KEPLER USER GUIDE

Version 2.5

October 2015

Kepler<s:
plerss«,

]
-~

1 INErodUCLiON t0 KEPIET......oeii et e e et e e e ne e e e e enraeeeenns 8

O Lo T R G- o L= o PRSP 8
JiJ.0 FEATUIES et eaaeeaeaaasasaaasasaaasaaaaaeanns 11
O B0 Vol] {-Tor 11| o =TSN 13

1.2 HiStory Of the KePIEr PrOJECLc.uuuiiecueiiieciiee et seteee sttt e s itee e ssvae e e s sbae e e s sbeeeessbeeeassans 15

1.3 KePICT CONLITDULOIS.....c.vveeeeeiiiie ittt ettt ettt e s e e e st e e e st e e s s ebae e e s s btaeessstaeesssteeassans 16

O [V = C e o KPP SRPOPRPN 17

1.5 Participating in Kepler DEVelopmentoooecueeeiccieee et ecteeeeectee e ecree e esaree e s evteeaeeaes 19
T U L [To ol o XY =2 N 21
1.5.2 CONLLIDULING O KEPIEKeeeeeeeeeeeeeeeeeeeee et e ettt e e cee e et e e ettt a e s s e e e saseaaessseaaeas 21

1.6 REPOIEING BUGS ...ceeveeeeeieeiiiiieiiiiieeeeeeeteeeeeeteeeeeeeeeeee e ee e s e s es e s e s e e e e e e et e e e e e e s e e e e e e e e e s e s e e easaeseaeseseaeaesennns 22

O S [=T g Y=o Lo | [o USRI SPN 22

2 Installing and RUNNING KEPIETccccuriiieeeieiee ettt et e et e e e ee s 23

2.1 System ReqUIrEMENTS ..., 23

D A a1 =1 T Y = (T o] =T RS 23
2.2.1InStAIING ON WINGOWS..........vveeeeeeeeeeeeee ettt e ettt e st e e e s ttta e e e e tttaa e e staeaaeesranaeesnenas 23
2.2.3InStAllING ON MACINTOSA..........oeeeeieeeeeeeee et e st e et e e et e e e e ttaa e e e st e e e e srenaeesasenas 24
2. 2.4 INSEAIING ON LINUX oottt ee e ettt a e et a e e ettt e e e e e taaaeesssaaeesrsnaeesanenas 24

D B =L 1T Y= (=T o] 1= PSS 25

P o T UL T o VoY =T s - o PP 26
B Y =] o TV > o | N 27
B B Koo | 2o | SRR 31
2.4.3 Components, Data Access, ANA OULIINE ArEAS............eeeeeeeeeeccerveeeeeeeeeeiiiirereseeesisiiisssenenns 33
2.4.4 WOIKFIOW CONVAS ..coooevieeeeeiie et eette e eette ettt ae e e staa e e staa s e attaaessstaaessstaaessstnasesaseeas 38
2.4.5 NQVIGOTION AFEQ ..ottt ettt e et e e et e e st e e e s iaee e e eseeesnsaseeas 40

3 SCIENtific WOTKFIOWS........ et et e e e rn e e e e nnneeean 41

3.1 What is @ SCIientific WOIKFIOW?ooovcuiiiiiciiieecciee et estvee et e e st e s e saae e s s snsaeeessaaeee s 42

3.2 Components Of @ WOIKFIOWcoccuuueeieciiieieiiiieecciee e ectee ettt e s s stae e s ssaae e s s saaaeesssnsaeeessnsaeee s 43
3.2, DiF@CTOIS ettt ettt ettt et e et e e st e e et e e e s e e e e n s ee e e st e e e nnes 44
I Yo o] ¢ PP 45
3.2.3 COMPOSITE ACLOIS ..vvveeeeeeeieieeeetaassatsasasasssssasasssssssasssssssssssssssssssnsssnsssssssnsnnnsnnnnnnnnes 51
3L 204 POIES ettt ettt et e e e e e ettt e et e e e e ettt e e e e e e e e annnaneaaeas 51
3.2.5ChaNNEIS ANA TOKENS ...ttt e sttt e s vte s aata e s reaessaesseasarenassseeens 55
oI X D o o I I Y= SN 56
I g 1] o1 1o £ X3S 58
3.2, 8 POIOIMELELS....cccoeeeeeeee ettt ettt e e e e ettt e e e e e e ettt e e e e e e s s sasneeeaeeas 59

4 Working with Existing Scientific Workflows...........ccocceieiiiiiiiciiieccieecceee e 63

4.1 0OPENING WOTKFIOWS ...cooneiiiiieieee ettt et e e et e e et e e e bt e e e e abaeeeesassaeasanraeans 63
4.1.1 0pening LOCAI WOIKFIOWSuueeeeeeeeeeeeee et eetea ettt e e et e e saeaa e esana e e s 63

4.2 RUNNING WOTKFIOWS ...eeieiiiiie ettt e et e e et ae e e e aa e e e esasaeeaeensseeesennsaeans 65
4.2.1 RUNEIME WINGOW ...ttt ettt s sttt este e s stta e e s stte e s sssta e s sssteesssaseeas 65
4.2.2 RUN BUTTON ..ottt ettt ettt e e sttt e e e e e s e eee s 67
4.2.3 Running Workflows with Adjusted Parameters............cccoccveeeeeviuveeeciieaeesiieeeeciieaeessenns 68

0 AV, o Yo [y aViT o F= a0 T o i Fo LY ST 72
4.3.1 SUDSEItULING DOEQA SOLS....cccccveieeeetiiee et ettt e e ettt e e e ettt e e e ettt a e e e ttte e e e ssteaeessaeaeesseeas 73
4.3.2 Substituting Analytical COMPONENTES.........cccuveeeeeeiieeeeiieeeectee e eectee e es e e e sstaaeeesieaeesaeeas 79

4.4 SAVING WOTKFIOWSvviiiiiiiie ettt e e st e e e s saba e e e sntaeaesansbeaesnnnneeeen 81

4.5 Searching for Data and COMPONENTES......cuuiiiiiciiieeciiie et sare e s s sbae e e s snaeee s 82
4.5.1 Searching for AVQilable DAtAccccueeieeecuiiieeeiiieeecteeeeste e ssee e sste e e sste e e s ssee e e s 82
4.5.2 Searching for Standard COMPONENTSc.eeeeeecuieeeeeiiee et eeciee e sea e esta e e siea e 85
4.5.3 Searching for Components in the Kepler ReposSitory..........cccueeeevuveeeciiveeessiieeeesiireensnne, 85

5 Building Workflows with EXiStING ACLOIScuvvviieeiiieiiiiriiee et 88

5.1 Prototyping WOTIKFIOWS ...ccooiiiiieiiiiiee ettt e st e e s sbae e e s sbre e e s snraeaesans 89

I © o ToTo 1Y o T2 T B 1T ¢ Yot o) O U UR RPN 92
5.2.1 Synchronous DALAFIOW (SDF)........uueeeeeeeeeeeeee et eetee ettt ee e e e tae e e sta e e e ana e e snenas 96
5.2.2 Process NETWOIK (PIN)oeeeeeeeeeeeeeee ettt et eeettaaveeaa s eeeesvavaaaseeesssaasssresas 99
5.2.3 DiSCIEtE EVENT (DE)....uueeeeeeeeeeeeeeeeeeeeeeeeeeeseeeee e eeeetttateveeeeeeeesssasasesassseessssassssssssseessssssnes 100
5.2.4 CONLINUOUS TIME ...ttt ettt ettt e e et e e e e e e s 101
5.2.5Dynamic DALAFIOW (DDF)oooneeeeeeeeeee et ee et ecttae e ettt e e e et aa e e sataaaessssaaaenanes 104

5.3 USING EXISTING ACEOIS ..ceeiiiiiiiiiiiiiiiiitieeteee e ettt eeeeeeeeeeeeeeeseeeeee e e eeee e e e e e e e e e s eaeeeaeaeaeeeaeasaeararerannnanes 109
5.3.1 Using Actors from the Standard Component Library...............cccoueeeecvveeeecvveeesiviveaenanns 109
5.3.2 Instantiating Actors Not Included in the Standard Libraryccccovueeeecvveeeecvveeenns 110
5.3.3 Using the Kepler Analytical Component REPOSITOrYcoueeeecvueeeeciveeeeiiieeeesiiiveeenanns 113
5.3.4.5aViNg ACtOrs t0 YOUI LiDIQIYuuoiieeeiiieeeiieeeeiie et eetea e este e e e svtaa e ssitaa e ssseaa e e 115
5.3.5Importing ACtOrs S KAR FIl@Soeeeeeeeeeeeiiieeeetee e eetta et a e este e e sttaa s staa e ssreaa e e 116
5.3.6 ACLOI ICON FOMUIIESvveeeeieeeeeiiee ettt e et a e e et e e e sttt e e e s svtaaesssstaeasssssnaaesases 117

5.4 USING COMPOSITE ACLOIS ceeiiiiiiiiiiiiiieiee e ettt e e e e ettt e e e s s s reeeeesssssssrtaaeeeessssssssreeeeeessnns 127
5.4.1 Benefits Of COMPOSITE ACLOIS ...c..uueeieeeiieeeeiieeeeiee e eetea e esttee e st a e e stta e e sstaaessseaaeesses 128
5.4.2 Creating COMPOSIEE ACLOISuuvveeieieeeeeeiiieeete ettt e e ettt e e e e e ssssastaer e s e e s sssssseees 128
5.4.3 5aViNG COMPOSITE ACLOIS..c.cccooeiiiiiiieeeeecsiiiettte ettt e et e ettt e e s e s s sssssaeaeaesesssssassnes 134
5.4.4 Combining Models of COMPULALIONcccccveeeeeeiiieeeiiieeeciieeesseeeeesieaeessteeeessinaeesaies 135

5.5 Using the ExternalExecution Actor to Launch an External Application.......ccccceeveiveeeiinnenn. 135
5.5.1. Opening the HelloWorld APPlICOLiONceeeeeveeeieeiiieeecieeeeecieeeeecieeeessieeeeeciaae e 135
5.5.2.0P€NING O LOCAI BIOWSELooeeeteeeeeeeieeeeecteeeeecieeaeecteaaestttaaaessttaaaessvssaaessssaasessssaaaaanes 138
5.5.3 Opening the Maxent APPLICALIONcccccueeeeeecieeeeecieeeeeceeeee st e ee st e eesteaaeestaeaennes 139
5.5, 0PCNING Rttt ——————————————————————— 144

5.6 Iterating and LooPing WOIKFIOWSccuviiiieiiiie ettt 146
5.6.1 Iterating With the SDF Dir€CTOruueeeecueeeeeecieeeeecieeeeecieeeessteeaeestaaaeesttaaaessrsaaaennes 146
5.6.2 Using RAMP QNG REPEAL ACLOISeeveeeeeeeeeeeeeeeeeeeettte e e e e ee sttt taa e e e e s s ssaateeaaaeeesssnsnes 148
5.6.3 Using Arrays Instead Of It@rQtiNgccccueeeeecieeeeeiieeeeecieeeeecieeeeecteeeessiaeaessraaaennes 151
5.6.4 Iterating with Higher-Order COMPOSITES...........cccuueeeeciueeeeeiiieeeessieeeeesieeeeesieeeesiiaaaesanns 153
5.6.5 Creating FEEADACK LOOPScccccueeeeeeeeeee et eeceeeee e e ee e e e s ttaeaeesttaaaeestsaaaensssnaaennes 155

5.7 Documenting WOrKfIOWSeii ittt sere e e s saa e e e snaaeee s 156
5.7. 3 ANNOEATION ACEOIS ...ttt ettt e st e e e e s 157
5.7.2 DOCUMENTALION IMENUccccooeiiiiiiiieeeeeeee ettt e e e 157

5.8 DebugEING WOIKFIOWSoiiiiiie ettt e e e e sea e e s satae e e e nnaeee s 157
5.8.1 ANim@ting WOIKFIOWScc...vveeeeiiie ettt ettt e sttt e ettt e e e e staa e e s staaaessraaaaeeanes 158
5.8.2 EXCEOPLIONS vttt s bbb bnbnbnbnbabanes 158
5.8.3 Checking SYStem SETLINGS........ccccvueeeeeeeeee e ettt eetea e s ctee e e st e e e sttt e e e srtaa e e sseaaeeeases 159
5.8.4 LiStening t0 tRe Dil@CtONccoccueeeeeeieeeeesieeeeecieeeeecieeeeestae e e e ctae e e s sttaesesssaeaessseaassines 160

5.9 Saving and Sharing WOTKFIOWSoiiiciiiiieiiieecciee ettt er e e saaae e e s saaeeen 161
5.9.1 Saving and Sharing Your Workflows as KAR Or XML Fil€S...........ccccuueeevuveeeecveeeesiiiveannanns 161
5.9.2 Opening and Running a Shared XML WOrKfIOW...............ccccveeeeecveeeeeiiieeeeiiieeeesciveeeanns 162

6 WOrking With Data SELS.......cooiccuiiiiecieie ettt e e re e e e e rn e e s e e ee e e eanreas 165

oI R D =) = Yol 0] £ TP PP PP PPPPPPPPPPPPPPPPPRY 165
6.2 Using Tabular Data Sets with Metadata.......cccccevvciiiiiiciiie e 166
6.2.1 VIieWing MELAAGLQc.uueeeeeiiiieeeiie et eeetee ettt e et e e e s tte e e s sttaaessstaeessseaaessseeas 175
6.2.2 Outputting Data for Use in @ WOIKFIOWueveveuieeeesiiiieeecieeeeiee et 175
6.2.3 QUErYING MELAAALAccccueveeeeeiiieeeetee e eeee ettt e st e e e s eee e e s stee e e s ssta e e e saseeaesnaseeas 178
6.3 Using Tabular Data without Metadata.........cceeviriiiiiiiiiiie e 180
6.3.1 Comma- Tab-, TexXt-Delimited Fil@S..............cooouueen 181
6.3.2 Accessing Data from G WEDBSITEoceecuveeeeeeieeeeiieeesceeeesteeeeetcaeaeeseaaeesreaaeesrenas 183
6.4 Accessing Data Access Protocol (DAP) SOUICES........cceucuiieeeiiieeeecireeeecireeeecteeeeestveeeesnaeee s 184
6.5 Accessing Data from DataTurbing SEIVEIScccccuiieiiiiiie e et e e s aaeee s 186
6.6 USING FTP ..eeeiiiieiiiee ettt ettt ettt e st e e sa e e sate e et e e sabeeebaeesabeesabaeesabeesaseesnsaeesnseeenseean 188
6.7 Using Data Stored in Relational Databasesccccveeieiiieeieciiee e et 189
6.8 Using Spatial and IMage Data.......cueeiieciiieieciiie ettt eerr e e saa e e e e sabae e e snnaeeean 192
6.8.1 WOrking With IMQQES.........ccoeeueeeeeeieeieeeseeeeeceteeeeecteeeetttea e e e tee e e e ssaaaeesssaaeessesaeensenas 193
6.8.2 Working With SPAtiQl DALQ..........cccccuveeeeeeeeeeeeeeieeeeceeeeseeeeeettee e e e saa e e e saeaaeesrenaeesrenas 196
6.9 Using Gene and Protein SeqUENCE Data.......c..eeeeeciiieieiiiie et e e e 200
7 Using Remote Computing Resources: The Cluster, Grid, and Web Services................... 202
7.1 Data Movement and ManagemMeENT......c..eeeiecuiiieeeiiiee e eciee e e ecrre e e esre e e e e saraeeeesabaeeeeennaeeean 203
7.1.1 Saving and Sharing Data on the EQrtAGrid................ccccouveveeeiveeeesiiireesiiieeesiieseesiienen, 203
A B Y -Tol) (=X 6o o) VA oy) U 205
YA B R €14 1o | I =P UPUU 207
7.1.4 Storage ReSOUICE BroKEr (SRB)oecueeeceeeeeieeeeeeeeeseeeeteestaeetteaesvaestaassseaesseaeseas 210
7.1.5 Integrated Rule-Oriented Data System (IRODS)...........cccueeeceeecvereeiieesieesiieeecieesieeenens 215
7.2 ReMOLE SErViCe EXECULION ..ottt e e e e s s s sasbeeeeeeeeeas 216
7.2.1 USING WED SEIVICES ...ccocuveeeeeeiiieeseieieeeeiteeeesttaesttteaesattaassassaaasssseaasssssesasasssesesssssesanas 216
7.2.2 USING REST SEIVICES.....uuuevivviieeeeeesesiiiieeeeeeessessitttaeeesssssssittesssesssssssstssssssssssssssssesesssssnnns 220
7.2.2 USING SOAPIAD SEIVICES.......cccccueeeeeeeieieeeeeieeettteeestta e ettt e ettaa e s stseaassssesasassesasssseaanas 221
7.2.3 USING OPAI SEIVICES ..ot e ettt e e st e e et a e e ettt e e e ssassaaessssssaensssssaenines 224
/30 Lo o BT o] 4 111 [o ISR 226
7.3.1 CIUStEr JOB SUBIMUSSIONcc..vveevieeeiieeie et eeee et st e s tta st esteaesataessseasssaaessseasareaesaseen 226
7.3.2 Gritl JOB SUBIMUSSIONvveeiieetieeeee e ettt ettt e s tte st e st e e sataassseasssaaessseasareaenseen 228
8 Mathematical, Data Analysis, and Visualization Packages...........cccccoveevvcvveieccnieeeeennee, 234
8.1 Expressions and the EXPression ACTOr ... iciiee ettt e e e e e aae e e e nreee s 234
8.1.1 The EXPresSioNS LANGUOGEceeeccueeeeeeeieeeeeieeeeeieeeeestesaeesiaaaaesitasaeesisssaeesissnaessasenas 234
8.1.2 EXPressions QNd PAIQMELEIScoueecuuueeeeeaeeeeeceiieieeaaaeessciitteeaaaeessssssasesasasesssisssnenaes 247
8.1.3 Expressions and POrt PAIAMELEISueeeiieeeeecciieeeaeeeeeeciteteeaaeeesssisteeaaaaeesssssassneaaans 247
8.1.4 Expressions and StringG PAIAMELEIS...........eeuueeeeeeeieeeeeeeeeeeeciiteteeaaeeessscaeeaaaaeessssssssenaans 249
8.1.5 TNE EXPIESSION ACLON c..ceeeeneeeeeeee ettt ea e e e e ettt e e e e e s e sttt e e e e e essssassseaaaaeeassssssnenaans 249
8.2 Statistical Computing: Kepler and R..........uuiiiiiiii ittt e e e e nrrre e e e e 252
B AV o Lo L 2 OO PP PUPPPPPI 252
B.2.2 INSEAIING R oottt ettt e e ettt e e e et e e e ettt e e e st e e e st e e e e atta e e e eraaaeenarees 253
8.2.3 USESUI R ACLOIS ...eeeeeeee ettt e ettt e ettt e e ettt a e e e tta e e e s tta e e e ssaaasesstaaeesssteaeenarenas 253
8.2.4 WOIKIiNG WIth R ACLOIS ..c...evveeeeeeee ettt eete e ettt e e e e tte e e et taa e e e attea s e sstaaeessanasenarenas 255
8.3 Statistical CoMPULING: MATLABoi ittt e e e e e e rar e e e e aea e e e ssabaeeesnnsaeeean 266
8.4 Image Manipulation: IMAZEJcoccuuiiiieiie e e e e e e sar e e e s raaaeee s 269
8.4.1 Intro to Image) and the IMAGES ACLOrcccccuveeeeeeeeeeeeiee e esctea e esea e scea e 270

BN U TR 1Y (o [ol 0 1 Vot (o RO 277

8.5 Spatial Data: Geographic Information Systems (GIS)cceeeceeeviierciieeiie e e 279
8.5.1 Masking a Geographical Area with the ConvexHull and CVToRaster Actors.................. 279
8.5.2 Geospatial Data Abstraction Library (GDAL) ACLOISccuveeceeecieresieeeiieesiieeeiesesaeann 281

9 Domain SPecCific WOIKFIOWS..........cooiiieieeeeceee ettt e 285

L I 61 T-1] 1 1 VPSPPI 285

L I ol [o PSPPI 286

LB A CT=Te) oo | RSP RP 288

LR/ W\Y, Lo) [=TolV] o Tgl 1o] Lo o VRS 290

LR O ol=e Iy oo o] o] £ SRS 291

L o 1Y) (oo =1 1 TR 292

AppendixX A: Creating NEW ACTOISococvviiriiee et eeearreeeee e e s s e eaabaraeees 294

A.1 Building a Custom Actor Based on an EXiStiNg ACLOrc..ueeeecvueeeeeciieeeeccieeeeecieeeeecveea e 294

A.2 Creating a New Actor by Extending @ JAVA ClASSccccvueeeeeciiieeeecieeeeccieeeeecieeeeecvnee e 296
A.2.1 COAING O NEOW ACLON ...ttt ettt e ettt e e ettt e e et e e e sasaaessassasasassasasassenanas 296
A.2.2 COMPIIING G NEW ACEON ..ottt stte sttt e seesstteesste e s ssteesseessseasssanesasesensses 307

A.3 Sharing an Actor: Creating @ KAR Fileccoouueiiiiiiiiieieeeeeee ettt e 307
W I 1= 1Y o T T =2 o L= PSR 307
Y I 1= Y 101 I o =P 308

ApPEeNndiX B: MOAUIEScociieeceeecee et e s e e eanes 309

B.1 The MOdUIE MONGAGEScccccuueeiieciiieiecieie e ecttte e eeitee e sttt e e s stre e e e sstaeesssataeeessnsseeessssaeeesssseeen 309

B.2 DEVEIOPING MOAUIEScccccuveeiieiiie ettt eettte ettt e st e e et e e st e e e s sataeeessasreeesnnsseee s 311

Appendix C: USING R iN KEPIEIooeeee et 313

(O [K o] [T N - PRSP 313

C.2 A Brief OVEIVIEW Of Ruoooeeiiiee ettt ettt e e ettt e e s st e e s s tte e e e s bte e e e sbtaeessbtaeessntaeassnns 313
C.2.1 DOLA OBJECLSvveeeeeeeeeeeeeeee ettt e ettt e ettt e e ettt e e e st e e e st e e e s ssaaasaassteaaessseeasenasenas 315
C.2.2 FUNCLIONScoeeiieeeeeee ettt ettt s e e et e e st e e ettt e e s aseeeesnseeeensseeeennseeas 316
C.2.3 FUITNEI RESOUICESveeeeeieeeiieeeiieeeiet sttt et e stea et e st e e sstaessesessseesaseasasesesseaeans 316

C.3 TRE REXPIESSION ACLOL ...eeeoevveeeeetieee ettt e eecttte e et e e s e ettee e s sbteeessbteeessbteeessbtaeessstaeeesassaeesanns 316
Co3 L INPULS ettt e e e e eeeeeeee e e e e e e e e e e e e eeseeaeeseeasasaaasasesssasasasasasssasssassannens 317
C.3.2 OULDULS ..ottt ettt ettt et ettt e st e abe e s bt e sbtsesabeaesteenaseasbenesasesnans 320

(@I [o T o | [T o T D o [PRSP 324
CA. 1 INPULEING DALQ......c.cccoeoeeeeeeeeeeeeeeeee ettt ettt ettt et e et eaeees 324
C.4.2 OULPULLING DQTQ.....c.cccceceeeee oottt ettt ettt e et e e et et eaeeeas 340

C.5 Example R SCripts GNd FUNCLIONScoeeecuueeeeecieeeeeiieeeeecieeeeectteeeeectteeeeeeateeessessaeeesseaeasanns 342
C.5.1.5impPle LIN@AT REGIESSIONcceeeeeeeeeeeeeeeeeeeeteeeee e e e ettt e e aeessstsstaaaaaeeesssssenaaaaeaaaas 342
ORIV > o T (ol = Lo 1 1 o [P 344
(ORI I [T Lo [A Y e 1 Y ok TR 345
O BC] D N o (o 41 [T SN 346
C.5.5 Biodiversity and Ecological Analysis and Modeling (BEAM)...........c.ccoueeecvceeeeecieraeaannen. 347
C.5.6 RANAOM SAMPIING ..coconnneeeeeeeeee ettt e e e e ettt e e e e e e ettt a e e e e e e ssssssaaaaaeeaaas 350
C.5.7 CUSTOM REXPIESSION ACEOIS...ccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e eeeeeeeeeeeeeeeeeeeeeeeeeseesssasssessssnnennens 351

(€] (o TLY 1 SRR 364

Chapter 1 — Introduction to Kepler

1 INTRODUCTION TO KEPLER

Scientists in a variety of disciplines (e.g., biology, ecology, astronomy) need access to scientific data and
flexible means for executing complex analyses on those data. Such analyses can be captured as scientific
workflows in which the flow of data from one analytical step to another is captured in a formal workflow
language. The Kepler project’s overall goal is to produce an open-source scientific workflow system that
allows scientists to design scientific workflows and execute them efficiently either locally or through
emerging Grid-based approaches to distributed computation.

1.1 WHAT IS KEPLER?

Kepler is a software application for the analysis and modeling of scientific data. Using Kepler’s graphical
interface and components, scientists with little background in computer science can create executable
scientific workflows, which are flexible tools for accessing scientific data (streaming sensor data, medical
and satellite images, simulation output, observational data, etc.) and executing complex analysis on the
retrieved data (Figure 1.1).

Chapter 1 — Introduction to Kepler

&l
x|

['K. il IC-rogsan 20F bes Kaplor domos IENAIGARP_SingleS pocies_BostRulosat IV sl
Fle Edt Yew ‘Wykfiow Took Wndos Melp

@@ Q[P 10]@]= =15 ¢

| Components © Data Outhire :

Search Companents Q
a Saareh)

Aty aes o £ .
ALwralrmiry srupes BEFPLER + A ol g

Al Owzologies and Folder
& ngribs Faptns

[L T

[=
¢ Mepiinis _mephite_Mergedfeiol asc - .g’g
[THSE0 pieaks, $3-bit T073F

0 pepuits fourad.
=¥ =
L
-
. w
e % »

| Eamsubion Frit

FIGURE 1.1: A SCIENTIFIC WORKFLOW (GARP_SINGLESPECIES_BESTRULESET-IV.XML) DISPLAYED IN THE KEPLER INTERFACE. THIS
WORKFLOW PROCESSES SPECIES OCCURRENCE DATA TO CREATE AN ECOLOGICAL NICHE MODEL.

Kepler includes distributed computing technologies that allow scientists to share their data and workflows
with other scientists and to use data and analytical workflows from others around the world. Kepler also
provides access to a continually expanding, geographically distributed set of data repositories, computing
resources, and workflow libraries (e.g., ecological data from field stations, specimen data from museum

collections, data from the geosciences) (Figure 1.2).

Chapter 1 — Introduction to Kepler

SDF Director

ImageJ

R_linear_regression

T LR _hnear _regresston. prg Zﬁﬁ
[UTTA T peoets, B-al, TI5H]

455
1
i

454
e
o
e

BaRO
P
L

FIGURE 1.2: A WORKFLOW (EML-SIMPLE-LINEARREGRESSION-R.XML) THAT PERFORMS AND PLOTS A SIMPLE LINEAR REGRESSION
ON A METEOROLOGICAL DATA SET STORED REMOTELY ON THE EARTHGRID AND ACCESSED VIA A WORKFLOW ACTOR.

|ll

The Kepler system aims at supporting very different kinds of workflows, ranging from low-level “plumbing”
workflows of interest to Grid engineers, to analytical knowledge discovery workflows for scientists (Figure
1.3), and conceptual-level design workflows that might become executable only as a result of subsequent
refinement steps.?

1 Ludascher, B., I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E. Lee, J. Tao, Y. Zhao. 2005.
Scientific Workflow Management and the Kepler System, DOI: 10.1002/cpe.994

10

Chapter 1 — Introduction to Kepler

PM Direcior adir_log: HOME + Tspa/PIW™

SRevision: 1.1 %
$Author: xin §

ssionMumberList

ArayTeSequence

Gene Sequends Proces

Rurm Clus talw

Merge and Discard

Parsa Clustal

FIGURE 1.3: THE PROMOTER IDENTIFICATION WORKFLOW, A TYPICAL SCIENTIFIC KNOWLEDGE DISCOVERY WORKFLOW THAT
LINKS GENOMIC BIOLOGY TECHNIQUES SUCH AS MICROARRAYS WITH BIOINFORMATICS TOOLS SUCH AS BLAST TO IDENTIFY AND
CHARACTERIZE EUKARYOTIC PROMOTERS.

Kepler builds upon the mature Ptolemy Il framework, developed at the University of California, Berkeley.
Other scientific workflow environments include academic systems such as SCIRun, Triana, Taverna, and
commercial systems (Scitegic/Pipeline-Pilot, Inforsense/Accelrys).? For a detailed discussion of these and
other workflow systems, please see http://www.gridbus.org/reports/GridWorkflowTaxonomy.pdf.

1.1.1 FEATURES

Using Kepler, scientists can capture workflows in a format that can easily be exchanged, archived,
versioned, and executed. Both Kepler’s intuitive GUI (inherited from Ptolemy) for design and execution, and
its actor-oriented modeling paradigm make it a very versatile tool for scientific workflow design,
prototyping, execution, and reuse for both workflow engineers and end users. Kepler workflows can be

2 Altintas, 1, C. Berkley, E. Jaeger, M. Jones, B. Ludischer, S. Mock, Kepler: An Extensible System for Design
and Execution of Scientific Workflows, system demonstration, 16th Intl. Conf. on Scientific and Statistical
Database Management (SSDBM'04), 21-23 June 2004, Santorini Island, Greece.

11

http://ptolemy.eecs.berkeley.edu/ptolemyII
http://software.sci.utah.edu/scirun.html
http://www.trianacode.org/
http://www.taverna.org.uk/
http://accelrys.com/
http://www.gridbus.org/reports/GridWorkflowTaxonomy.pdf

Chapter 1 — Introduction to Kepler

exchanged in XML using Ptolemy’s own Modeling Markup Language (MoML). Kepler currently provides the
following features: 3

Access to Scientific Data: The Kepler component library contains an Ecological Metadata Language (EML)
ingestion actor (EML2Dataset) used to access, download, and preview EML described data sources. The
EML2Dataset actor allows Kepler to import a multitude of heterogeneous data, making it a very flexible
tool for scientists who often deal with many data and file formats. A similar actor exists for Darwin Core-
described data sets (DarwinCoreDataSource). In addition, Kepler’s ReadTable actor allows users to access
and incorporate data stored in Excel spreadsheets®.

Graphical User Interface: Users can build workflows via Kepler’s intuitive graphical interface. Components
are dragged and dropped onto a Workflow canvas, where they can be connected, customized, and then
executed.

Distributed Execution (Web and Grid Services): Kepler’s Web and Grid service actors allow scientists to
utilize computational resources on the net in a distributed scientific workflow. Kepler’s generic WebService
actor provides the user with an interface to seamlessly plug in and execute any WSDL-defined Web service.
In addition to generic Web services, Kepler also includes specialized actors for executing jobs on the Grid,
e.g., actors for certificate-based authentication (SProxy or GlobusProxy), Grid job submission (GlobusJob),
and Grid-based data access (GridFTP). Third-party data transfer on the Grid can be established using GridFTP
and SRB (Storage Resource Broker) actors.

Prototyping Workflows: Kepler allows scientists to prototype workflows before implementing the actual
code needed for execution. Kepler's Composite actor can be used as a “blank slate” that prompts the
scientist for critical information about an actor, e.g., the actor’s name and port information.

Searchable Libraries: Kepler has a searchable library of actors and data sources (found under the
Components and Data tabs of the application) with numerous reusable Kepler components and an ever-
growing collection of data sets.

Database Access and Querying: Kepler includes (JDBC-compliant) database actors, such as the DBConnect
actor, which emits a database connection token (after user login) to be used by any downstream DBQuery
actor that needs it.

Other Execution Environments: Supporting foreign language interfaces via the Java Native Interface (JNI)
gives the user flexibility to reuse existing analysis components and to target appropriate computational
tools. For example, Kepler (through Ptolemy) already includes a Matlab actor. Actors that execute R code
(RExpression, Correlation, RMean, RMedian, and others) are also included in the standard actor library. Any
application that can be executed on the command line can also be executed by the Kepler
CommandLineExec actor.

Data Transformation: Kepler includes a suite of data transformation actors (XSLT, XQuery, Perl, etc.) for
linking semantically compatible but syntactically incompatible Web services together.

3 Ibid.
4 The Excel spreadsheets must be saved as delimited text files.

12

Chapter 1 — Introduction to Kepler

Flexible Execution: Kepler workflows can be executed in batch mode from the command line or a web
service. Additionally, the BrowserUI actor can inject user control and input anywhere in a workflow via the
user’s Web browser.

Configurable Libraries: Users can configure their own actor libraries via a semantic type interface, or
download (and upload) additional actors from the Kepler repository.

1.1.2 ARCHITECTURE

Kepler builds upon the mature Ptolemy Il framework, developed at the University of California, Berkeley.
Ptolemy Il is a software framework developed as part of the Ptolemy project, which studies modeling,
simulation, and design of concurrent, real-time, embedded systems. Kepler 2.5 is based on Ptolemy 11 9.1.

Kepler inherits from Ptolemy the actor-oriented modeling paradigm that separates workflow components
(“actors”) from the overall workflow orchestration (conducted by “directors”), making components more
easily reusable. Through the actor-oriented and hierarchical modeling features built into Ptolemy, Kepler
scientific workflows can operate at very different levels of granularity, from low-level “plumbing workflows”
(that explicitly move data around or start and monitor remote jobs, for example) to high-level “conceptual
workflows” (that interlink complex, domain-specific data analysis steps). Kepler also inherits modeling and
design capabilities from Ptolemy, including the Vergil graphical user interface and workflow scheduling and
execution capabilities.

Kepler extensions to Ptolemy include an ever increasing number of components (called “actors”) aimed
particularly at scientific applications: remote data and metadata access, data transformations, data
analysis, interfacing with legacy applications, Web service invocation and deployment, and provenance
tracking, among others. Target application areas include bioinformatics, computational chemistry,
ecoinformatics, and geoinformatics.

PTOLEMY/VERGIL (A VERY BRIEF OVERVIEW)

Ptolemy I, developed at the University of California, Berkeley, is an open-source software framework
developed as part of the Ptolemy project. Ptolemy Il is a Java-based component assembly framework with
a graphical user interface called Vergil.

The Ptolemy project studies modeling, simulation, and design of concurrent, real-time, embedded systems.
The focus is on embedded systems, particularly those that mix technologies including, for example, analog
and digital electronics, hardware and software, and electronics and mechanical devices. The focus is also
on systems that are complex in the sense that they mix widely different operations, such as networking,
signal processing, feedback control, mode changes, sequential decision making, and user interfaces.®

5 Hylands, Christopher, Edward Lee, Jie Liu, Xiaojun Liu, Stephen Neuendorffer, Yuhong Xiong, Yang Zhao,
Haiyang Zheng, Ptolemy Overview,
http://www.ptolemy.eecs.berkeley.edu/publications/papers/03/overview/overview03.pdf

13

http://ptolemy.eecs.berkeley.edu/ptolemyII
http://ptolemy.eecs.berkeley.edu/
http://www.ptolemy.eecs.berkeley.edu/publications/papers/03/overview/overview03.pdf

Chapter 1 — Introduction to Kepler

Ptolemy Il takes a component-based view of design, in that models are constructed as a set of interacting
components. A model of computation governs the semantics of the interaction, and thus imposes a
discipline on the interaction of components.®

Ptolemy Il offers a unified infrastructure for implementations of a number of models of computation. The
overall architecture consists of a set of packages that provide generic support for all models of computation
and a set of packages that provide more specialized support for particular models of computation.

Examples of the former include packages that contain math libraries, graph algorithms, an interpreted
expression language, signal plotters, and interfaces to media capabilities such as audio. Examples of the
latter include packages that support clustered graph representations of models, packages that support
executable models, and domains, which are packages that implement a particular model of computation.”

The Vergil GUI is a visual editor, written in Java. Using Vergil, users can graphically construct and run
scientific workflows. For more information about Vergil, see the Ptolemy documentation.

MODELING MARKUP LANGUAGE (MOML)

Modeling Markup Language (MoML), the primary persistent file format for Ptolemy Il models, is an
Extensible Markup Language (XML) schema. It is intended for specifying interconnections of parameterized
components, and is the primary mechanism for constructing models whose definition and execution is
distributed over the network.®

The key features of MoML include:®

e Web integration: MoML is an XML schema intended for use on the Internet. File references are via URIs
(in practice, URLs), both relative and absolute, so MoML is equally comfortable working in applets and
applications.

* Implementation independence: MoML is designed to work with a variety of modeling tools.

¢ Extensibility: Components can be parameterized in two ways. First, they can have named properties with
string values. Second, they can be associated with an external configuration file that can be in any format
understood by the component. Typically, the configuration will be in some other XML schema, such as
PlotML or SVG (scalable vector graphics).

¢ Classes and inheritance: Components can be defined in MoML as classes which can then be instantiated
in a model. Components can extend other components through an object-oriented inheritance mechanism.

5 lbid.
7 1bid.
8 Ptolemy User Manual, http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.pdf
° Ibid.

14

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.pdf

Chapter 1 — Introduction to Kepler

¢ Semantics independence: MoML defines no semantics for an interconnection of components. It
represents only the hierarchical containment relationships between entities with properties, their ports,
and the connections between their ports. In Ptolemy Il, the meaning of a connection (the semantics of the
model) is defined by the director for the model, which is a property of the top level entity. The director
defines the semantics of the interconnection. MoML knows nothing about directors except that they are
instances of classes that can be loaded by the class loader and assigned as properties.

For detailed information about MOML and its syntax, please see the Ptolemy user manual, Chapter 7.

1.2 HISTORY OF THE KEPLER PROJECT

Kepler was founded in 2002 by researchers at the National Center for Ecological Analysis and Synthesis
(NCEAS) at University of California Santa Barbara, the San Diego Supercomputer Center (SDSC) at University
of California San Diego, and the University of California Davis as part of the Science Environment for
Ecological Knowledge (SEEK) and Scientific Data Management (SDM) projects.

The Kepler software extends the Ptolemy Il system developed by researchers at the University of California
Berkeley. Although not originally intended for scientific workflows, Ptolemy Il provides a mature platform
for building and executing workflows, and supports multiple models of computation.

Kepler has had many releases:

e Alpha, April 2005.

e Betal, June 2006.

e Beta 2, July 2006.

e Beta 3, January 2007.

e 1.0, May 2, 2008.

e 2.0.0,June 2010, major improvements to the GUI, modular design and KAR (Kepler Archive Format)
handling.

e 2.1.0, September 30, 2010.

e 2.2.0,June 14, 2011.

e 2.3.0,January 20, 2012.

e 2.4.0,April 5,2013.

e 2.5.0, October 28, 2015.

Kepler is an open collaboration with many contributors from diverse domains of science and engineering,
including ecology, evolutionary biology, molecular biology, geology, chemistry, computer science, electrical
engineering, oceanography, and others. Members from the following projects are currently contributing to
the Kepler project:

e SEEK: Science Environment for Ecological Knowledge

e SDM Center/SPA: SDM Center/Scientific Process Automation

e Ptolemy Il: Heterogeneous Modeling and Design

e GEON: Cyberinfrastructure for the Geosciences

e ROADNet: Real-time Observatories, Applications, and Data Management Network

e EOL: Encyclopedia of Life

e Resurgence

e CIPRes: CyberInfrastructure for Phylogenetic Research

e REAP: Realtime Environment for Analytical Processing

e Kepler/CORE: Development of a Comprehensive, Open, Reliable, and Extensible Scientific
Workflow Infrastructure

e CAMERA: Community Cyberinfrastructure for Advanced Microbial Ecology Research & Analysis

15

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html
http://www.nceas.ucsb.edu/#in_browser
http://www.nceas.ucsb.edu/#in_browser
http://www.sdsc.edu/#in_browser
http://ucdavis.edu/#in_browser
http://seek.ecoinformatics.org/#in_browser
http://sdm.lbl.gov/sdmcenter/#in_browser
http://ptolemy.eecs.berkeley.edu/#in_browser
http://seek.ecoinformatics.org/
https://sdm.lbl.gov/sdmcenter/
http://ptolemy.eecs.berkeley.edu/ptolemyII/
http://www.geongrid.org/
http://roadnet.ucsd.edu/
http://www.eol.org/
http://ocikbws.uzh.ch/resurgence/
http://www.phylo.org/
http://reap.ecoinformatics.org/
https://kepler-project.org/users/projects-using-kepler-1/kepler-core-vision-and-mission/
https://kepler-project.org/users/projects-using-kepler-1/kepler-core-vision-and-mission/
http://camera.calit2.net/

Chapter 1 — Introduction to Kepler

e bioKepler: A Comprehensive Bioinformatics Scientific Workflow Module for Distributed Analysis of
Large-Scale Biological Data

e WIFIRE: A Scalable Data-Driven Monitoring, Dynamic Prediction and Resilience Cyberinfrastructure
for Wildfires

e NBCR: National Biomedical Computation Resource

e BBDTC: Biomedical Big Data Training Collaborative

e |PPD: Integrated End-to-End Performance Prediction and Diagnosis for Extreme Scientific
Workflows

Contributing members jointly determine the goals for Kepler as well as contribute to the design and
implementation of the software system. We welcome contributions and encourage other people and
projects to join as contributing members. For more information about contributing to Kepler, please see
Section 1.5.

Some Kepler members receive support from various grants, including but not limited to: the National
Science Foundation under awards 0225676 for SEEK, 0225673 (AWSFLO08-DS3) for GEON, 0619060 for
REAP, 0722079 for Kepler/CORE, 1062565 for bioKepler, 0941692 for DISCOSci, and 1331615 for WIFIRE;
by the National Institutes of Health P41 GM103426 for NBCR and R25 GM114821 for BBDTC; by the Gordon
and Betty Moore Foundation award to Calit2 at UCSD for CAMERA; by the Department of Energy under
Contract No. DE-FC02-01ER25486 for SciDAC/SDM and DE-SC0012630 for IPPD.

Work was conducted with logistical support from the National Center for Ecological Analysis and Synthesis
(a Center funded by NSF Grant #DEB-0553768), the University of California Santa Barbara, and the State of
California.

The Center for Hybrid and Embedded Software Systems (CHESS) at UC Berkeley, is supported by Denso, IHI,
National Instruments, and Toyota, and was previously supported by Agilent, Bosch, General Motors,
Hewlett-Packard, HSBC, Infineon, Lockheed Martin, Microsoft, and Thales. The TerraSwarm Research
Center, one of six centers administered by the STARnet phase of the Focus Center Research Program (FCRP)
a Semiconductor Research Corporation program is sponsored by MARCO and DARPA. The iCyPhy Research
Center (Industrial Cyber-Physical Systems), is supported by IBM and United Technologies, and was
previously supported by The Multiscale Systems Center (MuSyC), one of six research centers funded under
the Focus Center Research Program, a Semiconductor Research Corporation program.

Ptolemy is supported by the Defense Advanced Research Projects Agency (DARPA) (TerraSwarm and
MuSyC, see above), the National Science Foundation under awards 1446619 (Mathematical Theory of CPS),
1329759 (COSMOI), and 0931843 (ActionWebs), and previous awards: #0720882 (CSR-EHS: PRET), and
#1035672 (CPS: Medium: Timing Centric Software) and previously by the Air Force Research Laboratory
under agreement numbers FA8750-08-2-0001 and FA8750-11-C-0023, the Army Research Laboratory under
Cooperative Agreement Numbers W911NF-07-2-0019 and W911NF-11-2-0038, and the Naval Research
Laboratory (NRL #N0013-12-1-G015).

1.3 KEPLER CONTRIBUTORS

The following people (in chronological order) have made contributions to the Kepler code and
documentation:

16

http://biokepler.org/
http://biokepler.org/
http://wifire.ucsd.edu/
http://wifire.ucsd.edu/
http://nbcr.ucsd.edu/wordpress2/
https://biobigdata.ucsd.edu/
http://hpc.pnl.gov/IPPD
http://hpc.pnl.gov/IPPD
http://chess.eecs.berkeley.edu/#in_browser
http://www.terraswarm.org/#in_browser
http://www.terraswarm.org/#in_browser
http://www.icyphy.org/#in_browser
http://www.icyphy.org/#in_browser
http://www.nsf.gov/#in_browser
https://www.collectiveip.com/grants/NSF:1446619#in_browser
http://chess.eecs.berkeley.edu/cosmoi#in_browser
http://chess.eecs.berkeley.edu/actionwebs#in_browser
http://chess.eecs.berkeley.edu/pret#in_browser
http://chess.eecs.berkeley.edu/ptides#in_browser
http://www.nrl.navy.mil/#in_browser
http://www.nrl.navy.mil/#in_browser
http://chess.eecs.berkeley.edu/spfsos#in_browser

Matthew Jones

Zhengang Cheng

Jing Tao
Dan Higgins

Tobin Fricke
Shawn Bowers
Timothy McPhillips
Jagan Kommineni
Kevin Ruland

Vitaliy Zavesov

Samantha Katz

Kirsten Menger-Anderson
Derik Barseghian

Ben Leinfelder

Sean Riddle

Mark Schildhauer

Sven Koehler
Madhusudan Gujral
Merve lldeniz

Anand Kulkarni

Tomasz Zok
Tianhong Song
Mai Nguyen

Chapter 1 — Introduction to Kepler

Chad Berkley
Efrat Frank

Steve Mock
Yang Zhao

Rod Spears
Laura Downey
Bing Zhu

Jenny Wang
Matthew Brooke
Zhije Guan

Tristan King

Edward Lee

Lucas Gilbert

Carlos Rueda

Aaron Schultz

Debi Staggs

Faraaz Sareshwala
Chandrika Sivaramakrish
Anatoly Loy

Manish Anand

Paul J. Morris
Shweta Purawat
Alok Singh

Ilkay Altintas

Bertram
Ludaescher
Xiaowen Xin

Christopher
Brooks
Werner Krebs

Wibke Sudholt
Nandita Mangal
John Harris
Oscar Barney

Norbert
Podhorszki
Josh Madin

Daniel Crawl
Nathan Potter
Jim Regetz
David Welker
Jianwu Wang
Daniel Zinn
Lei Dou
Gongjing Cao

Marcin
Plociennik
Michal Owsiak

Charles Cowart

Contributions to Kepler are welcome. Please see Section 1.5 for details on how to contribute. Thanks!

1.4 FUTURE GOALS

The Kepler project is an ongoing collaboration, and we will continue to refine, release, and support the
Kepler software. Our aim is to improve and enhance the Kepler scientific workflow system to yield a
comprehensive, open, reliable, and extensible scientific workflow infrastructure suitable for serving a wide

variety of scientific communities.

The goal of future Kepler development is to (i) enable multiple groups in a number of distinct disciplines to
easily create, support, and make available domain-specific Kepler extensions; (ii) better support those
crucial features that are needed by all disciplines; and (iii) provide for the wide range of deployment

scenarios required by different disciplines and distinct research settings.

17

Chapter 1 — Introduction to Kepler

More specifically, future goals include making Kepler:

Independently Extensible: Rather than enforcing conventions that might slow progress in the various
disciplines contributing to Kepler, we plan to further enable independent extensibility of Kepler while
making it easy to package domain-specific contributions in a way that ensures both the stability of the
overall system and clearly indicates what components are expected to work well together.

With the 2.0 release of Kepler, we have created a module system that allows us to separate Kepler base
system functionality from domain-specific extensions. We have divided Kepler into a set of mandatory
modules (the kepler suite); a set of extension modules that communicate with the kernel via well-defined
and generic extension interfaces; and a number of actor modules for distinct disciplines. We developed a
configuration management system to support downloading, installing, and updating the Kepler distribution
and a Module Manager for discovering and installing standard and 3rd-party modules and specifying
modules to be employed during execution. With this architecture, third-parties can now develop alternative
modules with additional capabilities suitable for particular science domains.

Consistently Reliable: Reliability for developers and users alike ensures that Kepler can be applied
confidently as dependable cyberinfrastructure. We are working to ensure run-time reliability (both for
when Kepler is used as a desktop research application and as middleware that other domain-specific
applications can build upon). Our approach of dividing Kepler into the Kepler kernel and extension set will
enable other development teams to freely develop new modules and actor packages as needed without
endangering the stability of the kernel, and even to replace standard extensions as needed.

Open Architecture, Open Project: We will disseminate plans, designs, and system documentation as we
develop them and provide mechanisms for suggestions and feedback throughout the course of the project.
We will also actively engage the user community and gather requirements, advice, and feedback on
priorities, both from those already committed to using Kepler (i.e., the Kepler “stakeholders”), and from
scientists who could benefit.

Comprehensive (End-to-End) System: We plan to widen the scope of Kepler by providing new, fundamental
enhancements that will benefit all user communities: enhancing Kepler with new and improved generic
capabilities for data, service, and workflow management. More specifically, we are working on new and
more comprehensive systems for:

o Data Management: We plan to support data management tasks in a generic way within the Kepler
framework so that all data management tasks (e.g., controlling and managing the flow of data into
and out of workflows, comparing and visualizing data and metadata, converting data formats, and
managing data references) are handled transparently by the workflow execution framework rather
than by special-purpose actors.

e External Service and Grid Management: Currently, Kepler workflows that make extensive use of
external services generally use actor-oriented approaches for managing and accessing those
services. We are working to better enable the system to carry out computations on the optimal
set of computing resources at run time, based on resource availability and preferences; and to
make it easier for users to share and redeploy workflows in different environments. In addition,
we are working on integrated support for managing authentication and authorization information.

18

Chapter 1 — Introduction to Kepler

e Workflow Management: Our goal is for Kepler to provide comprehensive support for end-to-end
workflow management—from initial prototyping to workflow execution. We are working to make
the application aware of the scientific context in which workflows are being run, the flow of data
through and across successive workflows (as is common in scientific research), and the origin of
workflows. In addition, we will continue to improve support for common workflow management
tasks such as designing, storing, and validating individual workflows; organizing workflows, data,
and results within the context of a particular project or research study; and capturing and querying
the provenance of workflows and data. The Kepler workflow-run-manager and provenance
modules will provide a whole new suite of functionality for managing workflows.

Please see the Kepler/CORE Web page for detailed information about specific features that are under
development, and/or the Bug base for more features that we are adding and improving in the coming
months.

1.5 PARTICIPATING IN KEPLER DEVELOPMENT

Kepler is an open source cross-project collaboration, and we welcome contributions of all types.
Participants can get involved by joining a mailing list (either for developers or users), participating in IRC
chat, or getting a Kepler SVN account to view or contribute to the Kepler source.

Individuals can join the kepler-dev mailing list to interact with the rest of the development team or the
kepler-users mailing list to request and/or exchange user support. The current list of subscribers is available
only to list members and can be viewed (after subscription) at the mailing list info page.

Many of the Kepler developers use IRC to chat on a daily basis. We use the “#kepler” channel on
irc.ecoinformatics.org:6667 for our discussions. More details on how to use IRC can be found on the SEEK

IRC page.

The code for Kepler is managed in an SVN repository. Read-only access is open for all. If you need to write
to the SVN repository, please visit https://kepler-project.org/developers for instructions. You can use any
SVN client to access the Kepler repository.

To check out and build the Kepler source code, you will need to have Java 7 or later, Ant 1.8.2 or later, and
SVN 1.6 or later. For development with Eclipse, these have been tested with Eclipse Ganymede and SVN
1.6, with Subclipse 1.4.7.

DOWNLOADING THE BUILD

To download the latest version of the build from the repository, you will want to create a new directory and
then execute the svn checkout (co) command, as in the following example.

mkdir <modules.dir>

cd <modules.dir>

svn co https://code.kepler-project.org/kepler/trunk/modules/build-area
cd build-area

19

http://www.kepler-project.org/users/projects-using-kepler-1/kepler-core/
https://projects.ecoinformatics.org/ecoinfo/projects/kepler-12/issues
http://lists.nceas.ucsb.edu/kepler/mailman/listinfo/kepler-dev
http://lists.nceas.ucsb.edu/kepler/mailman/listinfo/kepler-users
http://seek.ecoinformatics.org/Wiki.jsp?page=IRCChannels
http://seek.ecoinformatics.org/Wiki.jsp?page=IRCChannels
https://kepler-project.org/developers
http://www.onlamp.com/pub/a/onlamp/2005/03/10/svn_uis.html

Chapter 1 — Introduction to Kepler

<modaules.dir> is the name of the directory where the build will be stored, as well as the modules you will
be working on. A good name for this folder might be something like kepler.modules.

RETRIEVING KEPLER AND PTOLEMY

Now that the build system has been downloaded, you will use the build system to retrieve Kepler and
Ptolemy.

First, you need to decide whether you would like to work with the latest, likely unstable development
version of Kepler (referred to as the “trunk” of Kepler), or whether you would like to work with an official
stable release, such as 2.5.0.

To work from the trunk, issue the following command:

ant change-to -Dsuite=Kepler

To retrieve Kepler version 2.5.0:

ant change-to -Dsuite=kepler-2.5.0

Some explanation of what the ‘ant change-to’ command is doing:

What is actually first retrieved is something known as a suite. A suite contains information on where to
retrieve the desired versions of Kepler and Ptolemy. This is used by the system to retrieve the appropriate
versions of Kepler and Ptolemy.

By default, when you type ‘ant get -Dsuite=kepler’, you are making a request for a particular suite named
“kepler”, which has information on how to download Kepler and Ptolemy.

A final note: when you do ‘ant get -Dsuite=<suite.name>’, you retrieve not only the suite, but all the
modules that are associated with the suite as well. If you want to retrieve a single module instead of a suite
of modules, type ‘ant get -Dmodule=<module.name>’ instead.

NOTE:

If you are behind a firewall and do not have access to port 22 and you are working off the trunk, then the
download of Ptolemy will fail when you execute the ‘ant change-to -Dsuite=kepler’ command. In this case,
you must download Ptolemy manually using the following command:

svn co https://source.eecs.berkeley.edu/svn/chess/ptII/trunk <kepler.modules>/ptolemy

20

Chapter 1 — Introduction to Kepler

RUNNING KEPLER

Now that you have downloaded the Kepler Build System and have used it to retrieve the Kepler version that
interests you, you are ready to run. Just type:

ant run

Note that it would be possible for a new user to get started without having to enter a command between
get and run by chaining these commands in ant. So, for example, if you wanted to download and run Kepler
from the trunk all in one command, you could type:

ant change-to -Dmodule=kepler run

1.5.1 UsING EcCLIPSE

See Kepler and Eclipse for more detailed instructions. However, in most cases, these instructions should be
adequate.

1. Type .

2. Open Eclipse in a new or existing workspace.

3. Choose Under the folder, choose . Click
4. Click right next to the field. Go to and select the <module.dir>

directory where you saved the build and downloaded your modules. Click
5. The projects that were generated will be automatically detected by Eclipse. Click on
6. KarDoclet.java uses doclet code from tools.jar. If you are using Java 7 on a non-Mac OS X
machine, you will need to add tools.jar to the list of external jars:
Windows -> Preferences -> Java -> Installed JREs
Select the default JRE -> Edit -> Add External Jars -> [Path to JDK]/lib/tools.jar
If you have the Subversive Eclipse plugin installed, you can select the newly generated projects, right click
on them, choose “Share Projects”, and follow the instructions in the wizard to set up the connection to the
Kepler repository (https://code.kepler-project.org/code/kepler/). Repeat the process for the ptolemy
project using the Ptolemy repository (svn://source.eecs.berkeley.edu/chess/ptll/).

If you have the Subversive plugin installed, see Updating the local copy of the Kepler sources.

To run Kepler, create a new Java Application Run Configuration: with project: loader, Main class:
org.kepler.Kepler

These instructions and further reference details, including how to run a workflow from the command line
and setting system properties, can be found at: Kepler Build System Instructions and Overview.

1.5.2 CONTRIBUTING TO KEPLER

In order to contribute directly to Kepler, one must use a named account. This enables the user to make
changes to the web site or the SVN repositories. In general, people with write-access should only make

21

https://kepler-project.org/developers/reference/kepler-and-eclipse
http://www.eclipse.org/subversive/
https://code.kepler-project.org/code/kepler/
https://code.kepler-project.org/code/kepler/
https://source.eecs.berkeley.edu/svn/chess/ptII/
https://kepler-project.org/developers/reference/kepler-and-eclipse#10-updating-the-local
https://kepler-project.org/developers/teams/build/documentation/build-system-instructions#downloading-the-build

Chapter 1 — Introduction to Kepler

changes to modules with which they are directly involved or that they have discussed with the relevant
Infrastructure and Development Teams. Please be sure you have contacted the appropriate Team(s) before
you request an account.

To request a named account, send an email to pmc@ecoinformatics.org with your name, association, and
a brief description of your project needs.

1.6 REPORTING BUGS

The Kepler project uses Redmine for reporting bugs as well as for sharing future development plans. Please
register yourself by creating a new account to participate in future plans, bug reports, and updates.

Redmine is one example of a class of programs called “Defect Tracking Systems” or, more commonly, “Bug-
Tracking Systems”. Defect Tracking Systems allow individual or groups of developers to keep track of
outstanding bugs in their product effectively.

1.7 FURTHER READING

As part of the outreach effort for Kepler, we have produced a variety of documents and publications.
Publications of interest include:

e Scientific Workflow Management and the Kepler System, B. Ludascher, I. Altintas, C. Berkley, D.
Higgins, E. Jaeger-Frank, M. Jones, E. Lee, J. Tao, Y. Zhao, Concurrency and Computation: Practice
& Experience, 18(10), pp. 1039-1065, 2006.

Additional publications are listed on the Kepler web site at http://kepler-project.org.

Independent publications of the collaborating projects can be reached at their main websites: SEEK,
SDMCenter-SPA, KBIS-SPA, Ptolemy, GEON, bioKepler, and CAMERA.

22

mailto:pmc@ecoinformatics.org
https://projects.ecoinformatics.org/ecoinfo/projects/kepler-12/issues?set_filter=1
https://identity.nceas.ucsb.edu/identity/cgi-bin/ldapweb.cgi?cfg=account
http://www.sdsc.edu/~ludaesch/Paper/kepler-swf.pdf
http://kepler-project.org/
http://seek.ecoinformatics.org/Wiki.jsp?page=SEEKDocuments
http://sdm.lbl.gov/sdmcenter/
http://kbi.sdsc.edu/
http://ptolemy.eecs.berkeley.edu/
http://www.geongrid.org/
http://www.biokepler.org/publications
http://camera.calit2.net/

Chapter 2 — Installing and Running Kepler

2 INSTALLING AND RUNNING KEPLER

2.1 SYSTEM REQUIREMENTS

Recommended system requirements for Kepler:

e 300 MB of disk space

e 512 MB of RAM minimum, 1 GB or more recommended

e 2 GHz CPU minimum

e Javall?

e Network connection (optional). Although a connection is not required to run Kepler, many
workflows require a connection to access networked resources.

e Rsoftware (optional). R is a language and environment for statistical computing and graphics, and
it is required for some common Kepler functionality.

Java 1.7 or later is required. It can be obtained from your system administrator or online at:
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

Kepler has many actors that utilize R, so installing R is recommended: http://www.r-project.org/.

2.2 INSTALLING KEPLER

Kepler is an open-source, cross-platform software program that can run on Windows, Macintosh, or Linux-
based platforms. Instructions for each platform are contained in the following sections.

2.2.1 INSTALLING ON WINDOWS

Follow these steps to download and install Kepler for Windows.

Java 1.7 or later is required. It can be obtained from your system administrator or online at:
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

Kepler has many actors that utilize R, so installing R is recommended: http://www.r-project.org/.

1. Click the following link: https://kepler-project.org/users/downloads and select the Windows
installer.

2. Save the install file to your computer.

3. Double-click the install file to open the install wizard. We recommend that you quit all programs
before continuing with the installation. You can cancel the installation at any point via the Quit

23

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.r-project.org/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.r-project.org/
https://kepler-project.org/users/downloads

Chapter 2 — Installing and Running Kepler

button in the lower right corner of the installer. To proceed with the installation, click the Next
button.

4. Click the Next button. An information screen containing notes about the application appears. Click
Next once you have read through the information to select an installation path. By default, the
software will be installed in C:\Program Files\Kepler-x.y. The installer will create the target
directory if it does not yet exist. If the directory already exists, the installer will confirm the location
before possibly overwriting an existing version.

5. Choose the packs to install. Once you have selected an installation, click the Next button.

6. The Kepler installer displays a status bar as the installation progresses. If Kepler has previously
been installed on the system, the installer will overwrite any existing cache files.

Once the installation is complete, a confirmation screen opens. An 7a
uninstaller program is also created in the installation location. A Iﬂ(
Kepler shortcut icon will appear on your desktop. Kepler

2.2.3 INSTALLING ON MACINTOSH

The Mac installer will install the Kepler application on your system. Java is included as part of the Mac OSX
operating system, so it need not be installed.

Kepler has many actors that utilize R, so installing R is recommended: http://www.r-project.org/.

Follow these steps to download and install Kepler for Macintosh systems:

Click the following link: https://kepler-project.org/users/downloads and select the Mac install file.
Save the install file to your computer.

Double-click the install icon that appears on your desktop when the extraction is complete.
Follow the steps presented in the install wizard to complete the Kepler installation process.

i

A Kepler icon is created under /Applications/Kepler-x.y. The icon can be dragged and dropped to the
desktop or the dock if desired.

2.2.4 INSTALLING ON LINUX

The Linux installer will install the Kepler application.

Java 1.7 or later is required. It can be obtained from your system administrator or online at:
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

24

http://www.r-project.org/
https://kepler-project.org/users/downloads
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 2 — Installing and Running Kepler

Kepler has many actors that utilize R, so installing R is recommended: http://www.r-project.org/.

Follow these steps to download and install Kepler for Linux:

1. Click the following link: https://kepler-project.org/users/downloads and select the Linux install file.

Save the install file to your computer

3. Double-click the install file to open the install wizard. If double-clicking the install file doesn’t work
on your system, you may run the command java -Jjar installer-file-name in a
terminal to open the install wizard. We recommend that you quit all programs before continuing
with the installation.

4. The Kepler installer displays a status bar as the installation progresses. If Kepler has previously
been installed on the system, the installer will overwrite any existing cache files.

N

2.3 STARTING KEPLER

To start Kepler on a PC, double-click the Kepler shortcut icon on the desktop. Kepler can also be started
from the Start menu. Navigate to Start menu > All Programs, and select “Kepler” to start the application.
On a Mac, the Kepler icon is created under Applications/Kepler-x.y. The icon can be dragged and dropped
to the desktop or the dock if desired.

To start Kepler on a Linux machine, use the following steps:

1. Open a shell window. On some Linux systems, a shell can be opened by right-clicking anywhere on
the desktop and selecting “Open Terminal”. Speak to your system administrator if you need
information about your system.

2. Navigate to the directory in which Kepler is installed. To change the directory, use the cd command
(e.g., cd directory name).

3. Type ./kepler.sh torun the application.

The main Kepler application window opens (Figure 2.1). From this window, you can access and run existing
scientific workflows and/or create your own custom scientific workflow. Each time you open an existing
workflow or create a new workflow, a new application window opens. Multiple windows allow you to work
on several workflows simultaneously and compare, copy, and paste components between workflows.

To start Kepler from the command line (optionally loading a workflow), use the following command:

kepler.sh [-nosplash] [workflow.xml | workflow.kar]

-nosplash start without showing splash screen.

On Windows, the executable is kepler.bat instead of kepler. sh.

To run a workflow XML from the command line:

25

http://www.r-project.org/
https://kepler-project.org/users/downloads

Chapter 2 — Installing and Running Kepler

kepler -runwf [-nogui | -redirectgui dir] [-nocache] [-noilwc] [-paraml
valuel ...] workflow.xml

-nogui run without GUI support.

-nocache run without kepler cache.

-noilwc run without incrementing LSIDs when the workflow changes.

-redirectgui dir redirect the contents of GUI actors to the specified
directory.

To run a workflow KAR from the command line:

kepler.sh -runkar [-noguil | -redirectgui dir] [-force] [-paraml valuel
.] workflow.kar

-force attempt to run ignoring missing module dependencies.
-nogui run without GUI support.

-redirectgui dir redirect the contents of GUI actors to the specified
directory.

You can specify the values of workflow parameters:

kepler.sh -runwf -x 4 -y "foo" workflow.xml

The above command runs “workflow.xml”, setting the parameters x =4 and y = "foo". The full command-
line usage for the Kepler executable can be found by running:

kepler.sh -h

2.4 THE USER INTERFACE

Scientific workflows are edited and built in Kepler’s easily navigated, drag-and-drop interface. The major
sections of the Kepler application window (Figure 2.1) consist of the following:

e Menu bar: provides access to all Kepler functions.

e Toolbar: provides access to the most commonly used Kepler functions.

e Components, Data Access, and Outline area: consists of a Components tab, a Data tab, and an
Outline tab. The Components and Data tabs each contain a search function and display the library
of available components and/or search results. The Outline tab displays an outline of components
that are in your current workflow.

e Workflow canvas: provides space for displaying and creating workflows.

e Navigation area: displays the full workflow. Click a section of the workflow displayed in the
Navigation area to select and display that section on the Workflow canvas.

Each of these interface areas is described in more detail in the following sections.

26

Chapter 2 — Installing and Running Kepler

K Unnamed Q

File Edit Wiew ‘Workflow Tools Window Help —------- —,M’enuﬂ'm‘ __________________________________
5_ SICYEIEY = II[O]-PI’-I*I%IDD:Iﬂ;DﬂIO|*'"""a Toolbar .

Compnnents Data Outline | ; 1 I

Search Cornponent 5
a -

(Advanc..) (sources)

__All Ontologies and Folders s]

» [E Components
» [F Projects ». ' -
[3 D Statistics s : -

> Actors
» Directors b e ' #
> Opendap e
» R i Workflow canvas |
» : N
i i
Y
: Comp(.ment, Data Access and Qutline
rea
Y
0 resuts found. [
<] 2]

FIGURE 1.1: EMPTY KEPLER WINDOW WITH MAJOR SECTIONS ANNOTATED.

2.4.1 MENU BAR

Running horizontally across the top of the Kepler application, the Menu bar contains the seven Kepler
menus: File, Edit, View, Workflow, Tools, Window, and Help. Common menu item functions, such as Copy,
Paste and Delete, are assigned keyboard shortcuts, which can also be used to access the functionality. These
shortcuts, when relevant, appear to the right of each menu item.

The following sections describe each menu in greater detail.

2.4.1.1 FILE MENU

The File menu, which is the first menu in the Menu bar, contains commands for handling files and for exiting
the application: New Workflow, Open, Recent Files, Close, Save, Save As, Export As, Print, and Exit.

New Workflow: open a new application window. Select Blank, FSM, or Modal Model. For more information
about FSM and Modal Models, please see the Ptolemy documentation.

27

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.pdf

Chapter 2 — Installing and Running Kepler

Open...: open a workflow saved in a KAR (Kepler Archive format) or XML (.xml or . moml) onto the Workflow
canvas. Text-based files—text (.txt) or HTML (.html), for example—will be opened in a viewing window.

Recent Files: list and open recent up to 10 workflows (KAR or XML format) that were successfully opened
before.

Save: save the workflow displayed on the Workflow canvas and any other related files into a KAR (Kepler
Archive format) file.

Save As: save the current workflow to a new KAR file.

Export: save the current workflow as MoML (Modeling Markup Language) XML, to a static image (GIF or
PNG), or to an interactive HTML representation.

Print: print the graphical representation of the workflow. A page setup window is used to set the paper
size, source, margins, and orientation.

Close: close the current Workflow canvas.

Exit: exit the Kepler application. If a workflow is open, a dialog box will prompt a user to save or discard
changes. Users can also cancel and return to the main application window.

2.4.1.2 EDIT MENU

Edit menu items are primarily used to modify the Workflow canvas, allowing users to cut, copy, and paste
selected entities. In addition, Undo and Redo commands can be used to modify the history of workflow
changes.

Undo: (Ctrl+Z) Undo the most recent change. The “Undo” command can be performed multiple times to
undo the history = of workflow changes. The size of the history buffer
is limited only by available RAM.

Redo: (Ctrl+Y) Redo the most recent change. The “Redo” command can be performed multiple times to
redo the history of workflow changes.

Cut: (Ctrl+X) Cut the selected entities.

Copy: (Ctrl+C) Copy the selected entities to the clipboard.

Paste: (Ctrl+V) Paste the contents of the clipboard to the Workflow canvas.

Delete: (Ctrl+X or Delete key) Delete the selected entities.

28

Chapter 2 — Installing and Running Kepler

2.4.1.3 VIEW MENU

View menu items control how the workflow appears on the Workflow canvas. Zoom items are also available
via the Toolbar.

Zoom Reset (Ctrl+Equals): Reset the view of the Workflow canvas to the default settings.

Zoom In (Ctrl+Shift+Equals): Magnify the Workflow canvas for a more close-up view. Kepler provides fixed
levels of zoom.

Zoom Out (Ctrl+Minus): Pull back for a more distant view of the Workflow canvas. Kepler provides fixed
levels of zoom.

Zoom Fit (Ctrl+Shift+Minus): Display the current workflow in its entirety on the Workflow canvas.

Automate Layout (Ctrl+T): Make a workflow more readable by automatically configuring actor locations.

XML View: View the current workflow in XML mode. The workflow MoML (i.e., XML) will be displayed in a
viewing window.

2.4.1.4 WORKFLOW

Workflow menu items are used to run and modify open workflows.

Runtime Window: The Runtime Window command opens a Run window, which allows users to adjust
workflow parameters and run, pause, resume, or stop workflow execution. Workflow results are displayed
in the window as well.

Add Relation: Add a Relation to the Workflow canvas. Relations, which might also be called “connectors”,
allow actors to “branch” output to multiple places. For more information about Relations, see Section 3.2.7.

Add Port: Add a port to the Workflow canvas. Select Input, Output, Input/Output, Input Multiport, Output
Multiport, or Input/Output Multiport. For more information about ports, see Section 3.2.4.

2.4.1.5TooLs

The Tools menu contains a number of useful tools that are used to build and troubleshoot workflows.

29

Chapter 2 — Installing and Running Kepler

Animate at Runtime: Select this menu item to highlight the actor that is currently processing as the
workflow is run. The active actors will be denoted with a red highlight. Note: This command is only relevant
when an SDF Director is used.

Listen to Director: Open a viewing window that displays the Director’s activity, noting when each actor is
preinitialized, initialized, prefired, iterated, and wrapped up.

Create Composite Actor: Create a new composite actor on the Workflow canvas. For more information
about composite actors, please see Section 3.2.3.

Expression Evaluator: Open an Expression Evaluation window used to evaluate any Kepler expression. For
more information about the expression language, see the Ptolemy documentation.

Instantiate Component: Open the designated component on the Workflow canvas. Components can be
identified via class name (e.g., ptolemy.actor.lib.Ramp) or via a URL. Use this menu command to easily
access components that are not included in the Kepler component tree (e.g., the DDF Director or Ptolemy
actors that are not included in the default Kepler library).

Instantiate Attribute: Open the designated attribute on the Workflow canvas. Attributes are identified by
class name (e.g., ptolemy.vergil.kernel.attributes.EllipseAttribute).

Check System Settings: Open a window containing system settings.

Ecogrid Authentication: Provide log in credentials or log out after using
features in Kepler that require authentication (e.g., an authenticated data search for the KNB (Earthgrid) or
uploading actors to the Kepler actor library).

Preferences: Set various Kepler preferences, including local and remote directories used to find
components for the component library and services used for data sources.

Text Editor: Open a simple text editor used to create, edit, and save text files.

Module Manager: View modules in the current suite, load and save module configurations, view
downloaded modules, and view available modules, and switch to a different module configuration. For
more information on the module manager, see Chapter 12.

JVM Memory Settings: Adjust how much memory is allocated to Kepler. If your computer has available
RAM, you may want to allocate more memory to Kepler by increasing the Max Memory setting. This may
improve performance.

2.4.1.6 WINDOW

Access the Runtime Window via the menu option.

30

http://ptolemy.eecs.berkeley.edu/~eal/ee225a/lab/expression.pdf

Chapter 2 — Installing and Running Kepler

2.4.1.7 HELP

The Help menu contains information about the current version of Kepler as well as links to useful help
documentation.

About: Open a window containing the current Kepler version number.

Kepler Documentation: An index of useful Kepler documents.

Modules Documentation: An index of documentation for the installed modules.

2.4.2 TOOLBAR

The Kepler Toolbar contains the most commonly used Kepler functions (Figure 2.2). The Toolbar can be
dragged and dropped to a convenient screen location. Closing the Toolbar returns it to the default position
beneath the Menu bar and above the Workflow canvas.

The Toolbar consists of three main sections: View, Run, and Ports, discussed in more detail below.

e POy e

FIGURE 2.2: THE KEPLER TOOLBAR.

2.4.2.1 ViEw TooLS

View tools (Table 2.1) are used to zoom in, reset, fit, and zoom out the workflow on the Workflow canvas:

Zoom In: Magnify the Workflow canvas for a more close-up view. Kepler provides fixed

@ levels of zoom.

@ Zoom Reset: Reset the view of the Workflow canvas to the default settings.

31

Chapter 2 — Installing and Running Kepler

Zoom Fit: Display the current workflow in its entirety on the Workflow canvas.

O

Zoom Out: Pull back for a more distant view of the Workflow canvas. Kepler provides fixed
levels of zoom.

TABLE 2.1 VIEW TOOLS

2.4.2.2 RUN TooLS

Run tools (Table 2.2) are used to run, pause, and stop the workflow.

Run: Run the workflow. The button will have an orange highlight when the workflow is
running.

il
=

Pause: Pause the workflow. The button will have an orange highlight when the workflow
is paused. To resume the workflow, click the Run button.

Stop: Stop workflow execution. The button will have an orange highlight when the
workflow is stopped. To restart the workflow, click the Run button.

TABLE 2.2: RUN TOOLS

2.4.2.3 PORT TOOLS

Port tools (Table 2.3) are used to add Relations or Ports to workflows:

»

Input Port: Add a single input port. A single input port can be connected to only a single
channel of data. Single ports are designated with a dark triangle on the Workflow canvas.

Output Port: Add a single output port. A single output port can emit only a single channel
of data. Single ports are designated with a dark triangle on the Workflow canvas.

Input/Output Port: Add a bi-directional port, which can receive or send a single channel
of data.

A A

Multiple Input Port: Add a multiple input port. A multiple input port can be connected to
multiple channels of data. Multiple ports are designated with a hollow triangle on the
Workflow canvas.

32

Chapter 2 — Installing and Running Kepler

Multiple Output Port: Add a multiple output port. A multiple output port can emit
multiple channels of data. Multiple ports are designated with a hollow triangle on the
B;I Workflow canvas.

Multiple Input/Output Port: Add a multiple input/output port. A multiple input/output
ﬁ:ﬁ port can receive or send multiple channels of data. Multiple ports are designated with a
hollow triangle on the Workflow canvas.

’ Relation: Add a Relation. Relations “branch” a data flow so that data can be sent to
multiple places in the workflow.

TABLE 2.3: PORT TOOLS

2.4.3 COMPONENTS, DATA ACCESS, AND OUTLINE AREAS

The Components and Data Access area contains a library of workflow components (e.g., directors and
actors, under the Components tab) and a search mechanism for locating those components, as well as data
sets (under the Data tab). The Outline area displays an outline tree of the components that are being used
in the current workflow. When the application is first opened, the Components tab is displayed.

2.4.3.1 COMPONENTS TAB

Kepler comes standard with over 350 components that are stored on the local machine and can be used to
create an innumerable number of workflows with a variety of analytic functions. The default set of Kepler
processing components is displayed under the Components tab in the Components and Data Access area.
Users can easily add new components or modify existing components. See Chapter 5 for more information
about adding components to the local library.

Components in Kepler are arranged in three high-level categorizations: Components, Projects, and Statistics
(Table 2.4). Any given component can be classified in multiple categories, appearing in multiple places in
the component tree.

Category Description

Components Contains a standard library of all components, arranged by
function.

Projects Contains a library of project-specific components (e.g., SEEK
or CIPRes).

Statistics Contains a library of components for use in statistical
analysis.

TABLE 2.4: COMPONENT CATEGORIES IN KEPLER

Browse for components by clicking through the component trees, or use the search function at the top of
the Components tab to find a specific component.

To search for components:

33

http://seek.ecoinformatics.org/
http://www.phylo.org/

Chapter 2 — Installing and Running Kepler

1. In the Components and Data Access area to the left of the Workflow canvas, select the
Components tab.

2. Type in the desired search string (e.g., “File Reader”).

3. Click the Search button. The search results are displayed in the Components and Data Access area,
replacing the default list of components. You may notice multiple instances of the same
component. Because components are arranged by category, the same component may appear in
multiple places in the search results.

4. To use one or more components in a workflow, simply drag the desired components to the
Workflow canvas.

5. Toclear the search results and re-display the complete component library, click the Cancel button.

NOTE: If you know the name of a component and its location in the Component library, you can navigate
to it directly and then drag it to the Workflow canvas.

2.4.3.2 DATA TAB

Via its search capabilities, Kepler provides access to data stored remotely on the EarthGrid, which contains
a wide collection of ecological and geographical resources. Select the Data tab (Figure 2.3) in the
Components and Data Access area to find and retrieve remote data sets.

34

Chapter 2 — Installing and Running Kepler

1800

Unnamed1

@@ [&E[[p> 0[] == s> [5[00] &

! Components ~ Data = Outline !

Search Data

'Qatos meteorologicos Ir Search ‘\
Sources Cancel
Datos Meteorologicos

1 results returned.

Datos eorologicos

>

Workflow

Datos eorologicos

>

g

FIGURE 2.3: THE DATA TAB. A SEARCH HAS BEEN PERFORMED TO LOCATE "DATOS METEOROLOGICOS", A DATA SET STORED ON

THE EARTHGRID.

To search for data on the EarthGrid through Kepler:

1. Inthe Components and Data Access area, select the Data tab.
2. Click the Sources button and select the services to search (deselecting unnecessary sources

decreases search time).
3. Type in the desired search string (e.g., Datos Meteorologicos). Make sure that the search string is

spelled correctly. (You can also enter just part of the entire string — e.g., “Datos”). If the search
requires authentication (e.g., searches on the KNB Authenticated Query source), use the Tools >
Ecogrid Authentication menu option to specify credentials.

4. Click the Search button. The search may take several moments. When the search is complete, a
list of search results (i.e., Data actors) will be displayed in the Components and Data Access area.

5. To use one or more data actors in a workflow, simply drag the desired actors to the Workflow

canvas.

When a data set is dragged from the Data tab to the Workflow canvas, Kepler downloads the data from the
remote source and stores it in the Kepler cache where it can be accessed by the workflow or easily
previewed. The cache (i.e.., the “. kepler” directory) is in the user’'s HOME directory, which is the default

working directory whenever one first opens a Command Window (on Windows platforms) or a terminal

window (on Mac or Linux). On Mac and Linux systems, the command “cd ~” will change directories to the

home directory. Once data is stored in the cache, Kepler will automatically access the local copy rather than
re-download the data. If you would prefer to re-download the data, and you are using an EML2Dataset

35

Chapter 2 — Installing and Running Kepler

actor, select the Check for latest wversion parameter to override the default behavior.

Chapter 6 for more information.

Information about downloaded data can be revealed in three ways: (1) on the Workflow canvas, roll

See

over

the Data actor’s output ports to reveal a tooltip containing the name and type of data or (2) right-click the
Data actor and select Get Metadata to open a window that contains more information about the data set
(Figure 2.4) or (3) preview the data set by right-clicking the data actor and selecting Preview from the drop-

down menu (Figure 2.6).

File W%iew Tools Help
-~
Data Set Description ['ml
ldentifier: tao.1.1
Catalog System: knb
Title: Datos Meteorologicos
Individual: Mr. Rodrigo Torrens
Access Contral:
Auth System: knb
COirder: denyFirst
Access Rules: =
ALLOW: read ublic
Individual: Mr. Rodrigo Torrens
Data Tables, Images, and Other
Data Table:
Datos Meteorologicos
Dtos Estacion meteorologica La Hechicera para e? 2001
Fhysical Structure Description:
Object Mame: sample.dat
Size: 188860 bytes —
Character
Encoding: Rl
Mumber of Header 1
Lines:
Record Delimiter: \n
Text Format: flii'leanxgitmhym Record column
Simple Delimited: [FJI:Ili‘rjneter:
Case Sensitive? no
Mumber Of Records: 100
- Type Missing
Attribute Column . Measurement Measurement Accuracy Accuracy
Name Label D it “nf Type Domain Llhna Report Assessment ER
alue Code
Date of -) Format MMDD/YY
DATE DATE collection =g datetime Precision
—)

FIGURE 2.4: METADATA FOR THE DATOS METEOROLOGICOS DATA SET.

36

Chapter 2 — Installing and Running Kepler

Datos eorologicos
=2

Configure Actor ¥E

Customize Name

Configure Ports

Configure Units

Open Actor EL

Documentation OO Datos Meteorologicos Preview

L DATE |TIME |T_AIR [RH |DEW |BARD |WD |WS RAIN [SOL |5OL..

isten to Actor Ol/.. 00000 15 99 1459534 99 08 0 0 O

Suggest Mo1,... 01:00 13.4 99 12.8953.8 100 1.9 0 0 0

Semantic Type Annotation... [01l/... 02:00 13.4 99 12.8 954 114 1.2 0 0 120

Save Archive (KAR)... 01/.. 03:00 12.4 99 12.3 9543 114 2.5 0 0 ol

Upload to Repository 01/.. 04:00 11.7 99 11.7 9545 96 3.1 0 D 120]

View LSID 0l/.. 05:00 11.4 99 11.2 954.7 85 2.6 0 0 0

. 01/.. 06:00 11.5 99 11.7 954.8 114 2 0 0 0

01y, 07:00 115 99 1179548 &8 2.8 0 0 0

Appearance *\0l/.. 08:00 12.2 99 12.3 9549 88 2.5 0 202 75..
0l1/.. 09:00 17.4 92 15.6 953.7 336 0.1 0 442 1,0
01/.. 10:00 20.1 83 16.7 952.6 322 0 0 716 1,8
01/.. 11:00 23.3 71 17.8951.7 289 0.4 0 892 2.4
01/.. 12:00 23.1 74 17.8951.2 193 0.3 0 522 2,8
01/.. 13:00 23.5 72 17.8950.7 42 0.1 0 964 3,2
0l1/.. 14:00 23.5 85 20.6 950.3 117 0.1 0 952 3.4
0l1/.. 15:00 23.1 92 21.7 950.3 93 1 0 876 3,2..
0l/.. 16:00 20 99 19.5950.6 156 0.6 0 194 2.6...
0l/.. 17:00 185 99 17.8951.8 34 1.2 0 96 530..
0l1/.. 18:00 17.5 99 16.7 952.3 157 0.1 0 38271.
0l1/.. 19:00 16.2 99 15.6 952.8 277 0.6 0 0 18....
0l/.. 20:00 15.9 99 15.6 953.1 277 0.1 0]]
0l/.. 21:00 156 99 159533 196 0.1 0]]
01/.. 22:00 15.2 99 14.5953.4 264 0 0]]
01/... 23:00 14.7 99 13.9953.6 244 0.3 0] 04
0l1/.. 00:00 14.2 99 13.4 953.7 105 0.9 0 0 0,

FIGURE 2.5: PREVIEWING A DATA SET.

Downloaded data can be output in a variety of formats. See Chapter 6 for more information.

The EarthGrid currently interfaces with KNB Metacat database. The Knowledge Network for Biocomplexity
(KNB) is a national network intended to facilitate ecological and environmental research on biocomplexity.
It enables the efficient discovery, access, interpretation, integration, and analysis of many kinds of
ecological data from a highly distributed set of field stations, laboratories, research sites, and individual
researchers.10

To configure a data search to search a subset of the EarthGrid, click the Sources button from the Data tab.
Select the sources to be searched and the type of documents to be retrieved (Figure 2.6) Each service
requires that at least one corresponding document type is selected (e.g., the KNB Metacat EcoGrid
Querylnterface service requires that either Ecological Metadata Language 2.0.0, 2.0.1, or 2.1.0 is selected).
If you try to “deselect” all of the relevant document types, the service is automatically deselected as well.
The document types (e.g., Ecological Metadata Language 2.0.0) refer to the metadata specification used by
the data sets. For more information about metadata, please see Chapter 6.

10 Knowledge Network for Biocomplexity (KNB) website, http://knb.ecoinformatics.org.

37

javascript:ol('http://knb.ecoinformatics.org');

Chapter 2 — Installing and Running Kepler

Preferences

[Components Data |

Service Mame Document Type

E[Ecological Metadata Language 2.0.0
E[KMNB Metacat Query Interface EI Ecological Metadata Language 2.0.1
E[Ecological Metadata Language 2.1.0
EI Ecological Metadata Language 2.0.0
E’[KNB Metacat Authenticated Query Interface E[Ecological Metadata Language 2.0.1

EI Ecological Metadata Language 2.1.0

Refresh [Keep existing sources

(Ok \I I:Cancelj,l

FIGURE 2.6: CONFIGURING THE DATA SOURCES AND TYPES.

2.4.4 WoRKFLOW CANVAS

Scientific workflows are opened, created, and modified on the Workflow canvas. Components are easily
dragged and dropped from the Component and Data Access area to the desired canvas location, and can
then be dragged around on the canvas. Each component is represented by an icon, which makes identifying
the components simple. Connections between the components (i.e., channels) are also represented visually
so that the flow of data and processing is clear.

Each time you open an existing workflow or create a new workflow, a new application window opens.
Multiple windows allow you to work on several workflows simultaneously and compare, copy, and paste
components between Workflow canvases.

2.4.4.1 DIRECTOR RIGHT-CLICK MENU

The director right-click menu contains several menu items that are specific to the director: Configure
Director and Documentation.

Configure Director: Configure the director parameters. This dialog can also be opened by double-clicking
the director on the Workflow canvas.

Documentation: Display, customize, or remove director documentation. Customized documentation will
replace existing documentation.

2.4.4.2 ACTOR RIGHT-CLICK MENU

38

Chapter 2 — Installing and Running Kepler

The actor right-click menu contains several menu items that are specific to that actor: Configure Actor,
Customize Name, Configure Ports, Configure Units, Open Actor, Get Metadata, Documentation, Listen to
Actor, Suggest, Semantic Type Annotation, Save in Library.., Save Archive (KAR).., and Upload to
Repository.

Configure Actor (Ctrl+E): Configure the actor parameters. This dialog can also be opened by double-clicking
the actor on the Workflow canvas.

Customize Name: Customize the label that identifies the actor on the Workflow canvas.

Configure Ports: Add, remove, hide, show, rename, and customize input and output ports.

Configure Units: Specify unit constraints for an actor (e.g., $plus=%$minus, which states that an actor’s
plus and minus ports must have the same units. For more information, please see the Ptolemy
documentation:

http://ptolemy.berkeley.edu/ptolemyii/ptlilatest/ptll/ptolemy/data/unit/demo/StaticUnits/NonAppletStaticUnits.htm

Open Actor (Ctrl+L): Display the actor’s Java source code in a viewing window.

Get Metadata: Display a data set’s metadata. (For data actors only.)

Documentation: Display, customize, or remove director documentation. Customized documentation will
replace existing documentation on the local copy of the actor in the current Kepler version. Note that
customized documentation will not be “transferred” if a new version of Kepler is installed.

Listen to Actor: Open a window that displays various actor events during execution.

Suggest: Request that the semantic system suggest compatible input, output, or similar components.

Semantic Type Annotation: Semantic annotations conceptually describe an actor and/or its “data schema.”
Annotations provide the means for ontology-based discovery and integration. Annotations are stored
within the component metadata. Each port can be annotated with multiple classes from multiple
ontologies. Annotations can be used to find similar components and to check that workflows are
semantically and structurally well typed.

Save Archive (KAR): Save an archived version of the selected component to a selected location on the local
machine.

Upload to Repository: Upload a component to the Kepler repository, which is a centralized server where
workflow components can be searched and re-used. Uploaded components should have unique names. To
change the name of a component, right-click it and select Customize Name from the drop-down menu. You
will be prompted for a Knowledge Network for Biocomplexity (KNB) user name and password; if you do not
have a KNB user account, click the Login Anonymously button to upload components without a user name

39

http://ptolemy.berkeley.edu/ptolemyii/ptIIlatest/ptII/ptolemy/data/unit/demo/StaticUnits/NonAppletStaticUnits.htm

Chapter 2 — Installing and Running Kepler

or password. Alternatively, you can register for a KNB account on the KNB homepage
(knb.ecoinformatics.org).

View LSID: View the unique life sciences identifier for this actor.

Preview: Display a data table. This option is only used by data actors (e.g., EML2Dataset) to display data
sets represented by Meta data. For more information about using data sets in Kepler, please see Chapter 6
of the User Manual.

2.4.5 NAVIGATION AREA

The navigation area contains a view of the entire workflow (even if only a portion of the workflow is
displayed on the Workflow canvas). Use the red guidelines to navigate a large workflow and select a portion
of the workflow to display (Figure 2.7).

K/ Unnamed ||= X
i l_ cwg “_Data Outlene _' b SDF iracion A
Search Components St
a G Basi_Folemts sy, l
(atvanc_.) [Sowrces)

—_—— DataDireciony: property KEPLER"+"libAes idataigarp™
Al Ontobogers and Folders 2] | prumber_Of_herations: 10 4

v B Componints NOTE: Each iteration requires 10-20 seconds on & typcal deskiop PC.

v Bl rropes Species_Name: Mephits_mephitis®
L~ T
. e pHumBest 3
* [

F L Opandap
E L]

me of Species Righi-click the acior and salect Opean Actor' i ses e o
pecies_Namae h Calcylate Best Rulssets
Sirini:| AP Bl Fuilisat_ sy
larsgitucie_Litinada_tabla
| - DataPoints
DataDirectony+"idigie_data_maphits dar
Output fike path and name
IF DataDirectony+""+Species_Namae+®_Merg
0 reuks Found, This Ecological Miche Model (ENM]
= i (CETETETED spacies (Mephits mephitis, 2 stripe
- and enviranmental data (IPCC clim
I - oo g Pt e . workflow uses the GARP (Genetic .
= = e genarate predictions, which are the
= predictons are used o project the
. P s P e el
|

FIGURE 2.7: THE NAVIGATION AREA

40

http://knb.ecoinformatics.org/

Chapter 3 — Scientific Workflows

3 SCIENTIFIC WORKFLOWS

Scientific data analysis and modeling commonly uses collections of computational processes. Kepler
simplifies the task of configuring these collections by using a visual representation of these processes. These
representations, or “scientific workflows,” display the flow of data among discrete analysis and modeling
components (Figure 3.1).

K] . Me N (=05
File Tools Help
5.5
SDF Director
Mean
K] X
File Tools Help
Constant Summary Statistic .
onsian Standard Deviation |3.0276503540975

b (1,2,34,567,89,10}

Variance

|K|'..Variance g@
File Tools Help
9. 1666666666667

FIGURE 0.1: A SIMPLE SCIENTIFIC WORKFLOW DEVELOPED IN KEPLER

Kepler allows scientists to create their own executable scientific workflows by simply dragging and dropping
components onto a workflow creation area and connecting the components to construct a specific data
flow. This creates a visual model of the analytical portion of their research, making it easy to understand
how the data flow from one component to another. The resulting workflow can be saved in a textual format,
emailed to colleagues, and/or published for sharing with colleagues worldwide.

Kepler users with little background in computer science can create workflows with standard components
or modify existing workflows to suit their needs. Quantitative analysts can use the visual interface to create
and share R and other statistical analyses. Users need not know how to program in R in order to take
advantage of its powerful analytical features; pre-programmed Kepler components can simply be dragged
into a visually represented workflow. Even advanced users will find that Kepler offers many advantages,
particularly when it comes to presenting complex programs and analyses in a comprehensible and easily
shared way.

41

Chapter 3 — Scientific Workflows

Kepler includes distributed computing technologies that allow scientists to share their data and workflows
with other scientists and to use data and analytical workflows from others around the world. Kepler also
provides access to a continually expanding, geographically distributed set of data repositories, computing
resources, and workflow libraries (e.g., ecological data from field stations, specimen data from museum
collections, data from the geosciences).

3.1 WHAT IS A SCIENTIFIC WORKFLOW ?

Scientific workflows are a flexible tool for accessing scientific data (e.g., streaming sensor data, medical and
satellite images, simulation output, observational data) and executing complex analysis on the retrieved
data.

Each workflow consists of analytical steps that may involve database access and querying, data analysis and
mining, and intensive computations performed on high performance cluster computers. Each workflow
step is represented by an “actor,” a processing component that can be dragged and dropped into a
workflow via Kepler’s visual interface. Connected actors (and a few other components that we’ll discuss in
later sections) form a workflow, allowing scientists to inspect and display data on the fly as it is computed,
make parameter changes as necessary, and re-run and reproduce experimental results.!

Workflows can represent theoretical models or observational analyses; they can be simple and linear, or
complex and non-linear. One feature of some scientific workflow systems is that they can be nested (i.e.,
hierarchical), meaning that a workflow can contain “sub-workflows” that perform embedded tasks. A
nested workflow (known in Kepler as a composite actor) is a re-usable component that performs a
potentially complex task.

Scientific workflows in Kepler provide access to the benefits of today’s grid technologies (providing access
to distributed resources such as data and computational services), while hiding the underlying complexity
of these technologies. Kepler automates low-level data processing tasks so that scientists can focus instead
on the scientific questions of interest.

Workflows also provide the following:

e documentation of all aspects of an analysis

e visual representation of analytical steps

e ability to work across multiple operating systems

e reproducibility of a given project with little effort

e reuse of part or all of a workflow in a different project

To date, most scientific workflows have involved a variety of software programs and sophisticated
programming languages. Traditionally, scientists have used STELLA or Simulink to model systems
graphically, and R or MATLAB to perform statistical analyses. Some users perform calculations in Excel,
which is user-friendly, but offers no record of what steps have been executed. Kepler combines the

11 Ludéascher, B., I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E. Lee, J. Tao, Y. Zhao. 2005.
Scientific Workflow Management and the Kepler System, DOI: 10.1002/cpe.994

42

Chapter 3 — Scientific Workflows

advantages of all of these programs, permitting users to model, analyze, and display data in one easy-to-
use interface.

Kepler builds upon the open-source Ptolemy Il visual modeling system
(http://ptolemy.eecs.berkeley.edu/ptolemyll/), creating a single work environment for scientists. The
result is a user-friendly program that allows scientists to create their own scientific workflows without
having to integrate several different software programs or enlist the assistance of computer programmers.

A number of ready-to-use components come standard with Kepler, including generic mathematical,
statistical, and signal processing components and components for data input, manipulation, and display. R-
or MATLAB-based statistical analysis, image processing, and GIS functionality are available through direct
links to these external packages. You can also create new components or wrap existing components from
other programs (e.g., C programs) for use within Kepler.

3.2 COMPONENTS OF A WORKFLOW

Scientific workflows consist of customizable components—directors, actors, and parameters—as well as
relations and ports, which facilitate communication between the components. Figure 3.2 displays a Kepler
workflow with the main workflow components identified.

The workflow in Figure 3.2, the LotkaVolterraPredatorPrey workflow, is used to model the relative
populations of a predator and its prey over time. For a more detailed look at how it works, please see
Section 4.2.3.

43

http://ptolemy.eecs.berkeley.edu/ptolemyII/

Chapter 3 — Scientific Workflows

K file: C ﬁlﬁepier-i .0.‘0£eta-2-1."t’lémosr-'gett. : .arte&]ﬁ-ﬁ;I;oikaﬁ’éiterr&Pfe-&atorlsrey.xn'-ll [;][_E_j
File Edit View Workflow Tools Windowlelp
Q@[> 11[@]= =2 |lnc]

[‘Components = Data Outline h CT Director [l

Search Components

Q { Search) TimedPiotter

(Advanc... Sources)
Ne— N—

| All Ontologies and Folders } 3] o XYPlotter

» (@ Components
» [projects

» [statistics
Actors
Directors
Opendap

R

yvvyy

: Relation :

E’ 02-LotkaVolterraPredatorPrey. XYPlotter =S

TimedPlotter =)

K
w0t Fe Tock Spead Hebp
0 results found. ol =1] Dl

L

>
T

.

execution finished.

00 01 02 0

FIGURE 0.2: MAIN WINDOW OF KEPLER WITH SOME OF THE MAJOR WORKFLOW COMPONENTS HIGHLIGHTED. THE WINDOWS
ON THE BOTTOM RIGHT ARE OUTPUT WINDOWS, CREATED BY THE WORKFLOW TO DISPLAY RESULT GRAPHS.

3.2.1 DIRECTORS

Kepler uses a director/actor metaphor to visually represent the various components of a workflow. A
director controls (or directs) the execution of a workflow, just as a film director oversees a cast and crew.
The actors take their execution instructions from the director. In other words, actors specify what
processing occurs while the director specifies when it occurs.

Every workflow must have a director that controls the execution of the workflow using a particular model
of computation. For example, workflow execution can be synchronous, with processing occurring one
component at a time in a pre-calculated sequence (SDF Director). Alternatively, workflow components can
execute in parallel, with one or more components running simultaneously (which might be the case with a
PN Director).

44

Chapter 3 — Scientific Workflows

A small set of commonly used directors come packaged with Kepler (Table 3.1), but more are available in
the underlying Ptolemy Il software that can be accessed as needed. For a more detailed discussion of
workflow models of computation, please see Section 5.2 Choosing a Director, or refer to the Ptolemy II

documentation.

SDF Director

The SDF (synchronous Dataflow) Director is often used to oversee
fairly simple, sequential workflows. Types of workflows that run well
under an SDF Director include processing and reformatting data,
converting one data type to another, and reading and plotting a
series of data points.

FM Director

The PN (Process Networks) Director is often used for managing
workflows that require parallel processing on distributed computing
systems.

Continuous Director

A

The Continuous Director is used for the “continuous time” domain, a
timed domain that supports continuous-time signals, discrete-event
signals, and mixtures of the two. There is a global notion of time that
all the actors are aware of.

DE Director

4

The DE (Discrete Events) Director is often used for modeling time-
oriented systems: queuing systems, communication networks, and
occurrence rates or wait times.

DDF Director

A

The DDF (Dynamic Dataflow) Director is often used for workflows
that use looping or branching or other control structures, but that
do not require parallel processing (in which case a PN Director
should be used).

TABLE 0.1: DIRECTORS THAT COME IN THE STANDARD KEPLER COMPONENT LIBRARY.

3.2.2 ACTORS

Actors are the basic building blocks of workflows. Kepler comes packaged with more than 530 actors, each
ready to be used in new and/or existing scientific workflows. Each actor is designed to perform a specific
task: from generating summary statistics, to mapping data points to a projection of North America, to
translating files from one format to another. Each actor performs a “step” in a workflow. For example, one
actor might be used to read or import data for use in a workflow, another to transform that data into a

45

Chapter 3 — Scientific Workflows

format that can be analyzed, another to analyze or graph the data, and another to output the data to a file
or the screen. Data passes between these actors via channels, which are represented by solid lines on the
Workflow canvas.

The actors are listed in the Components tab of the Kepler interface. Dragging and dropping an actor will
move it to the Workflow canvas, where it can be incorporated into a workflow. However, simply dragging
an actor onto the Workflow canvas will, by itself, do nothing. Though each actor knows “what” processing
should occur, it does not know “when” to perform that process (or “iterate”). Actors need to be directed
(i.e., they require a Director component) in order to perform.

Separating the “what” from the “when” in actor performance allows actors to act and interact in many
ways. For example, an actor can be instructed to iterate once, or ten times, or infinitely with a simple
Director setting. Similarly, an actor can be instructed to work in parallel with other actors—which is useful
when workflows require parallel processing on distributed computing systems—or at discrete times along
a time line, or in a number of other ways dictated by the Director. See Section 5.2 for more information
about each Director and how to choose the right director for each workflow.

New actors can be downloaded from the Kepler repository, or created by the user and added to the Kepler
application. User-created actors can also be uploaded to the Kepler repository, where they can be shared
with other workflow developers. The Kepler repository is covered in more detail in Section 4.5.3. For more
information about creating and using new actors, see the appendix on Creating New Actors.

Kepler actors come in two forms: “individual” actors and “composite” ones. Composite actors are
collections or sets of individual actors that are bundled together to perform more complex operations.
Composite actors can be used in workflows, essentially acting as a nested or sub-workflow (Figure 3.3). An
entire workflow can be represented as a composite actor and included as a component within an
encapsulating workflow. Composite actors are designated with a double rectangle actor icon.

Input Actor Nested Workflow Output Actor

(e.g., data) (I.e., composite actor) (e.g., display)

FIGURE 0.3: REPRESENTATION OF A NESTED WORKFLOW. “B” IS AN EXAMPLE OF A COMPOSITE ACTOR, WHICH CONTAINS THREE
NESTED ACTORS (D, E, AND F).

46

Chapter 3 — Scientific Workflows

Both individual and composite actors are identified by an icon and a label, which are rendered on the
Workflow canvas. In addition, most actors have one or more ports, which are used either to input values (a
dataset to analyze, for example) or to output results. Most actors have parameters, as well, which are
customizable settings. To view and/or edit an actor’s parameters, double-click the actor icon on the
Workflow canvas.

Figure 3.4 shows a Round actor as it appears on the Workflow canvas. The Round actor has two ports, an
input and an output port, as well as one parameter (function). Double-click the actor to view and/or edit
the function parameter.

| Actor Name |

o -

g
3

FIGURE 0.4: THE ROUND ACTOR AS IT APPEARS ON THE WORKFLOW CANVAS

Actor Name: The actor name can be customized to specifically identify an actor’s function in a workflow.
For example, a Display actor can be renamed “Display Statistics” or “Display Errors” to better identify its
purpose in a specific workflow. To edit an actor name, right-click the actor icon from the Workflow canvas
and select Customize Name from the menu. The actor name is displayed above the actor icon unless the
“Show name” option in the Customize Name menu is deselected.

Icon: Each actor is identified by an icon that describes the actor on the Workflow canvas. Icons help to
identify the function of each actor. For a complete list of actor icons and a description of Kepler actor
symbology, see Section 5.3.1 Actor Icon Families.

Ports: Most actors have one or more ports, depicted by either a white (multiport) or black (single port)
triangle at the perimeter of the actor icon. Data flows into and out of the actor via these ports. To add,
remove, or rename actor ports, right-click the actor icon and select Configure Ports from the menu.
Checking “Show Name” displays the port name on the Workflow canvas.

Data is passed to actor ports in the form of tokens. A token can be thought of as a container of some kind
of data. Each token has a type (“integer” or “matrix,” for example), and this type is usually declared by the
port that accepts or broadcasts the data. Mouse over an actor port on the Workflow canvas to display a
tooltip that contains the port name as well as the type of data it produces or accepts. If the actor does not
receive data tokens of the specified type, an error will be generated.

Parameters: Double-click an actor icon on the Workflow canvas to reveal the actor’s parameters, or
settings. Parameters are used to give actors context-specific instructions, such as the location of a source
file to read, a particular algorithm to perform, and the format in which to output results.

47

Chapter 3 — Scientific Workflows

Each time an actor is dragged onto the Workflow canvas from the Components tab, a new “instance” of
that actor is created. Dragging and dropping an ImageJ actor onto the canvas three times will produce three
instances of the ImageJ actor, named ImagelJ, Imagel2, and ImageJ3. Editing the parameters of any one of
these instances does not affect the values of the other instances, nor does it affect the original actor stored
in Kepler. In other words, every time an actor is instantiated, it will have the same settings as the original
actor (or “class”, in Java). The name of each actor class can be viewed by right-clicking an actor and selecting
Documentation from the drop-down menu. The class name is displayed in parentheses beside the actor
name, e.g., ImagelActor (Instance of util.ImagelActor).

Documentation: All Kepler actors have documentation, which can be opened via the actor’s right-click
menu. To read an actor’s documentation, drag the actor’s icon onto the Workflow canvas, right-click the
icon, and select Documentation > Display from the pop-up menu (Figure 3.5). Documentation can also be
accessed from the Components tab: simply right click an actor and select View Documentation. The
documentation describes each actor and its function, the type of values the actor inputs and outputs, and
the purpose of each actor parameter.

"k it 4 - iopler -1.0. Obatal Pdev/decrme. . narated JavadocsiGarpPtedic tion. doc ol M= ||
| B Took el 1
Garp Prediction
GarpPrediction (Brg.ecenfermatics.seek.garp.GarpPradiction)
-‘k
Canfigure Actar HE e CHARF i o computer program for predicling species loalions based on various: sgabel dabs wels of
Customize Mame | i epar | ervrormert. veraohs i species ocagena. GARP ¢an oz o c«ﬁx:mr‘:ﬂ
- = % oohacion. CHARP was orignaly o version in s Das
Caonfigure Ports | b~ PeAERTS | on Deskiop GARE, hap. i Msmacpes crpemsidopgern! The GarpPredicson acior predess
Cél\flgule Uitz = ",.";':' presencedabaence dale on o spebisl grid Dazed on the input FuleSet icaiouisbed by the Garpilgorthe
Open Actor 3L AR Ve actor) and the iRl 26t o4 anvinoneental lsvers The gl iyt s Sesdribed in & surmsary o i
Tatio ¥ = T - (" ehef). The codpds are el o " agc grid 1 or o " bmp e, Ether can be dieplayed o3 0 bimagpged
Documentation Display image wih pretcted presenceishasncs inckoshed by pioel weles 2 3. coloe mapped when
Listen 13 Acior Customize eiplin)
emove Customization
R Cust t
Suggest E Trus is a Jd-bazed acior. § requeres The folzwing. nuc Bgap so widowe: gap.di, eepal o
Semantic Type Annotation.., e O - curnenty nol mvilabie for (he bisc (27E2005)
Save Archive (KAR).., |
Upload to Repository -
';'”‘ LD | Parameters
TEVIEW
AppeArance " PR SEF N v Paramelar THs i Ihe 1he raisg of B e Conbaning 1 RuleSet dals 1 i sy B PR of & GAIEAIponts solor
| | layersaiFikenameFaramele; This is the fie rame of e * b fle used bo summanze e sef of spalel date fles wih ervronmental data ior
Bach pioel
el SCIParameler Thisi 2 the Tl rawne 10 be used jor e oulpul ASCE grid dle
BN aramelr Tinisi st Tl rewne j0 be used for e cufpul EWP raster Tike.
I Input Ports
e SHtFienaoe Tz by b S reams of S The conbairang the FueSel daln, § i cously e oot of o Gapaigentm acior
et selF e name Thiz: ity b e Fewre of @ * e e Ut Do susnarize e gof of spofil dets fles with ervronmentsl dals for
ach prosl
el SCA Tiriz: s b i rawmse o0 b L o e cutput ASCH gried Sl o
| aetsar Cosd Berteter, Do tipgins, HEEAS, U Eorta Saw Moot
gl ® Mo javadocs found
& Gado Claa (TTeaAlomic ATl
s
& Rt used inoany dermos
|
|
| [

FIGURE 0.5: ACTOR DOCUMENTATION

The actor documentation can also be customized by right-clicking the actor and selecting Documentation >
Customize from the drop-down menu. An editing window will open (Figure 3.6).

48

Chapter 3 — Scientific Workflows

Author(s):

Description:

fileOrURLPOrE:
oubpuk:
endOfFile:
trigger:

FileOrURL:

Editing Documentation for Binary File Reader
:3_’/ Binary File Reader

User Level Documentakion:

efrak jaeger| Wersion:

<p>The BinaryFileReader reads a local £il |
e path or URL and outputs sn array of byt
e=. The actor can reasd bhoth binary and A3
CII file formats.< ps

Ports

An inpuk port thak accepks the File name or URL of a file to be read, Wi
An output pork Ehat broadcasts an array of bykes representing the con
An output port that indicates whether or not the end of the file has bes

A mulkiport Ehat has no declared bype {in other words, the port can acc

Properties

The file name or URL of the file ko be read. See FileParameter For more

FIGURE 0.6 EDITING ACTOR DOCUMENTATION.

Documentation content can include links to external web pages (which will open in a Kepler viewing
window) and HTML formatting (, <tt>, , etc). XML-reserved characters (e.g., '>', '&', "', etc) must be
escaped. The most common reserved characters and their entity replacement are listed in Table 3.2

XML-reserved Character Replace with:
& &
< <
> >
" "
! '

TABLE 0.2: COMMON XML-RESERVED CHARACTERS.

To delete the content of a documentation screen, select Documentation > Remove Customization. Note
that this action cannot be undone with the “Undo” Menu bar item.

Actors make it easy to “read” the architecture of a workflow. When an existing workflow is opened (or a
new workflow is created), each actor appears on the Workflow canvas, allowing users to easily follow the
workings of the process that the workflow performs.

Users can delve even deeper into the details of workflow processing by opening the actors. To open an
actor, right-click the actor icon from the Workflow canvas and select Open Actor. For most individual actors,
Kepler will display the Java source code (Figure 3.7). The Java source is the code that creates the actor;
some actors, such as the RExpression actor, contain code (e.g., R-scripts), but this type of code is accessed
via actor parameters. In some cases, like the EML2Dataset actor, a customized display of information about

49

Chapter 3 — Scientific Workflows

the actor appears when the actor is opened. If the actor is a composite actor, a new application window
opens to display the sub-workflow (Figure 3.8).

- —— -
o pae il S rogs . FOF e Ko ples bulldbaplor b hutillmage e tor java o
[e Took i
* An sotor Theat uses the Image] systes for displaying an imeages. This Lo
- actor is based on the ImageReadss actor.
" U a4
[[o= wabfom focs gvdee teb Pen Higgins - NCEAS
QaEPHO MmO
.. #Copyright () 2001-2004 The Begents of the University of Californis.
- i y
|Camponems Data OQutline - ALl rights resecved.

% WEitten agrecment and without

Search Components

. o)

{ Advanc..) [Sources)

. medify, and distribuete this

tiom for amny purpose, provided that the
the following two passgraphs appesar in sll

OF CALIFORNIA &
INCIDENTAL, o
F THIS SOFTWARE AN

O ANT PARTY
= DAMAGES
* & Components ITS DOCTE ™, EVEN IF
» © Projects ¥ CALIFOBNIA HAS BEEN ADVISED OF LITY OF

v [stavstics FUC s
L3 Actors
I Ok VERSITY OF CALIFOBNIA SPECIFICALLY DISCLATRS ANY VAPRANTIES,
= T - T = g $ TO, THE IRPLIED WARBANTIES CF
* [Opanciap CHANTABILIT b FITMESS FOR A PARTICULAR PUBPOSE. THE SOFTWARE
> R O T D 3 N s M AN TAS IS™ BASIS, AND THE TNIVERSITY OF
CALIFOBRNIA HAS NO OBLICATION TO PROVIDE BAINTENANCE, SUPFORTY, UPFDATES,
ENANCENENTS, OF BoDIFICATIONS.
PT_COPYRIGHT_VERSIOM 2
COPTYRIGHNTENDEEY
package util:
import 13. Imeged; —~
1 results foured
<

[All Ontologies and Folders [—————

< >

FIGURE 0.7: VIEWING THE SOURCE CODE FOR AN INDIVIDUAL ACTOR. TO OPEN THE SOURCE CODE IN A VIEWING WINDOW,
RIGHT-CLICK AN ACTOR AND SELECT OPEN ACTOR FROM THE DROP-DOWN MENU.

[1 thle A Program® 20Files Maphet /demos 6 WebServicesAndDataTransformation i okl
Fle Edt Wew Woiflos Jook Wndow Help

RaFQPp o me-0e

| Components Data Outline | | .
- e e L T ¥ -
Search Compenents :..:: = :.:';.. — — — o 2
a (S) AEEAIPHOS REO T
{ Advanc..) [Sources) L m— il F
(Al Or and Folders =] — r=a
» [Components e — "L.,v ———— = e
» B Projects
» [stavsnics oy Supmam
> Actors
> Directors
» Cpendap ML b
» R
0 resadts Fourd.
FTML Gesnarsior Uneng X350 T
= e
< >

50

Chapter 3 — Scientific Workflows

FIGURE 0.8: OPENING A COMPOSITE ACTOR. TO VIEW THE NESTED (I.E., “SUB-WORKFLOW"”) CONTAINED IN A COMPOSITE
ACTOR, RIGHT-CLICK THE ACTOR AND SELECT OPEN ACTOR FROM THE DROP-DOWN MENU.

Actors are written in Java, which is an object-oriented programming language created by Sun Microsystems.
(Note that existing code written in languages other than Java can be included in Kepler by writing a Java
“wrapper” around the code). A technical specification of actor structure is beyond the scope of this manual,
which instead focuses on how actors are used and appear in the user interface. For more technical
information about actor code and coding practices, please see the Ptolemy documentation as well as the
Kepler developer documentation.

3.2.3 COMPOSITE ACTORS

Composite actors are collections or sets of actors that are bundled together to perform more complex
operations. Composite actors can be used in workflows, essentially acting as a nested or sub-workflow. An
entire workflow can be represented as a composite actor and included as a component within an
encapsulating workflow. In more complex workflows, it is possible to have different directors at different
levels. A sub-workflow that contains its own director is called an opaque composite. Transparent
composites “inherit” their director from the containing workflow (i.e., the sub-workflow does not contain
its own director).

Opaque Composite actors are sub-workflows that contain their own director. Opaque composite actors can
be nested inside workflows that use a different type of director, thereby combining different models of
computation in one workflow; however, not all directors are compatible. An opaque composite actor that
uses a PN director cannot be nested inside a workflow governed by an SDF director, for example. For an in-
depth discussion of directors that can be compatibly nested, see Composing Models of Computation in

Kepler/Ptolemy.

3.2.4 PORTS

Each actor in a workflow can contain one or more ports used to consume or produce data and communicate
with other actors in the workflow. Actors are connected in a workflow via their ports. The link that
represents data flow between one actor port and another actor port is called a channel. Ports are
categorized into three types:

e input port — for data consumed by the actor;
e output port — for data produced by the actor; and
e input/output port — for data both consumed and produced by the actor.

Each port is configured to be either a “singular” or “multiple” port. A single input port can be connected to
only a single channel, whereas a multiple input port can be connected to multiple channels. As depicted in
Figure 3.9, each single input port is shown as a black triangle, and each multiple port is shown as a white
triangle. A third port color is grey, which means the port is a port-parameter (please see Section 3.2.4.3:
Port-Parameter). The “width” of the port describes how many channels of data it accepts; the width of a
single port can be 0 (unconnected) or 1, while the width of a multiple port can be greater than 1. For
multiple ports, the first channel is number 0, the second 1, etc. See Section 3.2.5 for more information
about channels.

51

http://www.sun.com/java/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html
https://kepler-project.org/developers
https://kepler-project.org/developers
http://ptolemy.eecs.berkeley.edu/ptolemyII/ptIIlatest/ptII/doc/domainCompatibility.htm
http://ptolemy.eecs.berkeley.edu/ptolemyII/ptIIlatest/ptII/doc/domainCompatibility.htm

Chapter 3 — Scientific Workflows

Several different kinds of ports appear in Kepler: actor ports, external ports, and port-parameters. Each is
discussed in more detail in the following sections.

3.2.4.1 ACTOR PORTS

Actor ports, also called coupled ports, are coupled with an actor. Actor ports appear as light or dark triangles
on the actor icons when actors are displayed on the Workflow canvas (Figure 3.9). They can be customized
by right-clicking the associated actor and selecting Customize Ports from the drop-down menu.

Bernoulli

FIGURE 0.9: SINGLE AND MULTIPLE PORTS OF THE BERNOULLI ACTOR. A SINGLE PORT CAN BE CONNECTED TO A SINGLE CHANNEL
OF DATA, WHILE A MULTIPLE PORT CAN BE CONNECTED TO MULTIPLE CHANNELS.

To customize an actor’s ports—either by changing the existing ports or adding new ones—right-click the
actor and select Configure Ports from the drop-down menu (Figure 3.10)

L S

< Configure ports for Convert URL To Image E]@
Mame Input | Qu... | Multi... Type Direction Shiow Marne Hide nits

inpuk] F] DEFALLT]]

oukpuk [] [] DEFALLT Fl F

(oo) [

FIGURE 0.10: CONFIGURING THE PORTS OF THE CONVERTURLTO IMAGE ACTOR. FIELDS THAT CANNOT BE EDITED ARE NOTED
WITH A PINK HIGHLIGHT.

Adding ports is essential to some actors (like the Expression actor). In other cases, adding ports is relatively
meaningless since the actor is not designed to use any information on the added port. To add a new port,
click the Add button and then customize the new port.

Every port must have a name, which can be customized by double-clicking the field in the Name column
and typing a name. In addition to selecting the kind of port (input, output, or input/output), users can assign
a data type by clicking the Type field and selecting a type from the drop-down menu. The port Direction
field determines how the port will be displayed on the Workflow canvas (“North” places the port at the top

52

Chapter 3 — Scientific Workflows

of the actor, “South” on the bottom, etc). Kepler will display the port name on the Workflow canvas if “Show
Name” is selected, and will hide the port (i.e., not show it on the Workflow canvas) if “Hide” is selected.

Units (seconds, meters, etc) can be selected by clicking the Units field and selecting a measurement from
the drop-down menu. Assigning units helps ensure the integrity of workflow processing (e.g., making sure
that meters are not added to miles per second, etc). If units are assigned, the Unit Constraints Solver
(accessed by right-clicking the Workflow canvas and selecting Unit Constraints Solver from the drop-down
menu) can be used to discover, analyze, and in some cases fix unit inconsistencies that exist in a model.

Each port can also be assigned a data type (e.g., double or array; see Section 3.2.6 for more information
about data types). The type of the port restricts the type of the token that can pass through it. These types
can be declared via the Type drop-down menu, or left undeclared, in which case the application will resolve
the type when the workflow is executed. In many cases, there is no need to enter port type information.

3.2.4.1 EXTERNAL PORT

An external port is often used to pass data from a sub-workflow to a containing workflow (Figure 3.11).
External ports can be connected by channels to other external ports or to ports of individual actors.

SDF Diractor

Port-Parameter i

L

el -

DirMame: DataDirectory+"mephitis"

Directory Maker

\ External Port
i 3:;_‘ trigger

o

FIGURE 0.11: EXAMPLE OF AN EXTERNAL OUTPUT PORT (“TRIGGER”) AND AN INPUT PORT-PARAMETER (“DIRNAME”). THIS
SIMPLE WORKFLOW IS A SUB-WORKFLOW OF THE GARP_SINGLESPECIES_BESTRULESET-IV.XML WORKFLOW. THE SUB-
WORKFLOW PASSES A TRIGGER TO THE CONTAINING WORKFLOW VIA ITS EXTERNAL TRIGGER PORT. THE DIRNAME PORT-
PARAMETER IS DISCUSSED IN GREATER DETAIL IN SECTION 3.2.4.3.

53

Chapter 3 — Scientific Workflows

Like actor ports, external ports can be singular or multiple. They can be added to a workflow with the
Toolbar buttons. The ports are represented on the Workflow canvas with the same icon that appears on
the Toolbar buttons (Table 3.3)

‘ Single input port. ¢> Multiple Input Port
- Single output port. tﬁ Multiple Output Port

Single Input/Output Port
* ¢> Multiple Input/Output Port

TABLE 0.3: ICONS THAT REPRESENT THE VARIOUS TYPES OF EXTERNAL PORTS ON THE WORKFLOW CANVAS.

3.2.4.3 PORT-PARAMETER

A port-parameter functions as both a port and a parameter. It is used to configure the operation of an actor
(for more information about parameters, see Section 3.2.8). Port-parameters allow users to specify a
“default” value for a parameter (e.g., iterations=4 or name="mouse"). If the actor receives a value via the
coupled port, that value will replace the value specified by the parameter component of the port-
parameter.

Port-parameters can be added to workflows from the Components tab by searching for “PortParameter”
and dragging the component onto the Workflow canvas.

To customize a port-parameter on the Workflow canvas, right-click the port-parameter and select
Customize Name from the drop-down menu. A dialog window provides a field for specifying a name (Figure
3.12). Choose a descriptive name and click Commit.

Rename DirName

Kepler Name: 'DirName

L/

ae Display name: |DirName

Cancel | | Commit |

FIGURE 0.12: CUSTOMIZING THE NAME OF THE PORT-PARAMETER USED IN THE GARP_SINGLESPECIES_BESTRULESET-IV.XML
WORKFLOW DISPLAYED IN FIGURE 3.11.

ONCE THE PORT-PARAMETER HAS BEEN NAMED, SPECIFY A PARAMETER VALUE BY
DOUBLE-CLICKING THE PORT-PARAMETER (FIGURE 3.13).

54

Chapter 3 — Scientific Workflows

Edit Parameter DirMame

%gl: DirName: |DataDirectory+"/mephitis” | Configure |
=% —

-

| Cancel | | OK |

FIGURE 0.13: CUSTOMIZING THE PARAMETER VALUE OF A PORT-PARAMETER.

Note: The parameter value in Figure 3.13, DataDirectory+"/mephitis™ is an example of an
expression, written in the Kepler expression language. It is the value of the port-parameter used in the sub-
workflow displayed in Figure 3.11. DataDirectory is a parameter defined by the containing workflow,
and "/mephitis" is a string that will be concatenated onto it, forming the name of the new directory
created by the DirectoryMaker actor. Parameter values can also be constant values, such as integers or
strings.

Once the port-parameter has been defined, actors can reference it. Figure 3.14 displays the DirectoryMaker
actor’s parameters. Note that the value of the “Directory name” parameter is set to $SDirName. The “$”
syntax is used to tell Kepler to substitute the value of a string parameter for the parameter name (i.e.,
DirName is the parameter name in this example, NOT the name of a directory). The value of DirName is:
DataDirectory+"/mephitis". The actor will use this value unless the port-parameter receives an
alternate string from the containing workflow. In the GARP workflow, the port-parameter is configured to
receive DataDirectory+"/"+ SpeciesName (where SpeciesName is defined elsewhere in the
containing workflow), and this value would replace the default Directory name parameter.

Edit parameters for Directory Maker

Kepler Directory name: [§DirName |
h‘ class: org.resurgence.actor.DirectoryMaker | | Configure |
e S —

| Cancel || Help | | Preferences | | Defaults | | Remove | | Add | | Commit |

FIGURE 0.14: REFERENCING A PORT-PARAMETER. THE $DIRNAME SYNTAX IS USED TO REFER TO THE VALUE OF THE DIRNAME
PORT-PARAMETER DEFINED ON THE WORKFLOW CANVAS.

3.2.5 CHANNELS AND TOKENS

Channels are used to pass data from one port to another. Each channel can transport a single stream of
data. Data in Kepler is encapsulated and passed between workflow components as tokens. Each token has
an assigned data type (int, object, or matrix, for example).

Channels are represented as solid lines that “connect” the actors on the Workflow canvas. To create a
channel, left-click an actor’s input or output port and drag the cursor to the destination actor’s input/output
port. Until the channel is properly connected to both the source and destination ports, the channel will
appear as a thin black line. Once the channel is connected, it will become a thick black line (Figure 3.15). To
disconnect or re-route one end of a channel, first select the channel by left-clicking somewhere along the
black line, then click-and-drag the appropriate end point to the desired location on the Workflow canvas.

55

Chapter 3 — Scientific Workflows

The simple addition/subtraction workflow displayed in Figure 3.15 contains two channels of data that are
input to an Add or Subtract actor via its multiport. The first channel is number 0, the second number 1 (a
third would be number 2, etc.).

SDE Director

i Connected Channel
i (thick black line)

i Unconnected Channel |
! (thin black line) |

:=="" Monitor Value

t

FIGURE 0.15: CHANNELS ON THE WORKFLOW CANVAS. WHEN A CHANNEL IS PROPERLY CONNECTED, IT WILL BE REPRESENTED BY
A THICK BLACK LINE. CHANNELS THAT ARE NOT PROPERLY CONNECTED APPEAR AS THIN BLACK LINES.

3.2.6 DATA TYPES

Data tokens each have a structural type. “Hello”, a string of alpha-numeric characters, is encapsulated as a
string token, while 3, an integer, is encapsulated as an integer token. String and integer are both structural
types.

A data token can only be passed to a port that accepts its structural type. An array of strings cannot be
passed to a port that accepts only integers, and attempting to do so will generate a type error. Port data
types are defined by the actor, and can be configured by right-clicking an actor and selecting Configure
Ports from the drop-down menu. That menu contains common Kepler data types, defined in Table 3.4. Note
that this list is not exhaustive. For example, users can edit the results from the drop-down type menu to
convert “ArrayTypelint]” to “ArrayType[double]”.

BOOLEAN The Boolean token can have one of two values: true or false
(represented by 1 or 0, respectively).

COMPLEX A complex number consists of a real and imaginary part. In Kepler,
the imaginary component of a complex number is designated with
aniorj(e.g., 6+7i).

DOUBLE A double represents a floating point number (e.g., 1.345) with
“double precision”. This data type can accurately represent about
twice as many significant digits as a single precision type, but also
requires more memory.

FIXED POINT A fixed-point number is a number in which the position of the
decimal point is constant. U.S. currency can be represented by a
fixed-point number that has two digits to the right of the decimal
point, for example. Fixed point numbers in Kepler are represented
in the following way: fix(value, integerBits, fractionBits).

56

Chapter 3 — Scientific Workflows

GENERAL

The general data type is the most inclusive of the types. A port
assigned type “general” can accept data of all types (array, string,
matrix, etc.).

INT

The integer token (“int”) represents numerical values that have no
decimal points (e.g., 11 or -17)

LONG

Integers followed by an “I” or “L” are of type long. The long data type
can represent large integers. Float and double data types can also
be used: these data types have greater storage capacity than long
data types, but less precision/significant digits.

MATRIX

A matrix contains boolean, complex, double, fixedpoint, int, or long
data that can be referenced by row and column. Matrices in Kepler
are specified with brackets. Commas separate row elements and
semicolons separate rows. For example, a 1x3 matrix would be
represented as [1,2,3]. A 2x2 matrix would be represented by
[1,2;3,4]. To create multidimensional matrices, use arrays of arrays
of arrays.

OBIJECT

An object token is a data container for an arbitrary Java object (most
complex “things” in Java are objects). These tokens can be used to
pass complex Java objects around a Kepler workflow. Object tokens
are primarily used for custom workflows with custom actors. Non-
programmers will probably not find them very useful.

SCALAR

The term scalar designates a value that consists only of magnitude
(as opposed to a vector, which consists of both a magnitude and
direction). In Kepler, scalar values may have any scalar data type:
double, int, long, etc.

STRING

A sequence of characters specified within quotation marks.
Anything between "" is interpreted as a string.

UNKNOWN

An unknown data type places no additional type constraints on the
port. All the structured types are less than the type “general” and
greater than “unknown.”

UNSIGNED BYTE

An unsigned byte represents an integer that does not include data
to specify whether it is positive or negative.

XML TOKEN

Extensible Markup Language (XML) tokens use markup language to
describe the structure of the data. For more information about XML,

see the World Wide Web Consortium.

ARRAYTYPE(INT)

An array is a data structure consisting of elements that can be
identified by a key (or index). The first item in an array has a key of
0, the second 1, etc. Arrays in Kepler are denoted with curly braces,
e.g. {1,2,3,4,5} arrayType (int) specifies an array of integers.
Note that any type in the drop-down menu can be edited so that
different array types can be specified.

ARRAYTYPE(INT,5)

An array is a data structure consisting of elements that can be
identified by a key (or index). arrayType (int,5) specifies
an array of integers with 5 elements in the array (i.e., the length of
the array is specified as part of the type. Note that any type in the
drop-down menu can be edited so that different array types and
lengths can be specified.

57

http://www.w3.org/

Chapter 3 — Scientific Workflows

[DOUBLE] A matrix with elements of type double.

{X=DOUBLE, Y=DOUBLE} | A record token consists of named elements and their values. In
Kepler, records are specified between curly braces. For example,
{a=1, b=2}is a record with two elements, named a and b, with values
1 and 2, respectively. In this case, both values are of type double.

TABLE 0.4: COMMON DATA TYPES IN KEPLER.

Kepler will attempt to automatically convert data into the appropriate structure. For example, if an integer
and a double are added, Kepler will determine that the result will be type double (which is the “greater” of
the two data types). For a detailed discussion about type conversion and resolution see the Ptolemy
documentation.

3.2.7 RELATIONS

Relations allow workflows to “branch” a data flow. Branched data can be sent to multiple places in the
workflow. For example, a user might wish to direct the output of an operational actor to another
operational actor for further processing, and to a display actor to display the data at that specific reference
point. By placing a Relation in the output data channel (Figure 3.16), the user can direct the information to
both places simultaneously.

SDFE Director

Gene Accession Number

[P AAD45112) XML Entry Display

Benice

Sequence Getter Using XPath Sequence Display

Errars Sink HTML Generator Using XSLT

L T M.- HT ML Out

| ptolermy. ackaor.lib. gui. Display |

Besult

HTNL Display

FIGURE 0.16: A RELATION IS USED TO BRANCH THE RESULT OUTPUT OF THE WEBSERVICE ACTOR TO AN XML ENTRY DISPLAY
ACTOR AND TWO ADDITIONAL PROCESSING COMPONENTS: SEQUENCE GETTER USING XPATH AND HTML GENERATOR USING
XSLT.

To add a relation to a workflow, use the Add Relation button on the Toolbar (®). The relation will be
placed in the center of the Workflow canvas. Drag and drop it to the required location. When connecting a
relation to actors, it is often easiest to begin drawing the channel at the input or output port of the actor
and connecting the channel to the relation.

58

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html

Chapter 3 — Scientific Workflows

3.2.8 PARAMETERS

Parameters are configurable values that can be attached to a workflow (model parameters) or to individual
directors or actors (coupled parameters). Actor parameters specify everything from the directory into which
the actor should save its output, to the name applied to the output file, to the number of items the actor
should process. Director parameters control the number of workflow iterations and the relevant criteria for
each iteration. Model parameters define values that can be adjusted in the Runtime window. More
information about each type of parameter is contained in the following sections.

3.2.8.1 ACTOR PARAMETERS

Actor parameters (or “coupled parameters”) are parameters that belong to an actor or director. To view or
edit these parameters, right-click the actor or director on the Workflow canvas and select Configure Actor
from the drop-down menu, or simply double-click the component. This opens a dialog box containing all of
the relevant parameters. Figure 3.17 shows a dialog box that contains the parameters of the Display actor.

e

Edit parameters for Display

‘-?r/ rowsDisplayed: 10
columnsDisplayed: an
suppressBlankLines: O
Litle:
class: prolemy . actor, lib, gui, Display
semanticTyped: urri:lsid:localhostonto: 1: 1 # TextualQukpukactor
semanticTypell: urri:lsid:localhost:onto:2: 1 # TexkualGukput

Commit l l Add] [Remaove] ’Restore Defaultsl [Preferences l [Help l l Cancel

FIGURE 0.17: PARAMETERS OF THE DISPLAY ACTOR.

To edit the parameter values, simply change the fields and click the Commit button. In most cases, values
must be modified before the workflow begins running; in other words, changes to parameter values will
not go into effect if the workflow is already running.

Parameters can be added, removed, or restored to their default values via the corresponding buttons. Click
Preferences to customize the type of field used to edit the parameters: text, fixed, line, or check box (Figure
3.18).

59

Chapter 3 — Scientific Workflows

¥ =

Edit parameters for Bernoulh

\:{j— seed: E___P_i!'_e_____:---- oL

resetOnEachRuny---=---~=-----~, :
. Check Box ™ Ll
trueProbability; '=-ssesesemmaas 0.5
U Text PEEE
class: ! Fived - ptolemy.actor.lib.Bernoulli
semanticType00: urn:lsid:localhost:onko: 1 1 #R.andomMumber Mathoper ationackor
semanticTypell: urn:lsid:localhost onko: 2: 1 #R.andomMumber Oper ation
Zommit] [Add] [Remove] [Restnre Defauls] [Preferences] [Help] [Zancel

FIGURE 0.18: THE PREFERENCES BUTTON IS USED TO MANAGE THE TYPES OF FIELDS USED TO EDIT PARAMETER VALUES. THE
PICTURED PARAMETERS ARE FOR THE BERNOULLI ACTOR, WHICH IS USED TO GENERATE AND OUTPUT A SEQUENCE OF RANDOM
BOOLEAN VALUES.

3.2.8.2 MODEL PARAMETERS

Model parameters appear directly on the workflow canvas and are used to specify values for anything from
a color, to a file name, to a required version number (Figure 3.19). Model parameters can be added to a
workflow from the Components tab.

To customize the value of a model parameter, double-click the parameter on the Workflow canvas, type a
value into the editable field, and click OK. Alternatively, model parameters can be adjusted in the Runtime
window, which is accessed via the Workflow menu.

60

Chapter 3 — Scientific Workflows

Continuous Director

D2
,-r

Timed Plotter

~

—

——-p-e0a: 0.1
& Model Parameters
Gamly " —heb: 0.1
N

~
A g
XY Plotter ed: 0.1

dnl/dt Integrate n
r | Ir"*nl - a*nl*n2

L dn2/dt

Integrator

] an2 + o2 »—_nj
A g

FIGURE 0.19: MODEL PARAMETERS, WHICH IS SET ON THE WORKFLOW CANVAS. MODEL PARAMETERS CAN BE REFERENCED BY
ANY ACTOR IN THE WORKFLOW AND ITS SUB-WORKFLOWS.

Parameter values can be referenced by any actor in the workflow or its sub-workflows. Actors reference

model parameters by name. For example, the ClimateFileProcessor actor in Figure 3.20 references the
OutputDir model parameter in its baseOutputFileName parameter.

61

Chapter 3 — Scientific Workflows

SDEDireclor g o inutDir: "C:IPCCLayersr

7

: Edit parameters for ClimateFileProcessor / E

_?r‘.‘ output Type: awerags| / v
cutputPeriod; pr >
baseCutputFilshame: r_;:-:-vﬁl?:l'

[commt || Add || PRemave | [RestoreDefsuts| | Proferences || Hep || cCancel |

ClimateFileProcessor

FIGURE 0.20: REFERENCING A MODEL PARAMETER.

3.2.8.3 PORT-PARAMETERS

A port-parameter functions as both a port and a parameter that is used to configure the operation of an
actor. For more information about Port-Parameters, see Section 3.2.

62

Chapter 4 — Working with Existing Workflows

4 WORKING WITH EXISTING SCIENTIFIC WORKFLOWS

Kepler comes with a set of documented workflows, contained in the “demos” directory and its
subdirectories. The workflows in the “demos/getting-started” directory are useful examples that can help
users familiarize themselves with the application. Many of the workflows contained in that directory are
described in more detail later in this chapter.

In this chapter, we also cover how to open workflows that are created and shared by colleagues, and how
to modify and save existing workflows.

4.1 OPENING WORKFLOWS

Kepler can open both local workflows and workflows that are stored on a remote Web server. In both cases,
the open workflow will display on the Workflow canvas, where it can be run and/or modified.

4.1.1 OPENING LocAL WORKFLOWS

The workflows shipped with Kepler are installed into the directory
“KeplerData/workflows/module/Module-2.X.Y/demos/getting-started/”. Module is the name of each
Kepler module and X.Y is the current version of Kepler. KeplerData/ is located inside your Documents and
Settings directory on Windows, and inside your home directory on Linux and Mac OS X. (In general,
workflows can be stored and opened from any local directory.)

To open an existing local XML (MoML) workflow:

1. From the Menu bar, select File, then Open.... A standard file dialog box will appear.

2. Ifthe file dialog box does not open to the “KeplerData” directory (the place where user workflows
and data are stored), navigate to the “KeplerData” directory (in your home directory).

3. Double-click a workflow file to open it (or single-click to select the file and then click the Open
button). The workflow will appear on the Workflow canvas.

For example, to open the Lotka-Volterra workflow (the classic predator-prey model that is shipped with the
Kepler application):

1. From the Menu bar, select File, then Open... .
2. Navigate to the “KeplerData/workflows/module/outreach-2.X.Y/demos/getting-started/”
directory and locate the file named “02-LotkaVolterraPredatorPrey.xml” (Figure 4.1).

63

Chapter 4 — Working with Existing Workflows

® Kepler File Edit View Workflow Tools Window Help

(o X Unnamed1
NN L AL IR
[Components Data Outline | : | Workflow |

Search Components

Q] Search) eNoO § ! ! !ﬁ!

s \
(Advan(ed...) (Sources) Cancel r = s)+!
[All Ontologies and Folders 4] | Date Modified |
> Components |:| DD—S.lallsllcaISLfr.nmarv.xml Thursday, September 23, 2010 11:59 AM g
> Projects |:| 01-SimpleAdditon.xml Thursday, September 23, 2010 11:59 AM
> B staristi i 02-LotkaVolterraPredatorPrey.xml Thursday, September 23, 2010 11:59 AM
atistics [7] 03-ImageDisplay.xmi Thursday, September 23, 2010 11:59 AM
b [Actors
» [Datawrbine [04-Helloworld.xmi Thursday, September 23, 2010 11:59 AM
> [Directors [7| 05-LinearRegression.xml Thursday, September 23, 2010 11:59 AM
> [Opendap . [7] o6-webservicesAndDataTransformat... Thursday, September 23, 2010 11:59 AM
b IR [7] 07-CommandLine_1.xmi Thursday, September 23, 2010 11:59 AM
|:| 08-CommandLine_2 .xml Thursday, September 23, 2010 11:59 AM
=
0 results found. é b
&I A4
av .
File Format: | .xml, .moml, XML, .MO... [#]
P
A
FIGURE 0.1: NAVIGATING TO THE LOTKA-VOLTERRA WORKFLOW. THE WORKFLOW IS IN THE “DEMOS/GETTING-STARTED”

DIRECTORY.

3. Double-click the “02-LotkaVolterraPredatorPrey.xml” file. The Lotka-Volterra workflow appears
on the Workflow canvas (Figure 4.2).

64

Chapter 4 — Working with Existing Workflows

file:/Users/crawl/KeplerData/workflow. . .arted/02-LotkaVolterraPredatorPrey.xml

Q[&[R[a[p[11]@]=m[w]>[E5[]]

5 Components Data Outline ! > Workflow
Sl G s Continuous Director F
Q N (search)
(‘Advanced...) (Sources) Cancel er: 2
Timed Plotter
[All Ontologies and Folders B ea: 0.1
> E Components)
» (@ Projects eb: 0.1
> Statistics
» [Demos XY Plotter ed: 0.1
> [Actors
» [Dataone
» [Dataturbine
» [Directors
» [lrods k.
» [)ob
> [MyWorkflows ‘
> [Opendap
PO h
N _Ruum _dnl/dt Integrate n
8 L I r*nl - a*nl*n2
L Ldn2/dt Integrator
I -d*n2 + b*nl*n2
—
& .
0 results found. This model shows the solution to the classic Lotka-Volterra
F a— predator prey dynamics model. It uses the Continuous Time
i - domain to solve two coupled differential equations, one that models
the predator population and one that models the prey
population. The results are plotted as they are calculated showing
both population change and a phase diagram of the dynamics.
Rich Williams, 2003, NCEAS 3
m — Jai+l

FIGURE 0.2: THE LOTKA-VOLTERRA WORKFLOW IN THE KEPLER INTERFACE.

Since Kepler 2.4, the demo workflows in each Kepler module can be found in the Kepler component tree.
The “Demos” folder in component tree lists all demo workflows for each module. Users can search/navigate
Kepler component tree to find interesting workflows and open them by double-clicking on them.

4.2 RUNNING WORKFLOWS

Workflows can be run in one of two ways: via the Run button in the Toolbar or via the Workflow menu’s
Runtime Window menu item.

4.2.1 RUNTIME WINDOW

Selecting the Runtime Window menu item (Figure 4.3) opens a handy window that can be used to start,
pause, resume, and stop workflow execution. The window also displays all workflow and director

65

Chapter 4 — Working with Existing Workflows

parameters so that they can be viewed and/or edited. Workflow output is displayed in the window once
the workflow has executed.

To run a workflow using the Runtime Window:

1.
2.

3.
4.

Kepler File Edit View RULLSIMTE Tools Window Help

file:/Users/charliec/KeplerData/workf. . .arted/02-LotkaVolterraPredatorPrey.xml
7
Tirned Plotter EE@E‘
Go Pause Resume Stop T T T T
40 1 o)
Predator ®
Model parameters: B
35
r 2 30
a 0.1 25
b:
0.1 20
d: 0.1
enableBackwardTypelnference: 15
10
B Director parameters: 5
0
localClock: 0.0 i v x y . . r
Eonflgues 00 02 04 06 08 1.0
startTime: 0.0 102
stopTime: 1000 =1L
synchronizeToReal Time: T T T T |XY qutler T T T T
initStepSize: 0.1 &
maxStepSize: 1.0 35
maxIterations: 20
errorTolerance: le-6 30
ODESolver: ExplicitRK23Solver h
minStepSize: le-5 &
valueResolution: le-8
runAheadLength: 0.1 2
class: ptolemy.domains.continuous.kernel.ContinuousDirector Configure 15
101
0 1 2 3 4 s [} 7 L] a 10

Open the desired workflow.

From the Menu bar, select Workflow, then Runtime Window. A Runtime window opens. Workflow
and director parameters are displayed on the left side of the window, where they can be adjusted
as needed.

Click the Go button to start running the workflow.

The workflow will execute. During workflow execution, you may select the Pause, Resume, or Stop
buttons.

Runtime Window...

Add Relation
Add Port

>

FIGURE 0.3: OPENING THE RUNTIME WINDOW TO RUN A WORKFLOW AND/OR ADJUST WORKFLOW PARAMETERS. IN THIS

EXAMPLE, THE RUNTIME WINDOW IS DISPLAYING THE LOTKA-VOLTERRA WORKFLOW.

To run the Lotka-Volterra workflow via the Runtime Window:

w

66

Open the workflow file named “02-LotkaVolterraPredatorPrey” from the “demos/getting-
started/” directory.

From the Menu bar, select Runtime Window from the Workflow menu. A Runtime Window opens.
Click the Go button in the Runtime Window.

The Lotka-Volterra workflow will execute with the default parameters and produce two graphs,
which are displayed in the window. The graph labeled TimedPlotter depicts the interaction of
predator and prey over time (i.e., the cyclical changes of the predator and prey populations over
time predicted by the model). The graph labeled XYPlotter depicts a phase portrait of the
population cycle (i.e., the predator population against the prey population). Together these graphs
show how the predator and prey populations are linked: as prey increases, the number of
predators increase. (Figure 4.4)

Chapter 4 — Working with Existing Workflows

K| file:/C: /ke pler 2007070 2/demos/getting-started/02-LotkaVolterraPre datorPrey. xml E]@
File Wiew ‘Worlflow Tools Window Help
5] ot 2

| Gor | [Pause] [Resurne] [Shop] XYPlotter JJJJ
Model parameters: 401

r z i

ai 0.1 anl

b 0.1

d: 0.1 a5t
Director parameters: 07

timeResalution: 1E-10 151

startTime: 0.0 10|

stopTime: 1000

et 0.1 0 1 2 3 4 5 6 7 8 a 10

minStepSize: 1e-5 ’— o

=] Iy

maxStepSize: 1.0 TimedPlotter JJJ

maxIterations: 20 a0 1 [/ I [] I [I []

errorTalerance: te-f il

valueResolution: 1e-8

synchronizeToRealTime: O sor

ODESokver: "ExplicitRK4550ker" v B

breakpointODESakver: "DerivariveResolver ™ 201 Il

rundheadlenath: 0.1 151

class: pholemy. domains.ct. kernel . CTMixedSignalDirector 1ok

semanticTypeo00: urn:lsid:localhost:onto: 1:1#Director

o[UL
1] 1l l
0o 01 0.z 03 04 058 06 07 08 08 1.0
10

p—— —

FIGURE 0.4: THE RUNTIME WINDOW DISPLAYING THE RESULTS OUTPUT BY THE LOTKA-VOLTERRA WORKFLOW.

4.2.2 RUN BuTTON

The Run button in the Toolbar runs a workflow with a single button click. Workflow and director parameters
are not exposed for editing as they are in the Runtime Window.

To run a workflow using the Run Toolbar button:

1. Open the desired workflow.
2. From the Toolbar, select the Run button. (®)
3. The workflow will execute and produce the specified output.

To run the Lotka-Volterra workflow via the Run button

5. Open the workflow file named “02-LotkaVolterraPredatorPrey” from the “demos/getting-
started/” directory.

6. On the Toolbar, click the Run button.

7. The Lotka-Volterra workflow will execute with the default parameters and produce two graphs.
The graph labeled TimedPlotter depicts the interaction of predator and prey over time (i.e., the
cyclical changes of the predator and prey populations over time predicted by the model). The
graph labeled XYPlotter depicts a phase portrait of the population cycle (i.e., the predator
population against the prey population). Together, these graphs show how the predator and prey
populations are linked: as prey increases, the number of predators increase. (Figure 4.5)

67

Chapter 4 — Working with Existing Workflows

K/ .DLLn!ka'n‘nit&rraPredﬂnl’Prﬂr.Thmuf’lutter E@
File Tocls Specal Help i
TimedPlotter EIEE@
anf -
35 .
anr 7
75 | | I 0
| -
5[_
ol LU UL]
G0 D1 02 03 04 05 06 O0F 08 09 10
¥io®
XYPlotter
40T
35T
aof
251
20[
151
10{

FIGURE 0.5: GRAPHS OUTPUT BY THE LOTKA-VOLTERRA WORKFLOW RUN VIA THE RUN BUTTON ON THE TOOLBAR.

4.2.3 RUNNING WORKFLOWS WITH ADJUSTED PARAMETERS

Workflow parameters are used to specify anything from the name of a data directory used by a workflow,
to the relationship between items processed by the workflow, to the name applied to a workflow’s output

file. Adjusting these parameters can have a significant effect on the output.

Parameters can be adjusted in several ways. Double-click any workflow parameters that appear on the
Workflow canvas (e.g., r, a, b, or d in Figure 4.6) to edit the parameter value. Director and actor
parameters can also be modified by double-clicking the component and editing the values in the dialog
window. If the workflow is run via the Workflow menu’s Runtime Window menu item, both workflow and

director parameters are exposed and can be edited in the Runtime Window before the workflow is run.

In this section, we will step through the process of adjusting the parameters of the Lotka-Volterra workflow

to show how adjusting parameters affects workflow output.

68

Chapter 4 — Working with Existing Workflows

Continuous Director

er. 2
Timed Plotter
ea: 0.1
~
eb: 0.1
ed: 0.1

XY Plotter

]

dnl/dt Integrate n
r | r*nl - a*nl*n2
L dn2/dt

Integrator

-d*n2 + b*nl*n2

~

FIGURE 0.6: THE LOTKA-VOLTERRA WORKFLOW.

The Lotka-Volterra model was developed independently by Lotka (1925)? and Volterra (1926)*% and is
made up of two differential equations. One equation describes how the prey population changes

(dn1/dt = r*nl - a*n1*n2); the other describes how the predator population changes (dn2/dt = -d*n2 +
b*n1*n2).

The Lotka-Volterra model is based on certain assumptions:

e the prey has unlimited resources;
e the prey’s only threat is the predator;

12 | otka, Alfred J (1925). Elements of physical biology. Baltimore: Williams & Williams Co.

13 Volterra, Vito (1926) Fluctuations in the abundance of a species considered mathematically. Nature
118. 558-560.

69

Chapter 4 — Working with Existing Workflows

e the predator is a specialist (i.e., the predator’s only food supply is the prey); and
e the predator’s growth depends on the prey it catches

The Lotka-Volterra model is represented in Kepler as a scientific workflow that contains:

e six actors - two plotters, two equations, and two integral functions;
e onedirector; and
o four workflow parameters (Table 4.1).

NOTE: The director of the Lotka-Volterra model has several configurable parameters, as do the two plotter
actors.

The critical assumptions above provide the basis for the workflow parameters. The workflow parameters
and their defaults are as follows:

Parameter Default Description
Value

r 2 The intrinsic rate of growth of prey in the absence of
predation

a 0.1 Capture efficiency of a predator or death rate of prey due to
predation

b 0.1 Proportion of consumed prey biomass converted into
predator biomass (i.e., efficiency of turning prey into new
predators)

d 0.1 Death rate of the predator

TABLE 0.1: DESCRIPTION OF THE DEFAULT PARAMETERS FOR THE LOTKA-VOLTERRA WORKFLOW

In the differential equations used in the workflow, (dn1/dt = r*¥nl - a*n1*n2) and (dn2/dt = -d*n2 +
b*n1*n2), the variable n1 represents prey density, and the variable n2 represents predator density. The
variables n1 and n2 are not workflow parameters, but are the inputs to the Expression actors.

When changing parameters in a workflow, the assumptions of the model must be kept in mind. For
example, if creating a Lotka-Volterra model with rabbits as prey and foxes as predators, the following
assumptions can be made with regard to how the rabbit population changes in response to fox population
behavior:

e The rabbit population grows exponentially unless it is controlled by a predator;

e Rabbit mortality is determined by fox predation;

e Foxes eat rabbits at a rate proportional to the number of encounters;

e The fox population growth rate is determined by the number of rabbits they eat and their
efficiency of converting the eaten rabbits into new baby foxes; and

e Fox mortality is determined by natural processes.

If you think of each run of the model in terms of the rates at which these processes would occur, then you
can think of changing the parameters in terms of percent of change over time.

70

Chapter 4 — Working with Existing Workflows

To run the Lotka-Volterra workflow with adjusted parameters:

1. Open the workflow file named “02-LotkaVolterraPredatorPrey” from the “demos/getting-started”
directory

2. From the Menu bar, select Runtime Window from the Workflow menu. The Runtime window
opens. Notice that there are two sets of parameters — one for the workflow and one for the
director. For more detail about the director parameters, right-click the director and select
Documentation > Display from the drop-down menu. In this example, you will make adjustments
to both workflow and director parameters.

3. Adjust the workflow parameters as suggested in Table 0.2.

Parameter New value Description

r 0.04 The intrinsic rate of growth of prey in the absence of
predation

a 0.0005 Capture efficiency of a predator or death rate of prey

due to predation

b 0.1 Proportion of consumed prey biomass converted into
predator biomass (i.e., efficiency of turning prey into
new predators)

d 0.2 Death rate of the predator

TABLE 0.2: DESCRIPTION OF THE SUGGESTED PARAMETERS FOR THE LOTKA-VOLTERRA WORKFLOW TAKEN FROM
HTTP://WWW.STOLAF.EDU/PEOPLE/MCKELVEY/ENVISION.DIR/LOTKA-VOLT.HTML.

4. Adjust the value of the stopTime director parameter to 300.
5. In the Runtime window, click the Go button.

The Lotka-Volterra workflow will execute with the adjusted parameters and produce two graphs: 1) the
TimedPlotter graph and 2) the XYPlotter graph. Note that with the changes in the parameters, the
relationship between the predator and prey populations are still linked but the relationship has changed
(Figure 4.7).

71

http://www.stolaf.edu/people/mckelvey/envision.dir/lotka-volt.html

Chapter 4 — Working with Existing Workflows

K file:/C:/kepler-1.0.0beta3/demos/gett. . .arted/02-LotkaVolterraPredatorPrey.xml E]@
Ele Wiew workflow Tools Window Help
I I T 22
Go [Pause] [Resume] [Stop] 210 XYPlotter JJJJ
Model parameters: iy I
38T T
r 04
al 0.0005 3or 7
b 01 251 i
d: 0.2
20T i
Director parameters: 1.8 T
timeResalution: 1E-10 1or i
startTime: 0.0 o5t -
stopTime: 300 oo
initStepSize: 0.1 = = = = . s s s s
minStepSize: Tos 0.5 1.0 14 20 7ai) an a5 4.0 45
Stepsize: =1
e L0 0 TimedPlotter EIN|H|E]
maxlterations: 20 T T T T T T]
errorTolerance: 1e-6 40
walueResolution: 1e-8 380 T
synchronizeToRealTime: O anf 4
ODESalver: "ExplctRK45Solver” ¥ 25t J
breakpointODESOlyer: e et eRenl e | |
runftheadlLength: 0.1 20
class: prolemy, domains., ct. kernel, CTMixedSignalDirector i 1
semanticType000: urn:lsid:localhost:onto:l:1§Director 10fF :
0s[T
oo =
| L L 1 L 1 L
oo 0.5 1.0 il 20 A 3an
a0
execution finished. :]

FIGURE 0.7: GRAPHS OUTPUT BY THE LOTKA-VOLTERRA MODEL WITH ADJUSTED PARAMETERS

4.3 MODIFYING WORKFLOWS

There are two basic ways to modify an existing scientific workflow:

e Substitute a different data set for the current data set;
e Substitute one or more analytical processes in the workflow with other analytical processes (e.g.,
substitute a neural network model actor for a probabilistic model actor).

In order to be substituted, data sets and processing components must be compatible with the workflow.
Workflow documentation should contain information about the type of data and processing that occur in
the workflow; if not, you may need to do some investigative research: roll over actor ports to see the name
of the port and the type of data it accepts or broadcasts; right-click individual actors and select
Documentation to read more about the type of processing it does; or open existing data files used by the
workflow to see how they are formatted.

The basic steps involved in modifying a workflow are:

1. Open the desired workflow.

Identify which workflow component is the target for substitution.

3. Select the target component (data actor or processing actor) by clicking it. The selected component
will be highlighted in a thick yellow border.

N

72

Chapter 4 — Working with Existing Workflows

4. Press the Delete key on your keyboard. The highlighted component will disappear from the
Workflow canvas.

5. From the Components and Data Access area, drag an appropriate data or processing actor to the
Workflow canvas.

6. Connect the appropriate input and output ports and customize the actor parameters

7. Run the workflow.

4.3.1 SUBSTITUTING DATA SETS

Substituting data sets involves “pointing” the workflow to a new set of data. For local data, a data set is
often specified by an Expression or a StringConstant actor, which use an expression to generate the location
of the data file (see Chapter 8 for more information about the Expression actor). Other times, the location
of the data set is specified as a workflow or actor parameter. Remote data is often accessed via Kepler data
actors that handle all of the mechanical issues associated with parsing the Ecological Metadata Language
(EML) that describes the data, downloading the data from remote servers if applicable, understanding the
logical structure of the data, and emitting the data for downstream actors to use when required.

In this section, we'll look at how to substitute a local data set into a workflow as well as how to substitute
remotely stored data sets that use EML. Before substituting data sets into a workflow, you must ensure that
the data are formatted as required by the workflow (e.g., a tab-separated list or a table with metadata) and
that the units and data types are compatible.

SUBSTITUTING A LocAL DATA SET

Kepler can read data in many ways and in many formats. For example, the workflow in Figure 4.8 uses a
FileReader actor to access the contents of a data table saved in a text format. A Display actor then displays
the data in a text window.

SDF Director K| .03-ImageDis play.Display E]@
File Tools Help
zooo 1o 28 10 1 |
z000 10 28 10 1
z000 10 28 10 1
_File Reader 2000 10 28 10 1
{}—-L . 2000 10 28 10 z
> Display 2000 10 28 10 2
> = 2000 10 28 10 2
2000 10 28 10 2
v
< | | (&)

FIGURE 0.8: USING AND DISPLAYING LOCAL DATA IN A WORKFLOW.

The FileReader actor opens the local data file specified by the actor’s parameters. To substitute another
file, simply double-click the FileReader actor to expose its parameters, click the Browse button to the right
of the actor’s £11eOrURL parameter, and navigate to the desired file (Figure 4.9). Select a file and click
the Commit button. The actor is now configured to read the specified file.

73

Chapter 4 — Working with

Existing Workflows

Edit parameters for File Reader
1
b d ;

| -.'.',,-‘J FleOrURL: | Brotess
rucewilines: property(Tine.separatoe™)
dlass: probermy, ackor ib.io. FieR eadsr
Sefnanbic Type000: urn: l=id: localhost:onto:1: 1§ReaderExternal InputActor
samanticTypalll: urn:l=id: localhosr ioneo: 2 : 1iLosal Inpur

| comme || add | [Remove | |RestoreDefauks | [Preferences | | Help || canced |

l K Open
' Lockip: | () gettingstated |w| (B L9[EIE
4 = 00-StatisticaSummany. xml
L) 3 o1-smpladdrion. i
My Reconk = 02-LotkavolterraPredatorPrey. aml
Documents | | 03-Imagebisplay. aml
— 1= 04-HelaWorkd
u g U5-LinesrRegression. aml
Desktop (&l D6-WebServicesAndiuta Transfomation, xml
= o7-Commanduine_t i
; i 08-CommardLing_2.xml
[=i = Hetloworid, class
by Documents :] HellaWard, jar
[E] Helioworid, jrva
]] mobsc_sbundance kst |
"_1:,! 1) spciss-distiibotion. jpg
My Computer | a8 X5LTSample, x5l
M\-::%mi Filis pyasrioa usic_abundance. b
Places Files of bypé | ol Files !

Co] |

FIGURE 0.9: CONFIGURING THE FILEREADER ACTOR TO USE DATA FROM YOUR LOCAL MACHINE.

NOTE: When creating a workflow, remember that the limitations of the data determine which processing

components are appropriate.

The ReadTable.xml workflow (Figure 4.10), which is included in the KeplerData/workflows/module/r-
2.X.Y/demos/R/ directory, is an example of a workflow that reads a local text-based data file containing
species occurrence data (“mollusc_abundance.txt”). The workflow extracts the species names and counts
from the data set and creates a plot of the data (Figure 4.11). See Chapter 8 for more information about R
and how this workflow operates. For now, we are only concerned with how the workflow accesses data,

and how users can substitute a new data set.

74

Chapter 4 — Working with Existing Workflows

SDF Director

Display Image)

Data File Name
| propertyl"r.workflowdir’)+ "demos /R /mollusc_abundance. txt”

Separator

RExpression

header Display2

FIGURE 0.10: THE READTABLE.XML WORKFLOW.

d Kirsten%.png g@

430x480 pixels; 8-hit, 225K

100 120
I I
o

80

40

20

-|o:oooooo
Lo @

c.__g__a_igi :

T T T I T
Crassostrea Hydrobiidae MWelampus

FIGURE 0.11: OUTPUT OF THE READTABLE.XML WORKFLOW. THE WORKFLOW EXTRACTS EACH SPECIES NAME AND OCCURRENCE
INFORMATION FROM THE MOLLUSC_ABUNDANCE.TXT DATA FILE, AND CREATES A PLOT OF THE DATA.

The workflow uses an Expression actor labeled Data File Name to reference the data set. The value:

75

Chapter 4 — Working with Existing Workflows

property ("r.workflowdir")+"demos/R/mollusc_abundance.txt"

is an expression written in the Kepler expression language. The expression
“property ("r.workflowdir")” returnsthe path to the R module’s workflow directory in KeplerData.
"demos/R/mollusc_abundance.txt" isthe rest of the path to this data file.

In this workflow, the input file is a text file containing data in a “spreadsheet-like” tabular format. Each line
of the file contains one row of values, separated by a “separator” delimiter—a tab ("\t"), as specified by the
workflow’s Separator actor. By default, the first row of the data file is assumed to contain the column
names. (Setting the value of the header actor to FALSE will change this default). Saving an Excel spreadsheet
as a text file creates such a data file with a tab separator (Figure 4.12).

-

K file:/C:/project/kepler/demos/Rimollusc_abundance. txt Q@
File Tools Help

Tear Month Lay Site Zone Flot Fpecies Mollusc Count Quadrat_Aresa Hollusc_Density [
zoao 10 30 1 1 1 Littoraria u} 0.z5o00 0

000 10 30 1 1 3 Littoraria] 0.z500 0O

zoao 10 30 1 1 3 Littoraria u} 0.zso00 0

000 10 30 1 1 =] Littoraria 4 0.z500 16

zoao 10 3a 1 z 1 Littoraria u} 0.z5o00 0

000 10 30 1 Z 3 Littoraria] 0.z500 0O

zoao 10 30 1 z 3 Littoraria u} 0.z500 0

000 10 30 1 2 =] Littoraria] 0.z500 0O

zoao 10 Za z 1 1 Littoraria 3 0.5000 &

000 10 26 Z 1 3 Littoraria 1 o.5000 2

z0ao 10 Z6 2 1 3 Littoraria 1 0.5000 2

000 10 26 2 1 =] Littoraria] 0.5000 0O

z0ao 10 Z6 2 2 1 Littoraria u} 0.5000 O

000 10 26 Z Z 3 Littoraria] 0.5000 0O

z0ao 10 Z6 2 2 3 Littoraria u} 0.5000 O

000 10 26 2 1 =] Littoraria] 0.5000 0O

2000 10 28 3 1 1 Littoraria 2 0.2500 8

000 10 =4=] 3 1 3 Littoraria 1 0.z500 4

2000 10 28 3 1 3 Littoraria u} 0.z2500 O

000 i0 =4=] 3 1 =] Littoraria] 0.0625 0O

2000 10 28 3 2 1 Littoraria 54 0.5000 108

000 10 =4=] 3 Z 3 Littoraria 119 0.z500 476 e

FIGURE 0.12: THE MOLLUSC_ABUNDANCE.TXT DATA SET USED BY THE READTABLE.XML WORKFLOW. DATA IS CONTAINED IN
COLUMNS SEPARATED BY A TAB DELIMITER.

To use another set of data, simply ensure that the data are formatted correctly, and substitute the name of
the new data set into the Data File Name actor.

SUBSTITUTING REMOTE DATASETS VIA THE EARTHGRID

Substituting data sets that are stored remotely on the EarthGrid is another simple way to edit a workflow.
For example, the workflow displayed in Figure 4.13 reads an Intergovernmental Panel on Climate Change
(IPCC) data set containing cloud cover data that are stored on the EarthGrid. This dataset uses EML
metadata to describe the data, and can therefore be downloaded and accessed with the EML2Dataset actor
(named IPCC Climate Change Data: 1961-1990, Cloud Cover in the example workflow).

The workflow converts the data to a new format (see the documentation for the ClimateFileProcessor actor
for more information) and saves it.

76

Chapter 4 — Working with Existing Workflows

SDFE Director
& CutputDir: "CIPCCLayers™

IPCC Climate Change Data: 1961-1990, Cloud Cover

ClimateFileProcessar

Display

FIGURE 0.13: THE EXAMPLE WORKFLOW PROCESSES AN IPCC DATA SET STORED AND ACCESSED FROM THE EARTHGRID. THE
DATA ARE DESCRIBED USING ECOLOGICAL METADATA LANGUAGE (EML).

To use the workflow to convert other data (rainfall, wind, temperature, etc), simply navigate to Kepler’s
Data tab and search for IPCC (Figure 4.14). Kepler will locate other IPCC data sets, which will be displayed
in the Data tab. Dragging and dropping any EML data set onto the Workflow canvas instantiates an
EML2Dataset actor, which downloads the data so that it can be used by the workflow. The EML2Dataset
actor will automatically configure itself to provide one port for each attribute described by the EML
description. For example, if the data consist of four columns, the ports might be “Site”, “Date”, “Plot”, and
“Rainfall.”

77

Chapter 4 — Working with Existing Workflows

File

Qe Pil ® = pmuc

Search Data

Q IPCC Search

o file:/C: /project/kepler/demos/R/dataFrame_R. xml

Edit View ‘Workflow Tools Window Help

[Components Data Outline >

o

SOouUurces CantEl

IPCC Climate Change Data: CGCM1 AZa Model: Z0:
IPCC Climate Change Data: CGCM1 AZa Model: 20!
IPCC Climate Change Data: CGCM1 AZa Model: 20i
IPCC Climate Change Data: CGCM1 B2a Model: 20:

IPCC Climate Change Data: CGCMI1 B2a Model: 20¢
FIGURE 0.14: SEARCHING FOR IPCC CLIMATE DATA SETS STORED ON THE EARTHGRID.

The example workflow can be used to convert any historical IPCC data set. Future climate change data
require a ClimateChangeFileProcessor actor instead of the ClimateFileProcessor actor.

Note that the EML2Dataset actor can be configured to output the data in one of a variety of different
formats. In the example, the EML2Dataset actor has been configured to output data “As Cache File Name.”
To configure a data actor, double-click it and select the appropriate data output format (Figure 4.15).

—

Edit parameters for IPCC Climate Change Data: 1961-1990, Cloud Cover

-

\?/. EML File:

Data File: Browse
Selected Entity: rolds190.dat v
[Data Qukput Farmat: a5 Cache File Name| |»
File Extension Filter: = Field l
allows lenient data parsing: fis Table

Check For latest version:

Browse

A5 Fow
A5 Byte Atray

recordid: 45 LInCompressed File Mame
endpaint: A= Cache File Mame
niamespace: A5 Columnn Veckar
As ColumnBased Record
Zormimik l ’ Add] [Remove] [Restore Defaulks] ’ Preferences] [Help] ’ Zancel

78

FIGURE 0.15: CUSTOMIZING THE DATA OUTPUT FORMAT OF THE DATA ACTOR.

Chapter 4 — Working with Existing Workflows

For more information about data output formats, please see Chapter 6.

4.3.2 SUBSTITUTING ANALYTICAL COMPONENTS

Kepler comes with hundreds of ready-to-use components that can be plugged into existing workflows to
customize the workflow processing. Data can be converted into a variety of different formats or displayed
in different ways. In this section, we will look at how to change the way a workflow displays its output by
substituting one kind of display actor for another.

The Image Display workflow found under “demos/getting-started/03-ImageDisplay.xml” (Figure 4.16)
converts an image--a bitmapped image representing the species distribution of the species Mephitis, a
skunk, throughout North and South America—and then displays the image using an ImageJ actor, which
uses the Image) application to open and work with a wide variety of images (TIFF, GIF, JPEG, etc.) For more
information about ImagelJ, see Chapter 8.

SDF Director

Image Filename Image Converter

Image)

[1» propertyl“outreach.workflowdir)+"“dem...

FIGURE 0.16: THE IMAGE DISPLAY WORKFLOW. THE IMAGEJ ACTOR IS HIGHLIGHTED.

The Image Display workflow converts the specified image, a JPEG file, to a PNG format and then displays it
(Figure 4.17). The actor also opens the ImageJ application, which can be used to modify the image via a
handy toolbar (Figure 4.18).

79

Chapter 4 — Working with Existing Workflows

species-distribution. PNG (75%) =Jo&d

1440%720 pixels;, RGE; 4 OMB

FIGURE 0.17: THE OUTPUT OF THE IMAGEJ ACTOR. THE IMAGE WAS ORIGINALLY CREATED BY GARP, A GENETIC ALGORITHM THAT
CREATES AN ECOLOGICAL NICHE MODEL FOR A SPECIES THAT REPRESENTS THE ENVIRONMENTAL CONDITIONS WHERE THAT
SPECIES WOULD BE ABLE TO MAINTAIN POPULATIONS. GARP WAS ORIGINALLY DEVELOPED BY DAVID STOCKWELL, AT THE SAN
DIEGO SUPERCOMPUTER CENTER. FOR MORE INFORMATION ON GARP, SEE HTTP://WWW.LIFEMAPPER.ORG/DESKTOPGARP/.

Image.) E]

[Sfs)

Text toal

File Edit Image Frocess Anabze FPlugins Window Help

c|o|~|z £+ N A] Jafofe] || | | |]

FIGURE 0.18: THE IMAGEJ TOOLBAR THAT PERMITS USERS TO MODIFY THE IMAGE.

Rather than using Image) to display the workflow output, you may wish to use a simple browser interface.
To do so requires a single actor substitution—swapping a BrowserDisplay actor for the ImageJ one. To make
the substitution:

80

Open the 03-Image-Display.xml workflow from the “demos/getting-started/” directory.

Select the target component, the Image/ actor in this case. The ImageJ actor will be highlighted in
a thick yellow border, indicating that it is selected.

Press the Delete key on your keyboard. The ImageJ actor will disappear from the Workflow canvas.
From the Components and Data Access area, drag the Browser Display actor to the Workflow
canvas. You can find the Browser Display actor in the Components tab under “Components > Data
Output > Workflow Output > Textual Output.”

Connect the output port of the ImageConverter actor to the input port of the Browser Display
actor. To connect the ports, left-click and hold the output port (black triangle) on the right side of
the Image Converter actor, drag the pointer to the upper input port on the left side of the Browser
Display actor, and then release the mouse. If the connection is made, you will see a thick black
line (Figure 4.19). If the connection is not completely made, the line will be thin.

Run the workflow. Note that the image is now displayed in a browser window (Figure 4.20).

http://www.sdsc.edu/
http://www.sdsc.edu/
http://www.lifemapper.org/desktopgarp/

Chapter 4 — Working with Existing Workflows

SDF Director

Image Filename Image Converter

['1'>prﬂpﬂrty{"outrﬂafh.warkﬂﬂwdir"} F'dem... +—_. Browser Display
P

>

FIGURE 0.19: THE IMAGE DISPLAY WORKFLOW WITH THE BROWSER DISPLAY ACTOR SUBSTITUTED FOR THE IMAGEJ ACTOR.

NOTE: Sometimes the easiest way to connect actors is to go from the output port of the source to the input
port of the destination.

| =l species-distribution. PNG - Windows Picture and Fax Viewer Q@

Q0 B P | PP anr | X HE| @

FIGURE 0.20: THE IMAGE DISPLAYED BY THE BROWSER DISPLAY ACTOR.

4.4 SAVING WORKFLOWS

Workflows are saved in KAR or XML format, which can be easily stored and shared. To save a workflow,
select the Save, Save As, or Export As... menu item from the File menu, then name the file and select a save
location.

For instructions on saving a workflow and sharing it with others, see Section 5.9 Saving and Sharing
Workflows.

81

http://cvs.ecoinformatics.org/cvs/cvsweb.cgi/kepler-docs/user/UserManual/5.12SavingAndSharingWorkflows.doc
http://cvs.ecoinformatics.org/cvs/cvsweb.cgi/kepler-docs/user/UserManual/5.12SavingAndSharingWorkflows.doc

Chapter 4 — Working with Existing Workflows

4.5 SEARCHING FOR DATA AND COMPONENTS

Kepler provides a searching mechanism to locate data (on the EarthGrid) and analytical processing
components (on the local system as well as the remote Kepler repository).

4.5.1 SEARCHING FOR AVAILABLE DATA

Via its search capabilities, Kepler provides access to data that is stored on the EarthGrid. EarthGrid resources
are stored in the KNB Metacat and the KU Digir databases. For more information about the EarthGrid, see
Chapter 2.

To search for data on the EarthGrid:

82

10.

In the Components and Data Access area, select the Data tab (Figure 4.21).

Type in the desired search string (e.g., Datos Meteorologicos). Make sure that the search string is
spelled correctly. You can also enter just part of the entire string — e.g., “Datos”.

To configure the search, click the Sources button (make sure the Data tab is selected). Selecting
the sources to be searched and the type of documents to be retrieved can help streamline the
search and reduce the amount of time required to return results. For example, because Datos
Meteorologicos is stored in the KNB Metacat database, the data source for the search can be
limited to just that node on the grid. In the Source dialog window, uncheck “KNB Metacat
Authenticated Query Interface” and click OK.

Click the Search button. Results may take 20 seconds to return. A status bar at the bottom of the
Data tab scrolls until the search is complete. When the search is complete, a list of search results
will be displayed in the Components and Data Access area. The number of returned results is
displayed in the status area.

To use one or more data actors in a workflow, simply drag the desired data set to the Workflow
canvas.

http://knb.ecoinformatics.org/
http://www.specifysoftware.org/Informatics/informaticsdigir/

Chapter 4 — Working with Existing Workflows

800

Unnamed1
Q@R QD |11 =|:> 0[] e
! Components Data = Outline ! N Workflow
Search Data
(Q,atos meteorologicos | [Search
. Sources) [Cancel)
Datos eorologicos
B
1 results returned.
Datos eorologicos
B
~
o
v
€ Pair
4

FIGURE 0.21: SEARCHING FOR AND LOCATING DATOS METEOROLOGICOS, A DATA SET THAT IS STORED ON THE EARTHGRID.

For more information about the data set, right-click Datos Meteorologicos in the Components and Data
Access area or on the Workflow canvas and select Get Metadata (Figure 4.22). Depending upon the amount
of information entered by the provider, much valuable metadata can be obtained. For example, the type of
value and measurement type of each attribute help you decide which statistical models are appropriate to

run.

&3

Chapter 4 — Working with Existing Workflows

® Kepler File View Tools Help DEG e A4 Thu241PM G

@@ [0 0@ b o[22 @

s

ann il PUsersfcraw] Keplorcache-2 Anienlta0.1.1
Torans R Gatos Metsorslogicos.
hao.1.1 gmatacautan 1 s
Neme: Dalos Meteoralogicos
Descripton: Cios Estacion metsarcoges La Hachicers para 7 2001
»
pates Mgeorclegos Dowricas Fe ecogic ko0 2.1
- et Name: sample it
: size: Tasae0 tytes
Canfigure Actor e e Yo
o Nmber of Header
Configure Ports freis '
Configure Units Recont Deimier. n
st Fomat
Gpen Actar s Maximorn Record
Gpen Actorin Tab KT Lengit
Open betorie Simple Delimied: el Deimeter
2 Gase Sensiive? no
Documentation gl e b
Listen to Actor Arouta Daserigion =
s . At Dace bt TypaofValie Massurement Type and Doman
Semantic Type Annotation. saisine
il ety DATE DATE - Date of colecion sing Format MWmSYY
- Precision’
Upload to Repositary aatta
ViewLSID e T i g Formmat MM
Preview Predaiont
Appearance e e
TARTAR- & omporatirs b RE
vl

ratio
Unit amensioniess

RH RH - Relatve Humidly nt Pl
Type meger
iniercal
DEWDEW- Daw s o Ut e
Tyee
imerva
PP o e i
Type el
ikl
WD WD - Wind direction nt Unit ~ deoree

FIGURE 0.22: VIEWING METADATA

The data actor will automatically configure its output ports to match the data. Mouse over the data ports
to reveal a port tooltip (Figure 4.23). The tooltip contains the name of the port/data field as well as the data

type.

Datos orologicos

>

BARD, byvpe:{doublet |

»

FIGURE 0.23: IDENTIFYING DATA PORTS. MOUSE-OVER EACH OUTPUT PORT TO REVEAL THE PORT TOOLTIP.

You can also preview the data set by right-clicking the actor and selecting Preview from the drop-down
menu (Figure 4.24).

84

Chapter 4 — Working with Existing Workflows

8 00 Datos Meteorologicos Preview
DATE TIME T_AIR RH DEW BARO wD WS RAIN S0L SOL_SuUmM
01/01/01 00:00 15 99 145 953.4 99 0.8 0 0 0
Datos Mieorologicos 010101 01:00 13.4 99 12.8 953.8 100 1.9 0 0 0
01/01/01 02:00 13.4 99 12.8 954 114 1.2 0 0 120
rigger 01/01/01 03:00 12.4 99 123 9543 114 2.5 0 0 0
B> 01701701 04:00 1.7 99 117 9545 96 3.1 0 0 120
| Configure Actor %E 0101010600 s %9 17 s 14 2 o 0o o
Customize Name F2 f11j01501 07:00 115 99 117 954.8 88 2.8 0 0 0
Configure Ports 01/01/01 08:00 12.2 99 123 954.9 88 2.5 0 202 75,840
Configure Units 01/01/01 09:00 17.4 92 15.6 953.7 336 0.1 0 442 1,050,1...
Open Actor %L |01/01/0110:00 20.1 83 16.7 952.6 322 0 0 716 1,833,3...
et Metadata OLoL0I1200 231 74 178 ss1z 133 03 0 sazzsers.
Documentation * [o1j01/01 13:00 23.5 72 17.8 9507 42 0.1 0 964 3,241,8...
Listen to Actor 01/01/01 14:00 23.5 85 20.6 950.3 117 0.1 0 952 3,456,2...
01/01/01 15:00 23.1 92 217 950.3 93 1 0 8763,259,4...
Suggest) * lo1/01/01 16:00 20 99 19.5 950.6 156 0.6 0 194 2,609,6...
Semantic Type Annotation... |p1,01,01 17:00 18.5 99 17.8 9518 34 1.2 0 96 530,160
Save Archive (KAR)... 01/01/01 18:00 17.5 99 16.7 9523 157 0.1 0 38 271,680
Upload to Repository 01/01/01 19:00 16.2 99 156 952.8 277 0.6 0 0 18,360
View LSID 01/01/01 20:00 15.9 99 15.6 953.1 277 0.1 0 0 0
010101 21:00 15.6 99 15 953.3 196 0.1 0 0 0
01/01/0122:00 15.2 99 145 953.4 264 0 0 0 0
Convert to Class 01,01/0123:00 14.7 99 13.9 9536 244 0.3 0 0 0
Appearance » 101/02/01 00:00 14.2 99 13.4 953.7 105 0.9 0 0 0
01/02/01 01:00 13.4 99 12.8 954 104 L5 0 0 0

FIGURE 0.24: PREVIEWING THE DATOS METEOROLOGICOS DATA SET.

4.5.2 SEARCHING FOR STANDARD COMPONENTS

Kepler comes standard with over 350 workflow components and the ability to modify and create your own.
Users can create an innumerable number of workflows with a variety of analytic functions. The default set
of Kepler processing components is displayed under the Components tab in the Components and Data
Access area. Components are organized by function (e.g., “Director” or “Filter”). To search for processing
components:

6. In the Components and Data Access area to the left of the Workflow canvas, select the
Components tab.

7. Type in the desired search string (e.g., “File Reader”).

8. Click the Search button. When the search is complete, the search results are displayed in the
Components and Data Access area. The search results replace the default list of components. You
may notice multiple instances of the same component; this is because the same component may
appear in multiple categories in the search results.

9. To use one or more components in a workflow, simply drag the desired components to the
Workflow canvas.

10. To clear the search results and re-display the list of default components, click the Cancel button.

NOTE: If you know which component you want to use and its location in the Component library, you can
navigate to it directly, and then drag it to the Workflow canvas.

4.5.3 SEARCHING FOR COMPONENTS IN THE KEPLER REPOSITORY

The Kepler Repository allows users to upload and download workflow components to and from a
centralized server. Users can search for available components via the Kepler interface. To search for
components that are stored remotely in the Kepler repository in addition to the components contained in
the local library:

1. Select the Components tab.

85

Chapter 4 — Working with Existing Workflows

2. Click the Sources button.
3. Check the Search checkbox on any remote repositories you wish to search and click OK.
4. Type in the desired search string (e.g., “ActorDesignedForWorkflow”).
CRSRG) Unnamed1
YRS IR SRR
[Components Data OQOutline | Workflow

Search Components

'Q, Current Time) (Search “j

{ Advanc... 3 Sources 3 Cancel)

e
—

| All Ontologies and Folders f

. Search Results
v L1 Components
¥ Darta Input
¥ Local Input
D Current Time
v Actors-2_0
¥ il CoreActors,kar .
D Current Time
¥ 1l CurrentTime, kar
D Current Time
3 results found.

FIGURE 0.25: SEARCHING THE KEPLER REPOSITORY FOR COMPONENTS.

5. Click the Search button. When the search is complete, the search results replace the default list of
components. You may notice multiple instances of the same component; this is because the same
component may appear in multiple categories in the search results.

6. To use one or more components in a workflow, simply drag the desired components to the
Workflow canvas, or right-click on a KAR result and select Download. The downloaded KAR will be
placed into your local repository (by default, KeplerData/workflows/MyWorkflows/). If the
component requires modules you do not have installed, Kepler will offer to download those
modules. If this is required, you will probably have to restart Kepler afterwards to restore full
functionality.

7. To clear the search results and re-display the list of default components, click the Cancel button.

NOTE: You can also search the Kepler Repository directly by going to:

86

Chapter 4 — Working with Existing Workflows

http://library.kepler-project.org/kepler/

Actors and Workflows can be downloaded from this website and manually imported into Kepler

87

http://library.kepler-project.org/kepler/

Chapter 5 — Building Workflows with Existing Actors

5 BUILDING WORKFLOWS WITH EXISTING ACTORS

Building workflows with existing actors is a relatively simple process that can be accomplished entirely on
the Workflow canvas. Components need only be dragged and dropped onto the canvas, customized,
connected, and run!

For example, the “Hello World” workflow is a very simple workflow that outputs the famous line “Hello
World” until the workflow is paused or stopped (Figure 5.1). The workflow requires a Constant actor, a
Display actor, and an SDF Director.

Constant Display |Fello World

> "Hello World"

K1.03-ImageDisplay.Display g@
|| Fle Tools Help

ello World B
ello World
ello World

SDF Director

ello World
ello World
ello World
ello World
ello World
ello World s

FIGURE 0.1: “HELLO WORLD” WORKFLOW AND OUTPUT.

To create the Hello World workflow:

88

w

o

Open Kepler. A blank Workflow canvas will open.

In the Components and Data Access area, select the Components tab, then navigate to the
“Components/Director” directory.

Drag the SDF Director to the top of the Workflow canvas.

To run the workflow a limited number of times, right-click the SDF Director and select “Configure
Director” from the menu. Type the desired number of iterations into the iterations field of
the “Edit parameters for SDF Director” dialog window and click the Commit button to save your
changes.

In the Components tab, search for “Constant” and select the Constant actor.

Drag the Constant actor onto the Workflow canvas and place it a little below the SDF Director.
Configure the Constant actor by right-clicking the actor and selecting Configure Actor from the
menu. (Figure 5.2)

Chapter 5 — Building Workflows with Existing Actors

Constant

Customize Name
Configure Ports

Configure Units A Eda foe Constant
Open Actor %L 1§

Get Metadata firingCouncLimit NONE

Documentation » valut

Listen to Actor 105 prolemy.actor lib.Const

Suggest [Semantic Type00: uenlsid logalhost onto: 1 LeConstantActon

Semantic Type Annotation... semanticTypel1
vp

Save Archive (KAR)... s

Upload to Repository

View LSID

Preview (Cancel Help { Preferences Restore Defauits | | Remove) Add f Commit)

urnisid localhost onto 2. 18Comstant

urn lsid kepler- progpect.ong kar 571

Appearance 3

FIGURE 0.2: CONFIGURING THE CONSTANT ACTOR.

8. Type “Hello World” (including the quotes) in the value field of the “Edit parameters for Constant”
dialog window and click Commit to save your changes. “Hello World” is a string value. In Kepler,
all string values must be surrounded by quotes.

9. Inthe Components and Data Access area, search for “Display” and select the Display actor found
under “Textual Output.”

10. Drag the Display actor to the Workflow canvas.

11. Connect the output port of the Constant actor to the input port of the Display actor.

You are now ready to run the workflow.

5.1 PROTOTYPING WORKFLOWS

Before building a workflow in Kepler, the workflow must be prototyped. Much like a vacation plan—which
might involve booking a flight and hotel room, checking the weather forecast, packing a suitcase, and
catching a cab to the airport--scientific workflows also break down into a series of steps that often depend
on the outcome of previous steps.

Identifying the steps of your workflow, from reading data, to transforming and processing it, to outputting
results in a desired format, is the bulk of the prototyping work. Once the functions of the workflow have
been defined, you can focus on selecting the appropriate components from the Kepler library (and/or
designing new components as necessary).

Kepler allows users to quickly prototype workflows. Scientists do not have to write an application; instead
they just have to “draw” it, deciding what steps must be performed, what type of data the workflow will
process, and what the output will be. Each step is ultimately represented by an actor, which uses ports to
pass the required data. Figure 5.3 and Figure 5.4 display examples of conceptual workflows used to create
Kepler workflows.

89

Chapter 5 — Building Workflows with Existing Actors

A) Test sample

B

EcoGrid Sample Model Map WValidation User
Query Calculation Prediction

w

Lavyer
Integration

Map
Generation

FIGURE 0.3: A CONCEPTUAL PROTOTYPE FOR A KEPLER ECOLOGICAL NICHE MODELING WORKFLOW14

14 See Pennington, Deana. July, 2005.The EcoGrid and the Kepler Workflow System: a New Platform for
Conducting Ecological Analyses, Bulletin of the Ecological Society of America.

90

Chapter 5 — Building Workflows with Existing Actors

Compute chusters
(min. distance)
!

Select gene-set
(cluster-level)

L

Comypute
Subsequence labels

Retrieve
Transcription factors

Arrange
- - Transcription factors
Retrieve matching
cDNA
¥
Retrieve genomic .
Sequence Align promoters
! . 1 Compute Joint
Extract promoter Create consensus Promoter Model
Region(begim. end sequence

FIGURE 0.4: A CONCEPTUAL PROTOTYPE OF THE PROMOTER IDENTIFICATION WORKFLOW. 15

Complex workflows can easily be prototyped in Kepler using the CompositeActor actor. Simply drag as many
CompositeActors as needed to the Workflow canvas, add the number of input/output ports determined
necessary, connect the components, and change the CompositeActor names to appropriately identify the
function of the actor (Figure 5.5).

15 See Altintas, Iklay, Coleman, Matthew, Critchlow, Terence, Gupta, Amarnath, Ludaescher, Bertram,
Peterson, Leif. Promoter Identification Workflow Specification. http://kbi.sdsc.edu/SciDAC-SDM/piw-
specification.ppt#256,1, Promoter Identification Workflow Specification.

91

Chapter 5 — Building Workflows with Existing Actors

| K Unnamved - _"_L"l_u!
[Fie Edt Vew wWoiflon Tods Window Hebp

QadaPb i@ mpc) -0 e

'Cmmnu Data Outline "

Search Components
PN Director
Q compon iteAgtor (search) —

(asanc.) (Sowrces)
Al Dntelogies ded Folders #|

W arch Repam
Salect | 1 (s p from Te databy
v E)Componests Select § molecule m e database

¥ Cosaral Parpone
B Compoune oo
¥ Borifow

Il Cormponnedgner
v Actors-2 0

Use Babel o rans form mokacular formal o requined format

v | CompouteALior bat
B Comporm hirar
v CoreArnsns, st
> Dareclon
3 Opendap
3

Create GAME 55 input file Yom conwened data

Run GAMESS with generated mput fle
Use Babel o tansform GAMESS culput

Display molecular configuration with OMAow sofware

€ resuits found

FIGURE 0.5: USING COMPOSITE ACTORS TO PROTOTYPE A WORKFLOW IN KEPLER.

In Figure 5.5, each CompositeActor represents a high level logical function in a workflow designed to
prepare and run a GAMESS (General Atomic and Molecular Electronic Structure System) experiment and
display the results. In the prototype stage, the actors don’t need to do anything; later, as the workflow is
developed, each of the composite actors can be opened, and detailed sub-workflows can be constructed
inside (either with existing actors or new ones) to perform its task. For more information about composite
actors, see Section 5.4.

5.2. CHOOSING A DIRECTOR

Every workflow requires a director, but which one? Each of the directors packaged with Kepler—
Synchronous Dataflow (SDF), Process Networks (PN), Dynamic Dataflow (DDF), Continuous
(ContinuousDirector), and Discrete Events (DE)—has a unique way of instructing the actors in a workflow.
Just as one would not hire David Lynch to direct a romantic comedy, or Steven Spielberg for a high school
reunion flick, one would not, in general, use the SDF Director for a workflow that involves integrals, or the
Continuous Director for simple data transformation. But, why? And how does one choose an appropriate
director to use?

Which director to use under what circumstances is a question that should be answered during the initial
stages of workflow design. As you sketch out the workflow steps and think about the types of processes the
workflow will perform, keep the following questions in mind: Does the workflow depend on time? Does the
workflow require multiple threads or distributed execution? Does it perform a simple data transformation

92

Chapter 5 — Building Workflows with Existing Actors

with constant data production and consumption rates? Is the model described by differential equations?
The answer to these questions will often indicate the best director to use.

In the next section, we will take a closer look at the above questions and how each can help in the director
selection process.

Question 1: Does the workflow explicitly depend on time?

Though every task we perform—from balancing a checkbook to integrating polynomials and trigonometric
functions by hand—requires time, not every Kepler workflow needs to understand that time passes. A
workflow that reformats one type of static data file into another type needs to be able to read the input
format and know how to translate it, but does not need to know that three seconds has passed between
the time the workflow began and the time it finished. A workflow that examines a series of molecules and
compares (or models or displays, etc) their structures is another example of a workflow that has no need
for a concept of time. The director of these workflows must know how to order the events—at what point
in the workflow each actor must perform—but it does not need to schedule the actors’ actions at specific
times.

Some workflows require a notion of time. A workflow that describes resource-limited population growth—
where population is a function of time and the rate of population change (i.e., a simple linear
extrapolation)—must incorporate time in order to calculate predicted growth. A workflow that models
events that occur at discrete times—the times at which lightning strikes a particular point and the best way
to minimize one’s chance of being struck, for example—also requires a notion of time. Note that “model”
time and “real” time can differ. For example, an analysis may take only seconds of “real” time to perform,
but the “model” time may have advanced by several hours or more.

IH

Some Kepler directors are best suited for time-dependent workflows and others for time-independent
workflows. In general, if a workflow requires a notion of time, you should use a Continuous, or DE director.
If a workflow does not require a notion of time, use an SDF, PN or, DDF director. We'll talk more about each
of these directors and how they work later in this chapter.

Question 2: Does the workflow require independent threads and/or distributed execution?

If the answer to Question 1 is yes, skip to Question 4. If you determine that a workflow does not require a
notion of time, the next question to ask is whether or not the workflow requires multiple threads (i.e.,
independent workflow processes that run in parallel) and/or distributed execution (i.e., remote data
processing or access). If so, the workflow should most likely use a PN Director.

In a PN workflow, each actor has its own Java thread, permitting the workflow to perform multiple tasks
simultaneously. A workflow can query a remote database, for example, and simultaneously process other
calculations, even if the query results are delayed. The PN Director is also well suited for overseeing
workflows that require complex logic.

In DDF and SDF workflows, actors are executed one at a time with a single thread of execution for the
workflow.

93

Chapter 5 — Building Workflows with Existing Actors

Question 3: Does the model perform a simple data transformation with constant data production and
consumption rates?

If you determine that a workflow does not require a notion of time nor multiple threads and/or distributed
execution, the next question to ask is: Does the model perform a simple data transformation with constant
data production and consumption rates?

A simple data transformation is one that does not involve deeply hierarchical or recursive structures.
Examples of simple data transformations include converting one type of token to another (a series of items
to an array, for example), translating one file format to another (an XML file to an HTML Web page, for
example), calculating the average of a series of values, or reading a file and outputting a specific line or
value.

A “constant data rate” means that all actors in the workflow consume and produce a consistent, pre-
determined number of data tokens every time the workflow iterates. A token can be thought of as a
container used to hold data of various types (strings, integers, objects, arrays, etc.). Note that even though
an array may consist of multiple items, it is represented by a single token that is passed from the output
port of one actor to the input port of another via channels.

In the simplest constant rate workflow, actors consume one data token on each input port and produce
one token on each output port whenever the workflow executes (“fires”). An example is a workflow that
simulates a coin toss by using the Bernoulli and Display actors to generate and display a series of random
true and false values. This workflow has a constant data rate because each time it is run, the Bernoulli
actor generates and outputs one token of data, and the Display actor receives and displays exactly one
token as well. Workflows may still have a constant data rate even if they contain actors that consume and/or
produce more than one token each time they execute.

For example, a workflow that uses the TokenDuplicator actor to receive a single token and output three
duplicated tokens has a constant data rate (i.e., the actor consumes one token and produces three each
time it executes) even though the number of tokens consumed and produced is not equivalent. However,
actors that consume and produce a different number of tokens each time they execute (e.g., a
BooleanSwitch actor that outputs a true value if the input value is true, and produces no output
otherwise) do not have a constant data rate.

If you determine that your workflow performs a simple data transformation and has a constant data rate,
you will most likely use an SDF Director to oversee the workflow. Because data rates are constant, the SDF
Director can pre-calculate a workflow execution schedule, making the director very efficient. Under a DDF
Director, data consumption and production rates do not have to be constant, allowing for more dynamic
execution. DDF Directors are well suited for control structures (e.g., if/then/else) using BooleanSwitch and
DDFBooleanSelect actors, which consume or produce tokens on different channels based on the token
received from the control port.

Question 4: Is the model described by differential equations?

If you have determined that your workflow depends on time (i.e., the answer to Question 1 is “yes”), the
next question you should ask is: Is the model described by differential equations?

94

Chapter 5 — Building Workflows with Existing Actors

Differential equations are most often used by workflows that describe dynamic systems (systems that
depend upon a continuously varying time parameter, such as the population growth of a predator and/or
its prey over time) or workflows that are used to perform numerical integration. These workflows should
use the Continuous Director, which is designed to work with ordinary differential equations.

Time-oriented workflows that do not involve differential equations will likely use a DE Director to execute
events at specified times (e.g., to process information--sensor data, for example--that has a time stamp) or
for scheduling simulations (a queuing system, for example).

Does workflow explicitly depend on ‘time'?

Continuous or DE
Directors

SDF, PN, or DDF
Directors

Does workflow require independent threads Is model described by
and/or distnbuted execution? differential equations?
Is workflow a simple data PN Director DE Director Continuous Director
transformation with constant) P 5|-:;ciﬁe A
i i complex logic v L
data production/consumption independent thresds scheduling simulations numerllcalllntegrgtor
rates? Astrbuted execuiion dynamic simulations
DDF Director SDF Director
dynamic execution, pre-calculated ﬁrmg rules
iworkflows containing actors fastest execution
with variable consumption
rates (BooleanSwitch)

Choosing a Director for a Kepler Workflow

FIGURE 0.6: CHOOSING A DIRECTOR.

In most cases, you can determine the appropriate director to use for a workflow just by answering a handful
of questions. Figure 5.6 provides a useful quick-reference.

The five directors included in Kepler: SDF, PN, DDF, Continuous, and DE, are the most commonly used
directors, and each is described in the following sections. However, Kepler software supports the full range

95

Chapter 5 — Building Workflows with Existing Actors

of directors used by Ptolemy. For more information about additional directors, please see the Ptolemy
documentation.

5.2.1 SYNCHRONOUS DATAFLOW (SDF)

The SDF Director is very efficient and will not tax system resources with overhead. It achieves this efficiency
by precalculating the schedule for actor execution. However, this efficiency requires that certain conditions
be met, namely that the data consumption and production rate of each actor in an SDF workflow be
constant and declared. If an actor reads one piece of data and calculates and outputs a single result, it must
always read and output a single token of data. This data rate cannot change during workflow execution and,
in general, workflows that require dynamic scheduling and/or flow control cannot use this director.
Additionally, the SDF Director has no understanding of passing time (at least by default), and actors that
depend on a notion of time may not work as expected. For example, a TimedPlotter actor will plot all values
at time zero when used in SDF.

The SDF Director is often used to oversee fairly simple, sequential workflows in which the director can
determine the order of actor invocation from the workflow. Types of workflows that would run well under
an SDF Director include processing and reformatting tabular data, converting one data type to another, and
reading and plotting a series of data points. A workflow in which an image is read, processed (rotated,
scaled, clipped, filtered, etc.), and then displayed, is also an example of a sequential workflow that requires
a director simply to ensure that each actor fires in the proper order (i.e., that each actor executes only after
it receives its required inputs). In Figure 5.7, the SDF Director ensures that the image is not displayed until
it is processed, and that the image is not processed until it is read.

By default, the SDF Director requires that all actors in its workflow be connected. Otherwise, the director
cannot account for concurrency between disconnected workflow parts. Usually, a PN Director should be
used for workflows that contain disconnected actors; however, the SDF Director's
allowDisconnectedGraphs parameter can be set to true. The SDF Director will then schedule each
disconnected “island” independently. The director cannot infer the sequential relationship between
disconnected actors--nothing “forces” the director to finish executing all actors on one island before firing
actors on another. However, the order of execution within each island should be correct. Usually,
disconnected graphs in an SDF model indicate an error.

SDF Director

Image Display

._!mage Reader Image Rotate

FIGURE 0.7: A SIMPLE SDF WORKFLOW USED TO READ, PROCESS, AND DISPLAY AN IMAGE. NOTE THAT ALL ACTORS ARE
CONNECTED AND THAT THE WORKFLOW DOES NOT DEPEND ON THE PASSAGE OF TIME.

Workflows that require loops (feeding an actor’s output back into its input port for further processing) can
cause “deadlock” errors under an SDF Director (or any director, for that matter). The deadlock errors occur
because the actor depends on its own output value as an initial input. To fix this problem, use a SampleDelay

96

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-37.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-37.html

Chapter 5 — Building Workflows with Existing Actors

actor to generate and inject an initial input value into the workflow. The workflow in Figure 5.8 uses a
SampleDelay actor to set an initial population value (n) of 1 that is used when the workflow first iterates.

SDE Elruuh:;-r

SaquancePloter initial populaton

gronwth facior

carmying capacity

SamplaDalsy number of ileratong®nSeps: 100

Discrete Logistic

(1 + {1 - /)

| Edit parameters for SampleDelay / x|

‘-?')' inikiahOutputs: JinkPopt
chass: pholeriny, domains.sdf b, SampleDelay
semarticTypeDD: wn:lsid:locakwost zonko: 1: 1# Contraldctor
semanticTypall: wrnlsid:localhast:onko: 2: 1 #WorkflowControl
[commk [Add | [Remove | [Restors Defauks| [Preferences | [Hep | [Cancel

FIGURE 0.8: USING A SAMPLEDELAY ACTOR TO PREVENT DEADLOCK ERRORS. THE ABOVE WORKFLOW IS FOUND AT
OUTREACH/WORKFLOWS/DEMOS/SEEK/DISCRETELOGISTIC_SDF_DIRECTOR.XML.
SDF Directors control how many times a workflow is iterated. Most often, a workflow need be run only
once, but there are instances in which a workflow should iterate more than once: if a workflow contains a
loop that should be executed several times, for example, as in Figure 5.8.

In Figure 5.8, a workflow loop is used to feed the output of an Expression actor called Discrete Logistic back
into its input (as well as into a SequencePlotter, which plots the data) so that a new result can be calculated
using the previous result. The SDF Director specifies that the loop iterate 100 times before stopping. Note
that a SampleDelay actor is used to generate an initial population value, which is used the first time the
workflow runs.

The number of times a workflow is iterated is controlled by the director’s iterations parameter. Since
Kepler 2.4, this parameter is set to “AUTO” by default, which means the director will run the workflow once
when it is placed in the top-level workflow. When it is placed in a composite actor, the director will keep
running the sub-workflow inside of the composite actor until the top-level director tells it to stop. In other
words, “AUTO” means its value will be “1” when it is placed in the top-level workflow, and will be
“UNBOUNDED” when it is placed in a composite actor. This default value works for most cases. You can also
select “UNBOUNDED” or specify “0” for this parameter, which means the workflow will iterate forever.
Concrete numbers can also be specified here for the actual number of times the director should execute
the workflow.

The SDF Director also determines the order in which actors execute and how many times each actor needs
to be fired to complete a single iteration of the workflow. This schedule is calculated BEFORE the director

97

Chapter 5 — Building Workflows with Existing Actors

begins to iterate the workflow. Because the SDF Director calculates a schedule in advance, it is quite
efficient. However, SDF workflows must be static. In other words, the same number of tokens must be
consumed/produced at every iteration of the workflow. Workflows that require dynamic control structures,
such as a BooleanSwitch actor that sends output on one of two ports depending on the value of a “control”,
cannot be used with an SDF Director (because the number of tokens on each output can change for each
execution).

Unless otherwise specified, the SDF Director assumes that each actor consumes and produces exactly one
token per channel on each firing. Actors that do not follow the one-token-per-channel firing convention
(e.g., Repeat or Ramp) must declare the number of tokens they produce or consume via the appropriate
parameters. In Figure 5.9, a Ramp actor is used to generate five tokens, which are passed to a
SequenceToArray actor. The number of tokens the Ramp actor generates is specified with the actor’s
firingCountLimit parameter. The SequenceToArray actor must be told to expect five tokens, not
one. The workflow uses a Constant actor that contains a variable called FiringCountLimit to tell the
SequenceToArray actor to expect five tokens. The SequenceToArray actor reads the input tokens, generates
a single array from them, and outputs a single token containing a five element array. Because the output of
the SequenceToArray actor as well as the input of the Display actor conform to the one-token-per-channel
firing convention, there is no need to specify a data consumption/production rate.

SDF Director
@ FiringCountLimit: 5

Sequence To Array
Display

Constant
E} FiringCountLimit

FIGURE 0.9: AN EXAMPLE OF AN SDF WORKFLOW. NOTE THAT THE DATA CONSUMPTION RATE FOR THE SEQUENCETOARRAY
ACTOR MUST BE SPECIFIED BEFORE THE WORKFLOW IS RUN.

The amount of data processed by an SDF workflow is a function of both the number of times the workflow
iterates and the value of the director's vectorizationFactor parameter. The
vectorizationFactor is used to increase the efficiency of a workflow by increasing the number of
times actors fire each time the workflow iterates. If the parameter is set to a positive integer (other than
1), the director will fire each actor the specified number of times more than normal. The default is 1,
indicating that no vectorization should be performed.

Customizing the vectorizationFactor parameter can be useful when modeling block data
processing. For example, a signal processing system that filters blocks of 40 samples at a time using a finite-
impulse response (FIR) filter can be built using a single sample filter, provided the
vectorizationFactor parameter of the SDF Director is set to 40. Here, each firing of the SDF model
corresponds to 40 firings of the single sample FIR filter. 1® Keep in mind that changing the

16 Please see the Ptolemy documentation for more information.

98

http://embedded.eecs.berkeley.edu/concurrency/ptolemy/sdf.pdf

Chapter 5 — Building Workflows with Existing Actors

vectorizationFactor parameter changes the meaning of a nested SDF workflow and may cause
deadlock in a workflow that uses it.

The SDF Director has several advanced parameters that are generally only relevant when an SDF workflow
contains composite components. In most cases the period, timeResolution,
synchronizeToRealTime, allowRateChanges, timeResolution, and
constrainBufferSizes parameters can be left at their default values.

For more information about the SDF Director, see the Ptolemy documentation. The Ptolemy site also has a
number of useful examples.

5.2.2 PROCESS NETWORK (PN)

The Process Network (PN) Director, unlike the SDF Director, does not statically calculate firing schedules.
Instead, in a PN workflow each actor has an independent Java thread and the workflow is driven by data
availability: tokens are created on output ports whenever input tokens are available and output can be
calculated. Output tokens are passed to connected actors, where they are held in a buffer until that next
actor collects all required inputs and can fire. The PN Director finishes executing a workflow only when
there are no new data token sources anywhere in the workflow.

Because PN workflows are very loosely coupled, they are natural candidates for managing workflows that
require parallel processing on distributed computing systems. PN workflows are powerful because they
have few restrictions. On the other hand, they can be very inefficient because the director must keep
looking for actors that have sufficient data to fire. (Remember that for SDF, the execution schedule is
determined once, before the workflow starts to execute.)

The same execution process that gives the PN Director its flexibility can also lead to some unexpected
results: workflows may refuse to automatically terminate because tokens are always generated and
available to downstream actors, for example. If one actor fires at a much higher rate than another, a
downstream actor’s memory buffer may overflow, causing workflow execution to fail.

The workflow in Figure 5.10 appears to generate a constant and display it. However, this workflow may not
work correctly due to the interaction between the Constant actor, which, by default, always produces an
output when “asked” by the director, and the PN Director, which always asks for an actor’s output unless
the actor indicates that it is finished. Because the Constant actor is never “finished”, the PN Director will
continue to ask for output, and the workflow will iterate forever--or at least until the input buffer of the
Display actor overflows. One can correct the problem by changing the firingCountLimit parameter
of the Constant actor to some finite value (Figure 5.11).

99

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-37.html
http://ptolemy.berkeley.edu/ptolemyII/ptIIlatest/ptII/ptolemy/domains/sdf/doc/body.htm

Chapter 5 — Building Workflows with Existing Actors

FM Director

Constant Display

FIGURE 0.10: THIS WORKFLOW WILL NOT WORK UNDER THE PN DIRECTOR UNLESS THE CONSTANT ACTOR’S FIRINGCOUNTLIMIT
PARAMETER IS SET TO A FINITE VALUE.

Edit parameters for Constant
L‘? f} firingCountLimit: E
walue: 1
class: ptalemy ., ackar lib, Const
semantic Type0l: urnilsid:localhostionto: 1: 1#ConstankActor
semanticTypell: urnlsidilocalhost: onko:2: 1 #Constant
kar: urm:lsid:kepler-project.orgikar: 571
Comimik] [Add] [Remowve] [Restnre Defaultsl [Preferences l [Help l [Cancel

FIGURE 0.11: SET THE FIRINGCOUNTLIMIT PARAMETER TO AN INTEGER TO USE THE CONSTANT ACTOR UNDER A PN DIRECTOR.

The PN Director has several advanced parameters (initialQueueCapacity and
maximumQueueCapacity) that are only relevant for performance tuning in special cases. For most
workflows, leave these parameters at their default values.

For more information about the PN Director, see the Ptolemy documentation. The Ptolemy site also has a
number of useful examples.

5.2.3 DIScRETE EVENT (DE)

The Discrete Event (DE) Director, which oversees workflows where events occur at discrete times along a
time line, is well suited for modeling time-oriented systems, such as queuing systems, communication
networks, and occurrence rates or wait times. One classic problem that a DE Director can manage well is
the bus station/bus rider problem, where buses and riders arrive at a bus station at random or fixed rates
and the public transit director wishes to calculate (or minimize) the amount of time that riders must wait.

100

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-37.html
http://ptolemy.berkeley.edu/ptolemyII/ptIIlatest/ptII/ptolemy/domains/pn/doc/body.htm

Chapter 5 — Building Workflows with Existing Actors

In DE workflows, actors send “event tokens,” which consist of a data token and a time stamp. The director
reads these tokens, and places each on a global, workflow timeline. Large event queues or queues that
change often are “expensive” in terms of system resources and may have performance issues.

All actors in a DE workflow must receive input tokens, even if the tokens are solely used as triggers. Once
active, an actor will fire until it has no more tokens in its input ports, or until it returns false.

Because DE actors only fire only after they receive their inputs, workflows that require loops (feeding an
actor’s output back into its input port for further processing) can cause “deadlock” errors. The deadlock
errors occur because the actor depends on its own output value as an initial input. To fix this problem, use
a TimedDelay actor to generate and inject an initial input token.

The DE Director and each event in its workflow contain a tag that consists of a timestamp and additional
information that helps the director determine when to process each event. On each iteration, the director
will process all events with tags that are equal to its tag (the “model tag”), and then advance its model tag
and perform a new set of matching events.

Note that “model time” is not “real time.” Model time starts from the time specified by startTime
parameter, which has a default value of 0.0. The stop time is specified by the stopTime parameter, which
has a default value of Infinity, meaning that the execution will run forever.

Execution of a DE model ends when the timestamp of the earliest event exceeds the stop time. By default,
execution also ends when the global event queue becomes empty. To prevent ending the execution when
there are no more events (e.g., if your workflow relies on user interaction), set the
stopWhenQueueIsEmpty parameterto false.

If the parameter synchronizeToRealTime is set to true, then the director will not process events
until the real time elapsed since the model started matches the timestamp of the event. Synchronizing
ensures that the director does not get ahead of real time; however, synchronizing does not ensure that the
director keeps up with real time.

The DE Director's timeResolution parameter is an advanced parameter that is only useful when the
DE workflow contains composite components. In general, leave the parameter set to its default value (“1E-
10)1)

For more information about the DE Director, see the Ptolemy Documentation. The Ptolemy site also has a
number of useful examples.

5.2.4 CONTINUOUS TIME

The Continuous Director is designed to oversee workflows that predict how systems evolve as a function of
time (i.e., “dynamic systems”). In Continuous workflows, the rates of change of parameters are related to
the current value or rates of change of other parameters, often in complex and coupled ways that are
described by differential equations. For example, the change in the population of a predator and its prey
over time (described by the Lotka-Volterra equations), can be calculated using a Continuous workflow (see

101

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-37.html
http://ptolemy.berkeley.edu/ptolemyII/ptIIlatest/ptII/ptolemy/domains/de/doc/body.htm

Chapter 5 — Building Workflows with Existing Actors

Section 4.2.3). In general, Continuous workflows function much like STELLA, a common commercial
software package that calculates dynamic (or continuous time) responses.

The Continuous Director keeps track of the “time” of each iteration as well as the time between each
iteration (the “time step”). By ensuring that the time step is small enough, the director can use simple
extrapolations to estimate new values. The Continuous Director then iterates the workflow enough times
to reach the desired stop time. The entire process is thus just numerical integration.

Figure 5.12 shows a simple workflow that uses the Continuous Director to calculate resource-limited
population growth. The integrand of the logistic equation that is commonly used to describe resource-
constrained population growth is entered into an Expression actor. The output of the Expression actor
(labeled Logistic Model) is connected to the input of an Integrator actor, which calculates the population
growth rate at a future time (derived from the current time plus the time step specified by the director)
given the current rate of growth (output by the Expression actor). The output of the Integrator is then
connected back to the input of the Expression actor. This loop is then iterated a number of times by the
Continuous Director, numerically integrating the differential equation.

Continuous Director

TimedPlotter

initial population e initPop: 1.0

growth factor er: 2.6

carrying capacity e k: 100

Integrator

Logistic Model

;* n*r*(1 - n/k)

FIGURE 0.12: A WORKFLOW USING A CONTINUOUS DIRECTOR.

The Continuous Director in the above example is set to integrate for 100 seconds. Using the initial values
for growth (r) and carrying capacity (k), the workflow calculates the growth rate at later times and outputs
a graph representing the results. The curve rises at a rate determined by the growth rate, and then levels
off at the carrying capacity (Figure 5.13).

102

Chapter 5 — Building Workflows with Existing Actors

-

K LogisticsModel_CT_[hrector. TimedPlotter g@
File Tools Special Help

:I’ H F A
w1 0° TimedPlotter I] 1 2

1.0 (‘ 4]

ner i

06 i

n4r]

n2r 7

0o J

0.0 0.1 0.z 0.3 0.4 0.5 0.6 0.7 n.a 049 1.0
¥10

FIGURE 0.13: OUTPUT OF THE RESOURCE-LIMITED POPULATION GROWTH WORKFLOW

The Continuous Director calculates the size of integration steps in the numerical integration and can be
configured to use different extrapolation algorithms. How the director performs the integration depends
on the ordinary differential equation (ODE) solver algorithm selected with the ODESolver parameter. By
default, the Continuous Director uses the ExplicitRK23Solver algorithm.

The two available ODE solver algorithms, ExplicitRK23Solver and ExplicitRK45Solver, have different
performance and accuracy characteristics depending on the function being integrated. They are “variable-
step-size” algorithms, which mean that the director will change step sizes according to error estimation.
For a detailed discussion of these algorithms, see the Ptolemy Documentation (Volume 3, Chapter 2).

In general, the relevance of the director’s parameters varies depending on the type of ODE solver algorithm
selected. For both ExplicitRK23Solver and ExplicitRK45Solver, the step-size will change based on the rate of
change of the original function’s values (i.e., derivative values). In other words, time-steps within an
integration will change throughout the calculation, and the initStepSize is used only as an initial
suggestion.

Directors with variable-step-size algorithms use the maxStepSize and minStepSize parameters to
set upper and lower bounds for estimated step sizes. These parameters are used for adjusting tradeoffs
between accuracy and performance. For simple dynamic systems, setting an upper bound with the
maxStepSize parameter helps ensure that the algorithm will use an adequate number of time points.
For more complex systems, the minStepSize ensures that the algorithm will not consume too many

103

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-37.html

Chapter 5 — Building Workflows with Existing Actors

system resources by using increasingly minute step sizes. The minStepSize is also used for the first step
after breakpoints.

The timeResolution parameter is also used to adjust the tradeoff between accuracy and speed. In
general, one would not change this parameter unless a function is known to change substantially in times
of less than the parameter’s default value, 1E-10 sec. The parameter helps ensure that variable-step-size
algorithms do not use unnecessarily small time steps that would result is long execution times. Reducing
the parameter’s value might produce more accurate results, but at a performance cost.

The errorTolerance parameter is only relevant to directors that use variable-step-size algorithms.
Workflow actors that perform integration error control (e.g., the Integrator actor) will compare their
estimated error to the value specified by the errorTolerance parameter. If the estimated error is
greater than the errorTolerance, the director will decide that the step size is inappropriate and will
decrease it. In most cases, the default value of the errorTolerance parameter (1e-4) will not need to
be changed.

The startTime and stopTime parameters specify the initial and final time for the integration. By
default, the time starts at 0 and runs to infinity. Note: the startTime and stopTime parameters are
only applicable when the Continuous Director is at the top level. If a Continuous workflow is contained in
another workflow, the Continuous Director will use the time of its executive director.

The maxIterations parameter specifies the number of times the director will iterate to determine a
“fixed point.” A fixed point is reached if two successive iteration steps produce the “same” result.

Edit parameters for Continuous Director

%u{g: localClock: 0.0 (Configure)
[o
e startTime:

stopTime:

synchronizeToRealTime: [

initStepSize: 0.1

maxStepSize: 1.0

maxlterations: 20

errorTolerance: le-4

ODESolver: ExplicitRK235olver v]
Cancel ¢ Help Y (Preferences) [Defaults) [Remove) [Add Y Commit

FIGURE 0.14: THE CONTINUOUS DIRECTOR PARAMETERS.

For more information about the Continuous Director, see the Ptolemy documentation. The Ptolemy site
also has a number of useful examples.

5.2.5 DYNAMIC DATAFLOW (DDF)

A DDF Director, like the SDF Director, executes a workflow in a single execution thread, meaning that tasks
cannot be performed in parallel as they can be under a PN Director. Unlike the SDF Director, however, the

104

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-37.html
http://ptolemy.berkeley.edu/ptolemyII/ptIIlatest/ptII/ptolemy/domains/continuous/doc/body.htm

Chapter 5 — Building Workflows with Existing Actors

DDF Director makes no attempt to pre-schedule workflow execution, and data production and consumption
rates can change as a workflow executes.

This flexibility permits very dynamic workflow execution, and you will likely use this director for workflows
that use BooleanSwitch and DDFBooleanSelect actors to create control structures, but that do not require
parallel processing (in which case a PN Director should be used). In general, the DDF Director is a good
choice to use for managing workflows that use Boolean switches for an if-then-else type constructs (Figure
5.15) and branching, or that require data-dependent iteration (e.g., multiplying an input integer until the
product is greater than a set threshold—i.e., a “do while” loop).

DOFDirecton
®5ieps 10

"Oparabon on the THEM branch: ™ + inpul

DDFBooleanSelec

"Oparratian on the ELSE branch: ™ + ingul

o

I Branching.ifihenctee DOF Display
Fle Took Help

Operacion on che THEN branch:
Operacion on che ELIE branch:
Operarion on the THEN branch:

i & W

Spepation on the EL3E branch:
Sparation on the THEN branch: &
Cperation on the ELSE branch: 7
Operation on the THEN branch: B
Operation on the ELSE branch: 9

|:lperat ion on che THEN branch: 10 -
£]

FIGURE 0.15: USING THE DDF DIRECTOR WITH A WORKFLOW THAT USES IF-THEN-ELSE TYPE STRUCTURE.

The workflow in Figure 5.15 uses a BooleanSwitch actor to direct its input to either an “If” or an “Else”
output, depending on the value of a token passed to the actor’s control port. Because the output of the
BooleanSwitch ports is not constant (sometimes the port will have output, sometimes not), the workflow
cannot be run under an SDF Director, which requires constant data rates. Either a DDF or PN Director can
handle variable data rates, and because the workflow does not require parallel processing, the DDF Director
is the better choice for this workflow.

Note that the workflow uses a DDFBooleanSelect actor specifically designed for DDF workflows. This actor
should be used under DDF Directors instead of the BooleanSelect actor. Additional actors designed to work
under DDF Directors, such as DDFSelect and DDFOrderedMerge, can be instantiated using the Tools >
Instantiate Component menu option.

In Figure 5.15, the director’s parameters are left at their default settings, but they can easily be changed,
as shown in Figure 5.16:

105

Chapter 5 — Building Workflows with Existing Actors

Edit parameters for DDFDirector
‘*-—?/ iterations: al
: maximurnPeceiverCapacity: i
runUntilDeadlockInonelteration:]
Comimik l [Add] [Remowve] [Restnre Defaults] [Preferences] [Help] [Cancel

FIGURE 0.16: THE DEFAULT PARAMETERS OF THE DDF DIRECTOR.

The iterations parameter is used to specify the number of times the workflow is iterated. By default, this
parameter is set to “0”. Note that “0” does not mean “no iterations.” Rather, “0” means that the workflow
will iterate forever. Values greater than zero specify the actual number of times the director should execute
the entire workflow.

By default, the value of the maximumReceiverCapacity parameteris 0, which means that the queue
in each receiver is unbounded. To specify bounded queues, set this parameter to a positive integer. The
DDF Director’s third parameter, runUntilDeadlockInOnelIteration, can only be selected if the
DDF Director is running a sub-workflow (i.e., you cannot turn this parameter on if the DDF director is the
workflow’s top-level director). In general, when using DDF in composite actors, it is useful to select this
parameter to ensure that the subworkflow sends out one token each iteration. When
runUntilDeadlockInOnelteration is selected, the director will repeat the basic iteration until
deadlock is reached. Deadlock occurs when no active actors are able to fire because their firing rules are
not satisfied.

By default, the DDF Director uses a set of firing rules that determine how to execute actors in a “basic
iteration.” Unlike the SDF Director, which calculates the order in which actors execute and how many times
each actor needs to be fired BEFORE the director begins to iterate the workflow, the DDF Director
determines how to fire actors at runtime, and the number of tokens produced and output by each actor
can vary in each basic iteration.

Users can ensure that a specified number of tokens are consumed or produced by either (1) setting a
parameter named requiredFiringsPerIteration in workflow actors so that they are fired the
specified number of times in each iteration (e.g., a Display actor that should display one token in each
workflow iteration, or an actor that must output a single token to a containing workflow on each iteration)
or (2) by selecting the director’'s runUntilDeadlockInOneIteration parameter, in which case,
in each iteration, the director will repeat the basic iteration until deadlock is reached. Deadlock occurs when
no active actors are able to fire because their firing rules are not satisfied.

A simple example of a DDF sub-workflow contained by a PN workflow can be used to illustrate the
usefulness of user-defined requiredFiringsPerIteration parameters and the DDF Director’s
runUntilDeadlockInOneIteration parameter. In the example in Figure 5.17, a Ramp actor
outputs the integers from 1 to 8 to a composite DDFActor. Opening the DDFActor reveals a simple DDF sub-
workflow that uses a relation to branch the input to two Expression actors: one which simply passes the
value true to a BooleanSwitch, the other which outputs a string such as “This is string no. 1” or “This is
string no. 2”, etc. The output of the DDFActor is then passed to a Display actor.

106

Chapter 5 — Building Workflows with Existing Actors

PM Director

Ramp

& 5teps: B

DDFActor Display

DoE Elreclor

= “This is slring no.” +in

&Jﬁlh.-un Swilch

oul

FIGURE 0.17: A DDF SUB-WORKFLOW CONTAINED IN A PN WORKFLOW.

The expected output of the workflow in Figure 5.17 is a “list” of all eight strings generated by the DDFActor
(“This is string no. 1”, etc). However, when the workflow is run using the default actor and director settings,
the following output is produced (Figure 5.18)

rIEI .DDFtest3.Display E]@1

File Tools Help

This is string no. 1
This is string no. 2
Thisz is string no. 3
This is string no. 4

FIGURE 0.18: OUTPUT OF THE WORKFLOW DISPLAYED IN FIGURE 5.17 WHEN ALL ACTOR AND DIRECTOR PARAMETERS USE

DEFAULT SETTINGS

What happened to strings 5-8? The answer lies in how the DDF Director determines which actors to fire and
when. In this case, the input comes from the containing workflow, and all eight values are passed to the
sub-workflow correctly. Listening to the DDF Director during execution reveals that the expressions are fired

107

Chapter 5 — Building Workflows with Existing Actors

in one iteration and that the last Boolean Switch is fired only in the next iteration (thus emitting a token
every two iterations). In other words, one iteration is not a “full iteration” of the DDF subworkflow.

To ensure that the BooleanSwitch actor iterates and that the sub-workflow completes its task, one of the
following techniques can be used:

Add a requiredFiringsPerlteration parameter to the BooleanSwitch actor specifying the number of tokens it
must consume at each iteration. To add the new parameter, right-click the BooleanSwitch actor and select
Configure Actor. Click the Add button and enter the name and value of the new parameter (Figure 5.19).

7 o

Add a new parameter to .DDFtest3.DDFActor.BooleanSwitch

P

-] Marmne: requiredFiringsPerIteration

Defaulk valus:)

Class: pkolemy.data.expr.Parameter

[ok l [Cancel]

FIGURE 0.19: ADDING THE REQUIREDFIRINGSPERITERATION PARAMETER.

Click OK to save the new parameter and then Commit to save the changes. When you rerun the
workflow, the output should now be as expected (Figure 5.20).

K| DDFtest3.Display =Jo&d

Ele Tools Help

This is string no.
This is string no.
This is string no.
This is string no.
This iz string no.
This is string no.
This is string no.
hhis iz string no.

Lo e R Y S

FIGURE 0.20: THE OUTPUT OF THE EXAMPLE WORKFLOW ONCE A REQUIREDFIRINGSPERITERATION PARAMETER HAS BEEN
ADDED TO THE BOOLEANSWITCH ACTOR.

Alternatively you can

1) Turnonthe DDF Director's runUntilDeadlockInOneIteration parameter.Toturn on this
parameter, double-click the director and check the box beside the parameter name (Figure 5.21).

108

Chapter 5 — Building Workflows with Existing Actors

Edit parameters for DDF Director
h?/ iterations: 0
rmaximumBeceiverCapacity;: i
runUntilDeadlockInonelteration:
[Comimik l I Add] l Remowve J ’Restnre DeFauItsI [Preferences I [Help l l Cancel

FIGURE 0.21: TURNING ON THE DDF DIRECTOR’S RUNUNTILDEADLOCKINONEITERATION PARAMETER.

Once this parameter is on, the DDF Director will, for each iteration, repeat the basic iteration until deadlock
is reached. Deadlock occurs when no active actors are able to fire because their firing rules are not satisfied.
Running the workflow again with the runUntilDeadlockInOneIteration parameter selected will
produce the expected results (Figure 5.20).

For more information about the DDF Director, see the Ptolemy documentation. The Ptolemy site also has a
number of useful examples.

5.3 USING EXISTING ACTORS

Kepler comes with a standard library of over 530 actors that can perform tasks such as connecting to a
database, executing a UNIX command, displaying images and maps, or transforming data from one type to
another. Existing actors can be customized in several ways: via parameters, additional ports, and a user-
defined label. See Chapter 3 for more information about these features.

Users can select and use actors from the standard component library, the Kepler Repository, or from
collaborators who make actors available online or simply email a component for immediate use. The
following sections discuss each of these options in greater detail.

5.3.1 USING ACTORS FROM THE STANDARD COMPONENT LIBRARY

All actors that are included in the Kepler standard component library appear in the tree in the Components
area. Double-click an actor directory to open it (or double-click an open directory to close it) and navigate
to the desired component, or use the Search field at the top of the library to locate the component directly
(see Section 4.5.2 for more information about searching for components). To search only the local library,
make sure no Remote repositories are marked “Search” in the Tools > Preferences > Components tab.

To use an actor from Kepler’s standard component library, simply drag-and-drop the actor from the library
onto the Workflow canvas. All of the actors in the library have been tested and are ready to be incorporated
into workflows.

To read more about an actor before instantiating it on the Workflow canvas, right-click the actor and then
click View Documentation (Figure 5.22). Kepler will open a documentation screen containing information
about the actor.

109

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-37.html
http://ptolemy.berkeley.edu/ptolemyII/ptIIlatest/ptII/ptolemy/domains/ddf/doc/body.htm

Chapter 5 — Building Workflows with Existing Actors

00 Unnamedl
@@ KD |10/@ = b=l &
[Components Data Qutline | : Workflow

Search Components

‘Q_Binary File (" search)

I:- Advanc... \‘ (Snurces-:! I/ Cancel \'

L L
|

[All Ontologies and Folders |

. Search Results
¥ [Components
¥ Data Input
¥ Local Input

v Data Output View Documentation

¥ Local Output View Ij"? _
" Binary File Writer T
v Actors-2_0
¥ 1l BinaryFileReader kar v

6 results found.

AT -

FIGURE 0.22: VIEWING INFORMATION ABOUT AN ACTOR IN THE COMPONENT LIBRARY.

5.3.2 INSTANTIATING ACTORS NOT INCLUDED IN THE STANDARD LIBRARY

If you cannot locate a component in the standard library, but you know its class name—which might be the
case with a Ptolemy actor that is not included in the standard library—you can instantiate the actor using
the Instantiate Component item in the Tools menu (Figure 5.23). Instantiating an actor is the same as
dragging an actor from the actor tree to the Workflow canvas. Components can be instantiated either with
a class name or via a URL. Note that instantiation of an actor from a URL only works for Composite actors
made from actors already in the standard actor library. Instantiated components will appear on the
Workflow canvas.

110

Chapter 5 — Building Workflows with Existing Actors

[Keglsr File Edit View Workﬂw Imﬁ Windﬂ HSIE

Animate at Runtime... e
” @ | QP e » H Listen to Director

—[Components | Data Outline . Create Composite Actor Workflow

Expression Evaluator

Search Components Instantiate Component

fq) (Search) Instantiate Attribute
Check System Settings

(_Advanc..) (sources) (Cancel) Ecogrid Authentication

[Al Ontologies and Folders l-ﬂ Preferences

» Text Editor

» [E Projects Module Manager...

Statistics -

[Actors-2_0 -

P Instantiae Entity

=)

y¥vyryvyv vy

Class name: l |]

Location (URL):

o) o)

| N

FIGURE 0.23: INSTANTIATING A COMPONENT VIA THE TOOLS MENU ITEM.

The class name of each actor is displayed in the documentation. For example, to see the class name of the
Constant actor, right-click the actor and select Documentation > Display (Figure 5.24).

111

Chapter 5 — Building Workflows with Existing Actors

K| Documentation for .. Constant g@

File Tools Help

Constant (Instance of ptolemy.actor.lib.Const)

Conslant
lnxolta ouiput

o The Constant actor outputs a constant, which is specified by the value parameter. By
e icn ot iwpe i e || BTAUIE the actor outputs the integer 1.

sanan i Typa 1) ecisid osaioss onin & 18Constan

B LY R e (PO N b 1

The actar can be used to output other types ofvalues, e.q., a string (such as "Hello" or a
dauble {such as 1.2). The actar' s output type matches the type ofthe specified value,

MOTE: Ifusing a PN Directar, use the SingleFireConstant actor instead of the Constant

actar.
Parameters
valle Thevalue produced by the Constant actar, By default, the walue is the integer token 1. The value can be
setto another type, e.g., a string (such as "Hello™ or a douhle (such as 1.2). The output type matches
the type of the value specified here.
class Mo description.
semahticTypedd0 Mo description.
semanticTyped T4 Mo descriptian.
kar Mo description.
Input Ports
Author: null {(Cizss author: Yuhong Xiong, Edward A, See Also:
Lee & Class Documentation
lersion: null & MNotused inany demos

FIGURE 0.24: THE CLASS NAME OF THE CONSTANT ACTOR.

The online Ptolemy code documentation contains the actor class name near the top of each page (Figure
5.25). For example, use the class name:

ptolemy.domains.continuous.kernel.Continuousintegrator

to instantiate the Continuousintegrator actor on the workflow canvas.

112

http://ptolemy.berkeley.edu/ptolemyII/ptIIlatest/ptII/doc/codeDoc/index.html

Chapter 5 — Building Workflows with Existing Actors

= c ﬂ'] ptolemy.eecs.berkeley.edu/ptolemyll/ptlllatest/ptll/doc/codeDoc/index.html
[Java 1.6 APl [Prolemy APl W' PostgresQL MySOL [Local
tolemy.distributed.common

ptalemy.distributed.domains.sdf kernel Overview Package [FEE) Tree Deprecated Index Help L
ptolemy.distributed.rmi PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

ptolemy.distributed. uti
ptolemy.domains.ci.kernel
ptolemy.domains.ci.lib
ptolemy.domains.continuous.kernel]

tolemy.domains.continuous.kernel.solver
ptolemy.domains.continuous.lib

ptolemy.domains.continuouskernel

Class ContinuousIntegrator

ptolemy.domains.csp.kernel java.lang.Object
tolemy.domains.csp.lib L ptolemy.kernel.util.Namedobj
ptolemy.domains.ct.kernel L L ptolemy.kernel.InstantiableNamedobi
ptolemv.domains.ct.kernel.solver I L tolemy.kernel .Entit

T

L ptolemy.kernel.ComponentEntit
L ptolemy.actor, 2

ptolemy.domains.continuous.kernel

Interfaces

ContinuousStatefulComponent

ContinuousStepSizeController All Implemented Interfaces:

Classes Jjava.io.Serializable, java.lang Cloneable, Actor, Executable, FiringsRecordable, Initializable, TypedActor, ContinuousStatefulC
ContinuousDirector Changeable, Debuggable, DebugListener, Derivable, Instantiable, ModelErrorHandler, MoMLExportable, Moveable, Nameab

Continuouslintegrator
Continuousintegrator.integratorCausalitvinte | Direct Known Subclasses:
ContinuousODESolver Integrator

ContinuousScheduler

FIGURE 0.25: ONLINE PTOLEMY DOCUMENTATION CONTAINS THE CLASS NAME OF EACH COMPONENT NEAR THE TOP OF EACH
PAGE. USE THE CLASS NAME TO INSTANTIATE THE COMPONENT IN KEPLER.

Note that actors that are instantiated from the Tools menu are placed on the Workflow canvas, but are not
added to the local library. See Section 5.3.5 for information about saving actors to the local library.

5.3.3 USING THE KEPLER ANALYTICAL COMPONENT REPOSITORY

The Kepler Analytical Component Repository contains components in a remote library hosted on the
EarthGrid. Users can upload and download workflow components from this centralized server, and these
components can be searched, downloaded (or uploaded), and used via the Kepler interface.

To search for components in the repository, first select the “remote” repositories you’d like to search from
the Tools > Preferences > Components tab, and then type the name of the required component in the
search field (Figure 5.26). The component will automatically download when a user drags and drops the
search result onto the Workflow canvas. If the found component is a KAR, it may be downloaded into your
local “Save” repository (also configured in the Components Preferences tab), and by default this is
KeplerData/MyWorkflows/.

113

Chapter 5 — Building Workflows with Existing Actors

[Components Data Outline | b

Search Components

Q) (Search “'I

‘fAdvanced...\ (Sources y Cancel

| All Ontologies and Folders ke

» [E Components
» & Projects

» [Statistics
Actors
Dartaturbine
Directors
Opendap

R
MyWorkflows

Yy vy vy wyywy

0 results found.
FIGURE 0.26: SEARCH FIELD FOR LOCAL AND REMOTE COMPONENTS.

Note that actors that are downloaded from the repository are instantiated on the Workflow canvas, but are
not added to the local library. See Section 5.3.5 for information about saving actors to the local library.

To add a new component to the repository where it can be used by other workflow designers:

1. Make sure that your actor has a unique and descriptive name. Right-click the actor and select
Customize Name to supply a name.

2. Right-click the actor and select Upload to Repository from the menu (Figure 5.27). Enter a
username, password, and organization OR, if you do not have a user account, click the Login
Anonymously button to upload the actor without credentials. To obtain log-in credentials, please
register for a KNB account at KNB.ecoinformatics.org.

114

Chapter 5 — Building Workflows with Existing Actors

ActorDesignedForWorkflow

;'[.j Configure Actor HE
= Customize Name

Configure Ports < LDAP Login lﬂ'ﬁ'
Configure Units
Opeﬂ Actor 9eL Username:
Get Metadata
. Password:
Documentation 4
Listen to Actor Organization: ' NCEAS v
Suggest v .
Semantic Type Annotation... [OK ‘ [Cancel l I Login Anonymously

Save Archive (KAR)... - -

View LSID
Preview
Appearance 4

FIGURE 0.27: UPLOADING ACTORS TO THE KEPLER REPOSITORY. RIGHT-CLICK THE ACTOR AND SELECT THE UPLOAD TO
REPOSITORY MENU ITEM (LEFT). LOG IN TO THE KEPLER REPOSITORY USING THE POP-UP AUTHENTICATION DIALOG (RIGHT).

3. Click “Yes” in the dialog box that asks whether the component should be publicly accessible in the
library. Each component must have a unique Life Science Identifier (LSID), which identifies it. The
system will automatically assign an LSID if necessary. A confirmation screen appears when the
upload is complete.

5.3.4 SAVING ACTORS TO YOUR LIBRARY

The local Kepler library, which is accessed in the Components tab can be customized with additional actors
and other components. To add actors to the local library, simply right-click the new actor and select “Save
Archive (KAR)”. If the KAR file is saved into a configured local repository folder, e.g., the “MyWorkflows”
directory, it will be displayed automatically in the actor library. (Figure 5.28 and 5.29).

115

Chapter 5 — Building Workflows with Existing Actors

My Binary File Reader

B

»>

» | Configure Actor ¥E

Customize Name

Configure Ports

Configure Units

Open Actor 8L
Get Metadata

Documentation »

Listen to Actor
Suggest »
Semantic Type Annotation...

Save Archive (KAR)...

Upload to Repository

View LSID

Preview

Appearance »

FIGURE 0.28: SAVING AN ACTOR TO YOUR LOCAL LIBRARY.

" All Ontologies and Folders v l

4 vyrvyvyy

FIGURE 0.29: A MODIFIED BINARY FILE READER ACTOR SAVED TO THE LOCAL LIBRARY.

>

o /
¥ 1l My Binary File Reader, kar ‘;

> D Statistics

Actors
Dataturbine
Directors
Cpendap
R
MyWorkflows
|7 kepler21_092110,kar

;

5.3.5 IMPORTING ACTORS AS KAR FILES

Actors are stored as KAR (Kepler Archive format) files, which allow them to be easily transported, shared

and archived. To save an actor as a KAR file:

1. Right-click the actor on the Workflow canvas and select Save Archive (KAR)... from the menu.

Choose a save location and file name for the KAR file and click Save.

2. The actor will be saved as a KAR file. Note: if the actor has been compiled from new source code
available only on the local machine, you must follow several additional steps when creating a KAR

file. See the Appendix 1, Creating Your own Actor for more information.

KAR files can be emailed, posted on Web sites, or otherwise shared with other users. To open a KAR file

into Kepler, use the Open... option of the File menu in the Menu bar.

116

5.3.6 ACTOR ICON FAMILIES

Chapter 5 — Building Workflows with Existing Actors

Each Kepler actor belongs to a family—a group of similar actors, often designated with a common icon or
symbol. Some families, like Display or Math, contain sub-families, which are also identified with a common
visual element. The actor icons, which appear in the Components area as well as on the Workflow canvas,
identify the function of each actor.

Each icon can represent either an actor or a composite actor, depending on the number of teal “rectangles.”
In general, an actor is represented by a single teal rectangle and a composite actor is represented by two
overlapping teal rectangles (Figure 5.32). Both actors and composite actors appear in the component library
and can be used in workflows.

Basic actor icon

-

Basic composite actor icon

FIGURE 0.30: BASIC ACTOR AND COMPOSITE ACTOR ICONS

The following table lists each actor family and sub-family, as well as the icon used to represent it.

Array

Array actors are indicated with a curly brace. Actors belonging to this family are used for
general array processing (e.g., array sorting).

{C}

Array
Accumulator

Array Accumulator actors read an array and output a string
containing the array elements. Actors: ArrayAccumulator

Array Average

Array Average actors read an array of values and output the average
of the values.

Actors: ArrayAverage

Array Contains

Array Contains actors read an array and determine whether a
specified element is contained in it. The actors output a Boolean
value: true if the element is contained in the array, false if not.

Actors: ArrayContainsElement

117

Chapter 5 — Building Workflows with Existing Actors

Array Dot
Product

Dot Product actors read either two arrays or two matrices of equal
length and compute and output their dot product.

Actors: DotProduct

Array Length

Array Length actors read an array and output the length of the array.

Actors: ArrayLength

Array Max

Array Max actors read an array of elements and output the value
and the index of the largest element.

Actors: ArrayMaximum

e
E
=
L ===

Array Min

Array Min actors read an array of elements and output the value and
the index of the smallest (i.e., closest to minus infinity) element.

Actors: ArrayMinimum

2

Array Sort

Array Sort actors read an array of values and output them in either
ascending or descending order (e.g., from Ato Z or Z to A).

Actors: ArraySort

°

General Array
Processing

General Array Processing actors are used to perform a wide variety
of array manipulations—from extracting a specified array element,
to outputting the indices of peak array values.

Actors: ArrayElement, ArrayExtract, ArrayLevelCrossing,
ArrayPeakSearch, ArrayRemoveElements, ArrayPermute

Control

Control actors do not have a persistent family symbol. These actors are used to control
workflows (e.g., stop, pause, or repeat).

General
Workflow
Control

General Workflow Control actors are used to stop, pause, delay,
repeat, or branch a workflow.

Actors: Pause, Stop, Repeat, SampleDelay, Case, IterateOverArray,
TokenToSeparateChannelsTransmitter, ThrowException,
ThrowModelError, MessageDigestTest, NonstrictTest, Test,
TypeTest

Data/File
Access

Data/File Access actors do not have a persistent family symbol. Actors belonging to
this family read, write, and query data.

118

Chapter 5 — Building Workflows with Existing Actors

Data Access
Support

Data Access Support actors are generally used to open and close
database connections, or to send commands to a data source.

Actors: CloseDatabaseConnection, OpenDatabaseConnection,
SRBConnect, SRBCreateQueryConditions,
SRBCreateQuerylnterface, SRBGetPhysicalLocation,
SRBProxyCommands, PhyloDataReader

Data Query

Data Query actors query data sources or metadata.

Actors: DatabaseQuery, SRBQueryMetadata,
TransitiveClosureDatabaseQuery

L)1

or

Reads/Gets/
Sources

Reads/Gets/Sources actors read data into a Kepler workflow: files,
images, or data sets.

Actors: BinaryFileReader, ExpressionReader, FileReader,
FileToArrayConverter, ImageReader, LineReader, SimpleFileReader,
NexusFileReader,

EML2Dataset, OrblmageSource, OrbPacketObjectSource,
SRBGetMetadata, SRBSGet, SRBStreamGet, DataTurbine,
OpendapDataSource

N

Read/Write

Read/Write actors read and write data from host servers.
Actors: FTPClient, EcogridWriter, DataGridTransfer

TN

or

Write/Put/
Sink

Write/Put/Sink actors write data to output files or sinks, which store
data for future use.

Actors: BinaryFileWriter, FileWriter, LineWriter, TextFileWriter,
OrbWaveformSink, OrbWaveformSource

Data Processing

Data Processing actors do not have a persistent family symbol. Actors belonging to this
family assemble, disassemble, extract, and convert data.

Data Processing

Data Processing actors process data—converting data from one
format to another or extracting specified values from a data set.

Actors: ClimateChangeFileProcessor, ClimateFileProcessor, SProxy,
ExperimentMonitor, XpathProcessor, XSLTProcessor, Interpolator,
LookupTable, RecordAssembler, RecordDisassembler,
RecordUpdater, VectorAssembler, VectorDisassembler,
PolygonDiagramsDataset, PolygonDiagramsTransition, PAUPInfer,

119

Chapter 5 — Building Workflows with Existing Actors

RecIDCM3,
TreeParser

TreeDecomposer, Treelmprover, TreeMerger,

A

Director Stand-alone component that directs the other components (the actors) in their
execution
Director Each of the directors packaged with Kepler (SDF, PN, DDF,

Continuous, CT, and DE) has a unique way of instructing the actors
in a workflow. For more information about which director to use,
see Section 5.2.

Directors: CT Director, Continuous Director, DE Director, DDF
Director, PN Director, SDF Director

Display actors are indicated by vertical bars. Actors belonging to this family display
workflow output in text or graphical format.

o
(7]
=2
Q
<

Array/Matrix
Display

Array/Matrix Display actors accept matrix and/or array tokens and
display them in a scrollable table format. Actors: MatrixViewer

N

Browser Display

Browser Display actors read a file name or URL and display the file
in the user’s default browser. Some browser display actors allow
users to interact with the displayed content during workflow
execution.

Actors: BrowserDisplay, BrowserUl

B

GIS/Spatial
Display

GIS/Spatial Display actors display geospatial data.
Actors: ESRIShapeFileDisplayer, GMLDisplayer

X

Graph Display

Graph Display actors plot data sets and display the results. Some of
the actors use R, a language and environment for statistical
computing and graphics. Graph Display actors that use R indicate so
on the icon. Actors: ArrayPlotter, BarGraph, ENMPCP,
SequencePlotter, TimedPlotter, TimedScope, XYPlotter, XYScope,
Barplot, Boxplot, Scatterplot

HES

Image Display Image Display actors display image files.

Actors: ImageDisplay, ImageJ, ShowlLocations, TreeVizForester
Table Display Table Display actors display information in tabular format.
Text Display Text Display actors display textual output.

Actors: Display, MonitorValue

File
Management

File Management actors do not have a persistent family symbol. Actors belonging to
this family locate or unzip files, for example.

120

Chapter 5 — Building Workflows with Existing Actors

Directory Listing

Directory Listing actors read a local or remote directory name, and
output an array of file and/or folder names contained by that
directory.

Actors: DirectorylListing

0 08l O

File Locator File Locator actors locate files from a file system.
File File Management actors copy, move, fetch, and put files and
Management directories on local and remote hosts.
Actors: DirectoryMaker, RandombDirectoryMaker, FileCopier, FileCopy,
GenericFileCopier
Zipped Files The ZipFiles actor “zips” multiple files into a single zipped archive.

Actors: ZipFiles

GAMESS

GAMESS actors are used for computational chemistry workflows.

GAMESS
Actors/Computa
tional Chemistry

GAMESS actors perform a broad range of quantum chemical
computations. For more information about GAMESS, see
http://www.msg.ameslab.gov/GAMESS/.

Actors: QMViewDisplay, Babel, OpenBabel, MoleculeSelector,
GamesslnputGenerator, GamessLocalRun, GamessNimrodRun,
DataGroup, EndGamessinput, FormattedGroup, KeywordGroup,
StartGamesslnput, FileExistenceMonitor, FileListSequencer,
FileLocationChooser, FileNameChooser,
GamessAtomDataExtractor, GamessKeywords,
MoleculeArrayProducer, TemporaryScriptCreator

Actors that don’t fit into one of the other families fall into the General family. General
actors include email, file operation, and transformation actors, for example.

Computation

Computation actors are used to perform calculations.

Email Email actors send email notifications from a workflow to a specified
address.
Actors: EmailSender

Filter Filter actors “filter” information, allowing users to select specific

data from a data set.

Actors: FilterUl

Q]
o
>
o
=
L

Timers or Time

Timers or Time actors output the current time.

Actors: CurrentTime, TimeStamp, CreateDate, DateDifference,
DateToString, RandomDate

121

http://www.msg.ameslab.gov/GAMESS/

Chapter 5 — Building Workflows with Existing Actors

Transformation

Transformation actors transform data from one type to another.

Actors: URLTolocalFile, StringToXML, XMLToADNConverter,
BooleanToAnything, ExpressionToToken, LongToDouble,
ObjectToRecordConverter, TokenToExpression,
TokenToStringConverter, UnitConverter, XMLToADNConverter,
ConvertURLTolmage, CartesianToComplex, CartesianToPolar,
ComplexToCartesian, ComplexToPolar, PolarToCartesian,
PolarToComplex, ArrayToElements, ArrayToSequence,
ElementsToArray, SequenceToArray, StringToN

GIS/Spatial
Processing

GIS/Spatial actors are used to process geospatial information.

GIS/Spatial
Processing

GIS/Spatial Processing actors are used to map and manipulate
geospatial data.

Actors: AddGrids, ConvexHull, CVHullToRaster,
GDALFormatTranslator, GDALWarpAndProjection, Get2DPoint,
GetPoint, GrassBuffer, GrassHull, GrassRaster, GridOverlay,
GridRescaler, MergeGrids, PointinPolygon, PointinPolygonXY,
Rescaler, StringToPolygonConverter, Interpolator, GARPPrediction,
GARPPresamplelayers, GARPSummary, GridRescaler, GridReset,
Rescaler

Image
Processing

Image Processing actors have no persistent family symbol. Actors belonging to this
family are used to work with graphics files.

Image Processing

Image Processing actors are used to manipulate and convert image
files.

Actors: ASCToRaw, ConvertimageToString, IJMacro, ImageContrast,
ImageConverter, ImageRotate, StingTolmageConverter,
SVGConcatenate, SVGToPolygonConverter

Logic

Logic actors have no persistent family symbol. Actors in this family include Boolean
switches and logic functions.

Boolean
Accumulator

The BooleanAccumulator actor reads a sequence of Boolean values
and outputs one Boolean value from their combination.

Actors: BooleanAccumulator

Boolean
Multiplexor/

Switch

Boolean Multiplexor and Switch actors determine which of two or
more input values to output. These actors are useful when creating
workflow control structures, which allow workflows to branch, for
example.

Actors: Boolean Multiplexor, Switch

122

Chapter 5 — Building Workflows with Existing Actors

Boolean The BooleanSwitch actor reads a value of any type and routes it to
T Switches either a “true” or “false” port.
% Actors: BooleanSwitch
F
Comparator The Comparator actor reads two values and compares them. The
actor outputs a Boolean value (true or false) that indicates whether
the comparison criteria were met or not.
Actors: Comparator
Equals The Equals actor compares values to see if they are equal.
Actors: Equals
Is Present? The IsPresent actor outputs “true” or “false” depending on whether

it has received a data token or not.

Actors: IsPresent

Logic Function

The Logic Function actor performs a specified logical operation (e.g.,

»nou,

“and”, “or”, “xor”).

Actors: LogicFunction

Select

Select actors select and output a token from among received input

1 tokens.
_; — Actors: Select, DDFBooleanSelect
n
Math Math actors have no persistent family symbol. Actors in this family include add, subtract,

integral, and statistical functions.

Absolute Value

The AbsoluteValue actor reads a scalar value (e.g., an integer,
double, etc) and outputs its absolute value. Actors: AbsoluteValue

Accumulator

The Accumulator actor outputs the sum of its received inputs.

Actors: Accumulator

Add or Subtract

The AddOrSubtract actor adds and/or subtracts received values.

Actors: AddOrSubtract

123

Chapter 5 — Building Workflows with Existing Actors

Average

The Average actor outputs the average of the values it receives via
its input port.

Actors: Average

Constants

The Constant actor outputs a constant, a string or any other data
type.
Actors: Constant, StringConstant

Counter

Counter actors increment or decrement an internal counter.

Actors: Counter, TokenCounter

35‘/31

Differential
Equation

The DifferentialEquation actor reads differential equations,
subtracts the current equation from the previously received one,
and outputs the difference.

Actors: DifferentialEquation

Stand-alone
white box

Expression

The Expression actor evaluates an expression (e.g., an addition or
multiplication operation) specified in the Ptolemy expression
language.

Actors: Expression

Integral

The Integrator actor is used with the CT or Continuous directors to
help solve ordinary differential equations (ODEs).

Actors: Integrator, Continuouslintegrator

Limiter

The Limiter actor reads a scalar value and compares it to the top and
bottom value of a specified range.

Actors: Limiter

Maximum

The Maximum actor reads multiple scalar values and outputs the
maximum value.

Actors: Maximum

3
=
=

Minimum

The Minimum actor reads multiple scalar values and outputs the
lowest value.

Actors: Minimum

124

Chapter 5 — Building Workflows with Existing Actors

Multiply or | The MultiplyOrDivide actor multiplies and/or divides received
Divide values.

*/+ Actors: MultiplyOrDivide
Ramp Function | The Ramp actor is the equivalent of the “for loop” in many

traditional computer languages.

Actors: Ramp

- I

Random Number
Generators

The Random actors generate or select one or more random values.

Actors: Bernouli, DiscreteRandomNumberGenerator,
GaussianDistributionRandomNumberGenerator,
RicianDistributionRandomNumberGenerator,
UniformDistributionRandomNumberGenerator,
RandomUniform, RandomDate

RandomNormal,

X%Y

Remainder

The Remainder actor receives an input value, divides the value by a
specified divisor, and outputs the remainder.

Actors: Remainder

]
c
S

d()

Round

The Round actor rounds a number, using a specified rounding
function.

Actors: Round

>

Scale

The Scale actor reads any scalar value that supports multiplication
(e.g., an integer, double, array, matrix, etc), and outputs a scaled
version of the value.

Actors: Scale

B

Signal Processing

Signal Processing actors generate or manipulate signals.

Actors: Sinewave

Statistics Statistics actors organize and analyze data in a variety of ways.
2 Actors: Quantizer, ANOVA, Summary, SummaryStatistics,
I_]_XG Correlation, Regression, LinearModel, RMean, RMedian
Trig Function | The TrigFunction computes a specified trigonometric function.

Actors: TrigFunction

125

Chapter 5 — Building Workflows with Existing Actors

Other/External
Program

Other/External Program actors are indicated by a purple rectangle. External Program
actors include R, SAS, and MATLAB actors.

General External
Program

General External Program actors execute UNIX commands or create
UNIX shells from a workflow.

Actors: ExternalExecution, InteractiveShell,

UserinteractiveShell

SSHToExecute,

R actors use R, a language and environment for statistical computing
and graphics.

Actors: ReadTable, Summary, RandomNormal, RandomUniform,
ANOVA, Correlation, LinearModel, Regression, RMean, Rmedian,
Rquantile, Summary, SummaryStatistics, Barplot, Boxplot,
RExpression, Scatterplot

String String actors have no persistent family symbol.
String String actors are used to manipulate and work with strings in a
variety of ways.
strlng{} Actors: StringAccumulator, StringCompare, StringlLength,
StringFunction, StringlndexOf, StringMatches, StringReplace,
StringSplitter, StringSubstring, StringTolnt, StringToLong, StringToN,
StringToXML,
Units Unit systems are indicated with a blue oval.

Units

Units are parameters that define a unit system that consists of a set
of base and derived units.

Actors: BasicUnits, CGSUnitBase, ElectronicUnitBase, SI

Utility actors have no persistent family symbol.

. C
=
)

Utility

Utility actors help manage and tune a particular aspect of an
application.

Actors: VariableSetter, ExperimentPreparator, ExperimentStarter,
ForkResourceAdder, TokenDuplicator, Recorder, GUIRunCIPRes,
Initializer, SubsetChooserActor, TreeToString

Web Service

Web Services actors are indicated by a wireframe globe. Actors in this family execute

remote services.

Web Service

Web Service actors are used to invoke a Web service, allowing users
to take advantage of remote computational resources.

Actors:, ServerExecute, SoaplabAnalysis, SoaplabChooseOperation,
SoaplabChooseResultType, SoaplabServiceStarter, WebService,
WMSDActor

126

Chapter 5 — Building Workflows with Existing Actors

TABLE 5.1: ACTOR ICONS

5.4 UsSING COMPOSITE ACTORS

Composite actors, or actors that contain sub-workflows, are commonly used in Kepler. These actors—much
like document outlines that can be opened or collapsed to show or hide increased levels of detail--simplify
workflows by concealing some of the complexity. Composite actors are reusable components that perform
a potentially complex task. The details of the process used to carry out the task are revealed when a user is
interested in the minutia and elects to open the composite actor to view its inner workings.

Composite actors are easily spotted by the double teal rectangle that represents them on the Workflow
canvas (Figure 5.32).

SDF Director

Gene Accession Mumber

§ Aot5112 8

XML Entry Display

Sequence Getter Using XPath Sequence Display

XML Entry of Gane Seguanc

Errors Sink HTML Generator Using XSLT HTML Display

\ XML InEm'- HTML Gl

FIGURE 0.31: AN EXAMPLE OF A WORKFLOW THAT USES TWO COMPOSITE ACTORS (SEQUENCE GETTER USING XPATH AND HTML
GENERATOR USING XSLT). THE ABOVE WORKFLOW, 6-WEBSERVICESANDDATATRANSFORMATION.XML, IS INCLUDED WITH THE
KEPLER RELEASE IN THE DEMOS/GETTING-STARTED DIRECTORY.

The workflow in Figure 5.32 uses two composite actors to perform workflow steps that are identified as
“Sequence Getter Using XPath” and “HTML Generator Using XSLT”. To see how the composite actor carries
out these steps, simply right-click the composite actor and select Open Actor from the menu. A new
application window opens, with the sub-workflow contained by the composite actor displayed on the
Workflow canvas (Figure 5.33).

127

Chapter 5 — Building Workflows with Existing Actors

K file: IC: Ikepler 20070716/demos/getting. . mation. xmi#Sequence Getter Using XPath =%
Fle Edt Wiew Workflow Tooks Window Help

eaRaP i@ mpdi-ce

[Components = Data Outline]

Search Components
—, f
QL compon ilahitor (" tearch) XML Entry of Gene

[Advanc_) [Sewrces

Al Ontebogees and Folders)

St arch R gty

* L Componerty Remowe First Line

¥ e ';' Perpese inputreplaceFirst"(?s l<WDOCTYPE +7U>", ™)
ComponnAcror

This workflow extracts the "SEQUENCE" elements from an XML document and
returns an array of these values on the output

Author: lkay Allintas, May 2006, SDSC
0 results Found.
T
& -
M & e ™ @ menstipker +| [Deskiop ¥ 5.08uldingWorkflo,.. | & Adabe Photoshop B CiiwinDowsisyst... 5 RS UL

FIGURE 0.32: THE INNER WORKINGS OF THE SEQUENCE GETTER USING XPATH COMPOSITE ACTOR.

5.4.1 BENEFITS OF COMPOSITE ACTORS

In addition to simplifying workflows so that they can be more easily understood, composite actors bring a
number of other benefits to Kepler: they can be easily reused and updated, they can be saved to the local
component library or uploaded to the Kepler Repository where they can be shared, and they can contain
other composite actors.

Scientists and other workflow designers can use composite actors to execute a task by combining existing
analytical components rather than creating a new actor from scratch, which requires knowledge of Java.
When composing composite workflows, scientists simply “wrap up” existing actors into a functional unit
that performs a typical task.

Kepler uses two types of composite actors: opaque and non-opaque (or “transparent”). A sub-workflow
that contains its own director is called an opaque composite. Non-opaque composites do not contain a
director, and instead “inherit” their director from the containing workflow.

5.4.2 CREATING COMPOSITE ACTORS

A composite actor can be created in one of two ways: either by dragging-and-dropping a CompositeActor
from the component library onto the Workflow canvas and then customizing it, or by selecting existing

128

Chapter 5 — Building Workflows with Existing Actors

components from the Workflow canvas and selecting Create Composite Actor from the Tools menu. We
will go over both methods in this section.

To create a composite actor using the CompositeActor:

1. In the Components area, search for CompositeActor. Drag and drop the CompositeActor to the
Workflow canvas.

2. Right-click the CompositeActor and select Open Actor from the menu. A new application window
opens with a blank Workflow canvas (Figure 5.34). Use this canvas to construct the sub-workflow
contained by the CompositeActor.

(600

Unnamed1#CompositeActor

@& || QD 0T [@] == [15[55] @

f Components Data

Outline | ; Workflow

Search Components

q CompositeActor

Searc| h

(" advanc..) (sources) f Cancel)

| All Ontologies and Folders

. Search Results
¥ [Components
¥ General Purpose
Plcomosiecor]
¥ Workflow
i CompositeActor
v Actors-2_0
¥ il CompositeActor,kar
i Composite Actor
¥ .l CoreActors,kar
i Composite Actor
4 results found.

CompositeActor

|

CumpusneAuur

DO iteACtorn
@I@\E\C« S IEIJEIEIPEIE
[[Components | Data__ Outline | . [Workflow |
Search Components
(m

Conflgure Actor _H
Customize Name

Configure Ports

Configure Units

Open Actor #L

Get Metadata

Documentation 4

Listen to Actor

Suggest 3
Semantic Type Annotation...
Save Archive (KAR)...

Upload to Repository

View LSID

Preview

Appearance 3

\1

FIGURE 0.33: RIGHT-CLICK THE COMPOSITEACTOR AND SELECT OPEN ACTOR TO OPEN A BLANK WORKFLOW CANVAS WHERE THE

SUB-WORKFLOW CAN BE COMPOSED.

3. Drag and drop the components needed to compose the sub-workflow onto the CompositeActor
Workflow canvas. Connect the components. The example in Figure 5.35 contains a sub-workflow
that can be used to add two constants and display the sum in a text window.

129

Chapter 5 — Building Workflows with Existing Actors

“ |
Fe E3 vew Worls Soih wiede Help
aalallFH@s md>-0e)
[1 &
tes #,,fi ([x|
ps——— - B Gt e wpidion Took s e
-
[aawch gty Compodaic & e C0 e B ek e D50
1 _
(BT -] e g .
@ ZearchBewits 3 cre
5 Compararis |
i Gareral Puposs II [Snarch regosiary
[Compestedaner 1 ——
B temrbe b vdenn ! LSRN o o et
i Wit i =
W Comgenderr 1 o]
T ra—— b B Fromctn E:g!umrm
I v ot ner I B torciom] Bl e Siiblrasct
\ L Display
| 2 e Comporents Consme
| F]
i s ol
)
1
|
|
1
|
|
1
|
I|
5 rests ol ||
|
CompositeActor !
1
|
I|
| foresits fourd
1
=

FIGURE 0.34: ADDING A SUB-WORKFLOW TO A COMPOSITEACTOR.
4.

Once the sub-workflow has been composed, close the sub-workflow canvas. The sub-workflow can
5.

be accessed again by right-clicking the CompositeActor and selecting Open Actor from the menu.

Right-click the CompositeActor and select Customize Name from the menu. Select a unique and
descriptive name for the Composite actor (e.g., MakeSum). Click Commit.

6. To add input and output ports to the CompositeActor, use the Add port buttons on the Toolbar
(Figure 5.36). The port will appear on the Workflow canvas, where it can be connected to actors in
the sub-workflow.

130

Chapter 5 — Building Workflows with Existing Actors

ﬁ 00 Unnamed1#CompositeActor
VY=Y EINT IE L JE IRk
[Components | Data Outline | N Workflow
Search Components 200 T T nnamedia -
° . FIPERRNOEREREES
C (h) !
Q CompositeActor —_ Components Data__ Outline > E—
(" Advanc...) (sources) (Cancel)
- . Ji. . Search Components e
‘ . - Qaisplay =) | Add Single Port '
All Ontologies and Folders 53 1 o= T (T port

. Search Results Composite Actor
and Folders 2] »

, Al
v [Components —_———
¥ General Purpose N
P ¥ Graphical Qutput Constant

Qutput
i [Composite Actor I Esni shape File Display
I GML Displayer

¥ Workflow =
i CompositeActor . T“‘;’;";f:u':““"
v Actors-2_0 5 Browser Display
¥) CompositeActor,kar e v Ederojecss o
i Composite Actor ¥ Computational Chemistry
¥ .l CoreActors,kar W mview pisplay
- v L Adors-2_0

i Composite Actor
4 results found.

. X e
. i

18 results found,

CompositeActor 28

i |

FIGURE 0.35: ADDING PORTS TO A COMPOSITE ACTOR.

7. To name the port or otherwise customize it, right-click the CompositeActor icon and select
Configure Ports from the menu (Figure 5.37). Click Commit to save the customization. The new
name (e.g., AddInteger) will appear on the Workflow canvas of the sub-workflow.

131

Chapter 5 — Building Workflows with Existing Actors

&

BEEREOOECEEEE

—[Components = Data Outline L » ["workflow |
Search Comp s
(Q Constant 3 EE’ CompaositeActor
(Advanc...) (Snurces) (Cancel) Configure Actor %E
Customize Name
[all Ontologies and Folders = Configure Ports
-\ Search Results - Configure Units
v [Components Open Actor L
v Dara Input Get Metadat'%
¥ Workflow Input Documentation
¥ Constant Listen to Actor
.Constant ,,,,,,
I string Constant [C ort C or
¥ Workflow Name Input | Output| Multiport Type | Direction | Show MName Hide Units I
¥ Workflow Input Port M ™ (24 DEFAULT [T ()
¥ Constant
B constant
I string Constant 4
v A.ctors—z_l] v (Commit) (Apply) (Add) (" Remove) (Help) (Cancel)
& results found. e

av -

CompositeActor

FIGURE 0.36: CUSTOMIZING THE PORTS OF A COMPOSITE ACTOR.

8. To connect the new port, simply draw a channel between the port and an actor’s input port (Figure
5.38). The port must also be connected to an actor in the containing workflow. Otherwise, an error
may be generated.

132

Chapter 5 — Building Workflows with Existing Actors

WB 06 - - 7 7Unn;med1#€omposiIeA{Iur
|e|e/E el I0[@] = =) lac] ¢
[Components = Data Outline] N @

Search Components

(search)

(" Advanc..) [Sources) [Cancel)

I:{

o

Q, Constant

[Al Ontologies and Folders

. Search Results
¥ [Components
¥ Darta Input
v Workflow Input
¥ Constant
B constant
. String Constant
¥ Workflow
¥ Workflow Input
¥ Constant
. Constant
. String Constant

Actors-2_0
¥ .l Constant,kar
. Constant
¥ il CoreActors kar
W constant
8 results found.

v

MakeSum

av

MakeSum

@@ [F[(0> |00 |@] = b= u[>[15]05] @

[Components | Data__ Outline

[workfiow |

Search Components
Q

-

T (Csearen)

8

) (sources

Advanc
All Ontologies and Folders =]
* B Componems

» @ Projects

» [sutisues

Actors-2_0

Directors-2_0

Opendap-2.0

R-2.0

Add or Subtract

>
N
> Display

0 results found.

FIGURE 0.37: CONNECTING A PORT BETWEEN A SUB-WORKFLOW AND A CONTAINING WORKFLOW. TO COMPLETE THE

CONNECTION, THE PORT MUST ALSO BE CONNECTED TO AN ACTOR IN THE CONTAINING WORKFLOW.

9.

The Composite actor can now be incorporated into a containing workflow. The simple example in
Figure 5.39 passes a constant (5) to the MakeSum composite actor, which adds the value, along

with the two constants specified in the sub-workflow, and outputs the sum in a text window.

SDF Director

MakeSum

Constant

FIGURE 0.38: USING A COMPOSITE ACTOR IN A CONTAINING WORKFLOW. THIS WORKFLOW OUTPUTS THE SUM OF THE
CONSTANT PASSED TO THE COMPOSITE ACTOR (5) AND THE VALUES SPECIFIED IN THE SUB-WORKFLOW (2 AND 3).

133

Chapter 5 — Building Workflows with Existing Actors

To create a composite actor using the Create Composite Actor item under the Tools menu:

1. On the Workflow canvas, select the components you would like to include in the composite
workflow. All selected components will have a yellow highlight.

2. Select Create Composite Actor from the Tools menu. A composite actor containing the highlighted
components will replace them on the Workflow canvas (Figure 5.41).

3. Customize the name of the new composite actor and add ports to connect it to the existing
workflow, or save the new composite actor to the local actor library by right-clicking the actor icon
and selecting “Save Archive (KAR) ...” You will be prompted to assign a Semantic Type to the new
composite actor. It will then be available for your use in the Component Library.

Fle Edt View Workflow im Window Help
QA QA P (oo W@

| Components Data

Create Composite Actor
Search Components Expression Evaluator E Director
Q Instantiate Component
Instantiate Attribute . e sssaes
T— p— . .
(CAdvanc..) ((sources Check System Settings . Before Composite

~_ [Ecogrid Authentication
All Ontologies and Folde
—————————— Preferences *Command L

& Components
& Projects Text Editor
@ Statistics Module Manager...
Actors-2_0
Directors-2_0
Opendap-2_0
R-2_0

Constant

*C.mamentoutputs bradypus_vanegatu

YYYYTYYVW|

Browser Display

0 results found. /

SDF Director

! Components = Data Outline

Search Components

Q) |’ Search ‘1

(Advanc... Sources

All Ontologies and Folders 23

& Components
& Projects

» il andie o

>

» [Statistics i
> & Diecs-2.0 . After Composite

>

>

Opendap-2_0
R_2 0

CompositeActor

FIGURE 0.39: CREATING A COMPOSITE ACTOR USING THE TOOLS > CREATE COMPOSITE ACTOR MENU ITEM.

5.4.3 SAVING COMPOSITE ACTORS

Composite actors can be saved and shared just as other types of actors can be. In fact, saving a workflow
as a composite actor is one of the simplest ways to transport and share workflows with colleagues. Simply
paste a workflow into a composite actor to create a composite actor. Composite actors can be saved to the
local system or the remote Kepler Repository, where they can be stored and shared.

To save a composite actor to the local system, right-click the actor and select “Save Archive (KAR)” from the
menu. The composite actor will be saved in the Kepler Archive Format—as a single file that can be stored
anywhere on the local system.

134

Chapter 5 — Building Workflows with Existing Actors

To adjust how an actor appears in the Ontologies, adjust its Semantic Annotations by right-clicking the actor
and using “Semantic Type Annotation...”.

To save a composite actor to the remote Kepler Repository, right-click the actor and select “Upload to
Repository.” The composite actor can be saved to the repository just like any other type of actor. See
Section 5.3.4 for more information.

5.4.4 COMBINING MODELS OF COMPUTATION

Opaque composite actors can be used to create workflows that combine models of computation (i.e.,
processes that require different directors). For example, a workflow that is managed by a Continuous
Director can contain an opaque composite actor managed by a DE Director (such a workflow can be used
for mixed-signal modeling). For more information about combining models of computation, see the
Ptolemy documentation.

5.5 USING THE EXTERNALEXECUTION ACTOR TO LAUNCH AN EXTERNAL APPLICATION

The ExternalExecution actor can be used to launch an external application from within a Kepler workflow.
The actor can pass values to the application and return values that can be used or displayed by downstream
actors. In order to use the ExternalExecution actor, the invoked application must be on the local computer
and, in some cases, configured appropriately. In this section, we will look at several examples of workflows
that use the ExternalExecution actor.

External Execution
oufput

& or
exilCode

cammand
input

The ExternalExecution actor is part of the standard Kepler library and can be found under “General
Purpose/Unix Command” in the component tree or via a search under the Components tab.

5.5.1. OPENING THE HELLOWORLD APPLICATION

The workflow in Figure 5.42 uses the ExternalExecution actor to open the HelloWorld application, a simple
Java program that ships with Kepler. The HelloWorld application accepts an argument-- a user name (by
default “Kepler_User”)--and outputs the string “Hello Kepler-User!”. This workflow can be found in the
demos/getting-started directory (07-CommandLine_1.xml).

135

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-37.html

Chapter 5 — Building Workflows with Existing Actors

ann .07-CommandLine_1.Display
Hello Kepler_User!

SDF Director

@ WorkingDir: property(“outreach.workflowdir")+"demos /getting-started”

CommandLine
[.Jr"java -cp ./ HelloWorld Kepler_User”

External Execution

exitCode

Display

FIGURE 0.40: USING THE EXTERNALEXECUTION ACTOR TO LAUNCH THE HELLOWORLD APPLICATION.

The command to execute, "java —-cp ./ HelloWorld Kepler User", invokes the HelloWorld
application (the "-cp ./"™ option instructs Java to use the current directory in the classpath). This
command is specified by a Constant actor called CommandLine and passed to the ExternalExecution actor
via the actor’s command port. To change the output string from the default, “Hello Kepler_User!”, to “Hello
Bob!”, simply update Kepler User to “Bob”.

The working directory—the place where the HelloWorld application will be executed—is specified via the
actor’'s directory parameter. A workflow parameter, WorkingDir, specifies the name of the
directory:

WorkingDir:property ("outreach.workflowdir")+"/demos/getting-started"

and the ExternalExecution actor’s directory parameter references this value ($WorkingDir).
Otherwise, the actor’s parameters are left at their default settings (Figure 5.42).

136

Chapter 5 — Building Workflows with Existing Actors

-

Edit parameters for External Execution

-,

H_? / firingCauntLirmit:
command:

direckory:

environment:

prependPlatformbependentshelCommand: |

MORE]
Ew'orkingDir
{{name ="', value ="}

throwExceptionOnionZeroR.eturn:
waitFarProcess:
class: ptolemy., ackor lib,Exec
semanticType00: urn:lsid:localhost :onto: 1: 1 #ExternalExecutionEnvironmentActor
semanticTypel 1: urn:lsid:localhost ;onto:2: 1 #UnixCommand
Commit l [Add] [Remove] [Restnre Del‘aultsl [Preferences l [Help l [Cancel

FIGURE 0.41: THE PARAMETERS OF THE EXTERNALEXECUTION ACTOR.

The ExternalExecution parameters are used to customize the environment and output of the actor

(Table5.1).

Parameter

Purpose

firingCountLimit

Specify a positive integer to limit the maximum number of times the
actor is executed.

command

The command string to execute (e.g., 1ls or C:/Program
Files/Internet Explorer/IEXPLORE.EXE) and,
optionally, one or more arguments. The command can also by input
via the actor’s command port.

directory

The directory in which to execute the command. The default value
of this parameter SCWD, which represents the user’s current
working or home directory.

environment

An array of records that name an environmental variable and a
value: {{name = "NAME1", value = "valuel"}...} Where NAME1 is the
name of the environmental variable, and valuel is the value. For
example {{name = "PTII", value = "c:/ptll"}} sets the value of PTIl to
c:/ptll. If the parameter is set to {{name="", value = ""}}, then the
environment from the parent process is used. If environmental
variables are set with the parameter, the parent values will not be
passed to the process. To view the current environment, use the
“env” command.

137

Chapter 5 — Building Workflows with Existing Actors

prependPlatformDependent
ShellCommand

If this parameter is selected, the actor will preface the command
with a platform-dependent shell command 'cmd.exe \c' (under
Windows NT or XP), 'command.com /C' (under Windows 95), or
'/bin/sh —c' (all other platforms). By default, the parameter is not
selected.

NOTE: This parameter must be selected if file redirection is used in
command.

NOTE: If this parameter is selected and Kepler is running under

Cygwin, the SPATH environment variable of the subprocess is not
identical to the SPATH of the calling process.

throwExceptionOnNon

ZeroReturn

If selected, the actor will generate an error message if the invoked
subprocess returns an error.

waitForProcess

Select to indicate that the command should finish executing before
the actor outputs results. By default, the actor will stream command
results as they are generated.

TABLE 0.1:

5.5.2 OPENING A LOCAL BROWSER

THE EXTERNALEXECUTION ACTOR PARAMETERS.

A very simple example of a workflow that uses the ExternalExecution actor to open a browser window is
shown in Figure 5.43. The location of the browser software, in this case C:/Program
Files/Internet Explorer/IEXPLORE.EXE fora Windows system (on a Mac, the location would
be something like /Applications/Firefox.app/Contents/MacOS/firefox), isspecified as
the value of the ExternalExecution actor’s command parameter (Figure 5.44). All other parameters are left

at their default values.

138

Chapter 5 — Building Workflows with Existing Actors

& T Gaeaghe - aicraselt Interoet Explores =/
e El Pes Spuie Dok tep 2
x| |2 F2 s Fuvcates 7 a5 [T
A p—— !] e .
Crocagle (G w s gt 0 - 0 Rdeis ¥ J Sotngi— B -
: Wab 3 gl Mess Ehepeng G 2y Ciosgls | Bgn
SDF Director C l
[Gocgpe Sewen || im Fosieg Liciy
_ 2 Frogs 1
External Exgcution S
output !
command Brror
input exilCode g s o Lecaliniunet

FIGURE 0.42: USING THE EXTERNALEXECUTION ACTOR TO OPEN A BROWSER WINDOW.

Edit parameters for External Execution

9

" FiringCountLirmit: IO
command: C:/Program FilesiInternet Explorer/IEXPLORE EXE
directary: oW

environment: {name =", value ="}

prependPlatFormDependentShellCammand: @

throwExceptionOnkonZeraReturn;
waitForProcess:
firingsPerTteration: 1
Camimik] [Add] [Remove] [Restore Defaultsl [Preferences l [Help l [Cancel

FIGURE 0.43: THE LOCATION OF THE BROWSER SOFTWARE IS SPECIFIED AS THE VALUE OF THE COMMAND PARAMETER. THE
OTHER PARAMETERS ARE LEFT AT THEIR DEFAULT VALUES.

5.5.3 OPENING THE MAXENT APPLICATION

The workflow in Figure 5.45 uses the ExternalExecution actor to launch the Maxent software (a Java
application) from a workflow and to process a specified set of data. After the Maxent software has
executed, Kepler’s BrowserDisplay actor displays the HTML file that contains the results (Figure 5.46). In
order to run the workflow, the Maxent software must be installed on the local system and properly
configured. Instructions for downloading and customizing the software are included in this section.

Maxent software is based on the maximum-entropy approach for species habitat modeling. This software
takes as input a set of layers or environmental variables (such as elevation, precipitation, etc.), as well as a

139

Chapter 5 — Building Workflows with Existing Actors

set of georeferenced occurrence locations, and produces a model of the range of the given species. Maxent
is written by Steven Phillips, Miro Dudik, and Rob Schapire, with support from AT&T Labs-Research,
Princeton University, and the Center for Biodiversity and Conservation, American Museum of Natural
History.?”

#args: e layers -s samples/bradypus .csv-o outputs -t ecoreg -r-a*

SDF Director

Constant
"C:imaxentoutputs bradypus _variegatu...

External Executio

command

input Browser Display

exilCode

FIGURE 0.44: USING THE EXTERNALEXECUTION ACTOR TO INVOKE AN APPLICATION.

#7] Maxent model for bradypus_variegatus - Microsoft Internet Explorer E]@
File Edit Wie Fawvorites Tools Help ;',’
- o A, =y .\J"-_/. i - — J T
0 Back o> » ‘,: (al | X Search Ay Fawvorites é“? = - & i 1 ._:i

Address @C:'l,maxent'l,outputs'l,bradypus_variegatus.html E. a G0 Links **
Google [Gl~ |%|Go 52 BN = 99 Bookmarks~ Sh190blocked | 5P Check ~ 32 () Settings— & -

||

Maxent model for bradypus variegatus

Thiz page contains some analysis of the dfaxent model for bradypus_variegatus, created Tue Jan 02 11:.06:27 PST
2008 using Maxent version 3.1.0. If wou would like to do further analvses, the raw data used here 15 linked to at the
end of thiz page.

Analysis of omission/commission

The following picture shows the omission rate and predicted area as a function of the cumulatve thresheold. The
ommission rate is is calculated both on the trauning presence records, and (if test data are used) on the test records.
The ormzsion rate should be close to the predicted ormission, because of the defimtion of the cumulatve threshold.

Oomission vs. Predicted Area for bradypus_variegatus

10 i Fraction of background predicted =
: Omission on training samples ®
Predicted omission =

0.9
0.8
0.7
@
<]
&] Done ¢ My Compuker

FIGURE 0.45: OUTPUT OF WORKFLOW DISPLAYED IN FIGURE 5.45. THE BROWSERDISPLAY ACTOR DISPLAYS THE HTML RESULTS
PAGE GENERATED BY THE MAXENT SOFTWARE.

17 Maxent website, http://www.cs.princeton.edu/~schapire/maxent/

140

Chapter 5 — Building Workflows with Existing Actors

The Kepler workflow passes arguments to the Maxent software. These arguments, which are specified by a
parameter (args), tell the software where to find the appropriate data files. In other words, if you run this
workflow on your system, you must either ensure that your local data files are in the directories specified
by the existing workflow arguments or change the arguments to point to the location of your source data
and match your existing configuration.

Before you can run a Kepler workflow to invoke Maxent, you must download and configure the software (if
it’s not already on your system). To set up your system:

1. Download and configure the Maxent software. Maxent can be freely downloaded from
http://www.cs.princeton.edu/~schapire/maxent/. Place the maxent.jar and the maxent.bat file (if
using Windows) in a directory called: C:/maxent

2. Download and unzip the sample data from the Maxent site:
http://www.cs.princeton.edu/~schapire/maxent/tutorial/tutorial-data.zip.

The sample data are contained in four directories:

layers: contains environmental data such as rainfall, etc.

samples: contains latitude/longitude occurrence location data for Bradypus variegatus,
a three-toed sloth.

outputs: an empty directory that will be used for result files generated by the
application.

swd: (not used in this tutorial)

” u

3. Move the “/layers,” “/samples” and “/outputs” directories so that the file paths are:

C:/maxtent/layers
C:/maxtent/samples

C:/maxtent/output

The Maxent software and the data files needed to run the Kepler workflow are now in place.

4. Open Maxent and perform an example run by specifying the sample and environmental layer data
as well as an output directory (Figure 5.47). Click RUN to execute. If you have trouble installing,
running, or using Maxent, please see the tutorials on the Maxent site.

141

http://www.cs.princeton.edu/~schapire/maxent/
http://www.cs.princeton.edu/~schapire/maxent/tutorial/tutorial-data.zip
http://www.cs.princeton.edu/~schapire/maxent/tutorial/tutorial.doc

Chapter 5 — Building Workflows with Existing Actors

L2 Maximum Entropy Species Distribution Modeling. Version 3.1.0 Q@

Samples : Emvironmental layers
File|Cimaxentisamplesibradypus csy Browse | QDirectoryfFile Cimaxentlayers Browse [
] e I o

Continuous ¥
v] dtr6190_ann Continuous -
| ecoreg Continuous -
v|frs6190_ann Continuous -
w| h_dem Continuous - I
| e teasti v| pre6190_ann Continuous -
v| pre6190_11 Continuous -
| pre6190_110 Continuous -
w| pre6190_14 Continuours -
¥ pre6190_I7 Comtinuous -
[¥]tmn6190_ann _(Continuous 1xi+]
- Select all Deselect all .

Linear features Create response curves |
Quadratic features Make pictures of predictions |

|| Product features Do jackknife to measure variable importance | |

| Threshold features Output format Logistic iv
Output file type .8 ’

L_| Hinge features

Output directory |C \marenfioutputs

| Auto features Proj rectoryfile

Run Settings Help

FIGURE 0.46: THE INTERFACE OF THE MAXENT SOFTWARE. SELECT SAMPLE AND LAYER DATA AS WELL AS AN OUTPUT DIRECTORY

TO PERFORM A SIMPLE RUN.

When you click Run, Maxent processes the selected sample and layer data and generates a number of result
files (including an HTML page of results), which are saved to the “C:/maxent/output” directory.

The Kepler workflow “recreates” all the steps just performed in the previous step: Kepler opens the Maxent
software, specifies sample and layer data, as well as an output directory, and then runs the software. To
create the workflow:

1.

142

Drag and drop an SDF Director to the Workflow canvas. Set the director’'s iterations
parameter to 1 to avoid calling the Maxent software multiple times.

Drag and drop a Parameter onto the Workflow canvas and specify the arguments that should be
passed to the Maxent software (in this case, the location of the sample and layer files as well as
the name of the output directory and the name of the variable that is categorical (ecoreg). Paths
are relative to the location of the invoked software). The parameter value is:

-e layers -s samples/bradypus.csv -o outputs -t ecoreg -r -a

Remember to enclose the parameter value in double quotes.

Chapter 5 — Building Workflows with Existing Actors

Rename the Parameter args. To rename the parameter, right-click its icon and select Customize
Name from the drop-down menu.

Drag and drop a ExternalExecution actor onto the workflow canvas and customize its parameters
(Figure 5.48):

a.

Specify the value of the command parameter. The command parameter contains a
command to execute, in this case:

java -mx512m -jar maxent.jar $args

This command runs Java, specifies Java arguments (-mx 51 2m specifies the megabytes of
memory available to the program and —jar specifies that java is to be run from a Java
Archive (JAR) file format), opens the Maxent software and passes it a string of arguments.
Sargs references the value of the args parameter defined on the Workflow
canvas. Note: arguments can also be included in a .bat file that is used as a command.

Set the working directory to c:/maxent/

Activate the waitForProcess parameter (if it is not already selected) by checking the
box beside it. The actor will not produce output (i.e., a '1' on the exitCode output port
if the execution is successful) until the Maxent software has completed processing. By
default, the actor outputs results as they are processed.

Edit parameters for External Execution

9
=/

FiringCountLimit: MOMNE
command:

direckory:

environment: {name =", value ="}

prependPlatformDependentshellCammand: il

throwExceptionOnkonZeraReturn:

waitForProcess:

class: ptalery . actor lib,Exec

semanticTypeno: urn:lsid:localhost:onta: 1: 1 #ExternalExecutionEnvironmentActor
semanticTypell: urn:lsid:localhost :onta:2: 12 UnixCommand

firingsPerIter ation: 1

java -mx512n -jar maxent.jar $args

Caormmik

Add] [Remowve] [Restnre Defaults] [Preferences] [Help] [Cancel

FIGURE 0.47: THE PARAMETERS OF THE EXTERNALEXECUTION ACTOR.

143

Chapter 5 — Building Workflows with Existing Actors

5. Drag and drop a Constant actor onto the Workflow canvas and connect it to the output port of
the CommandLineExec actor. Specify the location of the Maxent HTML result file as the value of
the Constant actor:

"C:/maxent/outputs/bradypus variegatus.html"

Note: The Constant actor will not output this location until it receives a trigger from the
ExternalExecution actor.

6. Dragand drop a BrowserDisplay actor onto the Workflow canvas and connect its inputURL port
to the output port of the Constant actor.

The workflow is now ready to run! After the Maxent software has executed, the results are saved to the
C:/maxent/output directory and the ExternalExecution actor outputs a token that alerts downstream
actors that it is done. A Constant actor specifies the location of the HTML file output by Maxent, and a
BrowserDisplay actor opens the file and displays it in the default browser.

The ExternalExecution actor is part of the standard Kepler library and can be found under “General
Purpose/Unix Command” in the component tree or via a search under the Components tab.

5.5.4 OPENING R

The workflow in Figure 5.50 uses the ExternalExecution actor to open the R application, with the "--no-
save option". The workflow passes a string "g () \n", which sends R a “quit” function, followed by a
newline ('\n'). This workflow can be found in Kepler's demos/getting-started directory (08-
CommandLine_2.xml).

144

Chapter 5 — Building Workflows with Existing Actors

;00 .08-CommandLine_2.Display
‘citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.

Type 'g) to quit R. m
> qf)
'y
SDF Director -
F 3 4| ®

& WorkingDir: property(“outreach.workflowdir”) + "demaos /getting-started”

Command

["R —-no-save”

External Execution

error
ewitode

Display

FIGURE 0.48: USING THE EXTERNALEXECUTION ACTOR TO OPEN THE R APPLICATION.

The command to execute, "R —no-save", which invokes the R application with the "—no-save" option,
is specified by a Constant actor named Command and passed to the ExternalExecution actor via the actor’s
command port. The input, "g () \n", is also specified by a Constant actor (Input).

The working directory—the place where the command will be executed—is specified via the actor’s
directory parameter. A workflow parameter, WorkingDir, specifies the name of the directory:

WorkingDir:property ("outreach.workflowdir")+"/demos/getting-started")

The ExternalExecution actor’s directory parameter references this value (SWorkingDir). Otherwise,
the actor’s parameters are left at their default settings (Figure 5.51).

145

Chapter 5 — Building Workflows with Existing Actors

Edit parameters for External Execution
H_? r/ firingCountLimit: MOME
cornmand:
directary: $horkingDir
environment: {name =", valus ="}
prependPlatformbependentshellCommand: F
throwExceptionOnhonZeroReturn;
waitForProcess:
class: ptalery . actor lib,Exec
semanticTypedn: urnlsidilocalhost:onto: 1 1#ExtermnalExecutionEnyironmentactar

semanticTypel1: urn:lsid:localhost:onto:2: 1 #UnixCommand

firingsPerIter ation: 1

Carnimik] [add] [Remowe] [Restnre Defaults] [Preferences] [Help] [Cancel]

FIGURE 0.49: THE PARAMETERS OF THE EXTERNALEXECUTION ACTOR, CUSTOMIZED FOR THE DEMOS/GETTING-STARTED/08-
COMMANDLINE_2.XML WORKFLOW.

5.6 ITERATING AND LOOPING WORKFLOWS

Creating a Kepler workflow to execute a task once is relatively easy: simply connect a series of actors and
run the workflow. Creating a Kepler workflow that repeats that task a number of times, perhaps with
different input data for each iteration, is somewhat more complicated.

In more conventional programming languages like Fortran, C, C++, or Java, iteration is accomplished using
a loop structure with an index that is incremented each time the body of the loop is executed. In a visual
programming environment like Kepler, there are several ways of carrying out iterative calculations, most
notably using:

e SDF iterations

e Ramp and Repeat actors
e Array data objects

o Higher-order composites
o Feedback loops

Some of these techniques are more appropriate for feedback loops—iterating workflows in which each
iteration depends on the output of the previous one. Others are more suited for iterating workflows in
which the output of each iteration is independent of the previous one (repeating a process a number of
times for different parameter values, for example). In this section, we will look more closely at each strategy
for iteration and when each is most appropriate.

5.6.1 ITERATING WITH THE SDF DIRECTOR

146

Chapter 5 — Building Workflows with Existing Actors

The simplest way to iterate a workflow is with the SDF Director’s iterations parameter (Figure 5.52).
By default, the iterations parameter is set to “AUTO”, which means that the director will execute the
workflow once. If the value is set to “0”, the director will iterate the workflow forever. Values greater than
zero specify the actual number of times the director should execute the entire workflow.

Edit parameters for SDF Director E
% 1

vectonzationFactor: 1
allowDisconnectedGraphs: O
allowR ateChanges: O
constrainBulfersizes:
period: 0.0
synchronize TaRealTime: O
timeResohation: 1E-10
class: ptolemy .domains. sdf . kernel SOFDireckor
semmanticType000: l..rn:lsini:bcahust:nntﬂ:l: 1 #Diector
semanticTypelll: urn:lsid:localhost:onto:2: 1 #Diector

[Cormrit] [Add] [Remove] [RESII:H’E Defaut':.] [Preferences] [Help } [Cancel]

FIGURE 0.50: THE SDF DIRECTOR’S ITERATIONS PARAMETER. SET THE VALUE TO THE NUMBER OF DESIRED ITERATIONS.

Setting the workflow iterations with the SDF iterations parameter is useful for cycling a workflow a
number of times, provided that each iteration is independent (i.e., that the value of a given iteration does
not depend on the output of any previous iterations). Workflows used to transform a series of values read
from a data file are usually well-suited for this type of iteration. In this case, the i terations parameter
can be set to the number of values in the data set. Choose an actor that can retrieve the desired input for
each iteration (e.g., a LineReader actor).

The portion of a workflow displayed in Figure 5.53 uses a LineReader actor to read a data table that contains
a Species name and the URL of a data file that contains information about locations in which the species
has been found (the complete workflow can be found under
demos/unsupported/ENM/GARP_MultipleSpecies-V.xml). The LineReader actor outputs one line of data
each time the workflow iterates.

147

Chapter 5 — Building Workflows with Existing Actors

Line Reader

String Splitter2
Species_MName

LocationFilename

LocationFilename2 Location_Filename

FIGURE 0.51: A SIMPLE WORKFLOW THAT COULD USE SDF ITERATIONS PARAMETER TO CONTROL THE NUMBER OF WORKFLOW
ITERATIONS.

The workflow uses a sample dataset that contains two records (KeplerData/workflows/module/outreach-
2.X.Y/data/garp/speciesList.txt). The original data looks like this:

Mephitis,digir_data_mephitis.dat
Zapus,digir_data_zapus.dat

Each time the workflow iterates, the LineReader actor reads and outputs one line of data, and the workflow
outputs the corresponding species name and data file.

5.6.2 USING RAMP AND REPEAT ACTORS

The standard Kepler component library includes several actors that can be useful when iterating a workflow
or a portion of a workflow: the Ramp actor is used much like a “for loop”, which executes a task a set
number of times; and the Repeat actor can be used to repeatedly output a specified value. The Ramp actor
is particularly useful when iterating a PN-directed workflow, as there is no way to set the number of
iterations with a Director parameter.

The Ramp actor controls iterations via its parameters: firingCountLimit, init and step (Figure
5.53).The firingCountLimit parameter sets the number of times the actor should iterate. The actor
keeps track of the iterations, incrementing its index every time an iteration is performed. The initial value
of the index, as well as the amount that the index is incremented is set with the int parameter and the
step parameter, respectively. Each time the actor fires, it outputs the value of its index (an integer).

148

Chapter 5 — Building Workflows with Existing Actors

-
Edit parameters for Ramp
\g) FiringCauntLimit: 1]

init: i}

step: 1

class: prolemy ., actor, lib. Ramp

semanticTypedo: urn:lsid:localhost :onko: 1: 1 #TkerativeMathOper ationdctor

semanbicTypel11: urn:lsid:localhost onko; 2: 1 #TkerativeOperation

semantic Type222: urn:lsid:localhost:onko: 2: 1 4 arkFlowInput

Zarmimik l ’ Add] ’ Remove] ’Restnre Defaults] [Preferences] [Help] ’ Zancel

FIGURE 0.52: THE PARAMETERS OF THE RAMP ACTOR, WHICH CAN BE USED LIKE A “FOR LOOP” IN A WORKFLOW.

The Ramp actor’s output can be used as a counter (increasing, or decreasing if the step is set to a negative
integer). The output is also commonly used to generate unique values as a workflow iterates. For example,
the Ramp actor’s index value can be used to generate a unique file name for each iteration (e.g., “filel”,
“file2”, etc.) (Figure 5.54).

[04 HelloWorld Display /o0&
e Tooks Help -
filel B
filmZ
filed
Tilaed
files

filed
’

SDF Director filed

Exprassion

| Edit parameters for Ramp ﬁ'
“?JJ FirinepCounkLim: |
L 4]
e 1
[+ pholesy, actor, Bb. Ramp
Sernaniic Typelon: ;b oo ek ot 1 1 Ther ativvailathOpsr atiorulcton
seenantic Typel 11 b oot sk et 2 | Ther ative O ation
semantic Typedad: b Bt ot onk s 2 L tioe K kow gt
FiringePer heration: 1
[[comme | [asa | [remowe | [Restorsetmts| [prefeences | [ree | [cancel

FIGURE 0.53: THE RAMP ACTOR USED WITH AN EXPRESSION ACTOR TO GENERATE A UNIQUE FILE NAME EACH TIME THE
WORKFLOW ITERATES. THE WINDOW IN THE UPPER-RIGHT DISPLAYS THE WORKFLOW OUTPUT (THE TEN UNIQUE NAMES
GENERATED BY THE WORKFLOW).

149

Chapter 5 — Building Workflows with Existing Actors

The simple workflow in Figure 5.54 generates a unique file name each time the workflow iterates (ten times,
as specified by the SDF Director’s iteration parameter). Each time the workflow iterates, the Ramp actor
increments its index by the value of its step parameter and outputs the new value. Note that an input port
named count has been added to the Expression actor. The Expression actor references the value passed to
this port with the specified expression ("file"+count).

One common problem with iterating a workflow multiple times appears when only one “branch” of a multi-
branch workflow changes with each iteration. For example, an actor in an iterated workflow may require
two inputs: one input that changes with every iteration (a counter or a value to process), and one that
remains constant. If the constant value is a simple integer or string, then repeatedly generating that value
adds little overhead to the workflow; however, if the constant value requires time-intensive processing to
generate, then repeating the calculation each time the workflow iterates will significantly increase the
workflow processing time. Use a Repeat actor, which reads an input token and duplicates it a specified
number of times, to avoid this type of redundant calculation.

For example, the workflow fragment in Figure 5.55 uses two Repeat actors to duplicate the inputs that the
Calculate Omission/Commission actor receives. In this case, both inputs remain constant because the
Omission/Commission calculation is probabilistic and the Calculate Omission/Commission actor is designed
to repeat a calculation on the same set of inputs.

Mirar Dirgciory Mama

Wke Direciory

* Do Dira coory= "™+ Sindscin s Mamsa b‘_ﬂ
Enet

1~ Erndaymriat
DaaDireciony="FCC 1 .dd™

Croain OmissionComméssion Table

Cormmeon_Omimnon_llmcor

longiuide_latuda_tabia Caleatm ComwsHull Mk

[P iyt

Figure 0.54: A fragment of workflow that uses Repeat actors to avoid redundant calculations. The full
workflow can be found at demos/unsupported/ENM/GARP_SingleSpecies_BestRuleset-IV.xml.

The numberOfTimes parameter for both Repeat actors is set to the number of workflow iterations
(Figure 5.56). In this case, the value of the parameter refers to the value of a parameter
(numIterations) specified on the Workflow canvas.

150

Chapter 5 — Building Workflows with Existing Actors

Edit parameters for Repeat

9 ,

1.(/ numberoFTimes: numlter ations|
blacksize: 1
class: pholerny. domains. sdf lib, Repeat
semantic Type000: urn:lsid:lacalhost:onko: 1: 1 #Conkralckar
semanticTypel11: urn:lsid:localhost onko: 2: 1 #WarkFlowContral

Commit l l Add] l Remaove] ’Restore Defaults] [Preferences] [Help] l Cancel

FIGURE 0.55: THE PARAMETERS OF THE REPEAT ACTOR.

5.6.3 USING ARRAYS INSTEAD OF ITERATING

Creating a Kepler workflow that repeats a task a number of times with different input data each time, does
not always require iterations. Rather than creating a loop to repeat a calculation for a series of values, the
values can all be passed and processed in a single workflow iteration using data arrays. Both the Expression
actor and the R actors, which are used for statistical computing, are designed to process data arrays, making
workflows that use these actors good candidates for this type of solution.

For example, in Kepler expressions and R scripts, the '+' operator works not only with single numbers but
also arrays (aka “vectors”). The workflow in Figure 5.57 uses an Expression actor to read an array of values,
add 10 to each value, and output the result.

151

Chapter 5 — Building Workflows with Existing Actors

SDF Director

Constant Expression

TEET

SumOfvalues

Array To Sequence

input+10

K Values Plus 10 E]@-\

File ' Toals Help

11
12
13
14
15

k|

= '
FIGURE 0.56: PASSING AN ARRAY OF VALUES TO AN EXPRESSION ACTOR TO PROCESS IN A SINGLE WORKFLOW ITERATION.

The Expression actor in Figure 5.57 receives an array through a user-defined port called input, which is
referenced by the Kepler expression input+10. The results are output as an array, which is dismantled to
a sequence of values and then displayed by the Display actor.

The eml-simple-plot-R workflow (Figure 5.58), included with the Kepler distribution
(KeplerData/workflows/module/r-2.X.Y/demos/R/eml-simple-plot-R.xml) demonstrates how arrays can be
used with an RExpression actor. The workflow uses two SequenceToArray actors to transform sequences of
data (for relative humidity and barometric pressure) that are stored on the EarthGrid in the dataset Datos
Meteorologicos. These arrays are passed to an RExpression actor, which plots the data and outputs a graph
of the information.

152

Chapter 5 — Building Workflows with Existing Actors

SDF Director

Datos eorologicos

Sequence To Array

RExpression

Display

— - "
T Kirstent ey =o&E
B0 pooels, 5-bil, 275K
e
B Todks wo = o o O 0D O O ORI SO0
% amtwd('C:/Documanta and Sethinga/Kicatens.Kepleci') L] i
* prg(filenmms = *Kicacenl.png’,widch = 400, height = 400, pot - @ <
* BN <- ciP9, 99, P9, P9, §9, PO, 99, 99, PE, P, @3, VI, A,
* BARD <- ci(P53.d, 953.0, 954.0, §54.3, 954.5, 954.7, 954.0, 9 2 o
5 mummaryiRH) 2 s
Min. lac Gu, Median Maan drd Qu, Max. o =
34,00 01,50 §9.00 07,00 §F.00 §F.00 e 5
+ mummaryiBARTA
Min, lagc Qu, HNadian Mean dcd Qu, Hax, o o
il : A g =1 o
50.2 9520 ©53.5 @53, @54.4 9555 e 24
= ploc(BARG, RN
=
|
L]
[=38 o8
= L o o
)
o
&
IL T T T T
950 951 952 953 054 a55
EARD

FIGURE 0.57: PASSING DATA ARRAYS TO AN REXPRESSION ACTOR INSTEAD OF ITERATING THE ACTOR MULTIPLE TIMES FOR

INDIVIDUAL VALUES.

NOTE: To run this workflow, R (a language and environment for statistical computing) must be installed on

the computer running the Kepler application.

5.6.4 ITERATING WITH HIGHER-ORDER COMPOSITES

153

Chapter 5 — Building Workflows with Existing Actors

Higher-order Composite actors, which are actors that operate on the structure of a model rather than on
data,’® provide a convenient mechanism for iterating an entire sub-workflow. Of particular use is the higher-
order composite actor called RunCompositeActor, which executes a contained workflow as if it were a top-
level workflow each time it fires. The actor is well suited for use in workflows that repeatedly run other

workflows with varying parameter values (Figure 5.59).

o Species_List_Path: propery("MEPLER")+"SbAesidata/gamp™

@ Species_List “speciesLisi bt

o MnimumSpecimenCount: 10

 Higer-order composite:

(B £k Vew Workfkw Look Wndow Heb
L ReEFQP IS =y o0 e
(Components Data Outline ;: SOF Durvcto ® Species_Nane: ephas®

Search Components e Locaton_Flesane Tocaton Sar

Q O (Csearch)

s ﬂdnnc...\ (sources) » Datallwwciony propery{ WEPL ER) ibAes kst par”

All Ontologies and Folders ﬂ_

» [Components
» B Projects

» [Statisties
Actors-2_0
Directors-2_0
Opendap-2_0
R-2_0

yF v werw

0 results found. <

K Ille:_f(Mepler 20070716/ demos/EHM/GAR. © _pecies-V xantaSingle Species GARP Model -y _-E_'l

FIGURE 0.58: THE GARP-MULTIPLESPECIES-V.XML WORKFLOW USES A HIGHER-ORDER COMPOSITE ACTOR TO ITERATE A
COMPLETE WORKFLOW.

The higher-order composite actor in Figure 5.59, Single Species GARP Model, runs the contained workflow

each time it fires. In this case, the contained workflow is used to create an environmental niche mode
a single species; the top-level workflow iterates through a list of multiple species, and invokes
RunCompositeActor to calculate the niche model for each one.

| for
the

The initial inputs of a workflow contained in a RunCompositeActor are specified as parameters or via port-

parameters. The RunCompositeActor in the example uses two port-parameters: Species Name

18 Lee, Edward A. Steve Neuendorffer, Using Vergil
http://ptolemy.berkeley.edu/ptolemyll/ptll6.0/ptl16.0.2/doc/design/usingVergil/usingVergilad.htm

154

and

Chapter 5 — Building Workflows with Existing Actors

Location Filename. The values of the parameters (mephitis and location.dat) are used for the first
workflow iteration. Subsequent iterations use values passed to the RunCompositeActor by the top-level
workflow via ports (i.e., additional species names and associated data to be processed).

5.6.5 CREATING FEEDBACK LOOPS

From integrating differential equations, to modeling signal amplification or how global warming and the
concentration of greenhouse gases are related, feedback loops are a common workflow structure. A
feedback loop consists of iterations that rely on the value of previous iterations. The simple example in
Figure 5.60 shows a workflow that adds one to the value of each previous workflow iteration and outputs
the new sum, for example. A relation is used to branch the looped output so that the sums can be displayed
as well as cycled back to the input of the Add or Subtract actor.

- =

K| . .Display [Z]@
Display Fil= Tools Help
SDF Director & ';"A'
1 |
2
3
E!
5
1 lls
&
=]
Add or Subtract g Il

SampleDeld

=

FIGURE 0.59: A SIMPLE FEEDBACK LOOP USED TO ADD ONE TO THE VALUE OF THE PREVIOUS ITERATION.

Note that the workflow in Figure 5.60 uses a SampleDelay actor, which is required when constructing a
feedback loop that uses an SDF director. The SampleDelay actor gets the iteration loop “started”. Because
the input of the feedback loop depends on its output, the loop will deadlock on the first iteration because
there is not yet any output. The SampleDelay actor breaks this deadlock by providing some initial values
(specified with the SampleDelay’s initialOutputs parameter). On subsequent loop iterations, the
actor simply passes along its inputs.

Feedback loops under different directors require different actors. Under a PN Director, for example, a Stop
actor is required to stop feedback loops, as the director has no iteration parameter (see
SKepler/demos/SEEK/Discretelogistics_ PN_Director.xml for an example).

155

Chapter 5 — Building Workflows with Existing Actors

Probably the most straightforward example of a feedback loop is the integration of a differential equation
using the Continuous Director (Figure 5.61).

Continuous Director

TimedPlotter

initial population e initPop: 1.0

growth factor er: 2.6

carrying capacity e k: 100

Integrator

Logistic Model

H n*r*(1 - n/k)

FIGURE 0.60: A WORKFLOW THAT USES A FEEDBACK LOOP TO INTEGRATE A DIFFERENTIAL EQUATION. THIS WORKFLOW CAN BE
FOUND UNDER DEMOS/SEEK/LOGISTICSMODEL_CT_DIRECTOR.XML.

The workflow in Figure 5.61 solves the logistics equation, which is commonly used to describe resource-
limited population growth. In this model, n (t) is the population as a function of time and the rate of
population change is given by dn/dt = n*r* (1-n/k).The integrand (the right side of the equation) is
put into an Expression actor, which is connected to an Integrator actor. The output of the Integrator is
connected back to the input of the Expression actor, creating a feedback loop and providing the current
value of n.

In this example, the integrand is evaluated at some point in time and used to estimate the population at a
slightly later time (the desired time interval is specified by the Continuous Director parameters). The
estimated value is sent back to the Expression actor to evaluate again, and the loop continues to iterate
using the output of the Integrator actor in each iteration. For examples of this workflow executed under an
SDF and a PN director, see outreach/workflows/demos/SEEK/DiscreteLogistics_SDF_Director.xml and
outreach/workflows/demos/SEEK/Discretelogistics_PN_Director.xml.

5.7 DOCUMENTING WORKFLOWS

Whether a workflow is to be shared with the public or used by only a single researcher, documentation is
an important part of its development. Kepler has a number of documentation features that facilitate the
process of annotating workflows. In general, we recommend that the workflow be annotated on the
Workflow canvas and that in-depth documentation be added to the workflow documentation screen, which
is accessed (both to read and to customize) via the workflow’s right-click menu.

156

Chapter 5 — Building Workflows with Existing Actors

Documentation should include the scientific problem that the workflow solves, how the problem is solved
using the Kepler system, and the status of the workflow (if it is finalized, or what future work is planned).
Documentation should also provide instructions for running the workflow, offering information about the
type and format of data, the number of iterations to run, and any other information that is needed to
understand and use the workflow.

5.7.1 ANNOTATION ACTORS

The Annotation actor, which is included in the standard Kepler component library, provides an easy
mechanism for adding notes to the Workflow canvas. Simply drag and drop the actor to the Workflow
canvas and double-click the default annotation (“Double click to edit text”) to open the parameters for
customization. Any text added to the Annotation actor’s text parameter will be rendered on the Workflow
canvas. The other parameters allow basic formatting: size, color, and style (bold or italic).

A workflow can use any number of Annotation actors to document everything from an overview of the
workflow to the function of an individual actor to the value of a parameter or format of a data set.

5.7.2 DOCUMENTATION MENU

Right-click the Workflow canvas and select Documentation from the drop-down menu to begin using the
workflow documentation screens. To add instructions to a workflow documentation screen, select
Documentation > Customization from the menu. A dialog window with fields for a description, author,
version, and date allow users to input instructional text. Click Commit to save the instructions and close the
customization window. The entered content will appear the next time the documentation window is
displayed.

Documentation content can include links to external web pages (which will open in a Kepler viewing
window) and HTML formatting (, <tt>, , etc). XML-reserved characters (e.g., '>', '&', """, etc) must be
escaped. The most common reserved characters and their entity replacement are listed in Table 5.3.

XML-reserved Character Replace with:
& &
< <
> >
" "
! '

TABLE 0.2: COMMON XML-RESERVED CHARACTERS.

To delete the content of a documentation screen, select Documentation > Remove Customization. Note
that this action cannot be undone with the “Undo” Menu bar item.

5.8 DEBUGGING WORKFLOWS

157

Chapter 5 — Building Workflows with Existing Actors

Although Kepler eliminates much of the need to code by providing a library of actors and a visual way to
link them, you may encounter unexpected problems as you build, test, and execute your own workflows.
However, Kepler provides a number of tools that can help you see how your workflow is executing and get
to the bottom of errors quickly.

5.8.1 ANIMATING WORKFLOWS

Select Animate at Runtime from the Tools menu to follow the execution of the workflow visually on the
Workflow canvas. As each actor is executed, it will be highlighted with a red outline (Figure 5.62). The actor
will remain highlighted for the number of milliseconds specified when the menu item is selected (e.g.,
1000).

To turn off animation, simply select the “Animate at Runtime” menu item again. Note that the “Animate at
Runtime” command only works correctly with workflows that use the SDF Director or DDF Director.

)

K file: /C: Mkepler 2007071 6/ demos/getting-starte d/00-StatisticalSummary. xml \
file Edt Yiew Workflow Jools Window Help

CeeaRQPli@®mydioc e

; (Components Data Outline | »

E%]

>

Search Components

E
a \ (e) SDF Director

I/ Advanc... \ (Sources \ Cance
| S S

| All Ontologies and Folders 2

Constant

l> (12345678910}

> [components
» [projects
» [statistics

b [Actors-2_0
| » Directors-2_0
») Opendap-2_0
» [CIR-20
This is a simple example of a scientific workflow thal calculates
several statistical summary parameters, The "Constant’
| expression on the left is an array of numbers (1 through 10)
(The brackets surrounding the list is the expression used 1o indicate
an array.) A customized RExpression actor called 'SummaryStatistics’
| is connected to this source. Qutput ports are connected to ‘Display’
| aclors which show the Mean, Standard Deviation, and Variance of the
‘ numbers in the input array.
| | NOTE: The R system (www.r-project.org) must be installed for this
510 resubs found, workflow to operate properly.
<
I T N i Samantha Katz, Dan Hggins
-5 December 19, 2006
w

FIGURE 0.61: SELECT ANIMATE WORKFLOW TO HIGHLIGHT THE CURRENTLY EXECUTING ACTOR IN RED WHEN THE WORKFLOW IS
RUN.

5.8.2 EXCEPTIONS

158

Chapter 5 — Building Workflows with Existing Actors

When a workflow is run and something is amiss, Kepler often “throws an exception.” An exception is an
event that disrupts the normal flow of a program’s instructions while the program is being executed.*® The
exception appears as an error screen that contains information about the problem and an option to either
Dismiss or Display Stack Trace (Figure 5.63).

[K file: /C: Mkepler 2007071 6/ demos/getting-starte d/00-StatisticalSummary. xml

| Bl Edt Wiew Workflow ook Window teb

eaEAPHOS =N e

51

(Components Data Outline | »

Search Components
E
a _ (e) SDF Director

Advanc..) [Sources | Ca
| S S

g Caresian

| All Ontologies and Folders 2

Constant

l> (12345678910}

» [J Components
» [projects

» [statistics

b [Actors-2_0

» Directors-2_0
» [Opendap-2_0
» R-2_0

I

xception Ea
8 Type conflcts ocourred in J00-StateticslSummany on the following inequalities:

(proleny. actor. TypedICPoet {.00-StatisticalSummarny. Summany Statistics.graphicsFlsName)}, string) <= (ptolemy.actoe. TypediOfort {.00-StatisticalSummarny . Complex
To Cartesian input}, compiex)

j Dusiriss] | Display Stack Tracs |

numbers in the iNpul array

NOTE: The R system (www.r-project.org) must be installed for this

|Jo resuks found. . workflow to operate properly.
| <
i i Samantha Katz, Dan Hggins
-5 December 19, 2006
i

et ——— S —— | v

FIGURE 0.62: AN EXCEPTION MESSAGE “THROWN” WHEN THE WORKFLOW ENCOUNTERS TROUBLE. ANIMATE AT RUNTIME IS
CURRENTLY ACTIVE, SO THE PORTION OF THE WORKFLOW EXPERIENCING THE TROUBLE IS HIGHLIGHTED.

Click the Dismiss button to close the exception window and allow workflow execution to continue (if
possible). The stack trace provides information about the workflow’s execution history and lists the names
of the Java classes and methods that led up to the error.

5.8.3 CHECKING SYSTEM SETTINGS

¥ Sun Microsystems, The Java Tutorials,
http://java.sun.com/docs/books/tutorial/essential/exceptions/definition.html

159

Chapter 5 — Building Workflows with Existing Actors

Select Check System Settings from the Tools menu to open a read-only display of the Kepler settings (Figure
5.64). System settings include, among other things, information about the current version of Java installed,
the location of the Kepler installation, and the current operating system and home directory.

Kl file:/C:/kepler20070716/demos/getting-starte d/00-StatisticalSummary. xml E] @
Eile Wiew workFlows Tools Window Help

Memorw: S99736K Free: 3I7E12ZHE (38%) Max: S5Z0ZE5cH (19%)

Request Garbage Collection

KEPLER = C:\keplerz0070716% . =~
EEFLER_DOCS = Cihkeplerz200707168Y
awt.toolkit = sun.avwt.windows.WToolkit

file.encoding = CplZs2

file.encoding.pkyg = sun.io

file.separator = %

Java.avt.graphicseny = sun.awt.Win3ZGraphicsEnvironment
Java.awt.printerjok = sun.awt.windows.WUPrinterJok

java.class.path = $KEP;./configs;./lib;./lik/images; . /build/kepler.jar;./build/kepler—icons. jar; ./ 1i
java.class.version = 50.0

java.endorsed.dirs = ./lib/Jjar/base-jars/apache

jJava.ext.dirs = C:i:%Program FileshJdawahjrel.s.0% likbhext:C: TWINDOWSY Sun' Java' libhext

Java.home = C:WProgram Files\Jawva'jrel.6.0

java.io.tmpdir = C:4YDOCUME~1Y Kirstenh LOCALS~1Y Temph

java.library.path = ./1lib

Java.runtime.name = Java (TM) SE Runtime Environment

Jarva.runtime.wversion = 1.6.0-b105

Java.specification. newme = Joava Platform API Specification

java.specification.vendor = 3un Microsvystems Inc.

Java.specification.wversion = 1.6 R
< ¥

FIGURE 0.63: KEPLER SYSTEM SETTINGS.

5.8.4 LISTENING TO THE DIRECTOR

Select Listen to Director from the Tools menu to open a viewing window that follows all of the director’s
activities as the workflow is run (Figure 5.65). Each time the director invokes a method or iterates an actor,
the action is logged and displayed in the listening window.

160

Chapter 5 — Building Workflows with Existing Actors

K| .00-StatisticalSummary.SDF Director E]@
File Help

O0-3tatistical3wmmary.3DF Director Preinitiali=ing >
Invoking preinitiali=ze () : O0-3tatisticallSummary. Constant

Inwvoking preinitialize () : O0-5tatisticaldummarv. Summmmar yotatistics

Inwvoking preinitialize () : O0-5tatisticaldummary. Standard Dewviation

Inwvoking preinitialize () : O0-5tatisticaldummary.Variance

O0-%tatisticaliuwmmary.3DF Director Finished preinitiali=ze() .

Computing schedule

Normali=ed Firing Counts:

{ptolemy.actor. lib.Const {.00-3tatisticaldwmary.Constant}=1, ptolemy.actor.li
Schedule i=:

Execute Schedule{

Fire Actor ptolemy.actor.lib.Const {.00-StatisticalSunmmwary.Constant}

Fire Actor org.ecoinformatics.sesk.R.RExpression {.00-3tatisticaliuwmnar 7. Surns
Fire Actor ptolemy.actor.lib.gui.Display {.00-Statisticaliuwmmwary.Variance}
Fire Actor ptolemy.actor.lib.gui.Display {.00-StatisticalSunmmwary.Standard Dewvi
i

Adding firingsPerlteration parameter to Constant with walue 1

Adding firingsPerlteration parameter to Variance with walue 1

Adding firingsPerlteration parameter to Summarystatistics with wvalue 1 g
< >

FIGURE 0.64: LISTENING TO THE DIRECTOR.

5.9 SAVING AND SHARING WORKFLOWS

Workflow files can be saved and shared in a number of ways: they can be saved as KAR or XML files and
posted to a Web server, they can be emailed or saved to a portable storage medium, and then opened with
the File > Open File menu option; or, in instances where a workflow has been saved as a composite actor
and all of the workflow components are contained in the local Kepler library, they can be instantiated via
the Tools > Instantiate Component menu option.

5.9.1 SAVING AND SHARING YOUR WORKFLOWS AS KAR OR XML FILES

Workflows can be saved and shared as KAR or XML files in a few easy steps:

1. Save the workflow by selecting Save, or Export (for XML) from the File menu. Workflows sent via
email can be opened via the File > Open menu item.

2. Ifthe workflow contains actors that are not included in Kepler’s standard library (or that users may
not have on their local machines), those actors must be shared as well. To share actors either:

a. Upload the actors to the Kepler Repository. The Kepler Repository allows users to both
upload and download workflow components to a centralized server where they can be
searched and re-used. For more information about uploading actors to the repository,
see Section 5.34.

b. Save the actors as KAR files, which can be emailed and imported. See Section 5.3.6 for
more information.

161

Chapter 5 — Building Workflows with Existing Actors

Users interested in sharing the workflow must download the required actors from the repository
(or import the emailed KAR files into Kepler) in order for the workflow to load properly. To search
for and download actors from the repository, select the remote repositories you would like to
search from the Tools > Preferences > Components tab, and then type in the name of the required
component in the Search field. The component will automatically download when a user drags and
drops the search result onto the Workflow canvas. If the result is a KAR, you may right-click on it
and select Download, and it will be downloaded into your local Save repository (MyWorkflows/ by
default). For more information about opening a shared workflow, please see Section 5.9.2.

5.9.2 OPENING AND RUNNING A SHARED XML WORKFLOW

If a shared workflow contains only standard Kepler components (ones distributed in the standard Kepler
library), you can open and begin to use a shared workflow immediately. If, however, a workflow contains
components specifically designed for that workflow—or that exist in the Kepler Repository, but are not
included in the standard library—then those components will have to be added to the local Kepler library
before the workflow can be run.

A well-documented workflow will contain information about the names and locations of any non-standard
components required. In a perfect world, all workflows are well documented; however, there may be times
when one must figure out what additional components are necessary, most likely by attempting to run the
workflow, and then studying the error messages (Figure 5.66)

Error

Error encounkesed.in:

@ =entiby name="Hello\Warld" cfys=="edu.tutorial kirsten.HelloWorld" =

Rk find class: ed al.kirsten, HelloWorld

Because:

Could not Find 'eduftutorialfkirsten/Hellowworld. xml' or ‘eduftutorialfkirskenHelloW orld. moml* using base

‘file: ! fkepler-1.0.0beta3fdemos/HelloWWorldWorkflow . xml': in File:/C: fkepler-1.0.0bet a3 demasHelloW arldWorkflow.xml at line 83 and column &0
Caused by

com.micrastar.xml, XmiException: -- Cikepler-1.0.0beta3\demosieduttutorialikirsteniHelloWorld. xml {The syskem cannot find the path specified)
-- XML file ot Found relative bo classpath.

-- Cilkepler-1.0.0betad; eduftutorialfkirstenHelloWorld, xml

eduitutorialikirsteniHellowiorld. xml {The system cannot find the path specified)

in file: /i fkepler-1.0.0betaZidemaos/HelloWorldwarkflow. xml at line 3 and column &0

I Skip element] [Skip remaining errors] [Display stack trace] [Cancel

FIGURE 0.65: AN ERROR MESSAGE THAT INDICATES THAT A WORKFLOW COMPONENT IS NOT AVAILABLE.

The error message in Figure 5.66 indicates that Kepler cannot find the HelloWorld entity. The workflow that
contains this actor will not run properly until the component is located and made available to the workflow.
Although the HelloWorld workflow can be opened without the missing component, the workflow will not
be drawn correctly and will not run properly (Figure 5.67).

162

Chapter 5 — Building Workflows with Existing Actors

SDE Em:dcw

S0F Direcior
- 3 Desplay ®
Display
\
Helloworld workflow HelloWorld workflow with

missing actor

FIGURE 0.66: WORKFLOWS THAT CONTAIN MISSING ACTORS WILL NOT OPEN CORRECTLY ON THE WORKFLOW CANVAS.

Missing components can be found in the Kepler Repository. Click the “Sources” button and click the
checkbox in the “search” column next to “library.kepler-project.org.” If Kepler finds the actor in the
repository, the actor will appear in the actor tree, where it can be dragged and dropped to the Workflow
canvas (Figure 5.68).

IR EIRITOE JEIPIPERIKS

[Components Data 0O ~ ~ ~

Preferences

Search Components 4 — e mll
k|

|

|

a | The Component Library is built using KAR files found in the following local [

5 directories. Adding or removing local directories will rebuild the component
(ﬁ | ibrary.

By selecting the search box next to remote repositories, components from the

" All Ontologies and Folders remote repositories will be included when searching components. .
v

> @ Components

» [3 Projects f Add \ (Remove \ (Use Defaults \ (Build \

» [F statistics

> Workflows Search Save Type Mame Source

> Actors-2_0 E‘ [} local Actors-2.0 fUsers/staggs/KeplerData/modules/acte

> Directors-2_0 [T 1 local Directors-2.0 | [Users/staggs/KeplerData/modules /dire

> Opendap-2_0

> sz 0 p-e E‘ [l local Opendap-2.0 /Users/staggs/KeplerData/modules/ope
™ O local R-2.0 fUsers /staggs/KeplerData/modules/r-2
™ ™ local Workflows fUsers /staggs/KeplerData /workflows
m m

remote localRepository localhost:8080

“ m keplerReposit... |library.kepler-project.org

[} remote keplerDevRe... kepler-dev.nceas.ucsb.edu
[} 1 remote indusRepository indus.msi.ucsb.edu
0 results found. |
av -
¢ | 4 >
([Ok) [Cancel]
P
e |

163

Chapter 5 — Building Workflows with Existing Actors

FIGURE 0.67: LOCATING MISSING COMPONENTS IN THE KEPLER REPOSITORY.

164

Chapter 6 — Working with Data Sets

6 WORKING WITH DATA SETS

Kepler workflows can read, parse, and manipulate data that is stored in a variety of formats. From tabular
data, such as local Excel tables saved as comma-delimited text files, to data contained in remote databases,
to streaming sensor data, Kepler can incorporate a wide assortment of information using actors. For
example, actors can read data files, open database connections and access stored information, and
download and output data stored on the EarthGrid.

The EarthGrid, which is accessible from the Data tab, provides a convenient mechanism for discovering,
accessing, and sharing data. The EarthGrid allows scientists access to ecological, biodiversity and
environmental data and analytic resources (such as data, metadata, analytic workflows, and processors)
networked at different sites and at different organizations via the Internet. Currently, the EarthGrid consists
of the KNB Metacat and KU Digir databases, which can be searched individually or in combination via the
search form at the top of the Data tab.

Metadata, such as EML (Ecological Metadata Language) or ADN (ADEPT/DLESE/NASA), describes data so
that they can be easily understood by both scientists and actors. Actors use the metadata to automatically
configure themselves with appropriate data output ports. Although not every data set contains metadata,
the benefits of working with metadata-described data sets quickly makes the utility apparent. See Sections
6.2 and 6.3 for examples of a biomass workflow constructed with EML data and without EML.

How data are incorporated into a workflow depends to a large extent on how the data are structured and
stored. Are the data locally available? Are the data described by metadata? Stored in a database? Formatted
as a table? In each scenario, different actors can be combined to access the data and prepare it for use.

6.1 DATA ACTORS

The standard Kepler component library contains a number of actors used to read, write, and translate data
for use in workflows. Whether data sets are stored on a local machine, the EarthGrid, or another remote
server, actors can be used to access and output the information. Actors used to read and write data are
easily recognized by the peach-colored file or drum icon that represents them on the Workflow canvas.
Other useful data actors are noted in the table below (Table 6.1).

Data/File Data/File Access actors do not have a persistent family symbol. Actors belonging to
Access this family read, write, and query data.
Data Access | Data Access Support actors are generally used to open and close
Support database connections, or to send commands to a data source.

Actors: Close Database Connection, Open Database Connection,
SRB Connect, SRB Create Query Conditions, SRB Create Query
Interface, SRB Get Physical Location, SRB Proxy Commands,
PhyloDataReader

165

Chapter 6 — Working with Data Sets

Data Query

Data Query actors query data sources or metadata.

Actors: Database Query, SRB Query Metadata, Transitive Closure
Database Query

or

L1

Reads/Gets/
Sources

Reads/Gets/Sources actors read data into a Kepler workflow: files,
images, or data sets.

Actors: Binary File Reader, Expression Reader, File Reader, File To
Array Converter, Image Reader, Line Reader, Simple File Reader,
NexusFileReader,

EML2Data set, Orb Image Source, Orb Packet Object Source, SRB
Get Metadata, SRB SGet, SRB Stream Get, DataTurbine

Read/Write

Read/Write actors read and write data from host servers.
Actors: FTP Client, Ecogrid Writer

/
/.
Z

Write/Put/
Sink

Write/Put/Sink actors write data to output files or sinks, which store
data for future use.

Actors: Binary File Writer, File Writer, Line Writer, Text File Writer,
Orb Waveform Sink, Orb Waveform Source

Data Processing

Data Processing actors process data—converting data from one
format to another or extracting specified values from a data set.

Actors: ClimateChangeFileProcessor, ClimateFileProcessor, SProxy,
Experiment Monitor, Xpath Processor, XSLT Processor, Interpolator,
Lookup Table, Record Assembler, Record Disassembler,
RecordUpdater, Vector Assembler, Vector Disassembler, Polygon
Diagrams Dataset, Polygon Diagrams Transition, PAUPInfer,
RecIDCM3, TreeDecomposer, Treelmprover, TreeMerger,
TreeParser

TABLE 6.1: USEFUL DATA ACTORS

6.2 USING TABULAR DATA SETS WITH METADATA

Although one might guess that the easiest way to incorporate data into a workflow is via a simple tab-
delimited text file, the most convenient way to access data is actually with data sets described by metadata,
or data that describes the data set.

Ecological Metadata Language (EML) is a broad metadata specification that was originally developed by the
ecology community, but can be easily used by other domains. It is based on prior work done by the
Ecological Society of America and associated efforts (Michener et al., 1997, Ecological Applications). EML is

166

Chapter 6 — Working with Data Sets

implemented as a series of XML document types that can be used in a modular and extensible manner to
document data. Each EML module is designed to describe one logical part of the total metadata that should
be included with any data set.?

Other types of metadata commonly used on the EarthGrid are ADN (ADEPT/DLESE/NASA) and the Darwin
Core. The purpose of the ADN metadata framework is to describe resources typically used in learning
environments (e.g., classroom activities, lesson plans, modules, visualizations, some data sets) for discovery
by the Earth system education community.?!

The Darwin Core (sometimes abbreviated as DwC) is a standard designed to facilitate the exchange of
information about the existence of specimens in collections and the geographic location where they were
collected. Extensions to the Darwin Core provide a mechanism to share additional information, which may
be discipline-specific, or beyond the commonly agreed upon scope of the Darwin Core itself.??

Kepler has several actors designed to automatically download and output EML and Darwin Core described
data: the EML 2 Dataset actor and DarwinCoreDataSource actor, which automatically download a data set
and configure output ports to emit each field of data.

Kepler's EML 2 Dataset actor understands EML: the actor parses the meta information when a data set is
downloaded (or accessed locally), and emits data to downstream actors. A sample set of EML-described
data (“Vegetation Test Data”) for use with this manual is on the KNB Metacat node of the EarthGrid. To
access that data (or any data on the EarthGrid), select the Data tab. In this case, we know the data are on
the KNB Metacat server, and we can narrow our search (and reduce the search time) by searching only that
data source (under Sources, deselect the KNB Authenticated Query and KU Digir source (Figure 6.1).

The “Refresh” button on the Sources window allows Kepler to immediately synchronize the application’s
list of configured sources with all Earthgrid-registered sources. If Kepler’s existing source configuration
should be preserved, the optional checkbox allows the new and old configurations to be merged upon
refresh.

The KNB supports public searches as well as searches for access-restricted data packages. If the
Authenticated Query source is selected, a prompt for username, password and organizational affiliation will
be presented. Upon successful login, the search will be performed, and both public and appropriately
configured access-restricted data packages will be returned. There is no need to search both the public and
authenticated sources simultaneously.

20 KNB Website, http://knb.ecoinformatics.org/software/eml/

21 DLESE website, http://www.dlese.org/Metadata/adn-item/
2 TDWG Wiki, http://wiki.tdwg.org/DarwinCore

167

http://knb.ecoinformatics.org/software/eml/
http://www.dlese.org/Metadata/adn-item/
http://wiki.tdwg.org/DarwinCore

Chapter 6 — Working with Data Sets

File Edit wiew Workflow Tools ‘window Help

aaeaaP il my o e

4
Components | Data | Outline)| wiorkflow

Search Data

Search £ Preferences E]@
Components | Data

Service Mame Docurnent Type

[kU DiGIR Query Interface [Darwin Core 1.0

Ecological Metadata Language 2.0.0
KME Metacat Guery Interface Ecological Metadata Language 2.0.1

Ecological Metadata Language 2.1.0

[Ecological Metadata Language 2.0.0
[kME Metacat Authenticated Guery Interface | (] Ecological Metadata Language 2.0.1

[Ecalagical Metadata Language 2.1.0

|:| Keep existing sources L
4

FIGURE 6.1: CUSTOMIZING THE SOURCES TO BE SEARCHED. IN THE ABOVE EXAMPLE, ONLY THE KNB METACAT SOURCE WILL BE
SEARCHED AS KU DIGIR AND THE AUTHENTICATED QUERY HAVE BEEN DESELECTED.

To find a data set, type its name or a portion of its name into the Search field and click Search. The search
may take several seconds. When complete, the search will return a number of data sets that match the
search query. Note the peach data drum icon beside each data set; this icon indicates that the data can be
accessed with the EML 2 Dataset actor. In fact, dragging and dropping any of the data sets onto the
Workflow canvas instantiates an EML 2 Dataset actor that accesses the data (Figure 6. 2).

168

Chapter 6 — Working with Data Sets

K| Unnamed1 g@
File Edit Wiew ‘Workflow Tools Window Help
e li@nmm o0y é
Cormponents | Data | outline] wiorkflow
]
Search Daka N |
[Sources “ Cancel]
Main Cropping System Experiment |
Cul Vegetatim Test Data
Demag Test Daka
Literature review on the use of matrix populatior [
Testz
change permission on sanparks
test
test 5
test ojbect name
test replication from datapha-sason-ac-za
testz
ARCHIVE-SBCLTER: Land: \Watershed Character
Aboveground biomass and nitrogen allocation of
Ant-plant dynamics: the effects of leaves and sc
Armitage MwsP 2005
Australian Frog Clukbch Size Data
Axial hydraulic segmentation in shrubs-
Condit et al-: Growth and Mortality of tropical tre
Ferdie 2002 MNP Fertilization]
<] 2] vl
50 results returned. < |
I

FIGURE 6.2: DRAGGING AND DROPPING AN EML-DESCRIBED DATA SET ONTO THE WORKFLOW CANVAS INSTANTIATES AN EML 2

DATASET ACTOR.

To open a local data set that is described by EML, simply drag and drop an EML 2 Dataset actor on to the
Workflow canvas and configure the actor parameters to point to the file name of the data source and its
corresponding metadata file (Figure 6.3). The EML 2 Dataset actor will automatically configure its output

ports to correspond to the

fields described by the metadata.

The actor’s parameters (Table 6.2) can be customized to access and output data in a variety of ways:

EML File

The file path of a local EML metadata file used to describe and access an EML
data set.

Data File

The path to a local data file described by EML (must be used in conjunction
with a local EML file). The actor will retrieve the data and automatically
configure its ports to output it.

Selected
Entity

If this EML data package has multiple entities, the selectedEntity
parameter specifies which entity should be output. When this parameter is
unset (the default), data from the first entity described in an EML package is
output. This parameter is only used if no query statement is specified, or if a
query statement is used and the output format is one of “As Table”, “As Byte
Array”, “As Uncompressed File Name”, and “As Cache File Name”. To specify a

query statement, right-click the actor and select “Open Actor”.

Data
Format

Output

The format in which the actor should output the data. See section 6.2.2 for
more information about the different data output formats and how they are
used.

169

Chapter 6 — Working with Data Sets

File
Extension
Filter

A file extension that is used to limit the array of filenames returned by the data
source actor when “As UnCompressed File Name” is selected as the data
output format. Only files that match the specified extension will be returned.
Specify a file extension without a leading period.

Allow lenient
data parsing

If this parameter is selected, “extra” columns of data (e.g., comments that
people have entered on a line or something of that nature) that are not
described in the metadata are ignored, allowing the workflow to execute. If the
option is unchecked (the default), the workflow execution will halt until the
discrepancy between the data and metadata is corrected.

Check
latest
version

for

Select this parameter to check the EarthGrid for updates to the data. If the
actor finds a version of the data that is more recent than the cached data on
your local system, the actor will prompt the user to either download the latest
data and metadata or ignore the newer version. Note that different versions of
the data can have vastly different structures (new columns, or even new tables
of data might be included or removed). If this parameter is selected, users
should be prepared to handle changes that might arise from differences in the
data structure.

recordid

(appears for downloaded data actors only) An identifier used to retrieve the
metadata from the EarthGrid. Typically, this identifier is set automatically when
a data package is dragged to the Workflow canvas.

endpoint

(appears for downloaded data actors only) The endpoint is used to retrieve
data and metadata from the EarthGrid. Typically, this parameter is left at its
default value.

namespace

(appears for downloaded data actors only) The namespace sets the type (and
version) of the EML document used by the actor.

TABLE 6.2: PARAMETERS OF THE EML 2 DATASET ACTOR.

| Edit parameters for EML 2 Dataset

]

‘_q? EML Fila: Browise
DCrata File: Erowse
Crata Output Formak: As Eiedd i
File Extension Fiter: I
Allows lenient data parsing: E
Chedk For labest version:]
class: org.acoinformatics. seek. datasource. eml. emlz. ErlZ000at aSource
semanticTyped: urn:zlsid:locabost ionko: | : 1 #Externallnputfctor
semanticTypell: urni:lsid:locabhost onbod Z: 1 #Locallnput
semantic TypeE2: urni:lsid:locahostonto: 2: 1 #Remotelnpuk
semankic Types3: urn:lsid:lacahost ionko! 2: 1 #XMLProcessor

[Comimit T | Add | [R | IFtcsh:lrc Desfauks] | Prefersnces | Help | [Cancel

FIGURE 6.3: CONFIGURING AN EML 2 DATASET ACTOR TO READ A LOCAL DATA SET DESCRIBED WITH ECOLOGICAL METADATA

170

LANGUAGE

Chapter 6 — Working with Data Sets

After parsing a data set’s EML metadata, the EML 2 Dataset actor automatically reconfigures its exposed
ports to provide one port for each column of data described by the EML description. For example, the
Vegetation Test Data metadata has twelve attributes describing twelve columns of data: Date, Site, Web,
Plot, QD, Species, Obs, Cover, Height, Count, Phen, Comments. The EML 2 Dataset actor will therefore
create 12 corresponding output ports. To view the metadata, right-click the EML 2 Dataset actor and select
Get Metadata from the drop-down menu. Scroll to the bottom of the description to see the data attributes
and more information about each (Figure 6.4).

K| file:/C: /Documents% 20and% 20Settings/K. . .Uurn.lsid.localhost.e5797528.0.0_htm! | =<
File View Tools Help
Header Lines: '
Recaord Delimiter: #H0A
Text Format: .
Maximurm Record column
Length:
Simple Delimited: Field Delimeter:,
Mumber Of Records: 11
Attribute Col Type |, t [Ty A
ribute olumn Definition of easuremen Measurement Domain Valye ©CCUTACY ACCUTACY oy era
Name Label Type Report Assessment
Value Code
DATE DATE Date of sample datetime Lormar MMDDAY
Precision1 day
Enumerated
Domain
Order
Code Cel ’EP?P int
Definition Definition o oS
creosote
Source
Crder
Code Cecs g:lm
Definition Diefinition
Montosa
. Source
Dbseri:gﬁnor: frorm Orwen
SITE SITE Site.i\dveb.fplulu'quad narminal Code.) Code.) Jd
hierarchy Definition DefinitionSavanna
Source
Order
Gz code EES—F‘GintS
Definition Drefinition
grassland ™
<] = =] |
[]

FIGURE 6.4: A PORTION OF THE EML METADATA FOR THE VEGETATION TEST DATA. THE EML 2 DATASET ACTOR CREATES ONE
OUTPUT PORT FOR EACH DEFINED ATTRIBUTE (DATE, SITE, ETC).

The data are formatted as a comma-separated table containing observations of the height and cover
(among other things) of the species “ERPUS8.” To preview the data, right-click the actor and select Preview
from the drop-down menu (Figure 6.5). The preview table can be resized, or sorted by clicking the column
headers. Sorting time increases for very large data sets.

| £/ Vegetation Test Data Preview E]@
DATE SITE WEE PLOT Qb SPECIES OBS COVER HEIGHT COUNT PHEM COMMENTS
02/03/1999 |FPC 1E 1|ERPUS 1 0.5 4 13¥ &
02/03/1999 |FPC 1E 1|ERPUS 2 0.1 2 16]¥ &
06/02/1999 |FPC 1E 1|ERPUS 1 0.5 & Z2|MN& &
06/02/1999 |FPC 1E 1|ERPUS 2 0.25 4 12|M& &
06/02/1999 |FPC 1E 1|ERPUS 3 0.1 3 10]M& &
06/02/1999 |FPC 1E 1|ERPUS 4 0.05 2 13MA &
10{07/1999 [FPC 1E 1|ERPUS 1 0.25 7 SF &
10{07/1999 [FPC 1E 1|ERPUS 2 0.1 7 Z2|F &
10{07/1999 [FPC 1E 1|ERPUS 3 0.01 2 31F &

FIGURE 6.5: A PREVIEW OF THE VEGETATION TEST DATA DATA SET.

171

Chapter 6 — Working with Data Sets

When it is dragged to the Workflow canvas, the EML 2 Dataset actor automatically downloads the data to
the Kepler cache. If the data have already been downloaded, the actor will access them from the cache.

Each time the EML 2 Dataset actor fires, it outputs one row of data via its ports. Rollover an output port to
see the name and type of the data output (Figure 6.6), or right-click the EML 2 Dataset actor and select
Configure Ports to customize the actor so that the port names (which correspond to the name of each data
item) appear on the Workflow canvas.

Vegetatidm Test Data

B

COVER, type:double

FIGURE 6.6: ROLL OVER ANY PORT OF THE EML 2 DATASET ACTOR WITH THE CURSOR TO OPEN A TOOLTIP CONTAINING THE
NAME OF THE PORT AND THE TYPE OF THE DATA IT BROADCASTS.

To use the Vegetation Test Data to investigate relationships between plant volume and biomass for the
species “Erpu8,” simply locate the cover and height ports and connect them to the input ports of a
graphing actor (biomass is a function of the species’ cover percent and height over time) (Figure 6.7).

172

Chapter 6 — Working with Data Sets

|K| Unnamed1 g@
File Edit Yew ‘Workflow Tools Window Help

eeXaPli@» mmc e

4
|| Warkflow |

Components |Data Cutline

Search Components

o
SDF Director

AdvancedSearch” Sources ” Cancel]

Al Onkologies and Folders R

-, Search Results -
- Components M
:B---Data Input
:B---Remote Input
I:E|---D§tabase Input Function Vegetati#m Test Data

[sProxy
(23] SRE Proxy Commands
=I-Data Operation B > XY Plotter
Z1-Mathematical Operation
I:_:|---Geometric0peration
o @ Point In Polygon xY
[=)-Data Outpuk |
S---Remote oukpuk
| &-Database Cutput Function

@ SProsey
(23] SRE Prosy Commands
(S arkFlow Qutput
I:E|---Graphica| Cutput
i (] W Plokeer
|24] % Scope
=[] Statistics [w] [v]
14 resulks Found, <] »

s

execution finished.

FIGURE 6.7: AN EXAMPLE WORKFLOW THAT USES AN XY PLOTTER ACTOR TO PLOT THE “COVER” AND “HEIGHT” OF THE EXAMPLE
SPECIES, ERPUS.

\AAA

NOTE: Until the graphical output of the workflow in Figure 6.7 is customized, it produces a somewhat
unintelligible plot. Click the configure plot setting in the upper right corner of the output graph to customize

the graph (Figure 6.8).

173

Chapter 6 — Working with Data Sets

-

K XY Plotter E]@‘

Ele Tools Special Help
XY Plotter il)

0ago o005 o010 015 020 025 030 035 040 045 050

FIGURE 6.8: THE OUTPUT OF THE WORKFLOW DISPLAYED IN FIGURE 6.7. CLICK THE CONFIGURE GRAPH BUTTON IN THE UPPER
RIGHT CORNER TO CUSTOMIZE THE GRAPH.

In the “Set plot format” dialog window, specify a title and an axis label. Deselect “Connect” and select “dots”
as the type of mark (Figure 6.9). Changes will be applied to the current graph and to graphs produced in
subsequent workflow runs.

174

Chapter 6 — Working with Data Sets

Set plot format
2 .
k,.:_,..r‘ Tikle: Yegetation Yolume
ALabel: \rcover Percent
Ylabel: Height Grid:
%Range: |p,01, 0.5 Skerns:]
V¥ Range: 2.0, 7.0 Connect:]
Marks: . : .
Cinone () pointks (8) doks () various () pixels Use Color:
¥ Ticks: I ¥
i KXY Plotter WEx
icks:
File Tools Special Help
=11)il
Yegetation Yolume
T T T T T T T T T T T
? I : | =
Bl P
Eo :
)
T
aF . -
3 - s 3 -
2 = - - - E
'l 1 'l 1 'l 1 ' L ' L 1
DoD 005 010 0495 020 025 030 035 040 045 050
Cover Percent

FIGURE 6.9: CUSTOMIZING THE OUTPUT OF THE XY PLOTTER ACTOR.

6.2.1 VIEWING METADATA

A data set’s metadata can be viewed either from the Data tab or the Workflow canvas. To view the
metadata from the Data tab, right click the name of the data set, and then click the Get Metadata option.
The metadata will open in a viewing window. To view metadata from the Workflow canvas, right-click the
data actor icon and select Get Metadata from the drop-down menu.

Metadata includes the name of the data set, the name of the data set owner, the structure of the data (e.g.,
tab-delimited), the number of records in the data set, and information about each field of data (hame, type,
date, etc).

6.2.2 OUTPUTTING DATA FOR USE IN A WORKFLOW

The EML 2 Dataset actor automatically configures itself with one output port for each field of data described
by the metadata. A data set that has four fields (date, time, location, and species name) will, by default,
“generate” an EML 2 Dataset actor that has four output ports, each assigned the data type defined in the
metadata (the “location” port will have type “string”, for example).

175

Chapter 6 — Working with Data Sets

The EML 2 Dataset actor can also be used to unzip compressed data sets, and to output a data set in a
number of useful formats. Instead of outputting each field of data individually, the actor can be configured
to create one port that emits the entire data table at once in comma-delimited format, for example.
Specifically, the output format choices are: as table, row, byte array, uncompressed file name, cache file

name, column vector, or column-based record.

To customize the output format of the data set, double-click the EML 2 Dataset actor and select a format

from the drop-down menu next to the Data Output Format setting.

As Field: (the default) The EML 2 Dataset actor
creates one output port for each field (aka
column/attribute/variable) that is described in the
EML metadata for the data set (Figure 6.10).

If the Query Builder has been used to subset the
data, then only those fields selected in the SQL
statement will be configured as ports (See Section
6.2.3 for more information about the Query
Builder).

table.

176

Datos Mesaorologicos

DATE

TIME
_AIR

DEW
BARDO
= WD
WS
RAIN

SOL
OL_SUM

FIGURE 6.10: AN EML 2 DATASET ACTOR CUSTOMIZED TO

OUTPUT THE DATOS METEOROLOGICOS DATA SET AS FIELDS

(THE DEFAULT).

As Table: The data set will be output as a string that contains the entire data set (Figure 6.11). The EML 2
Dataset actor will configure itself with three output ports: DataTable - the data itself, Delimiter —
the delimiter used to separate fields (e.g., a comma or tab), and NumColumns - the number of fields in the

Chapter 6 — Working with Data Sets

SDE Director
Display Data Table

Datos Meleorologicos

=

f K. .Display Data Table E@]

Fle Tools Help I
"!:'ATE H; HTIHE"* HT_AIRH; HRHH i HDEMH; "BARON; liuDli i HMSH‘: NREIN" z frﬁoL" & HﬁoL_EUHH .A'.

"01/01/01", "00:00", 15.0,99, 14.5, 953.4,099, 0.8, 0.0,0000,0000000
"01/01/01", "01:00", 13.4,99, 12.8, 953.§,100, 1.9, 0.0,0000,0000000 It
"01/01/01", "02:00", 13.4,99, 12.8, 954.0,114, 1.2, 0.0,0000,0000120

»01/01/01%, "03:00", 12.4,99, 12.3, 954.3,114, 2.5, 0.0,0000,0000000

FIGURE 6.11: USING AN EML 2 DATASET ACTOR TO FORMAT AND OUTPUT A DATA SET AS A TABLE VIA A SINGLE OUTPUT PORT.
IN THIS CASE, THE DELIMITER IS A COMMA “,”.

As Row: The EML 2 Dataset actor formats one row of the data set as an array and outputs it. The actor
creates only one output port (DataRow) and the data type is a record containing each of the individual
fields. (e.g., {BARO = 953.4, DATE = "01/01/01", DEW = 14.5, RAIN = 0.0, RH =99, SOL = 0.0, SOL_SUM = 0.0,
TIME ="00:00", T_AIR = 15.0, WD =99, WS = 0.8}.

As Byte Array: The EML 2 Dataset actor outputs the data set as an array of bytes (raw data sent in binary
format). The actor configures itself with two output ports: BinaryData -- contains data itself, and
EndOfStream -- a tag to indicate the end of the data stream.

As UnCompressed File Name: If the data set is a compressed file (zip, tar, etc), the “As UnCompressed File
Name” format instructs the EML 2 Dataset actor to uncompressed the data after it is downloaded. The
actor will configure itself with one output port that outputs an array of the filenames of the uncompressed
archive files.

As Cache File Name: Kepler stores remotely downloaded data files into its cache system. This format
outputs the local cache file path of the data set so that workflow designers can directly access the cache
files. The actor configures itself with two output ports: CacheLocalFileName - the local cache file path,
and CacheResourceName — the data set’s EML identity (e.g., ecogrid://knb/tao.2.1).

As Column Vector: This output format is similar to “As Field”. The difference is that instead of sending out
a single value on each port, the EML 2 Dataset actor outputs an array of all of the data for each field. This

177

Chapter 6 — Working with Data Sets

format is particularly useful when the output is directed to an RExpression actor, which creates a vector
object that is immediately available for use in R the script.

As ColumnBased Record: The EML 2 Dataset actor outputs the data set on one port using a Record structure
that encapsulates the entire data object. The Record will contain one array for each column of data, and
the type of that array will be determined by the type of the field it represents. This format is particularly
useful when the output is directed to an RExpression actor, which creates a dataframe object that is
immediately available for use in the R script.

6.2.3 QUERYING METADATA

At times, you may wish to use only a portion of the data in a given data set—only records from May 2006,
for example, or only records that relate to one of four species tracked in a data set for a specific location.
The EML 2 Dataset actor has a built-in query builder that allows users to quickly and easily identify and
output only the desired fields of information.

To access the Query Builder, right-click the EML 2 Dataset actor and select Open Actor from the drop-down
menu (Figure 6.12)

178

Chapter 6 — Working with Data Sets

|K| Query Builder

M= X

General | s0L

Available Table Schemas: | Datos Metearologicos

Field MName Data Type
+ [~
[patE STRING
[TIME STRING
[T_AIR FLOAT
IrH INTEGER =
| DEw FLOAT
|BARC FLOAT
| D INTEGER:
| pwis FLOAT B |
[I v

(%) Meets ALL included conditions listed belaw

() Meets ANY included conditions lisk below

Table Field

[v] [v]

Include in Selection Operakor

O | v

Zancel

FIGURE 6.12: THE QUERY BUILDER FOR THE DATOS METEOROLOGICOS DATA SET.

At the top of the Query Builder is a drop-down menu containing the name of each data table in the data set
(the Datos Meteorologicos data set contains only one table, named Datos Meteorologicos). Beneath the
table name is a list of the fields (as defined in the metadata) in the selected table as well as the data type

of each field.

Use the settings at the bottom of the Query Builder to select only the desired tables and fields from the
data set. For example, to select only the rainfall data from the Datos Meteorologicos data set, select the
“Datos Meteorologicos” table and the “Rain” field and check the “Include in Selection” check box. (Figure
6.13). The EML 2 Dataset actor will reconfigure its ports to match the specified output. In this case, the
actor will configure a single output port for the Rain data. To include all data fields in the selected table,

select “*” from the drop-down Field menu.

179

Chapter 6 — Working with Data Sets

(=) Meats ALL included condiions listed below () Meets ANY included conditions st below

Takde Field Data Type Includs in Selection Operator Criteria
Datos Metecral,., s | RAIN w [FLOAT P
w w | v

FIGURE 6.13: CONFIGURING THE QUERY BUILDER TO OUTPUT ONLY RAIN DATA.

The Query Builder can also be used to extract only data records that meet certain criteria: values greater or
less than a specified threshold, for example, or strings that exactly match the name of a region or species
or other value. To return the date and temperature of all records from the Datos Meteorological data set
where the temperature is greater than 20 degrees, use the Query Builder settings displayed in Figure 6.14.

(3} Meets ALL included conditions listed belaw () Meets ANY included conditions list belov

T-aEIe ”Field I Déta fype - Include in ;S.ele.cti-:-n - Operai:u:-r - Criteria
Datos Meteoral,.. [+ | T_aIR [w|rLoaT GREATER THAN |+ |20
Datos Meteorol... |+ | DATE |+ [STRING [

||] O |

FIGURE 6.14: CONFIGURING THE QUERY BUILDER TO RETURN ONLY RECORDS IN WHICH THE TEMPERATURE IS GREATER THAN 20
DEGREES.

When the Query Builder has been used to select particular fields or to specify criteria for the records
returned, those settings propagate to the Preview table when it is displayed for the actor. This allows a
view of exactly the data that will be used during workflow execution.

6.3 USING TABULAR DATA WITHOUT METADATA

In a perfect world, all tabular data sets would be described with metadata, and the EML 2 Dataset actor
could be used to automatically access and output data fields to workflows. In the real world, data comes in
many formats: Excel spreadsheets, old tables created in Microsoft Word, or tables grabbed from Web
pages. Kepler workflows can read and process this kind of “raw” data, but because multiple actors are
required to do the work, this type of workflow is more complex.

Some actors that often come in handy are: Binary File Reader, Expression Reader, File Reader, File To Array
Converter, Line Reader, Simple File Reader, NexusFileReader (Table 6.3).

Note that these actors can be used to open either a local or remote data file. In the actor parameters, simply
specify the URL of a remote file, or use the Browse button to navigate to the location of a local data set.

Binary File Reader The Binary File Reader reads a local file path or URL and outputs
an array of bytes. The actor can read both binary and ASCII file
formats.

180

Chapter 6 — Working with Data Sets

Expression Reader

The Expression Reader reads a file or URL, one line at a time, and
evaluates each line as a Kepler expression. One evaluated result is
output each time the actor iterates.

File Reader

The File Reader actor reads a local file or URL and outputs the
contents of the file as a single string.

File To Array Converter

The File To Array Converter actor reads a file or URL, evaluates
each line, and outputs an array of the evaluated values. The actor
is similar to the Expression Reader actor, except that the File To
Array Converter actor outputs all of the evaluated expressions as
a single array instead of outputting each value separately.

Line Reader

The Line Reader actor reads a file or URL, one line at a time, and
outputs each line as a string.

Simple File Reader

The Simple File Reader reads and outputs the contents of a file as
a single string. The actor is similar to the File Reader, except that
the Simple File Reader can only take its input from another
workflow component via an input port, whereas the File Reader
actor can use either a port or parameter.

NexusFileReader

The NexusFileReader actor reads a Nexus file from the local file
system and outputs the file content as a string.

TABLE 6.3: USEFUL ACTORS FOR WORKING WITH TABULAR DATA SETS WITH NO METADATA.

Once the data has been “read” into a workflow via one of the above actors, the data will likely require
parsing and further processing before it can be used. See Section 6.3.1 for an example of opening a local
data file and preparing it for use in a workflow.

6.3.1 COMMA- TAB-, TEXT-DELIMITED FILES

The plant volume workflow discussed in 6.1—which reads a data set, extracts two columns of data, and
plots them—can be recreated to run on data that does not use metadata. In fact, the workflow displayed
in Figure 6.15 is that workflow, recreated to use a simple comma-delimited data table with no EML.

Note that R actors can also be used to access tab- or comma-delimited data sets. See Chapter 8 for more

information about using R.

181

Chapter 6 — Working with Data Sets

SDFE Director
Expression)
Expression To Token
'_Lne]Reader String Splitter

string()

Expression
Expression2

FIGURE 6.15: RECREATING THE PLANT VOLUME WORKFLOW TO USE NON-EML DATA.

The workflow in Figure 6.15 uses a LineReader to read the data file line by line and output each row as a
string. Double-click the Line Reader actor to specify the name of the data file, as well as the number of lines
to skip. In this case, we must skip the first line of the data set, which contains header information instead
of observational data (Figure 6.16).

Edit parameters for Line Reader
?) fieorRy: -
_“/ : file:/C: fkepler/demosveg_data_test.csv
numberOfLinesToskp: 1
class: ptaleny . actor.lib.io. LineReader
semanticTyped0o: urn:lsid:localhost :onka: 1; 1 #ReaderExternallnpukdckor
semanticTypelll: urn:lsid:localhast:onko: 21 1 #Locallnput
Commit] l Add l l Remove l [Restore DeFauIts] l Preferences l l Help l [Cancel

FIGURE 6.16: SETTING THE PARAMETERS OF THE LINEREADER ACTOR.

The Line Reader actor outputs each row of data to a String Splitter actor, which splits the string into
segments at points specified by the regular expression parameter (“,” in this case, as each value in the data
set is separated from the next with a comma). The String Splitter actor outputs the segments as an array of
strings.

A relation branches the array of string segments to two Expression actors, which use the Kepler Expression
language to identify the appropriate columns of data. Each of the Expression actors has a user-defined input
port named “input”. The expression contained in the actors (specified via the actor's expression
parameter) references the value passed to the input port (the array of strings) using the syntax

182

Chapter 6 — Working with Data Sets

input (7) or input (8).The parenthetical value indicates the array index of the string segment to select
(input (0) would reference the first column in the data set, input (1) the second, etc).

Before the selected columns of data can be graphed by the XY Plotter actor, they must be converted from
a string to a double—a data type that the XY Plotter actor understands. The relevant data types are specified
in the Configure Port settings of the Expression To Token actor (Figure 6.17).

-

y

[£:| Configure ports for Expression To Token E]@
Mame Input | Qu... | Multi... Type Direction Shiowe Marne Hide nits

input [] [] string DEFALLT Fi F

oukpuk [] [] double DEFALLT Fi F

(e) [|

FIGURE 6.17: CONFIGURING THE CORRECT INPUT AND OUTPUT TYPE FOR THE EXPRESSIONTOTOKEN ACTOR.

Once the data have been converted to doubles, the XY Plotter can graph them. See Section 6.2 for more
information about how to customize the settings of the XY Plotter.

6.3.2 ACCESSING DATA FROM A WEBSITE

Downloading and accessing data from a website is easily accomplished via Kepler’s URL To Local File actor.
This actor receives a URL of a remote file as well as a name that will be applied to it when it is stored on the
local system (Figure 6.18).

183

Chapter 6 — Working with Data Sets

SDFE Director

URL >
E} "hitphwww kepler-projectorgtemplates..

URL Ta Local File

File
ﬁ» property"KEPLER")+"kepler-logo.png"”

Display

File2
property("KEPLER")+"kepler-logo.png”

] .kepler-logo.png - Windows Picture and Fax Vie... E]@

Kepler

»-|—

Q00 Ea2Q 2L a4 XeHHE| @

FIGURE 6.18: USING THE URL TO LOCAL FILE ACTOR TO DOWNLOAD A FILE (THE KEPLER LOGO) FROM A REMOTE WEBSITE.

Once the remote file has been downloaded and saved to the specified location, the URL To Local File actor
outputs a Boolean value: true if the operation has been completed successfully; false, if not. The workflow
in Figure 6.18 uses the output of the URL To Local File actor as a trigger that alerts the next actor that the
file has been downloaded successfully and is ready for further processing (in this case, display).

6.4 ACCESSING DATA Access PRoTocoL (DAP) SOURCES

184

Chapter 6 — Working with Data Sets

Kepler's OpendapDataSource actor can be used to access and output any Data Access Protocol (DAP) 2.0
compatible data source. The actor retrieves the specified data and automatically configures its output ports
to match the returned variables so that data can be fed to downstream actors.

DAP 2.0 data sources, much like Web pages, are accessed via a URL that references a host and data file as
well as (optionally) a specific subset of the data to return. The host server returns the requested data
variables as well as information about them: the variable name and data type, a description, and any
associated attributes. For more information about DAP, please see http://www.opendap.org/.

The OpendapDataSource actor must be configured with the URL of the data source as well as an optional
constraint expression (CE). The constraint expression specifies the subset of data to return. Using a CE can
reduce the system resources required to transmit data or reduce the number of dimensions of a data
variable so that the data can be more easily processed in Kepler. The number of dimensions of a variable,
similar to the number of dimensions of a matrix, represents the number of rows and columns of data.
Because Kepler cannot efficiently process large volumes of multidimensional data objects (i.e., n-
dimensional arrays, where n>2), reducing the dimensions is sometimes necessary.

The example parameters displayed in Figure 6.19 use the CE “1at” to retrieve only latitude data from a
data set collected by the Fleet Numerical Meteorology and Oceanography Center that contains five
variables describing wind patterns: degree north (1at), vector wind eastward component (u), Vector wind
northward component (v), degree east (Lon), and time.

Edit parameters for OpendapDataSource

. Kepler firingCountLimit 1

<%

= DAP2 URL http:/ /test.opendap.org/opendap/data/nc/fnocl.ne
DAP2 Constraint Expression: lat
Metadata Options No Metadata ol
class: org.kepler.dataproxy.datasource.opendap.OpendapDataSource
semanticTypell: urn:lsid:localhost:onto:2: 1#Remotelnput
firingsPerlteration: i

Cancel Help Preferences Restore Defaults Remove Add Commit

FIGURE 6.19: CONFIGURING THE PARAMETERS OF THE OPENDAPDATASOURCE ACTOR.

Based on the values of the DAP2 URL parameter and DAP2 Constraint Expression, the OpendapDataSource
actor configures its output ports to match the returned data. In the above case, the actor creates a single
output port for the lat data (Figure 6.20). Note: You must commit a valid URL before the actor will
reconfigure its ports and provide access to any data.

185

http://www.opendap.org/

Chapter 6 — Working with Data Sets

SDF Director

OpendapDataSource

(>3 H-ﬂ-_\ Nonstrict Test
lat, bype:[double] E

FIGURE 6.20: THE OPENDAPDATASOURCE ACTOR AUTOMATICALLY CONFIGURES ITS OUTPUT PORTS TO MATCH THE RETURNED
DATA.

Data is returned as a record, which is automatically disassembled and output by the OpendapDataSource
actor as a one, two, or N (>2) dimensional array, represented in Kepler by either a matrix (one or two
dimensions) token, or an array token for dimensions greater than two. To better accommodate N-
dimensional arrays, use a constraint expression to reduce the number of data dimensions to one or two so
they can be more easily stored and processed. For example, the variable u in the FNOC1 data source used
in the previous example contains three dimensions (time, lat, lon). The CE “u[0][0:16][0:20]” selects only
the first element (index 0) for the first dimension (time) while requesting all of the remaining elements for
the second (lat) and third dimensions (lon). See www.opendap.org for documentation about the CE
syntax.

Note that the OpendapDataSource actor automatically “disassembles” the top most record of returned
data. However, some data sources contain nested hierarchies of records many levels deep. When dealing
with those data sources, you will need to use the Kepler Record Disassembler actor in your workflow to
disassemble the nested records.

6.5 ACCESSING DATA FROM DATATURBINE SERVERS

The DataTurbine actor can be used to access data from DataTurbine servers. Please see
http://dataturbine.org for details and documentation for the DataTurbine software.

The actor has four input PortParameters: DataTurbine Address, specificChannel Name,
Start Time, and Duration.

Upon specification of the DataTurbine Address, the actor attempts to connect to the server, and will
generate output ports for the channels present (not including the metric channels — those with names
beginning with the underscore character). Also, two other output ports will be created, channelNames
and specificChannel. The channelNames port writes an array of the channel names, and
specificChannel will write the data of the port specified on the specificChannel Name input
port. Since the channel name written through the specificChannel output port may change during
workflow execution, the data is always set to the String type. The other ports will write data for the

186

http://www.opendap.org/
http://dataturbine.org/

Chapter 6 — Working with Data Sets

DataTurbine channels they reflect and the output data format may be changed using the Output Data
Type parameter, either an array of x records (each record containing a timestamp and datapoint), or a
record of two arrays (timestamps and data).

The Start Time input PortParameter, utilized when Sink Mode is “Request” or “Subscribe”,
specifies the beginning time of the data requested from the server.

Duration, also used by “Request” and “Subscribe” sink modes, specifies the number of seconds of
data requested.

” u » u

Sink Mode may be “Request”, “Monitor”, or “Subscribe”. “Request” mode initiates a request
for a specific time slice of data. “Subscribe” mode starts a continuous feed of data for the connected
output port channels. Each block retrieved will be Duration time units in length. “Monitor” mode is
similar to “Subscribe”, but allows for continuous frames of data without gaps.

The Reference parameter is used by “Request” and “Subscribe” modes. Table 6.4 describes the
values for this parameter.

Reference Value Valid Modes Description

“absolute” “Request” or | The start parameter is absolute time from midnight,
“subscribe” Jan 1st, 1970 UTC.

“newest” “Request” or | Thestart parameter is measured from the most recent
“gubscribe” | dataavailablein the server at the time this request is

received. Note that for this case, the start parameter
actually represents the end of the duration, and
positive times proceed toward oldest data.

“oldest” “Request” or | Similar to “newest”, but relative to the oldest data.
“Subscribe”
“aligned” “Request” Similar to “newest”,, but rather than per channel, this
is relative to the newest for all of the channels.
“fter” “Request” A combination between “absolute” and “newest”, this

flag causes the server to return the newest data
available after the specified start time. Unlike
“newest”, you do not have to request the data to find
out that you already have it. Unlike “absolute”, a gap
may be inserted in the data to provide you with the
freshest data.

“modified” “Request” Similar to “after”, but attempts to return a duration’s
worth of data in a contiguous block. If the data is not
available after the start time, it will be taken from
before the start time.

“next” “Request” or | Getsthe data that immediately follows the time range
specified. This will skip over gaps.

“Subscribe”
“previous” “Request” or | Getthe data that immediately precedes the time
“subscribe” | range specified. This will skip over gaps.

TABLE 6.4: DESCRIPTION OF VALUES FOR THE DATATURBINE ACTOR’S REFERENCE PARAMETER.

187

Chapter 6 — Working with Data Sets

The Block Timeout parameter, specified in milliseconds, is the amount of time to wait for data to
become available. Use 0 for no delay or any negative number for an infinite delay.

The Pad data gaps with nils parameter controls whether to attempt to identify and pad gappy
data with timestamp, nil pairs. As sample rate is unknown prior to execution, and must be assumed during
execution, at least two datapoints must be retrieved for this function to be able to guess sampling rate, and
thus fill in any missing values. Having gaps filled in, and thus dealing with a static number of datapoints for
requests of different time slices of the same size, can be useful in certain workflows.

6.6 USING FTP

The Kepler component library contains several actors that can be used to upload or download files from
remote servers: the FTP Client actor puts or gets files from a remote FTP server (File-Transfer-Protocol is
used to copy files from one computer to another over a network), and the GridFTP, FileFetcher, FileStager,
and UpdatedGridFTP actors upload and/or download files from Globus servers, which use an authorization
certificate generated by the GlobusProxy actor (the GlobusProxy actor passes a proxy certificate used to
connect to the remote host).

The workflow in Figure 6.22 is used to upload a file from the local directory (the one in which the workflow
is stored) using the FTP Client actor. The FTP Client actor can be used to upload or download a single file,
multiple files, or a directory—simply pass the desired files as a string (e.g., "C:\PleaseUpload\Notes.doc")
via the FTP Client actor’s arguments port. If the server requires a username and password, these values
must be specified in the FTP Client actor’s parameters as well. The FTP Client actor outputs the file path of
the uploaded or downloaded file.

188

Chapter 6 — Working with Data Sets

SDF Director

FTPClient Display

String Constant

Flogoipe

FIGURE 6.21: A WORKFLOW USED TO UPLOAD TWO FILES, SPECIFIED WITH STRING CONSTANT ACTORS, TO A REMOTE SERVER
USING FTP.

The name of the operation (put or get), the mode (ASC or BIN), the remote host (e.g., dotnet.sdsc.edu), and
path (/home/mydocs/), as well as username and password, when relevant, are specified in the parameters
of the FTP Client actor. Use “asc” (i.e., ASCII) as the mode when transferring plain text files. Use “bin”
(i.e., Binary) for everything else (MS Word files, images, etc).

The FileFetcher and FileStager actors work much like the Get and Put operations of the FTP Client actor,
only these actors upload or download a set of files from a Globus host For more information about these
actors, please see Chapter 7.

6.7 USING DATA STORED IN RELATIONAL DATABASES

Kepler has a number of actors that are especially designed to open and close database connections, query
databases, and retrieve information. Whether data are stored in an Oracle database, MySQL, local or
remote MS Access, or a number of other supported database formats, information can be accessed by
Kepler and used in workflows.

To connect to an Oracle, MySQL, local or remote MS Access, DB2, MS SQL Server, PostgreSQL, MySQL, or
Sybase SQL Anywhere database, use an Open Database Connection actor. The Open Database Connection
actor opens a database connection using the specified database format and URL, username, and password.

189

Chapter 6 — Working with Data Sets

Once a database connection has been established, the actor outputs a reference to the connection. Actors
downstream in the workflow can use this reference to access the database.

For example, the workflow in Figure 6.23 uses an Open Database Connection actor to open a connection to
a remote Oracle database. The actor passes a connection reference to a Database Query actor, which uses
the connection to pass a query to the database. A Display actor displays the query return.

SOF Director
o query "select latdd londd simpleba from GRAMTY TABLE
whene laldd bebween ™+ lathiin +« “and © + lathiax+
and londd between =+ longhin + = and =+ longhiax
OpenDBConnaction o lathlin: =34 9%

Display o lathiax “357
DatabaseQuery? | I T I o longhein: 120"
o longhax *-118°

FIGURE 6.22: OPENING A CONNECTION TO AN ORACLE DATABASE AND USING THE DATABASE QUERY ACTOR TO RETURN QUERY
RESULTS.

The database format and URL are specified in the Open Database Connection actor parameters (Figure
6.24). The database location is specified in the following format: host:port:sid, where sid is the
name of the database space (e.g., jdbc:oracle:thin:@129.108.20.225:1521:PDB1).

Edit parameters for GpenDBConnection
2 database format: ! [ae]
- / latabase Format: Oracle v/
databaselIRL: jdbe:oraclesthing@129, 108,20, 225:1521 POB1
Username: geon
password: 7
firingsPerIteration: 1
[Commit] l Add] l Remove] lRestnre Del‘aultsl [Preferences l [Help l l Cancel

FIGURE 6.23: THE PARAMETERS OF THE OPEN DATABASE CONNECTION ACTOR ARE USED TO SPECIFY THE DATABASE FORMAT,
LOCATION, AND LOGIN CREDENTIALS.

The Database Query actor can view the schemas in a database. The actor automatically reads the schema
definition once a connection to the database has been established (Figure 6.25).

190

Chapter 6 — Working with Data Sets

Edit parameters for DatabaseQuery2
2 tputType: |
““‘l‘/ OuEpUETYpe: MoMetadatal [l
query: ELE where latdd between 34,9 and 35 and londd between -120 and -119
schemalef: A -~

<tahle nawe="GEON.BENCHMARE TAELE":
<field name="BENCHMAFRKID" dataType="VARCHARZ"
<field name="3I0OURCEID" dataTyne="VARCHALRZ"/ />

</tablex

<table neame="GECQN.E3_ TAELE":>
<field name="BSNAME" dataType="VARCHAEZ'"/>
<field name="ESID" dataType="VARCHARZ"/>
<field name="ELEVATICN" dataType="NUMEER"/>
<field name="GRAVITYVALUE"™ dataType="NUHBER"!v'

<] 2]
outputEachRowSeparately:]
firingsPerIteration: 1
Commit] l Add] l Remove] [Restore DeFauIts] l Preferences] l Help] [Zancel

FIGURE 6.24: PARAMETERS OF THE DATABASE QUERY ACTOR.

To browse the available database tables and specify a query, right-click the Database Query actor and select
Open Actor. A Query Builder window opens (Figure 6.26) Use the Query Builder to view the data tables and
specify query conditions. The specified query will automatically populate the Database Query actor’s
query parameter.

191

Chapter 6 — Working with Data Sets

K Query Builder
I General | SOL |
Available Table Schemas: igrocks. agelevelookup b
Jarodks.agelevelookup f2d
Fisld Mame grocks.all_poinks2 -

grocks.analyticalmethods

grocks. bulkrackgeochemmeathods

grocks.enclave

grocks Fabric

grocks.fecak

grochs Fetreatmentminerals %

ription

() Meets ALL included conditions listed below () Mests ANY included condtions list below
Table | Field ' Data Type IncdeinSelection | Operator | Crieria

[l] | O I Iv]

FIGURE 6.25: BROWSE DATABASE TABLES USING THE QUERY BUILDER.

6.8 USING SPATIAL AND IMAGE DATA

Kepler has a number of actors designed to work with image and spatial data. From a simple JPEG image to
a high-resolution map of North America, Kepler can process, manipulate, and display a wide variety of data
types.

Actors used to process and display image and spatial data are easily recognized by the map icon (spatial
data) or the mountain icon (image data) that represents them on the Workflow canvas. A list of useful
actors is noted in Table 6.5.

192

Chapter 6 — Working with Data Sets

GIS/Spatial GIS/Spatial Display actors display geospatial data.

m Display Actors: ESRI Shape File Displayer, GML Displayer
GIS/Spatial GIS/Spatial Processing actors are used to map and manipulate
Processing geospatial data.

@ Actors: Add Grids, Convex Hull, CV Hull to Raster, GDAL Format

Translator, GDAL Warp and Projection, Grass Buffer, Grass Hull,
Grass Raster, Grid Rescaler, Merge Grids, Rescaler, Interpolate,
GridReset, ShowLocations

Image Processing

Image Processing actors are used to manipulate and convert image
files.

Actors: ASC To Raw, Convert Image To String, IJMacro, Image
Contrast, Image Converter, Image Rotate, Sting To Image Converter,
SVG Concatenate, SVG To Polygon Converter

Image Display

3 B

Image Display actors display image files.

Actors: Image Display, Image)

TABLE 6.5: USEFUL IMAGE AND SPATIAL DATA ACTORS.

6.8.1 WORKING WITH IMAGES

Displaying a locally stored image via a Kepler workflow can be accomplished with one of several useful

actors: Imagel or Image Display.

The Imagel actor reads an image file name and opens and displays the image along with a toolbar of image-
processing options, which can be used to process the image (Figure 6.27). The name of the image file can
be specified in the actor parameters or via the actor’s input port. The actor uses the ImagelJ application to
open and work with images. ImagelJ can be used to display and process a wide variety of images (tiffs, gifs,
jpegs, etc.) For more information about ImageJ, see http://rsb.info.nih.gov/ij/ and Chapter 8 of the User

Manual.

193

http://rsb.info.nih.gov/ij/

Chapter 6 — Working with Data Sets

QaQF QP @m0 e
|| Comporents | puts - ; — : il —-
| ImageJ ' | image) BE=]
o i toolbar ; |[Foe Edn image Protess Analge Pluging Window Help
el et Welglel =z Al s Al Jadelel
o || Scroiling fool
SDF Direcior rr——
o e @ (i =
5 @ Componerts [ThnEpeets E6 ¢ Diigplay window |
& @ DotaOuiput Kepler |/~ = -rfioaoeao '
=) Workflom Cutput h‘ =
= i) Graphicsl Output Image. '
o= i 2=
l'tdh patameters for mage)]
-EJ CiiDosumeris ard SettingsWirstenDeshtoplbepier-ogs g
chass: bl fmage Lctor
semantic Type00l: i kit bocakhost nonko: 11 # imagebianipul shiondctor
semantcTypel11! wrm: b hoc st ronko:21 L #GraphicalOubput
FiringsPer aration: 1
[commt || Add | [remove | [Restore Defoults | | Prefererces | [Help | cancel |
|| Fr ey B =

FIGURE 6.26: OPENING AN IMAGE WITH THE IMAGEJ ACTOR. SPECIFY THE PATH OF THE IMAGE TO OPEN IN THE IMAGE)J
PARAMETERS OR VIA THE ACTOR’S INPUT PORT.

The Image Display actor reads an image token and displays the image on the screen. Image tokens can be
generated from image URLs using the Image Reader or the Convert URL To Image actors. These actors read
an image path (e.g., C:\pictures\signature.jpg), and output the image as an image token, which can be
displayed and/or manipulated by other Kepler actors, such as Image Rotate or Convert Image To String
(Figure 6.28).

If the Image Display actor receives a sequence of images that are all the same size, it will continually update
the display with the new data. If the size of the input image changes, the actor generates a new picture
display.

SDF Director I!.E'-r '

File Toals Help

aapday

Image Rotate

Image Reader
! =
B

Image Display

===

FIGURE 6.27: AN IMAGE READER ACTOR “TRANSLATES” AN IMAGE PATH INTO AN IMAGE TOKEN, WHICH CAN BE MANIPULATED
BY THE IMAGE ROTATE ACTOR AND THEN DISPLAYED BY THE IMAGE DISPLAY ACTOR.

194

Chapter 6 — Working with Data Sets

The workflow in Figure 6.27 uses an Image Reader actor to “translate” an image path into an image token,
which can be manipulated by the Image Rotate actor and then displayed by the Image Display actor. The
standard Kepler component library contains several actors that can be used to process image tokens; the
IJMacro actor provides access to an even wider variety of processing tools.

The workflow in Figure 6.28 uses an Imagel) macro to open an ASCII Grid file, a Geographic Information
System (GIS) format that neither the ImageJ or Image Display actors support. This file format includes GIS
information such as the longitude and latitude and number of rows and columns of data at the start of the
file, followed by pixel data values in an ASCIl format. The 1JMacro actor ignores the GIS information and
displays the pixel data as an image. The macro code is pasted into the macroString parameter, and the
image to process is either specified with a parameter or passed via the input port.

K nl
File Edt Yiew Workflow Tooks Window Help

QaQEBaPNOD mHdie

Componerts | ks

"

SDF Director
Search

[] 5earch repasitory
l Search Il Reset l DataPaints

B> property KEPLER")+"liblesidataigarp/H... Likacio
¥ 3 Components

* ﬁ Projects

: g;::::: Edit parameters for LIMacro -]
2) e
macrastring: run("ASC TextReader”, “open=_FILE "):
fileOrUIRL: Crikepler 200707 16}, WbftestdatafgarpfHIK_MA_Mask.asc
class: util, [Macro
semanticTypa000: urnitlsid-localbost sankn: | 1 1 #ImageManipulationdoton
| semanticTypal 11: wrn:bsad:localhost:onko: 1 : 1 #2ReaderExternallnputActor
0 rezulbs Found firingsPer fteration: i
<
SR (N = | T | o | 7T e |
execution finish]

FIGURE 6.28: THE IMACRO ACTOR CAN BE CUSTOMIZED TO EXECUTE ANY IMAGEJ MACROS. SEE HTTP://RSB.INFO.NIH.GOV/1)/
FOR MORE INFORMATION ABOUT MACROS.

The IJMacro actor can also be used with an RExpression actor to display a PDF file (Figure 6.29).

195

http://rsb.info.nih.gov/ij/

Chapter 6 — Working with Data Sets

SDF Director

RExpression
Constant =

Ell’ property{"KEPLER")+"/RData.pdf"

lJMacro

FIGURE 6.29: USING THE IJMACRO ACTOR TO DISPLAY A PDF FILE.

In the above workflow, the R function or script used by the RExpression actor is:

fn <- pdf file
pdf (file=fn,width=6,height=6)

plot(x <- sort(rnorm(47)), type = "s",
main = "plot(x, type = \"s\")")
dev.off ()

This R script creates an image in a PDF file format.

The IJMacro string is:

call("ij.IJ.runPlugIn","ij.plugin.BrowserLauncher",
"file:// FILE ");

This script calls the BrowserLauncher which, in turn, launches a PDF viewer to display the PDF generated by
the RExpression script.

See http://rsh.info.nih.gov/ij/macros/ for a library of macros that can be used with the I/Macro actor (you
can even use the actor to run a game of Pong!).

6.8.2 WORKING WITH SPATIAL DATA

Spatial data comes in a variety of forms and formats—from ESRI Shape files, which contain a set of vector
coordinates that represent non-topological geographic data, to ASCII grids (such as the ones used for IPCC
climate change data), to GeoTiff, DTED, USGSDEM, and others. Some geospatial data in automated systems

196

http://rsb.info.nih.gov/ij/macros/

Chapter 6 — Working with Data Sets

are described with Geography Markup Language (GML), an XML-based encoding for geographic
information. Geospatial data may also be described using EML.

Fortunately, Kepler has a number of actors that can help open, display, and translate the variety of these
formats so that they can be compared, added, or otherwise manipulated. As with tabular data, spatial data
sets that contain metadata are far easier to work with. We will look at some examples of both EML and
non-EML spatial data sets in this section.

Spatial data files--depending on their extent and resolution—can be very large and may require notable
time to download and process. Most Kepler actors first check to see if a data set has already been
downloaded or if a requested transformation has already been performed before initiating the download
or transformation process. If the spatial data file already exists in its desired form, the actors will access the
data from the Kepler cache rather than reprocessing the information.

The Ecological Niche Modeling workflows that are shipped with Kepler in the
outreach/resources/demos/ENM directory, contain a number of useful examples of spatial data actors and
manipulations. Many of these use the Geospatial Data Abstraction Library (GDAL), an open source library
of functions for reading and writing geospatial data formats.

For example, the GDAL_h1K_NS.xml workflow (Figure 6.30) converts two Lambert Azimuthal Equal Area
coordinate system projections (one of North America and one of South America) to a format that uses a
latitude/longitude system, and then changes the file format from GEOTiff to ASC raster grid. The converted
files are rescaled and then stitched together (“added”) to form a single map of the entire Western
Hemisphere. The actors in the workflow can be used to convert a wide variety of spatial data files and
formats.

Note that the data sets, Hydrolk North American —-DEM and Hydro 1k South America-DEM, are described
by EML metadata, and can be downloaded from the EarthGrid and output by the EML 2 Dataset actor
discussed earlier in the chapter.

197

Chapter 6 — Working with Data Sets

SDF E.reclor

» ResuliDiractory: property"KEPLER"+"ibMestdalaigarp/spatia Layers™

Hydro1k Morth &merican - DEM
BUSY

Array Element2
S GOAL Warp and Projection2 Map output by workflow

Naorth America Mask file
[%— property"KEPLER"+"libfestdata/garpH...

Hydrok South Amaerica - DEM Cutput File Morth Amarica
BUSY |:+- ResultDirecion+""H1K_NAasc”

Array Element

Merge_Marth_South
GDAL Warp and Projection

GOAL Format Trans

I-E!EGFft

4 tand Rescaler
| <))

Southe Amaerica Mask file

:{- propary"KEPLER"+"libfestdata’garpH...
Output File - Sauth America
I:% ResuliDirectory+"H1K_SAasc”

Marged Result Filename
:#- ResuliDirectory+"H1K_DEM_NSAasc”

FIGURE 6.30: THE GDAL-H1K_NS.XML WORKFLOW. THE FIRST TIME THE WORKFLOW IS OPENED, THE DATA SOURCE ACTORS
(HYDRO1K NORTH AMERICA DEM AND HYDRO1K SOUTH AMERICA DEM) WILL SHOW A “BUSY” STATUS AS THEY DOWNLOAD
DATA FROM A REMOTE SERVER. THE INITIAL DOWNLOAD MAY TAKE AS LONG AS 30 MINUTES. ONCE DATA IS STORED IN THE

LOCAL CACHE, THE DATA ARE MORE IMMEDIATELY AVAILABLE. BECAUSE OF THE HIGH RESOLUTION OF THE DATA, THIS
WORKFLOW REQUIRES 30-45 MINUTES TO EXECUTE ONCE THE DATA ARE DOWNLOADED.

The GDAL Warp And Projection actor “stretches” or “warps” geospatial projections from one cartographic
projection to another (in the GDAL-h1k_NS workflow, the actor converts Lambert Azimuthal Equal Area
coordinate system projections to a format that uses a latitude/longitude system). The actor uses GDAL to
perform this operation. GDAL is a translator library for raster geospatial data formats. For more information
about GDAL, see http://www.gdal.org/index.html.

The GDAL Warp And Projection actor’s inputParams and outputParams parameters specify the
format for the coordinate system (Figure 6.31). The parameter values must be of a form used by the GDAL
Warp utility. See the -s_srs and -t _srs parameters of the GDAL Warp utility for more information
about accepted forms: http://www.remotesensing.org/gdal/gdalwarp.html.

198

http://www.gdal.org/index.html
http://www.remotesensing.org/gdal/gdalwarp.html

Chapter 6 — Working with Data Sets

Edit parameters for GDAL Warp and Projection2
2 nout . :
- r/ inpukt params: +proj=laea +lat_0=45 +lon_0=-100 +x_0=0 +y_0=0
oukput params: +proj=latlong
oukput Farmat: GTiff
Cache options: Carhe Files buk Preserve Location |
Commit] l Add] l Remove] [Restore DeFauIts] l Preferences] l Help] [Cancel

FIGURE 6.31: THE PARAMETERS OF THE GDALWARPANDPROJECTION ACTOR. INPUTPARAMS AND OUTPUTPARAMS MUST BE
SPECIFIED IN A FORMAT USED BY THE GDAL WARP UTILITY.

The GDAL Format Translator actor also uses the Geospatial Data Abstraction Library to convert the file
format of spatial data (in the GDAL-h1k_NS workflow, the actor converts a GEOTiff to ASC raster grid). The
output type, format, and cache options are specified with the actor’s parameters (Figure 6.32).

The Cache options specify whether the output should be copied to the cache (“Copy files to cache”),
copied to the cache as well as the directory where the input raster is stored (“Cache files but preserve
location”), or not cached (“No caching”). If “No caching” is selected, the actor will not cache the translated
file and will ignore all previously stored cache items. Select this option to force the actor to perform a
translation even if the input file was previously translated and cached.

Edit parameters for GDAL Format Translator2
2 . :
“"‘1‘/ output type: Biyke 7
oukput Formak: AaalGrid v
Cache options: iCache Files but Preserve Location V
Commit] l Add] l Remove] [Restore DeFauIts] l Preferences] l Help] [Cancel

FIGURE 6.32: THE PARAMETERS OF THE GDALFORMATTRANSLATOR ACTOR.

Also of interest are the Grid Rescaler actor and the Merge Grids actors. The Grid Rescaler actor ensures that
spatial data files have a consistent resolution and extent. Grid Rescaler parameters are used to set the x
and y values for the lower left corner of the output grid, the cell size, and the number of desired rows and
columns (Figure 6.33). Either the “Nearest neighbor” or “Inverse distance” weighted algorithms can be
used to calculate output cell values.

If the “Use Existing File” checkbox is selected, the actor will check to see if a file with the output file name
already exists. If so, the actor skips all actions except for returning the existing file name (i.e., the actor
does not “re-translate” the source data). Selecting the “use Existing File” parameter can help avoid lengthy
rescaling calculations that have already been completed in prior runs. If the checkbox is not selected, any
existing output file with the same name will simply be overwritten.

Note also the “use disk storage” checkbox. If this is checked, disk files are used for calculations, allowing
the processing of very large data grids. Otherwise, all data is placed in memory (RAM), Under this option,
calculations are much faster, but a workflow may require more memory than is usually available.

199

Chapter 6 — Working with Data Sets

Edit parameters for Grid Rescaler2
“'?J‘/ xllcarmer: -180.0

ylicorner: -90.0

cellsize: 0.1

NLMFES 1800

numcols: 3600

algarithm: Mearesk Meighbor ™
outputFilehame: $ResultDirectoryMNewTest M, asc
use Existing File:

use disk storage (for large grids):

Commit l l Add] l Remove] [Restare Defaults] [Preferences] [Help] [Cancel

FIGURE 6.33: PARAMETERS OF THE GRID RESCALER2 ACTOR. NOTE THAT THE “USE EXISTING FILE” PARAMETER HAS BEEN
SELECTED, INSTRUCTING THE ACTOR TO RETURN THE FILE NAME OF AN EXISTING OUTPUT FILE IF ONE EXISTS.

Merge Grid actors are used to combine two geospatial image files. The actor merges files according to a
specified merge-operation (e.g., average, add, subtract, mask, or not_mask), and outputs the name of the
merged file. The actor can be used to combine several regions into a large region—combining a grid
covering North America with one for South America to create a raster grid for the western hemisphere, for
example, or to “mask” certain areas of the map that are not relevant for an analysis.

For more information about working with geographic information, see Chapter 8.

6.9 USING GENE AND PROTEIN SEQUENCE DATA

The workflow in Figure 6.34 demonstrates how to process genetic sequence data retrieved from the DNA
Data Bank of Japan (DDBJ)?%. The sequence is saved in the file sampleEntry.xml. The workflow displays the
sequence in three different ways: in its native format (XML), as a sequence element that has been extracted
from the XML format, and as an HTML document that might be used for display on a web site. The latter
two operations are performed using a composite actor that hides some of the complexity of the underlying
operations.

3 http://www.ddbj.nig.ac.jp/

200

http://www.ddbj.nig.ac.jp/

Chapter 6 — Working with Data Sets

SDF Director e datadir: property("outreach.workflowdir")+"demos/getting-started"

XML Entry Display

File Reader Sequence Getter Using XPath

Sequence Display

| TI

XML Entry of Gene, Sequence String

HTML Generator Using XSLT

HTML Display
HTML Output

-

K| Sequence Display E]@_‘

File Tools Help

{<AEQUENCE>cacctggagaaactiotgoactgogoac I,_A_

K HTML Display M= =<

File Tools Help |

<form method="past" aq KIXML Entry Display [;]@E
<h>Proogy Fle Tools Help
<h>Datall wolECULAR FORM> linear</MOLECULAR FORM|?
<h>0uersy =t -
W <DIVISION>EST</DIVISION> .
“INPUT T o0 42T UPDATE>11-MAT-1997</LAST UPDATES -
£] .| </ form: == == :
rfh‘:'d?}{fhtml} <DEFINITION>zk63d03.51 Soares pregnant
CACCESSTON:AAD4511% </ ACCESS ION>
e <VERSICN>AA045112 . 1</ VERS ION>
£ |

<KEYWORDS>EST. </ KEYWORDSE >

v

I_ij | (»]

FIGURE 6.34: ACCESSING GENETIC SEQUENCE DATA IN AN XML FILE. THE WORKFLOW DISPLAYS THE XML FORMAT IN WHICH THE
DATA IS STORED, THE GENE SEQUENCE, AND AN HTML DOCUMENT THAT COULD BE USED FOR DISPLAY ON A WEB SITE.

The workflow in Figure 6.34 can be found in the outreach/workflows/demos/getting-started directory, and
step-by-step instructions for using and recreating it are included in the Getting Started Guide.

201

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

7 USING REMOTE COMPUTING RESOURCES: THE CLUSTER, GRID, AND WEB
SERVICES

Grid computing has emerged as a dominant Internet computing model in the past decade. The word grid
was chosen by analogy with the electric power grid, which provides pervasive access to power (Foster &
Kesselman 1999), and captures the early grid vision of providing unlimited access to computational power.
Sharing is conditional and secured yet dynamic, and includes peer-to-peer access, where individual nodes
are capable of acting as both client and server. Data grids enable sharing of data and information resources,
while computational grids support data-intensive computing. A service is a component within the model
that provides a particular function through a simple remote invocation mechanism. Through the
introduction of Web and Grid services, many new resources for different scientific domains are becoming
available. 24

Grid technologies have captured attention because of their capability of providing interactive collaboration
between widely dispersed individuals and institutions, global data management services, and sharing of
computational resources (Foster et al. 2001). The Grid provides mechanisms for harnessing computational
resources, databases, high speed networks and scientific instruments, allowing users to build innovative
virtual applications. Such virtual applications are synthesized by combining different components on
multiple computational resources. 26 A very common scenario is the following: a user needs to copy (or
stage) a set of files from one resource (e.g., the local environment) to a remote resource, run a
computational experiment on that remote resource, and then fetch the results back to the local
environment or copy them to another resource/database. %’

Kepler has a number of actors that allow scientists to access remote resources in many useful ways—from
the Web Service actor, which can execute a remotely stored application, to the suite of SRB actors that
facilitate remote data storage, search, and access, to the Globus actors that allow users to send a job to a
host for remote processing. In this chapter, we will look at a number of examples of scientific workflows
that use various types of grid actors to take advantage of the increased processing, storage capacity, and
resources provided.

Notes: Globus actors introduced in sub-section 7.1.3 and 7.3.2 are not included in default installation of
Kepler 2.0. These actors may also be updated according to new Globus Toolkit versions. The detailed
documentation on the up-to-date status of these actors and how to add these actors into Kepler 2.0 can be

24 Foster, |. and C. Kesselman (1999). The Grid, Blueprint for a New Computing Infrastructure . Morgan

Kaufmann Publishers, Inc.

25 Foster, I., C. Kesselman and S. Tuecke (2001). The anatomy of the Grid: enabling scalable virtual

organizations. International Journal Supercomputer Applications, 15, 200-222.

%6 Abramson, David, Jagan Kommoneni, and llkay Altintas. Flexible IO Services in the Kepler Grid Workflow

System. First International Conference on e-Science and Grid Computing (e-Science'05) pp. 255-262.

27|, Altintas, A. Birnbaum, K.K. Baldridge, W. Sudholdt, M. Miller, C. Amoreira, Y. Potier, B. Ludaescher.
A Framework for the Design and Reuse of Grid Workflows. in Proceedings of Scientific Applications of
Grid Computing: First International Workshop, SAG 2004, in series Lecture Notes in Computer Science,
pp. 119-132. Springer-Verlag GmbH, 2005. ISBN 3-540-25810-8.

202

http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/e-science/&toc=comp/proceedings/e-science/2005/2448/00/2448toc.xml

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

found at https://kepler-project.org/developers/interest-groups/distributed/technical-
documentation/enable-globus-actors-in-kepler-2.0.

7.1 DATA MOVEMENT AND MANAGEMENT

Access and management of remote data are basic functions in distributed Grid computing. There are several
methods for moving data from one location to another, e.g., GridFTP, SRB put/get, scp, and others. GridFTP
is a secure data transfer protocol optimized for wide-area networks. The SDSC Storage Resource Broker
(SRB) is a client-server middleware that provides a uniform interface for connecting to heterogeneous data
resources over a network and for accessing replicated data sets, e.g., based on metadata attributes. scp is
a shell command that allows users to copy files between systems quickly and securely, without the need
for expertise in Grid systems. Such a tool can be as helpful in some workflows as any of the other file transfer
mechanisms, even for data that will be used by a Grid job.?

In this section, we will look at an example of each of these methods for moving data around on the grid.

7.1.1 SAVING AND SHARING DATA ON THE EARTHGRID

The EarthGrid is a distributed network providing scientists access to ecological, biodiversity, and
environmental data and analytic resources. The grid can be used to store data, or to model or analyze it via
remote EarthGrid services.

To search the EarthGrid for data sets, type a query into the Search field under Kepler’s Data tab. Kepler will
automatically download the dataset and output it in the specified format when the data set is dragged onto
the Workflow canvas. For more information about downloading EarthGrid data sets, please see Chapter 6.

To upload data to the EarthGrid, use the EcogridWriter actor, which writes a data file and the EML metadata
describing that data file to a remote grid repository. Ecological Metadata Language (EML) is a standard set
of terms and definitions used to describe ecological data.?° For example, EML metadata might contain
information about a data set’s units of measurement, date of collection, location, etc. Although an EML
schema document can be quite complex, several easy to use tools have been created specifically to help
users create EML: Morpho, for example, is available from
http://knb.ecoinformatics.org/software/index.jsp.

The workflow in Figure 7.1 is used to write a data file (build.xml) to the EarthGrid. The name of the data file
is passed to a MetadataSource actor, which integrates EML metadata with a data file and then sends the
package to the EcoGridWriter.

28 http://users.sdsc.edu/~ludaesch/Paper/sag04-kepler.pdf
29 EML specification, http://knb.ecoinformatics.org/software/eml/eml|-2.1.0/index.html

203

https://kepler-project.org/developers/interest-groups/distributed/technical-documentation/enable-globus-actors-in-kepler-2.0
https://kepler-project.org/developers/interest-groups/distributed/technical-documentation/enable-globus-actors-in-kepler-2.0
http://knb.ecoinformatics.org/software/index.jsp
http://users.sdsc.edu/~ludaesch/Paper/sag04-kepler.pdf
http://knb.ecoinformatics.org/software/eml/eml-2.1.0/index.html

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

SDF Director

Display

String Constant

Ecogrid Writer
B> build-area /build. xm|

/

Metadata Source

String ConstantZ
q'> test workflow

F:

Display?2

FIGURE 7.1: WRITING A DATA FILE TO THE EARTHGRID

In addition to the name of the data file, the MetadataSource actor can receive up to two optional strings
through its parameterlin and parameter2ln ports. These values, if specified, will replace the substrings
“ PARAM1_"” and “_PARAM2_" in the metadata, allowing things like the package title or id to be
dynamically changed in a workflow. The EML metadata is pasted into the MetadataSource actor’s
parameters (Figure 7.2)

Edit parameters for MetadataSource
b ; :
\.“/ ML Metadata: <?xml wersion="1.0"7> EA.;
<eml:ewml packageld="asdf.4.1" systew="knb" xmln:
<dataset>
{title> Minimal Package with Data</ i
<Ccreator> el 1 dua 1 ame > <surlame>Higgins </ surl

<abstract><para>Thi=s i=s an abstract of the pack:
woontactr<individualNamer><surNamer>Higgins</ surl:
caccess authiystem="knkb" order="denyFirst"><zll«
<dataTable id="11177495255359">

I{entit.‘nga.me>TestTa.b|le<;’entit.‘g-'Na.me> v
3 R—T— [
fFiringsPerIteration: '1 ". N i
[Commit: l [Add] [Remowve] [Restore DeFauIts] [Preferences] [Help] [Cancel

FIGURE 7.2: EML METADATA IS PASTED INTO THE METADATASOURCE ACTOR’S XML METADATA PARAMETER. THE TEXT
PARAM1 WILL BE REPLACED WITH THE VALUE PASSED TO THE ACTOR VIA THE PARAMETER1IN PORT (“KEPLER WORKFLOW
TITLE”).

The EcoGridWriter actor connects to the EarthGrid using a user’s credentials, which are input via the actor’s
parameters (Figure 7.3). You must register with KNB in order to upload data. To register, please go to
http://Idap.ecoinformatics.org/cgi-bin/Idapweb.cgi?cfg=knb. In the userName parameter, type your user
name after “uid=" and your organization after “o=". Specify your password for the passWord parameter
beneath.

204

http://ldap.ecoinformatics.org/cgi-bin/ldapweb.cgi?cfg=knb

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

Edit parameters for EcoGridWriter
__*/ metadatallestination: http: jfecogrid, ecoinformatics, org knb/services Put Service
authenticationlIRL: http:iecogrid. ecoinformatics. orafknb/servicesAuthenticationService
userklame: uid=tan,0=NCEAS, dc=ecoinformatics, dc=org
passiord: enter password here
Commit l l Add] l Remaove] ’Restore Defaults] [Preferences] [Help] l Cancel

FIGURE 7.3: ENTER USERNAME AND PASSWORD TO ACCESS THE EARTHGRID

The EcoGridWriter actor outputs the document IDs of the metadata and data files (e.g.,
doc.1190394793046.1 and doc.1190394793078.1), which can be used to reference the data in the future.
Once a data set is uploaded, you or your colleagues can access it via Kepler’s data tab. Simply search for the
data set by its title, or a portion of the title (Figure 7.4).

ERSEERRNOE =R

! Components Data Outline | » ! Workflow |

Search Data

‘Q minimal N (search)
Sources Cancel

Minimal Package with Data

Minimal Package with Data 1

Minimal Package with Data 2 SDF Director
Minimal Package with Data 3

Minimal Package with Data 4

Minimal Package with Data 5

Minimal Package with Data 6

Minimal Package with Data 7 Display
Minimal Package with Data & String Constant

Minimal Package with Data 9 " -
¢ i> build-area/build.xml

Minimal Package with Data 10
String Constant2

Ecogrid Writer

/

Metadata Source

Minimal Package with Data 11

Minimal Package with Data 12

Minimal Package with Data 13 [> test workflow Display2
Edit parameters for Metadata Source
i XML Metadata: <7xml version="1.0"7>
— <eml:eml packageld="asdf.4.1" system="knb" xmlIns:eml="eml://ecoinformatics.org/eml-2.0.0" xmlnsnm
& <dataset>
| <titlezMinimal Package with Data=/title>
| <creator> <individualNdame> <surName>Higgins </surName> </individualName> </ creator>

<abstract> <para>This is an abstract of the package </para> </abstract>

<contact><individualName> <surName>Higgins </surName> < findividualName> </contact>

<access authSystem="knb" order="denyFirst"> <allow=> <principal>public </principal > <permission=>reac
<dataTable id="1117749528859">

<entityName:=TestTable</entityName:

LI

FIGURE 7.4: SEARCHING FOR A DATASET UPLOADED TO THE EARTHGRID. IN THIS CASE, THE TITLE OF THE DATASET (SPECIFIED IN
THE METADATA) IS “MINIMAL PACKAGE WITH DATA.”

7.1.2 SecURE CoPY (scP)

Sometimes the easiest way to move data from one place to another is with a simple scp (“secure copy”)
command. You can use the ExternalExecution actor to call a local scp program, or use the SSHFileCopier
actor to securely perform the file transfer (Figure 7.5). Note: Windows users may need to install third-party
software in order to use scp.

205

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

SDE Director # Source: local:a.bd
#Target: localhost22:tmp/sshfilecopierexample dat
S5H File Copier Display

[+ ey EXPTESSION
r Emrl succ 7 "OK" : arror

FIGURE 7.5: USING THE SSHFILECOPIER ACTOR TO SECURELY COPY FILES.

The SSHFileCopier can be used to copy files and directories to or from a path. Either the source or target
can be a remote path in the form [[user@]host[:port]:]path (e.g., john@farpc:/tmp/foo.txt or
john@farpc:2222:/tmp/foo.txt). The other path must be a local path in the form “local:path” or simply
“path” (local:foo.txt or foo.txt). Both the source and target are specified in the SSHFileCopier actor’s
parameters (Figure 7.6)

Local paths are either relative to the user’s home directory (when specified local:path) or the current
directory (when specified simply by a path).

To copy a directory, you must check the SSHFileCopier’s recursive parameter (Figure 7.6). If the target path
is empty, it is replaced with “.”

Edit parameters for 55H File Copier E
P . "
\,_?' sourCe: john@farpe-data
target: W ol b Exct!
class: org.kepler. actor ssh, FileCopier
SemanticType00: wrn:lsid: bocalhostzonko: 1: 1 #ExtemalExecutionEnvironmenkActor
semanticTypell: wrnilsid: localhostzonto: 2: 1 #UnizCommand
£ Comme [dd || remove | [Restore Defaults | [Preferences | | Help |[cacel |

FIGURE 7.6: CHECK THE RECURSIVE PARAMETER IF COPYING A DIRECTORY.

An actor, called GenericFileCopier, is to copy files/directories between a local and remote machine or
between two remote machines, using scp, sftp, bbcp or srmlite protocol. The actor uses the SSH protocol
to connect to remote hosts. As shown in Figure 7.7, the workflow will copy a source file from a windows
machine to a remote Linux machine, setting the protocol parameter to “scp”.

206

mailto:john@farpc:/tmp/foo.txt

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

SDFDirector

Source File
[# d\testCopylitest.txt

Display

GenericFileCopier

StringConstant2
I# fulhome2fjianwultestitestCopyltest-3.txt

FIGURE 7.7: USING THE GENERICFILECOPIER ACTOR TO SECURELY COPY FILES.

7.1.3 GRIDFTP

The Globus Toolkit, developed by the Globus Alliance, is a leading instance of Grid software. It addresses
the common problems that arise when building distributed-system services and applications: security,
information infrastructure, resource management, data management, communication, fault detection, and
portability. The Toolkit’s core services, interfaces, and protocols allow users to access remote resources as
if they were located within their own machine room, while simultaneously preserving local control over
who can use resources and when. 3

GridFTP is a high-performance, secure, reliable data transfer protocol optimized for high-bandwidth wide-
area networks. It is developed by the Globus Alliance and is based upon the Internet FTP protocol. GridFTP
uses basic Grid security on both control (command) and data channels. Other features include multiple data
channels for parallel transfers, partial file transfers, third-party (direct server-to-server) transfers, reusable
data channels, and command pipelining. For more information, please see the Globus website,
http://www.globus.org/grid_software/data/gridftp.php.

The Kepler component library contains several actors that can be used for GridFTP: FileFetcher, FileStager,
GridFTP, UpdatedGridFTP and GridFTPCopy. The FileFetcher and FileStager actors work much like the Get
and Put operations of the FTPClient actor, only these actors upload or download a set of files between the
local system and a remote Globus host. The GridFTP and UpdatedGridFTP actors are used to fetch and stage
files from and to any Globus host (i.e., not necessarily the local system).

In order to access the Globus machine, the FileFetcher and FileStager actors must use a proxy certificate
provided by the GlobusProxy actor (Figure 7.8). A certificate allows the actors to access the Grid. To
generate a certificate, users must have a Globus user certificate and key. These credentials are issued by a
trusted Grid authority, called a Certificate Authority (CA) and are stored on your local system (usually as
“usercert.pem” and “userkey.pem”). The GlobusProxy actor references these credentials with its

30 | Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems. IFIP International
Conference on Network and Parallel Computing, Springer-Verlag LNCS 3779, pp 2-13, 2006.

207

http://www.globus.org/
http://www.globus.org/
http://www.globus.org/grid_software/data/gridftp.php

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

parameters (as well as an optional passphrase used to decrypt the key file) and uses them to create a proxy
certificate, which is used by all downstream Globus actors.

SDF Direclor

Globus Proosy

File Fetcher

Display

String Constant
[} ITENP M p. b TEMPem phim L TEMPAMp.am|

I Edit parameters for Globus Proxy

|
‘_‘_?/ cerk File: Co\lobusiucarcart pam

ke il C\glabusiusarkey, pesm
passphrase: -
clags: arg.renisarkflos, GlobasProsy
semanticType00d: wrnizbsid:bocalhost zonbo: 1 11 #GridFunctiondctor
samanticTypell1: wrnzhsid: boealhost :onka:z: 1 #GrdFunctian
l Commit] | Add | l Remove | [Fla:stu:-rs I}efa.its] [Preferences] | Heldp] | Cancel]

FIGURE 7.8: THE FILEFETCHER ACTOR USES A PROXY CERTIFICATE PROVIDED BY THE GLOBUSPROXY ACTOR TO FETCH FILES FROM
A GLOBUS SERVER.

In the workflow in Figure 7.8, the files to fetch are specified via the FileFetcher actor’s filesToGet port. A
StringConstant actor specifies the names of three files. Multiple files are separated by a semicolon “;”.The
FileFetcher actor stores the fetched files in the location specified by its DestinationDirectoryPath parameter
and outputs the file paths of the fetched files once the operation is complete.

The GridFTP and UpdatedGridFTP actors can also be used to fetch and stage files to a Globus server, only
the files to fetch are specified as parameters (Figure 7.9) and the actors can be used to move files between
any two Globus hosts. The Full path to source file parameter specifies the name of the file to fetch, and the
Full path to destination file parameter specifies the location in which to put the file. In addition, the Source
hostname and Destination hostname parameters specify the names of the Globus hosts to fetch from and
save to, respectively. The GridFTP and UpdatedGridFTP actors also require a certificate generated by the
GlobusProxy actor. The certificate must be provided via the actor’s input port.

208

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

Edit parameters for GridFTP
:{/ Source hostname: "griddle. sdsc.edu”
Full path ta source fils: "letc/passwd"
Destination hostname: "lacalbost”
Full path ta destination file: "Itmp/passwd, griddle”
class! arg. nmivwarkflow, GridF TR
semanticType00; urn:Isid:Iogﬁﬂmmmnnctor
semanticTypel1: urn:lsid:localhost:onto:2: 1 #WebService
semantic TypeZz2: urn:lsidilocalhost:onto:2: 1 #GridFunction
Carnimik l ’ add] ’ Remove] ’Restnre Defaults] [Preferences] [Help] ’ Cancel

FIGURE 7.9: THE PARAMETERS OF THE GRIDFTP ACTOR.

The parameters in Figure 7.9 specify that a file (/etc/passwd) from the remote Globus host
“griddle.sdsc.edu” be fetched and stored on the local system. Note that files can be fetched and placed on
any Globus host—one could, for example, fetch files from one remote host and place them on another
remote host.

The GridFTPCopy actor can also be used to fetch and stage files to a Globus server, only the files to fetch
are specified as parameters (Figure 7.10) and the actors can be used to move files between any two Globus
hosts. The difference between this actor with the above actors is that the credential needs to be given by
MyProxy actor (the detailed MyProxy actor can be found at section 7.3.2.1). The Full path to source file
parameter specifies the name of the file to fetch, and the Full path to destination file parameter specifies
the location in which to put the file. In addition, the Source Host and Destination Host parameters specify
the names of the Globus hosts to fetch from and save to, respectively. The output of the actor is the full
path to the destination file.

SDF Director

Source Host
[{> griddle.sdsc.edu

Full path to source file File Writer

Destination Host
> localhost

Full path to destination file

J

Y

FIGURE 7.10: THE GRIDFTPCOPY ACTOR USES A PROXY CERTIFICATE PROVIDED BY THE MYPROXY ACTOR TO FETCH FILES FROM A
GLOBUS SERVER.

209

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

7.1.4 STORAGE RESOURCE BROKER (SRB)

The SDSC Storage Resource Broker (SRB) is a Grid storage management system providing data access,
transfer, and search functionality, as well as persistent archiving (usually for files). Every user has a home
directory (or “collection”) where the user can read, write, or create-sub collections; users grant permission
to their home collection to other users. In addition, project-level collections can be shared by users and
groups. SRB collections use a “logical name space” that maps logical paths consisting of collections
(directories) and individual data objects (files) to physical files stored on different devices. Users see and
interact with the logical paths, and the physical location is handled by the SRB system and administrators.
Files and datasets have associated metadata, which determine where the data are physically located and
who has access to the data, as well as user-defined metadata, which contains information about the data.
For more information about SRB and its integration with Kepler, see
http://www.sdsc.edu/srb/index.php/Main_Page and http://www.sdsc.edu/srb/index.php/Kepler.

To get data from an SRB system, use the SRBSGet, SRBStreamGet, or SRBGetMetadata actors. The SRBSGet
actor fetches data files from an SRB system, the SRBStreamGet actor reads a file stored on an SRB system
and outputs its contents as a series of bytes, and the SRBGetMetadata actor retrieves and outputs (as a
string) user-defined metadata for a SRB dataset or collection. To upload data to an SRB system, use the
SRBSPut or or SRBStreamPut actor.

Users must have a valid SRB account in order to connect to the SRB system and use the SRB actors. To
obtain an account, contact your local SRB system administrator. If you do not have a local administrator,
applications can be made to srb@sdsc.edu. To use these actors, users usually also need make sure that
both the SRB host server and resource server, which are specified at the srbHost and srbDefaultResource
attribute of the SRBConnect actor, are running. One way to test these servers is using SRB client commands
http://www.sdsc.edu/srb/index.php/Scommands.

All workflows using SRB actors require an SRBConnect actor, which connects to a San Diego Supercomputer
Center (SDSC) Storage Resource Broker (SRB), where users can upload, download, or query data. The
SRBConnect actor connects to an SRB file system and returns a reference to the system. This connection
reference can be propagated to all actors accessing the SRB workspace, allowing the actors to access the
SRB system. The actor requires the user to specify account information in the connection parameters
(Figure 7.11).

Edit parameters for SRBConnect

‘-?r'} stbHosk: stb.sdsc.edu
stbPort: 7510
stbUsertame: rylserMame
srbPasswd: myPassward
stbHameCalleckion: ipzonefhome/myllsertlame sdsc
stbMdasDomainHome: sdsic
srbDefaulkResource: sfs-tape-sdsc
firingsPerIteration: 1

Cornmit] [&dd] [Remove] [Restore Defaultsl [Preferences l [Help l [Cancel

FIGURE 7.11: EXAMPLE OF SRBCONNECT ACTOR’S PARAMETERS AND SETTINGS.

210

http://www.sdsc.edu/srb/index.php/Main_Page
http://www.sdsc.edu/srb/index.php/Kepler
mailto:srb@sdsc.edu
http://www.sdsc.edu/srb/index.php/Scommands

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

The srbHost, srbPort, srbUserName, srbPasswd, srbDomainHome, and srbDefaultResource parameters
specify user account settings, which are emailed to users when the SRB account is first set up. If you need
this account information, please contact your local SRB system administrator. The srbHomeCollection
parameter specifies the path to the home collection. Each SRB-registered user has a home collection, where
the user can read and write, create sub-collections, and grant access permissions. In general, the SRB home
collection is specified in the following format: /home/<username>.<domain>.

The workflow in Figure 7.12 uses an SRB connection generated by an SRBConnect actor to copy a file from
an SRB file system to a local directory. If successful, the SRBSGet actor outputs the status (i.e., “success”)
via its exitCode port. The file path of the fetched file is output by the fetchedFiles port.

SDF Director

SRBConnect
SRAEFilaSydem

SRB 5Get
File to fetch

SRBFileSystem
Cll.\- “lpzone/homekepler_devsdsclestaccepl..

Local directory for fetched file Satus

FIGURE 7.12: A WORKFLOW THAT COPIES A FILE STORED ON AN SRB HOST TO THE LOCAL SYSTEM. THE PATH TO THE FILE TO
FETCH IS SPECIFIED BY A STRINGCONSTANT ACTOR LABELED “FILE TO FETCH”.

The SRBStreamGet actor works similarly to the SRBSGet actor, only it outputs the SRB file as a sequence of
bytes. To view the user-defined metadata associated with a data file stored on an SRB host, used the
SRBGetMetadata actor. Metadata describes the data and might contain information about unit systems
used by the data, for example, or the extent of the geographic area from which it was collected.

To write data to an SRB host, use the SRBSPut or SRBStreamPut actor (Figure 7.13).

211

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

SDFE Director

SREB Connect
SRBFileSystem

Dataset to upload Display2
{# EcogridWriterTest.xm|
SRB SPut
. m UploadedFiles
/ iiCode
Remote Directory Display

{# "pzonehome/kepler_devsdsc!

FIGURE 7.13: USING THE SRBPUT ACTOR.

In the above workflow, the SRBConnect actor is used to create a connection to the SRB server. You must
have an SRB account. To request an account, or if you require help with an existing account, please see the
SRB website.

The name of the dataset to upload to the remote server as well as the directory in which to place it are
specified with constant actors (Dataset to upload and Remote Directory, in the above workflow). Once the
dataset has been uploaded, the SRBSPut actor will output the new remote file path as well as the status
(e.g., “Success”).

The suite of SRB actors also includes components designed to help manage SRB systems and execute
commands such as registered Web services. The SProxy and SRBProxyCommands actors execute a proxy
command on a remote SRB system and output the command result along with an exit status. Only a
predefined set of SRB commands can be executed via the SProxy actor: list directory, copy or move a
directory or file, remove, replicate, create or remove a directory, change permissions (to execute a broader
range of commands, use the SRBProxyCommands actor). The SProxy actor executes the command specified
by its parameters (Figure 7.14). Parameters qualified by parenthetical comments only apply to specific
commands, e.g., Sls (for list directory) or Srm (for remove).

212

http://www.sdsc.edu/us/resources/srb/getstart.html#getting_account

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

Edit parameters for SProxy
9 —

_.(/ command: list direckory R
oukput each path separately (for sls): 7]
forward parent direckory For SrmiSrmdir):]
-t (For Srra): IF]
hasTrigger:]
class: org,sth.SProxy
semantic Type00: urn:lsid:localhost:onto: 1:1#SREExternallnputctor
semanticTypel 1: urn:lsid:localhost:onto: 2: 1 #DatabaselnputFunction
semanticTypezz: urn:lsid:localhost:onko: 2: 1 #Database QukpukFunction

Commit l l Add] l Remaove] ’Restore Defaultsl [Preferences l [Help l l Cancel

FIGURE 7.14: THE PARAMETERS OF THE SPROXY ACTOR.

Sproxy actor commands include:

List directory: List the contents of a remote directory. The path to the directory must be input as a string
(e.g., /data/2007/). By default, contained file paths are output as an array. To output each file separately,
select the output each path separately (for Sls) parameter. When this parameter is selected, one file path
will be output with each iteration.

Copy/Move: Copy or move files to a new path. The actor outputs the new file paths and recursively
copies/moves directories. The path to the original file or directory must be input as a string (e.g.,
/data/2007/). In addition, the new path must be specified via the newPath port. To reveal this port, right-
click the SProxy actor and select Configure Ports (Figure 7.15). Check the Show Name checkbox beside the
newPath port. The actor outputs an array of the new file paths.

[£| Configure ports for SProxy E]@

Marme Input | Ou... | Mulk... Type Direction Show Mame Hide Units

SREFileSystem [] [] DEFALLT Fl [
piath [v] [] |] DEFALILT [v] F [
newPath [v] [] | DEFALLT C F]

presn L ELLO LT S

sosh b [l]

FIGURE 7.15: TO REVEAL THE NEWPATH PORT, CHECK THE SHOW NAME BOX BESIDE THE PORT.

Remove/Remove directory: Remove files/directories. To remove directories recursively, select the —r (for
Srm) parameter. Select forward parent directory (for Srm/Srmdir) to output an array of the removed file
and directory paths. The path to the original file or directory must be input as a string (e.g., /data/2007/).

Create directory: Create a new directory. The name of the new directory must be input as a string (e.g.,
/data/2007/). The actor outputs the new directory path.

213

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

Replicate: Replicate a file/directory to a new resource. Replication is the process of making a replica, or
copy, of something. Replication in SRB does not distinguish between the original and the copy. Therefore it
is possible to delete the original and continue working with the copy (also called Migration). Replication in
SRB serves a number of purposes: disaster protection and recovery, migration to new storage technologies,
and load balancing.3! The path to the original file or directory must be input as a string (e.g., /data/2007/).
In addition, the new path must be specified via the newPath port. To reveal this port, right-click the SProxy
actor and select Configure Ports (Figure 7.15). Check the Show Name checkbox beside the newPath port.
The actor outputs an array of the new file paths. The actor outputs the path of the new resource.

Change mode: Change the permissions of a file or a directory. Access permissions allowed are write (w),
read (r), all (a), annotate (t), none (n), give curator (c) permission or change owner (0).3> The path to the
file or directory must be input as a string (e.g., /data/2007/). In addition, a new permission string (e,g., rw),
user name (of the user being granted permissions) and mdasDomain (of the person granting the
permissions) must be specified via ports. The mdasDomain (metadata domain) contains password
information (e.g., ~.srb/.MdasAuth). To reveal the relevant actor port, right-click the SProxy actor and select
Configure Ports (Figure 7.15).

The workflow in Figure 7.16 uses an SProxy actor to list the contents of the kepler_dev home directory on
an SRB system. An SRBConnect actor is used to connect to this system and output a reference to it. The
SProxy actor reads the SRB reference as well as the name of the directory to list (e.g.,
“/pzone/home/kepler_dev.sdsc/”), and outputs an array of contained files and directories.

SOF Diracior £ —————1
K srbProoy Test. Status r_:“EEa
Flo Tools Help

Ism: cess

SRBConmec

dndFilas

GProxy a nnlCods T I
liad dirgctary

Direciony Listing

Gonstnmew
;}[‘-pmnp‘hnmn-‘knnlrr_dc‘.‘t.r.lsr.'j :

K
Fis Tooks Help

dpoons/ home kepler_dew. =d=c/email Ext

Jpaona/ home keple l:_d.:'\.- =dac/eamaillopyl. ExE
Jpzone/ hope keple :__d.:'.' JEdEc/ LeS, EXL
Jpaone/home/ kepler _dev, 2dac/test
fpaone/homs/Kepler dev, zdac/myrSREJargonTeathic
fpaone/ home/ Kepler dev, 2dac/ arbhemo

S peoneS home/ kepler dev.adacs papera

/pRone) hooe / kep ler_dev.sdac/ srblesoTest

FIGURE 7.16: USING SPROXY ACTOR TO PASS A COMMAND TO AN SRB SYSTEM.

31 Nirvana website, http://www.nirvanastorage.com/index.php?module=htmlpages&func=display&pid=32

32 SRB Manual, http://www.sdsc.edu/srb/index.php/Schmod

214

http://www.nirvanastorage.com/index.php?module=htmlpages&func=display&pid=32
http://www.sdsc.edu/srb/index.php/Schmod

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

The SRBProxyCommands works much like the SProxy actor, only it can be used to execute any command
that is available on the server side. The actor requires an SRB connection reference, a command to execute,
and command arguments. Multiple arguments should be separated by a space. In addition, the name of an
output file can also be specified via either an input port or the actor’s parameters.

For more information and examples of Kepler and SRB, please see the Kepler/SRB user documentation,
https://code.kepler-project.org/code/kepler-docs/trunk/legacy-
documents/user/KeplerSRBUserManual.pdf.

7.1.5 INTEGRATED RULE-ORIENTED DATA SysTEM (IRODS)

iRODS™, is a data grid software system developed by the Data Intensive Cyber Environments (DICE) group
(developers of the SRB, the Storage Resource Broker), and collaborators. The iRODS system is based on
expertise gained through nearly a decade of applying the SRB technology in support of Data Grids, Digital
Libraries, Persistent Archives, and Real-time Data Systems. iRODS management policies (sets of assertions
these communities make about their digital collections) are characterized in iRODS Rules and state
information. At the iRODS core, a Rule Engine interprets the Rules to decide how the system is to respond
to various requests and conditions. iRODS is open source under a BSD license. For more information about
iRODS and its integration with Kepler, see https://www.irods.org/ and
https://www.irods.org/index.php/Kepler.

The DataGridFileTransfer actor has functionality similar to the SRB/IRODS commands, namely Sget, Sput,
iget, and iput. DataGridFileTransfer allows users to copy one or more objects from one local/remote file
system to another local/remote file system. The following actor expects as input a reference to local or
remote file systems support by the Jargon API33, This reference connection is created from the source and
destination URL values. Currently available file system URLs are, file:///myDir/myfile.txt,
irods://username:password@myhost.org:1247/myDir/myfile.txt,
srb://username.domain:password@myhost.org:5544/myDir/myfile.txt, along with
FTP and HTTP URLs.

The workflow in Figure 7.17 uses an DataGridFileTransfer actor to transfer a local file to a directory at one
iRODS server. The SProxy actor reads the file from sourceURL and transfer it to destinationDirectoryURL. Its
outputs are an array of transferred files, and exitCode.

33 https://www.irods.org/index.php/Jargon

215

https://code.kepler-project.org/code/kepler-docs/trunk/legacy-documents/user/KeplerSRBUserManual.pdf
https://code.kepler-project.org/code/kepler-docs/trunk/legacy-documents/user/KeplerSRBUserManual.pdf
http://diceresearch.org/
https://www.irods.org/index.php/SRB
https://www.irods.org/
https://www.irods.org/index.php/Kepler
https://www.irods.org/index.php/Jargon

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

SDF Director

String Constant2
;} file-///tm p/README.txt

DataGridTransfer Display
il
destinationDirectoryURL,

String Constant
l# irods:/ftestuser:-TESTUSER@srbbrick11.sdsc.edu:11247/tempZ...

FIGURE 7.17: USING A DATAGRIDFILETRANSFER ACTOR TO TRANSFER FILES BETWEEN DIFFERENT FILE SYSTEM.

7.2 REMOTE SERVICE EXECUTION

Kepler has several actors that can invoke different types of services for use in workflows—from Web
Services, to REST services, to Soaplab services. In this section, we will look at a few examples of various
remote services and how they are invoked from a workflow.

7.2.1 USING WEB SERVICES

The WebService actor executes a Web service—a computer program that runs on a remote host and
communicates using a standardized protocol. The actor invokes the Web service and broadcasts the
response through its output ports.

Each Web service is described by a Web Service Description Language (WSDL) file. WSDL is a format for
describing network services--from simple eBay watcher services to complex distributed applications. The
WSDL file defines the methods that the service can execute, as well as the type of data the service requires
as input. Public WSDL files are typically available on the Web site of the organization that publishes the
service. Check the WSDL description (you can open the WSDL URL in a browser to view it) to see if the
service uses complex types (you can recognize complex types by the <complexType name=xx> tag
used to declare them in the WSDL file). If the service uses complex types, you must use Kepler’s
WSWithComplexTypes actor; otherwise, use the WebService actor.

The WebService actor accepts the URL of a WSDL file and the name of an operation defined by that file
(such as “getXMLEntry”). Available operations will automatically populate a drop-down menu for
methodName parameter once the URL of a WSDL file has been specified and committed in the wsdlUrl
parameter and the parameters. (Figure 7.18).

216

http://www.w3.org/TR/wsdl

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

Edit parameters for Web Service Actor |
? wesdiLirl: i

&/ - http: jxtr.rig ¢, o/ wsdDDE. wsdl
rrethodharme: | E|
userMame: BasePair
password: Entry
st IFeatures

bedFestures

hasTrigger: try
class: labedFeaturasSeq
semanticType00: urelnfo
semanticTypel 1: urn:lsid:bocalhost :onko: 2:1 #WebService

[Comirik] [Add] [Remane] [Rasbara I'_'IEFa..ﬂs] [Preferences] [Help] [Cancel]

FIGURE 7.18: THE PARAMETERS OF THE WEB SERVICE ACTOR. METHOD NAMES WILL AUTOMATICALLY POPULATE THE DROP-
DOWN MENU ONCE A WSDLURL HAS BEEN COMMITTED.

Once the user has selected and committed a WSDL and operation, the actor automatically configures itself
to perform that operation by creating the necessary input and output ports.

The Web Services and Data Transformation workflow (found in the demos/getting-started directory) uses
the WebService actor to access a genomics database and return a genetic sequence from it, which is queried
using a remote genomics data service. The name of the returned genetic sequence (i.e., the gene accession
number) is passed to the WebService actor by a StringConstant actor named “Gene Accession Number”
(Figure 7.19).

SDF Director

Gene Accession Number

¢ ANDA5112) XML Eniry Display

Sequence Getter Using XPath Sequence Display

XML Ent Sequenc

HTML Generator Using XSLT HTML Display

Errors Sink

XML Input

FIGURE 7.19: USING THE WEB SERVICE ACTOR TO ACCESS A SERVICE AND RETURN A GENETIC SEQUENCE.

217

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

The Web Service actor outputs the gene sequence obtained from the remote server so that it can be
displayed in multiple formats using three different textual Display actors: one for XML (the format in which
the results are returned by default), one for a sequence of elements extracted from the XML, and one for
an HTML document that can be displayed on a website. A Relation is used to “branch” the data output by
the Web Service actor so that it can be shared by all of the necessary components.

The workflow uses two composite actors: Sequence Getter Using XPath and HTML Generator Using XSLT to
process the returned XML data and convert it into a sequence of elements and an HTML file, respectively.
These actors have been created for use with this workflow using existing Kepler actors. Sequence Getter
Using XPath and HTML Generator Using XSLT do not appear in the Components tab. To see the “insides” of
the composite actors, right-click the actor icon on the Workflow canvas and select Open Actor from the
menu.

The resulting workflow and output are shown below (Figure 7.20).

K| .06-UsingWebServicesAndD.... [~ /[O/B4

Fils Tools Help

SDEDkedtr Using Web Services and D} =
<gualifiers name=\"clone_lib}">%c |
<qualifiers name=\"notel">Organ: K| .06-UsingWebServicesAndD. .. [Z]@
/source>
JFEATURES>
Gene Accession Number {<SEQUENCE>Cacct,ggagaaacccccgcactggcac:‘\.
XML Entry Display [[<BASE_COUNT A=Y 47 4" C=yt
SEQUENCErcacctyygagaaacttotgoactyggcact |
/DDBIXHL> 3

fie Tooks Help

b

| 3

Sequence Getter Using XPath Sequence Display il

Sequenc sl ||

HTML Generator Using XSLT . pisplay K| .06-UsingWebServicesAndD. .. g@]
File Tools Help

HTML Cutpul -
“htolr<head-<title>XILT Sample</titlex |
<form method=\"posthi" accion:\"ht,t,p:‘ |
Program: </h><input
K] .06-UsingWebServicesAndD... E]@ Databagze: <inp
Fle Tods Help <bruery: <input r
<INPUT TYPE=Y"submit)’

l\il] ERRORS.
</Eorm>

< /body>< /html>

3 | . [i2]

FIGURE 7.20: THE WEB SERVICES WORKFLOW AND ITS OUTPUT.

The WSWithComplexTypes actor is similar to the WebServices actor, only it has several additional
parameters: inputMechanism and outputMechanism, and, as we mentioned earlier, this actor should be
used when the WSDL definition contains complex types. The WSWithComplexTypes actor automatically
specializes its ports to reflect the input and output parameters of the Web service operation. For simple
Web service types, e.g., string, int, double, etc., the ports are set to the matching Kepler types. For complex
Web service types, the ports are set to XMLTOKEN. When the actor fires, it reads each input port, invokes
the Web service operation with the input data, and outputs the response to the output ports.

218

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

The workflow in Figure 7.21 uses the WSWithComplexTypes actor to return an array of organisms that are
supported by ProThesaurus (“Protein Thesaurus”, which implements a Biological Name and Mark-up
Service for protein names and identifiers®*) Web service.

K K MewWebServiceArrayReturnTest Display - Clw
File Edit ‘View Workflow Tools Window Help EE“E Tools Help
@ @ @ @ ’ ll . * - * w [:::I c; ’ |{ "Human”, "Mouse”, "Rat®, "Yeast"}
. I
{ Components Data Outline Y
SDF Director
Search Components IC
Q 3 (Search)
TTE— —
; Advanc... \ ; Sources WSWithComplexTypes Display
JistOrganismsRetum I T '
: >
All Ontologies and Folders B3 e
» [§ components This workflow lists the supported organisms at the ProThesaurus web service
> j Projects (It tests the array return of the new web service actor)
» jstatistics 1 4l
» [Actors-2_0 Edit patameters for WSWithComplexTypes el
> Directors-2_0
> Opendap-2_0
= sz 0 p-2t ?/ wadl: http:fiservices bio.ifi.lnu.de: 1046 fprothesaurusservices/BiologicalNameService Pwsdl
- method: listOrganisms
inputMechanism: simple
outputMechanism: simple
outputhil: F1
USErname:
password:
timeout: 600000
generatedctors: False
regeneratePorts: False
firingsPerIteration: 1
<
execution finished. [Commit | | Add || Remove] lRestare Defauls | | Preferences | | Help] | cancel

tunn Each comnacta actor conk s

FIGURE 7.21: USING THE WSWITHCOMPLEXTYPES ACTOR TO RETURN SUPPORTED ORGANISMS AT THE PROTHESAURUS WEB
SERVICE.

The URL of the WSDL defining the service is specified in the actor’s wsdl parameter, and a method is selected
(in this case, listOrganisms) from the drop-down menu that is populated when the Web service WSDL is
committed. In addition, the inputMechanism and outputMechanism parameters are set to simple, the
default. When these parameters are set to simple, the actor will behave as previously described, setting
simple-types to their Kepler type equivalent, and complex-types to XMLTOKEN in the workflow.

Set the inputMechanism and outputMechanism parameters to composite to create a composite actor
that contains the XMLAssembler or XMLDisassembler actors needed to build any required complex Web
service type (Figure 7.22). The WSWithComplexTypes >parameters actor in Figure 7.18 was automatically
created and connected to the WSWithComplexTypes actor; this composite actor will accept and combine

all the simple input types (e.g., strings representing the method, organism, etc) into the XML format
required by the Web service.

Changing the inputMechanism parameter back to simple deletes the connected composite actors. (If you
have made changes to the composite actors and don’t want them to be lost, disconnect them from
WSWithComplexTypes before changing the mechanism to simple).

34 http://services.bio.ifi.Imu.de:1046/prothesaurus/

219

http://services.bio.ifi.lmu.de:1046/prothesaurus/

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

S0OF Direcior
Display

method

b nn+henm)

organism

WEWIhComplesTypes
WSWithComplaxTypes *quepieentry

agpres

Siring Constantd
WiwimComglexTypes>paramatars

Swing Constant?
& ASTPGHTINEAVCLHNDRTTIP

— o b

FIGURE 7.22: SET THE INPUTMECHANISM AND OUTPUTMECHANISM PARAMETERS TO COMPOSITE TO AUTOMATICALLY CREATE A
COMPOSITE ACTOR THAT CONTAINS THE XMLASSEMBLER OR XMLDISASSEMBLER ACTORS NEEDED TO BUILD ANY REQUIRED
COMPLEX WEB SERVICE TYPE.

7.2.2 USING REST SERVICES

A RESTful web service (also called a RESTful web API) is a simple web service implemented using HTTP and
the principles of REST.3> The RESTService actor executes a REST service. The actor invokes the REST service
and broadcasts the response through its output port.

The workflow in Figure 7.23 calls a REST service at the Amazon web site, and the configuration information
of the actor is shown in Figure 7.24. The URL of this REST service is
http://developer.amazonwebservices.com/connect/entry.jspa. To invoke the service, users should know
(from the service provider): 1) the service URL; 2) whether its accept “Get” or “Post” invocation, and 3) the
parameters for the service (externalIDand ref are two parameters in the example). The service offers
a “Get” method, so the methodType parameter in the Figure 7.23 is set to “Get”.

The example workflow passes two parameters by name/value pairs. They are separated by a “,” (without
guotes) delimiter that is also defined as a parameter in the dialog box. Its value could be changed to

“n

something else, especially when the user has a parameter value that contains “,” (without quotes).

35 Wikipedia, http://en.wikipedia.org/wiki/Representational State Transfer#RESTful web services

220

http://en.wikipedia.org/wiki/Web_api
http://developer.amazonwebservices.com/connect/entry.jspa
http://en.wikipedia.org/wiki/Representational_State_Transfer#RESTful_web_services

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

SDF Director

String Constant
t1> externallD=14234, ref = featured

FIGURE 7.23: USING RESTSERVICE ACTOR TO CALL A REST SERVICE IN AMAZON WEB SITE.

\?/ serviceSitelURL: http:/fdeveloper, amazonwebservices, comyconnect/entry. jspa
methodType: Get v
Pravide delimiter: s
class: otg.kepler, ackar rest, REST Service
semanticType0: urnlsid:localhost:onta: 2: 1 #WebService
derivedFram: il
Commit] [add] [Remove] [Restore DeFauIts] [Preferences] [Help] [Cancel

FIGURE 7.24: THE PARAMETERS OF THE RESTSERVICE ACTOR.

7.2.2 USING SOAPLAB SERVICES

Soaplab is a set of Web Services providing programmatic access to command-line tools available on remote
computers. Because such tools usually analyze data, Soaplab is often referred to as an Analysis (Web)
Service. Soaplab services are defined by an API that is the same for all analysis tools, regardless of the
operating system where they run, the manner in which they consume and produce data (e.g., from/to files
or from/to standard streams), and the precise syntax of the underlying command line tools.3®

Kepler’s Soaplab actors can access any derived Web service that is described by Web Service Description
Language (WSDL) and is registered with the European Bioinformatics Institute (EBI). For a complete list of
EBI-registered WSDLs, see http://www.ebi.ac.uk/soaplab/services.

36 Senger, Martin, Peter Rice, and Tom Oinn. Soaplab —a unified Sesame door to analysis tools. Proc UK e-
Science programme All Hands Conference, 2003 - nesc.ac.uk

221

http://www.ebi.ac.uk/soaplab/services

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

The workflow in Figure 7.25 uses a Soaplab service called segret to return a protein sequence from the
EMBL Nucleotide Sequence Database, a nucleotide sequence resource.

SDF Director

SoaplabSendceStarier: segret

SoaplabAnalysis: Run

SoaplabAnalysis: Wait for results

SoaplabChapseOperation: Set Input

Sequence USA

SoaplabChooseResultType: gel sequence

Display

FIGURE 7.25: USING SOAPLAB ACTORS TO LOOKUP A PROTEIN SEQUENCE FROM THE EMBL NUCLEOTIDE SEQUENCE DATABASE.

A StringConstant actor (called “Sequence USA”) is used to pass the input—in this example, a Uniform
Sequence Address (USA)--to the Soaplab service. USAs are a very flexible way of specifying one or more
sequences from a variety of sources (files, databases, etc). The format used in the workflow consists of a
database name followed by an accession number, which is a unique identifier given to a biological polymer
sequence (DNA, protein) when it is submitted to a sequence database.3” For more information about USAs,
please see http://emboss.sourceforge.net/docs/themes/UniformSequenceAddress.html#usa.

The SoaplabChooseOperation actor receives the USA and “prepares” the input for the Soaplab service. The
actor requires the WSDL of the Soaplab service, which is specified via parameters (Figure 7.26).

37 Wikipedia, http://en.wikipedia.org/wiki/Accession_number

222

http://www.ebi.ac.uk/embl/index.html
http://emboss.sourceforge.net/docs/themes/UniformSequenceAddress.html#usa

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

Edit parameters for SoaplabChooseOperation
9
"'\-._‘/ wsdlUrl: hittp: fem. ebi. ac.uk{soaplabiservicesfedit seqret. derived?wsdl
inputsetMethods:
class: org.sdm.spa.SoaplabChooseOperation
semantic Type00: urr:lsid:localhost:onko: 1: 1 #WebServiceAckar
semanticTypel1: urn:lsid:localhost:onto:2: 1 #webService
Commit l [Add] [Remaove] [Restore Defaults] [Preferences] [Help] [Cancel

FIGURE 7.26: THE PARAMETERS OF THE SOAPLABCHOOSEOPERATION ACTOR.

Once a wsdlUrl has been specified and the setting has been committed, the SoaplabChooseOperation actor
will automatically populate the inputSetMethods parameter with a drop-down menu of available “set
methods”, which are used to identify the input (Figure 7.27) so that the Soaplab service can recognize and
use it.

- =

Edit parameters for SoaplabChooseOperation
9
‘“.J"/ wdlUrl: htkp:f fwww . ebi, ac. ukfsoaplab)services edit, seqret . derived?wsdl
inputSetMethods: | i
class: set_feature)
semanticType00: set_firstonly
semanticTypel1: set_osfnr.mat
set_shegin
set_send
Carmnrit] [add l [Remofset_sequence_direct_data
sek_sequence_usa
set_sformat £

FIGURE 7.27: A DROP-DOWN MENU OF INPUT “SET METHODS” THAT IS AUTOMATICALLY GENERATED BY THE
SOAPLABCHOOSEOPERATION ACTOR AFTER A WSDL URL HAS BEEN SPECIFIED AND COMMITTED.

The example workflow uses the set_sequence_usa set method to specify that the input is a USA. If the input
were a fasta formatted sequence instead (an actual protein sequence described in a text-based format),
use the set_sequence_direct_data menu item; other set methods describe additional types of input that
the service accepts: an output sequence format (set_osformat) or the last position to use in the sequence
(set_send), for example. For more information about the types of input that can be set and passed to the
segret service, see:

http://emboss.sourceforge.net/apps/release/4.1/emboss/apps/seqret.html

The WSDL of the Soaplab service must also be specified in the parameters of the SoaplabServiceStarter
actor, which starts the Soaplab service. The actor starts the service by creating an empty job used to execute
the process before the workflow is even run.

The two SoaplabAnalysis actors perform standard Soaplab operations: run and waitFor. Non-standard
operations can be specified and performed as well, provided they are defined in the service’s WSDL file.
See the documentation for individual Soaplab services for more information about defined operations.

223

http://emboss.sourceforge.net/apps/release/4.1/emboss/apps/seqret.html

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

The SoaplabChooseResultType actor “grabs” the desired service output using “get methods”. The actor
generates a list of relevant methods once the WSDL of the service has been specified and committed (Figure
7.28). In this case, the get_outseq method is used to return the protein sequence. By default, sequences
are returned in FASTA format.

Edit parameters for SoaplabChooseResultType: get sequence

9

‘-'-'r'/ wisdlUrl: hitbpe e, ebi, ac, ukfsoaplabyservicesedit, seqret, derived fwsd
outputGetMethods: get_outseq W
class: org.sdm.spa. SoaplabChooseResult Type
semantic Typend: urnilsid:localhost:onke: 1: 1 #WebServiceactor
semanticTypel1: urrelsidslocalhost:onko: 2: 1 #WehService
firingsPerTteration: 1

Cammik] [Add] [Remove] [Restore Defaultsl [Preferences l [Help l [Cancel

FIGURE 7.28: PARAMETERS OF THE SOAPLABCHOOSERESULTTYPE ACTOR. OUTPUTGETMETHODS ARE USED TO “GRAB” THE
DESIRED RESULTS OUTPUT BY THE SERVICE.

If the service executes successfully, the retrieved sequence is displayed by the Display actor (Figure 7.29).

K .soaplabmodel_segret.Display g@

File Tools Help

get_outsed:

FHE13776; X13776 Pseudomonas asruginosa awic and amiR gene for aliphatic amidase regulation
ggtaccgotggecgagoatoctgotogatcaccaccagocgyyogacgggaac tgoacgat
ctacctggogagoctgyageacgagegggt tegottegtacygoge tgagogacagtoac
aggagagyasacggatJogatcgoaccagyagecgyocgotgatogycctgotgrtotoocog
aaacoggocgtocaccgocgatatcgagogotogoacgogtatggogoattgotogoggnoog

Ets ettt e EX-aluts (e Ve fu [(ede [u: [ede g eTe e (le {u g ofede (cludeds Rt T toTede fudode g At ed oo o - Tuded

[t e futs: (e {uds: =Xt wde fo: F=Yudute: e RN ofads: [v dolle it (ot £=T: o LYok of Mut=R ol v (TR N s s O o (o
tacggttoctegtgyyotyetacatytogoacacgooaadyodoyt gatgocgutygte g
agogogocgacgogetgetetgotacecgacecoctacgagggot togagtat togooga »

FIGURE 7.29: THE PROTEIN SEQUENCE OUTPUT BY THE SOAPLAB WORKFLOW.

7.2.3 USING OPAL SERVICES

Opal®® is a toolkit for wrapping scientific applications as Web services, providing features such as scheduling,

standards-based Grid security and data management in an easy-to-use and configurable manner. Opal
toolkit is provided by National Biomedical Computation Resource, University of California, San Diego.

Kepler’s Opal Client actors can access any Web services that are generated by Opal toolkit. For the list of
Web services deployed at opal project, see http://ws.nbcr.net/opal2/services.

38 http://www.nbcr.net/software/opal/

224

http://ws.nbcr.net/opal2/services
http://www.nbcr.net/software/opal/

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

Edit parameters for MEME

servicelIRL: http:/fws.nber.netjopal 2fservices/MEME_4. 1.0
numberOfExtralnputFiles: 0

dass: edu.sdsc.nber.opal. OpalClient

semanticType00: urn:lsid:localhost:onto: 1:1#WebServiceActor
semanticType11: urn:lsid:localhost:onto: 2: 1#WebService
dataSet: At.fa
nmotifs: 3

minw: [

maxw: 50

mod:

minsites:

maxsites:

text:

revcomp:

pal:

Remove] [Restore Defaults] [Preferences] [Help] [Cancel

FIGURE 7.30: AN OPAL CLIENT ACTOR WHERE OTHER PARAMETERS ARE DEPENDENT ON SERVICEURL PARAMETER VALUE.

An Opal Client actor is shown at Figure 7.30, which has service URL and other parameters to run the service.
Other parameters are dependent on the serviceURL parameter value. So users need to firstly fill in the value
of serviceURL parameter, and then click Commit button. After this step, users can double-click the actor
again to get other parameter options.

This workflow perform a MEME MAST computation using
NBCR remote computation capabilities.
Using Opal this workflow send computational intensive tasks
(MEME, MAST) to NBCR cluster (ws.nbecr.net).

PM Director

Modify Input File so that it points to you file with DNA or proteins
sequences which you believe share one or more motifs.

Opal: hitp:/inber.net/softwarefopal/
MEME: http://meme.nbcr.net/

Luca Clementi and Srirarm Krishnan, 2009, NBCR

MEME MEME Cutput Directory

Qutput file from meme Browserl|

= " fleCrlR
baseURL + “meme html m, :

FIGURE 7.31: A SAMPLE WORKFLOW USING CONFIGURED OPAL CLIENT ACTOR, CALLED MEME, TO ACCESS MEME WEB SERVICE
GENERATED BY OPAL TOOLKIT.

A sample workflow using the above configured Opal Client Actor, called MEME, to access MEME Web
service generated by Opal toolkit is demonstrated at Figure 7.31. The file connected to the input of MEME

225

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

actor, called At.fa, will be automatically transferred to the server side and get executed. The base URL
containing the working directory of the running jobs MEME Web service is obtained from the baseUrl
output port of MEME for downstream processing.

7.3 JOB SUBMISSION

Job submission is a common and efficient way to utilize distributed computing resources. Kepler has sets of
actors that can submit jobs to two typical distributed resources: Cluster and Grid. Each set has actors which
can be used for common job operations: create, submit, status check. In this section, we will look at a few
examples of these actors and how they are combined from a workflow to realize the whole lifecycle of job
submission.

7.3.1 CLUSTER JOB SUBMISSION

A computer cluster is a group of linked computers, working together closely so that in many respects they
form a single computer.

The Kepler component library contains several actors that can be used for different Cluster job operations:
JobCreator, JobFileFetcher, JobGetDirectory, JobGetRealloblD, JobManager, JobRemover, JobStatus,
JobSubmitter. The current supported job scheduler includes Condor, Fork, LoadLeveler, NCCS, PBS, SGE, and
LSF.

As shown in Figure 7.32 — 7.35, a common logic for cluster job operations include three main steps: select
job manager according to its type by the JobManager actor, submit job to a cluster by the JobCreator and
JobSubmitter actor, check cluster status by the JobStatus actor within a loop.

PN Director

Workflow version $Revision: 14097 $ on $Date; 2008-01-23 07:09:38 -0800 (Wed, 23 Jan 2

SelectJobManager SubmitSimJob WaitForSim Finish

job job, finishedJob
Simulation machine? [user@]host : ® SimTarget: "elvis"
ssh identityfile (for pwdless login) @ IdentityFile: "/usr/home/pnorbert/.sshfid_rsa"
job manager name: ® JobManager: "SGE"
(e.g. PBS, Condor, LoadLeveler, SGE or Fork)
Remote directory where job script will be copied ® RemoteDir: "xgc/tutorial"
to and submitted from:
Job script: @ JobScript: "workflows/SCO06-Tutorial/tutorialjob.sge"

FIGURE 7.32: AN EXAMPLE WORKFLOW FOR CLUSTER JOB OPERATIONS, WHOSE SUB-WORKFLOW IN SELECTJOBMANAGER,
SUBMITSIMJOB AND WAITFORSIMFINISH ARE SHOWN IN FIGURE 7.33, 7.34 AND 7.35 RESPECTIVELY.

226

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

SOFE Directol
~ @ JobManagerName: fJobManager

@ Target: $5im Target

SJobManagerName

frigger
JobManager

imgr

JobManager's commands' path

FIGURE 7.33: THE CONTENT OF SELECTJOBMANAGER COMPOSITE ACTOR IN FIGURE 7.32.

® submitFile: $JobScript
® remoteWorkdir: $RemoteDir
e logFile: $LogFile

submitFile ® logFormat: $LogFormat
[~ N _

job

ThrowException

FIGURE 7.34: THE CONTENT OF SUBMITSIMJOB COMPOSITE ACTOR IN FIGURE 7.32.

@ Sleepinterval_msec: 10000
® logFile: $LogFile

® logFormat: $LogFormat
Sleep

Sleeplnterval_msec

= |
finishedJob

job F
Mondet-Merge

status <2 7 false : true

Logger

FIGURE 7.35: THE CONTENT OF WAITFORSIMFINISH COMPOSITE ACTOR IN FIGURE 7.32.

Besides the above set of actors, another actor called GenericlobLauncher is a generic actor that can create,
submit and manage a job on a remote machine accessible through SSH. The user may choose to wait till the
job has attained a specific status in the queue - for example until it is “Running”, “Complete”, “Not in

227

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

Queue”, etc. A sample workflow is shown in Figure 7.36. If the “Wait Until Status” parameter of
GenericlobLauncher actor is set as “Not in Queue”, the workflow will keep running until the job is done at
the target cluster.

SDFEDirector

Target Machine
{# jianwu@hydro.hosted.ats ucla.edu

Cmd File

Display
{#» fuhome2fjianwuftesttestsh

Work Directory

{1» fulhome2fjianwuftest/

Display2
Job Scheduler
EESGE%

FIGURE 7.36: AN EXAMPLE WORKFLOW FOR CLUSTER JOB SUBMISSION USING GENERICJOBLAUNCHER ACTOR.

7.3.2 GRID JOB SUBMISSION

With Grid infrastructure, users are able to locate, submit, monitor and cancel remote jobs on Grid-based
compute resources. A Grid job is an executable or command that runs on a (typically remote) Grid resource.
Currently, Kepler mainly supports job submission to Grid resources built by Globus Toolkit3. To support job
submission to Grid resources built by other Grid toolkits, such as Campus Grid Toolkit* and gLite*!, the
corresponding actors need to be implemented.

To initiate, monitor, manage, schedule, and/or coordinate remote computations, Globus toolkits, supports
the Grid Resource Allocation and Management (GRAM) interface. Usually two different GRAM
implementations, namely Pre-WS GRAM and WS GRAM, are provided by the different versions Globus
Toolkit, e.g. GT4%,

Kepler provides two sets of actors to support these two implementations respectively. We will first
introduce how to get proxy certificates, which is the security prerequisite to invoke Globus actors. Then the
two sets of actors to submit Globus jobs using Pre-WS GRAM and WS GRAM will be introduced.

7.3.2.1 KEPLER GLOBUS ACTORS FOR PROXY CERTIFICATE

39 http://www.globus.org/toolkit/

40 http://www.omii.ac.uk/wiki/CGT

4 http://glite.web.cern.ch/glite/

42 http://www.globus.org/toolkit/docs/4.0/execution/

228

http://www.globus.org/toolkit/
http://www.omii.ac.uk/wiki/CGT
http://glite.web.cern.ch/glite/
http://www.globus.org/toolkit/docs/4.0/execution/

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

To use Globus services, end users need two X.509 certificates. The first one is user certificate, which is
issued by a certification authority (CA) and is used to identify users. This certificate will typically be valid for
a year or more and will be stored in a file in the individual’s home directory. The second certificate is a
proxy-certificate, which supports the temporary delegation of the user’s privileges to user grid services.
Proxy certificates typically have a much shorter lifetime than end-user certificates (usually 12 hours).
Several ways are provided by Globus Toolkit, which is listed at. http://globus.org/toolkit/docs/latest-

stable/security/.

The GlobusProxy actor uses Globus certificate and key file to create a proxy certificate.

These files are issued by a trusted Grid authority, called a Certificate Authority (CA) and are stored on your
local system (usually as “usercert.pem” and “userkey.pem”). The GlobusProxy actor references these
credentials with its parameters (Figure 7.37) and uses them to create a proxy certificate, which is used by
downstream Globus actors.

Edit parameters for Globus Proxy E
b J i

\{/‘ cert file: sersimyname).globusfusercert, pem Browse
ke file: [fUsersfmyname|.globusfusercert, pem Browse
passphrase: “password|
class: org.rniworkfow. GlobusProsy
sermnanticType00: urn:lsid:locakost onbo: 1: 1 #GridFunctionActor
sermarticTypell: wrn:lsid:localost:onto: 2 1 #GridPunction

Cornnnik] [add i [Remove] [Rﬁture Defauits] [Preferences] [Hedp I [Cancel]

FIGURE 7.37: SETTING THE PARAMETERS OF THE GLOBUSPROXY ACTOR.

The MyProxy actor is able to create a Globus proxy certificate in either of two ways: “MyProxy user account”
or “MyProxy X509 Credential file”. For the “MyProxy user account” way, users need to specify host info
(URL and port) and user info (username and password). For the MyProxy Credential approach, shown in
Figure 7.38, users need to specify the file path, typically something like “/tmp/x509up_u<uid>". More
information about MyProxy can be found at http://grid.ncsa.uiuc.edu/myproxy/ and
http://globus.org/toolkit/docs/latest-stable/security/myproxy/.

Edit parameters for MyPro:

Proxy Ways: Proxy X509 Certificate File

Proxy X509 Certificate File: Praxy X509 Certificate File
MyProxy User Account

|| Remove | |RestoreDefaults| [Preferences | |] []

FIGURE 7.38: SETTING THE PARAMETERS OF THE MYPROXY ACTOR.

7.3.2.2 KEPLER GLOBUS ACTORS FOR PRE-WS GRAM

229

http://globus.org/toolkit/docs/latest-stable/security/
http://globus.org/toolkit/docs/latest-stable/security/
http://grid.ncsa.uiuc.edu/myproxy/
http://globus.org/toolkit/docs/latest-stable/security/myproxy/

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

Pre-WS GRAM is the GRAM implementation first introduced in GT2. In Pre-WS GRAM, the jobs to be
submitted can be described using the Resource Specification Language (RSL), a common interchange
language to describe resources. For more information about using and creating RSL strings, please see the
Globus online documentation, http://www.globus.org/toolkit/docs/2.4/gram/rsl specl.html, or
http://programaticus.com/anl/globus/RSL.html.

The GlobusJob actor accepts the certificate generated by the GlobusProxy actor via an input port. To use
the actor to execute a job on a remote Globus host, specify the name of a Globus server (e.g.,
“griddle.sdsc.edu”) and a Resource Specification Language (RSL) string, which defines the commands to
perform. A full RSL string must be specified (Figure 7.39).

SDF Director

Diaplay

Globus.ob
GlobusProoy

|-[dit_pnmnmls for Globus.Job 'I
"_? REL String: "t mxecutable= binfcat) argument s=ftmp/pas. local)”
Globius Host: *ericdle sdse ey
[Commit J | Add | | Femare | |R5stomﬂd'wts| | Preferences | | Help | | Cancel J

FIGURE 7.39: USING THE GLOBUSJOB ACTOR TO EXECUTE A COMMAND ON A REMOTE GLOBUS SERVER BY PRE-WS GRAM WAY.

The workflow in Figure 7.39 uses actors to connect to a Globus host named griddle.sdsc.edu. The GlobusJob
actor passes a specified RSL String
"& (executable=/bin/cat) (arguments=/tmp/pas.local)" to the server, where it is
executed. In the above example, the host is instructed to print the file pas.local from the tmp directory. The
GlobusJob actor then outputs the printed file as a string.

The same workflow functionality could be achieved without using an RSL string by using the
ParameterizedGlobusJob actor instead of the GlobusJob actor. Instead of passing an RSL string to a Globus
host, the ParameterizedGlobusJob actor passes a command (specified as an executable path) and command
arguments (input via a port). The workflow in Figure 7.40 has the same output as the workflow in Figure
7.39.

230

http://www.globus.org/toolkit/docs/2.4/gram/rsl_spec1.html
http://programaticus.com/anl/globus/RSL.html

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

GlobusProxy Display

'rEd'It paramaters for Parameterized Globus Job
\:! :) Executabile path: finjcat|
GlobusHost: *gridiclies. sdsc.ady”
chass: £rg.5dm,spa. ParameterizedGlobus Job
samantc T ypall: un;b_d;b;ql-q-;t:atn:l:wﬁiifumﬂ:w
semantcTypell: ki hose albost: onbo: 2: 1 8 GridFunction
I Ciumimit | r S] [Refmive -]l-R&stora Defadi-] [Preferances] r Help -| r Cancal]

FIGURE 7.40: USING THE PARAMETERIZEDGLOBUSJOB ACTOR.

The name of the Globus host and the remote executable (/bin/cat) is specified in the
ParameterizedGlobuslob actor’s parameters. Arguments, in this case the path to the file to open and output
(/tmp/pas.local), is passed via the actor’s input port.

7.3.2.2 KEPLER GLOBUS ACTORS FOR WS GRAM

WS GRAM builds on Web services technologies and is the recommended system for most users due to its
superior scalability and its support for WS-Security mechanisms. In WS GRAM, the jobs to be submitted can
be described by the Job Description Schema, an XML language to describe resources. For more information
about using and creating the Job Description Schema, please see the Globus online documentation,
http://www.globus.org/toolkit/docs/4.2/4.2.1/execution/gram4/schemas/gram job description.html.

Edit parameters for GlobusWslob

Job Script Content:

Globus Host:

Batch Mode:

Job Scheduler Type: Condor | PBS | LSF | SGE | Fork
GLOBUS_LOCATION Path:

AX15 ClientConfigFile Path:

] [Remove] [Restore Defaults] ’ Preferences] [Cancel

FIGURE 7.41: SETTING THE PARAMETERS OF THE GLOBUSWSJOB ACTOR.

231

http://www.globus.org/toolkit/docs/4.2/4.2.1/execution/gram4/schemas/gram_job_description.html

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

The GlobusWSJob actor accepts the certificate generated by the MyProxy actor via an input port. To use the
actor to execute a job on a remote Globus host, specify the name of a Globus server (e.g.,
“griddle.sdsc.edu”) and a Job Description string, which can be gotten from a Job Description file or defined
by GlobusJobDescriptionGenerator actor. The parameter configuration dialogue is shown in Figure 7.41,
where users can specify whether the job will be executed in batch mode, job scheduler type of the Globus
Host (which is Fork, SGE, PBS, LSF or Condor), the GLOBUS_LOCATION and AXIS ClientConfigFile Path of the
client machine.

SDF Director

Globus Host
[:% griddle.sdsc.edu *

Executable
[.Jr /binfhostname

Standard Out File
:# Ju/home2/jianwu/stdout

Standard Error File
l:{> lulhome2/jianwu/stderr

FIGURE 7.42: USING THE GLOBUSWSJOB ACTOR TO EXECUTE A COMMAND ON A REMOTE GLOBUS SERVER BY WS GRAM WAY.

The workflow in Figure 7.42 uses actors to connect to a Globus host named griddle.sdsc.edu. Using
GlobusJobDescriptionGenerator actor, this workflow defines the executable, out file and error file
information for the job to be submitted. The GlobusWSJob actor uses the defined job description and
submits to the specified Globus host, where the job is executed. The output of the GlobusWSJob actor is
the job handler of the submit job which can be used to check status or other operations.

The workflow in Figure 7.43 uses GlobusWSJobStatus actor to check the current status of a job by its
jobhandler. A typical jobhandler is like:

https://griddle.sdsc.edu:8443/wsrf/services/ManagedExecutableJobService?7b431d30-62a7-11de-bf68-
da862a69e457

The string description of the status, which is “UnSubmitted”, “Active”, “Done”, “Failed”, or “Expired”, can
be gotten from the “Job Status” output of the GlobusWSJobStatus actor. Using the logic similar in Figure
7.32, it is easy to construct a workflow which submit a job and monitor its execution until it is done or get
exception by composing the above actors for Globus WS GRAM execution.

232

https://griddle.sdsc.edu:8443/wsrf/services/ManagedExecutableJobService?7b431d30-62a7-11de-bf68-da862a69e457
https://griddle.sdsc.edu:8443/wsrf/services/ManagedExecutableJobService?7b431d30-62a7-11de-bf68-da862a69e457

Chapter 7 — Using Remote Computing Resources: The Cluster, Grid, and Web Services

SDF Director

GlobusWS.JobStatus

Display

String Constant
[{> https:/igriddle sdsc.edu:8443/wsrflservices/ManagedExecut...

FIGURE 7.43: USING THE GLOBUSWSJOBSTATUS ACTOR TO GET THE STATUS OF A GLOBUS JOB BY ITS JOB HANDLER.

233

Chapter 8 — Building Workflows with Existing Actors

8 MATHEMATICAL, DATA ANALYSIS, AND VISUALIZATION PACKAGES

The Kepler library contains a number of useful actors that interface with commonly used applications and
integrate their functionality into workflows. Without ever leaving the Workflow canvas, workflow designers
can access the powerful statistical and data processing environments of R and/or MATLAB, the image
processing features of ImagelJ, and the convenient expression language built into Kepler itself.

8.1 EXPRESSIONS AND THE EXPRESSION ACTOR

The Kepler expression language provides a convenient infrastructure for specifying algebraic expressions
textually and for evaluating them. In this section, we will look at several examples of how the expression
language and the Expression actor are used—from specifying the values of parameters to performing
calculations with the Expression actor. For a complete reference on the Expression language, please see the
Ptolemy user documentation.

Expressions can contain variables, constants--either a symbolic name such as Pl or NaN or a literal (an
integer, string, float, etc)--operators (+, -, *, etc), and functions (either built-in ones such as sin() and cos(),
or user-defined functions). The following are examples of expressions:

1 An integer

PI/2 A symbolic constant divided by a literal

sin(P1/2) A function performed on a symbolic constant divided by a literal
{1,2,4,5,6} An array

"ImAString" A string

CWD The current working directory. CWD is a built-in string-valued constant

Expressions are often used as the values of parameters, port parameters, string parameters and inside the
Expression actor, which evaluates a specified expression and outputs the value.

For more information about expressions and the expression language, please see the Ptolemy
documentation.

8.1.1 THE EXPRESSIONS LANGUAGE

The Kepler Expression language, which provides a means of specifying and evaluating algebraic expression
textually, is identical to the Ptolemy Expression language. The language can be used to represent constants
and literals, variables, operators, arrays, matrices, records, methods and functions, and we’ll look at
examples of each in this section. The material in this section is based on the Ptolemy documentation. For
additional information, please see Chapter 3 of the Ptolemy User Manual.

To begin experimenting with expressions, select Tools > Expression Evaluator from the Toolbar. A
command-shell styled window opens (Figure 8.1). Expressions will be evaluated on return. To scroll back to

234

http://ptolemy.eecs.berkeley.edu/~eal/ee225a/lab/expression.pdf
http://ptolemy.eecs.berkeley.edu/~eal/ee225a/lab/expression.pdf
http://ptolemy.eecs.berkeley.edu/~eal/ee225a/lab/expression.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html

Chapter 8 — Building Workflows with Existing Actors

previous commands, click the up arrow (or Control-P). To scroll forward, click the down arrow (or Control-
N).

-

~

K| Expression Evaluator E]@

Eile Tools Help

=x pi
3.141592Z6535595
o

FIGURE 0.1: THE EXPRESSION EVALUATOR. IN THIS EXAMPLE, THE SYSTEM RETURNS THE VALUE OF THE EXPRESSION PI.

8.1.1.1 CONSTANTS AND LITERALS

The simplest expression is a constant, either a literal (a number or string) or a symbolic name (e.g., Pl).
Please see Table 8.1 for a list of supported symbolic names. Numerical constants can be integers (e.g., 1 or
73), doubles (e.g., 33.2 or 1.5), longs (e.g., 12L), unsigned bytes (e.g., 5ub), or complex numbers (e.g., 2+3i).
Anything between double quotes is interpreted as a string (“hello” or “777”). In addition, Kepler has several
globally defined string constants, noted in Table 8.2.

Numbers of type int, long, or unsignedByte can be specified in decimal, octal, or hexadecimal. Numbers
with a leading “0” are octal numbers. Numbers with a leading “Ox” are hexadecimal numbers. For example,
“012” and “OxA”are both equal to the integer 10.

Symbolic Name Meaning

E or e E=2.718281828459

false False

i or J Imaginary number with value equal to the square root of @1.

235

Chapter 8 — Building Workflows with Existing Actors

Infinity Infinity. The result of dividing 1.0/0.0.

MaxDouble Maximum double (i.e., 1.7976931348623E308). Numerical values
with decimal points, such as “10.0” or “3.14159” are of type double

MaxFloat MaxFloat = 3.4028234663853E38

MaxInt Maximum integer (i.e., 2147483647)

MaxLong Maximum long (i.e., 9223372036854775807L). Numerical values
without
decimal points followed by the character “I” (el) or “L” are of type long.

MaxShort MaxShort = 32767

MaxUnsignedByte Maximum unsigned byte (i.e., 255ub). Unsigned integers followed by
“ub” or “UB” are of type unsignedByte (e.g., 5ub)

MinDouble Minimum double (i.e., 4.9E-324). Numerical values with decimal
points, such as “10.0” or “3.14159” are of type double.

MinFloat MinFloat = 1.4012984643248E-45

MinInt Minimum integer (i.e., -2147483648)

MinLong Minimum long (i.e., -9223372036854775808L). Numerical values
without
decimal points followed by the character “I” (el) or “L” are of type long.

MinShort MinShort = -32768

MinUnsignedByte Minimum unsigned byte (i.e., Oub). Unsigned integers followed by
“ub” or “UB” are of type unsignedByte (e.g., 5ub)

NaN “not a number,” e.g., the result of dividing 0.0/0.0

NegativeInfinity Negative infinity.

PI or pi Pl =3.1415926535898

PositiveInfinity Infinity. The result of dividing 1.0/0.0.

true True

TABLE 0.1: SUPPORTED SYMBOLIC CONSTANTS AND THEIR MEANING

To see the list of globally defined constants, open Kepler’s Expression Evaluator and type constants ()
at the command prompt. Kepler will return a list of defined constants and their values (Figure 8.2)

236

Chapter 8 — Building Workflows with Existing Actors

-

K| Expression Evaluator E]@“

Eile Tools Help

>» constants () had
{CLASSPATH = "XxMXxXCLASIPATHRxx=XX™, CWD = "C:%\keplerz00301zZ3", E = Z.718z281
e

e

FIGURE 0.2: USE THE CONSTANTS() FUNCTION TO RETURN GLOBALLY DEFINED CONSTANTS AND THEIR VALUES.

Predefined Strings Meaning

PTII The directory in which Ptolemy Il is installed (e.g.,
c:\tmp).

HOME The user home directory (e.g., c:\Documents and
Settings\you).

CwWD The current working directory (e.g., c:\ptll).

TMPDIR The temporary directory (e.g., c:\Documents and
Settings\
you\Local Settings\Temp).

KEPLER The directory in which Kepler is installed (e.g.,
c:\kepler).

TABLE 0.2: PREDEFINED STRING VALUES IN KEPLER

8.1.1.2 VARIABLES

Expressions can contain variables—either built-in constants such as PTIl or assighments that have been
made previously. For example, the following expression uses a variable named “x”, which is multiplied by
the value 2.

2*x

237

Chapter 8 — Building Workflows with Existing Actors

Kepler can only evaluate the above expression (or any expression that uses variables for that matter) if the
variable is defined. Variables must be defined at the same level of hierarchy or above (if working with nested
workflows). For example, in Figure 8.3, the variable x is defined as 4. Kepler can evaluate the expression
2*x (i.e., 8) because it knows the value of x. Kepler cannot evaluate the expression 2*y, however, as the
y variable is not defined.

K/ Expression Evaluator E]@

File Tools Help

Fr o x=4

4

e ZWX

=1

Fr ZFY

The ID v is undefined.
i

]

FIGURE 0.3: DEFINING A VARIABLE. IN THIS EXAMPLE, X IS DEFINED AS 4. Y IS NOT DEFINED AND KEPLER CANNOT EVAULATE THE
EXPRESSION.

Variables are often defined on the Workflow canvas or using parameters. For more information, please see
Section 8.1.3.

8.1.1.3 OPERATORS

The Kepler Expression language supports a number of arithmetic, relational, bitwise, and logical Boolean
operators (Table 8.3). When an operator involves two distinct types, the expression language decides which
type to use to implement the operation. If one of the two types can be converted without loss into the
other, then it will be. For instance, int can be converted losslessly to double, so 1.0/2 will result in 2 being
first converted to 2.0, so the result will be 0.5. If the types cannot be converted, an error message will be
generated, for example:

Error evaluating expression "2.0/2L" in .Expression.evaluator Because:

divide method not supported between ptolemy.data.DoubleToken '2.0' and

238

ptolemy.data.LongToken

Chapter 8 — Building Workflows with Existing Actors

'2L' because the types are incomparable.

Operator

Meaning

Arithmetic Operators

Arithmetic operators operate on most data types, including arrays,
records, and matrices.

+ The + operator is an addition operation.

- The — operator is a subtraction operation.

* The * operator is a multiplication operation.
/ The / operator is a division operation.

The ” operator computes “to the power of” or exponentiation,where
the exponent can only be an int or an unsignedByte.

%

The % operation is a modulo or remainder operation. The result is the
remainder after division. The sign of the result is the same as that of
the dividend (the left argument). E.g., 3.0%2.01is 1.0.

Relational Operators

Relational operators check the values when possible, irrespective of
type (e.g., 1 == 1.0 returns true). If you wish to check for equality
of both type and value, use the equals() method.

< The < operator is LESS THAN.

<= The <+ operator is LESS THAN OR EQUAL.
> The > operator is GREATER THAN.

>=

The >= operator is GREATER THAN OR EQUAL.

The == operator is EQUAL.

The != operator is NOT EQUAL.

Bitwise Operators

Bitwise operators operate on type boolean, unsignedByte, int and long
(but not fixedpoint, double or complex).

The s operator is bitwise AND.

The | operator is bitwise OR.

The # operator is bitwise XOR (exclusive or, after MATLAB).

The ~ operator is bitwise NOT.

Logical Boolean Operators

Logical Boolean operators operate on type boolean and return type
boolean.

&&

The s& operator is logical AND. The difference between logical
&& and logical & isthat & evaluates all the operands regardless
of whether their value is now irrelevant. For example, the
expression “false && x” will evaluate to false irrespective of

whether x is defined. On the other hand, “false & x” will
throw an exception.
[The | | operator is logical OR. The difference between logical

| | and logical [|is that |evaluates all the operands regardless
of whether their value is now irrelevant.

239

Chapter 8 — Building Workflows with Existing Actors

The ! operator is logical NOT.

& The & operator is logical AND. The difference between logical
&& and logical & isthat & evaluates all the operands regardless
of whether their value is now irrelevant. For example, the
expression “false && x” will evaluate to false irrespective of
whether x is defined. On the other hand, “false & x” will
throw an exception.

The | operator is logical OR. The difference between logical | |
and logical |is that |evaluates all the operands regardless of
whether their value is now irrelevant.

Boolean-valued expressions can be used to give conditional
values. The syntax for this is

boolean ? wvaluel : value2

If the Boolean is true, the value of the expression is valuel;
otherwise, it is value?2.

“Shift” Operators Shift operators operate on type unsignedByte, int, and long.

<< The << operator performs an arithmetic left shift.

>> The >> operator performs an arithmetic right shift.

>>> The >>> operator performs a logical right shift, which does not

preserve the sign.

TABLE 0.3: ARITHMETIC, RELATIONAL, BITWISE, AND LOGICAL BOOLEAN OPERATORS IN THE KEPLER EXPRESSION LANGUAGE

8.1.1.4 ARRAYS

An array is an ordered list of elements. It is specified with curly brackets (e.g., {1,2,3}. An array can consist
of elements of any type. The only constraint is that the elements must all have the same type (see Table
8.4 for examples). If an array is given with mixed types, the expression evaluator will attempt to losslessly
convert the elements to a common type. For example, {1, 2.3} hasvalue {1.0, 2.3} (typedouble).

The common type might be scalar, which is a union type (a type that can contain multiple distinct types)
e.g., (1,2.3, true) isan array with three elements of scalar type.

Example Arrays

{1, 2, 3} An array of type int. The type is denoted {int}.
{"x","y","z"} An array of type string. The type in denoted {string}
{2*pi, 3*pi} An array where the elements are given by expressions
({1, 2}, {3, 4, 5}} An array of arrays of integers (a “nested array”).

240

Chapter 8 — Building Workflows with Existing Actors

{1, 2.3, true}

Ana

distinct types.

rray of scalar type. Scalar is a type that can contain multiple

TABLE 0.4: EXAMPLES OF ARRAYS

Each element in an array has an index, which is used to access it, and a length, which is equal to the number
of elements in the array. The first element has an index of 0, the second 1, etc. To access the second item
in the array {1.0, 2.3} (i.e., 2.3), type the following command into the Expression Evaluator:

>> {1.0, 2.3} (1)

Arithmetic and Logical operators can also be used with arrays. See Table 8.5 for illustrations.

Example

Result

Arithmetic Operations

Arithmetic operations on arrays are carried out element-by-
element. Addition, subtraction, multiplication, division, and
modulo of arrays by scalars is also supported. Arrays of length
1 are equivalent to scalars.

{1, 2}y*{2, 2} {2, 4}

{1, 21+{2, 2} {3, 4}

{1, 2}1-{2, 2} {-1, 0}

{1, 2172 {1, 4}

{1, 2}1%{2, 2} {1, 0}
{1.0, 2.0} / 2.0 {0.5, 1.0}
1.0 / {2.0, 4.0} {0.5, 0.25}
3 *{2, 3} {6, 9}

12 / {3, 4} {4, 3}
{1.0, 2.0} / {2.0} {0.5, 1.0}
{1.0}y / {2.0, 4.0} {0.5, 0.25}
{3y * {2, 3} {6, 9}

{12} / {3, 4} {4, 3}
{{1.0, 2.0}, {3.0, 1.0}y /| {{2.0, 4.0}, {1.5, 0.5}}
{0.5, 2.0}

Note: A significant subtlety arises when using nested arrays.
In this division example, the left argument is an array with
two elements, and the right argument is also an array with
two elements. The divide is thus element-wise. However,
each division is the division of an array by a scalar.

Relational Operations on Arrays

As with scalars, testing for equality using the == or !=
operators tests the values, independent of type. For other
comparisons of arrays, use the compare() function.

{1, 2}=={2, 2}

false

{1, 2}yt={2, 2}

true

241

Chapter 8 — Building Workflows with Existing Actors

{1, 2}=={1.0, 2.0}

true

Extracting Elements from an Array

To extract elements from an array use either the subarray()
or extract() methods.

{1, 2, 3, 4}.subarray (2, 2)

{3, 4}

The first argument is the starting index of the subarray, and
the second argument is the length.

{"red","green","blue"}.extract ({
true, false, true})

{"red", "blue"}

The extract() method can take a boolean array of the same
length as the original array which indicates which elements
to extract.

{"red","green", "blue"}.extrac
t({2,0,1,1})

{"blue", "red", "green", "green"}

The extract () method can also take an array of integers
giving the indices to extract.

TABLE 0.5: PERFORMING OPERATIONS ON ARRAYS

8.1.1.5 MATRICES

Matrices are more specialized than arrays and are intended for data intensive computations. They are
specified with square brackets, using commas to separate row elements and semicolons to separate rows.
For example., “[1, 2, 3; 4, 5, 5+1]” gives a two by three integer matrix (2 rows and 3 columns). For more

examples of matrices, please see Table 8.6.

Matrices can contain only certain primitive types: boolean, complex, double, fixedpoint, int, and long.
Currently unsignedByte matrices are not supported. If a matrix with mixed types is specified, then the
elements will be converted to a common type, if possible. Thus, for example, “[1.0, 1]” is equivalent to
“[1.0, 1.0],” but “[1.0, 1L]” is illegal (because there is no common type to which both elements can be

converted losslessly).

Example Matrices

Notes

[1, 2, 3] A row vector
[1; 2; 3] A column vector
[1:2:9] A MATLAB-style constructor giving an array of odd

numbers from 1 to 9. In the syntax “[p:q:r]”, p is
the first element, g is the step between elements,
and r is an upper bound on the last element. The
value is equivalent to [1, 3, 5,7, 9].

[1:2:9; 2:2:10]

A MATLAB-style constructor. In the syntax
“Ip:q:r]”, p is the first element, q is the step
between elements, and r is an upper bound on the
last element. equivalentto [1,3,5,7,9;2,4,6,8,
10]

TABLE 0.6: EXAMPLES OF MATRICES.

Each matrix element can be referenced by its row and column index. Index numbers start with 0. For
example, [1,2;3,4](0,0) returns the element at row and column index 0—i.e., 1.

242

Chapter 8 — Building Workflows with Existing Actors

Arithmetic and logical operators can also be used with matrices. See Table 8.7 for illustrations. Matrix
addition and subtraction are element wise, as expected, but the division operator is not supported (you
must use the divideElements() function). Multiplication by a matrix inverse can be accomplished using the

inverse() function.

Example

Results and notes

Multiplying matrices

(1, 2; 3, 41*[(2, 2; 2, 2]

[6, 6; 14, 14]

If the dimensions of the matrix don’t match, then you
will get an error message. To do element wise
multiplication, use the multipyElements() function

(9, 0; 0, 9]

In this example, a matrix is multiplied by a scalar.

Raising a matrix by an integer

[3, 0; 0, 3173

(27, 0; 0, 27]

A matrix can be raised to an int or unsignedByte
power, which is equivalent to multiplying it by itself
some number of times.

Subtracting and adding matrices

1-[3, 0; 0, 3]

(-2, 1; 1, -2]

In this example, a matrix is subtracted from a scalar.

[1,2;3,51+([3,5:4,7]

(4, 7; 7, 12]

Two matrices are added elementwise. If the
dimensions of the matrices don't match, Kepler will
generate an error message.

Testing matrices for equality

[3, 0; 0, 31!'=[3, 0; 0, 6] True
In this example, two matrices are checked for
inequality.

[3, 0; 0, 31==[3, 0; 0, 3] True

In this example, two matrices are checked for
equality.

True

As with scalars, testing for equality using the == or
!'= operators tests the values, independent of type.

False

Use the equals() method to perform a type specific
test.

TABLE 0.7: PERFORMING OPERATIONS ON MATRICES

8.1.1.6 RECORDS

243

Chapter 8 — Building Workflows with Existing Actors

A record token is a composite type containing named fields, where each field has a value. The value of each
field can have a distinct type. Records are delimited by curly braces. For example, “{a=1, b="foo"}” is a
record with two fields, named “a” and “b”, with values 1 (an integer) and “foo” (a string), respectively.

Fields can be accessed using the period operator. For example:

{a=1,b=2}.a

yields 1. You can optionally write this as if it were a method call:

{a=1,b=2}.a()

The arithmetic operators +, -, *, /, and % can be applied to records. See Table 8.8 for examples.

Example

Result and notes

Adding records

{foodCost=40,
{foodCost=20,

hotelCost=100} +
taxiCost=20}

{foodCost=60}

If the records do not have identical fields, then the
operator is applied only to the fields that match,
and the result contains only the fields that match.

Merging records

merge ({a=1, b=2}, {a=3, c=3}) {a=1, b=2, c=3}.
Records can be joined using the
merge() function. This function takes two
arguments, both of which are record tokens. If the
two record tokens have common fields, then the
field value from the first record is used.

Finding the intersection of two

records

intersect ({a=1, c=2}, {a=3, b=4}) {a=1}
Use the intersect() function to form a record that
has only the common fields of two specified
records, with the values taken from the first
record.

Comparing records

{a=1, b=2}=={b=2, a=1} True
When comparing records, the order of the fields is
irrelevant.

{a=1, b=2}=={a=1, b=2} true

{a=1, b=2}!={a=1, c=2} True

{a=1, b=2}=={a=1.0, b=2.0+0.01} True

244

Chapter 8 — Building Workflows with Existing Actors

Note that two records are equal only if they have
the same field labels and the values match. As with
scalars, the values match irrespective of type.

{a=1,
b=2.0+0.01i})

b=2}.equals ({a=1.0,

false

To perform type-specific equality tests, use the
equals() method

{a=1, a=1})

b=2}.equals ({b=2,

true

TABLE 0.8: PERFORMING OPERATIONS ON RECORDS.

8.1.1.7 METHODS

Each of the different types of expressions—constants, records, matrices, etc—are represented by tokens,
and these tokens have a number of associated methods. For example, array tokens have a length() method
that is used to return the number of contained elements. A record token has a length() method as well. To
see what methods are available for each type of token, see the Ptolemy online documentation. Most of the
relevant tokens belong to a class derived from token, e.g., an integer token is a subclass of the scalar token

class, which in turn is a subclass of token.

The syntax for using methods with expressionsis: (token) .methodName (args) where methodName
is the name of the method and args is a comma-separated set of arguments. Each argument can itself be
an expression. Note that the parentheses around the token are not required, but might be useful for

clarity. For examples, please see Table 8. 9.

Example

Result and notes

{1, 2, 3}.length()

3
Using the length() method with an array token

{a=1, b=2, c=3}.length()

3
Using the length() method with a record token

[1, 2; 3, 4; 5, 6].getRowCount ()

3

Using the getRowCount() method with a matrix
token

6] .getColumnCount ()

2

Using the getColumnCount() method with a matrix
token

6] .toArray ()

{1,2,3,4,5, 6}

Using the toArray() method with a matrix token

[1:1:100] .toArray()

The latter function can be particularly useful
for creating arrays using

MATLAB-style syntax. For example, to obtain
an array with the integers from 1 to 100, you
can enter:

TABLE 0.9: USING METHODS WITH EXPRESSION TOKENS

245

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html

Chapter 8 — Building Workflows with Existing Actors

8.1.1.8 FUNCTIONS

The expression language supports the definition of functions—sets of instructions that perform a specific
task and return the result. Functions are defined using the keyword function followed by the arguments to
pass to the function and their types, followed by the function body (i.e., function (argl:Type,
arg2:Type...) function body). For example:

function (x:double) x*5.0

The above function takes a double argument (x : double), multiplies it by 5.0, and returns a double. To
apply this function to a specified argument, simply type the function into the Expression Evaluator followed
by the argument, which is specified in parenthesis:

>> (function (x:double) x*5.0) (10.0)
50.0

Alternatively, you can assign the function to a variable, and then use the variable name to apply the
function. For example,

>> f = function(x:double) x*5.0
(function (x:double) (x*5.0))

>> £(10)

50.0

Note: when defining a function, the type of an argument can be left unspecified, in which case the
expression language will attempt to infer it. The return type is always inferred based on the argument type
and the expression.

Functions can be passed as arguments to certain “higher-order functions” that have been defined. For
example, the iterate() function takes three arguments, a function, an integer representing the length of the
array to generate, and an initial value to which to apply the function. For example, to get an array of five
elements whose values are multiples of 3, you could use the following:

>> jterate (function(x:int) x+3, 5, 0)
{0, 3, 6, 9, 12}

The function given as an argument simply adds three to its argument. The result is the specified initial value
(0) followed by the result of applying the function once to that initial value, then twice, then three times,
etc.

Another useful higher-order function is the map () function. The map() function takes a function and an
array as arguments, and simply applies the function to each element of the array to construct a result array:

246

Chapter 8 — Building Workflows with Existing Actors

>> map (function(x:int) x+3, {0, 2, 3})
{3, 5, 6}

The map() function is often used in workflows that define a parameter whose value is a function. Suppose
that the parameter named “f” has the value function(x:double) x*5.0. Then the expression “f(10.0)” will
yield result 50.0, providing the parameter is in scope.

For more information about predefined functions, including tables of supported functions, please see the
Chapter 3, Appendix A of the Ptolemy User Manual.

8.1.2 EXPRESSIONS AND PARAMETERS

The value of parameters is an expression, from a simple integer to a more complex combination of
operations and constants. For example, consider the following workflow parameter named
DataDirectory:

@ DataDirectory: SCWD/lib/testdata

The value of the DataDirectory parameter is an expression "SCWD/lib/testdata". 'SCWD' returns the path
to the directory in which Kepler is installed. "/lib/testdata" is the path to the desired sub-directory. Using
an expression of this type allows the path to be evaluated properly no matter where the Kepler system is
installed in the file system.

8.1.3 EXPRESSIONS AND PORT PARAMETERS

A port parameter functions as both a port and a parameter that is used to configure the operation of an
actor (for more information about port parameters, see Chapter 3). Port-parameters allow users to specify
a value for a parameter (e.g., iterations=4 or name="mouse"), and to allow that value to be “updated” via
a coupled port. If a value is received via the port component of the port parameter, that value will replace
the value specified by the parameter component. For example, the Sinewave actor, which is a composite
actor found in the standard Kepler component library, has two port parameters, frequency and phase
(Figure 8.4):

247

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.pdf

Chapter 8 — Building Workflows with Existing Actors

Sinewave

= \
SDF Director Generate a sine wave.
efrequency: 440.0
ephase: 0.0

FIGURE 0.4: INSIDE THE SINEWAVE COMPOSITE ACTOR, WHICH USES TWO PORT PARAMETERS.

output
TrigFunctiog

The port parameters specify the “default” values for these two items. The values specified on the Workflow
canvas are also visible in the Sinewave actor's parameters, opened when the Sinewave actor is double-
clicked (Figure 8.5).

Edit parameters for Sinewave
_‘{j samplingFrequency: 5000.0]

frequency: 440.0

phaze: 0.0

class: prolemy . actor, lib, Sinewayve

semantic Type00: urri:lsid:localhost:onto: 1:1# TrigMathOper ationActor

semanticTypel1: urn:lsid:localhast: anko:2: 1 #TrigonometricOper ptalemy. actor ib. Sinewave |

Comimik l [Add] [Remowve] [Restnre Defaultsl [Preferences l [Help l [Cancel

FIGURE 0.5: THE PARAMETERS OF THE SINEWAVE ACTOR. FREQUENCY AND PHASE ARE PORT PARAMETERS. THE PARAMETER
VALUE WILL BE OVERRIDDEN IF THE CORRESPONDING PORT RECEIVES A VALUE.

The Ramp actor found inside the Sinewave composite actor references the port parameter in its parameters
(Figure 8.6):

248

Chapter 8 — Building Workflows with Existing Actors

Edit parameters for Ramp
_? ' FiringCountLimit: 0
init:: i}
step: (Frequency*2*PI|samplingFrequency)
Commit l l Add] l Remaove] ’Restore Defaultsl [Preferences l [Help l l Cancel

FIGURE 0.6: THE PARAMETERS OF THE RAMP ACTOR FOUND INSIDE THE SINEWAVE COMPOSITE ACTOR.

Note how the value of the Ramp actor's step parameter references the frequency port-parameter by name:
(frequency*2*PI/samplingFrequency).

8.1.4 EXPRESSIONS AND STRING PARAMETERS

Some parameters have values that are always strings of characters. Such parameters support a simple string
substitution mechanism where the value of the string can reference other parameters in scope by name
using the syntax Sname, where name is the name of the parameter in scope.®® The simple workflow in
Figure 8.7 uses the Sname syntax to reference the value of the salutation parameter.

1

K] .Display E]@

SDF Direclor #zalutation: “hello® File Tools Help

|hell|:|

String Constant

[$salutation Display

FIGURE 0.7: USING THE SNAME SYNTAX TO REFERENCE A STRING PARAMETER.

8.1.5 THE EXPRESSION ACTOR

To Expression actor can be used to evaluate an expression. The simple workflow in Figure 8.8 is used to
evaluate the expression Pl/2 and display the result. The expression (Pl/2) is specified by the actor parameter
in this case.

43 Ptolemy documentation: http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html|

249

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html

Chapter 8 — Building Workflows with Existing Actors

-

K . Display g@ﬂ

SODF Director File Tools Help
1.5707963267943

Display

Expression

FIGURE 0.8: THE EXPRESSION ACTOR USED TO EVALUATE AN EXPRESSION SPECIFIED IN ITS PARAMETERS.

The Expression actor is a particularly useful when it comes to evaluating expression that use variables
passed by other actors. Consider the LotkaVolterraPredatorPrey workflow displayed in Figure 8.9. This
workflow is used to solve two coupled differential equations that model the relationship between predator
and prey populations. Note: The workflow can be found in the KeplerData/workflows/module/outreach-
2.X.Y/demos/getting-started/demos/getting-started/ directory, and full documentation and step-by-step
instructions for creating and using it can be found in the Getting Started Guide. The important thing to note
are the two Expression actors used in the workflow (named dn1/dt and dn2/dt).

42
Continuous Director P
38
. er: 2 :
Timed Plotter 2
ea: 0.1 %
»
eb: 0.1 .
2
XY Plotter ed: 0.1 "
16
u
2
I~ v
' [1 2 3 4 5 [7 L] a 10
02- LotkaVolterraPredatorPrey.Timed Plottar
[ELE
Integrate n Timed Piotler .
dnl/dt Prodaroy =
n
L I r*nl - a*nl*n2 5
- 30
3
Integrator
L L dn2/dt
s
-d*n2 + b*nl*n2
r > 0
s
0]
& % o1 ez 83 o4 05 08 a7 o8 o8 18 "

FIGURE 0.9: THE LOTKAVOLTERRAPREDATORPREY WORKFLOW, WHICH USES TWO EXPRESSION ACTORS TO EVALUATE
DIFFERENTIAL EQUATIONS.

250

Chapter 8 — Building Workflows with Existing Actors

By default, the Expression actor has one output and no input ports. Users can define input ports used to
pass variables to the actor. For example, the dn1/dt actor displayed in Figure 8.10 has two user-defined
input ports named n1 and n2.

dn 1 /dt
:j | r'rnl-a*ni1*n2 #—

FIGURE 0.10: EXPRESSION ACTOR WITH TWO USER-DEFINED PORTS

The port names identify the values that are passed through the channels to the actor. The actor can then
use those values when it evaluates the expression. For example, if the token passed through nlis an integer
with a value of 5 and the token passed through n2 has a value of 2, then the Expression actor will evaluate
the expression (r*nl-a*n1*n2) and output the result (9, which is 2*5-.1*5*2). Note that the Expression
actor can reference workflow parameters (in the LotkaVolterra example, r and a are parameters defined on
the Workflow canvas.

Expression actors can also be useful for generating a series of files or file names. The workflow in Figure
8.11 uses an Expression actor in conjunction with a Ramp and TextFileWriter actor to name and write three
unique files to the working directory.

SDE Director

Text File Writer

=
Ramp == Display
File Names

CWD+"ffil@*+cnt+~ htmI~

K _.Display Q@

Eile Tools Help

CihkeplerZ0070813%£ile0. html
C:hkeplerZ0070513%£ilel. html
Crhkeplerz20070813%£ileZ . html

FIGURE 0.11: USING THE EXPRESSION ACTOR (FILE NAMES) WITH A RAMP ACTOR TO GENERATE UNIQUE FILE NAMES.

251

Chapter 8 — Building Workflows with Existing Actors

In the example above, the Ramp actor has been set to fire three times, augmenting its step by 1 each time
(Figure 8.12). The Ramp actor will output 0,1,2 (the initial value specified by the int parameter, and then
incremented by the amount of the step until the firing limit is met).

Edit parameters for Ramp

~.._“‘_? / firingCountLimit: 5
init: i}
step: 1
class: pralermy . actar,ib, Famp
semanticTypedd: urni:lsid:localhost :onko: 1:1 #TkerativeMathOper ationdctar
semanticTypell: urn:lsid:localhost:onko; 2: 1 #TkerativeOperation
semanticTypeZz: urn:lsid:localhost: onko: 2: 1aworkfowInput
firingsPerIter ation: 1

Commit l [Add] [Remaove] [Restore Defaultsl [Preferences l [Help l [Cancel

FIGURE 0.12: PARAMETERS OF THE RAMP ACTOR.

The count generated by the Ramp actor is input into an Expression actor named File Names via a user-
defined input port named cnt. The Expression actor evaluates the specified expression
(CWD+"/file"+cnt+".html"). CWD is a built-in string-valued constant referring to the current
working directory (in this case, C:\kepler20070813). "/file" and ".html" are strings, which the actor adds to
the current working directory and the count to form three unique file names:

C:\kepler20070813\file0.html
C:\kepler20070813\filel.html

C:\kepler20070813\file2.html

These file names are input to a TextFileWriter actor, which creates and saves the files in the specified
location.

8.2 STATISTICAL COMPUTING: KEPLER AND R

Kepler users with little background in computer science can create workflows that execute statistical
analyses via Kepler's suite of useful R actors. Users need not know how to program in R in order to take
advantage of its powerful analytical features; pre-programmed Kepler components can simply be dragged
into a visually represented workflow.

Note: To implement any of the R actors, R must be installed on the computer running the Kepler application.
See Section 8.2.2 for more information about installing R.

8.2.1 WHATISR?

252

Chapter 8 — Building Workflows with Existing Actors

R is free software for statistical computing, data manipulation, and graphics. Based on work
originally carried out at Bell Labs, R is part of the GNU project. R provides a wide variety of
statistical (linear and nonlinear modeling, classical statistical tests, time-series analysis,
classification, clustering, ...) and graphical techniques, and is highly extensible (Figure 8.13).4*

v s (TR

8 o L

1 _'>_<'>__<:?'.'<|_F_'.<_>.":?'(” 41—--)-{ ?’fﬂ“
- :«i#

#r-"r

2

‘
-
w
L]
-
L]
=]

Wn o BE mR A

i) R Foundafion, from hitp:/fwww.r-project org
FIGURE 0.13: EXAMPLES OF GRAPHICS GENERATED WITH R

The RExpression actor has been created for inserting R commands and scripts into Kepler workflows. This
actor makes it easy to integrate the powerful data manipulation and statistical functions of R into
workflows. In addition, a number of customized R actors designed to perform specific functions (creating a
Bar or Box plot, for example) are included in the Kepler library. See Section 8.2.3 for a list of useful R actors,
or the R appendix for detailed examples. A search for “RExpression” in the Components tab will return all
R-related actors.

8.2.2 INSTALLING R

R can be freely downloaded from links on the R Project web site (http://www.r-project.org). Follow the
instructions provided for installation. In addition, the R 'bin' directory must be added to the PATH variable
on the host computer. To test if the installation is correct, open a command/terminal window and type the
command 'R'. The command should startup the R environment and alert the user that R has been started.

8.2.3 USErUL R ACTORS

The Kepler library contains a number of useful R actors, described in Table 8.10.

4 R Project website, http://www.r-project.org/

253

http://www.r-project.org/#in_browser
http://www.r-project.org/

Chapter 8 — Building Workflows with Existing Actors

Useful R Actors

RExpression

The RExpression actor runs an R script or function. Input and output
ports are created by the user and correspond to R variables used in
the specified R script. The actor outputs the result of the evaluated
script.

ANOVA

The ANOVA actor uses R to perform a variance analysis on input
data. The actor outputs a graphical representation of its
calculations.

Barplot

The Barplot actor creates and saves a simple barplot graph. The
actor outputs the path to the barplot graph and (optionally) display
the graph itself.

Boxplot

The Boxplot actor creates and saves a boxplot. The actor reads an
array of values and, optionally, an array over which the values are
divided (an array of dates, for example). The actor outputs the path
to the saved boxplot and (optionally) displays the graph.

Correlation

The Correlation actor uses R to perform parametric and non-
parametric tests of association between two input variables (e.g.,
two arrays of equal length). The actor outputs the level of
association (r, rho, or tau, depending on the analysis) between the
two variables, an estimate of the p-value (if possible), and n.

LinearModel

The LinearModel actor runs a variance or linear regression analysis
on its inputs and outputs the result.

RandomNormal

The RandomNormal actor uses an R-script to generate and output
a set of normally (Gaussian) distributed numbers with a mean of 0
and a standard deviation of 1. The actor outputs an array of the
generated integers as well as the file path to a graphical
representation of the distribution.

RandomUniform

The RandomUniform actor uses an R-script to generate and output
a set of uniformly distributed numbers. The actor outputs an array
of the generated integers as well as the path to a graphical
representation of the distribution.

ReadTable

The ReadTable actor reads a text-based data file on the local file
system and outputs the data in a format that can be used by other
R actors.

Regression

The Regression actor uses R to run a variance or linear regression
analysis. The actor accepts an independent and a dependent
variable. If the independent variable is categorical, the actor uses R
to run a variance analysis (or a t-test if the variable has only 2
categories). If the independent variable is continuous, a linear
regression is run. The actor outputs both a graphical and textual
representation of the analysis.

RMean

The RMean actor accepts an array of values and uses R to calculate
their mean. The actor outputs both a graphical and textual
representation of the analysis.

254

Chapter 8 — Building Workflows with Existing Actors

RMedian The RMedian actor accepts an array of values and uses R to
calculate their median. The actor outputs both a graphical and
textual representation of the analysis.

RQuantile The RQuantile actor accepts an array of values and uses R to
produce sample quantiles. The actor outputs both a graphical and
textual representation of the analysis.

Scatterplot The Scatterplot actor reads an independent and a dependent
variable, which are specified as arrays of values. The actor creates a
simple scatter plot based on the input, and outputs the path to the
generated graph file.

Summary The Summary actor uses R to calculate a specified summary
statistic. The actor accepts a number of factors and a variable, and
outputs the specified summary statistic (e.g., presence, mean,
standard deviation, variance, etc).

SummarysStatistics The SummaryStatistics actor accepts an array of values and uses R
to calculate their mean, standard deviation, and variance. The actor
outputs both a graphical and textual representation of the summary
analysis.

TABLE 0.10: USEFUL R ACTORS

For example workflows using the above R actors, please see the R Appendix.

8.2.4 WORKING WITH R ACTORS

Using default and user-defined ports and R-scripts, Kepler's R actors can be used to perform a wide variety
of statistical and analytical calculations. In this section, we will take a closer look at the RExpression actor
as well as several sample R workflows that demonstrate the power and flexibility of the integrated
applications.

8.2.4.1 USING THE REXPRESSION ACTOR

The RExpression actor runs the R script or function specified in its parameters. To view or change this R
script, double-click the actor. By default, the actor creates and saves a simple plot of an array of values using
the script displayed in Figure 8.14.

255

Chapter 8 — Building Workflows with Existing Actors

Edit parameters for RExpression

\:ﬁ:) R Funiction or scrip:

R working directory:

Save or molt:

araphics Format:

Graphics Outpuk:
Aubomatically disphay graphics:
Number of ¥ pixels in image:
Number of ¥ pixels inimage:
class:

semankicType00D:
semanticTypell1:
firingsPerlteration:

a <- e(1,2,3,5)
plot (&)

C:\Documents and SettingsiKirsteni . kepler',

==No=5ava

prig
O

480

480

org.ecoinformatics. seek. 7. RExpression

urrlsidilocalhostionto: 1 : 1#MathOperationacbor

mn:%;ld:lncalhpst:mu:z:l#;wawmse
2

Commk | [add || Remove

| [F-!stnre Defaults] [Preferences] [

Hedp

Jis

Canvcel

FIGURE 0.14: THE DEFAULT PARAMETERS OF THE REXPRESSION ACTOR.

The RExpression actor outputs a graphical representation of its result as well a copy of the text output that
R generates. The text output consists of the actor's communications with R to run the R function or script
and the values and statistical outputs. Figure 8.15 displays a very simple R workflow that shows the text

and graphical display of an RExpression actor with its default settings.

256

Chapter 8 — Building Workflows with Existing Actors

SDF Director

Kl Display iﬁj[ﬁﬂ‘iﬁ
Ble Tock Help

RExpression

» setwd('C:/Docunents and Sectings/Kirl®
> png(filename = 'Hiraten7.png',width

> & <- ©(1,2,3,5)
-
-

Display

plot ()

_[L KirstenT pre L=
(T30 phis B R T
W
€| ¥
w - =3
- -
m oo o
P
T = o
— o &
T T T T T T T
10 15 20 2.5 30 35 40
Indes:

FIGURE 0.15: THE DEFAULT SETTINGS OF THE REXPRESSION ACTOR. THE ACTOR CREATES A SIMPLE PLOT OF THE VALUES (1,2,3,5).

The first two lines in the text display window in the upper right corner of Figure 8.15 (‘setwd...’ and ‘png...")
are setup commands for R that are automatically added by the actor. The last two lines of the display are
exactly what would appear if one were running the R system from the command line:

> a <-c(1,2,3,5)
> plot(a)

Additional ports can be added the RExpression actor to provide inputs or outputs. The names of the
additional input ports become named R objects used in the R script. For example, the RExpression actor in
Figure 8.16 has two user-defined input ports named aaa and bbb (for information about adding and
customizing ports, see Section 3.2.4.1). Two Expression actors are used to pass arrays to these new ports,
where an R script can reference the values by the port name. The R script has been set to aaa+bbb,
where aaa is {1,2,3} and bbb is {4,5,6} (i.e., the values passed through the correspondingly named ports).

257

Chapter 8 — Building Workflows with Existing Actors

Expression2

Display

K| . Display =JoEd
SDF Director e lods bep
> setwd('C:/Docunents and Settings/Hirl[™
> png(filensme = 'Eirstenll.png',width
> amm < (1, 2, 3)
Expression » bbb <= c(4, 5, 6)
> asa+bbb
RExpression [1] 57 9
>
aF
I

FIGURE 0.16: TWO USER-DEFINED PORTS HAVE BEEN ADDED TO AN REXPRESSION ACTOR.

The Display window contains the workflow output and the text generated by R: aaa = 123; bbb =4,5,6; and
aaa+bbb = 5, 7,9 (i.e., 1+4, 2+5, 3+6). If aaa and bbb were simple scalar values (e.g., 1 or 17.5), then this
RExpression actor would have simply duplicated the functionality of the Expression actor. However, the
base data type of the R system is the vector (similar to the Kepler array). Thus the result consists of the
corresponding input array elements added together.

Figure 8.17 shows a variation of the previous workflow. The R-script has been modified to instruct the
RExpression actor to plot the sum of the inputs instead of outputting them as text:

ccc <- aaa + bbb

barplot (ccc)

258

Chapter 8 — Building Workflows with Existing Actors

SDF Director

Expression

RExpression

T —
U Hmanest prg
T i, BB, 5K

s K. Display :.._?[_]
Fle Tock Help
o > setwd{'C:/Documents and Sectings/Eir|®
> png(filensme = 'HirstenS.png',wvidth
- > aga <- (1, 2, 1)
> bbb <= (4, 5, 6§)
> oCoc <- aaa + bbb
1 > barplot(cco)
>
o >
-
< 3

FIGURE 0.17: AN EXAMPLE OF AN REXPRESSION WORKFLOW USED TO CREATE A PLOT OF THE OUTPUT.

In the above workflow, the graphical output is saved as a .png file (the default). The RExpression actor can
also generate and save a .pdf file—set the desired output type with the GraphicsFormat parameter.
The dimensions of the graphic can be customized with the NumberOfXPixelsInImage and
NumberOfYPixelsInImage parameters. By default, the graphicis 480x480 pixels. Note that generated
graphics files are saved to the R working directory, which by default is the Kepler cache (e.g., C:\Documents
and Settings\<UserName>\.kepler\).

For more information about working with R in Kepler, please see the R Appendix of the User Manual.

8.2.4.2 USING EML DATASETS WITH THE REXPRESSION ACTOR

EML datasets can be accessed and used in a variety of ways that are useful to R analyses. In the following
section, we'll look at how the RExpression actor can perform custom statistical analyses--over two data
variables, several variables, or the entire Datos Meteorologicos dataset (which consists of EML-described
meteorological data collected from the La Hechicera station in 2001) using R-scripts and appropriate input

259

Chapter 8 — Building Workflows with Existing Actors

data formats: arrays, records, or data tables, respectively. For more information about EML, please see
Chapter 6.

Using Arrays with the RExpression Actor

The data array, or vector in R, is commonly used as the data format for information processed by the
RExpression actor. The workflow in Figure 8.18 shows an example of a workflow used to process two data
variables (the RExpression actor is used to perform a simple linear regression analysis) that are passed to
the RExpression actor as arrays. This workflow is included in the demos/getting-started directory
(O5LinearRegression.xml), and step-by-step instructions for creating it can be found in the Getting Started

Guide.
SOF Director
Image)
DatospehMeateorologicos
- R_linear_regression
-3
Display
¢ yEy— ey s = — Il
L 1152049606370 jpg =Joks|
i 4504 ED pixels; 8-bit, 235K |
|
-
=]
|
| & ¢ 5° ——
=4 ° KL 05-LinearRegression. Display
B, [Fie Tooks mep
o m s - -
W e g -1 5 o & metwd ('O Tocuments and SettingsHirseen®))
g‘) o Jpegifilenans = ‘1132048686320, 1pg" width = 450, height = 460, pointaize =
2e T_AIR <- c{15.0, 13.4, 13.4, 12.4, 10.7, 11.4, 11.%5, L1.§, 12.2, 17.4, 20.1
| E = Ty EBARD «- o(%53.4, 953.8, 954.0, 95§4.3, 954.5, 954.7, 954.8, 954.8, 954.9, 95
‘ b v \\ ao Tea <- 1m(BARD - T_AIR)
res
i o @ g
W 0%
L o iCall:
L @.gg - 1m{formula = BARD - T_ATR]
o @
| = T T T Coefficients:
e [Intercept) T_AIR
LY L 20 e 558.3772 -0.3244
T_AIR plot{T_AIR, BARD)
| » abline(ces)

FIGURE 0.18: LINEAR REGRESSION WORKFLOW AND ITS OUTPUT.

The left-hand window in Figure 8.18 displays the scatter plot of Barometric pressure to Air Temperature
along with a regression line. The graph shows a strong negative relationship between the two: as air
temperature lowers, the Barometric pressure rises. The right-hand window displays the Barometric

260

Chapter 8 — Building Workflows with Existing Actors

Pressure and Air Temperature data used in the scatter plot. Additionally, the intercept on the Y-axis (958.38
Barometric Pressure and the slope — 0.32 for the linear regression equation y=mx+b) is displayed.

The data set used by the workflow in is described
by EML metadata, and so the EML2Data set actor

is used to access the data. To locate the desired Datos Metearologicos
ports (for barometric pressure and air
temperature, in this case), mouse over the data B T_AIR, type:double |

actor's ports to reveal an identifying tooltip.

The Datos Meteorologicos actor is configured to output the barometric pressure and air temperature data
as arrays. To set this output type, select “As Column Vector” from the pull-down menu beside the Datos
Meteorologicos actor's Data Output Format parameter (Figure 8.19) and click Commit.

Edit parameters for Datos Meteorologicos

4 -
2 o
Diata File:
w
w

Selected Entity: [atos Meteorologicos
Diaka Qubpuk Format: s Calumin Yector|
File: Extension Filker: s Field
Allows lenient data parsing: s Table

b Row

Check for lakest version:
s Byke Array

s UnCompressed File Mame
endpoint: s Cache File Mame

s Column Weckor

s ColumnBased Record

recordid:

namespace;

Comimik] [Add] [Remowve] [Restnre Defaultsl [Preferences l [Help l [Cancel

FIGURE 0.19: CONFIGURING DATOS METEOROLOGICOS FOR USE WITH THE REXPRESSION ACTOR.

The R-script used by the RExpression actor instructs it to read the Barometric Pressure and Air Temperature
data and then plot the values along with a regression line.

res <- 1lm(BARO ~ T AIR)
res
plot(T_AIR, BARO)

abline (res)

Note that the user-defined input ports of the RExpression actor have been named “T_AIR” and “BARO” as
a convenience so that they correspond to the names of the EML2Dataset actor ports providing the data.
There is no functional requirement that the input port names match the names of the output port to which
they are connected.

261

Chapter 8 — Building Workflows with Existing Actors

Using Record Tokens

The RExpression actor can be configured to process Kepler record tokens, which is particularly useful when
performing R-analyses over several columns of data in an EML dataset but not the entire table. A record
token is a collection of named arrays representing the columns of a data table (e.g., {BARO = {953.4,
953.8, 954.0}, RAIN={2.4, 3.8, .01}, RH={99, 27, 99}}, where BARO, RAIN, and RH
are the column names).

The workflow in Figure 8.20 uses an RExpression actor and a record token to create a scatter plot matrix of
a subset of the Datos Meteorologicos data fields: Air Temperature, Barometric Pressure, and RH.

SDF Director
Sequence To Array3
Image.J
Nze . Sequence To Ara
Datos orglogi
Record Assembler
1 = :
> ' ‘ [g RExpression
- Display
< Sequence To Arra e
- - a6 =1
[THanaien LD | miToecord Romphy =EE
(RnAEA picets, &bl TTK 1 [Be ok wk
» secwd('CifDocusencs and Seccings/Kicscens.keplers') L
0 60 0 10 > pngi{filename = 'Kirstenll).png’,width = 480, height = 480, pointsize = 12, bg
e e BARD 2- & (9% 653.8, 954.0, £54.3, 954.5, 954.7, 954.8, 954.8, 554.5, 953
F + , 254.3, 954 54,7, 954,90, 955.1, 955.3, § 4, #55.5, D55.5, 954.2, 952,
[. u; = a > RH «= c{99, 99, 99, 39, 99, 99, 99, 99, 99, 92, 83, 71, T4, T2, B85, 92, 99,
L. * , 99, 99, 99, 96, 80, TO, &2, 6B, 37, 37, 39, 95, 99, 99, 99, 99, §I, 99, 99
BARO 3 s L ‘?‘ ") # T_AIR <- c(15.0, 13.4, 13.4, 12.4, 11.7, 11.4, 11.5, 11.5, 12.Z, 17.4, 20.1,
K # b o= > df <= data.frame (BARG, RE, T_LIR)
- - P .|.§,' > pmics [dE)
a. aqn » sumsary |df]
fol Lo g BARD R T_AIR
a4 - - " Hin. :550.2 Mim, 124.00 Min. 1 B8.50
ikl 3. 1ot Qu.:552.0 1o& Qu.iB1.50 1ot Ou.il2.20
2 RH Hedian Nedian :99.00 Median :15.15
gy, . o Mems :053.2 Mean :87.0B Mean :16.086
e L Ex 3rd Qu.:=554.4 3od Qu.:99.00 Yed Qu,:20.15
- + % Max. 1955.5 Max. 199,00 Hax. 124.490
¥ Tedte A . >
n - LAy L - -
(3% W £ >
8,00 e T AR | .
\ | s
.....
850 2 85 10 15 ol =

FIGURE 0.20: USING THE REXPRESSION ACTOR WITH A RECORD TOKEN.

The Datos Meteorologicos actor in Figure 8.20 has been configured to output data as
“Fields” (the default). Each field of data is sent to a SequenceToArray actor that “limits” the number of fields
to 100 via the arrayLength parameter (set to 100). In order for the RecordAssembler actor, which reads
and combines the three arrays output by the SequenceToArray actors to produce a single record token, all
of the arrays must be the same length (though not the same data type). If the arrays are not the same

262

Chapter 8 — Building Workflows with Existing Actors

length, the input is ignored by the RecordAssembler actor. The RecordAssembler actor must be configured
with three user-defined input ports to receive the array data.

The RExpression actor reads the record token and displays the scatter plot matrix and summary statistics
for the three variables using the following RExpression script:

pairs (df)

summary (df)

USING DATA TABLES

The RExpression actor can be configured to process an entire dataset using a data table, a format that can
be output by the EML2Dataset actor instead of individual vectors. To output a data set in table format,
select “As Cache File Name” as the Data Output Format. Note that the output ports of the data actor
automatically reconfigure themselves appropriately; the name of the data table is output via the port
named CacheLocalFileName.

The workflow in Figure 8.21 uses a data table and an RExpression actor to create a scatter plot matrix of the
entire Datos Meteorologicos dataset. The data table is also displayed in the text display window.

263

Chapter 8 — Building Workflows with Existing Actors

Image.)

SDF Director | I ; I

Datos Meteorologicos

RExpression

Display

! 1 Kirstend 2. preg '_‘E!
({BTATY pooels, 5-DIL, 10K S

MR E
Al SRR RE S

-

1 : 1 =

HE - L o i KL DMsplay = o

MNP O P e - e

pre 2o T e

QQMEU@EQMﬁm 9z 01/04/01 19:00 15.2 99 14.5 a5z ,9®
0 N P S o] BN B BSI (1] P PR Jlos 01/04701 20:00 14.4 98 13.9 953.3
ﬂﬁm@.@ﬁmmﬂ@ 94 01/04/01 21:00 14.0 99 13.4 953.8
§/95 01/04/01 22:00 13.0 99 12.3 954.1
Eﬁ.ﬂmm.gmgt 96 01704701 23:00 13.5 99 12.8 953.9
*ﬂﬁﬁ@@ﬂﬂ.mam 01/05/01 00:00 13.6 99 12.8 953.9
98 01/05/01 01:00 13.5 99 12.8 954.0
EEEEEEEEEEESB 01/05/01 02:00 13.1 95 12.8 954.0

JMEEANEEEE T EE 1Ein 01/05/01 03:00 11.9 99 11.7 954.:v

mﬂmﬂﬂwmﬂm%m

m L] A0

FIGURE 0.21: THE REXPRESSION ACTOR USING A DATA TABLE. THE DATA OUTPUT FORMAT OF THE DATOS METEOROLOGICOS
ACTOR HAS BEEN SET TO “AS CACHE FILE NAME”.

The RExpression actor uses the following R-script to read the data table and create a pairs graph:

datafile <- infile

df <- read.table(datafile,sep=",",header=TRUE)
pairs (df)

df

An alternative method for loading tabular data from the EML actor into the RExpression actor is to use the
“As Column Based Vector” output format for the EML actor. When the actor is configured with this setting,
a single “record” output port is created. When the record port is connected to an RExpression input port,
an R-dataframe structure is created. This approach is advantageous because it can make use of the built-
in data selection mechanism (i.e., the Query Builder) of the EML actor. Additionally, it insulates the
RExpression script from dealing directly with file parsing configuration details like header lines and record
delimiters. See the Appendix B for an example of this method.

264

Chapter 8 — Building Workflows with Existing Actors

8.2.4.3 USING EXCEL DATA (I.E., NON-EML DATA) WITH THE REXPRESSION ACTOR

Although simple comma- or tab-delimited data sets (e.g., Excel files exported as text) are less versatile than
EML-described data sets, Kepler has a special R actor designed to process with this type of source: the
ReadTable actor. The ReadTable actor reads a text-based data file on the local file system and outputs the
data as a data frame, a format that can be digested by other R actors.

To use the ReadTable actor, data must be in a 'spreadsheet-like' tabular format, where each line of the data
file contains one row of values, separated by a 'separator' delimiter (tab, comma, space, etc). Saving an
Excel spreadsheet as a text file creates such a data file (with a tab separator).

The “mollusc_abundance.txt” dataset, found in the R module demo directory is an example of a simple
tabular data set that contains occurrence data for several species of mollusc collected in 2000. The workflow
in Figure 8.22 uses the ReadTable actor to “translate” this data set into a data frame that is then passed to
an RExpression actor that extracts each species name from the dataset and then calculates count averages
for each of the species. The workflow outputs a plot of the averages. The full workflow (ReadTable.xml) can
be found in the R module demo directory.

[file:/Users/barseghian/KeplerData/workflows/module/r-2.1/demos/R/ReadTable.xml|
ARERRNODLLEEEC

| Components Data Outline | I Workflow !

Search Components

4Q 1 Search

Advanced Sources

SDF Director

| All Ontologies and Folders =] Display Image)

» [components Data File Name

» [Projecs [Tpropertytr workllowd T+ demos (i molluse_abundance. i
» [3 statistics Separator
> Actors E xore
> Dataturbine header
> Directors
» Opendap
[R
DaadTahla Nienlau?
RExpression-1.png
o
g 8 ‘
o 00 -ReadTable.Display
2 1902000 10 26 4 2 3 Detracia 4] 0.2500
1912000 10 26 4 2 & Detracia 0 0.2500
1922000 10 26 4 2 8 Detracia 0 0.2500 @
24 1932000 10 27 5 1 1 Detracia 0 0.2500
1942000 10 27 5 1 3 Detracia 0 0.2500
1952000 10 27 5 1 & Detracia 0 0.2500
o | 1962000 10 27 5 1 B8 Detracia 0 0.2500
© 1972000 10 27 5 2 1 Detracia 0 0.5000
1982000 10 27 5 2 3 Detracia 0 0.2500 Y
1992000 10 27 5 2 & Detracia 0 0.2500
2 | 500200010 37 & 3 © Nareacia a___nacan 1
————————————————————————— = <[
7
o o r
& o °
o 8
g o ’ ' _§ B
o 8 F B) ——= 8 ' e
T T T T T T =
Crassostrea Detracia Geukensia Hydrobiidae llyanassa Littoraria Melampus Polymesoda 4

FIGURE 0.22: USING THE READTABLE ACTOR TO TRANSLATE A LOCAL, TAB-DELIMITED DATA SET INTO A DATA FRAME FORMAT,
WHICH CAN BE PROCESSED BY OTHER R ACTORS.

The ReadTable actor is itself an R actor, and double-clicking the actor reveals the R-script in the actor
parameters (Figure 8.23).

265

Chapter 8 — Building Workflows with Existing Actors

Edit parameters for ReadTable
9 o
4_‘/ R Funiction or script: if {any(l=s{) == "header"] == FALLSE) header= TRUE

if (anv(ls() == "separator®™) == FAL3E) =separator =
if f(any(l=s() == "nrows") == FAL3IE) nrows = -1
if {(any(ls(] == "fill") == FALSE] fill = TRUE
df <- read.table(fileNames, sep=separator, header=h
df
dataframe <- df
pairs (df)

R working directary: C:\Docurnents and SettingsiCan Higgins',.kepler)

Save of nok; L fO-save “

Graphics Format: png v.

Graphics Qukput: F '

Automatically display graphics: F

Mumber of ¥ pixels in image: 480

Murnber of ¥ pixels in image: 480

class: org.ecoinformatics, seek, R RExpression

semanticTypedd: urrilsid:localhost:onka: 1; 1 #MathOperationAckar

semanticTypell: urn:lsid:localhost:onto:2: 1 #GeneralPurpose

firingsPerIteration: 1

Carnrnik] [Aidd] [Remave] [Restore DeFauItsl [Preferences l [Help l [Cancel

FIGURE 0.23: THE READTABLE ACTOR PARAMETERS.

By default, the actor assumes that the first row of the data file contains column names (e.g., “Date”,
“Occurrence”, etc). The default separator is any white space (e.g., spaces or tabs). Use the ReadTable actor's
header and separator ports to specify other behaviors (e.g., a comma “,” as the separator, or “FALSE”
to indicate that the data set does not contain header information. Often, all input ports other than the file
name can be left unconnected. An additional output port (called dataframe) has been added to the
ReadTable actor to pass the data frame to the downstream RExpression actor. For more information, please

see the R documentation for read.table.

8.3 StATISTICAL COMPUTING: MATLAB

Kepler's MATLABExpression actor runs a MATLAB function or script and outputs the result of the evaluated
script. MATLAB (“MATrix LABoratory”) is a high-level technical computing language and interactive
environment for algorithm development, data visualization, data analysis, and numeric computation.* The
application is available through The Mathworks, http://www.mathworks.com. The MatlabExpression actor
will not run unless MATLAB is installed on the local system. Please refer to the Mathworks site for
information about obtaining and installing MATLAB.

4> Mathworks website, http://www.mathworks.com/products/matlab/description1.html

266

http://cran.r-project.org/doc/manuals/R-intro.html#The-read_002etable_0028_0029-function
http://www.mathworks.com/
http://www.mathworks.com/products/matlab/description1.html

Chapter 8 — Building Workflows with Existing Actors

The MATLABExpression actor works much like the RExpression actor: specify the desired MATLAB
expression and configure the appropriate input and output ports. The expression may include references
to the input port names, current time (time), and a count of the firing (iteration). To refer to
parameters in scope, use $name or $ {name } within the expression.

NOTE: You must set an environment variable to the MATLAB libraries directory before running Kepler. The
following examples are for MATLAB R2007b installed in a common location:

On Macg, in a terminal window:

export
DYLD LIBRARY PATH=/Applications/MATLAB R2007b/bin/maci
kepler.sh

On Windows, Start->Run:

cmd

set PATH=%PATH%;c:\Program Files\MATLAB\R2007b\bin\win32
kepler.bat

On Linux, in a terminal window:

export LD LIBRARY PATH=/usr/local/matlab/bin/glnx86
kepler.sh

Once your system is configured properly, you can begin to build and run workflows using the
MatlabExpression actor. The workflow in Figure 8.24 uses a MATLABExpression actor to invoke a command
in MATLAB: the function “surf” (which renders a matrix as a surface plot) on the matrix input.

267

Chapter 8 — Building Workflows with Existing Actors

SDF Director

Ramp TrigFunction DaubleToMatrix

MultiplyDivide MatlabExpression

TrigFunction2 2:DoubleToMatfix

This workflow requires that Matlab be installed on
your local machine.

FIGURE 0.24: USING THE MATLABEXPRESSION ACTOR. THIS WORKFLOW CAN BE FOUND UNDER
OUTREACH/WORKFLOWS/DEMOS/MATLAB/MATLABEXPRESSION.XML.

The surf () function is specified in the value of the MatlabExpression actor's expression parameter
(Figure 8.25). Note that the name of the actor's input port is “input,” which is referenced in the
expression value as well. The actor's other two parameters, getlxlasScalars and
getIntegerMatrices, control data conversion. getlxlasScalars specifies that all 1x1 matrix
results be converted to scalar tokens (the default). Select the getIngegerMatrices parameter to
check all double-valued matrix results and return an IntMatrixToken if all elements represent integers. This
setting is off by default for performance reasons.

—
Edit parameters for MatlabExpression
\?/ EXpression: surf (inputc)
getlxlasscalars:
getlntegerMatrices: D
Cammik l [Add] [Remove] [Restore Defaultsl [Preferences l [Help l [Cancel

FIGURE 0.25: PARAMETERS OF THE MATLABEXPRESSION ACTOR.

268

Chapter 8 — Building Workflows with Existing Actors

To augment the search path used by the MATLAB engine to locate files, set a user-defined parameter named
packageDirectories containing a comma-separated list of paths to be prepended to the MATLAB
engine search path. Paths can be relative to the directory in which Kepler was started, or any directory listed
in the current classpath (in that order, first match wins). After evaluation, the previous search path is
restored. Note: to add a new actor parameter, double-click the MatlabExpression actor and click the Add
button.

Add a debugging parameter to send debug statements to stdout. An integer value of 1 will return
statements from the MATLAB Engine, a value of 2 returns debug statements from both the MATLAB Engine
and the Kepler JNI, and a value of 0, or the absence of the parameter, restores the debug behavior to the
default setting (off).

8.4 IMAGE MANIPULATION: IMAGEJ

The Kepler library contains two actors (ImageJ and I/Macro) designed to interface with Imagel, a public
domain Java image processing program inspired by NIH Image for the Macintosh. ImagelJ can display, edit,
analyze, process, save and print 8-bit, 16-bit and 32-bit images (Figure 8.26). It can read many image formats
including TIFF, GIF, JPEG, BMP, DICOM, FITS and “raw”. It supports “stacks”, a series of images that share a
single window. It is multithreaded, so time-consuming operations such as image file reading can be
performed in parallel with other operations.*®

6 Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA,
http://rsb.info.nih.gov/ij/ , 1997-2007.

269

http://rsb.info.nih.gov/nih-image/
http://rsb.info.nih.gov/ij/

Chapter 8 — Building Workflows with Existing Actors

[dtmager =101 |

File Edit Image Process Analyze Plugins Window Help
[l e R RN R N RN ——=
Location = (1 44,85), value=0,66,200 - | % ﬁ'iﬁfs‘;jﬁjﬁ

. Fluoreseen . = (O =]

212}{151 pmels RizE; 1 4K

oo e

121}{118 plxels a- b|tgrc 121%118 pixels; 8-hit grz

|Area [Mean |Major [Minor
425 19595 2802 193
426 201.84 3133 173
676 19898 3572 2410
361 19721 2370 19.39
B0 189.72 4620 1681
641 19262 3975 2043

FIGURE 0.26: IMAGEJ TOOLBAR (UPPER LEFT) AND EXAMPLES OF IMAGE DATA. THIS IMAGE IS FROM THE IMAGEJ WEB SITE,
HTTP://RSB.INFO.NIH.GOV/IJ/INDEX.HTML.

Kepler's Imagel actor reads an image file name and opens and displays the image along with the Image)
toolbar containing image-processing options, which can be used to process the image. The I/Macro actor
runs Imagel macros, which are used to display, edit, analyze, process, save, and print a wide variety of image
formats. In this section, we will look more closely at these actors and at how the ImagelJ application can be
used to perform some useful processes such as rescaling, clipping, and adjusting color balance. For an in-
depth look into all of the capabilities of Imagel, please see the Image) documentation.

8.4.1 INTRO TO IMAGEJ AND THE IMAGEJ ACTOR

The Imagel actor is used to display and/or manipulate a wide variety of image formats: TIFF
(uncompressed), PNG, GIF, JPEG, DICOM, BMP, PGM, FITS format, or Imagel and NIH Image lookup tables
(with “.lut” extension). Additional file formats are supported via plugins installed in the Import submenu
(File > Import...).

The simple (one actor!) workflow in Figure 8.27 demonstrates how the ImageJ actor is used to open the
Kepler logo (a PNG file specified by the ImageJ actor's £11e0OrURL parameter) in a display window. The

270

http://rsb.info.nih.gov/ij/index.html

Chapter 8 — Building Workflows with Existing Actors

Imagel toolbar opens as well, and can be used to manipulate the image in a number of ways. The actor can

also receive the URL of an image via its input port, which is useful when displaying the graphical output
of a workflow, for example.

Bl Edt Veew Worklow Tock Window Help

QARQIP MO mEDl:e

Conponts LDy JNNNNNNNNNN] -~~~ === ===~ . ™ —
N ! Imagef ! ¢ image) BE =
i toolbar ; F#e Edil Image Process Analze Pluging Window Healp
e e 0, [@elelolzn AN Al alele] |] |||
O B |S|:rr.ﬂi1;mul
SDF Direcior
= i@ Semch Fesus @
= @ Components
= i Data Outpme
S i Workflow Output
=- i Graphical Cubput Image)
Edit paramaters for Image.) |
B oD Cponments st ettt 0509 (o]
i [l Image Jactor ——
semanticTypedD! m:kd:!ucm:mm!:llhwmm
semanticTypel11: wrriibsid:loc alhost rorko:2 1| #GraphicalOubpat
FrringsPer Reration! 1
[comme J[asd [Remove |[Remoroocfaits|| Preforerces || mep J[coed |
[y Y] T

I
FIGURE 0.27: OPENING AN IMAGE WITH THE IMAGEJ ACTOR. SPECIFY THE PATH OF THE IMAGE TO OPEN IN THE IMAGEJ
PARAMETERS (SHOWN ABOVE) OR VIA THE ACTOR'S INPUT PORT.

8.4.1.1 RESCALING IMAGESONCE AN IMAGE HAS BEEN OPENED BY IMAGEJ, YOU CAN USE THE IMAGEJ
TOOLS AND MENU OPTIONS TO PROCESS AND SAVE THE IMAGE AS DESIRED. TO RESCALE AN IMAGE,

FOR EXAMPLE, SELECT SCALE FROM THE DROP-DOWN IMAGE MENU IN THE IMAGEJ TOOLBAR (FIGURE
8.28).

271

Chapter 8 — Building Workflows with Existing Actors

-

= Image)

=)o

X

File Edit

(el

Straight line

SDF Director Type

Adjust
Shaw Infa...

Froperies .
Image.)

)

E el li s \
100x80 pixels; 8-hit; |

Kepler
:”,-h

Color
Stacks

Crop
Duplicate...
Fename...

Scale...
R otate
Zoom

Loaokup Takles

S+
Ctrl+5hitt+F

Cirl+Shift+D

CHrl+E

d!

Image Process AnalZze Plugins Window Help

ool | | ||

3

»
b

[
]

]

FIGURE 0.28: SCALING AN IMAGE USING THE IMAGEJ SCALE MENU ITEM.

A dialog box allows users to select scaling settings
(Figure 8.29). Images can be scaled by a factor (.05-
25) or using specified dimensions in the Width and
Height fields. Check Interpolate to scale using
bilinear interpolation. Select Create New
Window to open the scaled image in a new display
window. The F111 with Background Color
option applies when the new image is opened in the
original display window.

To rescale multiple images, you may wish to use the
IJMacro actor with an appropriate macro. We will
look at an example of using the /Macro actor in
Section 8.4.2.

8.4.1.2 CLIPPING IMAGES

272

-~

f Scale

® Scale (0.05-25):

Y Scale (0.05-25):

Width (pixels):

Height (pixels):

v Interpolate

11

200

160

[v Fill with Background Color

v Create Mew Window

Title: |kep|er—|ngn-1.png

O | Cancel

FIGURE 0.29: IMAGEJ SCALING SETTINGS

Chapter 8 — Building Workflows with Existing Actors

Another common way to manipulate images is to clip them, i.e., select a fragment of the image that is of
interest. To select only South America from a map of the world, for example, use one of the seven Image)
selection tools available in the toolbar (Figure 8.30). The selection will be highlighted with a yellow border.

File Edit Image Process Analze Pluging Window Help

SDFDirecmrCﬁ@_|ﬂi@|‘ﬂ®|'¢'_"\|ﬁg |O%l{“?lf| | |] |) |

=192 y=189, value=0,00

Image.J

it — \
¢ saxicola_combined_MergedResult-2.jpg [:_JlE:
450x235 piels, RGE, 392K

FIGURE 0.30: USING AN IMAGEJ SELECTION TOOL TO SELECT A PORTION OF A DISPLAYED IMAGE. IMAGEJ HAS A NUMBER OF
SELECTION TOOLS (HIGHLIGHTED WITH RED OVAL).

Once a selection has been made, copy it to the system clipboard with the Copy to System menuitem
(Figure 8.31). This command copies the contents of the current image selection to the system clipboard. If
there is no selection, the command copies the entire active image.

273

Chapter 8 — Building Workflows with Existing Actors

|£ Image.) E] @

File "Edit Image Frocess Anahze FPluging Window Help |
SDFDirector ([¢ undo ez LAl (@2l |

@ Freefl oyt Ctri+x

Copy Ci+C
G Copy to System
Paste Cli+y
Claar
i Clear Qutside
I
Fil

Ciri+F |
Diraw Clr+D
Irvert CArl+ Shift+l

Selection
Cptions

FIGURE 0.31: COPYING A SELECTION TO THE SYSTEM CLIPBOARD USING THE IMAGEJ TOOLBAR.

Note that the Imagel toolbar has a context-sensitive status area (Figure 8.32). When rolling over an image,
for example, the x- and y-position of the cursor is displayed along with other relevant information, such as
the cell value (for asc grid files) or the RGB color value (for jpg files, etc).

274

Chapter 8 — Building Workflows with Existing Actors

File Edit Image Process AnahzZe Pluging Window Help

W ool =& +x A Jal@le] | | || |]

¥=242 y=182 value=2.0

SDF Director

~ — . Y|
¢ saxicola_combined_MergedResult-2.asc l;,lE
4505275 pixels, ROB, 397K

Image.J

FIGURE 0.32: THE IMAGEJ STATUS AREA IS HIGHLIGHTED WITH A RED OVAL. THE X AND Y POSITION OF THE CURSOR IS DISPLAYED
ALONG WITH THE CELL VALUE (THE DISPLAYED FILE IS AN ASC GRID FILE).

8.4.1.3 ADJUSTING IMAGE COLOR AND BRIGHTNESS

To adjust the color, brightness, contrast, etc. of an image, use the options in the Image) Image > Adjust...
menu (Figure 8.33). The Brightness and Contrast dialog window that opens when that menu item is selected
contains four sliders. Minimum and Maximum control the lower and upper limits of the display range.
Brightness increases or decreases image brightness by moving the display range. Contrast increases or
decreases contrast by varying the width of the display range. The narrower the display range, the higher
the contrast. Use the Color Balance menu item to make adjustments to the brightness and contrast of a
single color of a standard RGB image.?

The Image) documentation has comprehensive information about all of the many image adjustments
(brightness, contrast, size, threshold, scale, crop, etc) that can be made with Imagel. Please see
http://rsb.info.nih.gov/ij/ for more information.

47 See http://rsb.info.nih.gov/ii/

275

http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/

Chapter 8 — Building Workflows with Existing Actors

K Image.) g = |
' File Eﬂlf Image Process Anahze Fluging Window Help |
B afc e v | e v
segmented | 4y e b BrightnessiContrast.. Ciri+ShitsC | |

Show Info... Clrl+| WindowiLevel...

Properties... Clrl+Shift+P Color Balance..,

Color k| Threshold... Clrl+Shift+T

Stacks k Size..

Crop Canvas Size...

Duplicate... Ctri+Shift+D

Rename, .,

Scale... Cirl+E

Rotate r

Zoom L4

Lookup Tables b

FIGURE 0.33: ADJUSTING THE CONTRAST, BRIGHTNESS, AND COLOR OF AN IMAGE.

8.4.1.4 SELECTING A COLOR PALETTE FOR ASC GRID IMAGES

The image in Figure 8.32 was generated by one of Kepler's Ecological Niche Modeling workflows
(GARP_SingleSpecies_BestRuleSet-I1V.xml), which displays an ASC grid file that represents the possible
distribution of a species. For each cell in the ASC grid, the workflow calculates the likelihood of a species
being present. The grid file is displayed using the “fire” palette, which assigns brighter colors to higher pixel
values (in general, cells where there is a higher likelihood of species presence have higher values). To change
the look of the map (perhaps to prepare it for a black and white publication or to find colors that match the
look and feel of a presentation), simply select a new palette under the Image > Lookup Tables... menu
(Figure 8.34).

276

Chapter 8 — Building Workflows with Existing Actors

g Image.] Q ;

File Edit Image Process Anahze Plugins Window Help

Balc e g I N7 O O I‘

Segmented Adjust »

Show Info... Ctrl+l

Froperties... Clrl+Shift+P

Color »

Stacks r

Zrop

Duplicate. . Cirl+Shift+D

Rename...

Scale.. Ctrl+E

Rotate »

Zoom r

Lookup Tahles P Fire
Grays
Ice
Spectrum
3-3-2 RGH
Red

FIGURE 0.34: USING THE IMAGE > LOOKUP TABLE MENU TO CUSTOMIZE THE LOOK AND FEEL OF A DISPLAYED ASC GRID FILE.

The selected color palette can be further customized using the Brightness and Contrast settings.

8.4.2 THE IJMACRO ACTOR

In addition to opening and displaying images, the I/Macro actor can be programmed to access all of the
powerful functionality of Imagel using a macro--a simple program that automates a series of Image)
commands. Macros are written in the Image) Macro Language, though in most cases users do not have to
learn it. This is because (1) ImageJ already has a large library of Macros that can be cut and pasted into the
IJMacro actor and (2) Image) macros can be easily created using the Recorder, accessed under Plugins >
Macros > Record... menu.

The workflow in Figure 8.35 uses an IJMacro to open an ASC grid file, adjust its brightness and contrast
settings, and assign a color palette.

277

Chapter 8 — Building Workflows with Existing Actors

SOF Direcior

@ DawDireciony propartyl WEPLER")+ libtesidataigarp®
enumber_Od_herations: 10

NOTE: Each [erabon reguires 10-20
#Spacias_Mama: "Wophits_maphitis”

Seconds on a iypecal deskiop PC

e NumBast 3

Mame of Spacies Right-click the acior and 5edect 'Oy

Image output by workflow

Spalipsiama

angitude_lasiude_labls

| - DiataPodnits
[DataDireciony+digir_data_mephits dal®

A Grids

Cutput e path and nama
LJ'- DataDireciony+" "« Specias_MNames™_MargedR

/R

FIGURE 0.35: AN ECOLOGICAL NICHE MODELING WORKFLOW (GARP_SINGLESPECIES_BESTRULESET-IV.XML) THAT USES AN
IJMACRO ACTOR TO CUSTOMIZE THE GRAPHICAL DISPLAY OF THE WORKFLOW OUTPUT.

Note that ASC grid files cannot be opened natively with Imagel. To open an ASC file, one must evoke the
ASC TextReader plug-in, which can understand the format. The Macro used by the IJMacro actor in the ENM
workflow calls the ASC reader plug-in as well as a number of other commands used to adjust the
Brightness/Contrast settings and select a color palette (Figure 8.36).

Edit parameters for [JMacro

o]
.. imAe
r/ paciostipa] run|'"A3C TextReader™, "open= FILE "):

run("Brightness/Contrast...™);
setMinindMax(-10, 10);
run("Fire™) ;

fileCrURL: C:\kepler200705813), libftestdatafaarp/Mephitis_mephitis_MergedResult, asc

firingsPerIteration: 1

Camimik] [Add] [Remove] [Restore Defaultsl [Preferences l [Help l I Cancel

FIGURE 0.36: THE PARAMETERS OF THE I/MACRO ACTOR.

To create a Macro like the one used in Figure 8.35, select Macros and then Record from the Plugins menu.
A macro record window opens (Figure 8.37).

278

Chapter 8 — Building Workflows with Existing Actors

-~

¢ Recorder [Z]@-\

Marme: |Macro Create 7

FIGURE 0.37: THE IMAGEJ MACRO RECORDER.

Once the recorder is open, simply perform the operations the macro should perform. For example, to set
the Contrast/Brightness of an image, select Adjust > Brightness/Contrast from the Image menu. The action
is “recorded” in the macro record window in Macro Language: run ("Brightness/Contrast...");
Any adjustments made to the settings will be recorded as well. Once the macro has been “designed by
hand” and recorded, it can be cut and pasted into the macroString parameter of the [/Macro actor.

For a library of over 200 ready-made Imagel macros, see the Imagel macro library at
http://rsb.info.nih.gov/ij/macros/.

8.5 SPATIAL DATA: GEOGRAPHIC INFORMATION SYSTEMS (GIS)

The Kepler component library contains a number of GIS actors, which are used to capture, manage, analyze,
and display all forms of geographically referenced information. From actors designed to interface with the
Geospatial Data Abstraction Library (GDAL, a translator library for raster geospatial data formats), to
actors that can display geographic information encoded as Geography Markup Language (GML) or ESRI
shape files, Kepler provides support for a wide variety of geographic formats and systems.

8.5.1 MASKING A GEOGRAPHICAL AREA WITH THE CONVEXHULL AND CVTORASTER ACTORS

Masks, which “black out” areas of a map that are not of interest, can be used to isolate a specific geographic
region (Figure 8.38). Kepler's environmental niche modeling (ENM) workflows use masks to help generate
species' absence points from a defined area (only the area where species occurrences have been noted),
for example. For more information about Kepler's ENM workflows, including in-depth instructions for
creating a mask file for ENM purposes, please see the Guide to ENM.

279

http://rsb.info.nih.gov/ij/macros/

Chapter 8 — Building Workflows with Existing Actors

The Kepler library contains several actors that are particularly useful for creating mask files: ConvexHull and
CVHullToRaster. The ConvexHull actor constructs a convex hull (the smallest polygon that contains a given
set of geographic points) for an area of interest. The convex hull is derived from a set of input data points,
which consist of a longitude and latitude value (see KeplerData/workflows/module/outreach-2.1/data/garp
/DataPoints.txt for an example). The CVHullToRaster actor receives a convex hull and creates and saves a

mask file from it. Points outside the convex hull are assigned a value of “NO_DATA”.

weald_ 7.2 86 jpg JoE
T panis BOE 15

| Name of file containing
i latitude/Tongitude data
! points

o -~

il SDF Director

E Name to apply to the
! generated convex hull

o Convex Hull - Showl ocations

Hull Data File Hamea ay
+ property"KEPLER)+ HullPoints be®*

Rasier Data File Name "y
¢ property"KEPLER"H " HullRasier.bd" # s

B o CV Hull to Raster T T

E Name to apply to the : @ I3 m

generated mask file

» MapLocation: propary KEPLER™)+"libAmagesfvordd_T20x360 jpg”

FIGURE 0.38: USING CONVEXHULL AND CVHULLTORASTER ACTORS TO GENERATE A MASK FILE (“HULLRASTER.TXT”).

The name and location of the convex hull file are passed to the CVHullToRaster actor, which creates and
saves a mask file with the correct resolution and extent. The resolution (cellsize) and extent (numrows and

numcols) are specified by the actor's parameters (Figure 8.39).

Edit parameters for CV Hull to Raster
x?/ wllcormer: -180.0
: yllcorner: -90.0
cellsize: 0.5
NUMFOWS: 360
nurncols: TZz0
Use disk storage (For large grids);
class: org.ecoinformatics, seek, gis. java_gis, CWHUllZRaster
semanticType00: urnilsid:localhost:onto: 1: 1 #GISFunctionActor
semanticTypel 1: urn:lsidilocalhost:onto: 2; 1 #GeometricOperation
Comimik] [Add] [Remowve] [Restnre Defaultsl [Preferences l [Help l [Cancel

280

Chapter 8 — Building Workflows with Existing Actors

FIGURE 0.39: THE PARAMETERS OF THE CV HULL TO RASTER ACTOR.

The CVHullToRaster actor writes the mask file to the location specified via the rasterFileName port
and outputs the name of the mask file.

8.5.2 GEOSPATIAL DATA ABSTRACTION LIBRARY (GDAL) ACTORS

The Geospatial Data Abstraction Library (GDAL) is an open source software package designed to read, write,
and manipulate a wide variety of Geographical Information System (GIS) raster grid files.*® Kepler has
several very useful actors that use the GDAL library to perform geospatial file transformations: the
GDALFormatTranslator actor reads a geospatial raster file and translates it to a specified format (e.g., JPEG,
AAIGrid, etc); the GDALWarpAndProjection actor “stretches” or “warps” a geospatial raster file (e.g., a
digital elevation model) from one cartographic projection to another.

Because working with high-resolution geospatial raster files can be resource-intensive and time consuming,
Kepler's GDAL actors check the Kepler file cache to see if the transformed file already exists (from a previous
workflow iteration, for example) before performing a translation.

The workflow (Figure 8.40) is designed to download a set of topographical data for South America (Hydrolk
data, a dataset developed by the U.S. Geological Survey's EROS Data Center) via the Kepler EarthGrid. If the
data have already been downloaded, the workflow will access them from a local cache. Kepler's GDAL actors
are then used to transform the data: first to change the map projection and then the format.

LSDF Direcior

= ResuliDirectony: property"KEFLER" " libfss data/gamispatislLayars”

Hydrg 1k South America - DEM

b=

Apray Elomant
EOAL Warnp and Projection

Foirnal Trang kisor
Mid Fes caler

Sh Mask

Southe Amanca Mask kg

[jl; propétyKEPLER 4 NibAgsidataigarp/H
Ouiput Fila - South Amarica

t> ResuliDireciony+ 1K _SAssc’

FIGURE 0.40: USING THE GDAL ACTORS TO TRANSFORM GEOSPATIAL DATA. NOTE THAT THE INITIAL DOWNLOAD OF THE
HYDRO1K DATA MAY TAKE AS LONG AS 30 MINUTES WITH A REASONABLY FAST PC.

Once the Hydrolk data is downloaded to the cache, the data are extracted from their zip file. The Hydrolk
South America DEM actor's DataOutputFormat parameter (Figure 8.41) instructs the actor to unzip the

48 GDAL website, http://www.gdal.org/index.html

281

http://www.gdal.org/index.html

Chapter 8 — Building Workflows with Existing Actors

downloaded data into the Kepler cache and output the file name of the dataset (actually an array of file
names: the file name of the raw data as well as the file names of the associated meta data files). An
ArrayElement actor reads the array of file names and extracts the first element, which is the name of the
raw dataset. The name of the raw data is then passed to downstream actors for further transformations.

Edit parameters for Hydrolk South America - DEM
e) e -
Diata File: Erowse
- - - U-
Duats Qubput Format: As UnCompressed Fle Name| _'_:J v
i . o . m ___=_-—
Allow lenient data parsing: s Table
Check for latest version: 53 o)
s Eryte Array
recordid: s LnCompressed File Namea
endpoink: s Cache File Name
namespaces s Column Yector
s CoduomniBased Record
[Comnit I | Add | [Remove | [Rcsturc Defauks] [Preferences] | Help | [Cancel]

FIGURE 0.41: THE PARAMETERS FOR THE HYDRO1K SOUTH AMERICAN —DEM ACTOR. SELECTING “AS UNCOMPRESSED FILE
NAME” AS THE VALUE OF THE DATA OUTPUT FORMAT PARAMETER INSTRUCTS THE ACTOR TO UNZIP THE DATASET INTO THE
KEPLER CACHE.

The Hydrolk data use a Lambert Azimuthal Equal Area coordinate system projection (for information about
the projection, see the dataset's meta data: right-click the data actor and select Get Metadata). The
GDALWarpAndProjection actor converts this projection to one that uses a latitude/longitude system. The
input and output projection formats are specified by the actor's parameters (Figure 8.42). The formats must
be of a form used by the GDAL Warp utility (a Lambert Azimuthal Equal Area Projection could be specified
as +proj=laea+lat 0=45+long 0=-100+x 0=0+y 0=0, for example). For more information
about supported formats, see www.remotesensing.org/geotiff/proj_list/.

Edit parameters for GDAL Warp and Projection
Pk params :
_"J/ INpuUE params: +proj=laga +lat_0=-15 +lon_0=-60 +x_0=0 +y_0=0]
aukput paranis: +proj=lationg
output Format: GTiFF
Cache options: Cache Files buk Preserve Locakion v
firingsPerIteration: 1
Carnrnik l [Aidd] [Remave] [Restore Defaults l [Preferences l [Help l [Cancel

FIGURE 0.42: THE PARAMETERS OF THE GDALWARPANDPROJECTION ACTOR.

Once the projection has been updated, a GDALFormatTranslator actor converts the raster format (GeoTiff)
to a new format (ASC raster grid). Available formats are listed in a drop-down menu (AAIGrid, DTED, PNG,
JPEG, MEM, GIF, XPM, BMP, PCIDSK, PNM, ENVI, ESRI, PCI, MFF, MFF2, BT, FIT, USGSDEM) in the actor
parameters (Figure 8.43). The actor's Cache options parameter specifies whether the output should
be copied to the cache (“Copy files to cache”), copied to the cache as well as the directory where the input

282

Chapter 8 — Building Workflows with Existing Actors

raster is stored (“Cache files but preserve location”), or not cached (“No caching”). If “No caching” is
selected, the actor will not cache the translated file and will ignore all previously stored cache items. Select
this option to force the actor to perform a translation even if the input file was previously translated and
cached.

Edit parameters for GDAL Format Translator
?) EpLt bype: ™
- J output bype: Byte ™
output Farmat: Aalard v
Cache options: Cache Files but Preserve Location V
firingsPerIter ation: 1
Carnimik l ’ add] ’ Remove] ’Restnre Defaults] [Preferences] [Help] ’ Cancel

FIGURE 0.43: THE PARAMETERS OF THE GDALFORMATTRANSLATOR ACTOR.

After the map has been translated, it is rescaled and masked (so that only continental data is displayed).
The GridRescaler actor sets the x and y values for the lower left corner of the output grid, the cell size, and
the number of rows and columns (Figure 8.44). Either the “Nearest neighbor” or “Inverse distance”
weighted algorithms can be used to calculate output cell values. If the “Use Existing File” checkbox is
selected, the actor will check to see if a file with the output file name already exists. If so, then the actor
skips all actions except for returning the existing file name (i.e., the actor does not “re-translate” the source
data). Selecting the “use Existing File” parameter helps avoid lengthy rescaling calculations that have
already been completed in prior runs. If the checkbox is not selected, any existing output file with the same
name will simply be overwritten.

Longitude / latitude E
af desired lower left corner |

Edit parameters for Grid Rescaler 2 I A
= - r et R R B T W e T T e
9 ratt :. Desired resolution |
“-'r) sbcomer: -180.0 =2 e in degrees '
wlkcormer: a0,0 ¢ = -_'_‘ ______________________________ H
e L | Desired extent as |
MU O 1800 ~ R number of rows |
numeols: e and column i
: S i e i =
outputFlehiame: $ResultDirectoryNew Test_Ma. asc Browse
s Exctelting Fila: O
use disk storage (for large grids): =
I Comimit | I_ Audd | | Remone | [Restma Dok anlts | | Prefarances | | Help | | Cancel

FIGURE 0.44: PARAMETERS OF THE GRIDRESCALER ACTOR.

283

Chapter 8 — Building Workflows with Existing Actors

The example workflow uses a MergeGrid actor (called SA_Mask) to mask the transformed map. The
MergeGrid actor receives the map data as well as the name of a mask file. Masked areas (e.g., oceans) will
be assigned a value of “NO_DATA”. The results are displayed with an I/Macro actor (Figure 8.45).

| H1K_SA.asc (25%) =J2Ed
36001800 pixels; 32-bit, 25MB

FIGURE 0.45: A TOPOGRAPHICAL MAP OF SOUTH AMERICA, OUTPUT BY THE EXAMPLE WORKFLOW.

284

Chapter 9 — Domain Specific Workflows

9 DOMAIN SPECIFIC WORKFLOWS

This chapter contains example workflows that have been developed or are currently under development
for specific domains: chemistry, ecology, geology, molecular biology, oceanography, and phylogeny.

9.1 CHEMISTRY

In conjunction with the RESURGENCE project (RESearch sURGe ENabled by CyberinfrastructurE), the
Kepler project has developed a general workflow infrastructure for computational chemistry that allows
high-throughput calculations distributed on a computational grid.*® To that end, the Kepler library contains
a number of components designed to interface with commonly used computational chemistry tools such
as GAMESS (General Atomic and Molecular Electronic Structure System), Open Babel, Babel, and QMView.
To use the full suite of computational chemistry actors, these applications must be installed on the local
system.

The workflow in Figure 9.1 demonstrates how Kepler can be used to prepare and run a GAMESS experiment.
All of the required applications necessary for file format translation, display, and processing are accessed
and executed via workflow actors. Kepler actors also create all of the necessary directories and text files.
The workflow is parameterized to allow for molecule selection, for setting the main scientific parameters,
and for parsing the underlying program codes. Each of the actors in the workflow in Figure 9.1 is a composite
actor containing the individual actors required to perform the workflow step.

For detailed information about the GAMESS workflow, see https://code.kepler-project.org/code/kepler-
docs/trunk/legacy-documents/user/WFDocumentation/Local GAMESSPrepareRunDisplay.doc

Preparing and running a GAMESS Experiment and displaying the results visually
Workflow Authors:

Wibke SUDHOLT, Kim BALDRIDGE: University of Zurich

Ilkay ALTINTAS: San Diego Supercomputer Center

49 RESURGENCE project home page, http://ocikbws.uzh.ch/resurgence/index.html

285

http://ocikbws.uzh.ch/resurgence/index.html
https://code.kepler-project.org/code/kepler-docs/trunk/legacy-documents/user/WFDocumentation/LocalGAMESSPrepareRunDisplay.doc
https://code.kepler-project.org/code/kepler-docs/trunk/legacy-documents/user/WFDocumentation/LocalGAMESSPrepareRunDisplay.doc
http://ocikbws.uzh.ch/resurgence/index.html

Chapter 9 — Domain Specific Workflows

Convert molecule files E
to gamin _format !

[
[

[

'

¥

I

¥
»

Create a GAMESS input file
Jfrom gamin file.

! Convert output to PDE '/

Pt e e , (Protein Data Bank) |

' Run the GAMESS | s e, '

! experiment ' £ et

[| Fam

"’,d fo Babdl Cmview Display
o outputFomatHandie cailaFile
phraminputHanay e
sl LaHE il e it

I . . = Ejnmrr::lll(l:erul:::Il
. Dlspl'ny the opﬁmized 1puber Canber
i molecule structures !
[

FIGURE 9.1: PREPARING AND RUNNING A GAMESS EXPERIMENT AND DISPLAYING THE RESULTS VISUALLY. THIS WORKFLOW
RUNS HIGH-THROUGHPUT CALCULATIONS OF SEVERAL MOLECULES USING THE GAMESS QUANTUM CHEMISTRY APPLICATION.
WHEN COMPLETED, THIS WORKFLOW WILL ENABLE USERS TO OBTAIN PHYSICAL PROPERTIES OF ALL THE MOLECULES INVOLVED.
THE WORKFLOW WILL ALSO DISPLAY THE FINAL (OPTIMIZED) STRUCTURES OF THESE MOLECULES USING QMVIEW
VISUALIZATION SOFTWARE.

The Preparing and running a GAMESS Experiment and displaying the results visually: workflow can be found
in the workflows/chem/ directory. Please note that these workflows are under development and may not
be fully functional.

9.2 EcoLoGY

The National Science Foundation-funded SEEK (Science Environment for Ecological Knowledge) project—
the initial contributor to the Kepler project—chose Ecological Niche Modeling (ENM) as the prototype
Kepler application. SEEK selected this application because there were clear gains to be made through
applying cutting-edge technology to niche modeling.

The project makes use of the data resources of the distributed Mammal Networked Information System
(MaNIS; Stein and Wieczorek, 2004) to carry out a review of likely climate change effects on the over 2000
mammal species of the Americas, constructing maps of potential species distributions under future climate
scenarios. This analysis will be the broadest in taxonomic and geographic scope carried out to date, and the
computational approach, the Kepler workflow (Figure 9.2) will be completely scalable and extensible to any
region and any suite of taxa of interest.

286

http://seek.ecoinformatics.org/

Chapter 9 — Domain Specific Workflows

For detailed information about ENM workflows, please see Kepler’s Guide to ENM. Example workflows can
be found in Kepler’s demos/unsupported/ENM directory.

Ecological Niche Modeling
Workflow author:

Dan Higgins

SOF Director
Save_Results_in_Zip

Beg_ Rulessts amy
MOTE: Each iteration requires 10-20 seconds on a typical desktop PC.

& DataDirectory: propery“ KEPLER"+"ibfesdataigarn”
anumber_Of_Rterations: 10

& Species_Name: "Mephitis_mephitis®

Future_Climate_Models
& MumBest 3

'Open Actor' to see the details
Mame of Species

- Calculate Best Rulesets

Sproigshiame

[(T :
longitude_Iatilude_table, Bad_ASC Maps
| - DataPaints

DataDireclony+ (digir_data_mephitis dat”

Qutput file path and name
|:+ DataDirectory+"™+Species_Name+"_MergedR...

FIGURE 9.2: THE GARP_SINGLESPECIES_BESTRULESET-IV.XML WORKFLOW, DISCUSSED IN MORE DETAIL IN THE GUIDE TO ENM.

287

Chapter 9 — Domain Specific Workflows

= Mephitis_mephitis_MergedRosull asc

_ _ — _ _ _
= Mephitis_mephitis_UergedResult_FuturePred - Mephitis_nwphites_MergedRosult_Futarelrediction_IPCC_ A

Tathesh0 pheals, 34-0iL, 101 4% TatheEhl pleals, 34-biL, 1014k Tt 360 ploeds, 34+ Bk, 101 5F,

FIGURE 9.3: MAPS OUTPUT BY THE GARP_SINGLESPECIES_BESTRULESET-IV.XML WORKFLOW. THE MAP ON THE FAR LEFT
DISPLAYS A PREDICTED DISTRIBUTION OF MEPHITIS MEPHITIS BASED ON HISTORICAL CLIMATE DATA. THE MAP IN THE CENTER
DISPLAYS A PREDICTION BASED ON FUTURE CLIMATE DATA FOR 2020. THE MAP ON THE FAR RIGHT DISPLAYS A PREDICTION
BASED ON FUTURE CLIMATE DATA FOR 2050. THE WORKFLOW ALSO OUTPUTS A LIST OF FILES USED TO GENERATE THE
PREDICTIONS (NOT PICTURED).

The Ecological Niche Modeling workflows are in demos/unsupported/ENM/.

9.3 GEoLOGY

The Kepler project, in conjunction with the Geosciences Network (GEON) Project
(http://www.geongrid.org), has developed a wide variety of workflows for geosciences research: a
workflow for the integration and visualization of seismic events and their related fault orientations with
other image (map) services®; distribution, interpolation and analysis of LiDAR (Light Distance And Ranging)
point cloud datasets®?; and mineral classification®?, among others.

The workflow in Figure 9.4 is used to retrieve mineral classification points from the Virginia Igneous Rock
database and to classify the points. The workflow connects to a database of mineral compositions of
igneous rock samples and selects data points. This data, together with a set of Igneous rocks diagrams
(Figure 9.5) are fed into a Classifier sub-workflow, which automates the often time-consuming process of
classifying mineral samples via a series of diagrams.

GEON MINERAL CLASSIFICATION WORKFLOW

50 Jaeger-Frank, Efrat, Chaitan Baru, Ashraf Memon, llkay Altintas, Bertram Ludaescher, Ghulam Memon &
Dogan Seber. Integrati.ng Seismic Events Focal Mechanisms with Image Services in Kepler. 2005 ESRI User
Conference Proceedings

51Jaeger-Frank E, Crosby C J, Memon A, Nandigam V, Arrowsmith J R, Conner J, Altintas | and Baru C 2006
Three Tier Architecture for LiDAR Interpolation and Analysis 1st Int. Workshop on Workflow systems in e-
Science in conjunction with ICCS

52 Ludscher, B, K. Lin, S. Bowers, E. Jaeger-Frank, B. Brodaric, C. Baru. Managing Scientific Data: From Data
Integration to Scientific Workflows. GSA Today, Special Issue on Geoinformatics, 2005.

288

http://www.geongrid.org/
http://www10.giscafe.com/link/display_links.php?category_id=4236
http://www10.giscafe.com/link/display_links.php?category_id=4236

Chapter 9 — Domain Specific Workflows

Workflow Authors:
Efrat Jaeger, Bertram Ludaescher, Krishna Sinha.

TR Ras

rorsss CoeTrpo Son

Oajiareh and Fasaibonn

Dragrmes TaPulpgom

PN Direcior

B Gharae b

QpenDBCannecton

ssiD

OueryModalData CLASSIFIER

minamal compostion,

y v
fird diagram

Expression
"SELECT " FROM IGROCKS ModalDats WHERE 5310 =" + 551D

Diagrams Data

FIGURE 9.4: THE GEON MINERAL CLASSIFICATION WORKFLOW, WHICH DETERMINES THE POSITION OF THE SAMPLE POINTS IN A
SERIES OF DIAGRAMS SUCH AS THE ONES SHOWN IN FIGURE 9.5.

—ioi=i

E
I — _
e e e e e =
i .

75 - - DD | Prremen Gureornes Drioss B -
Eels 2

Q Adtress [@] < Varerz. 2w =] P Google-

Aoz [< vayeri ove

diorite gabbro
anothosite
anorthosite

diorite zathre anethosite
g b o e — L

= T

FIGURE 9.5: IGNEOUS ROCK CLASSIFICATION DIAGRAMS. IF THE LOCATION OF A SAMPLE POINT IN A NON-TERMINAL DIAGRAM

OF ORDER N HAS BEEN DETERMINED (E.G., DIORITE GABBRO ANORTHOSITE, LEFT), THE CORRESPONDING DIAGRAM OF ORDER

N+1 1S CONSULTED AND THE POINT IS LOCATED THEREIN. THIS PROCESS IS ITERATED UNTIL THE TERMINAL LEVEL OF DIAGRAMS
IS REACHED. THE RESULT IS SHOWN ON THE RIGHT, WHERE THE CLASSIFICATION RESULT IS ANORTHOSITE)3.

53 Ibid.
289

Chapter 9 — Domain Specific Workflows

The Geon mineral classification workflow and other earth science workflows can be found in the
workflow/geo/ directory. Please note: these workflows are under development and may not be fully
functional.

9.4 MOLECULAR BioLOGY

The Kepler project, in conjunction with the Scientific Process Automation (SPA) project, has developed a

set of special “bio-services” actors that allow the scientist to invoke standard tools such as BLAST or Transfac
54

locally or remotely as web services.

The Promoter Identification Workflow (PIW) shown in Figure 9.6 links genomic biology techniques such as
microarrays with bioinformatics tools such as BLAST to identify and characterize eukaryotic promoters.
Starting from microarray data, cluster analysis algorithms are used to identify genes that share similar
patterns of gene expression profiles which are then predicted to be co-regulated as part of an interactive
biochemical pathway. Given the gene-ids, gene sequences are retrieved from a remote database (e.g.,
GenBank) and fed to a tool (e.g., BLAST) that finds similar sequences. In subsequent steps, transcription
factor binding sites and promoters are identified to create a promoter model that can be iteratively refined.

For detailed information about this workflow, please see the original article.>®

PROMOTER IDENTIFICATION WORKFLOW (PIW)
Workflow Authors:

Matthew Coleman @ Lawrence Livermore National Laboratory

Ilkay Altintas, Bertram Ludaescher, Yang Zhao @ San Diego Supercomputer Center

54 SPA web site, http://www-casc.lInl.gov/sdm/documentation/overview.php

55 Altintas, llkay, Oscar Barney, Zhengang Cheng, Terence Critchlow, Bertram Ludaescher, Steve Parker, Arie
Shoshani6, Mladen Vouk. Accelerating the scientific exploration process with scientific Workflows. Journal
of Physics: Conference Series, 2006

290

https://sdm.lbl.gov/sdmcenter/
http://www-casc.llnl.gov/sdm/documentation/overview.php

Chapter 9 — Domain Specific Workflows

PM Dirsciar adir_log: HOME + “ispa/PIW™"
@ $Revision: 1.1 §
SAuthor: xin §

CoEs S ionMNum berList

ArrayToSequance Gene Sequende Proces?

Rur Clus talw

Merge and Discand

Parsa Clustal

FIGURE 9.6: THE PROMOTER IDENTIFICATION WORKFLOW (PIW)

The Promoter Identification Workflow can be found in the /workflow/spa/PIW/ directory of the nightly
Kepler build. Note that these workflows are under development and may not be fully functional.

9.5 OCEANOGRAPHY

The Kepler project, in conjunction with the ROADNet (Real-time Observatories, Applications, and Data
Management Network) project, has developed an integrated, seamless, and transparent information
management system that will deliver seismic, oceanographic, hydrological, ecological, and physical data to
a variety of end users in real-time.>®

5 ROADNEet project website, http://roadnet.ucsd.edu/

291

http://roadnet.ucsd.edu/
http://roadnet.ucsd.edu/
http://roadnet.ucsd.edu/
http://roadnet.ucsd.edu/

Chapter 9 — Domain Specific Workflows

The Graphical Display of Real-Time Geophysical Data workflow (Figure 9.7) displays images taken on the
research vessel, the Roger Reville in real time. For more information about the technologies used in this
workflow, please see http://nibot-lab.livejournal.com/28612.html.

GRAPHICAL DISPLAY OF REAL-TIME GEOPHYSICAL DATA
Workflow authors:

Tobin T. Fricke, University of California

s mmm oo] SDE Director
The OrbImageSource |
. actor connects to the |
i ORE and collects the :
' image packets. ' o i
R e L s e] The ImageDisplay actor

kS 4 : displays the streamed image

“OrbimageSource

“*- Images taken from the E
research vessel the Roger
Revelle are streamed to an !
Antelope ORE i
("Object Ring Buffer") .

FIGURE 9.7: THE GRAPHICAL DISPLAY OF REAL-TIME GEOPHYSICAL DATA WORKFLOW DISPLAYS IMAGES TAKEN ON THE
RESEARCH VESSEL, THE ROGER REVILLE IN REAL TIME.

The Graphical Display of Real-Time Geophysical Data workflow as well as other related workflows can be
found in the /workflows/orb/ directory of the nightly Kepler build. Note that these workflows are under
development and may not be fully functional.

9.6 PHYLOGENY

The Kepler project, in conjunction with the Cyberinfrastructure for Phylogenetic Research (CIPRES) project,
has been developing components and workflows to enable large-scale phylogenetic reconstructions on a
scale that will enable analyses of huge data sets containing hundreds of thousands of bio molecular

292

http://nibot-lab.livejournal.com/28612.html
http://www.phylo.org/

Chapter 9 — Domain Specific Workflows

sequences. 57 Please download the Cipres-Kepler software package from
http://www.phylo.org/sub_sections/software/ to begin building scientific workflows for phylogenetic data
analyses.

The Alignment-inference-Visualization Workflow (Figure 9.8) reads a Nexus file, uses ClustalW to perform a
multiple sequence alignment on the data, constructs the phylogenetic tree using PAUP, and reads and
displays the tree using the Forester tree viewer. For detailed information about the workflow, please see
the CIPRES website, http://www.phylo.org/sub _sections/software/ .

PM Director

FileChooser

ClustalWSeqalign

PALUP Infile

P

FIGURE 9.8 THE ALIGNMENT-INFERENCE-VISUALIZATION WORKFLOW58

The Alignment-Inference-Visualization Workflow is included with the Cipres-Kepler software package.

57 CIPRES project website, http://www.phylo.org/
58 Guan, Zhijie PowerPoint presentation of CIPRES in Kepler (given at the 2006 Evolution meetings).

293

http://www.phylo.org/sub_sections/software/
http://www.ebi.ac.uk/Tools/clustalw/index.html
http://paup.csit.fsu.edu/
http://sourceforge.net/projects/forester-atv/
http://www.phylo.org/sub_sections/software/
http://www.phylo.org/
http://www.phylo.org/CIPRES.2006.keplerdemo_zg.ppt

Appendix A — Creating New Actors

APPENDIX A: CREATING NEW ACTORS

One of the simplest ways to create a new actor (and a good way to get started building your own actors
immediately) is to customize an existing actor. Actors can be customized, saved to a KAR file and displayed
in the library and/or uploaded to the repository—all from the Workflow canvas. Users need not know Java
or any other programming language to create powerful new components in this way. Users who are familiar
with Java can also choose to write and compile new actors from source code.

In this chapter, we will look at how to create an actor by customizing an existing one, as well as how to
create an actor “from scratch” by extending existing Java code, compiling it, and importing the new actor
into Kepler.

In Section A.1, we will look at how to create, save, and share a customized Expression actor. In Section A.2,
we will look at the structure of an actor and how actors work: how the code is structured, how to create
ports, parameters, and behaviors (i.e., methods) and how to compile custom actors and then import them
into the Kepler. At the end of the chapter, we step through tutorial examples designed to introduce you to
the basics of building and incorporating your own actors into Kepler.

A.1 BuUIlLDING A CUSTOM ACTOR BASED ON AN EXISTING ACTOR

One of the simplest ways to create a new actor is to customize an existing actor—usually either an
Expression or RExpression actor, which are easy to modify in useful ways. Users can add ports, customize
parameters (such as an R-script or expression), and create powerful components that are easily saved and
stored in a Kepler archive (KAR) file, which can be shared with others.

In this section, we will take a look at how to create an actor (the Shannon Index actor) that evaluates an
equation and outputs the result. The Shannon Index actor, which is used to calculate a measure of
biodiversity in categorical data, is based on an Expression actor included in the standard Kepler library.

The Shannon Biodiversity Index can be calculated using the following equation®:

M

#= =X [/) (o)]

=1

In the above equation, n;i is the number of individuals in each species (the abundance of each species) S
represents the number of species in the sample (the “species richness”); and n is the total number of
individuals.®°

%% From Statistical Ecology by John A. Ludwig and James F. Reynold, 1988
0 Wikipedia, http://en.wikipedia.org/wiki/Shannon_index

294

http://en.wikipedia.org/wiki/Shannon_index

Appendix A — Creating New Actors

Before an Expression actor can evaluate an equation, the equation must be “translated” into the Kepler
expression language. For detailed information about the expression language, please see the Ptolemy
documentation. The Shannon Biodiversity Index equation is written in the expression language as follows:

-1.0*sum (map (function (x:double)
(1.0*x/sum (numSp)) * (log(l.0*x/sum(numSp))), numSp))

numSp is an array that must be provided to the actor. Each element in the array represents the species
abundance of a species in the sample. In other words, the number of elements in the array is the number
of species in a sample (S), and the value of each element is the number of individuals of the corresponding
species (n;). For example, the array {10,20,30,40} represents a data set containing four species, one species
having 10 individuals, the next having 20 individuals, etc. Summing the elements gives the total number of
individuals (n) , which is equal to 100 in this example.

To begin using this equation, paste it into the value parameter of an Expression actor, add an input port
named numSp (which will receive the data set array), and rename the actor “Shannon Index” to better
identify its function. This actor can now be connected to other actors and used in a workflow (Figure A.1).

SDFE Direclor

Constant

b {10,20,30,40}

Display

Shannon Index
-1.0*sumimap(function(xdouble) (1.0*%suminumSp)j*{logi1.0*...

FIGURE A.1: A SIMPLE WORKFLOW THAT CALCULATES THE SHANNON BIODIVERSITY INDEX, USED TO MEASURE DIVERSITY IN
CATEGORICAL DATA.

To save the Shannon Index (or any other customized actor) to your library, right-click the actor and select
the “Save Archive (KAR)...” menu item. This will save the actor in a KAR file on your computer’s hard drive.
If that KAR file is in a folder that is designated as a Local Repository for Kepler components, it will appear in
the Component Library within Kepler.

A KAR file (Kepler ARchive) is a zipped collection of files that can easily be shared with others. To examine
the contents of a KAR file, open it with a zip file editor (like WinZip). The Shannonindex.kar file contains two
files: “Manifest.MF” and an xml file. These files contain information that Kepler uses when building the
actor library and displaying the actor. For more information about the files, see Section A.4.1.

295

http://ptolemy.eecs.berkeley.edu/~eal/ee225a/lab/expression.pdf
http://ptolemy.eecs.berkeley.edu/~eal/ee225a/lab/expression.pdf
http://en.wikipedia.org/wiki/Categorical_data

Appendix A — Creating New Actors

To begin using the actor, make sure the KAR file is saved in a Local Repository folder. Press the “Sources”
button just below the search field in the Component Library, here you can add, rename, and remove Local
Repository folders. To resynchronize your Component Library with the KAR files in your local repositories,
you can press the “Build” button in the Component Preferences dialog that opened when you pressed the
“Sources” button. You can now search for your new actor in the Component Library.

A.2 CREATING A NEW ACTOR BY EXTENDING A JAVA CLASS

Typically new actors are created by extending an existing Java class. A class is the blueprint from which
individual objects (e.g., an instance of an actor displayed on the Workflow canvas) are created.®® By
extending a class, the new actor will inherit all of the commonly used attributes and behaviors from the
parent class—ports and parameters, for example, or what tasks to perform at different times (i.e.,
methods). Only new behaviors and attributes need be programmed.

In addition to eliminating the need to reinvent the wheel each time an actor is created, extending base
classes helps maintain consistent naming conventions, as the port and parameter names are inherited
(eliminating the confusion created when one actor has an input port called “in” and another “inSystem”,
etc).

To create a new actor and begin using it, you need install Kepler and the Java Development Kit (JDK). To
see if you have the JDK running (not just the Java Runtime Environment (JRE)), navigate to the directory in
which Java is installed and then open the “bin” directory (e.g., SIAVA_HOME/bin). If the directory contains
a program called javac.exe, you are ready to get started! If you don not see javac.exe, or you are unsure in
any way, go to http://www.oracle.com/technetwork/java/javase/downloads/index.html and download
JDKe.

Note that you can use any application to code actors—from Eclipse, a common code-development
environment to a simple text editor. Full instructions for using Eclipse with Kepler are available on the Kepler
wiki, where the build system instructions are available.

A.2.1 CoDING A NEW ACTOR

The source code for Kepler actors is divided into several sections with highly visible delimiters (Figure A.2).
The sections consist of: constructors, public variables (including ports and parameters), public methods,
protected methods, protected variables, private methods, and private variables, in that order.%? The
constructor creates an instance of the class (the actor) and the methods specify the actor behaviors (such

as what to send to an output port). “Public”, “protected”, and “private” specify access levels. Please see the
Java documentation for more information.

Because Kepler is a collaborative project, adhering to consistent formatting and naming conventions is
especially important. Please see Sun’s Developer Network for information about best practices.

81 The Java Tutorials, http://java.sun.com/docs/books/tutorial/java/concepts/class.html
52 Hylands Brooks, Christopher, and Edward A Lee, Ptolemy Il Coding Style

296

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://kepler-project.org/developers/reference/kepler-and-eclipse
https://kepler-project.org/developers/reference/kepler-and-eclipse
http://java.sun.com/docs/books/tutorial/java/javaOO/index.html
http://java.sun.com/docs/codeconv/
http://java.sun.com/docs/books/tutorial/java/concepts/class.html

Appendix A — Creating New Actors

Each Java source begins with a brief (usually one sentence) description of the actor that identifies what the
actor does and how it is intended to be used. This line appears at the top of the file, above the copyright
notice and the Java import statements. The copyright is a “BSD” (“Berkeley Standard Distribution”)
copyright, which is more liberal than the GPL (Gnu Public License). To view the copyright license, right-click

any actor in the default Kepler library and select Open Actor.

f* Ope lipe degcripticm of the clasa.

copyright notice

./
package nane;:
imports, in alpkabetical order;

FEEREREEL LI EAEY
fidd classxams

FELERRTLIEE IR EE L EE L i

rli
Class docomspeation. 0000 oo o
PR i Constructors create |
:"“;,:;"m"r;ﬁér i : the actor and its
o 3 | ports & parameters |
public class classhame ... | e et i
comstructors = E
¥
FEREL IR R B BRI BRI i B i bR i i s i it iti it it ee
1 sthlis variables e

public variables, in alphabetical order

Fri

public mechods

public nethods, in alphabetical crder

Private variables, in alphabstical order

FHEEEEL LT

FREEERIRIERREF R FEET R d i b E iR d iRt ittt i

HILLINEITE

Public variables include port :
and parameter definitions

Public methods
include fire(),
mrﬁahzeﬂ efc. |

FFf!!EFFF!5HffffHffffﬁffffﬁHffffﬁfffffffffffﬁfﬁfffffffffrfff’;ﬁr-13

i protected methods o R e T mm—
. . ., ' Protected methods and !
protected methede, in alphabetical order ! variables are accessed by :
A i only some other actor el'ﬂsm'
FEMEEREEET BT R EE R E LR FRE R EE T E R EEEFE B re} i vemcmmnn]
H protected variables P e
protected variables, In alphabetical order £ : Private mﬂﬁﬂdﬁ;
, are used only by .
FEEEEEIR LA RE R TR Rt 8 i 8ddtididtitid I this actor |
Frry pn-.rate nethods A
private methods, in alphabetical order -~ : Private Uﬂnﬂbiﬂsi
, are used only by
SR EIR IR d R i it diddiidiitiiddtiiiiiiis : this actor !
I private variables : / By T e

297

Appendix A — Creating New Actors

FIGURE A.2: GENERIC ACTOR TEMPLATE WITH MAJOR SECTIONS IDENTIFIED: CONSTRUCTORS, PUBLIC VARIABLES (INCLUDING
PORTS AND PARAMETERS), PUBLIC METHODS, PROTECTED METHODS, PROTECTED VARIABLES, PRIVATE METHODS, AND PRIVATE
VARIABLES.

The template in Figure A.2 shows the major sections of the actor Java code. We will discuss each section in
more depth in the next pages.

A.2.1.1 THE CONSTRUCTOR

The constructor is the part of the Java code that creates each instance of the class (i.e., each actor). The
class behaviors (methods), ports, and parameters are defined in other sections of the code. The constructor
takes this “blueprint” and builds the actor.

Each actor must have its own constructor (the constructor is not “inherited”). The constructor contains
documentation—Javadoc comments that are compiled when the code is compiled—as well as Java code
that builds the actor and its ports and parameters.

The constructor section of code displayed in Figure A.3 contains the constructor code for the Constant actor.
Right-click the Constant actor and select Open Actor to see the complete Java source code.

298

Appendix A — Creating New Actors

FAEELPSESET r:f:"" FELEEEETELEL R EA R Er g,

/741 Const | Comment about Java class. |

T o an . Javadoec comments begin .

| with “/**” and end with “*/7. |
Produce a constant output. The wvalue of the s -m——mm—smmmmmmm— oo
cutput is that of the token contained by the <i>value</i> parameter,
which by default is an IntToken with wvalue 1. The type of the output

ig that of <i»wvalue</i> parameter.

fauthor Yuhong ¥iong, Edward L. Lee
@version %#Id: Const.java,v 1.32 2007/07/11 19:43:46 =al Exp 5
@since Ptolemy II 0.2
@Pt.ProposedRating Gresn (esal)
@Pt.AcceptedRating Green (bilumng) 0 e
ko3
public class Conat extends LimitedFiringSource {

/** Construct a constant source with the given container and name.
* Create the <i>wvalue</i> parameter, initialize its walue to
the default value of an IntToken with wvalue 1. LB P P WO, | S T
fparam container The container. : B-Egi]'.t Constructor :
fparam name The name of this actor. 0 eemmemmeemeeeeeoo-- gt
fexception IllegalActionException If the entity cannot be contai)=d
by the proposed container.
fexception NameDuplicationException If the container already has
* actor with this name.
xy
public Const{CompositeEntity container, String name)
throws NameDuplicationException, IllegalActionException |
super (container, name);
value = new Parameter(this, "wvalue");
value.setExpression ("1™} ; T

I B I

// S5et the type constraint. xj it oA ol *
output.setIypehtleast (value) ; i Construct parameter |

FIGURE A.3: THE CONSTRUCTOR OF THE CONSTANT ACTOR.

The section of code displayed in Figure A.3 begins with the class name (Const) as well as documentation
for the class. The Const class extends the LimitedFiringSource class. In other words, the Constant
actor will inherit the functionality of the pre-existing class.

The class documentation for the Constant actor is:

Produce a constant output. The value of the output is
that of the token contained by the <i>value</i>
parameter, which by default is an IntToken with value 1.
The type of the output is that of <i>value</i> parameter.

Documentation is specified as Javadocs. Javadoc is a program distributed with Java that generates HTML
documentation files from Java source code files. Javadoc comments begin with “/**” and end with “*/”,
and should always proceed the class definition, the constructor, and each defined port, parameter, and

299

Appendix A — Creating New Actors

method to convey to other users what the code does.®® Note that the description can contain HTML
formatting (e.g., <i>value</i>).

Javadoc tags (e.g., @author ...) convey information about the actor’s author, code version, and status (Table
10.1):

@author Yuhong Xiong, Edward A. Lee
@version Id

@since Ptolemy II 0.2
@Pt.ProposedRating Green (eal)
@Pt.AcceptedRating Green (bilung)

Javadoc Tag Value
@author The authors and contributors (e.g., Yuhong Xiong, Edward A. Lee)
@version Version information. The default value $1d$ isreplaced by actual version

information when the code is committed to CVS (e.g. $Id:
Const.java,v 1.52 2007/07/11 19:43:46 eal Exp $)

@since The release in which the class first appeared. Usually, the release is one
decimal place after the current release. For example, if the current release
is 3.0.2, then the @since tag would read: @since Ptolemy 11 3.1

@Pt.ProposedRating Proposed code rating. Each tag includes the color (one of red, yellow,
green, or blue) and the cvs login of the person responsible for the proposed
or accepted rating level. See the Ptolemy documentation for more
information.

@Pt.AcceptedRating Accepted code rating. Each tag includes the color (one of red, yellow,
green, or blue) and the cvs login of the person responsible for the proposed
or accepted rating level. See the Ptolemy documentation for more
information.

TABLE A.1: JAVADOC TAGS USED TO IDENTIFY A CLASS

The constructor itself should also be preceded by a Javadoc comment. The Javadoc comments that describe
the constructor begin “Construct a ...”, and explain what the constructor is doing: creating an actor
parameter called value and assigning it a default value of 1, and throwing exceptions under certain
circumstances. Ports and parameters, which are defined under the Public Variables section of the actor
code, are instantiated in the constructor. We’ll look more closely at how this is done in Section 10.2.3: Public
Variables: Actor Ports and Parameters.

A.2.1.2 PuBLIC METHODS (ACTION METHODS AND MORE)

63 See http://java.sun.com/j2se/javadoc/writingdoccomments/ for guidelines from Sun Microsystems on
writing Javadoc comments.

300

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html
http://java.sun.com/j2se/javadoc/writingdoccomments/

Appendix A — Creating New Actors

How actors behave (e.g., what they output and when) is described by methods. Kepler actors have a number
of common “action” methods that tell the actor what to do at various times during workflow execution:
preinitialize (), initialize (), prefire(), fire (), postfire (), and wrapup().
Different types of tasks happen at different points in the workflow. Note that by convention methods are
specified alphabetically in the actor’s source code (Table 10.2).

Method Use

preinitialize() Set port types and/or scheduling information. The preinitialize() method is
only invoked once per workflow execution and is invoked before any of the
other action methods.

initialize() Initialize local variables and begin execution of the actor.

prefire() Determine whether firing should proceed. This method is invoked each time
the actor is fired, before the actor is fired. The method can also be used to
perform an operation that will happen exactly once per iteration.

fire() Read actor inputs and current parameter values, and produce outputs.

postfire() Determine if actor execution is complete, schedule the next firing (if
appropriate) and update the actor’s persistent state.

wrapUp() Display final results. The wrapUp() method is only invoked once per workflow
execution.

TABLE A.2: COMMON ACTION METHODS AND THEIR USE.

The public methods of the AddOrSubtract actor are displayed in Figure A.4. Only the fire() method is
defined—the other methods are inherited unchanged from the parent actor (the AddOrSubtract actor

extends TypedAtomicActor).

301

Appendix A — Creating New Actors

FEELASESEREET PR AP r i A E i i i rit i i i d i i ir i iiridd

i public methods .
/*%* If there is at least one token on the input poEEEf'éEE"'“""'"'”T
* tokens from the <irplus</i>» port, subtract tokens from the
<irminus</i> port, and send the result to the H
<iroutput</i> port. At most one token is read E
from each channel, so0 if more than one token is pending, the i
rest are left for future firings. If none of the input E
channels has a token, do nothing. If none of the plus channels
have tokens, then the tokens on the minus channels are subtracted
from a zero token of the same type as the first token encountered
on the minus channels. :

fexception IllegalBActionException If theres is no director,
or if addition and subtraction are not supported by the
available tokens.

oW % % o o ® ¥ @ ®

=

L
public void fire() throws IllegalActionException [<~ 7~~~ 77777777777 '

super.fire(); PO e L e
Token sum = null; | fire() method !

for (int i = 0; i < plus.getWidth(}; i++)} {
if (plus.hasTokeni{i)} |

if (sum = null) {
sum = plus.get(i):;
} else |

sum = sum.add(plus.get (i)}
}

}

for (int i = 0; i < minus.getWidth(}; i++) {
if (minus.hasToken{i}) {
Token in = minus.get(i);

if (sum == null) |
sum = in.zerof):;

}

sum = sum.subtract(in}:

}

if (sum '= null) |
output.send(0, sum);

}

FIGURE A.4: THE PUBLIC METHODS (IN THIS CASE, JUST THE FIRE() METHOD) DEFINED FOR THE ADDORSUBTRACT ACTOR.

Each method defined in the public method section should be preceded by a Javadoc comment that
describes what the method does and how it is used.

302

Appendix A — Creating New Actors

Note that the java code for the fire() method uses a number of other methods to access and process data:
the send() method sends data to a specified port channel; the get() method retrieves data from ports; the
getWidth() method returns the number of channels of data received; the hasToken() method determines if
a port has available data. For more information about useful methods and syntax, please refer to the
Ptolemy documentation.

A.2.1.3 PuBLIC VARIABLES: ACTOR PORTS, PARAMETERS, AND PORT-PARAMETERS

Actor ports and parameters are created by including the relevant Java classes in the actor’s source code:
usually TypedIOPort to create an input or output port, Parameter to create a parameter, and
PortParameter to create a port-parameter. To use these classes, first add them to the imports list:

import ptolemy.actor.TypedIOPort;
import ptolemy.data.expr.Parameter;

import ptolemy.actor.parameters.PortParameter;

Figure A.5 displays the ports and parameters section of the AddOrSubtract actor, which has three ports:
two input ports, one called minus and the other plus, and one output port called output) and no
parameters. Note that each port declaration is preceded by a Javadoc comment that describes the port and
its use.

FEFELLEESI R PSSP ET TS FFES PRSP EF PR EF TP E PR EF R E PRSP EF T A FFEf Y
frrf ports and parameters Jred
/*¥* Input for tokens to be subtracted. This is a muwltiport, and its E
* type is inferred from the connections. {

:I:II." T

- |
public TypedIQPort minus; --------------- E Inputport . ____________________ -

/*¥ Qutput port. The type is inferred from the connections.
® e gy,

public TypedIQFort cuUTput; -ef-------------- iﬂurputpurt:- _______________________ :

/*¥* Imput for tokens to be added. This is a multiport, and its 1
* type is inferred from the connections. E
£/ i

public TypedIQPort plus; T :

FIGURE A.5: THE INPUT AND OUTPUT PORTS OF THE ADDORSUBTRACT ACTOR.

Though the ports are defined in the “ports and parameters” section of code, they are actually created by
the constructor. In other words, just declaring the ports will not create them. They must be instantiated,
which is accomplished with the AddOrSubtract actor’s constructor code highlighted in Figure A.6.

303

http://ptolemy.eecs.berkeley.edu/papers/almagest/index.html

Appendix A — Creating New Actors

/** Construct an actor in the specified container with the specified

¥ pame.
fparam container The container.
fparam name The name of this adder within the containesr.
fexception IllegalictionException If the actor cannot be contained
by the proposed container.
fexception NameDuplicationException If the name coincides with

- an actor already in the container.

xr
public AddSubtract (CompositeEntity container, String name)

throws ILl : 4 licationException {

ainer, name);
new TypedIOPort(this, "plus™, true, false);
plus.setMultiport (true) ;
minus = new IypedIOPFcort (this, "minus™, true, false):
minus.setMultiport (true);
cutput = new IypedIQPort(this,

L I

"output”, false, true};

iconDescription™, "<svgxh\n”
"crect x=\"-Z0WT y=4 —=2U%" " + "width=\"40%" height=\"40%\" "
"style=""fill :white\"/>\n" + "<text ==\"-13\" y=\"-5E\" "
"style=\"font-size:18%Y">\0" + "+ \n" + "<Stext>\n"

"ctext x=\"-13\" yv=\"7\" " 4+ "style=\"font-size:18%">\n"

" AnT + "<Stextian™ + "</svgHinT):

+ 4+ + + +

FIGURE A.6: CONSTRUCTING THE PORTS OF THE ADDORSUBTRACT ACTOR.

The code that instantiates a port takes the following form:

portName = new TypedIOPort (arguments)

For example, the first instantiated port in Figure A.6 is the plus port:

[1] plus = new TypedIOPort (this, "plus", true, false);
[2] plus.setMultiport (true);

Line [1] instantiates the plus port. The first argument (i.e., this) is the container of the port, this actor.
The second is the name of the port ("plus"), which can be any string, but by convention, is the same as
the name of the public variable. The third argument specifies whether the port is an input (it is in this
example), and the fourth argument specifies whether it is an output (it is not in this example). By default,
ports are single ports. Line [2] “overrides” the default, stating that the plus port should be a multiport
instead of a single port.

The constructor also sets type constraints. For example, if the plus port described above requires input of
type double, the following absolute type constraint could be added to the constructor:

[3] plus.setTypeEquals (BaseType.DOUBLE) ;

304

Appendix A — Creating New Actors

More commonly, type constraints are specified as “relative type constraints,” meaning that the type is equal
to or greater than the type of another port or parameter. If the type of the plus port should be the same
as the type of the minus port, the following line could be used:

[3] plus.setTypeSameAs (minus) ;

For full details of the type system, see the Ptolemy documentation.

Parameters are declared and constructed much like ports are. Figure A.7 displays the ports and parameters
section of the Ramp actor code. The Ramp actor inherits two ports from its parent class, but creates two
new members: a parameter (called init)and a port-parameter (called step).

FEFEFTFFRFFEFEFET R IR TR P FRPEA L F AP fii ity
rEEr ports and parameters fors
/** The wvalue produced by the ramp con its first iteration.
* The default wvalue of this parameter is the integer 0.

IIIF e e

! I
public Paramseter init: R . Parameter T e !

/*¥ The amount by which the ramp output is incremented on each .
* The default value of this parameter is the integer 1. i

III." O R —

public PortParameter step; R et \ PortParameter :-_ __________________ :

FIGURE A.7: THE PORTS AND PARAMETERS CODE OF THE RAMP ACTOR.

The Ramp actor’'s init parameter and the step port-parameter must also be instantiated by the
constructor before they will appear. Figure A.8 highlights the portion of the Ramp actor’s constructor code
that instantiates the new class members and sets the type of an existing member, the output port.

305

Appendix A — Creating New Actors

sm=% Construct an actor with the given container and name.
= In addition to inveking the base class constructors, construct

the {irinit{-1» and {irstep{-i parameter and the <{i>stepd{- i

port. Initialize <i*init{~ i

to IntToken with value 0, and <{i»step<si> to IntToken with wvalue 1.

@param container The container.

@param names The name of this actor.

Bexception IllegalActionException If the actor cannot be contained
by the proposed container.

Boxception HamsDuplicationException If the container already has an
actor with this name.

-
publie Ramp (CompositeEntity container, String namea)
throws Hame atignException, IllegalActionException {

peTcontainer, name);
init = new Parameter(this, "init"):
init.setExpression(“0"):

step = new PortParameter(this. “"step"):
step.setExpression(”1"):

s+ et the type constraints.
output.setTypeAtleast (init):
output.setTypeAtleast (step)

_attachTex —Tronies ption", "<{swgr~a"

+ "(rect z=""-30" y="M-2080 Y o+ "width=\"&0~" height=,t4080 "
+ "style=~"fill :white™">>n"
+ "{polygon points=~"-20,10 20.-10 20,10~" *
+ "style=*"fill::grey" 2> a" + "{ssvgrhat):

_resulthrray = new Token[1]:

FIGURE A.8: CONSTRUCTING THE INIT PARAMETER AND STEP PORT-PARAMETER AND SETTING TYPE CONSTRAINTS FOR THE
ACTOR’S OUTPUT PORT.

The code that instantiates a parameter takes the following form:

paramName = new Parameter (arguments)

For example, the init parameter in Figure A.8 uses:

[1] init = new Parameter (this, "init");

[2] init.setExpression("0");

Line [1] instantiates the init parameter. The first argument (i.e., this) is the container of the parameter,
this actor. The second is the name of the parameter ("init "), which can be any string, but by convention,
is the same as the name of the public variable. Line [2] specifies a default value for the parameter, in this
case, O.

306

Appendix A — Creating New Actors

A.2.1.4 ACTOR ICONS

Actor icons, which appear on the Workflow canvas as well as in the actor tree, are assigned via external
mappings, and NOT in the actor code. The icons themselves are SVG (scalable vector graphic) files.

In order to achieve visual consistency among the icons and to limit the number of icons in use, as well as to
classify the icons into families that share a common function, we ask that you select an existing icon or icon
family if possible. For a complete list of actor icons and their function, please see Section 5.3.1 Actor Icon
Families.

For complete instructions, please see Assigning/Adding Icons in Kepler

A.2.2 COMPILING A NEW ACTOR

To compile new actors please see the online developer documentation at

https://kepler-project.org/developers and

https://kepler-project.org/developers/teams/build/documentation/developing-a-hello-world-actor-using-
the-kepler-build-system-and-eclipse

A.3 SHARING AN ACTOR: CREATING A KAR FILE

To save an actor and share it with other users, either save the actor as a KAR file (a Kepler Archive format
that allows actors to be easily transported and used), or upload the actor to the Kepler repository, where it
can be shared by the general public. If the actor is built from a new Java source, the KAR file must include a
dependency on the module where the Java class has been compiled.

A.3.1 THE MANIFEST FILE

The manifest file (MANIFEST.MF) is a simple text document that helps uniquely identify an actor. It contains
versioning information as well as the location of the actor’'s MOML file and its LSIDs (Life Science
Identifier)—one for the KAR file, another for the actor. The manifest also contains information about the
actors source code, when relevant (i.e., when the actor is compiled from new source code).

Each actor must have a unique LSID. The LSIDs of actors in the standard Kepler library take the form:

urn:lsid:kepler-project.org:actor:7:1

In this case, kepler-project.org is acting as the “authority”, actor is acting as the “namespace”, 7 as the
“object id”, and 1 as the “version”. For your own actors, you might try making up your own namespace to
replace “actor” with. For more information about LSIDs and their syntax, please see:

https://kepler-project.org/developers/teams/framework/kepler-life-science-identifiers-keplerlsid

307

http://cvs.ecoinformatics.org/cvs/cvsweb.cgi/kepler-docs/user/VizDesign-AddingIcons_kma.doc
https://kepler-project.org/developers
https://kepler-project.org/developers/teams/build/documentation/developing-a-hello-world-actor-using-the-kepler-build-system-and-eclipse
https://kepler-project.org/developers/teams/build/documentation/developing-a-hello-world-actor-using-the-kepler-build-system-and-eclipse
http://kepler-project.org/
https://kepler-project.org/developers/teams/framework/kepler-life-science-identifiers-keplerlsid

Appendix A — Creating New Actors

To view Manifest files for existing KAR files right click on the KAR in the Component Library and choose the
“View Manifest” menu item. More information about KAR files can be found at:

https://kepler-project.org/developers/teams/framework/kepler-archive-kar

A.3.2 THE MOML FILE

MoML is an XML modeling markup language intended for specifying interconnections of parameterized,
hierarchical components—such as actors and workflows.5* Each actor has a MOMIL file that describes it: its
ports, parameters, settings, documentation, semantic type (i.e., where it appears in the actor tree), and
identifier (the LSID).

All MOML files begin with an XML declaration, which specifies the version of XML being used:

<?xml version="1.0" 2>

The bulk of the MOML file is contained between start and end <entity> tags that surround a “body” of
nested tags describing specific actor properties. People familiar with XML will recognize the structure.
Please note that all tags must be closed either with an end tag (e.g., <entity>..</entity>)if the tag
surrounds content, or a closing "/>" (e.g., <property... />)if the tagis empty.

The opening <entity> tag specifies the name and class of the actor’s container.

<entity name="SshSession" class="ptolemy.kernel.ComponentEntity">

Inside the <entity> tag are tags that define the specific actor properties and parameters, such as its LSID,
user documentation (which overrides any documentation in the Java source code), ports, parameters, and
location in the actor tree.

Please see the Ptolemy documentation for a complete guide the syntax and components of a MOML file.

64 Edward A. Lee, Stephen Neuendorffer. “MoML — A Modeling Markup Language in XML — Version 0.4”.
Technical report, University of California at Berkeley, March, 2000.

308

https://kepler-project.org/developers/teams/framework/kepler-archive-kar
http://ptolemy.eecs.berkeley.edu/publications/papers/00/moml/moml_erl_memo.pdf

Appendix C— Using R in Kepler

APPENDIX B: MODULES

Kepler is broken up into units of software functionality known as modules. Modules have three primary
purposes:

e Group related core Kepler software functionality together in logical units.
e Enable addition functionality to be easily added to Kepler.
e Enable existing Kepler functionality to be easily substituted by different functionality.

What you need to know about modules differs based on whether you are primarily a scientific user, a

developer, or both. We will start with the user perspective.

B.1 THE MoDbULE MANAGER

The module manager is the primary means by which users will interact with modules. It can be accessed
from standalone command “Module Manager” or the file menu by clicking Tools > Module Manager... There
are two tabs in the module manager.

309

Appendix B - Modules

[Current Suite = Available Suites and Modules |

Current Suite: kepler

kepler -
outreach
apple-extensions
r

loader

actors

directors

opendap
dataturbine
ecogrid
authentication-gui
gui
module-manager-gui
authentication
repository

job

io

ssh

data-handling
SMs
component-library

vkl L=

i . h Y i . N
L Save Suite 3 C Load Suite)

FIGURE B.1: THE MODULE MANAGER INTERFACE

First, there is the Current Suite tab. A suite is simply a list of modules where the order is significant. The
current suite is the list of modules that make up the instance of Kepler you are currently running. Besides
providing information on the current suite, the current suite tab has two functions: (1) saving the current
suite to file and (2) loading a new suite from file. The intent is to enable you to share your environment with
colleagues. If you are working in a particular environment and you want to allow a colleague to synchronize
their environment with yours, you could simply save your current suite, email it or otherwise transmit the
file to them, and when they load it they would end up working in the same environment, including the
download of any modules if necessary. Please note that if you load a preexisting suite, Kepler will restart.

310

Appendix C— Using R in Kepler

[Current Suite Available Suites and Modules | k

Available Suites: Selected Modules:

comad-exp-1.0 I
comad-exp-2.1
configuration-manager-2.2

kepler-2.0
kepler-2.1
kepler-2.2
koogle-1.0
kuration-1.0 iz
_ SE—
[| Show suite patches. o =)
Available Modules: F— 3
|
actors-2.0.0 [
actors-2.1.0 e
actors-2.2.0

apple-extensions-2.0.0
apple-extensions-2.1.0
authentication-2.0.0

authent?cat?on—z.l.ﬂ i (" Check for Patches Now)
authentication-2.2.0 > =

f Automatically check for patches on startup.

I Rollback Kepler

| Show test releases.

Apply and Restart

FIGURE B.2: THE AVAILABLE SUITES AND MODULES PANEL

The second tab is the Available Suites and Modules panel. Here there are three lists, a list of all available
suites, all available modules, and selected suites and modules. Only published modules and suites are
displayed. Developers working with unpublished modules are expected to use the build system.

The use of this panel is relatively simple. A typical user will simply select one of the available suites and then
click “Apply and Restart”.

Note: With Kepler 2.1 and earlier, you must be running Kepler with administrative privileges in order to
restart.

The capabilities here are more advanced however. For very advanced users, it is possible to mix and match
suites and modules. However, mixing and matching modules and suites, as opposed to selecting a single
suite should not be done by casual users unless specifically instructed since such mixing and matching can
have unpredictable consequences. For more advanced users and developers, the selected modules list is
essentially like modules.txt, which is described in the developer documentation on the Kepler website.

B.2 DEVELOPING MODULES

311

Appendix B - Modules

If you want to add non-actor functionality to Kepler, you will need to develop your own modules. To learn
how to do that, please refer to the Build System Instructions at the Kepler website (https://dev.kepler-
project.org/developers).

Click on the “Build System Instructions” link and then the “Making Your Own Modules” link in the table of
contents.

312

https://dev.kepler-project.org/developers
https://dev.kepler-project.org/developers

Appendix C— Using R in Kepler

APPENDIX C: USING R IN KEPLER

The Kepler library contains a number of useful actors that interface with the R environment, accessing its
powerful statistical and data processing tools and integrating that functionality into workflows.

Kepler’'s RExpression actor inserts R commands and scripts into
workflows, making it easy to use the data manipulation and statistical REIDI'EE-EJ'L‘IFI
functions of R. In addition, a number of customized R actors designed
to perform specific functions (creating a bar or box plot, for example)
are included in the Kepler library. A search for “RExpression” in the
Components tab will return all R-related actors.

The RExpression actor icon

To implement any of the RExpression actors, R must be installed on the computer running the Kepler
application.

C.1 INSTALLING R

R can be freely downloaded from links on the R Project web site (http://www.r-project.org). Follow the
instructions provided for installation. In addition (under the Windows operating system), the R “bin”
directory must be added to the PATH variable on the host computer. To test if the installation is correct,
open a command/terminal window and type the command “R”. The command should start the R
environment and alert the user that R has been started.

C.2 A BRIEF OVERVIEW OF R

R is open source software for statistical computing, data manipulation, and graphics. Based on
work originally carried out at Bell Labs, R is part of the GNU Project. The software provides a wide
variety of statistical (linear and nonlinear modeling, classical statistical tests, time-series analysis,
classification, clustering, etc) and graphical techniques (Figure C.1), and is highly extensible.

55 R Project website, http://www.r-project.org/

313

http://www.r-project.org/
http://www.r-project.org/#in_browser
http://www.r-project.org/

Appendix C— Using R in Kepler

ﬁ'ggaggggﬁm

{C) R Foundation, from hitp:/fwww.r-project.org

B

igar Ancierson's Mis Data

TR]

L

T
ﬁﬁmj |

A

(TR TN]

ol % | 995

=

- b

L

L
| A
. o
z .'- B P L L BB
{3y 1 b e B0
firdy
= | K
- |I II
\
| \
1
r, / 1 "I,, ‘
5 FPETEL s
i | DU
| \f
/ I
5 f fi
/ Fi

FIGURE C.1: EXAMPLES OF GRAPHICS GENERATED WITH R

The R language has many similarities to the Kepler expression language, with the added advantage that
many detailed statistical operations and data manipulation routines already exist in R. In addition to
performing a wide variety of statistical tests and analyses, R can create sophisticated graphic displays with

only a few lines of script (Figure C.2).

314

Appendix C— Using R in Kepler

-

Edit parameters for RExpression
‘*-?/ R function or script:
: : bt <- data.frame(T_AIR, RH,
summary (df)
pairs (df)
teingn/Biraten’ kagpler/ | £ RExprettionl.pmg :.E.-El
sng’,wideh < 480, R (QEGIED pely, B T35]
15.7 «8 i1 1=
2, LExpi
234 @ W w0
e w0
oAy "IJ'-*}_
'; T' - - i e
T_AIR ! o T 1 < [N
\- e |
» paiEs (48 3'-‘_—.! p e e——
' g- .- o i .
' ¥ B
. RH b |
1= -) '.‘:‘ |
& * |
J F 'l
ad [L
: 3 |
¥ . . BARO . |
. Y > 3
* WL~ § o L |
- : £ A
W . | . T =1 | WS——
w1 ! s wa o M |

FIGURE C.2. A THREE-LINE R SCRIPT CAN READ A DATA TABLE, PLOT ALL COMBINATIONS OF COLUMN DATA, AND SUMMARIZE
THE DATA.

The R language emphasizes operations on “whole objects” (e.g., vectors, matrices, and tables) rather than
on individual elements. This emphasis eliminates many explicit looping statements. We will take a closer
look at R data objects in the next section.

R functions, which are often the building blocks of R-scripts, operate on the contents of data objects. See
Section 2.2 for more information.

C.2.1 DATA OBIJECTS

R objects are specialized structures that facilitate high-level manipulation of information. All R objects are
derived from several basic types. The most basic kind of R data object is the vector, which is a collection of
elements that all have the same type (mode). For example, {1,2,3,4,5} is a vector with a length of five and
a mode of “numeric.” Other modes are complex, logical, character, or raw. A second basic R data object is
the list. A list is also a collection of elements, but its elements may be of different types (in fact, each
element can be any kind of R object, including another list).

315

Appendix C— Using R in Kepler

Numerous other types of objects are derived from these basic types. Some examples of objects commonly
used during data analysis include:

Factor A special vector storing discrete categorical values

Array A vector with a dimension attribute

Matrix An array with two or more dimensions

Data Frame A data table (formally, a list of vectors all of the same length)

TABLE C.1: R DATA OBJECTS

For more information about R data objects, please see An Introduction to R by W.N. Venables, D.M. Smith
and the R Development Core Team. In Section 4, we will look at examples of several of these data objects
in Kepler/R workflows.

C.2.2 FUNCTIONS

An R function is a self-contained routine that accepts input arguments and returns a single R object. The
base R system includes many useful functions that can be called interactively or via scripts. For example,
the read.csv () function reads a comma-delimited ASCII file and creates a data frame object from it;
write.table () writes a data frame object to an ACSII text file; and the hist () function produces a
histogram. For a useful list of R functions, please see These are a Few of My Favorite R Things.

A rich set of additional functionality is available via freely available add-on packages contributed by the R
user community. The primary source of such packages is the Comprehensive R Archive Network. Users can
also write new functions and modify existing functions as needed. For more information about writing new
functions, please see An Introduction to R by W.N. Venables, D.M. Smith, and the R Development Core
Team.

C.2.3 FURTHER RESOURCES

Please see the NCEAS R Programming Language Resource Center for a collection of useful R resources
including information describing specific R add-on packages, advanced geospatial and geostatistical analysis
methods that incorporate R, a list of questions (with answers) to common introductory R questions,
information about R spatial analysis tools, many new R packages, and dozens of R tutorials.

For a short reference to R functions, see The R Reference Card by Tom Short; for many tips on R usage, see
Paul Johnson’s R tips page.

C.3 THE REXPRESSION ACTOR

To get started using R in Kepler, drag-and-drop the RExpression actor onto the Workflow canvas (Figure
C.3). A search for “RExpression” in the Components tab will return all R-related actors. The RExpression
actor is under the “General Purpose” heading. Note that all R actors are represented by the same icon: a
teal rectangle with a blue square/white R in the bottom left corner. Once the RExpression actor is on the
Workflow canvas, it can be customized with additional ports and a user-defined R-script.

316

http://cran.r-project.org/doc/manuals/R-intro.pdf
http://www.nceas.ucsb.edu/files/scicomp/Dloads/RCourse/PeterAdlerRCheatSheet.pdf
http://cran.r-project.org/
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://www.nceas.ucsb.edu/scicomp/rtutorialslatest
http://cran.r-project.org/doc/contrib/Short-refcard.pdf
http://cran.r-project.org/doc/contrib/Short-refcard.pdf

Appendix C— Using R in Kepler

'K Unnamed o&
eaallpilew mpc> oo e
Components | Dk] £y
~Search
[RExpression
RExpression
R
RExpression
” 5
| |

FIGURE C.3: THE REXPRESSION ACTOR.

C.3.1 INPUTS

The RExpression actor is customized in two basic ways: via new ports, which can receive data to be
processed by the R-script; or via parameters, which are used to specify an R-script and settings that relate
to the R workspace (the working directory, graphics format, etc). In the next sections, we will look more
closely at both ports and parameters.

C.3.1.1 INPUT PORTS

317

Appendix C— Using R in Kepler

Input ports can (and very often must) be added to the RExpression actor to receive data that will be
processed by the R-script. To add an input port, right-click the RExpression actor and select Configure Ports
from the drop-down menu (Figure C.4).

-

[£| Configure ports for RExpression E]@

Mame Input | Qu... | Mol Type Direction Shove Mame Hide IInits
graphicsFileMame | [] [] DEFALLT Fl F
oukpuk [] [] DEFALLT Fi F

(oo) [|

FIGURE C.4: CONFIGURING THE PORTS OF THE REXPRESSION ACTOR. PORTS THAT CANNOT BE MODIFIED ARE NOTED WITH A
PINK HIGHLIGHT.

To add a new port, click the Add button and then customize the new port. Every port must have a name,
which can be customized by double-clicking the field in the Name column and typing a name. The port name
will be used as the name of the corresponding R data object. For example, if an input port called values
accepts a data array, the R-script will reference the array data object by the name values.

When input ports are configured as multiports, all tokens received on that multiport are added to a list
object in R. The list name corresponds to the name of the R actor’s input port. The list order is determined
by the order in which connections are added to the multiport. For an example, please see Section 4.1.1.5

The RExpression actor in Figure C.5 has two user-defined input ports named aaa and bbb. Two Expression
actors pass arrays to these ports, and the RExpression actor constructs R vectors (aaa and bbb) from this
input by applying the c () function: aaa is {1,2,3} and bbb is {4,5,6}, the values passed through the
correspondingly named ports. The R script has been set to aaa+bbb, and the result is the sum of the R
vectors: 579.

||

K splay

\@@
Fle Took Help

> setwd('C:/Documents and Sectings/Kicl®
> png(filename = 'Hirstenll.png',width
> mma <- c[l, %, 3)

> bbb <= c(4, 5, 6)
>
[
»
>

[

SDF Director

Expression
aaa+bbbh

1] 579

RExpression

Expression2 | w
I T I < | >

FIGURE C.5: TWO USER-DEFINED PORTS (AAA AND BBB) HAVE BEEN ADDED TO AN REXPRESSION ACTOR.

The Display window in Figure 5 contains the text output that R generates. Additional output ports can be
added to output R-script results.

318

Appendix C— Using R in Kepler

C.3.1.2 PARAMETERS (THE R-SCRIPT AND MORE)

The R script or function that the RExpression actor runs is specified by the actor parameters. To view or

change the R script, double-click the actor.

-

Edit parameters for RExpression

\?r) R Function or script:

R weorking directory:

Save or mot:

Graphics Format:

Graphics Outpuk:
Automatically display graphics:
Number of X pixels n image:
Number of ¥ pixels in image;

a <- ¢(1,2,3,5
plot (&)

m=TI0=5aYE |
prg)
[l

480

480

class: arg.e:wﬁformarsc';.seek.R.P-Expressuan
semanticType00D: urr:bsid:localhostionto: 1: 1#MathCperationAckor
semanticTypelll: urn:bsid:localhostionto: 2: 1 #GeneralPurpose
firiregsPerlter ation: 1
[Coannmik] [add] [Remove] [Rﬁture Defauts] [Preferences] [Help] [Cancel]

FIGURE C.6: THE DEFAULT PARAMETERS OF THE REXPRESSION ACTOR.

The default R script, shown in Figure C.6 creates and saves a plot of an array of values {1,2,3,5}. To use
another R-script, simply replace the default script with the desired one. The additional RExpression
parameters are used to customize the behavior of the actor (Table C.2).

RExpression parameter Parameter use

directory The “R” workin

g directory (the Kepler cache by default).

Save or not
save' to retriev

Specify whether or not to save the R workspace when R is closed; set to '--

e the workspace later in a workflow with another R actor.

Graphics Format
* png.

The graphics output format. Currently the actor supports either *.pdf or

319

Appendix C— Using R in Kepler

Graphics Output Specify whether or not to send graphics to a graphics output port. By default,
the actor will send data to a graphics output port.

Automatically Select to automatically display the plot once the actor has generated it. Note
display graphics |that if this option is selected, the output file will always be in PDF format,
regardless of the value selected as the Graphics Format setting.

Number of X pixels| The width of the output graphic in pixels.
in image

Number of Y pixels| The height of the output graphicin pixels.
in image

TABLE C.2: REXPRESSION ACTOR PARAMETERS AND THEIR USE.

C.3.2 OuTPUTS

By default, the RExpression actor creates an output port for a graphical representation of results as well a
copy of the text output that R generates. Users can add additional output ports for outputting results
generated by the script.

C.3.2.1 R-TEXT

The R text consists of the actor’'s communications with R to run the R function or script as well as the values
and statistical outputs. Figure C.7 displays a very simple R workflow that shows the text and graphical
display of an RExpression actor with its default settings.

320

Appendix C— Using R in Kepler

SDF Director

< owplay ®Ex)
Fle Took Help
> setwd|'C:/Documents and Sectings/Kirc|®
> png(filename = 'Hirsten?.png',width
> & - ¢(1,2,3,5)
]
>

RExpression

Display

plot (a)

[C KirstenT prs =
(AT piveds, B-Dit, J09%.
W
< | »
w o
- -
m ™ - o
o = o
Lo -

FIGURE C.7: THE DEFAULT SETTINGS OF THE REXPRESSION ACTOR. BY DEFAULT, THE ACTOR CREATES A PLOT OF THE VALUES
(1,2,3,5).

The first two lines in the text display window in the upper right corner of Figure 7 (“setwd...” and “png...”)
are setup commands for R that are automatically added by the actor. The last two lines of the display are
exactly what would appear if one were running the R system from the command line:

a <-c(1,2,3,5)
plot (a)

To “hide” the R-text output, simply leave the port unconnected.

C.3.2.2 GRAPHICAL OUTPUT

321

Appendix C— Using R in Kepler

Some R functions “draw” to a graphical display device. The RExpression actor automatically creates a display
file and sends the name of this file to the graphicsFileName port for use by a display actor. (If no
functions that create graphics are called this file will be blank.) Figure C.8 shows a workflow that uses an
RExpression actor to read two arrays, add them, and output a bar plot of the result. The R-script used by
the RExpression actor consists of two lines:

ccc <- aaa + bbb

barplot (ccc)

SDF Director

Expression

RExpression

T —
! Eminest png

(TS0 e, B B, TILK

s Kl Display :—-_[_]
Fle Took Help
o = > setwd('C:/Docunents and Sectings/Kir|®
> png(filename = 'HirstenS.png',width
- > ama <- (1, 2, 3)
> bbb <- c(4, 5, &)
> ooc <- aaa + bbb
. > harplot(cce)
-
(=T >
L
<. | »

FIGURE C.8: AN EXAMPLE OF AN REXPRESSION WORKFLOW USED TO CREATE A BARPLOT.

In the above workflow, the barplot is saved as a .png file (the default). The RExpression actor can also
generate and save a .pdf file—set the desired output type with the GraphicsFormat parameter. The
dimensions of the graphic can be customized with the NumberOfXPixelsInImage and
NumberOfYPixelsInImage parameters. By default, the graphic is 480x480 pixels. Generated graphics
files are saved to the R working directory, which by default is the Kepler cache (e.g., C:\Documents and
Settings\<UserName>\.kepler\).

The RExpression actor can also be set to display graphics automatically. Select the
AutomaticallyDisplayGraphics parameter to open graphical results in your system’s default

322

Appendix C— Using R in Kepler

viewing application. If this parameter is selected, the output file will always be in PDF format, regardless of
the value of the GraphicsFormat parameter, as users are more likely to have a PDF viewing application
than a PNG one.

C.3.2.3 USER-DEFINED OQUTPUT

To output results generated by the R-script (in addition to a graphic and R-text), add additional output ports
to the RExpression actor. The RExpression actor in Figure C.9 has been modified with a user-defined output
port to output the sum of two vectors (ccc). The R-script used by the RExpression actor is:

ccc <- aaa + bbb

barplot (ccc)

L =T =k
1 I
SOF Director |
Imaged
(I E T | =\;H
e Tod oo
Exprassion » macwd('C;/Documants mad Sustinge/Eis Bl
+ pngifilenmes = 'ELxpceasiond.png’.wi
. R-bed » mam €~ £(l, :'_, 3
RExpression - bbb - cid. 5. 6

barplos (oon)

> gog <- mma + bbb

Expression2

»

Sum of Arrays | BT Q@

[Ete Took pel
ks, 7. =

FIGURE C.9: ADDING AN OUTPUT PORT (CCC) TO THE REXPRESSION ACTOR.

The output port name must exactly match the name of the corresponding R data object. In the workflow in
Figure C.9, the R-script defines the sum of the vectors as ccc. The output port called ccc broadcasts that
value ({5, 7, 9}). Note: When an output port is configured as a multiport, all of the actors connected to
that multiport are sent the token.

323

Appendix C— Using R in Kepler

C.4 HANDLING DATA

R can process a number of different types of data objects (vectors, data frames, etc). How those objects are
best input to the RExpression actor depends to some extent on the format of the data itself. Does the data
set use metadata? Is it contained in an Excel spreadsheet? Or is it a simple array of numbers? In the next
sections, we will look at examples that demonstrate various techniques for inputting data to an RExpression
actor. We will also look at how the RExpression outputs different types of data objects.

C.4.1 INPUTTING DATA

Whether you are working with data arrays, records, R data frames, or local data sets saved as tab- or
comma-delimited text files, data can be input into an RExpression actor via user-defined input ports. If the
data is described by Ecological Metadata Language (EML), an EML2Dataset actor can be used to format the
data appropriately.

C.4.1.1 EML (EcoLoGICAL METADATA LANGUAGE) DATA SETS

Datasets that use EML can be read and output in a variety of ways by the EML2Dataset actor. In the next
few examples, we will look at a meteorological data set (Datos Meteorologicos) described by EML and
stored on the EarthGrid. To download and explore this dataset, select the Data tab and search for “Datos
Meteorologicos” (or a portion of the name, such as “Datos”). When the data are dragged onto the Workflow
canvas, Kepler will create an EML2Dataset actor (Figure C.10) named after the dataset and used to access
and output the data in a variety of different formats.

324

Appendix C— Using R in Kepler

K Unnamed BEx]

[Efe Edt Yiew ‘Workflow Jook iindow Help

leaHaDP e mm e

Comporents | Data e

Search
Cuatios Meteorologeoos

Do Mebeorologicos Datos alogicos

1 resuks retumed.

FIGURE C.10: AN EML DATASET (DATOS METEOROLOGICOS).

By default, the EML2Dataset actor downloads the data to the Kepler cache (if the data is not already

available there) and creates an output port for each column of data. Mouse over each port to see the name
and type of the data output.

To learn more about the data set, right-click the actor and select Get Metadata from the drop-down menu.
The metadata contains information about the data (the owner and structure) as well as the type and
measurement of the data included in the set.

The EML2Dataset actor can be customized to output data in a variety of ways: as field, table, row, byte-
array, un-compressed file name, cache file name, column vector, or column-based record. We'll look at
examples of how these different formats can be used with the RExpression actor in the next few sections.

C.4.1.1.1 EXAMPLE ONE: SELECTING AND USING COLUMNS OF DATA (COLUMN VECTORS)

The workflow discussed in this section is found at KeplerData/workflows/module/r-2.X.Y/demos/R/eml-
pairs-R.xml

325

Appendix C— Using R in Kepler

The workflow in Figure C.11 uses an R-script to create a pairs graph of three columns of data (air
temperature, relative humidity, and barometric pressure) from a meteorological data set described by EML.
The data are input to the RExpression actor as arrays of column values (column vectors).

e T BE

T_AIR

SOF Director " = RH

Image.J

Datos M:eornlngicosi‘ RExpression
p—

Display

FIGURE C.11: USING COLUMN VECTORS WITH THE REXPRESSION ACTOR.

The RExpression actor in Figure C.11 has three user-defined input ports: T_AIR, RH, and BARO, which receive
the temperature, relative humidity, and barometric pressure data, respectively. These data are passed in
the form of column vectors. To output the data in this format, double-click the Datos Meteorologicos2 actor
and select As Column Vector asthevalue ofthe Data Output Format parameter (Figure C.12).

326

Appendix C— Using R in Kepler

-

Edit parameters for Datos Meteorologicos 2 ﬁ

\?r) EML Fle: | Browse
Data File: Erowse

Selecked Entiky: Datesbdateorchogions v1
@:’.«m: s Column Vector N x|

File Exte BT

Check For latest version: 1

recordid; tao.1.1

endpaink: hittp:jecogrid.ecoinfarmatics, org/knbyservices/EcoGridQuery

el sl el f fecoinformatics. orgfeml-2,0.0

firingsPerTteration: 1

[comme][add][Remove | [RestoreDefaults| [Preferences | [b | [caneel |

FIGURE C.12: SETTING AS COLUMN VECTOR AS THE DATA OUTPUT FORMAT.

The RExpression actor uses a three-line R-script to combine the vectors into a data frame (a collection of R
data objects), summarize the table, and create a pairs-graph of the values:

df <- data.frame (T _AIR, RH, BARO)
summary (df)

pairs (df)

An ImageJ actor displays the graph (a .png file saved to the R working directory), and a Display actor displays
the text output by R.

C.4.1.1.2 EXAMPLE TwoO: SELECTING AND USING AN ENTIRE DATA SET (COLUMN-BASED
RECORDS)

The workflow discussed in this section is at KeplerData/workflows/module/r-
2.X.Y/demos/R/eml|_Table_as_Record.xml

The workflow in Figure C.13 uses an R-script to create a pairs graph of a column-based record that contains
all columns of data (date, time, air temperature, relative humidity, dew point, barometric pressure, wind
direction, wind speed, rainfall, solar radiation, and solar radiation accumulation) from a meteorological data
set described by EML. The data are fed to the RExpression actor as a single column-based record. This data
format is specified by the EML2Dataset actor (Datos Meteorologicos2).

327

Appendix C— Using R in Kepler

Aot Ik
SENTAGRYSEE,
EHEFEEEEEE
NESTAAESARE.
EEPIENRYRELD.
SO ector LGUZINEZEREE
RTINS E.
Sl EEEENE
Nz MNP
Image.J CEERTHNAMNSEA - E
o 1N G B A)
Datos Meteorologlicos2 B : B
. RExpression
Display
¥ wvmd_Wable_an Wmcir 1 D play = ;ﬂ“

FIGURE C.13: USING COLUMN-BASED RECORDS WITH THE REXPRESSION ACTOR.

The RExpression actor in Figure C.13 has a single user-defined input port (df), which receives an entire
data set as a column-based record that is translated into an R data frame object. Double-click the Datos
Meteorologicos2 actor and select As ColumnBased Record as the value of the Data Output
Format parameter to output the data in the required format (Figure C.14).

A column-based record consists of named elements and their values. In Kepler, records are specified
between curly braces. For example, {BARO = {953.4, 953.8, 954.0}, DATE = {"01/01/01", "01/01/01",
"01/01/01"}, DEW ={14.5, 12.8, 12.8 }} is a record with three elements named BARO, DATE, and DEW.

328

Appendix C— Using R in Kepler

r"E dit parameters for Datos Meteorologicos2 .ﬁ‘

\:.p EML Fie: r—
Data File: [Browse |
Selected Entity: Datos Meteorglogcos ~

C Eﬂtﬂ Qutput Format: #s ColumnBased Record v

E .
Check For latest version: O
recordid: tao.1.1
Endpeng: hth:éffanﬁﬁid.mi‘rfuﬂnaii:s.nrgfkrb]'sérvicas,l’EcaGridQﬂf.
namespace:; \erml: ffecoinformatics. orafeml-2,0.0

[commt || add][Remove | [RestoreDefaults| | preferences |[Hep | [cancel |

FIGURE C.14: SETTING AS COLUMNBASED RECORD AS THE OUTPUT FORMAT FOR THE DATA.
The RExpression actor uses a two-line R-script to created a pairs graph of the data and summarize it:

pairs (df)

summary (df)

An ImageJ actor displays the graph (a .png file saved to the R working directory), and a Display actor displays
the text output by R.

C.4.1.1.3 EXAMPLE THREE: SELECTING AND USING A CACHED DATASET (READ.TABLE FUNCTION)

The workflow discussed in this section is found at KeplerData/workflows/module/r-
2.X.Y/demos/R/dataFrame_R.xml

The workflow in Figure C.15 uses an R-script to create a pairs graph of a meteorological data set described
by EML that is saved to the local cache. The location of the cached data set is fed to an RExpression actor,
which reads the file and uses the read.table function to parse the data before creating the pairs graph.

329

Appendix C— Using R in Kepler

Fi Bl epaeiiant by .._-.-\Q.ﬁ

NP B paty B0 THE

SDF Directar 5 o o - ;
HEEHEEER I EE-
MR
_ MNEMPNEELIEPE:
Dake Metoorologicos YA DERIAE

WEAALNEE AP,

AN AN B DGR

ESANRECETAMN?
imageJ S A A L O A 5 (T B
El=l=l=l=l=l=l=1= =1
AMEIENEREEDE®
FMEARESEN®L.

RExpression

Display

| dataF R Dy =0
(B Tos pe |
194 01704701 21100 14.0 99 1
{93 0104701 £ 00 13,0 99 1%.% 954.1
24 01704701 I3:00 15.5 99 1%I.8 953.9
trl oprr08501 0000 1*.4 99 1X.8 933.9

1

1i

1

3.4 953,80

28 01705701 01:00 13.5 99 1x.8 9§
29 DL/08/01 OZ:00 13.1 99 1Z.8 &
100 0170301 03:00 11.9 99 11

[x|

FIGURE C.15: USING COLUMN-BASED RECORDS WITH THE REXPRESSION ACTOR.

The RExpression actor in Figure C.15 has a single user-defined input port (infile), which receives the
location of the cached data set (e.g., C:\Documents and
Settings\username\.kepler\cache\cachedatal\urn.lsid.localhost.7a976669.0
.0). To output data in this format, double-click the Datos Meteorologicos2 actor and select As Cache
File Name asthevalueofthe Data Output Format parameter.

The RExpression actor uses an R-script to read the data file, create a data frame object using R’s read.table
function, and then create a pairs graph from it.

datafile <- infile

df <- read.table(datafile,sep=",",header=TRUE)
pairs (df)

df

An ImagelJ actor displays the graph (a .png file saved to the R working directory), and a Display actor displays
the text output by R. Note that the data frame is also displayed in the R-text output.

C.4.1.1.4 ExAmMPLE FOUR: USING DATA SEQUENCES

The workflow discussed in this section is found at KeplerData/workflows/module/r-
2.X.Y/demos/R/emIToRecord_R.xml

330

http://cran.r-project.org/doc/manuals/R-intro.html#The-read_002etable_0028_0029-function

Appendix C— Using R in Kepler

The workflow in Figure C.16 uses an R-script to create a pairs graph of several columns of meteorological
data (barometric pressure, relative humidity, and air temperature) described by EML. The data are originally
output as three sequences of values, which are converted to Kepler arrays and then combined into a single
record of arrays. The data conversion is handled by three SequenceToArray actors and one
RecordAssembler, which reads the three data arrays and combines them into a single record that is
translated into an R data frame.

SDF Diractor e]\ 1
BARO i LA |

Sequence To Arayd

Record Assembler Ty

FIGURE C.16: A WORKFLOW THAT CONVERTS THREE SEQUENCES OF DATA TO THREE ARRAYS, AND THEN COMBINES THE ARRAYS
INTO A RECORD INPUT TO THE REXPRESSION ACTOR.

The RExpression actor in Figure C.16 has a single user-defined input port (df), which receives the record
of arrays created by the upstream Kepler actors.

The Datos Meteorologicos2 actor is configured to output data As Field (which is the default value of
the Data Output Format parameter). The output sequences are read by SequenceToArray actors.
Note that each SequenceToArray actor must be customized to create and output an array with a length that
matches the number of data records in the data set. Since the Datos Meteorologicos2 contains 100 data
records, the arrayLength parameter for each of the three SequenceToArray actors must be set to
100. (Figure C.17)

331

Appendix C— Using R in Kepler

Y G >
class: poleny.domains.sdf b, SequenceTodrray
semanticType0oo: urn:bsid:localhost:onto: L2 1# Arrayactor
semanticTypel11: urnbsid:localhost sonto: 121 #Conversionactor]
FiringsPerTter ation; 1

(_Commk [4dd J[Remove | |RestoreDefauts|(Preferences || Hep |[Coel |

FIGURE C.17: SPECIFY THE LENGTH OF THE ARRAY TO BE CREATED BY THE SEQUENCETOARRAY ACTOR (I.E., THE NUMBER OF
RECORDS IN THE DATA SET).

The number of records in the data set is noted in the metadata. Right-click the Datos Meteorologicos2 actor
and select Get Metadata to view this information (Figure C.18).

Mame: Datos Meteorclogicos
: Dtos Estacion meteorologica La Hechicera

Olbject Name: sample.dat
Size: 168660 bytes

1]

Character

Encoding: sl

Murnber of
Header Lines:
Recard
Delimiter:
Maximum
Recond Length:
Simple Field
Delimited: Delimeter. *

c .
Fﬁmhwﬂf Records:

Bt S LRI

1

n

Text Format:
column

Type Missing
Attribute Column Measurement Accuracy Accuracy
gy Definition of Type Measurement Domain Value R A n.l.'.d;u\.l'ﬂrngnIclhml
Value Code
Diate of) Format MMDONY
DATE DATE aolication string datetime gl
Time of Format HHhiM
TIME TIME collaction string datetime Precision |3
Mts S

FIGURE C.18: THE NUMBER OF DATA RECORDS IS NOTED IN THE DATA SET METADATA.

The RExpression actor uses a two-line R-script to create a pairs graph and summarize the data:

332

Appendix C— Using R in Kepler

pairs (df)

summary (df)

An ImageJ actor displays the graph (a .png file saved to the R working directory), and a Display actor displays
the text output by R.

C.4.1.1.5 ExAmMPLE FIvE: USING PORTS CONFIGURED AS MIULTIPORTS

The UnionAll RExpression actor in Figure C.19 is configured with a multiport input and output port. All
tokens received on the multiport are added to a list object by the UnionAll R actor and then output to two
R actors (Pairs and Summarize) for further processing. Note that the multiport output port broadcast the R

data to all of the actors it is connected to. The workflow outputs a pairs graph of the data and a summary
table.

[Paiea 3 o = |
TN (Vi i

I‘E.Thdﬁnf ".ﬁ'\ﬁﬂ-
_ﬂ.l.z.rﬁ.llrifﬂiiﬁﬁﬂﬁr
N ARENAME.
HHHEEHBEHBEBBEHE
E"..«.?-"'[J_.'_'l SRR
DEZINEDE2ER

) 1 BN A SO
K ot dsafroem weiwo 8 0kp = 0 E 2 L JJ HEE R
Bl ok : NI ["'It"r"u."-l'--FL.
Bin., © 2.00 Min. 10.000 "LHE [Hﬂm.;‘_ﬂ | =
SDF Direclor =t Lz BT Bt Onp, 201,30
Bedten 1113, Bedien 11,000 PENTHEEESNEE
MEab ELET .43 Readh 11.035 i a ? w e g
Jrd -2".::'\5.."; Trd 'L'{.'.:.Jiff B ;
I] ImageJ
l{ *

Datos Meteorologicos

=3
Wnign Al

Display
Datos Meteorologichs2

FIGURE C.19: USING AN INPUT PORT CONFIGURED AS A MULTIPORT.

To add and configure a multiport, right-click the actor and select Configure Ports from the drop-down menu.
Name the port, select its direction (input or output) and then check the Multiport option (Figure C.20).

333

Appendix C— Using R in Kepler

1= Configure ports for Union All [Z]]E
Name Input | Ou... | Muki. | Type Direction ShowName | Hide Units
'] —om | T
z AULT
T O e«
oK COTET T B perant | (0 1 [

- - [(ot]

FIGURE C.20: USING AN INPUT PORT CONFIGURED AS A MULTIPORT.

The UnionAll actor receives two data sets through its records multiport. These data are output by two
EML actors set to output data in “As column based record” format. The RExpression actor creates a
dataframe from each received token and, because the data are received through a multiport, adds the
dataframes to an R list object. The UnionAll actor uses the following R-script to concatenate the list of
received dataframes into a single dataframe:

allRecords = do.call("rbind", records)

The al1Records dataframe is output by the UnionAll actor’s al1Records multiport output port, which
is connected to two downstream R actors: Pairs and Summarize. The multiport output port broadcast the
R data to all of the actors it is connected to, so there is no need to use a relation.

C.4.1.2 NON-EML DATA SETS

Data that do not use metadata—Excel spread sheets saved as text files, for example, or the values of an
Expression or Constant actor--can also be used by the RExpression actor. In the next sections, we will look
at several examples.

C.4.1.2.1 EXAMPLE Six: LOCAL TEXT-BASED DATA SETS (SELECTING AN ENTIRE DATA SET)

The workflow discussed in this section is found at KeplerData/workflows/module/r-
2.X.Y/demos/R/localFile_to_dataFrame_R.xml

The workflow in Figure C.21 uses an R-script to (1) read a local text file containing comma-delimited data,
(2) create an R data frame with the data, (3) create a pairs graph of the data set, and (4) summarize the
data. The location of the data set is input to the RExpression actor by an Expression actor named Path to
local file.

334

Appendix C— Using R in Kepler

file:/Users/barseghian /KeplerData/wor. . .1/demos/R/localFile_to_dataFrame R.xml
& | @] Q/D>[10)@] = =252 @
;]

! Components Data Outline > ! Waorkflow !
Search Components
(Y (search

Q eare SDF Director

Advanced... | Sources | Cancel

Image)

LAl Omolcgias and Folders H Path to local file RExpression

property(r.workflowdir’)+ "demos /R /sample.dat”

nnnnnnnn Display

ﬂ O 0 RExpression-1.png
480x480 pixels; B-bit; 225K

R

?‘
[:
i

s o L L (5| A Ll

=

10 20

5

ER

0 2m

(B2 Wil

=BT
mﬂmﬁmmﬁmM§

&
%EEE
bl A | el N Y

ocalFile_to_dataFrame_R.Display

(-]
ﬁﬂ!@f@ﬂ

Sl
G EEAR MG

{4 01/04/0121:00 14.00913.4953.81151.0 0 0 O -
l {5 01/04/0122:00 13.09912.3954.1 992.0 0 0 240 2
s |6 01/04/0123:00 1359912.8953.9 720.8 0 0 360 b o
E‘“ E E E E E 5 S |i7 01/05/0100:00 13.69912.6953.91001.6 0 0 0
= * |I8 01/05/0101:00 13.59012.8054.02120.1 0 0 120 =
e §§§i . . ﬁ E . % E [[I . i:g 19 01/05/0102:00 13.19912.8954.01001.0 0 0 480
10001/05/01 03:00 11.99911.7954.3 972.2 0 0 O

‘3300000

10 20 02 1003 o 300000

A AR EREE s | :

FIGURE C.21: USING LOCAL DATA SETS THAT DO NOT USE METADATA WITH THE REXPRESSION ACTOR.

The RExpression actor in Figure C.21 has a single user-defined input port (infile), which receives the
location of the local data set: property ("r.workflowdir")+"demos/R/sample.dat". The
expression 'property ("r.workflowdir") returns the path to the R module’s workflow area. Note
the use of '/' rather than '\' in the expression, even on Windows platform.

The RExpression actor uses an R-script to read the data file, create a data frame object using R’s read.table
function, and then a pairs graph of the data set:

datafile <- infile
df <- read.table(datafile,sep=",",header=TRUE)

pairs (df)
daf

An ImageJ actor is used to display the pairs graph (a .png file saved to the R working directory), and a Display
actor displays the text output by R.

C.4.1.2.2 EXAMPLE SEVEN: USING KEPLER RECORDS

The workflow discussed in this section is found at KeplerData/workflows/module/r-
2.X.Y/demos/R/RecordToDataframe-R.xml

335

http://rwiki.sciviews.org/doku.php?id=rdoc:base:read.table

Appendix C— Using R in Kepler

The workflow in Figure C.22 uses an R-script to read and display a record originally specified by an
Expression actor. In this case, the record represents a table. The RExpression actor will automatically create
an R data frame from the record, provided that all the items in the record are arrays of the same length.

K Recor dToDataframe B Display l_-___ﬁ |

> b £= c{'aa', 'an', "Nu")
> pecord <= datn.Inmee (o D)
> record

SODF Director = b

11 an

fz 2 an

3 5 Kx

%

£ | »

RExpression
Expression

| (a=(125)b=("aa""aa""0())

Display

FIGURE C.22: USING A RECORD SPECIFIED BY AN EXPRESSION ACTOR WITH THE REXPRESSION ACTOR.

The RExpression actor in Figure C.22 has a single user-defined input port (record), which receives the
record data. The record specified by the Expression actor contains two named items, 'a' and 'b'. Each item

is an array with three values, {1,2,5} and {"aa","aa","xx"}, respectively.

The RExpression actor uses an R-script to return the data frame object created by the actor. A Display actor
displays the text output by R.

C.4.1.2.3 EXAMPLE EIGHT: USING THE READTABLE ACTOR WITH LOCAL TEXT-BASED DATA SETS

The workflow discussed in this section is found at KeplerData/workflows/module/r-
2.X.Y/demos/R/ReadTable.xml

The workflow in Figure C.23 uses a ReadTable actor to read a local, tab-delimited data set that has a
“spreadsheet-like” tabular format. The ReadTable actor creates an R data frame object from the data set
and passes it to a second RExpression actor, which extracts the species and species-count information from
the data set and creates a box plot of the data. The workflow uses an Expression actor (Data File Name) and
two Constant actors (Separator and header) to pass arguments to the ReadTable actor: the name of the
data set, the separator used by the data set, and a header, respectively.

336

Appendix C— Using R in Kepler

=T =oE
R ety W E 15

» dataframe o= df
» pates(df]

SDF Eirectﬂr

Data File Name
l property"KEPLER")+ "demos/Rimollusc_abundance.bd”

Display Image.

Separaftor

e

header

K ReadTable Display? ':"-:EI
Ble Took pelp

F meEcwd [CiSDocum=ncy and 'Jt:tlncls:"KlISE'ETl.l'.IOEIIJ.EI:.-"| L=
> pngifilenams = 'RExpressiondl.pog’,widcth = 960, height = 480, pointsize = 13,

» dff <= paad._cable(files' ReadTakblel.vae’)

» specles <= ATLL[,7]
comt <- dfl[,8]

* plot (species,oont)
3

FIGURE C.23: USING THE READTABLE ACTOR TO PROCESS A LOCAL TAB-DELIMITED DATA SET.

The ReadTable actor has five input ports (fileName, header, separator, nrows, fill):

e The fileName port receives the location of the data set.
e The separator port accepts the delimiter (by default, any white space, such as a space or tab).
e The header is set to either TRUE (the default) or FALSE to indicate whether the first row of the
data file contains column names.
e nrows is the number of records in the data table (by default, the ReadTable actor reads to the
end of the file).
e fill (set to either TRUE or FALSE) determines whether or not the actor should “fill” missing
columns at the end of a line with empty strings.
Often, all input ports other than the fileName can be left unconnected. See the R documentation for
read.table for more information.

337

http://cran.r-project.org/doc/manuals/R-intro.html#The-read_002etable_0028_0029-function

Appendix C— Using R in Kepler

The default R-script in the ReadTable actor reads a data file and creates an R data frame object:

if (any(ls() == "header") == FALSE) header= TRUE

if (any(ls() == "separator") == FALSE) separator = ""
if (any(ls() == "nrows") == FALSE) nrows = -1

if (any(ls() == "fill") == FALSE) fill = TRUE

df <- read.table(fileName, sep=separator, header=header, nrows=nrows,
fill=£fill)

df
dataframe <- df

pairs (df)

The ReadTable actor saves the data frame object to a text file in the R working directory and outputs the
path to the file via the dataframe output port.

The RExpression actor in Figure C.23 has a single user-defined input port (d£1), which receives the R data
frame. The actor’s R-script creates a plot of the species and count data:

species <- dfl[,7]
cent <- dfl[, 8]

plot (species, ccnt)

An ImageJ actor displays the plot and a Display actor displays the R-text output.

C.4.1.2.4 EXAMPLE NINE: PASSING DATAFRAMES BETWEEN R-ACTORS

The workflow discussed below is found at KeplerData/workflows/module/r-
2.X.Y/demos/R/RExpression_Dataframe_Test.xml

The workflow in Figure C.24 uses an RExpression actor to create a simple R data frame object and save it as
a text file to the Kepler cache. The RExpression actor passes the location of the saved file to a second
RExpression actor via a user-defined output port (df). The RExpression2 actor reads the data file and selects
the first row and column of data, which is output to a Nonstrict Test actor that compares the input against
the value specified by its correctValues parameter. If the input matches the test criteria, the workflow
produces no output. However, if the two do not match, Kepler will generate an error.

338

Appendix C— Using R in Kepler

SDF Director

RExpression

RExpression2

me
Monstrict Test

FIGURE C.24: PASSING AN R DATA FRAME OBJECT BETWEEN REXPRESSION ACTORS.

The RExpression actor in Figure C.24 uses an R-script to create a simple data frame object that contains two
vectors {1,2,3} and {4,5,6}. The c () function used by the script builds the two vectors, which are then
combined into a single data frame object with the data. frame function:

df <- data.frame(c(1,2,3),c(4,5,6))

The RExpression actor automatically saves the data frame object to the Kepler cache. A user-defined df
port is used to pass the location of the data frame file to the RExpression2 actor. Note that the output port
should be named after the R-object it emits (e.g., the df port outputs the df object from the actor’s R-
script, in this case, the location of the data file). The df port must have type string (Figure C.25)

-

|| Configure ports for RExpression3 E]@
Mame Input | Ou... | Mol Type Direction Shiov Mame Hide Inits
graphicsFileMame | [] (] DEFALLT] F
oLkt [] [| DEFALLT F Fl
df] O] Btring) DEFAULT F]
i

FIGURE C.25: CREATING AN OUTPUT PORT (DF) OF TYPE STRING.

The RExpression2 actor receives the data frame via a user-defined input port named df1. Its R-script selects
the first row and column of data:

df2 <- dfl
dframe <- df2[1,1]

A user-defined output port (dframe) outputs the value of the first row and column of data (1.0). The
NonstrictTest actor simply tests to ensure that the value is what is expected. If the value does not match

339

Appendix C— Using R in Kepler

the value of the NonstrictTest actor’'s correctValues parameter, Kepler will generate an error message.
If the values match, the workflow will execute without error or output.

Note: even though the array value was initially specified as an integer (1), it will be returned
as a double (1.0) by the workflow. To force integer storage, use the syntax 1L (or cast using
as.integer).

C.4.2 OUTPUTTING DATA

In the next sections, we will look at how to customize the RExpression actor to output results generated by
the R-script (an array object in one case and a matrix object in another).

C.4.2.1 OUTPUTTING A DATA ARRAY

The workflow discussed below is found at KeplerData/workflows/module/r-
2.X.Y/demos/R/R_output_example.xml

The workflow in Figure C.26 uses an R-script to create a pairs graph of several columns of EML-described
meteorological data (barometric pressure, relative humidity, and air temperature). In addition, the
workflow plots the relative humidity data and modified relative humidity data. All data are originally output
as fields by an EML2Dataset actor (Datos Meteorologicos), which are combined into arrays an input to an
RExpression actor. This data conversion is handled by three SequenceToArray actors. The RExpression actor
reads the data arrays and combines them into a single R data frame.

SDF Director

Sequence To Array3

Datos logicos

RExprassion
Sequence To Array

Display

Sequence To Aray2 Array Plotter

—{

FIGURE C.26: USER-DEFINED OUTPUT PORTS ARE USED TO OUTPUT DATA FROM AN REXPRESSION ACTOR.

340

Appendix C— Using R in Kepler

The RExpression actor in Figure C.26 reads three arrays of data (air temperature, relative humidity, and
barometric pressure) via three user-defined input ports, T_AIR, RH, BARO, respectively. The R-script
references the input data by the port names and, in addition to summarizing the data and creating a pairs
graph, “renames” the RH vector XXX and creates a new vector of data (YYY) that contains doubled RH
values.

df <- data.frame (T _AIR, RH, BARO)
summary (df)

pairs (df)

XXX <= RH

YYY <- 2*XXX

Two user-defined output ports (XXX and YYY) output the value of the RH data and the modified RH
data, respectively. The output ports must be named after the R-objects they emit. Note that the RH vector
had to be renamed in order to avoid duplicate port names. The RExpression actor (or any actor, for that
matter) cannot have both an input and output port named RH.

An Image) actor displays the pairs graph (a .png file saved to the R working directory), a Display actor
displays the text output by R, and the ArrayPlotter actor receives, plots, and displays the two RH arrays.

C.4.2.2 OUTPUTTING A DATA MATRIX

The workflow discussed below is found at KeplerData/workflows/module/r-
2.X.Y/demos/R/RExpression_Matrix_IO_Test.xml

The workflow in Figure C.27 uses an R-script to create and output an R matrix. An Expression actor inputs a
Kepler matrix into the RExpression actor, and a NonstrictTest actor is used to ensure that the matrix output
is as expected.

SDF Director

Expression
| 112.3:45.6:8.8.898.1]

RExpression

Monstrict Test

FIGURE C.27: USING THE REXPRESSION ACTOR TO OUTPUT A MATRIX DATA OBJECT.

341

Appendix C— Using R in Kepler

The RExpression actor in Figure C.27 reads a Kepler matrix specified by an Expression actor. The matrix is
input to the RExpression actor via a user-defined port (in1). The R-script reads the value and creates an R
matrix object:

inl
class (inl)

ma <- inl

A user-defined output port (ma) outputs the matrix data. The NonstrictTest actor simply tests to ensure that
the value is what is expected. If the input value does not match the value of the NonstrictTest actor’s
correctValues parameter (Figure C.28), Kepler will generate an error message. If the values match, the
workflow will execute without error or output.

-

Edit parameters for Honstrict Test

P
H‘../ correctialues: i1,2,3 4,56 8,8, 8 9,8 1T+

tolerance: AES

trainingMode:;]

class: ptalerny, actor . lib. MonStrick Test

semanticType0; urrlsid: localhost: onko: 1: 1 #0UnikTestCantralActar
semanticTypell: urn:lsid:localhost:onko: 2: 1 #UnRitTeskContral
firingsPerIteration: 1

FIGURE C.28: THE VALUE OF THE CORRECTVALUES PARAMETER MUST MATCH THE NONSTRICTTEST ACTOR’S INPUT.

C.5 EXAMPLE R SCRIPTS AND FUNCTIONS

The following section contains examples of R workflows used for a variety of common statistical tasks, such
as linear regression, plotting, statistical summaries, and sampling.

C.5.1 SIMPLE LINEAR REGRESSION

The workflow discussed below is found at KeplerData/workflows/module/r-2.X.Y/demos/R/R/eml-simple-
linearRegression-R.xml

The workflow in Figure C.29 uses an RExpression actor (R_linear_regression) to perform and display a linear
regression of two columns of data (air temperature and barometric pressure) from a meteorological
dataset.

342

Appendix C— Using R in Kepler

SDF Director

E_linear_regression

|0 R_Sead_iegieiskal pig .__;E
(TG A0 poaty, B-BE, TI08 1
b "

iy °\{r°
I : =
Heml-smmple-lineaiRegresison-F Display o Ry ®
[B Tods pebo .-

P

5 amtwd{'C:fDocusenta and Settinga/Kicatan’.keplec '} E = &
> pngifilenmse = 'R_lineac_cegreasionZ.pog’,width = 480, height = 480, g L
* T_AIR <- c(i5.0, 13.4, 13.4, 12.9, 11,7, 11.4, 11.5, 11.3, 12.%, 17.9) _ o q.#'go_
* BABD ¢- ciP53.4, PS3.0, P54.0, U34.3, US4.5, 054,7, 054.0, 9540, O[5 o b
> cam <- Lm(BARD = T_ATR) z o &
> cEm -

o | - . i
Call: 2 \ @
lmifocmula = BARD = T_XIR) o

8 e,
Cosffigienca: s iy,
(EnRCEroept) T_AIR B % %,

950,3772 -0, 3244 2

& T T T
> plociT AIE, BARO) 10 15 b 5
> sblineiresi

T_AR

< 2

FIGURE C.29: USING THE REXPRESSION TO PERFORM A LINEAR REGRESSION.

The R_linear_regression actor in Figure C.29 reads two columns of meteorological data (air temperature
and barometric pressure) via two user-defined input ports: T_AIR and BARO, respectively. The data are
originally output As Column Vectors by the EML2Dataset actor (Datos Meteorologicos).

The RExpression actor converts the input data into R vectors, and then performs the linear regression. The
script also adds a regression line through the scatter plot using the abline () function:

res <- 1m(BARO ~ T AIR)
res
plot (T_AIR, BARO)

abline (res)

An Image) actor displays the scatter plot (a .png file saved to the R working directory), and a Display actor
displays the text output by R.

343

Appendix C— Using R in Kepler

The Regression or the LinearModel actors—which are both preconfigured RExpression actors—can also be
used to perform a linear regression. Please see Section C.5.7 for more information.

C.5.2 BAsic PLOTTING

The workflow discussed below is found at KeplerData/workflows/module/r-2.X.Y/demos/R/eml-simple-
plot-R.xml

The workflow in Figure C.30 uses an RExpression actor to plot two columns of data: relative humidity (y-
axis) and barometric pressure (x-axis) from a meteorological dataset.

SDF Director

Datos Mieorologicos

Sequence To Array

RExpression
DISFILE'}"
|"¥F g 4 (! w il
! Rirpavisadd pg |
[130aia0 poats | EbE, T8 1
E = | |
& " SEL]
=R T L e B Tous Hep |
& -
Pt & o 5 amtwdi'C:/Documents and Ssttinga/Micacens . kKepleci") o
* pRgifilenmme = ‘REXpressionid.png’,widch = 400, haight = 400, potncaiss = 12
- s AN £- ciPV¥. P9, U9, 99, P9, PY, PY. U9, PU, ¥R, O3, 1. 74, 7. O3, 9T, WE,
2 i 3 BARD £- ciE53.4, 95,0, P54.0, 954.3, 954,35, 954,7, §54.0, 954.0, 9549, PIY
E— 5 momacy (RHY
' * & Min, ipt Qu, Median Besn 3rd Qu, Hax,
| Ll k4.00 aL.50 #8.00 n7.o08 #8.00 #8.00
lz -
llE 8- > mumary (BB
Rin, imc Gu, Hedisn Mean 3cd Qu, Hax,
950, 95E.0 P35 BSN,T BS54 B55.5
> ploc(BARG, RN
= g E
- “"3 W o I
&
T T T T T
&30 &3 a3 933 5 &35
BARD £ »
|

FIGURE C.30: USING THE REXPRESSION TO PLOT DATA.

The RExpression actor in Figure C.30 reads two columns of meteorological data (relative humidity and
barometric pressure) via two user-defined input ports: RH and BARO, respectively. The data are originally

344

Appendix C— Using R in Kepler

output As fields bythe EML2Dataset actor (Datos Meteorologicos). The fields are joined into arrays by
two SequenceToArray actors. For more information about using SequenceToArray actors in this way, please
see Section C.4.1.1.4.

The R-script summarizes the two data sets and creates a plot of the values:

summary (RH)
summary (BARO)
plot (BARO, RH)

An ImageJ actor displays the scatter plot (a .png file saved to the R working directory), and a Display actor
displays the text output by R.

The RPlot, Scatterplot, Boxplot, and Barplot actors—which are preconfigured RExpression actors—can also
be used to generate plots. Please see Section C.5.7 for more information.

C.5.3 SUMMARY STATISTICS

The workflow discussed below is found at KeplerData/workflows/module/r-2.X.Y/demos/R/eml-summary-
stats-R.xml

The workflow in Figure C.31 uses an RExpression actor to generate summary statistics (mean, standard
deviation, and variance) for a single column of data (barometric pressure) from a meteorological dataset.

K| eml-summary-stats-R_Mean - | 0
SDF Director Fie Took Help

953.167

RExpressjon K/ .eml-summary-stats-R.Standard|
Standard Deviation [Fe Toos Belp

1.61057456884778

- 1
K| eml-summary-stats-R. Variance |=
Fie Took Help

lZ . 5939303050505

Variance

FIGURE C.31: USING THE REXPRESSION TO GENERATE SUMMARY STATISTICS.

345

Appendix C— Using R in Kepler

The RExpression actor in Figure C.31 reads barometric pressure data via a user-defined input port (x) . The
data are originally output As column vector by the EML2Dataset actor (Datos Meteorologicos). The
R-script creates the summary statistics:

xmean = mean (x)
xstd = sd(x)

xvar = var (x)

Three user-defined output ports (xmean, xstd, and xvar) output the generated statistics. The output
ports must be named after the R-objects they emit. Display actors display the output statistics.

The Summary, SummaryStatistics, RMean, and RMedian actors can also be used to generate summary
statistics. Please see Section C.5.7 for more information.

C.5.4 3D PLOTTING

The workflow discussed below is found at KeplerData/workflows/module/r-2.X.Y/demos/R/R_3D_Plot.xml

The workflow in Figure C.32 uses an RExpression actor to generate a 3D plot (a rotated sine function).

|1 REspaeishomlé pig (=1 x|
SDF Director [Tt ey, BBE, FI08 H

Image.l

RExpression

Display |
KIR_|

B Te—0ns
P =
> 7 4- 8

* £ <= function(®,¥] { £ <= sget (X 2+y

> 2 <— outer(x, 7, L}

> g[im.naf2)] <= 1

* op <= parcibg = “white")

> peErEp(x, ¥, 2, thees = 30, phi = 30,

>

>

I w|
£ |

FIGURE C.32: USING THE REXPRESSION TO GENERATE A 3D PLOT.

346

Appendix C— Using R in Kepler

The RExpression actor in Figure C.32 generates a 3D plot using the following R-script:

x <- seq(-10, 10, length= 30)
y <- X
f <- function(x,y) { r <- sqgrt(x"2+y”2); 10 * sin(r)/r }

z <- outer(x, y, f)

z[is.na(z)] <- 1

op <- par(bg = "white")

persp(x, y, z, theta = 30, phi = 30,
expand = 0.5, col = "lightblue")

An Image) actor displays the 3D plot (a .png file saved to the R working directory), and a Display actor

displays the text output by R.

C.5.5 BIODIVERSITY AND ECOLOGICAL ANALYSIS AND MODELING (BEAM)

The workflow discussed below is found at KeplerData/workflows/module/r-2.X.Y/demos/R/BEAM_4_1.xml

The workflow in Figure C.33 uses four RExpression actors to generate the relationship between area
sampled and species richness (a rarefaction curve) for a data set, and then finds the best-fit linear model
for predicting this relationship. These actors (1) convert a local data set containing plant biomass data into
a site by species matrix, (2) generate a species richness/area relationship using a bootstrap method, (3) find

the best-fit linear model for the relationship, and (4) create a plot of the results.

347

Appendix C— Using R in Kepler

SDF Director

Plant community response to fertilization at Sapelo Island, Georgia
| propertyl"KEPLER")+"f[demos/R/Sapelo_Island_data.tx"

Iterations
Bootstrapping
BE]
AL spafal © 1 svip =
. EL Spadial < 2 SVIR
Linear fit EL Spadal © 3 IR
KL Spadal C q ZVIR
HL Zpadal C 5 EVIR
EL Spadal o L3 EVIR
AL Spafal © T SVIR
HL Spadial < B VIR
| -
< ¥

Simple File Reader

Site by Species matrix

Curve plotter

| T Caws phottes prog

;nnirin'iub'u'_'é.n—:':zsa

[uk:3
lII
III—I
e
!
1

06
i
1

i e

an

leg10mo, specias) +L95% confidence inlervals
04

lgikarea) [intercept= D561, slops = 0038]

FIGURE C.33: THE BIODIVERSITY AND ECOLOGICAL ANALYSIS AND MODELING (BEAM) WORKFLOW.

The data used in the workflow (Sapelo_island_data.txt) is a text file that contains information about parallel
fertilization experiments that were performed at three different geographical sites containing five different
types of perennial plant communities found in the salt marsh habitat around Sapelo Island, Georgia. Sixteen
one-meter square plots were placed within each plant community, and alternate plots were assigned to

348

Appendix C— Using R in Kepler

control and fertilization treatments. The central 0.5m x 0.5m of each plot was harvested and live plants
were sorted to species, dried to a constant mass, and weighed to measure biomass.

The species biomass for the entire one-meter plot was estimated from the sample. The original data table
contains nine columns of data: site code, plant community code, fertilization treatment (N for fertilized
sites, C for control), treatment replicate (1-8), plant species code, taxonomic serial number, plant mass per
.25 square meter quadrant, and plant mass calculated per square meter.

The workflow’s first RExpression actor, Site by Species matrix, reads the data file and “reorganizes it”,
dropping fields that are not relevant to the current calculation (e.g., the taxonomic serial number as well as
the estimate of plant mass per square meter), and creating a table of the presence (1) or absence (0) of
species at each combination of Site, Community, Treatment, and Replicate. The new data object is written
to a text file (Site_by_Species.txt) that is stored in the R working directory (the Kepler cache, by default).
The R actor is set to save the R workspace so that other downstream actors can access the data (Figure
C.34).

Edit parameters for Site by Species matrix

o _ ; -
-.',,-) R function or script: data <— read.table(infile, header = TRUE) |

wat <- reshape (data, timevar="Species Code®, idw
mwat[is.na(mac) == TRUE] <- 0
mat <= chind(mat[,1:4], ifelse(mat[,S5:dimimac) [2

write.table (mat, file = "Site hy Species.txt", r
syatem("open Site by Species.txc')

mat »
<] >
*‘-'n.l-:wumcnts and Settingsikirsterh kepler, =
==5aWE -"":
png E

Graphics Output: O

Automatically display graphics: O

Number of X plxels in image: 480

Number of ¥ pixels n image: 480

save or mot: -gave

[Cornri] [Add] [Remove] [Restore Defaults] I Preferences] [Help] [Cancel]

FIGURE C.34: SAVE THE R WORKSPACE BY SETTING THE SAVE OR NOT PARAMETER TO --SAVE.

The Bootstrapping actor loads the species data and uses a randomization to estimate the expected number
of species present in increasingly larger sample plot areas. The actor randomly selects experimental plots
until a given area is reached (from 4 to 320 square meters, in the example), and then sums the number of
species present in that area. By repeating this process a number of times (in this case 100), a distribution
expected species richness is estimated, and the mean and 95% confidence intervals are calculated (y-axis)
for given sample areas (x-axis). The actor creates a summary table containing mean species richness and
95% confidence intervals for each area sampled. The number of iterations to perform for each estimate, as
well as the initial plot area, are specified via Constant actors.

349

Appendix C— Using R in Kepler

The LinearFit actor loads the R data and fits a linear model (or regression) to the mean species richness
estimates as a function of sampled area (both axes have been log-transformed). In this case, the linear
model does not fit the rarefaction curve well, and other models should be investigated. The Curve plotter
actor creates a plot of both the rarefaction curve and the linear model, and the ImageJ actor displays this
plot in Kepler.

C.5.6 RANDOM SAMPLING

The workflow discussed below is found at KeplerData/workflows/module/r-
2.X.Y/demos/R/sampling_occurrenceData_R.xml

The workflow in Figure C.35 uses an RExpression actor to read a local text file containing a data set of
latitude/longitude species occurrence locations, and divide the data into two randomly assigned subsets.

i

| K samphing_cccurrencellata_ R ZE'
(Bl Took beb |
; 48 -43,4100 -13,2500 =
SDF Director 50 =5T.9167 =22, 1667
51 =5Z.1667 =21.8167
52 -42.5500 -19,8831
55 -%4,5900 -2%,5900
56 -54.5333 -27.3000
Ef =E4.1700 =24 .,0600
; &0 =53.6900 =23,3100
E?'!FIFES-SIDI'I 62 -52.4833 -1.4833
| property"KEPLER"+"llibftestdata/garp/DataPoints .tt”
™
L1 »

RExpression

Display

FIGURE C.35: USING THE REXPRESSION ACTOR TO SPLIT A DATA SET.

The location of the data set is specified by an Expression actor. The data are input to the RExpression actor
via a user-defined fileName port. The RExpression actor uses the following R-script to create an R data-
frame from the data and randomly assign each value to one of two subsets:

read the original data
df <- read.table(fileName)
get number of rows (i.e. number of lines)

111 <- length(dfs$Vvl)

350

Appendix C— Using R in Kepler

fraction <- 0.5

create a list of subset indices
sss <- sample(1:111, size=(fraction*111))
create 2 subsets

dfl <- df[sss,]

write output file

#sink ("FirstSubset.txt")

#df1l

#sink ()

df2 <- df[-(sss),]

write output file

#sink ("SecondSubset.txt")

#df2

#sink ()

dfl
df2

Note that comments can be added to R-scripts using the # syntax. A Display actor displays the text output
by R.

C.5.7 Custom REXPRESSION ACTORS

The Kepler library contains a number of useful R actors that are “preconfigured” with R-scripts and ports:
Barplot, Box plot, Correlation, LinearModel, RandomNormal, RandomUniform, ReadTable, Regression,
RMean, RMedian, RQuantile, Scatterplot, Summary, SummaryStatistics.

Many custom RExpression actors are intended to be reused in multiple workflows and therefore use
“generic” port names that will not necessarily correspond to the data. The Scatterplot actor is a prime
example. It has two input ports: Independent and Dependent that are used to plot the graph.

C.5.7.1 BARPLOT

The Barplot actor creates and saves a barplot graph. The actor outputs the path to the saved barplot, which
can be displayed by the ImageJ actor (Figure C.36).

351

Appendix C— Using R in Kepler

T Barphst pig ;_ﬂ_ ﬁ

] panin_ bl Tk

[i]

SOF Director

guis boeys man WO

Values
{6,8,11,17}

L

Barplot

MNames
[".|> {"girls”, "boys", "men", "women"}

FIGURE C.36: USING THE BARPLOT ACTOR.

C.5.7.2 BoxpLOT

The Boxplot actor creates and saves a boxplot that is based on a data set’s “five-number summaries” —the
smallest observation, lower quartile (Q1), median, upper quartile (Q3), and largest observation. The actor
reads an array of values to plot and, optionally, an array over which the values are divided (an array of
dates, for example). The actor outputs the path to the saved boxplot, which can be displayed by the ImageJ
actor (Figure C.37).

352

Appendix C— Using R in Kepler

Baaphadh pog =1
FERAE pawe, B0 1T

SDOF Direclor

‘Vaniable
elL [123458,78910}

Group
E% {"11/01""1101" " 11/01""11/01" "1/

FIGURE C.37: USING THE BOXPLOT ACTOR. THE SAMPLE DATA POINTS FALL INTO ONE OF TWO GROUPS: 11/01 OR 11/02.

C.5.7.3 CORRELATION

The Correlation actor performs tests of association between two input variables: Variablel and
Variable2, which contain data arrays of equal length. The actor outputs the level of association (r, rho,
or tau, depending on the analysis) between the two variables, an estimate of the p-value (if possible), and
n (the number of items in the array) (Figure C.38). By default, the actor performs a Pearson’s correlation
analysis; to specify another analysis type, connect a Constant actor to the actor’'s method port and enter
the type of analysis (e.g., “spearmen” or “kendall”).

353

Appendix C— Using R in Kepler

SOF Director

Varahla 1

Variable 2

TIEENT

K summary.Level of association E

File Tools Help

-1.0

K| summary.P-value

File Toaols Help

1.4042654220544E-24

Kl summary.n

File Tools Help

5.0

C.5.7.4 LINEARMODEL

FIGURE C.38: USING THE CORRELATION ACTOR.

The LinearModel actor runs a variance or linear regression analysis on its inputs and outputs the result

(Figure C.39).

SDE Director

Independent Variable

Lineariodel

- {2.4.8,16,32)

Image.J

Display?

1 Lt b e ¥ o :.'-.-.

CER AN pawe, B o811

a0

Chpencant

FIGURE C.39

: USING THE LINEARMODEL ACTOR.

354

Appendix C— Using R in Kepler

The LinearModel actor accepts an independent and a dependent variable, which are specified as arrays (If
using an EML data set, select “As Column Vector” as the output format). If the independent variable is
categorical, the actor runs a variance analysis (or a t-test if the variable has only 2 categories). If the
independent variable is continuous, a linear regression is run. The actor outputs both a graphical and textual
representation of the analysis.

C.5.7.5 RANDOMNORMAL

The RandomNormal actor generates and outputs a set of normally (Gaussian) distributed numbers with a
mean of 0 and a standard deviation of 1 (Figure C.40). Specify the number of random numbers to generate
with a Constant actor. The actor outputs an array of the random numbers as well as the file path to a
histogram of the distribution, which can be displayed with an ImageJ actor.

| Fan s baipicil £ .-,:-.E{‘

EFR AR pw, B 15

SDF Director Histogram of Dist

Mumber of random numbers to generate

RandomMNarml

= ummary Brptg =0
e Tk e

[=1. 540406450 E70S, <1.0405040370418, O

FIGURE C.40: USING THE RANDOMNORMAL ACTOR.

C.5.7.6 RANDOMUNIFORM

The RandomUniform actor generates and outputs a set of uniformly distributed numbers. Specify the
number of random numbers to generate with a Constant actor (Figure C.41). The actor outputs an array of

355

Appendix C— Using R in Kepler

random numbers as well as the path to a histogram of the distribution, which can be displayed with an
ImageJ actor.

Histogram of Dist

1
SDF Director ot o ‘

Random Uniform

[T Display o8|
He Toks beb
{0.57T94760B26975, D.2002296601422, 0.1/%

8

FIGURE C.41: USING THE RANDOMUNIFORM ACTOR.

C.5.7.7 READTABLE

The ReadTable actor reads a local, text-based, delimited data file and outputs the data in a format that can
be used by other R actors. For an example of this actor, please see Section C.4.1.2.4.

C.5.7.8 REGRESSION

The Regression actor runs a variance or linear regression analysis (Figure C.42). The actor accepts an
independent and a dependent variable, which are specified as arrays. If using an EML data set, select “As
Column Vector” as the output format. If the independent variable is categorical, the actor uses R to run a
variance analysis (or a t-test if the variable has only 2 categories). If the independent variable is continuous,
a linear regression is run. The actor outputs both a graphical and textual representation of the analysis.

356

Appendix C— Using R in Kepler

SDF Director

Independent

L (123458}

Dependent

g# (6,12,18,24,30,36) ir_-

PR =1 %

T pt E]@i

Eile Tools Help
-1.6585994665654E-15

6.

e MV =1, X

File Tools Help

o

FIGURE C.42: USING THE REGRESSION ACTOR.

C.5.7.9 RMEAN

The RMean actor accepts an array of values and calculates their mean. If using an EML data set, select “As
Column Vector” as the output format. The actor outputs a histogram of the data as well as the mean (Figure

C.43).

357

Appendix C— Using R in Kepler

Histogram of Values
SDF Director |
g 1 |
=]]]
Values 3 N a 5
Le {1,2,3.4,5,6} Vialies
Kl ..Mean Q@

File Tools Help

3.5

{_I il

FIGURE C.43: USING THE RMEAN ACTOR.

C.5.7.10 RMEDIAN

The RMedian actor accepts an array of values and calculates their median (Figure C.44).

358

Appendix C— Using R in Kepler

L Bliediasd i - ,_.‘aa
Hl’i!lﬁgl&l‘rl of Vakies
SDE Director =
|
Image.J
10
Values
B {1.11.8.7,15,2,2,14) -
R =) x|
Eile Tools Help
TG 5,:“
[
< j I | [

FIGURE C.44: USING THE RMEDIAN ACTOR.

If using an EML data set, select “As Column Vector” as the output format. The actor outputs a histogram of

the values as well as the median value

C.5.7.11 RQUANTILE

The RQuantile actor accepts an array of data and generates sample quantiles. If using an EML data set,
select “As Column Vector” as the output format. The actor outputs a histogram of the data as well as the
generated quantiles (Figure C.45). One or more P-values, specified with a Constant actor, specify which

quantiles to calculate and return. P-values must fall between 0 and 1.

359

Appendix C— Using R in Kepler

Histogram of Vakies

SDF Director

RQuantile i
L}

Values
gIL {1,7.11,11,11,13,20)

L e]
P £= £(0.1, 0.25;, 0.5, D0.75; 0.9}
Quancile <- quancile[Valuss, P}

WO W

Tvalues=)

P 104 25 S0% 5% 90%

4,6 .0 11.0 12.0 15.8
{'1'> {1,25,5.75,9) ﬁ

<]

Cuantile

FIGURE C.45: USING THE RQUANTILE ACTOR.

C.5.7.12 SCATTERPLOT

The Scatterplot actor reads an independent and a dependent variable, which are specified as arrays. If using
an EML data set, select “As Column Vector” as the data output format. The actor creates and saves a scatter
plot. (Figure C.46).

360

Appendix C— Using R in Kepler

i | oy s -u

SDE Director

Independent Variable
B {121,11,17,34 5}

Scatterplot
Dependent Variable

EIL (513431321}

FIGURE C.46: USING THE SCATTERPLOT ACTOR.

The axis labels in Figure C.46 are the generic names of the actor’s two input ports: “Independent” and
“Dependent”.

C.5.7.13 SUMMARY

The Summary actor calculates summary statistics (e.g., mean, maximum, minimum, standard deviation, or
median) of a variable (e.g., height) with respect to one or more factors (e.g., classroom and sex). Up to five
factors can be input using the ports on the left of the actor. Factors are input as arrays (if using an EML data
set, select “As Column Vectors” as the data output format).

On Mac systems, the Summary actor will open the system’s default text-editor to display a table of the
calculated statistics. On Windows systems, the results can be found in the Kepler cache, saved to a file called
“summary.txt.”

The workflow in Figure C.47 uses a Summary actor to calculate the mean of crab hole density with respect
to site and zone. A StringConstant actor (Summary operation) specifies the type of operation to perform
(mean).

361

Appendix C— Using R in Kepler

SDF Director

Summary

Fall EUOErab population

k=115

E}' I

la_ Dansty

FIGURE C.47: USING THE SUMMARY ACTOR TO CALCULATE THE MEAN OF A VARIABLE WITH RESPECT TO SEVERAL FACTORS.

The workflow uses an EML data source, “Fall 2003 crab population,” and the data output format is set to
“As Column Vector.” Note that the variable is input at the bottom of the Summary actor and the factors are
input into the ports on the actor’s left. The summary operation is specified using R-language syntax (e.g.,
mean, max, min, sd, median, etc.)

The Summary actor performs the summary and saves a tab-delimited table of the results to a text file called
“summary.txt” in the R working directory (the .kepler cache, by default). On a Mac system, the actor opens
the table in the default text-editing program.

C.5.7.14 SUMMARYSTATISTICS

The SummaryStatistics actor accepts an array of values and calculates their mean, standard deviation, and
variance (Figure C.48). The actor outputs both a graphical and textual representation of the summary
analysis.

362

Appendix C— Using R in Kepler

Values

SDF Director

k> {1.2,34,56.7,89,10)

Mean

Varance

Vean OB

[
File Toaols Help
=il E
K| . Standa. .. g@i
¢ | || Ele Tools Help

Standard Deviation

3.0276503540975

%] i |
IEI _Variance g@
File Tools Help
S.166GGBEAGEE6GT i,f
b4
B | 1l | |]

FIGURE C.48: USING THE SUMMARYSTATISTICS ACTOR.

363

Glossary

GLOSSARY

actor

An actor is a workflow component representing a service or data. Actors can be dragged and dropped from
the Components and Data Access area onto the Workflow canvas, where they can be customized via
parameters, and connected to other actors via ports.

ant
A Java-based build system. For more information, see http://ant.apache.org.

Antelope

Antelope is a system, originally developed by Boulder Real-Time Technologies (http://www.brtt.com/), for
archiving and distributing environmental monitoring information, such as data from a remote camera.
Antelope ORBs act as sources (and sinks) for real-time data, such as waveforms and events.

array token
An array is a data structure consisting of elements that can be identified by a key (or index). The first item
in an array has a key of 0, the second 1, etc. Arrays in Kepler are denoted with curly braces, e.g. {1,2,3,4,5}.

Babel
Babel is an application designed to convert file formats used in molecular modeling and computational
chemistry. For more information, see http://smog.com/chem/babel/.

bioKepler

A Kepler suite that facilitates the development of Kepler workflows for the integrated execution of
bioinformatics applications in distributed environments. It contains a specialized set of actors for running
bioinformatics tools, directors providing distributed data-parallel (DDP) execution on different
computational resources, and example workflows demonstrating how to use these actors and directors.
For more information, see http://www.biokepler.org.

BLAST
The Basic Alignment Search Tool (BLAST) detects similarities between query sequence data and reference
sequence data. For more information, see http://blast.ncbi.nlm.nih.gov/Blast.cgi.

Boolean token
The Boolean token can have one of two values: true or false (represented by 1 or 0, respectively).

CAMERA

CAMERA stands for Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis.
The aim of this project is to serve the needs of the microbial ecology research community, and other
scientists using metagenomics data, by creating a rich, distinctive data repository and a bioinformatics tools
resource that will address many of the unique challenges of metagenomic analysis. For more information,
see http://camera.calit2.net/

channel
Data flows between workflow components via channels or “links” between components.

CHESS
The Center for Hybrid and Embedded Software Systems (CHESS) center is aimed at developing model-based
and tool-supported design methodologies for real-time fault tolerant software on heterogeneous

distributed platforms. Ptolemy |l is developed at CHESS. For more information, see
https://chess.eecs.berkeley.edu.
CIPRES

The CIPRES (Cyberinfrastructure for Phylogenetic Research) project works to enable large-scale
phylogenetic reconstructions that facilitate analyses of datasets containing large numbers of bio molecular
sequences. For more information, see http://www.phylo.org/.

364

http://ant.apache.org/
http://www.brtt.com/
http://smog.com/chem/babel/
http://www.biokepler.org/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://camera.calit2.net/
https://chess.eecs.berkeley.edu/
http://www.phylo.org/

Glossary

complex number
A complex number consists of a real and imaginary part. In Kepler, the imaginary component of a complex
number is designated with aniorj (e.g., 6+7i)

composite actor
A composite actor, also called a nested or sub-workflow, is a collection or set of actors bundled together to
perform a more complex operation. Composite actors can contain a director, or they can “inherit” their
director from a containing workflow. Composite actors that have a director are called opaque.

CORBA service
CORBA services, much like Web services, are computer programs that run on a remote host and
communicate using a standardized protocol that allows them to interoperate.

DARPA
Defense Advanced Research Projects Agency

director

A director controls (or directs) the execution of a workflow, just as a film director oversees a cast and crew.
The actors take their execution instructions from the director. In other words, actors specify what
processing occurs while the director specifies when it occurs. Every workflow must have a director.

DISCOSci
DISCOSci is a research project for distributed ocean monitoring via integrated data analysis of coordinated
buoyancy drogues. For more information, see http://swat.sdsc.edu/discosci/about.

double

A double represents a floating point number (e.g., 1.345) with “double precision.” The data can contain
about twice the number of significant digits as a float, which is a single-precision data type that is less
precise than a double, but also requires less memory.

EarthGrid
The EarthGrid is a distributed network providing scientists access to ecological, biodiversity, and
environmental data and analytic resources, such as data, metadata, analytic workflows, and processors.

EBI
The European Bioinformatics Institute (EBI) provides freely available data from life science experiments.
http://www.ebi.ac.uk

Eclipse
An open-source Integrated Development Environment (IDE). For more information, see
https://www.eclipse.org.

EML

The Ecological Metadata Language (EML) is a metadata specification developed by the ecology discipline
and for the ecology discipline. EML is implemented as a series of XML document types that can be used in
a modular and extensible manner to document ecological data. Each EML module is designed to describe
one logical part of the total metadata that should be included with any ecological dataset. For more
information, see https://knb.ecoinformatics.org/ - external//emlparser/docs.

EOL

The Encyclopedia of Life (EOL) is a free online resource bringing together information about all life on Earth
in text, images, video, sounds, maps, classifications and more. For more information, see http://eol.org.
ESRI ACSII Grid

The ESRI ASCII Grid format is a raster format used by Kepler to pass data between various actors. For
more information, see http://docs.codehaus.org/display/GEOTOOLS/Arcinfo+ASClI+Grid+format.

ESRI Shape file
ESRI shape files contain a set of vector coordinates that represent the non-topological geometry of a data
set. For more information, see http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf.

365

http://swat.sdsc.edu/discosci/about
https://www.eclipse.org/
https://knb.ecoinformatics.org/#external//emlparser/docs
http://eol.org/
http://docs.codehaus.org/display/GEOTOOLS/ArcInfo+ASCII+Grid+format
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

Glossary

Expression language

Kepler uses the Ptolemy expression language to specify and evaluate algebraic expressions (e.g., the value
of a parameter or the Expression actor). For more information, see
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html

fixed-point number

A fixed-point number is a number in which the position of the decimal point is constant. For example, U.S.
currency can be represented by a fixed-point number that has two digits to the right of the decimal point.
Fixed point numbers in Kepler are represented in the following way: fix(value, integerBits, fractionBits).

floating-point number
A floating-point number can contain a decimal point in any position (e.g., 12.34 or .0093).

float

A float represents a floating point number (e.g., 1.345) with “single precision.” The data type requires less
memory and is less precise than a double (which also represents a floating point number). The Kepler
expression language does not support the float data type. Use double or integer types instead.

GAMA
GAMA is a system for securely creating and managing Grid accounts. For more information, see:
http://www.geongrid.org/index.php/home/researchpubs/GAMA __ Grid_Account Management_Architect

ure/.

GAMESS

GAMESS (General Atomic and Molecular Electronic Structure System) is a program that can perform a broad
range of quantum chemical computations. For more information, see
http://www.msg.ameslab.gov/GAMESS/.

GARP

GARP (Genetic Algorithm for Rule Set Production) is a genetic algorithm that creates an ecological niche
model representing the environmental conditions where a species would be able to maintain populations.
For more information, see http://www.lifemapper.org/desktopgarp/.

GDAL
GDAL (Geospatial Data Abstraction Library) is a library used to translate raster geospatial data formats (e.g.,
GeoTIFF, ASCII Grid, or GRASS Raster). For more information, see http://www.gdal.org/.

general data type

The general data type is the most inclusive of the types. A port assigned type “general” can accept data of
all types (e.g., array, string, matrix).

GEON

GEON (Geosciences Network) is a distributed infrastructure for Geoscience research and education. For
more information, see http://www.geongrid.org/.

Globus

Globus is an open source software toolkit used for building Grid systems, which help people share
computing power, databases, and other tools. For more information, see http://www.globus.org.

GML

GML is an XML-based encoding for geographic information. For more information, see
http://www.w3.org/Mobile/posdep/GMLIntroduction.html.

GRASS

GRASS is an open source software toolkit used to manage and analyze geospatial data and produce graphics
and maps. For more information, see http://grass.itc.it/.

Grid

The Grid consists of geographically distributed resources (computers or scientific instruments, for example)
that can be easily accessed, allowing users to share computing power, databases, and other tools.

366

http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html
http://www.geongrid.org/index.php/home/researchpubs/GAMA__Grid_Account_Management_Architecture/
http://www.geongrid.org/index.php/home/researchpubs/GAMA__Grid_Account_Management_Architecture/
http://www.msg.ameslab.gov/GAMESS/
http://www.lifemapper.org/desktopgarp/
http://www.gdal.org/
http://www.geongrid.org/
http://www.globus.org/
http://www.w3.org/Mobile/posdep/GMLIntroduction.html
http://grass.itc.it/

Glossary

GriddLeS
GriddLeS is a tool used to create Grid workflows that use legacy software, which has not been designed for
distributed use. For more information, see http://www.csse.monash.edu.au/~davida/griddles/index.htm.

GridFTP

GridFTP is a high-performance, secure, reliable data transfer protocol optimized for high-bandwidth wide-
area networks. It is developed by the Globus Alliance and is based upon the Internet FTP protocol. For more
information, see http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp.

Image)
Image) is an application that can be used to display and process a wide variety of image formats (TIFF, GIF,
JPEG, etc.) For more information, see http://rsb.info.nih.gov/ij/.

integer token
The integer token ("int") represents numerical values that have no decimal points (e.g., 11 or -17).

IRC
The IRC (Internet Relay Chat) channel for Kepler is at ‘#kepler’ on irc.ecoinformatics.org:6667.

KAR
KAR (Kepler Archive) files contain the workflow MoML and possibly other artifacts related to the workflow,
e.g., a report layout. KAR files have the same format as JAR files.

Kepler
Kepler is a software application for the analysis and modeling of scientific data.
http://kepler-project.org

Kepler/CORE

The Kepler/CORE Project is an NSF-funded effort to coordinate development of Kepler and to enhance the
attributes and functions of the system most important for broad adoption and long-term sustainability (see
Kepler/CORE Vision & Mission). The primary goal is to serve the broadest set of science communities
possible by making the system more comprehensive, open, reliable and extensible.

KNB

The Knowledge Network for Biocomplexity (KNB) is a national network intended to facilitate ecological and
environmental research on biocomplexity. It enables the efficient discovery, access, interpretation,
integration, and analysis of many kinds of ecological data from a highly distributed set of field stations,
laboratories, research sites, and individual researchers. For more information, see
http://knb.ecoinformatics.org.

long data type
Integers followed by an “I” or “L” are of type long. The long data type can represent large integers. Float
and double data types can also be used: these data types have greater storage capacity than long data
types, but less precision/significant digits.

MATLAB

MATLAB is “a high-level technical computing language and interactive environment for algorithm
development, data visualization, data analysis, and numeric computation.” For more information, see
http://www.mathworks.com/products/matlab/description1.html.

matrix token
A matrix contains data that can be referenced by row and column. Matrices in Kepler are specified with
brackets. Commas separate row elements and semicolons separate rows. For example, a 1x3 matrix would
be represented as [1,2,3]. A 2x2 matrix would be represented by [1,2;3,4].

MoML
MoML (Modeling Markup Language) is an XML format used to store workflows. For more information, see
http://ptolemy.eecs.berkeley.edu/papers/05/ptlidesignl-intro/ptlidesignl-intro.pdf

NCEAS
National Center for Ecological Analysis and Synthesis, at UC Santa Barbara.

367

http://www.csse.monash.edu.au/~davida/griddles/index.htm
http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp
http://rsb.info.nih.gov/ij/
http://kepler-project.org/
https://kepler-project.org/users/projects-using-kepler-1/kepler-core-vision-and-mission
javascript:ol('http://knb.ecoinformatics.org');
http://www.mathworks.com/products/matlab/description1.html
http://ptolemy.eecs.berkeley.edu/papers/05/ptIIdesign1-intro/ptIIdesign1-intro.pdf

Glossary

Nimrod
Nimrod is an application that allows computations to be run on the Grid. For more information, see
http://www.csse.monash.edu.au/~davida/nimrod/nimrodg.htm.

NSF
National Science Foundation

object token
An object token is a data container for an arbitrary Java object (most complex “things” in Java are objects).
These tokens can be used to pass complex Java objects around a Kepler workflow. Object tokens are
primarily used for custom workflows with custom actors. Non-programmers will probably not find them
very useful.

ORB
An ORB (Object Resource Broker) permits applications, which may be running on different servers or under
different operating systems, to exchange and process information.

parameter
Parameters are configurable values that can be attached to a workflow or to individual directors or actors.

PAUP
PAUP is a tool used to infer phylogenetic relationships. For more information, see http://paup.csit.fsu.edu/.

PlotML
PlotML is an XML extension for plot data. Its syntax is similar to that of HTML. For more information, see
http://ptolemy.eecs.berkeley.edu/java/ptplot.

port

Each actor in a workflow can contain one or more ports used to consume or produce data and communicate
with other actors in the workflow. Ports can be one of three types: input, output, or input/output. Each
port is configured to be either a “singular” or “multiple” port. A single port can be connected to only a single
data channel, whereas a multiple port can be connected to multiple channels.

Ptolemy 1}
Ptolemy Il is a software framework developed as part of the Ptolemy project, which studies modeling,
simulation, and design of concurrent, real- time, embedded systems. For more information, see
http://ptolemy.eecs.berkeley.edu/ptolemyll.

R
R is a language and environment for statistical computing and graphics. For more information, see
http://www.r-project.org/.

REAP

The Real-time Environment for Analytical Processing (REAP) project combines the real-time data grid being
constructed through other projects (DataTurbine, OPeNDAP, EarthGrid) and the Kepler scientific workflow
system to provide a framework for designing and executing scientific workflows that use sensor data. To
this end, project collaborators are extending Kepler to access sensor data in workflows, monitor, inspect
and control sensor networks, and simulate the design of new sensor networks. For more information, see
http://reap.ecoinformatics.org.

record token
A record token consists of named elements and their values. In Kepler, records are specified between curly
braces. For example, {a=1, b=2} is a record with two elements, named a and b, with values 1 and 2,
respectively.

Redmine
A web-based bug-tracking system. For more information, see http://www.redmine.org.

relation
Relations allow users to “branch” a data flow. Branched data can be sent to multiple places in the workflow.

368

http://www.csse.monash.edu.au/~davida/nimrod/nimrodg.htm
http://paup.csit.fsu.edu/
http://ptolemy.eecs.berkeley.edu/java/ptplot
http://ptolemy.eecs.berkeley.edu/ptolemyII
http://www.r-project.org/
http://reap.ecoinformatics.org/
http://www.redmine.org/

Glossary

ROADNet

The Real-time Observatories, Applications, and Data Management Network (ROADNet) enhances the
capacity to monitor and respond to changes in the environment by developing both the wireless networks
and the integrated, seamless, and transparent information management system that will deliver seismic,
oceanographic, hydrological, ecological, and physical data to a variety of end users in real-time. For more
information, see http://roadnet.ucsd.edu.

scalar

The term scalar designates a value that consists only of magnitude (as opposed to a vector, which consists
of both a magnitude and direction). In Kepler, scalar values may have any scalar data type: double, int, long,
etc.

SCIRUN
SCIRun is a Problem Solving Environment (PSE), for modeling, simulation and visualization of scientific
problems. For more information, see http://www.sci.utah.edu/cibc/software/106-scirun.html.

SDM

The Scientific Data Management (SDM) Center works with application scientists in areas critical to the
mission of the Department of Energy (DOE). The Scientific Process Automation (SPA) thrust area of the SDM
Center brings together universities and DOE labs from across the country with a common goal of creating a
Scientific Problem Solving Environment (PSE) with an intuitive graphical user interface that allows scientists
to easily create exploratory dataflows (workflows).

SDSC
San Diego Supercomputer Center, at UC San Diego.

SEEK

The Science Environment for Ecological Knowledge (SEEK) project was a five year initiative designed to
create cyberinfrastructure for ecological, environmental, and biodiversity research and to educate the
ecological community about ecoinformatics. SEEK participants built an integrated data grid (EcoGrid) for
accessing a wide variety of ecological and biodiversity data, and analytical tools (Kepler) for efficiently
utilizing these data stores to advance ecological and biodiversity science. For more information, see
http://seek.ecoinformatics.org.

Soaplab
Soaplab is a set of Web services providing access to (mainly) data analysis applications on remote
computers.

SRB
SRB is a Grid storage management system providing data access, transfer, and search functionality, as well
as persistent archiving (usually for files). For more information, see

http://www.sdsc.edu/srb/index.php/What is the SRB.

string data type
A string is a sequence of characters. Strings are specified with quotation marks. Anything between an
open and close "" is interpreted as a string.

Subclipse
An svn plugin for Eclipse. For more information, see http://subclipse.tigris.org.

Subversive

An svn plugin for Eclipse. For more information, see https://www.eclipse.org/subversive.

SVG

Scalable Vector Graphics (SVG) is an XML-based vector image format for two-dimensional graphics. For
more information, see http://www.w3.org/Graphics/SVG.

SVN

Subversion (SVN) is an open-source version control system. For more information, see
http://subversion.apache.org.

369

http://roadnet.ucsd.edu/
http://www.sci.utah.edu/cibc/software/106-scirun.html
http://seek.ecoinformatics.org/
http://www.sdsc.edu/srb/index.php/What_is_the_SRB
http://subclipse.tigris.org/
https://www.eclipse.org/subversive
http://www.w3.org/Graphics/SVG
http://subversion.apache.org/

Glossary

Taverna

Taverna is an open-source and domain-independent Workflow Management System — a suite of tools used
to design and execute scientific workflows and aid in silico experimentation. For more information, see
http://www.taverna.org.uk.

token
Data in Kepler is encapsulated and passed between workflow components as tokens. Each token has an
assigned data type (int, object, or matrix, for example).

Triana

Triana is an open-source problem solving environment developed at Cardiff University that combines an
intuitive visual interface with powerful data analysis tools. For more information, see
http://www.trianacode.org.

ucB

University of California, Berkeley.
UCSB

University of California, Santa Barbara.

ucsD
University of California, San Diego.

Vergil
Vergil is the graphical user interface of Ptolemy Il

Web service
A Web service is a computer program that runs on a remote host and communicates using a standardized
protocol.

WIFIRE

WIFIRE builds an integrated system for wildfire analysis, with specific regard to changing urban dynamics
and climate. Kepler scientific workflows are used in WIFIRE as an integrative distributed programming
model and will simplify the implementation of engineering modules for data-driven simulation, prediction,
and visualization while allowing integration with large-scale computing facilities. For more information, see
http://wifire.ucsd.edu.

workflow

Workflows are a flexible tool for accessing scientific data (streaming sensor data, medical and satellite
images, simulation output, observational data, etc.) and executing complex analysis on the retrieved data.
Each workflow consists of analytical steps that may involve database access and querying, data analysis and
mining, and intensive computations performed on high performance cluster computers.

WSDL

WSDL is a format for describing network services—from simple eBay watcher services to complex
distributed applications. For a complete list of registered EBI-registered WSDLs, see
http://www.ebi.ac.uk/soaplab/services.

XQuery

A query language for XML. For more information, see http://www.w3.org/TR/xquery.

XSLT

An XSLT file specifies how an XML document should be transformed. For more information, see
http://www.w3.org/TR/xslt.

370

http://www.taverna.org.uk/
http://www.trianacode.org/
http://wifire.ucsd.edu/
http://www.ebi.ac.uk/soaplab/services
http://www.w3.org/TR/xquery
http://www.w3.org/TR/xslt

	1 Introduction to Kepler
	1.1 What is Kepler?
	1.1.1 Features
	1.1.2 Architecture
	Ptolemy/Vergil (A Very Brief Overview)
	Modeling Markup Language (MoML)

	1.2 History of the Kepler Project
	1.3 Kepler Contributors
	1.4 Future Goals
	1.5 Participating in Kepler Development
	Downloading the Build
	Retrieving Kepler and Ptolemy
	Note:
	Running Kepler
	1.5.1 Using Eclipse
	1.5.2 Contributing to Kepler

	1.6 Reporting Bugs
	1.7 Further Reading

	2 Installing and Running Kepler
	2.1 System Requirements
	2.2 Installing Kepler
	2.2.1 Installing on Windows
	2.2.3 Installing on Macintosh
	2.2.4 Installing on Linux

	2.3 Starting Kepler
	2.4 The User Interface
	2.4.1 Menu Bar
	2.4.1.1 File Menu
	2.4.1.2 Edit Menu
	2.4.1.3 View Menu
	2.4.1.4 Workflow
	2.4.1.5 Tools
	2.4.1.6 Window
	2.4.1.7 Help

	2.4.2 Toolbar
	2.4.2.1 View Tools
	2.4.2.2 Run Tools
	2.4.2.3 Port Tools

	2.4.3 Components, Data Access, and Outline Areas
	2.4.3.1 Components Tab
	2.4.3.2 Data Tab

	2.4.4 Workflow Canvas
	2.4.4.1 Director Right-Click Menu
	2.4.4.2 Actor Right-Click Menu

	2.4.5 Navigation Area

	3 Scientific Workflows
	3.1 What is a Scientific Workflow?
	3.2 Components of a Workflow
	3.2.1 Directors
	3.2.2 Actors
	3.2.3 Composite Actors
	3.2.4 Ports
	3.2.4.1 Actor Ports
	3.2.4.1 External Port
	3.2.4.3 Port-Parameter

	3.2.5 Channels and Tokens
	3.2.6 Data Types
	3.2.7 Relations
	3.2.8 Parameters
	3.2.8.1 Actor Parameters
	3.2.8.2 Model Parameters
	3.2.8.3 Port-Parameters

	4 Working with Existing Scientific Workflows
	4.1 Opening Workflows
	4.1.1 Opening Local Workflows

	4.2 Running Workflows
	4.2.1 Runtime Window
	4.2.2 Run Button
	4.2.3 Running Workflows with Adjusted Parameters

	4.3 Modifying Workflows
	4.3.1 Substituting Data Sets
	Substituting a Local Data Set
	Substituting Remote Datasets Via the EarthGrid

	4.3.2 Substituting Analytical Components

	4.4 Saving Workflows
	4.5 Searching for Data and Components
	4.5.1 Searching for Available Data
	4.5.2 Searching for Standard Components
	4.5.3 Searching for Components in the Kepler Repository

	5 Building Workflows with Existing Actors
	5.1 Prototyping Workflows
	5.2. Choosing a Director
	5.2.1 Synchronous Dataflow (SDF)
	5.2.2 Process Network (PN)
	5.2.3 Discrete Event (DE)
	5.2.4 Continuous Time
	5.2.5 Dynamic Dataflow (DDF)

	5.3 Using Existing Actors
	5.3.1 Using Actors from the Standard Component Library
	5.3.2 Instantiating Actors Not Included in the Standard Library
	5.3.3 Using the Kepler Analytical Component Repository
	5.3.4 Saving Actors to Your Library
	5.3.5 Importing Actors as KAR Files
	5.3.6 Actor Icon Families

	5.4 Using Composite Actors
	5.4.1 Benefits of Composite Actors
	5.4.2 Creating Composite Actors
	5.4.3 Saving Composite Actors
	5.4.4 Combining Models of Computation

	5.5 Using the ExternalExecution Actor to Launch an External Application
	5.5.1. Opening the HelloWorld Application
	5.5.2 Opening a Local Browser
	5.5.3 Opening the Maxent Application
	5.5.4 Opening R

	5.6 Iterating and Looping Workflows
	5.6.1 Iterating with the SDF Director
	5.6.2 Using Ramp and Repeat Actors
	5.6.3 Using Arrays Instead of Iterating
	5.6.4 Iterating with Higher-Order Composites
	5.6.5 Creating Feedback Loops

	5.7 Documenting Workflows
	5.7.1 Annotation Actors
	5.7.2 Documentation Menu

	5.8 Debugging Workflows
	5.8.1 Animating Workflows
	5.8.2 Exceptions
	5.8.3 Checking System Settings
	5.8.4 Listening to the Director

	5.9 Saving and Sharing Workflows
	5.9.1 Saving and Sharing Your Workflows as KAR or XML Files
	5.9.2 Opening and Running a Shared XML Workflow

	6 Working with Data Sets
	6.1 Data Actors
	6.2 Using Tabular Data Sets with Metadata
	6.2.1 Viewing Metadata
	6.2.2 Outputting Data for Use in a Workflow
	6.2.3 Querying Metadata

	6.3 Using Tabular Data without Metadata
	6.3.1 Comma- Tab-, Text-Delimited Files
	6.3.2 Accessing Data from a Website

	6.4 Accessing Data Access Protocol (DAP) Sources
	6.5 Accessing Data from DataTurbine Servers
	6.6 Using FTP
	6.7 Using Data Stored in Relational Databases
	6.8 Using Spatial and Image Data
	6.8.1 Working with Images
	6.8.2 Working with Spatial Data

	6.9 Using Gene and Protein Sequence Data

	7 Using Remote Computing Resources: The Cluster, Grid, and Web Services
	7.1 Data Movement and Management
	7.1.1 Saving and Sharing Data on the EarthGrid
	7.1.2 Secure Copy (scp)
	7.1.3 GridFTP
	7.1.4 Storage Resource Broker (SRB)
	7.1.5 Integrated Rule-Oriented Data System (iRODS)

	7.2 Remote Service Execution
	7.2.1 Using Web Services
	7.2.2 Using REST Services
	7.2.2 Using Soaplab Services
	7.2.3 Using Opal Services

	7.3 Job Submission
	7.3.1 Cluster Job Submission
	7.3.2 Grid Job Submission
	7.3.2.1 Kepler Globus Actors for Proxy Certificate
	7.3.2.2 Kepler Globus Actors for Pre-WS GRAM
	7.3.2.2 Kepler Globus Actors for WS GRAM

	8 Mathematical, Data Analysis, and Visualization Packages
	8.1 Expressions and the Expression Actor
	8.1.1 The Expressions Language
	8.1.1.1 Constants and Literals
	8.1.1.2 Variables
	8.1.1.3 Operators
	8.1.1.4 Arrays
	8.1.1.5 Matrices
	8.1.1.6 Records
	8.1.1.7 Methods
	8.1.1.8 Functions

	8.1.2 Expressions and Parameters
	8.1.3 Expressions and Port Parameters
	8.1.4 Expressions and String Parameters
	8.1.5 The Expression Actor

	8.2 Statistical Computing: Kepler and R
	8.2.1 What is R?
	8.2.2 Installing R
	8.2.3 Useful R Actors
	8.2.4 Working with R Actors
	8.2.4.1 Using the RExpression Actor
	8.2.4.2 Using EML Datasets with the RExpression Actor
	Using Data Tables
	8.2.4.3 Using Excel Data (i.e., Non-EML data) with the RExpression Actor

	8.3 Statistical Computing: MATLAB
	8.4 Image Manipulation: ImageJ
	8.4.1 Intro to ImageJ and the ImageJ Actor
	8.4.1.1 Rescaling ImagesOnce an image has been opened by ImageJ, you can use the ImageJ tools and menu options to process and save the image as desired. To rescale an image, for example, select Scale from the drop-down Image menu in the ImageJ toolbar...
	8.4.1.2 Clipping Images
	8.4.1.3 Adjusting Image Color and Brightness
	8.4.1.4 Selecting a Color Palette for ASC Grid Images

	8.4.2 The IJMacro Actor

	8.5 Spatial Data: Geographic Information Systems (GIS)
	8.5.1 Masking a Geographical Area with the ConvexHull and CVToRaster Actors
	8.5.2 Geospatial Data Abstraction Library (GDAL) Actors

	9 Domain Specific Workflows
	9.1 Chemistry
	9.2 Ecology
	9.3 Geology
	Geon mineral classification workflow

	9.4 Molecular Biology
	Promoter Identification Workflow (PIW)

	9.5 Oceanography
	Graphical Display of Real-Time Geophysical Data

	9.6 Phylogeny

	Appendix A: Creating New Actors
	A.1 Building a Custom Actor Based on an Existing Actor
	A.2 Creating a New Actor by Extending a Java Class
	A.2.1 Coding a New Actor
	A.2.1.1 The Constructor
	A.2.1.2 Public Methods (Action methods and more)
	A.2.1.3 Public Variables: Actor Ports, Parameters, and Port-Parameters
	A.2.1.4 Actor Icons

	A.2.2 Compiling a New Actor

	A.3 Sharing an Actor: Creating a KAR File
	A.3.1 The Manifest File
	A.3.2 The MOML File

	Appendix B: Modules
	B.1 The Module Manager
	B.2 Developing Modules

	Appendix C: Using R in Kepler
	C.1 Installing R
	C.2 A Brief Overview of R
	C.2.1 Data Objects
	C.2.2 Functions
	C.2.3 Further Resources

	C.3 The RExpression Actor
	C.3.1 Inputs
	C.3.1.1 Input Ports
	C.3.1.2 Parameters (the R-script and more)

	C.3.2 Outputs
	C.3.2.1 R-Text
	C.3.2.2 Graphical Output
	C.3.2.3 User-Defined Output

	C.4 Handling Data
	C.4.1 Inputting Data
	C.4.1.1 EML (Ecological Metadata Language) Data Sets
	C.4.1.1.1 Example One: Selecting and Using Columns of Data (Column Vectors)
	C.4.1.1.2 Example Two: Selecting and Using an Entire Data Set (Column-Based Records)
	C.4.1.1.3 Example Three: Selecting and Using a Cached Dataset (read.table function)
	C.4.1.1.4 Example Four: Using Data Sequences
	C.4.1.1.5 Example Five: Using Ports Configured as Multiports

	C.4.1.2 Non-EML Data Sets
	C.4.1.2.1 Example Six: Local Text-Based Data Sets (Selecting an Entire Data Set)
	C.4.1.2.2 Example Seven: Using Kepler Records
	C.4.1.2.3 Example Eight: Using the ReadTable Actor with Local Text-Based Data Sets
	C.4.1.2.4 Example Nine: Passing DataFrames Between R-Actors

	C.4.2 Outputting Data
	C.4.2.1 Outputting a Data Array
	C.4.2.2 Outputting a Data Matrix

	C.5 Example R Scripts and Functions
	C.5.1 Simple Linear Regression
	C.5.2 Basic Plotting
	C.5.3 Summary Statistics
	C.5.4 3D Plotting
	C.5.5 Biodiversity and Ecological Analysis and Modeling (BEAM)
	C.5.6 Random Sampling
	C.5.7 Custom RExpression Actors
	C.5.7.1 Barplot
	C.5.7.2 Boxplot
	C.5.7.3 Correlation
	C.5.7.4 LinearModel
	C.5.7.5 RandomNormal
	C.5.7.6 RandomUniform
	C.5.7.7 ReadTable
	C.5.7.8 Regression
	C.5.7.9 RMean
	C.5.7.10 RMedian
	C.5.7.11 RQuantile
	C.5.7.12 Scatterplot
	C.5.7.13 Summary
	C.5.7.14 SummaryStatistics

	Glossary

