

Table	of	Contents

Copyright,	License,	Conventions	and	Legal	Notice

Introduction

System	Requirements

Installation

Funktional	Description

Developer	Information

Theme	Integration

Widget	Creation

Custom	Grid	System

Widget-Modul	Migration	from	OXID	eShop	v5	to	v6

Help	&	Support

2

Copyright

Copyright	©	2018	OXID	eSales	AG,	Germany

Copying	of	this	document	or	its	contents,	in	particular,	using	texts	or	parts	of	text	is

subject	to	the	explicit	prior	permission	by	OXID	eSales	AG.

The	information	provided	in	this	document	was	prepared	according	to	the	current	state

of	the	art.	OXID	eSales	AG,	however,	will	assume	no	liability	or	warranty	for	the

timeliness,	correctness	and	completeness	of	the	information	provided.	Since	errors	–

despite	all	efforts	–	cannot	be	ruled	out	entirely,	we	always	appreciate	suggestions.

License

Licensing	of	the	software	product	depends	on	the	shop	edition	used.

The	software	for	OXID	eShop	Community	Edition	is	published	under	the	GNU	General

Public	License	v3.	You	may	distribute	and/or	modify	this	software	according	to	the

licensing	terms	published	by	the	Free	Software	Foundation.	Legal	licensing	terms

regarding	the	distribution	of	software	being	subject	to	GNU	GPL	can	be	found	under

	www.gnu.org/licenses/gpl.html	.

The	software	for	OXID	eShop	Professional	Edition	and	Enterprise	Edition	is	released

under	commercial	license.	OXID	eSales	AG	has	the	sole	rights	to	the	software.

Decompiling	the	source	code,	unauthorized	copying	as	well	as	distribution	to	third

parties	is	not	permitted.	Infringement	will	be	reported	to	the	authorities	and	prosecuted

without	exception.

Copyright,	License,	Conventions	and	Legal	Notice

3

Conventions

The	following	typographic	conventions	are	used	in	this	document:

	Monospace	font	with	grey	background	

for	user	inputs,	source	code	and	URLs

Italic

for	file	names	and	paths

Bold	font

for	input	fields	and	navigation	steps

Bold,	dark	red	font

for	warnings	and	important	notes

Legal	Notice

OXID	eSales	AG

Bertoldstraße	48

79098	Freiburg

Germany

Phone:	+49	(761)	36889	0

Fax:	+49	(761)	36889	29

Executive	board:	Roland	Fesenmayr	(CEO),	Dr.	Oliver	Ciupke

Supervisory	board:	Michael	Schlenk	(chairman)

Headquarters:	Freiburg

Country	court	Freiburg	i.	Brg.

Commercial	register	number:	HRB	701648

Copyright,	License,	Conventions	and	Legal	Notice

4

Visual	CMS

Version:	3.2

Vendor:	OXID	eSales	AG

Internet:	www.oxid-esales.com

E-Mail:	info@oxid-esales.com

Description

With	the	Visual	CMS	it	becomes	possible	to	create	and	manage	CMS	page	content	easily

per	drag	and	drop.	The	simple	user	interface	allows	you	to	create	new	CMS	pages	very

quickly.

The	different	elements	on	a	page	are	created	using	so-called	widgets.	Widgets	are

content	such	as	blocks	of	texts,	images	oder	even	products.	For	you	to	be	able	to	start

with	the	creation	of	a	page	very	quickly,	the	Visual	CMS	comes	with	a	number	of	pre-

defined	widgets,	which	you	can	place	wherever	you	want	onto	the	page	using	simple

drag	and	drop.

Because	of	the	responsive	grid	system,	all	content	that	you	create	is	responsive	and	will

be	displayed	optimized	for	the	device	of	your	end	user.	The	Visual	CMS	is	compatible

with	the	responsive	OXID	Flow	theme	and	with	responsive	RoxIVE	theme	from	digidesk

media	solutions.

With	an	integrated	Live	search,	you	will	quickly	find	the	CMS	pages	you	wish	to	edit.	The

Visual	CMS	will	help	you	save	a	lot	of	time	and	will	deliver	compelling	results.

Features

Many	scenarios	possible	through	usage	of	widgets

Drag	&	Drop

Delivering	results	fast

Compatible	with	OXID	Flow	and	RoxIVE

Live	search	of	CMS	pages

Responsive	grid	system

Introduction

5

System	Requirements

The	following	system	requirements	must	be	met	for	the	module	to	be	used:

OXID	eShop	PE/EE	6.x	or	higher

PHP	5.6,	7.0

System	Requirements

6

Installation

Visual	CMS

1.	 Visual	CMS	is	installed	automatically	during	an	OXID	eShop	standard	installation.

2.	 Navigate	to	Extensions	>	Modules	in	the	eShop	admin	area

3.	 Activate	the	module	"Visual	CMS"

4.	 Update	the	VIEWS	Service	->	Tools	->	Update	DB	Views	now

5.	 Empty	the	Tmp	directory	of	the	eShop

Update

Updates	are	done	automatically	with	every	OXID	eShop	Update	via	Composer.

Installation

7

https://docs.oxid-esales.com/developer/en/6.0/update/eshop_from_6x_to_6y/update_default.html

Introduction

CSM-pages	can	be	changed	by	adding	or	editing	widgets.	The	Visual	CMS	automatically

generates	a	text	widget	with	the	page	content	for	CMS	pages,	which	are	edited	for	the

first	time	using	the	editor.	The	Visual	CMS	allows	you	to	edit	CMS	pages	in	a	fast	and

comfortable	manner.	Pages	not	edited	via	the	Visual	CMS	still	function	as	before.

Creating	New	Pages

New	pages	can	be	easily	created	using	the	Visual	CMS:

1.	 Activate	the	checkbox	Create	new	content

2.	 Enter	Title	und	Ident.

3.	 Save

Adding	Content

Funktional	Description

8

The	easiest	and	fastest	way	to	add	content	to	a	CMS-page	is	to	add	a	text	widget:

1.	 Click	on	Button	Add	widget

2.	 Enter	your	test	in	the	field	Content

3.	 Save	the	widget

4.	 If	necessary,	change	the	size	of	the	widget

5.	 Click	Save

Funktional	Description

9

Searching	for	Content

It	is	just	as	easy	to	search	for	existing	pages:

1.	 Click	into	field	CMS-Content

2.	 Enter	your	search	term

3.	 Choose	your	content	from	the	Live	search

Editing	a	Widget

Funktional	Description

10

Widgets	can	easily	be	edited:

1.	 Choose	the	page	you	wish	to	edit

2.	 Use	your	mouse	to	hover	over	the	widget	you	wish	to	edit

3.	 Click	on	the	edit	symbol

4.	 Edit	the	widget

5.	 Save	the	changes	to	the	widget

6.	 Save	the	CMS	content

Adding	Further	Widgets

Funktional	Description

11

1.	 Choose	the	content	you	wish	to	edit

2.	 Click	on	Button	Add	widget

3.	 Choose	a	widget

4.	 Edit	options	and	content

5.	 Save	the	widget

Funktional	Description

12

Developer	Information

The	Visual	CMS	can	be	extended	by	adding	further	widgets.

The	editor	creates	short	codes	from	all	widgets	(similar	to	BBCode),	which	it	then	saves

as	content.	In	the	front	end	these	short	codes	are	parsed	again	and	the	corresponding

classes	are	triggered.

Even	the	usage	of	custom	grid	systems	is	possible.	As	default,	the	module	uses	a

slimmed	down	version	of	the	Bootstrap	grid	system.

Theme	Integration

Widget	Creation

Custom	Gridsystem

Widget-Modul	Migration	from	OXID	eShop	v5	to	v6

Developer	Information

13

Theme	Integration

The	module	is	completely	compatible	with	Azure,	Flow	and	with	RoxIVE	themes.	For

other	themes,	minor	adaptations	might	be	necessary.

Content	Pages

When	needed,	the	two	themes	content.tpl	and	content_plain.tpl	must	be	extended	by

two	requests:

content.tpl

[{capture	append="oxidBlock_content"}]

				[{assign	var="oContent"	value=$oView->getContent()}]

				[{assign	var="tpl"	value=$oViewConf->getActTplName()}]

				[{assign	var="oxloadid"	value=$oViewConf->getActContentLoadId()}]

				[{*	Customisation:	Check	the	display	of	the	heading	*}]

				[{if	!$oContent->oxcontents__ddhidetitle->value}]

								<h1	class="pageHead">[{$oView->getTitle()}]</h1>

				[{/if}]

				<div	class="cmsContent">

								[{$oView->getParsedContent()}]

				</div>

[{/capture}]

[{*	Customisation:	check	the	display	of	the	side	bar	*}]

[{if	$oContent->oxcontents__ddhidesidebar->value}]

				[{include	file="layout/page.tpl"}]

[{else}]

				[{include	file="layout/page.tpl"	sidebar="Left"}]

[{/if}]

content_plain.tpl

[{capture	append="oxidBlock_content"}]

				[{assign	var="oContent"	value=$oView->getContent()}]

				[{assign	var="tpl"	value=$oViewConf->getActTplName()}]

				[{assign	var="oxloadid"	value=$oViewConf->getActContentLoadId()}]

				[{*	Customisation:	Check	the	display	of	the	heading	*}]

				[{if	!$oContent->oxcontents__ddhidetitle->value}]

								<h1	class="pageHead">[{$oView->getTitle()}]</h1>

				[{/if}]

				[{$oView->getParsedContent()}]

[{/capture}]

[{include	file="layout/popup.tpl"}]

Theme	Integration

14

Theme	Integration

15

Widget	Creation

Widgets	can	be	created	through	the	creation	of	short-code	classes.	The	classes	must	be

added	to	one	of	the	following	directories:

modules/ddoe/visualcms/Core/shortcodes/

modules/*/visualcms/shortcodes/

These	Modules	have	to	be	activated	and	the	name	of	the	file	is	at	the	same

time	the	class-prefix.

Following	Namespace	is	always	needed:

use	OxidEsales\VisualCmsModule\Application\Model\VisualEditorShortcode;

In	the	following	Example,	these	Namespaces	are	also	needed:

use	OxidEsales\Eshop\Core\Registry;

use	OxidEsales\Eshop\Core\DatabaseProvider;

use	OxidEsales\Eshop\Application\Component\Widget\ArticleBox;

use	OxidEsales\Eshop\Application\Model\Article;

use	OxidEsales\Eshop\Application\Model\ArticleList;

A	short-code	class	is	structured	as	follows:

class	article_shortcode	extends	VisualEditorShortcode

{

The	class	name	consists	of	a	file	name	(without	a	file	extension)	and	the	suffix

"_shortcode".

The	class	should	always	extend	the	class	VisualEditorShortcode,	so	that	standard

attributes	and	methods	are	made	available.

Attributes

Next,	attributes	can	be	defined:

				protected	$_sTitle	=	'DD_VISUAL_EDITOR_SHORTCODE_ARTICLE';

				protected	$_sBackgroundColor	=	'#e74c3c';

				protected	$_sIcon	=	'fa-newspaper-o';

$_sTitle:	Title	of	the	widget	(Lang-String)

$_sBackgroundColor:	Color	of	the	widget	in	the	back	end

$_sIcon:	CSS-class	for	the	icon	of	the	widget	in	the	back	end	(s.

Widget	Creation

16

	http://fontawesome.io/icons/)

$_sShortCode:	Short-code	name

$_aOptions:	contains	the	widget	options

All	attributes	can	also	be	set	using	the	set-methods	(e.g.:	setShortCode())

install()-Method

The	install()	method	is	called	by	the	back	end	to	initialize	the	widget.

The	short-code	classes	extend	the	OXID	class	FrontendController	(oxUBase	in

OXID	v5).	OXID	classes	and	methods	are	therefore	available.

In	this	example,	the	file	name	(without	file	extension)	is	set	as	short-code	name.

Subsequently,	the	widget	options	and	entry	fields	are	set	in	the	back	end.

public	function	install()

{

				$this->setShortCode(basename(__FILE__,	'.php'));

				$oLang	=	Registry::getLang();

				$this->setOptions(

								array(

												'id'	=>	array(

																//	specifies	the	method	used	in	live	search

																'data'	=>	'searchArticle',

																//	possible	types:	select,	text,	color,	file,	multi,	textarea,	wysiwyg,	hi

dden

																'type'	=>	'select',

																//	Label	Description

																'label'	=>	$oLang->translateString('DD_VISUAL_EDITOR_WIDGET_ARTICLE'),

																//	placeholder	description

																'placeholder'	=>	$oLang->translateString('DD_VISUAL_EDITOR_WIDGET_CHOOSE_

ARTICLE'),

																//	fields	which	also	be	considered	in	a	selection	(only	type	"select")

																'dataFields'	=>	array(

																				//	the	field	"name"	returns	value	"label"	to	the	live	search

																				'name'	=>	'label'

)

),

												'name'	=>	array(

																//	hidden	field

																'type'	=>	'hidden',

																//	the	value	is	used	in	previews	of	widget	listings

																'preview'	=>	true

)

)

);

}

parse()-Method

Widget	Creation

17

The	parse()	method	is	called	when	the	short-code	is	parsed	in	the	front	end.

The	parameter	$sContent	is	a	reserved	parameter	of	the	widget	option	content.

All	other	values	are	passed	as	an	array	in	the	second	parameter.

In	this	example,	products	are	loaded	using	the	product	ID	and	subsequently	passed

to	the	Smarty	function	oxid_include_widget	so	that	a	product	widget	is	displayed.

The	return	value	corresponds	to	the	content	delivered	to	the	front	end.

public	function	parse($sContent	=	'',	$aParams	=	array())

{

				/**	@var	Article	$oArticle	*/

				$oArticle	=	oxNew(Article::class);

				$oArticle->load($aParams['id']);

				$sOutput	=	'<div	class="dd-shortcode-'	.	$this->getShortCode()	.	'	productData	product

Box'	.	($aParams['class']	?	'	'	.	$aParams['class']	:	'')	.	'">';

				$sOutput	.=	'[{oxid_include_widget	cl="oxwArticleBox"	_parent=$oView->getClassName()	_

navurlparams=$oViewConf->getNavUrlParams()	anid="'	.	$aParams['id']	.	'"	isVatIncluded=$

oView->isVatIncluded()	nocookie=1	sWidgetType=product	sListType="listitem_'	.	$sType	.	'"	

inlist=1	skipESIforUser=1}]';

				$sOutput	.=	'</div>';

				return	$sOutput;

}

Alternative:	Smarty	Template

Alternatively,	a	Smarty	template	can	be	called	instead	of	delivering	the	content	directly:

public	function	parse($sContent	=	'',	$aParams	=	array())

{

				/**	@var	Article	$oArticle	*/

				$oArticle	=	oxNew(Article::class);

				$oArticle->load($aParams['id']);

				$oSmarty	=	Registry::get('oxUtilsView')->getSmarty();

				$oSmarty->assign(

								array(

												'oView'					=>	$this->getConfig()->getTopActiveView(),

												'shortcode'	=>	$this->getShortCode(),

)

);

				$sOutput	.=	$oSmarty->fetch('ddoe_widget_article.tpl');

				return	$sOutput;

}

The	two	methods	and	the	attributes	mentioned	above	are	all	that	is	needed	in	order	to

create	a	widget	or	short-code.	All	else	depends	on	the	complexity	of	the	widget.

All	provided	widgets	in	the	module	folder	of	VisualCMS	under	Core/shortcodes

are	open	source	and	can	be	used	as	examples.

Widget	Creation

18

Widget	Creation

19

Custom	Grid	System

In	order	to	use	your	own	custom	grid	system,	only	a	few	changes	in	the	settings	are

necessary.

1.	 Please	navigate	in	the	admin	area	of	the	eShop	to	Extensions	->	Modules	->

Visual	CMS	->	Settings

2.	 Activate	the	checkbox	Use	custom	grid.	This	checkbox	is	located	under	the	point

Front	end

3.	 Enter	the	prefixes	of	CSS-classes	for	your	grid	system

4.	 Enter	the	maximum	number	of	columns	of	the	grid	system

5.	 Save

After	that,	offsets	and	column	widths	can	no	longer	be	adjusted	by	"Layout	settings"	of

the	widget,	but	must	be	made	by	dragging	and	dropping	them	on	the	CMS	page.

Examples

Foundation

960	Grid	System

Custom	Grid	System

20

The	grid	system	of	your	choice	has	to	have	been	included	into	the	theme.

Custom	Grid	System

21

Widget-Modul	Migration	from	OXID
eShop	v5	to	v6

All	module	files	have	to	be	UTF-8	encoded.

Code	must	work	with	PHP	5.6	or	higher.

The	following	namespace	must	also	be	specified	in	modules	from	now	on:

use	OxidEsales\VisualCmsModule\Application\Model\VisualEditorShortcode;

Note:	Widgets	may	not	be	assigned	to	a	namespace!

So	that	standard	attributes	and	methods	can	be	adopted,	the	class	is	no	longer

derived	from	ddvisualeditor_shortcode,	but	from	VisualEditorShortcode.

class	own_shortcode	extends	VisualEditorShortcode

Widget-Modul	Migration	from	OXID	eShop	v5	to	v6

22

Help	&	Support

Do	you	have	any	questions	or	do	you	need	any	help	for	the	installation?

Please	contact	our	support:	 	http://www.oxid-esales.com/en/support-services.html	

Help	&	Support

23

	Copyright, License, Conventions and Legal Notice
	Introduction
	System Requirements
	Installation
	Funktional Description
	Developer Information
	Theme Integration
	Widget Creation
	Custom Grid System
	Widget-Modul Migration from OXID eShop v5 to v6

	Help & Support

