
UQLAB USER MANUAL

THE INPUT MODULE

C. Lataniotis, S. Marelli, B. Sudret

CHAIR OF RISK, SAFETY AND UNCERTAINTY QUANTIFICATION

STEFANO-FRANSCINI-PLATZ 5
CH-8093 ZÜRICH

Risk, Safety &
Uncertainty Quantification

How to cite UQLAB

S. Marelli, and B. Sudret, UQLab: A framework for uncertainty quantification in Matlab, Proc. 2nd Int. Conf. on
Vulnerability, Risk Analysis and Management (ICVRAM2014), Liverpool, United Kingdom, 2014, 2554-2563.

How to cite this manual

C. Lataniotis, S. Marelli and B. Sudret, UQLab user manual – The Input module, Report UQLab-V1.1-102, Chair of
Risk, Safety & Uncertainty Quantification, ETH Zurich, 2018.

BIBTEX entry

@TechReport{UQdoc 11 102,
author = {Lataniotis, C. and Marelli, S. and Sudret, B.},
title = {{UQLab user manual -- INPUT module}},
institution = {Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich},
year = {2018},
note = {Report # UQLab-V1.1-102},
}

Document Data Sheet

Document Ref. UQLAB-V1.1-102
Title: UQLAB User Manual – The Input module

Authors: C. Lataniotis, S. Marelli, B. Sudret
Chair of Risk. Safety and Uncertainty Quantification, ETH Zurich,
Switzerland

Date: 01/07/2018

Doc. Version Date Comments
V1.1 01/07/2018 UQLAB V1.1 release

• New section in the reference list about uq subsample

V1.0 01/05/2017 UQLAB V1.0 release
• New distributions: triangular, logistic, Laplace
• Updated custom distributions section
• Updated description of several functions

V0.9 01/07/2015 Initial release

Abstract

The UQLAB INPUT module is used to define the probabilistic input model in uncertainty

quantification problems. It offers extensive possibilities to perform operations like drawing

samples of random vectors, or transforming samples of random vectors to samples of dif-

ferent random vectors (isoprobabilistic transforms). The dependence structure between the

components of random vectors is specified with the copula formalism.

This user manual includes a review of the methods that are used to define, draw and trans-

form samples of random vectors. It also contains information about each of the available

probability distributions that can be used in the current version of UQLAB. After introducing

the theoretical aspects, an in-depth example-driven user guide is provided to help new users

to properly set up and use the INPUT module objects. Finally, a comprehensive reference list

of the methods and functions available in the UQLAB INPUT module is given at the end of the

manual.

Keywords: Probabilistic Input Model, Marginals, Copula, Sampling

Contents

1 Theory 1

1.1 Introduction . 1

1.2 Representation of common univariate distributions 1

1.2.1 Uniform distribution . 3

1.2.2 Gaussian (Normal) . 4

1.2.3 Lognormal distribution . 5

1.2.4 Gumbel distribution . 5

1.2.5 Gumbel-min distribution . 6

1.2.6 Weibull distribution . 8

1.2.7 Gamma distribution . 9

1.2.8 Exponential distribution . 10

1.2.9 Beta distribution . 11

1.2.10 Triangular distribution . 12

1.2.11 Logistic distribution . 13

1.2.12 Laplace distribution . 14

1.3 Truncated distributions . 15

1.4 Representation of random vectors and joint PDFs 15

1.4.1 Marginals and copula . 15

1.4.2 Copulas currently available in UQLAB 16

1.5 Sampling random vectors . 18

1.5.1 Isoprobabilistic transform of independent marginals 18

1.5.2 Generalized Nataf transform . 18

1.5.3 Sampling multivariate distributions with the inverse generalized Nataf

transform . 19

2 Usage 21

2.1 Drawing samples from a distribution . 21

2.1.1 Introductory example . 21

2.1.2 Special cases of distributions . 22

2.1.3 Using a copula . 23

2.1.4 Selecting an INPUT object and specifying the sampling method 24

2.2 Enrichment of an experimental design with new samples 26

2.3 Performing an isoprobabilistic transform . 27

2.4 Adding bounds . 27

2.5 Switching between input objects . 28

2.6 Defining and using custom marginals . 29

2.6.1 Advanced options . 30

2.7 Constant variables . 30

3 Reference List 33

3.1 Creating an INPUT object: uq_createInput 35

3.2 Getting samples from an INPUT object: uq_getSample 38

3.3 Printing/Visualizing an INPUT object . 39

3.3.1 Printing information: uq_print . 39

3.3.2 Graphical visualization: uq_display 39

3.4 Enriching an existing sample set . 41

3.4.1 Enriching a Latin Hypercube: uq_enrichLHS 41

3.4.2 Enriching a Sobol sequence: uq_enrichSobol 41

3.4.3 Enriching a Halton sequence: uq_enrichHalton 42

3.4.4 Pseudo-LHS enrichment: uq_LHSify 43

3.5 Sub-sampling an existing sample set: uq_subsample 44

3.6 Transforming samples between spaces . 45

3.6.1 uq_GeneralIsopTransform . 45

3.6.2 uq_IsopTransform . 45

3.6.3 uq_NatafTransform . 46

3.6.4 uq_invNatafTransform . 46

3.7 Additional functions . 48

3.7.1 uq_sampleU . 48

3.7.2 uq_MarginalFields . 49

3.7.3 uq_estimateMoments . 49

3.7.4 uq_setDefaultSampling . 50

References . 52

Chapter 1

Theory

1.1 Introduction

Identification and modelling of the sources of uncertainty are crucial steps for the solution

of any uncertainty quantification problem. In a probabilistic setting, each uncertain model

parameter can be represented by a random variable and a corresponding probability density

function (PDF) in the formX ∼ fX(x). Several input parameters, including their dependence

structure, can be grouped together in a random vector with joint PDF X ∼ fX(x). The INPUT

module in UQLAB offers a suite of tools to handle the representation, transformation and

sampling of a wide variety of PDFs and joint PDFs.

1.2 Representation of common univariate distributions

A random variable can be represented by its univariate PDF X ∼ fX(x). UQLAB supports a

number of distributions employed in many fields of applied sciences, namely:

• Uniform

• Normal or Gaussian

• Lognormal

• Gumbel (maxima)

• Gumbel (minima)

• Beta

• Gamma

• Exponential

• Weibull

• Triangular

1

UQLAB User Manual

• Logistic

• Laplace

In this section, a brief overview of each distribution and its properties (e.g.PDF, cumulative

distribution function, support, moments,parameters) is given for reference.

UQLAB-V1.1-102 - 2 -

The Input module

1.2.1 Uniform distribution

Uniform distributions are commonly used to represent variables with unknown moments and

known support. The uniform distribution is the maximum entropy distribution on any closed

support.

Notation : X ∼ U (a, b)

Parameters : a, b ∈ R ; a < b

Support : DX = [a, b]

PDF : fX(x) =
1[a,b] (x)

b− a
=

{
1
b−a if x ∈ [a, b]

0 if x /∈ [a, b]

CDF : FX(x) =
x− a
b− a

1[a,b] (x) =


0 if x ≤ a
x−a
b−a if x ∈ [a, b]

1 if x ≥ b

Moments : µX =
a+ b

2

σX =
b− a
2
√

3

-2 -1 0 1 2
0

0.2

0.4

0.6

0.8

1

1.2

-2 -1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1: PDF and CDF of uniform distributions for various parameter values.

A particularly important uniform distribution in the field of numerical statistics isX = U(0, 1).

In fact, every class of random number generators produces samples from this PDF (or its

multidimensional version), which are then manipulated to produce samples distributed ac-

cording any other distribution as needed. For details, see Section 1.5.3.

UQLAB-V1.1-102 - 3 -

UQLAB User Manual

1.2.2 Gaussian (Normal)

Gaussian distributions are another basic family of PDF that are pervasive throughout any

fields of applied science. They are commonly employed to represent measurement error,

noise terms etc..

Notation : X ∼ N (µ, σ)

Parameters : µ ∈ R , σ > 0

Support : DX = R

PDF : fX(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2

CDF : FX(x) =
1

2

[
1 + erf

(
x− µ
σ
√

2

)]
= Φ

(
x− µ
σ

)
Moments : µX = µ

σX = σ

where µ is the mean, σ2 the variance and erf(·) is the error function, defined by:

erf(x) =
2√
π

∫ x

0
e−t

2
dt (1.1)

-1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

-1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: PDF and CDF of Gaussian distributions for various parameter values.

An important distribution belonging to the normal family is the so-called standard normal
distribution N (0, 1), characterized by µ = 0, σ = 1. The notation Φ(x) is used to identify the

standard normal CDF:

UQLAB-V1.1-102 - 4 -

The Input module

Φ(x) =

x∫
−∞

e−t
2/2

√
2π

dt (1.2)

All normal distributions can be represented as linear transforms of standard normal distribu-

tions as follows:

N (µ, σ) = µ+ σN (0, 1) (1.3)

1.2.3 Lognormal distribution

A lognormal variable is a random variableX ∼ LN (λ, ζ) such that its logarithm is a Gaussian

variable:

X ∼ LN (λ, ζ)⇔ ln(X) ∼ N (λ, ζ) (1.4)

Notation : X ∼ LN (λ, ζ)

Parameters : λ ∈ R , ζ > 0

Support : DX = (0,+∞)

PDF : fX(x) =
1√

2πζx
exp

(
−(ln x− λ)2

2ζ2

)

CDF : FX(x) =
1

2
+

1

2
erf
(

ln x− λ√
2ζ

)
= Φ

(
lnx− λ

ζ

)
Moments : µX = eλ+ζ

2/2

σX = eλ+ζ
2/2
√
eζ2 − 1

where λ and ζ are the mean and standard deviation of the natural logarithm of the variable
and the error function is defined in Eq. (1.1).

Lognormal distributions are commonly used in Engineering to describe parameters which are

positive in nature, such as material or physical properties. An important property of lognor-

mally distributed variables is that their products and ratios are also lognormally distributed.

1.2.4 Gumbel distribution

The Gumbel distribution is also referred to as Extreme Value distribution of type I (EV I). Note

that in the literature the name ’Gumbel distribution’ is used to refer to either the maximum

or the minimum extreme value distribution. In UQLAB “Gumbel” refers to the maximum

UQLAB-V1.1-102 - 5 -

UQLAB User Manual

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3: PDF and CDF of lognormal distributions for various parameter values.

Gumbel distribution .

Notation : X ∼ G (µ, β)

Support : DX = R

Parameters : µ ∈ R , β > 0

PDF : fX(x) =
1

β
e
−x−µ

β
−e−

x−µ
β

CDF : FX(x) = e−e
−x−µ

β

Moments : µX = µ+ βγe

where γe = 0.577216 . . . is the Euler constant

σX =
πβ√

6

Note that parameter µ coincides with the mode of the distribution.
The Gumbel distribution is used for modelling random variables obtained as the maximum of

identically distributed variables. It is used for instance in hydrology to model flood intensity.

1.2.5 Gumbel-min distribution

The Gumbel-min is also referred to as the Smallest Extreme Value (SEV) distribution or the

Smallest Extreme Value (Type I) distribution.

UQLAB-V1.1-102 - 6 -

The Input module

-1 0 1 2 3 4 5
0

0.5

1

1.5

2

-1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: PDF and CDF of Gumbel maximum extreme value distributions for various param-
eter values.

Notation : X ∼ G (µ, β)

Parameters : µ ∈ R , β > 0

Support : DX = R

PDF : fX(x) =
1

β
e
x−µ
β

+e
−x−µ

β

CDF : FX(x) = 1− e−e
−x−µ

β

Moments : µX = µ− βγe
where γe = 0.577216 . . . is the Euler constant

σX =
πβ√

6

Note that parameter µ coincides with the mode of the distribution. .

The Gumbel-min distribution’s PDF is skewed to the left, unlike the Gumbel-max which is

skewed to the right (see Figures 4 and 5).

UQLAB-V1.1-102 - 7 -

UQLAB User Manual

-1 0 1 2 3 4 5
0

0.5

1

1.5

2

-1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: PDF and CDF of Gumbel-min extreme value distributions for various parameter
values.

1.2.6 Weibull distribution

The Weibull distribution is the last type of extreme-value distributions. It is commonly em-

ployed to parametrize time-to-failure-type variables.

Notation : X ∼ W (α, β)

Parameters : α > 0 , β > 0

Support : DX = [0,+∞)

PDF : : fX(x) =

{
β
α

(
x
α

)β−1
e−(x/α)

β

if x ≥ 0
0 , x < 0

CDF : : FX(x) =

{
1− e−(x/α)

β

if x ≥ 0
0 if x < 0

Moments : µX = αΓ (1 + 1/β)

σX = α

√
Γ (1 + 2/β)− Γ (1 + 1/β)2

Other uses of the Weibull distribution include the parametrization of strength or strength-

related lifetime parameters, material strength and lifetime parameters for brittle materials

(for which the weakest-link-theory is applicable).

UQLAB-V1.1-102 - 8 -

The Input module

0 1 2 3 4
0

0.5

1

1.5

2

2.5

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6: PDF and CDF of Weibull distributions for various parameter values.

1.2.7 Gamma distribution

The Gamma distribution may be used to model variables which are positive in nature, such as

those connected to Poisson processes. Assuming events occur randomly in time in a Poisson

process at a constant rate λ, the time to first occurrence follows an exponential distribution

Γ(λ, 1). The time to k-th occurrence follows a Gamma distribution Γ(λ, k).

Notation : X ∼ Γ (λ, k)

Parameters : λ > 0 , k > 0

Support : DX = [0,+∞)

PDF : fX(x) =
λk

Γ(k)
xk−1e−λx

CDF : FX(x) =
γ (k, λx)

Γ(k)

Moments : µX =
k

λ

σX =

√
k

λ

where Γ(x) is the Gamma function defined by

Γ(x) =

∫ ∞
0

tx−1e−tdt (1.5)

UQLAB-V1.1-102 - 9 -

UQLAB User Manual

and γ(x, y) is the incomplete Gamma function defined by

γ(k, x) =

∫ x

0
tk−1e−tdt (1.6)

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7: PDF and CDF of Gamma distributions for various parameter values.

A special case of Gamma distribution is X ∼ Γ(λ, 1), which corresponds to the exponential

distribution (see Section 1.2.8).

1.2.8 Exponential distribution

A special case of the Gamma distribution, the exponential distribution is commonly used to

represent the time to first-occurrence of Poissonian-type processes, e.g. radioactive decays.

Notation : X ∼ E (λ)

Parameters : λ > 0

Support : DX = [0,+∞)

PDF : fX(x) = λe−λx

CDF : FX(x) = 1− e−λx

Moments : µX = 1/λ

σX = 1/λ

where λ > 0 is the scale parameter.

The Exponential distribution is also used to model the waiting times in queuing problems

(e.g.for load balancing applications in large computational facilities).

UQLAB-V1.1-102 - 10 -

The Input module

0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8: PDF and CDF of exponential distributions for various parameter values.

1.2.9 Beta distribution

The Beta distribution commonly used to model bounded variables.

Notation : X ∼ B (r, s, a, b)

Parameters : r > 0 , s > 0

Support : DX = [a, b]

PDF : : fX(x) =

{
(x−a)r−1(b−x)s−1

(b−a)r+s−1B (r, s)
if x ∈ [a, b]

0 if x /∈ [a, b]

CDF : : FX(x) =


0 if x ≤ a

1

(b−a)r+s−1B(r, s)

∫ x
a (t− a)r−1 (b− t)s−1 dt if x ∈ [a, b]

1 if x ≥ b
Moments : µX = a+ (b− a)r/(r + s)

σX =
b− a
r + s

√
r s

r + s+ 1

where B (r, s) is the Beta function:

B(r, s) =

∫ 1

0
tr−1(1− t)s−1dt =

Γ(r)Γ(s)

Γ(r + s)
(1.7)

The range of the variable is given by the parameters [a, b]. The shape of the distribution is

related to parameters [r, s] and their ratio:

• When r = s the PDF is symmetrical;

• If r, s > 1 the PDF is unimodal;

• if r, s < 1 the PDF is maximum at the boundaries.

UQLAB-V1.1-102 - 11 -

UQLAB User Manual

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 9: PDF and CDF of Beta distributions for various parameter values (DX = [0, 1]).

1.2.10 Triangular distribution

Notation : X ∼ Tr(a, b, c)

Parameters : a ∈ R , a < b , a < c < b

Support : DX = [a, b]

PDF : fX(x) =



0 if x ≤ a
2(x−a)

(b−a)(c−a) if x ∈ (a, c)
2
b−a if x = c

2(b−x)
(b−a)(c−a) if x ∈ (c, b)

0 if x ≥ b

CDF : FX(x) =


0 if x ≤ a

(x−a)2
(b−a)(c−a) if x ∈ (a, c]

1− (b−x)2
(b−a)(b−c) if x ∈ (c, b)

1 if x ≥ b

Moments : µX =
a+ b+ c

3

σX =

√
a2 + b2 + c2 − ab− ac− bc

3
√

2

The triangular distribution is typically used as a subjective description of a population for

which there is only limited sample data. It is based on knowledge of the minimum and

maximum and an “inspired guess” of the modal value.

UQLAB-V1.1-102 - 12 -

The Input module

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 10: PDF and CDF of triangular distributions for various parameter values.

1.2.11 Logistic distribution

The logistic distribution resembles the normal distribution in shape but has heavier tails

(higher kurtosis).

Notation : X ∼ P (µ, s)

Parameters : µ ∈ R , s > 0

Support : DX = R

PDF : fX(x) =
e−

x−µ
s

s(1 + e−
x−µ
s)2

CDF : FX(x) =
1

1 + e−
x−µ
s

Moments : µX = µ

σX =
sπ√

3

UQLAB-V1.1-102 - 13 -

UQLAB User Manual

-10 0 10 20
0

0.05

0.1

0.15

0.2

0.25

0.3

-10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 11: PDF and CDF of logistic distributions for various parameter values.

1.2.12 Laplace distribution

Laplace distribution is also known as double exponential distribution, because it can be

thought of as two exponential distributions (with an additional location parameter) spliced

together back-to-back.

Notation : X ∼ L(µ, b)

Parameters : µ ∈ R , b > 0

Support : DX = R

PDF : fX(x) =
1

2b
exp

(
− |x− µ|

b

)

CDF : FX(x) =


1
2 exp

(
x−µ
b

)
if x < µ

1− 1
2 exp

(
− x−µ

b

)
if x ≥ µ

Moments : µX = µ

σX = b
√

2

UQLAB-V1.1-102 - 14 -

The Input module

-20 -10 0 10 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-20 -10 0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 12: PDF and CDF of Laplace distributions for various parameter values.

1.3 Truncated distributions

A truncated distribution results from restricting the domain of some probability distribution.

Assume that a random variable X follows some distribution with CDF FX(X). Of interest in

this section is the derivation of the CDF, F ′X and inverse CDF, F ′−1X of the random variable X

after limiting the support to X ∈ [a, b].

The derivation of these quantities is given below:

F ′X(X) =


0 , X ≤ a

FX(X)−FX(a)
FX(b)−FX(a) , a < X < b

1 , X ≥ b
(1.8)

F ′−1X (u) =


a , u = 0

F−1X (FX(a) + u (FX(b)− FX(a))) , 0 < u < 1
b , u = 1

(1.9)

A practical example for specifying truncated distributions is given in Section 2.4.

1.4 Representation of random vectors and joint PDFs

1.4.1 Marginals and copula

A natural extension of the univariate random variables case to the multivariate random vec-

tors case is the introduction of multivariate joint-PDFs. Within the UQLAB framework, joint

CDFs are represented by means of the copula formalism (Nelsen, 2006). Copulas are a pow-

erful tool to provide a simple representation of multivariate distributions by separating the

univariate distributions of each component of a random vector (marginals) from their depen-

UQLAB-V1.1-102 - 15 -

UQLAB User Manual

dence structure (copula). At the basis of the copula formalism lies Sklar’s theorem:

FX(x) = C(FX1(x1), FX2(x2), ..., FXM (xM)) (1.10)

where X = {X1, . . . , XM} is theM -dimensional input random vector with joint CDF FX(x),

FXi(xi) is the i-th input marginal and C(·) is a function that describes the dependence struc-

ture between the M input variables. From (1.10) the joint PDF is obtained by differentiation:

fX(x) =
M∏
i=1

fXi(xi) · c (FX1(x1), . . . , FXM (xM)) (1.11)

where c(·) is the copula density function obtained as

c(u1, . . . , uM) =
∂MC(u1, . . . , uM)

∂u1, . . . , ∂uM
. (1.12)

Sklar’s theorem states that any joint PDF FX can be expressed in terms of its marginal distri-

butions FXi(xi) and some additional function, the copula, that represents their dependence.

This framework is ideal for uncertainty quantification in scientific applications. Indeed it is

often the case that marginal distributions as well as some form of correlation measure be-

tween variables are known or inferred from available data, but no clear information about

the correlation structure is readily available.

A detailed description of the copula formalism and of the plethora of available copulas and

copula families is outside the scope of this manual. The reader is referred to Nelsen (2006)

for more details and relevant literature.

1.4.2 Copulas currently available in UQLAB

The UQLAB framework currently supports two different copulas to represent dependence

between variables, namely the independent, and Gaussian copulas. They are characterized

as follows:

1. Independent copula:

C(u1, . . . , uM) =
M∏
i=1

ui (1.13)

By substituting Eq. (1.13) in (1.10), it is clear that it corresponds to the case in which

the components of the input random vector are independent. Indeed:

FX(x) = C(FX1(x1), . . . , FXM (xM)) =

M∏
i=1

FXi(xi), (1.14)

consequently the independent copula density is simply c(u1, . . . , uM) = 1. A graphical

representation of the uniform copula density is given for reference in Figure 13.

UQLAB-V1.1-102 - 16 -

The Input module

Figure 13: Independent copula: scatterplot (a), contour plot (b) and 3D-view (c) of the
copula density c(u1, u2).

2. Gaussian copula:

C(u1, . . . , uM ; R) = ΦM

(
Φ−1(u1), . . . ,Φ

−1(uM); R
)

(1.15)

where R is the linear correlation matrix of the multivariate Gaussian distribution asso-
ciated with the Gaussian copula, ΦM (u; R) is the cumulative distribution function of an

M -variate Gaussian distribution with mean 0 and correlation matrix R and Φ−1(ui) is

the inverse cumulative distribution function of the standard normal distribution.

The Gaussian copula is one of the most commonly used copulas to parametrize the

dependence structure of random vectors with known marginals. If all the marginals as

well as the copula are Gaussian, the resulting joint PDF is also a multivariate normal

distribution with correlation matrix R. Another important property of the Gaussian

copula is that a random vector with Gaussian copula and diagonal correlation matrix R

has independent components.

The Gaussian copula is asymptotically independent in both upper and lower tails. This

means that no matter how high the parameter correlation coefficient Rij is, there will

be no tail dependence (see Nelsen (2006) for details).

A graphical representation of the Gaussian copula is given for reference in Figure 14.

Figure 14: Gaussian copula: scatter plot (a), contour plot (b) and 3D-view (c) of the copula
density c(u1, u2).

UQLAB-V1.1-102 - 17 -

UQLAB User Manual

1.5 Sampling random vectors

In most uncertainty quantification applications, sampling the input vectors is as important

as properly represent them. However, most of the existing random sampling strategies (e.g.

Monte Carlo sampling, latin hypercube sampling (LHS), pseudorandom sequences, etc.) pro-

duce samples in the unit hypercube distributed according to X ∼ U([0, 1]M). Amongst the

many strategies available to generate samples distributed according to a specific PDF FX ,

UQLAB approaches the problem in terms of isoprobabilistic transforms. An isoprobabilistic

transform is a map of the form (Lebrun and Dutfoy, 2009):

X = T (U) s.t. X ∼ FX , U ∼ FU (1.16)

or, in other words, it is a change of variables that transforms a sample of random vector

U ∼ FU into a sample of random vector X ∼ FX . Of particular interest for sampling

purposes is the transform between the unit hypercube U ∼ U([0, 1]M), and any other random

vector with joint distribution FX .

In the following, isoprobabilistic transforms will be derived for the purposes of sampling

independent random vectors as well as random vectors with Gaussian copula.

1.5.1 Isoprobabilistic transform of independent marginals

Consider a sampling of size N of the unit hypercube Z =
{
u(1), . . . ,u(N)

}
∼ U([0, 1]M).

Due to the independence between the components of the random vector X ∼ FX , a simple

isoprobabilistic transform can be used to transform Z into X =
{
x(1), . . . ,x(N)

}
∼ FX :

x
(i)
j = F−1Xj

(u
(i)
j) (1.17)

where F−1Xj
denotes the inverse CDF of the j-th marginal of the random vector X.

1.5.2 Generalized Nataf transform

In the case of dependent variables, several extra steps are needed to properly transform

a sample from the unit hypercube to the desired joint PDF. A powerful tool is given by the

generalized Nataf transform (Lebrun and Dutfoy, 2009). Given Sklar’s theorem in Eq. (1.10),

it follows that that a sample Z from a random vector X ∼ FX(x) can be obtained from

a sample of the underlying copula C =
{
c(1), . . . , c(N)

}
with a component-by-component

isoprobabilistic transform similar to that in Eq. (1.17):

x
(i)
j = F−1Xj

(c
(i)
j) (1.18)

where F−1Xj
denotes the inverse CDF of the j-th marginal of the random vector X. Moreover,

the underlying copula distribution is a multivariate Gaussian. An important property of the

Gaussian copula is that it is elliptical, which means that an isoprobabilistic transform exist

that maps samples from an elliptical copula with correlation matrix R to the same copula

UQLAB-V1.1-102 - 18 -

The Input module

with identity correlation matrix I (uncorrelated components). Such transform has the form:

U = Γ−1V (1.19)

where U is a sample from the elliptical copula with identity correlation matrix, V is a sample

from the same copula but with correlation matrix R and Γ−1 is the inverse Cholesky factor

of R = ΓΓT. Note that this property is well known for multivariate Gaussian distributions.

With these ingredients it is possible to define the so-called generalized Nataf transform:

U = T GN (X), (1.20)

where U ∼ N (0, I) (standard normal space) for the Gaussian copula, as follows:

1. X 7→W = [FX1(X1), . . . , FXM (XM)]T

2. W 7→ V =
[
E−1(W1), ..., E

−1(WM)
]T

3. V 7→ U = Γ−1 V

where W is a sample of the copula with correlation matrix R, V is a sample of the multivari-

ate elliptical distribution with correlation matrix R that generates the copula , E−1 = Φ−1 for

the Gaussian copula and Γ−1 is the inverse Cholesky factor of R. The Nataf transform first

transforms any sample of the input random vector into a sample of the underlying copula. It

then transforms the copula into the desired multivariate standard elliptical distribution with

correlation matrix R and finally decorrelates it via Eq. (1.19).

1.5.3 Sampling multivariate distributions with the inverse generalized Nataf
transform

An important property of the transform in Section 1.5.2 is that it is invertible. It then be-

comes clear how it can be used for efficient sampling of multivariate distributions in conjunc-

tion with random number generators that generate samples in the uniform unit hypercube

Z = U([0, 1]M). Given a sample of the uniform unit hypercube Z =
{
z(1), . . . ,z(N)

}
, one

can obtain a sample from the desired random vector X ∼ FX(x) with arbitrary marginals

FX1(x1), . . . , FXM (xM) and elliptic copula C(U) as follows:

1. Z 7→ U ∼ FE(u) [Generate samples from the standard elliptical distribution]

2. U 7→ V = Γ−1U [Correlate the samples]

3. V 7→W = [E(V1), ..., E(VM)]T [Transform into a sample of the underlying copula]

4. W 7→X =
[
F−1X1

(X1), . . . , F
−1
XM

(XM)
]T

[Transform into FX(x)]

The implementation of the first step of this algorithm depends on the actual copula chosen.

In case of Gaussian copula it can be easily achieved directly with Eq. (1.17).

UQLAB-V1.1-102 - 19 -

Chapter 2

Usage

2.1 Drawing samples from a distribution

2.1.1 Introductory example

Let us consider a Gaussian vector X = [X1, X2]
T with independent components. The mean

value and standard deviation of X1 (resp. X2) are µ1 = 1, σ1 = 1 (resp. µ2 = 2, σ2 = 0.5).

In UQLAB an INPUT object is created by defining the list of marginal distributions and the

copula that connects these marginals to form the joint distribution.

uqlab;
Input.Marginals(1).Type = 'Gaussian';
Input.Marginals(1).Parameters = [1 1];
Input.Marginals(2).Type = 'Gaussian';
Input.Marginals(2).Moments = [2 0.5];
myInput1 = uq_createInput(Input);

Note that each marginal distribution can be defined either from its parameters or moments

(but not from both). By default the input variables are assumed independent in UQLAB. In

this case there is no need to define a copula. This can be however done explicitly by typing

(before using uq_createInput):

Input.Copula.Type = 'Independent';

When the INPUT object myInput1 is created, all the parameters and moments for all vari-

ables are computed and all possible inconsistencies are checked. In case the parameters and

moments are specified for a given marginal. an error is returned and the script aborts.

Once the INPUT object myInput1 has been created, a report can be produced as follows:

uq_print(myInput1)

Input object name: Input 1
Dimension(M): 2

Marginals:
Index | Name | Type | Parameters | Moments
===
1 | X1 | Gaussian | 1.000e+00, 1.000e+00 | 1.000e+00, 1.000e+00
2 | X2 | Gaussian | 2.000e+00, 5.000e-01 | 2.000e+00, 5.000e-01

21

UQLAB User Manual

Copula:
Type: Independent

For visual inspecting an INPUT object the function uq_display can be used as follows:

uq_display(myInput1)

The result is shown in Figure 15.

X1
-2 -1 0 1 2 3 4

X
2

0.5

1

1.5

2

2.5

3

3.5

Figure 15: The output of the function uq_display on the INPUT object myInput1.

It is possible to draw samples from the INPUT object myInput1 as follows:

X = uq_getSample(300);

Notice that we do not need to define the INPUT object in uq_getSample, because after an

INPUT object is created, if not specified otherwise, it is the one that is going to be used

when calling uq_getSample. Methods to handle different INPUT objects in the workspace

are described in Section 2.5.

The MATLAB standard random number generator is used by default. The result is shown in

Figure 16.

2.1.2 Special cases of distributions

Most of the available (built-in) distributions can be defined similarly to the way a Gaussian

distribution was defined in Section 2.1.1, i.e.either by defining the two parameters of the

distribution or its moments (mean and standand deviation). The meaning of the parameters

is as described in Section 1.2. Some special cases are the following:

• For exponential distribution only one parameter (λ) exists. When such distribution is

defined by its parameters only one element is needed (λ). Additionally when it is

UQLAB-V1.1-102 - 22 -

The Input module

X1

-1 0 1 2 3 4

X
2

1

1.5

2

2.5

3

3.5

Figure 16: Samples drawn from a 2-D Gaussian distribution with independent marginals.
The sampling method is plain Monte Carlo.

defined by its moments only one element is needed again which corresponds to the

mean and standard deviation (that are equal).

• For beta distribution there is the possibility of using four parameters when a custom

support [a, b] needs to be defined. For example, in order to define an element of an

input vector that follows a beta distribution with parameters [r, s] = [1, 2] and support

[a, b] = [0.5, 1.5] we do the following:

Input.Marginals.Type = 'Beta';
Input.Marginals.Parameters = [1, 2, 0.5, 1.5];

Similarly, we can define a beta distribution with moments [µ, σ] = [0.8, 0.2] and support

[a, b] = [0.5, 1.5] as follows:

Input.Marginals.Type = 'Beta';
Input.Marginals.Moments = [0.8, 0.2, 0.5, 1.5];

In this case the two parameters r, s are computed according to the equations in Sec-

tion 1.2.9.

2.1.3 Using a copula

Let us now create another INPUT object where dependency between the marginals is intro-

duced by imposing a Gaussian copula. As discussed in Section 1.4.2, the Gaussian copula

takes as parameter the linear correlation matrix R of the copula, which is assumed to be

UQLAB-V1.1-102 - 23 -

UQLAB User Manual

equal to R =

[
1 0.8

0.8 1

]
(linear correlation coefficient ρ12 = 0.8).

Input.Name = 'Input 2: Dependent marginals' ;
Input.Copula.Type = 'Gaussian';
Input.Copula.Parameters = [1 0.8 ; 0.8 1];
myInput2 = uq_createInput(Input);
X = uq_getSample(300);

X1

-1 0 1 2 3 4

X
2

0.5

1

1.5

2

2.5

3

3.5

Figure 17: Samples drawn from a 2-D Gaussian distribution with a Gaussian copula (corre-
lation coefficient ρ12 = 0.8).The sampling method is plain Monte Carlo.

The resulting samples are plotted in Figure 17. By default the sampling method that is

used is Monte Carlo. Also notice that we can assign custom names to an INPUT object, e.g.
'Input 2: Dependent marginals' in the present case.

2.1.4 Selecting an INPUT object and specifying the sampling method

When handling several INPUT objects in parallel, the last one that has been defined is used

by default for sampling. There are two ways to use a different INPUT object than the last for

sampling:

• Using the function uq_selectInput. For example, drawing 300 samples from the IN-

PUT object myInput1 can be achieved as follows:

uq_selectInput(myInput1);
X = uq_getSample(300);

UQLAB-V1.1-102 - 24 -

The Input module

• Specifying the INPUT object directly in uq_getSample. For example, drawing 300 sam-

ples from the INPUT object myInput1 can be achieved as follows:

X = uq_getSample(myInput1, 300);

When using uq_getSample in order to obtain samples from a random vector, various sam-

pling methods can be used. For instance Latin Hypercube Sampling (McKay et al., 1979) can

be used to sample from the INPUT object myInput2 as follows:

X = uq_getSample(300, 'LHS');

The result is shown in Figure 18. For a list of all the available sampling methods refer to

Table 6 in Section 3.2.

X1

-2 0 2 4

X
2

0.5

1

1.5

2

2.5

3

3.5

4

Figure 18: Samples drawn from a 2-D Gaussian distribution with a Gaussian copula. The
Latin Hypercube sampling method is used.

Advanced options

Instead of using the 'LHS' argument in uq_getSample one could also change the default

sampling method of the INPUT object myInput2 as follows:

uq_selectInput(myInput2);
uq_setDefaultSampling('LHS');

Note that this does not affect other INPUT objects, i.e.the sampling method for myInput1 is

still plain Monte Carlo.

UQLAB-V1.1-102 - 25 -

UQLAB User Manual

2.2 Enrichment of an experimental design with new samples

Enrichment is a functionality that can be used when there is an already existing sample set

(called experimental design in the context of metamodelling) to which more points need to

be added. Starting from where the previous section (Figure 18) left off, assume that we want

to add 700 additional points to the Latin Hypercube (the already existing 300 samples are

stored in X):

Xnew = uq_enrichLHS(X, 700);

X1

-2 0 2 4

X
2

0.5

1

1.5

2

2.5

3

3.5

4
X
Xnew

Figure 19: Enrichment of the LHS samples drawn from a 2-D Gaussian distribution with a
Gaussian copula using uq_enrichLHS. The initial sample set is shown in Figure 18.

Note: uq_enrichLHS only returns the new sample points! The full set can be retrieved
by Xfull = [X;Xnew].

However, uq_enrichLHS should only be used when the initial sample set is generated by

Latin Hypercube sampling. If the initial sample set X was generated, e.g. using plain Monte

Carlo or if its origin is unknown (e.g. because it has been produced by another software)

then the function uq_LHSify must be used. This function enriches the existing sample set in

such a way that it forms a pseudo-Latin Hypercube sampling as a whole. This can be done as

follows:

Xnew = uq_LHSify(X, 700);
Xfull = [X;Xnew];

For enriching an experimental design that was generated by Sobol or Halton sampling the

functions uq_enrichSobol and uq_enrichHalton can be used with a similar syntax. For

more information about the available sample enrichment functions see Section 3.4.

UQLAB-V1.1-102 - 26 -

The Input module

2.3 Performing an isoprobabilistic transform

Isoprobabilistic transforms are implemented in a general fashion in UQLAB. Assume that

we want to map some existing sample X to the standard normal space (e.g. for solving a

reliability problem, see UQLAB User Manual : Structural Reliability, Section 1).

This can be carried out by defining the marginals (here standard normal) and copula (here

independent) of the target vector U .

UMarginals(1).Type = 'Gaussian';
UMarginals(1).Parameters = [0,1];
UMarginals(2).Type = 'Gaussian';
UMarginals(2).Parameters = [0,1];
UCopula.Type = 'Independent';

Then the transformed samples are obtained by:

U = uq_GeneralIsopTransform(X,...
myInput2.Marginals, myInput2.Copula, UMarginals, UCopula);

The original and transformed samples are shown in Figure 20.

X1

-4 -2 0 2 4

X
2

-4

-2

0

2

4

U1

-4 -2 0 2 4

U
2

-4

-2

0

2

4

Figure 20: An isoprobabilistic transform from some physical space (2D Gaussian) to the
standard normal space.

2.4 Adding bounds

Suppose we want to draw samples from an uncorrelated 2D Gaussian distribution with X1

(resp. X2) having mean value µ1 = 1 (resp. µ2 = 3) and standard deviation σ1 = 2 (resp.

σ2 = 2). Additionally X1 is bounded in [−3, 2]:

Input.Marginals(1).Type = 'Gaussian';
Input.Marginals(1).Parameters = [1 2];
Input.Marginals(1).Bounds = [-3 2];
Input.Marginals(2).Type = 'Gaussian';
Input.Marginals(2).Moments = [2 2];

UQLAB-V1.1-102 - 27 -

UQLAB User Manual

myInput3 = uq_createInput(Input);

Now we can draw 300 samples using Latin Hypercube Sampling as follows:

X = uq_getSample(300, 'LHS');

The result is shown in Figure 21.

X1

-4 -2 0 2 4

X
2

-2

0

2

4

6

8

Figure 21: Samples drawn from a 2-D Gaussian distribution with independent marginals and
bounds on X1 ∈ [−3, 2]. The sampling method is Latin Hypercube sampling.

2.5 Switching between input objects

Suppose we want to draw two sample sets:

• 200 Monte Carlo samples from the input vector myInput2 with correlated components.

• 300 LHS samples from the input vector myInput3 with bounded marginal X1.

This is carried out as follows:

uq_selectInput(myInput2);
X2 = uq_getSample(200,'MC');
uq_selectInput(myInput3);
X3 = uq_getSample(300,'LHS');

The two samples are plotted in Figure 22.

UQLAB-V1.1-102 - 28 -

The Input module

X1

-3 -2 -1 0 1 2 3 4

X
2

-5

0

5

10
myInput2
myInput3

Figure 22: Samples drawn from two different cases of a 2-D Gaussian distribution. The INPUT

object myInput2 has dependent marginals and the INPUT object myInput3 has independent
marginals and bounds on X1 ∈ [−3, 2]. The sampling method is Latin Hypercube sampling.

2.6 Defining and using custom marginals

The built-in probability distributions can be found in Table 2 of the Reference List (Section 3)

and a brief description of each in Section 1.2. New distributions can be defined by provid-

ing three files to a folder that is available to the MATLAB path, each corresponding to the

PDF, CDF and inverse CDF respectively. In order to define a new distribution some naming

convention has to be followed. The functions that correspond e.g.to a distribution called

myDistribution should be named as follows:

• PDF function: uq_myDistribution_pdf

• CDF function: uq_myDistribution_cdf

• inverse CDF function: uq_myDistribution_invcdf

The definition of each function should look like:

function f = uq_myDistribution_pdf(X, parameters)

function F = uq_myDistribution_cdf(X, parameters)

function X = uq_myDistribution_invcdf(F, parameters)

In these functions, X and F are vectors of length N and parameters is a vector of doubles

of arbitrary length.

UQLAB-V1.1-102 - 29 -

UQLAB User Manual

In order to use the custom distribution myDistribution we then create an INPUT object as

follows:

Input.Marginals(1).Type = 'myDistribution';
Input.Marginals(1).Parameters = ...
%e t c
myInput = uq_createInput(Input);

2.6.1 Advanced options

In order to fully specify a custom probability distribution a function that calculates the mean

and standard deviation of the distribution given its parameters is required. The following

naming convention should be used in order to specify such function:

function moments = uq_myDistribution_PtoM(parameters)

where parameters is an arbitrary variable that contains the distribution’s parameters and

moments is a vector equal to [µ, σ], that is the mean and standard deviation of the distribu-

tion for the given parameter values.

Note: In case the function uq_myDistribution_PtoM is not provided the moments of
the distribution are estimated numerically. For more information refer to the
uq_estimateMoments function reference (Section 3.7.3). The default values of
the options of uq_estimateMoments are used for estimating the moments.

In addition, the function that calculates the parameters of a user-defined probability distribu-

tion given its moments can be specified in case the ability of specifying the distribution based

on its mean and standard deviation is required. In that case a function of the following form

needs to be created:

function parameters = uq_myDistribution_MtoP(moments)

where moments is a vector equal to [µ, σ], that is the mean and standard deviation of the

distribution and parameters is a vector that contains the distribution’s parameters that

correspond to the given moments.

2.7 Constant variables

Constants form a special variable type that simply corresponds to some constant scalar value.

A constant variable can be specified as follows:

Input.Marginals.Type = 'Constant';
Input.Marginals.Parameters = 1;

In addition, a random variable may be reverted to constant in case its variance is zero. For

example, after creating the following INPUT object:

Input.Marginals(1).Type = 'Gaussian';

UQLAB-V1.1-102 - 30 -

The Input module

Input.Marginals(1).Parameters = [0 1];
Input.Marginals(2).Type = 'Gaussian';
Input.Marginals(2).Parameters = [1 0];
myInput = uq_createInput(Input);

The following warning message is returned:

Warning: Marginal(2).Type changed from Gaussian to constant because
the variance was zero.

Similarly a random variable is reverted to constant in case bounds have been specified with

upper and lower bound being identical. For example, after creating the following INPUT

object:

Input.Marginals(1).Type = 'Gaussian';
Input.Marginals(1).Parameters = [0 1];
Input.Marginals(2).Type = 'Gaussian';
Input.Marginals(2).Parameters = [0 1];
Input.Marginals(2).Bounds = [0 0];
myInput = uq_createInput(Input);

The following warning message is returned:

Warning: Marginal(2).Type changed from Gaussian to constant because
the upper and lower bounds were identical.

UQLAB-V1.1-102 - 31 -

Chapter 3

Reference List

How to read the reference list

Structures play an important role throughout the UQLAB syntax. They offer a natural way

to group configuration options and output quantities semantically. Due to the complexity of

the algorithms implemented, it is not uncommon to employ nested structures to fine-tune

inputs/outputs. Throughout this reference guide, we adopt a table-based description of the

configuration structures.

The simplest case is given when a field of the structure is a simple value/array of values:

Table X: Input

 .Name String A description of the field is put here

which corresponds to the following syntax

Input.Name = 'My Input';

The columns correspond to name, data type and a brief description of each field. At the

beginning of each row a symbol is given to inform as to whether the corresponding field is

mandatory, optional, mutually exclusive, etc. The comprehensive list of symbols is given in

the following table:

 Mandatory
� Optional
⊕ Mandatory, mutually exclusive (only one of

the fields can be set)
� Optional, mutually exclusive (one of them

can be set, if at least one of the group is set,
otherwise none is necessary)

When one of the fields of a structure is a nested structure, we provide a link to a table that

describes the available options, as in the case of the Options field in the following example:

33

UQLAB User Manual

Table X: Input

 .Name String Description

� .Options Table Y Description of the Options
structure

Table Y: Input.Options

 .Field1 String Description of Field1

� .Field2 Double Description of Field2

In some cases an option value gives the possibility to define further options related to that

value. The general syntax would be

Input.Option1 = 'VALUE1' ;
Input.VALUE1.Val1Opt1 = ...;
Input.VALUE1.Val1Opt2 = ...;

This is illustrated as follows:

Table X: Input

 .Option1 String Short description

'VALUE1' Description of 'VALUE1'

'VALUE2' Description of 'VALUE2'

� .VALUE1 Table Y Options for 'VALUE1'

� .VALUE2 Table Z Options for 'VALUE2'

Table Y: Input.VALUE1

� .Val1Opt1 String Description

� .Val1Opt2 Double Description

Table Z: Input.VALUE2

� .Val2Opt1 String Description

� .Val2Opt2 Double Description

Note: In the sequel, double/doubles mean a real number represented in double pre-
cision (resp. a set of such real numbers).

UQLAB-V1.1-102 - 34 -

The Input module

3.1 Creating an INPUT object: uq_createInput

Syntax

myInput = uq_createInput(Input)

Input

The struct variable Input contains the description of the marginal distributions of the input

parameters as well as their dependence through the copula function.

The content of the Input structure is listed in Table 1. 1

Table 1: Input

 .Marginals Table 2 The options regarding the marginals
of the random vector

� .Copula Table 3 The options regarding the copula of
the random vector

� .Name String The name of the object. If not set by
the user, a unique string is
automatically assigned to it, e.g.
'Input 1'.

The options that can be defined under Input.Marginals are given in Table 2. 2

Table 2: Input.Marginals

 .Type String Type of marginal distribution

'Constant' A constant value

'Gaussian' Gaussian distribution (Section 1.2.2)

'Lognormal' Lognormal distribution
(Section 1.2.3)

'Uniform' Uniform distribution (Section 1.2.1)

'Exponential' Exponential distribution
(Section 1.2.8)

'Beta' Beta distribution (Section 1.2.9)

'Weibull' Weibull distribution (Section 1.2.6)

'Gumbel' Gumbel maximum extreme value
distribution (Section 1.2.4)

'GumbelMin' Gumbel minimum extreme value
distribution (Section 1.2.5)

'Gamma' Gamma distribution (Section 1.2.7)

'Triangular' Triangular distribution
(Section 1.2.10)

UQLAB-V1.1-102 - 35 -

UQLAB User Manual

'Logistic' Logistic distribution (Section 1.2.11)

'Laplace' Laplace distribution (Section 1.2.12)

other String A user-defined marginal type
(Section 2.6)

⊕ .Moments variable length Double • Mean and standard
deviation([µ, σ]) of the marginal
distribution
• In case of constants just the
constant value is needed.
• For Beta distribution [µ, σ, a, b] can
be used for defining a custom
support, otherwise it is assumed that
[a, b] = [0, 1]
• For exponential distribution a
single element in .Moments is
needed (both mean and standard
deviation)

⊕ .Parameters variable length Double • The parameters of the marginal
distribution as defined in Section 1.2
• In case of constants just the
constant value is needed.
• For Beta distribution either the
parameters [r, s] can be set (then the
support is assumed to be
[a, b] = [0, 1]) or all [r, s, a, b] can be
set for defining a custom support
[a, b].

� .Bounds 1× 2 Double
default: [-inf, inf]

[Xmin, Xmax] admissible value

Note: Only one of the two fields Input.Marginals.Parameters or
Input.Marginals.Moments can be set by the user for each element of
Input.Marginals. If both fields are specified, an error is returned.

The options that can be defined under Input.Copula are listed in Table 3. 3

Table 3: Input.Copula

 .Type String
default:
'Independent'

Copula type.

'Independent' Independent copula.

'Gaussian Gaussian copula

UQLAB-V1.1-102 - 36 -

The Input module

� .Parameters M ×M Double • For a Gaussian copula it
corresponds to the linear correlation
matrix
• It is not taken into account when
Input.Copula.Type has value
'Independent'

� .RankCorr M ×M Double Spearman correlation matrix
(Gaussian copula only)

Output

After uq_createInput completes its operation a new INPUT object is created that contains

the following fields: 4

Table 4: myInput = uq_createInput(...)

.Name String The name of the INPUT object

.Sampling Struct Information regarding the default and lastly
used sampling method. See Sampling for
contents

.Marginals M × 1 Struct Information regarding the marginals, see
Table 2 for contents

.Copula Struct Information regarding the copula, see Table 3
for contents

.Internal Struct Internal fields that are only of interest for
scientific developers. For more information
refer to the Scientific Developer’s Guide of the
Input module

The structure Sampling contains the following fields : 5

Table 5: myInput.Sampling

.DefaultMethod String
Table 6

The default sampling method

.Method String
Table 6

The current sampling method

UQLAB-V1.1-102 - 37 -

UQLAB User Manual

3.2 Getting samples from an INPUT object: uq_getSample

Syntax

X = uq_getSample(N)
X = uq_getSample(myInput,N)
X = uq_getSample(N,method)
X = uq_getSample(myInput,N,method)
X = uq_getSample(N,method,Name,Value)
X = uq_getSample(myInput,N,method,Name,Value)
X = uq_getSample(...)
[X, U] = uq_getSample(...)

Description

X = uq_getSample(N) returns N samples of a random vector defined in the currently

selected INPUT module using the default sampling method. If not set otherwise by the

user, the default sampling method is 'MC' (Monte Carlo). The user can call the function

uq_setDefaultSampling to change the default sampling method.

X = uq_getSample(myInput,N) returns N samples of the random vector defined in the IN-

PUT object myInput using the default sampling method.

X = uq_getSample(myInput,N,method) returns N samples of a random vector defined in

the currently selected INPUT object using the sampling method defined in method. This is a

string that can take one of the following values: 6

Table 6: method option of uq_getSample
'MC' Monte Carlo
'LHS' Latin Hypercube
'Sobol' Sobol series
'Halton' Halton series

X = uq_getSample(myInput,N,method, Name, Value) allows for specification of addi-

tional Name - Value pairs of options. The supported options are listed in Table 7.

Table 7: Available options of uq_getSample
Name Value Description

method = 'LHS'

'iterations' Integer
default: 5

Maximum number of
iterations to perform in
an attempt to improve the
design. For more
information refer to the
MATLAB function
lhsdesign.

UQLAB-V1.1-102 - 38 -

The Input module

Output

X = uq_getSample(...) returns an N -by-M matrix of the samples of the selected random

vector in the physical space (where M is the dimension of the random vector).

[X, U] = uq_getSample(...) additionally returns an N -by-M matrix (U) of the samples

in the uniform space.

3.3 Printing/Visualizing an INPUT object

UQLAB offers two commands to conveniently print reports containing contextually relevant

information for a given object.

3.3.1 Printing information: uq_print

Syntax

uq_print(myInput);

Description

uq_print(myInput) prints a report about the INPUT object myInput (type, name, param-

eters and moments of each marginal and brief information about the copula).

3.3.2 Graphical visualization: uq_display

Syntax

uq_display(myInput);
uq_display(myInput, idx);
uq_display(myInput, idx, 'marginals');

Description

uq_display(myInput) produces a sample set from the INPUT object myInput. Then it

produces M ×M plots in a single figure. Each plot, indexed by i, j = 1, . . . ,M corre-

sponds to the scatter plot between the i-th and j-th element of the random vector. The

diagonal elements (i.e.when i = j) contain the histogram of the corresponding element

of the random vector. If M = 1 it produces plots of the PDF and CDF of the random

variable instead.

uq_display(myInput, idx) only takes into account the input indices that are contained

in the vector idx. In particular, if idx is a single integer, this command produces plots

of the PDF and CDF of that particular component.

UQLAB-V1.1-102 - 39 -

UQLAB User Manual

uq_display(myInput, idx, 'marginals') only takes into account the input indices

that are contained in the vector idx and regardless of its size, it produces plots of the

PDF and CDF of each component.

Examples

uq_display(myInput, [1 3]) will display the plots only for the first and third element of

the random vector that is described by myInput.

UQLAB-V1.1-102 - 40 -

The Input module

3.4 Enriching an existing sample set

3.4.1 Enriching a Latin Hypercube: uq_enrichLHS

Syntax

X1 = uq_enrichLHS(X0, N)
X1 = uq_enrichLHS(X0, N, myInput)
[X1, U1] = uq_enrichLHS(...)

Input

X1 = uq_enrichLHS(X0, N) enriches the experimental design X0 defined in the currently

selected INPUT object with N new samples so that the enriched sample set forms a (pseudo-

) Latin Hypercube sampling.

Note: The initial sample set is expected to form a Latin Hypercube, i.e. it should be
generated using Latin Hypercube sampling! If that is not the case, the function
uq_LHSify should be used instead (see Section 3.4.4).

X1 = uq_enrichLHS(X0, N, myInput) enriches the experimental design X0 defined in the

INPUT object myInput with N new samples so that the enriched sample set forms a Latin

Hypercube.

Output

X1 = uq_enrichLHS(...) returns an N -by-M matrix of the new samples of the selected

random vector in the physical space.

Note: X1 only contains the new samples in the physical space. The enriched sample set
is obtained by X = [X0;X1].

[X1, U1] = uq_enrichLHS(...) additionally returns an N -by-M matrix (U1) of the new
samples in the uniform space.

3.4.2 Enriching a Sobol sequence: uq_enrichSobol

Syntax

X1 = uq_enrichSobol(X0, N)
X1 = uq_enrichSobol(X0, N, myInput)
[X1, U1] = uq_enrichSobol(...)

UQLAB-V1.1-102 - 41 -

UQLAB User Manual

Input

X1 = uq_enrichSobol(X0, N) enriches the experimental design X0 defined in the cur-

rently selected INPUT object with N new samples that correspond to the next elements of

the Sobol sequence.

Note: The initial sample set is expected to be generated using Sobol sampling.

X1 = uq_enrichSobol(X0, N, myInput) enriches the experimental design X0 defined in

the INPUT object myInput with N new samples that correspond to the next elements of the

Sobol sequence.

Output

X1 = uq_enrichSobol(...) returns an N -by-M matrix of the new samples of the selected

random vector in the physical space.

Note: X1 only contains the new samples in the physical space. The enriched sample set
is obtained by X = [X0;X1].

[X1, U1] = uq_enrichSobol(...) additionally returns anN -by-M matrix (U1) of the new
samples in the uniform space.

3.4.3 Enriching a Halton sequence: uq_enrichHalton

Syntax

X1 = uq_enrichHalton(X0, N)
X1 = uq_enrichHalton(X0, N, myInput)
[X1, U1] = uq_enrichHalton(...)

Input

X1 = uq_enrichHalton(X0, N) enriches the experimental design X0 defined in the cur-

rently selected INPUT object with N new samples that correspond to the next elements of the

Halton sequence.

Note: The initial sample set is expected to be generated using Halton sampling.

X1 = uq_enrichHalton(X0, N, myInput) enriches the experimental design X0 defined in

the INPUT object myInput with N new samples that correspond to the next elements of the

Halton sequence.

UQLAB-V1.1-102 - 42 -

The Input module

Output

X1 = uq_enrichHalton(...) returns an N -by-M matrix of the new samples of the selected

random vector in the physical space.

Note: X1 only contains the new samples in the physical space. The enriched sample set
is obtained by X = [X0;X1].

[X1, U1] = uq_enrichHalton(...) additionally returns an N -by-M matrix (U1) of the

new samples in the uniform space.

3.4.4 Pseudo-LHS enrichment: uq_LHSify

Syntax

X1 = uq_LHSify(X0, N)
X1 = uq_LHSify(X0, N, myInput)
[X1, U1] = uq_LHSify(...)

Input

X1 = uq_LHSify(X0, N) enriches the experimental design X0 defined in the currently se-

lected INPUT object with N new samples so that the enriched sample set forms a pseudo-Latin

Hypercube.

X1 = uq_LHSify(X0, N, myInput) enriches the experimental design X0 defined in the IN-

PUT object myInput with N new samples so that the enriched sample set forms a pseudo-Latin

Hypercube.

Output

X1 = uq_LHSify(...) returns an N -by-M matrix of the new samples of the selected ran-

dom vector in the physical space.

Note: X1 only contains the new samples in the physical space. The enriched sample set
is obtained by X = [X0;X1].

[X1, U1] = uq_LHSify(...) additionally returns an N -by-M matrix (U1) of the new sam-

ples in the uniform space.

UQLAB-V1.1-102 - 43 -

UQLAB User Manual

3.5 Sub-sampling an existing sample set: uq_subsample

Syntax

X1 = uq_subsample(X0, N1, method)
X1 = uq_subsample(X0, N1, method, Name, Value)
X1 = uq_subsample(...)
[X1, idx] = uq_subsample(...)

Input

X1 = uq_subsample(X0, N1, method) reduces the sample size of the experimental design

X0 (N0-by-M matrix) from N0 to N1 samples using the approach specified in method. The

following values are possible for method:

• 'random': The subset of N1 samples out of N0 is selected randomly

• 'k-means': The subset of N1 samples out of N0 is selected by first performing k-means

clustering with k = N1. Subsequently, the N1 samples closest to the cluster centroids

are selected.

X1 = uq_subsample(X0, N1, method, Name, Value) allows for fine-tuning various pa-

rameters of the subsampling algorithm by specifying Name and Value pairs of options. The

available options are summarised in Table 8.

Table 8: Available options of uq_subsample(..., Name, Value)

Name Value Description
The following options are taken into account when method = 'kmeans'

'Distance_kmeans' String
default:
'sqeuclidean'

The distance measure
that is used in k-means
clustering. The available
options can be found in
the documentation of the
built-in MATLAB function
kmeans (option
'Distance').

'Distance_nn' String
default: 'euclidean'

The distance measure
that is used in nearest
neighbour search for
determining the samples
closest to the k-means
centroids. The available
options can be found in
the documentation of the
built-in MATLAB function
knnsearch (option
'Distance').

UQLAB-V1.1-102 - 44 -

The Input module

Output

X1 = uq_subsample(...) returns an N1-by-M matrix that contains a subset of the samples

in X0.

[X1, idx] = uq_subsample(...) additionally returns the indices of the selected samples.

3.6 Transforming samples between spaces

3.6.1 uq_GeneralIsopTransform

Syntax

Y = uq_GeneralIsopTransform(X, XMarginals, XCopula, YMarginals, ...
YCopula)

Input

The uq_GeneralIsopTransform function allows one to transform a sample set X (of size

N ×M) drawn from a random vector defined by XMarginals and XCopula into samples of

a random vector Y defined by YMarginals and YCopula.

The guidelines for specifying the structures XMarginals, XCopula, YMarginals and

YCopula can be found in Section 3.1 (the syntax of structures Input.Marginals from Ta-

ble 2 and Input.Copula from Table 3 are used respectively).

Output

Y = uq_GeneralIsopTransform(...) returns an N -by-M matrix Y that contains the trans-

formed sample set.

3.6.2 uq_IsopTransform

Syntax

Y = uq_IsopTransform(X, XMarginals, YMarginals)

Input

The uq_IsopTransform function allows one to transform a sample set X (of size N ×M)

drawn from a random vector with marginals XMarginals into samples of a random vector Y

with marginals YMarginals assuming that the components are independent. The guidelines

for specifying the structures XMarginals and YMarginals can be found in Table 2 (Sec-

tion 3.1).

UQLAB-V1.1-102 - 45 -

UQLAB User Manual

Note: The .Type and .Parameters fields of X_marginals, Y_marginals are nec-
essary. In case the moments are given for some marginals the function
uq_MarginalFields can be executed first in order to obtain the corresponding
parameter values.

Output

Y = uq_IsopTransform(...) returns an N -by-M matrix Y that contains the transformed

sample set.

3.6.3 uq_NatafTransform

Syntax

U = uq_NatafTransform(X, XMarginals, XCopula)

Input

The uq_NatafTransform function allows one to transform a sample set X (of size N ×M)

into the standard normal space (space of zero mean, unit variance independent normal vari-

ables). The space is defined by the structures XMarginals and XCopula. The guidelines

for specifying XMarginals (resp. XCopula) can be found in Table 2 (resp. Table 3) in Sec-

tion 3.1.

Output

U = uq_NatafTransform(...) returns an N -by-M matrix U that contains N samples from

M independent standard normal variables resulting from the Nataf transform of X.

3.6.4 uq_invNatafTransform

Syntax

X = uq_invNatafTransform(U, XMarginals, XCopula)

Input

The uq_invNatafTransform function allows one to transform a sample set U (of sizeN×M)

drawn from a standard normal random vector into samples of a random vector X defined by

XMarginals and XCopula. The guidelines for specifying XMarginals (resp. XCopula) can

be found in Table 2 (resp. Table 3) in Section 3.1.

UQLAB-V1.1-102 - 46 -

The Input module

Output

X = uq_invNatafTransform(...) returns an N -by-M matrix X that contains N samples

of size M , each row being a realization of the random vector defined by XMarginals and

XCopula.

UQLAB-V1.1-102 - 47 -

UQLAB User Manual

3.7 Additional functions

3.7.1 uq_sampleU

Syntax

U = uq_sampleU(N, M)
U = uq_sampleU(N, M, options)

Input

U = uq_sampleU(N, M) returns N samples of a random vector having M independent, uni-

form marginals over [0, 1] (i.e. uniform sample over the unit hypercube of dimension M).

U = uq_sampleU(N, M, options) returns N samples of a random vector having M in-

dependent uniform marginals over [0, 1], with sampling options defined in the structure

options (Table 9).

Table 9: options of uq_sample_u

� .Method String
default: 'MC'

Sampling method

'MC' Monte Carlo

'LHS' Latin Hypercube

'Sobol' Sobol series

'Halton' Halton series

� .LHSiterations Integer
default: 5

This option is taken into account
when .Method = 'LHS'. It refers
to the maximum number of
iterations to perform in an attempt to
improve the design. For more
information refer to the MATLAB

function lhsdesign.

� .SobolGen sobolset object Sobol sequence point set

� .HaltonGen haltonset object Halton sequence point set

Note: For customizing Sobol or Halton sampling, one can set the relevant fields of
options.SobolGen or options.HaltonGen objects. For more details refer to
the MATLAB documentation of sobolset and haltonset respectively.

Output

U = uq_sampleU(...) returns an N -by-M matrix of samples of the unit hypercube.

UQLAB-V1.1-102 - 48 -

The Input module

3.7.2 uq_MarginalFields

Syntax

uq_MarginalFields(marginals)
updated_marginals = uq_MarginalFields(...)

Input

The uq_MarginalFields function computes moments of marginals from parameters and

vice versa. More precisely uq_MarginalFields computes for each marginal contained in

marginals:

• the moments marginals.Moments if the parameters marginals.Parameters are

available

• the parameters marginals.Parameters if the moments marginals.Moments are

available.

The input variable marginals is a structure as described in Table 2 (Section 3.1).

Output

updated_marginals = uq_MarginalFields(...) returns an updated structure having

both the Parameters and Moments fields filled.

3.7.3 uq_estimateMoments

Syntax

uq_estimateMoments(marginal)
uq_estimateMoments(marginal, Name, Value)
moments = uq_estimateMoments(...)
[moments, exit_flag] = uq_estimateMoments(...)
[moments, exit_flag, convergence] = uq_estimateMoments(...)

Input

The uq_estimateMoments function computes the moments (mean and standard deviation)

of a distribution numerically. By default the moments are estimated by numerical integration.

In case poor convergence of the integrator is observed the moments are re-estimated using a

sampling-based scheme. The sample-based method measures convergence by means of the

COV of the moments estimators (Saporta, 2006).

moments = uq_estimateMoments(marginal) calculates the moments of the distribution

that is described by the marginal structure as described in Table 2 (Section 3.1).

UQLAB-V1.1-102 - 49 -

UQLAB User Manual

moments = uq_estimateMoments(marginal, Name, Value) allows for fine-tuning vari-

ous parameters of the moments estimation algorithm by specifying Name, and Value pairs of

options. The available options are summarized in Table 10.

Table 10: Available options of uq_estimateMoments
Name Value (default) Description
'method' String ('Integral') Method for estimating the

moments. Currently
supported values are
'MC' for sample-based
and 'Integral' for
integral-based estimation.

The following options are taken into account when 'method'= 'MC'

'N0' Double (106) Initial sample size
'Nstep' Double (105) Number of additional

samples per iteration
'targetCOV' Double (0.01) The target Coefficient of

Variation of the moments
estimates

'maxiter' Double (30) Maximum number of
iterations

'sampling' String ('Sobol') Method for generating
samples. See Table 9 for
available options.

'verbose' Logical (false) If set to true
convergence information
are printed after each
iteration otherwise
nothing is printed

Output

moments = uq_estimateMoments(marginal) returns a 2×1 vector that contains the mean

and standard deviation of the distribution.

[moments, exit_flag] = uq_estimateMoments(marginal) additionally returns a boolean

variable exit_flag that is true if the algorithm converged to the specified target Coefficient

of Variation or false otherwise. This extra output will only be available in case the sampling-

based method (method = 'MC') was used.

[moments, exit_flag, convergence] = uq_estimateMoments(marginal) additionally

returns a Ni×3 matrix, where Ni is the number of iterations. Each row contains the iteration

number and the corresponding estimate of the mean and standard deviation at that iteration.

This extra output will only be available in case the sampling-based method (method = 'MC')

was used.

3.7.4 uq_setDefaultSampling

Syntax

UQLAB-V1.1-102 - 50 -

The Input module

uq_setDefaultSampling(method)
uq_setDefaultSampling(myInput, method)
success = uq_setDefaultSampling(...)

Description

uq_setDefaultSampling(method) sets the default sampling method of the currently se-

lected INPUT object to method. The accepted values of method can be found in Table 6.

uq_setDefaultSampling(myInput, method) sets the default sampling method of the IN-

PUT object myInput to method.

UQLAB-V1.1-102 - 51 -

References

Lebrun, R. and A. Dutfoy (2009). A generalization of the Nataf transformation to distribu-

tions with elliptical copula. Prob. Eng. Mech. 24(2), 172–178. 18

McKay, M. D., R. J. Beckman, and W. J. Conover (1979). A comparison of three methods

for selecting values of input variables in the analysis of output from a computer code.

Technometrics 2, 239–245. 25

Nelsen, R. B. (2006). An Introduction to Copulas. Secaucus, NJ, USA: Springer-Verlag New

York, Inc. 15, 16, 17

Saporta, G. (2006). Probabilités, analyse des données et statistique. Editions Technip. 49

52

	Theory
	Introduction
	Representation of common univariate distributions
	Uniform distribution
	Gaussian (Normal)
	Lognormal distribution
	Gumbel distribution
	Gumbel-min distribution
	Weibull distribution
	Gamma distribution
	Exponential distribution
	Beta distribution
	Triangular distribution
	Logistic distribution
	Laplace distribution

	Truncated distributions
	Representation of random vectors and joint PDFs
	Marginals and copula
	Copulas currently available in UQLab

	Sampling random vectors
	Isoprobabilistic transform of independent marginals
	Generalized Nataf transform
	Sampling multivariate distributions with the inverse generalized Nataf transform

	Usage
	Drawing samples from a distribution
	Introductory example
	Special cases of distributions
	Using a copula
	Selecting an input object and specifying the sampling method

	Enrichment of an experimental design with new samples
	Performing an isoprobabilistic transform
	Adding bounds
	Switching between input objects
	Defining and using custom marginals
	Advanced options

	Constant variables

	Reference List
	Creating an input object: [basicstyle=]|uq_createInput|
	Getting samples from an input object: [basicstyle=]|uq_getSample|
	Printing/Visualizing an input object
	Printing information: [basicstyle=]|uqprint|
	Graphical visualization: [basicstyle=]|uqdisplay|

	Enriching an existing sample set
	Enriching a Latin Hypercube: [basicstyle=]|uq_enrichLHS|
	Enriching a Sobol sequence: [basicstyle=]|uq_enrichSobol|
	Enriching a Halton sequence: [basicstyle=]|uq_enrichHalton|
	Pseudo-LHS enrichment: [basicstyle=]|uq_LHSify|

	Sub-sampling an existing sample set: [basicstyle=]|uq_subsample|
	Transforming samples between spaces
	[basicstyle=]|uq_GeneralIsopTransform|
	[basicstyle=]|uqIsopTransform|
	[basicstyle=]|uq_NatafTransform|
	[basicstyle=]|uq_invNatafTransform|

	Additional functions
	[basicstyle=]|uq_sampleU|
	[basicstyle=]|uq_MarginalFields|
	[basicstyle=]|uq_estimateMoments|
	[basicstyle=]|uq_setDefaultSampling|

	References

