

i

VC1 Advanced Profile Decoder on
IVAHD and M3 Based Platform

User’s Guide

Literature Number: SPRUH52
May 2018

ii

 IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes
to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers
should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of
order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and
conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support
this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications
using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and
operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by
TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license
from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation.
Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all
express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning
its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be
provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate
dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take
appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI
components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help
enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements.
Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have
executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which
have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory
requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-
designated products, TI will not be responsible for any failure to meet ISO/TS16949.

 Products Applications
 Audio www.ti.com/audio Automotive & Transportation www.ti.com/automotive
 Amplifiers amplifier.ti.com Communications & Telecom www.ti.com/communications
 Data Converters dataconverter.ti.com Computers & Peripherals www.ti.com/computers
 DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
 DSP dsp.ti.com Energy and Lighting www.ti.com/energyapps
 Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
 Interface interface.ti.com Medical www.ti.com/medical
 Logic logic.ti.com Security www.ti.com/security
 Power Mgmt power.ti.com Space, Avionics & Defense www.ti.com/space-avionics-defense
 Microcontrollers microcontroller.ti.com Video & Imaging www.ti.com/video
 RFID www.ti-rfid.com
 OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
 Wireless Connectivity www.ti.com/wirelessconnectivity

 Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright© 2014, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com/
http://www.ti.com/communications
http://dataconverter.ti.com/
http://www.ti.com/computers
http://www.dlp.com/
http://www.ti.com/consumer-apps
http://dsp.ti.com/
http://www.ti.com/energyapps
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com/
http://www.ti.com/medical
http://logic.ti.com/
http://www.ti.com/security
http://power.ti.com/
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com/
http://www.ti.com/video
http://www.ti-rfid.com/
http://e2e.ti.com/

iii

Preface

Read This First

About This Manual

This document describes how to install and work with Texas Instruments’
(TI) VC1 Advanced profile Decoder implementation on the IVAHD and M3
Based Platform platform. It also provides a detailed Application
Programming Interface (API) reference and information on the sample
application that accompanies this component.

TI’s codec implementations are based on the eXpressDSP Digital Media
(XDM) standard. XDM is an extension of the eXpressDSP Algorithm
Interface Standard (XDAIS).

Intended Audience

This document is intended for system engineers who want to integrate TI’s
codecs with other software to build a multimedia system based on the
IVAHD and M3 Based Platform platform.

This document assumes that you are fluent in the C language, have a
good working knowledge of Digital Signal Processing (DSP), digital signal
processors, and DSP applications. Good knowledge of eXpressDSP
Algorithm Interface Standard (XDAIS) and eXpressDSP Digital Media
(XDM) standard will be helpful.

How to Use This Manual

This document includes the following chapters:

 Chapter 1 - Introduction, introduces the XDAIS and XDM standards.
It also provides an overview of the codec and lists its supported
features.

 Chapter 2 - Installation Overview, describes how to install, build,
and run the codec.

 Chapter 3 - Sample Usage, describes the sample usage of the
codec.

 Chapter 4 - API Reference, describes the data structures and
interface functions used in the codec.

 Chapter 5 - Frequently Asked Questions, provides answers
frequently asked questions related to using VC1 Advanced Profile
Decoder

 Chapter 6 – Debug trace usage, describes how to collect debug
trace information dumped by the decoder.

Read This First

iv

 Chapter 7 - Picture Format, describes the format of the output
pictures of the VC1 Decoder on IVAHD.

 Chapter 8 - Error handling, describes the error reporting mechanism
of the decoder, also recommends the application behaviour for all
error scenarios.

 Chapter 9 – Bit-Stream format, describes the bit-stream formats and
codec expectation and behaviour for different formats.

 Chapter 10 – Meta Data Support, provides information on writing out
MB info data into application provided buffers.

Read This First

v

Related Documentation From Texas Instruments

The following documents describe TI’s DSP algorithm standards such as,
XDAIS and XDM. To obtain a copy of any of these TI documents, visit the
Texas Instruments website at www.ti.com.

 TMS320 DSP Algorithm Standard Rules and Guidelines (literature
number SPRU352) defines a set of requirements for DSP algorithms
that, if followed, allow system integrators to quickly assemble
production-quality systems from one or more such algorithms.

 TMS320 DSP Algorithm Standard API Reference (literature number
SPRU360) describes all the APIs that are defined by the TMS320
DSP Algorithm Inteface Standard (also known as XDAIS)
specification.

 Technical Overview of eXpressDSP - Compliant Algorithms for DSP
Software Producers (literature number SPRA579) describes how to
make algorithms compliant with the TMS320 DSP Algorithm Standard
which is part of TI’s eXpressDSP technology initiative.

 Using the TMS320 DSP Algorithm Standard in a Static DSP System
(literature number SPRA577) describes how an eXpressDSP-
compliant algorithm may be used effectively in a static system with
limited memory.

 eXpressDSP Digital Media (XDM) Standard API Reference (literature
number SPRUEC8)

 Using IRES and RMAN Framework Components for C64x+ (literature
number SPRAAI5), describes the IRES interface definition and
function calling sequence

Related Documentation

You can use the following documents to supplement this user guide:

 SMPTE 421M: - Proposed SMPTE Standard for Television: VC-1
Compressed Video Bitstream Format and Decoding Process

Abbreviations

The following abbreviations are used in this document.

Table 1-1 List of Abbreviations

Abbreviation Description

http://www.ti.com/

Read This First

vi

Abbreviation Description

WMV Windows Media Video

SMPTE Society Of Motion Picture and Television
Engineers

BIOS TI’s simple RTOS for DSPs

AC/DC PRED Prediction of the first DCT co-efficient in
each row and each column of a block from
adjacent blocks

ASF Advanced Systems Format

CPB Coded Picture Buffer

CSL Chip Support Library

D1 720x480 or 720x576 resolutions in
progressive scan

DCT Discrete Cosine Transform

DMA Direct Memory Access

DMAN DMA Manager

DPB Decoded Picture Buffer

EVM Evaluation Module

IDR Instantaneous Decoding Refresh

HDTV High Definition Television

VC-1 SMPTE 421M approved standard for
Television.

VLC Variable Length Coding

IRES Interface standard to request and receive
handles to resources

ITU-T International Telecommunication Union

IVA Image Video Accelerator

SMPTE Society of Motion Picture and Television
Engineers

MB Macro Block

MV Motion Vector

NTSC National Television Standards Committee

RMAN Resource Manager

Read This First

vii

Abbreviation Description

RTOS Real Time Operating System

VGA Video Graphics Array (640 x 480
resolution)

VOP Video Object Plane

XDAIS eXpressDSP Algorithm Interface Standard

XDM eXpressDSP Digital Media

YUV Color space in luminance and
chrominance form

Text Conventions

The following conventions are used in this document:

 Text inside back-quotes (‘‘) represents pseudo-code.

 Program source code, function and macro names, parameters, and

command line commands are shown in a mono-spaced font.

Product Support

When contacting TI for support on this codec, quote the product name
(VC1 Advanced Profile Decoder on IVAHD and M3 Based Platform) and
version number. The version number of the codec is included in the title of
the Release Notes that accompanies this codec.

Trademarks

Code Composer Studio, the DAVINCI Logo, DAVINCI, DSP/BIOS,
eXpressDSP, TMS320, TMS320C64x, TMS320C6000, and
TMS320C64x+ are trademarks of Texas Instruments.

All trademarks are the property of their respective owners.

viii

Contents

PREFACE ... III

READ THIS FIRST ... III

ABOUT THIS MANUAL ... III
INTENDED AUDIENCE ... III
HOW TO USE THIS MANUAL ... III
RELATED DOCUMENTATION FROM TEXAS INSTRUMENTS .. V
RELATED DOCUMENTATION ... V
ABBREVIATIONS .. V
TEXT CONVENTIONS ... VII
PRODUCT SUPPORT ... VII
TRADEMARKS ... VII

CONTENTS .. VIII

FIGURES .. XI

TABLES .. XII

INTRODUCTION .. 1-1

1.1 OVERVIEW OF XDAIS, XDM, AND IRES ... 1-2
1.1.1 XDAIS Overview ... 1-2
1.1.2 XDM Overview .. 1-3
1.1.3 IRES Overview .. 1-4

1.2 OVERVIEW OF VC1 ADVANCED PROFILE DECODER ... 1-5
1.3 SUPPORTED SERVICES AND FEATURES .. 1-8

INSTALLATION OVERVIEW ... 2-1

2.1 SYSTEM REQUIREMENTS ... 2-2
2.1.1 Hardware .. 2-2
2.1.2 Software .. 2-2

2.2 INSTALLING THE COMPONENT ... 2-2
2.3 BEFORE BUILDING THE SAMPLE TEST APPLICATION .. 2-4

2.3.1 Installing Framework Component (FC) ... 2-5
2.4 BUILDING AND RUNNING THE SAMPLE TEST APPLICATION .. 2-6

2.4.1 Building the Sample Test Application ... 2-6
2.4.2 Running the Sample Test Application on OMAP4 ES1.0 2-6
2.4.3 Running the Sample Test Application on OMAP4 IVAHD Simulator 2-7

2.5 CONFIGURATION FILES .. 2-8
2.5.1 Generic Configuration File .. 2-8
2.5.2 Decoder Configuration File ... 2-9

2.6 UNINSTALLING THE COMPONENT .. 2-10

SAMPLE USAGE ... 3-1

3.1 OVERVIEW OF THE TEST APPLICATION .. 3-2
3.1.1 Parameter Setup ... 3-3
3.1.2 Algorithm Instance Creation and Initialization .. 3-3

ix

3.1.3 Process Call .. 3-4
3.1.4 Algorithm Instance Deletion .. 3-6

3.2 FRAME BUFFER MANAGEMENT BY APPLICATION .. 3-6
3.2.1 Frame Buffer Input and Output ... 3-6
3.2.2 Frame Buffer Format ... 3-7
3.2.3 Frame Buffer Management by Application ... 3-7

3.3 HANDSHAKING BETWEEN APPLICATION AND ALGORITHM ... 3-8
3.4 ADDRESS TRANSLATIONS ... 3-10
3.5 SAMPLE TEST APPLICATION ... 3-10

API REFERENCE... 4-1

4.1 SYMBOLIC CONSTANTS AND ENUMERATED DATA TYPES.. 4-2
4.2 DATA STRUCTURES ... 4-10

4.2.1 Common XDM Data Structures .. 4-10
4.2.2 VC1 Decoder Data Structures .. 4-23

4.3 DEFAULT AND SUPPORTED PARAMETERS .. 4-30
4.3.1 Default and supported values of IVIDDEC3_params ... 4-30
4.3.2 Default and supported values of IVIDDEC3_DynamicParams 4-31
4.3.3 Default and supported values of IVC1VDEC_Params ... 4-32
4.3.4 Default and supported values of IVC1VDEC_DynamicParams 4-32

4.4 INTERFACE FUNCTIONS .. 4-33
4.4.1 Creation APIs .. 4-34
4.4.2 Initialization API .. 4-36
4.4.3 Control API .. 4-37
4.4.4 Data Processing API ... 4-38
4.4.5 Termination API .. 4-41

FREQUENTY ASKED QUESTIONS.. 5-1

5.1 CODE BUILD AND EXECUTION ... 5-1
5.2 ISSUES WITH TOOLS VERSION .. 5-1
5.3 ALGORITHM RELATED .. 5-2

DEBUG TRACE USAGE ... 6-1

6.1 DEBUG TRACE MEMORY FORMAT IN THE VC1 DECODER ... 6-1
6.2 METHOD TO CONFIGURE DECODER TO COLLECT DEBUG TRACE .. 6-2
6.3 METHOD FOR APPLICATION TO COLLECT DEBUG TRACE .. 6-2

PICTURE FORMAT.. 7-1

7.1 NV12 CHROMA FORMAT ... 7-1
7.2 PROGRESSIVE PICTURE FORMAT ... 7-2
7.3 INTERLACED PICTURE FORMAT .. 7-4
7.4 CONSTRAINTS ON BUFFER ALLOCATION FOR DECODER ... 7-6

ERROR HANDLING ... 8-1

8.1 DESCRIPTION .. 8-1
8.1.1 Error Codes used to set the extendedError field in IVIDDEC3_OutArgs and
IVIDDEC3_Status .. 8-2
8.1.2 Error Codes used to set the extendedErrorCode0, extendedErrorCode1,
extendedErrorCode2, extendedErrorCode3 field in IVC1VDEC_Status 8-4

BITSTREAM FORMAT .. 9-1

9.1 SIMPLE AND MAIN PROFILE .. 9-1
9.1.1 Sequence header syntax .. 9-2
9.1.2 Frame header syntax .. 9-2

9.2 ADVANCED PROFILE .. 9-3

x

META DATA SUPPORT .. 10-1

xi

Figures

Figure 1-1. IRES Interface Definition and Function Calling Sequence. 1-5
Figure 1-2. Block Diagram of VC1 Decoder ... 1-6

Figure 1-3. Working of VC1 Decoder ... 1-7

Figure 2-1. Component Directory Structure ... 2-3

Figure 3-1. Test Application Sample Implementation ... 3-2
Figure 3-2. Process call with Host release ... 3-5
Figure 3-3. Interaction of Frame Buffers Between Application and Framework . 3-7
Figure 3-4. Interaction Between Application and Codec 3-9

xii

Tables

Table 1-1 List of Abbreviations ... v
Table 2-1. Component Directories ... 2-4
Table 3-1. Process () Implementation ... 3-11
Table 4-1. List of Enumerated Data Types .. 4-2

1-1

Chapter 1

Introduction

This chapter provides a brief introduction to XDAIS and XDM. It also
provides an overview of TI’s implementation of the VC1 Advanced Profile
Decoder on the IVAHD and M3 Based Platform and its supported features.

Topic Page

1.1 Overview of XDAIS, XDM, and IRES 1-2

1.2 Overview of VC1 Advanced Profile Decoder 1-5

1.3 Supported Services and Features 1-8

Introduction

1-2

1.1 Overview of XDAIS, XDM, and IRES

TI’s multimedia codec implementations are based on the eXpressDSP
Digital Media (XDM) standard. XDM is an extension of the eXpressDSP
Algorithm Interface Standard (XDAIS). IRES is the interface for
management and utilization of special resource types such as hardware
accelerators, certain types of memory and DMA. This interface allows the
client application to query and provide the algorithm its requested resources.

1.1.1 XDAIS Overview

An eXpressDSP-compliant algorithm is a module that implements the
abstract interface IALG. The IALG API takes the memory management
function away from the algorithm and places it in the hosting framework.
Thus, an interaction occurs between the algorithm and the framework. This
interaction allows the client application to allocate memory for the algorithm
and also share memory between algorithms. It also allows the memory to be
moved around while an algorithm is operating in the system. In order to
facilitate these functionalities, the IALG interface defines the following APIs:

 algAlloc()

 algInit()

 algActivate()

 algDeactivate()

 algFree()

The algAlloc() API allows the algorithm to communicate its memory

requirements to the client application. The algInit() API allows the

algorithm to initialize the memory allocated by the client application. The

algFree() API allows the algorithm to communicate the memory to be

freed when an instance is no longer required.

Once an algorithm instance object is created, it can be used to process data

in real-time. The algActivate() API provides a notification to the

algorithm instance that one or more algorithm processing methods is about
to be run zero or more times in succession. After the processing methods

have been run, the client application calls the algDeactivate() API prior

to reusing any of the instance’s scratch memory.

The IALG interface also defines three more optional APIs algControl(),

algNumAlloc(), and algMoved(). For more details on these APIs, see

TMS320 DSP Algorithm Standard API Reference (literature number
SPRU360).

Introduction

1-3

1.1.2 XDM Overview

In the multimedia application space, you have the choice of integrating any
codec into your multimedia system. For example, if you are building a video
decoder system, you can use any of the available video decoders (such as
VC1,MPEG4, H.263, or H.264) in your system. To enable easy integration
with the client application, it is important that all codecs with similar
functionality use similar APIs. XDM was primarily defined as an extension to
XDAIS to ensure uniformity across different classes of codecs (for example
audio, video, image, and speech). The XDM standard defines the following
two APIs:

 control()

 process()

The control() API provides a standard way to control an algorithm

instance and receive status information from the algorithm in real-time. The

control() API replaces the algControl() API defined as part of the

IALG interface. The process() API does the basic processing

(encode/decode) of data.

Apart from defining standardized APIs for multimedia codecs, XDM also
standardizes the generic parameters that the client application must pass to
these APIs. The client application can define additional implementation
specific parameters using extended data structures.

The following figure depicts the XDM interface to the client application.

As depicted in the figure, XDM is an extension to XDAIS and forms an
interface between the client application and the codec component. XDM
insulates the client application from component-level changes. Since TI’s
multimedia algorithms are XDM compliant, it provides you with the flexibility
to use any TI algorithm without changing the client application code. For
example, if you have developed a client application using an XDM-compliant
VC1 video decoder, then you can easily replace VC1 with another XDM-
compliant video decoder, say H.263, with minimal changes to the client
application.

For more details, see eXpressDSP Digital Media (XDM) Standard API
Reference (literature number SPRUEC8).

Client Application

XDAIS Interface (IALG)

TI’s Codec Algorithms

XDM Interface

Introduction

1-4

1.1.3 IRES Overview

IRES is a generic, resource-agnostic, extendible resource query,
initialization and activation interface. The application framework defines,
implements, and supports concrete resource interfaces in the form of IRES
extensions. Each algorithm implements the generic IRES interface, to
request one or more concrete IRES resources. IRES defines standard
interface functions that the framework uses to query, initialize,
activate/deactivate and reallocate concrete IRES resources. To create an
algorithm instance within an application framework, the algorithm and the
application framework agrees on the concrete IRES resource types that are
requested. The framework calls the IRES interface functions, in addition to
the IALG functions, to perform IRES resource initialization, activation, and
deactivation.

The IRES interface introduces support for a new standard protocol for
cooperative preemption, in addition to the IALG-style non-cooperative
sharing of scratch resources. Co-operative preemption allows activated
algorithms to yield to higher priority tasks sharing common scratch
resources. Framework components include the following modules and
interfaces to support algorithms requesting IRES-based resources:

 IRES - Standard interface allowing the client application to query and
provide the algorithm with its requested IRES resources.

 RMAN - Generic IRES-based resource manager, which manages and
grants concrete IRES resources to algorithms and applications. RMAN
uses a new standard interface, the IRESMAN, to support run-time
registration of concrete IRES resource managers.

Client applications call the algorithm’s IRES interface functions to query its
concrete IRES resource requirements. If the requested IRES resource type
matches a concrete IRES resource interface supported by the application
framework, and if the resource is available, the client grants the algorithm
logical IRES resource handles representing the allotted resources. Each
handle provides the algorithm with access to the resource as defined by the
concrete IRES resource interface.

IRES interface definition and function calling sequence is depicted in the
following figure. For more details, see Using IRES and RMAN Framework
Components for C64x+ (literature number SPRAAI5).

Introduction

1-5

Figure 1-1. IRES Interface Definition and Function Calling Sequence.

For more details, see Using IRES and RMAN Framework Components for C64x+
(literature number SPRAAI5).

1.2 Overview of VC1 Advanced Profile Decoder

 VC1 is the Society of Motion Picture and Television Engineers (SMPTE)
standardized video decoder. VC1 consists of three profiles namely,
simple, main, and advanced. Simple and main profiles were developed
for use in lower-bit-rate networked computing environments. VC1
standard defines several profiles and levels that specify restrictions on
the bit stream, and hence limits the capabilities needed to decode the
bit-streams. Each profile specifies a subset of algorithmic features and
limits all decoders conforming to that profile may support. Each level
specifies a set of limits on the values that may be taken by the syntax
elements in the profile.

Introduction

1-6

Figure 1-2. Block Diagram of VC1 Decoder

From this point onwards, all references to VC1 decoder mean VC1
Advanced Profile (AP) decoder only.

Figure 1-3 depicts the working of the VC1 Decoder algorithm.

Introduction

1-7

Figure 1-3. Working of VC1 Decoder

VC1 Advanced Profile Decoder implementation on OMAP4 has two parts:

 Core part of the decoding, which includes all frame and slice level
operation and core decoding algorithm. This part is implemented on
IVA-HD sub-system

 Interface part of the decoder, which interacts with application and
system software. This part is implemented on M3. All the interfaces to
query algorithm resource needs belongs to this part. This part of the
video codec is exposed to system software and core part is hidden.

Interface part of the video codec communicates with core part of video
codec with private IPC defined in codec software through mailbox.

Framework Components (FC) and Codec
Engine (CE)

R
M

A
N

C
a

llb
a
c
k
 t
o

 m
a
k
e

 n
o
n

 b
lo

c
k
in

g
 A

P
I

IRES

XDAIS and XDM
IVIDDEC3

Video Codec
(ARM Part)

CSL / IVAHD L0 API

Codec Topology and Hardware Mode Settings (L2 API)

Slice/Frame
Level Operation

Buffer
Management

Video Codec
(IVAHD Part)

Codec Software Stack
Frame Start

Frame End

IPC

IPC

Private and
Generic IPC
Inside
Codec
Software

Cortex M3 ICONT1 ICONT2

Ducati sub-system IVA-HD sub-system

Hardware Layer

Introduction

1-8

1.3 Supported Services and Features

This user guide accompanies TI’s implementation of VC1 Decoder on the
IVAHD video accelerators.

This version of the codec has the following supported features of the
standard:

 eXpressDSP Digital Media (XDM IVIDDEC3) compliant

 Uses hardware accelerators of IVAHD

 VC1 Advanced Profile up to Level 3 compliant

 All features of Simple Profile, Main Profile and Advanced Profile are
supported

 Supports Multiple slices

 Minimum resolution supported is 64 x 64

 Non-multiples of 16 resolutions are also supported

 Progressive, Interlaced frame and Interlaced field type picture decoding
supported

 Supports all block type partitions and modes

 Outputs are available in YUV420 interleaved little Endian format

 Tested for compliance with SMPTE reference decoder release 7

 Cache aware decoder library

 Independent of any OS (DSP/BIOS, Linux, Window CE, Symbian and so
on

 Ability to plug in any multimedia frameworks (e.g. Codec engine,
OpenMax, GStreamer, …)

 Supports multi-channel functionality.

 Supports resolutions from all standard resolutions from QCIF to
1080p/1080i.

 All features of Simple Profile, Main Profile and Advanced Profile are
supported

 Both RCV(RCV V1, RCV V2) and Elementary stream formats are
supported

 Support for error resiliency and error concealment

2-1

Chapter 2

Installation Overview

This chapter provides a brief description on the system requirements and
instructions for installing the codec component. It also provides information
on building and running the sample test application.

Topic Page

2.1 System Requirements 2-2

2.2 Installing the Component 2-2

2.3 Before Building the Sample Test Application 2-4

2.4 Building and Running the Sample Test Application 2-6

2.5 Configuration Files 2-8

2.6 Uninstalling the Component 2-10

Installation Overview

2-2

2.1 System Requirements

This section describes the hardware and software requirements for the
normal functioning of the codec component.

2.1.1 Hardware

This codec (OMAP4 release package) has been built and tested on
OMAP4ES1.

2.1.2 Software

The following are the software requirements for the normal functioning of the
codec:

 Development Environment: This project is developed using
CodeComposer Studio (Code Composer Studio v4) version.
4.2.0.09000. Code Composer Studio v4 can be downloaded from the
following location.

http://software-
dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/Prereleases/set
up_CCS_4.2.0.09000.zip

 Code Generation Tools: This project is compiled, assembled,
archived,and linked using the code generation tools version 4.5.1.
Although CG toolsversion 4.5.1 is a part of Code Composer Studio v4, It
is recommended that you download and install the CG tools from the
following location.

https://www-a.ti.com/downloads/sds_support/CodeGenerationTools.htm

The projects are built using g-make (GNU Make version 3.78.1)

 IVAHD Simulator: This codec has been tested using IVAHD simulator
version 5.0.16 (IVAHD simulation CSP 1.1.5). This release can be
obtained by software updates on Code Composer Studio v4. Make sure
that following site is listed as part of Update sites to visit.

http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/IVAHD/sit
e.xml

2.2 Installing the Component

The codec component is released as a compressed archive. To install the
codec, extract the contents of the zip file onto your local hard disk. The zip
file extraction creates a top-level directory called 500.V.VC1.D.IVAHD.01.00,
under which is directory named IVAHD_001.

http://software-dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/Prereleases/setup_CCS_4.2.0.09000.zip
http://software-dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/Prereleases/setup_CCS_4.2.0.09000.zip
http://software-dl.ti.com/dsps/dsps_registered_sw/sdo_ccstudio/CCSv4/Prereleases/setup_CCS_4.2.0.09000.zip
https://www-a.ti.com/downloads/sds_support/CodeGenerationTools.htm
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/IVAHD/site.xml
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/IVAHD/site.xml
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_ccstudio/CCSv4/Updates/IVAHD/site.xml

Installation Overview

2-3

Figure 2-1. Component Directory Structure

Installation Overview

2-4

Sub-Directory Description

\inc Contains XDM related header files which allow interface to the codec
library

\lib Contains the codec library file

\docs Contains user guide and datasheet

\client\build\TestAppOmap4 Contains the M3 cmd file.

\client\build\TestAppOmap4\make Contains the make file for the test application project.

\client\build\TestAppOmap4\map Contains the memory map generated on compilation of the code

\client\build\TestAppOmap4\obj Contains the intermediate .asm and/or .obj file generated on compilation
of the code

\client\build\TestAppOmap4\out Contains the final application executable (.out) file generated by the
sample test application

\client\test\src Contains application C files

\client\ test\inc Contains header files needed for the application code

\client\testvecs\config Contains configuration parameter files

\client\test\testvecs\input Contains input test vectors

\client\test\testvecs\output Contains output generated by the codec

 \client\test\testvecs\reference Contains read-only reference output to be used for cross-checking
against codec output

 Table 2-1. Component Directories

2.3 Before Building the Sample Test Application

This codec is accompanied by a sample test application. To run the sample
test application, you need TI Framework Components (FC).

This version of the codec has been validated with Framework Component
(FC) version 3.20.00.22 GA.

To run the Simulator version of the codec, the IVAHD simulator has to be
installed. The version of the simulator is 5.0.16. This can be done using the
“Help->Software Updates->Find and Install” option in CCSv4. Detailed
instructions to set up the configuration can be found in
ivahd_sim_user_guide.pdf present in <CCSv4 Installation
Dir>\simulation_csp_omap4\docs\pdf\ directory.

Installation Overview

2-5

This codec has also been validated on Netra Video Processing Simulator
that simulates all the three IVAHDs in DM816x. The simulator required for
this is Netra CSP (Simulation) version 0.7.1. This simulator can also be
installed using the “Help->Software Updates->Find and Install” option in

CCSv4. Detailed instructions to set up the configuration can be found in
netra_sim_user_guide.pdf present in <CCSv4 Installation Dir>\
simulation_netra\docs\user_guide directory.

Install CG Tools version 4.5.1 for ARM (TMS470) at the following location in
your system: <CCSv4_InstallFolder>\ccsv4\tools\compiler\tms470. CGTools
4.5.1 can be downloaded from

https://www-a.ti.com/downloads/sds_support/CodeGenerationTools.htm

Please note that CG Tools 4.5.1 is installed at the location mentioned above
along with the CCS v4 installation by default. But, as some problems have
been reported about this, we recommend that you install CG Tools 4.5.1 again
with the installer obtained from the above link

Set environment variable CG_TOOL_DIR to <cgtools_install_dir>.

<CG_TOOL_DIR>/bin should contain all required code generation tools
executables.

Set environment variables HDVICP2_INSTALL_DIR and
CSP_INSTALL_DIR to the locations where the HDVICP20 API library and
IVAHD CSL are present. The HDVICP20 API library and the IVAHD CSL
can be downloaded from the same place as the codec package. The
HDVICP20 API .lib files should be present at HDVICP2_INSTALL_DIR/lib
and HDVICP20 API interface header files at HDVICP2_INSTALL_DIR/inc.
The folders csl_ivahd and csl_soc of IVAHD CSL should be present at
CSP_INSTALL_DIR/.

This version of the codec has been validated with HDVICP2.0 API library
version 01.00.00.22 and HDVICP2.0 CSL Version 00.05.02.

Set the system environment variable TI_DIR to the CCSv4 installation path.
Example: TI_DIR = <CCSv4 Installation Dir>\ccsv4.

Add gmake (GNU Make version 3.78.1) utility folder path (for example,
“C:\CCStudioV4.0\ccsv4\utils\gmake”) at the beginning of the PATH
environment variable.

The version of the XDC tools required is 3.20.04.68 GA.

2.3.1 Installing Framework Component (FC)

You can download FC from the TI website:

http://software-
dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/fc/3_20_00_22/index_
FDS.html

https://www-a.ti.com/downloads/sds_support/CodeGenerationTools.htm
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/fc/3_20_00_22/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/fc/3_20_00_22/index_FDS.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/fc/3_20_00_22/index_FDS.html

Installation Overview

2-6

Extract the FC zip file to the some location and set the system environment
variable FC_INSTALL_DIR to this path. For example: if the zip file was
extracted to C:\CCSv4\, set FC_INSTALL_DIR as C:\CCSv4\
framework_components_3_20_00_22.

The test application uses the following IRES and XDM files:

 HDVICP related IRES header files, these are available in the
FC_INSTALL_DIR\packages\ti\sdo\fc\ires\hdvicp directory.

 Tiled memory related Header file, these are available in the
FC_INSTALL_DIR\fctools\packages\ti\sdo\fc\ires\tiledmemory
directory.

 XDM related header files, these are available in the
FC_INSTALL_DIR\fctools\packages\ti\xdais directory

2.4 Building and Running the Sample Test Application

2.4.1 Building the Sample Test Application

This library release of VC1 Decoder on HDVICP2.0 and M3-based platform
contains the following project.

Project Make file Path Output Files

Test

Application
\client\build\TestAppOmap4\make\ \client\build\TestAppOmap4\out

\vc1vdec_ti_host_testapp.out

Verify that the following codec object libraries exist in \lib sub-directory:
vc1vdec_ti_host_M3.lib: VC1 decoder library for Ducati

make file in the project can be built using the following commands.
o gmake –k –s deps

o gmake –k –s all

 Use the following command to clean previous builds.

o gmake –k –s clean

2.4.2 Running the Sample Test Application on OMAP4 ES1.0

The sample test application that accompanies this codec component will run
in TI’s Code Composer Studio development environment. To run the sample
test application on OMAP4 ES1.0, follow these steps:

 Start Code Composer Studio v4 and set up the target configuration for
OMAP4 ES1.0 Emulator.

 Select the Debug perspective in the workbench. Launch OMAP4
ES1.0 Emulator in CCSv4.

Installation Overview

2-7

 Select CortexA9_0 device, right click and choose “Connect Target” and
wait for emulator to connect to CortexA9 and execute the GEL file
(omap4430 startup sequence).

 Select Cortex_M3_0 device, right click and choose “Connect Target”
and wait for emulator to connect to CortexM3.

 Select Cortex_M3_0 device and Target > Load Program, browse to
the \client\build\TestAppOmap4\out\ sub-directory, select the codec
executable “vc1vdec_ti_host_testapp.out” and load it in preparation for
execution.

 Select Target > Run to execute the application for Cortex_M3_0
device.

 Test application will take input streams from \client\test\testvecs\input\
directory and generates outputs in \client\test\testvecs\output\
directory. Configuration Files

Note:

Order of connecting to the devices is important and it should be as
mentioned in above steps.

2.4.3 Running the Sample Test Application on OMAP4 IVAHD Simulator

The sample test application that accompanies this codec component will run
in TI’s Code Composer Studio development environment. To run the sample
test application on IVAHD Simulator, follow these steps:

 Ensure that you have installed IVAHD Simulator version 5.0.16.

 Start Code Composer Studio v4 and set up the target configuration for
OMAP4 IVAHD Simulator.

 Select the Debug perspective in the workbench. Launch OMAP4
IVAHD Simulator in CCSv4.

 Select CORTEX_M3_APP device and Target > Load Program, browse
to the \client\build\TestApp Omap4\out\ sub-directory, select the codec
executable “vc1vdec_ti_host_testapp.out” and load it into Code
Composer Studio in preparation for execution.

 Select ICONT1 device and Target > Run to give iCont1 device a free
run.

 Select ICONT2 device and Target > Run to give iCont2 device a free
run.

 Select CORTEX_M3_APP device and select Target > Run to execute
the application.

 Test application will take input streams from \client\test\testvecs\input\
directory and generates outputs in \client\test\testvecs\output\
directory.

Installation Overview

2-8

2.5 Configuration Files

This codec is shipped along with:

 Generic configuration file (testvecs.cfg) – specifies input and reference
files for the sample test application.

 Decoder configuration file (testparams.cfg) – specifies the configuration
parameters used by the test application to configure the Decoder.

2.5.1 Generic Configuration File

The sample test application shipped along with the codec uses the
configuration file, testvecs.cfg for determining the input and reference files
for running the codec and checking for compliance. The testvecs.cfg file is
available in the \client\test\testvecs\config sub-directory.

The format of the testvecs.cfg file is:

X

Config

Input

Output/Reference

where:

 X may be set as:

o 1 - for CRC compliance checking, no output file is created

o 0 - for writing the output to the output file

 Config is the Decoder configuration file. For details, see Section 2.5.2.

 Input is the input file name (use complete path).

 Output/Reference is the output file name (if X is 0) or reference file

name (if X is 1).

 A sample testvecs.cfg file is as shown:

1

..\..\..\test\testvecs\config\testparams.cfg

..\..\..\test\testvecs\input\foreman_176x144.rcv

..\..\..\test\testvecs\reference\foreman_176x144.txt

0

..\..\..\test\testvecs\config\testparams.cfg

..\..\..\test\testvecs\input\foreman_176x144.rcv

..\..\..\test\testvecs\output\foreman_176x144.yuv

In compliance mode of operation, the decoder compared the reference and
the generated output and declares Passes/Failed message. If output dump
mode is selected(X set to 0), then the decoder dumps the output to the
specified file.

Installation Overview

2-9

Note:

Compliance test will not work for Interlaced test cases

2.5.2 Decoder Configuration File

The decoder configuration file, testparams.cfg contains the configuration
parameters required for the decoder. The testparams.cfg file is available in
the \client\test\testvecs\config sub-directory.

A sample testparams.cfg file is as shown:

New Input File Format is as follows

<ParameterName> = <ParameterValue> # Comment

##

##############################

Parameters

##

##############################

ImageWidth = 1920 # Image width in Pels,

must be multiple of 16

ImageHeight = 1088 # Image height in Pels,

must be multiple of 16

FramesToDecode = 500 # Number of frames to be

decoded

DumpFrom = 0 # Start dumping from

this frame.

isTiler = 0 # 1-> ENable Tiler Memory

Usage for Output Buffers, 0-> Use RAW memory.

debugTraceLevel = 0 # 0,1,2,3,4 are the Valid

Trace Levels.

lastNFramesToLog = 0 # 0 to 10 are the Valid

Values.

metaDataEnable = 1 # 0 -> (Default) 1->

Parsed MetaData

metaDataType = 0 # -1 -> (Default) 0->

Parse MB Info

Installation Overview

2-10

To check the functionality of the codec for the inputs other than those
provided with the release, change the configuration file accordingly with
corresponding input test vector.

Note:

ChromaFormat supported in this codec is 420 semi-planar, that is, the
chroma planes (Cb and Cr) are interleaved.

2.6 Uninstalling the Component

To uninstall the component, delete the codec directory from your hard disk.

3-1

Chapter 3

Sample Usage

This chapter provides a detailed description of the sample test application
that accompanies this codec component.

Topic Page

3.1 Overview of the Test Application 3-2

3.2 Frame Buffer Management by Application 3-6

3.3 Handshaking Between Application and Algorithm 3-8

3.4 Address Translations 3-10

3.5 Sample Test Application 3-10

Sample Usage

3-2

3.1 Overview of the Test Application

The test application exercises the IVIDDEC3 base class of the VC1 Decoder

library. The main test application files are vc1vdec_ti_host_testapp.c and
vc1vdec_ti_ires_app.c. These files are available in the \client\test\src
directory.

Figure 3-1 depicts the sequence of APIs exercised in the sample test
application. Currently, the test application does not use RMAN resource
manager. However, all the resource allocations happens through IRES
interfaces.

Figure 3-1. Test Application Sample Implementation

Sample Usage

3-3

The test application is divided into four logical blocks:

 Parameter setup

 Algorithm instance creation and initialization

 Process call

 Algorithm instance deletion

3.1.1 Parameter Setup

Each codec component requires various codec configuration parameters to
be set at initialization. For example, a video codec requires parameters such
as video height, video width, and so on. The test application obtains the
required parameters from the Decoder configuration files.

In this logical block, the test application does the following:

 Opens the generic configuration file, Testvecs.cfg and reads the
compliance checking parameter, Decoder configuration file name
(Testparams.cfg), input file name, and output/reference file name.

 Opens the Decoer configuration file, (Testparams.cfg) and reads the
various configuration parameters required for the algorithm. For more
details on the configuration files, see Section 2.5.

 Sets the IVIDDEC3_Params structure based on the values it reads

from the Testparams.cfg file.

 Reads the input bit-stream into the application input buffer.

After successful completion of these steps, the test application does the
algorithm instance creation and initialization.

3.1.2 Algorithm Instance Creation and Initialization

In this logical block, the test application accepts the various initialization
parameters and returns an algorithm instance pointer. The following APIs
are called in sequence:

 algNumAlloc() - To query the algorithm about the number of

memory records it requires.

 algAlloc() - To query the algorithm about the memory requirement

to be filled in the memory records.

 algInit() - To initialize the algorithm with the memory structures

provided by the application.

A sample implementation of the create function that calls algNumAlloc(),

algAlloc(), and algInit() in sequence is provided in the

ALG_create() function implemented in the alg_create.c file.

Sample Usage

3-4

Note:

 Decoder requests only one memory buffer through algNumAlloc.

This buffer is for the algorithm handle.

 Other memory buffer requirements are done through IRES
interfaces.

After successful creation of the algorithm instance, the test application does
HDVICP Resource and memory buffer allocation for the algorithm.
Currently, RMAN resource manager is not used. However, all the resource
allocations happen through IRES interfaces:

 numResourceDescriptors() - To understand the number of

resources (HDVICP and buffers) needed by algorithm.

 getResourceDescriptors() – To get the attributes of the resources.

 initResources() - After resources are created, application gives the

resources to algorithm through this API.

3.1.3 Process Call

After algorithm instance creation and initialization, the test application does
the following:

 Sets the dynamic parameters (if they change during run-time) by
calling the control() function with the XDM_SETPARAMS command.

 Sets the input and output buffer descriptors required for the

process()function call. The input and output buffer descriptors are

obtained by calling the control() function with the XDM_GETBUFINFO

command.

 Implements the process call based on the non-blocking mode of
operation explained in step 4. The behavior of the algorithm can be
controlled using various dynamic parameters (see Section 4.2.1.8).

The inputs to the process()functions are input and output buffer

descriptors, pointer to the IVIDDEC3_InArgs and IVIDDEC3_OutArgs

structures.

 On the call to the process() function for encoding/decoding a single

frame of data, the software triggers the start of encode/decode. After
triggering the start of the encode/decode frame, the video task can be

put to SEM-pend state using semaphores. On receipt of interrupt signal

at the end of frame encode/decode, the application releases the
semaphore and resume the video task, which does any book-keeping
operations by the codec and updates the output parameter of

IVIDDEC3_OutArgs structure.

Sample Usage

3-5

Figure 3-2. Process call with Host release

The control() and process() functions should be called only within the

scope of the algActivate() and algDeactivate() XDAIS functions

which activate and deactivate the algorithm instance respectively. Once an

algorithm is activated, there could be any ordering of control() and

process() functions. The following APIs are called in a sequence:

 algActivate() - To activate the algorithm instance.

 control() (optional) - To query the algorithm on status or setting of

dynamic parameters and so on, using the six available control
commands.

 process() - To call the Decoder with appropriate input/output buffer

and arguments information.

 control() (optional) - To query the algorithm on status or setting of

dynamic parameters and so on, using the six available control
commands.

 algDeactivate() - To deactivate the algorithm instance.

The do-while loop encapsulates picture level process() call and updates

the input buffer pointer every time before the next call. The do-while loop
breaks off either when an error condition occurs or when the input buffer

exhausts. It also protects the process() call from file operations by placing

appropriate calls for cache operations. The test application does a cache

invalidate for the valid input buffers before process() and a cache write

back invalidate for output buffers after a control() call with GET_STATUS

command.

In the sample test application, after calling algDeactivate(), the output

data is either dumped to a file or compared with a reference file.

Host
System

application

Process call frame n

HDVICP
Tasks

MB level tasks for
frame n

Host Video
Task

Transfer of
tasks at Host

MB level tasks for

frame n+1

Process call frame n+1

Host system
tasks

HDVICP Busy

Interrupt between
HDVICP and Host

Sample Usage

3-6

3.1.4 Algorithm Instance Deletion

Once decoding/encoding is complete, the test application frees the memory
resources and deletes the current algorithm instance. The following APIs
are called in sequence:

 numResourceDescriptors() - To get the number of resources and

free them. If the application needs handles to the resources, it can call

getResourceDescriptors().

 algNumAlloc() - To query the algorithm about the number of

memory records it used.

 algFree() - To query the algorithm for memory, to free when

removing an instance.

A sample implementation of the delete function that calls algNumAlloc()

and algFree() in sequence is provided in the ALG_delete() function

implemented in the alg_create.c file.

3.2 Frame Buffer Management by Application

3.2.1 Frame Buffer Input and Output

With the new XDM IVIDDEC3 class, decoder does not ask for frame buffer

at the time of alg_create(). It uses buffer from XDM1_BufDesc *outBufs,

which it reads during each decode process call. Hence, there is no
distinction between DPB and display buffers. The framework needs to
ensure that it does not overwrite the buffers that are locked by the codec.

VC1VDEC_create();

VC1VDEC_control(XDM_GETBUFINFO); /*

Returns default PAL D1 size */

do{

VC1VDEC_decode(); //call the decode

API

VC1VDEC_control(XDM_GETBUFINFO); /*

updates the memory required as per

the size parsed in stream header */

}

while(all frames)

Note:

 Application can take the information retured by the control function

with the XDM_GETBUFINFO command and change the size of the

buffer passed in the next process call.

 Application can re-use the extra buffer space of the 1st frame, if

Sample Usage

3-7

the above control call returns a small size than that was provided.

The frame pointer given by the application and that returned by the

algorithm may be different. BufferID (InputID/outputID) provides the

unique ID to keep a record of the buffer given to the algorithm and released
by the algorithm.

As explained above, buffer pointer cannot be used as a unique identifier to
keep a record of frame buffers. Any buffer given to algorithm should be
considered locked by algorithm, unless the buffer is returned to the

application through IVIDDEC3_OutArgs->freeBufID[].

Note:

BufferID returned in IVIDDEC3_OutArgs ->outputID[] is only for

display purpose. Application should not consider it free unless it is a part

of IVIDDEC3_OutArgs->freeBufID[].

3.2.2 Frame Buffer Format

The frame buffer format to be used for both progressive and interlaced
pictures is as explained in the following document available in the release
package.

\IVAHD_001\docs\IVAHD_Picture_Format.pdf

3.2.3 Frame Buffer Management by Application

The application framework can efficiently manage frame buffers by keeping
a pool of free frames from which it gives the decoder empty frames on
request.

Figure 3-3. Interaction of Frame Buffers Between Application and Framework

The sample application also provides a prototype for managing frame
buffers. It implements the following functions, which are defined in file
buffermanager.c provided along with test application.

Video Decode
 Thread Free

Frame
Buffers

Post
Processing or
Display
Subsystem

Video Decoder

XDM API

GetFreeBuffer()

ReleaseBuffer()

Framework Algorithm

Sample Usage

3-8

 BUFFMGR_Init() - BUFFMGR_Init function is called by the test

application to initialize the global buffer element array to default and to
allocate the required number of memory data for reference and output
buffers. The maximum required DPB size is defined by the supported
profile and level.

 BUFFMGR_ReInit() - BUFFMGR_ReInit function allocates global luma

and chroma buffers and allocates entire space to the first element. This
element will be used in the first frame decode. After the picture height
and width and its luma and chroma buffer requirements are obtained,
the global luma and chroma buffers are re-initialized to other elements in
the buffer array.

 BUFFMGR_GetFreeBuffer() - BUFFMGR_GetFreeBuffer function

searches for a free buffer in the global buffer array and returns the
address of that element. Incase none of the elements are free, then it

returns NULL.

 BUFFMGR_ReleaseBuffer() - BUFFMGR_ReleaseBuffer function

takes an array of buffer-IDs which are released by the test application. 0
is not a valid buffer ID, hence this function moves until it encounters a
buffer ID as zero or it hits the MAX_BUFF_ELEMENTS.

 BUFFMGR_DeInit()- BUFFMGR_DeInit function releases all memory

allocated by buffer manager.

3.3 Handshaking Between Application and Algorithm

Application provides the algorithm with its implementation of functions for

the video task to move to SEM-pend state, when the execution happens in

the co-processor. The algorithm calls these application functions to move

the video task to SEM-pend state.

Sample Usage

3-9

Figure 3-4. Interaction Between Application and Codec

Note:

 Process call architecture to share Host resource among multiple
threads.

 ISR ownership is with the Host layer resource manager – outside the
codec.

 The actual codec routine to be executed during ISR is provided by the
codec.

 OS/System related calls (SEM_pend, SEM_post) also outside the

codec.

 Codec implementation is OS independent.

The functions to be implemented by the application are:

 HDVICP_configure(IALG_Handle handle, void *hdvicpHandle,

void (*ISRfunctionptr)(IALG_Handle handle))

This function is called by the algorithm to register its ISR function,
which the application needs to call when it receives interrupts
pertaining to the video task.

 HDVICP_wait (void *hdvicpHandle)

This function is called by the algorithm to move the video task to SEM-

pend state.

Framework Provided
HDVICP Callback APIs

process()

Application Side

Codec

#include <…/ires_hdvicp.h>

void _MyCodecISRFunction();

MYCODEC::IVIDDEC2::process() {

 :

 …. set up for frame decode

 HDVICP_configure(vc1d, vc1d-

>hdvicpHandle,

 VC1DISRFunction);

 HDVICP_wait(vc1D, vc1d-

>hdvicpHandle);

 // Release of HOST

 …. End of frame processing

}

void VC1DISRFunction(IALG_Handle

handle)

{ VC1VDEC_TI_Obj *vc1d = (void

*)handle;

 HDVICP_done(vc1d ,

 Vc1d-

>hdvicpHandle);

}

int _doneSemaphore;

HDVICP_configure(handle,

hdVicpHandle, ISRFunction){

 installNonBiosISR(handle,

hdvicpHandle, ISRFunction);

}

HDVICP_wait(handle,

hdVicpHandle){

SEM_pend(_doneSemaphore);

}

HDVICP_done(handle,

hdVicpHandle) {

 SEM_post(_doneSemaphore)

}

Sample Usage

3-10

 HDVICP_done (void *hdvicpHandle)

This function is called by the algorithm to release the video task from

SEM-pend state. In the sample test application, these functions are

implemented in hdvicp_framework.c file. The application can
implement it in a way considering the underlying system.

3.4 Address Translations

The buffers addresses(DDR addresses) as seen by Ducati(Cortex-M3) and
IVA-HD(VDMA) will be different. Hence, address translations are needed to
convert from one address view to another. The application needs to
implement a MEMUTILS function for this address translation (which will be
later implemented by the framework components). An example of the
address translation function is as shown. The codec will make a call to this
function from the host (cortex-M3) library. Therefore, the function name and
arguments should follow the example provided below. For a given input
address, this function returns the VDMA view of the buffer (that is, address
as seen by IVAHD).

void *MEMUTILS_getPhysicalAddr(Ptr Addr)

{

return ((void *)((unsigned int)Addr & VDMAVIEW_EXTMEM));

}

}

Sample settings for the macro VDMAVIEW_EXTMEM is as shown.

#if defined(HOSTARM968_FPGA)

 #define VDMAVIEW_EXTMEM (0x07FFFFFF)

#elif defined(HOSTCORTEXM3_OMAP4)

 #define VDMAVIEW_EXTMEM (0xFFFFFFFF)

#elif defined(HOSTCORTEXM3_GAIA)

 #define VDMAVIEW_EXTMEM (0x1FFFFFFF)

#else

 #define VDMAVIEW_EXTMEM (0x07FFFFFF)

#endif

3.5 Sample Test Application

The test application exercises the IVC1VDEC extended class of the VC1

Decoder.

Sample Usage

3-11

Table 3-1. Process () Implementation

/* Main Function acting as a client for Video Decode

Call */

 BUFFMGR_Init();

 TestApp_SetInitParams(¶ms.viddecParams);

 RMAN_AssignResources(&hdvicpObj);

/*---------------- Decoder creation -----------------*/

 handle = (IALG_Handle) VC1VDEC_create();

/* Get Buffer information */

 VC1VDEC_control(handle, XDM_GETBUFINFO);

/* Do-While Loop for Decode Call for a given stream */

 do{

/* Read the bitstream in the Application Input Buffer*/

 validBytes = ReadByteStream(inFile);

/* Get free buffer from buffer pool */

 buffEle = BUFFMGR_GetFreeBuffer();

/* Optional: Set Run-time parameters in the Algorithm

via control() */

 VC1VDEC_control(handle, XDM_SETPARAMS);

/* Start the process : To start decoding a frame*/

/* This will always follow a VC1VDEC_decode_end call */

 retVal = VC1VDEC_decode(handle,(XDM1_BufDesc

*)&inputBufDesc,(XDM_BufDesc *)&outputBufDesc,

(IVIDDEC1_InArgs *)&inArgs,(IVIDDEC1_OutArgs *)&outArgs

);

/* Get the statatus of the decoder using comtrol */

 VC1VDEC_control(handle, IVC1VDEC_GETSTATUS);

/* Get Buffer information: */

 VC1VDEC_control(handle, XDM_GETBUFINFO);

/* Optional: Reinit the buffer manager in case the

/* frame size is different*/

 BUFFMGR_ReInit();

/* Always release buffers - which are released from

/* the algorithm side -back to the buffer manager*/

Sample Usage

3-12

 BUFFMGR_ReleaseBuffer((XDAS_UInt32

*)outArgs.freeBufID);

}while(1);

/* end of Do-While loop - which decodes frames */

/* Reset the decode process. Bring the decoder to */

/* the state where decode process can start afresh */

 VC1VDEC_control(handle, XDM_RESET);

 ALG_delete (handle);

 BUFFMGR_DeInit();

Note:

This sample test application does not depict the actual function
parameter or control code. It shows the basic flow of the code.

4-1

Chapter 4

API Reference

This chapter provides a detailed description of the data structures and
interfaces functions used in the codec component.

Topic Page

4.1 Symbolic Constants and Enumerated Data Types 4-2

4.2 Data Structures 4-10

4.3 Default and supported parameters 4-30

4.4 Interface Functions 4-33

API Reference

4-2

4.1 Symbolic Constants and Enumerated Data Types

This section describes the XDM defined data structures that are common
across codec classes. These XDM data structures can be extended to
define any implementation specific parameters for a codec component.

Table 4-1. List of Enumerated Data Types

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_FrameType IVIDEO_NA_FRAME Frame type not available

IVIDEO_I_FRAME Intra coded frame

IVIDEO_P_FRAME Forward inter coded frame

IVIDEO_B_FRAME Bi-directional inter coded frame

IVIDEO_IDR_FRAME Intra coded frame that can be used
for refreshing video content

IVIDEO_II_FRAME Interlaced Frame, both fields are I
frames

IVIDEO_IP_FRAME Interlaced Frame, first field is an I
frame, second field is a P frame

IVIDEO_IB_FRAME Interlaced Frame, first field is an I
frame, second field is a B frame

IVIDEO_PI_FRAME Interlaced Frame, first field is a P
frame, second field is a I frame

IVIDEO_PP_FRAME Interlaced Frame, both fields are P
frames

IVIDEO_PB_FRAME Interlaced Frame, first field is a P
frame, second field is a B frame

IVIDEO_BI_FRAME Interlaced Frame, first field is a B
frame, second field is an I frame.

IVIDEO_BP_FRAME Interlaced Frame, first field is a B
frame, second field is a P frame

IVIDEO_BB_FRAME Interlaced Frame, both fields are B
frames

IVIDEO_MBAFF_I_FRAME Intra coded MBAFF frame

IVIDEO_MBAFF_P_FRAME

Forward inter coded MBAFF frame

IVIDEO_MBAFF_B_FRAME Bi-directional inter coded MBAFF
frame

API Reference

4-3

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_MBAFF_IDR_FRAME Intra coded MBAFF frame that can
be used for refreshing video content.

IVIDEO_FRAMETYPE_DEFAUL

T

Default set to IVIDEO_I_FRAME

IVIDEO_ContentType IVIDEO_CONTENTTYPE_NA Content type is not applicable

IVIDEO_PROGRESSIVE

IVIDEO_PROGRESSIVE_FRAM

E

Progressive video content

IVIDEO_INTERLACED

IVIDEO_INTERLACED_FRAME

Interlaced video content

IVIDEO_INTERLACED_TOPFI

ELD

Interlaced video content, Top field

IVIDEO_INTERLACED_TOPFI

ELD

Interlaced video content, Bottom
field

IVIDEO_CONTENTTYPE_DEFA

ULT

Default set to
IVIDEO_PROGRESSIVE

IVIDEO_FrameSkip IVIDEO_NO_SKIP Do not skip the current frame.
Default Value
Not supported in this version of VC1
Decoder

IVIDEO_SKIP_P Skip forward inter coded frame.
Not supported in this version of VC1
Decoder.

IVIDEO_SKIP_B Skip bi-directional inter coded frame.
Not supported in this version of VC1
Decoder.

IVIDEO_SKIP_I Skip intra coded frame.
Not supported in this version of VC1
Decoder.

IVIDEO_SKIP_IP Skip I and P frame/field(s)
Not supported in this version of VC1
Decoder.

IVIDEO_SKIP_IB Skip I and B frame/field(s).
Not supported in this version of VC1
Decoder.

IVIDEO_SKIP_PB Skip P and B frame/field(s).
Not supported in this version of VC1
Decoder.

IVIDEO_SKIP_IPB Skip I/P/B/BI frames
Not supported in this version of VC1
Decoder.

API Reference

4-4

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_SKIP_IDR Skip IDR Frame
Not supported in this version of VC1
Decoder.

IVIDEO_SKIP_NONREFERENC

E

Skip non reference frame
Not supported in this version of VC1
Decoder.

IVIDEO_SKIP_DEFAULT Default set to IVIDEO_NO_SKIP

IVIDEO_VideoLayout IVIDEO_FIELD_INTERLEAVE

D

Buffer layout is interleaved.

IVIDEO_FIELD_SEPARATED Buffer layout is field separated.

IVIDEO_TOP_ONLY Buffer contains only top field.

IVIDEO_BOTTOM_ONLY Buffer contains only bottom field

IVIDEO_OperatingMode IVIDEO_DECODE_ONLY Decoding Mode

IVIDEO_ENCODE_ONLY Encoding Mode

IVIDEO_TRANSCODE_FRAME

LEVEL

Transcode Mode of operation
(encode/decode), which consumes
/generates transcode information at
the frame level.

IVIDEO_TRANSCODE_MBLEV

EL

Transcode Mode of operation
(encode/decode), which consumes
/generates transcode information at
the MB level. Not supported in this
version of VC1 Decoder

IVIDEO_TRANSRATE_FRAME

LEVEL

Transrate Mode of operation for
encoder, which consumes transrate
information at the frame level. Not
supported in this version of VC1
Decoder

IVIDEO_TRANSRATE_MBLEV

EL

Transrate Mode of operation for
encoder, which consumes transrate
information at the MB level. Not
supported in this version of VC1
Decoder

IVIDEO_OutputFrameStatus IVIDEO_FRAME_NOERROR Output buffer is available.

IVIDEO_FRAME_NOTAVAILAB

LE

Codec does not have any output
buffers.

IVIDEO_FRAME_ERROR Output buffer is available and
corrupted.

IVIDEO_OUTPUTFRAMESTATU

S_DEFAULT

Default set to
IVIDEO_FRAME_NOERROR

API Reference

4-5

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDEO_PictureType IVIDEO_NA_PICTURE Frame type not available

IVIDEO_I_PICTURE Intra coded picture

IVIDEO_P_PICTURE Forward inter coded picture

IVIDEO_B_PICTURE Bi-directional inter coded picture

IVIDEO_DataMode IVIDEO_FIXEDLENGTH Input to the decoder is in multiples
of a fixed length (example, 4K)
(input side for decoder)

IVIDEO_SLICEMODE Slice mode of operation (Input side
for decoder).
Not supported in this version of VC1
Decoder.

IVIDEO_NUMROWS Number of rows, each row is 16
lines of video (output side for
decoder).
Not supported in this version of VC1
Decoder.

IVIDEO_ENTIREFRAME Processing of entire frame data

IVIDEO_DataMode IVIDEO_DECODE_ONLY Decoding mode.

IVIDEO_ENCODE_ONLY Encoding mode.

IVIDEO_TRANSCODE_FRAME

LEVEL

Transcode mode of operation
encode/decode) which
consumes/generates transcode
information at the frame level.
Not supported in this version of VC1
Decoder.

IVIDEO_TRANSRATE_FRAME

LEVEL

Transcode mode of operation
encode/decode) which
consumes/generates transcode
information at the MB level.
Not supported in this version of VC1
Decoder.

IVIDEO_TRANSRATE_MBLEV

EL

Transrate mode of operation
encode/decode) which
consumes/generates transcode
information at the Frame level.
Not supported in this version of VC1
Decoder.

IVIDEO_TRANSCODE_MBLEV

EL

Transrate mode of operation
encode/decode) which
consumes/generates transcode
information at the MB level.
Not supported in this version of VC1
Decoder.

API Reference

4-6

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDDEC3_displayDelay IVIDDEC3_DISPLAY_DELAY_

AUTO

Decoder decides the display delay

IVIDDEC3_DECODE_ORDER Display frames are in decoded order
without delay
Other than
IVIDDEC3_DECODE_ORDER and
IVIDDEC3_DISPLAY_DELAY_AUT
O are not supported in this version
of VC1 decoder.

IVIDDEC3_DISPLAY_DELAY_

1

Display the frames with 1 frame
delay

IVIDDEC3_DISPLAY_DELAY_

2

Display the frames with 2 frame
delay

IVIDDEC3_DISPLAY_DELAY_

3

Display the frames with 3 frame
delay

IVIDDEC3_DISPLAY_DELAY_

4

Display the frames with 4 frame
delay

IVIDDEC3_DISPLAY_DELAY_

5

Display the frames with 5 frame
delay

IVIDDEC3_DISPLAY_DELAY_

6

Display the frames with 6 frame
delay

IVIDDEC3_DISPLAY_DELAY_

7

Display the frames with 7 frame
delay

IVIDDEC3_DISPLAY_DELAY_

8

Display the frames with 8 frame
delay

IVIDDEC3_DISPLAY_DELAY_

9

Display the frames with 9 frame
delay

IVIDDEC3_DISPLAY_DELAY_

10

Display the frames with 10 frame
delay

IVIDDEC3_DISPLAY_DELAY_

11

Display the frames with 11 frame
delay

IVIDDEC3_DISPLAY_DELAY_

12

Display the frames with 12 frame
delay

IVIDDEC3_DISPLAY_DELAY_

13

Display the frames with 13 frame
delay

IVIDDEC3_DISPLAY_DELAY_

14

Display the frames with 14 frame
delay

IVIDDEC3_DISPLAY_DELAY_

15

Display the frames with 15 frame
delay

API Reference

4-7

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

IVIDDEC3_DISPLAY_DELAY_

16

Display the frames with 16 frame
delay

IVIDDEC3_DISPLAYDELAY_D

EFAULT

Same as
IVIDDEC3_DISPLAY_DELAY_AU

TO

XDM_DataFormat XDM_BYTE Big endian stream (default value)

XDM_LE_16 16-bit little endian stream.
Not supported in this version of VC1
Decoder.

XDM_LE_32 32-bit little endian stream.
Not supported in this version of VC1
Decoder.

XDM_LE_64 64-bit little endian stream.
Not supported in this version of VC1
Decoder.

XDM_BE_16 16-bit big endian stream.
Not supported in this version of VC1
Decoder.

XDM_BE_32 32-bit big endian stream.
Not supported in this version of VC1
Decoder.

XDM_BE_64 64-bit big endian stream.
Not supported in this version of VC1
Decoder.

XDM_ChromaFormat XDM_YUV_420P YUV 4:2:0 planar.
Not supported in this version of VC1
Decoder.

XDM_YUV_422P YUV 4:2:2 planar.
Not supported in this version of VC1
Decoder.

XDM_YUV_422IBE YUV 4:2:2 interleaved (big endian).
Not supported in this version of VC1
Decoder.

XDM_YUV_422ILE YUV 4:2:2 interleaved (little endian)
(default value).
Not supported in this version of VC1
Decoder.

XDM_YUV_444P YUV 4:4:4 planar.
Not supported in this version of VC1
Decoder.

API Reference

4-8

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_YUV_411P YUV 4:1:1 planar.
Not supported in this version of VC1
Decoder.

XDM_GRAY Gray format.
Not supported in this version of VC1
Decoder.

XDM_RGB RGB color format.
Not supported in this version of VC1
Decoder.

XDM_YUV_420SP YUV 4:2:0 chroma semi-planar

XDM_ARGB8888 ARGB8888 color format.
Not supported in this version of VC1
Decoder.

XDM_RGB555 RGB555 color format.
Not supported in this version of VC1
Decoder.

XDM_RGB565 RGB565 color format.
Not supported in this version of VC1
Decoder.

XDM_YUV_444ILE YUV 4:4:4 interleaved (little endian)
color format.
Not supported in this version of VC1
Decoder.

XDM_MemoryType XDM_MEMTYPE_ROW Raw Memory Type

XDM_MEMTYPE_TILED8 2D memory in 8-bit container of tiled
memory space

XDM_MEMTYPE_TILED16 2D memory in 16-bit container of
tiled memory space

XDM_MEMTYPE_TILED32 2D memory in 32-bit container of
tiled memory space

XDM_MEMTYPE_TILEDPAGE 2D memory in page container of
tiled memory space

XDM_CmdId XDM_GETSTATUS Query algorithm instance to fill

Status structure

XDM_SETPARAMS Set run-time dynamic parameters

via the DynamicParams structure

XDM_RESET Reset the algorithm.

API Reference

4-9

Group or Enumeration Class Symbolic Constant Name Description or Evaluation

XDM_SETDEFAULT Initialize all fields in Params

structure to default values specified
in the library.

XDM_FLUSH Handle end of stream conditions.
This command forces algorithm
instance to output data without
additional input.

XDM_GETBUFINFO Query algorithm instance regarding
the properties of input and output
buffers

XDM_GETVERSION Query the algorithm’s version. The
result will be returned in the @ data

field of the Status structure

The application should provide a
buffer of minimum size of 200 bytes
to hold the version information. The
buffer will be provided to codec
through data field as mentioned
above.

XDM_GETDYNPARAMSDEFAULT Query algorithm instance regarding
the dynamic parameters default
values

XDM_AccessMode XDM_ACCESSMODE_READ The algorithm read from the buffer
using the CPU.

XDM_ACCESSMODE_WRITE The algorithm wrote from the buffer
using the CPU

IVC1VDEC_mbErrStatus IVC1VDEC_MB_NOERROR This indicates that the current MB is
not erroneous.

IVC1VDEC_MB_ERROR This indicates that the current MB is
erroneous.

API Reference

4-10

4.2 Data Structures

This section describes the XDM defined data structures, which are common
across codec classes. These XDM data structures can be extended to
define any implementation specific parameters for a codec component.

4.2.1 Common XDM Data Structures

This section includes the following common XDM data structures:

 XDM2_SingleBufDesc

 XDM2_BufDesc

 XDM1_AlgBufInfo

 IVIDEO2_BufDesc

 IVIDDEC3_Fxns

 IVIDDEC3_Params

 IVIDDEC3_DynamicParams

 IVIDDEC3_InArgs

 IVIDDEC3_Status

 IVIDDEC3_OutArgs

4.2.1.1 XDM2_SingleBufDesc

║ Description

This structure defines the buffer descriptor for single input and output
buffers.

║ Fields

Field Data Type Input/
Output

Description

*buf XDAS_Int8 Input Pointer to the buffer

memType XDAS_Int32 Input Type of memory. See XDM_MemoryType

enumeration for more details.

bufSize XDM2_BufSize Input Size of the buffer(for tile memory/row memory)

accessMask XDAS_Int32 Output If the buffer was not accessed by the algorithm
processor (for example, it was filled by DMA or other
hardware accelerator that does not write through the
algorithm CPU), then bits in this mask should not be
set.

API Reference

4-11

4.2.1.2 XDM2_BufSize

║ Description

This defines the union describing a buffer size.
║ Fields

Field Data Type Input/
Output

Description

width XDAS_Int32 Input Width of buffer in 8-bit bytes.
Required only for tile memory.

height XDAS_Int32 Input Height of buffer in 8-bit bytes.
Required only for tile memory.

bytes XDM2_BufSi

ze

Input Size of the buffer in bytes

4.2.1.3 XDM2_BufDesc

║ Description

This structure defines the buffer descriptor for output buffers.
║ Fields

Field Data Type Input/
Output

Description

numBufs XDAS_Int32 Input Number of buffers

descs[XDM_MAX

_IO_BUFFERS]

XDM2_Singl

eBufDesc

Input Array of buffer descriptors

4.2.1.4 XDM1_AlgBufInfo

║ Description

This structure defines the buffer information descriptor for input and output
buffers. This structure is filled when you invoke the control() function with

the XDM_GETBUFINFO command.

║ Fields

Field Data Type Input/
Output

Description

minNumInBufs XDAS_Int32 Output Number of input buffers

minNumOutBufs XDAS_Int32 Output Number of output buffers

minInBufSize[XDM_MAX_IO

_BUFFERS]

XDM2_BufSize Output Size required for each input buffer

API Reference

4-12

Field Data Type Input/
Output

Description

minOutBufSize[XDM_MAX_I

O_BUFFERS]

XDM2_BufSize Output Size required for each output buffer

inBufMemoryType[XDM_MAX

_IO_BUFFERS]

XDAS_Int32 Output Memory type for each input buffer

outBufMemoryType[XDM_MA

X_IO_BUFFERS]

XDAS_Int32 Output Memory type for each output buffer

minNumBufSets XDAS_Int32 Output Minimum number of buffer sets for
buffer management

Note:

For VC1 Advanced Profile Decoder, the buffer details are:

 Number of input buffer required is 1.

 Number of output buffer required is 2 for YUV420 SP.

 For frame mode of operation, there is no restriction on input buffer size except that it
should contain atleast one frame of encoded data.

 The output buffer sizes (in bytes) for worst case 1080p format are:

 For YUV 420 SP:
 Y buffer = (((1920+ 2*PAD_LUMA_X +127)>>7)<<7) * (1088 + 2*PAD_LUMA_Y)
 UV buffer = (((1920+ 2*PAD_CHROMA_X +127)>>7)<<7) * (544 + 4*PAD_CHROMA_Y)
Where,

PAD_LUMA_X = 32

PAD_LUMA_Y = 40

PAD_CHROMA_X = 32

PAD_CHROMA_Y = 20

These are the maximum buffer sizes but they can be reconfigured depending on the format of the
bit-stream.

4.2.1.5 IVIDEO2_BufDesc

║ Description

This structure defines the buffer descriptor for input and output buffers.
║ Fields

Field Data Type Input/
Output

Description

numPlanes XDAS_Int32 Input/O
utput

Number of buffers for video planes

numMetaPlanes XDAS_Int32

Input/O
utput Number of buffers for Metadata

dataLayout XDAS_Int32 Input/O Video buffer layout. See

API Reference

4-13

Field Data Type Input/
Output

Description

utput IVIDEO_VideoLayout

enumeration for more details

planeDesc

[IVIDEO_MAX_NUM_PLANES]

XDM1_Singl

eBufDesc

Input/O
utput

Description for video planes

metadataPlaneDesc

[IVIDEO_MAX_NUM_METADATA_PLA

NES]

XDM1_Singl

eBufDesc

Input/O
utput

Description for metadata planes

secondFieldOffsetWidth[IVIDE

O_MAX_NUM_PLANES] XDAS_Int32

Input/O
utput

Offset value for second field in

planeDesc buffer (width in pixels)

secondFieldOffsetHeight[IVID

EO_MAX_NUM_PLANES]

XDAS_Int32 Input/O
utput

Offset value for second field in

planeDesc buffer (height in lines)

imagePitch XDAS_Int32

Input/O
utput Image pitch, common for all planes

imageRegion XDM_Rect Input/O
utput

Decoded image region including
padding /encoder input image

activeFrameRegion XDM_Rect

Input/O
utput Actual display region/capture region

extendedError XDAS_Int32 Input/O
utput

Provision for informing the error type
if any

frameType XDAS_Int32 Input/O
utput

Video frame types. See enumeration

IVIDEO_FrameType.

Not applicable for encoders

topFieldFirstFlag XDAS_Int32 Input/O
utput

Indicates when the application
(should display)/(had captured) the
top field first.
Not applicable for progressive
content.

repeatFirstFieldFlag XDAS_Int32 Input/O
utput

Indicates when the first field should
be repeated.
Not applicable for encoders.

frameStatus XDAS_Int32 Input/O
utput

Video in/out buffer status.
Not applicable for encoders.

repeatFrame XDAS_Int32 Input/O
utput

Number of times to repeat the
displayed frame.
Not applicable for encoders.

contentType XDAS_Int32 Input/O
utput

Video content type. See
IVIDEO_ContentType

chromaFormat XDAS_Int32 Input/O
utput

Chroma format for encoder input
data/decoded output buffer. See

API Reference

4-14

Field Data Type Input/
Output

Description

XDM_ChromaFormat enumeration

for details.

scalingWidth XDAS_Int32 Input/O
utput

Scaled image width for post
processing for decoder.
This field is updated when scaling
parameters are present in the bit-
stream

scalingHeight XDAS_Int32 Input/O
utput

Scaled image height for post
processing for decoder.
This field is updated when scaling
parameters are present in the bit-
stream.

rangeMappingLuma XDAS_Int32 Input/O
utput

The process of rescaling decoded
pixels is called range mapping. The
Luma scale factor for range mapping
is indicated by this field. This field
takes the value from 0 to 7.

rangeMappingChroma XDAS_Int32 Input/O
utput

The process of rescaling decoded
pixels is called range mapping. The
chroma scale factor for range
mapping is indicated by this field.
This field takes the value from 0 to 7.

enableRangeReductionFlag XDAS_Int32 Input/O
utput

This flag indicates that the decoded
pixel values are scaled by a scaling
factor indicated by
rangeMappingLuma &

rangeMappingChroma. This

information can be used by the
application for post processing. This
flag is updated only for advanced
profile streams.

API Reference

4-15

Note:

IVIDEO_MAX_NUM_PLANES:

 Max YUV buffers - one each for Y, U, and V.

 Metaplane data is not given out in this version of the codec.

 The following parameters are not supported/updated in this version of the decoder

 repeatFrame

 The Range mapping for luma and chroma should be done by the application, using the
below formulae.

Y[n] = CLIP ((((Y[n] – 128) * (rangeMappingLuma + 9) + 4) >> 3) + 128);

Cb[n] = CLIP ((((Cb[n] – 128) * (rangeMappingChroma + 9) + 4) >> 3) + 128);

Cr[n] = CLIP ((((Cr[n] – 128) * (rangeMappingChroma + 9) + 4) >> 3) + 128);

Where, Y[n] corresponds to every Luma pixel, Cb[n] and Cr[n] correpond to every choma
pair.

API Reference

4-16

4.2.1.6 IVIDDEC3_Fxns

║ Description

This structure contains pointers to all the XDAIS and XDM interface
functions.

║ Fields

Field Data Type Input/
Output

Description

Ialg IALG_Fxns Input Structure containing pointers to all the XDAIS
interface functions.

For more details, see TMS320 DSP Algorithm
Standard API Reference (literature number
SPRU360).

*process XDAS_Int32 Input Pointer to the process() function

*control XDAS_Int32 Input Pointer to the control() function

4.2.1.7 IVIDDEC3_Params

║ Description

This structure defines the creation parameters for an algorithm instance
object. Set this data structure to NULL, if you are not sure of the values to
be specified for these parameters.

║ Fields

Field Data Type Input/
Output

Description

Size XDAS_Int32 Input Size of the basic or extended (if being used)
data structure in bytes.

maxHeight XDAS_Int32 Input Maximum video height to be supported in pixels

maxWidth XDAS_Int32 Input Maximum video width to be supported in pixels

maxFrameRate XDAS_Int32 Input Maximum frame rate in fps * 1000 to be
supported.

maxBitRate XDAS_Int32 Input Maximum bit-rate to be supported in bits per
second. For example, if bit-rate is 10 Mbps, set
this field to 10485760.

dataEndianness XDAS_Int32 Input Endianness of input data. See

API Reference

4-17

Field Data Type Input/
Output

Description

XDM_DataFormat enumeration for details.

forceChromaFormat XDAS_Int32 Input Sets the output to the specified format. Only 420
semi-planar format supported currently.

See XDM_ChromaFormat and

eChromaFormat_t enumerations for details.

operatingMode XDAS_Int32 Input Video coding mode of operation
(encode/decode/transcode/transrate).
Only decode mode is supported in this version.

displayDelay XDAS_Int32 Input Display delay to start display.

inputDataMode XDAS_Int32 Input Input mode of operation.
For decoder, it is fixed length/slice mode/entire
frame.

outputDataMode XDAS_Int32 Input Output mode of operation.
For decoder, it is row mode/entire frame.

numInputDataUnits XDAS_Int32 Input Number of input slices/rows.
For decoder, it is the number of slices or
number of fixed length units.

numOutputDataUnit

s

XDAS_Int32 Input Number of output slices/rows.
For decoder, it is the number of rows of output.

errorInfoMode XDAS_Int32 Input Enable/disable packet error information for
input/output

displayBufsMode XDAS_Int32 Input Indicates the displayBufs mode. This field

can be set either as
IVIDDEC3_DISPLAYBUFS_EMBEDDED

or IVIDDEC3_DISPLAYBUFS_PTRS.

API Reference

4-18

4.2.1.8 IVIDDEC3_DynamicParams

║ Description

This structure defines the run-time parameters for an algorithm instance
object. Set this data structure to NULL, if you are not sure of the values to be

specified for these parameters.
║ Fields

Field Data Type Input/
Output

Description

Size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

decodeHeader XDAS_Int32 Input Number of access units to decode:

 0 (XDM_DECODE_AU) - Decode entire frame

including all the headers

 1 (XDM_PARSE_HEADER) - Decode only one

NAL unit (Not Supported)

displayWidth XDAS_Int32 Input If the field is set to:
 0 - Uses decoded image width as pitch
 If any other value greater than the decoded image

width is given, then this value in pixels is used as
pitch.

frameSkipMode XDAS_Int32 Input Frame skip mode. See IVIDEO_FrameSkip

enumeration for details.

newFrameFlag XDAS_Int32 Input Flag to indicate that the algorithm should start a new
frame.

Valid values are XDAS_TRUE and XDAS_FALSE.

This is useful for error recovery, for example, when the
end of frame cannot be detected by the codec but is
known to the application.

*putDataFxn XDM_DataSy

ncPutFxn

Input DataSync call back function pointer for putData

putDataHandle XDM_DataSy

ncHandle

Input DataSync handle for putData

*getDataFxn XDM_DataSy

ncGetFxn

Input DataSync call back function pointer for getData

getDataHandle XDM_DataSy

ncHandle

Input DataSync handle for getData

putBufferFxn XDM_DataSy

ncPutBuffe

rFxn

Input Function pointer provided to make a sub-frame level
callback to request buffers.

API Reference

4-19

Field Data Type Input/
Output

Description

putBufferHand

le

XDM_DataSy

ncHandle

Input This is a handle which the codec must provide when
calling the app-registered
IVIDDEC3_DynamicParam.putBufferFxn().

lateAcquireAr

g

XDAS_Int32 Input Argument used during late acquire mode of IVAHD. If
the codec supports late acquisition of resources,and
the application has supplied a lateAcquireArg value
(via #XDM_SETLATEACQUIREARG), then the codec
must also provide this lateAcquireArg value when
requesting resources (i.e. during their call to
acquire() when requesting the resource).

4.2.1.9 IVIDDEC3_InArgs

║ Description

This structure defines the run-time input arguments for an algorithm instance
object.

║ Fields

Field Data Type Input/
Output

Description

Size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

numBytes XDAS_Int32 Input Size of input data (in bytes) provided to the algorithm for
decoding

inputID XDAS_Int32 Input Application passes this ID to algorithm and decoder will
attach this ID to the corresponding output frames. This is
useful in case of re-ordering (for example, B frames). If

there is no re-ordering, outputID field in the

IVIDDEC3_OutArgs data structure will be same as

inputID field.

Note:

VC1 Decoder copies the inputID value to the outputID value of

IVIDDEC3_OutArgs structure after factoring in the display delay.

API Reference

4-20

4.2.1.10 IVIDDEC3_Status

║ Description

This structure defines parameters that describe the status of an algorithm
instance object.

║ Fields

Field Data Type Input/
Output

Description

Size XDAS_Int32 Input Size of the basic or extended (if
being used) data structure in bytes.

extendedError XDAS_Int32 Output Extended error code. See

XDM_ErrorBit enumeration for

details.

data XDM1_SingleBufDesc Output Buffer information structure for
information passing buffer.

maxNumDisplayBufs XDAS_Int32 Output Maximum number of buffers
required by the codec.

maxOutArgsDisplayB

ufs

XDAS_Int32 Output The maximum number of display
buffers that can be returned through
IVIDDEC3_OutArgs.displayB

ufs.

outputHeight XDAS_Int32 Output Output height in pixels

outputWidth XDAS_Int32 Output Output width in pixels

frameRate XDAS_Int32 Output Average frame rate in fps * 1000

bitRate XDAS_Int32 Output Average bit-rate in bits per second

contentType XDAS_Int32 Output Video content. See
IVIDEO_ContentType

enumeration for details.

sampleAspectRatioH

eight

XDAS_Int32 Output Sample aspect ratio for height

sampleAspectRatioW

idth

XDAS_Int32 Output Sample aspect ratio for width

bitRange XDAS_Int32 Output Bit range. It is set to

IVIDEO_YUVRANGE_FULL.

forceChromaFormat XDAS_Int32 Output Output chroma format. See

XDM_ChromaFormat and

eChromaFormat_t enumeration

for details.

API Reference

4-21

Field Data Type Input/
Output

Description

operatingMode XDAS_Int32 Output Mode of operation:
Encoder/Decoder/Transcode/Transr
ate. It is set to

IVIDEO_DECODE_ONLY.

frameOrder XDAS_Int32 Output Indicates the output frame order.

See IVIDDEC3_displayDelay

enumeration for more details.

inputDataMode XDAS_Int32 Output Input mode of operation.
For decoder, it is fixed length/slice
mode/entire frame.
This version of the decoder supports
only the and entire frame mode.

outputDataMode XDAS_Int32 Output Output mode of operation.
For decoder, it is the row
mode/entire frame.
This version of the decoder supports
only the entire frame mode.

bufInfo XDM_AlgBufInfo Output Input and output buffer information.

See XDM_AlgBufInfo data

structure for details.

decDynamicParams IVIDDEC3_DynamicPar

ams

Output Current values of the decoder's
dynamic parameters.

4.2.1.11 IVIDDEC3_OutArgs

║ Description

This structure defines the run-time output arguments for an algorithm
instance object.

║ Fields

Field Data Type Input/
Output

Description

size XDAS_Int32 Input Size of the basic or extended (if being used) data
structure in bytes.

extendedError XDAS_Int32 Output extendedError Field

bytesConsumed XDAS_Int32 Output Bytes consumed per decode call

outputID[IVIDEO2

_MAX_IO_BUFFERS]

XDAS_Int32 Output Output ID corresponding to displayBufs

A value of zero (0) indicates an invalid ID. The first
zero entry in array will indicate end of valid

outputIDs within the array. Hence, the application

API Reference

4-22

Field Data Type Input/
Output

Description

can stop reading the array when it encounters the
first zero entry.

decodedBufs IVIDEO2_Bu

fDesc

Output The decoder fills this structure with buffer pointers to
the decoded frame. Related information fields for the
decoded frame are also populated.
When frame decoding is not complete, as indicated

by outBufsInUseFlag, the frame data in this

structure will be incomplete. However, the algorithm
will provide incomplete decoded frame data in case
application may choose to use it for error recovery
purposes.

freeBufID[IVIDEO

2_MAX_IO_BUFFERS

]

XDAS_Int32 Output This is an array of inputIDs corresponding to the

frames that have been unlocked in the current
process call.

outBufsInUseFlag XDAS_Int32 Output Flag to indicate that the outBufs provided with the

process() call are in use. No outBufs are

required to be supplied with the next process()

call.

displayBufsMode XDAS_Int32 Output Indicates the mode for
#IVIDDEC3_OutArgs.displayBufs.

bufDesc [1] IVIDEO2_Bu

fDesc

Output Array containing display frames corresponding to

valid ID entries in the outputID array.

 See IVIDEO2_BufDesc data structure for more

details.

*pBufDesc[IVIDEO

2_MAX_IO_BUFFERS

]

IVIDEO2_Bu

fDesc *

Output Array containing pointers to display frames

corresponding to valid ID entries in the @c

outputID[]

Note:

IVIDEO2_MAX_IO_BUFFERS - Maximum number of I/O buffers set to

20.

The display buffer mode can be set as either
IVIDDEC3_DISPLAYBUFS_EMBEDDED or

IVIDDEC3_DISPLAYBUFS_PTRS.

The current implementation of the decoder will always return a
maximum of one display buffer per process call. If the mode is

IVIDDEC3_DISPLAYBUFS_EMBEDDED, then the instance of the display

buffer structure will be present in OutArgs. If the mode is

IVIDDEC3_DISPLAYBUFS_PTRS, then a pointer to the instance will be

present in OutArgs,

API Reference

4-23

4.2.2 VC1 Decoder Data Structures

This section includes the following VC1Decoder specific data structures:

 IVC1VDEC_Params

 IVC1VDEC_DynamicParams

 IVC1VDEC_InArgs

 IVC1VDEC_Status

 IVC1VDEC_OutArgs

 IVC1VDEC_TI_MbInfo

4.2.2.1 IVC1VDEC _Params

║ Description

This structure defines the creation parameters and any other
implementation specific parameters for an VC1 Decoder instance object.
The creation parameters are defined in the XDM data structure,

IVIDDEC3_Params.

║ Fields

Field Data Type Input/
Output

Description

viddec3Params IVIDDEC3_Params Input See IVIDDEC3_Params data structure

for details.

errorConcealmen

tON

XDAS_Int32 Input This parameter is used to enable (or)
disable the error concealment.
Possible values are 0 (disable) &
1 (enable)

frameLayerDataP

resentFlag

XDAS_Int32 Input Possible values are 0 (Frame layer data
not present) & 1 (Frame layer data
present)
This flag is used by the codec only if the
bit-stream is in RCV format. Refer
Chapter 9, section 9.1.2.1 for more
details.

debugTraceLevel XDAS_UInt32 Input This parameter specifies the debug trace
level
Possible values are 0 to 4

lastNFramesTolo

g

XDAS_UInt32 Input This variable specifies the number of
most recent frames to log in debug trace
Possible values are 0 to 10

API Reference

4-24

4.2.2.2 IVC1VDEC_DynamicParams

║ Description

This structure defines the run-time parameters and any other
implementation specific parameters for an VC1 instance object. The run-
time parameters are defined in the XDM data structure,

IVIDDEC3_DynamicParams.

║ Fields

Field Data Type Input/
Output

Description

viddec3DynamicParam

s

IVIDDEC3_DynamicPara

ms
Input See

IVIDDEC3_DynamicParams

data structure for details.

4.2.2.3 IVC1VDEC_InArgs

║ Description

This structure defines the run-time input arguments for an VC1 instance
object.

║ Fields

Field Data Type Input/
Output

Description

viddec3InArgs IVIDDEC3_InArgs Input See IVIDDEC3_InArgs data structure for

details.

4.2.2.4 IVC1VDEC_Status

║ Description

This structure defines parameters that describe the status of the VC1

Decoder and any other implementation specific parameters. The status

parameters are defined in the XDM data structure, IVIDDEC3_Status.

║ Fields

Field Data Type Input/
Output

Description

viddec3Status IVIDDEC3_Status Output See IVIDDEC3_Status data structure for details

extendedError

Code0

XDAS_UInt32 Output Bit 0 to 31 of the error status

extendedError

Code1

XDAS_UInt32 Output Bit 32 to 63 of the error status

API Reference

4-25

Field Data Type Input/
Output

Description

extendedError

Code2

XDAS_UInt32 Output Bit 64 to 95 of the error status

extendedError

Code2

XDAS_UInt32 Output Bit 96 to 127 of the error status

debugTraceLev

el

XDAS_UInt32 Output Specifies the debug trace level.VC-1

decoder will support till level 4.

lastNFramesTo

log

XDAS_UInt32 Output Specifies the number of most recent

frames to log in debug trace.

extMemoryDebu

gTraceAddr

XDAS_UInt32 * Output Pointer to debug trace structure in

external memory.

extMemoryDebu

gTraceSize

XDAS_UInt32 Output Size of debug trace structure.

4.2.2.5 IVC1VDEC_OutArgs

║ Description

This structure defines the run-time output arguments for the VC1 Decoder
instance object.

║ Fields

Field Data Type Input/
Output

Description

viddec3OutArgs IVIDDEC3_OutArgs Output See IVIDDEC3_OutArgs data structure for

details.

4.2.2.6 IVC1VDEC_TI_MbInfo

║ Description

This structure defines the Mb info fields for the VC1 Decoder.

║ Fields

Field Data Type Input/
Output

Description

mb_addr XDAS_UInt8 Output It is equal to the macroblock address (counter)
in the picture.

API Reference

4-26

Field Data Type Input/
Output

Description

error_flag XDAS_UInt8 Output This indicates that an error was detected while
decoding the macroblock. . If error_flag = 1, the
contents of macroblock header data are not
ensured. This means ECD3 outputs right data
for the first 64-bit of macroblock header, but the
other parts of macroblock header data may be
corrupted.

first_mb_flag XDAS_UInt8 Output This indicates that the current MB is the first MB
in the slice.

pic_bound_b XDAS_UInt8 Output This indicates that the current MB is at the
bottom edge of the picture

pic_bound_u XDAS_UInt8 Output This indicates that the current MB is at the
upper edge of the picture

pic_bound_r XDAS_UInt8 Output This indicates that the current MB is at the right
edge of the picture

pic_bound_l XDAS_UInt8 Output This indicates that the current MB is at the left
boundary of the picture

mb_ur_avail XDAS_UInt8 Output This indicates whether the current MB has the
upper right pixels available. (in the same slice).

mb_uu_avail XDAS_UInt8 Output This indicates whether the current MB has the
upper pixels available. (in the same slice).

mb_ul_avail XDAS_UInt8 Output This indicates whether the current MB has the
upper left pixels available. (in the same slice).

mb_ll_avail XDAS_UInt8 Output This indicates whether the current MB has the
left pixels available. (in the same slice).

fmt_type XDAS_UInt8 Output This is always 0x08. which is Bi-4-MV
Macroblock Header Format

codec_type XDAS_UInt8 Output This indicated the codec type. This is always
0x3 for VC1 decoder.

dc_coef_q_y[4] XDAS_UInt8 Output These are the 4 DC co-efficient values of each
of the 8x8 Luma block

dc_coef_q_cr XDAS_UInt8 Output This is the DC co-efficient value for the 8x8 Cr
block

dc_coef_q_cb XDAS_UInt8 Output This is the DC co-efficient value for the 8x8 Cb
block

API Reference

4-27

Field Data Type Input/
Output

Description

block_type_cr XDAS_UInt8 Output This is the block type of Cr block
0: Intra,
1: Inter 8x8,
2: Inter 8x4,
3: Inter 4x8,
4: Inter 4x4

block_type_cb XDAS_UInt8 Output This is the block type of Cb block
0: Intra,
1: Inter 8x8,
2: Inter 8x4,
3: Inter 4x8,
4: Inter 4x4

block_type_y[4] XDAS_UInt8 Output These are the 4 block type values of each of the
8x8 Luma block
0: Intra,
1: Inter 8x8,
2: Inter 8x4,
3: Inter 4x8,
4: Inter 4x4

end_of_slice XDAS_UInt8 Output This flag is used only in AP.This indicates that
this is the last MB of this slice

cond_skip_flag XDAS_UInt8 Output This can be used to skip the MB if coded block
pattern is 0

skip XDAS_UInt8 Output 0: Non Skipped MB
1: Skipped MB

overlap XDAS_UInt8 Output Indicates that overlap filtering is in use for the
macroblock.
0: overlap filtering is off
1: overlap filtering is on

acpred XDAS_UInt8 Output Indicates that AC prediction is in use for the
macroblock.
0: AC prediction is off
1: AC prediction is on

b_picture_direc

tion

XDAS_UInt8 Output denotes inter-prediction direction for the
macroblock in B-picture
0: direct
1: forward
2: backward
3: interpolated
4: switched to backward
5: switched to forward

mv_mode XDAS_UInt8 Output Denotes the number of motion vectors
0: Intra (no motion vector),
1: 1-MV,
2: 2-MV,
3: 4-MV

API Reference

4-28

Field Data Type Input/
Output

Description

Fieldtx XDAS_UInt8 Output Indicates that the field transform is in use for the
macroblock.
0: Frame transform,
1: Field transform

mv_type XDAS_UInt8 Output Indicates that field inter-prediction is in use
(motion compensation is in field-mode). This
field is used in interlace frames only.
0: Frame prediction mode,
1: Field prediction mode

Refdist XDAS_UInt8 Output This equals the reference frame distance. This
field is valid for decoding interlace field only,
and used for co-located macroblock in anchor
frame

mquant_overflow XDAS_UInt8 Output Indicates that macroblock quantizer-scale
(MQUANT) overflows.
0: MQUANT does not overflow,
1: MQUANT overflows

quant XDAS_UInt8 Output Equals the quantizer-scale for the macroblock

halfqp XDAS_UInt8 Output 1 indicates that 0.5 shall be added to PQUANT
in calculation of quantizer-scale. This field is
valid for decoding only.
0: quantizer = PQUANT,
1: quantizer = PQUANT + 1/2

dc_step_size XDAS_UInt8 Output Equals the DC coefficient step size which is
derived from MQUANT in the bit-stream

cbp_cr XDAS_UInt8 Output Denotes the coded sub-block pattern for cr
block

cbp_cb XDAS_UInt8 Output Denotes the coded sub-block pattern for cb
block

cbp_y[3] XDAS_UInt8 Output Denotes the coded sub-block pattern for luma
blocks

mv_bw_ref_y[4] XDAS_UInt8 Output Contains the backward reference field picture

mv_fw_ref_y[3] XDAS_UInt8 Output Contains the forward reference field picture

mv_fw_y[4][4] XDAS_UInt8 Output Unclipped forward motion vectors for luma

mv_bw_y[1][1] XDAS_UInt8 Output Unclipped backward motion vector for luma

mv_bw_c[2] XDAS_UInt8 Output Unclipped backward motion vector for chroma

mv_fw_c[2] XDAS_UInt8 Output Unclipped forward motion vector for chroma

cmv_fw_y[4][4] XDAS_UInt8 Output Clipped forward motion vector for luma

API Reference

4-29

Field Data Type Input/
Output

Description

cmv_bw_y[4][4] XDAS_UInt8 Output Clipped backward motion vector for luma

cmv_fw_c[4][4] XDAS_UInt8 Output Clipped forward motion vector for chroma

cmv_bw_c[4][4] XDAS_UInt8 Output Clipped backward motion vector for chroma

API Reference

4-30

4.3 Default and supported parameters

This section describes default and supported values for parameters of the
following structures:

 IVIDDEC3_Params

 IVIDDEC3_DynamicParams

 IVC1VDEC_Params

 IVC1VDEC_DynamicParams

4.3.1 Default and supported values of IVIDDEC3_params

Field Default Value Supported Values
Size

Sizeof(IVIDDEC3_Params)
 Sizeof(IVIDDEC3_Par

ams)

 Sizeof(IVC1VDEC_Par

ams)
maxHeight

1088 64 <= maxHeight <=

1080

[See Note below for

additional

constraint]

maxWidth
1920 64 <= maxWidth <=

1920

[See Note below for

additional

constraint]

maxFrameRate
30000 Don’t Care

maxBitRate
10000000 Don’t Care

dataEndianness
XDM_BYTE XDM_BYTE

forceChromaFormat
XDM_YUV_420SP XDM_YUV_420SP

operatingMode
IVIDEO_DECODE_ONLY

 IVIDEO_DECODE_ONLY

 IVIDEO_TRANSCODE_FR

AMELEVEL

displayDelay
IVIDDEC3_DISPLAY_DELAY_1

 IVIDDEC3_DISPLAY_DE

LAY_AUTO

 IVIDDEC3_DECODE_ORD

ER

 IVIDDEC_DISPLAY_DEL

AY_1

inputDataMode
IVIDEO_ENTIREFRAME IVIDEO_ENTIREFRAME

outputDataMode

IVIDEO_ENTIREFRAME IVIDEO_ENTIREFRAME

API Reference

4-31

numInputDataUnits
0 0

numOutputDataUnits
0 0

errorInfoMode
IVIDEO_ERRORINFO_OFF IVIDEO_ERRORINFO_OFF

displayBufsMode
IVIDDEC3_DISPLAYBUFS_EMBEDDED

 IVIDDEC3_DISPLAYBUF

S_EMBEDDED

 IVIDDEC3_DISPLAYBUF

S_PTRS

metadataType[0]
IVIDEO_METADATAPLANE_NONE

 IVIDEO_METADATAPLAN

E_NONE

 IVIDEO_METADATAPLAN

E_MBINFO

metadataType[1]
IVIDEO_METADATAPLANE_NONE

 IVIDEO_METADATAPLAN

E_NONE

metadataType[2]
IVIDEO_METADATAPLANE_NONE

 IVIDEO_METADATAPLAN

E_NONE

4.3.2 Default and supported values of IVIDDEC3_DynamicParams

Field Default Value Supported Values

size
Sizeof(IVIDDEC3_DynamicParams

)

 Sizeof(IVIDDEC3_DynamicPa

rams)

 Sizeof(IVC1VDEC_DynamicPa

rams)
decodeHeader

XDM_DECODE_AU
 XDM_DECODE_AU

 XDM_PARSE_HEADER

displayWidth
0

If YUV buffers are in

RAW/TILED_PAGE region, Any

value > = 0, which is a

multiple of 128 bytes.

If YUV buffers are in TILED

region, then this parameter

value is ignored.

frameSkipMode
IVIDEO_NO_SKIP

 IVIDEO_NO_SKIP

newFrameFlag XDAS_TRUE

 XDAS_TRUE
 XDAS_FALSE

putDataFxn
NULL NULL

putDataHandle
NULL NULL

getDataFxn
NULL NULL

getDataHandle
NULL NULL

API Reference

4-32

putBufferFxn
NULL NULL

putBufferHand

le NULL NULL

lateAcquireAr

g

IRES_HDVICP2_UNKNOWNLATEACQUI

REARG
Any Value

4.3.3 Default and supported values of IVC1VDEC_Params

Field Default Value Supported Values
IVIDDEC3_Params

See Section 4.3.1
See Section 4.3.1

errorConcealmentON 0 0 - Disable

 1 - Enable
frameLayerDataPresentFlag 0 0 – Frame layer data not

present.

 1 – Frame layer data

present

debugTraceLevel 0 0 – Disable

 1 – level 1

 2 – level 2

 3 – level 3

 4 – level 4

lastNFramesToLog 0

0 <= lastNFramesToLog <= 10

4.3.4 Default and supported values of IVC1VDEC_DynamicParams

Field Default Value Supported Values
IVIDDEC3_DynamicPara

Ms

See Section 4.3.2 See Section 4.3.2

Note:
 The usage of debugTraceLevel and lastNFramesToLog are explained in

detail in chapter 6.
 The frameLayerDataPresentFlag is explained in detail in the section 9.1.2.1

of chapter 9.

API Reference

4-33

4.4 Interface Functions

This section describes the application programming interfaces used in the
VC1 Decoder. The VC1 Decoder APIs are logically grouped into the
following categories:

 Creation – algNumAlloc(), algAlloc()

 Initialization – algInit()

 Control – control()

 Data processing – algActivate(), process(), algDeactivate()

 Termination – algFree()

You must call these APIs in the following sequence:

1) algNumAlloc()

2) algAlloc()

3) algInit()

4) algActivate()

5) process()

6) algDeactivate()

7) algFree()

control() can be called any time after calling the algInit() API.

API Reference

4-34

4.4.1 Creation APIs

Creation APIs are used to create an instance of the component. The term
creation could mean allocating system resources, typically memory.

║ Name

algNumAlloc() – determine the number of buffers that an algorithm

requires
║ Synopsis

XDAS_Int32 algNumAlloc(Void);

║ Arguments

Void

║ Return Value

XDAS_Int32; /* number of buffers required */

║ Description

algNumAlloc() returns the number of buffers that the algAlloc() method

requires. This operation allows you to allocate sufficient space to call the

algAlloc() method.

algNumAlloc() may be called at any time and can be called repeatedly

without any side effects. It always returns the same result. The

algNumAlloc() API is optional.

For more details, see TMS320 DSP Algorithm Standard API Reference.
║ See Also

algAlloc()

API Reference

4-35

║ Name

algAlloc() – determine the attributes of all buffers that an algorithm

requires
║ Synopsis

XDAS_Int32 algAlloc(const IALG_Params *params, IALG_Fxns

**parentFxns, IALG_MemRec memTab[]);

║ Arguments

IALG_Params *params; /* algorithm specific attributes */

IALG_Fxns **parentFxns;/* output parent algorithm functions

*/

IALG_MemRec memTab[]; /* output array of memory records */

║ Return Value

XDAS_Int32 /* number of buffers required */

║ Description

algAlloc() returns a table of memory records that describe the size,

alignment, type, and memory space of all buffers required by an algorithm. If
successful, this function returns a positive non-zero value indicating the
number of records initialized.

The first argument to algAlloc() is a pointer to a structure that defines the

creation parameters. This pointer may be NULL; however, in this case,

algAlloc(), must assume default creation parameters and must not fail.

The second argument to algAlloc() is an output parameter. algAlloc()

may return a pointer to its parent’s IALG functions. Since the client does not

require a parent object to be created, this pointer must be set to NULL.

The third argument is a pointer to a memory space of size

nbufs * sizeof(IALG_MemRec) where, nbufs is the number of buffers

returned by algNumAlloc() and IALG_MemRec is the buffer-descriptor

structure defined in ialg.h.

After calling this function, memTab[] is filled up with the memory

requirements of an algorithm.

For more details, see TMS320 DSP Algorithm Standard API Reference.
║ See Also

algNumAlloc(), algFree()

API Reference

4-36

4.4.2 Initialization API

Initialization API is used to initialize an instance of the VC1 Decoder. The

initialization parameters are defined in the IVIDDEC3_Params structure (see

Data Structures section for details).
║ Name

algInit() – initialize an algorithm instance

║ Synopsis

XDAS_Int32 algInit(IALG_Handle handle, IALG_MemRec

memTab[], IALG_Handle parent, IALG_Params *params);

║ Arguments

IALG_Handle handle; /* handle to the algorithm instance*/

IALG_memRec memTab[]; /* array of allocated buffers */

IALG_Handle parent; /* handle to the parent instance */

IALG_Params *params; /* algorithm initialization parameters

*/

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */

║ Description

algInit() performs all initialization necessary to complete the run-time

creation of an algorithm instance object. After a successful return from

algInit(), the instance object is ready to be used to process data.

The first argument to algInit() is a handle to an algorithm instance. This

value is initialized to the base field of memTab[0].

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers allocated for
an algorithm instance. The number of initialized records is identical to the

number returned by a prior call to algAlloc().

The third argument is a handle to the parent instance object. If there is no

parent object, this parameter must be set to NULL.

The last argument is a pointer to a structure that defines the algorithm

initialization parameters. All fields in the params structure must be set as

described in IALG_Params structure (see Data Structures section for

details).

For more details, see TMS320 DSP Algorithm Standard API Reference.
║ See Also

algAlloc(), algMoved()

API Reference

4-37

4.4.3 Control API

Control API is used for controlling the functioning of VC1 Decoder during
run-time. This is done by changing the status of the controllable parameters
of the decoder during run-time. These controllable parameters are defined in

the IVIDDEC3_DynamicParams data structure (see Data Structures section

for details).
║ Name

control() – change run-time parameters of the VC1 Decoder and query

the decoder status
║ Synopsis

XDAS_Int32 (*control)(IVIDDEC3_Handle handle, IVIDDEC3_Cmd

id,IVIDDEC3_DynamicParams *params, IVIDDEC3_Status

*status);

║ Arguments

IVIDDEC3_Handle handle; /* handle to the VC1 decoder

instance */

IVIDDEC3_Cmd id; /* VC1 decoder specific control commands*/

IVIDDEC3_DynamicParams *params /* VC1 decoder run-time

parameters */

IVIDDEC3_Status *status /* VC1 decoder instance status

parameters */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */

║ Description

This function changes the run-time parameters of VC1 Decoder and queries

the status of decoder. control() must only be called after a successful call

to algInit() and must never be called after a call to algFree().

The first argument to control() is a handle to the VC1 Decoder instance

object.

The second argument is a command ID. See IVIDDEC3_Cmd in

enumeration table for details.

The third and fourth arguments are pointers to the

IVIDDEC3_DynamicParams and IVIDDEC3_Status data structures

respectively.
║ See Also

algInit()

API Reference

4-38

4.4.4 Data Processing API

Data processing API is used for processing the input data using the VC1
Decoder.

║ Name

algActivate()– initialize scratch memory buffers prior to processing.

║ Synopsis

Void algActivate(IALG_Handle handle);

║ Arguments

IALG_Handle handle; /* algorithm instance handle */

║ Return Value

Void

║ Description

algActivate() initializes any of the instance’s scratch buffers using the

persistent memory that is part of the algorithm’s instance object.

The first (and only) argument to algActivate() is an algorithm instance

handle. This handle is used by the algorithm to identify various buffers that
must be initialized prior to calling any of the algorithm’s processing methods.

For more details, see TMS320 DSP Algorithm Standard API Reference.
(literature number SPRU360).

║ See Also

algDeactivate()

API Reference

4-39

║ Name

process() – basic video decoding call

║ Synopsis

XDAS_Int32 (*process)(IVIDDEC3_Handle handle, XDM1_BufDesc

*inBufs, XDM_BufDesc *outBufs, IVIDDEC3_InArgs *inargs,

IVIDDEC3_OutArgs *outargs);

║ Arguments

IVIDDEC3_Handle handle; /* handle to the VC1 decoder

instance */

XDM1_BufDesc *inBufs; /* pointer to input buffer descriptor
data structure */

XDM_BufDesc *outBufs; /* pointer to output buffer descriptor
data structure */

IVIDDEC3_InArgs *inargs /* pointer to the VC1 decoder
runtime input arguments data structure */

IVIDDEC3_OutArgs *outargs /* pointer to the VC1 decoder

runtime output arguments data structure */

║ Return Value

IALG_EOK; /* status indicating success */

IALG_EFAIL; /* status indicating failure */

║ Description

This function does the basic VC1 video decoding. The first argument to
process() is a handle to the VC1 Decoder instance object.

The second and third arguments are pointers to the input and output buffer

descriptor data structures respectively (see XDM1_BufDesc and

XDM_BufDesc data structure for details).

The fourth argument is a pointer to the IVIDDEC3_InArgs data structure

that defines the run-time input arguments for the VC1 Decoder instance
object.

Note:

Prior to each decode call, ensure that all fields are set as described in
XDM1_BufDesc, XDM_BufDesc, and IVIDDEC3_InArgs structures.

The last argument is a pointer to the IVIDDEC3_OutArgs data structure that

defines the run-time output arguments for the VC1 Decoder instance object.

The algorithm may also modify the output buffer pointers. The return value

is IALG_EOK for success or IALG_EFAIL in case of failure. The

extendedError field of the IVIDDEC3_Status structure contains error

conditions flagged by the algorithm. This structure can be populated by a

calling Control API using XDM_GETSTATUS command.

║ See Also

control()

API Reference

4-40

║ Name

algDeactivate()– save all persistent data to non-scratch memory

║ Synopsis

Void algDeactivate(IALG_Handle handle);

║ Arguments

IALG_Handle handle; /* algorithm instance handle */

║ Return Value

Void

║ Description

algDeactivate() saves any persistent information to non-scratch buffers

using the persistent memory that is part of the algorithm’s instance object.

The first (and only) argument to algDeactivate() is an algorithm instance

handle. This handle is used by the algorithm to identify various buffers that

must be saved prior to next cycle of algActivate() and processing.

For more details, see TMS320 DSP Algorithm Standard API Reference.
║ See Also

algActivate()

API Reference

4-41

4.4.5 Termination API

Termination API is used to terminate the VC1 Decoder and free up the
memory space that it uses.

║ Name

algFree() – determine the addresses of all memory buffers used by the

algorithm
║ Synopsis

XDAS_Int32 algFree(IALG_Handle handle, IALG_MemRec

memTab[]);

║ Arguments

IALG_Handle handle; /* handle to the algorithm instance */

IALG_MemRec memTab[]; /* output array of memory records */

║ Return Value

XDAS_Int32; /* Number of buffers used by the algorithm */

║ Description

algFree() determines the addresses of all memory buffers used by the

algorithm. The primary aim of doing so is to free up these memory regions
after closing an instance of the algorithm.

The first argument to algFree() is a handle to the algorithm instance.

The second argument is a table of memory records that describe the base
address, size, alignment, type, and memory space of all buffers previously
allocated for the algorithm instance.

For more details, see TMS320 DSP Algorithm Standard API Reference
(literature number SPRU360).

║ See Also

algAlloc()

API Reference

4-42

This page is intentionally left blank

5-1

Chapter 5

Frequenty Asked Questions

This section answers frequently asked questions related to using VC1
Advanced Profile Decoder

5.1 Code Build and Execution 5-1

5.2 Issues with Tools Version 5-1

5.3 Algorithm Related 5-2

5.1 Code Build and Execution

Question Answer

Build error saying that code
memory section is not
sufficient

Make sure that project settings are not changed from the released package
settings; such as making project setting as File -03 and no debug information,
which throws an error that code memory section is not sufficient.

Application returns an error
saying “Cannot open input
file “….vc1” while running
the host test app

Make sure that input bit-stream path is given correctly. If the application is
accessing input from network, ensure that the network connectivity is stable.

5.2 Issues with Tools Version

Question Answer

Which simulator version should
I use for this release of VC1
Decoder on IVA-HD?

The IVAHD simulator version to be used is 5.0.16 and is available on the

Does this release support on
IVA-HD FPGA?

Yes

What CG tools version should I
use for code compilation?

The CG tools version used in this version of VC1 Decoder is 4.5.0

Frequenty Asked Questions

5-2

5.3 Algorithm Related

Question Answer

 What XDM interface does
codec support?

Codec supports XDM IVIDDEC3 interface

Does VC1 Decoder support
non-multiple of 16 frame height
and width?

Yes

What are the levels VC1
decoder supports?

VC1 Decoder supports up to advanced profile level 3

Does this version of VC1
decoder, support RTV format?

No this not included in this version

Does this version of VC1
decoder expose motion vectors
for a frame to the application?

No

Does this version of VC1
Decoder support additional tolls
like Intensity compensation and
Range Mapping?

Yes

Does decoder will support
Range Mapping and Resolution
scaling after frame decoding?

No. The Range Mapping and Resolution scaling parameters are informed
with IVIDDEC3 XDM parameters to the application.

Does this version of decoder
will support the display delay?

Only display delay, 1 or 0 is supported in this release. Display delay 0
means decoding order.

Does this version of VC1
decoder support, partial frame
decode and header only decode
features?

Yes

What is the Maximum bit rate
supported by this version of
VC1 Decoder?

This version of decoder supports up to 45Mbps

Does this version of decoder
support meta-data parsing and
provide the same to
application?

This version of decoder will parse the Metadata present in bitstream but
does NOT provide to application.

What is the maximum resolution
supported by this version of
VC1 Decoder?

This version of VC1 Decoder supports resolution up to 1920x1088.

6-1

Chapter 6

Debug Trace Usage

This section describes the debug trace feature supported by codec and its
usage.

Topic Page

6.1 Debug Trace Memory format in the VC1 Decoder 6-1

6.2 Method to configure decoder to collect debug trace 6-2

6.3 Method for application to collect debug trace 6-2

6.1 Debug Trace Memory format in the VC1 Decoder

Debug trace header

Debug Trace Parameters for Process Call 1

Debug Trace Parameters for Process Call 2

Debug Trace Parameters for Process Call 3

Debug Trace Parameters for Process Call 4

Debug Trace Parameters for Process Call N

Debug Trace Parameters for Process Call N+1

Decoder collects and dumps the Debug Trace Information in DDR in above
format. At the start of the buffer, is a header. Following the header, Debug
Trace parameters for each process call is stored. There are N+1 buffers,
since logs of last N process calls need to be stored and one extra buffer for
current process call logs.

Buffers for N+1 process calls are used in a circular manner by decoder -
once data for N+1 process calls are collected, decoder wraps back in the
buffer and starts storing from first buffer location.

Debug Trace Usage

6-2

6.2 Method to configure decoder to collect debug trace

During decoder creation, application needs to set
IVC1VDEC_Params::debugTraceLevel =
IVC1VDEC_DEBUGTRACE_LEVEL1. And set
IVC1VDEC_Params::lastNFramesToLog = N, where N refers to number
of process calls for which trace needs to be collected. Note that the buffer
for debug trace collection will be requested by decoder, in DDR, during
create time and size of it will be linearly proportional to N.

6.3 Method for application to collect debug trace

Application can understand the address of the buffer by performing control

call with XDM_GETSTATUS command. Base address of the buffer will be

reported in IVC1VDEC_Status::extMemoryDebugTraceAddr. Total size of
the buffer will be reported in
IVC1VDEC_Status::extMemoryDebugTraceSize.

NOTE: Before collecting the contents from DDR, Application needs to
perform cache write back of the header portion of the buffer from M3 side.
M3_Cache_WriteBack needs to be performed at address
IVC1VDEC_Status::extMemoryDebugTraceAddr and for a size equal to
that of header (In this release, size of header is 48 Bytes) +
lastNFramesToLog * size of debug trace params (size of debug trace
params is 288 bytes)

7-1

Chapter 7

Picture Format

This Appendix explains picture format details for decoder. Decoder outputs
YUV frames in NV 12 format.

Topic Page

7.1 NV12 Chroma Format 7-1

7.2 Progressive Picture Format 7-2

7.3 Interlaced Picture Format

7.4 Constraints on Buffer Allocation for Decoder

7-4

7-6

7.1 NV12 Chroma Format

NV12 is YUV 420 semi-planar with two separate planes, one for Y, one for U
and V interleaved.

Luma Plane

Y0,0 Y0,1

Y1,0 Y1,1

Chroma Plane

U0,0 V0,0

U1,0 V1,0

WIDTH

H
EIG

H
T

H
EIG

H
T/2

Picture Format

7-2

7.2 Progressive Picture Format

ActiveRegion and ImageRegion offsets for

chroma are derived from luma offset

ChromaXoffset = lumaX_offset & 0xfffffffe;

ChromaYoffset = (lumaY_offset>>1) & 0xfffffffe;

ACTIVE REGION (LUMA)

imagePitch

activeRegion.topLeft

activeRegion.bottomRight

fr
a

m
e

H
e
ig

h
t

m
a
x
H

e
ig

h
t

maxWidth

ACTIVE REGION (CHROMA)

picChromaBufferAddr

imagePitch

fr
a

m
e
H

e
ig

h
t/

2

m
a
x
H

e
ig

h
t/
2

maxWidth

imageRegion.topLeft
picLumaBufferAddr

imageRegion.bottomRight

U

0,0

V

0,0

U

0,1

V

0,1

U

1,0

V

1,0

U

1,1

V

1,1

frameWidth

Y

0,0

Y

0,1

Y

0,2

Y

0,3

Y

1,0

Y

1,1

Y

1,2

Y

1,3

frameWidth

Picture Format

7-3

Note that for decoder in case of progressive sequence:

 Luma and chroma buffer addresses can be allocated independently

 Application shall provide this through separate buffer addresses

 The outermost yellow coloured region is the minimum buffer that application should
allocate for a given maxWidth and maxHeight

 activeRegion

o The displayable region after cropping done by application.

o The cropping information is derived from VUI information in the bitstream

 imageRegion

o Image data decoded by the decoder whose dimensions are always multiple
of 16.

o Contains the activeRegion as a proper subset.

 Picture Buffer (pic(Luma/Chroma)BufferAddr)

o Contains padded regions and extra region due to alignment constraints.

o Contains the imageRegion as a proper subset.

 imagePitch

o The difference in addresses of two vertically adjacent pixels

o Typically equal to width of the picture Buffer.

 Padding Amounts

o In horizontal direction left and right padding amounts are 32 pixels for both

Luma and chroma buffers.

o In vertical direction top and bottom padding amounts are 40 pixels for

Luma and chroma buffers .

Picture Format

7-4

7.3 Interlaced Picture Format

ACTIVE REGION

TOP FIELD (Luma)

Y

0,0

Y

0,1

Y

0,2

Y

0,3

Y

2,0

Y

2,1

Y

2,2

Y

2,3

ACTIVE REGION

BOTTOM FIELD (Luma)

Y

1,0

Y

1,1

Y

1,2

Y

1,3

Y

3,0

Y

3,1

Y

3,2

Y

3,3

ACTIVE REGION

TOP FIELD (Chroma)

U

0,0

V

0,0

U

0,1

V

0,1

U

2,0

V

2,0

U

2,1

V

2,1

ACTIVE REGION

BOTTOM FIELD (Chroma)

U

1,0

V

1,0

U

1,1

V

1,1

U

3,0

V

3,0

U

3,1

V

3,1

maxWidth

m
a

xH
e
ig

h
t

m
a

xH
e
ig

h
t/

2

maxWidth

imagePitch

frameWidth

frameWidth

frameWidth

fr
a

m
e
H

e
ig

h
t/

2
fr

a
m

e
H

e
ig

h
t/
4

fr
a
m

e
H

e
ig

h
t/
4

fr
a
m

e
H

e
ig

h
t/
2

imageRegion.topLeft activeRegion.topLeft

picLumaBufferAddr =

lumaTopFieldOutput

lumaBottomFieldOutput

imagePitch

picChromaBufferAddr =

chromaTopFieldOutput

chromaTopFieldOutput

frameWidth

 ActiveRegion and ImageRegion offsets for chroma are derived from luma

offset

ChromaXoffset = lumaX_offset & 0xfffffffe;

ChromaYoffset = (lumaY_offset >> 1) & 0xfffffffe;

 ActiveRegion and ImageRegion offsets are same for top and bottom field

 For top field, offsets should be calculated from lumaTopFieldOutput

 For bottom field, offsets should be calculated from lumaBottomFieldOutput

ActiveRegion and ImageRegion offsets are same for top and bottom field

For top field, offsets should be calculated from lumaTopFieldOutput

For bottom field, offsets should be calculated from lumaBottomFieldOutput

imageRegion.bottomRightactiveRegion.bottomRight

Padded region

Decoded region multiple of

16x16 macroblock

Display region of any integer

number of pixels in horizontal

and vertical direction

Picture Format

7-5

Note that for decoder in case of interlaced sequence:

 Luma and chroma buffers can be allocated independently

 Field buffer allocation cannot be independent

 For every pair of top and bottom field, decoder shall expect a single buffer address
from the application

 The outermost yellow coloured region is the minimum buffer that application should
allocate for a given maxWidth and maxHeight

 activeRegion

o The displayable region after cropping done by application.

o The cropping information is derived from VUI information in the bitstream

 imageRegion

o Image data decoded by the decoder.

o Contains the activeRegion as a proper subset.

 Picture Buffer (pic(Luma/Chroma)BufferAddr)

o Contains padded regions and extra region due to alignment constraints.

o Contains the imageRegion as a proper subset.

 imagePitch

o The difference in addresses of two vertically adjacent pixels

o Typically equal to width of the picture Buffer.

 Padding Amounts

o In horizontal direction left and right padding amounts are 32 pixels for both

Luma and chroma buffers.

o In vertical direction top and bottom padding amounts are 40 pixels for

Luma and 20 pixels for chroma buffers for each interlaced fields.

Picture Format

7-6

7.4 Constraints on Buffer Allocation for Decoder

 maxWidth and maxHeight are inputs given by the decoder to the applications

o Application may not know the output format of the decoder.

o Therefore, application should allocate Image Buffer based on maxWidth and
maxHeight

 The extra region beyond the (maxWidth x maxHeight) requirements may
be allocated by application due to alignment, pitch or some other
constraints

 Application needs to ensure following conditions regarding imagePitch

o imagePitch shall be greater or equal to the maxWidth.

o imagePitch shall be multiple of 128 bytes (if the buffer is not in TILED region).

o imagePitch shall actually be the tiler space width (i.e. depends on how many bit per
pixel, for 8bpp 16bpp and 32bpp respectively 16Kbyte, 32Kbyte and 32Kbyte). (if
the buffer is in TILED region).

o Application may set imagePitch greater than maxWidth as per display
constraints. However this value must be a multiple of 128 bytes (if the buffer is
not in TILED region).

 picLumaBufferAddr and picChromaBufferAddr shall be 16-byte aligned address. (if the
buffer is not in TILED region).

 ActiveRegion.topLeft and ActiveRegion.bottomRight are decoder outputs

o Application should calculate actual display width and display height based on these
parameters

o ActiveRegion.topLeft and ActiveRegion.bottomRight shall be identical for both
fields in case of interlaced format

 Maximum and Minimum Resolution is defined as below

o Progressive

 Minimum frameWidth = 64

 Minimum frameHeight = 64

 Maximum frameWidth = 1920

 Maximum frameHeight = 1088

o Interlaced

 Minimum frameWidth = 64

 Minimum (frameHeight / 2) = 32

 Maximum frameWidth = 1920

 Maximum (frameHeight / 2) = 544

Picture Format

7-7

 Typically picture buffer allocation requirements for decoder, after buffer addresses meet
alignment constraints (depends on decoder’s padding requirements), for both progressive
and interlaced are as given below.

o Luma buffer size = maxWidth x maxHeight and

Chroma buffer size = maxWidth x maxHeight/2 where

 maxWidth = frameWidth + 4 (progressive/interlaced)

 maxHeight = frameHeight

Picture Format

7-8

This page is intentionally left blank

8-1

Chapter 8

Error Handling

This chapter describes the error codes reported by codec for different
erroneous situation, and recommended action by application.

8.1 Description 8-1

8.1 Description

This version of the decoder supports handling of erroneous situations while
decoding. If decoder encounters errors in bit stream or any other erroneous
situations, decoder shall exit gracefully without any hang or crash. Also
decoder process call shall return IVIDDEC3_EFAIL and relevant error code
will be populated in extendedError field of outArgs.

Different error codes and their meanings are described below.
Definitions of bits numbered 8-15 are as per common XDM definition.
Definition of remaining bits are VC1 Decoder specific and as given in below
tabular column. Bit numbering in the 32 bit word extendedError is from
Least Significant Bit to Most Significant Bit.

Some of the erroneous situations will get reported as XDM_FATALERROR
by the decoder. In these cases, Application should perform XDM_RESET of
the decoder. After an XDM_RESET is performed, the decoder will treat the
bitstream provided freshly and it shall use no information from previously
parsed data.

Some of the erroneous situations like pointer NULL, invalid memory types for
input and output buffers are flagged as fatal errors. In such scenarios, the
application may not have initialized valid values for them. Hence the
expected behaviour from the application is to re-initialize the fields.

In certain fatal erroneous situations, the Application, might flush out the
locked buffers, if need be. See below table for more details on error
situations when flush can be performed.

In case of non-fatal errors, application need not perform XDM_RESET. It can
proceed with more decode calls, if bit stream is still not exhausted.

 Meanings of various error codes and the recommended application behavior
 are provided in the following tables:

8-2

8.1.1 Error Codes used to set the extendedError field in IVIDDEC3_OutArgs and
IVIDDEC3_Status

Bit Error Code Explanation XDM Error
Code Mapping

Recommended
 App Behavior

0 IVC1DEC_ERR_UNSUPPO

RTED_VIDDEC3PARAMS

This is
deprecated

NA NA

1 IVC1DEC_ERR_UNSUPPO

RTED_VIDDEC3DYNAMIC

PARAMS

Unsupported
VIDDEC3

dynamic params

XDM_UNSUPPORT

EDPARAM
Call set params with
supported values of
IVIDDEC3 dynamic

params
2 IVC1DEC_ERR_UNSUPPO

RTED_VC1DECDYNAMICP

ARAMS

This is
deprecated

NA NA

3 IVC1DEC_ERR_IMPROPE

R_DATASYNC_SETTING

This is
deprecated

NA NA

4 IVC1DEC_ERR_NOSLICE This is
deprecated

NA NA

5 IVC1DEC_ERR_SLICEHD

R

Error in slice
header

XDM_CORRUPTED

HEADER
If more bytes available

in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

6 IVC1DEC_ERR_MBDATA Error in MB
data

XDM_CORRUPTED

DATA
If more bytes available

in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

7 IVC1DEC_ERR_UNSUPPF

EATURE

This is
deprecated

NA NA

8 XDM_PARAMSCHA

NGE

Sequence
Parameters

Change

XDM_PARAMSCHA

NGE
Refer codec specific

error
which causes this

9 XDM_APPLIEDCO

NCEALMENT

Applied
concealment

XDM_APPLIEDCO

NCEALMENT
Refer codec specific

error
which causes this

10 XDM_INSUFFICI

ENTDATA

Insufficient input
data

XDM_INSUFFICI

ENTDATA
Refer codec specific

error
which causes this

11 XDM_CORRUPTED

DATA

Data
problem/corruptio

n

XDM_CORRUPTED

DATA
Refer codec specific

error
which causes this

12 XDM_CORRUPTED

HEADER

Header
problem/corruptio

n

XDM_CORRUPTED

HEADER
Refer codec specific

error
which causes this

13 XDM_UNSUPPORT

EDINPUT

Unsupported
feature/paramete

XDM_UNSUPPORT

EDINPUT
Refer codec specific

error

8-3

r which causes this

14 XDM_UNSUPPORT

EDPARAM

Unsupported
input

parameter

XDM_UNSUPPORT

EDPARAM
Refer codec specific

error
which causes this

15 XDM_FATALERRO

R

Fatal error XDM_FATALERRO

R
Refer codec specific

error
which causes this

16 IVC1DEC_ERR_STREAM_

END

This is
deprecated

NA NA

17 IVC1DEC_ERR_UNSUPPR

ESOLUTION

This is
deprecated

NA NA

18 IVC1DEC_ERR_STANDBY This is
deprecated

NA NA

19 IVC1DEC_ERR_INVALID

_MBOX_MESSAGE

This is
deprecated

NA NA

20 IVC1DEC_ERR_SEQHDR Error in the
sequence header

XDM_FATALERRO

R or

XDM_CORRUPTED

HEADER

If more bytes available
in bit stream and not

fatal error, then pass it
to decoder. ELSE if

bytes are not available
call Flush operation.

21 IVC1DEC_ERR_ENTRYHD

R

Error in entry
point header

XDM_FATALERRO

R or

XDM_CORRUPTED

HEADER

If more bytes available
in bit stream and not

fatal error, then pass it
to decoder. ELSE if

bytes are not available
call Flush operation.

22 IVC1DEC_ERR_PICHDR Error in picture
header

XDM_CORRUPTED

HEADER
If more bytes available

in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

23

IVC1DEC_ERR_REF_PIC

TURE_BUFFER

Error bit for Ref
picture Buffer

NO XDM

Mapping

Pass the next frame in
the stream

24 IVC1DEC_ERR_NOSEQUE

NNCEHEADER

No sequence
header found in

the input

NO XDM

Mapping

If more bytes available
in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

30 IVC1DEC_ERR_BUFDESC Input bytes in
inargs is less

than or equal to 0
or Input ID is 0

XDM_FATALERRO

R
Invoke process call
with proper bytes in

inargs and valid input
ID

31 IVC1DEC_ERR_PICSIZE

CHANGE

Resolution of the
picture changes

NO XDM

Mapping
If more bytes available

in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

8-4

8.1.2 Error Codes used to set the extendedErrorCode0, extendedErrorCode1,
extendedErrorCode2, extendedErrorCode3 field in IVC1VDEC_Status

Bit Error Code Explanation XDM Error Code
Mapping

Recommended
App Behaviour

0 VC1_DYNAMIC_PARAMS_S

IZE_ERROR

Dynamic Params
size is wrong

XDM_FATALERROR Invoke control call
again with proper
DynamicParams

structure.

1 VC1_DECODE_HEADER_ER

ROR

Decode header
param in dynamic
params is invalid

XDM_UNSUPPORTED

PARAM

Invoke control call
again with proper
DynamicParams

structure or codec will
continue with default
settings of dynamic

params

2 VC1_DISPLAY_WIDTH_ER

ROR

Display width is
invalid

XDM_UNSUPPORTED

PARAM

Invoke control call
again with proper
DynamicParams

structure or codec will
continue with default
settings of dynamic

params

3 VC1_FRAME_SKIP_MODE_

ERROR

Frame skip mode is
invalid

XDM_UNSUPPORTED

PARAM

Invoke control call
again with proper
DynamicParams

structure or codec will
continue with default
settings of dynamic

params

4 VC1_NEW_FRAME_FLAG_E

RROR

New frame falg is
invalid

XDM_UNSUPPORTED

PARAM

Invoke control call
again with proper
DynamicParams

structure or codec will
continue with default
settings of dynamic

params

5 VC1_PUT_DATA_FXN_ERR

OR

The putDataFxn is
non NULL

XDM_UNSUPPORTED

PARAM

Invoke control call
again with proper
DynamicParams

structure or codec will
continue with default
settings of dynamic

params

6 VC1_PUT_DATA_HANDLE_

ERROR

The putDataHandle
is non NULL

XDM_UNSUPPORTED

PARAM

Invoke control call
again with proper
DynamicParams

structure or codec will
continue with default
settings of dynamic

params

7 VC1_GET_DATA_FXN_ERR

OR

The GetDataFxn is
non NULL

XDM_UNSUPPORTED

PARAM

Invoke control call
again with proper
DynamicParams

structure or codec will
continue with default
settings of dynamic

params

8 VC1_GET_DATA_HANDLE_

ERROR

The
GetDataHandle is

XDM_UNSUPPORTED

PARAM

Invoke control call
again with proper

8-5

non NULL DynamicParams
structure or codec will
continue with default
settings of dynamic

params

9 VC1_PUT_BUFFER_FXN_E

RROR

The purBufferFxn is
non NULL

XDM_UNSUPPORTED

PARAM

Invoke control call
again with proper
DynamicParams

structure or codec will
continue with default
settings of dynamic

params

10 VC1_PUT_BUFFER_HANDL

E_ERROR

The
PutBufferHandle is

non NULL

XDM_UNSUPPORTED

PARAM

Invoke control call
again with proper
DynamicParams

structure or codec will
continue with default
settings of dynamic

params

11 VC1_LATE_ACQUIRE_ARG

_ERROR

The late acquire
argument is wrong

XDM_UNSUPPORTED

PARAM

Invoke control call
again with proper
DynamicParams

structure or codec will
continue with default
settings of dynamic

params

12 VC1_NULL_INARGS_POIN

TER_ERROR

Inargs pointer is
NULL

XDM_FATALERROR Invoke process call
again with proper

inargs pointer

13 VC1_INARGS_SIZE_ERRO

R

Inargs size is NULL XDM_FATALERROR Invoke process call
again with proper

inargs size

14 VC1_INVALID_INPUT_BY

TES_ERROR

Inargs input bytes
is less than or
equal to zero

XDM_FATALERROR Invoke process call
again with proper input

bytes in the inargs
structure

15 VC1_INVALID_INPUT_BY

TES_IN_FLUSH_MODE_ER

ROR

This is deprecated NA NA

16 VC1_INVALID_INPUT_ID

_ERROR

Input ID is 0 XDM_FATALERROR Invoke process call
again with proper input

ID

17 VC1_NULL_INSTANCE_HA

NDLE_ERROR

Handle provided to
process or control

call is NULL

XDM_FATALERROR Invoke process call
again with proper

pointer to the handle

18 VC1_DECODER_NOT_INIT

IALIZED_ERROR

This is deprecated NA NA

19 VC1_INVALID_INPUT_BU

F_DESC_ERROR

Input buffer
descriptor pointer

given to the
process call is

NULL

XDM_FATALERROR Invoke process call
again with proper input

buffer descriptor

20 VC1_INVALID_INPUT_BU

FFER_POINTER_ERROR

Input buffer pointer
given to process

call is NULL

XDM_FATALERROR Invoke process call
again with proper input

buffer pointer

21 VC1_INVALID_INPUT_BU

FFER_SIZE_ERROR

Input buffer size
given to process

call is less than or
equal to zero

XDM_FATALERROR Invoke process call
again with proper input

buffer size

22 VC1_INVALID_NUM_OF_I

NPUT_BUFFERS_ERROR

No of input buffers
is not equal to one

XDM_FATALERROR Invoke process call
again with correct

8-6

number of buffer size

23 VC1_EXCESS_NUM_OF_IN

PUT_BUFFERS_ERROR

This is deprecated NA NA

24 VC1_INVALID_INPUT_BU

FFER_MEMTYPE_ERROR

The input buffer
memory type is not

RAW or
TILED_PAGE

XDM_FATALERROR Invoke process call
with input buffer

properties as RAW or
TILED_PAGE

25 VC1_INVALID_OUTARGS_

POINTER_ERROR

The outargs pointer
is NULL

XDM_FATALERROR Invoke process call
with proper outargs

pointer

26 VC1_INVALID_OUTARGS_

SIZE

The outargs size is
invalid

XDM_FATALERROR Invoke process call
with proper outargs

size

27 VC1_INVALID_OUTPUT_B

UF_DESC_POINTER_ERRO

R

output buffer
descriptor pointer

given to the
process call is

NULL

XDM_FATALERROR Invoke process call
again with proper

output buffer descriptor

28 VC1_INVALID_OUTPUT_B

UF_DESC_ERROR

This is deprecated NA NA

29 VC1_INVALID_NUM_OF_O

UTPUT_BUFFERS_ERROR

Number of output
buffers given to the

codec is invalid

XDM_FATALERROR Invoke process call
again with proper
number of output

buffers

30 VC1_INVALID_OUTPUT_B

UFFER0_POINTER_ERROR

Luma pointer in the
output buffer

descriptor is NULL

XDM_FATALERROR Invoke process call
again with valid pointer

to buffer 0

31 VC1_INVALID_OUTPUT_B

UFFER0_SIZE_ERROR

This is deprecated NA NA

32 VC1_INVALID_OUTPUT_B

UFFER0_MEMTYPE_ERROR

Luma buffer
memory type is

invalid

 Invoke process call
again with valid pointer
memory type for buffer

0

33 VC1_INVALID_OUTPUT_B

UFFER1_POINTER_ERROR

chroma pointer in
the output buffer

descriptor is NULL

XDM_FATALERROR Invoke process call
again with valid pointer

to buffer 1

34 VC1_INVALID_OUTPUT_B

UFFER1_SIZE_ERROR

This is deprecated NA NA

35

VC1_INVALID_OUTPUT_B

UFFER1_MEMTYPE_ERROR

chroma buffer
memory type is

invalid

 Invoke process call
again with valid pointer
memory type for buffer

1

36 VC1_INVALID_OUTPUT_B

UFFER2_POINTER_ERROR

MB info pointer in
the output buffer

descriptor is NULL

XDM_FATALERROR Invoke process call
again with valid pointer

to buffer 2

37 VC1_INVALID_OUTPUT_B

UFFER2_SIZE_ERROR

This is deprecated NA NA

38 VC1_INVALID_OUTPUT_B

UFFER2_MEMTYPE_ERROR

Mb info buffer
memory type is

invalid

 Invoke process call
again with valid pointer
memory type for buffer

2

39 VC1_INVALID_BUFFER_U

SAGE_MODE

This is deprecated NA NA

40 VC1_INVALID_OUTPUT_B

UFFER0_TILED_WIDTH_E

RROR

This is deprecated NA NA

41 VC1_INVALID_OUTPUT_B

UFFER0_TILED_HEIGHT_

ERROR

This is deprecated NA NA

8-7

42 VC1_INVALID_OUTPUT_B

UFFER1_TILED_WIDTH_E

RROR

This is deprecated NA NA

43 VC1_INVALID_OUTPUT_B

UFFER1_TILED_HEIGHT_

ERROR

This is deprecated NA NA

44

VC1_INVALID_OUTPUT_B

UFFER2_TILED_WIDTH_E

RROR

This is deprecated NA NA

45 VC1_INVALID_OUTPUT_B

UFFER2_TILED_HEIGHT_

ERROR

This is deprecated NA NA

46 VC1_INVALID_REF_PICT

URE_BUFFER

Invalid picture
reference buffers

NA Pass the next frame in
the stream

64 VC1_SEQ_HDR_INVALID_

PROFILE

Invalid profile found
in the bit-stream

XDM_CORRUPTEDHE

ADER &

XDM_FATALERROR

Application should exit

65 VC1_SEQ_HDR_INVALID_

LEVEL

Invalid level found
in the bit-stream

XDM_CORRUPTEDHE

ADER

If more bytes available
in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

66 VC1_SEQ_HDR_INVALID_

COLORDIFF_FORMAT

Invalid color format
found in the bit-

stream

XDM_CORRUPTEDHE

ADER

If more bytes available
in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

67 VC1_SEQ_HDR_INVALID_

MAX_CODED_WIDTH

Invalid max coded
width found in the

bit-stream

XDM_CORRUPTEDHE

ADER &

XDM_FATALERROR

Application should exit

68 VC1_SEQ_HDR_INVALID_

MAX_CODED_HEIGHT

Invalid max coded
height found in the

bit-stream

XDM_CORRUPTEDHE

ADER &

XDM_FATALERROR

Application should exit

69 VC1_SEQ_HDR_INVALID_

RESERVED

Reserved bits are
set in the bit-stream

XDM_CORRUPTEDHE

ADER

If more bytes available
in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

70 VC1_SEQ_HDR_INVALID_

ASPECT_RATIO

Invalid aspect ratio
found in the bit-

stream

XDM_CORRUPTEDHE

ADER

If more bytes available
in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

71 VC1_SEQ_HDR_INVALID_

FRAMERATENR

Invalid numerator
value decoded for
the frame rate in

the bit-stream

XDM_CORRUPTEDHE

ADER

If more bytes available
in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

72 VC1_SEQ_HDR_INVALID_

FRAMERATEDR

Invalid denominator
value decoded for
the frame rate in

the bit-stream

XDM_CORRUPTEDHE

ADER

If more bytes available
in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

8-8

73 VC1_SEQ_HDR_INVALID_

COLOR_PRIM

Invalid color
primary values
found in the bit-

stream

XDM_CORRUPTEDHE

ADER

If more bytes available
in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

74 VC1_SEQ_HDR_INVALID_

TRANSFER_CHAR

Invalid transfer
characters found in

the bit-stream

XDM_CORRUPTEDHE

ADER

If more bytes available
in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

75 VC1_SEQ_HDR_INVALID_

MATRIX_COEF

Invalid matrix co-
efficients found in

the bit-stream

XDM_CORRUPTEDHE

ADER

If more bytes available
in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

76 VC1_SEQ_HDR_INVALID_

LOOPFILTER

Invalid loop filter
value found in the

bit-stream

XDM_CORRUPTEDHE

ADER

If more bytes available
in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

77 VC1_SEQ_HDR_INVALID_

FASTUVMC

Invalid Fast UV
motion

compensation flag
found in the bit-

stream

XDM_CORRUPTEDHE

ADER

If more bytes available
in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

78 VC1_SEQ_HDR_INVALID_

EXTENDED_MV

Invalid extended
MV found in the

bit-stream

XDM_CORRUPTEDHE

ADER

If more bytes available
in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

79 VC1_SEQ_HDR_INVALID_

DQUANT

Invalid dquant
value found in the

bit-stream

XDM_CORRUPTEDHE

ADER &

XDM_FATALERROR

Application should exit

80 VC1_SEQ_HDR_INVALID_

SYNCMARKER

Invalid sync marker
found in the bit-

stream

XDM_CORRUPTEDHE

ADER

If more bytes available
in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

81 VC1_SEQ_HDR_INVALID_

RANGERED

Invalid range
reduction value
found in the bit-

stream

XDM_CORRUPTEDHE

ADER

If more bytes available
in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

82 VC1_SEQ_HDR_INVALID_

MAXBFRAMES

Invalid value of
maximum B frames

found in the bit-
stream

XDM_CORRUPTEDHE

ADER

If more bytes available
in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

83 VC1_ENTRY_PNT_HDR_IN

VALID_DQUANT

Invalid Dquant
found in the entry

point header.

XDM_CORRUPTEDHE

ADER &

XDM_FATALERROR

Application should exit

8-9

84 VC1_ENTRY_PNT_HDR_IN

VALID_CODED_WIDTH

Invalid coded width
found in the entry

point header.

XDM_CORRUPTEDHE

ADER &

XDM_FATALERROR

Application should exit

85 VC1_ENTRY_PNT_HDR_IN

VALID_CODED_HEIGHT

Invalid coded
height found in the
entry point header.

XDM_CORRUPTEDHE

ADER

If more bytes available
in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

86 VC1_PIC_HDR_INVALID_

PTYPE

Invalid picture type
in picture header

XDM_CORRUPTEDHE

ADER &

XDM_FATALERROR

Application should exit

87 VC1_PIC_HDR_INVALID_

PQINDEX

Invalid PQ index in
picture header

XDM_CORRUPTEDHE

ADER &

XDM_FATALERROR

Application should exit

88 VC1_PIC_HDR_INVALID_

MVRANGE

Invalid MV Range
in picture header

XDM_CORRUPTEDHE

ADER &

XDM_FATALERROR

Application should exit

89 VC1_PIC_HDR_INVALID_

RESPIC

Invalid Residual Pic
value in picture

header

XDM_CORRUPTEDHE

ADER

If more bytes available
in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

90 VC1_PIC_HDR_INVALID_

FCM

Invalid Frame
coding mode in
picture header

XDM_CORRUPTEDHE

ADER &

XDM_FATALERROR

Application should exit

91 VC1_PIC_HDR_INVALID_

RNDCTRL

Invalid Rounding
control parameter
in picture header

XDM_CORRUPTEDHE

ADER

If more bytes available
in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

92 VC1_PIC_HDR_INVALID_

MVMODE

Invalid MV mode in
picture header

XDM_CORRUPTEDHE

ADER &

XDM_FATALERROR

Application should exit

93 VC1_PIC_HDR_INVALID_

DMVRANGE

Invalid Direct MV
range in picture

header

XDM_CORRUPTEDHE

ADER &

XDM_FATALERROR

Application should exit

94 VC1_PIC_HDR_INVALID_

BFRACTION

Invalid Bfraction
syntax element
value in picture

header

XDM_CORRUPTEDHE

ADER &

XDM_FATALERROR

Application should exit

95 VC1_PIC_HDR_INVALID_

REFDIST

Invalid reference
distance in picture

header

XDM_CORRUPTEDHE

ADER &

XDM_FATALERROR

Application should exit

96 VC1_ERR_MBNUMB Invalid number of
MBs in picture

header

XDM_CORRUPTEDHE

ADER &

XDM_FATALERROR

Application should exit

97 VC1_ERR_SCALERES Invalid scaled
resolution in picture

header

XDM_CORRUPTEDHE

ADER

If more bytes available
in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

98 VC1_ERR_ALTPQUANT Invalid
ALTPQUANT

syntax element in
picture header

XDM_CORRUPTEDHE

ADER

If more bytes available
in bit stream, then
pass it to decoder.
ELSE if bytes are

8-10

not available call Flush
operation.

99 VC1_VOPDQUANT_INVALI

D_ABSPQ

This is deprecated NA NA

100 VC1_SLC_HDR_INVALID_

SLICE_ADDR

Invalid slice restart
position in slice

header

XDM_CORRUPTEDHE

ADER &

XDM_FATALERROR

Application should exit

101 VC1_IMPROPER_RESET The reset IVAHD
function returned

error.

XDM_FATALERROR Application should exit

102 VC1_IMPROPER_STANDBY The standby check
on M3 failed

XDM_FATALERROR Application should exit

103 VC1_ECD_MB_ERROR MB level error
detected by ECD3

XDM_CORRUPTEDDA

TA

If more bytes available
in bit stream, then
pass it to decoder.
ELSE if bytes are

not available call Flush
operation.

104 VC1_NO_SEQUENCE_STAR

TCODE

This is deprecated NA NA

9-1

Chapter 9

Bitstream Format

This chapter explains the bitstream format of VC1 decoder for different
profiles. In addition, it explains the constraints to the application, regarding
bit-stream formats and corresponding codec behaviour.

9.1 Simple and Main Profile 9-1

9.2 Advanced Profile 9-3

9.1 Simple and Main Profile

Sequence Header occurs only once in the beginning of the stream and is in
the format specified in the figure below. The same is explained in Table 265
in Annex L of VC1 standard. The sequence header is given to the codec
during the XDM_PARSE_HEADER. During this command execution, the
codec assumes that only the sequence header is present in the input buffer
and it decodes the same.

9-2

9.1.1 Sequence header syntax

Figure 9-1 Sequence Layer syntax

9.1.2 Frame header syntax

While the codec executes XDM_DECODE_AU command, the input buffer
shall only contain the compressed frame data corresponding to the
FRAMEDATA in the frame layer syntax of Table 266 in Annex L of VC1
standard. In addition, codec assumes that the buffer always contains one
full frame-data in it.

Figure 9-2 Frame layer syntax

9.1.2.1 frameLayerDataPresentFlag for RCV streams

This flag should be used to notify the decoder that frame layer payload is
provided in standard or non-standard format.

9-3

 Standard Format: All fields of the frame layer are present in the
payload.(i.e KEY, RES, FRAMESIZE, TIMESTAMP, FRAMEDATA).
This is specified by enabling the frameLayerDataPresentFlag in the
IVC1VDEC_Params structure (Explained in Section 4.2.2.1) at create
time.

 Non Standard Format: Only FRAMEDATA of the frame layer syntax is
present in the payload. This is specified by disabling the
frameLayerDataPresentFlag in the IVC1VDEC_Params structure
(Explained in Section 4.2.2.1) at create time.

9.2 Advanced Profile

The bit-stream format for an advanced profile stream is as shown in the
figure below.

During XDM_PARSE_HEADER, execution, the input bit-stream shall
contain SEQ_SC and SEQ_HDR only.

During XDM_DECODE_AU, execution, the input bit-stream contains
ENTRY_SC, ENTRY_HDR, FRAME_SC and FRAME_DATA. In an
advanced profile stream, multiple SEQ_SC, SEQ_HDR, ENTRY_SC and
ENTRY_HDR may occur.

Figure 9-3 Bitstream syntax for an advanced profile stream

For an interlaced stream,

During XDM_PARSE_HEADER, execution, the input bit-stream shall
contain SEQ_SC and SEQ_HDR only.

During XDM_DECODE_AU, execution:

 The input bit-stream for the first field data shall contain FRAME_SC,
FRAME_HDR and FRM_DATA.

 The input bit-stream for the second field data shall contain
FIELD_SC, HDR and FIELD_DATA.

The Frame-header syntax is explained in Table 18, 20 and 22 of VC1
standard. Also, frame start codes are explained in Annex G of the VC1
standard.

9-4

This page is intentionally left bank

10-1

Chapter 10

This version of the decoder supports writing out the MB Info data into
application provided buffers.

For the details on MB Info data structures, See section 4.2.2.
This feature can be enabled/disabled through create time parameters
IVIDDEC3_Params::metadataType[IVIDEO_MAX_NUM_METADATA_PLA
NES]. There can be maximum 3
(IVIDEO_MAX_NUM_METADATA_PLANES) metadata planes possible to
be supported with one instance of the decoder.
Each element of metadataType[] array can take following enumerated
values.

Enumeration Value
IVIDEO_METADATAPLANE_NONE -1

IVIDEO_METADATAPLANE_MBINFO 0

IVIDEO_METADATAPLANE_EINFO 1

IVIDEO_METADATAPLANE_ALPHA 2

This version of the decoder supports only following enumerated values:

IVIDEO_METADATAPLANE_NONE

IVIDEO_METADATAPLANE_MBINFO

If user wants to get the Mb info data, then
IVIDDEC3_Params::metadataType[0] should be set to
IVIDEO_METADATAPLANE_MBINFO.

If user does not want to use any meta data plane then all the entries of
IVIDDEC3_Params::metadataType[] should be set to
IVIDEO_METADATAPLANE_NONE. Note that the metadataType[] array
need to be filled contiguosly (there cannot be
IVIDEO_METADATAPLANE_NONE between 2 metadata types.

The buffer requirements for metadata can be obtained using Control call
with XDM_GETBUFINFO:

 The order of the metadata buffer info supplied using status structure is

same as the order set by the user in the metadataType[] array during

Meta Data Support

10-2

create time. For example if the user has
IVIDDEC3_Params::metadataType[0] =
IVIDEO_METADATAPLANE_MBINFO and
then status->bufInfo.minOutBufSize[2] will have the Mb info buffer.

 The buffer pointers for the metadata need to be supplied as below
during process Call:

 When the application makes the process() call, the pointers to the

buffers where Mb info should be stored needs to be provided to the
codec in the output buffer descriptor [outputBufDesc.descs].

 OutBufs->numBufs = numBuffers forYUVPlanes + number of meta
data enabled (This is = 3 if MB info is enabled)

 outBufs->descs[0] -> Y plane

 outBufs->descs[1] -> Cb/Cr plane outBufs.

 outBufs->descs[2] -> Buffer allocated for Mb info

 Codec internally writes the meta data in appropriate buffer. When
the decoder writes the MB info data, the number of metadata planes
is indicated by outArgs->decodedBufs.numMetaPlanes (this is 1 if
Mb info is enabled)

 Also, the respective buffer pointer is copied back in the first meta-

plane pointer: outArgs->decodedBufs.metadataPlaneDesc[0].buf ,
again the ordering of the metadata is as per the order supplied by
IVIDDEC3_Params::metadataType[] input parameter.

Decoder parses metadata in the current process call and returns in the
same process call. This means, effectively meta data will be given out in
decode order [Not in Display Order]. If application is interested in display
order, it should have a logic to track based on input and output ID. In case of
interlaced pictures, meta data buffers provided for each field (each process
call) is assumed to be independent.

Decoder shares two types of information at MB Level:

MB Error Map: It’s an array of bytes - One byte per MB (Refer Enum
IVC1VDEC_ mbErrStatus). The byte indicates whether the MB is in error or
not.

MB Info structure: It is a structure which defines properties of a MB. Refer
structure IVC1VDEC_TI_MbInfo in ivc1vdec.h file. Size per MB = 192
bytes.

Case1: If the Application sets viddec3Params.metadataType[x] =
IVIDEO_METADATAPLANE_MBINFO and
IVIDDEC3_Params.operatingMode = IVIDEO_DECODE_ONLY, then

10-3

decoder will dump out MB Error Map at buffer location given for MB Info
meta data.

Case2: If the Application sets viddec3Params.metadataType[x] =
IVIDEO_METADATAPLANE_MBINFO and
IVIDDEC3_Params.operatingMode =
IVIDEO_TRANSCODE_FRAMELEVEL, then decoder will dump out MB
Error Map at buffer location given for MB Info meta data. Error Map will be
followed by MB Info structure for all MBs.

Note that if the Application does not set viddec3Params.metadataType[x] =
IVIDEO_METADATAPLANE_MBINFO, then no information will be dumped,
irrespective of the value of IVIDDEC3_Params.operatingMode. Also, as a
minor Interface limitation, there is no provision to dump MB Info structure
alone w/o error map and error concealment structure.

Format details for Case 1 (Dumping of Error map and Error
concealment structure):

Case 1a, Progressive Frame:

Error Map, Size in Bytes = Number of MBs in Frame

Case 1b, Interlaced Frame:

Error Map for Top Field, Size in Bytes = (Number of MBs in Frame / 2)

Error Map for Bottom Field, Size in Bytes = (Number of MBs in Frame / 2)

Format details for Case 2 (Dumping of Error map, MB Info and Error
concealment structure):

Case 2a, Progressive Frame:

Error Map, Size in Bytes = Number of MBs in Frame

MB Info structure for all MBs, Size in Bytes = 192 * Number of MBs in
Frame

Case 2b, Interlaced Frame:

Error Map for Top Field, Size in Bytes = (Number of MBs in Frame / 2)

Error Map for Bottom Field, Size in Bytes = (Number of MBs in Frame / 2)

MB Info structure for all MBs of Top Field, Size in Bytes = 192 * (Number of
MBs in Frame / 2)
MB Info structure for all MBs of Bottom Field, Size in Bytes = 192 * (Number
of MBs in Frame / 2)

10-4

 IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at
the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to
support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications
using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and
operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and
is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation.
Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids
all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that
may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm
and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI
components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which
have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory
requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive & Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications & Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers & Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energyapps
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics & Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video & Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265

Copyright© 2014, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com/
http://www.ti.com/communications
http://dataconverter.ti.com/
http://www.ti.com/computers
http://www.dlp.com/
http://www.ti.com/consumer-apps
http://dsp.ti.com/
http://www.ti.com/energyapps
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com/
http://www.ti.com/medical
http://logic.ti.com/
http://www.ti.com/security
http://power.ti.com/
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com/
http://www.ti.com/video
http://www.ti-rfid.com/
http://e2e.ti.com/

