

VM-18 Instruction Set

Format “INSTRUCTION [𝐚𝐫𝐠𝟏] [𝐚𝐫𝐠𝟐] … [𝐚𝐫𝐠𝒏]”

where [arg𝑖] is pushed onto the stack before [arg𝑖+1] and [arg𝑖]

represents a single byte.

opcode: 0x01

PUSH_BYTE [byte]

Pushes next byte found in the instruction stream onto the stack

opcode: 0x02

HALT

Stops execution of instruction stream

opcode: 0x03

ADD_BYTE [𝐍𝐮𝐦𝐛𝐞𝐫𝟏] [𝐍𝐮𝐦𝐛𝐞𝐫𝟐]

Pushes the result of Number1 + Number2 onto stack

opcode: 0x04

SUB_BYTE [𝐍𝐮𝐦𝐛𝐞𝐫𝟏] [𝐍𝐮𝐦𝐛𝐞𝐫𝟐]

Pushes the result of Number1 - Number2 onto stack

opcode: 0x05

MUL_BYTE [𝐍𝐮𝐦𝐛𝐞𝐫𝟏] [𝐍𝐮𝐦𝐛𝐞𝐫𝟐]

Pushes the result of Number1 ∙ Number2 onto stack

opcode: 0x06

DIV_BYTE [𝐍𝐮𝐦𝐛𝐞𝐫𝟏] [𝐍𝐮𝐦𝐛𝐞𝐫𝟐]

Pushes the result of Number1 ÷ Number2 onto stack

opcode: 0x07

MOD_BYTE [𝐍𝐮𝐦𝐛𝐞𝐫𝟏] [𝐍𝐮𝐦𝐛𝐞𝐫𝟐]

Pushes the result of Number1 modulo Number2 onto stack

opcode: 0x08

LOAD_BYTE [𝐀𝐃𝐃𝐑𝐄𝐒𝐒𝟏] [𝐀𝐃𝐃𝐑𝐄𝐒𝐒𝟐] … [𝐀𝐃𝐃𝐑𝐄𝐒𝐒𝒏]

Fetches byte stored at address, ADDRESS1 being MSB, and pushes onto

stack. Address size is determined by the VM implementation.

opcode: 0x09

STORE_BYTE [BYTE] [𝐀𝐃𝐃𝐑𝐄𝐒𝐒𝟏] [𝐀𝐃𝐃𝐑𝐄𝐒𝐒𝟐] … [𝐀𝐃𝐃𝐑𝐄𝐒𝐒𝒏]

Stores byte at address, ADDRESS1 being MSB. Address size is determined

by the VM implementation.

opcode: 0x0A

SEND_INTERFACE [I] [𝐀𝟏] [𝐀𝟐] … [𝐀𝒏] [𝐍𝟏] [𝐍𝟐] … [𝐍𝒏]

Sends N bytes starting at address A to interface number I. A1 and N1

are the MSBs, and 𝑛 is the number of bytes in the implementation’s

memory address.

opcode: 0x0B

RECV_INTERFACE [I] [𝐀𝟏] [𝐀𝟐] … [𝐀𝒏] [𝐍𝟏] [𝐍𝟐] … [𝐍𝒏]

Receives N bytes to address A from interface number I. A1 and N1 are

the MSBs, and 𝑛 is the number of bytes in the implementation’s memory

address.

opcode: 0x0C

AND_BYTE [𝐍𝐮𝐦𝐛𝐞𝐫𝟏] [𝐍𝐮𝐦𝐛𝐞𝐫𝟐]

Pushes result of performing the bitwise AND on Number1 and Number2.

opcode: 0x0D

OR_BYTE [𝐍𝐮𝐦𝐛𝐞𝐫𝟏] [𝐍𝐮𝐦𝐛𝐞𝐫𝟐]

Pushes result of performing the bitwise OR on Number1 and Number2.

opcode: 0x0E

NOT_BYTE [𝐍𝐮𝐦𝐛𝐞𝐫]

Pushes result of performing the bitwise NOT on Number.

opcode: 0x0F

XOR_BYTE [𝐍𝐮𝐦𝐛𝐞𝐫𝟏] [𝐍𝐮𝐦𝐛𝐞𝐫𝟐]

Pushes result of performing the bitwise XOR on Number1 and Number2.

opcode: 0x10

JUMPG [𝐍𝐮𝐦𝐛𝐞𝐫𝟏] [𝐍𝐮𝐦𝐛𝐞𝐫𝟐] [𝐈𝟏] [𝐈𝟐] … [𝐈𝒏]

If Number1 > Number2, move instruction pointer to instruction address

specified by I𝑖 where 𝑛 is the implementation’s address size.

opcode: 0x11

JUMPE [𝐍𝐮𝐦𝐛𝐞𝐫𝟏] [𝐍𝐮𝐦𝐛𝐞𝐫𝟐] [𝐈𝟏] [𝐈𝟐] … [𝐈𝒏]

If Number1 == Number2, move instruction pointer to instruction address

specified by I𝑖 where 𝑛 is the implementation’s address size.

opcode: 0x12

JUMPL [𝐍𝐮𝐦𝐛𝐞𝐫𝟏] [𝐍𝐮𝐦𝐛𝐞𝐫𝟐] [𝐈𝟏] [𝐈𝟐] … [𝐈𝒏]

If Number1 < Number2, move instruction pointer to instruction address

specified by I𝑖 where 𝑛 is the implementation’s address size.

opcode: 0x13

JUMPNE [𝐍𝐮𝐦𝐛𝐞𝐫𝟏] [𝐍𝐮𝐦𝐛𝐞𝐫𝟐] [𝐈𝟏] [𝐈𝟐] … [𝐈𝒏]

If Number1 != Number2, move instruction pointer to instruction address

specified by I𝑖 where 𝑛 is the implementation’s address size.

opcode: 0x14

JUMPLE [𝐍𝐮𝐦𝐛𝐞𝐫𝟏] [𝐍𝐮𝐦𝐛𝐞𝐫𝟐] [𝐈𝟏] [𝐈𝟐] … [𝐈𝒏]

If Number1 <= Number2, move instruction pointer to instruction address

specified by I𝑖 where 𝑛 is the implementation’s address size.

opcode: 0x15

JUMPGE [𝐍𝐮𝐦𝐛𝐞𝐫𝟏] [𝐍𝐮𝐦𝐛𝐞𝐫𝟐] [𝐈𝟏] [𝐈𝟐] … [𝐈𝒏]

If Number1 >= Number2, move instruction pointer to instruction address

specified by I𝑖 where 𝑛 is the implementation’s address size.

opcode: 0x16

JUMP [𝐈𝟏] [𝐈𝟐] … [𝐈𝒏]

Move instruction pointer to instruction address specified by I𝑖 where 𝑛

is the implementation’s address size.

