

Vector Informatik GmbH, Ingerheimer Str. 24, 70499 Stuttgart
Tel. 0711/80670-0, Fax 0711/80670-399, Email can@vector-informatik.de

Internet http:\\www.vector-informatik.de

Flash Bootloader
User Manual
(Your First Steps)

Version 2.7

User Manual Flash Bootloader

1 / 56

CAN LIN

Authors: Klaus Emmert

Version: 2.7

Status: released (in preparation/completed/inspected/released)

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

2 / 56

History

Author Date Version Remarks

Klaus Emmert 2004-07-09 2.2 Switch to new Layout Version 2.0

New symbols

Klaus Emmert 2004-02-09 2.3 Changes from Review Ra 2004-
09-20, link labels

Klaus Emmert 2005-03-23 2.4 Chapter 3.8 and warning for
startup-codes added

Klaus Emmert 2006-02-06 2.5 Change of file structure

Klaus Emmert 2006-08-18 2.6 File Structure illustration

Klaus Emmert 2006-09-01 2.7 WDtimer and some minor issues

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

3 / 56

Motivation For This Work
After a seemingly almost endlessly long development process, the software is
finally finished and ready for the ECU, downloaded one last time, tested and the
ECUs packaged for express delivery the next day.
Now it‘s 10:00 P.M.
Shortly before quitting time the next business day the telephone rings, and what is
on the display makes your forehead break out in a sweat of alarm! Errors, nothing
is working, says the message from your customer. You hastily start up another
ECU in the lab and you have to also observe the same result just reported to you.
After searching for a little while you realize that the error is in version management.
You put the correct version together, recompile it, briefly test the result and send
the hex code to your customer, who can now flash the new functioning software via
CAN and diagnostics onto the ECU and as a result, can proceed with the planned
tests without substantial delays.

WARNING
All application code in any of the Vector User Manuals is for training
purposes only. They are slightly tested and designed to understand the basic
idea of using a certain component or a set of components.

A short story
about flashing

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

4 / 56

Contents

1 Welcome to the Flash Bootloader User Manual ... 7
1.1 Beginners with Flash Bootloader start here ? 7
1.2 For Advanced Users ... 7
1.3 Special topics .. 7
1.4 Documents this one refers to…... 8

2 About This Document ... 9
2.1 How This Documentation Is Set-Up .. 9
2.2 Legend and Explanation of Symbols... 10

3 Flashing – An Overall View .. 11
3.1 What Is Flashing? ... 11
3.2 What Happens During Flashing? .. 12
3.3 What Is The Flash Bootloader?... 12
3.4 Bootloader... 12
3.5 Flash Driver... 13
3.6 Flash Tool ... 14
3.7 What The Flash Bootloader Does ... 15
3.8 What The Flash Bootloader NOT Does .. 15

4 Flashing – A More Detailed View ... 16
4.1 The Bootloader Is Always Started First ... 16
4.2 Flashing After A Reset .. 16
4.3 Your Application Initiates The Flashing Process............................... 17
4.3.1 What might happen? ... 17
4.4 Handling of the Validation Concepts ... 18
4.4.1 Validation Area.. 18
4.4.2 Access to the Validation Area ... 18
4.4.3 ApplFblIsValidApp... 18
4.4.4 ApplFblValidateApp... 18
4.4.5 ApplFblInvalidateApp .. 18
4.5 Proposals For Handling The Validation Area 19
4.5.1 Proposal A... 19
4.5.2 Proposal B... 20
4.5.3 Proposal C .. 22
4.6 The Interrupt Vector Tables .. 23
4.7 Label Reference File ... 24

5 FLASHING IN 5 STEPS.. 25

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

5 / 56

5.1 STEP 1 Design The Memory Layout... 26
5.2 STEP 2 Write A Test Application .. 27
5.3 STEP 3 Integrate The Bootloader ... 28
5.4 STEP 4 Adapt Your Test Application For The Tester 29
5.5 STEP 5 Download Your Test Application With The Tester 29

6 Details of Bootloader Integration Step (STEP 3) ... 30
6.1 Bootloader STEP 1 – Extract the files to a folder on your pc 31
6.2 Bootloader STEP 2 Adjust the marked files to fit your

application ... 34
6.2.1 Make… Makefile and make.exe.. 34
6.2.2 fbl_cfg.h - The Configuration File For The Flash Bootloader 34
6.2.3 FBL_apxx.C .. 36
6.2.4 Fbl_vect.c / Applvect.c(.h) - The Interrupt Vector Tables.................. 42
6.3 Bootloader STEP 3 Now compile the Flash Bootloader.................... 44
6.4 Bootloader STEP 4 Transfer the Bootloader to the target

hardware ... 44
6.5 Bootloader STEP 5 Use the Flash Tool to Test the Bootloader........ 44
6.6 Bootloader STEP 6 – Test the flashing after a reset......................... 44
6.7 Bootloader Step 7 – Make your application ready for the

transition to the Bootloader ... 45
6.8 Bootloader Step 8 – Start Bootloader from your application 45

7 Background Information... 46
7.1 The Watchdog... 46
7.1.1 Initializing The Watchdog .. 49
7.2 Multiple ECU Support.. 49
7.3 Validation Ok – Application Faulty .. 50
7.4 FlashSegmentSize .. 51
7.4.1 Why Does The Tool Have To Know This Block Length? 51
7.5 Frequently Asked Questions ... 52
7.5.1 Bootloader Crashes .. 52
7.5.2 Application Is Not Started.. 53
7.5.3 Bootloader Is Not Started.. 54
7.5.4 The Flash Tool's Error Codes ... 54

8 Index ... 2

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

6 / 56

Illustrations
Figure 1-1 Manuals and References for the Flash Bootloader...................................... 8
Figure 3-1 What Is Flashing .. 11
Figure 3-2 Bootloader, Flash Driver And Flash Tool Form The Flash Bootloader 12
Figure 3-3 Bootloader And Your Application Never Run Simultaneously.................... 13
Figure 3-4 Order And Way Of The Download Of The Software Components............. 14
Figure 4-1 Transition Between The Bootloader And Your Application And Vice

Versa.. 16
Figure 4-2 Using A Flag Only In The Validation Area.. 19
Figure 4-3 Separate Your Application Into Several Modules....................................... 20
Figure 4-4 Using A Validation Function For Validation Your Application..................... 22
Figure 4-5 Principle Of The Two Interrupt Vector Tables .. 23
Figure 5-1 Basic Memory Layout Of An Application with the Flash Bootloader 26
Figure 5-2 The Test Application In The ECU Memory Using Two Interrupt Vector

Tables .. 27
Figure 5-3 Flashing via Flash Tool and OEM-specific Tester...................................... 28
Figure 6-1 Details of Bootloader Integration Step (Step 3).. 30
Figure 6-2 Function Calling Sequence During Flashing .. 37
Figure 6-3 Situation Directly After The Programming Of The Bootloader Together

With The Dummy Application Vector Table ... 42
Figure 7-1 Memory Layout Of The Watchdog Trigger Functions 46
Figure 7-2 Functions For Manipulating The Watchdog ... 48
Figure 7-3 Modified Function Calling Sequence.. 50
Figure 7-4 Segmenting During Flashing.. 51

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

7 / 56

1 Welcome to the Flash Bootloader User Manual Chapter 3.1

Chapter 3.3

1.1 Beginners with Flash Bootloader start here ?
You need some information about this document? Chapter 2

What is Flashing?
What is the Flash Bootloader?

Chapter 4

1.2 For Advanced Users Chapter 5

Start reading here.
5 Steps for Flash Bootloader integration.

1.3 Special topics
Why do I need 2 Interrupt Vector Tables? Chapter 4.6

How to define my application valid? Chapter 4.4

Validation Ok but application not valid… Chapter 7.3

How to handle my watchdog? Chapter 7.1

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

8 / 56

1.4 Documents this one refers to…
 FlashTool Documentation

 OEM-specific Documentation

 Hardware-specific Documentation

User Manual

Technical
Reference
Hardware

Technical
Reference

OEM

Flash Tool
Documentation

You are here

#hw_<xxx>

headline headline

#oem_<yyy>

Figure 1-1 Manuals and References for the Flash Bootloader

The Flash Bootloader can be separated into a general part, that is equal to all
Flash Bootloaders and parts that are dependent on the requirements of the OEM
and the features of the hardware. All common topics are described within this user
manual. Use the references when indicated to figure out the specifics for your
Flash Bootloader.
For the OEM-specifics of your Flash Bootloader refer to the:
TechnicalReference_FBL_<OEM>.pdf. The ID for a reference to this document
looks like: [#oem_<xxx>]. This ID you will find in the corresponding headline there.
For the hardware-specifics of your Flash Bootloader refer to the :
TechnicalReference_FBL_<hardware>.pdf. The ID for a reference to this
document looks like: [#hw_<yyy>]. This ID you will find in the corresponding headline
there.

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

9 / 56

2 About This Document

This document gives you an understanding of the Flash Bootloader. You will
receive general information, a step-by-step tutorial to get the Flash Bootloader up
and running, details regarding diagnostic services, directions to implement the
watchdog, and instructions regarding the Flash Tool.

This is the general Flash Bootloader Document, independent of oem-specific settings
or hardware. For more information about OEM solutions or hardware dependencies
refer to those specific documents.

2.1 How This Documentation Is Set-Up

Chapter Content

Chapter 1 The welcome page allows easy navigation throughout the document.
Chapter 2 Contains some formal information about this document, and explanation of legends

and symbols.
Chapter 3 Provides a brief introduction to flashing and the different parts that make up the Flash

Bootloader.
Chapter 4 Provides details about the flash process, states the validation concept, and the

implementation of the two interrupt vector tables.
Chapter 5 Describes the five basic steps to integrate the Flash Bootloader, and download the

application using the Vector Flash Tool.
Chapter 6 Describes how to download the application using the OEM-Specific flash tool.
Chapter 7 Lists some common problems encountered while integrating the bootloader and their

proper solution.

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

10 / 56

2.2 Legend and Explanation of Symbols
You find these symbols at the right side of the document. They indicate special
areas in the text. Here is a list of their meaning.

These areas
to the right of
the text
contain brief
items of
information
that will
facilitate your
search for
specific
topics.

Symbol Meaning

The building bricks mark examples.

 You will find key words and information in short sentences in the margin. This will
greatly simplify your search for topics.

Comments
and
explanation

The footprints will lead you through the steps until you can use the described Flash
Bootloader.

There is something you should take care about.

Useful and additional information is displayed in areas with this symbol.

This file you are allowed to edit on demand.

This file you must not edit at all.

This indicates an area dealing with frequently asked questions (FAQ).

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

11 / 56

3 Flashing – An Overall View

3.1 What Is Flashing?
During the flashing process an application (or a part of it), which must be available
in hex format (using the Flash Tool), is transferred into the ECU‘s memory. This
transfer is done via a bus protocol like CAN, LIN, FlexRay, etc.

The Flash
Bootloader
downloads
the
application as
a hex file to
the ECU via
CAN.

F
 l

 a
 s

 h

 M
 e

 m
 o

 r
 y

R
 A

 M
F

l a
 s

 h
 M

 e
 m

 o
 r

y

Memory Map

Application Application.hex
.bin

.mot
...

flashing
[CAN, LIN, FlexRay, ...]

PC or Laptop,
CAN Card
and the Flash
Tool – this is
all you need
for flashing.

Figure 3-1 What Is Flashing

To transfer your application to the target platform you simply need the Flash
Bootloader, a PC or a laptop, a CAN card and the Flash Tool.
Using an emulator, a BDM tool, or the like to perform the flashing in an already
built-in ECU would be expensive. In addition, the ECU’s hardware interface for the
BDM or emulator is not always accessible.
The interface is based on a CAN bus as part of the Physical Layer, the Transport
Protocol, and on KWP2000 for the specification of diagnostic services.
For flash data exchange between your new node and the tool you need two CAN
messages, one for request and one for response.

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

12 / 56

3.2 What Happens During Flashing?
The Flash Driver (flash algorithms) is downloaded via the bus protocol. Afterwards
the application is downloaded and written (flashed) into the Flash Memory (using
the Flash Driver).

3.3 What Is The Flash Bootloader?
The Flash Bootloader is a combination of embedded software and PC tool,
designed to do the flashing of the ECU software via a bus protocol (e.g. CAN).
Therefore the Flash Bootloader is divided up into 3 parts, the Bootloader, the Flash
Driver and the Flash Tool.

Flash Programming

CANfbl

Application

Bootloader

Flash Driver

Interrupt Vector Table
[FBL]

Interrupt Vector Table
[Application]

Interrupt Vector Table
[Application]

The Flash Driver downloads the
executable via CAN/LIN in
connection with the Flashtool.

The Flashtool is an easy to use PC tool
and controls the download of your
application (as executable)
via a PC card, e.g. CANcardXL or CAN-
AC2-PCI.

Flash
Tool

The Bootloader contains basic CAN
communication, a Transport Protocol and
Diagnostics (KWP2000), both code optimized
to use minimum memory.

CAN LIN

F
 l

 a
 s

 h

 M
 e

 m
 o

 r
 y

R
 A

 M
F

l a
 s

 h
 M

 e
 m

 o
 r

y

Figure 3-2 Bootloader, Flash Driver And Flash Tool Form The Flash Bootloader

3.4 Bootloader
The Bootloader is a stand-alone program. It is compiled, linked, and downloaded to
the ECU separately from your application. The Bootloader and your application
never run simultaneously.
The Bootloader uses Flash memory, in the protected area of the ECU. If your ECU
does not support such a hardware protection, the Bootloader will protect itself from
being overwritten.

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

13 / 56

F
 l

 a
 s

 h

 M
 e

 m
 o

 r
 y

R
 A

 M
F

l a
 s

 h
 M

 e
 m

 o
 r

y

Memory Map

F
 l

 a
 s

 h

 M
 e

 m
 o

 r
 y

R
 A

 M
F

l a
 s

 h
 M

 e
 m

 o
 r

y

Memory Map

Application

IsValid⏐Invalidate⏐Validate

Bootloader
Transport Protocol,
KWP2000-Services,

CAN Driver

Application
Data

F
 l

 a
 s

 h

 M
 e

 m
 o

 r
 y

R
 A

 M
F

l a
 s

 h
 M

 e
 m

 o
 r

y

Memory Map

F
 l

 a
 s

 h

 M
 e

 m
 o

 r
 y

R
 A

 M
F

l a
 s

 h
 M

 e
 m

 o
 r

y

Memory Map

IsValid⏐Invalidate⏐Validate

Bootloader
Transport Protocol,
KWP2000-Services,

CAN Driver

Flash Driver

Application.hex

Application is running Flash Bootloader is running

flashing

Figure 3-3 Bootloader And Your Application Never Run Simultaneously

The Bootloader is transferred to the target platform via a Flash programmer or
burner, which is hardware dependent (It is not downloaded over CAN).

3.5 Flash Driver
The Flash Driver (actual flash algorithm) is the hardware dependent code for
performing the flash functions.
In most cases, programming flash memory from flash is not possible. Therefore the
Flash Driver is downloaded and executed into RAM to allow programming of the
application.
The advantage of downloading the flash algorithm into RAM is that updates to the
flash algorithms are possible without the need to reprogram the primary bootloader.
The algorithm is cleared from RAM upon completion of the download to avoid
accidental calls to the flash functions while in the application.

In special cases the flash algorithms are kept in flash memory and copied to RAM
when needed. Of course the possibility of changing the flash algorithms is no longer
available when this configuration is used. Moreover, there is a risk that the flash
memory will be unintentionally erased from an accidental call to these functions. A
remedy to correct this would be to encrypt the corresponding program code, such as
e.g. an XOR or the like.

Reasons for
Flash Driver to
run in RAM:

Physical reasons

Protection
against a faulty
call deleting the
flash

Save ROM
memory

Easy to make
updates.

As the Bootloader
downloads data
via CAN, it
contains a CAN
Driver and a
Transport
Protocol.

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

14 / 56

3.6 Flash Tool
The Flash Tool is a Windows™ based PC tool that controls the download of the
application.
The Flash Tool reads the compiled and linked application data (Motorola-S or Intel-
Hex format), triggers and controls the flash process, transfers the data via the bus
protocol (e.g. CAN) and verifies this process via a checksum.
To do the download you additionally need a CAN card (CANcardXL, CAN AC2-
PCI) to connect your hardware to the PC.

The following figure shows the Bootloader, the Flash Driver, the application, and
how they get in the memory of the controller. As the Bootloader is the component
to enable the download of the Flash Driver and the application, it cannot be
transferred by itself. This job must be done with a suitable programmer or burner
(development environment).

F
 l

 a
 s

 h

 M
 e

 m
 o

 r
 y

R
 A

 M
F

l a
 s

 h
 M

 e
 m

 o
 r

y

Memory Map

F
 l

 a
 s

 h

 M
 e

 m
 o

 r
 y

R
 A

 M
F

l a
 s

 h
 M

 e
 m

 o
 r

y

Memory Map

Application

Interrupt Vector Table
[FBL]

IsValid⏐Invalidate⏐Validate

Bootloader
Transport Protocol,
KWP2000-Services,

CAN Driver

Interrupt Vector Table
Application]

Validation Area

Flash Driver

Programmer
Burner

CAN, LIN
FlexRay, ...

CAN, LIN
FlexRay, ...

1

2

3

Figure 3-4 Order And Way Of The Download Of The Software Components

The numbers in the figure show the download order, Bootloader first, then the Flash
Driver to be able to flash the application.

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

15 / 56

3.7 What The Flash Bootloader Does
 Initializes the CAN controller

 Sends diagnostic messages via CAN

 Receives diagnostic messages via CAN

 Erases and programs the flash memory

3.8 What The Flash Bootloader NOT Does
It is no “Ready-to-use” program:

 Adaptations of callback functions, startup / initialization is necessary

 Adaptation to runtime environment and specific hardware requirements are
necessary

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

16 / 56

4 Flashing – A More Detailed View

The Flash
Bootloader is
called after a
reset or
directly from
your
application.

4.1 The Bootloader Is Always Started First
As you now know, on the one hand the Bootloader resides in the protected area
and is always resident on the ECU. On the other hand it is not guaranteed that a
valid, executable application is also present in the ECU. This is the reason why the
Bootloader is always executed first after a reset. The decision is then made to start
the application or to stay in the Bootloader.

Reset

Flash Process

Application

Bootloader

Application Valid?

Dependent on OEM

Wait for Diagnostic Service
to start Flash

yes

no

(ApplFblIsValidApp)
OEM specific
wait time

Invalidate Application?
(ApplFblInvalidateApp)

Validate Application?
(ApplFblValidateApp)

Figure 4-1 Transition Between The Bootloader And Your Application And Vice Versa

The Bootloader can be made to start in different ways, from your application and
after a reset.

4.2 Flashing After A Reset
The Flash Bootloader is executed always first after a reset. At this point in time the
bootloader has to determine if a valid application has been flashed. This test is
done through the use of the ApplFblIsValidApp function.

You will find some example strategies of how an application can be set to valid or
invalid in chapter 4.5.

The return value of the function ApplFblIsValidApp (see Figure 4-1) is used to
decide whether the process should branch into the application or if the ECU should

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

17 / 56

remain in the Flash Bootloader. The code in this function and the way you decide
whether the application is valid or not, is up to you.

After a reset
the
ApplFblIsVali
dApp function
decides
whether to
branch into
the
application.

If the application area is blank or the code is faulty, the Bootloader waits for a
Diagnostic CAN message to start the flash process, i.e. the Flash Driver is loaded
into the ECU‘s RAM memory and started. Now the application is being
downloaded, which is the actual flash process.
The application is connected to the Flash Bootloader via three functions
ApplFblIsValidApp, ApplFblValidateApp and ApplFblInvalidateApp. These
functions are to manipulate the Validation Area.
The names of the functions ApplFblValidateApp and ApplFblInvalidateApp can
vary slightly for some OEMs. Please refer to your OEM-specific Documentation for
more detailed information [#oem_valfunc].

In the following, these three functions are abbreviated sometimes only with IsValid,
Validate and Invalidate. These abbreviations are found in most of the following
figures.

4.3 Your Application Initiates The Flashing Process
The other way to start the flashing process is the one via your application and its
diagnostics.
Before the Flash Bootloader manipulates data in the application area the function
ApplFblInvalidateApp is called to set the Validation Area to invalid. Then the
Flash Bootloader downloads the new application (the corresponding hex file) and
executes a reset or starts the application directly (depending on the OEM
[#oem_start]). Before starting the application, the function ApplFblValidateApp
validates the application again.

Before the beginning of flashing, the application must be set to invalid. This prevents
starting a partially flashed application if the flash process failed or was interrupted.

4.3.1 What might happen?
Imagine your validity check results in a valid application but it is actually faulty.
Every reset leads in the application that is not working properly and the watchdog
will provoke a reset again. Now the software is in an endless loop.
In this case it is not possible to flash the application again. See an optional
selectable solution to this problem in the chapter 7.3 (Validation ok – Application
Faulty).

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

18 / 56

4.4 Handling of the Validation Concepts
The concept for the flash mechanism is designed to allow maximum flexibility as
well as a very easy implementation. The main thing you have to take care for is to
call the application only if there is a valid version flashed. The manner you
recognize a valid version is up to you and realized in the so-called Validation Area.

4.4.1 Validation Area
In this area you can store the indicators for a valid application. This can be a simple
flag that indicates valid or even code for checking validity of the application. In the
latter case the ApplFblIsValidApp should check this function before calling it.

4.4.2 Access to the Validation Area
The Bootloader provides 3 functions to access the validation area as mentioned
just before. The functions reside in the Bootloader and the coding has to be done
by you. The functions are:

4.4.3 ApplFblIsValidApp
This function checks the validity of the application. The return value decides about
the further actions (see Figure 4-1).

Since this function is called on every Reset, it is recommended to simply check a flag
previously set. This speeds up the restart time.

4.4.4 ApplFblValidateApp
Use the
following
proposals to
get a little
comfortable
with the
possibilities of
configuration
arising with
this concept.

This function signs the application as valid by accessing the Validation Area
directly. After the flash process the function ApplFblValidateApp is called to check
the validity of the flashed application and to set the indicators (e.g. a Flag, a certain
memory location etc.). The indicators are utilized on reset by the IsValid function.

4.4.5 ApplFblInvalidateApp
This function is called before erasing the flash memory. Herein you reset your
indicators and mark the application as invalid in order to avoid the case where a
possible reset or error while flashing occurs without invalidating the partially erased
or programmed application.

The implementation of the validation function is application-specific, however, once a
solution is implemented it cannot be changed unless the Bootloader is re-
programmed.

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

19 / 56

4.5 Proposals For Handling The Validation Area
The following three examples are examples of how you can deal with the validation
concept offered by the Flash Bootloader. Before starting to develop your own
strategy based on the concepts mentioned here, please refer to the OEM-specific
Documentation [#oem_valid] in case your OEM wants you to do this in a predefined
manner.

4.5.1 Proposal A
In this concept the validation area is just a flag. This is the simplest way to realize
the validation concept:

F
 l

 a
 s

 h

 M
 e

 m
 o

 r
 y

R
 A

 M
F

l a
 s

 h
 M

 e
 m

 o
 r

y

Memory Map

F
 l

 a
 s

 h

 M
 e

 m
 o

 r
 y

R
 A

 M
F

l a
 s

 h
 M

 e
 m

 o
 r

y

Memory Map

Application

Interrupt Vector Table
[FBL]

IsValid⏐Invalidate⏐Validate

Bootloader
Transport Protocol,
KWP2000-Services,

CAN Driver

Interrupt Vector Table
[Application]

FLAG 0 invalid, 1 vaild

Flash Driver

Figure 4-2 Using A Flag Only In The Validation Area

The code in the IsValid function has to know the location of the flag in the
Validation Area. After a reset, the content of this flag shows the validity of the
application. If you start flashing via CAN the function “Invalidate” clears the flag
before erasing. After flashing, the function “Validate” sets the flag. Then after a
reset, the “IsValid” function recognizes the flag to be set and returns a positive
value. The application is valid and can be executed.

If you can guarantee that the flag (or byte) is the first byte to be erased and the last
byte to be written while programming, you may leave the Invalidate and Validate
functions empty.

Make sure that the valid indicator differs from the blank, non-existing flash contents.

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

20 / 56

4.5.2 Proposal B
Based upon this concept you can separate the application into separate sections.
See the figure below for the memory mapping. The parts of the application are
named as Module n. Every module needs a Validation Area of its own.

F
 l

 a
 s

 h

 M
 e

 m
 o

 r
 y

Memory Map

F
 l

 a
 s

 h

 M
 e

 m
 o

 r
 y

R
 A

 M
F

l a
 s

 h
 M

 e
 m

 o
 r

y

Memory Map

Appl Module 1
Validation Area 1

R
 A

 M
F

l a
 s

 h
 M

 e
 m

 o
 r

y

Interrupt Vector Table
[FBL]

IsValid⏐Invalidate⏐Validate

Bootloader
Transport Protocol,
KWP2000-Services,

CAN Driver

Interrupt Vector Table
[Application]

Appl Module Table
Info about Validation Areas

Checkbyte

Flash Driver

...

Appl Module 2

Appl Module 3
Validation Area 2

Validation Area 3

Figure 4-3 Separate Your Application Into Several Modules

To know the locations of the modules, their size and the location of their Validation
Area you should add a Module Table. This table contains the latter information and
enables the access to the single Validation Areas of the modules. The access is
done via the known functions IsValid, Validate, and Invalidate.
Before you use the Module Table, make sure this information is in the memory.
Use e.g. a check byte to ensure this.

The location of this check byte depends on the order of erasing and writing to the
flash memory. It should be erased as the first byte in this module table area and
written only if the complete module table area is valid.

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

21 / 56

4.5.2.1 The Module Table
The file FBL_MTAB contains the flash-erase sector table (more about the interrupt
vector tables in the following). Whenever the sector selectable erase service is
called, the Bootloader scans this table to get the address and length information of
the sector that has to be erased.
The flash erase sector table is not required if the Bootloader configuration has
been optimized for download of only one module.
The location of FBL_MTAB provides great flexibility. It is possible to change the
memory size of the modules, without modifications of the Bootloader. To extend
the number of modules you can add more entries to the table.
If it is not feasible or necessary to change the flash erase table, this table could
also be compiled and linked into the protected area of the Bootloader. This has the
advantage that this table cannot be erased.

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

22 / 56

4.5.3 Proposal C
The last example uses a validation function instead of just flags as shown in the
two examples above.
This validation function resides in the application and is compiled and linked
together with the application. Therefore you should take care before calling this
function, that the code has been flashed correctly. For this demand you can use a
check byte as shown in the Proposal B.

F
 l

 a
 s

 h

 M
 e

 m
 o

 r
 y

Memory Map
F

 l
 a

 s
 h

 M

 e
 m

 o
 r

 y
R

 A
 M

F
l a

 s
 h

 M
 e

 m
 o

 r
y

Memory Map
R

 A
 M

F
l a

 s
 h

 M
 e

 m
 o

 r
y

Validation Function

Flash Driver

...

Interrupt Vector Table
[FBL]

IsValid⏐Invalidate⏐Validate

Bootloader
Transport Protocol,
KWP2000-Services,

CAN Driver

Figure 4-4 Using A Validation Function For Validation Your Application

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

23 / 56

4.6 The Interrupt Vector Tables
The
application
and Flash
Bootloader
each have
their own
interrupt
vector table to
use.

Interrupts are handled in a special way for applications with Flash Bootloader.
When an application uses the Flash Bootloader it must be guaranteed that the
reset vector always points to the Flash Bootloader. After a reset the Flash
Bootloader is started first.
Usually the ECU vector table is part of the protected area of flash memory, but the
reset vectors for the application interrupt service function addresses have to be
changeable.
The solution to this problem lies in using 2 interrupt vector tables as shown in the
figure below.

F
 l

 a
 s

 h

 M
 e

 m
 o

 r
 y

R
 A

 M
F

l a
 s

 h
 M

 e
 m

 o
 r

y

Memory Map

Application

Interrupt Vector Table [FBL]

IsValid⏐Invalidate⏐Validate

Bootloader
Transport Protocol,
KWP2000-Services,

CAN Driver

Interrupt Vector Table
[Application]

Validation Area

Application
Data

Interrupt
Service

Functions

Reset

all
Others
Vectors

Jump to
Interrupt
Service

Functions

Figure 4-5 Principle Of The Two Interrupt Vector Tables

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

24 / 56

The interrupt vector table at the memory address provided by the hardware is used
by the Flash Bootloader (Interrupt Vector Table [FBL]). Your application must use
its own vector table (Interrupt Vector Table [application]).

Every
interrupt
through Reset
leads directly
into the Flash
Bootloader.

Now if an interrupt occurs which is not a reset, then on the hardware side control
branches to the memory location whose address is at the corresponding location in
the Flash Bootloader‘s interrupt vector table (see Figure 4-5). Any interrupt but the
reset points into the Interrupt Vector Table of your application. Within your
application Vector Table control is branched now to the appropriate interrupt
service function.
As a result, a slight overhead between detecting the interrupt and calling the
interrupt service function is added to every interrupt service function. The delay is
the duration of a jump instruction.
An exception to this is the reset interrupt. It always points to the Flash Bootloader.

There is no direct path from reset into the application.

The CAN Driver working in the Flash Bootloader needs no interrupts itself, since it is
running in polling mode. It checks cyclically to see if CAN messages have been
received. Reception is not indicated via an interrupt, as is usually the case. For this
reason no additional interrupt service functions are needed in the vector table for the
Flash Bootloader.

You will find further particulars about the modifications you have to deal with to
adjust your interrupt vector table in Section 6.2.4.

Refer to your Hardware-specific Documentation [#hw_intvect] to get more
detailed information.

4.7 Label Reference File
Some address information need to be shared between your application and the
Bootloader. Some files such as the application vector table and the module table
are referenced in both the application and the bootloader. These files are usually
located in the application area, since they potentially change (module table,
interrupt vector table).
The data contents of these files could be erased at any time because they reside in
the non-protected area.
In special circumstances the Bootloader will eventually use the files. Therefore the
application needs to compile and link these files to the same memory location. The
module with these files should be downloaded as the first module to provide the
data to the Bootloader whenever needed. This ensures a proper Bootloader
execution.
Refer to OEM-specific documentation [#oem_ref].

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

25 / 56

5 FLASHING IN 5 STEPS

STEP 1 : DESIGN THE MEMORY LAYOUT
Figure out which component has to be placed at which memory location. Estimate the
sizes.

STEP 2: WRITE A TEST APPLICATION
This can be any application or the application you later use for the ECU. It is very
important, that this application is running correctly and you can recognize its running.
This application is the evidence for the correct function of the Flash Bootloader.

STEP 3: INTEGRATE THE BOOTLOADER
In this step you have to integrate the Bootloader, download it via a programmer or
burner and test it with the Flash Tool. This is the major step to be done!

Read the Introduction of this step or go directly to the 8 Bootloader Integration step.

STEP 4: ADAPT YOUR TEST APPLICATION FOR THE TESTER
To prepare the application hex file for being downloaded via the Tester, it has to be
converted to an OEM-specific format. Do this in this step and refer to the description
provided by your OEM.

STEP 5: DOWNLOAD YOUR TEST APPLICATION WITH THE TESTER
Now do the download the test application as before but now using the OEM-specific
Tester.

OEM specific

Tester

/* Test Application */
#include ...

#define ..

main
{
...

}

CANfbl

CANfbl

Extract
Adjust
Compile
Link

fbl_vect.c
[FBL]

IsValid⏐Invalidate⏐Validate

Bootloader
Transport Protocol,
KWP2000-Services,

CAN Driver

Test
Application

Applvect.c
[Application]

Programer
Burner

Programer
Burner

Test
Application

CAN

5 4

2

21
3 3

3

Figure 1: 5 Steps And You Are Flashing via Flash Tool and OEM-specific Tester

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

26 / 56

5.1 STEP 1 Design The Memory Layout
As flashing is a memory related activity you first need a basic estimation about the
memory consumption. Based on the controller you use and the memory model
start with a basic design for the memory layout.
Define where your application has its location, define the location of the application
vector table and the Bootloader. Figure out where your controller has its “original”
interrupt vector table.
Refer to the hardware-specific documentation for more information [#hw_mem].

F
 l

 a
 s

 h

 M
 e

 m
 o

 r
 y

R
 A

 M
F

l a
 s

 h
 M

 e
 m

 o
 r

y

Memory Map

Application

Interrupt Vector Table
[Application]

Validation Area

Interrupt Vector Table
[FBL]

IsValid⏐Invalidate⏐Validate

Bootloader
Transport Protocol,
KWP2000-Services,

CAN Driver

Application
Data

Figure 5-1 Basic Memory Layout Of An Application with the Flash Bootloader

Back to 5 Steps overview

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

27 / 56

5.2 STEP 2 Write A Test Application
The Flash Bootloader is designed to download your application via a bus protocol
like CAN, LIN, etc. To test the correct function of the Flash Bootloader you first
need a Test Application to verify the work of the Flash Bootloader.
In this step, write a Test Application.

F
 l

 a
 s

 h

 M
 e

 m
 o

 r
 y

R
 A

 M
F

l a
 s

 h
 M

 e
 m

 o
 r

y

Memory Map

F
 l

 a
 s

 h

 M
 e

 m
 o

 r
 y

R
 A

 M
F

l a
 s

 h
 M

 e
 m

 o
 r

y

Memory Map

Application

Interrupt Vector Table
[FBL]

Interrupt Vector Table
[Application]

Application
Data

Figure 5-2 The Test Application In The ECU Memory Using Two Interrupt Vector Tables

It’s recommended to write the Test Application with at least one interrupt service
function, perhaps a timer to do some cyclic action. Make sure that the application is
showing its correct behavior e.g. via LED blinking or even the transmission of a
CAN message. This will be later on the indicator for the correct working Flash
Bootloader.
Download and test this application via your development environment.

It’s recommended to work with two interrupt vector tables from the beginning. Just
map all interrupts from the “original” vector table to the interrupt vector table of your
application.

For more information refer to the hardware-specific documentation [#hw_tstappl].

Back to 5 Steps overview

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

28 / 56

5.3 STEP 3 Integrate The Bootloader
This is the major step for you to do. You have to unpack the delivered files, do
some application specific adaptations, compile the Bootloader, and download it.
In order to test the Bootloader, you need to flash your test application that you
created in the previous step. To do so you should configure the Flash Tool properly
prior to testing.
Use the Flash Tool of the Flash Bootloader package to download your test
application. Once you have managed to get your Bootloader to work with the Flash
Tool then you can go on and use the OEM-specific Test Tool. Now the embedded
side is working and you can concentrate on adapting the OEM-specific tester.

Application

Bootloader

Flash Driver

Interrupt Vector Table
[FBL]

Interrupt Vector Table
[Application]

Interrupt Vector Table
[Application] Flash

Tool

CAN

F
 l

 a
 s

 h

 M
 e

 m
 o

 r
 y

R
 A

 M
F

l a
 s

 h
 M

 e
 m

 o
 r

y

LIN

OEM specif
TESTER

<application>.hex

ic

<application>.<oem-format>

Conversion
to OEM specific
format to fulfil
Tester needs
(flash container)

Figure 5-3 Flashing via Flash Tool and OEM-specific Tester

The application is compiled to a hex file to be used with the Flash Tool. The Flash
Tool controls the download via the bus system (here CAN) and communicates with
the Bootloader. To be able to flash with an OEM-specific tester, some adaptations
have to be done to the application hex file.
For more information refer to documentation about this workflow provided by your
OEM.

Follow the 8 Integration Steps for the Bootloader (see Chapter 6) before continuing
with the next step.

Back to 5 Steps overview

Integrate the
Bootloader in
8 Steps
more… (see
Chapter 6)

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

29 / 56

5.4 STEP 4 Adapt Your Test Application For The Tester
The next step after downloading the test application is to adapt your
<application.hex> file to be downloaded via the OEM-specific tester (see
explanation in the STEP 3).

To test these adaptations, no change of the Bootloader software is necessary.

Normally there are several steps necessary to convert the hex file into a file that
can be read and used by the tester. Get more information about this workflow using
the documentation provided by your OEM.

Back to 5 Steps overview

5.5 STEP 5 Download Your Test Application With The Tester
Now you can test the Bootloader using your OEM-specific Tester. You can test
things such as starting a Flash programming triggered via reset, or initiated from
the application, etc.

Is it still working?

Congratulations, you did it!

Back to 5 Steps overview.
Continue with the Background Information.

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

30 / 56

6 Details of Bootloader Integration Step (STEP 3)

Bootloader STEP 1: Extract the files to a folder on your PC
Bootloader STEP 2: Adjust the files to fit your application
Bootloader STEP 3: Now compile the Bootloader
Bootloader STEP 4: Transfer the Bootloader to the target hardware
Bootloader STEP 5: Use the Flash Tool to test the Bootloader
Bootloader STEP 6: Test the flashing after a reset
Bootloader STEP 7: Make your application ready for transition to Bootloader
Bootloader STEP 8: Start Bootloader from your application

3
/* Test Application */
#include ...

#define ..

main
{
...

}

CANfbl

CANfbl

Extract
Adjust
Compile
Link

fbl_vect.c
[FBL]

IsValid⏐Invalidate⏐Validate

Bootloader
Transport Protocol,
KWP2000-Services,

CAN Driver

8

Details of Step 3

7

5 Test
Application

CAN

1
2
3

Applvect.c
[Application]

Programer
Burner

4

6

Figure 6-1 Details of Bootloader Integration Step (Step 3)

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

31 / 56

6.1 Bootloader STEP 1 – Extract the files to a folder on your pc
Extract the Flash Bootloader files just by starting the install shield. Per default the
files are installed to the folder C:\Programme\Vector\.... You can also use the
Start\Programme\Vector… to find your installation.
The files are installed with the following directory structure.

Name Description

 StandardECU Root directory of the delivery, root name may differ.

 _Common Contains common files shared between the application and the
bootloader.
[e.g. v_def.h, etc.]

 _Demo Contains an example implementation.

 DemoAppl An application that is prepared to be downloaded to the micro via the
Flash Bootloader and CANflash.

 DemoFbl The bootloader part of the demo. This directory contains an example
of a full functional bootloader (e.g. including in-/validation, transition
from application to bootloader and a comprehensive mapping of the
bootloader sections).

 _Doc Contains documentation and test reports for the bootloader.
[e.g. UserManual_FlashBootloader.pdf,
TechnicalReference_FBL_*.pdf, TestReport*.pdf, etc.]

 _FlashScript CANdito flash scripts provided with the bootloader. This directory
only exists if there are flashscripts available for the SLP.

 _GenTool Generation tool for the flash bootloader configuration files. In case of
CANgen, the license file is located here.
[e.g. CanGen.exe, license.liz, GENyFramework_*.exe, etc.]

 Components Directory for GENy component-DLLs. If GENy is used, the license
can be found here. Otherwise, this directory does not exist.
[e.g. license.liz, Version.Info, preconfig*.pco, etc.]

 _MakeSupport Make environment used by demo bootloader and application. This
folder contains the global makefile.
[e.g. Global.Makefile.target.make.*, etc.]

 _Misc Everything that doesn’t fit into the other directories can be placed
here (e. g. little tools, that don’t require an installation procedure)

 HexView The best tool to generate, edit and process hex-files. Can build
plenty of flash containers, too.

 _Setup Setup files for PC-installable software included in the delivery (e. g.
CANflash)
[e.g. CANflashFord25.EXE, etc.]

 DrvEep EEPROM-driver to be used with the bootloader
[e.g. EepDrv.c, EepIO.c, EepCfg.h, etc.]

 DrvFlash Flash-EEPROM-driver to be used with the bootloader (aka
secondary bootloader). This directory contains the source files of the

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

32 / 56

driver and a ready-to-use function file container for the used SLP.
[e.g. flashdrv.c, flashdrv.h, FlashDrv_V850_f.hex, etc.]

 Fbl Contains all bootloader files, except flash-driver and security module
[e.g. fbl_main.c, fbl_hw.c, fbl_diag.c, etc.]

 _Template Contains files that are part of the flash bootloader but need to be
adapted for integration purposes. The files contain a collection of
callback-functions grouped in different files for different purposes.
The functions mainly adapt to the specific needs of the bootloader to
a particular project resp. adapts the hardware requirements of the
Bootloader.
[e.g. _fbl_ap.c, _fbl_apdi.c, _fbl_apwd.c, _fbl_apfb.c, etc.]

 SecMod Security module for the bootloader.
[e.g. secmod.c, _secmod.h, etc.]

The files listed in the table are installed to the folder Fbl. The files with the _
(underscore) are installed to the folder Fbl_Template, v_def.h is in the _Common
path and the flashdrv.h in the DrvFlash folder.

File Name Description Status

Makfile of project file Makefile or project file for the build process of the
Bootloader.

fbl_cfg.h Global Bootloader configuration. This file is generated
by the configuration tool.

_fbl_apxx.c /
_fbl_apxx.h

Hardware and system specific callback functions.

_ftp_cfg.h Transport layer configuration file. Very soon, this file
is also generated by configuration tool.

_fbl_inc.h Include file for the Bootloader. Include additional
header files if necessary.

_applvect.c /
applvect.h

Application vector table

fbl_diag.c / fbl_diag.h General Diagnostic Module that contains the
diagnostic handling (KWP2000) and the basic
bootloader functionalities.

fbl_can.h Definitions for CAN interface.

fbl_def.h Basic Bootloader definitions.

fbl_hw.c / fbl_hw.h Hardware-specific module for CAN and timer.

fbl_main.c Main module for Bootloader initialization and idle
loop.

fbl_tp.c / fbl_tp.h Transport layer for the FBL.

Since the
Flash
Bootloader is
an
independent
application, it
must be
possible for
you in most
cases to take
the directory
structure, as
unpack it.

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

33 / 56

fbl_vect.c Bootloader vector table.

fbl_wd. / fbl_wd.h Watchdog support.

flashdrv.h Interface header file for Flash Driver.

v_def.h Type definitions from Vector Informatik

Caution
It is absolutely necessary that YOU adapt the startup-code for the Bootloader to your
specific hardware platform!

Remind that there will be two startup-codes executed subsequently, first the startup-code of the
Bootloader, then the startup-code of your application.

!!! be careful with registers that can be written only once after reset !!!

OEM specific

You can adapt these files according to your application (fbl_vect cannot be
adapted by user). A detailed description of how that is to be handled can be found
in Section 6.2. In your delivery all files that you have to adapt are marked with an
underscore (_<file>) before the name and stored in the _Template folder. Create
an own folder to store the adapted files without the underscore.

OEM specific – some more files, refer to your OEM specific reference
[#oem_files].

Back to 8 Steps Bootloader integration overview

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

34 / 56

6.2 Bootloader STEP 2 Adjust the marked files to fit your application
Now you go through the files pointed to by the hand in the above diagram in detail
and adapt them specifically to your application.

6.2.1 Make… Makefile and make.exe
To be able to compile the Flash Bootloader you just have to adapt the file
makeconf by setting the compiler path to your demands, see an example
e.g. COMPILER_PATH = c:\uti\hc12\cx32
Then you can execute the make.exe to compile and link for the first time. Now you
can start upon this basis and adapt the files for your demands.

6.2.2 fbl_cfg.h - The Configuration File For The Flash Bootloader
If you are using a Generation Tool with the bootloader then the Generation Tool
creates this file. To modify the bootloader you would simply have to trigger the
generation process again. If you are not using the generation tool with the
bootloader then you can manually configure the bootloader by modifying defines
such as clock frequency, CAN baudrate, etc…
See the list of the possible switches below to be changed followed by a brief
description. To get more information refer to the comments in the file fbl_cfg.h.

CAN_TP_RXID Receive ID for the transport protocol
CAN_TP_TXID Send ID for the transport protocol
FBL_ENABLE/DISABLE_DEBUG_STATUS Additional hints for debugging (if

possible)
FBL_ENABLE/DISABLE_SYSTEM_CHECK Checks if data buffer will be overwritten
FBL_ENABLE/DISABLE_FLASHBLOCK_CHECK The pre-defined flashblocks in FBL_AP

are checked and aligned during
download

FBL_ENABLE/DISABLE_APPL_TASK Enable a cyclic task for some timing
adjustments (call cycle TpCallCycle typ.
1ms).

FBL_MAX_NUMBER_OF_MODULES Set here the number of modules that
shall be downloaded and programmed.

FBL_ENABLE/DISABLE_SECTOR_ERASE_FCT Enable the usage of the callback
function ApplFblSectorErase()

FBL_ENABLE/DISABLE_FILECHECKSUM Enables an internal file checksum
calculation. This checksum is
generated during the download
sequences

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

35 / 56

FBL_ENABLE/DISABLE_ENCRYPTION_MODE If you enable this switch, further
functions are called to decrypt coded
data. (ApplFblEncryptInit,
ApplFblEncryptData).

FBL_WATCHDOG_ON/OFF Switch Watchdog on or off
FBL_WATCHDOG_TIME Setting of the watchdog trigger cycle
FBL_PROCESSOR_40MHZ Some clock settings may not be

available on all CPUs. Please refer to
fbl_hw.c, FblTimerInit

FBL_ENABLE/DISABLE_STAY_IN_BOOT Setting
FBL_DISABLE_STAY_IN_BOOT, it is
not possible to force the bootloader not
to start the application.

FBL_DIAG_BUFFER_LENGTH This is the size of the diagnostic data
buffer used for USDT
reception/transmission
(COMMON_BUFFER mode).

FBL_START Start address of the FBL.
FLASH_SIZE Specifies the number of bytes used for

the Flashcode (aka flash driver).

Note: Allocate as much memory as
possible to be able to download a
bigger flash driver in the future.

CAN_BTR01 Bus timing configuration for normal
mode

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

36 / 56

6.2.3 FBL_apxx.C
Set up and
initialize these
functions
according to your
needs. When
doing this, follow
the descriptions
for each and use
Figure 6-2 for a
complete
overview.

The next thing you have to do is adapt the Flash Bootloader to your application and
hardware. The following functions have to be adapted:

Function Name File Name

ApplFblInit fbl_ap

ApplFblStartup fbl_ap

ApplTrcvrNormalMode fbl_ap

ApplFblSetVfp fbl_ap

ApplFblResetVfp fbl_ap

ApplCanParamInit fbl_ap

ApplFblFlashBlockNotFound fbl_ap

ApplFblTask fbl_ap

ApplFblIsValidApp fbl_ap

ApplFblInvalidateApp *, ApplFblValidateApp * fbl_ap

ApplFblSecuritySeed fbl_ap

ApplFblSecurityKey fbl_ap

ApplFblSectorErase fbl_ap

ApplFblWDInit fpl_apwd

ApplFblWDShort fbl_apwd

AplFblWDTrigger fbl_apwd

ApplFblWDLong fbl_apwd

You will find these functions again in Figure 6-2.

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

37 / 56

ResetApplFblInit

ApplFblWDInit
Optional: initialize WD
and set trigger time *

[End of Initialization Phase]
ApplTrcvrNormalMode

Wait for Diagnostic Service to start Flash

ApplFblSecuritySeed
[Queried via KWP2000]

ApplFblSecurityKey
[Queried via KWP2000]

Download of Flash Algorithms

ApplFblSetVfp

ApplFblInvalidateApp
Erase Flash Memory

ApplFblSectorErase (opt.)

Download Application Data

ApplFblValidateApp

ApplFblResetVfp

ApplFblWDLong

ApplFblWDShort

FblStart

ApplFblIsValidApp

Optional: initialize WD
and set trigger time *

Application

Bootloader

Dependent on OEM

OEM specific
wait time

ApplFblStartup

no

yes

ApplFblStartup

ApplFblFlashBlockNotFound

ApplFblWDTrigger

ApplFblCanParamInit

Figure 6-2 Function Calling Sequence During Flashing

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

38 / 56

The function
ApplFblCanP
aramInit

The function
ApplFblIs
ValidApp

The function
ApplFblStartup

The Watchdog may only be initialized in one of the two optional functions. In most
cases this is the function ApplFblInit. Further details on the background and
possibilities of Watchdog handling can be found in Section 7.1.

The
ApplFblInit
function

Be sure to
only initialize
the watchdog
timer in one
location

The description of the functions below is done in same order as they are called
beginning with the reset.

6.2.3.1 ApplFblInit
The function ApplFblInit is called after every reset. You can do your basic
initializations, such as memory mapping, PLL setup, etc. Usually initialization of the
Watchdog timer is dealt with here. (See 3.3 for more details).

6.2.3.2 ApplFblCanParamInit
Callback function for multi ECU support. See 7.2.

6.2.3.3 ApplFblIsValidApp
Callback function to check the validity of the application. See 4.4.2.

6.2.3.4 ApplFblStartup
This function is called after ApplFblInit if no valid application was found or the
Bootloader was started by the application (reprogramming request). Use this
function to do initializations, which are needed by the application and the
Bootloader. This is useful if you want to initialize hardware or software explicitly
used for the Bootloader.

6.2.3.5 ApplFblWDInit
The function ApplFblWDInit is only called if control remains in the Flash Bootloader
after a reset.
You can also initialize your Watchdog here if you have not done this already in the
function ApplFblInit (see 6.2.3.1) (for more details about the watchdog see 3.1).
Example:

void ApplFblWDInit(void)
{
Your code for initializing your Watchdog can go here, or nothing, if you either
won't be using it or you want to initialize it somewhere else.
}

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

39 / 56

6.2.3.6 ApplTrcvrNormalMode
The function
ApplTrcvNor
malMode

The name of this function is self-explanatory. To send CAN messages it is first
necessary to setup the transceiver. This can be done here.

Example:

void ApplTrcvrNormalMode(void)
{

 DDRCAN = 0xff; /* set the port direction */
 PORTCAN = 0x30; /* set the port */

}

6.2.3.7 ApplFblSecuritySeed / Key

Refer to your OEM-specific Documentation [#oem_sec] to get the necessary
information.

The function
ApplFblSetVfp

6.2.3.8 ApplFblSetVfp
Whether you need to configure this function or not depends on your hardware
setup (some flash memories require external programming voltage to erase and
program). If you have to turn on the voltage for flash programming, you can do that
in this function.
Normally you would set an I/O port to enable an external flash supply.
Example:

void ApplFblSetVfp(void)
{
for example:
 PORTA &= ~0x01;
}

The function
ApplFblInvalid
ateApp

6.2.3.9 ApplFblInvalidateApp
Callback function to invalidate an application. See 4.4.2.

6.2.3.10 ApplFblFlashBlockNotFound

The function
ApplFblFlash

BlockNotFoun

This function is called if a TransferData has been received but no address region
was found in the defined FlashBlocks. It also allows you to support out of main
memory downloads (for example: Additional Flash or EEPROM).

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

40 / 56

6.2.3.11 ApplFblValidateApp The function
ApplFblValida
teApp Callback function to validate an application. See 4.4.2.

6.2.3.12 ApplFblResetVfp The function
ApplFblReset
Vfp The function ApplFblResetVfp is the counterpart of the function ApplFblSetVfp.

This function allows you to turn off the programming voltage.
Example:

void ApplFblResetVfp(void)
{
For example:
 PORTA |= 0x01;
}

The function
ApplFblWDLong 6.2.3.13 ApplFblWDLong

Adjusts watchdog timing for application if necessary.
This function is called immediately after flashing, before branching from the Flash
Bootloader into your application. For watchdogs with changeable timer intervals,
switching to the other interval can be done here.

If you want to use a hardware reset for the transition, implement an infinite loop in this
function. The Watchdog timer will expire and create the desired reset.

Example:

void ApplFblWDLong(void)
{
 Here is the place for your infinite loop or your changeover. If you do not need
this function, simply leave this blank.
}

Starting the flash process from the application, the following call back functions
have to be adapted.

The function
ApplFblWDShort

6.2.3.14 ApplFblWDShort
The function ApplFblWDShort is called during the transition from the application
into the Flash Bootloader. With it you can again re-adjust the watchdog timer
interval.
If you have a window watchdog, you can synchronize the watchdog here.
Example:

void ApplFblWDShort(void)
{
 Here is the place for your changeover. If you do not need this function, simply
leave this blank.
}

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

41 / 56

6.2.3.15 ApplFblWDTrigger The function
ApplFblWDTrigge
r If you enable the watchdog timer, then you must refresh it in the function

ApplFblWDTrigger. An example of how this is done follows.
Example:

void ApplFblWDTrigger(void)
{
/* You must operate your Watchdog here. The code could look like this: */
 PORTB |= cWatchdogPin;
 PORTB &= ~cWatchdogPin;
}

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

42 / 56

6.2.4 Fbl_vect.c / Applvect.c(.h) - The Interrupt Vector Tables
There are several files provided for the interrupt vector tables. Fbl_vect.c (.h) is the
vector table for the Bootloader, Applvect.c (.h) for the application.

On some hardware platforms the vector table may also be implemented in assembly
language. The files names will have corresponding extensions in this case.

For the integration of the Bootloader you have to compile and link the provided files
fbl_vect and applvect.c / applvect.h to your Bootloader files. To adjust the location
of the application vector table, just link the APPLVECT segment to the desired
memory location. The location of the application vector table must be fixed and the
same for the bootloader as well as the application.

F
 l

 a
 s

 h

 M
 e

 m
 o

 r
 y

Memory Map

Applvect.c
[Application]

R
 A

 M
F

l a
 s

 h
 M

 e
 m

 o
 r

y

fbl_vect.c
[FBL]

IsValid⏐Invalidate⏐Validate

Bootloader
Transport Protocol,
KWP2000-Services,

CAN Driver

Reset

Figure 6-3 Situation Directly After The Programming Of The Bootloader Together With The Dummy Application

Vector Table

The provided application vector table is just a dummy table to provide the
Bootloader with the memory address of the application vector table. All vectors
within the applvect.c point to the startup code of the Bootloader.

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

43 / 56

If you now flash your application for the first time, this dummy application interrupt
vector table will be overwritten with your application vector table. Make sure that
the memory location is exactly the same.

It is recommended to use the applvect.c file from the delivered example application
as basis for your application vector table and insert the name of your interrupt service
functions at the appropriate locations in the file.

.
Refer To hardware-specific Documentation [#hw_intvect].

Back to 8 Steps Bootloader integration overview

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

44 / 56

6.3 Bootloader STEP 3 Now compile the Flash Bootloader
Now all the files and functions have been adapted. Call the file make.exe again to
compile them. The result is a file XYZ.hex, that is, the Flash Bootloader in hex
format.

6.4 Bootloader STEP 4 Transfer the Bootloader to the target hardware
In order to test your result, you now have to load the Bootloader hex file onto your
target platform.

6.5 Bootloader STEP 5 Use the Flash Tool to Test the Bootloader
Open the Flash Tool (for installation and how to use it see the FlashTool
Documentation). Go to Options\Paths and set the paths.

Before you start the download, be sure that you have a CAN connection to your ECU.

Press the Start-Button to start the Flasher. The Flash Tool will now cyclically send
the CAN Flash messages.

6.6 Bootloader STEP 6 – Test the flashing after a reset
If you do a reset now, the ECU, triggered by the Flash Tool's cyclically sent CAN
messages, should start the flash process. You can see the flash process in the
window of the Flash Tool.
Did it work properly? If so, the main work is already behind you.

If not: check the baud rate, the CAN connection and the hardware initializations.

Back to 8 Steps Bootloader integration overview

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

45 / 56

6.7 Bootloader Step 7 – Make your application ready for the transition to
the Bootloader
Another possible way to start the Flash Bootloader is from the application. A
common way of starting the bootloader from the application is by receiving a
certain diagnostic service or because by a special-purpose CAN message.
As you see in the Figure 6-2 the transition from the application to the Bootloader is
done via the function FblStart. The parameter of this function is a hardware
dependent structure that contains e.g. the baud rate, the bit timing, CAN-ID, etc.

Some OEMs realize the transition from the application to the Bootloader via a reset.

Refer to your OEM-specific Documentation [#oem_trans] to get the necessary
information on the correct sequence of events to switch from your
application to the Bootloader.

6.8 Bootloader Step 8 – Start Bootloader from your application
Compile your application with the jump to bootloader supported as described in the
previous step. Then load it on your target hardware using the flash tool. Now
flashing works in cooperation with the flash tool. The final two steps deal with the
preparation of the application hex file for download via an OEM tester.

Ok? It is working?

If not, go back to the STEP 3, or continue with the STEP 4 if it works.

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

46 / 56

7 Background Information

7.1 The Watchdog
The Bootloader needs to trigger an on-chip or external watchdog while
downloading the application.
Refreshing the watchdog is hardware/application specific and therefore must be
implemented by the user. There are two watchdog functions:

 FblLookForWatchdog: Internal function to generate the time base for
triggering the watchdog (must not be changed by the user)

 ApplFblWDTrigger: Hardware/application specific call-back function for
refreshing the watchdog

F
 l

 a
 s

 h

 M
 e

 m
 o

 r
 y

Memory Map

F
 l

 a
 s

 h

 M
 e

 m
 o

 r
 y

R
 A

 M
F

l a
 s

 h
 M

 e
 m

 o
 r

y

Memory Map

Application

Interrupt Vector Table
[Application]

Validation Area

R
 A

 M
F

l a
 s

 h
 M

 e
 m

 o
 r

y

Interrupt Vector Table
[FBL]

IsValid⏐Invalidate⏐Validate

Bootloader
Transport Protocol,
KWP2000-Services,

CAN Driver

Flash DriverFlash Driver

ApplFblWDTriggerApplFblWDTrigger
FblLookForWatchdogFblLookForWatchdog

ApplFblWDTriggerApplFblWDTrigger
FblLookForWatchdogFblLookForWatchdog

copy before
flashing

Figure 7-1 Memory Layout Of The Watchdog Trigger Functions

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

47 / 56

Both functions are copied into RAM while programming the Flash, as it’s not
possible on most MCUs to execute an application from Flash while reprogramming
parts of the Flash. Copying the functions into RAM is either accomplished by a
copy function of the Bootloader (FblCopyWatchdog) or by the startup function. In
the first case, the watchdog trigger functions must be re-locatable (not really)!

The watchdog
trigger functions
have to be
relocatable!

You are already familiar with Figure 7-2. The main attention is now on those
functions in which handling or manipulating the watchdog timer can take place.

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

48 / 56

ResetApplFblInit

ApplFblWDInit
Optional: initialize WD
and set trigger time *

[End of Initialization Phase]
ApplTrcvrNormalMode

Wait for Diagnostic Service to start Flash

ApplFblSecuritySeed
[Queried via KWP2000]

ApplFblSecurityKey
[Queried via KWP2000]

Download of flash algorithms

ApplFblSetVfp

ApplFblInvalidateApp
Erase Flash Memory

ApplFblSectorErase (opt.)

Download Application Data

ApplFblValidateApp

ApplFblResetVfp

ApplFblWDLong

ApplFblWDShort

FblStart

ApplFblIsValidApp

Optional: initialize WD
and set trigger time *

Application

Bootloader

Dependent on OEM

no

yes

OEM specific
wait time

ApplFblStartup

ApplFblCanParamInit

ApplFblWDTrigger

ApplFblFlashBlockNotFound

Figure 7-2 Functions For Manipulating The Watchdog

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

49 / 56

7.1.1 Initializing The Watchdog
With some
watchdogs
double
initialization can
lead to a reset.

You can initialize the watchdog in one of two different places: either in the function
ApplFblInit or in the function ApplFblWDInit. If you want to enable the watchdog
within the Stay-In-Boot time where the bootloader waits 50ms (default) to receive
the CAN message, then you have to do the initialization in the function ApplFblInit.
In that case the function ApplFblWDInit MUST remain empty.
On the other hand it is also true, of course, that if you initialize in the function
ApplFblWDInit you must not initialize in the function ApplFblInit.

Use WDTimer [in
ms] to easily set
your Watchdog
operating times.

The user should initialize the watchdog since this is hardware dependent. To find
your register settings to initialize the watchdog, please refer to the controller
manual.
You can however use WDTimer for triggering. If you set WDTimer to 0, then the
Watchdog will timeout immediately. The unit for WDTimer is ms. The Watchdog is
operated via the function ApplFblWDTrigger, which you have already adapted to
your needs (see 6.2.3.5 and 6.2.3.15).
Example:

/* Initializing the WD, hardware-specific */

WDTimer = 250/*ms*/; /* in this way the Watchdog is triggered after 250ms.

Changing the value of WDTimer will only influence the time of refreshing the
watchdog for that particular cycle. The watchdog refresh rate will then be reinitialized
to the value set in fbl_cfg.h as soon as the watchdog is serviced. (see 2.4.2).

If your watchdog is a window watchdog, or at least supports different monitoring
windows and you want to use these as well, then you can use both of the functions
ApplFblWDLong and ApplFblWDShort for toggling the monitoring times.
Refer to the hardware-specific documentation [#oem_wd] for more information about
the watchdog.

7.2 Multiple ECU Support
The Flash Bootloader supports multiple ECUs (When similar ECUs are used
multiple times in a vehicle, and their CAN identifiers are configurable).
This feature can be activated by setting the
#define ‘FBL_ENABLE_MULTIPLE_NODES’ in the file fbl_cfg.h or via the
Generation Tool depending on your OEM.

Refer to your OEM-specific Documentation [#oem_multi] to get the necessary
information.

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

50 / 56

If multiple ECUs are supported, the FBL will call the function
ApplFblCanParamInit(), where the user has to decide which set of CAN identifiers
are used. Some OEMs set additional information, e.g. like identification of the ECU.

7.3 Validation Ok – Application Faulty
As mentioned in the earlier chapter 4.3.1 the validity check may result in a positive
response and sign the application valid, even if the application itself is faulty. In that
case every reset will lead to an application that does not work properly (for
example: The CAN communication of the application does not work anymore).

The validation process does not recognize the problems in the application (e.g. a
damaged byte in flash, etc.).

How can you flash an error free application in that case?
To do this it must be possible to react on a CAN message during the transition from
a reset to the application. Using the switch FBL_ENABLE_STAY_IN_BOOT in the
fbl_cfg.h file (see 6.2.1) you get the following modified function calling sequence.

ResetApplFblInit

ApplFblWDShort

ApplFblIsValidApp

Optional: initialize
WD and set trigger
time *

Application

BootloaderFblStart

Stay in Boot Mode
ApplFblStartup

no

OEM specific
wait time

Timer expired

ForceBootMode
Message received

yes

Figure 7-3 Modified Function Calling Sequence

After the application is checked to be valid a timer is started. The FBL waits a
default time (refer to OEM-Specific Documentation [#oem_time]) to receive a CAN
message (ForceBootMode Message) as a trigger to stay in the boot mode. Now a
new flash process can be triggered.

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

51 / 56

If the timer expires with no receive message the application will be executed.
With this mechanism it is now possible to flash an application, which had been set
valid erroneously.
The disadvantage is that the startup time will be longer (watchdog).

7.4 FlashSegmentSize
The Flash Segment Size is a configurable parameter in the Flash Tool.

FlashSegment-
Size gives the
minimal size of
the data in bytes
which the
CANflasher can
write to at once.
Thus at least this
much data must
be written
simultaneously.
The size of
FlashSegment-
Size depends on
your hardware.

When you are modifying the FlashSegmentSize, enter the smallest segment of
flash memory that can be programmed by the Flash Bootloader (hardware
dependent information [#hw_size]).
In other words, a block must start at the beginning of a flash segment, for Flash
Bootloader to write to it. This specification depends on your hardware. The Flash
Tool needs this information in order to optimize the write process. The tool must
optimize exactly if area boundaries do not fall on flash block boundaries.
Enter the value for your Segment Size in the flash tool in the Flash File window.
(See FlashTool Documentation)

7.4.1 Why Does The Tool Have To Know This Block Length?
In the following example let us take a Flash Bootloader that can write a minimum of
64 bytes; this corresponds to 40 in hexadecimal representation.

0 40 80 C0 1000 40 80 C0 100

0 40 80 C0 1000 40 80 C0 100

0 40 80 C0 1000 40 80 C0 100

Area of Application Data Dummy Values
Figure 7-4 Segmenting During Flashing

In the first example the data area to be written to (red) is distributed over 3
consecutive segments and does not start precisely at the beginning of a segment.
The Flash Bootloader then fills this gap with dummy values (gray) and in this way a
segment consisting of 3x64 bytes can be written to memory at once. The gap at the
end will be filled with the values that are already in the flash memory.
In the second example two data segments lay one after the other, but there is a
gap between them. To prevent the Flash Bootloader from having to write to the
segment from 0x80 to 0xC0 twice, it also fills up the gap here and the region up to
the next segment boundary with dummy values, and now a segment with the
length of 4X64 bytes can be written to at once. The gap at the end will be filled with
the values that are already in the flash memory.

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

52 / 56

In the third example two data segments have to be written to here, too, but the gap
between them is greater than one segment. In this case, in order to not have to
write to a completely unused segment, the Flash Bootloader now divides up the
task differently. For this reason the segment between 0x40 and 0x80 remains
empty here.

7.5 Frequently Asked Questions
A list of frequently encountered problems is provided here to facilitate
troubleshooting.

7.5.1 Bootloader Crashes

Q: The Bootloader simply crashes after reset
A: Check if the Bootloader accidentally started the application – check

validity information by setting a breakpoint at ApplFblIsValidApp.

Also verify that the Bootloader and application locate the Application
Vector Table to the same address.

Q: I can start the download but the software crashes when the Flash is

erased
A: The Bootloader may crash for several reasons:

1. The Flash Driver was not correctly copied from ROM to RAM. Check if
the byte-array (flashCode) for the Flash Driver is large enough to hold
it.

1. Check your watchdog routine. Check if the byte-array for the watchdog
function (WDTriggerBuffer) is large enough to hold the watchdog
function.

2. Check that the watchdog trigger function is relocatable.

3. Check the FlashBlock structure in the “fbl_apfb.c” file. Make sure that
the memory area occupied by the Bootloader is excluded from the
FlashBlock structure.

Q: The Flash is erased, but the Bootloader crashes before the application is

downloaded.
A: Check the FlashBlock structure in the “fbl_apfb.c” file. Make sure that the

memory area occupied by the Bootloader is excluded from the
FlashBlock structure.

Q: I can start the Bootloader software but after some time, the Bootloader

crashes

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

53 / 56

A: 4. Check your watchdog routine. Check if the byte-array for the watchdog
function (WDTriggerBuffer) is large enough to hold the watchdog
function.

5. Check that the watchdog trigger function is relocatable.

Disable watchdog for testing purpose.

Q: The Bootloader crashes when programming a specific Logical Block
A: Check the FlashBlock structure in the “fbl_apfb.c” file. Make sure that the

memory area occupied by the Bootloader is excluded from the
FlashBlock structure. Also make sure to exclude non-Flash (RAM,
Registers, EEPROM) areas from the FlashBlock structure.

Q: The Bootloader is cyclically restarted
A: 1. Check your watchdog routine. Check if the hardware watchdog is

serviced correctly. Disable watchdog for testing purpose.

2. Maybe the application was started and didn’t trigger the watchdog.
Check validity information.

Q: I can start the download but sometimes, the transfer is aborted with a

timeout.
A: 1. Check the watchdog timeout and watchdog trigger

2. Check the setting of the FBL_DIAG_TIME_P3MAX and the diagnostic
response timeout of your Tester/the Flash programming tool. The
Bootloader must transmit cyclic “Response Pending” messages on the
bus. You may check this with a CANoe/CANalyzer tool.

7.5.2 Application Is Not Started

Q: I can download the application, but after a reset the Bootloader is still
active

A: There could be different reasons for this:

 Check the validity information. Set a breakpoint in ApplFblIsValidApp
and verify it. Did you download all necessary parts of the application?

Q: When I download the application for the first time and restart the ECU, the

application is running. If I reprogram the application, the Bootloader is
active after reset.

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

54 / 56

A: Check if the reprogramming flag for the Bootloader is correctly reset after
starting the Bootloader.

7.5.3 Bootloader Is Not Started

Q: I can download the application and the application is running, but I cannot
reprogram the application

A: Check if the reprogramming flag for the Bootloader is set.

7.5.4 The Flash Tool's Error Codes
Q: How can I interpret the error codes of the Flash Tool?
A: Find the error code that occurred during flashing from the table in

fbl_diag.h to be help narrow down your search for the cause.

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

User Manual Flash Bootloader

2 / 56

8 Index

ApplFblInit... 51

ApplFblInvalidateApp...................... 19, 20, 41

ApplFblIsValidApp 18, 19, 20, 40

ApplFblValidateApp 19, 20, 42

ApplFblWDInit... 51

Bootloader . 11, 12, 13, 14, 17, 18, 19, 20, 21,
25, 26, 33, 36, 38, 40, 42, 46, 47, 51, 53,
54

Call-Back Functions

ApplFblStartup.. 40

Call-Back Functions

AplFblWDTrigger.................................... 38

ApplCanParamInit 38

ApplFblFlashBlockNotFound.................. 38

ApplFblInit... 38

ApplFblInvalidateBlock 38

ApplFblIsValidApp 38

ApplFblResetVfp 38

ApplFblSetVfp .. 38

ApplFblStartup.. 38

ApplFblTask ... 38

ApplFblWDInit .. 38

ApplFblWDLong 38

ApplFblWDShort..................................... 38

ApplTrcvrNormalMode 38

FBL_MTAB ... 23

Flash Tool ... 11

Flashcode ... 19

Flashing... 13

FlashSegmentSize...................................... 53

Initializing .. 51

interrupt vector tables.................................. 25

Interrupt Vector Tables 25

Invalidate...19, 21, 22

IsValid ...19, 21, 22

KWP2000 .. 13

Label Reference File................................... 26

Module Table .. 23

Motivation.. 3

Proposal ..21, 22, 24

RAM .. 15, 19

Reset...18, 26, 46

Segment Boundary 53

Step... 46, 47

The Interrupt Vector Table 44

valid...19, 20, 21, 22

Validate ...19, 21, 22

Validation Area..........................19, 20, 21, 22

validity ... 20, 21

vectortable.c.. 44

Watchdog40, 42, 43, 51

ApplFblWDTrigger 48

FblCopyWatchdog 49

FblLookForWatchdog 48

Watchdogs .. 40, 49

WDTimer ... 51

©2006, Vector Informatik GmbH Version: 2.7
 based of template version 2.0

	1 Welcome to the Flash Bootloader User Manual
	Beginners with Flash Bootloader start here ?
	1.2 For Advanced Users
	1.3 Special topics
	1.4 Documents this one refers to…
	2 About This Document
	2.1 How This Documentation Is Set-Up
	Legend and Explanation of Symbols

	Flashing – An Overall View
	3.1 What Is Flashing?
	3.2 What Happens During Flashing?
	3.3 What Is The Flash Bootloader?
	3.4 Bootloader
	Flash Driver
	3.6 Flash Tool
	3.7 What The Flash Bootloader Does
	3.8 What The Flash Bootloader NOT Does

	4 Flashing – A More Detailed View
	4.1 The Bootloader Is Always Started First
	4.2 Flashing After A Reset
	4.3 Your Application Initiates The Flashing Process
	4.3.1 What might happen?

	4.4 Handling of the Validation Concepts
	4.4.1 Validation Area
	4.4.2 Access to the Validation Area
	4.4.3 ApplFblIsValidApp
	4.4.4 ApplFblValidateApp
	4.4.5 ApplFblInvalidateApp

	4.5 Proposals For Handling The Validation Area
	4.5.1 Proposal A
	4.5.2 Proposal B
	4.5.2.1 The Module Table

	4.5.3 Proposal C

	The Interrupt Vector Tables
	4.7 Label Reference File

	5 FLASHING IN 5 STEPS
	STEP 1 Design The Memory Layout
	STEP 2 Write A Test Application
	STEP 3 Integrate The Bootloader
	STEP 4 Adapt Your Test Application For The Tester
	STEP 5 Download Your Test Application With The Tester

	 Details of Bootloader Integration Step (STEP 3)
	Bootloader STEP 1 – Extract the files to a folder on your pc
	Bootloader STEP 2 Adjust the marked files to fit your application
	6.2.1 Make… Makefile and make.exe
	6.2.2 fbl_cfg.h - The Configuration File For The Flash Bootloader
	6.2.3 FBL_apxx.C
	6.2.3.1 ApplFblInit
	6.2.3.2 ApplFblCanParamInit
	6.2.3.3 ApplFblIsValidApp
	6.2.3.4 ApplFblStartup
	6.2.3.5 ApplFblWDInit
	ApplTrcvrNormalMode
	6.2.3.7 ApplFblSecuritySeed / Key
	6.2.3.8 ApplFblSetVfp
	6.2.3.9 ApplFblInvalidateApp
	ApplFblFlashBlockNotFound
	ApplFblValidateApp
	ApplFblResetVfp
	6.2.3.13 ApplFblWDLong
	ApplFblWDShort
	ApplFblWDTrigger

	6.2.4 Fbl_vect.c / Applvect.c(.h) - The Interrupt Vector Tables

	Bootloader STEP 3 Now compile the Flash Bootloader
	Bootloader STEP 4 Transfer the Bootloader to the target hardware
	Bootloader STEP 5 Use the Flash Tool to Test the Bootloader
	Bootloader STEP 6 – Test the flashing after a reset
	Bootloader Step 7 – Make your application ready for the transition to the Bootloader
	Bootloader Step 8 – Start Bootloader from your application

	7 Background Information
	7.1 The Watchdog
	7.1.1 Initializing The Watchdog

	7.2 Multiple ECU Support
	7.3 Validation Ok – Application Faulty
	7.4 FlashSegmentSize
	7.4.1 Why Does The Tool Have To Know This Block Length?

	7.5 Frequently Asked Questions
	7.5.1 Bootloader Crashes
	7.5.2 Application Is Not Started
	7.5.3 Bootloader Is Not Started
	7.5.4 The Flash Tool's Error Codes

	8 Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

