
9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 1/34

Excel Macro Mastery
(https://excelmacromastery.com/)

THE MISSING VBA HANDBOOK

The Complete Guide To The VBA Workbook
DECEMBER 16, 2014 (HTTPS://EXCELMACROMASTERY.COM/EXCEL-VBA-WORKBOOK/) BY PAUL KELLY

(HTTPS://EXCELMACROMASTERY.COM/AUTHOR/ADMIN/) · 10 COMMENTS
(HTTPS://EXCELMACROMASTERY.COM/EXCEL-VBA-WORKBOOK/#COMMENTS)

“We are drowning in information but starved for knowledge.” – John Naisbitt

This post provides a complete guide to using the VBA Workbook.

If you want to use VBA to Open a Workbook then check out Open Workbook

If you want to use VBA to create a new workbook go to Create New Workbook

For all other VBA Workbook tasks, check out the quick guide below.

Contents [hide]

1 A Quick Guide to the VBA Workbook
2 Getting Started with the VBA Workbook

2.1 Troubleshooting the Workbooks Collection

https://excelmacromastery.com/
https://excelmacromastery.com/excel-vba-workbook/
https://excelmacromastery.com/author/admin/
javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 2/34

(https://excelmacromastery.leadpages.co/leadbox/145db6b73f72a2%3A106f25298346dc/5676073085829120/)

(https://excelmacromastery.com/workbooks-

2.2 Examples of Using the VBA Workbook
3 Accessing the VBA Workbook by Index
4 Finding all Open Workbooks
5 Open Workbook
6 Check For Open Workbook
7 Close Workbook
8 Save Workbook
9 Copy Workbook
10 Using the File Dialog To Open a Workbook
11 Using ThisWorkbook
12 Using the ActiveWorkbook
13 Examples of the Accessing the Workbook
14 Declaring a VBA Workbook variable
15 Create New Workbook
16 The With keyword and the Workbook
17 Summary
18 Conclusion
19 What’s Next
20 Get the Free eBook

A Quick Guide to the VBA Workbook
The following table provides a quick how-to guide on the main VBA workbook tasks

Task How to

Access open workbook using name Workbooks("Example.xlsx")

Access open workbook (the one
opened �rst)

Workbooks(1)

Access open workbook (the one
opened last)

Workbooks(Workbooks.Count)

Access the active workbook ActiveWorkbook

Access workbook containing VBA
code

ThisWorkbook

Declare a workbook variable Dim wk As Workbook

https://excelmacromastery.leadpages.co/leadbox/145db6b73f72a2%3A106f25298346dc/5676073085829120/
https://excelmacromastery.com/workbooks-video/
javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 3/34

Task How to

Assign a workbook variable Set wk = Workbooks("Example.xlsx")
Set wk = ThisWorkbook
Set wk = Workbooks(1)

Activate workbook wk.Activate

Close workbook without saving wk.Close SaveChanges:=False

Close workbook and save wk.Close SaveChanges:=True

Create new workbook Set wk = Workbooks.Add

Open workbook Set wk =Workbooks.Open ("C:\Docs\Example.xlsx")

Open workbook as read only Set wk = Workbooks.Open ("C:\Docs\Example.xlsx",
ReadOnly:=True)

Check Workbook exists If Dir("C:\Docs\book1.xlsx") = "" Then
MsgBox "File does not exist."
EndIf

Check Workbook is open See Check Workbook Open section below

List all open workbooks For Each wk In Application.Workbooks
 Debug.Print wk.FullName
Next wk

Open workbook with the File Dialog See File Dialog section below function below

Save workbook wk.Save

Save workbook copy wk.SaveCopyAs "C:\Copy.xlsm"

Copy workbook if closed FileCopy "C:\�le1.xlsx","C:\Copy.xlsx"

SaveAs workbook wk.SaveAs "Backup.xlsx"

Getting Started with the VBA Workbook

javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 4/34

Getting Started with the VBA Workbook
We can access any open workbook using the code Workbooks(“Example.xlsm”). Simple
replace Example.xlsm with the name of the workbook you wish to use.

The following example shows you how to write to a cell on a worksheet. You will notice we had
to specify the workbook, worksheet and range of cells.

Public Sub WriteToA1()

' Writes 100 to cell A1 of worksheet "Sheet1" in MyVBA.xlsm

Workbooks("MyVBA.xlsm").Worksheets("Sheet1").Range("A1") = 100

End Sub

This example may look a little be confusing to a new user but it is actually quite simple.

The �rst part up to the decimal point is the Workbook, the second part is the Worksheet and the
third is the Range. Here are some more examples of writing to a cell

javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 5/34

Public Sub WriteToMulti()

' Writes 100 to cell A1 of worksheet "Sheet1" in MyVBA.xlsm

Workbooks("MyVBA.xlsm").Worksheets("Sheet1").Range("A1") = 100

' Writes "John" to cell B1 of worksheet "Sheet1" in MyVBA.xlsm

Workbooks("MyVBA.xlsm").Worksheets("Sheet1").Range("B1") = "John"

' Writes 100 to cell A1 of worksheet "Accounts" in MyVBA.xlsm

Workbooks("MyVBA.xlsm").Worksheets("Accounts").Range("A1") = 100

' Writes the date to cell D3 of worksheet "Sheet2" in Book.xlsc

Workbooks("Book.xlsx").Worksheets("Sheet2").Range("D3") = "1\1\2016"

End Sub

You can see the simple pattern here. You can write to any cell in any worksheet from any
workbook. It is just a matter of changing the workbook name, worksheet name and the range to
suit your needs.

Take a look at the workbook part

Workbooks("Example.xlsx")

The Workbooks keyword refers to a collection of all open workbooks. Supplying the workbook
name to the collection gives us access to that workbook. When we have the object we can use
it to perform tasks with the workbook.

Troubleshooting the Workbooks Collection
When you use the Workbooks collection to access a workbook, you may get the error message:

javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 6/34

Run-time Error 9: Subscript out of Range.

This means that VBA cannot �nd the workbook you passed as a parameter.

This can happen for the following reasons

1. The workbook is currently closed.
2. You spelled the name wrong.
3. You created e new workbook (e.g. Book1) and tried to access it using

Workbooks(“Book1.xlsx”). It’s name is not Book1.xlsx until it is saved for the �rst time.
4. (Excel 2007/2010 only) If you are running two instances of Excel then Workbooks() only

refers to to the workbooks open in the current Excel instance.
5. You passed a number as Index and it is greater than the number of workbooks open e.g.

you used Workbooks(3) and only two workbooks are open.

If you cannot resolve the error then use either of the functions in the section Finding all open
Workbooks. These will print the names of all open workbooks to the Immediate Window(Ctrl +
G).

Examples of Using the VBA Workbook
The following examples show what you can do with the workbook.

Note: To try this example create two open workbooks called Test1.xlsx and Test2.xlsx.

javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 7/34

Public Sub WorkbookProperties()

 ' Prints the number of open workbooks

 Debug.Print Workbooks.Count

 ' Prints the full workbook name

 Debug.Print Workbooks("Test1.xlsx").FullName

 ' Displays the full workbook name in a message dialog

 MsgBox Workbooks("Test1.xlsx").FullName

 ' Prints the number of worksheets in Test2.xlsx
 Debug.Print Workbooks("Test2.xlsx").Worksheets.Count

 ' Prints the name of currently active sheet of Test2.xlsx

 Debug.Print Workbooks("Test2.xlsx").ActiveSheet.Name

 ' Closes workbook called Test1.xlsx

 Workbooks("Test1.xlsx").Close

 ' Closes workbook Test2.xlsx and saves changes

 Workbooks("Test2.xlsx").Close SaveChanges:=True

End Sub

 Note: In the code examples I use Debug.Print a lot. This function prints values to the
Immediate Window. To view this window select View->Immediate Window from the menu(
Shortcut is Ctrl + G)

javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 8/34

(https://excelmacromastery.com/wp-content/uploads/2014/12/ImmediateWindow2.jpg)
Shares

https://excelmacromastery.com/wp-content/uploads/2014/12/ImmediateWindow2.jpg
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 9/34

(https://excelmacromastery.com/wp-content/uploads/2014/12/ImmediateSampeText.jpg)

Accessing the VBA Workbook by Index
You can also use an Index number with Workbooks(). The index refers to the order the
Workbook was open or created.

Workbooks(1) refers to the workbook that was opened �rst. Workbooks(2) refers to the
workbook that was opened second and so on.

https://excelmacromastery.com/wp-content/uploads/2014/12/ImmediateSampeText.jpg
javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 10/34

' First workbook that was opened

Debug.Print Workbooks(1).Name

' Third workbook that was opened

Debug.Print Workbooks(3).Name

' The last workbook that was opened

Debug.Print Workbooks(Workbooks.Count).Name

In this example, we used Workbooks.Count. This is the number of workbooks that are currently
in the Workbooks collection. That is, the number of workbooks currently open. So using it as the
Index gives us the last workbook that was opened

Using the index is not really useful unless you really need to know the order. For this reason, you
should avoid using it. You should use the workbook name with Workbooks() instead.

Finding all Open Workbooks
Sometimes you may want to access all the workbooks that are open. In other words, all the
items in the Workbooks() collection.

You can do this using the For Each (http://excelmacromastery.com/the-ultimate-guide-to-loops-
in-excel-vba/#The_For_Each_Loop) loop.

Public Sub PrintWrkFileName()

 ' Prints out the full filename of all open workbooks

 Dim wrk As Workbook

 For Each wrk In Workbooks

 Debug.Print wrk.FullName

 Next wrk

End Sub

http://excelmacromastery.com/the-ultimate-guide-to-loops-in-excel-vba/#The_For_Each_Loop
javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 11/34

You can also use the standard For (http://excelmacromastery.com/the-ultimate-guide-to-loops-
in-excel-vba/#The_For_Loop)loop to access all the open workbooks

Public Sub PrintWrkFileNameIdx()

 ' Prints out the full filename of all open workbooks

 Dim i As Long

 For i = 1 To Workbooks.Count

 Debug.Print Workbooks(i).FullName

 Next i

End Sub

For accessing workbooks either of these methods is �ne. The For Each
(http://excelmacromastery.com/the-ultimate-guide-to-loops-in-excel-vba/#The_For_Each_Loop)
loop is generally preferred when you are accessing a large number of objects. In terms of open
workbooks this is rarely an issue.

Note: Both examples read in the order of the �rst opened to the last opened. If you want to read
in reverse order(last to �rst) you can do this

Public Sub PrintWrkFileNameIdxRev()

 ' Prints out the full filename of all open workbooks

 ' in reverse order.

 Dim i As Long

 For i = Workbooks.Count To 1 Step -1

 Debug.Print Workbooks(i).FullName

 Next i

End Sub

Open Workbook

http://excelmacromastery.com/the-ultimate-guide-to-loops-in-excel-vba/#The_For_Loop
http://excelmacromastery.com/the-ultimate-guide-to-loops-in-excel-vba/#The_For_Each_Loop
javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 12/34

Open Workbook
So far we have dealt with workbooks that are already open. Of course, having to manually open
a workbook before running a Macro, defeats the purpose of automating tasks. The Open
Workbook task should be performed by VBA.

The following VBA code opens the workbook “Book1.xlsm” in the “C:\Docs” folder

Public Sub OpenWrk()

 ' Open the workbook and print the number of sheets it contains

 Workbooks.Open ("C:\Docs\Book1.xlsm")

 Debug.Print Workbooks("Book1.xlsm").Worksheets.Count

 ' Close the workbook without saving

 Workbooks("Book1.xlsm").Close saveChanges:=False

End Sub

It is a good idea to check a workbook actually exists before you try to open it. This will prevent
you getting errors. The Dir function allows you to easily do this .

Public Sub OpenWrkDir()

 If Dir("C:\Docs\Book1.xlsm") = "" Then

 ' File does not exist - inform user

 MsgBox "Could not open the workbook. Please check it exists"

 Else

 ' open workbook and do something with it

 Workbooks.Open("C:\Docs\Book1.xlsm").Open

 End If

End Sub

javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 13/34

Check For Open Workbook
If you are opening a workbook as Read-Only, it doesn’t matter if it is already open. However, if
you’re going to update data in a workbook then it is a good idea to check if it is already open.

The function below can be used to check if the workbook is currently open. If not, then it will
open the workbook. In either case you will end up with the workbook opened.

(The code below is taken from this StackOverFlow entry
(http://stackover�ow.com/questions/9373082/detect-whether-excel-workbook-is-already-
open))

Function GetWorkbook(ByVal sFullFilename As String) As Workbook

 Dim sFilename As String

 sFilename = Dir(sFullFilename)

 On Error Resume Next

 Dim wk As Workbook

 Set wk = Workbooks(sFilename)

 If wk Is Nothing Then

 Set wk = Workbooks.Open(sFullFilename)

 End If

 On Error Goto 0

 Set GetWorkbook = wk

End Function

You can use this function like this

http://stackoverflow.com/questions/9373082/detect-whether-excel-workbook-is-already-open
javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 14/34

Sub ExampleOpenWorkbook()

 Dim sFilename As String
 sFilename = "C:\Docs\Book2.xlsx"

 Dim wk As Workbook

 Set wk = GetWorkbook(sFilename)

End Sub

This code is �ne is most situations. However, if the workbook could be currently open in read-
only mode or could be currently opened by another user then you may want to use a slightly
different approach.

An easy way to deal this with this scenario is to insist that the �le must be closed for the
application to run successfully. You can use the function below to simply check is the �le
already open and if so inform the user that it must be closed �rst.

(The code below is also taken from this StackOverFlow entry
(http://stackover�ow.com/questions/9373082/detect-whether-excel-workbook-is-already-
open))

http://stackoverflow.com/questions/9373082/detect-whether-excel-workbook-is-already-open
javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 15/34

Function IsWorkBookOpen(FileName As String) As Boolean

 Dim ff As Long, ErrNo As Long

 On Error Resume Next

 ' Open file and store error number

 ff = FreeFile()

 Open FileName For Input Lock Read As #ff

 Close ff

 ErrNo = Err

 On Error Goto 0

 ' Check errro number

 Select Case ErrNo

 Case 0 ' No error

 IsWorkBookOpen = False

 Case 70 ' Permission denied error

 IsWorkBookOpen = True

 Case Else ' Other error

 Error ErrNo

 End Select

End Function

An example of using this function is shown below. In this case, if the workbook is already open
then you inform the user that is must be closed for the macro to proceed.

javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 16/34

Sub ExampleUse()

 Dim sFilename As String

 sFilename = "C:\temp\Book1.xlsm"

 If IsWorkBookOpen(sFilename) = True Then

 MsgBox "File is already open. Please close file and run macro again."

 Exit Sub
 End If

 ' Write to workbook here

End Sub

Close Workbook
To Close a Workbook in Excel VBA is very simple. You simply call the Close method of the
workbook.

wk.Close

Normally when you close a workbook in VBA, you don’t want to see messages from Excel
asking if you want to save the �le.

You can specify whether to save the workbook or not and then the Excel messages will not
appear.

' Don't save changes

wk.Close SaveChanges:= False

' Do save changes

wk.Close SaveChanges:= True

javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 17/34

Obviously, you cannot save changes to a workbook that is currently open as read-only.

Save Workbook
We have just seen that you can save a workbook when you close it. If you want to save it any
other stage you can simply use the Save method

wk.Save

You can also use the SaveAs method

wk.SaveAs "C:\Backups\accounts.xlsx"

The Workbook SaveAs method comes with twelve parameters which allow you to add a
password, set the �le as read-only and so on. You can see the details here
(https://msdn.microsoft.com/en-us/library/o�ce/ff841185.aspx)

You can also use VBA to save the workbook as a copy using SaveCopyAs

wk.SaveCopyAs "C:\Docs\Copy.xlsm"

Copy Workbook

https://msdn.microsoft.com/en-us/library/office/ff841185.aspx
javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 18/34

If the workbook is open you can use the two methods in the above section to create a copy i.e.
SaveAs and SaveCopyAs.

If you want to copy a workbook without opening it then you can use FileCopy as the following
example demonstrates

Public Sub CopyWorkbook()

 FileCopy "C:\Docs\Docs.xlsm", "C:\Docs\Example_Copy.xlsm"

End Sub

Using the File Dialog To Open a
Workbook
The previous section shows you how to open a workbook with a given name. Sometimes you
may want the user to select the workbook. You can easily use the Windows File Dialog
shown here

javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 19/34

(https://excelmacromastery.com/wp-content/uploads/2014/12/FileDialog-
Workbooks.png)

The Windows File Dialog

The following function opens a workbook using the File Dialog. The function returns the full �le
name if a �le was selected. If the user cancels it displays a message and returns an empty
string.

https://excelmacromastery.com/wp-content/uploads/2014/12/FileDialog-Workbooks.png
javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 20/34

Public Function UserSelectWorkbook() As String

 On Error Goto ErrorHandler

 Dim sWorkbookName As String

 Dim FD As FileDialog

 Set FD = Application.FileDialog(msoFileDialogFilePicker)

 ' Open the file dialog

 With FD

 ' Set Dialog Title

 .Title = "Please Select File"

 ' Add filter

 .Filters.Add "Excel Files", "*.xls;*.xlsx;*.xlsm"

 ' Allow selection of one file only

 .AllowMultiSelect = False

 ' Display dialog

 .Show

 If FD.SelectedItems.Count > 0 Then

 UserSelectWorkbook = FD.SelectedItems(1)

 Else

 MsgBox "Selecting a file has been cancelled. "

 UserSelectWorkbook = ""

 End If

 End With

 ' Clean up

 Set FD = Nothing

Done:

 Exit Function

ErrorHandler:

 MsgBox "Error: " + Err.Description

End Function

javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 21/34

When you call this function you have to check for the user cancelling the dialog. The following
example shows you how to easily call the UserSelectWorkbook function and handle the case of
the user cancelling

Public Sub TestUserSelect()

 Dim userBook As Workbook, sFilename As String

 ' Call the UserSelectworkbook function

 sFilename = UserSelectWorkbook()

 ' If the filename returns is blank the user cancelled

 If sFilename <> "" Then

 ' Open workbook and do something with it

 Set userBook = Workbooks.Open(sFilename)

 End If

End Sub

You can customise the dialog by changing the Title, Filters and AllowMultiSelect in the
UserSelectWorkbook function.

Using ThisWorkbook
There is an easier way to access the current workbook than using Workbooks(). You can use
the keyword ThisWorkbook. It refers to the current workbook i.e. the workbook that contains the
VBA code.

If our code is in a workbook call MyVBA.xlsm then ThisWorkbook and
Workbooks(“MyVBA.xlsm”) refer to the same workbook.

javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 22/34

Using ThisWorkbook is more useful than using Workbooks(). With ThisWorkbook we do not
need to worry about the name of the �le. This gives us two advantages:

1. Changing the �lename will not affect the code
2. Copying the code to another workbook will not require a code change

These may seem like very small advantages. The reality is your �lenames will change all the
time. Using ThisWorkbook means your code will still work �ne.

The following example shows two lines of code. One using ThisWorkbook and one using
Workbooks(). The one using Workbooks will no longer work if the name of MyVBA.xlsm
changes.

Public Sub WriteToCellUsingThis()

 ' Both lines do the same thing.

 Debug.Print ThisWorkbook.FullName

 Debug.Print Workbooks(“MyVBA.xlsm”).FullName

End Sub

Using the ActiveWorkbook
ActiveWorkbook refers to the workbook that is currently active. This is the one that the user last
clicked on.

This can seem useful at �rst. The problem is that any workbook can become active by a simple
mouse click. This means you could easily write data to the wrong workbook.

Using ActiveWorkbook also makes the code hard to read. It may not be obvious from the code
which workbook should be the active one.

javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 23/34

I hope I made it clear that you should avoid using ActiveWorkbook unless you really have to. In
this case be very careful.

Examples of the Accessing the
Workbook
We’ve looked at all the ways of accessing a workbook. The following code shows examples of
these ways

Public Sub WorkbooksUse()

 ' This is a workbook that is already open and called MyVBA.xlsm

 Debug.Print Workbooks("MyVBA.xlsm").FullName

 ' The workbook that contains this code

 Debug.Print ThisWorkbook.FullName

 ' The open workbook that was opened first

 Debug.Print Workbooks(1).FullName

 ' The open workbook that was opened last

 Debug.Print Workbooks(Workbooks.Count).FullName

 ' The workbook that is the currently active one

 Debug.Print ActiveWorkbook.FullName

 ' No workbook mentioned - the active one will be used

 Debug.Print Worksheets("Sheet1").Name

 ' A closed workbook called Book1.xlsm in folder C:\Docs

 Workbooks.Open ("C:\Docs\Book1.xlsm")

 Debug.Print Workbooks("Book1.xlsm").FullName

 Workbooks("Book1.xlsm").Close

End Sub

javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 24/34

Declaring a VBA Workbook variable
The reason for declaring a workbook variable is to make your code easier to read and
understand. It is easier to see the advantage using an example

Public Sub OpenWrkObjects()

 Dim wrk As Workbook

 Set wrk = Workbooks.Open("C:\Docs\Book1.xlsm")

 ' Print number of sheets in each book

 Debug.Print wrk.Worksheets.Count

 Debug.Print wrk.Name

 wrk.Close

End Sub

You can set a workbook variable with any of the access methods we have seen.

The following shows you the same code without a workbook variable

Public Sub OpenWrkNoObjects()

 Workbooks.Open ("C:\Docs\Book1.xlsm")

 Debug.Print Workbooks("Book2.xlsm").Worksheets.Count

 Debug.Print Workbooks("Book2.xlsm").Name

 Workbooks("Book2.xlsm").Close

End Sub

javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 25/34

In these examples the difference is not major. However, when you have a lot of code, using a
variable is useful particularly for worksheet and ranges where the names tend to be long e.g.
thisWorkbook.Worksheets(“Sheet1”).Range(“A1”).

You can name the workbook variable to be something like wrkRead or wrkWrite. Then at a
glance you can see what this workbook is being used for.

Create New Workbook
To create a new workbook you use the Workbooks Add function. This function creates a new
blank workbook. It is the same as selecting New Workbook from the Excel File menu.

When you create a new workbook you will generally want to Save it. The following code shows
you how to do this.

Public Sub AddWordbook()

 Dim wrk As Workbook

 Set wrk = Workbooks.Add

 ' Save as xlsx. This is the default.

 wrk.SaveAs "C:\Temp\Example.xlsx"

 ' Save as a Macro enabled workbook

 wrk.SaveAs "C:\Temp\Example.xlsm", xlOpenXMLWorkbookMacroEnabled

End Sub

When you create a new workbook it normally contains three sheets. This is determined by the
property Application.SheetsInNewWorkbook.

javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 26/34

If you want to have a different number of sheets in a new workbook then you change this
property before you create the new workbook. The following example shows you how to create
a new workbook with seven sheets.

Public Sub AddWordbookMultiSheets()

 ' Store SheetsInNewWorkbook value so we can reset it later

 Dim sheetCnt As Long

 sheetCnt = Application.SheetsInNewWorkbook

 ' Set sheets in a new workbook to be 7

 Application.SheetsInNewWorkbook = 7

 ' Workbook will be created with 7 sheets

 Dim wrk As Workbook

 Set wrk = Workbooks.Add

 ' Display sheet count

 Debug.Print "number of sheets: " & CStr(wrk.Worksheets.Count)

 ' Reset to original value

 Application.SheetsInNewWorkbook = sheetCnt

End Sub

The With keyword and the Workbook
The With keyword makes reading and writing VBA code easier. Using With means you only need
to mention the item once. With is used with Objects. These are items such as Workbooks,
Worksheets (http://excelmacromastery.com/the-complete-guide-to-worksheets-in-excel-
vba/)and Ranges (http://excelmacromastery.com/the-complete-guide-to-ranges-and-cells-in-
excel-vba/).

http://excelmacromastery.com/the-complete-guide-to-worksheets-in-excel-vba/
http://excelmacromastery.com/the-complete-guide-to-ranges-and-cells-in-excel-vba/
javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 27/34

The following example has two Subs. The �rst is similar to code we have seen so far. The
second uses the With keyword. You can see the code is much clearer in the second Sub. The
keywords End With mark the �nish of a section code using With.

' Not using the With keyword

Public Sub NoUsingWith()

 Debug.Print Workbooks("Book2.xlsm").Worksheets.Count

 Debug.Print Workbooks("Book2.xlsm").Name

 Debug.Print Workbooks("Book2.xlsm").Worksheets(1).Range("A1")

 Workbooks("Book2.xlsm").Close

End Sub

' Using With makes the code easier to read

Public Sub UsingWith()

 With Workbooks("Book2.xlsm")

 Debug.Print .Worksheets.Count

 Debug.Print .Name

 Debug.Print .Worksheets(1).Range("A1")

 .Close

 End With

End Sub

Summary
The following is a brief summary of the main points of this post

1. To get the workbook containing the code use ThisWorkbook.
2. To get any open workbook use Workbooks(“Example.xlsx”).
3. To open a workbook use Set Wrk = Workbooks.Open(“C:\Folder\Example.xlsx”).
4. Allow the user to select a �le using the UserSelectWorkbook function provided above.

javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 28/34

5. To create a copy of an open workbook use the SaveAs property with a �lename.
6. To create a copy of a workbook without opening use the FileCopy function.
7. To make your code easier to read and write use the With keyword.
8. Another way to make your code clear is to use a Workbook variables
9. To run through all open Workbooks use For Each wk in Workbooks where wk is a

workbook variable.
10. Try to avoid using ActiveWorkbook and Workbooks(Index) as their reference to a

workbook is temporary.

You can see a quick guide to the topic at the top of this post

Conclusion
This was an in-depth post about a very important element of VBA – the Workbook. I hope you
found it bene�cial. Excel is great at providing many ways to perform similar actions but the
downside is it can lead to confusion at times.

To get the most bene�t from this post I recommend you try out the examples. Create some
workbooks and play around with the code. Make changes to the code and see how the changes
affect the outcome. Practice is the best way to learn VBA.

If you found this post useful then feel free to share it with others. You may also want to check
out The Complete Guide to Worksheets in Excel VBA (http://excelmacromastery.com/the-
complete-guide-to-worksheets-in-excel-vba/). You can view all the posts by category here
(http://excelmacromastery.com/a-quick-guide-to-the-vba-posts/).

What’s Next
Once you understand Workbooks the next topics you may want to check out are Worksheets
(http://excelmacromastery.com/the-complete-guide-to-worksheets-in-excel-vba/) and Ranges
and Cells (http://excelmacromastery.com/the-complete-guide-to-ranges-and-cells-in-excel-

http://excelmacromastery.com/the-complete-guide-to-worksheets-in-excel-vba/
http://excelmacromastery.com/a-quick-guide-to-the-vba-posts/
http://excelmacromastery.com/the-complete-guide-to-worksheets-in-excel-vba/
http://excelmacromastery.com/the-complete-guide-to-ranges-and-cells-in-excel-vba/
javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 29/34

vba/). These three topics are a core part of VBA and it’s vital to understand them. You can get
the complete list of all the VBA posts here (http://excelmacromastery.com/a-quick-guide-to-
the-vba-posts/).

I also have a free eBook(see below) which you will �nd useful if you are new to VBA.

Get the Free eBook

(https://excelmacromastery.leadpages.co/leadbox/14791da73f72a2%3A106f25298346dc/5636318331666432/)

Please feel free to subscribe to my newsletter and get exclusive VBA content that you cannot
�nd here on the blog, as well as free access to my eBook, How to Ace the 21 Most Common
Questions in VBA which is full of examples you can use in your own code.

(https://excelmacromastery.leadpages.co/leadbox/14791da73f72a2%3A106f25298346dc/5636318331666432/)

(https://excelmacromastery.leadpages.co/leadbox/14791da73f72a2%3A106f25298346dc/5636318331666432/)

Create Workbook (https://excelmacromastery.com/tag/create-workbook/) ForEach
(https://excelmacromastery.com/tag/foreach/) Open Workbook

http://excelmacromastery.com/the-complete-guide-to-ranges-and-cells-in-excel-vba/
http://excelmacromastery.com/a-quick-guide-to-the-vba-posts/
https://excelmacromastery.leadpages.co/leadbox/14791da73f72a2%3A106f25298346dc/5636318331666432/
https://excelmacromastery.leadpages.co/leadbox/14791da73f72a2%3A106f25298346dc/5636318331666432/
https://excelmacromastery.leadpages.co/leadbox/14791da73f72a2%3A106f25298346dc/5636318331666432/
https://excelmacromastery.com/tag/create-workbook/
https://excelmacromastery.com/tag/foreach/
https://excelmacromastery.com/tag/open-workbook/
https://excelmacromastery.com/tag/range/
javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 30/34

Next

The Complete Guide To The VBA Worksheet (https://excelmacromastery.com/excel-
vba-worksheet/)

10 COMMENTS

(https://excelmacromastery.com/tag/open-workbook/) Range
(https://excelmacromastery.com/tag/range/) Workbooks
(https://excelmacromastery.com/tag/workbooks/) Workbooks Open
(https://excelmacromastery.com/tag/workbooks-open/) Worksheets
(https://excelmacromastery.com/tag/worksheets/)

Sidharth Saini
February 14, 2016 at 5:13 pm (https://excelmacromastery.com/excel-vba-workbook/#comment-2)

Very nicely explained topics. But symbols of > and < in examples are have problems. Please
change them.

Reply (https://excelmacromastery.com/excel-vba-workbook/?replytocom=2#respond)

Paul Kelly
February 15, 2016 at 3:26 pm (https://excelmacromastery.com/excel-vba-workbook/#comment-3)

Hi Sidharth,

Thanks for pointing that out.
Sometimes when I update a post, WordPress automatically changes the
greater/less than symbols. I’ve updated the post to �x them.

Regards
Paul

Reply (https://excelmacromastery.com/excel-vba-workbook/?
replytocom=3#respond)

https://excelmacromastery.com/excel-vba-worksheet/
https://excelmacromastery.com/tag/open-workbook/
https://excelmacromastery.com/tag/range/
https://excelmacromastery.com/tag/workbooks/
https://excelmacromastery.com/tag/workbooks-open/
https://excelmacromastery.com/tag/worksheets/
https://excelmacromastery.com/excel-vba-workbook/?replytocom=2#respond
https://excelmacromastery.com/excel-vba-workbook/?replytocom=3#respond
javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 31/34

Pooja
February 18, 2016 at 12:01 pm (https://excelmacromastery.com/excel-vba-workbook/#comment-4)

Hi Paul, I’ve gone through couple of websites to actually learn Macros if a person is novice and
none could provide the basics so clearly the way you are doing.
I’m actually learning VBA and macros through your website.
Gr8 work

Reply (https://excelmacromastery.com/excel-vba-workbook/?replytocom=4#respond)

Paul Kelly
February 18, 2016 at 1:45 pm (https://excelmacromastery.com/excel-vba-workbook/#comment-5)

Thanks Pooja, Glad you like it.

Reply (https://excelmacromastery.com/excel-vba-workbook/?
replytocom=5#respond)

Petros
June 2, 2016 at 8:27 pm (https://excelmacromastery.com/excel-vba-workbook/#comment-6)

Paul, what is your email please?

Reply (https://excelmacromastery.com/excel-vba-workbook/?replytocom=6#respond)

Paul Kelly
June 3, 2016 at 7:23 am (https://excelmacromastery.com/excel-vba-workbook/#comment-7)

Hi Petros

You can email me at: paul@ExcelMacroMastery.com
(mailto:paul@ExcelMacroMastery.com)

Reply (https://excelmacromastery.com/excel-vba-workbook/?
replytocom=7#respond)

Cor

https://excelmacromastery.com/excel-vba-workbook/?replytocom=4#respond
https://excelmacromastery.com/excel-vba-workbook/?replytocom=5#respond
https://excelmacromastery.com/excel-vba-workbook/?replytocom=6#respond
mailto:paul@ExcelMacroMastery.com
https://excelmacromastery.com/excel-vba-workbook/?replytocom=7#respond
javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 32/34

August 24, 2016 at 6:12 am (https://excelmacromastery.com/excel-vba-workbook/#comment-8)

Hi Paul,

I like your site because the explanations you provide are really making me understand some
things I didn’t before.

However I found a few hickups in the ‘Finding all open workbooks section’. In the seconde and
third example (PrintWrkFileNameIdx and PrintWrkFileNameIdxRev) you use “Dim i” and then
continue with ‘”Next wrk”. I guess someone copied the �rst example (PrintWrkFileName), where
“wrk” was actually used, and changed the contents

Greetings

Cor

Reply (https://excelmacromastery.com/excel-vba-workbook/?replytocom=8#respond)

Paul Kelly
August 24, 2016 at 9:01 am (https://excelmacromastery.com/excel-vba-workbook/#comment-9)

Hi Cor,

Thanks for your comment. Glad you like the site. I’ve update the post to �x
those issues.

Regards
Paul

Reply (https://excelmacromastery.com/excel-vba-workbook/?
replytocom=9#respond)

sneha sheth
January 4, 2017 at 12:23 pm (https://excelmacromastery.com/excel-vba-workbook/#comment-2275)

hi paul….
what a great piece of work. i m glad i accessed ur site. being a software engineer my self … i
was really in search of logically connected concepts and not the syntax ….and i found both…
thanks a lot

Reply (https://excelmacromastery.com/excel-vba-workbook/?replytocom=2275#respond)

https://excelmacromastery.com/excel-vba-workbook/?replytocom=8#respond
https://excelmacromastery.com/excel-vba-workbook/?replytocom=9#respond
https://excelmacromastery.com/excel-vba-workbook/?replytocom=2275#respond
javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 33/34

LEAVE A REPLY

Your email address will not be published. Required �elds are marked *

Name *

Email *

Website

Post Comment

Proudly powered by WordPress (http://wordpress.org/). Theme: Flat 1.7.8 by Themeisle (https://themeisle.com/themes/�at/).

Paul Kelly
January 4, 2017 at 2:00 pm (https://excelmacromastery.com/excel-vba-workbook/#comment-2278)

Thanks Sneha, glad you like it.

Reply (https://excelmacromastery.com/excel-vba-workbook/?
replytocom=2278#respond)

http://wordpress.org/
https://themeisle.com/themes/flat/
https://excelmacromastery.com/excel-vba-workbook/?replytocom=2278#respond
javascript:void(0);

9/8/2017 The Complete Guide To The VBA Workbook - Excel Macro Mastery

https://excelmacromastery.com/excel-vba-workbook/ 34/34

