
Not Another Microprocessor Emulator
User Manual

Revision 1
20 May 2019

Full Opcode Reference

SINGLE
0000 0000 0000 0000 NOP
0000 0000 0000 0001 RST RING 0
0000 0000 0000 0010 HLT
0000 0000 0000 0011 RET
0000 0000 0000 0100 RTI RING 0
0000 0000 0000 1xxx INT x

SINGLE REGISTER
0000 0000 0001 nnnn CLR R[n] ← 0
0000 0000 0010 nnnn INC R[n] = R[n] + 1
0000 0000 0011 nnnn DEC R[n] = R[n] - 1
0000 0000 0100 nnnn NOT R[n] = !R[n]
0000 0000 0101 nnnn BRA PC = PC + 2*R[n]
0000 0000 0110 nnnn BNE PC ← R[n] if !E
0000 0000 0111 nnnn BRE PC ← R[n] if E
0000 0000 1000 nnnn BLE PC ← R[n] if L
0000 0000 1001 nnnn BGE PC ← R[n] if !L
0000 0000 1010 nnnn BLT PC ← R[n] if Z
0000 0000 1011 nnnn BGT PC ← R[n] if !Z
0000 0000 1100 nnnn PSH m[SP] ← R[n]
0000 0000 1101 nnnn POP R[n] ← m[SP]
0000 0000 1110 nnnn CAL RL = PC+1, PC = R[n]

DOUBLE REGISTER
0000 0001 xxxx yyyy ADD R[x] = R[x] + R[y]
0000 0010 xxxx yyyy SUB R[x] = R[x] - R[y]
0000 0011 xxxx yyyy LSL R[x] = R[x] << R[y]
0000 0100 xxxx yyyy RSR R[x] = R[x] >> R[y]
0000 0101 xxxx yyyy AND R[x] = R[x] & R[y]
0000 0110 xxxx yyyy ORR R[x] = R[x] | R[y]
0000 0111 xxxx yyyy EOR R[x] = R[x] ^ R[y]
0000 1000 xxxx yyyy XCH R[x] SWAP R[y]
0000 1001 xxxx yyyy MOV R[x] ← R[y]
0000 1010 xxxx yyyy LDR R[x] ← m(R[y], R[y+1])
0000 1011 xxxx yyyy STR R[x] → m(R[y], R[y+1])
0000 1100 xxxx yyyy LDB R[x] = m(R[y])
0000 1101 xxxx yyyy STB m(R[x]) = R[y]

IMMEDIATE
0001 #### xxxx xxxx BRI PC = PC + 2*x
0010 rrrr xxxx xxxx ADD R[r] = R[r] + x
0011 rrrr xxxx xxxx SUB R[r] = R[r] - x
0100 rrrr xxxx xxxx LSL R[r] = R[r] << x
0101 rrrr xxxx xxxx RSR R[r] = R[r] >> x
0110 rrrr xxxx xxxx AND R[r] = R[r] & x
0111 rrrr xxxx xxxx ORR R[r] = R[r] | x
1000 rrrr xxxx xxxx EOR R[r] = R[r] ^ x
1001 rrrr xxxx xxxx MOV R[r] = x
1010 rrrr xxxx xxxx CMP Compare R[r] and x

CPU Architecture

NAME is a 16-bit CPU structured for highest simplicity. All instructions are 16-bit constant
length, and all registers are 16-bit wide. As the address bus is 16 bits wide, there are 64
Kilobytes of addressable memory, which is split into several distinct portions, as shown in
the following table:

START END DEVICE
0x0000 0x7FFF RAM (32k)
0x8000 0xBFFF ROM (32k)
0xC000 0xD7FE VIDEO
0xD7FF 0xDEEE MMU
0xE000 0xFFFF GPIO

RAM: Upon startup, RAM is cleared.

ROM: Prior to loading the CPU, the image file “rom.bin” will be loaded into ROM memory.
Mindful of the 4K ROM limit, should the file exceed this size, it will be truncated. Writes to
ROM are not possilble and will result in a bus error (System Interrupt 2).

VIDEO: The video memory serves a 40x33 text-only screen with EGA color graphics
modes. For more information on its use, see the Video Device section.

MMU: The MMU acts as an intermediary between user instructions and their impact on the
internal states of the CPU. It contains tables allowing for the protection of memory based
on the current ring level. For more information on this, please see the Supervisor Mode
section or the MMU Device section.

GPIO: The GPIO device allows for input and output to certain devices.

When the CPU is started, it will begin in HALT mode, and no instructions will be executed.
The CPU will also begin in supervisor mode. The program counter will begin at position
0x8000. Because instructions are 2 bytes wide, the program counter is incremented by 2
each cycle.

Note that the lowest 0x1000 bytes of RAM are reserved for system usage as follows:

0x0000:0x00022 Interrupt Vector Table
→ 0x0000:0x0010 System Reserved Interrupts
→ 0x0010:0x0022 User (Software) Interrupts

Supervisor & User Mode

The NAME CPU implements certain protective features which can be enabled/disabled by
entering or exiting supervisor mode (ring 0) and User mode (ring 1).

In supervisor mode, all memory locations and registers are writeable, and all opcodes can
be used freely.

In user mode, certain registers are read-only and certain opcodes cannot be called. In
addition to these protection features, while in user mode, the CPU will first audit the MMU
before writing to memory locations. Certain things to keep in mind:

• The MMU can only be initialized/updated while in supervisor mode.
• Supervisor mode can be exited by clearing the supervisor bit in register RF.
• Supervisor mode can only be entered by means of an exception or system reset.
• Supervisor mode has its own stack, the supervisor stack, beginning at 0x1000

For more information, see the Interrupts section.

For example, assuming one programs a kernel, the kernel would:

• Set up the MMU to protect its own memory space
• Set up the IVT so that programs can jump to kernel space
• Enter user mode and jump to the main program

In this setup, the kernel is protected from user mode operations and can only be entered
by means of an interrupt, which will automatically elevate the CPU privileges to supervisor
and (if the IVT is set up properly) jump to kernel code.

FLAGS Register

The FLAGS register (RF) contains bits that describe several internal states of the CPU. Its
format is as follows:

15 0

X X X X I I I SV X X X X N Z O C

(C) CARRY: This bit is enabled if an arithmetic operation has performed a
carry. Example trigger: 1111 + 0001 = 0000 + CR

(O) OVERFLOW: This bit is enabled if an arithmetic operation has overflowed into
a sign bit. Example triger: 0100 + 0100 = 1000 + OV

(Z) ZERO: The zero bit is set if the destination register becomes zero after
an arithmetic operation or comparison.

(N) NEGATIVE: The negative bit is set if the destination regster becomes
negative after an arithmetic operation or comparison.

(SV) SUPERVISOR: The supervisor bit is set if the CPU is in supervisor mode.

(I1,I2,I3): Interrupt masking bits. See interrupt section for more
information.

Video Memory

The video memory, addressable from 0xC000 to 0xD7FE, serves the video device. This
device is a 93x33 character, ASCII text only graphical terminal with EGA color mode.

The formatting of each character, which occupies 16 bits, is as follows:

16 0

BACKGROUND_COLOR FOREGROUND_COLOR CHARACTER

4 4 8

Unfortunately, not all EGA colors are supported natively by ncurses. Those available are
as follows:

CODE NAME HEX SAMPLE

0x0 BLACK 0x000000

0x1 BLUE 0x0000AA

0x2 GREEN 0x00AA00

0x3 CYAN 0x00AAAA

0x4 RED 0xAA0000

0x5 MAGENTA 0xAA00AA

0x6 YELLOW 0xAA5500

0xF WHITE 0xFFFFFF

As an example, to produce the folllowing character with red text on a black background: R

The associated 16 bit code would be:

0000 0100 0101 0010 → 0x0452

To place the character at the top left corner, one would simply write 0x0452 to memory
location 0xC000, as such:

XOR RX, RX ;Clear RX
ADD RX, 192
LSL RX, 8 ;RX now contains 0xC000
ADD RA, 4
LSL RA, 8
ADD RA, 82 ;RA now contains 0x0452
STR RA, RX ;Store RA at RX

Assembler Directives

The assembler contains several directives that support the creation of variables and
offsets to the code in the ROM image. So far, the supported directives are:

.org n Must only be used on beginning of assembly source. Will shift the
assembled machine code n*2 bytes.

.data n Begins the data segment containing variables at position n*2.

.str x s Allocates (appends) a null-terminated string to the data segment with
name x.

Note that all variable names MUST be single words, ASCII, no spaces!

Memory Management Unit

The Memory Management Unit (MMU) operates as a watchdog between user commands
and the memory that they access. On the bus, the MMU occupies 4 Kilobytes of memory
from 0xD000 to 0xDFFF. In order to write to the MMU the CPU MUST be in supervisor
(ring 0) mode.

The MMU at is core is simply an array of objects, which can be considered tables, that
define which portions of memory belong to the supervisor. Each entry to the MMU has a
starting address, and a block size. As such, the formatting of an entry is as follows:

u_int16_t START_ADDRESS u_int16_t BLOCK_SIZE

The starting address references where the protected memory segment begins, and the
block size determines how many words the segment occupies. For example, if one wishes
to protect a segment of memory from 0x2000 to 0x2100, this means the starting adress is
0x2000 and the block size is 0x100. The entry is then: 0x20000100

If the CPU is in user mode, and an attempt is made to write to memory that the MMU has
defined as protected, system interrupt 0 (PRIVILEGE_VIOLATION) will be triggered.

Interrupt Handling

When an interrupt is triggered, such as a RESET or a software interrupt such as INT n, the
CPU will enter supervisor mode. There are several steps taken by the processor for such a
context switch, they are:

1. Processor enters Supervisor (Ring 0) mode
2. Base pointer switches to the supervisor stack at base address 0x1000
3. User frame pointer is pushed onto the supervisor stack, new FP is 0x0FFE
4. Flags register is pushed onto the supervisor stack
5. Program counter is pushed onto the supervisor stack
6. Program counter is loaded with the corresponding address from the Interrupt Vector

Table (IVT) at location 0x0000, starting the Interrupt Service Routine

At the end of the interrupt, the command RTI (Return from Interrupt) is issued, and the
processor performs the following actions:

1) Program counter is popped from the supervisor stack
2) Flags register is popped from the supervisor stack
3) User stack is returned to its previous state
4) Processor enters User (Ring 1) mode

Traditionally, the IVT resides in protected memory space and therefore cannot be modified
in ring 1 mode. The proper procedure for initializing the IVT is to load the addresses of the
ISRs into the IVT address space and then switch to ring 1, as seen in the following
example where we set the ISR for System Interrupt 1 to a function at address 0x0400:

ADD RX, 2 ;0x0002 is the IVT entry for S. INT 1
ADD RA, 4
LSL RA, 8 ;Load 0x0400 into RA
STR RA, RX
EOR RF, RF ;Exit supervisor mode

There are system reserved interrupts from 0 to 7. These interrupts occupy address space
0x0000 through 0x0010, after which the software interrupt vector table begins. For
example, a call to opcode INT 1 will jump to the location provided at IVT address 0x0026.
The following is a list of interrupts:

IVT Address Interrupt
0x0000 SYSTEM INT 0 PRIVILEGE VIOLATION
0x0002 SYSTEM INT 1 KEYBOARD PRESS
0x0004 SYSTEM INT 2 BUS ERROR
0x0008 RESERVED
0x000A RESERVED
0x000C RESERVED
0x000E RESERVED
0x0010 RESERVED
0x0012 - 0x0022 INT0 – INT 7 Software Interrupts

Registers

The NAME CPU has 11 internal registers, each 16 bits wide. They are:

RA, RB, RC, RD General purpose registers.

PC Program counter

FP User stack frame pointer

BP Base pointer (can be either user or supervisor base pointer.)

RX Index register

RF FLAGS register

RL Link register, used for RET instruction, set by CAL instruction

SP Supervisor stack frame pointer

When in user mode, registers PC, RF, and SP cannot be written to by any instruction They
are only wrteable in supervisor mode.

General Purpose I/O Ports

The NAME CPU employs memory-mapped I/O residing at address space 0xE000 to
0xFFFF. Currently, there is only one device mapped to this address space: the keyboard.

The keyboard occupies the first word of GPIO memory from 0xE000 to 0xE001, and this
word is set to the last key that was pressed. The format is as follows:

Unused ASCII Last Key Pressed
8 8

To toggle keybaord mode in the UI, press ESC.

