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This chapter is based on contribu ons by Ramon Egli and Michael Winklhofer to the Inter-
na onal Workshop on Paleomagne sm and Rock Magne sm (Kazan Ins tute of Geology and 
Petroleum Technology, Russia, October 7-12, 2013), summarized in the following conference 
proceeding ar cle: 

 

Recent developments on processing and interpreta on aspects of 
first-order reversal curves (FORC) 

Ramon Egli 

Central Ins tute for Meteorology and Geodynamics, Hohe Warte 38, 1190 Vienna, Austria 
(r.egli@zamg.ac.at) 

Michael Winklhofer 

Department for Earth and Environmental Sciences, Munich University, Theresienstrasse 41, 
80333 Munich, Germany (michael@geophysik.uni-muenchen.de) 

 

Abstract  Several recent developments in paleo- and environmental magne sm have been based on 
measurement of first-order reversal curves (FORC). Most notable examples are related to the detec-

on of fossil magnetosomes produced by magnetotac c bacteria and to absolute paleointensity es -
mates for temperature-sensi ve samples, such as meteorites. Future developments in these scien fic 
disciplines rely on improved characteriza on of natural magne c mineral assemblages. Promising 
results have been obtained in several cases with the parallel development of FORC processing proto-
cols on one hand, and models for idealized magne c systems on the others. Un l now, FORC diagrams 
have been used mainly as a qualita ve tool for the iden fica on of magne c domain state fingerprints, 
with missing quan ta ve links to other magne c parameters. This ar cle bridges FORC measurements 
and conven onal hysteresis parameters on the basis of three types of FORC-related magne za ons 
and corresponding coercivity distribu ons. One of them is the well-known satura on remanence, with 
corresponding coercivity distribu on derived from backfield demagne za on data in zero-field FORC 
measurements. The other two magne za on types are related to irreversible processes occurring 
along hysteresis branches and to the inversion symmetry of magne c states in isolated par cles, res-
pec vely. All together, these magne za ons provide precise informa on about magne za on proces-
ses in single-domain, pseudo-single-domain, and mul domain par cles. Unlike hysteresis parameters 
used in the so-called Day diagram, these magne za ons are unaffected by reversible processes (e.g. 
superparamagne sm), and therefore well suited for reliable characteriza on of remanent magne za-

on carriers. The so ware package VARIFORC has been developed with the purpose of performing 
detailed FORC analyses and calculate the three types of coercivity distribu ons described above. Key 
examples of such analyses are presented in this ar cle, and are available for download along with the 
VARIFORC package. 
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8.1 Introduc on 

Several measurement protocols have been developed over the last 50 years for under-
standing complex magne za on processes related to technological applica ons [Chikazumi, 
1997; Coey, 2009], the origin and stability of rock magne za ons [Dunlop and Özdemir, 1997; 
Tauxe, 2010], and environment-sensi ve magne c minerals in sediments [Evans and Heller, 
2003; Liu et al., 2012]. First-order reversal curves (FORC) provide one of the most advanced 
protocols for probing hysteresis processes and represent them in a two-dimensional parame-
ter space (i.e. coercivity field cH  and bias field bH ). The interpreta on of hysteresis has evol-
ved from mathema cal formalisms based on the superposi on of elemental source contribu-

ons, called hysterons [Preisach, 1935; Mayergoyz, 1986; Hejda and Zelinka, 1990; Fabian and 
Dobeneck, 1997], toward physical models of specific magne c systems, such as non-interac-

ng [Newell, 2005; Egli et al., 2010] and interac ng [Woodward and Della Torre, 1960; Basso 
and Berto , 1994; Pike et al., 1999; Muxworthy and Williams, 2005; Egli, 2006a] single-do-
main (SD) par cles, pseudo-single-domain (PSD) par cles [Muxworthy and Dunlop, 2002; Car-
vallo et al., 2003; Winklhofer et al., 2008], mul domain (MD) crystals [Pike et al., 2001b; 
Church et al., 2011], and spin glasses [Katzgraber et al., 2002]. These models provide proto-
type signatures for specific magne za on processes (e.g. switching, vortex nuclea on, do-
main wall pinning), which can be recognized in FORC diagrams of geologic samples [Roberts 
et al., 2000, 2006]. Some of these signatures occur within a limited subset of FORC space, as 
for instance along c 0H »  (viscosity and MD processes) or along b 0H »  (weakly interac ng 
SD par cles). Therefore, it is possible to iden fy the corresponding sources in FORC diagrams 
of samples containing complex magne c mineral mixtures [e.g. Roberts et al., 2012], and, in 
some cases, to es mate the abundance of magne c par cles associated with these processes 
[Roberts et al., 2011; Yamazaki and Ikehara, 2012; Egli, 2013; Ludwig et al., 2013]. Up to the 
few examples men oned above, FORC diagrams of geologic materials are mostly interpreted 
in a qualita ve manner. Furthermore, only loose connec ons have been established with mo-
re common magne c parameters, such as isothermal and anhystere c remanent magne za-

ons and domain state-sensi ve ra os, although some of these parameters can be directly 
derived from FORC subsets [e.g. Fabian and Dobeneck, 1997; Winklhofer and Zimanyi, 2006; 
Egli et al., 2010]. 

Quan ta ve interpreta on of FORC measurements is based on the calcula on of magne c 
parameters associated with specific magne za on processes. Some of these processes pro-
duce FORC signatures that are representable only in terms of non-regular func ons, whose 
appearance in the FORC diagram depends strongly on data processing. A meanwhile well-
known example of non-regular FORC signatures is represented by the so-called central ridge 
produced by non-interac ng SD par cles [Egli et al., 2010; Egli, 2013]. Magne c viscosity is 
another example associated with a ver cal ridge near c 0H =  [Pike et al., 2001a]. On the other 
hand, most magne c processes in weakly magne c natural samples produce con nuous FORC 
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contribu ons with very low amplitudes, which are below the significance threshold a ainable 
with conven onal FORC processing [Egli, 2013]. Since the introduc on of FORC measurements 
to rock magne sm [Pike et al., 1999; Roberts et al., 2000], some studies have been dedicated 
to selected aspects of FORC processing, such as computa onal op miza on [Heslop and Mux-
worthy, 2005], locally weighted regression [Harrison and Feinberg, 2008], error calcula on 
[Heslop and Roberts, 2012], and variable polynomial regression smoothing [Egli, 2013]. These 
improvements have been merged into a single FORC processing procedure called VARIFORC 
(VARIable FORC smoothing) [Egli, 2013]. The principal advantage of VARIFORC consists in the 
possibility of processing FORC data containing high-amplitude, non-regular FORC signatures 
as well as low-amplitude, con nuous backgrounds, using a local compromise between high 
resolu on and noise suppression requirements. First applica ons of this technique enabled 
full characteriza on of SD signatures in pelagic carbonates [Ludwig et al., 2013]. 

Meanwhile, VARIFORC has been complemented with rou nes for the automa c separa-
on of different FORC contribu ons, and the calcula on of corresponding magne za ons and 

coercivity distribu ons. The full VARIFORC package, including a detailed user manual, is availa-
ble at h p://www.conrad-observatory.at/cmsjoomla/en/download. VARIFORC runs on Wol-
fram Mathema caTM and Wofram PlayerProTM (see Chapter 2). Applica on examples of quan-

ta ve FORC analysis performed with VARIFORC are discussed in this paper. 



VARIFORC User Manual:  8. FORC tutorial 8.7 

 

8.2 A brief introduc on to FORC diagrams 

8.2.1 Reversible and irreversible hysteresis processes 

Ferrimagne c materials are characterized by complex magne c proper es that depend on 
their past magne c and thermal history. Memory of previously applied fields gives raise to the 
well-known phenomenon of magne c hysteresis. The discovery magne c hysteresis is credi-
ted to Sir Alfred James Ewing (1855-1955), who measured the first hysteresis loop (Fig. 8.1) 
on a piano wire [Ewing, 1885]. While the main characteris cs of a hysteresis loop are summari-
zed by four magne c parameters yielding the well-known Day diagram [Day et al., 1977; 
Dunlop, 2002a,b], much more detailed informa on on magne za on processes can be obtai-
ned by accessing the inner area of hysteresis loops. This is possible by in-field measuring pro-
tocols involving a sequence of field sweep reversals. The oldest example of such sequences is 
the alterna ng-field (AF) demagne za on [Chikazumi, 1997], in which the field sweep is rever-
sed at increasingly small field amplitudes, un l a demagne zed, so-called anhystere c state 

0H M= =  is reached (Fig. 8.1). 

 
Fig. 8.1: Original figure from Ewing [1885] showing the hysteresis measurement of a piano wire (see 
the IRM Quarterly Vol. 22 for a story about Sir Alfred Ewing’s first hysteresis measurements). The 
measurement shown here represents an AF demagne za on curve, as a possible method for accessing 
the inner area of hysteresis loops. 
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Other measuring protocols for accessing the inner area of a hysteresis loop are possible, 
and the FORC protocol described by Pike et al. [1999] is just one of them. All protocols start 
from a well-defined magne c state obtained by satura ng the sample in a large field. The first 
magne za on curve obtained by sweeping the magne c field from posi ve or nega ve satu-
ra on coincides with one of the two major hysteresis loop branches ( )M H . Hysteresis bran-
ches are also known as a zero-order curves, because they originate directly from a saturated 
state. If the field sweep producing a zero-order curve is reversed at a reversal field rH , before 
satura on is reached, a new magne za on curve r( , )M H H  originates from the major hyste-
resis loop (Fig. 8.2a). This curve represents a first-order magne za on, also known as first-
order reversal curve in case of FORC measurements. A set of first-order curves branching from 
the major hysteresis loop at different reversal fields covers the en re area enclosed by the 
loop, accessing a much larger number of magne za on states that cannot be obtained with 
simple hysteresis measurements. If the field sweep is reversed again while a first-order curve 
is measured, a second-order curve is obtained, and so on. Within this context, AF demagne -
za on is a sequence of nested magne za on curves with increasing order. 

When describing magne za on curves, an important dis nc on is made between mag-
ne za on changes due to reversible and irreversible processes. The two types of processes 
occurring along any magne za on curve are dis nguished by comparing a small por on 

A BM M  of the curve between close fields AH  and BH  with the magne za on AM*  obtained 
by sweeping the field from BH  back to AH  (Fig. 8.2a). Hysteresis, known in this context as 
magne c memory, ensures that B AM M*  does not follow the same path as A BM M , in 
which case A AM M* ¹  [Mayergoyz, 1986]. The difference A AM M* -  is the irreversible magne -
za on change occurring when sweeping the field from AH  to BH , while B AM M*-  is the rever-
sible change. The sum of the two contribu ons gives B AM M- , as expected. 

8.2.2 Preisach diagrams 

Because n-th order magne za on curves depend on 1n+  parameters (i.e. n reversal 
fields and one measuring field), interpreta on of first- and higher order curves requires a para-
meter space model. The best known bivariate hysteresis model has been implemented by 
Preisach [1935] for the characteriza on of transformer steel. The Preisach model assumes that 
magne za on curves are the result of magne c switching in elemental rectangular hysteresis 
loops (so-called hysterons). Hysterons are characterized by two switching fields A BH H£  whe-
re the magne za on jumps discon nuously from the lower to the upper branch and vice-
versa (Fig. 8.2b). Each hysteron is thus represented by a point in A B( , )H H -space, and macro-
scopic magne c volumes or magne c par cle assemblages are described by a bivariate sta -
s cal distribu on A B( , )P H H  of hysteron switching fields, known as the Preisach distribu on.  
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Fig. 8.2: Preisach theory in a nutshell. (a) The major hysteresis loop (black lines with large arrows) is 
composed of two zero-order magne za on curves star ng from posi ve and nega ve satura on, 
respec vely. First-order magne za on curves originate from the major hysteresis if the field sweep is 
reversed (black curve labeled with 1st). Higher-order magne za on curves (curves labeled with 2nd and 
3rd) are obtained a er successive field sweep reversals. Any point inside the major hysteresis loop can 
be accessed by first-order magne za on curves (dashed black line). For any of these points (e.g. point 
A at the end of the dashed line), magne za on changes can be decomposed into a reversible ( revΔM ) 
and an irreversible ( irrΔM ) component by sweeping the field a li le further to point B and then back 
to the original field, ending with point A* , which, because of irrΔM , does not coincide with A. The 
ini al parts of first-order curves origina ng from the upper hysteresis branch (blue segments) define 
the irreversible component (red bars) of magne za on changes along this branch. (b) The Preisach 
diagram is a representa on of hysteresis processes as the sum of elemental contribu ons from rectan-
gular hysteresis loops (hysterons, sketched in red) with switching fields AH  and BH . Because B AH H³  
by defini on, hysteron coordinates A B( , )H H  plot below the A BH H=  diagonal, over a triangular area 
(colored) limited by the satura on field satH  above which magne c hysteresis is fully reversible. 
Further dis nc ons can be made between (1) closed hysterons with A BH H= , (2) hysterons with only 
one possible state in zero field (posi ve or nega ve satura on, blue areas), and (3) hysterons with two 
possible states in zero field (so-called magne c remanence carriers, green square). The Preisach space 
can also be expressed in transformed coordinates represen ng coercivity (i.e. hysteron opening 

c B A( )/2H H H= - ) and the bias field (i.e. hysteron horizontal shi s bH =  B A( )/2H H+ ). Hysteron 
examples (red) are given for selected points of the Preisach space, which can be understood as samples 
of the Preisach distribu on. Contour lines over the region occupied by remanence-carrying hysterons 
(green) represent a Preisach distribu on obtained for interac ng SD par cles by Dunlop et al. [1990]. 
In the Preisach-Néel model, cH - and bH -coordinates coincide with coercivi es and interac on fields 
of real SD par cles, respec vely. 
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Hysterons are merely a mathema cal construct and do generally not correspond to dis-
crete par cles or sample volumes. Nevertheless, the bivariate Preisach distribu on provides 
intrinsically more informa on than any one-dimensional magne za on curve. The simplest 
physical interpreta on of a Preisach distribu on has been proposed by Néel [1958] with what 
is known as the Preisach-Néel model of single-domain (SD) par cles. This model relies on the 
resemblance between hysteresis loops of individual SD par cles with uniaxial anisotropy [Sto-
ner and Wohlfarth, 1948] on one hand, and symmetric Preisach hysterons (i.e. A BH H=- ) on 
the other hand. Both are characterized by only two magne za on states (one for each hyste-
resis branch) with discon nuous transi ons at A cH H=-  and B cH H=+ . The Preisach distri-
bu on of isolated SD par cles is thus concentrated along the A BH H=-  diagonal of the Prei-
sach space and coincides with the well-known coercivity or switching field distribu on. 

In interac ng SD par cle assemblages, magne c switching of individual par cles occur in 
a total field given by the sum of the applied field and an internal, so-called interac on field 

bH , which is the sum of dipole fields produced by the magne c moments of the other par-
cles. Whenever b 0H ¹ , elemental hysteresis loops are shi ed horizontally, so that magne c 

switching occurs at A b cH H H= -  and BH =  b cH H+ . Because the interac on field is a local 
variable determined by the spa al arrangement and magne za on of neighbor par cles, the 
Preisach distribu on of interac ng SD par cles can be represented as the product of a coer-
civity distribu on c( )f H  and an interac on field distribu on b( )g H : 

c b( ) ( )P f H g H=  (8.1) 

with c B A( )/2H H H= -  and b B A( )/2H H H= +  (Fig. 8.2b). More generally, cH  and bH  are 
known as the coercivity field and the bias field of hysterons. The appealing simplicity of the 
Preisach-Néel model has promoted the use of the transformed coordinates c b( , )H H  (whereby 

bH  is also called uH  or iH ), instead of the original Preisach fields AH  and BH . 

The Preisach space spanned by hysteresis processes that are saturated in fields sat| |H H<  
is a triangular region delimited by the diagonal line B AH H³  (by defini on of hysteron swit-
ching fields), and by A satH H>- , B satH H<+ , respec vely (Fig. 8.2b). This space can be further 
subdivided into a square region with A 0H <  and B 0H >  where hysterons can have two mag-
ne za on states in zero field, and the remaining space where hysterons are nega vely or posi-

vely saturated when no external fields are applied. The square region is par cularly relevant 
to paleo- and rock magne sm, because remanent magne za ons originate only from hyste-
rons located within it. In par cular, the satura on remanent magne za on rsM  corresponds 
to the integral of the Preisach func on over this region, i.e. 

sat

A sat B

0
rs A B A B0

( , )d d
H

H H H
M P H H H H

+

=- =
=ò ò  (8.2) 

On the other hand, the satura on magne za on sM  corresponds to the integral of the 
Preisach func on over the en re domain defined by B AH H³ . 
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8.2.3 The FORC distribu on 

Several measurement protocols have been developed in order to obtain experimental 
Preisach func on es mates. What is nowadays known as the FORC protocol has been first 
described by Hejda and Zelinka [1990]. With this protocol, first-order magne za on curves 

r( , )M H H , measured upon posi ve sweeps of H  (i.e. H  increases) from reversal fields rH , de-
fine the so-called FORC func on 

2

r
r

1( , )
2

Mρ H H
H H

=-

 

 (8.3) 

[Pike, 2003]. This func on coincides with the Preisach distribu on in case of measurements 
performed on samples that are correctly described by the Preisach model. Because real sam-
ples rarely sa sfy this condi on, empirical distribu ons such as eq. (3) do generally not coin-
cide with the Preisach distribu on up to few excep ons [e.g. Carvallo et al., 2005]. For exam-
ple, the Preisach distribu on is a strictly posi ve probability func on, while FORC diagrams 
can have nega ve amplitudes [Newell, 2005]. Several modifica ons of the original Preisach 
model have been developed in order to account for such differences. So-called moving Prei-
sach models [Vajda and Della Torre, 1991] take the effect of macroscopic magne za on states 
on the intrinsic hysteron proper es into account, and are used for instance to describe mag-
ne za on-dependent interac on fields. Magne c viscosity, on the other hand, is accounted 
by Preisach models with stochas c inputs simula ng thermal fluctua ons of switching fields 
[Mitchler et al., 1996; Borcia et al., 2002]. 

Modifica ons of the Preisach formalism are not sufficient to explain all aspects of FORC 
func ons, especially in case of non-SD magne c systems. Therefore, physical FORC models 
have been developed in order to properly interpret magne c processes in isolated [Newell, 
2005] and interac ng [Muxworthy and Williams, 2005; Egli, 2006] SD par cles, nuclea on of 
magne c vor ces in PSD par cles [Carvallo et al., 2003; Winklhofer et al., 2008], domain wall 
displacement in MD crystals [Pike et al., 2001b; Church et al., 2011], and magne c viscosity 
[Pike et al., 2001a]. Magne c models of idealized systems yield characteris c signatures of the 
FORC func on that can be used as fingerprints for the iden fica on of magne c minerals in 
geologic samples [Roberts et al., 2000]. In some cases, these signatures are precisely determi-
ned to the point that quan ta ve analysis is possible [Winklhofer and Zimanyi, 2006; Egli et 
al., 2010; Ludwig et al., 2013]. 

The remaining part of this sec on is dedicated to the implementa on of a general FORC 
model that will be used to interpret the proper es of SD, PSD, and MD samples presented in 
this ar cle. For this purpose, a rela vely simple magne c system with few magne za on sta-
tes is considered. This system corresponds to the micromagne c hysteresis simula on of a 
cluster of seven strongly interac ng SD par cles (Fig. 8.3). The upper branch of the major hys-
teresis loop contains three magne za on jumps produced by abrupt transi ons between four 
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magne c states with magne za ons 0M , 1M , 2M , and 3M . These states represent con -
nuous segments of the upper hysteresis branch. 

 

Fig. 8.3: FORC model of a linear chain of 7 SD magne te par cles with elonga on 1.3e=  and long 
axes perpendicular to the chain axis. This model represents the simula on of a collapsed magnetosome 
chain according to Fig. 9a in Shcherbakov et al. [1997]. In this example, the chain axis forms an angle 
of 75° with the applied field direc on. Magne za on jumps along the upper branch of the major 
hysteresis loop are indicated by dashed lines. Cursive number pairs are used to count discon nui es 
of first-order curves 1M , 2M , and 3M  (blue lines). For example, (2,2) is the second jump (counted from 
the right) occurring along 2M . Any measurable FORC coincide with 0M , 1M , 2M , or 3M . The amplitude 
of the last magne za on jump on 3M  (magenta) defines the contribu on crM  of the central ridge to 
the FORC diagram shown in (b). (b) FORC diagram calculated from (a), consis ng of three diagonal 
ridges defined by first deriva ves 1( )i iM M - ¢-  of differences between 0M , 1M , 2M , and 3M . The 
ridges width is exaggerated in order to show the color coding for posi ve (orange to magenta) and 
nega ve (blue) contribu ons. Cursive number pairs indicate peaks of the FORC func on produced by 
magne za on jumps with same labels as in (a). One of the peaks, labeled with CR, contributes to the 
central ridge and is generated by the last magne za on jump (i.e. 3,1) of the last FORC (i.e. 3M ). All 
FORC contribu ons are enclosed in a triangular region defined by ver ces with coordinates sat(0, )H  
and sat( ,0)H , where sat 40 mTH »  is the field above which hysteresis becomes fully reversible. 
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If the field sweep is reversed within the posi vely saturated state 0M , the resul ng first-
order magne za on curves will always coincide with 0M . Because these curves are iden cal, 

r/ 0M H =   and no contribu on to the FORC func on is obtained. If the reversal field is de-
creased below the first magne za on jump at r,1H , first-order curves will start from 1M  in-
stead of 0M , and con nue along 1M  un l a magne za on jump (labeled with ‘1,1’ in Fig. 8.3a) 
will bring the magne za on 1M  back to posi ve satura on (i.e. 0M ). The finite difference 
between the last first-order curve coinciding with 0M  and the first one coinciding with 1M  
creates a contribu on 

r r,1 1 0
1 ( ) ( )
2

ρ δ H H M M
H

= - -



 (8.4) 

to the FORC distribu on, where r r,1( )δ H H-  is the Dirac impulse func on accoun ng for the 
magne za on jump at r,1H . Because r r,1( )δ H H-  is zero everywhere, except for r r,1H H- =  
0, eq. (8.4) produces a diagonal ridge in FORC space (Fig. 8.3b). Using the coordinate transfor-
ma ons c r( )/2H H H= -  and b r( )/2H H H= + , the ridge loca on is given by a line with equa-

on b r,1 cH H H= + . FORC contribu ons along this line are propor onal to the deriva ve of 
1 0M M-  and are of two fundamental types. The first type occurs at points where 0M  and 1M  

are con nuous, and is propor onal to differences between their slopes. Such FORC contribu-
ons are magne cally reversible, because a small change of the applied field H  does not nu-

cleate magne c state transi ons. On the other hand, magne cally irreversible contribu ons 
occur at magne za on jumps occurring along 1M  (e.g. jump ‘1,1’ in Fig. 8.3b). In this case, the 
deriva ve of 1 0M M-  is a Dirac impulse with amplitude 1,1ΔM , contribu ng with a point peak 

1,1 r r,1 1,1
1 ( ) ( )
2

ρ M δ H H δ H HΔ= - -  (8.5) 

to the FORC distribu on. Equa ons (8.4-5) can be generalized to any pair of first-order curves, 
giving raise to as many diagonal ridges in FORC space, as discrete magne za on jumps are 
encountered along the upper hysteresis branch. The FORC func on is thus fully described by 
the sum of all diagonal ridges, i.e. 

r r, 1
1

1 ( ) ( )
2

n

i i i
i

ρ δ H H M M
H -

=

= - -å 


 (8.6) 

An important characteris cs of this FORC model is that both reversible and irreversible con-
tribu ons can have posi ve and nega ve amplitudes, depending on the slopes of first-order 
curves, and on whether a magne za on jump occurs along iM  or 1iM - . 

The FORC func on of a simple system with few magne za on states, such as in the exam-
ple of Fig. 8.3, is given by a certain number of infinite, isolated peaks corresponding to discrete 
transi ons between magne c states. Each peak is preceded by a sort of diagonal “shadow” 
produced by the pronounced curvature of magne za on curves in proximity of magne c state 
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transi ons. Peak posi ons define so-called switching or nuclea on fields in which magne c 
state transi ons occur. Small modifica ons of the magne c system, as for instance the intro-
duc on of an addi onal par cle in the SD cluster model of Fig. 8.3, modify cri cal fields and 
eventually produce addi onal magne za on states with corresponding transi ons. Therefore, 
samples containing large numbers of heterogeneous magne c par cles generate a dense 
“cloud” of peaks merging into a con nuous FORC distribu on. Because individual peaks can 
be posi ve or nega ve, some regions of the FORC diagram might be characterized by nega ve 
amplitudes. In general, all FORC contribu ons are contained within a triangular region defined 
by ver ces with coordinates sat(0, )H  and sat( ,0)H . 

An important characteris c of the general FORC model described above is related to the 
inversion symmetry of magne c states. This symmetry ensures that the last magne za on 
jump along the upper branch (i.e. the transi on from 2M  to 3M  in Fig. 8.3a) is always ac-
companied by an iden cal jump along the following first-order curve, which coincides with 
the lower hysteresis branch (i.e. jump ‘3,1’ in Fig. 8.3a). This jump produces an infinite peak 
on the last diagonal ridge of the FORC diagram (Fig. 8.3b), which is located exactly at b 0H = . 
This is because the last diagonal ridge starts at a certain nega ve reversal field r,lastH  and ends 
with a jump occurring at r,lastH H=- , so that b r,last r,last 0H H H= - = . While other peaks can 
occur everywhere in FORC space, the peak associated with r,lastH  is always placed exactly at 

b 0H = . 

A sample containing many isolated (i.e. non-interac ng) par cles with few magne c states 
will produce a corresponding number of FORC peaks along b 0H = , while other peaks contri-
bute to a distributed background. The superposi on of all peaks with b 0H =  appears as an 
infinitely sharp, so-called central ridge [Egli et al., 2010]. Its existence has been first predicted 
for non-interac ng uniaxial SD par cles [Newell, 2005], which represent the simplest possible 
case of par cles with two magne c states, and observed for a magnetofossil-bearing lake sedi-
ment [Egli et al., 2010]. Because of the theore cally infinite sharpness of the central ridge, 
high-resolu on FORC measurements and proper processing are necessary for its iden fica-

on. Since its first observa on, the central ridge has been found to be a widespread signature 
of freshwater and marine sediments containing magnetofossils [Roberts et al., 2012]. Two 
condi ons must be met for the existence of a central ridge: first, magne c par cles should not 
interact with each other, since the presence of an interac on field destroys the inversion sym-
metry of single par cle hysteresis loops by shi ing them horizontally. Second, individual par -
cles should have only few magne za on states, so that the lower hysteresis branch merges 
directly with the upper branch, without joining any other first-order curve. For example, MD 
par cles with many domain wall pinning sites produce a large number of individual FORC 
peaks, none of which must forcedly occur at b 0H =  (Fig. 8.4). 
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In any case, the central ridge is not an exclusive feature of SD par cles, as it can occur in 
ensembles of non-interac ng par cles with few magne za on states (e.g. PSD). Some exam-
ples will be provided with the discussion of PSD magne za on processes in sec on 8.4.2. 

 

Fig. 8.4: (a) Model hysteresis loop (black) and FORCs (gray) generated by three MD par cles with 
demagne zing factors of 0.1, 0.2, and 0.3, respec vely, calculated according to Pike et al. [2001b]. Only 
FORCs necessary for measurement of the backfield demagne za on curve bfM  (blue dots) are shown 
for clarity. The last FORC 1nM -  that does not coincide with the lower hysteresis branch is show in 
purple. It merges with the lower hysteresis branch before the last magne za on jump Δ nM  has occur-
red, so that no central ridge contribu ons are produced. (b) FORC diagram corresponding to the MD 
hysteresis model shown in (a). Gray diagonal lines are individual FORC trajectories along which irrever-
sible magne za on processes are recorded as posi ve (orange dots) and nega ve (blue dots) peaks. 
The dashed line is a quadra c fit to the dots showing clustering around the crest of a ‘crescent-shaped’ 
distribu on as discussed in Church et al. [2011]. 
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8.3 Coercivity distribu ons derived from FORC measurements 

FORC measurements subsets define three types of coercivity distribu ons that provide a 
bridge with conven onal parameters used in rock magne sm since several decades. These 
coercivity distribu ons originate from three par cular FORC segments (Fig. 8.5): (1) the ini al 
part r r( , )M H H H  of each curve and its departure from the upper hysteresis branch, (2) the 
remanent magne za on r( ,0)M H  of each curve, and (3) the point rH H=-  of each curve 
where the applied field equals the reversal field amplitude. These regions define magne za-

on curves that will be discussed in the following. 

 

Fig. 8.5: Relevant magne za on processes captured by FORCs. irrΔM  (red bar) is the irreversible mag-
ne za on change along the upper hysteresis branch, defined by the ini al difference between FORCs 
origina ng at consecu ve reversal fields rH . In this example, rH -values have been chosen to coincide 
with the coercivity cH  and the coercivity of remanence crH  for didac c purposes. The difference 
between the same two FORCs in zero field ( 0H= , blue bar) defines a contribu on bfΔM  to the back-
field demagne za on curve. Finally, the abrupt slope change of FORCs at rH H=  defines the contribu-

on crΔM  (green) to the central ridge. The FORC star ng at r 0H = , where rsM M= , is called satura-
on ini al curve [Fabian, 2003]. In ensembles of non-interac ng SD par cles, this curve coincides with 

the upper hysteresis branch because nega ve fields are required to switch them from posi ve satura-
on. 
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8.3.1 Backfield coercivity distribu on 

Backfield or DC demagne za on of a posi vely saturated sample is obtained by measuring 
its remanent magne za on a er applica on of increasingly large nega ve fields [Wohlfarth, 
1958]. The applied nega ve fields are equivalent to reversal fields rH  of the FORC protocol 
(Fig. 8.6), so that the backfield demagne za on curve is given by FORC remanent magne-

za ons r( ,0)M H . The corresponding backfield coercivity distribu on is defined as the first 
deriva ve of r( ,0)M H , i.e. 

bf
1 d ( ,0)( )
2 d

M xf x
x
-

=-  (8.7) 

The backfield coercivity distribu on can be determined very precisely with the same polyno-
mial regression method used to calculate FORC diagrams. The factor ½ in eq. (8.7) ensures 
that the integral of bff  over all fields yields the satura on remanence rsM  of the sample. 
Moreover, bff  is defined only for posi ve arguments, which correspond to nega ve reversal 
fields, because the remanent magne za on of curves star ng at r 0H >  cannot be measured. 
Within the Preisach model, the argument of bff  coincides with the coercivity field cH  of hyste-
rons, and bf c c( )df H H  coincides with the rsM -contribu on of all hysterons with coercivi es 
comprised between cH  and c cdH H+ . 

 

Fig. 8.6: Construc on of a backfield demagne za on curve (right) from FORC measurements (le ) of 
a magnetofossil-bearing pelagic carbonate. FORC por ons that are actually swept during backfield 
measurements are shown in blue, and some zero-field measurements are highlighted with blue circles. 
Remanent magne za on measurements r r( ,0)M M H=  on FORCs beginning at rH-  define the back-
field curve coordinates r r( , )H M . 
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8.3.2 Reversal coercivity distribu on 

Ini al FORC slopes can be used to calculate irreversible magne za on changes 

irr r r r rΔ ( , ) ( , )M M H δH H δH M H H δH= + + - +  (8.8) 

along the upper hysteresis branch (Fig. 8.7), where δH  is the (constant) field increment used 
for the measurements. The sum of all irrΔM ’s obtained from consecu ve FORCs star ng at 
reversal fields rH x£  defines a magne za on curve irr ( )M x  with the following meaning: if 
reversible magne za on processes are removed from the upper hysteresis branch, the re-
sul ng ‘irreversible hysteresis’ branch would coincide with irrM  up to a constant (Fig. 8.7b). 
The so-called reversal coercivity distribu on is defined by analogy with backfield demagne -
za on as 

r

irr r
irr

r

1 d ( ) 1 ( , )( )
2 d 2 H H x

M x M H Hf x
x H = =-

-
=- =-




. (8.9) 

The factor ½ in eq. (8.9) has been introduced to ensure that the total integral irsM  of irrf  is a 
magne za on with the following proper es: irs s0 M M< £  for any sample, and irs sM M=  in 
absence of reversible processes. Unlike rsM , the parameter irsM  includes all irreversible pro-
cesses occurring along the major hysteresis loop and shall therefore be called irreversible satu-
ra on magne za on. 

A fundamental property of irsM  is that it coincides with the total integral of the FORC 
func on, because, using eq. (8.6): 

r,r
r r 1 irs, 1 1

1 1( , )d d ( ) Δ
2 2i

n n

i i iH HH H i i
ρ H H H H M M M M- =

= =

= - = =å åòò  (8.10) 

This important result implies that, while reversible magne za on processes can contribute 
locally to the FORC func on, these local contribu ons cancel each other out upon integra on 
in FORC space. 

The defini ons of bff  and irrf  are analogous, since they both rely on differences between 
consecu ve FORCs evaluated at 0H =  and rH H= , respec vely, and are both related to the 
FORC star ng at rH x=-  (Fig. 8.5). An important difference, on the other hand, is that the 
argument of irrf  can be posi ve as well as nega ve, unlike other coercivity distribu ons. 
Posi ve arguments of irrf  correspond to measurements of the upper hysteresis branch in ne-
ga ve fields and vice versa. Similarly, posi ve arguments of bff  correspond to nega ve fields 
used for DC demagne za on. Furthermore, irr bf(0) (0)f f=  by the defini ons given with eq. 
(8.7) and eq. (8.9). 
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Fig. 8.7: Construc on of the magne-
za on curve corresponding to irre-

versible processes along the upper 
hysteresis branch. (a) Irreversible 
magne za on changes irrΔM  (red) 
defined by the ini al parts of all 
FORCs (blue). (b) Upper hysteresis 
branch M+  (black curve) a er ad-
ding the satura on magne za on 

sM , and irreversible magne za on 
curve irr ( )M H  reconstructed by in-
tegra ng all magne za on steps 

irrΔM  shown in (a). The satura on 
value irr ( )M H ¥  is the total irre-
versible magne za on irs2M  of the 
hysteresis branch. 

 

8.3.3 Central ridge coercivity distribu on 

The central ridge coercivity distribu on is best explained by considering an isolated mag-
ne c par cle with any domain state. A first-order curve star ng from the upper hysteresis 
branch just a er a magne za on jump has occurred at r 0H <  will contribute to the central 
ridge if another magne za on jump is encountered at rH H=-  while sweeping the field back 
towards posi ve values, before merging with the previous FORC. Usually, magne za on 
jumps can occur at any field and there is no par cular reason for having one exactly at H =  

rH- . In this case FORC contribu ons accumulate at b 0H =  as over any other place in FORC 
space, genera ng a con nuous FORC distribu on. An excep on is provided by the FORC ori-
gina ng from the upper hysteresis branch just a er the last magne za on jump. This curve 
coincides by defini on with the lower hysteresis branch. Because of inversion symmetry, the 
lower branch will contain a symmetric magne za on jump at rH H=- . If the lower branch 
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merges with the previous FORC curve before rH H=-  is reached, as it is commonly the case 
for MD hysteresis (Fig. 8.4a), the jump at rH H=-  will not contribute to the FORC diagram, 
because the two curves are iden cal and r/ 0M H =  . Otherwise, there will be a contribu on 
to the central ridge in form of a peak with FORC coordinates c b r( , ) ( ,0)H H H= -  (Fig. 8.3). 
Because these contribu ons are placed exactly at b 0H = , they produce a ridge of the form 

cr c b cr c b
1( , ) ( ) ( )
2

ρ H H f H δ H=  (8.11) 

where crf  is the so-called central ridge coercivity distribu on [Egli et al., 2010]. In FORC dia-
grams obtained from real measurements, the infinite sharpness of crρ  is regularized by re-
placing the Dirac impulse with an appropriate func on of bH  that takes the smoothing effects 
of measurements performed with finite field increments into account. A rigorous treatment 
of such effects is given in Egli [2013]. The central ridge coercivity distribu on is obtained from 
real measurements in two steps: first, the central ridge contribu on crρ  to the FORC diagram 
is isolated from the con nuous background produced by other processes, then crρ  is integra-
ted over bH  so that 

cr c cr c b b( ) ( , )df H ρ H H H
+¥

-¥
=ò . (8.12) 

While the amplitude of crρ  depends on the resolu on of FORC measurements and on FORC 
processing, crf  is independent of any measuring and processing parameter and reflects intrin-
sic magne c proper es. The complex opera on of isola ng the central ridge and calcula ng 

crf  is performed automa cally by VARIFORC with few controlling parameters described in this 
user manual (Chapter 6). 

The total magne za on crM  associated with the central ridge is obtained by integra ng 
crf  over cH  and represents the total contribu on of last magne za on jumps in isolated 

magne c par cles. Accordingly, cr irs/M M  is the ra o between the last magne za on jump 
nΔM  of a hysteresis branch and the sum of all magne za on jumps over the same branch. In 

case of non-interac ng, uniaxial SD par cles, n 1Δ ΔM M=  is the only magne za on jump of 
single par cle hysteresis, so that cr irs/ 1M M = . As soon as addi onal magne c states begin to 
exist in small PSD par cles, the rela ve amplitude of nΔM  decreases with respect to the sum 

irsM  of all magne za on jumps, and cr irs/ 1M M < , un l cr 0M =  is reached in MD-like sys-
tems. 
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8.4 Examples 

The physical meaning of FORC diagrams and derived coercivity distribu ons is best illus-
trated with topic examples related to SD, PSD, and MD magne c par cle assemblages. The 
hysteresis proper es of samples discussed in this sec on are summarized by the Day diagram 
of Fig. 8.8. 

 

Fig. 8.8: Day diagram summarizing the hysteresis proper es of samples discussed in this paper (red 
circles for SD samples, red triangles for PSD samples, red squares for MD samples), compared with 
proper es of magnetofossil-bearing sediments (colored dots). The Day diagram with mixing curves 
between domain states (gray) is drawn from Dunlop [2002b]. Cultured magnetotac c bacteria (‘cul-
tured MB’) plot exactly on the expected spot for non-interac ng uniaxial SD par cles. The effect of 
magnetosta c interac ons on such par cles is shown with models from Muxworthy et al. [2003] and 
with disrupted magnetosome chains (green circle, from Li et al., 2012]). In general, interac ng SD par-

cles follow the SD+MD mixing curve. Magnetofossil-bearing sediments follow a different trend with 
end-members defined by CBD-extractable magne c minerals on one hand (red circle labeled as ‘CBD 
extr.’, from Ludwig et al. [2013]) and the central region of the diagram on the other hand, possibly 
represented by a clay mineral dispersion of SDS-treated Magnetospirillum cells (red circle labeled as 
‘MS disp.’). Iron nanodots with single-vortex states (red triangle labeled as AV-109, from Winklhofer et 
al. [2008]) do not plot on the expected trend line for PSD par cles. 
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8.4.1 SD magne c assemblages 

The first example is a conceptual model of a sample containing a small number of non-
interac ng, uniaxial SD par cles with rectangular (Fig. 8.9a) and curved (Fig. 8.9c) single-par-

cle hysteresis loops. Reversible processes (i.e. magne c moment rota on in the applied field) 
are absent in the first case. The SD par cles have two stable magne za on states in fields 

sH H| |< , where sH  is a par cle-specific switching field. Transi ons from one magne za on 
state to the other in individual par cles once their specific sH -values have been reached is 
seen in Fig. 8.9 as a series of magne za on jumps. These jumps represent irreversible magne-

za on processes, while reversible magne c moment rota ons (Fig. 8.9c) occur along con -
nuous segments of the magne za on curves. 

 

Fig. 8.9: Modeled FORC proper es of few uniaxial, non-interac ng SD par cles. Switching of individual 
par cles appears as magne za on jumps. (a) Preisach-Néel model with rectangular single par cle hys-
teresis loops (inset). This case is characterized by irr bf crΔ Δ ΔM M M= = , so that the coercivity distribu-

ons in (b) are iden cal. irrΔM  and crΔM  are magne za on jumps produced by the same par cle in 
rH  and rH- , respec vely. (c) Model with Stoner-Wohlfarth single par cle hysteresis loops (inset). 

Magne za on jumps occur at same fields as in (a), but their size is smaller, because magne za on 
changes are caused in part by magne c moment rota ons over the con nuous segments. Because 
magne za on jump sizes of single par cle hysteresis loops are smaller than satura on remanent mag-
ne za ons, irr cr bfΔ Δ ΔM M M= < , and the backfield coercivity distribu on is larger than the other two 
coercivity distribu ons, as shown in (d). 
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Each magne za on jump along the upper hysteresis branch is the star ng point of a FORC 
that does not coincide with the previous one, while all FORCs star ng from the same con -
nuous hysteresis segment are iden cal. 

Non-interac ng, uniaxial SD par cles have rela vely simple FORC proper es. First, no swit-
ching occurs when the field is reduced from posi ve satura on to zero. Therefore, all FORCs 

r( 0, )M H H³  star ng at posi ve reversal fields are iden cal to the upper branch M+  of the 
major hysteresis loop and their shape is en rely determined by reversible magne c moment 
rota on. Departure from M+  of the FORC (0, )M H  origina ng at r 0H =  (called satura on 
ini al curve siM ), can be used as a measure of how much real hysteresis loops differ from the 
ideal non-interac ng SD case characterized by siM M+=  [Fabian, 2003]. As soon as nega ve 
fields are reached along r( )M H+ , all par cles with s rH H>-  are switched: accordingly, FORCs 
star ng at r 0H <  are produced by a mixture of switched and unswitched par cles. While the 
applied field is increased from r 0H <  to 0H = , magne c moments rotate reversibly without 
further switching. Moreover, the remanent magne za on bfM =  r( ,0)M H  obtained at 0H =  
reflects the same configura on of switched par cles created at the beginning of the corres-
ponding FORC. 

In both examples of Fig. 8.9, the last magne za on jump of each FORC contributes to the 
central ridge and has the same amplitude as the magne za on jump on ( )M H+  from which 
the FORC is branching, because both jumps are produced by the two switching fields sH  of 
same par cles. Therefore, the coercivity distribu ons associated with r( )M H+  and with the 
central ridge are iden cal, i.e. cr irr( ) ( )f x f x=  over 0x ³  and irr ( 0) 0f x< =  (Fig. 8.9b,d). The 
backfield coercivity distribu on, on the other hand, is based on magne za on differences 
measured in zero field instead of the switching fields, and is therefore dis nct from the other 
two coercivity distribu ons in case of SD par cles with curved elemental hysteresis loops, such 
as Stoner-Wohlfarth par cles (Fig. 8.9c,d). In case of randomly oriented Stoner-Wohlfarth par-

cles, the mean size of magne za on jumps in single-par cle hysteresis is irs rs/S M M= =  

cr rs/ 0.5436M M =  [Egli et al., 2010], and rs s/ 0.5M M = . Single-par cle hysteresis loops be-
come much closer to rectangular loops as soon as thermal ac va ons are taken into conside-
ra on, because switching occurs in smaller fields where reversible magne c moment rota on 
is less pronounced. FORC measurements yield 0.8-0.9S »  for SD par cles in a pelagic carbo-
nate [Ludwig et al., 2013]. 

The FORC proper es discussed above are important for the iden fica on of SD par cles 
in geologic samples, notably magnetofossils in freshwater and marine sediment, but also well-
dispersed SD par cles in rocks. In par cular, the occurrence of sedimentary SD par cles in 
isolated form or as linear chains produced by magnetotac c bacteria is the ma er of an on-
going debate. For example, the unusually strong SD signature of sediments from the Paleo-
cene-Eocene thermal maximum (PETM) has been a ributed to magnetofossils produced by 
magnetotac c bacteria thriving in a par cularly favorable environment [Kopp et al., 2007; 
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Lippert and Zachos, 2007], as well as, at least in part, to isolated SD par cles produced by a 
cometary impact [Wang et al., 2013]. In the following, some examples of FORC and coercivity 
distribu on signatures of sedimentary SD par cles are discussed. 

The first example is based on high-resolu on FORC measurements by Wang et al. [2013] 
of a pure culture of the magnetotac c bacterium MV-1, which produces single chains of pris-
ma c 3553 nm magne te crystals [Sparks et al., 1990]. The original measurements have 
been reprocessed with VARIFORC and results are shown in Fig. 8.10. Isolated magnetosome 
chains behave as a whole like SD par cles with uniaxial anisotropy, because the magne c 
moments of individual crystal are switched in unison due to strong magnetosta c coupling 
[Jacobs and Bean, 1955; Egli et al., 2010]. Magnetosta c interac ons between chains, on the 
other hand, are minimized by the good separa on naturally provided by the much larger cell 
volume. 

Because of intrinsic magnetosome elonga on and well-constrained dimensions, MV-1 cul-
tures provide a close analogue to random dispersions of nearly iden cal, uniaxial SD par cles. 
The resul ng coercivity distribu ons are rela vely narrow with virtually no contribu ons at 

c 0H =  (Fig. 8.10f), as expected for SD par cles with minimum uniaxial anisotropy provided 
by crystal elonga on and chain geometry. Hysteresis parameters ( rs s/ 0.496M M = , cr c/H H =
1.19, Fig. 8.8) prac cally coincide with those of randomly oriented Stoner-Wohlfarth par cles. 
Lack of strong magnetosta c interac ons is confirmed by the negligible intrinsic ver cal exten-
sion of the central ridge, as predicted by theore cal calcula ons [Newell, 2005]. 

 

Fig. 8.10 (front page): Cultures of the magnetotac c bacterium MV-1 represent one of the best 
material realiza ons of non-interac ng SD par cle assemblages with minimum uniaxial magne c ani-
sotropy. These bacteria contain a single chain of SD magne te crystals that switch in unison, behaving 
effec vely as an equivalent SD par cle with elonga on along the chain axis. (a) Set of FORC measu-
rements where every 4th curve is plo ed for clarity. (b) Same as (a), a er subtrac ng the lower hyste-
resis branch from each curve. Every 2nd curve is shown for clarity. The bell-shaped envelope of all 
curves is the difference between upper and lower hysteresis branches, i.e. the even component 

rh ( )/2M M M+ -= -  of the hysteresis loop mul plied by a factor 2 [Fabian and Dobeneck, 1997]. (c) 
FORC diagram calculated with VARIFORC from the measurements shown in (a). (d) Same as (c), a er 
subtrac on of the central ridge. Most contribu ons in this diagram are due to reversible magne za on 
processes (i.e. in-field magne c moment rota ons). (e) Central ridge isolated from (c) and plo ed with 
a 2 ver cal exaggera on. Zero-coercivity contribu ons are completely absent, as expected for a 
system of par cles with intrinsic shape anisotropy along chain axes. The central ridge’s ver cal exten-
sion slightly exceeds the minimum extension expected from data processing of an ideal ridge, revealing 
residual magnetosta c interac ons between magnetosome chains. The associated interac on field 
amplitudes are <0.5 mT. 
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Fig. 8.10 (con nued): (f) Coercivity distribu ons derived from FORC measurements and corresponding 
magne za ons calculated by integra on of the distribu ons over all fields. The condi on irs crM M=  
expected for these par cles is not exactly met, because of residual FORC contribu ons not correspon-
ding to non-interac ng, uniaxial SD par cles. On the other hand, irr ( 0) 0f x< = , as expected from 
posi vely saturated SD par cles that cannot be switched in posi ve fields. High-resolu on FORC mea-
surements have been kindly provided by Wang et al. [2013]. 
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Ideally, the three types of coercivity distribu ons shown in Fig. 8.10f should be characte-
rized by irr cr bkf f fº £  and irr ( ) 0f x =  for nega ve arguments, so that cr irs/ 1M M = . The mea-
sured ra o cr irs/ 0.64M M =  reflects residual FORC contribu ons of unspecified nature clearly 
visible over b 0H > , where 0ρ=  is expected from non-interac ng SD par cles [Newell, 2005]. 
These contribu ons are probably associated with a small frac on of collapsed magnetosome 
chains (Fig. 8.10d). 

The second example is also based on a magnetotac c bacteria sample, but its magne c 
proper es are less straigh orward. The sample is a synthe c sediment analogue obtained by 
dispersing cultured cells of the magnetotac c bacterium Magnetospirillum magnetotac cum 
MS-1 in a clay slurry (kaolinite) while dissolving the cell material with addi on of 2% sodium 
dodecyl sulfate (SDS) during con nuous s rring. The purpose of this experiment was to check 
the stability of magnetosome chains in sediment once the cell material is dissolved. Analogous 
experiments performed directly in aqueous solu on yielded strongly interac ng magneto-
some clusters [Kobayashi et al., 2006]. FORC analysis of this sample (Fig. 8.11) poses a formi-
dable problem in terms of data processing, because of the simultaneous presence of (1) a 
sharp superparamagne c (SP) overprint, and (2) a double discon nuity at r 0H H= = , due to 
the overlap of a central ridge and a ver cal ridge in the FORC diagram. 

Fig. 8.11 (front page): FORC measurements of a specially prepared sample containing equidimensional 
magne te magnetosomes. The sample was obtained by dispersing a Magnetospirillum culture in clay 
(kaolinite) with subsequent 2% SDS addi on under con nuous s rring. Dissolu on of cell material by 
SDS is expected to produce clay-magnetosomes aggregates of some form. (a) Set of FORC measu-
rements where every 12th curve is plo ed for clarity. The insert shows a zoom around the origin, where 
a sigmoidal SP contribu on is recognizable. The SP signature saturates in <2 mT, and, although not 
contribu ng to the FORC diagram, it poses a processing problem, because polynomial regression pro-
vides a correct fit only if unsuitably small smoothing factors are chosen (SF = 2 in this case). (b) Same 
as (a), a er subtrac ng the lower hysteresis branch from each curve. Every 3rd curve is shown for cla-
rity. The exponen al-like envelope of all curves is the difference between the upper and lower hyste-
resis branches, and the cusp at 0H=  denotes a system with zero-coercivity contribu ons. The SP 
contribu on shown in the inset of (a) is naturally eliminated from measurement differences, which 
therefore no longer pose FORC processing problems. (c) FORC diagram calculated with VARIFORC from 
the measurement differences shown in (b). The only significant contribu ons are the central ridge, 
indica ve of non-interac ng SD par cles, and a ver cal ridge at c 0H = , which is produced by magne c 
viscosity. The absence of other significant FORC contribu ons, and in par cular the typical signature 
for reversible magne c moment rota on, indicate that single-par cle hysteresis loops are prac cally 
rectangular. (d) Same as (c), a er subtrac on of the central ridge. Residual contribu ons around the 
former central ridge loca on reveal addi onal magne za on processes, which, given the SD nature of 
the sample, must arise from magnetosta c interac ons. (e) Central ridge isolated from (c) and plo ed 
with a 3 ver cal exaggera on. The central ridge peak at c 0H =  denotes a system containing SD par-

cles with vanishing coercivity. 
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Fig. 8.11 (con nued): (f) Coercivity distribu ons derived from FORC measurements and corresponding 
magne za ons calculated by integra on of the distribu ons over all fields. The condi on irs rsM M» »  

crM  met by this sample is typical for non-interac ng SD par cles with squared hysteresis loops and 
represents a physical realiza on of a Preisach-Néel system. Residual irrf -contribu ons over nega ve 
arguments are caused by non-zero FORC amplitudes over b 0H >  in (d). 
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Because the sigmoidal SP overprint extends only over few measurement points, satura ng 
in <2 mT (Fig. 8.11a), it cannot be adequately fi ed by polynomial regression with smoothing 
factors required for adequate measurement noise suppression [Egli, 2013]. The SP overprint 
is eliminated by subtrac ng the lower branch of the major hysteresis loop from all curves, in 
which case no par cular features are seen at 0H =  (Fig. 8.11b). This opera on does not affect 
FORC calcula ons, because the rH -deriva ve of any magne za on curve added or subtracted 
to all measurements is zero. For this reason, subtrac on of the lower hysteresis branch is an 
op on provided by VARIFORC for processing quasi-discon nuous measurements. Moreover, 
FORC measurement differences reveal details that are o en completely hidden in hysteresis 
loops with rs s/ 0M M   and/or large paramagne c contribu ons. 

The hysteresis loop of this sample is clearly constricted at 0H = , in what is o en called a 
‘wasp-waisted’ shape [Tauxe et al., 2006]. The interpreta on of corresponding Day diagram 
parameters ( rs s/ 0.177M M = , cr c/ 5.12H H = , Fig. 8.8) is ambiguous, because it involves mix-
tures of SD, PSD, and SP par cles. On the other hand, the FORC diagram (Fig. 8.11c), contains 
two precisely interpretable signatures, namely a central ridge, as expected for non-interac ng 
SD par cles, and a ver cal ridge due to magne c viscosity. Addi onal FORC contribu ons out-
side of the two ridges are very weak (Fig. 8.11d). Coercivity distribu ons (Fig. 8.11f) are charac-
terized by exponen al-like func ons peaking at c 0H = . Because this is also true for crf , many 
par cles must have vanishingly small switching fields. Such features can be explained by a 
combina on of thermal ac va on effects and the absence of chain-derived uniaxial aniso-
tropy, as expected for equidimensional MS-1 magnetosomes if their original arrangement is 
destroyed. On the other hand, the presence of magnetosome clusters similar to those obtai-
ned from cell disrup on in aqueous solu ons [Kobayashi et al., 2006] can be excluded, be-
cause of the absence of magnetosta c interac on signatures otherwise reported with FORC 
diagrams of extracted magnetosomes [e.g. Chen et al., 2007; Wang et al., 2013]. The apparent 
contradic on between lack of uniaxial chain anisotropy and magnetosta c interac on signa-
tures can be reconciled by assuming that magnetosomes have been individually dispersed in 
the clay matrix. 

The three coercivity distribu ons derived from FORC measurements are almost iden cal; 
approaching the limit case bk cr irrf f f= =  predicted for non-interac ng SD par cles with rec-
tangular single-par cle hysteresis loops. Rectangular loops can be explained by the strong 
switching field reduc on in thermally ac vated SD par cles close to the SD/SP threshold. This 
example demonstrates the level of detailed informa on that is provided by high-resolu on 
FORC measurements. Results shown in Fig. 8.10 and Fig. 8.11 can be considered represen-
ta ve for well dispersed SD par cles with and without minimum uniaxial shape anisotropies. 
The effect of shape anisotropy is much less evident with samples of interac ng SD par cles, 
because local interac on fields act as an addi onal magne c anisotropy source. 
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The third SD example is based on high-resolu on FORC measurements of a magnetofossil-
bearing pelagic carbonate from the Equatorial Pacific [Ludwig et al., 2013]. Typical sediment 
magne za ons of the order of few mAm2/kg, as for this sample, yield FORC measurements 
with important noise contribu ons that need to be adequately suppressed in order to obtain 
useful FORC diagrams. FORC processing becomes cri cal in such cases, as shown in Fig. 8.12. 
Conven onal data processing based on constant smoothing factors yields significant values of 
the FORC distribu on only over a limited region around the central ridge (Fig. 8.12a), unless 
the high resolu on required in proximity of b 0H =  and c 0H =  is sacrificed. The VARIFORC 
variable smoothing algorithm, on the other hand, finds a locally op mized compromise be-
tween resolu on preserva on and noise suppression. With this approach, significant domains 
of the FORC distribu on are drama cally expanded (Fig. 8.12b), revealing a broad, con nuous 
background around the central ridge, as well as nega ve FORC amplitudes characteris c for 
SD par cles. 

 

Fig. 8.12: Example showing the importance of proper FORC processing for extrac ng detailed infor-
ma on from weak natural samples. The two FORC diagrams have been obtained from the same set of 
high-resolu on measurements (field step size: 0.5 mT) of a pelagic carbonate from the Equatorial Paci-
fic [Ludwig et al., 2013]. The red contour(s) enclose significant regions of the FORC diagram, i.e. regions 
where the FORC func on is not zero at a 95% confidence level according to the error calcula on me-
thod implemented by Heslop and Roberts [2012]. (a) Conven onal FORC processing with a constant 
smoothing factor SF = 4. The central ridge is the only significant FORC feature that can be resolved. 
Larger smoothing factors would extend the significant region at the cost of blurring the central ridge 
to the point where it can no longer be iden fied as such (see Fig. 1 in Egli [2013]). (b) VARIFORC pro-
cessing obtained with a variable smoothing factor op mized for the best compromise between noise 
suppression and detail preserva on. Low-amplitude features, such as nega ve contribu ons, are now 
significant over large por ons of the whole FORC space. 
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The last example of this sec on (Fig. 8.13) is based on a special technique used to isolate 
the contribu on of secondary SD magne te par cles from the same pelagic carbonate sample 
of Fig. 8.12. For this purpose, iden cal FORC measurements has been performed before and 
a er trea ng homogenized sediment material with a citrate-bicarbonate-dithionite (CBD) so-
lu on for selec ve magnetofossil dissolu on [Ludwig et al., 2013]. Large magne te crystals, 
as well as SD par cles embedded in a silicate matrix, are not affected by this treatment. There-
fore, differences shown in Fig. 8.13 between the two sets of measurements represent the 
intrinsic magne c signature of CBD-extractable par cles. Hysteresis proper es ( rs s/M M =  
0.44, cr c/ 1.34H H = , Fig. 8.8) are close to the limit case of randomly oriented, non-interac ng 
SD par cles with uniaxial anisotropy, despite evident magnetosta c interac on signatures 
deducible from posi ve FORC contribu ons over the upper quadrant (Fig. 8.13d). Interpreta-

on of interac on signatures in terms of collapsed magnetosome chains or authigenic SD mag-
ne te clusters requires further inves ga on [Ludwig et al., 2013]. Coercivity distribu ons (Fig. 
8.13f) display minor contribu ons near c 0H = , and their overall shape is be er associable 
with intact magnetotac c bacteria cultures (Fig. 8.10) than dispersed magnetosomes in clay 
(Fig. 8.11). Coercivity distribu ons of magnetofossil-bearing sediment are wider than those of 
individual bacterial strains, because of the natural diversity of magnetosome and chain mor-
phologies. On the other hand, no systema c differences are observed between FORC-related 
magne za on ra os (Table 8.1), as long as chain integrity is not evidently compromised. In 
par cular, FORC proper es of PETM sediment appear to be compa ble with those of similar 
magnetofossil-bearing samples, rather than dispersions of equidimensional SD par cles. 

Fig. 8.13 (front page): FORC analysis of a pelagic carbonate sample from the Equatorial Pacific, ob-
tained from differences between iden cal measurements of the same material before and a er selec-

ve SD magne te dissolu on [Ludwig et al., 2013]. This approach, combined with the fact that the 
main magne za on carriers are magnetofossils, ensures that results shown here represent the uncon-
taminated signature of secondary SD minerals. (a) Set of FORC measurements where every 8th curve is 
plo ed for clarity. (b) Same as (a), a er subtrac ng the lower hysteresis branch from each curve. Every 
4th curve is shown for clarity. The bell-shaped envelope of all curves is the difference between the 
upper and lower hysteresis branches. Its shape is intermediate between the examples shown in Fig. 
8.10-11, albeit closer to Fig. 8.10b. (c) FORC diagram calculated with VARIFORC from the measure-
ments shown in (a). The central ridge is overlaid to addi onal low-amplitude contribu ons (<10% of 
the central ridge peak), which, because of their extension over the FORC space, represent as much as 
50% of the total magne za on irsM  ‘seen’ by the measurements. (d) Same as (c), a er subtrac on 
of the central ridge. The lower quadrant partly coincides with the signature of reversible magne c 
moment rota ons as predicted by Newell [2005]. Because non-SD contribu ons are excluded by the 
special prepara on procedure, posi ve FORC amplitudes over b 0H >  must represent the signature of 
magnetosta c interac ons between SD par cles. (e) Central ridge isolated from (c) and plo ed with a 
3 ver cal exaggera on. 
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Fig. 8.13 (con nued): (f) Coercivity distribu ons derived from FORC measurements and corresponding 
magne za ons calculated by integra on of the distribu ons over all fields. Magne za on ra os (e.g. 

irs rs/M M , cr irs/M M , Table 8.1) are similar to those of the MV-1 example in Fig. 8.10 and represen-
ta ve for magnetofossil-bearing sediment. 
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Table 8.1: Hysteresis parameters cr c/H H  and rs s/M M , and ra os between FORC-derived magne za-
ons rsM , irsM , and crM , for samples described in this ar cle. 

Material cr c/H H  rs s/M M  irs rs/M M cr rs/M M  cr irs/M M

Strictly SD examples 
MS-1 dispersion in clay 
MS-1 
AMB-1 a 

MV-1 b 

CBD-extractable in pelagic carbonate c 

Magnetofossil-rich sediments 
Pelagic carbonate c 

PETM b 

Soppensee d 

PSD examples 
AV-109 e 

EF-3 
Volcanic ash b 

MD par cles 
MD20 

 
5.12 
1.233 
1.267 
1.190 
1.340 

 
1.690 
1.677 
1.503 

 
2.578 
4.489 
2.421 

 
3.147 

 
0.177 
0.494 
0.500 
0.496 
0.442 

 
0.399 
0.418 
0.411 

 
0.267 
0.069 
0.219 

 
0.075 

 
1.397 
0.928 
0.893 
0.879 
0.815 

 
1.011 
0.953 
1.066 

 
1.856 
2.500 
1.976 

 
2.873 

 
0.885 
0.510 
0.698 
0.561 
0.651 

 
0.569 
0.550 
0.387 

 
0.598 
0.097 
0.024 

 
0 

 
0.633 
0.550 
0.782 
0.638 
0.667 

 
0.563 
0.576 
0.364 

 
0.322 
0.039 
0.012 

 
0 

a FORC data kindly provided by Li et al. [2012]. 
b FORC data kindly provided by Wang et al. [2013]. 
c FORC data from Ludwig et al. [2013]. 
d FORC data from Kind et al. [2011]. 
e FORC data from Winklhofer et al. [2008]. 
 

 

8.4.2 PSD magne c assemblages 

The next two FORC examples are based on PSD par cle assemblages, star ng with the 
simplest case of an array of iden cal, weakly interac ng Fe nanopar cles with grain sizes sligh-
tly larger than the upper SD limit [Winklhofer et al., 2008]. These par cles can have two pairs 
of an parallel magne c states: so-called ‘flower’ states with nearly homogenous magne za-

on and SD-like magne c moments (SD+ and SD), and single vortex states with nearly zero 
magne c moments (SV+ and SV). Hysteresis proper es are shaped by the transi on sequen-
ces SD+  SV+  SD and SD  SV  SD+ between posi ve and nega ve satura on. Similar 
transi ons in magne te cubes have been modeled micromagne cally [Newell and Merrill, 
2000], yielding the single-par cle hysteresis loops shown in Fig. 8.14. 
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Fig. 8.14: Two examples of single par cle hysteresis loops (le  plots) and corresponding FORC dia-
grams (right plots), generated by micromagne c simula ons of 0.1 µm (a) and 0.11 µm (c) magne te 
cubes by Newell and Merrill [2000]. In both cases, the par cles have two SD-like (SD) and two vortex-
like (SV) magne za on states. SD-like states in (c) exist only in sufficiently large applied fields and 
cannot contribute to remanent magne za ons. Transi ons between magne c states occur at magne -
za on jumps (dashed lines and red lines), defining three groups of iden cal FORCs 0M , 1M  and 2M . 
Magne za on jumps relevant for FORC calcula ons are labeled by number pairs like in Fig. 8.3. Corres-
ponding posi ve and nega ve peaks of the FORC func on (b,d) are shown with ‘+’ and ‘’ symbols, 
respec vely. Gray diagonal lines with arrows are the only FORC trajectories producing non-zero contri-
bu ons. Only peaks located to the right of the dashed lines contribute to the backfield demagne za on 
curve and thus to rsM , determining large differences in magne c remanence proper es of otherwise 
similar FORC diagrams. 
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The complex FORC signature of Fe nanopar cles (Fig. 8.15) can explained by a combina on 
of the two micromagne c models in Fig. 8.14, with individual peaks corresponding to magne c 
transi ons between SD and SV states. The SV  SD+ transi on along the lower hysteresis 
branch produces a central ridge peaking at c 0.15 TH » . Addi onal pairs of posi ve FORC 
peaks at c 0.06 TH »  and nega ve peaks just above and below the central ridge are produced 
by the remaining transi ons, while nega ve FORC amplitudes peaking at b 0.15 TH »-  can 
be explained by reversible magne za on changes of the SV+-state in proximity of its de-
nuclea on field. All relevant FORC contribu ons occur at or in proximity of SV nuclea on in 
±0.01 T and SV denuclea on in ±0.15 T (Fig. 8.15c), producing a constricted hysteresis loop 
(Fig. 8.15a) and bimodal coercivity distribu ons (Fig. 8.15f). 

Unlike the case of isolated SD par cles, magne c state transi ons from posi ve satura on 
(i.e. SD+) occur already in posi ve fields. These transi ons (e.g. SV nuclea on) are not captured 
by remanent demagne za on measurements, therefore contribu ng to irr ( 0)f x< , but not to 

bkf . In the example of Fig. 8.15, SV denuclea on is the only process captured by the central 
ridge, so that crf  is characterized by a single peak at c 0.15 TH » , instead of two peaks, as for 
the other two coercivity distribu ons. 

 

Fig. 8.15 (front page): FORC analysis of Fe nanodots [Winklhofer et al., 2008]. The ar ficial sample (AV-
109) is a two-dimensional, quasi-hexagonal array of polycrystalline Fe nanodots with a diameter of 
6713 nm and 20 nm thickness. The nanodots center-to-center spacing is 2 dot diameters [Dumas et 
al., 2007]. FORC measurements have been performed in the array plane. (a) Set of FORC measure-
ments where every 2nd curve is plo ed for clarity. (b) Same as (a), a er subtrac ng the lower hysteresis 
branch from each curve. Every 2nd curve is shown for clarity. Hysteresis loop constric on at 0H=  and 
the double peak of the curve envelope in (b) are produced by a bimodal distribu on of nuclea on 
fields. As evident in (b), some FORCs cross each other, as well as the lower hysteresis branch. This 
means that regions outside the major hysteresis loop can in principle be accessed by FORC measure-
ments (e.g. Fig. 8.14a), albeit rarely seen with natural samples and impossible with non-interac ng SD 
par cles. (c) FORC diagram calculated with VARIFORC from the measurements shown in (a), featuring 
localized peaks typical for magne c transi ons between four magne c states: two SD-like states with 
large magne c moments, and two states corresponding to a single magne c vortex with small net 
magne c moment. Because magne c par cles in this sample are prac cally iden cal, magne c tran-
si ons occur collec vely, appearing as dis nct FORC func on peaks. In case of less homogenous sam-
ples, FORC peaks would merge into a con nuous background with triangular contour lines, as com-
monly seen with natural PSD assemblages. The dashed lines mark the rectangular domain of FORC 
amplitudes associated with remanent magne za ons. Accordingly, only about half of the two peaks 
at cH »  0.06 T  contribute to rsM . (d) Same as (c), a er subtrac on of the central ridge. The two 
nega ve peaks around the central ridge in (c) now appear as a single contribu on produced by vortex 
denuclea on. (e) Central ridge isolated from (c) and plo ed with a 2 ver cal exaggera on, featuring 
a single peak at 0.15 T. 



VARIFORC User Manual:  8. FORC tutorial 8.35 

 

 

Fig. 8.15 (con nued): (f) Coercivity distribu ons derived from FORC measurements and corresponding 
magne za ons calculated by integra on of the distribu ons over all fields. The bimodal character of 

irrf  and bff  arises from the existence of two different fields for nuclea on (±0.01 T) and denuclea on 
(±0.15 T) of vortex states, producing the constricted hysteresis loop seen in (a). Only vortex denuclea-

on is captured by the central ridge, so that crf  consists of a single peak. 
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Hysteresis parameters of small PSD crystals are very sensi ve to vortex nuclea on fields: 
if nuclea on from posi ve satura on occurs in nega ve fields, SD-like values of rs s/M M  are 
obtained from SD states that are stable in zero fields. If, on the contrary, vortex states can 
nucleate from SD+ in posi ve fields, rs s/M M  drops well below 0.5, because of their small net 
magne c moment. On the other hand, PSD par cles are always characterized by cr bkM M<  

irsM< , unlike the case of non-interac ng SD par cles, where bk irsM M³ . 

The FORC diagram in Fig. 8.15c does not resemble the typical signature of PSD magne te 
in synthe c and geologic samples, which consists of a unimodal distribu on peaking near 

c b 0H H= = , with triangular contour lines having their maximum ver cal extension at c 0H =  
[Roberts et al., 2000; Muxworthy and Dunlop, 2002]. This signature is explainable on the basis 
of the abovemen oned PSD processes by taking the following factors into considera on: first, 
magne c states of small PSD par cles are very sensi ve to grain sizes and shapes, so that 
magne za on jumps of single-par cle hysteresis generate dis nct FORC peaks only in case of 
excep onally homogeneous samples, such as the Fe nanopar cles discussed above. Second, 
the number of possible magne c states grows rapidly with increasing grain size, along with 
the number of FORC peaks, which eventually merge into a unimodal func on. As discussed in 
sec on 3, the FORC func on occupies a triangular area of the FORC space limited by ver ces 
with coordinates sat(0, )H  and sat( ,0)H , where satH  is the field in which the two branches of 
the hysteresis loop merge. This limit is consequently imposed to the shape of contour lines. 
Finally, the central ridge is broadened by magnetosta c interac ons, which are probably not 
negligible in most synthe c magne te powders. 

Some natural materials, such as olivine-hosted Fe-Ni par cles in chondri c meteorites 
[Lappe et al., 2011], contain weakly interac ng PSD par cles with sufficiently homogeneous 
proper es for producing FORC diagrams with dis nguishable contribu ons from vortex nu-
clea on and denuclea on. In such cases, high-resolu on measurements are essen al for cap-
turing details of PSD magne za on processes. Faint evidence of such processes persists in 
FORC diagrams of many natural rocks (Fig. 8.16). 

Fig. 8.16 (front page): Two FORC examples based on natural samples containing PSD par cle assembla-
ges, i.e. (a-c) basalt (sample EF-3), and (d-f) volcanic ash [Ludwig et al., 2013]. (a,d) FORC measure-
ments, with results a er lower hysteresis branch subtrac on shown in the insets. (b,e) FORC diagrams 
calculated with VARIFORC from the measurements shown in (a,d). Some features typical for single-
vortex PSD par cles (Fig. 8.15) can be recognized, namely the existence of a central ridge, albeit much 
weaker, and the influence of localized nega ve FORC amplitudes (labeled with a minus sign) on the 
overall shape of contour lines. Furthermore, two nearly symmetric posi ve peaks above and below the 
central ridge are dis nguishable in (b). Unlike the example of Fig. 8.15, the existence of such contri-
bu ons cannot be directly inferred from the hysteresis loop. The ver cal ridge along c 0H =  in (e) is a 
signature of magne c viscosity. 
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Fig. 8.16 (con nued): (c,f) Coercivity distribu ons derived from the FORC measurements shown in 
(b,e). Residual bimodality is s ll recognizable for irrf  and bff  in (c). The central ridge distribu on crf  is 
much smaller than the other two, but significantly 0. Unlike the case of SD par cles, the contribu on 
of irrf  over nega ve arguments is not negligible, as expected from large posi ve FORC amplitudes over 
the upper quadrant. 
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Because of its sharpness, the central ridge remains dis nguishable even with contribu ons 
as low as few % of irsM . Localized nega ve amplitudes over the lower quadrant, on the other 
hand, produce characteris c contour line indenta ons when overlaid to a posi ve back-
ground. Resolu on of such signatures in PSD samples can benefit paleomagne c applica ons, 
where FORC analysis has been proposed as a selec on [Wehland et al., 2005; Carvallo et al., 
2006; Acton et al., 2007] and modeling [Muxworthy et al., 2011a,b] tool for paleointensity 
determina ons. For example, cr irs/M M  is a measure for the rela ve magne za on of vortex 
states, which probably represent the preferen al PSD contribu on to natural remanent mag-
ne za ons. 

8.4.3 MD par cles 

Domain wall displacement models [Pike et al., 2001b; Church et al., 2011] explain the ideal 
hysteresis proper es and FORC signature of MD par cles (Fig. 8.4). These proper es are met 
by annealed magne te crystals [Pike et al., 2001b], while FORC diagrams of unannealed par-

cles (Fig. 8.17) can be explained by the superposi on of MD and PSD signatures. As far as 
coercivity distribu ons are concerned, ideal MD proper es are characterized by hysteresis 
branches and corresponding irreversible contribu ons being are quasi-symmetric about H=
0, which means that irr irr( ) ( )f x f x» - . The typical irrf -shape of MD par cles resembles a 
Laplace (double exponen al) distribu on (Fig. 8.17c). Because the magne za on of ideal 
crystals with weak domain wall pinning is almost completely reversible, irreversible processes, 
which occur in form of so-called Barkhausen magne za on jumps, represent only a small frac-

on of the satura on magne za on, i.e. irs s/ 1M M  . For example, irs s/ 0.22M M =  for the 
20-25 µm magne te crystals of Fig. 8.17. Only a small frac on of all Barkhausen jumps yield a 
remanent magne za on, so that rs irs/ 1M M   ( rs irs/ 0.35M M =  for the example of Fig. 8.17). 
Since bk irr(0) (0)f f= , the backfield coercivity distribu on is a func on that decays much more 
rapidly than irrf  to zero for posi ve arguments. Finally, cr 0f =  because of the absence of a 
central ridge. 

In summary, ideal MD crystals without strong domain wall pinning are characterized by 
cr 0M =  and rs irs sM M M  . For comparison, PSD and SD par cles yield rs irsM M<  and 
rs irsM M³ , respec vely. Therefore, the ra o rs irs/M M  can be considered as a sort of domain 

state indicator analogous to rs s/M M , with the important advantage that rs irs/M M  is insensi ve 
to reversible magne za on processes (e.g. SP contribu ons). 
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Fig. 8.17: FORC analysis of synthe c MD magne te par cles with 20-25 µm mean grain size. (a) Set of 
FORC measurements where every 8th curve is plo ed for clarity. The inset shows the same set of curves 
(every 4th is plo ed) a er subtrac on of the lower hysteresis branch. Measurement details are recog-
nizable only in this plot, because of the very small hysteresis loop opening. (b) FORC diagram obtained 
with VARIFORC from the FORC measurements shown in (a). The MD nature of this sample is determi-
ned by the large ver cal spread of the FORC func on in proximity of c 0H = . Addi onal PSD signatures 
are recognizable over b 0H <  and along a sort of blurred central ridge. These features are typical of 
unannealed MD crystals. (c) Coercivity distribu ons derived from the FORC measurements shown in 
(c). irrf  is a quasi-even func on with similar contribu ons over nega ve and posi ve field, as expected 
for MD par cles. The central ridge does not exist, so that cr 0f = . 
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8.5 Conclusions 

FORC diagrams are two-dimensional parameter representa ons of hysteresis processes 
providing a lot more details than the conven onal bulk hysteresis parameters rs s/M M  and 

cr c/H H . The simplest interpreta on of FORC diagrams is based on Preisach theories, which, 
however, rarely describes real magne za on processes. Dedicated models have been develo-
ped for explaining the FORC proper es of ideal SD, PSD, and MD par cle assemblages. Such 
models describe ‘end-member’ FORC signatures that can be used for qualita ve interpreta on 
of FORC diagrams in terms of domain states. This has been the first rock magne c applica on 
of FORC measurements. Meanwhile, con nuous modeling improvements and the use of high-
resolu on measurements resulted in first quan ta ve FORC analyses of samples containing 
non-interac ng SD par cles. 

An important forward step in FORC analysis consists in overcoming the quan ta ve gap 
with conven onal magne c parameters. As shown in this ar cle, FORC measurements define 
three different types of irreversible magne za ons and corresponding coercivity distribu-

ons: the first type is represented by the well-known satura on remanence rsM  and asso-
ciated coercivity distribu on derived from backfield demagne za on. The second magne -
za on type defined by FORC measurements is the irreversible satura on magne za on irsM , 
which is the sum of all irreversible magne za on changes occurring along the upper or lower 
branch of the hysteresis loop. irsM  is also the total integral of the FORC func on. The coercivity 
distribu on associated with irsM  represents irreversible processes occurring on the upper 
hysteresis branch at a given field. The third, so-called central ridge magne za on crM  is gene-
rated by the last magne za on jump occurring in single par cle hysteresis loops of isolated 
SD and small PSD magne c par cles. The central ridge coercivity distribu on is derived from 
the corresponding signature of the FORC func on along b 0H = . 

Unlike rs s/M M  and cr c/H H , these magne za ons are unaffected by reversible magne -
za ons and provide more robust domain state informa on than the Day diagram. For exam-
ple, the Day diagram characteris cs of clay-dispersed, SDS-treated magnetosome chains (Fig. 
8.8) suggest a mixture of SD, SP, and PSD par cles. In reality, as seen with FORC diagram mea-
surements, the whole remanent magne za on of this sample is produced by non-interac ng 
SD par cles. This sample represents a possible end-member of a trend defined by magneto-
fossil-bearing sediments on the Day diagram. The magne c proper es of these sediments are 
therefore not necessarily interpretable as mixtures of magnetofossils on one hand, and SP and 
PSD par cles on the other. Another example is represented by the Day diagram proper es of 
small PSD par cles (Fig. 8.15), which plots on the same trend defined by sediments, while its 
purely PSD nature is clearly recognizable on the basis of irs rs/M M  and cr irs/M M . 

All FORC processing aspects described in this paper, including the calcula on of FORC-
related magne za ons and coercivity distribu ons, have been implemented in the VARIFORC 
so ware package, so that they can become a rou ne magne c analysis tool. 
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