations on the internal organization of data in a
PTank. The developer may chose the more efficient form or may allow
PTank to decide. The code may be written to address the two different
formats efficiently without the developer necessarily knowing which format
is adopted.

By default, particles face the camera or cameras. Images that don't suit this
form of image are probably not appropriate for particles. But they can be
oriented relative to the screen plane. Lettering, titles and other 2D graphics
are well supported in the Rt2D toolkit.

Snowstorms, galaxies, realistic clouds, flowing water and the more
spectacular effects associated with particles require dedicated animation
software.

The locking function for particles differs from other elements of RenderWare
Graphics in returning a pointer to internal data. The user updates the
pointer and addresses the data directly. So, many properties of a particle do
not have their own Get and Set functions.

Three pieces of Example code are provided for the user to compile and
experiment with.

Particles can be used to produce animation by a few simple techniques.
Most versatile is the use of successive images applied as textures rather
like the successive frames of a movie.

Chapter 25

Standard
Particles

Chapter 25- Standard Particles

II-192 11 February 2004

25.1 Introduction
This chapter introduces the RpPrtStd plugin. It describes how the plugin
can be used to create, animate and render an emitter and its set of
particles.

Before you read this chapter, you should be familiar with particles in
general and the RpPTank plugin.

The RpPrtStd plugin is used for animating a set of particles, not to perform
any rendering. The RpPTank plugin is used for particle rendering.

 The RpPrtStd Plugin

RenderWare Graphics 3.7 II-193

25.2 The RpPrtStd Plugin
There are two main entities used in the RpPrtStd plugin, an emitter and a
particle. They are, respectively, created from an emitter class and a particle
class.

25.2.1 The Emitter

An emitter is an object that controls a set of particles. It is responsible for

• Emitting particles. New particles are created and added to the emitter’s
pool of active particles.

• Updating particles. The emitter’s active particles are updated at regular
intervals. This includes both animation and rendering data.

• Destroying particles. Particles that have exceeded their life cycle are
removed from the active pool.

Each emitter has an emitter class and a particle class. The emitter class
defines the emitter itself and the particle class defines the particles emitted
from it. Once created, an emitter cannot change its emitter class or particle
class.

Each emitter also has an RpPTank. This is because RpPrtStd only stores
the animation for each particle. Rendering data is stored in RpPTank. The
RpPTank plugin is private to each emitter and is not shared.

Like RpPTank, an emitter is an extension to an RpAtomic. The atomic is
used to hold the emitter’s bounding sphere and positional information. All
other data is held internally in the emitter and particles.

25.2.2 The Particle

A particle can be described as a collection of data to represent a single
entity in the world. For a more detailed description of a generic particle, see
the RpPTank chapter of the user guide.

A particle in the RpPrtStd plugin should contain only its animation data.
Rendering data, such as position and color, are stored within the RpPTank.

Particles in RpPrtStd are stored in batches as RpPrtStdParticleBatch,
which is stored with the parent emitter. This provides a balance between
creating all the particles at once and creating each particle individually.
Grouping the particles into batches reduces the overhead of processing
each particle individually. It also reduces the memory usage by only
creating batches as required. Particle batches in the same emitter are
always the same size.

Chapter 25- Standard Particles

II-194 11 February 2004

Each batch contains a list of active particles, possibly containing fewer
particles than the maximum size of the batch. Active particles are always
stored together at the head of the batch. Particles in the remaining area are
considered inactive and should not be processed.

Particles are never transferred between batches. This means that as the
number of active particles decreases in a batch, particles from the next
batch are not copied over to fill in the inactive area.

Fig 1. Example of a list of particle batches, each with different number of
active particles.

25.2.3 The Emitter And Particle Classes

The emitter class , RpPrtStdEmitterClass, is a collection of callbacks and
a property table. The property table describes the data structure within the
emitter while the callbacks collection lists the functions for controlling the
emitter.

Emitters created from the same class will share the same properties and
callbacks. If an emitter requires a different set of callbacks but the same
properties, a new emitter class needs to be created.

 The RpPrtStd Plugin

RenderWare Graphics 3.7 II-195

The particle class, RpPrtStdParticleClass, is similar to the emitter class.
It contains a set of callbacks for controlling the particles and a property
table to define the particle’s data structure.

25.2.4 The Property Table

The property table, RpPrtStdPropertyTable, is used to define the data
structure in an emitter and a particle. Properties are stored in a generic
memory block of no fixed arrangement to allow emitters and particles to be
created to a specific requirement. Properties not required can be omitted
and user defined properties added.

The property table stores an identification number for each property with
an offset to where the property’s data is located in the memory block. This
offset is from the start of the memory block where the data is held.

The emitter and particle both use the same property table structure,
RpPrtStdPropertyTable, but they must not contain a mixture of emitter
and particle properties. Emitter and particles must have separate property
tables.

Property tables of similar types can be shared by more than one emitter
class and particle class.

The properties are automatically aligned and padded to give the best
performance on the current running platform.

Fig 2. Example of a property table defining a particle.

Chapter 25- Standard Particles

II-196 11 February 2004

25.2.5 The Emitter And Particle CallBacks

A set of callbacks is defined for controlling an emitter. These callbacks can
be replaced with user defined equivalents if required. This could be for
different behaviour or to support user defined properties.

The particle also has its own set of callbacks for controlling it. This set is
different to the emitter’s because of the slight difference in requirement
between the two entities.

Each callback has a specific function and is called depending on the
sequence of events of the emitter and particle.

One or several callbacks can be set to NULL if they are not required.

Emitter CallBacks

The default set of emitter callbacks is:

• rpPRTSTDEMITTERCALLBACKEMIT is the particle emission callback. New
particles are created for the emitter in this callback.

• rpPRTSTDEMITTERCALLBACKBEGINUPDATE is called at the start of an
update for an emitter.

• rpPRTSTDEMITTERCALLBACKENDUPDATE is called at the end of an emitter
update.

• rpPRTSTDEMITTERCALLBACKBEGINRENDER is called at the start of a
render for an emitter.

• rpPRTSTDEMITTERCALLBACKENDRENDER is called at the end of a render
for an emitter.

• rpPRTSTDEMITTERCALLBACKCREATE is called when an emitter is created.
This allows the user to set any user defined properties.

• rpPRTSTDEMITTERCALLBACKDESTROY is called when an emitter is to be
destroyed. This allows the user to reset or destroy any user defined
properties.

• rpPRTSTDEMITTERCALLBACKSTREAMREAD is called to read in an emitter
from an input stream.

• rpPRTSTDEMITTERCALLBACKSTREAMWRITE is called to write out an
emitter to an output stream.

• rpPRTSTDEMITTERCALLBACKSTREAMGETSIZE is called to return the size
of the emitter when streamed out.

 The RpPrtStd Plugin

RenderWare Graphics 3.7 II-197

Particle CallBacks

The default set of particle callbacks is:

• rpPRTSTDPARTICLECALLBACKUPDATE is called to update the particles in
the active pool. This will update both the animation and rendering data.

• rpPRTSTDPARTICLECALLBACKRENDER is called when particles are to be
rendered.

• rpPRTSTDPARTICLECALLBACKCREATE is called when new particles are
created. This is used to provide initial data to the particles. Animation
and rendering are setup at this point.

• rpPRTSTDPARTICLECALLBACKDESTROY is called when particles are
removed from the active pool.

The particle callbacks are called per batch rather than per particle.

Chapter 25- Standard Particles

II-198 11 February 2004

25.3 Basic Usage
The basic operation of an emitter and particles can be divided into four
groups:

• Creation and destruction: Emitters and particles are created and
destroyed as needed.

• Update: Emitters and particles are updated at regular intervals.

• Render: Emitters and particles are rendered on screen.

• Serialization: Emitters are streamed in or out.

25.3.1 Creation And Destruction

Before an emitter and particles can be created, the respective class must
first be set up. This, in turn, requires a property table.

Property Table

A property table is created using the function RpPrtStdPropTabCreate()
and destroyed using RpPrtStdPropTabDestroy().

RpPrtStdPropertyTable *propTab;

RwInt32 prop[4], propSize[4];

prop[0] = rpPRTSTDPROPERTYCODEPARTICLESTANDARD;

propSize[0] = sizeof(RpPrtStdParticleStandard);

prop[1] = rpPRTSTDPROPERTYCODEPARTICLEVELOCITY;

propSize[1] = sizeof(RwV3d);

prop[2] = rpPRTSTDPROPERTYCODEPARTICLECOLOR;

propSize[2] = sizeof(RpPrtStdParticleColor);

prop[3] = rpPRTSTDPROPERTYCODEPARTICLETEXCOORDS;

propSize[3] = sizeof(RpPrtStdParticleTexCoords);

propTab = RpPrtStdPropTabCreate(4, prop, propSize);

Example code for creating a property table.

Once created, the contents of a property table can be queried using
RpPrtStdPropTabGetProperties().

RpPrtStdPropTabGetPropOffset() is used to query an offset for
accessing data within an emitter or particle. If the offset is non-negative,
then it can be used as an offset into the generic memory block holding the
data.

 Basic Usage

RenderWare Graphics 3.7 II-199

RpPrtStdPropertyTable *propTab;

RpPrtStdParticleBatch *prtBatch;

RwInt8 *prt;

RwInt32 offset;

offset = RpPrtStdPropTabGetProperties(propTab,

 rpPRTSTDPROPERTYCODEPARTICLECOLOR);

prt = ((RwInt8 *)prtBatch) + prtBatch->offset;

if (offset >= 0)

{

 prtStdCol = (RpPrtStdPrtColor *) (prt + offset);

}

Example code of using a property's offset to access data in a particle.

Emitter and Particle Classes

An emitter class is created and destroyed using RpPrtStdEClassCreate()
and RpPrtStdEClassDestroy() respectively. Similarly,
RpPrtStdPClassCreate() and RpPrtStdPClassDestroy() will create and
destroy a particle class.

Both classes must be set up with a property table and a set of callback
functions. RpPrtStdEClassSetPropTab() and
RpPrtStdEClassStdSetupCB() will set the property table and callbacks for
an emitter class. RpPrtStdPClassSetPropTab() and
RpPrtStdPClassStdSetupCB() will set the property table and callbacks for
a particle class.

RpPrtStdPropertyTable *propTab;

RpPrtStdParticleCallBackArray prtCB[1];

RpPrtStdParticleClass *pClass;

RwInt32 i;

pClass = RpPrtStdPClassCreate();

RpPrtStdPClassSetPropTab(pClass, propTab);

for (i = 0; i < rpPRTSTDPARTICLECALLBACKMAX; i++)

 prtCB[0][i] = NULL;

prtCB[0][rpPRTSTDPARTICLECALLBACKUPDATE] =

 RpPrtStdParticleStdUpdateCB;

RpPrtStdPClassSetCallBack(pClass, 1, prtCB);

Example code to set up a particle class.

Chapter 25- Standard Particles

II-200 11 February 2004

Emitter

Emitters are created using RpPrtStdAtomicCreate(). This returns an
extended atomic embedding an emitter object. This atomic does not contain
any geometric data. The atomic can be destroyed using
RpAtomicDestory(). This will also destroy all its particles.

Once created, the emitter needs to be initialized with default values. This
involves getting the emitter from the atomic and setting the default
properties value in the emitter. RpPrtStdAtomicGetEmitter() will return
the emitter attached to the atomic. The default values are set by first
querying the property table for the properties present and its offset. The
data is then written into the emitter at the location given by the offset
value.

The emitter must also be given the properties of its particles using the
particle class, and the size of batches used to store the particles. This is
done by the function RpPrtStdEmitterSetPClass().

RpAtomic *atomic;

RpPrtStdEmitterClass *eClass;

RpPrtStdParticleClass *pClass;

RpPrtStdEmitterStandard *emitterStd;

RwInt32 prtBatchSize, offset;

RwPrtStdEmitter *emitter;

/* Create the particle atomic.

 * Assumes that both eClass and pClass were already created

 * elsewhere.

 */

atomic = RpPrtStdAtomicCreate(eClass, NULL);

emitter = RpPrtStdAtomicGetEmitter(atomic);

RpPrtStdEmitterSetPClass(emitter, pClass, prtBatchSize);

offset = RpPrtStdPropTabGetPropOffset(eClass->propTab,

 rpPRTSTDPROPERTYCODEEMITTERSTANDARD);

emitterStd = (RpPrtStdEmitterStandard *) (emitter + offset);

/* Set the emitter's maximum particles */

emitterStd->maxPrt = 6000;

/* Set the emitter's emission area */

emitterStd->emtSize.x = 0.0f;

emitterStd->emtSize.y = 0.0f;

emitterStd->emtSize.z = 0.0f;

/* Set the particle's size */

emitterStd->prtSize.x = 1.0f;

emitterStd->prtSize.y = 1.0f;

/* Set the particle emission gap : should not be bigger

 * than the batch size set during the creation code

 Basic Usage

RenderWare Graphics 3.7 II-201

 */

emitterStd->emtPrtEmit = 20;

emitterStd->emtPrtEmitBias = 0;

emitterStd->emtEmitGap = 0.0f;

emitterStd->emtEmitGapBias = 0.0f;

/* Set the particle's life span */

emitterStd->prtLife = 1.0f;

emitterStd->prtLifeBias = 0.0f;

/* Set the particles emission speed */

emitterStd->prtInitVel = 1.0f;

emitterStd->prtInitVelBias = 0.00f;

/* Set the particles emission Direction */

emitterStd->prtInitDir.x = 0.0f;

emitterStd->prtInitDir.y = 0.0f;

emitterStd->prtInitDir.z = 1.0f;

emitterStd->prtInitDirBias.x = 0.0f;

emitterStd->prtInitDirBias.y = 0.0f;

emitterStd->prtInitDirBias.z = 0.0f;

/* Set the force emission Direction */

emitterStd->force.x = 0.0f;

emitterStd->force.y = 0.0f;

emitterStd->force.z = 0.0f;

/* Set the default Color */

emitterStd->prtColor.red = 255;

emitterStd->prtColor.green = 255;

emitterStd->prtColor.blue = 255;

emitterStd->prtColor.alpha = 128;

/* Set the default Texture coordinate */

emitterStd->prtUV[0].u = 0.0f;

emitterStd->prtUV[0].v = 0.0f;

emitterStd->prtUV[1].u = 1.0f;

emitterStd->prtUV[1].v = 1.0f;

/* Set the texture */

emitterStd->texture = NULL;

Example code to create and setup an emitter with standard properties.

Chapter 25- Standard Particles

II-202 11 February 2004

Particle

Particles are owned and controlled by the parent emitter. Because of this,
the emitter looks after the creation and destruction of the particle batch.

New particle batches are created during particle emission. Empty particle
batches are removed during update. Two callbacks are available for the
user to perform additional actions when particle batches are created or
destroyed.

The callback, rpPRTSTDPARTICLECALLBACKCREATE, is called whenever a
new particle batch is requested for newly emitted particles. This callback is
called after a new particle batch is created and passed to the callback to
allow the user to perform any additional initialization.

rpPRTSTDPARTICLECALLBACKDESTROY is called just before a particle batch
is removed to allow the user to perform any additional destruction.

25.3.2 Updating

Updating the emitter and the particles is done by the function
RpPrtStdAtomicUpdate(). This function will call a series of callbacks to
update the emitter and its particles.

Begin emitter update

For each batch in the emitter do

 If batch is empty do

 Remove batch from list

 Else

 Update particles in the batch

 Fi

Od

Emit new particles from the emitter

End emitter update

Pseudo code of an emitter cycle.

Emitter Update

There are two callbacks used to update the emitter. These are called before
and after updating the particles.

The callback, rpPRTSTDEMITTERCALLBACKBEGINUPDATE, is called for the
emitter at the start of an update cycle. This can be used to update
properties necessary for updating its particles.

The callback, rpPRTSTDEMITTERCALLBACKENDUPDATE, is called at the end of
the update cycle after the particles are updated. It can be used for any post
particle update for the emitter, such as active particle count.

 Basic Usage

RenderWare Graphics 3.7 II-203

Particle Update

Particles are updated per batch rather than individually inside the emitter
begin and end update.

Empty particle batches are first removed from the emitter's active batch
list. The callback, rpPRTSTDPARTICLECALLBACKDESTROY, is called for each
batch that no longer contain any active particles.

Non empty batches are updated using the callback,
rpPRTSTDPARTICLECALLBACKUPDATE. The callback is responsible for
updating the particle data and any data in the RpPTank that is used.

It is important that the data in the two areas are kept synchronized
otherwise the wrong set of particles data maybe updated or removed.

Particles that are no longer active are removed by having their data area
overwritten by the next active particle in the batch. This is also the case for
data in the RpPTank.

Fig 3. Example of particle removal. Particle B and E are removed by being

overwritten by other remaining active particles.

Chapter 25- Standard Particles

II-204 11 February 2004

New particles are emitted, i.e. created, emitted, by the callback,
rpPRTSTDEMITTERCALLBACKEMIT. This is done after existing particles are
updated. New particles can either be added to existing batches or a new
batch created. New batches are created with
RpPrtStdEmitterNewParticleBatch(). This will call the callback,
rpPRTSTDPARTICLECALLBACKCREATE, and add the batch to the emitter's
active list.

25.3.3 Rendering

The emitter and particles are rendered using the standard atomic rendering
function, RpAtomicRender(). Depending on the type of emitter and
particles, both entities can be rendered or not.

Begin emitter render

For each particle batch do

 Render particle batch

End emitter render

Pseudo code for an emitter render cycle.

Emitter Render

There are two render callbacks for the emitter. Similar to the update
callbacks, these are called before and after rendering the particles.

rpPRTSTDEMITTERCALLBACKBEGINRENDER is called at the start of a render
cycle.

rpPRTSTDEMITTERCALLBACKENDRENDER is called at the end of the render
cycle.

Particle Render

Particles are rendered by the callback,
rpPRTSTDPARTICLECALLBACKRENDER. This is called once per batch in the
particle render loop.

25.3.4 Streaming

Streaming is supported by the plugin for some of the data types. There are
two methods of streaming the data, embedded or non-embedded.

• Embedded: Embedded mode means the various data types are
embedded into the emitter's chunk in the stream.

• Non-embedded: Non-embedded mode means various data types are
placed in their own separate chunks in the stream.

The stream mode is set using RpPrtStdGlobalDataSetStreamEmbedded().
RpPrtStdGlobalDataGetStreamEmbedded() will return the current mode.

 Basic Usage

RenderWare Graphics 3.7 II-205

Property Table

The property table is streamed indirectly for both modes. If the property
table is embedded into the emitter chunk, it is streamed with the emitter.

In non-embedded mode, the property table is streamed using the functions,
RpPrtStdGlobalDataStreamRead() and
RpPrtStdGlobalDataStreamWrite().

Emitter Class and Particle Class

The streaming of the emitter and particle class is similar to property table
streaming. It can be embedded with the emitter chunk or in a separate
chunk with the property table.

In non-embedded mode, the emitter class and particle class is streamed
with the property table in a single chunk. It uses the same function as the
property table for streaming. RpPrtStdGlobalDataStreamRead() and
RpPrtStdGlobalDataStreamWrite() will stream the property table, the
emitter class and particle class.

Callbacks are not data and so cannot be streamed as such. In order to
setup the emitter's callbacks correctly, the callback
RpPrtStdEClassSetupCallBack is called after each emitter class is
streamed in. It is the responsibility of this callback to setup the callbacks
correctly for each emitter class. This callback is set by
RpPrtStdSetEClassSetupCallBack().

Similarly, the particle class must also be setup correctly by using the
RpPrtStdPClassSetupCallBack callback. This callback is set by
RpPrtStdSetPClassSetupCallBack().

Emitter

The emitter atomic is streamed using the standard atomic streaming
functions such as RpAtomicStreamRead() and RpAtomicStreamWrite().
These will call a set of callback functions to stream the emitter's property
data within the atomic.

The layout of the data within the stream is user definable and does not
need to be identical to that within the memory block.

The callback, rpPRTSTDEMITTERCALLBACKSTREAMREAD, is called when the
emitter is read in from an input stream. This callback is used to read in the
property data from the stream and store it in the appropriate location
within the emitter's memory block.

The callback, rpPRTSTDEMITTERCALLBACKSTREAMWRITE, is used to write
out the emitter's property data to an output stream. The callback may
choose to omit some data from being written to the stream.

The callback, rpPRTSTDEMITTERCALLBACKSTREAMGETSIZE, is used to query
the size of the data block that will be written to an output stream.

Chapter 25- Standard Particles

II-206 11 February 2004

Particle

Particles are not streamed.

 Standard Properties

RenderWare Graphics 3.7 II-207

25.4 Standard Properties
The plugin provides a set of properties and callbacks for creating,
animating and rendering simple particles.

These properties and callbacks can be used alone or with your custom
properties and callbacks.

The standard callbacks are designed to handle all the standard properties
and the possible combinations of those properties. They will also handle the
rendering data stored within RpPTank.

Standard callbacks can also be used to look after a portion of the data in
RpPTank, processing the remainder privately.

Two flags are stored within the emitter's RpPTank property structure,
RpPrtStdEmitterPTank. These flags allow you to enable and disable
RpPTank properties from being processed by the standard callbacks.

• Emit Flag: This allows you to selectively enable and disable properties
within the RpPTank from being initialized by the standard emit callback,
RpPrtStdEmitterStdEmitCB().

The emit flag allows you to initialize some data in the RpPTank privately
while using RpPrtStdEmitterStdEmitCB() to perform the rest of the
initialization.

• Update Flag: This is used like the emit flag but enables and disables
properties from being updated in the standard particle update callback,
RpPrtStdEmitterStdUpdateCB().

You can use this flag to select RpPTank properties that are updated by
your own update callback.

You are responsible for synchronization of the render data in the RpPTank
with the animation data in the particle for any RpPTank properties that
were disabled with the use of flags.

More information on the properties and callbacks can be found in the
RpPrtStd plugin's API reference manual.

Chapter 25- Standard Particles

II-208 11 February 2004

25.5 Summary
The RpPrtStd plugin is for animating particles. It is used in conjunction
with the RpPTank plugin for animating and rendering a set of particles.

The particles' data is stored across the two plugins. Data for animating
particles is stored in the RpPrtStd plugin. Rendering data is stored in the
RpPTank plugin. Like RpPTank, RpPrtStd uses an extended atomic to store
the emitter and particle data.

Emitters and particles do not use a fixed data structure. A property table is
used to describe the data structure within these two entities, allowing them
to be tailored to specific requirements.

Callback functions are used for manipulating the emitters and particles.
These can be replaced by your own functions.

Emitters and particles can share emitter and particle classes respectively.
These classes can share property tables but only those of the same type.
Emitter classes and particle classes cannot share the same property table
but can share property tables in their respective class.

Chapter 26

B-splines and
Bézier Patches

Chapter 26- B-splines and Bézier Patches

II-210 11 February 2004

26.1 Introduction
This chapter falls into three sections.

The first describes the way RenderWare Graphics adapts B-splines to deal
with curved lines and paths, in the RpSpline plugin.

The second section deals with the way RenderWare Graphics encodes
curved surfaces, through Bézier patches. It explains some of the methods
and the API calls which render patches in the RpPatchMesh plugin.

The third section covers the RtBezPat Toolkit. Using the Toolkit, the
developer who wants to get more out of the code can call the most useful
functions hidden below the surface of the RpPatchmesh. It includes
functions that find matrices of vectors for positions and tangents and other
functions that speed up calculations. These calls require some knowledge of
the mathematics of curved 3d surfaces, and they are a valuable resource in
their own right.

26.1.1 Other Documents

• See the API reference for details of the code for RpSpline,
RpPatch and RtBezPat.

• The Appendix, Recommended Reading, lists sources that give
background in this subject.

• This chapter assumes you have some familiarity with the
concepts of materials, skinning, atomics, clumps and streaming
from their descriptions in this User Guide. They can be found in
the table of contents. In particular, it is assumed that the reader
knows the Chapter on Dynamic Models. The patch mesh code is
designed to integrate with the other elements of RenderWare
Graphics. So the same methods and API calls that were used with
the flat polygons, in Dynamic Models, are re-used in the patch
mesh section of this chapter to control the rendering, lighting and
texturing of surfaces which are curved. Functions and data are
named to parallel those used earlier, and the code example
patch, used in this chapter, is based on the earlier example,
geometry. (For completeness it should be noted that one area of
functionality of RpGeometry, morphing, is not implemented for
patches.)

• Several technical and mathematical topics touched on in this
chapter are covered on specialist web sites and can be found by a
web search.

 B-splines

RenderWare Graphics 3.7 II-211

26.2 B-splines

26.2.1 Introduction

RenderWare Graphics uses uniform B-splines to define paths for cameras,
lights and other objects. The RpSpline plugin implements B-splines and it
is described here.

26.2.2 What Are B-splines?

The third degree B-splines that RenderWare Graphics uses are defined by a
sequence of control points in 3d space. The sequence can have four or more
control points. The position of any point on the B-spline that occurs
between two control points in the sequence is determined by the two
control points before and after it in the sequence; four points in all. Only
the first and last points in an open B-spline sequence are on the curve. The
curve bows towards each of the other control points in turn, but does not
normally go through them. Expressed in intuitive terms, the curve is
attracted to each of its control points in turn.

Control Point Numbering

In RpSpline, a B-spline's control points are numbered beginning from P0.
By convention Pn-1 refers to the last point. In a closed spline, where the first
point is also the last point, both P0 and Pn refer to the same control point.

P6 P0

P1

P2P3

P4

P5P5

P4

P3
P2

P1

P0

Numbering of RpSpline control points

Internally RpSpline may add extra control points at the start and end of
the spline but this is transparent to the developer and does not affect the
control point numbering in the API functions.

If a B-spline is defined by points numbered P0, P1, P2 to Pn, then the points
on the curve segment Pi to Pi+1 are calculated from points Pi-1, Pi, Pi+1 and
Pi+2. The formula for these segments applies along the whole curve. It even
applies on the first segment P0 to P1, and the final segment, Pn-2 to Pn-1,
because RpSpline intercepts the numbering of these control points as
explained under Control Points at Open Ends, below.

Chapter 26- B-splines and Bézier Patches

II-212 11 February 2004

26.2.3 Some Features of B-splines

Smoothness

Perhaps the most common types of spline in computer graphics are
B-splines, Bézier curves and the closely related Hermite curves. B-splines
are rather smoother or rounder than the more angular Hermite curves, and
the Bézier curves that are used in RenderWare Graphics' patches.

On-curve and Off-curve Control Points

Control points P0 to Pn-1 are an integral part of a B-spline and its
mathematics, but on-curve points are more intuitive and more useful for
many purposes. So RenderWare Graphics incorporates an algorithm to
convert efficiently between off-curve points and their corresponding on-
curve points and vice versa. So, as far as the developer is concerned, all the
control points that RpSpline uses are on-curve points. In this section on
RpSpline only, this document will refer to control points as if they were all
points on the B-spline.

Real-world Space and Parameter Space

A B-spline, like other types of spline, can be seen as a sequence of points in
real-world space, that define a curved line. For calculation purposes the
B-spline can also be considered as a 1d progression where the control
points are spaced uniformly or irregularly along its length. This second
representation is referred to as "parameter space". In parameter space a
uniform B-spline's control points are spaced uniformly (or evenly) in
parameter space, at intervals of 1/(n–1) for a curve with open ends, and
1/n for a curve that forms a closed loop back to its starting point. Each
point of the B-spline represented in parameter space corresponds exactly to
one in the real-world B-spline.

0

P 1

P2

P3

P5

P4
P 0

 1/n-1 2/n-1 3/n-1 4/n-1 5/n-1

Real-world space corresponds to parameter space

 B-splines

RenderWare Graphics 3.7 II-213

Velocity

The control points that define a curve can be spaced far apart or close
together, in real-world space. If an application plots the progress of an
object at intervals derived from the spacing of the control points in real-
world space, the object's speed will be slower on the tighter bends, where
the control points are closer. This can be useful because it can correspond
to the behavior of racing cars on a circuit and to the number of straight
segments or facets needed to represent curves where the curvature is
tighter.

Control points, and points derived from them,
are closer where the spline curves more steeply.

This is not the sense in which "velocity" is used with RpSpline; the
developer decides how often to sample the curve and re-draw the object
moving along it. But RpSpline introduces "velocity" in two enumerated
values that affect the behavior at the ends of B-splines.

If the curve represents a path for a solid object it may also be useful to
specify that the object accelerates at the start and decelerates toward the
end. This feature is described in RenderWare Graphics as velocity. The
values rpSPLINEPATHSMOOTH and rpSPLINEPATHNICEENDS can be passed
to the functions RpSplineFindMatrix() and RpSplineFindPosition().
The first returns values for the developer who wants progress to be defined
in parameter-space intervals that are even, and the second returns
parameter-space intervals that are spaced to accelerate and decelerate
towards the ends of the spline. The developer may choose to apply these to
the spline's real-world.

RpSpline will support "constant velocity" only if a B-spline's control points
are spaced at equal intervals.

Open and Closed B-splines

A curve can be "closed" in a continuous loop, or it may have two "open"
ends.

Chapter 26- B-splines and Bézier Patches

II-214 11 February 2004

A "closed" and an "open" RpSpline

Any curve can come back to its first point, but to say that a curve is
"closed" usually means that the join is just as smooth as the curve at each
of the other control points. This is seen in the diagram above, where the
direction of the line at the start and end points changes according to
whether the curve is open or closed.

Control Points at Open Ends

RpSpline has a problem with open curves. The first and last segment do
not form a sequence of four control points of which the segment runs
between the middle two. RpSpline simplifies things by introducing two
extra points. It does this behind the scenes adding an extra first and last
point to each open curve, at the start and the end of the curve. These two
points have exactly the same position as the first and last points, but they
make it possible to apply the same "base function" to the first and last
segments and provide a suitably smooth start and end of the curve.

These points are introduced and processed transparently and do not affect
the control point numbering.

Closed B-spline Closed Curve Joins

In order to join a curve P0 to P7 in the diagram below, RpSpline treats P0
and P1 as points P8 and P9 as if they followed P7 at the end of the spline. In
this way it can apply the same function as it applies to all the curve
segments in the spline. If the current curve segment begins at point i, then
the function will take the same parameters, Pi-1, Pi, Pi+1 and Pi+2, and this
function will calculate the curve that joins the end points so that it is just
as smooth as the curve between the other control points.

 B-splines

RenderWare Graphics 3.7 II-215

P0

P3

P2

P1

P4

P5

P6

P7

An eight-point closed RpSpline

At the beginning of the curve it does much the same thing, inventing a P-1
and P-2 which coincide with the last point (P7) and the point before that (P6).

An RpSpline has n control points, and they are numbered from P0 to Pn-1.
RpSpline calculates the last segment of a closed B-spline, the segment
from Pn-1 to P0, by using points Pn-2, Pn-1, P0 and P1. Similarly the first
segment P0 to P1 is calculated using Pn-1, P0, P1 and P2. Thus a closed curve
always joins smoothly.

26.2.4 Why Use B-splines?

There are other curve formats and they have different strengths and
weaknesses, but B-splines are now well understood and their mathematical
problems are largely solved. They allow us to calculate tangents. Long
splines of many points are continuously smooth by their nature, without
the need to smooth the joins of many shorter curve segments. And
sometimes it's convenient to convert them mathematically to or from Bézier
and Hermite curves.

B-splines have "local control". That means that if a control point is moved
in order to move part of the spline, it affects the path of the spline no
further than two control points behind or ahead in the sequence. So if point
Pi is moved, the B-spline will be affected as far as Pi-1 and Pi-2 and in the
other direction, as far as Pi+1 and Pi+2. In other types of spline, the curve can
be affected one or more control points further in both directions.

Other curve formats have the advantage of being easy to control by
specifying their start and end points, and they move toward their off-curve
control points in a way that is fairly intuitive. RpSpline has a greater
advantage in that the control points all lie on the curve, so the spline goes
exactly where the control points specify.

The convenience of making the curve join back on itself in a continuous
loop without extra code or extra calculations is also an advantage.

Chapter 26- B-splines and Bézier Patches

II-216 11 February 2004

Basic Mathematics

Earlier pages in this chapter referred to some processes that RpSpline
performs internally. RpSpline uses matrix inversion to convert between its
on-curve control points and the off-curve control points used in the
conventional mathematics of uniform B-splines. We have seen how
RpSpline alters the control point sequence so that the ends of loops can
use the same function, so the first and last curve segments join as
smoothly as the other curve segments.

In effect then, RpSpline can apply the same formula to all curve segments.
This can be implemented in a single "basis function" or "smoothing
function". The two control points in the control point sequence that enclose
the curve segment are described as Pi and Pi+1. The basis function uses the
four control points Pi-1, Pi, Pi+1 and Pi+2 to calculate any position on the
spline between Pi and Pi+1. The value "u" increases linearly from zero to one
representing positions on the spline between Pi and Pi+1. The formula that
calculates positions on the spline is

Pi+2 u3 + Pi+1(3u2 – 3u3 + 3u + 1) + Pi(3u3 – 6u2 + 4) + Pi-1(3u2 – u3 – 3u + 1)

6

It applies varying proportions of the positions of each of the four control
points to the point calculated. The amounts vary according to how far the
point is from Pi to Pi+1.

26.2.5 How RenderWare Graphics Processes Two-
dimensional B-spline Curves.

The routines to handle B-splines are contained in the RpSpline plugin. The
RpSpline plugin must be attached using RpSplinePluginAttach() before
an application can use the functionality described in this chapter. The
attach function must be called after RwEngineInit() and before
RwEngineOpen(). The header file rpspline.h must be included in files
that use these functions and structures.

Struct RpSpline

RenderWare Graphics maintains a datatype, RpSpline, to handle each B-
spline. It stores:

• file and path name (a null-terminated array of RwChar)

• control points (a pointer to an array of RwV3d)

• number of control points (an RwUInt32)

• and the spline type, including information like whether the spline is open
or closed (an RwUInt32)

 B-splines

RenderWare Graphics 3.7 II-217

• and other data.

API functions are provided to address the structure and maintain its
integrity. The developer should not address its members directly. Its
members are listed in the API reference.

Creating a Spline

The function RpSplineCreate() takes three arguments. If it is successful,
it returns a pointer to a new RpSpline structure.

The first argument, an RwUInt32 gives the number of control points. This
must be four or more.

B-splines defined by 4, 5 and 6 points

The second argument indicates whether the spline is to represent an open
curve, or whether it is a closed loop. rpSPLINETYPEOPENLOOPBSPLINE and
rpSPLINETYPECLOSEDLOOPBSPLINE specify the type of spline.

The third argument is a pointer to an array of three dimensional vectors, a
* RwV3d, which constitutes the sequence of control points.

Cloning

RpSplineClone() provides an easy way to create or copy splines. The
function takes only one argument, a pointer to the spline to clone. It
returns a pointer to the new spline, which has a pointer to a new copy of
the control points so that the new spline is entirely independent of the first.

A spline which has been created or cloned can have its control points
adjusted by RpSplineSetControlPoints(). This function takes a pointer
to the spline to adjust, an integer (>=0) to specify which control point is to
be adjusted and a pointer to a three dimensional vector that specifies its
new position. It returns a pointer to the new position, or NULL if it is
unsuccessful.

Chapter 26- B-splines and Bézier Patches

II-218 11 February 2004

Finding Frames, Positions and Control Points

A B-spline may be used to define a path. If it is the path of a racing car,
then the developer will need the tangent of any point on the path in order to
point the racing car in the right direction at that point. The function
RpSplineFindMatrix() returns the position of the point and its direction.

RpSplineFindMatrix() takes five arguments, of which four pass data to
the function and one returns it. The first argument is a pointer to the
spline. The second is a bit-significant RwUInt32 that describes the type of
path as of constant velocity, with rpSPLINEPATHSMOOTH or with
acceleration at both ends, with rpSPLINEPATHNICEENDS. The third is an
RwReal that specifies how far along the path (from P0 to Pn-1) the point is as
an RwReal between zero and n-1. And the fourth is a pointer to the frame's
look-up vector. The last argument is a pointer to the Frenet matrix that can
be used to orient the frame of an object at the given point on the spline. The
function returns an RwReal that is the Gausian description of the tightness
of the spline's curvature at the point specified.

RpSplineFindPosition() finds the position in space of a point somewhere
along a given B-spline. It also returns its direction at that point.

The function takes five arguments. The first three pass data to the function
the other two are used to return data. The first argument is the address of
the spline, the second is a bit-significant RwUInt32 that defines the type,
specifically the velocity of the path, and the third is the 'u' value from 0 to 1
which determines how far along the path (from P0 to Pn-1) the specified point
occurs (so the ith control point is at i/n).

The path argument is an integer equal to rpSPLINEPATHSMOOTH or
rpSPLINEPATHNICEENDS. The first will take the 'u' value, 0 to 1, to mean
that 1/3 and 2/3 correspond to the control points on the curve, even if the
first three control points are close together and far away from the fourth.
The second defines the start and ends with increasing resolution which
accelerates and decelerates between the first two and the last two points of
the spline.

The fourth and fifth arguments are RwV3d vectors to receive the position of
the object, expressed in world space, and the tangent of its direction. These
allow the frame of any object to be found on the curve at the angle queried.
The return value is the position along the curve, or null if the function fails.

The function RpSplineGetNumControlPoints() takes a pointer to the
RpSpline and returns an RwUInt32 that specifies the number of control
points.

The function RpSplineGetControlPoint() returns the position of a
specified control point on the specified spline. It takes a pointer to the
spline, a zero-based integer to define the control point and a pointer to an
RwV3d that will receive the position of the control point. The return value is
the position vector.

 B-splines

RenderWare Graphics 3.7 II-219

The complement of this function is RpSplineSetControlPoint(), which
takes a pointer to the spline, a zero-based integer to specify the control
point and a pointer to an RwV3d vector to specify its position. It returns
NULL on error, and the pointer to the spline if it is successful.

Destruction

The function RpSplineDestroy() destroys the RpSpline structure as it is
created by RpSplineCreate().

Serialization

Four functions support reading and writing RpSpline data.
RpSplineRead() takes a pointer to the file's path and file name and
returns a pointer to the spline data that it has read in, or NULL if it fails.
RpSplineWrite() takes a pointer to the RpSpline that it is to write, and a
pointer to the file name.

Two other functions RpSplineStreamRead() and RpSplineStreamWrite()
read and write to a RenderWare Graphics binary stream. They both assume
that the stream is already opened.

The user may find out how much memory an RpSpline occupies, to check
that there is enough disk space to hold the data.

26.2.6 Spline Summary

RpSpline is based on uniform B-splines. In RenderWare Graphics, they
have on-curve points that appear to work as control points. They can be
closed loops, in which case they are made to join smoothly automatically,
and they can return their direction and position at any point. There is a full
range of functions to stream them to or from files.

The rest of this chapter is concerned with patches, which are 3d shapes not
curves. In RenderWare Graphics they are based on the mathematics behind
Bézier curves rather than B-splines.

Chapter 26- B-splines and Bézier Patches

II-220 11 February 2004

26.3 3D Bézier Patches

26.3.1 Introduction

One method of rendering a solid object for the computer screen is to divide
the object's surfaces into polygons, usually triangles. Then the color of each
visible triangle is calculated and each triangle is drawn onto the screen.
This approach needs lots of triangles to represent curved surfaces and it
still leaves surfaces looking unacceptably facetted when shown in close
detail. RenderWare Graphics solves this by using patches.

A patch defined by eight curved lines.

The RpPatch routines use Bézier patches, shapes that curve in three
dimensions and are bounded by Bézier curves on each side. They
correspond to the simpler RpGeometry used elsewhere in RenderWare
Graphics, that uses flat polygons bounded by straight lines.

This middle section of the chapter describes how the RpPatch plugin
implements several processes to take advantage of curved patches and
integrates them with rendering processes; the developer needs to know only
the broad framework of how they work.

26.3.2 What Are Patches?

In RenderWare Graphics, patches are quadrilateral or triangular shapes
that curve in three dimensions. Each side of the shape is a Bézier curve.
The patches are defined by control points like those which define Bézier
curves and similar to the off-curve control points of B-splines. These
control points define the Bézier curves that define the edges of the patch.
But patches calculate the continuous surface from the control points
whereas the simpler mathematics of Bézier curves need only calculate a
single line.

 3D Bézier Patches

RenderWare Graphics 3.7 II-221

Quad Patches and Tri Patches

A patch with four sides is a called a "quad patch". Each side is a Bézier
curve and therefore has four control points. This implies four other curves
(shown in the diagram in gray) linking control points on the edges. This
results in four curves running across the patch in one direction, and four
more crossing them in the other direction. These curves cross at 16 points
on the surface corresponding to the 16 control points of the patch.
RenderWare Graphics calculates the continuous surface defined by these
16 control points.

A quad patch with 16 and a tri patch with 10 control points

A patch with three sides is called a tri patch. Its three sides are Bézier
curves, so each side is defined by four control points.

A control point at the patch's corner defines the corner's position. But the
other points are not on the surface they define. So, in a quad patch, 12
control points are normally above or below the surface they define. In a tri
patch seven control points are off the surface. To describe it more
intuitively, it is as if the surface is attracted towards the other control
points but fixed only to its corner points.

26.3.3 Why Use Patches?

It is clear that patches are more complicated than flat polygons. They have
more control points and the control points are inter-related. They need
more complicated mathematics and more calculations to derive useful
information from them. The code to do this is proportionately harder to
develop and to integrate with the rest of the rendering system. Different
platforms support patches to very different extents, and RenderWare
Graphics must accommodate the differences to support each of them
efficiently. So, why use patches?

Each patch takes more data to define it, but a single patch can replace very
large numbers of flat polygons, reducing storage space and processing time.

Chapter 26- B-splines and Bézier Patches

II-222 11 February 2004

An example of a single patch that would take many
triangles to approximate

In practice, these patches are rendered as small triangles, but it is the
graphics processor that refines them, so it doesn't slow the main processor
or use excessive amounts of memory.

Patches have another advantage; they can be divided into many small
triangles for rendering, or, just as easily, into a few big triangles. So they
can be rendered at varying levels of detail. Usually software improvements
involve a trade-off. But introducing patches allows RenderWare Graphics to
reduce render time and at the same time to reduce memory usage and still
improve visual quality, all to produce the optimal visual effect.

It is possible that future graphics processors will handle patches directly,
either as curved surfaces, or by splitting them into facets. If they do then
patches will give even greater efficiency to the rasterization process.

26.3.4 How RenderWare Graphics Handles Patches

RenderWare Graphics defines two types of patch:

• RpQuadPatch represents a quad patch as 16 indices to control points

• RpTriPatch represents a tri patch as 10 indices to control points

An tri patch with 10, and a quad patch with 16 control points.

Both types of patch are stored in an RpPatchMesh to record the way the
patches fit together. A single patch describes only a simple curved surface,
but when patches are fitted together in a patch mesh they can define
complicated surfaces.

 3D Bézier Patches

RenderWare Graphics 3.7 II-223

Three quad patches and one tri patch in a patch mesh.

In RenderWare Graphics, these control points' coordinates are held in
the "positions" array in an RpPatchMesh.

Quad patches and tri patches are arrays of RwUInt32 indices that refer to
an unknown array. The patches will only be meaningful when they specify
which array they refer to. However, both quad and tri patch data types
must be defined separately before they are added to a patch mesh by the
function RpPatchMeshSetQuadPatch() or RpPatchMeshSetTriPatch().

The Patch Mesh

The RpPatchMesh is similar to the RpGeometry that was used to store
triangular facets in the chapter on Dynamic Models.

The patch mesh can be seen in two ways. From a high level, and ignoring
the detail of the code for a moment, it is an array of tri patches and an
array of quad patches which index an array of control points.

Chapter 26- B-splines and Bézier Patches

II-224 11 February 2004

 Control points

Positions, Normals, Colors, Uvtex1, Uvtex2 … UVtex8

 Definition

Tri
patches

Quad
patches

High-level view of RpPatchMesh

The control point in this sense is flexible. It has its own
RpPatchMeshDefinition structure and that determines which data the
control point holds. This may include the coordinates of its position, its
pre-calculated normal vector, its pre-light color (its color before it is lit) and
various sets of coordinates to stretch textures over it. But these can be
present in any combination that the developer requires. (In principle none
of them needs to be present.) This is the underlying concept and the most
helpful way to see the patch mesh. In this sense a control point would
probably have positions and normals to define the shape of the patch mesh.
However, the same patch mesh could be defined with its control points
containing only positions, if the normal vectors are not required.

The C language does not represent RpPatchMesh so economically, as is
shown in the diagram below. The diagram illustrates only part of the
RpPatchMesh and much of it is "opaque", or hidden from the developer.
Where API calls are provided to access it, the developer should use them to
maintain the consistency of data (and because the API functions will assert
if they detect invalid data).

 3D Bézier Patches

RenderWare Graphics 3.7 II-225

 Definition

 UV texture 8
 UV texture 7
 UV texture 6
 UV texture 5
 UV texture 4
 UV texture 3
 UV texture 2
 UV texture 1

Colors
 Normals
 Positions

RpPatchMesh

Tri
patches

Quad
patches

A more literal representation of RpPatchMesh

A more literal explanation is that the RpPatchMesh contains an
RpPatchMeshDefinition structure, arrays of quad patches and of tri
patches, and up to 11 parallel arrays.

They are:

• a structure called "RpPatchMeshDefinition" explained below

• an array of quad patch control point indices (in groups of 16) each control
point being an index into the array of positions

• an array of tri patch control point indices (in groups of 10). Again, each
control point is an index into the array of positions

Each of the remaining items is optional:

• an array of control point coordinates called positions

• a parallel array of the control points' normal vectors

• a parallel array of the control points' pre-light colors: these are the base
colors of the patch control points

• and up to eight parallel arrays of which each element consists of a UV
texture coordinate set, to map a texture to each control point.

Chapter 26- B-splines and Bézier Patches

II-226 11 February 2004

RpPatchMeshDefinition

The RpPatchMeshDefinition holds some binary settings in
RpPatchMeshFlag. It also holds the maximum number of control points,
the maximum number of tri patches, the maximum number of quad
patches and the number of arrays of texture coordinates (0 to 8) and the
RpPatchMeshFlag. These numbers are used to calculate and reserve the
amount of memory required when an RpPatchMesh is created. The number
of control points is used to determine the size of the array of control point
coordinates and thus the size of each parallel array when the developer
needs to address them.

RpPatchMeshFlag

The user defines the flags by passing them to the Create function which
stores them in the RpPatchMeshDefinition structure. The flags can also
be accessed by RpPatchMeshSetFlags() and RpPatchMeshGetFlags().

Most of the RpPatchMeshFlags indicate which of the arrays are provided. If
the flag is set, then memory is reserved for its array and it exists; if it is
clear then no memory is reserved for it and it does not exist. The last three
flags describe other aspects of the mesh:

• rpPATCHMESHPOSITIONS: the control points have positions (i.e. there is
an array of control point positions)

• rpPATCHMESHNORMALS: the control points have normals (i.e. there is an
array of control point normals)

• rpPATCHMESHPRELIGHTS: the control points have pre-light colors (i.e.
there is an array of control point pre-light colors)

• rpPATCHMESHTEXTURED: the control points have texture coordinate
sets (i.e. there is at least one array of control point texture coordinates)
(If this flag is set, then the macro rpPATCHMESHTEXCOORDSETS() must
be used to specify how many)

• rpPATCHMESHLIGHT: the mesh will be lit by lights in the RpWorld

• rpPATCHMESHMODULATEMATERIALCOLOR: the patches' color will be
modulated with the material color

• rpPATCHMESHSMOOTHNORMALS: Where adjacent patches do not join
smoothly this restores smooth shading and disguises the join

Two of these flags need a little more explanation.

The flag rpPATCHMESHLIGHT is very similar to the rpGEOMETRYLIGHT flag
which is an enumerated value of the RpGeometry flag in the Dynamic
Models chapter. If light effects are not applied, the pre-light colors are used
unmodified, which reduces rendering time significantly. This light effect is
well illustrated in the "patch" example: the sail and the teapot become
brighter as they turn towards the light.

 3D Bézier Patches

RenderWare Graphics 3.7 II-227

The flag rpPATCHMESHSMOOTHNORMALS is designed to solve the problem of
adjacent patches that should join smoothly but whose shading does not.
This arises when the normal vectors on two patches are not pointing in the
same direction on the edge where they join. The brightness of directional
light falling on the patches is calculated from the normal vectors, so the
discrepancy shows up as an obtrusive edge in the shading, like a crease in
a sheet of paper. When the rpPATCHMESHSMOOTHNORMALS flag is set,
RenderWare Graphics searches the patch mesh for shared control points
on shared edges and it checks to see if their normal vectors conflict.
Whenever it finds one it alters the conflicting vectors to their average value.
This gives smooth shading across the join.

The flag rpPATCHMESHTEXTURED indicates that there is at least one UV
texture coordinate set present. The macro
rpPATCHMESHTEXCOORDSETS(<number>) must be called to set the number
of UV texture coordinate sets, between 1 and 8, into the flags field.

In the RpPatchMesh, the control point positions are stored separately and
indexed by the patches so that patches can share control points. This saves
memory and makes it quicker to alter the control point data.

✎ The mesh can hold up to eight arrays, but the number of arrays that can be used will be
platform dependent. Xbox supports four UV texture coordinate set arrays, GameCube
supports eight and all platforms support two.

There is more data and functionality in the RpPatchMesh, but this outline
covers the features that the developer needs in order to use the API
functions.

26.3.5 How To Use Patches

The pages that follow describe the steps to create and use RpPatchMesh.
Example code found in examples\patch is provided showing how patches
are integrated into an example application that will compile and run, and
this example is discussed under the heading Example Code at the end of
this section.

The sequence of steps to use a patch mesh correspond closely to the
sequence for building an RpGeometry described in the chapter on Dynamic
Models. The reader should refer to that chapter if the concepts of
RpGeometry, RpAtomic, RpClump, RpMaterial, RwTexture and
RwTexCoords, pre-light colors and material color are not familiar.

Attaching the Plugin

Before patch meshes are supported, the RpPatch plugin must be attached
by calling the function RpPatchPluginAttach().

Chapter 26- B-splines and Bézier Patches

II-228 11 February 2004

Creating a Patch Mesh

The RpPatchMeshCreate() function returns a pointer to the patch mesh it
creates. It takes as arguments the number of tri patches, the number of
quad patches, the number of positions and RpPatchMeshDefinition. With
these values RpPatchMeshCreate() calculates the memory required for
each of the arrays at the size specified, reserves enough memory for these
and the RpPatchMeshDefinition structure and returns a pointer to the
RpPatchMesh.

The RpPatchMesh also writes the flag field which is a member of its
RpPatchMeshDefinition structure. The function RpPatchMeshCreate()
sets the mesh's locking flags to ensure that it is created in its locked state.
This means that patches, positions, normals, colors and texture
coordinates can be written into it. (The concepts of locking and unlocking
are described later.)

After calling the RpPatchMeshCreate function the mesh holds data only for
the flag settings and array sizes.

The Patch Mesh's Flags

RpPatchMeshCreate() must set the mesh's flags to determine which
arrays will be present in the RpPatchMesh. These bit settings are described
above, under RpPatchMeshFlag and further documented in the API
Reference.

The flag rpPATCHMESHTEXTURED indicates that there is a number of UV
texture coordinate sets present. If rpPATCHMESHTEXTURED is set, then the
macro rpPATCHMESHTEXCOORDSETS() must be called to define the number
of texture coordinate sets present, and enter it in the flags field. The
number in the example below, must be between 1 and 8. For example:

RpPatchMeshCreate(quads, tris, positions,

rpPATCHMESHPOSITIONS |

 rpPATCHMESHNORMALS |

 rpPATCHMESHTEXTURED |

 rpPATCHMESHTEXCOORDSETS(<number>))

RpPatchMeshSetFlags() is provided in case the developer wants to alter
the flags later. They can be read with RpPatchMeshGetFlags().

Destroying a Patch Mesh

When the patch mesh is no longer needed, RpPatchMeshDestroy()
releases the memory reserved by RpPatchMeshCreate().

 3D Bézier Patches

RenderWare Graphics 3.7 II-229

Locking and Unlocking the Mesh

Before a patch mesh can be rendered, RenderWare Graphics must
transform patches, copy and re-sort them into fast internal format and
render them. This uses the processor heavily and takes extra memory. The
locking functions allow the developer to control and reduce this demand on
resources. When a patch mesh is "unlocked" with RpPatchMeshUnlock()
RenderWare Graphics gets the chance to do the extra processing. The
developer must not alter the arrays that define the positions, normals,
colors or texture coordinates when the patch is unlocked. When it is
"locked", with RpPatchMeshLock() the arrays of positions, normals, colors
and texture coordinates can be updated and RenderWare Graphics will
not attempt to process them until they are in a complete and consistent
state, indicated by calling RpPatchMeshUnlock() again.

When a patch mesh is created its arrays hold no data, and the locked state
leaves it ready to accept data in all its arrays. At other times the
RpPatchMeshLock() can be used. This takes, as an argument, any of the
enumerated values below which refer to the arrays individually. This
mechanism reduces the processing time still further by telling
RpPatchMesh which data it can safely ignore because it, or the values from
which it is derived, have not been changed.

The enumerated RpPatchMeshLockMode values (which can be combined
with the "or" operator) are:

• rpPATCHMESHLOCKPATCHES

• rpPATCHMESHLOCKPOSITIONS

• rpPATCHMESHLOCKNORMALS

• rpPATCHMESHLOCKPRELIGHTS

• rpPATCHMESHLOCKTEXCOORDS1

• rpPATCHMESHLOCKTEXCOORDS2

• rpPATCHMESHLOCKTEXCOORDS3

. . .

• rpPATCHMESHLOCKTEXCOORDS8

• rpPATCHMESHLOCKTEXCOORDSALL

• rpPATCHMESHLOCKALL

Although RpPatchMeshLock() may be called with different values to lock
individual arrays in the mesh, RpPatchMeshUnlock() unlocks all of them.
The RpPatchMeshUnlock() function enables the routines to recalculate
and to prepare the mesh for refinement.

Chapter 26- B-splines and Bézier Patches

II-230 11 February 2004

Filling the Positions Array

The array of positions is a simple array of RwV3ds that hold the coordinates
of the control point positions. RpPatchMeshGetPositions() returns the
address of the array and the developer addresses the array directly. The
number of RwV3d vectors in the array is the same as the number of control
points, and can be found with RpPatchMeshGetNumControlPoints().

RwV3d * const positions =

 RpPatchMeshGetPositions(&<PatchMesh>);

int i;

for(i=0; RpPatchMeshGetNumControlPoints(&<PatchMesh>); i++)

{

 positions[i] = <source>;

}

Filling the Patches Arrays

The two functions RpPatchMeshSetQuadPatch() and
RpPatchMeshSetTriPatch() copy patches into their respective arrays.
These arrays should be treated as opaque, and the developer cannot access
them directly and must use the functions provided.

The developer trying out these routines for the first time will probably make
each new RpPatchMesh index a new set of control point indices.

It is often desirable for identical control points to share the same index, but
this is not always possible. For instance two patches may join at four
control points, but if they join along an edge, like a fold in a piece of paper,
their control points will have different normal vectors. Some patches may
join on common control points but have different pre-light colors or
different textures. So control points can only share an index if the
information in every one of their parallel arrays is identical.

The RpQuadPatch or RpTriPatch must be defined first.

Each RpTriPatch or RpQuadPatch is an array of indices to RwV3d vectors
in the positions array. Each patch's control point zero will be used as the
point where u=0 and v=0. Control point one will be where u=1/3 and v=0
and so on, as illustrated. These u and v values become significant in the
Bézier Toolkit functions described in the last section of this chapter.

 3D Bézier Patches

RenderWare Graphics 3.7 II-231

1 2 3
4 5 6 7

8 9 10 11

0

12
13 14 15

u
v 1 2 3

4 5 6

7 8

9

0 u
v

Order of control points for a patch

RpQuadPatch quadPatch;

quadPatch[0] = <controlpointindex> ;

quadPatch[1] = <controlpointindex> ;
. . .

RpPatchMeshSetQuadPatch(<&patchmesh>, <patchindex>,

&quadPatch);

The functions RpPatchMeshSetQuadPatch() and
RpPatchMeshSetTriPatch() take three arguments,

• a pointer to the patch mesh to add the patch to

• the index of the element in the array to copy the patch into

• a pointer to the patch to be copied.

Filling the Normals Array

The normals array, like the positions array, is a simple array of RwV3ds that
holds the normal vectors at each control point. The developer should
address it directly, getting its address from RpPatchMeshGetNormals().
The number of RwV3d vectors in the array is the same as the number of
control points and is returned by RpPatchMeshGetNumControlPoints().
Each RwV3d appended to the array of normal vectors must have the same
index as its coordinate in the array of positions. So the process of filling
this array is almost the same as that for the positions array, and its code
sample, under Filling the Positions Array, above.

The calculation of normal vectors can be done by the function
RtBezierQuadMatrixGetNormals()which is part of the Bézier Toolkit,
documented in the next section of this chapter. It calculates the normal
vectors for each position vector in its second argument and returns them in
the respective vectors of its first argument.

Chapter 26- B-splines and Bézier Patches

II-232 11 February 2004

Filling the Colors Array

The colors array stores the default color of a patch at each control point.
This is the color in which it will be rendered in an RpWorld with no light,
fog or other effects. (The RpPatchMeshFlag rpPATCHMESHPRELIGHTS must
be set for pre-light colors to be brought into effect.)

Like the positions and normals arrays it is addressed directly, and the
function RpPatchMeshGetPreLightColors() returns the start address of
the array. The number of RwRGBA values in the array is the same as the
number of control points and is returned by
RpPatchMeshGetNumControlPoints().

Filling the UV Textures Set Arrays and Materials

UV Texture Coordinate Sets

RpPatchMeshGetTexCoords() returns the start address of the arrays of
RwTexCoords values. The RpPatchMeshDefinition stores the maximum
possible number of texture coordinate set arrays that RpPatchMesh
supports (the number that the hardware can use is platform dependent).
So, unlike the functions for the other parallel arrays, this function must
specify which array the pointer is to refer to, by passing an
RwTextureCoordinateIndex argument (>=1) to request the address of
array 1 up to array 8.

RpPatchMeshGetTexCoords(<&patchmesh>,<whichtexcoordarray>);

Apart from this, the texture arrays are addressed in the same way as the
parallel arrays of positions, normals and colors. The developer must access
the texture coordinate set array directly, calling the
RpPatchMeshGetTexCoords() to return the base address of the
appropriate texture coordinate set array. The number of UV coordinates, or
RwTexCoords, in the array is the same as the number of control points and
can be found with RpPatchMeshGetNumControlPoints().

The coordinates refer to the UV coordinates of the RpMaterial that is to be
mapped to the patch. RenderWare Graphics stretches the RpMaterial
over the patch so that the material's UV coordinates coincide with their
respective coordinate positions in the patch mesh as specified by this array.
The process is similar to that used on the facets of a geometry described in
the Dynamic Models chapter.

Materials

Each patch can have an RpMaterial allocated to it by the functions
RpPatchMeshSetQuadPatchMaterial() or
RpPatchMeshSetTriPatchMaterial(). The function
RpPatchMeshGetNumMaterials() returns the number of unique
RpMaterials stored in the whole patch mesh.

 3D Bézier Patches

RenderWare Graphics 3.7 II-233

Two functions, RpPatchMeshGetQuadPatchMaterial() and
RpPatchMeshGetTriPatchMaterial() return a pointer to the material
associated with the specified patch.

Setting the Level Of Detail (LOD)

Objects may be rendered to different LODs. The greater the number of
triangles that are used to represent an object, the greater the detail, and
generally the more processor time and memory are used.

A ball represented at different levels of detail

Objects generally need only a few triangles to represent them when they
occupy half a dozen pixels, and generally need many more triangles when
they fill the screen.

Once every frame, RenderWare Graphics calls a default function that
calculates the distance between an atomic and the camera. By default, this
is used to determine the LOD at which the object is facetted.

Chapter 26- B-splines and Bézier Patches

II-234 11 February 2004

The sides of quad patches and tri patches with 4 and with 20 divisions,
to form flat quadrilaterals and triangles

The LOD is represented internally by an integer value between 4 and 20, in
inverse proportion to the object's distance from the camera. The number
represents the number of divisions of each side of each patch to split it into
facets. If the LOD is 4, then each quad patch is split by 4 divisions
vertically, creating 3 columns, and it is split by another 4 divisions
horizontally, creating three rows. Thus 9 facets, (3 rows and 3 columns) are
produced by an LOD of 4. The facets are split into two triangles each
making 18 triangles for the quad patch.

If the LOD is 20, then each quad patch is divided into 19 rows and 19
columns, making 361 facets and 722 triangles. These two values are
#defined as rpPATCHLODMINVALUE (4) and rpPATCHLODMAXVALUE (20). The
number four is chosen as the lowest LOD as it requires no extra
calculation; the four control points of the Bézier curves that bound each
patch already divide the patch into four.

The same applies if the patch mesh is used for skinning but the maximum
value is rpPATCHSKINLODMAXVALUE which is #defined as 18.

The structure RpPatchLODRange stores four values:

• RwUInt32 minLOD minimum number of facet divisions (default 4)
• RwUInt32 maxLOD maximum number of facet divisions (default 20)
• RwReal minRange minimum distance from camera
• RwReal maxRange maximum distance from camera

The function RpPatchSetDefaultLODCallBackRange() takes this
structure as its argument, and copies these values into the structure used
by the current LOD call back function. And
RpPatchGetDefaultLODCallBackRange() returns a pointer to the current
RpPatchLODRange.

The default function provided by RenderWare Graphics to calculate the
required LOD checks that the distance value falls between minRange and
maxRange, altering it if necessary. Then it calculates an LOD value which
falls between minLOD and maxLOD in the same ratio as the distance fell
between minRange and maxRange.

There are limitations to this function. It produces the same number of
facets for large as for small patches, for deeply curved patches and for
almost flat ones. So RenderWare Graphics allows developers to supply
their own custom functions to be called in place of the default function. The
custom function's address can be passed, in place of NULL, to the callback
specifier function, RpPatchAtomicSetPatchLODCallBack(). This function
and RpPatchAtomicGetPatchLODCallBack() set and return the address
of the developer's function.

 3D Bézier Patches

RenderWare Graphics 3.7 II-235

Far Plane: 4 Near Plane: 20

LOD varies from 20 to 4 depending on
an object's distance from the camera

Exposing the Pipeline

Attaching the RpPatchMesh to an RpAtomic is not sufficient to render the
patch mesh instance. The rendering pipeline attached to the RpAtomic
needs to be overloaded with a custom patch pipeline. The default rendering
pipeline knows nothing about rendering RpPatchMeshes and will try to
render the RpAtomic as if a triangle mesh is attached.

The RpPatchType enumeration lists the different rendering pipeline types
available within the RpPatch plugin. At present these are:

• rpPATCHTYPEGENERIC – pipeline renders generic patch meshes

• rpPATCHTYPESKIN – pipeline renders skinned patch meshes

• rpPATCHTYPEMATFX – pipeline renders material affected patch meshes

• rpPATCHTYPESKINMATFX – pipeline renders skinned material affected
patch meshes.

A patch mesh rendering pipeline is attached to the RpAtomic with
RpPatchAtomicSetType(). The type of the present patch mesh rendering
pipeline can be queried from an RpAtomic with RpPatchAtomicGetType().

✎

RpPatch Libraries:

rppatch.lib, rppatchskin.lib, rppatchmatfx.lib and rppatchskinmatfx.lib.

There are presently four versions of the RpPatch libraries in the RenderWare Graphics
SDK. They are all fully featured versions of the RpPatch plugin and they contain identical
APIs. However, because the rendering pipelines are large, different versions have been
compiled so that the user can select precisely the pipelines they will be using to link
against.

The rppatch.lib library only contains the rpPATCHTYPEGENERIC pipeline.

The rppatchskin.lib library contains both the rpPATCHTYPEGENERIC and
rpPATCHTYPESKIN pipelines.

The rppatchmatfx.lib library contains both the rpPATCHTYPEGENERIC and
rpPATCHTYPEMATFX pipelines.

The rppatchskinmatfx.lib library contains all the pipelines, rpPATCHTYPEGENERIC,
rpPATCHTYPESKIN, rpPATCHTYPEMATFX and rpPATCHTYPESKINMATFX.

Only one of the patch libraries should be used in an application at once.

Chapter 26- B-splines and Bézier Patches

II-236 11 February 2004

Patch Mesh Serialization

The functions RpPatchMeshStreamRead() and
RpPatchMeshStreamWrite() are provided to read or write an RpPatchMesh
to or from the stream. The pointer if the stream, which must have been
opened first, is passed to the function.

The stream functions are often used to load the patch meshes as they are
exported from graphics applications. (The patch example shows the data
typed into the code for maximum transparency but this is not the way it
would be done normally.)

The size of the patch mesh must be stored in its header in the stream. The
size of the data in memory, excluding the header size, can be found by
calling RpPatchMeshStreamGetSize() which returns its size in bytes.

If the user streams out any RpClump or RpAtomic that contains an
RpPatchMesh, then either object will automatically stream out any
RpPatchMesh that it contains.

See the chapter on Serialization for a fuller treatment of streaming.

Skinning

Patch meshes can be skinned. The RpSkin plugin attaches in the same way
as other plugins. The API provides one Get function and one Set function to
add skinning: RpPatchMeshSetSkin() and RpPatchMeshGetSkin().
RenderWare Graphics integrates the process so that it works in the same
way as it did with RpGeometrys as described in the chapter on Dynamic
Models.

Transforming a Patch Mesh

RpPatchMeshTransform() performs a transformation on a patch mesh. It
takes a pointer to an RpPatchMesh and a pointer to a transformation
matrix, and it applies the transformation matrix to all control point
positions and normals in the patch mesh. It returns a pointer to the altered
RpPatchMesh on success, or NULL on failure. The mesh is locked
automatically before and unlocked after the transformation as required,
and the mesh's bounding sphere is recalculated before it finishes.

Patch Meshes and their Atomics

RenderWare Graphics manages each patch mesh through an RpAtomic.
So each patch mesh should be attached to an RpAtomic just as the earlier
chapter on Dynamic Models needed each RpGeometry to be attached to an
RpAtomic. The RpPatchMesh holds all the details of the object's shape. The
details of its orientation are stored in a frame which is pointed to from the
same RpAtomic. The function RpPatchAtomicSetPatchMesh() attaches
the RpPatchMesh to an RpAtomic. And RpPatchAtomicGetPatchMesh()
retrieves a pointer to the patch mesh attached to an RpAtomic.

 3D Bézier Patches

RenderWare Graphics 3.7 II-237

An RpPatchMesh may be attached to more than one RpAtomic.

26.3.6 Example Code

Screenshot from: examples\patch.

The previous section, on RpPatchMesh has drawn attention to some
features of the example, patch, and to its code. The key sections are in
main.c and patch.c of the example code in examples\patch.

The code has been written to echo the chapter on Dynamic Models which
describes how to build a matrix of flat triangles to render a solid object. The
example code follows the same sequence closely, but uses it to build a
matrix of patches that are curved. Only the first step in the sequence,
attaching the plugin, is added for patch meshes.

The example includes two objects, a teapot and a triangular sail, to show
both quad patches in the teapot, and tri patches in the sail.

Chapter 26- B-splines and Bézier Patches

II-238 11 February 2004

The example code shows how to build a patch mesh's positions and patches
arrays. The sail uses only tri patches, the teapot is built entirely of quad
patches. The tri patch code is easier to follow. The process takes only four
lines of code. An RtBezierMatrix called triControl is defined at the head
of the function PrimePatchMesh(). Much later, after the comment /* Tri
Control Points */, the coordinates of ten points on a section of an
imaginary sphere are copied into triControl. These points on the surface
of the sphere are converted to control points (3 on the surface, 7 off the
surface) by the RtBezPat Toolkit function,
RtBezierTriMatrixControlFit(). The tri patch is converted to a
functionally equivalent quad patch by RtBezierQuadFromTriangle(). This
function takes two RtBezierMatrix arguments. The second is the source
data, triControl, and the first receives the coordinates of a quad patch
whose normal vectors are now set.

The values for the teapot's vertices are held in the array, QuadpotVertex[],
also in patch.c. Notice that it has been decided beforehand which
coordinates can be shared in the positions array, and also which position
values will be stored at which index. There is nothing in the code nor in the
plugin's functions to make these decisions or simplify this process. Only
the developer can know enough to decide.

The example code will give the reader a better understanding of the way
these functions are used together in RenderWare Graphics and how to
draw up some working code. Some of the functions that simplify this
process belong to the Toolkit which is described in the next section of this
chapter.

26.3.7 Summary

RpPatchMesh hides complex functionality behind a small number of API
calls. They allow the speed and detail of curved patch rasterization to
integrate with the features of materials, skinning, animation and other
rendering processes already supported. The next section explains some
ways in which the plugin has been optimized for efficiency reducing
processing times dramatically. The present section shows how the
developer can further reduce the overhead of this extra functionality by
locking and unlocking the RpPatchMesh structure between frames.

 Bézier Toolkit

RenderWare Graphics 3.7 II-239

26.4 Bézier Toolkit

26.4.1 Introduction

 The RtBezier Toolkit is a group of mathematical functions that serve the
RpPatchMesh in the RpPatch plugin. They are also useful in their own
right, for instance in fitting a Bézier patch to an arbitrary surface.

The patch mesh is designed to simplify the rendering of shapes at different
scales and different LODs to a much higher standard than was possible
with facetted triangle meshes. But some of the data derived for patches has
much more potential.

RenderWare Graphics uses the normal vector of a point on a patch's
surface to find how much directional light that point receives. The vector
can also be used to find how the direction in which missiles will bounce off
the surface, how the surface reflects light, and what it will reflect if it is
shiny. So this functionality is exposed to the developer in the Toolkit.

RpPatchMesh supports a relatively thorough form of rendering with great
efficiency, but games designers often invent objects and characters
precisely because they can be represented more simply. Having access to
lower level code allows the developer more flexibility in manipulating Bézier
patches.

The RtBezPat Toolkit allows the developer to use RenderWare Graphics'
tried and tested routines, and they can be used selectively to support
methods of rendering appropriate to unusual objects, allowing the
developer to concentrate on new code.

The Toolkit functions fall into four groups. One utility function is distinct
and converts tri patches into quad patches. A second group converts
between control points and points on the surface of the patch. A third large
group applies forward differencing to speed up calculation, and the fourth
group calculates tangents and normal vectors for a whole patch.

Three data types are used throughout the toolkit and are explained below.
Before that is an explanation of the concepts of parameter space and real-
world space which underlie much of the code.

Parameter Space and Real-world Space Revisited

These concepts of parameter space as opposed to real-world space occurred
in the earlier section on B-splines. They apply in three dimensions as well
as in two.

A patch can be seen in two ways.

• It is a three-dimensional surface, bounded by curves whose control points
are bunched or dispersed at irregular intervals. This is referred to as
"real-world space".

Chapter 26- B-splines and Bézier Patches

II-240 11 February 2004

• It is also referred to by its UV coordinates which progress linearly from
zero to one, as on a simple graph. This is referred to as "parameter
space". These UV coordinates map to the curved, bunched, non-linear
progress of coordinates along the curves on the surface of the patch.

v=1

u=0
v=0

u=1

A patch can be thought of as a curved surface in space, but also as a set of
linear UV values, like a graph.

The "u" and "v" coordinates referred to in this section refer to evenly spaced
measurements of the parameter space coordinates, where control points
are spaced along the axes at 0, 1/3, 2/3 and 1. We can refer to a point 1/3
of the way along a curved edge, meaning that it falls on a point on the
surface corresponding to the first control point. This is obvious in
parameter space. But if P0, P1, and P2 are close together, and far away from
P3, then P1 will be much less than 1/3rd of the way along the curve in real-
world space. RenderWare Graphics refers to both real-world space and
parameter space and some of the functions that follow translate between
them.

Because the word "parameter" has this particular meaning in this section of
the chapter, the values passed to functions are described, in this section,
as "arguments" rather than "parameters".

26.4.2 Data Types

The Bézier Toolkit functions use three data types not visible in the higher
level code described earlier in this chapter. RtBezierV4d is a RenderWare
Graphics vector of four dimensions. They are x, y and z, used as 3d
coordinates, and w. The w argument is interpolated in the same way as the
others and can usefully process values of quite different types. For
instance, a lighting value might be interpolated to correspond to its position
on the curved surface.

An RtBezierV4dcan represent any of the control points on a quad patch.

RtBezierRow

An RtBezierRow is an array of four RtBezierV4ds. They typically represent
a single row of the control points that define a patch at u=0, u=1/3, u=2/3
and u=1.

 Bézier Toolkit

RenderWare Graphics 3.7 II-241

RtBezierMatrix

An RtBezierMatrix is an array of four RtBezierRows one for each
position across a patch, where v=0, v=1/3, v=2/3 and v=1. So it contains
an RtBezierV4d for each control point in a quad patch, in a known order.

P30 P31 P32 P33

P20 P21 P22 P23

P10 P11 P12 P13

P00 P01 P02 P03

u
v

P30 [] [] []

P20 P21 [] []

P10 P11 P12 []

P00 P01 P02 P03

u
v

Positions of control point numbers for quad and tri patches
in an RtBezierMatrix

A RtBezierMatrix can store a range of other data. It can hold a tri patch,
as the vertex u=0, v=0 is known to be in the first row, in the first vector of
the matrix, so it knows which ten vertices are part of the tri patch and their
order. The vectors can specify the coordinates of the points of the surface of
the patch that correspond to their respective control points. They can
specify the normal vectors at each respective surface point, or vectors of
tangents to the respective surface points. They can store the "difference"
values of the control points or surface points. So RtBezierMatrix is
flexible and used in various ways in the Toolkit functions.

26.4.3 Quad Patch from Tri Patch

In RpPatchMesh tri patches are closely related to quad patches. The
diagram below adds the u and v axes. The first patch position stored in the
RpQuadPatch and RpTriPatch determines the control point where u and v
both equal zero. The same element is retained as control point zero when a
quad patch is created from a tri patch, so it is the side opposite control
point zero that is coincident over 0≤u, 0≤v and 0≤(1-(u+v)).

v=0
u=0

v=1

u=1

u=0
v=0

v=1

u=1

A quad patch can retain coordinates coincident with a tri patch

Chapter 26- B-splines and Bézier Patches

II-242 11 February 2004

RtBezierQuadFromTriangle

The function RtBezierQuadFromTriangle() takes two RtBezierMatrix
arguments. The second is a pointer to a matrix containing control
points that describe the tri patch. The first is a pointer to memory already
reserved for the quad patch's control points. The quad patch data is
returned at the address in the first argument.

The function calculates the control points to complete a quad patch from
the given tri patch. The quad patch is coincident only over the part of the
tri patch illustrated above where 0≤u, 0≤v and 0≤(1-(u+v)).

During this process the control points may be re-positioned, but the
original triangular surface that they define will not be altered.

26.4.4 Surface Points to Control Points and Back

RtBezierQuadControlFit3d()

A patch is defined by its control points. The RtBezierQuadControlFit3d
function derives the control points from a patch specified by the
corresponding "sample" points on its surface. In each Bézier curve that
defines an edge of a Bézier patch, points P1 and P2 are off the curve, and off
the surface of the patch. The first and last points are on the curve, and on
the surface of the patch. An application that needs to calculate control
points from the surface of a patch may do so using the function
RtBezierQuadControlFit3d().

Control points derived from surface points

RtBezierQuadControlFit3d() takes the coordinates on the surface of the
quad patch in the form of a pointer to an RtBezierMatrix and returns the
equivalent control points for each in a second RtBezierMatrix. The first
argument is a pointer to memory reserved for a quad matrix and the second
points to the source data. The result is returned in the RtBezierMatrix
pointed to by the first argument.

 Bézier Toolkit

RenderWare Graphics 3.7 II-243

RtBezierTriangleControlFit3d

RtBezierTriangleControlFit3d()derives a tri patch from surface points.
It takes the coordinates of points on the curved surface and returns the
control points for a patch that goes through the source points. It is the
equivalent of the function RtBezierQuadControlFit3d() for tri patches. It
takes a pointer to a source tri patch in the format of an RtBezierMatrix
and a pointer to memory reserved for a second tri patch in the same format,
in which the results are returned.

RtBezierQuadSample3d

Calculates a point anywhere on the surface of a quad patch, given the
control points of the patch and the UV coordinates of the point. An example
of its use is given in the API Reference.

The function RtBezierQuadSample3d() takes four arguments. The first is
an RwV3d, a 3d vector, that receives the coordinates of a point on the
surface of the patch. The second is a pointer to an RtBezierMatrix that
holds the coordinates of a patch. The third and fourth are RwReals which
pass the u and v coordinates of control points (in parameter space) of a
point on the patch whose real-world coordinates are returned in the first
argument.

The previous two functions worked at the control points of the patch. This
function calculates any point, anywhere on the patch.

There is no tri patch equivalent for these functions; the developer must
convert tri patches to quad patches to get the source data.

26.4.5 Forward Differencing

When a patch has to be facetted, the coordinates of each facet must be
calculated. The number of coordinates depends on the LOD (it will be
between 4*4 and 20*20). Each coordinate of each point in the matrix
requires multiplication in x, y and z. This includes multiplication to the
power of two and of three. This would require a lot of processing time. The
application of Bernstein coefficients make the processing more efficient. But
in addition to this, RenderWare Graphics uses the method known as
forward differencing to reduce the processing required to a fraction of itself.

Forward differencing avoids the repeated multiplication required to
calculate the shapes of Bézier patches, replacing many expensive
multiplications by a smaller number of inexpensive additions. This is
possible because patch surfaces curve progressively. It is beyond the scope
of this document to summarize the mathematics behind this subject but at
its simplest, forward differencing calculates and stores the differences
between positions that are spread at regular intervals across the patch.

Chapter 26- B-splines and Bézier Patches

II-244 11 February 2004

The points on the patch are always generated in the same order. The row of
points 00, 01, 02 and 03 (incrementing in u) are processed first. Then row
10, 11, 12 and 13, and so on (incrementing row by row in v). See the code
samples given in the API Reference.

Initially the coordinate values still need to be established with repeated
multiplication. But when the matrix of difference values has been
calculated from them, coordinates can then be calculated using a small
number of additions.

The effectiveness of this approach further reduces the processing time, to
about a tenth.

Naming

The names of many of the functions below indicate that they derive the
"Difference" between positions on the patch.

Two functions are involved in calculating the weights; the values that
determine how much of each local control point should be added to
calculate a given surface position, depending on its coordinate values in u
and v. This fast method of calculating a surface point from its control
points is based on Bernstein polynomial equations. These functions have
the phrase "Bernstein Weights" in their names.

Some of these functions need to operate in only three dimensions. But it is
sometimes useful to be able to modify another value, like a color or light
value, according to its position in the patch. For this purpose, this group of
functions contains alternatives that operate on either "3d" or "4d" vectors.
The fourth value in each vector is processed by the same mathematical
functions as the positional values.

The API Reference contains sample code showing how these functions are
used to calculate, store and apply the values used for forward differencing.
The calculations are applied to each vertex along the u axis, step by step.
When a row of calculations is complete, the process is repeated on each row
in the v axis, step by step. These steps are performed by the "StepU" and
"StepV" functions whose names indicate that they operate horizontally
along rows in the "U" axis or vertically in the "V" axis.

Sequence

The functions described in this Toolkit section are presented in a sequence
that reflects the order in which they are used to implement forward
differencing of patches.

1. The "Bernstein Weight" functions calculate a matrix of vectors that
corresponds to a weighted matrix of control points on a patch. This
weighting is constant for a given matrix of control points. These pre-
calculated results are used later, to find difference values for given step
sizes.

 Bézier Toolkit

RenderWare Graphics 3.7 II-245

2. The "Difference3d/4d" functions calculate the coordinates of points on
the patch at regular intervals determined by the LOD and store the
differences of their coordinate positions.

3. The "DifferenceStepU" functions update a separate row of values which,
when added in the right sequence and factoring in a coordinate in u and
v, will provide differences of positions at any interval across the patch.
This calculates and stores the horizontal difference values.

4. The "DifferenceStepV" functions update a matrix vertically
corresponding to one step in the v axis. It does the same calculations as
the DifferenceStepU functions applying them to the differences in v.

RtBezierQuadBernsteinWeight3d and
RtBezierQuadBernsteinWeight4d

The two functions, RtBezierQuadBernsteinWeight3d/4d() calculate the
weighted matrix to be used when a matrix of differences is found for a
patch. The two alternative variations on the same function are provided to
calculate a matrix of 3d vectors or 4d vectors.

When a patch surface is split into facets, five arrays have to be multiplied
to calculate coordinates of surface points. The values of three of these
arrays are constant for given control points. So they can be multiplied first
and the results stored for later use. This extra processing is handled by the
functions RtBezierQuadBernsteinWeight3d/4d(). Both take two
arguments, both are pointers to an RtBezierMatrix, the first is to return
the result, and the second is to receive the patch data to process.

RtBezierQuadOriginDifference3d and
RtBezierQuadOriginDifference4d

These functions calculate the difference values for forward differencing.
They fill a matrix of vectors with the differences of each point from the one
before it, working first in the u and then in the v directions across the
patch. The versatile RtBezierMatrix, as it is used in the first
parameter, does not represent the layout of the patch here. It stores
difference values in its two dimensions so that they can be summed
progressively within the matrix to produce a series of difference values
across the patch.

u
v

The differences are calculated from the origin, u=0, v=0, and the step size in
the instance in this diagram does not cover the whole patch.

Chapter 26- B-splines and Bézier Patches

II-246 11 February 2004

Both the functions RtBezierQuadOriginDifference3/4d() take four
arguments. The first two are pointers to RtBezierMatrix structures, the
first receives the results and the second holds the source data. The third
and fourth are the step size in u and in v, which, in practice, are probably
both the same value and correspond to the LOD value (4 to 20). They
return the data by filling the matrix pointed to in the first argument with
values that will be used to produce the differences of coordinate positions.
This function assumes that the area of the patch to be covered will begin at
the origin, u=0, v=0, and the calculations are optimized for this.

RtBezierQuadPointDifference3d and
RtBezierQuadPointDifference4d

These two functions are variations on the preceding pair. They take the u
and v values passed as arguments as the start point of the area to be
tessellated.

u
v

The difference values are calculated from u=1/3, v=1/4, and the step size in
the instance in this diagram does not cover the whole patch

The two functions take six arguments in all. The first two are pointers to
RtBezierMatrix structures, the first receives the results and the second
holds the source data. The third and fourth are the u and v coordinates of
the start point, and the fifth and sixth are the step size in u and in v as
before. The step size does not have to fill the whole patch, and this allows
the developer to sample only part of the patch, as illustrated above. They
return the data by filling the matrix pointed to in the first argument, with
the difference values calculated at a point other than the parameter origin.

 Bézier Toolkit

RenderWare Graphics 3.7 II-247

RtBezierQuadDifferenceStepU3d and
RtBezierQuadDifferenceStepU4d

RtBezierQuadDifferenceStepU3/4d() and
RtBezierQuadDifferenceStepV3/4d() are used in the process of applying
the difference values calculated in the four functions above,
RtBezierQuadOriginDifference3/4d()and
RtBezierQuadPointDifference3/4d(). The "StepU" function works
across the patch, and the "StepV" functions works up it. The "StepU"
function is called on each iteration of a row of coordinates that samples one
cross section of a patch. It updates values in the current row of a matrix.
An example of the use of this function is found in the API reference. The
"StepU" function takes a pointer to a single argument, an RtBezierRow,
which is one row of an RtBezierMatrix.

RtBezierQuadDifferenceStepV3d and
RtBezierQuadDifferenceStepV4d

The functions RtBezierQuadDifferenceStepV3d/4d() update the
difference row (RtBezierRow) returned by
RtBezierQuadDifferenceStepU3d/4d(). These rows are arrays of
differences, and they are updated into a matrix. The API Reference gives an
example of the functions' use. The function takes a single pointer to an
argument, an RtBezierMatrix, which updates values throughout a matrix.

26.4.6 Patch Tangents and Normals

Curved surfaces are brighter or darker as they curve toward or away from
the light. RenderWare Graphics supports this sort of shading in patch
meshes by calculating how far a point on the surface curves toward a given
light source. In order to do this the patch mesh stores an array of normal
vectors for each control point to calculate how much the surface faces the
light.

The function that calculates a matrix of normals is
RtBezierQuadGetNormals() and the previous section on Bézier patches
showed how it was used in the example code to fill the array of normals
after creating a new patch mesh.

In order to find the normal vectors, RenderWare Graphics has to find two
tangents for each point at which the normal is to be calculated. The
tangents can be useful for other things. For instance, if two objects
represented by RenderWare Graphics are to be placed one on the other,
the tangents of the parts that touch can determine the frame for the upper
object. So two functions to find tangents to patches are exposed.

Chapter 26- B-splines and Bézier Patches

II-248 11 February 2004

RtBezierQuadGetNormals

RpBezierQuadGetNormals() takes two arguments. The second is the
source RtBezierMatrix and it fills a second RtBezierMatrix with vertices
that describe the normal vector for each respective control point. The patch
example code demonstrates this function when it adds a short line at each
vertex, pointing out from the teapot. This line is the vector calculated by
this function.

Normal vectors at the 16 surface points
that correspond to control points.

A tri patch can be converted efficiently to a quad patch using
RtBezierQuadFromTriangle() to apply this function to tri patches.

RtBezierQuadTangent() and RtBezierQuadTangentPair()

RtBezierQuadTangent() takes three arguments. The first is a pointer to
an RtBezierMatrix to receive the tangent values that the function will
calculate. The second is an RwReal that represents an angle in radians
from the u axis, and the third is a pointer to another RwBezierMatrix that
holds the control point source data. The function calculates control points
for the tangents at each control point and stores them in the first matrix in
the direction indicated, and the second matrix in a direction at right angles
to it.

RtBezierQuadTangentPair() takes four arguments. The first two are
pointers to RtBezierMatrix to receive the tangent values that the function
will calculate. The third is an RwReal that represents the direction of
measurement, and the fourth is a pointer to another RtBezierMatrix that
holds the control point source data. The function calculates control points
for the tangents at each control point and stores them in the first two
matrices; the first matrix in the direction indicated, and the second matrix
in a direction at right angles to it. The tangents given by the control points
can then be evaluated efficiently with forward differencing.

 Bézier Toolkit

RenderWare Graphics 3.7 II-249

Two perpendicular curve tangents, at each of the 16 surface points that
correspond to control points.

There are no tri patch equivalents for these functions; the developer must
convert tri patches to quad patches.

26.4.7 Toolkit Summary

The RtBezPat Toolkit exposes valuable functions that RpPatchMesh already
uses. It converts tri patches into functionally equivalent quad patches, it
converts between surface points and control points, it exposes a set of
functions for forward differencing and calculates the normal vectors and
tangents to a quad patch's surface.

Chapter 26- B-splines and Bézier Patches

II-250 11 February 2004

26.5 Summary
This chapter deals with three modules which work with curves in different
ways.

RpSpline is a plugin which uses B-splines to calculate 3d curves that can
be used in many ways, and commonly represent the paths for various
objects. It supports closed and open splines. It allows them to be created,
modified and destroyed. It can calculate the position and angle of the curve
at any point and does so efficiently.

RpPatchMesh implements curved surfaces as Bézier patches linked into a
mesh to encode complicated curved shapes. It renders them to a wide range
of LODs. It integrates them with the refinement and rasterizing processes of
RenderWare Graphics, it incorporates code to deal with colors, textures
and lighting values and it can smooth patches that join awkwardly.

The RtBezPat Toolkit exposes some useful functions already in
RpPatchMesh so that the developer can take advantage of much of the
functionality selectively, and incorporating it in new code.

Part E

World
Management

Libraries

Chapter 27

Collision
Detection

Chapter 27- Collision Detection

II-254 11 February 2004

27.1 Introduction
Collision detection is an important part of most 3D graphics applications. It
is primarily concerned with preventing model geometry from intersecting
the geometry of other models, but has a number of related uses.

For example:

• Picking objects or geometry;

• Object collisions for physics;

• Object placement, such as dropping a spline onto a surface;

• Use in tools and user interfaces;

27.1.1 Plugins & Toolkits

Collision detection, intersection tests and picking tools are supplied by:

• RpCollision – Collision detection tools;

• RtIntersection – Intersection testing tools;

• RtPick – Atomic / geometry picking tools;

All three are covered in this chapter.

Reacting to Collisions

The tools described in this chapter will only detect a collision, but will not
perform any actions as a result of a collision.

For instance, functions are provided to determine whether two atomics
intersect, but RenderWare Graphics will not move the atomics apart if a
collision has occurred.

Any necessary actions as a result of a collision must be performed by the
application.

 Detecting Collisions

RenderWare Graphics 3.7 II-255

27.2 Detecting Collisions

27.2.1 The RpCollision Plugin

This plugin provides most of the higher-level tools for detection of collisions
with the RenderWare Graphics RpWorld and RpAtomic objects.

Usage revolves around manipulation of the RpIntersection primitive. This
is a transparent object with two primary elements:

RpIntersectData t

RpIntersectType type

The intersection type determines the contents of t.

In practice, the steps involved in testing for an intersection are:

1. Define a variable of type RpIntersection and set the elements
accordingly;

2. Call the appropriate intersection function;

3. Interrogate the returned RpIntersection and RpCollisionTriangle
structures and act upon the results.

The RpIntersection object supports the following types of intersection:

• rpINTERSECTLINE – line intersection;

• rpINTERSECTPOINT – point intersection;

• rpINTERSECTSPHERE – sphere intersection (e.g. a bounding sphere);

• rpINTERSECTBOX – box intersection (RwBBox type);

• rpINTERSECTATOMIC – atomic intersection (based on bounding sphere).

The RpCollision plugin's primary use is to compare target geometry with
the intersection object.

The plugin supports optimized collision data for both static and dynamic
geometry types (world sectors and atomics) to speed up the collision
detection process.

27.2.2 The RtIntersection Toolkit

This toolkit contains low-level intersection testing functions which test for
intersections between triangles and three other geometry types: lines,
spheres and bounding boxes. (This toolkit is also used by RpCollision and
so must be included and linked into your application if you are using this
plugin.)

Chapter 27- Collision Detection

II-256 11 February 2004

You can use the functions contained in this toolkit if you require only the
collision tests it provides. If you need the high-level API, use RpCollision.

The functions available are:

• RtIntersectionBBoxTriangle()

The simplest of the functions, this returns TRUE if the triangle—supplied
as three vertices (RwV3d)—intersects the bounding box (RwBBox).

• RtIntersectionLineTriangle()

This function returns TRUE if the line—specified as a starting point
(RwV3d) and a line delta (RwV3d), defining the displacement vector—
intersects with the triangle (RwV3d).

The line delta parameter is used to reduce calculation overheads when
processing a large number of triangles. It can be obtained by
RwV3dSub(lineDelta, &line.end, &line.start).

This function also takes another parameter, distance, which will hold
the parametric distance to the intersection if an intersection was found.

This function uses back-face culling.

This means:

a. the order of the triangle vertices is very important;

b. you will need to make two calls for two-sided tests.

• RtIntersectionSphereTriangle()

This checks for an intersection between a sphere and a triangle. The
sphere is an RwSphere object; the triangle is specified by its three
vertices (RwV3d).

If an intersection has taken place, the function will return TRUE and set
two variables: a normal (RwV3d) for the triangle and the perpendicular
distance of the sphere center from the plane of the triangle.

Parametric Distances

This term means the distance reported will be a value between 0.0 and 1.0,
essentially producing a result scaled for a line of unit length.

For instance, if the line is 10 units long and the intersection occurs at a
point 7 units along the line, the parametric distance returned will be 0.7

 Picking

RenderWare Graphics 3.7 II-257

27.3 Picking
If your application only needs to select atomics or other objects on screen at
a specific pixel location, the RtPick toolkit is ideal for the purpose.

RtPick extends two RenderWare Graphics components, RpWorld and the
Core Library, adding functions to their respective APIs.

✎ Dependencies

RtPick requires both the RpWorld and RpCollision plugins.

27.3.1 The RtPick Toolkit

This toolkit exposes the following functions:

• RwCameraCalcPixelRay()

This function determines the parameters of the line passing through
the specified pixel. The line starts and ends on the camera's near
and far clip planes and is specified in world units.

This line can then be used for intersection tests or with
RpWorldPickAtomicOnLine() (see below).

• RwCameraPickAtomicOnPixel()

This function returns a pointer to the atomic which is being rendered
to form the specified pixel. If no atomic is rendered at the pixel, the
function returns NULL.

This is probably the most suitable for selecting onscreen atomics in
applications.

• RpWorldPickAtomicOnLine()

This function is used to determine the atomic in the specified world
that intersects the given line closest to its start point. The
parameters of the line, its start and end positions, are specified in
world units.

This function determines intersections based on the atomic's
bounding sphere. If you require more accurate picking, you will need
to RtIntersection toolkit to determine which specific triangle has
been picked.

RtPick has clear and obvious applications in user interface design for both
tools and computer games.

Chapter 27- Collision Detection

II-258 11 February 2004

For instance, a space combat simulator usually includes lasers fired from
the player's ship. The RwCameraPickAtomicOnPixel() function could
therefore be used to determine which atomic—and thus, which spaceship—
is targeted when the player presses fire.

The "picking" example

The SDK includes the "picking" example, which demonstrates the RtPick
toolkit.

 Static Geometry Intersections

RenderWare Graphics 3.7 II-259

27.4 Static Geometry Intersections
The RpCollision plugin extends the RpWorld plugin to support collision
detection. The additional functionality is provided to give developers the
means to check for collisions with three types of object in a world: world
sectors, atomics, or triangles making up the static geometry. Due to the
potentially large number of triangles in the model, the RpCollision plugin
supports additional collision data to speed up the latter type of test.

27.4.1 Collisions with World Triangles

Building the Collision Data

For collision tests with world triangles the RpWorld collision detection
functionality assumes optimized collision data has been created to speed
up the process.

Building the collision data is an offline process and is performed as either a
modeling package exporter step or as part of a developer's custom tool-
chain. The modeling package exporters supplied with the RenderWare
Graphics SDK include this facility as standard.

The collision data is a type of BSP-tree structure which further subdivides
the world sectors using axis-aligned planes. This speeds up the collision
detection routines by allowing irrelevant geometry to be eliminated from
consideration very quickly.

✎
Disabling collision data generation

If your application will not require collision data, artists should disable the generation of
this data in the exporter. This will reduce the memory footprint required by the exported
data.

Building the Data Yourself

There are two functions provided to generate the requisite collision data.

The most commonly used is RpCollisionWorldBuildData(), which
generates the BSP structures for all world sectors within the specified world
object. In most cases, this is the only function you will need.

If you require finer control over which world sectors have collision data, an
additional function is available, RpCollisionWorldSectorBuildData().
This function builds collision data for the specified world sector.

The collision data may also be removed from a world or world sector using
the RpCollisionWorldDestroyData() and
RpCollisionWorldSectorDestroyData() functions. The existence of
collision data may be checked using RpCollisionWorldQueryData() or
RpCollisionWorldSectorQueryData().

Chapter 27- Collision Detection

II-260 11 February 2004

Using the Collision Data

The RpCollisionWorldForAllIntersections() function is used to
perform collision detection tests against the triangles in a world with the
assistance of the pre-generated collision data.

This function requires the developer to instantiate and initialize an
RpIntersection object. This object is transparent, meaning its individual
elements are exposed and documented. It has two elements:

type – an enumerated value which specifies the type of geometry to be used
for collision testing;

t – is where the physical geometry object is stored, be it a point, line,
sphere, bounding box or atomic.

It is defined as a union:

union RpIntersectData

{

 RwLine line;

 RwV3d point;

 RwSphere sphere;

 RwBBox box;

 void *object;

};

The following code fragment illustrates usage of RpIntersection by setting
it up with a sphere and calling the collision detection function:

RpIntersection intersect; /* instance of RpIntersection object */

RwV3d center; /* the center of a sphere to test */

RwReal radius; /* the radius of a sphere to test */

... some code ...

intersect.type = rpINTERSECTSPHERE

intersect.t.sphere.center = center;

intersect.t.sphere.radius = radius;

/* RpIntersection object is now prepared, do the tests... */

RpCollisionWorldForAllIntersections(myWorld, &intersect,
IntersectCallback, NULL);

IntersectCallBack() is a function pointer. It represents a callback
function which will be called whenever the collision testing results in an
intersection being found with a triangle. The callback function can return
null to cease further collision testing.

The callback function prototype is defined with a typedef as follows:

typedef

 Static Geometry Intersections

RenderWare Graphics 3.7 II-261

RpCollisionTriangle *(* RpIntersectionCallBackWorldTriangle)

(RpIntersection *intersection,
 RpWorldSector *sector,
 RpCollisionTriangle *collTriangle,
 RwReal distance,
 void *data)

The callback function must match this prototype.

27.4.2 Collisions with World Sectors

A more coarse-grained collision detection algorithm is also available in
RpWorldForAllWorldSectorCollisions(). This can be used to determine
which world sectors are intersected by the primitive specified in the
RpIntersection object.

This function also requires a callback, the prototype for which is defined as
follows:

typedef

RpWorldSector *(* RpIntersectionCallBackWorldSector)

(RpIntersection *intersection,
 RpWorldSector *worldSector,
 void *data)

27.4.3 Collisions with World Atomics

The RpIntersectionData element can also store a pointer to an atomic
(type RpAtomic) for collision testing by setting the RpIntersectionType
element to rpINTERSECTIONATOMIC and setting the RpIntersectionData
element with a pointer to the atomic.

✎
Only the bounding sphere of an atomic will be referenced during the testing process;
individual triangles are ignored. The result is the same as would have been achieved had
the atomic's bounding sphere been passed directly, but is more efficient since internal
knowledge of which atomics lie in a particular world sector may be used. For fine-grained
test with atomic triangles, see section 27.5.

Examples

The "collis1" example supplied with the RenderWare Graphics SDK
demonstrates the RpCollision plugin in action. The example uses the
plugin to keep a user controlled camera a fixed distance above a landscape.

The "collis2" example also illustrates the plugin in action. In this
example, an atomic – a modeled as a simple sphere – is shown bouncing
around the inside of a buckyball. This atomic itself is passed through the
RpIntersection object for testing.

Chapter 27- Collision Detection

II-262 11 February 2004

27.5 Atomic & Geometry Intersections
The RpCollision plugin provides a means of testing for collisions between
an intersection primitive and the triangles of an atomic or, more directly, a
geometry.

Collision is even possible with morphed atomics, but not with skinned
atomics where the interpolated vertex data cannot be accessed by the CPU
on certain platforms. However, some alternative suggestions are given later.

27.5.1 Collision Data

The RpCollision plugin supports the extension of dynamic geometry with
collision data for improved performance. This is applicable whenever an
atomic may be considered "rigid", i.e. its geometry is never modified but its
frame may be transformed. The geometry collision data is of the same type
as world sector collision data and is particularly useful for:

• Fast, precise collision tests with detailed models;

• Object collision with moving parts of a world (e.g. platforms);

• Custom collision worlds built from atomics rather than conventional
world sectors.

Collision data construction, like its world sector counterpart, is intended to
be performed offline, but may be performed during initialization if the
geometry is small enough. The data construction function is
RpCollisionGeometryBuildData().

The following usage illustration is from the
CollisionDataBuildCallback() function of the "collis3" example:

RpCollisionGeometryBuildData(RpAtomicGetGeometry(SpinnerAtomic),
NULL);

Once built, the collision data is then automatically used in collision
detection tests.

27.5.2 Performing Collision Tests

Collisions with Geometry Triangles

Collisions tests may be performed directly on the triangles of an
RpGeometry using the function

RpCollisionGeometryForAllIntersections().

 Atomic & Geometry Intersections

RenderWare Graphics 3.7 II-263

It will check for intersections between the RpIntersection primitive
specified and the geometry, executing a callback for each intersection
found.

The callback function must match the following prototype:

typedef

RpCollisionTriangle *(* RpIntersectionCallBackGeometryTriangle)

(RpIntersection *intersection,

 RpCollisionTriangle *collTriangle,

 RwReal distance,

 void *data)

If geometry collision data exists, this will automatically be used for
improved performance.

The advantage of using this function is that the RpIntersection is
specified and the calculations performed in object space, potentially saving
unnecessary transformations. This also allows the rpINTERSECTBOX to be
available since this uses a bounding box aligned with the local space.

On the other hand, this function cannot be used for a morphed atomic,
since the current state of interpolation is unknown at the geometry level.

Collisions with Atomics

Collision tests with the triangles of a geometry may be performed at the
atomic level using the function

RpAtomicForAllIntersections(). This function checks for intersections
between the RpIntersection primitive specified in world space and a
specified atomic.

If the atomic has only one morph target and contains geometry with pre-
calculated collision data, this data will be used directly, thus speeding up
the intersection detection. Morphed atomics are supported by testing
against triangles constructed by the atomic's RpInterpolator object.

As with the other collision detection functions, this too requires the
developer provide a callback function which will be executed on each
intersection. The prototype is identical to that for
RpCollisionGeometryForAllIntersections().

Note that the RpCollisionTriangle passed to the callback function is
given in object space.

✎
RpAtomicForAllIntersections() will not work with atomics used for skinned
animations.

Suggested alternatives are:

Chapter 27- Collision Detection

II-264 11 February 2004

• use spheres or bounding boxes around bones and joints;

• collide with a low-poly rigid body collision model attached to the
same frame hierarchy as the skinned model.

27.5.3 Example

The "collis3" example supplied with the SDK illustrates generation and
use of geometry collision data.

The example shows several spheres being pushed around by a set of
spinning objects.

It should be stressed that the simulation is for demonstration purposes and
not intended to be realistic; the algorithm is therefore crude and is used
purely to illustrate the collision testing process.

On startup, the geometries of the bowl and spinners do not have collision
data. During a sphere intersection test, every triangle in every spinner is
individually tested. In this state the frame-rate of the application is limited
by this testing.

Collision data may be built via the menu, and once created the performance
should improve. This data provides information to enable fast isolation of
the triangles in the geometry which potentially intersect the sphere before
individual tests are performed.

Collision data generation is intended for offline use in custom tools and
exporters. The code provided with this example shows the simple steps
required to load an atomic, build geometry collision data, and resave.

 Summary

RenderWare Graphics 3.7 II-265

27.6 Summary

27.6.1 APIs

RenderWare Graphics provides three APIs for collision detection,
intersection testing and picking:

RpCollision

• Mid-level collision detection API

• Concerned with intersection testing between primitives and atomic,
geometry and world sector objects

• Primitives represented by RpIntersection primitive

• Can operate directly on static or dynamic geometry

• Can use optimized collision data for optimal speed

• Requires world plugin

RtIntersection

• Low-level intersection test API

• Works at triangle level

• Standalone – does not depend on other plugins being present

RtPick

• Picking API

• Primarily intended for use in user interfaces

• Requires both world and collision plugin

27.6.2 Hints & Tips

A number of techniques can be used to get the best results:

• Specify coordinates of intersection primitives in world space for world
and atomic intersections, and object space for geometry intersections

• Do not modify the intersection primitive in the intersection callback

Chapter 27- Collision Detection

II-266 11 February 2004

• The collision triangle in the callback is in object space for atomic and
geometry intersections. See "collis3" example for how to transform this
to world space if required.

• Make sure you understand the precise meaning of the distance in
intersection callback before using it. In most cases, and for efficiency
reasons, the distance is scaled to unit length, such that the maximum
possible distance is 1.0.

• Geometry collision data assumes static geometry – do not use it for
geometries that will be procedurally modified.

• RpWorldForAllAtomicIntersections() has a number of
requirements:

− Atomics must have a frame and have been added to a world.

− They must have their rpATOMICCOLLISIONTEST flag set.

− They must not have been relocated since last update.

− Changes to the rpATOMICCOLLISIONTEST flag are only registered
after a resync.

• RpCollisionWorldForAllIntersections(): collision data must exist
otherwise no intersections will be found.

• rpINTERSECTATOMIC primitive: intersections are with the bounding
sphere of the atomic only. For world tests, the atomic must have a frame
and exist in a world, and must not have been modified since the last
resync. If this is a problem, use the rpINTERSECTSPHERE type, taking
the bounding sphere for the primitive.

• Line-triangle tests (including Rp...ForAllIntersections() functions
using the rpINTERSECTLINE primitive) only check for collisions with the
front face of triangles. For two-sided tests, do a second pass with the
direction of the line reversed.

Chapter 28

Potentially
Visible Sets

Chapter 28- Potentially Visible Sets

II-268 11 February 2004

28.1 Introduction
In this chapter, Potentially Visible Sets (PVS) are covered. In this section
the details and applications of PVS are introduced. In Section 28.2, details
of the generation of PVS data is discussed and in Section 28.3 the usage of
PVS described. A summary is presented in Section 28.4.

28.1.1 What are Potentially Visible Sets?

Potentially Visible Sets (PVS) provide a means of optimizing the rendering of
static world data by culling hidden world sectors from consideration as
quickly as possible.

PVS data is handled by a plugin which extends RenderWare Graphics'
world sector objects (Refer to chapter World & Static Models) with a
visibility map that defines which world sectors are visible from that sector.

These visibility maps are not calculated at run-time as the processing takes
an appreciable amount of time. Instead, the scenery data is preprocessed
by sampling the scene at specific locations within each sector to determine
the absolute visibility of the other world sectors – hidden or potentially
visible.

28.1.2 The APIs

PVS data generation and usage is handled through the RpPVS plugin. This
plugin contains functionality for both preprocessing and run-time
processing.

In addition, there is the RtSplinePVS toolkit. This contains a single utility
function for generating PVS data for a camera tied to a spline.

28.1.3 Applications for PVS functionality

PVS works best with environments which contain a lot of occluding
structures, e.g. walls. This makes it ideal for static worlds containing
structure interiors, caves, tunnels and similarly enclosed spaces where
views are heavily restricted.

PVS also works well in certain outdoor environments. A racing game could
be preprocessed with useful PVS data if the geometry has been designed
with it in mind. For example, a twisting mountain road may have enough
occlusion, courtesy of the surrounding valleys and mountains, to ensure
that only a small part of the entire level is visible at any one time.

✎
The RtSplinePVS toolkit was designed with racing games in mind. It lets you use a spline
to determine where the PVS sample points are located. Setting the spline to follow the
road means only areas the player would actually see would be sampled.

By contrast, the RpPVS plugin's default algorithm sets up sampling points in a grid
pattern which covers the entire scene.

 Introduction

RenderWare Graphics 3.7 II-269

28.1.4 Reasons for NOT using PVS data

It follows from the above that PVS processing is of little advantage in static
worlds with very little occlusion. A landscape consisting of broad, open
flatlands will see few benefits from PVS.

The static nature of PVS visibility maps raises another unsuitability. As
these are linked to world sectors, the PVS processing will take no account
of occlusion of scenery by dynamic models. Similarly, if you are not using
static world data for your scenes—for instance, when simulating
deformable scenery using atomics—then PVS processing will be of no use.

Chapter 28- Potentially Visible Sets

II-270 11 February 2004

28.2 Building PVS Data
Constructing PVS data can be achieved in a number of ways. Each of the
following recommended ways should be run from a Windows platform:

• Using the "pvscnvrt" tool supplied with the SDK.

• Using the “pvsedit” tool supplied with the SDK.

• Programmatically, using the RpPVS API.

We'll look at each of these in turn now. (Note, the viewer for static worlds,
"wrldview", can also be used to generate PVS data, but it provides little
control as is not recommended.) RenderWare Visualizer can be used to view
PVS data.

28.2.1 Using the PVS Converter

A useful Windows platform tool resides in the tools folder called "pvscnvrt"
– this is the recommended method for generating PVS data. The tool allows
for the deletion of PVS data, generation of PVS data with a sample-point
density control variable, and regeneration/enhancement of PVS data, as
described below.

The tool allows for the important conversion from old format .bsp files to
the new format. (The format of PVS data has changed since release 3.10,
and old .bsp files are no longer recognized.)

✎ Check the readme.txt file that accompanies the "pvscnvrt" program as this describes
the windows and command-line user interface for it.

28.2.2 Using the PVS Editor

This program provides a visual interface to the operations that PVS
converter provides and is also useful for manually editing PVS data. It can
generate PVS data for the entire world and show the results immediately on
completion. It also provides a mechanism for exporting and importing PVS
data alone (i.e. unattached to any world).

✎ See the PVSEdit.doc documentation in the docs’ tools folder for additional information.

28.2.3 Using RpPVS

The RpPVS plugin provides the functionality needed for generating PVS
data. This can be handled either by the default scene sampling function
(RpPVSGeneric()), or by a function of your own devising.

The function where all this happens is RpPVSConstruct(). The API
Reference contains a detailed breakdown of how this function works which
proceeds as follows:

 Building PVS Data

RenderWare Graphics 3.7 II-271

1. The plugin is given a world object to process.

2. The function applies a callback function to each world sector within the
world.

3. The callback fills in the supplied visibility map with the visibility data
according to its own algorithm.

✎
The RpPVS plugin must be linked against and attached (using RpPVSPluginAttach()) in
the usual manner.

This plugin is dependent on the RpWorld plugin as it extends the world sector object, and
the RpCollision plugin for selecting sampling points, so these must also be linked
against and attached.

RpPVSConstruct() is really a housekeeping function, creating and
managing the visibility maps for the world sectors. The actual generation of
the visibility map data is achieved by the callback function. A default
callback is supplied, RpPVSGeneric(), but you are free to substitute it with
your own.

The RpPVSGeneric() CallBack

This function creates a strategically arranged grid of points and takes a
visibility sample at each. It very easy to use as the processing is self-
contained and no further intervention is required on the part of the
programmer.

This callback takes a user data parameter—an RwReal between 0.01 and
1.0—which defines the density of the sampling points.

Usually, collision detection means that the viewpoint will never exist in
certain areas of a sector (such as beneath the floor or terrain) and thus the
samples are only taken inside valid regions of the sector. This is good as it
results in more culling. However, for a small number of special
environments where collision detection is not used, this is not a desirable
enhancement to the sampling process. The function
RpPVSSetCollisionDetection() is provided to control the use of this
feature; by default collision detection is set to TRUE.

Similarly, back-faces in the scene are culled before PVS generation takes
place. However, in some scenes on some platforms do render with back-face
culling turned off, and RpPVSSetBackFaceCulling() can be used to tell
this to the PVS generator. Note, this function must be called before any PVS
generation takes place.

While the grid-based approach is perfect for many environments—
particularly for those commonly seen in first-person shooter games—it is
not ideal for all types of environment.

Chapter 28- Potentially Visible Sets

II-272 11 February 2004

For instance, many racing games have an essentially two-dimensional
environment, so it makes little sense to take samples at points above or
below the road surface. For these, it makes sense to use alternative
sampling algorithms, such as a two-dimensional grid of points. An
alternative algorithm is provided by the RtSplinePVS toolkit, which has
been designed with racing games in mind. It is covered on page 273.

Writing your Own CallBack Function

Nobody understands your data design like you do, so RenderWare Graphics
allows you to write your own callback function for RpPVSConstruct().

The approach taken will obviously vary according to your needs, but there
are two common processes that need performing. For each world sector,
you will need to:

1. Determine where the sampling points should be placed.

2. Calculate the PVS from each sampling point.

The first step is dependent on your application's data design and its specific
requirements. The callback function is given the world sector and a
bounding box (RwBBox) which defines the area your function is to process.

The second step is performed by calling the RpPVSSamplePOV() function.
(This function takes a parameter to specify whether collision detection
should be used, as discussed in the previous section, but temporarily
overrides that set by RpPVSSetCollisionDetection())

The sampling process involves taking a "snapshot" of the scene around the
specified point of view (POV). The rendering takes in a complete 360º
spherical view—the virtual camera "seeing" in all directions at once.

The rendering process is tracked so that the visibility of other world sectors
from this point of view can be checked and appropriate entries made in the
visibility map.

✎ The visibility map is maintained by the RpPVSConstruct() function, so your application
is not required to perform this processing itself.

Tweaking PVS data

RpPVSSamplePOV() can be used to add extra samples to update a visibility
map. This is useful if you have a convoluted scene and some world sectors
are being incorrectly marked as "invisible". Note, if you are calling this
function multiple times, you should make sure your world has collision
data.

RpPVSConstruct() may be called more than once. The new information
generated updating that which exists already. The density parameter
supplied does not necessarily need to be adjusted since sample points are
taken in-between those that exist already. Note, if you are calling this
function multiple times, you should make sure your world has collision
data.

 Building PVS Data

RenderWare Graphics 3.7 II-273

RpPVSConstructSector() can be used to create PVS data for a single
sector. This is useful when PVS data needs enhancing in just one sector.
Note, if you are calling this function multiple times, you should make sure
your world has collision data.

RpPVSSetWorldSectorVisibility() function explicitly sets the visibility
of a particular world sector in the current visibility map. For this, the
observer is assumed to be located in the world and
RpPVSSetViewPosition() has been called.

Likewise, but rather more versatile,
RpPVSSetWorldSectorPairedVisibility() is supplied for explicitly
setting cell-to-cell visibility data. Valuable if the results don’t give you what
you expect, or for some reason, the correct visibility data needs to be
overridden.

Writing the Data Out

This is achieved through the RenderWare Graphics binary stream API. Use
RwStreamOpen() to create the output stream, call RpWorldStreamWrite()
on your world data to write it out, then close the stream using
RwStreamClose().

Destroying PVS Data

If you need to delete PVS data from a world, you can use the
RpPVSDestroy() function for this purpose.

28.2.4 Using RtSplinePVS

RtSplinePVS is a toolkit containing a single function,
RtSplinePVSConstruct(), intended to be substituted for
RpPVSConstruct().

RtSplinePVSConstruct() is aimed at relatively open, outdoor
environments such as those found in traditional racing games. Unlike
genres which emphasize environment exploration, racing games rarely
define any static model geometry that isn't directly relevant to the racing.

By limiting the samples only to the part of the world which the player is
going to see, RtSplinePVSConstruct() prevents unnecessary rendering of
model data outside the player's view. (This said, it should be noted that PVS
will provide little advantage if most of the scene data will be visible at all
times.)

RtSplinePVSConstruct() takes a spline as one of its parameters. The
spline describes a path through the world along which samples will be
taken. No PVS generator callback function is required. However, the
progress callbacks, described below, are still called as appropriate.

Chapter 28- Potentially Visible Sets

II-274 11 February 2004

Once PVS data has been created, you can store the converted world data to
a file or other supported storage device using the RenderWare Graphics
binary stream API, as described on page 273.

✎
RtSplinePVS relies on the spline functionality provided by the RpSpline plugin and this
must be attached before use. (More information on this plugin can be found in the B-
splines and Bézier patches chapter.)

This toolkit is only required for PVS generation with RtSplinePVS. Rendering worlds with
PVS data requires only RpPVS to be attached.

28.2.5 Generation Progress CallBacks

The RpPVS plugin provides for callback functions intended to convey
progress information to the user. These are needed because the PVS
generation process can take a while.

The mechanism used is similar to Windows 98's event-driven model
whereby the callback is passed messages describing the progress of the
generation process. RpPVSSetProgressCallBack() is used to set the
callback function that will receive these progress messages. This function
must match this prototype:

RwBool (*RpPVSProgressCallBack) (RwInt32 message, RwReal value);

CallBack messages

The callback function takes two parameters: message and value.

The messages available are:

• rpPVSPROGRESSSTART – signifying that the PVS generation process is
about to commence. The argument, value, is 0.0.

• rpPVSPROGRESSUPDATE – signifying that a sample has been processed.
The argument value is equal to the percentage of the total number of
samples (over all sectors) processed up to this point.

• rpPVSPROGRESSEND – signifying that the PVS generation progress is
complete. All world sectors have been processed and value is equal to
100.0.

The callback function should return FALSE if the processing should be
terminated, or TRUE if it should continue.

✎
Percentages

It is perfectly possible that the same percentage is reported on multiple occasions,
depending on how the world is structured. In fact, some PVS generation algorithms make
it impossible to accurately determine the percentage completed, so the progress returned
should be considered only as a rough approximation.

 Building PVS Data

RenderWare Graphics 3.7 II-275

In general, the progress monitoring mechanism should be treated more as a means to
provide a "heartbeat" to the user and avoid simply freezing the system until the processing
has completed.

Chapter 28- Potentially Visible Sets

II-276 11 February 2004

28.3 Using PVS Data
Using PVS data is comparatively easy compared to constructing it. The
RpPVS plugin is hooked into the RenderWare Graphics rendering engine
and takes care of the culling process on its own.

The first step, as usual, is to attach the plugin with the
RpPVSPluginAttach() function.

The second step is to load the world and ensure it contains PVS data. This
is achieved using RpPVSQuery(), which returns TRUE if valid PVS data is
found.

At this point, the PVS system needs to be hooked into the rendering engine.
This is achieved with RpPVSHook(), which takes a pointer to a world
containing PVS data.

RpPVSHook() saves the current render callback and replaces it with its own
RpWorldSectorCallBackRender() function. It still uses the current render
callback for rendering. The PVS render callback checks if the current sector
is visible, if so then renders the sector by calling the previous render
callback function. If the sector is not visible, then it stops rendering the
sector at that point.

It is usual to call to RpPVSHook() before any rendering of the world.
However, if you have multiple worlds to render and only some have PVS
data, it will be necessary to hook and unhook the PVS plugin as
appropriate before each call to RpWorldRender().

The next link in the chain is to tell the PVS plugin where the camera is
positioned prior to rendering. This is achieved with
RpPVSSetViewPosition(), which takes a pointer to the world in question
and a vector describing the position. This gives the culling functions the
information needed to select the correct visibility map and determine which
world sectors are visible. There is also a partnering function,
RpPVSSetViewSector(), that be called with an RpWorldSector.

The world can then be rendered as usual with RpWorldRender(); the
culling is performed transparently.

28.3.1 Unhooking the PVS Subsystem

There are two reasons for unhooking the PVS subsystem from the rendering
engine:

1. When a world with PVS has been rendered, it may be necessary to
render another which does not have PVS data available.

2. All rendering has been completed and the engine is to be closed.

 Using PVS Data

RenderWare Graphics 3.7 II-277

In the first case, the PVS subsystem needs to be disconnected otherwise the
rendering engine will produce unexpected results. In the second case, the
PVS subsystem needs to be disconnected to allow the RenderWare Graphics
engine to be shut down cleanly.

In both cases, the function call required is RpPVSUnhook(). It is most
common to call this function at the end of a rendering cycle.

RpPVSUnhook() removes the PVS sector render callback and restores the
previous sector render callback. Care must be taken if the sector render
callback is changed in between RpPVSHook() and RpPVSUnhook().
Otherwise unexpected behavior will result due to RpPVSUnhook() replacing
the render callback set by the user.

28.3.2 PVS Runtime Utility Functions

The RpPVS plugin provides some useful utility functions which can be used
at runtime.

Atomic Visibility

One of the most useful utility functions is RpPVSAtomicVisible(), which
accepts a pointer to an atomic and determines whether it is visible from the
current view position. The function returns TRUE if so.

✎
View Position

This is the position set using the RpPVSSetViewPosition() function. It is a common
mistake to confuse this with the position of the camera object, which may have changed.

It is very important to note that, because of the way the visibility maps are generated, you
may get a TRUE value returned even if the atomic is behind the camera. Remember, the
PVS samples take a full, spherical 360º snapshot.

World Sector Visibility

A similar function exists for world sectors: RpPVSWorldSectorVisible().
Given a pointer to a world sector, it will return TRUE if the world sector can
be seen from the current view position.

(The same notes apply as for atomic visibility.)

Statistics

The RpPVS function RpPVSStatisticsGet() can be used to obtain basic
performance information. This function returns:

1. The number of triangles that would have been rendered if PVS had
been disabled.

2. The number of triangles rendered with PVS enabled.

Chapter 28- Potentially Visible Sets

II-278 11 February 2004

The latter should be a substantially smaller number than the former if the
PVS data has been generated properly. If this is not the case, the PVS
generation process may need to be adjusted (or the environment is not
suitable for PVS as discussed in Section 28.1.4).

28.3.3 Writing Your Own PVS Render CallBack
Function

The PVS render callback function performs simple culling of sectors. It does
not render visible sectors. Instead it passes the visible sectors to the render
callback it replaced. Culled sectors are rejected and are never passed on to
be rendered. This causes problems when culled sectors need to be
rendered. For example, it would be useful to render visible and not visible
sectors in different colors in wireframe.

In such circumstances, the RpPVSHook() and RpPVSUnhook() functions
are unsuitable and should not be used. A custom render callback function
is required. Such a function, in addition to performing the rendering, needs
to test the sector's visibility. This is achieved by calling the utility function,
RpPVSWorldSectorVisible(). This returns TRUE or FALSE which the
custom render callback function can use to decide how to render the
sector.

In the example mentioned earlier, the render callback function would
switch the color used to render the sector.

 Summary

RenderWare Graphics 3.7 II-279

28.4 Summary

28.4.1 Potentially Visible Sets

Potentially visible sets:

• can drastically improve run-time culling calculations

• are most useful for static models with a high number of occlusions

• must be generated at the preprocessing stage

28.4.2 Generating PVS Data

Using SDK supplied programs

• Use "pvscnvrt" in the tools folder to convert PVS data from the old
format to the new format, delete PVS data, or generate and enhance
PVS data.

• Use "wrldview" in the viewers folder to generate PVS data using the
default density parameter, to view the results immediately afterwards,
and to "repair" PVS data from specific viewpoints.

• RenderWare Visualizer can be used to display PVS.

Using RpPVS alone

Generating PVS data using the RpPVS plugin requires the following steps:

1. Attach RpPVS plugin

2. Setup callbacks for progress reporting

3. Setup callback for PVS generation. Use either own algorithm or
RpPVSGeneric()

4. Call RpPVSConstruct()

5. Write the converted world to a stream using RenderWare Graphics'
binary stream API

Using RtSplinePVS

Generating PVS data using the RtSplinePVS toolkit requires the following
steps:

1. Attach both RpPVS and RpSpline plugins

Chapter 28- Potentially Visible Sets

II-280 11 February 2004

2. Link against the RtSplinePVS toolkit

3. Prepare the spline(s) you intend to use for the generation process

4. Setup callbacks for progress reporting

5. Call RtSplinePVSConstruct() for each spline to generate the PVS data

6. Write the converted world to a stream using RenderWare Graphics'
binary stream API

28.4.3 Rendering

The steps needed to render worlds with PVS data are:

1. Attach the RpPVS plugin and any others you require
(RtSplinePVS is not required for rendering)

2. Load your worlds

3. Use RpPVSQuery() to check worlds for PVS data if necessary

4. For worlds that have PVS, remember to hook RpPVS' PVS fast culling
system into the rendering engine using RpPVSHook()

5. Just before rendering, set the view position using
RpPVSSetViewPosition()

6. Unhook the PVS culling system using RpPVSUnhook() when done

Chapter 29

 Geometry
Conditioning

Chapter 29 - Geometry Conditioning

II-282 11 February 2004

29.1 Introduction
A world can be constructed in a variety of different configurations of
topological and aesthetic primitives whilst each variation might look
identical. The performance of a ‘good’ world over that of a ‘bad’ world can be
significant. Good artwork is the principal key to achieving a good world,
ultimately leading to performance optimized rendering, and knowledge of
tri-stripping, vertex pipelines, and efficient use of UV values, to mention
just a few, are important issues that must be addressed. For advice
regarding the construction of good scenes, see the white paper titled,
Optimizing Static Geometry. Whether a scene is good or bad, the geometry
conditioning toolkit, RtGCond, and its partner toolkit, RtWing, have been
designed to improve artwork.

Not all scenes will benefit from geometry conditioning while some might
benefit from only a small subset of geometry conditioning functions. But
many scenes can benefit enormously from being conditioned.

The geometry conditioning toolkit is standalone, and takes a simple format
of vertices and polygons. It is also called from RtWorldImport and the
exporters if required.

In the remainder of this document, we shall see an overview of geometry
conditioning; how to use geometry conditioning with RtWorldImport; how
to use RtGCond and RtWing from the API; and finally how to write a custom
geometry conditioner using the toolkit and the geometry conditioning
pipeline mechanisms it hosts.

29.1.1 Examples

There is an example, found in examples/gcond, that illustrates some of the
issues in this Chapter, namely polygon welding and UV-translation:

GCond Example

 Introduction

RenderWare Graphics 3.7 II-283

29.1.2 Other Documentation

• See the API reference for details of the code for RtGCond, RtWing
and RtImport.

• This chapter assumes you are familiar with the workings of
RtImport. Details can be found in the User Guide chapters on
World and Static Models.

• There are further details regarding the optimization of geometry
in the Optimizing Static Geometry white-paper.

Chapter 29 - Geometry Conditioning

II-284 11 February 2004

29.2 Overview
To begin with, let’s consider the follow three primitives. They are color
coded according to how they are tri-stripped. The original art work is shown
in the first figure, whilst post-geometry conditioning is shown in the
second:

• The 3x3 patch comprises 18 triangles and three tri-strips in the original
artwork; it has been rearranged to comprise just two triangles with one
tri-strip.

• The circle approximation originally designed as a tri-fan does not tri-
strip efficiently; it has been rearranged such that only one tri-strip is
necessary.

• The irregular shape has a sliver in the original artwork that could lead
to poor pre-lighting and texturing; it has been rearranged without the
sliver.

This example shows three topological rearrangements to illustrate the potential
of geometry conditioning. Using RtGCond and RtWing, these operations can be
performed automatically. (Note it should still be the desire of the artist to build
efficient scenes, as the geometry conditioner is limited in its intelligence. For
useful information on optimizing scenes, refer to the Optimizing Static Geometry
white-paper.)

 API Details

RenderWare Graphics 3.7 II-285

29.3 API Details
In this section, we shall look at the most common use of the geometry
conditioners: RtWorldImport. This uses geometry conditioning whenever
the RtWorldImportParameters has conditionGeometry set true. In
this case, we must provide some functionality before calling
RtWorldImportCreateWorld(). (See the User Guide chapter, Worlds and
Static Models.)

It works using the default geometry conditioning pipelines that are
supported by RtGCond. Here, a pipeline is simply a collection of ordered
calls to geometry conditioning functions, and a number of pipelines can be
created, attached, and applied to a set of geometry.

RtGCond supplies two of these:
RtGCondFixAndFilterGeometryPipeline(), and
RtGCondDecimateAndWeldGeometryPipeline().

The first function is a collection of low level filters that tidy up the initial
geometry, they are such things as vertex welding, sliver removal and UV-
limiting.

The second function’s principal purpose is to weld triangles together to
form fewer, larger polygons. Subsequently, it re-triangulates each of these,
with a view to efficient tri-stripping. Note, this only welds together polygons
that are coplanar and conform to certain parameters discussed next – it is
not suitable for LOD, for example.

29.3.1 Setting up a Geometry Conditioning Pipeline

We’ll now see how we can set up the pipelines and look at the parameters
they take.

First, we need to set up our own pipeline. This is simple since it’s just a
collection of the provided pipelines mentioned above:

void

GeometryConditioningPipeline(RtGCondGeometryList *geometryList)

{

 RtGCondFixAndFilterGeometryPipeline(geometryList);

 RtGCondDecimateAndWeldGeometryPipeline(geometryList);

}

We do not need to concern ourselves with the structure of
RtGCondGeometryList, in this section, since RtImport deals with that,
but it is simply a collection of vertices and polygons.

We can then set the pipeline by a call to
RtGCondSetGeometryConditioningPipeline(), with our declared
geometry conditioning pipeline function.

Chapter 29 - Geometry Conditioning

II-286 11 February 2004

29.3.2 Setting up Geometry Conditioning
Parameters

The pipelines comprise a series of filters that require a number of
parameters. These are supported via RtGCondParameters that groups
them together. These parameters are available to a wide range of functions
and are not just limited to these pipelines. In fact, they may be used by
custom written pipelines too.

The parameters are:

PARAMETER DESCRIPTION

flags Geometry attribute flags that determine whether
the geometry has pre-lit colors, textures and
normals.

weldThreshold The orthogonal distance below which (or equal
to) a pair of vertices are considered to occupy the
same space.

angularThreshold The angular difference (in degrees) below which
(or equal to) a pair of vertices are considered to
share the same angle.

uvThreshold The UV difference (in 1-D textel-space) below
which (or equal to) a pair of vertices are
considered to share the same UV value.

preLitThreshold The pre-lit difference (in 1-D RGB-space) below
which (or equal to) a pair of vertices are
considered to share the same pre-lit value.

PolygonAreaThres-
hold

The area below which a polygon is considered to
have zero area.

uvLimitMin The maximum allowable value for any UV
coordinate.

uvLimitMax The minimum allowable value for any UV
coordinate.

sortPolygons TRUE if polygons are to be sorted by their
centroid

textureMode[rwMAX
TEXTURECOORDS]

For any element set to rwTEXTUREADDRESSWRAP,
UV coordinates are aligned prior to welding – this
helps welding tremendously.

polyNormalsThres-
hold

Fractional range which polygons normal area
have to fall within to be welded

polyUVsThreshold Fractional range which polygons uv area have to
fall within to be welded

polyPreLitsThres-
hold

Fractional range which polygons prelit area have
to fall within to be welded

 API Details

RenderWare Graphics 3.7 II-287

convexPartition-
ingMode

The approach to convex partitioning, one of:
rtWINGEDGEPARTITIONFAN (in preparation for
tri-fanning)
rtWINGEDGEPARTITIONTACK (in preparation for
tri-stripping, default and highly recommended)
rtWINGEDGEPARTITIONEAR (to maximize the size
of the triangles most central to the primitive –
sometimes useful with hierarchical culling)

decimationMode The approach to edge-decimation/polygon
welding, one of: rtWINGEDGEDECIMATIONFEW
(minimizes the number of polygons, but some
may be long and thin)
rtWINGEDGEDECIMATIONSMALL (tries to avoid
long thin polygons if possible, at the cost of less
reduction in number)

decimationPasses This controls how thoroughly polygon welding
searches for and welds polygons. Since the
algorithm has a multi-pass approach, this sets
the number of passes.

With all threshold values, zero represents the most strict matching criteria,
whilst a value of minus one disables the test.

We need to initialize the parameters using RtGCondParametersInit(),
change any that need changing, then set them using
RtGCondParametersSet() (In addition, we can recall the currently set
parameters by a call to, RtGCondParametersGet()):

void

SetGCondParameters()

{

 RtGCondParameters GCParams;

 RtGCondParametersInit(&GCParams);

 GCParams.flags = rtGCONDNORMALS | rtGCONDTEXTURES | rtGCONDPRELIT;

 GCParams.weldThreshold = 0.001f;

 GCParams.angularThreshold = 1.0f;

 GCParams.uvThreshold = 0.5f/128.0f;

 GCParams.preLitThreshold = 2.0f/256.0f;

 GCParams.areaThreshold = 0.0f;

 GCParams.uvLimitMin = -16.0f;

 GCParams.uvLimitMax = 16.0f;

 GCParams.textureMode[0] = rwTEXTUREADDRESSWRAP; /* 1 texture */

 GCParams.polyNormalsThreshold = 0.01f;

 GCParams.polyUVsThreshold = 0.01f;

 GCParams.polyPreLitsThreshold = 0.01f;

 GCParams.decimationMode = rtWINGEDGEDECIMATIONFEW;

 GCParams.convexPartitioningMode = rtWINGEDGEPARTITIONTACK;

 GCParams.decimationPasses = 5;

Chapter 29 - Geometry Conditioning

II-288 11 February 2004

 RtGCondParametersSet(&gcParams);

}

29.3.3 UserData CallBacks

Since the pipelines and many of the functions modify the vertices and
polygon, there are a series of callbacks that can be provided to maintain the
user data associated with each primitive.

RtGCondSetUserdataCallBacks() takes callbacks for vertex cloning,
vertex interpolation, polygon subdivision, vertex removal, and polygon
removal.

 Advanced API Details

RenderWare Graphics 3.7 II-289

29.4 Advanced API Details
RtWorldImport takes care of most of the geometry conditioning set up for
us. If we want to condition our geometry without it, we must consider some
of the other API functions.

29.4.1 The Basics

We’ve already seen how to group together pipelines. However, to action the
pipeline on our geometry list, we need to call
RtGCondApplyGeometryConditioningPipeline(). In addition, we can
recall the currently set pipeline with a call to
RtGCondGetGeometryConditioningPipeline().

29.4.2 Allocating Data

The RtGCondGeometryList contains all the information about the geometry
and can be allocated with three functions: RtGCondAllocateVertices(),
RtGCondAllocatePolygons(), RtGCondAllocateIndices(). The first
allocates space for a contiguous list of vertices, the second for polygons,
and the third for the indices of each polygon that index the vertices. In
addition, RtGCondReallocateIndices(),RtGCondReallocateVertices()
and RtGCondReallocatePolygons() is provided. Subsequently, these can
be freed using RtGCondFreeIndices(), RtGCondFreeVertices() and
RtGCondFreePolygons().

29.4.3 Custom Pipelines

Sometimes, we will want to condition our geometry, but we might want to
do it significantly differently to the way the provided pipelines work. For
example, we might want to weld vertices and remove slivers, but do no
other work. To do this, we can simply create our own pipeline – a linear
collection of function calls.

For convenience, each function that can be an integral part of a geometry
conditioning pipeline, has the “PipelineNode” suffix.

In our first example, we’ll look at RtGCond alone. Later, we’ll look at RtWing
too.

Vertex welding

A pipeline takes the form:

void PipelineName(RtGCondGeometryList *geometryList);

The body of the pipeline that welds vertices (removing slivers en-route) and
limits UV-coordinates might look something like this:

Chapter 29 - Geometry Conditioning

II-290 11 February 2004

 /* Get the conditioning parameters, set elsewhere */

 RtGCondParameters* params = RtGCondParametersGet();

 /* Weld together virtually matching vertices (two passes) */

 RtGCondWeldVerticesPipelineNode(geometryList,

 GCParams->weldThreshold,

 -1.0f, -1.0f, -1.0f,

 TRUE, FALSE, FALSE, FALSE);

 RtGCondWeldVerticesPipelineNode(geometryList,

 0.0f,

 GCParams->angularThreshold,

 GCParams->uvThreshold,

 GCParams->preLitThreshold,

 FALSE, TRUE, FALSE, TRUE);

 /* Remove slivers and redundant polygons */

 RtGCondRemoveSliversPipelineNode (geometryList);

 RtGCondRemoveIdenticalPolygonsPipelineNode (geometryList);

 if (params->areaThreshold > 0.0f)

 {

 /* Remove anything that wasn’t classified as a sliver

 but is still undesired */

 RtGCondCullZeroAreaPolygonsPipelineNode (geometryList,

 params->areaThreshold);

 }

 /* Make sure no vertex is used more than once,

 since this is a prerequisite to UV-limiting */

 RtGCondUnshareVerticesPipelineNode (geometryList);

 /* Limit the UVs */

 RtGCondLimitUVsPipelineNode (geometryList, params->uvLimitMin,

 params->uvLimitMax);

 /* For efficient tri-stripping, make sure polygons share

 vertices – (was undone by calling RtGCondUnshareVertices) */

 RtGCondWeldVerticesPipelineNode (geometryList, 0.0f, 0.0f,

0.0f, 0.0f, TRUE, FALSE, FALSE);

 /* Make sure the work done is validated for RenderWare */

RtGCondUnshareVerticesOnMaterialBoundariesPipelineNode(

geometryList);

 RtGCondSortVerticesOnMaterialPipelineNode(geometryList);

}

 Advanced API Details

RenderWare Graphics 3.7 II-291

So a pipeline is just a collection of function calls that take a
RtGCondGeometryList pointer and a set of control parameters.

Note, RtGCondWeldVerticesPipelineNode() is a very versatile function,
and we have called it twice at the beginning. The first pass moves vertices
within the weldThreshold together regardless of their other attributes – this
is to avoid introducing holes in the scene. The second pass then welds
together those vertices that have been grouped and that match the given
criteria.

Note, in the example, the order of function calls is important. Vertex
welding (RtGCondWeldVerticesPipelineNode()), before sliver removal
(RtGCondRemoveSliversPipelineNode()), will identify and remove more
slivers than if the other way around. For example, in the first figure, the
primitive with a sliver is only removed if the vertices that form the smallest
side are mapped onto each other, and that is only done by vertex welding.

Note also the prerequisite for UV-limiting
(RtGCondLimitUVsPipelineNode()) – that no vertex is shared by more
than one polygon (RtGCondUnshareVerticesPipelineNode()) – if the
prerequisite isn’t considered, then UV warping might, in some cases, be
noticed.

The vertices are then once again welded, with zero tolerances, to make sure
tri-stripping is efficient; any initial sharing was of course undone earlier as
the UV-limiting prerequisite.

Finally, the vertices are sorted according to texture.

Polygon Welding

Now let’s look at a pipeline that makes use of RtWing. Here we see a
pipeline the welds coplanar polygon faces:

void PipelineName(RtGCondGeometryList *geometryList)

{

 RtGCondParameters* params = RtGCondParametersGet();

 RtWings wings; /* The winged-edge data structure */

 /* Polygon welding remaps UV values--this is a pre-requisite */

 RtGCondUnshareVerticesPipelineNode(geometryList);

 /* Create winged edge data structure */

 RtWingCreate(&wings, geometryList);

 /* Weld polygons */

 RtWingEdgeDecimation(&wings, geometryList);

 /* Triangulate the resulting welded polygons */

 RtWingConvexPartitioning(&wings, geometryList,

 params->convexPartitioningMode);

Chapter 29 - Geometry Conditioning

II-292 11 February 2004

 /* Destroy the wings, leaving just the geometryList in tact */

 RtWingDestroy(&wings);

 /* For efficient tri-stripping */

 RtGCondWeldVerticesPipelineNode (geometryList, 0.0f, 0.0f,

0.0f, 0.0f, TRUE, FALSE, FALSE);

 /* Make sure the work done is validated for RenderWare */

RtGCondUnshareVerticesOnMaterialBoundariesPipelineNode(

geometryList);

 RtGCondSortVerticesOnMaterialPipelineNode(geometryList);

}

Here, again we have unshared the vertices as a prerequisite to polygon
welding – to improve welding results. This step also helps edge decimation
which aligns UV coordinates contiguously if textureMode is set
appropriately.

The call to RtWingCreate() sets up all winged edge data structure
references. The structure, formally, is a modified half-edge data structure,
which allows the representation of non-manifold surfaces. It is also
augmented by neighbor tags which determine, if there is a neighbor,
whether it is continuous (in UVs, Normals, etc.) or creased.

Edge decimation is then performed with RtWingEdgeDecimation() on the
data, maintaining the internal data (geometry list) as it proceeds.
Ultimately, the geometry list, which comprises a number of polygons, is
triangulated using RtWingConvexPartitioning() in a manner to promote
good tri-stripping. Finally, the winged-edge data structure is no longer
needed and destroyed with a call to RtWingDestroy(). In addition, the
vertices are rewelded to enhance tri-stripping further.

29.4.4 Utilities and tools

In addition to the pipeline functions, there are a set of lower-level tools
(both in RtGCond and RtWing) to help you write your own geometry
conditioning functions, whether they be standalone or part of your own
pipeline. As well as the functions we’ve already seen in the examples above,
there are a number of additional functions that can be used as part of a
pipeline.

RtGCond tools

Let’s say we just wanted a pure vertex filtering pipeline: we can, in addition
to what we’ve already seen quantize vertices and their UVs with
RtGCondSnapPipelineNode() and RtGCondSnapUVsPipelineNode().

If we wanted to work on just polygons, we still need to consider vertices
along the way. For example, unused vertices should be removed:

 Advanced API Details

RenderWare Graphics 3.7 II-293

RtGCondRemoveSliversPipelineNode() is a useful function. While it
might appear that RtGCondCullZeroAreaPolygonsPipelineNode() would
resolve these, some slivers cause difficulties for the effective calculation of
area, and therefore should be called as one of the first filters in a pipeline.

RtGCondRemoveIdenticalPolygonsPipelineNode() is for poor artwork –
and useful as an extra fail safe. It is useful if there are polygons in the
scene that occupy the exact same space. It avoids subsequent problems
with UV coordinates and polygon welding, and of course stops Z-fighting.
NB: It cannot identify overlapping polygons which have different vertex
positions, so care needs to be taken in the original artwork.

Any function that removes polygons, and therefore potentially makes some
vertices redundant, makes a call to
RtGCondRemapVerticesPipelineNode() to remove them. NOTE: If you
write your own function, this is a post-requisite of a filter.

To aid writing your own functions, some utility functions are provided:
RtGCondAreaOfPolygon(), RtGCondNormalize(), RtGCondLength(),
RtGCondColinearVertices() and RtGCondVectorsEqual().

RtWing tools

In addition to those already described, there are a number of other tools
provided by RtWing. To understand how they work, we’ll look at the
modified Winged Edge-data structure. More formally defined, the data
structure is a half-edge data structure, which is modified to work under
non-manifold environments: each edge has a pointer to the previous edge
as well as the next one, and neighbor pointers are allowed to be NULL for
terminal edges.

In the figures below, we show how the data structure would look for a
simple quad, in yellow, that has been triangulated. The first image we use
for referencing primitives later; in the second image, the pointers and
relationships between the primitive are illustrated: Black circles are the
vertices. Black arrows are directed edges. Red arrows are pointers to
neighboring edges, or NULL if there is none. Orange arrows are the doubly-
linked previous/next pointers that cyclically define the primitive. Green
arrows are a reference from a vertex to one edge emanating from it. Dark-
blue arrows are pointers from an edge to a face it bounds. Light-blue
arrows are pointers from a face to one of its edges.

In addition to this, we hold a neighbor relationship tag to say whether the
neighbor to an edge is NULL, continuous (as in the example below), or is a
crease – which would be the case if the quad below was folded along the
shared boundary so that each face had its own plane. (Creased would also
be the case if the faces differ in surface normals, UV coordinates and pre-lit
colors.)

Chapter 29 - Geometry Conditioning

II-294 11 February 2004

F1

F2

V1

V2 V3

V4E1

E2

E5

E3

E4

E6

There is a set of callbacks for traversing and querying this data structure,
namely:

• RtWingFaceForAllEdges(): With this function we could discover all
vertices that define the face. If the face were F1, it would reveal edges
E1, E2 and E3, and each of those edges point to the next vertex in the
primitive.

• RtWingFaceForAllFaces(): For F1 this would only reveal F2, since
that’s all it’s connected to in the example, but this is useful for
traversing primitives such as sphere approximations, and can be used
for mesh decimation.

• RtWingVertexForAllEdges(): For V1 this would reveal E2 and E1. It
can be used for vertex decimation.

• RtWingVertexForAllFaces(): For V1 this would reveal F1 only. We
could use this to color all polygons that use the vertex.

Since the winged edged data structure simply sits on top of RtGCond
geometry, the two representations need to be kept in synchrony;
RtWingUpdateInternalRepresentation() is proved to maintain the
validity of the internal (RtGCondGeometryList) geometry and the winged-
edge (RtWings) representation.

Finally, RtWingPartitionPolygon() is provided. It retriangulates any
non-triangular faces.

 Summary

RenderWare Graphics 3.7 II-295

29.5 Summary
The following screen shot, before and after geometry conditioning illustrates
some of the issues discussed in this chapter:

Geometry conditioning, if used appropriately, can be a valuable tool. It can
remove anomalies that may have visible effects, reorganize polygons and
vertices to aid more optimal tri-stripping, and it can reduce the number of
polygons in the scene significantly whilst keeping the aesthetic reaction to a
minimum.

Index

Index

II-298 11 February 2004

Index
Page numbers in bold face indicate the most important reference to the subject, where
multiple references exist. The page numbers shown below refer to Volume III of the
User Guide.

3
3ds max

HAnim..62

A

animation
blending..68
delta morphing................................... See delta morphing
keyframe animationSee keyframe animation
morphing See morphing. See morphing
particle tank ..185
skinning ..See skinning

ANM ...15
atomic

collision detection...261
in animation..14
material effects ...118, 128

B

Berstein weights ..244
Bézier curves ...212, 220
Bézier patches..220

4d vectors ...240
atomics..236
Bernstein weights ...244
Bézier matrix ..241
Bézier rows...240
colors array ...232
control points ..220
control points to surface points...................................243
custom pipeline...235
level of detail (LOD) ..233
locking..229
normals array ..231
patch mesh definition struct..226
positions array ..230
quad patches

array...230
quad patches ...241
serialization ..236
skinning ..236
streaming ..236
surface points to control points...................................242
tangents and normals ..247

texture coordinate sets array....................................... 232
transforming ... 236
tri patches ... 241

array... 230
unlocking.. 229

Bézier Toolkit ... 239
bounding box

collision detection .. 255, 256
B-splines ... 211

cloning.. 217
closed ... 213
control points.. 211

on-curve... 212
creation... 217
mathematics.. 216
nice ends... 213
open.. 211, 213
velocity... 213

bump mapping... 118, 120
initializing .. 120
light .. 120
properties.. 121
texture... 121

C
collision detection

atomic... 261, 263
bounding box.. 256
building data... 259
example .. 261, 264
geometry... 262

dynamic ... 255
static .. 255

intersection
atomic .. 255, 266
bounding box... 255
line... 255
low-level.. 255
point... 255
sphere .. 255

manipulation... 255
overview... 254
picking.. 257

atomic rendering.. 257
dependencies ... 257
example ... 258

 Index

RenderWare Graphics 3.7 II-299

sphere ... 256
vertices ... 256
world sector.. 261

compressed keyframes .. 73
control points

B-splines .. 211
on-curve ... 212
patches.. 220

D
delta morphing .. 102

animation
destroying.. 112
keyframe sequence .. 110
loading... 104
loop callbacks.. 111
running .. 112
saving .. 111

DMorph targets .. 106
adding.. 106
controlling ... 107
destroying.. 109
saving .. 107
transforming .. 108

flags.. 106
geometry .. 106

loading... 104
saving .. 107

delta morphing example.. 103
DFF... 15
DMorph...See delta morphing

E

environment mapping ... 118, 122
initializing .. 122
properties.. 122

examples
collision detection .. 261, 264
dmorph ... 103
gcond.. 282
HAnim.. 71
HAnim2.. 70
keyframe animation.. 50, 51
lightmaps.. 153
material effects ... 130
morph ... 97
patch... 237
picking.. 258
ptank2... 187
ptank3... 187
skinning.. 23

F
file format

RenderWare Animation (*.ANM) 15
RenderWare Dive File Format (*.DFF) 15

forward differencing ... 243

G

geometry
compared with patch mesh... 220
delta morphing ... 102

geometry conditioning .. 282
allocating data.. 289
example.. 282
pipelines... 285
polygon welding .. 291
RtWorldImport .. 289
slivers... 284, 285
tri-stripping .. 284
uv limiting.. 285
vertex welding ... 285, 289

H
HAnim ... 58

applying and running an animation.............................. 66
blending between animations....................................... 68
bone IDs... 62
creating a hierarchy.. 60
creating HAnim data .. 59
examples

HAnim .. 70
HAnim3 .. 71

finding a hierarchy in a model 64
frame IDs ... 63
hierarchy creation flags.. 62
hierarchy flags ... 64
interpolation schemes... 70
linking to frames .. 65
max keyframe size ... 63
node topology flag ... 61
procedural animation ... 71
procedural modification

frames.. 71
matrix array... 71

serialization.. 63
setting up a hierarchy... 64
skinned animation .. 60, 65
sub hierarchies ... 68

I

intersection
atomic .. 266

Index

II-300 11 February 2004

collision detection......................... See collision detection

K
keyframe animation ...See morphing

animation ..38, 41
blending..40, 47
delta animation ...51
duration...45
example ..48, 50, 51
interpolator ...38

animation ...46
creating ..44, 45
duration..46
initializing..46
sub-interpolator animations49

keyframe ordering...42
keyframe size..39, 45
loading..44
procedural animation ..52

interpolated keyframes...52
source animation data ..52

sorting...43
streaming ..40
structure ..41
sub-animation ...43

keyframes
delta morphing..102
morph target...See morph target
morphing animation....................................See morphing
quaternions ...25
skinning ..15
slerps...25, 30

L

level of detail (LOD)See Bézier Patches
light

patch mesh prelit flag ...225
lightmaps ...134

aliasing..137
anti-aliasing ..135, 161
area lights ...140, 145, 150, 156
atomics..140, 144, 148
attaching ...148
creating ...139, 148, 155
destroying ...155
dynamic lighting...157
example ..153
exporting...148
generating ...152
geometries ..134
illumination ..141, 149, 156
images...156

importing.. 139, 162
jaggies .. 137
jittering... 156, 158
lighting sessions ... 140
loading.. 139
materials ... 140, 144
point lights.. 145
point sampling.. 160
post processing ... 151

darkmaps ... 142
references ... 137
reloading... 151
rendering .. 151, 157
sampling ... 150, 155, 156, 157
saving ... 151
shadows.. 135
texture dictionary.. 151, 152
textures 134, 137, 140, 142, 155
uv values .. 134
world sectors .. 134, 140, 143
worlds... 148

M
material

patch mesh.. 232
material effects .. 118

atomics ... 118, 128
blending.. 125
bump & environment mapping........................... 118, 124
bump mapping.. 118, 120

initializing.. 120
light ... 120
properties... 121
texture.. 121

dual-pass texture mapping.................................. 125, 127
environment mapping... 118, 122

intializing... 122
properties... 122

example .. 130
initializing .. 119
rendering .. 84, 128, 129
selecting ... 79, 119
world sectors .. 118, 128

matrix
inverse bone ... 16, 17
local transformation.. 17

Maya
HAnim.. 62

mesh
patch mesh.. 223

morph target .. 88, 92, 97, 106
morphing... 88

 Index

RenderWare Graphics 3.7 II-301

acceleration .. 96
atomic... 91
basic concepts .. 89
callback function .. 95, 96
creating, step-by-step ... 94
effects and variations.. 96
geometry .. 91
interpolator... 92

position.. 98
morph example... 97
morph interpolator...................................... 92, 95, 96, 97

duration ... 97
scale... 93, 97
time.. 93

morph target ... 88, 92, 97
pros and cons.. 89

N

normals
patch mesh vertices .. 225

O
objects

RpInterpolator .. 68
RpIntersection .. 255
RwFrame.. 17
RwMatrixWeights .. 16

P

parameter space
Bézier patches .. 239
B-splines .. 212

particle .. See particle tank
definition .. 168, 170, 177

particle standard .. 192
atomics ... 200
emitter .. 193

callback ... 196
creating.. 196, 200
destroying.. 193, 196
emitting ... 193
rendering ... 196, 204
streaming ... 196, 205
updating... 193, 196, 202

emitter class.. 193, 194
creating.. 199
destroying.. 199
streaming ... 205

particle.. 193, 202
batches... 193
callback ... 196

creating.. 197, 202
destroying.. 197, 202
emitting ... 193
rendering ... 197, 204
streaming... 206
updating .. 197, 203

particle class... 193, 195
creating.. 199
destroying.. 199
streaming... 205

property table ... 195, 199
creating.. 198
destroying.. 198
property offset ... 198
streaming... 205

rendering.. 204
standard properties... 207
streaming ... 204
updating ... 202

particle tank .. 168
accessing particle data.. 179
active particles ... 177
animation ... 185
bounding sphere... 177, 184
creating .. 172, 177
definition.. 168, 172
destroying .. 177
examples .. 187
flags ... 172, 174, 182

compatibility ... 174
organization... 178
platform-specific ... 177

format... 182
format descriptor.. 178
get functions... 179
how to use particles.. 183

defining ... 183
initializing ... 183

locking ... 172, 178, 179
number of particles .. 177
organization ... 178, 180, 181
set functions 179, 184, 185, 187
shared/independent values ... 175
transparency... 185
troubleshooting .. 188
unlocking ... 179
vertex alpha.. 185

patch mesh .. 222
patches ...See Bézier patches
paths

B-splines .. 210, 211
pipelines

geometry conditioning ... 285

Index

II-302 11 February 2004

plugins
RpCollision...254, 265
RpDMorph..102
RpHAnim ...14, 21, 58
RpLtMap ..139, 162
RpMatFX..118
RpPatch ..22, 220, 227
RpPrtStd ...192
RpPTank...168
RpPVS..268
RpSkin..14, 21, 22, 58, 61
RpSpline ...211, 216

potentially visible sets ...See PVS
pre-light

patch mesh ..225
prtstd... See particle standard
PTank ..See particle tank
PVS

attaching ...271
backface culling..271
callback function ..271

generic ...271
messages ..274
user defined..272
writing..272

collision detection...272
definition ..268
destroying ...273
hooking...276, 278
progress messages...274
pvscnvrt tool ...270
pvsedit tool ...270
rendering...280
sampling points...272
spline PVS ..268, 273
statistics ..277
streaming ..273
the converter ...270
unhooking...276, 278
using data..276
using PVS...270
visibility

atomic visibility ...277
world sector visibility ..277

visibility maps ..268

Q
quaternions ..25, 26, 33

creating ...26
keyframes ...25
rotation..27, 33
scaling...27, 33

slerps .. See slerps
transforming ... 27

R

real-world space
Bézier patches .. 239
B-splines... 212

rendering
PVS .. 280

RtAnim.. See keyframe animation

S

skinning
3ds max .. 19
ANM .. 15
atomics ... 21
bone hierarchy.. 14, 15
bone ID... 19, 20, 62
bone index .. 16
bone topology flags .. 61

pop... 61
push ... 61

bones .. 20
creating data ... 15
destroying... 20
DFF .. 15
examples... 23
geometry... 21
inverse bone matrix .. 16, 17
keyframes ... 15
libraries... 22
local transformation matrix .. 17
material effects ... 21
Maya .. 19
number of bones... 16, 60
number of vertices .. 16
skinned patch meshes ... 22
toon .. 22
using... 21
vertex weights .. 16

slerps ... 30, 33
cache .. 32
creating... 31
initializing .. 32
keyframes ... 25, 30
matrics.. 31
morph targets.. 30
rotations.. 30

spherical linear interpolators See slerps
splines ..See B-splines

 Index

RenderWare Graphics 3.7 II-303

T
texture

bump mapping.. 121
dual-pass texture mapping.................................. 125, 127

toolkits
RtAnim... 15, 21, 38, 58, 68
RtBary.. 148
RtBezPat .. 239
RtCmpKey ... 73
RtGCond .. 282
RtIntersection ... 254, 265
RtLtMap... 136, 139
RtLtMapCnv .. 139
RtPick... 254, 257, 265
RtQuat .. 25, 26, 33
RtSlerp ... 25, 29, 33
RtSplinePVS .. 268, 272, 273
RtWing... 282, 293
RtWorldImport... 282

tools
pvsconvrt.. 270
pvsedit .. 270

tri patches.. 221
tri-fan

geometry conditioning ... 284
tri-strip

geometry conditioning ... 284

U

UV animation ... 76
UV coordinates

patch mesh ... 226

V
vectors

4d vectors in patches.. 240
vertices

collision detection .. 256

W

winged edge.. 282, 293
creating .. 292
decimation.. 292
destroying .. 292
partitioning... 292

world sector
collision detection .. 261
material effects... 118, 128

	User Guide
	Table of Contents

	Skinning
	Introduction
	Creating Skinning Data
	Attaching the RpSkin plugin
	Creating the RpSkin data
	Node IDs
	Destroying the RpSkin data
	Querying the RpSkin data

	Using Skinning
	The RpSkin Object

	Examples

	Fundamental Types for Animation
	Introduction
	Quaternions
	Usage

	Spherical Linear Interpolation
	Applications
	Usage

	Summary
	Quaternions
	Spherical Linear Interpolation

	The Animation Toolkit
	Introduction
	Creating an Interpolation Schemes
	Creating Animation Data
	The API
	The Animation Keyframe Structure
	Keyframe Ordering
	Streaming Animation Data
	Sub-Animations

	Using RtAnim At Runtime
	Concepts of Running Animations
	The Interpolator
	Applying and Running a Basic Animation
	Animation CallBacks
	Blending Between Animations

	Sub-Interpolator Animations
	Delta Animations
	Procedural Animation
	Procedural Modification of Source Animation Data
	Procedural Modification of Interpolated Keyframes

	Summary

	The Hierarchical Animation Plugin
	Introduction
	Creating HAnim Data
	Hierarchy Structure Overview
	Creating A Hierarchy
	Tagging RwFrames

	Using HAnim At Runtime
	Finding a Hierarchy in a Model
	Setting Up a Hierarchy For Use
	Concepts of Running Animations
	Applying and Running a Basic Animation

	Features Inherited from RtAnim
	Blending Between Animations
	Sub Hierarchy Animations
	Delta Animations
	Overloaded Interpolation Schemes

	Procedural Animation
	Procedural Modification of the Matrix Array
	Procedural Modification of RwFrames

	Compressed Keyframes
	Summary

	The UV Animation Plugin
	Introduction
	This Document
	Other Resources

	Basic UV Animation Usage
	Attaching the Plugins
	Loading the UV Animation Dictionary
	Loading the 3D Object
	Obtaining a List of Materials to Animate
	Animating the Material

	Creating and Applying UV Animations In Code
	Creating a UV Animation
	Setting up the Animation
	Managing the Lifetime of the Animation
	Using the Appropriate Effect on the Material
	Setting the UV Animation on the Material
	Accessing the Interpolators

	Summary

	Morphing
	Introduction
	What Morphing Is
	What Morphing is Not
	Basic Concepts
	Strengths and Weaknesses
	Other Documents

	Morphing Structures
	Geometry
	Atomic
	Morph Targets
	Interpolators

	How to Morph a Geometry
	Before Adding a Morph Animation
	How To Set Up Morph Data
	Animating the Morph
	Effects and Variations
	Destruction

	The Morph Example
	Summary

	Delta Morphing
	Introduction
	Morphing & Delta Morphing
	DMorphing
	Animation
	Examples

	Basic DMorph Usage
	Loading a pre-built example
	Animating

	RpGeometry and RpDMorphTargets
	RpGeometry
	Adding RpDMorphTargets
	Saving DMorph RpGeometry
	Direct control of DMorph Values
	Transforming RpGeometry with RpDMorphTargets Attached
	Destroying RpDMorphTargets

	Animation
	Creating Frames
	Saving Animations
	Editing and Querying Frame Sequences
	Loop CallBacks
	Running an Animation
	Destroying Frames

	Summary
	Delta Morphing
	Basic Usage
	RpGeometry and RpDMorphTargets
	RpDMorphAnimation

	The Material Effects Plugin
	Introduction
	How RpMatFX Works
	RpMatFX Features

	Using Material Effects
	Selecting The Effect
	Initializing Effect Data
	Enabling the Effects Renderer

	Examples
	A Bump Mapping Example

	Summary
	Supported Effects
	Extended Objects

	Lightmaps
	Introduction
	What are lightmaps?
	Why use lightmaps?
	What are the costs of lightmaps?
	When not to use lightmaps?
	Compatibility
	Other documents

	Lightmap functionality overview
	Lightmap-related data objects
	Lighting Sessions
	Lightmaps
	World Sectors
	Atomics
	Materials
	Area Lights

	Creating and using lightmaps
	Lightmap creation
	Lightmap illumination
	Rendering with lightmaps
	Saving and reloading lightmap data
	Postprocessing lightmaps
	Host Generation

	The lightmaps example
	Starting the example
	The menu options
	Options and issues
	Troubleshooting

	Importing Lightmaps
	Manual Conversion

	Summary

	PTank
	Introduction
	What is a Particle?
	What Are Particles Used For?
	What Is the Particle Tank?
	What Particles Are Not
	Other Documents

	The Main Concepts
	The Particle
	The Particle Tank
	RpPTankLockStruct
	RpPTankFormatDescriptor
	Locking and Unlocking

	How to Use Particles Step by Step
	Initialization
	Defining Particles
	Animation

	Examples
	Troubleshooting
	Summary

	Standard Particles
	Introduction
	The RpPrtStd Plugin
	The Emitter
	The Particle
	The Emitter And Particle Classes
	The Property Table
	The Emitter And Particle CallBacks

	Basic Usage
	Creation And Destruction
	Updating
	Rendering
	Streaming

	Standard Properties
	Summary

	B-splines and Bézier Patches
	Introduction
	Other Documents

	B-splines
	Introduction
	What Are B-splines?
	Some Features of B-splines
	Why Use B-splines?
	How RenderWare Graphics Processes Two-dimensional B-spline Curves.
	Spline Summary

	3D Bézier Patches
	Introduction
	What Are Patches?
	Why Use Patches?
	How RenderWare Graphics Handles Patches
	How To Use Patches
	Example Code
	Summary

	Bézier Toolkit
	Introduction
	Data Types
	Quad Patch from Tri Patch
	Surface Points to Control Points and Back
	Forward Differencing
	Patch Tangents and Normals
	Toolkit Summary

	Summary

	Collision Detection
	Introduction
	Plugins & Toolkits

	Detecting Collisions
	The RpCollision Plugin
	The RtIntersection Toolkit

	Picking
	The RtPick Toolkit

	Static Geometry Intersections
	Collisions with World Triangles
	Collisions with World Sectors
	Collisions with World Atomics

	Atomic & Geometry Intersections
	Collision Data
	Performing Collision Tests
	Example

	Summary
	APIs
	Hints & Tips

	Potentially Visible Sets
	Introduction
	What are Potentially Visible Sets?
	The APIs
	Applications for PVS functionality
	Reasons for NOT using PVS data

	Building PVS Data
	Using the PVS Converter
	Using the PVS Editor
	Using RpPVS
	Using RtSplinePVS
	Generation Progress CallBacks

	Using PVS Data
	Unhooking the PVS Subsystem
	PVS Runtime Utility Functions
	Writing Your Own PVS Render CallBack Function

	Summary
	Potentially Visible Sets
	Generating PVS Data
	Rendering

	Geometry Conditioning
	Introduction
	Examples
	Other Documentation

	Overview
	API Details
	Setting up a Geometry Conditioning Pipeline
	Setting up Geometry Conditioning Parameters
	UserData CallBacks

	Advanced API Details
	The Basics
	Allocating Data
	Custom Pipelines
	Utilities and tools

	Summary
	Index

