.\usr_doc.txt

usr toc.txt

Overview ~

For Vim version 7.4. Last change: 2010 Jul
VIM USER MANUAL - by Bram Moolenaar

Table Of Contents

Getting Started

usr 01.txt
usr 02.txt
usr 03.txt
usr_ 04.txt
usr 05.txt
usr 06.txt
usr 07.txt
usr 08.txt
usr 09.txt
usr_ 10.txt
usr 11.txt
usr 12.txt

usr 20.txt
usr 21.txt
usr 22.txt
usr 23.txt
usr_ 24.txt
usr 25.txt
usr 26.txt
usr_ 27.txt
usr 28.txt
usr 29.txt
usr 30.txt
usr 31.txt
usr 32.txt

Tuning Vim
usr 40.txt
usr 41.txt
usr 42.txt
usr 43.txt
usr 44 .txt
usr 45.txt

About the manuals

The first steps in Vim
Moving around

Making small changes

Set your settings

Using syntax highlighting
Editing more than one file
Splitting windows

Using the GUI

Making big changes
Recovering from a crash
Clever tricks

Editing Effectively

Typing command-line commands quickly
Go away and come back
Finding the file to edit
Editing other files
Inserting quickly

Editing formatted text
Repeating

Search commands and patterns
Folding

Moving through programs
Editing programs

Exploiting the GUI

The undo tree

Make new commands

Write a Vim script

Add new menus

Using filetypes

Your own syntax highlighted
Select your language

Making Vim Run

|usr 90.txt]|

Installing Vim

Reference manual

| reference toc|

The user manual is available as a single,

here:

http://vimdoc.sf.net

Getting Started ~

Read this from start to end to learn the essential commands.

|usr 01.txt]|

|usr 02.txt]|

About the manuals

01.1 Two manuals

01.2 Vim installed

01.3 Using the Vim tutor
01.4 Copyright

The first steps in Vim
02.1 Running Vim for the First Time
02.2 Inserting text

20

More detailed information for all commands

user-manual

ready to print HTML and PDF file

Page 1

.\usr_doc.txt

|usr 03

|usr 04.

|usr 05.

|usr 06

|usr 07.

|usr 08

|usr 09.

.txt]

txt |

txt |

.txt]

txt |

.txt]|

txt |

02.
02.
02.
02.
02.
02.

0 JO0 Ul W

Moving around
Deleting characters
Undo and Redo

Other editing commands
Getting out

Finding help

Moving around

03.
03.
03.
03.
03.
03.
03.
03.
03.
03.

RPwOUooJoaud W

o

Word movement

Moving to the start or end of a line
Moving to a character

Matching a paren

Moving to a specific line

Telling where you are

Scrolling around

Simple searches

Simple search patterns

Using marks

Making small changes

04.
04.
04.
04.
04.
04.
04.
04.
04.
04.

RPwOUooJoaud WNR

0f

Operators and motions
Changing text
Repeating a change
Visual mode

Moving text

Copying text

Using the clipboard
Text objects

Replace mode
Conclusion

Set your settings

Using

05.
05.
05.
05.
05.
05.
05.

oJoO Uk wWNR

09.
09.
09.

N OO0 WN R

W N Rt

ny
()

The vimrc file

The example vimrc file explained
Simple mappings

Adding a plugin

Adding a help file

The option window

Often used options

yntax highlighting

Switching it on

No or wrong colors?

Different colors

With colors or without colors
Printing with colors

Further reading

more than one file

Edit another file

A list of files

Jumping from file to file
Backup files

Copy text between files
Viewing a file

Changing the file name

windows

Split a window

Split a window on another file
Window size

Vertical splits

Moving windows

Commands for all windows
Viewing differences with vimdiff
Various

GUI

Parts of the GUI
Using the mouse
The clipboard

Page 2

.\usr_doc.txt

|usr 10.txt| Making
10.

|usr_11.

|usr_12.

txt |

txt |

|09.4

10.
10.
10.
10.
10.
10.
10.
10.

WooJaOUudWNER

Recover
11.
11.
11.
11.

B WN R

Clever
12.
12.
12.
12.
12.
12.

O ~JOoO Uk WwWNhR

Editing Effectively ~

| Select mode

big changes

Record and playback commands
Substitution

Command ranges

The global command

Visual block mode

Reading and writing part of a file
Formatting text

Changing case

Using an external program

ing from a crash

Basic recovery

Where is the swap file?
Crashed or not?

Further reading

tricks

Replace a word

Change "Last, First" to "First Last"
Sort a list

Reverse line order

Count words

Find a man page

Trim blanks

Find where a word is used

Subjects that can be read independently.

|usr 20.

|usr 21.

|usr_22

|usr 23

|usr 24

txt |

txt|

.txt]|

.txt]|

.txt|

Typing
20.
20.
20.
20.
20.

U wbdhRr

Go away
21.1
21.2
21.3
21.4
21.5
21.6

Finding
22.1
22.2
22.3
22 .4

Editing
23.
23.
23.
23.
23.

U wdhR

command-line commands quickly
Command line editing
Command line abbreviations
Command line completion
Command line history
Command line window

and come back
Suspend and resume
Executing shell commands
Remembering information; viminfo
Sessions
Views
Modelines

the file to edit
The file explorer
The current directory
Finding a file
The buffer list

other files
DOS, Mac and Unix files
Files on the internet
Encryption
Binary files
Compressed files

Inserting quickly

24.
24.
24.
24.
24.
24.
24.
24.

O JOoO Ul WP

Making corrections

Showing matches

Completion

Repeating an insert

Copying from another line
Inserting a register
Abbreviations

Entering special characters

Page 3

.\usr_doc.txt

|usr 25.txt|

|usr 26.txt|

|usr 27.txt|

|usr 28.txt|

|usr 29.txt|

|usr 30.txt|

|usr 31.txt|

|usr 32.txt|

Tuning Vim ~

24.9]|
24.10]|

Digraphs
Normal mode commands

Editing formatted text

Breaking lines
Aligning text

Indents and tabs
Dealing with long lines
Editing tables

Repeating with Visual mode
Add and subtract

Making a change in many files
Using Vim from a shell script

Search commands and patterns

25.1
25.2
25.3
25.4
25.5
Repeating
26.1
26.2
26.3
26.4
27.1
27.2
27.3
27 .4
27.5
27.6
27.7
27.8
27.9
Folding
28.1
28.2
28.3
28.4
28.5
28.6
28.7
28.8
28.9
28.10]|

Ignoring case

Wrapping around the file end
Offsets

Matching multiple times
Alternatives

Character ranges

Character classes

Matching a line break
Examples

What is folding?

Manual folding

Working with folds

Saving and restoring folds
Folding by indent

Folding with markers
Folding by syntax

Folding by expression
Folding unchanged lines
Which fold method to use?

Moving through programs

29.1
29.2
29.3
29.4
29.5

Using tags

The preview window

Moving through a program
Finding global identifiers
Finding local identifiers

Editing programs

Compiling

Indenting C files
Automatic indenting
Other indenting
Tabs and spaces
Formatting comments

Exploiting the GUI

31.1 The file browser
31.2 Confirmation
31.3 Menu shortcuts
31.4 Vim window position and size
31.5 Various
The undo tree
32.1 Undo up to a file write
32.2 Numbering changes
32.3 Jumping around the tree
32.4 Time travelling

Make Vim work as you like it.

Page 4

.\usr_doc.txt Page 5

|usr 40.txt| Make new commands

40.1 Key mapping
40.2 Defining command-line commands
40.3 Autocommands

|usr 41.txt| Write a Vim script
41.1 Introduction
41.2 Variables
41.3 Expressions
41.4 Conditionals
41.5 Executing an expression
41.6 Using functions
41.7 Defining a function
41.8 Lists and Dictionaries
41.9 Exceptions

41.10| Various remarks

41.11| Writing a plugin

41.12| Writing a filetype plugin

41.13| Writing a compiler plugin

41.14| Writing a plugin that loads quickly
41.15| Writing library scripts

41.16| Distributing Vim scripts

|usr 42.txt| Add new menus

42.1 Introduction

42.2 Menu commands

42.3 Various

42 .4 Toolbar and popup menus

|usr 43.txt| Using filetypes
43.1 Plugins for a filetype
43.2 Adding a filetype

|usr 44.txt| Your own syntax highlighted

44 .1 Basic syntax commands

44 .2 Keywords

44 .3 Matches

44 .4 Regions

44.5 Nested items

44 .6 Following groups

44 .7 Other arguments

44.8 Clusters

44 .9 Including another syntax file

44 .10| Synchronizing
44 .11| Installing a syntax file
44 .12| Portable syntax file layout

|usr 45.txt| Select your language

45.1 Language for Messages

45.2 Language for Menus

45.3 Using another encoding
4 Editing files with a different encoding
5 Entering language text

Making Vim Run ~
Before you can use Vim.

|usr 90.txt| Installing Vim

90.1 Unix

90.2 MS-Windows

90.3 Upgrading

90.4 Common installation issues
90.5 Uninstalling Vim

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page 6

usr 01.txt For Vim version 7.4. Last change: 2010 Nov 03
VIM USER MANUAL - by Bram Moolenaar
About the manuals

This chapter introduces the manuals available with Vim. Read this to know the
conditions under which the commands are explained.

01.1 Two manuals

01.2 Vim installed

01.3 Using the Vim tutor
01.4 Copyright

Next chapter: |usr 02.txt| The first steps in Vim
Table of contents: |usr toc.txt|

The Vim documentation consists of two parts:

1. The User manual
Task oriented explanationg, from simple to complex. Reads from start to
end like a book.

2. The Reference manual
Precise description of how everything in Vim works.

The notation used in these manuals is explained here: |notation|

JUMPING AROUND

The text contains hyperlinks between the two parts, allowing you to quickly
jump between the description of an editing task and a precise explanation of
the commands and options used for it. Use these two commands:

Press CTRL-] to jump to a subject under the cursor.
Press CTRL-O to jump back (repeat to go further back).

Many links are in vertical bars, like this: |bars|. The bars themselves may
be hidden or invisible, see below. An option name, like 'number', a command
in double quotes like ":write" and any other word can also be used as a link.
Try it out: Move the cursor to CTRL-] and press CTRL-] on it.

Other subjects can be found with the ":help" command, see |help.txt].

The bars and stars are usually hidden with the |conceal| feature. They also
use |hl-Ignore|, using the same color for the text as the background. You can
make them visible with: >

:set conceallevel=0

:hi link HelpBar Normal

:hi link HelpStar Normal

Most of the manuals assume that Vim has been properly installed. If you
didn't do that yet, or if Vim doesn't run properly (e.g., files can't be found
or in the GUI the menus do not show up) first read the chapter on
installation: |usr 90.txt].

not-compatible
The manuals often assume you are using Vim with Vi-compatibility switched
off. For most commands this doesn't matter, but sometimes it is important,
e.g., for multi-level undo. An easy way to make sure you are using a nice
setup is to copy the example vimrc file. By doing this inside Vim you don't
have to check out where it is located. How to do this depends on the system
you are using:

.\usr_doc.txt

Unix: >

:lcp -i SVIMRUNTIME/vimrc example.vim ~/.vimrc
MS-DOS, MS-Windows, 0S/2: >

: lcopy SVIMRUNTIME/vimrc example.vim $SVIM/ vimrc
Amiga: >

: lcopy SVIMRUNTIME/vimrc example.vim SVIM/.vimrc

If the file already exists you probably want to keep it.

If you start Vim now, the 'compatible' option should be off. You can check it
with this command: >

:set compatible?

If it responds with "nocompatible" you are doing well. If the response is
"compatible" you are in trouble. You will have to find out why the option is
still set. Perhaps the file you wrote above is not found. Use this command

to find out: >
:scriptnames

If your file is not in the list, check its location and name. If it is in the
list, there must be some other place where the 'compatible' option is switched
back on.

For more info see |vimrc| and |compatible-default].

Note:

This manual is about using Vim in the normal way. There is an
alternative called "evim" (easy Vim). This is still Vim, but used in
a way that resembles a click-and-type editor like Notepad. It always
stays in Insert mode, thus it feels very different. It is not
explained in the user manual, since it should be mostly self
explanatory. See |evim-keys| for details.

01.3 Using the Vim tutor *tutor* *vimtutor*
Instead of reading the text (boring!) you can use the vimtutor to learn your
first Vim commands. This is a 30 minute tutorial that teaches the most basic
Vim functionality hands-on.

On Unix, if Vim has been properly installed, you can start it from the shell:
>

vimtutor

On MS-Windows you can find it in the Program/Vim menu. Or execute
vimtutor.bat in the $VIMRUNTIME directory.

This will make a copy of the tutor file, so that you can edit it without
the risk of damaging the original.

There are a few translated versions of the tutor. To find out if yours is
available, use the two-letter language code. For French: >

vimtutor fr

On Unix, if you prefer using the GUI version of Vim, use "gvimtutor" or
"vimtutor -g" instead of "vimtutor".

For OpenVMS, if Vim has been properly installed, you can start vimtutor from a
VMS prompt with: >

@VIM:vimtutor

Optionally add the two-letter language code as above.

On other systems, you have to do a little work:

1. Copy the tutor file. You can do this with Vim (it knows where to find it):

Page 7

.\usr_doc.txt

>
vim -u NONE -c 'e S$VIMRUNTIME/tutor/tutor' -c 'w! TUTORCOPY' -c 'q'
<
This will write the file "TUTORCOPY" in the current directory. To use a
translated version of the tutor, append the two-letter language code to the
filename. For French:
>
vim -u NONE -c 'e $VIMRUNTIME/tutor/tutor.fr' -c 'w! TUTORCOPY' -c 'q'

;. Edit the copied file with Vim:
vim -u NONE -c "set nocp" TUTORCOPY
The extra arguments make sure Vim is started in a good mood.
3. Delete the copied file when you are finished with it:

del TUTORCOPY

01.4 Copyright *manual-copyright*

The Vim user manual and reference manual are Copyright (c) 1988-2003 by Bram
Moolenaar. This material may be distributed only subject to the terms and
conditions set forth in the Open Publication License, v1.0 or later. The
latest version is presently available at:

http://www.opencontent .org/openpub/

People who contribute to the manuals must agree with the above copyright
notice.

frombook
Parts of the user manual come from the book "Vi IMproved - Vim" by Steve
Oualline (published by New Riders Publishing, ISBN: 0735710015). The Open

Publication License applies to this book. Only selected parts are included
and these have been modified (e.g., by removing the pictures, updating the
text for Vim 6.0 and later, fixing mistakes). The omission of the |frombook |
tag does not mean that the text does not come from the book.

Many thanks to Steve Oualline and New Riders for creating this book and
publishing it under the OPL! It has been a great help while writing the user
manual. Not only by providing literal text, but also by setting the tone and
style.

If you make money through selling the manualsg, you are strongly encouraged to
donate part of the profit to help AIDS victims in Uganda. See |iccf].

Next chapter: |usr 02.txt| The first steps in Vim

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

Page 8

.\usr_doc.txt
usr 02.txt For Vim version 7.4. Last change: 2010 Jul 20
VIM USER MANUAL - by Bram Moolenaar
The first steps in Vim

This chapter provides just enough information to edit a file with Vim. Not
well or fast, but you can edit. Take some time to practice with these
commands, they form the base for what follows.

02.1 Running Vim for the First Time

02.2 Inserting text

02.3 Moving around

02.4 Deleting characters

02.5 Undo and Redo

02.6 Other editing commands

02.7 Getting out

02.8 Finding help

Next chapter: |[usr 03.txt Moving around
Previous chapter: |usr 01.txt About the manuals
Table of contents: |usr toc.txt|
02.1 Running Vim for the First Time
To start Vim, enter this command: >
gvim file.txt
In UNIX you can type this at any command prompt. If you are running Microsoft
Windows, open an MS-DOS prompt window and enter the command.
In either case, Vim starts editing a file called file.txt. Because this

is a new file, you get a blank window. This is what your screen will look
like:

"file.txt" [New file]
("#" is the cursor position.)

The tilde (~) lines indicate lines not in the file. In other words, when Vim
runs out of file to display, it displays tilde lines. At the bottom of the
screen, a message line indicates the file is named file.txt and shows that you
are creating a new file. The message information is temporary and other
information overwrites it.

THE VIM COMMAND

The gvim command causes the editor to create a new window for editing. If you
use this command: >

vim file.txt

the editing occurs inside your command window. In other words, if you are
running inside an xterm, the editor uses your xterm window. If you are using
an MS-DOS command prompt window under Microsoft Windows, the editing occurs
inside this window. The text in the window will look the same for both
versions, but with gvim you have extra features, like a menu bar. More about
that later.

Page 9

.\usr_doc.txt Page 10

The Vim editor is a modal editor. That means that the editor behaves
differently, depending on which mode you are in. The two basic modes are
called Normal mode and Insert mode. In Normal mode the characters you type
are commands. In Insert mode the characters are inserted as text.

Since you have just started Vim it will be in Normal mode. To start Insert
mode you type the "i" command (i for Insert). Then you can enter
the text. It will be inserted into the file. Do not worry if you make
mistakes; you can correct them later. To enter the following programmer's
limerick, this is what you type: >

iA very intelligent turtle
Found programming UNIX a hurdle

After typing "turtle" you press the <Enter> key to start a new line. Finally
you press the <Esc> key to stop Insert mode and go back to Normal mode. You
now have two lines of text in your Vim window:

A very intelligent turtle
Found programming UNIX a hurdle

WHAT IS THE MODE?
To be able to see what mode you are in, type this command: >
:set showmode

You will notice that when typing the colon Vim moves the cursor to the last
line of the window. That's where you type colon commands (commands that start
with a colon). Finish this command by pressing the <Enter> key (all commands
that start with a colon are finished this way) .

Now, if you type the "i" command Vim will display --INSERT-- at the bottom
of the window. This indicates you are in Insert mode.

A very intelligent turtle
Found programming UNIX a hurdle

-— INSERT --

If you press <Esc> to go back to Normal mode the last line will be made blank.

GETTING OUT OF TROUBLE

One of the problems for Vim novices is mode confusion, which is caused by
forgetting which mode you are in or by accidentally typing a command that
switches modes. To get back to Normal mode, no matter what mode you are in,
press the <Esc> key. Sometimes you have to press it twice. If Vim beeps back
at you, you already are in Normal mode.

After you return to Normal mode, you can move around by using these keys:

h left *hijkl*
J down

k up

1 right

At first, it may appear that these commands were chosen at random. After all,
who ever heard of using 1 for right? But actually, there is a very good

.\usr_doc.txt Page 11

reason for these choices: Moving the cursor is the most common thing you do in
an editor, and these keys are on the home row of your right hand. In other
words, these commands are placed where you can type them the fastest
(especially when you type with ten fingers).

Note:
You can also move the cursor by using the arrow keys. If you do,
however, you greatly slow down your editing because to press the arrow
keys, you must move your hand from the text keys to the arrow keys.
Considering that you might be doing it hundreds of times an hour, this
can take a significant amount of time.

Also, there are keyboards which do not have arrow keys, or which
locate them in unusual places; therefore, knowing the use of the hjkl
keys helps in those situations.

One way to remember these commands is that h is on the left, 1 is on the
right and j points down. In a picture: >

k
h 1

J
The best way to learn these commands is by using them. Use the "i" command to
insert some more lines of text. Then use the hjkl keys to move around and
insert a word somewhere. Don't forget to press <Esc> to go back to Normal
mode. The |vimtutor| is also a nice way to learn by doing.
For Japanese users, Hiroshi Iwatani suggested using this:

Komsomolsk
Huan Ho <———- —---> Los Angeles

Java (the island, not the programming language)

To delete a character, move the cursor over it and type "x". (This is a
throwback to the old days of the typewriter, when you deleted things by typing
xxxx over them.) Move the cursor to the beginning of the first line, for

example, and type xxxxxxx (seven x's) to delete "A very ". The result should
look like this:

intelligent turtle
Found programming UNIX a hurdle

Now you can insert new text, for example by typing: >

iA young <Esc>

This begins an insert (the i), inserts the words "A young", and then exits
insert mode (the final <Esc>). The result:
e +

A young intelligent turtle
Found programming UNIX a hurdle

DELETING A LINE

.\usr_doc.txt Page 12

To delete a whole line use the "dd" command. The following line will
then move up to fill the gap:

DELETING A LINE BREAK

In Vim you can join two lines together, which means that the line break
between them is deleted. The "J" command does this.
Take these two lines:

A young intelligent ~
turtle ~

Move the cursor to the first line and press "J":

A young intelligent turtle ~

Suppose you delete too much. Well, you can type it in again, but an easier

way exists. The "u" command undoes the last edit. Take a look at this in

action: After using "dd" to delete the first line, "u" brings it back.
Another one: Move the cursor to the A in the first line:

A young intelligent turtle ~
Now type xxxxxxx to delete "A young". The result is as follows:
intelligent turtle ~

Type "u" to undo the last delete. That delete removed the g, so the undo
restores the character.

g intelligent turtle ~

The next u command restores the next-to-last character deleted:
ng intelligent turtle ~

The next u command gives you the u, and so on:

ung intelligent turtle ~
oung intelligent turtle ~
young intelligent turtle ~
young intelligent turtle ~
A young intelligent turtle ~

Note:
If you type "u" twice, and the result is that you get the same text
back, you have Vim configured to work Vi compatible. Look here to fix
this: |not-compatible].

This text assumes you work "The Vim Way". You might prefer to use
the good old Vi way, but you will have to watch out for small
differences in the text then.

REDO

If you undo too many times, you can press CTRL-R (redo) to reverse the
preceding command. In other words, it undoes the undo. To see this in
action, press CTRL-R twice. The character A and the space after it disappear:

.\usr_doc.txt Page

young intelligent turtle ~

There's a special version of the undo command, the "U" (undo line) command.
The undo line command undoes all the changes made on the last line that was
edited. Typing this command twice cancels the preceding "U".

A very intelligent turtle ~
XXXX Delete very

A intelligent turtle ~
XXXXXX Delete turtle

A intelligent ~

Restore line with "u"
A very intelligent turtle ~

Undo "U" with "u"
A intelligent ~

The "U" command is a change by itself, which the "u" command undoes and CTRL-R
redoes. This might be a bit confusing. Don't worry, with "u" and CTRL-R you
can go to any of the situations you had. More about that in section [32.2].

Vim has a large number of commands to change the text. See |Q in| and below.
Here are a few often used ones.
APPENDING
The "i" command inserts a character before the character under the cursor.
That works fine; but what happens if you want to add stuff to the end of the
line? For that you need to insert text after the cursor. This is done with
the "a" (append) command.
For example, to change the line

and that's not saying much for the turtle. ~
to

and that's not saying much for the turtle!!! ~
move the cursor over to the dot at the end of the line. Then type "x" to
delete the period. The cursor is now positioned at the end of the line on the
e in turtle. Now type >

alll<Esc>

to append three exclamation points after the e in turtle:

and that's not saying much for the turtle!!! ~

OPENING UP A NEW LINE
The "o" command creates a new, empty line below the cursor and puts Vim in
Insert mode. Then you can type the text for the new line.

Suppose the cursor is somewhere in the first of these two lines:

A very intelligent turtle ~
Found programming UNIX a hurdle ~

If you now use the "o" command and type new text: >
oThat liked using Vim<Esc>

The result is:
A very intelligent turtle ~

That liked using Vim ~
Found programming UNIX a hurdle ~

13

.\usr_doc.txt Page

The "O" command (uppercase) opens a line above the cursor.

USING A COUNT

Suppose you want to move up nine lines. You can type "kkkkkkkkk" or you can
enter the command "9k". In fact, you can precede many commands with a number.
Earlier in this chapter, for instance, you added three exclamation points to
the end of a line by typing "al!!l<Esc>". Another way to do this is to use the
command "3al!<Esc>". The count of 3 tells the command that follows to triple
its effect. Similarly, to delete three characters, use the command "3x". The
count always comes before the command it applies to.

To exit, use the "ZZ" command. This command writes the file and exits.

Note:
Unlike many other editors, Vim does not automatically make a backup
file. 1If you type "ZZ", your changes are committed and there's no

turning back. You can configure the Vim editor to produce backup
files, see |07.4].

DISCARDING CHANGES

Sometimes you will make a sequence of changes and suddenly realize you were
better off before you started. Not to worry; Vim has a
quit-and-throw-things-away command. It is: >

Heon!
Don't forget to press <Enter> to finish the command.

For those of you interested in the details, the three parts of this command
are the colon (:), which enters Command-line mode; the g command, which tells
the editor to quit; and the override command modifier (!).

The override command modifier is needed because Vim is reluctant to throw
away changes. If you were to just type ":g", Vim would display an error
message and refuse to exit:

E37: No write since last change (use ! to override) ~

By specifying the override, you are in effect telling Vim, "I know that what
I'm doing looks stupid, but I'm a big boy and really want to do this."

If you want to continue editing with Vim: The ":e!" command reloads the
original version of the file.

Everything you always wanted to know can be found in the Vim help files.
Don't be afraid to ask!
To get generic help use this command: >

:help
You could also use the first function key <Fl>. If your keyboard has a <Help>
key it might work as well.
If you don't supply a subject, ":help" displays the general help window.

The creators of Vim did something very clever (or very lazy) with the help
system: They made the help window a normal editing window. You can use all
the normal Vim commands to move through the help information. Therefore h, 7j,
k, and 1 move left, down, up and right.

To get out of the help window, use the same command you use to get out of
the editor: "zzZ". This will only close the help window, not exit Vim.

As you read the help text, you will notice some text enclosed in vertical bars

14

.\usr_doc.txt Page
(for example, |help|). This indicates a hyperlink. If you position the
cursor anywhere between the bars and press CTRL-] (jump to tag), the help
system takes you to the indicated subject. (For reasons not discussed here,
the Vim terminology for a hyperlink is tag. So CTRL-] jumps to the location
of the tag given by the word under the cursor.)

After a few jumps, you might want to go back. CTRL-T (pop tag) takes you
back to the preceding position. CTRL-O (jump to older position) also works
nicely here.

At the top of the help screen, there is the notation *help.txt*. This name
between "*" characters is used by the help system to define a tag (hyperlink
destination) .

See |29.1| for details about using tags.

To get help on a given subject, use the following command: >
:help {subject}
To get help on the "x" command, for example, enter the following: >
:help x
To find out how to delete text, use this command: >
:help deleting
To get a complete index of all Vim commands, use the following command: >

:help index

When you need to get help for a control character command (for example,
CTRL-A), you need to spell it with the prefix "CTRL-". >

:help CTRL-A
The Vim editor has many different modes. By default, the help system displays
the normal-mode commands. For example, the following command displays help
for the normal-mode CTRL-H command: >

:help CTRL-H
To identify other modes, use a mode prefix. If you want the help for the
insert-mode version of a command, use "i ". For CTRL-H this gives you the
following command: >

:help i CTRL-H
When you start the Vim editor, you can use several command-line arguments.
These all begin with a dash (-). To find what the -t argument does, for
example, use the command: >

:help -t
The Vim editor has a number of options that enable you to configure and
customize the editor. If you want help for an option, you need to enclose it
in single quotation marks. To find out what the 'number' option does, for
example, use the following command: >

:help 'number'

The table with all mode prefixes can be found here: |help-context].

Special keys are enclosed in angle brackets. To find help on the up-arrow key
in Insert mode, for instance, use this command: >

:help i <Up»>
If you see an error message that you don't understand, for example:
E37: No write since last change (use ! to override) ~

You can use the error ID at the start to find help about it: >

15

.\usr_doc.txt

Summary:
:help

<

:help

:help
:help
:help
:help
:help

:help
:help

:help
:help

:help
:help

:help
:help
:help
:help
:help

:help

:help

:help

Page 16
E37

help-summary >

Gives you very general help. Scroll down to see a list of all
helpfiles, including those added locally (i.e. not distributed
with Vim). >
user-toc.txt
Table of contents of the User Manual. >
:subject
Ex-command "subject", for instance the following: >
:help
Help on getting help. >
abc
normal-mode command "abc". >
CTRL-B
Control key <C-B> in Normal mode. >
i_abc
i CTRL-B
The same in Insert mode. >
v_abc
v_CTRL-B
The same in Visual mode. >
c_abc
c_CTRL-B
The same in Command-line mode. >
'subject!
Option 'subject'. >
subject ()
Function "subject". >
-subject
Command-line option "-subject". >
+subject
Compile-time feature "+subject". >
EventName
Autocommand event "EventName". >
digraphs.txt
The top of the helpfile "digraph.txt".
Similarly for any other helpfile. >
pattern<Tab>
Find a help tag starting with "pattern". Repeat <Tabs> for
others. >
pattern<Ctrl-D>
See all possible help tag matches "pattern" at once. >

:helpgrep pattern

Search the whole text of all help files for pattern "pattern".
Jumps to the first match. Jump to other matches with: >

:Cn

next match >

:cprev
:cN

previous match >

:cfirst
:clast

first or last match >

:copen
:cclose

open/close the quickfix window; press <Enter> to jump
to the item under the cursor

Next chapter:

|usr 03.txt| Moving around

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page

usr 03.txt For Vim version 7.4. Last change: 2006 Jun 21
VIM USER MANUAL - by Bram Moolenaar
Moving around
Before you can insert or delete text the cursor has to be moved to the right
place. Vim has a large number of commands to position the cursor. This

chapter shows you how to use the most important ones. You can find a list of
these commands below |Q 1r].

03.1 Word movement

03.2 Moving to the start or end of a line
03.3 Moving to a character

03.4 Matching a parenthesis

03.5 Moving to a specific line

03.6 Telling where you are

03.7 Scrolling around

03.8 Simple searches

03.9 Simple search patterns

03.10| Using marks

Next chapter: |usr 04.txt Making small changes
Previous chapter: |usr 02.txt The first steps in Vim
Table of contents: |usr toc.txt|

To move the cursor forward one word, use the "w" command. Like most Vim
commands, you can use a numeric prefix to move past multiple words. For
example, "3w" moves three words. This figure shows how it works:

This is a line with example text ~
——— >SS >
w W W 3w

Notice that "w" moves to the start of the next word if it already is at the
start of a word.
The "b" command moves backward to the start of the previous word:

This is a line with example text ~
<————<——<—-<————————— <——-

b bb 2b b

There is also the "e" command that moves to the next end of a word and "ge",
which moves to the previous end of a word:

This is a line with example text ~
<- === ———— > —_———>
ge ge e e

If you are at the last word of a line, the "w" command will take you to the
first word in the next line. Thus you can use this to move through a

paragraph, much faster than using "1". "b" does the same in the other
direction.
A word ends at a non-word character, such as a ".", "-" or ")". To change

what Vim considers to be a word, see the 'iskeyword' option.

It is also possible to move by white-space separated WORDs. This is not a
word in the normal sense, that's why the uppercase is used. The commands for
moving by WORDs are also uppercase, as this figure shows:

ge b w e
<- <- ———> ———>
This is-a line, with special/separated/words (and some more) . ~

17

.\usr_doc.txt Page 18

With this mix of lowercase and uppercase commands, you can quickly move
forward and backward through a paragraph.

The "$" command moves the cursor to the end of a line. If your keyboard has
an <kEnd> key it will do the same thing.

The "*" command moves to the first non-blank character of the line. The "O"
command (zero) moves to the very first character of the line. The <Home> key
does the same thing. In a picture:

B
..... This is a line with example text -~
Cmmmm e e >
0 S
(the "..... " indicates blanks here)

The "$" command takes a count, like most movement commands. But moving to
the end of the line several times doesn't make sense. Therefore it causes the
editor to move to the end of another line. For example, "1$" moves you to
the end of the first line (the one you're on), "2$" to the end of the next
line, and so on.

The "0" command doesn't take a count argument, because the "0" would be
part of the count. Unexpectedly, using a count with "*" doesn't have any
effect.

One of the most useful movement commands is the single-character search
command. The command "fx" searches forward in the line for the single
character x. Hint: "f" stands for "Find".

For example, you are at the beginning of the following line. Suppose you
want to go to the h of human. Just execute the command "fh" and the cursor
will be positioned over the h:

To err is human. To really foul up you need a computer. ~

This also shows that the command "fy" moves to the end of the word really.
You can specify a count; therefore, you can go to the "1" of "foul" with
"3f1n:

To err is human. To really foul up you need a computer. ~

The "F" command searches to the left:

To err is human. To really foul up you need a computer. ~

The "tx" command works like the "fx" command, except it stops one character
before the searched character. Hint: "t" stands for "To". The backward
version of this command is "Tx".

To err is human. To really foul up you need a computer. ~

<—————"—"—"—-"—- ————————————— >
Th tn
These four commands can be repeated with ";". "," repeats in the other
direction. The cursor is never moved to another line. Not even when the

sentence continues.

Sometimes you will start a search, only to realize that you have typed the

.\usr_doc.txt Page

wrong command. You type "f" to search backward, for example, only to realize
that you really meant "F". To abort a search, press <Esc>. So "f<Esc>" is an
aborted forward search and doesn't do anything. Note: <Esc> cancels most
operations, not just searches.

When writing a program you often end up with nested () constructs. Then the
"$" command is very handy: It moves to the matching paren. If the cursor is
on a "(" it will move to the matching ")". If it's on a ")" it will move to

the matching " (".

This also works for [] and {} pairs. (This can be defined with the
'matchpairs' option.)

When the cursor is not on a useful character, "$%" will search forward to find
one. Thus if the cursor is at the start of the line of the previous example,
"$" will search forward and find the first "(". Then it moves to its match:

If you are a C or C++ programmer, you are familiar with error messages such as
the following:

prog.c:33: j undeclared (first use in this function) ~

This tells you that you might want to fix something on line 33. So how do you
find line 33? One way is to do "9999k" to go to the top of the file and "32j"
to go down thirty two lines. It is not a good way, but it works. A much
better way of doing things is to use the "G" command. With a count, this
command positions you at the given line number. For example, "33G" puts you
on line 33. (For a better way of going through a compiler's error list, see
|usr 30.txt|, for information on the :make command.)

With no argument, "G" positions you at the end of the file. A quick way to
go to the start of a file use "gg". "1G" will do the same, but is a tiny bit
more typing.

first line of a file »

text text text text

text text text text gg

7G text text text text
text text text text

text text text text

v text text text text

text text text text G

text text text text

last line of a file v
Another way to move to a line is using the "%" command with a count. For
example "50%" moves you to halfway the file. "90%" goes to near the end.

The previous assumes that you want to move to a line in the file, no matter if
it's currently visible or not. What if you want to move to one of the lines
you can see? This figure shows the three commands you can use:

H -—-> text sample text
sample text
text sample text

19

.\usr_doc.txt Page

sample text

M --> text sample text
sample text
text sample text
sample text

L ——> text sample text

Hints: "H" stands for Home, "M" for Middle and "L" for Last.

To see where you are in a file, there are three ways:

1. Use the CTRL-G command. You get a message like this (assuming the 'ruler'
option is off):

"usr_03.txt" line 233 of 650 --35%-- col 45-52 ~

This shows the name of the file you are editing, the line number where the
cursor is, the total number of lines, the percentage of the way through
the file and the column of the cursor.

Sometimes you will see a split column number. For example, "col 2-9".
This indicates that the cursor is positioned on the second character, but
because character one is a tab, occupying eight spaces worth of columns,
the screen column is 9.

2. Set the 'number' option. This will display a line number in front of
every line: >

:set number

<

To switch this off again: >
:set nonumber

<
Since 'number' igs a boolean option, prepending "no" to its name has the
effect of switching it off. A boolean option has only these two wvalues,
it is either on or off.

Vim has many options. Besides the boolean ones there are options with

a numerical value and string options. You will see examples of this where
they are used.

3. Set the 'ruler' option. This will display the cursor position in the

lower right corner of the Vim window: >
:set ruler

Using the 'ruler' option has the advantage that it doesn't take much room,
thus there is more space for your text.

The CTRL-U command scrolls down half a screen of text. Think of looking
through a viewing window at the text and moving this window up by half the
height of the window. Thus the window moves up over the text, which is
backward in the file. Don't worry if you have a little trouble remembering
which end is up. Most users have the same problem.

The CTRL-D command moves the viewing window down half a screen in the file,
thus scrolls the text up half a screen.

some text CTRL-U —-->

123456 o H

20

.\usr_doc.txt Page 21

7890
o +
example CTRL-D —--> 7890
o +
example
example
example
example
o +

To scroll one line at a time use CTRL-E (scroll up) and CTRL-Y (scroll down) .
Think of CTRL-E to give you one line Extra. (If you use MS-Windows compatible
key mappings CTRL-Y will redo a change instead of scroll.)

To scroll forward by a whole screen (except for two lines) use CTRL-F. The
other way is backward, CTRL-B is the command to use. Fortunately CTRL-F is
Forward and CTRL-B is Backward, that's easy to remember.

A common issue is that after moving down many lines with "j" your cursor is at
the bottom of the screen. You would like to see the context of the line with
the cursor. That's done with the "zz" command.

e + e +

some text some text

some text some text

some text some text

some text zzZ ——> line with cursor

some text some text

some text some text

line with cursor some text

e + e +

The "zt" command puts the cursor line at the top, "zb" at the bottom. There
are a few more scrolling commands, see |Q sc|. To always keep a few lines of

context around the cursor, use the 'scrolloff' option.

To search for a string, use the "/string" command. To find the word include,
for example, use the command: >

/include

You will notice that when you type the "/" the cursor jumps to the last line
of the Vim window, like with colon commands. That is where you type the word.
You can press the backspace key (backarrow or <BS>) to make corrections. Use
the <Left> and <Right> cursor keys when necessary.

Pressing <Enters> executes the command.

Note:
The characters .*[]1"%/\?~$ have special meanings. If you want to use
them in a search you must put a \ in front of them. See below.

To find the next occurrence of the same string use the "n" command. Use this
to find the first #include after the cursor: >

/#include
And then type "n" several times. You will move to each #include in the text.
You can also use a count i1f you know which match you want. Thus "3n" finds
the third match. Using a count with "/" doesn't work.
The "?" command works like "/" but searches backwards: >

?word
The "N" command repeats the last search the opposite direction. Thus using

"N" after a "/" command search backwards, using "N" after "?" searches
forward.

.\usr_doc.txt Page 22

IGNORING CASE

Normally you have to type exactly what you want to find. If you don't care
about upper or lowercase in a word, set the 'ignorecase' option: >

:set ignorecase

If you now search for "word", it will also match "Word" and "WORD". To match
case again: >

:set noignorecase

HISTORY

Suppose you do three searches: >

/one

/two

/three
Now let's start searching by typing a simple "/" without pressing <Enters>. If
you press <Up> (the cursor key), Vim puts "/three" on the command line.
Pressing <Enter> at this point searches for three. If you do not press
<Enter>, but press <Up> instead, Vim changes the prompt to "/two". Another

press of <Up> moves you to "/one".
You can also use the <Downs> cursor key to move through the history of
search commands in the other direction.

If you know what a previously used pattern starts with, and you want to use it
again, type that character before pressing <Up>. With the previous example,
you can type "/o<Up>" and Vim will put "/one" on the command line.

The commands starting with ":" also have a history. That allows you to recall
a previous command and execute it again. These two histories are separate.

SEARCHING FOR A WORD IN THE TEXT

Suppose you see the word "ThelLongFunctionName" in the text and you want to
find the next occurrence of it. You could type "/TheLongFunctionName", but
that's a lot of typing. And when you make a mistake Vim won't find it.
There is an easier way: Position the cursor on the word and use the "*"
command. Vim will grab the word under the cursor and use it as the search

string.
The "#" command does the same in the other direction. You can prepend a
count: "3*" gearches for the third occurrence of the word under the cursor.

SEARCHING FOR WHOLE WORDS

If you type "/the" it will also match "there". To only find words that end
in "the" use: >

/the\>
The "\>" item is a special marker that only matches at the end of a word.
Similarly "\<" only matches at the begin of a word. Thus to search for the
word "the" only: >

/\<the\>
This does not match "there" or "soothe". Notice that the "*" and "#" commands
use these start-of-word and end-of-word markers to only find whole words (you
can use "g*" and "g#" to match partial words) .

HIGHLIGHTING MATCHES

While editing a program you see a variable called "nr". You want to check

.\usr_doc.txt Page 23

where it's used. You could move the cursor to "nr" and use the "*" command
and press "n" to go along all the matches.
There is another way. Type this command: >

:set hlsearch

If you now search for "nr", Vim will highlight all matches. That is a very
good way to see where the variable is used, without the need to type commands.
To switch this off: >

:set nohlsearch

Then you need to switch it on again if you want to use it for the next search
command. If you only want to remove the highlighting, use this command: >

:nohlsearch

This doesn't reset the option. Instead, it disables the highlighting. As
soon as you execute a search command, the highlighting will be used again.
Also for the "n" and "N" commands.

TUNING SEARCHES

There are a few options that change how searching works. These are the
essential ones:
>

:set incsearch

This makes Vim display the match for the string while you are still typing it.
Use this to check if the right match will be found. Then press <Enter> to
really jump to that location. Or type more to change the search string.
>

:set nowrapscan

This stops the search at the end of the file. Or, when you are searching
backwards, at the start of the file. The 'wrapscan' option is on by default,
thus searching wraps around the end of the file.
INTERMEZZO
If you like one of the options mentioned before, and set it each time you use
Vim, you can put the command in your Vim startup file.

Edit the file, as mentioned at |not-compatible|. Or use this command to
find out where it is: >

:scriptnames

Edit the file, for example with: >

:edit ~/.vimrc

Then add a line with the command to set the option, just like you typed it in
Vim. Example: >

Go:set hlsearch<Esc>

"G" moves to the end of the file. "o" starts a new line, where you type the
":set" command. You end insert mode with <Esc>. Then write the file: >
27

If you now start Vim again, the 'hlsearch' option will already be set.

The Vim editor uses regular expressions to specify what to search for.
Regular expressions are an extremely powerful and compact way to specify a
search pattern. Unfortunately, this power comes at a price, because regular

.\usr_doc.txt Page 24

expressions are a bit tricky to specify.

In this section we mention only a few essential ones. More about search
patterns and commands in chapter 27 |usr 27.txt|. You can find the full
explanation here: |pattern|.

BEGINNING AND END OF A LINE

The * character matches the beginning of a line. On an English-US keyboard
you find it above the 6. The pattern "include" matches the word include
anywhere on the line. But the pattern "“include" matches the word include
only if it is at the beginning of a line.

The $ character matches the end of a line. Therefore, "was$" matches the
word was only if it is at the end of a line.

Let's mark the places where "the" matches in this example line with "x"s:

the solder holding one of the chips melted and the ~
XXX XXX XXX

Using "/the$" we find this match:

the solder holding one of the chips melted and the ~
XXX

And with "/“the" we find this one:
the solder holding one of the chips melted and the ~

XXX
You can try searching with "/“the$", it will only match a single line
consisting of "the". White space does matter here, thus if a line contains a
space after the word, like "the ", the pattern will not match.

MATCHING ANY SINGLE CHARACTER

The . (dot) character matches any existing character. For example, the
pattern "c.m" matches a string whose first character is a ¢, whose second
character is anything, and whose the third character is m. Example:

We use a computer that became the cummin winter. -~
XXX XXX XXX

MATCHING SPECIAL CHARACTERS

If you really want to match a dot, you must avoid its special meaning by
putting a backslash before it.
If you search for "ter.", you will find these matches:

We use a computer that became the cummin winter. -~
XXXX XXXX

Searching for "ter\." only finds the second match.

03.10 Using marks

When you make a jump to a position with the "G" command, Vim remembers the
position from before this jump. This position is called a mark. To go back
where you came from, use this command: >

~~

This ~ is a backtick or open single-quote character.

If you use the same command a second time you will jump back again. That's
because the ~ command is a jump itself, and the position from before this jump
is remembered.

Generally, every time you do a command that can move the cursor further than
within the same line, this is called a jump. This includes the search

.\usr_doc.txt Page

commands "/" and "n" (it doesn't matter how far away the match is). But not
the character searches with "fx" and "tx" or the word movements "w" and "e".

Also, "j" and "k" are not considered to be a jump. Even when you use a
count to make them move the cursor quite a long way away.

The ~° command jumps back and forth, between two points. The CTRL-O command
jumps to older positions (Hint: O for older). CTRL-I then jumps back to newer
positions (Hint: I is just next to O on the keyboard). Consider this sequence
of commands: >

33G
/" The
CTRL-0O

You first jump to line 33, then search for a line that starts with "The".
Then with CTRL-O you jump back to line 33. Another CTRL-O takes you back to
where you started. If you now use CTRL-I you jump to line 33 again. And

to the match for "The" with another CTRL-TI.

A

example text

33G example text CTRL-O CTRL-I
example text
V line 33 text v
example text
/" The example text CTRL-O CTRL-I
V There you are \Y
example text
Note:
CTRL-I is the same as <Tabs.
The ":jumps" command gives a list of positions you jumped to. The entry which
you used last is marked with a ">".
NAMED MARKS *bookmark*
Vim enables you to place your own marks in the text. The command "ma" marks

the place under the cursor as mark a. You can place 26 marks (a through z) in
your text. You can't see them, it's just a position that Vim remembers.

To go to a mark, use the command ~{mark}, where {mark} is the mark letter.
Thus to move to the a mark:
>

~

a

The command 'mark (single quotation mark, or apostrophe) moves you to the
beginning of the line containing the mark. This differs from the “mark
command, which moves you to marked column.

The marks can be very useful when working on two related parts in a file.
Suppose you have some text near the start of the file you need to look at,
while working on some text near the end of the file.
Move to the text at the start and place the s (start) mark there: >
ms
Then move to the text you want to work on and put the e (end) mark there: >

me

Now you can move around, and when you want to look at the start of the file,
you use this to jump there: >

's

Then you can use '' to jump back to where you were, or 'e to jump to the text
you were working on at the end.

There is nothing special about using s for start and e for end, they are
just easy to remember.

25

.\usr_doc.txt Page 26
You can use this command to get a list of marks: >

:marks
You will notice a few special marks. These include:

! The cursor position before doing a jump

" The cursor position when last editing the file

[Start of the last change
] End of the last change

Next chapter: |usr 04.txt| Making small changes

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page

usr 04 .txt For Vim version 7.4. Last change: 2014 Aug 29
VIM USER MANUAL - by Bram Moolenaar
Making small changes
This chapter shows you several ways of making corrections and moving text

around. It teaches you the three basic ways to change text: operator-motion,
Visual mode and text objects.

04.1 Operators and motions
04.2 Changing text

04.3 Repeating a change
04.4 Visual mode

04.5 Moving text

04.6 Copying text

04.7 Using the clipboard
04.8 Text objects

04.9 Replace mode

04.10| Conclusion

Next chapter: |usr 05.txt Set your settings
Previous chapter: |usr 03.txt Moving around
Table of contents: |usr toc.txt|

In chapter 2 you learned the "x" command to delete a single character. And
using a count: "4x" deletes four characters.

The "dw" command deletes a word. You may recognize the "w" command as the
move word command. In fact, the "d" command may be followed by any motion
command, and it deletes from the current location to the place where the
cursor winds up.

The "4w" command, for example, moves the cursor over four words. The d4w
command deletes four words.

To err is human. To really foul up you need a computer. ~

To err is human. you need a computer. -~
Vim only deletes up to the position where the motion takes the cursor. That's
because Vim knows that you probably don't want to delete the first character
of a word. If you use the "e" command to move to the end of a word, Vim
guesses that you do want to include that last character:

To err is human. you need a computer. -~

To err is human. a computer. ~
Whether the character under the cursor is included depends on the command you
used to move to that character. The reference manual calls this "exclusive"
when the character isn't included and "inclusive" when it is.
The "$" command moves to the end of a line. The "d$" command deletes from the
cursor to the end of the line. This is an inclusive motion, thus the last
character of the line is included in the delete operation:

To err is human. a computer. ~

To err is human ~

There is a pattern here: operator-motion. You first type an operator command.

27

.\usr_doc.txt Page 28

For example, "d" is the delete operator. Then you type a motion command like
"41" or "w". This way you can operate on any text you can move over.

Another operator is "c¢", change. It acts just like the "d" operator, except
it leaves you in Insert mode. For example, "cw" changes a word. Or more
specifically, it deletes a word and then puts you in Insert mode.
To err is human ~
c2wbe<Esc>

To be human ~

This "c2wbe<Esc>" contains these bits:

c the change operator
2w move two words (they are deleted and Insert mode started)
be insert this text

<Esc> back to Normal mode

If you have paid attention, you will have noticed something strange: The space
before "human" isn't deleted. There is a saying that for every problem there
is an answer that is simple, clear, and wrong. That is the case with the
example used here for the "cw" command. The ¢ operator works just like the

d operator, with one exception: "cw". It actually works like "ce", change to
end of word. Thus the space after the word isn't included. This is an
exception that dates back to the old Vi. Since many people are used to it
now, the inconsistency has remained in Vim.

MORE CHANGES

Like "dd" deletes a whole line, "cc" changes a whole line. It keeps the
existing indent (leading white space) though.

Just like "ds$" deletes until the end of the line, "c$" changes until the end
of the line. 1It's like doing "d$" to delete the text and then "a" to start
Insert mode and append new text.

SHORTCUTS

Some operator-motion commands are used so often that they have been given a
single letter command:

stands for dl
stands for dh
stands for ds
stands for c$
stands for «cl
stands for cc

delete character under the cursor)
delete character left of the cursor)
delete to end of the line)

change to end of the line)

change one character)

change a whole line)

nn QO XX

(
(
(
(
(
(

WHERE TO PUT THE COUNT

The commands "3dw" and "d3w" delete three words. If you want to get really
picky about things, the first command, "3dw", deletes one word three times;
the command "d3w" deletes three words once. This is a difference without a
distinction. You can actually put in two counts, however. For example,
"3d2w" deletes two words, repeated three times, for a total of six words.

REPLACING WITH ONE CHARACTER
The "r" command is not an operator. It waits for you to type a character, and

will replace the character under the cursor with it. You could do the same
with "cl" or with the "s" command, but with "r" you don't have to press <Esc>

.\usr_doc.txt Page 29

there is somerhing grong here ~
rT rt rw

There is something wrong here ~

Using a count with "r" causes that many characters to be replaced with the
same character. Example:

There is something wrong here ~
5rx

There is something xxxxx here ~

To replace a character with a line break use "r<Enter>". This deletes one

character and inserts a line break. Using a count here only applies to the
number of characters deleted: "4r<Enters>" replaces four characters with one
line break.

The "." command is one of the most simple yet powerful commands in Vim. It
repeats the last change. For instance, suppose you are editing an HTML file
and want to delete all the tags. You position the cursor on the first <
and delete the with the command "df>". You then go to the < of the next
 and kill it using the "." command. The "." command executes the last
change command (in this case, "dfs>"). To delete another tag, position the
cursor on the < and use the "." command.

To generate a table of contents ~

f< find first < -——>
df> delete to > -——>
f< find next < = ———————— >
. repeat dfs> ——>
f< find next <« o >
repeat df> >
The "." command works for all changes you make, except for the "u" (undo),

CTRL-R (redo) and commands that start with a colon (:).

Another example: You want to change the word "four" to "five". It appears
several times in your text. You can do this quickly with this sequence of
commands :

/four<Enters find the first string "four"
cwfive<Esc> change the word to "five"
n find the next "four"
. repeat the change to "five"
n find the next "four"

repeat the change

etc.

04.4 Visual mode
To delete simple items the operator-motion changes work quite well. But often
it's not so easy to decide which command will move over the text you want to
change. Then you can use Visual mode.
You start Visual mode by pressing "v". You move the cursor over the text you
want to work on. While you do this, the text is highlighted. Finally type
the operator command.

For example, to delete from halfway one word to halfway another word:

This is an examination sample of visual mode ~

This is an example of visual mode ~

When doing this you don't really have to count how many times you have to

.\usr_doc.txt Page 30

press "1" to end up in the right position. You can immediately see what text
will be deleted when you press "d".

If at any time you decide you don't want to do anything with the highlighted
text, just press <Esc> and Visual mode will stop without doing anything.

SELECTING LINES

If you want to work on whole lines, use "V" to start Visual mode. You will
see right away that the whole line is highlighted, without moving around.
When you move left or right nothing changes. When you move up or down the
selection is extended whole lines at a time.

For example, select three lines with "Vjj":

text more text
>> more text more text

selected lines >> text text text Vij
>> text more
more text more
o +

SELECTING BLOCKS

If you want to work on a rectangular block of characters, use CTRL-V to start
Visual mode. This is very useful when working on tables.

name Q1 Q2 Q3

pierre 123 455 234

john 0 90 39

steve 392 63 334
To delete the middle "Q2" column, move the cursor to the "Q" of "Q2". Press
CTRL-V to start blockwise Visual mode. Now move the cursor three lines down
with "3j" and to the next word with "w". You can see the first character of
the last column is included. To exclude it, use "h". Now press "d" and the

middle column is gone.

GOING TO THE OTHER SIDE

If you have selected some text in Visual mode, and discover that you need to
change the other end of the selection, use the "o" command (Hint: o for other
end). The cursor will go to the other end, and you can move the cursor to
change where the selection starts. Pressing "o" again brings you back to the
other end.

When using blockwise selection, you have four corners. "o" only takes you to
one of the other corners, diagonally. Use "O" to move to the other corner in
the same line.

Note that "o" and "O" in Visual mode work very differently from Normal mode,
where they open a new line below or above the cursor.

When you delete something with the "d", "x", or another command, the text is
saved. You can paste it back by using the p command. (The Vim name for
this is put).

Take a look at how this works. First you will delete an entire line, by
putting the cursor on the line you want to delete and typing "dd". Now you
move the cursor to where you want to put the line and use the "p" (put)
command. The line is inserted on the line below the cursor.

a line a line a line
line 2 dd line 3 P line 3
line 3 line 2

.\usr_doc.txt Page 31
Because you deleted an entire line, the "p" command placed the text line below
the cursor. If you delete part of a line (a word, for instance), the "p"
command puts it just after the cursor.
Some more boring try text to out commands. ~
—_ >

dw

Some more boring text to out commands. ~

Some more boring text to try out commands. ~

MORE ON PUTTING

The "P" command puts text like "p", but before the cursor. When you deleted a
whole line with "dd", "P" will put it back above the cursor. When you deleted
a word with "dw", "P" will put it back just before the cursor.

You can repeat putting as many times as you like. The same text will be used.
You can use a count with "p" and "P". The text will be repeated as many times
as specified with the count. Thus "dd" and then "3p" puts three copies of the
same deleted line.

SWAPPING TWO CHARACTERS

Frequently when you are typing, your fingers get ahead of your brain (or the

other way around?). The result is a typo such as "teh" for "the". Vim

makes it easy to correct such problems. Just put the cursor on the e of "teh"
and execute the command "xp". This works as follows: "x" deletes the
character e and places it in a register. "p" puts the text after the cursor,

which is after the h.

To copy text from one place to another, you could delete it, use "u" to undo
the deletion and then "p" to put it somewhere else. There is an easier way:
yanking. The "y" operator copies text into a register. Then a "p" command
can be used to put it.

Yanking is just a Vim name for copying. The "c" letter was already used
for the change operator, and "y" was still available. Calling this
operator "yank" made it easier to remember to use the "y" key.

Since "y" is an operator, you use "yw" to yank a word. A count is possible as
usual. To yank two words use "y2w". Example:

let sgr = LongVariable * ~

let sgr = LongVariable * ~
p

let sgr = LongVariable * LongVariable ~

Notice that "yw" includes the white space after a word. If you don't want
this, use "ye".

The "yy" command yanks a whole line, just like "dd" deletes a whole line.
Unexpectedly, while "D" deletes from the cursor to the end of the line, "Y"
works like "yy", it yanks the whole line. Watch out for this inconsistency!
Use "y$" to yank to the end of the line.

.\usr_doc.txt Page 32

a text line vy a text line a text line
line 2 line 2 P line 2
last line last line a text line

last line

If you are using the GUI version of Vim (gvim), you can find the "Copy" item
in the "Edit" menu. First select some text with Visual mode, then use the
Edit/Copy menu. The selected text is now copied to the clipboard. You can
paste the text in other programs. In Vim itself too.

If you have copied text to the clipboard in another application, you can paste
it in Vim with the Edit/Paste menu. This works in Normal mode and Insert
mode. In Visual mode the selected text is replaced with the pasted text.

The "Cut" menu item deletes the text before it's put on the clipboard. The
"Copy", "Cut" and "Paste" items are also available in the popup menu (only
when there is a popup menu, of course). If your Vim has a toolbar, you can
also find these items there.

If you are not using the GUI, or if you don't like using a menu, you have to
use another way. You use the normal "y" (yank) and "p" (put) commands, but
prepend "* (double-quote star) before it. To copy a line to the clipboard: >

Yy

To put text from the clipboard back into the text: >

n*p

This only works on versions of Vim that include clipboard support. More about
the clipboard in section [09.3| and here: |clipboard]|.

If the cursor is in the middle of a word and you want to delete that word, you
need to move back to its start before you can do "dw". There is a simpler way
to do this: "daw".

this is some example text. ~
daw

this is some text. ~

The "d" of "daw" is the delete operator. "aw" is a text object. Hint: "aw"
stands for "A Word". Thus "daw" is "Delete A Word". To be precise, the white
space after the word is also deleted (the white space before the word at the
end of the line).

Using text objects is the third way to make changes in Vim. We already had
operator-motion and Visual mode. Now we add operator-text object.

It is very similar to operator-motion, but instead of operating on the text
between the cursor position before and after a movement command, the text

object is used as a whole. It doesn't matter where in the object the cursor
was .
To change a whole sentence use "cis". Take this text:

Hello there. This ~
is an example. Just ~
some text. ~
Move to the start of the second line, on "is an". Now use "cis":

Hello there. Just ~
some text. ~

The cursor is in between the blanks in the first line. Now you type the new

.\usr_doc.txt Page 33
sentence "Another line.":

Hello there. Another line. Just ~
some text. ~

"cis" consists of the "c¢" (change) operator and the "igs" text object. This
stands for "Inner Sentence". There is also the "as" (a sentence) object. The
difference is that "as" includes the white space after the sentence and "ig"
doesn't. If you would delete a sentence, you want to delete the white space
at the same time, thus use "das". If you want to type new text the white
space can remain, thus you use "cis".

You can also use text objects in Visual mode. It will include the text object
in the Visual selection. Visual mode continues, thus you can do this several
times. For example, start Visual mode with "v" and select a sentence with
"as". Now you can repeat "as" to include more sentences. Finally you use an
operator to do something with the selected sentences.

You can find a long list of text objects here: |text-objects]|.

The "R" command causes Vim to enter replace mode. In this mode, each
character you type replaces the one under the cursor. This continues until
you type <Escs>.

In this example you start Replace mode on the first "t" of "text":

This is text. ~
Rinteresting.<Esc>

This is interesting. ~

You may have noticed that this command replaced 5 characters in the line with
twelve others. The "R" command automatically extends the line if it runs out
of characters to replace. It will not continue on the next line.

You can switch between Insert mode and Replace mode with the <Inserts> key.

When you use <BS> (backspace) to make correction, you will notice that the
old text is put back. Thus it works like an undo command for the last typed
character.

04.10 Conclusion

The operators, movement commands and text objects give you the possibility to
make lots of combinations. Now that you know how it works, you can use N
operators with M movement commands to make N * M commands!

You can find a list of operators here: |operator|

For example, there are many other ways to delete pieces of text. Here are a
few often used ones:

X delete character under the cursor (short for "dl")

X delete character before the cursor (short for "dh")
D delete from cursor to end of line (short for "ds")
dw delete from cursor to next start of word

db delete from cursor to previous start of word

diw delete word under the cursor (excluding white space)
daw delete word under the cursor (including white space)
dG delete until the end of the file

dgg delete until the start of the file

If you use "c" instead of "d" they become change commands. And with "y" you
yvank the text. And so forth.

There are a few often used commands to make changes that didn't fit somewhere
else:

.\usr_doc.txt Page 34

~ change case of the character under the cursor, and move the
cursor to the next character. This is not an operator (unless
'tildeop' is set), thus you can't use it with a motion
command. It does work in Visual mode and changes case for
all the selected text then.

I Start Insert mode after moving the cursor to the first
non-blank in the line.

A Start Insert mode after moving the cursor to the end of the
line.

Next chapter: |usr 05.txt| Set your settings

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page 35

usr 05.txt For Vim version 7.4. Last change: 2012 Nov 20
VIM USER MANUAL - by Bram Moolenaar
Set your settings
Vim can be tuned to work like you want it to. This chapter shows you how to

make Vim start with options set to different values. Add plugins to extend
Vim's capabilities. Or define your own macros.

05.1 The vimrc file

05.2 The example vimrc file explained
05.3 Simple mappings

05.4 Adding a plugin

05.5 Adding a help file

05.6 The option window

05.7 Often used options

Next chapter: |usr 06.txt Using syntax highlighting
Previous chapter: |usr 04.txt Making small changes
Table of contents: |usr toc.txt|

05.1 The vimrc file *vimrc-intro*

You probably got tired of typing commands that you use very often. To start
Vim with all your favorite option settings and mappings, you write them in
what is called the vimrc file. Vim executes the commands in this file when it
starts up.

If you already have a vimrc file (e.g., when your sysadmin has one setup for
you), you can edit it this way: >

:edit $SMYVIMRC
If you don't have a vimrc file yet, see |vimrc| to find out where you can
create a vimrc file. Also, the ":version" command mentions the name of the
"user vimrc file" Vim looks for.
For Unix and Macintosh this file is always used and is recommended:
~/.vimrc ~

For MS-DOS and MS-Windows you can use one of these:

SHOME/ vimrc ~
SVIM/ vimrc ~

The vimrc file can contain all the commands that you type after a colon. The
most simple ones are for setting options. For example, if you want Vim to
always start with the 'incsearch' option on, add this line your vimrc file: >

set incsearch

For this new line to take effect you need to exit Vim and start it again.
Later you will learn how to do this without exiting Vim.

This chapter only explains the most basic items. For more information on how
to write a Vim script file: |usr 41.txt].

05.2 The example vimrc file explained *vimrc example.vim*
In the first chapter was explained how the example vimrc (included in the
Vim distribution) file can be used to make Vim startup in not-compatible mode
(see |not-compatible|). The file can be found here:

SVIMRUNTIME/vimrc example.vim ~

.\usr_doc.txt Page

In this section we will explain the various commands used in this file. This
will give you hints about how to set up your own preferences. Not everything
will be explained though. Use the ":help" command to find out more.

>
set nocompatible

As mentioned in the first chapter, these manuals explain Vim working in an
improved way, thus not completely Vi compatible. Setting the 'compatible'
option off, thus 'nocompatible' takes care of this.

>
set backspace=indent,eol, start

This specifies where in Insert mode the <BS> is allowed to delete the
character in front of the cursor. The three items, separated by commas, tell
Vim to delete the white space at the start of the line, a line break and the
character before where Insert mode started.

>

set autoindent

This makes Vim use the indent of the previous line for a newly created line.
Thus there is the same amount of white space before the new line. For example
when pressing <Enter> in Insert mode, and when using the "o" command to open a
new line.

>
if has("vms")
set nobackup
else
set backup
endif
This tells Vim to keep a backup copy of a file when overwriting it. But not

on the VMS system, since it keeps old versions of files already. The backup
file will have the same name as the original file with "~" added. See |07.4|
>

set history=50

Keep 50 commands and 50 search patterns in the history. Use another number if
you want to remember fewer or more lines.
>

set ruler

Always display the current cursor position in the lower right corner of the
Vim window.

>
set showcmd

Display an incomplete command in the lower right corner of the Vim window,
left of the ruler. For example, when you type "2f", Vim is waiting for you to
type the character to find and "2f" is displayed. When you press "w" next,
the "2fw" command is executed and the displayed "2f" is removed.

text in the Vim window

-— VISUAL -- 2f 43,8 17%
e +
' showmode' 'showcmd' 'ruler'

set incsearch

Display the match for a search pattern when halfway typing it.

36

.\usr_doc.txt Page 37

map Q gq

This defines a key mapping. More about that in the next section. This
defines the "Q" command to do formatting with the "gg" operator. This is how
it worked before Vim 5.0. Otherwise the "Q" command starts Ex mode, but you
will not need it.

vnoremap g y:exe "grep /" . escape(@", '\\/') . "/ *.c * . h"<CR>

This mapping yanks the visually selected text and searches for it in C files.
This is a complicated mapping. You can see that mappings can be used to do
quite complicated things. Still, it is just a sequence of commands that are
executed like you typed them.

>
if & Co > 2 || has("gui_ running")
syntax on
set hlsearch
endif

This switches on syntax highlighting, but only if colors are available. And
the 'hlsearch' option tells Vim to highlight matches with the last used search
pattern. The "if" command is very useful to set options only when some
condition is met. More about that in |usr 41.txt|.

vimrc-filetype >
filetype plugin indent on

This switches on three very clever mechanisms:

1. Filetype detection.
Whenever you start editing a file, Vim will try to figure out what kind of
file this is. When you edit "main.c", Vim will see the ".c" extension and
recognize this as a "c" filetype. When you edit a file that starts with
"#!/bin/sh", Vim will recognize it as a "sh" filetype.
The filetype detection is used for syntax highlighting and the other two
items below.
See |[filetypes]|.

2. Using filetype plugin files
Many different filetypes are edited with different options. For example,
when you edit a "c¢" file, it's very useful to set the 'cindent' option to
automatically indent the lines. These commonly useful option settings are
included with Vim in filetype plugins. You can also add your own, see
|write-filetype-plugin|

3. Using indent files
When editing programs, the indent of a line can often be computed
automatically. Vim comes with these indent rules for a number of
filetypes. See |:filetype-indent-on| and 'indentexpr'.

autocmd FileType text setlocal textwidth=78

This makes Vim break text to avoid lines getting longer than 78 characters.
But only for files that have been detected to be plain text. There are

actually two parts here. "autocmd FileType text" is an autocommand. This
defines that when the file type is set to "text" the following command is
automatically executed. ‘"setlocal textwidth=78" sets the 'textwidth' option

to 78, but only locally in one file.

restore-cursor¥ >
autocmd BufReadPost *

\ if 1ine("l\"") > 1 && 1ine(n|\nn) <= line("gm) |
\ exe "normal! g\\n " |
\ endif

Another autocommand. This time it is used after reading any file. The
complicated stuff after it checks if the '" mark is defined, and jumps to it

.\usr_doc.txt Page 38

if so. The backslash at the start of a line is used to continue the command
from the previous line. That avoids a line getting very long.

See |line-continuation|. This only works in a Vim script file, not when
typing commands at the command-line.

A mapping enables you to bind a set of Vim commands to a single key. Suppose,
for example, that you need to surround certain words with curly braces. In
other words, you need to change a word such as "amount" into "{amount}". With
the :map command, you can tell Vim that the F5 key does this job. The command
is as follows: >

:map <F5> i{<Esc>ea}<Esc>

Note:
When entering this command, you must enter <F5> by typing four
characters. Similarly, <Esc> is not entered by pressing the <Esc>

key, but by typing five characters. Watch out for this difference
when reading the manual!

Let's break this down:
<F5> The F5 function key. This is the trigger key that causes the
command to be executed as the key is pressed.

i{<Esc> Insert the { character. The <Esc> key ends Insert mode.
e Move to the end of the word.
a}<Esc> Append the } to the word.

After you execute the ":map" command, all you have to do to put {} around a
word is to put the cursor on the first character and press F5.

In this example, the trigger is a single key; it can be any string. But when
you use an existing Vim command, that command will no longer be available.
You better avoid that.

One key that can be used with mappings is the backslash. Since you
probably want to define more than one mapping, add another character. You
could map "\p" to add parentheses around a word, and "\c¢" to add curly braces,
for example: >

:map \p i(<Esc>ea)<Esc>
:map \c 1i{<Escs>ea}<Esc>

You need to type the \ and the p quickly after another, so that Vim knows they
belong together.

The ":map" command (with no arguments) lists your current mappings. At
least the ones for Normal mode. More about mappings in section [40.1].

05.4 Adding a plugin *add-plugin* *plugin*
Vim's functionality can be extended by adding plugins. A plugin is nothing
more than a Vim script file that is loaded automatically when Vim starts. You
can add a plugin very easily by dropping it in your plugin directory.

{not available when Vim was compiled without the |+eval| feature}

There are two types of plugins:

global plugin: Used for all kinds of files
filetype plugin: Only used for a specific type of file

The global plugins will be discussed first, then the filetype ones
|add-filetype-plugin] .

GLOBAL PLUGINS *standard-plugin¥*

.\usr_doc.txt

When you start Vim, it will automatically load a number of global plugins.
You don't have to do anything for this. They add functionality that most
people will want to use, but which was implemented as a Vim script instead of
being compiled into Vim. You can find them listed in the help index

| standard-plugin-list|. Also see |load-plugins].

add-global-plugin¥
You can add a global plugin to add functionality that will always be present
when you use Vim. There are only two steps for adding a global plugin:
1. Get a copy of the plugin.
2. Drop it in the right directory.

GETTING A GLOBAL PLUGIN

Where can you find plugins?

- Some come with Vim. You can find them in the directory $VIMRUNTIME/macros
and its sub-directories.

- Download from the net. There is a large collection on http://www.vim.org.

- They are sometimes posted in a Vim |maillist].

- You could write one yourself, see |write-plugin].

Some plugins come as a vimball archive, see |vimball]|.
Some plugins can be updated automatically, see |getscript].
USING A GLOBAL PLUGIN

First read the text in the plugin itself to check for any special conditions.
Then copy the file to your plugin directory:

system plugin directory ~
Unix ~/.vim/plugin/
PC and 0S/2 SHOME/vimfiles/plugin or $VIM/vimfiles/plugin
Amiga s:vimfiles/plugin
Macintosh SVIM:vimfiles:plugin
Mac 0OS X ~/.vim/plugin/
RISC-0S Choices:vimfiles.plugin
Example for Unix (assuming you didn't have a plugin directory yet): >

mkdir ~/.vim
mkdir ~/.vim/plugin
cp /usr/local/share/vim/vim60/macros/justify.vim ~/.vim/plugin

That's all! Now you can use the commands defined in this plugin to justify
text.

Instead of putting plugins directly into the plugin/ directory, you may
better organize them by putting them into subdirectories under plugin/.

As an example, consider using "~/.vim/plugin/perl/*.vim" for all your Perl
plugins.

FILETYPE PLUGINS *add-filetype-plugin* *ftplugins*

The Vim distribution comes with a set of plugins for different filetypes that
you can start using with this command: >

:filetype plugin on
That's all! See |vimrc-filetype].

If you are missing a plugin for a filetype you are using, or you found a

Page 39

better one, you can add it. There are two steps for adding a filetype plugin:

1. Get a copy of the plugin.
2. Drop it in the right directory.

GETTING A FILETYPE PLUGIN

.\usr_doc.txt Page

You can find them in the same places as the global plugins. Watch out if the
type of file is mentioned, then you know if the plugin is a global or a
filetype one. The scripts in $VIMRUNTIME/macros are global ones, the filetype
plugins are in $VIMRUNTIME/ftplugin.

USING A FILETYPE PLUGIN *ftplugin-name¥*

You can add a filetype plugin by dropping it in the right directory. The

name of this directory is in the same directory mentioned above for global
plugins, but the last part is "ftplugin". Suppose you have found a plugin for
the "stuff" filetype, and you are on Unix. Then you can move this file to the
ftplugin directory: >

mv thefile ~/.vim/ftplugin/stuff.vim

If that file already exists you already have a plugin for "stuff". You might
want to check if the existing plugin doesn't conflict with the one you are
adding. If it's OK, you can give the new one another name: >

mv thefile ~/.vim/ftplugin/stuff too.vim

The underscore is used to separate the name of the filetype from the rest,
which can be anything. If you use "otherstuff.vim" it wouldn't work, it would
be loaded for the "otherstuff" filetype.

On MS-DOS you cannot use long filenames. You would run into trouble if you
add a second plugin and the filetype has more than six characters. You can
use an extra directory to get around this: >

mkdir $VIM/vimfiles/ftplugin/fortran
copy thefile $VIM/vimfiles/ftplugin/fortran/too.vim

The generic names for the filetype plugins are: >

ftplugin/<filetype>.vim
ftplugin/<filetype> <name>.vim
ftplugin/<filetype>/<name>.vim

Here "<name>" can be any name that you prefer.
Examples for the "stuff" filetype on Unix: >

~/.vim/ftplugin/stuff.vim
~/.vim/ftplugin/stuff def.vim
~/.vim/ftplugin/stuff/header.vim

The <filetype> part is the name of the filetype the plugin is to be used for.
Only files of this filetype will use the settings from the plugin. The <name>
part of the plugin file doesn't matter, you can use it to have several plugins
for the same filetype. ©Note that it must end in ".vim".

Further reading:

| filetype-plugins| Documentation for the filetype plugins and information
about how to avoid that mappings cause problems.

load-plugins | When the global plugins are loaded during startup.

ftplugin-overrule | Overruling the settings from a global plugin.

write-plugin]| How to write a plugin script.

plugin-details]| For more information about using plugins or when your
plugin doesn't work.

|new-filetype| How to detect a new file type.

05.5% Adding a help file *add-local-help* *matchit-install#*

If you are lucky, the plugin you installed also comes with a help file. We
will explain how to install the help file, so that you can easily find help
for your new plugin.

Let us use the "matchit.vim" plugin as an example (it is included with
Vim) . This plugin makes the "%" command jump to matching HTML tags,
if/else/endif in Vim scripts, etc. Very useful, although it's not backwards

40

.\usr_doc.txt Page 41

compatible (that's why it is not enabled by default).

This plugin comes with documentation: "matchit.txt". Let's first copy the
plugin to the right directory. This time we will do it from inside Vim, so
that we can use SVIMRUNTIME. (You may skip some of the "mkdir" commands if

you already have the directory.) >
:!'mkdir ~/.vim
:lmkdir ~/.vim/plugin
:lcp SVIMRUNTIME/macros/matchit.vim ~/.vim/plugin
The "cp" command is for Unix, on MS-DOS you can use "copy".
Now create a "doc" directory in one of the directories in 'runtimepath'. >
:!lmkdir ~/.vim/doc
Copy the help file to the "doc" directory. >

:lcp SVIMRUNTIME/macros/matchit.txt ~/.vim/doc

Now comes the trick, which allows you to jump to the subjects in the new help
file: Generate the local tags file with the |:helptags| command. >

:helptags ~/.vim/doc
Now you can use the >
:help g%

command to find help for "g%" in the help file you just added. You can see an
entry for the local help file when you do: >

:help local-additions
The title lines from the local help files are automagically added to this
section. There you can see which local help files have been added and jump to

them through the tag.

For writing a local help file, see |write-local-help].

If you are looking for an option that does what you want, you can search in
the help files here: |options|. Another way is by using this command: >

:options
This opens a new window, with a list of options with a one-line explanation.
The options are grouped by subject. Move the cursor to a subject and press

<Enter> to jump there. Press <Enter> again to jump back. Or use CTRL-O.

You can change the value of an option. For example, move to the "displaying
text" subject. Then move the cursor down to this line:

set wrap nowrap -~
When you hit <Enter>, the line will change to:

set nowrap wrap -~
The option has now been switched off.
Just above this line is a short description of the 'wrap' option. Move the
cursor one line up to place it in this line. ©Now hit <Enter> and you jump to
the full help on the 'wrap' option.
For options that take a number or string argument you can edit the wvalue.

Then press <Enter> to apply the new value. For example, move the cursor a few
lines up to this line:

.\usr_doc.txt Page 42
set so=0 ~

Position the cursor on the zero with "$". Change it into a five with "r5".

Then press <Enter> to apply the new value. When you now move the cursor

around you will notice that the text starts scrolling before you reach the

border. This is what the 'scrolloff' option does, it specifies an offset
from the window border where scrolling starts.

There are an awful lot of options. Most of them you will hardly ever use.
Some of the more useful ones will be mentioned here. Don't forget you can
find more help on these options with the ":help" command, with single quotes
before and after the option name. For example: >

:help 'wrap'

In case you have messed up an option value, you can set it back to the
default by putting an ampersand (&) after the option name. Example: >

:set iskeywords&

NOT WRAPPING LINES

Vim normally wraps long lines, so that you can see all of the text. Sometimes
it's better to let the text continue right of the window. Then you need to
scroll the text left-right to see all of a long line. Switch wrapping off
with this command: >

:set nowrap

Vim will automatically scroll the text when you move to text that is not
displayed. To see a context of ten characters, do this: >

:set sidescroll=10

This doesn't change the text in the file, only the way it is displayed.

WRAPPING MOVEMENT COMMANDS
Most commands for moving around will stop moving at the start and end of a
line. You can change that with the 'whichwrap' option. This sets it to the
default value: >

:set whichwrap=b, s
This allows the <BS> key, when used in the first position of a line, to move
the cursor to the end of the previous line. And the <Space> key moves from
the end of a line to the start of the next one.
To allow the cursor keys <Left> and <Right> to also wrap, use this command: >

:set whichwrap=b, s, <, >

This is still only for Normal mode. To let <Lefts> and <Right> do this in
Insert mode as well: >

:set whichwrap=b,s,<,>, [,]

There are a few other flags that can be added, see 'whichwrap'.

VIEWING TABS

When there are tabs in a file, you cannot see where they are. To make them
visible: >

:set list

.\usr_doc.txt Page 43

Now every tab is displayed as "I. And a $ is displayed at the end of each
line, so that you can spot trailing spaces that would otherwise go unnoticed.

A disadvantage is that this looks ugly when there are many Tabs in a file.
If you have a color terminal, or are using the GUI, Vim can show the spaces
and tabs as highlighted characters. Use the 'listchars' option: >

:set listchars=tab:>-,trail:-

Now every tab will be displayed as ">---" (with more or less "-") and trailing
white space as "-". Looks a lot better, doesn't it?
KEYWORDS

The 'iskeyword' option specifies which characters can appear in a word: >

:set iskeyword

< iskeyword=@,48-57, ,192-255 ~
The "@" stands for all alphabetic letters. "48-57" stands for ASCII
characters 48 to 57, which are the numbers 0 to 9. "192-255" are the

printable latin characters.
Sometimes you will want to include a dash in keywords, so that commands
like "w" consider "upper-case" to be one word. You can do it like this: >

:set iskeyword+=-
:set iskeyword
< iskeyword=@,48-57, ,192-255,- ~

If you look at the new value, you will see that Vim has added a comma for you.
To remove a character use "-=". For example, to remove the underscore: >

:set iskeyword-=_
:set iskeyword
< iskeyword=@,48-57,192-255, - ~

This time a comma is automatically deleted.

ROOM FOR MESSAGES

When Vim starts there is one line at the bottom that is used for messages.
When a message is long, it is either truncated, thus you can only see part of
it, or the text scrolls and you have to press <Enter> to continue.

You can set the 'cmdheight' option to the number of lines used for
messages. Example: >

:set cmdheight=3

This does mean there is less room to edit text, thus it's a compromise.

Next chapter: |usr 06.txt| Using syntax highlighting

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page 44

usr 06.txt For Vim version 7.4. Last change: 2009 Oct 28
VIM USER MANUAL - by Bram Moolenaar
Using syntax highlighting

Black and white text is boring. With colors your file comes to life. This
not only looks nice, it also speeds up your work. Change the colors used for

the different sorts of text. Print your text, with the colors you see on the
screen.

06.1 Switching it on

06.2 No or wrong colors?

06.3 Different colors

06.4 With colors or without colors

06.5 Printing with colors

06.6 Further reading

Next chapter: |usr 07.txt Editing more than one file
Previous chapter: |usr 05.txt Set your settings

Table of contents: |usr toc.txt|

It all starts with one simple command: >
:syntax enable

That should work in most situations to get color in your files. Vim will
automagically detect the type of file and load the right syntax highlighting.
Suddenly comments are blue, keywords brown and strings red. This makes it
easy to overview the file. After a while you will find that black&white text
slows you down!

If you always want to use syntax highlighting, put the ":syntax enable"
command in your |vimrc| file.

If you want syntax highlighting only when the terminal supports colors, you
can put this in your |vimrc| file: >

if &t Co > 1
syntax enable
endif

If you want syntax highlighting only in the GUI version, put the ":syntax
enable" command in your |gvimrc| file.

There can be a number of reasons why you don't see colors:

- Your terminal does not support colors.
Vim will use bold, italic and underlined text, but this doesn't look
very nice. You probably will want to try to get a terminal with
colors. For Unix, I recommend the xterm from the XFree86 project:
| xfree-xterm]| .

- Your terminal does support colors, but Vim doesn't know this.
Make sure your S$TERM setting is correct. For example, when using an
xterm that supports colors: >
setenv TERM xterm-color

or (depending on your shell): >

TERM=xterm-color; export TERM

.\usr_doc.txt Page 45

< The terminal name must match the terminal you are using. If it
still doesn't work, have a look at |xterm-color|, which shows a few
ways to make Vim display colors (not only for an xterm).

- The file type is not recognized.
Vim doesn't know all file types, and sometimes it's near to impossible
to tell what language a file uses. Try this command: >

:set filetype

If the result is "filetype=" then the problem ig indeed that Vim
doesn't know what type of file this is. You can set the type
manually: >

:set filetype=fortran

< To see which types are available, look in the directory
SVIMRUNTIME/syntax. For the GUI you can use the Syntax menu.
Setting the filetype can also be done with a |modeline|, so that the
file will be highlighted each time you edit it. For example, this
line can be used in a Makefile (put it near the start or end of the
file): >

vim: syntax=make
< You might know how to detect the file type yourself. Often the file

name extension (after the dot) can be used.
See |new-filetype| for how to tell Vim to detect that file type.

There is no highlighting for your file type.
You could try using a similar file type by manually setting it as
mentioned above. If that isn't good enough, you can write your own
syntax file, see |mysyntaxfile].

Or the colors could be wrong:

- The colored text is very hard to read.
Vim guesses the background color that you are using. If it is black
(or another dark color) it will use light colors for text. If it is
white (or another light color) it will use dark colors for text. If
Vim guessed wrong the text will be hard to read. To solve this, set
the 'background' option. For a dark background: >

:set background=dark
< And for a light background: >
:set background=1light

< Make sure you put this before the ":syntax enable" command,
otherwise the colors will already have been set. You could do
":syntax resget" after setting 'background' to make Vim set the default
colors again.

- The colors are wrong when scrolling bottom to top.
Vim doesn't read the whole file to parse the text. It starts parsing
wherever you are viewing the file. That saves a lot of time, but
sometimes the colors are wrong. A simple fix is hitting CTRL-L. Or
scroll back a bit and then forward again.

For a real fix, see |:syn-sync|. Some syntax files have a way to make
it look further back, see the help for the specific syntax file. For
example, |tex.vim| for the TeX syntax.
06.3 Different colors *:gyn-default-override*
If you don't like the default colors, you can select another color scheme. 1In

the GUI use the Edit/Color Scheme menu. You can also type the command: >

:colorscheme evening

.\usr_doc.txt Page 46
"evening" is the name of the color scheme. There are several others you might
want to try out. Look in the directory $VIMRUNTIME/colors.

When you found the color scheme that you like, add the ":colorscheme" command
to your |vimrc| file.

You could also write your own color scheme. This is how you do it:

1. Select a color scheme that comes close. Copy this file to your own Vim
directory. For Unix, this should work: >

Imkdir ~/.vim/colors
lcp $VIMRUNTIME/colors/morning.vim ~/.vim/colors/mine.vim

<
This is done from Vim, because it knows the value of S$VIMRUNTIME.
2. Edit the color scheme file. These entries are useful:
term attributes in a B&W terminal
cterm attributes in a color terminal
ctermfg foreground color in a color terminal
ctermbg background color in a color terminal
gui attributes in the GUI
guifg foreground color in the GUI
guibg background color in the GUI
For example, to make comments green: >
:highlight Comment ctermfg=green guifg=green
<
Attributes you can use for "cterm" and "gui" are "bold" and "underline".
If you want both, use "bold,underline". For details see the |:highlight|
command.
3. Tell Vim to always use your color scheme. Put this line in your |vimrc|: >

colorscheme mine

If you want to see what the most often used color combinations look like, use
this command: >

:runtime syntax/colortest.vim

You will see text in various color combinations. You can check which ones are
readable and look nice.

Displaying text in color takes a lot of effort. If you find the displaying
too slow, you might want to disable syntax highlighting for a moment: >

:syntax clear
When editing another file (or the same one) the colors will come back.

:syn-off
If you want to stop highlighting completely use: >

:syntax off

This will completely disable syntax highlighting and remove it immediately for
all buffers.

:syn-manual
If you want syntax highlighting only for specific files, use this: >

:syntax manual

This will enable the syntax highlighting, but not switch it on automatically

.\usr_doc.txt Page

when starting to edit a buffer. To switch highlighting on for the current
buffer, set the 'syntax' option: >

:set syntax=0ON

06.5 Printing with colors *syntax-printing*
In the MS-Windows version you can print the current file with this command: >
:hardcopy

You will get the usual printer dialog, where you can select the printer and a
few settings. If you have a color printer, the paper output should look the
same as what you see inside Vim. But when you use a dark background the
colors will be adjusted to look good on white paper.

There are several options that change the way Vim prints:
'printdevice!’
'printheader’
'printfont’
'printoptions’

To print only a range of lines, use Visual mode to select the lines and then
type the command: >

v100j:hardcopy

"v" starts Visual mode. "100j" moves a hundred lines down, they will be
highlighted. Then ":hardcopy" will print those lines. You can use other
commands to move in Visual mode, of course.

This also works on Unix, if you have a PostScript printer. Otherwise, you
will have to do a bit more work. You need to convert the text to HTML first,
and then print it from a web browser.

Convert the current file to HTML with this command: >
: TOhtml

In case that doesn't work: >
:source SVIMRUNTIME/syntax/2html.vim

You will see it crunching away, this can take quite a while for a large file.
Some time later another window shows the HTML code. Now write this somewhere
(doesn't matter where, you throw it away later):
>

:write main.c.html

Open this file in your favorite browser and print it from there. If all goes
well, the output should look exactly as it does in Vim. See |2html.vim| for
details. Don't forget to delete the HTML file when you are done with it.

Instead of printing, you could also put the HTML file on a web server, and let
others look at the colored text.

usr 44.txt| Your own syntax highlighted.
syntax| All the details.

Next chapter: |usr 07.txt| Editing more than one file

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

47

.\usr_doc.txt Page 48

usr 07.txt For Vim version 7.4. Last change: 2006 Apr 24
VIM USER MANUAL - by Bram Moolenaar
Editing more than one file
No matter how many files you have, you can edit them without leaving Vim.

Define a list of files to work on and jump from one to the other. Copy text
from one file and put it in another one.

07.1 Edit another file

07.2 A list of files

07.3 Jumping from file to file
07.4 Backup files

07.5 Copy text between files
07.6 Viewing a file

07.7 Changing the file name

Next chapter: |usr 08.txt Splitting windows
Previous chapter: |usr 06.txt Using syntax highlighting
Table of contents: |usr toc.txt|

So far you had to start Vim for every file you wanted to edit. There is a
simpler way. To start editing another file, use this command: >

:edit foo.txt
You can use any file name instead of "foo.txt". Vim will close the current

file and open the new one. If the current file has unsaved changes, however,
Vim displays an error message and does not open the new file:

E37: No write since last change (use ! to override) ~
Note:
Vim puts an error ID at the start of each error message. If you do
not understand the message or what caused it, look in the help system
for this ID. 1In this case: >

:help E37

At this point, you have a number of alternatives. You can write the file
using this command: >

:write

Or you can force Vim to discard your changes and edit the new file, using the
force (!) character: >

:edit! foo.txt

If you want to edit another file, but not write the changes in the current
file yet, you can make it hidden: >

:hide edit foo.txt

The text with changes is still there, but you can't see it. This is further
explained in section |22.4|: The buffer list.

You can start Vim to edit a sequence of files. For example: >
vim one.c two.c three.c

This command starts Vim and tells it that you will be editing three files.

.\usr_doc.txt Page 49

Vim displays just the first file. After you have done your thing in this
file, to edit the next file you use this command: >

:next
If you have unsaved changes in the current file, you will get an error
message and the ":next" will not work. This is the same problem as with
":edit" mentioned in the previous section. To abandon the changes: >

:next!

But mostly you want to save the changes and move on to the next file. There
is a special command for this: >

:wnext
This does the same as using two separate commands: >
:write
:next
WHERE AM TI?
To see which file in the argument list you are editing, look in the window
title. It should show something like " (2 of 3)". This means you are editing
the second file out of three files.
If you want to see the list of files, use this command: >
:args
This is short for "arguments". The output might look like this:
one.c [two.c] three.c ~
These are the files you started Vim with. The one you are currently editing,
"two.c", is in square brackets.
MOVING TO OTHER ARGUMENTS
To go back one file: >
:previous
This is just like the ":next" command, except that it moves in the other
direction. Again, there is a shortcut command for when you want to write the
file first: >
:wprevious
To move to the very last file in the list: >
:last
And to move back to the first one again: >
:first
There is no ":wlast" or ":wfirst" command though!

You can use a count for ":next" and ":previous". To skip two files forward: >

:2next

AUTOMATIC WRITING

When moving around the files and making changes, you have to remember to use
":write". Otherwise you will get an error message. If you are sure you
always want to write modified files, you can tell Vim to automatically write

.\usr_doc.txt Page 50
them: >
:set autowrite

When you are editing a file which you may not want to write, switch it off
again: >

:set noautowrite

EDITING ANOTHER LIST OF FILES

You can redefine the list of files without the need to exit Vim and start it
again. Use this command to edit three other files: >

:args five.c six.c seven.h
Or use a wildcard, like it's used in the shell: >
rargs *.txt
Vim will take you to the first file in the 1list. Again, if the current file

has changes, you can either write the file first, or use ":args!" (with !
added) to abandon the changes.

DID YOU EDIT THE LAST FILE?

arglist-quit#
When you use a list of files, Vim assumes you want to edit them all. To
protect you from exiting too early, you will get this error when you didn't
edit the last file in the list yet:

E173: 46 more files to edit ~

If you really want to exit, just do it again. Then it will work (but not when
you did other commands in between) .

A

To quickly jump between two files, press CTRL-" (on English-US keyboards the
is above the 6 key). Example: >

:args one.c two.c three.c
You are now in one.c. >

:next
Now you are in two.c. Now use CTRL-" to go back to one.c. Another CTRL-" and
you are back in two.c. Another CTRL-" and you are in one.c again. If you now
do: >

:next
You are in three.c. Notice that the CTRL-" command does not change the idea
of where you are in the list of files. Only commands like ":next" and
":previous" do that.
The file you were previously editing is called the "alternate" file. When you
just started Vim CTRL-" will not work, since there isn't a previous file.

PREDEFINED MARKS

After jumping to another file, you can use two predefined marks which are very
useful: >

~
n

This takes you to the position where the cursor was when you left the file.

.\usr_doc.txt Page

Another mark that is remembered is the position where you made the last
change: >

~

Suppose you are editing the file "one.txt". Somewhere halfway the file you
use "x" to delete a character. Then you go to the last line with "G" and
write the file with ":w". You edit several other files, and then use ":edit
one.txt" to come back to "one.txt". If you now use " Vim jumps to the last
line of the file. Using ~. takes you to the position where you deleted the
character. Even when you move around in the file "" and ~. will take you to
the remembered position. At least until you make another change or leave the
file.

FILE MARKS

In chapter 4 was explained how you can place a mark in a file with "mx" and
jump to that position with "“x". That works within one file. If you edit
another file and place marks there, these are specific for that file. Thus
each file has its own set of marks, they are local to the file.

So far we were using marks with a lowercase letter. There are also marks
with an uppercase letter. These are global, they can be used from any file.
For example suppose that we are editing the file "foo.txt". Go to halfway the

file ("50%") and place the F mark there (F for foo): >
50%mF

Now edit the file "bar.txt" and place the B mark (B for bar) at its last line:
>
GmB

Now you can use the "'F" command to jump back to halfway foo.txt. Or edit yet
another file, type "'B" and you are at the end of bar.txt again.

The file marks are remembered until they are placed somewhere else. Thus you
can place the mark, do hours of editing and still be able to jump back to that
mark.

It's often useful to think of a simple connection between the mark letter
and where it is placed. For example, use the H mark in a header file, M in
a Makefile and C in a C code file.

To see where a specific mark is, give an argument to the ":marks" command: >
:marks M

You can also give several arguments: >
:marks MCP

Don't forget that you can use CTRL-O and CTRL-I to jump to older and newer
positions without placing marks there.

Usually Vim does not produce a backup file. If you want to have one, all you
need to do is execute the following command: >

:set backup

The name of the backup file is the original file with a ~ added to the end.
If your file is named data.txt, for example, the backup file name is
data.txt~.

If you do not like the fact that the backup files end with ~, you can
change the extension: >

:set backupext=.bak

This will use data.txt.bak instead of data.txt~.
Another option that matters here is 'backupdir'. It specifies where the

51

.\usr_doc.txt Page 52

backup file is written. The default, to write the backup in the same
directory as the original file, will mostly be the right thing.

Note:

When the 'backup' option isn't set but the 'writebackup' is, Vim will
still create a backup file. However, it is deleted as soon as writing
the file was completed successfully. This functions as a safety
against losing your original file when writing fails in some way (disk
full is the most common cause; being hit by lightning might be
another, although less common) .

KEEPING THE ORIGINAL FILE

If you are editing source files, you might want to keep the file before you
make any changes. But the backup file will be overwritten each time you write
the file. Thus it only contains the previous version, not the first one.

To make Vim keep the original file, set the 'patchmode' option. This
specifies the extension used for the first backup of a changed file. Usually
you would do this: >

:set patchmode=.orig

When you now edit the file data.txt for the first time, make changes and write
the file, Vim will keep a copy of the unchanged file under the name
"data.txt.orig".

If you make further changes to the file, Vim will notice that
"data.txt.orig" already exists and leave it alone. Further backup files will
then be called "data.txt~" (or whatever you specified with 'backupext!').

If you leave 'patchmode' empty (that is the default), the original file
will not be kept.

This explains how to copy text from one file to another. Let's start with a
simple example. Edit the file that contains the text you want to copy. Move
the cursor to the start of the text and press "v". This starts Visual mode.
Now move the cursor to the end of the text and press "y". This yanks (copies)
the selected text.

To copy the above paragraph, you would do: >

:edit thisfile

/This

viJjJiisy
Now edit the file you want to put the text in. Move the cursor to the
character where you want the text to appear after. Use "p" to put the text

there. >
:edit otherfile

/There

p
Of course you can use many other commands to yank the text. For example, to
select whole lines start Visual mode with "V". Or use CTRL-V to select a

rectangular block. Or use "Y" to yank a single line, "yaw" to yank-a-word,
etc.

The "p" command puts the text after the cursor. Use "P" to put the text
before the cursor. Notice that Vim remembers if you yanked a whole line or a
block, and puts it back that way.

USING REGISTERS

When you want to copy several pieces of text from one file to another, having
to switch between the files and writing the target file takes a lot of time.
To avoid this, copy each piece of text to its own register.

A register is a place where Vim stores text. Here we will use the
registers named a to z (later you will find out there are others). Let's copy
a sentence to the f register (f for First): >

.\usr_doc.txt Page
"fyas
The "yas" command yanks a sentence like before. 1It's the "f that tells Vim

the text should be place in the f register. This must come just before the
yank command.
Now yank three whole lines to the 1 register (1 for line): >

"13Y

The count could be before the "1 just as well. To yank a block of text to the
b (for block) register: >

CTRL-Vjjww"by

Notice that the register specification "b is just before the "y" command.
This is required. If you would have put it before the "w" command, it would
not have worked.

Now you have three pieces of text in the £, 1 and b registers. Edit
another file, move around and place the text where you want it: >

llfp

Again, the register specification "f comes before the "p" command.

You can put the registers in any order. And the text stays in the register
until you yank something else into it. Thus you can put it as many times as
you like.

When you delete text, you can also specify a register. Use this to move
several pieces of text around. For example, to delete-a-word and write it in
the w register: >

"wdaw

Again, the register specification comes before the delete command "d".

APPENDING TO A FILE
When collecting lines of text into one file, you can use this command: >
:write >> logfile

This will write the text of the current file to the end of "logfile". Thus it
is appended. This avoids that you have to copy the lines, edit the log file
and put them there. Thus you save two steps. But you can only append to the
end of a file.

To append only a few lines, select them in Visual mode before typing
":write". 1In chapter 10 you will learn other ways to select a range of lines.

Sometimes you only want to see what a file contains, without the intention to
ever write it back. There is the risk that you type ":w" without thinking and
overwrite the original file anyway. To avoid this, edit the file read-only.
To start Vim in readonly mode, use this command: >
vim -R file
On Unix this command should do the same thing: >
view file
You are now editing "file" in read-only mode. When you try using ":w" you
will get an error message and the file won't be written.
When you try to make a change to the file Vim will give you a warning:

W1l0: Warning: Changing a readonly file ~

The change will be done though. This allows for formatting the file, for
example, to be able to read it easily.

53

.\usr_doc.txt Page 54

If you make changes to a file and forgot that it was read-only, you can
still write it. Add the ! to the write command to force writing.

If you really want to forbid making changes in a file, do this: >
vim -M file

Now every attempt to change the text will fail. The help files are like this,
for example. If you try to make a change you get this error message:

E21: Cannot make changes, 'modifiable' is off ~

You could use the -M argument to setup Vim to work in a viewer mode. This is
only voluntary though, since these commands will remove the protection: >

:set modifiable
:set write

A clever way to start editing a new file is by using an existing file that
contains most of what you need. For example, you start writing a new program
to move a file. You know that you already have a program that copies a file,
thus you start with: >

:edit copy.c

You can delete the stuff you don't need. Now you need to save the file under
a new name. The ":saveasgs" command can be used for this: >

:saveas move.c
Vim will write the file under the given name, and edit that file. Thus the
next time you do ":write", it will write "move.c". '"copy.c" remains
unmodified.

When you want to change the name of the file you are editing, but don't

want to write the file, you can use this command: >

:file move.c
Vim will mark the file as "not edited". This means that Vim knows this is not
the file you started editing. When you try to write the file, you might get
this message:

E13: File exists (use ! to override) ~

This protects you from accidentally overwriting another file.

Next chapter: |usr 08.txt| Splitting windows

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page 55

usr 08.txt For Vim version 7.4. Last change: 2014 Jul 06
VIM USER MANUAL - by Bram Moolenaar
Splitting windows
Display two different files above each other. Or view two locations in the

file at the same time. See the difference between two files by putting them
side by side. All this is possible with split windows.

08.1 Split a window

08.2 Split a window on another file
08.3 Window size

08.4 Vertical splits

08.5 Moving windows

08.6 Commands for all windows

08.7 Viewing differences with vimdiff
08.8 Various

08.9 Tab pages

Next chapter: |usr 09.txt Using the GUI
Previous chapter: |usr 07.txt Editing more than one file
Table of contents: |usr toc.txt|

The easiest way to open a new window is to use the following command: >
:split

This command splits the screen into two windows and leaves the cursor in the
top one:

OoNne .C=============================
o +
What you see here is two windows on the same file. The line with "====" is
that status line. It displays information about the window above it. (In
practice the status line will be in reverse video.)
The two windows allow you to view two parts of the same file. For example,

you could make the top window show the variable declarations of a program, and
the bottom one the code that uses these variables.

The CTRL-W w command can be used to jump between the windows. If you are in
the top window, CTRL-W w jumps to the window below it. If you are in the
bottom window it will jump to the first window. (CTRL-W CTRL-W does the same

thing, in case you let go of the CTRL key a bit later.)

CLOSE THE WINDOW
To close a window, use the command: >
:close
Actually, any command that quits editing a file works, like ":quit" and "zZz".

But ":close" prevents you from accidentally exiting Vim when you close the
last window.

.\usr_doc.txt Page
CLOSING ALL OTHER WINDOWS

If you have opened a whole bunch of windows, but now want to concentrate on
one of them, this command will be useful: >

:only

This closes all windows, except for the current one. If any of the other
windows has changes, you will get an error message and that window won't be
closed.

08.2 Split a window on another file
The following command opens a second window and starts editing the given file:
>

:split two.c

If you were editing one.c, then the result looks like this:

To open a window on a new, empty file, use this: >
:new

You can repeat the ":split" and ":new" commands to create as many windows as
you like.

08.3 Window size
The ":split" command can take a number argument. If specified, this will be
the height of the new window. For example, the following opens a new window
three lines high and starts editing the file alpha.c: >

:3split alpha.c
For existing windows you can change the size in several ways. When you have a
working mouse, it is easy: Move the mouse pointer to the status line that
separates two windows, and drag it up or down.
To increase the size of a window: >

CTRL-W +
To decrease it: >

CTRL-W -

Both of these commands take a count and increase or decrease the window size
by that many lines. Thus "4 CTRL-W +" make the window four lines higher.

To set the window height to a specified number of lines: >

{height }CTRL-W _
That's: a number {height}, CTRL-W and then an underscore (the - key with Shift
on English-US keyboards) .

To make a window as high as it can be, use the CTRL-W _ command without a
count.

56

.\usr_doc.txt Page 57

USING THE MOUSE

In Vim you can do many things very quickly from the keyboard. Unfortunately,
the window resizing commands require quite a bit of typing. In this case,
using the mouse is faster. Position the mouse pointer on a status line. Now
press the left mouse button and drag. The status line will move, thus making
the window on one side higher and the other smaller.

OPTIONS

The 'winheight' option can be set to a minimal desired height of a window and
'winminheight' to a hard minimum height.

Likewise, there is 'winwidth' for the minimal desired width and
'winminwidth' for the hard minimum width.

The 'equalalways' option, when set, makes Vim equalize the windows sizes
when a window is closed or opened.

08.4 Vertical splits

The ":split" command creates the new window above the current one. To make
the window appear at the left side, use: >

:vsplit

or: >
:vsplit two.c

The result looks something like this:

e +
/* file two.c */ /* file one.c */
LWO.C===============0Nne.C=============
e +
Actually, the | lines in the middle will be in reverse video. This is called

the vertical separator. It separates the two windows left and right of it.

There is also the ":vnew" command, to open a vertically split window on a new,
empty file. Another way to do this: >

:vertical new

The ":vertical" command can be inserted before another command that splits a
window. This will cause that command to split the window vertically instead
of horizontally. (If the command doesn't split a window, it works
unmodified.)

MOVING BETWEEN WINDOWS

Since you can split windows horizontally and vertically as much as you like,
you can create almost any layout of windows. Then you can use these commands
to move between them:

CTRL-W h move to the window on the left
CTRL-W j move to the window below
CTRL-W k move to the window above

CTRL-W 1 move to the window on the right
CTRL-W t move to the TOP window

CTRL-W b move to the BOTTOM window

You will notice the same letters as used for moving the cursor. And the
cursor keys can also be used, if you like.

.\usr_doc.txt

More commands to move to other windows: |Q wi].

Page 58

You have split a few windows,
need a command to move the window somewhere else.

windows like this:

Clearly the last one should be at the top.

and the type this command: >

This uses the uppercase letter K.
the very top.

When you have vertical splits,
top and make it occupy the full width of the Vim window.

layout:

CTRL-W K

+ ___
/* two.c */ /* three.c */ /* one.c */
tWO.C=========three.C=========0ne.C========

+ ___

but now they are in the wrong place. Then you
For example, you have three

Go to that window (using CTRL-W w)

What happens is that the window is moved to
You will notice that K is again used for moving upwards.
CTRL-W K will move the current window to the

If this is your

Then using CTRL-W K in the middle window (three.c) will result in:

The other three similar commands

+ ___
/* three.c */
three.C====================================
/* two.c */ /* one.c */
LWO.C==================0NnNe .C===============

+ ___

CTRL-W H move window to the far left
CTRL-W J move window to the bottom
CTRL-W L move window to the far right

(you can probably guess these now) :

When you have several windows open and

Commands for all windows

you want to quit Vim, you can close

each window separately. A quicker way is using this command: >

.\usr_doc.txt Page 59

:gqall
This stands for "quit all". If any of the windows contain changes, Vim will
not exit. The cursor will automatically be positioned in a window with
changes. You can then either use ":write" to save the changes, or ":quit!" to

throw them away.

If you know there are windows with changes, and you want to save all these
changes, use this command: >

:wall
This stands for "write all". But actually, it only writes files with
changes. Vim knows it doesn't make sense to write files that were not
changed.
And then there is the combination of ":gall" and ":wall": the "write and
guit all" command: >

:wgall

This writes all modified files and quits Vim.
Finally, there is a command that quits Vim and throws away all changes: >

:gall!

Be careful, there is no way to undo this command!

OPENING A WINDOW FOR ALL ARGUMENTS
To make Vim open a window for each file, start it with the "-o" argument: >
vim -o one.txt two.txt three.txt

This results in:

file three.txt

three.tXt======================

The "-0" argument is used to get vertically split windows.
When Vim is already running, the ":all" command opens a window for each
file in the argument list. ":vertical all" does it with vertical splits.

There is a special way to start Vim, which shows the differences between two
files. Let's take a file "main.c" and insert a few characters in one line.
Write this file with the 'backup' option set, so that the backup file
"main.c~" will contain the previous version of the file.

Type this command in a shell (not in Vim): >

vimdiff main.c~ main.c

Vim will start, with two windows side by side. You will only see the line
in which you added characters, and a few lines above and below it.

+ +--123 lines: /* al|+ +--123 lines: /* a <- fold
text text

.\usr_doc.txt Page
text text
text text
text changed text <- changed line
text text
text | —————————— <- deleted line
text text
text text
text text
+ +--432 lines: text|+ +--432 lines: text <- fold

(This picture doesn't show the highlighting, use the vimdiff command for a
better look.)

The lines that were not modified have been collapsed into one line. This is
called a closed fold. They are indicated in the picture with "<- fold". Thus
the single fold line at the top stands for 123 text lines. These lines are
equal in both files.

The line marked with "<- changed line" is highlighted, and the inserted
text is displayed with another color. This clearly shows what the difference
is between the two files.

The line that was deleted is displayed with "---" in the main.c window.
See the "<- deleted line" marker in the picture. These characters are not
really there. They just fill up main.c, so that it displays the same number
of lines as the other window.

THE FOLD COLUMN

Each window has a column on the left with a slightly different background. In
the picture above these are indicated with "VV". You notice there is a plus
character there, in front of each closed fold. Move the mouse pointer to that
plus and click the left button. The fold will open, and you can see the text
that it contains.

The fold column contains a minus sign for an open fold. If you click on
this -, the fold will close.

Obviously, this only works when you have a working mouse. You can also use
"zo" to open a fold and "zc" to close it.

DIFFING IN VIM

Another way to start in diff mode can be done from inside Vim. Edit the
"main.c" file, then make a split and show the differences: >

:edit main.c
:vertical diffsplit main.c~

The ":vertical" command is used to make the window split vertically. If you
omit this, you will get a horizontal split.

If you have a patch or diff file, you can use the third way to start diff
mode. First edit the file to which the patch applies. Then tell Vim the name
of the patch file: >

:edit main.c
:vertical diffpatch main.c.diff

WARNING: The patch file must contain only one patch, for the file you are
editing. Otherwise you will get a lot of error messages, and some files might
be patched unexpectedly.

The patching will only be done to the copy of the file in Vim. The file on
your harddisk will remain unmodified (until you decide to write the file).

SCROLL BINDING

60

.\usr_doc.txt Page 61
When the files have more changes, you can scroll in the usual way. Vim will
try to keep both the windows start at the same position, so you can easily see
the differences side by side.
When you don't want this for a moment, use this command: >

:set noscrollbind

JUMPING TO CHANGES

When you have disabled folding in some way, it may be difficult to find the
changes. Use this command to jump forward to the next change: >

lc
To go the other way use: >
[c

Prepended a count to jump further away.

REMOVING CHANGES

You can move text from one window to the other. This either removes
differences or adds new ones. Vim doesn't keep the highlighting updated in
all situations. To update it use this command: >

:diffupdate

To remove a difference, you can move the text in a highlighted block from one
window to another. Take the "main.c" and "main.c~" example above. Move the

cursor to the left window, on the line that was deleted in the other window.

Now type this command: >

dp

The change will be removed by putting the text of the current window in the
other window. "dp" stands for "diff put".

You can also do it the other way around. Move the cursor to the right
window, to the line where "changed" wasg inserted. Now type this command: >

do

The change will now be removed by getting the text from the other window.
Since there are no changes left now, Vim puts all text in a closed fold.
"do" stands for "diff obtain". "dg" would have been better, but that already
has a different meaning ("dgg" deletes from the cursor until the first line).

For details about diff mode, see |vimdiff].

The 'laststatus' option can be used to specify when the last window has a
statusline:

0 never
1 only when there are split windows (the default)
2 always

Many commands that edit another file have a variant that splits the window.

For Command-line commands this is done by prepending an "s". For example:
":tag" jumps to a tag, ":stag" splits the window and jumps to a
tag.

For Normal mode commands a CTRL-W is prepended. CTRL-" jumps to the
alternate file, CTRL-W CTRL-" splits the window and edits the alternate file.

The 'splitbelow' option can be set to make a new window appear below the
current window. The 'splitright' option can be set to make a vertically split
window appear right of the current window.

.\usr_doc.txt Page 62

When splitting a window you can prepend a modifier command to tell where the
window is to appear:

:leftabove {cmd left or above the current window
:aboveleft {cmd idem

:rightbelow {cmd} right or below the current window
:belowright {cmd} idem

:topleft {cmd} at the top or left of the Vim window
:botright {cmd} at the bottom or right of the Vim window

You will have noticed that windows never overlap. That means you quickly run
out of screen space. The solution for this is called Tab pages.

Assume you are editing "thisfile". To create a new tab page use this command: >
:tabedit thatfile

This will edit the file "thatfile" in a window that occupies the whole Vim
window. And you will notice a bar at the top with the two file names:

o +
thisfile | /thatfile/ X (thatfile is bold)
/* thatfile */

that

that

o +

You now have two tab pages. The first one has a window for "thisfile" and the
second one a window for "thatfile". It's like two pages that are on top of
each other, with a tab sticking out of each page showing the file name.

Now use the mouse to click on "thisfile" in the top line. The result is

g +
/thisfile/ | thatfile X (thisfile is bold)
/* thisfile */

this

this

e +

Thus you can switch between tab pages by clicking on the label in the top
line. 1If you don't have a mouse or don't want to use it, you can use the "gt"
command. Mnemonic: Goto Tab.

Now let's create another tab page with the command: >

:tab split

This makes a new tab page with one window that is editing the same buffer as
the window we were in:

e +
thisfile | /thisfile/ | thatfile X (thisfile is bold)
/* thisfile */

this

this

.\usr_doc.txt Page 63

You can put ":tab" before any Ex command that opens a window. The window will
be opened in a new tab page. Another example: >

:tab help gt
Will show the help text for "gt" in a new tab page.
A few more things you can do with tab pages:

- click with the mouse in the space after the last label
The next tab page will be selected, like with "gt".

- click with the mouse on the "X" in the top right corner
The current tab page will be closed. Unless there are unsaved
changes in the current tab page.

- double click with the mouse in the top line
A new tab page will be created.

- the "tabonly" command
Closes all tab pages except the current one. Unless there are unsaved
changes in other tab pages.

For more information about tab pages see |tab-page]|.

Next chapter: |usr 09.txt| Using the GUI

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page

usr 09.txt For Vim version 7.4. Last change: 2006 Apr 24
VIM USER MANUAL - by Bram Moolenaar
Using the GUI
Vim works in an ordinary terminal. GVim can do the same things and a few

more. The GUI offers menus, a toolbar, scrollbars and other items. This
chapter is about these extra things that the GUI offers.

09.1 Parts of the GUI
09.2 Using the mouse
09.3 The clipboard
09.4 Select mode

Next chapter:
Previous chapter:
Table of contents:

usr_ 10.txt Making big changes
usr 08.txt Splitting windows
usr_toc.txt]|

You might have an icon on your desktop that starts gVim. Otherwise, one of
these commands should do it: >

gvim file.txt
vim -g file.txt

If this doesn't work you don't have a version of Vim with GUI support. You
will have to install one first.

Vim will open a window and display "file.txt" in it. What the window looks
like depends on the version of Vim. It should resemble the following picture
(for as far as this can be shown in ASCII!).

- +
| file.txt + (~/dir) - VIM X | <- window title
e +
| File Edit Tools Syntax Buffers Window Help | <- menubar
e +
aaa bbb ccc ddd eee fff ggg hhh iii j3jj <- toolbar
aaa bbb ccc ddd eee fff ggg hhh 1ii j3jj
o +
file text »
~ #
~ # <- scrollbar
~ #
~ #
~ #
%
e +

The largest space is occupied by the file text. This shows the file in the
same way as in a terminal. With some different colors and another font
perhaps.

THE WINDOW TITLE

At the very top is the window title. This is drawn by your window system.
Vim will set the title to show the name of the current file. First comes the
name of the file. Then some special characters and the directory of the file
in parens. These special character can be present:

The file cannot be modified (e.g., a help file)

+ The file contains changes
= The file is read-only
=+ The file is read-only, contains changes anyway

If nothing is shown you have an ordinary, unchanged file.

64

.\usr_doc.txt Page

THE MENUBAR

You know how menus work, right? Vim has the usual items, plus a few more.
Browse them to get an idea of what you can use them for. A relevant submenu
is Edit/Global Settings. You will find these entries:

Toggle Toolbar make the toolbar appear/disappear

Toggle Bottom Scrollbar make a scrollbar appear/disappear at the bottom
Toggle Left Scrollbar make a scrollbar appear/disappear at the left
Toggle Right Scrollbar make a scrollbar appear/disappear at the right

On most systems you can tear-off the menus. Select the top item of the menu,
the one that looks like a dashed line. You will get a separate window with
the items of the menu. It will hang around until you close the window.

THE TOOLBAR

This contains icons for the most often used actions. Hopefully the icons are
self-explanatory. There are tooltips to get an extra hint (move the mouse
pointer to the icon without clicking and don't move it for a second) .

The "Edit/Global Settings/Toggle Toolbar" menu item can be used to make the
toolbar disappear. If you never want a toolbar, use this command in your
vimrc file: >

:set guioptions-=T

This removes the 'T' flag from the 'guioptions' option. Other parts of the
GUI can also be enabled or disabled with this option. See the help for it.

THE SCROLLBARS

By default there is one scrollbar on the right. It does the obvious thing.
When you split the window, each window will get its own scrollbar.

You can make a horizontal scrollbar appear with the menu item
Edit/Global Settings/Toggle Bottom Scrollbar. This is useful in diff mode, or
when the 'wrap' option has been reset (more about that later).

When there are vertically split windows, only the windows on the right side
will have a scrollbar. However, when you move the cursor to a window on the
left, it will be this one the that scrollbar controls. This takes a bit of
time to get used to.

When you work with vertically split windows, consider adding a scrollbar on
the left. This can be done with a menu item, or with the 'guioptions' option:
>

:set guioptions+=1

This adds the 'l' flag to 'guioptions'.

Standards are wonderful. In Microsoft Windows, you can use the mouse to
select text in a standard manner. The X Window system also has a standard
system for using the mouse. Unfortunately, these two standards are not the
same.

Fortunately, you can customize Vim. You can make the behavior of the mouse
work like an X Window system mouse or a Microsoft Windows mouse. The following
command makes the mouse behave like an X Window mouse: >

:behave xterm
The following command makes the mouse work like a Microsoft Windows mouse: >
:behave mswin

The default behavior of the mouse on UNIX systems is xterm. The default

65

.\usr_doc.txt

Page 66

behavior on a Microsoft Windows system is selected during the installation

process.
follows a summary.

XTERM MOUSE BEHAVIOR

Left mouse click
Left mouse drag
Middle mouse click
Right mouse click

MSWIN MOUSE BEHAVIOR

Left mouse click
Left mouse drag
Left mouse click, with Shift

Middle mouse click
Right mouse click

The mouse can be further tuned.

the way how the mouse works:

'mouse'’
'mousemodel’
'mousetime'’
'mousehide’
'selectmode’

In section |04.7| the basic use of the clipboard was explained.
essential thing to explain about X-windows:
exchange text between programs.

In X-Windows there is the
currently highlighted.

For details about what the two behaviors are, see |:behave]|.

"current selection".
In Vim this is the Visual area
using the default option settings) .

Here

position the cursor

select text in Visual mode

paste text from the clipboard

extend the selected text until the mouse
pointer

position the cursor

select text in Select mode (see |09.4])
extend the selected text until the mouse
pointer

paste text from the clipboard

display a pop-up menu

Check out these options if you want to change

in which mode the mouse is used by Vim

what effect a mouse click has

time between clicks for a double-click

hide the mouse while typing

whether the mouse starts Visual or Select mode

There is one
There are actually two places to
MS-Windows doesn't have this.

This is the text that is
(this assumes you are
You can paste this selection in another

application without any further action.

For example,

a file name argument,
mouse button.

in this text select a few words with the mouse.
switch to Visual mode and highlight the text.
so that it displays an empty window.
The selected text will be inserted.

Vim will
Now start another gvVim, without
Click the middle

The "current selection" will only remain valid until some other text is

selected.
in that window.

You don't need to select text with the mouse,
Visual mode works just as well.

THE REAL CLIPBOARD

Now for the other place with which text can be exchanged.
to avoid confusion.

"real clipboard",

After doing the paste in the other gVim, now select some characters
You will notice that the words that were previously selected
in the other gVim window are displayed differently.
longer is the current selection.

This means that it no

using the keyboard commands for

We call this the

Often both the "current selection" and

the "real clipboard" are called clipboard, you'll have to get used to that.

To put text on the real clipboard,

the gVims you have running.

Then use the Edit/Copy menu entry.
has been copied to the real clipboard.
some application that shows the clipboard contents

select a few different words in one of
Now the text
You can't see this, unless you have
(e.g., KDE's klipper).

Now select the other gVim, position the cursor somewhere and use the

Edit/Paste menu.

You will see the text from the real clipboard is inserted.

.\usr_doc.txt Page 67

USING BOTH

This use of both the "current selection" and the "real clipboard" might sound
a bit confusing. But it is very useful. Let's show this with an example.
Use one gVim with a text file and perform these actions:

- Select two words in Visual mode.

- Use the Edit/Copy menu to get these words onto the clipboard.

- Select one other word in Visual mode.

- Use the Edit/Paste menu item. What will happen is that the single selected
word is replaced with the two words from the clipboard.

- Move the mouse pointer somewhere else and click the middle button. You
will see that the word you just overwrote with the clipboard is inserted
here.

If you use the "current selection" and the "real clipboard" with care, you can
do a lot of useful editing with them.

USING THE KEYBOARD

If you don't like using the mouse, you can access the current selection and
the real clipboard with two registers. The "* register is for the current
selection.

To make text become the current selection, use Visual mode. For example,
to select a whole line just press "V".

To insert the current selection before the cursor: >

II*P
Notice the uppercase "P". The lowercase "p" puts the text after the cursor.

The "+ register is used for the real clipboard. For example, to copy the text
from the cursor position until the end of the line to the clipboard: >

n +Y$

Remember, "y" is yank, which is Vim's copy command.
To insert the contents of the real clipboard before the cursor: >

"yP

It's the same as for the current selection, but uses the plus (+) register
instead of the star (*) register.

And now something that is used more often on MS-Windows than on X-Windows.
But both can do it. You already know about Visual mode. Select mode is like
Visual mode, because it is also used to select text. But there is an obvious
difference: When typing text, the selected text is deleted and the typed text
replaces it.

To start working with Select mode, you must first enable it (for MS-Windows
it is probably already enabled, but you can do this anyway): >

:set selectmode+=mouse

Now use the mouse to select some text. It is highlighted like in Visual mode.
Now press a letter. The selected text is deleted, and the single letter
replaces it. You are in Insert mode now, thus you can continue typing.

Since typing normal text causes the selected text to be deleted, you can not
use the normal movement commands "hjkl", "w", etc. Instead, use the shifted
function keys. <S-Left> (shifted cursor left key) moves the cursor left. The
selected text is changed like in Visual mode. The other shifted cursor keys
do what you expect. <S-End> and <S-Home> also work.

You can tune the way Select mode works with the 'selectmode' option.

.\usr_doc.txt Page 68

Next chapter: |usr 10.txt| Making big changes

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page 69

usr 10.txt For Vim version 7.4. Last change: 2006 Nov 05
VIM USER MANUAL - by Bram Moolenaar
Making big changes
In chapter 4 several ways to make small changes were explained. This chapter
goes into making changes that are repeated or can affect a large amount of

text. The Visual mode allows doing various things with blocks of text. Use
an external program to do really complicated things.

10.1 Record and playback commands

10.2 Substitution

10.3 Command ranges

10.4 The global command

10.5 Visual block mode

10.6 Reading and writing part of a file
10.7 Formatting text

10.8 Changing case

10.9 Using an external program

Next chapter: |usr 11.txt Recovering from a crash
Previous chapter: |usr 09.txt Using the GUI
Table of contents: |usr toc.txt|

The "." command repeats the preceding change. But what if you want to do
something more complex than a single change? That's where command recording
comes in. There are three steps:

1. The "g{register|" command starts recording keystrokes into the register
named {register;. The register name must be between a and =z.

2. Type your commands.

3. To finish recording, press g (without any extra character).

You can now execute the macro by typing the command "@{register}".

Take a look at how to use these commands in practice. You have a list of
filenames that look like this:

stdio.h ~
fecntl.h ~
unistd.h ~
stdlib.h ~

And what you want is the following:

#include "stdio.h" ~
#include "fcntl.h" -~
#include "unistd.h" -~
#include "stdlib.h" ~

You start by moving to the first character of the first line. Next you
execute the following commands:

ga Start recording a macro in register a.

» Move to the beginning of the line.

i#include "<Esc> Insert the string #include " at the beginning
of the line.

S Move to the end of the line.

a"<Esc> Append the character double quotation mark (")
to the end of the line.

j Go to the next line.

q Stop recording the macro.

Now that you have done the work once, you can repeat the change by typing the
command "@a" three times.

.\usr_doc.txt Page 70

The "@a" command can be preceded by a count, which will cause the macro to
be executed that number of times. In this case you would type: >

3@a

MOVE AND EXECUTE

You might have the lines you want to change in various places. Just move the
cursor to each location and use the "@a" command. If you have done that once,
you can do it again with "@@". That's a bit easier to type. If you now
execute register b with "@b", the next "@@" will use register b.

If you compare the playback method with using ".", there are several
differences. First of all, "." can only repeat one change. As seen in the
example above, "@a" can do several changes, and move around as well.

Secondly, "." can only remember the last change. Executing a register allows
you to make any changes and then still use "@a" to replay the recorded
commands. Finally, you can use 26 different registers. Thus you can remember
26 different command sequences to execute.

USING REGISTERS

The registers used for recording are the same ones you used for yank and
delete commands. This allows you to mix recording with other commands to
manipulate the registers.

Suppose you have recorded a few commands in register n. When you execute
this with "@n" you notice you did something wrong. You could try recording

again, but perhaps you will make another mistake. Instead, use this trick:
G Go to the end of the file.
o<Esc> Create an empty line.
"np Put the text from the n register. You now see
the commands you typed as text in the file.
{edits} Change the commands that were wrong. This is
just like editing text.
0 Go to the start of the line.
"ny$ Yank the corrected commands into the n
register.
dd Delete the scratch line.
Now you can execute the corrected commands with "en". (If your recorded

commands include line breaks, adjust the last two items in the example to
include all the lines.)

APPENDING TO A REGISTER

So far we have used a lowercase letter for the register name. To append to a
register, use an uppercase letter.

Suppose you have recorded a command to change a word to register c. It
works properly, but you would like to add a search for the next word to
change. This can be done with: >

gqC/word<Enter>q
You start with "gC", which records to the ¢ register and appends. Thus
writing to an uppercase register name means to append to the register with
the same letter, but lowercase.
This works both with recording and with yank and delete commands. For
example, you want to collect a sequence of lines into the a register. Yank
the first line with: >

"a¥
Now move to the second line, and type: >

n AY

Repeat this command for all lines. The a register now contains all those

.\usr_doc.txt Page 71

lines, in the order you yanked them.

10.2 Substitution *find-replacex*

The ":substitute" command enables you to perform string replacements on a
whole range of lines. The general form of this command is as follows: >

: [range] substitute/from/to/ [flags]
This command changes the "from" string to the "to" string in the lines
specified with [range]. For example, you can change "Professor" to "Teacher"

in all lines with the following command: >

:%$substitute/Professor/Teacher/

Note:
The ":substitute" command is almost never spelled out completely.
Most of the time, people use the abbreviated version ":s". From here

on the abbreviation will be used.
The "%" before the command specifies the command works on all lines. Without
a range, ":s" only works on the current line. More about ranges in the next
section |10.3].

By default, the ":substitute" command changes only the first occurrence on
each line. For example, the preceding command changes the line:

Professor Smith criticized Professor Johnson today. ~
to:
Teacher Smith criticized Professor Johnson today. ~

To change every occurrence on the line, you need to add the g (global) flag.
The command: >

:%s/Professor/Teacher/g
results in (starting with the original line):

Teacher Smith criticized Teacher Johnson today. ~
Other flags include p (print), which causes the ":substitute" command to print
out the last line it changes. The c¢ (confirm) flag tells ":substitute" to ask
you for confirmation before it performs each substitution. Enter the
following: >

:%$s/Professor/Teacher/c

Vim finds the first occurrence of "Professor" and displays the text it is
about to change. You get the following prompt: >

replace with Teacher (y/n/a/q/l/"E/"Y)?

At this point, you must enter one of the following answers:

y Yes; make this change.

n No; skip this match.

a All; make this change and all remaining ones without
further confirmation.

q Quit; don't make any more changes.

1 Last; make this change and then quit.

CTRL-E Scroll the text one line up.

CTRL-Y Scroll the text one line down.

The "from" part of the substitute command is actually a pattern. The same
kind as used for the search command. For example, this command only
substitutes "the" when it appears at the start of a line: >

.\usr_doc.txt Page 72
:s/"the/these/

If you are substituting with a "from" or "to" part that includes a slash, you

need to put a backslash before it. A simpler way is to use another character

instead of the slash. A plus, for example: >

:s+one/two+one or two+

The ":substitute" command, and many other : commands, can be applied to a
selection of lines. This is called a range.
The simple form of a range is {number}, {number}. For example: >

:1,5s/this/that/g

Executes the substitute command on the lines 1 to 5. Line 5 is included.
The range is always placed before the command.

A single number can be used to address one specific line: >
:54s/President/Fool/
Some commands work on the whole file when you do not specify a range. To make
them work on the current line the "." address is used. The ":write" command
works like that. Without a range, it writes the whole file. To make it write
only the current line into a file: >
:.write otherfile
The first line always has number one. How about the last line? The "$"

character is used for this. For example, to substitute in the lines from the
cursor to the end: >

:.,8s/yes/no/

The "%" range that we used before, is actually a short way to say "1,$", from
the first to the last line.

USING A PATTERN IN A RANGE

Suppose you are editing a chapter in a book, and want to replace all
occurrences of "grey" with "gray". But only in this chapter, not in the next
one. You know that only chapter boundaries have the word "Chapter" in the
first column. This command will work then: >

:?*Chapter?, /"Chapter/s=grey=gray=g

You can see a search pattern is used twice. The first "?”Chapter?" finds the
line above the current position that matches this pattern. Thus the ?pattern?

range is used to search backwards. Similarly, "/“Chapter/" is used to search
forward for the start of the next chapter.
To avoid confusion with the slashes, the "=" character was used in the

substitute command here. A slash or another character would have worked as
well.

ADD AND SUBTRACT
There is a slight error in the above command: If the title of the next chapter
had included "grey" it would be replaced as well. Maybe that's what you
wanted, but what if you didn't? Then you can specify an offset.

To search for a pattern and then use the line above it: >

/Chapter/-1

You can use any number instead of the 1. To address the second line below the
match: >

.\usr_doc.txt Page
/Chapter/+2

The offsets can also be used with the other items in a range. Look at this
one: >

:.4+3,8-5

This specifies the range that starts three lines below the cursor and ends
five lines before the last line in the file.

USING MARKS

Instead of figuring out the line numbers of certain positions, remembering them
and typing them in a range, you can use marks.

Place the marks as mentioned in chapter 3. For example, use "mt" to mark
the top of an area and "mb" to mark the bottom. Then you can use this range
to specify the lines between the marks (including the lines with the marks): >

:'t,'b

VISUAL MODE AND RANGES

You can select text with Visual mode. If you then press ":" to start a colon
command, you will see this: >

<, '>

Now you can type the command and it will be applied to the range of lines that
was visually selected.

Note:

When using Visual mode to select part of a line, or using CTRL-V to
select a block of text, the colon commands will still apply to whole
lines. This might change in a future version of Vim.

The '< and '> are actually marks, placed at the start and end of the Visual
selection. The marks remain at their position until another Visual selection

is made. Thus you can use the "'<" command to jump to position where the
Visual area started. And you can mix the marks with other items: >
:'>, 8

This addresses the lines from the end of the Visual area to the end of the
file.

A NUMBER OF LINES

When you know how many lines you want to change, you can type the number and

then ":". For example, when you type "5:", you will get: >

., .+4
Now you can type the command you want to use. It will use the range "."
(current line) until ".+4" (four lines down). Thus it spans five lines.

The ":global" command is one of the more powerful features of Vim. It allows
you to find a match for a pattern and execute a command there. The general
form is: >

: [rangel global/{pattern}/{command}

This is similar to the ":substitute" command. But, instead of replacing the
matched text with other text, the command {command} is executed.

Note:

73

.\usr_doc.txt Page 74

The command executed for ":global" must be one that starts with a
colon. Normal mode commands can not be used directly. The |:normal|
command can do this for you.

Suppose you want to change "foobar" to "barfoo", but only in C++ style
comments. These comments start with "//". Use this command: >

:g+//+s/foobar/barfoo/g

This starts with ":g". That is short for ":global", just like ":s" is short
for ":substitute". Then the pattern, enclosed in plus characters. Since the
pattern we are looking for contains a slash, this uses the plus character to
separate the pattern. Next comes the substitute command that changes "foobar"
into "barfoo".

The default range for the global command is the whole file. Thus no range
was specified in this example. This is different from ":substitute", which
works on one line without a range.

The command isn't perfect, since it also matches lines where "//" appears
halfway a line, and the substitution will also take place before the "//".

Just like with ":substitute", any pattern can be used. When you learn more
complicated patterns later, you can use them here.

With CTRL-V you can start selection of a rectangular area of text. There are
a few commands that do something special with the text block.

There is something special about using the "$" command in Visual block mode.
When the last motion command used was "$", all lines in the Visual selection
will extend until the end of the line, also when the line with the cursor is
shorter. This remains effective until you use a motion command that moves the
cursor horizontally. Thus using "j" keeps it, "h" stops it.

INSERTING TEXT

The command "I{string}<Esc>" inserts the text {string} in each line, just
left of the visual block. You start by pressing CTRL-V to enter visual block
mode. Now you move the cursor to define your block. Next you type I to enter
Insert mode, followed by the text to insert. As you type, the text appears on
the first line only.

After you press <Esc> to end the insert, the text will magically be
inserted in the rest of the lines contained in the visual selection. Example:

include one ~
include two ~
include three ~
include four ~

Move the cursor to the "o" of "one" and press CTRL-V. Move it down with "3j"
to "four". You now have a block selection that spans four lines. Now type: >

Imain.<Esc>
The result:

include main.one ~
include main.two -~
include main.three -~
include main.four -~

If the block spans short lines that do not extend into the block, the text is
not inserted in that line. For example, make a Visual block selection that
includes the word "long" in the first and last line of this text, and thus has
no text selected in the second line:

This is a long line ~
short -~
Any other long line ~

.\usr_doc.txt Page 75

AAAA

selected block
Now use the command "Ivery <Esc>". The result is:

This is a very long line ~
short ~
Any other very long line ~

In the short line no text was inserted.

If the string you insert contains a newline, the "I" acts just like a Normal
insert command and affects only the first line of the block.

The "A" command works the same way, except that it appends after the right
side of the block. And it does insert text in a short line. Thus you can
make a choice whether you do or don't want to append text to a short line.

There is one special case for "A": Select a Visual block and then use "$"
to make the block extend to the end of each line. Using "A" now will append
the text to the end of each line.

Using the same example from above, and then typing "$A XXX<Esc>, you get
this result:

This is a long line XXX ~
short XXX ~
Any other long line XXX ~

This really requires using the "$" command. Vim remembers that it was used.
Making the same selection by moving the cursor to the end of the longest line
with other movement commands will not have the same result.

CHANGING TEXT

The Visual block "c¢" command deletes the block and then throws you into Insert
mode to enable you to type in a string. The string will be inserted in each
line in the block.

Starting with the same selection of the "long" words as above, then typing
"c_LONG_<Esc>", you get this:

This is a LONG 1line ~
short ~
Any other LONG 1line ~

Just like with "I" the short line is not changed. Also, you can't enter a
newline in the new text.

The "C" command deletes text from the left edge of the block to the end of
line. It then puts you in Insert mode so that you can type in a string,
which is added to the end of each line.

Starting with the same text again, and typing "Cnew text<Esc>" you get:

This is a new text ~
short ~
Any other new text -~

Notice that, even though only the "long" word was selected, the text after it
is deleted as well. Thus only the location of the left edge of the visual
block really matters.

Again, short lines that do not reach into the block are excluded.

Other commands that change the characters in the block:

~ swap case (a => A and A -> a)
U make uppercase (a -> A and A -> A)
u make lowercase (a -> a and A -> a)

FILLING WITH A CHARACTER

To £ill the whole block with one character, use the "r" command. Again,

.\usr_doc.txt Page 76
starting with the same example text from above, and then typing "rx":

This is a xxxx line ~
short ~
Any other xxxx line ~

Note:
If you want to include characters beyond the end of the line in the
block, check out the 'virtualedit' feature in chapter 25.

SHIFTING

The command ">" shifts the selected text to the right one shift amount,
inserting whitespace. The starting point for this shift is the left edge of
the visual block.

With the same example again, ">" gives this result:
This is a long line ~
short ~
Any other long line ~

The shift amount is specified with the 'shiftwidth' option. To change it to
use 4 spaces: >

:set shiftwidth=4

The "<" command removes one shift amount of whitespace at the left

edge of the block. This command is limited by the amount of text that is
there; so if there is less than a shift amount of whitespace available, it
removes what it can.

JOINING LINES

The "J" command joins all selected lines together into one line. Thus it
removes the line breaks. Actually, the line break, leading white space and
trailing white space is replaced by one space. Two spaces are used after a
line ending (that can be changed with the 'joinspaces' option).

Let's use the example that we got so familiar with now. The result of
using the "J" command:

This is a long line short Any other long line ~

The "J" command doesn't require a blockwise selection. It works with "v" and
"V" selection in exactly the same way.

If you don't want the white space to be changed, use the "gJ" command.

When you are writing an e-mail message, you may want to include another file.
This can be done with the ":read {filename}" command. The text of the file is
put below the cursor line.

Starting with this text:

Hi John, -~
Here is the diff that fixes the bug: ~
Bye, Pierre. ~
Move the cursor to the second line and type: >
:read patch
The file named "patch" will be inserted, with this result:
Hi John, -~

Here is the diff that fixes the bug: ~
2c2 ~

.\usr_doc.txt Page 77
< for (i = 0; 1 <= length; ++i) ~

> for (i = 0; i < length; ++i) ~
Bye, Pierre. ~

The ":read" command accepts a range. The file will be put below the last line
number of this range. Thus ":$r patch" appends the file "patch" at the end of
the file.

What if you want to read the file above the first line? This can be done
with the line number zero. This line doesn't really exist, you will get an
error message when using it with most commands. But this command is allowed:
>

:0read patch

The file "patch" will be put above the first line of the file.

WRITING A RANGE OF LINES

To write a range of lines to a file, the ":write" command can be used.
Without a range it writes the whole file. With a range only the specified
lines are written: >

:.,Swrite tempo

This writes the lines from the cursor until the end of the file into the file

"tempo". If this file already exists you will get an error message. Vim
protects you from accidentally overwriting an existing file. If you know what
you are doing and want to overwrite the file, append !: >

:.,Swrite! tempo

CAREFUL: The ! must follow the ":write" command immediately, without white
space. Otherwise it becomes a filter command, which is explained later in
this chapter.

APPENDING TO A FILE
In the first section of this chapter was explained how to collect a number of
lines into a register. The same can be done to collect lines in a file.
Write the first line with this command: >
:.write collection
Now move the cursor to the second line you want to collect, and type this: >
:.write >>collection
The ">>" tells Vim the "collection" file is not to be written as a new file,

but the line must be appended at the end. You can repeat this as many times
as you like.

When you are typing plain text, it's nice if the length of each line is
automatically trimmed to fit in the window. To make this happen while
inserting text, set the 'textwidth' option: >

:set textwidth=72
You might remember that in the example vimrc file this command was used for
every text file. Thus if you are using that vimrc file, you were already
using it. To check the current value of 'textwidth': >

:set textwidth
Now lines will be broken to take only up to 72 characters. But when you

insert text halfway a line, or when you delete a few words, the lines will get
too long or too short. Vim doesn't automatically reformat the text.

.\usr_doc.txt Page 78

To tell Vim to format the current paragraph: >

ggap

This starts with the "ggq" command, which is an operator. Following is "ap",
the text object that stands for "a paragraph". A paragraph is separated from
the next paragraph by an empty line.

Note:
A blank line, which contains white space, does NOT separate
paragraphs. This is hard to notice!

Instead of "ap" you could use any motion or text object. If your paragraphs
are properly separated, you can use this command to format the whole file: >

9999G

"gg" takes you to the first line, "ggq" is the format operator and "G" the
motion that jumps to the last line.

In case your paragraphs aren't clearly defined, you can format just the lines
you manually select. Move the cursor to the first line you want to format.
Start with the command "ggj". This formats the current line and the one below
it. If the first line was short, words from the next line will be appended.
If it was too long, words will be moved to the next line. The cursor moves to
the second line. Now you can use "." to repeat the command. Keep doing this
until you are at the end of the text you want to format.

10.8 Changing case

You have text with section headers in lowercase. You want to make the word
"section" all uppercase. Do this with the "gU" operator. Start with the
cursor in the first column: >

gUw
< section header —_———> SECTION header

The "gu" operator does exactly the opposite: >

guw
< SECTION header —_—— section header

You can also use "g~" to swap case. All these are operators, thus they work
with any motion command, with text objects and in Visual mode.

To make an operator work on lines you double it. The delete operator is
"d", thus to delete a line you use "dd". Similarly, "gugu" makes a whole line
lowercase. This can be shortened to "guu". "gUgU" is shortened to "gUU" and
"g~g~" to "g~~". Example: >

g~~
< Some GIRLS have Fun ————> sOME girls HAVE fUN ~

Vim has a very powerful set of commands, it can do anything. But there may
still be something that an external command can do better or faster.

The command "!{motion}{program}" takes a block of text and filters it
through an external program. In other words, it runs the system command
represented by {program}, giving it the block of text represented by {motion}
as input. The output of this command then replaces the selected block.

Because this summarizes badly if you are unfamiliar with UNIX filters, take
a look at an example. The sort command sorts a file. TIf you execute the
following command, the unsorted file input.txt will be sorted and written to
output.txt. (This works on both UNIX and Microsoft Windows.) >

sort <input.txt s>output.txt

Now do the same thing in Vim. You want to sort lines 1 through 5 of a file.
You start by putting the cursor on line 1. Next you execute the following

.\usr_doc.txt Page 79
command: >
!5G

The "!" tells Vim that you are performing a filter operation. The Vim editor
expects a motion command to follow, indicating which part of the file to
filter. The "5G" command tells Vim to go to line 5, so it now knows that it
is to filter lines 1 (the current line) through 5.

In anticipation of the filtering, the cursor drops to the bottom of the
screen and a ! prompt displays. You can now type in the name of the filter
program, in this case "sort". Therefore, your full command is as follows: >

!5Gsort<Enters>

The result is that the sort program is run on the first 5 lines. The output
of the program replaces these lines.

line 55 line 11

line 33 line 22

line 11 -——> line 33

line 22 line 44

line 44 line 55

last line last line
The "!!" command filters the current line through a filter. In Unix the "date"
command prints the current time and date. "!l!date<Enter>" replaces the current
line with the output of "date". This is useful to add a timestamp to a file.

WHEN IT DOESN'T WORK

Starting a shell, sending it text and capturing the output requires that Vim
knows how the shell works exactly. When you have problems with filtering,
check the values of these options:

'shell! specifies the program that Vim uses to execute
external programs.
'shellcmdflag' argument to pass a command to the shell

'shellquote’ quote to be used around the command

'shellxquote!’ quote to be used around the command and redirection

'shelltype'’ kind of shell (only for the Amiga)

'shellslash’ use forward slashes in the command (only for
MS-Windows and alikes)

'shellredir’ string used to write the command output into a file

On Unix this is hardly ever a problem, because there are two kinds of shells:
"sh" like and "csh" like. Vim checks the 'shell' option and sets related
options automatically, depending on whether it sees "csh" somewhere in
'shell'.

On MS-Windows, however, there are many different shells and you might have
to tune the options to make filtering work. Check the help for the options
for more information.

READING COMMAND OUTPUT
To read the contents of the current directory into the file, use this:

on Unix: >
:read !ls
on MS-Windows: >
:read !dir

The output of the "ls" or "dir" command is captured and inserted in the text,
below the cursor. This is similar to reading a file, except that the "!I" is
used to tell Vim that a command follows.

The command may have arguments. And a range can be used to tell where Vim
should put the lines: >

:0read !date -u

.\usr_doc.txt Page 80
This inserts the current time and date in UTC format at the top of the file.
(Well, if you have a date command that accepts the "-u" argument.) Note the
difference with using "!!date": that replaced a line, while ":read !date" will
insert a line.
WRITING TEXT TO A COMMAND
The Unix command "wc" counts words. To count the words in the current file: >
:write !wc

This is the same write command as before, but instead of a file name the "!"
character is used and the name of an external command. The written text will
be passed to the specified command as its standard input. The output could
look like this:

4 47 249 ~

The "wc" command isn't verbose. This means you have 4 lines, 47 words and 249
characters.

Watch out for this mistake: >

:write! wc
This will write the file "wc" in the current directory, with force. White
space is important here!
REDRAWING THE SCREEN
If the external command produced an error message, the display may have been
messed up. Vim is very efficient and only redraws those parts of the screen
that it knows need redrawing. But it can't know about what another program

has written. To tell Vim to redraw the screen: >

CTRL-L

Next chapter: |usr 11.txt| Recovering from a crash

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page 81

usr 11.txt For Vim version 7.4. Last change: 2010 Jul 20
VIM USER MANUAL - by Bram Moolenaar
Recovering from a crash
Did your computer crash? And you just spent hours editing? Don't panic! Vim
stores enough information to be able to restore most of your work. This

chapter shows you how to get your work back and explains how the swap file is
used.

11.1 Basic recovery
11.2 Where is the swap file?
11.3 Crashed or not?
11.4 Further reading

Next chapter: |usr 12.txt Clever tricks
Previous chapter: |usr 10.txt Making big changes
Table of contents: |usr toc.txt|

In most cases recovering a file is quite simple, assuming you know which file
you were editing (and the harddisk is still working). Start Vim on the file,
with the "-r" argument added: >

vim -r help.txt

Vim will read the swap file (used to store text you were editing) and may read
bits and pieces of the original file. If Vim recovered your changes you will
see these messages (with different file names, of course):

Using swap file ".help.txt.swp" ~

Original file "~/vim/runtime/doc/help.txt" ~

Recovery completed. You should check if everything is OK. ~
(You might want to write out this file under another name ~
and run diff with the original file to check for changes) ~
You may want to delete the .swp file now. ~

To be on the safe side, write this file under another name: >
:write help.txt.recovered

Compare the file with the original file to check if you ended up with what you
expected. Vimdiff is very useful for this |08.7|. For example: >

:write help.txt.recovered
:edit #
:diffsp help.txt

Watch out for the original file to contain a more recent version (you saved
the file just before the computer crashed). And check that no lines are
missing (something went wrong that Vim could not recover).

If Vim produces warning messages when recovering, read them carefully.
This is rare though.

If the recovery resulted in text that is exactly the same as the file
contents, you will get this message:

Using swap file ".help.txt.swp" ~

Original file "~/vim/runtime/doc/help.txt" ~

Recovery completed. Buffer contents equals file contents. ~
You may want to delete the .swp file now. ~

This usually happens if you already recovered your changes, or you wrote the
file after making changes. It is safe to delete the swap file now.

It is normal that the last few changes can not be recovered. Vim flushes the

.\usr_doc.txt Page

changes to disk when you don't type for about four seconds, or after typing
about two hundred characters. This is set with the 'updatetime' and
'updatecount' options. Thus when Vim didn't get a chance to save itself when
the system went down, the changes after the last flush will be lost.

If you were editing without a file name, give an empty string as argument: >
vim -x "

You must be in the right directory, otherwise Vim can't find the swap file.

Vim can store the swap file in several places. Normally it is in the same
directory as the original file. To find it, change to the directory of the
file, and use: >

vim -r

Vim will list the swap files that it can find. It will also look in other
directories where the swap file for files in the current directory may be
located. It will not find swap files in any other directories though, it
doesn't search the directory tree.

The output could look like this:

Swap files found: ~
In current directory: ~

1. .main.c.swp ~
owned by: mool dated: Tue May 29 21:00:25 2001 ~
file name: ~mool/vim/vimé/src/main.c ~
modified: YES ~
user name: mool host name: masaka.moolenaar.net -~

process ID: 12525 ~
In directory ~/tmp: ~
-- none -- ~
In directory /var/tmp: ~
-- none -- ~
In directory /tmp: ~
-- none -- ~

If there are several swap files that look like they may be the one you want to
use, a list is given of these swap files and you are requested to enter the
number of the one you want to use. Carefully look at the dates to decide
which one you want to use.

In case you don't know which one to use, just try them one by one and check
the resulting files if they are what you expected.

USING A SPECIFIC SWAP FILE

If you know which swap file needs to be used, you can recover by giving the
swap file name. Vim will then finds out the name of the original file from
the swap file.

Example: >
vim -r .help.txt.swo

This is also handy when the swap file is in another directory than expected.
Vim recognizes files with the pattern *.s[uvw] [a-z] as swap files.

If this still does not work, see what file names Vim reports and rename the
files accordingly. Check the 'directory' option to see where Vim may have
put the swap file.

Note:
Vim tries to find the swap file by searching the directories in the
'dir' option, looking for files that match "filename.sw?". If

wildcard expansion doesn't work (e.g., when the 'shell' option is
invalid), Vim does a desperate try to find the file "filename.swp".
If that fails too, you will have to give the name of the swapfile

82

.\usr_doc.txt Page

itself to be able to recover the file.

11.3 Crashed or not? *ATTENTION* *E325%
Vim tries to protect you from doing stupid things. Suppose you innocently
start editing a file, expecting the contents of the file to show up. Instead,

Vim produces a very long message:

E325: ATTENTION ~
Found a swap file by the name ".main.c.swp" ~
owned by: mool dated: Tue May 29 21:09:28 2001 ~
file name: ~mool/vim/vimé/src/main.c ~
modified: no ~
user name: mool host name: masaka.moolenaar.net -~
process ID: 12559 (still running) -~
While opening file "main.c" ~
dated: Tue May 29 19:46:12 2001 ~

(1) Another program may be editing the same file. ~
If this is the case, be careful not to end up with two ~
different instances of the same file when making changes. ~
Quit, or continue with caution. ~

(2) An edit session for this file crashed. ~
If this is the case, use ":recover" or "vim -r main.c" ~
to recover the changes (see ":help recovery"). ~
If you did this already, delete the swap file ".main.c.swp" ~
to avoid this message. ~

You get this message, because, when starting to edit a file, Vim checks if a
swap file already exists for that file. 1If there is one, there must be
something wrong. It may be one of these two situations.

1. Another edit session is active on this file. Look in the message for the
line with "process ID". It might look like this:

process ID: 12559 (still running) -~

The text "(still running)" indicates that the process editing this file
runs on the same computer. When working on a non-Unix system you will not
get this extra hint. When editing a file over a network, you may not see
the hint, because the process might be running on another computer. In
those two cases you must find out what the situation is yourself.

If there is another Vim editing the same file, continuing to edit will
result in two versions of the same file. The one that is written last will
overwrite the other one, resulting in loss of changes. You better quit
this Vim.

2. The swap file might be the result from a previous crash of Vim or the
computer. Check the dates mentioned in the message. If the date of the
swap file is newer than the file you were editing, and this line appears:

modified: YES ~
Then you very likely have a crashed edit session that is worth recovering.

If the date of the file is newer than the date of the swap file, then
either it was changed after the crash (perhaps you recovered it earlier,

but didn't delete the swap file?), or else the file was saved before the
crash but after the last write of the swap file (then you're lucky: you
don't even need that old swap file). Vim will warn you for this with this

extra line:

NEWER than swap file! ~

UNREADABLE SWAP FILE
Sometimes the line

[cannot be read] ~

83

.\usr_doc.txt Page 84
will appear under the name of the swap file. This can be good or bad,

depending on circumstances.

It is good if a previous editing session crashed without having made any

changes to the file. Then a directory listing of the swap file will show

that it has zero bytes. You may delete it and proceed.

It is slightly bad if you don't have read permission for the swap file. You

may want to view the file read-only, or quit. On multi-user systems, if you
yourself did the last changes under a different login name, a logout
followed by a login under that other name might cure the "read error". Or

else you might want to find out who last edited (or is editing) the file and
have a talk with them.

It is very bad if it means there is a physical read error on the disk
containing the swap file. Fortunately, this almost never happens.

You may want to view the file read-only at first (if you can), to see the
extent of the changes that were "forgotten". If you are the one in charge of
that file, be prepared to redo your last changes.

WHAT TO DO? *swap-exists-choices*
If dialogs are supported you will be asked to select one of five choices:

Swap file ".main.c.swp" already exists! ~
[Olpen Read-Only, (E)dit anyway, (R)ecover, (Q)uit, (A)bort, (D)elete it: ~

O Open the file readonly. Use this when you just want to view the file and
don't need to recover it. You might want to use this when you know someone
else is editing the file, but you just want to look in it and not make
changes.

E Edit the file anyway. Use this with caution! If the file is being edited
in another Vim, you might end up with two versions of the file. Vim will
try to warn you when this happens, but better be safe then sorry.

R Recover the file from the swap file. Use this if you know that the swap
file contains changes that you want to recover.

Q Quit. This avoids starting to edit the file. TUse this if there is another
Vim editing the same file.

When you just started Vim, this will exit Vim. When starting Vim with
files in several windows, Vim quits only if there is a swap file for the
first one. When using an edit command, the file will not be loaded and you
are taken back to the previously edited file.

A Abort. Like Quit, but also abort further commands. This is useful when
loading a script that edits several files, such as a session with multiple
windows.

D Delete the swap file. Use this when you are sure you no longer need it.
For example, when it doesn't contain changes, or when the file itself is
newer than the swap file.

On Unix this choice is only offered when the process that created the
swap file does not appear to be running.

If you do not get the dialog (you are running a version of Vim that does not
support it), you will have to do it manually. To recover the file, use this
command: >

:recover

Vim cannot always detect that a swap file already exists for a file. This is
the case when the other edit session puts the swap files in another directory
or when the path name for the file is different when editing it on different

machines. Therefore, don't rely on Vim always warning you.

If you really don't want to see this message, you can add the 'A' flag to the

.\usr_doc.txt Page 85
'shortmess' option. But it's very unusual that you need this.

For remarks about encryption and the swap file, see |:recover-crypt].

| swap-file| An explanation about where the swap file will be created and
what its name is.

:preserve Manually flushing the swap file to disk.

: swapname See the name of the swap file for the current file.
'updatecount' Number of key strokes after which the swap file is flushed to

disk.

'updatetime' Timeout after which the swap file is flushed to disk.

' swapsync' Whether the disk is synced when the swap file is flushed.
'directory’ List of directory names where to store the swap file.
'maxmem' Limit for memory usage before writing text to the swap file.
'"maxmemtot ' Same, but for all files in total.
Next chapter: |usr 12.txt| Clever tricks

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page

usr 12.txt For Vim version 7.4. Last change: 2007 May 11
VIM USER MANUAL - by Bram Moolenaar
Clever tricks
By combining several commands you can make Vim do nearly everything. In this

chapter a number of useful combinations will be presented. This uses the
commands introduced in the previous chapters and a few more.

12.1 Replace a word

12.2 Change "Last, First" to "First Last"
12.3 Sort a list

12.4 Reverse line order

12.5 Count words

12.6 Find a man page

12.7 Trim blanks

12.8 Find where a word is used

Next chapter: |usr 20.txt Typing command-line commands quickly
Previous chapter: |usr 11.txt Recovering from a crash
Table of contents: |usr toc.txt|

The substitute command can be used to replace all occurrences of a word with
another word: >

:%$s/four/4/g

The "%" range means to replace in all lines. The "g" flag at the end causes
all words in a line to be replaced.

This will not do the right thing if your file also contains "thirtyfour".
It would be replaced with "thirty4". To avoid this, use the "\<" item to
match the start of a word: >

:$s/\<four/4/g

Obviously, this still goes wrong on "fourteen". Use "\>" to match the end of
a word: >

:$s/\<four\>/4/g

If you are programming, you might want to replace "four" in comments, but not
in the code. Since this is difficult to specify, add the "c¢" flag to have the
substitute command prompt you for each replacement: >

:$s/\<four\>/4/gc

REPLACING IN SEVERAL FILES

Suppose you want to replace a word in more than one file. You could edit each
file and type the command manually. It's a lot faster to use record and
playback.

Let's assume you have a directory with C++ files, all ending in ".cpp".
There is a function called "GetResp" that you want to rename to "GetAnswer".

vim *.cpp Start Vim, defining the argument list to
contain all the C++ files. You are now in the
first file.

aq Start recording into the g register

:%s/\<GetResp\>/GetAnswer/g
Do the replacements in the first file.

:wnext Write this file and move to the next one.

q Stop recording.

@qg Execute the g register. This will replay the

86

.\usr_doc.txt Page 87

substitution and ":wnext". You can verify
that this doesn't produce an error message.
999%@qg Execute the g register on the remaining files.

At the last file you will get an error message, because ":wnext" cannot move
to the next file. This stops the execution, and everything is done.

Note:
When playing back a recorded sequence, an error stops the execution.
Therefore, make sure you don't get an error message when recording.

There is one catch: If one of the .cpp files does not contain the word
"GetResp", you will get an error and replacing will stop. To avoid this, add
the "e" flag to the substitute command: >

:%$s/\<GetResp\>/GetAnswer/ge

The "e" flag tells ":substitute" that not finding a match is not an error.

12.2 Change "Last, First" to "First Last"
You have a list of names in this form:

Doe, John ~
Smith, Peter ~

You want to change that to:

John Doe ~
Peter Smith ~

This can be done with just one command: >

:5s/\ (7, 1%\), N (.*\)/\2 \1/

Let's break this down in parts. Obviously it starts with a substitute
command. The "$" is the line range, which stands for the whole file. Thus
the substitution is done in every line in the file.

The arguments for the substitute command are "/from/to/". The slashes
separate the "from" pattern and the "to" string. This is what the "from"
pattern contains:

NP T*N), N (L*\) ~

The first part between \(\) matches "Last" \ (\)
match anything but a comma [*,]
any number of times *
matches ", " literally ,
The second part between \(\) matches "First" NC O\
any character .
any number of times *
In the "to" part we have "\2" and "\1". These are called backreferences.
They refer to the text matched by the "\ (\)" parts in the pattern. "\2"
refers to the text matched by the second "\(\)", which is the "First" name.
"\1" refers to the first "\ (\)", which is the "Last" name.
You can use up to nine backreferences in the "to" part of a substitute
command . "\0" stands for the whole matched pattern. There are a few more

special items in a substitute command, see |sub-replace-special].

In a Makefile you often have a list of files. For example:
OBJS = \ ~
version.o \ ~
pch.o \ ~

getopt.o \ ~
util.o \ ~
getoptl.o \ ~

.\usr_doc.txt Page 88

inp.o \ ~
patch.o \ ~
backup.o ~

To sort this list, filter the text through the external sort command: >
/" 0BJS
j A
:.,/78/-1lsort

This goes to the first line, where "OBJS" is the first thing in the line.
Then it goes one line down and filters the lines until the next empty line.
You could also select the lines in Visual mode and then use "!sort". That's
easier to type, but more work when there are many lines.

The result is this:

OBJS = \ ~
backup.o ~
getopt.o \ ~
getoptl.o \ ~
inp.o \ ~
patch.o \ ~
pch.o \ ~
util.o \ ~
version.o \ ~

Notice that a backslash at the end of each line is used to indicate the line
continues. After sorting, this is wrong! The "backup.o" line that was at
the end didn't have a backslash. Now that it sorts to another place, it
must have a backslash.

The simplest solution is to add the backslash with "A \<Esc>". You can
keep the backslash in the last line, if you make sure an empty line comes
after it. That way you don't have this problem again.

The |:global| command can be combined with the |:move| command to move all the
lines before the first line, resulting in a reversed file. The command is: >

:global/"/m 0
Abbreviated: >
:g/"/m 0

The """ regular expression matches the beginning of the line (even if the line
is blank). The |:move| command moves the matching line to after the mythical
zeroth line, so the current matching line becomeg the first line of the file.
As the |:global| command is not confused by the changing line numbering,

| :global| proceeds to match all remaining lines of the file and puts each as
the first.

This also works on a range of lines. First move to above the first line and
mark it with "mt". Then move the cursor to the last line in the range and
type: >

:'t+l,.g/%/m 't

Sometimes you have to write a text with a maximum number of words. Vim can
count the words for you.

When the whole file is what you want to count the words in, use this
command: >

g CTRL-G

Do not type a space after the g, this is just used here to make the command

.\usr_doc.txt Page 89

easy to read.
The output looks like this:

Col 1 of 0; Line 141 of 157; Word 748 of 774; Byte 4489 of 4976 ~

You can see on which word you are (748), and the total number of words in the
file (774).

When the text is only part of a file, you could move to the start of the text,
type "g CTRL-G", move to the end of the text, type "g CTRL-G" again, and then
use your brain to compute the difference in the word position. That's a good
exercise, but there is an easier way. With Visual mode, select the text you
want to count words in. Then type g CTRL-G. The result:

Selected 5 of 293 Lines; 70 of 1884 Words; 359 of 10928 Bytes ~

For other ways to count words, lines and other items, see |count—items|.

12.6 Find a man page *find-manpage*

While editing a shell script or C program, you are using a command or function
that you want to find the man page for (this is on Unix). Let's first use a
simple way: Move the cursor to the word you want to find help on and press >

K

Vim will run the external "man" program on the word. If the man page is
found, it is displayed. This uses the normal pager to scroll through the text
(mostly the "more" program). When you get to the end pressing <Enter> will
get you back into Vim.

A disadvantage is that you can't see the man page and the text you are working
on at the same time. There is a trick to make the man page appear in a Vim
window. First, load the man filetype plugin: >

:runtime! ftplugin/man.vim

Put this command in your vimrc file if you intend to do this often. Now you
can use the ":Man" command to open a window on a man page: >

:Man csh

You can scroll around and the text is highlighted. This allows you to find
the help you were looking for. TUse CTRL-W w to jump to the window with the
text you were working on.

To find a man page in a specific section, put the section number first.
For example, to look in section 3 for "echo": >

:Man 3 echo
To jump to another man page, which is in the text with the typical form
"word (1l)", press CTRL-] on it. Further ":Man" commands will use the same
window.
To display a man page for the word under the cursor, use this: >

\K
(If you redefined the <Leader>, use it instead of the backslash).
For example, you want to know the return value of "strstr()" while editing
this line:

if (strstr (input, "aap") ==) ~

Move the cursor to somewhere on "strstr" and type "\K". A window will open
to display the man page for strstr().

.\usr_doc.txt Page 90

Some people find spaces and tabs at the end of a line useless, wasteful, and
ugly. To remove whitespace at the end of every line, execute the following
command: >

:%5s/\s\+$//
The line range "%" is used, thus this works on the whole file. The pattern
that the ":substitute" command matches with is "\s\+$". This finds white
space characters (\s), 1 or more of them (\+), before the end-of-line (3).
Later will be explained how you write patterns like this |usr 27.txt].
The "to" part of the substitute command is empty: "//". Thus it replaces

with nothing, effectively deleting the matched white space.

Another wasteful use of spaces is placing them before a tab. Often these can
be deleted without changing the amount of white space. But not always!
Therefore, you can best do this manually. Use this search command: >

/
You cannot see it, but there is a space before a tab in this command. Thus
it's "/<Space><Tab>". Now use "x" to delete the space and check that the

amount of white space doesn't change. You might have to insert a tab if it
does change. Type "n" to find the next match. Repeat this until no more
matches can be found.

If you are a UNIX user, you can use a combination of Vim and the grep command
to edit all the files that contain a given word. This is extremely useful if
you are working on a program and want to view or edit all the files that
contain a specific variable.

For example, suppose you want to edit all the C program files that contain
the word "frame counter". To do this you use the command: >

vim “grep -1 frame counter *.c”
Let's look at this command in detail. The grep command searches through a set

of files for a given word. Because the -1 argument is specified, the command
will only list the files containing the word and not print the matching lines.

The word it is searching for is "frame counter". Actually, this can be any
regular expression. (Note: What grep uses for regular expressions is not
exactly the same as what Vim uses.)

The entire command is enclosed in backticks (7). This tells the UNIX shell
to run this command and pretend that the results were typed on the command
line. So what happens is that the grep command is run and produces a list of

files, these files are put on the Vim command line. This results in Vim
editing the file list that is the output of grep. You can then use commands
like ":next" and ":first" to browse through the files.

FINDING EACH LINE

The above command only finds the files in which the word is found. You still
have to find the word within the files.

Vim has a built-in command that you can use to search a set of files for a
given string. If you want to find all occurrences of "error string" in all C
program files, for example, enter the following command: >

:grep error string *.c

This causes Vim to search for the string "error string" in all the specified
files (*.c). The editor will now open the first file where a match is found
and position the cursor on the first matching line. To go to the next
matching line (no matter in what file it ig), use the ":cnext" command. To go
to the previous match, use the ":cprev" command. Use ":clist" to see all the
matches and where they are.

The ":grep" command uses the external commands grep (on Unix) or findstr
(on Windows). You can change this by setting the option 'grepprg'.

.\usr_doc.txt Page 91

Next chapter: |usr 20.txt| Typing command-line commands quickly

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page 92

usr 20.txt For Vim version 7.4. Last change: 2006 Apr 24
VIM USER MANUAL - by Bram Moolenaar
Typing command-line commands quickly
Vim has a few generic features that makes it easier to enter commands. Colon

commands can be abbreviated, edited and repeated. Completion is available for
nearly everything.

20.1 Command line editing

20.2 Command line abbreviations
20.3 Command line completion
20.4 Command line history

20.5 Command line window

Next chapter: |usr 21.txt Go away and come back
Previous chapter: |usr 12.txt Clever tricks
Table of contents: |usr toc.txt|

When you use a colon (:) command or search for a string with / or ?, Vim puts

the cursor on the bottom of the screen. There you type the command or search

pattern. This is called the Command line. Also when it's used for entering a
search command.

The most obvious way to edit the command you type is by pressing the <BS> key.
This erases the character before the cursor. To erase another character,
typed earlier, first move the cursor with the cursor keys.

For example, you have typed this: >

:s/col/pig/
Before you hit <Enters, you notice that "col" should be "cow". To correct
this, you type <Left> five times. The cursor is now just after "col". Type

<BS> and "w" to correct: >
:s/cow/pig/

Now you can press <Enter> directly. You don't have to move the cursor to the
end of the line before executing the command.

The most often used keys to move around in the command line:

<Left> one character left
<Right> one character right
<S-Left> or <C-Left> one word left

<S-Right> or <C-Right> one word right

CTRL-B or <Home> to begin of command line
CTRL-E or <End> to end of command line
Note:

<S-Left> (cursor left key with Shift key pressed) and <C-Left> (cursor
left key with Control pressed) will not work on all keyboards. Same
for the other Shift and Control combinations.

You can also use the mouse to move the cursor.

DELETING

As mentioned, <BS> deletes the character before the cursor. To delete a whole
word use CTRL-W.

/the fine pig ~

CTRL-W

.\usr_doc.txt Page 93

/the fine ~

CTRL-U removes all text, thus allows you to start all over again.

OVERSTRIKE

The <Insert> key toggles between inserting characters and replacing the
existing ones. Start with this text:

/the fine pig ~

Move the cursor to the start of "fine" with <S-Left> twice (or <Left> eight
times, 1f <S-Left> doesn't work). Now press <Insert> to switch to overstrike
and type "great":

/the greatpig ~

Oops, we lost the space. Now, don't use <BS>, because it would delete the
"t" (this is different from Replace mode). Instead, press <Insert> to switch
from overstrike to inserting, and type the space:

/the great pig ~

CANCELLING

You thought of executing a : or / command, but changed your mind. To get rid
of what you already typed, without executing it, press CTRL-C or <Esc>.

Note:

<Esc> 1is the universal "get out" key. Unfortunately, in the good old
Vi pressing <Esc> in a command line executed the command! Since that
might be considered to be a bug, Vim uses <Esc> to cancel the command.
But with the 'cpoptions' option it can be made Vi compatible. And
when using a mapping (which might be written for Vi) <Esc> also works
Vi compatible. Therefore, using CTRL-C is a method that always works.

If you are at the start of the command line, pressing <BS> will cancel the
command. It's like deleting the ":" or "/" that the line starts with.

Some of the ":" commands are really long. We already mentioned that
":substitute" can be abbreviated to ":s". This is a generic mechanism, all
":" commands can be abbreviated.

How short can a command get? There are 26 letters, and many more commands.
For example, ":set" also starts with ":s", but ":s" doesn't start a ":set"
command. Instead ":set" can be abbreviated to ":se".

When the shorter form of a command could be used for two commands, it
stands for only one of them. There is no logic behind which one, you have to
learn them. In the help files the shortest form that works is mentioned. For
example: >

:s [ubstitute]

This means that the shortest form of ":substitute" is ":s". The following
characters are optional. Thus ":su" and ":sub" also work.

In the user manual we will either use the full name of command, or a short

version that is still readable. For example, ":function" can be abbreviated
to ":fu". But since most people don't understand what that stands for, we
will use ":fun". (Vim doesn't have a ":funny" command, otherwise ":fun" would

be confusing too.)

It is recommended that in Vim scripts you write the full command name. That
makes it easier to read back when you make later changes. Except for some
often used commands like ":w" (":write") and ":r" (":read").

.\usr_doc.txt Page 94
A particularly confusing one is ":end", which could stand for ":endif",

":endwhile" or ":endfunction". Therefore, always use the full name.

SHORT OPTION NAMES

In the user manual the long version of the option names is used. Many options

also have a short name. Unlike ":" commands, there is only one short name

that works. For example, the short name of 'autoindent' is 'ai'. Thus these

two commands do the same thing: >

:set autoindent
:set ai

You can find the full list of long and short names here: |option-list].

This is one of those Vim features that, by itself, is a reason to switch from
Vi to Vim. Once you have used this, you can't do without.

Suppose you have a directory that contains these files:

info.txt

intro.txt

bodyofthepaper.txt
To edit the last one, you use the command: >

:edit bodyofthepaper.txt
It's easy to type this wrong. A much quicker way is: >

:edit b<Tab>
Which will result in the same command. What happened? The <Tab> key does
completion of the word before the cursor. In this case "b". Vim looks in the
directory and finds only one file that starts with a "b". That must be the
one you are looking for, thus Vim completes the file name for you.
Now type: >

:edit i<Tab>
Vim will beep, and give you: >

:edit info.txt

The beep means that Vim has found more than one match. It then uses the first
match it found (alphabetically). If you press <Tabs> again, you get: >

:edit intro.txt

Thus, if the first <Tab> doesn't give you the file you were looking for, press
it again. If there are more matches, you will see them all, one at a time.

If you press <Tab> on the last matching entry, you will go back to what you
first typed: >

:edit 1

Then it starts all over again. Thus Vim cycles through the list of matches.
Use CTRL-P to go through the list in the other direction:

<Tab> --> <Tab> -->
:edit i :edit info.txt :edit intro.txt
<—— CTRL-P <—— CTRL-P

.\usr_doc.txt Page

CONTEXT

When you type ":set i" instead of ":edit i" and press <Tab> you get: >
:set icon

Hey, why didn't you get ":set info.txt"? That's because Vim has context

sensitive completion. The kind of words Vim will look for depends on the
command before it. Vim knows that you cannot use a file name just after a
":set" command, but you can use an option name.

Again, if you repeat typing the <Tabs>, Vim will cycle through all matches.
There are quite a few, it's better to type more characters first: >

:set isk<Tab>
Gives: >
:set iskeyword
Now type "=" and press <Tab>: >
:set iskeyword=@,48-57, ,192-255

What happens here is that Vim inserts the old value of the option. Now you
can edit it.

What is completed with <Tab> is what Vim expects in that place. Just try
it out to see how it works. In some situations you will not get what you
want. That's either because Vim doesn't know what you want, or because
completion was not implemented for that situation. In that case you will get
a <Tab> inserted (displayed as “I).

LIST MATCHES

When there are many matches, you would like to see an overview. Do this by
pressing CTRL-D. For example, pressing CTRL-D after: >

:set is
results in: >

:set is
incsearch isfname isident iskeyword isprint
:set is

Vim lists the matches and then comes back with the text you typed. You can
now check the list for the item you wanted. If it isn't there, you can use
<BS> to correct the word. If there are many matches, type a few more
characters before pressing <Tab> to complete the rest.

If you have watched carefully, you will have noticed that "incsearch"
doesn't start with "is". In this case "is" stands for the short name of
"incsearch". (Many options have a short and a long name.) Vim is clever
enough to know that you might have wanted to expand the short name of the
option into the long name.

THERE IS MORE

The CTRL-L command completes the word to the longest unambiguous string. If
you type ":edit i" and there are files "info.txt" and "info backup.txt" you
will get ":edit info".

The 'wildmode' option can be used to change the way completion works.

The 'wildmenu' option can be used to get a menu-like list of matches.

Use the 'suffixes' option to specify files that are less important and appear
at the end of the list of files.

The 'wildignore' option specifies files that are not listed at all.

More about all of this here: |cmdline-completion|

95

.\usr_doc.txt Page

In chapter 3 we briefly mentioned the history. The basics are that you can
use the <Up> key to recall an older command line. <Down> then takes you back
to newer commands.

There are actually four histories. The ones we will mention here are for ":"
commands and for "/" and "?" search commands. The "/" and "?" commands share
the same history, because they are both search commands. The two other
histories are for expressions and input lines for the input () function.

| cmdline-history|

Suppose you have done a ":set" command, typed ten more colon commands and then
want to repeat that ":set" command again. You could press ":" and then ten
times <Up>. There is a quicker way: >

:se<Up>
Vim will now go back to the previous command that started with "se". You have
a good chance that this is the ":set" command you were looking for. At least
you should not have to press <Up> very often (unless ":set" commands is all

you have done) .

The <Up> key will use the text typed so far and compare it with the linesg in
the history. Only matching lines will be used.

If you do not find the line you were looking for, use <Down> to go back to
what you typed and correct that. Or use CTRL-U to start all over again.

To see all the lines in the history: >
:history

That's the history of ":" commands. The search history is displayed with this
command: >

:history /

CTRL-P will work like <Up>, except that it doesn't matter what you already
typed. Similarly for CTRL-N and <Down>. CTRL-P stands for previous, CTRL-N
for next.

Typing the text in the command line works different from typing text in Insert
mode. It doesn't allow many commands to change the text. For most commands
that's OK, but sometimes you have to type a complicated command. That's where
the command line window is useful.

Open the command line window with this command: >
q:

Vim now opens a (small) window at the bottom. It contains the command line
history, and an empty line at the end:

e +
other window
file.tXt=============================
e ¢

:e config.h.in

:set path=.,/usr/include, ,

:set iskeyword=@,48-57, ,192-255
:set is

:q

command-line=========================

.\usr_doc.txt Page

You are now in Normal mode. You can use the "hjkl" keys to move around. For
example, move up with "5k" to the ":e config.h.in" line. Type "$Sh" to go to
the "i" of "in" and type "cwout". Now you have changed the line to:

:e config.h.out ~

Now press <Enter> and this command will be executed. The command line window
will close.

The <Enter> command will execute the line under the cursor. It doesn't
matter whether Vim is in Insert mode or in Normal mode.

Changes in the command line window are lost. They do not result in the
history to be changed. Except that the command you execute will be added to
the end of the history, like with all executed commands.

The command line window is very useful when you want to have overview of the
history, lookup a similar command, change it a bit and execute it. A search
command can be used to find something.

In the previous example the "?config" search command could have been used
to find the previous command that contains "config". It's a bit strange,
because you are using a command line to search in the command line window.
While typing that search command you can't open another command line window,
there can be only one.

Next chapter: |usr 21.txt| Go away and come back

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

97

.\usr_doc.txt Page 98

usr 21.txt For Vim version 7.4. Last change: 2012 Nov 02
VIM USER MANUAL - by Bram Moolenaar
Go away and come back
This chapter goes into mixing the use of other programs with Vim. Either by
executing program from inside Vim or by leaving Vim and coming back later.

Furthermore, this is about the ways to remember the state of Vim and restore
it later.

21.1 Suspend and resume

21.2 Executing shell commands

21.3 Remembering information; viminfo
21.4 Sessions

21.5 Views

21.6 Modelines

Next chapter: |usr 22.txt Finding the file to edit
Previous chapter: |usr 20.txt Typing command-line commands quickly
Table of contents: |usr toc.txt|

Like most Unix programs Vim can be suspended by pressing CTRL-Z. This stops
Vim and takes you back to the shell it was started in. You can then do any
other commands until you are bored with them. Then bring back Vim with the
"fg" command. >

CTRL-Z
{any sequence of shell commands}

fg

You are right back where you left Vim, nothing has changed.

In case pressing CTRL-Z doesn't work, you can also use ":suspend".
Don't forget to bring Vim back to the foreground, you would lose any changes
that you made!

Only Unix has support for this. On other systems Vim will start a shell for
you. This also has the functionality of being able to execute shell commands.
But it's a new shell, not the one that you started Vim from.

When you are running the GUI you can't go back to the shell where Vim was
started. CTRL-Z will minimize the Vim window instead.

To execute a single shell command from Vim use ":!{command}". For example, to
see a directory listing: >

:1ls
:ldir

The first one is for Unix, the second one for MS-Windows.

Vim will execute the program. When it ends you will get a prompt to hit
<Enter>. This allows you to have a look at the output from the command before
returning to the text you were editing.

The "!" is also used in other places where a program is run. Let's take
a look at an overview:

: ! {program} execute {program}
:r l{program execute {program; and read its output
:w ! {program execute {program; and send text to its input
: [range] ! {program} filter text through {program}
Notice that the presence of a range before "!{program}" makes a big

difference. Without it executes the program normally, with the range a number
of text lines is filtered through the program.

.\usr_doc.txt Page 99

Executing a whole row of programs this way is possible. But a shell is much
better at it. You can start a new shell this way: >

:shell

This is similar to using CTRL-Z to suspend Vim. The difference is that a new
shell is started.

When using the GUI the shell will be using the Vim window for its input and
output. Since Vim is not a terminal emulator, this will not work perfectly.
If you have trouble, try toggling the 'guipty' option. If this still doesn't
work well enough, start a new terminal to run the shell in. For example with:

Ixterm&

After editing for a while you will have text in registers, marks in various
files, a command line history filled with carefully crafted commands. When
you exit Vim all of this is lost. But you can get it back!

The viminfo file is designed to store status information:

Command-line and Search pattern history
Text in registers

Marks for various files

The buffer list

Global variables

Each time you exit Vim it will store this information in a file, the viminfo
file. When Vim starts again, the viminfo file is read and the information
restored.

The 'viminfo' option is set by default to restore a limited number of items.
You might want to set it to remember more information. This is done through
the following command: >

:set viminfo=string

The string specifies what to save. The syntax of this string is an option

character followed by an argument. The option/argument pairs are separated by
commas .

Take a look at how you can build up your own viminfo string. First, the '
option is used to specify how many files for which you save marks (a-z). Pick
a nice even number for this option (1000, for instance). Your command now

looks like this: >
:set viminfo='1000

The f option controls whether global marks (A-Z and 0-9) are stored. If this
option is 0, none are stored. If it is 1 or you do not specify an f option,
the marks are stored. You want this feature, so now you have this: >

:set viminfo='1000,f1

The < option controls how many lines are saved for each of the registers. By
default, all the lines are saved. If 0, nothing is saved. To avoid adding
thousands of lines to your viminfo file (which might never get used and makes
starting Vim slower) you use a maximum of 500 lines: >

:set viminfo='1000,£f1,<500
<
Other options you might want to use:
: number of lines to save from the command line history
@ number of lines to save from the input line history
/ number of lines to save from the search history
r removable media, for which no marks will be stored (can be
used several times)
! global variables that start with an uppercase letter and

.\usr_doc.txt Page 100

don't contain lowercase letters

h disable 'hlsearch' highlighting when starting

% the buffer list (only restored when starting Vim without file
arguments)

c convert the text using 'encoding'

n name used for the viminfo file (must be the last option)

See the 'viminfo' option and |viminfo-file| for more information.

When you run Vim multiple times, the last one exiting will store its
information. This may cause information that previously exiting Vims stored
to be lost. Each item can be remembered only once.

GETTING BACK TO WHERE YOU STOPPED VIM

You are halfway editing a file and it's time to leave for holidays. You exit
Vim and go enjoy yourselves, forgetting all about your work. After a couple
of weeks you start Vim, and type:
>

'0

And you are right back where you left Vim. So you can get on with your work.
Vim creates a mark each time you exit Vim. The last one is '0. The
position that '0 pointed to is made 'l. And 'l is made to '2, and so forth.
Mark '9 is lost.
The |:marks| command is useful to find out where 'O to '9 will take you.

GETTING BACK TO SOME FILE

If you want to go back to a file that you edited recently, but not when
exiting Vim, there is a slightly more complicated way. You can see a list of
files by typing the command: >

:oldfiles
< 1: ~/.viminfo ~
2: ~/text/resume.txt ~

3: /tmp/draft ~

Now you would like to edit the second file, which is in the list preceded by
"2:". You type: >

e #<2
Instead of ":e" you can use any command that has a file name argument, the
"#<2" item works in the same place as "%" (current file name) and "#"
(alternate file name). So you can also split the window to edit the third
file: >

:split #<3

That #<123 thing is a bit complicated when you just want to edit a file.
Fortunately there is a simpler way: >

:browse oldfiles

1: ~/.viminfo ~

2: ~/text/resume.txt ~
3: /tmp/draft ~

—-— More --

You get the same list of files as with |:oldfiles|. If you want to edit
"resume.txt" first press "g" to stop the listing. You will get a prompt:

Type number and <Enters> (empty cancels): ~
Type "2" and press <Enter> to edit the second file.

More info at |:oldfiles|, |v:oldfiles| and |c_#<]|.

.\usr_doc.txt Page 101
MOVE INFO FROM ONE VIM TO ANOTHER

You can use the ":wviminfo" and ":rviminfo" commands to save and restore the
information while still running Vim. This is useful for exchanging register
contents between two instances of Vim, for example. In the first Vim do: >

:wviminfo! ~/tmp/viminfo
And in the second Vim do: >
:rviminfo! ~/tmp/viminfo

Obviously, the "w" stands for "write" and the "r" for "read".

The ! character is used by ":wviminfo" to forcefully overwrite an existing
file. When it is omitted, and the file exists, the information is merged into
the file.

The ! character used for ":rviminfo" means that all the information is
used, this may overwrite existing information. Without the ! only information
that wasn't set is used.

These commands can also be used to store info and use it again later. You
could make a directory full of viminfo files, each containing info for a
different purpose.

Suppose you are editing along, and it is the end of the day. You want to quit
work and pick up where you left off the next day. You can do this by saving
your editing session and restoring it the next day.

A Vim session contains all the information about what you are editing.
This includes things such as the file list, window layout, global variables,
options and other information. (Exactly what is remembered is controlled by
the 'sessionoptions' option, described below.)

The following command creates a session file: >

:mksession vimbook.vim
Later if you want to restore this session, you can use this command: >
:source vimbook.vim

If you want to start Vim and restore a specific session, you can use the
following command: >

vim -S vimbook.vim

This tells Vim to read a specific file on startup. The 'S' stands for
session (actually, you can source any Vim script with -S, thus it might as
well stand for "source").

The windows that were open are restored, with the same position and size as
before. Mappings and option values are like before.

What exactly is restored depends on the 'sessionoptions' option. The
default value is "blank,buffers,curdir, folds,help,options,winsize".

blank keep empty windows

buffers all buffers, not only the ones in a window
curdir the current directory

folds folds, also manually created ones

help the help window

options all options and mappings

winsize window sizes

Change this to your liking. To also restore the size of the Vim window, for
example, use: >

:set sessionoptions+=resize

SESSION HERE, SESSION THERE

.\usr_doc.txt Page

The obvious way to use sessions is when working on different projects.
Suppose you store your session files in the directory "~/.vim". You are
currently working on the "secret" project and have to switch to the "boring"
project: >

:wall
:mksession! ~/.vim/secret.vim
:source ~/.vim/boring.vim

This first uses ":wall" to write all modified files. Then the current session
is saved, using ":mksession!". This overwrites the previous session. The
next time you load the secret session you can continue where you were at this
point. And finally you load the new "boring" session.

If you open help windows, split and close various windows, and generally mess
up the window layout, you can go back to the last saved session: >

:source ~/.vim/boring.vim

Thus you have complete control over whether you want to continue next time
where you are now, by saving the current setup in a session, or keep the
session file as a starting point.

Another way of using sessions is to create a window layout that you like to
use, and save this in a session. Then you can go back to this layout whenever
you want.

For example, this is a nice layout to use:

VIM - main help file
Move around: Use the cursor keys, or "h

explorer
dir ~
dir ~
file ~
file ~

This has a help window at the top, so that you can read this text. The narrow
vertical window on the left contains a file explorer. This is a Vim plugin
that lists the contents of a directory. You can select files to edit there.
More about this in the next chapter.

Create this from a just started Vim with: >

:help
CTRL-W w
:vertical split ~/

You can resize the windows a bit to your liking. Then save the session with:
g :mksession ~/.vim/mine.vim
Now you can start Vim with this layout: >

vim -S ~/.vim/mine.vim
Hint: To open a file you see listed in the explorer window in the empty
window, move the cursor to the filename and press "O". Double clicking with
the mouse will also do this.
UNIX AND MS-WINDOWS
Some people have to do work on MS-Windows systems one day and on Unix another

day. If you are one of them, consider adding "slash" and "unix" to
'sessionoptions'. The session files will then be written in a format that can

102

.\usr_doc.txt Page 103
be used on both systems. This is the command to put in your vimrc file: >
:set sessionoptions+=unix, slash

Vim will use the Unix format then, because the MS-Windows Vim can read and
write Unix files, but Unix Vim can't read MS-Windows format session files.
Similarly, MS-Windows Vim understands file names with / to separate names, but
Unix Vim doesn't understand \.

SESSIONS AND VIMINFO

Sessions store many things, but not the position of marks, contents of
registers and the command line history. You need to use the viminfo feature
for these things.

In most situations you will want to use sessions separately from viminfo.
This can be used to switch to another session, but keep the command line
history. And yank text into registers in one session, and paste it back in
another session.

You might prefer to keep the info with the session. You will have to do
this yourself then. Example: >

:mksession! ~/.vim/secret.vim
:wviminfo! ~/.vim/secret.viminfo

And to restore this again: >

:source ~/.vim/secret.vim
:rviminfo! ~/.vim/secret.viminfo

A session stores the looks of the whole of Vim. When you want to store the
properties for one window only, use a view.

The use of a view is for when you want to edit a file in a specific way.
For example, you have line numbers enabled with the 'number' option and
defined a few folds. Just like with sessions, you can remember this view on
the file and restore it later. Actually, when you store a session, it stores
the view of each window.

There are two basic ways to use views. The first is to let Vim pick a name
for the view file. You can restore the view when you later edit the same
file. To store the view for the current window: >

:mkview

Vim will decide where to store the view. When you later edit the same file
you get the view back with this command: >

:loadview
That's easy, isn't it?

Now you want to view the file without the 'number' option on, or with all
folds open, you can set the options to make the window look that way. Then
store this view with: >

:mkview 1
Obviously, you can get this back with: >

:loadview 1
Now you can switch between the two views on the file by using ":loadview" with
and without the "1" argument.

You can store up to ten views for the same file this way, one unnumbered
and nine numbered 1 to 9.

A VIEW WITH A NAME

The second basic way to use views is by storing the view in a file with a name

.\usr_doc.txt Page 104

you choose. This view can be loaded while editing another file. Vim will
then switch to editing the file specified in the view. Thus you can use this
to quickly switch to editing another file, with all its options set as you
saved them.

For example, to save the view of the current file: >

:mkview ~/.vim/main.vim
You can restore it with: >

:source ~/.vim/main.vim

When editing a specific file, you might set options specifically for that
file. Typing these commands each time is boring. Using a session or view for
editing a file doesn't work when sharing the file between several people.

The solution for this situation is adding a modeline to the file. This is
a line of text that tells Vim the values of options, to be used in this file
only.

A typical example is a C program where you make indents by a multiple of 4
spaces. This requires setting the 'shiftwidth' option to 4. This modeline
will do that:

/* vim:set shiftwidth=4: */ ~

Put this line as one of the first or last five lines in the file. When
editing the file, you will notice that 'shiftwidth' will have been set to
four. When editing another file, it's set back to the default value of eight.

For some files the modeline fits well in the header, thus it can be put at
the top of the file. For text files and other files where the modeline gets
in the way of the normal contents, put it at the end of the file.

The 'modelines' option specifies how many lines at the start and end of the
file are inspected for containing a modeline. To inspect ten lines: >

:set modelines=10

The 'modeline' option can be used to switch this off. Do this when you are
working as root on Unix or Administrator on MS-Windows, or when you don't
trust the files you are editing: >

:set nomodeline
Use this format for the modeline:
any-text vim:set {option}={value} ... : any-text ~

The "any-text" indicates that you can put any text before and after the part
that Vim will use. This allows making it look like a comment, like what was
done above with /* and */.

The " vim:" part is what makes Vim recognize this line. There must be
white space before "vim", or "vim" must be at the start of the line. Thus
using something like "gvim:" will not work.

The part between the colons is a ":set" command. It works the same way as
typing the ":set" command, except that you need to insert a backslash before a
colon (otherwise it would be seen as the end of the modeline).

Another example:

// vim:set textwidth=72 dir=c\:\tmp: wuse c:\tmp here ~
There is an extra backslash before the first colon, so that it's included in
the ":set" command. The text after the second colon is ignored, thus a remark

can be placed there.

For more details see |modeline]|.

.\usr_doc.txt Page 105
Next chapter: |usr 22.txt| Finding the file to edit

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page 106

usr 22.txt For Vim version 7.4. Last change: 2012 Nov 15
VIM USER MANUAL - by Bram Moolenaar
Finding the file to edit
Files can be found everywhere. So how do you find them? Vim offers various
ways to browse the directory tree. There are commands to jump to a file that

is mentioned in another. And Vim remembers which files have been edited
before.

22.1 The file browser

22.2 The current directory
22.3 Finding a file

22.4 The buffer list

Next chapter:
Previous chapter:
Table of contents:

usr 23.txt Editing other files
usr_ 21.txt Go away and come back
usr_ toc.txt|

Vim has a plugin that makes it possible to edit a directory. Try this: >
:edit

Through the magic of autocommands and Vim scripts, the window will be filled
with the contents of the directory. It looks like this:

" Netrw Directory Listing (netrw v109) ~
" Sorted by name ~

" Sort sequence: [\/1$,\.hs,\.c$,\.cpps$,*,\.infos$,\.swps,\.0$\.0objs$,\.baks ~
" Quick Help: <Fl>:help -:go up dir D:delete R:rename s:sort-by x:exec ~
o)~

./~

check/ ~

Makefile ~

autocmd. txt ~
change.txt ~
eval . txt~ ~
filetype.txt~ ~
help.txt.info ~

You can see these items:

The name of the browsing tool and its version number

The name of the browsing directory

The method of sorting (may be by name, time, or size)

How names are to be sorted (directories first, then *.h files,
* . c files, etc)

How to get help (use the <Fl1> key), and an abbreviated listing
of available commands

6. A listing of files, including "../", which allows one to list

the parent directory.

B WN R

()]

If you have syntax highlighting enabled, the different parts are highlighted
so as to make it easier to spot them.

You can use Normal mode Vim commands to move around in the text. For example,
move the cursor atop a file and press <Enter>; you will then be editing that
file. To go back to the browser use ":edit ." again, or use ":Explore".

CTRL-0O also works.

Try using <Enter> while the cursor is atop a directory name. The result is
that the file browser moves into that directory and displays the items found
there. Pressing <Enter> on the first directory "../" moves you one level

.\usr_doc.txt

higher. Pressing "-" does the same thing,
".,./" item first.

Page 107

without the need to move to the

You can press <Fl> to get help on the things you can do in the netrw file

browser. This is what you get: >

9. Directory Browsing netrw-browse

netrw-dir

netrw-list

netrw-help

MAPS netrw-maps
<Fl>.iiiiinan.. He LD o ettt e e e e e e netrw-help|
<CT>. i iiiiinen.. BrOWSINg. ..t i ittt e netrw-cr|
............ Deleting Files or Directories.............. netrw-delete|
e e e GOING UP . i ottt e et et e e e e e e e e e e e netrw--
= Hiding Files or Directories................ netrw-a
mb............... Bookmarking a Directory...........c.ooooooo.. netrw-mb
gb. i Changing to a Bookmarked Directory......... netrw-gb
Gt e e e e Make Browsing Directory The Current Dir....|netrw-c
[Make A New DireCtOory. netrw-d
Dttt e Deleting Files or Directories.............. netrw-D
<c-h>............ Edit File/Directory Hiding List............ netrw-ctrl-h]|
e Change Listing Style..........c..iiuiunuen... netrw-1i|
<c-l>............ Refreshing the Listing..................... netrw-ctrl-1|
[Browsing with a Horizontal Split........... netrw-o
2 Use Preview Window...............eoeoo.. netrw-p
P Edit in Previous Window.................... netrw-p
o P Listing Bookmarks and History.............. netrw-q
Bl Reversing Sorting Order.................... netrw-r

< (etc)

The <F1l> key thus brings you to a netrw directory browsing contents help page.
It's a regular help page; use the usual |CTRL-]| to jump to tagged help items

and |CTRL-O| to jump back.

To select files for display and editing:

(with the cursor is atop a filename)

<enter> Open the file in the current window. netrw-cr|
o Horizontally split window and display file |[netrw-o
v Vertically split window and display file netrw-v
P Use the |preview-window| netrw-p
P Edit in the previous window netrw-P
t Open file in a new tab netrw-t

The following normal-mode commands may be used to control the browser display:

i Controls listing style (thin,

long,

wide,

and tree) .

The long listing includes size and date information.

] Repeatedly pressing s will change the way the files
are sorted; one may sort on name, modification time,
or size.

r Reverse the sorting order.

As a sampling of extra normal-mode commands:

c Change Vim's notion

of the current directory to be
the same as the browser directory. (see
|g:netrw keepdir| to control this, too)

One may also use command mode; again,

R Rename the file or directory under the cursor; a
prompt will be issued for the new name.

D Delete the file or directory under the cursor; a
confirmation request will be issued.

mb gb Make bookmark/goto bookmark

:Explore
:NetrwSettings

[directory]

just a sampling:

Browse specified/current directory
A comprehensive list of your current netrw
settings with help linkage.

The netrw browser is not limited to just your local machine; one may use

urls such as:

(that trailing / is important)

.\usr_doc.txt

:Explore ftp://somehost/path/to/dir/
:e scp://somehost/path/to/dir/

See |netrw-browse| for more.

Page 108

Just like the shell, Vim has the concept of a current directory.

Suppose you

are in your home directory and want to edit several files in a directory

"VeryLongFileName".

To avoid much of the typing,

The ":cd" command changes the current directory.

You could do: >

:edit VeryLongFileName/filel.txt
:edit VeryLongFileName/file2.txt
:edit VeryLongFileName/file3.txt

do this: >

:cd VeryLongFileName
:edit filel.txt
:edit file2.txt
:edit file3.txt

directory is with the ":pwd" command: >

:pwd
/home /Bram/VeryLongFileName

Vim remembers the last directory that you used.

Example:

>

:pwd

/home /Bram/VeryLongFileName
:cd /etc

:pwd

/etc

:cd -

:pwd

/home /Bram/VeryLongFileName
:cd -

:pwd

/etc

WINDOW LOCAL DIRECTORY

When you split a window,

both windows use the same current directory.

You can see what the current

Use "cd -" to go back to it.

When

you want to edit a number of files somewhere else in the new window, you can

make it use a different directory,
the other window.

So long as no ":lcd" command has been used,
directory.

:pwd
/home/Bram/VeryLongFileName
:split

:lcd /etc

:pwd

/etc

CTRL-W w

:pwd

/home /Bram/VeryLongFileName

directory of the other window.
For a window where ":1lcd" has been used a different current directory is

remembered.

Using ":cd" or ":lcd"

without changing the current directory in
This is called a local directory. >

all windows share the same current
Doing a ":cd" command in one window will also change the current

in other windows will not change it.

When using a ":cd" command in a window that uses a different current

directory,

it will go back to using the shared directory.

.\usr_doc.txt Page

You are editing a C program that contains this line:
#include "inits.h"

You want to see what is in that "inits.h" file. Move the cursor on the name
of the file and type: >

gf

Vim will find the file and edit it.

What if the file is not in the current directory? Vim will use the 'path’
option to find the file. This option is a list of directory names where to
look for your file.

Suppose you have your include files located in "c:/prog/include". This
command will add it to the 'path' option: >

:set path+=c:/prog/include

This directory is an absolute path. No matter where you are, it will be the
same place. What if you have located files in a subdirectory, below where the
file is? Then you can specify a relative path name. This starts with a dot:

:set path+=./proto

This tells Vim to look in the directory "proto", below the directory where the
file in which you use "gf" is. Thus using "gf" on "inits.h" will make Vim
look for "proto/inits.h", starting in the directory of the file.

Without the "./", thus "proto", Vim would look in the "proto" directory
below the current directory. And the current directory might not be where the
file that you are editing is located.

The 'path' option allows specifying the directories where to search for files

in many more ways. See the help on the 'path' option.

The 'isfname' option is used to decide which characters are included in the
file name, and which ones are not (e.g., the " character in the example
above) .

When you know the file name, but it's not to be found in the file, you can
type it: >

:find inits.h

Vim will then use the 'path' option to try and locate the file. This is the
same as the ":edit" command, except for the use of 'path'.

To open the found file in a new window use CTRL-W f instead of "gf", or use

":sfind" instead of ":find".

A nice way to directly start Vim to edit a file somewhere in the 'path': >
vim "+find stdio.h"

This finds the file "stdio.h" in your wvalue of 'path'. The quotes are
necessary to have one argument |-+c].

The Vim editor uses the term buffer to describe a file being edited.
Actually, a buffer is a copy of the file that you edit. When you finish
changing the buffer, you write the contents of the buffer to the file.
Buffers not only contain file contents, but also all the marks, settings, and
other stuff that goes with it.

HIDDEN BUFFERS

.\usr_doc.txt Page 110

Suppose you are editing the file one.txt and need to edit the file two.txt.
You could simply use ":edit two.txt", but since you made changes to one.txt
that won't work. You also don't want to write one.txt yet. Vim has a
solution for you: >

:hide edit two.txt

The buffer "one.txt" disappears from the screen, but Vim still knows that you
are editing this buffer, so it keeps the modified text. This is called a
hidden buffer: The buffer contains text, but you can't see it.

The argument of ":hide" is another command. ":hide" makes that command
behave as if the 'hidden' option was set. You could also set this option
yourself. The effect is that when any buffer is abandoned, it becomes hidden.

Be careful! When you have hidden buffers with changes, don't exit Vim
without making sure you have saved all the buffers.

INACTIVE BUFFERS

When a buffer has been used once, Vim remembers some information about it.
When it is not displayed in a window and it is not hidden, it is still in the

buffer list. This is called an inactive buffer. Overview:
Active Appears in a window, text loaded.
Hidden Not in a window, text loaded.
Inactive Not in a window, no text loaded.

The inactive buffers are remembered, because Vim keeps information about them,
like marks. And remembering the file name is useful too, so that you can see
which files you have edited. And edit them again.

LISTING BUFFERS

View the buffer list with this command: >

:buffers

A command which does the same, is not so obvious to list buffers, but is much
shorter to type: >

:1s

The output could look like this:

1 #h "help.txt" line 62 ~
2 %a + "usr_ 21.txt" line 1 ~
3 "usr_toc.txt" line 1 ~

The first column contains the buffer number. You can use this to edit the
buffer without having to type the name, see below.

After the buffer number come the flags. Then the name of the file
and the line number where the cursor was the last time.

The flags that can appear are these (from left to right):

u Buffer is unlisted |unlisted-buffer|.
% Current buffer.
Alternate buffer.

Buffer is loaded and displayed.

Buffer is loaded but hidden.
= Buffer is read-only.

Buffer is not modifiable, the 'modifiable' option is off.
+ Buffer has been modified.

[n v}

EDITING A BUFFER

You can edit a buffer by its number. That avoids having to type the file
name: >

:buffer 2

.\usr_doc.txt Page
But the only way to know the number is by looking in the buffer list. You can
use the name, or part of it, instead: >
:buffer help
Vim will find the best match for the name you type. If there is only one
buffer that matches the name, it will be used. In this case "help.txt".
To open a buffer in a new window: >

:sbuffer 3

This works with a name as well.

USING THE BUFFER LIST

You can move around in the buffer list with these commands:

:bnext go to next buffer

:bprevious go to previous buffer
:bfirst go to the first buffer
:blast go to the last buffer

To remove a buffer from the list, use this command: >
:bdelete 3

Again, this also works with a name.

If you delete a buffer that was active (visible in a window), that window
will be closed. 1If you delete the current buffer, the current window will be
closed. 1If it was the last window, Vim will find another buffer to edit. You
can't be editing nothing!

Note:
Even after removing the buffer with ":bdelete" Vim still remembers it.
It's actually made "unlisted", it no longer appears in the list from

":buffers". The ":buffers!" command will list unlisted buffers (yes,
Vim can do the impossible). To really make Vim forget about a buffer,
use ":bwipe". Also see the 'buflisted' option.

Next chapter: |usr 23.txt| Editing other files

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

111

.\usr_doc.txt Page 112

usr 23.txt For Vim version 7.4. Last change: 2006 Apr 24
VIM USER MANUAL - by Bram Moolenaar
Editing other files
This chapter is about editing files that are not ordinary files. With Vim you
can edit files that are compressed or encrypted. Some files need to be

accessed over the internet. With some restrictions, binary files can be
edited as well.

23.1 DOS, Mac and Unix files
23.2 Files on the internet
23.3 Encryption

23.4 Binary files

23.5 Compressed files

Next chapter: |usr 24.txt Inserting quickly
Previous chapter: |usr 22.txt Finding the file to edit
Table of contents: |usr toc.txt|

Back in the early days, the old Teletype machines used two characters to
start a new line. One to move the carriage back to the first position
(carriage return, <CR>), another to move the paper up (line feed, <LF>).

When computers came out, storage was expensive. Some people decided that
they did not need two characters for end-of-line. The UNIX people decided
they could use <Line Feed> only for end-of-line. The Apple people
standardized on <CR>. The MS-DOS (and Microsoft Windows) folks decided to
keep the o0ld <CR><LF>.

This means that if you try to move a file from one system to another, you
have line-break problems. The Vim editor automatically recognizes the
different file formats and handles things properly behind your back.

The option 'fileformats' contains the various formats that will be tried
when a new file is edited. The following command, for example, tells Vim to
try UNIX format first and MS-DOS format second: >

:set fileformats=unix,dos
You will notice the format in the message you get when editing a file. You
don't see anything if you edit a native file format. Thus editing a Unix file
on Unix won't result in a remark. But when you edit a dos file, Vim will
notify you of this:

"/tmp/test" [dos] 3L, 71C ~
For a Mac file you would see " [mac]".

The detected file format is stored in the 'fileformat' option. To see

which format you have, execute the following command: >

:set fileformat?

The three names that Vim uses are:

unix <LF>
dos <CR><LF>
mac <CR>

USING THE MAC FORMAT

On Unix, <LF> 1is used to break a line. It's not unusual to have a <CR>
character halfway a line. 1Incidentally, this happens quite often in Vi (and
Vim) scripts.

On the Macintosh, where <CR> is the line break character, it's possible to
have a <LF> character halfway a line.

The result is that it's not possible to be 100% sure whether a file

.\usr_doc.txt Page 113

containing both <CR> and <LF> characters is a Mac or a Unix file. Therefore,
Vim assumes that on Unix you probably won't edit a Mac file, and doesn't check
for this type of file. To check for this format anyway, add "mac" to
'fileformats': >

:set fileformats+=mac

Then Vim will take a guess at the file format. Watch out for situations where
Vim guesses wrong.

OVERRULING THE FORMAT

If you use the good old Vi and try to edit an MS-DOS format file, you will
find that each line ends with a "M character. ("M is <CR>). The automatic
detection avoids this. Suppose you do want to edit the file that way? Then
you need to overrule the format: >

:edit ++ff=unix file.txt

The "++" string is an item that tells Vim that an option name follows, which
overrules the default for this single command. "++ff" is used for
'fileformat'. You could also use "++ff=mac" or "++ff=dos".

This doesn't work for any option, only "++ff" and "++enc" are currently
implemented. The full names "++fileformat" and "++encoding" also work.

CONVERSION

You can use the 'fileformat' option to convert from one file format to
another. Suppose, for example, that you have an MS-DOS file named README.TXT
that you want to convert to UNIX format. Start by editing the MS-DOS format
file: >

vim README.TXT

Vim will recognize this as a dos format file. Now change the file format to
UNIX: >

:set fileformat=unix
:write

The file is written in Unix format.

Someone sends you an e-mail message, which refers to a file by its URL. For
example:

You can find the information here: -~
ftp://ftp.vim.org/pub/vim/README ~

You could start a program to download the file, save it on your local disk and
then start Vim to edit it.

There is a much simpler way. Move the cursor to any character of the URL.
Then use this command: >

gf

With a bit of luck, Vim will figure out which program to use for downloading
the file, download it and edit the copy. To open the file in a new window use
CTRL-W £.

If something goes wrong you will get an error message. It's possible that
the URL is wrong, you don't have permission to read it, the network connection
is down, etc. Unfortunately, it's hard to tell the cause of the error. You
might want to try the manual way of downloading the file.

Accessing files over the internet works with the netrw plugin. Currently URLs
with these formats are recognized:

ftp:// uses ftp

.\usr_doc.txt Page 114

rcp:// uses rcp
scp:// uses scp
http:// uses wget (reading only)

Vim doesgn't do the communication itself, it relies on the mentioned programs
to be available on your computer. On most Unix systems "ftp" and "rcp" will
be present. '"scp" and "wget" might need to be installed.

Vim detects these URLs for each command that starts editing a new file, also
with ":edit" and ":split", for example. Write commands also work, except for
http://.

For more information, also about passwords, see |netrw|.

Some information you prefer to keep to yourself. For example, when writing
a test on a computer that students also use. You don't want clever students
to figure out a way to read the questions before the exam starts. Vim can
encrypt the file for you, which gives you some protection.

To start editing a new file with encryption, use the "-x" argument to start
Vim. Example: >

vim -x exam.txt
Vim prompts you for a key used for encrypting and decrypting the file:
Enter encryption key: ~

Carefully type the secret key now. You cannot see the characters you type,
they will be replaced by stars. To avoid the situation that a typing mistake
will cause trouble, Vim asks you to enter the key again:

Enter same key again: ~

You can now edit this file normally and put in all your secrets. When you
finish editing the file and tell Vim to exit, the file is encrypted and
written.

When you edit the file with Vim, it will ask you to enter the same key
again. You don't need to use the "-x" argument. You can also use the normal
":edit" command. Vim adds a magic string to the file by which it recognizes
that the file was encrypted.

If you try to view this file using another program, all you get is garbage.
Also, if you edit the file with Vim and enter the wrong key, you get garbage.
Vim does not have a mechanism to check if the key is the right one (this makes
it much harder to break the key).

SWITCHING ENCRYPTION ON AND OFF

To disable the encryption of a file, set the 'key' option to an empty string:
>
:set key=

The next time you write the file this will be done without encryption.
Setting the 'key' option to enable encryption is not a good idea, because
the password appears in the clear. Anyone shoulder-surfing can read your
password.
To avoid this problem, the ":X" command was created. It asks you for an
encryption key, just like the "-x" argument did: >

: X

Enter encryption key: *****%
Enter same key again: *****%

LIMITS ON ENCRYPTION

The encryption algorithm used by Vim is weak. It is good enough to keep out
the casual prowler, but not good enough to keep out a cryptology expert with

.\usr_doc.txt Page 115

lots of time on his hands. Also you should be aware that the swap file is not
encrypted; so while you are editing, people with superuser privileges can read
the unencrypted text from this file.

One way to avoid letting people read your swap file is to avoid using one.
If the -n argument is supplied on the command line, no swap file is used
(instead, Vim puts everything in memory). For example, to edit the encrypted
file "file.txt" without a swap file use the following command: >

vim -x -n file.txt
When already editing a file, the swapfile can be disabled with: >
:setlocal noswapfile

Since there is no swapfile, recovery will be impossible. Save the file a bit
more often to avoid the risk of losing your changes.

While the file is in memory, it is in plain text. Anyone with privilege can
look in the editor's memory and discover the contents of the file.

If you use a viminfo file, be aware that the contents of text registers are
written out in the clear as well.

If you really want to secure the contents of a file, edit it only on a
portable computer not connected to a network, use good encryption tools, and
keep the computer locked up in a big safe when not in use.

You can edit binary files with Vim. Vim wasn't really made for this, thus
there are a few restrictions. But you can read a file, change a character and
write it back, with the result that only that one character was changed and
the file is identical otherwise.

To make sure that Vim does not use its clever tricks in the wrong way, add
the "-b" argument when starting Vim: >

vim -b datafile
This sets the 'binary' option. The effect of this is that unexpected side
effects are turned off. For example, 'textwidth' is set to zero, to avoid
automatic formatting of lines. And files are always read in Unix file format.
Binary mode can be used to change a message in a program. Be careful not to
insert or delete any characters, it would stop the program from working. Use
"R" to enter replace mode.
Many characters in the file will be unprintable. To see them in Hex format: >
:set display=uhex
Otherwise, the "ga" command can be used to see the value of the character

under the cursor. The output, when the cursor is on an <Esc>, looks like
this:

<" [> 27, Hex 1lb, Octal 033 ~

There might not be many line breaks in the file. To get some overview switch
the 'wrap' option off: >

:set nowrap

BYTE POSITION

To see on which byte you are in the file use this command: >
g CTRL-G

The output is verbose:

Col 9-16 of 9-16; Line 277 of 330; Word 1806 of 2058; Byte 10580 of 12206 ~

.\usr_doc.txt Page 116
The last two numbers are the byte position in the file and the total number of
bytes. This takes into account how 'fileformat' changes the number of bytes
that a line break uses.

To move to a specific byte in the file, use the "go" command. For
example, to move to byte 2345: >

2345go

USING XXD
A real binary editor shows the text in two ways: as it is and in hex format.
You can do this in Vim by first converting the file with the "xxd" program.
This comes with Vim.
First edit the file in binary mode: >
vim -b datafile
Now convert the file to a hex dump with xxd: >

1% 1xxd

The text will look like this:

0000000: 1f8b 0808 39d7 173b 0203 7474 002b 4e49 L...9. .. EEL NI ~
0000010: 4b2c 8660 eb9c ecac c462 eb94 345e 2e30 K,. b..4%.0 ~
0000020: 373b 2731 0b22 0Ocaé cla2 de69 1035 39d9 R L i.59. ~

You can now view and edit the text as you like. Vim treats the information as
ordinary text. Changing the hex does not cause the printable character to be
changed, or the other way around.
Finally convert it back with:
>
(% lxxd -r

Only changes in the hex part are used. Changes in the printable text part on
the right are ignored.

See the manual page of xxd for more information.

This is easy: You can edit a compressed file just like any other file. The
"gzip" plugin takes care of decompressing the file when you edit it. And
compressing it again when you write it.

These compression methods are currently supported:

.Z compress
.gz gzip
.bz2 bzip2

Vim uses the mentioned programs to do the actual compression and
decompression. You might need to install the programs first.

Next chapter: |usr 24.txt| Inserting quickly

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page

usr 24 .txt For Vim version 7.4. Last change: 2006 Jul 23
VIM USER MANUAL - by Bram Moolenaar
Inserting quickly
When entering text, Vim offers various ways to reduce the number of keystrokes
and avoid typing mistakes. Use Insert mode completion to repeat previously

typed words. Abbreviate long words to short ones. Type characters that
aren't on your keyboard.

24.
24.

Digraphs
O| Normal mode commands

24.1 Making corrections

24.2 Showing matches

24.3 Completion

24 .4 Repeating an insert

24 .5 Copying from another line

24.6 Inserting a register

24.7 Abbreviations

24.8 Entering special characters
9
1

Next chapter: |usr 25.txt Editing formatted text
Previous chapter: |usr 23.txt Editing other files
Table of contents: |usr toc.txt|

The <BS> key was already mentioned. It deletes the character just before the
cursor. The key does the same for the character under (after) the
cursor.

When you typed a whole word wrong, use CTRL-W:

The horse had fallen to the sky ~
CTRL-W
The horse had fallen to the ~

If you really messed up a line and want to start over, use CTRL-U to delete
it. This keeps the text after the cursor and the indent. Only the text from
the first non-blank to the cursor is deleted. With the cursor on the "f" of
"fallen" in the next line pressing CTRL-U does this:

The horse had fallen to the ~
CTRL-U
fallen to the ~

When you spot a mistake a few words back, you need to move the cursor there to
correct it. For example, you typed this:

The horse had follen to the ground ~

You need to change "follen" to "fallen". With the cursor at the end, you
would type this to correct it: >

<Esc>4blraA
< get out of Insert mode <Esc>
four words back 4b
move on top of the "o" 1
replace with "an" ra
restart Insert mode A

Another way to do this: >
<C-Left><C-Left><C-Left><C-Left><Right>a<End>

< four words back <C-Left><C-Left><C-Left><C-Left>
move on top of the "o" <Right>

117

.\usr_doc.txt Page 118

delete the "o"
insert an "a" a
go to end of the line <End>

This uses special keys to move around, while remaining in Insert mode. This
resembles what you would do in a modeless editor. It's easier to remember,
but takes more time (you have to move your hand from the letters to the cursor
keys, and the <End> key is hard to press without looking at the keyboard) .
These special keys are most useful when writing a mapping that doesn't
leave Insert mode. The extra typing doesn't matter then.
An overview of the keys you can use in Insert mode:

<C-Home> to start of the file
<PageUp> a whole screenful up
<Home > to start of line
<S-Left> one word left

<C-Left> one word left
<S-Right> one word right
<C-Right> one word right

<End> to end of the line
<PageDown> a whole screenful down
<C-End> to end of the file

There are a few more, see |ins-special-speciall.

When you type a) it would be nice to see with which (it matches. To make
Vim do that use this command: >

:set showmatch

When you now type a text like " (example)", as soon as you type the) Vim will
briefly move the cursor to the matching (, keep it there for half a second,
and move back to where you were typing.

In case there is no matching (, Vim will beep. Then you know that you
might have forgotten the (somewhere, or typed a) too many.

The match will also be shown for [] and {} pairs. You don't have to wait
with typing the next character, as soon as Vim sees it the cursor will move
back and inserting continues as before.

You can change the time Vim waits with the 'matchtime' option. For
example, to make Vim wait one and a half second: >

:set matchtime=15

The time is specified in tenths of a second.

Vim can automatically complete words on insertion. You type the first part of
a word, press CTRL-P, and Vim guesses the rest.
Suppose, for example, that you are creating a C program and want to type in

the following:

total = ch _array[0] + ch array[l] + ch arrayl[2]; ~
You start by entering the following:

total = ch array[0] + ch_ -~
At this point, you tell Vim to complete the word using the command CTRL-P.
Vim searches for a word that starts with what's in front of the cursor. In
this case, it is "ch ", which matches with the word ch array. So typing
CTRL-P gives you the following:

total = ch array[0] + ch array ~

After a little more typing, you get this (ending in a space):

.\usr_doc.txt Page 119
total = ch array[0] + ch arrayl[l] + ~

If you now type CTRL-P Vim will search again for a word that completes the
word before the cursor. Since there is nothing in front of the cursor, it
finds the first word backwards, which is "ch array". Typing CTRL-P again
gives you the next word that matches, in this case "total". A third CTRL-P
searches further back. If there is nothing else, it causes the editor to run
out of words, so it returns to the original text, which is nothing. A fourth
CTRL-P causes the editor to start over again with "ch array".

To search forward, use CTRL-N. Since the search wraps around the end of the
file, CTRL-N and CTRL-P will find the same matches, but in a different
sequence. Hint: CTRL-N is Next-match and CTRL-P is Previous-match.

The Vim editor goes through a lot of effort to find words to complete. By
default, it searches the following places:

Current file

Files in other windows

Other loaded files (hidden buffers)

Files which are not loaded (inactive buffers)
Tag files

All files #included by the current file

AUl WN R

OPTIONS
You can customize the search order with the 'complete' option.

The 'ignorecase' option is used. When it is set, case differences are ignored
when searching for matches.

A special option for completion is 'infercase'. This is useful to find
matches while ignoring case ('ignorecase' must be set) but still using the
case of the word typed so far. Thus if you type "For" and Vim finds a match
"fortunately", it will result in "Fortunately".

COMPLETING SPECIFIC ITEMS

If you know what you are looking for, you can use these commands to complete
with a certain type of item:

CTRL-X CTRL-F file names

CTRL-X CTRL-L whole lines

CTRL-X CTRL-D macro definitions (also in included files)
CTRL-X CTRL-I current and included files

CTRL-X CTRL-K words from a dictionary

CTRL-X CTRL-T words from a thesaurus

CTRL-X CTRL-] tags

CTRL-X CTRL-V Vim command line

After each of them CTRL-N can be used to find the next match, CTRL-P to find
the previous match.
More information for each of these commands here: |ins-completion].

COMPLETING FILE NAMES
Let's take CTRL-X CTRL-F as an example. This will find file names. It scans
the current directory for files and displays each one that matches the word in
front of the cursor.
Suppose, for example, that you have the following files in the current
directory:
main.c sub _count.c sub done.c sub exit.c

Now enter Insert mode and start typing:

The exit code is in the file sub ~

.\usr_doc.txt Page 120

At this point, you enter the command CTRL-X CTRL-F. Vim now completes the
current word "sub" by looking at the files in the current directory. The
first match is sub_count.c. This is not the one you want, so you match the
next file by typing CTRL-N. This match is sub done.c. Typing CTRL-N again
takes you to sub exit.c. The results:

The exit code is in the file sub exit.c ~

If the file name starts with / (Unix) or C:\ (MS-Windows) you can find all
files in the file system. For example, type "/u" and CTRL-X CTRL-F. This
will match "/usr" (this is on Unix):

the file is found in /usr/ ~

If you now press CTRL-N you go back to "/u". Instead, to accept the "/usr/"
and go one directory level deeper, use CTRL-X CTRL-F again:

the file is found in /usr/X11R6/ ~

The results depend on what is found in your file system, of course. The
matches are sorted alphabetically.

COMPLETING IN SOURCE CODE

Source code files are well structured. That makes it possible to do
completion in an intelligent way. In Vim this is called Omni completion. In
some other editors it's called intellisense, but that is a trademark.

The key to Omni completion is CTRL-X CTRL-O. Obviously the O stands for Omni
here, so that you can remember it easier. Let's use an example for editing C
source:

{ ~
struct foo *p; ~
p-> ~

The cursor is after "p->". Now type CTRL-X CTRL-O. Vim will offer you a list
of alternatives, which are the items that "struct foo" contains. That is
quite different from using CTRL-P, which would complete any word, while only
members of "struct foo" are valid here.

For Omni completion to work you may need to do some setup. At least make sure
filetype plugins are enabled. Your vimrc file should contain a line like
this: >

filetype plugin on
Or: >

filetype plugin indent on

For C code you need to create a tags file and set the 'tags' option. That is

explained |ft-c-omni|. For other filetypes you may need to do something
similar, look below |compl-omni-filetypes|. It only works for specific
filetypes. Check the value of the 'omnifunc' option to find out if it would
work.

If you press CTRL-A, the editor inserts the text you typed the last time you
were in Insert mode.
Assume, for example, that you have a file that begins with the following:

"file.h" ~
/* Main program begins */ ~

You edit this file by inserting "#include " at the beginning of the first
line:

#include "file.h" ~
/* Main program begins */ ~

.\usr_doc.txt Page 121

A

You go down to the beginning of the next line using the commands "j"". You
now start to insert a new "#include" line. So you type: >
i CTRL-A

The result is as follows:

#include "file.h" ~
#include /* Main program begins */ ~

The "#include " was inserted because CTRL-A inserts the text of the previous

insert. Now you type '"main.h"<Enter> to finish the line:

#include "file.h"
#include "main.h" ~
/* Main program begins */ ~

The CTRL-@ command does a CTRL-A and then exits Insert mode. That's a quick
way of doing exactly the same insertion again.

The CTRL-Y command inserts the character above the cursor. This is useful
when you are duplicating a previous line. For example, you have this line of
C code:

b array[i]->s next = a arrayl[i]->s next; ~
Now you need to type the same line, but with "s prev" instead of "s next".
Start the new line, and press CTRL-Y 14 times, until you are at the "n" of
"next":

b array[i]l->s next = a array[i]->s next; ~
b arrayl[i]l->s_ ~

Now you type "prev'":

b arrayl[i]l->s next = a arrayl[i]->s next; ~
b array[i]->s prev ~

Continue pressing CTRL-Y until the following "next":

b array[i]l->s next = a arrayl[i]->s next; ~
b arrayl[i]l->s prev = a arrayli]l->s_ ~

Now type "prev;" to finish it off.

The CTRL-E command acts like CTRL-Y except it inserts the character below the
cursor.

The command CTRL-R {register} inserts the contents of the register. This is
useful to avoid having to type a long word. For example, you need to type
this:

r = VeryLongFunction (a) + VeryLongFunction(b) + VeryLongFunction(c) ~

The function name is defined in a different file. Edit that file and move the
cursor on top of the function name there, and yank it into register v: >

"vyiw

"v is the register specification, "yiw" is yank-inner-word. Now edit the file
where the new line is to be inserted, and type the first letters:

r = ~

.\usr_doc.txt Page
Now use CTRL-R v to insert the function name:
r = VeryLongFunction ~

You continue to type the characters in between the function name, and use
CTRL-R v two times more.

You could have done the same with completion. Using a register is useful
when there are many words that start with the same characters.

If the register contains characters such as <BS> or other special characters,
they are interpreted as if they had been typed from the keyboard. If you do
not want this to happen (you really want the <BS> to be inserted in the text),
use the command CTRL-R CTRL-R {register}.

An abbreviation is a short word that takes the place of a long one. For
example, "ad" stands for "advertisement". Vim enables you to type an
abbreviation and then will automatically expand it for you.

To tell Vim to expand "ad" into "advertisement" every time you insert it,
use the following command: >

:labbrev ad advertisement
Now, when you type "ad", the whole word "advertisement" will be inserted into

the text. This is triggered by typing a character that can't be part of a
word, for example a space:

What Is Entered What You See
I saw the a I saw the a ~
I saw the ad I saw the ad ~
I saw the ad<Space> I saw the advertisement<Space> ~
The expansion doesn't happen when typing just "ad". That allows you to type a

word like "add", which will not get expanded. Only whole words are checked
for abbreviations.
ABBREVIATING SEVERAL WORDS

It is possible to define an abbreviation that results in multiple words. For
example, to define "JB" as "Jack Benny", use the following command: >

:iabbrev JB Jack Benny

As a programmer, I use two rather unusual abbreviations: >

:iabbrev #b /**
:iabbrev #e <Space>**/

These are used for creating boxed comments. The comment starts with #b, which

draws the top line. I then type the comment text and use #e to draw the
bottom line.
Notice that the #e abbreviation begins with a space. In other words, the

first two characters are space-star. Usually Vim ignores spaces between the
abbreviation and the expansion. To avoid that problem, I spell space as seven
characters: <, S, p, a, ¢, e, >.

Note:
":iabbrev" is a long word to type. ":iab" works just as well.
That's abbreviating the abbreviate command!

FIXING TYPING MISTAKES

It's very common to make the same typing mistake every time. For example,
typing "teh" instead of "the". You can fix this with an abbreviation: >

:abbreviate teh the

122

.\usr_doc.txt Page 123

You can add a whole list of these. Add one each time you discover a common
mistake.

LISTING ABBREVIATIONS

The ":abbreviate" command lists the abbreviations:

:abbreviate

i #e **/
j_ #b /**
i JB Jack Benny

i ad advertisement

! teh the

The "i" in the first column indicates Insert mode. These abbreviations are
only active in Insert mode. Other possible characters are:

c Command-line mode :cabbrev
! both Insert and Command-line mode :abbreviate

Since abbreviations are not often useful in Command-line mode, you will mostly
use the ":iabbrev" command. That avoids, for example, that "ad" gets expanded
when typing a command like: >

:edit ad

DELETING ABBREVIATIONS

To get rid of an abbreviation, use the ":unabbreviate" command. Suppose you
have the following abbreviation: >

:abbreviate @f fresh
You can remove it with this command: >

:unabbreviate @f
While you type this, you will notice that @f is expanded to "fresh". Don't
worry about this, Vim understands it anyway (except when you have an
abbreviation for "fresh", but that's very unlikely).

To remove all the abbreviations: >

:abclear
":unabbreviate" and ":abclear" also come in the variants for Insert mode
(":iunabbreviate and ":iabclear") and Command-line mode (":cunabbreviate" and
".cabclear") .

REMAPPING ABBREVIATIONS

There is one thing to watch out for when defining an abbreviation: The
resulting string should not be mapped. For example: >

:abbreviate @a adder
:imap dd disk-door

When you now type @a, you will get "adisk-doorer". That's not what you want.
To avoid this, use the ":noreabbrev" command. It does the same as
":abbreviate", but avoids that the resulting string is used for mappings: >

:noreabbrev @a adder

Fortunately, it's unlikely that the result of an abbreviation is mapped.

The CTRL-V command is used to insert the next character literally. In other

.\usr_doc.txt Page 124

words, any special meaning the character has, it will be ignored. For
example: >

CTRL-V <Esc>

Inserts an escape character. Thus you don't leave Insert mode. (Don't type
the space after CTRL-V, it's only to make this easier to read).

Note:

On MS-Windows CTRL-V is used to paste text. Use CTRL-Q instead of
CTRL-V. On Unix, on the other hand, CTRL-Q does not work on some
terminals, because it has a special meaning.

You can also use the command CTRL-V {digits} to insert a character with the

decimal number {digits}. For example, the character number 127 is the
character (but not necessarily the key!). To insert type: >
CTRL-V 127

You can enter characters up to 255 this way. When you type fewer than two
digits, a non-digit will terminate the command. To avoid the need of typing a
non-digit, prepend one or two zeros to make three digits.

All the next commands insert a <Tab> and then a dot:

CTRL-V 9.
CTRL-V 09.
CTRL-V 009.

To enter a character in hexadecimal, use an "x" after the CTRL-V: >

CTRL-V x7f
This also goes up to character 255 (CTRL-V xff). You can use "o" to type a
character as an octal number and two more methods allow you to type up to
a 16 bit and a 32 bit number (e.g., for a Unicode character): >

CTRL-V 0123
CTRL-V ul234
CTRL-V U12345678

Some characters are not on the keyboard. For example, the copyright character
(®). To type these characters in Vim, you use digraphs, where two characters
represent one. To enter a ©, for example, you press three keys: >

CTRL-K Co
To find out what digraphs are available, use the following command: >

:digraphs

Vim will display the digraph table. Here are three lines of it:

AC ~ 159 NS ‘ 160 'T g 161 Ct ¢ 162 Pd £ 163 Cu @ 164 Ye ¥ 165 ~
BB | le6 SE § 167 ': " 168 Co © 169 -a * 170 << « 171 NO -~ 172 ~
-— - 173 Rg ® 174 'm ~ 175 DG ° 176 +- + 177 2SS 2 178 38 3* 179 ~

This shows, for example, that the digraph you get by typing CTRL-K Pd is the
character (£). This is character number 163 (decimal).

Pd is short for Pound. Most digraphs are selected to give you a hint about
the character they will produce. If you look through the list you will
understand the logic.

You can exchange the first and second character, if there is no digraph for
that combination. Thus CTRL-K dP also works. Since there is no digraph for
"dP" Vim will also search for a "Pd" digraph.

Note:
The digraphs depend on the character set that Vim assumes you are
using. On MS-DOS they are different from MS-Windows. Always use

.\usr_doc.txt Page 125
":digraphs" to find out which digraphs are currently available.

You can define your own digraphs. Example: >
:digraph a" a

This defines that CTRL-K a" inserts an & character. You can also specify the
character with a decimal number. This defines the same digraph: >

:digraph a" 228

More information about digraphs here: |digraphs|
Another way to insert special characters is with a keymap. More about that
here: |45.5]|

24 .10 Normal mode commands

Insert mode offers a limited number of commands. In Normal mode you have many
more. When you want to use one, you usually leave Insert mode with <Escs>,
execute the Normal mode command, and re-enter Insert mode with "i" or "a".

There is a quicker way. With CTRL-O {command} you can execute any Normal
mode command from Insert mode. For example, to delete from the cursor to the
end of the line: >

CTRL-O D

You can execute only one Normal mode command this way. But you can specify a
register or a count. A more complicated example: >

CTRL-O "g3dw

This deletes up to the third word into register g.

Next chapter: |usr 25.txt| Editing formatted text

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page 126

usr 25.txt For Vim version 7.4. Last change: 2007 May 11
VIM USER MANUAL - by Bram Moolenaar
Editing formatted text
Text hardly ever comes in one sentence per line. This chapter is about

breaking sentences to make them fit on a page and other formatting.
Vim also has useful features for editing single-line paragraphs and tables.

25.1 Breaking lines

25.2 Aligning text

25.3 Indents and tabs

25.4 Dealing with long lines
25.5 Editing tables

Next chapter:
Previous chapter:
Table of contents:

usr 26.txt Repeating
usr_ 24.txt Inserting quickly
usr_ toc.txt|

Vim has a number of functions that make dealing with text easier. By default,

the editor does not perform automatic line breaks. In other words, you have
to press <Enters yourself. This is useful when you are writing programs where
you want to decide where the line ends. It is not so good when you are

creating documentation and want the text to be at most 70 character wide.

If you set the 'textwidth' option, Vim automatically inserts line breaks.
Suppose, for example, that you want a very narrow column of only 30
characters. You need to execute the following command: >

:set textwidth=30
Now you start typing (ruler added) :

1 2 3
12345678901234567890123456789012345
I taught programming for a whi ~

If you type "1" next, this makes the line longer than the 30-character limit.
When Vim sees this, it inserts a line break and you get the following:

1 2 3
12345678901234567890123456789012345
I taught programming for a ~
whil ~

Continuing on, you can type in the rest of the paragraph:

1 2 3
12345678901234567890123456789012345
I taught programming for a ~
while. One time, I was stopped ~
by the Fort Worth police, ~
because my homework was too ~
hard. True story. ~

You do not have to type newlines; Vim puts them in automatically.
Note:
The 'wrap' option makes Vim display lines with a line break, but this
doesn't insert a line break in the file.

REFORMATTING

The Vim editor is not a word processor. In a word processor, if you delete
something at the beginning of the paragraph, the line breaks are reworked. 1In

.\usr_doc.txt Page 127

Vim they are not; so if you delete the word "programming" from the first line,
all you get is a short line:

1 2 3
12345678901234567890123456789012345
I taught for a ~
while. One time, I was stopped ~
by the Fort Worth police, ~
because my homework was too ~
hard. True story. ~

This does not look good. To get the paragraph into shape you use the "gg"
operator.

Let's first use this with a Visual selection. Starting from the first
line, type: >

v4jgq

"v" to start Visual mode, "4j" to move to the end of the paragraph and then
the "ggq" operator. The result is:

1 2 3
12345678901234567890123456789012345
I taught for a while. One ~
time, I was stopped by the ~
Fort Worth police, because my ~
homework was too hard. True ~
story. ~

Note: there is a way to do automatic formatting for specific types of text
layouts, see |auto-format]|.

Since "gq" is an operator, you can use one of the three ways to select the
text it works on: With Visual mode, with a movement and with a text object.
The example above could also be done with "gg4j". That's less typing, but
you have to know the line count. A more useful motion command is "}". This
moves to the end of a paragraph. Thus "gqg}" formats from the cursor to the
end of the current paragraph.
A very useful text object to use with "gg" is the paragraph. Try this: >

ggap
"ap" stands for "a-paragraph". This formats the text of one paragraph
(separated by empty lines). Also the part before the cursor.

If you have your paragraphs separated by empty lines, you can format the
whole file by typing this: >

9999G

"gg" to move to the first line, "ggG" to format until the last line.

Warning: If your paragraphs are not properly separated, they will be joined
together. A common mistake is to have a line with a space or tab. That's a
blank line, but not an empty line.

Vim is able to format more than just plain text. See |fo-table| for how to
change this. See the 'joinspaces' option to change the number of spaces used
after a full stop.

It is possible to use an external program for formatting. This is useful
if your text can't be properly formatted with Vim's builtin command. See the
'formatprg' option.

To center a range of lines, use the following command: >
: {range}center [width]
{range} is the usual command-line range. [width] is an optional line width to

use for centering. If [width] 1is not specified, it defaults to the wvalue of
'textwidth'. (If '"textwidth' is 0, the default is 80.)

.\usr_doc.txt Page
For example: >
:1,5center 40
results in the following:

I taught for a while. One ~
time, I was stopped by the ~
Fort Worth police, because my ~
homework was too hard. True ~
story. ~

RIGHT ALIGNMENT

Similarly, the ":right" command right-justifies the text: >
:1,5right 37

gives this result:

I taught for a while. One ~
time, I was stopped by the ~
Fort Worth police, because my ~
homework was too hard. True ~
story. ~

LEFT ALIGNMENT
Finally there is this command: >
:{range}left [margin]

Unlike ":center" and ":right", however, the argument to ":left" is not the
length of the line. 1Instead it is the left margin. If it is omitted, the
text will be put against the left side of the screen (using a zero margin
would do the same). If it is 5, the text will be indented 5 spaces. For
example, use these commands: >

:1left 5
:2,51left

This results in the following:

I taught for a while. One ~
time, I was stopped by the ~
Fort Worth police, because my ~
homework was too hard. True ~
story. ~

JUSTIFYING TEXT
Vim has no built-in way of justifying text. However, there is a neat macro
package that does the job. To use this package, execute the following
command: >
:runtime macros/justify.vim

This Vim script file defines a new visual command " j". To justify a block of
text, highlight the text in Visual mode and then execute " j".

Look in the file for more explanations. To go there, do "gf" on this name:
SVIMRUNTIME/macros/justify.vim.
An alternative is to filter the text through an external program. Example: >

: %1 fmt

128

.\usr_doc.txt Page 129

Indents can be used to make text stand out from the rest. The example texts
in this manual, for example, are indented by eight spaces or a tab. You would
normally enter this by typing a tab at the start of each line. Take this
text:

the first line ~

the second line ~

This is entered by typing a tab, some text, <Enter>, tab and more text.
The 'autoindent' option inserts indents automatically: >

:set autoindent
When a new line is started it gets the same indent as the previous line. 1In
the above example, the tab after the <Enter> is not needed anymore.
INCREASING INDENT
To increase the amount of indent in a line, use the ">" operator. Often this
is used as ">>", which adds indent to the current line.

The amount of indent added is specified with the 'shiftwidth' option. The
default value is 8. To make ">>" insert four spaces worth of indent, for
example, type this: >

:set shiftwidth=4

When used on the second line of the example text, this is what you get:

the first line ~
the second line ~

"4>>" will increase the indent of four lines.

TABSTOP

If you want to make indents a multiple of 4, you set 'shiftwidth' to 4. But
when pressing a <Tab> you still get 8 spaces worth of indent. To change this,
set the 'softtabstop' option: >

:set softtabstop=4

This will make the <Tab> key insert 4 spaces worth of indent. If there are
already four spaces, a <Tab> character is used (saving seven characters in the
file). (If you always want spaces and no tab characters, set the 'expandtab'
option.)

Note:

You could set the 'tabstop' option to 4. However, if you edit the
file another time, with 'tabstop' set to the default value of 8, it
will look wrong. In other programs and when printing the indent will
also be wrong. Therefore it is recommended to keep 'tabstop' at eight
all the time. That's the standard value everywhere.

CHANGING TABS

You edit a file which was written with a tabstop of 3. In Vim it looks ugly,
because it uses the normal tabstop value of 8. You can fix this by setting
'tabstop' to 3. But you have to do this every time you edit this file.

Vim can change the use of tabstops in your file. First, set 'tabstop' to
make the indents look good, then use the ":retab" command: >

:set tabstop=3
:retab 8

The ":retab" command will change 'tabstop' to 8, while changing the text such
that it looks the same. It changes spans of white space into tabs and spaces
for this. You can now write the file. Next time you edit it the indents will
be right without setting an option.

Warning: When using ":retab" on a program, it may change white space inside

.\usr_doc.txt Page 130

a string constant. Therefore it's a good habit to use "\t" instead of a
real tab.

Sometimes you will be editing a file that is wider than the number of columns
in the window. When that occurs, Vim wraps the lines so that everything fits
on the screen.

If you switch the 'wrap' option off, each line in the file shows up as one
line on the screen. Then the ends of the long lines disappear off the screen
to the right.

When you move the cursor to a character that can't be seen, Vim will scroll
the text to show it. This is like moving a viewport over the text in the
horizontal direction.

By default, Vim does not display a horizontal scrollbar in the GUI. If you
want to enable one, use the following command: >

:set guioptions+=b
One horizontal scrollbar will appear at the bottom of the Vim window.
If you don't have a scrollbar or don't want to use it, use these commands to

scroll the text. The cursor will stay in the same place, but it's moved back
into the visible text if necessary.

zh scroll right

4zh scroll four characters right

zH scroll half a window width right

ze scroll right to put the cursor at the end

z1l scroll left

4z1 scroll four characters left

zL scroll half a window width left

zZs scroll left to put the cursor at the start
Let's attempt to show this with one line of text. The cursor is on the "w" of
"which". The "current window" above the line indicates the text that is

currently visible. The "window"s below the text indicate the text that is
visible after the command left of it.

| <-- current window -->|
some long text, part of which is visible in the window ~
ze | <—- window -—>|
zH | <—- window -—>|
4zh | <—- window ——>|
zh | <—- window -—>|
zl | <—- window -—>|
4z1 | <—- window ——>|
zL | <—- window -—>|
zs | <—- window -—>|

MOVING WITH WRAP OFF

When 'wrap' is off and the text has scrolled horizontally, you can use the
following commands to move the cursor to a character you can see. Thus text
left and right of the window is ignored. These never cause the text to
scroll:

g0 to first visible character in this line
g to first non-blank visible character in this line
gm to middle of this line
gs to last visible character in this line
| <—- window -—>|
some long text, part of which is visible ~
go g° gm gs

BREAKING AT WORDS *edit-no-break*

.\usr_doc.txt Page

When preparing text for use by another program, you might have to make
paragraphs without a line break. A disadvantage of using 'mowrap' is that you
can't see the whole sentence you are working on. When 'wrap' is on, words are
broken halfway, which makes them hard to read.

A good solution for editing this kind of paragraph is setting the
'linebreak' option. Vim then breaks lines at an appropriate place when
displaying the line. The text in the file remains unchanged.

Without 'linebreak' text might look like this:

letter generation program for a b
ank. They wanted to send out a s
pecial, personalized letter to th
eir richest 1000 customers. Unfo
rtunately for the programmer, he

:set linebreak

it looks like this:

letter generation program for a
bank. They wanted to send out a
special, personalized letter to
their richest 1000 customers.
Unfortunately for the programmer,

Related options:

'breakat' specifies the characters where a break can be inserted.
'showbreak' specifies a string to show at the start of broken line.
Set 'textwidth' to zero to avoid a paragraph to be split.

MOVING BY VISIBLE LINES

The "j" and "k" commands move to the next and previous lines. When used on
a long line, this means moving a lot of screen lines at once.

To move only one screen line, use the "gj" and "gk" commands. When a line
doesn't wrap they do the same as "j" and "k". When the line does wrap, they
move to a character displayed one line below or above.

You might like to use these mappings, which bind these movement commands to
the cursor keys: >

:map <Up> gk
:map <Downs> gj

TURNING A PARAGRAPH INTO ONE LINE

If you want to import text into a program like MS-Word, each paragraph should
be a single line. If your paragraphs are currently separated with empty
lines, this is how you turn each paragraph into a single line: >

:g/./,/"$/Jjoin
That looks complicated. Let's break it up in pieces:

:g/./ A ":global" command that finds all lines that contain
at least one character.
VA= A range, starting from the current line (the non-empty
line) until an empty line.
join The ":join" command joins the range of lines together
into one line.

Starting with this text, containing eight lines broken at column 30:

|A letter generation program |

131

.\usr_doc.txt Page 132

for a bank. They wanted to
send out a special,
personalized letter.

To their richest 1000
customers. Unfortunately for
the programmer,

A letter generation program for a
bank. They wanted to send out a s
pecial, personalized letter.

To their richest 1000 customers.
Unfortunately for the programmer,

Note that this doesn't work when the separating line is blank but not empty;
when it contains spaces and/or tabs. This command does work with blank lines:

:g/\8/,/"\s*$/join

This still requires a blank or empty line at the end of the file for the last
paragraph to be joined.

25.5% Editing tables

Suppose you are editing a table with four columns:

nice table test 1 test 2 test 3 ~
input A 0.534 ~
input B 0.913 ~

You need to enter numbers in the third column. You could move to the second
line, use "A", enter a lot of spaces and type the text.
For this kind of editing there is a special option: >

set virtualedit=all
Now you can move the cursor to positions where there isn't any text. This is
called "virtual space". Editing a table is a lot easier this way.
Move the cursor by searching for the header of the last column: >

/test 3

Now press "j" and you are right where you can enter the value for "input A".
Typing "0.693" results in:

nice table test 1 test 2 test 3 ~
input A 0.534 0.693 ~
input B 0.913 ~

Vim has automatically filled the gap in front of the new text for you. Now,
to enter the next field in this column use "Bj". "B" moves back to the start
of a white space separated word. Then "j" moves to the place where the next
field can be entered.

Note:

You can move the cursor anywhere in the display, also beyond the end
of a line. But Vim will not insert spaces there, until you insert a
character in that position.

COPYING A COLUMN

You want to add a column, which should be a copy of the third column and
placed before the "test 1" column. Do this in seven steps:
1. Move the cursor to the left upper corner of this column, e.g., with

.\usr_doc.txt Page 133

"/test 3".

2. Press CTRL-V to start blockwise Visual mode.

3. Move the cursor down two lines with "2j". You are now in "virtual space":
the "input B" line of the "test 3" column.

4. Move the cursor right, to include the whole column in the selection, plus
the space that you want between the columns. "91" should do it.

5. Yank the selected rectangle with "y".
6. Move the cursor to "test 1", where the new column must be placed.
7 Press "P".

The result should be:

nice table test 3 test 1 test 2 test 3 ~
input A 0.693 0.534 0.693 ~
input B 0.913 ~

Notice that the whole "test 1" column was shifted right, also the line where
the "test 3" column didn't have text.

Go back to non-virtual cursor movements with: >

:set virtualedit=

VIRTUAL REPLACE MODE
The disadvantage of using 'virtualedit' is that it "feels" different. You
can't recognize tabs or spaces beyond the end of line when moving the cursor
around. Another method can be used: Virtual Replace mode.
Suppose you have a line in a table that contains both tabs and other

characters. Use "rx" on the first tab:

inp 0.693 0.534 0.693 ~

rx
%
inpx0.693 0.534 0.693 ~

The layout is messed up. To avoid that, use the "gr" command:

inp 0.693 0.534 0.693 ~
grx
A%
inpx 0.693 0.534 0.693 ~

What happens is that the "gr" command makes sure the new character takes the
right amount of screen space. Extra spaces or tabs are inserted to fill the
gap. Thus what actually happens is that a tab is replaced by "x" and then
blanks added to make the text after it keep its place. 1In this case a
tab is inserted.

When you need to replace more than one character, you use the "R" command
to go to Replace mode (see |04.9|). This messes up the layout and replaces
the wrong characters:

inp 0 0.534 0.693 ~
R0O.786

\Y
inp 0.78634 0.693 ~

The "gR" command uses Virtual Replace mode. This preserves the layout:

inp 0 0.534 0.693 ~

.\usr_doc.txt Page 134
gRO.786
\Y

inp 0.786 0.534 0.693 ~

Next chapter: |usr 26.txt| Repeating

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page 135

usr 26.txt For Vim version 7.4. Last change: 2006 Apr 24
VIM USER MANUAL - by Bram Moolenaar
Repeating
An editing task is hardly ever unstructured. A change often needs to be made

several times. In this chapter a number of useful ways to repeat a change
will be explained.

26.1 Repeating with Visual mode
26.2 Add and subtract

26.3 Making a change in many files
26.4 Using Vim from a shell script

Next chapter:
Previous chapter:
Table of contents:

usr_ 27.txt Search commands and patterns
usr 25.txt Editing formatted text
usr_toc.txt]|

Visual mode is very handy for making a change in any sequence of lines. You
can see the highlighted text, thus you can check if the correct lines are
changed. But making the selection takes some typing. The "gv" command
selects the same area again. This allows you to do another operation on the
same text.

Suppose you have some lines where you want to change "2001" to "2002" and
"2000" to "2001":

The financial results for 2001 are better ~

than for 2000. The income increased by 50%, ~
even though 2001 had more rain than 2000. ~
2000 2001 ~
income 45,403 66,234 ~
First change "2001" to "2002". Select the lines in Visual mode, and use: >
:s/2001/2002/g
Now use "gv" to reselect the same text. It doesn't matter where the cursor

is. Then use ":8/2000/2001/g" to make the second change.
Obviously, you can repeat these changes several times.

When repeating the change of one number into another, you often have a fixed
offset. 1In the example above, one was added to each year. Instead of typing
a substitute command for each year that appears, the CTRL-A command can be
used.

Using the same text as above, search for a year: >

/19[0-9]1 [0-91\[20[0-9] [0-9]
Now press CTRL-A. The year will be increased by one:

The financial results for 2002 are better ~

than for 2000. The income increased by 50%, ~
even though 2001 had more rain than 2000. ~
2000 2001 ~
income 45,403 66,234 ~
Use "n" to find the next year, and press "." to repeat the CTRL-A ("." is a
bit quicker to type). Repeat "n" and "." for all years that appear.

Hint: set the 'hlsearch' option to see the matches you are going to change,
then you can look ahead and do it faster.

Adding more than one can be done by prepending the number to CTRL-A. Suppose

.\usr_doc.txt Page 136
you have this list:

1. item four ~
2. item five ~
3. item six ~

Move the cursor to "1." and type: >
3 CTRL-A

The "1." will change to "4.". Again, you can use "." to repeat this on the
other numbers.

Another example:

006 foo bar ~
007 foo bar ~

Using CTRL-A on these numbers results in:

007 foo bar ~
010 foo bar ~

7 plus one is 10? What happened here is that Vim recognized "007" as an octal
number, because there is a leading zero. This notation is often used in C
programs. If you do not want a number with leading zeros to be handled as
octal, use this: >

:set nrformats-=octal

The CTRL-X command does subtraction in a similar way.

Suppose you have a variable called "x _cnt" and you want to change it to
"x counter". This variable is used in several of your C files. You need to
change it in all files. This is how you do it.

Put all the relevant files in the argument list: >

rargs *.c
<
This finds all C files and edits the first one. Now you can perform a
substitution command on all these files: >

:argdo %s/\<x_cnt\>/x counter/ge | update

The ":argdo" command takes an argument that is another command. That command
will be executed on all files in the argument list.

The "%s" substitute command that follows works on all lines. It finds the
word "x cnt" with "\<x_cnt\>". The "\<" and "\>" are used to match the whole
word only, and not "px cnt" or "x cnt2".

The flags for the substitute command include "g" to replace all occurrences
of "x cnt" in the same line. The "e" flag is used to avoid an error message
when "x cnt" does not appear in the file. Otherwise ":argdo" would abort on
the first file where "x cnt" was not found.

The "|" separates two commands. The following "update" command writes the
file only if it was changed. 1If no "x cnt" was changed to "x counter" nothing
happens.

There is also the ":windo" command, which executes its argument in all
windows. And ":bufdo" executes its argument on all buffers. Be careful with
this, because you might have more files in the buffer list than you think.
Check this with the ":buffers" command (or ":1s").

Suppose you have a lot of files in which you need to change the string
"-person-" to "Jones" and then print it. How do you do that? One way is to
do a lot of typing. The other is to write a shell script to do the work.

.\usr_doc.txt Page

The Vim editor does a superb job as a screen-oriented editor when using
Normal mode commands. For batch processing, however, Normal mode commands do
not result in clear, commented command files; so here you will use Ex mode
instead. This mode gives you a nice command-line interface that makes it easy
to put into a batch file. ("Ex command" is just another name for a
command-line (:) command.)

The Ex mode commands you need are as follows: >

%$s/-person-/Jones/g
write tempfile
quit

You put these commands in the file "change.vim". Now to run the editor in
batch mode, use this shell script: >

for file in *.txt; do
vim -e -s $file < change.vim
lpr -r tempfile

done

The for-done loop is a shell construct to repeat the two lines in between,
while the $file variable is set to a different file name each time.

The second line runs the Vim editor in Ex mode (-e argument) on the file
$file and reads commands from the file "change.vim". The -s argument tells
Vim to operate in silent mode. In other words, do not keep outputting the

:prompt, or any other prompt for that matter.
The "lpr -r tempfile" command prints the resulting "tempfile" and deletes
it (that's what the -r argument does).

READING FROM STDIN

Vim can read text on standard input. Since the normal way is to read commands
there, you must tell Vim to read text instead. This is done by passing the
"-" argument in place of a file. Example: >

ls | vim -

This allows you to edit the output of the "ls" command, without first saving
the text in a file.

If you use the standard input to read text from, you can use the "-S"
argument to read a script: >

producer | vim -S change.vim -

NORMAL MODE SCRIPTS

If you really want to use Normal mode commands in a script, you can use it
like this: >

vim -s script file.txt

Note:

"-s" has a different meaning when it is used without "-e". Here it
means to source the "script" as Normal mode commands. When used with
"-e" it means to be silent, and doesn't use the next argument as a
file name.

The commands in "script" are executed like you typed them. Don't forget that
a line break is interpreted as pressing <Enter>. In Normal mode that moves
the cursor to the next line.

To create the script you can edit the script file and type the commands.
You need to imagine what the result would be, which can be a bit difficult.
Another way is to record the commands while you perform them manually. This
is how you do that: >

vim -w script file.txt

All typed keys will be written to "script". If you make a small mistake you
can just continue and remember to edit the script later.

137

.\usr_doc.txt

The "-w" argument appends to an existing script. That is good when you
want to record the script bit by bit. If you want to start from scratch and
start all over, use the "-W" argument. It overwrites any existing file.

Next chapter: |usr 27.txt| Search commands and patterns

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

Page 138

.\usr_doc.txt
usr 27.txt For Vim version 7.4. Last change: 2010 Mar 28
VIM USER MANUAL - by Bram Moolenaar
Search commands and patterns
In chapter 3 a few simple search patterns were mentioned |[03.9|. Vim can do

much more complex searches. This chapter explains the most often used ones.
A detailed specification can be found here: |pattern]|

27.1 Ignoring case

27.2 Wrapping around the file end
27.3 Offsets

27.4 Matching multiple times

27.5 Alternatives

27.6 Character ranges

27.7 Character classes

27.8 Matching a line break

27.9 Examples

Next chapter: |usr 28.txt Folding
Previous chapter: |usr 26.txt Repeating
Table of contents: |usr toc.txt|

By default, Vim's searches are case sensitive. Therefore, "include",
"INCLUDE", and "Include" are three different words and a search will match
only one of them.

Now switch on the 'ignorecase' option: >

:set ignorecase

Search for "include" again, and now it will match "Include", "INCLUDE" and
"InClUDe". (Set the 'hlsearch' option to quickly see where a pattern
matches.)

You can switch this off again with: >
:set noignorecase

But let's keep it set, and search for "INCLUDE". It will match exactly the
same text as "include" did. Now set the 'smartcase' option: >

:set ignorecase smartcase

If you have a pattern with at least one uppercase character, the search
becomes case sensitive. The idea is that you didn't have to type that
uppercase character, so you must have done it because you wanted case to
match. That's smart!

With these two options set you find the following matches:

pattern matches ~

word word, Word, WORD, WoRd, etc.
Word Word

WORD WORD

WoRd WoRd

CASE IN ONE PATTERN

If you want to ignore case for one specific pattern, you can do this by
prepending the "\c¢" string. Using "\C" will make the pattern to match case.
This overrules the 'ignorecase' and 'smartcase' options, when "\c¢" or "\C" i
used their value doesn't matter.

pattern matches ~
\Cword word
\CWord Word

Page 139

S

.\usr_doc.txt Page 140

\cword word, Word, WORD, WoRd, etc.
\cWord word, Word, WORD, WoRd, etc.

A big advantage of using "\c" and "\C" is that it sticks with the pattern.
Thus if you repeat a pattern from the search history, the same will happen, no
matter if 'ignorecase' or 'smartcase' was changed.

Note:

The use of "\" items in search patterns depends on the 'magic' option.
In this chapter we will assume 'magic' is on, because that is the
standard and recommended setting. If you would change 'magic', many
search patterns would suddenly become invalid.

Note:
If your search takes much longer than you expected, you can interrupt
it with CTRL-C on Unix and CTRL-Break on MS-DOS and MS-Windows.

By default, a forward search starts searching for the given string at the
current cursor location. It then proceeds to the end of the file. If it has
not found the string by that time, it starts from the beginning and searches
from the start of the file to the cursor location.

Keep in mind that when repeating the "n" command to search for the next
match, you eventually get back to the first match. If you don't notice this
you keep searching forever! To give you a hint, Vim displays this message:

search hit BOTTOM, continuing at TOP ~

If you use the "?" command, to search in the other direction, you get this
message:

search hit TOP, continuing at BOTTOM ~

Still, you don't know when you are back at the first match. One way to see
this is by switching on the 'ruler' option: >

:set ruler

Vim will display the cursor position in the lower righthand corner of the

window (in the status line if there is one). It looks like this:
101,29 84% ~

The first number is the line number of the cursor. Remember the line number
where you started, so that you can check if you passed this position again.
NOT WRAPPING
To turn off search wrapping, use the following command: >
:set nowrapscan
Now when the search hits the end of the file, an error message displays:
E385: search hit BOTTOM without match for: forever ~
Thus you can find all matches by going to the start of the file with "gg" and
keep searching until you see this message.

If you search in the other direction, using "?", you get:

E384: search hit TOP without match for: forever -~

27.3% QOffsets

By default, the search command leaves the cursor positioned on the beginning
of the pattern. You can tell Vim to leave it some other place by specifying
an offset. For the forward search command "/", the offset is specified by

.\usr_doc.txt Page
appending a slash (/) and the offset: >

/default/2
This command searches for the pattern "default" and then moves to the
beginning of the second line past the pattern. Using this command on the
paragraph above, Vim finds the word "default" in the first line. Then the
cursor is moved two lines down and lands on "an offset".
If the offset is a simple number, the cursor will be placed at the beginning
of the line that many lines from the match. The offset number can be positive
or negative. If it is positive, the cursor moves down that many lines; if
negative, it moves up.

CHARACTER OFFSETS

The "e" offset indicates an offset from the end of the match. It moves the
cursor onto the last character of the match. The command: >

/const/e
puts the cursor on the "t" of "const".
From that position, adding a number moves forward that many characters.
This command moves to the character just after the match: >

/const/e+1

A positive number moves the cursor to the right, a negative number moves it to
the left. For example: >

/const/e-1
moves the cursor to the "s" of "const".
If the offset begins with "b", the cursor moves to the beginning of the
pattern. That's not very useful, since leaving out the "b" does the same
thing. It does get useful when a number is added or subtracted. The cursor
then goes forward or backward that many characters. For example: >
/const/b+2
Moves the cursor to the beginning of the match and then two characters to the
right. Thus it lands on the "n".
REPEATING

To repeat searching for the previously used search pattern, but with a
different offset, leave out the pattern: >

/that
//e

Is equal to: >
/that/e

To repeat with the same offset: >
/

"n" does the same thing. To repeat while removing a previously used offset: >

//

SEARCHING BACKWARDS

The "?" command uses offsets in the same way, but you must use "?" to separate
the offset from the pattern, instead of "/": >

141

.\usr_doc.txt Page 142

?const?e-2
The "b" and "e" keep their meaning, they don't change direction with the use
of "2,
START POSITION

When starting a search, it normally starts at the cursor position. When you

specify a line offset, this can cause trouble. For example: >
/const /-2
This finds the next word "const" and then moves two lines up. If you

use "n" to search again, Vim could start at the current position and find the same
"const" match. Then using the offset again, you would be back where you started.
You would be stuck!

It could be worse: Suppose there is another match with "const" in the next
line. Then repeating the forward search would find this match and move two
lines up. Thus you would actually move the cursor back!

When you specify a character offset, Vim will compensate for this. Thus the
search starts a few characters forward or backward, so that the same match
isn't found again.

27.4% Matching multiple times

The "*" item specifies that the item before it can match any number of times.
Thus: >

/a*

matches "a", "aa", "aaa", etc. But also "" (the empty string), because zero
times is included.

The "*" only applies to the item directly before it. Thus "ab*" matches
"a", "ab", "abb", "abbb", etc. To match a whole string multiple times, it
must be grouped into one item. This is done by putting "\ (" before it and
"\)" after it. Thus this command: >

/\ (ab\) *
Matches: "ab", "abab", "ababab", etc. And also "".
To avoid matching the empty string, use "\+". This makes the previous item

match one or more times. >

/ab\ +
Matches "ab", "abb", "abbb", etc. It does not match "a" when no "b" follows.
To match an optional item, use "\=". Example: >

/folders\=

Matches "folder" and "folders".

SPECIFIC COUNTS

To match a specific number of items use the form "\{n,m}". "n" and "m" are
numbers. The item before it will be matched "n" to "m" times |inclusive
Example: >

/ab\{3,5}

matches "abbb", "abbbb" and "abbbbb".

When "n" is omitted, it defaults to zero. When "m" is omitted it defaults
to infinity. When ",m" is omitted, it matches exactly "n" times.
Examples:

.\usr_doc.txt Page

atch count ~

, 1, 2, 3 or 4

, 4, 5, etc.

or 1, same as \=

Or more, same as *
or more, same as \+

P P dl®)
————
WREROOW-~
e | e
—
WRroowo 3

MATCHING AS LITTLE AS POSSIBLE

The items so far match as many characters as they can find. To match as few
as possible, use "\{-n,m}". It works the same as "\{n,m}", except that the
minimal amount possible is used.

For example, use: >

/ab\{_ll3}
Will match "ab" in "abbb". Actually, it will never match more than one b,
because there is no reason to match more. It requires something else to force
it to match more than the lower limit.

The same rules apply to removing "n" and "m". It's even possible to remove
both of the numbers, resulting in "\{-}". This matches the item before it
zero or more times, as few as possible. The item by itself always matches
zero times. It is useful when combined with something else. Example: >

/a.\{-}b
This matches "axb" in "axbxb". If this pattern would be used: >
/a.*b
It would try to match as many characters as possible with ".*", thus it

matches "axbxb" as a whole.

The "or" operator in a pattern is "\|". Example: >
/foo\ |bar
This matches "foo" or "bar". More alternatives can be concatenated: >

/one\ |two\ |three

Matches "one", "two" and "three".
To match multiple times, the whole thing must be placed in "\ (" and "\)": >

/\ (£oo\ |bar\) \+

This matches "foo", "foobar", "foofoo", "barfoobar", etc.
Another example: >

/end\ (if\ |while\ |for\)
This matches "endif", "endwhile" and "endfor".

A related item is "\&". This requires that both alternatives match in the
same place. The resulting match uses the last alternative. Example: >

/forever\&. ..

This matches "for" in "forever". It will not match "fortuin", for example.

To match "a", "b" or "c" you could use "/a\|b\|c". When you want to match all
letters from "a" to "z" this gets very long. There is a shorter method: >

143

.\usr_doc.txt Page 144

/ [a-z]

The [] construct matches a single character. Inside you specify which
characters to match. You can include a list of characters, like this: >

/[0123456789%abcdef]

This will match any of the characters included. For consecutive characters
you can specify the range. "0-3" stands for "0123". "w-z" stands for "wxyz".
Thus the same command as above can be shortened to: >

/ [0-9a-f]
To match the "-" character itself make it the first or last one in the range.

These special characters are accepted to make it easier to use them inside a
[] range (they can actually be used anywhere in the search pattern):

\e <Esc>
\t <Tab>
\r <CR>
\b <BS>
There are a few more special cases for [] ranges, see |/[]]| for the whole

story.

COMPLEMENTED RANGE

To avoid matching a specific character, use "*" at the start of the range.

The [] item then matches everything but the characters included. Example: >
/n ["n]*n
<
" a double quote
[*n] any character that is not a double quote
* as many as possible

" a double guote again

This matches "foo" and "3!x", including the double quotes.

PREDEFINED RANGES

A number of ranges are used very often. Vim provides a shortcut for these.
For example: >

/\a

Finds alphabetic characters. This is equal to using "/[a-zA-Z]". Here are a
few more of these:

item matches equivalent ~

\d digit [0-9]

\D non-digit [*0-9]

\x hex digit [0-9a-fA-F]

\X non-hex digit ["0-9a-fA-F]

\s white space [] (<Tab> and <Space>)
\S non-white characters *] (not <Tab> and <Space>)
\1 lowercase alpha [a-z]

\L non-lowercase alpha [Ta-z]

\u uppercase alpha [A-Z]

\U non-uppercase alpha [*A-2Z]

Note:

Using these predefined ranges works a lot faster than the character
range it stands for.

These items can not be used inside []. Thus "[\d\1l]" does NOT work to
match a digit or lowercase alpha. Use "\ (\d\|\1\)" instead.

See |/\s| for the whole list of these ranges.

.\usr_doc.txt Page

The character range matches a fixed set of characters. A character class is
similar, but with an essential difference: The set of characters can be
redefined without changing the search pattern.

For example, search for this pattern: >

/NE\+

The "\f" items stands for file name characters. Thus this matches a sequence
of characters that can be a file name.

Which characters can be part of a file name depends on the system you are
using. On MS-Windows, the backslash is included, on Unix it is not. This is
specified with the 'isfname' option. The default value for Unix is: >

:set isfname
isfname=@,48-57,/,.,-, . +,,.#,$,%,~,=

For other systems the default value is different. Thus you can make a search
pattern with "\f" to match a file name, and it will automatically adjust to
the system you are using it on.

Note:

Actually, Unix allows using just about any character in a file name,
including white space. Including these characters in 'isfname' would
be theoretically correct. But it would make it impossible to find the
end of a file name in text. Thus the default value of 'isfname' is a
compromise.

The character classes are:

item matches option ~
\i identifier characters 'igident'
\I like \i, excluding digits

\k keyword characters 'iskeyword'
\K like \k, excluding digits

\p printable characters 'isprint'
\P like \p, excluding digits

\f file name characters 'isfname'
\F like \f, excluding digits

Vim can find a pattern that includes a line break. You need to specify where
the line break happens, because all items mentioned so far don't match a line
break.

To check for a line break in a specific place, use the "\n" item: >

/the\nword
This will match at a line that ends in "the" and the next line starts with
"word". To match "the word" as well, you need to match a space or a line
break. The item to use for it is "_s": >

/the\ sword
To allow any amount of white space: >
/the\ s\+word

This also matches when "the " is at the end of a line and " word" at the
start of the next one.

"\s" matches white space, "\ _s" matches white space or a line break.
Similarly, "\a" matches an alphabetic character, and "\ _a" matches an
alphabetic character or a line break. The other character classes and ranges
can be modified in the same way by inserting a " ".

145

.\usr_doc.txt Page
Many other items can be made to match a line break by prepending "\ ". For
example: "\ ." matches any character or a line break.

Note:

"_.*" matches everything until the end of the file. Be careful with
this, it can make a search command very slow.

Another example is "\ []", a character range that includes a line break: >
/n_[’\n]*n
This finds a text in double quotes that may be split up in several lines.

Here are a few search patterns you might find useful. This shows how the
items mentioned above can be combined.

FINDING A CALIFORNIA LICENSE PLATE

A sample license plate number is "1MGU103". It has one digit, three uppercase
letters and three digits. Directly putting this into a search pattern: »>
/\d\u\u\u\d\d\d

Another way is to specify that there are three digits and letters with a
count: >

/\d\u\{3}\d\ {3}
Using [] ranges instead: >

/10-91 [A-Z1\ {3} [0-9]\{3}
Which one of these you should use? Whichever one you can remember. The
simple way you can remember is much faster than the fancy way that you can't.

If you can remember them all, then avoid the last one, because it's both more
typing and slower to execute.

FINDING AN IDENTIFIER
In C programs (and many other computer languages) an identifier starts with a
letter and further consists of letters and digits. Underscores can be used
too. This can be found with: >

/\<\h\w*\>

"\<" and "\>" are used to find only whole words. "\h" stands for "[A-Za-z]"
and "\w" for "[0-9A-Za-z]".

Note:
"\<" and "\>" depend on the 'iskeyword' option. If it includes "-",
for example, then "ident-" is not matched. 1In this situation use: >

/\w\@<!\h\w*\w\@!

This checks if "\w" does not match before or after the identifier.
See |/\e<!| and |/\@!].

Next chapter: |usr 28.txt| Folding

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

146

.\usr_doc.txt Page

usr 28.txt For Vim version 7.4. Last change: 2008 Jun 14
VIM USER MANUAL - by Bram Moolenaar
Folding
Structured text can be separated in sections. And sections in sub-sections.

Folding allows you to display a section as one line, providing an overview.
This chapter explains the different ways this can be done.

28.1 What is folding?
28.2 Manual folding
28.3 Working with folds
28.4 Saving and restoring folds
28.5 Folding by indent
28.6 Folding with markers
28.7 Folding by syntax
28.8 Folding by expression
28.9 Folding unchanged lines
1

28.

0| Which fold method to use?

Next chapter:
Previous chapter:
Table of contents:

usr_29.txt Moving through programs
usr_ 27.txt Search commands and patterns
usr_toc.txt]|

Folding is used to show a range of lines in the buffer as a single line on the
screen. Like a piece of paper which is folded to make it shorter:

e +
line 1
line 2
line 3
\ \
\ \
/ folded lines /
/
line 12
line 13
line 14
e +

The text is still in the buffer, unchanged. Only the way lines are displayed
is affected by folding.

The advantage of folding is that you can get a better overview of the

structure of text, by folding lines of a section and replacing it with a line
that indicates that there is a section.

Try it out: Position the cursor in a paragraph and type: >

zfap
You will see that the paragraph is replaced by a highlighted line. You have
created a fold. |zf| is an operator and |ap| a text object selection. You
can use the |zf| operator with any movement command to create a fold for the
text that it moved over. |[zf]| also works in Visual mode.
To view the text again, open the fold by typing: >

ZO

And you can close the fold again with: >

147

.\usr_doc.txt Page 148

zC

All the folding commands start with "z". With some fantasy, this looks like a
folded piece of paper, seen from the side. The letter after the "z" has a
mnemonic meaning to make it easier to remember the commands:

zf F-old creation
ZO O-pen a fold
zC C-lose a fold

Folds can be nested: A region of text that contains folds can be folded
again. For example, you can fold each paragraph in this section, and then
fold all the sections in this chapter. Try it out. You will notice that
opening the fold for the whole chapter will restore the nested folds as they
were, some may be open and some may be closed.

Suppose you have created several folds, and now want to view all the text.
You could go to each fold and type "zo". To do this faster, use this command: >

zZr
This will R-educe the folding. The opposite is: >
zm

This folds M-ore. You can repeat "zr" and "zm" to open and close nested folds
of several levels.

If you have nested several levels deep, you can open all of them with: >
ZR

This R-educes folds until there are none left. And you can close all folds
with: >

zM
This folds M-ore and M-ore.

You can quickly disable the folding with the |zn| command. Then |zN| brings
back the folding as it was. |zi| toggles between the two. This is a useful
way of working:

- create folds to get overview on your file

- move around to where you want to do your work

- do |zi| to look at the text and edit it
- do |zi| again to go back to moving around
More about manual folding in the reference manual: |fold-manual |

When some folds are closed, movement commands like "j" and "k" move over a
fold like it was a single, empty line. This allows you to quickly move around
over folded text.

You can yank, delete and put folds as if it was a single line. This is very
useful if you want to reorder functions in a program. First make sure that
each fold contains a whole function (or a bit less) by selecting the right
'foldmethod'. Then delete the function with "dd", move the cursor and put it
with "p". If some lines of the function are above or below the fold, you can
use Visual selection:

- put the cursor on the first line to be moved

- hit "V" to start Visual mode

- put the cursor on the last line to be moved

- hit "d" to delete the selected lines.

- move the cursor to the new position and "p"ut the lines there.

It is sometimes difficult to see or remember where a fold is located, thus
where a |zo| command would actually work. To see the defined folds: >

.\usr_doc.txt Page

:set foldcolumn=4

This will show a small column on the left of the window to indicate folds.
A "+" ig shown for a closed fold. A "-" is shown at the start of each open
fold and "|" at following lines of the fold.

You can use the mouse to open a fold by clicking on the "+" in the foldcolumn.
Clicking on the "-" or a "|" below it will close an open fold.

To open all folds at the cursor line use |zO].
To close all folds at the cursor line use |zC]|.
To delete a fold at the cursor line use |zd]|.
To delete all folds at the cursor line use |zD].

When in Insert mode, the fold at the cursor line is never closed. That allows
you to see what you type!

Folds are opened automatically when jumping around or moving the cursor left

or right. For example, the "0" command opens the fold under the cursor
(if 'foldopen' contains "hor", which is the default). The 'foldopen' option
can be changed to open folds for specific commands. If you want the line

under the cursor always to be open, do this: >
:set foldopen=all

Warning: You won't be able to move onto a closed fold then. You might want to
use this only temporarily and then set it back to the default: >

:set foldopené&
You can make folds close automatically when you move out of it: >
:set foldclose=all

This will re-apply 'foldlevel' to all folds that don't contain the cursor.
You have to try it out if you like how this feels. Use |zm| to fold more and
|zr| to fold less (reduce folds).

The folding is local to the window. This allows you to open two windows on
the same buffer, one with folds and one without folds. Or one with all folds
closed and one with all folds open.

When you abandon a file (starting to edit another one), the state of the folds
is lost. If you come back to the same file later, all manually opened and
closed folds are back to their default. When folds have been created
manually, all folds are gone! To save the folds use the |:mkview| command: >

:mkview

This will store the settings and other things that influence the view on the
file. You can change what is stored with the 'viewoptions' option.
When you come back to the same file later, you can load the view again: >

:loadview

You can store up to ten views on one file. For example, to save the current
setup as the third view and load the second view: >

:mkview 3
:loadview 2

Note that when you insert or delete lines the views might become invalid.
Also check out the 'viewdir' option, which specifies where the views are
stored. You might want to delete old views now and then.

28.5 Folding by indent

149

.\usr_doc.txt Page 150

Defining folds with |zf| is a lot of work. If your text is structured by
giving lower level items a larger indent, you can use the indent folding
method. This will create folds for every sequence of lines with the same
indent. Lines with a larger indent will become nested folds. This works well
with many programming languages.

Try this by setting the 'foldmethod' option: >
:set foldmethod=indent

Then you can use the |zm| and |zr| commands to fold more and reduce folding.
It's easy to see on this example text:

This line is not indented
This line is indented once
This line is indented twice
This line is indented twice
This line is indented once
This line is not indented
This line is indented once
This line is indented once

Note that the relation between the amount of indent and the fold depth depends
on the 'shiftwidth' option. Each 'shiftwidth' worth of indent adds one to the
depth of the fold. This is called a fold level.

When you use the |zr| and |zm| commands you actually increase or decrease the
'foldlevel' option. You could also set it directly: >

:set foldlevel=3

This means that all folds with three times a 'shiftwidth' indent or more will
be closed. The lower the foldlevel, the more folds will be closed. When
'foldlevel' is zero, all folds are closed. |zM| does set 'foldlevel' to zero.
The opposite command |zR| sets 'foldlevel' to the deepest fold level that is
present in the file.

Thus there are two ways to open and close the folds:

(A) By setting the fold level.
This gives a very quick way of "zooming out" to view the structure of the
text, move the cursor, and "zoom in" on the text again.

(B) By using |zo| and |zc| commands to open or close specific folds.
This allows opening only those folds that you want to be open, while other
folds remain closed.

This can be combined: You can first close most folds by using |zm| a few times
and then open a specific fold with |zo|. Or open all folds with |zR| and
then close specific folds with |zc].

But you cannot manually define folds when 'foldmethod' is "indent", as that
would conflict with the relation between the indent and the fold level.

More about folding by indent in the reference manual: |fold-indent|

28.6% Folding with markers
Markers in the text are used to specify the start and end of a fold region.
This gives precise control over which lines are included in a fold. The
disadvantage is that the text needs to be modified.
Try it: >

:set foldmethod=marker

Example text, as it could appear in a C program:

/* foobar () {{{ */
int foobar ()

.\usr_doc.txt Page 151

{

/* return a value {{{ */
return 42;

| /* Yy o*/
/* Yy o*/

Notice that the folded line will display the text before the marker. This is
very useful to tell what the fold contains.

It's quite annoying when the markers don't pair up correctly after moving some
lines around. This can be avoided by using numbered markers. Example:

/* global variables {{{1 */
int varA, varB;

/* functions {{{1 */
/* funchA () {{{2 */
void funcA()

/* funcB() {{{2 */
void funcB()

/* 3 ox/

At every numbered marker a fold at the specified level begins. This will make
any fold at a higher level stop here. You can just use numbered start markers
to define all folds. Only when you want to explicitly stop a fold before
another starts you need to add an end marker.

More about folding with markers in the reference manual: |fold-marker|

For each language Vim uses a different syntax file. This defines the colors
for various items in the file. If you are reading this in Vim, in a terminal
that supports colors, the colors you see are made with the "help" syntax file.
In the syntax files it is possible to add syntax items that have the "fold"
argument. These define a fold region. This requires writing a syntax file
and adding these items in it. That's not so easy to do. But once it's done,
all folding happens automatically.
Here we'll assume you are using an existing syntax file. Then there is
nothing more to explain. You can open and close folds as explained above.
The folds will be created and deleted automatically when you edit the file.

More about folding by syntax in the reference manual: |fold-syntax|

28.8 Folding by expression

This is similar to folding by indent, but instead of using the indent of a
line a user function is called to compute the fold level of a line. You can
use this for text where something in the text indicates which lines belong
together. An example is an e-mail message where the quoted text is indicated
by a ">" before the line. To fold these quotes use this: >

:set foldmethod=expr
:set foldexpr=strlen (substitute (substitute(getline(v:1lnum), '\\s',"'',\"g\"), '
[A>]'*|’||’||))

You can try it out on this text:

quoted text he wrote
quoted text he wrote
> double quoted text I wrote
> double quoted text I wrote

vV V V V

Explanation for the 'foldexpr' used in the example (inside out):

getline (v:1num) gets the current line
substitute (,"\\s', " 'g') removes all white space from the line
substltute(LI RS I e, removes everything after leading '>'s

.\usr_doc.txt Page 152

strlen(...) counts the length of the string, which
is the number of '>'s found

Note that a backslash must be inserted before every space, double quote and
backslash for the ":set" command. If this confuses you, do >

:set foldexpr

to check the actual resulting value. To correct a complicated expression, use
the command-line completion: >

:set foldexpr=<Tab>

Where <Tab> is a real Tab. Vim will fill in the previous value, which you can
then edit.

When the expression gets more complicated you should put it in a function and
set 'foldexpr' to call that function.

More about folding by expression in the reference manual: |fold-expr|

*28.9% Folding unchanged lines

This is useful when you set the 'diff' option in the same window. The
|vimdiff| command does this for you. Example: >

:setlocal diff foldmethod=diff scrollbind nowrap foldlevel=1

Do this in every window that shows a different version of the same file. You
will clearly see the differences between the files, while the text that didn't
change is folded.

For more details see |fold-diff].

¥28.10 Which fold method to use?

All these possibilities make you wonder which method you should choose.
Unfortunately, there is no golden rule. Here are some hints.

If there is a syntax file with folding for the language you are editing, that
is probably the best choice. If there isn't one, you might try to write it.
This requires a good knowledge of search patterns. It's not easy, but when
it's working you will not have to define folds manually.

Typing commands to manually fold regions can be used for unstructured text.
Then use the |:mkview| command to save and restore your folds.

The marker method requires you to change the file. If you are sharing the
files with other people or you have to meet company standards, you might not
be allowed to add them.

The main advantage of markers is that you can put them exactly where you
want them. That avoids that a few lines are missed when you cut and paste
folds. And you can add a comment about what is contained in the fold.

Folding by indent is something that works in many files, but not always very
well. TUse it when you can't use one of the other methods. However, it is
very useful for outlining. Then you specifically use one 'shiftwidth' for
each nesting level.

Folding with expressions can make folds in almost any structured text. It is
quite simple to specify, especially if the start and end of a fold can easily
be recognized.

If you use the "expr" method to define folds, but they are not exactly how
you want them, you could switch to the "manual" method. This will not remove
the defined folds. Then you can delete or add folds manually.

Next chapter: |usr 29.txt| Moving through programs

.\usr_doc.txt Page 153

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page

usr 29.txt For Vim version 7.4. Last change: 2008 Jun 28
VIM USER MANUAL - by Bram Moolenaar
Moving through programs
The creator of Vim is a computer programmer. It's no surprise that Vim
contains many features to aid in writing programs. Jump around to find where

identifiers are defined and used. Preview declarations in a separate window.
There is more in the next chapter.

29.1 Using tags

29.2 The preview window

29.3 Moving through a program
29.4 Finding global identifiers
29.5 Finding local identifiers

Next chapter: |usr 30.txt Editing programs
Previous chapter: |usr 28.txt Folding
Table of contents: |usr toc.txt|

What is a tag? It is a location where an identifier is defined. An example
is a function definition in a C or C++ program. A list of tags is kept in a
tags file. This can be used by Vim to directly jump from any place to the
tag, the place where an identifier is defined.

To generate the tags file for all C files in the current directory, use the
following command: >

ctags *.c

"ctags" is a separate program. Most Unix systems already have it installed.
If you do not have it yet, you can find Exuberant ctags here:

http://ctags.sf.net ~

Now when you are in Vim and you want to go to a function definition, you can
jump to it by using the following command: >

:tag startlist

This command will find the function "startlist" even if it is in another file.
The CTRL-] command jumps to the tag of the word that is under the cursor.

This makes it easy to explore a tangle of C code. Suppose, for example, that
you are in the function "write block". You can see that it calls

"write line". But what does "write line" do? By placing the cursor on the
call to "write line" and pressing CTRL-], you jump to the definition of this
function.

The "write_line" function calls "write_char". You need to figure out what
it does. So you position the cursor over the call to "write char" and press
CTRL-] . Now you are at the definition of "write char".

e +

int 1i;
for (1 = 0; 1 < cnt; ++1i)
write line(s[i]);

+--> |void write_line (char *s)

while (*s != 0)
write char (*s++) ;

154

.\usr_doc.txt Page 155

+--> |void write char (char c)

{

putchar ((int) (unsigned char)c) ;

B e +
The ":tags" command shows the list of tags that you traversed through:
:tags
TO tag FROM line in file/text ~
1 1 write line 8 write block.c ~
2 1 write char 7 write line.c ~

> o~
>
Now to go back. The CTRL-T command goes to the preceding tag. In the example
above you get back to the "write line" function, in the call to "write char".
This command takes a count argument that indicates how many tags to jump
back. You have gone forward, and now back. Let's go forward again. The
following command goes to the tag on top of the list: >

:tag
You can prefix it with a count and jump forward that many tags. For example:
":3tag". CTRL-T also can be preceded with a count.
These commands thus allow you to go down a call tree with CTRL-] and back
up again with CTRL-T. Use ":tags" to find out where you are.

SPLIT WINDOWS

The ":tag" command replaces the file in the current window with the one
containing the new function. But suppose you want to see not only the old
function but also the new one? You can split the window using the ":split"
command followed by the ":tag" command. Vim has a shorthand command that does
both: >

:stag tagname

To split the current window and jump to the tag under the cursor use this
command: >

CTRL-W]

If a count is specified, the new window will be that many lines high.

MORE TAGS FILES

When you have files in many directories, you can create a tags file in each of
them. Vim will then only be able to jump to tags within that directory.

To find more tags files, set the 'tags' option to include all the relevant
tags files. Example: >

:set tags=./tags,./../tags,./*/tags

This finds a tags file in the same directory as the current file, one
directory level higher and in all subdirectories.

This is quite a number of tags files, but it may still not be enough. For
example, when editing a file in "~/proj/src", you will not find the tags file
"~/proj/sub/tags". For this situation Vim offers to search a whole directory
tree for tags files. Example: >

:set tags=~/proj/**/tags

ONE TAGS FILE

.\usr_doc.txt Page 156

When Vim has to search many places for tags files, you can hear the disk
rattling. It may get a bit slow. In that case it's better to spend this
time while generating one big tags file. You might do this overnight.

This requires the Exuberant ctags program, mentioned above. It offers an
argument to search a whole directory tree: >

cd ~/proj
ctags -R
The nice thing about this is that Exuberant ctags recognizes various file
types. Thus this doesn't work just for C and C++ programs, also for Eiffel
and even Vim scripts. See the ctags documentation to tune this.
Now you only need to tell Vim where your big tags file is: >

:set tags=~/proj/tags

MULTIPLE MATCHES
When a function is defined multiple times (or a method in several classes),
the ":tag" command will jump to the first one. If there is a match in the
current file, that one is used first.
You can now jump to other matches for the same tag with: >
:tnext

Repeat this to find further matches. If there are many, you can select which
one to jump to: >

:tselect tagname

Vim will present you with a list of choices:

pri kind tag file ~

1F f mch init os_amiga.c ~
mch init () ~

2 F f mch init Oos_mac.c ~
mch init () -~

3 F £ mch init os _msdos.c ~
mch_init (void) -~

4 F £ mch init os _riscos.c ~

mch init () ~
Enter nr of choice (<CR> to abort): ~
You can now enter the number (in the first column) of the match that you would
like to jump to. The information in the other columns give you a good idea of
where the match is defined.

To move between the matching tags, these commands can be used:

:tfirst go to first match

: [count] tprevious go to [count] previous match
: [count] tnext go to [count] next match
:tlast go to last match

If [count] is omitted then one is used.

GUESSING TAG NAMES

Command line completion is a good way to avoid typing a long tag name. Just
type the first bit and press <Tab>: >

:tag write <Tab>

You will get the first match. If it's not the one you want, press <Tab> until
you find the right one.

Sometimes you only know part of the name of a function. Or you have many
tags that start with the same string, but end differently. Then you can tell
Vim to use a pattern to find the tag.

Suppose you want to jump to a tag that contains "block". First type

.\usr_doc.txt Page 157
this: >
:tag /block

Now use command line completion: press <Tab>. Vim will find all tags that
contain "block" and use the first match.

The "/" before a tag name tells Vim that what follows is not a literal tag
name, but a pattern. You can use all the items for search patterns here. For
example, suppose you want to select a tag that starts with "write ": >

:tselect /“write
The """ specifies that the tag starts with "write ". Otherwise it would also
be found halfway a tag name. Similarly "$" at the end makes sure the pattern
matches until the end of a tag.

A TAGS BROWSER

Since CTRL-] takes you to the definition of the identifier under the cursor,
you can use a list of identifier names as a table of contents. Here is an
example.

First create a list of identifiers (this requires Exuberant ctags): >

ctags --c-types=f -f functions *.c

Now start Vim without a file, and edit this file in Vim, in a vertically split
window: >

vim
:vsplit functions

The window contains a list of all the functions. There is some more stuff,
but you can ignore that. Do ":setlocal ts=99" to clean it up a bit.
In this window, define a mapping: >

:nnoremap <buffer> <CR> Oye<C-W>w:tag <C-R>"<CR>

Move the cursor to the line that contains the function you want to go to.
Now press <Enter>. Vim will go to the other window and jump to the selected
function.

RELATED ITEMS
You can set 'ignorecase' to make case in tag names be ignored.

The 'tagbsearch' option tells if the tags file is sorted or not. The default
is to assume a sorted tags file, which makes a tags search a lot faster, but
doesn't work if the tags file isn't sorted.

The 'taglength' option can be used to tell Vim the number of significant
characters in a tag.

When you use the SNiFF+ program, you can use the Vim interface to it |sniff].
SNiFF+ is a commercial program.

Cscope 1is a free program. It does not only find places where an identifier is
declared, but also where it is used. See |cscope].

When you edit code that contains a function call, you need to use the correct
arguments. To know what values to pass you can look at how the function is
defined. The tags mechanism works very well for this. Preferably the
definition is displayed in another window. For this the preview window can be
used.

To open a preview window to display the function "write char": >

:ptag write char

.\usr_doc.txt Page

Vim will open a window, and jumps to the tag "write char". Then it takes you
back to the original position. Thus you can continue typing without the need
to use a CTRL-W command.

If the name of a function appears in the text, you can get its definition
in the preview window with: >

CTRL-W }

There is a script that automatically displays the text where the word under
the cursor was defined. See |CursorHold-example]|.

To close the preview window use this command: >
:pclose

To edit a specific file in the preview window, use ":pedit". This can be
useful to edit a header file, for example: >

:pedit defs.h
Finally, ":psearch" can be used to find a word in the current file and any
included files and display the match in the preview window. This is
especially useful when using library functions, for which you do not have a
tags file. Example: >

:psearch popen

This will show the "stdio.h" file in the preview window, with the function
prototype for popen() :

FILE *popen P ((const char *, const char *)); ~

You can specify the height of the preview window, when it is opened, with the
'previewheight' option.

Since a program is structured, Vim can recognize items in it. Specific
commands can be used to move around.
C programs often contain constructs like this:

#ifdef USE POPEN ~

fd = popen("ls", "r") ~
#else ~
fd = fopen("tmp", "w") ~
#endif ~
But then much longer, and possibly nested. Position the cursor on the
"#ifdef" and press %. Vim will jump to the "#else". Pressing % again takes
you to the "#endif". Another % takes you to the "#ifdef" again.

When the construct is nested, Vim will find the matching items. This is a
good way to check if you didn't forget an "#endif".

When you are somewhere inside a "#if" - "#endif", you can jump to the start
of it with: >

[#

If you are not after a "#if" or "#ifdef" Vim will beep. To jump forward to
the next "#else" or "#endif" use: >

1#

These two commands skip any "#if" - "#endif" blocks that they encounter.
Example:

#if defined (HAS INC H) ~
a=a + inc(); ~

ifdef USE THEME ~
a += 3; ~

158

.\usr_doc.txt Page 159

endif ~
set _width(a); ~

With the cursor in the last line, "[#" moves to the first line. The "#ifdef"
- "#endif" block in the middle is skipped.

MOVING IN CODE BLOCKS

In C code blocks are enclosed in {}. These can get pretty long. To move to
the start of the outer block use the "[[" command. Use "][" to find the end.
This assumes that the "{" and "}" are in the first column.

The "[{" command moves to the start of the current block. It skips over
pairs of {} at the same level. "]}" jumps to the end.

An overview:

function (int a)

+->
if (a)
> {
[[for (;;) -——+
+—>
[{ foo(32); S
[{ if (bar(a)) --+ 1}
- - break; | 1}
} <—+ 10
+—— foobar (a)
} <—+
} <—+

When writing C++ or Java, the outer {} block is for the class. The next level
of {} is for a method. When somewhere inside a class use "[m" to find the
previous start of a method. "]m" finds the next start of a method.

Additionally, "[]" moves backward to the end of a function and "]]" moves
forward to the start of the next function. The end of a function is defined
by a "}" in the first column.

int funcl (void)

return 1;
o >}

[] int func?2 (void)

+->
(e | if (flag)
start +—— +—— return flag;
10| return 2;
+-> }

int func3 (void)

return 3;

}

Don't forget you can also use "%" to move between matching (), {} and [].
That also works when they are many lines apart.

MOVING IN BRACES

The "[(" and "])" commands work similar to "[{" and "]}", except that they
work on () pairs instead of {} pairs.
>

< o

.\usr_doc.txt Page 160

MOVING IN COMMENTS

To move back to the start of a comment use "[/". Move forward to the end of a
comment with "]/". This only works for /* - */ comments.
+-> +-> /*
[/ | * A comment about -t
[/ +-— * wonderful life. | 1/
*/ <—+
+—— foo = bar * 3; -+
| 1/

/* a short comment */ <-—+

You are editing a C program and wonder if a variable is declared as "int" or
"unsigned". A quick way to find this is with the "[I" command.
Suppose the cursor is on the word "column". Type: >

[T

Vim will list the matching lines it can find. ©Not only in the current file,
but also in all included files (and files included in them, etc.). The result
looks like this:

structs.h ~
1: 29 unsigned column; /* column number */ ~

The advantage over using tags or the preview window is that included files are
searched. In most cases this results in the right declaration to be found.
Also when the tags file is out of date. Also when you don't have tags for the
included files.

However, a few things must be right for "[I" to do its work. First of all,
the 'include' option must specify how a file is included. The default value
works for C and C++. For other languages you will have to change it.

LOCATING INCLUDED FILES

Vim will find included files in the places specified with the 'path!
option. If a directory is missing, some include files will not be found. You
can discover this with this command: >

:checkpath

It will list the include files that could not be found. Also files included
by the files that could be found. An example of the output:

—-—— Included files not found in path --- ~
<io.h> ~
vim.h --> ~

<functions.h> ~

<clib/exec protos.h> ~

The "io.h" file is included by the current file and can't be found. "vim.h"
can be found, thus ":checkpath" goes into this file and checks what it
includes. The "functions.h" and "clib/exec protos.h" files, included by
"vim.h" are not found.

Note:

Vim is not a compiler. It does not recognize "#ifdef" statements.
This means every "#include" statement is used, also when it comes
after "#if NEVER".

To fix the files that could not be found, add a directory to the 'path’
option. A good place to find out about this is the Makefile. Look out for
lines that contain "-I" items, like "-I/usr/local/X11". To add this directory
use: >

.\usr_doc.txt Page

:set path+=/usr/local/X11

When there are many subdirectories, you can use the "*" wildcard. Example: >
:set path+=/usr/*/include

This would find files in "/usr/local/include" as well as "/usr/X1ll/include".

When working on a project with a whole nested tree of included files, the "#**"
items is useful. This will search down in all subdirectories. Example: >

:set path+=/projects/invent/**/include
This will find files in the directories:

/projects/invent/include ~

/projects/invent/main/include ~

/projects/invent/main/os/include ~

etc.
There are even more possibilities. Check out the 'path' option for info.

If you want to see which included files are actually found, use this

command: >

:checkpath!
You will get a (very long) list of included files, the files they include, and
so on. To shorten the list a bit, Vim shows " (Already listed)" for files that
were found before and doesn't list the included files in there again.

JUMPING TO A MATCH

"[I" produces a list with only one line of text. When you want to have a
closer look at the first item, you can jump to that line with the command: >

[<Tab>
You can also use "[CTRL-I", since CTRL-I is the same as pressing <Tabs.

The list that "[I" produces has a number at the start of each line. When you
want to jump to another item than the first one, type the number first: >

3 [<Tab>

Will jump to the third item in the list. Remember that you can use CTRL-O to
jump back to where you started from.

RELATED COMMANDS

[i only lists the first match
]I only lists items below the cursor
]i only lists the first item below the cursor

FINDING DEFINED IDENTIFIERS

The "[I" command finds any identifier. To find only macros, defined with
"#define" use: >

[D

Again, this searches in included files. The 'define' option specifies what a
line looks like that defines the items for "[D". You could change it to make
it work with other languages than C or C++.

The commands related to "[D" are:

[d only lists the first match
1D only lists items below the cursor

161

.\usr_doc.txt Page 162

1d only lists the first item below the cursor

The " [I" command searches included files. To search in the current file only,
and jump to the first place where the word under the cursor is used: >

gb
Hint: Goto Definition. This command is very useful to find a variable or
function that was declared locally ("static", in C terms). Example (cursor on
"counter") :
+—> static int counter = 0;

int get counter (void)
gb
++counter;
+—— return counter;

}

To restrict the search even further, and look only in the current function,
use this command: >

gd
This will go back to the start of the current function and find the first
occurrence of the word under the cursor. Actually, it searches backwards to
an empty line above a "{" in the first column. From there it searches forward
for the identifier. Example (cursor on "idx"):

int find entry(char *name)

+-> int idx;
gd for (idx = 0; idx < table len; ++idx)
if (strcmp(table[idx] .name, name) == 0)
+—— return idx;

Next chapter: |usr 30.txt| Editing programs

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page 163

usr 30.txt For Vim version 7.4. Last change: 2007 Nov 10
VIM USER MANUAL - by Bram Moolenaar
Editing programs
Vim has various commands that aid in writing computer programs. Compile a

program and directly jump to reported errors. Automatically set the indent
for many languages and format comments.

30.1 Compiling

30.2 Indenting C files
30.3 Automatic indenting
30.4 Other indenting
30.5 Tabs and spaces
30.6 Formatting comments

Next chapter: |usr 31.txt Exploiting the GUI
Previous chapter: |usr 29.txt Moving through programs
Table of contents: |usr toc.txt|

Vim has a set of so called "quickfix" commands. They enable you to compile a
program from within Vim and then go through the errors generated and fix them
(hopefully). You can then recompile and fix any new errors that are found
until finally your program compiles without any error.

The following command rung the program "make" (supplying it with any argument
you give) and captures the results: >

:make {arguments}

If errors were generated, they are captured and the editor positions you where
the first error occurred.

Take a look at an example ":make" session. (Typical :make sessions generate
far more errors and fewer stupid ones.) After typing ":make" the screen looks
like this:

:lmake | &tee /tmp/vim215953.err ~
gcc -g -Wall -o prog main.c sub.c ~
main.c: In function 'main': ~

main.c:6: too many arguments to function 'do_sub' ~
main.c: At top level: ~
main.c:10: parse error before '}' ~

make: *** [prog] Error 1 ~

2 returned ~

"main.c" 11L, 111C ~

(3 of 6): too many arguments to function 'do sub' ~
Press ENTER or type command to continue ~

From this you can see that you have errors in the file "main.c". When you
press <Enters>, Vim displays the file "main.c", with the cursor positioned on
line 6, the first line with an error. You did not need to specify the file or
the line number, Vim knew where to go by looking in the error messages.

int i=3;
cursor -> do_sub("foo") ;
++1;

return (0);
(3 of 12): too many arguments to function 'do sub'

.\usr_doc.txt Page 164

The following command goes to where the next error occurs: >
:cnext

Vim jumps to line 10, the last line in the file, where there is an extra '}'.
When there is not enough room, Vim will shorten the error message. To see
the whole message use: >

:CC

You can get an overview of all the error messages with the ":clist" command.
The output looks like this: >

:clist
< 3 main.c: 6:too many arguments to function 'do sub' ~
5 main.c: 10:parse error before '}' ~

Only the lines where Vim recognized a file name and line number are listed
here. It assumes those are the interesting lines and the rest is just boring
messages. However, sometimes unrecognized lines do contain something you want
to see. Output from the linker, for example, about an undefined function.

To see all the messages add a "!" to the command: >
:clist!
< 1 gcc -g -Wall -o prog main.c sub.c ~
2 main.c: In function 'main': ~
3 main.c:6: too many arguments to function 'do sub' ~
4 main.c: At top level: ~
5 main.c:10: parse error before '}' ~
6 make: *** [prog] Error 1 ~

Vim will highlight the current error. To go back to the previous error, use:
>
:cprevious

Other commands to move around in the error list:

:cfirst to first error
:clast to last error
:cc 3 to error nr 3

USING ANOTHER COMPILER

The name of the program to run when the ":make" command is executed is defined
by the 'makeprg' option. Usually this is set to "make", but Visual C++ users
should set this to "nmake" by executing the following command: >

:set makeprg=nmake

You can also include arguments in this option. Special characters need to
be escaped with a backslash. Example: >

:set makeprg=nmake\ -f\ project.mak
You can include special Vim keywords in the command specification. The %
character expands to the name of the current file. So if you execute the
command: >

:set makeprg=make\ %:S
When you are editing main.c, then ":make" executes the following command: >

make main.c

This is not too useful, so you will refine the command a little and use the :r
(root) modifier: >

:set makeprg=make\ %$:r:S.o

.\usr_doc.txt Page 165
Now the command executed is as follows: >
make main.o

More about these modifiers here: |filename-modifiers]|.

OLD ERROR LISTS
Suppose you ":make" a program. There is a warning message in one file and an
error message in another. You fix the error and use ":make" again to check if
it was really fixed. ©Now you want to look at the warning message. It doesn't
show up in the last error list, since the file with the warning wasn't
compiled again. You can go back to the previous error list with: >

:colder

Then use ":clist" and ":cc {nr}" to jump to the place with the warning.
To go forward to the next error list: >

:cnewer

Vim remembers ten error lists.

SWITCHING COMPILERS

You have to tell Vim what format the error messages are that your compiler
produces. This is done with the 'errorformat' option. The syntax of this
option is quite complicated and it can be made to fit almost any compiler.

You can find the explanation here: |errorformat].

You might be using various different compilers. Setting the 'makeprg' option,
and especially the 'errorformat' each time is not easy. Vim offers a simple
method for this. For example, to switch to using the Microsoft Visual C++

compiler: >
:compiler msvc

This will find the Vim script for the "msvc" compiler and set the appropriate
options.
You can write your own compiler files. See |write-compiler-plugin].

OUTPUT REDIRECTION

The ":make" command redirects the output of the executed program to an error
file. How this works depends on various things, such as the 'shell'. If your
":make" command doesn't capture the output, check the 'makeef' and

'shellpipe' options. The 'shellquote' and 'shellxquote' options might also
matter.

In case you can't get ":make" to redirect the file for you, an alternative is
to compile the program in another window and redirect the output into a file.
Then have Vim read this file with: >

:cfile {filename}

Jumping to errors will work like with the ":make" command.

30.2 TIndenting C style text

A program is much easier to understand when the lines have been properly
indented. Vim offers various ways to make this less work. For C or C style
programs like Java or C++, set the 'cindent' option. Vim knows a lot about C
programs and will try very hard to automatically set the indent for you. Set
the 'shiftwidth' option to the amount of spaces you want for a deeper level.
Four spaces will work fine. One ":set" command will do it: >

:set cindent shiftwidth=4

.\usr_doc.txt Page 166

With this option enabled, when you type something such as "if (x)", the next
line will automatically be indented an additional level.

if (flag)
Automatic indent —-——> do_the work () ;
Automatic unindent <-- if (other flag) {
Automatic indent _—— do file();
keep indent do_some more() ;
Automatic unindent <-- }

When you type something in curly braces ({}), the text will be indented at the
start and unindented at the end. The unindenting will happen after typing the
'}', since Vim can't guess what you are going to type.

One side effect of automatic indentation is that it helps you catch errors in
your code early. When you type a } to finish a function, only to find that
the automatic indentation gives it more indent than what you expected, there
is probably a } missing. Use the "%" command to find out which { matches the
} you typed.

A missing) and ; also cause extra indent. Thus if you get more white
space than you would expect, check the preceding lines.

When you have code that is badly formatted, or you inserted and deleted lines,
you need to re-indent the lines. The "=" operator does this. The simplest
form is: >

This indents the current line. Like with all operators, there are three ways
to use it. 1In Visual mode "=" indents the selected lines. A useful text
object is "a{". This selects the current {} block. Thus, to re-indent the
code block the cursor is in: >

—af

I you have really badly indented code, you can re-indent the whole file with:
>

99=G

However, don't do this in files that have been carefully indented manually.
The automatic indenting does a good job, but in some situations you might want
to overrule it.

SETTING INDENT STYLE

Different people have different styles of indentation. By default Vim does a
pretty good job of indenting in a way that 90% of programmers do. There are
different styles, however; so if you want to, you can customize the
indentation style with the 'cinoptions' option.

By default 'cinoptions' is empty and Vim uses the default style. You can
add various items where you want something different. For example, to make
curly braces be placed like this:

if (flag) ~

i =8; ~
j =0; ~

}

Use this command: >
:set cinoptions+={2
There are many of these items. See |cinoptions-values]|.

You don't want to switch on the 'cindent' option manually every time you edit

.\usr_doc.txt Page 167
a C file. This is how you make it work automatically: >
:filetype indent on
Actually, this does a lot more than switching on 'cindent' for C files. First
of all, it enables detecting the type of a file. That's the same as what is
used for syntax highlighting.

When the filetype is known, Vim will search for an indent file for this
type of file. The Vim distribution includes a number of these for wvarious
programming languages. This indent file will then prepare for automatic
indenting specifically for this file.

If you don't like the automatic indenting, you can switch it off again: >

:filetype indent off

If you don't like the indenting for one specific type of file, this is how you
avoid it. Create a file with just this one line: >

:let b:did indent =1
Now you need to write this in a file with a specific name:
{directory}/indent/{filetype}.vim

The {filetype} is the name of the file type, such as "cpp" or "java". You can
see the exact name that Vim detected with this command: >

:set filetype
In this file the output is:
filetype=help ~
Thus you would use "help" for {filetype}.
For the {directory} part you need to use your runtime directory. Look at
the output of this command: >

set runtimepath

Now use the first item, the name before the first comma. Thus if the output
looks like this:

runtimepath=~/.vim, /usr/local/share/vim/vim60/runtime, ~/.vim/after ~
You use "~/.vim" for {directory}. Then the resulting file name is:
~/.vim/indent/help.vim ~

Instead of switching the indenting off, you could write your own indent file.
How to do that is explained here: |indent-expression].

The most simple form of automatic indenting is with the 'autoindent' option.
It uses the indent from the previous line. A bit smarter is the 'smartindent'
option. This is useful for languages where no indent file is available.

'smartindent' is not as smart as 'cindent', but smarter than 'autoindent'.
With 'smartindent' set, an extra level of indentation is added for each {
and removed for each }. An extra level of indentation will also be added for

any of the words in the 'cinwords' option. Lines that begin with # are
treated specially: all indentation is removed. This is done so that
preprocessor directives will all start in column 1. The indentation is
restored for the next line.

CORRECTING INDENTS

When you are using 'autoindent' or 'smartindent' to get the indent of the
previous line, there will be many times when you need to add or remove one

.\usr_doc.txt Page

'shiftwidth' worth of indent. A quick way to do this is using the CTRL-D and
CTRL-T commands in Insert mode.

For example, you are typing a shell script that is supposed to look like
this:

if test -n a; then -~
echo a ~
echo n_ n -~
fi ~

Start off by setting these options: >
:set autoindent shiftwidth=3
You start by typing the first line, <Enter> and the start of the second line:

if test -n a; then ~
echo ~

Now you see that you need an extra indent. Type CTRL-T. The result:

if test -n a; then -~
echo ~

The CTRL-T command, in Insert mode, adds one 'shiftwidth' to the indent, no
matter where in the line you are.

You continue typing the second line, <Enter> and the third line. This time
the indent is OK. Then <Enter> and the last line. Now you have this:

if test -n a; then ~
echo a ~
echo "-—————- "o~
fi ~

To remove the superfluous indent in the last line press CTRL-D. This deletes
one 'shiftwidth' worth of indent, no matter where you are in the line.

When you are in Normal mode, you can use the ">>" and "<<" commands to
shift lines. ">" and "<" are operators, thus you have the usual three ways to
specify the lines you want to indent. A useful combination is: >

>1i{
This adds one indent to the current block of lines, inside {}. The { and }
lines themselves are left unmodified. "s>a{" includes them. In this example

the cursor is on "printf":

original text after ">i{" after "sa{"
if (flag) if (flag) if (flag) ~
{ { ~
printf ("yes") ; printf ("yes") ; printf ("yes"); ~
flag = 0; flag = 0; flag = 0; ~

'tabstop' is set to eight by default. Although you can change it, you quickly
run into trouble later. Other programs won't know what tabstop value you
used. They probably use the default value of eight, and your text suddenly
looks very different. Also, most printers use a fixed tabstop value of eight.
Thus it's best to keep 'tabstop' alone. (If you edit a file which was written
with a different tabstop setting, see [25.3| for how to fix that.)

For indenting lines in a program, using a multiple of eight spaces makes
you quickly run into the right border of the window. Using a single space
doesn't provide enough visual difference. Many people prefer to use four
spaces, a good compromise.

Since a <Tab> ig eight spaces and you want to use an indent of four spaces,
you can't use a <Tab> character to make your indent. There are two ways to
handle this:

168

.\usr_doc.txt Page 169

1. Use a mix of <Tab> and space characters. Since a <Tab> takes the place of
eight spaces, you have fewer characters in your file. Inserting a <Tab>
is quicker than eight spaces. Backspacing works faster as well.

2. TUse spaces only. This avoids the trouble with programs that use a
different tabstop value.

Fortunately, Vim supports both methods quite well.

SPACES AND TABS

If you are using a combination of tabs and spaces, you just edit normally.
The Vim defaults do a fine job of handling things.

You can make life a little easier by setting the 'softtabstop' option.
This option tells Vim to make the <Tab> key look and feel as if tabs were set
at the value of 'softtabstop', but actually use a combination of tabs and
spaces.

After you execute the following command, every time you press the <Tab> key
the cursor moves to the next 4-column boundary: >

:set softtabstop=4

When you start in the first column and press <Tabs>, you get 4 spaces inserted
in your text. The second time, Vim takes out the 4 spaces and puts in a <Tab>
(thus taking you to column 8). Thus Vim uses as many <Tab>s as possible, and
then fills up with spaces.

When backspacing it works the other way around. A <BS> will always delete
the amount specified with 'softtabstop'. Then <Tab>s are used as many as
possible and spaces to fill the gap.

The following shows what happens pressing <Tab> a few times, and then using

<BS>. A "." gstands for a space and "-—————- >" for a <Tabs>.
type result ~
<Tab> e
<Tab><Tab> o >
<Tab><Tab><Tab> = ——————- >. ...
<Tab><Tab><Tab><BS> = - ——————= >

<Tab><Tab><Tab><BS><BS>

An alternative is to use the 'smarttab' option. When it's set, Vim uses
'shiftwidth' for a <Tab> typed in the indent of a line, and a real <Tab> when
typed after the first non-blank character. However, <BS> doesn't work like
with 'softtabstop'.

JUST SPACES

If you want absolutely no tabs in your file, you can set the 'expandtab'
option: >

:set expandtab

When this option is set, the <Tab> key inserts a series of spaces. Thus you
get the same amount of white space as if a <Tab> character was inserted, but
there isn't a real <Tab> character in your file.

The backspace key will delete each space by itself. Thus after typing one
<Tab> you have to press the <BS> key up to eight times to undo it. If you are
in the indent, pressing CTRL-D will be a lot quicker.

CHANGING TABS IN SPACES (AND BACK)

Setting 'expandtab' does not affect any existing tabs. In other words, any
tabs in the document remain tabs. If you want to convert tabs to spaces, use
the ":retab" command. Use these commands: >

:set expandtab
:%$retab

Now Vim will have changed all indents to use spaces instead of tabs. However,

.\usr_doc.txt Page

all tabs that come after a non-blank character are kept. If you want these to
be converted as well, add a !: >
:%retab!

This is a little bit dangerous, because it can also change tabs inside a
string. To check if these exist, you could use this: >

/n [An\t] *\t [An] * N

It's recommended not to use hard tabs inside a string. Replace them with
"\t" to avoid trouble.

The other way around works just as well: >

:set noexpandtab
:¥retab!

One of the great things about Vim is that it understands comments. You can
ask Vim to format a comment and it will do the right thing.
Suppose, for example, that you have the following comment:

/* -
* This is a test ~
* of the text formatting. ~

*/N

You then ask Vim to format it by positioning the cursor at the start of the
comment and type: >

gal/
"gq" is the operator to format text. "]/" is the motion that takes you to the
end of a comment. The result is:
/*
* This is a test of the text formatting. ~
*/ ~

Notice that Vim properly handled the beginning of each line.
An alternative is to select the text that is to be formatted in Visual mode

and type "gg".

To add a new line to the comment, position the cursor on the middle line and
press "o". The result looks like this:

/* ~
* This is a test of the text formatting. ~
* .

*/N

Vim has automatically inserted a star and a space for you. Now you can type
the comment text. When it gets longer than 'textwidth', Vim will break the
line. Again, the star is inserted automatically:

/* -
* This is a test of the text formatting. ~
* Typing a lot of text here will make Vim ~
* break ~

*/ ~
For this to work some flags must be present in 'formatoptions':
r insert the star when typing <Enter> in Insert mode
o insert the star when using "o" or "O" in Normal mode

c break comment text according to 'textwidth'

See |fo-table| for more flags.

170

.\usr_doc.txt Page

DEFINING A COMMENT

The 'comments' option defines what a comment looks like. Vim distinguishes
between a single-line comment and a comment that has a different start, end
and middle part.

Many single-line comments start with a specific character. In C++ // is
used, in Makefiles #, in Vim scripts ". For example, to make Vim understand
C++ comments: >

:set comments=://

The colon separates the flags of an item from the text by which the comment is
recognized. The general form of an item in 'comments' is:

{flags}:{text}

The {flags} part can be empty, as in this case.
Several of these items can be concatenated, separated by commas. This

allows recognizing different types of comments at the same time. For example,
let's edit an e-mail message. When replying, the text that others wrote is
preceded with ">" and "!" characters. This command would work: >

:set comments=n:>,n:!

There are two items, one for comments starting with ">" and one for comments
that start with "!". Both use the flag "n". This means that these comments
nest. Thus a line starting with ">" may have another comment after the ">".
This allows formatting a message like this:

! Did you see that site? ~
I Tt looks really great. ~
I don't like it. The ~
colors are terrible. ~
What is the URL of that -~
site? ~

VvV V V

\%

Try setting 'textwidth' to a different value, e.g., 80, and format the text by
Visually selecting it and typing "gg". The result is:

> | Did you see that site? It looks really great. ~
> I don't like it. The colors are terrible. ~
What is the URL of that site? ~

You will notice that Vim did not move text from one type of comment to
another. The "I" in the second line would have fit at the end of the first
line, but since that line starts with "> !" and the second line with ">", Vim
knows that this is a different kind of comment.

A THREE PART COMMENT

A C comment starts with "/*", has "*" in the middle and "*/" at the end. The
entry in 'comments' for this looks like this: >

:set comments=sl:/*, mb:*,ex:*/

The start is defined with "sl1l:/*". The "s" indicates the start of a
three-piece comment. The colon separates the flags from the text by which the
comment is recognized: "/*". There is one flag: "1". This tells Vim that the

middle part has an offset of one space.

The middle part "mb:*" starts with "m", which indicates it is a middle
part. The "b" flag means that a blank must follow the text. Otherwise Vim
would consider text like "*pointer" also to be the middle of a comment.

The end part "ex:*/" has the "e" for identification. The "x" flag has a
special meaning. It means that after Vim automatically inserted a star,
typing / will remove the extra space.

For more details see |format-comments]|.

171

.\usr_doc.txt

Next chapter: |usr 31.txt| Exploiting the GUI

Copyright: see |manual-copyright |

vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page 173

usr 31.txt For Vim version 7.4. Last change: 2007 May 08
VIM USER MANUAL - by Bram Moolenaar
Exploiting the GUI
Vim works well in a terminal, but the GUI has a few extra items. A file

browser can be used for commands that use a file. A dialog to make a choice
between alternatives. Use keyboard shortcuts to access menu items quickly.

31.1 The file browser
31.2 Confirmation
31.3 Menu shortcuts
31.4 Vim window position and size
31.5 Various
Next chapter: |usr 32.txt The undo tree
Previous chapter: |usr 30.txt Editing programs

Table of contents: |usr toc.txt|

When using the File/Open... menu you get a file browser. This makes it easier
to find the file you want to edit. But what if you want to split a window to
edit another file? There is no menu entry for this. You could first use
Window/Split and then File/Open..., but that's more work.

Since you are typing most commands in Vim, opening the file browser with a
typed command is possible as well. To make the split command use the file
browser, prepend "browse": >

:browse split

Select a file and then the ":split" command will be executed with it. If you
cancel the file dialog nothing happens, the window isn't split.

You can also specify a file name argument. This is used to tell the file
browser where to start. Example: >

:browse split /etc
The file browser will pop up, starting in the directory "/etc".

The ":browse" command can be prepended to just about any command that opens a
file.

If no directory is specified, Vim will decide where to start the file
browser. By default it uses the same directory as the last time. Thus when
you used ":browse split" and selected a file in "/usr/local/share", the next
time you use a ":browse" it will start in "/usr/local/share" again.

This can be changed with the 'browsedir' option. It can have one of three
values:

last Use the last directory browsed (default)
buffer Use the same directory as the current buffer
current use the current directory

For example, when you are in the directory "/usr", editing the file
"/usr/local/share/readme", then the command: >

:set browsedir=buffer
:browse edit

Will start the browser in "/usr/local/share". Alternatively: >

:set browsedir=current
:browse edit

Will start the browser in "/usr".

Note:

.\usr_doc.txt Page

To avoid using the mouse, most file browsers offer using key presses
to navigate. Since this is different for every system, it is not
explained here. Vim uses a standard browser when possible, your
system documentation should contain an explanation on the keyboard
shortcuts somewhere.

When you are not using the GUI version, you could use the file explorer window
to select files like in a file browser. However, this doesn't work for the
":browse" command. See |netrw-browse].

Vim protects you from accidentally overwriting a file and other ways to lose
changes. If you do something that might be a bad thing to do, Vim produces an
error message and suggests appending ! if you really want to do it.

To avoid retyping the command with the !, you can make Vim give you a
dialog. You can then press "OK" or "Cancel" to tell Vim what you want.

For example, you are editing a file and made changes to it. You start
editing another file with: >

:confirm edit foo.txt

Vim will pop up a dialog that looks something like this:

o +
? Save changes to "bar.txt"?
YES NO CANCEL
o +
Now make your choice. If you do want to save the changes, select "YES". If
you want to lose the changes for ever: "NO". If you forgot what you were
doing and want to check what really changed use "CANCEL". You will be back in

the same file, with the changes still there.

Just like ":browse", the ":confirm" command can be prepended to most commands
that edit another file. They can also be combined: >

:confirm browse edit

This will produce a dialog when the current buffer was changed. Then it will
pop up a file browser to select the file to edit.

Note:

In the dialog you can use the keyboard to select the choice.
Typically the <Tab> key and the cursor keys change the choice.
Pressing <Enter> selects the choice. This depends on the system
though.

When you are not using the GUI, the ":confirm" command works as well. Instead
of popping up a dialog, Vim will print the message at the bottom of the Vim
window and ask you to press a key to make a choice. >

:confirm edit main.c
< Save changes to "Untitled"? ~
[Y]es, (N)o, (C)ancel: ~

You can now press the single key for the choice. You don't have to press
<Enter>, unlike other typing on the command line.

The keyboard is used for all Vim commands. The menus provide a simple way to
select commands, without knowing what they are called. But you have to move
your hand from the keyboard and grab the mouse.

Menus can often be selected with keys as well. This depends on your
system, but most often it works this way. Use the <Alt> key in combination
with the underlined letter of a menu. For example, <A-w> (<Alt> and w) pops

174

.\usr_doc.txt Page

up the Window menu.
In the Window menu, the "split" item has the p underlined. To select it,
let go of the <Alt> key and press p.

After the first selection of a menu with the <Alt> key, you can use the cursor
keys to move through the menus. <Rights> selects a submenu and <left> closes
it. <Esc> also closes a menu. <Enter> selects a menu item.

There is a conflict between using the <Alt> key to select menu items, and
using <Alt> key combinations for mappings. The 'winaltkeys' option tells Vim
what it should do with the <Alt> key.

The default value "menu" is the smart choice: If the key combination is a
menu shortcut it can't be mapped. All other keys are available for mapping.

The value "no" doesn't use any <Alt> keys for the menus. Thus you must use
the mouse for the menus, and all <Alt> keys can be mapped.
The value "yes" means that Vim will use any <Alt> keys for the menus. Some

<Alt> key combinations may also do other things than selecting a menu.

To see the current Vim window position on the screen use: >
:winpos

This will only work in the GUI. The output may look like this:
Window position: X 272, Y 103 ~

The position is given in screen pixels. Now you can use the numbers to move
Vim somewhere else. For example, to move it to the left a hundred pixels: >

:winpos 172 103

Note:

There may be a small offset between the reported position and where
the window moves. This is because of the border around the window.
This is added by the window manager.

You can use this command in your startup script to position the window at a
specific position.

The size of the Vim window is computed in characters. Thus this depends on
the size of the font being used. You can see the current size with this
command: >

:set lines columns

To change the size set the 'lines' and/or 'columns' options to a new value: >

:set lines=50
:set columns=80

Obtaining the size works in a terminal just like in the GUI. Setting the size
is not possible in most terminals.

You can start the X-Windows version of gvim with an argument to specify the
size and position of the window: >

gvim -geometry {width}x{height}+{x offset}+{y offset}

{width} and {height} are in characters, {x offset} and {y offset} are in
pixels. Example: >

gvim -geometry 80x25+100+300

You can use gvim to edit an e-mail message. In your e-mail program you must
select gvim to be the editor for messages. When you try that, you will

175

.\usr_doc.txt Page

see that it doesn't work: The mail program thinks that editing is finished,
while gvim is still running!

What happens is that gvim disconnects from the shell it was started in.
That is fine when you start gvim in a terminal, so that you can do other work
in that terminal. But when you really want to wait for gvim to finish, you
must prevent it from disconnecting. The "-f" argument does this: >

gvim -f file.txt

The "-f" stands for foreground. Now Vim will block the shell it was started
in until you finish editing and exit.

DELAYED START OF THE GUI

On Unix it's possible to first start Vim in a terminal. That's useful if you
do various tasks in the same shell. If you are editing a file and decide you
want to use the GUI after all, you can start it with: >

:gui

Vim will open the GUI window and no longer use the terminal. You can continue
using the terminal for something else. The "-f" argument is used here to run
the GUI in the foreground. You can also use ":gui -f".

THE GVIM STARTUP FILE

When gvim starts, it reads the gvimrc file. That's similar to the vimrc file
used when starting Vim. The gvimrc file can be used for settings and commands
that are only to be used when the GUI is going to be started. For example,
you can set the 'lines' option to set a different window size: >

:set lines=55

You don't want to do this in a terminal, since its size is fixed (except for
an xterm that supports resizing).

The gvimrc file is searched for in the same locations as the vimrc file.
Normally its name is "~/.gvimrc" for Unix and "$VIM/ gvimrc" for MS-Windows.
The $MYGVIMRC environment variable is set to it, thus you can use this command
to edit the file, if you have one: >

:edit $SMYGVIMRC
<
If for some reason you don't want to use the normal gvimrc file, you can
specify another one with the "-U" argument: >

gvim -U thisrc
That allows starting gvim for different kinds of editing. You could set
another font size, for example.

To completely skip reading a gvimrc file: >

gvim -U NONE

Next chapter: |usr 32.txt| The undo tree

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

176

.\usr_doc.txt Page

usr 32.txt For Vim version 7.4. Last change: 2010 Jul 20
VIM USER MANUAL - by Bram Moolenaar
The undo tree
Vim provides multi-level undo. If you undo a few changes and then make a new

change you create a branch in the undo tree. This text is about moving
through the branches.

32.1 Undo up to a file write
32.2 Numbering changes

32.3 Jumping around the tree
32.4 Time travelling

Next chapter: |usr 40.txt Make new commands
Previous chapter: |usr 31.txt Exploiting the GUI
Table of contents: |usr toc.txt|

Sometimes you make several changes, and then discover you want to go back to
when you have last written the file. You can do that with this command: >

:earlier 1f
The "f" stands for "file" here.

You can repeat this command to go further back in the past. Or use a count
different from 1 to go back faster.

If you go back too far, go forward again with: >

:later 1f
Note that these commands really work in time sequence. This matters if you
made changes after undoing some changes. It's explained in the next section.
Also note that we are talking about text writes here. For writing the undo

information in a file see |undo-persistence].

In section |02.5| we only discussed one line of undo/redo. But it is also
possible to branch off. This happens when you undo a few changes and then
make a new change. The new changes become a branch in the undo tree.

Let's start with the text "one". The first change to make is to append
" too". And then move to the first 'o' and change it into 'w'. We then have
two changes, numbered 1 and 2, and three states of the text:

one -~

change 1

one too ~

change 2

one two ~

If we now undo one change, back to "one too", and change "one" to "me" we
create a branch in the undo tree:

one ~

change 1

177

.\usr_doc.txt Page 178

one too ~
/ \
change 2 change 3
one two me too ~
You can now use the |u| command to undo. If you do this twice you get to
"one". Use |CTRL-R| to redo, and you will go to "one too". One more |CTRL-R]|
takes you to "me too". Thus undo and redo go up and down in the tree, using

the branch that was last used.

What matters here is the order in which the changes are made. Undo and redo
are not considered changes in this context. After each change you have a new
state of the text.

Note that only the changes are numbered, the text shown in the tree above has
no identifier. They are mostly referred to by the number of the change above
it. But sometimes by the number of one of the changes below it, especially
when moving up in the tree, so that you know which change was just undone.

So how do you get to "one two" now? You can use this command: >
:undo 2

The text is now "one two", you are below change 2. You can use the |:undo|
command to jump to below any change in the tree.

Now make another change: change "one" to "not":

one -~

change 1

one too ~

/ \
change 2 change 3

one two me too ~

change 4

not two ~

Now you change your mind and want to go back to "me too". Use the |g-|
command. This moves back in time. Thus it doesn't walk the tree upwards or
downwards, but goes to the change made before.

You can repeat |g-| and you will see the text change:
me too ~
one two ~
one too ~
one ~

Use |g+| to move forward in time:
one ~
one too ~
one two ~
me too ~
not two ~

Using |:undo| is useful if you know what change you want to jump to. |g-| and
|g+| are useful if you don't know exactly what the change number is.

You can type a count before |g-| and |g+| to repeat them.

.\usr_doc.txt

When you have been working on text for a while the tree grows to become big.

Then you may want to go to the text of some minutes ago.

To see what branches there are in the undo tree use this command:

:undolist
< number changes time ~
3 2 16 seconds ago
4 3 5 seconds ago

Here you can see the number of the leaves in each branch and when the change
was made. Assuming we are below change 4, at "not two", you can go back ten

seconds with this command: >

:earlier 10s

Depending on how much time you took for the changes you end up at a certain

Page 179

position in the tree. The |:earlier| command argument can be "m" for minutes,

"h" for hours and "d" for days. To go all the way back use a big number:

:earlier 100d

To travel forward in time again use the |:later| command: >
:later 1m
The arguments are "s", "m" and "h", just like with |:earlier]|.

If you want even more details, or want to manipulate the information, you can

use the |undotree()| function. To see what it returns: >

:echo undotree ()

Next chapter: |usr 40.txt| Make new commands

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page 180

usr 40.txt For Vim version 7.4. Last change: 2013 Aug 05
VIM USER MANUAL - by Bram Moolenaar

Make new commands

Vim is an extensible editor. You can take a sequence of commands you use
often and turn it into a new command. Or redefine an existing command.
Autocommands make it possible to execute commands automatically.

40.1 Key mapping
40.2 Defining command-line commands
40.3 Autocommands

Next chapter: |usr 41.txt Write a Vim script
Previous chapter: |usr 32.txt The undo tree
Table of contents: |usr toc.txt|

A simple mapping was explained in section |05.3|. The principle is that one
sequence of key strokes is translated into another sequence of key strokes.
This is a simple, yet powerful mechanism.

The simplest form is that one key is mapped to a sequence of keys. Since
the function keys, except <Fl>, have no predefined meaning in Vim, these are
good choices to map. Example: >

:map <F2> GoDate: <Esc>:read !date<CR>kJ

This shows how three modes are used. After going to the last line with "G",
the "o" command opens a new line and starts Insert mode. The text "Date: " is
inserted and <Esc> takes you out of insert mode.

Notice the use of special keys inside <>. This is called angle bracket
notation. You type these as separate characters, not by pressing the key
itself. This makes the mappings better readable and you can copy and paste
the text without problems.

The ":" character takes Vim to the command line. The ":read !date" command
reads the output from the "date" command and appends it below the current
line. The <CR> is required to execute the ":read" command.

At this point of execution the text looks like this:

Date: ~
Fri Jun 15 12:54:34 CEST 2001 ~

Now "kJ" moves the cursor up and joins the lines together.
To decide which key or keys you use for mapping, see |map-which-keys]|.

MAPPING AND MODES

The ":map" command defines remapping for keys in Normal mode. You can also
define mappings for other modes. For example, ":imap" applies to Insert mode.
You can use it to insert a date below the cursor: >

:imap <F2> <CR>Date: <Esc>:read !date<CR>kJd

It looks a lot like the mapping for <F2> in Normal mode, only the start is
different. The <F2> mapping for Normal mode is still there. Thus you can map
the same key differently for each mode.

Notice that, although this mapping starts in Insert mode, it ends in Normal
mode. If you want it to continue in Insert mode, append an "a" to the

mapping.
Here is an overview of map commands and in which mode they work:
:map Normal, Visual and Operator-pending

:vmap Visual
:nmap Normal

.\usr_doc.txt Page
:omap Operator-pending
:map! Insert and Command-line
:imap Insert
:cmap Command-line

Operator-pending mode is when you typed an operator character, such as "d" or
"y", and you are expected to type the motion command or a text object. Thus
when you type "dw", the "w" is entered in operator-pending mode.

Suppose that you want to define <F7> so that the command d<F7> deletes a C
program block (text enclosed in curly braces, {}). Similarly y<F7> would yank
the program block into the unnamed register. Therefore, what you need to do
is to define <F7> to select the current program block. You can do this with
the following command: >

:omap <F7> af
This causes <F7> to perform a select block "a{" in operator-pending mode, just
like you typed it. This mapping is useful if typing a { on your keyboard is a
bit difficult.
LISTING MAPPINGS
To see the currently defined mappings, use ":map" without arguments. Or one

of the variants that include the mode in which they work. The output could
look like this:

g :call MyGrep(l)<CR> ~

v <F2> :s/"/> /<CR>:noh<CR>~" ~

n <F2> :.,%8s/"/> /<CR>:noh<CR>"" ~
<xHome> <Home>
<xXEnd> <End>

The first column of the list shows in which mode the mapping is effective.
This is "n" for Normal mode, "i" for Insert mode, etc. A blank is used for a
mapping defined with ":map", thus effective in both Normal and Visual mode.

One useful purpose of listing the mapping is to check if special keys in <>
form have been recognized (this only works when color is supported). For
example, when <Esc> is displayed in color, it stands for the escape character.
When it has the same color as the other text, it is five characters.

REMAPPING

The result of a mapping is inspected for other mappings in it. For example,
the mappings for <F2> above could be shortened to: >

:map <F2> G<F3>
:imap <F2> <Esc><F3>
:map <F3> oDate: <Esc>:read !date<CR>kJ

For Normal mode <F2> is mapped to go to the last line, and then behave like
<F3> was pressed. In Insert mode <F2> stops Insert mode with <Esc> and then
also uses <F3>. Then <F3> igs mapped to do the actual work.

Suppose you hardly ever use Ex mode, and want to use the "Q" command to format
text (this was so in old versions of Vim). This mapping will do it: >

:map Q gqg

But, in rare cases you need to use Ex mode anyway. Let's map "gQ" to Q, so
that you can still go to Ex mode: >

:map gQ Q

What happens now is that when you type "gQ" it is mapped to "Q". So far so
good. But then "Q" is mapped to "gq", thus typing "gQ" results in "gq", and
you don't get to Ex mode at all.

To avoid keys to be mapped again, use the ":noremap" command: >

181

.\usr_doc.txt Page 182

:noremap gQ Q

Now Vim knows that the "Q" is not to be inspected for mappings that apply to

it. There is a similar command for every mode:
:noremap Normal, Visual and Operator-pending
:vnoremap Visual
:nnoremap Normal
:onoremap Operator-pending
:noremap! Insert and Command-line
:inoremap Insert
:cnoremap Command-line

RECURSIVE MAPPING

When a mapping triggers itself, it will run forever. This can be used to
repeat an action an unlimited number of times.

For example, you have a list of files that contain a version number in the
first line. You edit these files with "vim *.txt". You are now editing the
first file. Define this mapping: >

:map ,, :8/5.1/5.2/<CR>:wnext<CR>,,

Now you type ",,". This triggers the mapping. It replaces "5.1" with "5.2"
in the first line. Then it does a ":wnext" to write the file and edit the
next one. The mapping ends in ",,". This triggers the same mapping again,
thus doing the substitution, etc.

This continues until there is an error. In this case it could be a file
where the substitute command doesn't find a match for "5.1". You can then
make a change to insert "5.1" and continue by typing ",," again. Or the
":wnext" fails, because you are in the last file in the list.

When a mapping runs into an error halfway, the rest of the mapping is
discarded. CTRL-C interrupts the mapping (CTRL-Break on MS-Windows) .

DELETE A MAPPING

To remove a mapping use the ":unmap" command. Again, the mode the unmapping
applies to depends on the command used:

:unmap Normal, Visual and Operator-pending
:vunmap Visual

:nunmap Normal

:ounmap Operator-pending

:unmap ! Insert and Command-line

:lunmap Insert

:cunmap Command-line

There is a trick to define a mapping that works in Normal and Operator-pending
mode, but not in Visual mode. First define it for all three modes, then
delete it for Visual mode: >

:map <C-A> /---><CR>
:vunmap <C-A>

Notice that the five characters "<C-A>" stand for the single key CTRL-A.

To remove all mappings use the |:mapclear| command. You can guess the
variations for different modes by now. Be careful with this command, it can't
be undone.

SPECIAL CHARACTERS

The ":map" command can be followed by another command. A | character
separates the two commands. This also means that a | character can't be used
inside a map command. To include one, use <Bar> (five characters). Example:
>

:map <F8> :write <Bar> !checkin %:S<CR>

.\usr_doc.txt Page

The same problem applies to the ":unmap" command, with the addition that you
have to watch out for trailing white space. These two commands are different:
>

:unmap a | unmap b

:unmap a| unmap b
The first command tries to unmap "a ", with a trailing space.
When using a space inside a mapping, use <Space> (seven characters): >

:map <Space> W

This makes the spacebar move a blank-separated word forward.

It is not possible to put a comment directly after a mapping, because the "

character is considered to be part of the mapping. You can use |", this
starts a new, empty command with a comment. Example: >
:map <Space> W] " Use spacebar to move forward a word

MAPPINGS AND ABBREVIATIONS

Abbreviations are a lot like Insert mode mappings. The arguments are handled
in the same way. The main difference is the way they are triggered. An
abbreviation is triggered by typing a non-word character after the word. A
mapping is triggered when typing the last character.

Another difference is that the characters you type for an abbreviation are
inserted in the text while you type them. When the abbreviation is triggered
these characters are deleted and replaced by what the abbreviation produces.
When typing the characters for a mapping, nothing is inserted until you type
the last character that triggers it. If the 'showcmd' option is set, the
typed characters are displayed in the last line of the Vim window.

An exception is when a mapping is ambiguous. Suppose you have done two
mappings: >

:imap aa foo
:imap aaa bar

Now, when you type "aa", Vim doesn't know if it should apply the first or the
second mapping. It waits for another character to be typed. If it is an "a",
the second mapping is applied and results in "bar". If it is a space, for
example, the first mapping is applied, resulting in "foo", and then the space
is inserted.

ADDITIONALLY. ..

The <script> keyword can be used to make a mapping local to a script. See
| :map-<scripts>]|.

The <buffer> keyword can be used to make a mapping local to a specific buffer.
See |:map-<buffers|

The <unique> keyword can be used to make defining a new mapping fail when it
already exists. Otherwise a new mapping simply overwrites the old one. See
| :map-<uniques |

To make a key do nothing, map it to <Nop> (five characters). This will make
the <F7> key do nothing at all: >

:map <F7> <Nop>| map! <F7> <Nop>

There must be no space after <Nops>.

The Vim editor enables you to define your own commands. You execute these
commands just like any other Command-line mode command.

183

.\usr_doc.txt Page 184
To define a command, use the ":command" command, as follows: >
:command DeleteFirst ldelete

Now when you execute the command ":DeleteFirst" Vim executes ":1ldelete", which
deletes the first line.

Note:
User-defined commands must start with a capital letter. You cannot
use ":X", ":Next" and ":Print". The underscore cannot be used! You

can use digits, but this is discouraged.
To list the user-defined commands, execute the following command: >

: command
Just like with the builtin commands, the user defined commands can be
abbreviated. You need to type just enough to distinguish the command from
another. Command line completion can be used to get the full name.
NUMBER OF ARGUMENTS
User-defined commands can take a series of arguments. The number of arguments
must be specified by the -nargs option. For instance, the example
:DeleteFirst command takes no arguments, so you could have defined it as
follows: >

:command -nargs=0 DeleteFirst 1ldelete

However, because zero arguments is the default, you do not need to add

"-nargs=0". The other values of -nargs are as follows:
-nargs=0 No arguments
-nargs=1 One argument
-nargs=* Any number of arguments
-nargs="? Zero or one argument
-nargs=+ One or more arguments

USING THE ARGUMENTS

Inside the command definition, the arguments are represented by the
<args> keyword. For example: >

:command -nargs=+ Say :echo "<args>"
Now when you type >
:Say Hello World

Vim echoes "Hello World". However, if you add a double quote, it won't work.
For example: >

:Say he said "hello"

To get special characters turned into a string, properly escaped to use as an
expression, use "<g-args>": >

:command -nargs=+ Say :echo <g-argss>
Now the above ":Say" command will result in this to be executed: >

:echo "he said \"hello\""
The <f-args> keyword contains the same information as the <args> keyword,
except in a format suitable for use as function call arguments. For example:
>

:command -nargs=* DolIt :call AFunction(<f-argss>)
:DoIt a b c

.\usr_doc.txt Page 185

Executes the following command: >

:call AFunction("a", "b", "c")
LINE RANGE
Some commands take a range as their argument. To tell Vim that you are

defining such a command, you need to specify a -range option. The values for
this option are as follows:

-range Range is allowed; default is the current line.

-range=% Range is allowed; default is the whole file.

-range={count} Range is allowed; the last number in it is used as a
single number whose default is {count}.

When a range is specified, the keywords <linel> and <line2> get the values of
the first and last line in the range. For example, the following command
defines the SavelIt command, which writes out the specified range to the file
"save file": >

:command -range=% SavelIt :<linel>,<line2>write! save file

OTHER OPTIONS

Some of the other options and keywords are as follows:

—-count={number} The command can take a count whose default is
{number}. The resulting count can be used
through the <count> keyword.

-bang You can use a !. If present, using <bang> will
result in a !.

-register You can specify a register. (The default is

the unnamed register.)
The register specification is available as
<reg> (a.k.a. <registers).

-complete={type} Type of command-line completion used. See
| : command-completion| for the list of possible
values.

-bar The command can be followed by | and another
command, or " and a comment.

-buffer The command is only available for the current
buffer.

Finally, you have the <lt> keyword. It stands for the character <. Use this
to escape the special meaning of the <> items mentioned.

REDEFINING AND DELETING

To redefine the same command use the ! argument: >

:command -nargs=+ Say :echo "<args>"
:command! -nargs=+ Say :echo <g-args>

To delete a user command use ":delcommand". It takes a single argument, which
is the name of the command. Example: >

:delcommand SavelIt

To delete all the user commands: >
:comclear

Careful, this can't be undone!

More details about all this in the reference manual: |user-commands]| .

.\usr_doc.txt Page 186

An autocommand is a command that is executed automatically in response to some
event, such as a file being read or written or a buffer change. Through the
use of autocommands you can train Vim to edit compressed files, for example.
That is used in the |gzip| plugin.

Autocommands are very powerful. Use them with care and they will help you
avoid typing many commands. Use them carelessly and they will cause a lot of
trouble.

Suppose you want to replace a datestamp on the end of a file every time it is
written. First you define a function: >

:function DateInsert ()
Sdelete
read !date
:endfunction

You want this function to be called each time, just before a buffer is written
to a file. This will make that happen: >

:autocmd BufWritePre * call Datelnsert ()

"BufWritePre" is the event for which this autocommand is triggered: Just
before (pre) writing a buffer to a file. The "*" is a pattern to match with
the file name. 1In this case it matches all files.

With this command enabled, when you do a ":write", Vim checks for any
matching BufWritePre autocommands and executes them, and then it
performs the ":write".

The general form of the :autocmd command is as follows: >

:autocmd [group] {events} {file pattern} [nested] {command}

The [group] name is optional. It is used in managing and calling the commands
(more on this later). The {events} parameter is a list of events (comma
separated) that trigger the command.

{file pattern} is a filename, usually with wildcards. For example, using
"* txt" makes the autocommand be used for all files whose name end in ".txt".
The optional [nested] flag allows for nesting of autocommands (see below), and
finally, {command} is the command to be executed.

EVENTS
One of the most useful events is BufReadPost. It is triggered after a new
file is being edited. It is commonly used to set option values. For example,

you know that "*.gsm" files are GNU assembly language. To get the syntax file
right, define this autocommand: >

:autocmd BufReadPost *.gsm set filetype=asm
If Vim is able to detect the type of file, it will set the 'filetype' option
for you. This triggers the Filetype event. Use this to do something when a
certain type of file is edited. For example, to load a list of abbreviations
for text files: >

:autocmd Filetype text source ~/.vim/abbrevs.vim
When starting to edit a new file, you could make Vim insert a skeleton: >

:autocmd BufNewFile *.[ch] Oread ~/skeletons/skel.c

See |autocmd-events| for a complete list of events.

PATTERNS

The {file pattern} argument can actually be a comma-separated list of file
patterns. For example: "*.c,*.h" matches files ending in ".c" and ".h".

The usual file wildcards can be used. Here is a summary of the most often
used ones:

.\usr_doc.txt Page
* Match any character any number of times
? Match any character once
[abc] Match the character a, b or c
. Matches a dot
a{b,c} Matches "ab" and "ac"

When the pattern includes a slash (/) Vim will compare directory names.
Without the slash only the last part of a file name is used. For example,
"x txt" matches "/home/biep/readme.txt". The pattern "/home/biep/*" would
also match it. But "home/foo/*.txt" wouldn't.

When including a slash, Vim matches the pattern against both the full path
of the file ("/home/biep/readme.txt") and the relative path (e.g.,
"biep/readme.txt") .

Note:

When working on a system that uses a backslash as file separator, such
as MS-Windows, you still use forward slashes in autocommands. This
makes it easier to write the pattern, since a backslash has a special
meaning. It also makes the autocommands portable.

DELETING

To delete an autocommand, use the same command as what it was defined with,
but leave out the {command} at the end and use a !. Example: >

:autocmd! FileWritePre *
This will delete all autocommands for the "FileWritePre" event that use the
"*" pattern.
LISTING
To list all the currently defined autocommands, use this: >

:autocmd
The list can be very long, especially when filetype detection is used. To
list only part of the commands, specify the group, event and/or pattern. For
example, to list all BufNewFile autocommands: >

:autocmd BufNewFile
To list all autocommands for the pattern "*.c": >

rautocmd * *.c

Using "*" for the event will list all the events. To list all autocommands
for the cprograms group: >

:autocmd cprograms

GROUPS

The {group} item, used when defining an autocommand, groups related autocommands
together. This can be used to delete all the autocommands in a certain group,
for example.

When defining several autocommands for a certain group, use the ":augroup"
command. For example, let's define autocommands for C programs: >

:augroup cprograms
autocmd BufReadPost *.c,*.h :set sw=4 sts=4
autocmd BufReadPost *.cpp :set sw=3 sts=3
raugroup END

This will do the same as: >

:autocmd cprograms BufReadPost *.c,*.h :set sw=4 sts=4
:autocmd cprograms BufReadPost *.cpp :set sw=3 sts=3

187

.\usr_doc.txt Page 188

To delete all autocommands in the "cprograms" group: >

:autocmd! cprograms

NESTING

Generally, commands executed as the result of an autocommand event will not
trigger any new events. If you read a file in response to a FileChangedShell
event, it will not trigger the autocommands that would set the syntax, for
example. To make the events triggered, add the "nested" argument: >

:autocmd FileChangedShell * nested edit

EXECUTING AUTOCOMMANDS

It is possible to trigger an autocommand by pretending an event has occurred.
This is useful to have one autocommand trigger another one. Example: >

:autocmd BufReadPost *.new execute "doautocmd BufReadPost " . expand("<afil
e>:r")

This defines an autocommand that is triggered when a new file has been edited.
The file name must end in ".new". The ":execute" command uses expression
evaluation to form a new command and execute it. When editing the file
"tryout.c.new" the executed command will be: >

:doautocmd BufReadPost tryout.c

The expand() function takesg the "<afile>" argument, which stands for the file
name the autocommand was executed for, and takes the root of the file name
with ":r".

":doautocmd" executes on the current buffer. The ":doautoall" command works
like "doautocmd" except it executes on all the buffers.

USING NORMAL MODE COMMANDS

The commands executed by an autocommand are Command-line commands. If you
want to use a Normal mode command, the ":normal" command can be used.
Example: >

:autocmd BufReadPost *.log normal G

This will make the cursor jump to the last line of *.log files when you start
to edit it.

Using the ":normal" command is a bit tricky. First of all, make sure its
argument is a complete command, including all the arguments. When you use "i™"
to go to Insert mode, there must also be a <Esc> to leave Insert mode again.
If you use a "/" to start a search pattern, there must be a <CR> to execute
it.

The ":normal" command uses all the text after it as commands. Thus there
can be no | and another command following. To work around this, put the
":normal" command inside an ":execute" command. This also makes it possible
to pass unprintable characters in a convenient way. Example: >

:autocmd BufReadPost *.chg execute "normal ONew entry:\<Esc>" |
\ 1lread !date

This also shows the use of a backslash to break a long command into more
lines. This can be used in Vim scripts (not at the command line).

When you want the autocommand do something complicated, which involves jumping

around in the file and then returning to the original position, you may want
to restore the view on the file. See |restore-position| for an example.

IGNORING EVENTS

.\usr_doc.txt

At timeg, you will not want to trigger an autocommand. The 'eventignore'
option contains a list of events that will be totally ignored. For example,
the following causes events for entering and leaving a window to be ignored:
:set eventignore=WinEnter,WinLeave
To ignore all events, use the following command: >
:set eventignore=all

To set it back to the normal behavior, make 'eventignore' empty: >

:set eventignore=

Next chapter: |usr 41.txt| Write a Vim script

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

Page

>

189

.\usr_doc.txt Page 190

usr 41.txt For Vim version 7.4. Last change: 2014 Aug 16
VIM USER MANUAL - by Bram Moolenaar
Write a Vim script

The Vim script language is used for the startup vimrc file, syntax files, and
many other things. This chapter explains the items that can be used in a Vim

script. There are a lot of them, thus this is a long chapter.
41.1 Introduction

41.2 Variables

41.3 Expressions

41.4 Conditionals

41.5 Executing an expression

41.6 Using functions

41.7 Defining a function

41.8 Lists and Dictionaries

41.9 Exceptions

41.10| Various remarks

41.11| Writing a plugin

41.12| Writing a filetype plugin

41.13| Writing a compiler plugin

41.14| Writing a plugin that loads quickly
41.15| Writing library scripts

41.16| Distributing Vim scripts

Next chapter: |usr 42.txt Add new menus
Previous chapter: |usr 40.txt Make new commands
Table of contents: |usr toc.txt|

41.1 Introduction *vim-script-intro* *script*

Your first experience with Vim scripts is the vimrc file. Vim reads it when
it starts up and executes the commands. You can set options to values you
prefer. And you can use any colon command in it (commands that start with a
".". these are sometimes referred to as Ex commands or command-line commands) .

Syntax files are also Vim scripts. As are files that set options for a
specific file type. A complicated macro can be defined by a separate Vim
script file. You can think of other uses yourself.

Let's start with a simple example: >

clet 1 = 1

:while 1 < 5
echo "count is" i
let i += 1

:endwhile
<
Note:
The ":" characters are not really needed here. You only need to use

them when you type a command. In a Vim script file they can be left
out. We will use them here anyway to make clear these are colon
commands and make them stand out from Normal mode commands.

Note:

You can try out the examples by yanking the lines from the text here
and executing them with :@"

The output of the example code is:

count is 1 ~
count is 2 ~
count is 3 ~
count is 4 ~
In the first line the ":let" command assigns a value to a variable. The

generic form is: >

.\usr_doc.txt Page 191
:let {variable} = {expression}
In this case the variable name is "i" and the expression is a simple value,
the number one.
The ":while" command starts a loop. The generic form is: >
:while {condition}
{statements}

:endwhile

The statements until the matching ":endwhile" are executed for as long as the

condition is true. The condition used here is the expression "i < 5". This
is true when the variable i is smaller than five.
Note:

If you happen to write a while loop that keeps on running, you can
interrupt it by pressing CTRL-C (CTRL-Break on MS-Windows) .

The ":echo" command prints its arguments. In this case the string "count is"
and the value of the variable i. Since i is one, this will print:

count is 1 ~
Then there is the ":let i1 += 1" command. This does the same thing as
":let 1 = 1 + 1". This adds one to the variable i and assigns the new value

to the same variable.

The example was given to explain the commands, but would you really want to
make such a loop it can be written much more compact: >

:for 1 in range(1l, 4)
echo "count is" i
:endfor
We won't explain how |:for| and |range()| work until later. Follow the links
if you are impatient.

THREE KINDS OF NUMBERS

Numbers can be decimal, hexadecimal or octal. A hexadecimal number starts

with "0x" or "O0X". For example "0x1lf" is decimal 31. An octal number starts
with a zero. "017" is decimal 15. Careful: don't put a zero before a decimal
number, it will be interpreted as an octal number!

The ":echo" command always prints decimal numbers. Example: >

:echo 0x7f 036
< 127 30 ~

A number is made negative with a minus sign. This also works for hexadecimal
and octal numbers. A minus sign is also used for subtraction. Compare this
with the previous example: >

:echo 0x7f -036
< 97 ~

White space in an expression is ignored. However, it's recommended to use it
for separating items, to make the expression easier to read. For example, to
avoid the confusion with a negative number above, put a space between the
minus sign and the following number: >

:echo 0x7f - 036

A variable name consists of ASCII letters, digits and the underscore. It
cannot start with a digit. Valid variable names are:

counter
_aap3
very long variable name with underscores

.\usr_doc.txt Page

FuncLength
LENGTH

Invalid names are "foo+bar" and "6var".
These variables are global. To see a list of currently defined variables
use this command: >

:let

You can use global variables everywhere. This also means that when the
variable "count" is used in one script file, it might also be used in another
file. This leads to confusion at least, and real problems at worst. To avoid
this, you can use a variable local to a script file by prepending "s:". For
example, one script contains this code: >

:let s:count = 1
:while s:count < 5
source other.vim
let s:count += 1
:endwhile

Since "s:count" is local to this script, you can be sure that sourcing the
"other.vim" gcript will not change this variable. If "other.vim" also uses an
"s:count" variable, it will be a different copy, local to that script. More
about script-local variables here: |script-variable].

There are more kinds of variables, see |internal-variables|. The most often
used ones are:

b:name variable local to a buffer
w:name variable local to a window
g:name global variable (also in a function)
v:name variable predefined by Vim

DELETING VARIABLES

Variables take up memory and show up in the output of the ":let" command. To
delete a variable use the ":unlet" command. Example: >

:unlet s:count
This deletes the script-local variable "s:count" to free up the memory it
uses. If you are not sure if the variable exists, and don't want an error
message when it doesn't, append !: >

:unlet! s:count
When a script finishes, the local variables used there will not be
automatically freed. The next time the script executes, it can still use the

old value. Example: >

:if lexists("s:call count")

let s:call count = 0
:endif
:let s:call _count = s:call count + 1

:echo "called" s:call count "times"

The "exists ()" function checks if a variable has already been defined. 1Its
argument is the name of the wvariable you want to check. Not the wvariable
itself! If you would do this: >

:1f lexists(s:call count)

Then the value of s:call _count will be used as the name of the variable that
exists () checks. That's not what you want.

The exclamation mark ! negates a value. When the value was true, it
becomes false. When it was false, it becomes true. You can read it as "not".
Thus "if !exists ()" can be read as "if not exists()".

What Vim calls true is anything that is not zero. Zero is false.

Note:

192

.\usr_doc.txt Page 193

Vim automatically converts a string to a number when it is looking for
a number. When using a string that doesn't start with a digit the
resulting number is zero. Thus look out for this: >
:1f "true"
< The "true" will be interpreted as a zero, thus as false!

STRING VARIABLES AND CONSTANTS
So far only numbers were used for the variable value. Strings can be used as

well. Numbers and strings are the basic types of variables that Vim supports.
The type is dynamic, it is set each time when assigning a value to the

variable with ":let". More about types in |41.8].
To assign a string value to a variable, you need to use a string constant.
There are two types of these. First the string in double quotes: >
:let name = "peter"
:echo name
< peter ~

If you want to include a double quote inside the string, put a backslash in
front of it: >

:let name = "\"peter\""
:echo name
< "peter" ~

To avoid the need for a backslash, you can use a string in single quotes: >

:let name = '"peter"'
:echo name
< "peter" ~

Inside a single-quote string all the characters are as they are. Only the
single quote itself is special: you need to use two to get one. A backslash
is taken literally, thus you can't use it to change the meaning of the
character after it.

In double-quote strings it is possible to use special characters. Here are
a few useful ones:

\t <Tab>
\n <NL>, line break
\r <CR>, <Enter>
\e <Esc>
\b <BS>, backspace
\ n n
AN\ \, backslash
\<Esc> <Esc>
\<C-W> CTRL-W
The last two are just examples. The "\<name>" form can be used to include

the special key "name".
See |expr-quote| for the full list of special items in a string.

Vim has a rich, yet simple way to handle expressions. You can read the
definition here: |expression-syntax|. Here we will show the most common
items.

The numbers, strings and variables mentioned above are expressions by
themselves. Thus everywhere an expression is expected, you can use a number,
string or variable. Other basic items in an expression are:

SNAME environment variable
&name option
@r register

Examples: >

:echo "The value of 'tabstop' is" &ts

.\usr_doc.txt Page 194

:echo "Your home directory is" S$SHOME
:1if @a > 5

The &name form can be used to save an option value, set it to a new value,
do something and restore the old value. Example: >

:let save ic = &ic
:set noic

:/The Start/, Sdelete
:let &ic = save_ic

This makes sure the "The Start" pattern is used with the 'ignorecase' option
off. Still, it keeps the value that the user had set. (Another way to do
this would be to add "\C" to the pattern, see |/\C|.)

MATHEMATICS

It becomes more interesting if we combine these basic items. Let's start with
mathematics on numbers:

a+b add
a->b subtract
a * b multiply
a/ b divide
as%$hb modulo

The usual precedence is used. Example: >

:echo 10 + 5 * 2
< 20 ~

Grouping is done with parentheses. No surprises here. Example: >

:echo (10 + 5) * 2

< 30 ~
Strings can be concatenated with ".". Example: >

:echo "foo" . "bar"
< foobar ~
When the ":echo" command gets multiple arguments, it separates them with a
space. In the example the argument is a single expression, thus no space is
inserted.

Borrowed from the C language is the conditional expression:
a?b:c
If "a" evaluates to true "b" is used, otherwise "c" is used. Example: >

:let 1 = 4
:echo 1 > 5 ? "i is big" : "i is small"
< i is small ~

The three parts of the constructs are always evaluated first, thus you could
see it work as:

41 .4 Conditionals

The ":if" commands executes the following statements, until the matching
":endif", only when a condition is met. The generic form is:

:if {condition
{statements
:endif

.\usr_doc.txt Page 195

Only when the expression {condition} evaluates to true (non-zero) will the
{statements} be executed. These must still be valid commands. If they
contain garbage, Vim won't be able to find the ":endif".

You can also use ":else". The generic form for this is:

:1f {condition}
{statements}
:else
{statements}
:endif

The second {statements} is only executed if the first one isn't.
Finally, there is ":elseif":

:1f {condition}
{statements}
:elseif {condition}
{statements}

:endif

This works just like using ":else" and then "if", but without the need for an
extra ":endif".

A useful example for your vimrc file is checking the 'term' option and
doing something depending upon its value: >

:if &term == "xterm"
: " Do stuff for xterm
:elseif &term == "vt1l00"

" Do stuff for a vtl00 terminal
:else

" Do something for other terminals
:endif

LOGIC OPERATIONS

We already used some of them in the examples. These are the most often used
ones:

equal to

not equal to

greater than

greater than or equal to
less than

less than or equal to

Vv
1]

[CRNURR RN ORI
\%
oOoooOoUT

N A

The result is one if the condition is met and zero otherwise. An example: >

:1f v:version >= 700

echo "congratulationsg"
:else

egho "you are using an old version, upgrade!"
:endif

Here "v:version" is a variable defined by Vim, which has the value of the Vim
version. 600 is for version 6.0. Version 6.1 has the value 601. This is
very useful to write a script that works with multiple versions of Vim.
|v:version|

The logic operators work both for numbers and strings. When comparing two
strings, the mathematical difference is used. This compares byte values,
which may not be right for some languages.

When comparing a string with a number, the string is first converted to a
number. This is a bit tricky, because when a string doesn't look like a
number, the number zero is used. Example: >

:if 0 == "one"
echo "yes"
:endif

This will echo "yes", because "one" doesn't look like a number, thus it is

.\usr_doc.txt Page 196
converted to the number zero.
For strings there are two more items:

~ b matches with

a
a !~Db does not match with

The left item "a" is used as a string. The right item "b" is used as a
pattern, like what's used for searching. Example: >

:if str =~ " "
echo "str contains a space"
:endif
:if str 1~ '"\.$!
echo "str does not end in a full stop"
:endif

Notice the use of a single-quote string for the pattern. This is useful,
because backslashes would need to be doubled in a double-quote string and
patterns tend to contain many backslashes.

The 'ignorecase' option is used when comparing strings. When you don't want

that, append "#" to match case and "?" to ignore case. Thus "==?" compares
two strings to be equal while ignoring case. And "!~#" checks if a pattern
doesn't match, also checking the case of letters. For the full table see
|expr-==|.

MORE LOOPING

The ":while" command was already mentioned. Two more statements can be used

in between the ":while" and the ":endwhile":
:continue Jump back to the start of the while loop; the
loop continues.
:break Jump forward to the ":endwhile"; the loop is
discontinued.

Example: >

:while counter < 40
call do_something()
if skip flag

continue
endif
if finished flag
break
endif
: sleep 50m
:endwhile

The ":sleep" command makes Vim take a nap. The "50m" specifies fifty
milliseconds. Another example is ":sleep 4", which sleeps for four seconds.

Even more looping can be done with the ":for" command, see below in [41.8].

So far the commands in the script were executed by Vim directly. The
":execute" command allows executing the result of an expression. This is a
very powerful way to build commands and execute them.

An example is to jump to a tag, which is contained in a variable: >

:execute "tag " . tag_name
The "." is used to concatenate the string "tag " with the value of variable
"tag_name". Suppose "tag name" has the value "get cmd", then the command that

will be executed is: >

:tag get_cmd

.\usr_doc.txt Page 197

The ":execute" command can only execute colon commands. The ":normal" command
executes Normal mode commands. However, its argument is not an expression but
the literal command characters. Example: >

:normal gg=G
This jumps to the first line and formats all lines with the "=" operator.
To make ":normal" work with an expression, combine ":execute" with it.
Example: >
:execute "normal " . normal commands
The variable "normal commands" must contain the Normal mode commands.
Make sure that the argument for ":normal" is a complete command. Otherwise
Vim will run into the end of the argument and abort the command. For example,

if you start Insert mode, you must leave Insert mode as well. This works: >

:execute "normal Inew text \<Esc>"

This inserts "new text " in the current line. Notice the use of the special
key "\<Esc>". This avoids having to enter a real <Esc> character in your
script.

If you don't want to execute a string but evaluate it to get its expression

value, you can use the eval() function: >
:let optname = "path"
:let optval = eval('&' . optname)
A "&" character is prepended to "path", thus the argument to eval() is
"gpath". The result will then be the value of the 'path' option.
The same thing can be done with: >
:exe 'let optval = &' . optname

Vim defines many functions and provides a large amount of functionality that
way. A few examples will be given in this section. You can find the whole
list here: |functions]|.

A function is called with the ":call" command. The parameters are passed in
between parentheses separated by commas. Example: >

:call search("Date: ", "W")
This calls the search() function, with arguments "Date: " and "W". The
search () function uses its first argument as a search pattern and the second
one as flags. The "W" flag means the search doesn't wrap around the end of
the file.

A function can be called in an expression. Example: >

:let line = getline(".")

:let repl = substitute(line, '\a', "*", "g")
:call setline(".", repl)
The getline() function obtains a line from the current buffer. Its argument
is a specification of the line number. In this case "." is used, which means
the line where the cursor is.
The substitute() function does something similar to the ":substitute"

command. The first argument is the string on which to perform the
substitution. The second argument is the pattern, the third the replacement
string. Finally, the last arguments are the flags.

The setline() function sets the line, specified by the first argument, to a
new string, the second argument. In this example the line under the cursor is
replaced with the result of the substitute(). Thus the effect of the three

statements is equal to: >

:substitute/\a/*/g

.\usr_doc.txt

Page 198

Using the functions becomes more interesting when you do more work before and

after the substitute() call.

FUNCTIONS

There are many functions.

function-list

We will mention them here, grouped by what they are

used for. You can find an alphabetical list here: |functions|. Use CTRL-] on
the function name to jump to detailed help on it.

String manipulation:
nr2char ()
char2nr ()
str2nr ()
str2float ()
printf ()
escape ()
shellescape ()
fnameescape ()
tr ()
strtrans ()
tolower ()
toupper ()
match ()
matchend ()
matchstr ()
matchlist ()
stridx ()
strridx ()
strlen()
strchars ()
strwidth ()
strdisplaywidth ()
substitute ()
submatch ()
strpart ()
expand ()
iconv ()
byteidx ()
byteidxcomp ()
repeat ()
eval ()

List manipulation:
get ()
len()
empty ()
insert ()
add ()
extend ()
remove ()
copy ()
deepcopy ()
filter ()
map ()
sort ()
reverse ()
uniqg()
split ()
join()
range ()
string/()
call()
index ()
max ()
min ()
count ()
repeat ()

Dictionary manipulation:

string-functions
get a character by its ASCII value
get ASCII value of a character
convert a string to a Number
convert a string to a Float
format a string according to % items
escape characters in a string with a '\'
escape a string for use with a shell command
escape a file name for use with a Vim command
translate characters from one set to another
translate a string to make it printable
turn a string to lowercase
turn a string to uppercase
position where a pattern matches in a string
position where a pattern match ends in a string
match of a pattern in a string
like matchstr() and also return submatches
first index of a short string in a long string
last index of a short string in a long string
length of a string in bytes
length of a string in characters
size of string when displayed
size of string when displayed, deals with tabs
substitute a pattern match with a string
get a specific match in ":s" and substitute ()
get part of a string
expand special keywords
convert text from one encoding to another
byte index of a character in a string
like byteidx () but count composing characters
repeat a string multiple times
evaluate a string expression

list-functions
get an item without error for wrong index
number of items in a List
check if List is empty
insert an item somewhere in a List
append an item to a List
append a List to a List
remove one or more items from a List
make a shallow copy of a List
make a full copy of a List
remove selected items from a List
change each List item
sort a List
reverse the order of a List
remove copies of repeated adjacent items
split a String into a List
join List items into a String
return a List with a sequence of numbers
String representation of a List
call a function with List as arguments
index of a value in a List
maximum value in a List
minimum value in a List
count number of times a value appears in a List
repeat a List multiple times

dict-functions

.\usr_doc.txt

get ()
len()

has key ()
empty ()
remove ()
extend ()
filter ()
map ()
keys ()
values ()
items ()
copy ()
deepcopy ()
string()
max ()
min ()
count ()

Floating point computation:

float2nr ()
abs ()
round ()
ceil ()
floor ()
trunc ()
fmod ()
exp ()
log()
loglo0 ()
pow ()
sqrt ()

sin ()
cos ()
tan ()
asin

Other computation:

and ()
invert ()
or ()
xor ()
sha256 ()

Variables:

type ()
islocked()
function ()
getbufvar ()
setbufvar ()
getwinvar ()
gettabvar ()
gettabwinvar ()
setwinvar ()
settabvar ()
settabwinvar ()
garbagecollect ()

Cursor and mark position:

col ()
virtcol ()
line ()
wincol ()
winline ()
cursor ()
screencol ()

Page 199

get an entry without an error for a wrong key
number of entries in a Dictionary

check whether a key appears in a Dictionary
check if Dictionary is empty

remove an entry from a Dictionary

add entries from one Dictionary to another
remove selected entries from a Dictionary
change each Dictionary entry

get List of Dictionary keys

get List of Dictionary values

get List of Dictionary key-value pairs

make a shallow copy of a Dictionary

make a full copy of a Dictionary

String representation of a Dictionary
maximum value in a Dictionary

minimum value in a Dictionary

count number of times a value appears

float-functions¥
convert Float to Number
absolute value (also works for Number)
round off
round up
round down
remove value after decimal point
remainder of division
exponential
natural logarithm (logarithm to base e)
logarithm to base 10
value of x to the exponent y
square root
sine
cosine
tangent
arc sine
arc cosine
arc tangent
arc tangent
hyperbolic sine
hyperbolic cosine
hyperbolic tangent

bitwise-function¥
bitwise AND
bitwise invert
bitwise OR
bitwise XOR
SHA-256 hash

var-functions
type of a variable
check if a wvariable is locked

get a Funcref for a function name

get a variable value from a specific buffer
set a variable in a specific buffer

get a variable from specific window

get a variable from specific tab page

get a variable from specific window & tab page
set a variable in a specific window

set a variable in a specific tab page

set a variable in a specific window & tab page
possibly free memory

cursor-functions *mark-functions*
column number of the cursor or a mark
screen column of the cursor or a mark
line number of the cursor or mark
window column number of the cursor
window line number of the cursor
position the cursor at a line/column
get screen column of the cursor

.\usr_doc.txt

Working

screenrow ()
getcurpos ()
getpos ()
setpos ()
byte2line ()
line2byte ()
diff filler()
screenattr ()
(

)

screenchar

with text in the current buffer:

getline ()
setline ()
append ()
indent ()
cindent ()
lispindent ()
nextnonblank ()
prevnonblank ()
search ()
searchpos ()
searchpair ()

searchpairpos ()

searchdecl ()

Page 200

get screen row of the cursor

get position of the cursor

get position of cursor, mark, etc.

set position of cursor, mark, etc.

get line number at a specific byte count
byte count at a specific line

get the number of filler lines above a line
get attribute at a screen line/row

get character code at a screen line/row

text-functions
get a line or list of lines from the buffer
replace a line in the buffer

append line or list of lines in the buffer
indent of a specific line

indent according to C indenting

indent according to Lisp indenting

find next non-blank line

find previous non-blank line

find a match for a pattern

find a match for a pattern

find the other end of a start/skip/end
find the other end of a start/skip/end
search for the declaration of a name

gsystem-functions *file-functiongs*

System functions and manipulation of files:

glob ()
globpath ()
findfile ()
finddir ()
resolve ()
fnamemodify ()
pathshorten ()
simplify ()
executable ()
exepath ()
filereadable ()
filewritable ()
getfperm()
getftype ()
isdirectory ()
getfsize()
getcwd ()
haslocaldir ()
tempname ()
mkdir ()
delete()
rename ()
system ()
systemlist ()
hostname ()
readfile ()
writefile ()

Date and Time:

Buffers,

getftime ()
localtime ()
strftime ()
reltime ()
reltimestr ()

expand wildcards

expand wildcards in a number of directories
find a file in a list of directories

find a directory in a list of directories
find out where a shortcut points to

modify a file name

shorten directory names in a path

simplify a path without changing its meaning
check if an executable program exists

full path of an executable program

check if a file can be read

check 1f a file can be written to

get the permissions of a file

get the kind of a file

check if a directory exists

get the size of a file

get the current working directory

check if current window used |:lcd|

get the name of a temporary file

create a new directory

delete a file

rename a file

get the result of a shell command as a string
get the result of a shell command as a list
name of the system

read a file into a List of lines

write a List of lines into a file

date-functions *time-functions#*
get last modification time of a file
get current time in seconds
convert time to a string
get the current or elapsed time accurately
convert reltime() result to a string

buffer-functions *window-functions* *arg-functions*

windows and the argument list:

argc ()
argidx ()
arglistid()
argv ()
bufexists ()
buflisted()
bufloaded ()

number of entries in the argument list
current position in the argument list
get i1d of the argument list

get one entry from the argument list
check if a buffer exists

check i1if a buffer exists and is listed
check if a buffer exists and is loaded

.\usr_doc.txt

bufname ()
bufnr ()
tabpagebuflist ()
tabpagenr ()
tabpagewinnr ()
winnr ()
bufwinnr ()
winbufnr ()
getbufline ()

Command line:
getcmdline ()
getcmdpos ()
setcmdpos ()
getcmdtype ()
getcmdwintype ()

Quickfix and location lists:

getgflist ()
setgflist ()
getloclist ()
setloclist ()

Insert mode completion:
complete ()
complete add()
complete check()
pumvisible ()

Folding:
foldclosed()
foldclosedend ()
foldlevel ()
foldtext ()
foldtextresult ()

Syntax and highlighting:
clearmatches ()

getmatches ()

hlexists ()
hlID()
synID ()
synIDattr ()
synIDtrans ()
synstack ()
synconcealed ()
diff hlID()
matchadd ()
matchaddpos ()
matcharg ()
matchdelete ()

setmatches ()

Spelling:
spellbadword ()
spellsuggest ()
soundfold ()

History:
histadd()
histdel ()
histget ()
histnr()

Interactive:
browse ()
browsedir ()

Page 201

get the name of a specific buffer

get the buffer number of a specific buffer
return List of buffers in a tab page

get the number of a tab page

like winnr () for a specified tab page

get the window number for the current window
get the window number of a specific buffer
get the buffer number of a specific window
get a list of lines from the specified buffer

command-line-functions¥
get the current command line
get position of the cursor in the command line
set position of the cursor in the command line
return the current command-line type
return the current command-line window type

quickfix-functions
list of quickfix errors
modify a quickfix list
list of location list items
modify a location list

completion-functions
set found matches
add to found matches
check if completion should be aborted
check i1if the popup menu is displayed

folding-functions
check for a closed fold at a specific line
like foldclosed() but return the last line
check for the fold level at a specific line
generate the line displayed for a closed fold
get the text displayed for a closed fold

syntax-functions *highlighting-functions#*

clear all matches defined by |matchadd()| and
the |:match| commands
get all matches defined by |matchadd()| and

the |:match| commands

check if a highlight group exists

get ID of a highlight group

get syntax ID at a specific position

get a specific attribute of a syntax ID

get translated syntax ID

get list of syntax IDs at a specific position
get info about concealing

get highlight ID for diff mode at a position
define a pattern to highlight (a "match")
define a list of positions to highlight

get info about |:match| arguments

delete a match defined by |matchadd()| or a
| :match| command

restore a list of matches saved by

| getmatches () |

spell-functions
locate badly spelled word at or after cursor
return suggested spelling corrections
return the sound-a-like equivalent of a word

history-functions
add an item to a history
delete an item from a history
get an item from a history
get highest index of a history list

interactive-functions
put up a file requester
put up a directory requester

.\usr_doc.txt

GUTI:

confirm()
getchar ()
getcharmod ()
feedkeys ()
input ()
inputlist ()
inputsecret ()
inputdialog()
inputsave ()
inputrestore ()

getfontname ()
getwinposx ()
getwinposy ()

Vim server:

serverlist ()
remote_ send()
remote expr ()
server2client ()
remote peek()
remote read ()
foreground ()

remote foreground()

Window size and position:

winheight ()
winwidth ()
winrestcmd ()
winsaveview ()
winrestview ()

Mappings:

Various:

hasmapto ()
mapcheck ()
maparg ()
wildmenumode ()

mode ()

visualmode ()
exists()

has ()

changenr ()

cscope connection ()
did_filetype ()
eventhandler ()
getpid()

libcall ()
libcallnr ()

undofile ()
undotree ()

getreg()
getregtype ()
setreg()

shiftwidth()

taglist ()
tagfiles()

luaeval ()
mzeval ()
py3eval ()
pyeval ()

Page
let the user make a choice
get a character from the user
get modifiers for the last typed character
put characters in the typeahead queue
get a line from the user

let the user pick an entry from a list

get a line from the user without showing it
get a line from the user in a dialog

save and clear typeahead

restore typeahead

gui-functions
get name of current font being used
X position of the GUI Vim window
Y position of the GUI Vim window

server-functions
return the list of server names
send command characters to a Vim server
evaluate an expression in a Vim server
send a reply to a client of a Vim server
check i1if there is a reply from a Vim server
read a reply from a Vim server
move the Vim window to the foreground
move the Vim server window to the foreground

window-size-functions
get height of a specific window
get width of a specific window
return command to restore window sizes
get view of current window
restore saved view of current window

mapping-functions
check if a mapping exists
check if a matching mapping exists
get rhs of a mapping
check i1if the wildmode is active

various-functions¥
get current editing mode
last visual mode used
check if a wvariable, function, etc. exists
check if a feature is supported in Vim
return number of most recent change
check i1if a cscope connection exists
check if a FileType autocommand was used
check if invoked by an event handler
get process ID of Vim

call a function in an external library
idem, returning a number

get the name of the undo file
return the state of the undo tree

get contents of a register

get type of a register

set contents and type of a register
effective value of 'shiftwidth'

get list of matching tags
get a list of tags files

evaluate
evaluate
evaluate
evaluate

Lua expression

|MzScheme | expression

Python expression (|+python3|)
Python expression (|+python]|)

202

.\usr_doc.txt Page 203
41.7 Defining a function

Vim enables you to define your own functions. The basic function declaration
begins as follows: >

:function {name} ({vari}, {var2}, ...)
{body}
:endfunction
<
Note:
Function nameg must begin with a capital letter.
Let's define a short function to return the smaller of two numbers. It starts

with this line: >
:function Min (numl, num2)

This tells Vim that the function is named "Min" and it takes two arguments:
"numl" and "num2".
The first thing you need to do is to check to see which number is smaller:
>
if a:numl < a:num2

The special prefix "a:" tells Vim that the variable is a function argument.
Let's assign the variable "smaller" the value of the smallest number: >

if a:numl < a:num2

let smaller = a:numl
else

let smaller = a:num2
endif

The variable "smaller" is a local variable. Variables used inside a function

are local unless prefixed by something like "g:", "a:", or "s:".
Note:
To access a global variable from inside a function you must prepend
"g:" to it. Thus "g:today" inside a function is used for the global
variable "today", and "today" is another wvariable, local to the
function.

You now use the ":return" statement to return the smallest number to the user.

Finally, you end the function: >

return smaller
:endfunction

The complete function definition is as follows: >

:function Min (numl, num2)
if a:numl < a:num2
let smaller = a:numl
else
let smaller = a:num2
endif
return smaller
:endfunction

For people who like short functions, this does the same thing: >

:function Min (numl, num2)
if a:numl < a:num2
return a:numl
endif
return a:num2
:endfunction

A user defined function is called in exactly the same way as a built-in
function. Only the name is different. The Min function can be used like
this: >

.\usr_doc.txt Page 204
:echo Min (5, 8)

Only now will the function be executed and the lines be interpreted by Vim.
If there are mistakes, like using an undefined variable or function, you will

now get an error message. When defining the function these errors are not
detected.
When a function reaches ":endfunction" or ":return" is used without an

argument, the function returns zero.

To redefine a function that already exists, use the ! for the ":function"
command: >

:function! Min(numl, num2, num3)

USING A RANGE

The ":call" command can be given a line range. This can have one of two
meanings. When a function has been defined with the "range" keyword, it will
take care of the line range itself.

The function will be passed the variables "a:firstline" and "a:lastline".
These will have the line numbers from the range the function was called with.
Example: >

:function Count words () range
let lnum = a:firstline
let n =0

while lnum <= a:lastline
let n = n + len(split(getline (1lnum)))
let lnum = lnum + 1
endwhile
echo "found " . n . " words"
:endfunction

You can call this function with: >
:10,30call Count words ()
It will be executed once and echo the number of words.

The other way to use a line range is by defining a function without the
"range" keyword. The function will be called once for every line in the
range, with the cursor in that line. Example: >

:function Number ()
echo "line " . line(".") . " contains: " . getline(".")
:endfunction
If you call this function with: >

:10,15call Number ()

The function will be called six times.

VARIABLE NUMBER OF ARGUMENTS

Vim enables you to define functions that have a variable number of arguments.
The following command, for instance, defines a function that must have 1
argument (start) and can have up to 20 additional arguments: >

:function Show(start, ...)

The variable "a:1" contains the first optional argument, "a:2" the second, and
so on. The variable "a:0" contains the number of extra arguments.
For example: >

:function Show(start, ...)
echohl Title
echo "start is " . a:start
echohl None

.\usr_doc.txt Page 205

let index = 1
while index <= a:0

echo " Arg " . index . " is " . a:{index}
let index = index + 1
endwhile
echo nn
:endfunction

This uses the ":echohl" command to specify the highlighting used for the

following ":echo" command. ":echohl None" stops it again. The ":echon"
command works like ":echo", but doesn't output a line break.

You can also use the a:000 variable, it is a List of all the "..." arguments.
See |a:000].

LISTING FUNCTIONS

The ":function" command lists the names and arguments of all user-defined
functions: >

:function
< function Show(start, ...) =~
function GetVimIndent () ~
function SetSyn (name) ~
To see what a function does, use its name as an argument for ":function": >

:function SetSyn

< 1 if &syntax == '' ~
2 let &syntax = a:name ~
3 endif ~
endfunction ~
DEBUGGING

The line number is useful for when you get an error message or when debugging.
See |debug-scripts| about debugging mode.

You can also set the 'verbose' option to 12 or higher to see all function
calls. Set it to 15 or higher to see every executed line.

DELETING A FUNCTION
To delete the Show() function: >

:delfunction Show

You get an error when the function doesn't exist.

FUNCTION REFERENCES

Sometimes it can be useful to have a variable point to one function or
another. You can do it with the function() function. It turns the name of a
function into a reference: >

:let result = 0 " or 1
:function! Right ()
return 'Right!'
:endfunc
:function! Wrong/()
return 'Wrong!'

:endfunc
:1f result == 1

let Afunc = function('Right')
:else

let Afunc = function('Wrong')

:endif

.\usr_doc.txt Page 206

:echo call (Afunc, [1)
< Wrong! -~

Note that the name of a variable that holds a function reference must start
with a capital. Otherwise it could be confused with the name of a builtin
function.

The way to invoke a function that a variable refers to is with the call()
function. Its first argument is the function reference, the second argument
is a List with arguments.

Function references are most useful in combination with a Dictionary, as is
explained in the next section.

So far we have used the basic types String and Number. Vim also supports two
composite types: List and Dictionary.

A List is an ordered sequence of things. The things can be any kind of value,
thus you can make a List of numbers, a List of Lists and even a List of mixed
items. To create a List with three strings: >

:let alist = ['aap', 'mies', 'noot']

The List items are enclosed in square brackets and separated by commas. To
create an empty List: >

:let alist = []
You can add items to a List with the add() function: >
:let alist = []
:call add(alist, 'foo')
:call add(alist, 'bar')
:echo alist
< ["foo', 'bar']l ~

List concatenation is done with +: >

:echo alist + ['foo', 'bar']
< ["'foo', 'bar', 'foo', 'bar']l ~

Or, if you want to extend a List directly: >

:let alist = ['one']
:call extend(alist, ['two', 'three'])
:echo alist

< ['one', 'two', 'three']l ~

Notice that using add() will have a different effect: >

:let alist = ['one']
:call add(alist, ['two', 'three'l])
:echo alist

< ['one', ['two', 'three'l]l -~

The second argument of add() is added as a single item.

FOR LOOP
One of the nice things you can do with a List is iterate over it: >

:let alist = ['one', 'two', 'three']
:for n in alist
echo n
:endfor
< one ~
two ~
three ~

.\usr_doc.txt Page 207

This will loop over each element in List "alist", assigning the value to
variable "n". The generic form of a for loop is: >

:for {varname} in {listexpression}
{commands}
:endfor

To loop a certain number of times you need a List of a specific length. The
range () function creates one for you: >

:for a in range (3)
echo a
:endfor

N R O

Notice that the first item of the List that range() produces is zero, thus the
last item is one less than the length of the list.
You can also specify the maximum value, the stride and even go backwards: >

:for a in range(8, 4, -2)

echo a
:endfor

A more useful example, looping over lines in the buffer: >

:for line in getline(1l, 20)

if line =~ "Date: "
echo matchstr(line, 'Date: \zs.*')
endif
:endfor

This looks into lines 1 to 20 (inclusive) and echoes any date found in there.

DICTIONARIES

A Dictionary stores key-value pairs. You can quickly lookup a value if you
know the key. A Dictionary is created with curly braces: >

:let uk2nl = {'one': 'een', 'two': 'twee', 'three': 'drie'}
Now you can lookup words by putting the key in square brackets: >

:echo uk2nl['two']
< twee ~

The generic form for defining a Dictionary is: >
{<key> : <value>, ...}

An empty Dictionary is one without any keys: >

{}

The possibilities with Dictionaries are numerous. There are various functions
for them as well. For example, you can obtain a list of the keys and loop
over them: >

:for key in keys (uk2nl)
echo key
:endfor
< three ~
one ~
two ~

.\usr_doc.txt Page 208

You will notice the keys are not ordered. You can sort the list to get a
specific order: >

:for key in sort (keys (uk2nl))
echo key
:endfor
< one ~
three ~
two ~

But you can never get back the order in which items are defined. For that you
need to use a List, it stores items in an ordered sequence.
DICTIONARY FUNCTIONS

The items in a Dictionary can normally be obtained with an index in square
brackets: >

:echo uk2nl['one']
< een ~

A method that does the same, but without so many punctuation characters: >

:echo uk2nl.one
< een ~

This only works for a key that is made of ASCII letters, digits and the

underscore. You can also assign a new value this way: >
:let uk2nl.four = 'vier!'
:echo uk2nl
< {'three': 'drie', 'four': 'vier', 'one': 'een', 'two': 'twee'} ~

And now for something special: you can directly define a function and store a
reference to it in the dictionary: >

:function uk2nl.translate(line) dict
return join (map (split(a:1line), 'get(self, v:val, "??2?2")'"))
:endfunction

Let's first try it out: >

:echo uk2nl.translate('three two five one')
< drie twee ??7? een ~

The first special thing you notice is the "dict" at the end of the ":function"
line. This marks the function as being used from a Dictionary. The "self"
local variable will then refer to that Dictionary.

Now let's break up the complicated return command: >

split (a:1ine)

The split() function takes a string, chops it into whitespace separated words
and returns a list with these words. Thus in the example it returns: >

:echo split('three two five one')
< ["three', 'two', 'five', 'one'] ~

This list is the first argument to the map() function. This will go through
the list, evaluating its second argument with "v:val" set to the value of each
item. This is a shortcut to using a for loop. This command: >

:let alist = map(split(a:1line), 'get(self, wv:val, "??2?2")")
Is equivalent to: >

:let alist = gplit(a:line)

:for idx in range (len(alist))

let alist[idx] = get(self, alist[idx], "???")
:endfor

.\usr_doc.txt Page 209

The get () function checks if a key is present in a Dictionary. If it is, then
the value is retrieved. If it isn't, then the default value is returned, in
the example it's '???'. This is a convenient way to handle situations where a

key may not be present and you don't want an error message.

The join() function does the opposite of split(): it joins together a list of
words, putting a space in between.
This combination of split (), map() and join() is a nice way to filter a line

of words in a very compact way.

OBJECT ORIENTED PROGRAMMING

Now that you can put both values and functions in a Dictionary, you can
actually use a Dictionary like an object.

Above we used a Dictionary for translating Dutch to English. We might want
to do the same for other languages. Let's first make an object (aka
Dictionary) that has the translate function, but no words to translate: >

:let transdict = {}
:function transdict.translate(line) dict

return join (map (split(a:1line), 'get(self.words, v:val, "?2?2?2")'"))
:endfunction

It's slightly different from the function above, using 'self.words' to lookup
word translations. But we don't have a self.words. Thus you could call this
an abstract class.

Now we can instantiate a Dutch translation object: >

:let uk2nl = copy(transdict)
:let uk2nl.words = {'one': 'een', 'two': 'twee', 'three': 'drie'}
:echo uk2nl.translate('three one')

< drie een ~

And a German translator: >

:let uk2de = copy(transdict)
:let uk2de.words = {'one': 'ein', 'two': 'zwei', 'three': 'drei'}
:echo uk2de.translate('three one')

< drei ein ~

You see that the copy() function is used to make a copy of the "transdict"
Dictionary and then the copy is changed to add the words. The original
remains the same, of course.

Now you can go one step further, and use your preferred translator: >

:if SLANG =~ "de"
let trans = uk2de
:else
let trans = uk2nl
:endif
:echo trans.translate('one two three!')
< een twee drie ~
Here "trans" refers to one of the two objects (Dictionaries). No copy is

made. More about List and Dictionary identity can be found at |list-identity]
and |dict-identity].

Now you might use a language that isn't supported. You can overrule the
translate() function to do nothing: >

:let uk2uk = copy(transdict)
:function! uk2uk.translate(line)
return a:line
:endfunction
:echo uk2uk.translate('three one wladiwostok')
< three one wladiwostok ~

.\usr_doc.txt Page 210

Notice that a ! was used to overwrite the existing function reference. Now
use "uk2uk" when no recognized language is found: >

:1f SLANG =~ "de"
let trans = uk2de

:elseif SLANG =~ "nl"
let trans = uk2nl
:else
let trans = uk2uk
:endif
:echo trans.translate('one two three')
< one two three ~

For further reading see |Lists| and |Dictionaries]|.

Let's start with an example: >

ttry
: read ~/templates/pascal.tmpl
:catch /E484:/
echo "Sorry, the Pascal template file cannot be found."
:endtry

The ":read" command will fail if the file does not exist. Instead of
generating an error message, this code catches the error and gives the user a
nice message.

For the commands in between ":try" and ":endtry" errors are turned into
exceptions. An exception is a string. In the case of an error the string
contains the error message. And every error message has a number. In this
case, the error we catch contains "E484:". This number is guaranteed to stay
the same (the text may change, e.g., it may be translated).

When the ":read" command causes another error, the pattern "E484:" will not
match in it. Thus this exception will not be caught and result in the usual
error message.

You might be tempted to do this: >

:try
read ~/templates/pascal.tmpl
:catch
echo "Sorry, the Pascal template file cannot be found."
:endtry
This means all errors are caught. But then you will not see errors that are

useful, such as "E21: Cannot make changes, 'modifiable' is off".
Another useful mechanism is the ":finally" command: >

:let tmp = tempname ()

:try
exe ".,Swrite " . tmp
exe "!filter " . tmp
.,Sdelete
: exe "Sread " . tmp
:finally
call delete (tmp)
:endtry

This filters the lines from the cursor until the end of the file through the
"filter" command, which takes a file name argument. No matter if the
filtering works, something goes wrong in between ":try" and ":finally" or the
user cancels the filtering by pressing CTRL-C, the "call delete(tmp)" is
always executed. This makes sure you don't leave the temporary file behind.

More information about exception handling can be found in the reference
manual: |exception-handling].

.\usr_doc.txt Page 211

41.10% Various remarks

Here is a summary of items that apply to Vim scripts. They are also mentioned
elsewhere, but form a nice checklist.

The end-of-line character depends on the system. For Unix a single <NL>
character is used. For MS-DOS, Windows, 0S/2 and the like, <CR><LF> is used.
This is important when using mappings that end in a <CR>. See |:source crnl].

WHITE SPACE
Blank lines are allowed and ignored.

Leading whitespace characters (blanks and TABs) are always ignored. The
whitespaces between parameters (e.g. between the 'set' and the 'cpoptions' in
the example below) are reduced to one blank character and plays the role of a
separator, the whitespaces after the last (visible) character may or may not
be ignored depending on the situation, see below.

For a ":set" command involving the "=" (equal) sign, such as in: >

:set cpoptions =aABceFst
the whitespace immediately before the "=" sign is ignored. But there can be
no whitespace after the "=" sign!

To include a whitespace character in the value of an option, it must be
escaped by a "\" (backslash) as in the following example: >

:set tags=my\ nice\ file
The same example written as: >

:set tags=my nice file
will issue an error, because it is interpreted as: >

:set tags=my

:set nice

:set file
COMMENTS
The character " (the double quote mark) starts a comment. Everything after
and including this character until the end-of-line is considered a comment and
is ignored, except for commands that don't consider comments, as shown in

examples below. A comment can start on any character position on the line.

There is a little "catch" with comments for some commands. Examples: >

:abbrev dev development " shorthand

:map <F3> of#tinclude " insert include

:execute cmd " do it

:1ls *.c " list C files
The abbreviation 'dev' will be expanded to 'development " shorthand'. The
mapping of <F3> will actually be the whole line after the 'o#' including
the '" insert include'. The "execute" command will give an error. The "!"

command will send everything after it to the shell, causing an error for an
unmatched '"' character.

There can be no comment after ":map", ":abbreviate", ":execute" and "!"
commands (there are a few more commands with this restriction). For the
":map", ":abbreviate" and ":execute" commands there is a trick: >

:abbrev dev development |" shorthand
:map <F3> o#include|" insert include

:execute cmd |" do it

.\usr_doc.txt Page 212

With the '|' character the command is separated from the next one. And that
next command is only a comment. For the last command you need to do two
things: |:execute| and use '|': >

texe 'lls *.¢! |"™ list C files
Notice that there is no white space before the '|' in the abbreviation and
mapping. For these commands, any character until the end-of-line or '|' is

included. As a consequence of this behavior, you don't always see that
trailing whitespace is included: >

:map <F4> o#include

To spot these problems, you can set the 'list' option when editing vimrc
files.

For Unix there is one special way to comment a line, that allows making a Vim
script executable: >

#!/usr/bin/env vim -S

echo "this is a Vim script"

quit

The "#" command by itself lists a line with the line number. Adding an
exclamation mark changes it into doing nothing, so that you can add the shell
command to execute the rest of the file. |:#!| |-S|

PITFALLS

Even bigger problem arises in the following example: >

:map ,ab o#include
:unmap ,ab

Here the unmap command will not work, because it tries to unmap ",ab ". This
does not exist as a mapped sequence. An error will be issued, which is very
hard to identify, because the ending whitespace character in ":unmap ,ab " is

not visible.

And this is the same as what happens when one uses a comment after an 'unmap'
command: >

:unmap ,ab " comment

Here the comment part will be ignored. However, Vim will try to unmap
', ab ', which does not exist. Rewrite it as: >

:unmap ,ab]| " comment

RESTORING THE VIEW

Sometimes you want to make a change and go back to where the cursor was.
Restoring the relative position would also be nice, so that the same line
appears at the top of the window.

This example yanks the current line, puts it above the first line in the
file and then restores the view: >

map ,p ma"aYHmbgg"aP bzt a

What this does: >
ma"aYHmbgg"aP bzt a
< ma set mark a at cursor position
"ay yank current line into register a
Hmb go to top line in window and set mark b there
gg go to first line in file
"aPp put the yanked line above it
“b go back to top line in display
zt position the text in the window as before
a go back to saved cursor position

.\usr_doc.txt Page 213

PACKAGING

To avoid your function names to interfere with functions that you get from
others, use this scheme:

- Prepend a unique string before each function name. I often use an
abbreviation. For example, "OW " is used for the option window functions.
- Put the definition of your functions together in a file. Set a global

variable to indicate that the functions have been loaded. When sourcing the
file again, first unload the functions.
Example: >

" This is the XXX package

if exists ("XXX loaded")
delfun XXX one
delfun XXX two

endif

function XXX one(a)
body of function
endfun

function XXX two (b)
body of function
endfun

let XXX loaded = 1

¥41.11 Writing a plugin *write-plugin*

You can write a Vim script in such a way that many people can use it. This is
called a plugin. Vim users can drop your script in their plugin directory and
use its features right away |add-plugin].

There are actually two types of plugins:

global plugins: For all types of files.
filetype plugins: Only for files of a specific type.

In this section the first type is explained. Most items are also relevant for
writing filetype plugins. The specifics for filetype plugins are in the next
section |write-filetype-plugin]|.

NAME

First of all you must choose a name for your plugin. The features provided
by the plugin should be clear from its name. And it should be unlikely that
someone else writes a plugin with the same name but which does something
different. And please limit the name to 8 characters, to avoid problems on

old Windows systems.

A script that corrects typing mistakes could be called "typecorr.vim". We
will use it here as an example.

For the plugin to work for everybody, it should follow a few guidelines. This
will be explained step-by-step. The complete example plugin is at the end.

BODY

Let's start with the body of the plugin, the lines that do the actual work: >

14 iabbrev teh the

15 iabbrev otehr other

16 iabbrev wnat want

17 iabbrev synchronisation
18 \ synchronization

19 let s:count = 4

.\usr_doc.txt Page 214

The actual list should be much longer, of course.

The line numbers have only been added to explain a few things, don't put them
in your plugin file!

HEADER

You will probably add new corrections to the plugin and soon have several
versions lying around. And when distributing this file, people will want to
know who wrote this wonderful plugin and where they can send remarks.
Therefore, put a header at the top of your plugin: >

1 " Vim global plugin for correcting typing mistakes
2 " Last Change: 2000 Oct 15
3 " Maintainer: Bram Moolenaar <Bram@vim.orgs

About copyright and licensing: Since plugins are very useful and it's hardly
worth restricting their distribution, please consider making your plugin
either public domain or use the Vim |license|. A short note about this near
the top of the plugin should be sufficient. Example: >

4 " License: This file is placed in the public domain.

LINE CONTINUATION, AVOIDING SIDE EFFECTS *use-cpo-save*

In line 18 above, the line-continuation mechanism is used |line-continuation|.
Users with 'compatible' set will run into trouble here, they will get an error
message. We can't just reset 'compatible', because that has a lot of side

effects. To avoid this, we will set the 'cpoptions' option to its Vim default
value and restore it later. That will allow the use of line-continuation and

make the script work for most people. It is done like this: >
11 let s:save _cpo = &cCpo
12 set cpo&vim
42 let &cpo = s:save_cpo
43 unlet s:save_ cpo

We first store the old value of 'cpoptions' in the s:save cpo variable. At
the end of the plugin this value is restored.

Notice that a script-local variable is used |s:var|. A global variable could
already be in use for something else. Always use script-local variables for
things that are only used in the script.

NOT LOADING

It's possible that a user doesn't always want to load this plugin. Or the
system administrator has dropped it in the system-wide plugin directory, but a
user has his own plugin he wants to use. Then the user must have a chance to
disable loading this specific plugin. This will make it possible: >

6 if exists("g:loaded typecorr")
7 finish

8 endif

9

let g:loaded typecorr = 1

This also avoids that when the script is loaded twice it would cause error
messages for redefining functions and cause trouble for autocommands that are
added twice.

The name is recommended to start with "loaded " and then the file name of the
plugin, literally. The "g:" is prepended just to avoid mistakes when using
the variable in a function (without "g:" it would be a variable local to the
function) .

Using "finish" stops Vim from reading the rest of the file, it's much quicker

.\usr_doc.txt Page 215

than using if-endif around the whole file.

MAPPING
Now let's make the plugin more interesting: We will add a mapping that adds a
correction for the word under the cursor. We could just pick a key sequence
for this mapping, but the user might already use it for something else. To
allow the user to define which keys a mapping in a plugin uses, the <Leaders
item can be used: >

22 map <uniques> <Leader>a <Plug>TypecorrAdd

The "<Plug>TypecorrAdd" thing will do the work, more about that further on.

The user can set the "mapleader" variable to the key sequence that he wants
this mapping to start with. Thus if the user has done: >

let mapleader = "_"

the mapping will define " a". If the user didn't do this, the default value
will be used, which is a backslash. Then a map for "\a" will be defined.

Note that <unique> is used, this will cause an error message if the mapping
already happened to exist. |:map-<uniques|

But what if the user wants to define his own key sequence? We can allow that
with this mechanism: >

21 if lhasmapto('<Plug>TypecorrAdd')
22 map <uniques> <Leader>a <Plug>TypecorrAdd
23 endif

This checks if a mapping to "<Plug>TypecorrAdd" already exists, and only
defines the mapping from "<Leadersa" if it doesn't. The user then has a
chance of putting this in his vimrc file: >

map ,c¢ <Plug>TypecorrAdd

Then the mapped key sequence will be ",c" instead of " _a" or "\a".

PIECES

If a script gets longer, you often want to break up the work in pieces. You
can use functions or mappings for this. But you don't want these functions
and mappings to interfere with the ones from other scripts. For example, you
could define a function Add(), but another script could try to define the same
function. To avoid this, we define the function local to the script by
prepending it with "s:".

We will define a function that adds a new typing correction: >

30 function s:Add(from, correct)
31 let to = input("type the correction for " . a:from . ": ")
32 exe ":iabbrev " . a:from . " " . to
36 endfunction
Now we can call the function s:Add() from within this script. If another
script also defines s:Add(), it will be local to that script and can only
be called from the script it was defined in. There can also be a global Add()
function (without the "s:"), which is again another function.
<SID> can be used with mappings. It generates a script ID, which identifies
the current script. In our typing correction plugin we use it like this: >
24 noremap <unique> <script> <Plug>TypecorrAdd <SID>Add

28 noremap <SID>Add :call <SID>Add (expand("<cword>"), 1)<CR>

.\usr_doc.txt Page 216
Thus when a user types "\a", this sequence is invoked: >
\a -> <Plug>TypecorrAdd -> <SID>Add -> :call <SID>Add()

If another script would also map <SID>Add, it would get another script ID and
thus define another mapping.

Note that instead of s:Add() we use <SID>Add() here. That is because the
mapping is typed by the user, thus outside of the script. The <SID> is
translated to the script ID, so that Vim knows in which script to look for
the Add () function.

This is a bit complicated, but it's required for the plugin to work together
with other plugins. The basic rule is that you use <SID>Add() in mappings and
s:Add () in other places (the script itself, autocommands, user commands) .

We can also add a menu entry to do the same as the mapping: >
26 noremenu <script> Plugin.Add\ Correction <SID>Add

The "Plugin" menu is recommended for adding menu items for plugins. In this
case only one item is used. When adding more items, creating a submenu is
recommended. For example, "Plugin.CVS" could be used for a plugin that offers
CVS operations "Plugin.CVS.checkin", "Plugin.CVS.checkout", etc.

Note that in line 28 ":noremap" is used to avoid that any other mappings cause
trouble. Someone may have remapped ":call", for example. 1In line 24 we also
use ":noremap", but we do want "<SID>Add" to be remapped. This is why
"<gscript>" is used here. This only allows mappings which are local to the
script. |:map-<script>| The same is done in line 26 for ":noremenu".

| :menu-<scripts|

<SID> AND <Plugs> *using-<Plugs>*

Both <SID> and <Plug> are used to avoid that mappings of typed keys interfere
with mappings that are only to be used from other mappings. Note the
difference between using <SID> and <Plugs>:

<Plug> 1is wvisible outside of the script. It is used for mappings which the
user might want to map a key sequence to. <Plugs> is a special code
that a typed key will never produce.
To make it very unlikely that other plugins use the same sequence of
characters, use this structure: <Plug> scriptname mapname
In our example the scriptname is "Typecorr" and the mapname is "Add".

This results in "<Plug>TypecorrAdd". Only the first character of
scriptname and mapname is uppercase, so that we can see where mapname
starts.

<SID> is the script ID, a unique identifier for a script.
Internally Vim translates <SID> to "<SNR>123 ", where "123" can be any
number. Thus a function "<SID>Add()" will have a name "<SNR>11 Add()"
in one script, and "<SNR>22 Add()" in another. You can see this if
you use the ":function" command to get a list of functions. The

translation of <SID> in mappings is exactly the same, that's how you
can call a script-local function from a mapping.

USER COMMAND

Now let's add a user command to add a correction: >

38 if lexists(":Correct")
39 command -nargs=1 Correct :call s:Add(<g-args>, O0)
40 endif

The user command is defined only if no command with the same name already
exists. Otherwise we would get an error here. Overriding the existing user
command with ":command!" is not a good idea, this would probably make the user
wonder why the command he defined himself doesn't work. |:command]|

.\usr_doc.txt Page 217

SCRIPT VARIABLES

When a variable starts with "s:" it is a script variable. It can only be used
inside a script. Outside the script it's not visible. This avoids trouble
with using the same variable name in different scripts. The variables will be
kept as long as Vim is running. And the same variables are used when sourcing
the same script again. |s:var]|

The fun is that these variables can also be used in functions, autocommands
and user commands that are defined in the script. In our example we can add
a few lines to count the number of corrections: >

19 let s:count = 4

30 function s:Add(from, correct)

34 let s:count = s:count + 1

35 echo s:count . " corrections now"
36 endfunction

First s:count is initialized to 4 in the script itself. When later the
s:Add () function is called, it increments s:count. It doesn't matter from
where the function was called, since it has been defined in the script, it
will use the local variables from this script.

THE RESULT

Here is the resulting complete example: >

1 " Vim global plugin for correcting typing mistakes

2 " Last Change: 2000 Oct 15

3 " Maintainer: Bram Moolenaar <Bram@vim.orgs

4 " License: This file is placed in the public domain.
5

6 if exists("g:loaded typecorr")

7 finish

8 endif

9 let g:loaded typecorr = 1
10
11 let s:save _cpo = &cCpo
12 set cpo&vim
13
14 iabbrev teh the
15 iabbrev otehr other
16 iabbrev wnat want
17 iabbrev synchronisation
18 \ synchronization
19 let s:count = 4
20
21 if lhasmapto('<Plug>TypecorrAdd')
22 map <uniques> <Leader>a <Plug>TypecorrAdd
23 endif
24 noremap <unique> <script> <Plug>TypecorrAdd <SID>Add
25
26 noremenu <script> Plugin.Add\ Correction <SID>Add
27
28 noremap <SID>Add :call <SID>Add (expand("<cword>"), 1)<CR>
29

30 function s:Add(from, correct)
31 let to = input("type the correction for " . a:from . ": ")
32 exe ":iabbrev " . a:from . " " . to

33 if a:correct | exe "normal viws\<C-R>\" \b\e" | endif
34 let s:count = s:count + 1

35 echo s:count . " corrections now"

36 endfunction
37

38 if lexists(":Correct™")

39 command -nargs=1 Correct :call s:Add(<g-args>, O0)

40 endif

.\usr_doc.txt Page 218

41
42 let &cpo = s:save_cpo
43 unlet s:save_cpo
Line 33 wasn't explained yet. It applies the new correction to the word under

the cursor. The |:normal| command is used to use the new abbreviation. Note
that mappings and abbreviations are expanded here, even though the function
was called from a mapping defined with ":noremap".

Using "unix" for the 'fileformat' option is recommended. The Vim scripts will
then work everywhere. Scripts with 'fileformat' set to "dos" do not work on
Unix. Also see |:source crnl|. To be sure it is set right, do this before
writing the file: >

:set fileformat=unix

DOCUMENTATION *write-local-help*

It's a good idea to also write some documentation for your plugin. Especially
when its behavior can be changed by the user. See |add-local-help| for how
they are installed.

Here is a simple example for a plugin help file, called "typecorr.txt": >
1 *typecorr.txt* Plugin for correcting typing mistakes
2
3 If you make typing mistakes, this plugin will have them corrected
4 automatically.
5
6 There are currently only a few corrections. Add your own if you like.
7
8 Mappings:
9 <Leaders>a or <Plug>TypecorrAdd
10 Add a correction for the word under the cursor.
11
12 Commands :
13 :Correct {word}
14 Add a correction for {word}.
15
16 *typecorr-settings*
17 This plugin doesn't have any settings.
The first line is actually the only one for which the format matters. It will
be extracted from the help file to be put in the "LOCAL ADDITIONS:" section of
help.txt |local-additions|. The first "*" must be in the first column of the

first line. After adding your help file do ":help" and check that the entries
line up nicely.

You can add more tags inside ** in your help file. But be careful not to use
existing help tags. You would probably use the name of your plugin in most of
them, like "typecorr-settings" in the example.

Using references to other parts of the help in || is recommended. This makes
it easy for the user to find associated help.

FILETYPE DETECTION *plugin-filetype*

If your filetype is not already detected by Vim, you should create a filetype
detection snippet in a separate file. It is usually in the form of an
autocommand that sets the filetype when the file name matches a pattern.
Example: >

au BufNewFile,BufRead *.foo set filetype=foofoo
Write this single-line file as "ftdetect/foofoo.vim" in the first directory
that appears in 'runtimepath'. For Unix that would be
"~/ .vim/ftdetect/foofoo.vim". The convention is to use the name of the

filetype for the script name.

.\usr_doc.txt Page 219
You can make more complicated checks if you like, for example to inspect the
contents of the file to recognize the language. Also see |new-filetype]|.

SUMMARY *plugin-special*

Summary of special things to use in a plugin:

S:name Variables local to the script.

<SID> Script-ID, used for mappings and functions local to
the script.

hasmapto () Function to test if the user already defined a mapping
for functionality the script offers.

<Leader> Value of "mapleader", which the user defines as the
keys that plugin mappings start with.

:map <uniques Give a warning if a mapping already exists.

:noremap <scripts> Use only mappings local to the script, not global
mappings.

exists (":Cmd") Check i1f a user command already exists.

41 .12 Writing a filetype plugin *write-filetype-plugin* *ftplugin*

A filetype plugin is like a global plugin, except that it sets options and
defines mappings for the current buffer only. See |add-filetype-plugin| for
how this type of plugin is used.

First read the section on global plugins above |[41.11|. All that is said there
also applies to filetype plugins. There are a few extras, which are explained
here. The essential thing is that a filetype plugin should only have an

effect on the current buffer.

DISABLING

If you are writing a filetype plugin to be used by many people, they need a
chance to disable loading it. Put this at the top of the plugin: >

" Only do this when not done yet for this buffer
if exists("b:did ftplugin")
finish
endif
let b:did ftplugin =1

This also needs to be used to avoid that the same plugin is executed twice for
the same buffer (happens when using an ":edit" command without arguments) .

Now users can disable loading the default plugin completely by making a
filetype plugin with only this line: >

let b:did ftplugin = 1

This does require that the filetype plugin directory comes before $VIMRUNTIME
in 'runtimepath'!

If you do want to use the default plugin, but overrule one of the settings,
you can write the different setting in a script: >

setlocal textwidth=70

Now write this in the "after" directory, so that it gets sourced after the
distributed "vim.vim" ftplugin |after-directory|. For Unix this would be
"~/.vim/after/ftplugin/vim.vim". Note that the default plugin will have set
"b:did ftplugin", but it is ignored here.

.\usr_doc.txt Page 220

OPTIONS

To make sure the filetype plugin only affects the current buffer use the >
:setlocal

command to set options. And only set options which are local to a buffer (see

the help for the option to check that). When using |:setlocal| for global

options or options local to a window, the value will change for many buffers,

and that is not what a filetype plugin should do.

When an option has a value that is a list of flags or items, consider using

"+=" and "-=" to keep the existing value. Be aware that the user may have

changed an option value already. First resetting to the default value and

then changing it is often a good idea. Example: >

:setlocal formatoptions& formatoptions+=ro

MAPPINGS
To make sure mappings will only work in the current buffer use the >
:map <buffer>

command. This needs to be combined with the two-step mapping explained above.
An example of how to define functionality in a filetype plugin: >

if l'hasmapto('<Plug>JavalImport')
map <buffers> <unique> <LocallLeader>i <Plug>Javalmport

endif
noremap <buffers> <unique> <Plug>Javalmport oimport ""<Left><Esc>
|hasmapto () | is used to check if the user has already defined a map to

<Plug>JavaImport. If not, then the filetype plugin defines the default
mapping. This starts with |<LocallLeaders>|, which allows the user to select
the key(s) he wants filetype plugin mappings to start with. The default is a
backslash.

"<unique>" 1s used to give an error message 1f the mapping already exists or
overlaps with an existing mapping.

| :noremap| is used to avoid that any other mappings that the user has defined
interferes. You might want to use ":noremap <scripts>" to allow remapping
mappings defined in this script that start with <SID>.

The user must have a chance to disable the mappings in a filetype plugin,
without disabling everything. Here is an example of how this is done for a
plugin for the mail filetype: >

" Add mappings, unless the user didn't want this.
if l!exists("no plugin maps") && !exists("no mail maps")
" Quote text by inserting "> "
if thasmapto('<Plug>MailQuote!')
vmap <buffers> <LocallLeader>q <Plug>MailQuote
nmap <buffers> <LocallLeader>qg <Plugs>MailQuote

endif

vnoremap <buffers <Plug>MailQuote :s5/%/> /<CR>

nnoremap <buffers> <Plug>MailQuote :.,$s/"/> /<CR>
endif

Two global variables are used:
no_plugin maps disables mappings for all filetype plugins
no mail maps disables mappings for a specific filetype

USER COMMANDS

To add a user command for a specific file type, so that it can only be used in
one buffer, use the "-buffer" argument to |:command|. Example: >

[}

:command -buffer Make make %:r.s

.\usr_doc.txt Page

VARIABLES

A filetype plugin will be sourced for each buffer of the type it's for. Local
script variables |s:var| will be shared between all invocations. Use local
buffer variables |b:var| if you want a variable specifically for one buffer.

FUNCTIONS

When defining a function, this only needs to be done once. But the filetype
plugin will be sourced every time a file with this filetype will be opened.
This construct makes sure the function is only defined once: >

:1f lexists("*s:Func")
function s:Func(arg)

endfunction
:endif
<
UNDO *undo_ftplugin*
When the user does ":setfiletype xyz" the effect of the previous filetype
should be undone. Set the b:undo ftplugin variable to the commands that will

undo the settings in your filetype plugin. Example: >

let b:undo ftplugin = "setlocal fo< com< tw< commentstring<"
\ . "| unlet b:match ignorecase b:match words b:match skip"

Using ":setlocal" with "<" after the option name resets the option to its
global value. That is mostly the best way to reset the option value.

This does require removing the "C" flag from 'cpoptions' to allow line
continuation, as mentioned above |use-cpo-save]|.
FILE NAME

The filetype must be included in the file name |ftplugin-name|. Use one of
these three forms:

../ftplugin/stuff.vim
../ftplugin/stuff foo.vim
./ftplugin/stuff/bar.vim

"stuff" is the filetype, "foo" and "bar" are arbitrary names.

SUMMARY *ftplugin-special*
Summary of special things to use in a filetype plugin:

<LocalLeader> Value of "maplocalleader", which the user defines as
the keys that filetype plugin mappings start with.

:map <buffers Define a mapping local to the buffer.

:noremap <scripts Only remap mappings defined in this script that start
with <SID>.

:setlocal Set an option for the current buffer only.
:command -buffer Define a user command local to the buffer.
exists("*s:Func") Check 1f a function was already defined.

Also see |plugin-special|, the special things used for all plugins.

221

.\usr_doc.txt Page 222
41 .13 Writing a compiler plugin *write-compiler-plugin*

A compiler plugin sets options for use with a specific compiler. The user can
load it with the |:compiler| command. The main use is to set the
'errorformat' and 'makeprg' options.

Easiest is to have a look at examples. This command will edit all the default
compiler plugins: >

:next SVIMRUNTIME/compiler/*.vim
Use |:next| to go to the next plugin file.

There are two special items about these files. First is a mechanism to allow
a user to overrule or add to the default file. The default files start with: >

:if exists("current compiler")
finish

:endif

:let current compiler = "mine"

When you write a compiler file and put it in your personal runtime directory
(e.g., ~/.vim/compiler for Unix), you set the "current compiler" variable to
make the default file skip the settings.

:CompilerSet
The second mechanism is to use ":set" for ":compiler!" and ":setlocal" for
":compiler". Vim defines the ":CompilerSet" user command for this. However,
older Vim versions don't, thus your plugin should define it then. This is an
example: >

if exists(":CompilerSet") != 2
command -nargs=* CompilerSet setlocal <args>
endif
CompilerSet errorformaté& " use the default 'errorformat'

CompilerSet makeprg=nmake

When you write a compiler plugin for the Vim distribution or for a system-wide
runtime directory, use the mechanism mentioned above. When
"current compiler" was already set by a user plugin nothing will be done.

When you write a compiler plugin to overrule settings from a default plugin,
don't check "current compiler". This plugin is supposed to be loaded

last, thus it should be in a directory at the end of 'runtimepath'. For Unix
that could be ~/.vim/after/compiler.

41.14 Writing a plugin that loads quickly *write-plugin-quickload¥*

A plugin may grow and become quite long. The startup delay may become
noticeable, while you hardly ever use the plugin. Then it's time for a
quickload plugin.

The basic idea is that the plugin is loaded twice. The first time user
commands and mappings are defined that offer the functionality. The second
time the functions that implement the functionality are defined.

It may sound surprising that quickload means loading a script twice. What we
mean is that it loads quickly the first time, postponing the bulk of the
script to the second time, which only happens when you actually use it. When
you always use the functionality it actually gets slower!

Note that since Vim 7 there is an alternative: use the |autoload|
functionality |41.15].

The following example shows how it's done: >

" Vim global plugin for demonstrating quick loading

" Last Change: 2005 Feb 25

" Maintainer: Bram Moolenaar <Bram@vim.orgs

" License: This file is placed in the public domain.

.\usr_doc.txt Page 223

if lexists("s:did load")
command -nargs=* BNRead call BufNetRead (<f-argss>)
map <F19> :call BufNetWrite('something')<CR>

let s:did load =1
exe 'au FuncUndefined BufNet* source ' . expand('<sfile>"')
finish

endif

function BufNetRead(...)

echo 'BufNetRead (' . string(a:000) . ')'
" read functionality here
endfunction

function BufNetWrite(...)

echo 'BufNetWrite(' . string(a:000) . ')'
" write functionality here
endfunction
When the script is first loaded "s:did load" is not set. The commands between
the "if" and "endif" will be executed. This ends in a |:finish| command, thus

the rest of the script is not executed.

The second time the script is loaded "s:did load" exists and the commands
after the "endif" are executed. This defines the (possible long)
BufNetRead () and BufNetWrite() functions.

If you drop this script in your plugin directory Vim will execute it on
startup. This is the sequence of events that happens:

1. The "BNRead" command is defined and the <F19> key is mapped when the script
is sourced at startup. A |FuncUndefined| autocommand is defined. The
":finish" command causes the script to terminate early.

2. The user types the BNRead command or presses the <F19> key. The
BufNetRead () or BufNetWrite () function will be called.

3. Vim can't find the function and triggers the |FuncUndefined| autocommand
event. Since the pattern "BufNet*" matches the invoked function, the
command "source fname" will be executed. "fname" will be equal to the name
of the script, no matter where it is located, because it comes from
expanding "<sfile>" (see |expand()|).

4. The script is sourced again, the "s:did load" variable exists and the
functions are defined.

Notice that the functions that are loaded afterwards match the pattern in the
| FuncUndefined| autocommand. You must make sure that no other plugin defines
functions that match this pattern.

41.15 Writing library scripts *write-library-script#*

Some functionality will be required in several places. When this becomes more
than a few lines you will want to put it in one script and use it from many
scripts. We will call that one script a library script.

Manually loading a library script is possible, so long as you avoid loading it
when it's already done. You can do this with the |exists()| function.
Example: >

if lexists('*MyLibFunction')
runtime library/mylibscript.vim

endif

call MyLibFunction (arg)

Here you need to know that MyLibFunction() is defined in a script
"library/mylibscript.vim" in one of the directories in 'runtimepath'.

To make this a bit simpler Vim offers the autoload mechanism. Then the
example looks like this: >

.\usr_doc.txt Page 224

call mylib#myfunction (arg)
That's a lot simpler, isn't it? Vim will recognize the function name and when
it's not defined search for the script "autolocad/mylib.vim" in 'runtimepath'.
That script must define the "mylib#myfunction()" function.
You can put many other functions in the mylib.vim script, you are free to
organize your functions in library scripts. But you must use function names
where the part before the '#' matches the script name. Otherwise Vim would
not know what script to load.

If you get really enthusiastic and write lots of library scripts, you may
want to use subdirectories. Example: >

call netlib#ftp#read('somefile’)
For Unix the library script used for this could be:

~/.vim/autoload/netlib/ftp.vim
Where the function is defined like this: >

function netlib#ftp#read (fname)

" Read the file fname through ftp

endfunction
Notice that the name the function is defined with is exactly the same as the
name used for calling the function. And the part before the last '#'
exactly matches the subdirectory and script name.
You can use the same mechanism for variables: >

let weekdays = dutch#weekdays

This will load the script "autoload/dutch.vim", which should contain something
like: >

let dutch#fweekdays = ['zondag', 'maandag', 'dinsdag',6 'woensdag',
\ 'donderdag', 'vrijdag',6 'zaterdag']

Further reading: |autoload].

41.16 Distributing Vim scripts *distribute-script*

Vim users will look for scripts on the Vim website: http://www.vim.org.
If you made something that is useful for others, share it!

Vim scripts can be used on any system. There might not be a tar or gzip
command. If you want to pack files together and/or compress them the "zip"
utility is recommended.

For utmost portability use Vim itself to pack scripts together. This can be
done with the Vimball utility. See |vimball].

It's good if you add a line to allow automatic updating. See |glvs-plugins].

Next chapter: |usr 42.txt| Add new menus

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page 225

usr 42.txt For Vim version 7.4. Last change: 2008 May 05
VIM USER MANUAL - by Bram Moolenaar
Add new menus
By now you know that Vim is very flexible. This includes the menus used in

the GUI. You can define your own menu entries to make certain commands easily
accessible. This is for mouse-happy users only.

42.1 Introduction

42 .2 Menu commands

42.3 Various

42 .4 Toolbar and popup menus

Next chapter: |usr 43.txt Using filetypes
Previous chapter: |usr 41.txt Write a Vim script
Table of contents: |usr toc.txt|

42.1 Introduction

The menus that Vim uses are defined in the file "$VIMRUNTIME/menu.vim". If
you want to write your own menus, you might first want to look through that
file.

To define a menu item, use the ":menu" command. The basic form of this
command is as follows: >

:menu {menu-item} {keys}

The {menu-item} describes where on the menu to put the item. A typical
{menu-item} is "File.Save", which represents the item "Save" under the
"File" menu. A dot is used to separate the names. Example: >

:menu File.Save :update<CR>

The ":update" command writes the file when it was modified.

You can add another level: "Edit.Settings.Shiftwidth" defines a submenu
"Settings" under the "Edit" menu, with an item "Shiftwidth". You could use
even deeper levels. Don't use this too much, you need to move the mouse quite
a bit to use such an item.

The ":menu" command is very similar to the ":map" command: the left side
specifies how the item is triggered and the right hand side defines the
characters that are executed. {keys} are characters, they are used just like
you would have typed them. Thus in Insert mode, when {keys} is plain text,
that text is inserted.

ACCELERATORS

The ampersand character (&) is used to indicate an accelerator. For instance,
you can use Alt-F to select "File" and S to select "Save". (The 'winaltkeys'
option may disable this though!). Therefore, the {menu-item} looks like
"¢File.&Save". The accelerator characters will be underlined in the menu.

You must take care that each key is used only once in each menu. Otherwise
you will not know which of the two will actually be used. Vim doesn't warn
you for this.

PRIORITIES
The actual definition of the File.Save menu item is as follows: >
:menu 10.340 &File.&Save<Tab>:w :confirm w<CR>
The number 10.340 is called the priority number. It is used by the editor to
decide where it places the menu item. The first number (10) indicates the

position on the menu bar. Lower numbered menus are positioned to the left,
higher numbers to the right.

.\usr_doc.txt Page 226
These are the priorities used for the standard menus:

10 20 40 50 60 70 9999

Notice that the Help menu is given a very high number, to make it appear on
the far right.

The second number (340) determines the location of the item within the
pull-down menu. Lower numbers go on top, higher number on the bottom. These
are the priorities in the File menu:

o +

10.310 Open. ..

10.320 Split-Open...

10.325 New

10.330 Close

10.335 |-

10.340 Save

10.350 Save As...

10.400 |-—m—————————————

10.410 Split Diff with

10.420 Split Patched By

10.500 |-—m————————————-

10.510 Print

10.600 |- ——m————————————

10.610 Save-Exit

10.620 Exit
o +

Notice that there is room in between the numbers. This is where you can
insert your own items, if you really want to (it's often better to leave the
standard menus alone and add a new menu for your own items).

When you create a submenu, you can add another ".number" to the priority.
Thus each name in {menu-item} has its priority number.

SPECIAL CHARACTERS

The {menu-item} in this example is "&File.&Save<Tab>:w". This brings up an
important point: {menu-item} must be one word. If you want to put a dot,
space or tabs in the name, you either use the <> notation (<Space> and <Tabs>,
for instance) or use the backslash (\) escape. >

:menu 10.305 &File.&Do\ It\.\.\. :exit<CR>

In this example, the name of the menu item "Do It..." contains a space and the
command is ":exit<CR>".

The <Tab> character in a menu name i1s used to separate the part that defines
the menu name from the part that gives a hint to the user. The part after the
<Tab> is displayed right aligned in the menu. In the File.Save menu the name

used is "&File.&Save<Tab>:w". Thus the menu name is "File.Save" and the hint
is ":w".

SEPARATORS

The separator lines, used to group related menu items together, can be defined
by using a name that starts and ends in a '-'. For example "-sep-". When
using several separators the names must be different. Otherwise the names

don't matter.
The command from a separator will never be executed, but you have to define
one anyway. A single colon will do. Example: >

:amenu 20.510 Edit.-sep3-

.\usr_doc.txt Page 227

You can define menu items that exist for only certain modes. This works just
like the variations on the ":map" command:

:menu Normal, Visual and Operator-pending mode
:nmenu Normal mode

:vmenu Visual mode

:omenu Operator-pending mode

:menu! Insert and Command-line mode

:imenu Insert mode

:cmenu Command-line mode

ramenu All modes

To avoid that the commands of a menu item are being mapped, use the command
":noremenu", ":nnoremenu", ":anoremenu", etc.

USING :AMENU

The ":amenu" command is a bit different. It assumes that the {keys} you
give are to be executed in Normal mode. When Vim is in Visual or Insert mode
when the menu is used, Vim first has to go back to Normal mode. ":amenu"

inserts a CTRL-C or CTRL-O for you. For example, if you use this command:
>
:amenu 90.100 Mine.Find\ Word *

Then the resulting menu commands will be:

Normal mode: *

Visual mode: CTRL-C *
Operator-pending mode: CTRL-C *
Insert mode: CTRL-O *
Command-line mode: CTRL-C *

When in Command-line mode the CTRL-C will abandon the command typed so far.
In Visual and Operator-pending mode CTRL-C will stop the mode. The CTRL-O in
Insert mode will execute the command and then return to Insert mode.

CTRL-O only works for one command. If you need to use two or more
commands, put them in a function and call that function. Example: >

:amenu Mine.Next\ File :call <SID>NextFile()<CR>
:function <SID>NextFile ()

next

1/"Code
:endfunction

This menu entry goes to the next file in the argument list with ":next". Then
it searches for the line that starts with "Code".

The <SID> before the function name is the script ID. This makes the
function local to the current Vim script file. This avoids problems when a
function with the same name is defined in another script file. See |<SID>|.

SILENT MENUS

The menu executes the {keys} as if you typed them. For a ":" command this
means you will see the command being echoed on the command line. If it's a
long command, the hit-Enter prompt will appear. That can be very annoying!

To avoid this, make the menu silent. This is done with the <silent>
argument. For example, take the call to NextFile() in the previous example.
When you use this menu, you will see this on the command line:

:call <SNR>34 NextFile() ~

To avoid this text on the command line, insert "<silent>" as the first
argument: >

:amenu <silent> Mine.Next\ File :call <SIDs>NextFile()<CR>

Don't use "<silent>" too often. It is not needed for short commands. If you
make a menu for someone else, being able the see the executed command will

.\usr_doc.txt Page 228

give him a hint about what he could have typed, instead of using the mouse.

LISTING MENUS

When a menu command is used without a {keys} part, it lists the already
defined menus. You can specify a {menu-item}, or part of it, to list specific
menus. Example: >

amenu

This lists all menus. That's a long list! Better specify the name of a menu
to get a shorter list: >

:amenu Edit

This lists only the "Edit" menu items for all modes. To list only one
specific menu item for Insert mode: >

:imenu Edit.Undo
Take care that you type exactly the right name. Case matters here. But the
's&' for accelerators can be omitted. The <Tab> and what comes after it can be
left out as well.
DELETING MENUS
To delete a menu, the same command is used as for listing, but with "menu"
changed to "unmenu". Thus ":menu" becomes, ":unmenu", ":nmenu" becomes
":nunmenu", etc. To delete the "Tools.Make" item for Insert mode: >

:iunmenu Tools.Make

You can delete a whole menu, with all its items, by using the menu name.
Example: >

raunmenu Syntax

This deletes the Syntax menu and all the items in it.

You can change the appearance of the menus with flags in 'guioptions'. 1In the
default value they are all included, except "M". You can remove a flag with a
command like: >

:set guioptions-=m

m When removed the menubar is not displayed.

M When added the default menus are not loaded.

g When removed the inactive menu items are not made grey
but are completely removed. (Does not work on all
systems.)

t When removed the tearoff feature is not enabled.

The dotted line at the top of a menu is not a separator line. When you select
this item, the menu is "teared-off": It is displayed in a separate window.
This is called a tearoff menu. This is useful when you use the same menu
often.

For translating menu items, see |:menutrans]|.

Since the mouse has to be used to select a menu item, it is a good idea to use
the ":browse" command for selecting a file. And ":confirm" to get a dialog
instead of an error message, e.g., when the current buffer contains changes.
These two can be combined: >

.\usr_doc.txt Page

:amenu File.Open :browse confirm edit<CR>

The ":browse" makes a file browser appear to select the file to edit. The
":confirm" will pop up a dialog when the current buffer has changes. You can
then select to save the changes, throw them away or cancel the command.

For more complicated items, the confirm() and inputdialog() functions can
be used. The default menus contain a few examples.

There are two special menus: ToolBar and PopUp. Items that start with these
names do not appear in the normal menu bar.

TOOLBAR

The toolbar appears only when the "T" flag is included in the 'guioptions'
option.

The toolbar uses icons rather than text to represent the command. For
example, the {menu-item} named "ToolBar.New" causes the "New" icon to appear
on the toolbar.

The Vim editor has 28 built-in icons. You can find a table here:
|builtin-tools|. Most of them are used in the default toolbar. You can
redefine what these items do (after the default menus are setup).

You can add another bitmap for a toolbar item. Or define a new toolbar
item with a bitmap. For example, define a new toolbar item with: >

:tmenu ToolBar.Compile Compile the current file
:amenu ToolBar.Compile :!cc %:S -0 %:r:S<CR>

Now you need to create the icon. For MS-Windows it must be in bitmap format,
with the name "Compile.bmp". For Unix XPM format is used, the file name is
"Compile.xpm". The size must be 18 by 18 pixels. On MS-Windows other sizes
can be used as well, but it will look ugly.

Put the bitmap in the directory "bitmaps" in one of the directories from
'runtimepath'. E.g., for Unix "~/.vim/bitmaps/Compile.xpm".

You can define tooltips for the items in the toolbar. A tooltip is a short
text that explains what a toolbar item will do. For example "Open file". It
appears when the mouse pointer is on the item, without moving for a moment.
This is very useful if the meaning of the picture isn't that obvious.
Example: >

:tmenu ToolBar.Make Run make in the current directory

Note:
Pay attention to the case used. "Toolbar" and "toolbar" are different
from "ToolBar"!

To remove a tooltip, use the |:tunmenu| command.

The 'toolbar' option can be used to display text instead of a bitmap, or both
text and a bitmap. Most people use just the bitmap, since the text takes
gquite a bit of space.

POPUP MENU

The popup menu pops up where the mouse pointer is. On MS-Windows you activate
it by clicking the right mouse button. Then you can select an item with the
left mouse button. On Unix the popup menu is used by pressing and holding the
right mouse button.

The popup menu only appears when the 'mousemodel' has been set to "popup"
or "popup setpos". The difference between the two is that "popup setpos"
moves the cursor to the mouse pointer position. When clicking inside a
selection, the selection will be used unmodified. When there is a selection
but you click outside of it, the selection is removed.

There is a separate popup menu for each mode. Thus there are never grey
items like in the normal menus.

229

.\usr_doc.txt Page 230

What is the meaning of life, the universe and everything? *42%*
Douglas Adams, the only person who knew what this question really was about is

now dead, unfortunately. So now you might wonder what the meaning of death
is...

Next chapter: |usr 43.txt| Using filetypes

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page 231

usr 43.txt For Vim version 7.4. Last change: 2008 Dec 28
VIM USER MANUAL - by Bram Moolenaar

Using filetypes

When you are editing a file of a certain type, for example a C program or a
shell script, you often use the same option settings and mappings. You
qguickly get tired of manually setting these each time. This chapter explains
how to do it automatically.

43.1 Plugins for a filetype
43.2 Adding a filetype

Next chapter:
Previous chapter:
Table of contents:

usr_ 44 .txt Your own syntax highlighted
usr_42.txt Add new menus
usr_toc.txt|

43 . 1 Plugins for a filetype *filetype-plugin*

How to start using filetype plugins has already been discussed here:
|add-filetype-plugin|. But you probably are not satisfied with the default
settings, because they have been kept minimal. Suppose that for C files you
want to set the 'softtabstop' option to 4 and define a mapping to insert a
three-line comment. You do this with only two steps:

your-runtime-dir
1. Create your own runtime directory. On Unix this usually is "~/.vim". 1In
this directory create the "ftplugin" directory: >

mkdir ~/.vim
mkdir ~/.vim/ftplugin

When you are not on Unix, check the value of the 'runtimepath' option to
see where Vim will look for the "ftplugin" directory: >

set runtimepath

< You would normally use the first directory name (before the first comma) .
You might want to prepend a directory name to the 'runtimepath' option in
your |vimrc| file if you don't like the default value.

2. Create the file "~/.vim/ftplugin/c.vim", with the contents: >

setlocal softtabstop=4
noremap <buffer> <LocalLeader>c O/**x**x*kx*kx**<CR><CR>/<Esc>

Try editing a C file. You should notice that the 'softtabstop' option is set
to 4. But when you edit another file it's reset to the default zero. That is
because the ":setlocal" command was used. This sets the 'softtabstop' option
only locally to the buffer. As soon as you edit another buffer, it will be
set to the value set for that buffer. For a new buffer it will get the
default value or the value from the last ":set" command.

Likewise, the mapping for "\c" will disappear when editing another buffer.
The ":map <buffer>" command creates a mapping that is local to the current
buffer. This works with any mapping command: ":map!", ":vmap", etc. The
| <Localleader>| in the mapping is replaced with the value of the
"maplocalleader" wvariable.

You can find examples for filetype plugins in this directory: >
$VIMRUNTIME/ftplugin/

More details about writing a filetype plugin can be found here:
|write-plugin]| .

.\usr_doc.txt Page 232
*43 2% Adding a filetype

If you are using a type of file that is not recognized by Vim, this is how to
get it recognized. You need a runtime directory of your own. See
|your-runtime-dir| above.

Create a file "filetype.vim" which contains an autocommand for your filetype.
(Autocommands were explained in section |40.3|.) Example: >

augroup filetypedetect
au BufNewFile,BufRead *.xyz setf xyz
augroup END

This will recognize all files that end in ".xyz" as the "xyz" filetype. The
":augroup" commands put this autocommand in the "filetypedetect" group. This
allows removing all autocommands for filetype detection when doing ":filetype
off". The "setf" command will set the 'filetype' option to its argument,
unless it was set already. This will make sure that 'filetype' isn't set
twice.

You can use many different patterns to match the name of your file. Directory
names can also be included. See |autocmd-patterns|. For example, the files
under "/usr/share/scripts/" are all "ruby" files, but don't have the expected
file name extension. Adding this to the example above: >

augroup filetypedetect

au BufNewFile,BufRead *.xyz setf xyz
au BufNewFile,BufRead /usr/share/scripts/* setf ruby
augroup END

However, if you now edit a file /usr/share/scripts/README.txt, this is not a
ruby file. The danger of a pattern ending in "*" is that it quickly matches
too many files. To avoid trouble with this, put the filetype.vim file in
another directory, one that is at the end of 'runtimepath'. For Unix for
example, you could use "~/.vim/after/filetype.vim".

You now put the detection of text files in ~/.vim/filetype.vim: >

augroup filetypedetect
au BufNewFile,BufRead *.txt setf text
augroup END

That file is found in 'runtimepath' first. Then use this in
~/.vim/after/filetype.vim, which is found last: >

augroup filetypedetect
au BufNewFile,BufRead /usr/share/scripts/* setf ruby
augroup END

What will happen now is that Vim searches for "filetype.vim" files in each

directory in 'runtimepath'. First ~/.vim/filetype.vim is found. The
autocommand to catch *.txt files is defined there. Then Vim finds the
filetype.vim file in S$VIMRUNTIME, which is halfway 'runtimepath'. Finally

~/.vim/after/filetype.vim is found and the autocommand for detecting ruby
files in /usr/share/scripts is added.

When you now edit /usr/share/scripts/README.txt, the autocommands are
checked in the order in which they were defined. The *.txt pattern matches,
thus "setf text" is executed to set the filetype to "text". The pattern for
ruby matches too, and the "setf ruby" is executed. But since 'filetype' was
already set to "text", nothing happens here.

When you edit the file /usr/share/scripts/foobar the same autocommands are
checked. Only the one for ruby matches and "setf ruby" sets 'filetype' to
ruby.

RECOGNIZING BY CONTENTS
If your file cannot be recognized by its file name, you might be able to
recognize it by its contents. For example, many script files start with a

line like:

#!/bin/xyz ~

.\usr_doc.txt Page 233

To recognize this script create a file "scripts.vim" in your runtime directory
(same place where filetype.vim goes). It might look like this: >

if did filetype ()
finish

endif

if getline (1) =~ '"“#!.*[/\\lxyz\>"
setf xyz

endif

The first check with did filetype() is to avoid that you will check the
contents of files for which the filetype was already detected by the file
name. That avoids wasting time on checking the file when the "setf" command
won't do anything.

The scripts.vim file is sourced by an autocommand in the default
filetype.vim file. Therefore, the order of checks is:

filetype.vim files before SVIMRUNTIME in 'runtimepath'
first part of SVIMRUNTIME/filetype.vim
all scripts.vim files in 'runtimepath'
remainder of S$VIMRUNTIME/filetype.vim
filetype.vim files after $VIMRUNTIME in 'runtimepath'

(G20 SN I O o

If this is not sufficient for you, add an autocommand that matches all files
and sources a script or executes a function to check the contents of the file.

Next chapter: |usr 44.txt| Your own syntax highlighted

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page 234

usr 44 .txt For Vim version 7.4. Last change: 2008 Dec 28
VIM USER MANUAL - by Bram Moolenaar
Your own syntax highlighted
Vim comes with highlighting for a couple of hundred different file types. If
the file you are editing isn't included, read this chapter to find out how to

get this type of file highlighted. Also see |:syn-define| in the reference
manual .

44.1 Basic syntax commands

44 .2 Keywords

44 .3 Matches

44 .4 Regions

44 .5 Nested items

44 .6 Following groups

44 .7 Other arguments

44 .8 Clusters

44.9 Including another syntax file
44.10| Synchronizing

44 .11| Installing a syntax file

44 .12 | Portable syntax file layout

Next chapter: |usr 45.txt Select your language
Previous chapter: |usr 43.txt Using filetypes
Table of contents: |usr toc.txt|

Using an existing syntax file to start with will save you a lot of time. Try
finding a syntax file in $VIMRUNTIME/syntax for a language that is similar.
These files will also show you the normal layout of a syntax file. To
understand it, you need to read the following.

Let's start with the basic arguments. Before we start defining any new
syntax, we need to clear out any old definitions: >

:syntax clear

This isn't required in the final syntax file, but very useful when
experimenting.

There are more simplifications in this chapter. If you are writing a syntax
file to be used by others, read all the way through the end to find out the
details.
LISTING DEFINED ITEMS
To check which syntax items are currently defined, use this command: >
:syntax
You can use this to check which items have actually been defined. Quite
useful when you are experimenting with a new syntax file. It also shows the
colors used for each item, which helps to find out what is what.
To list the items in a specific syntax group use: >
:syntax list {group-name}
This also can be used to list clusters (explained in [44.8]). Just include
the @ in the name.

MATCHING CASE

Some languages are not case sensitive, such as Pascal. Others, such as C, are

.\usr_doc.txt Page 235

case sensitive. You need to tell which type you have with the following
commands: >

:syntax case match

:syntax case ignore

The "match" argument means that Vim will match the case of syntax elements.

Therefore, "int" differs from "Int" and "INT". If the "ignore" argument is

used, the following are equivalent: "Procedure", "PROCEDURE" and "procedure".
The ":syntax case" commands can appear anywhere in a syntax file and affect

the syntax definitions that follow. In most cases, you have only one ":syntax

case" command in your syntax file; if you work with an unusual language that
contains both case-sensitive and non-case-sensitive elements, however, you can
scatter the ":syntax case" command throughout the file.

The most basic syntax elements are keywords. To define a keyword, use the
following form: >

:syntax keyword {group} {keyword}

The {group} is the name of a syntax group. With the ":highlight" command you
can assign colors to a {group}. The {keyword} argument is an actual keyword.
Here are a few examples: >

:syntax keyword xType int long char
:syntax keyword xStatement if then else endif

This example uses the group names "xType" and "xStatement". By convention,
each group name is prefixed by the filetype for the language being defined.
This example defines syntax for the x language (eXample language without an

interesting name). In a syntax file for "csh" scripts the name "cshType"
would be used. Thus the prefix is equal to the value of 'filetype'.

These commands cause the words "int", "long" and "char" to be highlighted
one way and the words "if", "then", "else" and "endif" to be highlighted

another way. Now you need to connect the x group names to standard Vim
names. You do this with the following commands: >

:highlight 1link xType Type
:highlight link xStatement Statement

This tells Vim to highlight "xType" like "Type" and "xStatement" like
"Statement". See |group-name| for the standard names.

UNUSUAL KEYWORDS

The characters used in a keyword must be in the 'iskeyword' option. If you
use another character, the word will never match. Vim doesn't give a warning
message for this.
The x language uses the '-' character in keywords. This is how it's done:
>
:setlocal iskeyword+=-
:syntax keyword xStatement when-not

The ":setlocal" command is used to change 'iskeyword' only for the current
buffer. Still it does change the behavior of commands like "w" and "*". If
that is not wanted, don't define a keyword but use a match (explained in the
next section).

The x language allows for abbreviations. For example, "next" can be
abbreviated to "n", "ne" or "nex". You can define them by using this command:
>

:syntax keyword xStatement n[ext]

This doesn't match "nextone", keywords always match whole words only.

.\usr_doc.txt Page 236

Consider defining something a bit more complex. You want to match ordinary
identifiers. To do this, you define a match syntax item. This one matches
any word consisting of only lowercase letters: >

:syntax match xIdentifier /\<\1\+\>/

Note:

Keywords overrule any other syntax item. Thus the keywords "if",
"then", etc., will be keywords, as defined with the ":syntax keyword"
commands above, even though they also match the pattern for
xIdentifier.

The part at the end is a pattern, like it's used for searching. The // is
used to surround the pattern (like how it's done in a ":substitute" command) .
You can use any other character, like a plus or a quote.

Now define a match for a comment. In the x language it is anything from # to
the end of a line: >

:syntax match xComment /#.%*/

Since you can use any search pattern, you can highlight very complex things
with a match item. See |pattern| for help on search patterns.

In the example x language, strings are enclosed in double quotation marks (").
To highlight strings you define a region. You need a region start (double
quote) and a region end (double gquote). The definition is as follows: >

:syntax region xString start=/"/ end=/"/

The "start" and "end" directives define the patterns used to find the start
and end of the region. But what about strings that look like this?

"A string with a double quote (\") in it" ~

This creates a problem: The double quotation marks in the middle of the string
will end the region. You need to tell Vim to skip over any escaped double
quotes in the string. Do this with the skip keyword: >

:syntax region xString start=/"/ skip=/\\"/ end=/"/

The double backslash matches a single backslash, since the backslash is a
special character in search patterns.

When to use a region instead of a match? The main difference is that a match
item is a single pattern, which must match as a whole. A region starts as
soon as the "start" pattern matches. Whether the "end" pattern is found or
not doesn't matter. Thus when the item depends on the "end" pattern to match,
you cannot use a region. Otherwise, regions are often simpler to define. And
it is easier to use nested items, as is explained in the next section.

Take a look at this comment:
$Get input TODO: Skip white space ~

You want to highlight TODO in big yellow letters, even though it is in a
comment that is highlighted blue. To let Vim know about this, you define the
following syntax groups: >

:syntax keyword xTodo TODO contained
:syntax match xComment /%.*/ contains=xTodo

In the first line, the "contained" argument tells Vim that this keyword can
exist only inside another syntax item. The next line has "contains=xTodo".
This indicates that the xTodo syntax element is inside it. The result is that

.\usr_doc.txt Page 237

the comment line as a whole is matched with "xComment" and made blue. The
word TODO inside it is matched by xTodo and highlighted yellow (highlighting
for xTodo was setup for this).

RECURSIVE NESTING

The x language defines code blocks in curly braces. 2And a code block may
contain other code blocks. This can be defined this way: >

:syntax region xBlock start=/{/ end=/}/ contains=xBlock
Suppose you have this text:

while 1 < b { -~
if a { ~

} o~
b~

First a xBlock starts at the { in the first line. 1In the second line another
{ is found. Since we are inside a xBlock item, and it contains itself, a
nested xBlock item will start here. Thus the "b = ¢" line is inside the
second level xBlock region. Then a } is found in the next line, which matches
with the end pattern of the region. This ends the nested xBlock. Because the
} is included in the nested region, it is hidden from the first xBlock region.
Then at the last } the first xBlock region ends.

KEEPING THE END
Consider the following two syntax items: >

:syntax region xComment start=/%/ end=/$/ contained
:syntax region xPreProc start=/#/ end=/$/ contains=xComment

You define a comment as anything from % to the end of the line. A
preprocessor directive is anything from # to the end of the line. Because you
can have a comment on a preprocessor line, the preprocessor definition
includes a "contains=xComment" argument. Now look what happens with this
text:

Y % Comment text ~

#define X =
= 1; ~

int foo

What you see is that the second line is also highlighted as xPreProc. The
preprocessor directive should end at the end of the line. That is why
you have used "end=/$/". So what is going wrong?

The problem is the contained comment. The comment starts with % and ends
at the end of the line. After the comment ends, the preprocessor syntax
continues. This is after the end of the line has been seen, so the next
line is included as well.

To avoid this problem and to avoid a contained syntax item eating a needed
end of line, use the "keepend" argument. This takes care of
the double end-of-line matching: >

:syntax region xComment start=/%/ end=/$/ contained
:syntax region xPreProc start=/#/ end=/$/ contains=xComment keepend
CONTAINING MANY ITEMS

You can use the contains argument to specify that everything can be contained.
For example: >

:syntax region xList start=/\I[/ end=/\]/ contains=ALL

All syntax items will be contained in this one. It also contains itself, but
not at the same position (that would cause an endless loop) .

You can specify that some groups are not contained. Thus contain all
groups but the ones that are listed:

.\usr_doc.txt Page 238

>
:syntax region xList start=/\I[/ end=/\]/ contains=ALLBUT,xString

With the "TOP" item you can include all items that don't have a "contained"
argument. "CONTAINED" is used to only include items with a "contained"
argument. See |:syn-contains| for the details.

The x language has statements in this form:
if (condition) then ~

You want to highlight the three items differently. But " (condition)" and
"then" might also appear in other places, where they get different
highlighting. This is how you can do this: >

:syntax match xIf /if/ nextgroup=xIfCondition skipwhite
:syntax match xIfCondition /([*)]*)/ contained nextgroup=xThen skipwhite
:syntax match xThen /then/ contained

The "nextgroup" argument specifies which item can come next. This is not
required. If none of the items that are specified are found, nothing happens.
For example, in this text:

if not (condition) then ~

The "if" is matched by xIf. "not" doesn't match the specified nextgroup
xIfCondition, thus only the "if" is highlighted.

The "skipwhite" argument tells Vim that white space (spaces and tabs) may
appear in between the items. Similar arguments are "skipnl", which allows a
line break in between the items, and "skipempty", which allows empty lines.
Notice that "skipnl" doesn't skip an empty line, something must match after
the line break.

44 .7 Other arguments
MATCHGROUP

When you define a region, the entire region is highlighted according to the
group name specified. To highlight the text enclosed in parentheses () with
the group xInside, for example, use the following command: >

:syntax region xInside start=/(/ end=/)/

Suppose, that you want to highlight the parentheses differently. You can do
this with a lot of convoluted region statements, or you can use the
"matchgroup" argument. This tells Vim to highlight the start and end of a
region with a different highlight group (in this case, the xParen group): >

:syntax region xInside matchgroup=xParen start=/(/ end=/)/
The "matchgroup" argument applies to the start or end match that comes after
it. In the previous example both start and end are highlighted with xParen.

To highlight the end with xParenEnd: >

:syntax region xInside matchgroup=xParen start=/(/
\ matchgroup=xParenEnd end=/)/

A side effect of using "matchgroup" is that contained items will not match in
the start or end of the region. The example for "transparent" uses this.

TRANSPARENT
In a C language file you would like to highlight the () text after a "while"
differently from the () text after a "for". 1In both of these there can be

nested () items, which should be highlighted in the same way. You must make

.\usr_doc.txt Page 239

sure the () highlighting stops at the matching). This is one way to do this:
>
:syntax region cWhile matchgroup=cWhile start=/while\s* (/ end=/)/
\ contains=cCondNest
:syntax region cFor matchgroup=cFor start=/for\s*(/ end=/)/
\ contains=cCondNest
:syntax region cCondNest start=/(/ end=/)/ contained transparent

Now you can give cWhile and cFor different highlighting. The cCondNest item
can appear in either of them, but take over the highlighting of the item it is
contained in. The "transparent" argument causes this.

Notice that the "matchgroup" argument has the same group as the item
itself. Why define it then? Well, the side effect of using a matchgroup is
that contained items are not found in the match with the start item then.

This avoids that the cCondNest group matches the (just after the "while" or
"for". TIf this would happen, it would span the whole text until the matching
) and the region would continue after it. Now cCondNest only matches after
the match with the start pattern, thus after the first (.

OFFSETS

Suppose you want to define a region for the text between (and) after an
"if". But you don't want to include the "if" or the (and). You can do this
by specifying offsets for the patterns. Example: >

:syntax region xCond start=/if\s* (/ms=e+1 end=/)/me=s-1

The offset for the start pattern is "ms=e+1l". "ms" stands for Match Start.
This defines an offset for the start of the match. Normally the match starts
where the pattern matches. "e+1l" means that the match now starts at the end
of the pattern match, and then one character further.

The offset for the end pattern is "me=s-1". "me" stands for Match End.
"s-1" means the start of the pattern match and then one character back. The
result is that in this text:

if (foo == bar) -~
Only the text "foo == bar" will be highlighted as xCond.
More about offsets here: |:syn-pattern-offset].

ONELINE

The "oneline" argument indicates that the region does not cross a line
boundary. For example: >

:syntax region xIfThen start=/if/ end=/then/ oneline

This defines a region that starts at "if" and ends at "then". But if there is
no "then" after the "if", the region doesn't match.
Note:

When using "oneline" the region doesn't start if the end pattern
doesn't match in the same line. Without "oneline" Vim does not
check if there is a match for the end pattern. The region starts even
when the end pattern doesn't match in the rest of the file.

CONTINUATION LINES AND AVOIDING THEM

Things now become a little more complex. Let's define a preprocessor line.
This starts with a # in the first column and continues until the end of the
line. A line that ends with \ makes the next line a continuation line. The
way you handle this is to allow the syntax item to contain a continuation
pattern: >

:syntax region xPreProc start=/"#/ end=/$/ contains=xLineContinue
:syntax match xLineContinue "\\$" contained

.\usr_doc.txt Page 240

In this case, although xPreProc normally matches a single line, the group
contained in it (namely xLineContinue) lets it go on for more than one line.
For example, it would match both of these lines:

#define SPAM spam spam spam \ ~
bacon and spam ~

In this case, this is what you want. If it is not what you want, you can call
for the region to be on a single line by adding "excludenl" to the contained
pattern. For example, you want to highlight "end" in xPreProc, but only at
the end of the line. To avoid making the xPreProc continue on the next line,
like xLineContinue does, use "excludenl" like this: >

:syntax region xPreProc start=/"#/ end=/$/

\ contains=xLineContinue,xPreProcEnd
:syntax match xPreProcEnd excludenl /end$/ contained
:syntax match xLineContinue "\\$" contained

"excludenl" must be placed before the pattern. Since "xLineContinue" doesn't
have "excludenl", a match with it will extend xPreProc to the next line as
before.

One of the things you will notice as you start to write a syntax file is that
you wind up generating a lot of syntax groups. Vim enables you to define a
collection of syntax groups called a cluster.

Suppose you have a language that contains for loops, i1f statements, while
loops, and functions. Each of them contains the same syntax elements: numbers
and identifiers. You define them like this: >

:syntax match xFor /“for.*/ contains=xNumber,xIdent
:syntax match xIf /*if.*/ contains=xNumber,xIdent
:syntax match xWhile /*while.*/ contains=xNumber,xIdent

You have to repeat the same "contains=" every time. If you want to add
another contained item, you have to add it three times. Syntax clusters
simplify these definitions by enabling you to have one cluster stand for
several syntax groups.

To define a cluster for the two items that the three groups contain, use
the following command: >

:syntax cluster xState contains=xNumber,xIdent

Clusters are used inside other syntax items just like any syntax group.
Their names start with @. Thus, you can define the three groups like this: >

:syntax match xFor /“for.*/ contains=@xState
:syntax match xIf /%if.*/ contains=@xState
:syntax match xWhile /*while.*/ contains=@xState
You can add new group names to this cluster with the "add" argument: >
:syntax cluster xState add=xString

You can remove syntax groups from this list as well: >

:syntax cluster xState remove=xNumber

*44 9% TIncluding another syntax file

The C++ language syntax 1s a superset of the C language. Because you do not
want to write two syntax files, you can have the C++ syntax file read in the
one for C by using the following command: >

:runtime! syntax/c.vim

The ":runtime!" command searches 'runtimepath' for all "syntax/c.vim" files.
This makes the C parts of the C++ syntax be defined like for C files. If you

.\usr_doc.txt Page 241

have replaced the c.vim syntax file, or added items with an extra file, these
will be loaded as well.

After loading the C syntax items the specific C++ items can be defined.
For example, add keywords that are not used in C: >

:syntax keyword cppStatement new delete this friend using
This works just like in any other syntax file.

Now consider the Perl language. A Perl script consists of two distinct parts:
a documentation section in POD format, and a program written in Perl itself.
The POD section starts with "=head" and ends with "=cut".

You want to define the POD syntax in one file, and use it from the Perl
syntax file. The ":syntax include" command reads in a syntax file and stores
the elements it defined in a syntax cluster. For Perl, the statements are as
follows: >

:syntax include @Pod <sfile>:p:h/pod.vim
:syntax region perlPOD start=/"=head/ end=/"=cut/ contains=@Pod

When "=head" is found in a Perl file, the perlPOD region starts. In this
region the @Pod cluster is contained. All the items defined as top-level
items in the pod.vim syntax files will match here. When "=cut" is found, the
region ends and we go back to the items defined in the Perl file.

The ":syntax include" command is clever enough to ignore a ":syntax clear"
command in the included file. And an argument such as "contains=ALL" will
only contain items defined in the included file, not in the file that includes
it.

The "<sfile>:p:h/" part uses the name of the current file (<sfile>),
expands it to a full path (:p) and then takes the head (:h). This results in
the directory name of the file. This causes the pod.vim file in the same
directory to be included.

44 .10 Synchronizing

Compilers have it easy. They start at the beginning of a file and parse it
straight through. Vim does not have it so easy. It must start in the middle,

where the editing is being done. So how does it tell where it is?
The secret is the ":syntax sync" command. This tells Vim how to figure out
where it is. For example, the following command tells Vim to scan backward

for the beginning or end of a C-style comment and begin syntax coloring from
there: >

:syntax sync ccomment

You can tune this processing with some arguments. The "minlines" argument
tells Vim the minimum number of lines to look backward, and "maxlines" tells
the editor the maximum number of lines to scan.

For example, the following command tells Vim to look at least 10 lines
before the top of the screen: >

:syntax sync ccomment minlines=10 maxlines=500

If it cannot figure out where it is in that space, it starts looking farther
and farther back until it figures out what to do. But it looks no farther
back than 500 lines. (A large "maxlines" slows down processing. A small one
might cause synchronization to fail.)

To make synchronizing go a bit faster, tell Vim which syntax items can be
skipped. Every match and region that only needs to be used when actually
displaying text can be given the "display" argument.

By default, the comment to be found will be colored as part of the Comment
syntax group. If you want to color things another way, you can specify a
different syntax group: >

:syntax sync ccomment xAltComment

If your programming language does not have C-style comments in it, you can try
another method of synchronization. The simplest way is to tell Vim to space
back a number of lines and try to figure out things from there. The following
command tells Vim to go back 150 lines and start parsing from there: >

.\usr_doc.txt Page 242

:syntax sync minlines=150

A large "minlines" value can make Vim slower, especially when scrolling
backwards in the file.
Finally, you can specify a syntax group to look for by using this command:

:syntax sync match {sync-group-name}
\ grouphere {group-name} {pattern}

This tells Vim that when it sees {pattern} the syntax group named {group-name}
begins just after the pattern given. The {sync-group-name} is used to give a
name to this synchronization specification. For example, the sh scripting
language begins an if statement with "if" and ends it with "fi":

if [--f file.txt] ; then ~
echo "File exists" ~
fi ~

To define a "grouphere" directive for this syntax, you use the following
command: >

:syntax sync match shIfSync grouphere shIf "\<if\>"

The "groupthere" argument tells Vim that the pattern ends a group. For
example, the end of the if/fi group is as follows: >

:syntax sync match shIfSync groupthere NONE "\<fi\>"

In this example, the NONE tells Vim that you are not in any special syntax
region. In particular, you are not inside an if block.

You also can define matches and regions that are with no "grouphere" or
"groupthere" arguments. These groups are for syntax groups skipped during
synchronization. For example, the following skips over anything inside {},
even if it would normally match another synchronization method: >

:syntax sync match xSpecial /{.*}/

More about synchronizing in the reference manual: |:syn-sync]|.

44 .11 Installing a syntax file

When your new syntax file is ready to be used, drop it in a "syntax" directory
in 'runtimepath'. For Unix that would be "~/.vim/syntax".

The name of the syntax file must be equal to the file type, with ".vim"
added. Thus for the x language, the full path of the file would be:

~/.vim/syntax/x.vim ~
You must also make the file type be recognized. See [43.2].

If your file works well, you might want to make it available to other Vim
users. First read the next section to make sure your file works well for
others. Then e-mail it to the Vim maintainer: <maintainer@vim.orgs>. Also
explain how the filetype can be detected. With a bit of luck your file will
be included in the next Vim version!

ADDING TO AN EXISTING SYNTAX FILE

We were assuming you were adding a completely new syntax file. When an existing
syntax file works, but is missing some items, you can add items in a separate
file. That avoids changing the distributed syntax file, which will be lost
when installing a new version of Vim.

Write syntax commands in your file, possibly using group names from the
existing syntax. For example, to add new variable types to the C syntax file:
>

:syntax keyword cType off t uint

.\usr_doc.txt Page 243

Write the file with the same name as the original syntax file. 1In this case
"c.vim". Place it in a directory near the end of 'runtimepath'. This makes
it loaded after the original syntax file. For Unix this would be:

~/.vim/after/syntax/c.vim ~

44 12 Portable syntax file layout

Wouldn't it be nice i1f all Vim users exchange syntax files? To make this
possible, the syntax file must follow a few guidelines.

Start with a header that explains what the syntax file is for, who maintains
it and when it was last updated. Don't include too much information about
changes history, not many people will read it. Example: >

" Vim syntax file

" Language: c

" Maintainer: Bram Moolenaar <Bram@vim.orgs
" Last Change: 2001 Jun 18

" Remark: Included by the C++ syntax.

Use the same layout as the other syntax files. Using an existing syntax file
as an example will save you a lot of time.

Choose a good, descriptive name for your syntax file. Use lowercase letters
and digits. Don't make it too long, it is used in many places: The name of
the syntax file "name.vim", 'filetype', b:current syntax and the start of each
syntax group (nameType, nameStatement, nameString, etc).

Start with a check for "b:current syntax". If it is defined, some other
syntax file, earlier in 'runtimepath' was already loaded: >

if exists("b:current syntax")
finish
endif

To be compatible with Vim 5.8 use: >

if version < 600
syntax clear

elseif exists("b:current syntax")
finish

endif

Set "b:current syntax" to the name of the syntax at the end. Don't forget
that included files do this too, you might have to reset "b:current syntax" if
you include two files.

If you want your syntax file to work with Vim 5.x, add a check for v:version.
See yacc.vim for an example.

Do not include anything that is a user preference. Don't set 'tabstop',
'expandtab', etc. These belong in a filetype plugin.

Do not include mappings or abbreviations. Only include setting 'iskeyword' if
it is really necessary for recognizing keywords.

To allow users select their own preferred colors, make a different group name
for every kind of highlighted item. Then link each of them to one of the
standard highlight groups. That will make it work with every color scheme.
If you select specific colors it will look bad with some color schemes. And
don't forget that some people use a different background color, or have only
eight colors available.

For the linking use "hi def 1link", so that the user can select different
highlighting before your syntax file is loaded. Example: >

hi def link nameString String
hi def link nameNumber Number
hi def link nameCommand Statement

.\usr_doc.txt Page 244

etc

Add the "display" argument to items that are not used when syncing, to speed
up scrolling backwards and CTRL-L.

Next chapter: |usr 45.txt| Select your language

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page

usr 45.txt For Vim version 7.4. Last change: 2008 Nov 15
VIM USER MANUAL - by Bram Moolenaar
Select your language
The messages in Vim can be given in several languages. This chapter explains

how to change which one is used. Also, the different ways to work with files
in various languages is explained.

45.1 Language for Messages

45.2 Language for Menus

45.3 Using another encoding

45.4 Editing files with a different encoding
45.5 Entering language text

Next chapter:
Previous chapter:
Table of contents:

usr 90.txt Installing Vim
usr_ 44 .txt Your own syntax highlighted
usr_ toc.txt|

When you start Vim, it checks the environment to find out what language you
are using. Mostly this should work fine, and you get the messages in your
language (if they are available). To see what the current language is, use
this command: >

:language

If it replies with "C", this means the default is being used, which is
English.

Note:

Using different languages only works when Vim was compiled to handle
it. To find out if it works, use the ":version" command and check the
output for "+gettext" and "+multi lang". If they are there, you are

OK. If you see "-gettext" or "-multi lang" you will have to find
another Vim.

What if you would like your messages in a different language? There are
several ways. Which one you should use depends on the capabilities of your
system.

The first way is to set the environment to the desired language before
starting Vim. Example for Unix: >

env LANG=de DE.ISO 8859-1 wvim

This only works if the language is available on your system. The advantage is
that all the GUI messages and things in libraries will use the right language

as well. A disadvantage is that you must do this before starting vim. If you
want to change language while Vim is running, you can use the second method: >

:language fr FR.ISO_8859-1

This way you can try out several names for your language. You will get an
error message when it's not supported on your system. You don't get an error
when translated messages are not available. Vim will silently fall back to
using English.

To find out which languages are supported on your system, find the
directory where they are listed. On my system it is "/usr/share/locale". On
some systems it's in "/usr/lib/locale". The manual page for "setlocale"
should give you a hint where it is found on your system.

Be careful to type the name exactly as it should be. Upper and lowercase
matter, and the '-' and ' ' characters are easily confused.

You can also set the language separately for messages, edited text and the
time format. See |:language].

245

.\usr_doc.txt Page 246

DO-IT-YOURSELF MESSAGE TRANSLATION

If translated messages are not available for your language, you could write
them yourself. To do this, get the source code for Vim and the GNU gettext
package. After unpacking the sources, instructions can be found in the
directory src/po/README. txt.

It's not too difficult to do the translation. You don't need to be a
programmer. You must know both English and the language you are translating
to, of course.

When you are satisfied with the translation, consider making it available
to others. Upload it at vim-online (http://vim.sf.net) or e-mail it to
the Vim maintainer <maintainer@vim.org>. Or both.

The default menus are in English. To be able to use your local language, they
must be translated. Normally this is automatically done for you if the
environment is set for your language, just like with messages. You don't need
to do anything extra for this. But it only works if translations for the
language are available.

Suppose you are in Germany, with the language set to German, but prefer to
use "File" instead of "Datei". You can switch back to using the English menus
this way: >

:set langmenu=none
It is also possible to specify a language: >
:set langmenu=nl NL.ISO 8859-1

Like above, differences between "-" and " " matter. However, upper/lowercase
differences are ignored here.

The 'langmenu' option must be set before the menus are loaded. Once the
menus have been defined changing 'langmenu' has no direct effect. Therefore,
put the command to set 'langmenu' in your vimrc file.

If you really want to switch menu language while running Vim, you can do it
this way: >

:source SVIMRUNTIME/delmenu.vim
:set langmenu=de DE.ISO 8859-1
:source S$VIMRUNTIME/menu.vim

There is one drawback: All menus that you defined yourself will be gone. You

will need to redefine them as well.

DO-IT-YOURSELF MENU TRANSLATION

To see which menu translations are available, look in this directory:
SVIMRUNTIME/lang ~

The files are called menu {language}.vim. If you don't see the language you

want to use, you can do your own translations. The simplest way to do this is
by copying one of the existing language files, and change it.

First find out the name of your language with the ":language" command. Use
this name, but with all letters made lowercase. Then copy the file to your
own runtime directory, as found early in 'runtimepath'. For example, for Unix

you would do: >

:lcp SVIMRUNTIME/lang/menu ko kr.euckr.vim ~/.vim/lang/menu nl be.iso 8859-1
.vim

You will find hints for the translation in "$VIMRUNTIME/lang/README.txt".

Vim guesses that the files you are going to edit are encoded for your

.\usr_doc.txt Page 247

language. For many European languages this is "latinl". Then each byte is
one character. That means there are 256 different characters possible. For
Asian languages this is not sufficient. These mostly use a double-byte

encoding, providing for over ten thousand possible characters. This still
isn't enough when a text is to contain several different languages. This is
where Unicode comes in. It was designed to include all characters used in
commonly used languages. This is the "Super encoding that replaces all
others". But it isn't used that much yet.

Fortunately, Vim supports these three kinds of encodings. And, with some
restrictions, you can use them even when your environment uses another
language than the text.

Nevertheless, when you only edit files that are in the encoding of your
language, the default should work fine and you don't need to do anything. The
following is only relevant when you want to edit different languages.

Note:

Using different encodings only works when Vim was compiled to handle
it. To find out if it works, use the ":version" command and check the
output for "+multi byte". TIf it's there, you are OK. If you see
"-multi byte" you will have to find another Vim.

USING UNICODE IN THE GUI

The nice thing about Unicode is that other encodings can be converted to it
and back without losing information. When you make Vim use Unicode
internally, you will be able to edit files in any encoding.

Unfortunately, the number of systems supporting Unicode is still limited.
Thus it's unlikely that your language uses it. You need to tell Vim you want
to use Unicode, and how to handle interfacing with the rest of the system.

Let's start with the GUI version of Vim, which is able to display Unicode
characters. This should work: >

:set encoding=utf-8
:set guifont=-misc-fixed-medium-r-normal--18-120-100-100-c-90-1s010646-1

The 'encoding' option tells Vim the encoding of the characters that you use.
This applies to the text in buffers (files you are editing), registers, Vim
script files, etc. You can regard 'encoding' as the setting for the internals
of Vim.

This example assumes you have this font on your system. The name in the
example is for the X Window System. This font is in a package that is used to
enhance xterm with Unicode support. If you don't have this font, you might
find it here:

http://www.cl.cam.ac.uk/~mgk25/download/ucs-fonts.tar.gz ~

For MS-Windows, some fonts have a limited number of Unicode characters. Try
using the "Courier New" font. You can use the Edit/Select Font... menu to
select and try out the fonts available. Only fixed-width fonts can be used
though. Example: >

:set guifont=courier new:hl2

If it doesn't work well, try getting a fontpack. If Microsoft didn't move it,
you can find it here:

http://www.microsoft.com/typography/fonts/default.aspx ~

Now you have told Vim to use Unicode internally and display text with a
Unicode font. Typed characters still arrive in the encoding of your original
language. This requires converting them to Unicode. Tell Vim the language
from which to convert with the 'termencoding' option. You can do it like
this: >

:let &termencoding = &encoding
:set encoding=utf-8

This assigns the old value of 'encoding' to 'termencoding' before setting
'encoding' to utf-8. You will have to try out if this really works for your
setup. It should work especially well when using an input method for an Asian

.\usr_doc.txt Page 2438

language, and you want to edit Unicode text.

USING UNICODE IN A UNICODE TERMINAL

There are terminals that support Unicode directly. The standard xterm that
comes with XFree86 is one of them. Let's use that as an example.

First of all, the xterm must have been compiled with Unicode support. See
|UTF8-xterm| how to check that and how to compile it when needed.

Start the xterm with the "-u8" argument. You might also need so specify a
font. Example: >

xterm -u8 -fn -misc-fixed-medium-r-normal--18-120-100-100-c-90-1s010646-1

Now you can run Vim inside this terminal. Set 'encoding' to "utf-8" as
before. That's all.

USING UNICODE IN AN ORDINARY TERMINAL

Suppose you want to work with Unicode files, but don't have a terminal with
Unicode support. You can do this with Vim, although characters that are not
supported by the terminal will not be displayed. The layout of the text
will be preserved. >

:let &termencoding = &encoding
:set encoding=utf-8

This is the same as what was used for the GUI. But it works differently: Vim
will convert the displayed text before sending it to the terminal. That
avoids that the display is messed up with strange characters.

For this to work the conversion between 'termencoding' and 'encoding' must
be possible. Vim will convert from latinl to Unicode, thus that always works.
For other conversions the |+iconv| feature is required.

Try editing a file with Unicode characters in it. You will notice that Vim
will put a question mark (or underscore or some other character) in places
where a character should be that the terminal can't display. Move the cursor
to a question mark and use this command: >

ga

Vim will display a line with the code of the character. This gives you a hint
about what character it is. You can look it up in a Unicode table. You could
actually view a file that way, if you have lots of time at hand.

Note:

Since 'encoding' is used for all text inside Vim, changing it makes
all non-ASCII text invalid. You will notice this when using registers
and the 'viminfo' file (e.g., a remembered search pattern). It's
recommended to get 'encoding' in your vimrc file, and leave it alone.

45.4 Editing files with a different encoding

Suppose you have setup Vim to use Unicode, and you want to edit a file that is
in 16-bit Unicode. Sounds simple, right? Well, Vim actually uses utf-8
encoding internally, thus the 16-bit encoding must be converted, since there
is a difference between the character set (Unicode) and the encoding (utf-8 or
16-bit) .

Vim will try to detect what kind of file you are editing. It uses the
encoding names in the 'fileencodings' option. When using Unicode, the default
value is: "ucs-bom,utf-8,latinl". This means that Vim checks the file to see
if it's one of these encodings:

ucs-bom File must start with a Byte Order Mark (BOM). This
allows detection of 16-bit, 32-bit and utf-8 Unicode
encodings.

utf-8 utf-8 Unicode. This is rejected when a sequence of

bytes is illegal in utf-8.
latinl The good old 8-bit encoding. Always works.

.\usr_doc.txt Page 249

When you start editing that 16-bit Unicode file, and it has a BOM, Vim will
detect this and convert the file to utf-8 when reading it. The 'fileencoding'
option (without s at the end) is set to the detected value. In this case it
is "utf-161le". That means it's Unicode, 16-bit and little-endian. This
file format is common on MS-Windows (e.g., for registry files).

When writing the file, Vim will compare 'fileencoding' with 'encoding'. If
they are different, the text will be converted.

An empty value for 'fileencoding' means that no conversion is to be done.
Thus the text is assumed to be encoded with 'encoding'.

If the default 'fileencodings' value is not good for you, set it to the
encodings you want Vim to try. Only when a value is found to be invalid will
the next one be used. Putting "latinl" first doesn't work, because it is
never illegal. An example, to fall back to Japanese when the file doesn't
have a BOM and isn't utf-8: >

:set fileencodings=ucs-bom,utf-8,sjis

See |encoding-values| for suggested values. Other values may work as well.
This depends on the conversion available.

FORCING AN ENCODING

If the automatic detection doesn't work you must tell Vim what encoding the
file is. Example: >

:edit ++enc=koi8-r russian.txt

The "++enc" part specifies the name of the encoding to be used for this file
only. Vim will convert the file from the specified encoding, Russian in this
example, to 'encoding'. ‘'fileencoding' will also be set to the specified
encoding, so that the reverse conversion can be done when writing the file.

The same argument can be used when writing the file. This way you can
actually use Vim to convert a file. Example: >

:write ++enc=utf-8 russian.txt

Note:

Conversion may result in lost characters. Conversion from an encoding
to Unicode and back is mostly free of this problem, unless there are
illegal characters. Conversion from Unicode to other encodings often
loses information when there was more than one language in the file.

*45.5% Entering language text

Computer keyboards don't have much more than a hundred keys. Some languages
have thousands of characters, Unicode has over hundred thousand. So how do
you type these characters?

First of all, when you don't use too many of the special characters, you
can use digraphs. This was already explained in [24.9].

When you use a language that uses many more characters than keys on your
keyboard, you will want to use an Input Method (IM). This requires learning
the translation from typed keys to resulting character. When you need an IM
you probably already have one on your system. It should work with Vim like
with other programs. For details see |mbyte-XIM| for the X Window system and
|mbyte-IME| for MS-Windows.

KEYMAPS
For some languages the character set is different from latin, but uses a
similar number of characters. It's possible to map keys to characters. Vim
uses keymaps for this.

Suppose you want to type Hebrew. You can load the keymap like this: >

:set keymap=hebrew

Vim will try to find a keymap file for you. This depends on the value of
'encoding'. If no matching file was found, you will get an error message.

.\usr_doc.txt Page 250

Now you can type Hebrew in Insert mode. In Normal mode, and when typing a ":"
command, Vim automatically switches to English. You can use this command to
switch between Hebrew and English: >

CTRL-"

This only works in Insert mode and Command-line mode. In Normal mode it does
something completely different (jumps to alternate file).

The usage of the keymap is indicated in the mode message, if you have the
'showmode' option set. In the GUI Vim will indicate the usage of keymaps with
a different cursor color.

You can also change the usage of the keymap with the 'iminsert' and
'imsearch' options.

To see the list of mappings, use this command: >
:1lmap

To find out which keymap files are available, in the GUI you can use the
Edit/Keymap menu. Otherwise you can use this command: >

:echo globpath (&rtp, "keymap/*.vim")

DO-IT-YOURSELF KEYMAPS

You can create your own keymap file. It's not very difficult. Start with
a keymap file that is similar to the language you want to use. Copy it to the
"keymap" directory in your runtime directory. For example, for Unix, you
would use the directory "~/.vim/keymap".

The name of the keymap file must look like this:

keymap/{name}.vim ~
or
keymap/{name} {encoding}.vim ~

{name} is the name of the keymap. Chose a name that is obvious, but different
from existing keymaps (unless you want to replace an existing keymap file).
{name} cannot contain an underscore. Optionally, add the encoding used after
an underscore. Examples:

keymap/hebrew.vim ~
keymap/hebrew utf-8.vim ~

The contents of the file should be self-explanatory. Look at a few of the
keymaps that are distributed with Vim. For the details, see |mbyte-keymap].

LAST RESORT

If all other methods fail, you can enter any character with CTRL-V:

encoding type range -~

8-bit CTRL-V 123 decimal 0-255

8-bit CTRL-V x al hexadecimal 00-ff

16-bit CTRL-V u 013Db hexadecimal 0000-ffff

31-bit CTRL-V U 001303a4 hexadecimal 00000000-7fffffff

Don't type the spaces. See |1 CTRL-V digit| for the details.

Next chapter: |usr 90.txt| Installing Vim

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

.\usr_doc.txt Page 251

usr 90.txt For Vim version 7.4. Last change: 2008 Sep 10
VIM USER MANUAL - by Bram Moolenaar
Installing Vim
install#
Before you can use Vim you have to install it. Depending on your system it's

simple or easy. This chapter gives a few hints and also explains how
upgrading to a new version is done.

90.1 Unix

90.2 MS-Windows

90.3 Upgrading

90.4 Common installation issues

90.5 Uninstalling Vim

Previous chapter: |usr 45.txt| Select your language

Table of contents: |usr toc.txt|

First you have to decide if you are going to install Vim system-wide or for a
single user. The installation is almost the same, but the directory where Vim
is installed in differs.

For a system-wide installation the base directory "/usr/local" is often
used. But this may be different for your system. Try finding out where other
packages are installed.

When installing for a single user, you can use your home directory as the
base. The files will be placed in subdirectories like "bin" and "shared/vim".

FROM A PACKAGE

You can get precompiled binaries for many different UNIX systems. There is a
long list with links on this page:

http://www.vim.org/binaries.html ~

Volunteers maintain the binaries, so they are often out of date. It is a
good idea to compile your own UNIX version from the source. Also, creating
the editor from the source allows you to control which features are compiled.
This does require a compiler though.

If you have a Linux distribution, the "vi" program is probably a minimal
version of Vim. It doesn't do syntax highlighting, for example. Try finding
another Vim package in your distribution, or search on the web site.

FROM SOURCES
To compile and install Vim, you will need the following:

- A C compiler (GCC preferred)
- The GZIP program (you can get it from www.gnu.org)
- The Vim source and runtime archives

To get the Vim archives, look in this file for a mirror near you, this should
provide the fastest download:

ftp://ftp.vim.org/pub/vim/MIRRORS ~

Or use the home site ftp.vim.org, if you think it's fast enough. Go to the
"unix" directory and you'll find a list of files there. The version number is
embedded in the file name. You will want to get the most recent version.

You can get the files for Unix in two ways: One big archive that contains
everything, or four smaller ones that each fit on a floppy disk. For version
6.1 the single big one is called:

.\usr_doc.txt Page 252
vim-6.1.tar.bz2 ~

You need the bzip2 program to uncompress it. If you don't have it, get the
four smaller files, which can be uncompressed with gzip. For Vim 6.1 they are
called:

vim-6.1l-srcl.tar.gz ~
vim-6.1l-src2.tar.gz ~
vim-6.1l-rtl.tar.gz ~
vim-6.1-rt2.tar.gz ~

COMPILING
First create a top directory to work in, for example: >

mkdir ~/vim
cd ~/vim

Then unpack the archives there. If you have the one big archive, you unpack
it like this: >

bzip2 -d -c¢ path/vim-6.1.tar.bz2 | tar xf -
Change "path" to where you have downloaded the file. >

gzip -d -c path/vim-6.1-srcl.tar.gz tar xf -
gzip -d -c path/vim-6.1-src2.tar.gz tar xf -
gzip -d -c¢ path/vim-6.1-rtl.tar.gz tar xf -
gzip -d -c path/vim-6.1-rt2.tar.gz tar xf -

If you are satisfied with getting the default features, and your environment
is setup properly, you should be able to compile Vim with just this: >

cd vimé6l/src
make

The make program will run configure and compile everything. Further on we
will explain how to compile with different features.

If there are errors while compiling, carefully look at the error messages.
There should be a hint about what went wrong. Hopefully you will be able to
correct it. You might have to disable some features to make Vim compile.
Look in the Makefile for specific hints for your system.

TESTING
Now you can check if compiling worked OK: >
make test

This will run a sequence of test scripts to verify that Vim works as expected.
Vim will be started many times and all kinds of text and messages flash by.
If it is alright you will finally see:

test results: ~
ALL DONE ~

If you get "TEST FAILURE" some test failed. If there are one or two messages
about failed tests, Vim might still work, but not perfectly. If you see a lot
of error messages or Vim doesn't finish until the end, there must be something
wrong. Either try to find out yourself, or find someone who can solve it.

You could look in the |maillist-archive| for a solution. If everything else
fails, you could ask in the vim |maillist| if someone can help you.

INSTALLING

install-home
If you want to install in your home directory, edit the Makefile and search
for a line:

.\usr_doc.txt Page 253
#prefix = $(HOME) ~

Remove the # at the start of the line.

When installing for the whole system, Vim has most likely already selected
a good installation directory for you. You can also specify one, see below.
You need to become root for the following.

To install Vim do: >
make install

That should move all the relevant files to the right place. Now you can try
running vim to verify that it works. Use two simple tests to check if Vim can
find its runtime files: >

:help
:syntax enable

If this doesn't work, use this command to check where Vim is looking for the
runtime files: >

:echo $SVIMRUNTIME

You can also start Vim with the "-V" argument to see what happens during
startup: >

vim -V

Don't forget that the user manual assumeg you Vim in a certain way. After
installing Vim, follow the instructions at |not-compatible| to make Vim work
as assumed in this manual.

SELECTING FEATURES

Vim has many ways to select features. One of the simple ways is to edit the
Makefile. There are many directions and examples. Often you can enable or
disable a feature by uncommenting a line.

An alternative is to run "configure" separately. This allows you to
specify configuration options manually. The disadvantage is that you have to
figure out what exactly to type.

Some of the most interesting configure arguments follow. These can also be
enabled from the Makefile.

——prefix={directory} Top directory where to install Vim.
--with-features=tiny Compile with many features disabled.
—--with-features=small Compile with some features disabled.
--with-features=big Compile with more features enabled.
--with-features=huge Compile with most features enabled.

See |+feature-list| for which feature
is enabled in which case.

—-—enable-perlinterp Enable the Perl interface. There are
similar arguments for ruby, python and
tel.

--disable-gui Do not compile the GUI interface.

--without-x Do not compile X-windows features.

When both of these are used, Vim will
not connect to the X server, which
makes startup faster.

To see the whole list use: >

./configure --help
You can find a bit of explanation for each feature, and links for more
information here: |feature-list].

For the adventurous, edit the file "feature.h". You can also change the
source code yourself!

.\usr_doc.txt Page 254

There are two ways to install the Vim program for Microsoft Windows. You can
uncompress several archives, or use a self-installing big archive. Most users
with fairly recent computers will prefer the second method. For the first
one, you will need:

- An archive with binaries for Vim.
— The Vim runtime archive.
- A program to unpack the zip files.

To get the Vim archives, look in this file for a mirror near you, this should
provide the fastest download:

ftp://ftp.vim.org/pub/vim/MIRRORS ~

Or use the home site ftp.vim.org, if you think it's fast enough. Go to the
"pc" directory and you'll find a list of files there. The version number is
embedded in the file name. You will want to get the most recent version.

We will use "61" here, which is version 6.1.

gviméel.exe The self-installing archive.

This is all you need for the second method. Just launch the executable, and
follow the prompts.

For the first method you must chose one of the binary archives. These are
available:

gvimel.zip The normal MS-Windows GUI version.

gvimélole.zip The MS-Windows GUI version with OLE support.
Uses more memory, supports interfacing with
other OLE applications.

vim6lw32.zip 32 bit MS-Windows console version. For use in
a Win NT/2000/XP console. Does not work well
on Win 95/98.

vim61ld32.zip 32 bit MS-DOS version. For use in the
Win 95/98 console window.
vim6ldle.zip 16 bit MS-DOS version. Only for old systems.

Does not support long filenames.

You only need one of them. Although you could install both a GUI and a
console version. You always need to get the archive with runtime files.

vimelrt.zip The runtime files.

Use your un-zip program to unpack the files. For example, using the "unzip"
program: >

cd c:\
unzip path\gvimél.zip
unzip path\vimélrt.zip

This will unpack the files in the directory "c:\vim\vimél". If you already
have a "vim" directory somewhere, you will want to move to the directory just
above it.

Now change to the "vim\vimél" directory and run the install program: >

install

Carefully look through the messages and select the options you want to use.
If you finally select "do it" the install program will carry out the actions
you selected.

The install program doesn't move the runtime files. They remain where you
unpacked them.

In case you are not satisfied with the features included in the supplied
binaries, you could try compiling Vim yourself. Get the source archive from
the same location as where the binaries are. You need a compiler for which a

.\usr_doc.txt Page 255

makefile exists. Microsoft Visual C works, but is expensive. The Free
Borland command-line compiler 5.5 can be used, as well as the free MingW and
Cygwin compilers. Check the file src/INSTALLpc.txt for hints.

If you are running one version of Vim and want to install another, here is
what to do.

UNIX

When you type "make install" the runtime files will be copied to a directory
which is specific for this version. Thus they will not overwrite a previous
version. This makes it possible to use two or more versions next to

each other.

The executable "vim" will overwrite an older version. If you don't care
about keeping the old version, running "make install" will work fine. You can
delete the old runtime files manually. Just delete the directory with the
version number in it and all files below it. Example: >

rm -rf /usr/local/share/vim/vim58

There are normally no changed files below this directory. If you did change
the "filetype.vim" file, for example, you better merge the changes into the
new version before deleting it.

If you are careful and want to try out the new version for a while before
switching to it, install the new version under another name. You need to
specify a configure argument. For example: >

./configure --with-vim-name=vimé

Before running "make install", you could use "make -n install" to check that
no valuable existing files are overwritten.

When you finally decide to switch to the new version, all you need to do is
to rename the binary to "vim". For example: >

mv /usr/local/bin/vimé /usr/local/bin/vim

MS-WINDOWS

Upgrading is mostly equal to installing a new version. Just unpack the files
in the same place as the previous version. A new directory will be created,
e.g., "vimel", for the files of the new version. Your runtime files, vimrc
file, viminfo, etc. will be left alone.

If you want to run the new version next to the old one, you will have to do
some handwork. Don't run the install program, it will overwrite a few files
of the old version. Execute the new binaries by specifying the full path.
The program should be able to automatically find the runtime files for the
right version. However, this won't work if you set the $VIMRUNTIME variable
somewhere.

If you are satisfied with the upgrade, you can delete the files of the
previous version. See |90.5].

This section describes some of the common problems that occur when installing
Vim and suggests some solutions. It also contains answers to many
installation questions.

Q: I Do Not Have Root Privileges. How Do I Install Vim? (Unix)

Use the following configuration command to install Vim in a directory called
$HOME/vim: >

./configure --prefix=3$HOME

.\usr_doc.txt Page 256

This gives you a personal copy of Vim. You need to put $HOME/bin in your
path to execute the editor. Also see |install-home]|.

Q: The Colors Are Not Right on My Screen. (Unix)

Check your terminal settings by using the following command in a shell: >

echo STERM
If the terminal type listed is not correct, fix it. For more hints, see
|06.2|. Another solution is to always use the GUI version of Vim, called

gvim. This avoids the need for a correct terminal setup.

Q: My Backspace And Delete Keys Don't Work Right

The definition of what key sends what code is very unclear for backspace <BS>
and Delete keys. First of all, check your S$TERM setting. If there is
nothing wrong with it, try this: >

:set t_kb="V<BS>
:set t kD="V

In the first line you need to press CTRL-V and then hit the backspace key.

In the second line you need to press CTRL-V and then hit the Delete key.

You can put these lines in your vimrc file, see |05.1|. A disadvantage is
that it won't work when you use another terminal some day. Look here for
alternate solutions: |:fixdel].

Q: I Am Using RedHat Linux. Can I Use the Vim That Comes with the System?

By default RedHat installs a minimal version of Vim. Check your RPM packages
for something named "Vim-enhanced-version.rpm" and install that.

Q: How Do I Turn Syntax Coloring On? How do I make plugins work?

Use the example vimrc script. You can find an explanation on how to use it
here: |not-compatible].

See chapter 6 for information about syntax highlighting: |usr 06.txt].

Q: What Is a Good vimrc File to Use?

See the www.vim.org Web site for several good examples.

Q: Where Do I Find a Good Vim Plugin?

See the Vim-online site: http://vim.sf.net. Many users have uploaded useful
Vim scripts and plugins there.

Q: Where Do I Find More Tips?

See the Vim-online site: http://vim.sf.net. There is an archive with hints
from Vim users. You might also want to search in the |maillist-archive]|.

In the unlikely event you want to uninstall Vim completely, this is how you do
it.

UNIX

.\usr_doc.txt Page 257

When you installed Vim as a package, check your package manager to find out
how to remove the package again.
If you installed Vim from sources you can use this command: >

make uninstall

However, 1f you have deleted the original files or you used an archive that
someone supplied, you can't do this. Do delete the files manually, here is an
example for when "/usr/local" was used as the root: >

rm -rf /usr/local/share/vim/vimél
rm /usr/local/bin/eview

rm /usr/local/bin/evim

rm /usr/local/bin/ex

rm /usr/local/bin/gview

rm /usr/local/bin/gvim

rm /usr/local/bin/gvim

rm /usr/local/bin/gvimdiff

rm /usr/local/bin/rgview

rm /usr/local/bin/rgvim

rm /usr/local/bin/rview

rm /usr/local/bin/rvim

rm /usr/local/bin/rvim

rm /usr/local/bin/view

rm /usr/local/bin/vim

rm /usr/local/bin/vimdiff

rm /usr/local/bin/vimtutor

rm /usr/local/bin/xxd

rm /usr/local/man/manl/eview.1
rm /usr/local/man/manl/evim.1

rm /usr/local/man/manl/ex.1

rm /usr/local/man/manl/gview.1
rm /usr/local/man/manl/gvim.1

rm /usr/local/man/manl/gvimdiff.1
rm /usr/local/man/manl/rgview.1
rm /usr/local/man/manl/rgvim.1
rm /usr/local/man/manl/rview.1l
rm /usr/local/man/manl/rvim.1

rm /usr/local/man/manl/view.1

rm /usr/local/man/manl/vim.1

rm /usr/local/man/manl/vimdiff.1
rm /usr/local/man/manl/vimtutor.1l
rm /usr/local/man/manl/xxd.1

MS-WINDOWS

If you installed Vim with the self-installing archive you can run
the "uninstall-gui" program located in the same directory as the other Vim

programs, e.g. "c:\vim\vim6l". You can also launch it from the Start menu if
installed the Vim entries there. This will remove most of the files, menu
entries and desktop shortcuts. Some files may remain however, as they need a

Windows restart before being deleted.

You will be given the option to remove the whole "vim" directory. It
probably contains your vimrc file and other runtime files that you created, so
be careful.

Else, if you installed Vim with the zip archives, the preferred way is to use
the "uninstal" program (note the missing 1 at the end). You can find it in
the same directory as the "install" program, e.g., "c:\vim\vimél". This
should also work from the usual "install/remove software" page.

However, this only removes the registry entries for Vim. You have to
delete the files yourself. Simply select the directory "vim\vimél" and delete
it recursively. There should be no files there that you changed, but you
might want to check that first.

The "vim" directory probably contains your vimrc file and other runtime
files that you created. You might want to keep that.

Table of contents: |usr toc.txt|

.\usr_doc.txt Page 258

Copyright: see |manual-copyright| vim:tw=78:ts=8:ft=help:norl:

